Order

Definition

The *order* of a group G, denoted |G| is the cardinality of the set of G.

G = 1	G =2	G =3
$G = \{e\}$	$\overline{G} = \{e, a\}$	$G = \{e, a, b\}$
	th 0	$* \mid e a b$
* e e e	$\begin{array}{c ccc} * & e & a \\ \hline e & e & a \\ a & a & e \end{array}$	$egin{array}{c cccc} e&e&a&b\\ a&a&b&e\\ b&b&e&a \end{array}$
		$a \mid a \mid b \mid e$
		$b \mid b \mid e \mid a$
$G\simeq \mathbb{Z}_1$ (abelian)	$G\simeq \mathbb{Z}_2$ (abelian)	$G\simeq \mathbb{Z}_3$ (abelian)

Note that each element may appear only once in each row; otherwise, the linear equation ax = b would have more than one solution. Likewise, each element may appear only once in each column; otherwise, the linear equation xa = b would have more than one solution.

$$|G| = 4$$

$$G = \{e, a, b, c\}$$

$$G \simeq \mathbb{Z}_4$$
 (abelian)

$$G \simeq \mathbb{Z}_4$$
 (abelian)

 $G \simeq \mathbb{Z}_4$ (abelian)

This group is also abelian; however, $G \not\simeq \mathbb{Z}_4$ because:

$$\forall x \in G, xx = e$$

Thus, it is structurally different from \mathbb{Z}_4 . It is referred to as the Klein-4 group, denoted by V or K_4 .

So, every group of 4 elements is isometric to either \mathbb{Z}_4 or K_4 . Thus, there are only 2 distinct groups *up to isomorphism*.