TD SIGNAL

Lundi 29 avril 2024:

Bornes: $z = T \Rightarrow u = 0$ $z = T + a \Rightarrow u = a$ $\int F(x) dx = \int f(u+T) du$

Or $\forall u \in \mathbb{R}$, F(u+T) = F(u) donc $\int_{T}^{a+T} f(x) dx = \int_{T}^{a} F(u) du$

2) da fonction fin lest pas dependante au niveau de periodicité avec a . Utilisons danc une autre nethode.

Danc: # @ => Dev chaples

Satt Jahrandaces States State Jahrandaces States Jahrandaces Jahrandaces Jahrandaces Jahrandaces Jahrandaces Jahrandac

$$=\int_{a}^{T} f(x)dx + \int_{a}^{a} f(x)dx$$

$$=\int_{a}^{T} f(x)dx + \int_{a}^{a} f(x)dx$$

$$=\int_{a}^{T} f(x)dx + \int_{a}^{a} f(x)dx$$

Exercice 2:

∘ P est continue et (211) - périodique

$$=\frac{2}{T}\left(\int_{0}^{T/2}\int_{0}^{T/2}\ln\sin\left(\frac{2\pi mx}{T}\right)du+\int_{0}^{T/2}\int_{0}^{T/2}\sin\left(\frac{2\pi mx}{T}\right)du+\int_{0}^{T/2}\int_{0}^{T/2}\ln\sin\left(\frac{2\pi mx}{T}\right)du+\int_{0}^{T/2}\int_{0}^$$

Prenow
$$u = -\infty$$
, $\frac{du}{dx} = -1 = 0$ $do = -dx$

On a donc
$$C_{n}(s) = -\frac{1}{2\pi} \int_{0}^{-2\pi} g(u) e^{inu} du$$

$$= \frac{1}{2\pi} \int_{2\pi}^{0} g(u) e^{inu} du$$

Nous avons nu que g et g sont g periodique, donc
$$\frac{1}{2\pi} \int_{2\pi}^{0} g(u) e^{inv} du = \frac{1}{2\pi} \int_{0}^{2\pi} g(u) e^{inv} du$$

CC L: les deux intégrales sont égales g

The confidence can flest aussi et a est fixé
$$C_{n}(h_{n}) = \frac{1}{2\pi} \int_{0}^{\pi} f(x+a) e^{-ixu} dx$$
Soit $u = x+a$, $x = u-a$

$$x = 0 = 0$$

$$x = u = 2\pi + a$$

$$x = 0 = 0$$

$$x = u = 2\pi + a$$

$$x = 0 = 0$$

$$x = 0$$

$$x$$

