Part 1

Exercise 1. Show that every group of order ≤ 5 is abelian.

Proof. It is clear that a group of order 1 is abelian. Any group of prime order is cyclic, so we only need to check that all groups of order 4 are abelian.

Let G be a group of order 4, and $x \in G$ with $x \neq e$. So we have

$$\operatorname{ord}(x) = \begin{cases} 2\\4 \end{cases}$$

Indeed since $1 \neq \operatorname{ord}(x) \mid 4$.

If $\operatorname{ord}(x) = 4$, then $\{e.x.x^2.x^3\} \leq G \Rightarrow G = \langle x \rangle$, so it is abelian.

If G has no elements of order 4, then for all $x \in G$ we have $x^2 = e \Rightarrow x = x^{-1}$, so for all $x, y \in G$ we have

$$(xy)(x^{-1}y^{-1}) = (xy)(xy)$$
$$= (xy)^{2}$$
$$= e$$

Therefore xy = yx for all $x, y \in G$. So G is abelian.

In all cases we have shown that if the order of $G \leq 5$, we have that G is abelian.

Exercise 2. Show that there are two-isomorphic groups of order 4, namely the cyclic one, and the product of two cyclic groups of order 2.

Proof. Let G be a group of order 4, assume that it is not cyclic. In this case, from last question we know that $x^2 = e$ for all $x \in G$, so $\{e, x\} = \langle x \rangle \leq G$ let $y \in G \setminus \langle x \rangle$.

So notice that $xy \notin \{e, x, y\}$ indeed since $x, y \neq e$ and $x \neq y$. So we see by comparing order $G = \{e, x, y, xy\}$. Defining the homomorphism

$$\varphi \colon G \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$
$$x \to (1,0)$$
$$y \to (0,1)$$

Since $\varphi(xy) = \varphi(x) + \varphi(y) = (1,1)$, by inspection we can see that $\ker \varphi = \{e\}$ and im $\varphi = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, so:

$$G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

Exercise 3. Let G be a group. A **commutator** in G is an element of the form $aba^{-1}b^{-1}$ with $a, b \in G$. Let G^c be the subgroup generated by the commutators. Then G^c is called the **commutator subgroup**. Show that G^c is normal. Show that any homomorphism of G into an abelian group factors through G/G^c .

Proof. Since $(aba^{-1}b^{-1})^{-1} = bab^{-1}a^{-1}$, the set of elements containing all finite products of commutators is a group. Since any subgroup containing all commutators contains this subgroup we see that

$$G^{c} = \{x_{1}x_{2} \cdots x_{n} \mid n \in \mathbb{N} \text{ and } x_{i} \text{ are commutators}\}$$

$$\tag{1}$$

Now let $g \in G$ and $aba-1b^{-1}$ be a commutator we see that:

$$g(aba-1b^{-1})g^{-1} = (gag^{-1})(gbg^{-1})(ga^{-1}g^{-1})(gb^{-1}g^{-1}) = zwz^{-1}w^{-1}$$

Where $z = qaq^{-1}$ and $w = qbq^{-1}$.

So we see that for any $g \in G$ and $a \in G^c$, we have:

$$gag^{-1} = g(x_1x_2 \cdots x_n)g^{-1}$$
 for commutators x_i
= $(gx_1g^{-1})(gx_2g^{-1})\cdots(gx_ng^{-1})$
 $\in G^c$ since by above observation gx_ig^{-1} is a commutator for all x_i

So $G^c \subseteq G$.

Now let A be an abelian group and $\varphi \colon G \to A$ be a homomorphism. First of all we will show that φ contains G^c in it's kernel.

$$\varphi(aba^{-1}b^{-1}) = \varphi(a)\varphi(b)\varphi(a)^{-1}\varphi(b)^{-1}$$
= e by commutating elements

Therefore we see that for all $x \in G^c$, let $x = x_1 \cdots x_n$ where x_i are commutators:

$$\varphi(x) = \varphi(x_1)\varphi(x_2)\cdots\varphi(x_n) = e \text{ since each } \varphi(x_i) = e$$
 (2)

So we indeed see that $G^c \leq \ker \varphi$. So now let $\pi \colon G \to G/G^c$ be the canonical map and let $\tilde{\varphi} \colon G/G^c \to A$ be the homomorphism given by:

$$\tilde{\varphi}(xG^c) = \varphi(x)$$

Note we know that this is a homomorphism since φ is a homomorphism.

Since $G^c \leq \ker \varphi$ if $xG^c = yG^c$ we have $xy^{-1} \in G^c$ so we have $\varphi(xy^{=1}) = e \Rightarrow \varphi(x) = \varphi(y)$ so $\tilde{\varphi}(xG^c) = \tilde{\varphi}(yG^c)$, this homomorphism is indeed well-defined.

So we indeed see that there is a homomorphism $\tilde{\varphi}$ such that $\varphi = \tilde{\varphi} \circ \pi$. So φ factors through G^c .

Exercise 4. Let H, K be subgroups of a finite group G with $K \subseteq N_H$. Show that:

$$|HK| = \frac{|H||K|}{|H \cap K|}$$

Proof. Since K is contained in the normalizer of H. Recall by an isomorphism theorem:

$$K/(H \cap K) \simeq HK/H$$

So we have:

$$\frac{|K|}{|H\cap K|} = \frac{|HK|}{|H|} \Rightarrow |HK| = \frac{|H||K|}{|H\cap K|}$$

Exercise 5. Goursat's Lemma. Let G, G' be groups and let H be a subgroup of $G \times G'$ such that the projections $p_1 \colon H \to G$ and $p_2 \colon H \to G'$ are surjective. Let N be the kernel of p_2 and N' be the kernel of p_1 . One can identify N as a normal subgroup of G, and N' as a normal subgroup of G'. Show that the image of H in $G/N \times G'/N'$ is the graph of an isomorphism

$$G/N \simeq G'/N'$$

Proof. First of all notice that

$$\ker p_1 = \{(e,b) \in H\} \simeq N' = \{b \in G' \mid (e,b) \in H\} \text{ and } \ker p_2 = \{(a,e') \in H\} \simeq N = \{a \in Ga \mid (a,e') \in H\}$$

Let

$$\varphi_1: G \to G/N$$
 and $\varphi_2: G' \to G'/N'$

Be the canonical maps.

Let $\varphi \colon H \to G/N \times G'/N'$ be given by

$$\varphi((g_1, g_2)) = (\varphi_1(g_1), \varphi_2(g_2))$$

This is a homomorphism since φ_1 and φ_2 are homomorphisms.

Lemma 1. If $(xN, x'N'), (yN, y'N') \in \varphi(H)$ then $xN = yN \iff x'N = y'N$.

Proof. First assume that xN = yN:

We have: $(xy^{-1}N, x'y'^{-1}N') = (N, x'y'^{-1}N') \in \varphi(H)$. So let $(a, b) \in H$ such that:

$$(aN, bN') = \varphi(a, b) = (N, x'y'^{-1}N')$$

So we see that $aN = N \Rightarrow a \in N \simeq \ker p_2$. This means that $(a, e') \in H$, so we see that $(e, b) = (a, e')^{-1}(a, b) \in H$, so $b \in N'$. Therefore $N' = bN = x'y'^{-1}N'$ so x'N' = y'N'.

The other direction is similar.

Now we let

$$\psi \colon G/N \to G'/N'$$
 be such that $(aN, \psi(aN)) \in \varphi(H)$ for all $aN \in G/N$

We will first show that this function makes sense, note that since the projection from H to G for all xN, we see that $(x,y) \in H$ for some y. So $\varphi(x,y) = (xN,yN') \in \varphi(H)$ so xN is in the projection off $\varphi(H)$ to G/N. So we see that the projection is surjective so: for all $aN \in G/N$ there exists a $bN' \in G'/N'$ such that $(aN,bN') \in \varphi(H)$. Furthermore by lemma 1 this bN' is unique. Since this bN' exists and is unique then we can let $\psi(aN) = bN'$ and this function is well-defined.

Now let $aN, cN \in G/N$ since $(aN, \psi(aN)), (cN, \psi(xN)) \in \varphi(H)$ so:

$$H \ni (aN, \psi(aN))(cN, \psi(xN)) = (acN, \psi(aN)\psi(cN)) \Rightarrow \psi(aNcN) = \psi(acN) = \psi(aN)\psi(cN)$$

So ψ is indeed a homomorphism. Finally from lemma 1 we see that $\psi(aN) = \psi(bN)$ implies that $(aN, \psi(aN)), (bN, \psi(aN)) \in \varphi(H)$ so aN = bN. So this function is indeed an isomorphism.

Exercise 6. Prove that the group of inner automorphishms of a group G is normal in Aut(G).

Proof. For all $g \in G$ we let φ_g be the homomorphism such that

$$\varphi_q(x) = gxg^{-1}$$

Recall that an inner automorphishms is an automorphishms of the form φ_g for some $g \in G$. Now let: $I = \{\varphi_g \mid g \in G\}$.

Notice that

$$\forall x \in G, \ \varphi_a \circ \varphi_b(x) = abxb^{-1}a^{-1} = (ab)x(ab)^{-1} = \varphi_{ab}(x) \Rightarrow \varphi_a \circ \varphi_b = \varphi_{ab} \in I$$

Likewise

$$\forall x \in G, \ \varphi_{a^{-1}} \circ \varphi_a(x) = a^{-1}axa^{-1}a = x \Rightarrow {\varphi_a}^{-1} = {\varphi_{a^{-1}}} \in I$$

Let $f \in Aut(G)$, let $\varphi_g \in I$, for all $x \in G$:

$$\begin{split} f\circ\varphi_g\circ f^{-1}(x)&=f(gf^{-1}(x)g^{-1})\\ &=f(g)xf(g^{-1})\text{ since }f\text{ is a homomorphism}\\ &=f(g)xf(g)^{-1}\\ &=\varphi_{f(g)}(x) \end{split}$$

Since this is true for all x then we have $f \circ \varphi_g \circ f^{-1} \in I$. Since this is true for all φ_g we have $fIf^{-1} \subseteq I$, for all $f \in \operatorname{Aut}(G)$. So $I \subseteq \operatorname{Aut}(G)$.

Exercise 7. Let G be a group such that Aut(G) is cyclic. Prove that G is abelian.

Proof. Let N be the inner automorphishms group, since it is a subgroup of Aut(G) it is cylic. Now we define:

$$\varphi \colon G \to N$$

$$\varphi(g) \to \varphi_g$$

Where φ_g is defined as in exersise 6. Let $Z(G) = \{z \in G \mid zg = gz \ \forall g \in G\}$, it is clear that $Z(G) \subseteq \ker \varphi$. Furthermore

if $g \in \ker \varphi$ we have:

$$\forall x \in G \ x = \mathrm{id}(x) = \varphi_g(x) = gxg^{-1} \ \therefore gx = xg \Rightarrow g \in Z(G)$$

So we see that $\ker \varphi = Z(G)$, so we have

$$G/Z(G) \simeq N$$

Since N is cyclic so is G/Z(G), so let gZ(G) be a generator. Let $x.y \in G$ we have $x = g^m z$, $y = g^n z'$ for some $n, m \in \mathbb{Z}$ and $z, z' \in Z(G)$. We have:

$$xy = g^m z g^n z'$$

$$= g^m g^n z z'$$

$$= g^n g^m z' z$$

$$= g^n z' g^m z$$

$$= yx$$

Since x, y are arbitrary we see that G is indeed abelian.

Exercise 8. Let G be a group and let H, H' be subgroups. By a **double coset** of H, H' one means a subset of G of the form HxH'.

- (a) Show that G is a disjoint union of double cosets.
- (b) Let $\{c\}$ be a family of representatives for the double cosets. For each $a \in G$ denote by [a]H' the conjugate $aH'a^{-1}$ of H'. For each c we have a decomposition into ordinary cosets

$$H = \bigcup_{x_c} x_c(H \cap [c]H')$$

where $\{x_c\}$ is a family of elements of H, depending on c. Show that the elements $\{x_cc\}$ form a family of left coset representatives for H' in G; that is,

$$G = \bigcup_{c} \bigcup_{x_c} x_c c H',$$

and the union is disjoint.

Proof. (a) First of all assume that $z \in HxH' \cap HyH'$ then let $h_1, h_2 \in H$ and $h'_1, h'_2 \in H'$ such that:

$$h_1xh_1' = z = h_2yh_2' \Rightarrow y = h_2^{-1}h_1xh_1'h_2'^{-1} \Rightarrow HyH' = Hh_2^{-1}h_1xh_1'h_2'^{-1}H' = HxH'$$

For any $y, x \in G$ either HxH' and HyH' are disjoint or they are equal this fact combined with the fact that for all $x \in G$ we have $x \in HxH'$ tells us that we can write G as a disjoint union of double cosets.

(b) By our assumptions we have the disjoint unions:

$$G = \bigcup_{c} HcH'$$

$$= \bigcup_{c} \bigcup_{x_{c}} x_{c}(H \cap [c]H')cH'$$

But notice that for $\alpha \in x_c(H \cap [c]H')cH'$ we have:

$$\alpha = x_c ch' c^{-1} ch'' = x_c ch' h'' \in x_c cH'$$
 for some $h', h'' \in H'$

So we see that $x_c(H \cap [c]H')cH' \subseteq x_ccH'$, the other inclusion is clear since $e \in (H \cap [c]H')$. So we have:

$$G = \bigcup_{c} \bigcup_{x_c} x_c c H'$$
 and this union is disjoint

Exercise 9. (a) Let G be a group and H a subroup of finite index. Show that there exists a normal subgroup N of G contained in H and also of finite index.

(b) Let G be a group and let H_1, H_2 be subgroups of finite index. Prove that $H_1 \cap H_2$ has finite index.

Proof) Assume that [G: H] = n and let $\{a_1H, a_2H, \ldots, a_nH\}$ be the distinct cosets of H in G. Let $a \in G$ since we know that $aa_iH \in \{a_1H, a_2H, \ldots, a_nH\}$, so let $\sigma_a \in S_n$ be such that $aa_iH = a_{\sigma_a(i)}H$ for all i. We define

$$\varphi \colon G \to S_n$$

$$a \to \sigma_a$$

Let $x \in \ker \varphi$, this means that $xa_iH = a_{e(i)}H = a_iH$ for all i. In particular we know that for one i_0 we have $a_{i_0}H = H$, so we have

$$H = a_{i_0}H = xa_{i_0}H = xH$$

This means that $x \in H$. Therefore $\ker \varphi \subseteq H$. Letting $N = \ker \varphi$, we see that this is a normal subgroup conatined in H.

Now finally note that im $\varphi \leq S_n$, so we see by an isomorphism theorem:

$$[G: N] = |G/N| = |\operatorname{im} \varphi| < |S_n| = n! < \infty$$

(b) First of all, let $x, y \in G$ be such that $xH_1 = yH_1$ and $xH_2 = yH_2$, then we have $y^{-1}x \in H_1$ and $y^{-1}x \in H_2$ so $y^{-1}x \in H_1 \cap H_2$ so $x(H_1 \cap H_2) = y(H_1 \cap H_2)$

Conversely assume that $x(H_1 \cap H_2) = y(H_1 \cap H_2)$, then we have that $y^{-1}x \in H_1 \cap H_2$ so $y^{-1}x \in H_1$ and $y^{-1}x \in H_2$.

So we have shown that $x(H_1 \cap H_2) = y(H_1 \cap H_2)$ if and only if $xH_1 = yH_1$ and $xH_2 = yH_2$.

Now finally we let, C_i be the set of distinct reperesentatives of H_i and C be the set of distinct reperesentatives of $H_1 \cap H_2$

$$f: C \rightarrow C_1 \times C_2$$

 $c(H_1 \cap H_2) \rightarrow (cH_1, cH_2)$

Since we $x(H_1 \cap H_2) = y(H_1 \cap H_2)$ if and only if $(xH_1, xH_2) = (yH_1, yH_2)$ see that this function is well-defined and injective. Therefore from set theory:

$$[G: H_1 \cap H_2] = |C| \le |C_1||C_2| = [G: H_1][G: H_2] < \infty$$

Exercise 10. Let G be a group and let H be a subgroup of finite index. Prove that there is only a finite number of right cosets of H, and that the number of right cosets is equal to the number of left cosets.

Proof. Recall, that since H has finite index, There are only a finite number of left cosets of H in G.

$$ah = b \iff hb^{-1} = a^{-1}$$

 $\therefore b \in aH \iff a^{-1} \in Hb^{-1}$

From this we see that $aH = bH \iff Ha^{-1} = Hb^{-1}$.

Let $H_L = \{aH \mid a \in G\}$ the set of left cosets, and let $H_R = \{Ha \mid a \in G\}$ the set of right cosets.

We define a set map:

$$f\colon H_L\to H_R$$

Given by $f(aH) = Ha^{-1}$. Now first we will show that this function is well-defined, let aH = bH this implies from above that $Ha^{-1} = Hb^{-1}$:

$$f(aH) = Ha^{-1} = Hb^{-1} = f(bH)$$

So this function is indeed well-definied. Now this is also a bijection we notice that the inverse function is given by the map:

$$g: H_R \to H_L$$
 by $g(Ha) = a^{-1}H$

This function is similarly seen to be well-defined since $aH = bH \iff Ha^{-1} = Hb^{-1}$.

So we see that $[G: H] = |H_L| = |H_R|$. Since $[G: H] < \infty$, there is only a finite number of right cosets and there as a many right as left cosets.

Exercise 11. Let G be a group, and A a normal abelian subgroup. Show that G/A operates on A by conjugation; and in this manner get a homomorphism of G/A into Aut(A).

Proof. We will first show that this action is well-defined: Assume that xA = yA so let $a \in A$ such that y = xa and let $s \in A$. So we have:

$$xA \cdot s = xsx^{-1}$$

 $= xaa^{-1}sx^{-1}$
 $= (xa)s(a^{-1}x^{-1})$ since $a, s \in A$ and A is abelian.
 $= (xa)s(xa)^{-1}$
 $= ysy^{-1}$
 $= yA \cdot s$

So this function is indeed well-defined. Now we will show that this function is a group action:

Let $xA, yA \in G/A$ and $s \in A$ we have

$$xA \cdot (yA \cdot s) = xA \cdot (ysy^{-1}) = xysy^{-1}x^{-1} = (xy)s(xy)^{-1} = (xyA) \cdot s$$

For all $s \in S$

$$eA \cdot s = ese^{-1} = s$$

So this indeed a group action.

Now let

$$\varphi \colon G/A \to \operatorname{Aut}(A)$$

Be such that for all $s \in A$:

$$\varphi(xA)(s) = xA \cdot s$$
$$= xsx^{-1}$$

Note that it is clear that $\varphi(xA)$ is an automorphisms, since it is an inner-homomorphism. Finally it is clear that φ is a homomorphism, since the map $xA \cdot s = xsx^{-1}$ is a group action, so

$$\varphi(xyA)(s) = (xyA) \cdot s = xA \cdot (yA \cdot s) = \varphi(xA)\varphi(yA)(s) \Rightarrow \varphi(xy) = \varphi(x)\varphi(y)$$

And likewise from above we see that $\varphi(A) = id$.

Part 2: Semidirect product We define G to be the semidirect product of H and N if G = NH and $H \cap N = \{e\}$.

Exercise 12. Let G be a group and let H, N be subgroups with N normal. Let γ_x be conjugation by an element $x \in G$.

- (a) Show that $x \to \gamma_x$ induces a homomorphism $f: H \to \operatorname{Aut}(N)$
- (b) If $H \cap N = \{e\}$, show that the map $H \times N \to HN$ given by $(x, y) \to xy$ is a bijection, and that this map is an isomorphism if and only if f (from part (a)) is trivial.
- (c) Conversely, let N, H be groups and let $\psi \colon H \to \operatorname{Aut}(N)$ be a given homomorphism. Let G be the set of pairs

(x,h) with $x \in N$ and $h \in H$ and define a composition law:

$$(x_1, h_1)(x_2, h_2) = (x_1\varphi(h_1)x_2, h_1h_2)$$

Show that this is a group law, and yields a semidirect product of N and H, identifying N with the set of elements (x,1) and H with the set of elements (1,h).

Proof. (a) We will first show that for all $x \in G$ we have $\gamma_x|_N \in \operatorname{Aut}(N)$, first of all recall that $\gamma_x|_N \colon N \to G$ is indeed a homomorphism. Now let $y \in \ker(\gamma_x)$ then:

$$\gamma_x(y) = xyx^{-1} = e \Rightarrow xy = x \Rightarrow y = e$$

So this is injective, finally since N is a normal subgroup of G, we see that $\gamma_x(N) = xNx^{-1} = N$, so this function is indeed an automorphism.

So we define our function $f: H \to \operatorname{Aut}(N)$, by $f(x) = \gamma_x$ for all $x \in H$. Let $x, y \in H$, for all $n \in N$ we have

$$f(xy)(n) = \gamma_{xy}(n)$$

$$= xyny^{-1}x^{-1}$$

$$= x(f(y)(n))x^{-1}$$

$$= (f(x) \circ f(y))(n)$$

This function is indeed a homomorphism.

Ш

(b) Let

$$g: H \times N \to HN$$
 be given by $(x,y) \to xy$

Since $HN = \{hn \mid h \in H \text{ and } n \in N\}$, this map is clearly surjective. Now assume that g(x,y) = g(z,w), then we have:

$$xy = zw \Rightarrow \underbrace{z^{-1}x}_{\in H} = \underbrace{wy^{-1}}_{\in N} \in H \cap N = \{e\}$$

So x = z and y = w, so (x, y) = (z, w). So this function is injective, and so a bijection.

• (\Rightarrow) Assume that this map is also an isomorphism, then we have for all $x, z \in H$ and $y, w \in N$

$$xzyw = g(xz, yw)$$
$$= g((x, y)(z, w))$$
$$= (xy)(zw)$$

Therefore, zy = yz for all $z \in H$ and $y \in N$, which means that:

$$f(z)(y) = zyz^{-1} = y$$
 for all $y \in N$ and $z \in H \Rightarrow f(z) = \mathrm{id}$ for all $z \in H$

So f is trivial.

• (\Leftarrow) Assume that f is trivial. Therefore we have for all $x, z \in H$ and $y, w \in N$:

$$g((x,y)(z,w)) = g(xz,yw)$$

$$= xzyw$$

$$= x(zyz^{-1})zw$$

$$= x(f_z(y))zw$$

$$= xyzw$$

$$= g(x,y)g(z,w)$$

So this g is indeed a homomorphism, and so a isomorphism.

(c) First of all we will show that this composition law is associative:

$$((x_1, h_1)(x_2, h_2))(x_3, h_3) = (x_1\psi(h_1)x_2, h_1h_2)(x_3, h_3)$$

$$= ((x_1\psi(h_1)x_2)\psi(h_1h_2)x_3, (h_1h_2)h_3)$$

$$= (x_1\psi(h_1)(x_2\psi(h_2)x_3), h_1(h_2h_3))$$

$$= (x_1, h_1)(x_2\psi(h_2)x_3, h_2h_3)$$

$$= (x_1, h_1)((x_2, h_2)(x_3, h_3))$$

Now for all $(x, h) \in N \times H$ we have:

$$(e_N, e_H)(x, h) = (e_N \psi(e_H)x, e_H h) = (x, h) = (x\psi(h)(e_N), he_H) = (x, h)(e_N, e_H)$$

and

$$(x,h)(\psi(h^{-1})x^{-1},h^{-1}) = (x\psi(e_H)(x^{-1}),e_H) = (e_N,e_H)$$

So this is in deed a group law.

Now let $N = \{(x,1) \in G\}$ and $H = \{(1,x) \in G\}$, it is clear that these are subgroups of G by how we defined multiplication and inverses. We first need to show that $N \subseteq G$: Let $(x,1) \in N$ and $(n,h) \in G$, then we have:

$$(\psi(h^{-1})n^{-1}, h^{-1})(x, 1)(n, h) = (\psi(h^{-1})n^{-1}\psi(1)x, h^{-1})(n, h)$$
$$= (\psi(h^{-1})n^{-1}x\psi(h)n, 1) \in N$$

So we indeed see that N is normal.

Also notice that $N \cap H = \{(1,1)\}$, by how they are defined. So we only need to show that G = NH. Let $(n,h) \in G$:

$$(n,1)(1,h) = (n\psi(1)1,1h) = (n,h)$$

So we indeed see $G \subseteq NH$, the other inclusion is trivial. So this group law indeed yields a semidirect product of N and H.

Exercise 13. (a) Let H, N be normal subgroups of a finite group G. Assume that the orders of H and G are relatively prime. Prove that xy = yx for all $x \in H$ and $y \in G$ and that $H \times N \simeq HN$

(b) Let H_1, \ldots, H_r be normal subgroups of G such that the order of H_i is relatively prime with the order of H_j for $i \neq j$. Prove that

$$H_1 \times \ldots \times H_r = H_1 \cdots H_r$$

Proof Proof First of all recall that since $H \cap N \leq H$ and $H \cap N \leq N$, we see that $|H \cap N| \mid |H|$ and $|H \cap N| \mid |N|$, so $|H \cap N| = 1$, since $\gcd(|H|, |N|) = 1$. So $|H| \cap N| = \{e\}$. Now since H, N are normal subgroups of G, for $x \in N$ and $y \in H$:

$$xyx^{-1} \in H \Rightarrow (xyx^{-1})y^{-1} \in H$$

And

$$yx^{-1}y^{-1} \in N \Rightarrow x(yx^{-1}y^{-1}) \in N$$

so $xyx^{-1}y^{-1} \in H \cap N = \{e\} \Rightarrow xy = yx$.

Now let γ_x be conjugation by an element $x \in G$ and let $f: H \to \operatorname{Aut}(N)$ be the induced map. Then we have:

$$f(h)(n) = h^{-1}nh = hh^{-1}n = n$$
 for all $h \in H$ and $n \in N$

So the map f is trivial, so by 12b:

$$H\times N \simeq HN$$

(b) We will proceed by induction. The base case was shown in (a), so assume this is true for all integers less than r. We have

$$H_1 \times \ldots \times H_{r-1} \simeq H_1 \cdots H_{r-1}$$

So

$$H_1 \times \ldots \times H_{r-1} \times H_r \simeq H_1 \cdots H_{r-1} \times H_r$$

Since $|H_1 \cdots H_{r-1}| = |H_1 \times \ldots \times H_{r-1}| = |H_1| \cdots |H_{r-1}|$, which is coprime to $|H_r|$ since $|H_r|$ is coprime to all $|H_j|$, with j < r. So using (a) we get the desired result.

Exercise 14. Let G be a finite group and N a normal subgroup such that N and G/N have relatively prime orders.

- (a) Let $H \leq G$, such that |H| = |G/N|. Prove that G = HN
- (b) Let g be an automorphism of G. Prove that g(N) = N.

Proof. (a) Note since N is normal:

$$|HN| = \frac{|H||N|}{|H \cap N|}$$

By a previous question. But since the order of N and H are relatively prime, as we have seen this means $|H \cap N| = 1$. So we have

$$\begin{aligned} |HN| &= |H||N| \\ &= |G/N||N| \\ &= |G| \end{aligned}$$

So we see that |HN| = |G|, since G is finite and $HN \subseteq G$, this means that HN = G.

Lemma 2. If $H \leq G$ is such that |H| = |N|, then H = N

Proof. Let

$$\varphi\colon G\to G/N$$

be the canonical homomorphism.

We note that $\varphi(HN) = HN/N \leq G/N$, we have:

$$|H/(H \cap N)| = |HN/N| \mid |G/N| \tag{3}$$

So let $m \in \mathbb{N}$:

$$\frac{|H|}{|H\cap N|}m=|G/N|\Rightarrow |N|m=|H|m=|G/N||H\cap N|$$

Now let p be a prime divisor of |N|, then $p \mid |G/N||H \cap N|$, since $p \nmid |G/N|$ and p is prime we see that: $p \mid |H \cap N|$.

So all prime divisors of |N| divide $|H \cap N|$, therefore |N| | $|H \cap N|$ but since $|H \cap N| \le |N|$ this implies that $|H \cap N| = |N|$ so $|H \cap N| \le |M|$. Likewise we can see that $|H \cap N| \le |M|$.

Now let g be an automorphism of G. So we know that $g(N) \leq G$ and |g(N)| = |N|. So by the lemma g(N) = N.

Part 3: Some operations

Exercise 15. Let G be a finite group operating on a finite set S with $\#(S) \ge 2$. Assume that there is only one orbit. Prove that there exists an element $x \in G$ which has no fixed point, i.e.

$$xs \neq s$$
 for all $s \in S$

Proof. Assume that for all $x \in G$, there is a $s \in S$ such that xs = s.

For each $x \in G$ we let f(x) = number of elements $s \in S$ such that xs = s. We will use the formula that will be proved in question 19:

1 = Orbits of
$$G$$
 in $S = \frac{1}{|G|} \sum_{x \in G} f(x)$ (4)

$$\therefore |G| = |S| + \sum_{x \in G \setminus \{e\}} f(x) \tag{5}$$

$$\geq |S| + \sum +G \setminus \{e\}$$
1 since by assumption every element has a fixed point (6)

$$\geq 2 + |G| - 1 = |G| + 1. \tag{7}$$

Which is a contradiction! Therefore there must be an element $x \in G$ which has no fixed point.

Exercise 16. Let H be a proper subgroup of a finite group G. Show that G is not the union of all the conjugates of H.

Proof. Let |G| = m|H|, where m > 1. Now let $S = \{x_1 H x_1^{-1}, \dots, x_r H x_r^{-1}\}$ be the set of conjugates of H. Recall that Since $e \in x_i H x_i^{-1}$, we see that: So we see that

$$|\bigcup_{i} x_{i} H x_{i}^{-1}| \leq \sum_{i} |x_{i} H x_{i}^{-1}| - r + 1 = \sum_{i} |H| - r + 1 = r|H| - r + 1.$$

Now by theorem we know that $r = |G| \cdot N_H = \frac{|G|}{|N_H|}$, where N_H is the normalizer of H, since $H \leq G$ it is closed under multiplication so $hHh^{-1} = H$, for $h \in H$ so $H \subseteq N_H$. So we have

$$r = \frac{|G|}{|N_H|} \le \frac{|G|}{|H|} = m..$$

Therefore we have

$$\left| \bigcup_{i} x_i H x_i^{-1} \right| \le r|H| - r + 1 \le m|H| - (m-1) < m|H| = |G| \text{ since } m > 1..$$

So G can't be the union of all the conjugates of H.

Exercise 17. Let X, Y be finite sets and C be a subset of $X \times Y$. For $x \in X$ let

 $\varphi(x) = \text{ number of elements } y \in Y \text{ such that } (x,y) \in C$

Verify that

$$|C| = \sum_{x \in X} \varphi(x)$$

Proof. Let $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_m\}$. Let $I = \{i \in \{1, \dots, n\} \mid \exists y \in Y \text{ such that } (x_i, y) \in C\}$. Now for each $i \in I$ we let $C_i = \{(x, y) \in C \mid x = x_i\}$. So note that the $C_i \cap C_j = \emptyset$ for all $j \neq i$ and that $\bigcup_{i \in I} C_i = C$. Finally we notice that $|C_i| = \text{ number of } y \in Y \text{ such that } (x_i, y) \in C = \varphi(x_i)$ Putting all of this together we have:

$$\sum_{x \in X} \varphi(x) = \sum_{i \in I} \varphi(x_i) = \sum_{i \in I} |C_i| = |\bigcup_{i \in I} C_i| = |C|$$

Exercise 18. Proof. Let $S = \{s_1, \ldots, s_n\}$ and $T = \{t_1, \ldots, t_m\}$ Recall a map from S to T is defined by where the s_i maps to for each i. There are m possible values that each s_i can be mapped to. So there are $\underbrace{m \cdot m \cdots m}_{n \text{ times}} = m^n = |T|^{|S|}$ maps from S to T.

Exercise 19. (a) *Proof.* Recall that since the orbits partition S we have Gs = Gt for all $t \in Gs$. So we have:

$$\sum_{t \in Gs} \frac{1}{|Gt|} = \sum_{t \in Gs} \frac{1}{|Gs|} = \frac{|Gs|}{|Gs|} = 1.$$

(b) Proof. Let $C = \{(x, s) \in G \times s \mid xs = s\}$, by question 17 we know that:

$$\sum_{x \in C} f(x) = |C|.$$

But furthermore if we let for all $s \in S$, $\varphi(s) = |\{x \in G \mid (x,s) \in C\}| = |\{x \in G \mid xs = s\}| = G_s$ then by question 17:

$$\sum_{s \in S} |G_s| = \sum_{s \in S} \varphi(s) = |C|.$$

We let $\{s_i\}_{i\in I}$ be the distinct represtatives for the orbits of G in S.

But we have:

$$\begin{split} \sum_{s \in S} |G_s| &= \sum_{s \in S} \frac{|G|}{|Gs|} \\ &= |G| \sum_{s \in S} \frac{1}{|G_s|} \\ &= |G| \sum_{i \in I} \sum_{t \in Gs_i} \frac{1}{|Gt|} \\ &= |G| \sum_{i \in I} 1 = |G| \cdot \# \text{ of distinct orbits of } G \text{ in } S \end{split}$$

Putting this all together we get:

$$\frac{1}{|G|} \sum_{x \in G} f(x) = \# \text{ of distinct orbits of } G \text{ in } S.$$

Exercise 20. Proof. Let P act on A by conjugation. By the orbit-stabilizer theorem

$$|P| = |A \cap Z(P)| + \sum |P \colon P_x| \text{ where the sum is over all } x \text{ such that } |P \colon P_x| > 1.$$

This is indeed true since

$$x \in A \cap Z(P) \iff gx = xg \text{ for all } g \in P \text{ and } x \in A \iff P_x = P \iff |P: P_x| = 1.$$

But then we have since if $|P: P_x| > 1$ then it is divisible by p, then we have $|A \cap Z(P)| = 0 \pmod{p}$. So we have $|A \cap Z(P)| \neq 1$, but since |A| = p this implies that $A \cap Z(P) = A$, so $A \subseteq Z(P)$.

Exercise 21. Proof. Since P_H is a p-Sylow subgroup of H it is a p-subgroup of G. So there exists a p-Sylow subgroup, Q, of G such that $P_H \subseteq Q$.

Now since $Q \cap H \leq Q$, we see that $Q \cap H$ is a p-group contained in H, so $|Q \cap H| \leq |P_H|$ but since $P_H \subseteq Q \cap H$ we

have $|Q \cap H| = |P_H|$.

So $|Q \cap H|$ is a p-Sylow subgroup of H, so there exists $g \in H$ such that $g(Q \cap H)g^{-1} = P_H$. But notice that since $g \in H$ we have $g(Q \cap H)g^{-1} = (gQg^{-1}) \cap H$. Let $P = gQg^{-1}$, it is a p-Sylow subgroup of G such that

$$P_H = P \cap H$$
.

Exercise 22. Proof. Recall that since H is a p-subgroup of G, it is contained in a p-Sylow subgroup, say $P \subseteq G$. Now let Q be any other p-Sylow subgroup of G, then there exists g such that $gPg^{-1} = Q$. But since $H \subseteq G$ we have

$$H = gHg^{-1} \subseteq gPg^{-1} = Q.$$

 \therefore H is contained in Q, since Q was an arbitrary p-Sylow subgroup of G, H is contained in all p-Sylow groups.

Exercise 23. Let $|G| = p^k m$, where $p \nmid m$.

(a) Proof. Assume that $P' \subseteq N(P)$. Note that $|N(P)| = p^k n$, where $p \nmid n$, so P' is a p-Sylow subgroup of N(P). But we also know that P is a p-Sylow subgroup of N(P), and since all p-Sylow groups are conjugate there is $g \in N(P)$ such that

$$gPg^{-1} = P'.$$

So since $q \in N(P)$, $P = qPq^{-1} = P'$.

- (b) Proof. $P' \subseteq N(P') = N(P)$, so by the previous question P' = P.
- (c) Proof. It is clear that $N(P) \subseteq N(N(P))$. So let $g \in N(N(P))$ and $n \in N(P)$. On the one hand since $gng^{-1} \in gN(P)g^{-1} = N(P)$ we know that $gng^{-1}Pgn^{-1}g^{-1} = P$.

On the other hand by (a) we know that $q^{-1}Pq = P$ and since $n \in N(P)$ we have:

$$P = gn(g^{-1}Pg)n^{-1}g^{-1} = g(nPn^{-1})g^{-1} = gPg^{-1}.$$

Therefore $g \in N(P)$ so we have $N(N(P)) \subseteq N(P) \Rightarrow N(N(P)) = N(P)$

Part 4: Explicit determination of groups

Exercise 24. Proof. Assume that p is prime and let G be a group of order p^2 .

Since each element in the center of G forms a conjugacy class containing just itslef, if x_1, \ldots, x_r are the conjugacy representatives not in the center

$$|G| = |Z(G)| + \sum_{i} |G \colon G_{x_i}|$$

Therefore we know that $p \mid |Z(G)|$. So we have $|Z(G)| = \begin{cases} p^2 \\ p \end{cases}$ Assume that |Z(G)| = p, |G/Z(G)| = p, so |G/Z(G)| = p.

is cyclic say $G/Z(G)=\langle gZ(G)\rangle$. Now let $x,y\in G$ then we have $x=g^na$ and $y=g^mb$, where $n,m\in\mathbb{Z}$ and $a,b\in Z(G)$:

$$xy = (g^n a)(g^m b)$$

$$= g^n g^m ab \text{ since } a \in Z(G)$$

$$= g^{n+m} ba \text{ since } b \in Z(G)$$

$$= g^m b g^n a$$

$$= yx$$

Since x, y were arbitrary elements in G, then G is abelian which contradicts the fact that $Z(G) \neq G$. $\therefore |Z(G)| = p^2$, so Z(G) = G and G is abelian.

Assume that G is not isomorphic to the cyclic group $\mathbb{Z}/p^2\mathbb{Z}$. This means that $\operatorname{ord}(x) = p$ for all $x \in G \setminus \{e\}$. Let $x \in G \setminus \{e\}$, we define H to be the subgroup of G generated by x and let $y \in G \setminus H$, and K be the subgroup generated by y. Since $K \cap H = \{e\}$, and since G is abelian then from question 12 we conclude that $|HK| = |H| \cdot |K| = p^2$. Therefore HK = G and

$$G = HK \simeq H \times K \simeq \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$$

.

Exercise 25. (a) *Proof.* By the class equation $p \mid |Z|$, therefore since G is not abelian

$$|Z| = \begin{cases} p \\ p^2 \end{cases} .$$

Assume that $|Z| = p^2$, then |G/Z| = p, which would mean that G/Z is cyclic so G is abelian which is a contradiction. So |Z| = p. Therefore $Z \simeq C$. Now notice that $|G/Z| = p^2$, but it is not cyclic since G is not abelian, so by last question $G/Z \simeq C \times C$.

(b) Proof. Since the index of H is p it is normal. Assume for a contradiction that Z is not contained in H. Then notice that $Z \cap H = \{e\}$, since $Z = \langle g \rangle$ for some $g \in G$ and $g \notin H$. Therefore since gh = hg for all $h \in H$ and $g \in Z$, by question 12 we see that $|ZH| = |Z| \cdot |H| = p^3$. So we have that ZH = G.

The last thing we need to recall is that from question 24, H is an abelian group.

Let $x, y \in G$ there exists $g_1, g_2 \in Z$ and $h_1, h_2 \in H$ such that $x = g_1 h_1$ and $y = g_2 h_2$.

$$xy = (g_1h_1)(g_2h_2)$$

$$= g_2g_1h_1h_2 \text{ since } g_2 \in Z$$

$$= g_2g_1h_2h_1 \text{ since } H \text{ is abelian we have } h_2h_1 = h_1h_2$$

$$= (g_2h_2)(g_1h_1) \text{ since } g_1 \in Z$$

$$= yx$$

Which implies that G is abelian, which is a contradiction. Therefore, $Z \subseteq H$.

(c) *Proof.* Let $x \in G \setminus Z$ and let $K = \langle x \rangle$. We notice that since K and Z are both cyclic groups of prime order and $x \notin Z$ we have $K \cap Z = \{e\}$

Since $Z \subseteq G$ we see that $H = KZ \subseteq G$. Furthermore from question 12:

$$|H| = |K||Z| = p^2.$$

From the previous question this subgroup is normal and since $|H|=p^2$ and $x^p=e$ for all $x\in H$ by question 24, $H\simeq C\times C$.

Exercise 26. (a) *Proof.* Let P be a Sylow p-subgroup of G and Q be a Sylow q-subgroup of G. Since Q has index p, we know that it is a normal subgroup of G. From 14(a), since P has the same order as G/Q and p,q are distinct primes we know that G = PQ.

Now we let P acts on Q by conjugation. This gives us a homomorphism

$$\varphi \colon P \to Aut(Q).$$

Now since $\ker \varphi \leq P$ and P is a simple group we know by the isomorphism theorem that

$$|\varphi(P)| = |P|/|\ker \varphi| = \begin{cases} p\\1 \end{cases}$$

But furthermore we know that $ \varphi(P) \mid Aut(Q) = q - 1$, so if $ \varphi(P) = p$ we would have $q - 1 = 0 \pmod{p}$, which contradicts our assumption. So we must have that φ is trivial. Since $P \cap Q = \{e\}$, from question 12 we know that $P \times Q \simeq PQ$. Finally from proposition 4.3(v), we know that $P \times Q$ is cyclic so $G = PQ \simeq P \times Q$ is also cyclic.	<u>)</u>
(b) Since $15 = 3 \cdot 5$ and $5 = 2 \pmod{3}$. The result is immidiate from last question.	
Exercise 27.	
Exercise 28.	
Exercise 29.	
Exercise 30. (a) <i>Proof.</i> Since $40 = 5 \cdot 2^3$. We have $n_5 \mid 8$ and $n_5 = 1 \pmod{5}$ which forces $n_5 = 1$.	
(b) <i>Proof.</i> Since $12 = 3 \cdot 2^2$. This is true from Exercise 28.	l

Exercise 31.