Knowledge Representation

Introduction

- So far, we learnt HOW to represent an agent's knowledge base
- Now we focus on WHAT should go into this knowledge base

Ontological Engineering

- Concepts in an agent's environment should be properly represented
 Ontology philosophical study of the name
 - Ontological engineering

Ontology - philosophical study of the nature of being, becoming, existence, or reality, as well as the basic categories of being and their relations

- Can we represent everything in the world?
- Is it necessary to represent everything in the world?
- What we can do is to only describe general concepts
 - An upper (general) ontology
 - Leave place holders to describe specific things
 - Ex. Describe what a 'physical object' is. Specific details of specific objects s.a. television, book, tree,... can be described later

Upper Ontology of the World

Categories and Objects

- We organize objects into categories
- Most of the reasoning takes place at the level of categories
- Agents can
 - Infer the presence of objects from perceptual input
 - Infer the category membership from the perceived properties
 - Use that category information to make predictions about the objects

Categories and Objects

- Representing categories in FOL
 - Predicates e.g. Basketball(b)
 - Objectse.g. Member(b, Basketballs)
- Inheritance

Subclass relations organize categories into a taxonomy

Taxonomy - the practice and science of classification

FOL Facts about Categories and Objects

- An object is a member of a category
 - \square BB₉ \subseteq Basketballs
- A category is a subclass of another category
 - □ Basketballs ⊆ Balls
- All members of a category have some property
 - \Box (x \in Basketballs) \Rightarrow Spherical (x)
- Members of a category can be recognized by some properties
 - □ Orange(x) \land Round (x) \land Diameter(x)=9.5 \land x \in Balls \Rightarrow x \in Basketballs
- A category as a whole has some properties
 - □ Dogs ∈ DomesticatedSpecies

FOL Facts about Categories and Objects

- Other relations between categories
 - Disjoint categories that have no members in common
 - Disjoint({Animals, Vegetables})
 - Exhaustive decomposition An object must belong to one of the categories
 - ExhaustiveDecomposition({Americans, Canadians, Mexicans},NorthAmericans)
 - □ Partition Disjoint exhaustive decomposition
 - □ Partition({Males, Females}, Animals)

Physical Composition

- One object can be part of another object
- Thus we define the PartOf relation
 - PartOf (Bucharest, Romania)
 - PartOf (Romania, EasternEurope)
 - PartOf (EasternEurope, Europe)
 - PartOf (Europe, Earth)
- PartOf relation is transitive and reflexive
 - □ PartOf (x, y) \land PartOf (y, z) \Rightarrow PartOf (x, z)
 - \square PartOf (x, x)

Physical Composition

 Composite object categories can be characterized by structural relations among parts

□ Biped(a)
$$\Rightarrow \exists I_1, I_2, b \text{ Leg}(I_1) \land \text{ Leg}(I_2) \land \text{ Body}(b) \land$$
PartOf (I_1, a) \land PartOf (I_2, a) \land PartOf (I_3, a) \land PartOf (I_4, a) \land Attached(I_1, b) \land Attached(I_2, b) \land

$$I_1 \neq I_2 \land [\forall I_3 \text{ Leg}(I_3) \land \text{ PartOf}(I_3, a) \Rightarrow (I_3 = I_1)]$$

☐ PartPartition — an object is composed of parts in its PartPartition

Upper Ontology of the World

Measurements

- Some objects have height, length, mass, cost, etc
- Measures values we assign to these properties
- We define abstract "measure objects"
 - Same measure object can have different names
 - □ Length(L_1)=Inches(1.5)=Centimeters(3.81)
- Quantitative measures are easy to represent
- How about measures with no agreed scale or value?
 - Poems have beauty
 - Curries have spiciness
 - Exercises have difficulty
- Objects can be ordered by these measures

Upper Ontology of the World

Substances and Objects

- Things vs stuff
 - Cat vs butter
- Count nouns and mass nouns
- How to represent stuff?
 - □ b ∈ Butter \land PartOf (p, b) \Rightarrow p ∈ Butter
- Butter vs PoundOfButter
- Intrinsic properties properties that belong to the very substance of the object
 - Colour, melting point, density
- Extrinsic properties of objects. Not retained under subdivision
 - Height, weight, length, shape

Substances and Objects

- Substance (mass noun) object definition contains only intrinsic properties
- Object (count noun) definition contains any extrinsic properties
- ☐ Stuff most general substance category
- ☐ Thing most general discrete object category

Upper Ontology of the World

- □ Action Any logical term
 - Calculus the mathematical study of change

- Forward, Turn(Right)
- Should recognize which agent is doing the action
- ☐ Fluents functions and predicates that vary across time
- Atemporal (eternal) predicates and functions
 - \square Gold(G_1)

- When there are multiple agents, actions have durations, and can overlap with each other....
- Event calculus to the rescue
 - Fluents hold at points in time
 - Reasoning is done over intervals of time
- □ T the predicate that is used to assert that a fluent is actually true at some point in time
 - □ T(At(Shiva, Colombo), t)
- T can be extended to work over intervals
 - $T(f,(t1,t2)) \Leftrightarrow [\forall t(t1 \leq t \leq t2) \Rightarrow T(f,t)]$
- Events can be described as instances of event categories
 - □ El ∈ Flyings(Shiva , Colombo, Jaffna)

- Event calculus predicates
 - T(f, t) Fluent f is true at time t
 - Happens(e, i) Event e happens over the time interval i
 - Initiates(e, f, t) Event e causes fluent f to start to hold at time t
 - Terminates(e, f, t) Event e causes fluent f to cease to hold at time t
 - Clipped(f, i) Fluent f ceases to be true at some point during time interval i
 - Restored (f, i) Fluent f becomes true sometime during time interval i

Event calculus axioms

- □ Happens(e, (t1, t2)) \land Initiates(e, f, t1) \land ¬Clipped(f, (t1, t)) \land t1 < t \Rightarrow T(f, t)
- □ Happens(e, (t1, t2)) \land Terminates(e, f, t1) \land ¬Restored (f, (t1, t)) \land t1 < t \Rightarrow ¬T(f, t)
- □ Clipped(f, (t1, t2)) $\Leftrightarrow \exists$ e, t, t3 Happens(e, (t, t3)) \land t1 \leq t < t2 \land Terminates(e, f, t)
- □ Restored (f, (t1, t2)) $\Leftrightarrow \exists$ e, t, t3 Happens(e, (t, t3)) \land t1 \leq t < t2 \land Initiates(e, f, t)

Processes

- AKA liquid events
- Different from discrete events
- Analogous to the difference between substances and objects
- Any subinterval of a process is also a member of the same process category
 - □ (e \in Processes) \land Happens(e, (t1, t4)) \land (t1 < t2 < t3 < t4) \Rightarrow Happens(e, (t2, t3))

Intervals

- Two types
 - Moments have zero duration
 - Extended intervals
 - Partition({Moments,ExtendedIntervals}, Intervals)
 - □ i∈Moments \Leftrightarrow Duration(i)=Seconds(0)
- Moments are points in a time scale
 - ☐ Time Function that delivers the point on the time scale for a moment
 - Begin function that delivers the earliest moment in an interval
 - End—function that delivers the latest moment in an interval
 - Duration function that delivers the difference between the end time and the start time

Intervals

Allen's interval relations

- Meet, Before, After, During, Overlap, Begins, Finishes, Equals
- □ Before(i, j) \Leftrightarrow End(i) < Begin(j)
- □ After $(j, i) \Leftrightarrow Before(i, j)$
- □ During(i, j) \Leftrightarrow Begin(j) < Begin(i) < End(i) < End(j)
- □ Overlap(i, j) \Leftrightarrow Begin(i) < Begin(j) < End(i) < End(j)
- □ Begins(i, j) \Leftrightarrow Begin(i) = Begin(j)
- □ Finishes(i, j) \Leftrightarrow End(i) = End(j)
- □ Equals(i, j) \Leftrightarrow Begin(i) = Begin(j) \land End(i) = End(j)

Intervals

Mental Events and Mental Objects

- Now our agents can have beliefs and infer new beliefs
- But they have no knowledge about beliefs or about deductions
- Now what we need is a model of
 - The mental objects that are in a KB
 - The mental processes that manipulate those mental objects

Mental Events and Mental Objects

- Describes the relationship between agents and mental objects
 - Propositional attitudes
 - Believes, Knows, Wants, Intends, Informs
 - Believes(Lois, Flies(Superman))
- □ (Superman = Clark) ∧ Knows(Lois , CanFly(Superman))|= Knows(Lois, CanFly(Clark))
- propositional attitudes like believes and knows, have referential opacity
- Referential transparency
 - 2 + 2 = 4
 - 4 < 5</p>