	egesmetry 1/27/2017 Mians.
	3. Main results
a- overview	4. Application: analytic vos. >> of Lunes reprosentablety them
1. Motivated	
DAG is weful for	¢ ;
* better control	on intersection theory (serie's intersection forms)
4 better control	on deformation theory (formal moduli problems)
#DAG neverls	s hidden structures:
La der	nued Braver group
	iffed symplectic structures.
Same moturies	for DAn G. There's more:
* Griffiths per	(of the variations of pive Hodge structure) S conquers analytic topology)
	(respect and the tooleys)
Done by	J. Holstein and C.D. Natale
Con bloduece)	Reman - Hilbert correspondence analytisso.
X small over	Remain - Hilbert correspondence analytic iso. Shocal systems on X=S Telative to S Coh. sheaves on X=S with an } Telative to S Telative to S
σ	relative to S J = linear flat connection
	(Snot recessaly snooth; can one allow S' dened? yes (in progres
Joint work with	Tony Yve Yu
P 1 1.	
Droad goal? us	se devel generally to build GW sharints for non-archimedean spaces.
Direct: 7 1.	and Delin And Id IIII DM (ve) al
year. J der	we suggest thought world the stack the ging (x, b)
	() to (KMg, n(X, B)) is clossifying stable my
	ned Deligner Munifold (notytic stack RMg, (X, B) st. (1) to (RMg, n(X, B)) is clossifying stack mps (ii) quasi-remoth; I RMg, (X, B) RMg, (X, B) RMg, (X, B) RMg, (X, B)
"a hat I h	Kug, (KIP)
well icastraly	Complex 9 for dAn G wall adapted to the non-arch, setting
A good	travolute to the mell adopted to the non-arch, sorting
4 A tol 4	re-organize dened DM analytic stacks.
1,00.	organize certical tri malytic stricts.
2. Overwield	
Def. D denned schools	se is a six (X, O). X too so so (O) - a deaf of shelping a t
alabras for h	model chan chan (1) , set.
(1.) (V 7 (he is a pair (X, \mathcal{O}_X) ; X top-space, \mathcal{O}_X is a sheaf of shiphical commutational above edges, in char. \mathcal{O}). Set. (\mathcal{O}_X) is a classical scheme. () are quasi-coherent as sheares of $\mathcal{R}_0(\mathcal{O}_X)$ modules.
(a) -1(0)	1 are an - when t as shower of Rolle module
~ nilox	and grant control of the sol of the

```
Classically, analytic spaces
                     Am := fell subject. of locally runged spaces.
      First attempt to take devol anythis space: replace "scheno" by Ang in (1) & dop "quesi raheart" requirement.

(but this down't work! why?

(bk no such notion)
  Ronk: Taking dAng to be a fill site. I would suplicially ringed speces would give a wrong answer
        Key sisve with such a deshitano, ILA, world be manik diversual.
       Problem: too many derivations! also modele

(Recall: a deriation is a C-linear up A = in with d(ab) = adb + bd(a). I apply

in a deriation is a C-linear up A = in with d(ab) = adb + bd(a).

I apply

in a deriation is a C-linear up A = in with d(ab) = adb + bd(a).

I apply

in a deriation is a C-linear up A = in with d(ab) = adb + bd(a).

I apply

in a deriation is a C-linear up A = in with d(ab) = adb + bd(a).

I apply

in a deriation is a C-linear up A = in with d(ab) = adb + bd(a).
                                                     (but for a random convergent pore series, their doesn't force
                                                                 convelling! so there may be many derications of
                  dellerstrates on e.g., ex).

( wonthereed: the denote of should be "continuo-s" is a sense, so and can work a/
                                           f(2) = Eti 2")
            ( cold: norte of simplical Band algebras; but they don't behave well from a categoral perspective;
                         world need instead to work with "hid-Barach algobres
                    enstead: axionative the property of a Banch algebra what are empeted in this setting)
      One may! simplical Banach algebras ~ probles at cote, mal level ( # arbiting colinits?)
     Alknothe sol'n (Lune):
HIRMATIC SCI (LUNC).

A ( ) Banach olgobra comm/t. i carthurl of a as

C[2] fais A Solution: if Ba = spectrum of a , then

Holly I Her the lift exists iff Ba = U. Ino higher the maphine)
   Define T_{\alpha_{\Lambda}}(\mathbb{C}) = \{ U^{open} \subseteq \mathbb{C}^n + holomorphic maps between then \}
    & consider: T_{q_0}(C) \longrightarrow Set/S = Set or Spaces)
                            C \longrightarrow F(C) \qquad \text{shall be a ring.}
U \longmapsto F(U)
                            Def: An analytic ring is a function A: Tan (C) -> Spaces s.t
                (2) A commeter of products
(2) A commeter with pull backs to x
```


