Delta-theta intertrial coherence increases during task switching in a BCI paradigm

Juan A. Barios^{1*}, Santiago Ezquerro¹, Arturo Bertomeu-Motos¹, M. Nann², S. Soekadar², and Nicolas Garcia-Araci¹

¹ Biomedical Neuroengineering research group (nBio), Systems Engineering and Automation Department of Miguel Hernandez University, Avda. de la Universidad s/n, 03202 Elche (Spain),

jbarios@umh.es, http://nbio.umh.es/

University Hospital of Tbingen, Applied Neurotechnology Lab, Institute of Medical Psychology and Behavioral Neurobiology, Department of Psychiatry and Psychotherapy, Calwerstr. 14; D-72076 Tbingen; Germany, http://www.medizin.uni-tuebingen.de *

Abstract. Slow rythms are increasing their importance in BCI paradigm. We report the presence of significant changes in Delta-theta intertrial coherence increases during task switching in a BCI paradigm...

Keywords: slow rythms, EEG, coherence, BCI

1 Introduction

1.1 This is a Second-Order Title

This is a Third-Order Title.

This is a Fourth-Order Title.

2 Material and Methods

21 °C etc., Dr h. c. Rockefellar-Smith . . . 20,000 km and Prof. Dr Mallory . . . 1950–1985 . . . this – written on a computer – is now printed $-30\,\mathrm{K}$. . .

Italic ($jtext_{\dot{\delta}}$ better still $jtext_{\dot{\delta}}$) or, if necessary, **boldface** should be used for emphasis.

Text with a footnote³ and text continues . . .

- 1. First item
- 2. Second item
 - (a) First nested item
 - (b) Second nested item
- 3. Third item

Before continuing your text you need an empty line ...

Bibliography: [1]

* Correspondence: jbarios@umh.es; Tel.: +34-965-222-505; Fax: +34-966-658-979

³ The footnote is automatically numbered.

Fig. 1. This is the caption of the figure displaying a white eagle and a white horse on a snow field

Table 1. Critical N values

$\overline{\mathrm{M}_{\odot}}$	β_0	T_{c6}	γ	$N_{ m crit}^{ m L}$	$N_{ m crit}^{ m Te}$
30	0.82	38.4	35.7	154	320
60	0.67	42.1	34.7	138	340
120	0.52	45.1	34.0	124	370

References

- 1. Clarke, F., Ekeland, I.: Nonlinear oscillations and boundary-value problems for Hamiltonian systems. Arch. Rat. Mech. Anal. 78, 315–333 (1982)
- 2. Clarke, F., Ekeland, I.: Solutions périodiques, du période donnée, des équations hamiltoniennes. Note CRAS Paris 287, 1013–1015 (1978)
- 3. Michalek, R., Tarantello, G.: Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems. J. Diff. Eq. 72, 28–55 (1988)
- 4. Tarantello, G.: Subharmonic solutions for Hamiltonian systems via a \mathbb{Z}_p pseudoindex theory. Annali di Matematica Pura (to appear)
- 5. Rabinowitz, P.: On subharmonic solutions of a Hamiltonian system. Comm. Pure Appl. Math. $33,\,609\text{--}633$ (1980)