ECE 5730 Memory Systems Spring 2009

Cache Power Management

Announcements

Quiz 5 on Tuesday

- Quiz 4
 - Average = 8.9/10
- No office hours today

I-cache Way Prediction

Conventional instruction fetch mechanism

[Calder95]

[Calder95]

Cache Power Management

- Circuit techniques
 - Transistor sizing, multi-V_t, low-swing bitlines, etc
- Microarchitecture techniques
 - Static techniques: banking, phased tag/data access, way prediction, CAM-tags
- Dynamic techniques: gated-Vdd, cache decay, drowsy caches
 - Compiler techniques
 - Data partitioning to enable sleep mode

Dynamic Techniques for Leakage

 Static microarchitectural techniques address dynamic power by reducing activity

But lots of leaking idle cache rows!

leakage current causes pover loss (up to 50%s in a cache)

Three example microarchitectural approaches

- Gated-Vdd

• Gate the supply-to-ground path - adds more transforms in the ray to marine leakage

- Cache decay

• Same gating mechanism but different control policy - Drowsy caches > prevents dynamic power 1555 (no misses

prevents

Resizable Hardware

 Demand for hardware resources varies among applications, and within a single application

Resizable Caches

 Resizable caches turn off portions of the cache that are not heavily used by the running program

Lecture 9: 8

Gated-Vdd

L' by set instead of wars as in previous slide

- Dynamically resize the cache (number of sets)
- Sets are disabled by gating the path between Vdd and ground ("stacking effect")

Gated-Vdd Microarchitecture

Gated-Vdd I-cache Effectiveness

[Powell00]

over time, observe the behavior of they's in a cuche.

access typically occurs

Cache Decay

Exploits generational behavior of cache contents

[Kaxiras01]

Cache Decay

Fraction of time cache lines are "dead"

32KB L1 D-cache

Cache Decay Implementation

Lecture 9: 14

turnit buele on ou accers

Drowsy Caches

- Gated-Vdd cells lose their state
 - Instructions/data must be refetched
 - Dirty data must be first written back
- By dynamically scaling Vdd, cell is put into a drowsy state where it retains its value
 - Leakage drops superlinearly with reduced Vdd
 - Cell can be fully restored in a few cycles
 - Much lower misprediction cost than gated-Vdd, but noise susceptibility and less reduction in leakage

goted val

Drowsy Cache Organization

Drowsy Cache Effectiveness (assumed begoth)

Benchmarks

Drowsy Cache Performance Cost

instruction data

Sub-banked Drowsy I-cache

decoders, word-line drivers, DVS controller

Sub-banked Drowsy I-cache

Next Sub-bank Prediction

Predict fetch transition to a new sub-bank

Next Sub-bank Prediction

Can embed predictions with cache tags

slightly were a

lots more leakage

Drowsy D-cache vs. D-cache Decay

FP	Run-time impact (%)		Norm. leakage (%)		INT	Run-time impact (%)		Norm. leakage (%)	
	drowsy	decay	drowsy	decay		drowsy	decay	drowsy	decay
ammp	0.54	0.12	34 (22)	81	bzip2	0.77	0.38	34 (22)	35
applu	0.50	0.00	37 (26)	41	crafty	0.46	1.08	39 (28)	114
apsi	0.32	0.02	35 (23)	31	eon	0.36	0.13	38 (26)	38
art	0.61	0.01	38 (27)	44	gap	0.46	0.90	32 (20)	31
equake	0.03	0.04	33 (21)	10	gcc	0.06	0.00	53 (45)	96
facerec	0.15	0.03	32 (20)	23	gzip	2.07	1.23	34 (22)	85
fma3d	0.14	0.87	32 (20)	141	mcf	0.66	0.04	34 (22)	35
galgel	0.31	0.00	51 (42)	68	parser	1.17	1.75	35 (22)	63
lucas	0.66	0.00	34 (22)	25	perl	0.87	6.97	36 (24)	224
mesa	0.21	0.09	34 (22)	22	twolf	0.87	0.29	35 (22)	36
mgrid	0.49	0.00	40 (28)	42	vortex	0.25	0.78	36 (25)	126
sixtrack	0.34	0.18	39 (27)	56	vpr	0.89	0.84	36 (24)	76
swim	0.61	0.00	37 (25)	34.	avg	0.57	0.64	37 (25)	59
wupwise	0.20	0.01	34 (22)	50					

Drowsy I-cache vs. I-cache Decay

FP	Run-time impact (%)		Norm. leakage (%)		INT	Run-time impact (%)		Norm. leakage (%)	
	drowsy	decay	drowsy	decay		drowsy	decay	drowsy	decay
ammp	0.00 (99)	1.83	25	28	bzip2	0.83 (52)	0.69	24	8
applu	0.00 (99)	0.22	24	10	crafty	3.75 (71)	6.26	26	118
apsi	2.01 (67)	0.14	25	25	eon	2.54 (70)	0.31	25	39
art	0.00 (99)	0.21	24	1	gap	1.93 (70)	0.55	25	40
equake	0.71 (87)	0.07	25	19	gcc	0.03 (78)	2.37	24	15
facerec	0.39 (76)	0.26	24	5	gzip	1.00 (87)	0.24	25	6
fma3d	4.52 (74)	0.08	26	54	mcf	0.19 (81)	0.23	24	3
galgel	0.00 (27)	0.04	24	1	parser	0.51 (72)	0.44	24	8
lucas	0.01 (97)	0.00	24	2	perl	2.34 (62)	1.84	25	68
mesa	0.67 (86)	0.37	25	23	twolf	0.30 (74)	2.98	24	56
mgrid	0.01 (99)	0.10	24	19	vortex	4.34 (63)	8.43	26	147
sixtrack	1.23 (86)	0.45	. 25	15	vpr	0.00 (99)	0.16	24	5
swim	0.00 (99)	0.28	24	9	avg	0.79 (74)	0.99	25	23
wupwise	0.79 (79)	0.32	24	20		1			

% accuracy of the predictor

Cache Power Management

- Circuit techniques
 - Transistor sizing, multi-V_t, low-swing bitlines, etc
- Microarchitecture techniques
 - Static techniques: banking, phased tag/data access, way prediction, CAM-tags
 - Dynamic techniques: gated-Vdd, cache decay, drowsy caches
- Compiler techniques
 - Data partitioning to enable sleep mode

Compiler-based Data Partitioning

- Multiple D-cache banks, each with sleep mode
- Lifetime analysis used to assign commonly idle data to the same bank

Next Time

Cache Case Studies