Notation

We recall some of the terminology:

- Given a nonempty set Ω , $\mathcal{P}(\Omega)$ is the power set on Ω .
- $\mathcal{B}(\mathbb{R}^k)$ denotes the Borel σ -field on \mathbb{R}^k , $k \geq 1$.
- The measure $\mu(A)=\#A$ if A is finite, and ∞ otherwise, for $A\in\mathcal{P}(\Omega)$, is the **counting measure** on $\mathcal{P}(\Omega)$.
- Given a measurable space (Ω, \mathcal{F}) and $x \in \Omega$, we write δ_x for the measure $\mathcal{F} \ni A \mapsto$ $\delta_x(A) = \mathbf{1}_A(x).$
- The Lebesgue measure on $\mathcal{B}(\mathbb{R}^k)$ is denoted by λ_k . When k=1, we write λ .
- · If not mentioned explicitly, a random vector is assumed to be defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Exercise 1 (10 points)

(a) Borel-Cantelli Lemmas [2 points]

State the first and second Borel-Cantelli Lemmas.

(b) Not a Measure [1.5 points — single choice, no explanation needed]

Given the measurable space $(\mathbb{R},\mathcal{B}(\mathbb{R}))$, which of the following set functions μ_i is **not** a measure?

- $\mu_1(A)=\sum_{q\in\mathbb{Q}\cap A}1$, where \mathbb{Q} is the set of rational numbers. Let C be the standard Cantor set. $\mu_2(A)=\lambda(A\cap C^c)$, where $C^c=\mathbb{R}\setminus C$.
- $\mu_3(A) = \begin{cases} 0 & \text{if } \lambda(A) = 0 \\ \infty & \text{if } \lambda(A) > 0 \end{cases}$
- (c) Not a Probability Measure [1.5 points single choice, no explanation needed]

Which of the following definitions for \mathbb{P}_i does **not** describe a valid probability measure?

- Let $X \sim \operatorname{Exp}(1)$. $\mathbb{P}_1(A) = \mathbb{P}(X^2 \in A)$ for $A \in \mathcal{B}(\mathbb{R})$.
- $\mathbb{P}_2(A)=rac{6}{\pi^2}\sum_{n=1}^{\infty}rac{1}{n^2}\delta_n(A)$ for $A\in\mathcal{P}(\mathbb{N}).$ Let $F(x)=rac{1}{2}+rac{1}{\pi}\arctan(x).$ $\mathbb{P}_3((-\infty,x])=F(x)$ for all $x\in\mathbb{R}.$
- (d) Calculate the following integrals: [1 point each]
 - 1. $\int_{\mathbb{N}} \frac{1}{x!} \mu(dx)$, where μ is the counting measure on $\mathcal{P}(\mathbb{N})$.
 - 2. $\int_{\mathbb{R}} \sin^2(\pi x) \mathbb{P}(dx)$, where \mathbb{P} is the law of a random variable $X \sim \mathrm{Uniform}[0,2]$.

- 3. $\int_{\mathbb{R}^2} rac{1}{y} \mathbb{P}(d(x,y))$, where \mathbb{P} is the law of a random vector (X,Y) with density $f(x,y)=rac{1}{2\pi}e^{-(x^2+y^2)/2}$.
- (e) Modes of Convergence [1.5 points single choice, no explanation needed] Let X_n be a sequence of random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. Which statement is **false**?
 - 1. If $X_n o X$ almost surely, then $X_n o X$ in probability.
 - 2. If $X_n o X$ in L^2 , then $\mathrm{Var}(X_n) o \mathrm{Var}(X)$.
 - 3. If $X_n o c$ in probability, where c is a constant, then $X_n o c$ in distribution.
- **(f) True or False?** [0.5 point each no explanation needed]
 - 1. Let X,Y be random variables. If $\mathbb{E}[X|Y]=\mathbb{E}[X]$ almost surely, then X and Y are independent.
 - 2. The characteristic function $\phi_X(v)=\cos(v)$ corresponds to a random variable X with a well-defined probability density function.

Exercise 2 (13 points)

Let $a \in (0,1)$ be a fixed parameter. Consider a discrete random variable X with support on the set of all integers $\mathbb Z$ and a probability mass function (PMF) given by:

$$\mathbb{P}(X=k) = C_a \cdot a^{|k|}, \quad k \in \mathbb{Z}$$

where C_a is a normalization constant.

- (a) Find the constant C_a . [2 points]
- **(b)** Calculate $\mathbb{E}[X]$ and $\mathrm{Var}(X)$. [3 points]
- (c) Let $Y=X^2$. Find the law of Y, i.e., its PMF. [2 points]
- **(d)** Let X_1, X_2 be two independent copies of X. Find the probability $\mathbb{P}(X_1 + X_2 = 1)$. [3 points]
- (e) Calculate the conditional probability $\mathbb{P}(X_1=1|X_1+X_2=0)$. [3 points]

Exercise 3 (18 points)

Let $\alpha>0$ and $\beta>0$ be parameters. A random variable X has a probability density function (PDF) f_X given by:

$$f_X(x) = egin{cases} Cx^{lpha-1}(1-x)^{eta-1} & ext{if } x \in (0,1) \ 0 & ext{otherwise} \end{cases}$$

This defines the Beta distribution, $X\sim \mathrm{Beta}(\alpha,\beta)$. The normalization constant is given by $C=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}$, where $\Gamma(z)=\int_0^\infty t^{z-1}e^{-t}dt$ is the Gamma function. You may use the property $\Gamma(z+1)=z\Gamma(z)$ for z>0.

- (a) For the specific case $\alpha=2,\beta=3$, verify that C=12. [2 points]
- **(b)** For the general case, calculate $\mathbb{E}[X]$. [4 points]
- **(c)** For the general case, calculate $\mathbb{E}[X^2]$ and find $\mathrm{Var}(X)$. [5 points]
- (d) Let $X \sim \mathrm{Beta}(1,3)$. Find the distribution function $F_X(t)$ of X. [4 points]
- (e) Let $X \sim \mathrm{Beta}(\alpha,\beta)$. Find the density of the random variable $Y = -\ln(X)$. You do not need to identify the name of the resulting distribution. [3 points]

Exercise 4 (6 points)

Let X and Y be independent random variables with $X\sim \operatorname{Exponential}(\lambda)$ and $Y\sim \operatorname{Exponential}(\mu)$. Their respective PDFs are $f_X(x)=\lambda e^{-\lambda x}$ for x>0 and $f_Y(y)=\mu e^{-\mu y}$ for y>0.

Find the probability density function of the random variable Z=X-Y.

Hint: Consider the cases Z>0 and Z<0 separately. This may involve a convolution-style integral.

Exercise 5 (6 points)

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of independent and identically distributed random variables with $\mathbb{P}(X_n=1)=p$ and $\mathbb{P}(X_n=-1)=1-p$, where $p\in(0,1)$ and $p\neq 1/2$. Let $S_n=\sum_{k=1}^n X_k$ be the simple random walk starting at $S_0=0$. Define the random variable $M_n=\left(\frac{1-p}{p}\right)^{S_n}$.

Show that $(M_n)_{n\in\mathbb{N}}$ is a martingale with respect to the natural filtration $\mathcal{F}_n=\sigma(X_1,\ldots,X_n)$.

Recall: To show M_n is a martingale, you must verify three conditions:

- 1. M_n is \mathcal{F}_n -measurable for all n.
- 2. $\mathbb{E}[|M_n|] < \infty$ for all n.

3. $\mathbb{E}[M_{n+1}|\mathcal{F}_n]=M_n$ for all n.