### Phương trình đường thắng: y= ax + b



θ<sub>0</sub> b quyết định điểm giao của đường thẳng với trục y, intercept/observation noise: điểm mà đường thẳng cắt trục Y.
 θ<sub>1</sub> a quyết định góc của đường thẳng – slope/coefficients: độ dốc của đường thẳng h(x)

## Phương trình đường thẳng

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cần xác định các tham số:

 $\theta_i$ 







### KHOA CNTT & TRUYỀN THÔNG BM KHOA HỌC MÁY TÍNH

# HÔI QUY REGRESSION

🖎 Giáo viên giảng dạy:

TS. TRẦN NGUYỄN MINH THƯ

tnmthu@cit.ctu.edu.vn

# Quy ước

- ≻Biến **đầu vào** (input variables)/đặc trưng (features), kí hiệu: x<sup>(i)</sup>
- Biến đầu ra (output variable)/biến mục tiêu, kí hiệu y(i)
- Mẫu huấn luyện (training example) kí hiệu (X<sup>(i)</sup>, y<sup>(i)</sup>)
- Tập huấn luyện X = {(x<sup>(i)</sup>, y<sup>(i)</sup>)}, i = 1..m

| Square meters | Bedrooms | Floors | Age of building (years) | Price in 1000€ |
|---------------|----------|--------|-------------------------|----------------|
| x1            | x2       | х3     | x4                      | У              |
| 200           | 5        | 1      | 45                      | 460            |
| 131           | 3        | 2      | 40                      | 232            |
| 142           | 3        | 2      | 30                      | 315            |
| 756           | 2        | 1      | 36                      | 178            |
|               |          |        |                         |                |

$$x^{(3)} = \begin{bmatrix} 142 \\ 3 \\ 2 \\ 30 \end{bmatrix}$$

$$x_1^{(4)} = 756$$

## Phân loại học máy – học có giám sát

Từ tập dữ liệu huấn luyện  $\{(x_1, y_1), (x_2,y_2),...,(x_m,y_m)\}$ 

- Tìm hàm h (hypothesis) X=>Y sao cho h(x) dự báo được y từ x
- Y là giá trị liên tục: sử dụng pp hồi quy (regression)
- Y là giá trị rời rạc: sử dụng pp phân lớp (classification)



## Phân loại học máy – học có giám sát

#### Ví dụ: bài toán dự báo giá nhà

| Living area (feet <sup>2</sup> ) | Price (1000\$s) |
|----------------------------------|-----------------|
| 2104                             | 400             |
| 1600                             | 330             |
| 2400                             | 369             |
| 1416                             | 232             |
| 3000                             | 540             |
| <b>:</b>                         | :               |

Tập dữ liệu học

Giải thuật học

Phần tử cần dự dự dự đoán

- Đầu vào/thuộc tính: ?

– Đầu ra: ?

Xác định:

Dự báo cái gì? Dựa trên thông tin gì? Giải thuật gì?

## Phân loại học máy – học có giám sát

#### Ví dụ: bài toán dự báo giá nhà

| Living area (feet <sup>2</sup> ) | Price (1000\$s) |
|----------------------------------|-----------------|
| 2104                             | 400             |
| 1600                             | 330             |
| 2400                             | 369             |
| 1416                             | 232             |
| 3000                             | 540             |
| :                                | :               |



- Đầu vào/thuộc tính: diện tích
- Đầu ra: giá nhà giá trị liên tục

#### Xác định thuộc tính:

Dự báo cái gì? Y = giá nhà Dựa trên thông tin gì? Giải thuật gì? **Hồi quy** 

# Hồi quy



#### Mối liên quan giữa vòng bụng và độ dày lớp mỡ dưới da



Vòng bụng: biến định lượng liên tục Độ dày lớp mỡ dưới da: biến định lượng liên tục

Câu hỏi: có mối liên quan/tương quan giữa vòng bụng và độ dày lớp mỡ dưới da?

### Mối liên quan giữa BMI và HA tâm thu



BMI và HA tâm thu: biến định lượng liên tục

Câu hỏi: có mối liên quan/tương quan giữa BMI và HA tâm thu?

### Ví dụ dự đoán giá nhà

Dự báo giá nhà dựa vào diện tích

| Living area (feet <sup>2</sup> ) | Price (1000\$s) |
|----------------------------------|-----------------|
| 2104                             | 400             |
| 1600                             | 330             |
| 2400                             | 369             |
| 1416                             | 232             |
| 3000                             | 540             |
| :                                | :               |



### Ví dụ dự đoán giá nhà

Dự báo giá nhà dựa vào diện tích

| Living area (feet <sup>2</sup> ) | Price (1000\$s) |
|----------------------------------|-----------------|
| 2104                             | 400             |
| 1600                             | 330             |
| 2400                             | 369             |
| 1416                             | 232             |
| 3000                             | 540             |
| <b>:</b>                         | :               |



#### ➤ Biểu diễn giả thiết (hàm dự báo) h

– Ví dụ h là một hàm tuyến tính 1 biến, h(x1) có dạng:  $\frac{h_{\theta}(x) = \theta_0 + \theta_1 x_1}{\text{Trong đó, } \theta_0, \theta_1}$  là các tham số cần mà ta phải tìm trong quá trình

"dạy cho may học" hay còn gọi là quá trình huấn luyện.



Tìm phương trình đường thẳng đi qua 2 điểm  $A(x_1,y_1)$  và  $B(x_2,y_2)$ 





$$slope = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

- Tìm gradient (slope)
- Tìm giá trị khởi đầu (intercept) của y khi x=0

### Tìm phương trình đường thẳng "đi qua" 4 điểm



#### Và rất nhiều điểm



# Mô hình hồi qui tuyến tính

#### Mô hình:

$$Y = \alpha + \beta X + \varepsilon$$

 $\alpha$ : intercept

 $\beta$ : slope / gradient

ε : sai số ngẫu nhiên (random error – những dao động về Y trong mỗi giá trị X)



## Tiêu chuẩn để tìm tham số



Tìm công thức (estimator) để tính a và b sao cho tổng  $d^2$  là nhỏ nhất  $\rightarrow$  Least square method = Bình phương nhỏ nhất

Cho 4 điểm A(1,2), B(2,4), C(3, 1.5) và D(4, 3.2)



- Hãy biểu diễn dữ liệu trên mặt phẳng O(x,y)
- Hãy tính tổng bình phương 4 điểm này:
  - Đối với đường hồi quy y = x
  - Đối với đường y = 2.5

# Đường hồi quy tốt nhất?

Tổng bình phương =  $(2-1)^2 + (4-2)^2 + (1.5-3)^2 + (3.2-4)^2 = 7.89$ 



# Đường hồi quy tốt nhất?

Tổng bình phương của đường y = x:  $(2-1)^2 + (4-2)^2 + (1.5 - 3)^2 + (3.2 - 4)^2 = 7.89$ 

Tổng bình phương của đường y = 2.5:  $(2 - 2.5)^2 + (4 - 2.5)^2 + (1.5 - 2.5)^2 + (3.2 - 2.5)^2 = 3.44$ 



#### Phiên giải



Hằng số Hệ số hồi quy

$$\beta_1 = 3,46$$

- Dấu của β<sub>1</sub>
- Độ lớn của β₁

#### Phiên giải



Hằng số Hệ số hồi quy

$$\beta_1 = 3,46$$

- Dấu của β<sub>1</sub>
- Độ lớn của β<sub>1</sub>

Vòng bụng tăng 1 cm thì độ dày lớp mỡ dưới da tăng 3,46 cm²

### Ví dụ dự đoán giá nhà



| Living area (feet <sup>2</sup> ) | Price (1000\$s) |
|----------------------------------|-----------------|
| 2104                             | 400             |
| 1600                             | 330             |
| 2400                             | 369             |
| 1416                             | 232             |
| 3000                             | 540             |
| :                                | :               |

Trong khi sử dụng hồi quy tuyến tính, mục tiêu của chúng ta là để làm sao một đường thẳng có thể tạo được sự phân bố gần nhất với hầu hết các điểm. Do đó làm giảm khoảng cách (sai số) của các điểm dữ liệu cho đến đường đó.

# Hồi quy tuyến tính

– Ta phải tìm hàm  $h_{ heta}(x^{(i)})$  sao cho  $\mathbf{h}(\mathbf{x})$  gần với  $\mathbf{y}$  nhất (sai số dự đoán)

Nói cách khác, chúng ta muốn giá trị sau đây càng nhỏ càng tốt:

$$[h_{\theta}(x^{(i)}) - y^{(i)}]$$

# Hồi quy tuyến tính

– Ta phải tìm hàm  $h_{\theta}(x^{(i)})$  sao cho h(x) gần với y nhất (sai số dự đoán)

Nói cách khác, chúng ta muốn giá trị sau đây càng nhỏ càng tốt:

$$[h_{\theta}(x^{(i)}) - y^{(i)}]$$

Hàm chi phí/hàm lỗi (cost function/error function) của m phần tử

•Hàm lỗi sai số tuyệt đối:

$$\sum_{i=1}^{m} h_{\theta}(x^{(i)}) - y^{(i)}$$

•Hàm lỗi sai số bình phương: 
$$\sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

# Hồi quy tuyến tính

#### Dạy cho máy học/huấn luyện như thế nào?

- Tìm các tham số θ từ tập huấn luyện sao cho lỗi huấn luyện nhỏ nhất.
- Ta phải tìm h sao cho  $\mathbf{h}(\mathbf{x})$  gần với  $\mathbf{y}$  nhất =  $[h_{\theta}(x^{(i)}) y^{(i)}]$
- Hàm chi phí/hàm lỗi (cost function/error function)

$$\sum_{i=1}^m \left| h_{ heta}(x^{(i)}) - y^{(i)} \right| \qquad \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)})^2$$

Mục tiêu tìm θ sao cho J(θ) nhỏ nhất

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

# Giảm gradient

- Mục tiêu: Tìm θ sao cho J(θ) nhỏ nhất
  - Khởi tạo ngẫu nhiên θ
  - Tăng/giảm θ một lượng Δθ sao cho J(θ +/- Δθ) nhỏ hơn J(θ)

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J( heta)$$
 a: tốc độ học

LMS (Least mean square): bình phương trung bình nhỏ nhất

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Tính đạo hàm riêng theo từng tham số:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{\partial}{\partial \theta_j} \frac{1}{2} (h_{\theta}(x) - y)^2$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_j} (h_{\theta}(x) - y)$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Đạo hàm theo  $\theta_j$ 

$$= (h_{\theta}(x) - y) x_j$$

Tính đạo hàm riêng theo từng tham số:

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left( \sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j}$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Tính đạo hàm riêng theo từng tham số:

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left( \sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = (h_{\theta}(x) - y) x_{j}$$

# Đạo hàm riêng

Scalar multiple rule:

$$\frac{d}{dx}(\alpha u) = \alpha \frac{du}{dx}$$

Sum rule:

$$\frac{d}{dx}\sum u = \sum \frac{du}{dx}$$

Power rule:

$$\frac{d}{dx}u^n = nu^{n-1}\frac{du}{dx}$$

Chain rule:

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

$$\frac{d}{d\theta_1} (h_{\theta}(x^{(i)}) - y^{(i)}) = \frac{d}{d\theta_1} (\theta_0 + \theta_1 x^{(i)} - y^{(i)}) = x^{(i)}$$

Nếu chỉ có 1 mẫu huấn luyện, ta cập nhật:

$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

Nếu có nhiều mẫu huấn luyện, sử dụng luật cập nhật:

$$\theta_j := \theta_j + \alpha \sum_{i=1}^m (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$

Hoặc: for i=1 to m, {  $\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$ 

$$\frac{\partial}{\partial \theta_i} J(\theta) = (h_{\theta}(x) - y) x_j$$

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Sử dụng luật cập nhật theo Batch Gradient descent (GD)

$$\theta_j := \theta_j + \alpha \sum_{i=1}^m (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$

Hoặc Stochastic gradient descent (SGD)

for i=1 to m, { 
$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$
 }

### Vídu

Cho tập dữ liệu gồm 3 phần tử như bảng bên, hãy thực hiện các công việc sau

▶Tìm hàm hồi quy h(x) với giá trị khởi tạo (0, 1), tốc độ học: 0.2, số bước lặp: 2

▶Dự đoán giá trị y cho phần tử có x = 3

| X | У |
|---|---|
| 1 | 2 |
| 2 | 3 |
| 4 | 6 |

$$\theta_j := \theta_j + \alpha \sum_{i=1}^m (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$

### Vídu

Cho tập dữ liệu gồm 3 phần tử như bảng bên, hãy thực hiện các công việc sau

- ➤ Biểu diễn tập dữ liệu lên mặt phẳng toạ độ Oxy
- ▶Tìm hàm hồi quy h(x) với giá trị khởi tạo (0, 1), tốc độ học: 0.2, số bước lặp: 2
- ➤ Vẽ đường hồi quy lên mặt phẳng toạ độ
- ▶Dự đoán giá trị y cho phần tử có x = 3

| for $i=1$   | to m,         | {                                 |                    |                   |
|-------------|---------------|-----------------------------------|--------------------|-------------------|
| $	heta_j:=$ | $= 	heta_j +$ | $\alpha \left( y^{(i)} - \right)$ | $h_{\theta}(x^{(}$ | $(i))) x_j^{(i)}$ |

| X | У |
|---|---|
| 1 | 2 |
| 2 | 3 |
| 4 | 6 |
|   |   |

for i=1 to m, { 
$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$
 \rightarrow i du

➤ Biểu diễn tập dữ liệu lên mặt phẳng toạ độ Oxy



| Х | У |
|---|---|
| 1 | 2 |
| 2 | 3 |
| 4 | 6 |

for i=1 to m, { 
$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$
 } }

Có bao nhiêu giá trị θ

$$h_{\theta}(x) = ?$$

| Х | У |
|---|---|
| 1 | 2 |
| 2 | 3 |
| 4 | 6 |

for i=1 to m, { 
$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$
 \rightarrow i du

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0 = 0$$
,  $\theta_1 = 1$ ;  $\alpha = 0.2$   $h_{\theta}(x)_0 = 0 + 1.x$ 

### Lần lặp 1:

Phần tử thứ 1(x=1,y=2):(x<sup>(1)</sup>):

$$\frac{\text{Tìm }\theta_0}{\theta_0} = \theta_{0+} \alpha^* (y^1 - \{0 + 1^* x^1_1\})^* x^1_0$$
$$= 0 + 0.2(2 - \{0 + 1^* 1\})^* 1 = 0.2$$

| X | У |
|---|---|
| 1 | 2 |
| 2 | 3 |
| 4 | 6 |

for i=1 to m, { 
$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$
 } }

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0 = 0$$
,  $\theta_1 = 1$ ;  $\alpha = 0.2$   $h_{\theta}(x)_0 = 0 + 1.x$ 

#### Lần lặp 1:

Phần tử thứ 1(x=1,y=2):(x<sup>(1)</sup>):

$$\frac{\text{Tìm } \theta_0}{\theta_0} = \theta_{0+} \alpha^* (y^1 - \{0 + 1^* x^1_1\})^* x^1_0$$
$$= 0 + 0.2(2 - \{0 + 1^* 1\})^* 1 = 0.2$$

$$\frac{\text{Tìm } \theta_1}{\theta_1} = \theta_{1+} \alpha^* (y_1 - \{0 + 1^* x_1\})^* x_1$$
$$= 1 + 0.2(2 - \{0 + 1^* 1\})^* 1 = 1.2$$

| X | У |
|---|---|
| 1 | 2 |
| 2 | 3 |
| 4 | 6 |

for i=1 to m, { 
$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$
 } }

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0 = 0$$
,  $\theta_1 = 1$ ;  $\alpha = 0.2$   $h_{\theta}(x)_0 = 0 + 1.x$ 

### Lần lặp 1:

| Pt 2(2,3): (x <sup>(2)</sup> ):                                                         |   | У |
|-----------------------------------------------------------------------------------------|---|---|
| Tìm $\theta_{0:}$ $\theta_0 = \theta_{0+} \alpha^* (y_2 - \{0.2 + 1^* x_1^2\})^* x_0^2$ | 1 | 2 |
| $= 0.2 + 0.2(3 - \{0.2 + 1.2 * 2\}) *1 = 0.28$                                          | 2 | 3 |
| Tìm $\theta_1 = \theta_{1+} \alpha^* (y_2 - \{0.2 + 1.2 * x_2\}) * x_2$                 | 4 | 6 |
| = 1.2 + 0.2*(3 - (0.2+1.2*2)) *2 = 1.36                                                 |   |   |

for i=1 to m, { 
$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$
 } }

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x; \ \theta_{0} = 0, \ \theta_{1} = 1; \ \alpha = 0.2 \ h_{\theta}(x)_{0} = 0 + 1.x$$

$$\frac{\text{Län lặp 1: Tìm } \theta_{0}}{\text{Pt 3}(4,6): (x^{(3)})}$$

$$\frac{\text{Tìm } \theta_{0}}{\theta_{0}} = \theta_{0} + \alpha^{*}(y_{1} - (0.36 + 1^{*} x^{3}_{1}))^{*} x^{3}_{0}$$

$$4 \quad 6$$

$$= 0.28 + 0.2*(6-(0.28+1.36*4))*1 = 0.336$$

$$\underline{\text{Tim } \theta_1} \qquad \theta_1 = \theta_{1+} \alpha^* (y_1 - \{0.36 + 1^* x_1\})^* x_1$$
$$= 1.36 + 0.2(6 - (0.28 + 1.36 + 4))^* 4 = 1.58$$

$$h_{\theta}(x)_0 = 0.336 + 1.58.x$$

for i=1 to m, { 
$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$
 \rightarrow i du

$$h_{\theta}(x) = \theta_0 + \theta_1 x => h_{\theta}(x)_0 = 0.336 + 1.58.x$$

### Lần lặp 2: Tìm $\theta_0$

Tiếp tục với giá trị  $\theta_0 = 0.336$ ,  $\theta_1 = 1.58$ ;

| X | У |
|---|---|
| 1 | 2 |
| 2 | 3 |
| 4 | 6 |

### Bài tập nộp lại trên elcit

Câu 3. (2.0 điểm) Cho tập dữ liệu như bảng bên dưới,

| STT | $X_1$ | X <sub>2</sub> | <b>X</b> <sub>3</sub> | Y  |
|-----|-------|----------------|-----------------------|----|
| 3.  | 4     | 5              | 3                     | 10 |
| 4.  | 6     | 8              | 5                     | 8  |

a) Anh/chị hãy xây dựng một mô hình hồi quy tuyến tính với các thông tin sau:

$$y = h_{\theta}(x) = \theta_0 + \theta_1 X_1 + \theta_2 X_2 + \theta_3 X_3$$

số bước lặp: 1; giá trị khởi tạo  $\theta_0 = 0.3$ ,  $\theta_1 = 0.4$ ,  $\theta_2 = 0.1$ ,  $\theta_3 = 0.2$ ; tốc độ học  $\alpha$ =0.1 và luật cập nhật:

$$\theta_j := \theta_j + \frac{\alpha}{m} \sum_{i=1}^m \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

b) Với mô hình huấn luyện được, anh/chị hãy dự đoán giá trị Y của phần tử mới tới có thông tin như sau: X<sub>1</sub> =8; X<sub>2</sub> =7; X<sub>3</sub> = 9

## Đánh giá mô hình hồi quy

Mean Absolute Error (MAE) is the mean of the absolute value of the errors:

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$





$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

**Root Mean Squared Error** (RMSE)

squared errors:

is the square root of the mean of the squared

RMSE = 
$$\sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

## Hồi quy tuyến tính đơn biến

#### Income vs Average Working Hours



- •Y=  $\beta 0 + \beta 1*X1 \rightarrow Y = 0.636 + 2.018*X$
- Dấu của β1 cho biết sự ảnh hưởng của X đối với Y.

# Hồi quy tuyến tính đa biến

Ví dụ: bài toán dự báo giá nhà

| Living area (feet <sup>2</sup> ) | #bedrooms | Price (1000\$s) |
|----------------------------------|-----------|-----------------|
| 2104                             | 3         | 400             |
| 1600                             | 3         | 330             |
| 2400                             | 3         | 369             |
| 1416                             | 2         | 232             |
| 3000                             | 4         | 540             |
| :                                | i:        | :               |

# Hồi quy tuyến tính đa biến

#### Thiết lập bài toán

- > Xác định thuộc tính:
  - Dự báo cái gì
  - Dựa trên thông tin gì?

| Living area (feet <sup>2</sup> ) | #bedrooms | Price (1000\$s) |
|----------------------------------|-----------|-----------------|
| 2104                             | 3         | 400             |
| 1600                             | 3         | 330             |
| 2400                             | 3         | 369             |
| 1416                             | 2         | 232             |
| 3000                             | 4         | 540             |
| :                                | :         | :               |

Biểu diễn giả thiết (hàm dự báo) h h là một hàm tuyến tính 2 biến, h(x1, x2) có dạng:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Trong đó,  $\theta_0$ ,  $\theta_1$ ,  $\theta_2$  là các tham số mà ta cần phải tìm trong qua trình "dạy cho máy học" hay còn gọi là qua trình huấn luyện.

## Phân loại hồi quy

### ■ Phân loại

- Hồi qui tuyến tính (linear) và phi tuyến (nonlinear)
  - Linear in parameters: kết hợp tuyến tính các thông số tạo nên Y
  - Nonlinear in parameters: kết hợp phi tuyến các thông số tạo nên Y

#### Regression with nonlinearity



### Phân loại hồi quy – hồi quy đơn biến

Cho N đối tượng đã được quan sát, mô hình hồi qui tuyến tính đơn biến được cho dưới dạng sau với ε dùng giữ phần biến thiên của đáp ứng Y không được giải thích từ X:

-Dạng đường thẳng

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \dots, N.$$

-Dang parabola

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i, i = 1, ..., N.$$

## Hồi quy tuyến tính đơn biến

#### Income vs Average Working Hours



- •Y=  $\beta 0 + \beta 1*X1 \rightarrow Y = 0.636 + 2.018*X$
- Dấu của β1 cho biết sự ảnh hưởng của X đối với Y.

# Hồi quy tuyến tính đa biến

Ví dụ: bài toán dự báo giá nhà

| Living area (feet <sup>2</sup> ) | #bedrooms | Price (1000\$s) |
|----------------------------------|-----------|-----------------|
| 2104                             | 3         | 400             |
| 1600                             | 3         | 330             |
| 2400                             | 3         | 369             |
| 1416                             | 2         | 232             |
| 3000                             | 4         | 540             |
| •                                | :         | <b>:</b>        |

# Hồi quy tuyến tính đa biến

#### Thiết lập bài toán

- > Xác định thuộc tính:
  - Dự báo cái gì
  - Dựa trên thông tin gì?

| Living area (feet <sup>2</sup> ) | #bedrooms | Price (1000\$s) |
|----------------------------------|-----------|-----------------|
| 2104                             | 3         | 400             |
| 1600                             | 3         | 330             |
| 2400                             | 3         | 369             |
| 1416                             | 2         | 232             |
| 3000                             | 4         | 540             |
| :                                | :         | :               |

Biểu diễn giả thiết (hàm dự báo) h h là một hàm tuyến tính 2 biến, h(x1, x2) có dạng:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Trong đó,  $\theta_0$ ,  $\theta_1$ ,  $\theta_2$  là các tham số mà ta cần phải tìm trong qua trình "dạy cho máy học" hay còn gọi là qua trình huấn luyện.

### Bài toán phân lớp và hồi quy logistic

#### Bài toán phân lớp:

- · Giống như bài toán hồi quy, ngoài trừ y có giá trị rời rạc
- Ví dụ bài toán 2 lớp:
  - 0: lớp âm
  - 1: lớp dương
- Ta có thể giải bài toán phân lớp này bằng giải thuật hồi quy tuyến tính như trên. Tuy nhiên, vì y chỉ có thể có giá trị là 0 hoặc 1, nên không cần thiết phải định nghĩa h có nhiều giá trị.

# Hồi quy logistic

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}},$$

Trong đó  $g(z)=rac{1}{1+e^{-z}}$ 

Hàm logistic hay hàm sigmoid



# Hồi quy logistic

Đạo hàm của g(z)

$$g'(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{(1 + e^{-z})^2} (e^{-z})$$

$$= \frac{1}{(1 + e^{-z})} \cdot \left(1 - \frac{1}{(1 + e^{-z})}\right)$$

$$= g(z)(1 - g(z)).$$

# Hồi quy logistic

Tìm tham số như thế nào với hàm hồi quy logistic?

Bỏ qua các công thức phức tạp, ta thu được luật cập nhật tham số y hệ như trường hợp hồi quy tuyến tính!

$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

Tuy nhiên cần phải chú ý rằng: hàm h(x) trong trường hợp này là hàm logistic.

# Bài tập 1

| Cho tập dữ liệu<br>– Biểu diễn tập dữ liệu lên mặt phẳng      | X   | y   |
|---------------------------------------------------------------|-----|-----|
| toạ độ Oxy                                                    | 0   | 1   |
| <ul> <li>Tìm hàm hồi quy h(x) với giá trị khởi tạo</li> </ul> |     | 2.5 |
| (0, 0.5), tốc độ học: 0.1, số bước lặp: 3                     | 1.5 | 3.5 |
| <ul> <li>Vẽ đường hồi quy lên mặt phẳng toạ độ</li> </ul>     | 2.5 | 4   |
| <ul> <li>Dự đoán giá trị y cho phần tử có x = 2</li> </ul>    | 3   | 5.5 |

### Bài tập 1

### Cho tập dữ liệu

Tìm hàm hồi quy h(x) với giá trị khởi tạo
(0, 0.5), tốc độ học: 0.1, số bước lặp: 3

- Dự đoán giá trị y cho phần tử có x = 2

| X   | y   |
|-----|-----|
| 0   | 1   |
| 0.5 | 2.5 |
| 1.5 | 3.5 |
| 2.5 | 4   |
| 3   | 5.5 |

for i=1 to m, { 
$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$

### Bài tập 1 <sup>3</sup>



| X   | y   |
|-----|-----|
| 0   | 1   |
| 0.5 | 2.5 |
| 1.5 | 3.5 |
| 2.5 | 4   |
| 3   | 5.5 |

for i=1 to m, { 
$$\theta_j := \theta_j + \alpha \left( y^{(i)} - h_\theta(x^{(i)}) \right) x_j^{(i)}$$
 }

| $h_{\theta}(x) = 0$ | $\theta_0$ + | $\theta_1 x$ |
|---------------------|--------------|--------------|
|---------------------|--------------|--------------|

$$\theta_0 = 0$$
,  $\theta_1 = 0.5$ ;  $\alpha = 0.1$   $h_{\theta}(x)_0 = 0 + 0.5x$ 

### Lần lặp 1 tìm $\theta_0$

$$(x_1):\theta_0 = \theta_{0+} \alpha^* (y_1 - \{0 + 0.5^*x_1\})^* x_1$$
$$= 0 + 0.1(1 - \{0 + 0.5^*0\})^* 0 = 0$$

$$(x_2):\theta_0 = \theta_{0+} \alpha^* (y_2 - \{0 + 0.5^*x_2\})^* x_2$$
  
= 0 + 0.1(2.5 -\{0+0.5^\*0.5\}) \*0.5=0.1125

| X   | y   |
|-----|-----|
| 0   | 1   |
| 0.5 | 2.5 |
| 1.5 | 3.5 |
| 2.5 | 4   |
| 3   | 5.5 |

# Hạn chế của hồi quy tuyến tính

- Nhạy cảm với nhiễu (sensitive to noise)

