Riesz representation theorem

There are several well-known theorems in <u>functional analysis</u> known as the **Riesz representation theorem**. They are named in honor of Frigyes Riesz.

This article will describe his theorem concerning the dual of a <u>Hilbert space</u>, which is sometimes called the Fréchet–Riesz theorem. For the theorems relating <u>linear functionals</u> to <u>measures</u>, see Riesz–Markov–Kakutani representation theorem.

The Hilbert space representation theorem

This theorem establishes an important connection between a <u>Hilbert space</u> and its <u>continuous dual space</u>. If the underlying <u>field</u> is the <u>real numbers</u>, the two are <u>isometrically isomorphic</u>; if the underlying field is the <u>complex numbers</u>, the two are isometrically <u>anti-isomorphic</u>. The (anti-) isomorphism is a particular natural one as will be described next; a natural isomorphism.

Let H be a Hilbert space, and let H^* denote its dual space, consisting of all <u>continuous linear</u> functionals from H into the field \mathbb{R} or \mathbb{C} .

If x is an element of H, then the function φ_x , for all y in H defined by

$$arphi_x(y) = \langle y, x
angle \, ,$$

where $\langle \cdot, \cdot \rangle$ denotes the <u>inner product</u> of the Hilbert space, is an element of H^* . The Riesz representation theorem states that *every* element of H^* can be written uniquely in this form.

Riesz-Fréchet representation theorem. Let H be a Hilbert space and $\varphi \in H^*$. Then there exists $f \in H$ such that for any $x \in H$, $\varphi(x) = \langle f, x \rangle$. Moreover $||f||_H = ||\varphi||_{H^*}$

Proof. Let $M=\{u\in H\mid \varphi(u)=0\}$. Clearly M is closed subspace of H. If M=H, then we can trivially choose f=0. Now assume $M\neq H$. Then M^\perp is one-dimensional. Indeed, let v_1,v_2 be nonzero vectors in M^\perp . Then there is nonzero real number λ , such that $\lambda\varphi(v_1)=\varphi(v_2)$. Observe that $\lambda v_1-v_2\in M^\perp$ and $\varphi(\lambda v_1-v_2)=0$, so $\lambda v_1-v_2\in M$. This means that $\lambda v_1-v_2=0$. Now let g be unit vector in M^\perp . For arbitrary $x\in H$, let v be the orthogonal projection of x onto M^\perp . Then $v=\langle g,x\rangle g$ and $\langle g,x-v\rangle=0$ (from the properties of orthogonal projections), so that $x-v\in M$ and $\langle g,x\rangle=\langle g,v\rangle$. Thus $\varphi(x)=\varphi(v+x-v)=\varphi(\langle g,x\rangle g)+\varphi(x-v)=\langle g,x\rangle \varphi(g)+0=\langle g,x\rangle \varphi(g)$. Hence $f=\varphi(g)g$. We also see $\|f\|_H=\varphi(g)$. From the Cauchy-Bunyakovsky-Schwartz inequality $\varphi(x)\leq \|g\|\|x\|\varphi(g)$, thus for x with unit norm $\varphi(x)\leq \varphi(g)$. This implies that $\|\varphi\|_{H^*}=\varphi(g)$.

Given any continuous linear functional g in H^* , the corresponding element $x_g \in H$ can be constructed uniquely by $x_g = g(e_1)e_1 + g(e_2)e_2 + \ldots$, where $\{e_i\}$ is an <u>orthonormal basis</u> of H, and the value of x_g does not vary by choice of basis. Thus, if $y \in H, y = a_1e_1 + a_2e_2 + \ldots$, then $g(y) = a_1g(e_1) + a_2g(e_2) + \ldots = \langle x_g, y \rangle$.

Theorem. The mapping $\Phi: H \to H^*$ defined by $\Phi(x) = \varphi_x$ is an isometric (anti-) isomorphism, meaning that:

- Φ is bijective.
- lacksquare The norms of x and $arphi_x$ agree: $\|x\| = \|\Phi(x)\|$.
- lacktriangledown Φ is additive: $\Phi(x_1+x_2)=\Phi(x_1)+\Phi(x_2)$.
- If the base field is \mathbb{R} , then $\Phi(\lambda x) = \lambda \Phi(x)$ for all real numbers λ .
- If the base field is \mathbb{C} , then $\Phi(\lambda x) = \bar{\lambda}\Phi(x)$ for all complex numbers λ , where $\bar{\lambda}$ denotes the complex conjugation of λ .

The <u>inverse map</u> of Φ can be described as follows. Given a non-zero element φ of H^* , the <u>orthogonal complement</u> of the <u>kernel</u> of φ is a one-dimensional subspace of H. Take a non-zero element z in that subspace, and set $x = \overline{\varphi(z)} \cdot z/\|z\|^2$. Then $\Phi(x) = \varphi$.

Historically, the theorem is often attributed simultaneously to \underline{Riesz} and $\underline{Fr\'echet}$ in 1907 (see references).

In the mathematical treatment of quantum mechanics, the theorem can be seen as a justification for the popular bra-ket notation. The theorem says that, every bra $\langle \psi |$ has a corresponding ket $|\psi \rangle$, and the latter is unique.

References

- Fréchet, M. (1907). "Sur les ensembles de fonctions et les opérations linéaires" (https://gallica. bnf.fr/ark:/12148/bpt6k3098j/f1414.image). Les Comptes rendus de l'Académie des sciences (in French). 144: 1414–1416.
- Riesz, F. (1907). "Sur une espèce de géométrie analytique des systèmes de fonctions sommables" (https://gallica.bnf.fr/ark:/12148/bpt6k3098j/f1409.image). *Comptes rendus de l'Académie des Sciences* (in French). **144**: 1409–1411.
- Riesz, F. (1909). "Sur les opérations fonctionnelles linéaires" (https://gallica.bnf.fr/ark:/12148/bpt6k3103r/f976.image). Comptes rendus de l'Académie des Sciences (in French). 149: 974–977.
- P. Halmos *Measure Theory*, D. van Nostrand and Co., 1950.
- P. Halmos, A Hilbert Space Problem Book, Springer, New York 1982 (problem 3 contains version for vector spaces with coordinate systems).
- Walter Rudin, Real and Complex Analysis, McGraw-Hill, 1966, ISBN 0-07-100276-6.
- "Proof of Riesz representation theorem for separable Hilbert spaces" (http://planetmath.org/?op =getobj&from=objects&id=6130). *PlanetMath*.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Riesz_representation_theorem&oldid=939855656"

This page was last edited on 9 February 2020, at 03:51 (UTC).

Text is available under the <u>Creative Commons Attribution-ShareAlike License</u>; additional terms may apply. By using this site, you agree to the <u>Terms of Use</u> and <u>Privacy Policy</u>. Wikipedia® is a registered trademark of the <u>Wikimedia</u> Foundation, Inc., a non-profit organization.