量产测试工具使用说明

文档版本	修改说明	修改日期
V0.1	初建	2011-5-9
V0.2	更新	2011-6-3
V0.3		2011-7-1
V0.4	完善完善参数配置说明	2011-8-8
V1.0	 完善文档	2012-3-20
V1.1	增加9系说明	2012-12-12
V1.2	修改自动配屏说明	2013-01-17
V1.3	增加自动配置测试参数说明	2014-02-10
V1.4	一拖多测试工具	2015-09-08
V1.5	更新芯片库	2015-11-10

深圳市汇顶科技有限公司

Copyright ©2012 GoodIX Tech Co., Ltd. All rights reserved.

目 录

1	测试系统简	5介	3
	1.1 测试	【环境要求	3
	1.2 DBC	G-03 测试板	3
	1.3 悬浮	^፻ 测试板	5
2	功能介绍		7
	2.1 主界	P面及使用(SOP)	
	2.1.1	坐标演示界面	
	2.1.2	测试区域设置	11
	2.1.3	连接状态	
	2.2 一拖	5多界面	
	2.3 数据	号(TP)分析	26
	2.4 导入	、\导出配置	30
	2.5 测试	【系统基本设置	31
	2.6 测试	【板固件升级功能	32
	2.6.1	升级步骤	
	2.6.2	注意事项	
	2.7 GT 7	芯片升级功能	
	2.8 设定	E芯片配置参数	
	2.9 更新	f芯片库	
3	调试配置参	》数(Tuning free)	36
	3.1	参数手动微调	36
	3.2	Tuning free	37
	3.3	自动获取&设定测试参数	
4	设定测试参	>数	39
	4.1 手动		39
	4.2 设定	5节点测试参数	40
	4.3 自动	h获取测试参数	41
5	测试说明		45
	5.1 模组	1测试	45
	5.1.1	I2C 接口	46
	5.1.2	USB 接口方案	46
	5.2 Sens	sor 测试	47
	5.3 COF	F\FPC 测试	49
	5.3.1	假压测试	49

		5.3.2 简易测试	
	5.4	测试结果	52
6	ADB	工具使用步骤	55
7	WIFI	【工具使用步骤	59
8	Win8/	8/10 整机模式	61
9	INI 文	文件说明	64
		生成 Ini 文件 产线模式设置	
10	常见问	问题及处理方法	66

1 测试系统简介

量产测试系统(GuitarTestPlatform)包含测试板以及运行于 Windows 的软件,分别为: DBG-03 测试板,Daughter Board,以及 GuitarTestPlatform(GTP)软件,GTP 软件支持所有芯片的测试。量产测试系统主要功能:

	模组测试	Sensor 测试	COF\COB 测试		
测试对象	IC + Sensor	Sensor	不接 Sensor 的 FPC\COF		
测试内容	■ 屏体数据一致性■ 开路、短路■ 画线效果■ RST\INT\IC 功耗	■ 屏体数据一致性、 ■ 开路、短路	■ 开路、短路 ■ RST\INT\IC 功耗		
支持型号	全系列 IC	全系列 IC	全系列 IC		
测试板	DBG-03 测试板	DBG01-S-M Sensor Daughter Board	DBG-03 测试板 采用假压方式测试		

1.1 测试环境要求

- Microsoft Windows XP SP2 及以上系统, Celeron 1.2G,以上CPU, 128M及以上RAM
- USB 供电能力不小于 500mA, 纹波不大于100mv系统功能需求
- GuitarTestPlatform(GTP)测试软件,以及测试系统配置文件(*.ini)
- DBG-03 测试板

1.2 DBG-03 测试板

DBG-03 测试板(销售型号: DBG03-M) 如图 1-2-1 所示

图 1-2-1 DBG-03 测试板

- USB接口:供电以及 PC 与测试板之间的数据通信;
- **复位键**: 可通过此键对 DBG-02 硬件平台进行复位操作;
- 升级口:可使用 ULINK2 连接到该接口对测试板进行固件升级;
- **强制升级口**:短路这两点后上电,测试系统强制进入升级模式,此时可进入菜单【工具】-> 【测试板固件升级】升级测试板固件。

正常情况下可直接通过菜单【工具】->【测试板固件升级】升级测试板固件。

测试工具软件更新时,请同时更新测试板固件

■ 模组(主控)接口:接口的细节下图所示。

GND: 系统地,接模组 GND

AVDD: 模组的供电电源,接模组 VDD

SHDN: 接模组 Reset 口

SDA\SCL: I2C 通信口,板上存在 2K 的上拉电阻

INT: 中断检测口

VDDIO: 芯片 IO 电平,一般不需要连接,模组需由外部提供 VDDIO 时使用

模组接口与模组连接方式:

1.3 悬浮测试板

悬浮测试板(销售型号: DBG01-D) 更接近真实整机环境,主要用于调试整机参数。

图 1-3-1 悬浮测试板

- 悬浮测试板使用普通手机电池供电,(1)为电池,(2)为电源开关,当(8)(LED3)亮时,请及时充电
- 悬浮测试板不可以通过软件设置电压, (4)为 AVDD 设置开关,可设定 3.3V、3.0V、2.8V 三种 AVDD 电压; 通过(5)可将 VDDIO 电压设置为 1.8V 或者设置为等于 AVDD
- **(7)**为复位开关
- (6)为模组接口
- (3)为强制升级口,短路这两点后上电,测试系统强制进入升级模式,此时可进入菜单【工具】-> 【测试板固件升级】升级测试板固件。

2 功能介绍

2.1 主界面及使用(SOP)

软件可设置为工程版及产线版,工程模式下,所有功能都可以使用。

产线模式下,没有菜单,只提供测试功能,并且软件会对ini文件(测试参数文件)进行校验,防止测试员手工修改测试参数。产线版设置方式请参考6.2章节。

图2-1-1 工程版主界面

测试步骤(SOP):

1) 测试第一步,打开软件

🖟 apk	2015-09-01 12:00	文件夹	
📗 system	2015-09-01 12:00	文件夹	
TestResult	2015-09-01 18:04	文件夹	
〗 tmp	2015-09-01 12:00	文件夹	
ChangeList.txt	2015-07-29 10:28	UltraEdit Docum	1 KB
GoodixDllLog.txt	2015-07-29 10:29	UltraEdit Docum	20 KB
	2015-09-01 11:25	应用程序	15,130 KB
<u> </u>			

GTPV4.0.0.0版本以上的量产工具的图标修改为如下:

- 2) 测试第二步,将测试板插入电脑USB接口,此时(1)、(2)分别为GTP软件及测试板固件版本号,测试板工作正常后,才会出现(2),否则会提示"测试版已断开"。
- 3) 测试第三步,通过(15)导入配置,导入ini文件及CFG文件后,在(4)可以看到ini文件名,可以看到当前ini文件设定的芯片类型、测试模式、模组电压等基本测试信息。
- 4) 测试第四步,接入模组或Sensor后,点击按钮(12),或者直接按回车键启动测试,测试结束后软件会提示"PASS"或者测试失败原因。

其他区域功能分别为:

- (10) 是模组 (IC) 电流,电流过小时,比如小于1mA,可能模组没有接好。
- 按(8)可以查看模组版本号,读不到、读取到乱码或者读到几个0时,表明模组没有接好,或者(18)中芯片类型、电压设置有误。
- 按钮(11)可以看到原始值(Rawdata),模组工作不正常时,原始值会很凌乱,或者数据变化很慢。
- 勾选(13)后启动测试,软件进入自动测试模式,模组接入后会自动启动测试,提高效率。

- 勾选(14),每次测试结束后,会在软件目录下的【TestResult】文件夹下,生成测试log,记录测试信息,如果(7)有输入内容,测试log文件名会包含这些内容。
- (16) 表示测试板的SN,通过不同的SN可以标示不同的测试板
- 如果需要通过条码枪输入TP编号,可以将鼠标移到(7)后扫描,也可以将条码枪设置为输入结束后自动回车,输入结束后会自动启动测试。注意: 在列表框显示 "Barcode:NULL"处,首先要双击这个位置,当出现编辑框才能扫描。如下:

GuitarTestPlatform.ini	Barcode: NULL
SN: 2#	DBG-02V3.4.150821
AVDD:2.8V VDDIO:1.8V	Current:2.55mA
GT5668	模组已接入

2.1.1 坐标演示界面

在图2-1-1区域(3)用于显示坐标、画线轨迹。

在区域(3)点击右键,出现如下菜单:

图2-1-1-1 触点轨迹演示区右键菜单

图2-1-1-2 画线演示

图2-1-1-3 触点演示

图2-1-1-4 描点演示

2.1.2 测试区域设置

在图2-1-1区域(3)选择其中的【测试区域设置】可设定测试区域,屏蔽不需要测试的点以及在原始值数据界面也会屏蔽该节点的显示,如下图,双击后出现"NC"的点将不会被测试。测试区域设置后,会保存在系统配置文件(ini文件)中。

图2-1-2-1 设置测试区域

快捷修改节点 NC 值:

图2-1-2-2 快捷修改行

如上如图2-1-2-2,双击行标号【01】则会出现一行的反选

图2-1-2-3 快捷修改列

如上如图2-1-2-3,双击列标号【01】则会出现一列的反选

图2-1-2-4 快捷修改按键

如上如图2-1-2-4,双击按键标号【Key】则会出现所有按键的反选

NC	01																			
NC	02																			
NC	03																			
NC	04																			
NC	05																			
NC	06																			
NC	07																			
NC	08																			
NC	09																			
NC	10																			
NC	11																			
NC	12																			
NC	Key																			
01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	ALL

图2-1-2-5 快捷修改所有节点

如上如图2-1-2-5,双击标号【ALL】则会出现所有节点(屏体+按键)的反选。

当出现图2-1-2-2, 点击图2-1-1区域<mark>(3)</mark>按钮【原始值】如下图2-1-2-6:

图2-1-2-6 第一行节点NC的原始值界面

2.1.3 连接状态

图2-1-3-1 测试板和模组都已连接

如图**2-1-3-1**,当测试板和模组都连接好,会显示测试**固件的版本号**,显示**模组已接入**,电流显示 正常(实时刷新)。

图2-1-3-2 测试板断开连接

如图**2-1-3-2**,当测试板断开连接,显示**模组已拔出**,**Device not found**,同时模组的电流也不再刷新。

图2-1-3-3 测试板连接,模组未接入

如图2-1-3-3,当测试板连接,模组未连接,显示测试板的固件版本,模组已拔出

2.2 一拖多界面

图2-2-1 一拖二界面

如图图2-2-1当工具接入两个测试板时,在标题栏中(1)会显示连接"Connected 2 Devices"字样,主界面出现两个坐标演示界面,在两个TP上画线对应的坐标演示界面会相应的画线。(2)显示的是当前的测试板。(3)中显示的测试板和模组的信息

鼠标在列表框点击可以切换当前所选的测试板。

图2-2-2 一拖二界面

如图2-2-2,点击左边的列表框切换到测试板2#,点击右边的列表切换到测试板Y

图2-2-3 一拖四界面

在一拖多界面的【导入配置】, 【开始测试】都是针对于所有的测试板而言的。【原始值】是针对对当前所选测试板而言。

图2-2-4 一拖四界面

如图2-2-4当进入一拖多模式,【测试区域设置】是被灰掉的

一拖多测试功能

图2-2-5 一拖多测试界面

步骤:

- (1) 连接好测试板和模组
- (2) 点击【导入配置】按钮,导入测试用的cfg和ini文件
- (3) 勾选【自动保存测试数据】,根据需要勾选【自动测试】
- (4) 点击【开始测试】按钮,所有的TP都开始测试,测试的结果也会显示在界面上如图图 2-2-6
- (5) 测试完成后在工具所在目录\TestResult\下可以找到测试的log信息,log信息是按照测试板分类格式为"SN_NG"和"SN_OK",如果测试板没有SN则只有"NG"和"OK"如下图:

 NG	2015-09-08 10:02	文件夹
	2015-09-08 10:02	文件夹
N_NG	2015-09-08 10:02	文件夹
N_OK	2015-09-08 10:02	文件夹

图2-2-6 一拖多测试界面

一拖多条码测试

在系统 Ini 参数中审查

[Test Parameter]

BarcodeNeed=1

BarcodeLenLimit=条码的长度

当在系统 Ini 中设置好了这两个参数的话则可以使用条码测试

图2-2-7 条码测试

步骤:

- (1) 连接好测试板和模组
- (2) 点击【导入配置】按钮,导入测试用的cfg和ini文件(注意设置好ini中条码相关参数)
- (3) 勾选【自动保存测试数据】
- (4) 在需要测试的TP对应的列表框的barcode处双击鼠标左键,如图2-2-7(1)所示,然后扫描对应测试板接TP的条码,当条码的长度达到Ini设定的值后就会自动开启测试。
- (5) 测试完成后在工具所在目录\TestResult\下可以找到测试的log信息,log信息是按照测试板分类格式为"SN_NG"和"SN_OK",如果测试板没有SN则只有"NG"和"OK"如下图:

 NG	2015-09-08 10:02	文件夹
 ■ OK	2015-09-08 10:02	文件夹
NG Y_NG	2015-09-08 10:02	文件夹
NOK	2015-09-08 10:02	文件夹

注意:在一拖多测试之前请在测试板贴上SN的标示,以免混淆。

2.3 数据(TP)分析

数值显示界面

在主界面点击【原始值】按钮时进入【原始数据分析】界面,如下图:

图2-3-1 原始数据

X 轴为感应线(Rx)方向,Y 轴为驱动(Tx),如果有配置按键,则最下一行(Key)为按键数据。

点击右键后:

✓ 当前值差值基准值手动差值

切换到坐标演示界面

图2-3-2 数据分析界面右键菜单

图2-3-3 差值图

图2-3-4 基准值图

图2-3-5 手动差值图

选择对应的选项,可以进行相应数据的显示:

【当前值】: 如图 2-3-1 芯片采样值显示(即原始值)。

【差值】: 如图2-3-3所示, 差值为采样值(原始值)与基准值之差。差值用于计算坐标。

【基准值】: 如图 2-3-4 所示,芯片用来与采样值比较以确定是否有触摸的参考值。

【手动差值】:如图 2-3-4 所示,为原始值与软件获取的基准值之间的差,有正有负,基准通过在界面上双击鼠标获取一屏当前值代替。

【切换到坐标显示界面】: 用于切换到坐标显示演示界面(如下图)。

图2-3-6 数值演示放大界面

界面支持放缩。当 **TP** 的通道比较多的时候,在界面看到的数据就很多,每个数据显示得比较小。 如图 **2-3-6** 坐标演示界面,在数据显示的地方滚动**鼠标滚轮**可以实现数据显示放大和缩小,但数据 放到比较大时,可以按下**鼠标中键**,当鼠标呈现出一个手掌时,可以拖动界面。

图 2-3-7 演示界面

如图 **2-3-7**,坐标演示界面这个界面和主界面的坐标演示差不多。这个界面上增加**分辨率、刷新率**信息,并且该界面没有按照屏幕实际的分辨率比例来显示演示区域。

图 2-3-8 演示界面右键菜单

2.4导入\导出配置

测试前,一定要导入配置文件,一般需要导入两个文件:

- 1) INI 文件:测试系统配置文件,包含测试软件所需的所有配置信息,包括芯片类型、测试参数、芯片 CFG 等信息。
- 2) CFG 文件: 芯片配置文件,包含通道数目、通道线序等芯片工作的基本配置信息

图2-4-1 导入配置参数

测试软件在关闭时,会将当前设置,比如芯片类型、测试参数、CFG等保存入导入的ini文件中,请注意,导入后请直接测试,不要对设置进行任何修改。

图2-4-2 导出配置参数

2.5测试系统基本设置

用于设置**测试类型、芯片类型、测试电压值**,这三项必须设置正确。

- AVDD。对应模组工作电压,可设置范围为 0-3.6V
- VDDIO。测试板模组接口通讯电平,由模组电路决定,一般可设置为 1.8-3.3V。通讯不稳定, 比如读取版本号不稳定时,可以尝试修改 VDDIO。

2.6 测试板固件升级功能

2.6.1 升级步骤

可通过 USB 对测试板固件进行升级,升级步骤如下:

1) 启动升级

2) 选择对应的固件,目前一般选择 DBG-02V...bin, DBG-01V...bin 支持较早期测试板。

3) 点击【更新固件】按钮,开始升级,升级过程中请勿复位测试板、插拔 USB。进入升级模式后,菜单标题会提示'DBG-Update Mode v1.5':

2.6.2 注意事项

测试工具支持 DBG-01(早期测试板)与 DBG-02\DBG-03 三种测试板,升级时需要根据不同测试 板选择不同升级固件。DBG-02\DBG-03 固件文件名以 DBG-V02 开头,升级了错误的固件将导致测试 工具工作不正常。

升级过程中请勿手动复位测试板。

升级失败后,可通过图 1-2-1 中的【强制升级口】强制进入升级程序。

进入 Update 模式后, Windows 有时候加载驱动会比较慢,长时间没反应,或者显示"找到新设备",这时候可以插拔一下 USB 线后,关闭页面后重新进菜单升级。

测试工具软件更新时,请同时更新测试板固件

2.7 GT 芯片升级功能

GTP测试软件提供Guitar芯片升级功能,升级步骤如下所示:

1) 启动升级

2.8 设定芯片配置参数

如果对芯片非常了解,也可以手工调试芯片配置参数。

在主界面下按 $\mathbf{F5}$,或者从菜单选择,可以完整的调试芯片配置参数:

图 2-8-1 配置界面

2.9 更新芯片库

打开量产工具,首先会检测是否有更新的芯片 INI 文件和配置 SC 文件,如果服务端存在更新的芯片 INI 和配置 SC 文件,就会提示是否更新。如下:

点击【确定】更新文件,点击【取消】不更新文件。

也可以通过菜单的方式手动点击菜单【更新芯片库】。

以上操作会把芯片库更新至最新。

3 调试配置参数(Tuning free)

Tuning free 免调功能是 GTP 测试软件提供的一种非常简单、直观调试配置参数、测试参数的功能,可以无需输入任何信息自动生成配置参数、测试参数、驱动头文件。

3.1 参数手动微调

调试配置参数界面如下:

图 3-1-1 参数手动微调

原始值、差值不满足要求时,可以通过按钮进行调整。

3.2 Tuning free

点击图右下角的 【自动】 按钮或者在键盘上按 "F10" 快捷键,可以启动 Tuning free:

有几点需要注意:

- 1、参数设置,可手动输入,也可 导入 Pattern 工具生成的 wt 文件。

- 3、使用的测试版需要与设置的选项匹配,默认使用悬浮工具板。也可通过点击更多,将悬浮工具的勾选项去掉,即可使用非悬浮工具板。
 - 4、操作时,需要沿驱动或者感应方向画线,请严格按照提示操作

如何确定驱动、感应方向:点击 确定 ,进入调参模式,提示 Touch 时按下并移动手指,可以看到手指头移动方向,如图 3-1-1 中,水平方向的数据为感应,竖直方向的数据为驱动,如果要调整感应线序,手指头需要从驱动方向开始,画完所有感应线。

3.3 自动获取&设定测试参数

勾选上图<mark>☑生成测试参数</mark>,执行完自动配屏设置后会生成系统参数 ini 文件

4 设定测试参数

测试工具可以直接设置、自动获取测试参数并且为每一个节点设定测试参数。

4.1 手动设定测试参数

勾选测试项,填入测试参数后,点击—————,会将当前参数写入 ini 文件,测试参数含义请参考具体文档。

4.2 设定节点测试参数

某些 Pattern 原始值很不均匀,可以为数据不均匀的节点单独设置测试参数。

点击 设定节点测试参数 可为每个单独节点设置测试参数,并且整体调整参数。如下图,在要设定的节点位置,按下鼠标左键,移动鼠标,框选要设置的节点(红色)后,双击鼠标,在弹窗中填入要设定的参数:

2900 2	טטפי	7200	2300	7,000	2300	2300	2300	2300	2300	2300	2300
2906 2	2906	2906	2906	2906	2906	2906	2906	2906	2906	2906	2906
2906 2	2906	2906	2906	2906	Test	Par	amte	r Se	ting	2000	3906
2906 2	2906	2906	2906	2906						· 🕍	906
2906 2	2906	2906	2906	2906		全屏最大的 全屏最小的		906			906
2906 2	2906	2906	2906	2906		相邻最大(906
2906 2	2906	2906	2906	2906		确定		取消			906
2906 2	906	2906	2906	2906							906

如果有为独立节点设置测试参数,则设置的节点会变成蓝色,用鼠标框选这些节点后,双击鼠标,可以清除或者修改设置:

03	1035	1035	1035	1000	1000	1000	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035
04	1035	1035	1035	1000	1000	1000	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035
05	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035
06	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035
07	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035
08	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035
09	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035
10	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035	1035
															数据[内容:【全	全屏最大 (直】
	L 蓝色数值	为单独设	置的节点	点测试参	数,请按	住鼠标左	键,移3	加鼠标以	选定节点	,选定后	,双击)	先定内容,	后设置测	i 调整	判定参数		下一数挂	展类型

如上图,点击 **调整判定参数** 可以全屏放大或者缩小设定值, 下一数据类型 可以查看不同参数。

设定测试参数时,一定要检查当前使用的 ini 文件模板是否有设定节点参数,请将不需要的节点参数清除。

4.3 自动获取测试参数

获取测试参数 点击 可以自动设定测试参数,系统支持获取多块 **TP** 数据生成测试参数。

自动获取测试参数 Step1:

Step2:

点击 、 软件获取当前 TP 的原始值,采样到满足要求的数据后,则提示接入下一块模组,继续采样:

100	VVV	100	VV2	001	VV I	UUU	002	UUU	UUU	VLI	027	020	001	101	101	101	100
797	793	786	793	793	789	成功获取数据				785	794	778	779	788	783		
798	798	793	796	795	793	请接		-50 3大· 一 TP ;			集	789	797	796	797	799	795
783	789	793	786	787	787	787	788	783	784	781	789	790	797	799	797	795	796
806	801	797	804	797	800	800	801	805	808	791	788	791	803	802	801	807	803
799	791	783	786	786	781	783	785	787	790	778	776	780	796	793	797	807	802
774	754	753	750	752	751	751	750	749	753	737	742	749	794	783	786	794	796
最大值		1		小值:73 准差·10				[- 最小			最大值/			Data 2	01400	31 105	427

如果提示数据不正常,可以根据提示,在提示的位置画线、检查差值是否符合要求, 通常屏体数据一致性不太好时,相邻偏差比较大,会出现提示。

上一帧

下一帧

上—TP

Step3:

导入文件 数据图表

所有模组采样完毕后,点击 全部完成 ,当屏体数据一致性不好时,建议对每个节点设置独立参数

对每个节点单独设置放缩倍数后,每个节点会独立设置测试参数,默认情况下,软件 会将当前数据发放大 1.2 倍作为测试最大值,当前数据的 0.8 倍作为测试最小值,也可以 根据提示选择节点:

948	951	952	948	952	950	951	952	949	949	940	948	952	957	960	958	956	9
972	964	958	962	960	964	964	963	968	973	950	950	954	966	967	963	970	9
																969	
932	912	904	904	903	904	904	902	904	906	889	895	902	951	944	951	955	9

					数据内容:【放大	后通道值 】
── 放缩设置○ 平均值作为放缩基准	──显示类型: ☑ 原始值放大倍数	☑ 原始值缩小倍数	☑ 相邻偏差放大倍数	☑ 最小相邻偏差		
	☑ 放大后通道值	☑ 缩小后通道值	☑ 相邻偏差放大后值	☑ 原始值	确定	取消

如上图,在红框位置双击鼠标,可以单独调整这部分节点放缩倍数:

如果 TP 数据一致性比较好,可以给 TP 整体设置测试参数:

5 测试说明

测试前,请检查日志区提示使用的 ini 文件、芯片型号、芯片类型、电压是否正确。否则,请导入 正确的 ini 文件,或者通过菜单设置后再测试。

GuitarTestPlatform.ini	Barcode: NULL	_
SN: Y	DBG-02V3.4.150821	
AVDD:2.8V VDDIO:1.8V	Current:2.58mA	
GT5668	模组已接入	=
		4

图 5-1 测试基本信息

SN: Y 全屏最小值 相邻最大偏差 按键最小值 IC版本检测	Barcode: NULL 最小值超过限定值! 相邻数据偏差超限! 按键最小值超过限定值! IC FW Version Error!	

图 5-2 测试 NG

Barcode: NULL
Pass

图 5-3 测试 PASS

如图 5-2,5-3 可知,测试通过显示绿色,测试 NG 显示红色并且有简洁的失败的原因。测试步骤(SOP)请参考 2.1 章节

5.1 模组测试

测试模组时,必须设置为模组测试方式,同时设定好芯片类型、电压:

5.1.1 I2C接口

I2C 方案的模组通过 I2C 接口与主控连接,测试时需要将 I2C 通讯口、VDD、INT 等连接至测试板上的模组接口。

当前使用的配置文件(*.ini)为:

E:\量产测试工具_DBG-02V2.5.121212(Beta)\system\GuitarTestPlatform.ini

[Chip Type]: GT9110 [Test Mode]: Module

【AVDD】:2.8V 【VDDIO】:2.8V 莫组已接入... I2C Addr: 0x28

注意:

如果开启了自动测试功能,测试工具会自动检测模组的插入拔出动作,在软件检测到模组接入后,请不要再插拔模组,否则会影响测试结果。

5.1.2 USB 接口方案

USB 方案模组测试不需要测试板支持,测试时将模组连接到电脑上后,测试方法与 I2C 模组测试 相同。

5.2 Sensor 测试

我司提供两种方式测试 Sensor:

- 1) 客户可制作对应的 GT9 系列芯片的小模组,将待测 Sensor 接入后,使用模组测试的方式测试 Sensor。
- 2) 使用我司提供的 GT9110 Sensor 测试板

这两种测试方式都使用 GT9 模组,需要设置为模组测试,另外,都需要配置相应的测试 CFG 与 INI 文件,比如,测试 GT868,需要调试 GT868 整机 CFG\INI,以及用于测试的 GT9 CFG\INI。

GT9 系列模组测试 Sensor 连接示意图如下:

GT9110 Sensor 测试板:

我司另外提供 GT9110 Sensor 测试板(销售型号: DBG01-S_M),用于测试 GT9\GT8 系列 Sensor,该测试板上 Sensor 接口与 GT8 Sensor test Daughter Board 兼容:

连接示意图如下:

红圈部分的通道接口定义为:

根据 GT9 系列芯片的应用规则,单层多点 Sensor 测试转接板的 Layout 需要遵循以下规定:

1) Driver.

Driver 不管数量多少,均可按如下规则选线(假设总驱动线数为N):

- 在前 21 根 Driver 按照 D0-D20 的顺序选取 N/2 根(若不为整数则向上取整)。
- 在后 21 根 Driver 按照 D21-D41 的顺序选取余下的驱动。

■ 前 21 根 Driver 和后 21 根 Driver 不可以交错使用(即在 CTP 的链接 pin 定义不可以 出现 D19、D22、D18 这样的定义)

Driver 数量少于 21, 也可以按照 D0-D20 的顺序选取。

2) Sensor

- Sensor 数量不超过 15。Sensor 使用序号为偶数的感应(如 S0、S2、S4······)。例如,一个 15 驱动 10 感应的单层多点 CTP,在转接板 Layout 时,应该使用 D0-D14 驱动线和 S0、S2、S4、S6、S8、S10、S12、S14、S16、S18 感应线。
- Sensor 数量超过 15。Sensor 使用连续的编号的感应(如 S0、S1、S2······),但是两根奇数或两根偶数的感应线不能相邻。

例如,一个 20 驱动 17 感应的单层多点 CTP, 在转接板 Layout 时,应该使用 D0-D19 驱动线和 S0-S16 感应线,而且在走线时不能出现 S0、S2 相邻或者 S1、S3 相邻这样的走线。

5.3 COF\FPC 测试

5.3.1 假压测试

将待测 FPC 假压 Sensor,可以测试 FPC 通道开路、短路,功耗、RST\INT 异常等

5.3.2 简易测试

非单层项目,模组(Sensor)上的感应\驱动线在开路时,手指触摸时数据基本上没有变化,利用这个特点,可以用比较简单的方法测试是否开路:

点击【原始值】按钮,进入原始值界面,然后点击鼠标右键,选择手动差值(图 2-2-2),然后双击鼠标左键,更新手动差值的基准,此时数据如下:

图 5-3-1 连接 COF 模组后的手动差值

用手捏住 FPC 金手指部分(参考下图),

在没有开路情况下,用手掌压住 FPC 金手指时手动差值数据如下:

图 5-3-2

如果通道开路,数据如下:

图 5-3-3 驱动线 12 开路

用手压金手指的方法,可以很好的测试驱动\感应开路情况,请注意:

- 此方法仅需要比较按压前后数据变化,无需进行量化,测试效率较高。
- 亦可采用弱导电材料(如静电布)取代手,通过夹具来按压金手指进行测试。

测试完毕后,不需要关闭手动差值窗口,模组接入后会自动下发配置并读取数据,提示更新基准后,可以压合夹具或用手压进行测试。

该方法不可用于测试单层项目。

5.4 测试结果

当测试通过时,测试工具直接显示"OK!"

图 5-4-1 测试结果

当测试失败时,点击【原始值】按钮可以看到测试不通过的详细原因,红色数据为不通过数据,将鼠标放在红色数据上面,会提示失败原因:

	最大值	1/最小	直:1.46		10-	数排	居内容:	【当前值	1			
						域偏差 屏偏移	:	0.17670 0.23141			0.1000 0.2000	
2618	2612	2605	2594	2589	258测	试未通过	士项目:					
2618	2606	2594	2585	2577	256	38行,第	27万山	10547	2544	2542	2106	-
2444	2438	2430	2420	2409	2404	2399	2388	2388	2389	2381	2026	
2439	2430	2420	2411	2405	2394	2390	2388	2385	2386	2372	2022	
2526	2522	2512	2502	2494	2490	2480	2475	2486	2474	2462	2112	
2534	2524	2515	2504	2493	2482	2477	2492	2480	2473	2458	2113	
2524	2511	2503	2493	2484	2476	2483	2485	2474	2464	2453	2119	
2529	2515	2504	2495	2484	2481	2487	2484	2473	2467	2455	2123	

如果测试过程中获取测试数据计数变的很慢时,该组测试结果无效,请检查模组 INT 口是否工作正常。

6 ADB 工具使用步骤

1) 打开量产测试工具,选择 ADB tool 菜单

2) 确保 Android 手机和 PC 使用 USB 连接了 点击【USB】按钮,选择【新方式】

GTPV4.1.0.0-20150821 Adb

然后需要等待一段时间,在如上的输出 log 框看到了【驱动版本】,以及主界面标题栏中出现 Adb,则表示连接上了。注意默认情况下进入原始值差值模式。

注意,【新方式】使用一个 apk 后台服务程序来作为通信的桥梁的,在点击【USB】按钮后会把工具\apk\录下的 TransmitService.apk 使用 adb install 命令安装,因此确保手机打开了"允许未知源"。

- 3) 如果新方式就是连接不上,可以选择使用【老方式】,这种方式则没有安装 apk 的要求。但是【老方式】只使用于不连续读写的操作,例如读写配置,版本号,IIC 读写等等
- 4) 如下图框选的部分都只是连接了 USB 才能使用的

5) 屏幕投射

当手机触摸屏失效了可以使用这个工具来模拟手机操作,可以使用鼠标在投影的界面上点击图标来打 开应用,一直按住鼠标左键在投影界面上滑动模拟手指的滑动。以及滚动鼠标滚轮上下选择。目前这 个屏幕投影刷新还不够及时。

6) 当使用 adb 工具意外断开了连接,请再次点击下图的按钮

7) 如果使用新方式一直连接不上,请切换到老方式。

7 WIFI 工具使用步骤

1) 打开量产测试工具,选择 ADB tool 菜单

2) 确保自己的电脑上有无线网卡,点击【WIFI】按钮,开启服务端程序

3) 打开手机端的 gtp apk 工具。

在右边的编辑框中输入服务端 IP 地址,例如步骤 2 为 192.168.253.1:9006 服务端使用 9006 端口。

4)点击手机端的【Connect】按钮

如果手机端的 IP 地址和 PC 服务端的 IP 地址在同一网段的话,连接肯定会成功。如果连接不成功的话,可以在电脑端 ping 一下手机的 IP。建议在自己的电脑上开一个热点让手机来连,这样稳定性强。

5) 当手机连上了电脑,量产工具主界面会显示如下:

8 Win8/10 整机模式

Win8 整机工具运行时,需要管理员权限。请右键,以管理员权限运行。

目前 Win8 整机工具支持的 IC 有: GT911、GT928、GT967、GT9110、GT9110P、GT9271、GT9293 及 GT912、GT910,支持的功能有: 收发配置、固件升级、短路测试、原始值测试、画线测试(GT9113 不支持该功能)、I2C 读写。

Win8 整机工具工作原理:量产测试工具通过驱动提供的接口,与 IC 通信,从而进行对 IC 进行设置等操作。

使用方法与非整机上操作相同,如需调试 GT9113,那么需要更改类型到 Win8.1 HID I2C Driver,如下所示:

如需调试单芯片(GT911、GT928、GT967、GT9110、GT9110P、GT9271、GT9293及GT912、GT910),需将类型更改到 Win8.1 Driver(Single-chip),如下所示:

设置完成后,工具会自动连接驱动暴露出来的接口,如果连接成功,如下所示:

如红色区域内,显示驱动版本号。

工具连接驱动失败问题排查:

- a) 当前工具是否是以管理员权限运行的。
- b) 如果是单芯片,请确认 c:\windows\inf 文件夹中的 touchSetting.gt 文件中的以下字段 [supprot]

GtpTool=1

如无该文件或无该地段,请自行添加。

c) 确认当前驱动处于运行状态,右键我的电脑/管理/Device Manage,在右边的设备 列表中,Human Interface Devices/Goodix Touch HID,双击 Goodix Touch HID,查看驱动状态为正常,如下所示:

9 INI 文件说明

测试工具打开时,默认使用system文件夹下的ini文件,当该文件夹下没有ini文件,或者有多个ini文件时,则使用上一次使用的ini文件。另外也可以通过软件菜单中的【文件】->【导入和导出】->【系统配置参数】选项对ini进行导入。

建议将工具软件与system文件夹放在同一个文件夹下,system文件夹中只存放一个ini文件。为每个方案保存一个ini文件(ini文件可以根据不同方案取不同的文件名),使用时将对应的ini文件复制进system文件夹中,可以减少设置,避免出错。

如果测试工具设置为产线模式,测试软件与system文件夹请放在同一个文件夹下。

V4.0.0.0版本以上的工具对于Ini的处理首先是拷贝一份ini到/res/iniBak,然后所有对于Ini的修改操作都会同步到/res /iniBak目录下的ini文件中,最后关闭量产工具时会对比备份的Ini和最原始的Ini的内容,当两份ini完全相同工具不会有提示,当存在不同就是提示是否需要用备份的Ini覆盖最原始的Ini.

生产测试时,请再次检查Ini文件,确保使用了正确的ini文件。

9.1 生成 Ini 文件

Ini文件通常由FAE提供,客户也可以自己生成。

Ini文件生成步骤如下:

- 1、导入已有ini文件或使用默认文件(默认使用system文件夹下的ini文件)
- 2、进入菜单【工具】->【系统配置】,设置芯片类型、型号、电压
- 3、进入菜单【文件】->【导入配置】,导入芯片配置信息(CFG\TXT格式)
- 4、连接模组或Sensor后,进入菜单【工具】->【高级调试】->【设定测试参数】,设置测试参数,设置完毕后点击"应用"按钮。也可以使用"自动获取测试参数"按钮获取参数,然后根据屏的实际效果手动微调。
- 5、进入菜单【文件】->【导出配置】->【导出系统参数配置】,保存ini文件。或者关闭软件后, 所有设置项将保存到ini文件中,可以使用该ini文件进行测试。

9.2 产线模式设置

软件根据ini文件中【System】下"User"字段来设置用户权限,生成不同的软件版本,当【Designer】下"para1"、"para2"之和等于"User"时,软件为工程版本,其他形式下为产线测试版本。

产线测试版与工程版的区别为在主界面没有菜单项,不能通过菜单项直接修改ini文件中的芯片配置参数及测试参数,只能测试、查看原始值。

在产线测试模式下,不能手动修改ini文件中的芯片配置参数、测试判定参数,手动修改这些参数 将不能进行测试。

V3.1版本后,产线版本可以通过【解锁】按钮,恢复成工程版:

解锁密码存放在**软件目录\system\res\sys.ini**中,默认密码为good luck

[system]

PassWord=good luck

10 常见问题及处理方法

- Q: 测试板连接后,标题栏显示HID设备已断开
- A: 1、按测试板上的复位按键复位测试板。
 - 2、换另外的连接线或者USB端口试试能否连上。
 - 3、重新启动电脑,或换另外一台电脑尝试
 - 4、用镊子短接测试板上JP1,强制升级测试板固件。
- Q: 软件无法打开
- A: 1、USB可能出现问题,请重新启动电脑。
- 2、系统配置文件(后缀名为ini)出现异常,进入任务管理器,结束GuitarTestPlatform.exe 进程,更换system文件夹下的ini文件。
- Q: 查看原始值时,原始值异常?
- A: 1、检查模组连接是否正常, 电流是否正常
 - 2、检查芯片类型是否正确,是否能读取到芯片版本号
 - 3、检查配置信息是否正确
- Q: sensor/模组开始测试后,读取数据一直停止不动?
- A: 1、确认发送的配置信息是否正确,确保ini文件中SendConfg选项等于1。
 - 2、感应通道与地有短路。
 - 3、INT口异常
- Q: 切换到数据分析界面时,数据显示不正常?
- A: 1、检查连接是否正确、电压是否正常
 - 2、重新导入正确的配置参数