

University Of Padua Department Of Information Engineering Master Degree In Computer Engineering

A.A. 2009/2010

Batch Size Estimate

 ${\bf SUPERVISOR:} \quad \textit{Prof. Andrea Zanella}$

STUDENT: Marco Bettiol

Last Update: Friday 21^{st} May, 2010, 00:53

Ai miei genitori e allo zio Toni...

"[...] sempre nella mia camicia [...]

Ho ancora la forza di chiedere anche scusa
o di incazzarmi ancora con la coscienza offesa,
di dirvi che comunque la mia parte
ve la posso garantire ... "
Francesco Guccini

" E quando pensi che sia finita, è proprio allora che comincia la salita. Che fantastica storia è la vita." Antonello Venditti

Abstract

This thesis

Sommario

In questo lavoro sono stati analizzati i principali algoritmi per la risoluzione di insiemi di conflitto. In particolare sono stati discussi gli algoritmi ad albero evidenziando come la loro efficacia dipenda dalla taglia del problema. Si è messo pertanto in risalto come la conoscenza della cardinalità dell'insieme di collisione sia critica al fine di risolvere il problema in maniera efficiente. Sono quindi state presentante e di seguito analizzate le tecniche note in letteratura per stimare la cardinalità di insiemi di conflitto. In particolar modo i documenti originali non presentavano un'analisi adeguata del loro comportamento in quanto l'attenzione era rivolta al processo di risoluzione dei nodi e non direttamente alla fase di stima. Infine è stato proposto un'approccio al problema che permette di ottenere una buona stima iniziale dell'insieme. L'algoritmo presentato risulta particolarmente valido in termini di accuratezza rispetto al tempo impiegato e permette di ottenere sempre una stima finita del numero di nodi vicina alla reale cardinalità dell'insieme esaminato.

Contents

1	Intr	roductio	on	1
	1.1	Model		2
	1.2	Goals		3
	1.3	Docum	nent structure	5
2	Bat	ch Rese	olution	7
	2.1	Binary	Tree Algorithms	9
		2.1.1	Basic Binary Tree	10
			Example	12
			Nodes <i>id</i> interpretation	13
			Tree traversal rules	14
		2.1.2	Modified Binary Tree	15
		2.1.3	Clipped Modified Binary Tree	16
		2.1.4	m Groups Tree Resolution	18
		2.1.5	Estimating Binary Tree	20
	2.2	Others		21
		2.2.1	IERC	21
		2.2.2	Window Based Approaches	22
3	Bat	ch Size	Estimate Techniques	23
	3.1	Clippe	d Binary Tree	23
	3.2	Cidon		24
	3.3	Greenb	oerg	26
		3.3.1	Base b variant	30
	3.4	Windo	w Based	31
4	Esti	imate F	Performance Analysis	35
	4.1	Cidon	BSE	35

X			CONTENTS

	4.2	Greenberg BSE	38
		4.2.1 Considerations	41
	4.3	EGA BSE	42
		4.3.1 Performance	45
	4.4	GEGA BSE	46
	4.5	Comparison	50
Co	onclu	sions	53
\mathbf{A}	App	oendix	55
	A.1	Probability	55
	A.2	Binary Trees Performance Summary	57
	A.3	Greenberg bounded m -moments	58
	A.4	CBT Estimate Experimental Distribution	60
	A.5	Greenberg Estimate Distribution	62
	A.6	GEGA	64

List of Figures

2.1	Expected cost for tree algorithms in $\textit{slotted-ALOHA}$ scenario $\dots \dots \dots$	12
2.2	BT: Basic binary tree example	13
2.3	MBT: Modified binary tree example	16
2.4	CMBT vs MBT	18
2.5	m Groups Split: ALOHA scenario $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	19
2.6	m Groups Split: CSMA scenario	20
3.1	CBT: Example	24
3.2	Cidon: Initial split	25
3.3	Basic Greenberg: batch split idea	28
4.1	Cidon: Normalized variance	36
4.2	Cidon: Minimum p_{ϵ} required for accuracy k	38
4.3	Cidon: Expected time as function of the required accuracy	39
4.4	Basic Greenberg: Small 2^k sizes distribution	40
4.5	Basic Greenberg: Large 2^k sizes distribution	40
4.6	Basic Greenberg: General sizes distribution	41
4.7	Basic Greenberg: Event probability fixed p	42
4.8	EGA : Large 2^k sizes distribution	45
4.9	EGA: Estimate distribution when varying T	46
4.10	GEGA: Estimate Bias	48
4.11	GEGA : Biased/unbiased absolute normalized estimate error	49
4.12	GEGA: Minimum T to achieve accuracy k	50
4.13	GEGA: Minimum T to achieve accuracy k , detailed view	50
4.14	GEGA vs Cidon	52

List of Tables

3.1	Basic Greenberg: Expected Estimate	29
3.2	Greenberg: Different b summary	30
3.3	Window Based Estimate: Possible estimates when $L=10$	33
4.1	<i>GEGA</i> : Possible estimates when $T = 10$ and $l = 10$	47
4.2	GEGA: Average bias	49
A.1	Basic Binary Tree: Performance report	57
A.2	Modified Binary Tree: Performance report with $p = 0.5 \dots \dots \dots$	57
A.3	Modified Binary Tree: Performance report with $p = 0.4175$	58
A.4	Clipped Modified Binary Tree: Performance report	58
A.5	Experimentally computed CBT Estimate Distributon	61
A.6	Analytically computed basic Greeenberg Estimate Distribution	63
A.7	GEGA: Possible estimates when $T=20$ and $l=10$	64
A.8	GEGA: Possible estimates when $T=30$ and $l=10$	65

Chapter 1

Introduction

NOTA, A FIA

PARTI IN BLU AGGIUNTE O CORRETTE

Generally speaking a set of actors contending for a common resource define a *conflicting set*. As always, limited resources require policies to access them in an efficient and hopefully fair way. When the system is distributed, and this is our case, resource access can be assimilated to a coordination problem.

In our scenario the contended resource is the physical transmission medium that is shared by several stations.

At the beginning of wired computer networks, multiple access control (MAC) was a big issue for efficient communications. The introduction of packet buffered switches in LANs reduced the conflicting set to only two stations (NOTA: why?? RISPOSTA:perchè un cavo ha solo 2 \leftarrow NOTA, OF estremità e nelle reti switched ogni porta appartiene ad un solo dominio di collisione (non è un hub ma uno switch)) simplifying the original problem. Switched networks, in fact, split large collision domains into smaller pieces thus realizing ring, star or mesh structures.

In a wireless context the problem can not be easily avoided, due to the broadcast nature of the wireless medium.

Nowadays wireless connectivity in pervasive computing has ephemeral character and can be used for creating ad-hoc networks, sensor networks, connections with RFID (Radio Frequency Identification) tags etc. The communication tasks in such wireless networks often involve an inquiry over a shared channel, which can be invoked for discovery of neighboring devices in ad-hoc networks, counting the number of RFID tags that have a certain property, estimating the mean value contained in a group of sensors etc. Such an inquiry solicits replies from possibly large number of terminals.

In particular we analyze the scenario where a reader broadcasts a query to the in-range nodes. Once the request is received, devices with data of interest are all concerned in transmitting the information back to the inquirer as soon as possible and, due to the shared nature of the communication medium, while collision problems come in: only one successful transmission at time can be accomplished, concurrent transmissions result in destructive interference with inefficient waste of energy/time. This data traffic shows a bursty nature which is the worst case for all shared medium scenarios.

This problem is referred in literature with different names: Batch/Conflict Resolution Problem, Reader Collision Problem, Object Identification Problem.

Algorithms trying to solve this problem efficiently are called *Batch Resolution Algorithms* (BRA) or *Collision Resolution Algorithms* (CRA).

In our terminology a query determines a subset of nodes which have to reply with one (and only one) message: this set of nodes constitutes the *batch*. The size of the batch can be known in advance, in lucky and optimistic scenarios, or it can change in time.

Since each node has exactly one message to deliver, the problem of obtaining all the messages or counting the number of nodes involved by the resolution process is exactly the same.

Instead the problem differs when we are not interested in the exact number of nodes but rather we aim at an estimate of the actual batch size, as accurate as possible.

The knowledge of the batch size n is an important factor for parameters optimization in order to improve the resolution efficiency through the minimization of the time taken by the process.

1.1 Model

NOTA A FIANCO

PARTI IN BLU AGGIUNTE O CORRETTE

We consider the following standard model of a multiple access channel. A large number of geographically distributed nodes communicate through a common radio channel. Any node generates a packet to be transmitted on the channel. Transmissions start at integer multiples of time unit and last one unit of time called *slot*.

In *pure-slotted* systems some form of synchronization among nodes is required to inform the nodes about the beginning of slots (or at least the beginning of a cycle of slots). Nodes can start

1.2. GOALS 3

a transmission only at the beginning of the slot, otherwise they will stay quiet until the next slot to come.

In carrier-sense multiple-access (CSMA) networks each node is able to determine the beginning of a new slot by sensing the energy on the channel: when the channel is idle a device can start transmitting its message. In our scenario we assume that all the transmitted messages have a fixed length. Once a node has started transmitting it cannot sense the channel so that it cannot be aware of the result of its transmission until it receives feedback. For this reason we have that a transmission always takes the same time, whether it results in a success or a collision. On the other hand, empty slots take less time than transmissions. Usually the duration of a transmission and idle slots are identified respectively by T_p and T_s . An important parameter in the CSMA channel is the Carrier Sense Factor $\beta = \frac{T_s}{T_p} < 1$.

We assume that there is no external source of interference and that a transmission can fail only when a collision takes place. In short, saying k nodes transmit simultaneously in a slot, we have what follows:

- If k = 0 then no transmission is attempted. The slot is said to be *empty* or *idle*;
- If k = 1 then the transmission succeeds. The slot is said to be *successful*;
- If $k \geq 2$ there is a conflict, meaning that the transmissions interfere destructively so that none succeeds. The slot is said to be *collided*.

Furthermore, throughout this work we assume that no new message is generated by the system or reaches it while it is running an *estimate* or *resolution algorithm*. In other words, newly generated packets are inhibited from being transmitted while an algorithm is in progress and they will eventually be considered only in the subsequent estimate or resolution process. This way to manage the information on the system is known as *obvious-access scheme*.

1.2 Goals

NUOVA

Batch Resolution Problem is implicitly present in many practical applications over wireless SEZIONE networks such as:

• Neighbor Discovery. After being deployed, nodes need to discover their one-hop neighbors. Regardless of the protocol used for message routing a node must absolutely inform its neighbors about its presence. Hence knowledge of one-hop neighbors is essential for almost all routing protocols, medium-access control protocols and several other topology-control algorithms such as construction of minimum spanning trees. Ideally, nodes should discover their neighbors as quickly as possible as rapid discovery of neighbors often translates into energy efficiency and it allows for other tasks to quickly start their execution on the system.

- Batch Polling. It consists in collecting a possibly very large number of messages from different devices in response to time-driven or event-driven constrains. Time-driven resolutions take place when an inquirer broadcasts a request to the nodes. Event-driven resolutions take place when the nodes are alarmed from their sensors that an environmental event of interest took place. The problem is not properly a Batch Resolution Problem when we are interested to obtain only 1 among n messages as rapidly as possible. This case was studied in [4].
- Object identification, where physical objects are bridged to virtual ones by attaching to each object a sensor or an RFID tag. This allows asset tracking (e.g. libraries, animals), automated inventory and stock-keeping, toll collecting, and similar tasks. Wireless connection allows unobtrusive management and monitoring of resources.

In these applications:

- communications show spatially and timely correlated contention
- in general, density of nodes is time-varying. When a node wakes up it has no knowledge of the environment around it. In particular this shows to be true when nodes sleep for most of time and seldom wake up to transmit.

BRAs can run oblivious of the batch multiplicity n: they would anyway solve the problem but expected time required would not be as short as possible. In fact, the knowledge of the conflict multiplicity n is the most critical factor to optimize the resolution and to allow the usage of advanced resolutions schemes which take advantage of the knowledge of n. Thus the importance of $Batch\ Size\ Estimate\ follows$.

Hence, in this work, we will analyze different estimate techniques dealing with the quality and time taken by the estimate process.

Most of works in which estimate techniques are proposed (such as [7, 8]) define the estimate algorithm but do not provide data about the quality of the estimate or time taken by the process. In these works, in fact, after proposing an estimate scheme, the authors concentrate on the definition of an optimized resolution scheme considering a perfect knowledge of the batch size n and ignoring the fact that only and estimate of n can be provided without requiring the

complete resolution of the batch.

In this work we will focus on the estimate phase preferring analytical analysis when possible and using computer based simulations when analytical analysis showed to be too complex or impractical.

Finally, we will try to propose improvements for some techniques in order to achieve better quality in the estimate and we will try to compare all the estimate algorithms to provide a comprehensive overview with pros and cons.

1.3 Document structure

ANCORA PROVVISORIO

This master thesis is organized as follows:

NUOVA SEZIONE, NOTA A FIANCO

- in Chapter 2 we will introduce the *Batch Resolution Problem* since it is the main motivation to further study the *Batch Size Estimate Problem*. We will deal about algorithms known in literature describing in details basic ones and providing an overview of the most recent and advanced ones. In particular we will concentrate on *binary tree algorithms*.
- Chapter 3 describes a few estimate techniques, using different approaches, in details. Pseudo code for the algorithms is provided and also mathematical analysis when possible.
- in Chapter 4 we will further analyze algorithms described in Chapter 3 to provide data for practical evaluation. We will also introduce a modified version of *Greenberg* algorithm to achieve better estimate quality.
- in Chapter ?? we will try to compare the different estimate algorithms and we will conclude our dissertation. Qui fondamentalmente vorrei confrontare greenberg modificato con un approccio a finestra come Zanella o Lucent. (Finestra-> accuratezza, greenberg -> range opertativo) a parità di slot

Chapter 2

Batch Resolution

NOTA,

INIZIO COMPLETAMENTE RISCRITTO: spiega ALOHA e introduce il problema, chiarita A FIANCO in footnote la differenza tra probabilistici e deterministici

Pure-ALOHA was the very first random-access protocol ever developed. It is trivially simple:

- If you have data to send, send the data immediatly
- If the message collides with another transmission, try resending "later"

Slotted-ALOHA is an improvement over Pure-ALOHA in which time is *slotted* and transmissions can start only at the beginning of a slot boundary. Slotted-ALOHA assumes there is feedback from the receiver at the end of each slot so that all nodes learn whether or not a collision occurred.

ALOHA protocol was studied under the assumption that a large number of identical sources transmit on the channel such that the number of new packets generated during any slot is a Poisson random variable with mean λ (packets/slot).

Slotted ALOHA has equilibrium rate (maximum throughput) of $1/e \approx 0.368$ packets/slot but it has proven maximum stable throughput 0 (hence it is unstable).

The attempt to obtain stable throughput random-access protocols brought to the discovery of CRAs.

A Collision Resolution Algorithm (CRA) can be defined as a random-access protocol such that, whenever a collision occurs, then at some later time all senders will simultaneously learn from the feedback information that all packets involved in that collision have now been successfully transmitted. The crux of collision resolution is the exploitation of the feedback information to control the "random" retransmission process.

CRAs are interesting since their are able to solve conflicts of unknown multiplicities. Furthermore they are not tailored to solve only conflicts among packets arrivals characterized by Poisson's distributions but they are robust since they work for any arrival process characterized by an average arrival rate λ .

CRAs can also be used to solve collisions among a batch of nodes which have a message to deliver. In this case CRAs are commonly called *Batch Resolution Algorithms* (BRAs).

In particular, the scenario we consider is the following: the reader probes a set of nodes. In-range devices try to reply as soon as possible transmitting in the wireless medium. If two ore more devices reply at the same time we get a collision and the delivery of the messages fails. Consequently we require each node to run a distributed algorithm which implements anti-collision schemes in order to resolve all the nodes.

There are many algorithms that enable batch resolution, and these, according to [3], can be classified into two categories: (a) *probabilistic*, and (b) *deterministic* ¹.

In *probabilistic algorithms*, a framed ALOHA² scheme is used where the reader communicates the frame length, and the nodes pick a particular slot in the frame to transmit. The reader repeats this process until all nodes have transmitted at least once successfully in a slot without collisions.

Deterministic algorithms typically use a slotted ALOHA model tries to reduce the contending batch in the next slot based on the transmission result in the previous one. These algorithms fall into the class of tree-based algorithms with the nodes classified on a binary tree and the reader moving down the tree at each step to identify all nodes.

Deterministic algorithms are typically faster than probabilistic schemes in terms of actual node response slots used, however, they suffer from reader overhead since the reader has to specify address ranges to isolate subsets of contending nodes using a probe at the beginning of each slot.

¹Both classes of algorithms use a probabilistic approach to solve the problem. As aforementioned, CRA were initially thought to solve Poisson-like packets arrivals. Hence, each packet is characterized by an arrival time. CRAs are able so solve collisions respecting the *first-come first-served* (FCFS) policy. In *Batch Resolution Problem* packets can be associated to virtual arrival times. Once the arrival time (alias node ID) is fixed each run of the same *deterministic* algorithm behaves in the same way and nodes always get resolved in the same order and time amount. On the other hand, *probabilistic* algorithms are not able to maintain the relative order among resolved nodes in different runs of the algorithms even if they globally solve the same initial collision.

²framed ALOHA is a modification of slotted ALOHA where consecutive slots are grouped. Each node is allowed to choose only one slot per group. Its transmission is allowed to take place only in the choosed slot.

Deterministic schemes assume that each node can understand and respond to complex commands from the reader, such as responding only if the *id* is within an address range specified by the reader. Consequently not every device is able to support this class of algorithms. For example passive tags, which are the most dummy devices, cannot understand this kind of requests and they will continue to transmit in every resolution cycle. This lengthens the total time needed for the resolution process to complete. Wireless sensors, semi-active and active tags should allow to implement tree-based algorithms: the reader can acknowledge nodes that have succeeded at the end of each slot (immediate feedback), and hence those nodes can stay silent in subsequent slots, reducing the probability of collisions thereby shortening the overall identification time. Usually a node that successfully transmits its message is said *resolved* and stays silent until the end of the algorithm.

Furthermore, since tree algorithms require explicit feedback about channel status, they force devices to be alway active and listening to the channel in each step of the algorithm. Moreover, \leftarrow NUOVA reader feedback in each slot adds overhead to the resolution.

On the other hand windows based algorithms are more energy saving since a device can sleep for most of time in the transmission window and only wake up in the slot it has decided to transmit on. In a windows of w slots a node will be up only for 1/w of time and wait for feedback at the end of the window.

Most of the batch resolution algorithms were originally developed for slotted scenarios. These algorithms can be flawlessly ported to the CSMA scheme.

2.1 Binary Tree Algorithms

INTRO

In '70s, concern over the instability of most ALOHA-like protocols led some researchers to look RIFATTA for random-access schemes that were provably stable. The breakthrough in these efforts was reached in 1977 by J. Capetanakis [12], then a MIT doctoral student working with Prof. R. Gallager³, and independently achieved shortly thereafter by two Soviet researchers, B. Tsybakov and V. Mihhailov [11]. Basic Binary Tree is the result of their studies.

In the following sections we will describe and analyze the *Basic Binary Tree Algorithm* and some of its variants applied to the *Batch Resolution Problem*.

We notice that tree algorithms require for the nodes in the batch to be unique. This is a necessity since otherwise it would be impossible to force two nodes to behave in a different way. In this Chapter we will refer to this node uniqueness property as id, address, token. Throughout

³FCFS splitting algorithm for Poisson's arrivals is one of his famous contributions.

the following sections, we will consider ids, addresses and tokens equivalent.

We also assume to operate in a *slotted*-ALOHA-like scenario, unless otherwise specified.

2.1.1 Basic Binary Tree

Let's consider a batch \mathcal{B} of size n.

NOTA, OK?

Initially all the nodes try to transmit and we can have, according to what expressed in Section 1.1, three different events: *idle*, *success*, *collision*.AL POSTO DI SPIEGARE HO MESSO UN RIFERIMENTO ALLA SEZIONE DOVE VIENE DEFINITO IL MODELLO

The supervisor broadcasts the result of the transmission to all the nodes.

If we get *idle* or *success* events, the resolution process stops meaning respectively that there were no nodes to resolve or there was only one node that was successfully resolved. That node delivered its message and will no longer take part in the current batch resolution.

In case of collision we know that at least 2 nodes are present and we have to solve the collision to obtain their messages. In this case all the n nodes run the same algorithm.

Each node chooses to transmit with probability p and not to transmit with probability 1-p. Nodes that transmit are said to belong to set \mathcal{R} while the others to set \mathcal{S} . Of course $\mathcal{R} \cap \mathcal{S} = \emptyset$ and $\mathcal{B} = \mathcal{R} \cup \mathcal{S}$. The two sets are then resolved recursively starting from \mathcal{R} .

Nodes in S wait until all terminals in R transmit successfully their packets, then they transmit.

Algorithm 1 BINARY TREE (\mathcal{B})

```
// current slot status can be idle, success, collision

Input: \mathcal{B} batch with |\mathcal{B}| = n
each node transmits its message
if (idle \text{ or } success) then
return
else
each node flips a fair coin
\mathcal{R} \leftarrow \{ \text{ nodes that flipped head} \}
\mathcal{S} \leftarrow \{ \text{ nodes that flipped tail} \}
BINARY TREE (\mathcal{R})
BINARY TREE (\mathcal{S})
end if
```

Pseudo-code in Alg. 1 provides a very high level description of the splitting technique. The role of the supervisor is implicit in the code.

NOTA, OK?

Intuitively setting p = 1/2 can be a good choice since the algorithm is in some sense

"symmetric": best performance are achived when \mathcal{R} and \mathcal{S} are balanced. \leftarrow "EXPLAIN" BETTER"

Let L_n^{BT} be the expected running time in slots required to resolve a conflict among n nodes using the Basic Binary Tree Algorithm (BT). Let $Q_i(n) = \binom{n}{i} p^i (1-p)^{n-i}$ be the probability that i among n nodes decide to transmit in a slot (probability that $|\mathcal{R}| = i$). If i nodes transmit we have first to solve a conflict of size $|\mathcal{R}| = i$ with expected time L_i^{BT} and later a conflict of size $|\mathcal{S}| = n - i$ with expected time L_{n-i}^{BT} . L_n^{BT} is given by the cost of the current slot plus the expected time to solve all the possible decompositions of the current set.

 L_n^{BT} can be recursively computed (considering the factorial in $Q_i(n)$) collecting L_n^{BT} in the following equation:

$$L_n^{BT} = 1 + \sum_{i=0}^{n} Q_i(n) (L_i^{BT} + L_{n-i}^{BT}), \tag{2.1}$$

with

$$L_0^{BT} = L_1^{BT} = 1.$$

To obtain an upper bound on the expected time as $n \to \infty$ further analysis techniques have to NUOVO, **INTRO**

Here we want simply focus on how the algorithm behaves when n grows.

DUCE E SPIEGA IL

The behaviour of L_n^{BT} is presented in Figure 2.1 and was obtained evaluating equation GRAFICO (2.1) for $n=0,1,\ldots,19$. L_n^{BT} grows almost linearly after the initial step from 1 to 2 which dramatically impacts on the performance $(L_2^{BT} = 5)$.

Figure 2.1 also reports the results for MBT Alg. that will be introduced in following Section 2.1.2. We chose to anticipate the results for MBT to avoid inserting too many figures and, at the same time, provide a useful performance comparison between BT and MBT.

Figure 2.1: The plot illustrates the expected cost in slots to solve batches of size n = 0, 1, ..., 19 in a *slotted* Aloha-like scenario using all the basic variants of the tree based algorithms: BT, MBT with sub-optimal p = 0.5, MBT with optimal p = 0.4175. All the algorithms show the same behavior: almost linear grow for large n. Best performance are provided by MBT with optimal p.

Considering the efficiency $\eta_n = n/L_n^{BT}$ (number of resolved nodes over slots) we have a decreasing series $\eta_1 = 1$, $\eta_2 = 0.40$, $\eta_3 = 0.3913$, ..., $\eta_{16} = 0.3542$, ..., $\eta_{31} = 0.3505$. It can be shown [10] that $\eta_{\infty} \approx 0.347$.

Since the algorithm is much more efficient in solving small rather than large batches we would prefer to have (ideally) n batches of size 1 rather than 1 batch of size n.

Hence, knowing exactly the cardinality n of the initial batch \mathcal{B} , we can split the nodes into small groups, of approximately 1 node each, and resolve them faster.

This is the idea behind many improvements over the basic BT and it reveals the importance of having an accurate estimate of n to efficiently solve a batch.

Example

In Figure 2.2 we provide an example to further investigate the behavior of the algorithm. We notice that the instance starts with a collision in slot 1. Then nodes n_1 , n_2 , n_3 decide to proceed with a retransmission while n_4 , n_5 remain idle. In slot 2 we see another collision, after it n_1 transmits again while n_2 and n_3 to stay quiet. In slot 3 we have the first resolution, n_1

Figure 2.2: An istance of BT algorithm for n=5 nodes. The number inside each circle identifies the slot number. The label below identifies the event occurring: I for idle, C for collision, n_i for resolution of node i. 0/1 branches is analogous to head/tail.

successfully send its message and leaves the collision resolution algorithm.

We notice that we can know the cardinality of a collision only after it has been fully resolved. For example we know only after slot 6 that the collision in slot 2 involved 3 nodes.

Nodes id interpretation

TUTTO

BRAs require each node to have a *unique id* to solve the batch. Usually the nodes ids are random RIFATTO generated at each algorithm run and can be used to identify a node inside the algorithm. There are multiple ways to generate that the id, such as:

- flipping a coin on demand after each collision (step-by-step id generation),
- generating a 'long enough' random binary string at the beginning of the algorithm.

We do not want to enter in the details of these choices since there is no reason to prefer one method to the others but device technical limitations.

Now we want to introduce an interesting interpretation of the id that will be used later in algorithms such as EBT (Section 2.1.5) and Cidon (Section 3.2).

In general any infinite length binary string $\mathbf{b_i} = (b_{i1}b_{i2}b_{i3}...)$, with $b_{ij} \in \{0,1\}$, can be associated to a real number $r_i \in [0,1)$ by a bijective map r defined as follows:

$$r_i = r(\mathbf{b_i}) = \sum_{j=1}^{\infty} \frac{b_{ij}}{2^j}$$
(2.2)

Each node n_i can be associated to a point r_i within the real interval [0,1) as well as to the string $\mathbf{b_i}$.

For a finite length bit-string $\mathbf{a} = (a_1 a_2 \dots a_L)$ with length $L = l(\mathbf{a})$ we adapt the definition of r as follows:

$$r(\mathbf{a}) = \sum_{j=1}^{L} \frac{a_j}{2^j} \tag{2.3}$$

In this case we have to carry L as auxiliary information to allow the map to remain bijective. Following standard conventions, the empty string ϵ is prefix of any other string. It has length 0 and $r(\epsilon) = 0$.

Tree traversal rules

The duality in the interpretation of nodes' ids (bit-strings or real numbers) reflects on the duality of the tree traversal rules.

According to the adopted approach, enabled nodes can be specified by:

- a finite length string **a** which matches the path from the root to the first node in the sub-tree they belong to. In this case **a** is a prefix of the enabled nodes *ids*.
- the couple $(r(\mathbf{a}), l(\mathbf{a}))$ which enables the sub-interval $r(\mathbf{a}) \le x < r(\mathbf{a}) + \frac{1}{2^{l(\mathbf{a})}}$

To complete the overview of the algorithm we now intuitively describe the tree visit. The following description uses the bit-string approach since a binary string can be immediately mapped to a path in the tree starting from the root. We assume, following the standard approach, to visit the tree in pre-order, giving precedence to left sub-trees, conventionally associated to 0 branches.

The visit starts from the root which has address ϵ .

Let **a** be the current enabled string, then the following rules apply:

- If $\mathbf{a} = \epsilon$ and last the event is a success or an idle slot then the whole conflict has been resolved;
- If the last event is a collision then we visit the left child of the current node (a0);
- If the last event is a success or a collision and $\mathbf{a}_L = 0$ then we visit the right sibling of the current enabled node (a1);

RIFATTO

• If the last event is a success or a idle slot and $\mathbf{a}_L = 1$ then we look in the path back to the root for the first node whose sibling has not yet been visited. Since we visit the tree in pre-order the next enabled string will be in the form $\mathbf{a}_k 1$ with k < L.

A detailed pseudo-code of an algorithm that implements the rules above (and more) can be found in [2]. The *Modified Binary Tree* algorithm presented in next section gets a remarkable performance improvement over BT by adding just one new rule.

2.1.2 Modified Binary Tree

Modified binary tree is a simple way to improve the BT algorithm.

To keep the notation simple, we will explain the idea illustrating what happens the first time it is applied. In this case node τ is visited in slot τ . This does not holds in general, but explanation would have required to use two different indexed for slots and nodes, and Figure 2.3 would have been less immediate to understand.

The observation is that, during the tree traversal, sometimes we know in advance if the next slot will be collided. This happens when, after a collided slot τ , we get an idle slot $(\tau + 1)$ in the left branch of the binary tree. In this case, visiting the right branch $(\tau + 2)$, we will certainly get a collision.

In fact, after sensing slot τ is collided, we know that there are at least 2 nodes in the last visited sub-tree. None of them belongs to the left-branch of that sub-tree since slot $(\tau + 1)$ is idle. Consequently they must be in the right branch of the sub-tree, whose enabling will hence result into a collision. This collision can be avoided by skipping node $(\tau + 2)$ and visiting its left-child node in slot $(\tau + 2)$.

Expected time analysis is analogous to Section 2.1.1. The only difference is that after a collision, if we get an idle slot, we will skip the "next one" (saving a slot that would certainly be wasted otherwise). Consequently the expected slot cost is $\left[1 \cdot \left(1 - Q_0(n)\right) + 0 \cdot Q_0(n)\right]$. Let L_n^{MBT} be the expected cost in slots to solve a batch of size n using the MBT Alg., then

$$L_n^{MBT} = (1 - Q_0(n)) + \sum_{i=0}^n Q_i(n)(L_i^{MBT} + L_{n-i}^{MBT}),$$
 (2.4)

with

$$L_0^{MBT} = L_1^{MBT} = 1.$$

Intuitively in this case, since a higher probability to stay silent reduces the expected slot cost,

Figure 2.3: Same example as in Figure 2.2 but using MBT: tree structure do not change but node 10 is skipped in the traversal.

optimal transmit probability will be no longer equal to one half. At the same time, reducing the transmit probability will increase the number of (wasted) idle slots. Thus the new optimal probability p will be somewhere in the interval (0,0.5).

It can be shown [9] that the best result is achieved for p = 0.4175, for which the efficiency is asymptotically equal to $\eta \approx 0.381$. This is +10% higher than basic BT.

In general we have

$$L_n^{MBT} \le C \cdot n + 1, \quad \text{where} \quad C = 2.623.$$
 (2.5)

Using probability $p = \frac{1}{2}$ results, for large n, in about 1.6% peak performance loss (C = 2.667), which is a moderate decrease. It is important to notice that p = 0.4175 is very close to the optimal bias for small n as well.

2.1.3 Clipped Modified Binary Tree

In this section we will show that, in some cases, partial resolution algorithms can achieve higher efficiency than complete resolution algorithms.

The Clipped Modified Binary Tree (CMBT) is an adaptation of the CBT (see Section 3.1) algorithm for complete batch resolution. CBT is like the MBT Alg. but it ends up after two consecutive successful transmissions. Each CBT execution resolves at least two nodes but

eventually the last run. Hence, since the multiplicity of the batch to resolve decreases of at least two units after each run, the algorithm terminates for sure.

Collisions tree visit is defined by the following rules:

- If the last run of the CBT does not resolves completely the left sub-tree of the current root, then the next CBT starts from the same root;
- If the last run of the CBT resolves completely the left sub-tree of the current root, next CBT run is applied to the right child of the current root, that will be considered the new root;
- While current root left child is *idle*, set the root to the current root right child.

Applying the CBT starting each time from the current root makes the algorithm memoryless: its behavior is not affected by previous algorithm runs but the trivial root update. In fact, the root update allows to skip certain collisions and empty slots associated to already resolved sub-sets.

Efficiency in solving very small batches is CMBT most interesting property. This is a consequence of being memoryless. Figures 2.4 shows how in the average case, the CMBT performs a few better than the MBT for batch sizes smaller than 5. Expected maximum performance improvement is about 5% when batch size is 3. Nonetheless, for bigger batch sizes, MBT performs better than CMBT and the gap between the two algorithms gets bigger and bigger as the batch size increases.

Consequently, using CMBT is a good idea when the cardinality of the batch to solve is less than or equal to 5 with very high probability. For this reason CMBT is used by the EBT algorithm (following Section 2.1.5) to speed up the resolution.

Figure 2.4: Expected resolution time in slots for the CMBT and MBT algorithms for small batch sizes.

2.1.4 m Groups Tree Resolution

More advanced algorithms for batch resolution, such as those presented in [7] and [8], share a common idea: divide the initial batch into m groups. We will not deal here about the details of the algorithms and the different approaches they use to choose m. Instead we will concentrate on the common part of these algorithms: divide a batch of size n into m groups and apply a BRA to each group.

Given m groups, the probability to have exactly i among n nodes in a group is given by

$$P_m(i|n) = \binom{n}{i} \left(\frac{1}{m}\right)^i \left(1 - \frac{1}{m}\right)^{n-i}.$$
 (2.6)

Let L_k be the expected cost to solve a batch of size k with a chosen BRA. Then the expected cost to solve a batch of size n dividing it into m groups is given by

$$L'_{n}(\rho) = m \sum_{i=0}^{n} L_{i}\binom{n}{i} \left(\frac{1}{m}\right)^{i} \left(1 - \frac{1}{m}\right)^{n-i},$$
 (2.7)

where $\rho = \frac{n}{m}$ is the expected number of nodes in a group.

Figure 2.5 plots $L'_n(\rho)$, the average time to solve a batch of size n using group splitting, over L_n , the average time without splitting. Results were obtained computing equation (2.7) for three different batch sizes varying ρ . We plotted

the results for the MBT algorithm with optimal probability p in a slotted ALOHA scenario but considerations hold true for any $tree-based\ BRA$.

Figure 2.5: m Groups Split: ALOHA scenario. Expected performance of group splitting over trivial batch resolution using optimum MBT for different ρ . Lower means better.

Splitting the batch into groups achieves lower average resolution time than applying the BRA to the original batch for a wide range of ρ (when $L'_n(\rho)/L_n < 1$). We note that $\rho \approx 1.26$ provides the best achievable performance. Furthermore we notice that the knowledge of the batch size is critical: m can be set to the optimal value only knowing exactly the batch size n but often we only have an estimate of n. If the estimate is smaller than n, performances smoothly degrade but still remain better than the trivial application of the BRA. On the other hand, overestimating n can lead to performance loss when $\rho \approx 0.5$ or smaller.

In a CSMA scenario the performances depend on β and on the ratio between the nodes packet size (S_n) and the supervisor feedback size (S_f) . Figure 2.6 was obtained considering $\frac{S_n}{S_f} \approx 4$. We notice that in CSMA increasing idle slots probability $(\rho \text{ small})$ can lower the expected cost. CSMA is also much more robust to an overestimate of n than slotted-ALOHA.

Figure 2.6: m Groups Split: CSMA scenario. Expected performance of group splitting over trivial batch resolution using optimum MBT for different ρ . Lower means better.

2.1.5 Estimating Binary Tree

Estimating Binary Tree (EBT) has been recently proposed in [2]. It does not work on parameters optimization but tries to use simple heuristics to skip tree nodes that will result in collisions with high probability.

Given a batch of size n, the keys to understand EBT are the following:

- in the luckiest scenario, running BT results in a balanced binary tree where all the leaves are at the same level,
- consequently it seems to be a good idea to assume that nodes at levels in the tree less than $\lfloor \log_2 n \rfloor$ will likely result in collided slots.

EBT tries to skip inner nodes of the tree by visiting only nodes at levels equal or deeper than $\lfloor \log_2 n \rfloor$. Since n is not apriori known, a dynamic estimating technique is adopted. To effectively use this estimate technique each node must be able to generate values from the standard uniform distribution on the interval [0,1) and to use that value as its unique id.

Assume that there are k nodes whose ids are in the sub-interval $[0,p_{\epsilon})$ and that they have been previously resolved: all and only the nodes with id less than p_{ϵ} successfully transmitted their messages. Let \hat{n} express the estimate of n. When p_{ϵ} is greater than 0, setting \hat{n} to $\frac{k}{p_{\epsilon}}$ provides a good estimate of n that becomes more and more accurate as the algorithm goes on. EBT uses

2.2. OTHERS 21

 \hat{n} (as soon as it is available) to choose the right level in the tree to analyze.

The most straightforward interpretation of the EBT algorithm can be:

Algorithm 2 Estimating Binary Tree

Run the CBT algorithm while batch is not resolved do Update the estimate \hat{n} Start a new CMBT at the next node from level $\lfloor \log_2 \hat{n} \rfloor$ end while

Here we gave only a short insight of the algorithm and the estimate technique. In particular this estimate technique is a dynamic adaptation of that described later in Section 3.2 and originally proposed in [7].

2.2 Others

In this section we will shortly describe non tree-based algorithms for batch resolution.

2.2.1 IERC

The Interval Estimation Conflict Resolution (IERC) [2] is an adaptation of the FCFS [5] algorithm for Poisson's arrivals of packets to the batch resolution.

FCFS is the fastest known algorithm to solve Poisson's arrivals and it achieves efficiency $\eta = 0.4871$. It assumes apriori knowledge of the arrival rate λ of the packets and works by splitting the time in epochs of length τ .

Now we briefly describe FCFS Alg. and then we will show how it can be translated to the batch resolution problem.

At any time k, let T(k) be the start time of the current enabled allocation interval. Packets generated in the enabled window $(T(k), T(k) + \tau]$ are allowed to be transmitted. When an idle or successful event occurs enabled time window gets incremented (shifted towards current time) by τ . On the other hand, if a collision takes place, a Clipped Binary Tree (see Section 3.1) algorithm is started. Given that CBT resolves the sub-interval $(T(k), T(k) + \alpha(k)]$, then next FCFS enabled window at time k' will be $(T(k'), T(k') + \min(\tau, k' - T(k'))]$ where $T(k') = T(k) + \alpha(k)$.

It can be shown [5] that setting $\tau = \frac{1.26}{\lambda}$ leads to the maximum efficiency. This means that, on average, there are 1.26 nodes in an allocation interval of length τ .

The batch resolution problem can be adapted to be solved with an FCFS-like strategy in the following way:

- nodes tokens can be interpreted as arrival times;
- nodes must be splitted into $m = \frac{n}{1.26}$ groups, so that in each group we expect to have 1.26 nodes;
- apply FCFS to solve the problem.

Following these ideas, IERC achieves the same efficiency $\eta=0.4871$ of FCFS for Poisson's arrivals in solving the *Batch Resolution Problem*: it is the asymptotically fastest know algorithm allowed by our scenario model.

2.2.2 Window Based Approaches

Another possible approach to the batch resolution is to consider a *framed*-ALOHA scenario. In *framed*-ALOHA, a frame (or *window*) is a sequence of consecutive slots. When a node in the collision batch decides to transmit, it uniformly picks one and only one slot in the window and transmits in that slot.

In windows based scenarios, usually we can work on the optimization of two parameters: m, the length of the window in slots, and p, the probability that a node transmits in the current window. Innovative approaches to the problem uses hybrid transmission scheme working by cycles that tries to optimize operational parameters after each transmission windows.

Chapter 3

Batch Size Estimate Techniques

Here we present some noteworthy techniques for batch size estimate that can be found in literature. If a technique was not already identified by a name or associated to an acronym, we used the name of one the authors as reference.

In general, we assume to have no *a priori* statistical knowledge about the conflict multiplicity. Estimation techniques are thus required to provide accurate estimates for the general zero-knowledge scenario.

3.1 Clipped Binary Tree

A simple way to obtain an estimate of the batch size is to solve a certain number of nodes and then infer the batch size according to the time taken to solve these nodes. This can be done, for example, by using deterministic algorithms such as the *Clipped Binary Tree (CBT) Algorithm*. CBT is a partial resolution algorithm since only a fraction of the packets of the batch are successfully transmitted. The algorithm is identical to the MBT, with $p = \frac{1}{2}$ since we require nodes to be uniformly distributed in the interval [0,1), except that it stops (the tree is clipped) whenever two consecutive successful transmissions follow a conflict.

When the algorithm stops, after i collisions, we know than the last two resolved nodes belong to the same level i of the tree (root is assumed to be at level 0). Therefore, an estimate of the initial batch size is given by:

$$\hat{n} \leftarrow 2^i \tag{3.1}$$

Figure 3.1: Same example as in Figure 2.2 but resolution using CBT ends up after two consecutive successful transmissions.

Experimental results show that the variance of this estimate is extremely high and the resulting accuracy is rather poor. This is due to the fact that the batch we use for the estimate becomes, at each level, smaller and smaller: in the average case we expect all the intervals to be balanced in the number of nodes. Using this algorithm we don't have knowledge of a sufficiently large number of intervals but we limit to analyze. the estimate, even for huge sizes, depends only on very few (3-5) nodes (those at the most left in the tree). Consequently estimate is quite inacurate

From the tables A.5 reported in Appendix you can notice that the distribution probability decreases rather slowly.

3.2 Cidon

In [7] Cidon and Sidi proposed a complete resolution algorithm based on two phases:

- 1. Estimate the initial batch size using a partial deterministic resolution scheme.
- 2. Perform an optimized complete deterministic resolution based on the results of phase 1.

Phase 1 consists in resolving a small part of the initial batch, counting the number of successful transmissions. A node takes part either to the estimate phase or to the following resolution phase, not both. The probability p_{ϵ} , which is an algorithm input parameter, determines this choice. We called it p_{ϵ} to underlined that this initial choice reflects the expected accuracy of the resulting estimate, as it will be discussed in more detail later on.

3.2. CIDON 25

As usual we consider a batch \mathcal{B} of unknown size n. At the beginning of the algorithm each node chooses to transmit with probability p_{ϵ} . Thus the n nodes are partitioned into two sets, \mathcal{E} and \mathcal{D} , where \mathcal{E} consists of those that transmitted and \mathcal{D} the rest. Clearly, $|\mathcal{E}| + |\mathcal{D}| = n$. If the resulting slot is empty or contains a successful transmission, we conclude that $|\mathcal{E}| = 0$ or $|\mathcal{E}| = 1$, respectively. When a conflict occurs ($|\mathcal{E}| \geq 2$), nodes in \mathcal{E} use a complete BRA to resolve the conflict among them. Let j be the number of resolved nodes at the end of phase 1, i.e. $|\mathcal{E}| = j$. Then the estimate \hat{n} is given by

$$\hat{n} \leftarrow \frac{j}{p_{\epsilon}}.\tag{3.2}$$

When the nodes are uniformly distributed in the real interval [0,1), $\frac{j}{p_{\epsilon}}$ identifies also the expected nodes density in the interval [0, 1) and the nodes in \mathcal{E} are those whose id can be mapped to a value belonging to the sub-interval $[0, p_{\epsilon})$.

Figure 3.2 illustrates the concept with a simple example.

Figure 3.2: In this example $p_{\epsilon} = 0.3$. At the beginning of the algorithm each node generates its own id from the standard uniform distribution in the interval [0,1). Nodes whose id is less than p_{ϵ} belongs to \mathcal{E} . Nodes whose id is greater or equal to p_{ϵ} belongs to \mathcal{D} . Estimate of the batch returns $\lceil 2/0.3 \rceil = 7$ which, in this case, is the exact size of the batch.

After the first phase, nodes in \mathcal{E} are resolved, whereas those in \mathcal{D} has still to be counted. An estimate \hat{k} of $|\mathcal{D}|$ can be obtained as

$$\hat{k} \leftarrow \frac{j}{p_{\epsilon}} (1 - p_{\epsilon}). \tag{3.3}$$

This estimate is used as starting point for the second phase of the Cidon algorithm, whose high level peudo-code is presented in Algorithm 3.

COMPLETE COLLISION RESOLUTION (\mathcal{E}) identifies any procedure able to resolve all the nodes in \mathcal{E} allowing them to successfully transmit their messages.

OPTIMIZED COMPLETE COLLISION RESOLUTION $(\mathcal{D}, \hat{k}, p_{\epsilon})$ identifies an optimized way to resolve the batch \mathcal{D} that takes into account the expected multiplicity of \mathcal{D} .

Algorithm 3 Cidon($\mathcal{B}, p_{\epsilon}$)

Input: \mathcal{B} batch with $|\mathcal{B}| = n$

Input: p_{ϵ} , fraction of the whole batch to solve

- 1: // Phase 1
- 2: each node flips a coin getting 0 with probability p_{ϵ} , 1 otherwise
- 3: $\mathcal{E} \leftarrow \{ \text{ nodes that flipped } 0 \}$
- 4: $\mathcal{D} \leftarrow \{ \text{ nodes that flipped 1} \}$
- 5: Complete collision resolution (\mathcal{E})
- 6: $k \leftarrow |\mathcal{E}|/p_{\epsilon}$
- 7: // Phase 2
- 8: Optimized complete collision resolution $(\mathcal{D}, \hat{k}, p_{\epsilon})$

The original paper proposes to use an m groups split (Section 2.1.4) approach to resolve \mathcal{D} , where

$$m = \max(1, \lceil \alpha \hat{k} - \beta \rceil), \tag{3.4}$$

and each group is resolved by applying the MBT algorithm.

The parameter α determines the number of groups, and therefore the efficiency of the resolution process, when n is large, while β reduces the number of groups when n is small in order to reduce the risk of empty groups.

 $\alpha=0.786$ determines $\rho\approx 1.27$ which is the *unique* optimum nodes per group density. β and p_{ϵ} depend on operational requirements: in [7] is showed that setting $\beta=8$ and $p_{\epsilon}=0.1$ is a good compromise to get efficient resolution for a wide range of batch sizes.

The average cost of the estimate phase (phase 1) depends on the BRA used but in general, for tree-based BRAs, can be considered $O(p_{\epsilon}n)$.

3.3 Greenberg

Basic Greenberg algorithm strategy is to search for a power of 2 that is close to n with high probability.

The probabilistic test is defined to look for \hat{n} which tries to satisfy:

$$\hat{n} \ge 2^i \approx n \tag{3.5}$$

Let each of the n conflicting stations either transmit or not transmit in accordance with whether the outcome of a biased binary coin is 0 or 1. The coin is biased to turn up 0 with probability 2^{-i} and 1 with complementary probability. Since the expected number of transmitters is $2^{-i}n$, having a conflict as event supports the hypothesis that $n \ge 2^i$.

3.3. GREENBERG 27

Using this test repeatedly with i = 1, 2, 3, ..., leads to the Greenberg base 2 estimation algorithm. Each of the conflicting stations executes Algorithm (4), resulting in a string of collisions whose length determines \hat{n} .

The probability that at most one node transmits monotonically grows and approaches 1 extremely rapidly as i increases past $\log_2 n$. Consequently, we expect i is close to $\log_2 n$.

Algorithm 4 Basic Greenberg (\mathcal{B})

```
// Each node performs these operations i \leftarrow 0 repeat i \leftarrow i+1 choose to transmit with probability 2^{-i} until no collision occurs \hat{n} \leftarrow 2^i
```

The idea behind algorithm 4 appears to be quite simple: as the algorithm goes on the initial unknown batch (of size n) is progressively sliced into smaller pieces. Only the nodes virtually inside the enabled slice are allowed to transmit. Slices get thinner and thinner until at most one node is contained in a slice. Figure 3.3 intuitively tries to explain the idea.

Expected running time is $O(\log_2 n)$. In particular, since in the *slotted*-ALOHA model considered in the paper reader feedback is supposed to be transmitted at the end of each transmission slot, expected running time can be expressed, in slot numbers, as $\approx 1 + \log_2 n$.

An important note is that the algorithm always involves all the nodes in the batch: in each stage of the algorithm each node has to take a choice if transmit or not. Each choice is independent of what the node did in the previous steps.

This is of great importance and allows \hat{n} to have bounded moments: it can be shown for large n that:

$$E[\hat{n}] \approx n\phi,\tag{3.6}$$

$$E[\hat{n}^2] \approx n\Phi,\tag{3.7}$$

where

$$\phi = \frac{1}{\log 2} \int_0^\infty e^{-x} (1+x) \prod_{k=1}^\infty (1 - e^{-2^k x} (1 + 2^k x)) x^{-2} dx = 0.91422 \dots$$
 (3.8)

Figure 3.3: Visually nodes can be thought to be uniformly distributed on the circumference of a circle. By performing Greenberg's algorithm we go and analyze each time a smaller sector (in this case the half of the previous one) of the circle and find when a sector contains only 1 or no nodes. Not overlapping sectors are drawn to maintain the image simple but in general nodes gets redistributed to each step of the algorithm

$$\Phi = \frac{1}{\log 2} \int_0^\infty e^{-x} (1+x) \prod_{k=1}^\infty \left(1 - e^{-2^k x} (1+2^k x)\right) x^{-3} dx = 1.23278\dots$$
 (3.9)

 ϕ and Φ where obtained in [8] using advanced mathematical analysis supported by Mellin integral transform¹. In general ϕ and Φ depend on the size of the problem. Following Table 3.1 shows the behavior of the expected estimate (and therefore ϕ) as function of n.

¹in this work we only report these as final results, please refer to the original paper to see how ϕ and Φ where obtained.

3.3. GREENBERG 29

Table 3.1: Given a batch of size n the expected estimate applying base 2 Greenberg is $E[\hat{n}|n]$. The ratio $E[\hat{n}|n]/n$ monotonically decreases and gets stable at 0.9142. This shows that this estimate technique provide biased results.

n	$E[\hat{n} n]$	$E[\hat{n} n]/n$
1	2.00	2.0000
2	2.56	1.2822
4	4.21	1.0533
8	7.89	0.9863
16	15.20	0.9498
32	29.82	0.9320
64	59.08	0.9231
128	117.59	0.9186
256	234.60	0.9164
512	468.64	0.9153
1024	936.71	0.9148
2048	1872.86	0.9145
4096	3745.14	0.9143
8192	7489.72	0.9143
16384	14978.86	0.9142
32768	29957.16	0.9142
65536	59913.74	0.9142

The fact that, for large n, $E[\hat{n}] \approx n\phi$ suggests a way for correcting the estimate bias and allows to assume $\hat{n}_+ = \frac{\hat{n}}{\phi}$ as a estimate of n. Owing to the contribution of periodic functions, \hat{n}_+ is not an asymptotically unbiased estimate of n, in the sense that $E[\hat{n}_+]/n$ does not tend to 1 as n gets large. Fortunately, the amplitude of the periodic functions turns out to be less than $2 \cdot 10^{-5}$, so this bias is negligible for all practical purposes.

Interestingly, a simple variant of the estimation algorithm has provably disastrous performance. Consider the algorithm in which each station involved in the initial collision transmits to he channel with probability $\frac{1}{2}$. If this causes another collision, then those that just transmitted, transmit again with probability $\frac{1}{2}$. The others drop out. This continues, with the stations trying to transmit always being a subset of those that just transmitted, until there is no collision. Take 2^i as the estimate of the multiplicity of conflict where i is the number of the steps until there is no collision. It can be shown that the second and all higher moments of this estimate are infinite.

3.3.1 Base b variant

 $\hat{n}_{+}(b) \leftarrow \hat{n}(b)/\phi(b)$

Using basic Algorithm 4, even though the expected value of \hat{n}_+ is quite close to n, \hat{n}_+ is likely to differ from n by a factor of 2. In the original work a small generalization of the base 2 algorithm is proposed to overcome this limitation: providing an estimate whose mean is close to n but whose distribution peaks more sharply about the mean.

Simply it is suggested to use b instead of 2 as base, with $1 < b \le 2$.

```
Algorithm 5 base b Greenberg (\mathcal{B})
i \leftarrow 0
repeat
i \leftarrow i+1
transmit with probability b^{-i}
until no collision occurs
\hat{n}(b) \leftarrow 2^i
```

 $\phi(b)$ corrects the bias of the estimator. $\phi(b)$ is the optimal correction when n is large. Looking at Table 3.2 you can notice how smaller b results in smaller $\phi(b)$. This means that b deeply biases the estimate: if b' < b'' then $E[\hat{n}(b')] < E[\hat{n}(b'')]$.

This is a result of the following fact: let i'' be the expected slot the base b'' algorithm will end up given a batch size n, then $i'' \leq \log_{b''} n$. Let i' be the same for b'. If b' < b'' then $b'^{i'} > b''^{i''}$

Table 3.2: Following table shows how ϕ and "Expected *Greenberg base b algorithm* cost in slots" vary for different b. Expected cost $(\lesssim \log_b n)$ is expressed as a multiplicative factor for the basic Greenberg algorithm cost $(\lesssim \log_2 n)$.

b	$\phi(b)^{\mathrm{a}}$	Expected cost in slots-1
2	≈ 0.9142	$\lesssim 1 \times \log_2 n$
1.1	≈ 0.3484	$\lesssim 7.27$
1.01	≈ 0.1960	$\lesssim 69.66$
1.001	≈ 0.1348	$\lesssim 693.49$
1.0001	≈ 0.1027	$\lesssim 6931.81$

^a Code used to compute $\phi(b)$ is provided in Appendix A.3

It can be shown [8] that, for all n greater than some constant $n_0(b)$

$$\left| \frac{E[\hat{n}_{+}(b)]}{n} - 1 \right| < \epsilon(b), \tag{3.10}$$

[†]This comes from experimental observations.

3.4. WINDOW BASED 31

$$\frac{\sigma(\hat{n}_{+}(b))}{n} < \epsilon(b), \tag{3.11}$$

where $\epsilon(b) \to 0$ as $b \to 1$.

In other words when $b \to 1$ and n is large the estimate becomes unbiased and variance goes to 0: we have ideally a perfect estimator.

Our experimental results showed that this base b estimator is not so good for real life scenarios.

3.4 Window Based

Windows based approaches use a framed-ALOHA-like transmission scheme where the reader provides feedback to the nodes after each frame. Framed-ALOHA is characterized by the frame length L, whose choice is critical for the performance of the resolution process as well as the estimation phase. In fact, in framed-ALOHA there is no clear distinction between resolving the nodes and estimating their number since the estimate can be performed only by knowing the outcome of the last enabled window.

Setting L large compared to the batch size increases the probability to solve all the nodes in the current window but, on the other hand, it leads to an inefficient waste of slots and consequently sub-optimal running time. At the same time L large provides a very accurate estimate of the batch size.

Setting L small leads to collided slots with very high probability. Thus nodes whose transmissions collided have to try again in the next contention windows. Since we don't know how many nodes took part in a collision we can state that collisions provides poor information about the batch multiplicity. More collisions we have, less accurate will be our estimate.

Intuitively we can think that setting L equal to the batch size n is a good choice. In fact it is, but the problem is that we do not know n.

An interesting approach to the problem is expressed in [3]. When the scenario allows to use a probabilistic-framed- $ALOHA^2$ scheme we can play with one more parameter: p, the probability for a node to take part in the current transmission window. Setting p small allows to keep L small too and hence, when n is large, provides an accurate estimate of the whole batch considering only a sub-set of it. This results in shorter estimate time.

Since when p = 1 probabilistic-framed-ALOHA reduces to simple framed-ALOHA and it is reasonable to start any estimate algorithm with p = 1, we will show a possible approach to the

 $^{^2}$ probabilistic-framed-ALOHA is an extension of the framed-ALOHA model where a node takes part to the current contention window with probabily p or waits for the next one with probability 1-p. Nodes that decide to transmit behave like in the standard framed-ALOHA.

problem in a framed-ALOHA scenario.

Let n be the batch size and L the window length. The probability that k among n nodes choose the same slot is binomially distributed with parameters B(n, 1/L). Then the probabilities to get an *idle* slot, a *successful* one or a *collision* are respectively given by:

$$p_0(n) = \left(1 - \frac{1}{L}\right)^n \tag{3.12}$$

$$p_1(n) = \frac{n}{L} \left(1 - \frac{1}{L} \right)^{n-1} \tag{3.13}$$

$$p_{2+}(n) = 1 - p_i(n) - p_s(n)$$
(3.14)

Hence we have three possible events, each one associated to its probability. Considering the whole window, the possible outcome of the transmissions consists in a tuple (i, s, c) of i idle, s successful, c collided slots which satisfies i + s + c = L. Hence, the probability to get i idle slots, s successful transmissions and c collision is given by:

$$P(i, s, c) = \frac{L!}{i! \, s! \, c!} \, p_0(n)^i \, p_1(n)^s \, p_{2+}(n)^c = \frac{L!}{i! \, s! \, c!} \, f_L(i, s, c, n).$$
 (3.15)

Once we have tried to resolve the batch using a window approach we know how many idle, successful or collided slots there were.

Then we find the estimate \hat{n} as the batch size that maximizes the probability to see the tuple (i, s, c) in a L length window:

$$\hat{n} = \underset{n}{\operatorname{arg\,max}} f_L(i, s, c, n), \tag{3.16}$$

where we discarded the factorial terms because they not contribute to identify the maximum since L, i, s, c are fixed. Furthermore, since L, i, s, c are fixed, $f_L(i, s, c, n)$ becomes a one-variable function which results well behaved in n, being initially monotonically increasing and then monotonically decreasing. Therefore $f_L(i, s, c, n)$ has only one maximum.

By setting

$$f'_L(i, s, c, n) = 0,$$
 (3.17)

and numerically solving (3.17) we can obtain the batch size that maximizes our function. In general the solution will not be integer-valued and a rounding operation is necessary to achieve a real world batch estimate.

3.4. WINDOW BASED 33

c	0	1	2	3	4	5	6	7	8	9
1	3	3	4	5	6	7	8	9	10	11
2	5	6	7	8	8	10	11	12	13	-
3	7	8	9	10	11	12	13	14	-	-
4	10	11	12	13	14	15	16	-	-	-
5	12	14	15	16	17	19	-	-	-	-
6	16	17	19	20	22	-	-	-	-	-
7	20	22	23	25	-	-	-	-	-	-
8	26	28	30	-	-	-	-	-	-	-
9	35	38	-	-	-	-	-	-	-	-
10	∞	-	-	-	-	-	-	-	-	-

Table 3.3: Estimate given (i, c, s) when L = i + c + s = 10.

Table 3.3 shows the estimate provided by the explained technique when L=10. Cells identified by (c,s) where c+s>10 cannot be associated to any estimate since their events are impossible. The case c=0 is trivial since the estimate is exact and is given by the number of successful transmission.

We note also that when we see only collisions, the estimator is not able to provide a finite estimate. The event c=10 in the table is in fact associated to $\hat{n}=\infty$. In general, when c=L we have that (3.15) reduces to:

$$P(0,0,L) = p_{2+}(n)^{L} = \left[1 - \left(1 - \frac{1}{L}\right)^{n} - \frac{n}{L}\left(1 - \frac{1}{L}\right)^{n-1}\right]^{L},$$
 (3.18)

which is maximized (P(0,0,L)=1) by $n=\infty$ for any L. Hence we would not to have only collisions since they do not provide any information about the cardinality of the batch.

A larger window has to be used to get a finite estimate but its optimal length remains unknown.

Chapter 4

Estimate Performance Analysis

In the previous Chapter we presented some noteworthy batch size estimation (BSE) algorithms. Here we present a performance analysis of each estimation scheme.

We will analyze *Cidon* to show which is the minimum amount of nodes to be resolved for the estimate to be within user-required constrains with high probability.

We will analyze the behavior of *Greenberg* when varying the batch size.

Finally, we propose and analyze a modification of *Greenberg*, named *[Generalized] Enhached Greenberg Algorithm ([G]EGA)*, which tries to refine the raw estimate provided by the original algorithm.

4.1 Cidon BSE

In the original paper [7] there is no detailed analysis of the behavior of the estimate algorithm, but it is only mentioned that as n grows the estimator becomes more accurate.

Following from Section 3.2, let j denote the number of nodes in \mathcal{E} and p_{ϵ} be the expected fraction of nodes to be resolved in Cidon algorithm Phase 1. p_{ϵ} is fixed a priori since it is an input parameter of the algorithm and, therefore, given a batch of size n, j is a binomially distributed random variable with parameters n and p_{ϵ} . Hence, we have the following:

$$E[j|n, p_{\epsilon}] = np_{\epsilon}, \tag{4.1}$$

$$var(j|n, p_{\epsilon}) = np_{\epsilon}(1 - p_{\epsilon}). \tag{4.2}$$

By applying Chebychev's Inequality (A.1), we have for any $\epsilon > 0$

$$P(|j - np_{\epsilon}| \ge \epsilon n | n) \le \frac{p_{\epsilon}(1 - p_{\epsilon})}{\epsilon^2 n}.$$
(4.3)

We remember that the Cidon estimate is given by $\hat{n} = \frac{j}{p_{\epsilon}}$. Then, from the aforementioned equations (4.1)-(4.3), it follows that:

$$E[\hat{n}|n, p_{\epsilon}] = \frac{1}{p_{\epsilon}} E[j|n, p_{\epsilon}] = n, \qquad \forall p_{\epsilon}$$
(4.4)

and

$$P\left(\left|\frac{\hat{n}}{n} - 1\right| \ge \epsilon \,|\, n, p_{\epsilon}\right) \le \frac{1 - p_{\epsilon}}{\epsilon^2 n p_{\epsilon}}.\tag{4.5}$$

which shows that using this estimation method we can trade off the accuracy with the consumption of resources in terms of time or messages. Furthermore, Cidon estimate is unbiased independently of p_{ϵ} , which influences the variance of the estimator. In fact, we have

$$\operatorname{var}(\hat{n}|n) = \frac{n}{p_{\epsilon}} - n. \tag{4.6}$$

Figure 4.1: Cidon: estimate normalized variance as function of p_{ϵ} .

Figure 4.1 shows that the variance is strict monotonically decreasing in p_{ϵ} . Furthermore, you can notice that, for p_{ϵ} smaller than 0.1, a small increment in p_{ϵ} produces a large decrease in the normalized variance which reflects in a large estimate accuracy improvement. Hence, considering the tread-off between estimate overhead and resolution efficiency, solving up to $\frac{1}{10}$

4.1. CIDON BSE

of the initial batch in the estimate phase is a good practical choice.

Anyway it is difficult to establish in what measure an estimate can be considered accurate. The idea we adopt is to require the estimate to be "near" the real batch size with very high probability. Given n, let $k \ge 1$ identify an interval surrounding n in the following way:

$$\frac{n}{k} \le \hat{n} \le kn \tag{4.7}$$

We can study the algorithm behavior by considering as index for the estimate accuracy

$$\theta_k = P\left(\frac{n}{k} \le \hat{n} \le kn\right) \tag{4.8}$$

Let θ be the minimum allowed value for θ_k : in other words θ is the probability we require for constrains (4.7) to be satisfied.

If we set $\theta = 0.99$, we can find the minimum p_{ϵ} , ensuring the estimate to be within interval (4.7), by solving the following problem.

$$P\left(\frac{n}{k} \le \hat{n} \le kn \middle| k, n\right) = P\left(\frac{n}{k} \le j \middle| p_{\epsilon} \le kn \middle| k, n, p_{\epsilon}\right)$$
$$= P\left(\frac{np_{\epsilon}}{k} \le j \le knp_{\epsilon} \middle| k, n, p_{\epsilon}\right)$$
(4.9)

Since j assumes positive integer values we introduce rounding operations. In particular, rounding effect is non neglectible when $n \leq 200$.

$$f(k, n, p_{\epsilon}) = P\left(\left\lceil \frac{np_{\epsilon}}{k} \right\rceil \le j \le \lfloor knp_{\epsilon} \rfloor \, \middle| \, k, n, p_{\epsilon}\right) \ge \theta \tag{4.10}$$

Fixed k, n and θ , p_{ϵ} can be found by numerically solving the following equation:

$$f(k, n, p_{\epsilon}) = \theta \tag{4.11}$$

Figure 4.2 plots the minimum fraction p_{ϵ} of the batch to be resolved as function of k when $\theta = 0.99$. As you could expect, once the batch size is fixed, the minimum p_{ϵ} is monotonically decreasing in k. In the same manner, when k is fixed, the minimum fraction of the batch to resolve to achieve the same desired accuracy is lower for larger batch sizes. In Figure 4.3 we report the expected time (in slots) required by Cidon to achieve the desired accuracy in the estimate. We notice that initially, when k is larger than 1.5, the time required to achieve a given accuracy is very similar for each considered batch size. For tighter accuracies the time required depends largely on the size of the problem.

Furthermore, the time required by the largest considered batch size to achieve a given accuracy

Figure 4.2: Cidon: Minimum p_{ϵ} as function of k when $\theta = 0.99$.

provides an upper bound for smaller batch sizes: in the same amount of time smaller batch sizes are expected to achieve higher accuracy.

4.2 Greenberg BSE

Given a current slot transmission probability p and a batch of size n we define respectively:

1. the probability to get an empty slot (no transmissions)

$$q_0(p,n) = (1-p)^n (4.12)$$

2. the probability to get a successful slot (exactly one transmission)

$$q_1(p,n) = np(1-p)^{n-1} (4.13)$$

3. the probability to get a collision (two or more transmissions)

$$q_{2+}(p,n) = 1 - q_0(p,n) - q_1(p,n)$$
(4.14)

Figure 4.3: Cidon: Expected time as function of the required accuracy when $\theta = 0.99$.

In basic Greenberg (algorithm 4) each slot is associated with a different probability p. Numbering slots i from 1, 2, and so on we hence have

$$p_i = p(i) = 2^i. (4.15)$$

Given n nodes, the probability to terminate Greenberg algorithm in slot i is given by:

$$f_G(n,i) = \prod_{k=1}^{i-1} q_{2+}(p_k,n) \cdot (q_0(p_i,n) + q_1(p_i,n)).$$
(4.16)

An overview of the behavior of $f_G(n,i)$ is presented in Appendix in Table A.6 on page 63. Equation (4.16) defines the probability for biased estimate \hat{n} to be equal to 2^i when the batch size is n.

$$\Pr\left(\hat{n} = 2^i | n\right) = f_G(n, i) \tag{4.17}$$

Following Figures 4.4 and 4.5 show how the distribution behaves respectively for small and large sizes. We note that, for any fixed n, the distribution is well behaved with a bell-like shape. It turns out that, for batch sizes larger than 128, the distribution is "stable" in the sense that doubling the number of nodes produces only a shift of the stop probability of one slot to the

right (see Figure 4.5).

Figure 4.4: Basic Greenberg: Small 2^k sizes distribution.

Figure 4.5: Basic Greenberg: Large 2^k sizes distribution.

Figure 4.6: Basic Greenberg: General sizes distribution.

This is actually even for batch sizes that are not power of 2. Figure 4.6 shows the case.

4.2.1 Considerations

Greenberg method is really good in terms of running time cost, which is $O(\log_2 n)$. However it has some non negligible drawbacks:

- a) The estimation phase results in a sequence of colliding messages. These provides information about the cardinality of the batch, but do not help to solve an even small portion of the batch and can not carry auxiliary information. An algorithm that allows to get an estimate while resolving nodes would offer some advantages when the problem is not only the pure batch size estimation, but the batch resolution.
- b) Basic Greenberg does not allow to achieve arbitrary precision in the estimate. In fact, we have that:
 - i. the estimate is, by construction, a power of 2. Only a small subset of batch sizes can be mapped without error.

- ii. the estimate distribution is not sharp enough around the correct value of the batch size but it spans over a few slots: this is shown in Figure 4.5. We notice that using Greenberg algorithm it is difficult to discriminate between n and $\frac{n}{2}$.
- c) Base b Greenberg could be used to get a tighter estimate. Anyway, to improve the accuracy, very small b has to be choosen (see Table 3.2) which results in much worse running times: even if theoretically it remains $O(log_b n)$ which is sublinear in n, in practice estimate time can even overwhelm n when b is small.

4.3 EGA BSE

Let n be a batch size and p be a given transmission probability. As expressed by (4.12) (4.13) (4.14), varying n while p is fixed results in very different probabilities for idle, successful and collided slots.

Figure 4.7: Probability of *idle*, successful or collided slots varying n while p=1/1024. $q_0(p,n)\approx q_1(p,n)$ for n=1023

Examining Figure 4.7, it is quite immediate to see that:

- $q_0(p,n) \approx q_1(p,n)$ when $p \approx \frac{1}{n}$ and, obviously,
- $q_0(p,n) \gg q_1(p,n)$ and $q_0(p,n) \gg q_{2+}(p,n)$ when $p \ll \frac{1}{n}$,

4.3. EGA BSE 43

•
$$q_{2+}(p,n) \gg q_0(p,n)$$
 and $q_{2+}(p,n) \gg q_0(p,n)$ when $p \gg \frac{1}{n}$.

The collision probability $q_{2+}(p,n)$ is strictly monotonic increasing, while the empty slot probability $q_0(p,n)$ is strictly decreasing. Repeating a large number T of transmission with probability p, we can simply use the number of collisions or idle slots to uniquely determined the batch size. On the other hand, successful probability $q_1(p,n)$ is non-monotonic and hence can not be used to uniquely determine the batch size.

The proposed technique to refine the estimate is the following.

Running Basic Greenberg Algorithm provides a raw estimate and the associated transmission probability p. Then we perform T more transmissions and use a Maximum Likelihood Estimation (MLE) to refine the estimate.

Let T be the number of slots we will use to refine the estimate and let N_0 , N_1 , N_{2+} be random variables which represent the total number of time slots, respectively idle, successful and collided observed after the T additional slots.

 N_0 , N_1 , N_{2+} are respectively binomial distributions with parameters $B(n, q_0(p, n))$, $B(n, q_1(p, n))$ and $B(n, q_{2+}(p, n))$, respectively. Of course $N_0 + N_1 + N_{2+} = T$ and

$$E[N_0] = Tq_0(p, n),$$

 $E[N_1] = Tq_1(p, n),$
 $E[N_{2+}] = Tq_{2+}(p, n).$

Let $f_T(i, s, c, p', n')$ denote the probability to get i idle, s success and c collision slots:

$$f_T(i, s, c, p', n') = \Pr(N_0 = i, N_1 = s, N_{2+} = c | n = n', p = p')$$

$$= \Pr(N_0 = i | n = n', p = p') \Pr(N_1 = s, N_{2+} = c | n = n', p = p', i),$$
(4.18)

when we transmit with probability p' and the batch size is n'.

Let \mathcal{N} be the set of the target batch sizes. Then, we can define

$$MLE(i, s, c, l) \leftarrow \arg\max_{n' \in \mathcal{N}} \Big(f_T(i, s, c, p(l), n') \cdot f_G(n', l) \Big). \tag{4.19}$$

MLE(i, s, c, l) is a $T \times T \times L$ matrix where L is the index of the "farthest" slot that can be visited during the *Basic Greenberg Algorithm*. L depends on the maximum cardinality n_{max} considered for the problem. Consequently L must be chosen so not to worse the performance of our estimator (if n_{max} is smaller than the real batch size n) and not to waste too much memory.

Hence, our estimate is simply the result of a look-up in the MLE table,

$$\hat{n} \longleftarrow MLE(i, s, c, l).$$
 (4.20)

Is it worth mentioning that:

- For performance tuning, the MLE table can be precomputed before running the estimate algorithm. The computational cost to fill the whole MLE table depends on T and L and, if trivial exhaustive search on \mathcal{N} is performed, also on $|\mathcal{N}|$. A fast way to compute the MLE table is described in Section 4.4.
- The size of the MLE table does not depend on $|\mathcal{N}|$ but only on T and L.
- The estimate deeply depends on the way the elements in \mathcal{N} are chosen.

The high level pseudo-code of the algorithm is the following:

```
Algorithm 6 EGA (\mathcal{B}, T, \mathcal{N})
```

```
precompute or load the MLE table characterized by T, L, \mathcal{N} l \leftarrow 0 repeat  \begin{array}{c} l \leftarrow l+1 \\ p \leftarrow \frac{1}{2^l} \\ \text{choose to transmit with probability } p \\ \textbf{until no collision occurs} \\ (i,s,c) \leftarrow \text{events resulting from } T \text{ transmissions with probability } p \\ \hat{n} \leftarrow MLE(i,s,c,l) \end{array}
```

Expected running time in slots follows from Greenberg expected running time and the further used slots. Therefore expected slot cost is is $\approx \log_2 n + T$.

We note also that only MLE(i, s, c, l) is involved by the algorithm and not the whole MLE table. Hence, is it possible to choose wheter pre-computing and storing the whole table or computing only MLE(i, s, c, l) on-demand.

Once both the batch size n and the MLE table are fixed, the probability to estimate \hat{n} can be expressed as:

$$\Pr(\hat{n} = n'|n) = \sum_{l} f(n, l) \sum_{i} \sum_{s} \hat{X}_{MLE(i, s, c, l)}(n') \cdot f_T(i, s, c, p(l), n), \tag{4.21}$$

where $\hat{X}_{MLE(i,s,c,l)}(n')=1$ iff MLE(i,s,c,l)=n', $\hat{X}_{MLE(i,s,c,l)}(n')=0$ otherwise.

4.3. EGA BSE 45

Hence the expected value of the estimate given n can be trivially computed as follows:

$$E[\hat{n}|n] = \sum_{n' \in \mathcal{N}} n' \cdot \Pr(\hat{n} = n'|n). \tag{4.22}$$

4.3.1 Performance

Figures in this section were obtained by considering $\mathcal{N} = \{\text{powers of 2}\}$. Therefore, the target estimates are the same as for basic Greenberg algorithm.

Figure 4.8 shows that the proposed method peaks sharply near the right estimate. Comparing to the basic Greenberg method (see Figure 4.5) you can notice that there is only one extremely sharp peak located in a single slot, instead of a bell-like shape distributed among consecutive slots. Furthermore, you can also notice how the probability to overestimate the batch size is a bit higher than the probability to underestimate it.

Figure 4.9 shows how the peak behaves when varying T for a fixed batch size: increasing T the peak becomes more and more sharp.

Figure 4.8: EGA: Large 2^k sizes distribution.

Figure 4.9: EGA estimate distribution when varying T. Plot refers to n = 1024.

4.4 GEGA BSE

The Generalized Enhanched Greenberg Algorithm (GEGA) is a less restrictive form of the EGA algorithm in the sense that we do not limit a-priori the set of target estimates. This can be simply achieved by letting \mathcal{N} be the set of all the positive integer numbers.

$$\mathcal{N} = \{1, 2, 3, ...\}.$$

In this case the algorithm can be interpreted as follows:

- 1. Find the transmission probability p for which the multiplicity of the activated set is 1 with very high probability,
- 2. Use T consecutive slots (a "window") to refine the estimate. The idea is similar to a window based estimate except that a node is allowed to transmit in each slot.

Recalling (4.19), given i, s, c and l, the estimate can be found by solving:

$$\frac{d\left(f_T(i,s,c,p(l),n)\cdot f_G(n,l)\right)}{dn} = 0,$$
(4.23)

4.4. GEGA BSE 47

which is not trivial to solve and involves numerical problems since $f_G(n, l)$ can present very small product terms. Then we solved the problem by using bisection method on (4.19) and taking the largest integer n for which

$$f_T(i, s, c, p(l), n+1) \cdot f_G(n+1, l) - f_T(i, s, c, p(l), n) \cdot f_G(n, l) \ge 0.$$
 (4.24)

As an example, the results of this computation when T = 10 and l = 10 are presented in Table 4.1.

c	0	1	2	3	4	5	6	7	8	9	10
0	352	413	477	545	616	689	765	843	922	1003	1086
1	489	559	632	709	787	868	951	1036	1122	1210	-
2	650	730	812	896	983	1072	1162	1254	1347	-	-
3	838	927	1017	1111	1206	1302	1401	1501	-	-	-
4	1055	1153	1254	1356	1461	1567	1675	-	-	-	-
5	1307	1416	1527	1641	1757	1875	-	-	-	-	-
6	1603	1726	1851	1979	2110	-	-	-	-	-	-
7	1962	2103	2248	2396	-	-	-	-	-	-	-
8	2416	2585	2761	-	-	-	-	-	-	-	-
9	3044	3267	-	-	-	-	-	-	-	-	-
10	4111	-	-	-	-	-	-	-	-	-	-

Table 4.1: GEGA: Possible estimates when T = 10 and l = 10.

Table 4.1 reveals that the estimate is always finite. This good propriety follows from the bounded moments of the Greenberg algorithm. In general (see Table 3.3), simple window based MLE estimators can not achieve finite estimate when all the events are collisions.

The EGA MLE Table defined in (4.19) can be obtained as sub-case from GEGA MLE Table. In fact, once the GEGA MLE Table has been computed, for each tuple (i,s,c,l) providing estimate n', the corresponding EGA estimate can be obtained by considering the closest two EGA target estimates surrounding n' and by taking the best between the two by using (4.19) as usual.

The estimate provided by GEGA is biased. Figure 4.10 shows that the algorithm tends to overestimate the real batch size. Anyway, the bias can be easily corrected since it is always really near to the average value: the oscillations have very small amplitude. Increasing T reduces the bias as well as the oscillations amplitude. Very small batch sizes (less than 20) show higher oscillations compared to larger ones: this fact is negligible in practice since the oscillations are too small to affect the estimate and are hidden by the rounding operation. Table 4.2 reports the average bias $\phi(T)$ as a function of T. The results where computed by averaging the bias

Figure 4.10: GEGA: Estimate Bias. The first tree plots show the estimate expected value over the real batch size for different T. Right below corner plot provides a summary in a log x-scale. Data reported were computed using formula (4.22).

4.4. GEGA BSE 49

estimate for batch sizes from 2 to 2000.

T	$\phi(T)$
10	0.0723
20	0.0422
30	0.0299

Table 4.2: GEGA: Average bias.

Figure 4.11: GEGA: biased/unbiased absolute normalized estimate error. The plot presents $e(\hat{n})$ and $e(\tilde{n})$ for different T.

Estimate bias can be corrected by considering $\tilde{n} = \frac{\hat{n}}{\phi(T) + 1}$. We will see that in this way we get higher quality estimate.

To measure the performance of the proposed estimation method, we define the normalized absolute estimate error as

$$e(\hat{n}) = \frac{|\hat{n} - n|}{n}.\tag{4.25}$$

In the same manner we can define $e(\tilde{n})$. The parameter T is implicitly present in (4.25). Figure 4.11 shows that the bias-corrected estimate performs better than the biased estimate for any

batch size and T. Furthermore, you can notice that the error is independent of the batch size. Results presented in Figures 4.12 and 4.13 shows that the accuracy in the estimate grows as T grows and it is independent of the batch size when the batch size is not too small (ex.: n = 10). In fact, for very small batch sizes, the accuracy shows a descending step trend since the probability distribution is discrete and the adopted algorithm performs rounding operations.

Figure 4.12: GEGA: Minimum T to achieve accuracy k

Figure 4.13: GEGA: Minimum T to achieve accuracy k, detailed view

4.5 Comparison

GEGA estimate accuracy can not be dynamically adapted

4.5. COMPARISON 51

Figure 4.14: GEGA vs Cidon

Conclusions

Appendix A

A.1 Probability

This section reviews basic probability theory notions used in this work.

Chebyshev's inequality

Let X be a random variable with expected value μ and finite variance σ^2 . Then for any real number k > 0,

$$\Pr(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2} \tag{A.1}$$

Binomial Distribution

The binomial distribution is the discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments, each of which yields success with probability p. In general, let a random variable K = B(n, p) be a binomial distribution with parameters n and p. The probability of getting exactly k successes in n trials is given by the probability mass function:

$$f(k; n, p) = \Pr(K = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$
 (A.2)

for
$$k = 0, 1, \dots, n$$
, where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

The cumulative distribution function can be expressed as:

$$F(k; n, p) = \Pr(K \le k) = \sum_{i=0}^{\lfloor k \rfloor} \binom{n}{i} p^i (1-p)^{n-i}.$$
(A.3)

The first and second moments are respectively given by:

$$E[K] = np (A.4)$$

and

$$Var[K] = np(1-p). \tag{A.5}$$

Normal Approximation

If n is large enough, then the skew of the distribution is not too great. In this case, if a suitable continuity correction¹ is used, then an excellent approximation to B(n, p) is given by the normal distribution $\mathcal{N}(np, np(1-p))$

The approximation generally improves as n increases and is better when p is not near to 0 or 1. Various rules of thumb may be used to decide whether n is large enough, and p is far enough from the extremes of zero or unity: One rule is that both np and n(1-p) must be greater than 5. However, the specific number varies from source to source, and depends on how good an approximation one wants; some sources give 10. Another easy rule is that $np(1-p) \ge 10$.

Poisson Approximation

The binomial distribution converges towards the Poisson distribution as the number of trials goes to infinity while the product np remains fixed. Therefore the Poisson distribution with parameter $\lambda = np$ can be used as an approximation to B(n,p) of the binomial distribution if n is sufficiently large and p is sufficiently small. According to two rules of thumb, this approximation is good if $n \geq 20$ and $p \leq 0.05$, or if $n \geq 100$ and $np \leq 10$.

Numerical Computation

When n is large and p small, the numerical computation of the probability density function and cumulative distribution function show to be problematic if trivially computed by definition (n! is huge).

The following trick can be used for the computation when 0 < k < n:

$$f(k; n, p) = \Pr(K = k) = e^{\log(\frac{n!}{k!(n-k)!}p^k(1-p)^{n-k})} = e^{\phi},$$
(A.6)

where

$$\phi = \sum_{i=k+1}^{n} \log i - \sum_{i=1}^{n-k} \log i + k \log p + (n-k) \log(1-p). \tag{A.7}$$

¹when approximating a discrete random variable K using a continuos one X, then $\Pr(K \leq k) = \Pr(K < k+1) \approx \Pr(X \leq k+1/2)$

Poisson Distribution

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a number of events occurring in a fixed period of time if these events occur with a known average rate and independently of the time since the last event.

If the expected number of occurrences in this interval is λ , then the probability that there are exactly k occurrences (k being a non-negative integer, k = 0, 1, 2, ...) is equal to

$$f(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!} \tag{A.8}$$

Normal Distribution

Normal distribution is denoted as $\mathcal{N}(\mu, \sigma^2)$ where, as usual, μ identifies the mean and σ^2 the variance. The probability density function is defined as follows:

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (A.9)

A.2 Binary Trees Performance Summary

The following tables report the expected cost L_n in slots to solve a batch of given size n using BT, MBT, and CMBT. Performance reports in Chapter 2 plot these data.

Table A.1: Basic Binary Tree: Performance report

$$\begin{array}{lllll} L_2^{BT} = 5.0000 & L_3^{BT} = 7.6667 & L_4^{BT} = 10.5238 & L_5^{BT} = 13.4190 & L_6^{BT} = 16.3131 \\ L_7^{BT} = 19.2009 & L_8^{BT} = 22.0854 & L_9^{BT} = 24.9690 & L_{10}^{BT} = 27.8532 & L_{11}^{BT} = 30.7382 \\ L_{12}^{BT} = 33.6238 & L_{13}^{BT} = 36.5096 & L_{14}^{BT} = 39.3955 & L_{15}^{BT} = 42.2812 & L_{16}^{BT} = 45.1668 \\ L_{17}^{BT} = 48.0522 & L_{18}^{BT} = 50.9375 & L_{19}^{BT} = 53.8227 & L_{20}^{BT} = 56.7078 & L_{21}^{BT} = 59.5930 \\ L_{22}^{BT} = 62.4783 & L_{23}^{BT} = 65.3636 & L_{24}^{BT} = 68.2489 & L_{25}^{BT} = 71.1344 & L_{26}^{BT} = 74.0198 \end{array}$$

Table A.2: Modified Binary Tree: Performance report with p = 0.5

$$\begin{array}{llll} L_2^{MBT} = 4.5000 & L_3^{MBT} = 7.0000 & L_4^{MBT} = 9.6429 & L_5^{MBT} = 12.3143 & L_6^{MBT} = 14.9848 \\ L_7^{MBT} = 17.6507 & L_8^{MBT} = 20.3140 & L_9^{MBT} = 22.9768 & L_{10}^{MBT} = 25.6399 & L_{11}^{MBT} = 28.3036 \\ L_{12}^{MBT} = 30.9678 & L_{13}^{MBT} = 33.6322 & L_{14}^{MBT} = 36.2966 & L_{15}^{MBT} = 38.9609 & L_{16}^{MBT} = 41.6251 \\ L_{17}^{MBT} = 44.2892 & L_{18}^{MBT} = 46.9531 & L_{19}^{MBT} = 49.6170 & L_{20}^{MBT} = 52.2809 & L_{21}^{MBT} = 54.9448 \\ L_{22}^{MBT} = 57.6087 & L_{23}^{MBT} = 60.2727 & L_{24}^{MBT} = 62.9367 & L_{25}^{MBT} = 65.6008 & L_{26}^{MBT} = 68.2649 \end{array}$$

Table A.3: Modified Binary Tree: Performance report with p = 0.4175

```
\begin{array}{llll} L_2^{MBT} = 4.4143 & L_3^{MBT} = 6.8847 & L_4^{MBT} = 9.4826 & L_5^{MBT} = 12.1078 & L_6^{MBT} = 14.7352 \\ L_7^{MBT} = 17.3605 & L_8^{MBT} = 19.9841 & L_9^{MBT} = 22.6069 & L_{10}^{MBT} = 25.2293 & L_{11}^{MBT} = 27.8519 \\ L_{12}^{MBT} = 30.4745 & L_{13}^{MBT} = 33.0972 & L_{14}^{MBT} = 35.7201 & L_{15}^{MBT} = 38.3430 & L_{16}^{MBT} = 40.9659 \\ L_{17}^{MBT} = 43.5889 & L_{18}^{MBT} = 46.2118 & L_{19}^{MBT} = 48.8347 & L_{20}^{MBT} = 51.4577 & L_{21}^{MBT} = 54.0806 \\ L_{22}^{MBT} = 56.7034 & L_{23}^{MBT} = 59.3263 & L_{24}^{MBT} = 61.9492 & L_{25}^{MBT} = 64.5721 & L_{26}^{MBT} = 67.1949 \end{array}
```

Table A.4: Clipped Modified Binary Tree: performance report. Experimental results obtained by running CMBT algorithm on 10 000 random generated instances.

A.3 Greenberg bounded m-moments

In general for base b greenberg algorithm the first and second moments are bounded by:

$$\phi(b) = \frac{1}{\log b} \int_0^\infty e^{-x} (1+x) \prod_{k=1}^\infty (1 - e^{-b^k x} (1 + b^k x)) x^{-2} dx$$
 (A.10)

$$\Phi(b) = \frac{1}{\log b} \int_0^\infty e^{-x} (1+x) \prod_{k=1}^\infty (1 - e^{-b^k x} (1 + b^k x)) x^{-3} dx$$
 (A.11)

 $\phi(b)$ was computed using the code below. Even if the integral is improper the integrand function goes fast to 0 and so the product does when k grows. We found that considering interval (0,40) for numerical integration provided good results.

$matlab/Greenberg_base_b/phi/calculatephi.m$

```
1 %sample script to calculate phi
2
3 clc;
4 clear all;
5 close all;
6
7 b=2 % 1<b<=2</pre>
```

```
8 phi=quadl(@(x)f4(x,b),0,40,1.e-9)/log(b);
9 phi
10
11 % Sample output
12 %
13 % b =
14 % 2
15 % phi =
16 % 0.914217701315935
```

$matlab/Greenberg_base_b/phi/f4.m$

```
1 function y=f4(x,a)
2
3 % y=f4(x,a)
4 %
5 % input:
6 % a: base
7 % x: x-point
8 %
9 % implements the function to ingegrate to calculate phi
10
11 y=exp(-x).*(1.+x).*f3(a,x).*x.^-2;
```

matlab/Greenberg base b/phi/f3.m

```
function p=f3(a,x)
2
3
  \% p = f3(a,x)
4 %
  \% compute the infinite product stopping when the terms converge to 1
6
7
  1 = length(x);
  p=zeros(1,1);
8
9
10
  for k=1:1
11
       do=true;
12
       \mathbf{i}\!=\!1;
13
      %valore al passo precedente
14
       y0=f2(a,x(k),1);
15
       v0 = 1;
16
       p(k)=y0;
17
       while (do)
18
         v1=bitshift(1,i);
19
        %valore al passo attuale
20
         y1=f2(a,x(k),v1);
21
         if (y0-y1)
22
               \% allora converge a 1
```

```
23
                              do=false;
24
                  else
25
                          for ii=v0+1:v1
                             p\,(\,k\,) \!\!=\!\! p\,(\,k\,)\;. *\, \mathtt{f2}\,(\,a\,,\mathtt{x}\,(\,k\,)\;,\mathtt{ii}\,)\;;
26
27
                          end
28
                          y0=y1;
29
                          v0=v1;
30
                 end
31
                 \mathbf{i} \!=\! \mathbf{i} \!+\! 1;
32
              end
33
     end
```

matlab/Greenberg base b/phi/f2.m

```
function y=f2(a,x,k)

function y=f2(a,x,k)

% y = f2(a,x,k)

% a term inside the product

c=a.^k;
y=(1-exp(-c.*x).*(1+c.*x));
```

A.4 CBT Estimate Experimental Distribution

Following table A.5 shows the behavior of CBT Algorithm (section 3.1) for estimation. The simulation was implemented in matlab. The reported distribution of \hat{n} fixed n is the result of averaging 100 000 runs of the CBT algorithm applied on uniformly random generated nodes id batches.

Table A.5: Experimentally computed CBT Estimate Distributon. Table 1/3

n	$ \hat{n}:$	2	4	8	16	32	64	128	256	512	1024	2048
2		0.499	0.253	0.125	0.061	0.031	0.015	0.007	0.004	0.002	9e-04	4e-04
4			0.189	0.303	0.225	0.133	0.072	0.038	0.020	0.010	0.005	0.002
8			0.055	0.212	0.261	0.201	0.126	0.071	0.037	0.019	0.009	0.005
16			8e-04	0.070	0.209	0.252	0.197	0.125	0.070	0.038	0.019	0.010
32				0.003	0.075	0.213	0.249	0.195	0.123	0.069	0.037	0.018
64					0.004	0.077	0.208	0.250	0.193	0.124	0.069	0.037
128						0.005	0.081	0.208	0.247	0.191	0.123	0.069
256						2e-05	0.006	0.079	0.209	0.246	0.193	0.123
512								0.005	0.081	0.207	0.245	0.193
1024									0.005	0.080	0.208	0.245
2048									2e-05	0.005	0.080	0.209
4096										1e-05	0.006	0.082
8192											1e-05	0.006
16384												2e-05
32768												

Table A.5: Experimentally computed CBT Estimate Distributon. Table 2/3

n	\hat{n} :	4096	8192	16384	32768	2^{16}	2^{17}	2^{18}	2^{19}	2^{20}	2^{21}	2^{22}
2		2e-04	1e-04	1e-04				1e-05				
4		0.001	5e-04	3e-04	1e-04	6e-05	4e-05		2e-05	1e-05		
8		0.002	0.001	6e-04	3e-04	9e-05	8e-05	4e-05	1e-05			
16		0.005	0.003	0.001	6e-04	3e-04	2e-04	6e-05	2e-05	2e-05		
32		0.009	0.005	0.003	0.001	6e-04	3e-04	1e-04	1e-04	6e-05	1e-05	1e-05
64		0.019	0.009	0.005	0.002	0.001	7e-04	3e-04	7e-05	4e-05		2e-05
128		0.037	0.019	0.010	0.005	0.003	0.001	5e-04	4e-04	2e-04	5e-05	4e-05
256		0.068	0.038	0.019	0.009	0.005	0.002	0.001	6e-04	3e-04	6e-05	8e-05
512		0.123	0.071	0.037	0.019	0.010	0.005	0.002	0.001	6e-04	3e-04	2e-04
1024		0.193	0.122	0.070	0.037	0.019	0.010	0.005	0.002	0.001	6e-04	2e-04
2048		0.246	0.194	0.123	0.068	0.037	0.019	0.010	0.005	0.002	0.001	6e-04
4096		0.210	0.246	0.193	0.121	0.068	0.037	0.019	0.009	0.004	0.003	0.001
8192		0.080	0.208	0.247	0.192	0.123	0.070	0.037	0.019	0.009	0.005	0.002
16384		0.006	0.080	0.208	0.247	0.192	0.123	0.069	0.037	0.019	0.010	0.005
32768			0.006	0.079	0.209	0.248	0.194	0.122	0.069	0.036	0.019	0.010

n	$\hat{n}: 2^{23}$	2^{24}	2^{25}	2^{26}	2^{27}	2^{28}	2^{29}	2^{30}	2^{31}	2^{32}
2										
4										
8										
16										
32	1e-05									
64	2e-05				1e-05					
128	4e-05		1e-05							
256	4e-05	1e-05		2e-05			1e-05			
512	7e-05	2e-05	1e-05	3e-05	1e-05					
1024	2e-04	1e-04	4e-05		2e-05	1e-05				
2048	3e-04	1e-04	3e-05	3e-05	3e-05	3e-05				
4096	6e-04	3e-04	9e-05	7e-05	1e-05					
8192	0.001	8e-04	3e-04	2e-04	8e-05	7e-05	2e-05	3e-05	1e-05	
16384	0.002	0.001	6e-04	3e-04	1e-04	1e-04	4e-05			
32768	0.005	0.002	0.001	6e-04	3e-04	2e-04	1e-04	1e-05	2e-05	1e-05

Table A.5: Experimentally computed CBT Estimate Distributon. Table 3/3

A.5 Greenberg Estimate Distribution

In following table A.6 we report how the end up probability (equation 4.16) is distributed among slots given a batch of size n. Column "n" lists the considered batch sizes. \hat{n} is the resulting estimation (without corrections) when ending up in the underneath slot.

For sake of simplicity considered values are all powers of 2.

Datas presented were post-processed to become more accessible:

- values above 10^{-3} are reported in format ('%1.3f');
- values below 10^{-12} are not presented since are tight close to 0.
- other values are presented in exponential notation and rounded to the first meaningful digit ('%1.e')

	7 -	4 2	∞ ന	16 4	32	64	128	256 8	512 9	1024 10	2048	4096 12	8192 13	16384 14	32768 15	65536 16
1.000																
0.750		0.234	0.015	2e-04	1e-06	9e-10										
0.312		0.508	0.166	0.014	3e-04	2e-06	2e-09									
0.035		0.354	0.450	0.147	0.013	3e-04	2e-06	4e-09	1e-12							
3e-04		0.063	0.363	0.422	0.138	0.013	3e-04	2e-06	4e-09	2e-12						
8e-09		0.001	0.078	0.366	0.409	0.134	0.013	3e-04	2e-06	4e-09	2e-12					
		2e-07	0.002	0.084	0.367	0.402	0.131	0.013	3e-04	2e-06	4e-09	2e-12				
			7e-07	0.002	0.088	0.367	0.399	0.130	0.013	3e-04	2e-06	5e-09	2e-12			
				1e-06	0.003	0.090	0.368	0.397	0.130	0.013	3e-04	2e-06	5e-09	2e-12		
					2e-06	0.003	0.090	0.368	0.397	0.130	0.012	3e-04	2e-06	5e-09	2e-12	
						2e-06 0.003	0.003	0.091	0.368	0.396 0.129	0.129	0.012	3e-04	2e-06	5e-09	2e-12
9	_	, ,	2	60	04.00	7007	0.00	70007	201700		710	2.c	019	020	0.21	0.22
178	_	002	216	1024	2048	4090	8192	10384	32108	05550		7.7	7-7	2-7	7_7	7_7
7		8	6	10	11	12	13	14	15	16	17	18	19	20	21	22
2e-06	9(0.003	0.091	0.368	0.396	0.129	0.012	3e-04	2e-06	5e-09	2e-12					
		2e-06	0.003	0.091	0.368	0.396	0.129	0.012	3e-04	2e-06	5e-00	2e-12				
			2e-06	0.003	0.091	0.368	0.396	0.129	0.012	3e-04	2e-06	5e-09	2e-12			
				2e-06	0.003	0.091	0.368	0.396	0.129	0.012	3e-04	2e-06	5e-09	2e-12		
					2e-06	0.003	0.091	0.368	0.396	0.129	0.012	3e-04	2e-06	5e-09	2e-12	
						2e-06	2e-06 0.003	0.091	0.368	0.396	0.129	0.129 0.012	3e-04	2e-06	5e-09	2e-12

Table A.6: Analytically computed basic Greeenberg Estimate Distribution

A.6 GEGA

Table A.7: GEGA: Possible estimates when T = 20 and l = 10

A.6. GEGA

Table A.8: GEGA: Possible estimates when T = 30 and l = 10

	^		_							_			_				_	_				_					_				
30	1047		-			,				,		,	-				,	1			1	1	,	,			,	,	1	-	
29	1016	1092	1			1				1		1	1					1			-	1		1			1	-	1	1	
28	984	1060	1139	,				,	ı	,	,	,	,		,	,	,	1	ı	1	1	1		,	,		,	1	1	,	
27	953	1028	1106	1187	,		,	,	1	,	ı	,		,	,	ı	,	ı	,	1	1	1	1	,	,		,	1	1	,	
26	925	966	1074	1154	1237		,	,	,	,	,	,	-	,	,	,	,	-	,	-	-	1	-	,	,		,	-	1	-	
25	890	964	1041	1120	1203	1288	,	,		,		,		,	,	,	,	1	,	-	1	1	-	,	,	,	,	-	1	-	,
24	828	933	1009	1087	1169	1254	1342	,	,	,		,	-		,	,	,	-	,	-	-	1	,	,	,		,	-	1	-	
23	828	901	926	1054	1135	1219	1306	1397	,	,	,	,	-	,	,	,	,		,	-	-	,		,	,		,	-	,	-	
22	797	698	944	1021	1102	1185	1271	1361	1455	,	-	,	-	,	,	-	_	-	-	-	1	1	-	,	,	,	,	-	1	-	,
21	292	838	912	886	1068	1150	1236	1325	1418	1515	,	,	-	,	,	,		-	,	_	-	1	-		,			-		-	,
20	736	807	088	926	1034	1116	1201	1289	1381	1478	1578	,	-	,	,	,	,	-	,	-	-	1	-	_	,		,	-		-	_
19	202	775	848	923	1001	1082	1166	1254	1345	1440	1540	1644			,	1	,	1	ı	1	1	1	1	,	,		,	1	1	-	,
18	675	744	816	891	896	1048	1131	1218	1308	1402	1501	1604	1713	,	,	,	,	1	,	-	-			,	,		,	-		,	
17	645	713	784	828	935	1014	1097	1182	1272	1365	1462	1565	1672	1786		,	,	-	_	-	-		-	_				-		-	
16	615	683	753	826	902	086	1062	1147	1235	1328	1424	1525	1632	1743	1862	,	,		,	-	-	1	-	,	,			-	1	-	
15	585	652	722	794	698	947	1027	1112	1199	1290	1386	1486	1591	1702	1819	1943	,	,	,	-	1		1	,	,		,	-		,	,
14	555	621	069	762	836	913	993	1076	1163	1253	1348	1447	1551	1660	1775	1898	2028	,	,	-	-	1	-	,	,		,	-		-	,
13	526	591	629	730	803	880	959	1041	1127	1217	1310	1408	1510	1618	1733	1853	1982	2120	,	-	-		-	,	,		,	-		-	,
12	497	561	628	869	771	846	925	1006	1001	1180	1272	1369	1470	1577	1690	1809	1936	2071	2217	-	-	1	-	,	,		,	-		-	,
11	468	531	298	299	739	813	891	971	1056	1143	1235	1330	1431	1536	1647	1765	1890	2024	2167	2322	-	1	-	,	,	,	,	-	1	-	,
10	439	502	292	989	902	780	857	937	1020	1107	1197	1292	1391	1495	1605	1721	1844	1976	2117	2270	2436	1	1	,	,		,	1	1	,	,
6	411	473	537	604	675	747	823	905	985	1070	1160	1253	1351	1454	1563	1677	1799	1929	2068	2218	2381	2560	-	,	,		,	-		-	,
- x	383	444	202	574	643	715	790	898	949	1034	1123	1215	1312	1414	1521	1634	1754	1882	2019	2166	2326	2502	2696	,	,	,	,	-	1	-	,
7	355	415	478	543	611	682	757	834	914	866	1086	1177	1273	1373	1479	1591	1709	1835	1970	2115	2272	2444	2634	2847	-	-	,	1	1	1	-
9	328	387	448	513	580	650	724	800	879	962	1049	1139	1234	1333	1437	1548	1664	1789	1921	2064	2218	2387	2573	2781	3018		,	-		,	,
ro	302	359	419	483	549	819	691	992	845	927	1012	1101	1195	1293	1396	1505	1620	1742	1873	2013	2165	2331	2513	2716	2946	3214		-	1	-	
4	276	331	391	453	518	282	829	732	810	891	926	1064	1156	1253	1355	1462		1697			2112	2275	2453	2651	2876	3135	3443	1	1	-	
8	250	305	362	424	488	555	626	669	922	856	939	1026	8111	1214	1314	1420	1532	1651	1778	1913	0907	2219	2394	2588	2806	3058	3355	3721	-	-	
2	226	278	335	395	458	524	593	999	742	821	903	686	1080	1174	1273	1378	1488	1606	1730	1864	2008	2164	2335	2525	2738	2982	3269	3620	4076	-	ı
-1	202	253	307	366	428	493	561	633	208	982	298	952	1041	1135	1233	1336	1445	1560	1683	1815	1956	2110	2277	2462	2670	2907	3185	3522	3955	4570	
0	179	228	281	338	399	463	530	009	674	751	831	916	1004	1096	1193	1294	1402	1516	1637	1766	1905	2055	2220	2401	2603	2834	3103	3427	3838	4411	5395
«	0	1	2	3	4	22	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	59	30

Bibliography

- [1] Wen-Tzu Chen, An Accurate Tag Estimate Method for Improving the Performance of an RFID Anti-collision Algorithm Based on Dynamic Frame Length ALOHA, IEEE Transactions on Automation Science and Engineering, Vol. 6, No. 1, January 2009, 9-15
- [2] Peter Popovski, Frank H.P. Fitzek, Ramjee Prasad, A Class of Algorithms for Collision Resolution with Multiplicity Estimation, Springer, Algorithmica, Vol. 49, No. 4, December 2007, 286-317
- [3] Murali Kodialam, Thyaga Nandagopal, Fast and Reliable Estimation Schemes in RFID Systems, MobiCom '06: Proceedings of the 12th annual international conference on Mobile computing and networking, ACM, September 2006, 322-333
- [4] K. Jamieson, H. Balakrishnan, and Y. C. Tay, Sift: a MAC protocol for event-driven wireless sensor networks, Proc. 3rd European Workshop on Wireless Sensor Networks, Zurich, Switzerland, February 2006, 260–275
- [5] Dimitri Bestekas, Robert Gallager, Data Networks, 2nd Ed., Prentice-Hall, New Jersey, 1992.
- [6] Raphael Rom, Moshe Sidi, Multiple Access Protocols: Performance and analysis, Springer Verlag, 1990. Freely available online for not commercial purposes.
- [7] Israel Cidon, Moshe Sidi, Conflict Multiplicity Estimation and Batch Resolution Algorithms, IEEE Transactions On Information Theory, Vol. 34, No. 1, January 1988, 101-110
- [8] Albert G. Greenberg, Philippe Flajolet, Richard E. Ladner, Estimating the Multiplicities of Conflicts to Speed Their Resolution in Multiple Access Channels, Journal of the Association for Computing Machinery, Vol 34, No. 2, April 1987, 289-325
- [9] J.L Massey, Collision-Resolution Algorithms and Random-Access Communications, Springer, CISM Courses and Lectures, Vol. 265, Berlin 1981, 73–137

68 BIBLIOGRAPHY

[10] J.I. Capetanakis, Tree algorithms for packet broadcast channels, IEEE Transactions On Information Theory, Vol. 25, No. 5, September 1979, 505-515

- [11] B. S. Tsybakov, V. A. Mikhailov, Slotted multiaccess packet broadcasting feedback channel, Probl. Peredachi Inform., Vol. 13, December 1978, 32-59
- [12] J.I. Capetanakis, A protocol for resolving conflicts on ALOHA channels, Abstracts of Papers, IEEE Int. Symp. Info. Th., Ithaca, New York, October 1977, 122-123