模糊模拟

我们设计模糊模拟计算

$$L=\operatorname{Cr}\left\{f(\boldsymbol{\xi})<0\right\}.$$

随机地产生 θ_k 使得 $\operatorname{Cr}\{\theta_k\} \geq \varepsilon/2$, 记 $\nu_k = (2\operatorname{Cr}\{\theta_k\}) \wedge 1$ 及 $\boldsymbol{\xi}(\theta_k)$, $k = 1, 2, \dots, N$, 其中 ε 任意小. 等价地, 从 $\boldsymbol{\xi}$ 的 ε -水平集中 随机产生, 记 $\nu_k = \mu(\boldsymbol{\xi}(\theta_k))$, $k = 1, 2, \dots, N$, 其中 μ 是 $\boldsymbol{\xi}$ 的隶属 度. 那么 $\operatorname{Cr}\{f(\boldsymbol{\xi}) < 0\}$ 可如下计算,

$$L = \frac{1}{2} \left(\max_{1 \leq k \leq N} \left\{ \nu_k \mid f(\boldsymbol{\xi}(\theta_k)) \leq 0 \right\} + \min_{1 \leq k \leq N} \left\{ 1 - \nu_k \mid f(\boldsymbol{\xi}(\theta_k)) > 0 \right\} \right).$$

算法

Step 1. 随机地产生 θ_k 使得 $\operatorname{Cr}\{\theta_k\} \geq \varepsilon/2$, $k=1,2,\cdots,N$, 其中 ε 任意小.

Step 2. $\Leftrightarrow \nu_k = (2\text{Cr}\{\theta_k\}) \land 1, \ k = 1, 2, \dots, N.$

Step 3. 返回 *L* 的值.

Fuzzy Simulation模糊模拟

设 $f: \Re^n \to \Re$ 是一个函数, 而 ξ 是一个定义在可信性空间 $(\Theta, \mathcal{P}(\Theta), \operatorname{Cr})$ 上的模糊向量. 设计一个模糊模拟计算 \overline{f} 使得

$$\operatorname{Cr}\left\{f(\boldsymbol{\xi})\geq\overline{f}\right\}\geq\alpha$$

随机从 Θ 中产生 θ_k 使得 $\operatorname{Cr}\{\theta_k\} \geq \varepsilon/2$, 记 $\nu_k = (2\operatorname{Cr}\{\theta_k\}) \wedge 1$, $k = 1, 2, \dots, N$, 其中 ε 是任意小的数. 对任何实数 r, 记

$$L(r) = \frac{1}{2} \left(\max_{1 \leq k \leq N} \left\{ \nu_k \mid f(\boldsymbol{\xi}(\theta_k)) \geq r \right\} + \min_{1 \leq k \leq N} \left\{ 1 - \nu_k \mid f(\boldsymbol{\xi}(\theta_k)) < r \right\} \right)$$

由单调性, 可用二分法找到满足 $L(r) \ge \alpha$ 的最大值 r.

算法 (计算关键值的模糊模拟)

Step 1. 随机从 Θ 中产生 θ_k 使得 $\operatorname{Cr}\{\theta_k\} \geq \varepsilon/2$, $k=1,2,\cdots,N$, 其中 ε 是任意小的数.

Step 2. 找满足 $L(r) \geq \alpha$ 的最大值 r

Step 3. 返回 r.

模糊模拟 I

模糊模拟计算期望值

$$E[f(\boldsymbol{\xi})] = \int_0^{+\infty} \operatorname{Cr}\{f(\boldsymbol{\xi}) \geq r\} dr - \int_{-\infty}^0 \operatorname{Cr}\{f(\boldsymbol{\xi}) \leq r\} dr.$$

随机产生 θ_k 使得 $\operatorname{Cr}\{\theta_k\} \geq \varepsilon/2$, 记 $\nu_k = (2\operatorname{Cr}\{\theta_k\}) \wedge 1$,

 $k=1,2,\cdots,N$, 其中 ε 充分小. 那么对 $r\geq 0$, 可信性

 $\operatorname{Cr}\{f(\boldsymbol{\xi}) \geq r\}$ 可如下估计

$$\frac{1}{2} \left(\max_{1 \le k \le N} \left\{ \nu_k \mid f(\boldsymbol{\xi}(\boldsymbol{\theta}_k)) \ge r \right\} + \min_{1 \le k \le N} \left\{ 1 - \nu_k \mid f(\boldsymbol{\xi}(\boldsymbol{\theta}_k)) < r \right\} \right)$$

模糊模拟II

对
$$r < 0$$
, 可信性 $Cr\{f(\xi) \le r\}$ 可如下估计

$$\frac{1}{2} \left(\max_{1 \le k \le N} \left\{ \nu_k \mid f(\boldsymbol{\xi}(\theta_k)) \le r \right\} + \min_{1 \le k \le N} \left\{ 1 - \nu_k \mid f(\boldsymbol{\xi}(\theta_k)) > r \right\} \right)$$

算法 (模糊模拟期望值)

Step 1. $\Leftrightarrow e = 0$.

Step 2. 随机产生 θ_k 使得 $\operatorname{Cr}\{\theta_k\} \geq \varepsilon/2$, $k=1,2,\cdots,N$, 其中 ε 充分小.

Step 3. $\Leftrightarrow a = f(\xi(\theta_1)) \wedge \cdots \wedge f(\xi(\theta_N)), b = f(\xi(\theta_1)) \vee \cdots \vee f(\xi(\theta_N)).$

Step 4. 从 [a, b] 中随机产生 r.

Step 5. 如 $r \geq 0$, 那么 $e \leftarrow e + \operatorname{Cr}\{f(\xi) \geq r\}$.

Step 6. 如 r < 0, 那么 $e \leftarrow e - \operatorname{Cr}\{f(\xi) \leq r\}$.

Step 7. 重复第四至第六步 N 次.

Step 8. $E[f(\xi)] = a \vee 0 + b \wedge 0 + e \cdot (b-a)/N$.