Лабораторная работа №8

Математическое моделирование

Николаев Дмитрий Иванович

Содержание

1	Цель работы	5	
2	Задание	6	
3	Теоретическое введение	8	
4	Выполнение лабораторной работы 4.1 Постановка задачи	12 12 15 19 21	
5	Выводы	24	
Сп	писок литературы		

Список иллюстраций

4.1	Модель конкуренции с применением только рыночных методов	
	на Julia	21
4.2	Модель конкуренции с учетом рыночных и социально-психологичес	ких
	факторов на Julia	22
4.3	Модель конкуренции с применением только рыночных методов	
	на OpenModelica	22
4.4	Модель конкуренции с учетом рыночных и социально-психологичес	КИХ
	факторов на OpenModelica	27

Список таблиц

1 Цель работы

Рассмотреть модель конкуренции двух фирм в двух случаях: конкуренция двух фирм чисто рыночными методами и конкуренция с учетом рыночных и социально-психологических факторов. Построить графики изменения оборотных средств предприятий.

2 Задание

Вариант 29

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2, \end{split}$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, \quad a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, \quad b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, \quad c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}, \quad c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}.$$

Также введена нормировка $t=c_1\theta$.

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — фор-

мирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \left(\frac{b}{c_1} + 0.00019\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2, \end{split}$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами: $M_0^1=8.5,\,M_0^2=9.1,\,p_{cr}=33,\,N=83,\,q=1,\, au_1=27,$ $au_2=24,\, ilde p_1=11.3,\, ilde p_2=12.5.$

Замечание: Значения $p_{cr}, \tilde{p}_{1,2}, N$ указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн. единиц.

Обозначения:

- N число потребителей производимого продукта;
- au длительность производственного цикла;
- p рыночная цена товара;
- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции;
- q максимальная потребность одного человека в продукте в единицу времени:
- $\theta = \frac{t}{c_1}$ безразмерное время;
- $\,M_0\,-$ оборотные средства предприятия в начале конкурентной борьбы.
- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

3 Теоретическое введение

Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют. Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
- M оборотные средства предприятия.
- au длительность производственного цикла.
- p рыночная цена товара.
- \tilde{p} себестоимость продукта, то есть переменные издержки на производство единицы продукции.
- δ доля оборотных средств, идущая на покрытие переменных издержек.
- κ постоянные издержки, которые не зависят от количества выпускаемой продукции.
- $Q(\frac{S}{p})$ функция спроса, зависящая от отношения дохода S к цене p. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k\frac{p}{S} = q\left(1 - \frac{p}{p_{cr}}\right),\tag{3.1}$$

где q — максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_{cr}$ (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина $p_{cr}=S \frac{q}{k}$. Параметр k — мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (3.1) является пороговой (то есть, $Q(\frac{S}{p})=0$ при $p\geq p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде

$$\frac{dM}{dt} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + Nq\left(1 - \frac{p}{p_{cr}}\right)p - \kappa. \tag{3.2}$$

Уравнение для рыночной цены p представим в виде

$$\frac{dp}{dt} = \gamma \left(-\frac{M\delta}{\tau \tilde{p}} + Nq \left(1 - \frac{p}{p_{cr}} \right) \right). \tag{3.3}$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член — спросу.

Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном M уравнение (3.3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение (3.3) можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + Nq\left(1 - \frac{p}{p_{cr}}\right) = 0. \tag{3.4}$$

Из (3.4) следует, что равновесное значение цены p равно

$$p = p_{cr} \left(1 - \frac{M\delta}{\tau \tilde{p} N q} \right). \tag{3.5}$$

Уравнение (3.2) с учетом (3.5) приобретает вид

$$\frac{dM}{dt} = M \frac{\delta}{\tau} \left(\frac{p_{cr}}{\tilde{p}} - 1 \right) - M^2 \left(\frac{\delta}{\tau \tilde{p}} \right)^2 \frac{p_{cr}}{Nq} - \kappa. \tag{3.6}$$

Уравнение (3.6) имеет два стационарных решения, соответствующих условию $\frac{dM}{dt}=0$:

$$\tilde{M}_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b},\tag{3.7}$$

где

$$a = Nq \left(1 - \frac{\tilde{p}}{p_{cr}} \right) \tilde{p} \frac{\tau}{\delta}, \quad b = \kappa Nq \frac{(\tau \tilde{p})^2}{p_{cr} \delta^2}. \tag{3.8}$$

Из (3.7) следует, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b \ll a^2$) и играют роль, только в случае, когда оборотные средства малы. При $b \ll a$ стационарные значения M равны

$$\tilde{M}_{+} = Nq\frac{\tau}{\delta} \left(1 - \frac{\tilde{p}}{p_{cr}}\right) \tilde{p}, \quad \tilde{M}_{-} = \kappa \tilde{p} \frac{\tau}{\delta(p_{cr} - \tilde{p})}. \tag{3.9}$$

Первое состояние \tilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \tilde{M}_- неустойчиво, так, что при $M<\tilde{M}_-$ оборотные средства падают ($\frac{dM}{dt}<0$), то есть, фирма идет к банкротству. По смыслу \tilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит,

что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1$, а параметр au будем считать временем цикла, с учётом сказанного [1].

4 Выполнение лабораторной работы

4.1 Постановка задачи

Конкуренция двух фирм

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы.

В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом).

Уравнения динамики оборотных средств запишем по аналогии с (3.2) в виде

$$\begin{split} \frac{dM_1}{dt} &= -\frac{M_1}{\tau_1} + N_1 q \left(1 - \frac{p}{p_{cr}}\right) p - \kappa_1 \\ \frac{dM_2}{dt} &= -\frac{M_2}{\tau_2} + N_2 q \left(1 - \frac{p}{p_{cr}}\right) p - \kappa_2, \end{split} \tag{4.1} \label{eq:4.1}$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины N_1 и N_2 — числа потребителей, приоб-

ретших товар первой и второй фирмы.

Учтем, что товарный баланс устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене p. Тогда

$$\begin{split} \frac{M_1}{\tau_1 \tilde{p}_1} &= N_1 q \left(1 - \frac{p}{p_{cr}}\right) \\ \frac{M_2}{\tau_2 \tilde{p}_2} &= N_2 q \left(1 - \frac{p}{p_{cr}}\right), \end{split} \tag{4.2}$$

где \tilde{p}_1 и \tilde{p}_2 — себестоимости товаров в первой и второй фирме.

С учетом (4.1) представим (4.2) в виде

$$\begin{split} \frac{dM_1}{dt} &= -\frac{M_1}{\tau_1} \left(1 - \frac{p}{\tilde{p}_1} \right) - \kappa_1 \\ \frac{dM_2}{dt} &= -\frac{M_2}{\tau_2} \left(1 - \frac{p}{\tilde{p}_2} \right) - \kappa_2. \end{split} \tag{4.3}$$

Уравнение для цены, по аналогии с (3.3),

$$\frac{dp}{dt} = -\gamma \left(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2} - Nq \left(1 - \frac{p}{p_{cr}} \right) \right). \tag{4.4}$$

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим:

$$p=p_{cr}\left(1-\frac{1}{Nq}\left(\frac{M_1}{\tau_1\tilde{p}_1}+\frac{M_2}{\tau_2\tilde{p}_2}\right)\right). \tag{4.5}$$

Подставив (4.5) в (4.3) имеем:

$$\begin{split} \frac{dM_1}{dt} &= c_1 M_1 - b M_1 M_2 - a_1 M_1^2 - \kappa_1 \\ \frac{dM_2}{dt} &= c_2 M_2 - b M_1 M_2 - a_2 M_2^2 - \kappa_2, \end{split} \tag{4.6}$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, \quad a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, \quad b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, \quad c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1}, \quad c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2}. \tag{4.7}$$

Исследуем систему (4.6) в случае, когда постоянные издержки (κ_1,κ_2) пренебрежимо малы. И введем нормировку $t=c_1\theta$. Получим следующую систему:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2, \end{split} \tag{4.8}$$

Чтобы решить систему (4.8) необходимо знать начальные условия.

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться.

Рассмотрим следующую модель:

$$\begin{split} \frac{dM_1}{d\theta} &= M_1 - \left(\frac{b}{c_1} + \chi\right) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{dM_2}{d\theta} &= \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2, \end{split} \tag{4.9}$$

где χ — коэффициент, отвечающий за формирование общественного предпочтения одного товара другому. Начальные условия и известные параметры остаются прежними.

Замечание: Стоит отметить, что рассматривается упрощенная модель, которая дает модельное решение. В реальности факторов, влияющих на динамику

изменения оборотных средств предприятий, больше.

4.2 Реализация на Julia

- Изменение оборотных средств двух фирм в моделе, где конкурентная борьба осуществляется только рыночными методами (Рис. [4.1]).
- Изменение оборотных средств двух фирм в моделе, где учитываются не только рыночные факторы, но и социально-психологические формирование общественного предпочтения одного товара другому (Рис. [4.2]).

Код на Julia:

```
using Plots
using DifferentialEquations
const M1_0 = 8.5; # Оборотные средства предприятия 1 в начале (в млн)
const M2_0 = 9.1; # Оборотные средства предприятия 2 в начале (в млн)
const p_cr = 33; # Критическая стоимость продукта
#(больше нее отказываются покупать) (в тыс)
const N = 83; # Число потребителей производимого продукта (в тыс)
const q = 1; # максимальная потребность одного человека в продукте
#в единицу времени
const tau1 = 27; # Длительность производственного цикла на 1 предприятии
const tau2 = 24; # Длительность производственного цикла на 2 предприятии
const p1 = 11.3; # Себестоимость продукта на 1 предприятии (в тыс)
const p2 = 12.5; # Себестоимость продукта на 5 предприятии (в тыс)
a1 = p_cr / (tau1^2 * p1^2 * N * q);
a2 = p_cr / (tau2^2 * p2^2 * N * q);
b = p_cr / (tau1^2 * p1^2 * tau2^2 * p2^2 * N * q);
```

```
c1 = (p_cr - p1) / (tau1 * p1);
c2 = (p_cr - p2) / (tau2 * p2);
 * u[1] - M1(theta), u[2] - M2(theta), 
#где М - Оборотные средства предприятия,
# theta = t/c1 - безразмерное время (для нормировки)
\#du[1]=dM1/d(theta), du[2]=dM2/d(theta)
"Модель конкуренции только рыночными методами"
function lorenz1!(du,u,p,t)
    du[1] = u[1] - b*u[1]*u[2]/c1 - a1*u[1]*u[1]/c1
    du[2] = c2*u[2]/c1 - b*u[1]*u[2]/c1 - a2*u[2]*u[2]/c1
end
"Модель конкуренции с рыночными и социально-психологическими факторами"
function lorenz2!(du,u,p,t)
    du[1] = u[1] - (b/c1 + 0.00019)*u[1]*u[2] - a1*u[1]*u[1]/c1
    du[2] = c2*u[2]/c1 - b*u[1]*u[2]/c1 - a2*u[2]*u[2]/c1
end
const u0 = [M1_0, M2_0]
const T1 = [0.0, 40.0]
const T2 = [0.0, 20.0]
prob1 = ODEProblem(lorenz1!, u0, T1)
prob2 = ODEProblem(lorenz2!, u0, T2)
sol1 = solve(
    prob1,
    abstol=1e-8,
```

```
reltol=1e-8)
sol2 = solve(
    prob2,
    abstol=1e-8,
    reltol=1e-8)
plt1 = plot(
    dpi=300,
    legend=true)
plot!(
    plt1,
    sol1,
    idxs=(0,1),
    label="Изменение оборотных средств фирмы 1",
    xlabel="Безразмерное время theta = t/c1",
    ylabel="Оборотные средства",
    formatter=:plain,
    legend_position=:bottomright,
    titlefontsize=:10,
    legend_font_pointsize=:6,
    color=:blue,
    title="Модель конкуренции только рыночными методами")
plot!(
    plt1,
    sol1,
    idxs=(0,2),
    label="Изменение оборотных средств фирмы 2",
    color=:red)
```

```
plt2 = plot(
    dpi=300,
    legend=true)
plot!(
    plt2,
    sol2,
    idxs=(0,1),
    label="Изменение оборотных средств фирмы 1",
    xlabel="Безразмерное время theta = t/c1",
    ylabel="Оборотные средства",
    formatter=:plain,
    legend_position=:bottomright,
    titlefontsize=:8,
    legend_font_pointsize=:6,
    color=:blue,
    title="Модель конкуренции с рыночными и социально-психологическими факторами"
plot!(
    plt2,
    sol2,
    idxs=(0,2),
    label="Изменение оборотных средств фирмы 2",
    color=:red)
savefig(plt1, "image/lab08_1.png")
savefig(plt2, "image/lab08_2.png")
```

4.3 Реализация на OpenModelica

- Изменение оборотных средств двух фирм в моделе, где конкурентная борьба осуществляется только рыночными методами (Рис. [4.3]).
- Изменение оборотных средств двух фирм в моделе, где учитываются не только рыночные факторы, но и социально-психологические формирование общественного предпочтения одного товара другому (Рис. [4.4]).

Код на OpenModelica:

Первая модель конкуренции с применением только рыночных методов:

```
model Market
constant Real p_cr = 33; // Критическая стоимость продукта
//(больше нее отказываются покупать) (в тыс)
constant Real N = 83; // Число потребителей производимого продукта (в тыс)
constant Real q = 1; // максимальная потребность одного человека
//в продукте в единицу времени
constant Real tau1 = 27; // Длительность производственного цикла
//на 1 предприятии
constant Real tau2 = 24; // Длительность производственного цикла
//на 2 предприятии
constant Real p1 = 11.3; // Себестоимость продукта на 1 предприятии (в тыс)
constant Real p2 = 12.5; // Себестоимость продукта на 2 предприятии (в тыс)
constant Real a1 = p cr / (tau1^2 * p1^2 * N * q);
constant Real a2 = p cr / (tau2^2 * p2^2 * N * q);
constant Real b = p_cr / (tau1^2 * p1^2 * tau2^2 * p2^2 * N * q);
constant Real c1 = (p_cr - p1) / (tau1 * p1);
constant Real c2 = (p_cr - p2) / (tau2 * p2);
Real M1; // Оборотные средства предприятия 1
```

```
Real M2; // Оборотные средства предприятия 2
initial equation
М1 = 8.5; // Оборотные средства предприятия 1 в начале (в млн)
М2 = 9.1; // Оборотные средства предприятия 2 в начале (в млн)
equation
der(M1) = M1 - (b/c1)*M1*M2 - (a1/c1)*M1*M1;
der(M2)=(c2/c1)*M2 - (b/c1)*M1*M2 - (a2/c1)*M2*M2;
end Market;
 Вторая модель конкуренции с учетом рыночных и социально-психологических
факторов:
model Market_SocPsy
constant Real p_cr = 33; // Критическая стоимость продукта
//(больше нее отказываются покупать) (в тыс)
constant Real N = 83; // Число потребителей производимого продукта (в тыс)
constant Real q = 1; // максимальная потребность одного человека
//в продукте в единицу времени
constant Real tau1 = 27; // Длительность производственного цикла
//на 1 предприятии
constant Real tau2 = 24; // Длительность производственного цикла
//на 2 предприятии
constant Real p1 = 11.3; // Себестоимость продукта на 1 предприятии (в тыс)
constant Real p2 = 12.5; // Себестоимость продукта на 2 предприятии (в тыс)
constant Real a1 = p cr / (tau1^2 * p1^2 * N * q);
constant Real a2 = p_{cr} / (tau2^2 * p2^2 * N * q);
constant Real b = p_{cr} / (tau1^2 * p1^2 * tau2^2 * p2^2 * N * q);
constant Real c1 = (p_cr - p1) / (tau1 * p1);
constant Real c2 = (p_cr - p2) / (tau2 * p2);
```

```
Real M1; // Оборотные средства предприятия 1
Real M2; // Оборотные средства предприятия 2
initial equation
M1 = 8.5; // Оборотные средства предприятия 1 в начале (в млн)
M2 = 9.1; // Оборотные средства предприятия 2 в начале (в млн)
equation
der(M1)= M1 - (b/c1 + 0.00019)*M1*M2 - (a1/c1)*M1*M1;
der(M2)=(c2/c1)*M2 - (b/c1)*M1*M2 - (a2/c1)*M2*M2;
end Market_SocPsy;
```

4.4 Полученные графики

Рис. 4.1: Модель конкуренции с применением только рыночных методов на Julia

Рис. 4.2: Модель конкуренции с учетом рыночных и социальнопсихологических факторов на Julia

Рис. 4.3: Модель конкуренции с применением только рыночных методов на OpenModelica

Рис. 4.4: Модель конкуренции с учетом рыночных и социальнопсихологических факторов на OpenModelica

Как можно заметить, в первом случае каждая фирма достигает свое максимальное значение оборотных средств (объем продаж) и остается на рынке с этим постоянным значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая остается неизменной. Во втором же случае первая фирма достигает свой максимальный объем продаж, затем начинает нести убытки и терпит банкротство, тогда как динамика роста объемов оборотных средств второй фирмы остается без изменения: достигнув максимального значения, остается на том же уровне.

5 Выводы

В ходе выполнения лабораторной работы я рассмотрел модель конкуренции двух фирм в двух случаях: исключительно рыночные факторы и рыночные вместе с социально-психологическими факторами. Построил графики изменения оборотных средств для обоих случаев и проанализировал их.

Список литературы

1. Кулябов Д.С. Лабораторная работа №8. Москва, Россия: Российский Университет Дружбы Народов.