Overfitting and regularization;

$$\mathcal{L}(\theta) := \frac{1}{2} \sum_{i=1}^{n} (f_{\theta}(x_{i}) - y_{i})^{2}$$

$$\theta := \{w^{(i)}, b^{(i)}, \dots, w^{(i)}, b^{(i)}, w^{(i)}, b^{(i)}\}$$

1.) Early stopping;

Idea: Monitor the validation loss and stop the training early (as soon as the training the validation loss stops to diverge).

I training the validation loss stops to diverge?

9.)
$$|| ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{MAP}} \text{ estimation} \right)$$

$$2.) || ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) || ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) || ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) || ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) || ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) || ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) || ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) || ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) || ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) || ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) || ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) |||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) |||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$2.) ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$3.) ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$4.) ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$4.) ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$4.) ||_{1} / ||_{2} - \text{parameter regularization} \left(\frac{\text{MAP}}{\text{model complexity}} \right)$$

$$4.)$$

Recall: H = f (H(e-1) W(e) + b(e))

$$\Gamma_j^{(e)} \sim \text{Bernalli}(p)$$
, $j=1,\ldots,Q^{(e)}$: # of neurons in the e-th layer

4.) Data augmentation (classification tooks)

Dota augmontation

We twork initialization:

$$X = \frac{X - E[X]}{S + d[X]}$$
 $A: u \in \{X, Y\}$ is a "standardized" data-set : $E[X] = 0$, $Var = 1$
 $E[Y] = 0$, $Var = 1$

Cinear regression:
$$Y = W_i X_i + \dots + W_d X_{d_m}$$
, W_i ore zero-mean.

War [$w_i x_i$] = $E[x_i]^2 Var[w_i] + E[w_i]^2 Var[x_i] + Var[w_i] Var[$

i.i.d.

Var[Y] = d_i . $Var[x_i] Var[w_i]$

Repeat this analysis for the back-propagated gradient signal

Empirical rule for initializing W:

$$Var[Wi] = \frac{2}{d_{in} + d_{out}}$$

Glorox initialization: