Simulation code - 8월 6일 Version

1. $\hat{\mu_0}$ 과 $\hat{\mu_1}$ 의 추정량 변경해보고 IPW ATT Variance estimator Hardcoding해 구한 값이랑 함수 쓴 결과 다시 비교

[Result]

	Estimator		Result	
Scenario 1	mu0_hat	Ver04	function value	0.1152347
Scendilo i	mu1_hat	Ver04	package value	0.08249028
Scenario 2	mu0_hat	Ver04	function value	0.09211579
Scendin 2	mu1_hat	Ver05	package value	0.08249028

: 생각한 조합을 모두 고려해보았을 때, Scenario 2 조합이 실제 값과의 차이가 가장 적다.

2. Doubly robust estimator

1) Doubly robust ATE estimator

$$\begin{split} \hat{\tau}_{\mathrm{dr}} &= \hat{\mu}_{1,\mathrm{dr}} - \hat{\mu}_{0,\mathrm{dr}} \\ &= \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{Z_{i}Y_{i}}{\hat{e}(X_{i})} - \frac{Z_{i} - \hat{e}(X_{i})}{\hat{e}(X_{i})} \hat{m}_{1}(X_{i}) \right\} - \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{(1 - Z_{i})Y_{i}}{1 - \hat{e}(X_{i})} + \frac{Z_{i} - \hat{e}(X_{i})}{1 - \hat{e}(X_{i})} \hat{m}_{0}(X_{i}) \right\} \\ &= \frac{1}{N} \sum_{i=1}^{N} \left[\hat{m}_{1}(X_{i}) + \frac{Z_{i} \left\{ Y_{i} - \hat{m}_{1}(X_{i}) \right\}}{\hat{e}(X_{i})} \right] - \frac{1}{N} \sum_{i=1}^{N} \left[\hat{m}_{0}(X_{i}) + \frac{(1 - Z_{i}) \left\{ Y_{i} - \hat{m}_{0}(X_{i}) \right\}}{1 - \hat{e}(X_{i})} \right] \end{split}$$

: 여기서 $\widehat{m_1}(X_i)$ 은 E[Y|E=1, X]을, $\widehat{m_0}(X_i)$ 은 E[Y|E=0, X]을 의미한다. --> Outcome regression part (아래 첨자가 E=e인 sub-population 의미)

2) Doubly robust ATT estimator

$$\hat{\tau}_{dr}^{ATT} = \sum_{i=1}^{N} \left[Y_i Z_i - \frac{Y_i (1 - Z_i) \hat{e}_i + \hat{m}_0(\mathbf{X}_i) (Z_i - \hat{e}_i)}{1 - \hat{e}_i} \right] / N_1,$$

R code)

```
##### Doubly robust estimator function #####
DR_estimator<-function(estimate, data, var_treat, var_v, cov){
      PS_df<-weight_make(var_treat,cov,estimate,data)
      data$ps<-PS_df$ps
      myformula<-as.formula(sprintf("%s~.".var_y))
      ind_mu0<-which(data[.var_treat]==0)
      mu0_df<-data[ind_mu1,c(var_y,cov)]</pre>
      out_mu0<-lm(formula=myformula,data=mu0_df)
     mu0_X<-coef(out_mu0)%*%t(cbind(1,data[,cov]))</pre>
      if(estimate=='ATE'){
            ind_mu1<-which(data[,var_treat]==1)
            mu1_df<-data[ind_mu1,c(var_y,cov)]</pre>
           out_mu1<-lm(formula=myformula,data=mu1_df)
            mu1 X<-coef(out mu1)%*%t(cbind(1.data[.cov]))</pre>
            mul_dr<-mean(data[,var_treat]*data[,var_y]/data$ps - ((data[,var_treat]-data$ps)*(coef(out_mul)%**t(cbind(1,data[,cov]))))</pre>
            muO_dr < -mean(muO_X + ((1-data[,var_treat])^*(data[,var_y]-muO_X))/(1-datasps))
            result<-mu1_dr-mu0_dr
      else if(estimate=='ATT'){
            ind_mu1<-which(data[,var_treat]==1)
            resu[t<-sum(data[,var_y]*data[,var_treat]-((data[,var_y]*(1-data[,var_treat])*data[,var_treat]-(data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_treat]-data[,var_
      return(result)
```

Checking)

```
E<-E_sample[.1]
B<-B_sample[.1]
#U<-U_sample[.1]
C<-C_sample[.1]
Y<-Y sample[.1]
data<-data.frame("E"=E, "B"=B, "C"=C, "Y"=Y)
cov<-c("B", "C")
cov_type<-c("binary","continuous")
#mydata<-data_export("E",cov,data)
#head(mydata)
DR_ATE<-DR_estimator("ATE",data,"E","Y",cov)
DR_ATT<-DR_estimator("ATT",data,"E","Y",cov)</pre>
```

	# of obs	Doubly robust estimator	IPW estimator	True value
ATT	1000	0.7174175	0.7482638	0.6931472
ATE	1000	0.7394487	0.7482638	0.6931472

Question) Outcome model을 "Im" 사용해도 무방한가?

3. Naive variance estimator of DR estimator

참고한 공식

DR estimator: Variance

▶ Lunceford and Davidian (2004) provides an estimator to approximate the variance of $\hat{\tau}_{dr}$:

$$s_{\rm dr}^2 = \sum_i (\hat{\tau}_i - \hat{\tau}_{\rm dr})^2 / N^2,$$
 (2)

where

$$\hat{\tau}_i = \left[\frac{Z_i Y_i}{\hat{e}_i} - \frac{(Z_i - \hat{e}_i) \hat{m}_1(\mathbf{X}_i)}{\hat{e}_i} \right] - \left[\frac{(1 - Z_i) Y_i}{(1 - \hat{e}_i)} + \frac{(Z_i - \hat{e}_i) \hat{m}_0(\mathbf{X}_i)}{(1 - \hat{e}_i)} \right]$$

R code

```
###### Naive variance estimator of DR estimator ######
DR_Naive_var_estimator<-function(estimate,data,var_treat,var_y,cov){
 result<-DR_estimator(estimate,data,var_treat,var_y,cov)
 tau_dr<-result$est
 tau_i<-data[,var_treat]*data[,var_y]/data$ps -
  [((data[,var_treat]-data$ps)/data$ps)*(coef(out_mu1)%*%t(cbind(1,data[,cov])))-
  mu0_X+((1-data[,var_treat])*(data[,var_v]-mu0_X))/(1-dataps)
 se<-sum((tau_i-tau_dr)^2)/(nrow(data)^2)
 return(se)
```

```
## Package function 사용 ##

: drgee package의 drgee function 사용

: 행렬의 역행렬 계산 과정에서 error

> library(drgee)
> result<-drgee(oformula=formula(Y~E),
+ eformula=formula(E~B+C),
+ olink = 'identity',elink='logit',
+ data=data,estimation.method = 'dr')

Error in solve.default(d.U):
Lapack routine dgesv: system is exactly singular: U[7,7] = 0
```