FYSC23

Semiconductor lab

 $\begin{array}{c} Author \\ \text{Fredrik Bergelv} \\ \text{fredrik.bergelv@live.se} \end{array}$

Abstract

Contents

1	Intr	roduction	1
2	The	eory	1
	2.1	Bandgap	1
	2.2	Semiconductors	1
	2.3	Doping	1
	2.4	Pn-junction	1
	2.5	LED	1
3	Exp	periment	1
	3.1	Part 1	1
	3.2	Part 1	2
4	Res	${ m ult}$	3
	4.1	Part 1	3
	4.2	Part 2	4
	4.3	Part 3	4
5	Disc	cussion	5
6	Con	nelusion	5

Fredrik Bergelv 3 EXPERIMENT

1 Introduction

Semiconductors are becoming more and more important for our society. One important application of semiconductors is light emitting diodes (LEDs) [1] which are used in e.g. displays and lighting, but also have application in medicine. LEDs also show a much better efficiency than earlier lightbulbs, thus decreasing energy consumption [1], something which is becoming increasingly more important. The basic part of the LED, the pn-junction, is also used in solar cells and can be used to produce energy from light [1].

2 Theory

- 2.1 Bandgap
- 2.2 Semiconductors
- 2.3 Doping
- 2.4 Pn-junction
- 2.5 LED
- 3 Experiment
- 3.1 Part 1

Wavelength white LED: 454.17 nm integration time 70 ms averaging every 10th measurements

Fredrik Bergelv 3 EXPERIMENT

Mesurment	V _{in} (V)	V _{across} (V)	I _{circuit} (mA)	Intensity (counts)
1	1	1.14	0.0	5.00
2	1.8	1.96	0.0	8.00
3	2.2	2.41	0.00	4.70
4	2.5	2.56	0.36	590.30
5	2.9	2.66	3.11	4377.70
6	3.3	2.72	6.21	7979.50
7	3.7	2.76	9.24	10846.90
8	4.4	2.84	15.24	16080.10
9	5.3	2.93	24.5	21958.10
10	6.5	3.02	35.2	27642.20
11	7.3	3.08	42.6	30184.80
12	8.3	3.15	52.0	33590.00
13	9.1	3.20	59.0	36153.70

Table 1: tab:part1

3.2 Part 1

Wavelength white LED: 596.85 nm integration time 2 ms averaging every 10th measurements

Before: $V_{\rm in}$ was 5.0 V, $V_{\rm across}$ 2.06 V, $I_{\rm circuit}$ 30.8 mA and the intensity 2663.70

After: $V_{\rm in}$ was 5.0 V, $V_{\rm across}$ 4.44 V, $I_{\rm circuit}$ 7.7 mA and the intensity 10752.70

Fredrik Bergelv 4 RESULT

4 Result

4.1 Part 1

Figure 1: Histograms for different seasons.

Fredrik Bergelv 4 RESULT

4.2 Part 2

Figure 2: ...

4.3 Part 3

Detector/Emitter	Red	Green	Blue
Red	Output	No output	No output
Green	Output	Output	No output
Blue	Output	Output	Output

Table 2: tab:part3

Fredrik Bergelv 6 CONCLUSION

5 Discussion

6 Conclusion

Fredrik Bergelv REFERENCES

References

[1] Philip Hofmann. Solid State Physics: An Introduction. Wiley-VCH, 2nd edition, 2015.