

Lecture 9

STA 371G

Let's predict fuel economy (miles per gallon) for different car models of the 70s.

Let's predict fuel economy (miles per gallon) for different car models of the 70s.

- Cylinders
- Displacement
- Horsepower

- Weight
- Acceleration
- Year (After 1975 or not)

Let's display the first 5 rows (and all columns).

```
auto mpg[1:5,]
# A tibble: 5 <U+00D7> 7
    MPG Cylinders Displacement
                                  HP Weight Acceleration After1975
  <dbl>
            <int>
                         <dbl> <int>
                                       <int>
                                                    <dbl>
                                                              <chr>
     18
                8
                           307
                                  130
                                      3504
                                                     12.0
                                                                 No
2
                8
     15
                           350
                                  165
                                      3693
                                                     11.5
                                                                 No
3
     18
                8
                           318
                                  150 3436
                                                     11.0
                                                                 Nο
4
     16
                8
                           304
                                 150
                                      3433
                                                     12.0
                                                                 No
5
     17
                8
                           302
                                  140
                                        3449
                                                     10.5
                                                                 No
```

Let's display the first 5 rows (and all columns).

```
auto mpg[1:5,]
# A tibble: 5 <U+00D7> 7
    MPG Cylinders Displacement
                                  HP Weight Acceleration After1975
  <dbl>
            <int>
                         <dbl> <int>
                                      <int>
                                                    <dbl>
                                                              <chr>
     18
                8
                           307
                                 130
                                     3504
                                                     12.0
                                                                 No
                8
     15
                           350
                                 165
                                     3693
                                                     11.5
                                                                 No
3
     18
                8
                           318
                                 150 3436
                                                     11.0
                                                                 No
4
    16
                8
                           304
                                 150 3433
                                                     12.0
                                                                 No
5
     17
                8
                           302
                                 140
                                       3449
                                                     10.5
                                                                 No
```

How do we handle the Yes/No data in the "After1975" column?

After 1975

To incorporate the "After1975" variable into a regression model, create a dummy variable that maps a "Yes" to 1, and "No" to 0.

To incorporate the "After1975" variable into a regression model, create a dummy variable that maps a "Yes" to 1, and "No" to 0.

```
auto_mpg$LateModel <-
  ifelse(auto_mpg$After1975 == "Yes", 1, 0)</pre>
```


To incorporate the "After1975" variable into a regression model, create a dummy variable that maps a "Yes" to 1, and "No" to 0.

```
auto_mpg$LateModel <-
  ifelse(auto_mpg$After1975 == "Yes", 1, 0)</pre>
```

Now let's a regression model using the predictors Cylinders, Displacement, HP, Weight, Acceleration and LateModel.

R will actually create this "dummy" (0/1) variable for us automatically!

R will actually create this "dummy" (0/1) variable for us automatically!

R will actually create this "dummy" (0/1) variable for us automatically!

R was able to handle the "After1975" column, which is a categorical variable (or a factor as R calls them).

```
round(summary(model)$coefficients, 2)
            Estimate Std. Error t value Pr(>|t|)
                           2.37
(Intercept)
               42.19
                                 17.81
                                           0.00
Cylinders
               -0.58
                           0.36
                                  -1.62
                                           0.11
Displacement
                0.01
                           0.01
                                  0.94
                                           0.35
HP
               -0.02
                           0.01
                                  -1.35
                                           0.18
Weight
               -0.01
                           0.00
                                  -8.33
                                           0.00
Acceleration
                0.04
                           0.11
                                  0.32
                                           0.75
After1975Yes
                4.36
                           0.40
                                 10.85
                                           0.00
```

R has created a dummy variable "After1975Yes."

"After1975Yes" is 1 whenever "After1975" is "Yes," and 0 otherwise:

MPG	 Acceleration	After1975	After1975Yes	
25	13.5	No	0	
33	17.5	No	0	
28	15.5	Yes	1	
25	16.9	Yes	1	

"After1975Yes" is 1 whenever "After1975" is "Yes," and 0 otherwise:

MPG	 Acceleration	After1975	After1975Yes	
25	13.5	No	0	
33	17.5	No	0	
28	15.5	Yes	1	
25	16.9	Yes	1	

Notice that we do not have a "After1975No" variable.

"After1975Yes" is 1 whenever "After1975" is "Yes," and 0 otherwise:

MPG		Acceleration	After1975	After1975Yes	
•••	•••	•••	•••	•••	
25		13.5	No	0	
33		17.5	No	0	
28		15.5	Yes	1	
25		16.9	Yes	1	

Notice that we do not have a "After1975No" variable. It would cause problems because it would be perfectly correlated with "After1975Yes."

Let's simplify our model by omitting statistically insignificant variables one by one. (Make sure to re-run the model after omitting each variable, starting with the least signfficant.)

What is the R^2 in your final model?


```
model <- lm(MPG ~ HP + Weight + After1975,
                data=auto mpg)
summary(model)$r.squared
[1] 0.7745063
round(summary(model)$coefficients, 2)
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
              41.71
                        0.78 53.15
                                       0.00
HP
              -0.02 0.01 -2.30 0.02
Weight
              -0.01 0.00 -13.84 0.00
After1975Yes 4.33
                        0.40 10.83
                                       0.00
```

```
model <- lm(MPG ~ HP + Weight + After1975,
                data=auto mpg)
summary(model)$r.squared
[1] 0.7745063
round(summary(model)$coefficients, 2)
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
             41.71
                        0.78 53.15
                                      0.00
HP
             -0.02 0.01 -2.30 0.02
Weight
             -0.01 0.00 -13.84 0.00
After1975Yes 4.33
                        0.40 10.83 0.00
```

Is Horsepower capturing the information in Cylinders, Displacement and Acceleration?

Let's look at the correlations between variables:

```
cor(auto mpg[,c(1,2,3,4,5,6)])
            MPG Cylinders Displacement HP Weight Acceleration
MPG
                                                      0.42
            1.00
                    -0.78
                               -0.81 -0.78
                                          -0.83
Cylinders -0.78
                                           0.90
                                                     -0.50
                    1.00
                               0.95 0.84
Displacement -0.81
                    0.95
                               1.00 0.90 0.93
                                                     -0.54
HP
           -0.78
                    0.84
                               0.90 1.00 0.86
                                                     -0.69
      -0.83 0.90
Weiaht
                               0.93 0.86 1.00
                                                     -0.42
Acceleration 0.42
                               -0.54 -0.69 -0.42
                   -0.50
                                                      1.00
```

We have multicollinearity between HP, Cylinders, Displacement, and Acceleration — all are highly correlated so it only makes sense to have one of these in the model.

The information in Displacement is already mostly captured by HP:

```
plot(auto_mpg$HP, auto_mpg$Displacement, pch=16,
    xlab='HP', ylab='Displacement',col='green', main='')
```


Our regression equation is:

$$\widehat{\text{Price}} = 41.71 - 0.02 \cdot \text{HP} - 0.01 \cdot \text{Weight} + 4.33 \cdot \text{After} = 1975 \text{Yes}.$$

Our regression equation is:

$$\widehat{\text{Price}} = 41.71 - 0.02 \cdot \text{HP} - 0.01 \cdot \text{Weight} + 4.33 \cdot \text{After1975Yes}.$$

Let's interpret the coefficient 4.33. Consider this:

• Model A and B have the same HP and Weight.

Our regression equation is:

$$\widehat{\text{Price}} = 41.71 - 0.02 \cdot \text{HP} - 0.01 \cdot \text{Weight} + 4.33 \cdot \text{After1975Yes}.$$

Let's interpret the coefficient 4.33. Consider this:

- Model A and B have the same HP and Weight.
- Model A was manufactured before 1975, whereas B was manufactured after 1975.

Our regression equation is:

$$\widehat{\text{Price}} = 41.71 - 0.02 \cdot \text{HP} - 0.01 \cdot \text{Weight} + 4.33 \cdot \text{After1975Yes}.$$

Let's interpret the coefficient 4.33. Consider this:

- Model A and B have the same HP and Weight.
- Model A was manufactured before 1975, whereas B was manufactured after 1975.
- We predict Model B will have a MPG that is 4.33 higher than Model A.

R has assigned "Yes" to 1 and "No" to 0 in our dummy variable, so the "reference level" is cars manufactured before 1975.

R has assigned "Yes" to 1 and "No" to 0 in our dummy variable, so the "reference level" is cars manufactured before 1975. If we created

a dummy variable After1975No that is 1 for cars manufactured *before* 1975, what would the regression look like?

What if there are more than two categories?

The Origin variable represents the country of manufacture.

```
auto mpg all[1:5,]
# A tibble: 5 <U+00D7> 8
   MPG Cylinders Displacement HP Weight Acceleration After1975 Origi
 <fdb>
            <int>
                         <dbl> <int>
                                      <int>
                                                   <1db>>
                                                             <chr>
    18
                           307
                                 130
                                     3504
                8
                                                      12
                                                                No
2
    15
                8
                           350
                                 165 3693
                                                      12
                                                                No
3
    18
                                 150 3436
                           318
                                                      11
                                                                No
4
               8
                                 150 3433
    16
                           304
                                                      12
                                                                No
5
    17
                           302
                                 140
                                                      10
                                       3449
                                                                No
levels(as.factor(auto mpg all$Origin))
[1] "EU" "JP" "US"
```

<chr


```
omodel <- lm(MPG ~ HP + Weight + After1975 + Origin,
         data=auto mpg all)
round(summary(omodel)$coefficients.3)
          Estimate Std. Error t value Pr(>|t|)
(Intercept)
            40.182
                      0.87
                             46.0
                                    0.000
HP
            -0.028
                       0.01 -2.8 0.005
Weight
            -0.005
                      0.00 -10.8
                                    0.000
After1975Yes
           4.334
                      0.39 11.0
                                    0.000
OriginJP
         1.001 0.61 1.6
                                   0.103
OriginUS
                      0.56 -2.8
                                    0.005
        -1.593
```

```
omodel <- lm(MPG ~ HP + Weight + After1975 + Origin,
         data=auto mpg all)
round(summary(omodel)$coefficients.3)
          Estimate Std. Error t value Pr(>|t|)
(Intercept)
            40.182
                      0.87
                             46.0
                                   0.000
HP
            -0.028
                      0.01 -2.8 0.005
            -0.005 0.00 -10.8
Weight
                                   0.000
After1975Yes 4.334 0.39 11.0
                                   0.000
OriginJP
       1.001 0.61 1.6 0.103
OriginUS -1.593 0.56 -2.8
                                   0.005
```

For Origin, R has chosen EU as the reference level and create dummy variables for both JP and US.

A warning about categorical variables with numeric representations

In the original dataset, the origin was represented as 1 for U.S., 2 for EU and 3 for JP.

A warning about categorical variables with numeric representations

In the original dataset, the origin was represented as 1 for U.S., 2 for EU and 3 for JP. We would NOT want to just put these numbers in the regression as numbers,

because then regression would treat this as if it were a quantitative variable!

A warning about categorical variables with numeric representations

In the original dataset, the origin was represented as 1 for U.S., 2 for EU and 3 for JP. We would NOT want to just put these numbers in the regression as numbers,

because then regression would treat this as if it were a quantitative variable! Even

though the representation in the file is numeric, it is still a categorical variable and should be treated as such.

Assumptions

What are the issues with this model?

plot(predict.lm(omodel), resid(omodel), col='green', main='')

Assumptions

What about normality?

```
hist(resid(omodel), col='green', main='')
```


Assumptions

What about normality?

```
qqnorm(resid(omodel), col='green', main='')
```


Statistical significance of a categorical variable

While dealing with categorical variables, we want to look at the significance of the categorical variable as a whole, rather than looking at *p*-values of individual dummy variables.

Statistical significance of a categorical variable

While dealing with categorical variables, we want to look at the significance of the categorical variable as a whole, rather than looking at *p*-values of individual dummy variables.

We want to test the compound null hypothesis

$$H_0: \beta_{US} = \beta_{EU} = 0.$$

Statistical significance of a categorical variable

To do this, we look at the ANOVA table; the *p*-value on the Origin line (2.4×10^{-5}) is the *p*-value for the compound null hypothesis $H_0: \beta_{US} = \beta_{EU} = 0$.

```
anova(omodel)
Analysis of Variance Table
Response: MPG
        Df Sum Sq Mean Sq F value Pr(>F)
ΗP
         1 14433 14433 1096.0 < 2e-16 ***
      1 2392 2392 181.6 < 2e-16 ***
Weight
After1975 1 1623 1623 123.2 < 2e-16 ***
Origin
      Residuals 386 5083
                    13
Signif. codes:
                   0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Practical significance of a categorical variable

Since p < .05, we can conclude that Origin is a statistically significant predictor of MPG. But is it a *practically* significant predictor?

Practical significance of a categorical variable

Since p < .05, we can conclude that Origin is a statistically significant predictor of MPG. But is it a *practically* significant predictor?

To do this, compare R^2 values, or standard error of residuals:

Model	R^2	Residual standard error
Without Origin in model	0.77	3.72
With Origin in model	0.79	3.63

We have to decide if the increased precision is worth the extra complexity in the model.