Lecture 19

EECS 483: COMPILER CONSTRUCTION

Announcements

- HW4: OAT v. 1.0
 - Deadline Extended to Friday, 29th
- HW5: OAT v. 2.0
 - Spec and partial starter code available now
 - Remaining starter code released on Monday, April 1
 - Due on Friday, April 12
- HW6: Analysis & Optimization
 - Released on Friday, April 12
 - Due on Friday, May 2 (after the final)
- Guest lectures
 - Professor New will not be lecturing for at least 2 weeks
 - Only remote office hours for Prof. New, no appointments
 - Next week's lectures: Eric
 - No class on April 8 (eclipse)

Beyond describing "structure"... describing "properties" Types as sets Subsumption

TYPES, MORE GENERALLY

What are types, anyway?

- A type is can often be thought of as a predicate on the set of values in a system.
 - For example, the type "int" can be thought of as a boolean function that returns "true" on integers and "false" otherwise.
 - Equivalently, we can think of a type as just a *subset* of all values.
- For efficiency and tractability, the predicates are usually taken to be very simple.
 - Types are an abstraction mechanism
- We can easily add new types that distinguish different subsets of values:

Modifying the typing rules

- We need to refine the typing rules too…
- Some easy cases:
 - Just split up the integers into their more refined cases:

Same for booleans:

TRUE FALSE $G \vdash \text{true} : \text{True}$ $G \vdash \text{false} : \text{False}$

What about "if"?

Two cases are easy:

```
IF-T G \vdash e_1 : True \ G \vdash e_2 : T G \vdash e_1 : False \ E \vdash e_3 : T G \vdash if (e_1) \ e_2 \ else \ e_3 : T G \vdash if (e_1) \ e_2 \ else \ e_3 : T
```

- What happens when we don't know statically which branch will be taken?
- Consider the typechecking problem:

$$x:bool \vdash if(x) \ 3 \ else -1 : ?$$

The true branch has type Pos and the false branch has type Neg.

– What should be the result type of the whole if?

Subtyping and Upper Bounds

- If we think of types as sets of values, we have a natural inclusion relation: Pos ⊆ Int
- This subset relation gives rise to a *subtype* relation: Pos <: Int
- Such inclusions give rise to a *subtyping hierarchy*:

- Given any two types T_1 and T_2 , we can calculate their *least upper bound* (LUB) according to the hierarchy.
 - Definition: LUB(T_1 , T_2) is the smallest T such that $T_1 <: T$ and $T_2 <: T$
 - Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
- Note: might want to add types for "NonZero", "NonNegative", and "NonPositive" so that set union on values corresponds to taking LUBs on types.

"If" Typing Rule Revisited

• For statically unknown conditionals, we want the return value to be the LUB of the types of the branches:

```
IF-BOOL G \vdash e_1 : bool \ E \vdash e_2 : T_1 \qquad G \vdash e_3 : T_2 G \vdash if (e_1) \ e_2 \ else \ e_3 : LUB(T_1, T_2)
```

- Note: LUB(T_1 , T_2) is the most precise type (according to the hierarchy) that can describe any value that has either type T_1 or type T_2 .
- In math notation, LUB(T₁, T₂) is sometimes written T₁ V T₂
- LUB is also called the join operation.

Subtyping Hierarchy

A subtyping hierarchy:

- The subtyping relation is a partial order:
 - Reflexive: T <: T for any type T
 - Transitive: $T_1 <: T_2$ and $T_2 <: T_3$ then $T_1 <: T_3$
 - Antisymmetric: It $T_1 <: T_2$ and $T_2 <: T_1$ then $T_1 = T_2$

Soundness of Subtyping Relations

- We don't have to treat every subset of the integers as a type.
 - e.g., we left out the type NonNeg
- A subtyping relation $T_1 <: T_2$ is *sound* if it approximates the underlying semantic subset relation.
- Formally: write [T] for the subset of (closed) values of type T
 - $i.e., [T] = \{v \mid \vdash v : T\}$
 - e.g., $[Zero] = {0}$, $[Pos] = {1, 2, 3, ...}$
- If $T_1 <: T_2$ implies $[T_1] \subseteq [T_2]$, then $T_1 <: T_2$ is sound.
 - e.g., Pos <: Int is sound, since $\{1,2,3,...\}\subseteq \{...,-3,-2,-1,0,1,2,3,...\}$
 - *e.g.*, Int <: Pos is *not* sound, since it is *not* the case that $\{...,-3,-2,-1,0,1,2,3,...\}$ ⊆ $\{1,2,3,...\}$

Soundness of LUBs

• Whenever you have a sound subtyping relation, it follows that:

$$[LUB(T_1, T_2)] \supseteq [T_1] \cup [T_2]$$

- Note that the LUB is an over approximation of the "semantic union"
- Example: $[LUB(Zero, Pos)] = [Int] = {...,-3,-2,-1,0,1,2,3,...} \supseteq {0,1,2,3,...} = {0} \cup {1,2,3,...} = [Zero] \cup [Pos]$
- Using LUBs in the typing rules yields sound approximations of the program behavior (as if the IF-B rule).
- It just so happens that LUBs on these specific subtypes of Int are sound for +

ADD
$$G \vdash e_1 : T_1 \qquad G \vdash e_2 : T_2 \qquad T_1 <: Int \quad T_2 <: Int$$

$$G \vdash e_1 + e_2 : T_1 \lor T_2$$

Subsumption Rule

• When we add subtyping judgments of the form T <: S we can uniformly integrate it into the type system generically:

```
SUBSUMPTION G \vdash e : T : S
G \vdash e : S
```

- Subsumption allows any value of type T to be treated as an S whenever T <: S.
- Adding this rule makes the search for typing derivations more difficult:
 - this rule can be applied anywhere, since T <: T.
 - But careful engineering of the typing system can incorporate the subsumption rule into a deterministic algorithm.
 - See, e.g., the OAT type system

Downcasting

- What happens if we have an Int but need something of type Pos?
 - At compile time, we don't know whether the Int is greater than zero.
 - At run time, we do.
- Add a "checked downcast"

$$G \vdash e_1 : Int$$
 $G, x : Pos \vdash e_2 : T_2$ $G \vdash e_3 : T_3$

$$G \vdash ifPos (x = e_1) e_2 else e_3 : T_2 \lor T_3$$

- At runtime, if Pos checks whether e_1 is > 0. If so, branches to e_2 and otherwise branches to e_3 .
- Inside the expression e_2 , x is the name for e_1 's value, which is known to be strictly positive because of the dynamic check.
- Note that such rules force the programmer to add the appropriate checks, and can be used in other contexts too:
 - We could give integer division the type: Int \rightarrow NonZero \rightarrow Int

SUBTYPING OTHER TYPES

Extending Subtyping to Other Types

- What about subtyping for tuples?
 - Intuition: whenever a program expects something of type $S_1 * S_2$, it is sound to give it a $T_1 * T_2$.
 - Example: (Pos * Neg) <: (Int * Int)</p>

$$T_1 <: S_1 \quad T_2 <: S_2$$
 $(T_1 * T_2) <: (S_1 * S_2)$

Subtyping for Function Types

- In class exercise: which of the following subtyping relationships should hold?
 - Int -> Pos <: Int -> Int
 - Int -> Int -> Pos
 - Pos -> Int <: Int -> Int
 - Int -> Int <: Pos -> Int
- What is the general principle? When is $T_1 \rightarrow T_2 <: S_1 \rightarrow S_2$?

Subtyping for Function Types

One way to see it:

Need to convert an S₁ to a T₁ and T₂ to S₂, so the argument type is contravariant and the output type is covariant.

$$S_1 <: T_1 \quad T_2 <: S_2$$
 $(T_1 \to T_2) <: (S_1 \to S_2)$

Immutable Records

- Record type: $\{lab_1:T_1; lab_2:T_2; ...; lab_n:T_n\}$
 - Each lab; is a label drawn from a set of identifiers.

RECORD
$$G \vdash e_1 : T_1$$

$$G \vdash e_2 : T_2$$

$$G \vdash e_2 : T_2 \qquad \dots \qquad G \vdash e_n : T_n$$

$$G \vdash \{lab_1 = e_1; lab_2 = e_2; ...; lab_n = e_n\} : \{lab_1:T_1; lab_2:T_2; ...; lab_n:T_n\}$$

$$G \vdash e : \{lab_1:T_1; lab_2:T_2; \dots; lab_n:T_n\}$$

$$G \vdash e.lab_i : T_i$$

Immutable Record Subtyping

- Depth subtyping:
 - Corresponding fields may be subtypes

$$T_1 <: U_1 \quad T_2 <: U_2 \quad ... \quad T_n <: U_n$$

```
\{lab_1:T_1; lab_2:T_2; ...; lab_n:T_n\} <: \{lab_1:U_1; lab_2:U_2; ...; lab_n:U_n\}
```

- Width subtyping:
 - Subtype record may have more fields on the right:

$$m \le n$$

$${lab_1:T_1; lab_2:T_2; ...; lab_n:T_n} <: {lab_1:T_1; lab_2:T_2; ...; lab_m:T_m}$$

Depth & Width Subtyping vs. Layout

• Width subtyping (without depth) is compatible with "inlined" record representation as with C structs:

```
{x:int; y:int; z:int} <: {x:int; y:int} [Width Subtyping]
```


- The layout and underlying field indices for 'x' and 'y' are identical.
- The 'z' field is just ignored
- Depth subtyping (without width) is similarly compatible, assuming that the space used by A is the same as the space used by B whenever A <: B
- But... they don't mix without more work

Immutable Record Subtyping (cont'd)

• Width subtyping assumes an implementation in which order of fields in a record matters:

```
\{x:int; y:int\} \neq \{y:int; x:int\}
```

- But: {x:int; y:int; z:int} <: {x:int; y:int}
 - Implementation: a record is a struct, subtypes just add fields at the end of the struct.
- Alternative: allow permutation of record fields:

```
{x:int; y:int} = {y:int; x:int}
```

- Implementation: compiler sorts the fields before code generation.
- Need to know all of the fields to generate the code
- Permutation is not directly compatible with width subtyping:

```
{x:int; z:int; y:int} = {x:int; y:int; z:int} </: {y:int; z:int}
```

If you want both:

• If you want permutability & dropping, you need to either copy (to rearrange the fields) or use a dictionary like this:

MUTABILITY & SUBTYPING

NULL

- What is the type of null?
- Consider:

```
int[] a = null; // OK?
int x = null; // not OK?
string s = null; // OK?
```

NULL

 $G \vdash null : r$

- Null has any reference type
 - Null is generic
- What about type safety?
 - Requires defined behavior when dereferencing null e.g. Java's NullPointerException
 - Requires a safety check for every dereference operation (typically implemented using low-level hardware "trap" mechanisms.)

Subtyping and References

- What is the proper subtyping relationship for references and arrays?
- Suppose we have NonZero as a type and the division operation has type: Int → NonZero → Int
 - Recall that NonZero <: Int
- Should (NonZero ref) <: (Int ref) ?
- Consider this program:

```
Int bad(NonZero ref r) {
  Int ref a = r; (* OK because (NonZero ref <: Int ref*)
  a := 0; (* OK because 0 : Zero <: Int *)
  return (42 / !r) (* OK because !r has type NonZero *)
}</pre>
```

Mutable Structures are Invariant

- Covariant reference types are unsound
 - As demonstrated in the previous example
- Contravariant reference types are also unsound
 - i.e., If $T_1 <: T_2$ then ref $T_2 <: ref T_1$ is also unsound
 - Exercise: construct a program that breaks contravariant references.
- Moral: Mutable structures are invariant:

$$T_1 \text{ ref} <: T_2 \text{ ref} \quad \text{implies} \quad T_1 = T_2$$

- Same holds for arrays, OCaml-style mutable records, object fields, etc.
 - Note: Java and C# get this wrong. They allows covariant array subtyping, but then compensate by adding a dynamic check on every array update!

Another Way to See It

• We can think of a reference cell as an immutable record (object) with two functions (methods) and some hidden state:

```
T \text{ ref } \simeq \{\text{get: unit} \rightarrow T; \text{ set: } T \rightarrow \text{unit}\}
```

- get returns the value hidden in the state.
- set updates the value hidden in the state.
- When is T ref <: S ref?
- Records with depth subtyping:
 - extends pointwise over each component.

```
\{get: unit \rightarrow T; set: T \rightarrow unit\} <: \{get: unit \rightarrow S; set: S \rightarrow unit\}
```

- get components are subtypes: unit \rightarrow T <: unit \rightarrow S set components are subtypes: T \rightarrow unit <: S \rightarrow unit
- From get, we must have T <: S (covariant return)
- From set, we must have S <: T (contravariant arg.)
- From T <: S and S <: T we conclude T = S.

See oat.pdf in HW5

OAT'S TYPE SYSTEM

OAT's Treatment of Types

- Primitive (non-reference) types:
 - int, bool
- Definitely-non-null reference types:
 - (named) mutable structs with (right-oriented) width subtyping
 - string
 - arrays (including length information, per HW4)
- Possibly-null reference types: R?
 - Subtyping: R <: R?</p>
 - Checked downcast syntax if?:

```
int sum(int[]? arr) {
   var z = 0;
   if?(int[] a = arr) {
     for(var i = 0; i<length(a); i = i + 1;) {
        z = z + a[i];
     }
   }
   return z;
}</pre>
```

OAT Features

- Named structure types with mutable fields
 - but using structural, width subtyping
- Typed function pointers
- Polymorphic operations: length and == / !=
 - need special case handling in the typechecker
- Type-annotated null values: R null always has type R?
- Definitely-not-null values means we need an "atomic" array initialization syntax
 - null is not allowed as a value of type int[], so to construct a record containing a field of type int[], we need to initialize it
 - subtlety: int[][] cannot be initialized by default, but int[] can be

OAT "Returns" Analysis

- Typesafe, statement-oriented imperative languages like OAT (or Java)
 must ensure that a function (always) returns a value of the appropriate
 type.
 - Does the returned expression's type match the one declared by the function?
 - Do all paths through the code return appropriately?
- OAT's statement checking judgment
 - takes the expected return type as input: what type should the statement return (or void if none)
 - produces a Boolean flag as output: does the statement definitely return?

Example OAT code

```
/* struct type with function field */
struct Base {
  int a;
  bool b;
  (int) -> int f
struct Extend {
                    /* structural subtype of Base via width subtyping */
  int a;
  bool b;
  (int) -> int f;
                  /* added field and method */
  string c;
  (int) -> int g
int neg(int x) { return -x; }
int inc(int x) { return x+1; }
int f(Base? x, int y){ /* function that expects a (possibly null) Base */
  if?(Base b = x){
     return b.f(y);
  } else {
     return -1;
int program(int argc, string[] argv) {
  var s = new Extend[5]{x -> new Extend{a=3; b=true; c="hello"; f=neg; g=inc}};
  return f(s[2], -3);
```