Final Exam (MAS473)

Introduction to Artificial Intelligence with Mathematics December 16, 2021: 9:00 a.m. $\sim 11:30$ a.m.

1. (30 pts) Let $\mathbf{x}_i, 1 \leq i \leq n$, be an N dimensional input (column) vectors and $\mathbf{y}_i = \mathbf{W}\mathbf{x}_i$ where \mathbf{W} is an $M \times N$ matrix for $M \leq N$. To reconstruct \mathbf{x}_i from \mathbf{y}_i , we consider the following problem:

$$\mathbf{x}_{i.E} = \mathbf{U}\mathbf{y}_i$$

where **U** is an $N \times M$ matrix.

(a) (10 pts) For two column vectors **a** and **b** and a matrix **B**, derive the following.

$$\frac{\partial}{\partial \mathbf{B}} \mathbf{a}^{\top} \mathbf{B} \mathbf{b} := \left(\frac{\partial}{\partial B_{ij}} \mathbf{a}^{\top} \mathbf{B} \mathbf{b} \right), \quad \frac{\partial}{\partial \mathbf{B}} \mathbf{a}^{\top} \mathbf{B}^{\top} \mathbf{B} \mathbf{a} := \left(\frac{\partial}{\partial B_{ij}} \mathbf{a}^{\top} \mathbf{B}^{\top} \mathbf{B} \mathbf{a} \right)$$

where B_{ij} denotes the (i, j)-th element of **B**.

- (b) (10 pts) We assume that matrix **W** is fixed in (b). In this case, find the matrix **U** that minimizes $\mathcal{L} = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_i \mathbf{x}_{i,E}||^2$ by using the results in (a) where $||\cdot||$ denotes the Euclidean distance.
- (c) (10 pts) Next, to find the optimal matrix **W** that minimizes \mathcal{L} we assume that all rows of **W** are the transposed (orthonormal) eigenvectors of the covariance matrix $\mathbf{S} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}$, i.e.,

$$\mathbf{S}\mathbf{u}_j = \lambda_j \mathbf{u}_j, 1 \le j \le M, \quad \mathbf{u}_j^{\top} \mathbf{u}_k = \begin{cases} 1 & \text{if } j = k \\ 0 & \text{if } j \ne k \end{cases}, 1 \le j, k \le M, \quad \mathbf{W} = \begin{bmatrix} \mathbf{u}_1^{\top} \\ \mathbf{u}_2^{\top} \\ \vdots \\ \mathbf{u}_M^{\top} \end{bmatrix}.$$

Using the result in (b), show that the eigenvectors in \mathbf{W} should be those corresponding to the M largest eigenvalues of \mathbf{S} .

- 2. (30 pts) Consider a two-state Markov Decision Process. We assume stationary rewards and stationary transition probabilities. Let $\{s_1, s_2\}$ be the state space.
 - In state s_1 , we can choose one of two actions $a_{1,1}$ and $a_{1,2}$. When action $a_{1,1}$ is selected, we get a reward of 5 and the next state is s_1 with probability 1/2 and s_2 with probability 1/2. When action $a_{1,2}$ is selected, we get a reward of 10 and the next state is s_2 with probability 1.
 - In state s_2 , we have only one action a_2 . When action a_2 is selected, we get a reward of -1 and the next state is s_2 .
 - (a) (10 pts) Consider a decision rule d with $d(s_1) = a_{1,1}$ and $d(s_2) = a_2$ and a stationary policy $\pi_1 = d^{\infty}$. Compute the value function $v(s_1)$ and $v(s_2)$ for the expected total discounted reward of policy π_1 where λ is a discount factor.
 - (b) (10 pts) Let $\lambda = 0.9$. Find the decision rule d^* that is conserving and its corresponding value function $v_{0.9}^*(s_1)$ and $v_{0.9}^*(s_2)$.
 - (c) (10 pts) We want to characterize the optimal policy as a function of λ (0 < λ < 1). To this end, consider two decision rules d and δ where $\delta(s_1) = a_{1,2}$ and $\delta(s_2) = a_2$, and two stationary policies $\pi_1 = d^{\infty}$ and $\pi_2 = \delta^{\infty}$. Discuss which policy is optimal depending on the value of λ .