

Institut Supérieur d'Informatique et de Mathématiques de Monastir

ISIMM

	Examen – S	2 - 2023/2024	
Filière : 1 ^{ère} LFI	500000	ière : ition Python	Enseignants : Dr. Abir Ben Hmida Sakly
Date: 21 / 05 / 2024	Nbr de Crédits : 2	Coefficient: 1.5	Documents autorisés : Non
Durée de l'examen : 1h30		luation : Mixte 25%) + TP (15%)	Nombre de pages : 08
Nom & Prénom :			Matricule :
Signature :	Code confidentiel:		Classe:

NOTE: Répondre directement sur les feuilles de l'examen

Note /20

Exercice 1: (12 points)

Dans cet exercice, nous allons manipuler des dictionnaires et les listes pour gérer un magasin de vêtements et vous souhaitez organiser vos stocks de manière efficace.

Vous disposez d'un dictionnaire **produit** qui contient les informations sur chaque produit vendu dans votre magasin.

- ✓ La clé de chaque entrée du dictionnaire est le nom du produit (str).
- ✓ La valeur associée à chaque clé est une liste contenant les informations du produit:
 - prix: le prix unitaire du produit (float).
 - quantité: la quantité en stock du produit (int).

Partie 1

1- Donner une expression python pour construire le dictionnaire « produits » correspondant à la table suivante :

Nom	Prix	Quantité
"Chemise"	29.99	30
"Pantalon"	39.99	40
"Jupe"	24.99	20
"Veste"	59.99	25
"Robe"	49.99	35
"Short"	19.99	15
"Pull"	19.99	45
"Chaussures"	69.99	10

Partie 2 : On vous demande d'implémenter les fonctions suivantes :

- 2- AjouterProduit(produits, nom, prix, quantité): Ajoute un nouveau produit au dictionnaire « produits ».
- 3- RechercherProduit(produits, nom): Recherche un produit par son nom dans le dictionnaire « produits » et affiche ses informations (prix et quantité).
- 4- AfficherStock(produits): Affiche la liste de tous les produits du dictionnaire (Nom, prix et quantité).
- 5- VendreProduit(produits ,nom, quantité): Vend une certaine quantité d'un produit et met à jour la quantité en stock.
- 6- ProduitLePlusCher(produits): afficher le produit (nom et prix) avec le prix le plus élevé.

- 7- ProduitEnRupture(produits): chercher et afficher la liste des noms de produits dont la quantité en stock est nulle.
- 8- RechercherParPrix(produits ,prix_min, prix_max): Permet de rechercher et afficher des produits(Nom et prix) dans une plage de prix donnée. Les paramètres prix_min et prix_max représentent les limites de la plage de prix.
- 9- AppliquerRemise(produits ,nom, pourcentage): Permet d'appliquer une remise sur le prix d'un produit spécifique.
 - Le paramètre pourcentage représente le pourcentage de remise à appliquer.
 - La fonction met à jour le prix du produit dans le dictionnaire « produits ».
- 10- CalculerValeurTotaleStock(produits): Permet de calculer et retourner la valeur totale du stock en multipliant le prix de chaque produit par sa quantité en stock.
- 11- IdentifierProduitsBasRotation(produits, seuil_rotation): Permet de chercher et afficher les noms des produits dont la rotation est inférieure à un seuil donné.
 Le paramètre seuil_rotation représente la quantité minimale de vente souhaitée pour une
- période donnée.

 12- Ecrire un programme principal détaillé pour la gestion des stocks d'un magasin de

vêtements en utilisant les fonctions ci-dessus.

Exercice 2: Le problème du sac à dos (8 points) Étant donné les poids et les valeurs de n articles, nous devons mettre ces articles dans un sac à dos de capacité C pour obtenir la valeur totale maximale dans le sac à dos. Une solution efficace consiste à utiliser l'approche gloutonne. L'idée de l'approche gloutonne est de calculer le rapport valeur/poids pour chaque article et de trier les articles sur la base de ce rapport. Ensuite, prenez l'élément avec le rapport le plus élevé et ajoutez-le jusqu'à ce que nous ne puissions plus ajouter l'élément suivant dans son intégralité et à la fin, ajoutez-le autant que possible. Exemple: articles = [(60, 10), (100, 20), (100, 60), (40, 20)] Capacite = 50 Le script affichera: Sac_a_dos = [(60, 10), (100, 20), (40, 20)] La valeur maximale du sac à dos = 200.0 Travail demandé: Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
Étant donné les poids et les valeurs de n articles, nous devons mettre ces articles dans un sac à dos de capacité C pour obtenir la valeur totale maximale dans le sac à dos. Une solution efficace consiste à utiliser l'approche gloutonne. L'idée de l'approche gloutonne est de calculer le rapport valeur/poids pour chaque article et de trier les articles sur la base de ce rapport. Ensuite, prenez l'élément avec le rapport le plus élevé et ajoutez-le jusqu'à ce que nous ne puissions plus ajouter l'élément suivant dans son intégralité et à la fin, ajoutez-le autant que possible. Exemple: articles = [(60, 10), (100, 20), (100, 60), (40, 20)] capacite = 50 Le script affichera: Sac_a_dos = [(60, 10), (100, 20), (40, 20)] La valeur maximale du sac à dos = 200.0 Travail demandé: Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
capacité C pour obtenir la valeur totale maximale dans le sac à dos. Une solution efficace consiste à utiliser l'approche gloutonne. L'idée de l'approche gloutonne est de calculer le rapport valeur/poids pour chaque article et de trier les articles sur la base de ce rapport. Ensuite, prenez l'élément avec le rapport le plus élevé et ajoutez-le jusqu'à ce que nous ne puissions plus ajouter l'élément suivant dans son intégralité et à la fin, ajoutez-le autant que possible. Exemple: articles = [(60, 10), (100, 20), (100, 60), (40, 20)] capacite = 50 Le script affichera: Sac_a_dos = [(60, 10), (100, 20), (40, 20)] La valeur maximale du sac à dos = 200.0 Travail demandé: Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
Une solution efficace consiste à utiliser l'approche gloutonne. L'idée de l'approche gloutonne est de calculer le rapport valeur/poids pour chaque article et de trier les articles sur la base de ce rapport. Ensuite, prenez l'élément avec le rapport le plus élevé et ajoutez-le jusqu'à ce que nous ne puissions plus ajouter l'élément suivant dans son intégralité et à la fin, ajoutez-le autant que possible. Exemple: articles = [(60, 10), (100, 20), (100, 60), (40, 20)] capacite = 50 Le script affichera: Sac_a_dos = [(60, 10), (100, 20), (40, 20)] La valeur maximale du sac à dos = 200.0 Travail demandé: Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
calculer le rapport valeur/poids pour chaque article et de trier les articles sur la base de ce rapport. Ensuite, prenez l'élément avec le rapport le plus élevé et ajoutez-le jusqu'à ce que nous ne puissions plus ajouter l'élément suivant dans son intégralité et à la fin, ajoutez-le autant que possible. Exemple: articles = [(60, 10), (100, 20), (100, 60), (40, 20)] capacite = 50 Le script affichera: Sac a dos = [(60, 10), (100, 20), (40, 20)] La valeur maximale du sac à dos = 200.0 Travail demandé: Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
Ensuite, prenez l'élément avec le rapport le plus élevé et ajoutez-le jusqu'à ce que nous ne puissions plus ajouter l'élément suivant dans son intégralité et à la fin, ajoutez-le autant que possible. Exemple: articles = [(60, 10), (100, 20), (100, 60), (40, 20)] capacite = 50 Le script affichera: Sac_a_dos = [(60, 10), (100, 20), (40, 20)] La valeur maximale du sac à dos = 200.0 Travail demandé: Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
ajouter l'élément suivant dans son intégralité et à la fin, ajoutez-le autant que possible. Exemple: articles = [(60, 10), (100, 20), (100, 60), (40, 20)] capacite = 50 Le script affichera: Sac_a_dos = [(60, 10), (100, 20), (40, 20)] La valeur maximale du sac à dos = 200.0 Travail demandé: Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
Exemple: articles = [(60, 10), (100, 20), (100, 60), (40, 20)] capacite = 50 Le script affichera: Sac_a_dos = [(60, 10), (100, 20), (40, 20)] La valeur maximale du sac à dos = 200.0 Travail demandé: Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
articles = [(60, 10), (100, 20), (100, 60), (40, 20)] capacite = 50 Le script affichera: Sac_a_dos = [(60, 10), (100, 20), (40, 20)] La valeur maximale du sac à dos = 200.0 Travail demandé: Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
Le script affichera: Sac_a_dos = [(60, 10), (100, 20), (40, 20)] La valeur maximale du sac à dos = 200.0 Travail demandé: Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
Sac_a_dos = [(60, 10), (100, 20), (40, 20)] La valeur maximale du sac à dos = 200.0 Travail demandé: Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
La valeur maximale du sac à dos = 200.0 Travail demandé: Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
Ecrire un script Python qui permet de résoudre le problème selon l'approche proposée.
•••••••••••••••••••••••••••••••••

