Arquitetura de Computadores

Exercício sobre codificação de instruções

João Pedro Patriarca (<u>ipatri@cc.isel.ipl.pt</u>), Gabinete F.O.23 do edifício F ISEL, ADEETC, LEIC

Enunciado

As instruções apresentadas na Tabela 1 constituem o conjunto de instruções de um processador a 8 bits do tipo *Reduced Instruction Set Computer* (RISC) com quatro registos de uso geral e um registo de estado com a designação *Current Program Status Register* (CPSR) que, entre outros dados, inclui um bit que indica que a última operação realizada deu resultado zero (flag Z). A capacidade total de endereçamento deste processador é de 256 bytes, sendo os acessos à memória realizados apenas ao byte.

Instrução	Descrição
1. add rd, rn	rd ← rd + rn
2. b rn	PC ← rn
3. bzs label	(CPSR.Z == 1) ? PC \leftarrow PC + label : PC \leftarrow PC + 1
4. cmp rn, rm	$(rn - rm == 0)$? CPSR.Z \leftarrow 1 : CPSR.Z \leftarrow 0
5. ldr rd, [rn]	rd ← mem[rn]
6. mov rd, #imm3	rd ← imm3
7. str rs, [#imm3]	mem[rn] ← rs

rd, rm e rn representam um dos registos de uso geral do processador, imm3 simboliza um número natural codificado com 3 bits, label identifica um endereço na vizinhança de ±16 bytes da instrução de salto em causa e PC referencia o registo *Program Counter* do processador.

a) Classifique as sete instruções nas seguintes classes, de acordo com a função que realizam: manipulação de dados, transferência de dados e controlo.

Legenda: MD – Manipulação de Dados; TD – Transferência de dados; C – Controlo

1. MD; 2. C; 3. C; 4. MD; 5. TD; 6. MD; 7. TD

b) Indique, justificando, o número de bits a utilizar para codificar os campos de todas as instruções.

opcode = 3 bits rd = rn = rm = 2 bits imm3 = 3 bits label = 5 bits

c) Proponha um mapa de codificação para o conjunto de instruções apresentado, considerando a utilização de um código de comprimento fixo com oito bits e um esquema de codificação uniforme.

	7	6	5	4	3	2	1	0
1. add rd, rn	opcode			-	rn		rd	
2. b rn	opcode			-	rn		-	-
3. bzs label	C	pcode	9	label				
4. cmp rn, rm	opcode			-	rn		rm	
5. ldr rd, [rn]	C	opcode		-	rn		rd	
6. mov rd, #imm3	C	pcode	9	imm3			rd	
7. str rs, [#imm3]	(pcode	9	imm3			r	S

opcode = bits
$$(7..5)$$

rd = rm = rs = bits $(1..0)$

imm3 = bits
$$(4..2)$$
 label = bits $(4..0)$
rm = bits $(3..2)$

d) Indique, justificando, um valor para o código de operação (*opcode*) de cada instrução.

	7	6	5	4	3	2	1	0
1. add rd, rn	0	0	0	- rn rd			d	
2. b rn	0	1	0	-	rn		1	-
3. bzs label	0	1	1	label				
4. cmp rn, rm	0	0	1	- rn rm				n
5. ldr rd, [rn]	1	0	0	- rn		rd		
6. mov rd, #imm3	1	1	1	imm3			rd	
7. str rs, [#imm3]	1	0	1	imm3			r	S

O código 110 não foi utilizado

e) Considerando agora que o segundo operando da instrução mov é uma constante codificada com quatro bits (mov rd, #imm4), repita as alíneas b) a d).

	7	6	5	4	3	2	1	0
1. add rd, rn	0	0	0	-	rn		rd	
2. b rn	0	1	0	1	rn		1	-
3. bzs label	0	1	1	label				
4. cmp rn, rm	0	0	1	- rn rm			n	
5. ldr rd, [rn]	1	0	0	- rn			r	d
6. mov rd, #imm3	1	1	imm4			r	d	
7. str rs, [#imm3]	1	0	1 imm3			r	S	

A alteração da dimensão da constante esgotou os códigos possíveis a 3 bits

f) Repita o procedimento anterior mas considerando agora que a constante é codificada com 4 bits, quer para a instrução mov, quer para a instrução str.

	7	6	5	4	3	2	1	0
1. add rd, rn	0	0	0	0	0 rn rd			d
2. b rn	0	1	0	-	rn		ı	-
3. bzs label	0	1	1	label				
4. cmp rn, rm	0	0	1	- rn rm			n	
5. ldr rd, [rn]	0	0	0	1 rn			r	d
6. mov rd, #imm3	1	1	imm4				rd	
7. str rs, [#imm3]	1	0	imm4			r	S	

A alteração da dimensão da constante forçou a alteração da dimensão dos códigos de operação de forma a garantir códigos únicos; opcode = bits(7..4)