MECÁNICA GENERAL FUERZAS EXTERNAS EN EL ENFOQUE LAGRANGIANO

1. Barra que pende de un carro

Obtenga las ecuaciones que describen la dinámica del sistema. El momento de inercia para una barra de masa m y longitud l para una rotación desde uno de sus extremos es $\frac{m}{12}l^2$.

- a) Calcule la descomposición en fuerzas generalizadas de las no conservativas que actúan sobre el sistema:
 - el forzado externo $\vec{F}(t)$,
 - y la que hace ejerce amortiguador de constante b en función de la velocidad del carro, $-b\dot{x}\hat{x}$.
- b) Genere el Lagrangiano.
- c) Calcule las ecuaciones de Euler-Lagrange.
- 2. Dos pesos de masa idéntica m están unidos al extremo de brazos de masa despreciable. Uno de los brazos describe una inclinación fija con la horizontal de ϕ . Descartamos la fricción con los rodamientos que mantiene vertical el eje de donde parten los brazos. Un resorte de torsión de constante elástica K_t se resiste a su rotación con velocidad angular $\Omega(t)$ afectado por un toque variable $\vec{\tau} = \tau(t)\hat{z}$.

Pregunta conceptual: ¿Cuales son las unidades de la fuerza generalizada?

- a) N
- b) $\frac{N}{m}$
- c) Nm
- d) Otra

Obtenga las ecuaciones de la dinámica de Euler-Lagrange.

→ X

 m_1

F(t)

3. Dos cilindros uniformes de respectivas masas y radios m_1, m_2, R_1 y R_2 están soldados. Este armado rota sin fricción en torno a un eje. Una cuerda de masa despreciable envuelve al cilindro externo y sus extremos conectan un resorte de constante elástica k y un amortiguador en función de la velocidad (constante de proporcionalidad b). Una correa de masa despreciable envuelve al cilindro de menor radio y de ella pende vertical un bloque de masa m_o .

Obtenga las ecuaciones de la dinámica de Euler-Lagrange.

4. Sobre la superficie inclinada en θ_0 del carro de masa m_0 rueda sin deslizar un disco de radio R y masa m. Este no se sale de la superficie a pesar de que al centro del mismo se aplica una fuerza $\vec{F} = F(t)\hat{x}$ gracias a un resorte de constante elástica K_1 que une este centro con el carro. Limita el alcance de este un resorte de constante elástica K_2 fijado a la pared y un amortiguador proporcional a la velocidad de constante proporcional b. Se descarta la fricción del carro con el suelo. Todo el sistema está sometido a la aceleración gravitatoria $\vec{g} = -g\hat{y}$.

Pregunta conceptual: ¿Qué es la fuerza generalizada asociada al desplazamiento virtual δx debida a \vec{F} ?

- a) $F(t)\cos(\theta)$
- b) F(t)
- c) $F(t)\delta x$
- d) 0

Obtenga las ecuaciones de la dinámica de Euler-Lagrange.