In [1]:

```
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
import numpy as np
import pandas as pd
```

In [3]:

```
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

In [4]:

```
car=pd.read_csv('D:/task/carprice.csv')
car.head()
```

Out[4]:

	car_ID	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	en
0	1	3	alfa-romero giulia	gas	std	two	convertible	rwd	
1	2	3	alfa-romero stelvio	gas	std	two	convertible	rwd	
2	3	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	
3	4	2	audi 100 ls	gas	std	four	sedan	fwd	
4	5	2	audi 100ls	gas	std	four	sedan	4wd	

5 rows × 26 columns

In [5]:

car.shape

Out[5]:

(205, 26)

In [6]:

```
car.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):

Jucu	COTAMINS (COCAT 20	•	
#	Column	Non-Null Count	Dtype
0	car_ID	205 non-null	int64
1	symboling	205 non-null	int64
2	CarName	205 non-null	object
3	fueltype	205 non-null	object
4	aspiration	205 non-null	object
5	doornumber	205 non-null	object
6	carbody	205 non-null	object
7	drivewheel	205 non-null	object
8	enginelocation	205 non-null	object
9	wheelbase	205 non-null	float64
10	carlength	205 non-null	float64
11	carwidth	205 non-null	float64
12	carheight	205 non-null	float64
13	curbweight	205 non-null	int64
14	enginetype	205 non-null	object
15	cylindernumber	205 non-null	object
16	enginesize	205 non-null	int64
17	fuelsystem	205 non-null	object
18	boreratio	205 non-null	float64
19	stroke	205 non-null	float64
20	compressionratio	205 non-null	float64
21	horsepower	205 non-null	int64
22	peakrpm	205 non-null	int64
23	citympg	205 non-null	int64
24	highwaympg	205 non-null	int64
25	price	205 non-null	float64
dtvne	es: float64(8), int	64(8), object(16	a)

dtypes: float64(8), int64(8), object(10)

memory usage: 41.8+ KB

In [7]:

car.describe()

Out[7]:

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight	е
cou	nt 205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	2
mea	n 103.000000	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854	1
st	d 59.322565	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204	
m	n 1.000000	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	
25	% 52.000000	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000	
50	% 103.000000	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	1
75	% 154.000000	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000	1
ma	x 205.000000	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000	3
4								•

In [8]:

```
cars=car.select_dtypes(include=['float64','int64'])
cars.head()
```

Out[8]:

	car_ID	symboling	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	borer
0	1	3	88.6	168.8	64.1	48.8	2548	130	;
1	2	3	88.6	168.8	64.1	48.8	2548	130	;
2	3	1	94.5	171.2	65.5	52.4	2823	152	:
3	4	2	99.8	176.6	66.2	54.3	2337	109	;
4	5	2	99.4	176.6	66.4	54.3	2824	136	;
4									•

In [9]:

```
# dropping symboling and car_ID as symboling is more of categorical variable as described b
#an index type variable and not a predictor
cars= car.drop(['symboling', 'car_ID'], axis=1)
cars.head()
```

Out[9]:

	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelb
0	alfa-romero giulia	gas	std	two	convertible	rwd	front	
1	alfa-romero stelvio	gas	std	two	convertible	rwd	front	}
2	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	front	ξ
3	audi 100 ls	gas	std	four	sedan	fwd	front	ξ
4	audi 100ls	gas	std	four	sedan	4wd	front	ί

5 rows × 24 columns

In [10]:

```
car['symboling'].astype('category').value_counts()
```

Out[10]:

- 0 67
- 1 54
- 2 32
- 3 27
- -1 22 -2 3
- Name: symboling, dtype: int64

In [11]:

```
car['aspiration'].astype('category').value_counts()
```

Out[11]:

std 168 turbo 37

Name: aspiration, dtype: int64

In [12]:

```
sns.distplot(car['carheight'])
plt.show()
```


In [13]:

```
sns.distplot(car['carwidth'])
plt.show()
```


In [14]:

#VISUALISING THE DATA

sns.pairplot(car)
plt.show()

In [15]:

```
for i, col in enumerate (car.columns):
   plt.figure(i)
   sns.scatterplot(x=car[col],y=car['stroke'])
```


In [16]:

```
#corealtion with Dependent var and independent var's
corr=cars.corr()
plt.figure(figsize=(15,8))
sns.heatmap(corr,annot=True,cmap="gist_heat_r")
```

Out[16]:

<matplotlib.axes._subplots.AxesSubplot at 0x1ede939e1c0>

In [17]:

```
##ONLY CAR NAMES
carnames = car['CarName'].apply(lambda x: x.split(" ")[0])
carnames[:21]
```

Out[17]:

```
alfa-romero
0
1
      alfa-romero
2
      alfa-romero
3
              audi
              audi
4
5
              audi
              audi
6
7
              audi
8
              audi
9
              audi
               bmw
10
11
               bmw
12
               bmw
13
               bmw
14
               bmw
15
               bmw
16
               bmw
               bmw
17
18
        chevrolet
        chevrolet
19
        chevrolet
20
```

Name: CarName, dtype: object

In [18]:

```
plt.figure(figsize=(20, 12))
plt.subplot(2,3,1)
sns.boxplot(x = 'horsepower', y = 'price', data = car)
plt.subplot(2,3,2)
sns.boxplot(x = 'boreratio', y = 'price', data = car)
plt.subplot(2,3,3)
sns.boxplot(x = 'carbody', y = 'price', data = car)
plt.subplot(2,3,4)
sns.boxplot(x = 'doornumber', y = 'price', data = car)
plt.subplot(2,3,5)
sns.boxplot(x = 'drivewheel', y = 'price', data = car)
plt.subplot(2,3,6)
sns.boxplot(x = 'enginelocation', y = 'price', data = car)
plt.show()
```


In [19]:

```
plt.figure(figsize = (10, 5))
sns.boxplot(x = 'fueltype', y = 'price', hue = 'drivewheel',data = car)
plt.show()
```


In [20]:

```
car['symboling'] = car['symboling'].astype('object')
car.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):

	Caluma	•	Dhua
#	Column	Non-Null Count	Dtype
0	car_ID	205 non-null	int64
1			
	symboling		object
2	CarName	205 non-null	object
3	fueltype	205 non-null	object
4	aspiration	205 non-null	object
5	doornumber	205 non-null	object
6	carbody	205 non-null	object
7	drivewheel	205 non-null	object
8	enginelocation	205 non-null	object
9	wheelbase	205 non-null	float64
10	carlength	205 non-null	float64
11	carwidth	205 non-null	float64
12	carheight	205 non-null	float64
13	curbweight	205 non-null	int64
14	enginetype	205 non-null	object
15	cylindernumber	205 non-null	object
16	enginesize	205 non-null	int64
17	fuelsystem	205 non-null	object
18	boreratio	205 non-null	float64
19	stroke	205 non-null	float64
20	compressionratio	205 non-null	float64
21	horsepower	205 non-null	int64
22	peakrpm	205 non-null	int64
23	citympg	205 non-null	int64
24	highwaympg	205 non-null	int64
25	price	205 non-null	float64
	67		- \

dtypes: float64(8), int64(7), object(11)

memory usage: 41.8+ KB

In [21]:

```
car['car_company']=carnames
car['car_company'].value_counts()
```

Out[21]:

toyota 31 nissan 17 mazda 15 honda 13 mitsubishi 13 12 subaru volvo 11 peugeot 11 dodge 9 9 volkswagen bmw 8 8 buick audi 7 7 plymouth saab 6 isuzu 4 porsche 4 3 jaguar alfa-romero 3 chevrolet 3 2 renault 2 VW 2 maxda porcshce 1 vokswagen 1 Nissan 1 1 toyouta mercury 1

Name: car_company, dtype: int64

In [22]:

```
#bmw

car.loc[(car['car_company']=="bmw"),"car_company"]="BMW"

#toyota
car.loc[(car['car_company']=="toyouta"),"car_company"]="toyota"

# nissan
car.loc[car['car_company'] == "Nissan", 'car_company'] = 'nissan'

# mazda
car.loc[car['car_company'] == "audi", 'car_company'] = 'Audi'

car['car_company'].value_counts()
```

Out[22]:

```
toyota
                32
nissan
                18
                15
mazda
mitsubishi
                13
honda
                13
subaru
                12
volvo
                11
                11
peugeot
volkswagen
                 9
                 9
dodge
BMW
                 8
                 8
buick
plymouth
                 7
Audi
                 7
saab
                 6
isuzu
                 4
                 4
porsche
                 3
jaguar
alfa-romero
                 3
                 3
chevrolet
                 2
VW
                 2
renault
                 2
maxda
                 1
porcshce
vokswagen
                 1
mercury
                 1
Name: car_company, dtype: int64
```

In [23]:

```
#DATA PREPARATION
x=car.drop(columns=['price',"car_ID"])
y=car['price']
y.head()
```

Out[23]:

- 0 13495.0
- 1 16500.0
- 2 16500.0
- 3 13950.0
- 4 17450.0

Name: price, dtype: float64

In [24]:

```
cars_category = x.select_dtypes(include=['object'])
cars_category.head()
```

Out[24]:

	symboling	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocal
0	3	alfa-romero giulia	gas	std	two	convertible	rwd	f
1	3	alfa-romero stelvio	gas	std	two	convertible	rwd	f
2	1	alfa-romero Quadrifoglio	gas	std	two	hatchback	rwd	f
3	2	audi 100 ls	gas	std	four	sedan	fwd	f
4	2	audi 100ls	gas	std	four	sedan	4wd	f
4								•

In [25]:

```
cars_dummy = pd.get_dummies(cars_category, drop_first=True)
cars_dummy.head()
```

Out[25]:

	symboling1	symboling_0	symboling_1	symboling_2	symboling_3	CarName_alfa- romero Quadrifoglio	CarNan romer
0	0	0	0	0	1	0	
1	0	0	0	0	1	0	
2	0	0	1	0	0	1	
3	0	0	0	1	0	0	
4	0	0	0	1	0	0	

5 rows × 205 columns

In [26]:

```
x=x.drop(columns=cars_category)
x.head()
```

Out[26]:

	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	boreratio	stroke	compr
0	88.6	168.8	64.1	48.8	2548	130	3.47	2.68	
1	88.6	168.8	64.1	48.8	2548	130	3.47	2.68	
2	94.5	171.2	65.5	52.4	2823	152	2.68	3.47	
3	99.8	176.6	66.2	54.3	2337	109	3.19	3.40	
4	99.4	176.6	66.4	54.3	2824	136	3.19	3.40	
4									•

In [27]:

```
x=pd.concat([x,cars_dummy],axis=1)
x.head()
```

Out[27]:

	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	boreratio	stroke	compr
0	88.6	168.8	64.1	48.8	2548	130	3.47	2.68	
1	88.6	168.8	64.1	48.8	2548	130	3.47	2.68	
2	94.5	171.2	65.5	52.4	2823	152	2.68	3.47	
3	99.8	176.6	66.2	54.3	2337	109	3.19	3.40	
4	99.4	176.6	66.4	54.3	2824	136	3.19	3.40	

5 rows × 218 columns

4

In [28]:

x.info()

<class 'pandas.core.frame.DataFrame'>

Columns: 218 entries, wheelbase to car_company_vw

dtypes: float64(7), int64(6), uint8(205)

RangeIndex: 205 entries, 0 to 204

memory usage: 62.0 KB

In [29]:

```
x.columns
```

```
Out[29]:
```

In [30]:

```
#TRAIN-TEST
from sklearn.model_selection import train_test_split

# We specify this so that the train and test data set always have the same rows, respective
np.random.seed(0)
x_train, y_test = train_test_split(cars, train_size = 0.7, test_size = 0.3, random_state =
```

In [31]:

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
```

In [32]:

```
num_vars = ['curbweight','carlength','curbweight','enginesize','horsepower','price']
x_train[num_vars] = scaler.fit_transform(x_train[num_vars])
```

In [33]:

x_train.head()

Out[33]:

	CarName	fueltype	aspiration	doornumber	carbody	drivewheel	enginelocation	wheelb
122	plymouth fury gran sedan	gas	std	four	sedan	fwd	front	!
125	porsche macan	gas	std	two	hatchback	rwd	front	!
166	toyota corolla tercel	gas	std	two	hatchback	rwd	front	!
1	alfa- romero stelvio	gas	std	two	convertible	rwd	front	ł
199	volvo diesel	gas	turbo	four	wagon	rwd	front	10

5 rows × 24 columns

In [34]:

x_train.describe()

Out[34]:

	wheelbase	carlength	carwidth	carheight	curbweight	enginesize	boreratio	
count	143.000000	143.000000	143.000000	143.000000	143.000000	143.000000	143.000000	14
mean	98.523077	0.525476	65.839860	53.551748	0.407878	0.241351	3.307413	
std	5.961835	0.204848	2.214203	2.433766	0.211269	0.154619	0.260997	
min	86.600000	0.000000	60.300000	47.800000	0.000000	0.000000	2.680000	
25%	94.500000	0.399187	63.950000	51.800000	0.245539	0.135849	3.065000	
50%	96.500000	0.502439	65.400000	53.700000	0.355702	0.184906	3.310000	
75%	101.200000	0.669919	66.900000	55.350000	0.559542	0.301887	3.540000	
max	115.600000	1.000000	72.300000	59.100000	1.000000	1.000000	3.940000	
4								•

In [35]:

```
plt.figure(figsize = (20, 16))
sns.heatmap(x_train.corr(), annot = True, cmap="YlGnBu")
plt.show()
```


In [36]:

```
plt.figure(figsize=[4,4])
plt.scatter(x_train.carlength, x_train.wheelbase)
plt.show()
```


In [37]:

```
y_train = x_train.pop('stroke')
x_train = x_train
```

In [38]:

```
import statsmodels.api as sm
```

In [39]:

```
#add a constant

x_train_lm = sm.add_constant(x_train[['carlength']])

#create a first fitted model

lr = sm.OLS(y_train,x_train_lm).fit()
```

In [40]:

```
lr.params
```

Out[40]:

const 3.108318 carlength 0.269760

dtype: float64

In [41]:

```
plt.scatter(x_train_lm.iloc[:, 1], y_train)
plt.plot(x_train_lm.iloc[:, 1], 85.09+ 25.5*x_train_lm.iloc[:, 1], 'r')
plt.show()
```


In [42]:

```
print(lr.summary())
```

```
OLS Regression Results
______
Dep. Variable:
                  stroke
                        R-squared:
                                            0.0
31
Model:
                        Adj. R-squared:
                    0LS
                                            0.0
24
Method:
             Least Squares F-statistic:
                                            4.5
50
           Sun, 26 Apr 2020 Prob (F-statistic):
                                           0.03
Date:
46
                 09:11:23
                        Log-Likelihood:
Time:
                                           -33.8
18
No. Observations:
                    143 AIC:
                                            71.
Df Residuals:
                    141
                        BIC:
                                            77.
56
Df Model:
                      1
Covariance Type: nonrobust
______
          coef std err
                      t P>|t|
                                   [0.025
                                           0.97
5]
______
const 3.1083 0.071 43.601 0.000 2.967 3.2
49
carlength 0.2698 0.126 2.133 0.035 0.020 0.5
______
==
Omnibus:
                  16.116 Durbin-Watson:
                                            2.0
81
Prob(Omnibus):
                  0.000
                        Jarque-Bera (JB):
                                           22.6
20
                        Prob(JB):
Skew:
                  -0.625
                                          1.22e-
05
Kurtosis:
                   4.494
                        Cond. No.
                                             6.
______
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is corre
ctly specified.
```

In [43]:

```
x_train_lm = x_train[['carlength', 'carwidth']]
```

In [44]:

```
import statsmodels.api as sm
x_train_lm = sm.add_constant(x_train_lm)
lr = sm.OLS(y_train, x_train_lm).fit()
lr.params
```

Out[44]:

const 0.558465 carlength -0.112418 carwidth 0.041778

dtype: float64

In [45]:

```
print(lr.summary())
```

OLS Regression Results								
=======================================	======		=====	=====		======	=======	
Dep. Variable	:	st	roke	R-sq	uared:		0.0	
Model:			OLS	Adj.	R-squared:		0.0	
Method: 62		Least Squ	ares	F-sta	atistic:		4.1	
Date: 75		Sun, 26 Apr	2020	Prob	(F-statistic)	:	0.01	
Time:		09:1	1:30	Log-I	ikelihood:		-31.9	
No. Observation	ons:		143	AIC:			69.	
Df Residuals: 81			140	BIC:			78.	
Df Model: Covariance Typ		nanna	2					
	Je. ======	nonro ========	=====	=====	.========		=======	
==								
5]	coef	f std err		t	P> t	[0.025	0.97	
const 87	0.558	1.330	(0.420	0.675	-2.070	3.1	
carlength 53	-0.1124	4 0.235	- (0.478	0.633	-0.577	0.3	
carwidth 85	0.0418	0.022	:	1.920	0.057	-0.001	0.0	
	======		=====	=====		======	======	
== Omnibus:		15	.116	Durb:	in-Watson:		2.0	
21 Prob(Omnibus)	:	0	.001	Jarqı	ue-Bera (JB):		20.5	
46 Skew:		-0	.604	Prob	(JB):		3.46e-	
05 Kurtosis: 03		4	.411	Cond	No.		3.46e+	
=======================================	======		=====	=====		======	======	

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.46e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

In [46]:

```
x_train_lm = x_train[['carlength', 'carwidth','carheight']]
```

In [47]:

print(lr.summary())

	OLS Regression Results							
=========	======	======	======	==:	=====		======	=======
== Dep. Variable	:		stroke	<u> </u>	R-squa	ared:		0.0
56 Model:			OLS	:	۸di F	R-squared:		0.0
43			OLS	,	Auj. i	(-squareu:		0.0
Method:		Least	Squares	•	F-stat	istic:		4.1
62 Date:		Sun, 26	Apr 2020)	Prob ((F-statistic):		0.01
75 Time:			09:11:32	<u>)</u>	Log-Li	ikelihood:		-31.9
59 No. Observation	ons:		143	}	AIC:			69.
92	· · ·							
Df Residuals: 81			146)	BIC:			78.
Df Model:			2	2				
Covariance Ty	pe:	n	onrobust	:				
=======================================	======			-==	=====		======	======
-1	coef	std	err		t	P> t	[0.025	0.97
5]								
const 87	0.5585	5 1.	330	0	.420	0.675	-2.070	3.1
carlength 53	-0.1124	0.	235	-0	.478	0.633	-0.577	0.3
	0.0418	8 0.	022	1	.920	0.057	-0.001	0.0
==	======	:======	======	:==:	=====		======	======
Omnibus:			15.116	5	Durbir	n-Watson:		2.0
21 Prob(Omnibus)	:		0.001	L	Jarque	e-Bera (JB):		20.5
46 Skew:			-0.604	ļ	Prob(3	JB):		3.46e-
05						·		
Kurtosis: 03			4.411	_	Cond.	No.		3.46e+
=======================================	======	:======	:======	:==:	=====	========	======	=======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.46e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

```
In [48]:
```

```
cars.columns
```

```
Out[48]:
```

In [49]:

```
x_train_lm = x_train[['horsepower', 'boreratio','wheelbase']]
```

In [50]:

```
import statsmodels.api as sm
x_train_lm = sm.add_constant(x_train_lm)
lr = sm.OLS(y_train, x_train_lm).fit()
lr.params
```

Out[50]:

const 3.002135 horsepower 0.357183 boreratio -0.506372 wheelbase 0.018691

dtype: float64

In [51]:

print(lr.summary())

OLS Regression Results								
========	======	=======	:======	===	=====	:========	======	=======
Dep. Variable	:		stroke	ā	R-squ	uared:		0.1
65 Model:			OLS	5	Adj.	R-squared:		0.1
47 Method:		Least	Squares	5	F-sta	atistic:		9.1
55 Date:		Sun, 26	Apr 2020)	Prob	(F-statistic):		1.44e-
05 Time:			09:11:41	L	Log-L	ikelihood:		-23.1
98 No. Observati	ons:		143	3	AIC:			54.
40 Df Residuals:			139)	BIC:			66.
25 Df Model:			3					
Covariance Ty	pe:	r	onrobust	=				
=======================================	======		:======	==:	=====		_	=======
5]	coef	f std	err		t	P> t	[0.025	0.97
const 26	3.002	1 0.	467	6	.426	0.000	2.078	3.9
	0.3572	2 0.	174	2	.054	0.042	0.013	0.7
boreratio 76	-0.5064	1 0.	116	-4	.354	0.000	-0.736	-0.2
	0.0187	7 0.	005	3	.966	0.000	0.009	0.0
=========	======	======	======	===			======	=======
== Omnibus:			14.699)	Durbi	in-Watson:		2.2
61 Prob(Omnibus)	:		0.001	L	Jarqu	ue-Bera (JB):		45.6
65 Skew:			-0.171	L	Prob((JB):		1.21e-
10 Kurtosis: 03			5.747	7	Cond.	No.		1.95e+
==	======		======	===:	=====	:========	======	=======

Warnings:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.95e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

In [52]:

from statsmodels.stats.outliers_influence import variance_inflation_factor

In [53]:

```
def build_model(X,y):
    X = sm.add_constant(X) #Adding the constant
    lm = sm.OLS(y,X).fit() # fitting the model
    print(lm.summary()) # model summary
    return X

def checkVIF(X):
    vif = pd.DataFrame()
    vif['Features'] = X.columns
    vif['VIF'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])]
    vif['VIF'] = round(vif['VIF'], 2)
    vif = vif.sort_values(by = "VIF", ascending = False)
    return(vif)
```

In [54]:

<pre>x_train_new =</pre>	build	_model(x_	_train_	_lm,y_t	rain)
--------------------------	-------	-----------	---------	---------	-------

OLS Regression Results									
=========	=====:	=====	=====:	=====	==	=======	=======	======	======
== Dep. Variable 65	:		st	roke		R-squared	d:		0.1
Model:				0LS		Adj. R-so	quared:		0.1
Method:		Le	ast Squ	ares		F-statis	tic:		9.1
Date: 05		Sun,	26 Apr :	2020		Prob (F-s	statistic):		1.44e-
Time: 98			09:1	1:48		Log-Like	lihood:		-23.1
No. Observation 40	ons:			143		AIC:			54.
Df Residuals: 25				139		BIC:			66.
Df Model:				3					
Covariance Typ	oe:		nonrol	bust					
	=====:	=====	======	=====				======	
==	COO.	e c	td err			+	P> t	[0 025	0.97
5]									0.57
const 26	3.002	1	0.467		6.	426	0.000	2.078	3.9
horsepower 01	0.357	2	0.174		2.	054	0.042	0.013	0.7
boreratio 76	-0.5064	4	0.116	-	4.	354	0.000	-0.736	-0.2
wheelbase 28	0.018	7	0.005		3.	.966	0.000	0.009	0.0
=======================================	=====	=====	=====	====	===	=======	=======	======	======
Omnibus: 61			14	.699		Durbin-Wa	atson:		2.2
Prob(Omnibus) 65	:		0	.001		Jarque-Be	era (JB):		45.6
Skew:			-0	.171		Prob(JB)	:		1.21e-
Kurtosis:			5	.747		Cond. No			1.95e+
=======================================	=====:	=====	=====:	====	===	=======		======	======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.95e+03. This might indicate that there are
- strong multicollinearity or other numerical problems.

In [55]:

x_train_new = build_model(x_train_new,y_train)

OLS Regression Results										
=======================================	======	=====	:====:	====		====	====	:======	=======	=======
Dep. Variable	:		st	roke		R-squ	uared	l:		0.1
65				01.6						0.1
Model: 47				OLS		Adj.	K-sc	uared:		0.1
Method:		Lea	st Squ	ares		F-sta	atist	ic:		9.1
55										
Date:		Sun, 2	26 Apr 3	2020		Prob	(F-s	tatistic)	:	1.44e-
05			00.4	1 . 40						22.4
Time: 98			09:1	1:49		Log-L	тікет	ihood:		-23.1
No. Observati	ons:			143		AIC:				54.
40										
Df Residuals:				139		BIC:				66.
25 Df Model:				3						
Covariance Ty	ne:		nonrol							
-	•				===	=====			======	
==										
	coe	f st	d err			t		P> t	[0.025	0.97
5]										
const	3.002	l	0.467		6.	426		0.000	2.078	3.9
26		_								
horsepower 01	0.357	2	0.174		2.	054		0.042	0.013	0.7
boreratio	-0.5064	1	0.116	_	-4.	354		0.000	-0.736	-0.2
76		•	0.1_0		. •				01/00	
wheelbase	0.018	7	0.005		3.	966		0.000	0.009	0.0
28										
	======	=====	:=====:	=====	===	=====		:======	=======	=======
== Omnibus:			14	.699		Durbi	in-Wa	itson:		2.2
61										
Prob(Omnibus)	:		0	.001		Jarqu	ue-Be	era (JB):		45.6
65			0	474		5 1 /	(35)			4 24
Skew: 10			-0	.171		Prob((JR):			1.21e-
Kurtosis:			5	.747		Cond.	. No.			1.95e+
03										
========	======								======	======
==										

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.95e+03. This might indicate that there are
- strong multicollinearity or other numerical problems.

In [56]:

```
checkVIF(x_train_new)
```

Out[56]:

	Features	VIF
0	const	374.60
2	boreratio	1.57
1	horsepower	1.41
3	wheelbase	1.35

In [57]:

```
x_train_new = x_train_new.drop(["wheelbase"], axis = 1)
```

In [58]:

xtrain_new = build_model(x_train_new,y_train)

OLS Regression Results								
=======================================	======	=======	====:	=====	========	======	======	
Dep. Variable: 70		str	oke	R-squ	ared:		0.0	
Model: 57			0LS	Adj.	R-squared:		0.0	
Method: 09	L	east Squa	res	F-sta	tistic:		5.3	
Date:	Sun,	26 Apr 2	020	Prob	(F-statistic):		0.005	
Time:		09:12	:00	Log-L	ikelihood:		-30.8	
No. Observations:			143	AIC:			67.	
Df Residuals:			140	BIC:			76.	
Df Model: Covariance Type:		nonrob						
==					P> t		0.97	
5]							• • • • • • • • • • • • • • • • • • •	
const 4.	2675	0.359	11	.895	0.000	3.558	4.9	
horsepower 0.	4794	0.180	2	.665	0.009	0.124	0.8	
boreratio -0. 15	3406	0.114	-2	.985	0.003	-0.566	-0.1	
==========	======	======	=====	=====	========	======	======	
== Omnibus:		5.	235	Durbi	n-Watson:		2.1	
61 Prob(Omnibus): 92		0.	073	Jarqu	e-Bera (JB):		7.5	
Skew:		0.	049	Prob(JB):		0.02	
25 Kurtosis:		4.	124	Cond.	No.		5	
2.8	======	======	====:	=====	========	======	=======	
==								

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [59]:

```
checkVIF(x_train_new)
```

Out[59]:

	Features	VIF
0	const	199.87
1	horsepower	1.37
2	boreratio	1.37

Residual analysis of a model

In [60]:

```
lm = sm.OLS(y_train,x_train_new).fit()
y_train_price = lm.predict(x_train_new)
```

In [61]:

```
fig = plt.figure()
sns.distplot((y_train - y_train_price), bins = 20)
fig.suptitle('Error Terms', fontsize = 20)
plt.xlabel('Errors', fontsize = 18)
```

Out[61]:

Text(0.5, 0, 'Errors')

Error Terms

MODEL EVALUATION

In [62]:

```
num_vars = ['wheelbase', 'curbweight', 'enginesize','carlength','carwidth','price']
x_train[num_vars] = scaler.transform(x_train[num_vars])
```

```
In [63]:
```

```
y_test = x_train.pop('price')
x_test = x_train
```

In [64]:

```
x_train_new = x_train_new.drop('const',axis=1)
x_test_new = x_test[x_train_new.columns]
x_test_new = sm.add_constant(x_test_new)
```

In [65]:

```
y_pred = lm.predict(x_test_new)
```

In [66]:

```
from sklearn.metrics import r2_score
r2_score(y_test, y_pred)
```

Out[66]:

-326434617006.14984

In [67]:

```
fig = plt.figure()
plt.scatter(y_test,y_pred)
fig.suptitle('y_test vs y_pred', fontsize=20)
plt.xlabel('y_test', fontsize=18)
plt.ylabel('y_pred', fontsize=16)
```

Out[67]:

Text(0, 0.5, 'y_pred')

In [68]:

pritit (Im. Summary ()	print	lm.summary	<pre>/())</pre>
------------------------	-------	------------	-----------------

OLS Regression Results									
== Dep. Variable	:		stroke	R-sq	uared:		0.0		
70 Model:			0LS	Adj.	Adj. R-squared:				
57 Method:		Least Squares							
09 Date:					(F-statistic)		0.005		
99						•			
Time: 62		09	:12:45	Log-	Likelihood:		-30.8		
No. Observati 72	ons:		143	AIC:			67.		
Df Residuals: 61			140	BIC:			76.		
Df Model:			2						
Covariance Ty	pe:	non	robust						
=======================================	======	=======	=====	=====	=========	=======	======		
	coef	std er	r	+	P> t	[0.025	0.97		
5]	coc.	Jea ei	•		17 [6]	[0.023	0.37		
const 77	4.2675	0.35	9	11.895	0.000	3.558	4.9		
horsepower 35	0.4794	0.18	0	2.665	0.009	0.124	0.8		
boreratio 15	-0.3406	0.11	4	-2.985	0.003	-0.566	-0.1		
=========	======	:=======	=====	======	=========	=======	======		
==									
Omnibus: 61			5.235	Durb	in-Watson:		2.1		
Prob(Omnibus)	:		0.073	Jarq	ue-Bera (JB):		7.5		
Skew:			0.049	Prob	(JB):		0.02		
25							_		
Kurtosis: 2.8			4.124		. No.		5		
	======	=======	=====	======	========	=======	======		
==									
Warnings:	Warnings:								
	Errors a	assume that	the c	ovarian	ce matrix of t	he errors	is corre		
c+lv cposific				· · ·			-		

ctly specified.

In []:

In []:		