Задачи на дополнительные баллы

Problem 1. Consider the model $Y_i = \beta X_i + u_i$, i = 1, ..., n where $Eu_i = 0$, $Eu_i^2 = \sigma^2$, and $E(u_i u_j) = 0$, $i \neq j$, and X_i are assumed to be non-stochastic.

- **a)** Show that OLS estimator of β is $\hat{\beta} = \frac{\sum X_i Y_i}{\sum X_i^2}$.
- **b)** What is variance of $\hat{\beta} = \frac{\sum X_i Y_i}{\sum X_i^2}$?
- c) Let $c_i = \frac{X_i}{\sum X_i^2}$. Which of the following equalities are true and under what condition(s) each of them is true: 1) $\sum c_i = 0$; 2) $\sum c_i^2 = \frac{1}{\sum X_i^2}$, 3) $\sum c_i X_i = 1$; 4) $\sum c_i \hat{Y}_i = \hat{\beta}$; 5) $\sum c_i Y_i = \hat{\beta}$.
- (d) Let $\widetilde{\beta} = \sum gY_i$ be any linear estimator of β . Under what condition this estimator is unbiased? Does $\widehat{\beta} = \frac{\sum X_i Y_i}{\sum X_i^2}$ belong to this class of estimators? Is it unbiased?
- (e) Let $h_i = g_i c_i$ where at least one of h_i is not equal to zero, and let $\widetilde{\beta} = \sum g_i Y_i$ be any linear unbiased estimator of β ; $\hat{\beta} = \frac{\sum X_i Y_i}{\sum X_i^2}$. Show that $var(\hat{\beta}) < var(\widetilde{\beta})$ and so the estimator $\hat{\beta} = \frac{\sum X_i Y_i}{\sum X_i^2}$ is BLUE (Best Linear Unbiased Estimator) (*Gauss-Markov Theorem for the regression without constant term*).

Problem 2 (UoL Exam). The following equation was estimated by Ordinary Least Squares using 37 annual observations of UK aggregate data. The dependent variable $(cloth_t)$ is the log of expenditure on clothing at 1995 prices, yd_t is the log of aggregate disposable income at 1995 prices, PC_t is the log of the price of clothing relative to all consumer prices, PS_t is the log of the price of shoes relative to all consumer prices.

$$cloth_t = -3.256 + 1.021yd_t - 0.240pc_t - 0.429ps_t + e_t$$

$$(1.531) (0.118) (0.132) (0.185)$$

standard errors in brackets, e_t is an OLS residual. $R^2 = 0.992$

- (a) Test the hypothesis that the coefficient of yd_t is one.
- **(b)** Construct a 95% confidence interval for the coefficient pc_t .
- (c) Test the hypothesis that all slope coefficients in the equation above are zero. Give any assumptions which your results in b) and c) require.

Problem 3 (ICEF Exam). Two students A and B are trying to answer the following question: what is better for future earnings – to study or to work, and so to get working experience. They collect data on 28 people working in different companies on their schooling S_i (in years), their working experience W_i (also in years) and current hourly earnings $EARN_i$ (in dollars). They also calculate the total number of years of active life spent on work or study $A_i = S_i + W_i$. It is assumed that one can not work and study at the same time.

The student A runs the following equation

$$E\hat{ARN}_i = -22.96 + 2.44 \cdot S_i + 0.92 \cdot W_i$$
 $R^2 = 0.26$ (1)

The student B using the same data estimates another equation

$$EARN_i = -22.96 + 2.44 \cdot A_i - 1.52 \cdot W_i$$
 $R^2 = 0.26$ (2)

- (a) . Give interpretation to the coefficients of equation (1) and to all coefficients except that of W_i in the second equation. Explain why the coefficient of S_i in equation (1) is equal to the coefficient of A_i in equation (2). Explain why the constant terms in equations (1) and (2) are equal.
- **(b)** The student A claims that spending one extra year to study is 2.5 times more useful for future earnings than spend it on work. Is he right? Give interpretation to the coefficient of W_i in the equation **(2)** and explain why it has negative sign. Is it possible to evaluate this coefficient using information from equation **(1)**?
- (c) Evaluate the significance of the coefficients. Evaluate the significance of the equation (1) using F-statistic. Is it possible to get F-statistic for equation (2) without calculation? Why the equations (1) and (2) have the same R^2 ? Why the standard error of the coefficient of S_i in the equation (1) is equal to the standard error of the coefficient of A_i in the equation (2)?