AI_Introductory_Assignment 1 Nguyen_Tran_Le_Tuan_CS3

Source code:

https://github.com/LeTuanCS150901/AI Introductory/blob/master/Source Code /AI Introductory Assignment Le Tuan C S3.ipynb

Bài 1:

Step 1: Đầu tiên ta sẽ khởi tạo Initial State cho 3 can nước (3L, 8L, 12L) tương đương với (x, y, z) với điều kiện ban đầu:

$$0 \le x \le 3, 0 \le y \le 8, 0 \le z \le 12$$

Step 2: Ta khởi tạo Goal State để đong được 1 lít nước tương đương với (1, y, z) với điều kiện:

$$0 \le y \le 8, 0 \le z \le 12$$

Step 3: Ta thực hiện tìm kiếm từ Initial State đến Goal State trong Space Search (không gian trạng thái) dưới đây với mỗi thao tác là một trạng thái khác nhau

Số Thao tác	Thao tác	X: Ca 3L	Y: Ca 8L	Z: Ca 12L
1	Initial State	0	0	0
2	Đổ đầy ca Z	0	0	12
3	Đổ đầy ca X từ ca Z	3	0	9
4	Đổ đầy ca Y từ ca Z	3	8	1

➡ Kết quả: Sau 3 bước ta đã tìm được kết quả là (3, 8, 1) hay ca X đong được 3L nước, ca Y đong được 8L nước, ca Z đong được 1L nước.

Bài 2:

Step 1: Ta gọi nhà truyền giáo = 'A' và kẻ ăn thịt = 'B', sau đó ta khởi tạo Initial State ban đầu là

[(A A A B B B), ()] – với list bên trong đầu tiên là 6 người ở 1 bên bờ sông và list bên trong thứ hai là không có ai bên kia bờ sông.

Step 2: Ta khởi tạo Goal State là [(), (A A A B B B)] – trạng thái chuyển hết 6 người qua bờ sông bên kia với điều kiện số phần tử B <= A ở mỗi bờ sông hoặc trên thuyền.

Step 3: Ta thực hiện tìm kiếm từ Initial State đến Goal State trong Space Search (không gian trạng thái) dưới đây với mỗi thao tác là một trạng thái khác nhau.

Số Thao tác	Thao tác	Bờ sông trái	Bờ sông phải
1	Initial State	A, A, A, B, B, B	
2	Chuyển A và B qua sông phải	A, A, B, B	A, B
3	A quay lại bờ sông trái	A, A, A, B, B	В
4	Chuyển 2B qua sông phải	A, A, A	B, B, B
5	B quay lại sông trái	A, A, A, B	B, B
6	Chuyển 2A qua sông phải	A, B	A, A, B, B
7	A và B quay lại sông trái	A, A, B, B	A, B
8	Chuyển 2A qua sông phải	B, B	A, A, A, B
9	B quay lại sông trái	B, B, B	A, A ,A
10	Chuyển 2B qua sông phải	В	A, A, A, B, B
11	B quay lại sông trái	B, B	A, A, A, B
12	Goal State		A, A, A, B, B, B

[⇒] Kết quả: Sau 11 bước ta đã chuyển được hết người truyền giáo và kẻ ăn thịt sang bờ sông bên phải với Goal State là:

Bài 3:

a. Sai. Vì:

Thuật toán A* với hàm heuristic chấp nhận được sẽ luôn mở rộng nhiều node nhất có thể để có tính được đi ngắn nhất từ Start đến Goal, trong khi tìm kiếm chiều sâu nếu chỉ được Goal thì sẽ chỉ mở rộng một số lượng node nhất định khi duyệt.

b. Đúng. Vì:

- Khi h(n) = 0, tương đương với việc đã tìm ra lời giải (hay đã đến đích)
- ⇒ Chấp nhận được

c. Đúng. Vì

- Tìm kiếm theo chiều rộng sẽ duyệt tất cả các node kề với nó

Bài 4:

a. Tìm thiếu theo chiều rộng

Expand Node	Queue
	S
S	D_S , E_S , P_S
D_{S}	E_S , P_S , B_D , C_D
Es	P_S , B_D , C_D , H_E , R_E
P_{S}	B_D , C_D , H_E , R_E , Q_P
B_{D}	C_D , H_E , R_E , Q_P , A_B
C_D	H_E, R_E, Q_P, A_B
H_{E}	R_E, Q_P, A_B
$R_{\rm E}$	Q_P, A_B, F_R
Q_P	A_B, F_R
A_{B}	F_R
F_R	$G_{\mathrm{F}}, C_{\mathrm{F}}$
G_{F}	Goal
G_{F}	Goal

b. Tìm kiếm theo chiều sâu

Expand Node	Stack
1	S
S	Ds, Es, Ps
D_{S}	E_D, E_S, P_S
E_{D}	H_E , E_S , P_S
H_{E}	Q_H , E_S , P_S
Q_{H}	R_Q, E_S, P_S
R_{Q}	F_R , E_S , P_S
F_R	$G_{F,}$ E_{S} , P_{S}
G_{F}	Goal

 \Rightarrow Path = G \leftarrow F \leftarrow R \leftarrow Q \leftarrow H \leftarrow E \leftarrow D \leftarrow S với cost = 23

c. Tìm kiếm theo giá thành thống nhất

Expand Node	Priority Queue
	S
S	$D_{S}(3), E_{S}(9), P_{S}(1)$
P_{S}	$D_{S}(3), E_{S}(9), Q_{P}(6)$
D_{S}	$E_D(5), Q_P(6), B_D(4), C_B(11)$
B_{D}	$E_D(5), Q_P(6), C_B(11), A_B(6)$

E _D	$Q_P(6), C_B(11), A_B(6), H_E(6), R_E$
	(14)
A_{B}	$C_B(11), Q_P(6), H_E(6), R_E(14)$
$H_{\rm E}$	$C_B(11), Q_P(6), R_E(14)$
Q_P	$C_B(11), R_Q(9)$
R_{Q}	$C_B(11), F_R(14)$
C_{B}	$A_{C}(13), F_{R}(14)$
$A_{\rm C}$	F _R (14)
F_R	$G_{F}(19), C_{F}(19)$
C_{F}	$G_{F}(19), A_{C}(21)$
G_{F}	Đích

 \Rightarrow Path = G \leftarrow F \leftarrow R \leftarrow Q \leftarrow P \leftarrow S với cost = 19

d.Tìm kiếm sâu dần

Expand Node	Stack
•	C=0
	S
S	
	C=1
	S
S	D_S, E_S, P_S
D_{S}	E_{S}, P_{S}
E_{S}	P_{S}
P_{S}	
	C=2 S
	S
S	D_S , E_S , P_S
D_{S}	B_D , C_D , E_D , E_S , P_S
B_D	C_D , E_D , E_S , P_S
C_D	E_D, E_S, P_S
E_D	E_{S}, P_{S}
E_{S}	H_E , R_E , P_S
$H_{\rm E}$	R_{E} , P_{S}
$ ho_{ m E}$	P_{S}
P_{S}	Q_P
Q_P	
	C=3
	S
S	D_S , E_S , P_S

D_{S}	B _D , C _D , E _D , E _S , P _S
B _D	A _B , C _D , E _D , E _S , P _S
A_{B}	C _D , E _D , E _S , P _S
C_{D}	A _C , E _D , E _S , P _S
Ac	E _D , E _S , P _S
E _D	H _E , R _E , E _S , P _S
$H_{ m E}$	R _E , E _S , P _S
$R_{ m E}$	E _S , P _S
Es	H _E , R _E , P _S
$H_{\rm E}$	Q _H , R _E , P _S
Q _H	$R_{\rm E}, P_{\rm S}$
$R_{ m E}$	F_R, P_S
F_{R}	P _S
P _S	Q_P
$Q_{ m P}$	R _O
R _Q	110
1.0	C=4
	S
S	Ds, Es, Ps
D_{S}	B_D , C_D , E_D , E_S , P_S
B_{D}	A_B, C_D, E_D, E_S, P_S
A_{B}	C_D , E_D , E_S , P_S
C_{D}	A _C , E _D , E _S , P _S
A_{C}	E _D , E _S , P _S
E_{D}	H_E , R_E , E_S , P_S
${ m H_E}$	$Q_{\mathrm{H}},R_{\mathrm{E}},E_{\mathrm{S}},P_{\mathrm{S}}$
Q _H	R _E , E _S , P _S
R _E	F _R , E _S , P _S
F_R	E _S , P _S
E_{S}	$H_{\rm E},R_{\rm E},P_{\rm S}$
$ m H_E$	$Q_{\mathrm{H}},R_{\mathrm{E}},P_{\mathrm{S}}$
Q_{H}	R_{Q}, R_{E}, P_{S}
R_Q	$R_{\rm E}, P_{\rm S}$
$R_{ m E}$	F_R, P_S
F_R	C_F, G_F, P_S
C_{F}	$G_{\mathrm{F}}, P_{\mathrm{S}}$
$G_{ m F}$	Goal

 $[\]Rightarrow$ Path = G \leftarrow F \leftarrow R \leftarrow E \leftarrow S với cost = 28

Tổng kết

Tìm kiếm	Chiều sâu	Chiều rộng	Giá thành thống nhất	Sâu dần
Giá	23	28	19	28

➡ Trong trường hợp này giá thành thống nhất tìm được đường đi là ngắn nhất

Bài 5:

a.

Hàm heuristic chấp nhận được vì:

- Với h(S) = 6 (Tại vị trí Start) ta có đường đi tối ưu nhất từ S đến G sẽ là: h*(S) = 3+1+1+2+1 =8
- Mà Điều kiện để hàm heuristic chấp nhận được: o<= h(N) <= h*(N)
- ⇒ Hàm heuristic h (N) chấp nhận được

b. Greedy Best-First Search

Expand Node	H(n)
	S (6)
S	$A_{S}(4), B_{S}(4)$
B_{S}	$A_{S}(4), D_{B}(3.5)$
D_{B}	$A_{S}(4), F_{D}(1)$

F_D	$A_{S}(4), G_{F}(0)$
G_{F}	Đích

=> Path = G \leftarrow F \leftarrow D \leftarrow B \leftarrow S với cost = 9

c. Thuật toán A* với h là hàm heuristic

Expand Node	H(n)
	S
S	$A_{S}(4+2), B_{S}(4+3)$
As	$B_{S}(4+3), C_{A}(4+2+3)$
C _A	B _S (4+3), E _C (1+2+3+3), D _C (3+2+3+1)
Dc	$B_{S}(4+3), E_{C}(1+2+3+3), F_{D}(1+2+3+1+2)$
F_D	$B_{S}(4+3), E_{C}(1+2+3+3), \\ G_{F}(0+2+3+1+2+1)$
G_{F}	Goal

⇒ Đường đi từ S đến G theo thuật toán A* là: G← F←D←C←A←S với cost = 9

Tuy nhiên, đây không phải là đường đi ngắn nhất. Đường đi ngắn nhất sẽ là: $G \leftarrow F \leftarrow D \leftarrow C \leftarrow B \leftarrow S$ với cost = 8.