

Universidade Federal de Ouro Preto - JM Departamento de Computação e Sistemas — DECSI ICEA - Instituto de Ciências Exatas e Aplicadas

Sistemas de Cores

Gilda Aparecida de Assis

Por que estudar cor?

 A Computação Gráfica estuda modelos e algoritmos para gerar, processar e interpretar imagens digitais. Imagens são formadas por conjuntos de pontos coloridos. Por isto o estudo de cor é um dos fundamentos da Computação Gráfica.

Cor

- O uso da cor na computação gráfica :
 - Melhora a legibilidade da informação (contraste)
 - Possibilita gerar imagens realísticas
 - Permite focar a atenção do observador
 - Torna o processo de comunicação mais eficiente

O que é cor?

 As cores são sensações que nós, seres humanos, temos em resposta à luz que incide nos nossos olhos.
 Por isso, para entendermos as cores, precisamos antes estudar a luz, como ela interage com os objetos, como nossos olhos captam e como nosso cérebro processa esta informação.

Percepção da Cor

Modelos físicos da luz

Os fótons podem ser vistos como pacotes de energia que viajam no espaço numa velocidade constante de 300.000 km/s

Ondas eletromagnéticas

Classificação da ondas eletromagnéticas:

A interação da luz com os objetos

 O que vemos não é a fonte de luz em si, mas sim a reflexão da luz

(a) objetos construídos

(b) objetos naturais

(c) reflexão especular

(d) refração

Luz ao atingir uma superfície

Decomposição espectral da luz

- A sensação de cor está diretamente associada com a distribuição espectral da luz.
- Ou seja, para entendermos a sensação de cor vamos precisar caracterizar quantitativamente o espectro

Decomposição espectral da luz

Sistema visual humano

- No fundo da retina do olho humano temos dois tipos de sensores que detectam a luz e a transformam em impulso nervoso: Cones e bastonetes.
- Os cones totalizam 7 milhões e estão concentrados no centro da retina e são responsáveis pela percepção das cores.
- Os bastonetes totalizam 125 milhões e estão concentrados na periferia da retina, distinguem os tons de cinza e são responsáveis pela visão periférica.

Sistema visual humano

Teoria tricromática

- A retina é formada por três tipos de fotopigmentos capazes de receber e transmitir sensações distintas.
 - Fotopigmentos mais sensível aos comprimentos de onda curtos, são conhecidos como azuis.
 - Sensíveis aos comprimentos de onda de verde e vermelho .

Teoria tricromática

Universidade Federal de Ouro Preto - JM Departamento de Computação e Sistemas

Sensibilidade do olho humano

Sensibilidade do olho humano

 Por exemplo, mesmo que uma fonte azul emita a mesma quantidade de energia luminosa que uma fonte verde, vamos perceber a luz verde como sendo mais intensa. Isto porque a fonte verde tem um distribuição mais próxima da região central da curva V(λ) enquanto que a azul se aproxima das pontas.

Cores Primárias

- As cores primárias são as cores básicas que podem ser usadas para produzir outras cores
- Não existe um conjunto finito de cores primárias visíveis que produza realmente todas as cores
- Uma grande parte das cores podem ser produzidas a partir de 3 cores primárias.
- Usa-se 3 cores primárias pelo fato de os olhos humanos possuírem três tipos de sensores de cor diferentes

Sistema de cores

- Sistema de cores é um modelo que define as propriedades ou o comportamento das cores num contexto particular.
- O universo de cores que podem ser representadas por uma sistema é chamado de espaço de cores.

Sistema Aditivo de cores

- A mistura de cores aditiva é o efeito da projeção de luzes de várias cores no mesmo ponto da retina ao mesmo tempo.
- RGB (vermelho, verde, azul)

Sistema de cores Aditivas

Sistema Subtrativo de cores

- É o processo usado nas impressoras e pinturas, em que a superfície "absorve" parte da tinta. Nós vemos a parte que não foi absorvida.
- CMY (ciano, magenta, amarelo)

Sistema Subtrativo de cores

Sistema de cores

 Os primeiros sistemas de especificação de cor enumeravam as cores colocando rótulos em amostras delas.

★1858

₱1918

Albert Henry Munsell

Sistema de cores

 Este processo de classificação de cores por amostras continua até hoje. O sistema Pantone© é um sistema proprietário bastante utilizado na internet atualmente.

Pantone: Blue Iris

HEX: #506EB2 **RGB:** 80, 110, 178

Sistemas de cores para dispositivos

- Especificam em um sistema de coordenadas de cores 3D, um gamute, que é um subconjunto de todas as cores visíveis.
- Modelos orientados a hardware não são intuitivos pois não relacionam conceitos de tons, saturação e intensidade.
 - RGB (monitores CRT), YIQ (TVs NTSC), CMY e CMYK (impressoras)
- Modelos orientados a usuário
 - HSV/HSB (hue, saturation, value/brightness)
 - HLS (hue, lightness, saturation)

Modelo CMY(K)

- Impressoras geralmente usam CMYK (K=blacK)
- K usado ao invés de quantidades iguais de CMY (preto) mais realista e menos tinta no papel (secagem mais rápida).

$$\begin{bmatrix} C \\ M \\ Y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Modelo YIQ

- Criado para ser eficiente e compatível com TVs preto e branco. Usado no NTSC (National Television Standards Committee). Nas televisões PAL o sistema de cores é YUV
- Y é a luminância (intensidade)
- I (matiz) e Q (saturação) codificam a cromaticidade

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.30 & 0.59 & 0.11 \\ 0.60 & -0.28 & -0.32 \\ 0.21 & -0.52 & 0.31 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Modelo HLS

Hue, Lightness, Saturation

Problemas com Sistemas de Cores

- Eles são não-uniformes do ponto de vista perceptual
 - Mudanças de cores iguais matematicamente não são percebidas como iguais

