A Book of Abstract Algebra | (2nd Edition)

Chapter AA, Problem 10E	Bookmark	Show all steps: ON
	Problem	
Prove the following:		
$A\cap (A\cup B)=A.$		
Ste	ep-by-step solution	
	Step 1 of 2	
Objective:-		
The objective is to prove $A \cup (A \cap B)$	=A.	
Comment		
	Step 2 of 2	
Proof:-		
Let A and B are two sets.		
The union of two sets A and B is:-		
$A \cup B = \{x : x \in A \text{ or } x \in B\}$		
The intersection of two sets A and B is	X-	
$A \cap B = \{x : x \in A \text{ and } x \in B\}$		
Let $x \in A \cap (B \cup C)$.		
$x \in A \cap (B \cup C)$		
$\Rightarrow x \in A \text{ and } (x \in B \cap C)$		

$$\Rightarrow x \in A \text{ and } x \in B \text{ or } x \in C$$

$$\Rightarrow (x \in A \text{ and } x \in B) \text{ and } (x \in A \text{ or } x \in C)$$

$$\Rightarrow (x \in A \cap B) \text{ or } (x \in A \cap C)$$

$$\Rightarrow x \in (A \cap B) \cup (A \cap C)$$
So,
$$A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C) \qquad(1)$$
Let $x \in A \cup (B \cap C)$.
$$x \in (A \cap B) \cup (A \cap C)$$

$$\Rightarrow (x \in A \cap B) \text{ or } (x \in A \cap C)$$

$$\Rightarrow (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)$$

$$\Rightarrow x \in A \text{ and } (x \in B \text{ or } x \in C)$$

$$\Rightarrow x \in A \cap (B \cup C)$$
So,
$$(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C) \qquad(2)$$
Let us consider the equation (1) and (2).
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
According to this theorem:-

$$A \cap (A \cup B) = (A \cap A) \cup (A \cap B)$$
$$A \cap (A \cup B) = A \cap (A \cap B)$$
$$A \cap (A \cup B) = A$$

Since the common elements in set A and union of set and B are elements of set A.

Proved

Comment