

System Identification with Kalman Filters

Advanced Topic 5

Kalman Filters

Predicted state estimate

Optimal state Measurement estimate

Img source: Journal of advanced transportation, 2021:1-16, 10.1155/2021/6251399

Kalman filter is an algorithm that helps us make the best possible estimate of a changing value by combining information from measurements that may be noisy or uncertain

Role of Kalman Filters in SysID

 In SysID, the goal is to create a mathematical model of a system based on observed data, particularly when the system's internal structure is unknown or only partially known

In this context:

- **1. Model Estimation**: The Kalman filter *continuously updates a state-space model* of the system by using incoming data
- **2. Parameter Tuning**: As the *filter processes more measurements*, it *updates the states* (like positions or speeds) *and system parameters.*
- **3. Handling Noise and Uncertainty**: Since real-world data often has noise, the Kalman filter's ability to separate the "true" signal from the noise is crucial in system identification.
- **4. Application in Control Systems**: Identifying the precise dynamics of a control system allows for more accurate control strategies.

Kalman filters enable us to understand how the system responds to different inputs, leading to better control and prediction of future behavior.

Mathematical foundation

State space model

$$x_{k+1} = Ax_k + Bu_k + w_k$$
$$y_k = Cx_k + Du_k + v_k$$

Predict

$$\overline{x} = Fx + Bu$$

$$\overline{P} = FPF^T + Q$$

Update

$$y = z - H\bar{x}$$

$$K = \bar{P}H^{T}(H\bar{P}H^{T} + R)^{-1}$$

$$x = \bar{x} + Ky$$

$$P = (I - KH)\bar{P}$$

Extensions for system identification

- Kalman Filters for nonlinear systems
 - Extended Kalman Filter (EKF)
 - Unscented Kalman Filter (UKF)
- EKF: Use Gaussian approx. to find an appropriate linear system representing the nonlinear dynamics
- Locally linearized state space model
 - Gradient estimation
- Estimation of time-varying systems
 - EKF with fading memory

Single-Degree-of-Freedom System:

$$\ddot{x}(t) + 2\zeta \omega_n \dot{x}(t) + \omega_n^2 x(t) = f(t)$$

- Employ EKF to update natural frequency ω_n and damping factor ζ
- The augmented state vector is defined as:

$$- \mathbf{y}(t) \equiv [\dot{x}, x, \omega_n, \zeta]^{\mathrm{T}}$$

 The state-space representation of the ODE can be written as follows

$$-\dot{\mathbf{y}}(t) = g(\mathbf{y}(t), f(t); \omega_n, \zeta)$$

• Do Taylor expansion around the state $y(t) = y^*$:

$$\dot{\mathbf{y}}(t) = \left. g \right|_{\mathbf{y} = \mathbf{y}^*} + \left. \frac{\partial g}{\partial \mathbf{y}} \right|_{\mathbf{y} = \mathbf{y}^*} \left(\mathbf{y} - \mathbf{y}^* \right) + \left. \frac{\partial g}{\partial \mathbf{f}} \right|_{\mathbf{y} = \mathbf{y}^*} f$$

Discretize the state-space representation:

$$\mathbf{y}_{i+1} = \mathbf{A}_i \, \mathbf{y}_i + \mathbf{B}_i \, \mathbf{f}_i + \boldsymbol{\delta}_i$$

• The matrices A_i and B_i are given by:

$$\mathbf{A}_i = \exp(\mathbf{A}_y \Delta t)$$

$$\mathbf{B}_i = \mathbf{A}_{\mathbf{y}}(\mathbf{A}_i - \mathbf{I}_4)\mathbf{B}_{\mathbf{y}}$$

Kunnskap for en bedre verden

Where:

$$\mathbf{A}_{y} = \frac{\partial g}{\partial y}\Big|_{y=y_{i}}$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\omega_{n}^{2} - 2\zeta\omega_{n} - 2\omega_{n}x(t) - 2\zeta\dot{x}(t) - 2\omega_{n}\dot{x}(t) \\ 0 & 0 & -\eta & 0 \\ 0 & 0 & 0 & -\eta \end{bmatrix}$$

$$\mathbf{B}_{y} = \frac{\partial g}{\partial f}\Big|_{y=y_{i}}$$

$$= \begin{bmatrix} 0, 1, 0, 0 \end{bmatrix}^{T}$$

$$\mathbf{B}_{y} = \frac{\partial g}{\partial f} \Big|_{\mathbf{y} = \mathbf{y}_{i}}$$
$$= [0, 1, 0, 0]^{T}$$

• The remainder term δ_i is defined as

$$\boldsymbol{\delta}_i = \mathbf{A}_y (\mathbf{A}_i - \mathbf{I}_4) (g|_{\mathbf{y} = \mathbf{y}_i} - \mathbf{A}_y \mathbf{y}_i)$$

The observation equation is given by:

$$z_i = \mathbf{H} y_i + n_i$$

Where the observation matrix is defined as:

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Kunnskap for en bedre verden

Results:

Source: Huang, K., Yuen, KV. (2023). System Identification Using Kalman Filter and Extended Kalman Filter. In: Bayesian Real-Time System Identification.

Advantages and Challenges

- Advantages
 - Recursive estimation
 - Noise reduction
 - Adaptability to nonlinear models
 - Simultaneous state and parameter estimation

- Challenges
 - Sensitivity to model assumptions
 - Computational complex
 - Needs parameter initialization
 - Unstable in highly nonlinear systems

Thank you!

Kunnskap for en bedre verden