SGP4 Simplified General Perturbations

SGP4

SGP4
 Simplified General Perturbations

Упрощенная теория обобщенных возмущений

Пропагация орбиты на основе приближенного аналитического решения

Время получения решения мало и почти не зависит от времени пропагации.

SDP4 (Deep space)

Дополнительно учитывает силы, действующие на «дальние» орбиты

SGP4/SDP4 Лежит в основе единственного **публичного** каталога спутниковых орбит, распростаняемого NORAD.

Данный каталог является самым полным из доступных.

Данный каталог используется во многих программах по всему миру.

Данный каталог регулярно обновляется (несколько раз в день для низкоорбитальных спутников).

Данный каталог позволяет получать положения КА с точностью, достаточной для большинства задач.

SGP4/SDP4

В каталоге NORAD используюется совмещенная модель SGP4/SDP4

SGP4

Для орбит периодом меньше 225 мин

Учитывает **зональные** гармоники Земли до **J4**

Использует модель атмосферы приближенной **степенной функцией** $\rho = \rho_0 (q_0 - s)^4 / (r - s)^4$

Точность на момент эпохи ~1000 км

SDP4 (Deep Space Perturbations)

Для орбит периодом больше 225 мин (~5 000 км)

Дополнительно учитывает притяжения **Луны** и **Солнца**.

Дополнительно учитывает **гравитацинный резонанс**

Точность на момент эпохи ~10 000 км

SGP4 дает результат r,v в системе координат **TEME** (True Equator Mean Equinox)

Используется время **UTC** (не подтверждено официально, но на практике использование этой шкалы дает ожидаемые результаты)

История

В 1959 Kozai и Brouwer Предложили свои **разные** методы аналитических рассчетов, без учета атмосферы

В начале 1970 Начинает применяться разработанная на основе публикаций Коzai и Brouwer модель SGP

В 1970 Разработка SGP4 на основе модели Brouwer

В 1980 публикуется Spacetrack report #3 Опубликован формулы и код моделей SGP, SGP4/SDP4, SGP8/SDP8

В 1996 NASA Goddart Space Flight Center Опубликовали обновленный код, полученный у SpaceTrack. В нем были подтверждены ожидаемые исправления.

Эволюция внутреннего кода (не публикуется)

Эволюция открытой версии модели (меняется исполнение, но теория остается)

В 2006 Vallado публикует Revisiting Spacetrack report #**3** Где собраны исправления кода модели Код

Код доступен в виде открытых библиотек на большинстве языков программирования: C, Python, MATLAB, и т.д.

Библиотеки основаны на исправлениях, которые были собраны Vallado в публикации Revisiting Spacetrack report #3

Каталог

Каталог доступен на сайте Space-track.org Официальный сайт **Требуется регистрация**

Каталог доступен на сайте **Celes**track.org **Неофициальный** сайт Регистрация не требуется

TLE

Объект в каталоге описывается с помощью формата TLE (Two Line Elements) Двухстрочный набор элементов

TLE должен использоваться для SGP4/SDP4 Иначе, точность результатов не гарантирована.

TLE содержит усредненные параметры орбиты спутника

Принцип усреднения SGP4

В теории, на которой основана модель SGP4 движение спутника усредняется.

Принцип усреднения определяет принцип восстановления положения. Поэтому TLE(содержащая усредненные значения орбитальных параметров) используется только в сочетании с SGP4/SDP4.

SGP4

SGP4

Для орбит периодом меньше **225 мин (~5000 км)**

Модель гравитации: зональные гармоники Земли до **J4**

Модель атмосферы:

Стационарная,

Неподвижная

Плотность атмосферы описывается степенной функцией

$$\rho = \rho_0 (q_0 - s)^4 / (r - s)^4$$

Принцип усреднения использованный D.Brouwer

Основывается на преобразовании гамильтониана системы.

$$\mathcal{H} = KE - U = \frac{1}{2}mv^2 - R - U_{2\text{-}body}$$

Требуется убрать из гамильтониана меняющиеся величины **M** (среднюю аномалию) Ω (долготу восходящего узла) ω (аргумент перигея)

Delaunay elements
$$M$$
 ω Ω $L_d=\sqrt{\mu a}$ h $H_d=\sqrt{\mu a(1-e^2)}\cos(i)$ Проекция момента на полярную ось

 Ω изначально отсутствует в гамильтониане

Первое каноническое преобразование гамильтониана убирает зависимость от M $\mathcal{H}(L_d, h, H_d, \cdot, \omega, M) = \mathcal{H}^*(L'_d, h', H'_d, \cdot, \omega', \cdot)$

Второе каноническое преобразование гамильтониана убирает зависимость от $\boldsymbol{\omega}$ $\boldsymbol{\psi}^*(L'_d,h',H'_d,_,\omega',_) = \boldsymbol{\psi}^{**}(L''_d,h'',H''_d,_,_,_)$

После вычисления влияния возмущений на оставшиеся элементы, производится обратное преобразование

$$\mathcal{H} = T + V$$

$$rac{\mathrm{d}oldsymbol{q}}{\mathrm{d}t} = rac{\partial\mathcal{H}}{\partialoldsymbol{p}}, \quad rac{\mathrm{d}oldsymbol{p}}{\mathrm{d}t} = -rac{\partial\mathcal{H}}{\partialoldsymbol{q}}.$$

$$\mathcal{H} = -\frac{\mu^2}{2L_d^2} - R(L_d, h, H_d, M, \omega, \Omega)$$

$$\dot{L}_d = \frac{\partial \mathcal{H}}{\partial M}$$
 $\dot{M} = -\frac{\partial \mathcal{H}}{\partial L_d}$ $\dot{h} = \frac{\partial \mathcal{H}}{\partial \omega}$ $\dot{\omega} = -\frac{\partial \mathcal{H}}{\partial h}$

$$\dot{H}_d = \frac{\partial \mathcal{H}}{\partial \Omega}$$
 $\dot{\Omega} = -\frac{\partial \mathcal{H}}{\partial H_d}$

После преобразований гамильтониана

$$\dot{L}''_{d} = \frac{\partial \mathcal{H}^{**}}{\partial M''} = 0 \qquad \dot{M}'' = -\frac{\partial \mathcal{H}^{**}}{\partial L''_{d}} = k_{1}$$

$$\dot{h}'' = \frac{\partial \mathcal{H}^{**}}{\partial \omega''} = 0 \qquad \dot{\omega}'' = -\frac{\partial \mathcal{H}^{**}}{\partial h''} = k_{2}$$

$$\dot{H}''_{d} = \frac{\partial \mathcal{H}^{**}}{\partial \Omega''} = 0 \qquad \dot{\Omega}'' = -\frac{\partial \mathcal{H}^{**}}{\partial H''_{d}} = k_{3}$$

$$L''_{d} = \operatorname{const}_{1}$$
 $M'' = k_{1} \Delta t + M''_{o}$
 $h'' = \operatorname{const}_{2}$ $\omega'' = k_{2} \Delta t + \omega''_{o}$
 $H''_{d} = \operatorname{const}_{3}$ $\Omega'' = k_{3} \Delta t + \Omega''_{o}$

Эволюция орбитальных элементов состоит из **Вековых**, **кратко-периодических** (зависит от М) и **длинно-периодических** (зависит от ω) влияний

$$a = \overline{a} + \Delta a_{SP} + \Delta a_{LP}$$

$$e = e_o + \Delta e_{SP} + \Delta e_{LP}$$

$$i = i_o + \Delta i_{SP} + \Delta i_{LP}$$

$$\omega = \omega_o + \dot{\omega} \Delta t + \Delta \omega_{SP} + \Delta \omega_{LP}$$

$$\Omega = \Omega_o + \dot{\Omega} \Delta t + \Delta \Omega_{SP} + \Delta \Omega_{LP}$$

$$M = M_o + n\Delta t + \Delta M_{SP} + \Delta M_{LP}$$

$$n_o^2 a_o^3 = \mu$$

Short periodic Long periodic (зависит от M) (зависит от ω)

Набор орбитальных элементов для решения SGP4

 t_0 = epoch time n_0 = mean motion (revolutions/day) e_0 = eccentricity i_0 = inclination (degrees) ω_0 = argument of perigee (degrees) Ω_0 = right ascension of ascending node (degrees) M_0 = mean anomaly (degrees) M_0 = Mathematical expression of the second expression expressi

Орбитальные элементы(кроме средней аномалии) здесь понимаются в смысле **среднего значения**

Вековые изменения орбитальных параметров

Вековые изменения орбитальных параметров за счет зональных гармоник

Вековые эффекты сопротивления атмосферы

(в случае орбит глубокого космоса)

Вековые изменения за счет третьих тел

Вековые изменения за счет гравитационного резонанса

Вековые изменения орбитальных параметров

Вековые изменения орбитальных параметров за счет зональных гармоник

$$\begin{split} \dot{M} = & \left[\frac{3k_2(-1+3\theta^2)}{2a_0^2\beta_o^3} + \frac{3k_2^2\left(13-78\theta^2+137\theta^4\right)}{16a_0^4\beta_o^7} \right] n_0 \\ \dot{\omega} = & \left[-\frac{3k_2(1-5\theta^2)}{2a_0^2\beta_o^4} + \frac{3k_2^2\left(7-114\theta^2+395\theta^4\right)}{16a_0^4\beta_o^8} + \frac{5k_4\left(3-36\theta^2+49\theta^4\right)}{4a_0^4\beta_o^8} \right] n_0 \\ \dot{\Omega} = & \left[-\frac{3k_2\theta}{a_0^2\beta_o^4} + \frac{3k_2^2\left(4\theta-19\theta^3\right)}{2a_0^4\beta_o^8} + \frac{5k_4\theta\left(3-7\theta^2\right)}{2a_0^4\beta_o^8} \right] n_0 \end{split}$$
 Зональные

Формулы отличаются от рассмотренных ранее, так как здесь элементы усредняются другим способом.

гармоники не дают вековых влияний на элементы

$$\dot{a} = \dot{e} = \dot{i} = 0$$

Обновление значений элементов с учетом **зональных** гармоник(J2, J3, J4) и некоторых эффектов сопротивления атмосферы

Сначала применяются эффекты гармоник

$$M_{DF} = M_o + n_0(t - t_0) + \dot{M}(t - t_0)$$

$$\omega_{DF} = \omega_o + \dot{\omega}(t - t_o)$$

$$\Omega_{DF} = \Omega_o + \dot{\Omega}(t - t_o)$$

Расчитываются эффекты **сопротевления атмосферы**

$$\delta\omega = B * C_3 (\cos \omega_o)(t - t_o)$$

Эффекты складываются

$$M = M_{DF} + \delta\omega + \delta M$$

 $\delta \mathbf{M} = -\frac{2}{3} (q_o - s)^4 B * \xi^4 \frac{a_E}{e n} \left[(1 + \eta \cos M_{DF})^3 - (1 + \eta \cos M_o)^3 \right]$

$$\omega = \omega_{DF} - \delta\omega - \delta M$$

$$\Omega = \Omega_{DF} - \frac{21}{2} \frac{n_0 k_2 \theta}{a_0^2 \beta_o^2} C_1 (t - t_o)^2$$

Дополнительный шаг для **вековых** эффектов в случае орбит глубокого космоса (SDP4)

Для орбит периодом больше 225 минут здесь **дополнительно**:

-Добавляются **вековые** изменения за счет **третьих тел**

$$M = M + \dot{M}_{LS}(t - t_0)$$

$$\omega = \omega + \dot{\omega}_{LS}(t - t_0)$$

$$\Omega = \Omega + \dot{\Omega}_{LS}(t - t_0)$$

$$e = e_0 + \dot{e}_{LS}(t - t_0)$$

$$I = I_0 + \dot{I}_{LS}(t - t_0)$$

-Добавляются **вековые** изменения за счет **гравитационного резонанса**

$$m = n_{i}$$

$$M = \begin{cases} \lambda_{i} - \Omega_{s} - \omega_{s} + \theta_{t} & \text{for 1 - day period} \\ \lambda_{i} - 2\Omega_{s} + 2\theta_{t} & \text{for 1/2 - day period} \end{cases}$$

(Подробнее эти эффекты рассматриваются в конце)

Учет остальных **вековых** эффектов **сопротивления атмосферы**

$$e = e_o - B * C_4(t - t_o) - B * C_5(\sin M - \sin M_o)$$

$$a = (\frac{k_e}{n})^{2/3} \Big[1 - C_1(t - t_o) - D_2(t - t_o)^2 - D_3(t - t_o)^3 - D_4(t - t_o)^4 \Big]^2$$

$$IL = M + \omega + \Omega + n_0 \Big[\frac{3}{2} C_1(t - t_o)^2 + (D_2 + 2C_1^2)(t - t_o)^3 + \frac{1}{4} (3D_3 + 12C_1D_2 + 10C_1^3)(t - t_o)^4 + \frac{1}{5} (3D_4 + 12C_1D_3 + 6D_2^2 + 30C_1^2D_2 + 15C_1^4)(t - t_o)^5 \Big]$$

$$\beta = \sqrt{1 - e^2}$$

$$n = k_o / a^{3/2}$$

Учет **длинно периодических** эффектов

Длинно периодическое влияние **зональных гармоник**

В случае орбит глубокого космоса Длинно периодическое влияние **третьих тел**

Длинно периодические эффекты **зональных гармоник**

$$\delta_{1}e = e''\eta^{2} \left(\frac{1}{8}\gamma_{2}' \left[1 - 11\theta^{2} - \frac{40\theta^{4}}{1 - 5\theta^{2}}\right] - \frac{5\gamma_{4}'}{12\gamma_{2}'} \left[1 - 3\theta^{2} - \frac{8\theta^{4}}{1 - 5\theta^{2}}\right]\right) \cos 2\omega''$$

$$+ \frac{\eta^{2} \sin I''}{4\gamma_{2}'} \left(\gamma_{3}' + \frac{5\gamma_{5}'}{16} \left(4 + 3e''^{2}\right) \left[1 - 9\theta^{2} - \frac{24\theta^{4}}{1 - 5\theta^{2}}\right]\right) \sin \omega''$$

$$- \frac{35\gamma_{5}'}{384\gamma_{2}'} e''^{2} \eta^{2} \sin I'' \left[1 - 5\theta^{2} - \frac{16\theta^{4}}{1 - 5\theta^{2}}\right] \sin 3\omega''$$

$$\delta_{1}I = -\frac{e''\delta_{1}e}{e^{2} \tan I''}$$

$$\delta_{1}I = \eta^{2} \tan I''$$

$$\delta_{1}M = \eta^{3} \left[\frac{1}{8} \gamma_{2}' \left[1 - 11\theta^{2} - \frac{40\theta^{4}}{1 - 5\theta^{2}} \right] - \frac{5\gamma_{4}'}{12\gamma_{2}'} \left[1 - 3\theta^{2} - \frac{8\theta^{4}}{1 - 5\theta^{2}} \right] \right] \sin 2\omega''$$

$$- \frac{\eta^{3} \sin I''}{4\gamma_{2}'e''} \left[\gamma_{3}' + \frac{5\gamma_{5}'}{16} (4 + 9e''^{2}) \left[1 - 9\theta^{2} - \frac{24\theta^{4}}{1 - 5\theta^{2}} \right] \right] \cos \omega''$$

$$+ \frac{35\gamma_{5}'}{384\gamma_{3}'} e'' \eta^{3} \sin I'' \left[1 - 5\theta^{2} - \frac{16\theta^{4}}{1 - 5\theta^{2}} \right] \cos 3\omega''$$

$$+ \frac{1}{4\gamma_{2}} \left\{ \gamma_{3} \left(\frac{\sin I''}{e''} - \frac{e''\theta^{2}}{\sin I''} \right) + \frac{5\gamma_{5}}{16} \left[\left(\frac{\eta^{2} \sin I''}{e''} - \frac{e''\theta^{2}}{\sin I''} \right) (4 + 3e''^{2}) + e'' \sin I'' (26 + 9e''^{2}) \right] \left[1 - 9\theta^{2} - \frac{24\theta^{4}}{1 - 5\theta^{2}} \right] - \frac{15\gamma_{5}'}{8} e''\theta^{2} \sin I'' (4 + 3e''^{2}) \left[3 + \frac{16\theta^{2}}{1 - 5\theta^{2}} + \frac{40\theta^{4}}{(1 - 5\theta^{2})^{2}} \right] \right\} \cos \omega'' + \frac{35\gamma_{5}'}{576\gamma_{5}'} \left\{ -\frac{1}{2} \left[e'' \sin I'' (3 + 2e''^{2}) - \frac{e''^{3}\theta^{2}}{\sin I''} \right] \left[1 - 5\theta^{2} - \frac{16\theta^{4}}{1 - 5\theta^{2}} \right] \right\} \right\}$$

 $\delta_{1}\omega = \begin{cases} -\frac{1}{16}\gamma_{2} \left[(2 + e^{-2}) - 11(2 + 3e^{-2})\theta^{2} - \frac{40(2 + 5e^{-2})\theta^{4}}{-5\theta^{2}} - \frac{400e^{-2}\theta^{6}}{(1 - 5\theta^{2})^{2}} \right] \end{cases}$

 $+\frac{e''\theta}{4\gamma_3}\left\{\frac{\gamma_3}{\sin I''} + \frac{5\gamma_5}{16\sin I''}\left(4 + 3e''^2\right)\right]\left[1 - 9\theta^2 - \frac{24\theta^4}{1 - 5\theta^2}\right]$

 $+ \frac{15\gamma_5'}{8}\sin I''(4 + 3e^{-2}) \left[3 + \frac{16\theta^2}{1 - 5\theta^2} + \frac{40\theta^4}{(1 - 5\theta^2)^2} \right] \cos \omega''$

 $-\frac{35\gamma_{5}}{576\gamma_{5}}e^{-3}\theta\left\{\frac{1}{2\sin I''}\left[1-5\theta^{2}-\frac{16\theta^{4}}{1-5\theta^{2}}\right]\right\}$

 $+ \sin I'' \left[5 + \frac{32\theta^2}{1 - 5\theta^2} + \frac{80\theta^4}{(1 - 5\theta^2)^2} \right] \cos 3\omega''$

 $+ \frac{5\gamma'_4}{24\omega'} \left[(2 + e^{-2}) - 3(2 + 3e^{-2})\theta^2 - \frac{8(2 + 5e^{-2})\theta^4}{1 - 5\theta^2} - \frac{80e^{-2}\theta^6}{(1 - 5\theta^2)^2} \right] \sin 2\omega''$

$$+ \frac{32/3}{576\gamma_{2}'} \left\{ -\frac{1}{2} \left[e'' \sin I''(3 + 2e''^{2}) - \frac{6}{\sin I''} \right] \left[1 - 5\theta^{2} - \frac{160}{1 - 5\theta^{2}} \right] \right.$$

$$+ e''^{3}\theta^{2} \sin I'' \left[5 + \frac{32\theta^{2}}{1 - 5\theta^{2}} + \frac{80\theta^{4}}{(1 - 5\theta^{2})^{2}} \right] \left. \right\} \cos 3\omega''$$

$$\delta_{1}\Omega = e''^{2}\theta \left(-\frac{\gamma_{2}'}{8} \left[11 + \frac{80\theta^{2}}{1 - 5\theta^{2}} + \frac{200\theta^{4}}{(1 - 5\theta^{2})^{2}} \right] + \frac{5\gamma_{4}'}{12\gamma_{2}'} \left[3 + \frac{16\theta^{2}}{1 - 5\theta^{2}} + \frac{40\theta^{4}}{(1 - 5\theta^{2})^{2}} \right] \right] \sin 2\omega''$$

Длинно периодические эффекты третьего тела *х*

$$\begin{split} \delta e_x &= -\frac{30\eta_0 C_x e_0}{n_0} [F_2(X_2 X_3 + X_1 X_4) + F_3(X_2 X_4 - X_1 X_3)] \\ \delta I_x &= -\frac{C_x}{n_0 \eta_0} [F_2 Z_{12} + F_3(Z_{13} - Z_{11})] \\ \delta M_x &= -\frac{2C_x}{n_0} [F_2 Z_2 + F_3(Z_3 - Z_1) - 3e_x \sin f_x (7 + 3e_0^2)] \\ (\delta \omega_x + \cos I_x \delta \Omega_x) &= \frac{2\eta_0 C_x}{n_0} [F_2 Z_{32} + F_3(Z_{33} - Z_{31}) - 9e_x \sin f_x] \\ \sin I_x \delta \Omega_x &= \frac{C_x}{n_0 \eta_0} [F_2 Z_{22} + F_3(Z_{23} - Z_{21})] \end{split}$$

Параметры *F,Z,C* расчитываются исходя из орбитальных элементов **третьего тела**

Добавление **длинно периодических** эффектов

$$\begin{split} e &= e + \delta e_{LS} \\ i &= i + \delta i_{LS} \\ \text{For } i &> 0.2 \text{ radians} \\ \Omega &= \Omega + \delta \Omega_{LS} / \sin i \\ \omega &= \omega + (\delta \omega_{LS} + \cos i \delta \Omega_{LS}) - \delta \Omega_{LS} \cos i / \sin i \\ M &= M + \delta M_{LS} \end{split}$$

For $i \leq 0.2$ radians $\alpha = \sin i \sin \Omega + \sin i \cos \Omega \partial \Omega_{LS} + \cos i \sin \Omega \partial i_{LS}$ $\beta = \sin i \cos \Omega - \sin i \sin \Omega \partial \Omega_{LS} + \cos i \cos \Omega \partial i_{LS}$ $\Omega = \tan^{-1} (a / \beta)$ $M = M + \delta M_{LS}$ $\omega = \omega + (\delta \omega_{LS} + \cos i \partial \Omega_{LS}) - \Omega \sin i \delta i_{LS}$

Учет **долго периодических** эффектов **гравитации**

Вычисляются промежуточные элементы:

$$a_{xN} = e \cos \omega$$

$$IL_{L} = \frac{A_{3,0} \sin i}{8k_{2}a\beta^{2}} (e \cos \omega) \left(\frac{3+5\cos i}{1+\cos i}\right)$$

$$a_{yNL} = \frac{A_{3,0} \sin i}{4k_{2}a\beta^{2}}$$

$$IL_{T} = IL + IL_{L}$$

$$a_{yN} = e \sin \omega + a_{yNL}.$$

Учет быстрых эффектов

Решаем уравнение Кеплера, чтобы получить $E+\omega$ из M

$$(E + \omega)_{i+1} = (E + \omega)_i + \Delta(E + \omega)_i$$

Начинаем с итерации:

$$\Delta(E + \omega)_1 = \frac{U - a_{yN}\cos(E + \omega)_i + a_{xN}\sin(E + \omega)_i - (E + \omega)_i}{1 - a_{yN}\sin(E + \omega)_i - a_{xN}\cos(E + \omega)_i}$$

$$(\mathbf{E} + \omega)_1 = U.$$

Используются вычисленные ранее долго периодические значения

Добавление быстрых возмущений за счет гавитации Земли (используются Е и ω вычисленные из уравнения Кеплера)

$$e \cos E = a_{xN} \cos (E + \omega) + a_{yN} \sin (E + \omega)$$

$$e \sin E = a_{xN} \sin (E + \omega) - a_{yN} \cos (E + \omega)$$

$$e = (a_{xN}^2 + a_{yN}^2)^{1/2}$$

$$p_L = a(1 - e^2)$$

$$r = a(1 - e \cos E)$$

$$\dot{r} = k_e \frac{\sqrt{a}}{r} e \sin E$$

$$r\dot{f} = k_e \frac{\sqrt{p_L}}{r}$$

$$\cos u = \frac{a}{r} \left[\cos (E + \omega) - a_{xN} + \frac{a_{yN}(e \sin E)}{1 + \sqrt{1 - e^2}} \right]$$

$$\sin u = \frac{a}{r} \left[\sin (E + \omega) - a_{yN} - \frac{a_{xN}(e \sin E)}{1 + \sqrt{1 - e^2}} \right]$$

$$u = \tan^{-1} \left(\frac{\sin u}{\cos u} \right)$$

$$\Delta r = \frac{k_2}{2p_L} (1 - \cos^2 i) \cos 2u$$

$$\Delta \Omega = \frac{3k_2 \cos i}{2p_L^2} \sin 2u$$

$$\Delta \Omega = \frac{3k_2 \cos i}{2p_L^2} \sin i \cos 2u$$

$$\Delta \dot{r} = -\frac{k_2n}{p_L} (1 - \cos^2 i) \sin 2u$$

$$\Delta \dot{r} = -\frac{k_2n}{p_L} (1 - \cos^2 i) \sin 2u$$

$$\Delta \dot{r} = -\frac{k_2n}{p_L} (1 - \cos^2 i) \sin 2u$$

$$\Delta \dot{r} = -\frac{k_2n}{p_L} (1 - \cos^2 i) \sin 2u$$

$$\Delta \dot{r} = -\frac{k_2n}{p_L} (1 - \cos^2 i) \sin 2u$$

Быстрые

Получаем оскулирующие эелементы для данного момента времени

$$r_k = r \left[1 - \frac{3}{2} k_2 \frac{\sqrt{1 - e^2}}{p_L^2} (3\cos^2 i - 1) \right] + \Delta r$$
 $u_k = u + \Delta u$

$$\Omega_k = \Omega + \Delta\Omega$$

$$i_k = i + \Delta i$$

$$\dot{r}_k = \dot{r} + \Delta \dot{r}$$

$$rf_k = rf + \Delta rf$$
.

Оскулирующие элементы преобразуются в **декартовые** координаты и скорость

Путем поворота из перифокальной системы в инерциальную

Матрицы поворота расчитываются иходя из текущих оскулирующих элементов:

$$\mathbf{U} = \mathbf{M}\sin u_k + \mathbf{N}\cos u_k$$

$$\mathbf{M} = \left\{ \begin{array}{l} M_x = -\sin\Omega_k \cos i_k \\ M_y = \cos\Omega_k \cos i_k \\ M_z = \sin i_k \end{array} \right\}$$

$$\mathbf{V} = \mathbf{M}\cos u_k - \mathbf{N}\sin u_k$$

$$\mathbf{N} = \left\{ \begin{array}{l} N_x = \cos \Omega_k \\ N_y = \sin \Omega_k \\ N_z = 0 \end{array} \right\}.$$

положение

$$\mathbf{r} = r_k \mathbf{U}$$

скорость

$$\dot{\mathbf{r}} = \dot{r}_k \mathbf{U} + (r\dot{f})_k \mathbf{V}$$

Эффекты для орбит «глубокого» космоса (Период >225 минут)

Добавление эффектов Луны и Солнца

Вековые эффекты третьего тела *х*

$$\dot{a}_{x} = 0$$

$$\dot{e}_{x} = -15C_{x}n_{x}\frac{e_{0}\eta_{0}}{n_{0}}(X_{1}X_{3} + X_{2}X_{4})$$

$$\dot{I}_{x} = \frac{-C_{x}n_{x}}{2n_{0}\eta_{0}}(Z_{11} + Z_{13})$$

$$\dot{M}_{x} = \frac{-C_{x}n_{x}}{n_{0}}(Z_{1} + Z_{3} - 14 - 6e_{0}^{2})$$

$$\dot{\Omega}_{x} = \begin{cases} \frac{C_{x}n_{x}}{2n_{0}\eta_{0}\sin I_{0}}(Z_{21} + Z_{23}) & \text{if } I_{0} \geq 3^{\circ} \\ 0 & \text{if } I_{0} < 3^{\circ} \end{cases}$$

$$\dot{\omega}_{x} = \begin{cases} \frac{C_{x}n_{x}\eta_{0}}{n_{0}''}(Z_{31} + Z_{33} - 6) - \dot{\Omega}_{x}\cos I_{0}'' & \text{if } I_{0}'' \geq 3^{\circ} \\ \frac{C_{x}n_{x}\eta_{0}}{n_{0}''}(Z_{31} + Z_{33} - 6) & \text{if } I_{0}'' < 3^{\circ} \end{cases}$$

Добавление вековых эффектов к орбитальным элементам

$$M = M + \dot{M}_{LS}(t - t_0)$$

$$\omega = \omega + \dot{\omega}_{LS}(t - t_0)$$

$$\Omega = \Omega + \dot{\Omega}_{LS}(t - t_0)$$

$$e = e_0 + \dot{e}_{LS}(t - t_0)$$

$$I = I_0 + \dot{I}_{LS}(t - t_0)$$

Вековые эффекты Луны и Солнца **суммируются**

Расчет коэффициентов

Орбитальные элементы третьего тела:

$$\Omega_{m_{\varepsilon}} = \left[\Omega_{m_{\varepsilon_0}} + \Omega_{m_{\varepsilon}} \Delta t + \Omega_{m_{\varepsilon}} \Delta t^2 + \Omega_{m_{\varepsilon}} \Delta t^3\right]_{\text{mod } 2\pi}$$

$$\cos I_m = \cos \varepsilon \cos I_{m_{\varepsilon}} - \sin \varepsilon \sin I_{m_{\varepsilon}} \cos \Omega_{m_{\varepsilon}}$$

$$\gamma = u_{0_{\varepsilon}} + u_{\varepsilon} \Delta t + u_{\varepsilon} \Delta t^2 + u_{\varepsilon} \Delta t^3$$

$$\sin \Omega_m = \sin I_{m_{\varepsilon}} \sin \Omega_{m_{\varepsilon}} / \sin I_m$$

$$\cos\Omega_m = \sqrt{1 - \sin^2\Omega_m}$$

$$\begin{split} \sin \Delta &= \sin \varepsilon \sin \Omega_{m_{\varepsilon}} / \sin I_{m} \\ \cos \Delta &= \cos \Omega_{m} \cos \Omega_{m_{\varepsilon}} + \sin \Omega_{m} \sin \Omega_{m_{\varepsilon}} \cos \varepsilon \\ \Delta &= \tan^{-1} (\frac{\sin \Delta}{\cos \Delta}) \\ \omega_{m} &= \gamma - \Omega_{m_{\varepsilon}} + \Delta = G_{o_{m}} \\ M_{s} &= M_{o} + \dot{M} \Delta t + \ddot{M} \Delta t^{2} + \ddot{M} \Delta t^{3} \end{split}$$

Данные берутся из Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac

∆t время с эпохи элементов полученных из альманаха

```
I_m = 5.^{\circ}145396374
                                                         (the moon's inclination with respect to the ecliptic)
\varepsilon = 23.^{\circ}4441
                                                         (the obliquity of the ecliptic)
e_{m} = .05490
                                                         (lunar eccentricity)
e_{-} = .01675
                                                          (solar eccentricity)
n_{m} = 1.583521770 \times 10^{-4} \text{ radians/minute}
                                                         (lunar mean motion)
n_s = 1.19459 \text{ x} 10^{-5} \text{ radians/minute}
                                                         (solar mean motion)
I_{\epsilon} = \varepsilon = 23.^{\circ}4441
                                                         (solar inclination)
\Omega_{c} = 0
\omega_s = 281.^{\circ}2208 = G_a
C_m = 4.796806521 \times 10^{-7} \text{ radians/minute}
                                                             (lunar perturbation coefficient)
C_{.} = 2.98647972 \times 10^{-6} \text{ radians/minute}
                                                             (solar perturbation coefficient)
```

$$a_{1} = \cos \omega_{x} \cos(\Omega_{o} - \Omega_{x}) + \sin \omega_{x} \cos I_{x} \sin(\Omega_{o} - \Omega_{x})$$

$$a_{3} = -\sin \omega_{x} \cos(\Omega_{o} - \Omega_{x}) + \cos \omega_{x} \cos I_{x} \sin(\Omega_{o} - \Omega_{x})$$

$$a_{7} = -\cos \omega_{x} \sin(\Omega_{o} - \Omega_{x}) + \sin \omega_{x} \cos I_{x} \cos(\Omega_{o} - \Omega_{x})$$

$$a_{8} = \sin \omega_{x} \sin I_{x}$$

$$a_{9} = \sin \omega_{x} \sin(\Omega_{o} - \Omega_{x}) + \cos \omega_{x} \cos I_{x} \cos(\Omega_{o} - \Omega_{x})$$

$$a_{10} = \cos \omega_{x} \sin I_{x}$$

$$a_{2} = a_{7} \cos i_{o} + a_{8} \sin i_{o}$$

$$a_{4} = a_{9} \cos i_{o} + a_{10} \sin i_{o}$$

$$a_{5} = -a_{7} \sin i_{o} + a_{8} \cos i_{o}$$

$$a_{6} = -a_{9} \sin i_{o} + a_{10} \cos i_{o}$$

 $X_2 = a_3 \cos \omega_0 + a_4 \sin \omega_0$ $X_3 = -a_1 \sin \omega_0 + a_2 \cos \omega_0$ $X_4 = -a_3 \sin \omega_0 + a_4 \cos \omega_0$ $X_5 = a_5 \sin \omega_0$ $X_6 = a_6 \sin \omega_0$ $X_7 = a_5 \cos \omega_0$ $X_8 = a_6 \cos \omega_a$ $Z_{21} = 12X_1^2 - 3X_2^2$ $Z_{22} = 24X_1X_2 - 6X_2X_4$ $Z_{22} = 12X_2^2 - 3X_4^2$ $Z_1 = 6(a_1^2 + a_2^2) + (1 + e_0^2)Z_{31}$ $Z_2 = 12(a_1a_2 + a_2a_4) + (1 + e_0^2)Z_{32}$ $Z_3 = 6(a_3^2 + a_4^2) + (1 + e_0^2)Z_{33}$ $Z_{11} = -6a_1a_5 + e_0^2(-24X_1X_7 - 6X_3X_5)$ $Z_{13} = -6a_3a_6 + e_0^2(-24X_2X_8 - 6X_4X_6)$ $Z_{21} = 6a_2a_5 + e_0^2(24X_1X_5 - 6X_2X_7)$ $Z_{23} = 6a_4a_6 + e_0^2(24X_2X_6 - 6X_4X_8)$

 $Z_{22} = 6a_4a_5 + 6a_2a_6 + e_0^2(24X_2X_5 + 24X_1X_6 - 6X_4X_7 - 6X_3X_8)$

 $Z_{12} = -6a_1a_6 - 6a_3a_5 - e_0^2(24X_2X_2 + 24X_1X_8 + 6X_3X_6 + 6X_4X_5)$

 $X_1 = a_1 \cos \omega_0 + a_2 \sin \omega_0$

$$M = \begin{cases} \lambda_i - \Omega_s - \omega_s + \theta_t & \text{for 1 - day period} \\ \lambda_i - 2\Omega_s + 2\theta_t & \text{for 1/2 - day period} \end{cases}$$

Для орбит с периодом **1200** — **1800** минут

Считается, что аппарат находится в

Для этих орбит определим:

1—дневном резонансе

$$\lambda = M + \Omega + \omega - \theta_G$$

Для орбит с периодом **680** — **760** минут и эсцентриситетом больше **0.5**

Считается, что аппарат находится в ½—дневном резонансе

Для этих орбит определим:

$$\lambda = M + 2\Omega - 2\theta_G$$

 $heta_{\scriptscriptstyle G}$ — долгота по Гринвичу

Учет резонанса

$$n = n$$

$$M = \begin{cases} \lambda_i - \Omega_s - \omega_s + \theta_t & \text{for } 1 \text{- day period} \\ \lambda_i - 2\Omega_s + 2\theta_t & \text{for } 1/2 \text{- day period} \end{cases}$$

Интегрируется одновременно λ и среднее движение п с шагом 12 часов (720 минут)

$$\lambda_i = \lambda_{i-1} + \dot{\lambda}_i (\Delta t) + \frac{\ddot{\lambda}_i}{2} (\Delta t)^2$$

$$n_i = n_{i-1} + \dot{n}_i (\Delta t) + \frac{\ddot{n}_i}{2} (\Delta t)^2$$

До получения λ и n на требуемый момент

Для 1-дневного резонанса

$$\dot{\lambda}_1 = n_i + \dot{\lambda}_0$$

$$\dot{n}_i = \delta_1 \sin(\lambda_i - \lambda_{31}) + \delta_2 \sin(2\lambda_i - 2\lambda_{22}) + \delta_3 \sin(3\lambda_i - 3\lambda_{33})$$
$$\frac{\ddot{\lambda}_i}{2} = \frac{\dot{n}_i}{2}$$

$$\frac{\dot{n}}{2} = \frac{\dot{n}_{i}}{2}$$

$$\frac{1}{2} - \frac{1}{2}$$
 $i_i = \lambda_i$

$$\frac{\ddot{n}_i}{2} = \frac{\dot{\lambda}_i}{2} \left[\delta_1 \cos(\lambda_i - \lambda_{31}) + 2\delta_2 \cos(2\lambda_i - \lambda_{22}) + 3\delta_3 \cos(3\lambda_i - \lambda_{33}) \right]$$

Для 1/2-дневного резонанса

$$\dot{\lambda}_i = n_i + \dot{\lambda}_0$$

$$u_i + \lambda_0$$

$$\dot{n}_i = \sum_{lmpq} \sin[(l-2p)\omega_i + \frac{m}{2}\lambda_i - G_{lm}]$$

$$=\frac{\dot{n}_i}{2}$$

$$=\frac{\dot{n}_i}{2}$$

$$\frac{\ddot{n}_i}{2} = \frac{\dot{\lambda}_i}{2} \left[\sum_{(l,m,p,q)} \frac{m}{2} D_{lmpq} \cos \left[(l-2p)\omega_i + \frac{m}{2} \lambda_i - G_{lm} \right] \right]$$

Начальные условия

Для 1-дневного резонанса

$$\begin{split} \lambda_0 &= M_0 + \omega_0 + \Omega_0 - \theta_0 \\ \dot{\lambda}_0 &= \dot{M}_0 + \dot{M}_{LS} + \dot{\Omega}_0 + \dot{\Omega}_{LS} + \dot{\omega}_0 + \dot{\omega}_{LS} - \dot{\theta} \end{split}$$

$$\begin{split} \lambda_o &= M_0 + 2\Omega_o - 2\theta_0 \\ \dot{\lambda}_0 &= \dot{M}_o + \dot{M}_{LS} + 2\dot{\Omega}_o + 2\dot{\Omega}_{LS} - 2\dot{\theta} \end{split}$$

ISS (ZARYA)

- 1 25544U 98067A 08264.51782528 -.00002182 00000-0 -11606-4 0 2927
- 2 25544 51.6416 247.4627 0006703 130.5360 325.0288 15.72125391563537

$$\bar{n} = \sqrt{\frac{\mu}{\bar{a}^3}} \qquad e \qquad i \qquad \Omega \qquad \omega \qquad M$$

$$\frac{\dot{n}}{2} \qquad \frac{\ddot{n}}{6} \qquad B^* = \frac{1}{2} \frac{c_D A}{m} \rho_o R_{\oplus} \qquad UTC$$

2 16609 51.6190 13.3340 0005770 102.5680 257.5950 15.59114070 44786

Card#	Satellite Satellite Satellite				ಡ			ಡ										ati gna				Y	r	Γ) ay	y o	fΥ		_	оо (р			rac	eti	on	ı)		M	lea		mo (re					at	ive	e		se	co	nd	de	eri	tio vat	ive	е			В	Bsta	ar (/E]	R)			,	Eph		Ele nu		Chk Sum	CIIIN Deare
								Y	ear	Ι	Cel	1#	I	Pie	ce																	S									Π		5	S .									S .					5	\mathbf{S}	E				П		Γ							
																																									Τ									Т								T						П		Γ							
1		1 6	6	6) 9	J	J	8	6	0	1	7	A			9	3	3	5	2	•	5	3	3 3	5	0	2	9	3	4				0	0	0	0	7	8	8	3 9				0	0	0	0	0		0			1	0	5	2 9	9 .	-	3		0		\prod	3 4	1 2							
								Inclination (deg)							_		t Ascension of Node (deg)				f	Eccentricity							Arg			Arg of P (deg							N	Ле	an A (de		nomal g)		maly			N	Mean Mot			oti	tion (rev/			/da	ıy)			poc Rev		Chk	Curk										
2		1 6	5 6	6 () 9)		5	1	•	6	1	9	0)	1	3	•	3	3	4	0		(0	0	0	5	7	7	0		1	0	2		5	6	8	0)	2	2 :	5	7	•	5	9	5	0		1	5	•	5	9	1	1 4	4	0	7	0	4 4	7	8 6	5 9)						

Epoch December 18, 1993, $12^{h} 50^{m} 26.5350^{s}$ UTC $\bar{n} = 15.591 140 70 \text{ rev} / \text{day} \Rightarrow$ $\bar{a} = 6768.3568 \text{ km}$ $\frac{\dot{n}}{2} = 7.889 \times 10^{-5} \frac{\text{rev}}{\text{day}^{2}} \qquad \frac{\ddot{n}}{6} = 0.0 \frac{\text{rev}}{\text{day}^{3}}$ $B^* = 0.000 105 29 / \text{ER}$ $e = 0.000 577 0 \qquad M = 257.5950^{\circ}$

 $\Omega = 13.3340^{\circ}$

 $\omega = 102.5680^{\circ}$

 $i = 51.6190^{\circ}$

Набор орбитальных элементов для решения SGP4

 t_0 = epoch time n_0 = mean motion (revolutions/day) e_0 = eccentricity i_0 = inclination (degrees) ω_0 = argument of perigee (degrees) Ω_0 = right ascension of ascending node (degrees) M_0 = mean anomaly (degrees) M_0 = Atmospheric drag coefficient (units of 1/Earth radii)

Орбитальные элементы(кроме средней аномалии) здесь понимаются в смысле **среднего значения**