STROKE CLASSIFICATION

✓ 1.0 IMPORT LIBRARIES

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
```

2.0 DATA EXTRACTION, TRANSFORM AND LOAD (ETL) AND EXPLORATORY

- · Data extracted manually form Kaggle
- · Transform and Load by Pandas(row and columns)

```
df = pd.read_csv('stroke_data.csv')
df
```

-	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_
0	Male	58.0	1	0	Yes	Private	U
1	Female	70.0	0	0	Yes	Private	F
2	Female	52.0	0	0	Yes	Private	U
3	Female	75.0	0	1	Yes	Self- employed	F
4	Female	32.0	0	0	Yes	Private	F
29060	Female	10.0	0	0	No	children	U
29061	Female	56.0	0	0	Yes	Govt_job	U
29062	Female	82.0	1	0	Yes	Private	U
29063	Male	40.0	0	0	Yes	Private	U
29064	Female	82.0	0	0	Yes	Private	U
4)

3.0 EXPLORATORY DATA ANALYSIS

```
<<class 'pandas.core.frame.DataFrame'>
RangeIndex: 29065 entries, 0 to 29064
Parts columns (total 11 columns)
```

df.info()

```
Data columns (total 11 columns):
                 Non-Null Count Dtype
# Column
    -----
                         ------
                       29065 non-null object
29065 non-null float64
0
     gender
1
     age
    hypertension 29065 non-null int64
heart_disease 29065 non-null int64
ever_married 29065 non-null object
     work_type
                          29065 non-null object
     Residence_type
                         29065 non-null object
     avg_glucose_level 29065 non-null float64
 8 bmi
                          29065 non-null float64
                          29065 non-null object
     smoking_status
10 stroke
                          29065 non-null int64
dtypes: float64(3), int64(3), object(5)
memory usage: 2.4+ MB
```

```
plt.figure(figsize=(12,5))
sns.heatmap(df.isnull(), yticklabels=False, cbar =True, cmap='viridis')
```


df.isnull().any()

	gender	False
	age	False
	hypertension	False
	heart_disease	False
	ever_married	False
	work_type	False
	Residence_type	False
	avg_glucose_level	False
	bmi	False
	smoking_status	False
	stroke	False
	dtype: bool	

$\verb|sns.countplot(x= 'smoking_status', hue = 'stroke', data=df |)|\\$

 $\verb|sns.countplot(x= 'work_type', hue = 'stroke', data=df |)|$


```
# plt.plot(,, color = 'red')
plt.figure(figsize=(12,5))
sns.barplot(x=df['stroke'], y=df['avg_glucose_level'], hue=df['gender'] )
```


sns.countplot(x= 'stroke',data=df)

stroke

df.info()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 29065 entries, 0 to 29064
    Data columns (total 11 columns):
     # Column
                           Non-Null Count
     0
                           29065 non-null
         gender
                                           object
     1
                           29065 non-null float64
         age
        hypertension
                           29065 non-null
                                           int64
     2
        heart_disease
                           29065 non-null
                                           int64
        ever_married
                           29065 non-null
                                           object
                           29065 non-null
        work_type
                                           object
     6
        Residence_type
                           29065 non-null
         avg_glucose_level 29065 non-null
                                           float64
                           29065 non-null
         smoking_status
                           29065 non-null
     10 stroke
                           29065 non-null
    dtypes: float64(3), int64(3), object(5)
    memory usage: 2.4+ MB
```

→ TREAT THE Imbalance Dataset

- count_class_0, count_class_1 = df.stroke.value_counts()
- count_class_0, count_class_1

```
Start coding or <u>generate</u> with AI.

Start coding or <u>generate</u> with AI.
```

TO USE UNDER SAMPLE

- df_class_0_under = df_class_0.sample(count_class_1)
- df_test_under = pd.concat([df_class_0_under, df_class_1], axis=0)
- df_test_under
- df_test_under.stroke.value_counts()

▼ TO USE OVERSAMPLE

+count_class_0, count_class_1 # Using 10% of your

- n_10_per = int(count_class_0 * 0.30)
- print('30% of OVERSAMPLE DATA ====> ', n_10_per)
- df_class_0_over = df_class_0.sample(n_10_per)
- df_class_1_over = df_class_1.sample(n_10_per, replace=True)
- df_sample_overr = pd.concat([df_class_0_over, df_class_1_over], axis=0)
- df_sample_overr

Imbalance dataset late treated using SMOTE library

4.0 TRANSFORMATION

```
# Import Principal Component Analysis
#from sklearn.decomposition import PCA
```

Double-click (or enter) to edit

```
Start coding or generate with AI.
# Print all object types column
for col in df:
    if df[col].dtypes == 'object':
        print(col)
→ gender
     ever_married
     work_type
     Residence_type
     smoking\_status
Start coding or generate with AI.
Start coding or generate with AI.
```

Double-click (or enter) to edit

```
Start coding or generate with AI.
Start coding or generate with AI.
Start coding or generate with AI.
#TODO: Check for Object type column, get there dummies values, reduce there demensionality to 1,
df_transformed = pd.DataFrame()
for col in df:
    # Check for obj type
    if df[col].dtypes == 'object':
        # generate dummies values fpr the column
       dummy_val = pd.get_dummies(df[col], drop_first=True )
       # Add the new column df_transformed
       df_transformed = pd.concat([df_transformed, dummy_val], axis=1)
df\_transformed
```

→

	Male	Yes	Never_worked	Private	Self- employed	children	Urban	never smoked	smokes
0	1	1	0	1	0	0	1	1	0
1	0	1	0	1	0	0	0	0	0
2	0	1	0	1	0	0	1	0	0
3	0	1	0	0	1	0	0	1	0
4	0	1	0	1	0	0	0	0	1
29060	0	0	0	0	0	1	1	1	0
29061	0	1	0	0	0	0	1	0	0
29062	0	1	0	1	0	0	1	0	0
29063	1	1	0	1	0	0	1	1	0
29064	0	1	0	1	0	0	1	1	0

29065 rows × 9 columns

#pd.concat([df_transformed, pd.get_dummies(df_test_under['gender'])], axis=1,)
#pd.concat([df_transformed, pd.get_dummies(df_test_over['gender'])], axis=1)

 $\mbox{\tt\#}$ Set the index of df_transformed to match the index of df_clean_outlier

#df_transformed.index = df_sample_over.index
df_transformed.index = df.index

df_transformed.tail(3)

	Male	Yes	Never_worked	Private	Self- employed	children	Urban	never smoked	smokes
29062	0	1	0	1	0	0	1	0	0
29063	1	1	0	1	0	0	1	1	0
29064	0	1	0	1	0	0	1	1	0

concanteenate newly generate and origin dataset
df_clean_transformed = pd.concat([df, df_transformed], axis=1)
df_clean_transformed

	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_					
0	Male	58.0	1	0	Yes	Private	U					
1	Female	70.0	0	0	Yes	Private	F					
2	Female	52.0	0	0	Yes	Private	U					
3	Female	75.0	0	1	Yes	Self- employed	F					
4	Female	32.0	0	0	Yes	Private	F					
29060	Female	10.0	0	0	No	children	U					
29061	Female	56.0	0	0	Yes	Govt_job	U					
29062	Female	82.0	1	0	Yes	Private	U					
29063	Male	40.0	0	0	Yes	Private	U					
29064	Female	82.0	0	0	Yes	Private	U					
29065 rd	ws × 20 c	29065 rows × 20 columns										

Drop the object type column
df_clean_transformed.drop(['gender', 'work_type', 'Residence_type', 'ever_married', 'smoking_status'], axis=1, inplace=True)
df_clean_transformed.sample(4)

	age	hypertension	heart_disease	avg_glucose_level	bmi	stroke	Male	Yes	I
16199	76.0	0	0	69.19	21.2	0	1	1	
12642	35.0	0	0	140.00	32.4	0	1	0	
854	71.0	0	0	151.30	26.3	0	0	1	
4									>

Using SMOTE from imbalanced-learn to balance the DataSet

```
!pip install imbalanced-learn
from imblearn.over_sampling import SMOTE
→ Defaulting to user installation because normal site-packages is not writeable
          Requirement already satisfied: imbalanced-learn in c: \users ola \appdata \noaming \python \
          Requirement already satisfied: scipy>=1.5.0 in c:\programdata\anaconda3\lib\site-packages (from imbalanced-learn) (1.7.3)
          Requirement already satisfied: scikit-learn>=1.0.2 in c:\programdata\anaconda3\lib\site-packages (from imbalanced-learn) (1.0.2)
          Requirement already satisfied: joblib>=1.1.1 in c:\users\ola\appdata\roaming\python\python39\site-packages (from imbalanced-learn)
          Requirement already satisfied: threadpoolctl>=2.0.0 in c:\programdata\anaconda3\lib\site-packages (from imbalanced-learn) (2.2.0)
          Requirement already satisfied: numpy>=1.17.3 in c:\users\ola\appdata\roaming\python\python39\site-packages (from imbalanced-learn)
df_clean_transformed.shape
→ (29065, 15)
count_class_0, count_class_1 = df.stroke.value_counts()
count_class_0, count_class_1
→ (28517, 548)
# Use 20% of Oversample data
n_20_per = int(count_class_0 * 0.20)
print( '20% of OVERSAMPLE DATA ====> ', n_20_per)
df_class_0 = df_clean_transformed[df_clean_transformed['stroke'] == 0]
df_class_1 = df_clean_transformed[df_clean_transformed['stroke'] == 1]
# Select 20% of the sample
df_class_0_over = df_class_0.sample(n_20_per)
# Concatenate class 1 and 0
df_clean_transformed_sample = pd.concat([df_class_0_over, df_class_1], axis=0)
df_clean_transformed_sample
20% of OVERSAMPLE DATA ====> 5703
                          age hypertension heart_disease avg_glucose_level bmi stroke Male Yes
           15342 52.0
                                                          0
                                                                                         1
                                                                                                                      157.90 38.0
                                                                                                                                                         0
                                                                                                                                                                     1
                                                                                                                                                                               1
            18426 26.0
                                                          0
                                                                                         0
                                                                                                                       96.85 20.4
                                                                                                                                                         0
                                                                                                                                                                     0
                                                                                                                                                                               1
           26028 62.0
                                                          0
                                                                                         0
                                                                                                                       94.89 31.2
           25322 63.0
                                                                                         0
                                                                                                                      116.46 36.7
                                                          0
                                                                                                                                                         0
                                                                                                                                                                     0
            9104
                       61.0
                                                          0
                                                                                         0
                                                                                                                      190.35 34.3
           28863 79.0
                                                                                         1
                                                                                                                       88.29 36.0
           28891 76.0
                                                          0
                                                                                         0
                                                                                                                       93.38 26.7
           28910 56.0
                                                          0
                                                                                                                       83.27 32.9
                                                                                         0
                                                                                                                                                                     0
           29004 80.0
                                                          0
                                                                                         0
                                                                                                                        75.91 26.7
                                                                                                                                                                      0
```

```
X = df_clean_transformed_sample.drop('stroke', axis=1) # independent column
y = df_clean_transformed_sample['stroke']
```

77.97 31.5

y.value_counts()

29014 62.0

1

1

```
X.shape # dependant column

(6251, 14)

# Balance the dataset using SMOTE and increase the dataset
smote = SMOTE(sampling_strategy = 'minority')
X_sm, y_sm = smote.fit_resample(X,y)
y_sm.value_counts()

0 5703
1 5703
Name: stroke, dtype: int64

X_sm.shape

(11406, 14)
```

▼ 5.0 MODEL AND EVALUATION

· Let's start by splitting our data into a training set and test set

Splitting the dataset into the Training set and Test set

X_test.head(17)

∓

	age	hypertension	heart_disease	<pre>avg_glucose_level</pre>	bmi	Male	Yes
2113	31.000000	0	0	97.330000	30.300000	0	1
3177	77.000000	0	0	81.390000	37.200000	0	1
4196	76.000000	0	0	77.670000	40.500000	0	1
974	61.000000	0	0	74.930000	42.600000	0	1
8024	64.429281	0	0	149.578809	28.355169	1	1
11310	77.576308	0	0	116.515218	27.650799	0	1
11188	78.086590	0	0	93.521540	22.591341	1	1
5952	67.000000	0	0	58.050000	31.300000	1	1
9683	71.377975	0	0	101.992015	29.140178	1	0
2102	57.000000	0	0	64.460000	30.300000	1	1
9718	78.105684	0	0	65.423979	22.195116	0	1
4005	55.000000	0	0	81.250000	27.400000	1	1
5501	56.000000	0	0	82.840000	28.600000	1	1
5063	64.000000	1	0	210.810000	28.400000	0	1
11263	80.000000	0	0	64.661847	43.660545	0	0
9694	79.273879	0	0	188.238193	26.065594	0	1
4							•

Feature Scaling

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
```

Train using LOGISTIC_REGRESSION model on the Training set

```
classifier = LogisticRegression(random_state = 0)
classifier.fit(X_train, y_train)
```

→ LogisticRegression(random_state=0)

Making the Confusion Matrix

```
y_pred = classifier.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
print(cm)
accuracy_score(y_test, y_pred)
```

[[932 209] [220 921]] 0.8120070113935145

print(classification_report(y_test, y_pred))

₹	precision	recall	f1-score	support
0 1	0.81 0.82	0.82 0.81	0.81 0.81	1141 1141
accuracy macro avg weighted avg	0.81 0.81	0.81 0.81	0.81 0.81 0.81	2282 2282 2282

Start coding or generate with AI.

Start coding or generate with AI.

Train using K-NEAREST_NEIGHBORS model on the Training set

```
from sklearn.neighbors import KNeighborsClassifier
```

```
knn_classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
knn_classifier.fit(X_train, y_train)
```

★ KNeighborsClassifier()

Making the Confusion Matrix

```
knn_y_pred = knn_classifier.predict(X_test)
knn_cm = confusion_matrix(y_test, knn_y_pred)
print(knn_cm)
accuracy_score(y_test, knn_y_pred)
```

[[949 192] [106 1035]] 0.8694127957931639

Start coding or generate with AI.

print(classification_report(y_test, knn_y_pred))

→		precision	recall	f1-score	support
	0	0.90	0.83	0.86	1141
	1	0.84	0.91	0.87	1141

```
        accuracy
        0.87
        2282

        macro avg
        0.87
        0.87
        0.87
        2282

        weighted avg
        0.87
        0.87
        0.87
        2282
```

Start coding or generate with AI.

Start coding or generate with AI.

Train using SUPPORT_VECTOR_MACHINE model on the Training set

```
from sklearn.svm import SVC
svc_classifier = SVC(kernel = 'linear', random_state = 42)
svc_classifier.fit(X_train, y_train)
```

SVC(kernel='linear', random_state=42)

Making the CONFUSION MATRIX

```
svc_y_pred = svc_classifier.predict(X_test)
svc_cm = confusion_matrix(y_test, svc_y_pred)
print(svc_cm)
accuracy_score(y_test, svc_y_pred)
```

[[934 207] [216 925]] 0.8146362839614374

print(classification_report(y_test, svc_y_pred))

→	precision	recall	f1-score	support
0 1	0.81 0.82	0.82 0.81	0.82 0.81	1141 1141
accuracy macro avg weighted avg	0.81 0.81	0.81 0.81	0.81 0.81 0.81	2282 2282 2282

Start coding or $\underline{\text{generate}}$ with AI.

Start coding or $\underline{\text{generate}}$ with AI.

Train using KERNEL_SVM model on the Training set

```
from sklearn.svm import SVC
kernel_classifier = SVC(kernel ='rbf', random_state = 40)
kernel_classifier.fit(X_train, y_train)
```

→ SVC(random_state=40)

Making the CONFUSION MATRIX

```
kernel_y_pred = kernel_classifier.predict(X_test)
kernel_cm = confusion_matrix(y_test, kernel_y_pred)
print(kernel_cm)
accuracy_score(y_test, kernel_y_pred)
```

[[940 201] [159 982]] 0.8422436459246275

print(classification_report(y_test, kernel_y_pred))

₹		precision	recall	f1-score	support	
	0	0.86	0.82	0.84	1141	
	1	0.83	0.86	0.85	1141	

```
accuracy 0.84 2282 macro avg 0.84 0.84 0.84 2282 weighted avg 0.84 0.84 0.84 2282
```

```
Start coding or \underline{\text{generate}} with AI.
```

Start coding or generate with AI.

Train using GAUSSIAN_NB model on the Training set

```
from sklearn.naive_bayes import GaussianNB
gaussian_classifier = GaussianNB()
gaussian_classifier.fit(X_train, y_train)
```

→ GaussianNB()

Making the CONFUSION MATRIX

```
gaussian_y_pred = gaussian_classifier.predict(X_test)
gaussian_cm = confusion_matrix(y_test, gaussian_y_pred)
print(gaussian_cm)
accuracy_score(y_test, gaussian_y_pred)
```

```
39 1102]
[ 0 1141]]
0.5170902716914987
```

print(classification_report(y_test, gaussian_y_pred))

	precision	recall	f1-score	support
0	1.00	0.03	0.07	1141
1	0.51	1.00	0.67	1141
accuracy macro avg weighted avg	0.75 0.75	0.52 0.52	0.52 0.37 0.37	2282 2282 2282

Start coding or generate with AI.

Start coding or generate with AI.

Train using DECISION TREE model on the Training set

```
from sklearn.tree import DecisionTreeClassifier
decision_classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 2)
decision_classifier.fit(X_train, y_train)
```

DecisionTreeClassifier(criterion='entropy', random_state=2)

Making the CONFUSION MATRIX

```
decision_y_pred = decision_classifier.predict(X_test)
decision_cm = confusion_matrix(y_test, decision_y_pred)
print(decision_cm)
accuracy_score(y_test, decision_y_pred)
```

```
[ 971 170]
[ 115 1026]]
0.8751095530236634
```

print(classification_report(y_test, decision_y_pred))

₹		precision	recall	f1-score	support
	0	0.89	0.85	0.87	1141
	1	0.86	0.90	0.88	1141
i	accuracv			0.88	2282

 macro avg
 0.88
 0.88
 0.88
 2282

 weighted avg
 0.88
 0.88
 0.88
 2282

Start coding or generate with AI.

Start coding or $\underline{\text{generate}}$ with AI.

Train using RANDOM FOREST model on the Training set

```
from sklearn.ensemble import RandomForestClassifier
random_classifier = RandomForestClassifier(n_estimators=10, criterion = 'entropy', random_state = 42)
random_classifier.fit(X_train, y_train)
```

 $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} \\ \hline \end{tabular} \\ \hline \begin{tabular}{ll} \hline \end{tabular} \\ \hline \e$

→ Making the CONFUSION MATRIX

```
random_y_pred = random_classifier.predict(X_test)
random_cm = confusion_matrix(y_test, random_y_pred)
print(random_cm)
accuracy_score(y_test, random_y_pred)
```

[[1028 113] [120 1021]] 0.8978965819456617

print(classification_report(y_test, random_y_pred))

precision recall f1-score support

0 0.90 0.90 0.90 1141