Exercice 1

1. L'équation horaire d'une tension sinusoïdale est : $v(t) = 10 \sin \left(250\pi t - \frac{\pi}{4}\right)$. En déduire :

Nom: DRAVIGNEY Les

 $V_{eff} = 40 = 5\sqrt{2} = 7, 1/\varphi_v = -T$

w= 250 Trad/2 1.5

Exercice 2: on a relevé les oscillogrammes des tensions u₁(t) et u₂(t) respectivement sur les voies 1 et 2 d'un oscilloscope.

Voie 1: 10V/div;

Voie 2: 5 V/div

Base de temps : 0,1 ms/div

1. Pour les deux signaux calculer :

ω= 2000 Trad/s 1.5

2. Pour le signal u₁(t), déterminer :

$$U_{1max} = 25V$$

$$U_{1eff} = \frac{25}{\sqrt{2}} \approx 17,7$$
 $\varphi_{u1} = \sin^{-7}\left(\frac{25}{25}\right) = -1$ π rad

En déduire l'équation horaire de u₁(t):

3. Pour le signal u₂(t), déterminer :

$$U_{2max} = 5$$

$$U_{2eff} = \frac{5}{52} \approx 3,53 \varphi_{u2} = \Delta \ln^{-7} \left(\frac{0}{5}\right) = 0 \operatorname{red}^{-1}$$

En déduire l'équation horaire de u₂(t) :

$$(=)$$
 $-\frac{1}{2}\pi - 0 =$

déduire l'équation horaire de $u_2(t)$: $u_2(t) = 5 \text{ Din} \left(2000 \text{ TTC}\right)$ 4. Calculer le déphasage $\varphi_{u1/u2} = -2 \text{ TX} \text{ fx} \text{ AC}$ = -2 TX 1000 MB = -3 TX Calculer = -3 TX AC