1. Cho mạch điện gồm hai cuộn dây có hổ cảm như hình vẽ

Với:

$$R_1 = 2(\Omega), R_2 = 4(\Omega), \omega M = 1(\Omega), \omega L_1 = 3(\Omega),$$

$$\omega L_2 = 3(\Omega)$$
 và $u = 180\sqrt{2}$ sin ω t (V).

Tính dòng điện các nhánh i(t), $i_1(t)$, $i_2(t)$

 \mathbf{i}_2

 $R_2 \\$

 L_2

2. Làm lại mạch với sơ đồ như hình

Hình 5.74

3. Cho mạch điện như hình vẽ

với
$$\omega L_1 = \omega L_2 = 14(\Omega)$$
, $\omega M = 60(\Omega)$, $R = 3(\Omega)$, $\dot{U} = 200 \angle 0^0$ V.

Tính \dot{I} , \dot{I}_1 , \dot{I}_2 .

4.Cho mạch điện như hình vẽ với $\dot{U}=100\angle0^0V$ $R_1=1(\Omega),~R_2=1(\Omega),~R_3=5(\Omega)~\omega L_1=3(\Omega),$ $\omega L_2=6(\Omega),~\omega M=2(\Omega).$ Tính dòng điện $\dot{I_1},\dot{I_2},\dot{I_3}$.

4.Cho mạch điện như hình vẽ

Hình 5.76

với
$$\dot{U} = 100 \angle 0^0 V$$

$$\begin{split} R_1 &= R_2 = R_4 = 1(\Omega), \ R_3 = 5(\Omega) \ \omega L_1 = 3(\Omega), \ \omega L_2 = 6(\Omega), \ \omega L_3 = 4(\Omega), \ \omega M = 2(\Omega). \end{split}$$
 Tính dòng điện $\vec{I}_1, \vec{I}_2, \vec{I}_3$.

C. Giải bài toán bằng cách sử dụng mạch tương đương Thevenin và Norton

3.27. Tìm mạch tương đương Thevenin của mạch hình 3.27

(ĐS:
$$E = 75V, R_0 = 5\Omega$$
)

3.28 Tìm mạch tương đương Thevenin của mạch hình 2.28

(ĐS:
$$E = 10V, R_0 = 3\Omega$$
)

3.29. Thành lập sơ đồ tương đương Thevenin đối với hai cực A và B. Dựa trên đó tính dòng trên hai tổng trở $Z_1 = 5 - j5$ và $Z_2 = 10 \angle 0^0$ lần lượt nối vào hai cực A,B và công suất tiêu tán trên chúng.

DS: $\dot{E} = 70.7 \angle 45^{0} Z_{TD} = 5 - j5$ $P_{1} = 125 W, \dot{I}_{1} = 5 \angle 90^{0}$ $P_{2} = 200 W, \dot{I}_{2} = 4.47 \angle 63.43^{0}$ $50 \angle 0^{0}$ Hinh 3.29

3.30. Thành lập sơ đồ tương đương Thevenin của mạch sau

3.31. Thành lập sơ đồ tương đương Thevenin của mạch sau

DS: $\dot{E} = 11.39 \angle 264.4^{\circ}$ $Z_{TD} = 7.97 - j2.16$ $Z_{TD} = 7.97 - j2.16$

3.32. Thành lập sơ đồ tương đương Thevenin của mạch sau

3.33. Thành lập sơ đồ tương đương Thevenin của mạch sau

3.34. Thành lập sơ đồ tương đương Thevenin của mạch sau

3.35. a. Tìm sơ đồ tương đương Thevenin và Norton của mạng một cửa như hình 3.35 b. Mắc giữa hai cực A, B một điện trở R. Xác định R để công suất truyền đến R là cực đại. Tính công suất đó.

ĐS: a. $\dot{E}_{hm}=22.18\angle 98.07^{0}$; $\dot{I}_{nm}=6.03\angle 62.07^{0}$; $Z_{TD}=2.973+j2.162\Omega$ b. $R=3.68\Omega,\,P_{max}=37W$

3.36. Tính R để công suất tiêu thụ trên nó là cực đại. Tìm công suất đó

ĐS: $R = 1\Omega$, P = 900W

3.37. Tim mach tương đương Thevenin

ĐS: E = -0.257V, $R_0 = 8.152 V$

5.Cho mạch điện như hình vẽ

Xác định mạch tương tương Norton giữa hai đầu AB.

 $T im \ \dot{I}_3$

6. Xác định mạch tương đương Norton giữa hai đầu AB.

Xác định i₁(t)

- **9.** Cho mạch như sơ đồ hình bên
- a. Xác định mạch tương đương Norton trên tải Z_{t}
- b. Tìm công suất tiêu thụ trên tải với Z_t = 5 + j2,5(Ω)
- c. Xác định giá trị tải $\, Z_t \, \mbox{để công suất trên tải đạt cực đại} \,$

