Probabilistic Principal Component Analysis

Hemang Jethva, Jainil Vachhani, Nand Parikh, Palash Hariyani, Parth Shah

School of Engineering and Applied Science Ahmedabad University

Abstract—Principal component analysis(PCA) is a well perceived technique for dimensionality reduction, data analysis, but a conventional PCA is not a probabilistic model. Probabilistic PCA (PPCA) model absorbs the essense of factor analysis for finding the pricipal axes of a set of observed data vectors using maximum-likelihood estimation of the latent variables's parameter. An iterative model for finding principal subspaces using EM algorithm and considering the properties of maximum-likelihood technique is proposed here. Applications of PPCA spans from simply dimensionality reduction to more complex encounters like finding principal axes for an incomplete or corrupted data matrix.

Keywords: Latent variables, PPCA, Factor Analysis, Estimation Maximization (EM).

I. FACTOR ANALYSIS

Let t be a d-dimensional vector and let x be a q-dimensional vector. Also W be a dxq-matrix which relates t and x. Let μ permits our model to have non-zero mean. ϵ is a gaussian noise modeled as $\epsilon \sim N(0, \Psi)$.Based on the above given parameters factor analysis model is defined as

$$t = Wx + \mu + \epsilon \tag{1}$$

PCA linkage to factor analysis model can be found in [1].

II. PROBABILISTIC PCA MODEL

The use of isotropic Gaussian model $N(0, \sigma^2 I)$ as ϵ in equation (1) implies that t can be conditionally recreated given probability distribution of x in t-subspace as,

$$t|x \sim N(Wx + \mu, \sigma^2 I) \tag{2}$$

$$t \sim N(\mu, WW^T + \sigma^2 I) \tag{3}$$

$$S = \frac{1}{N} \sum_{n=1}^{N} (t_n - \mu)(t_n - \mu)^T \quad (4)$$

In above given conditional model, x is normally distributed with 0 mean and I variance, such that $x \sim N(0, I)$, thus the distribution of t can be represented as equation(3)

S in equation(4) is the covariance matrix. The relation matrix W and isotropic noise's variance σ^2 are the parameters that are to be found.

A. Closed Form

[1] has mentioned a direct method for finding W and σ^2 as follows,

$$\sigma^2 = \frac{1}{d-q} \sum_{j=q+1}^{j=d} \lambda_j \tag{4}$$

$$W_{ML} = U_q (\Lambda_q - \sigma^2 I)^{1/2} R \qquad (5)$$

 U_q has the eigen vectors of S with corresponding eigen values in Λ and R is just a rotation matrix. Even [1] has acknowledged the computational efficiency of the iterative approach E-M takes which is discussed next.

B. E-M Algorithm

E-Step

$$x_{n} = (W^{T}W + \sigma^{2}I)W^{T}(t_{n} - \mu)$$
 (6)
$$x_{n}x_{n}^{T} = \sigma^{2}(W^{T}W + \sigma^{2}I) + x_{n}x_{n}^{T}$$
 (7)

M-Step

$$W = \sum_{n=1}^{N} (t_n - \mu)(x_n)^T (\sum_{n=1}^{N} x_n x_n^T)^{-1}$$
 (8)

$$\sigma^2 = \frac{1}{Nd} \sum_{n=1}^{N} ||t_n - \mu||^2 - 2x_n^T W^T (t_n - \mu) + tr(x_n x_n^T W^T W) \quad (9)$$

The E-step gives us the parameter estimation of latent variable x and M-step maximizes our parameters W and σ^2

III. RESULTS

Table discusses the computational time using both the approach, where we can see E-M clearly performs better.

PPCA		PPCA-EM	
q	Time	q	Time
25	182.412	25	12.77
50	216.256	50	12.72
100	239.726	100	12.81
200	265.08	200	12.91

REFERENCES

 Tipping, M. E., and C. M. Bishop. Probabilistic Principal Component Analysis. Journal of the Royal Statistical Society. Series B (Statistical Methodology), Vol. 61, No.3, 1999, pp. 611622.