<u>Announ cements</u>

Midterm 2: Wed. 3/26

J:00-8:30bm, 2:9ush Fr 1013

Policy email w/ practice problems coming soon

Course militerm feedback form still open

- · Lecture style and pace about right
- · Homework about right; a couple people want more theoretical (vs. computational) problems

Recall:

Def: A automorphism is a field isom. $\sigma: k \to k$

Aut (K) = gp. of automs. of K (under function composition)

Remark:

b) Aut
$$\binom{k/prime}{subfield} = Aut(k)$$

Since every autom. fixes <1>

where

Aut
$$(K/Q(i)) = \langle \tau \rangle = \{1, \tau\}$$

Aut $(K/Q(i)) = \langle \sigma \rangle$

Aut(
$$K/Q$$
) = {id}

They

$$O = T(0) = T(32^3 - 2) = T(32)^3 - 2$$

So $T(32)^3$ is a roof of $x^3 - 2$

Prop: Let FCK, f(x) eF[x]. Let JE Aut(K/F).
If xek is a root of f, then so is J(x).

Pf: Let $f(x) = a_n x^n + ... + a_1 x + a_0$. Since σ is a field automorphism fixing F, $f(\sigma(u)) = \alpha_n (\sigma(u))^n + ... + \alpha_1 \sigma(u) + \alpha_0$ $= \sigma(a_n) (\sigma(u))^n + ... + \sigma(a_1) \sigma(u) + \sigma(a_0)$ $= \sigma(a_n u^n + ... + a_1 u + a_0)$ $= \sigma(f(u)) = \sigma(0) = 0$

Therefore, every elt. of Aut(K/F) permutes the roots of each f(x) eF[x].

Def: Let $H \leq Aut \ K$. Define $Fix H = \{a \in K | \sigma(a) = a \ \forall \sigma \in H\}$

Prop:

- a) Fix H is a field
- b) If H, & H2, then Fix H2 = Fix H,
- c) If Fic Fick, then Aut(K/Fi) < Aut(K/Fi) < Aut(K/Fi) < Aut(K/Fi)
- d) Fix {id} = K

P(: a) If a,b \in Fix H, then for all $\sigma \in$ H, $\sigma(a+b) = \sigma(a) + \sigma(b) = a+b$ $\sigma(ab) = \sigma(a) \sigma(b) = ab$ $\sigma(a^{-1}) = \sigma(a)^{-1} = a^{-1}$

b) If $H_1 \le H_2$, elements of Fix H_2 satisfy all the conditions of elts. of Fix H_1

c) Similar

d)id fixes every elt.

くの、て〉

(turns out, this is all int. fields)

b) $K = \mathbb{Q}(3/2)$, Aut $(K/\mathbb{Q}) = \{idf\}$ Subgr. lattice Lattice of int. fields $\mathbb{Q}(3/2)$ 1

We want the nice situation!

Thm: Let $f(x) \in F[x]$, $K = Sp_F f$. Then, $|Aut(K/F)| \leq [K:F]$, $|Aut(K/F)| \leq [K:F]$.