

Optimization of Surface Wave Excitation

Cameron Connolly - Electrical Engineering

April 17th, 2025

MURF 2025 Symposium

What are Surface Waves?

Electric and Magnetic Energy Traveling Along a Surface

- Stick to the surface they don't fly off into the air
- Cause coupling between antenna elements – leading to distortion of signals
- Energy trapped in surface waves don't contribute to radiated power

[1,2]

Surface Waves Affect You

Real World Impact:

Imagine a future where

- All Wi-Fi is received through Satellite
- Your phone stays connected in remote locations

Why They're Undesirable:

- Wasted energy during antenna radiation
- Surface waves interfere with other antennas on an array

[3,4]

Synthesis of Surface-Wave Launcher

1. Objective

Create a PCB that:

 Propagates a surface wave on a substrate

2. Simulation

Use electromagnetic simulation to:

 Optimize the propagation of surface waves

3. Fabrication

Milling equipment:

 In house manufacturing of the PCB using lab equipment

[1,5]

Electromagnetic Simulation

Connectors

- Substrate Rogers 6010
- SMA connectors
- Microstrip Feedline
- Matching Section

Visualization of Electric Fields

Transmission and Reflection Measurements

Vector Network Analyzer (VNA)

- Measure reflection and transmission power: scattering parameters
- Used to evaluate how electrical signals propagate through a device
- Evaluates signals by sweeping frequency

S-parameters

- Similar trends and magnitude
- Lower S_{11} ; less power is being reflected, therefore more efficient
- Higher S_{21} ; more power is making it to the output port

Measure of power reflected back towards the input port

Measure of power transmitted through the device, to the output port

Animation of E_Z

- MATLAB animations
- Animates the phase change of the electric field
- Simulation and measurements E_z are normalized to the same scale
- Plotted on the actual design
- Almost identical results!

Simulation of E_Z

Measurement of E_Z

Investigation of Electromagnetic Bandgap Materials (EBGs)

Optimal EBG structure for surface wave termination and propagation

- EBGs can stop surface waves
- Provide frequency selective behavior
- Reduce coupling of antenna array elements

Conclusion

- Researched surface waves
- Designed and simulated a surface wave launcher
- In house manufactured the launcher
- Compared simulated and measured results to confirm existence of surface waves

References

- [1] S. C. Dunkley, On the Application of Surface Waves: Redefining the Physical Layer of Communication, BEng dissertation, Dept. Electron. and Electr. Eng., Univ. of Surrey, Guildford, UK, 2016.
- [2] C. Angulo and W. Chang, "The launching of surface waves by a parallel plate waveguide," in IRE Transactions on Antennas and Propagation, vol. 7, no. 4, pp. 359-368, October 1959, doi: 10.1109/TAP.1959.1144706.
- [3] J. Foust, "Vast to use Starlink for space station broadband communications," SpaceNews, https://spacenews.com/vast-to-use-starlink-for-space-station-broadband-communications/ (accessed Apr. 11, 2025).
- [4] D. Werner, "Cesiumastro wins SDA contract for link 16 antennas," SpaceNews, https://spacenews.com/cesiumastro-wins-sda-contract-for-link-16-antennas/ (accessed Apr. 11, 2025).

References

[5] V. G. -G. Buendia, S. K. Podilchak, G. Goussetis and J. -L. Gomez-Tornero, "A TM0 surface wave launcher by microstrip and substrate integrated waveguide technology," 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 2017, pp. 3859-3862

[6] V. G. Buendía and S. K. Podilchak, "Simple surface-wave launching by parallel-plate and microstrip feeding for leaky-wave antennas and other planar guided-wave applications," 12th European Conference on Antennas and Propagation

[7] D. M. Pozar, Microwave Engineering. Hoboken, NJ: Wiley, 2012.

[8] M. Long, P. Wang, H. Fang, and W. Hu, "Progress, challenges, and opportunities for 2D material based photodetectors," Advanced Functional Materials, vol. 29, no. 19, Sep. 2018

Acknowledgements

Dr. Peter Aaen

Dr. Gaberiel Santamaria-Botello

Dr. Atef Elsherbeni

Dr. Art Morris

Jackson Willner

Connor Denney

Steffen Kross

Ethan Hansen

Questions?

Cameron Connolly Electrical Engineering

(715) 305-4276 connollyhergert@mines.edu

→ MINES.EDU

MANIPULATING SURFACE WAVES TO IMPROVE ANTENNA ARRAY PERFORMANCE