CÉSAR D. SALVADOR

TECNOLOGÍA ACÚSTICA 3D: ACTUALIDAD Y TENDENCIAS

PERCEPCIÓN DEL ESPACIO

EVENTO EN EL ESPACIO

VISIÓN BINOCULAR Y AUDICIÓN BINAURAL

INFORMACIÓN ACÚSTICA Y AUDICIÓN ESPACIAL

ENTORNO

REPRESENTACIÓN DEL ESPACIO

RETINOTOPÍA

TONOTOPÍA

TONOTOPÍA

https://www.medel.com/

A. James Hudspeth, Robert Fettiplace and Christine Petit 2018 KAVLI PRIZE IN NEUROSCIENCE

"for their pioneering work on the molecular and neural mechanisms of hearing."

DIFERENCIAS INTERAURALES PARA LOCALIZACIÓN SONORA

TIEMPO (<1500 Hz)

INTENSIDAD (>1500 Hz)

TECNOLOGÍAS ACÚSTICA 3D: ACTUALIDAD

TECNOLOGÍAS ACÚSTICA 3D: TENDENCIAS

Procesamiento Percepción y cognición Rotación de la cabeza y traslación del cuerpo (**6DOF**)

EJEMPLOS DE APLICACIÓN

- En esta conferencia
 - Telecomunicaciones: Telepresencia
 - Robótica: Audición artificial
- Durante el conversatorio
 - Medicina: Audición asistida
 - Patrimonio intangible: Registro de paisajes sonoros 3D

ENCIA

Percepción multisensorial

Somato/vestibular

Visión Audición

Telepresencia auditiva

Audición en movimiento

Audición espacial

Reproducción de Sonido 3D

Un oyente estático

Dummy head (Firestone, 1930; Morimoto, 1980)

Un oyente moviéndose

TeleHead (Toshima, 2003)

Multiples oyentes moviéndose

Motion-tracked binaural (MTB) system (Algazi, 2004)

Registro

Reproducción

Miraikan

Teleoperador

Reproductor 32ch para contenidos AV inmersivos (Universidad de Tohoku)

Modificación acústica en tiempo real

Universidad de McGill

Multimodal measurement laboratory (MML) at IAS,TU Dresden

Multimedia laboratory (ML) at RIEC, Tohoku University

AUDICIÓN ARTIFICIAL

RECONOCIMIENTO DE ENTORNOS DINÁMICOS Y COMPLEJOS

UN ROBOT NECESITA PROCESAR MUCHOS TIPOS DE SEÑALES

LA INFORMACIÓN ACÚSTICA ES MENOS AFECTADA POR LA OCLUSIÓN

ARREGLOS DE MICRÓFONOS DE ACUERDO A LA FORMA DEL ROBOT

Audio 3D convencional

Audición artificial

Identificación

(cognición)

Localización (sensado)

Estructura: conexión biológica

D. S. Bassett and O. Sporns, "Network neuroscience," Nat. Neurosci., vol. 20, p. 353, Feb. 2017.

AUDICIÓN ARTIFICIAL INSPIRADA EN LA AUDICIÓN HUMANA

HACIA UNA ENTORNO PARA PERCEPCIÓN MULTISENSORIAL ARTIFICIAL

Environment recognition

Higher cognition, memory, etc. Multisensory integration Top-down Hearing Bottom-up Cognition (Simulus-driven) Other Perception modalities Sensation

(Task-oriented)

GRACIAS POR SU ATENCIÓN

César D. Salvador cesardsalvador.github.io