计算机组成原理

第九讲

刘松波

哈工大计算学部 模式识别与智能系统研究中心 六、存储器的校验

4.2

1.编码的最小距离

任意两组合法代码之间 二进制位数 的 最少差异编码的纠错、检错能力与编码的最小距离有关

$$L-1=D+C(D\geq C)$$

L - 编码的最小距离 L = 3

D — 检测错误的位数 具有 一位 纠错能力

C — 纠正错误的位数

汉明码是具有一位纠错能力的编码

2. 汉明码的组成

4.2

组成汉明码的三要素

汉明码的组成需增添? 位检测位

$$2^k \geqslant n+k+1$$

检测位的位置?

$$2^{i}$$
 ($i = 0$, 1, 2, 3, ...)

检测位的取值?

检测位的取值与该位所在的检测"小组"中 承担的奇偶校验任务有关

各检测位 C; 所承担的检测小组为

- C₁ 检测的 g₁ 小组包含第 1, 3, 5, 7, 9, 11, …
- C₂ 检测的 g₂ 小组包含第 2, 3, 6, 7, 10, 11, …
- C₄ 检测的 g₃ 小组包含第 4, 5, 6, 7, 12, 13, …
- C₈ 检测的 g₄ 小组包含第 8, 9, 10, 11, 12, 13, 14, 15, 24,…
 - g_i 小组独占第 2^{i-1} 位
 - g_i 和 g_i 小组共同占第 $2^{i-1} + 2^{j-1}$ 位
 - g_i 、 g_i 和 g_l 小组共同占第 $2^{i-1}+2^{j-1}+2^{l-1}$ 位

例4.4 求 0101 按 "偶校验"配置的汉明码

根据
$$2^k \ge n + k + 1$$
 得 $k = 3$

汉明码排序如下:

二进制序号	1	2	3	4	5	6	7
名称	\mathbf{C}_1	\mathbb{C}_2	0	C ₄	1	0	1
	0	1		0			

∴ 0101 的汉明码为 **0100101**

练习1 按配偶原则配置 0011 的汉明码 4.2

$$n=4$$

n = 4 根据 $2^k > n + k + 1$

取
$$k=3$$

二进制序号 1 2 3 4 5 6 7
名称
$$C_1 C_2 0 C_4 0 1 1$$
 $C_1 = 3 \oplus 5 \oplus 7 = 1$
 $C_2 = 3 \oplus 6 \oplus 7 = 0$

$$C_4 = 5 \oplus 6 \oplus 7 = 0$$

· 0011 的汉明码为 1000011

3. 汉明码的纠错过程

4.2

形成新的检测位 P_i ,其位数与增添的检测位有关,如增添 3 位(k=3),新的检测位为 P_4 P_2 P_1 。以 k=3 为例, P_i 的取值为

$$P_{1} = \overset{\mathbf{C}_{1}}{1} \oplus 3 \oplus 5 \oplus 7$$

$$P_{2} = \overset{\mathbf{C}_{2}}{2} \oplus 3 \oplus 6 \oplus 7$$

$$P_{4} = \overset{\mathbf{C}_{4}}{4} \oplus 5 \oplus 6 \oplus 7$$

对于按"偶校验"配置的汉明码不出错时 $P_1=0$, $P_2=0$, $P_4=0$

4.2

例4.5 已知接收到的汉明码为0100111

(按配偶原则配置) 试问要求传送的信息是什么?

解: 纠错过程如下

$$P_1 = 1 \oplus 3 \oplus 5 \oplus 7 = 0$$
 无错

$$P_2=2\oplus 3\oplus 6\oplus 7=1$$
 有错

$$P_4$$
= 4 \oplus 5 \oplus 6 \oplus 7 = 1 有错

$$P_4P_2P_1 = 110$$

第6位出错,可纠正为0100101,

2022/8/2故要求传送的信息为 0101。

4.2

练习2 写出按偶校验配置的汉明码

0101101 的纠错过程

$$P_4 = 4 \oplus 5 \oplus 6 \oplus 7 = 1$$

$$P_2 = 2 \oplus 3 \oplus 6 \oplus 7 = 0$$

$$\mathbf{P_1} = \mathbf{1} \oplus \mathbf{3} \oplus \mathbf{5} \oplus \mathbf{7} = \mathbf{0}$$

∴ P₄P₂P₁ = 100 第 4 位错,可不纠

练习3 按配奇原则配置 0011 的汉明码 配奇的汉明码为 0101011

第4章存储器

4.1 概述

4.2 主存储器

4.3 高速缓冲存储器

4.4 辅助存储器

4.2 主存储器

- •一、概述
- •二、半导体存储芯片简介
- ·三、随机存取存储器(RAM)
- ·四、只读存储器(ROM)
- ·五、存储器与 CPU 的连接
- •六、存储器的校验
- •七、提高访存速度的措施

2022/8/24

七、提高访存速度的措施

- 采用高速器件
- 采用层次结构 Cache 主存
- 调整主存结构

2. 多体并行系统

4.2

(1) 高位交叉 顺序编址

(1) 高位交叉

各个体并行工作

(2) 低位交叉

各个体轮流编址

(2) 低位交叉 各个体轮流编址

低位交叉的特点

4.2

在不改变存取周期的前提下,增加存储器的带宽

2022/8/24

设四体低位交叉存储器,存取周期为T,总线传输周期4.2为 τ ,为实现流水线方式存取,应满足 $T=4\tau$ 。

连续读取 4 个字所需的时间为 $T+(4-1)\tau$

4.2

(3) 存储器控制部件(简称存控)

2022/8/24

3.高性能存储芯片

4.2

(1) SDRAM (同步 DRAM)

在系统时钟的控制下进行读出和写入 CPU 无须等待

(2) RDRAM

由 Rambus 开发,主要解决存储器带宽问题

(3) 带 Cache 的 DRAM

在 DRAM 的芯片内 集成 了一个由 SRAM 组成的 Cache, 有利于 猝发式读取

4.3 高速缓冲存储器

一、概述

1. 问题的提出 避免 CPU "空等"现象 CPU 和主存(DRAM)的速度差异

程序访问的局部性原理

2. Cache 的工作原理

4.3

(1) 主存和缓存的编址

主存和缓存按块存储

块的大小相同

B为块长

(2) 命中与未命中

4.3

缓存共有 C 块 主存共有 M 块 M >>> C

命中 主存块 调入 缓存

主存块与缓存块 建立 了对应关系

用 标记记录 与某缓存块建立了对应关系的 主存块号

未命中 主存块 未调入 缓存

主存块与缓存块 未建立 对应关系

(3) Cache 的命中率

4.3

CPU 欲访问的信息在 Cache 中的 比率

命中率与 Cache 的 容量与 块长 有关

一般每块可取 4~8 个字

块长取一个存取周期内从主存调出的信息长度

CRAY_1 16体交叉 块长取 16 个存储字

IBM 370/168 4体交叉 块长取 4 个存储字

 $(64 \oplus \times 4 = 256 \oplus)$

(4) Cache –主存系统的效率

4.3

效率 e 与 命中率 有关

$$e = \frac{$$
 访问 Cache 的时间 \times 100%

设 Cache 命中率 为 h, 访问 Cache 的时间为 t_c , 访问 主存 的时间为 t_m

则
$$e = \frac{t_c}{h \times t_c + (1-h) \times t_m} \times 100\%$$