Исследование соударения резинового мяча с поверхностью

Какой модели подчиняется резиновый шар при ударе?

→ модели Герца? → модели Гука?

Исследуем

Экспериментальная установка

Экспериментальная установка

- Фиксированное место падения;
- Шарик летит из состояния покоя;
- Твёрдая поверхность, о которую происходит удар;
- Место для камеры и прожектора;

Момент максимальной деформации

Пренебрежение:

Такое пренебрежение позволяет нам не учитывать влияние силы сопротивления воздуха.

не учитываем потенциальную энергию шарика в поле силы тяжести

 $g = 9.81 \text{ m/(c}^2)$

h = 1.00 + 3.13 = 4.13 cm

m = 0.144 KF

V = 3 m/c

 E_{Π} от = 0.06 Дж

Е_кин = 0.648 Дж

Е_пот << **Е**_кин

Обработка результатов эксперимента

Из графика видно, что наиболее точная аппроксимация экспериментальных точек удовлетворяет зависимости $y = k*\Delta x^{5/2}$, где k - некоторая константа, характеризующаяся параметрами системы.

В нашем случае $k = 0.012 \text{ J/(mm^(5/2))},$ $\epsilon_{\text{КИН}} = 10\%,$ $\epsilon_{\text{\Delta}} \times = 6.5\%$

Модель Герца для резинового шара верна

 $P = n*\Delta x^{3/2}$ E_def = n_1 * $\Delta x^{5/2}$

Согласно закону сохранения энергии E_kin = E_def при максимальной деформации

 $E_{kin} = n_1 * \Delta x^{(5/2)}$

Время удара, согласно модели Герца, будет равно

$$t = \frac{2\alpha_1}{v} \int_{0}^{1} \frac{dx}{\sqrt{1 - x^{5/2}}}$$

где v - скорость шарика непосредственно перед началом деформации, α_1 - постоянный в процессе деформации коэффициент

Если положить $v \approx 3$ м/с, то $t_{\text{теор}} \approx 4.1$ ms, $t_{\text{прак}} \approx 4.3$ ms. $\epsilon_{\text{_}} t = 0.5$ ms. Значения в пределах погрешности совпадают.

Вывод

Таким образом, модель Герца подходит для описания соударения резинового мяча с деревянной поверхностью.

Список используемой литературы

[1] Теория упругости, Тимошенко С.П., Гудьер Дж., Главная редакция физико-математической литературы изд-ва "Наука". 1975 г., стр. 576.

[2] Статья "Обобщённая модель удара Герца-Ханта-Кроссли" Г.К. Боровина и В.В. Лапшина. 2018 г, стр. 13.

Спасибо за внимание!