Demostraciones de Lógica Computacional

Luciano Boccardi 5 de junio de 2020

Índice

I Cardinalidad	9
I Lenguajes II Sintaxis de Lógica Proposicional	10 12
V Teoría Axiomática	24
VI Lógica de Primer Orden	33
VII Computabilidad	37
VIII Numeración de Gödel y Programas Universales	4 4

Parte I

Cardinalidad

Observación: La relación de coordinabilidad \sim es de equivalencia

Demostración:

Definimos $f \colon A \to A/f(x) = x$ que resulta biyectiva. Entonces $A \sim A$. Es decir $A \sim A$ es reflexiva

Si $A \sim B \Rightarrow \exists f \colon A \to B$ biyectiva $\Rightarrow \exists f^{-1} \colon B \to A$ biyectiva. Entonces $B \sim A$. Es decir, \sim es simétrica

Si $A \sim B$ y $B \sim C \Rightarrow \exists f \colon A \to B$ y $\exists g \colon B \to C$ biyectivas. Definimos $h \colon A \to C/h(x) = g \circ f(x)$ que resulta biyectiva por ser composición de biyectivas. Entonces $A \sim C$, es decir \sim es transitiva

 \therefore La relación \sim es de equivalencia

Observación: $I_n \sim I_m \Leftrightarrow n = m$

Demostración:

 \Rightarrow)

Si $I_n \sim I_m \Rightarrow \exists f \colon I_n \to I_m$ biyectiva. Se tiene que $Im(f) = \{f(1), f(2), ..., f(m)\} = I_m$. Notemos que hay n elementos pues f es inyectiva

Luego m = n

 \Leftarrow

Si n=m, definimos $f\colon I_n\to I_m/f(x)=x$, que es biyectiva $\Rightarrow I_n=I_m$

Observación: N es infinito

Demostración:

Supongamos que \mathbb{N} es finito

 $\mathbb{N} \neq \phi$ pues, por ejemplo, $0 \in \mathbb{N}$

Supongamos entonces que $\exists n \in \mathbb{N}_{>1}/\mathbb{N} \sim I_n$

Entonces $\exists f : I_n \to \mathbb{N}$ biyectiva

 $Im(f) = \{f(1), f(2), ..., f(n)\}\$

Llamemos $M = max\{f(1), f(2), ..., f(n)\}\ M \in \mathbb{N}$

Resulta que $M+1 \in \mathbb{N}$ pero $M+1 \notin Im(f)$. Entonces $Im(f) \neq \mathbb{N} \Rightarrow$ f no es sobreyectiva \Leftrightarrow f no es biyectiva. **ABS!** por hipótesis

 $\therefore \mathbb{N}$ es infinito

Observación: Si $A \subset I_n \Rightarrow A$ es finito

Demostración:

Si $A = \phi \Rightarrow A$ es finito

Si $A \neq \phi \Rightarrow \exists \ i_1, i_2, ..., i_r \in I_n$ para algún $r \leq n / \ A = \{i_1, i_2, ..., i_r\}$

Definimos: $f: A \to I_n / f(i_j) = j$

Si $f(i_j) = f(i_t) \Rightarrow j = t \Rightarrow i_j = i_t \Rightarrow$ f es inyectiva

Sea $t \in I_t \Rightarrow i_t \in A$ y resulta que $f(i_t) = t \Rightarrow$ f es sobreyectiva

Como f es sobreyectiva $\Rightarrow A \sim I_t \Rightarrow A$ es finito

Observación: Si $B \subset A$ y B es infinito \Rightarrow A es infinito

Demostración:

Supongamos que A es finito

Si $A = \phi \Rightarrow B = \phi \Rightarrow B$ es finito. **ABS!** por hipótesis

Si $A \neq \phi \Rightarrow \exists f \colon A \to I_n$ para algún $n \in \mathbb{N}_{>1}/$ f sea biyectiva

Como $B \subset A$, podemos definir $g \colon B \to A / g(x) = x$ que resulta inyectiva

Si consideramos:

 $f\circ g\colon B\to I_n$ resulta inyectiva por composición de inyectivas, entonces

 $f\circ g\colon B\to Im(f\circ g)$ resulta biyectiva

Luego $B \sim Im(f \circ g)$

Como $Im(f \circ g) \subseteq I_n \Rightarrow$ (por proposición anterior) es finita

 $\Rightarrow B$ es finito. **ABS!** por hipótesis

Por lo tanto, A es infinito

Teorema de Bernstein:

$$Si \#A \le \#B y \#A \ge \#B \Rightarrow \#A = \#B$$

Demostración: No se ve.

Proposición: $\#A \leq \#B \Rightarrow \#B \geq \#A$

Demostración:

 \Rightarrow)

Sabemos que $\exists f \colon A \to B$ inyectiva

Definimos $g: B \to A / g(b) = f^{-1}(b), b \in Im(f)$

$$g(b) = \begin{cases} f^{-1}(b) & b \in Im(f) \\ a_0 & b \notin Im(f) \end{cases}$$
siendo a_0 un elemento cualquiera de A

g está bien definida pues $f^{-1}(b)$ es única por ser f
 inyectiva

Veamos que g es sobreyectiva

Sea $a \in A \Rightarrow f(a) (\in B) \in Im(f)$ y resulta que

$$g(f(a)) = f^{-1}(f(a)) = a$$

Por tanto $\#B \ge \#A$

 \Leftarrow

Sabemos que $\exists f \colon B \to A$ sobreyectiva

Definimos $g: B \to A / g(a) = x_a, x_a \in f^{-1}(a)$

 $f^{-1}(a) \neq \phi$, pues f es sobreyectiva

Veamos que g es inyectiva

Si $a_1 \neq a_2$ $a_1, a_2 \in A \Rightarrow f^{-1}(a_1) \cap f^{-1}(a_2) = \phi$

Como $x_{a_1} \in f^{-1}(a_1)$ y $x_{a_2} \in f^{-1}(a_2) \Rightarrow x_{a_1} \neq x_{a_2}$

Por lo tanto, $\#A \leq \#B$

Observación: \leq y \geq son relaciones de orden

Demostración: (La segunda es análoga a la primera)

 $\#A \le \#A$ pues $\exists f : A \to A / f(x) = x$ con f inyectiva

Entonces \leq es reflexiva (1)

Si $\#A \le \#B$ y $\#B \le \#A \Rightarrow \#A = \#B$ (Por Teo. de Bernstein)

Entonces \leq es antisimétrica (2)

Si # $A \le \#B$ y # $B \le \#C \Rightarrow \exists f \colon A \to B$ y $\exists g \colon B \to C$ inyectivas. Entonces, $g \circ f \colon A \to C$ es inyectiva por composición de inyectivas $\Rightarrow \#A \le \#C$

Luego \leq es transitiva (3)

∴ (Por 1, 2 y 3) La relación es de orden

Observación: Si X es infinito $\Rightarrow \exists f \colon \mathbb{N} \to X$ inyectiva

Demostración:

 $\aleph_0 \le \#X$ para cualquier conjunto infinito. Es decir, \aleph_0 es el menor cardinal asociado a conjuntos finitos

Como $X \neq \phi \Rightarrow \exists x_0 \in X$. Definimos $f(0) = x_0$

 $X \setminus \{x_0\} \neq \phi$, pues si $X \setminus \{x_0\} = \phi \Rightarrow X = \{x_0\} \Rightarrow X \sim I_1 \Rightarrow X$ es finito **ABS!** por hipótesis (1)

 $\Rightarrow \exists x_1 \in X \setminus \{x_0\}$. Definimos $f(1) = x_1$. con $x_1 \neq x_0$

Supongamos que definimos $f(n) = x_n$, con $x_n \in X \setminus \{x_0, x_1, ..., x_{n-1}\}$

 $X \setminus \{x_0, x_1, ..., x_{n-1}\} \neq \phi$ (por razonamiento similar a (1))

$$\Rightarrow x_{n+1} \in X \setminus \{x_0, x_1, ..., x_n\}$$
. Definimos $f(n+1) = x_{n+1}$, con $x_{n+1} \neq x_i \ 0 \leq i \leq n$

La f construida resulta inyectiva

Observación: Si $\exists f : \mathbb{N} \to X$ inyectiva $\Rightarrow X$ es infinito

Demostración:

Si $f: \mathbb{N} \to X$ es inyectiva $\Rightarrow f: \mathbb{N} \to Im(f)$ es biyectiva $\Rightarrow \mathbb{N} \sim Im(f)$ Como \mathbb{N} es infinito $\Rightarrow Im(f)$ es infinito. Y como $Im(f) \subseteq X \Rightarrow$ (por Prop. vista anteriormente) X es infinito

Observación: Sea $A \neq \phi$. Si A es numerable $\Rightarrow \exists : \mathbb{N} \to A$ sobreyectiva

Demostración:

Caso 1) Supongamos $A \sim I_p$ para algún $p \in \mathbb{N}_{\geq \mathbb{K}}$ Entonces $A = \{a_1, a_2, ..., a_p\}$

Definimos $f: \mathbb{N} \to A$ /

$$f(n) = \begin{cases} a_{n+1} & 0 \le n \le p-1 \\ a_1 & n \ge p \end{cases}$$

 $Im(f) = A \Rightarrow$ f es sobreyectiva

Caso 2) Si $A \sim \mathbb{N} \Rightarrow \exists f \colon \mathbb{N} \to A$ biyectiva y, particularmente, f es sobreyectiva

Observación: Si $\exists f : \mathbb{N} \to A$ sobreyectiva \Rightarrow A es numerable $(A \neq \phi)$

Demostración:

Si $f \colon \mathbb{N} \to A$ sobreyectiva $\Rightarrow \#\mathbb{N} \ge \#A \Rightarrow \#A \le \aleph_0$

Entonces $\#A < \aleph_0$ o $\#A = \aleph_0 \Rightarrow A$ es finito o $A \sim \mathbb{N} \Rightarrow A$ es numerable

Observación: Si $A \subseteq \mathbb{N} \Rightarrow A$ es numerable

Demostración:

Si $A = \phi \Rightarrow A$ es finito $\Rightarrow A$ es numerable

Si $A \neq \phi$, podemos definir $f: A \to \mathbb{N} / f(x) = x$ inyectiva $\Rightarrow \#A \leq \aleph_0 \Rightarrow A$ es numerable

Proposición: U = [0, 1] no es numerable

Demostración:

Definimos
$$f: \mathbb{N} \to U / f(n) = \frac{1}{n+1}$$

Si $f(n) = f(m) \Rightarrow \frac{1}{n+1} = \frac{1}{m+1} \Rightarrow n+1 = m+1 \Rightarrow n = m \Rightarrow f$ es inyectiva

 $\Rightarrow \# \mathbb{N} \leq \# U \Rightarrow \# U \geq \aleph_0 \Rightarrow U$ es infinito

Supongamos que U es numerable $\Rightarrow U \sim \mathbb{N}$. Entonces, podemos escribir $U = \{u_1, u_2, ..., \}$ donde

$$u_1 = 0, u_{11}u_{12}u_{13}... \text{ con } 0 \le u_{ij} \le 9$$

 $u_2 = 0, u_{21}u_{22}u_{23}...$

$$u_n = 0, u_{n1}u_{n2}u_{n3}...$$

Consideremos $X=0, x_1x_2x_3...$ $0 \le x_i \le 9 \ \forall i \in \mathbb{N}_{>1}, \ y \ x_i \ne u_{ii} \ \forall i \in \mathbb{N}_{>1}$

 $0 < x_i < 9$, eligiendo así garantizamos la escritura única de X.

Resulta que $x \in U$, pero $x \neq u_i \ \forall i \in \mathbb{N}_{\geq 1}$ ABS! que vino de suponer que U es numerable. (Encontramos un número que pertenece al intervalo pero no está en la representación de U que describimos).

Por lo tanto, U es infinito no numerable.

Proposición: Si X es un conjunto infinito no numerable y a es un conjunto numerable, entonces $X \cup A \sim X$

Demostración:

Si
$$A \subseteq X, X \cup A = X \Rightarrow X \sim X$$
 (Reflexividad de \sim)

Si $A \nsubseteq X$, podemos escribir $A = A_1 \cup A_2$ con $A_1 \subseteq X$ y $A_2 \cap X \neq \phi \Rightarrow X \cup A = X \cup (A_1 \cup A_2) = X \cup A_2$

Sin pérdida de generalidad, supongamos que $X \cap A \neq \phi$

Como X es infinito $\Rightarrow \exists f \colon \mathbb{N} \to X$ inyectiva $\Rightarrow f \colon \mathbb{N} \to Im(f) = Y$ es biyectiva $\Rightarrow \mathbb{N} \sim Y$, $Y \subseteq X$

A es numerable \Rightarrow (por ejer. de la práctica) $Y \cup A$ es numerable. Además $Y \subseteq Y(infinito) \cup A \Rightarrow Y \cup A$ es infinito y numerable $\Rightarrow Y \cup A \sim \mathbb{N}$ y $\mathbb{N} \sim Y \Rightarrow Y \cup A \sim Y$ (transitividad de \sim)

Entonces $\exists g \colon Y \cup A \Rightarrow Y$ es biyectiva

Definimos
$$H: X \cup A \to X / H(t) = \begin{cases} t & t \in X - Y \\ g(t) & t \in Y \cup A \end{cases}$$

La cual está bien definida pues $(X - Y) \cap (Y \cup A) = \phi$

Sea
$$t_1 \neq t_2$$
, $t_1, t_2 \in X - Y \Rightarrow H(t_1) \neq H(t_2)$ (por definición de H)

Sea $t_1 \neq t_2$, $t_1, t_2 \in Y \cup A \Rightarrow H(t_1) = g(t_1)$ y $H(t_2) = g(t_2)$, y $H(t_1) \neq H(t_2)$ (por inyectividad de g)

Sea $t_1 \in X - Y$ y $t_2 \in Y \cup A$, $t_1 \neq t_2 \Rightarrow H(t_1) \in X - Y$ y $H(t_2) \in Y$, y además $H(t_1) \neq H(t_2)$ pues $X - Y \cap Y = \phi$

Entonces, H es inyectiva (1)

Sea
$$y \in X$$
:

Si
$$y \in X - Y \Rightarrow H(y) = y$$

Si $y \in Y \Rightarrow \exists t \in Y \cup A \subseteq X / g(t) = y$, con g sobreyectiva

$$\Rightarrow H(t) = g(t) = y$$

Luego, H es sobreyectiva (2)

Luego, por (1) y (2), H es biyectiva $\Rightarrow X \cup A \sim X$

Proposición: Si X es infinito no numerable y A es numerables, entonces $X \setminus A \sim X$

Demostración: El truco es pensar a X como $(X \setminus A) \cup A$

Sin pérdida de generalidad, supongamos $A \subseteq X$

Si $A \cap X = \phi \Rightarrow X \backslash A = X \sim X$ por reflexividad de \sim

Si $A \cap X \neq \phi$, podemos escribir $A = A_1 \cup A_2, A_1 \subseteq X, X \cap A_2 = \phi$

En este caso $X \setminus A = X \setminus (A_1 \cup A_2) = X \setminus A_1$

Entonces, suponiendo $A\subseteq X$, podemos escribir $X=(X\backslash A)\cup A$ (1)

Si $X \backslash A$ es numerable \Rightarrow (por ejer. de la práctica) X es numerable, por ser unión de conjuntos numerables **ABS!** por hipótesis.

Entonces $X \setminus A$ es infinito no numerable, por lo que acabamos de probar: $(X \setminus A) \cup A \sim X \setminus A$, teniendo en cuenta (1), finalmente queda que $X \setminus A \sim X$

Teorema de Cantor:

$$\#X < \#\mathcal{P}(x)$$

Demostración:

Definimos $f: X \to \mathcal{P}(x) / f(a) = \{a\} \in \mathcal{P}(x)$

Si $a \neq b \Rightarrow f(a) \neq f(b) \Rightarrow f$ es inyectiva $\#X \leq \#\mathcal{P}(x)$

Supongamos que $\exists g \colon X \to \mathcal{P}(x)$ sobreyectiva

Y, consideremos $B : \{t \in X / t \notin g(t)\} \in \mathcal{P}(x)$

Como g
 es sobreyectiva $\Rightarrow \exists b \in X / g(b) = B$

Supongamos que $b \in B = g(b) \Rightarrow b \in g(b) \Rightarrow b \notin B$ ABS! pues $b \in B$

Supongamos que $b \notin B = g(b) \Rightarrow b \notin g(b) \Rightarrow b \in B$ ABS! pues $b \notin B$

 $\Rightarrow g$ no es sobreyectiva $\Rightarrow \#X \neq \#\mathcal{P}(x)$

Luego, $\#X < \#\mathcal{P}(x)$

Parte II

Lenguajes

Proposición: Sea A alfabeto, $E, F, G, H \in A^* / EF = GH$ y $long(E) \ge long(G) \Rightarrow \exists H' \in A^* / E = GH'$

Demostración: Por inducción en la longitud de E.

C.B)
$$long(E) = 0 \Rightarrow E = \lambda$$

$$long(E) \ge long(G) = 0 \Rightarrow long(G) = 0 \Rightarrow G = \lambda$$

Tomo $H' = \lambda$

$$\therefore E = GH' \ (\lambda = \lambda \lambda)$$

P(k)= Sea A alfabeto, $E,F,G,H\in A^*$ / EF=GH y $long(E)\geq long(G)\Rightarrow \ \exists \ H'\in A^*$ / E=GH'

H.I) P(n)

T.I) P(n+1)

Sean $E, F, G, H \in A^*long(E) = n + 1 > 0$, y $long(E) \ge long(G)$, siendo $E = e_0e_1...e_n$

C.1)
$$long(G) > 0 \Rightarrow G = g_0g_1...g_t$$

Como $EF = GH \Rightarrow$ (Saco e_0 y g_0 por ser iguales) $e_1...e_nF = g_1...g_tH$

Llamo $\tilde{E} = e_1 ... e_n$ y $\tilde{G} = g_1 ... g_t$

$$long(E) \ge long(G) \Rightarrow long(E) - 1 \ge long(G) - 1 \Rightarrow long(\tilde{E}) \ge long(\tilde{G}) \text{ y } \tilde{E}F = \tilde{G}H$$

$$\Rightarrow$$
 por H.I. $\exists H' \in A^* / \tilde{E} = \tilde{G}H' \Rightarrow e_0\tilde{E} = g_0\tilde{G}H' \Rightarrow E = GH'$

C.2)
$$long(G) = 0 \Rightarrow G = \lambda$$

$$EF = GH \Rightarrow EF = \lambda H$$

Tomo
$$H' = E \Rightarrow E = GH' = \lambda H'$$

Corolario: A alfabeto, $E,F,G,H\in A^*,\; EF=GH,\; long(E)=long(G)\Rightarrow E=G$ yF=H

Demostración:

$$long(E) = long(G) \Rightarrow long(E) \geq long(G)$$
 y $EF = GH$

 \Rightarrow (por Teo. anterior) E = GH', pero long(E) = long(G) + (long(H') = 0) pues E = G $\Rightarrow H' = \lambda \Rightarrow E = G \Rightarrow EF = GH$ y como E y G son iguales, los puedo cancelar a ambos lados

$$\therefore F = G$$

Parte III

Sintaxis de Lógica Proposicional

Teorema: $\alpha \in FORM \Leftrightarrow X_1X_2...X_n = \alpha$ cadena de formación (c.f)

Demostración: Ida por inducción en $long(\alpha)$ y vuelta por inducción en el elemento X_n

 \Rightarrow)

C.B)
$$long(\alpha) = 1 \Rightarrow \alpha = p_j \in VAR$$
. Luego, $X_1 = p_j$ es una c.f. de α

H.I)
$$\alpha \in FORM$$
, $long(\alpha) = k \le n \Rightarrow \exists X_1 X_2 ... X_k = \alpha \text{ c.f.}$

T.I)
$$\alpha \in FORM$$
, $long(\alpha) = n + 1 \Rightarrow \exists X_1 X_2 ... X_j = \alpha$ c.f.

Sea
$$\alpha \in FORM / long(\alpha) = n + 1 > 0$$

Caso 1)
$$\alpha = p_j \in VAR \Rightarrow definoX_1 = p_j$$
 que es c.f. de α

Caso 2)
$$\alpha = \neg \beta$$
 con $\beta \in FORM$
$$long(\alpha) = long(\beta) + 1 = n + 1 \Rightarrow long(\beta) = n \Rightarrow \text{por H.I. } \exists \ X_1 X_2 ... X_k = \beta \text{ c.f.}$$

Defino
$$\{Y_1=X_1,Y_2=X_2,...,Y_k=X_k,Y_{k+1}=\neg Y_k\}=\alpha$$
es una c.f. de α

Caso 3)
$$\alpha = (\beta_1 * \beta_2) \ \beta_1, \beta_2 \in FORM, * \in \{\land, \lor, \rightarrow\}$$

 $n+1 = long(\alpha) = 3 + long(\beta_1) + long(\beta_2) \Rightarrow long(\beta_1) + long(\beta_2) = n-2$

$$\Rightarrow long(\beta_1) < n \text{ y } long(\beta_2) < n \Rightarrow \text{por H.I:}$$

$$\exists X_1 X_2 ... X_k = \beta_1 \text{ c. f y } \exists Y_1 Y_2 ... Y_t = \beta_2 \text{ c.f.}$$

Defino
$$Z = \{Z_1 = X_1, ..., Z_k = X_k, Z_{k+1} = Y_1, ..., Z_{k+t} = Y_t, Z_{k+t+1} = (Z_k * Z_{k+t})\} = \alpha$$
 que es una c.f. de α

 \Leftarrow

Sea $X_1X_2...X_n$ c.f. Vamos a probar por inducción en
n que $X_j \in FORM$ $1 \leq j \leq n$

C.B)
$$n = 1 \Rightarrow X_1$$
 es una c.f. $\Rightarrow X_1 \in VAR \Rightarrow X_1 \in FORM$

H.I)
$$X_1X_2...X_n$$
 c.f $\Rightarrow X_j \in FORM \ 1 \leq j \leq n$

T.I)
$$X_1X_2...X_{n+1}$$
 c.f $\Rightarrow X_j \in FORM \ 1 \leq j \leq n$

Sea
$$X_1 X_2 ... X_{n+1}$$
 c.f

Por observación anterior $X_1X_2...X_n$ es c.f. \Rightarrow por $H.I.X_j \in FORM$ $1 \leq j \leq n$

Caso 1)
$$X_{n+1} \in VAR \Rightarrow X_{n+1} \in FORM$$

Caso 2)
$$\exists j \leq n \ / \ X_{n+1} = \neg X_j$$

$$X_j \in FORM \text{ por H.I.} \Rightarrow \neg X_j \in FORM$$

Caso 3)
$$\exists j, i \leq n \ / \ X_{n+1} = (X_j * X_i), * \in \{\land, \lor, \rightarrow\}$$

 $X_j, X_i \in FORM \text{ por H.I.} \Rightarrow (X_j * X_i) \in FORM$

Teorema: Sea $\alpha \in FORM$

Si
$$c(\alpha) = 0 \Rightarrow \alpha = p_j \in VAR$$

Si
$$c(\alpha) > 0 \Rightarrow \alpha = \neg \beta, \beta \in FORM \text{ o } \alpha = (\beta_1 * \beta_2) \beta_1, \beta_2 \in FORM, * \in \{\land, \lor, \rightarrow\}$$

Demostración: Utilizando teorema anterior.

$$\alpha \in FORM \Leftrightarrow X_1X_2...X_n = \alpha$$

Si
$$c(\alpha) = 0 \Rightarrow X_n \in VAR$$

Si
$$c(\alpha) > 0 \Rightarrow \exists j < n \ / \ X_n = \neg X_j \text{ o } \exists j, i \leq n \ / \ X_n = (X_j * X_i)$$

Teorema: Sea $\alpha \in FORM$

- 1) $p(\alpha) = 0$
- 2) Si es un conectivo binario (c.b.) que aparece en α y E es la expresión a la izquierda de en $\alpha \Rightarrow p(E) > 0$

Demostración: Por inducción en $c(\alpha)$

C.B)
$$c(\alpha) = 0 \Rightarrow \alpha = p_j, p_j \in VAR$$

- 1) $p(\alpha) = 0 0 = 0$
- 2) Se cumple por antecedente falso (no hay conectivos binarios)

$$P(k) = \text{Sea } \alpha \in FORM \ / \ c(\alpha) = k$$

- 1) $p(\alpha) = 0$
- 2) Si es un conectivo binario (c.b.) que aparece en α y E es la expresión a la izquierda de en $\alpha \Rightarrow p(E) > 0$

H.I)
$$P(k), k \leq n$$

T.I)
$$P(n+1)$$

Sea $\alpha \in Form / c(\alpha) = n + 1 > 0$

Caso 1) $\alpha = \neg \beta, \beta \in FORM$

$$c(\alpha) = 1 + c(\beta) = n + 1 \Rightarrow c(\beta) = n$$

1) Por H.I.
$$p(\beta) = 0 \Rightarrow p(\alpha) = p(\neg) + p(\beta) = 0 + 0 = 0$$

2) Sea • es un conectivo binario (c.b.) que aparece en $\alpha \Rightarrow$ • aparece en $\beta \Rightarrow$ por H.I. la expresión a la izquierda de • en β tiene peso > 0

Sea $E' = \neg E$ la expresión a la izquierda de \bullet en α

$$p(E') = p(\neg) + p(E) = 0 + p(E) > 0$$

Caso 2)
$$\alpha = (\beta_1 * \beta_2), \ \beta_1, \beta_2 \in FORM, * \in \{\land, \lor, \to\}$$

 $c(\alpha) = 1 + c(\beta_1) + c(\beta_2) = n + 1$

 $c(\beta_1) \le n \Rightarrow \text{por H.I.} \ p(\beta_1) = 0$ y si • es un c.b. que aparece en β_1 y E es la expresión a la izquierda de • en $\beta_1 \Rightarrow p(E) > 0$

 $c(\beta_2) \le n \Rightarrow \text{por H.I.} \ p(\beta_2) = 0$ y si • es un c.b. que aparece en β_2 y E es la expresión a la izquierda de • en $\beta_2 \Rightarrow p(E) > 0$

1)
$$p(\alpha) = 1 + p(\beta_1) + p(*) + p(\beta_2) - 1 = 1 + 0 + 0 + 0 - 1 = 0$$

2) Sea • un c.b. que aparece en α :

I. • aparece en β_1

Sea E'la expresión a la izquierda de • en $\alpha \Rightarrow E' = (E \Rightarrow p(E') = p("(") + p(E) = 1 + p(E) > 0$

II. \bullet es *

La expresión a la izquierda de \bullet en α es

$$E = (\beta_1 \Rightarrow p(E) = p("(") + p(\beta_1)) = 1 + 0 > 0$$

III. • aparece en β_2

Sea E' la expresión a la izquierda de \bullet en $\alpha \Rightarrow E' = (E \Rightarrow p(E') = p("(") + +p(\beta_1) + p(*) + p(E) = 1 + 0 + 0 + p(E) > 0$

Corolario (Unicidad de Escritura): Sea $\alpha \in FORM \ / \ c(\alpha) > 0$

$$\Rightarrow \ \exists \beta \in FORM \ / \ \alpha = \neg \beta \text{ o } \exists \ * \in \{\land, \lor, \rightarrow\} \text{ y únicos } \beta_1, \beta_2 \in FORM \ / \ \alpha = (\beta_1 * \beta_2)$$

Demostración: Utilizando teorema anterior.

Caso 1)
$$\alpha = \neg \beta_1 = \neg \beta_2 \Rightarrow \beta_1 = \beta_2$$

Caso 2)
$$\alpha = (\beta_1 * \beta_2) = (\gamma_1 \bullet \gamma_2)$$

I. Supongo que $long(\beta_1) > long(\gamma_1)$

 $\Rightarrow \exists H'$ expresión $/\beta_1 = \gamma_1 H' H'$ empieza con •

 $\Rightarrow \beta_1 \in FORM$ por Teo. anterior la expresión a la izquierda de \bullet en β_1 tiene peso $>0 \Rightarrow p(\gamma_1)>0$ **ABS!** porque $\gamma_1 \in FORM$

II. Supongo que $long(\beta_1) < long(\gamma_1)$ (Análogo al primer caso)

III. $long(\beta_1) = long(\gamma_1)$

Como
$$(\beta_1 * \beta_2) = (\gamma_1 \bullet \gamma_2) \Rightarrow \beta_1 = \gamma_1, * \bullet y \beta_2 = \gamma_2$$

Caso 3) $\alpha = \neg \beta = (\gamma_1 \bullet \gamma_2)$ ABS! pues no empiezan con el mismo símbolo

Parte IV

Semántica de Lógica Proposicional

Teorema: Sea $f\colon VAR\to\{0,1\}$ función $\Rightarrow\exists!$ valuación $v\colon FORM\to\{0,1\}$ / v extiende a f

Es decir, sean v y w valuaciones tales que

$$v|_{VAR} = w|_{VAR} \Rightarrow v = w$$

Demostración: Por inducción en m. El truco es definir una unión infinita de conjuntos de fórmulas, y luego definir la valuación en función a las anteriores

Defino
$$F_n = \{ \alpha \in FORM / c(\alpha) \le n \}$$

Donde, por ejemplo $F_0 = VAR$, $F_1 = VAR \cup \{\alpha \in FORM / c(\alpha) = 1\}$

Vemos también que
$$F_0 \subseteq F_1 \subseteq \dots$$
 y que $FORM = \bigcup_{n=0}^{\infty}$

P(n)=Existe una única función $v_n\colon F_n\to\{0,1\}\ /\ v_n$ extienda a F_n y que v_n cumpla la definición de valuación

C.B)
$$n = 0$$

$$v_0 = F_0 (= VAR) \to \{0, 1\}, \text{ defino } v_0 = f$$

 v_0 extiende a f
 de forma única y cumple la definición de valuación porque no hay conectivos

H.I)
$$P(k)k \leq n$$

T.I)
$$P(n+1)$$

Defino
$$v_{n+1} = F_{n+1} \to \{0, 1\}$$

Caso 1)
$$c(\alpha) \le n, \ \alpha \in F_{n+1}, \ \text{defino} \ v_{n+1}(\alpha) = v_n(\alpha)$$

Caso 2)
$$\alpha \in F_{n+1}, c(\alpha) = n+1$$

I.
$$\alpha = \neg \beta$$

 $c(\alpha)=1+c(\beta)=n+1\Rightarrow c(\beta)=n\Rightarrow$ por H.I existe una única $v_n(\beta)$ valuación que entienda a f

Defino
$$v_{n+1}(\alpha) = 1 - v_{n+1}(\beta) = 1 - v_n(\beta)$$

II.
$$\alpha = (\beta_1 * \beta_2), \beta_1, \beta_2 \in FORM, * \in \{\land, \lor, \rightarrow\}$$

$$c(\alpha) = 1 + c(\beta_1) + c(\beta_2) = n + 1 \Rightarrow c(\beta_1) + c(\beta_2) = n$$

 $c(\beta_1) \leq n \Rightarrow$ por H.I existe una única $v_n(\beta_1)$ valuación que entienda a f $c(\beta_2) \leq n \Rightarrow$ por H.I existe una única $v_n(\beta_2)$ valuación que entienda a f

Subcaso 1.
$$\alpha = (\beta_1 \wedge \beta_2), \beta_1, \beta_2 \in FORM$$

Defino
$$v_{n+1}(\alpha) = \min\{v_{n+1}(\beta_1), v_{n+1}(\beta_2)\} = \min\{v_n(\beta_1), v_n(\beta_2)\}$$

Subcaso 2.
$$\alpha = (\beta_1 \vee \beta_2), \beta_1, \beta_2 \in FORM$$

Defino
$$v_{n+1}(\alpha) = \max\{v_{n+1}(\beta_1), v_{n+1}(\beta_2)\} = \max\{v_n(\beta_1), v_n(\beta_2)\}$$

Subcaso 3.
$$\alpha = (\beta_1 \to \beta_2), \beta_1, \beta_2 \in FORM$$

Defino
$$v_{n+1}(\alpha) = \max\{1 - v_{n+1}(\beta_1), v_{n+1}(\beta_2)\} = \max\{1 - v_n(\beta_1), v_n(\beta_2)\}$$

 \therefore defino $v: FORM \to \{0,1\} / v(\alpha) = v_n(\alpha)$ siendo $c(\alpha) = n$

Teorema: Sea $\alpha \in FORM$. Sean v, w valuaciones tal que $v|_{VAR(\alpha)} = w|_{VAR(\alpha)}$, es decir, $v(p_j) = w(p_j) \ \forall \ p_j \in VAR(\alpha) \Rightarrow v(\alpha) = w(\alpha)$

Demostración: Por inducción en $c(\alpha)$

C.B)
$$c(\alpha) = 0 \Rightarrow \alpha = p_i \in VAR$$

Sean v, w valuaciones tal que $v|_{VAR(\alpha)} = w|_{VAR(\alpha)} \Rightarrow \text{como } \alpha = p_j \Rightarrow v(\alpha) = w(\alpha)$

- H.I) Sea $\alpha \in FORM \ / \ c(\alpha) \le n$. Sean v, w valuaciones tal que $v|_{VAR(\alpha)} = w|_{VAR(\alpha)} \Rightarrow v(\alpha) = w(\alpha)$
- T.I) Sea $\alpha\in FORM\ /\ c(\alpha)=n+1.$ Sean $v,\ w$ valuaciones tal que $v|_{VAR(\alpha)}=w|_{VAR(\alpha)}\Rightarrow v(\alpha)=w(\alpha)$

Caso 1)
$$\alpha = \neg \beta, \beta \in FORM$$

$$c(\alpha) = 1 + c(\beta) = n + 1 \Rightarrow c(\beta) = n \Rightarrow \text{por H.I } v(\beta) = w(\beta)$$

Como
$$VAR(\alpha) = VAR(\beta) \Rightarrow v|_{VAR(\alpha)} = v|_{VAR(\beta)} = w|_{VAR(\beta)} = w|_{VAR(\alpha)}$$

$$\Rightarrow v(\alpha) = 1 - v(\beta) = 1 - w(\beta) = w(\alpha)$$

Caso 2)
$$\alpha = (\beta_1 * \beta_2), \beta_1, \beta_2 \in FORM, * \in \{\land, \lor, \rightarrow\}$$

$$c(\alpha) = 1 + c(\beta_1) + c(\beta_2) = n + 1 \Rightarrow c(\beta_1) + c(\beta_2) = n$$

$$c(\beta_1) < n \ \mathrm{v} \ c(\beta_2) < n$$

$$VAR(\alpha) = VAR(\beta_1) \cup VAR(\beta_2)$$

Como
$$v|_{VAR(\alpha)} = w|_{VAR(\alpha)}$$

$$\Rightarrow v|_{VAR(\beta_1)} = w|_{VAR(\beta_1)} \Rightarrow \text{por H.I. } v(\beta_1) = w(\beta_1)$$

$$\Rightarrow v|_{VAR(\beta_2)} = w|_{VAR(\beta_2)} \Rightarrow \text{por H.I. } v(\beta_2) = w(\beta_2)$$

Subcaso 1.
$$\alpha = (\beta_1 \wedge \beta_2), \beta_1, \beta_2 \in FORM$$

$$v(\alpha) = \min\{v(\beta_1), v(\beta_2)\} = \min\{w(\beta_1), w(\beta_2)\} = w(\alpha)$$

Subcaso 2.
$$\alpha = (\beta_1 \vee \beta_2), \beta_1, \beta_2 \in FORM$$

$$v(\alpha) = \max\{v(\beta_1), v(\beta_2)\} = \max\{w(\beta_1), w(\beta_2)\} = w(\alpha)$$

Subcaso 3.
$$\alpha = (\beta_1 \to \beta_2), \beta_1, \beta_2 \in FORM$$

$$v(\alpha) = \max\{1 - v(\beta_1), v(\beta_2)\} = \max\{1 - w(\beta_1), w(\beta_2)\} = w(\alpha)$$

Proposición: Sean $\alpha \in FORM$ y $(p_1 \to \alpha)$ tautología. Si $p_1 \notin VAR(\alpha) \Rightarrow \alpha$ es tautología

Demostración:

Sea v valuación, queremos ver que $v(\alpha) = 1$

Defino
$$f : VAR \to \{0,1\} \ / \ f(p_j) = \begin{cases} v(p_j) & p_j \in VAR(\alpha) \\ 1 & \text{otro caso} \end{cases}$$

Sea v_f la única valuación que extiende a f

$$v_f(p_1 \to \alpha) = 1$$
 (tautología)

$$\max\{1-v_f(p_1),v_f(\alpha)\}=\max\{1-f(p_1),v_f(\alpha)\}$$
 como $p_1\notin VAR(\alpha),f(p_1)=1\Rightarrow$

$$\max\{1 - f(p_1), v_f(\alpha)\} = \max\{0, v_f(\alpha)\} = v_f(\alpha) \Rightarrow v_f(\alpha) = 1$$

Notemos que $v_f|_{VAR(\alpha)} = v|_{VAR(\alpha)} \Rightarrow \text{por Teo. anterior } v_f(\alpha) = v(\alpha)$

$$v(\alpha) = 1 \ \forall v \Rightarrow \alpha$$
 es tautología

Teorema: Sean $\Gamma \subseteq FORM$, $\alpha \in FORM$

$$\alpha \in C(\Gamma) \Leftrightarrow \Gamma \cup \{\neg \alpha\} \ es \ insatisfacible$$

Demostración: Por el contrarrecíproco tanto en la ida como en la vuelta

 \Rightarrow)

Supongo que $\Gamma \cup \{\alpha\}$ es satisfacible

 $\Rightarrow \exists \ v \ \text{val.} \ / \ v(\Gamma) = 1 \ \text{y} \ v(\neg \alpha) = 1 \Rightarrow v(\alpha) = 0 \Rightarrow \alpha \notin C(\Gamma).$ Queda demostrado por contrarrecíproco

 \Leftarrow

Supongo que $\alpha \notin C(\Gamma) \Rightarrow \exists v \text{ val. } v(\Gamma) = 1 \text{ y } v(\alpha) = 0$

 $\Rightarrow v(\Gamma)=1$ y $v(\neg\alpha)=1\Rightarrow v$ satisface a $\Gamma\cup\{\neg\alpha\}\Rightarrow\Gamma\cup\{\neg\alpha\}$ es satisfacible. Queda demostrado por contrarrecíproco

Teorema: Sean $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_n\} \subseteq FORM, \alpha \in FORM$

$$\alpha \in C(\Gamma) \Leftrightarrow ((\gamma_1 \wedge \gamma_2 \wedge \cdots \wedge \gamma_n) \to \alpha) \text{ es tautologia}$$

Demostración:

 \Leftarrow

Sea v val $/v(\Gamma) = 1$, queremos probar que $v(\alpha) = 1$

$$v(\gamma_i) = 1, \ 1 \le i \le n \Rightarrow v(\gamma_1 \land \gamma_2 \land \dots \land \gamma_n) = \min\{v(\gamma_1), v(\gamma_2), \dots, v(\gamma_n)\} = 1$$

Por dato, sabemos que $v((\gamma_1 \land \gamma_2 \land \cdots \land \gamma_n) \to \alpha) = 1 \ \forall v$

$$\Rightarrow \max\{1 - v(\gamma_1 \land \gamma_2 \land \dots \land \gamma_n), v(\alpha)\} = \max\{0, v(\alpha)\} = v(\alpha)$$

 $v(\alpha) = 1 \Rightarrow \alpha \in C(\Gamma)$, como queríamos demostrar

 \Rightarrow)

Sabemos por dato que $\alpha \in C(\Gamma)$

Queremos ver que $\sigma = ((\gamma_1 \wedge \gamma_2 \wedge \cdots \wedge \gamma_n) \to \alpha)$ es tautología

Caso 1) Si $v(\gamma_1 \wedge \gamma_2 \wedge \cdots \wedge \gamma_n) = 0$

$$\Rightarrow v(\sigma) = \max\{1 - v(\gamma_1 \land \gamma_2 \land \dots \land \gamma_n), v(\alpha)\} = \max\{1 - 0, v(\alpha)\} = 1$$

Caso 2) Si $v(\gamma_1 \wedge \gamma_2 \wedge \cdots \wedge \gamma_n) = 1$

$$\Rightarrow \min\{v(\gamma_1), v(\gamma_2), \dots, v(\gamma_n)\} = 1 \Rightarrow$$

$$v(\gamma_i) = 1, \ 1 \le i \le n \Rightarrow v(\Gamma) = 1 \Rightarrow \text{por dato } v(\alpha) = 1$$

$$\Rightarrow v(\sigma) = \max\{1 - v(\gamma_1 \land \gamma_2 \land \dots \land \gamma_n), v(\alpha)\} = \max\{0, 1\} = 1$$

 $v(\sigma) = 1 \ \forall v \text{ val.} \Rightarrow \sigma \text{ es tautología}$

Teorema de la Deducción (versión semántica): Sean $\alpha \in FORM, \Gamma \subseteq FORM$

$$(\alpha \to \beta) \in C(\Gamma) \Rightarrow \beta \in C(\Gamma \cup \{\alpha\})$$

Demostración:

 \Rightarrow)

Sea v val. $/v(\Gamma \cup \{\alpha\}) = 1 \Rightarrow v(\Gamma) = 1 \text{ y } v(\alpha) = 1$

 $\begin{array}{l} \text{Como } (\alpha \to \beta) \in C(\Gamma) \Rightarrow v(\alpha \to \beta) = 1 \Rightarrow \text{máx} \{1 - v(\alpha), v(\beta)\} = 1 \Rightarrow \text{máx} \{0, v(\beta)\} = 1 \Rightarrow v(\beta) = 1 \end{array}$

 $\beta \in C(\Gamma \cup \{\alpha\})$

(⇒

Sea v val. $/v(\Gamma) = 1$

Si
$$v(\alpha) = 0 \Rightarrow v(\alpha \to \beta) = \max\{1 - v(\alpha), v(\beta)\} = \max\{1, v(\beta)\} = 1$$

Si
$$v(\alpha) = 1 \Rightarrow v(\Gamma \cup \{\alpha\}) = 1 \Rightarrow (\text{como } \beta \in C(\Gamma \cup \{\alpha\}) \text{ por dato}) \ v(\beta) = 1$$

$$\Rightarrow v(\alpha \rightarrow \beta) = \max\{1 - v(\alpha), v(\beta)\} = \max\{0, 1\} = 1$$

$$\therefore v(\alpha \to \beta) = 1 \Rightarrow (\alpha \to \beta) \in C(\Gamma)$$

Lema: Sea $\Gamma \subseteq FORM$, Γ finitamente satisfacible, $p_j \in VAR$

 $\Rightarrow \Gamma \cup \{p_j\}$ es finitamente satisfacible o $\Gamma \cup \{\neg p_j\}$ es finitamente satisfacible

Demostración:

Supongamos que $\Gamma \cup \{p_j\}$ no es f.s. y $\Gamma \cup \{\neg p_j\}$ no es f.s.

 $\Rightarrow \exists \ \Gamma_1 \subseteq \Gamma \cup \{p_j\}$ finito e insatisfacible

 $\Rightarrow \exists \ \Gamma_2 \subseteq \Gamma \cup \{\neg p_j\}$ finito e insatisfacible

Notemos que $\Gamma_1 \not\subseteq \Gamma$ y $\Gamma_2 \not\subseteq \Gamma$ pues Γ es f.s.

$$\Rightarrow \Gamma_1 = \tilde{\Gamma}_1 \cup \{p_i\} / \tilde{\Gamma}_1 \subseteq \Gamma$$

$$\Rightarrow \Gamma_1 = \tilde{\Gamma}_2 \cup \{\neg p_i\} / \tilde{\Gamma}_2 \subseteq \Gamma$$

Defino $\tilde{\Gamma} = \tilde{\Gamma_1} \cup \tilde{\Gamma_2}$ con $\tilde{\Gamma_1}$ y $\tilde{\Gamma_2}$ finitos $\Rightarrow \tilde{\Gamma}$ es finito

Como $\tilde{\Gamma}_1 \subseteq \Gamma$ y $\tilde{\Gamma}_1 \subseteq \Gamma \Rightarrow \tilde{\Gamma} \subseteq \Gamma$

Como $\tilde{\Gamma}$ es finito, $\tilde{\Gamma} \subseteq \Gamma$ y Γ es f.s. $\Rightarrow \tilde{\Gamma}$ es satisfacible $\Rightarrow \exists v$ val. $/v(\tilde{\Gamma}) = 1$

Caso 1) $v(p_j) = 1 \Rightarrow v(\tilde{\Gamma}_1 \cup \{p_j\}) = 1$ **ABS!** pues $\tilde{\Gamma}_1 \cup \{p_j\} = \Gamma_1$, y Γ_1 es insatisfacible

Caso 2)
$$v(\neg p_j) = 1 \Rightarrow v(\tilde{\Gamma}_2 \cup \{\neg p_j\}) = 1$$
 ABS! pues $\tilde{\Gamma}_2 \cup \{\neg p_j\} = \Gamma_2$, y Γ_2 es insatisfacible

 Γ (Ley de De Morgan) $\Gamma \cup \{p_j\}$ es finitamente satisfacible o $\Gamma \cup \{\neg p_j\}$ es finitamente satisfacible

Teorema de Compacidad:

 Γ es satisfacible $\Leftrightarrow \Gamma$ es finitamente satisfacible

Demostración: La ida es intuitiva, para la vuelta se define una sucesión creciente de conjuntos utilizando el lema anterior. Vamos construyendo el nuevo conjunto agregando variables proposicionales

 \Rightarrow)

 Γ es satisfacible $\Rightarrow \exists v \text{ val } / v(\Gamma) = 1$

Sea
$$\Gamma_1 = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \subseteq \Gamma \Rightarrow \text{como } v(\alpha) = 1 \ \forall \ \alpha \in \Gamma, \text{ en particular, } v(\Gamma_1) = 1$$

 \Leftarrow)

Defino una sucesión creciente de conjuntos $\Delta_0 \subseteq \Delta_1 \subseteq \cdots \subseteq \Delta_n$ que van a contener literales

Defino:

$$\Delta_0 = \phi$$

$$\Delta_{n+1} = \begin{cases} \Delta_n \cup \{p_n\} & si \ \Gamma \cup \Delta_n \cup \{p_n\} \ es \ f.s. \\ \Delta_n \cup \{\neg p_n\} & si \ \Gamma \cup \Delta_n \cup \{\neg p_n\} \ es \ f.s. \end{cases}$$

El n-ésimo elemento del conjunto está bien definido por lema anterior

$$\Delta = \bigcup_{n \in \mathbb{N}} \Delta_n$$

Defino
$$f: VAR \to \{0,1\} \ / \ f(p_j) = \begin{cases} 1 & p_j \in \Delta \\ 0 & \neg p_j \in \Delta \end{cases}$$

Sea v_f la valuación que extiende a f

Notemos que $v_f(\Delta) = 1$

Veamos que $v_f(\Gamma) = 1$

Supongamos que v_f no satisface a $\Gamma \Rightarrow \exists \alpha \in \Gamma / v_f(\alpha) = 0$

Sea $k = \max\{j \mid p_j a pareceen \alpha\}$

Caso 1) $v_f(p_k) = 1 \Rightarrow$

 $\Rightarrow \Sigma = \{\alpha\} \cup \Delta_k \cup \{p_j\}$ es insatisfacible. $\Delta_k \cup \{p_j\} = \Delta_{k+1}$ por definición

 Σ es finito e insatisfacible, $\Sigma \subseteq \Gamma \cup \Delta_{k+1}$ $f.s. \Rightarrow \Sigma$ es satisfacible. **ABS!** pues en la línea anterior vimos que es insatisfacible

Veamos que Σ es insatisfacible

Supongamos que lo es $\Rightarrow \exists w \text{ val } / w(\Sigma) = 1 \Rightarrow w(\alpha) = 1 \text{ y } w(\Delta_{k+1}) = 1$

Notemos que si $p_j \in VAR(\alpha) \Rightarrow p_j \in \Delta_{k+1}$ o $\neg p_j \in \Delta_{k+1}$

$$\therefore v_f|_{VAR(\alpha)} = w|_{VAR(\alpha)} \Rightarrow v_f(\alpha) = w(\alpha) \Rightarrow 0 = 1$$
 ABS!

Caso 2) $v_f(p_k) = 0$

$$\Rightarrow \Sigma = \{\alpha\} \cup \Delta_k \cup \{\neg p_i\}$$
 es insatisfacible. $\Delta_k \cup \{\neg p_i\} = \Delta_{k+1}$ por definición

 Σ es finito e insatisfacible, $\Sigma \subseteq \Gamma \cup \Delta_{k+1}$ $f.s. \Rightarrow \Sigma$ es satisfacible. **ABS!** pues en la línea anterior vimos que es insatisfacible

El resto es análogo al primer caso

 $v_f(\Gamma) = 1 \Rightarrow \Gamma$ es satisfacible

Teorema de Equivalencias: Los siguientes enunciados son equivalentes.

1) $\Gamma \ es \ satisfacible \Leftrightarrow \Gamma \ es \ finitamente \ satisfacible$

2) $\Gamma \ es \ insatisfacible \Leftrightarrow \Gamma \ no \ es \ finitamente \ satisfacible$

3) $\alpha \in C(\Gamma) \Leftrightarrow \exists \Gamma' \ finito \ / \ \alpha \in C(\Gamma'), \ \Gamma' \subseteq \Gamma$

Demostración: Solamente hay que demostrar que ("1" \Leftrightarrow "2") \Leftrightarrow "3"

El enunciado "1" es el Teorema de Compacidad, y el "2" es su contrarrecíproco \Rightarrow "1" \Leftrightarrow "2"

$$"2" = "1" \Rightarrow "3")$$

 $\alpha \in C(\Gamma) \Rightarrow \Gamma \cup \{\neg \alpha\}$ es insatisfacible \Rightarrow por Teo. de Compacidad $\Gamma \cup \{\neg \alpha\}$ no es finitamente satisfacible $\Rightarrow \exists \Gamma' \subseteq \Gamma \cup \{\neg \alpha\} / \Gamma'$ es finito e insatisfacible

Caso 1) $\Gamma' \subseteq \Gamma$. Como Γ' es insatisfacible $\Rightarrow C(\Gamma') = FORM \Rightarrow \alpha \in C(\Gamma')$

Caso 2)
$$\Gamma' \not\subseteq \Gamma \Rightarrow \Gamma' = \Gamma'' \cup \{\neg \alpha\} / \Gamma'' \subseteq \Gamma$$

Queremos ver que $\alpha \in C(\Gamma'')$. Supongamos que no.

$$\Rightarrow \exists \ v$$
 valuación / $v(\Gamma'')=1$ y $v(\alpha)=0 \Rightarrow v(\Gamma'')=1$ y $v(\neg \alpha)=1 \Rightarrow$ por definición $v(\Gamma')=1$ ABS! pues Γ' es insatisfacible

$$\alpha \in C(\Gamma'')$$

"3"
$$\Rightarrow$$
 "2" = "1")

- $\Rightarrow)$ Sea Γ satisfacible \Rightarrow \exists v valuación / $v(\Gamma)=1$ Sea $\Gamma'\subseteq\Gamma$ finito \Rightarrow $v(\Gamma')=1\Rightarrow\Gamma'$ es finitamente satisfacible
- $\Leftarrow)$ Contrarrecíproco. Queremos ver que Γ insatisfacible $\Rightarrow \Gamma$ no es finitamente satisfacible

Sea Γ insatisfacible $\Rightarrow C(\Gamma) = FORM \Rightarrow (p_1 \land \neg p_1) \in C(\Gamma) \Rightarrow \text{por "3"} \exists \Gamma' \subseteq \Gamma \text{ finito} / (p_1 \land \neg p_1) \in C(\Gamma') \Rightarrow \Gamma' \text{ es insatisfacible} \Rightarrow \Gamma' \text{ no es finitamente satisfacible}$

Parte V

Teoría Axiomática

Teorema: α es demostrable $\Rightarrow \alpha$ es tautología

Demostración: Inducción en la longitud de la prueba

- C.B) Sea $\alpha_1=\alpha$ una prueba de $\alpha\Rightarrow\alpha_1$ es axioma $\Rightarrow\alpha_1$ es tautología
- H.I) Sea $\alpha_1, \ldots, \alpha_n$ una prueba de α
- T.I) Sea $\alpha_1, \ldots, \alpha_{n+1}$ una prueba de α

Caso 1) α_{n+1} es un axioma $\Rightarrow \alpha_{n+1} = \alpha$ es tautología

Caso 2)
$$\exists j, k \leq n / \alpha_j = (\alpha_k \to \alpha_{n+1})$$

- 1. $\alpha_k \to \alpha_{n+1}$ dato
- 2. α_k dato
- 3. α_{n+1} M.P. 1 y 2

 α_1,\ldots,α_k es una prueba de α_k porque cada α_i es un axioma o se obtiene por M.P. de dos anteriores, dado que $\alpha_1,\ldots,\alpha_k,\alpha_{k+1},\ldots,\alpha_{n+1}$ es una prueba

Como $k \leq n \Rightarrow$ por H.I. α_k es una tautología

Análogamente, α_1,\dots,α_j es una prueba de α_j y $j\leq n\Rightarrow$ por H.I. α_j es una tautología

Queremos ver que α_{n+1} es una tautología

Sea v valuación. $v(\alpha_j) = v(\alpha_k) = 1$ pues son tautologías

$$1=v(\alpha_j)=v(\alpha_k\to\alpha_{n+1})=\max\{1-v(\alpha_k),v(\alpha_{n+1})\}=\max\{0,v(\alpha_{n+1})\}\Rightarrow v(\alpha_{n+1})=1$$

 $\therefore \alpha_{n+1}$ es tautología

Teorema de la deducción (versión axiomática):

$$\Gamma \vdash (\alpha \rightarrow \beta) \Leftrightarrow \Gamma \cup \alpha \vdash \beta$$

Demostración: La ida es trivial, la vuelta por inducción en la longitud de la prueba.

 $\Rightarrow)$

Sabemos que $\Gamma \vdash (\alpha \to \beta) \Rightarrow \Gamma \cup \{\alpha\} \vdash (\alpha \to \beta)$ pues $\Gamma \subseteq \Gamma \cup \{\alpha\}$ y $\Gamma \cup \{\alpha\} \vdash \alpha$ pues $\alpha \in \Gamma \cup \{\alpha\}$

 $\Rightarrow \Gamma \cup \{\alpha\} \vdash \beta$ por M.P. entre ambos datos

(⇒

Dato: $\Gamma \cup \alpha \vdash \beta$

Queremos ver por inducción en la longitud de la prueba que $\Gamma \cup \alpha \vdash (\alpha \rightarrow \beta)$

C.B. Sea $\alpha_1 = \beta$ prueba a partir de $\Gamma \cup \alpha \Rightarrow$

- 1. β es un axioma
 - 1. β Axioma
 - 2. $\beta \to (\alpha \to \beta)$ Axioma 1
 - 3. $\alpha \rightarrow \beta$ M.P. 1 y 2

Como $\phi \vdash (\alpha \to \beta) \Rightarrow \text{particularmente } \Gamma \vdash (\alpha \to \beta)$

- 2. $\beta \subseteq \Gamma$
 - 1. β Dato
 - 2. $\beta \to (\alpha \to \beta)$ Axioma 1
 - 3. $\alpha \rightarrow \beta$ M.P. 1 y 2
- 3. $\beta = \alpha$

En la teoría vimos que $\phi \vdash (\alpha \to \alpha) \Rightarrow \text{particularmente } \Gamma \vdash (\alpha \to \alpha)$

- H.I) Sea $\alpha_1, \ldots, \alpha_k$ $k \leq n$, una prueba de β a partir de $\Gamma \cup \{\alpha\} \Rightarrow \Gamma \vdash (\alpha \rightarrow \beta)$
- T.I) Sea $\alpha_1, \ldots, \alpha_{n+1}$ una prueba de β a partir de $\Gamma \cup \{\alpha\} \Rightarrow \Gamma \vdash (\alpha \to \beta)$

Sea $\alpha_1, \ldots, \alpha_{n+1}$ una prueba de β a partir de $\Gamma \cup \{\alpha\} \Rightarrow \beta$ es axioma o $\beta \in \Gamma$ o $\beta = \alpha$ o β se obtiene por M.P. a partir de anteriores

Los primeros tres casos son análogos al caso baso. Resta ver el último caso donde β se obtiene por M.P.

$$\exists j, k \leq n / \alpha_j = (\alpha_k \rightarrow \alpha_{n+1}), \alpha_{n+1} = \beta$$

 $\alpha_1, \ldots, \alpha_k \ k \leq n$, una prueba a partir de $\Gamma \cup \{\alpha\} \Rightarrow \Gamma \vdash (\alpha \rightarrow \alpha_k)$

 α_1,\ldots,α_j $j\leq n$, una prueba a partir de $\Gamma\cup\{\alpha\}\Rightarrow\Gamma\vdash(\alpha\to\alpha_j),\,\alpha_j=(\alpha_k\to\beta)$

Queremos ver que $\Gamma \vdash (\alpha \rightarrow \beta)$

- 1. $(\alpha \to (\alpha_k \to \beta)) \to ((\alpha \to \alpha_k) \to (\alpha \to \beta))$ Axioma 2
- 2. $(\alpha \to (\alpha_k \to \beta))$ pues $\Gamma \vdash (\alpha \to (\alpha_k \to \beta))$

3.
$$(\alpha \to \alpha_k) \to (\alpha \to \beta)$$
 M.P. 1 y 2

4.
$$(\alpha \to \alpha_k)$$
 pues $\Gamma \vdash (\alpha \to \alpha_k)$

5.
$$(\alpha \rightarrow \beta)$$
 M.P. 3 y 4

$$\Gamma \vdash (\alpha \rightarrow \beta)$$

Teorema de Correctitud:

$$\Gamma \vdash \alpha \rightarrow \alpha \in C(\Gamma)$$

Demostración:

Caso 1) $\Gamma = \phi$

Queremos ver que $\phi \vdash \alpha \Rightarrow \alpha \in C(\phi)$

Por definición, si $\phi \vdash \alpha$, α es demostrable "1"

Si $\alpha \in C(\phi) = Tautologias \Rightarrow \alpha \in Tautologias$ "2"

"1" \Rightarrow "2" por Teorema visto anteriormente

Caso 2) $\Gamma \neq \phi$

Por dato $\exists \alpha_1, \dots \alpha_n$ prueba de α a partir de Γ

Caso 1) α es un axioma $\Rightarrow v(\alpha) = 1$

Caso 2) $\alpha \in \Gamma \Rightarrow \text{si } v(\Gamma) = 1 \Rightarrow v(\alpha) = 1$

Caso 3) α se obtiene por M.P. de anteriores

$$\Rightarrow \exists \alpha_i \ j \leq n \ / \ \alpha_i = (\alpha_i \rightarrow \alpha)$$

Supongamos que $\exists v$ valuación / $v(\alpha) = 0$

 $v(\alpha_k)=1$ $k\leq n$ pues forman parte de la prueba (visto en Teorema anterior)

 $v(\alpha_j) = 1 \Rightarrow \max\{1 - v(\alpha_i), v(\alpha)\} = 1 \Rightarrow \max\{1 - 1, 0\} = 1 \Rightarrow 0 = 1$ **ABS!** que vino de suponer que $v(\alpha) = 0 \Rightarrow v(\alpha) = 1$

 $v(\alpha) = 1 \Rightarrow \alpha \in C(\Gamma)$

Observación: Γ satisfacible $\Rightarrow \Gamma$ consistente

Demostración: Por el absurdo mediante Teorema de Correctitud

Supongamos que Γ no es consistente $\Rightarrow \exists \ \alpha \in FORM \ / \ \Gamma \vdash \alpha \ Y \ \Gamma \vdash \neg \alpha \Rightarrow \text{por Teo. de}$ Correctitud $\alpha \in C(\Gamma)$ y $\neg \alpha \in C(\Gamma)$

Como Γ es satisfacible $\Rightarrow \exists v$ val. $/v(\Gamma) = 1 \Rightarrow$ como α y $\neg \alpha \in C(\Gamma) \Rightarrow v(\alpha) = 1$ y $v(\neg \alpha) = 1$ **ABS!**

 Γ es consistente

Lema de Lindenbaum: Sea Γ consistente $\Rightarrow \exists \Gamma'$ maximal consistente $/ \Gamma \subseteq \Gamma'$

Demostración:

$$\#FORM = \aleph_0 \Rightarrow \exists f : \mathbb{N} \to FORM$$
 biyectiva

$$Form = Im(f) = \{\gamma_0, \dots, \gamma_n\}$$

$$\Gamma_0 = \Gamma$$

$$\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{\gamma_n\} & si \ \Gamma_n \cup \{\gamma_n\} \ es \ consistente \\ \Gamma_n & sino \end{cases}$$

$$\Gamma' = \bigcup_{n \in \mathbb{N}} \Gamma_n$$

Queremos ver que Γ' es m.c. y $\Gamma \subseteq \Gamma'$

- 1. $\Gamma = \Gamma_0 \subseteq \Gamma'$
- 2. Veamos que Γ' es consistente

Supongamos que no lo es $\Rightarrow \exists \alpha / \Gamma' \vdash \alpha y \Gamma' \vdash \neg \alpha$

 $\exists \alpha_1, \ldots, \alpha_n$ prueba a partir de Γ'

 $\exists \beta_1, \dots, \beta_k$ prueba a partir de Γ'

 $X=\{\alpha_j\ /\ 1\leq j\leq n$ y $\alpha_j\in\Gamma'\}\cup\{\beta_i\ /\ 1\leq i\leq n$ y $\beta_i\in\Gamma'\}$ Datos utilizados en ambas pruebas

$$M = \max\{r \ / \ \gamma_r \in X\}$$

 $\Rightarrow X \subseteq \Gamma_{M+1}$ Como es el maximal, contiene a todos

$$\Gamma_{M+1} \vdash \alpha \ y \ \Gamma_{M+1} \vdash \neg \beta$$

ABS! porque Γ_{M+1} es consistente

3. Veamos que Γ_n es consistente $\forall n \in \mathbb{N}$

C.B)
$$\Gamma_0 = \Gamma$$
 es consistente (Dato)

- H.I) Γ_n es consistente
- T.I) Γ_{n+1} es consistente

$$\Gamma_{n+1} = \begin{cases} rcl\Gamma_n \cup \{\gamma_n\} & si \ \Gamma_n \cup \{\gamma_n\} \ es \ consistente \Rightarrow \Gamma_{n+1} \ es \ consistente \\ \Gamma_n & sino \Rightarrow \Gamma_{n+1} = \Gamma_n \ es \ consistente \ por \ H.I. \end{cases}$$

Vemos que Γ' es maximal

Supongo que $\exists \beta \in FORM, \beta \notin \Gamma' / \Gamma' \cup \{\beta\}$ es consistente

$$\Rightarrow \exists N / \beta = \gamma_N$$

$$\Gamma_{N+1} = \begin{cases} \Gamma_N \cup \{\gamma_N\} & si \ \Gamma_N \cup \{\gamma_N\} \ es \ consistente \\ \Gamma_N & sino \end{cases}$$

Como $\gamma_N \notin \Gamma' \Rightarrow \Gamma_N \cup \{\gamma_N\}$ es inconsistente

$$\Rightarrow \exists \ \xi \in FORM \ / \ \Gamma_N \cup \{\gamma_N\} \vdash \xi \ y \ \Gamma_N \cup \{\gamma_N\} \vdash \neg \xi$$

$$\Rightarrow \Gamma' \cup \{\gamma_n\} \vdash \xi$$
y $\Gamma' \cup \{\gamma_n\} \vdash \neg \xi$ **ABS!** pues supusimos que es consistente

 Γ es maximal consistente

Observación:

- 1. $\Gamma \cup \{\neg \gamma\}$ es inconsistente $\Leftrightarrow \Gamma \vdash \gamma$
- 2. $\Gamma \cup \{\gamma\}$ es inconsistente $\Leftrightarrow \Gamma \vdash \neg \gamma$

Demostración: La ida se hace utilizando definición de consistente, teorema de la deducción y una prueba. La vuelta es sencilla.

 $1. \Leftarrow)$

$$\Gamma \vdash \gamma \Rightarrow \Gamma \cup \{\neg\gamma\} \vdash \gamma \text{ y } \Gamma \cup \{\neg\gamma\} \vdash \neg\gamma \Rightarrow \Gamma \cup \{\neg\gamma\} \text{ es inconsistente}$$

 $\Rightarrow)$

$$\Gamma \cup \{\neg \gamma\}$$
 es inconsistente $\Rightarrow \exists \alpha \in FORM / \Gamma \cup \{\neg \gamma\} \vdash \alpha \text{ y } \Gamma \cup \{\neg \gamma\} \vdash \neg \alpha$

$$\Rightarrow$$
por Teo. de la Deducción $\Gamma \vdash (\neg \gamma \to \alpha)$ (o) y $\Gamma \vdash (\neg \gamma \to \alpha)$ (\star)

Hago una prueba de $\Gamma \vdash \gamma$:

1.
$$(\neg \gamma \rightarrow \neg \alpha) \rightarrow ((\neg \gamma \rightarrow \alpha) \rightarrow \gamma)$$
 Axioma 3

2.
$$\neg \gamma \rightarrow \alpha$$
 por dato \star

3.
$$(\neg \gamma \rightarrow \alpha) \rightarrow \gamma$$
 M.P. 1 y 2

4.
$$\neg \gamma \rightarrow \alpha$$
 por dato \circ

5.
$$\gamma$$
 M.P. 3 y 4

$$\Rightarrow \Gamma \vdash \gamma$$

 $2. \Leftarrow$

$$\Gamma \vdash \neg \gamma \Rightarrow \Gamma \cup \{\gamma\} \vdash \neg \gamma \text{ y } \Gamma \cup \{\gamma\} \vdash \gamma \Rightarrow \Gamma \cup \{\gamma\} \text{ es inconsistente}$$

 \Rightarrow)

$$\Gamma \cup \{\gamma\} \text{ es inconsistente} \Rightarrow \exists \ \alpha \in FORM \ / \ \Gamma \cup \{\gamma\} \vdash \alpha \ \text{y} \ \Gamma \cup \{\gamma\} \vdash \neg \alpha$$

$$\Rightarrow \text{por Teo. de la Deducción} \ \Gamma \vdash (\gamma \to \alpha) \ (\circ) \ \text{y} \ \Gamma \vdash (\gamma \to \alpha) \ (\star)$$

Hago una prueba de $\Gamma \vdash \neg \gamma$:

1.
$$(\neg\neg\gamma\rightarrow\neg\neg\alpha)\rightarrow((\neg\neg\gamma\rightarrow\neg\alpha)\rightarrow\neg\gamma)$$
 Axioma 3

2.
$$(\gamma \to \alpha) \to (\neg \neg \gamma \to \neg \neg \alpha)$$
 He
cho en clase

3.
$$\gamma \to \alpha$$
 por dato \star

4.
$$\neg \neg \gamma \rightarrow \neg \neg \alpha$$
 M.P. 2 y 3

5.
$$(\neg \neg \gamma \rightarrow \neg \alpha) \rightarrow \neg \gamma$$
 M.P. 4 y 1

6.
$$(\gamma \to \neg \alpha) \to (\neg \neg \gamma \to \neg \alpha)$$
 Hecho en clase

7.
$$\gamma \rightarrow \neg \alpha$$
 por dato \circ

8.
$$\neg \neg \gamma \rightarrow \neg \alpha$$
 M.P. 6 y 7

9.
$$\neg \gamma$$
 M.P. 8 y 5

$$\Rightarrow \Gamma \vdash \neg \gamma$$

Proposición: Γ es m.c. $\Rightarrow \gamma \in \Gamma$ ó $\neg \gamma \in \Gamma \ \forall \ \gamma \in FORM$

Demostración: Absurdo utilizando Ley de De Morgan para la negación

Supongamos que $\neg(\gamma \in \Gamma \text{ o } \neg \gamma \in \Gamma)$

Caso 1)
$$\gamma \notin \Gamma$$
 o $\neg \gamma \notin \Gamma$

Como
$$\gamma \notin \Gamma$$
 y Γ es m.c. $\Gamma \cup \{\gamma\}$ es inconsistente $\Rightarrow \Gamma \vdash \neg \gamma$ por lema anterior ("1")

Como
$$\neg \gamma \notin \Gamma$$
 y Γ es m.c. $\Gamma \cup \{\neg \gamma\}$ es inconsistente $\Rightarrow \Gamma \vdash \gamma$ por lema anterior ("2")

 \therefore por 1 y 2, Γ es inconsistente. **ABS!**

Caso 2) $\gamma \land \neg \gamma \in \Gamma$

 $\Gamma \vdash \gamma \ y \ \Gamma \vdash \neg \gamma \Rightarrow \Gamma$ es inconsistente. **ABS!**

 $\therefore \gamma \in \Gamma \ \text{\'o} \ \neg \gamma \in \Gamma$

Proposición: Sea Γ inconsistente, $\gamma \in \Gamma \Leftrightarrow \Gamma \vdash \gamma$

Demostración:

 \Rightarrow)

Queremos ver que $\Gamma \vdash \gamma$. Realizo una prueba

1. γ Dato

 $\Gamma \vdash \gamma$

 \Leftarrow)

 $\Gamma \vdash \gamma \Rightarrow (\text{por Lema}) \ \Gamma \cup \{\neg \gamma\} \ \text{es inconsistente} \Rightarrow \neg \gamma \notin \Gamma \ \text{por Prop. anterior} \ \gamma \in Gamma$

Teorema:

 $\Gamma \ es \ consistente \Rightarrow \Gamma \ es \ satisfacible$

Demostración: Lema de Lindenbaum e inducción en la complejidad de α

 Γ es consistente \Rightarrow (por Lema de Lindenbaum) \exists Γ' m.c. $\Gamma\subseteq\Gamma'$

Veamos que Γ' es satisfacible

Como Γ' es m.c. $\Rightarrow \alpha \in \Gamma'$ ó $\neg \alpha \in \Gamma' \forall \alpha \in FORM$ (por Prop. anteriormente vista)

En particular, $p_j \in \Gamma'$ ó $\neg p_j \in \Gamma' \ \forall \ p_j \in VAR$

Defino
$$f \colon VAR \to \{0,1\} \ / \ f(p_j) = \begin{cases} 1 & si \ p_j \in \Gamma' \\ 0 & si \ p_j \notin \Gamma', \ (\Rightarrow \neg p_j \in \Gamma') \end{cases}$$

Sea v_f la valuación que extiende a f, queremos ver que $v_f(\Gamma) = 1$

Veamos por inducción en $c(\alpha)$ que $v_f(\alpha) = 1 \Leftrightarrow \alpha \in \Gamma'$

C.B) $c(\alpha) = 1$

$$\alpha = p_j \Rightarrow \text{si } p_j \in \Gamma' \Rightarrow v_f(p_j) = 1$$

Notemos que si $p_j \notin \Gamma' \Rightarrow v_f(p_j) = 0$

H.I) $\alpha \in FORM / c(\alpha) = k \ k \le n$

$$v_f(\alpha) = 1 \Leftrightarrow \alpha \in \Gamma'$$

T.I)
$$\alpha \in FORM / c(\alpha) = n + 1$$

$$v_f(\alpha) = 1 \Leftrightarrow \alpha \in \Gamma'$$

Sea
$$\alpha \in FORM / c(\alpha) = n + 1$$

Caso 1)
$$\alpha = \neg \beta \in FORM \Rightarrow c(\beta) = n$$

$$v_f(\alpha) = 1 \Leftrightarrow v_f(\beta) = 0 \Leftrightarrow \text{por H.I. } \beta \notin \Gamma' \Leftrightarrow \text{como } \Gamma' \text{ es m.c. } \neg \beta \in \Gamma' \Leftrightarrow \alpha \in \Gamma'$$

Caso 2)
$$\alpha = (\beta_1 \to \beta_2), \beta_1, \beta_2 \in FORM$$

$$c(\alpha) = c(\beta_1) + c(\beta_2) + 1 = n + 1$$

$$\Rightarrow 0 \le c(\beta_1) \le n \ y \ 0 \le c(\beta_2) \le n$$

$$v_f(\alpha) = 1 \Leftrightarrow v_f(\beta_1) = 0 \text{ o } v_f(\beta_2) = 1$$

$$\Rightarrow$$
 por H.I: $\beta_1 \notin \Gamma' \Rightarrow$ como es m.c. $\neg \beta_1 \in \Gamma' \Rightarrow \Gamma \vdash (\beta_1 \rightarrow \beta_2)$

 \Rightarrow por H.I: $\beta_2 \in \Gamma' \Rightarrow$ como es m.c. $\neg \beta_2 \notin \Gamma' \Rightarrow \Gamma' \vdash \beta_2 \Rightarrow \Gamma' \vdash (\beta_2 \rightarrow (\beta_1 \rightarrow \beta_2))$ por (Axioma 1) $\Rightarrow (\beta_1 \rightarrow \beta_2)$ M.P. Dato y Axioma 2

 $v_f(\alpha) = 0 \Leftrightarrow v_f(\beta_1) = 1 \text{ y } v_f(\beta_2) = 0 \Rightarrow \text{por H.I. } \beta_1 \in \Gamma' \text{ y } \beta_2 \notin \Gamma' \ (\neg \beta_2 \in \Gamma' \text{ pues es } m.c.)$

$$\phi \vdash (\beta_1 \to (\neg \beta_2 \to \neg(\beta_1 \to \beta_2))) \Rightarrow \phi \vdash \neg(\beta_1 \to \beta_2) \Rightarrow \Gamma' \vdash \neg(\beta_1 \to \beta_2) \Rightarrow \text{como } \Gamma' \text{ es m.c.} \Rightarrow (\beta_1 \to \beta_2) \notin \Gamma'$$

 $\therefore \alpha \in \Gamma'$

Teorema de Completitud:

$$\alpha \in C(\Gamma) \Leftrightarrow \Gamma \vdash \alpha$$

Demostración: Por proposición y lemas anteriores

 $\alpha \in C(\Gamma) \Rightarrow \Gamma \cup \{\neg \alpha\}$ es insatifacible \Rightarrow (contrarrecíproco de Satifacible \Rightarrow Consistente) $\Gamma \cup \{\neg \alpha\}$ es inconsistente \Rightarrow (por Lema) $\Gamma \vdash \alpha$

Teorema: El sistema axiomático AX.1, AX.2, AX.3 y M.P. es consistente

Demostración:

Supongamos que no lo es $\Rightarrow \exists \ \alpha \in FORM \ / \ \vdash \alpha \ \mathbf{y} \vdash \neg \alpha$

 $\Rightarrow \alpha \in C(\phi)$ y ¬ $\alpha \in C(\phi) \Rightarrow \alpha$ es tautología y ¬ α es tautología $\Rightarrow \forall v$ valuación $v(\alpha)=1$ y $v(\neg \alpha)=1$ ABS!

 \therefore El sistema axiomático es consistente

Parte VI

Lógica de Primer Orden

Lema: Sea \mathcal{L} lenguaje de primer orden (LPO). $\mathcal{I}_1, \mathcal{I}_2$ interpretaciones isomorfas vía h. Senado $h \colon U_{\mathcal{I}_1} \to U_{\mathcal{I}_2}$ biyectiva. Sea v una valuación sobre $\mathcal{I}_1 \Rightarrow \overline{h \circ v} = h \circ \overline{v}$

Demostración: Por inducción en el tamaño de los términos tam(t) (cantidad de funciones que aparecen en t)

$$v: VAR \to U_1, \, \overline{v}: TERM \to U_1, \, h: U_1 \to U_2$$

 $h \circ \overline{v} \colon TERM \to U_2$

 $h \circ v \colon VAR \to U_2$

 $\overline{h \circ v} \colon TERM \to U_2$

Vamos a ver que se cumple por inducción en tam(t)

C.B)
$$tam(t) = 0 \Rightarrow t = x_i \in VAR \text{ o } t = c \in \mathcal{C}$$

Caso 1)
$$h \circ \overline{v}(x_i) = h(\overline{v}(x_i)) = (\overline{v}|_{VAR} = v) \Rightarrow h(v(x_i))$$

$$=h\circ v(x_i)=(\overline{h\circ v}\big|_{VAR}=h\circ v)\Rightarrow \overline{h\circ v}(x_i)$$

Caso 2) $h \circ \overline{v}(c) = h(\overline{v}(c)) = (\text{por def. de } \overline{v}) \ h(\mathcal{C}_{\mathcal{I}_1}) = (\text{por def. de isomorfismo}) \ \mathcal{C}_{\mathcal{I}_2} = \overline{h \circ v}(c)$

H.I)
$$tam(t) \le n, t \in FORM \Rightarrow h \circ \overline{v}(t) = \overline{h \circ v}(t)$$

T.I)
$$tam(t) = n + 1, t \in FORM \Rightarrow h \circ \overline{v}(t) = \overline{h \circ v}(t)$$

Sea $t \in TERM / tam(t) = n + 1 > 0$

$$t = f^k(t_1, \dots, t_n), t_1, \dots, t_n \in TERM$$

$$h \circ \overline{v}(f^k(t_1, \dots, t_k) = h(\overline{v}(f^k(t_1, \dots, t_k))) = (\text{por def. de } \overline{v}) \ h(f_{\mathcal{I}_1}^k(\overline{v}(t_1), \dots, \overline{v}(t_k)))$$

(por def. de isomorfismo) $f_{\mathcal{I}_2}^k(h \circ \overline{v}(t_1), \dots, h \circ \overline{v}(t_k)) = (\text{por H.I}) f_{\mathcal{I}_2}^k(\overline{h \circ v}(t_1), \dots, \overline{h \circ v}(t_k)) = \overline{h \circ v}(f^k((t_1, \dots, t_k)))$

$$\therefore \overline{h \circ v} = h \circ \overline{v}$$

Teorema: Sea \mathcal{L} LPO. Sean $\mathcal{I}_1, \mathcal{I}_2$ interpretaciones isomorfas vía h. Sea $v: VAR \Rightarrow U_1$ valuación, y $\alpha \in FORM$

$$\mathcal{I}_1 \vDash \alpha[v] \Leftrightarrow \mathcal{I}_2 \vDash \alpha[h \circ v]$$

Demostración: Por inducción en el tamaño de las fórmulas. Usamos que el conj $\{\neg, \land, \exists\}$ es adecuado

C.B)
$$tam(\alpha) = 0 \Rightarrow \alpha = p^k(t_1, \dots, t_k) \in \mathcal{P}, t_1, \dots, t_k \in TERM$$

$$V_{\mathcal{I}_1, v}(\alpha) = 1 \Leftrightarrow (\overline{v}(t_1), \dots, \overline{v}(t_k)) \in \mathcal{P}_{\mathcal{I}_1}^k \Leftrightarrow \text{(h es un iso.)} (h \circ \overline{v}(t_1), \dots, h \circ \overline{v}(t_k)) \in \mathcal{P}_{\mathcal{I}_2}^k$$

$$\Leftrightarrow \text{(por Lema anterior)} (\overline{h \circ v}(t_1), \dots, \overline{h \circ v}(t_k)) \in \mathcal{P}_{\mathcal{I}_2}^k \Leftrightarrow V_{\mathcal{I}_2, h \circ v}(\mathcal{P}^k(t_1, \dots, t_k)) = 1$$

H.I) Sea
$$\alpha \in FORM$$
, $tam(\alpha) \leq n \Rightarrow (\mathcal{I}_1 \vDash \alpha[v] \Leftrightarrow \mathcal{I}_2 \vDash \alpha[h \circ v])$

T.I) Sea
$$\alpha \in FORM$$
, $tam(\alpha) = n + 1 \Rightarrow (\mathcal{I}_1 \vDash \alpha[v] \Leftrightarrow \mathcal{I}_2 \vDash \alpha[h \circ v])$

Sea
$$\alpha \in FORM / tam(\alpha) = n + 1 > 0 \Rightarrow$$

Caso 1)
$$\alpha = \neg \beta$$

$$tam(\alpha) = 1 + tam(\beta) = n + 1 \Rightarrow tam(\beta) = n$$

$$\mathcal{I}_1 \models \alpha[v] \Leftrightarrow V_{\mathcal{I}_1,v}(\alpha) = 1 \Leftrightarrow V_{\mathcal{I}_1,v}(\beta) = 0 \Leftrightarrow (\text{por H.I.}) \ V_{\mathcal{I}_2,h\circ v}(\beta) = 0$$

$$\Leftrightarrow V_{\mathcal{I}_2,h\circ v}(\alpha) = 1 \Leftrightarrow \mathcal{I}_2 \models \alpha[h\circ v]$$

 $tam(\beta_1) + tam(\beta_2) + 1 = n + 1 \Rightarrow tam(\beta_1) \le n \text{ y } tam(\beta_2) \le n$

Caso 2)
$$\alpha = (\beta_1 \wedge \beta_2)$$

$$\mathcal{I}_1 \vDash (\beta_1 \land \beta_2)[v] \Leftrightarrow V_{\mathcal{I}_1,v}(\beta_1 \land \beta_2) = 1 \Leftrightarrow \min\{V_{\mathcal{I}_1,v}(\beta_1), V_{\mathcal{I}_1,v}(\beta_2)\} = 1 \Leftrightarrow V_{\mathcal{I}_1,v}(\beta_1) = 1 \text{ y } V_{\mathcal{I}_1,v}(\beta_2) = 1$$

$$\Leftrightarrow \text{por H.I. } V_{\mathcal{I}_2,h\circ v}(\beta_1) = 1 \text{ y } V_{\mathcal{I}_2,h\circ v}(\beta_2) = 1 \Leftrightarrow \min\{V_{\mathcal{I}_1,h\circ v}(\beta_2),V_{\mathcal{I}_2,h\circ v}(\beta_2)\} = 1 \Leftrightarrow V_{\mathcal{I}_2,v}(\beta_1 \wedge \beta_2) = 1 \Leftrightarrow \mathcal{I}_2 \vDash (\beta_1 \wedge \beta_2)[h\circ v]$$

Caso 3) $\alpha = \exists x \ \beta$

$$tam(\alpha) = tam(\beta) + 1 = n + 1 \Rightarrow tam(\beta) = n$$

$$\mathcal{I}_1 \vDash \exists x \ \beta[v] \Leftrightarrow V_{\mathcal{I}_1,v}(\exists x \ \beta) = 1 \Leftrightarrow \exists \alpha \in U_1 \ / \ V_{\mathcal{I}_1,v_{x=\alpha}}(\beta) = 1$$

$$\Leftrightarrow \text{por H.I. } \exists \alpha \in U_1 \ / \ V_{\mathcal{I}_1,(h \circ v)_{x=\alpha}}(\beta) = 1 \Leftrightarrow \exists \alpha \in U_1 \ / \ V_{\mathcal{I}_1,(h \circ v)_{x=h(\alpha)}}(\beta) = 1$$

$$\Rightarrow (\text{tomo } b = h(\alpha) \in U_2) \ \exists b \in U_2 \ / \ V_{\mathcal{I}_1,(h \circ v)_{x=b}}(\beta) = 1$$

$$\Leftrightarrow \text{Como h es biyectiva } \alpha = h^{-1}(b)$$

$$\Leftrightarrow V_{\mathcal{I}_2,h\circ v}(\exists x\beta) = 1 \Leftrightarrow \mathcal{I}_1 \vDash \exists x\beta[h\circ v]$$

 $\mathcal{I}_2 \vDash \alpha[h \circ v]$

Corolario 1: Sean \mathcal{L} LPO, α enunciado. $\mathcal{I}_1, \mathcal{I}_2$ interpretaciones isomorfas.

 α es vedadera en $\mathcal{I}_1 \Leftrightarrow \alpha$ es vedadera en \mathcal{I}_2

Demostración:

 $\mathcal{I}_1 \vDash \alpha \Leftrightarrow \mathcal{I}_1 \vDash \alpha[v] \ \forall v \colon VAR \to U_1 \ \text{val} \Leftrightarrow \text{Teo. anterior} \ \mathcal{I}_2 \vDash \alpha[h \circ v] \ \forall v \colon VAR \to U_1 \ \text{val}$

 $\Leftrightarrow \mathcal{I}_2 \vDash \alpha[w] \ \forall w \colon VAR \to U_2 \ \mathrm{val}$

 \Rightarrow Sea $v: VAR \rightarrow U_1 \Rightarrow \exists w = h \circ v: VAR \rightarrow U_2$

 \Rightarrow Sea $w: VAR \to U_2 \Rightarrow \exists v = h^{-1} \circ w: VAR \to U_1$

 $\Rightarrow \mathcal{I}_2 \vDash \alpha$

Corolario 2: Sean \mathcal{L} LPO. \mathcal{I} interpretación con universo U. $a \in U$ elemento distinguible

 $F \colon U \to U_{iso} \Rightarrow F(a) = a$

Demostración:

a es distinguible $\Rightarrow \exists \alpha(x) \in FORM$ que expresa a $\{a\}$

1. $\mathcal{I} \vDash \alpha[v_{x=a}]$

2. $\mathcal{I} \nvDash \alpha[v_{x=b}] \ b \neq a$

 \Rightarrow por Teo. anterior $\mathcal{I} \vDash \alpha[f \circ v_{x=a}]$, es decir, $\mathcal{I} \vDash \alpha[(f \circ v)_{x=f(a)}]$

 \therefore por "1" y "2" F(a) = a

Corolario 3: Sean \mathcal{L} LPO. \mathcal{I} interpretación con universo U. $A\subseteq U$ expresable.

$$F: U \to U_{iso} \Rightarrow F(A) \subseteq A \ (F(a) \in A \ \forall \ a \in A)$$

Demostración:

A es expresable $\Rightarrow \exists \alpha(x)$ que expresa a A

1. $\mathcal{I} \vDash \alpha[v_{x=a}] \ \forall \ a \in A$

2. $\mathcal{I} \nvDash \alpha[v_{x=b}] \; \forall \; b \notin A$

 \Rightarrow por Teo. anterior $\mathcal{I} \vDash \alpha[f \circ v_{x=a}]$, es decir, $\mathcal{I} \vDash \alpha[(f \circ v)_{x=f(a)}]$

$$\Rightarrow F(a) \in A \ \forall \ a \in A$$

$$\therefore$$
 por "1" y "2" $F(A) \subseteq A$

Corolario 4: Sean $\mathcal L$ LPO. $\mathcal I_1 \simeq \mathcal I_2$ vía h.

a es distintiguible en $\mathcal{I}_1 \Leftrightarrow h(a)$ es distintiguible en \mathcal{I}_2

Demostración:

a es dintiguible en $\mathcal{I}_1 \Rightarrow \exists \alpha(x) que expresa\{a\}$

1.
$$\mathcal{I} \vDash \alpha[v_{x=a}] \ \forall \ a \in A$$

2.
$$\mathcal{I} \nvDash \alpha[v_{x=b}] \; \forall \; b \notin A$$

Queremos ver que $\exists \beta$ que distingue h(a) en \mathcal{I}_2

 \Rightarrow por Teo. anterior:

1.
$$\Rightarrow \mathcal{I}_2 \vDash \alpha(x)[h \circ v_{x=a}] \Rightarrow \mathcal{I}_2 \vDash \alpha(x)[(h \circ v)_{x=h(a)}]$$

2.
$$\Rightarrow \mathcal{I}_2 \nvDash \alpha(x)[h \circ v_{x=b}] \Rightarrow \mathcal{I}_2 \vDash \alpha(x)[(h \circ v)_{x=h(b)}]$$
 Notemos que $h(b) \neq h(a)$

Queremos ver que $V_{\mathcal{I}_2,v_{x=c}} = 1 \Leftrightarrow c = h(a)$

$$\Leftarrow) \text{ por "1", como } c=h(a),\, \mathcal{I}_2 \vDash \alpha(x)[w_{x=h(a)=c)}] \Rightarrow V_{\mathcal{I}_2,w_{x=c}}(\alpha(x))=1$$

$$\Rightarrow \text{por contrarrecíproco, si } c \neq h(a) \Rightarrow \text{por "2" } \mathcal{I}_2 \vDash \alpha(x)[(w)_{x=c\neq h(a)}] \Rightarrow V_{\mathcal{I}_2,w_{x=c}}(\alpha(x)) = 0$$

 $\therefore \alpha(x)$ distingue a $h(a) \Rightarrow h(a)$ es distinguible

Parte VII

Computabilidad

Teorema (Composición de funciones computables es computable): Sean $f_1, \ldots, f_k \colon \mathbb{N}^k \to \mathbb{N}$ (parcialmente) computable. $g \colon \mathbb{N}^n \to \mathbb{N}$ (parc.) computable $\Rightarrow h = g \circ (f_1, \ldots, f_n), h \colon \mathbb{N}^k \to \mathbb{N}$ es (parc.) computable

Demostración:

Como f_j es (parc) comp. existe P_j programa que lo computa \Rightarrow puedo reemplazarlo con una macro

Como ges (parc) comp
. existe P_g programa que lo computa \Rightarrow puedo reemplazar
lo con una macro

Defino el siguiente programa:

$$Z_1 \leftarrow f_1(x_1, \dots, x_k)$$

$$\vdots$$

$$Z_n \leftarrow f_n(x_1, \dots, x_k)$$

$$Y \leftarrow g(Z_1, \dots, Z_n)$$

 \therefore como existe programa que lo computa $\Rightarrow h$ es (parc.) computable

Teorema: Si h se obtiene a partir de g con un ERI y g es (parc.) computable \Rightarrow h es (parc.) computable

Demostración:

Como $g\colon \mathbb{N}^2\to \mathbb{N}$ es (parc) comp
. existe P_g programa que lo computa \Rightarrow puedo reemplazar
lo con una macro

Defino el siguiente programa

$$\begin{aligned} Y &\leftarrow K \\ [A_1] \ IF \ X_1 &= 0 \ GOTO \ E_1 \\ Y &\leftarrow g(Z_1,Y) \\ Z &\leftarrow Z + 1 \\ X_1 &\leftarrow X_1 - 1 \\ GOTO \ A_1 \end{aligned}$$

 \therefore como existe programa que lo computa $\Rightarrow h$ es (parc.) computable

Teorema: Si h se obtiene a partir de f y g con un ERII, f y g son (parc.) computable \Rightarrow h es (parc.) computable

Demostración:

Como $g \colon \mathbb{N}^{k+1} \to \mathbb{N}$ es (parc) comp
. existe P_g programa que lo computa \Rightarrow puedo reemplazar
lo con una macro

Como $f \colon \mathbb{N}^k \to \mathbb{N}$ es (parc) comp
. existe P_f programa que lo computa \Rightarrow puedo reemplazar
lo con una macro

Defino el siguiente programa

$$Y \leftarrow f(X_1, ..., X_k)$$

 $[A_1] IF \ X_{k+1} = 0 \ GOTO \ E_1$
 $Y \leftarrow g(X_1, ..., X_k, Z_1 + Y)$
 $Z \leftarrow Z + 1$
 $X_{k+1} \leftarrow X_{k+1} - 1$
 $GOTO \ A_1$

 \therefore como existe programa que lo computa $\Rightarrow h$ es (parc.) computable

Teorema:

- 1. Comp. de funciones RP son RP
- 2. ERI y ERII de funciones RP son RP

Demostración:

$$f = g \circ (h_1, \dots, h_k)$$

 $(h_1, \dots, h_k) \colon \mathbb{N}^n \to \mathbb{N} \text{ es RP}$
 $g \colon \mathbb{N}^k \to \mathbb{N} \text{ es RP}$

Queremos ver que $\Rightarrow f \colon \mathbb{N}^n \to \mathbb{N}$ es RP

 $h_i es RP \Rightarrow$ se obtiene aplicando $n_j \in \mathbb{N}$ operaciones permitidas o funciones iniciales $ges RP \Rightarrow$ se obtiene aplicando $n_g \in \mathbb{N}$ operaciones permitidas o funciones iniciales \Rightarrow f se obtiene aplicando $n_1 + \dots + n_k + n_g + 1$ operaciones permitidas o funciones iniciales \Rightarrow f es RP

Teorema: f es $RP \Rightarrow f$ es computable

Demostración:

f es RP \Rightarrow f se obtiene aplicando finitas operaciones permitidas o funciones iniciales \Rightarrow f es finita computable, ERI o ERII de funciones computables \Rightarrow f es computable.

Teorema:

1. P^k y Q^k predicados $RP \Rightarrow \neg P^k$, $P^k \wedge Q^k$ son RP

2. P^k y Q^k predicados computables $\Rightarrow \neg P^k$, $P^k \wedge Q^k$ son computables

Demostración:

1. $P^k, Q^kRP \Rightarrow C_{p^k}$ y $C_{q^k} \colon \mathbb{N}^k \to \mathbb{N}$ son RP $C_{\neg p_k} \colon \mathbb{N}^k \to \mathbb{N} \ / \ C_{\neg p_k} = \alpha \circ C_{\neg p_k} \ \text{RP por composición de RP}$

$$C_{p_k \cap q_k} \colon \mathbb{N}^k \to \mathbb{N} \ / \ C_{p_k \cap q_k}(\vec{x}) = \begin{cases} 1 & si \ \vec{x} \in p_k \cap q_k \\ 0 & sino \end{cases}$$

$$C_{p_k \cap q_k} = PROD \circ (C_{p_k} X C_{q_k})$$
 RP por comp. de RP

2. P^k es computable $\Rightarrow C_{p^k} \colon \mathbb{N}^k \to \mathbb{N}$ es computable

 $C_{\neg p^k}\colon \mathbb{N}^k \to \mathbb{N} \ / \ C_{\neg p^k} = \alpha \circ C_{p^k}$ es computable por composición de computables Q^k es computable $\Rightarrow C_{p^k}\colon \mathbb{N}^k \to \mathbb{N}$ es computable

$$C_{p_k \cap q_k} \colon \mathbb{N}^k \to \mathbb{N} \ / \ C_{p_k \cap q_k}(\vec{x}) = \begin{cases} 1 & si \ \vec{x} \in p_k \cap q_k \\ 0 & sino \end{cases}$$

 $C_{p_k \cap q_k} = PROD \circ (C_{p_k} X C_{q_k})$ Computable por comp. de computables

Corolario:

1. P^k y Q^k predicados RP $\Rightarrow P^k \vee Q^k$, $P^k \to Q^k$ son RP

2. $P^k ext{ y } Q^k ext{ predicados computables} \Rightarrow P^k \vee Q^k, P^k \to Q^k ext{ son computables}$

Demostración:

Teorema:

1) Sean $h,g:\mathbb{N}^n\to\mathbb{N}$ funciones RP y $C_P\colon\mathbb{N}^n\to\{0,1\}$ función característica de un predicado RP $\Rightarrow f\colon\mathbb{N}^m\to\mathbb{N}$ /

$$f(x_1, \dots, x_n) = \begin{cases} h(x_1, \dots, x_n) & si\ (x_1, \dots, x_n) \in P\\ g(x_1, \dots, x_n) & sino \end{cases}$$

es RP

2) Igual que el anterior pero en lugar de RP, h, g y P computables \Rightarrow f es computable Demostración:

1) $f(\vec{x}) = h(\vec{x}) * C_P(\vec{x}) + g(\vec{x}) * \alpha(C_P(\vec{x}))$

 $f = SUMA(PROD(h, C_P), PROD(g, \alpha \circ C_P))$, por lo tanto f es composición de PROD, SUMA, α , h, g y C_P , todas RP \Rightarrow f es RP

2) $f(\vec{x}) = h(\vec{x}) * C_P(\vec{x}) + g(\vec{x}) * \alpha(C_P(\vec{x}))$

 $f = SUMA(PROD(h, C_P), PROD(g, \alpha \circ C_P))$, por lo tanto f es composición de PROD, SUMA, α , h, g y C_P , todas computables \Rightarrow f es computable

Teorema: Sean $g_1, \ldots, g_n, h \colon \mathbb{N}^n \to \mathbb{N}$ funciones RP y P_1, \ldots, P_n predicados n-arios RP $\Rightarrow f \colon \mathbb{N}^m \to \mathbb{N}$ /

$$f(\vec{x}) = \begin{cases} g_1(\vec{x}) & si \ \vec{x} \in P_1 \\ \dots \\ g_n(\vec{x}) & si \ \vec{x} \in P_n \\ h(\vec{x}) & sino \end{cases}$$

es RP siendo $P_j \cap P_k = \phi$ si $j \neq k$

Demostración: Similar a tabulaciones

Teorema (Suma Acotada): Sea $Sa_f: \mathbb{N}^{k+1} \to \mathbb{N}$ /

$$Sa_f(x_1, \dots, x_k, y) = \sum_{j=0}^{y} f(x_1, \dots, x_k, j)$$

- 1) Si f es RP $\Rightarrow Sa_f$ es RP
- 2) Si f es computable $\Rightarrow Sa_f$ es computable

Demostración:

1) $\vec{x} = (x_1, \dots, x_k)$

$$Sa_f(\vec{x}, 0) = \sum_{j=0}^{0} f(\vec{x}, j) = f(\vec{x}, 0) = \text{quiero } h(\vec{x})$$

$$Sa_f(\vec{x}, y+1) = \sum_{j=0}^{y+1} f(\vec{x}, j) = \sum_{j=0}^{y} f(\vec{x}, j) \ (\rightarrow Sa_f(\vec{x}, y)) + f(\vec{x}, y+1) = \text{quiero } H(\vec{x}, y, Sa_f(\vec{x}, y))$$

Defino $h: \mathbb{N}^k \to \mathbb{N} / h(\vec{x}) = f(\vec{x}, 0)$

$$h = f \circ ((\Pi_1 \times \cdots \times \Pi_k) \times (CERO \circ \Pi_1))$$

h es RP por ser composición de f, proyecciones y CERO, todas funciones RP

Defino $H: \mathbb{N}^2 \to \mathbb{N}$ /

$$H(\vec{x}, y, z) = z + f(\vec{x}, SUC(y)) = SUMA(\Pi_{k+2}, f \circ ((\Pi_1, \dots, \Pi_k), SUC(\Pi_{k+1})))$$

f y SUMA son RP. Π_j y SUC son funciones iniciales \Rightarrow son RP \Rightarrow H es RP por composición de RP

 $\therefore Sa_f$ es RP por ser ERII a partir de h y de H que son RP

2) Análogo al primer caso

Teorema (Productoria Acotada): Sea $Sa_f: \mathbb{N}^{k+1} \to \mathbb{N}$ /

$$Pa_f(x_1, ..., x_k, y) = \prod_{j=0}^{y} f(x_1, ..., x_k, j)$$

- 1) Si f es RP $\Rightarrow Pa_f$ es RP
- 2) Si f es computable $\Rightarrow Pa_f$ es computable

Demostración:

1) $\vec{x} = (x_1, \dots, x_k)$

$$Pa_f(\vec{x}, 0) = \prod_{j=0}^{0} f(\vec{x}, j) = f(\vec{x}, 0) = \text{quiero } h(\vec{x})$$

$$Pa_f(\vec{x},y+1) = \prod_{j=0}^{y+1} f(\vec{x},j) = \prod_{j=0}^{y} f(\vec{x},j) \; (\rightarrow Pa_f(\vec{x},y)) \; *f(\vec{x},y+1) = \text{quiero} \; H(\vec{x},y,Pa_f(\vec{x},y))$$

Defino $h: \mathbb{N}^k \to \mathbb{N} / h(\vec{x}) = f(\vec{x}, 0)$

$$h = f \circ ((\Pi_1 \times \cdots \times \Pi_k) \times (CERO \circ \Pi_1))$$

h es RP por ser composición de f, proyecciones y CERO, todas funciones RP

Defino $H: \mathbb{N}^2 \to \mathbb{N}$ /

$$H(\vec{x}, y, z) = z * f(\vec{x}, SUC(y)) = PROD(\Pi_{k+2}, f \circ ((\Pi_1, \dots, \Pi_k), SUC(\Pi_{k+1})))$$

f y SUMA son RP. Π_j y SUC son funciones iniciales \Rightarrow son RP \Rightarrow H es RP por composición de RP

 $\therefore Pa_f$ es RP por ser ERII a partir de h y de H que son RP

2) Análogo al primer caso

Teorema (Cuantificadores Acotados): Sea $C_P \colon \mathbb{N}n + 1 \to \{0,1\}$ la función característica del predicado P RP \Rightarrow los siguientes predicados son RP:

1. $Ua(\vec{x}, y) = \forall t \leq y C_P(\vec{x}, t)$

2.
$$Ea(\vec{x}, y) = \exists t \leq y C_P(\vec{x}, t)$$

Demostración:

1.
$$Ua(\vec{x}, y) = \prod_{t=0}^{y} C_P(\vec{x}, t) = Pa_{C_P}(\vec{x}, y)$$

Ua es RP por ser productoria acotada de una función RP

2. $Ea(\vec{x}, y) = \alpha(\alpha(\sum_{t=0}^{y} C_P(\vec{x}, t)))$

$$Ea = \alpha \circ \alpha \circ Sa_{C_P}$$

Ea es RP por ser composición de α que es RP por ser función inicial, y sumatoria acotada (que es RP)

Teorema (Minimización acotada): Sean P^{n+1} un predicado RP. $MinA_P: \mathbb{N}^{n+1} \to \mathbb{N}$

$$MinA_p(\vec{x},y) = \min_{t \leq y} \ C_P(\vec{x},t) = \begin{cases} \min\{t \leq y \ C_P(\vec{x},t) = 1\} & si \ A \neq 0 \\ 0 & sino \end{cases}$$

 $MinA_P$ es RP

Demostración: Definimos un $MinA'_P$ y luego lo emparchamos en los casos que fallan

Sea $MinA'_P : \mathbb{N}^{n+1} \to \mathbb{N}$. Veamos que $MinA'_P$ es RP

$$MinA'_{P} = \sum_{j=0}^{y} \prod_{k=0}^{j} \alpha(C_{p}(\vec{x}, t))$$

 $MinA_P'$ es RP por ser composición de sumatoria acotada, productoria acotada, α , función característica de un predicado RP y proyecciones, todas funciones RP

(La definición parece engorrosa pero la idea es la siguiente: $\alpha(C_p(\vec{x},0)) + \alpha(C_p(\vec{x},0)) * \alpha(C_p(\vec{x},1)) + \dots$)

Vemos que tiene una falla en la condición del "sino", lo arreglamos:

$$MinA_P = MinA'_P(\vec{x}, y) * (\alpha(EQ (MinA'_P(\vec{x}, y), SUC (Y))))$$

 $MinA_P$ es RP por ser composición de $MinA_P',\,\alpha,$ EQ, SUC y proyecciones, todas funciones RP

Teorema (Maximización acotada): Sean P^{n+1} un predicado RP. $MaxA_P : \mathbb{N}^{n+1} \to \mathbb{N}$

$$MaxA_p(\vec{x}, y) = \max_{t \le y} C_P(\vec{x}, t) = \begin{cases} \max\{t \le y \ C_P(\vec{x}, t) = 1\} & si \ A \ne 0 \\ 0 & sino \end{cases}$$

 $MaxA_P$ es RP

Demostración: Utilizando la minimización acotada, y utilizando un predicado auxiliar

$$MaxA(\vec{x},y) = \min_{t \leq y} Q(\vec{x},t)$$

$$Q(\vec{x},t) = P(\vec{x},t) \land \ \forall t' \ t \le t' \le y \ \neg P(\vec{x},t')$$

Q es RP por ser composición de $\land, \, \neg,$ predicado RP y universal acotado

MaxA es RP por ser minimización acotada con predicado RP

Parte VIII

Numeración de Gödel y Programas Universales

Teorema:

 $Halt: \mathbb{N}^2 \to \mathbb{N} \text{ no es computable}$

Demostración: Por al absurdo

Supongamos que Halt es computable $\Rightarrow \exists f : \mathbb{N} \to \mathbb{N} \ / \ f(x) = Halt(x,x)$, es decir, $f = Halt \circ (\Pi_1 \circ \Pi_1)$ que es computable por composición de computables $\Rightarrow \exists$ un programa que compute a f y podemos reemplazarlo por una macro

Definimos el siguiente programa: $[A_1]$ IF HALT(X,X)=1 GOTO A_1 , el cual tiene un código asignado que llamamo #P=n

$$f(n) = Halt(n, n)$$

 $f(n)=1\Leftrightarrow$ el programa de código n ante la entrada n termina \Leftrightarrow (mirando el programa que escribimos) Halt(n,n)=0, pero Halt(n,n)=f(n)=1 **ABS!** que vino de suponer que Halt es computable

 $\therefore Halt$ no es computable