1.18 Complexes and homotopy

Reading Seminar, Linckelmann Chapter 1

Deewang Bhamidipati 2nd September 2021

Let $\mathscr C$ be an additive category and let (X,δ) , (Y,ε) be complexes over $\mathscr C$.

$$X: \cdots \longrightarrow X_{n+1} \xrightarrow{\delta_{n+1}} X_n \xrightarrow{\delta_n} X_{n-1} \xrightarrow{\delta_{n-1}} \cdots$$

$$Y: \quad \cdots \longrightarrow Y_{n+1} \xrightarrow{\quad \epsilon_{n+1} \quad} Y_n \xrightarrow{\quad \epsilon_n \quad} Y_{n-1} \xrightarrow{\quad \epsilon_{n-1} \quad} \cdots$$

Let \mathscr{C} be an additive category and let (X, δ) , (Y, ε) be complexes over \mathscr{C} .

Two chain homomorphisms $f, f': X \to Y$ are called *homotopic*, written $f \sim f'$,

Let \mathscr{C} be an additive category and let (X, δ) , (Y, ε) be complexes over \mathscr{C} .

Two chain homomorphisms $f, f': X \to Y$ are called *homotopic*, written $f \sim f'$, if there is a graded morphism $h: X \to Y$ of degree 1, called a *(chain) homotopy*, such that

$$f - f' = \varepsilon \circ h + h \circ \delta.$$

Let \mathscr{C} be an additive category and let (X, δ) , (Y, ε) be complexes over \mathscr{C} .

Two chain homomorphisms $f, f': X \to Y$ are called *homotopic*, written $f \sim f'$, if there is a graded morphism $h: X \to Y$ of degree 1, called a *(chain) homotopy*, such that

$$f-f'=\varepsilon\circ h+h\circ\delta.$$
 homotopic to 0

Or equivalently, if

$$f_n - f'_n = \varepsilon_{n+1} \circ h_n + h_{n-1} \circ \delta_n$$

for any $n \in \mathbb{Z}$.

We also say h is a homotopy from f to f'.

• Being homotopic is an equivalence relation on chain maps.

• Being homotopic is an equivalence relation on chain maps. Furthermore, if $f \sim f'$ and $g \sim g'$,

• Being homotopic is an equivalence relation on chain maps. Furthermore, if $f \sim f'$ and $g \sim g'$, then $f \circ g \sim f' \circ g'$.

- Being homotopic is an equivalence relation on chain maps. Furthermore, if $f \sim f'$ and $g \sim g'$, then $f \circ g \sim f' \circ g'$.
- A chain map $f: X \to Y$ is a homotopy equivalence

- Being homotopic is an equivalence relation on chain maps. Furthermore, if $f \sim f'$ and $g \sim g'$, then $f \circ g \sim f' \circ g'$.
- A chain map $f: X \to Y$ is a *homotopy equivalence* if there's a chain map $g: Y \to X$ such that $g \circ f \sim \operatorname{id}_X$ and $f \circ g \sim \operatorname{id}_X$

- Being homotopic is an equivalence relation on chain maps. Furthermore, if $f \sim f'$ and $g \sim g'$, then $f \circ g \sim f' \circ g'$.
- A chain map $f: X \to Y$ is a *homotopy equivalence* if there's a chain map $g: Y \to X$ such that $g \circ f \sim \operatorname{id}_X$ and $f \circ g \sim \operatorname{id}_X$. In that case, g is called a *homotopy inverse* of f,

- Being homotopic is an equivalence relation on chain maps. Furthermore, if $f \sim f'$ and $g \sim g'$, then $f \circ g \sim f' \circ g'$.
- A chain map $f: X \to Y$ is a *homotopy equivalence* if there's a chain map $g: Y \to X$ such that $g \circ f \sim \operatorname{id}_X$ and $f \circ g \sim \operatorname{id}_X$. In that case, g is called a *homotopy inverse* of f, and the complexes X, Y are said to be *homotopy equivalent*, written $X \simeq Y$.

- Being homotopic is an equivalence relation on chain maps. Furthermore, if $f \sim f'$ and $g \sim g'$, then $f \circ g \sim f' \circ g'$.
- A chain map $f: X \to Y$ is a homotopy equivalence if there's a chain map $g: Y \to X$ such that $g \circ f \sim \operatorname{id}_X$ and $f \circ g \sim \operatorname{id}_X$. In that case, g is called a homotopy inverse of f, and the complexes X, Y are said to be homotopy equivalent, written $X \simeq Y$.
- If $X \simeq 0$ (the zero complex), we say X is *contractible*.

- Being homotopic is an equivalence relation on chain maps. Furthermore, if $f \sim f'$ and $g \sim g'$, then $f \circ g \sim f' \circ g'$.
- A chain map $f: X \to Y$ is a homotopy equivalence if there's a chain map $g: Y \to X$ such that $g \circ f \sim \operatorname{id}_X$ and $f \circ g \sim \operatorname{id}_X$. In that case, g is called a homotopy inverse of f, and the complexes X, Y are said to be homotopy equivalent, written $X \simeq Y$.
- If $X \simeq 0$ (the zero complex), we say X is *contractible*.

Proposition 1.18.2

 $X \simeq 0$ if and only if $\mathrm{id}_X \sim 0$.

- Being homotopic is an equivalence relation on chain maps. Furthermore, if $f \sim f'$ and $g \sim g'$, then $f \circ g \sim f' \circ g'$.
- A chain map $f: X \to Y$ is a *homotopy equivalence* if there's a chain map $g: Y \to X$ such that $g \circ f \sim \operatorname{id}_X$ and $f \circ g \sim \operatorname{id}_X$. In that case, g is called a *homotopy inverse* of f, and the complexes X, Y are said to be *homotopy equivalent*, written $X \simeq Y$.
- If $X \simeq 0$ (the zero complex), we say X is *contractible*.

Proposition 1.18.2

 $X \simeq 0$ if and only if $\mathrm{id}_X \sim 0$.

 For cochain complexes, we define analogously a *cochain homotopy* to be a graded morphism of degree -1 satisfying the analogous property.

Let $\mathscr C$ be an additive category. The homotopy category of complexes over $\mathscr C$ is the category $K(\mathscr C)$

Let $\mathscr C$ be an additive category. The *homotopy category of complexes over* $\mathscr C$ is the category $K(\mathscr C)$ whose objects are the complexes over $\mathscr C$

Let $\mathscr C$ be an additive category. The *homotopy category of complexes over* $\mathscr C$ is the category $\mathsf K(\mathscr C)$ whose objects are the complexes over $\mathscr C$ and whose morphisms are the homotopy equivalence classes

$$\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(X,Y) := \operatorname{Hom}_{\mathsf{Ch}(\mathscr{C})}(X,Y)/{\sim}$$

of chain maps, for any two complex X, Y over \mathscr{C} .

Let $\mathscr C$ be an additive category. The *homotopy category of complexes over* $\mathscr C$ is the category $\mathsf K(\mathscr C)$ whose objects are the complexes over $\mathscr C$ and whose morphisms are the homotopy equivalence classes

$$\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(X,Y) := \operatorname{Hom}_{\mathsf{Ch}(\mathscr{C})}(X,Y)/{\sim}$$

of chain maps, for any two complex X, Y over \mathscr{C} .

We denote by $K^+(\mathscr{C})$, $K^-(\mathscr{C})$, $K^b(\mathscr{C})$ the full subcategories of $K(\mathscr{C})$ consisting of bounded above, bounded below, bounded complexes over \mathscr{C} , respectively.

Recall that $\mathsf{Ch}(\mathscr{C})$ admits the *shift automorphism*, for any integer i

Recall that $Ch(\mathscr{C})$ admits the *shift automorphism*, for any integer i

If two chain maps $f, f': X \to Y$ are homotopic via a homotopy $h: X \to Y$,

Recall that $Ch(\mathscr{C})$ admits the *shift automorphism*, for any integer i

If two chain maps $f, f': X \to Y$ are homotopic via a homotopy $h: X \to Y$, then for any i, the "shifted" chain maps $f[i], f'[i]: X[i] \to Y[i]$ are homotopic

Recall that $Ch(\mathscr{C})$ admits the *shift automorphism*, for any integer i

If two chain maps $f,f':X\to Y$ are homotopic via a homotopy $h:X\to Y$, then for any i, the "shifted" chain maps $f[i],f'[i]:X[i]\to Y[i]$ are homotopic via the homotopy $h[i]:X[i]\to Y[i]$ given by $h[i]_n=h_{n-i}$ for any $n\in\mathbb{Z}$.

Recall that $Ch(\mathscr{C})$ admits the *shift automorphism*, for any integer i

If two chain maps $f, f': X \to Y$ are homotopic via a homotopy $h: X \to Y$, then for any i, the "shifted" chain maps $f[i], f'[i]: X[i] \to Y[i]$ are homotopic via the homotopy $h[i]: X[i] \to Y[i]$ given by $h[i]_n = h_{n-i}$ for any $n \in \mathbb{Z}$.

Therefore [i] of (\mathscr{C}) descends to an automorphism, still denoted [i], of the homotopy category $\mathsf{K}(\mathscr{C})$.

Recall that $Ch(\mathscr{C})$ admits the *shift automorphism*, for any integer i

If two chain maps $f, f': X \to Y$ are homotopic via a homotopy $h: X \to Y$, then for any i, the "shifted" chain maps $f[i], f'[i]: X[i] \to Y[i]$ are homotopic via the homotopy $h[i]: X[i] \to Y[i]$ given by $h[i]_n = h_{n-i}$ for any $n \in \mathbb{Z}$.

Therefore [i] of (\mathscr{C}) descends to an automorphism, still denoted [i], of the homotopy category $\mathsf{K}(\mathscr{C})$.

This automorphism preserves any of the subcategories $K^+(\mathscr{C})$, $K^-(\mathscr{C})$, $K^b(\mathscr{C})$.

Proposition 1.18.3

Proposition 1.18.3

Let $\mathscr C$ be an abelian category, and let $f,f':(X,\delta)\to (Y,\varepsilon)$ be morphisms in $\mathsf{Ch}(\mathscr C)$.

(i) For any homotopy $h: X \to Y$, the graded morphism $(h \circ \delta + \varepsilon \circ h): X \to Y$ is a chain map inducing the zero morphism from $H_*(X)$ to $H_*(Y)$.

Proposition 1.18.3

- (i) For any homotopy $h: X \to Y$, the graded morphism $(h \circ \delta + \varepsilon \circ h): X \to Y$ is a chain map inducing the zero morphism from $H_*(X)$ to $H_*(Y)$.
- (ii) If $f \sim f'$, then $H_*(f) = H_*(f') : H_*(X) \rightarrow H_*(Y)$.

Proposition 1.18.3

- (i) For any homotopy $h: X \to Y$, the graded morphism $(h \circ \delta + \varepsilon \circ h): X \to Y$ is a chain map inducing the zero morphism from $H_*(X)$ to $H_*(Y)$.
- (ii) If $f \sim f'$, then $H_*(f) = H_*(f') : H_*(X) \to H_*(Y)$. That is, $H_*(-)$ factors through the homotopy category $K(\mathscr{C})$.

Proposition 1.18.3

- (i) For any homotopy $h: X \to Y$, the graded morphism $(h \circ \delta + \varepsilon \circ h): X \to Y$ is a chain map inducing the zero morphism from $H_*(X)$ to $H_*(Y)$.
- (ii) If $f \sim f'$, then $H_*(f) = H_*(f') : H_*(X) \to H_*(Y)$. That is, $H_*(-)$ factors through the homotopy category $K(\mathscr{C})$.
- (iii) If f is a homotopy equivalence, then f is a quasi-isomorphism.

Proposition 1.18.3

- (i) For any homotopy $h: X \to Y$, the graded morphism $(h \circ \delta + \varepsilon \circ h): X \to Y$ is a chain map inducing the zero morphism from $H_*(X)$ to $H_*(Y)$.
- (ii) If $f \sim f'$, then $H_*(f) = H_*(f') : H_*(X) \to H_*(Y)$. That is, $H_*(-)$ factors through the homotopy category $K(\mathscr{C})$.
- (iii) If f is a homotopy equivalence, then f is a quasi-isomorphism.
- (iv) If $X \simeq 0$, then X is acyclic.

Proposition 1.18.3

Let $\mathscr C$ be an abelian category, and let $f,f':(X,\delta)\to (Y,\varepsilon)$ be morphisms in $\mathsf{Ch}(\mathscr C)$.

- (i) For any homotopy $h: X \to Y$, the graded morphism $(h \circ \delta + \varepsilon \circ h): X \to Y$ is a chain map inducing the zero morphism from $H_*(X)$ to $H_*(Y)$.
- (ii) If $f \sim f'$, then $H_*(f) = H_*(f') : H_*(X) \to H_*(Y)$. That is, $H_*(-)$ factors through the homotopy category $K(\mathscr{C})$.
- (iii) If f is a homotopy equivalence, then f is a quasi-isomorphism.
- (iv) If $X \simeq 0$, then X is acyclic.

Proof of Prop. 1.18.3

We first verify that $(h \circ \delta + \varepsilon \circ h)$ is a chain map,

Proposition 1.18.3

Let $\mathscr C$ be an abelian category, and let $f,f':(X,\delta)\to (Y,\varepsilon)$ be morphisms in $\mathsf{Ch}(\mathscr C)$.

- (i) For any homotopy $h: X \to Y$, the graded morphism $(h \circ \delta + \varepsilon \circ h): X \to Y$ is a chain map inducing the zero morphism from $H_*(X)$ to $H_*(Y)$.
- (ii) If $f \sim f'$, then $H_*(f) = H_*(f') : H_*(X) \to H_*(Y)$. That is, $H_*(-)$ factors through the homotopy category $K(\mathscr{C})$.
- (iii) If f is a homotopy equivalence, then f is a quasi-isomorphism.
- (iv) If $X \simeq 0$, then X is acyclic.

Proof of Prop. 1.18.3

We first verify that $(h \circ \delta + \varepsilon \circ h)$ is a chain map, note that

$$\varepsilon\circ(h\circ\delta+\varepsilon\circ h)=\varepsilon\circ h\circ\delta=(h\circ\delta+\varepsilon\circ h)\circ\delta$$

Proposition 1.18.3

Let $\mathscr C$ be an abelian category, and let $f,f':(X,\delta)\to (Y,\varepsilon)$ be morphisms in $\mathsf{Ch}(\mathscr C)$.

- (i) For any homotopy $h: X \to Y$, the graded morphism $(h \circ \delta + \varepsilon \circ h): X \to Y$ is a chain map inducing the zero morphism from $H_*(X)$ to $H_*(Y)$.
- (ii) If $f \sim f'$, then $H_*(f) = H_*(f') : H_*(X) \to H_*(Y)$. That is, $H_*(-)$ factors through the homotopy category $K(\mathscr{C})$.
- (iii) If f is a homotopy equivalence, then f is a quasi-isomorphism.
- (iv) If $X \simeq 0$, then X is acyclic.

Proof of Prop. 1.18.3

We first verify that $(h \circ \delta + \varepsilon \circ h)$ is a chain map, note that

$$\varepsilon \circ (h \circ \delta + \varepsilon \circ h) = \varepsilon \circ h \circ \delta = (h \circ \delta + \varepsilon \circ h) \circ \delta$$

Hence we have the induced map on homology $H_*(h \circ \delta + \varepsilon \circ h) : H_*(X) \to H_*(Y)$.

Proposition 1.18.3

Let $\mathscr C$ be an abelian category, and let $f,f':(X,\delta)\to (Y,\varepsilon)$ be morphisms in $\mathsf{Ch}(\mathscr C)$.

- (i) For any homotopy $h: X \to Y$, the graded morphism $(h \circ \delta + \varepsilon \circ h): X \to Y$ is a chain map inducing the zero morphism from $H_*(X)$ to $H_*(Y)$.
- (ii) If $f \sim f'$, then $H_*(f) = H_*(f') : H_*(X) \to H_*(Y)$. That is, $H_*(-)$ factors through the homotopy category $K(\mathscr{C})$.
- (iii) If f is a homotopy equivalence, then f is a quasi-isomorphism.
- (iv) If $X \simeq 0$, then X is acyclic.

Proof of Prop. 1.18.3

We first verify that $(h \circ \delta + \varepsilon \circ h)$ is a chain map, note that

$$\varepsilon \circ (h \circ \delta + \varepsilon \circ h) = \varepsilon \circ h \circ \delta = (h \circ \delta + \varepsilon \circ h) \circ \delta$$

Hence we have the induced map on homology $H_*(h \circ \delta + \varepsilon \circ h) : H_*(X) \to H_*(Y)$.

Consider a class $[z] \in H_n(X) = \ker \delta_n / \operatorname{im} \delta_{n+1}$, where $z \in \ker \delta_n$.

Proposition 1.18.3

Let \mathscr{C} be an abelian category, and let $f, f' : (X, \delta) \to (Y, \varepsilon)$ be morphisms in $Ch(\mathscr{C})$.

- (i) For any homotopy $h: X \to Y$, the graded morphism $(h \circ \delta + \varepsilon \circ h): X \to Y$ is a chain map inducing the zero morphism from $H_*(X)$ to $H_*(Y)$.
- (ii) If $f \sim f'$, then $H_*(f) = H_*(f') : H_*(X) \to H_*(Y)$. That is, $H_*(-)$ factors through the homotopy category $K(\mathscr{C})$.
- (iii) If f is a homotopy equivalence, then f is a quasi-isomorphism.
- (iv) If $X \simeq 0$, then X is acyclic.

$$H_*(f)([z]) = [f(z)]$$

Proof of Prop. 1.18.3

We first verify that $(h \circ \delta + \varepsilon \circ h)$ is a chain map, note that

$$\varepsilon \circ (h \circ \delta + \varepsilon \circ h) = \varepsilon \circ h \circ \delta = (h \circ \delta + \varepsilon \circ h) \circ \delta$$

Hence we have the induced map on homology $H_*(h \circ \delta + \varepsilon \circ h) : H_*(X) \to H_*(Y)$.

Consider a class $[z] \in H_n(X) = \ker \delta_n / \operatorname{im} \delta_{n+1}$, where $z \in \ker \delta_n$. Then

$$H_n(h \circ \delta + \varepsilon \circ h)([z]) = [(h \circ \delta + \varepsilon \circ h)_n(z)] = [(h_{n-1} \circ \delta_n + \varepsilon_{n+1} \circ h_n)(z)] = [\varepsilon_{n+1}(h_n(z))]$$

Proof of Prop. 1.18.3 (contd.)

2/2

Note that $\varepsilon_{n+1}(h_n(z)) \in \operatorname{im} \varepsilon_{n+1}$ and $H_n(h \circ \delta + \varepsilon \circ h)([z]) \in H_n(Y) = \ker \varepsilon_n / \operatorname{im} \varepsilon_{n+1}$,

Proof of Prop. 1.18.3 (contd.)

2/2

Note that
$$\varepsilon_{n+1}(h_n(z)) \in \operatorname{im} \varepsilon_{n+1}$$
 and $H_n(h \circ \delta + \varepsilon \circ h)([z]) \in H_n(Y) = \ker \varepsilon_n / \operatorname{im} \varepsilon_{n+1}$, and therefore
$$H_n(h \circ \delta + \varepsilon \circ h)([z]) = [\varepsilon_{n+1}(h_n(z))] = [0].$$

Proof of Prop. 1.18.3 (contd.)

2/2

Note that $\varepsilon_{n+1}(h_n(z)) \in \operatorname{im} \varepsilon_{n+1}$ and $H_n(h \circ \delta + \varepsilon \circ h)([z]) \in H_n(Y) = \ker \varepsilon_n / \operatorname{im} \varepsilon_{n+1}$, and therefore

$$H_n(h \circ \delta + \varepsilon \circ h)([z]) = [\varepsilon_{n+1}(h_n(z))] = [0].$$

Hence $(h \circ \delta + \varepsilon \circ h)$ induces the zero map in homology, whence (i).

$$(t-t_1) - 0 = 1-t_1 = \square$$

Proof of Prop. 1.18.3 (contd.)

2/2

Note that $\varepsilon_{n+1}(h_n(z)) \in \operatorname{im} \varepsilon_{n+1}$ and $H_n(h \circ \delta + \varepsilon \circ h)([z]) \in H_n(Y) = \ker \varepsilon_n / \operatorname{im} \varepsilon_{n+1}$, and therefore

Hence
$$(h \circ \delta + \varepsilon \circ h)$$
 induces the zero map in homology, whence (i). Let $F(x) = F(x)$ in $F(x) = F(x)$ the first $F(x) = F(x)$ induces the zero map in homology, whence (i).

If $f \sim f'$, then by (i), f - f' induces the zero map in homology, and thus $H_*(f) = H_*(f')$; so we have proved (ii).

Proof of Prop. 1.18.3 (contd.)

2/2

Note that $\varepsilon_{n+1}(h_n(z)) \in \operatorname{im} \varepsilon_{n+1}$ and $H_n(h \circ \delta + \varepsilon \circ h)([z]) \in H_n(Y) = \ker \varepsilon_n / \operatorname{im} \varepsilon_{n+1}$, and therefore

$$H_n(h \circ \delta + \varepsilon \circ h)([z]) = [\varepsilon_{n+1}(h_n(z))] = [0].$$

Hence $(h \circ \delta + \varepsilon \circ h)$ induces the zero map in homology, whence (i).

If $f \sim f'$, then by (i), f - f' induces the zero map in homology, and thus $H_*(f) = H_*(f')$; g o f ~ idx => Hx(g o f) = Hx (idx) = id Hx(x) so we have proved (ii).

Suppose f has a homotopy inverse g. Then, by (ii), we have

$$\mathrm{id}_{H_*(X)} = H_*(g \circ f) = H_*(g) \circ H_*(f) \quad \text{and} \quad \mathrm{id}_{H_*(Y)} = H_*(f \circ g) = H_*(f) \circ H_*(g)$$

Proof of Prop. 1.18.3 (contd.)

2/2

Note that $\varepsilon_{n+1}(h_n(z)) \in \operatorname{im} \varepsilon_{n+1}$ and $H_n(h \circ \delta + \varepsilon \circ h)([z]) \in H_n(Y) = \ker \varepsilon_n / \operatorname{im} \varepsilon_{n+1}$, and therefore

$$H_n(h \circ \delta + \varepsilon \circ h)([z]) = [\varepsilon_{n+1}(h_n(z))] = [0].$$

Hence $(h \circ \delta + \varepsilon \circ h)$ induces the zero map in homology, whence (i).

If $f \sim f'$, then by (i), f - f' induces the zero map in homology, and thus $H_*(f) = H_*(f')$; so we have proved (ii).

Suppose f has a homotopy inverse g. Then, by (ii), we have

$$\mathrm{id}_{H_*(X)} = H_*(g \circ f) = H_*(g) \circ H_*(f) \quad \text{and} \quad \mathrm{id}_{H_*(Y)} = H_*(f \circ g) = H_*(f) \circ H_*(g)$$

So, $H_*(f): H_*(X) \to H_*(Y)$ is an isomorphism, and hence f is a quasi-isomorphism; we have proved (iii).

Proof of Prop. 1.18.3 (contd.)

2/2

Note that $\varepsilon_{n+1}(h_n(z)) \in \operatorname{im} \varepsilon_{n+1}$ and $H_n(h \circ \delta + \varepsilon \circ h)([z]) \in H_n(Y) = \ker \varepsilon_n / \operatorname{im} \varepsilon_{n+1}$, and therefore

$$H_n(h \circ \delta + \varepsilon \circ h)([z]) = [\varepsilon_{n+1}(h_n(z))] = [0].$$

Hence $(h \circ \delta + \varepsilon \circ h)$ induces the zero map in homology, whence (i).

If $f \sim f'$, then by (i), f - f' induces the zero map in homology, and thus $H_*(f) = H_*(f')$; so we have proved (ii).

Suppose f has a homotopy inverse g. Then, by (ii), we have

$$\mathrm{id}_{H_*(X)} = H_*(g \circ f) = H_*(g) \circ H_*(f) \quad \text{and} \quad \mathrm{id}_{H_*(Y)} = H_*(f \circ g) = H_*(f) \circ H_*(g)$$

So, $H_*(f): H_*(X) \to H_*(Y)$ is an isomorphism, and hence f is a quasi-isomorphism; we have proved (iii).

If $X \simeq 0$, then X is quasi-isomorphic to 0 by (iii), which is equivalent to $H_*(X) = 0$, giving us (iv).

For an algebra A, X a complex of A-modules, V an A-module, and n an integer.

$$X: \cdots \longrightarrow X_{n+1} \xrightarrow{\delta_{n+1}} X_n \xrightarrow{\delta_n} X_{n-1} \xrightarrow{\delta_{n-1}} \cdots$$

For an algebra A, X a complex of A-modules, V an A-module, and n an integer.

$$X: \cdots \longrightarrow X_{n+1} \xrightarrow{\delta_{n+1}} X_n \xrightarrow{\delta_n} X_{n-1} \xrightarrow{\delta_{n-1}} \cdots$$

We denote by V[n] the complex that is equal to V in degree n and zero in all other degrees, with the zero differential.

$$V[n]: \cdots \longrightarrow 0 \xrightarrow{0_{n+1}} V \xrightarrow{0_n} 0 \xrightarrow{0_{n-1}} \cdots$$

For an algebra A, X a complex of A-modules, V an A-module, and n an integer.

$$X: \cdots \longrightarrow X_{n+1} \xrightarrow{\delta_{n+1}} X_n \xrightarrow{\delta_n} X_{n-1} \xrightarrow{\delta_{n-1}} \cdots$$

We denote by V[n] the complex that is equal to V in degree n and zero in all other degrees, with the zero differential.

$$V[n]: \cdots \longrightarrow 0 \xrightarrow{0_{n+1}} V \xrightarrow{0_n} 0 \xrightarrow{0_{n-1}} \cdots$$

We regard $\operatorname{Hom}_A(X,V)$ as a cochain complex, obtained from applying the contravariant functor $\operatorname{Hom}_A(-,V)$ to X.

$$\cdots \leftarrow \operatorname{Hom}_A(X_{n+1}, V) \leftarrow^{-\circ \delta_{n+1}} \operatorname{Hom}_A(X_n, V) \leftarrow^{-\circ \delta_n} \cdots$$

For an algebra A, X a complex of A-modules, V an A-module, and n an integer.

$$X: \cdots \longrightarrow X_{n+1} \xrightarrow{\delta_{n+1}} X_n \xrightarrow{\delta_n} X_{n-1} \xrightarrow{\delta_{n-1}} \cdots$$

We denote by V[n] the complex that is equal to V in degree n and zero in all other degrees, with the zero differential.

$$V[n]: \cdots \longrightarrow 0 \xrightarrow{0_{n+1}} V \xrightarrow{0_n} 0 \xrightarrow{0_{n-1}} \cdots$$

We regard $\operatorname{Hom}_A(X,V)$ as a cochain complex, obtained from applying the contravariant functor $\operatorname{Hom}_A(-,V)$ to X.

$$\cdots \leftarrow \operatorname{Hom}_A(X_{n+1}, V) \leftarrow \stackrel{-\circ \delta_{n+1}}{\longrightarrow} \operatorname{Hom}_A(X_n, V) \leftarrow \stackrel{-\circ \delta_n}{\longleftarrow} \cdots$$

and $\operatorname{Hom}_A(V,X)$ as a chain complex, obtained from applying the covariant functor $\operatorname{Hom}_A(V,-)$ to X.

Proposition 1.18.4

Let A be a k-algebra, V an A-module, and (X,δ) a complex of A-modules. Let n be an integer.

Proposition 1.18.4

Let A be a k-algebra, V an A-module, and (X,δ) a complex of A-modules. Let n be an integer.

(i) There is a natural isomorphism (natural in X)

$$H_n(\operatorname{Hom}_A(V,X)) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(V[n],X).$$

Proposition 1.18.4

Let A be a k-algebra, V an A-module, and (X, δ) a complex of A-modules. Let n be an integer.

(i) There is a natural isomorphism (natural in *X*)

$$H_n(\operatorname{Hom}_A(V,X)) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(V[n],X).$$

In particular, there's a natural isomorphism (natural in *X*)

$$H_n(X) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(A[n], X).$$

Proposition 1.18.4

Let A be a k-algebra, V an A-module, and (X, δ) a complex of A-modules. Let n be an integer.

(i) There is a natural isomorphism (natural in *X*)

$$H_n(\operatorname{Hom}_A(V,X)) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(V[n],X).$$

In particular, there's a natural isomorphism (natural in *X*)

$$H_n(X) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(A[n], X).$$

(ii) There is a natural isomorphism (natural in *X*)

$$H^n(\operatorname{Hom}_A(X,V)) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(X,V[n]).$$

Proposition 1.18.4

Let A be a k-algebra, V an A-module, and (X, δ) a complex of A-modules. Let n be an integer.

(i) There is a natural isomorphism (natural in *X*)

$$H_n(\operatorname{Hom}_A(V,X)) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(V[n],X).$$

In particular, there's a natural isomorphism (natural in *X*)

$$H_n(X) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(A[n], X).$$

(ii) There is a natural isomorphism (natural in *X*)

$$H^n(\operatorname{Hom}_A(X,V)) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(X,V[n]).$$

Proof of Prop. 1.18.4

An element in degree n of $\operatorname{Hom}_A(V,X)$ is given by an A-linear map $\zeta:V\to X_n$,

Proposition 1.18.4

Let A be a k-algebra, V an A-module, and (X, δ) a complex of A-modules. Let n be an integer.

(i) There is a natural isomorphism (natural in *X*)

$$H_n(\operatorname{Hom}_A(V,X)) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(V[n],X).$$

In particular, there's a natural isomorphism (natural in *X*)

$$H_n(X) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(A[n], X).$$

(ii) There is a natural isomorphism (natural in *X*)

$$H^n(\operatorname{Hom}_A(X,V)) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(X,V[n]).$$

Proof of Prop. 1.18.4

An element in degree n of $\operatorname{Hom}_A(V,X)$ is given by an A-linear map $\zeta:V\to X_n$, and this belongs to the kernel of the differential at degree n if and only if $\delta_n\circ\zeta=0$.

Proof of Prop. 1.18.4 (contd.)

2/4

This is equivalent to asserting that ζ defines a chain map $V[n] \to X$. (2.1) $\zeta_n = \zeta_n$

Proof of Prop. 1.18.4 (contd.)

2/4

This is equivalent to asserting that ζ defines a chain map $V[n] \to X$.

Now, ζ belongs to the image of the differential if and only if $\zeta = \delta_{n+1} \circ \eta$ for some A-linear map $\eta: V \to X_{n+1}$

Proof of Prop. 1.18.4 (contd.)

2/4

This is equivalent to asserting that ζ defines a chain map $V[n] \to X$.

Now, ζ belongs to the image of the differential if and only if $\zeta = \delta_{n+1} \circ \eta$ for some A-linear map $\eta: V \to X_{n+1}$

Proof of Prop. 1.18.4 (contd.)

2/4

This is equivalent to asserting that ζ defines a chain map $V[n] \to X$.

Now, ζ belongs to the image of the differential if and only if $\zeta = \delta_{n+1} \circ \eta$ for some A-linear map $\eta: V \to X_{n+1}$

This is equivalent to asserting that ζ , as a chain map, is homotopic to zero; and so we have proved the first isomorphism in (i).

Proof of Prop. 1.18.4 (contd.)

3/4

The second isomorphism in (i) follows from the first isomorphism we just proved and the fact that $\operatorname{Hom}_A(A,-)$ is isomorphic to the identity functor on $\operatorname{Mod}(A)$.

Proof of Prop. 1.18.4 (contd.)

3/4

The second isomorphism in (i) follows from the first isomorphism we just proved and the fact that $\operatorname{Hom}_A(A,-)$ is isomorphic to the identity functor on $\operatorname{Mod}(A)$. Naturality in X is readily checked.

Proof of Prop. 1.18.4 (contd.)

3/4

The second isomorphism in (i) follows from the first isomorphism we just proved and the fact that $\operatorname{Hom}_A(A,-)$ is isomorphic to the identity functor on $\operatorname{Mod}(A)$. Naturality in X is readily checked.

Similarly as before, an element in degree n of the cochain complex $\operatorname{Hom}_A(X,V)$ is given by an A-linear map $\zeta: X_n \to V$, and this belongs to the kernel of the differential at degree n if and only if $\zeta \circ \delta_{n+1} = 0$.

Proof of Prop. 1.18.4 (contd.)

3/4

The second isomorphism in (i) follows from the first isomorphism we just proved and the fact that $\operatorname{Hom}_A(A,-)$ is isomorphic to the identity functor on $\operatorname{Mod}(A)$. Naturality in X is readily checked.

Similarly as before, an element in degree n of the cochain complex $\operatorname{Hom}_A(X,V)$ is given by an A-linear map $\zeta: X_n \to V$, and this belongs to the kernel of the differential at degree n if and only if $\zeta \circ \delta_{n+1} = 0$.

This is equivalent to asserting that ζ defines a chain map $X \to V[n]$.

Proof of Prop. 1.18.4 (contd.)

4/4

Now, ζ belongs to the image of the differential at degree n of $\operatorname{Hom}_A(X,V)$ if and only if $\zeta = \eta \circ \delta_n$ for some A-linear map $\eta : X_{n-1} \to V$

Proof of Prop. 1.18.4 (contd.)

4/4

Now, ζ belongs to the image of the differential at degree n of $\operatorname{Hom}_A(X,V)$ if and only if $\zeta = \eta \circ \delta_n$ for some A-linear map $\eta : X_{n-1} \to V$

Proof of Prop. 1.18.4 (contd.)

4/4

Now, ζ belongs to the image of the differential at degree n of $\operatorname{Hom}_A(X,V)$ if and only if $\zeta = \eta \circ \delta_n$ for some A-linear map $\eta : X_{n-1} \to V$

This is equivalent to asserting that ζ , as a chain map, is homotopic to zero; and so we have proved the first isomorphism in (ii).

Proof of Prop. 1.18.4 (contd.)

4/4

Now, ζ belongs to the image of the differential at degree n of $\operatorname{Hom}_A(X,V)$ if and only if $\zeta = \eta \circ \delta_n$ for some A-linear map $\eta : X_{n-1} \to V$

This is equivalent to asserting that ζ , as a chain map, is homotopic to zero; and so we have proved the first isomorphism in (ii).

Naturality in X is readily checked.

Proposition 1.18.5

Let $\mathscr C$ be an abelian category, let P be a complex of projective objects in $\mathscr C$, I a complex of injective objects in $\mathscr C$ and let

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$$

be a short exact sequence of complexes over $\mathscr{C}.$

Proposition 1.18.5

Let $\mathscr C$ be an abelian category, let P be a complex of projective objects in $\mathscr C$, I a complex of injective objects in $\mathscr C$ and let

$$0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0$$

be a short exact sequence of complexes over \mathscr{C} .

(i) Suppose that *X* is acyclic and that one of *P*, *Y* is bounded below. The map

$$g \circ -: \operatorname{Hom}_{\mathsf{Ch}(\mathscr{C})}(P, Y) \to \operatorname{Hom}_{\mathsf{Ch}(\mathscr{C})}(P, Z)$$

is surjective and induces an isomorphism

$$\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(P,Y) \cong \operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(P,Z).$$

Proposition 1.18.5

Let $\mathscr C$ be an abelian category, let P be a complex of projective objects in $\mathscr C$, I a complex of injective objects in $\mathscr C$ and let

$$0 \longrightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0$$

be a short exact sequence of complexes over \mathscr{C} .

(i) Suppose that *X* is acyclic and that one of *P*, *Y* is bounded below. The map

$$g \circ -: \operatorname{Hom}_{\mathsf{Ch}(\mathscr{C})}(P, Y) \to \operatorname{Hom}_{\mathsf{Ch}(\mathscr{C})}(P, Z)$$

is surjective and induces an isomorphism

$$\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(P,Y) \cong \operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(P,Z).$$

(ii) Suppose that *Z* is acyclic and that one of *Y*, *I* is bounded below. The map

$$-\circ f: \operatorname{Hom}_{\mathsf{Ch}(\mathscr{C})}(Y, I) \to \operatorname{Hom}_{\mathsf{Ch}(\mathscr{C})}(X, I)$$

is surjective and induces an isomorphism

$$\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(Y,I) \cong \operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(X,I).$$

Proof of Prop. 1.18.5

Denote by δ , ε , ζ , π the differentials of X, Y, Z, P, respectively.

Proof of Prop. 1.18.5

Denote by δ , ε , ζ , π the differentials of X, Y, Z, P, respectively.

Given any chain map $q:P\to Z$ we construct inductively a chain map $p:P\to Y$ such that $q=g\circ p.$

Proof of Prop. 1.18.5

Denote by δ , ε , ζ , π the differentials of X, Y, Z, P, respectively.

Given any chain map $q:P\to Z$ we construct inductively a chain map $p:P\to Y$ such that $q=g\circ p.$

Since one of P, Y is bounded below, we have $q_i = 0$ for all sufficiently small integers i (if Y is bounded below, then so is Z by the surjectivity of g.)

Proof of Prop. 1.18.5

Denote by δ , ε , ζ , π the differentials of X, Y, Z, P, respectively.

Given any chain map $q:P\to Z$ we construct inductively a chain map $p:P\to Y$ such that $q=g\circ p.$

Since one of P, Y is bounded below, we have $q_i = 0$ for all sufficiently small integers i (if Y is bounded below, then so is Z by the surjectivity of g.) So take $p_i = 0$ for i sufficiently small.

Proof of Prop. 1.18.5

Denote by δ , ε , ζ , π the differentials of X, Y, Z, P, respectively.

Given any chain map $q:P\to Z$ we construct inductively a chain map $p:P\to Y$ such that $q=g\circ p$.

Since one of P, Y is bounded below, we have $q_i=0$ for all sufficiently small integers i (if Y is bounded below, then so is Z by the surjectivity of g.) So take $p_i=0$ for i sufficiently small.

Let *n* be an integer. Suppose we have already constructed morphisms $\underline{p_i} \stackrel{P}{\longrightarrow} \stackrel{P}{\longrightarrow} satisfying$

$$g_i \circ p_i = q_i$$
 and $\varepsilon_i \circ p_i = p_{i-1} \circ \pi_i$

for i < n.

Proof of Prop. 1.18.5

Denote by δ , ε , ζ , π the differentials of X, Y, Z, P, respectively.

Given any chain map $q:P\to Z$ we construct inductively a chain map $p:P\to Y$ such that $q=g\circ p$.

Since one of P, Y is bounded below, we have $q_i = 0$ for all sufficiently small integers i (if Y is bounded below, then so is Z by the surjectivity of g.) So take $p_i = 0$ for i sufficiently small.

Let n be an integer. Suppose we have already constructed morphisms $p_i: P_i \to Y_i$ satisfying

for
$$i < n$$
.

$$g_i \circ p_i = q_i$$
 and $\varepsilon_i \circ p_i = p_{i-1} \circ \pi_i$

Since g_n is an epimorphism and P_n is projective, there is a morphism $p'_n: P_n \to Y_n$ such that $g_n \circ p'_n = q_n$.

Proof of Prop. 1.18.5

Denote by δ , ε , ζ , π the differentials of X, Y, Z, P, respectively.

Given any chain map $q: P \to Z$ we construct inductively a chain map $p: P \to Y$ such that $q = g \circ p$.

Since one of P, Y is bounded below, we have $q_i = 0$ for all sufficiently small integers i (if Y is bounded below, then so is Z by the surjectivity of g.) So take $p_i = 0$ for i sufficiently small.

Let *n* be an integer. Suppose we have already constructed morphisms $p_i : P_i \rightarrow Y_i$ satisfying

$$g_i \circ p_i = q_i$$
 and $\varepsilon_i \circ p_i = p_{i-1} \circ \pi_i$

for i < n.

Since g_n is an epimorphism and P_n is projective, there is a morphism $p'_n: P_n \to Y_n$ such that $g_n \circ p'_n = q_n$.

That is, p'_n satisfies the first of the two conditions above,

Proof of Prop. 1.18.5

Denote by δ , ε , ζ , π the differentials of X, Y, Z, P, respectively.

Given any chain map $q:P\to Z$ we construct inductively a chain map $p:P\to Y$ such that $q=g\circ p.$

Since one of P, Y is bounded below, we have $q_i = 0$ for all sufficiently small integers i (if Y is bounded below, then so is Z by the surjectivity of g.) So take $p_i = 0$ for i sufficiently small.

Let *n* be an integer. Suppose we have already constructed morphisms $p_i : P_i \rightarrow Y_i$ satisfying

$$g_i \circ p_i = q_i$$
 and $\varepsilon_i \circ p_i = p_{i-1} \circ \pi_i$

for i < n.

Since g_n is an epimorphism and P_n is projective, there is a morphism $p'_n: P_n \to Y_n$ such that $g_n \circ p'_n = q_n$.

That is, p'_n satisfies the first of the two conditions above, but we may have to adjust p'_n to make sure that it is compatible with the differentials as in the second condition.

Proof of Prop. 1.18.5 (contd.)

2/6

Note that

$$g_{n-1} \circ (s_n \circ p'_n - p_{n-1} \circ \pi_n) = \zeta_n \circ g_n \circ p'_n - g_{n-1} \circ p_{n-1} \circ \pi_n = \zeta_n \circ q_n - q_{n-1} \circ \pi_n = 0$$
 because q is a chain map.

Proof of Prop. 1.18.5 (contd.)

2/6

Note that

$$g_{n-1} \circ (\varepsilon_n \circ p'_n - p_{n-1} \circ \pi_n) = \zeta_n \circ g_n \circ p'_n - g_{n-1} \circ p_{n-1} \circ \pi_n = \zeta_n \circ q_n - q_{n-1} \circ \pi_n = 0$$
 because q is a chain map. Therefore we have

$$\operatorname{im}(\varepsilon_n \circ p'_n - p_{n-1} \circ \pi_n) \subseteq \ker g_{n-1} = \operatorname{im} f_{n-1}$$

Proof of Prop. 1.18.5 (contd.)

2/6

Note that

$$g_{n-1}\circ(\varepsilon_n\circ p'_n-p_{n-1}\circ\pi_n)=\zeta_n\circ g_n\circ p'_n-g_{n-1}\circ p_{n-1}\circ\pi_n=\zeta_n\circ q_n-q_{n-1}\circ\pi_n=0$$
 because q is a chain map. Therefore we have

$$\operatorname{im}(\varepsilon_n \circ p'_n - p_{n-1} \circ \pi_n) \subseteq \ker g_{n-1} = \operatorname{im} f_{n-1}$$

Proof of Prop. 1.18.5 (contd.)

2/6

Note that

$$g_{n-1}\circ(\varepsilon_n\circ p'_n-p_{n-1}\circ\pi_n)=\zeta_n\circ g_n\circ p'_n-g_{n-1}\circ p_{n-1}\circ\pi_n=\zeta_n\circ q_n-q_{n-1}\circ\pi_n=0$$
 because q is a chain map. Therefore we have

$$\operatorname{im}(\varepsilon_n \circ p'_n - p_{n-1} \circ \pi_n) \subseteq \ker g_{n-1} = \operatorname{im} f_{n-1}$$

Moreover, we have

$$\underbrace{\frac{f_{n-2} \circ \delta_{n-1} \circ \sigma}{\varepsilon_{n-1} \circ \varepsilon_n} = \varepsilon_{n-1} \circ f_{n-1} \circ \sigma}_{=\varepsilon_{n-1} \circ \varepsilon_n} = \varepsilon_{n-1} \circ f_{n-1} \circ \sigma_n = \varepsilon_{n-1} \circ \pi_n = \varepsilon_{n-1} \circ \pi_$$

Proof of Prop. 1.18.5 (contd.)

2/6

Note that

$$g_{n-1}\circ (\varepsilon_n\circ p'_n-p_{n-1}\circ \pi_n)=\zeta_n\circ g_n\circ p'_n-g_{n-1}\circ p_{n-1}\circ \pi_n=\zeta_n\circ q_n-q_{n-1}\circ \pi_n=0$$
 because q is a chain map. Therefore we have

$$\operatorname{im}(\varepsilon_n \circ p'_n - p_{n-1} \circ \pi_n) \subseteq \ker g_{n-1} = \operatorname{im} f_{n-1}$$

Moreover, we have

$$f_{n-2} \circ \delta_{n-1} \circ \sigma = \varepsilon_{n-1} \circ f_{n-1} \circ \sigma$$

$$= \varepsilon_{n-1} \circ \varepsilon_n \circ p'_n - \varepsilon_{n-1} \circ p_{n-1} \circ \pi_n = -p_{n-2} \circ \pi_{n-1} \circ \pi_n = 0$$

and hence $\delta_{n-1} \circ \sigma = 0$, as f_{n-2} is a monomorphism.

Proof of Prop. 1.18.5 (contd.)

3/6

Thus we have $\operatorname{im} \sigma \subseteq \ker \delta_{n-1} = \operatorname{im} \delta_n$, where the last equality holds as X is acyclic.

Proof of Prop. 1.18.5 (contd.)

3/6

Thus we have im $\sigma \subseteq \ker \delta_{n-1} = \operatorname{im} \delta_n$, where the last equality holds as X is acyclic.

Thus there is a morphism $\underline{\rho}: P_n \to X_n$ such that $\sigma = \delta_n \circ \rho$.

Proof of Prop. 1.18.5 (contd.)

3/6

Thus we have im $\sigma \subseteq \ker \delta_{n-1} = \operatorname{im} \delta_n$, where the last equality holds as X is acyclic.

Set
$$p_n = p'_n - f_n \circ \rho$$
.

Proof of Prop. 1.18.5 (contd.)

3/6

Thus we have im $\sigma \subseteq \ker \delta_{n-1} = \operatorname{im} \delta_n$, where the last equality holds as X is acyclic.

Proof of Prop. 1.18.5 (contd.)

3/6

Thus we have im $\sigma \subseteq \ker \delta_{n-1} = \operatorname{im} \delta_n$, where the last equality holds as X is acyclic.

Set $p_n = p'_n - f_n \circ \rho$. We still have $g_n \circ p_n = g_n \circ p'_n - g_n \circ f_n \circ \rho = g_n \circ p'_n = q_n$,

and we now also have the compatibility with the differentials

$$\varepsilon_{n} \circ p_{n} = \varepsilon_{n} \circ p'_{n} - \varepsilon_{n} \circ f_{n} \circ \rho$$

$$= \varepsilon_{n} \circ p'_{n} - f_{n-1} \circ f_{n} \circ \rho$$

$$= \varepsilon_{n} \circ p'_{n} - f_{n-1} \circ \sigma$$

$$= \varepsilon_{n} \circ p'_{n} - (\varepsilon_{n} \circ p'_{n} - p_{n-1} \circ \pi_{n}) = p_{n-1} \circ \pi_{n}$$

as required.

Proof of Prop. 1.18.5 (contd.)

3/6

Thus we have im $\sigma \subseteq \ker \delta_{n-1} = \operatorname{im} \delta_n$, where the last equality holds as X is acyclic.

Set $p_n = p'_n - f_n \circ \rho$. We still have $g_n \circ p_n = g_n \circ p'_n - g_n \circ f_n \circ \rho = g_n \circ p'_n = q_n$,

and we now also have the compatibility with the differentials

$$\varepsilon_n \circ p_n = \varepsilon_n \circ p'_n - \varepsilon_n \circ f_n \circ \rho
= \varepsilon_n \circ p'_n - f_{n-1} \circ \delta_n \circ \rho
= \varepsilon_n \circ p'_n - f_{n-1} \circ \sigma
= \varepsilon_n \circ p'_n - (\varepsilon_n \circ p'_n - p_{n-1} \circ \pi_n) = p_{n-1} \circ \pi_n$$

as required. This shows the surjectivity of the map given by composition with *g*.

Proof of Prop. 1.18.5 (contd.)

4/6

We need to show that $p \sim 0$ if and only if $q \sim 0$.

Proof of Prop. 1.18.5 (contd.)

4/6

We need to show that $p \sim 0$ if and only if $q \sim 0$.

If $p \sim 0$, there is a homotopy $h : P \to Y$ such that $p = \varepsilon \circ h + h \circ \pi$.

Proof of Prop. 1.18.5 (contd.)

4/6

We need to show that $p \sim 0$ if and only if $q \sim 0$.

If $p \sim 0$, there is a homotopy $h : P \to Y$ such that $p = \varepsilon \circ h + h \circ \pi$.

Composing with g yields

$$q = g \circ p = \underline{g} \circ \varepsilon \circ h + g \circ h \circ \pi = \underline{\zeta} \circ g \circ h + g \circ h \circ \pi,$$

Proof of Prop. 1.18.5 (contd.)

4/6

We need to show that $p \sim 0$ if and only if $q \sim 0$.

If $p \sim 0$, there is a homotopy $h : P \to Y$ such that $p = \varepsilon \circ h + h \circ \pi$.

Composing with g yields

$$q = g \circ p = g \circ \varepsilon \circ h + g \circ h \circ \pi = \zeta \circ g \circ h + g \circ h \circ \pi,$$

thus $q \sim 0$ via the homotopy $g \circ h : P \to Z$.

Proof of Prop. 1.18.5 (contd.)

4/6

We need to show that $p \sim 0$ if and only if $q \sim 0$.

If $p \sim 0$, there is a homotopy $h : P \to Y$ such that $p = \varepsilon \circ h + h \circ \pi$.

Composing with g yields

$$q = g \circ p = g \circ \varepsilon \circ h + g \circ h \circ \pi = \zeta \circ g \circ h + g \circ h \circ \pi,$$

thus $q \sim 0$ via the homotopy $g \circ h : P \to Z$.

Suppose $q \sim 0$, then there is a homotopy $t: P \to Z$ such that $q = \zeta \circ t + t \circ \pi$.

Proof of Prop. 1.18.5 (contd.)

4/6

We need to show that $p \sim 0$ if and only if $q \sim 0$.

If $p \sim 0$, there is a homotopy $h: P \to Y$ such that $p = \varepsilon \circ h + h \circ \pi$.

Composing with g yields

$$q = g \circ p = g \circ \varepsilon \circ h + g \circ h \circ \pi = \zeta \circ g \circ h + g \circ h \circ \pi,$$

thus $q \sim 0$ via the homotopy $g \circ h : P \to Z$.

Suppose $q \sim 0$, then there is a homotopy $t: P \to Z$ such that $q = \zeta \circ t + t \circ \pi$.

Since g_{n+1} is an epimorphism, $t_n: P_n \to Z_{n+1}$ then lifts to a morphism $s_n: P_n \to Y_{n+1}$; that is, the homotopy $t: P \to Z$ lifts to some homotopy $s: P \to Y$.

Proof of Prop. 1.18.5 (contd.)

4/6

We need to show that $p \sim 0$ if and only if $q \sim 0$.

If $p \sim 0$, there is a homotopy $h: P \to Y$ such that $p = \varepsilon \circ h + h \circ \pi$.

Composing with g yields

$$q = g \circ p = g \circ \varepsilon \circ h + g \circ h \circ \pi = \zeta \circ g \circ h + g \circ h \circ \pi,$$

thus $q \sim 0$ via the homotopy $g \circ h : P \to Z$.

Suppose $q \sim 0$, then there is a homotopy $t: P \to Z$ such that $q = \zeta \circ t + t \circ \pi$.

Since g_{n+1} is an epimorphism, $t_n: P_n \to Z_{n+1}$ then lifts to a morphism $s_n: P_n \to Y_{n+1}$; that is, the homotopy $t: P \to Z$ lifts to some homotopy $s: P \to Y$.

So, $p' := \varepsilon \circ s + s \circ \pi : P \to Y$ is a chain map such that $p' \sim 0$ via s, trivially.

Proof of Prop. 1.18.5 (contd.)

4/6

We need to show that $p \sim 0$ if and only if $q \sim 0$.

If $p \sim 0$, there is a homotopy $h: P \to Y$ such that $p = \varepsilon \circ h + h \circ \pi$.

Composing with g yields

$$q = g \circ p = g \circ \varepsilon \circ h + g \circ h \circ \pi = \zeta \circ g \circ h + g \circ h \circ \pi,$$

thus $q \sim 0$ via the homotopy $g \circ h : P \to Z$.

Suppose $q \sim 0$, then there is a homotopy $t: P \to Z$ such that $q = \zeta \circ t + t \circ \pi$.

Since g_{n+1} is an epimorphism, $t_n: P_n \to Z_{n+1}$ then lifts to a morphism $s_n: P_n \to Y_{n+1}$; that is, the homotopy $t: P \to Z$ lifts to some homotopy $s: P \to Y$.

So, $p' := \varepsilon \circ s + s \circ \pi : P \to Y$ is a chain map such that $p' \sim 0$ via s, trivially. Furthermore, one immediately checks that $g \circ p' = q$, but p' need not be equal to p.

Proof of Prop. 1.18.5 (contd.)

4/6

We need to show that $p \sim 0$ if and only if $q \sim 0$.

If $p \sim 0$, there is a homotopy $h: P \to Y$ such that $p = \varepsilon \circ h + h \circ \pi$.

Composing with g yields

$$q = g \circ p = g \circ \varepsilon \circ h + g \circ h \circ \pi = \zeta \circ g \circ h + g \circ h \circ \pi,$$

thus $q \sim 0$ via the homotopy $g \circ h : P \to Z$.

Suppose $q \sim 0$, then there is a homotopy $t: P \to Z$ such that $q = \zeta \circ t + t \circ \pi$.

Since g_{n+1} is an epimorphism, $t_n: P_n \to Z_{n+1}$ then lifts to a morphism $s_n: P_n \to Y_{n+1}$; that is, the homotopy $t: P \to Z$ lifts to some homotopy $s: P \to Y$.

So, $p' := \varepsilon \circ s + s \circ \pi : P \to Y$ is a chain map such that $p' \sim 0$ via s, trivially. Furthermore, one immediately checks that $g \circ p' = q$, but p' need not be equal to p.

It suffices to show that $p - p' \sim 0$. Since $g \circ (p - p') = 0$, we may assume that q = 0.

Proof of Prop. 1.18.5 (contd.)

5/6

Then $g \circ p = q = 0$, hence im $p \subseteq \ker g = \operatorname{im} f$.

Proof of Prop. 1.18.5 (contd.)

5/6

Then $g \circ p = q = 0$, hence im $p \subseteq \ker g = \operatorname{im} f$

This implies that there is a chain map $u: P \to X$ such that $f \circ u = p$.

Proof of Prop. 1.18.5 (contd.)

5/6

Then $g \circ p = q = 0$, hence im $p \subseteq \ker g = \operatorname{im} f$.

This implies that there is a chain map $u: P \to X$

This implies that there is a chain map $u: P \to X$ such that $f \circ u = p$ It suffices to show that $u \sim 0$. This is again done inductively.

Proof of Prop. 1.18.5 (contd.)

5/6

Then $g \circ p = q = 0$, hence im $p \subseteq \ker g = \operatorname{im} f$.

This implies that there is a chain map $u: P \to X$

This implies that there is a chain map $u: P \to X$ such that $f \circ u = p$.

It suffices to show that $u \sim 0$. This is again done inductively.

Given an integer n, suppose that we have morphisms $h_i: P_i \to X_{i+1}$ satisfying

$$u_i = \delta_{i+1} \circ h_i + h_{i-1} \circ \pi_i$$

for any i < n.

Proof of Prop. 1.18.5 (contd.)

5/6

Then $g \circ p = q = 0$, hence im $p \subseteq \ker g = \operatorname{im} f$.

This implies that there is a chain map $u: P \to X$

This implies that there is a chain map $u: P \to X$ such that $f \circ u = p$.

It suffices to show that $u \sim 0$. This is again done inductively.

Given an integer n, suppose that we have morphisms $h_i: P_i \to X_{i+1}$ satisfying

$$u_i = \delta_{i+1} \circ h_i + h_{i-1} \circ \pi_i$$

for any i < n.

Using this equality for i = n - 1, we get

$$\delta_n \circ (u_n - h_{n-1} \circ \pi_n) = \delta_n \circ u_n - \delta_n \circ h_{n-1} \circ \pi_n$$

$$=\delta_n\circ u_n-(u_{n-1}-h_{n-2}\circ\pi_{n-1})\circ\pi_n=\delta_n\circ u_n-u_{n-1}\circ\pi_n=0,$$

as u is a chain map.

Proof of Prop. 1.18.5 (contd.)

5/6

Then $g \circ p = q = 0$, hence im $p \subseteq \ker g = \operatorname{im} f$.

This implies that there is a chain map $u: P \to X$ such that $f \circ u = p$.

It suffices to show that $u \sim 0$. This is again done inductively.

Given an integer n, suppose that we have morphisms $h_i: P_i \to X_{i+1}$ satisfying

$$u_i = \delta_{i+1} \circ h_i + h_{i-1} \circ \pi_i$$

for any i < n.

Using this equality for i = n - 1, we get

$$\delta_n \circ (u_n - h_{n-1} \circ \pi_n) = \delta_n \circ u_n - \delta_n \circ h_{n-1} \circ \pi_n$$

= $\delta_n \circ u_n - (u_{n-1} - h_{n-2} \circ \pi_{n-1}) \circ \pi_n = \delta_n \circ u_n - u_{n-1} \circ \pi_n = 0,$

as *u* is a chain map. Therefore

$$\operatorname{im}(u_n - h_{n-1} \circ \pi_n) \subseteq \ker \delta_n = \operatorname{im} \delta_{n+1}$$
. (X is acyclic)

Proof of Prop. 1.18.5 (contd.)

6/6

Hence, as P_n is projective, there is a map

Proof of Prop. 1.18.5 (contd.)

6/6

Hence, as
$$P_n$$
 is projective, there is a map $h_n: P_n \to X_{n+1}$ such that
$$\delta_{n+1} \circ h_n = u_n - h_{n-1} \circ \pi_n$$

Proof of Prop. 1.18.5 (contd.)

6/6

Hence, as P_n is projective, there is a map $\delta_{n+1} \circ h_n = u_n - h_{n-1} \circ \pi_n$

So, we have $u \sim 0$. This completes the proof of (i).

Proof of Prop. 1.18.5 (contd.)

6/6

Hence, as P_n is projective, there is a map

So, we have $u \sim 0$. This completes the proof of (i).

The proof of (ii) is obtained by dualising the arguments.

Corollary 1.18.6

Let $\mathscr C$ be an abelian category, let P be a complex of projective objects in $\mathscr C$, I a complex of injective objects in $\mathscr C$ and let X be an acyclic complex of objects in $\mathscr C$.

Corollary 1.18.6

Let $\mathscr C$ be an abelian category, let P be a complex of projective objects in $\mathscr C$, I a complex of injective objects in $\mathscr C$ and let X be an acyclic complex of objects in $\mathscr C$.

(i) If one of P, X is bounded below, then $\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(P,X)=\{0\}.$

Corollary 1.18.6

Let $\mathscr C$ be an abelian category, let P be a complex of projective objects in $\mathscr C$, I a complex of injective objects in $\mathscr C$ and let X be an acyclic complex of objects in $\mathscr C$.

- (i) If one of P, X is bounded below, then $Hom_{K(\mathscr{C})}(P,X) = \{0\}$.
- (ii) If one of X, I is bounded below, then $\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(X,I)=\{0\}.$

Corollary 1.18.6

Let $\mathscr C$ be an abelian category, let P be a complex of projective objects in $\mathscr C$, I a complex of injective objects in $\mathscr C$ and let X be an acyclic complex of objects in $\mathscr C$.

- (i) If one of P, X is bounded below, then $Hom_{K(\mathscr{C})}(P,X) = \{0\}$.
- (ii) If one of X, I is bounded below, then $\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(X,I) = \{0\}$.

Proof of Cor. 1.18.6

Apply the above result to the short exact sequences $0 \longrightarrow X \longrightarrow X \longrightarrow 0 \longrightarrow 0$ and $0 \longrightarrow 0 \longrightarrow X \longrightarrow X \longrightarrow 0$.

• An abelian category $\mathscr C$ is said to have *enough projective objects* if for any object X in $\mathscr C$ there exists a projective object P in $\mathscr C$ and an epimorphism $\pi: P \to X$.

- An abelian category $\mathscr C$ is said to have *enough projective objects* if for any object X in $\mathscr C$ there exists a projective object P in $\mathscr C$ and an epimorphism $\pi: P \to X$.
- Dually, $\mathscr C$ is said to have *enough injective objects* if for any object X in $\mathscr C$ there exists an injective object I and a monomorphism $\iota: X \to I$.

- An abelian category $\mathscr C$ is said to have *enough projective objects* if for any object X in $\mathscr C$ there exists a projective object P in $\mathscr C$ and an epimorphism $\pi:P\to X$.
- Dually, \mathscr{C} is said to have *enough injective objects* if for any object X in \mathscr{C} there exists an injective object I and a monomorphism $\iota: X \to I$.
- If A is a k-algebra, then the category of A-modules Mod(A) has enough projective and injective objects.

- An abelian category $\mathscr C$ is said to have *enough projective objects* if for any object X in $\mathscr C$ there exists a projective object Y in $\mathscr C$ and an epimorphism $\pi: P \to X$.
- Dually, ℰ is said to have *enough injective objects* if for any object X in ℰ there exists an injective object I and a monomorphism ι: X → I.
- If *A* is a *k*-algebra, then the category of *A*-modules Mod(*A*) has enough projective and injective objects.
- If *A* is Noetherian, then the category of finitely generated *A*-modules mod(*A*) has enough projective objects, but need not have enough injective objects.

Corollary 1.18.7

Let $\mathscr C$ be an abelian category and X a complex over $\mathscr C$.

Corollary 1.18.7

Let $\mathscr C$ be an abelian category and X a complex over $\mathscr C$.

(i) If $\mathscr C$ has enough projective objects, X is acyclic if and only if $\operatorname{Hom}_{\mathsf K(\mathscr C)}(P,X)=\{0\}$ for any bounded below complex P of projective objects in $\mathscr C$.

Corollary 1.18.7

Let $\mathscr C$ be an abelian category and X a complex over $\mathscr C$.

- (i) If \mathscr{C} has enough projective objects, X is acyclic if and only if $\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(P,X)=\{0\}$ for any bounded below complex P of projective objects in \mathscr{C} .
- (ii) If $\mathscr C$ has enough injective objects, X is acyclic if and only if $\operatorname{Hom}_{\mathsf K(\mathscr C)}(X,I)=\{0\}$ for any bounded above complex I of injective objects in $\mathscr C$

Corollary 1.18.7

Let $\mathscr C$ be an abelian category and X a complex over $\mathscr C$.

- (i) If \mathscr{C} has enough projective objects, X is acyclic if and only if $\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(P,X)=\{0\}$ for any bounded below complex P of projective objects in \mathscr{C} .
- (ii) If $\mathscr C$ has enough injective objects, X is acyclic if and only if $\operatorname{Hom}_{\mathsf K(\mathscr C)}(X,I)=\{0\}$ for any bounded above complex I of injective objects in $\mathscr C$

Proof of Cor. 1.18.7

If X is acyclic, then $\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(P,X)=\{0\}$ for any bounded below complex P of projective objects in \mathscr{C} by 1.18.6.

Corollary 1.18.7

Let $\mathscr C$ be an abelian category and X a complex over $\mathscr C$.

- (i) If \mathscr{C} has enough projective objects, X is acyclic if and only if $\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(P,X)=\{0\}$ for any bounded below complex P of projective objects in \mathscr{C} .
- (ii) If $\mathscr C$ has enough injective objects, X is acyclic if and only if $\operatorname{Hom}_{\mathsf K(\mathscr C)}(X,I)=\{0\}$ for any bounded above complex I of injective objects in $\mathscr C$

Proof of Cor. 1.18.7

If X is acyclic, then $\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(P,X)=\{0\}$ for any bounded below complex P of projective objects in \mathscr{C} by 1.18.6.

If *X* is not acyclic, then there is an integer *n* such that $H_n(X) = \ker \delta_n / \operatorname{im} \delta_{n+1}$ is not zero, where δ is the differential of *X*.

Corollary 1.18.7

Let $\mathscr C$ be an abelian category and X a complex over $\mathscr C$.

- (i) If \mathscr{C} has enough projective objects, X is acyclic if and only if $\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(P,X)=\{0\}$ for any bounded below complex P of projective objects in \mathscr{C} .
- (ii) If $\mathscr C$ has enough injective objects, X is acyclic if and only if $\operatorname{Hom}_{\mathsf K(\mathscr C)}(X,I)=\{0\}$ for any bounded above complex I of injective objects in $\mathscr C$

Proof of Cor. 1.18.7

If X is acyclic, then $\operatorname{Hom}_{\mathsf{K}(\mathscr{C})}(P,X)=\{0\}$ for any bounded below complex P of projective objects in \mathscr{C} by 1.18.6.

If *X* is not acyclic, then there is an integer *n* such that $H_n(X) = \ker \delta_n / \operatorname{im} \delta_{n+1}$ is not zero, where δ is the differential of *X*.

Let P be the complex that is zero in any degree other than n and that in degree n is a projective object P_n in $\mathscr C$ such that there is an epimorphism $\pi:P_n\to\ker\delta_n$; this is possible since $\mathscr C$ has enough projective objects.

Proof of Cor. 1.18.7 (contd.)

2/2

Then π defines a chain map from P to X

Proof of Cor. 1.18.7 (contd.)

2/2

Then π defines a chain map from P to X

that cannot be homotopic to zero.

Proof of Cor. 1.18.7 (contd.)

2/2

Then π defines a chain map from P to X

that cannot be homotopic to zero.

To see this, suppose that was the case, then there is an $\eta: P_n \to X_{n+1}$ such that $\pi = \delta_{n+1} \circ \eta$.

Proof of Cor. 1.18.7 (contd.)

2/2

Then π defines a chain map from P to X

that cannot be homotopic to zero.

To see this, suppose that was the case, then there is an $\eta: P_n \to X_{n+1}$ such that $\pi = \delta_{n+1} \circ \eta$. Since π is an epimorphism, $\ker \delta_n = \operatorname{im} \pi \subseteq \operatorname{im} \delta_{n+1}$, a contradiction since $H_n(X)$ is not zero. This shows (i).

Proof of Cor. 1.18.7 (contd.)

2/2

Then π defines a chain map from P to X

that cannot be homotopic to zero.

To see this, suppose that was the case, then there is an $\eta: P_n \to X_{n+1}$ such that $\pi = \delta_{n+1} \circ \eta$. Since π is an epimorphism, $\ker \delta_n = \operatorname{im} \pi \subseteq \operatorname{im} \delta_{n+1}$, a contradiction since $H_n(X)$ is not zero. This shows (i).

By dualising the above proof, one shows (ii).

Corollary 1.18.8

Let \mathscr{C} be an abelian category.

Corollary 1.18.8

Let & be an abelian category.

(i) If *P* is an acyclic bounded below complex of projective objects in \mathscr{C} , then $P \simeq 0$.

Corollary 1.18.8

Let & be an abelian category.

- (i) If *P* is an acyclic bounded below complex of projective objects in \mathscr{C} , then $P \simeq 0$.
- (ii) If I is an acyclic bounded above complex of injective objects in $\mathscr C$, then $I\simeq 0$

Corollary 1.18.8

Let & be an abelian category.

- (i) If *P* is an acyclic bounded below complex of projective objects in \mathscr{C} , then $P \simeq 0$.
- (ii) If I is an acyclic bounded above complex of injective objects in \mathscr{C} , then $I \simeq 0$

Proof of Cor. 1.18.8

Apply 1.18.6 shows that $id_P \sim 0$, hence $P \simeq 0$, whence (i).

Corollary 1.18.8

Let & be an abelian category.

- (i) If *P* is an acyclic bounded below complex of projective objects in \mathscr{C} , then $P \simeq 0$.
- (ii) If I is an acyclic bounded above complex of injective objects in \mathscr{C} , then $I \simeq 0$

Proof of Cor. 1.18.8

Apply 1.18.6 shows that id $_P\sim 0$, hence $P\simeq 0$, whence (i). Similarly for (ii).

Let \mathscr{C} be an additive category.

Let $\mathscr C$ be an additive category. The *cone of a complex* (X, δ) *over* $\mathscr C$ is the complex $(C(X), \Delta)$ over $\mathscr C$ given by

$$\mathsf{C}(X)_n = X_{n-1} \oplus X_n$$

Let $\mathscr C$ be an additive category. The *cone of a complex* (X, δ) *over* $\mathscr C$ is the complex $(C(X), \Delta)$ over $\mathscr C$ given by

$$C(X)_n = X_{n-1} \oplus X_n$$

with differential, for all integers n

$$\Delta_n = \begin{pmatrix} \mathbf{\delta_{n-1}} & \mathbf{0} \\ \mathbf{id} & \mathbf{\delta_n} \end{pmatrix} : X_{n-1} \oplus X_n \to X_{n-2} \oplus X_{n-1}$$

Let $\mathscr C$ be an additive category. The *cone of a complex* (X, δ) *over* $\mathscr C$ is the complex $(C(X), \Delta)$ over $\mathscr C$ given by

$$\mathsf{C}(X)_n = X_{n-1} \oplus X_n$$

with differential, for all integers n

$$\Delta_n = \begin{pmatrix} -\delta_{n-1} & 0 \\ \mathrm{id}_{X_{n-1}} & \delta_n \end{pmatrix} : X_{n-1} \oplus X_n \to X_{n-2} \oplus X_{n-1}$$

One checks readily that $\Delta \circ \Delta = 0$, and so $(C(X), \Delta)$ is a complex.

Let $\mathscr C$ be an additive category. The *cone of a complex* (X, δ) *over* $\mathscr C$ is the complex $(C(X), \Delta)$ over $\mathscr C$ given by

$$C(X)_n = X_{n-1} \oplus X_n$$

with differential, for all integers n

$$\Delta_n = \begin{pmatrix} -\delta_{n-1} & 0 \\ \mathrm{id}_{X_{n-1}} & \delta_n \end{pmatrix} : X_{n-1} \oplus X_n \to X_{n-2} \oplus X_{n-1}$$

One checks readily that $\Delta \circ \Delta = 0$, and so $(C(X), \Delta)$ is a complex.

Degreewise Split

A chain map $f:X\to Y$ of complexes over an additive category $\mathscr C$ is called *degreewise* split if the morphism $f_n:X_n\to Y_n$ is split for all integers n;

Let $\mathscr C$ be an additive category. The *cone of a complex* (X, δ) *over* $\mathscr C$ is the complex $(C(X), \Delta)$ over $\mathscr C$ given by

$$\mathsf{C}(X)_n = X_{n-1} \oplus X_n$$

with differential, for all integers n

$$\Delta_n = \begin{pmatrix} -\delta_{n-1} & 0 \\ \mathrm{id}_{X_{n-1}} & \delta_n \end{pmatrix} : X_{n-1} \oplus X_n \to X_{n-2} \oplus X_{n-1}$$

One checks readily that $\Delta \circ \Delta = 0$, and so $(C(X), \Delta)$ is a complex.

Degreewise Split

A chain map $f: X \to Y$ of complexes over an additive category $\mathscr C$ is called *degreewise* split if the morphism $f_n: X_n \to Y_n$ is split for all integers n; that is there are morphisms $s_n: Y_n \to X_n$ satisfying $f_n = f_n \circ s_n \circ f_n$ for all integers n.

Let $\mathscr C$ be an additive category. The *cone of a complex* (X, δ) *over* $\mathscr C$ is the complex $(C(X), \Delta)$ over $\mathscr C$ given by

$$C(X)_n = X_{n-1} \oplus X_n$$
 relative version $C(f)$

$$X \xrightarrow{f} Y \to C_{f} \xrightarrow{f}$$

with differential, for all integers n

$$\Delta_n = \begin{pmatrix} -\delta_{n-1} & 0 \\ \vdots & \delta_n \end{pmatrix} : X_{n-1} \oplus X_n \to X_{n-2} \oplus X_{n-1}$$

One checks readily that $\Delta \circ \Delta = 0$, and so $(C(X), \Delta)$ is a complex.

Degreewise Split

A chain map $f:X\to Y$ of complexes over an additive category $\mathscr C$ is called *degreewise* split if the morphism $f_n:X_n\to Y_n$ is split for all integers n; that is there are morphisms $s_n:Y_n\to X_n$ satisfying $f_n=f_n\circ s_n\circ f_n$ for all integers n.

This does not necessarily imply that f is split as a chain map because the family $(s_n)_{n\in\mathbb{Z}}$ is not required be a chain map.

The cone of X comes along with a

The cone of *X* comes along with a

• canonical degreewise split monomorphism of complexes $i_X:X\to C(X)$ given by the canonical monomorphisms $X_n\hookrightarrow X_{n-1}\oplus X_n$ for any integer n; and

The cone of *X* comes along with a

- canonical degreewise split monomorphism of complexes $i_X: X \to C(X)$ given by the canonical monomorphisms $X_n \hookrightarrow X_{n-1} \oplus X_n$ for any integer n; and
- canonical degreewise split epimorphism of complexes $p_X : C(X)[-1] \to X$ given by the canonical epimorphisms $X_n \oplus X_{n+1} \xrightarrow{} X_n$ for any integer n.

The cone of *X* comes along with a

- canonical degreewise split monomorphism of complexes $i_X: X \to C(X)$ given by the canonical monomorphisms $X_n \hookrightarrow X_{n-1} \oplus X_n$ for any integer n; and
- canonical degreewise split epimorphism of complexes $p_X : C(X)[-1] \to X$ given by the canonical epimorphisms $X_n \oplus X_{n+1} \twoheadrightarrow X_n$ for any integer n.

These chain maps yield a degreewise split short exact sequence of complexes

$$0 \longrightarrow X \xrightarrow{i_X} \mathsf{C}(X) \xrightarrow{p_X[1]} X[1] \longrightarrow 0$$

The cone of *X* comes along with a

- canonical degreewise split monomorphism of complexes $i_X: X \to C(X)$ given by the canonical monomorphisms $X_n \hookrightarrow X_{n-1} \oplus X_n$ for any integer n; and
- canonical degreewise split epimorphism of complexes $p_X : C(X)[-1] \to X$ given by the canonical epimorphisms $X_n \oplus X_{n+1} \twoheadrightarrow X_n$ for any integer n.

These chain maps yield a degreewise split short exact sequence of complexes

$$0 \longrightarrow X \stackrel{i_X}{\longrightarrow} \underline{\mathsf{C}(X)} \stackrel{p_X[1]}{\longrightarrow} X[1] \longrightarrow 0$$

If X is bounded below, bounded above or bounded, so is C(X).

Proposition 1.18.10

Let $\mathscr C$ be an additive category and let X be a complex over $\mathscr C$. We have $\mathsf C(X)\simeq 0$.

Proposition 1.18.10

Let $\mathscr C$ be an additive category and let X be a complex over $\mathscr C$. We have $\mathsf C(X)\simeq 0$.

Proof of Prop. 1.18.10

Denote by δ and Δ the differentials of X and C(X), respectively, and define a homotopy h on C(X) by

$$h_n = \begin{pmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} : X_{n-1} \oplus X_n = \mathsf{C}(X)_n \to \mathsf{C}(X)_{n+1} = X_n \oplus X_{n+1}$$

for any integer n.

Cone of a Complex

Proposition 1.18.10

Let $\mathscr C$ be an additive category and let X be a complex over $\mathscr C$. We have $\mathsf C(X) \simeq 0$.

Proof of Prop. 1.18.10

Denote by δ and Δ the differentials of X and C(X), respectively, and define a homotopy h on C(X) by

$$h_n = \begin{pmatrix} 0 & \mathrm{id}_{X_n} \\ 0 & 0 \end{pmatrix} : X_{n-1} \oplus X_n = \mathsf{C}(X)_n \to \mathsf{C}(X)_{n+1} = X_n \oplus X_{n+1}$$

for any integer n.

Cone of a Complex

Proposition 1.18.10

Let $\mathscr C$ be an additive category and let X be a complex over $\mathscr C$. We have $\mathsf C(X) \simeq 0$.

Proof of Prop. 1.18.10

Denote by δ and Δ the differentials of X and C(X), respectively, and define a homotopy h on C(X) by

$$h_n = \begin{pmatrix} 0 & \mathrm{id}_{X_n} \\ 0 & 0 \end{pmatrix} : X_{n-1} \oplus X_n = \mathsf{C}(X)_n \to \mathsf{C}(X)_{n+1} = X_n \oplus X_{n+1}$$

for any integer n. A straightforward matrix calculus shows that $h \circ \Delta + \Delta \circ h = \mathrm{id}_{\mathsf{C}(X)}$;

Cone of a Complex

Proposition 1.18.10

Let $\mathscr C$ be an additive category and let X be a complex over $\mathscr C$. We have $\mathsf C(X) \simeq 0$.

Proof of Prop. 1.18.10

Denote by δ and Δ the differentials of X and C(X), respectively, and define a homotopy h on C(X) by

$$h_n = \begin{pmatrix} 0 & \mathrm{id}_{X_n} \\ 0 & 0 \end{pmatrix} : X_{n-1} \oplus X_n = \mathsf{C}(X)_n \to \mathsf{C}(X)_{n+1} = X_n \oplus X_{n+1}$$

for any integer n. A straightforward matrix calculus shows that $h \circ \Delta + \Delta \circ h = \mathrm{id}_{\mathsf{C}(X)}$; thus $\mathrm{id}_{\mathsf{C}(X)} \sim 0$, or equivalently, $\mathsf{C}(X) \simeq 0$.

Proposition 1.18.11

Let A be a k-algebra, Y, Z complexes of A-modules, and let $g:Y\to Z$ be a chain map. The following are equivalent.

(i) The chain map $g: Y \to Z$ is a quasi-isomorphism.

Proposition 1.18.11

Let *A* be a *k*-algebra, *Y*, *Z* complexes of *A*-modules, and let $g: Y \to Z$ be a chain map. The following are equivalent.

- (i) The chain map $g: Y \to Z$ is a quasi-isomorphism.
- (ii) For any bounded below complex P of projective A-modules, composition with g induces an isomorphism $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(P, Y) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(P, Z)$.

Proposition 1.18.11

Let *A* be a *k*-algebra, *Y*, *Z* complexes of *A*-modules, and let $g: Y \to Z$ be a chain map. The following are equivalent.

- (i) The chain map $g: Y \to Z$ is a quasi-isomorphism.
- (ii) For any bounded below complex P of projective A-modules, composition with g induces an isomorphism $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(P,Y) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(P,Z)$.
- (iii) For any bounded above complex I of injective A-modules, precomposition with g induces an isomorphism $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(Z,I) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(Y,I)$.

Proposition 1.18.11

Let *A* be a *k*-algebra, *Y*, *Z* complexes of *A*-modules, and let $g: Y \to Z$ be a chain map. The following are equivalent.

- (i) The chain map $g: Y \to Z$ is a quasi-isomorphism.
- (ii) For any bounded below complex P of projective A-modules, composition with g induces an isomorphism $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(P,Y) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(P,Z)$.
- (iii) For any bounded above complex I of injective A-modules, precomposition with g induces an isomorphism $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(Z,I) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(Y,I)$.

Proof of Prop. 1.18.11

By 1.18.10, the cone C(Z) is contractible.

Proposition 1.18.11

Let *A* be a *k*-algebra, *Y*, *Z* complexes of *A*-modules, and let $g: Y \to Z$ be a chain map. The following are equivalent.

- (i) The chain map $g: Y \to Z$ is a quasi-isomorphism.
- (ii) For any bounded below complex P of projective A-modules, composition with g induces an isomorphism $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(P,Y) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(P,Z)$.
- (iii) For any bounded above complex I of injective A-modules, precomposition with g induces an isomorphism $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(Z,I) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}(A))}(Y,I)$.

Proof of Prop. 1.18.11

By 1.18.10, the cone C(Z) is contractible. Therefore $g:Y\to Z$ is a quasi-isomorphism is and only if $g\oplus p_Z:Y\oplus C(P)[-1]\to Z$ is one; furthermore the latter map is surjective.

Proof of Prop. 1.18.11 (contd.)

2/2

Suppose g is a quasi-isomorphism, by the above observations we can assume that g is surjective.

Proof of Prop. 1.18.11 (contd.)

2/2

Suppose g is a quasi-isomorphism, by the above observations we can assume that g is surjective. Then, by 1.17.5, the complex $X = \ker(g)$ is acyclic.

Proof of Prop. 1.18.11 (contd.)

2/2

Suppose g is a quasi-isomorphism, by the above observations we can assume that g is surjective. Then, by 1.17.5, the complex $X = \ker(g)$ is acyclic. It follows from 1.18.5 that (i) implies (ii).

Proof of Prop. 1.18.11 (contd.)

2/2

Suppose g is a quasi-isomorphism, by the above observations we can assume that g is surjective. Then, by 1.17.5, the complex $X = \ker(g)$ is acyclic. It follows from 1.18.5 that (i) implies (ii).

Suppose conversely that (ii) holds.

Proof of Prop. 1.18.11 (contd.)

2/2

Suppose g is a quasi-isomorphism, by the above observations we can assume that g is surjective. Then, by 1.17.5, the complex $X = \ker(g)$ is acyclic. It follows from 1.18.5 that (i) implies (ii).

Suppose conversely that (ii) holds. Applying (ii) to the complex A[n], for $n \in \mathbb{Z}$, in conjunction with 1.18.4

Proof of Prop. 1.18.11 (contd.)

2/2

Suppose g is a quasi-isomorphism, by the above observations we can assume that g is surjective. Then, by 1.17.5, the complex $X = \ker(g)$ is acyclic. It follows from 1.18.5 that (i) implies (ii).

Suppose conversely that (ii) holds. Applying (ii) to the complex A[n], for $n \in \mathbb{Z}$, in conjunction with 1.18.4 shows that g is a quasi-isomorphism.

Proof of Prop. 1.18.11 (contd.)

2/2

Suppose g is a quasi-isomorphism, by the above observations we can assume that g is surjective. Then, by 1.17.5, the complex $X = \ker(g)$ is acyclic. It follows from 1.18.5 that (i) implies (ii).

Suppose conversely that (ii) holds. Applying (ii) to the complex A[n], for $n \in \mathbb{Z}$, in conjunction with 1.18.4 shows that g is a quasi-isomorphism.

Since $\mathsf{Mod}(A)$ has enough injective objects, a variation of the above arguments shows the equivalence between (i) and (iii).

Proposition 1.18.12

(has an interpretation in terms of relative projectivity)

Proposition 1.18.12

(has an interpretation in terms of *relative projectivity*) Let $\mathscr C$ be an additive category and X a complex over $\mathscr C$. Denote by $\mathcal F:\mathsf{Ch}(\mathscr C)\to\mathsf{Gr}(\mathscr C)$ the forgetful functor sending a complex (X,δ) to the underlying graded object X. The following are equivalent.

(i) $X \simeq 0$.

Proposition 1.18.12

(has an interpretation in terms of *relative projectivity*) Let $\mathscr C$ be an additive category and X a complex over $\mathscr C$. Denote by $\mathcal F:\mathsf{Ch}(\mathscr C)\to\mathsf{Gr}(\mathscr C)$ the forgetful functor sending a complex (X,δ) to the underlying graded object X. The following are equivalent.

- (i) $X \simeq 0$.
- (ii) For any chain map $f:Y\to Z$ of complexes over $\mathscr C$ and any chain map $u:X\to Z$ such that there is a graded morphism $v:X\to Y$ satisfying $u=f\circ v$ as graded morphisms, there is a chain map $w:X\to Y$ satisfying $u=f\circ w$.

Proposition 1.18.12

(has an interpretation in terms of *relative projectivity*) Let $\mathscr C$ be an additive category and X a complex over $\mathscr C$. Denote by $\mathcal F:\mathsf{Ch}(\mathscr C)\to\mathsf{Gr}(\mathscr C)$ the forgetful functor sending a complex (X,δ) to the underlying graded object X. The following are equivalent.

- (i) $X \simeq 0$.
- (ii) For any chain map $f:Y\to Z$ of complexes over $\mathscr C$ and any chain map $u:X\to Z$ such that there is a graded morphism $v:X\to Y$ satisfying $u=f\circ v$ as graded morphisms, there is a chain map $w:X\to Y$ satisfying $u=f\circ w$.
- (iii) For any chain map $f:Y\to Z$ of complexes over $\mathscr C$ and any chain map $u:Y\to X$ such that there is a graded morphism $v:Z\to X$ satisfying $u=v\circ f$ as graded morphisms, there is a chain map $w:Z\to X$ satisfying $u=w\circ f$.

Proposition 1.18.12

(has an interpretation in terms of *relative projectivity*) Let $\mathscr C$ be an additive category and X a complex over $\mathscr C$. Denote by $\mathcal F:\mathsf{Ch}(\mathscr C)\to\mathsf{Gr}(\mathscr C)$ the forgetful functor sending a complex (X,δ) to the underlying graded object X. The following are equivalent.

- (i) $X \simeq 0$.
- (ii) For any chain map $f:Y\to Z$ of complexes over $\mathscr C$ and any chain map $u:X\to Z$ such that there is a graded morphism $v:X\to Y$ satisfying $u=f\circ v$ as graded morphisms, there is a chain map $w:X\to Y$ satisfying $u=f\circ w$.
- (iii) For any chain map $f:Y\to Z$ of complexes over $\mathscr C$ and any chain map $u:Y\to X$ such that there is a graded morphism $v:Z\to X$ satisfying $u=v\circ f$ as graded morphisms, there is a chain map $w:Z\to X$ satisfying $u=w\circ f$.

Proof of Prop. 1.18.12

Suppose that (i) holds.

Proposition 1.18.12

(has an interpretation in terms of *relative projectivity*) Let $\mathscr C$ be an additive category and X a complex over $\mathscr C$. Denote by $\mathcal F:\mathsf{Ch}(\mathscr C)\to\mathsf{Gr}(\mathscr C)$ the forgetful functor sending a complex (X,δ) to the underlying graded object X. The following are equivalent.

- (i) $X \simeq 0$.
- (ii) For any chain map $f:Y\to Z$ of complexes over $\mathscr C$ and any chain map $u:X\to Z$ such that there is a graded morphism $v:X\to Y$ satisfying $u=f\circ v$ as graded morphisms, there is a chain map $w:X\to Y$ satisfying $u=f\circ w$.
- (iii) For any chain map $f:Y\to Z$ of complexes over $\mathscr C$ and any chain map $u:Y\to X$ such that there is a graded morphism $v:Z\to X$ satisfying $u=v\circ f$ as graded morphisms, there is a chain map $w:Z\to X$ satisfying $u=w\circ f$.

Proof of Prop. 1.18.12

Suppose that (i) holds. Let h be a homotopy on X such that $h \circ \delta + \delta \circ h = \mathrm{id}_X$, where δ is the differential of X.

Proposition 1.18.12

(has an interpretation in terms of *relative projectivity*) Let $\mathscr C$ be an additive category and X a complex over $\mathscr C$. Denote by $\mathcal F:\mathsf{Ch}(\mathscr C)\to\mathsf{Gr}(\mathscr C)$ the forgetful functor sending a complex (X,δ) to the underlying graded object X. The following are equivalent.

- (i) $X \simeq 0$.
- (ii) For any chain map $f:Y\to Z$ of complexes over $\mathscr C$ and any chain map $u:X\to Z$ such that there is a graded morphism $v:X\to Y$ satisfying $u=f\circ v$ as graded morphisms, there is a chain map $w:X\to Y$ satisfying $u=f\circ w$.
- (iii) For any chain map $f:Y\to Z$ of complexes over $\mathscr C$ and any chain map $u:Y\to X$ such that there is a graded morphism $v:Z\to X$ satisfying $u=v\circ f$ as graded morphisms, there is a chain map $w:Z\to X$ satisfying $u=w\circ f$.

Proof of Prop. 1.18.12

Suppose that (i) holds. Let h be a homotopy on X such that $h \circ \delta + \delta \circ h = \mathrm{id}_X$, where δ is the differential of X. Let $f: Y \to Z$, $u: X \to Z$ be chain maps and $v: X \to Y$ be a graded morphism such that $u = f \circ v$ as graded morphisms. Denote by ε, ζ the differentials of Y, Z, respectively.

Proof of Prop. 1.18.12 (contd.)

2/2

Set $w = v \circ h \circ \delta + \varepsilon \circ v \circ h$; one readily checks w is a chain map.

2/2

Set $w = v \circ h \circ \delta + \varepsilon \circ v \circ h$; one readily checks w is a chain map. We then have

$$f \circ w = f \circ v \circ h \circ \delta + f \circ \varepsilon \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ f \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ u \circ h = u \circ h \circ \delta + u \circ \delta \circ h = u \circ (h \circ \delta + \delta \circ h) = u.$$

Thus (ii) holds.

2/2

Set $w = v \circ h \circ \delta + \varepsilon \circ v \circ h$; one readily checks w is a chain map. We then have

$$f \circ w = f \circ v \circ h \circ \delta + f \circ \varepsilon \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ f \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ u \circ h = u \circ h \circ \delta + u \circ \delta \circ h = u \circ (h \circ \delta + \delta \circ h) = u.$$

Thus (ii) holds. A similar argument shows, that (i) implies (iii).

2/2

Set $w = v \circ h \circ \delta + \varepsilon \circ v \circ h$; one readily checks w is a chain map. We then have

$$f \circ w = f \circ v \circ h \circ \delta + f \circ \varepsilon \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ f \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ u \circ h = u \circ h \circ \delta + u \circ \delta \circ h = u \circ (h \circ \delta + \delta \circ h) = u.$$

Thus (ii) holds. A similar argument shows, that (i) implies (iii).

Suppose that (iii) holds. Let $i_X : X \to C(X)$ be the degreewise split monic chain map, with Δ as the differential of C(X).

2/2

Set $w = v \circ h \circ \delta + \varepsilon \circ v \circ h$; one readily checks w is a chain map. We then have

$$f \circ w = f \circ v \circ h \circ \delta + f \circ \varepsilon \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ f \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ u \circ h = u \circ h \circ \delta + u \circ \delta \circ h = u \circ (h \circ \delta + \delta \circ h) = u.$$

Thus (ii) holds. A similar argument shows, that (i) implies (iii).

Suppose that (iii) holds. Let $i_X: X \to C(X)$ be the degreewise split monic chain map, with Δ as the differential of C(X). The canonical projections $X_{n-1} \oplus X_n \to X_n$ define a graded morphism $v: C(X) \to X$ satisfying $v \circ i_X = \mathrm{id}_X$.

2/2

Set $w = v \circ h \circ \delta + \varepsilon \circ v \circ h$; one readily checks w is a chain map. We then have

$$f \circ w = f \circ v \circ h \circ \delta + f \circ \varepsilon \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ f \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ u \circ h = u \circ h \circ \delta + u \circ \delta \circ h = u \circ (h \circ \delta + \delta \circ h) = u.$$

Thus (ii) holds. A similar argument shows, that (i) implies (iii).

Suppose that (iii) holds. Let $i_X: X \to \mathsf{C}(X)$ be the degreewise split monic chain map, with Δ as the differential of $\mathsf{C}(X)$. The canonical projections $X_{n-1} \oplus X_n \to X_n$ define a graded morphism $v: \mathsf{C}(X) \to X$ satisfying $v \circ i_X = \mathrm{id}_X$. By the hypothesis, there is actually a chain map $w: \mathsf{C}(X) \to X$ satisfying $w \circ i_X = \mathrm{id}_X$.

2/2

Set $w = v \circ h \circ \delta + \varepsilon \circ v \circ h$; one readily checks w is a chain map. We then have

$$f \circ w = f \circ v \circ h \circ \delta + f \circ \varepsilon \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ f \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ u \circ h = u \circ h \circ \delta + u \circ \delta \circ h = u \circ (h \circ \delta + \delta \circ h) = u.$$

Thus (ii) holds. A similar argument shows, that (i) implies (iii).

Suppose that (iii) holds. Let $i_X: X \to \mathsf{C}(X)$ be the degreewise split monic chain map, with Δ as the differential of $\mathsf{C}(X)$. The canonical projections $X_{n-1} \oplus X_n \to X_n$ define a graded morphism $v: \mathsf{C}(X) \to X$ satisfying $v \circ i_X = \mathrm{id}_X$. By the hypothesis, there is actually a chain map $w: \mathsf{C}(X) \to X$ satisfying $w \circ i_X = \mathrm{id}_X$.

2/2

Set $w = v \circ h \circ \delta + \varepsilon \circ v \circ h$; one readily checks w is a chain map. We then have

$$f \circ w = f \circ v \circ h \circ \delta + f \circ \varepsilon \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ f \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ u \circ h = u \circ h \circ \delta + u \circ \delta \circ h = u \circ (h \circ \delta + \delta \circ h) = u.$$

Thus (ii) holds. A similar argument shows, that (i) implies (iii).

Suppose that (iii) holds. Let $i_X: X \to \mathsf{C}(X)$ be the degreewise split monic chain map, with Δ as the differential of $\mathsf{C}(X)$. The canonical projections $X_{n-1} \oplus X_n \to X_n$ define a graded morphism $v: \mathsf{C}(X) \to X$ satisfying $v \circ i_X = \mathrm{id}_X$. By the hypothesis, there is actually a chain map $w: \mathsf{C}(X) \to X$ satisfying $w \circ i_X = \mathrm{id}_X$.

Moreover, since $C(X) \simeq 0$ there is a homotopy h on C(X) such that $\Delta \circ h + h \circ \Delta = \mathrm{id}_{C(X)}$.

2/2

Set $w = v \circ h \circ \delta + \varepsilon \circ v \circ h$; one readily checks w is a chain map. We then have

$$f \circ w = f \circ v \circ h \circ \delta + f \circ \varepsilon \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ f \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ u \circ h = u \circ h \circ \delta + u \circ \delta \circ h = u \circ (h \circ \delta + \delta \circ h) = u.$$

Thus (ii) holds. A similar argument shows, that (i) implies (iii).

Suppose that (iii) holds. Let $i_X: X \to \mathsf{C}(X)$ be the degreewise split monic chain map, with Δ as the differential of $\mathsf{C}(X)$. The canonical projections $X_{n-1} \oplus X_n \to X_n$ define a graded morphism $v: \mathsf{C}(X) \to X$ satisfying $v \circ i_X = \mathrm{id}_X$. By the hypothesis, there is actually a chain map $w: \mathsf{C}(X) \to X$ satisfying $w \circ i_X = \mathrm{id}_X$.

Moreover, since $C(X) \simeq 0$ there is a homotopy h on C(X) such that $\Delta \circ h + h \circ \Delta = \mathrm{id}_{C(X)}$.

For $w \circ h \circ i_X$, we note

$$\delta \circ w \circ h \circ i_X + w \circ h \circ i_X \circ \delta = w \circ \Delta \circ h \circ i_X + w \circ h \circ \Delta \circ i_X$$
$$= w \circ (\Delta \circ h + h \circ \Delta) \circ i_X = w \circ i_X = \mathrm{id}_X,$$

2/2

Set $w = v \circ h \circ \delta + \varepsilon \circ v \circ h$; one readily checks w is a chain map. We then have

$$f \circ w = f \circ v \circ h \circ \delta + f \circ \varepsilon \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ f \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ u \circ h = u \circ h \circ \delta + u \circ \delta \circ h = u \circ (h \circ \delta + \delta \circ h) = u.$$

Thus (ii) holds. A similar argument shows, that (i) implies (iii).

Suppose that (iii) holds. Let $i_X: X \to \mathsf{C}(X)$ be the degreewise split monic chain map, with Δ as the differential of $\mathsf{C}(X)$. The canonical projections $X_{n-1} \oplus X_n \to X_n$ define a graded morphism $v: \mathsf{C}(X) \to X$ satisfying $v \circ i_X = \mathrm{id}_X$. By the hypothesis, there is actually a chain map $w: \mathsf{C}(X) \to X$ satisfying $w \circ i_X = \mathrm{id}_X$.

Moreover, since $C(X) \simeq 0$ there is a homotopy h on C(X) such that $\Delta \circ h + h \circ \Delta = \mathrm{id}_{C(X)}$.

For $w \circ h \circ i_X$, we note

$$\delta \circ w \circ h \circ i_X + w \circ h \circ i_X \circ \delta = w \circ \Delta \circ h \circ i_X + w \circ h \circ \Delta \circ i_X$$
$$= w \circ (\Delta \circ h + h \circ \Delta) \circ i_X = w \circ i_X = \mathrm{id}_X,$$

and hence $X \simeq 0$ via the homotopy $w \circ h \circ i_X$ on X. Thus (i) holds.

2/2

Set $w = v \circ h \circ \delta + \varepsilon \circ v \circ h$; one readily checks w is a chain map. We then have

$$f \circ w = f \circ v \circ h \circ \delta + f \circ \varepsilon \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ f \circ v \circ h$$

$$= u \circ h \circ \delta + \zeta \circ u \circ h = u \circ h \circ \delta + u \circ \delta \circ h = u \circ (h \circ \delta + \delta \circ h) = u.$$

Thus (ii) holds. A similar argument shows, that (i) implies (iii).

Suppose that (iii) holds. Let $i_X: X \to \mathsf{C}(X)$ be the degreewise split monic chain map, with Δ as the differential of $\mathsf{C}(X)$. The canonical projections $X_{n-1} \oplus X_n \to X_n$ define a graded morphism $v: \mathsf{C}(X) \to X$ satisfying $v \circ i_X = \mathrm{id}_X$. By the hypothesis, there is actually a chain map $w: \mathsf{C}(X) \to X$ satisfying $w \circ i_X = \mathrm{id}_X$.

Moreover, since $C(X) \simeq 0$ there is a homotopy h on C(X) such that $\Delta \circ h + h \circ \Delta = \mathrm{id}_{C(X)}$.

For $w \circ h \circ i_X$, we note

$$\delta \circ w \circ h \circ i_X + w \circ h \circ i_X \circ \delta = w \circ \Delta \circ h \circ i_X + w \circ h \circ \Delta \circ i_X$$
$$= w \circ (\Delta \circ h + h \circ \Delta) \circ i_X = w \circ i_X = \mathrm{id}_X,$$

and hence $X \simeq 0$ via the homotopy $w \circ h \circ i_X$ on X. Thus (i) holds. A similar argument, using the fact that p_X is a split epimorphism in each degree, shows that (ii) implies (i).

Proposition 1.18.13

Let $\mathscr C$ be an additive category and let $f:X\to Y$ be a chain map of complexes over $\mathscr C$. The following are equivalent.

(i) $f \sim 0$.

Proposition 1.18.13

Let $\mathscr C$ be an additive category and let $f:X\to Y$ be a chain map of complexes over $\mathscr C$. The following are equivalent.

- (i) $f \sim 0$.
- (ii) f factors through some complex which is homotopy equivalent to zero.

Proposition 1.18.13

Let $\mathscr C$ be an additive category and let $f:X\to Y$ be a chain map of complexes over $\mathscr C$. The following are equivalent.

- (i) $f \sim 0$.
- (ii) f factors through some complex which is homotopy equivalent to zero.
- (iii) f factors through the chain map $i_X : X \to C(X)$.

Proposition 1.18.13

Let $\mathscr C$ be an additive category and let $f:X\to Y$ be a chain map of complexes over $\mathscr C$. The following are equivalent.

- (i) $f \sim 0$.
- (ii) *f* factors through some complex which is homotopy equivalent to zero.
- (iii) f factors through the chain map $i_X : X \to C(X)$.
- (iv) f factors through any degreewise split monomorphism $X \to Z$.

Proposition 1.18.13

Let $\mathscr C$ be an additive category and let $f:X\to Y$ be a chain map of complexes over $\mathscr C$. The following are equivalent.

- (i) $f \sim 0$.
- (ii) *f* factors through some complex which is homotopy equivalent to zero.
- (iii) f factors through the chain map $i_X : X \to C(X)$.
- (iv) f factors through any degreewise split monomorphism $X \to Z$.
- (v) f factors through the chain map $p_Y : C(Y)[-1] \to Y$.

Proposition 1.18.13

Let $\mathscr C$ be an additive category and let $f:X\to Y$ be a chain map of complexes over $\mathscr C$. The following are equivalent.

- (i) $f \sim 0$.
- (ii) *f* factors through some complex which is homotopy equivalent to zero.
- (iii) f factors through the chain map $i_X : X \to C(X)$.
- (iv) f factors through any degreewise split monomorphism $X \to Z$.
- (v) f factors through the chain map $p_Y : C(Y)[-1] \to Y$.
- (vi) f factors through any degreewise split epimorphism $Z \to Y$.

Proposition 1.18.13

Let $\mathscr C$ be an additive category and let $f:X\to Y$ be a chain map of complexes over $\mathscr C$. The following are equivalent.

- (i) $f \sim 0$.
- (ii) *f* factors through some complex which is homotopy equivalent to zero.
- (iii) f factors through the chain map $i_X : X \to C(X)$.
- (iv) f factors through any degreewise split monomorphism $X \to Z$.
- (v) f factors through the chain map $p_Y : C(Y)[-1] \to Y$.
- (vi) f factors through any degreewise split epimorphism $Z \to Y$.

Proof of Prop. 1.18.13

Clearly (ii) implies (i).

Proposition 1.18.13

Let $\mathscr C$ be an additive category and let $f:X\to Y$ be a chain map of complexes over $\mathscr C$. The following are equivalent.

- (i) $f \sim 0$.
- (ii) f factors through some complex which is homotopy equivalent to zero.
- (iii) f factors through the chain map $i_X : X \to C(X)$.
- (iv) f factors through any degreewise split monomorphism $X \to Z$.
- (v) f factors through the chain map $p_Y : C(Y)[-1] \to Y$.
- (vi) f factors through any degreewise split epimorphism $Z \to Y$.

Proof of Prop. 1.18.13

Clearly (ii) implies (i). Similarly, since $C(X) \simeq 0$, both (iii) and (v) imply (ii).

Proposition 1.18.13

Let $\mathscr C$ be an additive category and let $f:X\to Y$ be a chain map of complexes over $\mathscr C$. The following are equivalent.

- (i) $f \sim 0$.
- (ii) f factors through some complex which is homotopy equivalent to zero.
- (iii) f factors through the chain map $i_X : X \to C(X)$.
- (iv) f factors through any degreewise split monomorphism $X \to Z$.
- (v) f factors through the chain map $p_Y : C(Y)[-1] \to Y$.
- (vi) f factors through any degreewise split epimorphism $Z \to Y$.

Proof of Prop. 1.18.13

Clearly (ii) implies (i). Similarly, since $C(X) \simeq 0$, both (iii) and (v) imply (ii).

Furthermore, (iv) implies (iii), because i_X is a degreewise split monomorphism;

Proposition 1.18.13

Let $\mathscr C$ be an additive category and let $f:X\to Y$ be a chain map of complexes over $\mathscr C$. The following are equivalent.

- (i) $f \sim 0$.
- (ii) f factors through some complex which is homotopy equivalent to zero.
- (iii) f factors through the chain map $i_X : X \to C(X)$.
- (iv) f factors through any degreewise split monomorphism $X \to Z$.
- (v) f factors through the chain map $p_Y : C(Y)[-1] \to Y$.
- (vi) f factors through any degreewise split epimorphism $Z \rightarrow Y$.

Proof of Prop. 1.18.13

Clearly (ii) implies (i). Similarly, since $C(X) \simeq 0$, both (iii) and (v) imply (ii).

Furthermore, (iv) implies (iii), because i_X is a degreewise split monomorphism; and (vi) implies (v), because p_X is a degreewise split epimorphism.

Proof of Prop. 1.18.13 (contd.)

2/3

Assume (iii); that is, there exists a chain map $f' : C(X) \to Y$ such that $f = f' \circ i_X$.

Proof of Prop. 1.18.13 (contd.)

2/3

Assume (iii); that is, there exists a chain map $f': C(X) \to Y$ such that $f = f' \circ i_X$. Consider a degreewise split monomorphism $\iota: X \to Z$,

Proof of Prop. 1.18.13 (contd.)

2/3

Assume (iii); that is, there exists a chain map $f': C(X) \to Y$ such that $f = f' \circ i_X$. Consider a degreewise split monomorphism $\iota: X \to Z$, so we can find a graded morphism $\rho: Z \to X$ such that $\rho \circ \iota = \mathrm{id}_X$ in $Gr(\mathscr{C})$.

Proof of Prop. 1.18.13 (contd.)

2/3

Assume (iii); that is, there exists a chain map $f': C(X) \to Y$ such that $f = f' \circ i_X$. Consider a degreewise split monomorphism $\iota: X \to Z$, so we can find a graded morphism $\rho: Z \to X$ such that $\rho \circ \iota = \operatorname{id}_X$ in $\operatorname{Gr}(\mathscr{C})$. Therefore, we have the following commutative diagram

Proof of Prop. 1.18.13 (contd.)

2/3

Assume (iii); that is, there exists a chain map $f': C(X) \to Y$ such that $f = f' \circ i_X$. Consider a degreewise split monomorphism $\iota: X \to Z$, so we can find a graded morphism $\rho: Z \to X$ such that $\rho \circ \iota = \operatorname{id}_X$ in $\operatorname{Gr}(\mathscr{C})$. Therefore, we have the following commutative diagram

Since $C(X) \simeq 0$, by 1.18.12 (iii), there exists a *chain map* $g' : Z \to C(X)$ such that $g' \circ \iota = i_X$.

Proof of Prop. 1.18.13 (contd.)

2/3

Assume (iii); that is, there exists a chain map $f': C(X) \to Y$ such that $f = f' \circ i_X$. Consider a degreewise split monomorphism $\iota: X \to Z$, so we can find a graded morphism $\rho: Z \to X$ such that $\rho \circ \iota = \operatorname{id}_X$ in $\operatorname{Gr}(\mathscr{C})$. Therefore, we have the following commutative diagram

Since $C(X) \simeq 0$, by 1.18.12 (iii), there exists a *chain map* $g': Z \to C(X)$ such that $g' \circ \iota = i_X$. Consider the chain map $g = f' \circ g': Z \to Y$;

Proof of Prop. 1.18.13 (contd.)

2/3

Assume (iii); that is, there exists a chain map $f': C(X) \to Y$ such that $f = f' \circ i_X$. Consider a degreewise split monomorphism $\iota: X \to Z$, so we can find a graded morphism $\rho: Z \to X$ such that $\rho \circ \iota = \operatorname{id}_X$ in $\operatorname{Gr}(\mathscr{C})$. Therefore, we have the following commutative diagram

Since $C(X) \simeq 0$, by 1.18.12 (iii), there exists a *chain map* $g': Z \to C(X)$ such that $g' \circ \iota = i_X$. Consider the chain map $g = f' \circ g': Z \to Y$; note that

$$g \circ \iota = f' \circ g' \circ \iota = f' \circ i_X = f$$

Proof of Prop. 1.18.13 (contd.)

2/3

Assume (iii); that is, there exists a chain map $f': C(X) \to Y$ such that $f = f' \circ i_X$. Consider a degreewise split monomorphism $\iota: X \to Z$, so we can find a graded morphism $\rho: Z \to X$ such that $\rho \circ \iota = \operatorname{id}_X$ in $\operatorname{Gr}(\mathscr{C})$. Therefore, we have the following commutative diagram

Since $C(X) \simeq 0$, by 1.18.12 (iii), there exists a *chain map* $g': Z \to C(X)$ such that $g' \circ \iota = i_X$. Consider the chain map $g = f' \circ g': Z \to Y$; note that

$$g \circ \iota = f' \circ g' \circ \iota = f' \circ i_X = f$$

That is, the following diagram commutes

Proof of Prop. 1.18.13 (contd.)

2/3

Assume (iii); that is, there exists a chain map $f': C(X) \to Y$ such that $f = f' \circ i_X$. Consider a degreewise split monomorphism $\iota: X \to Z$, so we can find a graded morphism $\rho: Z \to X$ such that $\rho \circ \iota = \operatorname{id}_X$ in $\operatorname{Gr}(\mathscr{C})$. Therefore, we have the following commutative diagram

Since $C(X) \simeq 0$, by 1.18.12 (iii), there exists a *chain map* $g': Z \to C(X)$ such that $g' \circ \iota = i_X$. Consider the chain map $g = f' \circ g': Z \to Y$; note that

$$g \circ \iota = f' \circ g' \circ \iota = f' \circ i_X = f$$

That is, the following diagram commutes

Hence, (iv) holds.

Proof of Prop. 1.18.13 (contd.)

2/3

Assume (iii); that is, there exists a chain map $f': C(X) \to Y$ such that $f = f' \circ i_X$. Consider a degreewise split monomorphism $\iota: X \to Z$, so we can find a graded morphism $\rho: Z \to X$ such that $\rho \circ \iota = \operatorname{id}_X$ in $\operatorname{Gr}(\mathscr{C})$. Therefore, we have the following commutative diagram

Since $C(X) \simeq 0$, by 1.18.12 (iii), there exists a *chain map* $g': Z \to C(X)$ such that $g' \circ \iota = i_X$. Consider the chain map $g = f' \circ g': Z \to Y$; note that

$$g \circ \iota = f' \circ g' \circ \iota = f' \circ i_X = f$$

That is, the following diagram commutes

Hence, (iv) holds. Similarly, (v) implies (vi).

Proof of Prop. 1.18.13 (contd.)

3/3

Our progress

Proof of Prop. 1.18.13 (contd.)

3/3

Our progress

Suppose (i) holds, we show then that both (iii) and (v) hold.

Proof of Prop. 1.18.13 (contd.)

3/3

Our progress

Suppose (i) holds, we show then that both (iii) and (v) hold.

Denote by δ, ε the differentials of X, Y, respectively, and let $h: X \to Y$ be a homotopy satisfying $f = h \circ \delta + \varepsilon \circ h$.

Proof of Prop. 1.18.13 (contd.)

3/3

Our progress

Suppose (i) holds, we show then that both (iii) and (v) hold.

Denote by δ, ε the differentials of X, Y, respectively, and let $h: X \to Y$ be a homotopy satisfying $f = h \circ \delta + \varepsilon \circ h$.

We define a graded morphisms $r: C(X) \to Y$ and $s: X \to C(Y)[-1]$ by setting, for any integer n,

$$r_n = (h_{n-1} \quad f_n) : X_{n-1} \oplus X_n \to Y_n \quad \text{and} \quad s_n = \begin{pmatrix} f_n \\ h_n \end{pmatrix} : X_n \to Y_n \oplus Y_{n+1}$$

Proof of Prop. 1.18.13 (contd.)

3/3

Our progress

Suppose (i) holds, we show then that both (iii) and (v) hold.

Denote by δ, ε the differentials of X, Y, respectively, and let $h: X \to Y$ be a homotopy satisfying $f = h \circ \delta + \varepsilon \circ h$.

We define a graded morphisms $r: C(X) \to Y$ and $s: X \to C(Y)[-1]$ by setting, for any integer n,

$$r_n = (h_{n-1} \quad f_n) : X_{n-1} \oplus X_n \to Y_n \quad \text{and} \quad s_n = \begin{pmatrix} f_n \\ h_n \end{pmatrix} : X_n \to Y_n \oplus Y_{n+1}$$

One readily checks that r and s are chain maps satisfying $f = r \circ i_X = p_X \circ s$.

Let $\mathscr C$ be an additive category.

Let \mathscr{C} be an additive category. A complex (X, δ) over \mathscr{C} is called *split*

Let $\mathscr C$ be an additive category. A complex (X,δ) over $\mathscr C$ is called *split* if there is a graded endomorphism s of degree 1 of X such that $\delta \circ s \circ \delta = \delta$,

Let $\mathscr C$ be an additive category. A complex (X,δ) over $\mathscr C$ is called *split* if there is a graded endomorphism s of degree 1 of X such that $\delta \circ s \circ \delta = \delta$, or equivalently, if each δ_n is a split morphism in $\mathscr C$.

Let $\mathscr C$ be an additive category. A complex (X, δ) over $\mathscr C$ is called *split* if there is a graded endomorphism s of degree 1 of X such that $\delta \circ s \circ \delta = \delta$, or equivalently, if each δ_n is a split morphism in $\mathscr C$.

The graded morphism *s* in this definition need not commute with the differential.

Let $\mathscr C$ be an additive category. A complex (X,δ) over $\mathscr C$ is called *split* if there is a graded endomorphism s of degree 1 of X such that $\delta \circ s \circ \delta = \delta$, or equivalently, if each δ_n is a split morphism in $\mathscr C$.

The graded morphism s in this definition need not commute with the differential. If (X, δ) is split, then 1.12.21 implies that s can be chosen such that $\delta \circ s \circ \delta = \delta$ and $s \circ \delta \circ s = s$.

Let $\mathscr C$ be an additive category. A complex (X, δ) over $\mathscr C$ is called *split* if there is a graded endomorphism s of degree 1 of X such that $\delta \circ s \circ \delta = \delta$, or equivalently, if each δ_n is a split morphism in $\mathscr C$.

The graded morphism s in this definition need not commute with the differential. If (X, δ) is split, then 1.12.21 implies that s can be chosen such that $\delta \circ s \circ \delta = \delta$ and $s \circ \delta \circ s = s$.

Proposition 1.18.15

Let *A* be a *k*-algebra and *X* a complex of *A*-modules.

(i) The complex X is split if and only if $X \cong Y \oplus H_*(X)$ for some contractible complex Y, where $H_*(X)$ is considered as a complex with zero differential.

Let $\mathscr C$ be an additive category. A complex (X, δ) over $\mathscr C$ is called *split* if there is a graded endomorphism s of degree 1 of X such that $\delta \circ s \circ \delta = \delta$, or equivalently, if each δ_n is a split morphism in $\mathscr C$.

The graded morphism s in this definition need not commute with the differential. If (X, δ) is split, then 1.12.21 implies that s can be chosen such that $\delta \circ s \circ \delta = \delta$ and $s \circ \delta \circ s = s$.

Proposition 1.18.15

Let *A* be a *k*-algebra and *X* a complex of *A*-modules.

- (i) The complex X is split if and only if $X \cong Y \oplus H_*(X)$ for some contractible complex Y, where $H_*(X)$ is considered as a complex with zero differential.
- (ii) The complex *X* is contractible if and only if *X* is split acyclic.

Let $\mathscr C$ be an additive category. A complex (X, δ) over $\mathscr C$ is called *split* if there is a graded endomorphism s of degree 1 of X such that $\delta \circ s \circ \delta = \delta$, or equivalently, if each δ_n is a split morphism in $\mathscr C$.

The graded morphism s in this definition need not commute with the differential. If (X, δ) is split, then 1.12.21 implies that s can be chosen such that $\delta \circ s \circ \delta = \delta$ and $s \circ \delta \circ s = s$.

Proposition 1.18.15

Let *A* be a *k*-algebra and *X* a complex of *A*-modules.

- (i) The complex X is split if and only if $X \cong Y \oplus H_*(X)$ for some contractible complex Y, where $H_*(X)$ is considered as a complex with zero differential.
- (ii) The complex X is contractible if and only if X is split acyclic.

Proof of Prop. 1.18.15

Denote by δ the differential of X. Suppose that X is split.

Let $\mathscr C$ be an additive category. A complex (X, δ) over $\mathscr C$ is called *split* if there is a graded endomorphism s of degree 1 of X such that $\delta \circ s \circ \delta = \delta$, or equivalently, if each δ_n is a split morphism in $\mathscr C$.

The graded morphism s in this definition need not commute with the differential. If (X, δ) is split, then 1.12.21 implies that s can be chosen such that $\delta \circ s \circ \delta = \delta$ and $s \circ \delta \circ s = s$.

Proposition 1.18.15

Let *A* be a *k*-algebra and *X* a complex of *A*-modules.

- (i) The complex X is split if and only if $X \cong Y \oplus H_*(X)$ for some contractible complex Y, where $H_*(X)$ is considered as a complex with zero differential.
- (ii) The complex *X* is contractible if and only if *X* is split acyclic.

Proof of Prop. 1.18.15

Denote by δ the differential of X. Suppose that X is split. Let s be a graded endomorphism of X of degree 1 satisfying $\delta \circ \underline{s} \circ \delta = \delta$ and $s \circ \underline{\delta} \circ s = s$.

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X.

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X.

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Thus we have

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(s \circ \delta) = \operatorname{im}(\delta \circ s) \oplus \ker(\delta \circ s)$$

as graded A-modules.

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Thus we have

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(s \circ \delta) = \operatorname{im}(\delta \circ s) \oplus \ker(\delta \circ s)$$

as graded A-modules.

We have $\ker(\delta) \subseteq \ker(s \circ \delta) \subseteq \ker(\delta \circ s \circ \delta) = \ker(\delta)$, hence all inclusions are equalities.

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Thus we have

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(s \circ \delta) = \operatorname{im}(\delta \circ s) \oplus \ker(\delta \circ s)$$

as graded A-modules.

We have $\ker(\delta) \subseteq \ker(s \circ \delta) \subseteq \ker(\delta \circ s \circ \delta) = \ker(\delta)$, hence all inclusions are equalities. Similarly, $\operatorname{im}(\delta) = \operatorname{im}(\delta \circ s \circ \delta) \subseteq \operatorname{im}(\delta \circ s) \subseteq \operatorname{im}(\delta)$, hence all inclusions are equalities.

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Thus we have

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(s \circ \delta) = \operatorname{im}(\underbrace{\delta \circ s}) \oplus \ker(\delta \circ s)$$

as graded A-modules.

We have $\ker(\delta) \subseteq \ker(s \circ \delta) \subseteq \ker(\delta \circ s \circ \delta) = \ker(\delta)$, hence all inclusions are equalities. Similarly, $\operatorname{im}(\delta) = \operatorname{im}(\delta \circ s \circ \delta) \subseteq \operatorname{im}(\delta \circ s) \subseteq \operatorname{im}(\delta)$, hence all inclusions are equalities.

Thus, as graded A-modules,

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(\delta) = \ker(\delta \circ s) \oplus \operatorname{im}(\delta)$$

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Thus we have

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(s \circ \delta) = \operatorname{im}(\delta \circ s) \oplus \ker(\delta \circ s)$$

as graded A-modules.

We have $\ker(\delta) \subseteq \ker(s \circ \delta) \subseteq \ker(\delta \circ s \circ \delta) = \ker(\delta)$, hence all inclusions are equalities. Similarly, $\operatorname{im}(\delta) = \operatorname{im}(\delta \circ s \circ \delta) \subseteq \operatorname{im}(\delta \circ s) \subseteq \operatorname{im}(\delta)$, hence all inclusions are equalities.

Thus, as graded A-modules,

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(\delta) = \ker(\delta \circ s) \oplus \operatorname{im}(\delta)$$

Recall that $im(\delta) \subseteq ker(\delta)$,

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Thus we have

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(s \circ \delta) = \operatorname{im}(\delta \circ s) \oplus \ker(\delta \circ s)$$

as graded A-modules.

We have $\ker(\delta) \subseteq \ker(s \circ \delta) \subseteq \ker(\delta \circ s \circ \delta) = \ker(\delta)$, hence all inclusions are equalities. Similarly, $\operatorname{im}(\delta) = \operatorname{im}(\delta \circ s \circ \delta) \subseteq \operatorname{im}(\delta \circ s) \subseteq \operatorname{im}(\delta)$, hence all inclusions are equalities.

Thus, as graded A-modules,

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(\delta) = \ker(\delta \circ s) \oplus \operatorname{im}(\delta)$$

Recall that $\operatorname{im}(\delta) \subseteq \ker(\delta)$, one then shows that $\ker(\delta) = \operatorname{im}(\delta) \oplus H$, as graded A-modules,

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Thus we have

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(s \circ \delta) = \operatorname{im}(\delta \circ s) \oplus \ker(\delta \circ s)$$

as graded A-modules.

We have $\ker(\delta) \subseteq \ker(s \circ \delta) \subseteq \ker(\delta \circ s \circ \delta) = \ker(\delta)$, hence all inclusions are equalities. Similarly, $\operatorname{im}(\delta) = \operatorname{im}(\delta \circ s \circ \delta) \subseteq \operatorname{im}(\delta \circ s) \subseteq \operatorname{im}(\delta)$, hence all inclusions are equalities.

Thus, as graded A-modules,

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(\delta) = \ker(\delta \circ s) \oplus \operatorname{im}(\delta)$$

UKATδ

Recall that $\operatorname{im}(\delta) \subseteq \ker(\delta)$, one then shows that $\ker(\delta) = \operatorname{im}(\delta) \oplus H$, as graded A-modules, where $H = \ker(\delta \circ s) \cap \ker \delta$.

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Thus we have

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(s \circ \delta) = \operatorname{im}(\delta \circ s) \oplus \ker(\delta \circ s)$$

as graded A-modules.

We have $\ker(\delta) \subseteq \ker(s \circ \delta) \subseteq \ker(\delta \circ s \circ \delta) = \ker(\delta)$, hence all inclusions are equalities. Similarly, $\operatorname{im}(\delta) = \operatorname{im}(\delta \circ s \circ \delta) \subseteq \operatorname{im}(\delta \circ s) \subseteq \operatorname{im}(\delta)$, hence all inclusions are equalities.

Thus, as graded A-modules,

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(\delta) = \ker(\delta \circ s) \oplus \operatorname{im}(\delta)$$

Recall that $\operatorname{im}(\delta) \subseteq \ker(\delta)$, one then shows that $\ker(\delta) = \operatorname{im}(\delta) \oplus H$, as graded A-modules, where $H = \ker(\delta \circ s) \cap \ker \delta$. Hence $X = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta) \oplus H$ as a graded A-module.

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Thus we have

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(s \circ \delta) = \operatorname{im}(\delta \circ s) \oplus \ker(\delta \circ s)$$

as graded A-modules.

We have $\ker(\delta) \subseteq \ker(s \circ \delta) \subseteq \ker(\delta \circ s \circ \delta) = \ker(\delta)$, hence all inclusions are equalities. Similarly, $\operatorname{im}(\delta) = \operatorname{im}(\delta \circ s \circ \delta) \subseteq \operatorname{im}(\delta \circ s) \subseteq \operatorname{im}(\delta)$, hence all inclusions are equalities.

Thus, as graded A-modules,

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(\delta) = \ker(\delta \circ s) \oplus \operatorname{im}(\delta)$$

Recall that $\operatorname{im}(\delta) \subseteq \ker(\delta)$, one then shows that $\ker(\delta) = \operatorname{im}(\delta) \oplus H$, as graded A-modules, where $H = \ker(\delta \circ s) \cap \ker \delta$. Hence $X = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta) \oplus H$ as a graded A-module.

Since $H \subseteq \ker(\delta)$, the graded submodule H of X is in fact a subcomplex of X with zero differential.

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Thus we have

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(s \circ \delta) = \operatorname{im}(\delta \circ s) \oplus \ker(\delta \circ s)$$

as graded A-modules.

We have $\ker(\delta) \subseteq \ker(s \circ \delta) \subseteq \ker(\delta \circ s \circ \delta) = \ker(\delta)$, hence all inclusions are equalities. Similarly, $\operatorname{im}(\delta) = \operatorname{im}(\delta \circ s \circ \delta) \subseteq \operatorname{im}(\delta \circ s) \subseteq \operatorname{im}(\delta)$, hence all inclusions are equalities.

Thus, as graded A-modules,

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(\delta) = \ker(\delta \circ s) \oplus \operatorname{im}(\delta)$$

Recall that $\operatorname{im}(\delta) \subseteq \ker(\delta)$, one then shows that $\ker(\delta) = \operatorname{im}(\delta) \oplus H$, as graded A-modules, where $H = \ker(\delta \circ s) \cap \ker \delta$. Hence $X = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta) \oplus H$ as a graded A-module.

Since $H \subseteq \ker(\delta)$, the graded submodule H of X is in fact a subcomplex of X with zero differential. By construction, $H \cong H_*(X)$.

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Thus we have

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(s \circ \delta) = \operatorname{im}(\delta \circ s) \oplus \ker(\delta \circ s)$$

as graded A-modules.

We have $\ker(\delta) \subseteq \ker(s \circ \delta) \subseteq \ker(\delta \circ s \circ \delta) = \ker(\delta)$, hence all inclusions are equalities. Similarly, $\operatorname{im}(\delta) = \operatorname{im}(\delta \circ s \circ \delta) \subseteq \operatorname{im}(\delta \circ s) \subseteq \operatorname{im}(\delta)$, hence all inclusions are equalities.

Thus, as graded A-modules,

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(\delta) = \ker(\delta \circ s) \oplus \operatorname{im}(\delta)$$

Recall that $\operatorname{im}(\delta) \subseteq \ker(\delta)$, one then shows that $\ker(\delta) = \operatorname{im}(\delta) \oplus H$, as graded A-modules, where $H = \ker(\delta \circ s) \cap \ker \delta$. Hence $X = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta) \oplus H$ as a graded A-module.

Since $H \subseteq \ker(\delta)$, the graded submodule H of X is in fact a subcomplex of X with zero differential. By construction, $H \cong H_*(X)$.

The graded submodule $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ is a subcomplex of X

Proof of Prop. 1.18.15 (contd.)

2/3

Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Then $\delta \circ s$ and $s \circ \delta$ are graded idempotent endomorphisms of degree 0 of X. Thus we have

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(s \circ \delta) = \operatorname{im}(\delta \circ s) \oplus \ker(\delta \circ s)$$

as graded A-modules.

We have $\ker(\delta) \subseteq \ker(s \circ \delta) \subseteq \ker(\delta \circ s \circ \delta) = \ker(\delta)$, hence all inclusions are equalities. Similarly, $\operatorname{im}(\delta) = \operatorname{im}(\delta \circ s \circ \delta) \subseteq \operatorname{im}(\delta \circ s) \subseteq \operatorname{im}(\delta)$, hence all inclusions are equalities.

Thus, as graded A-modules,

$$X = \operatorname{im}(s \circ \delta) \oplus \ker(\delta) = \ker(\delta \circ s) \oplus \operatorname{im}(\delta)$$

Recall that $\operatorname{im}(\delta) \subseteq \ker(\delta)$, one then shows that $\ker(\delta) = \operatorname{im}(\delta) \oplus H$, as graded A-modules, where $H = \ker(\delta \circ s) \cap \ker \delta$. Hence $X = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta) \oplus H$ as a graded A-module.

Since $H \subseteq \ker(\delta)$, the graded submodule H of X is in fact a subcomplex of X with zero differential. By construction, $H \cong H_*(X)$.

The graded submodule $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ is a subcomplex of X because δ maps $\operatorname{im}(\delta)$ to zero and $\operatorname{im}(s \circ \delta)$ to $\operatorname{im}(\delta \circ s \circ \delta) = \operatorname{im}(\delta)$.

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that *Y* is contractible.

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that Y is contractible. On $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ we define the homotopy h such that h is zero on the summand $\operatorname{im}(s \circ \delta)$ and equal to s on the summand $\operatorname{im}(\delta)$.

$$idy = Soh + ho\delta$$

 Sly

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that Y is contractible. On $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ we define the homotopy h such that h is zero on the summand $\operatorname{im}(s \circ \delta)$ and equal to s on the summand $\operatorname{im}(\delta)$. A straightforward verification shows that Y is contractible with this homotopy.

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that Y is contractible. On $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ we define the homotopy h such that h is zero on the summand $\operatorname{im}(s \circ \delta)$ and equal to s on the summand $\operatorname{im}(\delta)$. A straightforward verification shows that Y is contractible with this homotopy.

For the converse, we have $X \cong Y \oplus H_*(X)$ for a contractible complex (Y, ε) ;

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that Y is contractible. On $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ we define the homotopy h such that h is zero on the summand $\operatorname{im}(s \circ \delta)$ and equal to s on the summand $\operatorname{im}(\delta)$. A straightforward verification shows that Y is contractible with this homotopy.

For the converse, we have $X \cong Y \oplus H_*(X)$ for a contractible complex (Y, ε) ; this complex is split acyclic.

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that Y is contractible. On $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ we define the homotopy h such that h is zero on the summand $\operatorname{im}(s \circ \delta)$ and equal to s on the summand $\operatorname{im}(\delta)$. A straightforward verification shows that Y is contractible with this homotopy.

For the converse, we have $X \cong Y \oplus H_*(X)$ for a contractible complex (Y, ε) ; this complex is split acyclic. Indeed, Y is acyclic by 1.18.3 (iii),

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that Y is contractible. On $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ we define the homotopy h such that h is zero on the summand $\operatorname{im}(s \circ \delta)$ and equal to s on the summand $\operatorname{im}(\delta)$. A straightforward verification shows that Y is contractible with this homotopy.

For the converse, we have $X\cong Y\oplus H_*(X)$ for a contractible complex (Y,ε) ; this complex is split acyclic. Indeed, Y is acyclic by 1.18.3 (iii), and if h is a homotopy on Y such that $\varepsilon\circ h+h\circ\varepsilon=\mathrm{id}_Y$,

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that Y is contractible. On $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ we define the homotopy h such that h is zero on the summand $\operatorname{im}(s \circ \delta)$ and equal to s on the summand $\operatorname{im}(\delta)$. A straightforward verification shows that Y is contractible with this homotopy.

For the converse, we have $X \cong Y \oplus H_*(X)$ for a contractible complex (Y, ε) ; this complex is split acyclic. Indeed, Y is acyclic by 1.18.3 (iii), and if h is a homotopy on Y such that $\varepsilon \circ h + h \circ \varepsilon = \mathrm{id}_Y$, then composing by ε on the right yields $\varepsilon \circ h \circ \varepsilon = \varepsilon$,

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that Y is contractible. On $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ we define the homotopy h such that h is zero on the summand $\operatorname{im}(s \circ \delta)$ and equal to s on the summand $\operatorname{im}(\delta)$. A straightforward verification shows that Y is contractible with this homotopy.

For the converse, we have $X\cong Y\oplus H_*(X)$ for a contractible complex (Y,ε) ; this complex is split acyclic. Indeed, Y is acyclic by 1.18.3 (iii), and if h is a homotopy on Y such that $\varepsilon\circ h+h\circ\varepsilon=\mathrm{id}_Y$, then composing by ε on the right yields $\varepsilon\circ h\circ\varepsilon=\varepsilon$, hence Y is split.

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that Y is contractible. On $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ we define the homotopy h such that h is zero on the summand $\operatorname{im}(s \circ \delta)$ and equal to s on the summand $\operatorname{im}(\delta)$. A straightforward verification shows that Y is contractible with this homotopy.

For the converse, we have $X \cong Y \oplus H_*(X)$ for a contractible complex (Y, ε) ; this complex is split acyclic. Indeed, Y is acyclic by 1.18.3 (iii), and if h is a homotopy on Y such that $\varepsilon \circ h + h \circ \varepsilon = \mathrm{id}_Y$, then composing by ε on the right yields $\varepsilon \circ h \circ \varepsilon = \varepsilon$, hence Y is split.

Now, since $X \cong Y \oplus H_*(X)$, we can find chain maps $f: X \hookrightarrow Y \oplus H_*(X): g$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_{Y \oplus H_*(X)}$.

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that Y is contractible. On $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ we define the homotopy h such that h is zero on the summand $\operatorname{im}(s \circ \delta)$ and equal to s on the summand $\operatorname{im}(\delta)$. A straightforward verification shows that Y is contractible with this homotopy.

For the converse, we have $X \cong Y \oplus H_*(X)$ for a contractible complex (Y, ε) ; this complex is split acyclic. Indeed, Y is acyclic by 1.18.3 (iii), and if h is a homotopy on Y such that $\varepsilon \circ h + h \circ \varepsilon = \mathrm{id}_Y$, then composing by ε on the right yields $\varepsilon \circ h \circ \varepsilon = \varepsilon$, hence Y is split.

Now, since $X \cong Y \oplus H_*(X)$, we can find chain maps $f: X \hookrightarrow Y \oplus H_*(X): g$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_{Y \oplus H_*(X)}$. Then

$$\delta = \delta \circ \mathrm{id}_X = \delta \circ g \circ f = g \circ \varepsilon \circ f = g \circ \varepsilon \circ h \circ \varepsilon \circ f = \delta \circ g \circ h \circ f \circ \delta$$

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that Y is contractible. On $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ we define the homotopy h such that h is zero on the summand $\operatorname{im}(s \circ \delta)$ and equal to s on the summand $\operatorname{im}(\delta)$. A straightforward verification shows that Y is contractible with this homotopy.

For the converse, we have $X \cong Y \oplus H_*(X)$ for a contractible complex (Y, ε) ; this complex is split acyclic. Indeed, Y is acyclic by 1.18.3 (iii), and if h is a homotopy on Y such that $\varepsilon \circ h + h \circ \varepsilon = \mathrm{id}_Y$, then composing by ε on the right yields $\varepsilon \circ h \circ \varepsilon = \varepsilon$, hence Y is split.

Now, since $X \cong Y \oplus H_*(X)$, we can find chain maps $f: X \hookrightarrow Y \oplus H_*(X): g$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_{Y \oplus H_*(X)}$. Then

$$\delta = \delta \circ \mathrm{id}_X = \delta \circ g \circ f = g \circ \varepsilon \circ f = g \circ \varepsilon \circ h \circ \varepsilon \circ f = \delta \circ g \circ h \circ f \circ \delta$$

Hence *X* is split

Proof of Prop. 1.18.15 (contd.)

3/3

We need to show that Y is contractible. On $Y = \operatorname{im}(s \circ \delta) \oplus \operatorname{im}(\delta)$ we define the homotopy h such that h is zero on the summand $\operatorname{im}(s \circ \delta)$ and equal to s on the summand $\operatorname{im}(\delta)$. A straightforward verification shows that Y is contractible with this homotopy.

For the converse, we have $X \cong Y \oplus H_*(X)$ for a contractible complex (Y, ε) ; this complex is split acyclic. Indeed, Y is acyclic by 1.18.3 (iii), and if h is a homotopy on Y such that $\varepsilon \circ h + h \circ \varepsilon = \mathrm{id}_Y$, then composing by ε on the right yields $\varepsilon \circ h \circ \varepsilon = \varepsilon$, hence Y is split.

Now, since $X \cong Y \oplus H_*(X)$, we can find chain maps $f: X \hookrightarrow Y \oplus H_*(X): g$ such that $g \circ f = \mathrm{id}_X$ and $f \circ g = \mathrm{id}_{Y \oplus H_*(X)}$. Then

$$\delta = \delta \circ \mathrm{id}_X = \delta \circ g \circ f = g \circ \varepsilon \circ f = g \circ \varepsilon \circ h \circ \varepsilon \circ f = \delta \circ g \circ h \circ f \circ \delta$$

Hence *X* is split

The second statement follows.

Corollary 1.18.16

Let A be a k algebra, and let X, Y be split complexes of A-modules. A chain map $f: X \to Y$ is a quasi-isomorphism if and only if f is a homotopy equivalence.

Corollary 1.18.16

Let A be a k algebra, and let X, Y be split complexes of A-modules. A chain map $f: X \to Y$ is a quasi-isomorphism if and only if f is a homotopy equivalence.

Proof of Cor. 1.18.16

By 1.18.15 we have $X \cong C \oplus H_*(X)$ and $Y \cong D \oplus H_*(Y)$, where C and D are some contractible complexes.

Corollary 1.18.16

Let A be a k algebra, and let X, Y be split complexes of A-modules. A chain map $f: X \to Y$ is a quasi-isomorphism if and only if f is a homotopy equivalence.

Proof of Cor. 1.18.16

By 1.18.15 we have $X \cong C \oplus H_*(X)$ and $Y \cong D \oplus H_*(Y)$, where C and D are some contractible complexes. Therefore $X \simeq H_*(X)$ and $Y \simeq H_*(Y)$.

Corollary 1.18.16

Let A be a k algebra, and let X, Y be split complexes of A-modules. A chain map $f: X \to Y$ is a quasi-isomorphism if and only if f is a homotopy equivalence.

Proof of Cor. 1.18.16

By 1.18.15 we have $X \cong C \oplus H_*(X)$ and $Y \cong D \oplus H_*(Y)$, where C and D are some contractible complexes. Therefore $X \simeq H_*(X)$ and $Y \simeq H_*(Y)$. It follows that if f is a quasi-isomorphism, then f is a homotopy equivalence.

Corollary 1.18.16

Let A be a k algebra, and let X, Y be split complexes of A-modules. A chain map $f: X \to Y$ is a quasi-isomorphism if and only if f is a homotopy equivalence.

Proof of Cor. 1.18.16

By 1.18.15 we have $X \cong C \oplus H_*(X)$ and $Y \cong D \oplus H_*(Y)$, where C and D are some contractible complexes. Therefore $X \simeq H_*(X)$ and $Y \simeq H_*(Y)$. It follows that if f is a quasi-isomorphism, then f is a homotopy equivalence. The converse is clear by 1.18.3 (iii).

Proposition 1.18.17

Let A be a k-algebra, and let X be a bounded complex of projective A-modules such that $H_i(X)$ is projective for all integers i. Then X is split.

Proposition 1.18.17

Let A be a k-algebra, and let X be a bounded complex of projective A-modules such that $H_i(X)$ is projective for all integers i. Then X is split.

Proof of Prop. 1.18.17

If *X* is zero or consists of a single nonzero term, then $X \cong H_0(X)$, so this is trivial.

Proposition 1.18.17

Let A be a k-algebra, and let X be a bounded complex of projective A-modules such that $H_i(X)$ is projective for all integers i. Then X is split.

Proof of Prop. 1.18.17

If X is zero or consists of a single nonzero term, then $X \cong H_0(X)$, so this is trivial. We argue by induction over the length of X.

Proposition 1.18.17

Let A be a k-algebra, and let X be a bounded complex of projective A-modules such that $H_i(X)$ is projective for all integers i. Then X is split.

Proof of Prop. 1.18.17

If *X* is zero or consists of a single nonzero term, then $X \cong H_0(X)$, so this is trivial. We argue by induction over the length of *X*.

Suppose that *X* is nonzero, and let *m* be the smallest integer such that $X_m \neq \{0\}$.

Proposition 1.18.17

Let A be a k-algebra, and let X be a bounded complex of projective A-modules such that $H_i(X)$ is projective for all integers i. Then X is split.

Proof of Prop. 1.18.17

If *X* is zero or consists of a single nonzero term, then $X \cong H_0(X)$, so this is trivial. We argue by induction over the length of *X*.

Suppose that X is nonzero, and let m be the smallest integer such that $X_m \neq \{0\}$. Denote by $\delta = (\delta_i)_{i \in \mathbb{Z}}$ the differential of X.

Proposition 1.18.17

Let A be a k-algebra, and let X be a bounded complex of projective A-modules such that $H_i(X)$ is projective for all integers i. Then X is split.

Proof of Prop. 1.18.17

If X is zero or consists of a single nonzero term, then $X \cong H_0(X)$, so this is trivial. We argue by induction over the length of X.

Suppose that X is nonzero, and let m be the smallest integer such that $X_m \neq \{0\}$. Denote by $\delta = (\delta_i)_{i \in \mathbb{Z}}$ the differential of X.

We have $H_m(X) = X_m / \operatorname{im}(\delta_{m+1})$, which is projective by the assumptions.

Proposition 1.18.17

Let A be a k-algebra, and let X be a bounded complex of projective A-modules such that $H_i(X)$ is projective for all integers i. Then X is split.

Proof of Prop. 1.18.17

If *X* is zero or consists of a single nonzero term, then $X \cong H_0(X)$, so this is trivial. We argue by induction over the length of *X*.

Suppose that X is nonzero, and let m be the smallest integer such that $X_m \neq \{0\}$. Denote by $\delta = (\delta_i)_{i \in \mathbb{Z}}$ the differential of X.

We have $H_m(X) = X_m / \operatorname{im}(\delta_{m+1})$, which is projective by the assumptions. Thus the map $X_m \to X_m / \operatorname{im}(\delta_{m+1})$ is split surjective.

Proposition 1.18.17

Let A be a k-algebra, and let X be a bounded complex of projective A-modules such that $H_i(X)$ is projective for all integers i. Then X is split.

Proof of Prop. 1.18.17

If X is zero or consists of a single nonzero term, then $X \cong H_0(X)$, so this is trivial. We argue by induction over the length of X.

Suppose that X is nonzero, and let m be the smallest integer such that $X_m \neq \{0\}$. Denote by $\delta = (\delta_i)_{i \in \mathbb{Z}}$ the differential of X.

We have $H_m(X) = X_m / \operatorname{im}(\delta_{m+1})$, which is projective by the assumptions. Thus the map $X_m \to X_m / \operatorname{im}(\delta_{m+1})$ is split surjective. It follows that $X_m \cong \operatorname{im}(\delta_{m+1}) \oplus H_m(X)$.

Proposition 1.18.17

Let A be a k-algebra, and let X be a bounded complex of projective A-modules such that $H_i(X)$ is projective for all integers i. Then X is split.

Proof of Prop. 1.18.17

If *X* is zero or consists of a single nonzero term, then $X \cong H_0(X)$, so this is trivial. We argue by induction over the length of *X*.

Suppose that X is nonzero, and let m be the smallest integer such that $X_m \neq \{0\}$. Denote by $\delta = (\delta_i)_{i \in \mathbb{Z}}$ the differential of X.

We have $H_m(X) = X_m / \operatorname{im}(\delta_{m+1})$, which is projective by the assumptions. Thus the map $X_m \to X_m / \operatorname{im}(\delta_{m+1})$ is split surjective. It follows that $X_m \cong \operatorname{im}(\delta_{m+1}) \oplus H_m(X)$.

Since X_m is projective, so is $\operatorname{im}(\delta_{m+1})$, and hence the map $\delta_{m+1}: X_{m+1} \to \operatorname{im}(\delta_{m+1})$ is split surjective.

Proposition 1.18.17

Let A be a k-algebra, and let X be a bounded complex of projective A-modules such that $H_i(X)$ is projective for all integers i. Then X is split.

Proof of Prop. 1.18.17

If *X* is zero or consists of a single nonzero term, then $X \cong H_0(X)$, so this is trivial. We argue by induction over the length of *X*.

Suppose that X is nonzero, and let m be the smallest integer such that $X_m \neq \{0\}$. Denote by $\delta = (\delta_i)_{i \in \mathbb{Z}}$ the differential of X.

We have $H_m(X) = X_m / \operatorname{im}(\delta_{m+1})$, which is projective by the assumptions. Thus the map $X_m \to X_m / \operatorname{im}(\delta_{m+1})$ is split surjective. It follows that $X_m \cong \operatorname{im}(\delta_{m+1}) \oplus H_m(X)$.

Since X_m is projective, so is $\operatorname{im}(\delta_{m+1})$, and hence the map $\delta_{m+1}: X_{m+1} \to \operatorname{im}(\delta_{m+1})$ is split surjective. Thus $X_{m+1} \cong \operatorname{im}(\delta_{m+1}) \oplus \ker(\delta_{m+1})$.

Proposition 1.18.17

Let A be a k-algebra, and let X be a bounded complex of projective A-modules such that $H_i(X)$ is projective for all integers i. Then X is split.

Proof of Prop. 1.18.17

If *X* is zero or consists of a single nonzero term, then $X \cong H_0(X)$, so this is trivial. We argue by induction over the length of *X*.

Suppose that X is nonzero, and let m be the smallest integer such that $X_m \neq \{0\}$. Denote by $\delta = (\delta_i)_{i \in \mathbb{Z}}$ the differential of X.

We have $H_m(X) = X_m / \operatorname{im}(\delta_{m+1})$, which is projective by the assumptions. Thus the map $X_m \to X_m / \operatorname{im}(\delta_{m+1})$ is split surjective. It follows that $X_m \cong \operatorname{im}(\delta_{m+1}) \oplus H_m(X)$.

Since X_m is projective, so is $\operatorname{im}(\delta_{m+1})$, and hence the map $\delta_{m+1}: X_{m+1} \to \operatorname{im}(\delta_{m+1})$ is split surjective. Thus $X_{m+1} \cong \operatorname{im}(\delta_{m+1}) \oplus \ker(\delta_{m+1})$. Hence $\ker(\delta_{m+1})$ is projective as well.

Proof of Prop. 1.18.17 (contd.)

2/2

It follows that the complex *X* is the direct sum of the following complexes

Proof of Prop. 1.18.17 (contd.)

2/2

It follows that the complex *X* is the direct sum of the following complexes

• $H_m(X)$, viewed as a complex concentrated in degree m

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow H_m(X) \longrightarrow 0 \longrightarrow \cdots$$

Proof of Prop. 1.18.17 (contd.)

2/2

It follows that the complex *X* is the direct sum of the following complexes

• $H_m(X)$, viewed as a complex concentrated in degree m

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow H_m(X) \longrightarrow 0 \longrightarrow \cdots$$

• a contractible complex, where the two terms are in degree m + 1 and m, and

$$\cdots \longrightarrow 0 \longrightarrow \operatorname{im}(\delta_{n+1}) \longrightarrow \operatorname{im}(\delta_{n+1}) \longrightarrow 0 \longrightarrow \cdots$$

Proof of Prop. 1.18.17 (contd.)

2/2

It follows that the complex *X* is the direct sum of the following complexes

- $H_m(X)$, viewed as a complex concentrated in degree m
 - $\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow H_m(X) \longrightarrow 0 \longrightarrow \cdots$
- a contractible complex, where the two terms are in degree m + 1 and m, and

$$\cdots \longrightarrow 0 \longrightarrow \operatorname{im}(\delta_{n+1}) \longrightarrow \operatorname{im}(\delta_{n+1}) \longrightarrow 0 \longrightarrow \cdots$$

• a complex X' that coincides with X in all degrees, except in degree m+1, where $X'_{m+1} = \ker \delta_{m+1}$ and $X'_m = \{0\}$.

$$\cdots \longrightarrow X_{m+2} \longrightarrow \ker \delta_{m+1} \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

Proof of Prop. 1.18.17 (contd.)

2/2

It follows that the complex *X* is the direct sum of the following complexes

• $H_m(X)$, viewed as a complex concentrated in degree m

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow H_m(X) \longrightarrow 0 \longrightarrow \cdots$$

• a contractible complex, where the two terms are in degree m + 1 and m, and

$$\cdots \longrightarrow 0 \longrightarrow \operatorname{im}(\delta_{n+1}) \longrightarrow \operatorname{im}(\delta_{n+1}) \longrightarrow 0 \longrightarrow \cdots$$

• a complex X' that coincides with X in all degrees, except in degree m+1, where $X'_{m+1} = \ker \delta_{m+1}$ and $X'_m = \{0\}$.

$$\cdots \longrightarrow X_{m+2} \longrightarrow \ker \delta_{m+1} \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

All terms and homology of X' are still projective, and hence X' is split by induction.

Proof of Prop. 1.18.17 (contd.)

2/2

It follows that the complex *X* is the direct sum of the following complexes

• $H_m(X)$, viewed as a complex concentrated in degree m

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow H_m(X) \longrightarrow 0 \longrightarrow \cdots$$

• a contractible complex, where the two terms are in degree m + 1 and m, and

$$\cdots \longrightarrow 0 \longrightarrow \operatorname{im}(\delta_{n+1}) \longrightarrow \operatorname{im}(\delta_{n+1}) \longrightarrow 0 \longrightarrow \cdots$$

• a complex X' that coincides with X in all degrees, except in degree m+1, where $X'_{m+1} = \ker \delta_{m+1}$ and $X'_m = \{0\}$.

$$\cdots \longrightarrow X_{m+2} \longrightarrow \ker \delta_{m+1} \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

All terms and homology of X' are still projective, and hence X' is split by induction. X is therefore split by 1.18.15 (i) and the result follows.

Proposition 1.18.18

Let *C* be an abelian category and let

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$$

be a degreewise split short exact sequence of chain complexes over \mathscr{C} .

- (i) The chain map f is a homotopy equivalence if and only if $Z \simeq 0$. In that case, f is a split monomorphism.
- (ii) The chain map g is a homotopy equivalence if and only if $X \simeq 0$. In that case, g is a split epimorphism.

Proposition 1.18.18

Let *C* be an abelian category and let

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$$

be a degreewise split short exact sequence of chain complexes over \mathscr{C} .

- (i) The chain map f is a homotopy equivalence if and only if $Z \simeq 0$. In that case, f is a split monomorphism.
- (ii) The chain map g is a homotopy equivalence if and only if $X \simeq 0$. In that case, g is a split epimorphism.

Proof of Prop. 1.18.18

Suppose that f is a homotopy equivalence, and let $f': Y \to X$ be a homotopy inverse of f.

Proposition 1.18.18

Let & be an abelian category and let

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$$

be a degreewise split short exact sequence of chain complexes over \mathscr{C} .

- (i) The chain map f is a homotopy equivalence if and only if $Z \simeq 0$. In that case, f is a split monomorphism.
- (ii) The chain map g is a homotopy equivalence if and only if $X \simeq 0$. In that case, g is a split epimorphism.

Proof of Prop. 1.18.18

Suppose that f is a homotopy equivalence, and let $f': Y \to X$ be a homotopy inverse of f. Then $f' \circ f \sim \operatorname{id}_X$, or equivalently $\operatorname{id}_X - f' \circ f \sim 0$.

Proposition 1.18.18

Let $\mathscr C$ be an abelian category and let

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$$

be a degreewise split short exact sequence of chain complexes over \mathscr{C} .

- (i) The chain map f is a homotopy equivalence if and only if $Z\simeq 0$. In that case, f is a split monomorphism.
- (ii) The chain map g is a homotopy equivalence if and only if $X \simeq 0$. In that case, g is a split epimorphism.

Proof of Prop. 1.18.18

Suppose that f is a homotopy equivalence, and let $f': Y \to X$ be a homotopy inverse of f. Then $f' \circ f \sim \operatorname{id}_X$, or equivalently $\operatorname{id}_X - f' \circ f \sim 0$. By 1.18.13, $\operatorname{id}_X - f' \circ f$ factors through f since f is a degreewise split monomorphism.

Proposition 1.18.18

Let $\mathscr C$ be an abelian category and let

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$$

be a degreewise split short exact sequence of chain complexes over \mathscr{C} .

- (i) The chain map f is a homotopy equivalence if and only if $Z\simeq 0$. In that case, f is a split monomorphism.
- (ii) The chain map g is a homotopy equivalence if and only if $X \simeq 0$. In that case, g is a split epimorphism.

Proof of Prop. 1.18.18

Suppose that f is a homotopy equivalence, and let $f': Y \to X$ be a homotopy inverse of f. Then $f' \circ f \sim \operatorname{id}_X$, or equivalently $\operatorname{id}_X - f' \circ f \sim 0$. By 1.18.13, $\operatorname{id}_X - f' \circ f$ factors through f since f is a degreewise split monomorphism. Let $f: Y \to X$ be a chain map such that $\operatorname{id}_X - f' \circ f = f \circ f$.

Proposition 1.18.18

Let $\mathscr C$ be an abelian category and let

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$$

be a degreewise split short exact sequence of chain complexes over \mathscr{C} .

- (i) The chain map f is a homotopy equivalence if and only if $Z\simeq 0$. In that case, f is a split monomorphism.
- (ii) The chain map g is a homotopy equivalence if and only if $X \simeq 0$. In that case, g is a split epimorphism.

Proof of Prop. 1.18.18

Suppose that f is a homotopy equivalence, and let $f': Y \to X$ be a homotopy inverse of f. Then $f' \circ f \sim \operatorname{id}_X$, or equivalently $\operatorname{id}_X - f' \circ f \sim 0$. By 1.18.13, $\operatorname{id}_X - f' \circ f$ factors through f since f is a degreewise split monomorphism. Let $f: Y \to X$ be a chain map such that $\operatorname{id}_X - f' \circ f = f \circ f$. Then $\operatorname{id}_X = (f' + f) \circ f$,

Proposition 1.18.18

Let *C* be an abelian category and let

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$$

be a degreewise split short exact sequence of chain complexes over \mathscr{C} .

- (i) The chain map f is a homotopy equivalence if and only if $Z\simeq 0$. In that case, f is a split monomorphism.
- (ii) The chain map g is a homotopy equivalence if and only if $X \simeq 0$. In that case, g is a split epimorphism.

Proof of Prop. 1.18.18

Suppose that f is a homotopy equivalence, and let $f': Y \to X$ be a homotopy inverse of f. Then $f' \circ f \sim \operatorname{id}_X$, or equivalently $\operatorname{id}_X - f' \circ f \sim 0$. By 1.18.13, $\operatorname{id}_X - f' \circ f$ factors through f since f is a degreewise split monomorphism. Let $f: Y \to X$ be a chain map such that $\operatorname{id}_X - f' \circ f = f \circ f$. Then $\operatorname{id}_X = (f' + f) \circ f$, hence f is split as a chain map with retraction f' + f.

Proposition 1.18.18

Let & be an abelian category and let

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \stackrel{g}{\longrightarrow} Z \longrightarrow 0$$

be a degreewise split short exact sequence of chain complexes over \mathscr{C} .

- (i) The chain map f is a homotopy equivalence if and only if $Z\simeq 0$. In that case, f is a split monomorphism.
- (ii) The chain map g is a homotopy equivalence if and only if $X \simeq 0$. In that case, g is a split epimorphism.

Proof of Prop. 1.18.18

Suppose that f is a homotopy equivalence, and let $f': Y \to X$ be a homotopy inverse of f. Then $f' \circ f \sim \operatorname{id}_X$, or equivalently $\operatorname{id}_X - f' \circ f \sim 0$. By 1.18.13, $\operatorname{id}_X - f' \circ f$ factors through f since f is a degreewise split monomorphism. Let $f: Y \to X$ be a chain map such that $\operatorname{id}_X - f' \circ f = f \circ f$. Then $\operatorname{id}_X = (f' + f) \circ f$, hence f is split as a chain map with retraction f' + f. Hence, f and g induce an isomorphism of the given exact sequence with

$$0 \longrightarrow X \stackrel{i}{\longrightarrow} X \oplus Z \stackrel{p}{\longrightarrow} Z \longrightarrow 0$$

Proof of Prop. 1.18.18 (contd.)

2/2

Here i and p are the canonical maps, and i remains a homotopy equivalence, say with homotopy inverse q.

Proof of Prop. 1.18.18 (contd.)

2/2

Here i and p are the canonical maps, and i remains a homotopy equivalence, say with homotopy inverse q. Let π and i be the canonical retract and section of i and p respectively, we then have $q \sim \pi$.

2/2

Here i and p are the canonical maps, and i remains a homotopy equivalence, say with homotopy inverse q. Let π and ι be the canonical retract and section of i and p respectively, we then have $q \sim \pi$. Now

$$\mathrm{id}_Z = p \circ \iota = p \circ \mathrm{id}_{X \oplus Z} \circ \iota \sim p \circ (i \circ q) \circ \iota \sim p \circ i \circ (\pi \circ \iota) = p \circ i \circ 0 = 0$$

2/2

Here i and p are the canonical maps, and i remains a homotopy equivalence, say with homotopy inverse q. Let π and i be the canonical retract and section of i and p respectively, we then have $q \sim \pi$. Now

$$\mathrm{id}_Z = p \circ \iota = p \circ \mathrm{id}_{X \oplus Z} \circ \iota \sim p \circ (i \circ q) \circ \iota \sim p \circ i \circ (\pi \circ \iota) = p \circ i \circ 0 = 0$$

Hence $Z \simeq 0$.

Proof of Prop. 1.18.18 (contd.)

2/2

Here i and p are the canonical maps, and i remains a homotopy equivalence, say with homotopy inverse q. Let π and i be the canonical retract and section of i and p respectively, we then have $q \sim \pi$. Now

$$\mathrm{id}_Z = p \circ \iota = p \circ \mathrm{id}_{X \oplus Z} \circ \iota \sim p \circ (i \circ q) \circ \iota \sim p \circ i \circ (\pi \circ \iota) = p \circ i \circ 0 = 0$$

Hence $Z \simeq 0$.

Conversely, suppose that $Z \simeq 0$.

2/2

Here i and p are the canonical maps, and i remains a homotopy equivalence, say with homotopy inverse q. Let π and i be the canonical retract and section of i and p respectively, we then have $q \sim \pi$. Now

$$\mathrm{id}_{Z} = p \circ \iota = p \circ \mathrm{id}_{X \oplus Z} \circ \iota \sim p \circ (i \circ q) \circ \iota \sim p \circ i \circ (\pi \circ \iota) = p \circ i \circ 0 = 0$$

Hence $Z \simeq 0$.

Conversely, suppose that $Z\simeq 0$. Since g is degreewise split surjective, it follows from 1.18.12 (ii) that g is split surjective as a chain map.

2/2

Here i and p are the canonical maps, and i remains a homotopy equivalence, say with homotopy inverse q. Let π and i be the canonical retract and section of i and p respectively, we then have $q \sim \pi$. Now

$$\mathrm{id}_{Z} = p \circ \iota = p \circ \mathrm{id}_{X \oplus Z} \circ \iota \sim p \circ (i \circ q) \circ \iota \sim p \circ i \circ (\pi \circ \iota) = p \circ i \circ 0 = 0$$

Hence $Z \simeq 0$.

Conversely, suppose that $Z\simeq 0$. Since g is degreewise split surjective, it follows from 1.18.12 (ii) that g is split surjective as a chain map. Thus f and g induce an isomorphism $Y\simeq X\oplus Z$,

Proof of Prop. 1.18.18 (contd.)

2/2

Here i and p are the canonical maps, and i remains a homotopy equivalence, say with homotopy inverse q. Let π and i be the canonical retract and section of i and p respectively, we then have $q \sim \pi$. Now

$$\mathrm{id}_{Z} = p \circ \iota = p \circ \mathrm{id}_{X \oplus Z} \circ \iota \sim p \circ (i \circ q) \circ \iota \sim p \circ i \circ (\pi \circ \iota) = p \circ i \circ 0 = 0$$

Hence $Z \simeq 0$.

Conversely, suppose that $Z\simeq 0$. Since g is degreewise split surjective, it follows from 1.18.12 (ii) that g is split surjective as a chain map. Thus f and g induce an isomorphism $Y\simeq X\oplus Z$, and since $Z\simeq 0$ this implies that f is a homotopy equivalence.

Proof of Prop. 1.18.18 (contd.)

2/2

Here i and p are the canonical maps, and i remains a homotopy equivalence, say with homotopy inverse q. Let π and i be the canonical retract and section of i and p respectively, we then have $q \sim \pi$. Now

$$\mathrm{id}_{Z} = p \circ \iota = p \circ \mathrm{id}_{X \oplus Z} \circ \iota \sim p \circ (i \circ q) \circ \iota \sim p \circ i \circ (\pi \circ \iota) = p \circ i \circ 0 = 0$$

Hence $Z \simeq 0$.

Conversely, suppose that $Z\simeq 0$. Since g is degreewise split surjective, it follows from 1.18.12 (ii) that g is split surjective as a chain map. Thus f and g induce an isomorphism $Y\simeq X\oplus Z$, and since $Z\simeq 0$ this implies that f is a homotopy equivalence. This shows (i), and a similar argument proves (ii).

Corollary 1.18.19

Let X, Y be chain complexes over an abelian category \mathscr{C} .

Corollary 1.18.19

Let X, Y be chain complexes over an abelian category $\mathscr C$. We have $X \simeq Y$ if and only if there are contractible complexes P, Q such that $X \oplus P \cong Y \oplus Q$ in $\mathsf{Ch}(\mathscr C)$.

Corollary 1.18.19

Let X, Y be chain complexes over an abelian category $\mathscr C$. We have $X \simeq Y$ if and only if there are contractible complexes P, Q such that $X \oplus P \cong Y \oplus Q$ in $\mathsf{Ch}(\mathscr C)$.

In that case, if the complexes X, Y are both bounded above (resp. bounded below, bounded), then the complexes P, Q can be chosen to be bounded above (resp. bounded below, bounded), too.

Corollary 1.18.19

Let X, Y be chain complexes over an abelian category $\mathscr C$. We have $X \simeq Y$ if and only if there are contractible complexes P, Q such that $X \oplus P \cong Y \oplus Q$ in $\mathsf{Ch}(\mathscr C)$.

In that case, if the complexes X, Y are both bounded above (resp. bounded below, bounded), then the complexes P, Q can be chosen to be bounded above (resp. bounded below, bounded), too.

Proof of Cor. 1.18.19

Suppose that $f: X \to Y$ is a homotopy equivalence.

Corollary 1.18.19

Let X, Y be chain complexes over an abelian category $\mathscr C$. We have $X \simeq Y$ if and only if there are contractible complexes P, Q such that $X \oplus P \cong Y \oplus Q$ in $\mathsf{Ch}(\mathscr C)$.

In that case, if the complexes X, Y are both bounded above (resp. bounded below, bounded), then the complexes P, Q can be chosen to be bounded above (resp. bounded below, bounded), too.

Proof of Cor. 1.18.19

Suppose that $f: X \to Y$ is a homotopy equivalence. Set P = C(Y)[-1] and $p = p_Y$.

Corollary 1.18.19

Let X, Y be chain complexes over an abelian category $\mathscr C$. We have $X \simeq Y$ if and only if there are contractible complexes P, Q such that $X \oplus P \cong Y \oplus Q$ in $\mathsf{Ch}(\mathscr C)$.

In that case, if the complexes X, Y are both bounded above (resp. bounded below, bounded), then the complexes P, Q can be chosen to be bounded above (resp. bounded below, bounded), too.

Proof of Cor. 1.18.19

Suppose that $f: X \to Y$ is a homotopy equivalence. Set P = C(Y)[-1] and $p = p_Y$. Note that p is a degreewise split epimorphism.

Corollary 1.18.19

Let X, Y be chain complexes over an abelian category $\mathscr C$. We have $X \simeq Y$ if and only if there are contractible complexes P, Q such that $X \oplus P \cong Y \oplus Q$ in $\mathsf{Ch}(\mathscr C)$.

In that case, if the complexes X, Y are both bounded above (resp. bounded below, bounded), then the complexes P, Q can be chosen to be bounded above (resp. bounded below, bounded), too.

Proof of Cor. 1.18.19

Suppose that $f:X\to Y$ is a homotopy equivalence. Set P=C(Y)[-1] and $p=p_Y$. Note that p is a degreewise split epimorphism. Thus the chain map $(f,p):X\oplus P\to Y$ is a degreewise split epimorphism.

Corollary 1.18.19

Let X, Y be chain complexes over an abelian category $\mathscr C$. We have $X \simeq Y$ if and only if there are contractible complexes P, Q such that $X \oplus P \cong Y \oplus Q$ in $\mathsf{Ch}(\mathscr C)$.

In that case, if the complexes X, Y are both bounded above (resp. bounded below, bounded), then the complexes P, Q can be chosen to be bounded above (resp. bounded below, bounded), too.

Proof of Cor. 1.18.19

Suppose that $f:X\to Y$ is a homotopy equivalence. Set P=C(Y)[-1] and $p=p_Y$. Note that p is a degreewise split epimorphism. Thus the chain map $(f,p):X\oplus P\to Y$ is a degreewise split epimorphism. Since $P\simeq 0$, the chain map (f,p) is still a homotopy equivalence.

Corollary 1.18.19

Let X, Y be chain complexes over an abelian category $\mathscr C$. We have $X \simeq Y$ if and only if there are contractible complexes P, Q such that $X \oplus P \cong Y \oplus Q$ in $\mathsf{Ch}(\mathscr C)$.

In that case, if the complexes X, Y are both bounded above (resp. bounded below, bounded), then the complexes P, Q can be chosen to be bounded above (resp. bounded below, bounded), too.

Proof of Cor. 1.18.19

Suppose that $f: X \to Y$ is a homotopy equivalence. Set P = C(Y)[-1] and $p = p_Y$. Note that p is a degreewise split epimorphism. Thus the chain map $(f,p): X \oplus P \to Y$ is a degreewise split epimorphism. Since $P \simeq 0$, the chain map (f,p) is still a homotopy equivalence. By 1.18.18, the complex $Q = \ker(f,p)$ satisfies $Q \simeq 0$ and $X \oplus P \cong Y \oplus Q$ in $Ch(\mathscr{C})$.

Corollary 1.18.19

Let X, Y be chain complexes over an abelian category $\mathscr C$. We have $X \simeq Y$ if and only if there are contractible complexes P, Q such that $X \oplus P \cong Y \oplus Q$ in $\mathsf{Ch}(\mathscr C)$.

In that case, if the complexes X, Y are both bounded above (resp. bounded below, bounded), then the complexes P, Q can be chosen to be bounded above (resp. bounded below, bounded), too.

Proof of Cor. 1.18.19

Suppose that $f:X\to Y$ is a homotopy equivalence. Set $P=\mathsf{C}(Y)[-1]$ and $p=p_Y$. Note that p is a degreewise split epimorphism. Thus the chain map $(f,p):X\oplus P\to Y$ is a degreewise split epimorphism. Since $P\simeq 0$, the chain map (f,p) is still a homotopy equivalence. By 1.18.18, the complex $Q=\ker(f,p)$ satisfies $Q\simeq 0$ and $X\oplus P\cong Y\oplus Q$ in $\mathsf{Ch}(\mathscr{C})$. The converse is trivial.

Corollary 1.18.19

Let X, Y be chain complexes over an abelian category $\mathscr C$. We have $X \simeq Y$ if and only if there are contractible complexes P, Q such that $X \oplus P \cong Y \oplus Q$ in $\mathsf{Ch}(\mathscr C)$.

In that case, if the complexes X, Y are both bounded above (resp. bounded below, bounded), then the complexes P, Q can be chosen to be bounded above (resp. bounded below, bounded), too.

Proof of Cor. 1.18.19

Suppose that $f: X \to Y$ is a homotopy equivalence. Set P = C(Y)[-1] and $p = p_Y$. Note that p is a degreewise split epimorphism. Thus the chain map $(f,p): X \oplus P \to Y$ is a degreewise split epimorphism. Since $P \simeq 0$, the chain map (f,p) is still a homotopy equivalence. By 1.18.18, the complex $Q = \ker(f,p)$ satisfies $Q \simeq 0$ and $X \oplus P \cong Y \oplus Q$ in $Ch(\mathscr{C})$. The converse is trivial. The last statement follows from the fact that if Y is bounded above (resp. bounded below, bounded), so is C(Y).

Corollary 1.18.20

Let \mathcal{A} be an abelian category.

- (i) Let P, Q be bounded below chain complexes consisting of projective objects in \mathscr{A} , and let $f: P \to Q$ be a chain map. Then f is a quasi-isomorphism if and only if f is a homotopy equivalence.
- (ii) Let I, J be bounded below cochain complexes consisting of injective objects in $\mathcal A$, and let $g:I\to J$ be a cochain map. Then g is a quasi-isomorphism if and only if g is a homotopy equivalence.

Corollary 1.18.20

Let \mathcal{A} be an abelian category.

- (i) Let P, Q be bounded below chain complexes consisting of projective objects in \mathscr{A} , and let $f: P \to Q$ be a chain map. Then f is a quasi-isomorphism if and only if f is a homotopy equivalence.
- (ii) Let I, J be bounded below cochain complexes consisting of injective objects in A, and let g: I → J be a cochain map. Then g is a quasi-isomorphism if and only if g is a homotopy equivalence.

Proof of Cor. 1.18.20

Suppose that f is a quasi-isomorphism.

Corollary 1.18.20

Let \mathcal{A} be an abelian category.

- (i) Let P, Q be bounded below chain complexes consisting of projective objects in \mathscr{A} , and let $f: P \to Q$ be a chain map. Then f is a quasi-isomorphism if and only if f is a homotopy equivalence.
- (ii) Let I, J be bounded below cochain complexes consisting of injective objects in A, and let g: I → J be a cochain map. Then g is a quasi-isomorphism if and only if g is a homotopy equivalence.

Proof of Cor. 1.18.20

Suppose that f is a quasi-isomorphism. Since the cone C(P) is contractible by 1.18.10, we may replace Q by $Q \oplus C(P)$ and f by $\binom{f}{i_X}$.

Corollary 1.18.20

Let \mathcal{A} be an abelian category.

- (i) Let P, Q be bounded below chain complexes consisting of projective objects in \mathscr{A} , and let $f: P \to Q$ be a chain map. Then f is a quasi-isomorphism if and only if f is a homotopy equivalence.
- (ii) Let I, J be bounded below cochain complexes consisting of injective objects in A, and let g: I → J be a cochain map. Then g is a quasi-isomorphism if and only if g is a homotopy equivalence.

Proof of Cor. 1.18.20

Suppose that f is a quasi-isomorphism. Since the cone C(P) is contractible by 1.18.10, we may replace Q by $Q \oplus C(P)$ and f by $\binom{f}{i_X}$.

Thus we may assume that f is degreewise split injective.

Corollary 1.18.20

Let $\mathcal A$ be an abelian category.

- (i) Let P, Q be bounded below chain complexes consisting of projective objects in \mathscr{A} , and let $f: P \to Q$ be a chain map. Then f is a quasi-isomorphism if and only if f is a homotopy equivalence.
- (ii) Let I, J be bounded below cochain complexes consisting of injective objects in A, and let g: I → J be a cochain map. Then g is a quasi-isomorphism if and only if g is a homotopy equivalence.

Proof of Cor. 1.18.20

Suppose that f is a quasi-isomorphism. Since the cone C(P) is contractible by 1.18.10, we may replace Q by $Q \oplus C(P)$ and f by $\begin{pmatrix} f \\ i_X \end{pmatrix}$.

Thus we may assume that f is degreewise split injective. Then the cokernel Z of f is an acyclic complex by 1.17.5.

Corollary 1.18.20

Let \mathcal{A} be an abelian category.

- (i) Let P, Q be bounded below chain complexes consisting of projective objects in \mathscr{A} , and let $f: P \to Q$ be a chain map. Then f is a quasi-isomorphism if and only if f is a homotopy equivalence.
- (ii) Let I, J be bounded below cochain complexes consisting of injective objects in A, and let g: I → J be a cochain map. Then g is a quasi-isomorphism if and only if g is a homotopy equivalence.

Proof of Cor. 1.18.20

Suppose that f is a quasi-isomorphism. Since the cone C(P) is contractible by 1.18.10, we may replace Q by $Q \oplus C(P)$ and f by $\binom{f}{i_X}$.

Thus we may assume that f is degreewise split injective. Then the cokernel Z of f is an acyclic complex by 1.17.5. By construction, Z is also a bounded below complex of projective objects,

Corollary 1.18.20

Let \mathcal{A} be an abelian category.

- (i) Let P, Q be bounded below chain complexes consisting of projective objects in \mathscr{A} , and let $f: P \to Q$ be a chain map. Then f is a quasi-isomorphism if and only if f is a homotopy equivalence.
- (ii) Let I, J be bounded below cochain complexes consisting of injective objects in A, and let g: I → J be a cochain map. Then g is a quasi-isomorphism if and only if g is a homotopy equivalence.

Proof of Cor. 1.18.20

Suppose that f is a quasi-isomorphism. Since the cone C(P) is contractible by 1.18.10, we may replace Q by $Q \oplus C(P)$ and f by $\binom{f}{i_X}$.

Thus we may assume that f is degreewise split injective. Then the cokernel Z of f is an acyclic complex by 1.17.5. By construction, Z is also a bounded below complex of projective objects, and hence Z is contractible by 1.18.8.

Corollary 1.18.20

Let $\mathcal A$ be an abelian category.

- (i) Let P, Q be bounded below chain complexes consisting of projective objects in \mathscr{A} , and let $f: P \to Q$ be a chain map. Then f is a quasi-isomorphism if and only if f is a homotopy equivalence.
- (ii) Let I, J be bounded below cochain complexes consisting of injective objects in A, and let g: I → J be a cochain map. Then g is a quasi-isomorphism if and only if g is a homotopy equivalence.

Proof of Cor. 1.18.20

Suppose that f is a quasi-isomorphism. Since the cone C(P) is contractible by 1.18.10, we may replace Q by $Q \oplus C(P)$ and f by $\binom{f}{i_X}$.

Thus we may assume that f is degreewise split injective. Then the cokernel Z of f is an acyclic complex by 1.17.5. By construction, Z is also a bounded below complex of projective objects, and hence Z is contractible by 1.18.8. It follows from 1.18.18 that f is a homotopy equivalence.

Corollary 1.18.20

Let \mathcal{A} be an abelian category.

- (i) Let P, Q be bounded below chain complexes consisting of projective objects in \mathscr{A} , and let $f: P \to Q$ be a chain map. Then f is a quasi-isomorphism if and only if f is a homotopy equivalence.
- (ii) Let I, J be bounded below cochain complexes consisting of injective objects in A, and let g: I → J be a cochain map. Then g is a quasi-isomorphism if and only if g is a homotopy equivalence.

Proof of Cor. 1.18.20

Suppose that f is a quasi-isomorphism. Since the cone C(P) is contractible by 1.18.10, we may replace Q by $Q \oplus C(P)$ and f by $\binom{f}{i_X}$.

Thus we may assume that f is degreewise split injective. Then the cokernel Z of f is an acyclic complex by 1.17.5. By construction, Z is also a bounded below complex of projective objects, and hence Z is contractible by 1.18.8. It follows from 1.18.18 that f is a homotopy equivalence. This shows (i); a similar argument proves (ii).

Let A be a k-algebra, X a complex of right A-modules, and Y, Z complexes of left A-modules.

Let *A* be a *k*-algebra, *X* a complex of right *A*-modules, and *Y*, *Z* complexes of left *A*-modules.

If $h: Y \to Z$ is a homotopy, then $id_X \otimes h$ is a homotopy from $X \otimes_A Y$ to $X \otimes_A Z$.

Let *A* be a *k*-algebra, *X* a complex of right *A*-modules, and *Y*, *Z* complexes of left *A*-modules.

If $h: Y \to Z$ is a homotopy, then $\mathrm{id}_X \otimes h$ is a homotopy from $X \otimes_A Y$ to $X \otimes_A Z$. In particular, if $Y \simeq Z$, then $X \otimes_A Y \simeq X \otimes_A Z$.

Let *A* be a *k*-algebra, *X* a complex of right *A*-modules, and *Y*, *Z* complexes of left *A*-modules.

If $h: Y \to Z$ is a homotopy, then $\mathrm{id}_X \otimes h$ is a homotopy from $X \otimes_A Y$ to $X \otimes_A Z$. In particular, if $Y \simeq Z$, then $X \otimes_A Y \simeq X \otimes_A Z$. In other words, the functor $X \otimes_A - \mathrm{from} \, \mathsf{Ch}(\mathsf{Mod}(A))$ to $\mathsf{Ch}(\mathsf{Mod}(k))$ induces a functor from $\mathsf{K}(\mathsf{Mod}(A))$ to $\mathsf{K}(\mathsf{Mod}(k))$.

Let *A* be a *k*-algebra, *X* a complex of right *A*-modules, and *Y*, *Z* complexes of left *A*-modules.

If $h: Y \to Z$ is a homotopy, then $\mathrm{id}_X \otimes h$ is a homotopy from $X \otimes_A Y$ to $X \otimes_A Z$. In particular, if $Y \simeq Z$, then $X \otimes_A Y \simeq X \otimes_A Z$. In other words, the functor $X \otimes_A - \mathrm{from} \, \mathsf{Ch}(\mathsf{Mod}(A))$ to $\mathsf{Ch}(\mathsf{Mod}(k))$ induces a functor from $\mathsf{K}(\mathsf{Mod}(A))$ to $\mathsf{K}(\mathsf{Mod}(k))$.

Similar statements hold for functors of the form $\operatorname{Hom}_A(Y, -)$ and $\operatorname{Hom}_A(-, Z)$.

Let *A* be a *k*-algebra, *X* a complex of right *A*-modules, and *Y*, *Z* complexes of left *A*-modules.

If $h: Y \to Z$ is a homotopy, then $\mathrm{id}_X \otimes h$ is a homotopy from $X \otimes_A Y$ to $X \otimes_A Z$. In particular, if $Y \simeq Z$, then $X \otimes_A Y \simeq X \otimes_A Z$. In other words, the functor $X \otimes_A - \mathrm{from} \, \mathsf{Ch}(\mathsf{Mod}(A))$ to $\mathsf{Ch}(\mathsf{Mod}(k))$ induces a functor from $\mathsf{K}(\mathsf{Mod}(A))$ to $\mathsf{K}(\mathsf{Mod}(k))$.

Similar statements hold for functors of the form $\operatorname{Hom}_A(Y, -)$ and $\operatorname{Hom}_A(-, Z)$.

Fin.

References

[1] Linckelmann, Markus (2018). *The Block Theory of Finite Group Algebras*. Cambridge University Press.