Banking Dataset - Marketing Targets

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")

df1 = pd.read_csv('train.csv',sep=';')
df2 = pd.read_csv('test.csv',sep=';')

df1.head()
```

\Rightarrow		age	job	marital	education	default	balance	housing	loan	contact	day
	0	58	management	married	tertiary	no	2143	yes	no	unknown	5
	1	44	technician	single	secondary	no	29	yes	no	unknown	5
	2	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	5
	3	47	blue-collar	married	unknown	no	1506	yes	no	unknown	5
	4	33	unknown	sinale	unknown	no	1	no	no	unknown	<i>E</i>

df2.head()

df.head()


```
df = pd.concat([df1, df2], ignore_index= True)
```


	age	job	marital	education	default	balance	housing	loan	contact	day
0	58	management	married	tertiary	no	2143	yes	no	unknown	5
1	44	technician	single	secondary	no	29	yes	no	unknown	5
2	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	5
3	47	blue-collar	married	unknown	no	1506	yes	no	unknown	5
4	33	unknown	sinale	unknown	no	1	no	no	unknown	€

df.info()

</pre RangeIndex: 49732 entries, 0 to 49731 Data columns (total 17 columns):

Data	COTAIIII (C	Juan I	COTUMITS)	•
#	Column	Non-Nu	ull Count	Dtype
0	age	49732	non-null	int64
1	job	49732	non-null	object
2	marital	49732	non-null	object
3	education	49732	non-null	object
4	default	49732	non-null	object
5	balance	49732	non-null	int64
6	housing	49732	non-null	object
7	loan	49732	non-null	object
8	contact	49732	non-null	object
9	day	49732	non-null	int64
10	month	49732	non-null	object
11	duration	49732	non-null	int64
12	campaign	49732	non-null	int64
13	pdays	49732	non-null	int64
14	previous	49732	non-null	int64
15	poutcome	49732	non-null	object
16	У	49732	non-null	object
dtyne	es int64(7) ohie	oct(10)	

dtypes: int64(7), object(10)

memory usage: 6.5+ MB

Find null values in dataset df.isnull().sum()

	0
age	0
job	0
marital	0
education	0
default	0
balance	0
housing	0
loan	0
contact	0
day	0
month	0
duration	0
campaign	0
pdays	0
previous	0
poutcome	0
У	0

dtype: int64

df.describe()

	4	
-	\rightarrow	$\overline{}$
		-

	age	balance	day	duration	campaign	pd
count	49732.000000	49732.000000	49732.000000	49732.000000	49732.000000	49732.000
mean	40.957472	1367.761562	15.816315	258.690179	2.766549	40.158
std	10.615008	3041.608766	8.315680	257.743149	3.099075	100.127
min	18.000000	-8019.000000	1.000000	0.000000	1.000000	-1.000
25%	33.000000	72.000000	8.000000	103.000000	1.000000	-1.000
50%	39.000000	448.000000	16.000000	180.000000	2.000000	-1.000
75%	48.000000	1431.000000	21.000000	320.000000	3.000000	-1.000
max	95.000000	102127.000000	31.000000	4918.000000	63.000000	871.000

x = df.drop(['y'],axis = 1)
y =df.y

y.head()

1 no

2 no

3 no

4 no

dtype: object

```
# Store all categorical (text) column into dataframe
categorical_columns = df.select_dtypes(include=['object']).columns
```

categorical_columns

#Import labelencoder for converting string to number.
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

#Converting Categorical columns in Numeric for training M.L. model
for col in categorical_columns:
 df[col]=le.fit_transform(df[col])

df.head()

age	job	marital	education	default	balance	housing	loan	contact	day	month
58	4	1	2	0	2143	1	0	2	5	8
44	9	2	1	0	29	1	0	2	5	8
33	2	1	1	0	2	1	1	2	5	8
47	1	1	3	0	1506	1	0	2	5	8
33	11	2	3	0	1	0	0	2	5	8
	58 44 33 47	58 4 44 9 33 2 47 1	58 4 1 44 9 2 33 2 1 47 1 1	58 4 1 2 44 9 2 1 33 2 1 1 47 1 1 3	58 4 1 2 0 44 9 2 1 0 33 2 1 1 0 47 1 1 3 0	58 4 1 2 0 2143 44 9 2 1 0 29 33 2 1 1 0 2 47 1 1 3 0 1506	58 4 1 2 0 2143 1 44 9 2 1 0 29 1 33 2 1 1 0 2 1 47 1 1 3 0 1506 1	58 4 1 2 0 2143 1 0 44 9 2 1 0 29 1 0 33 2 1 1 0 2 1 1 47 1 1 3 0 1506 1 0	58 4 1 2 0 2143 1 0 2 44 9 2 1 0 29 1 0 2 33 2 1 1 0 2 1 1 2 47 1 1 3 0 1506 1 0 2	44 9 2 1 0 29 1 0 2 5 33 2 1 1 0 2 1 1 2 5 47 1 1 3 0 1506 1 0 2 5

#Define independent variable into x and dependent into y.

```
#Independents variables
```

```
x1= df.drop(['y'],axis=1)
x1.head()
```

→		age	job	marital	education	default	balance	housing	loan	contact	day	month
	0	58	4	1	2	0	2143	1	0	2	5	8
	1	44	9	2	1	0	29	1	0	2	5	8
	2	33	2	1	1	0	2	1	1	2	5	8
	3	47	1	1	3	0	1506	1	0	2	5	8
	4	33	11	2	3	0	1	0	0	2	5	8

```
#Dependent variable
y1=df.y
y1.head()
```

- 1 0
- 2 0
- 3 (
- 4 0

dtype: int64

```
#Find best parameters using hyper parameter tuning
from sklearn import svm
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV

# Find the best parameters.
model_params = {
    'random_forest': {
        'model': RandomForestClassifier(),
        'params': {
            'n_estimators': [0,1, 5, 10]
        }
    }
}
```

```
scores = []
for model_name, mp in model_params.items():
    clf = GridSearchCV(mp['model'], mp['params'], cv=5, return_train_score=False)
    clf.fit(x1, y1)
    scores.append({
        'model': model_name,
        'best_score': clf.best_score_,
        'best_params': clf.best_params_
    })
df1 = pd.DataFrame(scores)
df1
\rightarrow
               model best_score best_params
      0 random forest
                         0.842273 {'n_estimators': 10}
# Create a Pipeline to Encode Categorical Features Numerically and Train a Model
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import OneHotEncoder
# Define the pipeline
clf = Pipeline([
    ('encodef', OneHotEncoder()), # Encoding categorical features
    ('mod', RandomForestRegressor(n_estimators=10)) # Random Forest model
])
clf.fit(x,y1)
                                (i) (?)
                 Pipeline
               OneHotEncoder
           RandomForestRegressor
clf.score(x,y1)
→ 0.8738745372507875
Our model achieves an accuracy of 87%.
columns = ['age', 'job', 'marital', 'education', 'default', 'balance', 'housing', 'loan',
           'contact', 'day', 'month', 'duration', 'campaign', 'pdays', 'previous', 'poutc
new_data_points = [
```

```
[59, 'admin.', 'married', 'secondary', 'no', 2343, 'yes', 'no', 'unknown', 5, 'may',
]
input = pd.DataFrame(new_data_points, columns=columns)
# Test the model based on above input.
prediction= clf.predict(input)[0]
```