Neural Network Theory

Artificial Intelligence and Brain

Jeju National University Yung-Cheol Byun Materials are here:

https://github.com/yungbyun/neuralnetworks git clone [link]

Agenda

- Artificial Intelligence
- Brain and neuron
- Synapses, the core of neural networks
- Neuron, equation, and matrix

Intelligence

- One's capability for logic, understanding, self-awareness, learning, planning, creativity, and problem solving
- The ability to perceive information, and to retain it as knowledge to be applied towards adaptive behaviors within an environment
- Human Intelligence = Natural Intelligence

Artificial Intelligence

- Intelligence exhibited by machines
- A <u>computerized</u> version of the human (natural) intelligence
- Theory and development of computer systems able to perform tasks such as visual perception, voice recognition, decision-making, and translation between languages

How can machines (computers) get Artificial Intelligence?

How can human get natural intelligence?

What happens inside the human brain?

Neuroanatomist

신경해부학자

Cerebellum(소뇌) : controls muscles

Neurons in a bird's brain

Ramón y Cajal's drawing of the neurons in a bird's cerebellum – a part of the brain.

Brain of Human

1천억개 이상

100 billion neurons more than the number of stars in the universe

So, what happens inside?

electric signal called axon potential

From a DVD that comes with the illustrated medical atlas, The Human Brain, DK Publishing UK.

Simulation (signaling)

Connection between neurons

Synapse

The Brain—Lesson 2—How Neurotransmission Works

synapse

Neurotransmitter in synapse

신경전달물질

How many neurotransmitters in a synapse?

Connection between neurons

How it works?

What happens if

Alzheimer's Loss of memory, Paralysis

Our memory thinking moving emotion and everything

Experience and the adjusting of the amount of neurotransmitter

Experience → Adjusting

3 variables implementation with Python

So, what is Learning?

A Happiness

Stress

Stress/Error/Cost/Loss function

S/W implementation AI

A Neuron with Multiple Inputs

A Neuron with 1 Input

h, Hypothesis

A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon.

A hypothesis (plural hypotheses) is 가설(hypothesis): 어떤 현상을 설명하는 것. 뉴런의 동작을 설명하는 것

Explanation about the way a neuron works in.

Output of a neuron, prediction

Action of a neuron

$$h = wx$$
 w: weighted

Application: Wage Calculator NN 월급계산기

• Knowledge: 1 hour working($\operatorname{input} x$) \rightarrow 1USD($\operatorname{correct}$ answer, $\operatorname{groundtruth} y$) payment
• How much you get for 3 hours? (prediction)
• Finding the correct value of $W \rightarrow \operatorname{Learning}$ Hour x = [1] x = [1]prediction y = [1] y = [1]

 $\mathbf{w} \cdot \mathbf{1} \longrightarrow \mathbf{h}$ [1]

x (hour)	W	Output of a neuron	y (correct answer, wage)	Error/Stress Function	Reaction
1	4(random)	4	1	4-1	scolding seriously
1	2	2	1	2-1	ordinarily
1	1.5	1.5	1	1.5-1	not bed
1	1.3	1.3	1	1.3-1	good but not enough
1	1.1	1.1	1	1.1-1	acceptable

Scolding a dog/dolphin/child automatically updates the connection strength(w)

to make the error smaller in the next step.

Learning

is to find the optimal value of parameter (w) to predict correctly.

neurotransmitter

43

Drawing a neuron

Representing the below equation:

$$h = 1x$$

Simplified version

 $(1) (1) \rightarrow (h)$

Where is the synapse/connection?

$$(x)(1) \rightarrow (h)$$

Simplified version

$$\binom{1}{2}(1) \rightarrow \binom{h_1}{h_2}$$

Where is the synapse/connection?

$$(x)(1) \rightarrow (h)$$

Simplified version

Where is the synapse/connection?

$$\begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix}
(1) \rightarrow \begin{pmatrix}
h_1 \\
h_2 \\
h_3
\end{pmatrix}$$

A neuron and the matrix to describe the action of it.

A Neuron with Multiple Inputs

if the input values are (0,0,0,1), then h is ...

$$h = 1 \cdot x_1 + 2 \cdot x_2 + 1 \cdot x_3 + 3 \cdot x_4$$

$$(x_1, x_2, x_3, x_4) \begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix} \longrightarrow (h)$$

$$(0,0,0,1)\begin{pmatrix} 1\\2\\1\\3 \end{pmatrix} \longrightarrow (h)$$

Real operation of a neuron

- More than weighted sum
- Thresholding
- ullet signal ON if the weighted sum is greater than T
- otherwise signal OFF

Thresholding

Weighted sum and Thresholding

$$\mathbf{h} = \begin{cases} 1 & if \ x_1 + 2x_2 + x_3 + 3x_4 > T \\ 0 & otherwise \end{cases}$$

What is learning again?

How do we update it?