Theory of Computation

CFG and PDA Equivalence Manar Elkady, Ph.D.

- CFG and PDA are equivalent in power: both specify context-free languages
- We show here how to convert a CFG into a PDA that recognizes the language specified by the CFG and vice versa
- CFG can specify a programming language and the equivalent PDA its compiler

Theorem:

A language is context free if and only if some PDA recognizes it.

Proved in two lemmas

1. If a language is context-free, then some **PDA** recognizes it.

2. If a **PDA** recognizes a language, then it is context-free.

CFG's are recognized by PDA's

Lemma:

If a language is context free, then some PDA recognizes it.

Proof idea:

Construct a PDA following CFG rules

Constructing the PDA

• $Q = \{q_{start}, q_{loop}, q_{accept}\} \cup E$, where E is the set of states used for replacement rules onto the stack

• Σ (the PDA alphabet) is the set of terminals in the CFG

 •
 T (the stack alphabet) is the union of the terminals and the variables and {\$} (or some suitable placeholder)

Constructing the PDA

- δ is comprised of several rules
 - 1. $\delta(q_{\text{start}}, \epsilon, \epsilon) = (q_{\text{loop}}, \$)$ $\delta(q_{\text{start}}, \epsilon, \epsilon) = (q_{\text{loop}}, \$)$
 - Start with placeholder on the stack and with the start variable
 - 2. $\delta(q_{loop}, a, a) = (q_{loop}, \epsilon)$ for every $a \in \Sigma$
 - Terminals may be read off the top of the stack
 - 3. $\delta(q_{loop}, \epsilon, A) = (q_{loop}, w)$ for every rule $A \rightarrow w$
 - Implement replacement rules
 - 4. $\delta(q_{loop}, \epsilon, \$) = (q_{accept}, \epsilon)$
 - Accept when the stack is empty

CFG's are recognized by PDA's

Constructing the PDA

- You can read any symbol in Σ when that symbol is at the top of the stack.
 - Transitions of the form $a,a \rightarrow \epsilon$
- The rules will be pushed onto the stack when a variable A is on top of the stack and if there is a rule $A \rightarrow w$, you pop A and push w
- You can go to the accept state only if the stack is empty

Idea of PDA construction for $A \rightarrow xBz$

and push the symbols in the RHS to stack

Actual construction for $A \rightarrow xBz$

we say
$$\delta(q, \varepsilon, A) = (q, \times Bz)$$

• $S \rightarrow SS \mid (S) \mid ()$

A Language L is generated by a CFG If L is recognized by a PDA

Suppose L is generated by a CFG G = (V, Σ , R, S) Construct P = (Q, Σ , Γ , δ , q, F) that recognizes L

Suppose L is generated by a CFG G = (V, Σ , R, S) Describe P = (Q, Σ , Γ , δ , q, F) that recognizes L :

- (1) Push \$ and then S on the stack
- (2) Repeat the following steps forever:
 - (a) Pop the stack, call the result X.
 - (b) If X is a variable A, guess a rule that matches A and push result into the stack
 - (c) If X is a terminal, read next symbol from input and compare it to terminal. If they're different, *reject*.
 - (d) If X is \$: then accept iff no more input