Tredécima lista de exercícios

Distância de ponto a reta. Ângulo entre retas. Circunferências. Seções cônicas.

- 1. Determine a projeção ortogonal de P(-4,4) sobre a reta r: y = -x/3. Dica: escreva a equação da reta s que é perpendicular a r e passa por P e, então, determine o ponto de interseção das retas.
- 2. Determine a distância entre o ponto P e a reta r em cada um dos casos abaixo.
 - (a) P(1,-1) e r : x + 2y = 3;
 - (b) P(-2,0) e r: 3x 2y 6 = 0;
 - (c) P(1,4) e r : y = 3x + 1;
 - (d) P(0,0) e r : y = x 5;
- 3. Seja dado o triângulo ABC cujos vértices têm coordenadas A(0,3), B(2,1) e C(4,5).
 - (a) Usando determinantes, encontre a área do triângulo.
 - (b) Determine a equação da reta suporte ao lado AB do triângulo.
 - (c) Determine a altura do triângulo com relação ao lado AB.
 - (d) Determine a medida do lado AB.
 - (e) Determine a área do triângulo usando os valores encontrados em (c) e (d).
- 4. Dados os pontos A(3,4), B(5,2) e C(k,k), determine os valores de k que fazem com que a área do triângulo ABC seja igual a 9.
- 5. A figura abaixo mostra um triângulo retângulo com vértices A(1,0), B(7,2) e $C(x_C,y_C)$. Responda as perguntas abaixo, sabendo que o lado AC faz um ângulo de 60° com a horizontal.
 - (a) Determine a equação da reta AB.
 - (b) Determine a equação da reta AC.
 - (c) Determine a equação da reta BC.
 - (d) Determine a distância entre o ponto D(1,3) e a reta AB.

- 6. Determine a distância entre as retas paralelas x - 3y + 4 = 0 e x - 3y - 6 = 0.
- 7. Determine a distância entre as retas paralelas 2x - 6y - 4 = 0 e -x/2 + 3y/2 + 1 = 0.
- 8. Uma reta s está a uma distância de 2 unidades da reta r: 4x 3y = 6. Determine as duas equações possíveis para s.
- 9. Determine a altura do trapézio ABCD, em que A(2,0), B(0,1), C(1,2) e D(5,0). Dica: Comece determinando os lados paralelos do trapézio.
- 10. Um ponto $P(x_P, 2)$ do primeiro quadrante está a uma distância de $\sqrt{2}$ unidades da reta x y = -1. Determine o valor de x_P .
- 11. De um retângulo ABCD, definido no plano Cartesiano, conhecemos os vértices A(4,0) e B(0,2).
 - (a) Determine a equação da reta suporte ao lado AB.
 - (b) Determine a equação da reta suporte ao lado AD.
 - (c) Determine as coordenadas do ponto D, sabendo que ele pertence ao primeiro quadrante e que o lado AD mede $\sqrt{5}$.
 - (d) Determine o ângulo compreendido entre o lado AB e o eixo horizontal.
- 12. De um losango ABCD, definido no plano Cartesiano, conhecemos os vértices A(0,0), B(-1,3) e C(2,4).

- (a) Desenhe os pontos em um gráfico, bem como a diagonal AC do losango.
- (b) Determine o comprimento do lado AB do losango.
- (c) Determine a equação da reta suporte à diagonal AC.
- (d) Calcule a distância entre B e a diagonal AC.
- (e) Determine a equação da reta que passa por B e é perpendicular à diagonal AC.
- (f) Lembrando-se de que as diagonais do losango são perpendiculares, desenhe a diagonal BD.
- (g) Determine a equação da reta que é paralela ao lado AB e passa por C.
- (h) Desenhe o lado CD e determine, geometricamente, o ponto D.
- 13. De um losango ABCD, definido no plano Cartesiano, conhecemos os vértices A(2,0) e C(6,8), como mostra a figura.

- (a) Determine a equação da reta suporte à diagonal AC.
- (b) Determine a equação da reta suporte à diagonal *BD*.
- (c) Escreva a **equação geral** da reta suporte ao lado AD.
- (d) Determine a distância entre o ponto E e o lado AD.
- 14. Determine o ângulo agudo formado pelas retas 3x y + 2 = 0 e 6x + 4y 6 = 0
- 15. Determine o ângulo agudo formado pelas retas x 2y 1 = 0 e x/2 + y 4 = 0

- 16. Determine as equações das retas que passam pelo ponto P(-1,1) e formam um ângulo de 45° com a reta y=-2x+4.
- 17. A figura abaixo mostra o simbolo de uma loja de produtos esportivos.

- (a) Determine a equação da reta AD.
- (b) Determine a inclinação da reta CD.
- (c) Determine a equação da reta BC.
- (d) Determine a equação da reta AB.
- (e) Determine o ângulo agudo formado pelas retas AD e AB.
- (f) Determine as coordenadas do ponto B.
- 18. João desenhou um catavento no plano Certesiano, como mostra a figura.

- (a) Determine a equação da reta suporte ao segmento DF.
- (b) Determine a equação da reta suporte ao segmento CE, sabendo que esse segmento é perpendicular a DF.
- (c) Determine a equação da reta suporte ao segmento AB, que é paralelo a DF.
- (d) Determine as coordenadas do ponto G.
- (e) Determine o ângulo entre os segmentos BD e DF.

19. A figura abaixo mostra um triângulo retângulo e as coordenadas de dois de seus vértices.

- (a) Determine a equação da reta suporte ao segmento AB.
- (b) Determine a equação da reta suporte ao segmento AC.
- (c) Determine o ângulo agudo entre os segmentos AB e AC.
- (d) (Determine a equação da reta suporte ao segmento BC.
- (e) Determine a distância entre o ponto B e a reta AC.
- A figura mostra as ruas retas de uma cidade, cujo mapa foi traçado sobre o plano Cartesiano.

- (a) Determine a equação da R. Chile. Escreva essa equação na forma geral.
- (b) Determine a equação da R. Uruguai.
- (c) Determine a equação da R. Argentina.
- (d) Determine o ângulo que a Av. Brasil faz com o eixo horizontal.
- (e) Determine o ângulo entre as ruas Chile e Brasil.
- (f) Determine a distância entre o ponto C e a rua Chile.

3

21. A figura abaixo mostra um pentágono e as coordenadas de alguns de seus vértices.

- (a) Determine a equação da reta AB.
- (b) Determine a equação da reta AE.
- (c) Determine a equação da reta DE.
- (d) Determine a equação da reta BC.
- 22. Determine a equação da circunferência, dados o centro C e o raio r.
 - (a) C(0,0) e r=8;
 - (b) C(1,3) e r = 5;
 - (c) C(4,-2) e r=2;
 - (d) C(-1/2, -1) e $r = \sqrt{3}$.
- 23. Determine a equação da circunferência que tem centro em C(2,0) e passa pelo ponto P(5,4).
- 24. Determine a equação da circunferência que tem centro em C(3,-2) e passa pelo ponto P(1,-8).
- 25. Determine o raio e as coordenadas do centro das circunferências cujas equações são dadas abaixo.
 - (a) $x^2 + y^2 = 10$;
 - (b) $x^2 6x + y^2 8y + 9 = 0$;
 - (c) $x^2 + y^2 4y = 0$;
 - (d) $x^2 + 2x + y^2 + 6y + 9 = 0$.

Dica: para resolver esse exercício, em lugar de "completar os quadrados", você pode comparar cada equação com a forma $x^2 - 2x_0x + y^2 - 2y_0y + (x_0^2 + y_0^2 - r^2)$ e descobrir, pela ordem, os valores de x_0 , y_0 e r.

26. Determine os valores de k que fazem com que a equação $x^2-2x+y^2-2y+k=0$ represente uma circunferência.

- 27. Verifique quais dos pontos R(-1,3), S(3,3), T(2,1), $U(4,1+\sqrt{2})$, V(2,-1), W(5,-2) e Z(6,3) são interiores, exteriores ou pertencem à circunferência $(x-5)^2+(y-1)^2=9$.
- 28. Determine a posição relativa entre reta e circunferência em cada um dos casos abaixo.
 - (a) x + y 3 = 0 e $x^2 + y^2 = 9$;
 - (b) x + 2y 8 = 0 e $(x 3)^2 + y^2 = 5$;
 - (c) -3x+y-5=0 e $(x-2)^2+(y-1)^2=6$.
- 29. Determine, caso existam, os pontos de interseção de cada reta e circunferência abaixo.
 - (a) y+1=0 e $(x-1)^2+(y+2)^2=1$;
 - (b) x + y 6 = 0 e $x^2 + (y 2)^2 = 10$;
 - (c) 2x-y-2=0 e $(x+1)^2+(y-1)^2=3$.
- 30. Seja C(1,0) o centro de uma circunferência de raio 3.
 - (a) Escreva a equação da circunferência.
 - (b) Determine os pontos A e B que estão na interseção da circunferência com a reta y = 2x + 1.
- 31. Resolvendo um sistema, determine os pontos de interseção entre r: y = 2x + 1 e a circunferência de centro em C(3,2) e raio 5.
- 32. Determine os valores de k para os quais a reta 2x-y-4=0 intercepta a circunferência $x^2+y^2=k$ em exatamente dois pontos.
- 33. Determine a equação da reta tangente à circunferência $(x-1)^2 + (y-1)^2 = 13$ no ponto P(3,4).
- 34. Determine as equações das retas que são tangentes à circunferência $(x-1)^2+(y+1)^2=5$ e paralelas a y=-x/2. Dica: determine os valores de k tais que y=-x/2+k seja tangente à circunferência, ou seja que a distância entre y=-x/2+k e o centro da circunferência seja igual ao raio desta.
- 35. Determine as equações das retas que passam pelo ponto P(3,4) e são tangentes à circunferência $(x-1)^2 + y^2 = 10$.

- 36. Seja dado o ponto O(3,0) e a reta r:3x-4y+6=0. Determine a distância de O à reta, bem como a equação da circunferência que tem centro em O e é tangente a r.
- 37. Determine a equação da circunferência que tem centro no ponto C(-2,2) e é tangente à reta -2x + 4y + 3 = 0.
- 38. Determine a equação da circunferência que tem centro em C(-2,6) e é tangente à reta y = -3x + 5.
- 39. Determine a área do triângulo formado pelos eixos coordenados e pela reta tangente à circunferência $x^2 + y^2 = 25$ no ponto (-4,3). Dica: faça um desenho ilustrando a situação.
- 40. Sejam dadas a reta x 3y + 2 = 0 e a circunferência $x^2 + y^2 = 2$.
 - (a) Determine os pontos de interseção entre a reta e a circunferência.
 - (b) Forneça um ponto da reta que seja interior e outro que seja exterior à circunferência.
- 41. Sejam dados os pontos C(0,-2) e P(3,2), bem como a reta r:3y-x-4=0.
 - (a) Determine a equação da circunferência que tem centro em C e passa por P.
 - (b) Determine a equação da circunferência que tem centro em C e é tangente a r.
- 42. Sejam dados os pontos C(2,4) e P(-1,8), bem como a reta r: x-y+3=0.
 - (a) Determine a equação da circunferência que tem centro em C e passa por P.
 - (b) Determine os pontos de interseção dessa circunferência com a reta r.
- 43. Dados os pontos P(-3,0), Q(2,-10) e D(2,-4).
 - (a) Determine a equação da reta r que passa por $P \in Q$.
 - (b) Determine a equação da circunferência c, com centro em D e raio 3.
 - (c) Determine a distância entre $r \in D$.
 - (d) Resolvendo um sistema, determine os pontos de interseção da reta r com a circunferência c.

- 44. Dados os pontos A(1,-3), B(-1,5) e C(5,1).
 - (a) Determine a equação da circunferência com centro em C e raio 5.
 - (b) Determine a equação da reta que passa por $A \in B$.
 - (c) Determine a distância do ponto C à reta do item (b).
 - (d) Determine os pontos de interseção da circunferência do item (a) com a reta do item (b).
- 45. Seja C(3,-1) o centro de uma circunferência de raio 2.
 - (a) Escreva a equação da circunferência.
 - (b) Determine os pontos A e B, que estão na interseção da circunferência com a reta y = x 2.
 - (c) Determine a distância de C à reta.
 - (d) Determine a distância de A a B.
- 46. Uma circunferência tem centro em O(2,0) e passa pelo ponto P(10,6)
 - (a) Determine a equação da circunferência.
 - (b) Determine os pontos de interseção da circunferência com a reta y = 2x.
- 47. Sejam dados os pontos O(-2,0) e P(4,3).
 - (a) Escreva a equação da circunferência que tem centro em *O* e passa por *P*.
 - (b) Determine os pontos A e B, que estão na interseção da circunferência com a reta y = x - 7.
- 48. Sejam dadas a reta y = 3x 11 e a circunferência com centro em O(2, -1) e raio 4.
 - (a) Determine, caso existam, os pontos de interseção da circunferência com a reta.
 - (b) Determine a distância da reta ao centro da circunferência.
- 49. Uma circunferência C tem centro em O(-3,1) e passa pelo ponto P(2,-4).
 - (a) Determine a equação da circunferência.

- (b) Determine a equação da reta r que passa por $O \in P$.
- (c) Determine a equação da reta que tangencia a circunferência no ponto P.
- (d) Determine o outro ponto de r que está sobre a circunferência C.
- 50. Dados os pontos A(2,10), B(-3,-5) e C(-2,1).
 - (a) Determine a equação da reta que passa por A e B.
 - (b) Determine a equação da reta que é perpendicular ao segmento AB e passa por C.
 - (c) Determine a equação da circunferência com centro em C e raio 3.
 - (d) Determine os pontos de interseção da circunferência do item (c) com a reta que passa por $A \in B$ (vide o item(a)).
 - (e) Determine a distância de C à reta que passa por A e B.
- 51. Sejam dados os pontos A(10,0), B(2,6) e C(6,8), que estão no plano Cartesiano.
 - (a) Determine a equação da reta que passa por A e B. Escreva essa equação na forma geral.
 - (b) Determine a equação da reta perpendicular ao segmento AB, passando por C.
 - (c) Determine a distância entre o segmento AB e o ponto C.
 - (d) Determine a equação da circunferência com centro em C e tangente ao segmento AB.
 - (e) Determine a área do triângulo que tem vértices $A, B \in C$.
- 52. Com base na figura, responda as questões abaixo.

- (a) Determine a equação da reta que passa por $A \in C$.
- (b) Determine a equação da reta que passa por $A \in D$.
- (c) Determine as coordenadas de D.
- (d) Determine a equação da circunferência.
- (e) Determine as coordenadas de B.
- 53. A figura abaixo mostra o número 9 desenhado no plano Cartesiano. Responda as questões sabendo que a parte inferior do 9 está sobre a reta $y = \frac{4}{3}x$ e o centro da circunferência superior é o ponto O(-1,7)

- (a) Determine a distância de O à reta.
- (b) Escreva a equação da circunferência.
- (c) Determine o ponto de interseção da reta com a circunferência.
- 54. A figura a seguir mostra uma circunferência de raio $\sqrt{13}$ e centro em B, e dois segmentos de reta que são perpendiculares.
 - (a) Determine a equação da reta suporte ao segmento AB.
 - (b) Determine a equação da reta suporte ao segmento BC.
 - (c) Determine os pontos de interseção da circunferência com a reta do item (a).

55. Determine a equação e esboce a elipse de focos $F_1(-4,0)$ e $F_2(4,0)$ e cujo eixo menor tem um extremo em (0,3).

- 56. Determine a equação e esboce a elipse de focos $F_1(0,-1)$ e $F_2(0,1)$ e cujo eixo menor tem um extremo em (1,0).
- 57. Determine a equação da elipse cujo eixo maior é horizontal e mede 12, cujo eixo menor mede 8 e que está centrada no origem.
- 58. Determine a equação da elipse cujo eixo maior é vertical e mede 15, cujo eixo menor mede 7 e que está centrada no origem.
- 59. Determine as coordenadas dos focos das elipses cujas equações são dadas abaixo.

(a)
$$\frac{x^2}{16} + \frac{y^2}{9} = 1;$$

(b)
$$\frac{x^2}{6} + \frac{y^2}{10} = 1;$$

(c)
$$\frac{2}{5}x^2 + 9y^2 = 100$$
.

60. Determine a equação e esboce o gráfico das hipérboles cujos focos $(F_1 \ e \ F_2)$ e vértices $(A_1 \ e \ A_2)$ são dados abaixo.

(a)
$$F_1(-3,0)$$
, $F_2(3,0)$, $A_1(-1,0)$, $A_2(1,0)$;

(b)
$$F_1(0,-5)$$
, $F_2(0,5)$, $A_1(0,-3)$, $A_2(0,3)$.

- 61. Determine a equação da hipérbole de eixo real horizontal, com focos $F_1(-3,0)$ e $F_2(3,0)$, e que passa pelo ponto P(2,1).
- 62. Determine as coordenadas dos focos da hipérbole cuja equação é $\frac{x^2}{144}-\frac{y^2}{25}=1.$
- 63. Determine as equações das assíntotas das hipérboles do Exercício 60. Trace as assíntotas nos gráficos correspondentes.
- 64. Para cada item abaixo, determine a equação e esboce a parábola de foco F e diretriz d.

(a)
$$F(-4,0)$$
 e $d: x = 4$;

(b)
$$F(3,0)$$
 e $d: x = -3$;

(c)
$$F(0,2)$$
 e $d: y = -2$;

(d)
$$F(0,-1)$$
 e $d:y=1$.

65. Determine o foco, o vértice e a diretriz das parábolas definidas pelas equações abaixo.

(a)
$$x^2 = 20y$$
;

(b)
$$y^2 = -6x$$
.

6

Respostas

1.
$$\left(-\frac{24}{5}, \frac{8}{5}\right)$$
.

2. a.
$$4\sqrt{5}/5$$
; b. $12\sqrt{13}/13$; c. 0; d. $5\sqrt{2}/2$.

3. a. 6; b.
$$x + y - 3 = 0$$
; c. $3\sqrt{2}$; d. $2\sqrt{2}$; e. 6.

4.
$$k = 8$$
 ou $k = -1$.

5. a.
$$y = \frac{x}{3} - \frac{1}{3}$$
; b. $y = \sqrt{3}x - \sqrt{3}$; c. $y = -3x + 23$; $9/\sqrt{10}$.

6.
$$\sqrt{10}$$

8.
$$4x - 3y - 16 = 0$$
 ou $4x - 3y + 4 = 0$

9.
$$3\sqrt{5}/5$$
.

10.
$$x = 3$$
.

11. a.
$$y = -\frac{x}{2} + 2$$
; b. $y = 2x - 8$;
c. $D(5, 2)$; d. $\alpha = -26, 57^{\circ}$

12. a. ... b.
$$\sqrt{10}$$
; c. $y = 2x$; d. $\sqrt{5}$; e. $y = -\frac{x}{2} + \frac{5}{2}$; f. ... g. $y = 3x + 10$; h. ...

13. a.
$$y = 2x - 4$$
; b. $y = -\frac{x}{2} + 6$;
c. $\frac{\sqrt{3}}{3}x - y - \frac{2\sqrt{3}}{3} = 0$; d. $2\sqrt{3} - 1$.

14.
$$\theta = arctan(9/7) \approx 52,125^{\circ}$$
.

15.
$$\theta = arctan(4/3) \approx 53, 13^{\circ}$$
.

16.
$$y = -x/3 + 2/3$$
 e $y = 3x + 4$.

17. a.
$$y = \frac{2}{3}x$$
; b. $m_{CD} = \frac{9}{7}$;
c. $y - 3 = -\frac{3}{2}(x - 11)$; d. $y = \frac{9}{7}x$;
e. $\theta = \arctan(1/3) \approx 18,43^{\circ}$; f. $(7,9)$.

18. a.
$$y = -\frac{x}{5} + \frac{6}{5}$$
; b. $y = 5x - 4$;
c. $y = -\frac{x}{5} + \frac{26}{5}$; d. $(1, 1)$; e. $42, 27^{\circ}$.

19. a.
$$y = -\frac{3}{5}x + \frac{14}{5}$$
; b. $y = \frac{x}{4} + \frac{9}{2}$; c. 45°; d. $y = \frac{5}{3}x - 4$; e. $\sqrt{17}$.

20. a.
$$\frac{x}{2} + y - \frac{9}{2} = 0$$
; b. $y - 3 = 2(x - 10)$; c. $y - 3 = -\frac{1}{2}(x10)$; d. 56, 31°; e. 82, 87°; f. $7/\sqrt{5}$.

21. a.
$$y-3 = \frac{1}{3}(x-8)$$
; b. $y-1 = -3(x-2)$; c. $y-9 = \frac{1}{3}(x-6)$; d. $y-3 = 7(x-8)$.

22. a.
$$x^2 + y^2 = 64$$
;
b. $(x-1)^2 + (y-3)^2 = 25$;
c. $(x-4)^2 + (y+2)^2 = 4$;
d. $(x+1/2)^2 + (y+1)^2 = 3$.

23.
$$(x-2)^2 + y^2 = 25$$
.

24.
$$(x-3)^2 + (y+2)^2 = 40$$
.

25. a.
$$C(0,0)$$
, $r = \sqrt{10}$;
b. $C(3,4)$, $r = 4$;
c. $C(0,2)$, $r = 2$;
d. $C(-1,-3)$, $r = 1$.

26.
$$k < 2$$
.

27. Interiores: S e Z. Exteriores: R e V. Pertencentes à circunferência: T, U e W.

30. a.
$$(x-1)^2 + y^2 = 9$$
;
b. $(1,3)$ e $(-1,4;-1,8)$

31.
$$(3,7)$$
 e $(-1,-1)$.

32.
$$k > 16/5$$
.

33.
$$y = -\frac{2}{3}x + 6$$
.

34.
$$x/2 + y + 3 = 0$$
 e $x/2 + y - 2 = 0$.

35.
$$(y-3) = x/3$$
 e $(y-1) = -3(x-4)$.

36.
$$d = 3$$
; $(x - 3)^2 + y^2 = 9$.

37.
$$(x+2)^2 + (y-2)^2 = \frac{45}{4}$$
.

38.
$$(x-2)^2 + (y+6)^2 = \frac{5}{2}$$
.

39. A reta é
$$(y-3) = \frac{4}{3}(x+4)$$
.
Os vértices são $(0,0)$, $(0,\frac{25}{3})$ e $(-\frac{25}{4},0)$.
A área é $625/24$.

40. a. $\left(-\frac{7}{5}, \frac{1}{5}\right)$ e (1,1); b. Interior: qualquer ponto tal que $x^2+y^2<2$. Exterior: qualquer ponto tal que $x^2+y^2>2$.

41. a.
$$x^2 + (y+2)^2 = 25$$
; b. $x^2 + (y+2)^2 = 10$.

42. a.
$$(x-2)^2 + (y-4)^2 = 25$$
;
b. $(5,8) e(-2,1)$.

43. a.
$$y = -2(x+3)$$
; b. $(x-2)^2 + (y+4)^2 = 9$; c. $\frac{6}{\sqrt{5}}$; d. $(-1, -4)$ e $(\frac{1}{5}, -\frac{32}{5})$

- $\begin{array}{lll} 44. & \text{a.} & (x-5)^2+(y-1)^2=25;\\ & \text{b.} & y=-4x+1;\\ & \text{c.} & 20/\sqrt{17}; & \text{d.} & (0,1) & \text{e.} & (\frac{10}{17},-\frac{23}{17}). \end{array}$
- 45. a. $(x-3)^2 + (y+1)^2 = 4$; b. (1,-1) e (3,1) c. $\sqrt{2}$; d. $2\sqrt{2}$
- 46. a. $(x-2)^2 + y^2 = 100$; b. $(\frac{24}{5}, \frac{48}{5})$ e (-4, -8).
- 47. a. $(x+2)^2 + y^2 = 45$; b. (4, -3) e(1, -6).
- 48. a. $(\frac{22}{5}, \frac{11}{5})$ e (2, -5); b. $4/\sqrt{10}$.
- 49. a. $(x+3)^2 + (y-1)^2 = 50$; b. y = -x-2; c. y = x-6; d. (-8,6).
- 50. a. y = 3x + 4; b. $y = -\frac{x}{3} + \frac{1}{3}$; c. $(x+2)^2 + (y-1)^2 = 9$; d. $(-\frac{1}{5}, \frac{17}{5})$ e (-2, -2); e. $\frac{3\sqrt{10}}{10}$
- 51. a. 3x + 4y 30 = 0; b. $y = \frac{4x}{3}$; c. 4; d. $(x 6)^2 + (y 8)^2 = 16$; e. 20.
- 52. a. $y-4=-\frac{3}{4}x$; b. $y-1=\frac{4}{3}(x-4)$; c. (13/4,0); d. $x^2+(y-4)^2=9$; e. (12/5,11/5).
- 53. a. 5; b. $(x+1)^2 + (y-7)^2 = 25$; c. (3,4).

- 54. a. $y = \frac{2}{3}x$; b. $y = -\frac{3}{2}x + \frac{13}{x}$; c. (0,0) e (6,4).
- $55. \ \frac{x^2}{25} + \frac{y^2}{9} = 1.$
- 56. $x^2 + \frac{y^2}{2} = 1$.
- 57. $\frac{x^2}{36} + \frac{y^2}{16} = 1$.
- $58. \ \frac{4x^2}{225} + \frac{4y^2}{49} = 1.$
- 59. a. $F_1(-\sqrt{7},0)$, $F_2 = (\sqrt{7},0)$. b. $F_1(0,-2)$, $F_2 = (0,2)$. c. $F_1(0,-8/3)$, $F_2 = (0,8/3)$.
- 60. a. $x^2 \frac{y^2}{8} = 1$. b. $\frac{y^2}{16} - \frac{y^2}{9} = 1$.
- 61. $\frac{x^2}{6} \frac{y^2}{3} = 1$.
- 62. $F_1(-13,0), F_2 = (13,0).$
- 63. a. $y = -2\sqrt{2}x$ e $y = 2\sqrt{2}x$. b. $y = -\frac{4}{3}x$ e $y = \frac{4}{3}x$.
- 64. a. $y^2 = -16x$. b. $y^2 = 12x$. c. $x^2 = 8y$. d. $x^2 = -4y$.
- 65. a. F(0,5), V(0,0), d: y = -5. b. F(-3/2,0), V(0,0), d: x = 3/2.