Lab5 – Caravel FPGA

Objectives

In Lab 4-0 (Caravel SOC Simulation), you know

- Caravel SOC design structure, and its spiflash, mprj interface
- Firmware compilation, and interaction with user project and testbench
- Testbench structure and how it interacts with Caravel SOC.

In this lab, you will understand

- Put the whole Caravel SOC simulation environment into FPGA
- Integrate IPs with Caravel SOC
 - spiflash,
 - romcode download (read_romcode),
 - mmio to access mprj (caravel-ps), and
 - mmio reset control
- Convert the verilog testbench to PS Python code

CaravelFPGA Block Diagram

Lab#5 – Caravel FPGA - build from each IP

- Reference https://github.com/bol-edu/caravel-soc_fpga-lab/tree/main/labi
- Caravel FPGA introduction ppt:
 - Video: https://www.youtube.com/watch?v=EF3vXdaVof0&t=3826s
 - ppt: https://github.com/bol-edu/caravel-soc_fpga-lab/files/12035595/Caravel.FPGA.Introduction.pdf

Note: labi integrates the following three ip

- Lab1 ROMCode: https://github.com/bol-edu/caravel-soc_fpga-lab/tree/main/lab1
- Lab2 Spiflash: https://github.com/bol-edu/caravel-soc_fpga-lab/tree/main/lab2
- Lab3 GPIO pins: https://github.com/bol-edu/caravel-soc_fpga-lab/tree/main/lab3
- Youtube TA introduce Lab5
 - Lab5 Introduction: https://youtu.be/pTKtCEnLfpQ
 - Lab5 Block Design Flow: https://youtu.be/ha0d7D-oesA
- Implementation
 - Build the three IP: caravel ps, read romcode, output pin
 - Build the FPGA bitstream integrate the Caravel soc and the three IPs
 - Validate it on FPGA with the Jupyter Notebook run on PS
- Observe the following
 - AXI master to download the firmware code

 - Boot up with spiflash access cpu wb cycles interaction with user project area cpu interface with user project with la

 - User project output mpri pin
- Submission guideline report

