Cgs unit

$$4\pi P = \nabla \cdot E$$
, $4\pi M_0 = 1$
 $\nabla \times E = -\frac{1}{2}B$; $\nabla \times B = \frac{4\pi}{2}J + \frac{1}{2}AE$
 $F = 8(E + \frac{1}{2} \times B)$; $F = \frac{9.92}{7^2}$
 $E = -\nabla Y - \frac{1}{2}AA$

Lorentz Transformation: S, S

$$E' = \gamma (E + \beta x B) - \frac{\gamma^2}{\gamma^2} \cdot \beta (\beta \cdot E)$$

$$B' = \gamma (B - \beta \times E) - \frac{\gamma^2}{\gamma + 1} \cdot \beta (\beta \cdot B)$$

gaussian integration: $\int_{\pm \infty} e^{-x^2/a} dx = \sqrt{a\pi}$ $\int_{0}^{+\infty} \chi \cdot e^{-x^2/a^2} dx = \frac{1}{2} a^2; \int_{0}^{+\infty} \chi^2 \cdot e^{-x^2/a^2} dx = \sqrt{\pi} \cdot \frac{a^3}{4}$

Magnetic tension le pressure force

Foressure =
$$-\nabla(\frac{B^2}{2\mu_0})$$
; Finin = $\frac{1}{\mu_0}(B \cdot \nabla)B$

B: 1 Ganss = 10-4 T

Bessel quation (HW10)

名称	高斯单位制	国际单位制
电场、电势	${f E},arphi$	$\sqrt{4\piarepsilon_0}({f E},arphi)$
电势移	D	$\sqrt{4\pi/arepsilon_0}\mathbf{D}$
电荷、电荷密度、电流、电流密度、 电极化强度、电偶极矩	$q, ho,I,\mathbf{j},\mathbf{P},\mathbf{p}$	$rac{1}{\sqrt{4\piarepsilon_0}}(q, ho,I,\mathbf{j},\mathbf{P},\mathbf{p})$
磁感应强度、磁矢势	\mathbf{B}, \mathbf{A}	$\sqrt{4\pi/\mu_0}({f B},{f A})$
磁场强度	н	$\sqrt{4\pi\mu_0}\mathbf{H}$
磁矩、磁化强度	\mathbf{m}, \mathbf{M}	$\sqrt{\mu_0/4\pi}(\mathbf{m},\mathbf{M})$
电容率、磁导率	$arepsilon, \mu$	$(arepsilon/arepsilon_0,\mu/\mu_0)$
电极化率、磁化率	χ_e,χ_m	$\frac{1}{4\pi}(\chi_e,\chi_m)$
电导率、电导、电容	σ, S, C	$\frac{1}{4\pi\varepsilon_0}(\sigma,S,C)$
电阻率、电阻、电感	ho, R, L	$4\piarepsilon_0(ho,R,L)$

$$\int_0^\infty x^{2n} e^{-rac{x^2}{a^2}} \, dx = \sqrt{\pi} rac{a^{2n+1}(2n-1)!!}{2^{n+1}} \ \int_0^\infty x^{2n+1} e^{-rac{x^2}{a^2}} \, dx = rac{n!}{2} a^{2n+2}$$