第7回 機械力学

質点の運動

宇都宮大学 工学研究科 吉田勝俊

講義の情報 http://edu.katzlab.jp/lec/mdyn/

93

Last update: 2017.9.1

学習目標

- ベクトルの微分
- 空間座標とニュートン力学
- 質点の直線運動
- 質点の平面運動

学習方法 -

全ての例題を、何も見ないで解けるまで反復せよ!

数ベクトル・行列の時間微分

^{定義} 全成分を微分する

$$\dot{\boldsymbol{x}} = [x_i] := [\dot{x}_i] \qquad \left(\frac{d\boldsymbol{x}}{dt} = \frac{d[x_i]}{dt} := \left|\frac{dx_i}{dt}\right|\right) \qquad (6.1)$$

$$\dot{A} = [a_{ij}] := [\dot{a}_{ij}] \qquad \left(\frac{dA}{dt} = \frac{d[a_{ij}]}{dt} := \left|\frac{da_{ij}}{dt}\right|\right) \quad (6.2)$$

例題 6.1, p.56

ベクトル
$$oldsymbol{x} = egin{bmatrix} t^2 \ \sin t \end{bmatrix}$$
 を時間 t で微分せよ.

演習タイム 1/3

ライプニッツ則
$$\cdots$$
 $(XY)' = X'Y + XY'$

追加の例題 次の行列とベクトルの積を時間微分せよ

$$m{y}(t) = egin{bmatrix} 1 & t \ t^2 & t^3 \end{bmatrix} egin{bmatrix} \sin t \ e^t \end{bmatrix}$$

空間座標

点 X の空間座標 —— \vec{x} … 幾何ベクトル (図形) x … 成分

- (1) 基準点 \bigcirc を決めて,幾何ベクトル $\vec{x} = \overrightarrow{OX}$ をとる.
 - $\longrightarrow \vec{x}$ を「O から測った X の 位置ベクトル」という。
- (2) 基底 $\mathcal{E} = \langle \pmb{i}, \pmb{j}, \pmb{k} \rangle$ を決めて, \vec{x} の成分 $x = [\vec{x}]_{\mathcal{E}}$ をとる.
- (3) この成分 x を $,(O,\mathcal{E})$ で測った X の 空間座標 という .

演習タイム 2/3

問題 6.1 (p.58)

図示せよ.

座標系

■ペア(O, E)を指定しないと,

空間座標 $oldsymbol{x} = \left[egin{array}{c} x \\ z \end{array}\right]$ がどこを差すか,食い違う!

座標系

 $\stackrel{\ref{cont}}{\Longleftrightarrow}$ 基準点と基底のペア (O,\mathcal{E}) のこと . (測量機材)

- lacksquare 基準点 Ω を変えると,位置ベクトル $ec{x}$ が変わる.
- $lacksymbol{\blacksquare}$ 基底 $\mathcal E$ を変えると,ec x の成分 $oldsymbol{x} = [ec x]_{\mathcal E}$ が変わる.

時間変化しない座標系を 静止座標系 という

静止座標系の成分

静止座標系 (O,\mathcal{E}) では・・・

$$\vec{\boldsymbol{x}}(t)$$

幾何ベクトル 成分
$$\vec{x}(t)$$
 $\vec{x}(t)$ $\vec{x}(t)$ $\vec{x}(t)$ $\vec{x}(t)$ $\vec{x}(t)$ $\vec{x}(t)$ $\vec{x}(t)$ $\vec{x}(t)$ $\vec{x}(t)$ $\vec{x}(t)$

$$\frac{d}{dt}\vec{x}(t)$$

速度
$$\frac{d}{dt}\vec{x}(t)$$
 $\stackrel{\frac{1}{2}}{\Longleftrightarrow}$ $\frac{d}{dt}x = \begin{vmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{vmatrix}$

$$\frac{d^2}{dt^2} \vec{x}(t)$$

加速度
$$\frac{d^2}{dt^2}\vec{x}(t)$$
 $\stackrel{\stackrel{1!}{\Rightarrow}1}{\Longleftrightarrow}$ $\frac{d^2}{dt^2}x = \begin{bmatrix} \ddot{x}_1(t) \\ \ddot{x}_2(t) \\ \ddot{x}_3(t) \end{bmatrix}$

証明: $\frac{d}{dt}\vec{\boldsymbol{x}}(t) = \dot{x}_1(t)\boldsymbol{i} + \dot{x}_2(t)\boldsymbol{j} + \dot{x}_3(t)\boldsymbol{k}$ ∴ $\left[\frac{d}{dt}\vec{\boldsymbol{x}}(t)\right]_{\langle \boldsymbol{i},\boldsymbol{j},\boldsymbol{k}\rangle} = \begin{vmatrix} x_1(t) \\ \dot{x}_2(t) \\ \dot{x}_2(t) \end{vmatrix}$

動座標系の成分

動く座標系 $(O, \mathcal{E}(t))$ では・・・

幾何ベクトル

$$ec{m{x}}(t)$$

$$ec{m{x}}(t)$$
 $\overset{ extstyle 1}{\Longleftrightarrow}$ $m{x} = \left[egin{array}{c} x_1(t) \ x_2(t) \ x_3(t) \end{array}
ight]$

$$\frac{d}{dt}\vec{x}(t)$$

速度
$$\frac{d}{dt}\vec{x}(t)$$
 $\frac{d}{dt}x = \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix}$

$$\frac{d^2}{dt^2} \vec{x}(t)$$

加速度
$$\frac{d^2}{dt^2}\vec{x}(t)$$
 $\frac{d^2}{dt^2}x = \begin{bmatrix} \ddot{x}_1(t) \\ \ddot{x}_2(t) \\ \ddot{x}_3(t) \end{bmatrix}$

ニュートンの法則 (= 測定値の法則!)

以下,x, $f \overset{\overline{\mathbb{C}}}{\Longleftrightarrow}$ 静止座標系で測った成分 (測定値) \neq 幾何ベクトル

力学法則 6.1 (p.60)

第1法則: 力を受けない質点は, その速度を保つ.(静止なら静止)

第 2 法則: 力 f を受けた質量 m の質点の運動 x = x(t) は ,

$$m\ddot{\boldsymbol{x}} = \boldsymbol{f} \tag{6.7}$$

に従う(運動方程式)

第 3 法則: 質点 X_i が質点 X_j から受ける力を $oldsymbol{f}_{ij}$ とするとき ,

$$\boldsymbol{f}_{ij} = -\boldsymbol{f}_{ji} \tag{6.8}$$

が成立する (作用・反作用の法則)

ニュートンの法則は,ほとんど成立しない!

慣性系 (慣性座標系)

○ ニュートンの法則が成立する「成分」を与える特殊な座標系

- 慣性系の例
 - 静止座標系
 - 等速で平行移動する座標系
- 慣性系でない例
 - 回転する座標系
 - ■曲線運動する座標系
 - : ロボットアームに固定したカメラに映る世界では,ニュートンの法則は成立しない.測定値が,ぐりぐり動く座標系の成分だから.

演習タイム 3/3

- 6.3 節と 6.4 節を自習せよ!
- 例題 6.2, p.61
- 例題 6.3, p.64
- 例題 6.4, p.65

質点の直線運動

運動方程式

$$m\ddot{x} = f$$
 $(m, f$ は定数とする) (6.9)

 \blacksquare 微分方程式 $m\ddot{x}=f$ を解かずに分かる性質

$$\ddot{x} = \frac{f}{m} \quad (m, f$$
は定数) (6.10)

初期値問題と境界値問題

準備

$$m\ddot{x} = \frac{f}{m}$$
 (運動方程式) 両辺、積分

$$\dot{x}(t) = \frac{f}{m}t + C$$
 (C は積分定数)

両辺、積分

$$x(t) = \frac{f}{2m}t^2 + Ct + D$$
 (D も積分定数)

- 未知数 *C*, *D* の決め方 (p.63 の表)
 - 初期時刻で条件 $x(0) = x_0, \dot{x}(0) = v_0$ を課す. (初期値問題)
 - 終端時刻 t_1 でも条件 $x(t_1) = x_1$, $\dot{x}(t_1) = v_1$ を課す. (境界値問題)

質点の平面運動

運動方程式

$$m\ddot{\boldsymbol{x}} = \boldsymbol{f}: \begin{bmatrix} m\ddot{x} \\ m\ddot{y} \end{bmatrix} = \begin{bmatrix} f_x \\ f_y \end{bmatrix}$$
 (m は定数 , \boldsymbol{f} は定べクトル) (6.16)

■ 必要な公式

■ 数ベクトルの積分 ^{定義} 全成分を同じく積分:

$$\int \boldsymbol{x}(\tau)d\tau = \int [x_i(\tau)]d\tau := \left[\int x_i(\tau)d\tau\right]$$
 (6.17)

■ ベクトル版「微積分学の基本定理」

^{፫義} 微分を積分すると元に戻る.ただし積分定数がつく.

$$\int \dot{x} dt = x + C$$
 (C は積分定数ベクトル) (6.18)