Metodi Matematici per la Fisica Teorica

Sessione Autunnale, Martedì 10 Settembre 2019

Compito scritto

1) Si calcoli il valore dell'integrale

$$\int_0^\infty x \ln \frac{(x+a)^2 + b^2}{(x-a)^2 + b^2} \cos cx \, dx,$$

con a, b, c > 0.

2) Si valuti il termine dominante nell'espansione asintotica di

$$F(x) := \int_1^2 e^{ax \log^4 t} dt$$

per $x \to \infty$, al variare di $a \in \mathbb{R}$.

3) Sia $\phi: \mathfrak{so}(4,\mathbb{C}) \to \mathfrak{so}(3,\mathbb{C}) \oplus \mathfrak{so}(3,\mathbb{C})$ l'isomorfismo di algebre di Lie definito da $\phi(X) = (\phi_+(X), \phi_-(X))$ con

$$\phi_{\pm} \begin{pmatrix} 0 & K \\ -K^T & J \end{pmatrix} = J \pm \tilde{K} , \quad \tilde{K} = \begin{pmatrix} 0 & K_3 & -K_2 \\ -K_3 & 0 & K_1 \\ K_2 & -K_1 & 0 \end{pmatrix}$$

con $K \in M_{13}(\mathbb{C})$, $J \in \mathfrak{so}(3,\mathbb{C})$. Si denotino con S_+ e S_- le rappresentazioni (1)(0) e (0)(1) di $\mathfrak{sl}(2,\mathbb{C}) \oplus \mathfrak{sl}(2,\mathbb{C}) \sim \mathfrak{so}(3,\mathbb{C}) \oplus \mathfrak{so}(3,\mathbb{C})$ e con V la rappresentazione vettoriale (definitoria) di $\mathfrak{so}(4,\mathbb{C})$. Si dimostri che V è equivalente a $S_+ \otimes S_-$ ma non a $S_+ \oplus S_-$. [Suggerimento: si confrontino $i \ pesi$]

4) Sia $H_2 = \{P \in M_2(\mathbb{C}), P^{\dagger} = P\}$ lo spazio delle matrici hermitiane 2×2 identificato con \mathbb{R}^4 dalla relazione $P(t,x,y,z) = \begin{pmatrix} t+x & y+iz \\ y-iz & t-x \end{pmatrix}$. L'omomorfismo di gruppi reali $SL(2,\mathbb{C})_{\mathbb{R}} \to SO(1,3)$ è definito grazie all' azione di $SL(2,\mathbb{C})_{\mathbb{R}}$ data da $P \to APA^{\dagger}$, $A \in SL(2,\mathbb{C})_{\mathbb{R}}$, $P \in H_2$.

- i) Si scriva il corrispondente isomorfismo di algebre di Lie $\mathfrak{sl}(2,\mathbb{C})_{\mathbb{R}} \to \mathfrak{so}(1,3)$;
- ii) si dimostri che la rappresentazione definitoria di $\mathfrak{sl}(2,\mathbb{C})_{\mathbb{R}}$ su $(\mathbb{C}^2)_{\mathbb{R}} = \mathbb{R}^4$ è equivalente alla rappresentazione $S_+ \oplus S_-$ di $\mathfrak{so}(1,3)_{\mathbb{C}} = \mathfrak{so}(4,\mathbb{C})$ sotto questo isomorfismo. [Suggerimento: si confrontino i pesi.]