Лабораторная работа № 1.02

Изучение скольжения тележки по наклонной плоскости

Содержание

Введение													2
Экспериментальная уста	анс	В	ка										5
Техника безопасности .													7
Проведение измерений .													8
Обработка результатов.													11
Контрольные вопросы .													16
Литература													17
Приложение													18

Цели работы

- 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- 2. Определение величины ускорения свободного падения д.

Задачи

- 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона.
- 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
- 3. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
- 4. Исследование зависмости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.

Введение

Как известно, при поступательном равноускоренном движении тела вдоль оси 0x зависимость проекции его скорости v_x от времени t определяется выражением:

$$v_x(t) = v_{0x} + a_x t, \tag{1}$$

где v_{0x} - проекция скорости на ось 0x в момент времени t=0, a_x - ускорение тела. Зависимость координаты тела x от времени t имеет вид:

$$x(t) = x_0 + v_{0x}t + \frac{a_x t^2}{2}. (2)$$

Здесь x_0 - начальная координата. Если начальная скорость тела равна нулю, то из (2) следует:

$$x_2 - x_1 = \frac{a}{2} \left(t_2^2 - t_1^2 \right). \tag{3}$$

Таким образом, существует линейная зависимость между перемещением $\Delta x = x_2 - x_1$ и полуразностью квадратов значений времени $\frac{t_2^2 - t_1^2}{2}$. Коэффициент пропорциональности этой зависимости равен ускорению тела. Если экспериментальный график этой зависимости будет представлять собой прямую линию, то это будет доказательством движения с постоянным ускорением.

В качестве объекта совершающего равнопеременное поступательное движение рассмотрим тележку, скользящую по наклонной плоскости (см. рис.1). Второй закон Ньютона, описывающий ее движение, имеет вид:

$$m\vec{a} = m\vec{g} + \vec{N} + \vec{F}_{\rm TP},\tag{4}$$

где \vec{a} — ускорение тележки, \vec{N} - сила реакции опоры, а сила трения, возникающая при скольжения, по модулю равна про-изведению коэффициента трения на силу нормальной реакции: $F_{\rm TP}=\mu N$. Проекции уравнения (4) на координатные оси:

$$\begin{cases} 0y: 0 = N - mg\cos\alpha, \\ 0x: ma = mg\sin\alpha - \mu mg\cos\alpha, \end{cases}$$
 (5)

где α - угол между наклонной плоскостью и горизонталью. Из (5) следует выражение для модуля ускорения:

$$a = g\sin\alpha - \mu g\cos\alpha. \tag{6}$$

Рис. 1. Векторная диаграмма сил, действующих на тело, расположенное на наклонной плоскости

Поскольку в лабораторной установке коэффициент трения μ и угол α достаточно малы, то $\cos \alpha$ в формуле (6) можно заменить единицей. С учетом этого выражение для ускорения будет иметь вид:

$$a = g\left(\sin\alpha - \mu\right). \tag{7}$$

Таким образом, теоретическая зависимость ускорения a от $\sin \alpha$ является линейной и угловой коэффициент этой зависимости равен ускорению свободного падения g.

Экспериментальная установка

Схема экспериментальной установки представлена на Рис.2.

Рис. 2. Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

По рельсу «1» скользит тележка «2». Для уменьшения трения между поверхностями рельса и тележки создается воздушная подушка с помощью воздушного насоса «3», подключенного

к источнику питания «4». Электрические провода, подключающие воздушный насос к источнику питания, на рисунке не показаны. Высота рельса над опорной плоскостью «6» регулируется с помощью винтовых ножек опор «5». Электромагнит «7» фиксирует тележку в начале шкалы. Тележка снабжена флажком с черными вертикальными рисками. Цифровой измерительный прибор «9» фиксирует момент времени, скорость и ускорение тележки при прохождении флажка через оптические ворота «8». Запуск тележки и изменение режимов осуществляется пультом дистанционного управления «10». Угольник «11» используется для измерения вертикальной координаты точек рельса.

Характеристики средств измерений приведены в Табл. 1.

Техника безопасности

- 1. Не разрешается включать установку в отсутствие преподавателя или лаборанта.
- 2. Нельзя оставлять без наблюдения лабораторную установку во включенном состоянии.
- 3. Воспрещается держать насос включённым дольше 2-3 минут.
- 4. Все электрические провода и кабели должны свободно лежать на столе и не должны быть натянуты.
- 5. В случае искрения, появления дыма немедленно обесточить установку и сообщить преподавателю или лаборанту.
- 6. После окончания работы все электроприборы должны быть выключены из сети.

Проведение измерений

Задание 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона

- 1. Установить направляющий рельс горизонтально. Для этого:
- подключить вилку насоса к блоку питания, соблюдая полярность (положительный контакт насоса помечен белым), выставить рабочее напряжение 6 B, включить источник;
- поместить тележку на рельс около точки с координатой 0,6 *м* (приблизительно в середине рельса);
- вращая винт правой (одиночной) опоры, добиться неподвижности тележки;
- выключить насос.
- 2. Установив угольник вертикально на опорной плоскости, измерить с его помощью вертикальные координаты h_0 и h_0' верхнего края линейки на рельсе, соответственно, в точках x=0,22 м и x'=1,0 м. Координаты x и x', а также измеренные величины h_0 и h_0' запишите в Табл. 2 с указанием приборных погрешностей их измерения $\Delta x = \Delta x' = 5$ мм, $\Delta h_0 = \Delta h_0' = 0,5$ мм.
- 3. Под обе ножки левой опоры подложите одну стандартную пластину толщиной $d \approx 1 \ cm$.
- 4. Включить прибор ПКЦ-3 тумблером на правой боковой панели.
- 5. На дистанционном пульте управления нажать последовательно три кнопки: **«режим работы: 0»**, **«механика: сброс»**, **«индикация: время** $\mathbf{t_1}, \mathbf{t_2}$ ».
- 6. Установить первые оптические ворота в точке с координатой $x_1=0.15\,$ м, а вторые $x_2=0.40\,$ м.
- 7. Включить блок питания воздушного насоса ВС 4-15.

- 8. На дистанционном пульте управления нажать кнопку **«меха- ника: сброс»** на цифровом приборе.
- 9. Тележку установить в крайнем левом положении и прижать к электромагниту.
- 10. На дистанционном пульте управления нажать кнопку **«механика: пуск»**. Тележка начнет двигаться и последовательно пройдет левые и правые оптические ворота. На дисплее прибора ПКЦ-3 отразятся промежутки времени t_1 и t_2 от начала движения до прохождения ворот. Величины x_1 , x_2 , t_1 , t_2 внесите в Табл. 3 (см. Приложение 1).
- 11. Выключите блок питания воздушного насоса ВС 4-15.
- 12. Установить вторые оптические ворота последовательно в точках $x_2 = 0.50$; 0.70; 0.90; 1.10 м и для каждого положения оптических ворот выполнить пункты 5-11.

Задание 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту

- 1. Установить первые оптические ворота в точке с координатой $x_1=0{,}15\,$ м, а вторые $-\,x_2=1{,}10\,$ м.
- 2. Под ножки левой опоры положить одну стандартную пластину.
- 3. Установив угольник вертикально на опорной плоскости, измерить с его помощью вертикальные координаты h и h' верхнего края шкалы, соответственно, в точках x=0.22 м и x'=1.00 м. Значения вертикальных координат занести в Табл. 4 (см. Приложение).
- 4. Включить блок питания воздушного насоса ВС 4-15.
- 5. На дистанционном пульте управления нажать кнопку **«меха- ника: сброс»** на цифровом приборе.
- 6. Тележку установить в крайнем левом положении и прижать к электромагниту.
- 7. На дистанционном пульте управления нажать кнопку **«меха-ника: пуск»**. Тележка начнет двигаться, и последовательно пройдет левые и правые оптические ворота.
- 8. На дисплее прибора ПКЦ-3 отразятся промежутки времени t_1 и t_2 от начала движения до прохождения ворот. Величины t_1 , t_2 занести в Табл. 4. Повторить еще четыре раза измерения t_1 и t_2 . Результаты также занести в Табл. 4
- 9. Выключите блок питания воздушного насоса ВС 4-15.
- 10. Последовательно увеличивая число пластин под ножками левой опоры до пяти, для каждого набора пластин выполнить пункты 3-9, записывая результаты в Табл. 4.
- 11. После окончания всех измерений выключить прибор ПКЦ-3 тумблером на правой боковой панели.

Обработка результатов

Задание 1. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки

- 1. По результатам прямых измерений из Табл. 3 рассчитайте величины $Y=x_2-x_1$ и $Z=\left(t_2^2-t_1^2\right)/2$ и их погрешности (см. раздел «Погрешности косвенных измерений» в пособии «Обработка экспериментальных данных» из списка литературы). Запишите полученные значения и погрешности в ту же таблицу.
- 2. Теоретическая зависимость Y от Z в соответствии с формулой (3) должна иметь линейный вид Y=aZ, с угловым коэффициентом равным ускорению. Найденные точки экспериментальной зависимости $\{Y_i;\,Z_i\}$ и их погрешности нанесите на график. Правила построения графиков изложены в методическом пособии «Обработка экспериментальных данных» .
- 3. Найдите ускорение тележки методом наименьших квадратов (МНК). Основы данного метода также приведены в пособии «Обработка экспериментальных данных».
- Так как теоретическая зависимость Y=aZ проходит через начало координат, то коэффициент a и его среднеквадратическое отклонение (СКО) σ_a можно найти по следующим формулам:

$$a = \frac{\sum_{i=1}^{N} Z_i Y_i}{\sum_{i=1}^{N} Z_i^2}; \quad \sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - aZ_i)^2}{(N-1)\sum_{i=1}^{N} Z_i^2}},$$
 (8)

где N — количество экспериментальных точек, в данной серии

измерений N=5.

— Рассчитайте абсолютную погрешность коэффициента a для доверительной вероятности $\alpha=0.90$ по формуле:

$$\Delta_a = 2\sigma_a,\tag{9}$$

- Найдите относительную погрешность ускорения:

$$\varepsilon_a = \frac{\Delta a}{a} \cdot 100\%. \tag{10}$$

- Полученный доверительный интервал для ускорения приведите в п.12 «Окончательные результаты» вашего отчета по лабораторной работе.
- 4. Используя найденное значение ускорения a, постройте график зависимости Y(Z)=aZ на том же рисунке, что и экспериментальные точки $\{Y_i;\ Z_i\}.$
- 5. Сформулируйте и запишите в отчет вывод: можно ли считать движение тележки равноускоренным? В качестве обоснования вывода можно привести ссылку на характер полученного графика, а также на значения абсолютной и относительной погрешностей ускорения.

Задание 2. Исследование зависмости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения

1. Для каждой серии измерений из Табл. 4 вычислите значение синуса угла наклона рельса к горизонту по формуле:

$$\sin \alpha = \frac{(h_0 - h) - (h'_0 - h')}{x' - x}.$$
(11)

Результаты расчета запишите в Табл. 5 (см. Приложение).

- 2. Для каждой серии измерений вычислите средние значения времени t_1 и t_2 и их погрешности (см. раздел «Прямые многократные измерения» в пособии «Обработка экспериментальных данных»).
- 3. Вычислите значение ускорения и его погрешность для каждой серии измерений по формулам:

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2},\tag{12}$$

$$\Delta a = \langle a \rangle \sqrt{\frac{(\Delta x_{\text{H}2})^2 + (\Delta x_{\text{H}1})^2}{(x_2 - x_1)^2} + 4 \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2}}, \quad (13)$$

где $\Delta x_{\rm и1}$ и $\Delta x_{\rm и1}$ — приборные погрешности измерения координат x_1 и x_2 ; Δt_1 и Δt_2 — абсолютные погрешности значений времен t_1 и t_2 .

- 4. Результаты расчета ускорения в виде доверительного интервала $\langle a \rangle \pm \Delta a$ внесите в последний столбец Табл. 5.
- 5. Теоретическая зависимость a от $\sin \alpha$ в соответствии с формулой (7) имеет линейный характер: $a=A+B\sin \alpha$, где $A=-\mu g$, B=g, т.е. коэффициент B равен ускорению свободного падения. Найдите коэффициенты линейной зависимости по следующим формулам:

$$B \equiv g = \frac{\sum_{i=1}^{N} a_i \sin \alpha_i - \frac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i\right)^2};$$
(14)

$$A = \frac{1}{N} \left(\sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin \alpha_i \right).$$
 (15)

6. Рассчитайте СКО для ускорение свободного падения (коэффициента B) по формуле:

$$\sigma_g = \sqrt{\frac{\sum\limits_{i=1}^{N} d_i^2}{D(N-2)}},\tag{16}$$

где

$$d_i = a_i - (A + B\sin\alpha_i), \qquad (17)$$

$$D = \sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i \right)^2.$$
 (18)

Определите абсолютную погрешность коэффициента для доверительной вероятности $\alpha=0.90$ по формуле:

$$\Delta g = 2\sigma_q. \tag{19}$$

Рассчитайте относительную погрешность g:

$$\varepsilon_g = \frac{\Delta g}{q} \cdot 100\%. \tag{20}$$

Найденный доверительный интервал для ускорения свободного падения запишите в бланк отчета по лабораторной работе.

7. Найдите абсолютное отклонение экспериментального значения ускорения свободного падения $g_{\text{эксп}}$ от его табличного значения $g_{\text{табл}}$ для Санкт-Петербурга. Сравните абсолютную погрешность Δg с разностью между табличным и экспериментальным значениями $|g_{\text{эксп}}-g_{\text{табл}}|$. Сформулируйте и запишите в отчет вывод о

достоверности результатов ваших измерений.

- 8. По данным из второго и пятого столбцов Табл. 5 отметьте на рисунке экспериментальные точки зависимости $a = a (\sin \alpha)$.
- 9. Используя рассчитанные методом наименьших квадратов значения коэффициентов A и B, постройте на том же рисунке график аппроксимирующей линейной зависимости $a=A+B\sin\alpha$.

В отчет по лабораторной работе должны входить:

- Доверительный интервала для ускорения, полученный в первом задании, с относительной погрешностями.
- Значение ускорения свободного падения с абсолютной и относительной погрешностями.
- Абсолютное и относительное отклонение измеренного ускорения свободного падения от его табличного значения.

Контрольные вопросы

- 1. Дайте определения пути, перемещения, траектории. Каковы принципиальные различия этих понятий?
- 2. Изобразите графики зависимостей координаты x(t) и проекции скорости $V_x(t)$ для случаев равномерного и равнопеременного прямолинейного движения.
- 3. В любой момент времени мгновенное и среднее значение скорости равны друг другу. Что в этом случае можно сказать о величине ускорения?
- 4. В первом случае некоторому телу придали начальную скорость параллельно шероховатой наклонной плоскости в направлении вверх, а во втором случае вниз. В каком случае модуль ускорения тела будет больше и почему?
- 5. Изобразите качественный рисунок (чертеж) иллюстрирующий получение формулы (11) данных методических указаний.
- 6. Как зависит величина силы трения скольжения, действующая на тело находящееся на наклонной плоскости, от угла ее наклона при прочих равных условиях? Изобразите график соответствующей зависимости.
- 7. Как зависит ускорение свободного падения от географической широты?

Литература

- 1. Курепин В.В., Баранов И.В. **Обработка экспериментальных** данных: Учеб.-метод. пособие СПб.: НИУИТМО; ИХиБТ, 2012.
- 2. Боярский К.К., Смирнов А.В., Прищепенок О.Б. **Механика. Ч.1: Кинематика, динамика**: Учеб.-метод. пособие СПб.: Университет ИТМО, 2019. // https://books.ifmo.ru/book/2223

Приложение

Таблица 1: Измерительные приборы

Наименование	Предел измерений	Цена деления	Класс точности	$\Delta_{\scriptscriptstyle extsf{H}}$
Линейка на рельсе	1,3 м	1 см/дел	_	5 мм
Линейка на угольнике	250 мм	1 мм/дел	_	0,5 мм
ПКЦ-3 в режиме секундомера	100 c	0,1 c	_	0,1 c

Таблица 2

х, м	х', м	h_0 , мм	h'_0 , мм

Таблица 3: Результаты прямых измерений (Задание 1)

	Измере	нные ве.	личины	Рассчитанные величины			
N_{Ω}	x_1 , M	x_2 , M	t_1, c	t_2, c	x_2-x_1 , M	$\frac{t_2^2 - t_1^2}{2}, c^2$	
1							
2							
3							
4							
5							

Таблица 4: Результаты прямых измерений (Задание 2)

$N_{\Pi \Pi}$	h, мм	h', мм	\mathcal{N}_{2}	t_1, c	t_2, c
			1		
			2		
1			3		
			4		
			5		
			1		
			2		
2			3		
			4		
			5		
			1		
			2		
3			3		
			4		
			5		
			1		
			2		
4			3		
			4		
			5		
			1		
			2		
5			3		
			4		
			5		

 $N_{\Pi \Pi}$ - количество пластин

h - высота на координате x=0.22 м

h' - высота на координате $x'=1{,}00$ м

Таблица 5: Результаты расчетов (Задание 2)

$N_{\Pi \Pi}$	$\sin lpha$	$\langle t_1 \rangle \pm \Delta t_1, \ c$	$\langle t_2 \rangle \pm \Delta t_2, \ c$	$\langle a \rangle \pm \Delta a, {\scriptstyle rac{M}{c^2}}$
1				
2				
3				
4				
5				

 $N_{\Pi \Pi}$ - количество пластин

$$\langle t_{1,2} \rangle = \frac{1}{N} \sum_{i=1}^{N} t_{1_i,2_i}$$