Sea V un espacio vectorial finitodimensional y sea T un operador de V.

Un operador. En lecciones hemos demostrado el teorema siguiente:

Teorema 0.1. T es diagonalizable $\iff p_T(x) = (x - c_1)(x - c_2) \cdots (x - c_k)$ donde $c_1, c_2, \ldots c_k$ son escalares distintos.

Recuerde que p_T es el polinomio minimal de T; el teorema dice que el operador T es diagonalizable si y sólo si su polinomio minimal es un producto de factores lineales distintos.

La demostración de la implicación (\Longrightarrow) es facil – aquí quiero presentar una demostración de la implicación (\Longleftrightarrow). La demostración es lo que discutimos en clase, y es diferente de lo que es en el libro. Usaremos el teorema siguiente que hemos demostrado en clase:

Teorema 0.2. T es triangulable $\iff f_T(x) = (x - c_1)d_1(x - c_2)^{d_2} \cdots (x - c_k)^{d_2}$ para algunos $c_1, \ldots, c_k \in \mathbb{R}$ y algunos d_1, \ldots, d_k enteros positivos.

El teorema dice que el operador T es triangulable si y sólo si su polinomio característico es un producto de factores lineales.

Demostración de teorema 0.1. Suponga que $p_T(x) = (x - c_1)(x - c_2) \cdots (x - c_k)$ donde $c_1, c_2, \ldots c_k$ son escalares distintos. La demostración es por inducción sobre n, y observamos que el teorema es verdad (trivialmente) cuando n = 1. Suponemos que el teorema es verdad para operadores de espacios de dimensión menor de n.

Ya que el polinomio minimal y el polinomio característico tienen las mismas raices, sabemos que

$$f_T = (x - c_1)^{d_1} (x - c_2)^{d_2} \cdots (x - c_k)^{d_k}$$

donde d_1, d_2, \ldots, d_k son enteros positivos. Ya que f_T es un producto de factores lineales, teorema 0.2 implica que T es triangulable. Entonces podemos escoger una base ordenada $\mathcal{B} = \{v_1, \ldots, v_n\}$ de V tal que $(T)_{\mathcal{B}}$ es triangular superior.

Observe, ahora, que el subespacio $U := \langle v_1, \dots, v_{n-1} \rangle$ es invariante de T. La restriccón T_U es un operador de U y sabemos que p_{T_U} , el polinomio minimal de p_{T_U} , divide p_T . Entonces p_{T_U} es un producto de factores lineales distintos y concliumos, por inducción, que T_U es diagonalizable. Entonces sea $\beta_U := \{v'_1, \dots, v'_{n-1}\}$ una base ordenada de U, tal que $(T_U)_{\beta_U}$ es diagonal. Observe que $\beta' := \{v'_1, \dots, v'_{n-1}, v_n\}$ es una base de V y que

$$(T)_{\beta'} = \begin{bmatrix} c_1 & & & & b_1 \\ & \ddots & & & \vdots \\ & c_1 & & b_k \\ & & c_2 & & b_{k+1} \\ & & & \ddots & \vdots \\ & & & c_2 & \vdots \\ & & & \ddots & \vdots \\ & & & & \ddots & \vdots \\ & & & & c_k \end{bmatrix}.$$

Observe tres cosas: (1) que podemos escoger el orden de la base β_U tal que las entradas iguales de la diagonal se agrupan; (2) en la columna ultima hay n-1 entradas $-b_1, \ldots, b_{n-1}$ – que podrían iguales a cero o no; (3) hay un cuadrado $d \times d$ (para alguna d) en la esquina abaja derecha con entradas diagonales iguales a c_k .

Un otro perspectivo es que los vectores v'_1, \ldots, v'_{n-1} son vectores propios de T_U , entonces son vectores propios de T, y los valores propios asociados a ellos son c_1, \ldots, c_k . Para cumplir la demostración hay que encontrar un vector propio w de T en $V \setminus U$. En terminos de β' tal vector es

$$w = (\alpha_1, \alpha_2, \dots, \alpha_n)$$

y la condición que $W \notin (V \setminus U)$ implica que $\alpha_n \neq 0$. Ya que podemos reemplazar w con cualquier multiplo de w, podemos suponer que $\alpha_n = 1$. Escriba β'' para la base ordenada $\{v'_1, \ldots, v'_{n-1}, w\}$ que queríamos encontrar. Claro, $B = (T)_{\beta''}$ sería diagonal con polinomio característico de $f_{T_U}(x-c)$ donde c es el valor propio asociado a w. Ya que el polinomio característico de B es igual al polinomio característico de T, concluimos que $c = c_k$.

Entonces, la condición que w es un vector propio de T asociado al valor propio c_k es equivalente a esta ecuación de matrices:

Por rearreglando podemos ver que la (n-1)-tupla $(\alpha_1, \alpha_2, \dots, \alpha_{n-1})$ es una solución del sistema con matriz aumentada:

La demostración es cumplido si podemos encontrar una solución de este sistema. Pero es claro que el sistema tiene una solución si y sólo si $b_{n-d+1} = b_{n-d+2} = b_{n-1} = 0$. Vamos a estudiar los valores posibles de estas d-1 incógnitas.

Escriba W_i para el espacio propio asociado al valor propio c_i $(i=1,\ldots,k)$. Observe que $X=W_1+W_2+\cdots W_{k-1}$ es un espacio invariante de T. Entonces podemos estudiar la transformación cociente $T^X:V/X\to V/X$. Las ultimas d entradas de la base $\mathcal{B}'-v'_{n-d},\ldots,v'_{n-1},v_n$ – dan una base ordenada de V/X:

$$\mathcal{B}^X = \{v'_{n-d} + X, \dots, v'_{n-1} + X, v_n + X\}.$$

Además, la matriz $(T^X)_{\mathcal{B}^X}$ es igual al cuadrado $d \times d$ en la esquina abaja derecha de $(T)_{\beta'}$ (vea (1)):

$$(T^X)_{\mathcal{B}^X} = \begin{bmatrix} c_k & b_{n-d+1} \\ \ddots & \vdots \\ c_k & b_{n-1} \\ c_k \end{bmatrix}$$

Sabemos que p_{T^X} divide p_T (entonces es un producto de factores lineales distintos) y que tiene las mismas raices de f_{T^X} (entonces, estudiando la matriz arriba, tiene solamenta una raiz, c_k). Entonces, concluimos que $p_{T^X} = x - c_k$ y por lo tanto,

$$(T^X)_{\mathcal{B}^X} = \begin{bmatrix} c_k & & \\ & \ddots & \\ & & c_k \end{bmatrix}$$

Entonces $b_{n-d+1} = b_{n-d+2} = b_{n-1} = 0$ y el teorema está demostrado.

Una familia de operadores. Sea \mathcal{T} un conjunto de operadores lineales de V. En lecciones hemos demostrado el teorema siguiente:

Teorema 0.3. \mathcal{T} es diagonalizable simultáneamente si y sólo si

- para todo $S, T \in \mathcal{T}, S \circ T = T \circ S$ (es decir, \mathcal{T} es conmutativa); y
- para todo $T \in \mathcal{T}$, T es diagonalizable.

La demostración de la implicación (⇒) es facil – aquí quiero presentar una demostractión de la implicación (⇐). La demostración es diferente de lo que es en el libro y, además un poco diferente de lo que hemos discutido en clase.

Necesitamos el lema siguiente, demostrado en clase:

Lema 0.4. Suponga que T, S son operadores lineales de V y que S y T conmuta. Si W es un subespacio invariante de T, entonces W es un subespacio invariante de S.

Demostración de teorema 0.3. La demostración es por inducción sobre n, y observamos que el teorema es verdad (trivialmente) cuando n = 1. Suponemos que el teorema es verdad para operadores de espacios dimensión menor de n.

Suponga que $T \in \mathcal{T}$. Si T tiene un valor propio c único, entonces V es el espacio propio de T asociado de c. Concluimos que $(T)_{\mathcal{B}} = cI$ para toda base \mathcal{B} de V. Si todo elemento de \mathcal{T} tiene un valor propio único, entonces tenemos la conclusión requerida.

Suponga, entonces, que $T \in \mathcal{T}$ y que T tiene valores propios c_1, \ldots, c_k donde k > 1. Sea W_i el espacio propio asociado a c_i . Observen que ambos $W := W_1$ y $X := W_2 + W_3 + \cdots + W_n$ son subespacios invariantes de T. Entonces, por lema 0.4, W y X son invariantes para todo $S \in \mathcal{T}$. La demostración se completa en dos pasos:

(1) Define dos familias:

$$\mathcal{T}_W := \{ T_W \mid T \in \mathcal{T} \};$$

$$\mathcal{T}_X := \{ T_X \mid T \in \mathcal{T} \}.$$

Es claro que los dos familias son conmutativan y que sus elementos son diagonalizables. Entonces, por inducción, hay bases ordenadas de W y X (se llama \mathcal{B}_W y \mathcal{B}_X) con respecto a lo cual los elementos de las familias tienen matrices diagonales.

(2) Observen que $W_1 \cap X = \{0\}$, entonces $V = W_1 \oplus X$, y la unión $\mathcal{B}_W \cup \mathcal{B}_X$ es una base de V. Por lo tanto, si $T \in \mathcal{T}$, entonces

$$(T)_{\mathcal{B}} = \left(-\frac{(T_W)_{\mathcal{B}_W}}{\bar{T}_X} \right) \left(\bar{T}_X \right)_{\mathcal{B}_X}$$

Claro esta matriz es diagonal y hemos terminado.