

智嵌 ZQWL-IO-1CXOC4-I 使用手册

版本号: V1.0

拟制人: 智嵌物联团队

审核人: 赵工

时间: 2016年07月28日

密级:公开

修订信息

编号	修订内容简述	修订 日期	订前 版本	订后 版本	拟制	审核	批准
1	创建						
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							

www.zhiqwl.com

目 录

前言	î		3
1	硬件功	能介绍	3
	1.1	网络特性	3
	1.2	硬件特点	4
2	模块硬	i件接口	4
	2.1	模块接口及尺寸	4
3	模块输	j入接线	5
	3.1	模块电源输入	5
	3.2	模块开关量输入	6
4	模块输	出接线	7
5	模块参	数配置	7
	5.1	智嵌网络 IO 配置软件	8
	5.2	网页参数配置	9
6	模块通	讯	14
	6.1	RS485 通讯	15
7	模块复	位以及固件升级	15
	7.1	模块复位	15
	7.2	模块固件升级	16
8	模块通	讯协议	16
	8.1	自定义协议	16
	1,	控制指令	16
	2,	配置指令:	17
	8.2	Modbus rtu 协议	19
		Modbus rtu 指令码举例	
		Modbus TCP 协议	

前言

智嵌物联系列产品命名规则一览:

IO 控制板系列产品命名规则如下:

如: ZOWL-IO-1CX0C4-I

12V供电/带外壳/NPN输入/16A电流/网络+串口/4路输出/工业级

1 硬件功能介绍

ZQWL-I0-1CX0C4-I是一款4路NPN型光电输入、4路继电器输出的工业级I0控制板。他具有1路以太网口和1路RS485通讯接口,控制板的CPU供电采用隔离电源,RS485的电源、通讯均隔离,硬件具有超强的抗干扰能力。该控制板网络部分采用智嵌"ZQWL-I0-3BTLC32"核心模块,保证了网络通讯的稳定性。

该控制板提供三种通讯协议: Modbus TCP、Modbus RTU和自定义协议。

1.1 网络特性

- 支持静态和动态 IP;
- 支持网线交叉直连自动切换
- 工作端口,目标 IP 和目标端口均可设定;
- TCP 服务器模式下,可支持4个客户端的连接;
- · 支持DNS功能;
- 支持网络在线升级固件功能;
- 可以跨越网关,交换机,路由器;可以工作在局域网,也可工作在互联网;

- 支持协议包括 ETHERNET、ARP、IP、ICMP、UDP、DHCP、TCP;
- 支持Modbus TCP 转RTU功能;

1.2 硬件特点

表 1 硬件参数

序号	名称	参数
1	型号	ZQWL-IO-1CX0C4-I
2	供电电压	111~131 (推荐121)
3	供电电流	大于170ma
4	网络核心模块	ZQWL-IO-3BTLC32
5	RS485	通讯带隔离,波特率支持600~460800
6	输入	4路NPN型光电输入
7	输出	4路16A欧姆龙原装继电器输出,每路都有常开、常闭
		和公共端3个端子;光电隔离
8	指示灯	电源、输入以及输出都带指示灯
9	出厂默认参数	RS485: 115200,8,n,1; 控制板地址:1;
		IP:192.168.1.253
10	RESET按键	小于5秒,系统复位;大于5秒,回到出厂设置

2 模块硬件接口

2.1 模块接口及尺寸

图 1 模块正视

4

图 2 模块侧视 a

图 3 模块侧视 b

图 4 尺寸

3 模块输入接线

3.1 模块电源输入

本控制板电源输入有两种方式: 黑色适配器插头和 5.08mm 绿端子,如下图:

5

只需用1种方式给控制板供电即可;注意,如果用黑色适配器插头供电,绿端子也可以对外供电

项目	电压(伏)	电流(毫安)	功率(瓦)
4 路常闭闭合,常开断开(空载)	12	50	0.60
1 路常闭断开,常开闭合	12	100	1.2
2 路常闭断开,常开闭合	12	150	1.8
3 路常闭断开,常开闭合	12	200	2.4
4 路常闭断开,常开闭合	12	250	3.0

表 2 控制板功率测试

测试条件: 温度 25°, 湿度 46%。

由以上数据可以得出,控制板在满负荷时功率为 3 瓦,因此模块的供电电源应选择电压 12V,电流大于 250ma 即可。比如选 12V/500ma 电源给控制板供电。

3.2 模块开关量输入

本控制板共有4个开关量输入,电平信号兼容 NPN 和 PNP 类型。

1) PNP 输入接线

PNP 型输入时,公共端 "COM"为信号"地"(即共阴极,共负极),X1~X4 输入高电平时,有信号,逻辑示意图如下(以 X1 为例):

图 5 输入连接方式

2) NPN 输入接线

NPN 型输入时,公共端"COM"为信号"地"(即共阳极,共正极),X1~X4输入低电平时,有信号,逻辑示意图如下(以X1为例):

控制板输入电平有两种规格(2.7V~7V 规格和 6V~12V 规格),采购时需要注明。 表 3 控制板输入电平(2.7V~7V 规格)

输入(X1~4)电压	逻辑值
0~1.5V	0
1.5V~2.7V	不确定
2.7V~7V	1
大于 7V	长时间会损伤控制板

表 4 控制板输入电平(6V~12V 规格)

输入 (X1~4) 电压	逻辑值
0~5V	0
5V~6V	不确定
6V~12V	1
大于 12V	长时间会损伤控制板

每个输入端子都有标示(见图 2)。

4 模块输出接线

该控制板共有 4 路继电器输出,每路都有常开、常闭和公共端三个触点,采用欧姆龙原装继电器,每路可承载负荷如下:

表 5 继电器可承载负荷

项目	参数
继电器型号	G2R-1-E
触点类型	机械触点,1常开1常闭
最大负载	16A/250VAC 16A/30VDC
机械寿命	300 万次

每路继电器的公共端触点互相独立,4路可以分别控制不同的电压。每个端子均有标示(见图3)。

5 模块参数配置

本模块可以通过"智嵌串口服务器配置软件"以及网页的方式进行参数的配置。注意, 模块只有重启后,新设置的参数才生效。

5.1 智嵌网络 IO 配置软件

可以通过配置软件对模块的参数配置,可以配置的参数如下:模块 IP,子网掩码,网关,DNS 服务器,MAC 地址(也可以采用出厂默认),1 路 RS485 的参数;也可以通过配置软件对模块进行固件升级。

使用方法如下:

- 1、 将模块通过网线和电脑或路由器连接,并给模块上电,SYS 灯闪烁(约 1Hz)表示模块启动正常。
- 2、 基本参数设置

图 3.1.1 配置软件

- · IP 地址类型支持静态 IP 和动态 IP;
- MAC 地址默认情况下由系统自行计算得到,保证每个模块不同(也可以由用户自行设定)。
- •波特率支持: 600, 1200,2400,4800,9600,14400,19200,38400,56000,57600,115200,128000,230400,25600,460800,921600,1024000。
 - 工作模式支持: TCP SERVER,TCP CLIENT,UDP SERVER,UDP CLIENT。
 - 该模块支持 DNS 功能,可以在目标 IP/域名栏填写所要连接的域名网址。
- •用户名和密码是为网页配置登陆所用,默认用户名是 admin,密码是 admin,可以修改(用户名只能用配置软件修改,密码既可用配置修改也可以用网页修改)。

点击上图中的"搜索设备",如果搜索成功,设备列表中:

图 3.1.2 模块搜索

需要修改模块的参数时,需要点击"保存设置"后,参数才能保存到模块中。 用该配置软件可以对模块进行固件升级,如需要则可以联系厂家获取最新固件,<mark>升级功能要慎用</mark>。

5.2 网页参数配置

网页配置提供中英文两个版本,如果要使用网页进行参数配置,首先要知道模块的 IP,如果不慎忘记,可以拉按住"RESET"按钮,保持 5 秒,模块恢复出厂设置,此时模块的 IP 是: 192.168.1.253。

1) 系统登录

在浏览器中输入: http://192.168.1.253/, 回车,则出现配置网页,需要认证用户名和密码(和配置软件中的一致),初始用户名为: admin,初始密码为: admin。

中文版如图 3.1.3, 英文版如图 3.1.4 所示:

Copyright © [2015] 深圳省铁物联网电子技术有限公司 All rights reserved 图 3.1.3 中文版系统登录

Copyright © [2015] SHENZHEN ZHIQIAN INTERNET OF THINGS CO.,Ltd All rights reserved

图 3.1.4 英文版系统登录

登陆成功后就可以对模块配置了。

2) IP 地址配置

点击网页左侧的"模块 IP 配置", 出现如图 3.1.5:

Copyright ⑤ [2015] 深圳智敏物联网电子技术有限公司 All rights reserved

图 3.1.5 模块 IP 配置

在"IP 地址配置"页面中,可以配置模块地址、IP 信息、网页访问端口以及是否要使用自动获取 IP, 配置好后点击"提交",注意需要重启后新配置的参数才能生效。

www.zhiqwl.com

3) USART 配置

点击网页左侧的"USART 配置",即 RS485参数。出现如图 3.1.6:

Copyright © [2015] 深圳智嶽物联网电子技术有限公司 All rights reserved

图 3.1.6 USART 配置

- 在"USART 配置"页面中,可以设置所需的 USART 参数:波特率、数据位、停止位以及校验位。
- 工作模式有 4 种: TCP_SERVER、TCP_CLIENT、UDP_SERVER、UDP_CLIENT。 这 4 种模式只能任选 1 种。

当选择"TCP_SERVER"或"UDP_SERVER"模式后,"目标地址"和"目标端口"无意义。

当选择 TCP_CLIENT 或 UDP_CLIENT 后,"目标地址"和"目标端口"就是所要连接的目的设备地址。

注意当选用"Modbus TCP转 RTU"功能时,工作模式必须选择"TCP SERVER";

● "注册心跳包"含义:当工作模式选"TCP_CLIENT"模式时,如果"注册心跳包时间"不为0,则当TCP连接无数据交换时,模块自动向TCP服务器发送"注册心跳包数据",发送时间间隔即为"注册心跳包时间";如果"注册心跳包时间"设置为0,禁止心跳包功能。

4) IO 类型配置

点击网页左侧的"IO类型配置",出现如图 3.1.7:

Copyright ② [2015] 保圳智敏物联网电子技术有限公司 All rights reserved

图 3.1.7 IO 类型配置

注意,该模块的 IO 类型不能更改,固定为 IO1~4 是输入(IN),对应控制板的 X1~4;IO5~8 是输出(OUT),对应控制板的 Y1~4。

5) IO 状态控制置

点击网页左侧的"IO状态控制",出现如图 3.1.8

Copyright ② [2015] 深圳智嶽物联网电子技术有限公司 All rights reserved

图 3.1.8 IO 状态控制

在"IO 状态控制"页面中,可以实现对 IO 状态的读取和控制,上图中"L"表示低电平(0V或无信号),"H"表示高电平(3.3V或无信号)。

用同样的方法可以分别打开"密码管理"、"产品信息"、"重启设备"、"系统登录"等页面,逐一对模块配置。

6 模块通讯

该模块有 1 路 RS485 接口和 1 个 RJ45 接口,内置了网络与 RS485 数据透传以及 Modbus TCP 转 RTU 功能(即串口服务器功能)。可通过 RS485 接口实现与智嵌 RS485 型 IO 模块的级联,最大可级联 128 个,其拓扑结构如图 5.3.1 所示:

www.zhiqwl.com

图 5.3.1 网络型 IO 与 RS485 型 IO 模块级联

6.1 RS485 通讯

RS485 通讯采用隔离电源供电,信号采用高速光耦隔离,接口具有 ESD 防护器,采用自动换向高性能 485 芯片,为通讯的稳定性提供了强大的硬件支持。

RS485 参数可以通过智嵌串口服务器配置软件配置,注意,RS485 对应配置软件的 "PORT1" (PORT2 不用)。RS485 参数也可以通过配置命令配置(见第 8 节:模块通讯协议)。

7 模块复位以及固件升级

7.1 模块复位

控制板有 "CFG" 按钮,可以用此复位控制板和恢复出厂设置:

按下 "CFG" 按键在松开(注意下时间要小于 5 秒),控制板复位。 按住 "CFG" 按键并保持 5 秒以上,等到 "SYS" 指示灯快闪时(10Hz 左右),松开按键,此时控制板恢复出厂参数,如下:

串口参数:波特率 115200;数据位 8;不校验;1位停止位;

网络参数: IP 为 192.168.1.253

控制板地址: 1。

7.2 模块固件升级

注意,需要升级固件时,先与厂商联系以获取新的固件。

8 模块通讯协议

该模块支持三种协议: Modbus TCP、Modbus RTU 和自定义协议。

Modbus TCP 协议仅适用于网络,使用该协议时必须启动"Modbus TCP 转RTU"功能,如下配置:

Modbus RTU 和自定义协议对于网络和 RS485 都适用,若选用网络,必须不能启动"Modbus TCP 转RTU"功能。

8.1 自定义协议

自定义协议采用固定帧长(每帧 15 字节),采用十六进制格式,并具有帧头帧尾标识,该协议适用于"ZQWL-IO"系列带外壳产品。该协议为"一问一答"形式,主机询问,控制板应答,只要符合该协议规范,每问必答。

该协议指令可分为两类:控制指令类和配置指令类。

控制指令只要是控制继电器状态和读取开关量输入状态。配置指令类主要是配置板子的运行参数以及复位等。

1、控制指令

控制类指令如表 1 所示:

表 1	ZQWL-IO 控制指令表
1 L	

	帧头		地址码	命令码	8 字节数据	校验和	帧	尾
指令名称	Byte1	Byte2	Byte3	Byte4	Byte5~ Byte12	Byte13	Byte14	Byte15
读输入状态	0X48	0X3A	Addr	0X52	全为 0XAA	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"读输入状态"	0X48	0X3A	Addr	0X41	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44
写继电器状态	0X48	0X3A	Addr	0X57	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"写继电器状态"	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44
读继电器状态	0X48	0X3A	Addr	0X53	全为 0XAA	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"读继电器状态"	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44

注:表中的"8字节数据"即对应继电器板的状态数据,4路系列只用前4字节(DATA1~4),后4字节无意义,0x01表示有信号,0x00表示无信号。 控制码举例如下(十六进制):

(1)

读取地址为1的控制板开关量输入状态:

48 3a 01 52 00 00 00 00 00 00 00 00 d5 45 44

地址为1的控制板收到上述指令后应答:

48 3a 01 41 01 01 00 00 00 00 00 00 c6 45 44

此应答表明,控制板的 X1 和 X2 输入有信号(高电平), X3 和 X4 无信号(低电平)。 注意由于该控制板只有 4 路输入,在应答帧 8 字节数据的后 4 字节(00 00 00 00) 无意义,数值为随机。

(2)

向地址为1的控制板写继电器状态:

48 3a 01 57 01 00 01 00 00 00 00 00 dc 45 44

此命令码的含义是令地址为 1 的控制板的第 1 个和第 3 个继电器常开触点闭合,常闭触点断开;令第 2 和第 4 个继电器的常开触点断开,常闭触点闭合。注意继电器板只识别 0 和 1,其他数据不做任何动作,所以如果不想让某一路动作,可以将该路赋为其他值。例如只让第 1 和第 3 路动作,其他两路不动作,可以发如下指令:

48 3a 01 57 01 02 01 02 00 00 00 00 e0 45 44

只需要将第2和第4路置为02(或其他值)即可。

控制板收到以上命令后,会返回控制板继电器状态,如:

48 3a 01 54 01 00 01 00 00 00 00 00 d9 45 44

2、配置指令:

当地址码为 0xff 时为广播地址,只有"读控制板参数"命令使用广播地址,其他都不能使用。

表 2 ZQWL-IO 配置指令表

				_						
	帧头		帧头		地址码	命令码	8字节数据	校验和	帧	尾
读控制板参数	0X48 0X3A		0XFF	0x60	任意	前 12 字节和 (只取低 8 位)	0X45	0X44		
			或 Addr							
应答"读控制板参数"	0X48	0X3A	Addr	0x61	参考表 3	前 12 字节和 (只取低 8 位)	0X45	0X44		
修改波特率	0X48	0X3A	Addr	0x62	参考表 4	前 12 字节和 (只取低 8 位)	0X45	0X44		
应答"修改波特率"	0X48	0X3A	Addr	0x63	任意	前 12 字节和 (只取低 8 位)	0X45	0X44		

智嵌 IO 控制板 1CX0C4-I 使用手册

	٨
1	Α

修改地址码	0X48	0X3A	Addr	0x64	参考表 5	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"修改后地址码"	0X48	0X3A	Addr	0x65	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
读取版本号	0X48	0X3A	Addr	0x66	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"读取版本号"	0X48	0X3A	Addr	0x67	参考表 6	前 12 字节和 (只取低 8 位)	0X45	0X44
恢复出厂	0X48	0X3A	Addr	0x68	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"恢复出厂"	0X48	0X3A	Addr	0x69	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
复位	0X48	0X3A	Addr	0x6A	任意	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"复位"	0X48	0X3A	Addr	0x6B	任意	前 12 字节和 (只取低 8 位)	0X45	0X44

表 3 控制板参数表

字节	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	DATA 8
	控制板地址	波特率	数据位	校验位	停止位	未用	未用	未用
		0x01:1200	7,8,9	'N': 不校验	1:1bit			
		0x02:2400		'E': 偶校验	2:1.5bit			
		0x03:4800		'D': 奇校验	3:2bit			
		0x04:9600						
		0x05:14400						
		0x06:19200						
		0x07:38400						
含义		0x08:56000						
		0x09:57600						
		0x0A:115200						
		0x0B:128000						
		0x0C:230400						
		0x0D:256000						
		0x0E:460800						
		0x0F:921600						
		0x10:1024000						

表 4 修改波特率表

字节	1	2	3	4	5	6	7	8
含义	修改后波特率码	数据位	校验位	停止位	未用	未用	未用	未用

表 5 修改地址表

字节	1	2	3	4	5	6	7	8
含义	修改后地址	未用						

表 6 读取版本号表

字节	1	2	3	4	5	6	7	8
含义	'I'	' 0'	·_'	'0'	'4'	·_,	'0'	'0'

版本号为 ascii 字符格式,如 "IO-04-00",IO 表示产品类型为 IO 控制板; 04 表示 4 路 系列; 00 表示固件版本号。

8.2 Modbus rtu 协议

本控制板实现部分必要的 modbus rtu 协议,通讯格式如下:

Addr Cmd	Data(n 字节)	Crc (2字节)
----------	------------	-----------

Addr 为 0xff 时,是广播地址,所有从机都能接收并处理,必要时要做出回应。广播地址可以用于对控制板的编址以及获取控制板的地址。

控制板实现如下功能码:

Cmd	含义	备注			
0x01	读线圈	Data: 2 字节起始地址+2 字节线圈个数,线圈个数不能超过 4			
0x02	读离散量输入	Data: 2 字节起始地址+2 字节输入点个数,输入点个数不能			
		超过 4			
0x03	读寄存器	Data: 2字节起始地址+2字节寄存器个数(寄存器含义见表			
		6.2.1)			
0x05	写单个线圈	Data: 2字节起始地址+2字节线圈值			
0x06	写单个寄存器	Data: 2字节起始地址+2字节寄存器值			
0x0f	写多个线圈	Data: 2字节起始地址+2字节线圈个数+1字节个数+数值			

表 6.2.1 保持寄存器地址以及含义

寄存器地址	含义	备注						
0X0000	控制板地址	取值范围: 0X0000~0X00FF						
0X 0001	波特率	实际波特率除以 100, 比如 12 代表 1200, 96 代表 9600,1152						
		代表 115200,10240 代表 1024000 等						
0X 0002	数据位	仅支持 0X0007, 0X0008, 0X0009 三种						
0X 0003	校验位	0X004E: 不校验;						
		0X0045: 偶校验;						
		0X004F: 奇校验						
0X 0004	停止位	0X0001: 1bit						
		0X0002: 1.5bit						
		0X0003: 2bit						
0X 0005~	版本号	ASCII 表示,比如"IO-04-00": IO 表示产品类型为 IO 控制板;						
0X 000c		04 表示 4 路系列; 00 表示固件版本号						
0X 000d	恢复出厂	读无意义; 当写 0X0001 时,控制板恢复出厂设置,写其他值						
		无意义。						
0X 000e	复位	读无意义; 当写 0X0001 时,控制板复位,写其他值无意义。						

注意:使用协议修改控制板参数时(波特率、地址),如果不慎操作错误而导致无法通讯时,可以按住"CFG"按键并保持5秒,等到"SYS"指示灯快闪时(10Hz左右),松开按键,此时控制板恢复出厂参数,如下:

串口参数:波特率 115200;数据位 8;不校验;1 位停止位;控制板地址:1。

8.3 Modbus rtu 指令码举例

以地址码 addr 为 0x01 为例说明。

1) 读线圈(0X01)

为方便和高效,建议一次读取 4 个线圈的状态。 外部设备请求帧:

Z()WL 智嵌物联

Α

Addr (ID)	功能码	起始地址	起始地址	线圈数量	线圈数量	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X01	0X00	0X00	0X00	0X04	计算	获得

控制板响应帧:

Addr (ID)	功能码	字节数	线圈状态	CRC16	CRC16
			(只取低4位)	(高字节)	(低字节)
0X01	0X01	0X01	XX	计算获得	

其中线圈状态 XX 释义如下:

В7	B6	B5	B4	В3	B2	B1	В0
	高4个bit	位无意义		线圈 4	线圈 3	线圈 2	线圈1

B0~B3 分别代表控制板 4 个继电器状态(Y1~Y4),位值为 1 代表继电器常开触点闭合,常闭触点断开;位值为 0 代表继电器常开触点断开,常闭触点闭合;位值为其他值,无意义。

2) 读离散量输入(0X02)

为方便和高效,建议一次读取4个输入量的状态。

外部设备请求帧:

0X01	0X02	0X00	0X00	0X00	0X04	计算	获得
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
Addr (ID)	功能码	起始地址	起始地址	输入数量	输入数量	CRC16	CRC16

控制板响应帧:

Addr (ID)	功能码	字节数	输入状态	CRC16	CRC16
			(只取低4位)	(高字节)	(低字节)
0X01	0X02	0X01	XX	计算获得	

其中输入状态 XX 释义如下:

В7	B6	B5	B4	В3	B2	B1	B0
	高4个bit	位无意义		输入4	输入3	输入2	输入1

B0~B3 分别代表控制板 4 个输入状态(X1~X4),位值为 1 代表输入高电平;位值为 0 代表输出低电平;位值为其他值,无意义。

3) 读寄存器(0X03)

寄存器地址从 0X0000 到 0X000E,一共 15 个寄存器。其含义参见表 6.2.1。建议一次读取全部寄存器。

外部设备请求帧:

Addr (ID)	功能码	起始地址	起始地址	寄存器数量	寄存器数量	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X02	0X00	0X00	0X00	0x0F	计算	获得

控制板响应帧:

Addr	功能码	字节数	数据1	数据 1	 数据 30	数据 30	CRC16	CRC16
(ID)			(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X03	0X1E	XX	XX	 XX	XX	计算	获得

4) 写单个线圈(0X05)

外部设备请求帧:

Addr (ID)	功能码	起始地址	起始地址	线圈状态	线圈状态	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)

 0X01
 0X05
 0X00
 XX
 XX
 0X00
 计算获得

注意:起始地址(低字节)取值范围是0X00~0X03分别对应控制板的4个继电器(Y1~Y4); 线圈状态(高字节)为0XFF时,对应的继电器常开触点闭合,常闭触点断开; 线圈状态(高字节)为0X00时,对应的继电器常开触点断开,常闭触点闭合。 线圈状态(高字节)为其他值时,无意义。

控制板响应帧:

Addr (ID)	功能码	起始地址	起始地址	线圈状态	线圈状态	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X05	0X00	XX	XX	0X00	计算	获得

5) 写单个寄存器(0X06)

用此功能码既可以配置控制板的地址、波特率等参数,也可以复位控制板和恢复出厂设置。

注意:使用协议修改控制板参数时(波特率、地址),如果不慎操作错误而导致无法通讯时,可以按住"CFG"按键并保持5秒,等到"SYS"指示灯快闪时(10Hz左右),松开按键,此时控制板恢复出厂参数,如下:

串口参数: 波特率 115200; 数据位 8; 不校验; 1位停止位;

控制板地址: 1。

外部设备请求帧:

0X01	0X06	(高字节) 0X00	(低字节) XX	(高字节) XX	(低字节) XX	(高字节)	(低字节)
Addr (ID)	功能码	起始地址	起始地址	寄存器数据	寄存器数据	CRC16	CRC16

控制板响应帧:

Addr (ID)	功能码	起始地址	起始地址	寄存器数据	寄存器数据	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X06	0X00	XX	XX	XX	计算	获得

6) 写多个线圈(0X0F)

建议一次写入4个线圈状态。

外部设备请求帧:

Addr	功能码	起始地址	起始地	线圈数量	寄存器数据	字节数	线圈状态	CRC16	CRC16
(ID)		(高字节)	址 (低	(高字节)	(低字节)			(高字节)	(低字节)
			字节)						
0X01	0X0F	0X00	XX	0X00	0X04	0X01	XX	计算	草获得

其中,线圈状态 XX 只取低 4位,释义如下:

B7	B6	B5	B4	В3	B2	B1	В0
	高4个bit	位无意义		线圈 4	线圈 3	线圈 2	线圈 1

B0~B3 分别对应控制板的 4 个继电器 Y1~Y4。位值为 1 代表继电器常开触点闭合,常闭触点断开;位值为 0 代表继电器常开触点断开,常闭触点闭合;位值为其他值,无意义。控制板响应帧:

0X01	0X0F	0X00	XX	0X00	0X04	计算获得	
(ID)		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
Addr	功能码	起始地址	起始地址	线圈数量	寄存器数据	CRC16	CRC16

8.4 Modbus TCP 协议

Modbus TCP 数据帧包含报文头、功能代码和数据 3 部分(功能码和数据与 RTU 相同):

(1) MBAP 报文头(MBAP、Modbus Application Protocol、Modbus 应用协议)分 4 个域,共7个字节,如下表所示:

域	长度(B)	描述	客户端	服务器端
传输标志	2	标志某个 Modbus 询问 / 应答的传输	由客户端生成	应答时复制该值
协议标志	2	0=Modbus 协议 1=UNI-TE 协议	由客户端生成	应答时复制该值
长度	2	后续字节计数	由客户端生成	应答时由服务器 端重新生成
单元标志	1	定义连续于 目的其他设备	由客户端生成	应答时复制该值

单元标志即为控制板的地址。

- (2) Modbus TCP 功能代码 本控制板实现必要的功能码,具体含义和用法请参考 7.2 节。
- (3) Modbus TCP 数据 即为 Modbus RTU 的数据域。

-----以下无正文