Lecture 20

MDP

- Infinif harizen MPP- Undis counted

- Optimism

$$V_{0}^{T} = \sum_{t=1}^{T} P_{0}^{t-1} \left(Y_{1} \right)^{T}$$

Hardy 1948

Lemma:
$$V_{\Omega} = \left(\left(I - P_{\Omega} - \overline{P}_{\Omega} \right)^{-1} - \overline{P}_{\Omega} \right) r_{\Omega}$$

A value function V: X > 18

$$\Rightarrow$$
 span (V) = mark $V(n)$ _ min $V(n)$
 $n \in \chi$ $n \in \chi$

Wednesday, October 20, 2020
Lemma: For any memory less polics 17
$P_{\eta}V_{\eta}=0$
Why 1
Proof: note that Pr-Pr
DPVT-TPPt-1(x ph) T(P(x ph)
$\Rightarrow P V^{T} = Z P P^{t-1} (R - P^{n}) = T (P (R - P^{n}))$
P(T)
= $($ $)$
-T(0)
$\Rightarrow \sqrt{1} = 0 \Rightarrow \sqrt{1} = 0$
$= > \vee_{\mathcal{U}} = > \vee_{\mathcal{U}} = >$
Lemma: For any memory less policy, we have
THE TOTAL PARTI
Historically this equation is known as Poisson equation
Nondens we call it Bellman equation.
proof. $V_n = (I - P_n + \bar{P}_n)^T r_n - \bar{P}_n r_n$

$$\frac{\left(I-P_{n}+P_{n}\right)\left(V_{n}+P_{n}\right)}{V_{n}-P_{n}V_{n}+P_{n}V_{n}+P_{n}V_{n}+P_{n}V_{n}} = Y_{n}$$

$$\Rightarrow V_{n}-P_{n}V_{n}+$$

Bellman Optimality equation innor product.

> P + V(n) = max (V(n,n) + (P(-|n,a), V)

a \in A

Bellman operator: T(V) = max (7(a,n) = (P(1n,a), V)

For V, define greedy policy TV(N) E cromag V(n,n) ~(p(1n,e),V)

Theorem!

i) Bellman Optimality equation has a solution (ii) A solution (P, V) satisfier (P, T= T)

Why not unique! if Vi) solution > V al is also a solution.

Now how to solve it ?

- Policy iteration
- Value iteration.
- linear program.

	$\frac{\text{Minim}_{12}}{\text{ER, Ve}_{2}^{ \mathcal{X} }}$
	5.6.: D + V (n) > P(n,a) + P(- n,a), V) + Ma) + XXA
	=> The solution is pt. But the V and TV might be weless.
	haring p, new so for V:
	$m : M \to M$
	Minimize (V,1) VER(2)
	S.b. S. F. V(n) >, P(n,a), (P(.1n,a), V) + m, e) (X.d.
	V(No) = a stabe that a M
	V(No) = a stabe thataTT Visib.
_	
	Now consider, we neither have P, nor R.
	We need to intract with the environment, employe it,
	learn it, and exploit what we have
	I- T 0 11 2 10 0 1 1 1 1
	Trade att exploration and emploibation
	Define regret as: RT = TS - E Y(X1Ab)
	+=1

Find an algorithm with reasonable upper bound or regret.

	Wednesday, October 28, 2020
	We use optimism
	Alg: Upper Contidence hound for reitorcoment learning 2
	(VCRL2)
	How it work? Morbaptings to comodel > I
	(MPP) (Min)
_	NY- ry
	To AM DE
	True male M. P. T Estimated model M: P, T
	For now: of rel , we assume T=r and we know T
_	
	At time to, define T (Mia) = III X = MIA = ay
	τ' = 1
	Then $P_b(a' a_1a) = \frac{\sum_{i=1}^b I_i^b x_i = \alpha_i A_i = \alpha_i Y_{i+1} = \alpha_i Y_i}{a'}$
	V = V = V = V = V = V = V = V = V = V =
	9
	=> ('e empirical estimate.
	Define Considence set for ma

Pehine Confidence set for no $C_t(n_1 \alpha) = P(-1n_1 \alpha) + P(-1n_1 \alpha) +$

	Theorem: UCR12 acheives regret of
Mivers cl constant	RICDIXIVIAIT las (TIXIIAI) With perobability at least 1-8
	Lewer bound on MDP
	For 121 > 3, 1A1 > 2, D > 6+2 by 1x1, and T > D1x1 121,
	then for any algorithm, there exists an MDP, such that
	E[R]), C/D(X/14) T
	universal constants
	UCRL2 is order optimal; But off 1/21D
	up to lay factors.