Tugas Besar Bagian A IF3270 Machine Learning Semester 2 tahun 2021/2022

Implementasi Forward Propagation untuk FFNN

Oleh:

Syihabuddin Yahya Muhammad (13519149) Rolland Steven Supardi (13519173) Muhammad Furqon (13519184)

Ahmad Saladin (13519187)

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung
2022

1. Implementasi

Implementasi yang dilakukan dalam penerapan Forward Propagation untuk Forward Feeding Neural Network adalah implementasi dengan menggunakan program Python. Implementasi dibuat dengan menggunakan Jupyter Notebook dalam sebuah notebook ipynb dengan model yang dibangun dari file konfigurasi. Fungsi aktivasi yang dikenali adalah linear, sigmoid, ReLU, dan softmax.

Implementasi dibuat memanfaatkan 3 kelas sebagai berikut.

a. Neuron

Kelas Neuron menggambarkan neuron tiap layer yang mengandung bobot dan fungsionalitas untuk menghitung nilai net. Kelas Neuron memiliki Atribut dan method sebagai berikut.

Atribut	Deskripsi
bobot	Array of number berisi kumpulan bobot yang akan dikalikan dengan input dalam rangka menghitung nilai net
netValue	Nilai net sebagai sum of product antara bobot dengan input

Method	Deskripsi
init(self, bobot)	Constructor kelas Neuron yang menerima array berupa bobot untuk inisialisasi
hitungValue(self, input)	Method untuk menghitung nilai net berupa operasi sum of product antara elemen array bobot dan input
getNetValue(self)	Getter untuk memperoleh nilai net
printNeuron(self)	Method untuk mencetak array bobot ke layar

b. Layer

Kelas Layer menggambarkan layer pada model FFNN. Batasan yang diberikan adalah setiap layer memiliki fungsi aktivasi yang sama sedangkan antar layer fungsi aktivasi dapat berbeda. Kelas Layer memiliki Atribut dan method sebagai berikut.

Atribut	Deskripsi
neurons	Sebuah array yang berisi Neuron penyusun layer
output	Sebuah array of number yang berisi hasil output dari setiap neuron
aktivasi	Jenis fungsi aktivasi yang digunakan pada layer dapat berupa sigmoid, linear, RELU, dan softmax
bias	Atribut yang melambangkan input bias dari layer, selalu bernilai 1.

Method	Deskripsi
init(self, aktivasi: Activation)	Method untuk menginisiasi sebuah layer yang belum memiliki Neuron
addNeuron(self, neuron: Neuron)	Method untuk menambahkan sebuah Neuron ke dalam layer
hitungOutput(self, layerInput)	Method untuk menghitung nilai output berupa operasi fungsi aktivasi setiap neuron pada layer
printLayer(self)	Method untuk mencetak informasi array neuron ke layar
getOutput(self)	Getter untuk memperoleh nilai output

c. FFNN

Kelas FFNN menggambarkan model FFNN. Kelas FFNN memiliki Atribut dan method sebagai berikut.

Atribut	Deskripsi
List of layer	Sebuah array yang berisi layer-layer penyusun model. Layer tersebut terdiri atas hidden layer dan output layer

Method	Deskripsi
Read file/konstruktor	Fungsi yang menerima sebuah string

	berisikan file konfigurasi yang akan dibaca. Akan menghasilkan sebuah objek FFNN yang dapat langsung digunakan untuk prediksi
addLayer	Fungsi yang menerima sebuah objek Layer dan akan menambahkannya pada list of layer sebagai elemen terakhir
predict	Fungsi yang menerima sebuah array yang merupakan input layer kemudian menggunakan model yang tersimpan untuk mengembalikan sebuah array output value
predictBatch	Fungsi yang menerima sebuah matriks yang merupakan beberapa input layer kemudian menggunakan model yang tersimpan untuk mengembalikan sebuah matriks output value
printModel	Fungsi yang mencetak model yang tersimpan pada objek

File konfigurasi yang dibuat memiliki format sebagai berikut.

```
[Jumlah hidden layer + output]
[fungsi aktivasi] [jumlah neuron] {fungsi aktivasi dan jumlah neuron layer ke-1}
[a b c d] {bobot pada neuron pertama}
[e f g h] {bobot pada neuron kedua}
[fungsi aktivasi] [jumlah neuron] {fungsi aktivasi dan jumlah neuron layer ke-2}
[a b c d] {bobot pada neuron pertama}
[e f g h] {bobot pada neuron kedua}
```

File konfigurasi untuk XOR Sigmoid model adalah sebagai berikut.

```
2
sigmoid 2
-10 20 20
30 -20 -20
sigmoid 1
-30 20 20
```

File konfigurasi untuk XOR Sigmoid model adalah sebagai berikut.

```
2
RELU 2
0 1 1
-1 1 1
linear 1
0 1 -2
```

2. Hasil Pengujian

a. XOR RELU + Linear Model

```
Membaca
Model
                    ffnn = FFNN("XORRelu.txt")
                    ffnn.printModel()
                  ✓ 0.7s
                 Layer 1:
                 Fungsi Aktivasi: RELU
                 Neuron 1: [0, 1, 1]
                 Neuron 2: [-1, 1, 1]
                 Layer 2:
                 Fungsi Aktivasi: linear
                 Neuron 1: [0, 1, -2]
Prediksi 1
Instance
                     #satu instance
                     ffnn.predict([0,0])
                  ✓ 0.7s
                 [0]
```

b. XOR Sigmoid Model

```
Membaca
Model
                        ffnn = FFNN("XORSigmoid.txt")
                        ffnn.printModel()
                      ✓ 0.7s
                     Layer 1:
                     Fungsi Aktivasi: sigmoid
                     Neuron 1: [-10, 20, 20]
                     Neuron 2: [30, -20, -20]
                     Layer 2:
                     Fungsi Aktivasi: sigmoid
                     Neuron 1: [-30, 20, 20]
Prediksi 1
Instance
                             ffnn.predict([0,0])
                           ✓ 0.4s
                          [0]
Prediksi Batch
                   ffnn.predictBatch([[0,0], [1,1], [1,0], [0,1]])
                ✓ 0.7s
                [[0.0], [0.0], [1.0], [1.0]]
```

3. Perbandingan dengan Perhitungan Manual

a. XOR (SIGMOID MODEL)

x0	x 1	x2	f	Σh1	h1	Σh2	h2	Σy	y
1	0	0	0	-10	0.00	30	1.00	-10.00	0.00
1	0	1	1	10	1.00	10	1.00	10.00	1.00
1	1	0	1	10	1.00	10	1.00	10.00	1.00
1	1	1	0	30	1.00	-10	0.00	-10.00	0.00

b. XOR (RELU & LINEAR)

X	0	0	
	0	1	
	1	0	
	1	1	
Wxh	1	1	
	1	1	
С	0		
	-1		
			h = RELU(X*Wxh+c) =
h	0	0	h = RELU(X*Wxh+c) = max(0,XW+C)
h	0	0	h = RELU(X*Wxh+c) = max(0,XW+C)
h			h = RELU(X*Wxh+c) = max(0,XW+C)
h	1	0	h = RELU(X*Wxh+c) = max(0,XW+C)
h	1	0	h = RELU(X*Wxh+c) = max(0,XW+C)
h Why	1	0	h = RELU(X*Wxh+c) = max(0,XW+C)
	1 1 2	0	h = RELU(X*Wxh+c) = max(0,XW+C)
	1 1 2	0	h = RELU(X*Wxh+c) = max(0,XW+C)
	1 1 2	0	h = RELU(X*Wxh+c) = max(0,XW+C)
Why	1 1 2 1 -2	0	h = RELU(X*Wxh+c) = max(0,XW+C)

у	0	y = h*Why+b
	1	
	1	
	0	

Jika dibandingkan, hasil perhitungan yang dilakukan oleh program memberikan hasil yang sama dengan perhitungan secara manual.

4. Pembagian Tugas

Nama	NIM	Tugas
Syihabuddin Yahya Muhammad	13519149	Membuat Kelas FFNN, Laporan, Pengujian
Rolland Steven Supardi	13519173	Membuat Kelas Neuron, Laporan, Pengujian
Muhammad Furqon	13519184	Membuat Fungsi Aktivasi, Laporan, Pengujian
Ahmad Saladin	13519187	Membuat Kelas Layer, Laporan, Pengujian