Mathematik I Lösen von linearen Gleichungssystemen

Prof. Dr. Doris Bohnet Sommersemester 2020

Zeitplan Vorlesung

		Datum	Bemerkung	Inhalt
Grund- lagen			Selbststudium	Grundlagen: Mengen
			Selbststudium	Grundlagen: Relationen
			Selbststudium	Grundlagen: Abbildungen
Zahlen- theorie	1	22.04.	Einmalig Mi.	Wiederholung & Zusammenfassung Selbststudium
	2	27.04.		Zahlentheorie I
	3	28.04.		Zahlentheorie II
Algebra	4	04.05.		Gruppen
	5	11.05.		Ringe, Körper
	6	12.05.		Kryptographie
	7	18.05.		Vektorräume
Lineare Algebra	8	25.05.		Lineare Gleichungssysteme: Gauß-Algorithmus
	9	26.05.		Lineare Gleichungssysteme: Lösungstheorie
	10	01.06.	Pfingstmontag	
	11	08.06.		Matrizen
	12	09.06.		Lineare Abbildungen

Lernziele

- Begriffe kennen:
 - ✓ Lineares Gleichungssystem (homogen/inhomogen)
 - √ (erweiterte) Koeffizientenmatrix
- Ein lineares Gleichungssystem mit Hilfe des Gauß-Algorithmus lösen können und die Lösung als Lösungsmenge aufzuschreiben

Wiederholung

Kahoot - Lagen

5.)
$$u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $v = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\omega = \begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix}$? de $\omega = 2 \cdot u + 2 \cdot v$, derhall sind $u_1 \cdot v_1 \cdot \omega$

linear abhängig

Wiederholung: Linearkombination

Stellen Sie den Vektorw als <u>Linearkombination</u> der Vektoren v_1 , v_2 , v_3 dar:

$$\widetilde{w} = (2,1,1); v_1 = (1,5,1); v_2 = (0,9,1); v_3 = (3,-3,1).$$

$$\omega = \lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 \qquad \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$$

$$\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 5 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 6 \\ 9 \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}$$

$$2 = 1 \cdot 2_1 + 0 \cdot 2_2 + 3 \cdot 2_3$$
 3 lineare Gleichungen $1 = 5 \cdot 2_1 + 9 \cdot 2_2 + (-3)2_3$ mit $1 = 1 \cdot 2_1 + 1 \cdot 2_2 + 1 \cdot 2_3$ 3 Unbekannten $2_{11}2_{21}2_{3}$

Wiederholung: Lineare Unabhängigkeit

Sind die folgenden Vektoren linear unabhängig?

The folgenden vektoren linear unabnangig?
$$v_1 = (4,1,1,0,-2), v_2 = (0,1,4,-1,2), v_3 = (4,3,9,-2,2), v_4 = (1,1,1,1,1), v_5 = (0,-2,-8,2,-4)$$

$$(-2) v_2 = v_5 \qquad \text{also sind Velidear linear abhanging}$$

$$0 = \lambda_1 v_4 + \lambda_2 v_2 + \lambda_3 v_3 + \lambda_4 v_4 + \lambda_5 v_5 \qquad \lambda_1 \lambda_2 \lambda_3 \lambda_4 \lambda_5 \in \mathbb{R}$$

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \lambda_1 \begin{pmatrix} 4 \\ 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ 4 \\ -1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 4 \\ 3 \\ 9 \\ -2 \\ 2 \end{pmatrix} + \lambda_4 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \end{pmatrix} + \lambda_5 \begin{pmatrix} 0 \\ -2 \\ -8 \\ 2 \\ 4 \end{pmatrix}$$

| => Wenn
$$\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = 0$$
 | => 5 lineaux Gleichunger mit einsige Lösung, donn 5 Unbekennten 5 Unbekennten 11

Lineare Gleichungssysteme – Definition

Ein **lineares Gleichungssystem** mit m Gleichungen und n Unbekannten ist gegeben durch

m-te Gleichung = m-te Zeile

Die **Lösungsmenge** *L* des linearen Gleichungssystems besteht aus allen Vektoren

$$x^* = \begin{pmatrix} x_1^* \\ x_2^* \\ \vdots \\ x_n^* \end{pmatrix},$$

die das lineare Gleichungssystem lösen.

Weitere Definitionen...

Die Koeffizienten des linearen Gleichungssystems schreibt man oft als Matrix mit m Zeilen und n Spalten:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \dots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}. \quad \begin{cases} A_{n1} \text{ all Sleichungen} \end{cases}$$
 an als Vektor
$$A \text{ heißt } \frac{\text{Koeffizienten-}}{\text{melnix}}.$$

Die rechte Seite der Gleichung schreibt man als Vektor

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

Ist $b = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$, heißt das Gleichungssystem **homogen**, sonst **inhomogen**.

Wiederholung: Lineare Unabhängigkeit

Sind die folgenden Vektoren linear unabhängig?

ausschreiben:
$$v_1 = (4,1,1,0,-2), v_2 = (0,1,4,-1,2), v_3 = (4,3,9,-2,2), v_4 = (1,1,1,1,1), v_5 = (0,-2,-8,2,-4)$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

$$0 = x_1 v_1 + x_2 v_2 + x_3 v_3 + x_4 v_4 + x_5 v_5$$

Koeffitientenmatix:

Lineare Gleichungssysteme - Beispiel

Ein Hotel hat 140 Betten sowie insgesamt 82 Einzel- und Doppelzimmer. Wie viele Einzel- beziehungsweise Doppelzimmer gibt es jeweils?

Lösung: Gesucht:
$$X = \#$$
 Einteltimmer $y = \#$ Doppeltimmer $y = \#$ Doppeltimmer $y = \#$ Doppeltimmer $y = \#$ Doppeltimmer $y = \#$ 2 Mobeleaunte $y = \#$ Doppeltimmer $y = \#$ 2 Mobeleaunte $y = \#$ 2 M

Lineare Gleichungssysteme - Beispiel

Ein Hotel hat 140 Betten sowie insgesamt 82 Einzel- und Doppelzimmer. Wie viele Einzel- beziehungsweise Doppelzimmer gibt es jeweils?

Lineare Gleichungssysteme - Zeilenstufenform

Was model mou, wenn mon mehr als 2 Unbekounte hot?

Beispiel:

$$x_1 + x_2 + x_3 = -6$$

$$x_2 + 2x_3 = -4$$

$$2x_3 = -2$$

Lösung:
$$\overline{M}$$
 noch x_3 anytosen: $x_3 = -1$
in \overline{M} einsetten: $x_2 - 2 = -4$ $= -6$ $= 0$

$$\text{Losnug}: \qquad \boxed{1} = \left\{ \begin{pmatrix} -3 \\ -2 \\ -1 \end{pmatrix} \right\}$$

Gauß-Algorithmus

Ziel: Die erweiterte Koeffizientenmatrix eines LGS in die Zeilenstufenform zu bringen, da man dann die Lösung leicht ausrechnen/ablesen kann.

- 1. Wähle eine Zeile k, deren erster Koeffizient a_{1k} ungleich Null ist, und vertausche sie mit der ersten Zeile.
- * Multipliziere die erste Zeile, so dass der erste Koeffizient gleich 1 ist (optional).
- 2. Addiere Vielfaches der ersten Zeile auf die übrigen Zeilen, so dass in der ersten Spalte der übrigen Zeilen nur noch Nullen stehen.
- 3. Die erste Zeile und die erste Spalte werden unverändert gelassen. Mit dieser verkleinerten Matrix verfährt man erneut wie in 1. und 2. , usw.
- 4. Wir erhalten eine Matrix in Staffelform.

Gauß-Algorithmus – Beispiel 1

Berechnen Sie die Lösung des folgenden linearen Gleichungssystems:

$$-6x_{1} + 6x_{2} + 2x_{3} - 2x_{4} = 2$$

$$-9x_{1} + 8x_{2} + 3x_{3} - 2x_{4} = 3$$

$$-3x_{1} + 2x_{2} + x_{3} = 1$$
enweiterte Koeffizieutenmehix
$$-15x_{1} + 14x_{2} + 5x_{3} - 4x_{4} = 5$$

$$(A | b) = -6 \cdot 6 \cdot 2 - 2 \cdot 2 \cdot 3I - 2II \cdot -6 \cdot 6$$

Zeilen vertauschen!

1. Schritt: Vielfodes der 1. Feile ouf 2.13./4. Teile addieren, um in der 1. Spalte Nuller Du pris Bohnet - Vorlesung 11

Gauß-Algorithmus – Beispiel 1

Gauß-Algorithmus – Beispiel 1