## FOTOSSÍNTESE E QUIMIOSSÍNTESE



## **AULA 1 – VISÃO GERAL**

#### Importância da fotossíntese

- Nutrição orgânica.
- Local:
  - o Em procariontes: no citoplasma;
  - Em eucariontes: no interior dos cloroplastos.
- Importância ecológica:
  - Captura de CO<sub>2</sub> atmosférico;
  - Renovação de O<sub>2</sub> atmosférico.
  - Contribui para o fluxo de matéria e energia nos ecossistemas.

## A luz branca e a fotossíntese

- Luz branca: possui todos os comprimentos de onda.
- Pigmentos fotossintetizantes: absorvem certos comprimentos de onda:
  - Clorofila: pigmento principal;
  - Carotenoides: pigmentos acessórios.

### Etapas da fotossíntese

- Etapa fotoquímica ou reações de claro.
- Etapa química ou reações de escuro.

#### Equação química da fotossíntese

#### Equação geral:

$$6 CO_2 + 12 H_2O \xrightarrow{\text{DIGMENTOS}} C_6H_{12}O_6 + 6H_2O + 6O_2$$

#### Equação simplificada



http://aprovaja.blogspot.com.br/2011/08/fotossintese-celular.html

AULA 2 – ETAPA FOTOQUÍMICA OU REAÇÕES DE CLARO

Visão geral

- Local: membrana dos tilacoides.
- Magnésio: excita-se na presença da luz e perde elétrons.
- Papel da água: sofre fotólise e cede elétrons para o magnésio da clorofila.
- Fotofosforilação: formação de ATP a partir da energia dissipada pela transferência dos elétrons perdidos pelo magnésio.
- NADP<sup>+</sup>: aceptor intermediário de prótons H<sup>+</sup> e elétrons.



http://www.sobiologia.com.br/conteudos/bioquimica/bioquimica15.php

## AULA 3 – ETAPA QUÍMICA OU REAÇÕES DE ESCURO

## Visão geral

- Local: estroma do cloroplasto.
- Utiliza o ATP e os NAPH<sub>2</sub> produzidos na fase fotoguímica.
- Ciclo de Calvin-Benson: ciclo de reações que consome  $\text{CO}_2$  e gera glicose.
- A Rubisco: enzima que inicia o ciclo incorporador de CO<sub>2</sub> no ciclo de Calvin-Benson.

#### O ciclo de Calvin-Benson

#### Entra:

- CO<sub>2</sub>
- ATP
- NADPH<sub>2</sub>

#### Sai:

- glicose (C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>)
- H<sub>2</sub>O

# FOTOSSÍNTESE E QUIMIOSSÍNTESE





https://sites.google.com/site/correiamiguel25/obten%C3%A7%C3%A3odemat%C3%A9rianasplantas

#### AULA 4 - FATORES QUE INFLUENCIAM O PROCESSO

#### Luz

- Fator limitante para a realização da etapa fotoquímica.
- Intensidade luminosa: é limitante até atingir o ponto de saturação.



http://professor.tirinto.uni5.net/provas\_topicos.asp?topico=Fotossintese&curpage=3

#### Gás carbônico

- Fator limitante para a realização da etapa química.
- Concentração de gás carbônico: é limitante até atingir o ponto de saturação.



http://www.vestibulandoweb.com.br/biologia/teoria/fatores-limitantes-fotossintese.asp

### **Temperatura**

- Fator limitante para a realização das etapas fotoquímica e química.
- Aumento da temperatura: aumento da velocidade da fotossíntese até a desnaturação



http://www.vestibulandoweb.com.br/biologia/teoria/fatores-limitantes-fotossintese.asp.

## AULA 5 - PONTO DE COMPENSAÇÃO FÓTICO

## Conceito

- Intensidade luminosa em que as velocidades da fotossíntese e da respiração celular se igualam.
- Tipos de plantas quanto à absorção de luz:
  - Umbrófilas: atingem o ponto de compensação fótico mais rápido, ou seja, com menos luz.
  - Heliófilas: atingem o ponto de compensação fótico mais lentamente, ou seja, com mais luz.

## Discussões e conclusões

## FOTOSSÍNTESE E QUIMIOSSÍNTESE



#### Quando:

| intensidade da<br>respiração                                         | Х | intensidade da<br>fotossíntese                    |
|----------------------------------------------------------------------|---|---------------------------------------------------|
| consumo de O <sub>2</sub> atmosférico complementar à fotossíntese    | ۸ | sobrevivência do<br>vegetal comprometida          |
| consumo de todo o O <sub>2</sub><br>liberado na<br>fotossíntese.     | = | estagnação do crescimento                         |
| utilização de parte do<br>O <sub>2</sub> liberado na<br>fotossíntese | < | favorece o crescimento<br>e libera O <sub>2</sub> |

#### Gráfico:



http://www.vestibulandoweb.com.br/biologia/teoria/ponto-de-compensacao-fotico.asp

## AULA 6 – FOTOSSÍNTESE E QUIMIOSSÍNTESE EM BACTÉRIAS

## Recapitulando a fotossíntese

Em cianobactérias, algas e plantas:

$$CO_2 + 2(H_2O) \longrightarrow (CH_2O) + H_2O + O_2$$

## Outra forma de fazer fotossíntese

Em algumas bactérias (ex.: Chlorobium):

$$CO_2 + 2(H_2S) \longrightarrow (CH_2O) + H_2O + 2S$$

## A quimiossíntese

 A fonte de energia para a síntese de compostos orgânicos vem de reações inorgânicas preliminares. • Exemplo: bactérias do gênero Nitrosomonas



http://www.rodolfo.costa.nom.br/biowiki/doku.php?id=quimiossintese