Memo: Gruppenkohomologie

Simon Kapfer

19. März 2014

Zusammenfassung

Merkzettel zu [Bro82].

1 Komplexe

- **1.1.** *Inneres Hom.* [Bro82, S. 5, 9]. Seien C und C' Kettenkomplexe. Dann ist $\mathcal{H}om(C,C')_n:=\prod_q \operatorname{Hom}(C_q,C'_{q+n})$. Der Randoperator ist $D_n(f):=d'f-(-1)^nfd$. Das ist am besten in der Form $d'\langle f,u\rangle=\langle Df,u\rangle+(-1)^n\langle f,du\rangle$ zu merken. Kettenabbildungen zwischen Komplexen sind dann Elemente von ker D_0 , nullhomotope Kettenabbildungen sind exakt. Die Homologie des Hom-Komplexes im Grad 0 sind die Homotopieklassen von Kettenabbildungen. Eine Konstruktion mit Kokettenkomplexen geht analog.
- **1.2.** *Gruppenmoduln.* Eine Wirkung von G auf M ist eine $\mathbb{Z}G$ -Modulstruktur. $M^G = \ker(g-1) = \operatorname{Hom}_{\mathbb{Z}G}(\mathbb{Z},M)$ sind die Invarianten, $M_G = M/\langle g-1 \rangle = \mathbb{Z} \otimes_{\mathbb{Z}G} M$ sind die Koinvarianten. Der Invariantenfunktor ist linksexakt, der Koinvariantenfunktor ist rechtsexakt. In Charakteristik 0 gibt es für endliches G einen Isomorphismus $M_G \longrightarrow M^G$. In diesem Fall haben wir Exaktheit. Wenn M ein G-Links- und M ein G-Rechtsmodul ist, so ist $M \otimes_G N = M \otimes_{\mathbb{Z}G} N := (M \otimes N)_G$ Einen Linksmodul M' kann man durch $g \mapsto g^{-1}$ künstlich zu einem Rechtsmodul machen. $\operatorname{Hom}_G(M,M') = (\operatorname{Hom}(M,M'))^G$.
- **1.3.** (Ko-)Skalarerweiterungen. [Bro82, III.3] Gegeben ein Ringhomomorphismus $\iota: R \to S$ und ein R-Modul M. Skalarerweiterung ist der Funktor $M \mapsto S \otimes_R M$, Koskalarerweiterung ist $M \mapsto \operatorname{Hom}_R(S,M)$. Diese Funktoren sind links- bzw. rechtsadjungiert zur Skalareinschränkung: $\operatorname{Hom}_S(S \otimes_R M, N) \cong \operatorname{Hom}_R(M, \iota^* N)$ und $\operatorname{Hom}_R(\iota^* N, M) \cong \operatorname{Hom}_S(N, \operatorname{Hom}_R(S, M))$. Für $R = \mathbb{Z}G$ und $S = \mathbb{Z}$ ist Erweiterung gleich Koinvariantenbildung und Koerweiterung gleich Invariantenbildung.

2 Kohomologie

2.1. *Definition.* A und B seien Komplexe mit einer G-Wirkung. P sei eine $\mathbb{Z}[G]$ -projektive Auflösung von A. (Projektiv impliziert flach, d. h. $P \otimes_{G}$ ist exakt.) $\operatorname{Tor}_{*}^{G}(A,B) := H_{*}(P \otimes_{G} B)$ und $\operatorname{Ext}_{G}^{*}(A,B) := H^{*}(\mathcal{H}om_{G}(P,B))$. Gruppenhomologie mit Werten in einem Modul M (interpretiert als Komplex im Grad 0) ist definiert als $H_{*}(G;M) := \operatorname{Tor}_{*}^{G}(\mathbb{Z},M)$. Gruppenkohomologie entsprechend als $H^{*}(G;M) := \operatorname{Ext}_{G}^{*}(\mathbb{Z},M)$.

2.2. Abbildungskegel.

Literatur

[Bro82] Kenneth S. Brown. Cohomology of Groups. GTM 87. Springer, 1982.