Predicting Terror Attacks A Data Story

Nicolas Bollier, Enea Figini, Elias Le Boudec, Axel Nilsson Team 29

January 22, 2019

Introduction

Exploring the Data

Terrorist Relationships as a Social Network

Predicting Terror Attacks

A First Unsuccessful Attempt: Setup

- $G_t = \text{graph of terror attacks at time } t$
- ▶ Let **attach**^{*t*} be a vector such that

$$\mathbf{attach}_t(i) = \begin{cases} 1 & \text{if node added at } t+1 \text{ links to node } i \\ 0 & \text{otherwise} \end{cases}$$

(1)

Idea: attach_t smooth ⇒ terror attack location can be explained by graph topology

A First Unsuccessful Attempt: Result

- Graph nodes: terror attack locations (1293 nodes)
- Graph edges: weight based on proximity of features vector (835'278 edges)
- Complete graph

Figure: GFT of attach $_{t=1282}$

Predicting Terror Attack Locations: Setup

- 1. From the dataset, select the 10 biggest connected components
- 2. Sort the dataset by date of terror attack.
- 3. Hence component \Leftrightarrow location
- 4. For each node, select lead node *l* that maximises sum of weights to other nodes
- 5. Find the lead node *l** that is the most strongly linked to the new node (i.e. the next terror attack).
- **6.** Prediction: next location is location of l^*

Predicting Terror Attack Locations: Results

Accuracy slightly over 50%

Figure: Prediction animation (yellow: correct)