Kartézské genetické programování Obrazový filtr

Vojtěch Dvořák

Trénovací a testovací data

+ Horizontální linky a "Scratches" s různými odstíny šedi

Společné parametry experimentů

- Python, hal-cgp, Metacentrum
- 7 druhů šumu, 3 obrázky
- MSE
- 12 jedinců v populaci, alespoň 1000 generací, podmínka detektoru: D > 127
- Turnajový výběr, pravděpodobnost mutace většinou 0.1, křížení nepoužito

Vždy provedeno **30 běhů** při každém nastavení

Funkce prvků v matici					
Konstanta 255	255	Dělení 4	x / 4		
Konstanta 0	0	Sčítání	$x_1 + x_2$		
Identita	X	Odčítání	$x_1 - x_2$		
Inverze	255 - x	Sčítání se sat.	$x_1 +_S x_2$		
Maximum	$\max(x_1, x_2)$	Odečítání se sat.	$x_1 - s x_2$		
Minimum	$\min(\mathbf{x}_1, \mathbf{x}_2)$	Průměr	$(x_1 + x_2) / 2$		
Dělení 2	x / 2	Podm. přiřazení	If $x_1 > 127$, x_2 else x_1		

Počáteční parametry CGP byly nastaveny na základě: Z. Vašíček, M. Bidlo: Evolutionary design

Z. Vašíček, M. Bidlo: Evolutionary design of robust noise-specific image filters

- CGP obrazového filtru pro každý druh šumu zvlášť
- Různé **pravděpodobnosti mutací** pro vybrané šumy (0.02, 0.1, 0.15)
- Různé rozměry matice pro vybrané šumy (9x6, 2x10, 5x5)
- Univerzální filtr pro šumy Gauss a S&P

CGP obrazového filtru pro jednotlivé šumy

Nejlepší filtr pro horizontální linky

Výsledek pro Gaussovský šum

Šum	Počet prvků
Gauss	10
Linky	6
Linky s náhodnou b.	8
Diagonální linky	7
Scratch	7
Scratch s náhodnou b.	9
S&P	7

Vliv velikosti matice

Je rozdíl u Gauss mezi 2x10 a 5x5, 9x6 významný?

U-Test:

	5x5	9x6	
2x10	0.2062	0.5201	
	(Není)		

Vliv pravděpodobnosti mutace

 Významnost rozdílů u Gauss. a S&P se nepodařilo ověřit statistickými testy (normalita, duplikované hodnoty)

Vliv tvaru okolí pixelu (rozšíření pro předmět BIN)

Vliv tvaru okolí pixelu (rozšíření pro předmět BIN)

Gauss. šum

H. linky

Univerzální filtr pro Gauss a S&P

Univerzální filtr:

S&P

Dedikované filtry:

(Trénovací obrázek: lena)

Děkuji za pozornost!

