

Universidade Federal do Rio de Janeiro (UFRJ) Departamento de Ciência da Computação (DCC)

Recuperação da Informação (MAB605)

Modelo Vetorial

Profa. Giseli Rabello Lopes

.....

Roteiro

- Introdução
- Modelo vetorial
 - Normalização
 - Representação
 - Similaridade
- Referências

Modelo Vetorial

- Vector Space Model (VSM)
 - Proposto por Gerard Salton no final dos anos 60
 - Propõe ranking dos resultados
 - Ordenado pelo grau de similaridade de cada documento em relação à consulta
 - Possibilita "casamento parcial"
 - Representação (bag of words):
 - Documentos e consultas
 - Vetores de termos com associação de peso

Variantes do esquema TF-IDF

Relembrando

• Esquemas recomendados de ponderação TF-IDF [Salton, 1971]

Esquema de ponderação	Pesos para os termos dos docs	Pesos para os termos das consultas
1	$f_{i,j} * \log \frac{N}{n_i}$	$(0.5 + 0.5 \frac{f_{i,q}}{max_i f_{i,q}}) * \log \frac{N}{n_i}$
2	$1 + \log f_{i,j}$	$\log(1 + \frac{N}{n_i})$
3	$(1 + \log f_{i,j}) * \log \frac{N}{n_i}$	$(1 + \log f_{i,q}) * \log \frac{N}{n_i}$

- O tamanho dos documento pode variar bastante
- Isso é um problema porque documentos longos têm mais chance de serem recuperados por uma consulta
- Para compensar esse efeito indesejado, podemos dividir o número de ordem (rank) de cada documento pelo seu tamanho
- Esse procedimento consistentemente leva a um ranqueamento melhor, e é chamado normalização pelo tamanho dos documentos

- Métodos de normalização pelo tamanho dos documentos dependem da representação adotada para os documentos:
 - Tamanho em bytes: considera que cada documento é representado simplesmente como um fluxo (stream) de bytes
 - Número de palavras: cada documento é representado como uma única string, e o tamanho do documento é o número de palavras nele contidas
 - Norma: documentos são representados como vetores de termos com pesos associados

- Documentos representados como vetores de termos com pesos associados
 - Cada termo da coleção é associado com um vetor unitário ortonormal $\overrightarrow{k_i}$ em um espaço t-dimensional
 - Para cada termo k_i de um documento d_j $\stackrel{\longleftarrow}{e}$ associado o componente do vetor de termos $w_{i,j} \times \overline{k_i}$

• A representação de um documento $\overrightarrow{d_j}$ é um vetor composto pelos vetores de todos os seus termos

$$\vec{d_j} = (w_{1,j}, w_{2,j}, ..., w_{t,j})$$

 O tamanho do documento é dado pela norma (módulo) desse vetor, que é computada como segue

$$|\vec{d_j}| = \sqrt{\sum_i^t w_{i,j}^2}$$

Três variantes de tamanhos de documentos para uma coleção de exemplo

To do is to be. To be is to do.

 $(1 + \log f_{i,j}) \times \log \frac{N}{n_i}$ if $f_{i,j} > 0$ $|w_{i,j}| =$

 d_4 2 0.830 1.073 1.073 5 2 or 2 6 not 2 7 2 am 2 what 10 think 11 therefore 12 5.170 da let

Relembrando: TF-IDF

 d_1

To be or not to be. I am what I am.

 d_2

I think therefore I am. Do be do be do.

 d_3

Do do do, da da da. Let it be, let it be.

 d_{4}

	d_1	d_2	d_3	d_4
size in bytes	33	37	41	43
number of words	10	11	10	12
vector norm	5.068	4.899	3.762	7.738

Obs.: Para calcular o tamanho em bytes, consideramos que há um caracter de fim de linha ao final de cada linha e um caracter de fim de arquivo ao final de cada documento. Para calcular a norma, nesse exemplo, é usada a 3ª variação de TF-IDF.

Modelo Vetorial

- Definição formal
 - Documentos representados por vetores
 - t dimensões

$$w_{i,j} \in R \mid w_{i,j} \ge 0$$
$$w_{i,q} \in R \mid w_{i,q} \ge 0$$

q = conjunto de termos

$$sim(d_{j}, q) = \frac{\vec{d}_{j} \cdot \vec{q}}{\left| \vec{d}_{j} \right| \left| \vec{q} \right|}$$

Produto escalar (interno)

número
de termos $\sum_{i=1}^{t} w_{i,j} \ w_{i,q}$ $Sim(d_j, q) = \frac{1}{\sqrt{\sum_{i=1}^{t} w_{i,j}^2} \sqrt{\sum_{i=1}^{t} w_{i,q}^2}$

Multiplicação entre módulos dos vetores (comprimento)

Modelo Vetorial

Interpretação geométrica

Exemplo [Baeza-Yates & Ribeiro-Neto, 2013]

Ponderação dos pesos (esquema 3 tabela do slide 4)

$$w_{i,q} = (1 + \log f_{i,q}) \times \log \frac{N}{n_i}$$

$$w_{i,j} = (1 + \log f_{i,j}) \times \log \frac{N}{n_i}$$

- Se a frequência do termo for zero, o respectivo peso também será zero
- Para calcular o $rank = sim(d_i, q)$ do modelo vetorial:
 - Como $|\vec{q}|$ não afeta o ranqueamento (ordenação dos documentos) ele foi desconsiderado no cálculo do exemplo
 - O fator $|\vec{d_j}|$ faz a normalização pelo tamanho do documento (existem outras formas de normalização)

Relembrando: TF-IDF

9

10

11

12

13

14

what

think

therefore

let

d_3 to 3 2 0.830 do 1.073 1.073 is 5 6 not

5.170

13

Outro exemplo

[Baeza-Yates & Ribeiro-Neto, 2013]

To do is to be. To be is to do.

 d_1

To be or not to be. I am what I am.

 d_2

I think therefore I am. Do be do be do.

 d_3

 d_4

Do do do, da da da. Let it be, let it be.

Consulta: "to do"

doc	rank computation	rank
d_1	$\frac{1*3+0.415*0.830}{5.068}$	0.660
d_2	$\frac{1*2+0.415*0}{4.899}$	0.408
d_3	$\frac{1*0+0.415*1.073}{3.762}$	0.118
d_4	$\frac{1*0+0.415*1.073}{7.738}$	0.058

Relembrando: IDF

	term	n_i	$idf_i = \log(N/n_i)$
1 2	to do	2	1 0.415

Por que não utilizar distância euclidiana?

Distância deveria ser igual em ambas as figuras

Adaptado de apresentação preparada por Prof. Eduardo N. Borges (FURG)

Por que não utilizar distância euclidiana?

Deveria ser zero na figura

Por que não utilizar distância euclidiana?

- Não representa a similaridade entre os vetores
 - Distância pode ser maior que os vetores
- Pesos representam a importância de cada termo em relação aos outros termos
 - Vetores com comprimentos diferentes, mas com mesmo ângulo possuem distribuições de termos equivalente

Por que não utilizar distância euclidiana?

- A similaridade é inversamente proporcional ao ângulo entre os vetores
 - O cosseno do ângulo é uma boa função de similaridade
 - Imagem varia no intervalo [0,1]

Vetores normalizados

Cada componente é dividido pelo comprimento do vetor

[Manning et al., 2008]

RICH

Modelo Vetorial

- Principais vantagens:
 - Esquema de atribuição de pesos aos termos melhora a performance da recuperação
 - Estratégia de casamento parcial
 - Permite recuperação de documentos que se "aproximam" das condições da consulta
 - Ordenação dos documentos de acordo com o grau de similaridade em relação à consulta
- Desvantagem:
 - Conceitualmente, não considera a correlação entre os termos

Exercício - Modelo Vetorial

- Partir da implementação desenvolvida na aula anterior (ponderação de termos). Após utilizar a ponderação TF-IDF para atribuição dos pesos dos termos, aplique o modelo vetorial e compute a similaridade entre a consulta e cada um dos documentos.
- Por fim, gere o *ranking* final dos documentos para uma consulta q especificada (ordem que os documentos seriam ranqueados).

Exercício - Relembrando

Exemplo de entradas:

```
M=['O peã e o caval são pec de xadrez. O caval é
o melhor do jog.';
'A jog envolv a torr, o peã e o rei.';
'O peã lac o boi';
'Caval de rodei!';
'Polic o jog no xadrez.']; //conjunto de
documentos
stopwords=['a', 'o', 'e', 'é', 'de', 'do', 'no',
'são']; //lista de stopwords
q='xadrez peã caval torr'; //consulta
separadores=[' ',',','.','!','?']; //separadores
para tokenizacao
```

Exercício - Relembrando

- Sua implementação deve:
 - Tokenizar os documentos utilizando os separadores adequados
 - Normalizar termos (ex. caixa-baixa) e eliminar stopwords das consultas e documentos
 - Usar uma solução de indexação utilizando uma variação da matriz de incidências (obs.: guarde a frequência de aparecimento dos termos em cada documento)

Exercício - Relembrando

 Implemente a ponderação TF-IDF para atribuição dos pesos dos termos (você deve utilizar o 3º esquema de ponderação sugerido por [Salton, 1971] – slide 3).

Referências

 Baeza-Yates, R.; Ribeiro-Neto, B. Recuperação de Informação: Conceitos e Tecnologia das Máquinas de Busca. 2 ed. Bookman, 2013.

 Baeza-Yates, R.; Ribeiro-Neto, B. Modern Information Retrieval. Wokingham, UK: Addison-Wesley, 2 ed., 2011.

 Manning, C. D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval. Cambridge University Press, 2008.

Online edition 2009: http://nlp.stanford.edu/IR-book/

Universidade Federal do Rio de Janeiro (UFRJ) Departamento de Ciência da Computação (DCC)

Recuperação da Informação (MAB605) Dúvidas?

Profa. Giseli Rabello Lopes giseli@dcc.ufrj.br CCMN - DCC - Sala E-2012

