EE49001: Control and Electronic System Design

Assignment-5 (Compensatory)

Submitted By:

21EE30004: Anirvan Krishna

Section-I: Networked Control Systems

Plotting State Trajectory for Lossless transmission

An NCS plant is characterized by the following linear discrete time system

$$x(t+1) = Ax(t) + Bu(t), x(0) = \begin{bmatrix} 2 & 5 & 8 \end{bmatrix}^T$$

 $u(t) = Kx(t)$

$$\begin{bmatrix} A \\ = \begin{bmatrix} -2 & -13 & 9 \\ -5 & -10 & 9 \\ -10 & -11 & 12 \end{bmatrix} & B \\ = \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix} & K \\ = [2.2225 & -10.44 & 5.5944] \end{bmatrix}$$

The system is simulated for 15-time units (following script) the system trajectory is plotted.

```
clc; clear; close all;
     A = [
 3
     -2 -13 9;
     -5 -10 9
     -10 -11 12;
    B = [1;4;7];
     K = [2.2225 - 10.44 5.5944];
9
    x0 = [2; 5; 8];
    t = 0:15;
10
    xt = zeros(3,16); xt(:,1) = x0;
11
    ut = zeros(1,16); ut(1) = K*x0;
12
    for i = 2:16
13
    xt(:,i) = A*xt(:,i-1) + B*ut(i-1);
15
     ut(i) = K*xt(:,i);
16
     end
```

```
17
     xt = gen_xt(15,A,B,K,x0,0);
     fig = figure; fig.Position(3) = 1000; fig.Position(4) = 1000;
18
     movegui('center');
     sgtitle('State Trajectory', Interpreter='latex');
19
     hold on;
20
     plot(t,xt(1,:));
21
     plot(t,xt(2,:));
22
23
     plot(t,xt(3,:));
     hold off;
24
     xlabel('$t$', Interpreter='latex');
ylabel('$x(t)$', Interpreter='latex');
25
26
     legend('$x_1$', '$x_2$', '$x_3$', Interpreter='latex');
27
```


Fig. Trajectory of States x_1 , x_2 and x_3

Lossy Transmission (Fixed Loss κ)

Let the loss signal $\kappa(t)$ be given as:

$$\kappa(t) = \{0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,0\}$$

After the losses, the input: $u(t) := \kappa(t) \cdot u(t)$

```
clc; clear; close all;

A = [
    -2 -13 9;
    -5 -10 9
    -10 -11 12;
    ];

B = [1;4;7;];
```

```
K = [2.2225 -10.44 5.5944];
x0 = [2; 5; 8]; t = 0:15;
xt = zeros(3,16); xt(:,1) = x0;
ut = zeros(1,16); ut(1) = K*x0*k(1);
for i = 2:16
    xt(:,i) = A*xt(:,i-1) + B*ut(i-1);
    ut(i) = K*xt(:,i)*k(i);
fig = figure; fig.Position(3) = 1000; fig.Position(4) = 500; movegui('center');
sgtitle('State Trajectory', Interpreter='latex');
hold on;
plot(t,xt(1,:));
plot(t,xt(2,:));
plot(t,xt(3,:));
hold off;
xlabel('$t$', Interpreter='latex');
ylabel('$x(t)$', Interpreter='latex');
legend('$x_1$', '$x_2$', '$x_3$',Interpreter='latex');
```


Fig. State trajectories with given values of $\kappa(t)$

In the lossy medium, we observe that the state trajectories start from 0 and then start increasing. Meanwhile in the lossless medium, the states are observed to decrease from some initial value to 0, As the time increased

Lossy Medium (Random Loss)

The same NCS plant is simulated for 100 units time (script following), this time the data loss signal is generated randomly.

$$\kappa(t) = \begin{cases} 0, & \text{with probability } p \\ 1, & \text{with probability } 1 - p \end{cases}$$

```
clc; clear; close all;
 2
 3
      A = [
       -2 -13 9;
 4
 5
       -5 -10 9
 6
      -10 -11 12;
 8
 9
      B = [1;4;7;];
      K = [2.2225 - 10.44 5.5944];
10
11
12
      for p = 1:9
13
14
      xt = gen_xt(100,A,B,K,x0,p/10); t = 0:100;
      fig = figure; fig.Position(3) = 1000; fig.Position(4) = 500; movegui('center');
15
16
      sgtitle(['State Trajectory for $p=',num2str(p/10),'$'], Interpreter='latex');
17
      hold on;
      plot(t,xt(1,:));
plot(t,xt(2,:));
18
19
20
      plot(t,xt(3,:));
21
      xline(15);
      text(15,1,['$x(15)=(',num2str(xt(1,16)),',',num2str(xt(2,16)),',',num2str(xt(3,16)),')$'],
      Interpreter='latex')
22
23
      hold off;
      riold ojj,
xlabel('$t$', Interpreter='latex');
ylabel('$x(t)$', Interpreter='latex');
legend('$x_1$', '$x_2$', '$x_3$', Interpreter='latex');
24
25
26
27
28
       function xt = gen_xt(n, A, B, K, x0, p)
 3
         xt = zeros(length(x0), n+1); ut = zeros(height(K), n+1);
         k = (rand(1,n+1)>p);
         xt(:,1) = x0; ut(:,1) = K*x0*k(1);
 5
 6
         for i = 2:n+1
 8
           xt(:,i) = A*xt(:,i-1) + B*ut(:,i-1);
ut(:,i) = K*xt(:,i)*k(i);
 9
10
11
12
         end
13
       end
```


Fig. Lossy Media with different probabilities for losses

As can be observed $x(15) \approx 0$ for $p \leq 0.3$.

Section-II: Switched Systems

Trajectory of the Switched Systems

A switched system is characterized by

$$x(t+1) = A_{\sigma(t)}x(t), x(0) = [-1 \ 1]^T$$

Where,

$$\begin{vmatrix} A_1 = \begin{bmatrix} 0.47 & 0.12 \\ -3.90 & 0.19 \end{bmatrix} & A_2 = \begin{bmatrix} -0.03 & 0.78 \\ 0.60 & 0.47 \end{bmatrix}$$

We have: $\sigma_1(t) = \{1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2\}$ $\sigma_2(t) = \{1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2\}$

The system is simulated for 15 time units (following script) for two different random noise signal and the response is plotted.

```
clear; close all; clc;
      A1 = [
      0.47, 0.12;
      -3.90, 0.19
      ];
      A2 = [
      -0.03, 0.78;
      0.60, 0.47;
10
     A = zeros(2,2,2);
11
     A(:,:,1) = A1;
12
     A(:,:,2) = A2;
      x0 = [-1;1];
      s1 = [1,1,2,2,2,2,1,1,2,2,2,2,1,1,2];
14
      s2 = [1,1,1,2,2,1,1,1,2,2,1,1,1,2,2];
16
     xt = zeros(length(x0), n+1);
     xt(:,1) = x0;
18
19
      for i = 1:n
      xt(:,i+1) = A(:,:,s1(i))*xt(:,i);
20
21
22
     t = 0:15;
23
     xt1 = gen_xt1(15,A,s1,x0);
      xt2 = gen_xt1(15,A,s2,x0);
```

```
25
        fig = figure; fig.Position(3) = 2000; fig.Position(4) = 1000; movegui('center');
26
        sgtitle('State Trajectory', Interpreter='latex');
27
        subplot(1,2,1);
28
        hold on;
       plot(t,xt1(1,:));
29
        plot(t,xt1(2,:));
30
31
       xlabel('$t$', Interpreter='latex');
ylabel('$x^{(1)}(t)$', Interpreter='latex');
legend('$x_1$', '$x_2$',Interpreter='latex');
32
33
34
35
        subplot(1,2,2);
36
        hold on;
       plot(t,xt2(1,:));
37
        plot(t,xt2(2,:));
38
39
        hold off;
       xlabel('$t$', Interpreter='latex');
ylabel('$x^{(2)}(t)$', Interpreter='latex');
legend('$x_1$', '$x_2$',Interpreter='latex');
40
41
42
43
        function xt = gen_xt1(n,A,s,x0)
        xt = zeros(length(x0), n+1);
 2
 3
        xt(:,1) = x0;
 4
        for i = 1:n
             a. xt(:,i+1) = A(:,:,s(i))*xt(:,i);
        end
 5
 6
        end
```


Fig. State trajectories corresponding to different values of $\sigma(t)$

As can be seen that the second system is stable. Thus, random switching doesn't always result in a stable response.