PAT-NO:

JP411120509A

DOCUMENT-IDENTIFIER:

JP 11120509 A

TITLE:

MULTITRACK HORIZONTAL TYPE THIN FILM MAGNETIC HEAD

PUBN-DATE:

April 30, 1999

INVENTOR-INFORMATION:

NAME COUNTRY
ISB, KAZUYUKI N/A
YAMAKAWA, KIYOSHI N/A
HONDA, NAOKI N/A
OUCHI, KAZUHIRO N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY AKITA PREFECTURE N/A

APPL-NO:

JP09285495

APPL-DATE:

October 17, 1997

INT-CL (IPC): G11B005/29, G11B005/31

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a multitrack horizontal type thin film magnetic head for which positioning between a recording head and a reproducing

head in manufacturing is unncessitated, by which simultaneous recording of plural tracks is performed without providing a gap between adjacent tracks and

signals on plural tracks are collectively reproduced.

SOLUTION: Plural pieces of single magnetic pole heads constituted of a pattern formed with a magnetic pole 6b, magnetic yokes 4b, 5b and conductive

coils 2a, 2b consisting of a thin film through an insulation layer are formed

similarly as the <u>recording heads</u>, and similarly, the reproducing heads are formed also adding prescribed magneto-resistive effect elements, and when they

are made the horizontal type thin film magnetic heads accessible to face to e.g. a magnetic recording medium, the magnetic poles 6a, 6b, 6c, 6d of respective recording heads are arranged in the direction orthogonally intersecting with the track width direction, e.g. alternately so as to respectively answer to prescribed tracks, and are arranged efficiently so

as to

narrowly bring the gap between adjacent tracks in the track width direction close or to completely eliminate the spacing.

COPYRIGHT: (C) 1999, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出頭公開番号

特開平11-120509

(43)公開日 平成11年(1999)4月30日

(51) Int CL*		體別記号	PΙ		
G11B	5/29		G11B	5/29	L
	5/31			5/31	L

審査請求 有 請求項の数5 OL (全10頁)

(21)出願番号	₩₩ 9-285495	(71)出題人 591108178
		秋田県
(22)出頭日	平成9年(1997)10月17日	秋田県秋田市山王4丁目1番1号
		(72)発明者 伊勢 和幸
		秋田県秋田市新屋町字砂奴寄4-21 秋田 県高度技術研究所内
		(72)発明者 山川 諸志
		秋田県秋田市新屋町宇砂奴寄4-21 秋田 県高度技術研究所内
		(72)発明者 本多 直樹
		秋田県秋田市新屋町字帯奴寄4-21 秋田 県高度技権研究所内
		(74)代理人 弁理士 鈴江 武彦 (外5名)
		最終質に絞く

(54) 【発明の名称】 マルチトラック水平型幕膜磁気ヘッド

(57)【要約】

【課題】 製造時の記録ヘッドと再生ヘッドの位置合せが不要で、隣接するトラック間に間隔を設けずに複数トラックの記録を同時に行い、且つ複数トラックの信号を一括再生可能なマルチトラック水平型薄膜磁気ヘッドを提供すること。

【解決手段】 薄膜から成る磁極6bと磁気ヨーク(4b,5b) と導体コイル(2a,2b)とが絶縁層を介して形成されたパターンで成る単磁極ヘッドを記録用ヘッドとして同様に複数個形成し、同様に再生用ヘッドも所定の磁気抵抗効果素子を加えて形成し、例えば磁気記録媒体に対面してアクセス可能な水平型薄膜磁気ヘッドとするとき、それぞれの記録用ヘッドの磁極(6a,6b,6c,6d) を、所定のトラックに各々対応するようにトラック幅方向に直交する方向に、図示の如く例えば互い違いに配列することで、隣接するヘッド間のトラック幅方向の間隔を狭く近接させるか又はその間隔が全く無いように効率よく配置する。

【特許論文の毎囲】

【請求項1】 薄膜から成る磁極、磁気ヨーク、導体コ イルおよび絶録層のパターンで少なくとも構成される複 数のヘッド素子が、係るヘッドの媒体対向面に略平行に 形成されて成る水平型(ホリゾンタルタイプ) の薄膜磁 気ヘッドであって、

前記複数のヘッド素子の前記磁極のそれぞれは、所定の トラックに各々対応するようにトラック幅方向に直交す る方向に配列され、

く近接されるか、または該間隔が実質的に全く無いよう に、前記ヘッド素子が配置されて成ることを特徴とする マルチトラック水平型薄膜磁気ヘッド。

【請求項2】 前記ヘッドにおいて、記録用磁気ヘッド よりもトラック幅方向の幅長が広い再生用磁気ヘッドに よって、前記複数のトラックに記録された信号を一括再 生可能に形成されて成ることを特徴とする、請求項1に 記載の薄膜磁気ヘッド。

【請求項3】 前記磁気ヨークの磁路がトラック幅方向 と一致して成る記録用磁気ヘッドおよび再生用磁気抵抗 20 効果磁気ヘッドを用いたことを特徴とする、 請求項2に 記載の薄膜磁気ヘッド。

【請求項4】 複数の薄膜単磁極ヘッドが、記録専用と して当該トラック幅方向の異なる複数のトラックにそれ ぞれ1つづつ同時アクセス可能に配列され、歴気抵抗効 果磁気ヘッドが再生専用として当該トラック幅方向の異 なる複数の隣接トラックにまたがって同時アクセス可能 に配列されて成ることを特徴とする、請求項3に記載の 薄膜磁気ヘッド。

【請求項5】 所定の磁性薄膜を所定の導体薄膜で取り 30 囲んで形成された薄膜単磁極ヘッドを含む水平型薄膜磁 気ヘッドにおいて、

前記薄膜単磁極ヘッドは、このヘッドを構成する基板の **薄膜作製面から略垂直に形成されて成る磁極が、当該磁** 極の媒体対向面に近づくにつれてその断面積が段階的ま たは連続的に小さく設定され、磁極の飽和を緩和または 回避し、ヘッドの効率を改善するように形成されている ことを特徴とするマルチトラック水平型薄膜風気ヘッ ۴.

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えばハードディ スクドライブやビデオレコーダなどの磁気記録再生装置 に用いられる薄膜磁気ヘッドに関し、例えば複数のトラ ック情報の記録および再生が可能な水平型(ホリゾンタ ルタイプ)の薄膜磁気ヘッドに関する。

[0002]

【従来の技術】近年の情報化社会において、取り扱う情 報量は飛躍的に増大し、大容量の情報を展価に高速で記 録方式は、高速性、記録容量およびコストなどの面で他 の方式よりも使れている点が多い。最近では、磁気配金 の記録密度は著しく向上しているが、その高速性に関し ては磁気ヘッドの駆動周波数帯域とヘッドとメディアの 相対速度で規定されてしまう。従って、このような規定 された条件化で更なる高速化を図るには、記録する情報 を分割し、複数の磁気ヘッドで記録・再生する所謂「マ ルチトラック記録」が有効である。

2

【0003】例えばデジタル・コンパクトカセットで 際接する前記ヘッド素子間のトラック傷方向の間隔が狭 10 は、幅185μ■ で記録、幅70μ■で再生する9個ず つ並んだマルチトラック薄膜磁気ヘッドを用いている。 これにより、4.76cm/sec.という遅いテープ速度と 固定ヘッドとの組合せで、デジタルによる音声記録を可 能としている。このときのトラックピッチ、即ちヘッド 間間隔は195μ■ あり、隣接するチャネル間には10 μ のガードパンドが存在することになる。従って、同 様な構造でハードディスク装置で用いられるようなトラ ック幅10μm 以下への「狭トラック化」を図っても、 トラック幅よりもはるかに広いガードバンドが生じてし まう。現在、ハードディスク装置に組み込まれている意 膜磁気ヘッドも、そのトラック幅は数ミクロン・オーダ ーと小さいものの、ヘッド索子自体はコア部分でも10 0μπ 程度、コイル部分を含めると300μπ 程度にも なっており、これよりもヘッド間隔を小さくするには、 新たな磁気ヘッドの構造を考える必要が生じ、近時いく つかの構造が提案されている。

> 【0004】例えば図9に示すヘッドは、IEEE Trans. han., Vol.28, No.5, 2653 に掲載されたマトリックス ヘッドである。このマトリックスヘッドは、溝を入れた フェライト基板にワイヤを入れ、その上に薄膜の磁極を 乗せた構造である。トラック幅18μmのヘッド素子は 全部で384個あり、その素子をマトリックス状に配置 することで、 索子のピッチは216μm あるにも係わら ず、トラック間隔を小さくすることができる。

【0005】また、この他に例えば図10には、IEEE T rans. Magn., Vol.33, No.3, 2397に掲載されたアレイ ヘッドを例示すると、このアレイヘッドは腹厚をトラッ ク幅としたヘッドであり、ヘリカルコイルを用いて、ヘ ・ッド作製面を走向方向に若干傾けることによって、トラ ック間間隔を設けずに記録することができる構造であ る。このときのヘッド素子の間隔は100μmである。 【0006】また、磁気配録用ヘッドではないが、例え ば図11(a),(b) に示すプリント用ヘッドは、IEEE Trans. Maxn., Vol.24, No.6, 2826 に掲載された磁気 プリンタ用マルチトラックヘッドアレイである。 このマ ルチトラックヘッドアレイは、多数の垂直ヘッドをトラ ックと直交する方向に一列に並設した構造であり、この 配列では1つのヘッドの記録幅50μm に対して記録幅 間隔が162μm あるが、奇数番2i+1と偶数番2iの案子 録・再生できる記録装置が強く求められている。磁気記 50 を同一トラック上に左右から交互に並べることで記録隔 の間隔を56μm に縮小することができる。

【0007】一方、磁気ヘッドにおいては、その量産性を向上しコストを低下することも重要である。磁気ヘッドが機械加工を中心とするバルク型の磁気ヘッドから、半導体と同様なフォトリソグラフィ技術を用いて作る薄膜型の磁気ヘッドに代わることでその生産性は向上した。しかしながら、ハードディスク装置用の磁気ヘッドでは、磁気ディスク面から磁気ヘッドを浮上させる為に、機械加工を中心としたスライダー加工が必要である。よって、これがその生産性を規定する一因になっており、この様な機械加工をほとんど必要としないヘッド構造がさらに提案されている。

【0008】図12に示すヘッドは、IEEE Trans. Mag n., Vol.25, No.5, 3190 に掲載された水平型ヘッドである。従来の薄膜ヘッドが作製した基板の断面を磁気媒体との対向面に用いるのに対し、この平面型ヘッドは、作製した面がそのまま媒体対向面となる故に、フォトリソグラフィ技術を用いてスライダー形状に加工した直後に切り出すだけでその作製工程を終了できるという利点を有している。また、記録したトラックに正確にサ 20一ボする技術も今後の高密度磁気記録を実現する上で重要ではあるが、記録密度の増大に伴って記録トラック幅は狭くなる一方であり、それに伴いサーボ技術に対する要求も益々高度になっている。

[0009]

【発明が解決しようとする課題】しかしながら、これま でに提案されているマルチトラック磁気ヘッドは、ディ ジタルVTRのようなテープ装置での利用を想定してい る故に、素子の間隔が大きい。例えば、マトリックスへ ッドでは案子間隔が216µm 程あり、アレイヘッドで 30 6100µm はある。よって、ハードディスク装置のよ うに極めて低い浮上量を保っている小さなスライダー上 で複数の素子を配置し、さらにそれらの案子のトライポ ロジー的な状態を安定に保つことは極めて困難であるの で、案子および案子間隔をより小さくする必要性が生ず る。この問題を回避するために、薄膜ヘッド素子を基板 の厚さ方向に積み上げてマルチトラック化する方法も考 えられるが、各々の素子の厚みが10μπ以上ある現在 の薄膜ヘッドを積み重ねていった場合に、各磁気ヘッド 案子の磁板の位置合せを特密に行うことは現在のフォト 40 リソグラフィ技術では極めて困難であると共に、大きな コイル形状によって互いの相互作用も大きくなる。

【0010】一方、生産性の優れた平面型ヘッドでは、まだマルチトラック磁気ヘッドは提案されておらず、その案子構造も、高密度磁気記録を実現する上で有望な垂直磁気記録方式の潜在能力を引き出すのに充分に優れた単磁極ヘッドではなく従来のリング型ヘッドであり、単磁極型ヘッドの実現についての提案はまだされていない。また、サーボ技術については、複数の記録トラックを同時一括で更生のトラックを同時一括で更生のトラックを同時一括で更生のトラックを同時一括で更生のトラックを同時一括で更生のトラックを同時一括で更生のトラックを同時一括で更生のトラックを同時一括で

なった分、その要求仕様が緩やかになる。

【0011】そこで本発明の目的は、製造時の記録へッドと再生ヘッドの位置合せを必要とせず、隣接する記録トラック間に間隔を設けずに複数トラックの記録を同時に行え、複数トラックの信号を一括再生可能な水平型のマルチトラック薄膜磁気ヘッドを提供することにある。【0012】

- [1] 薄膜から成る磁極、磁気ヨーク、導体コイルおよび絶疑層のパターンで構成される複数のヘッド素子が、ヘッドの媒体対向面に略平行に形成された水平型薄膜磁気ヘッドを構成するとき、複数ヘッド素子の磁極のそれぞれが所定のトラックに各々対応するようにトラック幅方向に直交する方向に配列し、隣接するヘッド素子間のドラック幅方向の間隔を狭く近接させるか、又はその間隔を全く無いように配置する。
- [2] 記録用磁気ヘッドよりもトラック幅方向の幅長が広い再生用磁気ヘッドによって、複数の記録トラックの信号を一括再生可能に形成した薄膜磁気ヘッドを提供する。
- [3] 磁気ヨークの磁路がトラック幅方向と一致して 成る記録用の磁気ヘッドおよび再生用の磁気抵抗効果磁 気ヘッドを用いて薄膜磁気ヘッドを構成する。
- [4] 複数の薄膜単磁板ヘッドは、記録専用として当該トラック傾方向の異なる複数のトラックにそれぞれ1つづつ同時アクセス可能に配列し、磁気抵抗効果磁気ヘッドは再生専用として当該トラック個方向の異なる複数の隣接トラックにまたがって同時アクセス可能に配列する
- [5] 磁性薄膜を導体薄膜で取り囲んで形成された薄膜単磁極ヘッドを含む水平型薄膜磁気ヘッドを形成するとき、この薄膜単磁極ヘッドを構成する基板の薄膜作製面から略垂直に形成されている磁極が、例えば、当該磁極の媒体対向面に近づくにつれてその断面積が段階的または連続的に小さくなるよう設定して、磁極の飽和を緩和または回避し、ヘッドの効率が改善するように形成する

単磁極ヘッドではなく従来のリング型ヘッドであり、単 【0013】(作用)本発明の水平型のマルチトラック 磁極型ヘッドの実現についての提案はまだされていな 薄膜磁気ヘッドにおいては、以上の手段により次のよう い。また、サーボ技術については、複数の記録トラック な作用を奏する。すなわち、請求項1によれば、記録用 を同時一括で再生可能であれば再生のトラック幅が広く 50 と再生用の各ヘッド素子の位置合わせを必要とせずに一

括製造を可能にし、各ヘッド案子間の間隔が極く狭く、 又は全く必要としない方式でマルチトラック記録・再生 を可能にする。請求項2によれば、複数の記録用磁気へ ッドにより記録された記録トラックの信号を、幅の広い 単一の再生用ヘッドが一括再生を可能にする。 請求項3 によれば、その磁気ヨークの磁路がトラック幅方向と一 致して成る記録用磁気ヘッドおよび再生用リングヨーク 型出気抵抗効果磁気ヘッドによりそれぞれ良好にマルチ トラック記録・再生を可能にする。請求項4によれば、 薄膜単磁極ヘッドにより記録した信号をリングヨーク型 10 磁気抵抗効果磁気ヘッドによって所望により同時再生可 能とし、よって全体で記録・再生可能な水平型の薄膜磁 気ヘッドを一体的に構成できる。また、請求項5によれ ば、ヘッドの材料・材質等を適宜選択する以外の手段で も、磁極の飽和を緩和あるいは回避して、ヘッドの効率 を改善することができる。

【0014】以上により、トラック幅によらずトラック 間隔を小さくもしくは必要としないマルチトラック薄膜 **盆気ヘッドが容易に製造できる。また、複数同時記録・** 一括再生を可能とするマルチトラック薄膜磁気ヘッドが 20 々に小さくなるように形成している。 容易に製造できる。さらに、垂直磁気記録に適した単磁 低ヘッドを水平型で製造できる。

[0015]

【発明の実施の形態】以下、本発明のマルチトラック水 平型薄膜磁気ヘッドについての複数の実施形態例およ び、それらの変形例を挙げて詳しく説明する。

(第1実施形態例)図1には、本発明の第1実施形態例 としての薄膜磁気ヘッドの平面的な配列構造が示されて いる。因示しない磁気記録媒体に対面する薄膜には、図 示のようなレイアウトで4つの記録用薄膜磁気ヘッド と、2つの再生用薄膜磁気ヘッドが配置されている。ま た、図2には上記の記録用の薄膜磁気ヘッドを示し、(a)はその記録用単磁板ヘッドの要部の立体的構造を示 し、(b)は(a)中のA-A に沿って鉛直に切断した記 録用磁気ヘッドの断面を示している。 図1に示す如く、 本第1 実施形態例の水平型(ホリゾンタルタイプ)のマ ルチトラック薄膜磁気ヘッドは、垂直磁気記録用の二層 膜記録媒体に適した記録用の単磁極ヘッドが4個と、記 録媒体との摺動にも適した再生用のリングヨーク型磁気 記録用ヘッドよりも再生用ヘッドの個数が少ない理由 は、本発明の薄膜磁気ヘッドの記録再生方式において、 再生時に1つの再生ヘッドにより、複数即ち2つの記録 ヘッドによって記録された信号を一括同時に再生する方 式である故である。

【0016】また、本第1実施形態例における各磁気へ ッドの配置上の特徴は、記録用ヘッドの磁極6a,6 b, 6 c 及び 6 d と、再生用ヘッドの磁極 1 1 a と 1 1 bが、トラック幅方向と直交する方向に並設され、その

再生用磁極が相互にずれて、トラック幅方向と直交する 方向に、所謂「互い違い」になるように配置されてい る。詳しくは、記録用単磁極ヘッドは、素子の集積度を 高めるために、磁気ヨークの長さ方向である磁路の方向 をトラック幅方向とし、また、導体コイルはヘリカル構 造としている。この事体コイルは高い周波数の信号に対 店することも考慮しつつ、なお且つ、今後予想される記 録媒体の「高抗磁力化」にも対応できるように、本例で はその導体コイルの巻数を4.5回と設定している。

【0017】なお、本例の記録用ヘッドの製造手順とし ては、例えば図2(b)に示すように、まず非磁性基板 1上に媒体対向面から離れた導体コイル2aを形成し、 記録用ヨーク36、記録用ピラーヨーク46、媒体対向 面に近い導体コイル26、記録用リターンヨーク56お よび記録用磁極6bを形成していく。上述の各部位の周 囲は非磁性絶縁層7で満たして順次形成する。また同図 2(b) に示す如く、記録用磁極6bにつながる記録用 ピラーヨーク4bは非磁性基板1から媒体対向面13に 近づくにつれて、これらに平行な面における断面積が徐

【0018】一方、図3には、同じく第1実施形態例の 再生用の薄膜磁気ヘッドが示され、(a) は再生用のリ ングヨーク型磁気抵抗効果ヘッドの構造であり、(b) は(a) 中のB-B に沿ったトラック方向に沿って鉛直に 切断した再生用ヘッドの断面を示している。この再生用 リングヨーク型磁気抵抗効果ヘッドは、例えば同図3(a) に示すような形状を成し、図示しない非磁性基板上 に一体的に積層形成されている。すなわち、中央近傍に 設けたギャップ12bを境にして一組の再生用磁気ヨー 30 ク10 bと再生用磁極 11 bおよび、引出導体としての リード9bを有し、上記ギャップ12bの鉛直方向に は、2つの再生用磁気ヨークの間に磁気抵抗効果素子8 bを設けている。

【0019】また、同図3(b) に示すようにこのリン グヨーク型磁気抵抗効果ヘッドは、例えば、非磁性基板 1上に非磁性絶疑層7を介して磁気抵抗効果案子8bを 形成し、これと電気的に接続されるように両側に引出導 体9bを形成する。 さらに、 薄い非磁性絶縁層7を介し て再生用磁気ヨーク10bおよび再生用磁極11bを形 抵抗効果ヘッドが2個とから構成されている。この例で 40 成し、この磁極11bの中央にはトラック幅方向に沿っ て収束イオンビーム装置などを用いてギャップ12bを 形成することでこの構造が得られる。なお、前述の記録 用ヘッドと同様に各部分の周囲は非磁性絶縁層7で満た されて順次形成されている。また、記録用・再生用のそ れぞれの磁気ヘッドを構成する磁気ヨーク56、10 b、磁極6b、11bはそれぞれ非磁性基板1及び媒体 対向面13から略等距離の位置に設けるので、製造段階 では同時に形成できる。本例のようなヘッド構成は、再 生動作時には、2個の記録用磁径6a,6cまたは、6 トラック幅方向における位置関係は各々の記録用磁径と 50 b.6 dが書き込んだ複数信号を1個の再生用磁径11

aまたは11bがそれぞれ同時に一括再生を行うような 会再方式に資する。

【0020】(作用効果1) このように、図1~図3に 例示の本第1実施形態例では、トラック幅と直交する方 向に互い違いになるように記録用の単磁極ヘッドの磁極 6a, 6b, 6c及び6dをそれぞれ別々のトラック毎 に配置することにより、実際にヘッドとして使用した。 際、各トラック間に間隔が不要なため、ガードバンドを 必要とせずに記録媒体面を有効活用できるマルチトラッ の位置は、その形成に用いるフォトリソグラフィ技術の 際、同一のフォトマスクで同時に形成できるので、各登 極の位置を正確に配置することができる。

【0021】また、再生時には1つの再生ヘッドで2つ の記録ヘッドによって記録された信号を同時に再生する ことができる。ただしこの為には、これら複数信号を分 離する必要があるが、隣接したトラックの信号と識別可 館な信号処理方式などを採用する等により、これは何ら 問題とはならず、むしろ全体としての信号量が増加する ので信号の対雑音比(S/N)が改善される。さらに、 トラック幅が狭い場合に思念される精密なサーボ技術に 対しても、その要求項目の緩和が期待できる。スキュー 角による記録ヘッドと再生ヘッドの位置ずれの影響はあ るが、アクチュエータに所謂「ピギーバック式」や「リ ニア式」を用いることでこの事も問題とはならない。 【0022】本発明のホリゾンタルタイプのマルチトラ ックヘッドを構成する記録用ヘッドは、媒体対向面にあ る磁極が1つであるホリゾンタルタイプの薄膜単磁極へ ッドで、その磁路をトラック幅方向とすることにより、 ラック幅でのマルチトラック記録において問題となるト ラック間隔を必要としないような配置を容易に実現でき る。また、その磁気ヨークは基板から媒体対向面に近づ くにつれてこれらに平行な面における断面積が徐々に小 さく設定されているので、磁極の飽和を緩和または回避 することができ、この結果、ヘッドの記録効率を改善す ることができる。

【0023】一方、本第1実施形態例における再生用へ ッドは記録用の機能を省略しているために、記録用コイ ル導体を有する従来の水平型のリング型薄膜ヘッドのリ ングヨークに比べてその長さを小さくすることが可能で あると共に、本例の再生用ヘッドによれば高い再生感度 が得られる。また、本例の再生用ヘッドの磁気抵抗効果 索子の製造に関しては、マルチトラックヘッド製造工程 での最後に近い段階で形成されるために、製造工程での 加熱による磁気抵抗効果素子の特性劣化の影響を回避で き、なお且つ、それにも係わらず、この索子により基板 に近い層には段差を生じるような構成物が無いことか ら、磁気的な特性の良好な案子を得やすいという利点も 有している。

【0024】ここで本発明の磁気ヘッドとしての特性に ついて実際のデータを挙げて説明する。 図4には、本第 1実施形態例またはこれとほぼ同等なマルチトラックへ ッドにおける磁気抵抗効果素子の均一外部印加磁界中で の特性をグラフで示してある。詳しくは、このグラフ は、本発明の第1実施形態例またはこれとほぼ同じ形態 で製造したヘッド、即ち、幅3μm、引出電極間距離6 μm で、NiFe(10mm)/Cu(2.4mm)/Ni Fe(5nm)/FeMn(10nm)という層構造及び材 ク記録が可能となる。この製造の際の各磁極のそれぞれ 10 質・厚さから成るスピンバルブ型巨大磁気抵抗効果素子 を、均一磁界中で測定した外部印加磁界強度と磁気抵抗 交化率との交化の一例を表わしている。ここに表わされ た特性によれば、平坦性の良いシリコン基板上に同一様 成でほぼ同一形状のスピンバルブ型巨大磁気抵抗効果素 子を形成した場合とほぼ同等の特性となることを示して いる。またこれは、本第1実施形態例における磁気抵抗 効果素子が全てのマルチトラックヘッドの製造工程を経 ても、その良好な特性に劣化が生じないことを示してい ることが解る。

【0025】(変形例1)なお、本第1実施形態例(図 20 1) に例示した配置の形態は、後述する第2~第4実施 形態例のようにその録再方式や用途等に基づいて種々に 変形実施できるが、最も基本的で単純な配置形態として は、トラックの長手方向に沿って複数の単磁をヘッドが 重ならないで並設されていればよく、必ずしも当該トラ ックの両側に「互い違い」に配置されていない形態でも よい。ただし、薄膜上に形成する面積効率を考慮する と、本第1実施形態例に示す配置のほうがその効率が高 いことは明らかである。また、本第1実施形態例におけ 極めて高い集積度で配置することが可能であり、狭いト 30 る単磁極ヘッドは記録専用として説明したが、この単磁 極ヘッド自体で再生を行うことも可能である。よって、 本発明の薄膜磁気ヘッドを構成する複数のヘッドは、記 録・再生兼用の一種類のヘッドから成ってもよい。 【0026】(第2実施形態例)図5には、本発明の第 2実施形態例に係わる磁気ヘッドを媒体対向面方向から 見た平面における配列構造を示している。 本第2実施形 態例の薄膜磁気ヘッドは、記録用ヘッドのトラック幅の 約4倍のトラック幅を有する1個の再生用リングヨーク 型磁気抵抗効果型ヘッドの再生用磁極11cと、この再 40 生ヘッドのトラック幅方向と直交する方向に前後2個ず つ計4個の記録用単磁極ヘッドが第1実施形態例と同様 に互い違いの配置になるように構成された一例である。 すなわち、複数のトラックのそれぞれに対応するような 位置に4つの記録用磁極6a,6b,6c及び6dが図 示の如く重複しないようにトラック幅方向に配列され、 これらの中の記録用磁極6bと6cとの間には、1つの 再生用磁極11cがやはりトラック幅方向に配列され、 上記記録用磁極6a,6b.6c及び6dに対応する4 本のトラックをまたいで再生用磁極11cが1つ設けら 50 れている。なお、本例のようなヘッド構成は、再生動作

時には、これら4個の記録用磁極6a,6b,6c,6 dが書き込んだ複数信号をこの1個の再生用磁極11c が同時に一括再生を行うような録再方式に適する。

【0027】(作用効果2)よって、本第2実施形態例によれば、トラック幅方向に4個の記録用へッドの間に1個の再生用へッドを配置することにより、4トラックの同時一括再生を行うと共に、各記録へッド案子と再生へッド案子との距離を小さく配置することができ、スキュー角に伴う記録トラックと再生トラックの位置ずれの影響を前述の第1実施形態例よりも小さくできる。また、本発明の水平型のマルチトラック薄膜磁気へッドでは素子をトラック幅と直交する方向にほぼ対称に製造できるため、構成するヘッド案子の個数や、再生ヘッドを記録へッドに対して所謂「先読み」の構成にするか、あるいは「後読み」の構成にするか、さらにはトラック幅方向に直交する方向のどちらに対して媒体を移動させて動作させるか等のことに対しても、その製造工程やヘッド自体の特性が影響されない。

【0028】(第3実施形態例)また同様に、図6には本発明の第3実施形態例に係わる磁気ヘッドを媒体対向 20 面方向から見た平面における配列構造を示している。本第3実施形態例の磁気ヘッドの特徴は、記録用ヘッドとその記録信号を再生することに用いられる同じトラック幅の再生用ヘッドが隣接し、それらが一組となりトラック幅方向と直交する方向に互い違いに三組配置されている配置構成にある。

【0029】群しくは、同一トラックに対応する位置に、1つの記録用磁極6aと再生用磁極11aが設けられ、このトラックに隣接する際のトラックには対応する位置に1つの記録用磁極6bと再生用磁極11bが設けられ、さらにその際のトラックにも対応する位置に1つの記録用磁極6cと再生用磁極11cが設けられている。【0030】本例の再生用磁極11a,11b,11cの福は単一トラックの幅に等しいものである。なお本例のヘッド構成は、記録動作及び再生動作が各々の記録用ヘッドと再生用ヘッドとの組合せごとに独立して行うような録再方式に資する。

【0031】(作用効果3)よって、図6の本第3実施 形態例によれば、各トラックのヘッドの組み毎に独立で 録再動作が可能である故に、その1組をサーボに利用す 40 ることも容易である。

【0032】(第4実施形態例) 図7には、本発明の第4実施形態例としての磁気ヘッドを媒体対向面方向から見た平面における配列構造を同図7(a)に示し、同(b)には(a)中のC-Cに沿ったトラック幅方向と直交する方向から見た記録用ヘッドの断面を示している。本第4実施形態例の各磁気ヘッド素子の配置は、前述の第1実施形態例で示した配置と実質的に同等であるが、本実施形態の特徴としては、同図7(a)に示すように、経田する記録用のヘッド素子として長手記録方式に適し

たリング型ヘッドを用いていることにある。このリング 型ヘッドの詳しい構造的特徴は、同図7(b)に示すよ うに、非磁性基板1上に形成された導体コイル14a. 14bが所謂「ヘリカル構造」であり、例えばこの尊体 コイル14a, 14bが4回巻かれて成る磁気ヨーク1 5bの部分の磁路はトラック幅方向に一致している。ま た、記録用ピラーリングヨーク16bを介して記録用リ ング磁極18bが設けられ、一方、磁気ヨーク15bの 他端には記録用バックヨーク17bが設けられている。 【0033】(作用効果4)したがって、本第4実施形 態例によれば、記録用磁気ヘッドにリング型ヘッドを用 いることで、長手磁気記録媒体を用いた録再方式の装置 に最適な水平型のマルチトラックヘッドを実現できる。 【0034】(第5実施形態例)図8には、本発明の第 5実施形態例に係わる各種ヘッドの要部の構造が示され ている。これらのヘッドは本発明に適用可能な前述はさ れてない種類のヘッド素子の例である。すなわち、同図 8(a)には、記録用リングヘッドの単体を媒体対向面 方向から見た形状を示し、(b)にはその記録用ヘッド をトラック幅方向D-D と直交する方向から見たギャップ 部で切断した断面を示している。(a)中のD-D 方向に 沿って延びる導体コイル14に1回程度巻かれて成る記 録用リングヨーク15には、記録用ピラーリングヨーク 16を介して記録用リング破極18が設けられている。 図示の如くこの記録用ヘッドは、導体コイル14がリン グヨークに1回巻かれて成る構造を有しており、この例 6長手記録媒体に適した記録ヘッドであることが解る。 【0035】また同図8(c)には、再生用シールド型 磁気抵抗効果ヘッドを媒体対向面方向から見た形状を示 30 し、(d)には片側のシールド膜23を一部省略した再 生用ヘッドの構造を示している。この再生用ヘッドは、 第1シールド膜20と第2シールド膜23の間にシール ドギャップ24を有して磁気抵抗効果素子21が挟まれ た状態で配置されているシールド型の再生用磁気抵抗効 果ヘッドである。 詳しくは、第1シールド膜20の前に は厚さ0. 2μα 以下のシールドギャップ24を介して 薄い磁気抵抗効果案子21が平行に配され、この前方に は同様にシールドギャップ24を介して第2シールド膜 23が平行に配されている。またこの磁気抵抗効果素子 21の両端には左右に延びる引出導体22が接続されて

10

【0036】(作用効果5)よって、本第5実施形態例の磁気ヘッドによれば、例えば、図8(a)及び(b)の構造を記録用ヘッドに用いることにより、小型なサイズの長手磁気記録用マルチトラックヘッドが実現できる。また、同図8(c)及び(d)に例示の構造を再生用ヘッドに適用すれば、ヨーク型の磁気抵抗効果ヘッドを用いた場合よりも更に高い再生感度を得ることができる。

採用する記録用のヘッド索子として長手記録方式に適し 50 【0037】(その他の変形例)なお、本発明は前述し

た各実施形態例の他にも、本発明の要旨を逸脱しない範 囲で種々の変形実施が可能である。例えば、例示した磁 気ヘッドに係わる各部位の形状・寸法ならびに材質等 は、必要に応じて種々の変更が可能であると共に、他と の適宜な組合せも可能である。また、本発明における記 録ヘッド索子と再生ヘッド索子との数の組合せや使用す るトラックの数は、例示した数に限らず任意に設定する ことができる。また、基板に透過性の材料を用い、磁気 抵抗索子の変わりに光磁気効果を示す索子に置き換える ある.

[0038]

【発明の効果】以上、複数の実施形態例および変形例に 基づく説明の如く、本発明の水平型(ホリゾンタルタイ プ) のマルチトラック薄膜磁気ヘッドによれば次のよう な効果が得られる。

- (1) 本発明のマルチトラック薄膜磁気ヘッドでは、 トラック間隔を必要としないでマルチトラック化が量産 性のよい水平型で可能である。これは、原価に大容量・ 高転送速度の記録装置を実現する上で極めて有用とな ٥.
- (2) 製造時の記録ヘッドと再生ヘッドの位置合せ調 整の必要がなくなる。よって、製造コストおよび運用コ ストの軽減をもたらす。
- (3) また、複数の記録ヘッドの信号を1個の再生へ ッドで同時一括再生を行うヘッド構造が容易に実現でき る。このことは、信号の対雑音比やサーボ技術の点で有 利となる。
- (4) 更に、二層膜の垂直磁気影会媒体への影会に適 した単磁板ヘッドが量産性の良好な水平型で実現できる 30 ことになり、その実用化の上でも有用である。

【0039】以上、本発明によれば、製造時の記録へっ ドと再生ヘッドの位置合せが不要で、隣接する記録トラ ック間間隔を設けずに複数トラックの記録を同時に行 え、且つ複数トラックの記録信号を一括再生可能な水平 型のマルチトラック薄膜磁気ヘッドを提供することがで きる.

【図面の簡単な説明】

【図1】 本発明の第1実施形態例としての薄膜磁気へ ッドの構成を媒体対向面方向から見た平面図。

【図2】 同じく第1実施形態例の記録用の薄膜磁気へ ッドを示し、(a)は、記録用単磁極ヘッドの要部の構 造を示す斜視図、(b)は、トラック幅方向と直交する 方向から見た記録用ヘッドの断面図。

【図3】 同じく第1実施形頭例の再生用の薄膜磁気へ ッドを示し、(a)は、再生用のリングヨーク型磁気抵 抗効果ヘッドの斜視図、(b)は、トラック幅方向から 見た再生用ヘッドの断面図。

【図4】 第1実施形態例またはこれと同等なマルチト

磁界中での特性を示すグラフ。

【図5】 本発明の第2実施形態例としての薄膜磁気へ ッドの構成を示し、第1実施形態例(図1)における再 生用ヘッドのトラック幅、位置及び個数を変更した場合 の平面図。

【図6】 本発明の第3実施形態例としての薄膜磁気へ ッドの構成を示し、第1又は第2実施形態例(図1.図 5) における記録用ヘッド及び再生用ヘッドのトラック 幅、位置及び個数を変更した場合の平面図。

ことにより、光を用いた他の再生方式への応用も可能で 10 【図7】 本発明の第4実施形態例としての薄膜磁気へ ッドを示し、第1実施形態例(図1)における記録用へ ッド衆子を変更した場合の構成を示し、(a)は、同じ く第4実施形態例の磁気ヘッドを示す平面図、(b) は、同じく第4実施形態例の記録用の磁気ヘッドを示・ し、トラック幅方向と直行する方向から見た記録用ヘッ ドの断面図。

> 【図8】 本発明の第5実施形態例としての薄膜磁気へ ッドの構成を示し、第1~第4実施形態例の各磁気へッ ドに置換え可能なヘッド素子の例であり、(a) は記録 20 用磁気ヘッドを示す平面図、(b)はこの記録用磁気へ ッドの断面図、(c)は再生用磁気ヘッドを示す平面 図、(d)はこの再生用磁気ヘッドの斜視図。

【図9】 従来のマトリックスヘッドの磁極先端付近の 配置構成を示す概念図。

【図10】 従来のアレイヘッドの磁極先端付近の配置 構成を示す概念図。

【図11】 従来の磁気プリンタ用マルチトラックヘッ ドアレイを示し、(a) はヘッドの配置構成を示す関面 図、(b)はヘッドの配列を示す平面図。

【図12】 従来のホリゾンタルタイプヘッドの断面

【符号の説明】

1…非磁性基板、

2a. 2b…導体コイル、

3b…記録用ヨーク、

4 b…記録用ピラーヨーク、

5b…記録用リターンヨーク、

6a, 6b, 6c, 6d…記録用磁極、

7…非磁性絶疑層、

40 8,8b,8c,21…磁気抵抗効果素子、

9.22…引出導体(リード)、

10…再生用磁気ヨーク、

11a, 11b, 11c…再生用磁值、

12…再生用ギャップ、

13…媒体对向面、

14, 14a, 14b…導体コイル、

15, 15b…記録用リングヨーク、

16, 16 b…記録用ピラーリングヨーク、

17, 17b…記録用バックヨーク、

ラックヘッドにおける磁気抵抗効果素子の均一外部印加 50 18,18a,18b,18c,18d…記録用リング

14

田極、

19. 19b…記録用リングギャップ、 20…第1シールド膜、 23…第2シールド膜、 24…シールドギャップ。

【図1】

【図2】

(a)

(図3)

【図4】

(P)

【図10】

ラック 16	サーメトラック
ŁS	
t4	IPN PZ
t3	P1/P2 0 17
12	
t1	

【図8】

【図12】

フロントページの続き

(72)発明者 大内 一弘

秋田県秋田市新屋町字砂奴寄4-21 秋田 県高度技術研究所内