Law And Economics

Tort Law: Unilateral Care

Francisco Poggi University of Mannheim - Fall 2021

Tort Law

• Tort Law: area of the law that is concerned with civil suits. *Mostly* related to accidental injuries.

Examples of accidental torts:

- Some personal injuries.
- Product Liability.
- Workplace Accidents.
- Medical Malpractice.
- Environmental Accidents.
- Risk zero is, generally, not efficient! However, incentives to curb risks are important.

1

Tort Law

• Examples of intentional torts:

- Battery (act of physical violence),
- Assault,
- Trespass (land, computer, car.)
- Defamation,
- Intentional Infliction of Emotional Distress (e.g. threats).

- Here we focus on *unintentional* torts.
 - Incentives to mitigate risks.
 - Model of precaution.

Other ways to control risk

- Tools to mitigate risky behavior:
 - Safety & Hygine regulations.
 - Criminal penalties.

Tort law: private remedy that gives the right of accident victims to sue injurers for damages.

Victim \sim Plaintiff Injurer \sim Defendant

Elements of Tort Claim

• Enforcement in hands of the victim.

- Burden of the proof? Plaintiff has to show that:
 - She sustained some damages.
 - ${}^{\bullet}$ Defendant was the cause of those damages.

Causation

- Self-driving technology example.
 - Self-driving cars are safer than regular cars.
 - However, they produce accidents that would not have happenend otherwise.

"The Coming Collision Between Autonomous Vehicles and the Liability System" by Gary Marchant and Rachel Lindor.

Causation

- Golf driving range next to a parking lot.
 - \cdot x height of the safe net.
 - $y \sim F(x)$ height of the ball. (support in [0,1]).
 - D: damage caused if y > x (deterministic).

• Who caused the damage? The golfer or the range owner that didn't put a taller net?

Actions and outcomes

But-for test: but-for the action, would the outcome be different?

- Golf example: two actions combined cause the damage.
 - Both actions pass the but-for test.

- Other cases where two actions *independently* would have generated the damage.
 - Example: firing squad.
 - No single shooter passes the but-for test.

• For now, we consider a single injurer.

Liability Rules

- How damages should be split between the injurer and the victim?
 - No liability: victim bears all damages.
 - Strict liability: injurer bears all damages, independently of the actions.
 - * Negligence rule: Injurer is fully liable if he is found to be at fault.
 - Contributory negligence: Injurer is fully liable unless the victim is found to be at fault.

• What does it mean for the injurer or the victim to be at fault?

Tort Law

Costs of accidents:

- Damaged suffered by victims.
- Cost of precautions by potential injurers.
- Cost of precautions by potential victims.

- In this section we present a *unilateral* model of precaution:
 - only injurers can affect the probability of accident.

The Unilateral Care Model

Model

- x: investment in precaution by injurer.
- a: accident in $\{0,1\}$
- $p(x) := \Pr(a = 1|x)$. Probability of accident.
- D: dollar losses suffered by the victim. Conditional distribution F_x .
- Let $D(x) = E_x[D|a=1]$

Assumption: $p(\cdot)$ and $D(\cdot)$ are decreasing convex functions.

Social Optimum

$$\min_{x \ge 0} \quad E_x[x+D] \quad = \quad \min_{x \ge 0} \quad x + p(x)D(x)$$

Solution x^* .

Care choice by the injurer

- What level of care would the injurer choose?
 - Depends on the liability rule: $\psi(x, D)$.
- Implicit assumption:
 - level of care x is ex-post observable.
 - total damages are ex-post observable.

• Decision problem:

$$\min_{x \ge 0} \quad E_x[x + \psi(x, D)]$$

- Any ψ such that $x^* \in \arg\min_{x \geq 0} E_x[x + \psi(x, D)]$ recovers efficiency.
- What would Coase theorem say about this?

No Liability

$$\psi(x,D) = 0$$

$$\min_{x \ge 0} \qquad x$$

• Efficiency is not achieved.

Strict Liability

$$\psi(x, D) = D$$

$$\min_{x \ge 0} \quad E_x[x+D]$$

- This achieves efficient care: injurer fully internalizes the costs.
- Advantages: low informational requirements.
- Disadvantages: limited liability $\psi < \bar{\psi}$.

Strict (Expected) Liability

$$\psi(x, D) = a \cdot D(x)$$

$$\min_{x \ge 0} \quad E_x[x + aD(x)] \quad = \quad \min_{x \ge 0} \quad x + p(x)D(x)$$

- This achieves efficient care: injurer fully internalizes the costs.
- Limited liability constraint is more likely to be satisfied.
- How informational requirements compare to Strict Liability? More on this later.
- Disadvantages: sometimes $\psi > D$. More on this later.

Negligence

$$\psi(x,D) = 1_{\{x < \bar{x}\}} \cdot D(x)$$

$$\min_{x \ge 0} E_x[x + a \cdot 1_{\{x < \bar{x}\}} \cdot D(x)] = \min_{x \ge 0} x + 1_{\{x < \bar{x}\}} p(x)D(x)$$

- Injurer would never choose $x > \bar{x}$.
- If the thinks he is going to be liable, then he chooses x^* .
- We have to compare \bar{x} with x^* .

$$\bar{x}$$
 vs $x^* + p(x^*)D(x^*)$

- Chooses \bar{x} iff $\bar{x} \leq x^* + p(x^*)D(x^*)$.
- Efficient to set $\bar{x} = x^*$.

Comparing liability rules: Informational requirements

- Three rules that can achieve efficiency:
 - strict liability (SL).
 - strict expected liability (SEL).
 - negligence with parameter x^* (N*).

• To implement these rules, different information is required:

	x	$p(\cdot)$	D	$D(\cdot)$
SL	NO	NO	YES	NO
SEL	YES	NO	NO	YES
N^*	YES	YES	NO	YES

Negligence with noisy observation of x

- Let $\psi(\tilde{x}, D) = 1_{\{\tilde{x} < x^*\}} \cdot D(\tilde{x})$ with $\tilde{x} = x + \epsilon$.
- Let ϵ be normal with an arbitrarily small variance.
- The injurer will not choose x^* .

$$x^* + a \cdot \Pr(\epsilon > 0) \cdot D(x^*)$$

• Then \bar{x} should be chosen higher than x^* to account for this.

Comparing Liability Rules

• Cost of trials:

- Higher informational requirements \Rightarrow costlier trials.
- ullet Negligence trials are the most expensive ones but they don't ocur in equilibrium.
 - Reality might be noisy.
- SL and SEL trials do occur.

Comparing Liability Rules

- How damages are split.
 - With Strict Liability the injurer bears the equilibrium damages,
 - With Negligence the victim does it.

Victim compensation

Why to compensate victims?

Extensions to the Unilateral Care Model

Activity Levels

• Same model as before, with the difference that the injurer chooses also a quantity: how many times to do the same risky activity.

• q: activity level.

$$\max_{x,q} \quad B(q) - q[x + p(x) \cdot D(x)]$$

- We assume diminishing returns (B concave).
- q is not observable ex-post.

Activity Levels

- Notice that the optimal level of care x^* is independent of q.
- Optimal activity level: $B'(q) = x^* + p(x^*)D(x^*)$.

• For the individual, the activity level will also depend on the liability rule.

$$\max_{x,q} E_x \left[B(q) - q(x + \psi(x, D)) \right]$$

No Liability and Strict Liability

* No liability: excesive activity level (and no precautions)

$$\max_{x,q} \quad B(q) - q \cdot x$$

• Strict liability: efficient activity level and precautions)

$$\max_{x,q} \quad B(q) - q[x + p(x)D(x)]$$

• The injurer internalizes all social costs.

Negligence

• Negligence (with $\bar{x} = x^*$): excesive activity level (but optimal precautions)

$$\max_{x,q} \quad B(q) - q[\cdot x + \cdot 1_{\{x < x^*\}} \cdot p(x) \cdot D(x)]$$

• Given optimal precautions,

$$\max_{q} B(q) - q \cdot x^*$$

• One can show that it is always optimal for the injurer to choose x^* .

Proability of Escaping Liability

Injurers might be able to escape liability for multiple reasons:

- Conceal their identity.
- Difficulty in proving specific cause of injuries.
- Costs of litigation (prevent victims from bringing suits)
- Limited liability.

Therefore, even with strict liability, injurers might take too little precautions.

Exogenous Probability of Escaping Liability

• Strict Liability:

$$\min_{x} \quad x + p(x) \cdot \alpha \cdot D$$

- $\hat{x} < x^*$.
- Easy fix: $\psi(x, D) = D/\alpha$.
- This, however, generates problems because $\psi > D$.