Sistemi Operativi: Prof.ssa A. Rescigno

Anno Acc. 2011-2012

Prova d'esame 5 luglio 2012

Università di Salerno

Nome e Cognome:

Matricola:

1	2	3	4	5	6	7	8	tot
/7	/20	/13	/10	/10	/20	/10	/10	/100

Spazio riservato alla correzione

1. 7 punti

Scrivere uno script shell che:

- 1) visualizzi su standard-output il messaggio "Lista: ";
- 2) ridirigga in un file di nome "FF" il contenuto dei file presenti nella current working directory, il cui nome coincide con l'unico parametro dello script ed hanno una qualunque estensione;
- 3) visualizzi su standard-output il contenuto di "FF" dopo averlo ordinato in ordine lessicografico inverso.

2.	20	punti
----	----	-------

(a) Scrivere un programma C che, utilizzando una delle funzioni **exec** e "senza" l'utilizzo dell'operatore di ridirezione esegua il comando

ls > elenco

(b) Che cosa cambiereste o aggiungereste nel programma precedente per visualizzare sullo standard output la frase "Controlla elenco" **dopo** l'esecuzione di ls > elenco ?

(c) quale "funzione di libreria" poteva essere usata per eseguire il comando ls > elenco

3. 13 punti

Dato il seguente programma C, il cui eseguibile é a.out

```
(1)
     void handler(int);
(2)
     void exit1(void);
(3)
     void exit2(void);
(4)
      int main(void)
(5)
     { char arry[6]="Hello ";
(6)
        atexit(exit1);
(7)
        if (fork()==0)
               {
(8)
               while (getppid()=!1);
(9)
               atexit(exit2);
(14)
               write(1,arry,6);
(10)
               printf("Hola ");
(11)
               exit(0);
               }
(12)
         else
          printf("Ciao ");
(13)
(14)
          write(1,arry,6);
          exit(0);}
(15)
     void exit1(void)
(16)
(17) { printf("Exit Handler 1\n"); }
(18)
     void exit2(void)
(19)
     { printf("Exit Handler 2\n"); }
```

(a) quale processo termina per primo? Motivare la risposta.

(c) modificando la linea (15) con _exit(0); dire che cosa succede dando a.out. Motivare la risposta.

4. 10 punti

Si supponga di mandare in esecuzione il seguente programma:

```
int main(void)
{
  (1) pid_t    p0, p1, p2;

  (2)    p0 = fork();
   (3)    p1 = fork();

  (4)    if (p1>0) { p2 = fork();}
  (5)
   (6)    sleep(30);
   (7)    exit(0);
}
```

(a)Dire, giustificando la risposta, quanti processi sono presenti nel sistema durante i 30 secondi dell'istruzione sleep(30).

(b) Assumendo di aggiungere nella riga (6) la seguente istruzione:

```
if (p2==0) { fork();}
```

dire, giustificando la risposta, quanti processi sono presenti nel sistema durante i 30 secondi dell'istruzione sleep(30).

5. 10 punti

Data la seguente stringa di riferimenti alle pagine di un processo

calcolare il numero di page fault, indicando a fronte di ciascun riferimento l'eventuale vittima, utilizzando

- (a) l'algoritmo FIFO con una memoria fisica di 4 frames
- (b) l'algoritmo LRU con una memoria fisica di 3 frames

Prova d'esame	7

6.	20	punti
•		

Un sistema con 2^{23} byte di memoria fisica e dotato di memoria virtuale con paginazione ha le seguenti caratteristiche: indirizzo virtuale di 24 bit e pagine di 1024 byte.

Rispondere alle seguenti domande giustificando le risposte:

a) Quante pagine di memoria virtuale sono disponibili nel sistema?

b) Definire la struttura dell'indirizzo fisico indicando la lunghezza dei campi che lo costituiscono.

c) Si consideri la PT sottostante (attenzione: nella tabella i numeri sono tutti in base decimale)

numero pagina	numero frame	valido/invalido
0	520	v
1	1001	v
2	9	V
3	x	i
4	x	i
5	75	V
6	1200	V
7	551	V

Descrivere in maniera sintetica il comportamento del sistema quando viene richiesto di

 $1)\ \ {\rm accedere}\ {\rm all'indirizzo}\ 00000000000100000000001$

2) accedere all'indirizzo 00000000000110000000000

7. 10 punti

Cinque processi arrivano al tempo indicato, consumano la quantitá di CPU indicata e hanno le prioritá indicate nella tabella sottostante:

Processo	T. di Arrivo	Burst	Prioritá
P_1	0	1	3
P_2	2	5	5
P_3	3	2	2
P_4	6	3	4
P_5	7	1	1

Calcolare il turnaround medio ed il waiting time medio per i processi nel caso sia usato l'algoritmo di scheduling Round Robin con prelazione e con quanto di tempo di ampiezza 2

_			
8.	10	nur	nti

Un hard disk é formattato in blocchi da 128 byte. Sia A un file di 1024 byte. Si assuma che il disco adotti una allocazione concatenata.

a) Dire quanti blocchi sono necessari per allocare A. Specificare quale é lo spreco di memoria dovuto alla frammentazione interna.

b) Quante operazioni di lettura/scrittura sono necessarie per cancellare il terzo blocco del file, assumendo che il numero del primo blocco sia giá in RAM (motivate la risposta)?

FOGLIO DA UTILIZZARE PER LA BRUTTA

FOGLIO DA UTILIZZARE PER LA BRUTTA

FOGLIO DA UTILIZZARE PER LA BRUTTA