## EE412 Introduction to Big Data

Project 1 tutorial

### Introduction

- Goal
  - Identify a rule of cards.
- Training dataset
  - consists of 5 cards with (suit, rank).
  - belongs to one of pre-defined classes(called hand).

#### [Examples]



### Introduction

- Suit ∈ {♥, ♠, ♠, ♣}
- Rank  $\in \{2,3,...,10,J,Q,K,A\}$
- Hand  $\in \{0,1,2,...,9\}$

### [Examples]



### **Tasks**

- Task 1
  - Classify the hand of cards.

- Task 2
  - Given 5 cards, you can change 1 card into any type of card so that hand of changed cards maximizes.
  - A new card should not be duplicated.



# Task1: Example

Goal: classify the hand.



Evaluated with ratio of correct answer.

# Task2: Example

Goal: make cards with high hand



Evaluated by score of the modified cards.

# Algorithm guide

- Task 1 classification
  - input: test dataset (csv-format)
  - output: expected hand
- Task 2 making score high
  - input: test dataset (csv-format)
  - ouput: modified test dataset

### Data format

- Training/test data format
  - csv-format (comma-separated value)
  - each dataset has 11 values: 5 x (suit, rank) + hand
  - Suit of card encodes to {1,2,3,4}
    - 1: ♥, 2: ♠, 3: ♠, 4: ♣
  - Rank of card encodes to {1,2,...,13}
    - 1: Ace, 11: J, 12: Q, 13: K

### [Examples]

| <b>S1</b> | R1 | S2 | R2 | S3 | R3 | <b>S4</b> | R4 | S5 | R5 | hand |
|-----------|----|----|----|----|----|-----------|----|----|----|------|
| 1         | 11 | 4  | 1  | 3  | 7  | 4         | 11 | 2  | 1  | 2    |
| J         |    | A  |    | 7  |    | J         |    | A  |    |      |

# Implementation

- Do your project using MATLAB or Python
- When TA runs your codes
  - should create a file named 'output\_taskX'.
  - print each result in a distinguished line.
- No error messages are allowed.

### Submission

- Due date: 27<sup>th</sup> Oct 12:00 pm
- Submit source code with zip file
  - file name: [student-id].zip
  - clarify which files contain either task 1 or 2.
- Documentation
  - explain what algorithms you use for each task.
  - file name: doc\_[student-id].xx (pdf, docs, hwp,...)
- EX) 20201818.zip

```
- task1_20201818.m
- task2_20201818.m
- doc_20201818.pdf
```

## **Evaluation**

- Accuracy (40%)
  - Task1 (20%), Task2 (20%)
  - 0 if submitted algorithm fails to run.
  - 0 if result has invalid value.
- Novelty (50%)
  - 0 if you implement algorithm explicitly with if-else.
- Runtime (5%)
  - 0 if your program runs more than an hour.
- Documentation (5%)

### Announcement

- Make a team
  - 1~3 members / team
  - If you have mates, please email to TA (until Sunday)
    - Name and student id of your team members
    - TA: Yunhun Jang (yh.jang@kaist.ac.kr)
  - TA will match a team if you don't have teammates (send me an e-mail if you want me to do for you)