Lecture 17: Decision Trees

Artificial Intelligence CS-GY-6613-I Julian Togelius <u>julian.togelius@nyu.edu</u>

Types of learning

Supervised learning

Learning to predict or classify labels based on labeled input data

Unsupervised learning

Finding patterns in unlabeled data

Reinforcement learning

Learning well-performing behavior from state observations and rewards

Model construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Classification Algorithms

(Model)

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Using the model

NAME	RANK	YEARS	TENURED
Tom	Assistant Prof	2	no
Merlisa	Associate Prof	7	no
George	Professor	5	yes
Joseph	Assistant Prof	7	yes

Classification vs prediction

- Classification: binary or nominal labels
 - Examples: pregnant or not, from which country, which type of road sign
- Prediction: continuous labels
 - Examples: future stock price, life expectancy, distance to obstacle

Terminology (supervised learning)

- Each line of data: instance / data point / tuple
- The features of each instance: features / attributes
- That which should be learned: labels / targets
- Each instance has features and a label
- We train on the training set...
- ...and test on the testing set

Decision trees

- A popular representation for classifiers
- Human-readable
- Can be learned (induced) efficiently using algorithms based on information theory
 - An eager learning method
- Often yields high-accuracy classifiers

An example

Classify: buys_computer

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

ID3 Algorithm for Decision Tree Induction

- Tree is constructed in a top-down recursive divide-andconquer manner
- At start, all the training examples are at the root
- Attributes are categorical (if continuous-valued, they are discretized in advance)
- Examples are partitioned recursively based on selected attributes
- Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)

ID3 Algorithm for Decision Tree Induction

- Stop partitioning when...
 - All samples for a given node belong to the same class, or...
 - There are no remaining attributes for further partitioning – (vote on the leaf) or...
 - There are no samples left

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class Ci, estimated by |C_i, D|/|D|
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Information needed (after using A to split D into v partitions) to classify D:

$$Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Binary entropy function

Attribute Selection: Information Gain

Class P: buys_computer = "yes"

Class N: buys_computer = "no"

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940 + \frac{5}{14}I(3,2) = 0.694$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

$$+\frac{5}{14}I(3,2) = 0.694$$

$$\frac{5}{14}I(2,3)$$
 means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

$$Gain(income) = 0.029$$

$$Gain(student) = 0.151$$

$$Gain(credit_rating) = 0.048$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Input: A data set, S
 Output: A decision tree

• If all the instances have the same value for the target attribute then return a decision tree that is simply this value (not really a tree - more of a stump).

Else

- Compute Gain values (see above) for all attributes and select an attribute with the highest value and create a node for that attribute.
- Make a branch from this node for every value of the attribute
- Assign all possible values of the attribute to branches.
- Follow each branch by partitioning the dataset to be only instances whereby the value of the branch is present and then go back to 1.

function DECISION-TREE-LEARNING(examples, attributes, parent_examples) **returns** tree

if examples is empty then return PLURALITY-VALUE(parent_examples) else if all examples have the same classification then return the classification else if attributes is empty then return PLURALITY-VALUE(examples) else

```
A \leftarrow \operatorname{argmax}_{a \in attributes} IMPORTANCE(a, examples) tree \leftarrow a new decision tree with root test A for each value v_k of A do exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\} subtree \leftarrow \text{DECISION-TREE-LEARNING}(exs, attributes - A, examples) add a branch to tree with label (A = v_k) and subtree subtree return tree
```

Overfitting (in supervised learning)

- Fitting the data too well, including the noise
- Reduces accuracy on unseen data

Overfitting and pruning

- Overfitting: An induced tree may overfit the training data (specific instance of a concept that applies to all supervised learning)
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Three approaches to avoid overfitting
 - Prepruning: Halt tree construction early
 – do not split a node if this would result
 in the goodness measure (e.g. accuracy on a validation set) falling below a
 threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"
 - Limit depth or size

What to do with numerical attributes?

- Create a set of bins, where each bin becomes one attribute value (e.g. income <30k, 30-40k, >40k)
 - Equal depth: All the bins have the same number of instances in them
 - Equal width: All the bins have the same range
 - More sophisticated ways, including looking at where there are big discontinuities in the range of the input data etc

Can we do better?

- It's hard to train good classifiers
- Can we replace quality with quantity?
 - Train many classifiers and combine them somehow
 - Called ensemble learning