Backtracking

Optimized Bruteforce

• We have complex problem

- We have complex problem
 - Multiple decisions are needed

- We have complex problem
 - Multiple decisions are needed
 - Each decisions requires making one of many possible choices

- We have complex problem
 - Multiple decisions are needed
 - Each decisions requires making one of many possible choices
 - Few solutions exist

- We have complex problem
 - Multiple decisions are needed
 - Each decisions requires making one of many possible choices
 - Few solutions exist
 - Certain, partial solutions can be tested for validity

- We have complex problem
 - Multiple decisions are needed
 - Each decisions requires making one of many possible choices
 - Few solutions exist
 - Certain, partial solutions can be tested for validity
- Example

- We have complex problem
 - Multiple decisions are needed
 - Each decisions requires making one of many possible choices
 - Few solutions exist
 - Certain, partial solutions can be tested for validity
- Example
 - Sudoku

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

• What decisions do we have?

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- What decisions do we have?
 - o Empty spots

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- What decisions do we have?
 - Empty spots
- What options are there?

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- What decisions do we have?
 - o Empty spots
- What options are there?
 - Values (typically between 1 and 9)

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- What decisions do we have?
 - Empty spots
- What options are there?
 - Values (typically between 1 and 9)
- Trying all possible boards might be much...

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- What decisions do we have?
 - Empty spots
- What options are there?
 - Values (typically between 1 and 9)
- Trying all possible boards might be much...
- How many possible finished boards are there?

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- What decisions do we have?
 - Empty spots
- What options are there?
 - Values (typically between 1 and 9)
- Trying all possible boards might be much...
- How many possible finished boards are there?
 - A lot

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- What decisions do we have?
 - Empty spots
- What options are there?
 - Values (typically between 1 and 9)
- Trying all possible boards might be much...
- How many possible finished boards are there?
 - A lot
 - 9# empty spots

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- What decisions do we have?
 - Empty spots
- What options are there?
 - Values (typically between 1 and 9)
- Trying all possible boards might be much...
- How many possible finished boards are there?
 - A lot
 - 9# empty spots
 - o In our case 9⁵⁸

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- What decisions do we have?
 - Empty spots
- What options are there?
 - Values (typically between 1 and 9)
- Trying all possible boards might be much...
- How many possible finished boards are there?
 - A lot
 - O 9# empty spots
 - o In our case 9⁵⁸
 - o ~2e55

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

• Let's try the first decision

		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

• Let's try the first decision

1		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- Let's try the first decision
- And the second...

1		5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- Let's try the first decision
- And the second...

1	1	5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- Let's try the first decision
- And the second...
- We could keep trying decisions

1	1	5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- Let's try the first decision
- And the second...
- We could keep trying decisions
 - o Probably a bad idea

1	1	5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- Let's try the first decision
- And the second...
- We could keep trying decisions
 - Probably a bad idea
 - So we won't

1	1	5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- Let's try the first decision
- And the second...
- We could keep trying decisions
 - Probably a bad idea
 - So we won't
- Represent our choices graphically

1	1	5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- Let's try the first decision
- And the second...
- We could keep trying decisions
 - Probably a bad idea
 - So we won't
- Represent our choices graphically
 - Decision tree

1	1	5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- Let's try the first decision
- And the second...
- We could keep trying decisions
 - Probably a bad idea
 - So we won't
- Represent our choices graphically
 - Decision tree

1	1	5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- Let's try the first decision
- And the second...
- We could keep trying decisions
 - Probably a bad idea
 - So we won't
- Represent our choices graphically
 - Decision tree

1	1	5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

- Let's try the first decision
- And the second...
- We could keep trying decisions
 - Probably a bad idea
 - So we won't
- Represent our choices graphically
 - Decision tree
- Preventing <u>bad</u> explorations reduces runtime

1	1	5			7		
	2		4	5			
	7			6		2	4
				9			1
6							
	8		7		3		
	4		6	2		9	
8	5				9		
				7			

Pseudo-code

Pseudo-code

• First decision: for 1 to 9

- First decision : for 1 to 9
 - o If !good continue
 - Second decision : for 1 to 9

- First decision: for 1 to 9
 - o If !good continue
 - Second decision : for 1 to 9
 - If !good continue
 - Third decision: for 1 to 9

- First decision: for 1 to 9
 - o If !good continue
 - Second decision : for 1 to 9
 - If !good continue
 - Third decision: for 1 to 9

• ...

- First decision: for 1 to 9
 - o If !good continue
 - Second decision : for 1 to 9
 - If !good continue
 - Third decision: for 1 to 9
 - ..
- Code might get a little intense

- First decision : for 1 to 9
 - o If !good continue
 - Second decision : for 1 to 9
 - If !good continue
 - Third decision: for 1 to 9
 - ..
- Code might get a little intense
- New idea!

- First decision: for 1 to 9
 - o If !good continue
 - Second decision : for 1 to 9
 - If !good continue
 - Third decision: for 1 to 9
 - ..
- Code might get a little intense
- New idea!
- Solve Recursively

- First decision : for 1 to 9
 - If !good continue
 - Second decision : for 1 to 9
 - If !good continue
 - Third decision: for 1 to 9
 - ..
- Code might get a little intense
- New idea!
- Solve Recursively
 - o Recurse (decision)
 - IF decision is at the end THEN Do Base Case
 - FOR each choice in decision
 - Try choice
 - Recurse (decision + 1)

- First decision : for 1 to 9
 - o If !good continue
 - Second decision : for 1 to 9
 - If !good continue
 - Third decision: for 1 to 9
 - ..
- Code might get a little intense
- New idea!
- Solve Recursively
 - o Recurse (decision)
 - IF decision is at the end THEN Do Base Case
 - FOR each choice in decision
 - Try choice // Could be a bad choice!
 - Recurse (decision + 1)

- Recurse (decision)
 - IF decision is at the end THEN Do Base Case
 - o FOR each choice in decision
 - Try choice
 - Recurse (decision + 1)

- Recurse (decision)
 - o <u>IF choices are not valid THEN Do first base case</u>
 - o IF decision is at the end THEN Do Base Case
 - FOR each choice in decision
 - Try choice
 - Recurse (decision + 1)

- Recurse (decision)
 - IF choices are not valid THEN Do first base case
 - o IF decision is at the end THEN Do Base Case
 - FOR each choice in decision
 - Try choice
 - Recurse (decision + 1)
- The earlier we make an invalid decision the better!

- Recurse (decision)
 - o <u>IF choices are not valid THEN Do first base case</u>
 - o IF decision is at the end THEN Do Base Case
 - FOR each choice in decision
 - Try choice
 - Recurse (decision + 1)
- The earlier we make an invalid decision the better!

Sudoku Coding Time!

N Queens

- N Queens
 - Place N queens on a N by N chess board

- N Queens
 - Place N queens on a N by N chess board
 - No two queens can attack each other

- N Queens
 - Place N queens on a N by N chess board
 - No two queens can attack each other

- N Queens
 - Place N queens on a N by N chess board
 - No two queens can attack each other
- What are the decisions?

- N Queens
 - Place N queens on a N by N chess board
 - No two queens can attack each other
- What are the decisions?
- What are the choices?

- N Queens
 - Place N queens on a N by N chess board
 - No two queens can attack each other
- What are the decisions?
- What are the choices?
- Note that each row contains exactly 1 queen!

- N Queens
 - Place N queens on a N by N chess board
 - No two queens can attack each other
- What are the decisions?
- What are the choices?
- Note that each row contains exactly 1 queen!
 - Select the position for the queen in a given row starting with the first

- N Queens
 - Place N queens on a N by N chess board
 - No two queens can attack each other
- What are the decisions?
- What are the choices?
- Note that each row contains exactly 1 queen!
 - Select the position for the queen in a given row starting with the first
- No two queens have the same column

- N Queens
 - Place N queens on a N by N chess board
 - No two queens can attack each other
- What are the decisions?
- What are the choices?
- Note that each row contains exactly 1 queen!
 - Select the position for the queen in a given row starting with the first
- No two queens have the same column
 - They form a permutation

- N Queens
 - Place N queens on a N by N chess board
 - No two queens can attack each other
- What are the decisions?
- What are the choices?
- Note that each row contains exactly 1 queen!
 - o Select the position for the queen in a given row starting with the first
- No two queens have the same column
 - They form a permutation
- How do we check for validity?

- N Queens
 - Place N queens on a N by N chess board
 - No two queens can attack each other
- What are the decisions?
- What are the choices?
- Note that each row contains exactly 1 queen!
 - o Select the position for the queen in a given row starting with the first
- No two queens have the same column
 - They form a permutation
- How do we check for validity?
 - A validity function is easiest

- N Queens
 - Place N queens on a N by N chess board
 - No two queens can attack each other
- What are the decisions?
- What are the choices?
- Note that each row contains exactly 1 queen!
 - Select the position for the queen in a given row starting with the first
- No two queens have the same column
 - They form a permutation
- How do we check for validity?
 - A validity function is easiest
- Note this exact problem will be part of the first lab group

