- b) Find the directional derivative of $\phi = xy + yz + zx$ in the direction of the vector i + 2j + 2k at the point (1,2,0).
- c) If r = xi + yj + zk then show that grad $r^n = nr^{n-2}r$.
- d) Varify Stoke's theorem for $F = (x^2 + y^2)i 2xyj$ taken round the rectangle bounded by $x = \pm a$, y = 0, y = b.

OR

Prove that div. grad $r^m = \nabla \cdot \nabla r^m = m (m+1)r^{m-2}$

www.rgpvonline.in

www.rgpvonline.in

Roll No

BE - 301 B.E. III Semester

Examination, June 2015

Engineering Mathematics - II

(Common for all Branches)

Time: Three Hours

Maximum Marks: 70

- **Note:** i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each questions are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

UNIT-I

- 1. a) What is periodic function, give an example of periodic function?
 - b) What are the dirichlet's condition for a Fourier expansion?
 - c) Find the Fourier transform of e^{-ax^2} , where a > 0.
 - d) Expand $f(x)=x\sin x$, $0 \le x \le 2\pi$ in a Fourier series.

OR

Express f(x) = x as a

- i) Half range cosine series in 0 < x < 2
- ii) Half range sine series in 0 < x < 2

UNIT-II

- 2. a) Find $L\{2\sin t \cos t\}$.
 - b) Write the Linearly property of Laplace Transform. www.rgpvonline.in
 - c) Find the Laplace Transform of f(t),

where
$$f(t) = \begin{cases} 2, & 0 \le t \le 2\\ t-1, & 2 \le t \le 3\\ 7, & t > 3 \end{cases}$$

d) Evaluate $L^{-1} \left\{ \frac{6s^2 + 22s + 16}{s^3 + 6s^2 + 11s + 6} \right\}$.

OR

Using Convolution Theorem, Evaluate $L^{-1}\left\{\frac{s}{(s^2+a^2)^2}\right\}$.

UNIT-III

- 3. a) Explain the ordinary point and singular point of differential equation.
 - b) Give the complete solution of differential equation when the roots of indicial equations are equal.

c) Solve the differential equation

$$\frac{d^2y}{dx^2} - 2\tan x \frac{dy}{dx} + 5y = \sec x \cdot e^x$$

d) Solve $(1-x^2)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} + y = 0$ in series solution.

OR

Solve by method of variation of parameter $(D^2+1)y = x$.

UNIT-IV

- 4. a) Find the Partial differential equation by eliminating a and b from the relation $(x-a)^2 + (y-b)^2 = z^2 c$.
 - b) Solve yzp + zxq = xy.
 - c) Solve $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = e^{3x + 2y}$.
 - d) Solve by Charpits method $(p^2 + q^2)y = qz$.

OR

Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ by the method of separation of variables. Where $u(x,0) = 6 e^{-3x}$

UNIT-V

5. a) If $u = t^2i - tj + (2t + 1) k$ v = (2t - 3)i + j - tkfind $\frac{d}{dt}(u.v)$? at t = 1.