

中兴通讯 MC8630 模块 linux 环境使用手册

(电信数据卡终端版本)

版 本: V1.0

中兴通讯股份有限公司

版权声明

Copyright © 2008 by ZTE Corporation

本用户手册之版权属于中兴通讯股份有限公司所有,并依法受《中华人民共和国著作权法》及有关法律的保护。

未经中兴通讯股份有限公司许可,任何人不得摘录、复制、发行、汇编或者以各种方式(电子版、印刷品等)向公众传播本手册的任何内容。对于有损版权人利益的行为,公司将依法追究侵权人的责任。

本公司保留在不预先通知的情况下,对此手册中描述的产品进行修改和改进的权利,同时保留随时修订或收回本手册的权利。

本用户手册中如有文字不明之处,请您及时向本公司或者代理商、销售商咨询。

中兴 2.5G/3G 无线通讯模块授权代理商

香港领佳实业有限公司

电话: 0755-86111909

传真: 0755-86111900

网址: WWW.HEADELE.COM

前言

概述

本文档适用的产品是 MC8630 模块。本文档通过对 MC8630 模块的 linux 使用环境所遇到的问题进行了说明,用以指导用户对该模块进行在 linux 下的使用,包括驱动设计,拨号上网,以及其他一些问题,

阅读对象

本文档主要适用于以下工程师:

- 系统设计工程师
- 软件工程师
- 测试工程师

内容简介

本文档包含 5 个部分,内容如下:

章节	内容			
1. MC8630 概述	MC8630 Evdo 模块简单介绍,MC8630 支持的 linux 类型和版本			
2. MC8630 Linux 驱动	主要介绍 MC8630 linux 驱动编译,配置方面问题			
3. MC8630 Linux 下使用 AT 指令	MC8630 Linux 下如何使用 AT 指令			
4. MC8630 Linux 下拨号问题	介绍 linux 下拨号常见问题			
5. MC8630 常见问题说明	主要介绍 MC8630 使用中常见问题			

文档版本 V1.0 (2009-02-26)

第一次正式发布。

目录

1	MC8630 概述	_
2	MC8630 LINXU 驱动	_
3	MC8630 LINUX 下使用 AT 指令	4
4	MC8630 LINUX 下的拨号问题	
-	4.1 WVDIAL 拨号	
	4.2 CHAT 拨号	
	4.2.1 PEERS-EVDO	
	4.2.2 CHAT-EVDO	Ç
	4.2.3 PAP-SECRETS	ç
	4.2.4 CHAP-SECRETS	ç
	4.3 拨号常见问题	(
5		
	MC8630 LINUX 环境使用问题说明	
O	MU8030 LINUA	

1 MC8630 概述

1xEV-DO 是一种针对分组数据业务进行优化的、高频谱利用率的 CDMA 无线通信技术,可在 1.25MHz 带宽内提供峰值速率达 3.1Mbps 的高速数据传输服务, 随着中国 3G 网络的发展,越来越多的高速数据应用需求由此而产生,MC8630 就是一款支持 1x/EVDO Rev-A 的模块终端,可支持话音,短信,高速数据,支持的速率,下载 3.1Mbps,上传 1.8Mbps,模块应用领域很广泛,可用在电信运营商,交通领域,金融领域,电力领域,科教文卫领域,公用领域等,主要的应用包括数据卡,无线路由器,视频监控,无线 POS 机,手机,车载终端定位,无线数传终端等

模块是一种半成品的产品,一般都要基于模块进行二次开发,二次开发的平台,主要应用领域是在嵌入式领域,包括 linux,wince,以及其他手机操作系统,而 linux 是应用最为广泛的操作系统,MC8630 完全支持多种类型的 linux 系统

目前 MC8630 支持的 linux 内核包括 2.6.18,2.6.21,2.6.27,2.6.29 等, 2.4 内核的 linux 不支持, 支持的 linux 系统类型包括 fedora,ubuntu,redhat 等, 我们会提供以上内核的 linux 参考驱动

2 MC8630 LINXU 驱动

编译驱动需要注意的问题

- 1. 首先在编译驱动前,确认编译驱动和编译内核的编译环境相同,也就是需要相同版本号的交叉编译工具,比如 arm-linux-gcc,arm-linux-ld,这样编译出来的驱动才能跟内核配合起来,一起工作,有些客户内核是别人开发的,如果要用我们提供的驱动,就需要建立跟内核一样的环境,然后编译驱动,驱动才可以正常使用;
- 2. 编译驱动时的准备工作,Makefile 文件配置,包括,内核源码目录,驱动源码,使用的编译工具,都需要配置,如下

下载内核源码,置于一编译目录,目录可自己选择,一般可放置/usr/src/linux

make menuconfig//配置内核选项

make modules_prepare//为编译驱动模块做准备

修改 makefile 文件

KERNELDIR = usr/src/linux-2.6.18/ //内核源码目录

make CC=arm-linux-gcc LD=arm-linux-ld //使用编译工具

make

编译之后,生成 ztemt.ko

Insmod ztemt.ko 之后,会生成设备节点在/dev/ttyUSB0-ttyUSB3,如下图

常见驱动问题及解决办法

3 MC8630 LINUX 下使用 AT 指令

如果在 linux 下执行 AT 指令,需要串口工具支持,一般的 linux 系统中会有串口工具 minicom,但在嵌入式系统中有可能被裁减掉,需要移植,或者自己编写的处理 AT 指令的程序,也就是读写 AT 指令的程序,以下为 minicom 使用 Minicom 配置,ctrl-A.按键 Z

按键 'O' serial port setup

配置完成,执行 AT 指令

4 MC8630 LINUX 下的拨号问题

在 PC linux 下面,一般都有默认配置好的拨号界面或者系统自带的拨号工具,而一般的模块用于嵌入式 linux 的开发,在内核支持 PPP 情况下,需要移植拨号工具,目前能够支持的拨号工具有两种,一种是 wvdial,一种是 chat,都需要先移植这两个软件,在嵌入式下,wvdial 的移植难度较大,需要的库文件较多,而 chat 相对简单,但是配置正好相反,wvdial 配置只需要一个文件,而 chat 则需要四个

4.1 Wydial 拨号

使用起来较为方便,只需要配置一个文件 wvdial.conf,具体配置如下

[Dialer EVDO]

Modem = /dev/ttyUSB0 //设置 modem 口设备节点

Init2 = ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0 //modem 初始化指令

Modem Type = Analog Modem

Phone=#777 //拨号号码

#ISDN = 0

Username=card //帐号

Init1=ATZ

Password=card //密码

Baud=460800

PPPP Path= /usr/sbin/pppd

New PPPD= 1

Stupid Mode = 1 //掉线之后,自动重拨

Tonline = 0

wvdial 拨号格式: wvdial EVDO

拨号之后,如下图所示,获取到 IP 地址,以及 DNS 地址,可直接使用网络

```
--> Cannot get information for serial port.
--> Initializing modem.
--> Sending: ATZ
ATZ
OK
--> Sending: ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
ATQ0 V1 E1 S0=0 &C1 &D2 +FCLASS=0
--> Modem initialized.
--> Sending: ATDT#777
--> Waiting for carrier.
ATDT#777
CONNECT
--> Carrier detected. Starting PPP immediately.
--> Starting pppd at Tue Jun 2 18:36:22 2009
--> Pid of pppd: 15769
--> Using interface ppp0
--> pppd: P(c[08]H&c[08]
--> local IP address 113.112.63.33
--> pppd: P(c[08]H&c[08]
--> remote IP address 115.168.82.80
--> pppd: P(c[08]H&c[08]
--> primary DNS address 202.96.128.86
--> pppd: P(c[08]H&c[08]
--> secondary DNS address 220.192.32.103
```

4.2 Chat 拨号

移植较为简单,一般默认的系统会带 chat 工具,需要四个配置文件,包括 pap_secrets,chap_secrets(帐号密码配置)peers-evdo(拨号脚本),chat-evdo(chat 配置)

4.2.1 peers-evdo

```
拨号 modem 配置文件
# /etc/ppp/peers/evdo //文件存放路径
# this is ppp script for use china telcom's CDMA data service
ttyUSB0
115200
nocrtscts
connect '/usr/sbin/chat -v -f /etc/ppp/chat/evdo'
auth-chap //noauth 根据选择的鉴权方式,到 chap-secrets 或者 pap-secrets 中提取密码
debug
nodetach
ipcp-accept-local
ipcp-accept-remote
defaultroute
user card
```

4.2.2 chat-evdo

chat 拨号脚本设置,以及错误处理脚本

#chat-evdo

/etc/ppp/chat/evdo //文件存放路径

this is the chat script for china telcom

ABORT "NO CARRIER"

ABORT "NO DIALTONE"

ABORT "ERROR"

ABORT "NO ANSWER"

ABORT "BUSY"

TIMEOUT 120 //一般注意超时时间不要设置太短

"" at

OK atdt#777 //拨号号码

CONNECT

4.2.3 Pap-secrets

文件中设置 PAP 鉴权需要的用户名和密码,认证服务器,可以设置多个帐号及认证的服务器

IP addresses

/etc/ppp/pap-secrets

Secrets for authentication using PAP

client server secret

card * card

ctnet@mycdma.cn * vnet.mobi

4.2.4 chap-secrets

文件中设置 chap 鉴权中使用的用户名密码,认证服务器, DNS 地址

/etc/ppp/chap-secrets

Secrets for authentication using CHAP

client server secret IP addresses

card * card

chat 拨号格式: pppd call evdo

4.3 拨号常见问题

问:模块在Linux下的拨号问题

答: Linux 拨号需要 Linux 内核支持 PPP(尤其在编译内核的时候,注意 PPP 的选项,比如 PPP 头压缩等), 另外,拨号需要 Linux 的拨号工具支持,比如 wvdial,KPPP,等,我们提供 wvdial 的拨号配置文件,文件中包含拨号的端口(modem), modem 的初始化选项,拨号的帐号,密码,以及其他一些选项,以 root 身份执行 wvdial 即可,比如在 unbuntu 下,执行 sudo wvdial 即可拨号

KPPP 是一种界面拨号工具,用起来更加方便,用户可以自行配置,跟 windows 类似

问:模块在拨号之后,一直出现乱码,而不拨正常拨上网络的问题

答: dm8c710m(M)版本存在此问题,其他版本没有,由于模块没有上报CONNECT导致,模块升级即可解决

问:模块确认在 windows 下可以正常拨号,在 Linux 拨号出现问题

答: 首先确认模块在 Linux 下的驱动正常,可以执行 AT 指令,并且有信号,其次确认拨号脚本配置正确,特别是拨号端口,帐号,密码等,再次确认内核是否支持 PPP等,一般问题都是由驱动问题,就是脚本配置问题,内核配置问题导致,如果遇到问题,也可以在 Linux.org,其他的 Linux 论坛中都可以找到答案或者百度中找提示信息

问:在 linux 下拨号的时候,一拨就会断掉

- --> Starting pppd at Fri Feb 21 07:01:32 2003
- --> pid of pppd: 5565
- --> Disconnecting at Fri Feb 21 07:01:36 2003
- --> The PPP daemon has died: Authentication error.
- --> We failed to authenticate ourselves to the peer.
- --> Maybe bad account or password? (exit code = 19)
- --> man pppd explains pppd error codes in more detail.
- --> I guess that's it for now, exiting
- --> The PPP daemon has died. (exit code = 19)
- 答:原因可能是编译内核时,没有选择 PPP 头压缩

问: 发送 lcp 超时

答:在 pppd+chat 模式下,需要四个文件,每个文件的作用不同,文件配置有问题

/etc/ppp/pap_secrets, pap 拨号帐号密码所在文件

/etc/ppp/chap-secrets, chap 拨号帐号密码所在文件

/etc/ppp/chat/evdo, chat 的脚本,错误处理脚本

/etc/ppp/peers/evdo 拨号的配置选项,包括拨号端口,波特率,使用何种鉴权

在 pppd+wvdial 模式,需要 wvdial.conf 配置文件,里面包括端口,波特率,账号密码,modem 的初始化指令

问:以下现象什么原因?

[root@localhost/]# pppd call evdo

pppd: The remote system is required to authenticate itself

pppd: but I couldn't find any suitable secret (password) for it to use to do so.

pppd: (None of the available passwords would let it use an IP address.)

答: 拨号的帐号密码不对,或者鉴权方式选择不对,鉴权方式选择为 noauth

问:以下现象什么原因?

Aug 7 14:35:06 davinci local2.info chat[800]: alarm Aug 7 14:35:06 davinci local2.info chat[800]: Failed

Aug 7 14:35:06 davinci daemon.err pppd[794]: Connect script failed

Aug 7 14:35:07 davinci daemon.info pppd[794]: Exit.

答: 脚本设置有问题,请按照提供的参考方式设置

5 MC8630 常见使用问题说明

问: 为什么模块不能正确识别

答:请正确安装 windows 的驱动和 linux 的驱动,并且插入驱动,模块才能正常使用,正确识别之后,会出现一个 modem 口和三个其他端口,如下图所示

Windows

	y	c@ubuntu: /dev				×
<u>F</u> ile <u>E</u> dit <u>∨</u> iew	<u>T</u> erminal <u>T</u> abs <u>H</u> elp					
ptyc2	ptys6 ptyya	tty46 t	tyed	ttyud	usbdev1.3_ep00	^
ptyc3	ptys7 ptyyb	tty47	tyee	ttyue	usbdev1.3 ep81	
ptyc4	ptys8 ptyyc	tty48 t	ttyef	ttyuf	usbdev2.1_ep00	
ptyc5	ptys9 ptyyd	tty49	typ0	ttyUSB0	usbdev2.1_ep81	
ptyc6	ptysa ptyye	tty5	ttyp1	ttyUSB1	vcs	
ptyc7	ptysb ptyyf	tty50	ttyp2	ttyUSB2	vcs1	
ptyc8	ptysc ptyz0	tty51 t	ttyp3	ttyUSB3	vcs2	
ptyc9	ptysd ptyz1	tty52	ttyp4	ttyv0	vcs3	
ptyca	ptyse ptyz2	tty53	ttyp5	ttyv1	vcs4	
ptycb	ptysf ptyz3	tty54	ttyp6	ttyv2	vcs5	
ptycc	ptyt0 ptyz4	tty55	ttyp7	ttyv3	vcs6	
ptycd	ptyt1 ptyz5	tty56	ttyp8	ttyv4	vcs7	
ptyce	ptyt2 ptyz6	tty57	ttyp9	ttyv5	vcs8	
ptycf	ptyt3 ptyz7	tty58 t	ttypa	ttyv6	vcsa	
ptyd0	ptyt4 ptyz8	tty59	ttypb	ttyv7	vcsa1	=
ptyd1	ptyt5 ptyz9	tty6	ttypc	ttyv8	vcsa2	
ptyd2	ptyt6 ptyza		ttypd	ttyv9	vcsa3	~

Linux

问:模块在 windows 下的驱动安装问题

答:请按照驱动安装的提示,插入设备,建议不要提前插入设备,装完驱动,重起一下模块就可以正常使用了

问: 为什么模块 AT 不通

答: MC8630 提供两个端口,可以使用 AT 指令,分别为 modem 口和 SERVICE 口,请正确选择端口,使用 AT 指令,AT 指令请参考提供的指令集

问: 为什么模块不能拨打电话

答:请检查 UIM 卡是否正常插入,UIM 卡是否有钱?拨打普通的电话需要 UIM 卡支持,紧急电话比如 120,119,110 等,不需要 UIM 卡,就可以拨打

问:为什么电话接通后,听不到对方的声音

答:模块分为两种模式,PC 语音模式,耳机模式,通过 at^cvoice 可切换,请查看 AT 指令集

PC 语音模式,需要从 PC 输出输入声音,需要通过 PC 的 UI 来配合

耳机模式,需要从用户的设备上,有 MIC/耳机接口

在通话过程中,用户觉得音量不合适,可以通过 at+clvl 进行调节

问: 为什么模块不能收发短信

答:请检查 UIM 卡是否正常,没有 UIM 卡的情况下,不能收发短信,收发短信的过程中,请按照电信发布的数据卡 AT 指令集来操作

问:为什么我连接不上 EVDO 或 1X 网络?

答:可能有以下原因:

- 1) 请检查 UIM 卡是否欠费:请拨打电信 10000 查询
- 2) 请检查是否正确插入 UIM 卡: (可 通过 at^sysinfo 指令查看 UIM 卡的状态 2,3,0,8,1(255),如果最后一位为 1 的话,说明 UIM 卡识别正常,如果是 255,则说明没有正确识别到卡)
- 3) 是否正常插入模块,模块是否可以正常运行:通过运行 AT 指令来查询模块是否工作正常,如果有正常的回应,则说明模块工作正常

- 4) 环境中是否有 3G 或 1X 网络信号:可通过 at+csq 显示 1x 信号; at^hdrcsq 显示 EVDO 信号,如果没有信号,请检查天线是否接好,(由于模块写了默认频点,所以在不插入 UIM 卡的情况下,也会有 EVDO 信号)
- 5) CDMA 接入号与密码设置是否正确

中国电信的 EVDO 网络,接入号为#777,用户名为 ctnet@mycdma.cn,密码为 vnet.mobi 中国电信的 1X 网络,接入号为#777,用户名为: card,密码为: card

目前 card,card 也可以上 EVDO 网络,但在电信内部有区分这两种帐户

6) EVDO uim 卡的鉴权: 首先确认 UIM 卡支持 EVDO, 如果是老卡,需要升级,请按照各地电信的规范操作,如果是新的 EVDO 卡,直接就可以使用,新 EVDO 卡使用 MD5 鉴权算法或是 CAVE,老卡使用 CAVE 算法

问: 为什么模块没有 EVDO 信号, 只有 1x 信号?

答: 首先确认所处环境是否覆盖了 EVDO 网络,其次确认 UIM 卡是否支持 UIM,然后确认模块的模式 是否为 1x only? (通过 AT 指令 at^prefmode 来查看,

如果为 2,表示为 1x only

如果为 4,表示为 EVDO 模式

如果为 8,表示为混合模式,在混合模式下,支持 EVDO 和 1x 两种模式,自适应于两种模式,进行数据业务时,优先选择 EVDO 模式)

默认选择为混合模式,建议用户不要修改

问:为什么在没有 UIM 卡的情况下,有信号,在插入 UIM 卡之后,反而没信号了呢?

答:UIM 卡没有被正确识别或者 UIM 卡的初始化有问题,可通过指令 at^sysinfo 来查看,如果最后一位为 255,则表示 UIM 卡没有正确识别,如果为 1,则表示识别正常,

如果出现不能识别的情况,请检查 UIM 卡插座,或者用另一设备来进行对比 UIM 卡是否正常,在没插卡的情况下,由于设置了默认频点,所以会有信号

问:关于模块升级的问题

答:请参照模块的升级文档操作,升级之后,导入模块部分工作参数,确保部分参数的准确,具体请参照升级文档

6 MC8630 LINUX 环境使用问题说明

问: Linux 环境主要注意那些问题

答: Linux 的内核版本,模块的 Linux 驱动,Linux 环境下串口操作,Linux 环境下的拨号上网

问:模块适用于那些 Linux 环境

答: 目前在 Fedora, Ubuntu, Redhat 等不同的 Linux 下下都可以使用,不同的平台下,操作可能稍微不同

问: insmod 驱动后没有设备名出现

答: insmod ztemt.ko,

用 Ismod |grep ztemt 查看驱动的加载情况

问:编译驱动时的问题,编译之后无法使用

答: 在驱动的 makefile 文件中选择 KERNELDIR 为内核源码所在目录,编译驱动时的源码内核要与目标环境内核相同,编译内核的编译器要与编译驱动模块的编译器相同

问: 模块现在支持那些版本内核

答: 基本上所有版本的 linux 内核都支持, 2.6.18,2.6.21,2.6.27,2.6.29 等, 除了 2.4 内核

问:模块驱动问题

答:目前提供 2.6.18 及以上内核的驱动,Linux 系统默认的 USB 驱动也可以用,低内核版本的驱动,需要用户按照参考驱动或默认的 USB 驱动,自行修改

问:模块在 Linux 的识别问题

答:模块在 Linux 下,正常识别后会出现四个端口,分别为 ttyUSB0,ttyUSB1,ttyUSB2,ttyUSB3,其中 ttyUSB0 为模块的 modem 口,ttyUSB1 为模块的 service 口,这两个端口,可以使用 AT 指令

问:模块在 Linux 环境下使用 AT 指令的问题

答:可以使用 Linux 下面的串口工具,比如 Minicom,如果要使用 Minicom,则需要安装此工具

问题:插入设备后,可以识别出来是串口设备,但是没有找到对应的驱动来驱动设备,也就是表现为没有设备节点,

答案:解决办法:在启动时候加入 menu.lst 中加入 usbserial vendor=0x19d2, product=0xfffe,或者 modeprobe usbserial vendor=0x19d2 product=0xfffe

问题:在 linux 下使用 MC8630 的时候,发现速率受限

答案:如果采用 linux 默认的 usbserial 驱动,MC8630 也可以正常使用,只是 usbserial 针对低速设备,使用的缓冲区很小,速率可能会受限,速率不能超过 62KB,需要修改缓冲区大小,使用本司提供驱动不存在此问题,客户出现过此问题,下载速率只能达到 480kbps