SCHEDA DI ESERCIZI EXTRA DEL 27/03/2022

Risolvere i seguenti esercizi.

Esercizio 1

Costruire una base \mathcal{B} di \mathbb{R}^2 che sia diversa dalla base canonica $\{(1,0),(0,1)\}$. Scrivere i vettori della base canonica in coordinate rispetto alla nuova base \mathcal{B} .

Esercizio 2

Determinare una base $\mathcal{B} = \{v_1, v_2, v_3\}$ di \mathbb{R}^3 soddisfacente le seguenti condizioni:

- (1) Le coordinate del vettore (1,1,1) rispetto alle base \mathcal{B} sono $(1,0,0)_{\mathcal{B}}$;
- (2) I vettori v_1, v_2 generano un sottospazio il sottospazio S di \mathbb{R}^3 dato da

$$S := \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 - x_2 = 0\}$$
;

(3) Le coordinate del vettore (1,0,1) rispetto alla base \mathcal{B} sono $(1,0,1)_{\mathcal{B}}$. La base \mathcal{B} è unica?

Esercizio 3

Si considerino i seguenti vettori di \mathbb{R}^3

$$v_1 = (1, 2, 0), v_2 = (1, 1, 1), v_3 = (0, -1, 1), v_4 = (2, 3, 1)$$
.

- (1) Stabilire se i vettori v_1, v_2, v_3, v_4 sono linearmente indipendenti;
- (2) Stabilire se i vettori v_1, v_2, v_3, v_4 generano \mathbb{R}^3 ;
- (3) Determinare una base del sottospazio di \mathbb{R}^3 generato dai vettori v_1, v_2, v_3, v_4 ;
- (4) Completare la base trovata nel punto precedente ad una base di \mathbb{R}^3 .

Esercizio 4

Sia

$$S := \left\{ A = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \in M_{2,3}(\mathbb{R}) \mid a+b+d = 0, d+e+c = 0 \right\}$$

un sottoinsieme di $M_{2,3}(\mathbb{R})$.

- (1) Mostrare che S è un sottospazio di $M_{2,3}(\mathbb{R})$;
- (2) Determinare una base di S.

Esercizio 5

Nell'insieme $V=\mathbb{R}[x,y]$ dei polinomi a coefficienti reali nelle variabili x e y, con le usuali operazioni di somma dei polinomi e di prodotto di un polinomio per un numero reale, si consideri il sottoinsieme S dei polinomi di grado minore o uguale a 2.

- (1) Dopo aver verificato che V sia uno spazio vettoriale e che S sia un suo sottospazio, calcolare la dimensione di S ed esibire una base \mathcal{B} di S;
- (2) Calcolare la coordinate del polinomio $x + y x^2$ nella base \mathcal{B} ;
- (3) Mostrare che i polinomi x-y, 1+x-y, 1-xy sono linearmente indipendenti;
- (4) Completare l'insieme $I = \{x y, 1 + x y, 1 xy\}$ ad una base di S.