Note Title

8/21/202

Let f(x) be a polynomial with integer coefficients

Definition 1: Let 21, ..., 2m denote a complete residue system modulo m. such that f(ri) = 0 (mod m). The number of solutions of f(x) =0 (modm) in the number of the tre

Ex: - x +1 =0 (mod 7) has no solution

· $x+1 \equiv 0 \pmod{5}$ has two solutions: x=2 and x=3• $\chi^2-1 \equiv 0 \pmod{g}$ has four solutions: $\chi=1, 3, 5, 7$.

Definition 2: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_n x + a_0$, $e_i \in \mathbb{Z}$

in objined to be n. It am = 0 (mod m), let I be the largest integer

such that $a_i \neq 0 \pmod{m}$; then the dyrec of the congruence is j. If $a_k \equiv 0 \pmod{m}$ $\forall k$, then dyrec of $f(z) \equiv 0 \pmod{m}$ is not defined. Theorem 1: Let a, b and m > 1 be given integers, and put g=gcd(a, m).

Proof: $ax \equiv b \pmod{m}$ has a solution $x_b \iff m \mid (ax_b - b)$ g many solutions. Thus, az = 6 (mod m) has a solution (=> g/b, where g = gcd (c, m). It this condition is met, then ax=6 (mod m) how exactly (=) ax,-b = my, for some y, ∈ Z (=) ax, - my, = b (=) qcd(a,m) | b The congruence ax = 6 (mod m) has a solution if and only if 9/6.

is precisely the outhantic progression of numbers of the form 8B+RM1. of values of or that are distinct (med m) We allow R to take on the values 9, 1, 2, ..., g-1; and obtain For the 2nd part, let g/b. we write $a=g\cdot e$, $b=g\cdot p$, $m=g\cdot m_1$ Thus, the set of solutions & satisfying ax = b/modm) Since gcd (4, m,) = 1, so I unique of (med m,) such that Trun, $\alpha x_o = b \pmod{m} \iff \alpha x_o = \beta \pmod{m_1}$ $dx_0 \equiv \beta \pmod{m_1} \iff x_0 \equiv \beta \pmod{m_1}$ (Im pom) [= Rb

f(x) = 0 (mod m). If m=m, m2, where gcd(m, m2) = 1, then positive integer m, let N(m) denote the number of solutions of the congruence Theorem 2: Let f(x) be a polynomial with integer coefficients. For any

 $N(m) = N(m_1) \cdot N(m_2).$

Proof: Let C(m) = {1,2,...,m}, C(m) = {1,2,...,m}, C(m) = {1,2,...,m} Let $z_0 \in C(m)$ be such that $f(z_0) \equiv 0 \pmod{m}$. Hence, there exist unique as EC(m) and unique bo EC(m) > \f(a) \equiv 0 (mod m_1) and \f(bo) \equiv 0 (mod m_2) Thun, $f(x_0) \equiv 0$ (mod m,) and $f(x_0) \equiv 0$ (mod m₂) such that $z \equiv a$ (mod m_1) and $z_0 \equiv b$ (mod m_2)

Let Sm = { k ∈ C(m) / f(k) = 0 (mod m)} $b_{m_1} = 4 k \in C(m_2) / f(k) \equiv 0 \pmod{m_2}$ $S_{m_1} = \{ k \in C(m_1) \mid f(k) \equiv 0 \pmod{m_1} \}$

Detim, Easy to check that 4 is well-defined and one-to-one. $\psi: S_m \longrightarrow S_m \times S_{m_2}$ 20 H> (20, 60) where a e Son & a = 2 (mdm) b, ∈ Sm2 & b, = x, (mod m).

by CRT, I unique 2, E C(m) such that 2, = a, (mod m,) We now prove that y in onto. Suppose that (a,, a2) & Smx Sm2.

Thum, $f(x_i) \equiv 0 \pmod{m}$ I $f(x_i) \equiv 0 \pmod{m_2} \Rightarrow f(x_i) \equiv 0 \pmod{m}$ > 216 Sm and clearly, +(x1) = (a1, a2). Hence, 4 is onto. $\alpha_1 \equiv \alpha_2 \pmod{m_1}$

Hence, I in a bijection. This proves that $N(m) = \# S_m = \# S_{m_1} \cdot \# S_{m_2} = N(m_1) \cdot N(m_1)$

Corollary: It m = 10 m in the factorization of minto primes,

then N(m) = 17 N(b).

5x: $f(x) = x^{2} + x + 7$ Find all the roots of $f(x) \equiv 0 \pmod{15}$

But x +x+2=0(mot 5) has no solution, and hence f(x)=0 (mod 15) Solution: $f(x) \equiv 0 \pmod{15} \iff f(x) \equiv 0 \pmod{3} 2 f(x) \equiv 0 \pmod{5}$ has no solution (=> 2+x+1=0 (mod 3) & x+x+2=0 (mod 5)

& Prime power moduli:

Front: The idea is to find a solution $x = a + t b^2$, where t is to be $\frac{1}{5(a+tb^2)} = \frac{1}{5(a)+t} + \frac{1}{5} + \frac{1}{5(a)+t} + \frac{1}{5} + \frac{2j}{5(a)/2!} + \cdots + \frac{1}{5} + \frac{n}{5} + \frac{n}{$ Thurson 3: (Hensel's listing Lemma): Let f(x) be a polynomial with integer coefficients. If $f(x) \equiv 0$ (mod β^3) and $f'(x) \not\equiv 0$ (mod β), then there is a Unique t (mod b) such that $f(a+tb^3) \equiv 0 \pmod{b^{j+3}}$, Claim: For $2 \le k \le n$, $\frac{f(k)}{k!}$ in an integer.

Roof of the claim: Let $c : x^k$ be a representative term from f(x)Using Taylor's expansion, we have determined.

Exercise: Broduct of k consecutive integers is divisible by k! Thus, we want t to be a solution of $f(a) + t + f(a) = 0 \pmod{p}$. Since $f(a) = 0 \pmod{p}$, so f(a) = -f(a)/f (mod $f(a) = 0 \pmod{p}$). > f(k) (a) If h < k, then the corresponding term in $f^{(k)}(c)$ in zero. If h > k, then the corresponding term in $f^{(k)}(c)$ in $e^{h}(c)$ in $e^{h}(c)$... $e^{h}(c)$ $e^{h}(c)$... $e^{h}(c)$ $e^{h}(c)$... e^{h} •• $f(a+\pm b^{j}) = f(a) + \pm b^{j} f(a) \pmod{b^{j+1}}$. 2.(2-1) (2-k+1) in divisible by k! in an integer.

If $f'(x) \not\equiv 0 \pmod{b}$, then $x \cdot f'(x) \equiv 1 \pmod{b}$ has a unique solution, say f'(a). $t \cdot f'(a) \equiv -\frac{f(a)}{b^3}$ (mod p) is a Linear congruence in t.

Thus, we obtain unique ± (mod b) which in given by

This completes the proof. (mod b)

If $f(a) \equiv 0 \pmod{\beta}$, we say that 'a' lifts to 'b' on b' lies above 'a'. Important: If $f(a) \equiv 0 \pmod{b^j}$, $f(b) \equiv 0 \pmod{b^k}$, g(k) and if f(a) \pmod \pmo

f(x) modulo p, and so on. Applying Hensel's lumme again, we may lift as to form a root as of result as (mod b). Since $a_1 \equiv a \pmod{b}$, by $f'(c_1) \equiv f'(c) \not\equiv 0 \pmod{b}$ By Hensel's lumina, a nonsingular root a (mod b) Lifts to a unique

for J=2,3, This sequence is generated by means of the recursion: a nonsingular root a mod p lifts to a unique root a. mod p In general, by applying Hensel's Lemma repeatedly, we find that f(R) in an integer chasen so that f'(R), f'(R) = 1 (mod b). $a_{j+1} = a_{i} - \frac{\pm(\alpha_{j})}{b^{2}} b^{2} f(\alpha) = a_{j} - f(\alpha_{j}) f'(\alpha), \text{ where}$

we take $a_2 \pmod{7}$, so $a_2 \equiv 1 \pmod{7}$ 99 in a root of 22+x+47 =0 (mod 73). Solution: $\chi^{+} + \chi^{+} + 17 = \chi^{+} + \chi^{+} + 5 = 0 \pmod{7}$ has two solutions $\chi^{-} = 1, 5$. Now, $f'(x) = 2x + 1 + f'(n) = 3 \neq 0 \pmod{7}$ and $f'(5) = 11 \neq 0 \pmod{7}$ $Nm, a_3 = a_2 - 49xS = 99 \pmod{7^5}$. Now, a=1 lift to $a_2=1-49\times 5$ Now, f(x) = -1, f(x) = 0 (mod f(x) = 0) f(x) = 0 (mod f(x) = 0) f(x) = 0 (mod f(x) = 0) $\leq x \leq \sqrt{x} \leq \sqrt{x} + \sqrt{x} \leq \sqrt$ Here, f(x) = x7+x+47. and f (5) = 2 [mod]

The other root is 243.