A Recap of Predicate Logic (Part 3)

Prof. Susan Older

11 September 2012

(CIS 275)

Recap of Predicate Logic (Part 3)

11 Sept 2012

1 / 18

Interpretations: A First Example

Some interpretations that make $\forall x \in U$, $(p(x) \rightarrow q(x))$ true:

For every integer n, if p(n) is true (i.e., n is non-negative), then q(n) is true (i.e., $n \le n * 10$). Thus, $\forall x \in U$, $(p(x) \to q(x))$ is true.

 $U = \{red, blue\}, \quad p(red) = q(red) = q(blue) = T, \quad p(blue) = F$

Under this interpretation, both of the following are true:

$$p(red) \rightarrow q(red)$$

 $p(blue) \rightarrow q(blue)$

Therefore, $\forall x \in U, \ (p(x) \rightarrow q(x))$ is true.

3 $U = \emptyset$, p(x) and q(x) can be anything

 $\forall x \in \emptyset, \ (p(x) \to q(x))$ is vacuously true.

(CIS 275)

Recap of Predicate Logic (Part 3)

11 Sept 2012

Interpretations: A Second Example

Some interpretations that make $\forall x \in U, (p(x) \rightarrow q(x))$ false:

- $U = \mathbb{Z}$, p(x) is "x is even", q(x) is " $x \le x * 10$ "

 -2 is even, but it's not the case that $-2 \le -20$, which means $p(-2) \to q(-2)$ is false. Hence $\forall x \in U, \ (p(x) \to q(x))$ is false.
- $U = \{red, blue\}, \quad p(red) = q(red) = q(blue) = F, \quad p(blue) = T$ Under this interpretation, $p(blue) \rightarrow q(blue)$ is false. Therefore, $\forall x \in U, \ (p(x) \rightarrow q(x))$ is false.

(CIS 275)

Recap of Predicate Logic (Part 3)

11 Sept 2012

3 / 18

Logical Equivalence for Predicate Logic

Definition

Two predicate-logic formulas φ_1 and φ_2 are logically equivalent (written $\varphi_1 \equiv \varphi_2$) exactly when:

Each has the same truth values as the other, regardless of the choice of quantified sets or the interpretations of the predicates.

Examples we've seen before:

- $\neg(\exists y \in U \text{ such that } Q(y)) \equiv \forall y \in U, \ \neg Q(y)$
- $\bullet \ \forall x \in U, \ (p(x) \land q(x)) \ \equiv \ (\forall x \in U, \ p(x)) \ \land \ (\forall x \in U, \ q(x))$

How to Show Two Formulas are Not Logically Equivalent

To show that φ_1 and φ_2 are not logically equivalent:

It suffices to come up with one specific set of interpretation(s) for which the formulas have different truth values.

Example

Consider the following two formulas:

 $\exists y \in U \text{ such that } \forall z \in W, \ Q(y,z)$ $\forall z \in W, \ (\exists y \in U \text{ such that } Q(y,z))$

One way to show they're not logically equivalent:

Take $U = W = \mathbb{Z}$, and let Q(x, w) be " $x \le w$ ".

- $\exists y \in U$ such that $\forall z \in W$, Q(y,z) is false: no integer is less than or equal to *every* integer.
- $\forall z \in W$, $(\exists y \in U \text{ such that } Q(y,z))$ is true: for each integer z, there is *some* integer that is less than or equal to z.

(CIS 275)

Recap of Predicate Logic (Part 3)

11 Sept 2012

5 / 18

How to Show that an Argument Form is Not Valid

The following argument form is not valid:

 $\exists x \in U$ such that $(P(x) \to Q(x))$ $\exists y \in U$ such that P(y) $\therefore \exists w \in U$ such that Q(w)

How do we show that it's not valid?

Find a specific set U and interpretations for P and Q such that:

- **1** $\exists x \in U$ such that $(P(x) \to Q(x))$ is true, and
- $\exists y \in U$ such that P(y) is true, and

How to Show that an Argument Form is Not Valid (2)

How do we show that it's not valid?

Find a specific set U and interpretations for P and Q such that:

- **1** $\exists x \in U$ such that $(P(x) \to Q(x))$ is true, and
- $\supseteq \exists y \in U \text{ such that } P(y) \text{ is true, and}$
- **③** $\exists w \in U$ such that Q(w) is false.

Example

Let $U = \{1, 2\}$, and let P(1), Q(1), Q(2) be false and P(2) be true. Then:

- $P(1) \rightarrow Q(1)$ is true; thus $\exists x \in \underline{U}$ such that $(P(x) \rightarrow Q(x))$ is true.
- P(2) is true, and thus $\exists y \in U$ such that P(y) is true.
- However, both Q(1) and Q(2) are false, which means $\exists w \in U$ such that Q(w) is false.

(CIS 275)

Recap of Predicate Logic (Part 3)

11 Sept 2012

7 / 18

How to Show that an Argument Form is Not Valid (3)

How do we show that it's not valid?

Find a specific set U and interpretations for P and Q such that:

- $\exists x \in U$ such that $(P(x) \to Q(x))$ is true
- $\exists y \in U$ such that P(y) is true
- $\exists w \in U$ such that Q(w) is false

Another Example

Let $U = \mathbb{Z}$, let P(x) be "x is odd", and let Q(x) be "x = x + 1". Then:

- Since P(2) is false, P(2) o Q(2) is vacuously true. Thus, $\exists x \in U$ such that (P(x) o Q(x)) is true.
- P(1) is true, and thus $\exists y \in U$ such that P(y) is true.
- However, there is no integer w such that w = w + 1. Therefore, $\exists w \in U$ such that Q(w) is false.

Recap: Universal Instantiation

Principle of Specification (aka Universal Instantiation)

If the premises

$$\forall x \in U, \ p(x)$$
$$a \in U$$

both hold true, then the conclusion

p(a)

also holds true.

Example

Let C be set of people in CIS 275; let A(x) be "x will get an A". Suppose these premises are both true:

$$\forall x \in C, A(x)$$
 and $Zeke \in C$.

Then A(Zeke) must also be true.

CIS 275) Recap of Predicate Logic (Part 3)

11 Sept 2012 9 / 18

Recap: Using Universal Instantiation in a Formal Proof

Show that the following is a valid argument:

$$\forall n \in W, \ (p(n) \rightarrow q(n))$$

 $5 \in W$
 $p(5)$
 $\therefore q(5)$

- 1. $\forall n \in W, \ p(n) \rightarrow q(n)$ Given
- 2. $5 \in W$ Given
- 3. p(5) Given
- 4. $p(5) \rightarrow q(5)$ 1,2 Universal Instantiation
- 5. q(5) 3,4 Modus Ponens

Recap: Universal Generalization

Principle of Generalization (aka Universal Generalization)

From the following steps:

- (i) Take an arbitrary element $a \in U$
- (ii)Establish that p(a) holds

the conclusion

$$\forall x \in U, p(x)$$

can be obtained.

What do we mean by arbitrary?

We are introducing a name (e.g., a) to represent a generic element of U: we assume nothing about a except that it possesses the general properties of elements of U.

(CIS 275)

Recap of Predicate Logic (Part 3)

11 Sept 2012

11 / 18

Recap: Using Universal Generalization in a Formal Proof

Show that the following is a valid argument:

$$\forall x \in U, \ p(n) \rightarrow q(n)$$

 $\forall x \in U, \ p(x)$
 $\therefore \forall x \in U, \ q(x)$

- $\forall x \in U, \ p(x) \to q(x)$
- Given
- 2. $\forall x \in U, p(x)$
- Given
- Let $v \in U$ be arbitrary. Assumption
- 4. $p(v) \rightarrow q(v)$

1,3 Universal Instantiation

5. p(v)

2,3 Universal Instantiation

6. q(v)

- 4.5 Modus Ponens
- $\forall x \in U, \ q(x)$ 7.
- 3, 6 Universal Generalization

Recap: A Bogus Use of Universal Generalization

Here's a bogus proof:

1. 5 < 17

Given

 $2. \quad 5 \in \mathbb{Z}$

Fact

3. $\forall x \in \mathbb{Z}, \ x < 17$

1, 2 Universal Generalization

Note:

• Step 3 is not allowed: 5 is a specific element of \mathbb{Z} , not arbitrary.

The problem does not disappear by renaming:

1. b < 17

Given

2. $b \in \mathbb{Z}$

Given

3. $\forall x \in \mathbb{Z}, x < 17$

1, 2 Universal Generalization

(CIS 275)

Recap of Predicate Logic (Part 3)

11 Sept 2012

13 / 18

Existential Generalization

(Not in textbook)

Existential Generalization

If the premises p(a) and $a \in U$ both hold true, then the conclusion $\exists x \in U$ such that p(x)

can be obtained.

Example

Suppose we know that Q(17) and $17 \in \mathbb{Z}$. We can therefore deduce that

 $\exists x \in \mathbb{Z} \text{ such that } Q(x)$

Existential Instantiation

If the premise

$$\exists x \in U \text{ such that } p(x)$$

holds and a is a fresh name (i.e., not previously used in the proof), then the conclusion p(a)

can be deduced.

What is the idea here?

We are introducing the name a as a way to refer to the specific value of U for which p(a) holds.

IMPORTANT: the name a is not considered to be arbitrary.

(CIS 275)

Recap of Predicate Logic (Part 3)

11 Sept 2012

15 / 18

Using Existential Instantiation in a Formal Proof

Show that the following is a valid argument:

$$\forall x \in U, \ P(x) \rightarrow Q(x)$$

 $\exists y \in U \text{ such that } P(y)$
 $\therefore \exists w \in U \text{ such that } Q(w)$

1.
$$\forall x \in U, P(x) \rightarrow Q(x)$$

Given

2.
$$\exists y \in U \text{ such that } P(y)$$

Given

3.
$$P(c)$$

2, Existential Instantiation (fresh $c \in U$)

4.
$$P(c) \rightarrow Q(c)$$

1, Universal Instantiation (since $c \in U$)

5.
$$Q(c)$$

3,4 Modus Ponens

6.
$$\exists w \in U$$
 such that $Q(w)$

5, Existential Generalization (since $c \in U$)

Example of a Bogus Proof

Consider an attempt to prove the following (which is not valid):

 $\exists x \in U \text{ such that } (P(x) \to Q(x))$ $\exists y \in U \text{ such that } P(y)$ $\therefore \exists w \in U \text{ such that } Q(w)$

- 1. $\exists x \in U$ such that $(P(x) \to Q(x))$ Given
- 2. $\exists y \in U$ such that P(y)
- 3. P(k)
- 4. $P(k) \rightarrow Q(k)$
- 5. Q(k)
- 6. $\exists w \in U$ such that Q(w)

- Given
- 2, Existential inst (fresh $k \in U$)
- 1, Existential instantiation
- 3,4 Modus ponens
- 5, Existential generalization

Notes:

• Step 4 is not allowed: we can not use k for this EI step, because k is no longer fresh.

(CIS 275)

Recap of Predicate Logic (Part 3)

11 Sept 2012

17 / 18

Another Bogus Proof

Consider an attempt to prove the following (which is not valid):

$$\exists x \in U \text{ such that } P(x)$$

 $\therefore \forall x \in U, P(x)$

- 1. $\exists x \in U$ such that P(x)Given
- 2. P(k)

- 1, Existential instantiation (fresh $k \in U$)
- 3. $\forall x \in U, P(x)$
- 2. Universal generalization

Notes:

• Step 3 is not allowed: UG does not allow us to generalize from an element that was introduced through El.