

CSE3103: Database

Nazmus Sakib
Assistant Professor
Department of Computer Science and Engineering
Ahsanullah University of Science and Technology

Mass Storage

- Many systems today need to store many terabytes of data.
- Don't want to use single, large disk
 - too expensive
 - failures could be catastrophic
- Would prefer to use many smaller disks.

RAID

- Redundant Array of Inexpensive Disks
- Basic idea is to connect multiple disks together to provide
 - large storage capacity
 - faster access to reading data
 - redundant data
- Many different levels of RAID systems
 - differing levels of redundancy, error checking, capacity, and cost

Striping

- Take file data and map it to different disks
- Allows for reading data in parallel

Parity

- Way to do error checking and correction
- Add up all the bits that are 1
 - if even number, set parity bit to 0
 - if odd number, set parity bit to 1
- To actually implement this, do an exclusive OR of all the bits being considered
- Consider the following 2 bytes

<u>byte</u>	parity
10110011	1
01101010	0

• If a single bit is bad, it is possible to correct it

How parity works?

• Truth table for XOR (same as parity)

Α	В	A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Recovering from a disk failure

• Small RAID level 3 array with data disks D0 and D1 and parity disk P can tolerate failure of either D0 or D1

D0	D1	Ը
0	0	0
0	1	1
1	0	1
1	1	0

D1⊕P=D0	D0⊕P=D1
0	0
0	1
1	0
1	1

Mirroring

- Keep to copies of data on two separate disks
- Gives good error recovery -if some data is lost, get it from the other source
- Expensive -requires twice as many disks
- Write performance can be slow -have to write data to two different spots
- Read performance is enhanced -can read data from file in parallel

- Often called striping
- Break a file into blocks of data
- Stripe the blocks across disks in the system
- Simple to implement
 - disk = file block % number of disks
 - sector = file block / number of disks
- provides no redundancy or error detection
 - important to consider because lots of disks means low Mean Time To Failure (MTTF)

file data block 0 block 1 block 2 block 3 block 4

RAID Level-0 analysis

Failure Rate:

- MTBF of RAID0 is roughly proportional to the number of disks in the array.
- Pr(disk fail) = 5%, then

Pr(at least one fails) = $1 - Pr(nonefails) = 1 - [1-0.05]^2 = 9.75\%$

Performance:

- The fragments are written to their respective disks simultaneously on the same sector.
- This allows smaller sections of the entire chunk of data to be read off the drive in parallel, hence good performance.

- A complete file is stored on a single disk
- A second disk contains an exact copy of the file
- Provides complete redundancy of data
- Read performance can be improved –file data can be read in parallel
- Write performance suffers –must write the data out twice
- Most expensive RAID implementation –requires twice as much storage space

file data block 0 block 1 block 2 block 3 block 4

©NAZMUS SAKIB

14

RAID Level-1 analysis

Failure Rate:

• If Pr(disk fail) = 5%, then the probability of both the drives failing in a 2 disk array is $P(both fail) = (0.05)^2 = 0.25\%$.

Performance:

• If we use independent disk controllers for each disk, then we can increase the read or write speeds by doing operations in parallel.

