1 Основные понятия, простейшие типы дифференциальных уравнений

1.1 Основные понятия

Определение 1.1. Уравнение вида

$$F(x, y'(x), y''(x), \dots, y^{(n)}(x)) = 0$$

называется обыкновенным дифференциальным уравнением, где x – аргумент, y(x) – неизвестная функция, F – известная функция.

Определение 1.2. Если это уравнение удается разрешить относительно старшей производной, такое дифференциальное уравнение называется разрешённым относительно старшей производной и записывается в виде

$$y^{(n)}(x) = f(x, y'(x), y''(x), \dots, y^{(n-1)}(x))$$

Порядок уравнения определяется порядком старшей производной от y.

Определение 1.3. Функция $y = \varphi(x)$ называется решением ДУ, если она n раз дифференцируема u

$$F(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n)}(x)) \equiv 0 \quad \forall x,$$

где определена функция $\varphi(x)$ с её производными.

Определение 1.4. Система п уравнений

$$\begin{cases} \dot{x}^1 = f_1(t, x^1(t), \dots, x^n(t)) \\ \dots \\ \dot{x}^n = f_n(t, x^1(t), \dots, x^n(t)) \end{cases}$$
 (1)

 $ede \ x^1(t), \dots, x^n(t)$ — искомые функции, называется нормальной системой ДУ n-го поряд-ка.

Утверждение 1.1. Рассмотрим ДУ $y^{(n)}(x) = f(x, y'(x), y''(x), \dots, y^{(n-1)}(x))$ п-ого порядка. Это уравнение эквивалентно следующей нормальной системе ДУ:

$$\begin{cases} \dot{v}_{1} = v_{2} \\ \dot{v}_{2} = v_{3} \\ \dots \\ \dot{v}_{n-1} = v_{n} \\ \dot{v}_{n} = f_{n}(x, v_{1}, v_{2}, \dots, v_{n}) \end{cases} \Leftrightarrow y^{(n)}(x) = f(x, y'(x), y''(x), \dots, y^{(n-1)}(x))$$
(2)

Доказательство. Введем обозначения: $y = v_1(x), y' = v_2(x), y'' = v_3(x), \ldots, y^{(n-1)} = v_n(x)$. Тогда имеем $\dot{v}_1 = v_2, \ \dot{v}_2 = v_3, \ \ldots, \dot{v}_n = f(x, v_1, v_2, \ldots, v_n)$, то есть получилась нормальная система дифференциальных уравнений n-ого порядка с неизвестными v_i .

Обратными заменами системы уравнений можно получить исходное дифференциальное уравнение $y^{(n)}(x) = f(x, y'(x), y''(x), \dots, y^{(n-1)}(x))$.

Определение 1.5. Рассмотрим уравнение 1-ого порядка y' = f(x, y(x)). Тогда задача решить это уравнение с условием $y(x_0) = y_0$ называется задачей Коши.

Определение 1.6. Пусть $\varphi(x)$ – решение дифференциального уравнения y' = f(x, y(x)). График решения $\varphi(x)$ называется интегральной кривой. В силу определения функции f(x,y) на множестве Ω , вся интегральная кривая будет лежать в Ω .

Определение 1.7. Проведём через каждую точку интегральной кривой $(x_0, y_0) \in \Omega$ малый отрезок с углом наклона по отношению к оси х равным α , причём $\operatorname{tg} \alpha = f'(x_0, y_0)$. Получим так называемое поле направлений.

Из построения интегральной кривой следует, что интегральная кривая в каждой своей точке касается поля напрвлений. Верно и обратное: кривая, касающаяся в каждой своей точке поля направлений, является интегральной кривой.

1.2 Простейшие типы уравнений первого порядка

1.2.1 Уравнения в полных дифференциалах

Рассмотрим следующее дифференциальное уравнение: P(x,y)dx + Q(x,y)dy = 0. Тогда кривая

$$\gamma = \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}, \ t_1 \leqslant t \leqslant t_2$$
 (3)

называется интегральной кривой рассматриваемого уравнения, если $\forall t: t \in [t_1; t_2]$ выполнено

$$P(\varphi(t), \psi(t))\varphi'_t + Q(\varphi(t), \psi(t))\psi'_t = 0.$$
(4)

Определение 1.8. Дифференциальное уравнение P(x,y)dx + Q(x,y)dy = 0 называется уравнением в полных дифференциалах, если $\exists F(x,y) : P(x,y)dx + Q(x,y)dy = dF(x,y)$.

Тогда $dF(x,y)=0 \Rightarrow F(x,y)=const,$ то есть F(x,y) определяет неявную функцию y(x).

Теорема 1.1. Пусть функции P(x,y) и Q(x,y) непрерывно дифференцируемы в области D. Для того, чтобы уравнение P(x,y)dx + Q(x,y)dy = 0 являлось уравнением в полных дифференциалах, необходимо выполнение условия $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$, $(x,y) \in D$. Если же область D ещё и одвосвязна, то условие $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ является достаточным.

Доказательство. Пусть P(x,y)dx+Q(x,y)dy=0 – уравнение в полных дифференциалах, тогда $\exists F(x,y): P(x,y)dx+Q(x,y)dy=dF(x,y)\Rightarrow P=\frac{\partial F}{\partial x},\ Q=\frac{\partial F}{\partial y}$. По условию P и Q – непрерывно дифференцируемы, тогда $\frac{\partial P}{\partial y}$ и $\frac{\partial Q}{\partial x}$ – непрерывные функции, значит

$$\frac{\partial P}{\partial y} = \frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = \frac{\partial Q}{\partial x}, \ (x, y) \in D. \tag{5}$$

Пусть теперь D – односвязная область. Рассмотрим значение интеграла

$$F = \int_{(x_0, y_0)}^{(x;y)} P(x, y) dx + Q(x, y) dy,$$

который берётся по кривой γ , лежащей в D и соединяющей точки (x_0, y_0) и (x; y). Пусть $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Тогда по теореме о независимости интеграла от пути интегрирования выходит, что значение интеграла не зависит от пути интегрирования γ , а является функцией от (x, y), значит F = F(x, y) — функция и P(x, y)dx + Q(x, y)dy = dF(x, y).

Определение 1.9. Непрерывно дифференцируемая функция $\mu(x,y) \neq 0$ в области G называется интегрирующим множителем для уравнения в полных дифференциалах $\mu(x,y)(P(x,y)dx+Q(x,y)dy)=0$, если исходное уравнение P(x,y)dx+Q(x,y)dy=0 не является уравнением в полных дифференциалах.

Если $\mu(x,y)$ – интегрирующий множитель, то для достаточного условия имеем

$$\frac{\partial (\mu P)}{\partial y} = \frac{\partial (\mu Q)}{\partial x} \Leftrightarrow P \frac{\partial \mu}{\partial y} + \mu \frac{\partial P}{\partial y} = Q \frac{\partial \mu}{\partial x} + \mu \frac{\partial Q}{\partial x}.$$

Полученное уравнение не легче исходного, так как теперь задача свелась к нахождению μ . Обычно интегрирующий множитель ищут в виде $\mu(x), \ \mu(y), \ \mu(x^2+y^2), \ \mu(x^\alpha,y^\beta).$

1.2.2 Уравнения с разделяющимися переменными

Рассмотрим ДУ вида P(y)dx+Q(x)dy=0, где $P(y)\in C^1_{[y_1;y_2]},\ Q(x)\in C^1_{[x_1;x_2]}.$ Если $\exists y_0:P(y_0)=0$ или $\exists x_0:Q(x_0)=0$, тогда

$$\begin{cases} x = t \\ y = y_0 \end{cases} \quad \text{или} \quad \begin{cases} x = x_0 \\ y = t \end{cases} \tag{6}$$

являются интегральными кривыми рассматриваемого ДУ соответственно. Если же выполняется $P(x,y) \neq 0$ и $Q(x,y) \neq 0$, то применим к уравнению интегрирующий множитель

$$\mu(x,y) = \frac{1}{P(x,y)Q(x,y)},$$

получив уравнение в полных дифференциалах

$$\frac{dx}{Q(x)} + \frac{dy}{P(y)} = 0. (7)$$

Значение $\mu(x,y)$ действительно является интегрирующим множителем, так как выполняется

$$\frac{\partial}{\partial y} \left(\frac{1}{Q(x)} \right) = \frac{\partial}{\partial x} \left(\frac{1}{P(y)} \right) = 0. \tag{8}$$

Тогда

$$dF(x,y) = \frac{dx}{Q(x)} + \frac{dy}{P(y)} \Rightarrow \frac{\partial F}{\partial x} = \frac{1}{Q(x)} \Rightarrow F(x,y) = \int_{x_1}^{x} \frac{dt}{Q(t)} + C(y), \tag{9}$$

$$\frac{\partial F}{\partial y} = \frac{1}{P(y)} = C'(y) \Rightarrow C(y) = \int_{y_1}^{y} \frac{dt}{P(t)} + C_1 \Rightarrow F(x, y) = \int_{x_1}^{x} \frac{dt}{Q(t)} + \int_{y_1}^{y} \frac{dt}{P(t)} + C_1 = const.$$

$$\tag{10}$$

Определение 1.10. Если дифференциальное уравнение вида $P_1(x,y)dx + Q_1(x,y)dy = 0$ может быть сведено к виду P(y)dx + Q(x)dy = 0, то такое уравнение называется уравнением с разделяющимися переменными.

Утверждение 1.2. Задача Коши уравнения с разделяющимися переменными P(y)dx + Q(x)dy = 0 задаётся в виде $y(x_1) = y_1$, а её решение в виде

$$\int_{x_1}^{x} \frac{dt}{Q(t)} + \int_{y_1}^{y} \frac{dt}{P(t)} = 0.$$
 (11)

1.2.3 Однородные уравнения

Рассмотрим дифференциальное уравнение вида

$$y' = y\left(\frac{y}{x}\right),\,$$

которое назовём уравнением с однородной правой частью. Сделаем замену $v(x)=\frac{y}{x}$, тогда $y(x)=v(x)\cdot x,\ y'_x=x\cdot v'_x+v=g(v),$ откуда имеем $x\frac{dv}{dx}=g(v)-v.$ Если $\exists g(v_0)=v_0,$ то v_0 – решение уравнения $x\frac{dv}{dx}=g(v)-v.$ Если же $v\neq g(v),$ тогда

$$\frac{dv}{g(v) - v} = \frac{dx}{x} \Rightarrow \ln|x| + C = \int_{v_0}^{v} \frac{dt}{g(t) - t}.$$
 (12)

Таким образом, найдено решение исходного уравнения с однородной правой частью в квадратурах.

Определение 1.11. Функция $F(x^1, x^2, ..., x^n)$ называется однородной степени m, если $\forall \lambda > 0 \longrightarrow F(\lambda x^1, \lambda x^2, ..., \lambda x^n) = \lambda^m F(x^1, x^2, ..., x^n)$.

Пример 1.1. Рассмотрим уравнение P(x,y)dx = Q(x,y)dy. Если P(x,y) и Q(x,y) – однородные функции степени m, тогда

$$\frac{dy}{dx} = \frac{P(x,y)}{Q(x,y)} = \frac{x^m P(1,\frac{y}{x})}{x^m Q(1,\frac{y}{x})} = \frac{P(1,\frac{y}{x})}{Q(1,\frac{y}{x})} = g\left(\frac{y}{x}\right)$$
(13)

Таким образом исходное уравнение свелось к уравнению с однородной правой частью.

1.2.4 Линейные уравнения первого порядка

Определение 1.12. Дифференциальное уравнение вида y' + a(x)y = f(x) – линейное дифференциальное уравнение первого порядка. Дифференциальное уравнение вида y' + a(x)y = 0 – линейное однородное дифференциальное уравнение первого порядка. При этом $a(x) \in C_{I(x)}$, $f(x) \in C_{I(x)}$, где I(x) – область, на которой определены функции a(x) и f(x).

Введём оператор $L=\frac{d}{dx}+a(x)$, который действует на множество непрерывно дифференцируемых функций $\varphi\in C^1_{I(x)}$. Тогда уравнение y'+a(x)y=f(x) переписывается в виде L(y)=f(x), а уравнение y'+a(x)y=0 переписывается в виде L(y)=0.

Теорема 1.2. Введённые оператор $L = \frac{d}{dx} + a(x)$ – линейный оператор.

Доказательство. Рассмотрим линейную комбинацию $c_1\varphi_1(x) + c_2\varphi_2(x)$:

$$L(c_1\varphi_1(x) + c_2\varphi_2(x)) = (c_1\varphi_1 + c_2\varphi_2)' + a(x)(c_1\varphi_1 + c_2\varphi_2) = c_1L(\varphi_1) + c_2L(\varphi_2)$$
(14)

Таким образом, $L(c_1\varphi_1 + c_2\varphi_2) = c_1L(\varphi_1) + c_2L(\varphi_2)$, то есть L – линейный оператор.

Утверждение 1.3. Решением уравнения y' + a(x)y = 0 является

$$y = Ce^{-\int_{x_0}^x a(t)dt}, C \in \mathbb{R}.$$
 (15)

Доказательство. Найдём решение уравнения y' + a(x)y = 0:

$$\frac{dy}{y} = -a(x)dx \Rightarrow \ln|y| = -\int_{x_0}^{x} a(t)dt + \ln C \Rightarrow |y| = Ce^{-\int_{x_0}^{x} a(t)dt}, C > 0$$
 (16)

Раскрывая модуль и объединяя полученное решение с нулевым $(y \equiv 0)$, имеем

$$y = Ce^{-\int_{x_0}^x a(t)dt}, C \in \mathbb{R}.$$
 (17)

Утверждение 1.4. Решением уравнения y' + a(x)y = f(x) является

$$y = Ce^{-\int_{x_0}^x a(t)dt}, C \in \mathbb{R}.$$
 (18)

Доказательство. Найдём решение уравнения y' + a(x)y = f(x): воспользуемся уже найденным решением однородного уравнения, применяя метод вариации постоянной. То есть будем искать решение в виде

$$y = C(x)e^{-\int_{x_0}^x a(t)dt}.$$
(19)

Подставим это решение в исходное уравнение:

$$C'(x)e^{-\int_{x_0}^x a(t)dt} - a(x)C(x)e^{-\int_{x_0}^x a(t)dt} + a(x)C(x)e^{-\int_{x_0}^x a(t)dt} = f(x)$$
 (20)

$$C'(x)e^{-\int_{x_0}^x a(t)dt} = f(x) \Rightarrow C(x) = \int_{x_0}^x f(t)e^{\int_{x_0}^t a(s)ds} + C_0$$
 (21)

Таким образом найден вид C(x). Теперь подставим эту функцию:

$$y = C_0 e^{-\int_{x_0}^x a(t)dt} + e^{-\int_{x_0}^x a(t)dt} \int_{x_0}^x f(t)e^{\int_{x_0}^t a(s)ds}$$
(22)

$$y = C_0 e^{-\int_{x_0}^x a(t)dt} + \int_{x_0}^x f(t)e^{-\int_{x_0}^t a(s)ds}$$
(23)

Из полученного решения видно, что оно является суммой решения однородного уравнения и частного решения.

Утверждение 1.5. Если $\varphi_1(x)$ и $\varphi_2(x)$ – некоторые решения уравнения y' + a(x)y = f(x), то $z(x) = \varphi_1(x) - \varphi_2(x)$ – решение однородного уравнения y' + a(x)y = 0.

Доказательство. По условию $\varphi_1' + a(x)\varphi_1 = f(x)$, $\varphi_2' + a(x)\varphi_2 = f(x)$, откуда очевидно, что $(\varphi_1 - \varphi_2)' + a(\varphi_1 - \varphi_2) = 0$. Обозначив $z = \varphi_1 - \varphi_2$, получим z' + a(x)z = 0, то есть z – решение однородного уравнения.

Билет 1

Уравнение Бернулли

Определение 1.13. Д.у. вида $y' + a(x) \cdot y = y^r \cdot f(x)$ (24), где $a(x), f(x) \in C^1, r \in \mathbb{R}, r \neq 1$ называется уравнением Бернулли.

Утверждение 1.6. Если r>0, то $y\equiv 0$ - тривиальное решение. Пусть $y\neq 0$, разделим ДУ на $y^r\Rightarrow \frac{y'}{y^r}+a(x)\cdot y^{1-r}=f(x)$. Замена: $u(x)=y^{1-r}\Rightarrow u'=(1-r)\cdot y^{-r}\cdot y'\Rightarrow \Rightarrow \frac{1}{1-r}\cdot u'+a(x)\cdot u=f(x)$ - свелось к линейному уравнению.

Уравнение Риккати

Определение 1.14. Д.у. вида $y' + a(x) \cdot y^2 + b(x) \cdot y + c(x)$ (25), где $a(x), b(x) \in C^1_{I(x)}$, $c(x) \in C_{I(x)}$ называется уравнением Риккати.

Утверждение 1.7. В общем случае уравнение Риккати не допускает решений в квадратурах, однако, если известно некоторое решение $y=\varphi(x)$, то сделав замену $y=u+\varphi$, получаем: $\varphi'=u\varphi^2+b\varphi+c$ $\varphi'+u'=u\varphi^2+2a\varphi u+au^2+b\varphi+bu+c\Rightarrow u'=au^2+(2a\varphi+b)u$ - свелось к уравнению Бернулли.

Методы понижения порядка дифференциальных уравнений

Утверждение 1.8. Рассмотрим множество преобразований плоскости

 $ar{x} = arphi(x,y,\lambda), ar{y} = \psi(x,y,\lambda)$ (26) B (26) каждому $\lambda \in \mathcal{D} \subset \mathbb{R}$ соответствует некоторое преобразование, например, $ar{x} = \lambda x, ar{y} = \lambda y, \lambda > 0$ - гомотетия. Множество преобразований (26) является группой преобразований, если оно содержит любую композицию (26), $m.e. \ \exists \lambda_0 : \varphi(\varphi(x,y,\lambda_1),\psi(x,y,\lambda_2)) = \varphi(x,y,\lambda_0), \ codержит тожедественное преобразование, <math>m.e. \ \exists \lambda_0 : \varphi(x,y,\lambda_0) = x; \ \psi(x,y,\lambda_0) = y, \ u \ вместе \ c$ любым преобразованием содержит и обратное: $\forall \lambda \in \mathcal{D} : \exists \ \lambda_0 : x = ar{\varphi}(ar{x}, ar{y}, \lambda_0); \ y = ar{\psi}(ar{x}, ar{y}, \lambda_0)$ $T.o. \ ecлu \ (26)$ - группа, то $x = ar{\varphi}(ar{x}, ar{y}, \lambda), \ y = ar{\psi}(ar{x}, ar{y}, \lambda); \ ecлu \ s \ \mathcal{A} \mathcal{Y} \ y' = f(x,y) \ ocyuqe-$

 $T.o.\ ecnu\ (26)$ - группа, то $x=ar{arphi}(ar{x},ar{y},\lambda),\ y=\psi(ar{x},ar{y},\lambda);\ ecnu\ s\ \mathcal{Д} Y\ y'=f(x,y)$ осуществить переход к новым координатам, то

$$\frac{dy}{dx} = \frac{\psi'_{\bar{x}}d\bar{x} + \psi'_{\bar{y}}d\bar{y}}{\varphi'_{\bar{x}}d\bar{x} + \varphi'_{\bar{y}}d\bar{y}} = f(\bar{\varphi}(\bar{x}, \bar{y}, \lambda), \bar{\psi}(\bar{x}, \bar{y}, \lambda)) = \tilde{f}(\bar{x}, \bar{y}, \lambda) \Rightarrow$$

$$\Rightarrow \frac{\psi'_{\bar{x}} + \psi'_{\bar{y}} \cdot \frac{d\bar{y}}{d\bar{x}}}{\varphi'_{\bar{x}} + \varphi'_{\bar{y}} \cdot \frac{d\bar{y}}{d\bar{x}}} = \tilde{f}(\bar{x}, \bar{y}, \lambda) \Rightarrow \frac{d\bar{y}}{d\bar{x}} = \frac{\tilde{f} \cdot \varphi'_{\bar{x}} - \psi'_{\bar{x}}}{\psi'_{\bar{y}} - \tilde{f} \cdot \varphi'_{\bar{y}}} \tag{27}$$

(27) является записью y'=f(x,y) в новых координатах. Говорят, что y'=f(x,y) допускает группу $x=\bar{\varphi}(\bar{x},\bar{y},\lambda),\ y=\bar{\psi}(\bar{x},\bar{y},\lambda),\$ если оно не изменяется при переходе к новым переменным, т.е. $\frac{d\bar{y}}{d\bar{x}}=f(\bar{x},\bar{y})$

Следствие 1.2.1. Рассматриваем уравнения вида F(x, y, y', y'') = 0 (28)

1.
$$F(x,y'',y') = 0$$
 (29) Замена $y'(x) = v(x) \Rightarrow y''(x) = v'(x)$ и (29) в этом случае имеет вид $F(x,v(x),v'(x)) = 0 \xrightarrow{peuaem} V(x) = y(x,c_1)$. Тогда решение (29) запишется в виде

 $\frac{dy}{dx}=g(x,c_1)\Rightarrow y(x)=c_2+\int g(x,c_1)dx$. Заметим, что (29) допускает группу сдвига $x=\bar x,\ y=\bar y+y_0$

- 2. F(y,y',y'') = 0 (не содержит явно x). Замена: y' = V(y), тогда $y'' = \frac{dV}{dx} = \frac{dV}{dy} \frac{dy}{dx} = V \frac{dV}{dy} \Rightarrow F(y,V,y\frac{dV}{dy}) = 0$ ДУ первого порядка. Решение $V(y) = g(y,c_1) \Rightarrow \frac{dy}{dx} = g(y,c_1) \Rightarrow$ Решение (30): $\int \frac{dy}{g(y,c_1)} = x + c_2$. Заметим, что (30) допускает группу сдвигов $x = \bar{x} + x_0$, $y = \bar{y}$
- 3. F(x, y'', y', y) = 0 и F oднородная степени m по y'', y', y, $m.e. \forall \lambda > 0 \rightarrow F(x, \lambda y'', \lambda y', \lambda y) = \lambda^m \cdot F(x, y'', y', y)$. B таком случае ДУ допускает группу $x = \bar{x}, y = \lambda \bar{y}$. Замена: $z(x) = \frac{y'}{y} \Rightarrow y' = z(x)y$ $\Rightarrow y'' = z'y + zy' = z'y + z^2y = y \cdot (z' + z^2) \Rightarrow F(x, y, zy, y(z' + z^2)) = 0$ $\Rightarrow y^m \cdot F(x, 1, z, z' + z^2) = 0$ относительно z имеем ур-ние первого порядка. Если его решение $z(x) = g(x, c_1)$, то $\frac{y'}{y} = g(x, c_1) \Rightarrow \frac{dy}{y} = g(x, c_1)dx \Rightarrow \ln |y| = \int g(x, c_1)dx + c_2$
- 4*. Будем говорить, что функция $F(x,y,y'',...,y^{(n)})$ является квазиоднородной функцией степени r, если $\exists \alpha \in \mathbb{R} : \forall \lambda > 0 : F(\lambda x, \lambda^{\alpha} y, \lambda^{\alpha-1} y',...,\lambda^{\alpha-n} y^{(n)}) = \lambda^r \cdot F(x,y,...,y^{(n)}).$

Рассмотрим множество преобразований:

$$\begin{cases} x = \lambda \bar{x} \\ y = \lambda^{\alpha} \bar{y} \end{cases}, \quad \epsilon \partial e \ \lambda > 0 \tag{31}$$

Такое множество преобразований перепишем в виде:

$$\begin{cases} x = e^{\beta} \cdot \bar{x} \\ y = e^{\alpha\beta} \bar{y} \end{cases}$$

Eсли F в (30) является квазиоднородной, то (30) допускает группу растяжений (31):

$$F(x, y'', y', y) = 0 \xrightarrow{npeo6p.} F(\lambda \bar{x}, \lambda^{\alpha} \bar{y}, \lambda^{\alpha-1} \bar{y'}, \lambda^{\alpha-2} \bar{y''}) = \lambda^{r} \cdot F(\bar{x}, \bar{y}, \bar{y'}, \bar{y''}) = 0$$

$$\downarrow \downarrow$$

$$F(\bar{x}, \bar{y}, \bar{y'}, \bar{y''}) = 0$$

Метод введения параметра для уравнения первого порядка, не разрешенного относительно производной.

Утверждение 1.9. Рассмотрим F(x,y,y')=0 322, где F(x,y,y') как функция трёх переменных является непрерывно дифференцируемой в области $G \subset \mathbb{R}^3$ Решение уравнения F(x,y,y')=0 будем представлять как кривую в параметрическом виде:

$$\gamma: \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} t \in [t_1, t_2], \ \varphi(t), \psi(t) \in C^1_{[t_1, t_2]}$$
 (33)

Кривая (33), является интегральной кривой (32) \Rightarrow

$$\Rightarrow F\left(\varphi(t), \psi(t), \frac{\psi_t'}{\varphi_t'}\right) = 0 \quad \forall t \in [t_1, t_2]$$
(34)

Будем решать эквивалентную систему положив $p=rac{dy}{dt}$:

$$\begin{cases} F(x, y, p) = 0 \\ dy = pdx \end{cases}$$
 (35)

Утверждение 1.10. Уравнение (32) эквивалентно системе (35).

Доказательство. Пусть γ - интегр. кривая (32). Положим $p = \frac{\psi'}{\varphi'} = \frac{dy}{dx}$ - второе уравнение в системе (35) выполнено, а первое выполнено в силу подстановки в (34). Обратно, пусть $x(t) = \varphi(t), \ y(t) = \psi(t), p$ - решение (34). \Rightarrow Из второго уравнения системы: $p = \frac{\psi'_t}{\varphi'_t} \to \Pi$ одставляем в первое уравнение системы и получаем само уравнение (34)

Утверждение 1.11. Рассмотрим метод решения (32), который называется методом введения параметра.

Первое ур-ние в системе (35) рассмотрим как задающее в $\mathbb{R}^3_{(x,y,p)}$ гладкую поверхность S, для которой параметрическое представление имеет вид:

$$\begin{cases} x = \varphi(u, v) \\ y = \psi(u, v) \Rightarrow F(\varphi(u, v); \psi(u, v); \chi(u, v)) \equiv 0 \\ p = \chi(u, v) \end{cases}$$

Потребуем, чтобы $rank \begin{pmatrix} \frac{\delta \varphi}{\delta u} & \frac{\delta \psi}{\delta u} & \frac{\delta \chi}{\delta u} \\ \frac{\delta \varphi}{\delta v} & \frac{\delta \psi}{\delta v} & \frac{\delta \chi}{\delta v} \end{pmatrix} = 2, \ \forall u,v \in G \ m.e. \ S \ была \ простой гладкой пов.$

Тогда остаётся удовлетворить второму уравнению системы (35):

$$\frac{\delta\psi}{\delta u}du + \frac{\delta\psi}{\delta v}dv = \chi \cdot \left(\frac{\delta\varphi}{\delta u}du + \frac{\delta\varphi}{\delta v}dv\right) \Rightarrow \left(\frac{\delta\psi}{\delta u} - \chi\frac{\delta\varphi}{\delta v}\right)du = \left(\chi\frac{\delta\varphi}{\delta v} - \frac{\delta\psi}{\delta v}\right)dv \qquad (36)$$

Если $P(u,v) \neq 0 \ \forall (u,v) \in G$, то из (36) получаем Д.У.: $\frac{du}{dv} = \frac{Q(u,v)}{P(u,v)}$

Его решение u=u(v,c), тогда $\begin{cases} x=\varphi(u(v,c),v)=x(v,c) & \text{- является параметрическим} \\ y=\psi(u(v,c),v)=y(v,c) & \text{представлением решения (32)} \end{cases}$

Если жее существует связь между u u v: $u=f(v), P(f(v),v)=Q(f(v),v)=0 \ \forall v\in G,$ то u=f(v) явл. решением $\left(\chi\frac{\delta\varphi}{\delta v}-\frac{\delta\psi}{\delta v}\right)dv,$ a

$$\begin{cases} x = x(v) \\ y = y(v) \end{cases}$$
 - явл. решением (36)