

Presentación del equipo

Aiverson
Castaño
Investigacion
de algoritmos

Juan Pablo
Forero
Desarrollo del
código

Andrea Serna Revisión de la literatura

Mauricio Toro
Preparación
de los datos

Planteamiento del problema

Calles de Medellín, Origen y Destino

El más camino más corto restringido

Primer algoritmo

Calles de Medellín, Origen y Destino

El camino más corto sin superar un riesgo medio ponderado de acoso *r*

Segundo algoritmo

Calles de Medellín, Origen y Destino

Ruta con el menor riesgo promedio ponderado de acoso sin superar una distancia d

Explicación del algoritmo

A partir de las listas de adyacencia y la representación de estas en grafos, se puede hacer una idea de como están distribuidas las calles.

Esto facilita el entender como el algoritmo calcula la ruta mas corta restringida.

Complejidad del algoritmo

	Complejidad temporal	Complejidad de la memoria
Dijkstra	O(n²)	O(E + V log V)

Complejidad en tiempo: Es el tiempo que puede tardar el algoritmo en dar un resultado.

Complejidad en memoria: Es la cantidad de espacio en memoria que utiliza el Algoritmo al ejecutarse.

V representa los vértices y E representa las aristas

