Ejercicios Grajos - Parte 1

Son isonor jos

$$A = \begin{pmatrix} 2 & 1 & 1 & 1 & 1 & 0 \\ 1 & 3 & 1 & 0 & 1 & 2 & 0 \\ 1 & 3 & 1 & 0 & 1 & 2 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 2 \\ 1 & 0 & 2 & 2 & 0 & 0 \\ 1 & 2 & 0 & 2 & 3 & 0 \\ 1 & 2 & 0 & 2 & 3 & 0 & 2 \\ 1 & 2$$

Fuera de la diagonal principal hay O's. Por lo fanto no es posible.

$$\sum gr(0) = 2l = Por tanto el número de vértices de grado importiene veV que ser par.$$

$$K_{3} = \frac{1}{2000} \frac{1}{3} \frac{1 - 1}{2000} \frac{1 - 2}{2000} \frac{1 - 1}{2000} \frac{1 - 3}{2000} \frac{1 - 3$$

3.10)

Grajo completo ->
$$\ell = \frac{n^{2}(n-1)}{2}$$

$$595 = \frac{h(n-1)}{2} \rightarrow 1190 = h(n-1) \rightarrow 1190 = h^2 - h$$

$$\ell = \frac{(n-k)(n-k+1)}{2}$$
 $\Rightarrow \ell = 1000 \Rightarrow n = 46 \Rightarrow \binom{46}{2} = 1035 \text{ lados}$

Le quitamos 35 lados y yn lo terdríamos

(3.13) Como sería un grajo camino serían 1001 vertices.

(3.14)

- 2) 2,2,3,2,2,3 -> 1,1,0,1,2,3-> 0,0,0,0,2,0 -> No se puede
- 3) 44,3,2,2,1 > 0,3,2,1,1,1 = 0,0,1,0,0,1 -> Sise prede, es gráfica

- 4) 7,6,5,4,3,3,2 -> No es una sucesión gráfica
 - 5) 6,5,5,4,3,3,2 > 0,4,4,3,2,2,1 -> 0,0,3,2,1,1,et> 0,0,0,1,0,01 Es gráfica

6) 66,5,4,3,3,1-50,5,4,3,2,2,1-50,0,3,2,1,1,0 -50,0,0,1,0,0 -> Nose prede.

7) 1,4,1,2,2,4,2,2 - 1,0,1,1,1,3,1,2 -> 0,0,0,1,1,0,1,1 -> Si es gréfice

8) 1,5,1,4,2,4,2,3 -> 1,0,1,3,1,3,1,2 -> 0,0,1,0,1,2,1,1 -> 0,0,1,0,8,0,0,0-> No. No se puede

9) 5,5,4,4,4,4,2,2 -> 0,4,3,3,3,2,2 -> 0,0,2,2,2,2,2,2,2 > 0,0,0,1,1,2,2,2 ->

-) 0,0,0,0,0,1,1,1,1 -) Si es gréfica

3.15

a,b,d,e,j,d,c,e,b,c,a)
Circuito de Euler

a,b,d,g,h,d,e,h,i,j,j,i,e,j,c,e,b,c,R Circuito Euler

a, b, d, d, g, h, f, e, c, b, b, c, a, d) Circuito de Euler

(3.16

Kn será un circuito de Euler si, y solo si el grado de Vi es isual a n-1 doude i e {1,2,...,n} y n debe ser un número per (n=2m)

Como K2,2 -) 4 (cdo) y K2,3 6 (ado)

Se deduce que el número de lados es nom. 2.2=4, 2.3=6.

(3.48)

Como para que sea un circuito de Erler, tiene que incidir en los vérticos un número par de lados, pora Kmin, será un circuito de Euler, siempre que m see par.

3.20

$$\frac{n(n-1)}{2} \ge \frac{(n-1)(n-2)}{2} + 2 \rightarrow \frac{n(n-1)-(n-1)(n-2)}{2} = \frac{(n-1)(n-(n-2))}{2}$$

=D (n-1) = 2 -> [Se comple wand n = 3] Demostrado

3.21

Kmin min wenth

M+N = N+M =) M = h } M=h

Goods min = par.

No es plano

Esto es debido a que tanto el Ky como el Kz y menores plano) Ky Ny X3

3.25)
Debido al Teoreno de que G es un grajo plano con n=3 vértices, entonces a lados & 3n -6 para ser plano & 5 vértices -> lados = 3.5-6 -> lados = 9.

Podemos tener vértices con grado 2, que mientres no haya q const 9 en el grafo será plono

3.26

Plano, conero, v=9, srages (v)=5,4,4,3,3,3,2,2,2 (ades -) 2 gr(vi) = 28 => 28 -> (= 14)

(ares -) U+c-l=2 =) c=2+l-v=) c=16-9= I cores