EJERCICIOS DE FÍSICA NUCLEAR: TEMA 2 Curso 2019/2020

- 1. En primera aproximación, podemos entender el deuterón como un sistema formado por un protón y un neutrón interaccionando dentro de un pozo de potencial de anchura $b=1.9\cdot 10^{-15}$ m y una profundidad de $V_0=40$ MeV en un estado con $\ell=0$.
 - Calcula la probabilidad de que el protón se mueva dentro del alcance del neutrón. Utiliza la para ello $m_p=m_n=m$, $kb=\pi/2$ con $k=\sqrt{(M(V_0-\epsilon)/\hbar^2)}$; siendo ϵ la energía de enlace del deuterón en dicho estado.
 - Calcula el radio cuadrático medio del deuterón.
 - Analiza cuanto tendría que variar la profundidad del pozo para que el primer estado excitado fuese ligado.
 - Investiga el efecto de incluir en el potencial una región repulsiva de muy corto alcance.
- 2. Consideremos que el protón y el neutrón experimentan una captura radiactiva produciendo un deuterón y un fotón. Supongamos que el centro de masas del sistema tiene una energía cinética T muy pequeña. Los estudios experimentales realizados sobre este sistema indican que la interaccion p-n da como resultado una onda s, con una longitud de difusión asociada s. A partir de la definición de la longitud de difusión en términos del desfase: kcotg $\delta \to 1/a_s$, con $k \to 0$ y tratando el deuterón como un estado s puro.
 - Caracteriza la multipolaridad de la reacción.
 - Demuestra que a bajas energías la reacción ocurre para un estado inicial singlete mayoritariamente.
 - Si B es la energía de enlace del deuterón y m la masa del nucleón $m_p=m_n=m$, estudia la dependencia de la función de onda espacial del deuterio con la distancia radial r, para grandes valores de r.