LOGICAL ORGANIZATION OF COMPUTER-I

Ti	me Alle	owed: 3 Hours	Maximum Marks	: 80
Ne	ote : 1	Attempt five questions	in all, selecting	one
qu	estion	from each unit in ad	dition to compul	SOLV
gı	uestion	No. 1. All questions ca	arry equal marks	cory
		Compulsory Qu		
1.	(a)	Discuss cyclic code.		3
	LIDY	Abbreviate		3
		ASCII, BCD, EBCDIC.		
	(c)	Make 'Venn Diagram fo	r AND gate.	3
	(d)	Make T.T. for 3 variable		3
	(e)	Discuss Half Adder	Ž	3
	(f)	Makte T.T. (only) for		1
		a + (b + c) = (a + b)	+ c T	= 16
		UNIT-I		
2.	Con	vert as follows:		
	(a)	(i) $(7.3)_{10} \rightarrow ()_2$		4
		→ ()8		

	(ii) $(X)_5 = (2134)_{10}$	2
	(iii) (DE4) \rightarrow () ₂	
	\rightarrow () ₈	4
\(b)	Use 2's compliment to solve:	
1	-16 +48	
	-20 -32	
		6
3. (a)	Discuss floating point Arithmetic v	
//	conditions of overflow and underflow.	. 8
(10)	Explain error detection and correction co	
¥	scheme.	3
	UNIT-II	
1(a)	Write postulates of Boolean Algebra.	8
(6)	State and prove Demogran's Law.	4
(c)	Solve using Boolean Algebra	
	$(X + Y) (XZ + Z) \overline{(\overline{Y} + XZ)} = \overline{X}YZ$	4
5. (a)	Draw and label 4 variable K-Map.	4
(b)	Solve using K-Map	
	$\nabla 135 + \nabla 67$	
	$Z(A, B, C) = \sum_{i=0}^{n} 1,3,5 + \sum_{i=0}^{n} 6,7$	
	$Z(A, B, C, D) = \pi 0, 1, 2, 3, 8, 9, 10, 11$	
	$Z(A, B, C, D) = \sum_{i=0}^{\infty} 0.1, 4.5, 1 + \sum_{i=0}^{\infty} 10, 11, 15$	12
	UNIT-III	
6. (a)	Prove that NAND, NOR are Universal gates	3.
(b)	Use NAND gates only to solve Full-Adder.	
(c)	Use Logic Gates to Design	
X	$(\overline{X}Y + X\overline{Y}) (A\overline{B}C + \overline{A}\overline{E}\overline{C})$	
	(ATTAI) (ADOTALO	

	$(\overline{a} + \overline{b}).(\overline{a+b}).(\overline{X}Y + PQ)$
7. (a)	Explain Design and Analsis Procedure of
XX Salar	Combinational Circuits.
(b)	Explain concept of Multilevel NAND and NOR
	gates.
	UNIT-IV
8. Val	Design 4:1 multiplexer.
16 (b)	Design Binary to Decimal Decoder as 4 to 10
	line.
9. (a)	Explain 7-Segment Display
(b)	Make code convertor from 8421 to cyclic.