打怪兽 (monsters)

【题目描述】

小猪正在玩一款电脑游戏。

游戏中小猪需要打n 只怪兽,第i 只怪兽的初始血量是 a_i (注意 a_i 可以为负数,保证 a_i 是整数)。

设小猪的攻击范围为 k。定义一次攻击为:

- 选出血量最大的 k 只怪兽,设它们的编号为 i_1, i_2, \ldots, i_k 。注意若两只怪兽血量相等则认为编号更小的怪兽血量更大。
- 对选出来的 k 只怪兽造成 1 点伤害。即将 $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ 的值各减 1。

小猪定义 $F_{m,k}(x)$ 表示假设攻击范围为 k,进行 m 次攻击后,血量第 x 小的怪兽的血量。注意 F 的计算不会真正改变 a。

小猪的初始攻击范围为 k_0 。他首先想知道进行 m_0 次攻击后所有怪兽的血量。所以 你首先要求出 $F_{m_0,k_0}(1), F_{m_0,k_0}(2), \ldots, F_{m_0,k_0}(n)$ 。

然而小猪的攻击范围和攻击次数会改变,怪兽的初始血量也会改变。所以小猪有 q 次操作。第 i 次操作为以下三种类型之一:

- 1. 给定 m_i, k_i, x_i ,小猪希望你帮他求出 $F_{m_i, k_i}(x_i)$ 。
- 2. 给定 p_i, v_i ,将第 p_i 只怪兽的初始血量 a_{p_i} 修改为 v_i 。
- 3. 给定 m_i, k_i, l_i, r_i , 小猪希望你帮他求出 $\sum_{j=l_i}^{n} F(m_i, k_i, j)$ 。

【输入格式】

从文件 monsters.in 中读入数据。

第一行包含四个整数 n, m_0, k_0, q 。

第二行包含 n 个整数 a_1, a_2, \ldots, a_n 。

接下来 q 行的第 i 行, 首先输入一个整数 t_i , 表示第 i 次操作的类型。

- 若 $t_i = 1$,接下来输入三个整数 m_i, k_i, x_i 。
- $\ddot{a} t_i = 2$, 接下来输入两个整数 p_i, v_i .
- 若 $t_i = 3$,接下来输入四个整数 m_i, k_i, l_i, r_i 。

【输出格式】

输出到文件 monsters.out 中。

第一行输出 n 个整数 $F_{m_0,k_0}(1), F_{m_0,k_0}(2), \ldots, F_{m_0,k_0}(n)$ 。

然后依次对于每个 $t_i=1$ 或 $t_i=3$ 的操作,输出一行一个整数表示这次操作要求的值。

【样例 1 输入】

```
8 3 2 16
 2 3 1 2 -1 0 2 -1 4
3 3 3 2 2 6
4 1 3 2 4
 5 3 4 5 3 5
6 1 4 5 6
7 2 5 -1
8 2 6 3
9 1 3 2 1
10 1 3 2 3
11 1 3 2 4
12 1 3 2 8
13 1 0 5 6
14 2 1 5
15 3 1 3 7 8
16 3 2 3 5 8
17 3 3 3 4 7
18 3 4 3 4 7
```

【样例1输出】

```
1 -1 -1 0 1 1 1 1 2
2 2
3 1
4 -4
5 -1
6 -1
7 -1
8 1
9 2
10 3
```

14 2

【样例1解释】

一开始怪兽的初始血量 a = [3, 1, 2, -1, 0, 2, -1, 4]。 若小猪的攻击范围为 $k_0 = 2$,进行 $m_0 = 3$ 次攻击,怪兽的血量变化如下:

- 一开始怪兽的血量为 a = [3, 1, 2, -1, 0, 2, -1, 4].
- 选择编号为 1.8 的怪兽,将 a_1,a_8 各减 1。
- 现在怪兽的血量为 a = [2, 1, 2, -1, 0, 2, -1, 3] .
- 选择编号为 1,8 的怪兽,将 a₁,a₈ 各减 1。
- 现在怪兽的血量为 a = [1, 1, 2, -1, 0, 2, -1, 2].
- 选择编号为 3,6 的怪兽,将 a₃, a₆ 各减 1。
- 现在怪兽的血量为 a = [1, 1, 1, -1, 0, 1, -1, 2].

所以第 $1 \sim 8$ 小的怪兽血量分别为 -1, -1, 0, 1, 1, 1, 1, 2。

对于第一次操作,小猪的攻击范围仍然为 $k_1=2$ 且仍然需要进行 $m_1=3$ 次攻击。攻击后第 $2\sim 6$ 小的怪兽血量分别为 -1,0,1,1,1,所以答案为 (-1)+0+1+1+1=2。进行第五次和第六次操作,即将 a_5 修改为 -1, a_6 修改为 3 后,怪兽的初始血量变为 a=[3,1,2,-1,-1,3,-1,4]。

对于第七次操作,若小猪的攻击范围为 $k_7 = 2$,进行 $m_7 = 3$ 次攻击后,怪兽的血量 变为 a = [1, 1, 1, -1, -1, 2, -1, 2],第 1 小的怪兽血量为 -1。

【样例 2】

见选手目录下的 *monsters/monsters2.in* 与 *monsters/monsters2.ans*。 该样例满足子任务 1 的限制。

【样例3】

见选手目录下的 *monsters/monsters3.in* 与 *monsters/monsters3.ans*。 该样例满足子任务 2 的限制。

【样例 4】

见选手目录下的 monsters/monsters4.in 与 monsters/monsters4.ans。

该样例满足子任务 3 的限制。

【样例 5】

见选手目录下的 *monsters/monsters5.in* 与 *monsters/monsters5.ans*。 该样例满足子任务 4 的限制。

【样例 6】

见选手目录下的 *monsters/monsters6.in* 与 *monsters/monsters6.ans*。 该样例满足子任务 5 的限制。

【样例7】

见选手目录下的 *monsters/monsters7.in* 与 *monsters/monsters7.ans*。 该样例满足子任务 6 的限制。

【样例 8】

见选手目录下的 *monsters/monsters8.in* 与 *monsters/monsters8.ans*。 该样例满足子任务 7 的限制。

【样例 9】

见选手目录下的 *monsters/monsters9.in* 与 *monsters/monsters9.ans*。 该样例满足子任务 8 的限制。

【样例 10】

见选手目录下的 *monsters/monsters10.in* 与 *monsters/monsters10.ans*。 该样例满足子任务 9 的限制。

【样例 11】

见选手目录下的 *monsters/monsters11.in* 与 *monsters/monsters11.ans*。 该样例满足子任务 10 的限制。

【样例 12】

见选手目录下的 *monsters/monsters12.in* 与 *monsters/monsters12.ans*。 该样例满足子任务 11 的限制。

【样例 13】

见选手目录下的 *monsters/monsters13.in* 与 *monsters/monsters13.ans*。 该样例满足子任务 12 的限制。

【数据范围】

本题采用子任务捆绑测试。

对于所有数据,满足:

- $1 \le n \le 2 \times 10^5$;
- $0 \le m_i \le 10^9$;
- $1 \le k_i, x_i, p_i \le n$;
- $0 \le q \le 2 \times 10^5$;
- $-10^9 \le a_i, v_i \le 10^9$;
- $t_i \in \{1, 2, 3\}$;
- $1 \le l_i \le r_i \le n$ •

子任务编号	$n \leq$	$m_i \leq$	k_i	q	特殊性质	分值
1	1000	1000	$\leq n$	=0	无	4
2	2×10^5	10^{9}	= 1	=0	无	5
3	2×10^5	10^{9}	= 1	$\leq 10^{5}$	A	6
4	2×10^5	10^{9}	= 1	$\leq 10^{5}$	В	7
5	2×10^5	10^{9}	=2	= 0	无	11
6	2×10^5	10^{6}	$\leq n$	= 0	无	9
7	1000	10^{9}	$\leq n$	= 0	无	10
8	2×10^5	10^{9}	$\leq n$	= 0	无	7
9	2×10^5	10^{9}	$\leq n$	$\leq 10^{5}$	A	11
10	2×10^5	10^{9}	$\leq n$	$\leq 10^{5}$	С	13
11	2×10^5	10^{9}	$\leq n$	$\leq 10^{5}$	无	9
12	2×10^5	10^{9}	$\leq n$	$\leq 2 \times 10^5$	无	8

- 特殊性质 A: 所有操作的 $t_i = 1$.
- 特殊性质 B: 所有操作的 $t_i \neq 3$.
- 特殊性质 C: 所有操作的 $t_i \neq 2$ 。