How to Do with the Miribel dataset

A) Installation

A1) Gama

<u>A1.1</u> Download Gama_1.8_Windows_with_JDK.zip: https://github.com/gama-platform/gama/releases.

A1.2 Unzip GAMA_1.8.1_Windows_with_JDK.zip in .../Gama_1.8_Windows_with_JDK

A1.3 Open

.../GAMA_1.8_Windows_withJDK and launch Gama.exe. Choose a gama workspace

..../MyGamaWorkSpace

<u>A1.4</u> Right click on User models, New, Gama Project. Create a project named OPALE (all capital letters required, strictly observe the spelling). Uncheck Create a model file, Finish.

A1.5. Exit Gama

A2) Matlab

<u>A2.1</u>. Download the Matlab runtime (select the Windows R2018b (9.5) 64-bits installer): https://fr.mathworks.com/products/compiler/matlab-runtime.html

A2.2. Launch MCR_R2018b_win64_installer.exe

A3) OPALE

<u>A3.1</u>. Download OPALE executables and test files from : <u>https://github.com/TipTop-PSDR/OPALE</u>

Click Code; Click Download ZIP

A3.2. Unzip OPALE-main.zip and subdirectory
OPALE.zip and send all of them to .../MyOpaleDirectory

B) Configure the input file

B1) Edit the input_data_miribel.txt.

B1.1. Make the following changes

- B1.2. Do not change line 6 and the 15th last line. Verify the 9th line spelling.
- B1.3. Save the file in ... MyOpaleDirectory/MyInputFile.txt

C) Run OPALE

C1) LULCC Programs

- C1.1. launch .../MyOpaleDirectory/OPALE.exe
- C1.2. Select the push button « EN »

C1.3. Select Crop/Vegetables in the list box

C1.4. Select the « New Project » button of the central workflow

C1.5. Click the Exec button

- C1.6. Select the input data file .../MyInputFile.txt
- C1.7. Accept messages and Wait for the automatic launch of the Gama Platform. After the the first launch, wait a while until the copying of Opale User models is finished

C1.8. Execute the Gama_I_Crops program

welcome.html

- C1.9. Close the experiment. Select the the Gama_F_english tab and launch the Gama_F_Crop_Vegetables experiment
- C1.10. Wait during the instantiating of agents. Run the experiment when ready
- C1.11. Exit the gama Platform after completion
- C1.12. Select the G=>M button in the central workflow to transfer data to the matlab environment

📳 gama_l.gaml 💢 | gam

- C1.13. Click the Exec button
- C1.14. Save results in ... MyOpaleDirectory/workspace/MyFile

C2) WMWL Programs

- C2.1. Contextual optimization.
 - C2.1.1. Select the Contextual button
 - C2.1.2. Enter parameter values k_m (depth imp.), c_1 (Horton delay), c_2 (VSA delay), c_3 (Wat tab losses), λ (Wat tab delay), b (b DD) and API max (API lim).

- C2.1.3. Click Exec, select .../workspace/MyFile.mat
- C2.1.4. Click the Pause/Continue button to zoom in/out and examine the plot data with top tools

t, (obs cal
obs,cal
t, (F2 F3)

- C2.1.5. Check obs,cal or t(F2,F3) to change plots
- C2.1.6. Run Computations until completion. Click OK

Computation comple Simulation	ted - data R	ecord in
or M=>G Required		
	OK	

VSA del.

90

Automatic optimization

C2.2. Automatic optimization.

- C2.2.1. Select the Automatic button
- C2.2.2 Choose the set of optimized parametres and define the calibration period (Julian date J_1=50, J_n=90)
- C2.2.3 Click the Exec button, select the .../workspace/MyFile.mat file.
- C2.2.4 wait until the lowering of f(x) is less than the tolerance limit. Click OK to close the pop up menu.

4	15	0.26781	0.0080422	0.00092223				
5	18	0.2678	0.0024147	0.00031071				
6	21	0.2678	0.00075839	9.9724e-05				
Optimization	stopped	because the rela	tive sum of squ	ares (r) is changi	ng			
by less than options.FunctionTolerance = 1.000000e-06.								

Automatic

Imp. prof Hor del.

W tab. del W tab. loss DD

C2.2.5 Open the .../MyOpaleDirectory/workspace/Temp/YYYYDDMMHHmm_optimX.csv file where optimized parameters values are saved

C2.3. Changes landscape Interfaces.

C2.3.1. Select the Interfaces button. Select the FS check box. Click the Exec button. Select the .../workspace/Myfile.mat file

- C2.3.2. Select the new FS file
- ...\MyOpaleDirectory\TestFiles\bois\nouvelles_bandes_enherbees\bandes_enherbees40.shp.
- C2.3.3. Verify there is no error messages with SAGA libraries run in the command windows. Close the command window to pursue the OPALE treatment

- C2.3.4. Note the address of the matfile results
- .../MyOpaleDirectory/workspace/New_Infra_GRASS_MyFile.mat

C2.4. Changes farming systems or Cultural practices.

C2.4.1. Select the Systems button and click the Exec Button

- C2.4.2. Select the original project .../workspace/Myfile.mat file or the project modified in C2.3
- C2.4.3. Modify the % of agricultural systems or the % of no till or the % hoeing or the two/three of them.

C2.4.4. Click the OK button to pursue the OPALE treatments

C2.4.5. Give a new name to the project: MyFileModified.mat. This latter is saved in ...MyOpaleDirectory/workspace and can be treated as before in C.2.1, C.2.2, C.2.3.

C3) SSMT Programs Surface and Subsurface transfer functions (SSTFs)

C3.1 Transfer functions for suspensions

- C3.1.1 Verify parameter values (§ C2.1.1 & C2.1.2)
- C3.1.2. Select the M=>G button. Click The Exec Button

C3.1.3. Enter the date of the beginning of the transfer period to be studied

- C3.1.4. Click the Exec button. Choose the .../workspace/MyFile.mat file
- C3.1.5. Accept the opening of the Gama platform
- C3.1.6. Load the Tmes.gaml model (SM transfer) (for suspended matter)

C3.1.7. Run the TMes.gaml model

C3.1.8. Alternatively run the TMic.gaml model (for suspended microorganisms)

C3.1.9. Open the .../MyGamaWorkspace/OPALE/results/Suspended Matter.csv file in an excel sheet (With MS Office2016: Navigate to the "Data" tab. Click on the "From Text" button, Click "Import.")

Note the eta value, the tau days, the number of particles reaching the outlet and the SSTF function

0.04495606	
nb part	FT
401.7182989	0.78144281
112.3542525	0.21855719
0	0
0	0
0	0
	nb part 401.7182989 112.3542525 0

C3.1.10 Enter the date of the beginning of a new transfer period to be studied

C3.1.11. Repeat §C3.1.4 (if needed §C3.1.5, §C3.1.6.)

C3.1.12 Verify there is no error messages with SAGA libraries run in the command windows. Close the command window to pursue the GAMA treatment.

C.3.1.13. Run the TMes.gaml (idem §C3.1.7)

C3.2 Transfer functions for solutes

C3.2.1 Repeat steps §C3.1.1, §C3.1.2, §C3.1.3, §C3.14 (and §C.3.1.5 if the Gama platform is closed)

C3.2.2. Select the M=>G button. Click the Exec button.

C3.2.4 Run the TN.gaml model

C3.2.5 Alternatively Run the TPsol model (Soluble P transfer)

C4) Groundwater Transfer functions (GTFs)

C4.1. Note the power-law parameter for deep water transfer

D) SSMT Validation

D1. Open the .../MyOpaleDirectory/convolution stock miribel.xlxs file

	η	0.029				d	0.00004		τ	1	2	3	4	5
	k	7835		obs(ntu)	ntu mg/L	и	0.135161	3.9528179	FTESS(τ)	0.78144281	0.21855719	0	0	0
SURF (m3.s-1)	S(t)	M(t)	ηS(t)M(t)		2.04104589	flowntu	cal(ntu Tonne	es/jour)						
0.0067457	0.1973	0.02107072	0.9445902	1	5.03202185	0.159498507	0.099768	0.00356768		0.74	0.21	0.00	0.00	0.00

- D2. Copy the SSTF values from the imported Suspended Matter.csv file (§3.1.9)
- D3. Transpose and Paste the copied values in cells M2..AA2
- D4. Copy the eta value from the imported Suspended Matter.csv file in cell E1
- D4. Use the solver to optimize the unit conversion factor \boldsymbol{u}