Theorem

An equation f(x)=0, where f(x) is a real continuous function, has at least one root between x_0 and x_1 if $f(x_0)$ $f(x_1) < 0$.

Figure 1 At least one root exists between the two points if the function is continuous, and changes sign.

Figure 2 If function f(x) does not change sign between two points, roots of the equation f(x)=0 may still exist between the two points.

Figure 3 If the function does not change sign between two points, there may not be any roots for the equation between the two points.

Mathematical Steps for Bisection Method

Choose x_0 and x_1 as two initial guesses for the root such that $f(x_0)$ $f(x_1) < 0$, or in other words, f(x) changes sign between x_0 and x_1 .

Estimate the root, x_2 of the equation f(x) = 0 as the mid point between x_0 and x_1 as

$$X_2 = \frac{X_0 + X_1}{2}$$

Now check the following

- a) If , then the root lies between x_0 and x_2 ; then $x_0 = x_0$; $x_1 = x_2$.
- b) If , then the root lies between x_2 and x_1 ; then $x_0 = x_2$; $x_1 = x_1$.
- c) If x_2 , then the root is x_2 . Stop the algorithm if this is true.

Find the new estimate of the root

$$X_2 = \frac{X_0 + X_1}{2}$$

Find the absolute relative approximate error

$$\left| \in_a \right| = \left| \frac{\mathbf{x}_2^{\text{new}} - \mathbf{x}_2^{\text{old}}}{\mathbf{x}_2^{\text{new}}} \right| \times 100$$

where

 x_2^{old} = previous estimate of root

 $x_2^{\text{new}} = \text{current estimate of root}$

Compare the absolute relative approximate error $|\epsilon_a|$ with the pre-specified error tolerance ϵ_s .

Check whether the number of iterations is more than the maximum number of iterations allowed.

Bi-section Method – Example

Solve, $f(x) = 2^x - 3x$ in the interval [0,2] and assume $\varepsilon = 0.01$

0	2	0	1	-1
2	0.5	0	0.25	0.43920712
4	0.5	0.375	0.4375	0.04175555
6	0.46875	0.4375	0.453125	0.00962742
8	0.4609375	0.453125	0.45703125	0.00162042

Problems: Bi-section Method

1.
$$x^3 - 4x - 10 = 0$$
 : [0,3] (*Root*:2.762696)

Advantages

- Always convergent
- The root bracket gets halved with each iteration .

Drawbacks

- Slow convergence
- If one of the initial guesses is close to the root, the convergence is slower

Drawbacks (continued)

• If a function f(x) is such that it just touches the x-axis it will be unable to find the lower and upper guesses.

Drawbacks (continued)

Function changes sign but root does not exist

THE END