Contact malcolmiwroberts@gmail.com

Information malcolmiwroberts.com

Education BSc Honors Applied Mathematics University of Alberta, 2001

MSc in Applied Mathematics

PhD in Applied Mathematics

University of Alberta, 2006

University of Alberta, 2011

Work History

Postdoctoral Researcher, IRMA, Université de Strasbourg, France, since 2014.

- Implement a discontinuous Galerkin solver in OpenCL to numerically solve general hyperbolic conservation laws using CPUs, GPUs, and MICs.
- Present at conferences and published in peer-reviewed journals.

Postdoctoral Researcher, M2P2, Aix-Marseille University, France, 2012 to 2014.

- Designed software for simulating magneto-hydrodynamic turbulence in a grid computing environment using spectral methods and penalisation.
- Presented at conferences and published in peer-reviewed journals.

Sessional Lecturer, University of Alberta, Canada, 2010.

• Lectured differential equations in a team-teaching environment.

Graduate Student, University of Alberta, Canada, 2003 to 2011.

- Developped a coherent research program in applied mathematics.
- Presented at conferences and publish articles in peer-reviewed journals.
- Ran undergraduate math labs and help sessions.

Undergraduate Researcher, University of Alberta, 1998 to 2000.

Selected Projects

fftw++ (fftwpp.sf.net).

- Implementation of implicitly dealiased convolutions:
 - Twice as fast and half the memory.
 - Applications to image processing, machine learning, simulations.
- MPI/OpenMP implementation of FFTs and convolutions for grid computing.
- Resulted in 5 publications and several conference presentations so far.
- Over 11 000 downloads.

schnaps (schnaps.gforge.inria.fr).

- A discontinuous-Galerkin solver for general numerical simulations.
- Written in C and OpenCL. Runs on CPUs, GPUs, and MICs.
- Resulted in 1 publication and several conference presentations so far.

Subgrid models for turbulence.

- Numerical technique for simulating fluid flows.
- Drastically reduced computational cost.
- Subject of my doctoral and masters dissertations.

Skills

Collaboration and project management.

Public speaking and scientific writing. Proficient in English and French.

Expertise in mathematical modelling and high-performance computing. Knowledge of dynamical systems, numerical methods, and statistics.

I program in C++, C, OpenCL, Python, and FORTRAN, using OpenMP and MPI.

Linux scripting, version control, grid computing environments.

Data analysis and visualization: LATEX, R, Asymptote, and Paraview.