$$\boldsymbol{v} \cdot \boldsymbol{w} = xz + xy + yz = \frac{1}{2}(x+y+z)^2 - \frac{1}{2}(x^2+y^2+z^2)$$
 This is the same as $\boldsymbol{v} \cdot \boldsymbol{w} = 0 - \frac{1}{2} \|\boldsymbol{v}\| \|\boldsymbol{w}\|$. Then $\cos \theta = \frac{1}{2}$

32 Wikipedia gives this proof of geometric mean $G = \sqrt[3]{xyz} \le \text{arithmetic mean } A = (x+y+z)/3$. First there is equality in case x=y=z. Otherwise A is somewhere between the three positive numbers, say for example z < A < y.

Use the known inequality $g \le a$ for the *two* positive numbers x and y+z-A. Their mean $a=\frac{1}{2}(x+y+z-A)$ is $\frac{1}{2}(3A-A)=$ same as A! So $a\ge g$ says that $A^3\ge g^2A=x(y+z-A)A$. But (y+z-A)A=(y-A)(A-z)+yz>yz. Substitute to find $A^3>xyz=G^3$ as we wanted to prove. Not easy!

There are many proofs of $G=(x_1x_2\cdots x_n)^{1/n}\leq A=(x_1+x_2+\cdots+x_n)/n$. In calculus you are maximizing G on the plane $x_1+x_2+\cdots+x_n=n$. The maximum occurs when all x's are equal.

33 The columns of the 4 by 4 "Hadamard matrix" (times $\frac{1}{2}$) are perpendicular unit vectors:

34 The commands $V = \operatorname{randn}(3,30); D = \operatorname{sqrt}(\operatorname{diag}(V'*V)); U = V \backslash D;$ will give 30 random unit vectors in the columns of U. Then u'*U is a row matrix of 30 dot products whose average absolute value should be close to $2/\pi$.

Problem Set 1.3, page 29

8

1 $3s_1 + 4s_2 + 5s_3 = (3,7,12)$. The same vector **b** comes from S times x = (3,4,5):

Solutions to Exercises

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} (\operatorname{row} 1) \cdot \boldsymbol{x} \\ (\operatorname{row} 2) \cdot \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \\ 12 \end{bmatrix}.$$

2 The solutions are $y_1 = 1$, $y_2 = 0$, $y_3 = 0$ (right side = column 1) and $y_1 = 1$, $y_2 = 3$, $y_3 = 5$. That second example illustrates that the first n odd numbers add to n^2 .

The inverse of
$$S = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$
 is $A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$: **independent** columns in A and S !

- 4 The combination 0w₁ + 0w₂ + 0w₃ always gives the zero vector, but this problem looks for other zero combinations (then the vectors are dependent, they lie in a plane):
 w₂ = (w₁ + w₃)/2 so one combination that gives zero is w₁ 2w₂ + w₃ = 0.
- 5 The rows of the 3 by 3 matrix in Problem 4 must also be *dependent*: $r_2 = \frac{1}{2}(r_1 + r_3)$. The column and row combinations that produce 0 are the same: this is unusual. Two solutions to $y_1r_1 + y_2r_2 + y_3r_3 = 0$ are $(Y_1, Y_2, Y_3) = (1, -2, 1)$ and (2, -4, 2).

6
$$c = 3$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 3 & 2 & 1 \\ 7 & 4 & 3 \end{bmatrix}$$
 has column $3 = \text{column } 1 - \text{column } 2$

$$c=-\mathbf{1} \quad \begin{bmatrix} 1 & 0 & -\mathbf{1} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ has column } 3=- \text{ column } 1+\text{column } 2$$

$$c=\mathbf{0} \qquad \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ 2 & 1 & 5 \\ 3 & 3 & 6 \end{bmatrix} \text{ has column } 3=3 \text{ (column 1)} - \text{column 2}$$

7 All three rows are perpendicular to the solution x (the three equations $r_1 \cdot x = 0$ and $r_2 \cdot x = 0$ and $r_3 \cdot x = 0$ tell us this). Then the whole plane of the rows is perpendicular to x (the plane is also perpendicular to all multiples cx).

9 The cyclic difference matrix C has a line of solutions (in 4 dimensions) to Cx = 0:

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 when $\mathbf{x} = \begin{bmatrix} c \\ c \\ c \\ c \end{bmatrix}$ = any constant vector.

- 11 The forward differences of the squares are $(t+1)^2-t^2=t^2+2t+1-t^2=2t+1$. Differences of the nth power are $(t+1)^n-t^n=t^n-t^n+nt^{n-1}+\cdots$. The leading term is the derivative nt^{n-1} . The binomial theorem gives all the terms of $(t+1)^n$.
- **12** Centered difference matrices of *even size* seem to be invertible. Look at eqns. 1 and 4:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$
First
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ b_4 \end{bmatrix} = \begin{bmatrix} -b_2 - b_4 \\ b_1 \\ -b_4 \\ b_1 + b_3 \end{bmatrix}$$

13 Odd size: The five centered difference equations lead to $b_1 + b_3 + b_5 = 0$.

Solutions to Exercises 11

$$x_2=b_1$$
 Add equations $1,3,5$
$$x_3-x_1=b_2$$
 The left side of the sum is zero
$$x_4-x_2=b_3$$
 The right side is $b_1+b_3+b_5$
$$-x_4=b_5$$
 There cannot be a solution unless $b_1+b_3+b_5=0$.

14 An example is (a,b)=(3,6) and (c,d)=(1,2). We are given that the ratios a/c and b/d are equal. Then ad=bc. Then (when you divide by bd) the ratios a/b and c/d must also be equal!