Projet ROSE IHM PEPPER RoboCup@Home

Guillaume BERTHELON

Antoine D'AURE

Alexis MAIRE

Timothée OLIVES

Tristan PARISELLE

Antoine PORTÉ

Aurélien SAUNIER

Plan

- 1. Présentation de l'équipe
- 2. Présentation de l'épreuve
- 3. Cheminement de la réflexion
- 4. Organisation générale de l'équipe
- 5. Vidéo Présentation Robot
- 6. 1ère approche: mots clefs
- 7. 2^{ème} approche : dynamique
- 8. Interprétation de la question et réponse
- 9. Tablette
- 10. Phase de test
- 11. Bilan personnel
- 12. Bilan groupe
- 13. Conclusion / Ouverture

Présentation de l'équipe

• Equipe de 7 étudiants CPE spécialisation Robotique

• Intérêt pour développer l'IHM

Pepper

Présentation de l'épreuve

RoboCup@Home

• Montréal 2018

 Epreuve « Speech and Person Recognition »

• Interface Homme Machine (IHM)

Cheminement de la réflexion

Mise en place globale

- Compréhension du sujet et de l'épreuve
- Exploration de l'ensemble des questions
- Définition axes de travail et des deux approches

Mise en œuvre technique

- Prise en main Hard/Software (QiChat, Naoqi, chorégraphe ...)
- Compréhension logicielle des questions

Organisation générale de l'équipe

- Création Github et Trello
- Répartitions des tâches en duo selon préférences
- Création d'une base de donnée comportant les caractéristiques de l'ensemble des objets/localisation/personnes

 $1^{\text{\`e}re}$ approche : mots clefs

Fonctionnement de QiChat - Dialog

• Topic : fichier contenant des règles

```
topic: ~topic_dialog_with_pepper()
language: enu
```

 Règles : associent à entrée humaine une réponse du robot

```
u:(~greetings) ~greetings Nice to see you dear, what is your name?
```

• Concept : liste de mots/phrases ou synonyme

```
concept: (greetings) ^rand[hi hello "good morning" "hey there"]
```


 $1^{\text{\`e}re}$ approche : mots clefs

Etapes

• Définition des concepts généraux

concept: (localisation) ["are in" where situation room situated placed located find belong stored "in which" ~rooms]

• Définition des concepts objets , personnes et localisation

• Découpe des questions par mots clefs

u:(~localisation * chips {please}) chips is on the desk in the office

1^{ère} approche: mots clefs

Etapes

- Implémentation de toutes les questions dans le topic
- Génération de l'ensemble des *règles* via script python

 $1^{\text{\`e}re}$ approche : mots clefs

Fonctionnement

 Insérer les topics (général et concepts d'environnements) dans Pepper

• Lancer le script de connexion python au robot

Interaction homme robot

1	Α	В	C	D	E	F	G	H	I	
1	Name	Туре	Category	Localization	Room	Color	Shape	Size	Weight	
2	chips	food	snack	desk	office	yellow	none	1		1
3	pringles	food	snack	desk	office	red	none	1		1
4	peanuts	food	snack	desk	office	brown	none	0		0
5	chocolate bar	food	candies	center table	living room	brown	none	2		2
6	mints	food	candies	center table	living room	green	none	0		0
7	chocolate egg	food	candies	center table	living room	brown	none	2		2

Parseur CSV

• Récupération de chaque entrée du tableau

```
parseur = CSV_PARSEUR("list_objects.csv","list_person.csv","list_locations.csv")
```

for object in parseur.objects:

objects.append(object.name)

Concept

• Déclaration et utilisation dans le fichier .top

```
dynamic: object
u: (~what_is {the} color {of} {the} _~object)
```

• Initialisation dans le fichier python

ALKnowledge

• Définition Ensemble de triplet (sujet, prédicat, objet) représentant la mémoire du robot

Utilisation

```
knowledge_service = self.session.service("ALKnowledge")
knowledge_service.add("knowledge", "chips", "hasColor", "yellow")

Quelle est les couleur des chips ?
   knowledge_service.getObject("knowledge", "chips", "hasColor")

Réponse : Yellow
```

• Fonctionnalités intéressantes

getObject, getSubject, update.

Mise en forme des questions

est ce que l'objet 1 et l'objet 2 ont la meme taille

u: ([do are is] {the} {size} {of} _~object and _~object {have} {of} the same {size}) \$1 and \$2 ^call(ProcessObjectModule.sameSize(\$1,\$2)) c1:(True) have the same size c1:(False) have not the same size

• Utilisation de [] pour avoir plusieurs entrées possibles

• Utilisation de {} pour avoir une entrée optionnelle

Récupération de variables grâce aux _

 Réponse à la question en appelant une fonction de traitement python (^call)

ALModule et traitement de la réponse

Déclaration du ALModule:

processObject= ProcessObjectModule(self.session,parseur)
self.session.registerService("ProcessObjectModule", processObject)

✓ Vidéo approche dynamique – IHM Pepper

Interprétation de la question et réponse

Création d'une seule fonction pour interpréter et répondre

- Rétention des mots clés dans une liste
- Tri des mots clés
- Disjonction de cas en fonction des prépositions
- Entrée : une question
- Sortie : une réponse

Tablette

Prise en main

- Affichage Image
- Affichage page Web
- Fonctionnalités liées à un web service

```
// global session
                                                                                            ×
var session = new QiSession(function(session) {
                 // document.getElementById('typed').innerHTML = "Connection esterblished!";
               }, function() {
                 // document.getElementById('typed').innerHTML = "Could not connect to the r
               1);
// Subscribe to ALMemory Service
|session.service("ALMemory").then(function(ALMemory) {
  // document.getElementById('typed').innerHTML = "ALMemory proxy subscription successful!"
  ALMemory.getData('keyword typed').then(function(keyword){
         new Typed('#typed', {
           strings: [keyword],
           typeSpeed: 15,
           fadeOut: true,
         });
   });
   ALMemory.getData('keyword CH').then(function(keyword){
         document.getElementById('Conversation history').innerHTML = [keyword];
  });
}});
```


Tablette

Applications pour le projet

- Historique de la discussion
- Tests

Phase de test

Préparation du test

- Chargement d'un topic (.top) de test généré par une des deux approches (mots clefs ou dynamique)
- Ensemble des questions enregistrées dans un fichier .txt
- Appel au logiciel balcon pour poser la question
- Connexion au Pepper via script .py

Phase de test – Algorithme

Lancement de la question

- Utilisation des évènements pour récupérer la réponse
- Comparaison de la réponse avec notre script de génération automatique de réponse
- Enregistrement des résultats et affichage sur la tablette
- Temporisation faible entre chaque question (< 3s)
 - √ <u>Vidéo de Tests IHM Pepper</u>

Bilan personnel – Guillaume BERTHELON

- Prise en main de l'environnement
- Tests
- Travail sur ALKnowledge
- Travail sur ALModule
- Travail sur les concept dynamiques
- Formulation des questions dans le fichier topic

Bilan personnel – Antoine D'AURE

- Prise en main de l'environnement
- Exploration de l'ensemble des questions possibles
- Approche par mots clefs (dont gestion tablette)
- Tests & analyse de résultats
- Présentation et montage vidéos

Bilan personnel – Alexis MAIRE

- Prise en main de l'environnement
- Exploration de l'ensemble de questions
- Génération de l'ensemble des questions
- Approche par mots clefs
- Tests et analyse de résultats
- Présentation finale

Bilan personnel – Timothée OLIVES

- Prise en main de l'environnement
- Exploration du champ lexical
- Elaboration d'un script de réponse
- Script d'automatisation de création du fichier topic
- Présentation

Bilan personnel – Tristan PARISELLE

- Prise en main de l'environnement
- Tests
- Travail sur l'échange de variable entre python et topic
- Travail sur ALModule
- Conception des fonctions de traitement de réponse
- Formulation des questions

Bilan personnel – Antoine PORTÉ

- Prise en main de l'environnement
- Exploration de l'ensemble de questions
- Création Github
- Tablette
- Mouvement du robot en fonction du son
- Présentation finale

Bilan personnel – Aurélien SAUNIER

- Prise en main de l'environnement et notamment du fonctionnement des évènements
- Développement du parseur CSV et des classes utilisées
- Mise en place de la classe de test
- Test et récupération des résultats

Bilan de groupe

Mise en situation équipe d'ingénieur de développements

- Cohésion d'équipe
 - Lundi : Réunion hebdomadaire et répartition des tâches de la semaine à venir
- Prises de décisions en groupe
 - Management horizontal
- Ecoute et entraide

Conclusion

- Réponse au cahier des charges :
 - Test de « speech recognition »
- Résultats :
 - Approche par mots clefs
 - 10% d'erreur (1h de test/300 questions posées)
 - Très bon résultats avec voix synthétique (Zira)
 - Relativement rapide à mettre en place
 - Approche dynamique
 - < 10% d'erreur (1h de test/300 questions posées)
 - Bons résultats en face à face avec une personne
 - Excellents résultat avec la voix synthétique
 - Long à mettre en place

Conclusion

- Améliorations possibles:
 - Automatisation du fichier .top
 - Agrandir la base de données de la grammaire
 - Implémenter la reconnaissance visuelle
 - Nouvelle approche via analyse de son (récupération fichier mp3)

Questions?

