ABSTRACT OF THE DISCLOSURE

A link plate is proposed for forming at least one member of an energy guide chain, which has overlap regions with stops that limit the angular position of the energy guide chain. Each of the overlap regions has a central region which is surrounded by at least two regions in which some stop faces are formed. It is proposed that a first region has stop faces where these stop faces, in the case of an energy guide chain composed from link plates, determine a curvature region in a transition region between a lower trunk and upper trunk of the energy guide chain. The second region has stop faces which determine a prestressing in the energy guide chain. In addition to the two regions, the link plate may have a third region, which has at least one stop with at least one stop face, where the stop has a spring-elastic characteristic. Through the spring-elastic characteristic, damping of the movement during a pivoting process of the link plates is achieved.