Interactive Multi-Class Tiny-Object Detection

Chunggi Lee, Seonwook Park, Heon Song, Jeongun Ryu, Sanghoon Kim, Haejoon Kim, Sérgio Pereira, and Donggeun Yoo

Motivation

- Tedious + Laborious
- Time-consuming
- therefore, Expensive

C3Det detects many objects from An annotator clicks on several different classes, even for classe objects from different classes not specified by the annotator

The annotator clicks on a few objects that were omitted in the previous step

Annotating tiny objects is an important understands the effect of user inputs in a Computer Vision task, but annotating these many objects is very expensive feature correlation.

- Reduces workload (0.36x lower)

User Study

Our study is a within-subject study, in which 10 participants perform their tasks with (a) fully-manual annotation or (b) interactive annotation using C3Det.

To achieve 67.9 mAP, the Manual condition takes 714.3s, while the "C3Det Only" and "C3Det + Manual" conditions take 294.2s and 144.2s respectively. Allowing manual edits after C3Det results in more complete annotations over 5 times faster than fully manual annotation of Tiny-Dota.

C3Det is an effective interactive annotation framework for tiny object detection that

Works at Interactive Rates

The median NASA-TLX score with the Manual approach is 75.83, and the score with C3Det + Manual is 27.58.

--- C3Det+Manual

C3Det Architecture

a loss for enforcing a class-wise consistency between user inputs and model predictions

 $F_{C_3} = [M_1; M_2; M_{3+4}; M_5]$

class-wise

FEATURES (F_i)

Class-wise Collated

Correlation (C3)

Two-Stage Model (Faster R-CNN R50-FPN) on the Tiny-Dota Dataset

Results

One-Stage Model (RetinaNet R50) on the Tiny-Dota Dataset

Our method outperforms all baselines in both one- and two-stage models, 1. quickly increasing in mAP with a few number of clicks

2. reaching higher mAP when the maximum number of clicks are provided

Two-Stage Model (Faster R-CNN R50-FPN) on the LCell Dataset

We find that similar trends can be seen on LCell dataset.

Decreasing the amount of training data (%: percentage of full Tiny-Dota training subset). Our approach predicts bounding boxes with increasing mAP with increasing clicks, even with as little training data as 5%. We show that C3Det is

Effect of User-input Enforcing Loss (UEL). UEL ensures the consistency between user inputs and model predictions both

Correlation and Collation order in C3 module. First correlating then collating allows multiple user inputs from the same class to be captured better, showing consistent improvements especially at high number of clicks.

When used together, C3 and LF modules help. Latefusion (LF) and class-wise collated correlation (C3) when

Take Home Message

- We introduce a training data synthesis and an evaluation procedure for the problem of interactive multi-class tiny-object detection.
- Our proposed C3Det architecture considers local-context (LF module) and global-context (C3 module) holistically.
- Our real-world user-study (10 annotators) shows that C3Det is 2.85x faster and yields 0.36x lower task-load compared to manual annotation.