Introduction to Machine Learning

Module 1: Introduction

Part A: Introduction

Sudeshna Sarkar IIT Kharagpur

Overview of Course

- 1. Introduction
- 2. Linear Regression and Decision Trees
- Instance based learning Feature Selection
- 4. Probability and Bayes Learning
- 5. Support Vector Machines
- 6. Neural Network
- 7. Introduction to Computational Learning Theory
- 8. Clustering

Module 1

- 1. Introduction
 - a) Introduction
 - b) Different types of learning
 - c) Hypothesis space, Inductive Bias
 - d) Evaluation, Training and test set, cross-validation
- 2. Linear Regression and Decision Trees
- 3. Instance based learning Feature Selection
- 4. Probability and Bayes Learning
- 5. Support Vector Machines
- 6. Neural Network
- 7. Introduction to Computational Learning Theory
- 8. Clustering

Machine Learning History

- 1950s:
 - Samuel's checker-playing program
- 1960s:
 - Neural network: Rosenblatt's perceptron
 - Minsky & Papert prove limitations of Perceptron
- 1970s:
 - Symbolic concept induction
 - Expert systems and knowledge acquisition bottleneck
 - Quinlan's ID3
 - Natural language processing (symbolic)

Machine Learning History

• 1980s:

- Advanced decision tree and rule learning
- Learning and planning and problem solving
- Resurgence of neural network
- Valiant's PAC learning theory
- Focus on experimental methodology
- 90's ML and Statistics
 - Data Mining
 - Adaptive agents and web applications
 - Text learning
 - Reinforcement learning
 - Ensembles
 - Bayes Net learning

- 1994: Self-driving car road test
- 1997: Deep Blue beats Gary Kasparov

Machine Learning History

- Popularity of this field in recent time and the reasons behind that
 - New software/ algorithms
 - Neural networks
 - Deep learning
 - New hardware
 - GPU's
 - Cloud Enabled
 - Availability of Big Data

- 2009: Google builds self driving car
- 2011: Watson wins Jeopardy
- 2014: Human vision surpassed by ML systems

Programs vs learning algorithms

Algorithmic solution

Machine learning solution

Machine Learning: Definition

- Learning is the ability to improve one's behaviour based on experience.
- Build computer systems that automatically improve with experience
- What are the fundamental laws that govern all learning processes?
- Machine Learning explores algorithms that can
 - learn from data / build a model from data
 - use the model for prediction, decision making or solving some tasks

Machine Learning: Definition

 A computer program is said to learn from <u>experience</u> E with respect to some <u>class of</u>
 <u>tasks</u> T and <u>performance measure</u> P, if its
 <u>performance</u> at tasks in T, as measured by P,
 improves with experience E.

[Mitchell]

Components of a learning problem

- Task: The behaviour or task being improved.
 - For example: classification, acting in an environment
- Data: The experiences that are being used to improve performance in the task.
- Measure of improvement :
 - For example: increasing accuracy in prediction, acquiring new, improved speed and efficiency

Black-box Learner

Learner

Medicine:

- Diagnose a disease
 - Input: symptoms, lab measurements, test results,
 DNA tests,
 - Output: one of set of possible diseases, or "none of the above"
- Data: historical medical records
- Learn: which future patients will respond best to which treatments

Vision:

- say what objects appear in an image
- convert hand-written digits to characters 0..9
- detect where objects appear in an image

Robot control:

- Design autonomous mobile robots that learn from experience to
 - Play soccer
 - Navigate from their own experience

NLP:

- detect where entities are mentioned in NL
- detect what facts are expressed in NL
- detect if a product/movie review is positive, negative, or neutral

Speech recognition

Machine translation

Financial:

- predict if a stock will rise or fall
- predict if a user will click on an ad or not

Application in Business Intelligence

- Forecasting product sales quantities taking seasonality and trend into account.
- Identifying cross selling promotional opportunities for consumer goods.

• ...

Some other applications

- Fraud detection : Credit card Providers
- determine whether or not someone will default on a home mortgage.
- Understand consumer sentiment based off of unstructured text data.
- Forecasting women's conviction rates based off external macroeconomic factors.

Learner

Design a Learner

- 1. Choose the training experience
- 2. Choose the target function (that is to be learned)
- 3. Choose how to represent the target function
- 4. Choose a learning algorithm to infer the target function

Choosing a Model Representation

- The richer the representation, the more useful it is for subsequent problem solving.
- The richer the representation, the more difficult it is to learn.

- Components of Representation
 - Features
 - Function class / hypothesis language