Pulsně šířková modulace (PWM)

Pájení

Zapojení

Deska plošných spojů

3D pohled osazené DPS

Univerzální deska plošných spojů

Kde se to najde?

http://aldebaran.feld.cvut.cz/pwm.pdf

MC1458, MC1558 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS069C - FEBRUARY 1971 - REVISED AUGUST 2010

- Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Designed to Be Interchangeable With Motorola MC1558/MC1458 and Signetics S5558/N5558

description/ordering information

The MC1458 and MC1558 are dual general-purpose operational amplifiers, with each half electrically similar to the μA741, except that offset null capability is not provided.

The high-common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components.

NC - No internal connection

ORDERING INFORMATION

TA	V _{IO} max AT 25°C	PACKAGE†		ORDERABLE PART NUMBER	TOP-SIDE MARKING		
		PDIP (P)	Tube	MC1458P	MC1458P		
0°C to 70°C 6 mV	6 mV	SOIC (D)	Tube	MC1458D	MC1458		
0-0 10 70-0	0 mv		Tape and reel	MC1458DR	MC1456		
					SOP (PS)	Tape and reel	MC1458PSR
		CDIP (JG)	Tube	MC1558JG	MC1558JG		
-55°C to 125°C	5 mV	CDIP (JGB)	Tube	MC1558JGB	MC1558JGB		
		LCCC (FK)	Tube	MC1558FK	MC1558FK		

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

MC1458, MC1558 DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS069C - FEBRUARY 1971 - REVISED AUGUST 2010

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC+} (see Note 1):				
	MC1558			22 V
Supply voltage, V _{CC} (see Note 1):	MC1458			18 V
	MC1558			22 V
Differential input voltage, V _{ID} (see N	ote 2)			±30 V
Input voltage, VI (either input, see N	otes 1 and 3)			±15 V
Duration of output short circuit (see	Note 4)			Unlimited
Operating virtual junction temperatu	re, T _J			150°C
Package thermal impedance, θ _{JA} (s	ee Notes 5 and 6):	D package		97°C/W
,		P package		85°C/W
		PS package		95°C/W
Package thermal impedance, θ _{JC} (s	ee Notes 7 and 8):	FK package		5.61°C/W
		JG package		14.5°C/W
Case temperature for 60 seconds: F	K package			260°C
Lead temperature 1,6 mm (1/16 incl) from case for 10	seconds: JG pack	age	300°C
Lead temperature 1,6 mm (1/16 incl				
Storage temperature range, T _{stq}				-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between V_{CC+} and V_{CC-}

- 2. Differential voltages are at IN+ with respect to IN-.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- The output can be shorted to ground or either power supply. For the MC1558 only, the unlimited duration of the short circuit applies at (or below) 125°C case temperature or 70°C free-air temperature.
- Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient temperature is P_D = (T_J(max) T_A)/θ_{JA}. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 6. The package thermal impedance is calculated in accordance with JESD 51-7.
- Maximum power dissipation is a function of T_J(max), θ_{JC}, and T_C. The maximum allowable power dissipation at any allowable case temperature is P_D = (T_J(max) T_C)/θ_{JC}. Operating at the absolute maximum T_J of 150°C can affect reliability.
- 8. The package thermal impedance is calculated in accordance with MIL-STD-883.

recommended operating conditions

			MIN	MAX	UNIT
V _{CC±} Supply voltage		±5	±15	٧	
т.	Operating free-air temperature range	MC1458	0	70	°C
'A	Operating free-air temperature range	MC1558	-55	125	0

TC1411/TC1411N

1A High-Speed MOSFET Drivers

Features

- Latch-Up Protected: Will Withstand 500 mA Reverse Current
- · Input Will Withstand Negative Inputs Up to 5V
- · ESD Protected: 4 kV
- · High Peak Output Current: 1A
- · Wide Input Supply Voltage Operating Range:
- 4.5V to 16V
- High Capacitive Load Drive Capability:
- 1000 pF in 25 nsec
- · Short Delay Time: 30 nsec Typ.
- · Matched Delay Times
- · Low Supply Current
- With Logic '1' Input: 500 μA
- With Logic '0' Input: 100 µA
- Low Output Impedance: 8Ω
- · Available in Space-Saving 8-pin MSOP Package
- Pinout Same as TC1410/TC1412/TC1413

Applications

- · Switch Mode Power Supplies
- · Pulse Transformer Drive
- · Line Drivers
- · Relay Driver

Description

The TC1411/TC1411N are 1A CMOS buffers/drivers. They will not latch-up under any conditions within their power and voltage ratings. They are not subject to damage when up to 5V of noise spiking of either polarity occurs on the ground pin. They can accept, without damage or logic upset, up to 500 mA of current of either polarity being forced back into their output. All terminals are fully protected against up to 4 kV of electrostatic discharge.

As MOSFET drivers, the TC1411/TC1411N can easily charge a 1000 pF gate capacitance in 25 nsec with matched rise and fall times, and provide low enough impedance in both the ON and the OFF states to ensure the MOSFET's intended state will not be affected, even by large transients. The leading and trailling edge propagation delay times are also matched to allow driving short-duration inputs with greater accuracy.

Package Types

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter ²		Value	Unit
	DC Input Voltage	V _O = 3.3 to 9 V	30	
VI		V _O = 12 to 15 V	35	V
		V _O = 18 to 24 V	40	
l _O	Output Current		100	mA
P _{tot}	Power Dissipation		Internally Limited (*)	
T _{stg}	Storage Temperature Range		-40 to 150	°C
Top		for L78L00C, L78L00AC	0 to 125	*C
'op Range	Range	for L78L00AB	-40 to 125	0

^(*) Our SO-8 package used for Voltage Regulators is modified internally to have pins 2, 3, 6 and 7 electrically communed to the die attach flag. This particular frame decreases the total thermal resistance of the package and increases its ability to dissipate power when an appropriate area of copper on the printed circuit board is available for heat-sinking. The external dimensions are the same as for the standard SO-8.

THERMAL DATA

Symbol	Parameter	SO-8	TO-92	SOT-89	Unit
R _{thj-case}	Thermal Resistance Junction-case Max	20		15	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient Max	55 (*)	200		°C/W

^(*) Considering 6 cm² of copper Board heat-sink

TEST CIRCUITS

CONNECTION DIAGRAM (top view)

2/24

L78L00 SERIES

ELECTRICAL CHARACTERISTICS OF L78L33C (refer to the test circuits, T_J = 0 to 125°C, V_I = 8.3V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = 25°C	3.036	3.3	3.564	٧
Vo	Output Voltage	I _O = 1 to 40 mA V _I = 5.3 to 20 V	2.97		3.63	V
		I _O = 1 to 70 mA V _I = 8.3 V	2.97		3.63	
ΔV_O	Line Regulation	V _I = 5.3 to 20 V T _J = 25°C			150	mV
		V _I = 6.3 to 20 V T _J = 25°C			100	
ΔV_O	Load Regulation	I _O = 1 to 100 mA T _J = 25°C			60	mV
		$I_O = 1 \text{ to } 40 \text{ mA}$ $T_J = 25^{\circ}\text{C}$			30	
l _d	Quiescent Current	T _J = 25°C			6	mA
		T _J = 125°C			5.5	mA
Δl _d	Quiescent Current Change	I _O = 1 to 40 mA			0.2	mA
		V _I = 6.3 to 20 V			1.5	
eN	Output Noise Voltage	B =10Hz to 100KHz T _J = 25°C		40		μV
SVR	Supply Voltage Rejection	V _I = 6.3 to 16.3 V f = 120Hz	41	49		dB
		$I_O = 40 \text{ mA}$ $T_J = 25^{\circ}\text{C}$				
V _d	Dropout Voltage			1.7		V

ELECTRICAL CHARACTERISTICS OF L78L05C (refer to the test circuits, T_J = 0 to 125°C, V_I = 10V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
v _o	Output Voltage	T _J = 25°C	4.6	5	5.4	٧
V _O	Output Voltage	I _O = 1 to 40 mA V _I =7 to 20 V	4.5		5.5	V
		I _O = 1 to 70 mA V _I = 10 V	4.5		5.5	
ΔV_O	Line Regulation	V _I = 8.5 to 20 V T _J = 25°C			200	mV
		V _I = 9 to 20 V T _J = 25°C			150	1
ΔV_O	Load Regulation	I _O = 1 to 100 mA T _J = 25°C			60	mV
		I _O = 1 to 40 mA T _J = 25°C			30	1
Id	Quiescent Current	T _J = 25°C			6	mA
		T _J = 125°C			5.5	mA
ΔI_d	Quiescent Current Change	I _O = 1 to 40 mA			0.2	mA
		V _I = 8 to 20 V			1.5	1
eN	Output Noise Voltage	B =10Hz to 100KHz T _J = 25°C		40		μV
SVR	Supply Voltage Rejection	V _I = 9 to 20 V f = 120Hz I _O = 40 mA T _J = 25°C	40	49		dB
V _d	Dropout Voltage			1.7		V

Vishay Siliconix

RoHS*

COMPLIANT

Power MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	60				
R _{DS(art)} (Ω)	V _{GS} = 10 V	0.20			
Q _g (Max.) (nC)	11				
Q _{gs} (nC)	3.1				
Q _{gd} (nC)	5.8				
Configuration	Single				

FEATURES

- . Dynamic dV/dt Rating
- 175 °C Operating Temperature
- Fast Switching
- · Ease of Paralleling
- · Simple Drive Requirements
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION

Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220AB package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry.

ORDERING INFORMATION	
Package	TO-220AB
Lead (Pb)-free	IRFZ14PbF
Lead (FD)-free	SiHFZ14-E3
SnPb	IRFZ14
SIFB	SiHFZ14

PARAMETER			SYMBOL	LIMIT	UNIT
Drain-Source Voltage ^f			Vos	60	v
Gate-Source Voltage ^f			V _{GS}	± 20	1 °
Continuous Drain Current	V _{GS} at 10 V	T _C = 25 °C	-	10	
Continuous Drain Current	V _{GS} at 10 V	T _C = 100 °C	I _D	7.2	A
Pulsed Drain Current ^a	•		I _{DM}	40	
Linear Derating Factor				0.29	W/°C
Single Pulse Avalanche Energy ^b			EAS	47	mJ
Maximum Power Dissipation	T _C =	25 °C	P _D	43	W
Peak Diode Recovery dV/dtc			dV/dt	4.5	V/ns
Operating Junction and Storage Temperature Range			T _J , T _{stq}	- 55 to + 175	*C
Soldering Recommendations (Peak Temperature)	for 10 s			300 ^d	1
Mounting Torque	6 22 or h	42 norow		10	lbf ⋅ in
Mounting Forque	6-32 or M3 screw		T I	1.1	N · m

Notes

- Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. V_{DD} = 25 V; starting T_J = 25 °C, L = 1.47 mH, R₀ = 25 Ω, I_{AS} = 8 A (see fig. 12).
- c. $I_{SD} \leq 10$ A, $dI/dt \leq 90$ A/µs, $V_{DD} \leq V_{DS},$ $T_{J} \leq 175$ °C.
- d. 1.6 mm from case.

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

Vishay Siliconix

THERMAL RESISTANCE RATINGS						
PARAMETER	SYMBOL	TYP.	MAX.	UNIT		
Maximum Junction-to-Ambient	R _{thJA}	-	62			
Case-to-Sink, Flat, Greased Surface	R _{thCS}	0.50	-	*C/W		
Maximum Junction-to-Case (Drain)	R _{thJC}	-	3.5			

PARAMETER	SYMBOL	TES	MIN.	TYP.	MAX.	UNIT	
Static		•					
Drain-Source Breakdown Voltage	VDS	V _{GS} :	= 0 V, I _D = 250 μA	60	-	-	٧
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	Reference	e to 25 °C, I _D = 1 mA	-	0.063	-	V/°C
Gate-Source Threshold Voltage	V _{GS(th)}	V _{DS} =	· V _{GS} , I _D = 250 μA	2.0	-	4.0	٧
Gate-Source Leakage	I _{GSS}	1	V _{GS} = ± 20 V	-	-	± 100	nA
Zees Cota Valtage Proje Conset		V _{DS}	= 60 V, V _{GS} = 0 V	-	-	25	4
Zero Gate Voltage Drain Current	DSS	V _{DS} = 48 V	V _{GS} = 0 V, T _J = 150 °C	-	-	250	μA
Drain-Source On-State Resistance	R _{DS(on)}	V _{GS} = 10 V	$I_D = 6.0 \text{ A}^b$	-	-	0.20	Ω
Forward Transconductance	9rs	V _{DS} =	25 V, I _D = 6.0 A ^b	2.4	-	-	s
Dynamic							
Input Capacitance	Ciss		V _{GS} = 0 V,	-	300	-	
Output Capacitance	Coss	1	$V_{DS} = 25 V$,	-	160	-	pF
Reverse Transfer Capacitance	Crss	f = 1.	0 MHz, see fig. 5	-	29	-	
Total Gate Charge	Qg				-	11	\vdash
Gate-Source Charge	Qgs	V _{GS} = 10 V I _D = 10 A, V _{DS} = 48 V, see fig. 6 and 13 ^b		-	-	3.1	nC
Gate-Drain Charge	Q _{gd}	1	see iig. o and 15	-	-	5.8	1
Turn-On Delay Time	t _{d(on)}	V _{DD} = 30 V, I _D = 10 A,		-	10	-	-
Rise Time	t _r			-	50	-	
Turn-Off Delay Time	t _{d(off)}	H ₉ =	24 Ω, R _D = 2.7 Ω, see fig. 10 ^b	-	13	-	ns
Fall Time	t _f	1		-	19	-	
Internal Drain Inductance	L _D	Between lead 6 mm (0.25*)	rom 🗀	-	4.5	-	nH
Internal Source Inductance	L _S	package and die contact	center of UP	-	7.5	-	ne
Drain-Source Body Diode Characteristic	s	•					
Continuous Source-Drain Diode Current	Is	MOSFET sym showing the	(I L.)	-	-	10	_
Pulsed Diode Forward Current ^a	I _{SM}	integral reverse p - n junction diode		-	-	40	
Body Diode Voltage	V _{SD}	T _J = 25 °C	, I _S = 10 A, V _{GS} = 0 V ^b	-	-	1.6	٧
Body Diode Reverse Recovery Time	t _{rr}	T. = 25 °C L	= 10 A, dl/dt = 100 A/µsb	-	70	140	ns
Body Diode Reverse Recovery Charge	Q _{rr}	1 1 = 25 °C, IF	- 10 A, αναί = 100 A/μs ^ο	-	0.20	0.40	μC
Forward Turn-On Time	ton	Intrinsic tu	rn-on time is negligible (turn	on is dor	ninated b	v L _o and	Ln)

- a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- b. Pulse width $\leq 300~\mu s$; duty cycle $\leq 2~\%$.

Voltage regulator diodes

2. Pinning information

^[1] The marking band indicates the cathode.

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
BZV85 series[1]	-	hermetically sealed glass package; axial leaded; 2 leads	SOD66

^[1] The series consists of 33 types with nominal working voltages from 3.3 V to 75 V.

4. Marking

Table 4. Marking codes

Type number	Marking code
BZV85 series	The diodes are type branded.

AND SHIP AND

Voltage regulator diodes

5. Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
l _F	forward current		-	500	mA
I _{ZSM}	non-repetitive peak reverse current	square wave; t _p = 100 μs	<u>[1]</u> -	see Table 8	
		half sine wave; t _p = 10 ms	Ш -	see Table 8	
P _{tot}	total power dissipation				
		T _{amb} = 25 °C; lead length 10 m m	[2] _	1	W
			[3]	1.3	W
Pzsm	non-repetitive peak reverse power dissipation	square wave; t _p = 100 μs	Ш -	60	W
Tj	junction temperature		-	200	°C
T _{stg}	storage temperature		-65	+200	°C

^[1] T_i = 25 °C prior to surge

SZYRS_SER_3 6 NOP S.V. 2009. All rights reserved.

^[2] Device mounted on a PCB with 1 cm2 copper area per lead.

^[3] If the leads are kept at T_{tp} = 55 °C at 4 mm from body.

SB560-3G

Schottky Barrier Rectifier Diodes 3rd Generation Schottky-Gleichrichterdioden 3. Generation

 $I_{\text{FAV}} = 5.0 \text{ A}$ V_r < 0.55 V T_{jmax} = 150°C

 $V_{RRM} = 60 \text{ V}$ I_{FSM} = 200/220 A

Version 2020-04-30

Typical Applications Output Rectification in DC/DC Converters, Polarity Protection, Free-wheeling diodes

Commercial grade

Suffix -Q: AEC-Q101 compliant 1) Suffix -AQ: in AEC-Q101 qualification 1)

Typische Anwendungen Ausgangsgleichrichtung in Gleichstromwandlern, Verpolschutz, Freilaufdioden Standardausführung

Suffix -Q: AEC-Q101 konform 1) Suffix -AQ: in AEC-Q101 Qualifikation 1)

Features

Vr as low as comparable 45V types Low reverse leakage current Compliant to RoHS, REACH, Conflict Minerals 1)

Vr wie vergleichbare 45V Typen Niedriger Sperrstrom Konform zu RoHS, REACH, Konfliktmineralien 1)

Besonderheiten

Mechanische Daten 1)

Mechanical Data 1) Taped in ammo pack 1700 Gegurtet in Ammo-Pack Weight approx. 1 g Gewicht ca. Case material UL 94V-0 Gehäusematerial Solder & assembly conditions 260°C/10s Löt- und Einbaubedingungen MSL N/A

Maximum ratings ²)	Grenzwerte 2)
--------------------------------	---------------

Type Typ	Repetitive peak reverse voltage Periodische Spitzensperrspannung V _{REM} [V]	Surge peak reverse voltage Stoßspitzensperrspannung V _{REM} [V]
SB560-3G	60	60

Max. average forward rectified current, R-load Dauergrenzstrom in Einwegschaltung mit R-Last $T_{\rm A} = 50 ^{\rm o}{\rm C}$		$T_A = 50$ °C	Irav	5 A
Repetitive peak forward current – Periodischer Spitzenstrom f > 15 Hz		T _A = 50°C	I_{PRM}	40 A
Peak forward surge current Stoßstrom in Fluss-Richtung	Half sine-wave Sinus-Halbwelle	50 Hz (10 ms) 60 Hz (8.3 ms)	Irsu	200 A 220 A
Rating for fusing Grenzlastintegral		t < 10 ms	i²t	200 A²s
Operating junction temperature – Sperrschichttemperatur Storage temperature – Lagerungstemperatur			T _j T _s	-50+150°C -50+175°C

© Diotec Semiconductor AG http://www.diotec.com/

<sup>Please note the <u>detailed information on our website</u> or at the beginning of the data book
Bitte beachten Sie die <u>detaillierten Hinweise auf unserer Internetseite</u> bzw. am Anfang des Datenbuches
T_A = 25°C unless otherwise specified – T_A = 25°C wenn nicht anders angegeben</sup>

HH-SRGB60F010W12-3535

FEATURES

- •Mercury free, no UV or IR emissions.
- •DC12V
- •12watts/m
- •5000Hrs LED life time
- •Dimmable, RGB color changing
- ●CE,Rohs,UL,cUL

SPECIFICATIONS

Length	5 meters/Roll	
Power	12watts/m	
Width	10mm	
LED Qty	60LED/m	
Input Voltage	12VDC	
Lumen	18-20lm/LED	
PCB	2, 3 ,4 OZ	
CRI		
Waterproof	IP20/IP54/IP65/IP67/IP68	

STRUCTURE

