Assignment No 4

Spring 2025

CSE-408 Digital Image Processing

Submitted by: MUHAMMAD SADEEQ

Registration No.: 21PWCSE2028

Section: C

"On my honor, as a student of the University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work"

Submitted to:

Engr. Mehran Ahmad (20 June 2025)

Department of Computer systems engineering University of Engineering and Technology, Peshawar

Activity 1

Code:

```
% Clear environment
clc; clear; close all;
% Load grayscale image
img = imread('cameraman.tif');
img = im2double(img);
[M, N] = size(img);
% Fourier Transform
F = fft2(img);
F_shifted = fftshift(F);
% Set cutoff frequency
D0 = 50;
% Create meshgrid
u = 0:(M-1);
v = 0:(N-1);
u = u - floor(M/2);
v = v - floor(N/2);
[U, V] = meshgrid(v, u);
D = sqrt(U.^2 + V.^2);
% Ideal Highpass Filter
H_ideal = double(D > D0);
% Butterworth Highpass Filter (order = 2)
n = 2;
H butter = 1 \cdot / (1 + (D0 \cdot / D) \cdot ^{(2 * n)});
% Gaussian Highpass Filter
H_{gauss} = 1 - exp(-(D.^2) ./ (2 * D0^2));
% Apply filters in frequency domain
G_ideal = F_shifted .* H_ideal;
G_butter = F_shifted .* H_butter;
G gauss = F shifted .* H gauss;
% Inverse FFT
img ideal = real(ifft2(ifftshift(G ideal)));
img_butter = real(ifft2(ifftshift(G_butter)));
img_gauss = real(ifft2(ifftshift(G_gauss)));
% Display results
figure;
subplot(1,2,1), imshow(img, []), title('Original Image');
subplot(1,2,2), imshow(log(1+abs(F_shifted)), []), title('Original Spectrum');
figure;
subplot(1,2,1), imshow(img_ideal, []), title('IHPF Output');
subplot(1,2,2), imshow(log(1+abs(G ideal)), []), title('IHPF Spectrum');
```

```
figure;
subplot(1,2,1), imshow(img_butter, []), title('BHPF Output');
subplot(1,2,2), imshow(log(1+abs(G_butter)), []), title('BHPF Spectrum');
figure;
subplot(1,2,1), imshow(img_gauss, []), title('GHPF Output');
subplot(1,2,2), imshow(log(1+abs(G_gauss)), []), title('GHPF Spectrum');
```

Output:

Analysis

Three frequency domain highpass filters were applied to enhance edges in a grayscale image:

- **Ideal Highpass Filter (IHPF):** Provides strong edge enhancement but introduces ringing artifacts and amplifies noise due to its abrupt cutoff.
- **Butterworth Highpass Filter (BHPF):** Offers smoother sharpening than IHPF, with moderate noise amplification and minimal artifacts.
- Gaussian Highpass Filter (GHPF): Produces clean edge enhancement with the least noise and no visible artifacts, due to its smooth frequency response.

Conclusion The Gaussian Highpass Filter gives the best sharpening results with minimal noise and no artifacts. It is the most suitable for clean and smooth image enhancement. The Butterworth filter is a good compromise, while the Ideal filter, despite strong sharpening, introduces unwanted visual distortions.