Desert Ant Behaviour: Simulating Movement and Navigation

W. Vollprecht und G. Wiedebach

1. Introduction

- Our aim: Creating an adequate model of ant behaviour:
 - Finding food
 - Navigation by global vector
 - Navigation by landmarks

1. Introduction Navigation: Global vector

- Ants in our hemisphere create paths through pheromone tracks
- Harsh environment in deserts
 - → no pheromone tracks
- Path integration
 - Polarized light from sun → biological compass
 - Step counter

1. Introduction Navigation: Local vectors

- Experiments show: ants navigate by landmarks
- Inhibits navigation by global vector

1. Introduction What we want to measure

- How efficient is navigation by landmarks/global vector?
 - Steps needed for finding food
 - Steps needed for return
- How do landmarks influence the efficency of the food finding process?
 - Path should be shorter after some runs

2. Model & Implementation

2. Model & Implementation Simplifications

- Fixed boundaries
- Only global vector when homing
- Detection radius to detect food/landmarks/nest

2. Model & Implementation Landscape

- Nest
- Feeder
- Landmark
- Obstacles

2. Model & Implementation Ant: Properties

- Position
- Local vectors
- View radius

2. Model & Implementation Ant: Move

- Method gets a general direction
- Checks for obstacles
- Sets new position
- Updates global vector

2. Model & Implementation Ant: Find Food

- Runs randomly in search for food
- After first run: Uses landmarks to find food faster
- Local vectors point to next landmark

2. Model & Implementation Ant: Return to nest

Uses global vector to return to the nest

3.1 Did we create an adequate model?

Path integration experiment

Figure taken from: R. Wehner. Desert ant navigation: how miniature brains solve complex tasks, 2003

3.2 How efficient is navigation by local or global vector?

Path improvement experiment

3.2 How efficient is navigation by local or global vector?

- global vector better
- first runs are most important
- on some maps no improvement

3.3 How do landmarks influence the efficency of the food finding process?

The "perfect" route is rarely found. (Mapdependent)

4. Summary & Outlook

- We are satisfied with our results.
- There should be more testing:
 - collecting data
 - recreating experiments
- Aspects to improve (two examples):
 - local vectors
 - "foresight" of the model

References

- R. Wehner,
 - Path integration in desert ants, 1998.
 - Desert ant navigation: how miniature brains solve complex tasks, 2003
- Wikipedia: http://en.wikipedia. org/wiki/Ant_colony_optimization_algorithms