Minimum Spanning Trees

Minimum Spanning Trees

Spanning subgraph

Subgraph of a graph G
 containing all the vertices of G

Spanning tree

 Spanning subgraph that is itself a (free) tree

Minimum spanning tree (MST)

 Spanning tree of a weighted graph with minimum total edge weight

Applications

- Communications networks
- Transportation networks

Cycle Property

Cycle Property:

- Let T be a minimum spanning tree of a weighted graph G
- Let e be an edge of G that is not in T and let C be the cycle formed by e with T
- For every edge f of C, $weight(f) \le weight(e)$

Proof:

- By contradiction
- If weight(f) > weight(e) we can get a spanning tree of smaller weight by replacing e with f

Replacing f with e yields a better spanning tree

Partition Property

Partition Property:

- Consider a partition of the vertices of *G* into subsets *U* and *V*
- Let e be an edge of minimum weight across the partition
- There is a minimum spanning tree of
 G containing edge e

Proof:

- Let T be an MST of G
- If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition
- By the cycle property, weight(f) ≤ weight(e)
- Thus, weight(f) = weight(e)
- We obtain another MST by replacing f with e

Replacing f with e yields another MST

Kruskal's Algorithm

- Maintain a partition of the vertices into clusters
 - Initially, single-vertex clusters
 - Keep an MST for each cluster
 - Merge "closest" clusters and their MSTs
- A priority queue stores the edges outside clusters
 - Key: weight
 - Element: edge
- At the end of the algorithm
 - One cluster and one MST

```
Algorithm KruskalMST(G)
for each vertex v in G do
   Create a cluster consisting of v
 let Q be a priority queue.
Insert all edges into Q
 T \leftarrow \emptyset
 { T is the union of the MSTs of the clusters}
while T has fewer than n-1 edges do
e \leftarrow Q.removeMin().getValue()
   [u, v] \leftarrow G.endVertices(e)
   A \leftarrow getCluster(u)
    B \leftarrow getCluster(v)
   if A \neq B then
      Add edge e to T
      mergeClusters(A, B)
return T
```

Example

http://www.cs.usfca.edu/~ga lles/visualization/Kruskal.html

Example (contd.)

Data Structure for Kruskal's Algorithm

- The algorithm maintains a forest of trees
- A priority queue extracts the edges by increasing weight
- An edge is accepted it if connects distinct trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with operations:
 - makeSet(u): create a set consisting of u
 - find(u): return the set storing u
 - union(A, B): replace sets A and B with their union

Recall of List-based Partition

- Each set is stored in a sequence
- Each element has a reference back to the set
 - operation find(u) takes O(1) time, and returns the set of which u is a member.
 - in operation union(A,B), we move the elements of the smaller set to the sequence of the larger set and update their references
 - the time for operation union(A,B) is min(|A|, |B|)
- Whenever an element is processed, it goes into a set of size at least double, hence each element is processed at most log n times

Partition-Based Implementation

- Partition-based version of Kruskal's Algorithm
 - Cluster merges as unions
 - Cluster locations as finds
- Running time $O((n + m) \log n)$
 - PQ operationsO(m log n)
 - UF operations $O(n \log n)$

```
Algorithm KruskalMST(G)
 Initialize a partition P
for each vertex v in G do
    P.makeSet(v)
let Q be a priority queue.
Insert all edges into Q
T \leftarrow \emptyset
 { T is the union of the MSTs of the clusters}
while T has fewer than n-1 edges do
e \leftarrow Q.removeMin().getValue()
   [u, v] \leftarrow G.endVertices(e)
   A \leftarrow P.find(u)
   B \leftarrow P.find(v)
   if A \neq B then
      Add edge e to T
      P.union(A, B)
return T
```

Prim-Jarnik's Algorithm

- Similar to Dijkstra's algorithm
- ullet We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
- We store with each vertex v label d(v) representing the smallest weight of an edge connecting v to a vertex in the cloud
- At each step:
 - We add to the cloud the vertex u outside the cloud with the smallest distance label
 - \blacksquare We update the labels of the vertices adjacent to u

Prim-Jarnik's Algorithm (cont.)

- A heap-based adaptable priority queue with location-aware entries stores the vertices outside the cloud
 - Key: distance
 - Value: vertex
 - Recall that method replaceKey(l,k) changes the key of entry l
- We store three labels with each vertex:
 - Distance
 - Parent edge in MST
 - Entry in priority queue

```
Algorithm PrimJarnikMST(G)
Q \leftarrow new heap-based priority queue
s \leftarrow a vertex of G
for all v \in G.vertices()
   if v = s
      setDistance(v, 0)
   else
      setDistance(v, \infty)
   setParent(v, \emptyset)
   l \leftarrow Q.insert(getDistance(v), v)
   setLocator(v,l)
while \neg Q.isEmpty()
   l \leftarrow Q.removeMin()
   u \leftarrow l.getValue()
   for all e \in G.incidentEdges(u)
      z \leftarrow G.opposite(u,e)
      r \leftarrow weight(e)
      if r < getDistance(z)
         setDistance(z, r)
         setParent(z,e)
         Q.replaceKey(getEntry(z), r)
```

Example

Example (contd.)

http://www.cs.usfca.edu/~g alles/visualization/Prim.html

Analysis

- Graph operations
 - Method incidentEdges is called once for each vertex
- Label operations
 - We set/get the distance, parent and locator labels of vertex z $O(\deg(z))$ times
 - Setting/getting a label takes O(1) time
- Priority queue operations
 - Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $O(\log n)$ time
 - The key of a vertex w in the priority queue is modified at most deg(w) times, where each key change takes $O(\log n)$ time
- Prim-Jarnik's algorithm runs in $O((n + m) \log n)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$
- \Box The running time is $O(m \log n)$ since the graph is connected