Sky City

Problem ID: city

There are n buildings and n-1 undirected roads connecting the buildings such that the network of roads forms a tree.

Outside every building there is a vehicle that you can rent. The cost of the vehicle at building i is c_i per unit distance travelled, and additionally a base cost of r_i to rent. So if you choose to rent the vehicle and travel d units distance, the rental costs you a total of $dc_i + r_i$.

The problem is to calculate the minimum cost to travel from building 1 to building i for all i. For each travel calculation, you should move through the shortest path, i.e. the simple path from building 1 to i.

Input

Your program will receive input from standard input.

The first line contains a positive integer n representing the number of buildings.

In the following n-1 lines, the *i*-th line contains integers x_i , y_i , and d_i , indicating that there is a road from buildings x_i and y_i of length d_i .

In the following n lines, the i-th line describes the cost parameters of the vehicle outside building i, c_i and r_i , representing the cost per unit distance travelled and cost to rent, respectively.

Output

Your program should write to standard output.

Print exactly one line containing n-1 integers. The *i*-th integer should be the minimum cost required to travel from building 1 to building i+1.

Constraints

- $2 \le n \le 2 \cdot 10^5$
- $1 \le x_i, y_i \le n; 1 \le d_i \le 10^4$
- $x_i \neq y_i$
- The given graph forms a tree
- $1 \le c_i \le 10^9$; $0 \le r_i \le 10^9$.

Subtasks

You will get points for each subtask when you pass all of the testcases of the subtask.

- 1. $n \le 10^3$ (19 points)
- 2. The given tree is linear and rooted at building 1 (32 points)
- 3. No additional constraints (49 points)

Sample Explanation

The city in Sample Input 1 is shown below:

- The minimum cost to travel to building 2 is $1 + 3 \times 17 = 52$.
- The minimum cost to travel to building 3 is $1 + 3 \times 5 = 16$.
- The minimum cost to travel to building 4 is $1 + 3 \times 8 = 25$.
- The minimum cost to travel to building 5 is $16 + 9 + 1 \times 6 = 31$.

Sample Input 1

Sample Output 1

5	52 16 25 31
2 1 17	
1 3 5	
3 4 3	
5 3 6	
3 1	
2 0	
1 9	
4 3	
3 5	