(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-188254

(43)公開日 平成7年(1995)7月25日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
C07F 7/02	C			
7/08	В	•		
C 2 3 C 16/18				
H01L 21/285	301 Z	8826-4M		
			H01L	21/ 88 M
,		審査請求	未請求 請求項	頁の数3 OL (全 6 頁) 最終頁に続く
(21)出願番号	特顧平6-225167		(71) 出願人	000006264
				三菱マテリアル株式会社
(22)出顧日	平成6年(1994)9月2	20日		東京都千代田区大手町1丁目5番1号
			(72)発明者	内田 寛人
(31)優先権主張番号	特顏平5-233937			埼玉県大宮市北袋町1丁目297番地 三菱
(32)優先日	平5 (1993) 9月20日			マテリアル株式会社中央研究所内
(33)優先権主張国	日本(JP)		(72)発明者	濟 篇
				埼玉県大宮市北袋町1丁目297番地 三菱
				マテリアル株式会社中央研究所内
		•	(72)発明者	佐藤正光
				埼玉県大宮市北袋町1丁目297番地 三菱
÷				マテリアル株式会社中央研究所内
	· ·		(74)代理人	弁理士 広瀬 章一
				最終頁に続く

(54) 【発明の名称】 銅ặ膜形成用有機銅化合物とそれを用いた銅薄膜選択成長法

(57)【要約】

【目的】 気化特性に優れ、かつ広い温度範囲で選択成 長性に優れた有機金属化学蒸着法による銅薄膜形成用の 有機銅化合物と、この化合物を用いた銅薄膜の選択成長 法を提供する。

【構成】 下記構造式(化1)

[(
$$E_1$$
)]
(CH_3)3Si H CF_3
H Si(CH_3)3 CF_3

で表される [trans-1,2-ビス (トリメチルシリル) エテン] (1,1,1,5,5,5-ヘキサフルオロ-2,4-ペンタンジオナト) 銅(I) からなる銅薄膜形成用有機銅化合物、ならびにこの化合物を用いて、絶縁性表面 (SiQ) には銅薄膜を付着させずに、導電性表面 (Nb、Ta、またはTiN)に銅薄膜を選択成長させる方法。

【特許請求の範囲】

【請求項1】 下記構造式 (化1)

$$(CH_3)_3Si H CF_3$$

$$H Si(CH_3)_3 CF_3$$

で表される [trans-1,2-ビス (トリメチルシリル) エテ *10* ン] (1,1,1,5,5,5-ヘキサフルオロ-2,4-ペンタンジオナト) 銅(I) からなる、有機金属化学蒸着法による銅薄膜形成用の有機銅化合物。

【請求項2】 請求項1記載の有機銅化合物を用いて有機金属化学蒸着法により導電性表面に銅薄膜を選択成長させることを特徴とする、銅薄膜選択成長方法。

【請求項3】 前記導電性表面がNb、Ta、またはTiN である、請求項2記載の方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、有機金属化学蒸着(以下、MOCVDと略記)法により導電性表面上に選択的に銅薄膜を成長させることができる銅薄膜形成用有機銅化合物と、これを蒸着原料として用いた銅薄膜選択成長法とに関する。本発明の有機銅化合物および銅薄膜選択成長方法は、例えば、半導体装置のコンタクト、配線等として利用される銅薄膜パターンの形成に有用である。本発明の有機銅化合物は、従来の同種の化合物に比べて蒸気圧が高く、導電性表面への選択成長性に優れているので、広範囲の蒸着条件下で各種の導電性表面上に、特30殊な前処理を必要とせずに銅薄膜を選択的に形成することができる。

[0002]

【従来の技術】MOCVD法による基板上への薄膜の形成は、例えば、図1に示す装置により行われる。図1に示す装置において、反応炉7内に設けたヒーター6上に基板5を置き、一方これと連接して設けた加熱炉3において、気化容器2内の有機銅化合物からなる蒸着原料1を気化させ、これを例えば本等のキャリアガス4で前記反応炉7内に拡散させ、上記加熱基板5上に有機銅化合物の熱分解で生成した分解銅を析出させる。なお、この熱分解型のMOCVD法は、熱CVD法と呼ばれることもある。

【0003】この時、図2(4)に示すように、加熱基板の導電性表面を部分的に絶縁体(図示例ではsiQ)で被覆しておけば、図2(0)に示すように、絶縁体被覆のない部分のみに選択的に銅薄膜が付着し、成長することがある。この選択成長法により、コンタクト、配線などの所定形状の銅薄膜を直接形成することができる。

【0004】MOCVD法により銅薄膜を選択的に成長 50

させることのできる蒸着原料として、下記構造式(化.2) で表される (トリメチルビニルシラン)(1,1,1,5,5,5-ヘキサフルオロ-2,4-ペンタンジオナト)銅(I)[以下、Cu(hfac)(TMVS)と略記する)を用いることが、特開平5-59951号公報に記載されている。

[0005]

【0006】この公報には、上記構造式 (化2) のビニル基に結合している3個の水素が置換可能であることが、特許請求の範囲中の一般式において示されているが、具体的に合成が行われ、かつ蒸着原料としてMOC V D法に適用された化合物は、上記構造式 (化2) のように、ビニル基に3個の水素原子が結合している化合物だけである。

[0007]

20

【発明が解決しようとする課題】上記公報には、構造式(化2)の有機銅化合物を用いたMOCVD法の実験で、金属面だけに銅の蒸着が起こり、酸化珪素(SiQ)面には銅が全く或いはほとんど検出されなかった、即ち、導電性表面への選択成長が可能であることが記載されている。しかし、本発明者らが、上記化合物を用いて実験したどころ、成長の選択性がしばしば失われ、SiQ面上にも銅薄膜の付着が起こることが多かった。因みに、本発明者らが実験したMOCVD法による銅薄膜の選択成長の実験条件は下記の範囲であった。

【0008】基板温度: 120~250℃

気化温度:

40~70℃

圧力: 0.1~3 torr キャリアガス流量: 100 ccm (Arガス)

Sio 面への銅膜の付着は、特にSio 膜の表面にシラノール基が存在する時に起こり易いことが知られている。これは、シラノール基が核発生を起こし易いためであると考えられる。この点に関して、A. Jain et al, Appl. Phys. Lett., 61(22), 30, 2662 (1992) において、Sio 膜表面をクロロトリメチルシラン (Mes SiCl) のようなシランカップリング剤で処理して、表面シラノール基をトリメチルシリル化することにより、選択成長性の精度を高めることが試みられている。

【0009】しかし、このような表面処理は工程数を増やし、コスト高につながるので、好ましくない。従って、幅広い蒸着条件で、確実に選択成長が可能な、選択成長性に優れた銅薄膜形成用のMOCVD原料として適した有機銅化合物がなお求められている。

【0010】本発明の目的は、MOCVD法に適用した

場合に上記構造式 (化2) で示される化合物より選択成長性に優れ、表面処理を行わずに確実に導電性表面に選択的に銅薄膜を成長させることのできる銅薄膜選択成長法と、そのための有機銅化合物を提供することである。

[0011]

【課題を解決するための手段】本発明者らは、下記構造式 (化1)で示される [trans-1,2-ビス (トリメチルシリル) エテン] (1,1,1,5,5,5-ヘキサフルオロ-2,4-ペンタンジオナト) 銅(I) [以下、Cu(hfac) (BIMSE) と略記]を蒸着原料とするMOCVD法により、広範囲の蒸着条 10件下で高い選択成長性を実現することができることを見出し、本発明に到達した。

[0012]

((
$$E_1$$
) (CH₃)₃Si H CF₃
H Si(CH₃)₃ CF₃

【0013】本発明は、上記構造式 (化1)で表される 化合物、即ち、Qu(hfac)(BIMSE)からなる、有機金属化 学蒸着法による銅薄膜形成用の有機銅化合物である。別の側面において、本発明は上記の有機銅化合物を用いて 有機金属化学蒸着法により導電性表面に銅薄膜を選択成長させることを特徴とする、銅薄膜選択成長方法である。好ましくは、前記の導電性表面はNo、Ta、またはTi N である。

【0014】本発明で用いる構造式 (化1)の化合物、即ち、Cu(hfac) (BIMSE)は、室温付近では液体であって、蒸気圧が比較的高く、安定した気化速度で完全に気化させることができるという優れた揮発性を示し、また気化したガスの熱安定性が高いので、気化容器内での分解が起こりにくいという、MOCVD法に適した気化特性を示す。さらに重要な利点として、後で実施例において示すように、No、Ta、TiNのいずれの導電性表面に対しても、広範囲の蒸着条件下において、siaへの銅の付着を生じずに、導電性表面のみに選択的に銅薄膜を成長させることができるという、優れた選択成長性を有していることである。

【0015】これに対し、特開平5-59951 号公報に記載されている、上記構造式 (化2)で示されるCu(hfac) (TMVS)は、同じく室温で液体状であって、気化は容易であるが、選択成長性を発揮しえないことが多く、特に基板温度が高くなるとsia。面にも銅の付着が見られるようになって、選択成長性を失う傾向がある。

【0016】本発明で用いる構造式 (化1) の化合物 は、特開平5-59951 号公報の請求の範囲に記載されている一般式で示される化合物には含まれるものであるが、前述したように、この公開公報には構造式 (化1)

に相当する化合物を具体的に記載しておらず、またこの 化合物を実際に合成したり、或いはその選択成長性を確 かめたことも記載されていない。従って、本発明で用い る構造式 (化1) の化合物が、構造式 (化2) の化合物 に比べて著しく高い選択成長性を示すことは、本発明者 らの実験によって初めて明らかとなったのである。

【0017】本発明で用いる有機銅化合物、即ち、 α (h fac) (BIMSE) の合成は次のようにして行うことができる。まず、トリメチルシリルアセチレンとジメチルクロロシランを出発物質として、ハイドロシリレーションにより、 α (h) エテンを得る。この化合物から、ヨウ化メチルシリル) エテンを得る。この化合物から、ヨウ化メチルマグネシウムを用いたグリニャール反応により BIMSEを合成する。もう一方の β — ジカルボニル化合物配位子である1,1,1,5,5,5- α +サフルオロ-2,4- α 29ンジオン (以下、 α 00円を配記) は、クライゼン縮合により合成できる。こうして得た α 1円が定と α 1年が存在。を適当な有機溶媒中で酸化第1銅と混合することにより、 α 1月1日に α 1月日に α 1月日に

【0018】構造式 (化1) で示されるCu(hfac)(BIMS E) を用いたMOCVD法は、例えば、図1に示すような装置を用いて、従来と同様に実施することができる。 蒸着条件としては、下記範囲内が適当である。

基板温度:

160~220 ℃

気化温度: 圧力:

30

40

50~70 ℃

1~3 torr

キャリアガス流量: 100~120 ccm (Ar) キャリアガスとしては、アルゴンのほかに、窒素、水 素、ヘリウムなども使用可能である。

【0019】選択成長は、例えば、基板の導電性表面の上に適宜の方法で絶縁性のsia膜を形成し、次いでフォトレジストを用いた像形成方法によりsia膜の不要部分を除去して、所望の導電体パターンを形成する。このようにパターン化した基板に対して、本発明によりcu(nfac)(BIMSE)を蒸着原料としてMOCVD法により銅薄膜を付着させると、sia部分には銅の付着が起こらず、導電体表面が露出している部分のみに、銅薄膜が付着する(図2(口)参照)ので、銅薄膜が所定の厚みに成長するまでMOCVD法の処理を続ける。それにより、必要箇所のみに選択的に銅薄膜の製膜を行うことができる。

【0020】本発明の銅薄膜選択成長法に用いる基板の 導電性材料としては、Nb、Ta、TiNが好適であり、これ らの導電性材料については、絶縁性材料としてsiaと組 合わせた場合に選択成長が幅広い条件で可能であること が確認されている。但し、これ以外の導電性材料につい ても選択成長が可能であれば、使用可能であることはい うまでもない。また、絶縁性材料も、siaに限定される ものではない。

[0021]

【実施例】

--

5

[0022]

【実施例 1 】本実施例は Cu (hfac) (BIMSE) の合成と銅薄膜の形成を例示する。乾燥、窒素置換した三ツロフラスコに、トリメチルシリルアセチレン 26.0g と10%塩化白金酸水溶液 4 mLを加えて混合し、50℃に加熱した。このフラスコに、滴下ロートよりジメチルクロロシラン 25 gをゆっくりと滴下し、50℃で加熱撹拌してハイドロシリレーション反応を行わせた。反応終了後、減圧蒸留により精製して、18.3gの trans-1-(クロロジメチルシリル)-2- (トリメチルシリル) エテンを得た(沸点 56~60 10℃/20 torr)。

【0023】この化合物を60 mL の無水ジエチルエーテルに溶解し、氷浴中でヨウ化メチルマグネシウムの1 M エーテル溶液102 mLをゆっくりと滴下し、滴下終了後、4時間加熱撹拌した。再び氷浴中にて、100 mLの飽和塩化アンモニウム水溶液をゆっくりと添加した。水溶液層をエーテルにより3回抽出し、この抽出液と有機層とを合わせ、溶媒を減圧下で留去した。残留する油状物を減圧蒸留により精製し、10.4gのBIMSEを得た(沸点85~90℃/100 torr)。

【0024】続いて、12.8gのCxO微粉末に十分に窒素脱気を行った乾燥塩化メチレン140mLを注ぎ、攪拌して懸濁液とした。この懸濁液に上記のBIMSE 10.4gを激しく撹拌しながら添加し、更にHnfac 12.4gを1滴づつシリンジにより滴下した。滴下終了後、反応系を2時間撹拌した。その後、窒素気流下で濾過し、濾液を35℃減圧下で留去し、緑黄色の液体を得た。精製は、カラムクロマトグラフィーにより行ない、黄色液体状の目的とする有機銅化合物のI(hfac)(BIMSE) 18.0gを得た。この有機銅化合物の同定は、NMRおよび元素分析により行なった。1H-NMR(CDCl3);0.161(s,18H),4.994(s,2H),6.121(s,1H)。

【0025】この有機銅化合物の熱重量曲線(昇温速度 10℃/min、窒素雰囲気)を図3に示す。この図からわかるように、本発明で用いる有機銅化合物 Cu (hfac) (BIMS E) は、室温から約140 ℃までの温度で完全に気化させることが可能であり、気化後に残渣がほとんど残らない。

【0026】次に、cu(hfac) (BIMSE) を蒸着原料として用いて、図1に示すMOCVD装置を用いて、1インチ角のTa基板上に銅の薄膜を形成した。蒸着条件は次の通りであった。

基板温度: 250℃ 気化温度: 70℃ 圧力: 2 torr

キャリアガス流量:100 com のAr

10分毎に、膜の断面 S E M像から膜厚を測定した。結果を次の表 1 に示す。

[0027]

【表1】

時間(分)	105>	20分	30分	40 5)	50分	60分	
膜厚(μm)	1.72	3.45	5.13	6.85	8.58	10.3	

【0028】この結果からわかるように、本発明で用いる蒸着原料として有機銅化合物は、成膜時間に対しほぼ一定の割合で膜厚が増加し、かつその成膜速度も十分に高かった。また、この成膜実験において、図1に示される装置の気化容器内には分解銅の生成が見られなかった。これは、この有機銅化合物が、気化容器内で分解することなしに、反応炉内で高温の基板と接触して始めて熱分解することを示している。

【0029】以上より、本発明で用いる有機銅化合物は、室温付近では液体であり、成膜時間に対しほぼ一定の速度で残渣を残さずに完全に気化するという優れた揮発性を示す上、気化したガスの熱安定性が高いため、気化容器内では分解せずに、より高温の基板に接触して熱分解し、銅の析出が起こるので、MOCVD法用の蒸着原料としての有効利用率が高く、この方法に非常に適した材料であることがわかる。

20 [0030]

【実施例2】本実施例は、Cu (hfac) (BIMSE)を用いた銅薄膜の選択成長を例示する。シリコン基板上にスパッタ法によりNb、Ta、TiN のいずれかの薄膜 (膜厚100rm)を形成し、その上にTEOS-オゾンのCVDにより膜厚 1 μ mのSi α 膜を形成した。このSi α 膜上にフォトレジストを塗布し、マスクパターンの露光、フォトレジストのリンスによる現像パターンの形成、フッ酸エッチングによるSi α 膜の除去を順次行うことにより、シリコン基板上に導電体 (Nb、TaまたはTiN)/絶縁体 (Si α)の膜パターンを有する、図 2 (1) に示すような選択成長用の基板を作製した。

【0031】この選択成長用基板の表面に、図1に示す MOCVD装置を用いて、実施例1で合成したCu(hfac) (BIMSE) を蒸着原料として銅薄膜を形成した。蒸着条件 は次の通りであった。

基板温度: 160~220 ℃

気化温度: 50℃

圧力: 2 torr

キャリアガス流量: 100 ccm のAr。

【0032】蒸着を10分間行った後、基板の導電体上および絶縁体上に付着した銅の膜厚を断面SEM像から測定した。測定された膜厚から、sia上に分解銅の堆積が認められない場合を選択成長性が良好、sia上に分解銅の堆積がある場合を選択成長性が不良であると評価した。結果を基板の種類ごとに次の表2に示す。

[0033]

【表2】

銳為	基板温度	避択成長性			
No.	(°C)	Nb/SiO2	Ta/SiO ₂	TiN∕SiO₂	
1	160	良好	良好	良好	
2 .	180	良好	良好	良好	
3	190	良好	良好	良好	
4	220	良好	良好	良好	

[0034]

【比較例1】蒸着原料として、特開平5-59951 号公報 10 記載の有機銅化合物 Cu (hfac) (TMVS)を用いて、実施例 2 と同様の銅薄膜の選択成長の実験を行った。結果を次の 表3に示す。

[0035]

【表3】

207						
	試験	基板温度	避 択 成 長 性			
	No.	(°C)	Nb/SiO2	Ta/SiO ₂	TiN/SiO ₂	
	1	160	良好	良好	良好	
	2	180	不良	不良	不良	
	3	190	不良	不良	不良	
	4	220	不良	不良	不良	

【0036】表3より、比較例1で用いた有機銅化合物 Cu(hfac) (TMVS)は、基板温度が180℃以上では選択成長 性が著しく悪化し、160 ℃という低い基板温度でないと 選択成長性を示さないことがわかる。しかし、このよう に基板温度が低いと、基板上で原子は不活性となり、成 長させるべき結晶粒径が小さくなるという問題がある。 また、このように選択成長性の温度依存性が高いと、基 30 板温度が少し変動しただけで選択成長性を失うことにな り、製品の品質や歩留りが著しく悪化する。このような 選択成長性の低下を防ごうとすると、表面シラノール基 をトリメチルシリル化するためのシランカップリング剤 による表面処理が必要となるが、これは工程数とコスト を増大させる。

【0037】これに対し、本発明で用いる有機銅化合物

Cu(hfac) (BIMSE) は、 160~220 ℃の全温度範囲で選択 成長性を保持しており、より高い基板温度を採用するこ とが可能となる。基板温度が高くなると、基板上での原 子の動きが活発になり、結晶性が向上し、粒径が大きく なるという利点が得られる。また、基板温度が多少変動 しても選択成長性が確保されるので、製品の品質が安定 し、歩留りも髙くなる。さらに、上記の表面処理を必要 とせずに選択成長性を得ることができるので、それによ るコスト増大が避けられる。

[0038]

【発明の効果】本発明の銅薄膜形成用有機銅化合物は、 室温付近では液体であって、蒸気圧が比較的高く、安定 した気化速度で完全に気化させることができ、気化した ガスの熱安定性が高いので、気化容器内での分解が起こ りにくいという、MOCVD法による銅薄膜の形成に適 した気化特性を示す。さらに、siaなどの絶縁性表面へ の銅の付着を生じずに、Nb、Ta、TiN といった導電性表 面に対してのみ選択的に銅薄膜を成長させるという選択 成長性を示し、しかもこの選択成長性を、広い基板の温 度範囲で示すため、選択成長性の安定性に優れている。 そのため、シランカップリング剤による表面処理を行わ ずに確実に銅薄膜の選択成長を行わせることが可能とな り、コンタクト、配線として銅薄膜を利用する半導体装 置のコスト低減、信頼性向上が可能となる。

【図面の簡単な説明】

【図1】MOCVD法に用いる装置を示す説明図であ

【図2】選択成長用の基板を示す説明図であり、図2 (4) は銅薄膜の付着前、図2(ロ)は銅薄膜の付着後の 状態を示す。

【図3】 本発明で用いる有機銅化合物の熱重量曲線を示 す。

【符号の説明】

1:蒸着原料、2:気化容器、3:加熱炉、4:キャリ アガス、5:基板、6:ヒーター、7:反応炉、8:真 空ポンプ

BEST AVAILABLE COPY

フロントページの続き

(51) Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

H O 1 L 21/3205

(72)発明者 斎藤 記庸

茨城県鹿島郡神栖町大字東深芝19-1 三 菱マテリアル株式会社化成部鹿島分室内 (72)発明者 小木 勝実

埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社中央研究所内

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-188254

(43)Date of publication of application: 25.07.1995

(51)Int.CI.

CO7F 7/02 7/08 CO7F C23C 16/18 H01L 21/285 H01L 21/3205

(21)Application number: 06-225167

(22)Date of filing:

20.09.1994

(71)Applicant: MITSUBISHI MATERIALS CORP

(72)Inventor: UCHIDA HIROTO SAI ATSUSHI

> SATO MASAMITSU SAITOU NORIYASU OGI KATSUMI

(30)Priority

Priority number: 05233937

Priority date: 20.09.1993

Priority country: JP

(54) ORGANOCOPPER COMPOUND FOR COPPER THIN FILM FORMATION AND METHOD FOR SELECTIVE GROWTH OF COPPER THIN FILM USING THE SAME

(57)Abstract:

PURPOSE: To obtain the subject compound having specific structure, excellent in vaporization characteristics and selectively growing capability, and enabling copper thin film to be grown selectively on semiconductor surface alone by organometallic chemical vacuum deposition.

CONSTITUTION: This compound, [trans-1,2bis(trimethylsilyl) ethene](1,1,1,5,5,5- hexafluoro-2,4-pentanedionato)copper(I), is expressed by the formula, and can be preferably obtained by the following processes: trimethylsilylacetylene is reacted with dimethylchlorosilane to produce trans-1-(chlorodimethylsilyl)-2-(trimethylsilyl)ethene, which is then subjected to Grignard reaction with iodomethylmagnesium into trans-1,2-bis(trimethylsilyl) ethene, and this compound and 1,1,1,5,5,5-hexafluoro-2,4-pentanedione synthesized by Claisen condensation are mixed with cuprous oxide in an organic solvent.

LEGAL STATUS

[Date of request for examination]

31.03.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

BEST AVAILABLE COPY

[Date of final disposal for application]

[Patent number]

3230389

[Date of registration]

14.09.2001

THIS PAGE BLANK (USPTO)