

Означення. Функцію, яку можна задати формулою виду y = kx + b, де k і b — деякі числа, x — незалежна змінна, називають дінійною.

Приклади лінійних функцій:

$$y = 5x + 3;$$
 $y = -4 - x;$

$$y = -6x;$$

y=3.

Оластю визначення лінійної функції є множина всіх дійсних чисел

Побудуємо графік функції у = 2х - 3

x	-3	-2	-1	0	1	2	3
у	-9	-7	-5	-3	-1	1	3

випадки, коли k = 0 та/або b = 0

1)
$$b = 0, k \neq 0$$

$$y = kx - пряма пропорційність$$

$$\frac{y}{x} = k$$

y = x

Приклад функцій прямої пропорційності

$$y = 3x$$
,

$$y = -x$$
,

$$y = -\frac{1}{2} x$$

Властивості функції

Область визначення	Усі числа			
Область значень	Усі невід'ємні числа			
Графік	Парабола			
Нуль функції (значення аргументу, при якому значення функції дорівнює 0)	x = 0			
Властивість графіка	Якщо точка $A(x_0; y_0)$ належить параболі $y = x^2$, то точка $B(-x_0; y_0)$ також належить цій параболі.			

Функція $y = \sqrt{x}$

Для побудови графіка функції $y = \sqrt{x}$ надамо незалежній змінній x декілька невід'ємних значень (оскільки якщо x < 0, то вираз \sqrt{x} не має сенсу), а також обчислимо відповідні значення залежної змінної y.

Для цього складемо таблицю значень функції $y = \sqrt{x}$:

x	U		4	9	16	M
y	0	1	2	3	4	
					1	

Властивості функції $y = \sqrt{x}$:

- 1. Область визначення: $x \ge 0$.
- 2. Область значень: y ≥ 0.
- 3. Графік функції вітка параболи, що виходить із точки (0;0), усі інші точки графіка лежать у першій координатній площині.
- 4. Більшому значенню аргументу відповідає більше

Означення: Функція виду $y=ax^2+bx+c$, де x — аргумент і $a \neq 0$ називається квадратичною, а – перший коефіцієнт, **b** – другий коефіцієнт, **c** — вільний член. Графіком квадратичної функції є парабола

Розміщення графіка функції

- 1. Необхідно знайти розміщення вершини napa 6 o n u точку A(m; n);
- 2. Необхідно з'ясувати вгору чи вниз будуть направлені вітки параболи;
- 3. Необхідно знайти *нулі функції*, тобто де графік функції буде перетинатись з віссю абсцис *0x*.
- 4. Необхідно з'ясувати де в декартовій системі координат квадратична функція буде набувати додатних (+) і від'ємних (-) значень.

Вершина параболи

Для того, щоб знайти вершину параболи, необхідно скористатись наступними формулами

Точка A(m;n) — вершина параболи

Вісь симетрії

Так як квадратична функція *парна функція*, то її графік буде симетричний відносно осі симетрії. *Вісь симетрії* проходить через

Направлення віток параболи

Графік квадратичної функції — парабола, вітки якої направлені вгору, якщо а>0

Розташування віток параболи

В залежності від абсолютної величини а — першого коефіцієнта, вітки параболи будуть пологими (0<a<1) або стислими (a>1) відносно вісі симетрії

Зростання і спадання графіка функції.

В залежності від значення a — першого коефіцієнту, графік квадратичної функції може спочатку cnadamu, а потім spocmamu на області визначення D(x), або навпаки

Вершина параболи

Але вершина параболи точка A(m;n) не завжди буде знаходитись в точці O(0;0): це буде залежати від розміщення графіка функції.

Графік функції буде розміщуватись по різному і це залежить від багатьох факторів.

Нулі функції

Щоб знайти точки перетину параболи з віссю 0x, необхідно прирівняти квадратний тричлен до 0(нуля), розв'язати квадратне рівняння і знайти його корені.

$$ax^2+bx+c=0$$

$$D=b2-4ac$$

Якщо D>0, то ми будемо мати 2 дійсних-різних

корені

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
; $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Графік функції буде розміщуватись так.

графік функції двічі перетинає вісь Ох

Якщо *D=0*, то ми матимемо 2 дійсних-рівних корені

 $x_{1,2} = -\frac{b}{2a}$

графік функції тільки в одній точці перетинає вісь 0x (дотикається до вісі 0x) і точка дотику буде в

Якщо D < 0, то дійсних коренів квадратний тричлен не матиме, корені будуть комплексні-спряжені, графік функції не перетинає вісь Ох в жодній точц1 a>0

Квадратична функція набуває додатних і від'ємних значень в залежності від а та D якщо а>0

Квадратична функція набуває додатних і від'ємних значень в залежності від а та D якщо а < 0

Домашне завдання

- Опрацювати конспект
- Виконати завдання:

Знайти область визначення функції $y=\sqrt{3-x}$.

Знайти нулі функції $y=x^2-5x+6$

Чому дорівнює найбільше значення функції $y = 9 - x^2$ на проміжку [1; 2]?