Приветствие

Этот курс позволит вам погрузиться в удивительный мир квантового машинного обучения!

Почему именно этот курс?

Наш курс отличается от других курсов по квантовым вычислениям:

- он адаптивный и содержит лекции разных уровней сложности и глубины;
- он практический, а все объяснения подкрепляются кодом;
- он про реальные методы, которые будут актуальны ближайшие 10-15 лет.

Как устроен курс?

Наш курс разделен на логические блоки, каждый из которых содержит лекции разных уровней сложности:

- ГОЛУБОЙ вводные лекции;
- ЗЕЛЕНЫЙ лекции "основного" блока курса;
- ЖЕЛТЫЙ лекции, глубже раскрывающие темы блоков;
- КРАСНЫЙ лекции про физику и математику, которая стоит за всем этим;
- БЕЛЫЙ факультативные лекции.

Fig. 1 Программа курса

Как будет проходить этот курс?

Рекомендуем проходить курс в порядке, обозначенном на схеме.

Желаем успехов!

Квантовая химия. Введение.

Описание лекции

Из этой лекции мы узнаем:

- что такое квантовая химия, что с ее помощью можно сделать, а что нельзя;
- как устроена самая простая теория, описывающая квантовую физику атома
- какие у этой теории есть ограничения

Введение

В предыдущих лекциях мы говорили о применении квантовой механики для вычислений и обработки информации. Однако исторически квантовая теория развивалась в первую очередь из-за того, что классическая физика не могла объяснить некоторые наблюдаемые эффекты, такие как дискретный спектр излучения атомов, фотоэффект в металлах, интерференцию частиц на дифракционных щелях.

Считается, что квантовая механика дает полное и точное описание состояния и эволюции любой системы при нерелятивистских условиях — по крайней мере, на сегодняшний день этому нет экспериментальных или теоретических противоречий. Это значит, что в теории возможно для любой системы частиц записать уравнения Шредингера, решить их и предсказать, как себя поведет система. Однако на практике оказывается, что в реальных задачах вроде моделирования лекарств и материалов просто "взять и посчитать" – задача весьма сложная, а иногда – неразрешимая.

Проблемами применения квантовой механики к химии и материаловедению занимается квантовая химия. Она делает это уже около 100 лет, по теме написаны толстые книжки с многоэтажными формулами, так что в лекции будут даны основы и простые примеры без полного вывода. Для желающих в конце приведены ссылки для углубленного изучения.

Предполагается, что читатель знаком с уравнением Шредингера и основными операторами (импульса, эволюции), бра-кет нотацией, а также помнит основы физики и химии на уровне старших классов школы.

Атом водорода

В чем проблема?

Спектр излучения и поглощения атомов — то есть на какой длине волны происходит поглощение и излучение света веществом — был одной из первых "нерешаемых" проблем, приведших в итоге к появлению квантовой физики. Для <u>простых веществ</u> в газообразной форме спектр является дискретным, и для атома водорода спектры поглощения и излучения в видимом диапазоне выглядят так:

Fig. 2 Спектр поглощения и излучения водорода в видимом диапазоне

В конце 19 века было уже известно, что атом водорода состоит из двух заряженных частиц – протона и электрона, но из классической физики следовало, что спектр излучения такой системы должен быть непрерывным, что никак не стыковалось с наблюдениями (дискретные линии на графике). Попробуем вслед за исследователями квантовой физики начала 20 века разобраться с этой проблемой.

Note

Про имена. "Квантовая физика" и "квантовая механика" – связанные понятия, но не тождественные.

Квантовая механика – это теория (а точнее, множество теорий с различающимися терминологиями), в основе которой лежит аксиоматика о том, что сущности описываются волновыми функциями, что они эволюционируют и, что зная эти функции, можно посчитать физические величины — например, энергию.

Квантовая физика – это область физики, исследующая квантовые эффекты, при этом она местами может не иметь строгого обоснования – лишь бы предсказания работали.

С квановой химией тоже есть некоторая путаница — в двадцатом веке под ней имели в виду аналитические и численные методы решения задач квантовой механики применительно к молекулам и кристаллам. Но с развитием квантовых компьютеров эту область стали иногда называть вычислительной химией, а квантовой химией — применение квантовых компьютеров к этой области.

Быстрое и неправильное решение

Первой теорией в квантовой физике была <u>"Боровская теория"</u> – почти классическая теория, основанная на постулатах, разрешающих противоречия классической физики с экспериментами на уровне "хардкода". Главный постулат заключается в том, что импульс может принимать только определенные дискретные значения (кванты), а не произвольные:

 $\ (p = \frac{n \cdot r}{r} \)$

где p – импульс, r – радиус орбиты электрона, h – константа Планка, n – любое целое число. Если применить этот постулат к атому водорода – паре из протона и электрона, то получится, что:

- электрон вокруг протона "летает по орбите";
- спектр (уровни энергии электрона) дискретный.

Можно показать это следующим образом.

Во-первых, поскольку частиц две и протон имеет массу много больше массы электрона, можно перейти в почти инерциальную систему отсчета протона, где он неподвижен, и решить задачу только для электрона.

Из классической механики берем <u>теорему о вириале</u> ("для стабильной системы из двух частиц, связанных потенциальными силами, в среднем кинетическая энергия равна половине потенциальной"):

\(
$$E_{k} = -E_{p} / 2 \$$

\(E =
$$E_{k} + E_{p} = E_{p} / 2 \)$$

Записываем кинетическую энергию и потенциал Кулона для электрона в поле протона (в СИ):

\(\frac{p^2}{2m} = k \frac{e^2}{2 R} \), где \(k\) – постоянная из закона Кулона

Используем постулат Бора и выразим "радиус" орбиты:

 $\label{eq:Resolvent} $$ (R = \frac{n^2 \pi^2}{k m e^2}) $$$

Находим полную энергию:

```
\( E = E \{p\} / 2 = - \\frac\{k e^2\} 2 R\} = -\\frac\{k^2\}\{n^2\} \\frac\{me^4\}\{2 \\hbar^2\} \\)
```

Уровни энергии пропорциональны \(\frac{1}{n^2}\) и именно такая зависимость наблюдается в эксперименте.

Посчитаем минимальную энергию (n = 1):

```
from scipy import constants as consts

k = ( 1 / (4 * consts.pi * consts.epsilon_0)) # постоянная кулона

E1 = - k**2 * consts.m_e * consts.e**4 / (2 * consts.hbar ** 2) # энергия в Джоулях

E1_ev = E1 / consts.e # энергия в электрон-вольтах

print(f"Hydrogen Bohr ground state energy: {E1_ev} eV")
```

```
Hydrogen Bohr ground state energy: -13.605693122885837 eV
```

Получившийся ответ 13.6 eV в точности совпадает с экспериментальным значением энергии ионизации водорода.

Итого: постулировав несколько очень удачных гипотез (главная – что импульс квантуется, то есть принимает только дискретные значения), удалось разрешить фундаментальную нестыковку между классической теорией и экспериментом: энергия стала дискретной, линии спектра стали обратно пропорциональны \(n\), значения энергии ионизации совпадают с реальными измерениями.

Казалось бы, замечательно, проблема решена! Однако теория Бора имеет ряд проблем. Главная из них заключается в том, что теория работает только для "водородоподобных" атомов, то есть состоящих из ядра и одного электрона на внешней оболочке. Уже для атома гелия спектр не согласуется с боровской теорией.

Кроме того, с точки зрения науки теория Бора – это в некоторым смысле "читерство". Выбрав удачные постулаты и подставив их формулы в классическую физику, мы получили правильный результат. Но будь постулаты другими, результат получился бы тоже другой, так что фактически постулаты Бора – это гениальная догадка, позволившая угадать правильные результаты для некоторых систем.

Квантовая химия. Теория самосогласованного поля.

Описание лекции

Из этой лекции мы узнаем:

- как с помощью квантовой химии предсказать спектр атома водорода "из первых принципов";
- как посчитать энергию атома с помощью Python;
- какие бывают волновые функции электронов и как их вычислять методом Self-Consistent Field;
- как посчитать энергию спирта.

Введение

Боровская теория оказалось недостаточной для описания таких сложных систем, как молекулы или неводородоподобные атомы. В этой лекции мы разберемся с теорией самосогласованного поля — это один из первых вычислительных методов квантовой химии, пригодный на практике для моделирования разных систем (атомов, молекул, кристаллов).

Несмотря на то, что основа метода была разработана чуть ли не сто лет назад, он активно используется и сегодня, особенно с различными модификациями и дополнениями.

Что мы ищем?

С точки зрения квантовой химии, чаще всего мы хотим для произвольного набора частиц (атомов для молекулы или кристалла, протонов и электронов для атома) с известным потенциалом взаимодействия предсказывать стационарное состояние, т.е. находить стационарные волновые функции всех частиц системы. Квантовая механика постулирует, что для любой наблюдаемой физической величины существует оператор, которым мы можем подействовать на волновую функцию и получить измеренное значение этой величины.

Например, если мы знаем волновые функции электронов и ядер в кристалле – можно предсказать теплопроводность кристалла. Или электрическую проводимость, или еще что-нибудь – поэтому основной задачей квантовой химии является поиск волновых функций-решений уравнения Шредингера для системы частиц.

Начнем с атома водорода и определения его уровней энергии – их можно сравнить с экспериментальными данными, а также результатами Боровской теории. Квантовая механика позволяет решить эту задачу, исходя только из "первых принципов", то есть аксиоматики квантовой механики. При этом после некоторых усилий решения успешно обобщаются с атома водорода на любой другой.

Давайте опишем атом водорода — систему из электрона и протона — на языке квантовой механики, то есть в виде уравнения Шредингера, и посмотрим, что получится.

Электрон находится в потенциале протона, и его волновая функция должна зависеть от расстояния до протона.

Уравнение Шредингера для электрона будет следующим:

Мы ищем решение, в котором электрон остается в атоме, то есть решаем стационарное уравнение, в котором \ (\ket{\Psi}\) не зависит от времени. Тогда оператор эволюции (в левой части уравнения Шредингера) при применении к \(\ket{\Psi}\) должен вернуть нам тот же вектор \(\ket{\Psi}\), умноженный на E, где E – это энергия частицы.

С точки зрения математики искомая волновая функция является собственным вектором оператора эволюции, а энергия – собственным значением.

С точки зрения объяснения "на пальцах" оператор эволюции при применении к волновой функции должен вернуть нам новую (эволюционировавшую/изменившуюся во времени) волновую функцию. Если мы ищем стационарную — не меняющуюся во времени — волновую функцию, то при применении к ней оператора эволюции она не должна изменяться, иначе будет уже не стационарной.

Оператор импульса раскрывается через градиент так: $(\hat{p} = \hat{t})$

Потенциал взаимодействия двух частиц с противоположными единичными зарядами раскрывается так: \(\hat{V}(r) = -\frac{e^2}{r} \)

Итого имеем:

 $\label{eq:continuous} $$ ((-\frac{n^2}{r})^{2m}\ln 2 - \frac{e^2}{r})^{ket(psi(r))} = E {\ker(psi(r))}() $$$

Прежде чем погружаться глубже в решение этого уравнения, нам надо разобраться с квантовыми числами.

Про квантовые числа

Теория Бора базируется на идее квантования импульса, и ее следствием является возникшее в формуле энергии число \(n\). Каждое число \(n\) соответствует определенному состоянию, в котором может находиться электрон и эти состояния отличаются энергией.

Идея о том, что электрон может находиться в одном состоянии из некоторого конечного набора вариантов, характеризуемого дискретными (квантовыми) числами, оказалась правильной. В в дальнейшем она получила развитие в квантовой механике.

Число \(n\) называется главным квантовым числом, оно определяет энергетический уровень электрона.

Из анализа свойств операторов гамильтониана и момента импульса в квантовой механике выводятся еще три квантовых числа:

- \(\ell\) орбитальное квантовое число, \(0\leq \ell \leq n-1\);
- \(m\) магнитное квантовое число, \(-\ell<=m<=\ell\);
- \(s\) спиновое квантовое число, \(s = 0|1\) (для атома водорода оно не играет роли, так как электрон только один).

В химии они используются в другой форме записи для описания орбиталей электронов в атоме.

Эти числа нам скоро понадобятся, чтобы описывать электрон в атоме.

Любая функция \(\ket{\Psi}\), для которой уравнение выше верно, описывает электрон, который стабильно находится где-то около ядра и не покидает его, то есть образует с ним атом. При этом функций-решений у уравнения на самом деле много, что физически соответствует тому, что электрон может находиться на разных

орбиталях. Каждая орбиталь характеризуется квантовыми числами – \(n\), \(\ell\), \(m\) и \(s\), и обозначается как \ (\ket{\Psi_{n\ell m}} \). \(\ket{\Psi}\) (орбиталь) с минимальной энергией E соответствует основному состоянию (ground state) – она описывает невозбужденный электрон. У водорода только один электрон, поэтому единственная \(\ket{\Psi}\) с минимальной энергией соответствует невозбужденому атому водорода.

В целом основная задача квантовой химии — найти ground state произвольной системы частиц, так как это описывает "обычное" состояние системы, которое встречается чаще всего в реальности. Но если электрону в основном состоянии придать энергии, например, попасть в него другой частицей, то он может перейти на другую орбиталь, при этом оставшись частью атома. Со временем возбужденные атомы рано или поздно переходят в основное состояния, выбрасывая лишнюю энергию в виде фотона, что и дает спектр излучения атома.

Итого:

\(\ket{\Psi_{n\ell m}(\vec{r})} \) – это функция, соответствующая какой-то стабильной "траектории" (распределению плотности вероятности) электрона вокруг ядра, она является решением уравнения Шредингера, то есть собственной функцией гамильтониана. Соответствующее ей собственное число – энергия электрона на этой орбитали. Для всех волновых функций с одним n энергия одинакова.

Если электрон описывается такой волновой функцией, то он часть атома, и если какой-либо электрон – часть атома, то он описывается такой волновой функцией. Электрон может переходить между этими волновыми функциями, получая и отдавая энергию, оставаясь при этом частью атома.

Физически электрон водорода обычно в \(\ket{\Psi_{100}}\), так как такое распределение соответствует минимальной энергии.

Долгое и правильное решение, часть 2

А зачем нам вообще сдался спектр и энергии? Вслед за физиками двадцатого века нам приходится продираться через дебри уравнений, абстракций и формул. Дело это непростое и может возникнуть резонный вопрос – а зачем оно все надо?

Помимо фундаментальной ценности в виде лучшего понимания устройства мира, объясняющая спектр теория дает крутую возможность: по измеренному спектру понять, что за вещество перед нами и какие процессы в нем протекают. Например, изучение спектров — один из немногих способов узнать что-то про процессы в звездах или биологических клетках. Для совсем практиков: спектроскопия также используется для детекции взрывчатых и наркотических веществ в малых дозах, а полевые транзисторы (основа большинства современных вычислительные устройства) работают на основе туннельного эффекта — квантового явления. Так что можно сказать, что квантовая механика используется сплошь и рядом!

Если мы перейдем в уравнении X в сферические координаты со следующей параметризацией $(\text{ket}\operatorname{Psi}(\text{vec}\{r\})) = \frac{1}{r} Y(\text{theta}, \phi)$ и воспользуемся несколькими волшебными выводами квантмеха [89], то получим:

Все константы (массы, заряда, импульса, энергии) можно убрать, если перейти в кулоновские единицы измерений, где они приняты за единицу (то есть 1 единица заряда = заряд электрона, 1 единица массы = масса электрона).

 $\label{eq:condition} $$ (-\frac{r}{2} + \frac{l}{2}) + (\frac{l}{2})^{2r^2} -\frac{1}{r}\right) = 0)$

Опустим несколько страниц выкладок [15], учтем граничные условия и получим следующее решение:

 $(R_{n}(r) = r^{ell} \cdot e^{-r/n} \cdot e^{-r/n}$

где $(Y_{\ell m}(\theta, \phi)) - \underline{\phi}$

Если подставить это решение в уравнение Шредингера и найти энергию, то получим:

 $(E_{n} = -\frac{1}{n^2} \frac{me^4}{2\pi^2})$

То есть получим ту же формулу, что и в теории Бора, и тот же численный результат – 13.6 eV.

Здесь начинает проступать основная проблема квантовой химии – математическая и вычислительная сложность. Пока что проблема только концепутальная (сложно разобраться в формулах и уравнениях), но при росте числа частиц в системе даже отличное владение матаппаратом окажется недостаточным.

От теории к практике

Вернемся из начала двадцатого века обратно в день сегодняшний. Сто лет назад неберущиеся аналитически интегралы и замороченные дифференциальные уравнения были почти непреодолимыми препятствиями, поэтому поначалу теория квантовой химии развивалась в сторону более хитрых приближений и упрощений, позволяющих решить эти уравнения аналитически.

Сегодня реальные научные задачи решаются численно – и для этого написано множество высокопроизводительных пакетов, позволяющих на основе входных данных и ограничений вычислить определенным методом желаемые характеристики.

Как и в задачах машинного обучения, в первом приближении достаточно подготовить данные, скормить их волшебному комбайну-вычислителю и забрать ответ, но без понимания о происходящем под капотом есть шансы получить что-то неправильное.

В этой лекции мы воспользуемся Python-пакетом <u>psi4</u>. Он реализует многие алгоритмы квантовой химии и имеет неплохое Python API.

Давайте посчитаем с помощью psi4 энергию основного состояния атома водорода. Некоторые параметры сейчас придется использовать, "поверив на слово". Их смысл будет объяснен в дальнейшем.

```
import psi4
h_atom = psi4.geometry("H")
```

Мы задали атом водорода, по умолчанию атом помещается в начало координат.

```
psi4.set_options({
  'basis': 'STO-3G',
  'reference': 'rohf',
})
```

Тут уже поинтереснее – объяснение этих параметров пока отложим и вернемся после объяснения теории. В целом они определяют, каким именно методом и в каком базисе нужно численно решить уравнение Шредингера.

```
from scipy.constants import physical_constants

h2ev = physical_constants['hartree-electron volt relationship']

def e_in_ev(energy_in_ht):
    return energy_in_ht * h2ev[0]

e_in_ht = psi4.energy('scf') # энергия в единицах Hartree
print(f"Hydrogen ground state energy: {e_in_ev(e_in_ht)} eV")
```

Здесь мы посчитали энергию в единицах Хартри – специальной физической системе единиц, где истинная энергия атома водорода равна 1/2, и перевели ее в электрон-вольты.

Результат не очень точный (правильный, как мы помним, равен 13.6 eV) и мы его улучшим после того как разберемся с тем, что и как мы только что посчитали. Разобраться будет удобнее на примере атома гелия, потому что в атоме водорода есть только один электрон, а в любой реальной системе – больше одного.

Теория самосогласованного поля

Атом гелия

Следующим "по простоте" после атома водорода идет атом гелия – как говорит нам школьная химия, это атом из двух протонов, двух нейтронов и двух электронов. Протоны и нейтроны находятся близко друг к другу в ядре и имеют почти одинаковую массу, так что можно просто считать, что есть ядро с зарядом +2 и массой 4. А вот с

электронами все сложнее: с одной стороны, это независимые частицы, а с другой – они взаимодействуют друг с другом по закону Кулона, так как оба имеют отрицательный заряд.

Note

Для гравитационного взаимодействия "проблема трех тел" не имеет известного аналитического решения. Это означает, что если мы знаем, что где-то в глубоком космосе вдалеке от остального мира есть три объекта с известными массами, импульсами и координатами, то, увы, в общем случае не сможем предсказать их движение аналитически (хотя сможем предсказать численно, либо найти приближенное аналитическое решение, если масса одного объекта много больше других, например).

Для трех классических тел с кулоновским потенциалом все тоже сложно – можно посмотреть <u>тут</u>, как поведет себя система трех тел с различными зарядами.

Попробуем записать уравнение Шредингера для системы из ядра и двух электронов:

Если бы не последний член гамильтониана, то можно было бы разбить все выражение на две независимых части – с переменными электрона В. Так как это дифференциальное уравнение, можно было бы воспользоваться разделением переменных и найти отдельные решения для двух электронов – задача аналогична атому водорода, а ее мы уже решили.

Но из-за потенциала взаимодействия решение существенно усложняется, поскольку электроны влияют друг на друга. Придется прибегнуть к упрощениям – и одним из наиболее популярных подходов является *теория* самосогласованного поля (Self-Consistent Field).

Теория самосогласованного поля

Теория самосогласованного поля (self-consistent field theory) – это подход итеративного решения уравнения Шредингера для многочастичной системы, на основе которого построено много квантово-химических методов, наиболее известный из которых – метод Хартри-Фока. В сниппете выше строчка psi4.energy('scf') означает, что энергия посчитана этим методом.

Основная идея теории заключается в следующем.

У нас есть несколько частиц, которые взаимодействуют между собой и найти цельное решение уравнения Шредингера для всех сразу не получается. Тогда вместо этого будем рассматривать частицы по очереди и считать, что все остальные действуют "в среднем" на выбранную частицу. То есть будем считать усредненный по пространству потенциал вместо точного.

Для электрона A в атоме гелия нам нужно учесть усредненное влияние электрона B. Можем для электрона B взять волновую функцию от атома водорода, посчитать на ее основе усредненное влияние на электрон A:

 $$ ((h_A + \hat y)_{eff}) \et{psi_A} = (h_A + \frac{psi_B} \frac{e^2}{r_{AB}} \et{psi_B}) \et{psi_A} = \et{psilon_A \et{psi_A}} $$ (h_A + \hat y)_{eff}) \et{psi_A} $$ (h_A + \hat y)_{eff}) $$$

Здесь \(h_A\) – это кинетическая энергия и потенциал ядра для электрона A, а \(V_{eff}\) – влияние электрона B на электрон A. \(V_{eff}\) вычисляется как влияние усредненной электронной плотности, распределенной в соответствии с \(\psi_B\).

На этом шаге мы считаем, что \(\psi_B\) – фиксированная волновая функция и мы находим "переменную" \ (\psi_A\). Однако \(\psi_A\) тоже будет влиять на \(\psi_B\) и, записав аналогичное уравнение для частицы В, мы следующим шагом найдем новую \(\psi_B\).

После изменения волновых функций каждого электрона мы можем заново записать их уравнения с новыми волновыми функциями и так по кругу, пока волновые функции и их энергии не сойдутся к какому-то стабильному (самосогласованному) решению.

Все вместе это создает итеративную процедуру:

- 1. На основе имеющихся волновых функций посчитать среднее поле, которое создают частицы (например, электрон В для электрона A).
- 2. Решить уравнение Шредингера с потенциалом, учитывающим среднее поле, то есть вычислить энергии и новые волновые функции.
- 3. Вернуться к шагу 1.

Для инициализации можно взять какие-то приблизительные волновые функции для всех частиц (двух электронов гелия), например, решения из уравнения водорода, то есть водородоподобные волновые функции. Далее итерацию повторяют, пока волновые функции и их энергии не перестанут изменяться, то есть самосогласуются.

Система таких уравнений, записанных для каждого электрона, называется **уравнениями Хартри**. На основе таких волновых функций для отдельных электронов можно собрать общую волновую функцию \(\Psi(r_A, r_B)\), самый простой вариант – это \(\Psi(r_A, r_B) = \psi_A(r_A) \psi_B(r_B)\), он и был предложен первоначально. Однако есть проблема: такая \(\Psi\) получается не антисимметричной, а только такие волновые функции для системы электронов являются "физичными", то есть могут существовать в реальности.

1 Note

Один из основополагающих принципов квантовой механики — тождественность частиц и их неразличимость. Принцип означает, что все частицы одного типа (например, электроны) одинаковы и характеризуются только своим состоянием. Например, если мы "переставим местами" два электрона в атоме (не только пространственно, но и в смысле их состояния и энергий), то получившийся атом будет неотличим от исходного.

Из принципа тождественности следует, что при перестановке не должна меняться плотность вероятности:

$$(| \{\Psi\}(X_A, X_B) |^2 = | \{\Psi\}(X_B, X_A) |^2 \}$$

Кроме того, представим что мы обменяли частицы дважды: А с В и обратно. Никакие физические свойства системы из-за этого измениться не должны. В общем случае, из этого не следует что волновая функция не изменилась – например, так как глобальная фаза волновой функции неизмерима, то мы могли получить \(\Psi' = e^{2 i \pi \text{theta}}).

Но, если мы работаем больше чем в двух пространственных измерениях, то такой двойной обмен эквивалентен отсутсвию обмена. Для начала представим что мы обмениваем частицы медленно описывая полукруг частицей А вокруг частицы В и потом сдвигая обе частицы. Тогда двойной обмен значит, что частица А описывает полный круг вокруг частицы В. Также, если мы непрерывно изменим ее маршрут не приближая ее к частице В, то мы ожидаем получить тот же результат.

Итак, какие замкнутые маршруты мы можен получить непрерывно деформируя маршрут в евклидовом пространстве без точки (В)? Ответ для любого измерения больше 2 – <u>любые</u>. Следовательно двойной обмен должен давать такой же результат как и если бы мы просто оставили частицу A на месте [NSS+08].

У этого ограничения есть два решения: либо \({\Psi}(X_A, X_B) = {\Psi}(X_B, X_A) \) (симметричность), либо \(\Psi(X_A, X_B) = -\Psi(X_B, X_A) \) (антисимметричность). У антисимметричных функций есть интересное свойство: если функция \((f(x_1, x_2)\) антисимметрична, то \((f(x_1=X, x_2=X)=0\)), то есть антисимметричная функция равна нулю, если ее аргументы одинаковы. В этом легко убедиться на примере \((f = x_1 - x_2 \)).

Для антисимметричной волновой функции это означает, что две частицы не могут иметь полностью одинаковое состояние — волновая функциия (и вероятность) такой конфигурации равна нулю.

В эксперименте это строго выполняется для всех частиц с полуцелым спином (фермионов), к которым относятся электроны, а частицы с целым спином (бозоны), например, фотоны, имеют симметричную волновую функцию и могут иметь одинаковые состояния.

Для квантовой химии это все имеет одно важное следствие: электроны – это фермионы и волновая функция, описывающая всю систему электронов целиком, должна быть антисимметрична относительно перестановки (замены пары индексов). Любое не антисимметричное решение не физично, поскольку допускает существование электронов в одинаковом состоянии, а такого не бывает. В химии этот вывод называется принцип запрета Паули.

```
\(\Psi(X_A, X_B) = \psi_A(X_A) \psi_B(X_B) - \psi_B(X_A) \psi_A(X_B) \)
```

Во-первых, легко проверить, что если поменять местами (X_A) и (X_B) , то вся функция просто изменит знак. Во-вторых, можно заметить, что формулу можно записать как определитель матрицы: $(\Psi(X_A, X_B) = \psi_{A(X_A)} \psi_{B(X_B)} \psi_{B(X_B)} \psi_{A(X_B)} \p$

Из курса линейной алгебры можно вспомнить, что определитель меняет знак при перестановке двух столбцов или двух строк – это свойство позволяет делать антисимметричные волновые функции систем из N волновых функций отдельных электронов, если использовать метод Хартри не для атома гелия, а для системы с бОльшим числом электронов. Для этого составляется определитель \(N\) (N\) (Times N\) по аналогии с формулой выше: элемент в строке і, столбце j — это і-я волновая функция с параметрами j-го электрона в качестве аргумента.

Такой вариант сборки волновой функции системы частиц называется "определитель <u>Слэтера</u>". Так как весь подход является аппроксимацией, не любая система может быть точно представлена таким детерминантом, но он является очень распространенным методом "сборки" волновой функции системы электронов в квантовой химии. Его использование также немного меняет вид одноэлектронных уравнений: чтобы корректно учесть антисимметрию, в эффективный потенциал добавляется так называемое "обменное взаимодействие".

Все вместе составляет метод Хартри-фока:

- итеративная процедура самосогласованного поля;
- усредненное действие электронов друг на друга, учет обменного взаимодействия;
- детерминант Слетера.

SCF _B psi4

Теперь можно вернуться к коду и взглянуть на него чуть более осмысленно. При вычислении энергии мы явно передаем, что хотим посчитать ее методом Self-Consistent Field:

```
e_in_ht = psi4.energy('scf')
```

Но что происходит в настройках, пока по-прежнему неясно:

```
psi4.set_options({
   'basis': 'STO-3G',
   'reference': 'rohf',
})
```

Начнем с параметра basis. <u>ST0-36</u> – не стандарт связи, а **S**later **T**уре **O**rbital с **3** Гауссианами в базисном наборе, то есть базис на основе детерминанта Слетера. В описании метода SCF мы собирались начинать итерации с водородоподобных волновых функций, но так как весь метод является аппроксимирующим, нам никто не мешает выбрать другие волновые функции, если результаты лучше согласуются с экспериментом. Выбор базиса может существенно влиять на результат вычислений и современные базисы сложнее, чем Слетеровский детерминант – он просто один из первых и наиболее популярных.

Параметр reference означает, какие предположения о волновой функции мы делаем, в данном случае используется Restricted Open Shell Hartree-Fock, так как у атома водорода только один электрон и его оболочка не заполнена (на уровне энергии n=1 для этого нужно 2 электрона).

Давайте повторим вычисления с более "современными" опциями.

```
psi4.core.clean()
h_atom = psi4.geometry("H")
psi4.set_options({
   'basis': 'd-aug-cc-pv5z', # разбор этого базиса выходит за рамки этого интро
   'scf_type': 'pk',
   'reference': 'rohf'
})
e_in_ht = psi4.energy('scf')
print(f"Better hydrogen ground state energy: {e_in_ev(e_in_ht)} eV")
```

Та-дам! Используя более прокачанные базисы, мы получили правильный ответ.

Давайте посмотрим, что еще можно сделать с помощью self-consistent field.

Атом Гелия (численно)

Раз мы разобрали SCF на примере атома гелия, то наверняка можно посчитать его энергию в рsi4.

```
psi4.core.clean()
he_atom = psi4.geometry("He")

psi4.set_options({
    'basis': 'STO-3G',
    'reference': 'rohf',
})

e_in_ht = psi4.energy('scf')
print(f"Helium ground state energy: {e_in_ev(e_in_ht)} eV")
```

Экспериментальное значение энергии атома гелия равно -79.0 eV.

Молекула водорода

Пока мы рассматривали только атомы, но SCF можно использовать и для молекул – потенциалы становятся сложнее, электронов больше, но общая логика не меняется.

```
psi4.core.clean()
h_mol = psi4.geometry("""
H 0 0 0
H 0 0 0.74
""") # задали 2 атома водорода с явными координатами

psi4.set_options({
   'basis': 'ST0-3G',
   'reference': 'rohf',
})
e_in_ht_h = psi4.energy('scf', molecule=h_mol)
print(f"Hydrogen ground state energy: {e_in_ev(e_in_ht_h)} eV")
```

Здесь мы задали явно координаты обоих атомов водорода в молекуле и энергия электронов была высчитана в предположении, что ядра водородов неподвижны. Здесь расстояние в 0.74 Ангстрема взято из экспериментальных данных. Если бы мы зададим неправильные координаты, то рассчитанная энергия окажется неверной. Точнее, она соответствовала бы нефизичной ситуации, когда неведомая сила "удерживает" ядра водорода на месте.

В psi4 есть метод для оптимизации геометрии молекулы psi4.optimize. Он не фиксирует положение ядер и возвращает минимальную возможную энергию с учетом вариации положения атомов.

Вычисления с оптимизацией геометрии занимают значительно больше времени.

```
psi4.core.clean()

h_mol_bad = psi4.geometry("""
H 0 0 0
H 0 0 1.5
""") # неверное расстояние в ангстремах

psi4.set_options({
   'basis': 'ST0-3G',
   'reference': 'rohf',
})

# рассчитываем энергию "в точке" с неправильной геометрией
e_in_ht_h_bad = psi4.energy('scf', molecule=h_mol_bad)

# рассчитываем энергию, оптимизируя по ходу геометрию
e_in_ht_h_optimized = psi4.optimize('scf', molecule=h_mol_bad)

print(f"Hydrogen molecule, incorrect ground state energy: {e_in_ev(e_in_ht_h_bad)} eV")
print(f"Hydrogen molecule, optimized ground state energy: {e_in_ev(e_in_ht_h_optimized)} eV")
```

Для некорректной геометрии получилась завышенная энергия, а после оптимизации – почти что такая же энергию, как при вычислении с фиксированным расстоянием 0.74. В оптимальном состоянии энергия системы должна быть минимальна, так что результаты вполне разумны.

Подобный метод можно использовать и для поиска геометрии куда более сложных молекул.

Молекула этилового спирта

Молекула водорода – это все еще почти игрушечный пример. Давайте попробуем обсчитать молекулу этанола.

Задавать руками геометрию молекулы \(C_2H_5OH\) можно, но будет явно сложнее, чем для молекулы водорода. К счастью, это необязательно: psi4 умеет скачивать геометрию из базы данных <u>PubChem</u> по номенклатурному имени либо уникальному ChemId.

```
psi4.core.clean()
eth = psi4.geometry("pubchem:ethanol")
psi4.set_options({
   'basis': 'STO-3G',
   'reference': 'rohf',
})
e_in_ht_eth = psi4.energy('scf', molecule=eth)
print(f"Ethanol ground state energy: {e_in_ev(e_in_ht_eth)} eV")
```

Итоги

Мы разобрались с базовой теорией квантовой химии:

- как записать уравнение Шредингера для атома;
- какое получается аналитическое решение для атома водорода;
- как устроен метод Self-Consistent Field для вычисления волновых функций и энергии для задачи многих тел;
- как пользоваться SCF в python пакете psi4.

В примерах мы везде вычисляли ground state энергию, но, конечно, зная волновые функции, можно посчитать много чего еще. Например, можно вычислить спектр поглощения и энергию ионизации (энергии возбужденных состояний), моделировать взаимодействие молекул (найти равновесное состояние для двух систем), с помощью плагинов можно смоделировать рассеяния рентгена на молекуле... Квантовая механика постулирует, что любая измеримая величина является усреднением определенного оператора по волновой функции, поэтому возможности ограничены в основном вычислительной сложностью, а не теорией.

Для более глубокого погружения в практику квантовой химии можно пройти лабораторные работы psi4: pag, два.

By ODS Quantum Community © Copyright 2021.