Frikrý Forcina theory I

Let K be measurable and let U be a K-complete ultrafilter on K. Then the following are equivalent:

- · 11 is normal;
- · U= {X = K | KE) (X) };
- · U is closed under diagonal intersections;
- · If S=Vr and ReTTses U then △A:= {a< k | YseVanS(a∈As)}eU;
- · ∀A∈U∀f:A→ K regressive ∃A'⊆A (A'∈U ~ |f"A'|=1);
- · K = [id]u.

Definition. Let K be measurable with U the corresponding weasure. Then Prikry forcing is the poset Pu having conditions (s, A) with $se(K)^{<\omega}$ and AeU, where $(K)^{<\omega} = K^{<\omega}$ is the increasing sequences of elements of K, and we say $(t,B) \leq (s,A)$ iff t end-extends s, $B \subseteq A$ and $ran(t \land don(t) - dom(s)) \subseteq A$; T.e. that new stuff in the sequence are elements of A.

Looking at the first coordinate of the generic we get an w-sequence cofinal in K by a simple density argument — call it < Kn I New>. Then

 $g = \{(s,A) \in P \mid s \neq R \land R - s \in A\},$ so V[g] = V[R]. For $p:=(s,A)\in\mathbb{R}_N$ we say that s is the lower part or the stem of p, and A is the measure one set of p. Often it's required that max(rans) \(\perp\) which makes the \mathbb{R}_T ordering into an actual partial order.

The proof of the following is straight-forward.

Lewna. Pu has the Kt-cc. -

Definition. If $s \in (K)^{KW}$ and $A, B \in \mathcal{U}$ then (s, B) is a direct extension of (s, A) if $B \in A$, and we write $(s, B) \leq (s, A)$. \dashv

Prikry's Lewma. Let pelPu and q a sentence in the forcing language. Then there's a condition gelPu such that q p and q II q, meaning either q II q or q II 14.

Proof. Let p=(s,A). For each $t \ge s$, if possible choose A_{t}^{2} such that $(t,A_{t}^{2}) \le (s,A)$ and $(t,A_{t}^{2}) \le 0$ otherwise set $A_{t}^{2} := A$. So in any case, $(t,A_{t}^{2}) \in \mathbb{P}_{u}$. Let now $A^{1} := \Delta (A_{t}^{2} \mid t \ge s)$.

Claim If $(t,B) \leq (s,A)$ then • if $(t,B) \Vdash \varphi$ then $(t,A^1) \vdash \varphi$, and • if $(t,B) \vdash \varphi$ then $(t,A^1) \vdash \varphi$. Proof of claim. If (t,B) | φ then we chose A_t^2 such that (t,A_t^2) | $|\Psi|$. Every extension of (t,A^1) is of the form (t^1,C) where $u \subseteq A^1-t$ and so, by definition of A^1 , $u \subseteq A_t^2$. Hence

 $(t^{\alpha}u, C \cap A_{\epsilon}^{1}) \leq (t^{\alpha}u, C), (t, A_{\epsilon}^{1}).$

Now note that (t, BnA=1) = (t,B), (t,A=1). -

For each stem tes ask whether

(ξ^<κ>, j(A1)) It - j(4); or

3 (t^< k>, j(A+)) X j(4).

In V, for each t choose a set AZEU with AZ ≤ AI and VacAZ ((t^(a), AI) behaves the same way), i.e. all fall \$ in the same case Ø, Ø, ③ above.

case \emptyset , \emptyset , \emptyset above. Let now $A^2 := \Delta_t A_t^2$. Then (s, A^2) is as required.

Corollary 1) Pu adds no bounded subsets

2) All cardinals are preserved except for K, and the same for cofinalities. I

Some "easy" applications

- 1 Failure of SCH.

 GCH can fail at a measurable (this is due to Silver modulo a supercompact, and due to Woodin-Gitik modulo a measurable k with o(k)= k++). Then apply Prikry forcing to get a failure of SCH at k.
- 2 Failure of covering. If g=Pu is V-generic then V fails (badly) to cover V[g].
- 3 Failure of reflection. We need a couple of results first.

Lemma. If 1 is regular uncountable and IP is 1-cc and pell forces CS1 to be club then there's DS1 such that DS1 is club and pir BSC? I

Corollary. 1-cc forcings preserve the stationarity in 1.

In V, Skt is non-reflecting, since for any x<kt with cof x=k there's a club CSX with ot(c) = k and cof B<k for every BEC. Just pick successor points of C to avoid Skt.

In V[g], (skt) = Sw is then non-reflecting, and still stationary as Pu has the kt-cc.

- The VEST there are no strongly compacts below K, as SCH holds above strongly compacts.
- Trees.

 In V[g] there's a special kt-tree.