# Universidade Federal de São Carlos - UFSCar

Departamento de Computação - DC CEP 13565-905, Rod. Washington Luiz, s/n, São Carlos, SP

# Programação Dinâmica - Parte 3

Prof. Dr. Alan Demétrius Baria Valejo

CCO-00.2.01 - Projeto e Análise de Algoritmos (*Design And Analysis Of Algorithms*) 1001525 - Projeto e Análise de Algoritmos - Turma A



• Mochila inteira



- Vamos voltar ao problema da mochila, mas
  - Agora não temos mais itens "fracionáveis", só inteiros
  - Para cada item disponível, temos a opção de levá-lo ou não
  - ak.a. mochila binária





# knapsack



https://pt.wikipedia.org/wiki/Problema\_da\_mochila



• Cada um dos n itens da mochila possui um ganho  $g_i$ 

$$G = \{g_1, g_2, g_3, ..., g_i\}$$

• Cada um dos n itens da mochila possui um custo ou peso dado por alguma medida de interesse  $p_i$ 

$$P = \{p_1, p_2, p_3, \dots, p_i\}$$

• A capacidade da mochila é dada por C e, a cada iteração, essa capacidade pode ser reduzida para  $C_i$ 



• O objetivo é encontrar:

$$\hat{G} \subseteq \{g_1, g_2, g_3, \dots, g_i\}$$
  $\hat{P} \subseteq \{p_1, p_2, p_3, \dots, p_i\}$ 

• E que maximize o valor objetivo, ou seja:

$$max_{\hat{G}} \sum_{i \in \hat{G}} g_i$$

• Restrito a:

$$\sum_{i \in \hat{P}} p_i \le C$$



- A decisão gulosa levaria a escolher o item de maior valor
- Caso "caiba na mochila", pegue-o

$$C = 15$$

| Item | G | P  |
|------|---|----|
| 1    | 8 | 10 |
| 2    | 6 | 5  |
| 3    | 4 | 4  |
| 4    | 4 | 3  |
| 5    | 3 | 3  |



- A decisão gulosa levaria a escolher o item de maior valor
- Caso "caiba na mochila", pegue-o

$$C = 15$$

| Item | G | P  |
|------|---|----|
| 1    | 8 | 10 |
| 2    | 6 | 5  |
| 3    | 4 | 4  |
| 4    | 4 | 3  |
| 5    | 3 | 3  |

Algoritmo guloso



- A decisão gulosa levaria a escolher o item de maior valor
- Caso "caiba na mochila", pegue-o

$$C = 15$$

| Item | G | P  |
|------|---|----|
| 1    | 8 | 10 |
| 2    | 6 | 5  |
| 3    | 4 | 4  |
| 4    | 4 | 3  |
| 5    | 3 | 3  |

Melhor escolha



- Solução usando Programação Dinâmica, duas opções:
- 1. Não adicionar o item corrente  $p_i$ , pois não cabe:
  - Manter a capacidade da mochila em *C*.

$$\hat{P} \subseteq \{p_1, p_2, p_3, \dots, p_{i-1}, p_i, p_{i+1}, \dots, p_n\} \qquad \hat{G} \subseteq \{g_1, g_2, g_3, \dots, g_{i-1}, g_i, g_{i+1}, \dots, g_n\}$$

- 2. Adicionar o item corrente  $p_i$ , pois cabe na mochila:
  - Se o ganho não vale a pena, voltar ao passo 1;
  - Se o item cabe na mochila e ganho vale a pena:
    - Alteramos a capacidade da mochila;
    - Temos um novo ganho.

$$\hat{P} \subseteq \{p_1, p_2, p_3, \dots, p_{i-1}, p_i, p_{i+1}, \dots, p_n\}$$

$$C_i = C - p_i$$



## • Relação de recorrência

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário



#### • Relação de recorrência

Item não cabe na mochila

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ \max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$



# • Relação de recorrência

Item não cabe na mochila

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

Não vale a pena pegar o item



#### • Relação de recorrência:

Item não cabe na mochila

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

Não vale a pena pegar o item

Pego o item e reduzo a capacidade



- $G = \{10, 7, 25, 24\}$
- $P = \{2, 1, 6, 5\}$
- C = 7

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário

|      |       |   | <i>C</i> |   |   |   |   |   |   |  |  |  |
|------|-------|---|----------|---|---|---|---|---|---|--|--|--|
|      |       | 0 | 1        | 2 | 3 | 4 | 5 | 6 | 7 |  |  |  |
|      | $g_0$ |   |          |   |   |   |   |   |   |  |  |  |
|      | $g_1$ |   |          |   |   |   |   |   |   |  |  |  |
| Item | $g_2$ |   |          |   |   |   |   |   |   |  |  |  |
|      | $g_3$ |   |          |   |   |   |   |   |   |  |  |  |
|      | $g_4$ |   |          |   |   |   |   |   |   |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário

|      |       |   | <i>C</i> |   |   |   |   |   |   |  |  |
|------|-------|---|----------|---|---|---|---|---|---|--|--|
|      |       | 0 | 1        | 2 | 3 | 4 | 5 | 6 | 7 |  |  |
|      | $g_0$ | 0 | 0        | 0 | 0 | 0 | 0 | 0 | 0 |  |  |
|      | $g_1$ | 0 |          |   |   |   |   |   |   |  |  |
| Item | $g_2$ | 0 |          |   |   |   |   |   |   |  |  |
|      | $g_3$ | 0 |          |   |   |   |   |   |   |  |  |
|      | $g_4$ | 0 |          |   |   |   |   |   |   |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

Quero incluir o meu item  $g_1$ em uma mochila de capacidade C = 1

| = 1  |           |   | $\boldsymbol{\mathcal{C}}$ |   |   |   |   |   |   |  |  |  |
|------|-----------|---|----------------------------|---|---|---|---|---|---|--|--|--|
|      | _         | 0 | 1                          | 2 | 3 | 4 | 5 | 6 | 7 |  |  |  |
|      | $g_0$     | 0 | 0                          | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |
|      | $g_1$     | 0 | 0                          |   |   |   |   |   |   |  |  |  |
| Item | ${m g}_2$ | 0 |                            |   |   |   |   |   |   |  |  |  |
|      | $g_3$     | 0 |                            |   |   |   |   |   |   |  |  |  |
|      | $g_4$     | 0 |                            |   |   |   |   |   |   |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

ou seja,  $p_1 > C$ 

• 
$$P = \{2, 1, 6, 5\}$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

| Quero incluir o meu item $g_1$ em uma mochila de capacidade $C = 1$ |       |   |   |   |   | C |   |   |   |
|---------------------------------------------------------------------|-------|---|---|---|---|---|---|---|---|
|                                                                     |       | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|                                                                     | $g_0$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|                                                                     | $g_1$ | 0 | 0 |   |   |   |   |   |   |
| lte /                                                               | $g_2$ | 0 |   |   |   |   |   |   |   |
|                                                                     | $g_3$ | 0 |   |   |   |   |   |   |   |
| Não é possível, pois, $p_1 = 2$ ,                                   | $g_4$ | 0 |   |   |   |   |   |   |   |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário





• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário

|      |         |   | <i>C</i> |    |   |   |   |   |   |  |  |  |
|------|---------|---|----------|----|---|---|---|---|---|--|--|--|
|      |         | 0 | 1        | 2  | 3 | 4 | 5 | 6 | 7 |  |  |  |
|      | ${g}_0$ | 0 | 0        | 0  | 0 | 0 | 0 | 0 | 0 |  |  |  |
|      | $g_1$   | 0 | 0        | 10 |   |   |   |   |   |  |  |  |
| Item | $g_2$   | 0 |          |    |   |   |   |   |   |  |  |  |
|      | $g_3$   | 0 |          |    |   |   |   |   |   |  |  |  |
|      | $g_4$   | 0 |          |    |   |   |   |   |   |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

Quero incluir o meu item  $g_1$ em uma mochila de capacidade C = 2

| = 2  |                    |   | $\boldsymbol{\mathcal{C}}$ |    |   |   |   |   |   |  |  |  |
|------|--------------------|---|----------------------------|----|---|---|---|---|---|--|--|--|
|      | _                  | 0 | 1                          | 2  | 3 | 4 | 5 | 6 | 7 |  |  |  |
|      | $g_0$              | 0 | 0                          | 0  | 0 | 0 | 0 | 0 | 0 |  |  |  |
|      | $\boldsymbol{g_1}$ | 0 | 0                          | 10 |   |   |   |   |   |  |  |  |
| Item | $\boldsymbol{g_2}$ | 0 |                            |    |   |   |   |   |   |  |  |  |
|      | $g_3$              | 0 |                            |    |   |   |   |   |   |  |  |  |
|      | $g_4$              | 0 |                            |    |   |   |   |   |   |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

seja,  $p_1 \leq C$ 

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

| Quero incluir o meu item $g_1$ em uma mochila de capacidade $C = 2$ |                      |   |   |    |   | <u> </u> |   |   |   |
|---------------------------------------------------------------------|----------------------|---|---|----|---|----------|---|---|---|
| capacidade C — Z                                                    |                      | 0 | 1 | 2  | 3 | 4        | 5 | 6 | 7 |
|                                                                     | $\boldsymbol{g_0}$   | 0 | 0 | 0  | 0 | 0        | 0 | 0 | 0 |
|                                                                     | $g_1$                | 0 | 0 | 10 |   |          |   |   |   |
| Ite                                                                 | $\boldsymbol{g}_{2}$ | 0 |   |    |   |          |   |   |   |
|                                                                     | $g_3$                | 0 |   |    |   |          |   |   |   |
| É possível, pois, $p_1 = 2$ , ou                                    | $g_4$                | 0 |   |    |   |          |   |   |   |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$



Alan D. B. Valejo - Projeto e Análise de Algoritmos

7

0

•  $g_{i-1,C-p_i} + g_i = g_{1-1,2-2} + 10 = g_{0,0} + 10 = 0 + 10 = 10$ 



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

|      |       |   | <i>C</i> |    |    |    |    |    |    |  |  |  |
|------|-------|---|----------|----|----|----|----|----|----|--|--|--|
|      |       | 0 | 1        | 2  | 3  | 4  | 5  | 6  | 7  |  |  |  |
|      | $g_0$ | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |
|      | $g_1$ | 0 | 0        | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |
| Item | $g_2$ | 0 |          |    |    |    |    |    |    |  |  |  |
|      | $g_3$ | 0 |          |    |    |    |    |    |    |  |  |  |
| _    | $g_4$ | 0 |          |    |    |    |    |    |    |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

Quero incluir o meu item  $g_1$ em uma mochila de capacidade C = 7

| = 7  |                      |   | <i>C</i> |    |    |    |    |    |    |  |  |  |  |
|------|----------------------|---|----------|----|----|----|----|----|----|--|--|--|--|
|      | _                    | 0 | 1        | 2  | 3  | 4  | 5  | 6  | 7  |  |  |  |  |
|      | $g_0$                | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |  |
|      | $g_1$                | 0 | 0        | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |  |
| Item | $\boldsymbol{g}_{2}$ | 0 |          |    |    |    |    |    |    |  |  |  |  |
|      | $\boldsymbol{g}_3$   | 0 |          |    |    |    |    |    |    |  |  |  |  |
|      | ${m g}_{m 4}$        | 0 |          |    |    |    |    |    |    |  |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

seja,  $p_1 \leq C$ 

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

| Quero incluir o meu item $g_1$ em uma mochila de capacidade $C = 7$ |                      | <i>C</i> |   |    |    |    |    |    |    |
|---------------------------------------------------------------------|----------------------|----------|---|----|----|----|----|----|----|
|                                                                     | -                    | 0        | 1 | 2  | 3  | 4  | 5  | 6  | 7  |
|                                                                     | $g_0$                | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  |
|                                                                     | $g_1$                | 0        | 0 | 10 | 10 | 10 | 10 | 10 | 10 |
| Ite                                                                 | $\boldsymbol{g}_{2}$ | 0        |   |    |    |    |    |    |    |
|                                                                     | $\boldsymbol{g}_3$   | 0        |   |    |    |    |    |    |    |
| É possível, pois, $p_1 = 2$ , ou                                    | $g_4$                | 0        |   |    |    |    |    |    |    |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$





• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

|      |       | С |   |    |    |    |    |    |    |  |  |  |
|------|-------|---|---|----|----|----|----|----|----|--|--|--|
|      |       | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7  |  |  |  |
|      | $g_0$ | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |
|      | $g_1$ | 0 | 0 | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |
| Item | $g_2$ | 0 | 7 |    |    |    |    |    |    |  |  |  |
|      | $g_3$ | 0 |   |    |    |    |    |    |    |  |  |  |
|      | $g_4$ | 0 |   |    |    |    |    |    |    |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

Quero incluir o meu item  $g_2$ em uma mochila de capacidade C = 1

| = 1  |       |   | <i>C</i> |    |    |    |    |    |    |  |  |  |  |  |
|------|-------|---|----------|----|----|----|----|----|----|--|--|--|--|--|
|      | _     | 0 | 1        | 2  | 3  | 4  | 5  | 6  | 7  |  |  |  |  |  |
|      | $g_0$ | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |  |  |
|      | $g_1$ | 0 | 0        | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |  |  |
| Item | $g_2$ | 0 | 7        |    |    |    |    |    |    |  |  |  |  |  |
|      | $g_3$ | 0 |          |    |    |    |    |    |    |  |  |  |  |  |
|      | $g_4$ | 0 |          |    |    |    |    |    |    |  |  |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

| Quero incluir o meu item $g_2$<br>em uma mochila de<br>capacidade $C = 1$ |       |   |   |    |    | C  |    |    |    |
|---------------------------------------------------------------------------|-------|---|---|----|----|----|----|----|----|
|                                                                           | -     | 0 | 1 | 2  | 3  | 4  | 5  | 6  | 7  |
|                                                                           | $g_0$ | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  |
|                                                                           | $g_1$ | 0 | 0 | 10 | 10 | 10 | 10 | 10 | 10 |
| lte /                                                                     | $g_2$ | 0 | 7 |    |    |    |    |    |    |
|                                                                           | $g_3$ | 0 |   |    |    |    |    |    |    |
| É possível, pois, $p_2 = 1$ , ou                                          | $g_4$ | 0 |   |    |    |    |    |    |    |

É possível, pois,  $p_2 = 1$ , ou seja,  $p_2 \le C$ 



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário





• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário

|      |       |   | <i>C</i> |    |    |    |    |    |    |  |  |  |  |
|------|-------|---|----------|----|----|----|----|----|----|--|--|--|--|
|      |       | 0 | 1        | 2  | 3  | 4  | 5  | 6  | 7  |  |  |  |  |
|      | $g_0$ | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |  |
|      | $g_1$ | 0 | 0        | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |  |
| Item | $g_2$ | 0 | 7        | 10 |    |    |    |    |    |  |  |  |  |
|      | $g_3$ | 0 |          |    |    |    |    |    |    |  |  |  |  |
|      | $g_4$ | 0 |          |    |    |    |    |    |    |  |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

Quero incluir o meu item  $g_2$ em uma mochila de capacidade C = 2

| = 2  |       | <i>C</i> |   |    |    |    |    |    |    |  |  |  |
|------|-------|----------|---|----|----|----|----|----|----|--|--|--|
|      | _     | 0        | 1 | 2  | 3  | 4  | 5  | 6  | 7  |  |  |  |
|      | $g_0$ | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |
|      | $g_1$ | 0        | 0 | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |
| Item | $g_2$ | 0        | 7 | 10 |    |    |    |    |    |  |  |  |
|      | $g_3$ | 0        |   |    |    |    |    |    |    |  |  |  |
|      | $g_4$ | 0        |   |    |    |    |    |    |    |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

seja,  $p_2 \le C$ 

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

| Quero incluir o meu item $g_2$<br>em uma mochila de<br>capacidade $C = 2$ |       | <i>C</i> |   |    |    |    |    |    |    |
|---------------------------------------------------------------------------|-------|----------|---|----|----|----|----|----|----|
|                                                                           | 0     | 1        | 2 | 3  | 4  | 5  | 6  | 7  |    |
|                                                                           | $g_0$ | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  |
|                                                                           | $g_1$ | 0        | 0 | 10 | 10 | 10 | 10 | 10 | 10 |
| Ite /                                                                     | $g_2$ | 0        | 7 | 10 |    |    |    |    |    |
|                                                                           | $g_3$ | 0        |   |    |    |    |    |    |    |
| É possível, pois, $p_2 = 1$ , ou                                          | $g_4$ | 0        |   |    |    |    |    |    |    |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$





• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$





• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

|      |         |   | <i>C</i> |    |    |    |    |    |    |  |  |  |
|------|---------|---|----------|----|----|----|----|----|----|--|--|--|
|      |         | 0 | 1        | 2  | 3  | 4  | 5  | 6  | 7  |  |  |  |
|      | ${g}_0$ | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |
|      | $g_1$   | 0 | 0        | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |
| Item | $g_2$   | 0 | 7        | 10 | 17 |    |    |    |    |  |  |  |
|      | $g_3$   | 0 |          |    |    |    |    |    |    |  |  |  |
|      | $g_4$   | 0 |          |    |    |    |    |    |    |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

Quero incluir o meu item  $g_2$ em uma mochila de capacidade C = 3

| = 3  |                    |   | $\boldsymbol{\mathcal{C}}$ |    |    |    |    |    |    |  |  |
|------|--------------------|---|----------------------------|----|----|----|----|----|----|--|--|
|      | _                  | 0 | 1                          | 2  | 3  | 4  | 5  | 6  | 7  |  |  |
|      | $g_0$              | 0 | 0                          | 0  | 0  | 0  | 0  | 0  | 0  |  |  |
|      | $\boldsymbol{g_1}$ | 0 | 0                          | 10 | 10 | 10 | 10 | 10 | 10 |  |  |
| Item | $\boldsymbol{g_2}$ | 0 | 7                          | 10 | 17 |    |    |    |    |  |  |
|      | $\boldsymbol{g}_3$ | 0 |                            |    |    |    |    |    |    |  |  |
|      | ${m g}_{m 4}$      | 0 |                            |    |    |    |    |    | -  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

| Quero incluir o meu item $g_2$<br>em uma mochila de |       |   |   |    |    | $\mathcal{L}$ |    |    |    |
|-----------------------------------------------------|-------|---|---|----|----|---------------|----|----|----|
| capacidade $C = 3$                                  |       | 0 | 1 | 2  | 3  | 4             | 5  | 6  | 7  |
|                                                     | $g_0$ | 0 | 0 | 0  | 0  | 0             | 0  | 0  | 0  |
|                                                     | $g_1$ | 0 | 0 | 10 | 10 | 10            | 10 | 10 | 10 |
| lte /                                               | $g_2$ | 0 | 7 | 10 | 17 |               |    |    |    |
|                                                     | $g_3$ | 0 |   |    |    |               |    |    |    |
| É possível, pois, $p_2 = 1$ , ou                    | $g_4$ | 0 |   |    |    |               |    |    |    |
| seja, $p_2 \leq C$                                  |       |   |   |    |    |               |    |    |    |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

Usar  $max(g_{i-1,C}, g_{i-1,C-p_i} + g_i)$ 

Escolher entre os valores

• 
$$g_{i-1,C} = g_{2-1,3} = g_{1,3} = 10$$

$$g_{i-1,C-p_i} + g_i = g_{2-1,3-1} + 7 = g_{1,2} + 7 = 10 + 7 = 17$$

|    | _     | 0 | 1 | 2    | 3    | $g_{i-1,i}$ | $c_{-p_i} + g_i$ | $= g_{2-1,3-}$ | $g_1 + 7 = g_1$ |
|----|-------|---|---|------|------|-------------|------------------|----------------|-----------------|
|    | $g_0$ | 0 | 0 | 0    | 0    | 0           |                  | 0              | 0               |
|    | $g_1$ | 0 | 0 | 10 🕇 | 10 🛕 | 1           | 10               | 10             | 10              |
|    | $g_2$ | 0 | 7 | 10   | 17   |             |                  |                |                 |
|    | $g_3$ | 0 |   |      |      |             |                  |                |                 |
| ou | $g_4$ | 0 |   |      |      |             |                  |                |                 |

É possível, pois,  $p_2 = 1$ , ou seja,  $p_2 \le C$ 

Ite

Quero incluir o meu item  $g_2$  em uma mochila de

capacidade C = 3



## Princípio de otimalidade de Bellman (Richard Bellman)

- Não importa como a solução  $g_{1,2}=10$  foi composta, eu vou

|    | simplesmente usar, sem saber da onde v | eio essa soiução. |        | $a_{i-1}c_{-n}+$ | $(a_i)$ | caso contrário |
|----|----------------------------------------|-------------------|--------|------------------|---------|----------------|
| -( | L = I                                  |                   | (0 1,0 | $g_{l-1,c-p_l}$  | 31)     | caso contrario |

Quero incluir o meu item  $g_2$ em uma mochila de capacidade C = 3

|   |       |   |   |      |      | 1           | _                | . 7            | 7 10 . 7 17           |                             |
|---|-------|---|---|------|------|-------------|------------------|----------------|-----------------------|-----------------------------|
|   |       | 0 | 1 | 2    | 3    | $g_{i-1,0}$ | $g_{-p_i} + g_i$ | $= g_{2-1,3-}$ | $\frac{1}{1} + 7 = g$ | $g_{1,2} + 7 = 10 + 7 = 17$ |
|   | $g_0$ | 0 | 0 | 0    | 0    | 0           |                  | 0              | 0                     |                             |
| 1 | $g_1$ | 0 | 0 | 10 🕇 | 10 🛕 | 1           | 10               | 10             | 10                    |                             |
|   | $g_2$ | 0 | 7 | 10   | 17   |             |                  |                |                       |                             |
|   | $g_3$ | 0 |   |      |      |             |                  |                |                       |                             |
|   |       | 0 |   |      |      |             |                  |                |                       |                             |

i-1,C

se  $C < p_i$ 

Usar  $max(g_{i-1,C}, g_{i-1,C-p_i} + g_i)$ 

 $g_{i-1,C} = g_{2-1,3} = g_{1,3} = 10$ 

Escolher entre os valores

É possível, pois,  $p_2 = 1$ , ou  $g_4$ seja,  $p_2 \leq C$ 

Ite



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário

|      |       |   | <i>C</i> |    |    |    |    |    |    |  |  |  |
|------|-------|---|----------|----|----|----|----|----|----|--|--|--|
|      |       | 0 | 1        | 2  | 3  | 4  | 5  | 6  | 7  |  |  |  |
|      | $g_0$ | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |
|      | $g_1$ | 0 | 0        | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |
| Item | $g_2$ | 0 | 7        | 10 | 17 | 17 | 17 | 17 | 17 |  |  |  |
|      | $g_3$ | 0 | 7        | 10 | 17 | 17 | 17 | 25 | 32 |  |  |  |
|      | $g_4$ | 0 | 7        | 10 | 17 | 17 | 24 | 31 | 34 |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

| Inde está | onde está a resposta? |               |   | <i>C</i> |    |    |    |    |    |    |  |  |  |  |
|-----------|-----------------------|---------------|---|----------|----|----|----|----|----|----|--|--|--|--|
| onde esta |                       |               |   | 1        | 2  | 3  | 4  | 5  | 6  | 7  |  |  |  |  |
|           |                       | $g_0$         | 0 | 0        | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |  |
|           |                       | $g_1$         | 0 | 0        | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |  |
|           | Item                  | ${m g}_{m 2}$ | 0 | 7        | 10 | 17 | 17 | 17 | 17 | 17 |  |  |  |  |
|           |                       | $g_3$         | 0 | 7        | 10 | 17 | 17 | 17 | 25 | 32 |  |  |  |  |
|           |                       | ${m g}_{m 4}$ | 0 | 7        | 10 | 17 | 17 | 24 | 31 | 34 |  |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

| nde ests | á a respos | ta?   | <i>C</i> |   |    |    |    |    |    |    |  |  |  |
|----------|------------|-------|----------|---|----|----|----|----|----|----|--|--|--|
|          | a a respos |       | 0        | 1 | 2  | 3  | 4  | 5  | 6  | 7  |  |  |  |
|          |            | $g_0$ | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |
|          |            | $g_1$ | 0        | 0 | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |
|          | Item       | $g_2$ | 0        | 7 | 10 | 17 | 17 | 17 | 17 | 17 |  |  |  |
|          |            | $g_3$ | 0        | 7 | 10 | 17 | 17 | 17 | 25 | 32 |  |  |  |
|          |            | $g_4$ | 0        | 7 | 10 | 17 | 17 | 24 | 31 | 34 |  |  |  |



$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

```
def knapSack(C, P, G):
    K = [[0 \text{ for } \times \text{ in range}(C + 1)] \text{ for } \times \text{ in range}(Len(V) + 1)]
    for i in range(len(G) + 1):
            gi, pi = G[i-1], P[i-1]
            for c in range(C + 1):
                     if i == 0 or c == 0:
                              K[i][c] = 0
                     elif pi > c:
                              K[i][c] = K[i-1][c]
                     else:
                              K[i][c] = max(K[i-1][c], K[i-1][c-pi] + gi)
    return(K)
```



$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

```
def knapSack(C, P, G):
    K = [[0 \text{ for } \times \text{ in range}(C + 1)] \text{ for } \times \text{ in range}(Len(V) + 1)]
    for i in range(len(G) + 1):
                                                     Gambiarra nos índices para ficar o mais parecido
             gi, pi = G[i-1], P[i-1]
                                                                  com a recorrência
             for c in range(C + 1):
                      if i == 0 or c == 0:
                               K[i][c] = 0
                      elif pi > c:
                               K[i][c] = K[i-1][c]
                      else:
                               K[i][c] = max(K[i-1][c], K[i-1][c-pi] + gi)
    return(K)
```



$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário

```
def knapSack(C, P, G):
    K = [[0 \text{ for } \times \text{ in range}(C + 1)] \text{ for } \times \text{ in range}(Len(V) + 1)]
    for i in range(len(G) + 1):
            gi, pi = G[i-1], P[i-1]
            for c in range(C + 1):
                     if i == 0 or c == 0:
                              K[i][c] = 0
                     elif pi > c:
                              K[i][c] = K[i-1][c]
                     else:
                              K[i][c] = max(K[i-1][c], K[i-1][c-pi] + gi)
    return(K)
```

Complexidade?



$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

```
def knapSack(C, P, G):
    K = [[0 \text{ for } \times \text{ in range}(C + 1)] \text{ for } \times \text{ in range}(Len(V) + 1)]
    for i in range(len(G) + 1):
            gi, pi = G[i-1], P[i-1]
            for c in range(C + 1):
                     if i == 0 or c == 0:
                              K[i][c] = 0
                     elif pi > c:
                              K[i][c] = K[i-1][c]
                     else:
                              K[i][c] = max(K[i-1][c], K[i-1][c-pi] + gi)
    return(K)
```

Versão recursiva?



$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

```
def knapSack(C, P, G, n):
    if n == 0 or C == 0:
        return(0)

gi, pi = G[n-1], P[n-1]

if pi > C:
    return(knapSack(C, P, G, n-1))

else:
    return(max(knapSack(C, P, G, n-1), knapSack(C-pi, P, G, n-1) + gi))
```



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

Como encontrar os itens adicionados na mochila?

| a mocima |               | $\boldsymbol{\mathcal{C}}$ |   |    |    |    |    |    |    |  |  |  |
|----------|---------------|----------------------------|---|----|----|----|----|----|----|--|--|--|
|          |               | 0                          | 1 | 2  | 3  | 4  | 5  | 6  | 7  |  |  |  |
|          | ${g}_0$       | 0                          | 0 | 0  | 0  | 0  | 0  | 0  | 0  |  |  |  |
|          | ${m g}_1$     | 0                          | 0 | 10 | 10 | 10 | 10 | 10 | 10 |  |  |  |
| Item     | $g_2$         | 0                          | 7 | 10 | 17 | 17 | 17 | 17 | 17 |  |  |  |
|          | $g_3$         | 0                          | 7 | 10 | 17 | 17 | 17 | 25 | 32 |  |  |  |
|          | ${m g}_{m 4}$ | 0                          | 7 | 10 | 17 | 17 | 24 | 31 | 34 |  |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

| Como encon    |             |          |   |   |    |    |               |    |    |    |
|---------------|-------------|----------|---|---|----|----|---------------|----|----|----|
| adicionados   | na mochila  | <i>!</i> |   |   |    | (  | $\mathcal{C}$ |    |    |    |
|               |             |          | 0 | 1 | 2  | 3  | 4             | 5  | 6  | 7  |
| Andar de trás | nara frente | 70       | 0 | 0 | 0  | 0  | 0             | 0  | 0  | 0  |
| Andar de tras | para menu   | 71       | 0 | 0 | 10 | 10 | 10            | 10 | 10 | 10 |
|               | Item        | $g_2$    | 0 | 7 | 10 | 17 | 17            | 17 | 17 | 17 |
|               |             | $g_3$    | 0 | 7 | 10 | 17 | 17            | 17 | 25 | 32 |
|               |             | $g_4$    | 0 | 7 | 10 | 17 | 17            | 24 | 31 | 34 |



• 
$$G = \{10, 7, 25, 24\}$$

$$\bullet$$
  $P = \{$ 

•  $C = \bigcup_{i=1}^{n} O_i$  valor 34 pode ter vindo de dois lugares

• 
$$v_{i-1,C} = v_{4-1,7} = v_{3,7} = 32$$

• 
$$v_{i-1,C-s_i} + v_i = v_{4-1,7-5} + 24 = v_{1,2} + 24 = 10 + 24 = 34$$

| $g_{i-1,C}$               | se $C < p_i$   |
|---------------------------|----------------|
| $(1,c,g_{i-1,C-p_i}+g_i)$ | caso contrário |

|      |       |   | <i>C</i> |      |    |    |    |    |      |  |  |
|------|-------|---|----------|------|----|----|----|----|------|--|--|
|      |       | 0 | 1        | 2    | 3  | 4  | 5  | 6  | 7    |  |  |
|      | $g_0$ | 0 | 0        | 0    | 0  | 0  | 0  | 0  | 0    |  |  |
|      | $g_1$ | 0 | 0        | 10   | 10 | 10 | 10 | 10 | 10   |  |  |
| Item | $g_2$ | 0 | 7        | 10   | 17 | 17 | 17 | 17 | 17   |  |  |
|      | $g_3$ | 0 | 7        | 10 💺 | 17 | 17 | 17 | 25 | 32 🛕 |  |  |
|      | $g_4$ | 0 | 7        | 10   | 17 | 17 | 24 | 31 | 34   |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

$$\bullet$$
  $P = \{$ 

•  $C = \bigcup_{i=1}^{n} O_i$  valor 34 pode ter vindo de dois lugares

• 
$$v_{i-1,C} = v_{4-1,7} = v_{3,7} = 32$$

• 
$$v_{i-1,C-s_i} + v_i = v_{4-1,7-5} + 24 = v_{1,2} + 24 = 10 + 24 = 34$$

| $g_{i-1,C}$               | se $C < p_i$   |
|---------------------------|----------------|
| $(1,C,g_{i-1,C-p_i}+g_i)$ | caso contrário |

|      |           |   | <i>C</i> |      |    |    |    |    |      |  |  |
|------|-----------|---|----------|------|----|----|----|----|------|--|--|
|      |           | 0 | 1        | 2    | 3  | 4  | 5  | 6  | 7    |  |  |
|      | $g_0$     | 0 | 0        | 0    | 0  | 0  | 0  | 0  | 0    |  |  |
|      | $g_1$     | 0 | 0        | 10   | 10 | 10 | 10 | 10 | 10   |  |  |
| Item | ${m g}_2$ | 0 | 7        | 10   | 17 | 17 | 17 | 17 | 17   |  |  |
|      | $g_3$     | 0 | 7        | 10 💺 | 17 | 17 | 17 | 25 | 32 🛕 |  |  |
|      | $g_4$     | 0 | 7        | 10   | 17 | 17 | 24 | 31 | 34   |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário

|      |       |   | <i>C</i> |      |    |    |    |    |      |  |  |
|------|-------|---|----------|------|----|----|----|----|------|--|--|
|      |       | 0 | 1        | 2    | 3  | 4  | 5  | 6  | 7    |  |  |
| Item | $g_0$ | 0 | 0        | 0    | 0  | 0  | 0  | 0  | 0    |  |  |
|      | $g_1$ | 0 | 0        | 10   | 10 | 10 | 10 | 10 | 10   |  |  |
|      | $g_2$ | 0 | 7        | 10   | 17 | 17 | 17 | 17 | 17   |  |  |
|      | $g_3$ | 0 | 7        | 10 💺 | 17 | 17 | 17 | 25 | 32 🛕 |  |  |
|      | $g_4$ | 0 | 7        | 10   | 17 | 17 | 24 | 31 | 34   |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$P = \{2, 1, 6, 5\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário

Como  $s_i = 6$ , ou seja,  $s_i > C$ , necessariamente, eu reutilizei o item anterior

|      |           |   | <i>C</i> |      |    |    |    |    |    |  |
|------|-----------|---|----------|------|----|----|----|----|----|--|
|      |           | - | 1        | 2    | 3  | 4  | 5  | 6  | 7  |  |
|      | $g_0$     | 0 | 0        | 0    | 0  | 0  | 0  | 0  | 0  |  |
|      | ${m g}_1$ | 0 | 0        | 10   | 10 | 10 | 10 | 10 | 10 |  |
| Item | $g_2$     | 0 | 7        | 10 🔥 | 17 | 17 | 17 | 17 | 17 |  |
|      | $g_3$     | 0 | 7        | 10   | 17 | 17 | 17 | 25 | 32 |  |
|      | $g_4$     | 0 | 7        | 10   | 17 | 17 | 24 | 31 | 34 |  |



• 
$$G = \{10, 7, 25, 24\}$$

• C = 7

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário

|      |         |   | <i>C</i> |      |    |    |    |    |    |  |  |
|------|---------|---|----------|------|----|----|----|----|----|--|--|
|      |         | 0 | 1        | 2    | 3  | 4  | 5  | 6  | 7  |  |  |
|      | ${g}_0$ | 0 | 0        | 0    | 0  | 0  | 0  | 0  | 0  |  |  |
|      | $g_1$   | 0 | 0        | 10   | 10 | 10 | 10 | 10 | 10 |  |  |
| Item | $g_2$   | 0 | 7        | 10 🛕 | 17 | 17 | 17 | 17 | 17 |  |  |
|      | $g_3$   | 0 | 7        | 10   | 17 | 17 | 17 | 25 | 32 |  |  |
|      | $g_4$   | 0 | 7        | 10   | 17 | 17 | 24 | 31 | 34 |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

$$\bullet$$
  $P =$ 

• 
$$C = \begin{bmatrix} O v \end{bmatrix}$$

•  $C = \frac{1}{2}$  O valor 10 pode ter vindo de dois lugares

• 
$$v_{i-1,C} = v_{2-1,2} = v_{1,2} = 10$$

• 
$$v_{i-1,C-s_i} + v_i = v_{2-1,2-1} + 7 = v_{1,1} + 7 = 0 + 7 = 7$$

| $g_{i-1,C}$         | se $C < p_i$   |
|---------------------|----------------|
| $g_{i-1,C-p_i}+g_i$ | caso contrário |

|      |       |   | <i>C</i> |      |    |    |    |    |    |  |  |
|------|-------|---|----------|------|----|----|----|----|----|--|--|
|      |       | 0 | 1        | 2    | 3  | 4  | 5  | 6  | 7  |  |  |
|      | $g_0$ | 0 | 0        | 0    | 0  | 0  | 0  | 0  | 0  |  |  |
|      | $g_1$ | 0 | 0 +      | 10 🛕 | 10 | 10 | 10 | 10 | 10 |  |  |
| Item | $g_2$ | 0 | 7        | 10   | 17 | 17 | 17 | 17 | 17 |  |  |
|      | $g_3$ | 0 | 7        | 10   | 17 | 17 | 17 | 25 | 32 |  |  |
|      | $g_4$ | 0 | 7        | 10   | 17 | 17 | 24 | 31 | 34 |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• C = 7

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) & \text{caso contrário} \end{cases}$$

|      |       |   | <i>C</i> |      |    |    |    |    |    |  |  |
|------|-------|---|----------|------|----|----|----|----|----|--|--|
|      |       | 0 | 1        | 2    | 3  | 4  | 5  | 6  | 7  |  |  |
|      | $g_0$ | 0 | 0        | 0    | 0  | 0  | 0  | 0  | 0  |  |  |
|      | $g_1$ | 0 | 0 +      | 10 🛕 | 10 | 10 | 10 | 10 | 10 |  |  |
| Item | $g_2$ | 0 | 7        | 10   | 17 | 17 | 17 | 17 | 17 |  |  |
|      | $g_3$ | 0 | 7        | 10   | 17 | 17 | 17 | 25 | 32 |  |  |
|      | $g_4$ | 0 | 7        | 10   | 17 | 17 | 24 | 31 | 34 |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

$$\bullet$$
  $P =$ 

•  $C = {}^{\prime}$  O valor 10 pode ter vindo de dois lugares

• 
$$v_{i-1,C} = v_{1-1,2} = v_{0,2} = 0$$

• 
$$v_{i-1,C-s_i} + v_i = v_{1-1,2-2} + 10 = v_{0,0} + 10 = 0 + 10 = 10$$

| $g_{i-1,C}$               | se $C < p_i$   |
|---------------------------|----------------|
| $(1,c,g_{i-1,C-p_i}+g_i)$ | caso contrário |

|      |       |   |     |    |    | <u>C</u> |    |    |    |
|------|-------|---|-----|----|----|----------|----|----|----|
|      |       | 0 | 1   | 2  | 3  | 4        | 5  | 6  | 7  |
|      | $g_0$ | 0 | 0 + | 0  | 0  | 0        | 0  | 0  | 0  |
|      | $g_1$ | 0 | 0   | 10 | 10 | 10       | 10 | 10 | 10 |
| Item | $g_2$ | 0 | 7   | 10 | 17 | 17       | 17 | 17 | 17 |
|      | $g_3$ | 0 | 7   | 10 | 17 | 17       | 17 | 25 | 32 |
|      | $g_4$ | 0 | 7   | 10 | 17 | 17       | 24 | 31 | 34 |



• 
$$G = \{10, 7, 25, 24\}$$

• 
$$C = 7$$

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário

|      |           |   | <i>C</i> |    |    |    |    |    |    |  |  |
|------|-----------|---|----------|----|----|----|----|----|----|--|--|
|      |           | 0 | 1        | 2  | 3  | 4  | 5  | 6  | 7  |  |  |
|      | $g_0$     | 0 | + 1      | 0  | 0  | 0  | 0  | 0  | 0  |  |  |
|      | $g_1$     | 0 | 0        | 10 | 10 | 10 | 10 | 10 | 10 |  |  |
| Item | $g_2$     | 0 | 7        | 10 | 17 | 17 | 17 | 17 | 17 |  |  |
|      | $g_3$     | 0 | 7        | 10 | 17 | 17 | 17 | 25 | 32 |  |  |
|      | ${m g_4}$ | 0 | 7        | 10 | 17 | 17 | 24 | 31 | 34 |  |  |



• 
$$G = \{10, 7, 25, 24\}$$

• C = 7

$$g_{i,C} = \begin{cases} g_{i-1,C} & \text{se } C < p_i \\ max(g_{i-1,C}, g_{i-1,C-p_i} + g_i) \end{cases}$$
 caso contrário

|      |       | <i>C</i> |   |    |    |    |    |    |    |
|------|-------|----------|---|----|----|----|----|----|----|
|      |       | 0        | 1 | 2  | 3  | 4  | 5  | 6  | 7  |
| Item | $g_0$ | 0        | 0 | 0  | 0  | 0  | 0  | 0  | 0  |
|      | $g_1$ | 0        | 0 | 10 | 10 | 10 | 10 | 10 | 10 |
|      | $g_2$ | 0        | 7 | 10 | 17 | 17 | 17 | 17 | 17 |
|      | $g_3$ | 0        | 7 | 10 | 17 | 17 | 17 | 25 | 32 |
|      | $g_4$ | 0        | 7 | 10 | 17 | 17 | 24 | 31 | 34 |



• Problemas P, NP, NP-Completo e NP-Difícil



## Obrigado



## <u>Dúvidas</u>

Email: alanvalejo@ufscar.br

Acessar o fórum no Moodle