Data structures for totally monotone matrices

Submatrix maximum queries in (inverse) Monge matrices

Input: n x n (inverse) Monge matrix M represented implicitly (constant time oracle access)

Output: data structure answering maximum queries in any rectangular submatrix of M

Submatrix maximum queries

Main Theorem:

A data structure with the following performance: preprocessing time O(n log²n) space O(n log n) query time O(log²n)

Extends to rectangular matrices and certain partial matrices

Application first...

Largest Empty Rectangle

For a set P of n points in the plane build a data structure such that:

Given a query q, efficiently finds the largest empty (of pts of P) rectangle containing q

Naive Approach

Store all N maximal empty rectangles in a twodimensional segment tree.

(detour) A 1D Segment tree

A 2D Segment tree

The size of the primary tree is prop. to the number of different x-coordinates

Since rectangles share xcoordinates there could be many rectangles mapped even to deep nodes.

A 2D Segment tree

The size of the primary tree is prop. to the number of different x-coordinates

Since rectangles share xcoordinates there could be many rectangles mapped even to deep nodes.

In particular many rectangles can share their x-projections

A 2D Segment tree

Each rectangle is mapped to O(log(n)) primary nodes

So if we have N rectangles the total size of the secondary trees is O(Nlog(n))

Naive approach

Store all N maximal empty rectangles in a two-dimensional segment tree.

Space required is $O(N \log N)$, preprocessing time $O(N \log^2 N)$ and query time is $O(\log^2 N)$.

How many such rectangles could there be?

Naive approach

Caveat: There may be $N = \Theta(n^2)$ maximal empty rectangles

There could be a Quadratic number of rectangles supported by two points in each of the 1^{st} and 3^{rd} quadrants (symmetrically, 2^{nd} and 4^{th} quadrants)

Different kinds of rectangles

 We will classify them, starting with rectangles that have an edge on the boundary

3 Edges on the boundary

2 edges on the boundary (type 1)

2 Edges on the boundary (type 2)

1 Edge on the boundary

Rectangle with edges on the boundary (summary)

 O(n) rectangles, compute then in O(nlog(n)) time and put them in the segment tree in O(nlog²(n))

Rectangle without edges on the boundary

2D Range tree

2D Range tree

2D Range tree

An internal secondary node in the range tree

Corresponds to some rectangle with two dividers

A maximal empty rectangle

Contains the "origin" in some internal node v

Each node is responsible for the maximal empty rectangles containing its "origin"

Classify maximal emty rectangles containing the origin

We are now focusing on one secondary node v of the range tree, n_v is the size of the subtree of v

3 points on one side of a divider

 $O(n_v)$ of these, can compute then in $O(n_v \log n_v)$ time

1 point in each quadrant

Linearly many $O(n_v)$, can compute then in $O(n_v \log n_v)$ time

Summary so far

- Summing up over the nodes of the range tree we have $O(n\log^2(n))$ rectangles that we compute in $O(n\log^3(n))$ time
- •We insert them into the segment tree in $O(n\log^4(n))$ time
- •The segment tree takes $O(nlog^3 n)$ space and can answer a query in $O(log^2 n)$ time

2 Points in each quadrant

We can compute the chains in $O(n_v log(n_v))$ time, but there are too many rectangles to put in the segment tree

The (inverse) Monge property

Define a matrix M such that M_{ik} is the area of maximal rectangle supported by i^{th} pair in 3^{rd} quadrant and k^{th} pair in 1^{st} quadrant

The (inverse) Monge property

Define a matrix M such that M_{ik} is area of maximal rectangle supported by i^{th} pair in 3^{rd} quadrant and k^{th} pair in 1^{st} quadrant

The (inverse) Monge property

For every i < j, k < l, $M_{ik} + M_{jl} \ge M_{il} + M_{jk}$

The matrix is not fully defined

The relation between the defined parts of consecutive rows

The relation between the defined parts of consecutive rows

The relation between the defined parts of consecutive rows

The matrix is "staircase"

The matrix is "staircase"

Query

A query point q defines ranges of relevant pairs in the 1^{st} and 3^{rd} quadrants

Use the Monge submtarix maximum data structure to find the maximum-area rectangle containing q in the relevant range

Query

Analysis

It takes $O(n_v a(n_v) \log(n_v))$ space $O(n_v a(n_v) \log^2 n_v)$ preprocessing time per secondary node v

Summing over all secondary nodes of the range tree we get that the total space is $O(na(n)log^3(n))$ and the preprocessing time is $O(na(n)log^4(n))$

Query time is $O(log^2n_v)$ at a secondary node v and $O(log^4n)$ overall

Thats it as far as the empty rectangle application is concerned

Back to our data structure

Input: n x n Monge matrix M represented implicitly (constant time oracle access)

Output: Data structure answering maximum queries in any rectangular submatrix of M

Submatrix maximum queries in Monge matrices

Main Theorem:

A data structure with the following performance:

preprocessing time O(n log2n)

space $O(n \log n)$ query time $O(\log^2 n)$

Totally monotone matrices and pseudo-lines

Think of row i of M as a discrete function mapping column j to M_{ij} . Extend the domain to the interval [1,n] by linear interpolation

Totally monotone matrices and pseudo-lines

These are pseudo-lines:

Every pair of curves intersect in at most one point

Upper envelopes of pseudo-lines

- Column maxima are on the upper envelope of the pseudo-lines
- For m rows there are O(m) breakpoints
- Represent an upper envelope by a search tree over the breakpoints

Column maxima in a range of rows

Column maxima in a range of rows

- Balanced search tree over the rows
- Each node stores the upper envelope of its rows
- Takes O(n log n) time in a bottom-up computation

Column maxima in a range of rows: a query

- A query is "covered" by O(log n) canonical nodes
- Search the envelope of each canonical node for the interval containing the column
- Return max of entries of the appropriate rows

Column maxima in a range of rows: a query

A query can be answered in $O(log^2n)$ time by querying each of the canonical nodes in O(log n) time.

Using fractional cascading reduces query time to O(log n)

Maximum in a general submatrix

Maximum in a general submatrix

From each envelope we need the maximum in a sequence of complete intervals and a prefix+suffix of two intervals

Store additional information on the upper envelope

- · Compute the maxima in each interval of the envelope
- This is a maxima in a subinterval of a row
- Can compute using a stucture as before over the columns
- Store subtree maxima in the search tree of the breakpoints

Submatrix query

• Find the maxima in the complete intervals of the envelope contained in the query

Submatrix query

• Find the maxima in the suffix and the prefix by queries to the structure for maxima in subintervals of rows

Submatrix queries: summary

```
preprocessing time O(n \log n) (the total number of different intervals on all envelopes is O(n))
```

space $O(n \log n)$ query time $O(\log^2 n)$

Submatrix queries: Extensions

 extension to certain Monge partial matrices using pseudo-segments instead of pseudo-lines

• preprocessing time $O(na(n)log^2n)$ space O(na(n)log n)query time $O(log^2n)$

