Write a flow ILP for the Steiner tree problem for the graph (see attached) with yellow terminals 1, 3, 5.



## Solution:

$$S = \{1, 3, 5\}$$

 $X_{\text{e}}$  : whether edge e is chosen or not chosen.

Minimize: ∑<sub>e</sub>∈E c<sub>e</sub>X<sub>e</sub>,

 $\sum_{e \in (S, S')} X_e >= 1$ , for all S separating some  $(s_i, t_i)$  pair.

$$X_e >= 0.$$

Flow:  $f_{ii}^{13} >= 0 \forall (i, j) \in E, \forall K \in V$ 

$$\sum f_{ik}^{13} = \sum f_{kj}^{13}$$

## Source:

1:  $\sum f_{i1}^{13}$  (incoming) =  $\sum f_{1j}^{13} - 1$ (outgoing)

## **Destination:**

3:  $\sum f_{i3}^{13}$  (incoming) =  $\sum f_{3j}^{13} + 1$ (outgoing)

Therefore,

 $X_{1,2} + X_{1,6} >= 1$  (Separating vertex 1)

 $X_{2,3} + X_{3,6} >= 1$  (separating vertex 3)

Also,  $x_{56} >= 1$  (Separating vertex 5)

$$X_{1,2} >= f_{1,2}^{1,3}$$

$$X_{1,2} >= f_{2,1}^{1,3}$$

$$X_{1,2} >= f_{1,2}^{1,5}$$

$$X_{1.2} >= f_{2.1}^{1.5}$$

Let's Consider the edge 2,3

$$X_{2.3} >= f_{2.3}^{1,3}$$

$$X_{2,3} >= f_{3,2}^{1,3}$$

$$X_{2,3} >= f_{2,3}^{1,5}$$

$$X_{2.3} >= f_{3.2}^{1.5}$$

Let's Consider the edge 1,6

$$X_{1,6} >= f_{1,6}^{1,3}$$

$$X_{1.6} >= f_{6.1}^{1.3}$$

$$X_{1,6} >= f_{1,6}^{1,5}$$

$$X_{1.6} >= f_{6.1}^{1.5}$$

Let's Consider the edge 3,6

$$X_{3.6} >= f_{3.6}^{1,3}$$

$$X_{3,6} >= f_{6,3}^{1,3}$$

$$X_{3,6} >= f_{3,6}^{1,5}$$

$$X_{3.6} >= f_{6.3}^{1.5}$$

Let's Consider the edge 5,6

$$X_{5.6} >= f_{6.5}^{1.5}$$

$$X_{5.6} >= f_{5.6}^{1.5}$$