La sezione trasversa del fascio è contenuta completamente nell'area del bersaglio. Un rivelatore che copre il 30% dell'angolo solido attorno al bersaglio osserva circa 27000 reazioni in un minuto di presa dati.

b. Sapendo che l'abbondanza isotopica del ¹¹B è circa 80%, si calcoli il numero dei nuclei di ¹¹B per

(13)

 $p + {}^{11}\text{B} \rightarrow {}^{12}\text{C}^* \rightarrow 3 {}^{4}\text{He}$

a. Si calcoli il numero di protoni che arriva sul bersaglio nell'unità di tempo;

c. Si determini la sezione d'urto totale della reazione.

Un bersaglio di Tetraborato di Litio (Li₂B₄O₇, massa molecolare 169.11 g/mol, densità $\rho = 2.4$ g/cm³) di spessore $d = 10 \ \mu \text{m}$ viene irraggiato con un fascio di protoni di energia E = 675 keV e potenza

 $P = 6.75 \mu W$, per produrre la reazione:

unità di volume.