Deep Learning

Vijaya Saradhi

IIT Guwahati

Tue, 15th Sept 2020

Contours

Contours

3/28

Descent Direction

Definition

A search direction \mathbf{d}^t is a descent direction at point \mathbf{x}^t if the condition $\nabla f(\mathbf{x}^t).\mathbf{d}^t \leq 0$ is satisfied

Descent Direction

Condition

$$f(\mathbf{x}^{(t+1)}) < f(\mathbf{x}^t) f(\mathbf{x}^t + \alpha \bigtriangledown f(\mathbf{x}^t).\mathbf{d}^t) < f(\mathbf{x}^t)$$
(1)

That is function value at new point $\mathbf{x}^{(t+1)}$ is less than function value at the current point $\mathbf{x}^{(t)}$

Maximum Descent Direction

Condition

Let $\mathbf{d}^t = (1,0)^T$ (arbitrary direction)

Let
$$\mathbf{x}^t = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Let the objective function be: $f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$ Condition to be met: $\nabla f(\mathbf{x}^t) . \mathbf{d}^t \le 0$

$$(-46-38)\left(\begin{array}{c}1\\0\end{array}\right)=-46$$

Maximum Descent Direction

Condition

When $\mathbf{d}^t = -\bigtriangledown f(\mathbf{x}^t)$ maximum decrease in function value is obtained Let $\mathbf{d}^t = -1 \times (-46, -36)^T$ (direction = negative gradient) Let $\mathbf{x}^t = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Example: $f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$ When $\mathbf{d}^t = -\bigtriangledown f(\mathbf{x}^t) = \begin{pmatrix} 46 \\ 38 \end{pmatrix}$ $(-46 - 38) \begin{pmatrix} 46 \\ 38 \end{pmatrix} = -3560$

Find the steepest descent direction

- Step 1 Choose: No. of iterations, $\mathbf{x}^{(0)}$, ϵ_1 , ϵ_2 ; set k=0
- Step 2 Calculate $\nabla f(\mathbf{x}^{(k)})$
- Step 3 if $\| \bigtriangledown f(\mathbf{x}^{(k)}) \| \le \epsilon_1$ then *terminate*
- Step 4 Perform uni-directional search to find $\alpha^{(k)}$ using ϵ_2
 - such that $f(\mathbf{x}^{(k+1)}) = f(\mathbf{x}^{(k)} \alpha^{(k)} \nabla f(\mathbf{x}^{(k)}))$ is minimum
 - Terminate when $\nabla f(\mathbf{x}^{(k+1)})$. $\nabla f(\mathbf{x}^{(k)}) \leq \epsilon_2$
- Step 5 Increment k = k + 1; Repeat steps 2 to 5

Find the length to travel along the steepest descent direction

- Step 1 Choose: No. of iterations, $\mathbf{x}^{(0)}$, ϵ_1 , ϵ_2 ; set k=0
- Step 2 Calculate $\nabla f(\mathbf{x}^{(k)})$
- Step 3 if $\| \bigtriangledown f(\mathbf{x}^{(k)}) \| \le \epsilon_1$ then *terminate*
- Step 4 Perform uni-directional search to find $\alpha^{(k)}$ using ϵ_2
 - such that $f(\mathbf{x}^{(k+1)}) = f(\mathbf{x}^{(k)} \alpha^{(k)} \nabla f(\mathbf{x}^{(k)}))$ is minimum
 - Terminate when $\nabla f(\mathbf{x}^{(k+1)})$. $\nabla f(\mathbf{x}^{(k)}) \leq \epsilon_2$
- Step 5 Increment k = k + 1; Repeat steps 2 to 5

Example

minimize.
$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Example

Step 1 Let
$$k = 0$$
; $\mathbf{x}^0 = (0,0)^T$; $\epsilon_1 = \epsilon_2 = 0.001$

Example

minimize.
$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Example

Step 1 Let
$$k = 0$$
; $\mathbf{x}^0 = (0,0)^T$; $\epsilon_1 = \epsilon_2 = 0.001$
Step 2 $\nabla f(\mathbf{x}^{(0)}) = (-14, -22)^T$; $\|\nabla f(\mathbf{x}^{(0)})\| = ((-14)^2 + (-22)^2) = 680 > \epsilon_1$

Example

minimize.
$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Example

Step 1 Let
$$k = 0$$
; $\mathbf{x}^0 = (0,0)^T$; $\epsilon_1 = \epsilon_2 = 0.001$

Step 2
$$\nabla f(\mathbf{x}^{(0)}) = (-14, -22)^T$$
;
 $\|\nabla f(\mathbf{x}^{(0)})\| = ((-14)^2 + (-22)^2) = 680 > \epsilon_1$

Step 4 In the direction $- \nabla f(\mathbf{x}^{(0)})$ perform unidirection search

- Steepest descent direction vector is: (14, 22)^T
- Find α^0 such that $f(\mathbf{x}^1) = f(\mathbf{x}^0 \alpha^0 \nabla f(\mathbf{x}^{(0)}))$ is minimum
- Let us compute: $\mathbf{x}^1 = \mathbf{x}^0 \alpha^0 \nabla f(\mathbf{x}^{(0)})$

$$\left(\begin{array}{c} 0 \\ 0 \end{array}\right) - \alpha^0 \times \left(\begin{array}{c} -14 \\ -22 \end{array}\right) = \left(\begin{array}{c} 14\alpha^0 \\ 22\alpha^0 \end{array}\right)$$

Example

Step 4 To find α^0 , minimize the function $f(\mathbf{x}^1)$

We have computed

$$\mathbf{x}^1 = \left(\begin{array}{c} 14\alpha^0 \\ 22\alpha^0 \end{array}\right)$$

Therefore

$$f(\mathbf{x}^1) = f\left(\begin{array}{c} 14\alpha^0\\ 22\alpha^0 \end{array}\right)$$

- Substituting in objective function $f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$ we have:
- $f(x^1) =$ $((14\alpha^0)^2 + (22\alpha^0) - 11)^2 + ((14\alpha^0) + (22\alpha^0)^2 - 7)^2$
- Minimize $f(\mathbf{x}^1)$ to find best α^0

11/28

Example

Interval Halving

Example

Example

- Step 4 Using Interval halving method or any other single variable optimization procedure we obtain $\alpha^0 = 0.127$. Compute $\mathbf{x}^1 = (\mathbf{x}^0 \alpha^0 \bigtriangledown f(\mathbf{x}^0)) = (14\alpha^0, 22\alpha^0) = (1.788, 2.810)^T$
- Step 4 Since the termination condition does not satisfy
 - Terminate when $\nabla f(\mathbf{x}^{(1)})$. $\nabla f(\mathbf{x}^{(0)}) \leq \epsilon_2$
 - $\nabla f(\mathbf{x}^{(1)}) = (30.707, -18.803)^T$
 - $\nabla f(\mathbf{x}^{(0)}) = (-14, -22)^T$
 - •

$$(30.707, -18.803) \begin{pmatrix} -14 \\ -22 \end{pmatrix} \le \epsilon_2$$
?

Step 5 increment k = k + 1; that is k = 1; Repeat the algorithm until termination criteria is met

The optimization obtains \mathbf{x}^* as $(3.008, 1.999)^T$

Single variable optimization

Single variable optimization

Interval halving method

- Given interval (a, b)
- If $f(x_1) < f(x_m)$ then minimum cannot lie beyond x_m That is $f(x_1) < f(x_{m+1}) < \cdots < f(b)$
- The interval will reduce to (a, x_m)
- If $f(x_1) > f(x_m)$ then minimum cannot lie in (a, x_1)

Single variable optimization

Interval halving method - algorithm

- Step 1 Given interval (a, b), choose ϵ . Let $x_m = \frac{(a+b)}{2}$; L = (b-a)
- Step 2 Initialize $x_1 = a + \frac{L}{4}$; $x_2 = b \frac{L}{4}$; Compute $f(x_1), f(x_2)$
- Step 3 If $f(x_1) < f(x_m)$ then $b = x_m; x_m = x_1$; Go to step 5; else go to step 4
- Step 4 If $f(x_2) < f(x_m)$ then $a = x_m$; $x_m = x_2$; Go to step 5; else $a = x_1, b = x_2$; go to step 5;
- Step 5 Calculate L=(b-a). If $(|L|<\epsilon)$ terminate else go to step 2

Text books to read

Optimization

- Engineering Optimization Theory and Practice Singiresu S Rao
- Chapter 1 of the above book, sections 6.8 and 6.9
- mec.nit.ac.ir/file_part/master_doc/ 20149281833165301436305785.pdf
- Optimization for Engineering Design Kalyanmoy Deb
- Section 3.4 of the above book.

Notataion

Data set is of the form $(\mathbf{x}_i, d_i)_{i=1}^N$

Where N is the number of data points say N = 1000 emails Each data point has m attributes.

$$i^{th}$$
 Data point's m attributes are: $\mathbf{x}_i = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{im} \end{pmatrix}$

 d_i is the desired response that is true label of the example Assumption Data points are linearly separable

Linearly Separable Data

Separate data using lines Decision Boundary Class \(\epsilon_1\) Class \(\epsilon_2\) Class \(\epsilon_2\)

FIGURE 1.4 (a) A pair of linearly separable patterns (b) A pair of non-linearly separable patterns.

(a)

Prelimininaries

- Let C_1, C_2 are linearly separable
- $\sum_{i=1}^{m} w_i x_i$ is written as:

$$(w_1 w_2 \cdots w_m) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$

Prelimininaries

• Let the following hold for these classes:

$$\mathbf{w}^{\mathsf{T}} \mathbf{x} > 0 \quad \forall \ \mathbf{x} \in \mathcal{C}_1 \\ \mathbf{w}^{\mathsf{T}} \mathbf{x} \leq 0 \quad \forall \ \mathbf{x} \in \mathcal{C}_2$$

• The case that if $\mathbf{w}^T \mathbf{x} = 0$ then $\mathbf{x} \in \mathcal{C}_2$

22 / 28

Prelimininaries

Let the following hold for these classes:

$$\begin{array}{ll} \textbf{w}^{T}\textbf{x} &> 0 & \forall \ \textbf{x} \in \mathcal{C}_{1} \\ \textit{AdderFunction} & \textbf{w}^{T}\textbf{x} &\leq 0 & \forall \ \textbf{x} \in \mathcal{C}_{2} \\ \textit{AdderFunction} & \end{array}$$

ullet The case that if $\mathbf{w}^T\mathbf{x} = \mathbf{0}$ then $\mathbf{x} \in \mathcal{C}_2$

Prelimininaries

• Let the following hold for these classes:

$$\begin{array}{ll} \mathbf{w}^T \mathbf{x} &> 0 & \forall \ \mathbf{x} \in \mathcal{C}_1 \\ \mathbf{m}^T \mathbf{x} &\leq 0 & \forall \ \mathbf{x} \in \mathcal{C}_2 \\ & & Threshold function \end{array}$$

• The case that if $\mathbf{w}^T \mathbf{x} = 0$ then $\mathbf{x} \in \mathcal{C}_2$

24 / 28

Update Rule 01

- Input x cannot be changed by the learning method
- Learning method should only change w
- Initialize w.
- If the following is not violated then there is no change in w

$$\mathbf{w}(n+1) = \mathbf{w}(n)$$
 if $\mathbf{w}^{T}(n)\mathbf{x}(n) > 0$ $\mathbf{x}(n) \in \mathcal{C}_{1}$
 $\mathbf{w}(n+1) = \mathbf{w}(n)$ if $\mathbf{w}^{T}(n)\mathbf{x}(n) \leq 0$ $\mathbf{x}(n) \in \mathcal{C}_{2}$

• The case that if $\mathbf{w}^T \mathbf{x} = 0$ then $\mathbf{x} \in \mathcal{C}_2$

Update Rule 02

• If the following is violated then there is no change in w

$$\begin{aligned} \mathbf{w}(n+1) &= \mathbf{w}(n) - \eta(n)\mathbf{x}(n) & \text{if } \mathbf{w}^T(n)\mathbf{x}(n) > 0 & \mathbf{x}(n) \in \mathcal{C}_2 \\ \mathbf{w}(n+1) &= \mathbf{w}(n) + \eta(n)\mathbf{x}(n) & \text{if } \mathbf{w}^T(n)\mathbf{x}(n) \leq 0 & \mathbf{x}(n) \in \mathcal{C}_1 \end{aligned}$$

ullet The case that if $old w^T old x = 0$ then $old x \in \mathcal{C}_2$

Update Rule 02 - Close look

- Correct rule: $\mathbf{w}^T(n)\mathbf{x}(n) > 0$ for every $\mathbf{x}(n) \in \mathcal{C}_1$
- Violation is due to $\mathbf{w}^T(n)\mathbf{x}(n) > 0$ holds but $\mathbf{x}(n) \in \mathcal{C}_2$
- When $\mathbf{x}(n) \in \mathcal{C}_2$ we should have the quantity $\mathbf{w}^T(n)\mathbf{x}(n) \leq 0$
- In order to reduce the quantity $\mathbf{w}^T(n)\mathbf{x}(n)$, the only choice is to reduce from $\mathbf{w}(n)$ some quantity equal to:

$$\mathbf{w}(n+1) = \mathbf{w}(n) - \eta(n)\mathbf{x}(n)$$
 if $\mathbf{w}^T(n)\mathbf{x}(n) > 0$ $\mathbf{x}(n) \in \mathcal{C}_2$

ullet The case that if $old w^T old x = 0$ then $old x \in \mathcal{C}_2$

Update Rule 02 - Close look

- Correct rule: $\mathbf{w}^T(n)\mathbf{x}(n) \leq 0$ for every $\mathbf{x}(n) \in \mathcal{C}_2$
- Violation is due to $\mathbf{w}^T(n)\mathbf{x}(n) \leq 0$ holds but $\mathbf{x}(n) \in \mathcal{C}_1$
- When $\mathbf{x}(n) \in \mathcal{C}_1$ we should have the quantity $\mathbf{w}^T(n)\mathbf{x}(n) > 0$
- In order to increase the quantity $\mathbf{w}^T(n)\mathbf{x}(n)$, the only choice is to increase from \mathbf{w} some quantity equal to:

$$\mathbf{w}(n+1) = \mathbf{w}(n) + \eta(n)\mathbf{x}(n)$$
 if $\mathbf{w}^{\mathsf{T}}(n)\mathbf{x}(n) \leq 0$ $\mathbf{x}(n) \in \mathcal{C}_1$

• The case that if $\mathbf{w}^T \mathbf{x} = 0$ then $\mathbf{x} \in \mathcal{C}_2$