M-54 Pr: Bernhard Beckermann

NALYSE NUMÉRIQUE MATRICIELLE

Introductions et rappels

motivation pour la résolution de systèmes linéaires; matrices particulières; normes vectorielles Hölderiennes (p = 1, 2, ∞), normes matricielles associées, rayon spectral, norme de Frobenius; conditionnement d'une matrice; série de Neumann, sensibilité de la solution d'un système linéaire par rapport aux perturbations des données.

Méthodes directes de résolution de systèmes linéaires

1. méthodes d'élimination de Gauss, pivotage, factorisation LU, PA=LU, complexité ; cas particulier des matrices symétriques définies positives, factorisation de Cholesky ; problème des moindres carrés : équation normale et utilité d'une factorisation QR ; factorisation QR : approches de Householder et de Givens.

Calculs numériques de valeurs propres

1. théorème de Bauer-Fike ;méthode de la puissance, convergence ; itération invese ; décomposition en valeurs singulières(SVD) (motivations et applications), existence d'une SVD, calcul numérique, théorème de Eckart-Young (meilleure approximation d'une matrice de moindre rang).

M54- Analyse Ruménig Matricielle · diagonale: si aj, k = 0 pour j ≠ k. . It ajok = 0 px j > k. · Précision finie ordi / 2- float (2) / < E/2/ · similaire: à B € d'n (K) s' I mat inv. S de où E≈ 10 8 (resp. pré. double) S=S-AS. (diagonalisable si simple à mat diagonale) · Desemple de cancellat 1. Mat, vectres 3. ValRs propres ransposée: A e of m,m (tK) de A € of m,m (tK) · (l,n): El propre de A. · P(A) = mar { | A| : A ∈ Sp(A) } : rayon spectral $\forall (A)_{i,j} = a_{j,i}$ (TH.1) Mat diagonalisables · Adjointe: A* E of, m (IK) 4 (A*); = aj, i (a) I mat mon diagonalisable. · Produit Scalaire: => 2 vect Rs n, y & Cm: (b) A ∈ ofm (tK) est diagonalisable de B=5 A S diagonale Mi A admet 1 base de vectes donnée e colonnes de S, $(y,n)=x^*y=\sum_{i=1}^n \overline{x_i}y_i$ · Inig de Cauchy Schnarg: (n,y) | < ||n||2 ||y||2.
· Compliment orthogonal: K = {y \in Kn \in Kt, (n,y) = 03. 4 @ <A> r diagmale de B. ni A ∈ Jm(H) admt n (p) distincts => A est diagonalish (a) $||x||_2 = \sqrt{\sum_{i=1}^{m} |x_i|^2} ||x||_1 = \sum_{i=1}^{m} |x_i|, ||x||_{\infty} = \max_{i=1, \dots, \infty} |x_i|.$ 2 Mat particulières · symetrig (hermitienne): A = A (rup A = A) → une mat invers. d'ê carrée -> (AB)* = B*A* (nep. transposée) · orthogonale (unitaire): AA = I (resp A*A=I) → det (¬) = TT (élb diagonale) · moumale si AA* = A*A \Rightarrow dut (A) = det (+A) · semi-dif ⊕ si ∀n ∈ Km, (Ax, n) >0 e Principal Communication of the communication of t · def @ is SDP ET (Ax, x)=0=>x=0

→ si A ∈ ofm, n (K), b ∈ Km, le systm An = b admt solugy si $b \in Im(A)$. Ds ce cas, $S = \{y + ker(A)\}$. → Yn A ∈ ofm, m (K): & K ser K CK": $rg(A) + dim(her(A)) = m. rg(A) = rg(A^*)$ $(K^{\perp})^{+} = K. \ker(A^{\perp}) = Im(A^{*})$ (h)2 Factorisad de Schur $\forall A \in \mathcal{C}_m(\mathbb{C}), \exists U \in \mathcal{C}_m(\mathbb{C}) \text{ unitains}$ & T & ofm (C) de sit q T=U*AU. di A normale => T diagonale. Con Diagonalisad mat hermitienne nort A ∈ Von (C) hormitienne Alas ∃ U ∈ ofm (C) unitaire d'sq D = U*AU est diagonale & composée et sp de A. Si A & ofm (IR) => U, D & ofm (IR).

(1) The mat normale et : forcimt diagonale. -> Mat hermitienne admit base onnée de \overline{vp} .

4. Décomposid en valeurs singulières 12.3 VA E Jmin (H), les (p) de A*A st réelles et 🕀. mat unitaire est inversible. (Q*Q=I of Q'=Q*).

L)z.a. soit A E ofm, m (K), B E ofm, m (K) Alons up 70 de AB & BA st ms. (4 mltplate).

(TW) 2.6. Val singulière mat normale Les vis mat normale A E v(n (H) of les modules de ses Cp

TW 2.7 Décomposi 0 en V.D., SVD Noit A ∈ ofm, on (K) 4 x (VS) ⊕ alons ∃U ∈ ofm (H) & V ∈ ofm (K) thes & unitaines et ∑ ∈ ofm, m (K) ("oling") $fq A = U \Sigma V^*, \Sigma = \begin{pmatrix} \Sigma \circ \\ \bullet \circ \end{pmatrix}$ Σ = diag (μ, μ, μ, ω, μ, οù μ,),..., μ, >0 $xy(A)=x \leq min(m,n)$.

edilarys (1.14 m to the fill forms)

2

RY: Schima Calcul de SUD

· clel Elts projects (Mj, Vj) de A*A 4

Miz... > Mr > Mr+1 = ... = Mm = 0 & {Var., Vm} du Km.

• dd $u_j = \frac{A v_j}{u_j} \int_{ainsi}^{\mu} \{u_{n+1}, \dots, u_m\} \text{ base orner}$ ainsi de ker $(A^*) = \text{ker } (AA^*)$

· Peser U= (u, ..., um), V= (u, ..., vm), Z ĉ art.

5. Approcher A p mat de faible 19: SVD(3)

Pr ke do,..., min(m, m) & ta mat de ng & k

la + proche de A est: $B = U \left(\frac{\text{diag}(\mu_1, ..., \mu_k)}{\text{so}} \right) V = \sum_{j=1}^{k} u_j \mu_j v_j^*$

● de distance donnée p Mk+1.

→ Pa calcular B, il suffit consité slont k Elts propres de A*A. Stockage m'ma: B → (m+m) k

6. Normes matricielles & mormes compatibles

3.1 Norme matricielles Pe n > 1 une norme rectorielle III · III n Km. Une norme II.II a of m,n (tt) est

▶ compatible 4 norme vectorielle II III ni ∀A € 0/m, (K), ∀x €K^m: || Ax || ≤ || A|| || || x || /

D- multiplicative ou norme matricielle si VACOm, m(K) + BE &m, e(K): NABN ≤ NAN NBN.