

Phystech@DataScience

Временные ряды

Временные ряды

Временной ряд — значения меняющихся во времени признаков, полученных в некоторые моменты времени.

Ряд разывается *одномерным*, если признак один, иначе — *многомерным*.

Ô

Временные ряды

Временной ряд — значения меняющихся во времени признаков, полученных в некоторые моменты времени.

$$(y_t,t\in\mathbb{N})$$
 — временной ряд.
Пусть известны значения $y_1,...,y_T$.

Задача прогнозирования.

Построить функцию f, т.ч. величина $\widehat{y}_{T+h} = f(y_1,...,y_T,h)$ как можно лучше приближает значение y_{T+h} , где $h \in \{1,...,H\}$, величина H — горизонт прогнозирования.

Кроме этого имеет смысл строить **предсказательный интервал**, то есть интервал (d_{T+h}, u_{T+h}) , т.ч. $P(d_{T+h} \leqslant y_{T+h} \leqslant u_{T+h}) \geqslant \alpha$.

Максимальный спрос на электричество в штате Виктория (Австралия) за 30-минутные интервалы с 10 января 2000 в течение 115 дней.

Данные

Ежемесячные продажи антидиабетических лекарств в Австралии. Июль 1991 — Июнь 2008

Данные

Заболевание коронавирусом

Попробуем приблизить линейной регрессией

Попробуем приблизить линейной регрессией

Прогнозирование временного ряда с помощью сведения к задаче регрессии

Что мы вообще хотим?

- 1. Знаем значения ряда (зеленые) до момента времени t.
- 2. Хотим предсказать (синее) будущие значения ряда (красные).

Основная идея

Модель

$$y_t = f(y_{t-1}, ..., y_{t-p}),$$

где f — произвольная функция.

Идея: будем строить функцию f некоторым ML-методом.

Вспомним, какие ML модели регрессии мы знаем:

- Линейная регрессия;
- Решающие деревья;
- Леса;
- Другие.

Признаки: общий принцип

Хотим построить признаковое описание момента времени t.

Признаки: общий принцип

Хотим построить признаковое описание момента времени t.

Известно все до момента времени t.

Признаки: общий принцип

Хотим построить признаковое описание момента времени t.

Известно все до момента времени t.

Берем любые признаки, которые зависят только от значений до момента времени t.

Замечание.

Нужно учитывать, что часть данных может поступать с задержкой.

Признаки: даты

```
E
```

Пусть дана дата: 29.04.2023 17:05.

Отсюда можно получить следующие признаки:

- 1. день недели: [6];
- 2. месяц: [4];
- 3. год: [2023];
- 4. сезон: [весна];
- праздник: [0];
- 6. выходной: [0];
- 7. час: [17];

Признаки: предыдущие значения ряда

Время	Таргет	Признаки
t	Уt	$y_{t-1},,y_{t-p}$
t-1	y_{t-1}	$y_{t-2},,y_{t-p-1}$
t - 2	y_{t-2}	$y_{t-3},,y_{t-p-2}$

Реализация: сдвиг временного ряда на i шагов вперед.

Date	Value	Value _{t-1}	Value _{t-2}
1/1/2017	200	NA 🍁	NA
1/2/2017	220	200	NA 🗸
1/3/2017	215	220	200
1/4/2017	230	215	220
1/5/2017	235	230	215
1/6/2017	225	235	230
1/7/2017	220	225	235
1/8/2017	225	220	225
1/9/2017	240	225	220
1/10/2017	245	240	225

Признаки: скользящее окно

По предыдущим значеням $y_{t-1},...,y_{t-p}$ можно посчитать:

- среднее;
- взвешенное среднее;
- экспоненциальное сглаживание;
- медиана;
- минимум/максимум;
- std;
- любая другая статистика.

Подобное скользящее окно можно рассматривать и по другим временным факторам.

Примеры:

- Средняя температура на прошлой неделе для предсказания температуры на завтра.
- 2. Средняя *влажность* на прошлой неделе для предсказания температуры на завтра.

Признаки: сезонность

Для учета сезонности можно использовать следующие признаки.

- Значение переменной сутки/неделю/месяц/год назад.
 Такие факторы также можно усреднять.
- ▶ Сезонность, полученная методами декомпозирования ряда.

Примеры:

- 1. Значение температуры год назад.
- 2. Среднее значение температуры 23 ноября за 5 последних лет.
- 3. Среднее значение температуры за 5 последних лет на неделе, в которую входит 23 ноября.

Признаки: счетчики

Идея:

группировать данные можно не только по временным факторам, но и по любым категориальным.

Пример:

Сегодня нет ветра. Какую среднюю температуру в безветренные дни мы наблюдали ранее?

Уточнение:

Можно также использовать сразу несколько факторов.

Пример:

Сегодня нет ветра, 23 ноября.

Какую ср. температуру в безветренные дни в ноябре мы наблюдали ранее?

Признаки: резюме

- Используются только данные из прошлого.
- Для тестового множества используются статистики,
 посчитанные по всей или последней части обучающей выборки.
- Большое количество признаков может привести к вычислительным затратам.

Замечание:

Можно генерировать и другие признаки с учетом знаний о предметной области.

Построение прогноза

Пусть требуется построить прогноз на H шагов вперед. Способы построить предсказание моделью, предсказывающей скаляр:

- Рекурсивная стратегия;
- Прямая стратегия;
- Гибридная стратегия.

Если модель предсказывает вектор, то у нас еще больше вариантов.

Построение прогноза: Рекурсивная стратегия

Для каждого $t_0 \leqslant t \leqslant T$ создается объект обучающей выборки:

- ightharpoonup Признаковое описание по истории ряда до мом. времени t-1.
- ▶ Целевая метка значение y_t .

Прогноз строится на шаг вперед, а далее рекурсивно.

Т.е. спрогнозир. значение используется для след. предсказания.

Testing Set to forecast M+1

Row Id	M-2	M-1	M	M+1 (Target)		
10	74	89	122	XXX		

Testing Set to forecast M+2

Row Id	M-2	M-1	M	M+1 (Target)
11	89	122	XXX	YYY

Testing Set to forecast M+3

Row Id	M-2	M-1	M	M+1 (Target)
12	122	XXX	YYY	ZZZ

Построение прогноза: Рекурсивная стратегия

Преимущества:

- можем предсказать на любой горизонт;
- ▶ обучается одна модель.

Недостатки:

происходит накопление ошибок.

Построение прогноза: Прямая стратегия

Создается H моделей прогнозирования: для каждого момента $t_0 \leqslant t \leqslant t_0 + H - 1$ строится своя модель прогнозирования.

- Признаковое описание история ряда до мом. времени t_0-1 ; Признаки **одни и те же** для каждой модели.
- ightharpoonup Целевая метка значение y_t .

Row Id	M-2	M-1	M	M+1	
1	94	125	62	57	
2	125	62	57	92	
3	62	57	92	134	
4	57	92	134	120	
5	92	134 1	120	134	
6	134	120	134	132	
7	120	134	132	74 89	
8	134	132	74		
9	132	74	89	122	

1	94	125	62	92
2	125	62	57	134
3	62	57	92	120
4	57	92	134	134
5	92	134	120	132
6	134	120	134	74
7	120	134	132	89
8	134	132	74	122

ow Id	M-2	M-1	M	M+3	
1	94	125	62	134	
2	125	62	57	120	
3	62	57	92	134	
4	57	92	134	132	
5	92	134	120	74	
6	134	120	134	89	
7	120	134	132	122	

Testing Set (M+1 model)									
Row Id	M-2	M-1	M	M+1					
	74	89	122	?					

Testing Set (M+2 model)									
Row Id	M-2	M-1	M	M+2					
10	74	89	122	?					

lesting Set (M+3 model)									
Row Id	M-2	M-1	M	M+3					
10	74	89	122	?					

Построение прогноза: Прямая стратегия

Преимущества:

нет накопления ошибок.

Недостатки:

- прогнозы получаются независимо;
- нужно обучать много моделей.

Построение прогноза: Гибридная стратегия

Создается H моделей прогнозирования:

- 1. модель для прогноза на 1 шаг вперед;
- модель для прогноза на 2 шага вперед, используя прогноз уже обученных моделей в качестве признаков;
- 3. и так далее обучается H моделей.

Признаковое описание:

- ightharpoonup история ряда до мом. времени t_0-1 ;
- lacktriangle предсказание предыдущих моделей для $t_0, t_0+1,...,t-1.$

	Train	ning Set (M+	1 model)		Training Set (M+2 model)					Training Set (M+3 model)							
Row Id	M-2	M-1	M	M+1	Row Id	M-3	M-2	M-1	M	M+1	Row Id	M-4	M-3	M-2	M-1	M	M+1
1	94	125	62	57	1	94	125	62	57	92	1	94	125	62	57	92	134
2	125	62	57	92	2	125	62	57	92	134	2	125	62	57	92	134	120
3	62	57	92	134	3	62	57	92	134	120	3	62	57	92	134	120	134
4	57	92	134	120	4	57	92	134	120	134	4	57	92	134	120	134	132
5	92	134	120	134	5	92	134	120	134	132	5	92	134	120	134	132	74
6	134	120	134	132	6	134	120	134	132	74	6	134	120	134	132	74	89
7	120	134	132	74	7	120	134	132	74	89	7	120	134	132	74	89	122
8	134	132	74	89	8	134	132	74	89	122							
9	132	74	89	122													
	Test	ting Set (M+	1 model)			т	esting Set (M+2 model)				Testin	g Set (M+3	model)		
Row Id	M-2	M-1	M	M+1	Row Id	M-3	M-2	M-1	M	M+1	Row Id	M-4	M-3	M-2	M-1	M	M+1
10	74	89	122	XXX	9	74	89	122	XXX	YYY	8	74	89	122	XXX	YYY	ZZZ

Построение прогноза: Гибридная стратегия

Преимущества:

- нет накопления ошибок;
- выучиваются зависимости между прогнозами.

Недостатки:

- сложность реализации;
- нужно обучать много моделей.

Модели для нескольких временных рядов

В реальности очень часто нужно предсказывать сразу огромное количество временных рядов.

Примеры:

- Предсказание температуры для различных регионов.
- Предсказания уровня продаж для различных типов товаров (молоко/яблоки/мясо).
- Предсказание концентрации различных веществ после введения лекарства для разных пациентов.

Проблема:

- модель на каждый временной ряд слишком много ресурсов и не масштабируемо;
- мало моделей —
 плохие предсказания для каждого ряда по отдельности.

Модели для нескольких временных рядов

Идея:

Создавать модели не для каждого временного ряда, а для группы временных рядов.

Например, только для продаж молока в разных регионах или только для концентрации гемоглобина для разных пациентов.

Оценка качества моделей

Ô

Метрики качества регрессии

Средняя квадратичная ошибка

$$MSE = \frac{1}{T - R + 1} \sum_{t=R}^{I} (\widehat{y}_t - y_t)^2.$$

Средняя абсолютная ошибка

$$MAE = \frac{1}{T - R + 1} \sum_{t=R}^{I} |\widehat{y}_t - y_t|.$$

Средняя абсолютная ошибка в процентах

$$MAPE = \frac{100}{T - R + 1} \sum_{t=R}^{T} \left| \frac{\widehat{y}_t - y_t}{y_t} \right|.$$

Взвешенная средняя ошибка в процентах.

WAPE =
$$100 \cdot \frac{\sum_{t=R}^{T} |\widehat{y}_t - y_t|}{\sum_{t=R}^{T} |y_t|}$$
.

Любая другая метрика, исходя из целей вашей задачи.

Кросс-валидация для временных рядов. Вариант 1

- 1.1 Обучаемся на $y_1 \dots y_t$, прогнозируем $\widehat{y}_{t+1} \dots \widehat{y}_{t+\Delta t}$.
- 1.2 Обучаемся на $y_1 \dots y_{t+\Delta t}$, прогнозируем $\widehat{y}_{t+\Delta t+1} \dots \widehat{y}_{t+2\Delta t}$.

...

- 1.k Обучаемся на $y_1 \dots y_{t+(k-1)\Delta t}$, прогнозируем $\widehat{y}_{t+(k-1)\Delta t+1} \dots \widehat{y}_{t+k\Delta t}$.
- 2. Считаем ошибки и усредняем.

Кросс-валидация для временных рядов. Вариант 2

- 1.1 Обучаемся на $y_1 \dots y_t$, прогнозируем $\widehat{y}_{t+1} \dots \widehat{y}_{t+\Delta t}$.
- 1.2 Обучаемся на $y_{1+\Delta t}$... $y_{t+\Delta t}$, прогнозируем $\widehat{y}_{t+\Delta t+1}$... $\widehat{y}_{t+2\Delta t}$.
- 1.k Обучаемся на $y_{1+(k-1)\Delta t}\dots y_{t+(k-1)\Delta t},$ прогнозируем $\widehat{y}_{t+(k-1)\Delta t+1}\dots \widehat{y}_{t+k\Delta t}.$
 - 2. Считаем ошибки и усредняем.

Резюме: стандартные модели ML для временных рядов

Преимущества

- 1. Свободно используют дополнительную информацию экзогенные факторы или признаки.
- Много рядов много моделей.
 Для нейр. сетей можно использовать одну модель для всего.

Пример: прогнозирование различных погодных параметров.

Недостатки

- 1. Предсказательные интервалы напрямую не строятся.
- 2. Иногда работают хуже стандартных моделей
- 3. Обработка признаков может быть труднее, чем в др. моделях.
- 4. Интерпретация моделей может вызывать трудности у заказчика.

