Math 341 Exam 1

Theo Koss

September 2020

1 Problem 1

Prove by induction: $7^{n+1} + 8^{2n-1} \\div 57$ for all $n \\in \\mathbb{N}$.

Proof. Basis: Check for n = 1: $7^2 + 8 : 57 = 57 : 57$.

Inductive step: Assume that the formula holds for n = k. We must show it holds for n = k + 1. So, by assumption: $7^{k+1} + 8^{2k-1}
otin 57$. We must show:

$$7^{k+2} + 8^{2k+1} : 57$$

Simplifying:

$$= 7 \cdot 7^{k+1} + 64 \cdot 8^{2k-1}$$

Rearranging:

$$= 7 \cdot 7^{k+1} + 7 \cdot 8^{2k-1} + 57 \cdot 8^{2k-1} = 7(7^{k+1} + 8^{2k-1}) + 57 \cdot 8^{2k-1}$$

By our assumption:

$$7^{k+1} + 8^{2k-1} : 57 \Longrightarrow 7(7^{k+1} + 8^{2k-1}) : 57$$

and by definition:

$$57 \cdot 8^{2k-1} \vdots 57$$

Finally:

$$7(7^{k+1} + 8^{2k-1}) : 57 \text{ and } 57 \cdot 8^{2k-1} : 57$$

$$\implies 7^{k+2} + 8^{2k+1} : 57$$

As required.

QED

2 Problem 2

Prove by induction: if $a \ge -1$, then, $(1+a)^n \ge 1 + na$ for all $n \ge 0$.

Proof. Basis: Check for n = 1: $1 + a \ge 1 + a$.

Inductive step:

Assume the formula holds for n = k, so $(1+a)^k \ge (1+ka)$, $a \ge -1$ We must show it holds for n = k+1, that is:

$$(1+a)^{k+1} \ge (1+(k+1)a)$$

Simplifying:

$$(1+a) \cdot (1+a)^k \ge (1+ka+a)$$

QED

3 Problem 3

Prove if a : c and b : c, then for any x and y, ax + by : c.

Proof. We must show that ax + by = cl, for some $l \in \mathbb{Z}$. a : c, by definition means $a = cn, n \in \mathbb{Z}$, similarly, b : c by definition means $b = cm, m \in \mathbb{Z}$. Then for any $x, y, x \cdot cn + y \cdot cm : c$, since we can factor out a c : ax + by = c(xn + ym) let l = xn + ym, then we have: $ax + by = cl, l \in \mathbb{Z}$, which, by definition, means ax + by : c.

4 Problem 4

Prove that $12 \not / 5$.

Proof. Assume 12 is divisible by 5. Then 12=5c, for some **integer** c. This means that $c = \frac{12}{5}$, which is not an integer, thus we have a contradiction, so QED

5 Problem 5

Let $a, b, c \in \mathbb{N}$ and suppose a > c and b > c. True or false: if $ab \\div c$, then $a \\div c$ or $b \\div c$. Prove.

Proof. This is true, since ab : c, by definition, means ab = cn, for some $n \in \mathbb{N}$.