Brandon Chen MATH 444 HW 7 5B, 5C, 5D, 5E, 5F

5B Prove Corollary 5.3 (to Pasch's theorem)

Theorem 5.2 (Pasch's theorem): Suppose ΔABC is a triangle and ℓ is a line that does not contain any of the points A, b, C. If ℓ intersects one of the sides of ΔABC , then it also intersects another side.

Corollary 5.3: If $\triangle ABC$ is a triangle and ℓ is a line that does not contain any of the points A, B, C, then either ℓ intersects exactly two sides of $\triangle ABC$ or it intersects none of them.

 ℓ is a line. It does not contain any of the points A, B, C, so it is not collinear to any of the segments $\overline{AB}, \overline{BC}, \overline{AC}$

Case: ℓ does not intersect any of the line segments.

Then ℓ does not intersect any of the line segments.

Case: ℓ intersects one of the line segments. Then by theorem 5.2, it intersects another side.

Then ℓ intersects exactly two sides of ΔABC

5C Suppose $\triangle ABC$ is a triangle and ℓ is a line (which might or might not contain one or more vertices). Is it possible for ℓ to intersect exactly one side of $\triangle ABC$? Exactly two? All three? In each case, either give an example or prove that it is impossible.

Case 1: Intersects exactly one side of $\triangle ABC$

If ℓ intersects at a vertice, for example A, then since $A \in \overline{AB}, \overline{AC}$, then it intersects more than one side.

Then assume that A does not intersect at a vertice, and intersects at one side.

But by theorem 5.2, we know that if it intersects at one side, it must intersect another side.

Then it is not possible for ℓ to intersect the triangle on exactly one side.

Case 2: Intersects exactly two sides of $\triangle ABC$

Yes, it is possible: example picture provided (Picture is of triangle $\triangle ABC$, and line ℓ , where ℓ intersects through sides $\overline{AB}, \overline{AC}$, and touches none of the vertices.)

Case 3: Intersects exactly three sides of $\triangle ABC$

Yes, it is possible: example picture provided (Picture is of triangle $\triangle ABC$, and line ℓ , where ℓ is collinear to \overline{AB} , and touches both vertices A, B)

5D Prove Theorem 5.8 (The converse to the isoceles triangle theorem). [Hint: One way to proceed is to construct an indirect proof, like Euclid's proof of proposition 1.6. Another is to mimic Pappus's proof of the isosceles triangle theorem.]

Theorem 5.7: Isosceles Triangle theorem: If two sides of a triangle are congruent to each other, then the angles opposite those sides are congruent.

Theorem 5.8: If two angles of a triangle are congruent to each other, then the sides opposite those angles are congruent.

Let $\triangle ABC$ be a triangle with $\angle B \cong \angle C$

Then draw the mirrored image $\Delta A'B'C'$ under the correspondence $A\leftrightarrow B,\ B\leftrightarrow C,$ and $C\leftrightarrow B$

The triangles $\triangle ABC$, $\triangle A'B'C'$ satisfy the hypothesis set by ASA congruence, since $\overline{BC} \cong \overline{B'C'}$

and
$$\angle B \equiv \angle B', \angle C \cong \angle C'$$

Thus the corresponding sides \overline{AB} , \overline{AC} are congruent

The figure shown is the same as Fig 5.7 from the book, mimicing Pappus's proof.

5E Prove Theorem 5.10 (The triangle copying theorem)

Theorem 5.10: Suppose $\triangle ABC$ is a triangle and \overline{DE} is a segment congruent to \overline{AB} . On each side of \overline{DE} there is a point F such that $\triangle DEF \cong \triangle ABC$

$$\overline{DE} \cong \overline{AB}$$

Take F on one side of \overline{DE} such that $\angle ABC \cong \angle FDE$ and $\overline{FD} \cong \overline{AB}$

Then by SAS postulate, we have the triangle $\Delta FDE \cong \Delta ABC$

On the other side \overrightarrow{DE} , take F' similarly.

Then we have $\angle ABC \cong \angle F'DE$ and $\overline{F'D} \cong \overline{AB}$

And we know $\overline{DE} \cong \overline{AB}$

Then by SAS postulate $\Delta F'DE \cong \Delta ABC$

5F Prove Theorem 5.18 (The triangle inequality)

If A, B, C are noncollinear points, then AC < AB + BC

Construct a triangle with vertices A, B, C, call it ΔABC

Take D on \overrightarrow{AB} such that B is between A, D and BD = DC

Then by isosceles triangle theorem, ΔBCD is an isosceles triangle, with $\angle BDC \cong \angle BCD$

We know that $\angle ACD = \angle ACB + \angle BCD$

Then $\angle ACD > \angle BCD = \angle CDB = \angle CDA$

So by the scalene inequality, $\overline{AD} > \overline{AC}$

Therefore, since B is between A, D, BC + AB = BD + AB = AD > AC

Then we have shown that the sum of the length of two sides is strictly greater than the length of the third.