Homework 1

Warren Kim

October 19, 2023

Please grade my HW carefully. Thank you.

Prove that if $a \equiv b \pmod{m}$, then gcd(m, a) = gcd(m, b).

Response

Proof. Let $a \equiv b \pmod{m}$. Then by definition, b - a = mq (i) for some integer q. Let $c = \gcd(m, a)$; i.e. c is the greatest integer that divides both a and m. Then we can rewrite a and m as:

$$a = ca'$$

$$m = cm'$$

Rearranging (i), we get:

$$b = mq + a$$
$$= (cm')q + ca'$$
$$b = c(m'q + a')$$

so $c \mid b$; i.e. $\gcd(m,a) \mid b$. But by definition, $\gcd(m,a) \mid m$ as well. So, $\gcd(m,a) \mid \gcd(m,b)$. $\gcd(m,b) \mid \gcd(m,a)$ can be shown replacing a with b and c with d.

Prove that $(a+b)^p \equiv a^p + b^p \pmod{p}$ if p is prime.

Response

Proof. Let p be prime, and $a,b,p\in\mathbb{Z}.$ Then, we have

$$(a+b)^{p} = \sum_{k=0}^{p} \binom{p}{k} a^{p} b^{p-k}$$

$$= \sum_{k=1}^{p-1} \binom{p}{k} a^{p} b^{p-k} + \binom{p}{0} a^{p} + \binom{p}{p} b^{p}$$

$$= \sum_{k=1}^{p-1} \binom{p}{k} a^{p} b^{p-k} + a^{p} + b^{p}$$

For every $1 \le k \le p-1$, we have

$$\frac{p!}{k!(p-k)!} = \frac{p \cdot (p-1)!}{k!(p-k)!}$$

and since p is prime, by definition k!(p-k) does not have p as a factor. So, $p\mid\binom{p}{k}$ for $1\leq k\leq p-1$; i.e. $p\mid\binom{p}{k}a^pb^{p-k}$. This implies that

$$p \mid \sum_{k=1}^{p-1} \binom{p}{k} a^p b^{p-k}$$

or

$$\sum_{k=1}^{p-1} \binom{p}{k} a^p b^{p-k} \equiv 0 \pmod{p}$$

and so we have that $(a+b)^p \equiv a^p + b^p \pmod{p}$.

Find all classes $X \in \mathbb{Z}/300\mathbb{Z}$ such that:

- (i) $[7] \cdot X = [2],$
- (ii) $[120] \cdot X = [80],$
- (iii) $[9] \cdot X = [48].$

Response

(i) gcd(7,300) = 1 and $1 \mid 2$, so there is one solution. Then, we get

$$7x + 300y = 1$$

$$7(43) + 300(-1) = 1$$

where x = 43, y = -2. Multiplying both sides by 2, we get

$$7(86) = 300(-2) = 2$$

- so X = [86].
- (ii) gcd(120, 300) = 60 and $60 \nmid 80$ so there are no solutions.
- (iii) gcd(9,300) = 3 and $3 \mid 48$, so there are three solutions. Then, we get

$$9x + 300y = 3$$

$$9(-33) + 300(1) = 3$$

where x = -33, y = 1. Multiplying both sides by 16, we get

$$9(-528) + 300(16) = 48$$

so $X_m = [72] + \frac{300}{3}m = [72] + 100m$. Using this equation, we have

$$X = [72], X = [172], X = [272]$$

Find all positive $m \in \mathbb{Z}$ such that $[5] \cdot [17] = [3] \cdot [4]$ in $\mathbb{Z}/m\mathbb{Z}$.

Response

We want to solve for m in

$$[85] \equiv [12] \pmod{n}$$

85 - 12 = 73 shows that any divisor of 73 will satisfy the congruence. 73 is prime, so its divisors are 1,73, giving us m = 1,73.

Prove that every nonzero class $[a] \in \mathbb{Z}/13\mathbb{Z}$ is equal to $[2]^i$ for some i.

Response

Proof. There are 12 cases:

$$2^{0} = 1 \pmod{13}$$

$$2^{1} = 2 \pmod{13}$$

$$2^{2} = 4 \pmod{13}$$

$$2^{3} = 8 \pmod{13}$$

$$2^{4} = 16 \pmod{13} = 3 \pmod{13}$$

$$2^{5} = 32 \pmod{13} = 6 \pmod{13}$$

$$2^{6} = 64 \pmod{13} = 12 \pmod{13}$$

$$2^{7} = 128 \pmod{13} = 11 \pmod{13}$$

$$2^{8} = 256 \pmod{13} = 11 \pmod{13}$$

$$2^{8} = 256 \pmod{13} = 9 \pmod{13}$$

$$2^{9} = 512 \pmod{13} = 5 \pmod{13}$$

$$2^{10} = 1024 \pmod{13} = 10 \pmod{13}$$

$$2^{11} = 2048 \pmod{13} = 7 \pmod{13}$$

Since the sequence repeats for $i \ge 12$, we have shown that every every nonzero class [a] is equal to $[2]^i$ for some i.

Find the (multiplicative) inverse of [100] in $\mathbb{Z}/173\mathbb{Z}$.

Response

 $\gcd(100,173)=1$ and $1\mid 1$ so there is one solution. Then, we get

$$100x + 173y = 1$$

$$100(-64) + 173(37) = 1$$

where x = -64, y = 37. So X = [109].

Solve
$$X^2 = [5]$$
 in $\mathbb{Z}/11\mathbb{Z}$.

Response

We want to solve $X^2 \equiv [5] \pmod{11}$. There are 11 possible solutions:

$$0^{2} \pmod{11} \equiv 0$$
 $1^{2} \pmod{11} \equiv 1$
 $2^{2} \pmod{11} \equiv 4$
 $3^{2} \pmod{11} \equiv 9$
 $4^{2} \pmod{11} \equiv 5$
 $5^{2} \pmod{11} \equiv 3$
 $6^{2} \pmod{11} \equiv 3$
 $7^{2} \pmod{11} \equiv 5$
 $8^{2} \pmod{11} \equiv 9$
 $9^{2} \pmod{11} \equiv 7$
 $10^{2} \pmod{11} \equiv 1$

So the solutions are X = [4], [7].

Find all $k \in \mathbb{N}$ such that $[2]^k = [1]$ in $\mathbb{Z}/17\mathbb{Z}$.

Response

We want to solve $[2]^k \equiv [1] \pmod{17}$. The smallest value of k that satisfies the congruence is k = 8. Then, we have

$$2^8 \equiv 1 \pmod{17}$$

Raising both sides to the power of n, we get

$$(2^8)^n \equiv 1^n \pmod{17}$$

$$2^{8n} \equiv 1 \pmod{17}$$

So k = 8n where $n \in \mathbb{N}$ are all the solutions to $[2]^k \equiv [1] \pmod{17}$.

Let X be the set of all pairs $(a,b), a,b \in \mathbb{R}$ such that $a^2 + b^2 > 0$. We write $(a,b) \sim (c,d)$ if ad = bc. Show that \sim is an equivalence relation and determine all equivalence classes.

Response

To show that \sim is an equivalence relation, we need to show that it is

- (i) Reflexive $a \sim a$
- (ii) Symmetric $a \sim b \implies b \sim a$
- (iii) Transitive $a \sim b, b \sim c \implies a \sim c$
- (i) For any $(a,b) \in X$, we have that ab = ba = ab so \sim is reflexive.
- (ii) Assume $(a, b) \sim (c, d)$. Then, $ad = bc \iff bc = ad$ or $(c, d) \sim (a, b)$ so \sim is symmetric.
- (iii) Assume $(a,b) \sim (c,d), (c,d) \sim (e,f)$. Then, ad = bc and cf = de. There are two cases:
 - (i) a, b, c, d are not zero.

$$ad(cf) = bc(de)$$
$$a(dc)f = b(cd)e$$
$$af = be$$

(ii) cd = 0. Then either c = 0 or d = 0 since $c^2 + d^2 > 0$, so

$$(a,b) \sim (0,d) \implies a = 0$$

$$(0,d) \sim (e,f) \implies e = 0$$

or

$$(a,b) \sim (c,0) \implies b = 0$$

$$(c,0) \sim (e,f) \implies f = 0$$

so
$$af = 0 = be$$

So \sim is transitive.

Since we've shown (i), (ii), (iii) for \sim , it is an equivalence relation.

All equivalence classes are $[(a,b)] := \{(c,d) \in X : ad = bc\}.$

Proof.

- (i) Take any pair $(a, b) \in X$. Then $(a, b) \in [(a, b)]$. Since this pair was arbitrary, this holds for all $(a, b) \in X$.
- (ii) Assume we have two distinct equivalence classes $[(a_1,b_1)],[(a_2,b_2)]$ and assume they are not disjoint. Then, there is some $(x,y) \in X$ such that $(x,y) \in [(a_1,b_1)]$ and $(x,y) \in [(a_2,b_2)]$. Then, we have $(x,y) \sim (a_1,b_1)$ and $(x,y) \sim (a_2,b_2)$. By symmetry we get $(a_1,b_1) \sim (x,y) \sim (a_2,b_2)$ and by transitivity we get $(a_1,b_1) \sim (a_2,b_2)$. So, it must be true that $[(a_1,b_1)] = [(a_2,b_2)]$

Prove that $a^{2^{n-2}} \equiv 1 \pmod{2^n}$ for every odd integer a and every $n \geq 3$.

Response

Proof. Let a be an odd integer. Then we can write a=2k+1 for some integer k. We will induct on $n \ge 3$.

(i) (n = 3)

$$a^{2^{3-2}} = a^2$$

$$= (2k+1)^2$$

$$= 4k^2 + 4k + 1$$

and $4k^2 + 4k + 1 \equiv 1 \pmod{8}$ for all $k \in \mathbb{Z}$, which is true.

(ii) (n = n + 1)

$$\begin{split} a^{2^{(n+1)-2}} &= a^{2^{n-2+1}} \\ &= a^{2^{n-2} \cdot 2} \\ &= \left(a^{2^{n-2}}\right)^2 \\ &= \left(1 + 2^n m\right)^2 \qquad \text{by Inductive Hypothesis} \\ &= 1 + 2(2^n)m + 2^{2n}m^2 \\ &= 1 + 2^{n+1}m + 2^{2n}m^2 \end{split}$$

Since $n+1 \leq 2n$ for $n \geq 3$, we have that

$$2^{n+1} \mid 2^{2n}$$

so we get

$$a^{2^{(n+1)-2}} = 1 + 2^{n+1}m$$

or

$$a^{2^{(n+1)-2}} \equiv 1 \ (mod \ 2^{n+1})$$

This completes the induction.