	$\tau_{1}^{\#2} + \alpha$	$\tau_{1-}^{#1} +^{\alpha}$	$\sigma_{1}^{#2} + \alpha$	$\sigma_{1^{-}}^{\#1} \dagger^{lpha}$	$ au_{1+}^{#1} + ^{lphaeta}$	$\sigma_{1^+}^{\#2} \dagger^{lphaeta}$	$\sigma_{1^+}^{\sharp 1} \dagger^{lphaeta}$	
	0	0	0	0	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$		$\sigma_{1^{+}lphaeta}^{*1}$
	0	0	0	0	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\sigma_{1^{+}lphaeta}^{\#2}$
	0	0	0	0	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$ au_{1}^{\#1}{}_{lphaeta}$
,	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{2}{k^2(r_3+2r_5)}$	0	0	0	$\sigma_{1^-\alpha}^{\#1}$
	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	0	0	$\sigma_{1^- \; lpha}^{\# 2}$
	0	0	0	0	0	0	0	$ au_{1^{-}}^{\#1}{}_{lpha}$
0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	0	0	0	$ au_{1^{-}}^{\#2}lpha$

Source constraints				
SO(3) irreps				
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1}{}^{\alpha\beta} + \bar{l} k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3			
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5			
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5			
Total #:	21			

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0^{+}}^{#2}$	$\omega_{0}^{\#1}$
$\omega_{0}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0}^{#1}\dagger$	$i \sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	t_2

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{2}{3k^2r_3}$	0	0
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_1^{\sharp 1}{}_{lpha}$	$\omega_{1^{-}\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{\#2}$
$\omega_{1}^{\sharp 1} \dagger^{\alpha \beta}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	<u>t2</u> 3	<u>i kt2</u> 3	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$-\frac{1}{3}i\sqrt{2}kt_2$	$-\frac{1}{3}\bar{l}kt_2$	$\frac{k^2t_2}{3}$	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}i\sqrt{2}kt_3$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	2 <i>ikt</i> 3 3	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

$$\omega_{2}^{\#1}{}_{\alpha\beta} f_{2}^{\#1}{}_{\alpha\beta} \omega_{2}^{\#1}{}_{\alpha\beta\chi}$$

$$\omega_{2}^{\#1}{}_{\alpha\beta\chi}^{\alpha\beta} - \frac{3k^{2}r_{3}}{2} 0 0$$

$$f_{2}^{\#1}{}_{\gamma}^{\alpha\beta} 0 0 0$$

$$\omega_{2}^{\#1}{}_{\gamma}^{\alpha\beta\chi} 0 0$$

? Quadratic pole
? Pole residue:
$$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$$
? Polarisations: 2

Unitarity conditions
$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$

(No massive particles)