

Segmentez des clients d'un site e-commerce

BASE DE DONNÉES ANONYMISÉE COMPORTANT DES INFORMATIONS SUR LES COMMANDES CLIENTS DE OLIST:

HTTPS://WWW.KAGGLE.COM/DATASETS/OLISTBR/BRAZILIAN-ECOMMERCE

Plan

Analyse Exploratoire

Feature Engineering

Choix du mode de visualisation des clusters

Clustering avec RFM

Clustering avec RFMS

Simulation délais de maintenance

Synthèse et Conclusion

Analyse exploratoire

Présentation du jeu de données

8 datasets:

- commandes,
- objets commandés
- produits
- vendeurs
- paiements
- Clients
- Reviews
- géolocalisation

Analyse exploratoire

Présentation du jeu de données

customers

customer_id
customer_unique_id
customer_zip_code_prefix
customer_city
customer_state

orders

```
order_id

customer_id

order_status

order_purchase_timestamp

order_approved_at

order_delivered_carrier_date

order_delivered_customer_date

order_estimated_delivery_date
```

order_items

order_id
order_item_id
product_id
seller_id
shipping_limit_date
price
freight_value

Merged Datasets*	clé	DataFrame
orders - customers	customer_id	ос
oc – order_items	order_id	Order_customer_orderitems_merge

Analyse exploratoire

Présentation du jeu de données

Feature engineering

RFM* et/ou RFMS

3 (ou 4) Features:

- nb_orders
- price
- <u>order_purchase_timestamp</u>
- review score**

3 (ou 4) Features:

- nb orders
- price
- Elapsed_time
- review_score

3 (ou 4) Features:

- nb_orders_scaled
- price_scaled
- Elapsed_time_scaled
- review_score_scaled

^{*} Récence : elapsed_time, Fréquence : Nb_orders, Valeur : Price

^{**}review score est celui de la dernière commande

Choix du mode de visualisation des clusters

Exemple: Modélisation k-means (k=6)

Mauvaise distinction entre les différents clusters | comparaison difficile

Mauvaise distinction entre les différents clusters

Choix du mode de visualisation des clusters

Exemple: Modélisation k-means (k=6)

Type de graphe: Parallel coordinates **Package**: Plotly

- √ Visualisation des clusters en un coup d'œil,
- ✓ Distinction des valeurs par features
- ✓ Distinction des clusters par filtre

Filtrage: 5% outliers 'trop haut'

5% outliers 'trop bas'

EVALUATION DES MODELES DE CLUSTERING

Modélisation k-means

*Récence : elapsed_time, Fréquence : Nb_orders, Valeur : Price

distance intra

distance inter / distance intra

distance inter – distance intra

k optimum entre 4 et 6

Modélisation k-means (k=5)

Clusters	Quantité
4	34589
3	2743
2	21236
1	34077
0	2075

Silhouette plot KMeans in 5 centers

Modélisation k-means (k=5)

Cluster 0	Récent	Cluster 1	Moins récent	Cluster 3	Anciens
Montant Cmd	≤250 R	Montant Cmd	≤250 R	Montant Cmd	≤ 300 R
Nb commandes	1	Nb commandes	1	Nb commandes	1
Dernière cmd	< 6mois	Dernière cmd 6	imois — 12 mois	Dernière cmd	> 12 mois

Cluster 4	Gros Budget	Cluster 2	Fidèle
Montant Cmd	> 700 R	Montant Cmd	≤ 700 R
Nb commandes	1	Nb commandes	> 2
Dernière cmd	< 16 mois	Dernière cmd	< 16 mois

Modélisation k-means

Visualisation et clustering

DBSCAN sur t-SNE

- Modélisation avec DBSCAN rapide et « facile »
- > t-SNE besoin important en ressources de calcul (> #heures)
- > Segmentation peu pertinente vs. Marketting

Modélisation DBSCAN: choix des hyperparamètres

DBSCAN [0.5, 200] vs. DBSCAN[AUTRES]

ARI ~ 0.99

(Eps:0.6, Nb=150) Segmentation la plus pertinente pour Marketting

Modélisation DBSCAN

- ➤ DBSCAN tant à créer des clusters autour des valeurs des variables categorielles si le nb cluster ≅ nb categories
- Temps d'entrainement assez long pour nos données (#minutes, gourmand en mémoire).

Modélisation Agglomerative clustering: choix des hyperparamètres

kNN (« ward ») en pré-traitement des données : gain en temps et en ressource

Modélisation Agglomerative clustering: knns=30

nb_clusters=7 :

- Cluster 6 trop petit: 229
- Cluster 4 et 5 peuventêtre regroupé en 1 cluster
- Finalement nb_clusters=5
 nb clusters=5

Cluster	Quan.	type
4	804	Gros Budget
3	27463	Plutôt satisfait ancien
2	14639	mécontent
1	2900	fidèles
0	48915	Plutôt satisfait récent

18

Modélisation Birch

Birch clustering très efficace en temps de calcul. 2 étapes:

- Construction du clustering Feature Tree
- Agglomérative clustering

Mais

7Threshold: □ le nombre de sub-cluster.
 créé un grand cluster + clust. minuscules :
 → donne trop d'importances aux outliers

➤ Threshold: agglomerative clustering pas efficace → grande ressource mémoire nécessaire – long temps de calcul

Pour rendre cette algo efficace il est nécessaire d'appliquer un filtrage entre Birch et Agglo clustering (slide suivante).

Modélisation Birch:

Après filtrage segmentation plus intéressante, mais:

- > Filtrage de 3496 clients
- > un peu fastidieux

Cluster	Quan.	type
6	8893	Moyennement satisfait
5	19698	Plutôt satisfait anciens
4	43317	Plutôt satisfait récents
3	6371	Mécontents anciens
2	1689	fidèles
1	9935	Mécontents récents
0	1322	Gros Budget

Modélisation k-means (k=6, random state=7)

Modélisation k-means (k=6, random state=7)

Cluster 1	Mécontent
Review_score	≤ 3
Montant Cmd	< 400
Nb commandes	1
Dernière cmd	17 mois

Cluster 3	Gros Budget
Review_score	-
Montant Cmd	>700 R
Nb commandes	1
Dernière cmd	17 mois

	Cluster 0	Satisfait 6 mois
	Review_score	≥ 4
	Montant Cmd	≤ 300
N	Nb commandes	1
	Dernière cmd	6 mois – 12 mois

Cluster 4	récent
Review_score	> 3
Montant Cmd	< 300 Real
Nb commandes	1
Dernière cmd	6 mois

Cluster 2	fidèle
Review_score	-
Montant Cmd	≤ 700
Nb commandes	> 2
Dernière cmd	16 mois

temps

Cluster 5	Plutôt satisfait old
Review_score	≥ 3
Montant Cmd	≤ 300
Nb commandes	1
Dernière cmd	> 12 mois

Simulation

Définition du délai de maintenance

Modèle Kmeans k=6

Le cluster « bons clients » se dégradent rapidement

Synthèse et Conclusion

- Différents algorithmes ont été testés:
 - Kmeans, DBSCAN, Agglomerative Clustering, BIRCH
- Différents outils de visualisation ont été testés.
 - web graph, parallel coordinates,
 - o t-SNE pour la réduction de dimension et la visualisation des clusters
- La pré-sélection des modèles a été réalisés par Calinski-Harabasz index.
- ➤ Le modèle Kmeans (k=6) a été choisi:
 - Segmentation des clients pertinente pour le Marketting
- > Une mise à jour toutes les 7 semaines est nécessaire pour conserver un clustering pertinent.