Chemie — Zusammenfassung

TornaxO7

20. Oktober 2020

Inhaltsverzeichnis

1	Flex	— Begriffe	1
	2.1	Aminosäuren	2
	2.2	Proteine	2
		2.2.1 Peptidbindung und Polypeptide	2
		2.2.2 Sekundär-, Tertiär- und Quartärstruktur	3
		2.2.3 α Helix und β Faltblatt	4
		2.2.4 Zusammenhaltende Kräfte	4
		2.2.5 Denauturierung	4
		2.2.6 Denauturierungsmechanismen	5
		2.2.7 Proteinnachweis	5
	2.3	Enzyme	5
		2.3.1 Schlüssel — Schloss — Prinzip	5
		2.3.2 Beeinflussung der Katalyseaktivität	6
	2.4	DNA	6
		2.4.1 Allgemein	6
		2.4.2 Strukturformeln (auswendig können)	7
		2.4.3 Verknüpfungen	7
	2.5	Aromaten	7
		2.5.1 Benzol	7
		2.5.2 Mesomerie	9
3	Poly	merisation	9
-	•	7.3.2 Polykondensation	9

1 Flex — Begriffe

• Viskosität == Zähflüssig

2

Allgemeine Struktur:

2.1 Aminosäuren

Das α steht für die Carboxylgruppe am benachbartem C—Atom.

Aminosäuren liegen als Zwitter vor.

- Durch Carboxylgruppe: Kann Sauer (Protonendonator) reagieren.
- Durch Aminogruppe: Kann Basisch (Protonenakzeptor) reagieren.

Es bildet durch die beiden Gruppen eine intramolekulare Protonenwanderung.

Kation	Zwitterion	Anion
COOH	COO-	ÇOO-
H_3N^+ — C — H	H_3N^+ — C — H	H_2N —— C —— H
H	H	H

Den pH—Wert, an dem die Aminosäuren hauptsächlich als Zwitterion vorliegen nennt man isoelektrischen Punk (IEP).

2.2 Proteine

2.2.1 Peptidbindung und Polypeptide

Bei einer Peptidbindung spalten sich ein Sauerstoff von der Carboxylgruppe und zwei Wasserstoff Atome von der Aminogruppe ab, sodass Wasser entsteht. Anschließend ver-

binden sie sich:

Glycin Alanin

$$\begin{array}{c|cccc}
H & O & H \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 &$$

- N Terminales Ende
- C Terminales Ende

Reaktionstyp heißt: Kondensationsreaktion (Wasser wird abgespalten.) Polypeptide sind zusammenverbundene Peptidbindungen.

2.2.2 Sekundär-, Tertiär- und Quartärstruktur

• Primärstruktur

Primärstruktur = Reihenfolge der einzelnen (durch Peptidbindung verknüpften) Aminosäuren, die das Protein aufbauen.

• Sekundärstruktur

- beschreibt regelmäßig räumliche wiederholende **Strukturelemente**
- -Regelmäßigkeit entsteht durch Wasserstoffbrücken der C —— O und der N —— H Gruppe.
- Proteine besitzt viele Wasserstoffbrücken
 - → Starker Zusammenhalt im Molekül

• Tertiärstruktur

Darstellung der **Wechselwirkungen** zwischen den Aminosäureresten. **Echte Bindungen:**

- 1. Disulfidbrücken (entstehen, wenn zwei Cysteinreste miteinander reagieren)
- 2. Ionenbindung zwischen funktionellen Gruppen

Zwischenmolekulare Kräfte

- 1. Wasserstoffbrücken
- 2. Van der Waals Kräfte

• Quartärstruktur

- Eine gemeinsame Funktionseinheit aus mehreren Proteinmolekülen.
- Gleiche Bindungskräfte wie bei der Tertiärstruktur halten Proteinketten zusammen.

2.2.3 α Helix und β Faltblatt

• α Helix

- sehr große Aminosäureresten winden sich schraubenförmig um seine Längenachse
- Zusammenhalt der Schraubenform durch intramolekulare Wasserstoffbrücken
- Windungen sind **rechtsgängig** (wie beim Korkenzieher)
- Aminosäurereste weisen nach außen

• β Faltblatt

- beruht auf intermolekulare Wasserstoffbrücken zwischen Proteinketten
- Aminosäurereste abwechselnd unter- und oberhalb der Peptidgruppenebene
- $\alpha\textsc{-Helices}$ und $\beta\textsc{-Faltblattstrukturen}$ sind oft Nebeneinander im Proteinmolekül.

Intramolekulare und Intermolekulare Wasserstoffbrücken

• Intermolekular:

Ein Vorgang (z.B. chemische Reaktion) zwischen verschiedenen Molekülen.

• Intramolekular:

Ein Vorgang innerhalb eines einzelnen Moleküls.

2.2.4 Zusammenhaltende Kräfte

- Sekundärstruktur: Durch Disulfidbrücken
- Tertiär- und Quartärstrukturen durch Wasserstoffbrücken oder Ionen Bindung

2.2.5 Denauturierung

Allgemeine Definition:

Veränderung der Umgebungsbedingungen

- \rightarrow Umfaltungen
- \rightarrow Strukturänderungen

→ Protein verändert sich und verliert seine Funktion. **Die Strukturänderungen** können reversibel oder irreversibel sein.

2.2.6 Denauturierungsmechanismen

• Erhitzen

Wärmebewegung überwinden zwischenmolekulare Kräfte

 \rightarrow Formieren sich neu.

• Alkohole, Gerbstoffe, inerte Salze

Sekundär- und Quartärstrukturen werden aufgrund der Konkurrenz (mit Alkoholen, Gerbstoffen, etc.) um Wasserstoffbrücken zerstört.

Konservierung

Salz oder Alkohol kann zur konservierung von protonhaltigen Esswaren verwendet werden. Mit Tannin kann man Leder gerben.

• Änderung des ph — Wertes

Verhinderung von salzartigen Bindungen zwischen NH₃⁺ - und COO⁻ - Resten

• Fällung durch Schwermetall — Ionen (Tertiärstruktur)

Vor allem betroffen sind: Schwefel — und Stickstoffhaltige funktionelle Gruppen. Durch mehrwertige Metall — Ionen entstehen Quervernetzungen zwischen verschiedenen Proteinmolekülen und damit zur Ausflockung.

• Fällung durch Tenside

Grenzflächende Substanzen stören die apolaren Bindungen im Protein

• Salze

Verlust der Hydrathülle (Anlagerungen von Wassermolekülen)

• Radioaktive Strahlung

2.2.7 Proteinnachweis

• Farbreaktion (am wichtigsten)

Stichwort: Biuretreaktion

Vorgang: Alkalische Eiweißlösung + Kupfer(||)-sulfat-Lösung \rightarrow violettte Lösung.

• Xanthoproteinreaktion

Eiweiß + Salpetersäure \rightarrow Gelbfärbung

2.3 Enzyme

2.3.1 Schlüssel — Schloss — Prinzip

- Chemische Reaktionen findem im aktivem Zentrum statt.
- Verbindung zwischen Substrat und Enzym: Enzym Substrat Komplex

- Enzyme reagieren auf ein ganz bestimmtes Substrat

2.3.2 Beeinflussung der Katalyseaktivität

1. Abhängigkeit der Temperatur

Denauturierung bei über $40^{\circ}C$.

2. Abhängigkeit vom pH — Wert

Tertiärstruktur hängt von sauren und alkalischen Aminosäurebausteinen ab.

Zugabe von $H_3O^+_{(aq)}$ oder $OH^-_{(aq)}$

- → Ionenbindungen werden gestört
- \rightarrow damit auch das **aktive Zentrum**
- 3. Abhängigkeit der Konzentration
 - Substratsättigung: Alle Enzyme sind beschäftigt
 - → Erhöhung der Substratkonzentration
 - \rightarrow kein Anstieg der Reaktionsgeschwindigkeit
 - Substrathemmung: Zu viele Substatmoleküle lagern sich am aktivem Zentrum
 - \rightarrow Verlangsamung

2.4 **DNA**

2.4.1 Allgemein

- Speichert die Erbinfo im Zellkern
- Nukleotid: Desoxyribose + PO₄ + Base
- Nukleosid: Desoxyribose + Base
- Nukleotidsequenz: Ist in der m-RNA; Der genetische Code
- Gen: Eine Informationseinheit in einem Abschnitt eines DNA-Moleküls
- Genetischer Code:
 - Abfolge von drei Nucleotiden codiert eine bestimme Aminosäure
 - $-4^3 = 64$ Codeworte
 - Die meisten Aminosäuren besitzen mehrere Codeworte
- Basenpaare: A + T, C + G

Mithilfe des Strickleitermodels:

- Holmen (die Seitensträngen): Abwechselnde **Desoxyribose-** und **Phosphorsäure-** einheiten
 - \rightarrow Esterbindungen
- Sprossen: Basenpaare (Adenin, Cytosin, Guanin und Thymin)
 - \rightarrow Wasserstoffbrücken

2.4.2 Strukturformeln (auswendig können)

Phosphorsäure (H₃PO₄)

$$\beta$$
 — D — Ribose

2.4.3 Verknüpfungen

- Phosphorsäure mit β D 2 Desoxyribose
 - \rightarrow Veresterung
- β D 2 Desoxyribose mit einer Base
 - \rightarrow Kondensationsreaktion
- zwischen zwei Basen
 - \rightarrow Wasserstoffbrücken

2.5 Aromaten

2.5.1 Benzol

Eigenschaften:

• Wasserklar

• leicht beweglich

• stark lichtbrechend

• Siedetemperatur: $80,1^{\circ}C$

• Fest bei $5.5^{\circ}C$

• Dichte: $0.875 \frac{g}{cm^3}$

• Hydrophob

• Hydrophobil (liebt Hydrophobe Stoffe)

• brennt mit leuchtend, stark rußender Flamme

Gesundheitsproblematik:

• Ist giftig und Krebserregend

• schädigt Leber und Knochenmark

• Kann Leukämie auslösen

Vorkommen:

• Nebenprodukt beim Verkoken von Steinkohle

Verwendung:

• Aufheizen von Kokskammern

• In Steinkohleteer

Kekule und Entdeckung des Benzol:

• Damals in Glaslaternen, Rest: Öliges Kondensat

• Faraday erkennt 1:1 Gemisch zwischen C und H

• Keine Isomere von Benzol

→ Alle Kohlenstoffatome sind gleichwertig

 \rightarrow Kekules Strukturformel setzt sich durch.

Reaktion von Benzol mit Brom im Verglelich zur Reaktion mit Alkenen:

Substitution:

Addition

2.5.2 Mesomerie

Allgemein:

- Elektronen sind delokalisiert
- Delokalisierung ist ein konstanter Dauerzustand
- Ist planar, regelmäßiges Sechseck
- Bindungsverhältnisse:
 - Einfachbindungen zwischen H——C
 - 6 delokalisierte Elektronen

Mesomerieenergie:

Der Energiebetrag, wo ein reales Benzolmolekül stabiler ist, als eine Grenzformel.

Mesomeriestabilität:

Teilchen mit delokalisierten Elektronen sind mesomeriestabilisiert.

Wichtige weitere Aromaten unter dem AB: Weitere Aromaten: Bedeutung und Benennung

3 Polymerisation

3.1 7.3.2 Polykondensation

Kondensationsreaktion:

Verknüpfung zweier Moleküle durch Abspaltung eines weiteren Moleküls (z.B. Wasser)

Bekannte Kondensationsreaktionen:

- a) Esterbildung (Säure + Alkohol)
- b) Peptidbildung (aus Aminosäuren)

Struktureformeln zu a) und b):

a) Polyester

Möglichkeit 1: Hydroxycarbonsäure

z.B.:

