Comparison Tables: BBOB 2015 Testbed in 2-D (Expensive Setting)

The BBOBies
July 16, 2015

Abstract

This document provides tabular results of the workshop on Black-Box Optimization Benchmarking held at GECCO 2015 with a focus on benchmarking black-box algorithms for small function evaluation budgets ("expensive setting"), see http://coco.gforge.inria.fr/doku.php?id=bbob-2015. Overall, 18 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. Only three of them have been tested on the optional instances in dimension 40. A description of the used objective functions can be found in [7, 5]. The experimental set-up is described in [6].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [2]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT $_{\rm best}$ is noted as infinite). See [6] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at GECCO 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbod

testbed algorithm short name	paper	reference
BSifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
BSif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
BSqi	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
BSrr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
CMA-CSA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-MSR	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-TPA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
GP1-CMAES	SBenchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
GP5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
IPOPCMAv3p61	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
LHD-10xDefault- MATSuMoT	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
LHD-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RAND-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RF1-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
RF5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
Sifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Sif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Srr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-Box Optimization of Separable Continuous Functions	[9]

i is larger one	an 1, wron 1	John Critoni C	office from Dy	one number	or motanees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f1	1.6e+1:1.2	4.0e+0:2.6	2.5e-2:6.2	1.0e-8:6.2	1.0e-8:6.2	15/15
BSifeg	1.6 (1)	2.2 (2)	1.7(0.2)	1.7(0.2)	1.7(0.3)	15/15
BSif	1.6 (1)	2.2(2)	1.7(0.2)	1.7(0.3)	1.7(0.2)	15/15
BSqi	1.6(2)	2.2(2)	1.7(0.3)	1.7(0.2)	1.7(0.3)	15/15
BSrr	1.6(2)	2.2(2)	1.7(0.3)	1.7(0.2)	1.7(0.3)	15/15
CMA-CSA	3.1(5)	3.0(3)	11(6)	42(5)	42(6)	15/15
CMA-MSR	2.7 (1)	4.7(3)	16(11)	69(12)	69(9)	15/15
CMA-TPA	2.8 (4)	4.5(4)	12(7)	44(8)	44(13)	15/15
GP1-CMAES	2.4 (5)	2.5 (2)	6.5(2)	24(4)	24(5)	15/15
GP5-CMAES	3.3(3)	2.7 (2)	3.4(2)	31(14)	31(16)	15/15
IPOPCMAv3p	4.9(4)	4.6(5)	12(7)	43(9)	43(4)	15/15
LHD-10xDef	2.6 (2)	3.8(5)	10(0)	∞	∞ 100	0/15
LHD-2xDefa	2.4 (1)	2.8 (2)	3.3(0.8)	∞	∞ 100	0/15
RAND-2xDef	2.6 (2)	3.4(2)	3.5(0.9)	∞	∞ 100	0/15
RF1-CMAES	3.1(4)	4.2(4)	8.0(3)	86(85)	86(111)	10/15
RF5-CMAES	2.8 (3)	4.7(4)	60(38)	∞	∞ 502	0/15
Sifeg	1.6 (1)	2.2 (2)	2.3 (0.4)	6.3(0.5)	6.3(0.5)	15/15
Sif	1.6 (1)	2.2 (1)	2.4 (0.3)	6.2(0.6)	6.2(0.6)	15/15
Srr	1.6(1)	2.2(2)	2.3(0.2)	5.9(0.5)	5.9(0.5)	15/15

Table 3: 02-D, running time excess ERT/ERT_{best 2009} on f_2 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

#FEs/D	0.5	1.2	3	10	50	#succ
f2	1.0e + 7:1.4	1.6e+6:2.7	1.0e + 5:6.1	6.3e-1:20	1.0e-8:30	15/15
BSifeg	1.7 (1)	3.1(1)	1.7(0.2)	1.2(0.3)	1.2(0.3)	15/15
BSif	1.7 (1)	3.1(0.4)	1.7(0.2)	1.1(0.3)	1.2(0.1)	15/15
BSqi	1.7 (1)	3.1(0.9)	1.7(0.2)	0.93 (0.1)	1.1(0.2)	15/15
BSrr	1.7 (1)	3.1(0)	1.7(0.3)	1.1(0.3)	1.3(0.2)	15/15
CMA-CSA	1.3(2)	2.8 (3)	3.2(2)	15(4)	19(2)	15/15
CMA-MSR	1.8(0.5)	2.6 (2)	2.8 (2)	16(3)	24(5)	15/15
CMA-TPA	1.5 (1)	1.2(0.5)	1.7(1)	12(5)	17(2)	15/15
GP1-CMAES	2.1(2)	2.3(2)	2.2 (2)	13(6)	19(2)	12/15
GP5-CMAES	2.2(2)	2.2 (2)	1.5(1)	5.1(2)	9.2(6)	14/15
IPOPCMAv3p	2.3 (2)	3.0 (2)	3.0(2)	17(6)	$\infty 506$	0/15
LHD-10xDef	1.3 (1)	1.4(0.8)	2.6 (1)	∞	∞ 100	0/15
LHD-2xDefa	1.0(0.7)	1.2(1)	1.7(1)	∞	∞ 100	0/15
RAND-2xDef	1.3(2)	1.0(0.7)	1.3(1)	∞	∞ 100	0/15
RF1-CMAES	2.5 (3)	2.2 (2)	2.8 (3)	168(242)	∞ 506	0/15
RF5-CMAES	1.8(1)	2.8 (2)	2.8 (2)	167(194)	∞ 502	0/15
Sifeg	1.7 (1)	3.2(2)	2.0 (0.3)	1.5(0.3)	1.8(0.2)	15/15
Sif	1.7 ₍₁₎	3.2(1)	2.0 (0.5)	1.4(0.3)	1.7(0.3)	15/15
Srr	1.7 (1)	3.2(0.4)	2.0 (0.5)	1.4(0.2)	1.9(0.1)	15/15

Table 4: 02-D, running time excess ERT/ERT_{best 2009} on f_3 for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

is larger than 1, with Domerton correction by the number of instances.								
#FEs/D	0.5	1.2	3	10	50	#succ		
f3	1.0e + 2:1.4	4.0e+1:4.1	2.5e+1:6.6	6.3e + 0:26	2.5e+0:112	15/15		
BSifeg	2.2 (1)	1.8(1)	1.4(0.3)	0.79 (0.6)	0.30(0.2)	15/15		
BSif	2.2 (1)	1.8(0.7)	1.4(0.7)	0.77 (0.3)	0.30(0.2)	15/15		
BSqi	2.2 (1)	1.8 (1)	1.4(0.5)	0.76 (0.5)	0.30(0.2)	15/15		
BSrr	2.2 (0.7)	1.8 (1)	1.4(0.6)	0.74 (0.6)	0.28 (0.2)	15/15		
CMA-CSA	1.8(1)	2.4 (2)	2.4(2)	2.2 (1)	2.9 (4)	15/15		
CMA-MSR	3.0(3)	2.9 (1)	2.6 (1)	3.3(2)	4.6(9)	15/15		
CMA-TPA	2.0 (3)	2.9 (3)	2.9 ₍₂₎	6.8(8)	5.5(4)	15/15		
GP1-CMAES	2.8 (3)	1.7(2)	2.6(2)	2.2 (1)	2.9 (4)	11/15		
GP5-CMAES	2.0 (1)	1.9 ₍₂₎	4.0(1)	5.8(7)	2.3 (2)	13/15		
IPOPCMAv3p	1.6 (0.9)	1.4(1.0)	1.6(0.8)	2.6 (1)	3.2(2)	10/15		
LHD-10xDef	1.9(3)	1.6(2)	1.7 ₍₁₎	3.0(2)	1.5(0.8)	8/15		
LHD-2xDefa	1.6(0.4)	1.2(1)	1.4 (1)	1.0(0.7)	0.67 (0.8)	11/15		
RAND-2xDef	1.8(2)	1.1(0.7)	1.9(1)	2.4 (1)	1.4(2)	7/15		
RF1-CMAES	1.7(2)	11(1)	7.2(2)	9.0(6)	5.6(6)	7/15		
RF5-CMAES	2.2 (3)	2.4(2)	14(2)	15(15)	6.5(8)	7/15		
Sifeg	2.2(2)	1.8 (1)	1.5(0.9)	1.1(0.5)	0.30(0.2)	15/15		
Sif	2.2(2)	1.8 (1)	1.5(0.7)	1.1(0.5)	0.34 (0.2)	15/15		
Srr	2.2 (1)	1.8(1)	1.5 (1)	1.1(0.4)	0.31 (0.1)	15/15		

i is iaigei uiid	ı, wıuı L	omenom ee	niccion by	one number o	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f4	6.3e+1:2.4	4.0e+1:5.2	2.5e+1:8.5	1.0e + 1:22	2.5e+0:120	5/5
BSifeg	1.8 (1)	1.1(0.9)	1.1(0.3)	0.91 (0.4)	0.42 (0.3)	15/15
BSif	1.8(2)	1.1(0.8)	1.1(0.5)	0.91 (0.6)	0.42 (0.3)	15/15
BSqi	1.8(2)	1.1(0.9)	1.1(0.5)	0.98 (0.4)	0.45 (0.3)	15/15
BSrr	1.8(2)	1.1(1.0)	1.1(0.6)	0.93 (0.4)	0.42 (0.3)	15/15
CMA-CSA	1.9(2)	2.3 (2)	2.4 (1)	2.3 (2)	4.3(7)	15/15
CMA-MSR	3.2(2)	2.6 (2)	2.3 (2)	6.1(20)	11(13)	15/15
CMA-TPA	3.3(4)	1.9(0.7)	2.5 (2)	2.9 (4)	6.4(9)	15/15
GP1-CMAES	2.5(2)	1.9(2)	2.3 (2)	2.2 (1)	4.6(3)	8/15
GP5-CMAES	3.2(3)	2.1 (3)	10(15)	6.4(3)	3.8(3)	9/15
IPOPCMAv3p	2.9 (3)	2.2(2)	2.8 (3)	2.9 (3)	5.0(10)	8/15
LHD-10xDef	1.7(4)	1.7(1)	2.0 (3)	2.7 (3)	1.9(2)	6/15
LHD-2xDefa	1.5(1)	1.9 (1)	2.0 (1)	1.8 (1)	1.7 (1)	6/15
RAND-2xDef	2.2 (1)	1.6(0.8)	1.2(0.8)	1.7(2)	2.1 (1.0)	5/15
RF1-CMAES	2.1(2)	2.3 (3)	2.1(2)	3.3(3)	28(27)	2/15
RF5-CMAES	17(2)	8.6(1)	12(16)	16(22)	28(26)	2/15
Sifeg	1.8(1)	1.2(1.0)	1.3(0.2)	0.96 (0.3)	0.50 (0.3)	15/15
Sif	1.8(2)	1.2(1)	1.3(0.9)	0.95 (0.1)	0.52 (0.3)	15/15
Srr	1.8(2)	1.2(1)	1.2(0.3)	0.96 (0.6)	0.51 (0.1)	15/15

10 101601 011	<u>.</u> , willi i	Joint City C	offection by	one manner	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f5	4.0e+1:1.4	1.6e+1:3.5	1.0e-8:4.4	1.0e-8:4.4	1.0e-8:4.4	15/15
BSifeg	2.9 (1)	1.8(0.1)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSif	2.9 (2)	1.8(0.1)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
BSqi	2.9 (2)	1.8(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.1)	15/15
BSrr	2.9 (2)	1.8(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
CMA-CSA	4.2(4)	3.0 (3)	4.8(3)	4.8(4)	4.8(3)	15/15
CMA-MSR	4.0(5)	2.9 ₍₂₎	6.2(3)	6.2(2)	6.2(2)	15/15
CMA-TPA	3.3(4)	2.0(2)	4.0(1)	4.0(1)	4.0(2)	15/15
	3.5(4)	2.2 (1)	9.3(9)	9.3(14)	9.3(12)	15/15
GP5-CMAES	2.6 (4)	1.9(0.9)	4.4(2)	4.4(3)	4.4(2)	15/15
IPOPCMAv3p	5.0(3)	4.1(4)	13(8)	13(9)	13(16)	15/15
LHD-10xDef	2.6 (2)	2.2(2)	14(0.6)	14(0.3)	14(0.6)	15/15
LHD-2xDefa	1.4(0.7)	2.0 (1)	3.3(0.6)	3.3(0.6)	3.3(0.6)	15/15
RAND-2xDef	1.4(0.7)	1.9(2)	3.6(0.6)	3.6(0.6)	3.6(0.9)	15/15
RF1-CMAES	2.4 (3)	1.9(2)	22(26)	22(32)	22(26)	15/15
RF5-CMAES	3.7(5)	3.2(3)	61(75)	61(34)	61(76)	12/15
Sifeg	2.9 (2)	1.8(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Sif	2.9 ₍₂₎	1.8(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15
Srr	2.9(2)	1.8(0.3)	1.4(0.2)	1.4(0.2)	1.4(0.2)	15/15

 \neg 1

_	10 1011 601 0110	<u>.</u> , w	DomiciTom	correction by	one manner	or mountees.	
	#FEs/D	0.5	1.2	3	10	50	#succ
	f6	6.3e+4:1.4	1.0e + 2:2.8	1.6e+1:10	1.0e + 0.23	2.5e-6:103	15/15
	BSifeg	1.3 (1)	2.0 (3)	245(513)	416(421)	2668(4813)	1/15
	BSif	1.3 (1)	2.1 (3)	307(617)	442(1192)	∞ 2e4	0/15
	BSqi	1.3 (1)	2.0 (1)	355(776)	344(686)	2671(5134)	1/15
	BSrr	1.3 (1)	2.0 (1)	341(56)	403(547)	1293(1193)	2/15
	CMA-CSA	1.6 (2)	3.6(5)	3.1(2)	4.3 (4)	4.2(0.8)	15/15
	CMA-MSR	1.8(2)	2.3 (3)	2.4 (1)	5.3(3)	5.2(0.8)	15/15
	CMA-TPA	1.3(0.4)	1.2(1)	1.2(2)	3.6 (3)	3.8 (0.7)	15/15
	GP1-CMAES	2.4 (3)	3.1(5)	2.8 (2)	4.9(0.7)	∞ 506	0/15
	GP5-CMAES	1.1(0.4)	2.3 (7)	2.3 (2)	9.2(15)	∞ 506	0/15
	IPOPCMAv3p	1.5(2)	2.7 (2)	2.6 (5)	4.6(2)	4.8 (4)	13/15
	LHD-10xDef	1.3 (1)	1.5(2)	1.3 (1)	9.0(12)	∞ 100	0/15
	LHD-2xDefa	1.1(0)	1.9(2)	1.5(0.9)	12(16)	∞ 100	0/15
	RAND-2xDef	1.4(0.7)	1.9(2)	1.2(0.7)	6.3(8)	∞ 100	0/15
	RF1-CMAES	1.8(0.7)	2.3 (2)	5.5(14)	67(146)	$\infty 506$	0/15
	RF5-CMAES	1.5 (0.9)	3.2(5)	4.8(6)	40(35)	∞ 508	0/15
	Sifeg	1.3 (1)	2.3 (4)	333(47)	271(534)	2624(3800)	1/15
	Sif	1.3 (1)	2.3 (4)	355(1172)	318(750)	2659(2915)	1/15
	Srr	1.3(1)	2.1(3)	319(1229)	242(376)	1251(1158)	2/15

i is idigoi dire	our r, writin.	Domestion .	correction by	one manner	or mountees.	
$\#\widetilde{\mathrm{FEs}}/\mathrm{D}$	0.5	1.2	3	10	50	#succ
f7	4.0e + 2:1.6	1.0e+1:3.2	2.5e+0:14	1.6e + 0:21	1.6e-2:188	15/15
BSifeg	1.3(0.5)	1.7(1)	135(216)	376(318)	698(696)	2/15
BSif	1.3(0.6)	1.7(1)	173(395)	376(1149)	252(216)	5/15
BSqi	1.3(1)	1.7(1)	206(466)	256(513)	355(565)	4/15
BSrr	1.3 (1)	1.7 (1)	268(467)	543(2200)	331(424)	4/15
CMA-CSA	1.3(0.6)	4.0(3)	3.6(2)	3.5(10)	1.1(1)	15/15
CMA-MSR	1.7(2)	4.4(5)	2.0 (3)	1.6(2)	1.0(0.3)	15/15
CMA-TPA	1.1(0.3)	3.7(3)	2.5(2)	1.9(2)	0.80 (0.8)	15/15
GP1-CMAES	1.4 (1)	4.2(1)	2.1(0.9)	1.9(2)	1.0(0.4)	14/15
GP5-CMAES	0.67(0.2)	3.3(3)	2.0 (3)	2.0 (3)	0.98 (0.3)	14/15
IPOPCMAv3p	1.9 (0.9)	3.9(8)	2.5 (3)	3.6(4)	1.7 (1)	13/15
LHD-10xDef	1.2(1)	7.6(5)	3.0(2)	2.6 (2)	∞ 100	0/15
LHD-2xDefa	1(0.3)	3.0(2)	1.2(0.9)	1.0(0.8)	1.3(1)	5/15
RAND-2xDef	1.7(1)	3.8(1)	1.2(0.4)	1.2(1)	1.1(2)	6/15
RF1-CMAES	1.5(1)	4.1(1)	2.0(2)	2.7 (2)	2.2 (2)	11/15
RF5-CMAES	1.6(2)	3.8(4)	2.5 (2)	3.5(2)	13(15)	3/15
Sifeg	1.3(0.3)	1.8(2)	68(180)	256(954)	444(405)	3/15
Sif	1.3(0.9)	1.8(2)	78(36)	204(440)	485(501)	3/15
Srr	1.3(0.6)	1.8(1)	135(144)	287(367)	473(349)	3/15

i is larger one	an 1, wron 1	Domerrom c	officenon by	one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f8	2.5e+3:1.2	1.0e+2:3.2	6.3e+0.7.0	1.6e-1:27	1.6e-6:100	15/15
BSifeg	1.9 (3)	1.9 (1)	4.0(3)	2208(3277)	∞ 2e4	0/15
BSif	1.9(0.4)	1.9 (1)	4.2(8)	2303(3150)	∞ 2e4	0/15
BSqi	1.9(2)	1.9 (1)	4.1(8)	1323(2706)	∞ 2e4	0/15
BSrr	1.9(2)	1.9 (1)	4.9(5)	2159(3507)	∞ 2e4	0/15
CMA-CSA	3.5(2)	3.8(3)	8.4(6)	12(11)	5.9 (3)	15/15
CMA-MSR	2.1 (0.6)	1.7 (0.9)	7.3(3)	10(8)	5.8 (2)	15/15
CMA-TPA	5.2(2)	4.6(3)	4.8(4)	6.9 (4)	4.0 (0.9)	15/15
GP1-CMAES	2.2 (2)	2.6 (5)	5.0(2)	9.1(6)	10(6)	7/15
GP5-CMAES	2.6 (2)	2.6 (2)	3.8 (6)	11(20)	6.6(6)	9/15
IPOPCMAv3p	3.6(3)	4.0(5)	5.1(4)	7.8 (12)	8.7(12)	8/15
LHD-10xDef	2.4(2)	3.9(8)	6.0(5)	13(12)	∞ 100	0/15
LHD-2xDefa	1.6 (2)	2.4 (2)	3.0 (2)	5.1 (2)	∞ 100	0/15
RAND-2xDef	2.4(2)	3.5(1)	3.2 (1)	10(6)	∞ 100	0/15
RF1-CMAES	3.2(3)	3.1(2)	9.1(19)	17(10)	$\infty 506$	0/15
RF5-CMAES	3.1(3)	22(82)	39(55)	78(92)	$\infty 506$	0/15
Sifeg	1.9(2)	2.0(2)	4.1(6)	933(701)	∞ 2e4	0/15
Sif	1.9(3)	2.0 (0.6)	4.3(5)	975(1446)	∞ 2e4	0/15
Srr	1.9(2)	2.0 (1)	3.8(0.4)	1348(1373)	∞ 2e4	0/15

i is larger one	ı, wıuı ı	John Crioth CC	niccion by	one number	or mountees.	
#FEs/D	0.5	1.2	3	10	50	#succ
f9	6.3e+0:13	4.0e+0:15	2.5e+0:15	2.5e-1:21	1.0e-8:94	15/15
BSifeg	15(24)	14(12)	14(17)	210(120)	∞ 2e4	0/15
BSif	13(10)	12(19)	12(13)	193(218)	∞ 2e4	0/15
BSqi	13(14)	12(19)	12(13)	207(294)	∞ 2e4	0/15
BSrr	12(17)	12(20)	14(20)	241(104)	∞ 2e4	0/15
CMA-CSA	2.7 (1)	3.5(1)	4.1(5)	8.7(9)	6.0 (3)	15/15
CMA-MSR	2.4(2)	2.4(2)	4.6(2)	10(14)	7.0(3)	15/15
CMA-TPA	2.5 (2)	3.3(4)	4.6(7)	9.3(7)	6.0 (2)	15/15
GP1-CMAES	2.8 (2)	4.1(5)	6.8(17)	15(22)	26(44)	3/15
GP5-CMAES	1.7 ₍₁₎	1.5(0.2)	2.0(2)	6.0 (3)	5.8 (6)	10/15
IPOPCMAv3p	2.3 (2)	2.2(2)	2.5(2)	6.1(5)	11(10)	7/15
LHD-10xDef	2.8 (2)	3.4(2)	3.8(3)	16(15)	∞ 100	0/15
LHD-2xDefa	1.3(0.7)	1.2(0.8)	1.9 (1)	4.6 (3)	∞ 100	0/15
RAND-2xDef	1.6 (1)	1.6 (1)	2.0 (0.9)	6.0 (5)	∞ 100	0/15
RF1-CMAES	4.8(3)	6.6(35)	11(10)	26(40)	$\infty 506$	0/15
RF5-CMAES	21(28)	20(19)	21(31)	57(61)	∞ 504	0/15
Sifeg	2.6 (3)	2.8 (2)	4.0(5)	182(348)	∞ 2e4	0/15
Sif	2.5 (3)	5.0(3)	5.8(4)	259(407)	∞ 2e4	0/15
Srr	2.5 (3)	2.8 (2)	3.6(3)	232(223)	∞ 2e4	0/15

ig the star is	iaigei man	i i, with bo	merrom corr	ection by the	e number or i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f10	1.6e+6:2.0	4.0e + 5:3.2	6.3e+2:8.8	1.0e+1:30	2.5e-8:101	15/15
BSifeg	2.7 (2)	2.5(0.2)	1.5(0.5)	38(59)	∞ 5883	0/15
BSif	2.7 (2)	2.5 (0.7)	1.5(0.5)	71(116)	∞ 8444	0/15
BSqi	2.7 (2)	2.5 (2)	1.5(0.5)	135(10)	∞ 1e4	0/15
BSrr	2.7 (2)	2.5 (0.2)	1.5(0.5)	46(108)	∞ 6681	0/15
CMA-CSA	3.7(4)	3.3(4)	7.2(3)	7.5(4)	5.3 (0.9)	15/15
CMA-MSR	2.1(2)	2.3 (2)	7.0(5)	7.4(4)	6.8(0.6)	15/15
CMA-TPA	3.4(4)	2.8 (3)	5.9(5)	6.3 (3)	5.3(1)	15/15
GP1-CMAES	1.5(2)	1.5(0.5)	4.4(3)	4.6 (3)	5.2 (2)	12/15
GP5-CMAES	2.2(2)	2.2 (2)	2.2 (0.9)	1.6(0.6)	2.5 (0.9)	14/15
IPOPCMAv3p	2.6 (3)	2.7 (2)	6.8(3)	8.3(7)	$\infty 506$	0/15
LHD-10xDef	1.7 (1)	1.6 (2)	7.9(1)	16(9)	∞ 100	0/15
LHD-2xDefa	1.7(2)	2.2 (1)	3.8(2)	6.9(7)	∞ 100	0/15
RAND-2xDef	2.7 (3)	2.7 (2)	3.9(1)	10(9)	∞ 100	0/15
RF1-CMAES	2.3 (3)	2.2 (2)	4.2(1)	19(25)	$\infty 506$	0/15
RF5-CMAES	3.4(2)	2.9 (2)	8.7(6)	14(18)	∞ 502	0/15
Sifeg	2.7 (2)	2.8 (1)	1.9(0.3)	8.6(12)	∞ 2159	0/15
Sif	2.7 (2)	2.8 (2)	1.9(0.4)	12(17)	∞ 2178	0/15
Srr	2.7 (2)	2.8 (1)	1.9(0.3)	7.9(0.1)	∞ 2193	0/15

ig uic star is	marger mar.	i i, with Doi	increoni corr	cenon by one	mumber of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f11	1.0e + 7:1.1	1.6e+6:3.2	1.0e+4:6.6	4.0e+1:23	4.0e-8:100	15/15
BSifeg	1.2(0)	1.6 (1)	1.4(0.3)	47(49)	∞ 6926	0/15
BSif	1.2(0.5)	1.6 (1)	1.4(0.3)	39(23)	∞ 5430	0/15
BSqi	1.2(0)	1.6 (1)	1.4(0.3)	71(92)	$\infty 5998$	0/15
$_{\mathrm{BSrr}}$	1.2(0.5)	1.6 (1)	1.4(0.6)	40(109)	∞ 6000	0/15
CMA-CSA	1.6(0.2)	1.3 (1)	3.5(3)	4.7(5)	5.2(0.8)	15/15
CMA-MSR	1.1(0.9)	0.96 (1)	3.8(5)	5.3(0.8)	6.6(0.6)	15/15
CMA-TPA	1.9(2)	1.5(1)	4.2(3)	6.0(3)	5.3(0.4)	15/15
GP1-CMAES	2.2 (4)	1.6 (2)	3.4(3)	3.6 (3)	4.7(0.8)	14/15
GP5-CMAES	3.6(4)	1.8(2)	2.2 (0.9)	1.3(0.4)	2.4 (0.7)	15/15
IPOPCMAv3p	3.1(2)	1.9 (1)	3.7(1)	4.3(2)	$\infty 506$	0/15
LHD-10xDef	1.5(0.7)	1.3(0.8)	4.9(5)	11(7)	∞ 100	0/15
LHD-2xDefa	1.7 ₍₁₎	1.3(0.9)	2.5 (1)	5.6(8)	∞ 100	0/15
RAND-2xDef	1.8(1)	1.2(1)	2.7 (2)	3.0(0.5)	∞ 100	0/15
RF1-CMAES	2.7(4)	2.9 (5)	4.9(4)	5.5(7)	$\infty 506$	0/15
RF5-CMAES	1.7 (0.9)	2.2 (3)	3.8(3)	6.4(12)	$\infty 508$	0/15
Sifeg	1.2(1)	1.7 (1)	1.7(1.0)	10(6)	∞ 2391	0/15
Sif	1.2(1)	1.7 (1)	1.7(0.6)	10(29)	∞ 2405	0/15
Srr	1.2(0.5)	1.7(1)	1.7(0.8)	11(11)	∞ 2357	0/15

ig the star is	marger mai	i i, with Do	incrioni cor.	rection by the	ic number or .	motance
#FEs/D	0.5	1.2	3	10	50	#succ
f12	2.5e+8:1.3	6.3e+6:2.7	6.3e + 5:6.3	4.0e+1:21	1.6e-3:101	15/15
BSifeg	0.85 (0.4)	1.2(1)	1.3(0.8)	12(28)	295(517)	5/15
BSif	0.85 (0.4)	1.2(1)	1.3(1.0)	29(3)	368(224)	4/15
BSqi	0.85(0.2)	1.2(1)	1.3(0.5)	23(5)	320(351)	4/15
BSrr	0.85(0.2)	1.2(1)	1.3(0.9)	19(0.4)	326(335)	4/15
CMA-CSA	1.4(2)	1.9(3)	1.4(2)	6.5(5)	8.5 ₍₁₇₎	15/15
CMA-MSR	1.3(0.8)	1.3(0.7)	0.87 (0.8)	9.1(7)	9.3(5)	15/15
CMA-TPA	1.4(2)	1.8(2)	1.8(2)	7.0(7)	6.8 (9)	15/15
GP1-CMAES	2.0(6)	1.5(2)	1.2(1)	3.6(1.0)	10(9)	7/15
GP5-CMAES	1.2(2)	1.6 (1)	1.3(2)	3.5 (6)	7.8 (5)	7/15
IPOPCMAv3p	1.7 (3)	1.8 (1)	1.7(2)	4.0(1)	14(26)	5/15
LHD-10xDef	0.90 (0.4)	1.2(0.7)	0.97(1)	24(19)	∞ 100	0/15
LHD-2xDefa	1(0.2)	0.78(0.6)	0.97 (0.9)	5.0(4)	∞ 100	0/15
RAND-2xDef	1.1(0.4)	0.95 (0.7)	1.1(0.8)	6.3(11)	∞ 100	0/15
RF1-CMAES	1.6 (4)	1.5(2)	1.4(0.8)	4.8(3)	$\infty 506$	0/15
RF5-CMAES	1.2(0.2)	1.9(3)	1.9(2)	11(6)	∞ 504	0/15
Sifeg	0.85(0)	1.2(1)	1.3 (1)	2.8 (6)	76(138)	5/15
Sif	0.85(0)	1.2(1)	1.4(0.6)	4.9(14)	83(92)	5/15
Srr	0.85(0.4)	1.2(1)	1.4(1)	3.4 (1)	124(113)	4/15

ig the star is	iaigei illai	iri, with De	unerrom con	ection by the	: number or i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f13	4.0e+2:1.6	2.5e+2:3.1	6.3e+1:8.7	1.0e+1:23	4.0e-6:100	15/15
BSifeg	2.3 (2)	1.6 (1)	184(1215)	541(602)	∞ 2e4	0/15
BSif	2.3 (2)	1.6 (1)	224(780)	789(712)	∞ 2e4	0/15
BSqi	2.3(2)	1.6 (1)	252(879)	430(542)	∞ 2e4	0/15
BSrr	2.3(2)	1.6 (1)	184(0.7)	491(498)	∞ 2e4	0/15
CMA-CSA	2.5(2)	2.1 (1)	2.8 (3)	2.9 (3)	5.0 (0.5)	15/15
CMA-MSR	2.8 (5)	2.1(2)	4.1(4)	3.7(1)	6.2 (1)	15/15
CMA-TPA	2.8 (3)	2.5 (2)	3.5(5)	4.5(3)	5.3 (0.6)	15/15
GP1-CMAES	1.6(2)	1.4 (1)	1.9(2)	2.7 (2)	24(20)	3/15
GP5-CMAES	2.4 (3)	1.9(3)	5.5(1)	3.8(2)	11(4)	6/15
IPOPCMAv3p	2.2 (3)	1.8(2)	2.6 (2)	3.9(2)	$\infty 506$	0/15
LHD-10xDef	2.0 (1)	2.2 (2)	2.8(2)	2.9 (1)	∞ 100	0/15
LHD-2xDefa	1.7(2)	1.5(0.6)	1.4(0.7)	1.4(0.8)	∞ 100	0/15
RAND-2xDef	1.6 (1)	1.8(2)	1.7(0.8)	1.4(0.8)	∞ 100	0/15
RF1-CMAES	2.1 (0.9)	1.8 (3)	2.2(2)	7.9(7)	$\infty 506$	0/15
RF5-CMAES	2.6 (2)	2.1 (1)	1.9(3)	11(33)	$\infty 508$	0/15
Sifeg	2.3 (2)	1.6 (1)	178(899)	563(826)	∞ 2e4	0/15
Sif	2.3 (2)	1.6 (1)	258(1006)	410(561)	∞ 2e4	0/15
Srr	2.3 (2)	1.6 (1.0)	278(884)	428(499)	∞ 2e4	0/15

ig uiic suai is	iaigei mai	i i, with Doi	merrom corre	colon by one	number of h	ustance
#FEs/D	0.5	1.2	3	10	50	#succ
f14	1.6e+1:1.4	2.5e+0:4.2	1.0e+0.7.4	2.5e-2:21	1.0e-8:101	15/15
BSifeg	2.0 (3)	12(11)	8.5(20)	7.3(22)	∞ 2e4	0/15
BSif	2.0 (3)	12(20)	8.7(11)	6.8(12)	∞ 2e4	0/15
BSqi	2.0 (3)	7.4(15)	5.7(7)	4.2(4)	∞ 2e4	0/15
BSrr	2.0(2)	11(24)	8.4(13)	6.2(6)	∞ 2e4	0/15
CMA-CSA	1.3(0.7)	1.7(1)	1.9(2)	4.1(2)	5.5(0.9)	15/15
CMA-MSR	2.1(2)	2.4 (1.0)	2.8 (2)	6.0(2)	6.5(0.7)	15/15
CMA-TPA	2.4 (1)	3.5(4)	3.5(2)	5.8(2)	5.8(0.8)	15/15
GP1-CMAES	0.95 (1)	2.2 (0.6)	1.9(2)	2.5 (0.7)	$\infty 506$	0/15
GP5-CMAES	1.9(3)	2.9(2)	2.3 (1)	1.7(0.8)	$\infty 506$	0/15
IPOPCMAv3p	1.2(0.7)	3.3(2)	3.1(2)	3.8(1)	$\infty 506$	0/15
LHD-10xDef	1.4(0.7)	1.2(1)	3.1(3)	8.2(9)	∞ 100	0/15
LHD-2xDefa	1.4(0.9)	1.6(2)	1.4 (1)	2.0 (1)	∞ 100	0/15
RAND-2xDef	1.1(1)	2.2 (1)	1.9 (1)	2.1 (0.9)	∞ 100	0/15
RF1-CMAES	1.4(2)	5.9(6)	6.3(9)	8.8(9)	$\infty 506$	0/15
RF5-CMAES	1.2(0.9)	44(46)	48(59)	79(74)	$\infty 506$	0/15
Sifeg	2.0 (1)	2.8 (1)	2.3 (1)	3.2(5)	∞ 2e4	0/15
Sif	2.0(2)	2.8 (3)	2.4(0.7)	4.1(4)	∞ 2e4	0/15
Srr	2.0(1)	2.6 (2)	2.1(0.7)	2.1 (3)	∞ 2e4	0/15

ig the star is	mager ma	n i, with bo	merrom corr	ccoon by on	c number of r	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f15	1.6e+2:1.2	4.0e+1:4.7	2.5e+1:10	1.0e+1:37	2.5e+0:118	5/5
BSifeg	1.4(0.4)	1.8(1.0)	2.2 (0.8)	27(5)	111(252)	10/15
BSif	1.4(1)	151(561)	70(257)	22(140)	118(120)	10/15
BSqi	1.4(2)	3.3(0.9)	4.0(9)	3.3(4)	62(119)	13/15
BSrr	1.4(0.4)	6.5(39)	6.4(0.1)	4.2(11)	59(91)	13/15
CMA-CSA	1.3(0)	1.0(1)	1.1(1)	1.1(0.5)	1.6 (3)	15/15
CMA-MSR	2.1(0.8)	1.3(2)	1.3(2)	0.86 (0.5)	2.2 (0.6)	15/15
CMA-TPA	1.8(2)	2.2 (5)	1.5(0.7)	1.5(1)	3.6(5)	15/15
GP1-CMAES	2.3(5)	1.6 (1)	1.3 (1.0)	1.3(1)	3.1(3)	10/15
GP5-CMAES	2.4(2)	2.1(2)	1.3(0.4)	0.75 (0.3)	1.6 (3)	14/15
IPOPCMAv3p	1.4 (0.4)	2.0(2)	1.4(0.5)	1.3(1)	4.8(5)	8/15
LHD-10xDef	2.5(2)	1.8(2)	1.6(2)	2.2 (1)	3.0 (2)	4/15
LHD-2xDefa	1.4 (1)	0.81 (1)	0.94 (0.7)	0.90 (0.8)	1.4(2)	7/15
RAND-2xDef	2.1(0.8)	1.6(2)	1.1(0.8)	1.4(1.0)	1.4(2)	7/15
RF1-CMAES	3.2(6)	1.8(0.8)	1.5(1)	1.9(0.7)	1.8(2)	12/15
RF5-CMAES	2.0 (1)	1.8 (1)	1.9(3)	6.1(1)	8.0(6)	6/15
Sifeg	1.4(2)	1.5(2)	1.8(0.7)	1.7(3)	50(103)	12/15
Sif	1.4 (1)	1.5(2)	1.9(3)	1.7(0.4)	33(42)	13/15
Srr	1.4 (1)	1.5(1)	1.5(0.5)	1.6(3)	35(46)	15/15

ig the star is	iaigei mai	i i, with Do	meriom con	ection by the	c number of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f16	1.0e + 2:1.1	2.5e+1:3.9	1.6e + 1:6.5	4.0e+0:31	2.5e-1:127	5/5
BSifeg	1.8(1)	2.9 (5)	2.7 (3)	1.0(0.8)	12(29)	15/15
BSif	1.8(0.9)	2.9 (2)	2.9 (2)	1.1(1)	7.0(12)	15/15
BSqi	1.8(3)	3.9(1)	2.9 (5)	1.1(0.9)	17(14)	15/15
BSrr	1.8(3)	3.4(1)	3.8(4)	1.2(1)	20(54)	15/15
CMA-CSA	1.8(2)	3.3(3)	4.1(3)	6.1(9)	3.6(4)	15/15
CMA-MSR	1.5(0.9)	1.9(3)	2.3 (2)	6.7(0.9)	8.1(7)	15/15
CMA-TPA	1.8(2)	1.6(2)	2.1(2)	3.7(7)	3.0 (4)	15/15
GP1-CMAES	1.5(0.7)	1.8(0.6)	1.5(1)	2.3 (1)	4.6(7)	8/15
GP5-CMAES	1.6(2)	2.3 (2)	2.4(2)	11(15)	6.6(10)	7/15
IPOPCMAv3p	1.2(0.4)	1.6 (1)	1.7(2)	1.2(0.9)	2.5 (4)	11/15
LHD-10xDef	1.5(0.9)	1.8(0.8)	1.5(1)	1.5(1)	5.8(6)	2/15
LHD-2xDefa	1.5(0.9)	1.7 ₍₃₎	2.0(2)	1.4 (1)	2.6 (3)	4/15
RAND-2xDef	1.2(0.4)	1.7(2)	1.5(2)	1.0(1)	1.1 (1.0)	8/15
RF1-CMAES	1.8(2)	1.7 ₍₁₎	1.7(3)	3.6(5)	5.3(4)	7/15
RF5-CMAES	1.1(0)	1.3(1.0)	1.7(2)	6.1(8)	6.4(9)	6/15
Sifeg	1.8 (3)	2.4 (2)	2.1(0.7)	0.94 (0.6)	7.4(0.8)	15/15
Sif	1.8(3)	2.4 (2)	2.0 (1)	0.89(0.2)	14(42)	15/15
Srr	1.8(3)	2.3(2)	2.0 (1)	0.91 (0.4)	12(29)	15/15

ig uic star it	marger ma	u i, with Do.	merrom corr	ccoon by one	mumber of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f17	4.0e+1:1.2	1.0e + 1:2.7	4.0e+0:10	2.5e+0:28	1.6e-1:119	5/5
BSifeg	1.2(1)	2.2 (2)	1.9(2)	6.6(22)	41(41)	14/15
BSif	1.2(1)	2.2 (2)	2.1 (3)	11(21)	40(48)	15/15
BSqi	1.2(0.8)	2.2 (2)	1.9(2)	32(0.8)	21(28)	15/15
BSrr	1.2(0.6)	2.2 (2)	1.9(2)	21(0.7)	40(57)	15/15
CMA-CSA	1.3(0.6)	3.1(10)	9.3(14)	3.5(11)	2.1(2)	15/15
CMA-MSR	1.7 (1)	20(59)	12(20)	5.8(1)	3.5(3)	15/15
CMA-TPA	1.4(0.8)	3.6(6)	3.3(6)	1.4 (1)	2.2 (0.3)	15/15
GP1-CMAES	2.2 (3)	3.8(9)	6.6(26)	4.1(10)	4.7(8)	8/15
GP5-CMAES	1.4 (0.6)	7.6(7)	17(29)	8.8(12)	5.7(4)	7/15
IPOPCMAv3p	1.2(0.4)	2.5 (2)	1.8(2)	2.2 (0.4)	2.3 (3)	12/15
LHD-10xDef	1.4 (0.6)	1.8(2)	1.8(2)	1.6 (1.0)	4.1(5)	3/15
LHD-2xDefa	1.2(0.8)	1.5(2)	1.5(1)	0.77 (0.6)	3.9(6)	3/15
RAND-2xDef	1.5(0.6)	1.9(2)	1.8 (1)	0.79 (0.3)	2.6 (4)	4/15
RF1-CMAES	1.3 (1)	2.6 (4)	5.6(1)	2.3 (0.7)	7.2(10)	6/15
RF5-CMAES	1.4(0)	50(50)	29(35)	16(15)	61(86)	1/15
Sifeg	1.2(0.6)	2.2 (2)	1.5(2)	1.4(2)	6.8(5)	15/15
Sif	1.2(0)	2.2 (1)	1.6 (2)	6.4(1)	8.5(11)	15/15
Srr	1.2(0.2)	2.2(2)	1.4(2)	1.9(4)	3.6(5)	15/15

ig uic suai is	ranger mar.	i i, with Do	incrioni corr	ccuon by un	ic number of i	nstance
#FEs/D	0.5	1.2	3	10	50	$\#\mathrm{succ}$
f18	4.0e+2:1.2	1.0e + 2:3.2	4.0e+1:7.2	6.3e+0:32	1.6e + 0:104	5/5
BSifeg	1.2(0)	1.2(1)	1.0(0.6)	10(2)	133(112)	10/15
BSif	1.2(1)	1.2(1)	1.0(0.7)	12(45)	126(193)	10/15
BSqi	1.2(0.6)	1.2(0.9)	1.0(0.6)	16(37)	119(162)	10/15
BSrr	1.2(0.6)	1.2(1)	1.0(0.5)	13(0.4)	98(172)	12/15
CMA-CSA	1(0.4)	2.0 (4)	1.8(2)	2.7 (6)	3.5(3)	15/15
CMA-MSR	1.3 (1)	1.8(1)	1.6(2)	6.1(6)	6.2(6)	15/15
CMA-TPA	0.94(0)	1.5(0.5)	1.2(0.3)	1.2(1)	3.0 (3)	15/15
GP1-CMAES	2.7 (3)	2.2 (2)	4.2(9)	2.0 (5)	4.3(4)	9/15
GP5-CMAES	14(0.6)	26(1)	17(53)	9.5(16)	6.5(10)	8/15
IPOPCMAv3p	2.4 (8)	1.9(0.6)	1.7(0.8)	1.1(0.9)	2.7 (10)	11/15
LHD-10xDef	1.2(1)	1.1(1)	1.2(0.8)	1.8(1)	2.3(2)	6/15
LHD-2xDefa	1.3 (1)	1.3(0.7)	0.80 (0.5)	1.0(0.9)	1.1(0.9)	9/15
RAND-2xDef	1.2(0.8)	1.1(1)	0.79 (0.8)	0.96 (0.6)	1.7(2)	7/15
RF1-CMAES	1.2(0.8)	1.9(2)	1.1(1)	1.3(0.6)	8.0(2)	6/15
RF5-CMAES	1.6(2)	3.9(8)	6.4(2)	5.0(12)	9.0(15)	6/15
Sifeg	1.2(0.6)	1.1(0.8)	1.0(0.7)	24(2)	52(98)	14/15
Sif	1.2(1)	1.1(1)	1.0(0.8)	19(1)	119(97)	11/15
Srr	1.2(1)	1.1(0.8)	1.0(0.7)	40(255)	129(97)	10/15

Table 20: 02-D, running time excess ERT/ERT_{best 2009} on f_{19} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

ig uiic suai is	ranger mar	i i, with Do	increom corr	ccoon by one	mumber of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f19	1.6e-1:23	1.0e-1:26	6.3e-2:38	4.0e-2:40	1.0e-2:216	15/15
BSifeg	4.0 (3)	4.0 (3)	2.8 (2)	3.7 (4)	15(10)	15/15
BSif	4.2(3)	4.2(4)	3.0 (3)	3.7 (3)	33(77)	12/15
BSqi	3.6 (2)	3.7 (2)	2.6 (2)	4.2(5)	35(31)	14/15
BSrr	3.5 (2)	3.6 (2)	2.6 (3)	3.7 (4)	28(58)	13/15
CMA-CSA	13(4)	21(45)	18(20)	26(22)	13(8)	15/15
CMA-MSR	8.0(11)	12(10)	16(23)	26(43)	13(14)	15/15
CMA-TPA	7.0(3)	6.2(6)	14(15)	18(23)	6.2 (8)	15/15
GP1-CMAES	8.8(9)	11(15)	12(15)	12(17)	16(21)	2/15
GP5-CMAES	12(11)	17(20)	13(13)	15(14)	16(9)	2/15
IPOPCMAv3p	7.9(8)	14(24)	11(16)	12(8)	34(37)	1/15
LHD-10xDef	8.9(12)	18(15)	38(99)	36(28)	6.9 (11)	1/15
LHD-2xDefa	7.5(7)	8.3(18)	12(18)	37(45)	∞ 100	0/15
RAND-2xDef	5.6(6)	16(17)	11(13)	11(15)	6.6 (13)	1/15
RF1-CMAES	17(34)	19(11)	17(17)	28(27)	10(4)	3/15
RF5-CMAES	12(31)	12(10)	15(17)	20(40)	∞ 504	0/15
Sifeg	7.3(2)	6.8(6)	6.5(6)	7.2(5)	31(22)	14/15
Sif	6.5(5)	6.2(4)	6.7(5)	7.6(4)	25(22)	15/15
Srr	5.0(3)	5.1(4)	5.1(3)	6.3(4)	28(57)	14/15

ig uic suai is	iaigei mai	1 1, WIGH DO	merrom corr	colon by the	mumber of i	nstance
#FEs/D	0.5	1.2	3	10	50	#succ
f20	4.0e+3:1.9	2.5e+2:2.8	4.0e+0:6.3	2.5e+0:21	6.3e-1:139	15/15
BSifeg	2.1(2)	14(4)	17(32)	10(22)	28(47)	15/15
BSif	2.1(2)	13(3)	19(32)	8.0(3)	62(71)	12/15
BSqi	2.1(2)	12(1)	19(24)	8.1(14)	16(40)	15/15
BSrr	2.1(2)	14(5)	16(1)	8.3(9)	18(17)	15/15
CMA-CSA	2.4 (1)	3.0 (3)	2.4 (2)	1.6(2)	6.0 (7)	15/15
CMA-MSR	1.7(2)	1.9(2)	2.6 (4)	2.2 (0.9)	13(19)	15/15
CMA-TPA	3.2(3)	4.2(2)	4.0(5)	2.1(2)	11(13)	15/15
GP1-CMAES	1.9 ₍₃₎	2.3(2)	1.6(0.9)	1.6(0.8)	4.3 (4)	8/15
GP5-CMAES	2.0 (3)	2.0 (1)	2.2 (2)	2.0 (0.3)	8.1(8)	5/15
IPOPCMAv3p	2.3 (2)	2.5 (3)	2.3 (3)	1.5(2)	16(21)	3/15
LHD-10xDef	1.8(2)	4.0(3)	3.3(2)	2.1(2)	5.1 (4)	2/15
LHD-2xDefa	1.8(2)	2.0 (1)	2.1(0.8)	1.7(2)	11(14)	1/15
RAND-2xDef	1.3(0.7)	2.8 (2)	2.5 (1)	1.9(0.4)	11(10)	1/15
RF1-CMAES	2.1(2)	2.7 (3)	3.2(4)	3.5(2)	16(11)	3/15
RF5-CMAES	2.6 (3)	21(8)	27(23)	12(18)	26(33)	2/15
Sifeg	2.1 (1)	3.6(3)	3.6(0.9)	1.8(2)	17(12)	15/15
Sif	2.1(2)	3.7(2)	3.7(4)	1.9 ₍₁₎	20(28)	15/15
Srr	2.1(2)	3.5(3)	3.0(2)	1.8(2)	16(71)	15/15

Table 22: 02-D, running time excess ERT/ERT_{best 2009} on f_{21} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

ig one soar is	s ranger unai	i i, with Do	increon cor	iccolon by or	ic number or	motance
#FEs/D	0.5	1.2	3	10	50	#succ
f21	1.0e+1:1.7	6.3e+0:2.6	2.5e+0:7.9	1.6e+0:30	4.0e-1:105	15/15
BSifeg	2.1 (1)	3.0 (2)	3.0(6)	2.2 (4)	42(163)	13/15
BSif	2.1(2)	2.9 (2)	3.0 (2)	2.9 (5)	62(180)	12/15
BSqi	2.1 (1)	2.5 (2)	3.4(8)	2.4 (4)	53(124)	13/15
BSrr	2.1(2)	2.9 (2)	3.4(4)	2.3 (4)	62(61)	12/15
CMA-CSA	1.5(1)	2.4 (4)	5.2(13)	4.0(14)	4.5(8)	15/15
CMA-MSR	1.9 (1)	2.6 (1)	1.7(2)	12(35)	156(985)	14/15
CMA-TPA	1.5(2)	2.7 (4)	2.5 (2)	5.2(12)	37(165)	15/15
GP1-CMAES	1.8(2)	2.1 (1)	1.6 (2)	10(12)	6.2(14)	7/15
GP5-CMAES	1.5(0.6)	2.5 (2)	3.8(1)	6.4(6)	8.9(8)	6/15
IPOPCMAv3p	1.6 (0.9)	2.0 (3)	1.9(0.9)	3.4(6)	3.7(9)	9/15
LHD-10xDef	1.4(2)	1.8(2)	1.2(2)	1.2(1)	0.74 (0.7)	12/15
LHD-2xDefa	1.4(2)	1.7(2)	1.3(0.8)	0.75 (0.5)	0.45 (0.5)	14/15
RAND-2xDef	1.5(0.9)	2.8 (3)	1.5(0.9)	0.90 (0.6)	0.49(0.2)	14/15
RF1-CMAES	1.2(0.6)	3.0 (4)	7.5(32)	13(26)	20(37)	3/15
RF5-CMAES	1.7(2)	2.1 (3)	1.2(0.9)	4.4(4)	11(6)	5/15
Sifeg	2.1 (1)	2.3 (2)	1.3(0.7)	32(2)	88(96)	12/15
Sif	2.1 (1)	2.3 (2)	1.3(0.7)	49(4)	98(79)	11/15
Srr	2.1(1)	2.3(2)	1.3(0.8)	21(1)	107(79)	11/15

ig uiic suai is	iaigei mai	ii, widii De	increon con	icciion by u	ic number of	motance
#FEs/D	0.5	1.2	3	10	50	#succ
f22	4.0e+1:1.3	1.6e+1:3.2	6.3e+0:9.3	1.6e + 0.25	1.0e-1:168	15/15
BSifeg	1.9 ₍₃₎	1.9(2)	3.9(2)	18(12)	94(77)	9/15
BSif	1.9 ₍₃₎	1.9(2)	3.6(7)	37(107)	80(115)	10/15
BSqi	1.9(2)	1.9(2)	4.8(5)	14(5)	91(161)	9/15
BSrr	1.9(2)	1.9(2)	5.5(9)	26(38)	85(90)	10/15
CMA-CSA	1.8(2)	1.9(3)	5.6(2)	17(34)	14(5)	15/15
CMA-MSR	1.9(2)	2.2 (3)	7.3(22)	22(11)	18(52)	15/15
CMA-TPA	1.7 (1)	1.4 (1)	1.9(2)	14(24)	7.6(5)	15/15
GP1-CMAES	1.3(0.4)	1.1(1)	10(14)	6.1(15)	6.8(8)	5/15
GP5-CMAES	1.6(2)	1.4 (1)	3.6(14)	4.1(6)	2.1(2)	11/15
IPOPCMAv3p	1.7 (0.8)	1.3 (1)	2.3 (4)	4.8(16)	4.2(6)	7/15
LHD-10xDef	1.3 (1.0)	1.2(0.9)	1.3(1)	1.8(1)	0.81(0.7)	9/15
LHD-2xDefa	1.3 (1)	1.9(2)	1.3(2)	1.5(1)	1.9(2)	4/15
RAND-2xDef	1.3 (0.6)	1.3 (1)	1.2(0.7)	1.3(1)	0.58 (0.8)	10/15
RF1-CMAES	1.6 (0.8)	1.3(2)	6.3(4)	12(15)	12(8)	3/15
RF5-CMAES	1.6 (1.0)	1.6(0.9)	8.5(26)	13(20)	12(11)	3/15
Sifeg	2.0 (4)	2.1 (3)	2.3 (0.5)	8.9(22)	84(96)	10/15
Sif	2.0(0)	2.3 (1)	2.3(2)	10(41)	103(119)	9/15
Srr	2.0(2)	2.0(2)	2.4 (4)	27(9)	89(149)	11/15

ig the star is	iaigei man	. I, with Doi	nerrom corre	colon by one	mumber of i	ustance
#FEs/D	0.5	1.2	3	10	50	#succ
f23	4.0e+1:1.5	2.5e+1:2.6	1.0e+1:7.8	4.0e+0.55	2.5e+0:103	5/5
BSifeg	2.0 (3)	1.6(2)	1.9 (1)	1.3(2)	0.91 (0.7)	15/15
BSif	2.0 (3)	1.6(2)	1.9(2)	1.3(2)	1.0(0.9)	15/15
BSqi	2.0(2)	1.6(2)	1.8(2)	1.6 (1)	1.3(1)	15/15
BSrr	2.0 (3)	1.6 (1)	2.1 (1)	1.5(1.0)	1.1(0.8)	15/15
CMA-CSA	1.3(2)	1.1(0.6)	3.2(2)	3.0 (2)	2.8 (6)	15/15
CMA-MSR	1.7 (1.0)	2.3 (3)	2.2 (3)	6.3(6)	4.8(6)	15/15
CMA-TPA	1.1(0.2)	1.2(1)	1.9(3)	3.2(4)	4.8(2)	15/15
GP1-CMAES	1.2(0.8)	1.6(2)	2.2 (3)	3.0(3)	4.4(8)	10/15
GP5-CMAES	1.7(2)	1.7(1.0)	2.0(2)	2.9 (5)	2.2(2)	13/15
IPOPCMAv3p	1.3(0.7)	1.0(0.6)	0.99(2)	1.8 (1)	2.8 (3)	13/15
LHD-10xDef	1.6 (1.0)	1.1(0.7)	1.5(1.0)	1.7(2)	1.8 (1)	6/15
LHD-2xDefa	1.8(1)	2.1 (3)	2.4 (3)	1.6 (2)	4.5(7)	3/15
RAND-2xDef	1.0(1.0)	1.4 (1)	2.0(2)	1.5(0.9)	4.2(5)	3/15
RF1-CMAES	1.7 (1)	1.4 (1)	1.8 (3)	3.5(4)	2.4 (1)	14/15
RF5-CMAES	1.8(1)	1.4 (1)	1.5(2)	1.8 (3)	1.9(2)	14/15
Sifeg	1.9 (3)	1.5 (1)	1.9 (1)	1.9(2)	2.2 (2)	15/15
Sif	1.9(3)	1.5(2)	1.8(2)	1.8(2)	2.2(2)	15/15
Srr	1.9(2)	1.5(1)	1.9(1)	1.9(2)	2.3 (3)	15/15

Table 25: 02-D, running time excess ERT/ERT_{best 2009} on f_{24} for given run-length based budgets (0.5D, 1.2D, 3D, 10D, and 50D function evaluations). The ERT and in braces, as dispersion measure, the half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-length based target, the corresponding ERT_{best 2009} (preceded by the target Δf -value in *italics*) in the first row. #succ is the number of trials that reached the target value of the last column. The median number of conducted function evaluations is additionally given in *italics*, if the target in the last column was never reached. Entries with succeeding star are statistically significantly better (according to the rank-sum test) compared to all other algorithms in the table, with p = 0.05 or $p = 10^{-k}$ when the number k following the star is larger than 1, with Bonferroni correction by the number of instances.

ng uic star is	iaigei man	i i, with Doi	increom corre	ccolon by one	o number of i	mount
#FEs/D	0.5	1.2	3	10	50	#succ
f24	4.0e+1:1.1	2.5e+1:2.7	1.6e+1:7.7	6.3e+0:44	2.5e+0:275	5/5
BSifeg	2.1 (3)	2.3 (2)	1.8 (3)	2.4 (1)	6.3(1.0)	14/15
BSif	2.1 (4)	2.3 (2)	1.6(2)	2.3 (2)	8.3(28)	15/15
BSqi	2.1 (0.9)	2.3 (0.8)	2.9 (0.5)	2.9 (3)	11(29)	14/15
BSrr	2.1 (4)	2.3 (2)	1.9(6)	2.6 (2)	6.4(18)	14/15
CMA-CSA	2.3 (3)	2.2(2)	1.8 (1)	1.2(1)	3.3(6)	15/15
CMA-MSR	3.1(4)	2.4(2)	1.6(2)	3.8(0.6)	5.6(7)	15/15
CMA-TPA	1.6(0.5)	2.2 (3)	1.3(1)	2.3 (5)	4.1(3)	15/15
GP1-CMAES	1.6 (1)	1.7(2)	1.9(3)	1.8 (6)	3.3 (2)	7/15
GP5-CMAES	1.8(0)	1.9(2)	1.4 (3)	3.4(6)	2.9 (4)	7/15
IPOPCMAv3p	1.6 (0.9)	2.1 (4)	1.5(1)	1.2(1)	3.9(6)	6/15
LHD-10xDef	1.9 ₍₁₎	1.4 (1)	1.5(2)	1.5(1)	∞ 100	0/15
LHD-2xDefa	1.8 (1)	1.6(0.8)	2.0 (3)	2.6 (4)	∞ 100	0/15
RAND-2xDef	1.2(0.9)	2.4(2)	1.8 (1)	1.9(3)	2.5 (4)	2/15
RF1-CMAES	1.4(0.2)	1.8 (3)	1.3(1)	0.80(0.6)	5.3(7)	4/15
RF5-CMAES	1.8(2)	1.2(0.5)	1.2(1)	2.5 (3)	13(20)	2/15
Sifeg	2.1 (3)	2.4 (2)	1.4(0.6)	2.3 (0.5)	4.9(2)	15/15
Sif	2.1 (3)	2.4 (3)	1.4(0.6)	2.1(2)	5.1(13)	15/15
Srr	2.1(2)	2.4(2)	1.4(0.8)	2.1(1)	7.4(4)	15/15

References

- [1] Asma Atamna. Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB noiseless testbed. In Laredo et al. [8], pages 1135–1142.
- [2] Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [3] Lukás Bajer, Zbynek Pitra, and Martin Holena. Benchmarking gaussian processes and random forests surrogate models on the BBOB noiseless testbed. In Laredo et al. [8], pages 1143–1150.
- [4] Dimo Brockhoff, Bernd Bischl, and Tobias Wagner. The impact of initial designs on the performance of matsumoto on the noiseless BBOB-2015 testbed: A preliminary study. In Laredo et al. [8], pages 1159–1166.
- [5] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010.
- [6] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [7] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [8] Juan Luis Jiménez Laredo, Sara Silva, and Anna Isabel Esparcia-Alcázar, editors. Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings. ACM, 2015.
- [9] Petr Posík and Petr Baudis. Dimension selection in axis-parallel brent-step method for black-box optimization of separable continuous functions. In Laredo et al. [8], pages 1151–1158.