PRÁCTICA 5

5.2. Modelo Binomial

a) Calcular e interpretar las siguientes medidas descriptivas para la tasa de alfabetización: mínimo, máximo, media, percentil 30, coeficiente de asimetría y coeficiente de apuntamiento.

Estadísticos → Resúmenes → Resúmenes numéricos

b) ¿Qué datos presentan una mayor dispersión relativa, los correspondientes a la esperanza de vida femenina o los datos de la tasa de alfabetización?

espvidaf 10.57178 0.1506897 109

c) Calcular la probabilidad de responder correctamente a, exactamente, 6 preguntas. (Sol: 0.1770398).

Distribuciones → Distribuciones Discretas → Distribucion Binomial → Probabilidades Binomiales

SOLUCIÓN:

d) Calcular la probabilidad de responder correctamente, como máximo, a 7 preguntas. (Sol: 0.8700866).

Distribuciones → Distribuciones Discretas → Distribucion Binomial → Probabilidades Binomiales acumuladas

e) Calcular la probabilidad de aprobar el examen si para ello es necesario responder correctamente a, al menos, 11 preguntas. (Sol: 0.00642271).

Distribuciones → Distribuciones Discretas → Distribución Binomial → Probabilidades Binomiales acumuladas

R Probabilidades binomi	ales			×
Valor(es) de la variable	10			
Ensayos binomiales	21			
Probabilidad de éxito	0.25			
O Cola izquierda				
Cola derecha				
Ayuda (Neiniciar	√ Aceptar	X Cancelar	Aplicar

SOLUCIÓN: [1] 0.00642271

5.3. Modelo Poisson

a) Representar las funciones de probabilidad y de distribución de esta variable.

Distribuciones → Distribuciones Discretas → Distribución Binomial → Grafica de la Distribución de Poisson

b) Determinar la probabilidad de que, en un minuto, se produzcan exactamente 4 accesos. (Sol: 0.1754673698).

Distribuciones → Distribuciones Discretas → Distribución Poisson → Probabilidades de Poisson

c) Determinar la probabilidad de que, en dos minutos, el número de accesos sea, a lo más, de 7. (Sol: 0.2202206).

Distribuciones → Distribuciones Discretas → Distribución Poisson → Probabilidades de Poisson acumuladas

SOLUCIÓN: [1] 0.2202206

d) Nos preguntan por el número de accesos que, como máximo, se producirán en el próximo minuto. Determinar el menor valor que debemos dar como respuesta si deseamos acertar con probabilidad no inferior a 0.9. (Sol: 8 accesos).

Distribuciones → Distribuciones Discretas → Distribución Poisson → Cuantiles de Poisson

Cuantiles de Poi	isson	×
Probabilidades Media Cola izquierda Cola derecha	0.9	
Ayuda	♦ Reiniciar	

SOLUCIÓN: [1] 8

5.4. Distribución Geométrica

Distribuciones → Distribuciones Discretas → Distribución Geométrica → Grafica de la Distribución Geométrica

Geometric Distribution: Probability of success=0.25

a) Determinar la probabilidad de que el alumno dé su primera respuesta correcta, en la cuarta pregunta que responde. (Sol: 0.1054687500).

Distribuciones → Distribuciones Discretas → Distribución Geométrica → Probabilidades Geométricas

SOLUCIÓN:

b) Determinar la probabilidad de que necesite responder, como mucho, a 6 preguntas hasta dar una respuesta correcta. (Sol: 0.8220215).

Distribuciones → Distribuciones Discretas → Distribución Geométrica → Probabilidades Geométricas acumuladas

SOLUCIÓN: [1] 0.8220215

5.5. Distribución Normal

a) Representar las funciones de densidad y de distribución de esta variable.

Distribuciones → Distribuciones Continuas → Distribución Normal → Gráficas de la Distribución Normal

GENERA UNA GRÁFICA

b) Determinar la probabilidad de que una botella elegida al azar contenga menos de 1.9 litros de zumo. (Sol: 0.1586553).

Distribuciones → Distribuciones Continuas → Distribución Normal → Probabilidades Normal acumuladas

SOLUCIÓN: [1] 0.1586553

c) Determinar la probabilidad de que una botella elegida al azar contenga entre 1.95 y 2.1 litros de zumo. (Sol: 0.5328072).

Distribuciones → Distribuciones Continuas → Distribución Normal → Probabilidades Normal acumuladas

[1] 0.8413447 <u>0.3085375</u>

Rectamos, copiando esto y poniendo un menos: 0.8413447 − 0.3085375 → SOLUCIÓN: [1] 0.5328072

d) El llenado de una botella se considerará defectuoso si la cantidad de zumo que contiene es inferior a cierta cantidad. Determinar cuál debe ser esa cantidad si se desea que el llenado de las botellas sean considerado como defectuoso sólo en el 5 % de los casos. (Sol: 1.835515).

Distribuciones → Distribuciones Continuas → Distribución Normal → Cuantiles Normales

R Cuantiles normale	es	×
Probabilidades	0.05	
Media	2	
Desviación típica	0.1	
Cola izquierda		
O Cola derecha		
(C) Ayuda	♦ Reiniciar 🗸 Aceptar 💢 Cancelar 💝 Aplicar	

SOLUCIÓN: [1] 1.835515

e) Se eligen 5 botellas al azar. Determinar la probabilidad de que menos de cuatro botellas contengan una cantidad de zumo inferior a 1.98 litros. (Sol: 0.8960542).

Distribuciones → Distribuciones Continuas → Distribución Normal → Probabilidades Normal acumuladas

Probabilidades normal	es	X
Valor(es) de la variable	1.98	
Media	2	
Desviación típica	0.1	
Cola izquierda		
Cola derecha		
(C) Ayuda	♦ Reiniciar	

[1] 0.4207403

Copiamos el resultado obtenido y hacemos una Probabilidad Binomial acumulada:

Distribuciones → Distribuciones Discretas → Distribución Binomial → Probabilidades Binomiales acumuladas

SOLUCIÓN: [1] 0.8960542

5.6. Distribución Exponencial

a) Representar las funciones de densidad y de distribución de esta variable.

Distribuciones → Distribuciones Continuas → Distribución Exponencial → Grafica de la Distribución Exponencial

GENERA UNA GRÁFICA

GENERA OTRA GRÁFICA

b) Determinar la probabilidad de que el tiempo de funcionamiento sin fallos sea, al menos, 22 minutos. (Sol: 0.3328711).

Distribuciones → Distribuciones Continuas → Distribución Exponencial → Distribución Exponencial acumuladas

Probabilidades exponenciales		×
Valor(es) de la variable Parámetro de la exponencial Cola izquierda	0.05	
Cola derecha	deiniciar Aceptar Cancelar Aplicar	

SOLUCIÓN: [1] 0.3328711

c) Determinar un periodo de tiempo tal que, con probabilidad 0.99, podamos afirmar que el ordenador trabajará sin fallos durante ese periodo. (Sol: 0.2010067 min.).

Distribuciones \rightarrow Distribuciones Continuas \rightarrow Distribución Exponencial \rightarrow Cuantiles Exponenciales

R Cuantiles exponenciales	×	
Probabilidades Parámetro de la exponencial Cola izquierda Cola derecha	0.99	
🖒 Ayuda 🥎 F	Reiniciar Aceptar Cancelar Aplicar	

SOLUCIÓN: [1] 0.2010067