離散最適化基礎論 第 11 回 マトロイド交わり定理:アルゴリズム

岡本 吉央 okamotoy@uec.ac.jp

電気通信大学

2016年1月22日

最終更新: 2016年8月23日 12:58

134. LX (42.2X)	HERALAN (11)	2020 - 1 /3 22 11	

スケジュール 後半 (予定)

★ 休講 (国内出張)	(12/11)
8 マトロイドに対する操作	(12/18)
፬ マトロイドの交わり	(12/25)
* 冬季休業	(1/1)
™ マトロイド交わり定理	(1/8)
★ 休講 (センター試験準備)	(1/15)
🔟 マトロイド交わり定理:アルゴリズム	(1/22)
№ 最近のトピック	(1/29)
* 授業等調整日 (予備日)	(2/5)
★ 期末試験	(2/12)

注意: 予定の変更もありうる

岡本 吉央 (電通大)	離散最適化基礎論 (11)	2016年1月22日	3 / 56

テーマ:解きやすい組合せ最適化問題が持つ「共通の性質」

経門

どうしてそのような違いが生まれるのか?

→ 解きやすい問題が持つ「共通の性質」は何か?

回答

よく分かっていない

しかし、部分的な回答はある

部分的な回答

問題が「マトロイド的構造」を持つと解きやすい

ポイント

効率的アルゴリズムが設計できる背景に「美しい数理構造」がある

この講義では、その一端に触れたい

岡本 吉央 (電通大) 難散最適化基礎論 (11) 2016 年 1 月 22 日 5 / 50

目次

- マトロイド交わり定理:復習
- ❷ 最大共通独立集合問題に対するアルゴリズム
- 3 最大共通独立集合問題に対するアルゴリズム:正当性の証明 ─ 準備
- ₫ 最大共通独立集合問題に対するアルゴリズム:正当性の証明
- 5 今日のまとめ

スケジュール 前半

休講 (卒研準備発表会)	(10/2)
1 組合せ最適化問題におけるマトロイドの役割	(10/9)
★ 休講 (海外出張)	(10/16)
2 マトロイドの定義と例	(10/23)
3 マトロイドの基と階数関数	(10/30)
4 グラフとマトロイド	(11/6)
5 マトロイドとグラフの全域木	(11/13)
★ 休講 (調布祭)	(11/20)
6 マトロイドに対する貪欲アルゴリズム	(11/27)
7 マトロイドのサーキット	(12/4)

離散最適化基礎論 (11)

期末試験

岡本 吉央 (電通大)

▶ 日時:2月12日(金)4限

▶ 教室:西5号館214教室

▶ 範囲:第1回講義のはじめから第10回講義のおわりまで (第11回と第12回は含まない)

▶ 出題形式

▶ 演習問題と同じ形式の問題を6題出題する

▶ その中の3題以上は演習問題として提示されたものと同一である (ただし、「発展」として提示された演習問題は出題されない)

▶ 全問に解答する

▶ 配点:1題20点満点,計120点満点

▶ 成績において、100点以上は100点で打ち切り

▶ 持ち込み: A4 用紙1枚分 (裏表自筆書き込み) のみ可

岡本 吉央 (電通大)

離散最適化基礎論 (11)

2016年1月22日 4/!

今日の目標

今日の目標

最大共通独立集合問題に対する効率的アルゴリズムの設計

▶ 復習:マトロイド交わり定理

▶ 重要概念:増加道

岡本 吉央 (電通大)

離散最適化基礎論 (11)

2016年1月22日 6/5

マトロイドの交わり

非空な有限集合 E, 2つのマトロイド $\mathcal{I}_1, \mathcal{I}_2 \subseteq 2^E$

マトロイドの交わり (交叉, intersection) とは?

 \mathcal{I}_1 と \mathcal{I}_2 の<mark>交わり</mark>とは、次の集合族 $\mathcal{I}_1 \cap \mathcal{I}_2$ $\mathcal{I}_1 \cap \mathcal{I}_2 = \{X \mid X \in \mathcal{I}_1, X \in \mathcal{I}_2\}$

イメージ図

22 日 7 / 56

B 適化基礎論 (11) 2016 年 1 月 22 日

岡本 吉央 (電通大)

離散最適化基礎論 (11

2016年1月22日 8/

マトロイドの交わり:重要性

マトロイド $\mathcal{I}_1, \mathcal{I}_2$

マトロイドの交わりの重要性 (1)

次の問題が多項式時間で解ける

maximize $\sum_{e \in X} w(e)$ subject to $X \in \mathcal{T}_1 \cap$

subject to $X \in \mathcal{I}_1 \cap \mathcal{I}_2$

(マトロイドの最大重み共通独立集合問題)

注意: 貪欲アルゴリズムで解けるわけではない

マトロイドの交わりの重要性(2)

様々な問題をモデル化できる

▶ 例1:二部グラフの最大マッチング問題

▶ 例2:最小有向木問題

岡本 吉央 (電通大)

離散最適化基礎論 (11)

16年1月22日 9/

例1:二部グラフの最大マッチング問題

<u>二部グラ</u>フの最大マッチング問題は

分割マトロイドと分割マトロイドの交わりとしてモデル化できる

頂点 v に接続する辺の集合を $\delta(v)$ として、次のマトロイドを考える

 $\begin{array}{lll} \mathcal{I}_1 & = & \{X \subseteq E \mid |X \cap \delta(u)| \leq 1 \ (\forall \ u \in U)\}, \\ \mathcal{I}_2 & = & \{X \subseteq E \mid |X \cap \delta(v)| \leq 1 \ (\forall \ v \in V)\} \end{array}$

岡本 吉央 (電通大)

離散最適化基礎論 (11)

.6年1月22日 11,

化基碳腈 (11) 2016 年 1 月 22 日 1

マトロイド交わり定理

E上のマトロイド $\mathcal{I}_1,\mathcal{I}_2$, それらの階数関数 r_1,r_2

マトロイド交わり定理

 $\max\{|X| \mid X \in \mathcal{I}_1 \cap \mathcal{I}_2\} = \min\{r_1(S) + r_2(E - S) \mid S \subseteq E\}$

別名:最大共通独立集合問題に対する強双対定理

最大共通独立集合問題に対する弱双対定理:重要性

 $|X|=r_1(S)+r_2(E-S)$ を満たす $X\in\mathcal{I}_1\cap\mathcal{I}_2$ と $S\subseteq E$ が見つけられれば X が \mathcal{I}_1 と \mathcal{I}_2 の最大共通独立集合であることが分かる

マトロイド交わり定理:重要性

そのようなXとSが必ず存在する

岡本 吉央 (電通大)

離散最適化基礎論 (11)

2016年1月22日

目次

● マトロイド交わり定理:復習

❷ 最大共通独立集合問題に対するアルゴリズム

❸ 最大共通独立集合問題に対するアルゴリズム:正当性の証明 ― 準備

₫ 最大共通独立集合問題に対するアルゴリズム:正当性の証明

6 今日のまとめ

例1:二部グラフの最大マッチング問題

二部グラフの最大マッチング問題は

分割マトロイドと分割マトロイドの交わりとしてモデル化できる

二部グラフG = (U, V; E) に対して、要素数最大のマッチングを求めたい

マッチングとは? (復習)

辺部分集合で、任意の頂点に接続する辺の数が1以下であるもの

岡本 吉央 (電通大)

離散最適化基礎論 (11)

016年1月22日 10/

最大共通独立集合問題

E上のマトロイド $\mathcal{I}_1, \mathcal{I}_2$

「考える問題:最大共通独立集合問題

今日の目標

最大共通独立集合問題に対するアルゴリズムの設計と解析

岡本 吉央 (電通大)

離散最適化基礎論 (11)

2016年1月22日 12/

マトロイド交わり定理:重要性

E上のマトロイド $\mathcal{I}_1, \mathcal{I}_2$, それらの階数関数 r_1, r_2

マトロイド交わり定理

 $\max\{|X| \mid X \in \mathcal{I}_1 \cap \mathcal{I}_2\} = \min\{r_1(S) + r_2(E - S) \mid S \subseteq E\}$

マトロイド交わり定理が

最大共通独立集合問題に対するアルゴリズム設計の指針を与える

アルゴリズム設計指針

- $X \leftarrow \emptyset$
- 2 X が $\mathcal{I}_1 \cap \mathcal{I}_2$ の要素であるように「増加」させる
- ③ X を「増加」させられないとき、 $|X| = r_1(S) + r_2(E-S)$ を満たす S を見つける

アルゴリズムが次回のテーマ

岡本 吉央 (電通大)

離散最適化基礎論 (11)

2016年1月22日 14/

アルゴリズム:設定と目標

設定

- ► E 上のマトロイド I₁, I₂ とその階数関数 r₁, r₂
- $X \in \mathcal{I}_1 \cap \mathcal{I}_2$

| 目標:次のいずれかを行う

- **1** |X| < |Z| を満たす $Z \in \mathcal{I}_1 \cap \mathcal{I}_2$ を見つける
- $|X| = r_1(S) + r_2(E S)$ を満たす $S \subseteq E$ を見つける

岡本 吉央 (電通大)
解散最適化基礎論 (11) 2016 年 1 月 22 日 15 / 56

アルゴリズム:基本アイディアの例 (1)

二部グラフにおける最大マッチングの例を使って説明

図は,次のように簡略化

 \mathcal{I}_2

016年1月22日 17/

アルゴリズム:基本アイディアの例 (2-1)

X を用いて、補助グラフ G_X を作成する

 $e \in E - X$ に対して、

有向辺 (s,e) が存在 $\Leftrightarrow X \cup \{e\} \in \mathcal{I}_2$

岡本 吉央 (電通大)

離散最適化基礎論 (11)

2016年1月22日

19 / 56

アルゴリズム:基本アイディアの例 (2-3)

X を用いて、補助グラフ G_X を作成する

 $e \in E - X, f \in X$ に対して,

有向辺 (e,f) が存在 \Leftrightarrow $X \cup \{e\}
ot\in \mathcal{I}_1$, $(X \cup \{e\}) - \{f\} \in \mathcal{I}_1$

岡本 吉央 (電通大

離散最適化基礎論 (11)

2016年1月22日

アルゴリズム:基本アイディアの例(3)

補助グラフ G_X にて、sからtへ至る有向道を見つける

この場合, $s o e_6 o e_7 o e_9 o t$

アルゴリズム:基本アイディアの例 (2)

X を用いて、補助グラフ G_X を作成する

 G_X の頂点集合は $E \cup \{s,t\}$ で、4 種類の有向辺が存在

岡本 吉央 (電通大) 離散最適化基礎論 (11)

アルゴリズム:基本アイディアの例 (2-2)

X を用いて,補助グラフ G_X を作成する

 $e \in E - X$ に対して,

有向辺 (e,t) が存在 $\Leftrightarrow X \cup \{e\} \in \mathcal{I}_1$

() 1

アルゴリズム:基本アイディアの例 (2-4)

X を用いて,補助グラフ G_X を作成する

 $e \in E - X, f \in X$ に対して,

有向辺 (f,e) が存在 $\Leftrightarrow X \cup \{e\} \notin \mathcal{I}_2$, $(X \cup \{e\}) - \{f\} \in \mathcal{I}_2$

岡本 吉央 (電通大) 離散最適化基礎論 (11) 2016 年 1 月 22 日

アルゴリズム:基本アイディアの例 (4)

見つけた有向道に沿って、Xを「増加」させる

これで、Xより要素数が1だけ大きい共通独立集合Zが見つかった

アルゴリズム:基本アイディアの例 (5)

 \mathcal{I}_2

先ほど得られた Z を新しい X として、補助グラフ G_X を作成する

岡本 吉央 (電通大)

離散最適化基礎論 (11)

アルゴリズム:全体像

| 最大共通独立集合問題に対するアルゴリズム|

- **I** $X \leftarrow \emptyset$ (注: $X \in \mathcal{I}_1 \cap \mathcal{I}_2$)
- 2 以下を繰り返し
 - 補助グラフ G_X を作成する
 - ② G_X において,s から t へ至る 最短路 を見つける
 - ③ 存在しなかったら、反復を抜ける 存在したら、その最短路に沿って X を増加させる
- 3 X を出力

補助グラフの辺集合は以下のように定義された

 $\{(s,e) \mid e \in E - X, X \cup \{e\} \in \mathcal{I}_2\} \cup$

 $\{(e,t)\mid e\in E-X, X\cup\{e\}\in\mathcal{I}_1\}\cup$

 $\{(e, f) \mid e \in E - X, f \in X, X \cup \{e\} \notin \mathcal{I}_1, (X \cup \{e\}) - \{f\} \in \mathcal{I}_1\} \cup \{e\} \in \mathcal{I}_1 \cup \{e\} \cup$

 $\{(f,e) \mid e \in E - X, f \in X, X \cup \{e\} \notin \mathcal{I}_2, (X \cup \{e\}) - \{f\} \in \mathcal{I}_2\}$

岡本 吉央 (電通大)

離散最適化基礎論 (11)

2016年1月22日 27/56

目次

- マトロイド交わり定理:復習
- ② 最大共通独立集合問題に対するアルゴリズム
- ❸ 最大共通独立集合問題に対するアルゴリズム:正当性の証明 ─ 準備
- ₫ 最大共通独立集合問題に対するアルゴリズム:正当性の証明
- 6 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (11)

復習:マトロイドのサーキット:例

マトロイドのサーキット (circuit) とは?

E上のマトロイド \mathcal{I} のサーキットとは、次を満たす従属集合 $C \notin \mathcal{I}$ 任意の $e \in C$ に対して, $C - \{e\} \in \mathcal{I}$

アルゴリズム:基本アイディアの例 (6)

 $(e_1)(e_2)$

 $(e_3)(e_4)$

 \mathcal{I}_2

 $(e_1)(e_3)(e_5)$

 (e_2) (e_6) (e_8)

補助グラフ G_X にて、sからtへ至る有向道を見つける

しかし、見つからない → アルゴリズム終了

岡本 吉央 (電通大)

離散最適化基礎論 (11)

アルゴリズム:全体像

| 最大共通独立集合問題に対するアルゴリズム|

- **1** $X \leftarrow \emptyset$ (注: $X \in \mathcal{I}_1 \cap \mathcal{I}_2$)
- 2 以下を繰り返し
 - 動 補助グラフ G_X を作成する
 - ② G_X において, s から t へ至る 最短路 を見つける
 - 3 存在しなかったら、反復を抜ける 存在したら、その最短路に沿ってXを増加させる
- 3 X を出力

見つかった最短路が $s o e_1 o f_1 o \cdots o e_m o f_m o e_{m+1} o t$ のとき, X を増加させてできる集合は

$$(X \cup \{e_1, \dots, e_m, e_{m+1}\}) - \{f_1, \dots, f_m\}$$

これはXより要素数が1だけ大きい

岡本 吉央 (電通大)

離散最適化基礎論 (11)

復習:マトロイドのサーキット

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

マトロイドのサーキット (circuit) とは?

E上のマトロイド \mathcal{I} のサーキットとは、次を満たす従属集合 $C \notin \mathcal{I}$ 任意の $e \in C$ に対して, $C - \{e\} \in \mathcal{I}$

別の言い方:サーキットとは極小な従属集合

岡本 吉央 (雷涌大)

離散最適化基礎論 (11)

復習:マトロイドのサーキット:イメージ

マトロイドのサーキット (circuit) とは?

E上のマトロイド \mathcal{I} のサーキットとは、次を満たす従属集合 $C \notin \mathcal{I}$ 任意の $e \in C$ に対して, $C - \{e\} \in \mathcal{I}$

復習:独立集合に要素を追加して従属となるとき…

非空な有限集合 E, マトロイド $\mathcal{I} \subseteq 2^E$

「サーキットの性質 (復習)

任意の $X \in \mathcal{I}$ と任意の要素 $e \in E - X$ に対して, $X \cup \{e\}$ が従属ならば, $X \cup \{e\}$ は \mathcal{I} のサーキットをただ1つ含む

そのサーキットを C(e,X) と書くことにする

► $r(C(e,X)) \le |C(e,X)| - 1$

 $r(X \cup \{e\}) = |X|$

(注: $e \in C(e,X)$)

岡本 吉央 (電通大)

離散最適化基礎論 (11)

岡本 吉央 (電通大)

サーキットを使った交換

E上のマトロイド \mathcal{I} , $X \in \mathcal{I}$ $e \in E - X, f \in X$

|補題1: サーキットを使った交換

▶ 階数関数の劣モジュラ性より

 $X \cup \{e\} \notin \mathcal{I}, f \in C(e, X) \Rightarrow (X \cup \{e\}) - \{f\} \in \mathcal{I}$ 証明: $e \in E - X, f \in X, X \cup \{e\} \notin \mathcal{I}, f \in C(e, X)$ と仮定

離散最適化基礎論 (11)

▶ $f \in C(e, X)$ であり C(e, X) はサーキットなので, $C(e, X) - \{f\} \in \mathcal{I}$

 $r((X \cup \{e\}) - \{f\}) + r(C(e, X)) \ge r(X \cup \{e\}) + r(C(e, X) - \{f\})$

サーキットを使った交換 (続き)

▶ ここで、次を確認

 $(:: C(e, X) \notin \mathcal{I})$

 $(: X \in \mathcal{I}, X \cup \{e\} \notin \mathcal{I})$

目次

- マトロイド交わり定理:復習
- ② 最大共通独立集合問題に対するアルゴリズム
- 3 最大共通独立集合問題に対するアルゴリズム:正当性の証明 ─ 準備
- ₫ 最大共通独立集合問題に対するアルゴリズム:正当性の証明
- 6 今日のまとめ

▶ ゆえに,

 $r((X \cup \{e\}) - \{f\}) \ge |X| - (|C(e, X)| - 1) + (|C(e, X)| - 1) = |X|$

► $r(C(e,X)-\{f\}) = |C(e,X)|-1$ (: $C(e,X)-\{f\}\in \mathcal{I}, f\in C(e,X)$)

▶ 一方で, $r((X \cup \{e\}) - \{f\}) \le |(X \cup \{e\}) - \{f\}| = |X|$ なので,

$$r((X \cup \{e\}) - \{f\}) = |X|$$

▶ f f f f f f f f

離散最適化基礎論 (11)

離散最適化基礎論 (11)

アルゴリズム:全体像 (再掲)

最大共通独立集合問題に対するアルゴリズム

- **1** $X \leftarrow \emptyset$ (注: $X \in \mathcal{I}_1 \cap \mathcal{I}_2$)
- 2 以下を繰り返し
 - 補助グラフ G_X を作成する
 - ② G_X において、s から t へ至る 最短路 を見つける
 - 3 存在しなかったら、反復を抜ける 存在したら、その最短路に沿って X を増加させる
- 3 X を出力

補助グラフの辺集合は以下のように定義された

$$\{(s,e) \mid e \in E - X, X \cup \{e\} \in \mathcal{I}_2\} \cup$$

$$\{(e,t) \mid e \in E - X, X \cup \{e\} \in \mathcal{I}_1\} \cup$$

$$\{(e,f) \mid e \in E - X, f \in X, X \cup \{e\} \notin \mathcal{I}_1, (X \cup \{e\}) - \{f\} \in \mathcal{I}_1\} \cup$$

$$\{(f,e) \mid e \in E - X, f \in X, X \cup \{e\} \notin \mathcal{I}_2, (X \cup \{e\}) - \{f\} \in \mathcal{I}_2\}$$

岡本 吉央 (電通大)

離散最適化基礎論 (11)

E上のマトロイド I, I の階数関数 r, I のサーキット C

補題2

補題 2

 $f \in C \subseteq A \Rightarrow r(A - \{f\}) = r(A)$

証明:

- C はサーキットなので、C − {f} ∈ I
- ▶ つまり、C {f} の基は C {f}
- ▶ $C \{f\} \subseteq A \{f\}$ なので,

 $A - \{f\}$ の基で $C - \{f\}$ を含むものが存在する (演習問題 3.10)

- ▶ それを B とする
- ▶ 証明すること : B が A の基でもあること
- ▶ これが証明できれば、 $r(A \{f\}) = |B| = r(A)$ が導かれる

アルゴリズム:正当性の証明に向けた目標

「最大共通独立集合問題に対するアルゴリズム

- **I** $X \leftarrow \emptyset$ (注: $X \in \mathcal{I}_1 \cap \mathcal{I}_2$)
- 2 以下を繰り返し
 - 動補助グラフ G_X を作成する
 - ② G_X において, s から t へ至る 最短路 を見つける
 - 3 存在しなかったら、反復を抜ける 存在したら、その最短路に沿って X を増加させる
- 3 X を出力

証明したいこと

- **1** 増加させた X に対して、 $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ が成り立つこと
- 2 出力された X が最大共通独立集合であること

岡本 吉央 (電通大)

離散最適化基礎論 (11)

補題 2 (続き)

証明 (続き):

- **▶** $C \{f\} \subseteq B$ なので, $C \subseteq B \cup \{f\}$
- ▶ C はサーキットなので, $B \cup \{f\} \notin \mathcal{I}$
- ▶ B は $A \{f\}$ の基なので、任意の $e \in (A \{f\}) B$ に対して $B \cup \{e\} \notin \mathcal{I}$
- ▶ すなわち、任意の $e \in A B$ に対して $B \cup \{e\} \notin \mathcal{I}$
- ▶ つまり、BはAの基

最大共通独立集合問題に対するアルゴリズム

- **I** $X \leftarrow \emptyset$ (注: $X \in \mathcal{I}_1 \cap \mathcal{I}_2$)
- 2 以下を繰り返し
 - 補助グラフ G_X を作成する
 - ② G_X において, s から t へ至る 最短路 を見つける
 - ❸ 存在しなかったら、反復を抜ける 存在したら、その最短路に沿って X を増加させる
- 3 X を出力

「証明したいこと

- **I** 増加させた X に対して, $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ が成り立つこと
- 2 出力された X が最大共通独立集合であること

見つかった最短路が $s o e_1 o f_1 o \cdots o e_m o f_m o e_{m+1} o t$ である とする

岡本 吉央 (電通大)

離散最適化基礎論 (11)

アルゴリズムの正当性:道が存在するとき(2)

- \blacktriangleright (e_i, f_i) が G_X の辺なので, $X \cup \{e_i\} \not\in \mathcal{I}_1$
- ▶ つまり, $X \cup \{e_i\}$ は \mathcal{I}_1 のサーキットを含む (それを C とする)

観察

 $C \subseteq T_{i+1}$

観察の証明: T_{i+1} が C を含まないとする

- ▶ このとき, ある $j \in \{i+1,\ldots,m\}$ に対して, $f_i \in C$ となる
- 補題1より、(X∪{e_i}) {f_i} ∈ I
 1
- ▶ つまり, (e_i, f_i) は G_X の辺である
- ▶ これは選んだ道の最小性に矛盾

 \Box

離散最適化基礎論 (11)

離散最適化基礎論 (11)

アルゴリズム:正当性の証明に向けた目標 (再掲)

【最大共通独立集合問題に対するアルゴリズム

- **I** $X \leftarrow \emptyset$ (注: $X \in \mathcal{I}_1 \cap \mathcal{I}_2$)
- 2 以下を繰り返し
 - 補助グラフ G_X を作成する
 - ② G_X において, s から t へ至る 最短路 を見つける
 - 3 存在しなかったら、反復を抜ける 存在したら、その最短路に沿って X を増加させる
- 3 X を出力

証明したいこと

- **1** 増加させた X に対して、 $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ が成り立つこと
- 2 出力された X が最大共通独立集合であること

ここで、マトロイド交わり定理を利用する

岡本 吉央 (雷涌大)

離散最適化基礎論 (11)

離散最適化基礎論 (11)

アルゴリズムの正当性:道が存在しないとき(2)

 G_X において、s から到達できる E の要素の集合を S とする

証明したいこと

 $|X| = r_1(S) + r_2(E - S)$

マトロイド交わり定理より, X が最大共通独立集合であると分かる

そのために証明したいこと

- **I** \mathcal{I}_1 において、 $X \cap S$ が S の基であること
- 2 \mathcal{I}_2 において, $X \cap (E S)$ が E S の基であること

これが証明できれば、 $r_1(S) = |X \cap S|$, $r_2(E - S) = |X \cap (E - S)|$ となる

 $|X| = |X \cap S| + |X \cap (E - S)| = r_1(S) + r_2(E - S)$

となり,全体の証明が終わる

道が存在するとき

 $(X \cup \{e_1, \ldots, e_m, e_{m+1}\}) - \{f_1, \ldots, f_m\} \in \mathcal{I}_1 \cap \mathcal{I}_2$

 $\overline{\underline{\mathrm{ii}} \mathrm{ii}} : (X \cup \{e_1, \dots, e_m, e_{m+1}\}) - \{f_1, \dots, f_m\} \in \mathcal{I}_1$ を証明する $((X \cup \{e_1, \dots, e_m, e_{m+1}\}) - \{f_1, \dots, f_m\} \in \mathcal{I}_2$ は演習問題)

▶ $T = X \cup \{e_1, \dots, e_m, e_{m+1}\}$ とする

アルゴリズムの正当性:道が存在するとき

- ullet $i \in \{m+1,\ldots,1\}$ に対して、 $T_i = T \{f_m,\ldots,f_i\}$ とする
- ▶ このとき、

$$T_{m+1} = T = X \cup \{e_1, \dots, e_m, e_{m+1}\},$$

 $T_1 = (X \cup \{e_1, \dots, e_m, e_{m+1}\}) - \{f_1, \dots, f_m\}$

- ightharpoonup (e_{m+1},t) は G_X の辺なので, $X \cup \{e_{m+1}\} \in \mathcal{I}_1$
- ▶ $X \cup \{e_{m+1}\} \subseteq T$ なので、 $r_1(T) \ge r_1(X \cup \{e_{m+1}\}) = |X| + 1$

離散最適化基礎論 (11)

アルゴリズムの正当性:道が存在するとき(3)

ここまでのまとめ

- CはX∪{e_i} に含まれる I₁ のサーキット
- $C \subseteq T_{i+1}$
- ullet (e_i, f_i) が G_X の辺なので, $(X \cup \{e_i\}) \{f_i\} \in \mathcal{I}_1$
- $ightharpoonup : f_i \in C$
- ▶ 補題 2 より、 $r_1(T_{i+1} \{f_i\}) = r_1(T_{i+1})$
- ▶ 定義より, $T_{i+1} \{f_i\} = T_i$
- $ightharpoonup : r_1(T_i) = r_1(T_{i+1})$
- $ightharpoonup : r_1(T) = r_1(T_{m+1}) = \cdots = r_1(T_1) \le |X| + 1$
- ▶ $r_1(T) \ge |X| + 1$ なので, $r_1(T_1) = |X| + 1$ (つまり, $T_1 \in \mathcal{I}_1$)
- $(X \cup \{e_1, \ldots, e_m, e_{m+1}\}) \{f_1, \ldots, f_m\} = T_1 \in \mathcal{I}_1$

П

アルゴリズムの正当性:道が存在しないとき(1)

 G_X において、s から到達できる E の要素の集合を S とする

証明したいこと

 $|X| = r_1(S) + r_2(E - S)$

マトロイド交わり定理より, X が最大共通独立集合であると分かる

岡本 吉央 (雷诵大)

アルゴリズムの正当性:道が存在しないとき(3)

証明すること

1 \mathcal{I}_1 において、 $X \cap S$ が S の基であること

証明: $S - (X \cap S) = S \cap (E - X)$ に注意

- ► 任意の e ∈ S ∩ (E X) を考える
- ▶ このとき, (e,t)は G_Xの辺ではない (:: 辺であるとすると, s から t へ至る道が存在してしまう)
- ▶ つまり, $X \cup \{e\} \notin \mathcal{I}_1$
- ∴ X∪{e} は I₁ のサーキット C₁(e, X) を含む
- ▶ 任意の f ∈ X S を考える
- ▶ このとき, (e,f)は G_X の辺ではない (:: 辺であるとすると、s から f へ至る道が存在し、 $f \notin S$ に矛盾)

岡本 吉央 (電通大)

アルゴリズムの正当性:道が存在しないとき (4)

証明すること

II \mathcal{I}_1 において, $X \cap S$ が S の基であること

証明 (続き):

- ▶ 任意の e ∈ S ∩ (E X) を考える
- **...**
- ▶ : (X ∪ {e}) {f} も I₁ のサーキットを含む
- ▶ $(X \cup \{e\}) \{f\} \subseteq X \cup \{e\}$ なので、そのサーキットは $C_1(e,X)$
- ▶ ∴ (X ∪ {e}) − (X − S) は C₁(e, X) を含む
- ▶ $(X \cup \{e\}) (X S) = (X \cap S) \cup \{e\}$ であり、つまり、 $(X \cap S) \cup \{e\} \notin \mathcal{I}_1$
- ▶ したがって、 \mathcal{I}_1 において、 $X \cap S$ は S の基

岡本 吉央 (電通大)

離散最適化基礎論 (11)

アルゴリズム:正当性 — まとめ

最大共通独立集合問題に対するアルゴリズム

- **1** $X \leftarrow \emptyset$ (注: $X \in \mathcal{I}_1 \cap \mathcal{I}_2$)
- 2 以下を繰り返し
 - 動 補助グラフ G_X を作成する
 - **②** *G_X* において, *s* から *t* へ至る 最短路 を見つける
 - 3 存在しなかったら、反復を抜ける 存在したら、その最短路に沿って X を増加させる
- 3 X を出力

証明したこと

- **1** 増加させた X に対して, $X \in \mathcal{I}_1 \cap \mathcal{I}_2$ が成り立つこと
- 2 出力された X が最大共通独立集合であること

つまり、このアルゴリズムは正しい

岡本 吉央 (電通大) 難散最適化基礎論 (11)

目次

- マトロイド交わり定理:復習
- ❷ 最大共通独立集合問題に対するアルゴリズム
- ❸ 最大共通独立集合問題に対するアルゴリズム:正当性の証明 ─ 準備
- ₫ 最大共通独立集合問題に対するアルゴリズム:正当性の証明
- 6 今日のまとめ

岡本 吉央 (電通大)

離散最適化基礎論 (11)

離散最適化基礎論 (11)

2016年1月22日 53/56

2016年1月22日 55/56

残った時間の使い方

- ▶ 演習問題をやる
 - ▶ 相談推奨 (ひとりでやらない)
- ▶ 質問をする
 - ▶ 教員は巡回
- ▶ 退室時, 小さな紙に感想など書いて提出する ← 重要
 - ▶ 内容は何でも OK
 - ▶ 匿名で OK

岡本 吉央 (電通大)

アルゴリズムの正当性:道が存在しないとき (5)

証明すること

② \mathcal{I}_2 において、 $X \cap (E - S)$ が E - S の基であること

証明は前のページと同様なので, 演習問題

岡本 吉央 (電通大)

離散最適化基礎論 (11)

アルゴリズム:計算量

最大共通独立集合問題に対するアルゴリズム

- **1** $X \leftarrow \emptyset$ (注: $X \in \mathcal{I}_1 \cap \mathcal{I}_2$)
- 2 以下を繰り返し
 - 動 補助グラフ G_X を作成する
 - **②** *G_X* において, *s* から *t* へ至る 最短路 を見つける
 - 3 存在しなかったら、反復を抜ける 存在したら、その最短路に沿ってXを増加させる
- 3 X を出力

「 $A \in \mathcal{I}_1$ 」や「 $A \in \mathcal{I}_2$ 」という判定に γ 時間かかるとすると

- ▶ 補助グラフの作成: O(|E|²γ)
- ▶ 最短路の計算: O(|E|²) (幅優先探索)
- ▶ 反復回数: O(|E|)

つまり、計算量は $O(|E|^3\gamma)$

岡本 吉央 (電通大) 離散最適化基礎論 (11)

今回のまとめ

今日の目標

マトロイド交わり定理を理解し、使えるようになる

▶ 重要概念:弱双対性,強双対性 ▶ 重要概念:最適性の保証

次回の予告

- ▶ マトロイド交わり問題に対する効率的アルゴリズム
- ▶ マトロイドの合併に対する効率的アルゴリズム

岡本 吉央 (電通大)

蘇散最適化基礎論 (11)