Introduction to Machine Learning Course

Prof. Mingkui Tan

SCUT Machine Intelligence Laboratory (SMIL)

Contents

- 1 Course Outline
- 2 Machine Learning
- 3 Probability Theory
- 4 Bayes' Theorem
- 5 Information Theory

课程教学大纲

- 机器学习基础 (3)
- Linear Regression and Gradient Descent (3) 线性回归与梯度下降
- Linear Classification and Stochastic Gradient Descent (3) 线性分类、支持向量机、随机梯度算法
- Logistic Regression and Ensemble Methods (Decision Tree, Adaboost) (3) 逻辑回归与集成学习算法
- Overfitting, Underfitting, Regularization and Cross-Validation (3)
 过拟合、欠拟合、正则化与交叉验证
- Multiclass Classification and Cross-entropy Loss (3)
 多类分类和交叉熵损失函数

课程教学大纲

- Clustering and Dimension Reduction (PCA, Feature Selection) (3) — 聚类算法与维度约简
- Recommendation Systems (3) 推荐系统
- Neural Networks and Deep Learning (Basics) (3) 神经网络与深度学习
- Image Processing Basics and Convolutional Neural Networks (3)
 神经网络与深度学习
- 序列模型(RNN)、Transformer、Bert (3)
- Markov Decision Process, Reinforcement Learning and AlphoGO (3) 马尔可夫决策过程、强化学习及AlphoGo

实验教学大纲

■ 随堂实验

- Linear Regression and Gradient Descent (2)
 线性回归与梯度下降
- Linear Classification with Stochastic Gradient Descent (2) 线性分类、支持向量机、随机梯度算法

■ 课程实验

- Classification with AdaBoost (4)
 科技论文阅读、写作;
 逻辑回归与集成学习算法
- Face Detection and Recognition (4)
 人脸检测与识别基础
- 基于Transformer的中英文翻译(4)

考核标准+参考书

■ 考核标准

考试 (50%) + 平时成绩 (25%) + 技术报告 (25%)

■ 参考书

- Pattern Recognition and Machine Learning By Bishop
- Understanding Machine Learning: From Theory to Algorithms By Shai Shalev-Shwartz and Shai Ben-David
- 深度学习 by Ian Goodfellow (伊恩·古德费洛)
- 《机器学习》By 周志华

联系方式

■ 邮箱 mingkuitan@scut.edu.cn

■ QQ群

Contents

- 1 Course Outline
- 2 Machine Learning
- 3 Probability Theory
- 4 Bayes' Theorem
- 5 Information Theory

Big Picture: Machine Learning

Machine Learning

Big Picture: Machine Learning

Deep Learning

Traditional Programming and Machine Learning

Traditional Programming

Machine Learning

Related Fields

Contents

- 1 Course Outline
- 2 Machine Learning
- 3 Probability Theory
- 4 Bayes' Theorem
- 5 Information Theory

Probability Theory

Random Variables

$$P(A) = \frac{1}{6}, A = 1, 2, ..., 6$$

- Random variables describe the outcome of a random experiment in terms of a (real) number
- A random experiment is an experiment that can (in principle)
 be repeated several times under the same conditions
- Discrete or continuous random variables
- Independent and identically distributed (iid) experiment vs non-iid experiment

Probability Theory

Marginal Probability

$$P(X = x_i) = \frac{c_i}{L}$$

$$P(X = x_i, Y = y_i) = \frac{n_{ij}}{L \times M} = \frac{c_i \times r_j}{L \times M}$$

Conditional Probability

$$P(Y = y_j \mid X = x_i) = \frac{r_j}{M}$$

Probability Theory

■ Sum Rule

$$P(X = x_i) = \frac{c_i}{L} = \frac{1}{L \times M} \sum_{j} n_{ij}$$
$$= \sum_{j} P(X = x_i, Y = y_j)$$

■ Product Rule

$$P(X = x_i, Y = y_i) = \frac{n_{ij}}{L \times M} = \frac{r_j}{M} \cdot \frac{c_i}{L}$$
$$= P(Y = y_j \mid X = x_i)P(X = x_i)$$

Marginalization

Conditional Probability Marginal Probability

	p _y (Y)↓	x ₄	X3	x ₂	x ₁	YX
	8/32	1/32	1/32	2/32	4/32	y 1
	8/ ₃₂	1/32	1/32	4/32	2/32	У2
) /	8/ ₃₂	2/32	2/32	2/32	2/32	Уз
Marg	8/ ₃₂	0	0	0	8/32	У4
	³² / ₃₂	⁴ / ₃₂	⁴ / ₃₂	8 _{/32}	16 _{/32}	$p_X(X) \rightarrow$

This concept is called "marginal" because it can be found by summing values in a table along rows or columns, and writing the sum in the **margins** of the table

Contents

- 1 Course Outline
- 2 Machine Learning
- 3 Probability Theory
- 4 Bayes' Theorem
- 5 Information Theory

Bayes' Theorem

The Rules of Probability

Sum Rule:
$$P(X) = \sum_{Y} P(X, Y)$$

Product Rule: P(X,Y) = P(Y|X)P(X)

Bayes' Theorem

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} \qquad P(X) = \sum_{Y} P(X|Y)P(Y)$$

Bayes' Theorem

posterior ∝ likelihood × prior

Posterior probability P(Y|X): the likelihood of event Y occurring given that X is true, P(Y|X) is a conditional probability Posterior probability P(X|Y): the likelihood of event X occurring given that Y is true, P(X|Y) is a conditional probability Prior probability P(X) and P(Y): the probabilities of observing X and Y independently of each other (the marginal probability)

Bayes' Theorem

$$P(\text{"taking a shower"}|\text{"wet"}) = P(\text{"wet"}|\text{"taking a shower"}) \frac{P(\text{"taking a shower"})}{P(\text{"wet"})}$$

$$P(\text{reason}|\text{observation}) = P(\text{observation}|\text{reason}) \frac{P(\text{reason})}{P(\text{observation})}$$

- Often useful in diagnosis situations, since P(observation|reason) might be easily determined
- Useful for reasoning
- Often delivers surprising results

Bayes' Theorem in Bayesian Learning

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- \blacksquare P(h): prior probability of hypothesis h
- \blacksquare P(D): prior probability of training data D
- \blacksquare P(h|D): posterior probability of h given D
- $\blacksquare P(D|h)$: posterior probability of D given h

Bayesian Net

- Network represents conditional independence assertions
- Each node conditionally independent of its non-descendants, given its immediate predecessors (e.g. Campfire and Lightning are independence conditioned on Storm)

conditional probability tables (CPT)

		. I	<i>J</i>	,
	$S \wedge B$	$S \land \neg B$	$\neg S \land B$	$\neg S \land \neg B$
C	0.4	0.1	0.8	0.2
$\neg C$	0.6	0.9	0.2	0.8

C: Campfire

S: Storm

B: Bus Tour Group

Example

\blacksquare Random variables X and Y

X: It is raining

Y: The grass is wet

■ X affects Y

Or, *Y* is a symptom of *X*

Draw two nodes and link them

- Define the CPT(conditional probability tables) for each node
 - P(X) and P(Y|X)
- Typical use: we observe Y and we want to query P(X|Y)
- Y is an evidence variable
 - X is a query variable

Example

■ What is P(X/Y)?

■ Given that we know the CPTs of each node in the graph

$$P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$$

$$= \frac{P(Y \mid X)P(X)}{\sum_{X} P(X, Y)}$$

$$= \frac{P(Y \mid X)P(X)}{\sum_{X} P(Y \mid X)P(X)}$$

Belief Nets Represent Joint Probability

- The joint probability function can be calculated directly from the network
- It is the product of the CPTs of all the nodes
- $\blacksquare P(var_1, ..., var_n) = \prod_i P(var_i | Parents(var_i))$

$$P(X,Y) = P(X)P(Y|X) \qquad P(X,Y,Z) = P(X)P(Y)P(Z|X,Y)$$

Probability Densities

■ The probability density function p(x) has the following properties

$$p(x) \geqslant 0$$

$$p(x \in (a,b)) = \int_a^b p(x) \, \mathrm{d}x$$

$$P(z) = \int_{-\infty}^{z} p(x) \, \mathrm{d}x$$

$$\int_{-\infty}^{\infty} p(x) \, \mathrm{d}x = 1$$

Transformed Densities

- \blacksquare x has a probability density $p_x(x)$
- y = h(x) is some strictly monotonic continuous function
- Probability density $p_y(y)$ can be transformed from $p_x(x)$

$$y = h(x) = g^{-1}(x)$$

$$p_y(y) = p_x(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$
$$= p_x(g(y)) |g'(y)|$$

Maximum Likelihood Estimation

■ A density f usually contains parameters $\theta \in \Omega$: $f(x|\theta)$ Parameters θ : a scalar or a vector

$$f(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Question: How to estimate θ given data $\mathcal{D} = \{x_i\}$?
- Likelihood function of θ given x:

$$L(\theta|x) = P(X = x|\theta)$$

■ Likelihood function of θ given $\mathcal{D} = \{x_i\}$:

$$L_{\mathcal{D}}(\theta) = P(\mathcal{D}|\theta) = \prod_{m} P(x_i|\theta)$$

Maximum Likelihood Estimation

■ Likelihood function of θ given $\mathcal{D} = \{x_i\}$ (iid x_i)

$$L_{\mathcal{D}}(\theta) = P(\mathcal{D}|\theta) = \prod_{i} P(x_{i}|\theta)$$

Estimate θ by

$$\theta_* = \underset{\theta}{\operatorname{argmax}} \left(\prod_i P(x_i | \theta) \right)$$

■ In practice, often use log likelihood function

$$\theta_* = \underset{\theta}{\operatorname{argmax}} \log(\prod_i P(x_i|\theta))$$

■ Then, we have

$$\theta_* = \underset{\theta}{\operatorname{argmax}} \left(\sum_{i} \log(P(x_i|\theta)) \right)$$

Maximum a Posteriori Estimation

■ Replace the likelihood in the MLE formula with the posterior, and we get:

$$\theta_{MAP} = \underset{\theta}{\operatorname{argmax}} P(X|\theta)P(\theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \log P(X|\theta) + \log P(\theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \log \prod_{i} P(x_{i}|\theta) + \log P(\theta)$$

$$= \underset{\theta}{\operatorname{argmax}} \sum_{i} \log P(x_{i}|\theta) + \log P(\theta)$$

MLE vs MAP

If we use uniform prior in MAP estimation, $P(\theta)$ is a const, so we have:

$$\theta_{MAP} = \operatorname{argmax} \sum_{i} \log P(x_i | \theta) + \log P(\theta)$$

$$= \operatorname{argmax} \sum_{i} \log P(x_i | \theta) + const$$

$$= \operatorname{argmax} \sum_{i} \log P(x_i | \theta) = \theta_{MLE}$$

■ MLE is a special case of MAP, where the prior is uniform

Contents

- 1 Course Outline
- 2 Machine Learning
- 3 Probability Theory
- 4 Bayes' Theorem
- 5 Information Theory

Probability and Information Theory

■ Information measure of an event A

$$I(A) = -\log_b P(A)$$

I(A): self-information or information content, random variable

P(A): probability of the event happening

b: base, usually b=2

base 2 = bits base 3 = tritsbase 10 = Hartleys base e = nats

Information and Probability

Examples

The Chinese football team lost:

$$P(A)=1 I(A) = -\log_2 P(A) = 0$$

The Chinese table tennis team lost:

$$P(A)=0 I(A) = -\log_2 P(A) = +\infty$$

Probability P(A): The degree of uncertainty of an event

Self-information I(A): The elimination of uncertainty

Entropy

■ Entropy is simply the average (expected) amount of the information from the event

$$H(A) = -E[\log_2 P(A)] = -\sum_A P(A) \log_2 P(A)$$

$$H(A) \text{ is maximized when } P(A) = \frac{1}{n} \text{ for all } A$$

Joint Entropy

$$H(A,B) = -E[\log_2 P(A,B)] = -\sum_{A,B} P(A,B) \log_2 P(A,B)$$

 \blacksquare Conditional entropy of A given B

$$H(A|B) = -E[\log_2 P(A|B)] = -\sum_{A,B} P(A,B) \log_2 P(A|B)$$

Thank You