Claims

- 1. A flame retardant composition which comprises
 - (a) a thermoplastic polymeric substrate,
 - (b) a mixture of
 - a hydroxylamine ester having a structural element of formula (I) or formula (I')
 or a polymeric hydroxylamine ester having a repetitive structural unit of formula (II) or (II')

wherein

X is hydrogen, C_1 - C_{36} alkyl, C_2 - C_{36} alkenyl, C_2 - C_{18} alkinyl, C_6 - C_{10} aryl, -O- C_1 - C_{18} alkyl,

-O-C₆-C₁₀aryl, -NH-C₁-C₁₈alkyl, -NH-C₆-C₁₀aryl, -N(C₁-C₆alkyl)₂;

X' is a direct bond or C₁-C₃₆alkylene, C₂-C₃₆alkenylene, C₂-C₃₆alkinylene,

-(C₁-C₆alkylene)-phenylene-(C₁-C₆alkylene)- or a group from a dimer acid:

 G_1 , G_2 , G_3 and G_4 are independently alkyl of 1 to 4 carbon atoms, or G_1 and G_2 together and G_3 and G_4 together, or G_1 and G_2 together or G_3 and G_4 together are pentamethylene; G_5 and G_6 are independently hydrogen or C_1 - C_4 alkyl;

 R_1 is C_1 - C_{12} alkyl, C_5 - C_7 cycloalkyl, C_7 - C_9 aralkyl, C_2 - C_{18} alkanoyl, C_3 - C_5 alkenoyl or benzoyl; and

- (ii) a flame retardant compound selected from the group consisting of halogenated, phosphorus, boron, silicon and antimony compounds, metal hydroxides, metal hydrates, metal oxides and mixtures thereof.
- 2. A composition according to claim 1 wherein the hydroxylamine ester is of formula (la) or (l'a)

- 65 -

$$R_{20}$$
 $N-O$ X (Ia) , R_{30} R_{30} R_{30} R_{30} R_{30} R_{30} R_{30} R_{30} R_{30} R_{30}

X is hydrogen, C_1 - C_{36} alkyl, C_2 - C_{36} alkenyl, C_2 - C_{18} alkinyl, C_6 - C_{10} aryl, -O- C_1 - C_{18} alkyl, -O- C_6 - C_{10} aryl, -NH- C_1 - C_{18} alkyl, -NH- C_6 - C_{10} aryl, -N(C_1 - C_6 alkyl)₂;

X' is a direct bond or C_1 - C_{36} alkylene, C_3 - C_{36} alkylene, C_3 - C_{36} alkylene, -(C_1 - C_6 alkylene)-phenyl-(C_1 - C_6 alkylene) or a group from a dimer acid;

 R_{20} and R_{30} independently are unsubstituted C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl, C_2 - C_{18} alkinyl or with halogen, CN, NO₂ or -COOR₄₀ substituted or with O or NR₄₀ interrupted C_1 - C_{18} alkyl, C_2 - C_{18} alkenyl or C_2 - C_{18} alkinyl;

R₄₀ is H, phenyl or C₁-C₁₈alkyl; or

 R_{20} and R_{30} together with the nitrogen atom to which they are bound form a 5 or 6 membered ring which may be interrupted by a nitrogen or oxygen atom and which may be substituted by one or more C_1 - C_6 alkyl groups, carboxyl groups, C_1 - C_{18} alkoxy groups, C_1 - C_{18} alkanoyloxy groups.

3. A composition according to claim 1 wherein the structural element of formula (I) is of formula (Ib)

O
$$G_2$$
 G_6 (Ib) wherein * denotes a bond and the other substituents G_3 G_4 G_5

are as defined in claim 1.

4. A composition according to claim 3 wherein the hydroxylamine ester is of formula A, B or C.

wherein

 G_1 , G_2 , G_3 and G_4 are methyl or G_1 and G_3 are methyl and G_2 and G_4 are ethyl or G_1 and G_2 are methyl and G_3 and G_4 are ethyl;

 $G_{\scriptscriptstyle{5}}$ and $G_{\scriptscriptstyle{6}}$ are independently hydrogen or methyl;

m is 1;

R is hydrogen, C₁-C₁₈alkyl which is uninterrupted or C₂-C₁₈alkyl which is interrupted by one or more oxygen atoms, cyanoethyl, benzoyl, glycidyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to

15 carbon atoms, or an α,β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms, where each carboxylic acid can be substituted in the aliphatic, cycloaliphatic or aromatic moiety by 1 to 3 -COOZ₁₂ groups, in which Z₁₂ is H, C₁-C₂₀alkyl, C₃-C₁₂alkenyl, C₅-C₇cycloalkyl, phenyl or benzyl; or R is a monovalent radical of a carbamic acid or phosphorus-containing acid or a monovalent silyl radical;

p is 1;

 R_1 is C_1 - C_{12} alkyl, C_5 - C_7 cycloalkyl, C_7 - C_8 aralkyl, C_2 - C_{18} alkanoyl, C_3 - C_5 alkenoyl or benzoyl; R_2 is C_1 - C_{18} alkyl, C_5 - C_7 cycloalkyl, C_2 - C_8 alkenyl unsubstituted or substituted by a cyano, carbonyl or carbamide group, or is glycidyl, a group of the formula - $CH_2CH(OH)$ -Z or of the formula -CO-Z- or -CONH-Z wherein Z is hydrogen, methyl or phenyl; C_3 - C_5 - C_7

 R_3 is $C_2\text{-}C_8$ alkylene or hydroxyalkylene or $C_4\text{-}C_{38}$ acyloxyalkylene and

X is hydrogen, C₁-C₃₆alkyl or C₆-C₁₀aryl.

5. A composition according to claim 4 wherein the hydroxylamine ester is of formula A or C G_1 , G_2 , G_3 and G_4 are methyl or G_1 and G_3 are methyl and G_2 and G_4 are ethyl; G_5 and G_6 are independently hydrogen or methyl;

m is 1;

R is hydrogen, C_1 - C_{18} alkyl, a monovalent radical of an aliphatic carboxylic acid having 2 to 18 carbon atoms, of a cycloaliphatic carboxylic acid having 7 to 15 carbon atoms, or an α,β -unsaturated carboxylic acid having 3 to 5 carbon atoms or of an aromatic carboxylic acid having 7 to 15 carbon atoms;

n is 1:

 R_3 is C_2 - C_8 alkylene or hydroxyalkylene or C_4 - C_{38} acyloxyalkylene and X is hydrogen, C_1 - C_{36} alkyl or C_6 - C_{10} aryl.

6. A composition according to claim 1 wherein the hydroxylamineester is a oligomer or polymer obtainable by reacting a dicarboxylic acid or a dicarboxylic acid derivative with a compound of formula A1 or B1 or by reacting a diisocyanate with a compound of formula A1

WO 03/087211

$$G_1$$
 G_2
 G_6
 G_6
 G_7
 G_7
 G_7
 G_7
 G_8
 G_8
 G_8
 G_8
 G_8
 G_9
 G_9

wherein the substituents G₁, G₂, G₃, G₄, G₅, G₆ and R₁ are as defined in claim 6.

- 7. A composition according to claim 1 wherein the hydroxylamine ester is present in an amount of from 0.1 to 15 weight-% based on the weight of the polymer.
- 8. A composition according to claim 1 wherein the polymer substrate is selected from the group of resins consisting of the polyolefins, the thermoplastic olefins, styrenic polymers and copolymers.
- 9. A composition according to claim 8 wherein the polymer substrate is polypropylene, polyethylene, thermoplastic olefin (TPO), polystrene, ABS, high impact polystyrene, expandable polystyrene (EPS) and extrusion foamed polystyrene.
- 10. A composition according to claim 1 wherein the flame retardant component (ii) is selected from the group consisting of

tetraphenyl resorcinol diphosphite (FYROLFLEX® RDP)

chloroalkyl phosphate esters (ANTIBLAZE® AB-100 or FYROL® FR-2)

polybrominated diphenyl oxide (DE-60F)

decabromodiphenyl oxide (DBDOP),

antimony trioxide (Sb₂O₃),

antimony pentoxide (Sb₂O₅),

tris[3-bromo-2,2-(bromomethyl)propyl] phosphate (PB 370®),

triphenyl phosphate,

bis(2,3-dibromopropyl ether) of bisphenol A (PE68),

ammonium polyphosphate (APP) or (HOSTAFLAM® AP750),

resorcinol diphosphate oligomer (RDP),

brominated epoxy resin,

tetrabromobisphenol A-bis-(allyl ether), hexabromocyclododecane, dibromocyclohexane tribromophenol-cyanurate (Dead Sea® FR-245) ethylene-bis(tetrabromophthalimide) (BT93), bis(hexachlorocyclopentadieno)cyclooctane (DECLORANE PLUS®), calcium sulfate chlorinated paraffins, magnesium carbonate, melamine phosphates, melamine pyrophosphates, molybdenum trioxide, zinc oxide, 1,2-bis(tribromophenoxy)ethane (FF680), tetrabromo-bisphenol A (SAYTEX® RB100), Saytex® BC-56HS (Albemarle) magnesium hydroxide, alumina trihydrate, zinc borate, and ethylenediamine diphosphate (EDAP). Oligomeric diisopropyl benzene

- 11. A composition according to claim 10 wherein the flame retardant compound (ii) is tris[3-bromo-2,2-(bromomethyl)propyl] phosphate (PB370), hexabromocyclododecane, tetrabromobisphenol A-bis-(allyl ether), dibromocyclohexane and Saytex BC-56HS (Albemarle).
- 12. A composition according to claim 1 wherein the flame retardant component (ii) is present in an amount of from 0.1 to 30 weight-% based on the weight of the polymer.
- 13. A composition according to claim 1 wherein the ratio by weight between component (i) and (ii) is from 10:1 to 1:100.

14. A composition according to claim 1, which additionally contains an organic peroxide and/or another radical generator.

- 70 -

- 15. A composition according to claim 1 which additionally contains a further additive selected from the group consisting of a UV absorber, a sterically hindered amine, a phenolic antioxidant, a phosphite or phosphonite and a benzofuranone or an indolinone.
- 16. A method of making a thermoplastic polymer flame retarding by incorporating into the thermoplastic polymer

a mixture of

 a hydroxylamine ester having a structural element of formula (I) or formula (I') or with a polymeric hydroxylamine ester having a repetitive structural unit of formula (II) or (II')

wherein

X' is a direct bond or C₁-C₃₆alkylene, C₂-C₃₆alkenylene, C₂-C₃₆alkinylene,

-(C₁-C₆alkylene)-phenylene-(C₁-C₆alkylene)- or a group from a dimer acid;

 G_1 , G_2 , G_3 and G_4 are independently alkyl of 1 to 4 carbon atoms, or G_1 and G_2 together and G_3 and G_4 together, or G_1 and G_2 together or G_3 and G_4 together are pentamethylene; G_5 and G_6 are independently hydrogen or C_1 - C_4 alkyl;

 R_1 is C_1 - C_{12} alkyl, C_5 - C_7 cycloalkyl, C_7 - C_8 aralkyl, C_2 - C_{18} alkanoyl, C_3 - C_5 alkenoyl or benzoyl; and

- 71 -

(ii) a flame retardant compound selected from the group consisting of halogenated, phosphorus, boron, silicon and antimony compounds, metal hydroxides, metal hydrates, metal oxides and mixtures thereof.

17. A Flame retardant mixture comprising

(i) a hydroxylamine ester having a structural element of formula (I) or formula (I') or with a polymeric hydroxylamine ester having a repetitive structural unit of formula (II) or (II')

wherein

X is hydrogen, C₁-C₃₆alkyl, C₂-C₃₈alkenyl, C₂-C₁₈alkinyl, C₆-C₁₀aryl, -O-C₁-C₁₈alkyl,

 $-O-C_6-C_{10}$ aryl, $-NH-C_1-C_{18}$ alkyl, $-NH-C_6-C_{10}$ aryl, $-N(C_1-C_6$ alkyl)₂;

X' is a direct bond or C₁-C₃₆alkylene, C₂-C₃₆alkenylene, C₂-C₃₆alkinylene,

-(C₁-C₆alkylene)-phenylene-(C₁-C₆alkylene) or a group from a dimer acid;

 G_1 , G_2 , G_3 and G_4 are independently alkyl of 1 to 4 carbon atoms, or G_1 and G_2 together and G_3 and G_4 together, or G_1 and G_2 together or G_3 and G_4 together are pentamethylene; G_5 and G_6 are independently hydrogen or C_1 - C_4 alkyl;

 R_1 is C_1 - C_{12} alkyl, C_5 - C_7 cycloalkyl, C_7 - C_8 aralkyl, C_2 - C_{18} alkanoyl, C_3 - C_5 alkenoyl or benzoyl; and

- (ii) a flame retardant compound selected from the group consisting of halogenated, phosphorus, boron, silicon and antimony compounds, metal hydroxides, metal hydrates, metal oxides and mixtures thereof.
- 18. Use of a mixture according to claim 17 as flame retarding additive for thermoplastic polymer articles.

- 72 -

19. Use of a hydroxylaminester according to claim 1 as flame retarding additive for thermoplastic polymer articles.