

Dec 02, 2020

© University of Helsinki and Natural Resources Institute Finland (Luke) protocol for DNA extraction and multiplex PCR genotyping of 17 microsatellites for pikeperch (Sander lucioperca L.).

Jarmo Koskiniemi¹, Marja-Liisa Koljonen², Tuomas Leinonen²

¹University of Helsinki; ²Natural Resources Institute Finland (Luke)

1 Works for me dx.doi.org/10.17504/protocols.io.bp76mrre

Jarmo Koskiniemi University of Helsinki

ABSTRACT

In this protocol we describe laboratory methods for DNA extraction and multiplex genotyping of pikeperch with microsatellite markers. The protocol has been used in several studies at the University of Helsinki and the Natural Resources Institute Finland (Luke). Publications from these studies are listed in the attachment.

ATTACHMENTS

Publications_pikeperch.do

CY

חחו

dx.doi.org/10.17504/protocols.io.bp76mrre

PROTOCOL CITATION

Jarmo Koskiniemi, Marja-Liisa Koljonen, Tuomas Leinonen 2020. University of Helsinki and Natural Resources Institute Finland (Luke) protocol for DNA extraction and multiplex PCR genotyping of 17 microsatellites for pikeperch (Sander lucioperca L.).. **protocols.io** https://dx.doi.org/10.17504/protocols.io.bp76mrre

KEYWORDS

 ${\sf DNA}\ extraction, multiplex\ PCR, genotyping, microsatellite, genetic\ variation, Pikeperch, Sander\ lucioperca$

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Nov 30, 2020

LAST MODIFIED

Dec 02, 2020

PROTOCOL INTEGER ID

45022

ATTACHMENTS

Publications_pikeperch.do

СХ

MATERIALS TEXT

DNeasy Blood & Tissue Kit (250), QiagenCatalog #69506 DNeasy 96 Blood & Tissue Kit (12), QiagenCatalog #69582 Type-it Microsatellite PCR Kit (200), QiagenCatalog #206243 Type-it Microsatellite PCR Kit (2000), QiagenCatalog #206246

ABSTRACT

MSL_2 0,10

0,05

MSL_3

In this protocol we describe laboratory methods for DNA extraction and multiplex genotyping of pikeperch with microsatellite markers. The protocol has been used in several studies at the University of Helsinki and the Natural Resources Institute Finland (Luke). Publications from these studies are listed in the attachment.

- 1 DNA is extracted from dried scales or from fins or other tissues preserved in alcohol, frozen or fresh. The extractions are done using Qiagen DNeasy or DNAeasy 96 Blood & Tissue Kits with the kit manual's 'Animal Tissues' protocols with a few modifications for the egg samples.
- 2 Usually only 1 scale, or if they are very small, 2-3 scales are used. From the tissue samples, a small piece (max. 10 mg) is cut and the pieces from samples in alcohol are kept overnight in open tubes to let the alcohol evaporate.
- The PCRs are done using Qiagen Type-it Microsatellite Kit. The kit manual's 'Optimized cycling protocol for multiplex PCR amplification of microsatellites' is used with the annealing temperature of 56°C, but with modifications on the reaction volumes. When the samples are fresh, or have been kept frozen or in alcohol for max. 1 year, 10 ul reactions are used. For max. 1 year old dried scales, 15 ul reactions are used. If samples are kept frozen or in alcohol for more than 1 year or if the dried scales are older than 1 year, 25 ul reactions are used. The extracted DNA is usually used without dilution. When the samples are very old, the extracted DNA is concentrated to 1/10 of the original volume by keeping the DNA in open tubes at room temperature. For the 10 ul reaction, 5 ul of kit's master mix and 3 ul of extracted DNA are used. For the 15 ul reaction, these volumes are multiplied by 1.5, and for 25 ul reactions by 2.5.
- 4 17 microsatellite loci are analyzed in two multiplex-reactions. The multiplexes, primer sequences, primer concentrations, dyes, loci names in references and GenBank, references for each locus and GenBank accession numbers are:

Locus Mu	litiplex Forward primer sequence (5	5'-3') Reverse primer sequence (5'-3')
MSL_1 MP	2 TGTTTGTCAGCGTCAAGAGG TTC	CCGCTCCAACATATCACA
MSL_2 M	P2 TTTTCACACCGTGCATGACT	ACCCTCAGCCTCTGTGTACG
MSL_3 M	P2 CCGGCATCCATACACCTTAC	CACACCTGTGTCTGCCTAACA
MSL_4 MP	2 TCAAGACCCCAGAACCAATC CAG	GACAGCTAAGAGAACAACAGG
MSL_6 M	P2 GTCGTCATCGTCAGCACAGT AC	CTACACGGGACGCTGGA
MSL_7 MP	2 CACACAGCAGCATGTGACAA GGC	CACGGAGGTAGAATGGTA
MSL_8 MP	2 AACACCTTCCTTCGTCCATC C	CGTGTTTGCCTCACACAAG
MSL_9 MP	2 GCATCACTTGCGTCACTTTC G	GCAGTCAGTGCTTGAAGTGG
Pfla_L3 MF	P1 GCCGAATGTGATTGAATG CC	GCTAAAGCCAACTTAATG
Pfla_L8 MF	P1 GCCTTATTGTGTGACTTATCG GG	GATCTTTCACTTTTCTTTCAG
Pfla_L9 MF	P1 GTTAGTGTGAAAGAAGCATCTGC	TGGGAAATGTGGTCAGCGGC
Svi_18 MP1	1 GATCTGTAAACTCCAGCGTG (CTTAAGCTGCTCAGCATCCAGG
Svi_33 MP1	1 CAGGACTGCTGTGTATAGACTTG	GATATAGCTTTCTGCTGGGGTC
Svi_4 MP1	ACAAATGCGGGCTGCTGTTC GATC	CGCGGCACAGATGTATTG
Svi_6 MP1	CATATTATGTAGAGTGCAGACCC T	GAGCTTCACCTCATATTCC
Svi_L7 MP1	1 GATGTGCATACATTTACTCC G	GCTTTAATCTGCTGAGAAC
Svi_L8 MP1	1 GCTTATACGTCGTTCTTATG A	TGGAGAAGCAAGTTGAG
Locus Pri	mer concentration (μM) Dye Orig	. locus name Reference GenBank Accession no.
MSL_1 0,20	0 VIC MSL-1	R1 EF694018.1

NED MSL-2

NED MSL-3

R1

R1

EF694019.1

EF694020.1

Citation: Jarmo Koskiniemi, Marja-Liisa Koljonen, Tuomas Leinonen (12/02/2020). University of Helsinki and Natural Resources Institute Finland (Luke) protocol for DNA extraction and multiplex PCR genotyping of 17 microsatellites for pikeperch (Sander lucioperca L.).. https://dx.doi.org/10.17504/protocols.io.bp76mrre

MSL_4 0,10	6FAM MSL-4	R1	EF694021.1
MSL_6 0,10	PET MSL-6	R1	EF694023.1
MSL_7 0,05	VIC MSL-7	R1	EF694024.1
MSL_8 0,05	VIC MSL-8	R1	EF694025.1
MSL_9 0,20	6FAM MSL-9	R1	EF694026.1
Pfla_L3 0,40	6FAM Pfla L3	R2	AF211828.1
Pfla_L8 1,00	PET Pfla L8	R2	AF211833.1
Pfla_L9 0,10	NED Pfla L9	R2	AF211834.1
Svi_18 0,20	6FAM Svi18	R3	G36964.1
Svi_33 0,05	6FAM Svi33	R3	G36967.1
Svi_4 0,10	NED Svi4	R3	G36961.1
Svi_6 0,10	VIC Svi6	R3	G36962.1
Svi_L7 0,20	VIC Svi L7	R3	AF144740.1
Svi_L8 1,00	PET Svi L8	R3	AF144741.1

R1: Kohlmann K, Kersten P (2008). Isolation and characterization of nine microsatellite loci from the pike-perch, Sander lucioperca (Linnaeus, 1758). Molecular Ecology Resources 8:1085-1087.

R2: Borer SO, Miller LM, Kapuscinski AR (1999). Microsatellites in walleye Stizostedion vitreum. Molecular Ecology 8:336-338.

R3: Wirth T, Saint-Laurent R, Bernatchez L (1999). Isolation and characterization of microsatellite loci in the walleye (Stizostedion vitreum), and cross-species amplification within the family Percidae. Molecular Ecology 8:1960-1962.

⁵ Microsatellite genotypes are detected with an Applied Biosystems ABI 3130 automated DNA sequencer, and analysed with GeneMapper analysis software v5.0, with the size standard of Applied Biosystems GeneScan 500LIZ. Automatic outputs are checked for errors and corrected manually.