Введение

Здесь захватывающий текст гениального введения.

Содержание

1.	Основные понятия	3
2.	Супералгебра распределений и Лиевские супералгебры	4
3.	Связная супергруппа	5
4.	Разрешимые супергруппы	6
5.	Собственно теорема	7

1. Основные понятия

Аффинные суперсхемы, аффинные групповые суперсхемы, супералгебры Хопфа, дуальность категорий аффинных групповых суперсхем и супералгебр Хопфа. Все понятия дословно переносятся с книги [1], также можно посмотреть [3].

2. Супералгебра распределений и Лиевские супералгебры

Супералгебры распределений, супералгебра Ли, функтор Lie(G).

3. Связная супергруппа

Связная компонента, связная супергруппа, утверждение про центр группы (если оно нужно для доказательства). [3]

Теорема 1. Пусть charK=0,G – связная супергруппа, I – максимальный абелев суперидеал в Lie(G). Существует $H \triangleleft G: Lie(G) = I$.

 $oxed{\it Доказательство}.$

4. Разрешимые супергруппы

Для того, чтобы сформулировать определение разрешимой супергруппы, сначала необходимо определить коммутант супергруппы.

Пусть S - алгебраическая матричная супергруппа. Рассмотрим отображение $S \times S \to S$, переводящее (x,y) в $xyx^{-1}y^{-1}$. Ядро I_1 соотвествующего отображения $K[S] \to K[S] \otimes K[S]$ состоит из функций, зануляющихся на всех коммутаторах из S; таким образом, замкнутое множество, им определяемое, является замыканием коммутаторов. Аналогично имеем отображение $S^{2n} \to S$, переводящее $(x_1, y_1, \dots, x_n, y_n)$ в $x_1y_1x_1^{-1}y_1^{-1} \cdots x_ny_nx_n^{-1}y_n^{-1}$. Соответствующее отображение $K[S] \to \otimes^{2n} K[S]$ имеет ядро I_n , определяющее замыкание произведения n коммутаторов. Очевидно, что $I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots$

Коммутаторная подгруппа в S - объединение произведений из n коммутаторов по всем n, поэтому идеалом функций, зануляющихся на S является $I = \bigcap I_n$. Замкнутое множество, определяемое идеалом I, является замыканием коммутаторной подгруппы. Это замкнутая нормальная подгруппа в S, которую будем называть коммутантом $\mathscr{D}S$. Итерируя эту процедуру, получаем цепочку замкнутых подгрупп \mathscr{D}^nS . Если S разрешима как абстрактрая группа, то последовательность \mathscr{D}^nS достигает $\{e\}$.

Все эти рассуждения могут быть проведены и в общем случае. Пусть G - аффинная групповая суперсхема над полем K. Имеем отображения $G^{2n} \to G$, которые соответствут $K[G] \to \otimes^{2n} K[G]$ с ядрами I_n , удовлетворяющими условию $I_1 \supseteq I_2 \supseteq \ldots$ Если $f \in I_{2n}$, то $\Delta(f)$ обращается в нуль на $K[G]/I_n \otimes K[G]/I_n$ в силу того, что при перемножении двух произведений по n коммутаторов образуется произведение 2n коммутаторов. Поэтому $I = \bigcap I_n$ определяет замкнутую подгруппу $\mathscr{D}S$.

Будем называть супергруппу G разрешимой, если \mathscr{D}^nG тривиальна для некоторого n.

Замечание 1. Все коммутаторы G(R) лежат в $\mathscr{D}G(R)$, $\mathscr{D}G$ - нормальная подгруппа в G.

Теорема 2. Пусть G – алгебраическая супергруппа. Если G связна, то и $\mathcal{D}G$ связна.

 $oxed{\it Доказательство}.$

Утверждение 1. $I = \bigcap I_n$ - суперидеал Хопфа

Утверждение 2. $\mathscr{D}G$ – нормальная подгруппа в G.

Утверждение 3. $I_{n+1} \subseteq I_n$

Утверждение 4. I – наименьшая замкнутая подгруппа G, содержащая произведение любых коммутаторов

Утверждение 5. G абелева $\Leftrightarrow Lie(G)$ абелева.

Доказательство. Достаточно доказать, что Dist(G) абелева $\Leftrightarrow K[G]^*$ кокоммутативна.

5. Собственно теорема

Теорема 3. Пусть charK=0, G - связная супергруппа. Тогда G разрешима $\Leftrightarrow Lie(G)$ разрешима $\Leftrightarrow G_{ev}$ разрешима.

Доказательство. [2].

Список литературы

- [1] J.C. Jantzen. Representations of Algebraic Groups. Academic Press, Inc., Orlando, Florida, 1987.
- [2] V.G. Kac. Lie superalgebras. Advanced in Mathematics, 26:8–96, 1977.
- [3] A.N. Zubkov. Affine quotients of supergroups. *Transformation Groups*, 14(3):713–745, 2009.