EECS 203 Exam 2 Review

Day 1

Today's Review Topics

- Modular Arithmetic
- Induction
 - Weak Induction
 - Strong Induction

Divisibility and Modular Arithmetic

Divisibility Recap

- Divisibility: $a \mid b \text{ iff } \exists c (b = ac)$ 0|3? 3|0?
- Prime Number p>1: p is only divisible by 1 and itself

Two types of "mods"

- a ≡ b (mod m) is a predicate involving three numbers.
 Sometimes we leave out the parens; ≡ is the important part
- a mod m is the remainder after dividing a by m. This is always an integer between 0 and m-1. (a\%m in C++)

Modular

- We can write b = na + r (n is some int and 0<=r<a)
- $a \equiv b \pmod{m}$ "a and b have same remainder upon division by m"?
- More about modular arithmetic:
- Suppose $\mathbf{a} \equiv \mathbf{b} \pmod{\mathbf{m}}$ and $\mathbf{c} \equiv \mathbf{d} \pmod{\mathbf{m}}$.
- Claim: $a+c \equiv b+d \pmod{m}$ (Addition works!)
- Claim: $a-c \equiv b-d \pmod{m}$ (Subtraction works!)
- Claim: $ac \equiv bd \pmod{m}$ (Multiplication works!)
 - Simplify the bases of exponents and constant addition/multiplication terms
 - Split exponents using exponent rules

Mods Question 1

Let $x \equiv 3 \pmod{12}$, $y \equiv 11 \pmod{21}$, and $z \equiv 3 \pmod{4}$. Which of the following statements must be true?

- (a) $x + y \equiv 2 \pmod{3}$
- (b) $x + z \equiv 3 \pmod{4}$
- (c) $x y \equiv -8 \pmod{12}$
- (d) $x \cdot y \equiv 12 \pmod{21}$
- (e) $x \cdot z \equiv 1 \pmod{4}$

Solution: a,e. a: 12 and 21 are both multiples of 3, so we know $x \equiv 3 \pmod{3}$ and $y \equiv 11 \pmod{3}$, so $x + y \equiv 3 + 11 \equiv 2 \pmod{3}$ b,e: 12 and 4 are both multiples of 4, so we know $x \equiv 3 \pmod{4}$ and $z \equiv 3 \pmod{4}$, so $x + z \equiv 3 + 3 \equiv 2 \pmod{4}$. We also know that $x \cdot z \equiv 3 \cdot 3 \equiv 1 \pmod{4}$. c,d: We don't know what y is mod 12 or x is mod 21, so c and d cannot be guaranteed.

Alternate Solution: (a), (e)
Using the definition of mods
$$\bullet \quad x = 12k_1 + 3$$

$$\bullet \quad y = 21k_2 + 11$$

$$\bullet \quad z = 4k_3 + 3$$

Using the definition of mods: • $x = 12k_1 + 3$ • $y = 21k_2 + 11$

a) x + y

a)
$$x + y$$

= $(12k_1 + 3) + (21k_2 + 11)$
= $(0 + 0) + (0 + 2) \pmod{3}$

=
$$(12k_1 + 3) + (21k_2 + 11)$$

= $(0 + 0) + (0 + 2) \pmod{3}$
= $2 \pmod{3} \rightarrow \text{True}$

 $\equiv (0 + 0) + (0 + 2) \pmod{3}$ b) x+z

 $\equiv (0+3)+(0+3) \pmod{4}$ e) x*z $\equiv 6 \pmod{4}$

 $\equiv 2 \pmod{4} \rightarrow \text{False}; 2 \neq 3$

=
$$(12k_1 + 3) + (4k_3 + 3)$$

= $(0 + 3) + (0 + 3) \pmod{4}$
= $6 \pmod{4}$

 \equiv -9k₂ - 8 (mod 3) \rightarrow False; value

a)

depends on
$$k_2$$
 which depends on y
$$x * y$$

 $= (12k_1 + 3) * (21k_2 + 11)$ $\equiv (12k_1 + 3) * (0 + 11) \pmod{21}$ $\equiv 132k_1 + 33 \pmod{21}$

 $= (12k_1 + 3) - (21k_2 + 11)$

 \equiv (0 + 3) - (9k₂ + 11) (mod 12)

$$\equiv$$
 132k₁ + 33 (mod 21)
 \equiv 6k₁ + 12 (mod 21) → False; value depends on k₁ which depends on x

 $= (12k_1 + 3) * (4k_2 + 3)$ $\equiv (0 + 3) * (0 + 3) \pmod{4}$

 $\equiv 1 \pmod{4} \rightarrow \text{True}$

 $\equiv 9 \pmod{4}$

$$\equiv (12k_1 + 3) * (0 + 11) \pmod{21}$$

$$\equiv 132k_1 + 33 \pmod{21}$$

$$\equiv 6k_1 + 12 \pmod{21} \rightarrow \text{False; value}$$
depends on k, which depends on x

$$\begin{array}{c} 1) & (11) \\ 21) \\ \rightarrow & \text{False} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2$$

Mods Question 2

Find c with $0 \le c < 11$ such that $c \equiv 14^6 + 22^{203} \pmod{11}$

Mods Question 2 Solution

Find c with $0 \le c < 11$ such that $c \equiv 14^6 + 22^{203} \pmod{11}$

$$c \equiv 14^6 + 22^{203} \pmod{11}$$
 $\equiv 3^6 + 0^{203} \pmod{11}$
 $\equiv 3^6 \pmod{11}$
 $\equiv (3^2)^3 \pmod{11}$
 $\equiv (9)^3 \pmod{11}$
 $\equiv (-2)^3 \pmod{11}$
 $\equiv -8 \pmod{11}$
 $\equiv 3 \pmod{11}$

Induction

	Cheat Sheet	
// Define Predicate Basis Step	Induction Let P(n) be the statement Form your base	Strong Induction Let P(n) be the statement Form your base case(s)
·	case $P(x)$ (it can be more than one)	$P(x), P(x + 1), \dots$ (usually more than one)
Inductive Hypothesis	P(x) is true	$P(j)$ is true for all j such that smallest base case $\leq j \leq k$
Inductive Step	$P(x) \rightarrow P(x+1)$	$P(i) \land P(i+1) \land \cdots P(k) \rightarrow P(k+1)$ i = smallest base case $P(j) \rightarrow P(k+1), \text{ base} \leq j \leq k$

Induction Recap

- Two types of Induction
 - Weak Induction
 - Strong Induction
- Base Case(s), Inductive Hypothesis, Inductive Step
- "Mathematical ladder"

Weak Induction

Weak Induction

- Show that the expression/statement is true for the base case (often in the form of n = 0 or n = 1).
- 2. Assume that the expression is true for some arbitrary element k in the domain appropriate for the problem.*
- 3. Show that the statement is true for P(k+1) when P(k) is true. (i.e P(k) -> P(k+1))

^{*} The domain is often **Z**⁺, but it may be different.

Induction 1

Prove that the following equality holds for all positive integers n:

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

Induction 1 Solution

Solution: Let P(n) be $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$.

Inductive Step:

We assume that P(k) is true for an arbitrary positive integer k such that $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots + \frac{1}{k\cdot (k+1)} = \frac{k}{k+1}$. It must be shown that P(k+1) follows from this assumption.

Induction 1 Solution Continued

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{k \cdot (k+1)} + \frac{1}{(k+1) \cdot ((k+1)+1)} = \frac{k}{k+1} + \frac{1}{(k+1) \cdot ((k+1)+1)}$$

$$= \frac{k}{k+1} + \frac{1}{(k+1) \cdot (k+2)}$$

$$= \frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1) \cdot (k+2)}$$

$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+1)(k+2)}$$

$$= \frac{k+1}{k+2}$$

$$= \frac{k+1}{(k+1)+1}$$

This shows that P(k+1) is true under the assumption that P(k) is true. Note that the equality in line 1 is true by the inductive hypothesis.

Base Case:

Our base case of P(1) is true since $LHS = \frac{1}{1 \cdot 2} = \frac{1}{2} = \frac{1}{1+1} = RHS$.

Therefore, since P(1) and $\forall k P(k) \rightarrow P(k+1)$ are both true, then by mathematical induction, the claim is proven.

"Inequality" Induction

- Hardest part is substituting using inequality
- Manipulate the expressions to reduce them to desired form
- Consider things like "is the product greater than the sum?"

Induction 2

Prove using induction that $1 + (3^0 + 3^1 + 3^2 + \dots + 3^{n-1}) < 3^n$ for all $n \ge 1$.

Induction 2 Solution

Let $P(n): 1 + (3^0 + 3^1 + 3^2 + \dots + 3^{n-1}) < 3^n$. Claim: P(n) holds for all $n \ge 1$.

Base Case: need to prove $P(1): 1 + 3^{1-1} < 3^1$. Proof: $1 + (3^0 \cdots 3^{1-1}) = 1 + 3^0 = 1 + 1 = 2 < 3 = 3^1$.

Alternate proof of Base Case: $1 + 3^0 = 2$ and $3^1 = 3$. 2 < 3, so thus $1 + 3^0 < 3^1$.

Inductive Step:

Assume P(k): $1 + (3^0 + 3^1 + 3^2 + \dots + 3^{k-1}) < 3^k$ holds, for some $k \ge 1$. Want to show P(k+1): $1 + (3^0 + 3^1 + 3^2 + \dots + 3^{k-1} + 3^k) < 3^{k+1}$.

Starting with the LHS of P(k+1) and working our way to the RHS, we have:

$$1 + (3^{0} + 3^{1} + 3^{2} + \dots + 3^{k-1} + 3^{k}) = (1 + (3^{0} + 3^{1} + 3^{2} + \dots + 3^{k-1})) + 3^{k}$$

$$< 3^{k} + 3^{k}$$

$$= 2 \cdot 3^{k}$$

$$< 3 \cdot 3^{k}$$

$$= 3^{k+1}$$

Thus, by mathematical induction, we have that P(n) holds for all $n \geq 1$.

Induction 3

Prove using induction that

$$n^2 + n < 2^n$$
, for all integers $n \ge 5$.

Every inequality in your proof should be justified by one of the following:

- The inductive hypothesis (IH)
- $k^i < k^j$ when i < j because k > 1 (e.g., $k^2 < k^4$)
- $c \le k$ when $c \le 5$ because $k \ge 5$ (e.g., $3 \le k$)

Induction 3 Solution

Solution: Let P(n) be the predicate $n^2 + n < 2^n$. We want to show $\forall n \geq 5$ P(n).

Base case: Let n = 5. Then $5^2 + 5 = 30 < 32 = 2^5$. So P(5) is true.

Inductive step:

Inductive hypothesis: Assume P(k) is true for an arbitrary $k \geq 5$. That is, assume $k^2 + k < 2^k$ for an arbitrary integer $k \geq 5$.

We want to show that P(k+1) holds, that is, $(k+1)^2 + (k+1) < 2^{k+1}$.

$$(k+1)^{2} + (k+1) = (k^{2} + 2k + 1) + (k+1)$$

$$= (k^{2} + k) + (2k + 2)$$

$$< (k^{2} + k) + (k \cdot k + k)$$

$$= (k^{2} + k) + (k^{2} + k)$$

$$< 2^{k} + 2^{k}$$

$$= 2^{k+1}$$
(Inductive hypothesis)

Induction 4

Prove that for all $n \geq 1$, the sum of the squares of the first 2n positive integers is given by the formula

$$1^{2} + 2^{2} + 3^{2} + \dots + (2n)^{2} = \frac{n(2n+1)(4n+1)}{3}$$

Induction 4 Solution

Let
$$P(n)$$
 be $1^2 + 2^2 + 3^2 + \dots + (2n)^2 = \frac{n(2n+1)(4n+1)}{3}$

Base Case:
$$P(1)$$
, $1^2 + 2^2 = \frac{1 \cdot (2(1)+1) \cdot (4(1)+1)}{3} = \frac{3 \cdot 5}{3} = 5$

Inductive Hypothesis: Assume P(k) is true, $1^2 + 2^2 + 3^2 + \dots + (2k)^2 = \frac{k(2k+1)(4k+1)}{3}$ holds

Inductive Step: Prove that $1^2 + 2^2 + 3^2 + ... + (2(k+1))^2 = \frac{(k+1)(2(k+1)+1)(4(k+1)+1)}{3}$ holds

Induction 4 Solution Continued

$$\begin{aligned} 1^2 + 2^2 + 3^2 + \dots + (2(k+1))^2 &= 1^2 + 2^2 + 3^2 + \dots + (2k+2)^2 \\ &= 1^2 + 2^2 + 3^2 + \dots + (2k)^2 + (2k+1)^2 + (2k+2)^2 \\ &= \frac{k(2k+1)(4k+1)}{3} + (2k+1)^2 + (2k+2)^2 \\ &= \frac{k(2k+1)(4k+1)}{3} + \frac{3(2k+1)^2 + 3(2k+2)^2}{3} \\ &= \frac{k(2k+1)(4k+1) + 3(2k+1)^2 + 3(2k+2)^2}{3} \\ &= \frac{(8k^3 + 6k^2 + k) + (12k^2 + 12k + 3) + (12k^2 + 24k + 12)}{3} \\ &= \frac{8k^3 + 30k^2 + 37k + 15}{3} \\ &= \frac{(2k^2 + 5k + 3)(4k + 5)}{3} \\ &= \frac{(k+1)(2k+3)(4k+5)}{3} \\ &= \frac{(k+1)(2(k+1) + 1)(4(k+1) + 1)}{3} \end{aligned}$$

Therefore we have proved that $P(k) \to P(k+1)$ for all $k \ge 1$ By mathematical induction, P(n) is true for all $n \ge 1$ QED

- Similar to Weak Induction
- Major Differences
 - Possibly multiple base cases
 - Assumes all previous steps to be true
- Still has the same format as weak induction

Prove that every integer $n \ge 12$ can be written as n = 4a + 5b for some non-negative integer a, b using strong induction.

Strong Induction 1 P(13), $13 = 4 \cdot 2 + 5 \cdot 1$ Solution

Let P(n) be n = 4a + 5b for some nonnegative integer a, b

Base Cases:

$$P(12), 12 = 4 \cdot 3 + 5 \cdot 0$$

$$P(13), 13 = 4 \cdot 2 + 5 \cdot 1$$

$$P(14), 14 = 4 \cdot 1 + 5 \cdot 2$$

$$P(15), 15 = 4 \cdot 0 + 5 \cdot 3$$

Inductive Step:

Let k > 15

Inductive hypothesis: assume P(j) is true for $12 \le j \le k$. That is, j = 4a + 5b for some nonnegative integer a, b holds

We want to prove that k+1=4a+5b holds for some nonnegative integer a, b

From our inductive hypothesis: $12 \le k - 3 \le k$

Hence, we know that P(k-3) is true, or k-3=4a+5b for some nonnegative integers a, b

Thus, we have

$$k + 1 = (k - 3) + 4$$
$$= 4a + 5b + 4$$
$$= 4(a + 1) + 5b$$

Showing that P(k+1) is true By strong induction, P(n) is true for $n \ge 12$

Use strong induction to show that every positive integer n can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, and so on. [Hint: For the inductive step, separately consider the case where k + 1 is even and where it is odd. Note that when (k + 1) is even, (k + 1)/2 is an integer.]

Strong Induction 2 Solution

Solution: The basis step is to note that $1 = 2^0$. Notice for subsequent steps that $2 = 2^1$, $3 = 2^1 + 2^0$, $4 = 2^2$, $5 = 2^2 + 2^0$, and so on. Indeed this is simply the representation of a number in binary form (base two).

Assume the inductive hypothesis, that every positive integer up to k can be written as a sum of distinct powers of 2 for some $k \geq 1$. We must show that k+1 can be written as a sum of distinct powers of 2. Consider the case where k is even. Because the only odd power of 2 is $2^0 = 1$, and for 2^0 to be part of the numbers summing to k we would therefore have to have 2^0 twice (but these are distinct powers of 2), we know that when k is even, k can be written as a sum of distinct powers of 2 without a 2^0 term. If k+1 is odd, then k is even, so 2^0 was not part of the sum for k. Therefore the sum for k+1 is the same as the sum for k with the extra term 2^0 added. If k+1 is even, then (k+1)/2is a positive integer, so by the inductive hypothesis (k+1)/2 can be written as a sum of distinct powers of 2. Increasing each exponent by 1 doubles the value and gives us the desired sum for k+1.

Let the sequence a_n be defined as $a_1 = a_2 = a_3 = 1$ and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ for all $n \ge 4$. Prove that $a_n < 2^n$ (*)

holds for all $n \in \mathbb{Z}_+$.

Strong Induction 2 Solution

Solution: We will prove by strong induction.

Base step: For n = 1, 2, 3, a_n is equal to 1, whereas the right-hand side of (*) is equal to $2^1 = 2$, $2^2 = 4$, and $2^3 = 8$, respectively. Thus, (*) holds for n = 1, 2, 3.

Induction step: Let $k \geq 3$ be given and suppose (*) is true for all n = 1, 2, ..., k. Then

$$a_{k+1} = a_k + a_{k-1} + a_{k-2}$$
 (by definition of a_n)
$$< 2^k + 2^{k-1} + 2^{k-2}$$
 (by strong induction hypothesis with $n = k, k-1$, and $k-2$)
$$= 2^{k+1} (\frac{1}{2} + \frac{1}{4} + \frac{1}{8})$$

$$= 2^{k+1} \cdot \frac{7}{8}$$

$$< 2^{k+1}$$

Thus, (*) holds for n = k + 1, and the proof of the induction step is complete.

Conclusion: By the strong induction principle, it follows that (*) is true for all $n \in \mathbb{Z}_+$.

Have a great rest of the weekend!

5 Minute Break!

https://joshdata.me/iceberger.html

Iceberger

Draw an iceberg and see how it will float.

(Inspired by a tweet by @GlacialMeg)

