Speeding up search-based motion planning using Expansion delay heuristics

Jasmeet Kaur, Ishani Chatterjee, Maxim Likhachev Robotics Institute, Carnegie Mellon University

1. Motivation and Contribution

- Local minima regions are where the heuristics are weakly correlated with the true cost-to-goal.
- Given a graph, identify these regions of local minima and compute a heuristic function to circumvent these.
- Inadmissible heuristics are computed by learning **Expansion delay** values.
- Two-step Algorithm: First, Expansion Delay values are learnt. Second, heuristic function is computed in an abstract space using learnt Expansion Delay values.

2. Abstract Space

Figure 1: Abstract Space

Original Graph : $G = \{S, E\}$ and Abstract Space is also a graph denoted as $\tilde{G} = \{\tilde{S}, \tilde{E}\}$.

- $\lambda: S \to S$ is a many-to-one mapping representing the projection of each state in S to a state in abstract space \tilde{S} .
- For example :

$$3D/2D : S = [x, y, \theta] \text{ and } \tilde{S} = [x, y]$$

3. Expansion Delay

- Let e(s) be the total number of nodes that have been expanded before s is expanded during a search in graph G.
- Expansion Delay $\Delta e = (s,s')$ where s is the parent node and s' is the successor is :

$$\Delta e(s,s') = e(s') - e(s)$$

 $\Delta \tilde{e}(\tilde{s}, s') = \mathbf{E}(\Delta e(s, s'))$

• Let A be the set of state-pairs (s,s') in G that project to (s,s') in \tilde{G} . For each edge $(\tilde{s},\tilde{s'})$, $\Delta \tilde{e}(\tilde{s},\tilde{s'})$ is the expected value of $\Delta e(s,s')$ over the set A:

Figure 2: Expansion Delay between two states on a solution path

4. Heuristic Computation

- Compute a heuristic function that guides the search in graph G along paths that reduce the total Expansion Delay.
- If $N(\tilde{s}, \tilde{s}')$ is the value of expansion delay predicted for an edge in abstract space \tilde{G} , the edge-costs are assigned as:

$$\tilde{c}(\tilde{s}_i, \tilde{s}_j) = N(\tilde{s}, \tilde{s}')$$

• $h(\tilde{s})$ is cost of path in \tilde{G} using backward Dijkstra.

5. Experimental Setup

- Evaluated on a humanoid footstep domain.
- \bullet G is a 2D 8-connected grid that corresponds to

the

position of the center of the robot in the map.

• λ projects the 2 feet-positions into the 2D grid by computing their mean.

Figure 3: A humanoid footstep path in an environment

6. Results and Discussion

Figure 4: A path found using baseline heuristic h_b

- Comparison with the baseline heuristic h_b which is the cost of the optimal path with regular euclidean 2D edge-costs.
- Solution size and quality are sub-optimal but there is significant reduction in number of expansions.

Figure 5: A path found using heuristic computed using Expansion delay, h_{ed}

Heuristic	No. of Expan-	Planning	Solution
	sions	Time(s)	Cost
h_b	477777±75685	17.14 ± 4.11	9226±754
h_{a-d}	183174 + 120187	5.09 + 3.47	18951+4393

Figure 6: Comparison of h_b and h_{ed}

7. Future Work

• Finding a generalization that transfers learning across different environments effectively.

8. References

• Vats, S.; Narayanan, V.; and Likhachev, M. 2017. Learning to Avoid Local Minima in Planning for Static EnvironmentsIn ICAPS, 572–576.