Iris

Figure 1: iris-image

Iris Dataset

Iris dataset is found 'natively' in BaseR. It gets loaded when you start R.

head(iris)

	Sepal.Length	${\tt Sepal.Width}$	Petal.Length	${\tt Petal.Width}$	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

'data.frame': 150 obs. of 5 variables: \$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... \$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... \$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... \$ Petal.Width: num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... \$ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...

Plot Sepal and Petal measurements for the 3 species

library(tidyverse)

Boxplot of the Petal.Length and Petal.Width across Species

Pairwise Comparisons

iris <- iris[sample(1:nrow(iris)),] plot(iris, col = iris\$Species)</pre>

summary(iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
Min. :4.300	Min. :2.000	Min. :1.000	Min. :0.100
1st Qu.:5.100	1st Qu.:2.800	1st Qu.:1.600	1st Qu.:0.300
Median :5.800	Median :3.000	Median :4.350	Median :1.300
Mean :5.843	Mean :3.057	Mean :3.758	Mean :1.199
3rd Qu.:6.400	3rd Qu.:3.300	3rd Qu.:5.100	3rd Qu.:1.800
Max. :7.900	Max. :4.400	Max. :6.900	Max. :2.500

Species

setosa :50 versicolor:50 virginica :50

ggRidges for density plots

```
library(ggridges)
```

```
ggplot(iris, aes(x=Petal.Length, y=Species,fill=Species))+
  geom_density_ridges()+
  xlim(0,8)+
  theme_bw()
```


vline for median
geom_density_ridges(quantile_lines=TRUE,quantile=2)

or just use geom_density()

```
irisvi <- filter(iris, Species == "virginica")
irisse <- filter(iris, Species == 'setosa')

dvi <- ggplot(irisvi,aes(Sepal.Length))+
   geom_density(fill="lightblue")+
   theme_bw()

dse <- ggplot(irisse,aes(Sepal.Length))+
   geom_density(fill='pink')+
   theme_bw()

dvi+dse</pre>
```


Regression for Species=Versicolor

```
irisV <- filter(iris, Species=="versicolor")
head(irisV)</pre>
```

	Sepal.Length	Sepal.Width	Petal.Length	${\tt Petal.Width}$	Species
1	6.6	2.9	4.6	1.3	${\tt versicolor}$
2	5.5	2.6	4.4	1.2	${\tt versicolor}$
3	6.2	2.9	4.3	1.3	${\tt versicolor}$
4	6.4	2.9	4.3	1.3	${\tt versicolor}$
5	6.7	3.1	4.4	1.4	${\tt versicolor}$
6	6.6	3.0	4.4	1.4	${\tt versicolor}$

RegressionPlot for versicolor

```
ggplot(irisV, aes(x=Sepal.Width, y=Sepal.Length))+
  geom_point(color="brown")+
  geom_smooth(method="lm",se=FALSE)+
  ggtitle("Simple Regression")
```

Simple Regression

[`]geom_smooth()` using formula = 'y ~ x'