Sparse Recovery

Dhanus M Lal

April 29, 2022

■ The number of linear measurements required to completely understand a signal in \mathbb{R}^n is n.

- The number of linear measurements required to completely understand a signal in \mathbb{R}^n is n.
- If it is known that all but the first coordinate of it is zero, only one measurement, $y = \langle e_1, x \rangle$ is required.

- The number of linear measurements required to completely understand a signal in \mathbb{R}^n is n.
- If it is known that all but the first coordinate of it is zero, only one measurement, $y = \langle e_1, x \rangle$ is required.
- If we know that at most one coordinate is non-zero, can we learn the signal with fewer than *n* measurements?

- The number of linear measurements required to completely understand a signal in \mathbb{R}^n is n.
- If it is known that all but the first coordinate of it is zero, only one measurement, $y = \langle e_1, x \rangle$ is required.
- If we know that at most one coordinate is non-zero, can we learn the signal with fewer than *n* measurements?
- Interesting result is that such a signal can be recovered in $\mathcal{O}(\log n)$ measurements.

- The number of linear measurements required to completely understand a signal in \mathbb{R}^n is n.
- If it is known that all but the first coordinate of it is zero, only one measurement, $y = \langle e_1, x \rangle$ is required.
- If we know that at most one coordinate is non-zero, can we learn the signal with fewer than *n* measurements?
- Interesting result is that such a signal can be recovered in $\mathcal{O}(\log n)$ measurements.

Definition (Sparsity)

The number of non-zero coordinates of a signal in \mathbb{R}^n . Denoted by $\|x\|_0$.

■ Recover *s*–sparse signal *x* from linear measurement y = Ax, where $A \in \mathbb{R}^{m \times n}$ known.

- Recover *s*–sparse signal *x* from linear measurement y = Ax, where $A \in \mathbb{R}^{m \times n}$ known.
- Are there measurement matrices $A \in \mathbb{R}^{m \times n}$ that make recovery possible?

- Recover *s*–sparse signal *x* from linear measurement y = Ax, where $A \in \mathbb{R}^{m \times n}$ known.
- Are there measurement matrices $A \in \mathbb{R}^{m \times n}$ that make recovery possible?
- Answer is yes!

- Recover s-sparse signal x from linear measurement y = Ax, where $A \in \mathbb{R}^{m \times n}$ known.
- Are there measurement matrices $A \in \mathbb{R}^{m \times n}$ that make recovery possible?
- Answer is yes!

Proposition

If $A \in \mathbb{R}^{m \times n}$ has m > 2s and every subset of 2s columns of A is linearly independent, then sparse recovery problem has a unique solution.

- Recover s-sparse signal x from linear measurement y = Ax, where $A \in \mathbb{R}^{m \times n}$ known.
- Are there measurement matrices $A \in \mathbb{R}^{m \times n}$ that make recovery possible?
- Answer is yes!

Proposition

If $A \in \mathbb{R}^{m \times n}$ has m > 2s and every subset of 2s columns of A is linearly independent, then sparse recovery problem has a unique solution.

Proof.

If x_1 and x_2 are two *s*–sparse vectors with $Ax_1 = Ax_2$, then $A(x_1 - x_2) = 0$. Now, $x_1 \neq x_2$ would mean that a subset of 2s columns is linearly dependent.

If solution is unique, the following optimization problem gives the actual signal.

$$x = \arg \min \|x'\|_0$$
 s.t $Ax' = y$

If solution is unique, the following optimization problem gives the actual signal.

$$x = \arg\min \|x'\|_0$$
 s.t $Ax' = y$

■ Solving this is computationally hard: requires solving $\binom{n}{s}$ linear systems.

If solution is unique, the following optimization problem gives the actual signal.

$$x = \arg\min \|x'\|_0$$
 s.t $Ax' = y$

- Solving this is computationally hard: requires solving $\binom{n}{s}$ linear systems.
- Solve the convex relaxation instead

$$\hat{x} = \arg\min \|x'\|_1$$
 s.t $Ax' = y$

If solution is unique, the following optimization problem gives the actual signal.

$$x = \arg\min \|x'\|_0$$
 s.t $Ax' = y$

- Solving this is computationally hard: requires solving $\binom{n}{s}$ linear systems.
- Solve the convex relaxation instead

$$\hat{x} = \arg\min \|x'\|_1$$
 s.t $Ax' = y$

This is a convex optimization problem called basis pursuit, it is computationally efficient.

If solution is unique, the following optimization problem gives the actual signal.

$$x = \arg\min \|x'\|_0$$
 s.t $Ax' = y$

- Solving this is computationally hard: requires solving $\binom{n}{s}$ linear systems.
- Solve the convex relaxation instead

$$\hat{x} = \arg\min \|x'\|_1$$
 s.t $Ax' = y$

- This is a convex optimization problem called basis pursuit, it is computationally efficient.
- Questions:
 - How close is \hat{x} to x?
 - Exact recovery when?

Recovery using random matrices The class A

We will now sample measurement matrices from the class $\mathcal{A}(m,n)$

Definition

 $\mathcal{A}(m,n)$ is the class of random matrices in $\mathbb{R}^{m\times n}$ with isotropic, sub-gaussian, independent rows.

Recovery using random matrices The class \mathcal{A}

We will now sample measurement matrices from the class $\mathcal{A}(m,n)$

Definition

 $\mathcal{A}(m,n)$ is the class of random matrices in $\mathbb{R}^{m\times n}$ with isotropic, sub-gaussian, independent rows.

A random vector $X \in \mathbb{R}^n$ is:

Isotropic if
$$\mathbb{E}XX^T = I_n$$

Recovery using random matrices The class \mathcal{A}

We will now sample measurement matrices from the class $\mathcal{A}(m,n)$

Definition

 $\mathcal{A}(m,n)$ is the class of random matrices in $\mathbb{R}^{m\times n}$ with isotropic, sub-gaussian, independent rows.

A random vector $X \in \mathbb{R}^n$ is:

Isotropic if
$$\mathbb{E}XX^T = I_n$$

Sub-gaussian if the tail of $\langle X, x \rangle$ decays faster than some gaussian for any $x \in S^{n-1}$

Recovery using random matrices

expected ℓ_2 error

Several useful properties of A(m, n) are known.

Several useful properties of A(m, n) are known.

Theorem

Let
$$A \in \mathcal{A}(m, n)$$
, and let $E = \ker(A)$, then

$$\mathbb{E} diam(E \cap B_1^n) \leq C \sqrt{\frac{\log n}{m}}$$

Several useful properties of A(m, n) are known.

Theorem

Let $A \in \mathcal{A}(m, n)$, and let $E = \ker(A)$, then

$$\mathbb{E} diam(E \cap B_1^n) \leq C \sqrt{\frac{\log n}{m}}$$

This can be used to get

$$\mathbb{E}||x - \hat{x}||_2 \le C\sqrt{\frac{s\log n}{m}}||x||_2$$

Exact recovery for $A \in \mathcal{A}$

Another property of matrices in A.

Theorem

If $A \in \mathcal{A}(m, n)$ with $m \ge \operatorname{cs} \log n$, then $\ker(A) \cap S^{n-1} \cap 2\sqrt{s}B_1^n$ is empty with probability at least $1 - 2\exp(-cm)$.

Exact recovery for $A \in \mathcal{A}$

Another property of matrices in A.

Theorem

If $A \in \mathcal{A}(m, n)$ with $m \ge cs \log n$, then $\ker(A) \cap S^{n-1} \cap 2\sqrt{s}B_1^n$ is empty with probability at least $1 - 2\exp(-cm)$.

- From theorem, $\hat{x} = x$ with high probability provided $m \ge cs \log n$.
- Because, if $h = \hat{x} x \neq 0$, then $h/\|h\|_2 \in \ker(A) \cap S^{n-1} \cap 2\sqrt{s}B_1^n$, which is empty with high probability.

Exact recovery for $A \in \mathcal{A}$

Another property of matrices in A.

Theorem

If $A \in \mathcal{A}(m, n)$ with $m \ge cs \log n$, then $\ker(A) \cap S^{n-1} \cap 2\sqrt{s}B_1^n$ is empty with probability at least $1 - 2\exp(-cm)$.

- From theorem, $\hat{x} = x$ with high probability provided $m \ge cs \log n$.
- Because, if $h = \hat{x} x \neq 0$, then $h/\|h\|_2 \in \ker(A) \cap S^{n-1} \cap 2\sqrt{s}B_1^n$, which is empty with high probability.
- Exact recovery using basis pursuit is possible!

Definition (RIP)

A matrix A satisfies Restricted Isometry Property with parameter s if the following holds for every 3s—sparse vectors:

$$0.9\|x\|_2 \le \|Ax\|_2 \le 1.1\|x\|_2$$

Definition (RIP)

A matrix A satisfies Restricted Isometry Property with parameter s if the following holds for every 3s–sparse vectors:

$$0.9||x||_2 \le ||Ax||_2 \le 1.1||x||_2$$

 RIP implies exact recovery for s-sparse vectors. Proof of this only involves triangle inequality and Cauchy-Schwarz inequality.

Definition (RIP)

A matrix A satisfies Restricted Isometry Property with parameter s if the following holds for every 3s–sparse vectors:

$$0.9||x||_2 \le ||Ax||_2 \le 1.1||x||_2$$

- RIP implies exact recovery for s-sparse vectors. Proof of this only involves triangle inequality and Cauchy-Schwarz inequality.
- All $m \times 3s$ sub-matrices must be almost isometry: difficult condition.

Definition (RIP)

A matrix A satisfies Restricted Isometry Property with parameter s if the following holds for every 3s–sparse vectors:

$$0.9||x||_2 \le ||Ax||_2 \le 1.1||x||_2$$

- RIP implies exact recovery for s-sparse vectors. Proof of this only involves triangle inequality and Cauchy-Schwarz inequality.
- All $m \times 3s$ sub-matrices must be almost isometry: difficult condition.
- Surprisingly, $A \in \mathcal{A}(m, n)$ satisfies RIP if $m \ge cs \log n$ with high probability $(\ge 1 2 \exp(-cm))$.

Summary

 Goal: to recover sparse signal with small number of measurements.

Summary

 Goal: to recover sparse signal with small number of measurements.

■ Basis pursuit can recover sparse signal under some conditions.

Summary

 Goal: to recover sparse signal with small number of measurements.

■ Basis pursuit can recover sparse signal under some conditions.

Number of measurements depend linearly on sparsity and logarithmically on the dimension.

References

R. Vershynin High Dimensional Probability

T. Tao

Compressed Sensing: robust recovery of sparse signals from limited measurements