Examenul national de bacalaureat 2022

Proba E. d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.

Timpul de lucru éfectiv este de trei ore. A. MECANICA

Simulare

Se consideră accelerația gravitațională $g = 10 \text{ m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Dacă un corp coboară rectiliniu o pantă, astfel încât modulul vitezei corpului este constant în timp, atunci:
- a. energia mecanică a corpului este constantă în timp;
- **b.** acceleratia corpului creste în timp:
- c. rezultanta tuturor fortelor care actionează asupra corpului este nulă;
- d. lucrul mecanic efectuat de greutatea corpului între două poziții diferite ale corpului este nul.
- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, relaţia de definiţie a vectorului viteză medie este:
- **a.** $\vec{v}_m = \frac{\vec{F}}{\Delta t}$
- **b.** $\vec{v}_m = \frac{\Delta \vec{r}}{\Delta t}$
- **c.** $\vec{V}_m = \frac{\Delta \vec{p}}{\Delta t}$
- **d.** $\vec{v}_m = \frac{\vec{a}}{\Delta t}$ (3p)
- 3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a produsului dintre greutatea unui corp și viteza sa $G \cdot v$ este:
- **b.** J
- d. N·s

(3p)

- **4.** Coeficientul de frecare la alunecare dintre un corp și suprafața unui plan înclinat cu unghiul $\alpha=30^\circ$ față de
- orizontală este $\mu = 0.19 \left(= \frac{1}{3\sqrt{3}} \right)$. Randamentul planului înclinat, la ridicarea uniformă a corpului pe plan, este:
- **a.** 80%

- (3p)
- 5. Un corp de masă m = 9kg trece prin originea axei Ox cu viteza $v_0 = 3$ m/s orientată în sensul pozitiv al axei. Asupra corpului acționează o forță rezultantă, orientată în sensul vitezei, al cărei modul variază în funcție de coordonata corpului ca în graficul alăturat. Valoarea vitezei corpului în momentul în care acesta ajunge în punctul de coordonată x = 5m este:

- a. 12 m/s
- **b.** 8 m/s
- c. 6 m/s
- **d.** 5 m/s

(3p) (15 puncte)

II. Rezolvaţi următoarea problemă: Sistemul din figura alăturată este format din două corpuri cu masele $m_1 = 2.5 \, \text{kg}$ şi $m_2 = 0.1 \, \text{kg}$. Corpurile sunt legate printr-un fir inextensibil, de masă neglijabilă, trecut peste un scripete lipsit de frecare și de inerție. Unghiul format de planul înclinat cu orizontala este $\alpha = 37^{\circ}$ ($\sin \alpha = 0.6$). Lăsat liber, sistemul pornește din

repaus, corpurile deplasându-se uniform accelerat cu $a = 1 \text{ m/s}^2$. Calculați:

- a. valoarea tensiunii din firul care leagă cele două corpuri;
- **b.** modulul forței de frecare la alunecare dintre corpul de masă m_1 și planul înclinat;
- ${f c.}$ valoarea coeficientului de frecare la alunecare dintre corpul de masă m_1 și planul înclinat;
- d. modulul forței de apăsare exercitate asupra scripetelui.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un corp de masă $m = 0.5 \,\mathrm{kg}$ este lansat din punctul A, cu viteza inițială orizontală $v_0 = 6 \,\mathrm{m/s}$, de-a lungul unei suprafețe orizontale AB, ca în figură. După ce corpul parcurge distanța AB = d = 1 m, acesta începe să urce pe o suprafață curbă, care are secțiunea BC de forma unui sfert de cerc, de rază OB = OC = R = 0.8 m.

Deplasarea corpului pe suprafata AB are loc cu frecare, coeficientul de frecare fiind $\mu = 0.55$, iar pe porțiunea BC frecările sunt neglijabile. Se neglijează rezistența la înaintare datorată aerului. Energia potențială gravitatională se consideră nulă la nivelul suprafetei AB. Determinați:

- a. energia cinetică inițială a corpului;
- b. valoarea vitezei corpului în punctul B;
- c. valoarea impulsului mecanic al corpului în punctul C;
- d. înălțimea, față de nivelul suprafeței AB, la care energia potențială gravitațională este de patru ori mai mare decât energia cinetică a corpului.

Examenul national de bacalaureat 2022

Proba E. d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu.

Timpul de lucru éfectiv este de trei ore. B. ELEMENTE DE TERMODINAMICA

Simulare

Se consideră: numărul lui Avogadro $N_A = 6,02 \cdot 10^{23} \,\text{mol}^{-1}$, constanta gazelor ideale $R = 8,31 \,\text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.
- 1. O cantitate de gaz este închisă într-un recipient etans, izolat adiabatic de mediul exterior. Gazul este comprimat. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, în decursul acestui proces:
- **a.** $\Delta U < 0$
- **b.** $\Delta U > 0$
- c. Q < 0
- **d.** L > 0

(3p)

- 2. O cantitate constantă de gaz ideal ocupă volumul $V_1 = 1,5$ L și se află la presiunea p = 100 kPa. Gazul este încălzit la presiune constantă destinzându-se până la volumul $V_2 = 2,0 \, L$. Căldura primită de gaz în decursul acestui proces este Q = 175 J Variația de energie interne a gazului este:
- **a.** $\Delta U = 768 \text{ J}$
- **b.** $\Delta U = 225 \text{ J}$
- **c.** $\Delta U = 125 \text{ J}$

(3p)

- 3. Unitatea de măsură în S.I. a căldurii specifice este:
- **a.** J·mol⁻¹·K⁻¹
- **b.** J·kg⁻¹
- **c.** J·K⁻¹
- **d.** $J \cdot kg^{-1} \cdot K^{-1}$

(3p)

- **4.** Trei mase diferite m_1 , m_2 și m_3 din același gaz ideal sunt supuse unor procese termodinamice reprezentate în coordonate V-T în figura alăturată. Procesele se desfășoară la aceeași presiune $(p_1 = p_2 = p_3)$. Relația corectă dintre cele trei mase de gaz este:
- **a.** $m_1 > m_2 > m_3$
- **b.** $m_2 > m_3 > m_1$
- **c.** $m_3 > m_2 > m_1$
- **d.** $m_1 = m_2 = m_3$

T,

- 5. Randamentul unui motor termic ce funcționează după un ciclu Carnot între temperaturile extreme $t_1 = 27^{\circ}\text{C}$ și $t_2 = 227^{\circ}\text{C}$ are valoarea:
- a. 11,89%
- **b.** 40%
- **c.** 60%
- **d.** 88,1%

(3p)

(3p)

II. Rezolvați următoarea problemă:

(15 puncte)

Într-un cilindru orizontal se află azot $(\mu_1 = 28 \text{ g/mol})$ la temperatura T = 300 K și presiunea $p_1 = 0.75 \cdot 10^5$ Pa. Cilindrul este închis cu un piston etans cu aria suprafeței S = 831 cm². Inițial deplasarea pistonului spre stânga este blocată, iar volumul ocupat de azot este $V_1 = 16,62 \text{ L}$. În exterior se află aer la presiunea $p_0 = 1.10^5 \,\mathrm{Pa}$. Cilindrul este conectat cu o incintă de volum $V_2 = 8.31 \,\mathrm{L}$ prin intermediul unui tub de volum neglijabil prevăzut cu un robinet R, inițial închis, ca în figura alăturată. Incinta conține $m_2 = 8$ g de heliu $(\mu_2 = 4 \text{ g/mol})$, la temperatura T = 300 K. Robinetul se deschide lent. Pistonul

se poate deplasa fără frecare. În timpul procesului temperatura este menținută constantă. Gazele sunt considerate ideale. Determinati:

- a. densitatea azotului în starea initială:
- b. distanța dintre poziția inițială a pistonului și poziția finală a acestuia în momentul atingerii stării de echilibru, considerând cilindrul suficient de lung;
- c. masa molară medie a amestecului de heliu și azot;
- d. cantitatea minimă de amestec ce trebuie scoasă astfel încât pistonul să revină în poziția inițială.

III. Rezolvați următoarea problemă:

O cantitate constantă de gaz ideal diatomic $(C_v = 2,5R)$ efectuează procesul ciclic 1-2-3-4-1 reprezentat în coordonate p-V în figura alăturată. În starea 1 gazul ocupă volumul $V_1 = 4$ L și se află la presiunea $p_1 = 1.10^5$ Pa, iar volumul în starea **3** este $V_3 = 3V_1$. Transformarea 3 – 4 este izotermă. Se cunoaște $\ln 3 \cong 1,1$.

- **a.** Reprezentați transformarea ciclică în coordonate V-T.
- b. Calculați variația energiei interne a gazului între stările 1 și 3.
- c. Calculati lucrul mecanic total schimbat de gaz cu exteriorul în transformarea ciclică.
- d. Calculați valoarea căldurii cedate de gaz în procesul ciclic descris.

Examenul național de bacalaureat 2022

Proba E. d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă zece puncte din oficiu. Timpul de lucru éfectiv este de trei ore.

<u>C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU</u>

Simulare

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Simbolurile mărimilor fizice fiind cele folosite în manualele de fizică, randamentul unui circuit simplu se poate exprima prin relația:

a.
$$\eta = \frac{E - u}{U}$$

b.
$$\eta = \frac{U+u}{E}$$

c.
$$\eta = 1 - \frac{1}{I_{cc}}$$

c.
$$\eta = 1 - \frac{I}{I_{cc}}$$
 d. $\eta = \frac{I_{sc}}{I} - 1$ (3p)

- 2. În cazul unui conductor metalic parcurs de curent electric, conducția electrică este asigurată de:
- a. electroni și ioni
- **b.** ioni negativi
- **c.** ioni pozitivi
- **d.** electroni

(3p)

- 3. Simbolurile mărimilor fizice fiind cele folosite în manualele de fizică, raportul dintre energie și tensiune are aceeași unitate de măsură ca produsul:
- a. $I \cdot \Lambda t$
- **b.** $U \cdot \Delta t$
- **c.** $U^2 \cdot \Lambda t$
- **d.** $I^2 \cdot R$

- 4. Un rezistor cu rezistența variabilă este conectat la bornele unei baterii. În figura alăturată este reprezentată dependența intensității curentului prin rezistor de valoarea rezistentei acestuia. Valoarea rezistentei interioare a bateriei este:
- **a.** $r = 5 \Omega$
- **b.** $r = 10 \Omega$
- **c.** $r = 12 \Omega$
- **d.** $r = 30 \Omega$
- **5.** Rezistența unui conductor liniar, omogen, de lungime ℓ =50m, cu aria secțiunii transversale de 0,5 mm 2 , confectionat din aluminiu $(\rho_{AI} = 2.75 \cdot 10^{-8} \Omega \cdot m)$, are valoarea:
- **a.** $0,275\,\Omega$
- **b.** 2.75Ω
- c. 27.5Ω
- **d.** 275 Ω
- (3p) (15 puncte)

II. Rezolvaţi următoarea problemă:

În figura alăturată este reprezentată schema unui circuit electric. Bateria are tensiunea electromotoare E = 24 V și rezistența interioară $r = 2 \Omega$. Comutatorul K poate fi în poziția a, b sau c. Se cunosc rezistențele electrice $R_1 = 6 \Omega$, $R_2 = 12 \Omega$, iar ampermetrul este considerat ideal $(R_A \cong 0 \Omega)$. Când comutatorul **K** este în poziția **a** ampermetrul indică $I_a = 0.75 \text{ A}$.

- c. tensiunea de la bornele bateriei când comutatorul este în poziția b.;
- **d.** indicația unui voltmetru ideal $(R_V \to \infty)$ conectat între bornele **a** și **b** când comutatorul este în poziția c..

III. Rezolvaţi următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit electric. Când întrerupătorul ${f K}$ este deschis tensiunea la bornele rezistorului având rezistența electrică R_1 este $U_d = 200 \text{ V}$, iar puterea consumată de

acest rezistor este $P_1 = 160 \text{ W}$. Puterea consumată de rezistorul având rezistența electrică R_2 este P_2 = 80 W . Valoarea puterii disipate în circuitul exterior nu se modifică prin închiderea sau deschiderea întrerupătorului K. Se cunoaște că $R_1 = 3 \cdot r$, unde r este rezistența interioară a bateriei.

- **a.** Determinați valoarea rezistenței R_2 .
- b. Determinați valoarea tensiunii electromotoare a bateriei.
- **c.** Determinați valoarea rezistenței R_3 .
- **d.** În condițiile în care întrerupătorul ${f K}$ este închis se înlocuiește rezistorul ${\it R}_3$ cu un

alt rezistor având rezistența electrică R_3' . Determinați valoarea rezistenței R_3' pentru care puterea dezvoltată pe circuitul exterior bateriei este maximă.

Examenul national de bacalaureat 2022

Proba E. d) **FIZICA**

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TEMBOLINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă zece puncte din oficiu.

 Timpul de lucru éfectiv este de trei ore. D. OPTICA Simulare

Se consideră: viteza luminii în vid $c = 3.10^8 \text{ m/s}$, constanta Planck $h = 6.6.10^{-34} \text{ J} \cdot \text{s}$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Două radiații luminoase au lungimile de undă $\lambda_1 = 0.5 \,\mu\text{m}$ și $\lambda_2 = 500 \,\text{nm}$. Raportul lungimilor de undă ale celor două radiații λ_1/λ_2 este egal cu:
- **a.** 0.1

- **c.** 10
- **d.** 100

- (3p)
- 2. O lentilă subțire are distanța focală f și formează imaginea unui obiect. Coordonata imaginii față de lentilă este x_2 , iar mărirea liniară transversală este β . Semnificația fizică a produsului $x_2 \cdot f^{-1}$ este:
- a. $\beta 1$

- **c.** 1β
- d. β^{-1} (3p)

- 3. Unitatea de măsură în S.I. a drumului optic este:
- **a.** m⋅s⁻¹

- **c.** m⁻¹ · s
- **d.** m⁻¹
- **4.** O rază de lumină care provine dintr-un mediu cu indicele de refracție *n* cade, sub unghiul de incidență *i* , pe suprafața de separație dintre acest mediu și aer ($n_{aer} \cong 1$). După ce întâlnește suprafața de separație dintre cele două medii, raza de lumină se propagă de-a lungul acestei suprafețe. Se cunoaște $\sin i = 0.8$. Valoarea indicelui de refracție *n* este:

- **c.** 1.5

- 5. Energia cinetică maximă a electronilor extrași prin efect fotoelectric extern depinde de frecvența radiatiei incidente conform graficului din figura alăturată. În aceste condiții, lucrul mecanic $E_{c max} (10^{-19} \text{J})$ de extracție are valoarea:
- **a.** 1,98·10⁻¹⁹ J
- **b.** 3.96·10⁻¹⁹ J
- **c.** 5.94·10⁻¹⁹ J
- **d.** $9.00 \cdot 10^{-19} \text{ J}$

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un obiect luminos de înălțime $y_1 = 3$ cm este plasat perpendicular pe axa optică principală a unei lentile divergente, având convergența $C_1 = -1,25 \,\mathrm{m}^{-1}$. Imaginea obiectului prin lentilă este poziționată exact la mijlocul distanței dintre obiect și lentilă.

- a. Determinați distanța dintre obiect și lentilă.
- **b.** Calculați înălțimea imaginii.
- c. Realizați un desen în care să evidențiați construcția imaginii prin lentilă.
- d. Fără a modifica poziția lentilei și a obiectului, în contact cu lentila se aduce o altă lentilă, de convergență $C_2 = 7.5 \,\mathrm{m}^{-1}$, astfel încât cele două lentile formează un sistem optic centrat. Imaginea obiectului prin sistemul optic se formează pe un ecran. Determinați distanța dintre sistemul celor două lentile și ecran.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un dispozitiv Young, plasat în aer, este iluminat cu o radiatie monocromatică de lungime de undă $\lambda = 625\,\text{nm}$. Radiația este emisă de o sursă S_1 , aflată pe axa de simetrie a dispozitivului. Figura de interferență se observă pe un ecran așezat paralel cu planul fantelor, la distanța $D = 0.8 \,\mathrm{m}$ de acesta. Distanța dintre cele două fante este $2\ell = 1$ mm.

- a. Determinați frecvența radiației luminoase utilizate.
- b. Calculați valoarea interfranjei.
- c. Determinați valoarea distanței dintre a patra franjă întunecoasă aflată de o parte a franjei centrale și a treia franjă luminoasă aflată de cealaltă parte a franjei centrale.
- d. În fața fiecăreia dintre cele două fante se plasează câte o lamă cu fețe plan paralele, transparentă. Prima lamă, de grosime $e_1 = 0.05 \,\mathrm{mm}$, este confecționată dintr-un material de indice de refracție $n_1 = 1.4$. Grosimea celei de-a doua lame este $e_2 = 0.04 \, \text{mm}$. Se observă că figura de interferență rămâne nemodificată. Determinați indicele de refacție al materialului din care este confecționată a doua lamă.