Tworzenie i edycja geometrii danych wektorowych

Georeferencja i rejestracja rastra

- 1. Tworzenie nowych warstw i obiektów : punkty, linie, poligony.
- 2. Edycja warstw usuwanie obiektów, zmienianie obiektów.

PODSTAWOWE POJĘCIA

- 1. Geometria obiektów
- 2. TRYB EDYCYJNY
- 3. WARSTWY SINGLE PART I MULTIPART
- **4. SNAPPING** czyli dociąganie w procesie edycji

Geometria wszystkich trzech typów obiektów oparta jest na punktach o określonych współrzędnych.

TRYB EDYCYJNY

1 wersja

Uruchomić tryb edycyjny

Utworzyć obiekt / lub zmienić geometrię obiektu

Zapisać lub skasować zmiany

Zamknąć tryb edycyjny

2 wersja

Utworzyć obiekt / lub zmienić geometrię obiektu

Zapisać lub skasować zmiany

Jeśli wprowadzimy zmiany to brak zapisania lub skasowania blokuje część funkcjonalności

WARSTWY SINGLE PART I MULTIPART

OUTPUT

Ze względu na to, że jest to jeden rekord wszystkie atrybuty są identyczne.

Snapping

Tworzenie nowego obiektu

Narzędzia tworzenia nowego obiektu

TWORZENIE PUNKTÓW

(prawy klawisz)

punkty wzdłuż linii

TWORZENIE LINII

Zwykła linia

Linia z kątami prostymi

Radial

Trace

TWORZENIE POLIGONÓW

Zwykły poligon

Autocomplete

Z prostymi kątami

Koło

Kwadrat (prostokąt)

Trace

Poligony mają złożoną geometrię

Poligon składa się z części (part, rings)

Kasowanie werteksów

Zmiana kształtu poligonu

Rozdzielenie Poligonu na kilka za pomocą linii

Przesunięcie obiektu

Wydzielenie nowego poligonu wewnątrz starego

Wycięcie dziury w poligonie

Likwidacja dziury w poligonie

Wstawienie w dziurze nowej części poligonu

Wydzielenie nowego poligonu wewnątrz starego (powstaje nowy poligon)

- 1. Tworzymy nowy poligon (poligony)
- 2. Zaznaczamy je

Wycięcie dziury wewnątrz poligonu

- 1. Tworzymy nowy poligon (poligony)
- 2. Zaznaczamy je
- 3.

Usunięcie dziury z wnętrza poligonu

Modyfikujemy werteksy usuwając całą część

Wstawienie w dziurze nowej części poligonu

- 1. Tworzymy nowy poligon wewnątrz
- 2. Zaznaczamy je

digityzacja

lub

digitalizacja

ekranowa

Referencja przestrzenna danych rastrowych

Zdjęcia lotnicze i skany

Czasem zdjęcia satelitarne posiadające referencje przestrzenną ale wymagające korekty

Georeferencing (nadanie georeferencji) Rejestracja w układzie współrzędnych za pomocą

Metoda geometrycznej transformacji

Istnieją dwie powszechne metody (oprócz formatów różnych programów) dowiązywania informacji przestrzennej do plików.

GeoTIFF zawiera dodatkową informację wewnątrz pliku *.tif (Niles Ritter NASA – JPL)

World File (Esri)

jest to dodatkowy plik referencyjny z tą samą nazwą i rozszerzeniem z dodaną literą w do plików .bmp, .jpg .tif np.

zdj.jpg i zdj.jpgw

3.5535870000000682	Wielkość piksela x
0.0	Rotacja
0.0	Rotacja
-3.5535870000000682	Wielkość piksela y (ujemna)
722757.35548539204	x – środek górnego lewego piksela
6062739.1164777195	v – środek górnego lewego piksela

Geometryczna transformacja

- Wyznaczenie modelu transformacji na podstawie znajomości współrzędnych pewnej liczby punktów kontrolnych w tych samych miejscach powierzchni Ziemi na skanie (XS,YS) i mapie (XM,YM).
- Modele te mają najczęściej postać wielomianów pierwszego, drugiego lub trzeciego stopnia postaci (rozwiązanie za pomocą LSF Least Squares Fitting:

$$x_m = x_s + A_1 x_s + A_2 y_s + A_3 x_s y_s + A_4 x_s^2 + A_5 y_s^2 + A_6 x_s^2 y_s + A_7 x_s y_s^2 + A_8 x_s^3 + \dots$$

$$y_m = y_s + B_1 y_s + B_2 y_s + B_3 x_s y_s + B_4 x_s^2 + B_5 y_s^2 + B_6 x_s^2 y_s + B_7 x_s y_s^2 + B_8 x_s^3 + \dots$$

Rejestracja danych rastrowych (nazewnictwo)

Rejestracja danych rastrowych (błąd RMS)

Po zastosowaniu wielomianu istnieje różnica pomiędzy współrzędnymi punktów kontrolnych na skanie i mapie (rezydia) :

$$D = \left[(x_{st} - x_m)^2 + (y_{st} - y_m)^2 \right]^{1/2}$$

Dokładność całego skanu opisuje bład RMS:

RMS =
$$\left\{ \sum \left[(x_{st} - x_m)^2 + (y_{st} - y_m)^2 \right] / n \right\}^{1/2}$$

Georeferencing: ZATOKA_PUCKA_...

Transformation: Adjust Controls Points: 9 / 9

Total RMS Errors

Forward: 43.793464 Inverse: 1.738747

Forward-Inverse: 1,508715

Forward – w jednostkach mapy (mapa)

Inverse – w pikselach (skan)

Narzędzie georeferencji (mapa, skan)

Ta transformacja dokonuje tylko przesunięcia obrazu

Zalecane jest jej stosowanie w sytuacji gdy przeprowadzono już georeferencję, ale nadal istnieje pewne przesunięcie. Należy wprowadzić parę linków i wybrać najlepszy.

Ta transformacja (afiniczna) dokonuje przesunięcia, Skalowania, rotacji i przekrzywienia

Zachowuje linie proste, można ją stosować jako podstawową transformację

x is column count in image space.

y is row count in image space.

x' is horizontal value in coodinate space.

y' is vertical value in coordinate space.

A is width of cell in map units.

B is a rotation term.

C is the x' value of the center of the upper-left cell.

D is a rotation term.

E is negative height of cell in map units.

F is the y' value of the center of the upper-left cell.

Te transformacje dokonują całościowych geometrycznych przekształceń

Należy je stosować kiedy raster musi być zgięty lub skręcony

Ta transformacja łączy transformację wielomianową (LSF) z techniką interpolacji TIN

Zachowuje mniejsze przesunięcia w punktach kontrolnych niż sama wielomianowa

Zero Order Polynomial (Only Shift) Requires at least 1 control point.

Similarity Polynomial Requires at least 3 control points.

1st Order Polynomial (Affine)

Requires at least 3 control points

2nd Order Polynomial Requires at least 6 control points.

3rd Order Polynomial Requires at least 10 control points.

Adjust

Requires at least 3 control points.

Projective

Requires at least 4 control points.

Spline

Requires at least 10 control points.

Transformacja (rubber sheeting) optymalizowana lokalnie

Zachowuje położenie punktów kontrolnych zachowując ciągłość i wygładzenie lokalnych wielomianów

Transformacja zachowuje proste linie

Jest stosowana przy georeferencji zdjęć satelitarnych, nadaje się także do skanów

Tablica punktów kontrolnych

Rektyfikacja (przez zapisanie jako nowe):

Bilinear interpolation (4 punkty)

