Практическая работа № 7

Алгоритмические стратегии. Разработка и программная реализация задач с применением метода сокращения числа переборов

Задание

- 1. Разработать алгоритм решения задачи с применением метода, указанного в варианте и реализовать программу.
- 2. Оценить количество переборов при решении задачи стратегией «в лоб» грубой силы. Сравнить с числом переборов при применении метода.
- 3. Оформить отчет в соответствии с требованиями документирования разработки ПО: Постановка задачи, Описание алгоритмов и подхода к решению, Код, результаты тестирования, Вывод.

Nº	Задача	Метод
1	Посчитать число последовательностей нулей и единиц длины n , в которых не встречаются две идущие подряд единицы.	Динамическое программиро- вание
2	Дана последовательность целых чисел. Необходимо найти ее самую длинную строго возрастающую подпоследовательность.	Динамическое программиро- вание
3	Дана строка из заглавных букв латинского алфавита. Найти длину наибольшего палиндрома, который можно получить вычеркиванием некоторых букв из данной строки.	Динамическое программиро- вание
4	Имеется рюкзак с ограниченной вместимостью по массе; также имеется набор вещей с определенным весом и ценностью. Необходимо подобрать такой набор вещей, чтобы он помещался в рюкзаке и имел максимальную ценность (стоимость).	Динамическое программиро- вание
5	Дано прямоугольное поле размером $n*m$ клеток. Можно совершать шаги длиной в одну клетку вправо или вниз. Посчитать, сколькими способами можно попасть из левой верхней клетки в правую нижнюю.	Динамическое программиро- вание

6	Дано прямоугольное поле размером $n*m$ клеток. Можно совершать шаги длиной в одну клетку вправо, вниз или по диагонали вправо-вниз. В каждой клетке записано некоторое натуральное число. Необходимо попасть из верхней левой клетки в правую нижнюю. Вес маршрута — это сумма чисел всех посещенных клеток. Найти маршрут с минимальным весом.	Динамическое программиро- вание
7	Вычисление значения определенного интеграла с применением численных методов. «Вычислить значение определенного интеграла с заданной точностью определенным методом трапеции. Реализовать следующие подзадачи в виде функций: - вычисление значения подинтегральной функции в заданной точке х; - вычисление значения интеграла установленным методом на заданном отрезке интегрирования при празбиениях; - вычисление интеграла установленным методом с заданной точностью.	Динамическое программиро- вание
8	Черепашке нужно попасть из пункта А в пункт В. Поле движения разбито на квадраты. Известно время движения вверх и вправо в каждой клетке (улицы). На каждом углу она может поворачивать только на север или только на восток. Найти минимальное время, за которое черепашка может попасть из А в В.	Динамическое программиро- вание
9	Треугольник имеет вид, представленный на рисунке. Напишите программу, которая вычисляет наибольшую сумму чисел, расположенных на пути от верхней точки треугольника до его основания.	Динамическое программиро- вание
10	Из листа клетчатой бумаги вырезали фигуру точно по границам клеток. Разработать программу вычисления площади вырезанной фигуры.	метод вет- вей и границ

11	Разработать программу расстановки на 64-клеточной	метод вет-
	шахматной доске 8 ферзей так, чтобы ни один из них	вей и границ
	не находился под боем другого».	-
12	Разработать программу поиска и вывода всех гамиль-	метод вет-
	тоновых циклов в произвольном графе.	вей и границ
13	Пронумеровать позиции в матрице размером	метод вет-
	$5*5$ следующим образом: если номер i $(1 \le i \le 25)$ со-	вей и границ
	ответствует позиции (x,y), то номер i+1 может соот-	
	ветствовать позиции с координатами (z,w), вычисляе-	
	мыми по одному из следующих правил:	
	1) $(z,w)=(x\pm 3,y)$	
	2) $(z,w)=(x,y\pm 3)$	
	3) $(z,w)=(x\pm 2,y\pm 2)$	
	1) Написать программу, которая последовательно ну-	
	мерует позиции матрицы при заданных координатах	
	позиции, в которой содержится номер 1.	
	2) Вычислить число всех возможных расстановок но-	
	меров для всех начальных позиций, расположенных	
	под главной диагональю.	
14	Замок имеет прямоугольную форму и разделен на	метод вет-
	M*N клеток (M<=50; N>=50). Каждая клетка может	вей и границ
	иметь от 0 до 4 стен, отделяющих комнаты. Опреде-	
	лить:	
	- количество комнат в замке;	
	- площадь наибольшей комнаты;	
	- какую стену следует удалить, чтобы получить	
	комнату наибольшей площади.	
	Пример плана замка:	
	1 2 3 4 5 6 7	
	1	
	2	
	3	
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

15	Автозаправка. Вдоль кольцевой дороги расположено М городов. В каждом городе есть автозаправка. Известна стоимость Z[i] заправки горючим в городе с номером i b стоимость C[i] проезда по дороге, соединяющей i-ый и (i+1)-й города и стоимость проезда между первым и М-ым городами. Города пронумерованы по часовой стрелке. Определить для жителей каждого города тот город в котором им выгодно заправляться, и направление «по часовой стрелке» или «против часовой стрелки»	
16	В массиве размером М*N, заполненном нулями и единицами найти квадратный блок, состоящий из одних нулей.	метод вет- вей и границ
17	Монетная система некоторого государства состоит из монет достоинством $a_1=1 < a_2 < < a_n$. Требуется выдать сумму наименьшим возможным количеством монет.	Жадный ал- горитм
18	Разработать процедуру оптимального способа расстановки скобок в произведении последовательности матриц, размеры которых равны (5,10,3,12,5,50,6), чтобы количество скалярных умножений стало минимальным (максимальным).	Жадный ал- горитм
19	Решить задачу о раскраске вершин графа.	Жадный ал- горитм
20	Задача о коммивояжере	метод вет- вей и границ
21	Задача о загрузке машины. Имеется определенный набор предметов Π_1 , Π_2 ,, Π_n (каждый в единственном экземпляре); известны их веса $q_1, q_2,, q_n$ и стоимости $c_1, c_2,, c_n$. Грузоподъемность машины равна Q . Спрашивается, какие из предметов нужно взять в машину, чтобы их суммарная стоимость (при суммарном весе $\leq Q$) была максимальна?	Динамическое программиро- вание

22	Найти в лабиринте все пути между двумя выделен-	Поиск с воз-
	ными точками. Лабиринт может быть задан матрицей	вратом
	соединений, в которой для каждой пары точек указано,	
	соединены они между собой или нет.	
23	Найти все расстановки пяти ферзей на шахматной	Поиск с воз-
	доске, при которых каждое поле будет находиться под	вратом
	ударом одного из них.	
24	Получить все расстановки восьми ладей на шах-	Поиск с воз-
	матной доске, при которых ни одна ладья не угрожает	вратом
	другой.	
25	Найти все расстановки двенадцати коней на шах-	Поиск с воз-
	матной доске, при которых каждое поле будет нахо-	вратом
	диться под ударом одного из них.	
26	Найти все расстановки восьми слонов на шахмат-	Поиск с воз-
	ной доске, при которых каждое поле будет находиться	вратом
	под ударом одного из них.	
27	Определить все возможные маршруты коня, начи-	Поиск с воз-
	нающиеся на одном заданном поле шахматной доски и	вратом
	оканчивающиеся на другом. Никакое поле не должно	
	встречаться в одном маршруте дважды.	
28	Имеется кучка из 100 спичек. Двое играющих по-	Метод
	очередно берут по несколько спичек: не менее одной и	Альфа-бета отсечений
	не более десяти. Проигрывает тот, кто взял последнюю	отсечении
	спичку.	
29	Имеется кучка из 100 спичек. Двое играющих по-	Метод
	очередно берут по несколько спичек: не менее одной и	Альфа-бета отсечений
	не более чем вдвое больше, чем взял предыдущий иг-	отсечении
	рок. На первом ходе можно взять одну или две спички.	
	Выигрывает тот, кто берет последнюю спичку.	
	:	

30	Имеется три кучки спичек. Двое играющих по оче-	Метод
	реди делают ходы. Каждый ход заключается в том, что	Альфа-бета отсечений
	из какой-то одной кучки берется произвольное нену-	отсечении
	левое число спичек. Выигрывает тот, кто взял послед-	
	нюю спичку.	
31	Имеется 24 раскрытые карты: все карты с номе-	Метод
	рами от 1 до 6 обычной колоды, где туз считается за 1.	Альфа-бета
	Масти карт несущественны. Каждый игрок при своем	отсечений
	ходе берет карту и складывает ее значение с суммой	
	тех, которые были взяты ранее. Подсчитывается общая	
	сумма карт, взятых игроками, а не отдельные суммы	
	для каждого игрока. Выигрывает тот, кто берет в точ-	
	ности 50 очков.	
32	Имеется две кучки камней. Двое играющих по оче-	Метод
	реди делают ходы. Каждый ход может состоять в од-	Альфа-бета отсечений
	ном из двух: либо берется произвольное ненулевое	отсечении
	число камней из какой-то одной кучки, либо берется	
	одновременно по одинаковому ненулевому числу кам-	
	ней из обеих кучек. Выигрывает взявший последний	
	камень.	
33	Найти счастливые числа, определяемые следую-	Методы ре-
	щим образом. Из списка натуральных чисел 1, 2, 3, 4,	шета
	5, 6, сначала исключается каждое второе число, в ре-	
	зультате чего получается список 1, 3, 5, 7, 9, 11, 13, 15,	
	17, Поскольку число три является первым (не счи-	
	тая единицы) числом, которое не использовалось в ка-	
	честве просеивающего, из оставшихся чисел исключа-	
	ется каждое третье число. В результате получается	
·		

	список 1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, Затем ис-	
	ключается каждое седьмое число и т. д	
34	Дано натуральное число N. Найти четверки мень-	Методы ре-
	ших N простых чисел, принадлежащих одному десятку	шета
	(например, 11, 13, 17, 19).	
35	Дано натуральное число N . Найти все меньшие N	Методы ре-
	числа Мерсена. Простое число называется числом	шета
	Мерсена, если оно может быть представлено в виде 2^{P}	
	 1, гдер - тоже простое число. 	
36	Дано натуральное число N. Получить в порядке	Методы ре-
	возрастания N первых натуральных чисел, которые не	шета
	делятся ни на какие простые числа, кроме 2, 3 и 5.	
37	Найти все простые несократимые дроби, заклю-	Методы ре-
	ченные между 0 и 1, знаменатели которых не превы-	шета
	шают 9 (дробь задается двумя натуральными числами	
	- числителем и знаменателем).	
38	Найти натуральные числа, меньшие N , которые де-	Методы ре-
	лятся с остатком, равным единице, на 3, 4, 5 и 6 и без	шета
	остатка на 7.	