A Reviewer 1 Experimental Results

Requested Changes. "I also would like to make the following request. If the experimental results are convincing, I will recommend the paper for publication. Could the authors also evaluate the data synthetic methods using pairwise metrics, such as 'Pair' and 'Corr' in this paper. Could the authors also evaluate previous DP-focused tabular data synthetic methods such as DPSyn, PrivMRF and Private-PGM?"

A.1 Additional Metrics

			Adı	ılt			Airline					
	Method	F1	CorAcc	Pair	Hist	F1	CorAcc	Pair	Hist			
	Real data	$69.9_{\pm 2}$	95.6	97.7 ± 0	$99.1_{\pm 0}$	90.6 ± 8	94.4	98.4 ± 0	$99.4_{\pm 0}$			
$\varepsilon = \infty$	CTGAN TVAE VAE GPT-2	59.5 ± 6 63.2 ± 2 53.8 ± 10 68.9 ± 0	$72.7_{\pm 3}$ $75.1_{\pm 3}$ $64.0_{\pm 1}$ 79.4 $_{\pm 1}$	$85.0{\scriptstyle \pm 1}\atop \underline{84.5}{\scriptstyle \pm 1}\atop 60.2{\scriptstyle \pm 2}\atop 83.7{\scriptstyle \pm 0}$	$\begin{array}{c} 91.2{}_{\pm 1} \\ 91.5{}_{\pm 1} \\ 73.3{}_{\pm 3} \\ 90.7{}_{\pm 1} \end{array}$	$87.2_{\pm 3} \ 85.8_{\pm 5} \ 79.8_{\pm 1} \ 89.6_{\pm 5}$	$74.2_{\pm 1}$ $70.3_{\pm 3}$ $62.8_{\pm 6}$ 79.8 $_{\pm 5}$	$89.3{\scriptstyle \pm 1}\atop 82.8{\scriptstyle \pm 3}\atop 60.4{\scriptstyle \pm 1}\atop \underline{85.5}{\scriptstyle \pm 2}$	$\begin{array}{c} 94.4 {\scriptstyle \pm 1} \\ 90.3 {\scriptstyle \pm 2} \\ 76.8 {\scriptstyle \pm 0} \\ \underline{90.8} {\scriptstyle \pm 1} \end{array}$			

Table 1: **Non-DP Benchmark.** The Real data baseline represents the optimal achievable performance, determined by evaluating metrics using real training data compared to real test data. **F1** is reported as averages of two ML Models (XGBoost and Logistic Regression). **Pair**, and **Hist** are reported as averages of two bin sizes (Bins 20 and 50). Each synthetic data generator is run five times and four synthetic datasets generated per run. Standard deviation reported after ±. The best value per column is shown in **bold** while the second best value is <u>underlined</u>.

				Airline						
	Method	F1	CorAcc	Pair	Hist	F	l	CorAcc	Pair	Hist
$\varepsilon = 1,$	DP-GAN	33.5 ± 20	39.1±3	$41.2{\scriptstyle \pm 4}$	63.7±3	40.2	± 24	$37.5{\scriptstyle \pm 5}$	22.2±13	$44.7{\scriptstyle\pm12}$
$\delta = 10^{-5}$	DP-CTGAN	$42.2 \scriptstyle{\pm 20}$	49.3 ± 3	$59.2_{\pm 2}$	$75.7{\scriptstyle\pm2}$	67.1	±8	$31.6_{\pm 3}$	$62.2{\scriptstyle\pm2}$	$78.7{\scriptstyle\pm2}$
	DP-VAE	0.0 ± 0	$45.2{\scriptstyle\pm1}$	$40.3{\scriptstyle \pm 1}$	$61.8{\scriptstyle\pm2}$	26.5	± 28	$42.4{\scriptstyle\pm1}$	$20.6{\scriptstyle \pm 0}$	$41.8{\scriptstyle\pm1}$
	GPT-2									
	DP-Standard	$27.8{\scriptstyle\pm15}$	$49.6 {\scriptstyle \pm 2}$	$68.4{\scriptstyle\pm1}$	$85.7{\scriptstyle\pm2}$	60.5	± 7	$49.9{\scriptstyle \pm 2}$	$77.0{\scriptstyle \pm 2}$	90.3 ± 3
	DP-2Stage-U	$21.2{\scriptstyle\pm12}$	$49.6 {\scriptstyle \pm 2}$	$\textbf{76.1}{\scriptstyle\pm1}$	$\underline{86.7}_{\pm 1}$	68.5	5 ±9	$\underline{51.7}_{\pm 2}$	$\textbf{80.8}{\scriptstyle\pm1}$	$\underline{90.7}_{\pm 1}$
	DP-2Stage-O	$30.4{\scriptstyle\pm17}$	$\underline{49.5}{\scriptstyle\pm2}$	$\underline{72.3}{\scriptstyle\pm1}$	$88.5{\scriptstyle\pm1}$	55.2	± 18	$52.1{\scriptstyle\pm2}$	$\underline{80.1}{\scriptstyle\pm1}$	$92.5{\scriptstyle\pm1}$
$\varepsilon = 8$,	DP-GAN	$19.6{\scriptstyle\pm20}$	$42.9_{\pm 3}$	$11.1_{\pm7}$	33.3±9	-		-	-	-
$\delta = 10^{-5}$	DP-CTGAN	$46.5 {\scriptstyle\pm18}$	$49.0{\scriptstyle \pm 2}$	$65.6{\scriptstyle \pm 4}$	$80.0{\scriptstyle \pm 2}$	67.7	± 4	$31.2_{\pm4}$	$54.7{\scriptstyle\pm2}$	$76.8{\scriptstyle\pm1}$
	DP-VAE	0.0 ± 0	$45.2{\scriptstyle\pm1}$	$40.9{\scriptstyle \pm 1}$	$62.1{\scriptstyle\pm1}$	51.9	± 25	$44.3{\scriptstyle \pm 2}$	$18.3{\scriptstyle \pm 1}$	$40.0{\scriptstyle\pm1}$
	GPT-2									
	DP-Standard	$31.3{\scriptstyle\pm15}$	$52.0{\scriptstyle\pm1}$	$70.6{\scriptstyle \pm 1}$	$84.5{\scriptstyle\pm1}$	64.9	±6	51.8 ± 3	$78.2{\scriptstyle\pm3}$	$89.8_{\pm3}$
	DP-2Stage-U	$22.4{\scriptstyle\pm15}$	$51.4_{\pm 2}$	$\textbf{77.1}{\scriptstyle\pm1}$	$86.9_{\pm 1}$	71.9) ±9	$56.1{\scriptstyle\pm2}$	80.9 ± 1	$90.4_{\pm 1}$
	DP-2Stage-O	<u>33.4</u> ±16	$\underline{51.7}{\scriptstyle\pm2}$	$\underline{74.5}_{\pm 1}$	$87.9_{\pm 1}$	64.2	±11	$\underline{55.1}{\pm 3}$	81.1±1	$92.3_{\pm 1}$

Table 2: **DP Benchmark.** The Real data baseline represents the optimal achievable performance, determined by evaluating metrics using real training data compared to real test data. **F1** is reported as averages of two ML Models (XGBoost and Logistic Regression). **Pair**, and **Hist** are reported as averages of two bin sizes (Bins 20 and 50). Each synthetic data generator is run five times and four synthetic datasets generated per run. Standard deviation reported after \pm . The best value per column for each ε is shown in **bold** while second best value is <u>underlined</u>.

A.2 Additional Baselines

		Adult				Airline					
	Method	F 1	CorAcc	Pair	Hist	F1	CorAcc	Pair	Hist		
$\varepsilon = 1,$	Marginal										
$\delta = 10^{-5}$	AIM	$59.6 \scriptstyle{\pm 6}$	$82.7{\scriptstyle\pm1}$	$\textbf{77.1}{\scriptstyle \pm 9}$	$88.4_{\pm 5}$	$\textbf{77.3}{\scriptstyle\pm5}$	$83.7{\scriptstyle\pm2}$	$46.7{\scriptstyle\pm3}$	$68.1{\scriptstyle \pm 2}$		
	MST	$39.6{\scriptstyle\pm19}$	$\underline{65.1}{\scriptstyle\pm1}$	$74.6{\scriptstyle\pm10}$	$87.0{\scriptstyle \pm 5}$	$\underline{72.2}{\scriptstyle\pm6}$	$\underline{59.9}{\scriptstyle\pm2}$	$46.3{\scriptstyle \pm 3}$	$68.2{\scriptstyle \pm 2}$		
	DNN										
	DP-GAN	$33.5{\scriptstyle\pm20}$	$39.1{\scriptstyle \pm 3}$	$41.2{\scriptstyle \pm 4}$	$63.7{\scriptstyle\pm3}$	$40.2{\scriptstyle\pm24}$	$37.5{\scriptstyle \pm 5}$	$22.2{\scriptstyle\pm13}$	$44.7{\scriptstyle\pm12}$		
	DP-CTGAN	$\underline{42.2}{\scriptstyle\pm20}$	$49.3{\scriptstyle \pm 3}$	$59.2{\scriptstyle \pm 2}$	$75.7{\scriptstyle\pm2}$	$67.1{\scriptstyle \pm 8}$	$31.6{\scriptstyle \pm 3}$	$62.2{\scriptstyle \pm 2}$	$78.7{\scriptstyle\pm2}$		
	DP-VAE	0.0 ± 0	$45.2{\scriptstyle\pm1}$	$40.3{\scriptstyle \pm 1}$	$61.8{\scriptstyle\pm2}$	$26.5{\scriptstyle\pm28}$	$42.4{\scriptstyle\pm1}$	$20.6{\scriptstyle \pm 0}$	$41.8{\scriptstyle\pm1}$		
	GPT-2										
	DP-Standard	$27.8_{\pm 15}$	$49.6_{\pm 2}$	$68.4_{\pm 1}$	$85.7_{\pm 2}$	$60.5{\pm}7$	$49.9_{\pm 2}$	$77.0_{\pm 2}$	$90.3_{\pm 3}$		
	DP-2Stage-U	$21.2{\scriptstyle\pm12}$	$49.6{\scriptstyle \pm 2}$	$76.1{\scriptstyle \pm 1}$	$86.7{\scriptstyle\pm1}$	$68.5{\scriptstyle \pm 9}$	$51.7{\scriptstyle \pm 2}$	$\textbf{80.8}{\scriptstyle\pm1}$	$90.7{\scriptstyle\pm1}$		
	DP-2Stage-O	$30.4{\scriptstyle\pm17}$	$49.5{\scriptstyle\pm2}$	$\overline{72.3}_{\pm 1}$	$88.5{\scriptstyle\pm1}$	$55.2{\scriptstyle\pm18}$	$52.1{\scriptstyle\pm2}$	$\underline{80.1}{\scriptstyle \pm 1}$	$92.5_{\pm 1}$		

Table 3: **DP Benchmark.** The Real data baseline represents the optimal achievable performance, determined by evaluating metrics using real training data compared to real test data. **F1** is reported as averages of two ML Models (XGBoost and Logistic Regression). **Pair**, and **Hist** are reported as averages of two bin sizes (Bins 20 and 50). Each synthetic data generator is run five times and four synthetic datasets generated per run. Standard deviation reported after \pm . The best value per column for each ε is shown in **bold** while second best value is <u>underlined</u>.

			XGB (F1)	XGB (AUC)	XGB (ACC)	LR (F1)	LR (AUC)	LR (ACC)	HIST (bin=50)	HIST (bin=20)
	Dataset		, ,	,	` ,	, ,	` ,	, ,	, ,	,
$\varepsilon = 1$	Adult	AIM	$54.0_{\pm 4}$	86.3±1	81.8±0	65.2±0	87.3±0	78.8±1	83.5±0	93.3±1
$\delta = 10^{-5}$		MST	$20.5{\scriptstyle \pm 3}$	$76.7{\scriptstyle \pm 1}$	$74.5{\scriptstyle \pm 0}$	$\underline{58.7}_{\pm0}$	$77.0{\scriptstyle \pm 2}$	$71.0_{\pm0}$	$81.8_{\pm 2}$	$92.2_{\pm 0}$
		DP-GAN	$27.4_{\pm 24}$	67.6+10	69.1±9	39.6±14	67.8±9	$59.4_{\pm 8}$	$61.9_{\pm 2}$	65.5±3
		DP-CTGAN	$38.6_{\pm 21}$	$77.2_{\pm 7}$	76.0±3	$45.8_{\pm 19}$	78.8±7	$75.3_{\pm 3}$	$75.0_{\pm 2}$	$76.4_{\pm 2}$
		DP-VAE	$\overline{0.0\pm}$ 0	50.0±0	$75.6_{\pm 0}$	$0.0{\scriptstyle \pm 0}$	$\overline{50.0}_{\pm 0}$	$\underline{75.6}{\scriptstyle \pm 0}$	$60.1{\scriptstyle \pm 0}$	$63.5{\scriptstyle \pm 0}$
		DP-Standard	13.9+7	55.5+6	$73.0_{\pm 1}$	41.6±5	$61.4_{\pm7}$	$57.4_{\pm 6}$	85.1±2	86.2±2
		DP-2Stage-U	10.3±5	$48.4_{\pm 4}$	$74.5_{\pm 1}$	$32.1_{\pm 6}$	$49.3_{\pm 8}$	$49.4_{\pm 4}$	86.3±1	87.1±1
		DP-2Stage-O	$15.0{\scriptstyle \pm 7}$	$55.9{\scriptstyle \pm 6}$	$73.5{\scriptstyle \pm 1}$	$45.9{\scriptstyle \pm 5}$	$67.3{\scriptstyle \pm 6}$	$59.8{\scriptstyle \pm 5}$	$\overline{88.2}_{\pm 1}$	$88.8_{\pm 1}$
	Airline	AIM	$73.0_{\pm 4}$	$85.2_{\pm 3}$	$74.3_{\pm 4}$	$81.7_{\pm 0}$	$92.7_{\pm 0}$	82.1 $_{\pm 0}$	65.9±0	$70.2_{\pm 0}$
		MST	$\underline{69.2}{\scriptstyle \pm 8}$	$80.4_{\pm 6}$	$\underline{74.0}{\scriptstyle\pm5}$	$\underline{75.2}{\scriptstyle \pm 0}$	$\underline{86.3}{\scriptstyle \pm 0}$	$\underline{76.4}{\scriptstyle \pm 0}$	$66.1{\scriptstyle \pm 0}$	$70.3{\scriptstyle \pm 0}$
		DP-GAN	38.3±25	65.1 _{±14}	60.3±6	42.1 _{±24}	$62.7_{\pm 12}$	$59.2_{\pm 6}$	$43.4_{\pm 12}$	46.0 _{±12}
		DP-CTGAN	64.1 _{±10}	$74.0_{\pm 8}$	$65.9_{\pm 6}$	$70.1_{\pm 5}$	$79.4_{\pm 7}$	70.1±5	$78.5_{\pm 2}$	$79.0_{\pm 1}$
		DP-VAE	$1.0{\scriptstyle \pm 3}$	$54.4{\scriptstyle \pm11}$	$56.7{\scriptstyle \pm 1}$	$52.0{\scriptstyle \pm 14}$	$61.4{\scriptstyle \pm 14}$	$58.0{\scriptstyle \pm 8}$	$41.5{\scriptstyle \pm 0}$	$42.2{\scriptstyle \pm 0}$
		DP-Standard	55.8±3	62.1±7	60.0±6	$65.1_{\pm 6}$	68.4±10	64.9±s	89.6±4	91.1±3
		DP-2Stage-U	64.5±10	73.8±9	70.0±7	$72.5_{\pm 6}$	81.8±s	74.1±6	90.1±0	91.3±1
		DP-2Stage-O	$53.5_{\pm 16}$	61.8 _{±16}	$59.2_{\pm 13}$	$56.9{\scriptstyle\pm20}$	$63.3{\scriptstyle\pm22}$	60.8 _{±18}	$92.0_{\pm 1}$	93.0 _{±1}

Table 4: **DP Benchmarks.** For each dataset, the best value is highlighted in **bold** while second best is <u>underlined</u>. Results are averaged across five model runs with varying random seeds, with four synthetic datasets generated per run. LR refers to the Logistic Regression model, and XGB represents the XGBoost model.