Динамическое транзитивное замыкание

Иванов Кирилл 371 группа

Задача 1. На лекции мы научились поддерживать инкрементальное транзитивное замыкание ориентированных графов. Придумайте алгоритм для декрементального транзитивного замыкания, работающий за $O(n^2(m+n))$ суммарно на все апдейты.

Pewenue. При удалении нас будут интересовать лишь те вершины, из которых i достижима, поскольку лишь для них может потребоваться обновление информации в матрице. Из каждой такой вершины u запустим поиск в глубину, при помощи которого определим вершины достижимые из u — их изменять не требуется. Пусть вершина v недостижима из u (после удаления ребра (i,j)), при этом M[j,v]=1, тогда нам необходимо занулить путь между u и v. Для работы поиска в глубину будем также поддерживать исходный граф в виде списков смежности.

Algorithm 2 Декрементальное обновление матрицы достижимости

```
1: function REMOVE (i, j)

2: g[i].remove(j)

3: M[i,j] = 0

4: for u \neq j : M[u,i] = 1 do

5: dfs(u)
\triangleright Помечает в used достижимые вершины

6: if \neg used[j] then

7: for v : \neg used[v] \land M[j,v] = 1 do

8: M[u,v] \leftarrow 0
```

Анализ сложности. Поскольку алгоритм декрементальный, если M[i,j] стало 0, то оно никогда не станет 1. Четвертая строка будет стоить O(n) для одного удаления, строки $5-8-O(T_{dfs}(n,m)+n)=O(n+m+n)=O(n+m)$. Заметим, что строки 5-8 будут вызваны не более $O(n^2)$ раз, то есть итоговое время работы – это $O(n^2(n+m))$.