2

What is claimed is:

1	1.	An adder to sum two binary numbers, comprising:
2		at least one circuit adapted to generate a group of carries;
3		at least one sum generator adapted to generate a pair of conditional sums;
4	and	
5		at least one device adapted to select between the pair of conditional sums
6	in res	ponse to one of the group of carries.
1	2.	The adder of claim 1, further comprising at least one second circuit adapted to
2		generate additional carries missing from the group of carries to provide one
3		carry for every group of a predetermined number of bits of the two binary
4		numbers.
1	3.	The adder of claim 2, wherein the at least one second circuit is adapted to
2		generate two conditional carries for each additional carry and further comprising
3		another device to select between the two conditional carries to provide each
4		additional carry in response to one of the group of carries.
1	4.	The adder of claim of claim 3, wherein the at least one device and the other

- 1 5. The adder of claim 4, further comprising a multiplexer recovery circuit coupled
- 2 to each of the multiplexers.

device are each multiplexers.

- 1 6. The adder of claim 2, wherein the at least one second circuit is an intermediate
- 2 carry generator.
- 1 7. The adder of claim 1, wherein the at least one circuit is a sparse carry-merge
- 2 circuit.

_	_	4 4 4 .		1	
1	•	An addor to cum	i tiira kinam	or milmharc	COMMITTEE
4	ο.	An adder to sum	יומווע טאוו	v numbons.	COMBINISHE.

- a sparse carry-merge circuit adapted to generate a first predetermined
- 3 number of carry signals;
- a plurality of intermediate carry generators each coupled to the sparse
- 5 carry merge circuit and adapted to generate a second predetermined number of carry
- 6 signals; and
- 7 a plurality of conditional sum generators coupled to the sparse carry-
- 8 merge circuit and the plurality of intermediate carry generators and adapted to provide
- 9 the sum of the two binary numbers.
- 1 9. The adder of claim 8, wherein the sparse carry-merge circuit merges groups of
- 2 sixteen bits of the two binary numbers and the first predetermined number of
- 3 carry signals is one carry signal from each group.
- 1 10. The adder of claim 8, wherein the sparse carry-merge circuit merges groups of
- eight bits of the two binary numbers and the first predetermined number of carry
- 3 signals is one carry signal from each group.
- 1 11. The adder of claim 8, wherein the second predetermined number of carry signals
- is one carry signal for each group of four merged bits of the two binary numbers.
- 1 12. The adder of claim 8, wherein the sparse-carry merge circuit includes a plurality
- of stages, each stage including a plurality of carry-merge logic gates to combine
- adjacent output signals from a preceding stage to provide the first predetermined
 - number of carry signals.

=

1	13. The adder of claim 8, wherein the sparse-carry merge circuit comprises:
2	a first stage adapted to generate a plurality of first propagate signals and
3	a first generate signal associated with each first propagate signal by merging the first
4	binary number with the second binary number;
5	a second stage adapted to generate a plurality of second propagate signals
6	and a second generate signal associated with each second propagate signal by merging
7	adjacent pairs of each of the first propagate signals and each of the associated first
8	generate signals;
9	a third stage adapted to generate a plurality of third propagate signals and
10	a third generate signal associated with each third propagate signal by merging adjacent
11	pairs of each of the second propagate signals and each of the associated second generate
12	signals;
13	a fourth stage adapted to generate a plurality of fourth propagate signals
14	and a fourth generate signal associated with each fourth propagate signal by merging
15	adjacent pairs of the third plurality of propagate signals and the associated third generate
16	signals;
17	a fifth stage adapted to generate a plurality of fifth propagate signals and
18	a fifth generate signal associated with each fifth propagate signal by merging adjacent
19	pairs of each of the fourth propagate signals and the associated fourth generate signals;
20	and
21	a sixth stage adapted to generate the first predetermined number of carry
22	signals by merging each fifth propagate signal and associated fifth generate signal with
23	each fifth generate signal from a carry-merge logic gate of the fifth stage lower in digit
24	order than a carry-merge logic gate of the sixth stage performing the merge operation,
25	wherein a fifth generate signal from a last carry-merge gate in decreasing digit order is
26	inverted to provide one of the first predetermined number of carry signals.
1	14. The adder of claim 13, wherein each of the third propagate signals and
2	associated third generate signals are coupled to the plurality of intermediate
3	carry generators.

1

15.

2	generators comprises three stages of ripple-carry merge gates.
1	16. The adder of claim 8, wherein each of the plurality of intermediate carry
2	generators comprises a plurality of rail pairs, one rail of each rail pair being
3	adapted to generate a first conditional carry signal for a logic 0 carry being input
4	to the intermediate carry generator and another rail of each rail pair being
5	adapted to generate a second conditional carry signal for a logic 1 carry being
6	input to the intermediate carry generator.
1	17. The adder of claim 8, further comprising:
2	a first intermediate carry generator of the plurality of intermediate carry
3	generators, including:
4	a first circuit adapted to generate a first carry signal of the second
5	predetermined number of carry signals in response to a first merged propagate signal
6	and a first merged generate signal from the sparse carry-merge circuit,
7	a second circuit adapted to generate a second carry signal of the
8	second predetermined number of carry signals in response to a second merged
9	propagate signal and a second merged generate signal from the sparse carry-merge
10	circuit, and
11	a third circuit adapted to generate a third carry signal of the
12	second predetermined number of carry signals in response to a third merged propagate
13	signal and a third merged generate signal from the sparse carry-merge circuit;
14	a second intermediate carry generator of the plurality of intermediate
15	carry generators, including:
16	a first circuit adapted to generate a fourth carry signal of the
17	second predetermined number of carry signals in response to a fourth merged propagate
18	signal and a fourth merged generate signal from the sparse carry-merge circuit,

The adder of claim 8, wherein each of the plurality of intermediate carry

19	a second circuit adapted to generate a fifth carry signal of the
20	second predetermined number of carry signals in response to a fifth merged propagate
21	signal and a fifth merged generate signal from the sparse carry-merge circuit, and
22	a third circuit adapted to generate a sixth carry signal of the
23	second predetermined number of carry signals in response to a sixth merged propagate
24	signal and a sixth merged generate signal from the sparse carry-merge circuit;
25	a third intermediate carry generator of the plurality of intermediate carry
26	generators, including:
27	a first circuit adapted to generate a seventh carry signal in
28	response to a seventh merged propagate signal and a seventh merged generate signal
29	from the sparse carry-merge circuit,
30	a second circuit adapted to generate an eighth carry signal in
31	response to an eighth merged propagate signal and an eighth merged generate signal
32	from the sparse carry-merge circuit, and
33	a third circuit adapted to generate a ninth carry signal in response
34	to a ninth merged propagate signal and a ninth merged generate signal from the sparse
35	carry-merge circuit; and
36	a fourth intermediate carry generator of the plurality of intermediate
37	carry generators, including:
38	a first circuit adapted to generate a tenth carry signal in response
39	to a tenth merged propagate signal and a tenth merged generate signal from the sparse
40	carry-merge circuit,
41	a second circuit adapted to generate an eleventh carry signal in
42	response to an eleventh merged propagate signal and an eleventh merged generate
43	signal from the sparse carry-merge circuit, and
44	a third circuit adapted to generate a twelfth carry signal in
45	response to a twelfth merged propagate signal and a twelfth merged generate signal
46	from the sparse carry-merge circuit.

I	18. The adder of claim 8, wherein each intermediate carrier generator comprises a
2	plurality of circuits to each generate a carry signal of the second predetermined
3	number of carry signals, each of the plurality of circuits including:
4	a first rail adapted to generate a first conditional carry,
5	a second rail adapted to generate a second conditional carry; and
6	a multiplexer adapted to select between the first conditional carry and the
7	second conditional carry.
1	19. The adder of claim 8, wherein each of the plurality of conditional sum
2	generators comprises a plurality of stages of ripple carry-merge gates and
3	exclusive OR gates.
1	20. The adder circuit of claim 8, wherein each of the plurality of conditional sum
2	generators comprises:
3	a first sum circuit including:
4	a first rail adapted to generate a first sum signal from a first
5	propagate signal,
6	a second rail adapted to generate a second sum signal from the
7	first propagate signal, and
8	a multiplexer adapted to select one of the first sum signal or the
9	second sum signal in response to a first carry signal of the first or second predetermined
10	number of carry signals;
11	a second sum circuit including:
12	a first rail adapted to generate a third sum signal, wherein the first
13	rail of the second sum circuit includes a first carry-merge/exclusive OR logic gate to
14	merge a second propagate signal and a second generate signal with a logic 0 carry-in,
15	a second rail adapted to generate a fourth sum signal, wherein the
16	second rail of the second sum circuit includes a second combination carry-
17	merge/exclusive OR logic gate to merge the second propagate signal and the second
18	generate signal with a logic 1 carry-in, and

19	a multiplexer adapted to select between the third sum signal and
20	the fourth sum signal in response to a second carry signal of the first and second
21	predetermined number of carry signals;
22	a third sum circuit including:
23	a first rail adapted to generate a fifth sum signal, wherein the first
24	rail of the third sum circuit includes a third carry-merge/exclusive OR logic gate to
25	merge a third propagate signal and a third generate signal with an output generate signal
26	from the first combination carry-merge/exclusive OR logic gate,
27	a second rail adapted to generate a sixth sum signal, wherein the
28	second rail of the third sum circuit includes a fourth combination carry-merge/exclusive
29	OR logic gate to merge the third propagate signal and the third generate signal with an
30	output generate signal from the second combination carry-merge/exclusive OR gate, and
31	a multiplexer adapted to select between the fifth sum signal and
32	the sixth sum signal in response to a third carry signal of the first and second
33	predetermined number of carry signals; and
34	a fourth sum circuit including:
35	a first rail adapted to generate a seventh sum signal, wherein the
36	first rail of the fourth sum circuit includes a fifth combination carry-merge/exclusive
37	OR logic gate to merge a fourth propagate signal and a fourth generate signal with an
38	output generate signal from the third combination carry-merge/exclusive OR logic gate,
39	a second rail adapted to generate an eighth sum signal, wherein
40	the second rail of the fourth sum circuit includes a sixth combination carry-
41	merge/exclusive OR logic gate to merge the fourth propagate signal and the fourth
42	generate signal with an output generate signal from the fourth combination carry-
43	merge/exclusive OR gate, and
44	a multiplexer adapted to select between the seventh sum signal
45	and the eighth sum signal in response to a fourth carry signal of the first and second
46	predetermined number of carry signals.

1	21.	The adder of claim 8, further comprising a multiplexer recovery circuit coupled	
2		to the sparse carry-merge circuit, each of the plurality of intermediate carry	
3		generators and each of the plurality of conditional sum generators.	
1	22.	An electronic system, comprising:	
2		a processor including an arithmetic logic unit, the arithmetic logic unit	
3	including at least one adder and the adder including:		
4		a sparse carry-merge circuit adapted to generate a group of	
5	carrie	rs,	
6		a plurality of intermediate carry generators each coupled to the	
7	sparse	e carry-merge circuit and adapted to generate additional carries missing from the	
8	group of carries, and		
9	a plurality of sum generators coupled to the sparse carry-merge		
10	circuit and the plurality of intermediate carry generators and adapted to provide the sun		
11	of two	o binary numbers; and	
12		a memory system coupled to the processor.	
1	22		
1	23.	The electronic system of claim 22, wherein the sparse carry-merge circuit	
2		generates at least one carry for every group of sixteen input bits to the adder.	
1	24.	The electronic system of claim 22, wherein the sparse carry-merge circuit	
2		generates at least one carry for every group of eight input bits to the adder.	
1	25.	The electronic system of claim 22, wherein the intermediate carry generator	
2		generates at least one carry signal for every group of four input bits to the adder.	
1	26.	The electronic system of claim 22, wherein each of the sum generators	

comprises:

2

3	four dual rail sum circuits, each circuit providing one bit of a final sum		
4	and one rail generating a conditional sum for a logic 0 carry-in and the other rail		
5	generating a conditional sum for a logic 1 carry-in; and		
6	a multiplexer coupled to each dual rail sum circuit to select the one or the		
7	other rail in response to a one in four carry from the intermediate carry generator.		
1	27. The electronic system of claim 22, further comprising a multiplexer recovery		
2	circuit coupled to the sparse carry-merge circuit, each of the plurality of		
3	intermediate carry generators and each of the plurality of conditional sum		
4	generators.		
1	28. A method of adding two binary numbers, comprising:		
2	generating a first predetermined number of carries by merging bits of the		
3	two binary numbers;		
4	generating a plurality of conditional carries for a logic 0 carry-in;		
5	generating another plurality of conditional carries for a logic 1 carry-in;		
6	selecting between each one of the plurality of conditional carries for a		
7	logic 0 carry-in and an associated one of the other plurality of conditional carries for a		
8	logic 1 carry-in in response to a carry-in from the first predetermined number of carries		
9	to provide a second predetermined number of carries;		
0	generating a plurality of conditional sums for a logic 0 carry-in;		
1	generating another plurality of conditional sums for a logic 1 carry-in;		
2	selecting between each one of the plurality of conditional sums for the		
3	logic 0 carry-in and an associated one of the other plurality of conditional sums for the		
4	logic 1 carry-in in response to a carry-in from the first and second predetermined		
5	number of carries to provide a final sum of the two binary numbers.		
1	29. The method of claim 28, wherein generating the first predetermined number of		
2	carries comprises generating at least one carry for every sixteen bits of the first		
3	and second binary numbers grouped from a least significant digit.		

1	30.	The method of claim 28, wherein generating the first predetermined number of
2		carries comprises generating at least one carry for every eight bits of the first and
3		second binary numbers grouped from a least significant digit.
1	31.	The method of claim 28, wherein the second predetermined number of carries
2		comprises at least one carry for every four bits of the first and second binary
3		numbers grouped from a least significant digit.
1	32.	The method of claim 28, comprising recovering any erroneously discharged
2		ones of the second predetermined number of carries or digits of the final sum.
1	33.	A method of making a processor, comprising:
2		forming an arithmetic logic unit;
3		forming at least one adder as a component of the arithmetic logic unit,
4	where	in forming the at least one adder includes:
5		forming a sparse carry-merge circuit adapted to generate a group
6	of car	ries,
7		forming a plurality of intermediate carry generators each coupled
8	to the	sparse carry-merge circuit and adapted to generate additional carries missing from
9	the gr	oup of carries, and
10		forming a plurality of conditional sum generators coupled to the
11	sparse	carry-merge circuit and the plurality of intermediate carry generators and adapted
12	to pro	vide the sum of the two binary numbers.
1	34.	The method of claim 33, wherein forming the sparse carry-merge circuit
2		comprises forming a plurality of stages, each stage including a plurality of carry
3		merge logic gates to combine adjacent outputs from a preceding stage to provide
4		the group of carries.

- 1 35. The method of claim 33, wherein forming each of the plurality of intermediate 2 carry generators comprises forming three stages of ripple-carry merge gates.
- 36. The method of claim 33, wherein forming each of the conditional sum
 generators comprises:
- 3 forming four dual rail sum circuits; and
- 4 forming a multiplexer coupled to each dual rail sum circuit.
- 1 37. The method of claim 33, further comprising:
- 2 forming a multiplexer recovery circuit coupled to the sparse carry-merge
- 3 circuit, each of the plurality of intermediate carry generators and each of the plurality of
- 4 conditional sum generators.

=