Appendix

Information given

Diameter, d=0.03m | Length, L=8 m | Roughness, $\epsilon/D=0.00005$ | $T_{in}=293$ K $|P_{in}=300$ kPa | $P_{atm}=101$ kPa | R=8.314

Information found to be constant:

Gas	Air	Ammonia	Ethylene	Methane	Sulphur dioxide
γ	1.4	1.316	1.2461	1.32	1.26
M	0.029	0.017	0.028	0.016	0.0641
$c = \sqrt{\frac{\gamma RT}{M}}$	342.93	434.25	329.26	448.30	218.82
$\rho = \frac{PM}{RT}$	3.5714	2.0936	3.4483	1.9704	7.8941

Methods to calculate

Choked Conditions

- 1. Assume that the system is under choked conditions.
- 2. Guess initial value for f (e.g. = 0.02).
- 3. Then, solve for Ma₁ since all other variables are ascertained.

$$\frac{\gamma+1}{2}\ln\left[\frac{\left(1+\frac{\gamma-1}{2}Ma_{1}^{2}\right)}{Ma_{1}^{2}\left(1+\frac{\gamma-1}{2}\right)}\right] - \frac{1}{Ma_{1}^{2}} + 1 + \gamma\frac{fL}{d} = 0$$

4. Calculate Re₁.

$$Re_1 = \frac{(\rho Dc) Ma_1}{\mu}$$

5. Calculate new f using the Haaland Equation.

$$\frac{1}{\sqrt{f}} = -1.8\log_{10} \left[\left(\frac{\mathcal{E}/D}{3.7} \right)^{1.11} + \frac{6.9}{\text{Re}_1} \right]$$

- 6. Iterate steps 1-4 until the new f is closed enough with the old f set. This process is being done by using the 'loop' function in matlab with the codes and results attached.
- 7. Find P_2 with the equation:

$$\frac{P_{2,choked}}{P_1} = Ma_1 \sqrt{\frac{1 + \frac{\gamma - 1}{2}Ma_1^2}{1 + \frac{\gamma - 1}{2}}}$$

And check to see if $P_{2,choked} > P_{atm}$ (100kPa). If $P_{2,choked} < P_{atm}$, the choked assumption is wrong and move on to solve the unchoked conditions (Step 9).

8. If
$$P_{2,choked} > P_{atm}$$
, calculate the mass flow rate. $Q_m = \rho VA = AMa_1P_1\sqrt{\frac{\gamma M}{RT_1}} = AMa_2P_2\sqrt{\frac{\gamma M}{RT_2}}$

Unchoked Conditions

- 9. Guess initial value of Ma_1 (e.g. = 0.3).
- 10. Calculate Re₁ and f as per steps 4 & 5 respectively.
- 11. Solve for Ma₂.

$$\frac{\gamma+1}{2} \ln \left[\frac{Ma_2^2 \left(1 + \frac{\gamma-1}{2} Ma_1^2 \right)}{Ma_1^2 \left(1 + \frac{\gamma-1}{2} Ma_2^2 \right)} \right] - \frac{1}{Ma_1^2} + \frac{1}{Ma_2^2} + \gamma \frac{fL}{d} = 0$$

12. Check to see if P₂ is correct (= P_{atm}, 100kPa)

$$\frac{P_2}{P_1} = \frac{Ma_1}{Ma_2} \sqrt{\frac{1 + \frac{\gamma - 1}{2} Ma_1^2}{1 + \frac{\gamma - 1}{2} Ma_2^2}}$$

- 13. If P_2 is incorrect, guess a new value for Ma_1 and repeat steps 9 12 until $P_2 = P_{atm}$. Once correct, stop the iterations.
- 14. Calculate the mass flow rate.

$$Q_{m} = \rho VA = AMa_{1}P_{1}\sqrt{\frac{\gamma M}{RT_{1}}} = AMa_{2}P_{2}\sqrt{\frac{\gamma M}{RT_{2}}}$$

See Matlab code below: