

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C12N 1/20, 1/00, G01N 33/48 G01N 33/566

A1

(11) International Publication Number:

WO 92/05244

7.1

(43) International Publication Date:

2 April 1992 (02.04.92)

(21) International Application Number:

PCT/US91/06605

(22) International Filing Date:

12 September 1991 (12.09.91)

(30) Priority data:

581,714

13 September 1990 (13.09.90) US

(71) Applicant: DUKE UNIVERSITY [US/US]; Erwin Road, Durham, NC 27706 (US).

(72) Inventors: KING, Klim; 3925 Linden Terrace, Durham, NC 27705 (US). DOHLMAN, Henrik, G.; 2226 Stewart Street, Berkeley, CA 94705 (US). CARON, Marc, G.; 2606 Evans Drive, Durham, NC 27705 (US). LEFKOW-ITZ, Robert, J.; 3539 Hamstead Court, Durham, NC 27707 (US).

(74) Agents: SIBLEY, Kenneth, D. et al.; Bell, Seltzer, Park & Gibson, P.O. Drawer 34009, Charlotte, NC 28234 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CA, CH (European patent), DE (European patent), DK (European patent), ES (European patent), FR (European patent), GB (European patent), GR (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report.

(54) Title: EXPRESSION OF G PROTEIN COUPLED RECEPTORS IN YEAST

(57) Abstract

Disclosed is a transformed yeast cell containing a first heterologous DNA sequence which codes for a mammalian G protein coupled receptor and a second heterologous DNA sequence which codes for a mammalian G protein α subunit (mammalian G_{α}). The first and second heterologous DNA sequences are capable of expression in the cell, but the cell is incapable of expressing an endogenous G protein α -subnit (yeast G_{α}). The cells are useful for screening compounds which affect the rate of dissociation of G_{α} from $G_{\beta\gamma}$ in a cell. Also disclosed is a novel DNA expression vector useful for making cells as described above. The vector contains a first segment comprising at least a fragment of the extreme amino-terminal coding sequence of a yeast G protein coupled receptor. A second segment is positioned downstream from the first segment (and in correct reading frame therewith), with the second segment comprising a DNA sequence encoding a heterologous G protein coupled receptor.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
ΑÜ	Australia	FI	Finland	ML	Mali
88	Barbados	FR	France	MN	Mongolia
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GN	Guinea	NL	Netherlands
BJ	Benin	GR	Greece	NO	Norway
BR	Brazil	HU	Hungary	PL	Poland
CA	Canada	IT	Italy	RO	Romania
CF	Central African Republic	JP	Japan	SD	Sudan
CG	Congo	KP	Democratic People's Republic	SE	Sweden
CH	Switzerland		of Korea	SN	Senegal
CI	Côte d'Ivoire	KR	Republic of Korea	su+	Soviet Union
СМ	Cameroon	LI	Liechtenstein	TD	Chad
CS	Czechoslovakiu	LK	Sri Lanka	TG	Togo
DE.	Germany	LU	Luxembourg	บร	United States of America
DK	Denmark	MC	Monaco		

⁺ Any designation of "SU" has effect in the Russian Federation. It is not yet known whether any such designation has effect in other States of the former Soviet Union.

PCT/US91/06605

5

EXPRESSION OF G PROTEIN COUPLED RECEPTORS IN YEAST

This invention was made with government support under NIH grant HL16037. The government may have certain rights to this invention.

Field of the Invention

This invention relates to yeast cells expressing heterologous G protein coupled receptors, vectors useful for making such cells, and methods of using the same.

Background of the Invention

The actions of many extracellular signals 10 (for example, neurotransmitters, hormones, odorants, light) are mediated by receptors with seven transmembrane domains (G protein coupled receptors) and heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins). See H. Dohlman, M. Caron, and R. 15 Lefkowitz, Biochemistry 26, 2657 (1987); L. Stryer and H. Bourne, Ann. Rev. Cell Biol. 2, 391 (1986). Such G protein-mediated signaling systems have been identified in organisms as divergent as yeast and man. Dohlman et al., supra; L. Stryer and H. Bourne, supra; 20 K. Blumer and J. Thorner, Annu. Rev. Physiol. (in press). The $\beta2$ -adrenergic receptor (β AR) is the prototype of the seven-transmembrane-segment class of

10

15

20

25

30

35

ligand binding receptors in mammalian cells. In response to epinephrine or norepinephrine, βAR activates a G protein, G_S , which in turn stimulates adenylate cyclase and cyclic adenosine monophosphate production in the cell. See H. Dohlman et al., supra; L. Stryer and H. Bourne, supra. G protein-coupled pheromone receptors in yeast control a developmental program that culminates in mating (fusion) of a and α haploid cell types to form the a/α diploid. See K. Blumer and J. Thorner, supra; I. Herskowitz, Microbiol. Rev. 52, 536 (1988).

The present invention is based on our continued research into the expression of heterologous G protein coupled receptors in yeast.

Summary of the Invention

A first aspect of the present invention is a transformed yeast cell containing a first heterologous DNA sequence which codes for a mammalian G protein coupled receptor and a second heterologous DNA sequence which codes for a mammalian G protein α subunit (mammalian G_{α}). The first and second heterologous DNA sequences are capable of expression in the cell, but the cell is incapable of expressing an endogenous G protein α -subunit (yeast G_{α}). The cell optionally contains a third heterologous DNA sequence, with the third heterologous DNA sequence comprising a pheromone-responsive promotor and an indicator gene positioned downstream from the pheromone-responsive promoter and operatively associated therewith.

A second aspect of the present invention is a method of testing a compound for the ability to affect the rate of dissociation of G_{α} from $G_{\beta\gamma}$ in a cell. The method comprises: providing a transformed yeast cell as described above; contacting the compound to the cell; and then detecting the rate of dissociation of G_{α} from $G_{\beta\gamma}$ in the cell. The cells may be provided in an

10

15

20

25

30

35

aqueous solution, and the contacting step carried out by adding the compound to the aqueous solution.

A third aspect of the present invention is a DNA expression vector capable of expressing a transmembrane protein into the cell membrane of yeast cells. The vector contains a first segment comprising at least a fragment of the extreme amino-terminal coding sequence of a yeast G protein coupled receptor. A second segment is positioned downstream from the first segment (and in correct reading frame therewith), with the second segment comprising a DNA sequence encoding a heterologous G protein coupled receptor.

A fourth aspect of the present invention is a yeast cell transformed by a vector as described above.

Brief Description of the Drawings

Figure 1 illustrates the construction of the yeast human $\beta 2$ Adrenergic Receptor expression plasmid, pY β AR2.

Figure 2 illustrates $h\beta AR$ ligand binding to membranes from $pY\beta AR2$ -transformed yeast cells.

Figure 3 shows a comparison of β -adrenergic agonist effects on pheromone-inducible gene activity. α -MF, 10 μ M α -mating factor; (-) ISO, 50 μ M (-) isoproterenol; (-) ALP, 50 μ M (-) alprenolol; (+) ISO, 100 μ M (+) isoproterenol.

Detailed Description of the Invention

Nucleotide bases are abbreviated herein as follows:

A=Adenine G=Guanine C=Cytosine T=Thymine

Amino acid residues are abbreviated herein to either three letters or a single letter as follows:

Ala; A=Alanine Leu; L=Leucine
Arg; R=Arginine Lys; K=Lysine
Asn; N=Asparagine Met; M=Methionine
Asp; D=Aspartic acid Phe; F=Phenylalanine
Cys; C=Cysteine Pro; P=Proline

10

15

20

25

30

35

4	
	7)
•	

Gln;Q=Glutamine Ser;S=Serine
Glu;E=Glutamic acid Thr;T=Threonine
Gly;G=Glycine Trp;W=Tryptophan
His;H=Histidine Tyr;Y=Tyrosine
Ile;I=Isoleucine Val;V=Valine

The term "mammalian" as used herein refers to any mammalian species (e.g., human, mouse, rat, and monkey).

The term "heterologous" is used herein with respect to yeast, and hence refers to DNA sequences, proteins, and other materials originating from organisms other than yeast (e.g., mammalian, avian, amphibian), or combinations thereof not naturally found in yeast.

The terms "upstream" and "downstream" are used herein to refer to the direction of transcription and translation, with a sequence being transcribed or translated prior to another sequence being referred to as "upstream" of the latter.

G proteins are comprised of three subunits: a guanyl-nucleotide binding α subunit; a β subunit; and a γ subunit. G proteins cycle between two forms, depending on whether GDP or GTP is bound thereto. When GDP is bound the G protein exists as an inactive heterotrimer, the $G_{\alpha\beta\gamma}$ complex. When GTP is bound the α subunit dissociates, leaving a $G_{\beta\gamma}$ complex. Importantly, when a $G_{\alpha\beta\gamma}$ complex operatively associates with an activated G protein coupled receptor in a cell membrane, the rate of exchange of GTP for bound GDP is increased and, hence, the rate of dissociation of the bound α subunit from the $G_{\beta\gamma}$ complex increases. This fundamental scheme of events forms the basis for a multiplicity of different cell signaling phenomena. See generally Stryer and Bourne, supra.

Any mammalian G protein coupled receptor, and the DNA sequences encoding these receptors, may be employed in practicing the present invention. Examples

10

15

25

30

of such receptors include, but are not limited to, dopamine receptors, muscarinic cholinergic receptors, α -adrenergic receptors, β -adrenergic receptors, opiate receptors, cannabinoid receptors, and serotonin receptors. The term receptor as used herein is intended to encompass subtypes of the named receptors, and mutants and homologs thereof, along with the DNA sequences encoding the same.

The human D₁ dopamine receptor cDNA is reported in A. Dearry et al., Nature 347, 72-76 (1990).

The rat D2 dopamine receptor cDNA is reported in J. Bunzow et al., Nature 336, 783-787 (1988); see also O. Civelli, et al., PCT Appln. WO 90/05780 (all references cited herein are to be incorporated herein by reference).

Muscarinic cholinergic receptors (various subtypes) are disclosed in E. Peralta et al., Nature 343, 434 (1988) and K. Fukuda et al., Nature 327, 623 (1987).

Various subtypes of α_2 -adrenergic receptors 20 are disclosed in J. Regan et al., Proc. Natl. Acad. Sci. USA 85, 6301 (1988) and in R. Lefkowitz and M. Caron, J. Biol. Chem. 263, 4993 (1988).

Serotonin receptors (various subtypes) are disclosed in S. Peroutka, Ann. Rev. Neurosci. 11, 45 (1988).

A cannabinoid receptor is disclosed in L. Matsuda et al., Nature 346, 561 (1990).

- Any DNA sequence which codes for a mammalian $G \alpha$ subunit (G_{α}) may be used to practice the present invention. Examples of mammalian G α subunits include G_S α subunits, G_i α subunits, G_O α subunits, G_Z α subunits, and transducin α subunits. See generally Stryer and Bourne, supra. G proteins and subunits useful for practicing the present invention include 35 subtypes, and mutants and homologs thereof, along with the DNA sequences encoding the same.

10-

15

20

25.

30

Heterologous DNA sequences are expressed in a host by means of an expression vector. An expression vector is a replicable DNA construct in which a DNA sequence encoding the heterologous DNA sequence is operably linked to suitable control sequences capable of effecting the expression of a protein or protein subunit coded for by the heterologous DNA sequence in the intended host. Generally, control sequences include a transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding sites, and (optionally) sequences which control the termination of transcription and translation.

Vectors useful for practicing the present invention include plasmids, viruses (including phage), and integratable DNA fragments (i.e., fragments integratable into the host genome by homologous recombination). The vector may replicate and function independently of the host genome, as in the case of a plasmid, or may integrate into the genome itself, as in the case of an integratable DNA fragment. Suitable vectors will contain replicon and control sequences which are derived from species compatible with the intended expression host. For example, a promoter operable in a host cell is one which binds the RNA polymerase of that cell, and a ribosomal binding site operable in a host cell is one which binds the endogenous ribosomes of that cell.

DNA regions are operably associated when they are functionally related to each other. For example: a promoter is operably linked to a coding sequence if it controls the transcription of the sequence; a ribosome binding site is operably linked to a coding sequence if it is positioned so as to permit translation.

Generally, operably linked means contiguous and, in the case of leader sequences, contiguous and in reading phase.

10

Transformed host cells of the present invention are cells which have been transformed or transfected with the vectors constructed using recombinant DNA techniques and express the protein or protein subunit coded for by the heterologous DNA sequences. In general, the host cells are incapable of expressing an endogenous G protein α -subunit (yeast G_{α}). The host cells do, however, express a complex of the G protein β subunit and the G protein γ subunit $(G_{\beta\gamma})$. The host cells may express endogenous $G_{\beta\gamma}$, or may optionally be engineered to express heterologous $G_{\beta\gamma}$ (e.g., mammalian) in the same manner as they are engineered to express heterologous G_{α} .

A variety of yeast cultures, and suitable expression vectors for transforming yeast cells, are 15 known. See; e.g., U.S. Patent No. 4,745,057; U.S. Patent No. 4,797,359; U.S. Patent No. 4,615,974; U.S. Patent No. 4,880,734; U.S. Patent No. 4,711,844; and U.S. Patent No. 4,865,989. Saccharomyces cerevisiae is the most commonly used among the yeast, although a 20 number of other strains are commonly available. See, e.g., U.S. Patent No. 4,806,472 (Kluveromyces lactis and expression vectors therefor); 4,855,231 (Pichia pastoris and expression vectors therefor). Yeast vectors may contain an origin of replication from the 2 25 micron yeast plasmid or an autonomously replicating sequence (ARS), a promoter, DNA encoding the heterologous DNA sequences, sequences for polyadenylation and transcription termination, and a selection gene. An exemplary plasmid is YRp7, 30 (Stinchcomb et al., Nature 282, 39 (1979); Kingsman et al., Gene 7, 141 (1979); Tschemper et al., Gene 10, 157 (1980)). This plasmid contains the TRP1 gene, which provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for 35 example ATCC No. 44076 or PEP4-1 (Jones, Genetics 85, 12 (1977)). The presence of the TRP1 lesion in the

35

yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of tryptophan.

Suitable promoting sequences in yeast vectors include the promoters for metallothionein, 5 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255, 2073 (1980) or other glycolytic enzymes (Hess et al., <u>J. Adv. Enzyme Reg. 7</u>, 149 (1968); and Holland et al., Biochemistry 17, 4900 (1978)), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, 10 hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Suitable vectors and promoters for 15 use in yeast expression are further described in R. Hitzeman et al., EPO Publn. No. 73,657. Other promoters, which have the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, 20 isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and the aforementioned metallothionein and glyceraldehyde-3-phosphate dehydrogenase, as well as enzymes responsible for maltose and galactose 25 utilization.

In constructing suitable expression plasmids, the termination sequences associated with these genes may also be ligated into the expression vector 3' of the heterologous coding sequences to provide polyadenylation and termination of the mRNA.

A novel DNA expression vector described herein which is particularly useful for carrying out the present invention contains a first segment comprising at least a fragment of the extreme aminoterminal coding sequence of a yeast G protein coupled receptor and a second segment downstream from said

10

15

20

25

30

35

first segment and in correct reading frame therewith, the second segment comprising a DNA sequence encoding a heterologous G protein coupled receptor (e.g., a mammalian G protein coupled receptor). In a preferred embodiment, this vector comprises a plasmid. constructing such a vector, a fragment of the extreme amino-terminal coding sequence of the heterologous G protein coupled receptor may be deleted. The first and second segments are operatively associated with a promoter, such as the GAL1 promoter, which is operative in a yeast cell. Coding sequences for yeast G protein coupled receptors which may be used in constructing such vectors are exemplified by the gene sequences encoding yeast pheromone receptors (e.g., the STE2 gene, which encodes the α -factor receptor, and the STE3 gene, which encodes the \underline{a} -factor receptor). The levels of expression obtained from these novel vectors are enhanced if at least a fragment of the 5'-untranslated region of a yeast G protein coupled receptor gene (e.g., a yeast pheromone receptor gene; see above) is positioned upstream from the first segment and operatively associated therewith.

Any of a variety of means for detecting the dissociation of G_{α} from $G_{\beta\gamma}$ can be used in connection with the present invention. The cells could be disrupted and the proportion of these subunits and complexes determined physically (i.e., by chromatography). The cells could be disrupted and the quantity of G_{α} present assayed directly by assaying for the enzymatic activity possessed by G_{α} in isolation (i.e., the ability to hydrolyze GTP to GDP). Since whether GTP or GDP is bound to the G protein depends on whether the G protein exists as a $G_{\beta\gamma}$ or $G_{\alpha\beta\gamma}$ complex, dissociation can be probed with radiolabelled GTP. As explained below, morphological changes in the cells can be observed. A particularly convenient method, however, is to provide in the cell a third heterologous

10

25

30

35

DNA sequence, wherein the third heterologous DNA sequence comprises a pheromone-responsive promotor and an indicator gene positioned downstream from the pheromone-responsive promoter and operatively associated therewith. This sequence can be inserted with a vector, as described in detail herein. With such a sequence in place, the detecting step can be carried out by monitoring the expression of the indicator gene in the cell. Any of a variety of pheromone responsive promoters could be used, examples being the BAR1 gene promoter and the FUS1 gene promoter. Likewise, any of a broad variety of indicator genes could be used, with examples including the HIS3 gene and the LacZ gene.

As noted above, transformed host cells of the present invention express the protein or protein subunit coded for by the heterologous DNA sequence. When expressed, the G protein coupled receptor is located in the host cell membrane (i.e., physically positioned therein in proper orientation for both the stereospecific binding of ligands on the extracellular side of the cell membrane and for functional interaction with G proteins on the cytoplasmic side of the cell membrane).

The ability to control the yeast pheromone response pathway by expression of a heterologous adrenergic receptor and its cognate G protein α -subunit has the potential to facilitate structural and functional characterization of mammalian G protein-coupled receptors. By scoring for responses such as growth arrest or β -galactosidase induction, the functional properties of mutant receptors can now be rapidly tested. Similarly, as additional genes for putative G protein-coupled receptors are isolated, numerous ligands can be screened to identify those with activity toward previously unidentified receptors. See F. Libert et al., Science 244, 569 (1989); M. S. Chee

PCT/US91/06605

5

10

15

20

25

30

35

et al., Nature 344, 774 (1990). Moreover, as additional genes coding for putative G protein α -subunits are isolated, they can be expressed in cells of the present invention and screened with a variety of G protein coupled receptors and ligands to characterize these subunits. These cells can also be used to screen for compounds which affect receptor-G protein interactions.

Cells of the present invention can be deposited in the wells of microtiter plates in known, predetermined quantities to provide standardized kits useful for screening compounds in accordance with the various screening procedures described above.

The following Examples are provided to further illustrate various aspects of the present invention. They are not to be construed as limiting the invention.

EXAMPLE 1

Construction of the Human β 2-Adrenergic Expression Vector pY β AR2 and Expression in Yeast

To attain high level expression of the human β 2-adrenergic receptor (h β AR) in yeast, a modified h β AR gene was placed under the control of the <u>GAL1</u> promoter in the multicopy vector, YEp24 (pY β AR2).

Figure 1 illustrates the construction of yeast expression plasmid pyβAR2. In pyβAR2, expression of the hβAR sequence is under the control of the GAL1 promoter. Figure 1A shows the 5'-untranslated region and the first 63 basepairs (bp) of coding sequence of the hβAR gene in pTZNAR, B. O'Dowd et al., J. biol. Chem. 263, 15985 (1988), which was removed by Aat II cleavage and replaced with a synthetic oligonucleotide corresponding to 11 bp of noncoding and 42 bp of coding sequence from the STE2 gene (SEQ ID NO:1; SEQ ID NO:2). See N. Nakayama et al., EMBO J. 4, 2643 (1985); A. Burkholder and L. Hartwell, Nucleic Acids Res. 13, 8463

25

30

(1985). The resulting plasmid, pTZYNAR, contains the modified h\$\beta\$AR gene flanked by Hind III sites in noncoding sequences with the 3' Hind III site given as SEQ ID NO:3 herein. The Hind III-Hind III fragment was isolated from pTZYNAR and inserted into pAAH5 such that the 3'- untranslated sequence of the modified h\$\beta\$AR gene was followed by 450 bp containing termination sequences from the yeast $\frac{ADH1}{ADH1}$ gene. See G. Ammerer, Methods. Enzymol. 101, 192 (1983).

As illustrated in Figure 1B, $py\beta$ AR2 was 10 constructed by inserting the Bam HI - Bam HI fragment containing hetaAR and etaDH1 sequences into YEpG24. Wyckoff and T. Hsieh, Proc. Natl. Acad. Sci. U.S.A. 85, 6272 (1988). Where maximum expression was sought, cells were cotransformed with plasmid pMTL9 (from Dr. 15 S. Johnston) containing LAC9, a homolog of the S. cerevisiae GAL4 transactivator protein required for GAL1-regulated transcription. J. Salmeron et al., Mol. <u>Cell. Biol. 9, 2950 (1989).</u> Cells grown to late exponential phase were induced in medium containing 3% 20 galactose, supplemented with about 10 $\mu \mathrm{M}$ alprenolol, and grown for an additional 36 hours. Standard methods for the maintenance of cells were used. See Sherman et al., Methods in Yeast Genetics (Cold Spring

Harbor Laboratory, Cold Spring Harbor, NY, 1986).

Maximal expression required (i) expression of a transcriptional transactivator protein (LAC9), (ii) replacement of the 5' untranslated and extreme NH2-terminal coding sequence of the h β AR gene with the corresponding region of the yeast STE2 (α -factor receptor) gene, (iii) induction with galactose when cell growth reached late exponential phase, and, (iv) inclusion of an adrenergic ligand in the growth medium during induction.

The plasmid pY β AR2 was deposited in accordance with the provisions of the Budapest Treaty at the American Type Culture Collection, 12301 Parklawn

WO 92/05244 PCT/US91/06605

5

10

15

20

25

30

35

-13-

Drive, Rockville, MD 20852 USA, on September 11, 1990, and has been assigned ATCC Accession No. 40891.

EXAMPLE 2

Binding Affinity of h β AR Liquids in Yeast Transformed with pY β AR2

A primary function of cell surface receptors is to recognize only appropriate ligands among other extracellular stimuli. Accordingly, ligand binding affinities were determined to establish the functional integrity of h β AR expressed in yeast. As discussed in detail below, an antagonist, 125 I-labeled cyanopindolol (125 I-CYP), bound in a saturable manner and with high affinity to membranes prepared from pY β AR2-transformed yeast cells. By displacement of 125 I-CYP with a series of agonists, the order of potency and stereospecificity expected for h β AR was observed.

SC261 cells (MATa <u>ura3-52 trpl leu2 prb1-1122</u> <u>pep4-3 prc1-407</u>) (from Dr. S. Johnston) harboring pyβAR2 (<u>URA3</u>) and pMTL9 (<u>LEU2</u>) were grown in minimal glucose-free selective media to late log phase (OD₆₀₀ = 5.0), and then induced with the addition of 3% galactose and 40 μM alprenolol. After 36 hours, cells were harvested and spheroplasts were prepared as described. <u>See</u> E. Wyckoff and T. Hsieh, <u>Proc. Natl. Acad. Sci. U.S.A. 85</u>, 6272 (1988). Briefly, the spheroplasts were resuspended in 50 mM Tris-HCl pH 7.4, 5 mM EDTA and were lysed by vortex mixing with glass beads for three one-min periods at 4°C. Crude membranes were prepared from the lysates and binding assays with 125I-CYP were performed by methods described previously. See H. Dohlman et al., <u>Biochemistry 29</u>, 2335 (1990).

Figure 2 illustrates h\$\beta AR\$ ligand binding to membranes from pY\$\beta AR2-transformed yeast cells. (A) B_{max} (maximum ligand bound) and K_d (ligand dissociation constant) values were determined by varying 125_I-CYP concentrations (5 - 400 pM). Specific binding was

15

20

defined as the amount of total binding (circles) minus nonspecific binding measured in the presence of 10 $\mu \mathrm{M}$ (-) alprenolol (squares). A K_d of 93 pM for 125_T -CYP binding was obtained and used to calculate agonist affinities (below). (B) Displacement of 18 pM 125:-CYP with various concentrations of agonists was used to determine apparent low affinity K_i values (non G protein coupled, determined in the presence of 50 μM GTP) for receptor binding, squares; (-) isoproterenol, circles; (-) epinephrine, downward-pointing triangles; (+) 10 . isoproterenol, upward pointing triangles; (-) norepinephrine.

COMPARATIVE EXAMPLE A

Ligand Binding Affinity for hBAR Expressed in Yeast and Mammalian Cells

The binding data of Figures 2 (A) and (B) were analyzed by nonlinear least squares regression, see A. DeLean et al., Mol. Pharmacol. 21, (1982), are presented in Table I. Values given are averages of measurements in triplicate, and are representative of 2 - 3 experiments. Binding affinities in yeast were nearly identical to those observed previously for $h\beta AR$ expressed in mammalian cells.

PCT/US91/06605

25

30

-15-

Table 1

Comparison of ligand Binding Parameters for High Level Expression of Human β -Adrenergic Receptor in Yeast and COS-7 Cells*

	Yeast	Monkey
	SC261 (pYpAR2, pM	TL9) COS-7 (pBC12:h β A
125 ₁ -CYP:		
1Kd	0.093 nM ± 0	.013 0.110 nM ±0
2 _{Bmax}	115 pmol/mg	24 pmol/mg
_	oterenol 103 ± 2 oterenol 3670 ±	
(-) epine		

EXAMPLE 3

Agonist-Dependent Activation of Mating Signal Transduction in Yeast Expressing $h\beta AR$

A second major function of a receptor is agonist-dependent regulation of downstream components in the signal transduction pathway. Because the pheromone-responsive effector in yeast is not known, indirect biological assays are the most useful indicators of receptor functionality. See K. Blumer and J. Thorner, Annu. Rev. Physiol. in press; I. Herskowitz, Microbiol. Rev. 52, 536 (1988). In yeast

cells expressing high concentrations of h\$\beta AR\$, no agonist-dependent activation of the mating signal transduction pathway could be detected by any of the typical in vivo assays; for example, imposition of G1 arrest, induction of gene expression, alteration of morphology (so-called "shmoo" formation) or stimulation of mating. A likely explanation for the absence of responsiveness is that h\$\beta AR\$ was unable to couple with the endogenous yeast G protein.

10

15

20

25

30

35

EXAMPLE 4

Coexpression of h β AR and Mammalian G_S α -Subunit in Yeast

Expression of a mammalian G_s α -subunit can correct the growth defect in yeast cells lacking the corresponding endogenous protein encoded by the GPA1 See C. Dietzel and J. Kurjan, Cell 50, 1001 Moreover, specificity of receptor coupling in mammalian cells is conferred by the α -subunit of G proteins. See L. Stryer and H. Bourne, Annu. Rev. Cell Biol. 2, 391 (1988). Thus, coexpression of h β AR and a mammalian G_S α -subunit $(G_S\alpha)$ in yeast was attempted to render the yeast responsive to adrenergic ligands. Accordingly, a cDNA encoding rat $G_S\alpha$ under the control of the copper-inducible CUP1 promoter was introduced on a second plasmid, pYSK136Gas. See Dietzel and J. Kurjan, Cell 50, 1001 (1987). (NNY19) coexpressing h β AR and rat $G_{S}\alpha$, but containing wild-type GPA1, no adrenergic agonist-induced shmoo formation, a characteristic morphological change of yeast in response to mating pheromone, was observed.

EXAMPLE 5

Coexpression of h β AR and Mammalian $G_S\alpha$ -Subunit in Yeast Lacking an Endogenous G Protein α -Subunit

To prevent interference by the endogenous yeast G protein α -subunit, <u>apa1</u> mutant cells (strain

10

15

20

8c) were used.

Yeast strain 8c (MATa ura3 leu2 his3 trpl gpal::H1S3), I. Miyajima et al., Cell 50, 1011 (1987), carrying plasmids pYSK136Gas (TRP1), C. Dietzel and J. Kurjan, Cell 50, 1001 (1987), pMTL9 (LEU2), J. Salmeron et al., Mol. Cell. Biol. 9, 2950 (1989), and pY β AR2 (URA3) was maintained on glucose-free minimal selective plates containing 3% glycerol, 2% lactic acid, 50 μ M CuSO4 and 3% galactose. Colonies were transferred to similar plates containing 0.5 mM ascorbic acid and the indicated adrenergic ligand(s). After 16-20 hours at 30°C, the colonies were transferred to similar liquid media at a density of 10^6-10^7 cells/ml and examined by phase contrast microscopy.

Morphologies of yeast cells cotransformed with pY β AR2, pMTL9, and pYSK136Gas were examined after incubation with (A) no adrenergic agent; (B) 100 μ M (-) isoproterenol; (C) 100 μ M (-) isoproterenol and 50 μ M (-) alprenolol; and (D) 100 μ M (+) isoproterenol. Results showed that treatment of 8c cells coexpressing h β AR and rat G_S α with the β -adrenergic agonist isoproterenol indeed induced shmoo formation, and that

this effect was blocked by the specific antagonist

25

30

35

alprenolol.

EXAMPLE 6

Coexpression of h β AR and Mammalian $G_S\alpha$ -Subunit in Yeast Containing a β -Galactosidase Signal Sequence

The isoproterenol-induced morphological response of 8c cells coexpressing h\$AR and rat $G_S\alpha$ suggested that these components can couple to each other and to downstream components of the pheromone response pathway in yeast lacking the endogenous $G_S\alpha$ -subunit. To confirm that the pheromone signaling pathway was activated by h\$AR and rat $G_S\alpha$, agonist induction of the pheromone-responsive FUS1 gene promoter was measured in a strain of yeast derived from

8c cells (8c1) in which a <u>FUS1-lacZ</u> gene fusion had been stably integrated into the genome. <u>See S. Nomoto et al., EMBO J. 9</u>, 691 (1990).

Strains 8c (Fig. 3, legend) and NNY19 (MATa ura3 leu2 his3 trp1 lys2 FUS1-LacZ::LEU2) were modified by integrative transformation with YIpFUS102 (LEU2), S. Nomoto et al., supra, and designated 8cl and NNY19, respectively. These strains were transformed with pYβAR2 and pYSK136Gαs and maintained on minimal

selective plates containing glucose and 50 μ M CuSO₄. Colonies were inoculated into minimal selective media (3% glycerol, 2% lactic acid, 50 μ M CuSO₄), grown to early log phase (OD₆₀₀ = 1.0), and induced for 12 hours by addition of 3% galactose. Cells were washed and

resuspended in induction media (OD₆₀₀ = 5.0) containing
0.5 mM ascorbic acid and the indicated ligands. After a
4 hour incubation at 30°C, cells were harvested,
resuspended into 1 ml of Z-buffer, see J. Miller,
Experiments in Molecular Genetics (Cold Spring Harbor

Laboratory, Cold Spring Harbor, NY, 1972), supplemented with 0.0075% SDS, and β -galactosidase activities were determined in 3 - 4 independent experiments as described previously. See J. Miller, supra.

Figure 3 shows a comparison of eta-adrenergic agonist effects on pheromone-inducible gene activity. 25 $\alpha\text{-MF, 10}~\mu\text{M}~\alpha\text{-mating factor; (-) ISO, 50}~\mu\text{M}~(-)$ isoproterenol; (-) ALP, 50 μM (-) alprenolol; (+) ISO, 100 μ M (+) isoproterenol. In 8c1 (gpa1) cells coexpressing hetaAR and rat G $_{f S}lpha$, a dramatic isoproterenolstimulated induction of eta-galactosidase activity was 30 observed. Agonist stimulation was stereoselective and was blocked by addition of a specific antagonist. Agonist responsiveness was dependent on expression of both hetaAR and rat $G_{\mathbf{S}} lpha$, and required a strain in which the endogenous G protein $\alpha\text{-subunit}$ was disrupted. The 35 final β -galactosidase activity achieved in response to isoproterenol in transformed 8cl cells was comparable

10

15

20

25

to that induced by α -factor in nontransformed cells that express <u>GPA1</u> (NNY19), although basal β -galactosidase activity in NNY19 cells was considerably lower than in 8c1 cells. Taken together, our results indicated that coexpression of h β AR and rat $G_S\alpha$ was sufficient to place under catecholamine control key aspects of the mating signal transduction pathway in yeast. However, the adrenergic agonist did not stimulate mating in either 8c cells or NNY19 cells coexpressing h β AR and rat $G_S\alpha$, in agreement with recent observations that yeast pheromone receptors, in addition to binding pheromones, participate in other recognition events required for mating. <u>See</u> A. Bender and G. Sprague, <u>Genetics</u> 121, 463 (1989).

h\$\beta AR stimulates adenylate cyclase in animal cells via the action of the \$\alpha\$-subunit of its \$G\$ protein. In contrast, mating factor receptors in yeast trigger their effector via the action of the \$\beta \gamma\$ subunits. M. Whiteway et al., Cell 56, 476 (1989). Our present results indicate that activation of h\$\beta AR\$ in yeast leads to dissociation of mammalian \$G_S\$ afrom yeast \$\beta \gamma\$, and it is the \$\beta \gamma\$ subunits that presumably elicit the response.

The foregoing examples are illustrative of the present invention, and are not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT: King, Klim
 Dohlman, Henrik G.
 Caron, Mark G.
 Lefkowitz, Robert J.
- (ii) TITLE OF INVENTION: Expression of G Protein Coupled Receptors in Yeast
- (iii) NUMBER OF SEQUENCES: 3
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Kenneth D. Sibley; Bell, Seltzer, Park and Gibson
 - (B) STREET: Post Office Drawer 34009
 - (C) CITY: Charlotte
 - (D) STATE: North Carolina
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 28234
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: PCT/US91/06605
 - (B) FILING DATE: 12-SEP-1991
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/581714
 - (B) FILING DATE: 13-SEP-1990
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Sibley, Kenneth D.
 - (B) REGISTRATION NUMBER: 31,665
 - (C) REFERENCE/DOCKET NUMBER: 5405-17-1
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 919-881-3140
 - (B) TELEFAX: 919-881-3175
 - (C) TELEX: 575102
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 80 base pairs

- (B) TYPE: nucleic acid (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 30..80

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

53 GAATTCAACG TTGGATCCAA GAATCAAAA ATG TCT GAT GCG GCT CCT TCA TTG Met Ser Asp Ala Ala Pro Ser Leu

AGC AAT CTA TTT TAT GAC GTC ACG CAG Ser Asn Leu Phe Tyr Asp Val Thr Gln 10

80

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ser Asp Ala Ala Pro Ser Leu Ser Asn Leu Phe Tyr Asp Val Thr 1 5

Gln

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

6

5

THAT WHICH IS CLAIMED IS:

- 1. A transformed yeast cell containing a first heterologous DNA sequence which codes for a mammalian G protein coupled receptor and a second heterologous DNA sequence which codes for a mammalian G protein α subunit (mammalian G_{α}), wherein said first and second heterologous DNA sequences are capable of expression in said cell, and wherein said cell is incapable of expressing an endogenous G protein α -subunit (yeast G_{α}).
- 2. A transformed yeast cell according to claim 1, wherein said first heterologous DNA sequence is carried by a plasmid.
- 3. A transformed yeast cell according to claim 1, wherein said second heterologous DNA sequence is carried by a plasmid.
- 4. A transformed yeast cell according to claim 1, wherein said mammalian G protein α subunit is selected from the group consisting of $G_{\rm S}$ α subunits, $G_{\rm I}$ α subunits, $G_{\rm O}$ α subunits, $G_{\rm C}$ α subunits, and transducin α subunits.
- 5. A transformed yeast cell according to claim 1 which expresses a complex of the G protein β subunit and the G protein γ subunit $(G_{\beta\gamma})$.
- 6. A transformed yeast cell according to claim 5 which expresses endogenous $G_{eta\gamma}.$

5

5

- 7. A transformed yeast cell according to claim 1, wherein said first heterologous DNA sequence codes for a mammalian G protein-coupled receptor selected from the group consisting of dopamine receptors, muscarinic cholinergic receptors, α -adrenergic receptors, β -adrenergic receptors, opiate receptors, cannabinoid receptors, and serotonin receptors.
- 8. A transformed yeast cell according to claim 1 further comprising a third heterologous DNA sequence, wherein said third heterologous DNA sequence comprises a pheromone-responsive promotor and an indicator gene positioned downstream from said pheromone-responsive promoter and operatively associated therewith.
- 9. A transformed yeast cell according to claim 8, wherein said pheromone responsive promoter is selected from the group consisting of the <u>BAR1</u> gene promoter and the <u>FUS1</u> gene promoter, and wherein said indicator gene is selected from the group consisting of the <u>HIS3</u> gene and the <u>Lac7</u> gene.

10

10. A method of testing a compound for the ability to affect the rate of dissociation of G_{α} from $G_{\beta\gamma}$ in a cell, comprising:

providing a transformed yeast cell containing a first heterologous DNA sequence which codes for a mammalian G protein coupled receptor and a second heterologous DNA sequence which codes for a mammalian G_{α} , wherein said first and second heterologous DNA sequences are capable of expression in said cell, wherein said cell is incapable of expressing endogenous G_{α} , and wherein said cell expresses $G_{\beta\gamma}$;

contacting said compound to said cell; and detecting the rate of dissociation of ${\sf G}_{\alpha}$ from ${\sf G}_{\beta\gamma}$ in said cell.

- 11. A method according to claim 10, wherein said yeast cells are provided in an aqueous solution and said contacting step is carried out by adding said compound to said aqueous solution.
- 12. A method according to claim 10, wherein said mammalian G protein α subunit is selected from the group consisting of G_S α subunits, G_i α subunits, G_o α subunits, G_z α subunits, and transducin α subunits.
- 13. A method according to claim 10, wherein said yeast cell expresses endogenous $G_{eta\gamma}$.

PCT/US91/06605

5

5

10

5

10

- 14. A method according to claim 10, wherein said first heterologous DNA sequence codes for a mammalian G protein-coupled receptor selected from the group consisting of dopamine receptors, muscarinic cholinergic receptors, α -adrenergic receptors, β -adrenergic receptors, opiate receptors, cannabinoid receptors, and serotonin receptors.
- 15. A method according to claim 10, said yeast cell further comprising a third heterologous DNA sequence, wherein said third heterologous DNA sequence comprises a pheromone-responsive promotor and an indicator gene positioned downstream from said pheromone-responsive promoter and operatively associated therewith;

and wherein said detecting step is carried out by monitoring the expression of said indicator gene in said cell.

- 16. A DNA expression vector capable of expressing a transmembrane protein into the cell membrane of yeast cells, comprising:
- a first segment comprising at least a fragment of the extreme amino-terminal coding sequence of a yeast G protein coupled receptor; and
- a second segment downstream from said first segment and in correct reading frame therewith, said second segment comprising a DNA sequence encoding a heterologous G protein coupled receptor.
- 17. A DNA expression vector according to claim 16, wherein a fragment of the extreme aminoterminal coding sequence of said heterologous G protein coupled receptor is absent.

5

- 18. A DNA expression vector according to claim 16, wherein said first and second segments are operatively associated with a promoter operative in a yeast cell.
- 19. A DNA expression vector according to claim 18, wherein said promoter is the <u>GAL1</u> promoter.
- 20. A DNA expression vector according to claim 16, wherein said first segment comprises at least a fragment of the extreme amino-terminal coding sequence of a yeast pheromone receptor.
- 21. A DNA expression vector according to claim 16, wherein said first segment comprises at least a fragment of the extreme amino-terminal coding sequence of a yeast pheromone receptor selected from the group consisting of the <u>STE2</u> gene and the <u>STE3</u> gene.
- 22. A DNA expression vector according to claim 16, further comprising at least a fragment of the 5'-untranslated region of a yeast G protein coupled receptor gene positioned upstream from said first segment and operatively associated therewith.

5

- 23. A DNA expression vector according to claim 16, further comprising at least a fragment of the 5'-untranslated region of a yeast pheromone receptor gene positioned upstream from said first segment and operatively associated therewith.
- 24. A DNA expression vector according to claim 23, wherein said yeast pheromone receptor gene is selected from the group consisting of the <u>STE2</u> gene and the <u>STE3</u> gene.
- 25. A DNA expression vector according to claim 16, said vector comprising a plasmid.
- 26. A DNA expression vector according to claim 16, said second segment comprising a DNA sequence encoding a mammalian G protein coupled receptor.
- 27. A DNA expression vector according to claim 16, said second segment comprising a DNA sequence encoding a mammalian G protein-coupled receptor selected from the group consisting of dopamine receptors, muscarinic cholinergic receptors, α -adrenergic receptors, opiate receptors, cannabinoid receptors, and serotonin receptors.
- 28. A yeast cell carrying a DNA expression vector according to claim 16.

FIG. 2A.

FIG. 2B.

FIG. 3.

INTERNATIONAL SEARCH REPORT

International Application No. PCT2US91/06605

			C3917(/000//3	
I. CLASSIFI	ICATION OF SUBJECT MATTER (if several classific	stion symbols apply, indicate and		
According to	International Patent Classification (IPC) or to both Nation	nal Classification and IPC	•	
	Cl2N 1/20; Cl2! 1/00; GOIN 33/48	8, 33/300		
	35/4,252.3; 436/63.501			
II. FIELDS	SEARCHED	Carabad 7		
	Minimum Documenta			
Classification	System CI	lassification Symbols		
US.CL.	435/4, 252.3; 436/63,501			
00.02.				
	Documentation Searched other tha	an Minimum Documentation		
	Documentation Searched office the to the Extent that such Documents a	re Included in the Fields Searched \$		
		•		
III DOCUM	MENTS CONSIDERED TO BE RELEVANT		7 - 12	
ategory *	Citation of Document, 11 with indication, where appro	opriate, of the relevant passages 12	Relevant to Claim No. 13	
.ategory			``	
1				
1				
1			-	
7	Annual Review of Cell Bio	ology. Volume	1-28	
•	2 issued 1986. Stryer et			
	"G Proteins: A Family of			
	Transducers, pages 391-			
		ais. See entire		
1	document.			
Y	WO.A. 90/05780 (Civelli		1-28	
4.	1990. see column 29. line	e 26-column 30.		
	line 8.		, :	
į.			-	
1				
İ			1	
}				
			;	
}		•		
		•		
			the international filing date	
	I categories of cited documents: 10	"T" later document published after or priority date and not in con	flict with the application bu	
	ument defining the general state of the aft which is not	Cited to understand (ne-princi)	pre-di-modify and 3 T	
cont	sidered to be of particular relevance ier document but published on or after the international	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to		
filine	a date			
	ument which may throw doubts on priority claim(s) or ch is cited to establish the publication date of another	"Y" document of particular releva	ince; the claimed invention	
cital .	tion or other special reason (as specimen)	cannot be considered to involve	as more other such docu-	
"O" doc	ument referring to an oral disclosure, use, exhibition or	ments, such combination being devices		
othe	er means cument published prior to the international filing date but	in the art. "A" document member of the same patent family		
late	ir than the priority date claimed	a document member of the		
IV CEST	FIFICATION		Erron Report	
Date of the	Actual Completion of the International Search	Date of Mailing of this International	Seriou Menor.	
Date of the	🕶 राज्यात्वर कर्षेत्र (च. १८८८)	18DEC 199		
01 No	ovember 1991			
- UL NO	nal Searching Authority	Signature of Authorized Officer	and ans!	
INTERNATION	HET WENNEST TENTON OF		Trush Line	
70	SA/US	Lori Yuan		
1 13	JA / UJ			

. 16