

Περιεχόμενα 2ης Διάλεξης

- Στοιχεία κυκλωμάτων
- **7** Πειραματικές Μετρήσεις
- Θεωρητικές Μέθοδοι Επίλυσης Κυκλωμάτων
 - 7 Νόμος Ohm − Συνδεσμολογίες
 - Κανόνες Kirchhoff
 - 🐬 Θεωρήματα Norton Thevenin
- Αλλά στοιχεία και κυκλώματα

Βασικά στοιχεία κυκλωμάτων

Ένα ηλεκτρονικό κύκλωμα αποτελείται από:

- **7** Πηγή ενέργειας (τάσης ή ρεύματος)
- **7** Αγωγούς
- Μονωτές
- **7** Ημιαγωγούς
- Συσκευές ελέγχου (διακόπτες, ποτενσιόμετρα)
- **7** Συσκευές προστασίας (ρελέ, ασφάλειες)

Συμβολισμός εξαρτημάτων

Για όλα τα ηλεκτρικά & ηλεκτρονικά εξαρτήματα υπάρχει ένα σύμβολο που χρησιμοποιείται στην αναπαράσταση των ηλεκτρικών & Ηλεκτρονικών κυκλωμάτων

Σχηματικό διάγραμμα κυκλώματος

- Είναι το διάγραμμα που φέρει μόνο σύμβολα για να δείξει τη σύνδεση των εξαρτημάτων
- Δίπλα σε κάθε σύμβολο μπορεί να υπάρχει ένα αναγνωριστικό γράμμα (π.χ. R για τις αντιστάσεις) & μια τιμή (π.χ. 20ΚΩ)

Ηλεκτρικές πηγές τάσης - Ρεύματος (1)

- Η ιδανική ανεξάρτητη πηγή τάσης διατηρεί μια σταθερή τάση στα άκρα της, ανεξάρτητα από το ρεύμα που προσφέρει & από τα στοιχεία του υπόλοιπου κυκλώματος.
- Η τάση στα άκρα της ιδανικής εξαρτημένης πηγής τάσης εξαρτάται από την τάση (ή το ρεύμα) σε κάποια στοιχεία του υπόλοιπου κυκλώματος

Ηλεκτρικές πηγές τάσης - Ρεύματος (2)

- Η ιδανική ανεξάρτητη πηγή ρεύματος προσφέρει σταθερό ρεύμα στα άκρα της, ανεξάρτητα από την τάση στα άκρα της & από τα υπόλοιπα στοιχεία που συνδέονται με αυτήν
- Το ρεύμα μιας ιδανικής εξαρτημένης πηγής ρεύματος εξαρτάται από το ρεύμα (ή την τάση) σε κάποια στοιχεία του υπόλοιπου κυκλώματος

Ισχύς - Ενέργεια - Κόστος ενέργειας

- 7 Ενέργεια: W = P t
- 7 Κόστος = (τιμή μονάδας ενέργειας) ενέργεια

<u>Όργανα μέτρησης</u> (με βάση την αρχή λειτουργίας τους)

- **Στρεπτού πηνίου** (ηλεκτροδυναμικά)
- **Κινητού σιδήρου** (ηλεκτρομαγνητικά)
- 7 Ηλεκτροδυναμικά
- 7 Ηλεκτροστατικά
- **7** Θερμικά
- **7** Επαγωγικά

<u>Όργανα μέτρησης</u> (με βάση το μέγεθος μέτρησης)

- **Βολτόμετρα** (μετρούν την τάση)
- **Αμπερόμετρα** (μετρούν το ρεύμα)
- **Βατόμετρα** (μετρούν την ισχύ)
- **Συχνόμετρα** (μετρούν τη συχνότητα)

<u>Όργανα μέτρησης</u> (με βάση τον τρόπο παροχής της μετρούμενης τιμής)

- **Ενδεικτικά** (παρέχουν την τιμή μέτρησης μέσω δείκτη ή οθόνης ή φωτεινού σήματος)
- **Καταγραφικά** (καταγράφουν την μετρούμενη τιμή συναρτήσει του χρόνου ή άλλου μεγέθους)
- **Αθροιστικά** (παρέχουν αθροιστικά την τιμή του μετρούμενου μεγέθους)

Αμπερόμετρα

- Για τη μέτρηση της έντασης του ρεύματος το αμπερόμετρο συνδέεται σε σειρά με το κύκλωμα
- Έχουν πολύ μικρή εσωτερική αντίσταση (δέκατα ή εκατοστά του Ω) για την ελαχιστοποίηση του σφάλματος μέτρησης

Βολτόμετρα

- Για τη μέτρηση της τάσης το βολτόμετρο συνδέεται παράλληλα με το κύκλωμα
- Έχουν πολύ μεγάλη εσωτερική αντίσταση (μεγαλύτερη από 10 ΚΩ) για την ελαχιστοποίηση του σφάλματος μέτρησης

Όργανα πίνακα - Πολύμετρα

- **Όργανα πίνακα** ονομάζουμε τα αναλογικά ή ψηφιακά όργανα που είναι συνέχεια συνδεδεμένα σε ένα κύκλωμα για να μετρούν μόνο μια από τις ποσότητες **I, V, R**
- **Πολύμετρα** ονομάζουμε τα αναλογικά ή ψηφιακά όργανα που μπορούν να μετρήσουν δύο ή περισσότερες ηλεκτρικές ποσότητες

Μέτρηση αντίστασης

- Για τη μέτρηση της ωμικής τιμής μιας αντιστάσεως πρέπει πρώτα να αποσυνδέσουμε τις πηγές ενέργειας του κυκλώματος
- Το ωμόμετρο χρησιμοποιεί την εσωτερική του μπαταρία για τη μέτρηση της ωμικής τιμής μιας αντίστασης
- Κατά τη διάρκεια της μέτρησης οι ακροδέκτες της αντίστασης δεν πρέπει να είναι συνδεδεμένοι με άλλα εξαρτήματα ή να ακουμπούν στα χέρια μας
- **π** Η πολικότητα των ακροδεκτών δεν έχει σημασία

Μέτρηση τάσης

- Οι μετρήσεις γίνονται με συνδεδεμένη την ισχύ στο κύκλωμα
- Επιλέγουμε DC ή AC λειτουργία στο βολτόμετρο
- Επιλέγουμε τη μεγαλύτερη περιοχή τάσης
- Καθορίζουμε την πολικότητα των ακροδεκτών, όταν μετράμε συνεχείς τάσεις
- Συνδέουμε το μαύρο ακροδέκτη στο αρνητικό σημείο του κυκλώματος και τον κόκκινο ακροδέκτη στο θετικό

Μέτρηση ρεύματος

- Το κύκλωμα πρέπει να διακοπεί ώστε να παρεμβληθεί το αμπερόμετρο
- Οι μετρήσεις γίνονται με συνδεδεμένη την ισχύ στο κύκλωμα
- Επιλέγουμε DC/AC λειτουργία στο αμπερόμετρο
- **π** Επιλέγουμε τη μεγαλύτερη περιοχή ρεύματος
- Προσέχοντας την πολικότητα των ακροδεκτών, συνδέουμε το μαύρο ακροδέκτη στο αρνητικότερο σημείο & τον κόκκινο ακροδέκτη στο θετικότερο σημείο της διακοπής του κυκλώματος

Μέθοδοι επίλυσης σύνθετων ωμικών κυκλωμάτων

- 7 Νόμος Ohm − Συνδεσμολογίες Στοιχείων
- Κανόνες Kirchhoff
- Μέθοδος των απλών βρόχων (Μ.Α.Β)
- Μέθοδος των κόμβων (Μ.Κ)
- Θεώρημα μέγιστης μεταφοράς ισχύος
- 🐬 Θεωρήματα Thevenin Norton

7 Το ρεύμα που διαρρέει μια αντίσταση είναι ευθέως ανάλογο της τάσης που επικρατεί στα άκρα της αντίστασης & αντιστρόφως ανάλογο της αντίστασης

Η χαρακτηριστική καμπύλη ενός

ιδανικού αντιστάτη αποτελεί

του νόμου του Ohm

ταυτόχρονα & τη γραφική παράσταση

$$V = I \cdot R$$

$$R = \frac{V}{I}$$

Δύο ή περισσότερες αντιστάσεις είναι συνδεδεμένες σε σειρά όταν το τέλος της μιας αντίστασης συνδέεται στην αρχή της άλλης & δεν υπάρχει καμία ενδιάμεση διακλάδωση ανάμεσά τους, έτσι ώστε όλες να διαρρέονται από το ίδιο ρεύμα

$$R_{OA} = R_1 + R_2 + R_3 + ... + R_n$$

 Δύο ή περισσότερες αντιστάσεις είναι συνδεδεμένες παράλληλα όταν όλες έχουν κοινά άκρα, με αποτέλεσμα να βρίσκονται όλες στην ίδια τάση

$$\frac{1}{R_{OA}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}$$

Μικτή συνδεσμολογία αντιστάσεων

Είναι η συνδεσμολογία στην οποία συνυπάρχουν οι συνδέσεις αντιστάσεων σε σειρά με τις συνδέσεις αντιστάσεων παράλληλα

$$R_{OA} = R_1 + R_2 /\!\!/ R_3 + R_4 = R_1 + \frac{R_2 \cdot R_3}{R_2 + R_3} + R_4$$

Δύο ή περισσότερες πηγές τάσης είναι συνδεδεμένες σε σειρά, όταν ο αρνητικός πόλος της μιας συνδέεται με το θετικό πόλο της άλλης

 Δύο ή περισσότερες πηγές τάσης είναι συνδεδεμένες παράλληλα, όταν όλοι οι θετικοί πόλοι συνδέονται σε ένα κοινό κόμβο & όλοι οι αρνητικοί πόλοι σε άλλο κοινό κόμβο

ΣΗΜ: Οι πηγές πρέπει να είναι απόλυτα όμοιες

Είναι η συνδεσμολογία στην οποία συνυπάρχουν πηγές συνδεδεμένες σε σειρά με πηγές συνδεδεμένες παράλληλα, με σκοπό την επίτευξη μιας πηγής μεγάλου ρεύματος & μεγάλης τάσης

Κλάδος είναι μια ομάδα συνδεδεμένων στοιχείων που σχηματίζουν ένα σύνολο δύο ακροδεκτών, "μια γραμμή" στην οποία ορίζονται οι συναρτήσεις V(t) & I(t)

7 Κόμβος είναι το κοινό σημείο δύο ή περισσοτέρων κλάδων

Βρόχος είναι μια οποιαδήποτε κλειστή διαδρομή κλάδων

Βρόχος 2, 4, 5: απλός Βρόχος 2, 3, 1: όχι απλός

- Σε κάθε κλάδο ορίζουμε φορά αναφοράς ρεύματος & πολικότητα αναφοράς τάσης
- Πολικότητα ή φορά αναφοράς βρόχου: είναι η φορά κίνησης των δεικτών του ρολογιού ή η αντίθετη

Το αλγεβρικό άθροισμα όλων των ρευμάτων σε κάθε κόμβο ενός κυκλώματος ισούται με μηδέν

Το αλγεβρικό άθροισμα όλων των τάσεων σε κάθε βρόχο ενός κυκλώματος ισούται με μηδέν

Μέθοδος απλών βρόχων (Μ.Α.Β) (1)

- Η μέθοδος αυτή στηρίζεται στο εξής θεώρημα:
 - Ο αριθμός των απλών βρόχων ενός κυκλώματος με **b κλάδους** & **n κόμβους** είναι **b-n+1** & το πλήθος των εξισώσεων που προκύπτουν με εφαρμογή του Νόμου Τάσεων του Kirchhoff σε κάθε απλό βρόχο είναι ανεξάρτητες μεταξύ τους
- Η μέθοδος αυτή είναι **κατάλληλη για σύνθετα κυκλώματα με πολλές πηγές** τάσεις

Μέθοδος απλών βρόχων (Μ.Α.Β) (2)

$$R_{11}^*I_1 + R_{12}^*I_2 = \Sigma V_1$$

$$R_{21}^*I_1 + R_{22}^*I_2 = \Sigma V_2$$

$$R_{11}=R_1+R_3+R_4$$

$$R_{22}=R_2+R_3+R_5$$

$$R_{12}=R_{21}=-R_3$$

$$\Sigma V_1 = V_1 - V_2$$

$$\Sigma V_2 = V_2 - V_3$$

Μέθοδος κόμβων (Μ.Κ.) (1)

Η μέθοδος αυτή στηρίζεται στο εξής θεώρημα:

Σε ένα κύκλωμα με **n κόμβους**, η εφαρμογή του Νόμου Ρευμάτων του Kirchhoff σε n-1 κόμβους δίνει ένα σύνολο ανεξάρτητων εξισώσεων

Η μέθοδος αυτή είναι κατάλληλη για σύνθετα κυκλώματα με πολλές πηγές ρεύματος

Μέθοδος κόμβων (Μ.Κ.) (2)

$$G_{11}^*V_1 + G_{12}^*V_2 = \Sigma I_1$$

$$G_{21}^*V_1 + G_{22}^*V_2 = \Sigma I_2$$

$$G_{11}=G_1+G_2+G_3$$

$$G_{22}=G_3+G_4$$

$$G_{12}=G_{21}=-G_3$$

$$\Sigma |_{1} = -|_{1} - |_{2}$$

$$\Sigma |_{2} = |_{2} + |_{3}$$

Θεώρημα μέγιστης μεταφοράς ισχύος

Το εξωτερικό φορτίο πρέπει να είναι ίσο με την εσωτερική αντίσταση της πηγής

$$R_L = R_{TH}$$

$$P_{\text{max}} = \frac{V_{\text{TH}}^2}{4R_{\text{TH}}}$$

Θεωρήμα Thevenin (1)

Κάθε κύκλωμα δύο ακροδεκτών που περιλαμβάνει ανεξάρτητες πηγές τάσης ή/& ρεύματος & αντιστάσεις μπορεί να γραφεί ισοδύναμα ως ένα απλό δικτύωμα αποτελούμενο από μια πηγή τάσης & μια αντίσταση σε σειρά

Θεωρήματα Therevin (2)

- Η τιμή της πηγής τάσης ονομάζεται **τάση Thevenin (V_{Th}) & ταυτίζεται με την τάση** ανοικτού κυκλώματος μεταξύ των ακροδεκτών Α & Β
- **7** Η τιμή της αντίστασης ονομάζεται **αντίσταση Thevenin (R_{Th})** & υπολογίζεται ως εξής:
 - Βραχυκυκλώνουμε όλες τις πηγές τάσης, ανοικτοκυκλώνουμε όλες τις πηγές ρεύματος, & υπολογίζουμε την αντίσταση μεταξύ των ακροδεκτών Α & Β
 - => Η αντίσταση που θα προκύψει είναι η αντίσταση Thevenin
 - Βραχυκυκλώνοντας δύο σημεία τα αναγκάζουμε να βρεθούν στο ίδιο δυναμικό
 - Αυτό μπορεί να γίνει διασυνδέοντάς τα μέσω αγωγού μηδενικής αντίστασης
 - Ανοικτοκυκλώνοντας ένα στοιχείο αναγκάζουμε το ρεύμα που το διαρρέει να μηδενισθεί

Θεωρήμα Norton

Κάθε δικτύωμα δύο ακροδεκτών που περιλαμβάνει ανεξάρτητες πηγές τάσης ή/& ρεύματος & αντιστάσεις μπορεί να γραφεί ισοδύναμα ως ένα απλό δικτύωμα αποτελούμενο από μια πηγή ρεύματος & μια αντίσταση σε παράλληλη σύνδεση, κατά τον τρόπο που υποδεικνύει το

- Η τιμή της πηγής ρεύματος ονομάζεται ρεύμα Norton (I_N) & ταυτίζεται με το ρεύμα βραχυκυκλώματος μεταξύ των ακροδεκτών A & B
- 🐬 Η τιμή της αντίστασης ονομάζεται αντίσταση Norton (R_N) & ταυτίζεται με την αντίσταση Thevenin

Δυικότητα Θεωρημάτων Thevenin & Norton

- Είναι εύκολο να αποδείξουμε ότι τα δικτυώματα του Σχήματος είναι ισοδύναμα
- Δύο δικτυώματα ονομάζονται ισοδύναμα αν για κάθε τιμή φόρτου το ρεύμα που τον διαρρέει & η τάση στα άκρα του φόρτου ταυτίζονται, αντίστοιχα, & για τις δύο περιπτώσεις
- Στην ισοδυναμία αυτή οφείλεται η δυικότητα, δηλαδή η συγγένεια μεταξύ των θέωρημάτων Thevenin & Norton

Άλλα κυκλώματα και στοιχεία - Διαιρέτης τάσης

Ο Διαιρέτης τάσης χρησιμοποιείται για τον καταμερισμό της τάσης σε δύο ή περισσότερες αντιστάσεις

$$V_1 = I \cdot R_1$$

$$V_2 = I \cdot R_2$$

$$\Rightarrow V_1 = \frac{R_1}{R_1 + R_2} \cdot V$$

$$V_2 = \frac{R_2}{R_1 + R_2} \cdot V$$

Άλλα κυκλώματα και στοιχεία - Διαιρέτης ρεύματος

Ο Διαιρέτης ρεύματος χρησιμοποιείται για τον καταμερισμό του ρεύματος σε δύο ή περισσότερους κλάδους ενός κυκλώματος

$$\begin{vmatrix} I_1 = \frac{V}{R_1} \\ I_2 = \frac{V}{R_2} \end{vmatrix} \implies \begin{aligned} I_1 &= \frac{R_2}{R_1 + R_2} \cdot I \\ I_2 &= \frac{R_1}{R_1 + R_2} \cdot I \end{aligned}$$

Άλλα κυκλώματα και στοιχεία - Μεταβλητές αντιστάσεις

- Είναι αντιστάσεις που μπορούμε να αλλάξουμε την τιμή τους μέσα στα όρια μια περιοχής τιμών που ορίζεται από τον κατασκευαστή τους
- **ποτενσιόμετρα** Χρησιμοποιούνται ως **ροοστάτες** ή **ποτενσιόμετρα**

Άλλα κυκλώματα και στοιχεία - Ροοστάτες

Ο ροοστάτης είναι μια μεταβλητή αντίσταση που όταν συνδεθεί σε σειρά με μια σταθερή αντίσταση, τότε μπορεί να ρυθμίσει την ένταση ρεύματος του κυκλώματος

$$I = \frac{V}{R + R_{A\Gamma}}$$

Άλλα κυκλώματα και στοιχεία - Ποτενσιόμετρο

Το ποτενσιόμετρο είναι μια μεταβλητή αντίσταση που όταν συνδεθεί σε παράλληλα με μια σταθερή αντίσταση, τότε μπορεί να ρυθμίσει την τάση του κυκλώματος

$$V_{R} = \frac{R /\!\!/ R_{A\Gamma}}{R /\!\!/ R_{A\Gamma} + R_{\Gamma B}} \cdot V$$

Άλλα κυκλώματα και στοιχεία - Πηγή τάσης σε πηγή ρεύματος

Μια πηγή τάσης V σε σειρά με μια αντίσταση R μετατρέπεται ισοδύναμα σε μια πηγή ρεύματος I=V/R παράλληλη με την αντίσταση R

Άλλα κυκλώματα και στοιχεία - Πηγή ρεύματος σε πηγή τάσης

Μια πηγή ρεύματος Ι παράλληλα με μια αντίσταση R μετατρέπεται ισοδύναμα σε μια πηγή τάσης V=I•R σε σειρά με την αντίσταση R

Άλλα κυκλώματα και στοιχεία - Αντίσταση παράλληλα σε πηγή τάσης

Όταν μια αντίσταση R είναι συνδεδεμένη παράλληλη με μια πηγή τάσης V, τότε για λόγους απλότητας μπορεί να παραληφθεί, χωρίς να δημιουργείται πρόβλημα στους υπολογισμούς

Άλλα κυκλώματα και στοιχεία - Αντίσταση σε σειρά με πηγή ρεύματος

Όταν μια αντίσταση R είναι συνδεδεμένη σε σειρά με μια πηγή ρεύματος I, τότε για λόγους απλότητας μπορεί να παραληφθεί, χωρίς να δημιουργείται πρόβλημα στους υπολογισμούς

