F Maths - Feuille d'exos n° 17 =

Dérivabilité

I. Dérivabilité

Ex. 17.1 Déterminer
$$\lim_{x\to e} \frac{\sqrt{x} - e^{\frac{1}{2}}}{\ln x - 1}$$
.

Ex. 17.2 Soit
$$n \in \mathbb{N}$$
. Déterminer la classe de la fonction f définie

$$\operatorname{par} \left\{ \begin{array}{ll} \mathbb{R} & \to \mathbb{R} \\ x \in [-1;1] & \mapsto (1-x^2)^n \\ x \notin [-1;1] & \mapsto 0 \end{array} \right.$$

Ex. 17.3 Soient
$$(a, b) \in \mathbb{R}^2$$
 et $f: x \mapsto (x - a)^n (x - b)^n$.

- a. Calculer $f^{(n)}(x)$.
- b. En déduire l'expression de $\sum_{k=0}^{n} \binom{n}{k}^2$.

$\overline{\text{Ex. }17.4}$ Arguments des sinus et cosinus hyperboliques

a. Montrer que sh: $\mathbb{R} \to \mathbb{R}$ et ch: $[0; +\infty[\to [1; +\infty[$ sont bijec-

On note Argsh et Argch leurs bijections réciproques.

- b. Montrer que $\forall x \in \mathbb{R}$, $\operatorname{ch}(\operatorname{Argsh} x) = \sqrt{1 + x^2}$.
- c. Montrer que $\forall x \in [1; +\infty[$, sh $(\operatorname{Argch} x) = \sqrt{x^2 1}$.
- d. Calculer (en précisant les conditions d'existence) Argsh'(x) et
- e. Faire le même travail pour la fonction th = $\frac{\sinh}{\cosh}$. Montrer notamment que lorsqu'elle est définie Argth $x = \ln \sqrt{\frac{1+x}{1-x}}$.

II. Éléments de calcul différentiel

Trouver les extrema des fonctions suivantes : **Ex.** 17.5

- $\bullet \ f: x \mapsto \frac{x-1}{x-2} \text{ sur } [3; +\infty[\bullet \ h: x \mapsto (x^2-3x) e^x \text{ sur } [1;2]$ $\bullet \ g: x \mapsto (x^2-3x) e^x \text{ sur } \mathbb{R} \bullet \ k: x \mapsto \ln\left(\frac{1+x}{(3+x)^2}\right) \text{ sur } \mathcal{D}_k$

Ex. 17.6 Soit f une fonction dérivable sur \mathbb{R} et 1-périodique qui admet n zéros sur [0;1[.

Montrer que f' admet au moins n zéros sur [0;1[.

 $\overline{\mathbf{Ex. }17.7}$ Soit $n \in \mathbb{N}, n \ge 2$ et $(a,b) \in \mathbb{R}^2$

Montrer que f définie par $f(x) = x^n + ax + b$ admet au plus 3 racines réelles distinctes.

Ex. 17.8 Soit f dérivable sur \mathbb{R} telle que $\lim_{\to \infty} f(x) = \lim_{\to \infty} f(x)$.

Montrer que f' s'annule au moins une fois sur \mathbb{R} .

-]a; b[telles que g' ne s'annule pas sur]a; b[. Montrer que $g(a) \neq g(b)$ et qu'il existe $c \in]a; b[$ tel que $f(b) f(a) = \frac{f'(c)}{g(b) g(a)} = \frac{f'(c)}{g'(c)}$. a. Soient f et g deux fonctions continues sur [a;b] et dérivables sur
- dérivables sur]a;b[telles que g' ne s'annule pas sur]a;b[et $\forall x\in]a;b[,|f'(x)|\leq g'(x).$ Montrer que $|f(b)-f(a)|\leq g(b)-g(a).$ Application : soient f et g deux fonctions continues sur [a;b], р,

$$\underline{\mathbf{Ex.} \ 17.10} \quad \operatorname{Soit} \ g : \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x \neq 0 & \mapsto & x + x^2 \sin\left(\frac{1}{x^2}\right) \\ 0 & \mapsto & 0 \end{array} \right. .$$

- a. Montrer que g est continue et dérivable sur \mathbb{R} et que g'(0) = 1.
- b. Montrer qu'il n'existe aucun voisinage de 0 sur lequel g est crois-

III. Divers

Ex. 17.11 Méthode de Newton

On considère une fonction f définie sur \mathbb{R} , de classe \mathcal{C}^1 et dont la dérivée ne s'annule pas sur R.

- a. Montrer que f' est à signe constant et que f est bijective de $\mathbb R$
- b. Montrer que $\forall x \in \mathbb{R}$, la tangente à \mathcal{C}_f en x coupe l'axe des abscisses en un point dont on précisera l'abscisse X(x).
- c. On pose $u_0 = 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = X(u_n)$. On suppose de plus que f est deux fois dérivable sur \mathbb{R} et que f'' est à signe f'' cor. 17.14:

Montrer que la suite u est bien définie et est monotone à partir du second terme. d. En déduire les comportements asymptotiques possibles de la suite u. Préciser sa limite. Ex. 17.12 Règle de l'Hospital Soit f et g deux fonctions de classe $C^1(\mathbb{R})$ s'annulant en $a \in \mathbb{R}$.

Montrer que si $g'(a) \neq 0$, alors $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$.

Ex. 17.13 Soit $f: [a; b] \to \mathbb{R}$ une fonction de classe \mathbb{C}^1 .

On suppose que f(a) = 0 et f(b)f'(b) < 0. Montrer qu'il existe $c \in]a;b[$ tel que f'(c) = 0.

Ex. 17.14 (Cor.) [**] On définit les fonctions th, Argsh, Argch et Argth de la même façon qu'à l'exercice 17.4 dont les résultats peuvent être admis ici.

Soient $I = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ et Gd la fonction définie par

$$\operatorname{Gd}: \left\{ \begin{array}{ccc} I & \xrightarrow{\tau} & \xrightarrow{\Gamma} \\ x & \mapsto & \operatorname{Gd}(x) = \ln\left(\tan\left(\frac{x}{2} + \frac{\pi}{4}\right)\right) \end{array} \right.$$

a. Montrer que Gd est bien définie et dérivable sur $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[.$

- b. Montrer que $\forall x \in \left] \frac{\pi}{2}; \frac{\pi}{2} \right[: \operatorname{Gd}(x) = \ln\left(\tan(x) + \frac{1}{\cos(x)}\right) = \operatorname{Argsh}(\tan x) = \operatorname{Argth}(\sin x) =$ $2 \operatorname{Argth} \left(\tan \frac{x}{2} \right)$.
- Calculer Gd' et tracer l'allure de la représentation graphique de Gd. <u>ن</u>
- d. Justifier l'existence de Gd⁻¹ et montrer que sur son ensemble de définition $Gd^{-1}(x) = Arcsin(th x)$. Calculer la dérivée de Gd^{-1} .

Corrections

a. $x \in]-\frac{\pi}{2}; \frac{\pi}{2}[] \Rightarrow \frac{x}{2} + \frac{\pi}{4} \in]0; \frac{\pi}{2}[$ intervalle sur lequel tan est définie, dérivable et strictement positive.

Par composition, Gd est donc bien définie et dérivable sur $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$.

b.
$$\forall x \in I, \tan\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\tan\left(\frac{x}{2}\right) + 1}{1 - \tan\left(\frac{x}{2}\right)}$$
.

On obtient immédiatement la dern<u>ière relation</u> en écrivant

$$Gd(x) = \ln\left(\frac{\tan\left(\frac{x}{2}\right) + 1}{1 - \tan\left(\frac{x}{2}\right)}\right) = 2\ln\sqrt{\frac{\tan\left(\frac{x}{2}\right) + 1}{1 - \tan\left(\frac{x}{2}\right)}} = 2\operatorname{Argth}\left(\tan\frac{x}{2}\right). \text{ De plus}$$

$$\forall x \in I, \tan(x) + \frac{1}{\cos(x)} = \frac{2\tan\left(\frac{x}{2}\right)}{1 - \tan^2\left(\frac{x}{2}\right)} + \frac{1 + \tan^2\left(\frac{x}{2}\right)}{1 - \tan^2\left(\frac{x}{2}\right)} = \frac{1 + \tan^2\left(\frac{x}{2}\right)}{1 - \tan^2\left(\frac{x}{2}\right)} = \frac{1 + \tan^2\left(\frac{x}{2}\right)}{1 - \tan^2\left(\frac{x}{2}\right)}$$

$$(1+ an(rac{x}{2}))^2$$
 re ani conduit à la premiè

 $(1 + \tan(\frac{x}{2}))(1 - \tan(\frac{x}{2}))$ ce qui conduit à la première égalité.

$$\operatorname{Sur} \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] (x) = \frac{1}{\operatorname{can}(2)} (x)$$

$$\operatorname{Sur} \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] (x) \operatorname{cs est positive donc } \cos(x) = \sqrt{1 - \sin^2(x)} = \frac{1}{\sqrt{1 + \tan^2(x)}}$$

$$\operatorname{D'où} : \operatorname{Gd}(x) = \ln\left(\frac{\sin(x) + 1}{\sqrt{1 - \sin^2(x)}}\right) = \operatorname{Argth}(\sin x).$$

$$\operatorname{Gd}(x) = \ln\left(\frac{\sin(x) + 1}{\sqrt{1 - \sin^2(x)}}\right) = \operatorname{Argth}(\sin x).$$

c.
$$\forall x \in I, \operatorname{Gd}'(x) = (\operatorname{Argth}(\sin x))' = \frac{\cos(x)}{1 - \sin^2(x)} = \frac{1}{\cos(x)}$$
.

d. Gd'(x) > 0, la fonction est strictement croissante et continue donc bijective. Sa bijection réciproque est définie sur \mathbb{R} et $(\mathrm{Gd}^{-1})' = \frac{1}{\mathrm{ch}}$