CY121

Inorganic & Physical Chemistry

Instructor:

Dr. Debashis Panda

⊠ dpanda@rgipt.ac.in

22 9455196041

■ sites.google.com/site/dpanda258

Unit I:

Chemical Bonding

- Bonding Theory :
 - Valence Bond Theory &
 - Molecular Orbital Theory;
- Symmetries in Molecular Orbitals.
- MO Diagrams of Homonuclear Nuclei- N₂, C₂, B₂.
- MO Diagrams of NH₃, H₂O, CH₄ and Metal Complexes,

Organization of Teaching Material

1955 -2011

The most powerful person in the world is the storyteller. The storyteller sets the vision, values and agenda of an entire generation that is to come.

CHEMISTRY

Antoine-Laurent de Lavoisier

Father of Modern Chemistry

Lavoisier discovered that water is made from hydrogen and oxygen and that air is made from oxygen and nitrogen.

Why should you learn Chemistry?

Why should you learn Chemistry?

"In inorganic chemistry everything is super"

Prof. W. Beck, Munich, 1986

super-expensive	Gold Platinum Diamonds Promethium
super-corrosive	 Ozone (O₃) ignites organic materials immediately. Very toxic Fluorine CIF₃
super-explosive	 NI₃ Fulminates XeO₃ forms, whenever Xenon fluorides are hydrolyzed. It explodes violently in a very unpredictable fashion.
super-complicated	Structure and Bonding Inorganic compounds are examples of unusual bonding situations. Delocalized bonding such as in clusters, semiconductors and metals is the rule rather then the exception.
super-coordinated	 High coordination numbers (organic carbon: 1-5) are common: IF₇ (CN = 7) [ReH₉]²⁻ (CN = 9) U(COT)₂ (CN = 16)

Why should you learn Chemistry?

"In inorganic chemistry everything is super"

Prof. W. Beck, Munich, 1986

super-acidic	 Magic Acid HF + SbF₅ -> [H₂F]+ [SbF₆]⁻ protonates methane and is probably the strongest acid known.
super-conducting	 Hg Nb₃Ge YBa₂La₃CuO₇ Most "high-tech" materials (semiconductors, superconductors, wave guides optoelectronic materials etc.) are inorganic
super-hard	 Diamond (5600 Vickers hardness) Cubic boron nitride Ti-B-C-N, Vickers Hardness = 6000)
super high-melting	 TaC, m. p. = 3780 °C There is an unabated race for materials that can withstand extreme temperatures and / or corrosive environment. Applications are the coating of cutting tools, motor parts, ball bearings etc.
super-clean	• Si 99.99999 % • Semiconductors
super-selective	Catalysts (homogeneous and heterogeneous) 7

Periodic Table

Systematic Variation of the properties of chemical elements depend upon the electronic structure of the atom.

Periodic Table

hydrogen 1 H 1.0079																		helium 2 He 4.0026
lithium 3	beryllium 4							1					boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be												В	С	N	0	F	Ne
6.941 sodium	9.0122 magnesium											- 1	10,811 aluminium	12.011 silicon	14.007 phosphorus	15,999 sulfur	18,998 chlorine	20,180
11	12					Γ	imitr	ii Me	ndel	o pv			13	14	15	16	17	argon 18
Na	Mg						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i></i>	nacn				Al	Si	Р	S	CI	Ar
22.990 potassium	24.305 calcium	19	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32,065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 vttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 lodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.468 caesium	87.62 barium	-	88.906 lutetium	91,224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 Iridium	106,42 platinum	107,87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnillum	196.97 unununium	200.59 ununbium	204.38	207.2 ununguadium	208,98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]	1-100 - 00.00 15	[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series

* * Actinide series

, [lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
۱ ٔ	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb
- [138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168,93	173.04
	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
Į	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Periodic Table

In 1871 Mendeleev predicted Existence of Eka-aluminium (because of its proximity to Al) actual characteristics of Gallium

Property	Eka-aluminium	Gallium
atomic mass	68	69.72
density (g/cm³)	6.0	5.904
melting point (°C)	Low	29.78
oxide's formula	Ea ₂ O ₃ (density: 5.5 g/cm ³) (soluble in both alkalis and acids)	Ga ₂ O ₃ (density: 5.88 g/cm ³) (soluble in both alkalis and acids)
chloride's formula	Ea ₂ Cl ₆ (volatile)	Ga ₂ Cl ₆ (volatile)

IUPAC Nomenclature of Elements

with atomic number above 100

Digit	Name	Abbreviation
0	nil	n
1	un	u
2	bi	b
3	tri	t
4	quad	q
5	pent	p
6	hex	h
7	sept	S
8	oct	0
9	enn	е

For example:		
	114 $ ightarrow$ Un-un-quad-ium	\rightarrow Uuq
	118 \rightarrow Un-un-oct-ium	\rightarrow Uuo

Building Up the Periodic Table: The Basis

1. Various quantum numbers

2. Hund's Rule:

When more than one orbital has the same energy (e.g. px, py, pz), electron occupy separate orbitals and do so with parallel spins.

3. Pauli (Exclusion) Principle

No more than two electrons shall occupy a single orbital and, if two do occupy a single orbital, then their spins must be paired. or

"no two electrons can have the same four quantum numbers"

4. The order of orbitals for a given quantum number depends on

Shielding Effects (Z*)
Penetration of orbitals

Electronic Configuration

H 1s¹

He $1s^2$

Li 1s²2s¹

.

F 1s²2s²2p⁵

Ne $1s^22s^22p^6$

Four Quantum Numbers

The principal quantum number, n = 1, 2, ..., determines the energy E of the electron in the atom.

The angular momentum quantum number, $\ell = 0, 1, 2, ..., n-1$, determines the orbital angular momentum of the electron.

```
\ell = 0 s "sharp"

\ell = 1 p "principal"

\ell = 2 d "diffuse"

\ell = 3 f "fundamental or fine"
```

The magnetic quantum number, $m = 0, \pm 1, ..., \pm \ell$

determines the amount of angular momentum of the electron around a particular axis.

The Spin quantum number, $s = \pm 1/2$

Orbit and **Orbital**

An **Orbit** is the path of an electron around the nucleus of an atom.

When a planet moves around the sun, you can plot a definite path for it which is called an orbit.

The impossibility of drawing orbits for electrons

The *Heisenberg Uncertainty Principle* says - that you can't know with certainty both where an electron is and where it's going next.

An **Orbital** is the three dimensional space where the probability of finding an electron around the nucleus is maximum. In other words, 'Orbital' refers to an electron's probable location.

Schrodinger equation for Hydrogen-like Atom

$$\left[-\frac{\hbar^2}{2mr^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) - \frac{\hbar^2}{2mr^2} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) + V(r) \right] \Psi(r, \theta, \phi) \ = \ E \Psi(r, \theta, \phi)$$

$$\psi(r,\theta,\phi) = R(r) P(\theta) F(\phi)$$
 $Y_{l,m_l}(\theta,\phi)$ Angular part Radial part

$$R(r)$$
 Solution exists iff $n=1,2,3,...$ $\ell=0,1,2,...,n-1$ $F(\phi)$ Solution exists iff $m_l=-\ell,-\ell+1,...,+\ell$

Distribution of Radial Probability density

Distribution of Radial Probability density

s & p-type Orbitals

d -type Orbitals

f -type Orbitals

Madelung's Rule

Energy increases with increasing n + l

For identical values of n + l, energy increases with increasing n

$$1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < ...$$

 1 2 3 4 4 5 5 : $(n + l)$

Reason: Shielding of the nuclear charge by the innermost electrons

Orbital penetration:

Slater's rules

Effective nuclear charges, Z_{eff} , experienced by electrons in different atomic orbitals may be estimated using *Slater's rules*. These rules are based on experimental data for electron promotion and ionization energies, and Z_{eff} is determined from the equation:

$$Z_{\rm eff} = Z - S$$

where Z = nuclear charge, $Z_{\text{eff}} =$ effective nuclear charge, S = screening (or shielding) constant.

Values of S may be estimated as follows:

- 1. Write out the electronic configuration of the element in the following order and groupings: (1s), (2s, 2p), (3s, 3p), (3d), (4s, 4p), (4d), (4f), (5s, 5p) etc.
- 2. Electrons in any group higher in this sequence than the electron under consideration contribute nothing to *S*.
- 3. Consider a particular electron in an ns or np orbital:
 - (i) Each of the other electrons in the (ns, np) group contributes S = 0.35.
 - (ii) Each of the electrons in the (n-1) shell contributes S = 0.85.
 - (iii) Each of the electrons in the (n-2) or lower shells contributes S = 1.00.
- 4. Consider a particular electron in an *nd* or *nf* orbital:
 - (i) Each of the other electrons in the (nd, nf) group contributes S = 0.35.
 - (ii) Each of the electrons in a lower group than the one being considered contributes S = 1.00.

An example of how to apply Slater's rules

Question: Confirm that the experimentally observed electronic configuration of K, $1s^22s^22p^63s^23p^64s^1$, is energetically more stable than the configuration $1s^22s^22p^63s^23p^63d^1$.

For K,
$$Z = 19$$
.

Applying Slater's rules, the effective nuclear charge experienced by the 4s electron for the configuration $1s^22s^22p^63s^23p^64s^1$ is:

$$Z_{\text{eff}} = Z - S$$

= 19 - [(8 × 0.85) + (10 × 1.00)]
= 2.20

The effective nuclear charge experienced by the 3d electron for the configuration $1s^22s^22p^63s^23p^63d^1$ is:

$$Z_{\text{eff}} = Z - S$$

= 19 - (18 × 1.00)
= 1.00

Thus, an electron in the 4s (rather than the 3d) atomic orbital is under the influence of a greater effective nuclear charge and in the ground state of potassium, it is the 4s atomic orbital that is occupied.

Chemical Bonding

Linus Carl Pauling 1901 –1994

Nobel Prize in Chemistry (1954) Nobel Peace Prize (1962)

Valence Bond Theory

$$H_A - H_B \leftrightarrow H_A^+ H_B^- \leftrightarrow H_A^- H_B^+$$

$$\psi = \psi_{A(1)} \psi_{B(2)} + \psi_{A(2)} \psi_{B(1)} + \lambda \psi_{A(1)} \psi_{A(2)} + \lambda \psi_{B(1)} \psi_{B(2)}$$
 Covalent Ionic
$$\psi = \psi_{cov} + \lambda \psi_{H^+H^-} + \lambda \psi_{H^-H^+} \quad \Rightarrow \quad \psi = (1 - \lambda) \psi_{cov} + \lambda \psi_{ion}$$

Linear Combination of ionic & covalent functions

Elementary Concepts

OCTET RULE: In forming compounds, atoms gain, lose, or share electrons to give a stable electron configuration characterized by 8 valence electrons.

FORMAL CHARGE: is the charge calculated for an atom in a Lewis structure on the basis of an equal sharing of bonded electron pairs

Formal charge = Valence shell electrons – number of bonds – number of unshared electrons

Resonance: Same atomic positions But differ in electron positions

- Resonance structures are not real.
- Resonance structures are not in equilibrium with each other.
- Resonance structures are not isomers.

Every Atom has electronic configuration Atoms are the building-blocks of molecule Molecules are the building block of materials

Electronics Computer

Sigma bond formation

HYBRIDIZATION

Linear Combination of s and p orbital wave functions

$$\psi = a\psi_{\mathcal{S}} + b\psi_{\mathcal{P}}$$

sp hybrid
$$\begin{cases} \psi_1 = N(\psi_s + \psi_{p_x}) \\ \psi_2 = N(\psi_s - \psi_{p_x}) \end{cases}$$

N= Normalization Constant

$$\mathbf{sp^2 \ hybrid} = \begin{bmatrix} \psi_1 = \frac{1}{\sqrt{3}} \psi_s + \sqrt{\frac{2}{3}} \psi_{p_x} \\ \psi_2 = \frac{1}{\sqrt{3}} \psi_s - \frac{1}{\sqrt{6}} \psi_{p_x} + \frac{1}{\sqrt{2}} \psi_{p_y} \\ \psi_3 = \frac{1}{\sqrt{3}} \psi_s - \frac{1}{\sqrt{6}} \psi_{p_x} - \frac{1}{\sqrt{2}} \psi_{p_y} \end{bmatrix}$$

$$\mathbf{sp^3 \, hybrid} = \begin{cases} \psi_1 = 0.5(\psi_s + \psi_{p_x} + \psi_{p_y} + \psi_{p_z}) \\ \psi_2 = 0.5(\psi_s + \psi_{p_x} - \psi_{p_y} - \psi_{p_z}) \\ \psi_3 = 0.5(\psi_s - \psi_{p_x} + \psi_{p_y} - \psi_{p_z}) \\ \psi_4 = 0.5(\psi_s - \psi_{p_x} - \psi_{p_y} + \psi_{p_z}) \end{cases}$$

HYBRIDIZATION

Linear Combination of s and p orbital wave functions

sp hybrid

$$\psi_1^{sp} = \frac{1}{\sqrt{2}} \left(\psi_s + \psi_{p_x} \right)$$

$$\psi_2^{sp} = \frac{1}{\sqrt{2}} \left(\psi_s - \psi_{p_x} \right)$$

SP HYBRIDIZATION

Electron Pair Geometry:

Linear

BeCl₂

sp² HYBRIDIZATION

Electron Pair Geometry:

Trigonal Planar

BF₃

sp³ HYBRIDIZATION

The Orbitals of an sp^3 hybridized carbon

Electron Pair Geometry:

Tetrahedral

CH₄

sp³d HYBRIDIZATION

Electron Pair Geometry:

Trigonal bipyramidal

PCl₅

sp³d² HYBRIDIZATION

Electron Pair Geometry: Octahedral

SF₆

Summary on Electron-pair Geometry

No. of orbitals	Hybridization	Electron-pair Geometry	Example
2	sp	Linear	BeCl ₂
3	sp ²	Trigonal Planar	BF ₃
4	sp ³	Tetrahedral	CH ₄
5	sp ³ d	Trigonal Pyriramidal	PCI ₅
6	sp ³ d ²	Octahedral	SF ₆

VSEPR THEORY

Valence Shell Electron Pair Repulsion

How do we determine the shapes of molecules?

(1) Electron pairs repel each other and try to remain as far apart from one another as possible.

Repulsion strengths

Ione pair -lone pair > lone pair e-bond pair > bond pair-bond pair

- (2) Molecular geometry is determined by the relative positions that electron pairs achieve after taking repulsions into account.
- (3) The arrangement of pairs about a central atom depends on the number of pairs that exist about the atom.

VSEPR Theory--Molecular Shapes

Rules for Predicting Molecular Geometry

- 1. Sketch the Lewis structure of the molecule or ion
- 2. Count the electron pairs and arrange them in the way that minimizes electron-pair repulsion.
- 3. Determine the position of the atoms from the way the electron pairs are shared.
- 4. Determine the name of the molecular structure from the position of the atoms.
- 5. Double or triple bonds are counted as one bonding pair when predicting geometry.

Hybridization -	Bonding Pairs	Nonbonding Pairs	Molecular Geometry	Example
Linear	2	0	Linear	ö=c=ö
120°	3	0	120° Trigonal planar	(F, B, F)
Trigonal planar	2	1	Bent	

Hybridization	Bonding Pairs	Nonbonding Pairs	Molecular Geometry	Example
109.5°	4	0	109.5° Tetrahedral	H C H
Tetrahedral	3	1 Tr	igonal pyramidal	нÄН
	2	2		H H

	Hybridization	Bonding Pairs	Nonbonding Pairs	Molecular Geometry	Example
	90°	5	0	900	PC1 ₅
			Tri	igonal bipyramidal	
Tri	gonal bipyramidal	4	1		SF ₄
				Seesaw	
		3	2	T-shaped	C1F ₃
		2	3	Linear	XeF ₂

Hybridization -	Bonding Pairs	Nonbonding Pairs	Molecular Geometry	Example
90°	6	0	900	SF ₆
			Octahedral	
Octahedral	5	1	2900	BrF ₅
			Square pyramidal	
	4	2	900	XeF
			Square planar	

Iodine heptafluoride (IF₇) with 7 bonding groups

VSEPR Theory--Molecular Shapes: Summary

No. e- pairs	Geometrical arrangement	Types of e ⁻ pairs	Molecular shapes	Examples
2	linear, 180°	2 bp	linear	BH ₂
3	trigonal planar, 120°	3 bp 2bp, 1lp	trigonal planar bent	BF ₃ O ₃
4	tetrahedral 109° 28'	4 bp 3 bp, 1 lp 2 bp, 2 lp	tetrahedral trigonal pyramidal bent	CH ₄ NH ₃ H ₂ O
5	trigonal bipyramidal 120° e-e, 90° a-e	5 bp 4 bp, 1 lp 3 bp, 2 lp 2 bp, 3 lp	trigonal bipyramidal see saw T-shape linear	PF ₅ SF ₄ ICl ₃
6	octahedral, 90°	6 bp 5 bp, 1lp 4 bp, 2 lp	Octahedral square pyramidal square planar	SF ₆ IF ₅ XeF ₄

Chemical Bonding...

- Why shouldn't you write H₂O as HHO?
- Can you able to predict the bond length?

What is the origin of molecular magnetism?

Linear Combination of ionic & covalent functions

$$\psi = (1 - \lambda)\psi_{cov} + \lambda\psi_{ion}$$

Linear Combination of s and p orbital wave functions

$$\psi = a\psi_s + b\psi_p$$

Valence Bond Theory

Linear Combination of Atomic Orbitals (LCAO)

Bonding MO
$$\psi_b = \psi_A + \psi_B$$

Antibonding MO
$$\psi_b = \psi_A - \psi_B$$

 $\psi_A \otimes \psi_B$ are atomic orbitals of atom A and atom B respectively

Molecular Orbital Theory

 $\psi_A \& \psi_B$ are atomic orbitals of atom A and atom B respectively

for H₂⁺ ion:

Bonding MO
$$\psi = \psi_{b(1)} = \psi_{A(1)} + \psi_{B(1)}$$

for H₂ molecule: Total wave function is the product of wavefunctions for each electron

$$\psi = \psi_{b(1)} \psi_{b(2)} = [\psi_{A(1)} + \psi_{B(1)}] [\psi_{A(2)} + \psi_{B(2)}]$$

$$\psi = \psi_{A(1)} \psi_{A(2)} + \psi_{B(1)} \psi_{B(2)} + \psi_{A(1)} \psi_{B(2)} + \psi_{A(2)} \psi_{B(1)}$$
Lonic
Covalent

 $\psi_A \& \psi_B$ are atomic orbitals of atom A and atom B respectively

Bond Order = $\frac{1}{2}$ (N_b -N_a)

Probability density of Bonding MO

$$|\psi_b|^2=\psi_A^2+2\psi_A\psi_B+\psi_B^2$$

Probability density of Antibonding MO

$$|\psi_a|^2 = \psi_A^2 - 2\psi_A\psi_B + \psi_B^2$$

Symmetry & Overlap

$$\sigma_{1s} = 1s_{A} + 1s_{B}$$
 $\sigma_{1s}^{*} = 1s_{A} - 1s_{B}$
 $\sigma_{1s}^{*} = 1s_{A} - 1s_{B}$
 $\sigma_{2p_{x}}^{*} = 2p_{xA} + 2p_{xB}$
 $\sigma_{2s} = 2s_{A} + 2s_{B}$
 $\sigma_{2s}^{*} = 2s_{A} - 2s_{B}$
 $\sigma_{2p_{x}}^{*} = 2p_{xA} - 2p_{xB}$
 $\sigma_{2p}^{*} = 2p_{zA} + 2p_{zB}$
 $\sigma_{2p}^{*} = 2p_{zA} - 2p_{zB}$

Symmetry Operations

Centre of Symmetry (i)

or, Centre of Inversion (i)

If reflection of all parts of a molecule through the centre of the molecule produces an indistinguishable configuration, the centre is a centre of symmetry.

A point at the center of the molecule.

Symmetry Operations

Depends on the specific group

by symmetry:	Principal rotation axis (C _n)	Center of inversion (i)	plane $ $ to princip. axis (σ_v)	plane \perp to princip. axis (σ_h)
symmetric	А	g	1	•
antisymmetric	В	u	2	"

 C_2 : $p_x \rightarrow -p_x$ $p_y \rightarrow -p_y$ $\Rightarrow B$

i: $d_{xy} \rightarrow d_{xy}$ (similarly all d) \Rightarrow_{g} C_4 : $p_x \rightarrow p_y$ $p_y \rightarrow -p_x$ $\Rightarrow E$

by <u>degeneracy:</u>

1: A,B

2: E

3: T

Homonuclear diatomic molecule, A₂

Heteronuclear diatomic molecule, AB (with small electronegativity difference)

Heteronuclear diatomic molecule, AB (with LARGE electronegativity difference)

The Rules of Molecular Orbital Theory:

First principle: The number of molecular orbitals produced is always equal to the number of atomic orbitals brought by the atoms that have combined.

Second principle: Bonding molecular orbitals are lower in energy that the parent orbitals, and the antibonding orbitals are higher in energy.

Third principle: Electrons of the molecule are assigned to orbitals from lowest to successively higher energy

Fourth principle: Atomic orbitals combine to form molecular orbitals most effectively when the atomic orbitals are of similar energy.

MO Diagrams for Diatomic Molecules

M.O. Diagram for O_2 (similar for F_2 and Xe_2)

MO Diagrams for Heteronuclear Diatomic Molecules

- Only atomic orbitals of about same energy can combine effectively.
- Orbitals should have maximum overlap.
- They must have the same symmetry.

MO Diagram for HCl

Orbital Energies

E_n	= -		13.6 eV
		n^2	

Atom	Valeno orbita	ce ls E (eV)
Н	$1s^1$	- 13.595
Ве	$2s^1$	- 9.323
С	2pl	- 11.260
О	$2p^1$	- 13.618

MO Diagram for NH₃

MO Diagram for CH₄

MO Diagram for H₂O

MO Diagram for CO

