Schedule

A week-by-week breakdown of the material.

Week 1 (01/11-1/15)

- **Day 1** Introduction
- **Day 2** Complex Numbers, algebra¹
- **Day 3** Geometry of the Complex Plane²

Week 2 (01/18-01/22)

- **Day 1** Sequences and Series in the Complex Plane³
- **Day 2** Cauchy sequences⁴
- **Day 3** Cauchy sequences⁵

Week 3 (01/25-01/29)

- **Day 1** Series results from Calc 3⁶
- **Day 2** Series results from Calc 3⁷
- **Day 3** Series results from Calc 3⁸

Week 4 (02/01-02/05)

- **Day 1** Series results from Calc 3⁹
 Assignment 1¹⁰ due Friday, February 12
- **Day 2** Topology of the Complex Plane: Open and Closed sets¹¹

Day 3 Open and Closed sets (cont)¹²

¹notes/complex_numbers.html

²notes/complex_numbers.html

³notes/complex_series.html

⁴notes/complex_series.html

⁵notes/complex_series.html

⁶notes/complex_series.html

⁷notes/complex_series.html

⁸notes/complex series.html

⁹notes/complex series.html

¹⁰notes/assignment1.html

¹¹notes/complex_topology.html

¹²notes/complex topology.html

Week 5 (02/08-02/12)

- **Day 1** Continuous functions and relation to topology¹³
- **Day 2** Catching up
- Day 3 Sick day

Week 6 (02/15-02/19)

- **Day 1** Compact Sets, Heine-Borel theorem¹⁴
- **Day 2 Midterm 1** (study guide¹⁵)
- **Day 3** Compact Sets, Heine-Borel theorem¹⁶

Week 7 (02/22-02/26)

- Day 1 Sick day
- **Day 2** Analytic Polynomials¹⁷
- **Day 3** Analytic Polynomials, cont¹⁸

Week 8 (03/07-03/11)

- **Day 1** Power Series¹⁹
- **Day 2** Power Series, cont²⁰
- **Day 3** Cauchy-Riemann Equations, Analytic functions²¹

Week 9 (03/14-03/18)

- **Day 1** Extensions of standard functions²²
- **Day 2** Line Integrals and antiderivatives²³
- **Day 3** Line Integrals and antiderivatives, cont²⁴

¹³notes/complex_topology.html

¹⁴notes/complex topology.html

¹⁵notes/midterm1 study guide.html

¹⁶notes/complex topology.html

¹⁷notes/analytic_polynomials.html

¹⁸notes/analytic_polynomials.html

¹⁹notes/power_series.html

²⁰notes/power_series.html

²¹notes/cauchy_riemann.html

²²notes/standard_functions.html

²³notes/line integrals.html

²⁴notes/line_integrals.html

Week 10 (03/21-03/25)

- **Day 1** Line Integrals and antiderivatives, cont²⁵
- Day 2 Midterm 2 (study guide²⁶)
- **Day 3** Closed Curve Theorem²⁷

Week 11 (03/28-04/01)

- **Day 1** Closed Curve Theorem, cont²⁸
- **Day 2** Cauchy Integral Formula²⁹
 Assignment 2³⁰ due Friday, April 15
- **Day 3** Power Series for analytic functions on a disc³¹

Week 12 (04/04-04/08)

- **Day 1** Louisville Theorem, Fundamental Theorem of Algebra³²
- Day 2 Mean Value Theorem
- **Day 3** Maximum Modulus Theorem

Week 13 (04/11-04/15)

- Day 1 Schwartz's Lemma
- Day 2 Morera's Theorem
- Day 3 TBA

 $^{^{25}}$ notes/line_integrals.html

²⁶notes/midterm2 study guide.html

²⁷notes/closed_curve_theorem.html

²⁸notes/closed curve theorem.html

²⁹notes/cauchy_integral_formula.html

³⁰notes/assignment2.html

³¹notes/cauchy_integral_formula.html

³²notes/louisville_theorem.html