https://web.facebook.com/OMEGACENTER2014

Méthodes Quantitatives

momega.center.cp@gmail.com

Axe 6

Inférence Statistique

Échantillonnage

$A-1 \cdot Les$ échantillons i. i. d.:

L'échantillon pour lequel on possède le plus de résultats est l'échantillon « indépendant et identiquement réparti », où les X_i qui le composent sont des variables aléatoires mutuellement indépendantes et extraites de la même population.

On dira de manière abrégée qu'un tel échantillon est i. i. d d'après l'anglais : "independent and identically distributed". On identifiera une série de résultats (x_1, \dots, x_n) obtenus indépendamment les uns des autres, et dans les mêmes conditions expérimentales, avec la réalisation d'un échantillon i. i. d de taille n.

$A-2 \cdot La$ fonction de vraisemblance:

En tant qu'ensemble de n variables aléatoires le n-échantillon possède, en général, une densité de probabilité : $f_n(x_1,...,x_n\,;\,\theta_1,...,\theta_k)$ où les valeurs $\theta_1,...,\theta_k$ désignent les de la loi.

D'un point de vue probabiliste, cette fonction f_n nous permet, les θ_j étant supposés connus, de calculer la densité de probabilité associée au point (x_1,\ldots,x_n) de \mathbb{R}^n .

L'approche statistique inverse les rôles joués par les x_i et les θ_j elle suppose connues les valeurs $(x_1, ..., x_n)$ et considère f_n comme fonction des θ_j . Cette densité, vue sous cet angle, reçoit le nom de « fonction de vraisemblance ».

Afin de la distinguer de la densité, on la note L et on écrit $L(x_1,\dots,x_n|\theta_1,\dots,\theta_k)$ ou encore $L(x|\theta)$

La fonction de vraisemblance d'un n-échantillon i.i. d s'exprime simplement à partir de la densité $f(x|\theta)$ de la population parente. Les variables aléatoires X_i formant l'échantillon étant par hypothèse indépendantes, on a :

fhttps://web.facebook.com/OMEGACENTER2014

$$L(x_1, ..., x_n | \theta) = \begin{cases} \prod_{i=1}^n f(x_i; \theta) \text{ , cas } d'une \ v. \ a. \ continue \\ \prod_{i=1}^n P(X = x_i | \theta) \text{ , cas } d'une \ v. \ a. \ discrète \end{cases}$$

A-3 • Statistique ou fonction pivotale :

Une statistique est une fonction des variables aléatoires $(X_1, ..., X_n)$ obtenue à partir d'un échantillon qui ne dépend pas des paramètres inconnus θ_i .

Une statistique est une variable aléatoire!

Soit
$$\widehat{\theta} = T(X_1, ..., X_n)$$
, par exemple: $\widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$

On notera que si on se réfère à la statistique descriptive (c'est-à-dire que je m'intéresse à la réalisation d'un échantillon particulier, et donc aux réalisations des variables aléatoires associées, réalisations qui prennent les valeurs x_i (i=1,...,n) les statistiques calculées sur base de ces x_i sont des valeurs certaines ...

$A-4 \bullet Estimation ponctuelle :$

 $a \bullet D$ éfinition : Soit X une variable aléatoire dont la loi dépend d'unparamètre inconnu θ , élément d'un sous-ensemble Θ de $\mathbb R$ appelé espace des paramètres. On cherche à estimer θ à partir d'un n-échantillon (X_1, \ldots, X_n) de variables aléatoires ayant la même loi que X; on notera (x_1, \ldots, x_n) l'échantillon observé.

Un estimateur T_n de θ sera une variable aléatoire $T_n=\Psi(X_1,\dots,X_n)$; la valeur $\Psi(X_1,\dots,X_n)=\widehat{\theta}\ est\ l'estimateur\ de\ \theta$

fhttps://web.facebook.com/OMEGACENTER2014

$$L(x_1, ..., x_n | \theta) = \begin{cases} \prod_{i=1}^n f(x_i; \theta) \text{ , cas d'une } v. \text{ a. continue} \\ \prod_{i=1}^n P(X = x_i | \theta) \text{ , cas d'une } v. \text{ a. discrète} \end{cases}$$

Le principe du maximum de vraisemblance propose de choisir parmi tous les θ possibles, le paramètre $\widehat{\theta}$ qui rend la fonction de vraisemblance la plus grande possible. C'est-à-dire : $\forall \theta$; $L(x|\widehat{\theta}) \geq L(x|\theta)$. En général cette inéquation peut se résoudre en

 $recherchant\ la\ solution\ du\ syst\`eme: \begin{cases} \dfrac{\partial L}{\partial \theta} = 0 \\ \dfrac{\partial^2 L}{\partial \theta^2} < 0 \end{cases}$

Dans la pratique, on cherche plutôt à maximiser le logarithme de la fonction de

vraisemblance, ce qui conduit à résoudre le système : $\begin{cases} \frac{\partial \ln L}{\partial \theta} = 0 \\ \frac{\partial^2 \ln L}{\partial \theta^2} < 0 \end{cases}$

c • Méthode des moments : Soit un n-échantillon $(X_1, ..., X_n)$ i. i. d dont la loi dépend de deux paramètres θ_1 et θ_2 et tels que $\big(E(X), Var(X)\big) = \varphi(\theta_1, \theta_2)$ où φ est une fonction inversible, alors les estimateurs de θ_1 et θ_2 par la méthode des moments sont : $\big(\widehat{\theta}_{1n}, \widehat{\theta}_{2n}\big) = \varphi^{-1}(\overline{X}_n, S_n^2)$

Ce principe peut naturellement se généraliser aux moments de tous ordres, centrées ou non centrées : $E[(X-E(X))^r]$ et $E(X^r)$ $r \ge 1$

En particulier , pour $\theta \in \mathbb{R}$, si $E(X) = \varphi(\theta)$, où φ est une fonction inversible, alors l'estimateur de θ par la méthode des moments est $\widehat{\theta}_n = \varphi^{-1}(\overline{X}_n)$

A-5 • Propriétés des estimateurs :

Un estimateur $\hat{\theta}_n$ de θ sera un bon estimateur s'il est suffisamment proche, en un certain sens, de θ . Il faut donc définir une mesure de l'écart entre $\hat{\theta}_n$ et θ . On appelle cette mesure le risque de l'estimateur. On a intérêt à ce que le risque d'un estimateur soit le plus petit possible.

Par exemple , les risques $: \widehat{\theta}_n - \theta$, $|\widehat{\theta}_n - \theta|$, $(\widehat{\theta}_n - \theta)^2$ expriment bien un écart entre

 $\widehat{\theta}_n$ et θ . Mais comme il est plus facile d'utiliser des quantités déterministes que des quantités aléatoires, on s'intéresse en priorité aux espérances des quantités précédentes. En particulier :

a • Le Biais : On définit le biais d'un estimateur $\hat{\theta}_n$ de θ comme étant égal à la différence entre l'espérance mathématique de l'estimateur et le paramètre à estimer.

$$Soit: Biais(\widehat{\theta}_n, \theta) = b_n(\widehat{\theta}_n) = E(\widehat{\theta}_n) - \theta$$

 $lacksymbol{oxdot}$ L'absence de biais : On dira qu'un estimateur $\widehat{ heta}_n$ de heta est non-biaisé si :

$$b_n(\widehat{\theta}_n) = 0 \Leftrightarrow E(\widehat{\theta}_n) = \theta$$

- $ightharpoonup Si\ E(\widehat{ heta}_n) heta < 0$, cela signifie que $\widehat{ heta}_n$ aura tendance à sous-estimer heta
- $ightharpoonup Si\ E(\widehat{ heta}_n) heta > 0$, cela signifie que $\widehat{ heta}_n$ aura tendance à sur-estimer heta

☑ Estimateurs asymptotiquement non-biaisés :

1 Limite de l'espérance : Une suite d'estimateurs $(\widehat{\theta}_n)_{n\in\mathbb{N}}$ de θ sera dite asymptotiquement non-biasée , si la suite $\left(E(\widehat{\theta}_n)\right)_{n\in\mathbb{N}}$ tend vers θ .

C'est-à-dire
$$si: \lim_{n\to+\infty} E(\widehat{\theta}_n) = \theta$$

2 Espérance de la limite : Une suite d'estimateurs $(\widehat{\theta}_n)_{n\in\mathbb{N}}$ de θ sera dite asymptotiquement non-biasée , si la suite des écarts $(\widehat{\theta}_n-\theta)_{n\in\mathbb{N}}$, convenablement normalisés, tend en loi vers une variable aléatoire d'espérance nulle. C'est-à-dire s'il existe une suite k_n telle que k_n . $(\widehat{\theta}_n-\theta)$ $\xrightarrow[n\to+\infty]{\mathcal{L}} Y$ et E(Y)=0

La constante de normalisation k_n est souvent proportionnelle à \sqrt{n} comme dans le cas du théorème central limite.

 $\ensuremath{\square}$ Le risque quadratique ou erreur quadratique moyenne :

$$EQM(\widehat{\theta}_n) = E\left[\left(\widehat{\theta}_n - \theta\right)^2\right] = Var(\widehat{\theta}_n) + \left(b_n(\widehat{\theta}_n)\right)^2$$

 $m{ ilde{ ilde{ heta}}}$ Si $\widehat{ heta}_n$ est un estimateur sans biais de $m{ heta}$, alors EQM $(\widehat{m{ heta}}_n)$ = Var $(\widehat{m{ heta}}_n)$

& • La convergence :

1 Convergence en probabilité : Un estimateur $\hat{\theta}_n$ est convergent, s'il

https://web.facebook.com/OMEGACENTER2014

converge en probabilité vers la valeur θ qu'il prétend estimer.

Un estimateur convergent doit donc satisfaire le critère suivant :

$$\forall \epsilon > 0$$
 , $\lim_{n \to +\infty} P(\left|\widehat{\theta}_n - \theta\right| \ge \epsilon) = 0$

2 Convergence en moyenne quadratique : L'estimateur $\hat{\theta}_n$ converge en moyenne quadratique vers θ , si et seulement si son erreur quadratique moyenne tend vers 0 quand n tend vers l'infini :

$$\widehat{\theta}_{n} \xrightarrow[n \to +\infty]{mq} \theta \iff \lim_{n \to +\infty} E\left(\left|\widehat{\theta}_{n} - \theta\right|^{2}\right) = 0 \iff \begin{cases} \lim_{n \to +\infty} E\left(\widehat{\theta}_{n}\right) = \theta \\ \lim_{n \to +\infty} Var\left(\widehat{\theta}_{n}\right) = 0 \end{cases}$$

☑ Remarque : Un estimateur biaisé peut être intéressant si son erreur
quadratique moyenne est inférieure à la variance d'un estimateur sans biais.

c • Estimation d'une fonction d'un paramètre : Soit θ un paramètre inconnu et $\widehat{\theta}_n$ un estimateur de θ ; on définit $\varphi(\theta)$ une fonction du paramètre θ , ainsi un estimateur de $\varphi(\theta)$ sera noté : $\widehat{\varphi}(\theta) = \varphi(\widehat{\theta}_n)$. La réciproque est vraie dès que φ est inversible.

 $oxed{oxed}$ Remarque : Ce n'est pas parce que $\widehat{ heta}_n$ est un bon estimateur de θ que $\phi(\widehat{ heta}_n)$ est un bon estimateur de $\phi(\theta)$

d • L'efficacité :

① Estimateur optimal : Un estimateur non-biaisé $\widehat{\theta}_{n \ opt}$ pour θ sera dit optimal si, quel que soit l'estimateur $\widehat{\theta}_n$, on $a: E(\widehat{\theta}_n) = \theta$ et $Var(\widehat{\theta}_{n \ opt}) \leq Var(\widehat{\theta}_n)$

 $oxed{\mathbb{Z}}$ Remarque: Soit $\widehat{\theta}_{1,n}$ et $\widehat{\theta}_{2,n}$ deux estimateurs sans biais de θ , on dit que $\widehat{\theta}_{1,n}$ est plus efficace que $\widehat{\theta}_{2,n}$, si: $Var(\widehat{\theta}_{1,n}) \leq Var(\widehat{\theta}_{2,n})$

2 Quantité d'information de Fisher : Pour $\theta \in \mathbb{R}$, on appelle quantité d'information de Fisher sur θ apportée par l'échantillon (X_1,\ldots,X_n) , la quantité :

$$I_n(\theta) = E\left[-\left(\frac{\partial^2 \ln L}{\partial \theta^2}\right)\right] = E\left[\left(\frac{\partial \ln L}{\partial \theta}\right)^2\right] = Var\left(\frac{\partial \ln L}{\partial \theta}\right) \text{ , on démontre que } E\left(\frac{\partial \ln L}{\partial \theta}\right) = 0$$

☑ Propriétés :

$$rightharpoonup I_n(\theta) \geq 0$$

 ${\it Pl}_n(\theta)=nI(\theta)$, puisque (X_1,\ldots,X_n) est un n-échantillon de variables aléatoires

Téléphone: (+216) 97 619191 / 54 619191

fhttps://web.facebook.com/OMEGACENTER2014

<u>omega.center.cp@gmail.com</u> ayant la même loi que X,

$$avec: I(\theta) = E\left[-\left(\frac{\partial^2 ln(f(x_i;\theta))}{\partial \theta^2}\right)\right] = E\left[\left(\frac{\partial ln(f(x_i;\theta))}{\partial \theta}\right)^2\right] = Var\left(\frac{\partial ln(f(x_i;\theta))}{\partial \theta}\right)$$

(3) Inégalité de Fréchet-Darmois-Cramer-Rao (FDCR):

Pour tout estimateur
$$\widehat{\theta}_n$$
 de θ , on a $Var(\widehat{\theta}_n) \ge \left(\frac{\partial E(\widehat{\theta}_n)}{\partial \theta}\right)^2 / I_n(\theta)$

Ce résultat est particulièrement intéressant pour les estimateurs sans biais. En effet, si $\widehat{\theta}_n$ est un estimateur sans biais de θ , alors $E(\widehat{\theta}_n) = \theta$, donc $Var(\widehat{\theta}_n) \geq 1/I_n(\theta)$ La quantité $\frac{1}{I_n(\theta)}$ est appelée la borne de Cramer-Rao . L'négalité (FDCR) dit donc que

la variance d'un estimateur sans biais quelconque de θ est forcément supérieure à cette borne.

4 Efficacité d'un estimateur : On appelle efficacité d'un estimateur $\widehat{ heta}_n$

la quantité :
$$Eff(\widehat{\theta}_n) = \frac{\left(\partial E(\widehat{\theta}_n)/\partial \theta\right)^2}{I_n(\theta)Var(\widehat{\theta}_n)}$$

- $rightharpoonup On \ a: 0 \leq Eff(\widehat{\theta}_n) \leq 1$
- $m{arphi}_n$ est dit un estimateur efficace si et seulement si $Eff(\widehat{ heta}_n)=1$
- $m{arphi}_n$ est dit asymptotiquement efficace si et seulement si $\lim_{n o +\infty} Eff(\widehat{m{ heta}}_n)=1$

 $e \cdot Exhaustivit \in Afin de faire de l'inférence statistique, le statisticien va devoir extraire de l'information de la suite de variables aléatoires <math>X_1, \dots, X_n$ dont il dispose. Lorsque la taille de l'échantillon n est grande, il est naturel de tenter de réduire l'échantillon et de résumer l'information qui y est contenue.

Lorsqu'il est possible de remplacer $(X_1, ..., X_n)$ par une statistique $T = T(X_1, ..., X_n)$, on optera bien sûr pour cette solution. Cependant, une question se pose : Comment savoir si la réduction des données opérée par la statistique T ne conduit pas à une perte d'information ?

1 Définition : La statistique T sera dite exhaustive, si la loi

https://web.facebook.com/OMEGACENTER2014

conditionnelle de X sachant (T(X) = t) n'est pas fonction du paramètre θ :

 $P_{\theta}(X|T(X) = t)$ ne dépend pas de θ

2 Théorème de factorisation : Supposons que $X=(X_1,...,X_n)$ admet une densité jointe $f(x|\theta)$ pour $\theta \in \Theta$. Alors , T=T(X) est une statistique exhaustive pour θ si et seulement si il existe deux fonctions mesurables $g:\mathbb{R}^p \times \Theta \to \mathbb{R}^+$ et $h:E\to \mathbb{R}^+$ telles que $f(x|\theta)$ se met sous la forme : $f(x|\theta)=h(x)g(T(X);\theta)$ (T(X) et θ peuvent être des vecteurs)

3 Statistiques exhaustives et MVB(ou efficace): Si Test une statistique exhaustive alors $L(x|\theta) = h(x)l(T|\theta)$, d' où $\frac{\partial \ln L}{\partial \theta} = \frac{\partial \ln[l(T|\theta)]}{\partial \theta}$

Si la variance d'un estimateur atteint cette borne, il est dit efficace ou MVB (de l'anglais : Minimum Variance Bound).

Seules les densités de probabilité de la forme $f(x|\theta) = exp[A(\theta)B(X) + C(X) + D(\theta)]$ peuvent posséder une statistique exhaustive. C'est le théorème de Darmois. Cette forme englobe la plupart des densités de probabilité usuelles.

4 La fonction score : La variable aléatoire réduite $\frac{\partial \ln L}{\partial \theta}$ tend vers une

loi normale réduite quand la taille de l'échantillon tend vers l'infini.

$$\textit{Plus pr\'ecis\'ement on } a: \left(\frac{\partial \ln L/\partial \theta}{E[(\partial \ln L/\partial \theta)^2]}\right) \xrightarrow[n \to +\infty]{\mathcal{K}} (0,1)$$

A-6 • Estimation ponctuelle/Principaux résultats :

Soit le n-échantillon $(X_1, ..., X_n)$ i. i. d issu d'une loi loidonnée de la v. a. X

Lois	Estimation des parameters
Loi de Bernoulli B (1,p)	$\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$
Loi binomiale $\mathcal{B}(m,p)$	$\widehat{p} = \frac{1}{mn} \sum_{i=1}^{n} X_i = \frac{\overline{X}}{m}$
Loi de Pascal $\mathcal{P}(r,p)$	$\widehat{p} = \frac{r}{n} \sum_{i=1}^{n} \frac{1}{X_i} = r \overline{X}$
Loi géométrique G(p)	$\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{X_i}$

 \mathcal{A} –7 • lois des fonctions pivotales associées aux échantillons i. i. d de $\mathcal{N}(m, \sigma^2)$, ou issus d'observation non-normale et de grande taille :

 $a \cdot Un \cdot echantillon : Soit (X_1, ..., X_n)$ un echantillon i.i.d issu d'une population normale $\mathcal{N}(m, \sigma^2)$ (ou d'une population non-normale et de grande taille n > 30)

$$(2) \frac{\overline{X} - m}{S / \sqrt{n}} = \sqrt{n} \left(\frac{\overline{X} - m}{S} \right) \sim \underbrace{\mathcal{J}(n-1)}_{\text{Loi de Student à } n-1 \text{ degrés de liberté}}, \text{ si } \sigma \text{ inconnu}$$

$$avec\ S^2 = rac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2 = rac{1}{n-1}\sum_{i=1}^n X_i^2 - rac{n}{n-1}\overline{X}^2$$
, la variance empirique corrigées

(ou non-biasée) de l'échantillon)

ightharpoonup Remarque : Pourquoi diviser par n-1 dans la formule de la variance de l'échantillon, au lieu de n?

Lorsqu'on construit une valeur moyenne à partir des $X_i - \overline{X}$, (i = 1, ..., n), au carré. Or, ces n différences ne sont pas indépendantes. La somme de toutes est égale à zéro, c-à-d. qu'effectivement il y a seulement n-1 valeurs qui portent de l'information là dedans. Ce qu'on appelle n-1 degrés de liberté.

https://web.facebook.com/OMEGACENTER2014

 S^2 définie de cette façon a comme espérance le σ^2 de la population.

$$\underbrace{4}_{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1), \text{ si m inconnue}$$

& • Proportion:

Soit $(X_1, ..., X_n)$ un échantillon i. i. d de la loi de de Bernoulli B(1, p)

on définit la variable $F_n=X/n$. X désigne le nombre de succès obtenus au cours des n épreuves, F_n le nombre de succès divisé par le nombre d'épreuves soit la fréquence de succès. F_n est la variable fréquence associée à X:

$$\hat{p} = F_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i.$$

L'univers image de F_n est $F_n(\Omega) = \{0, 1/n, 2/n, ..., k/n, ..., 1\}$.

On
$$aP\left(\left\{F_n = \frac{x}{n}\right\}\right) = C_p^n p^x (1-p)^{n-x}$$
, $E(F_n) = p$ et $Var(F_n) = p(1-p)/n$

En appliquant Le Théorème central limite, on obtient : $\frac{\widehat{p}-p}{\sqrt{p(1-p)/n}} \rightsquigarrow \mathcal{N}(0,1)$

c • Échantillons indépendants : Supposons $X_1, X_2, ..., X_{n_1}$ et $Y_1, Y_2, ..., Y_{n_2}$ sont $n_1 + n_2$ variables indépendantes et équidistribuées de moyenne m_1 et de variance σ_1^2 , pour le premier , et de moyenne m_2 et de variance σ_2^2 , pour le second.

Nous signalons que comme dans le cas d'un échantillon , même lorsque les observations ne sont pas normales, il suffit d'avoir n_1 et $n_2>30$ pour conserver les mêmes procédures

$$1) \frac{(\overline{X} - \overline{Y}) - (m_1 - m_2)}{\sqrt{(\sigma_1^2/n_1) + (\sigma_2^2/n_2)}} \sim \mathcal{N}(0, 1), \text{ si } \sigma_1 \text{ et } \sigma_2 \text{ sont connus}$$

$$2 \frac{(\overline{X} - \overline{Y}) - (m_1 - m_2)}{\sqrt{(S_1^2/n_1) + (S_2^2/n_2)}} \sim \mathcal{T}(n_1 + n_2 - 2), si \begin{cases} \sigma_1 \text{ et } \sigma_2 \text{ sont inconnus} \\ \text{avec } l' \text{ hypothèse} : \sigma_1 \neq \sigma_2 \end{cases}$$

Téléphone: (+216) 97 619191 / 54 619191

momega.center.cp@gmail.com

fhttps://web.facebook.com/OMEGACENTER2014

 $avec~S^2=rac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}$, la variance empirique jointe corrigée

$$\underbrace{\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}}_{} \sim \mathcal{F}(n_1 - 1, n_2 - 1), \text{ si } m_1 \text{ et } m_2 \text{ sont inconnues}$$

d • Distribution de la différence des proportions :

Supposons $X_1, X_2, ..., X_{n_1}$ et $Y_1, Y_2, ..., Y_{n_2}$ sont $n_1 + n_2$ variables indépendantes et équidistribuées issus respectivement des lois de Bernoulli B $(1, p_1)$ et B $(1, p_2)$. on définit la variable $F_{n_1} = X/n_1$ $(resp. F_{n_2} = Y/n_2)$. X(resp. Y) désigne le nombre de succès obtenus au cours des n_1 $(resp. n_2)$ épreuves, F_{n_1} $(resp. F_{n_2})$ le nombre de succès divisé par le nombre d'épreuves soit la fréquence de succès. F_{n_1} $(resp. F_{n_2})$ est la variable fréquence associée à X (resp. Y):

$$\widehat{p}_1 = F_{n_1} = \frac{X_1 + X_2 + \dots + X_n}{n_1} = \overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i \ et \ \widehat{p}_2 = F_{n_2} = \frac{Y_1 + Y_2 + \dots + Y_n}{n_2} = \overline{Y} = \frac{1}{n_2} \sum_{j=1}^{n_2} Y_j$$

$$E(F_{n_k}) = p_k \ et \ Var(F_{n_k}) = p_k(1 - p_k)/n_k \ où k \in \{1, 2\}$$

En appliquant Le Théorème central limite (pour n_1 et $n_2 > 30$), on obtient :

$$\frac{(\widehat{p}_1 - \widehat{p}_2) - (p_1 - p_2)}{\sqrt{(p_1(1 - p_1)/n_1) + (p_2(1 - p_2)/n_2)}} \sim \mathcal{N}(0, 1)$$

Estimation par intervalle de confiance

$B-1 \bullet Définition :$

Un intervalle de confiance de seuil (ou niveau de signification) $\alpha \in [0,1]$ pour un paramètre θ , est un intervalle aléatoire I tel que $P(\theta \in I) = 1 - \alpha$.

 α est la probabilité que le paramètre θ n'appartienne pas à l'intervalle I. C'est à dire la probabilité que l'onse trompe en affirmant que $\theta \in I$. C'est donc une probabilité d'erreur, qui doit être assez petite. Les valeurs usuelles de α sont 10%, 5%, 1%, etc.

☑ Remarque : Il semble logique de proposer un intervalle de confiance centré sur un estimateur performant $\widehat{\theta}_n$, c'est à dire de la forme $I = [\widehat{\theta}_n - \varepsilon, \widehat{\theta}_n + \varepsilon]$. Il reste alors à déterminer ε de sorte que : $P(\theta \in I) = P[\widehat{\theta}_n - \varepsilon \le \theta \le \widehat{\theta}_n + \varepsilon] = P[|\widehat{\theta}_n - \theta| \le \varepsilon] = 1 - \alpha$

Mais cette démarche ne va pas toujours aboutir. En effet, α est un réel fixé à l'avance qui ne doit pas dépendre de θ . ε ne doit pas non plus dépendre de θ pour que l'intervalle soit utilisable. Par conséquent, on ne peut déterminer un ε vérifiant l'égalité ci-dessus que si la loi de probabilité de $(\widehat{\theta}_n - \theta)$ ne dépend de θ . Ce qui n'est pas toujours le cas.

Pour trouver un intervalle de confiance, il existe plusieurs méthodes. La plus efficace consiste à chercher une fonction pivotale, c'est à dire une variable aléatoire fonction à la fois du paramètre θ et des observations X_1, X_2, \ldots, X_n dont la loi de probabilité ne dépende pas de θ

$B-2 \bullet Construction d'un intervalle de confiance :$

Soit $(X_1, X_2, ..., X_n)$ un échantillon de la loi de X et $\widehat{\theta}_n$ un estimateur performant de θ .

S'il est possible de déterminer $q_1 = q_1(\theta)$ et $q_2 = q_2(\theta)$ tels que

 $Pig[q_1(heta) \leq \widehat{ heta}_n \leq q_2(heta)ig] = 1 - lpha$, on cherche à inverser cet intervalle , c'est à dire, à

 $\text{d\'eterminer les valeurs } \ c_1 = c_1(\widehat{\theta}_n) \ \text{et } c_2 = c_2(\widehat{\theta}_n) \ \text{tels que} : P\big[c_1(\widehat{\theta}_n) \leq \theta \leq c_2(\widehat{\theta}_n)\big] = 1 - \alpha \ .$

 $\textit{Si, par exemple }, q_1 \textit{ et } q_2(\theta) \textit{ sont deux fonctions croissantes } : \begin{cases} \widehat{\theta}_n \leq q_2(\theta) \\ q_1(\theta) \leq \widehat{\theta}_n \end{cases} \Leftrightarrow \begin{cases} q_2^{-1}(\widehat{\theta}_n) \leq \theta \\ \theta \leq q_1^{-1}(\widehat{\theta}_n) \end{cases}$

 $\textit{Ce qui donne $P\big[q_2^{-1}\big(\widehat{\theta}_n\big) \leq \theta \leq q_1^{-1}\big(\widehat{\theta}_n\big)\big] = 1 - \alpha \; ; \textit{dans ce cas} : \begin{cases} c_1 = c_1\big(\widehat{\theta}_n\big) = q_2^{-1}\big(\widehat{\theta}_n\big) \\ c_2 = c_2\big(\widehat{\theta}_n\big) = q_1^{-1}\big(\widehat{\theta}_n\big) \end{cases}$

En fait le choix de q_1 et q_2 reste arbitraire puisqu'une seule équation permet de les

$$\Leftrightarrow P\left(\widehat{\theta}_n < q_1(\theta)\right) + P\left(\widehat{\theta}_n > q_2(\theta)\right) = \alpha$$

 $Posons\ \alpha_1 = P\left(\widehat{\theta}_n < q_1(\theta)\right)\ et\ \alpha_1 = P\left(\widehat{\theta}_n > q_2(\theta)\right)\ ; si\ \alpha_1\ et\ \alpha_2\ sont\ non\ nuls, on\ dit\ que$

l'intervalle est bilatéral . En raison de la signification concrète du paramètre θ , on peut être amené à construire un intervalle unilatéral de la forme :

$$c_1(\widehat{\theta}_n) \leq \theta \ (avec \ \alpha_1 = 0 \ et \ \alpha_2 = \alpha) \ ou \ \theta \leq c_2(\widehat{\theta}_n) \ (avec \ \alpha_1 = \alpha \ et \ \alpha_2 = 0)$$

Dans le cas d'une loi symétrique , on considère un intervalle bilatéral symétrique :

$$\left(\alpha_1 = \alpha_2 = \frac{\alpha}{2}\right)$$

Téléphone: (+216) 97 619191 / 54 619191

https://web.facebook.com/OMEGACENTER2014

omega.center.cp@gmail.com

lacktriangle Construction pratique:

① Choisir un estimateur $\widehat{\theta}_n$ de θ -la meilleure possible- dont on connaît la loi de probabilité en fonction de θ

- 2 Déterminer la fonction pivotale $\,\psi(\widehat{\theta}_n\,,\theta)$, dont la loi de probabilité, noté P , ne dépend plus de θ
 - 3 Déterminer k_1 et k_2 tels que $P[k_1 \le \psi(\widehat{\theta}_n, \theta) \le k_2] = 1 \alpha$
- $\textbf{4} \ \textit{En d\'eduire, si possible,} P\big[c_1\big(\widehat{\theta}_n\big) \leq \theta \leq c_2\big(\widehat{\theta}_n\big)\big] = 1 \alpha \ . \ o\`u \ c_1 = c_1\big(\widehat{\theta}_n\big) \ \textit{et}$ $c_2 = c_2\big(\widehat{\theta}_n\big) \ \textit{sont 2 statistiques fonction de } \widehat{\theta}_n$
- igstyle 3 À partir de la fonction de répartition de la loi pivot de la variable aléatoire $\psi(\widehat{ heta}_n$, heta)

 $m{ riangle Intervalle de confiance unilatéral}: Pigl[k_1 \leq \psi(\widehat{ heta}_n\,, hetaigr)igr] = 1-lpha$

$$\Rightarrow P[\psi(\widehat{\theta}_n, \theta) \leq k_1] = \alpha$$

 $\Rightarrow k_1 = F^{-1}(\alpha)$, fractile d'ordre α de la loi de la fonction pivotale $\psi(\widehat{\theta}_n, \theta)$

Intervalle de confiance bilatéral à risques symétriques :

$$P\big[k_1 \leq \psi\big(\widehat{\boldsymbol{\theta}}_n\,,\boldsymbol{\theta}\big) \leq k_2\,\big] = 1 - \alpha \Rightarrow \begin{cases} k_1 = F^{-1}(\alpha/2) \\ k_2 = F^{-1}\Big(1 - \frac{\alpha}{2}\Big) \end{cases} ; \text{ où } F^{-1}(\alpha/2), \left(resp.\,F^{-1}\left(1 - \frac{\alpha}{2}\right)\right), \left(resp$$

 $fractile\ d'ordre\ \frac{\alpha}{2}\ , \left(resp.\left(1-\frac{\alpha}{2}\right)\right)de\ la\ loi\ de\ la\ fonction\ pivotale\ \ \psi(\widehat{\theta}_n\ ,\theta)$

☑ Propriétés :

- $\hbox{$1$} \ \ \grave{A}\ taille\ d'échantillon\ fix\'e\ \grave{a}\ n\ , lorsqu'on\ augmente\ le\ niveau\ de$ confiance $1-\alpha$, la largeur de l'intervalle de confiance augmente
- $\begin{tabular}{l} \hline 2 & \hat{A} niveau de confiance $1-\alpha$ fixé , lorsqu'on augmente la taille de \\ l'échantillon ,n , la largeur de l'intervalle de confiance diminue \\ \hline \end{tabular}$
 - 3 Il n'y pas d'unicité de l'intervalle de confiance

 \mathcal{B} - 3 • Intervalles de confiance pour les paramètres de la loi normale ou asymptotiquement normale (échantillon de grande taille) :

a • Intervalle de confiance pour la moyenne : Soit (X_1, \dots, X_n) un échantillon i. i. d de la

https://web.facebook.com/OMEGACENTER2014

loi normale $\mathcal{N}(m, \sigma^2)$ (ou d'une population non-normale et de grande taille , n > 30)

1	σconnu
Distribution de la fonction pivotale	$U = rac{\overline{X} - m}{\sigma / \sqrt{n}} \leadsto \mathcal{N}(0, 1)$
Intervalle de confiance 1 – α , symétrique et centré en 0	$P\left[u_{\frac{\alpha}{2}} \leq U \leq u_{1-\frac{\alpha}{2}}\right] = 1 - \alpha \; ; \; o \grave{u} \; u_{1-\frac{\alpha}{2}} = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) \; et \; u_{\frac{\alpha}{2}} = -u_{1-\frac{\alpha}{2}}$
Intervalle de confiance	$IC_{1-\alpha}(m) = \left[\overline{X} - u_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + u_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right]$
Erreur	$e = \overline{X} - m $
Marge d'erreur à 1 – α	$e= \overline{X}-m \ arepsilon=e_{max}=u_{1-rac{\sigma}{2}}rac{\sigma}{\sqrt{n}}$
Longueur de I $\mathcal{C}_{1-lpha}(m)$	$L=2arepsilon=2u_{1-rac{lpha}{2}}rac{\sigma}{\sqrt{n}}$
Taille d'échantillon minimale	$n_{min} = \left(rac{u_{1-rac{lpha}{2}}\sigma}{arepsilon} ight)^2$
2	σ inconnu
Distribution de la fonction pivotale	$T = rac{\overline{X} - m}{S/\sqrt{n}} \sim \mathcal{T}(n-1)$; avec $S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$, la variance empirique corrigées de l'échantillon)
Intervalle de confiance 1 – α , symétrique et centré en 0	$P\left[t_{\frac{\alpha}{2}} \le U \le t_{1-\frac{\alpha}{2}}\right] = 1 - \alpha \text{ où } t_{1-\frac{\alpha}{2}} = t_{1-\frac{\alpha}{2}}(n-1) \text{ et } t_{\frac{\alpha}{2}} = -t_{1-\frac{\alpha}{2}}$
Intervalle de confiance	$IC_{1-\alpha}(m) = \left[\overline{X} - t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}, \overline{X} + t_{1-\frac{\alpha}{2}} \frac{S}{\sqrt{n}}\right]$
Erreur	$e = \overline{X} - m $
Marge d'erreur à 1 – α	$e= \overline{X}-m $ $arepsilon=e_{max}=t_{1-rac{lpha}{2}}rac{S}{\sqrt{n}}$ $L=2arepsilon=2t_{1-rac{lpha}{2}}rac{S}{\sqrt{n}}$
Longueur de I $\mathcal{C}_{1-lpha}(m)$	$L=2arepsilon=2t_{1-rac{lpha}{2}}rac{S}{\sqrt{n}}$
Taille d'échantillon minimale	$n_{min} = \left(rac{t_{1-rac{lpha}{2}}S}{arepsilon} ight)^2$

& • Intervalle de confiance pour la différence de deux moyennes : Supposons $(X_i)_{1 \le i \le n_1}$ et $(Y_j)_{1 \le j \le n_2}$ $n_1 + n_2$ variables indépendantes et équidistribuées de moyenne m_1 et de variance σ_1^2 , pour le premier , et de moyenne m_2 et de variance σ_2^2 , pour le second. Nous signalons que comme dans le cas d'un échantillon , même lorsque les observations ne sont pas normales, il suffit d'avoir n_1 et $n_2 > 30$ pour conserver les mêmes procédures

1	σ_1 et σ_2 sont connus
Distribution de la fonction pivotale	$U=rac{(\overline{X}-\overline{Y})-(m_1-m_2)}{\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}} \rightsquigarrow \mathcal{N}(0,1)$
Intervalle de confiance $1-\alpha$, symétrique et centré en 0	$P\left[u_{\frac{\alpha}{2}} \leq U \leq u_{1-\frac{\alpha}{2}}\right] = 1 - \alpha \text{ où } u_{1-\frac{\alpha}{2}} = \Phi^{-1}\left(1-\frac{\alpha}{2}\right) \text{ et } u_{\frac{\alpha}{2}} = -u_{1-\frac{\alpha}{2}}$
Intervalle de confiance	$IC_{1-\alpha}(m_1-m_2)=\left[(\overline{X}-\overline{Y})\pm u_{1-\frac{lpha}{2}}\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}\right]$
Erreur	$e = (\overline{X} - \overline{Y}) - (m_1 - m_2) $
Marge d'erreur à 1 – α	$arepsilon=e_{max}=u_{1-rac{lpha}{2}}\sqrt{\sigma_{1}^{2}/n_{1}+\sigma_{2}^{2}/n_{2}}$
Longueur de I $C_{1-\alpha}(m_1-m_2)$	$L=2arepsilon=2u_{1-rac{lpha}{2}}\sqrt{\sigma_1^2/n_1+\sigma_2^2/n_2}$

BEN AHMED MOHSEN	Téléphone: (+216) 97 619191 / 54 619191
→ omega.center.cp@gmail.con	https://web.facebook.com/OMEGACENTER2014
2	σ_1 et σ_2 sont inconnus avec l'hypothèse : $\sigma_1 \neq \sigma_2$
Distribution de la fonction pivotale	$T = rac{(\overline{X} - \overline{Y}) - (m_1 - m_2)}{\sqrt{S_1^2/n_1 + S_2^2/n_2}} \sim \mathcal{T}(n_1 + n_2 - 2)$
Intervalle de confiance $1-\alpha$, symétrique et centré en 0	$P\left[t_{\frac{\alpha}{2}} \le T \le t_{1-\frac{\alpha}{2}}\right] = 1 - \alpha \text{ où } t_{1-\frac{\alpha}{2}} = t_{1-\frac{\alpha}{2}}(n_1 + n_2 - 2) \text{ et } t_{\frac{\alpha}{2}} = -t_{1-\frac{\alpha}{2}}$
Intervalle de confiance	$IC_{1-lpha}(m_1 - m_2) = \left[(\overline{X} - \overline{Y}) \pm t_{1-rac{lpha}{2}} \sqrt{S_1^2/n_1 + S_2^2/n_2} \right]$

ge d'erreur à 1 – α	$\varepsilon = e_{max} = t_{1-\frac{\alpha}{2}} \sqrt{S_1^2/n_1 + S_2^2/n_2}$
cur de $IC_{1-lpha}(m_1-m_2)$	$L = 2\varepsilon = 2t_{1-\frac{\alpha}{2}} \int S_1^2/n_1 + S_2^2/n_2$

Longueur de $IC_{1-\alpha}(m_1-m_2)$ $L=2\varepsilon=2t_{1-\frac{\alpha}{2}}\sqrt{S_1^2/n_1+S_2^2/n_2}$ $\sigma_1\ et\ \sigma_2\ sont\ inconnus\ avec\ l'hypothèse:\ \sigma_1=\sigma_2$

Distribution de la fonction pivotale

Erreur

Mara

 $T = [(\overline{X} - \overline{Y}) - (m_1 - m_2)]/S\sqrt{1/n_1 + 1/n_2} \sim \mathcal{T}(n_1 + n_2 - 2)$ avec $S^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$, la variance empirique jointe corrigée

 $U = \frac{\hat{p} - p}{\sqrt{n(1-n)/n}} \rightsquigarrow \mathcal{N}(0,1)$

 $e = |(\overline{X} - \overline{Y}) - (m_1 - m_2)|$

Intervalle de confiance $1-\alpha$, symétrique et centré en 0Intervalle de confiance

 $P\left[t_{\frac{\alpha}{2}} \leq T \leq t_{1-\frac{\alpha}{2}}\right] = 1 - \alpha$ où $t_{1-\frac{\alpha}{2}} = t_{1-\frac{\alpha}{2}}(n_1 + n_2 - 2)$ et $t_{\frac{\alpha}{2}} = -t_{1-\frac{\alpha}{2}}$ $IC_{1-\alpha}(m_1 - m_2) = \left[(\overline{X} - \overline{Y}) \pm t_{1-\frac{\alpha}{2}}S\sqrt{1/n_1 + 1/n_2}\right]$ $e = |(\overline{X} - \overline{Y}) - (m_1 - m_2)|$ $\varepsilon = e_{max} = t_{1-\frac{\alpha}{2}}S\sqrt{1/n_1 + 1/n_2}$

Erreur $Marge\ d'erreur\ à\ 1-lpha$ $Longueur\ de\ IC_{1-lpha}(m_1-m_2)$

Distribution de la fonction

pivotale

Longueur de $IC_{1-a}(m_1-m_2)$ $L=2\varepsilon=2t_{1-\frac{a}{2}}S\sqrt{1/n_1+1/n_2}$ $c \bullet Intervalle \ de \ confiance \ pour \ une \ proportion: Soit \ (X_i)_{1\leq i\leq n} \ un \ \'echantillon \ i. i. d \ de$

la loi de de Bernoulli B (1,p). $\hat{p} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ est un estimateur sans biais, convergent

et efficace, En appliquant le T. L. C , on obtient : $U = \frac{\widehat{p} - p}{\sqrt{p(1-p)/n}} \rightsquigarrow \mathcal{N}(0,1)$

P 22 22 22 22 22 22 22 22 22 22 22 22 22	
Intervalle de confiance $1-lpha$,	$\mathbf{p}[\mathbf{u} \in \mathbf{u} \in \mathbf{u}] = 1 \mathbf{u} \circ \mathbf{u} = \mathbf{p} - 1 (1 \mathbf{u}) \circ \mathbf{u} = \mathbf{u}$
symétrique et centré en 0	$P\left[u_{\frac{\alpha}{2}} \leq U \leq u_{1-\frac{\alpha}{2}}\right] = 1 - \alpha \text{ où } u_{1-\frac{\alpha}{2}} = \Phi^{-1}\left(1-\frac{\alpha}{2}\right) \text{ et } u_{\frac{\alpha}{2}} = -u_{1-\frac{\alpha}{2}}$
Intervalle de confiance	$IC_{1-\alpha}(p) = \left[\widehat{p} \pm u_{1-\frac{\alpha}{2}}\sqrt{\widehat{p}(1-\widehat{p})/n}\right] \subset \left[\widehat{p} \pm \left(u_{1-\frac{\alpha}{2}}/2\sqrt{n}\right)\right]$

Erreur $e = |\widehat{p} - p|$

Marge d'erreur à $1-\alpha$ $\varepsilon=e_{max}=u_{1-\frac{\alpha}{2}}\sqrt{\widehat{p}(1-\widehat{p})/n}\leq u_{1-\frac{\alpha}{2}}/2\sqrt{n}$

Longueur de $IC_{1-\alpha}(p)$ $L=2\varepsilon=2u_{1-\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\leq \frac{u_{1-\frac{\alpha}{2}}}{\sqrt{n}}$

Taille d'échantillon minimale $n_{min} = \left(u_{1-rac{lpha}{2}}\sqrt{\widehat{p}(1-\widehat{p})}/arepsilon
ight)^2 \leq \left(u_{1-rac{lpha}{2}}/2arepsilon
ight)^2$

https://web.facebook.com/OMEGACENTER2014

d • Intervalle de confiance pour la différence de deux proportions :

 $Supposons~(X_i)_{1 \leq i \leq n_1} et~\big(Y_j\big)_{1 \leq i \leq n_2}~n_1 + n_2~variables~ind\'ependantes~et~\'equidistribu\'ees~issus$

respectivement des lois de Bernoulli B
$$(1, p_1)$$
 et B $(1, p_2)$. $\hat{p}_1 = \overline{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i$ et $\hat{p}_2 = \overline{Y} = \frac{1}{n_2} \sum_{j=1}^{n_2} Y_j$

 $\textit{des estimateurs non biais\'es , convergents et efficaces}: \frac{(\widehat{p}_1 - \widehat{p}_2) - (p_1 - p_2)}{\sqrt{(p_1(1-p_1)/n_1) + (p_2(1-p_2)/n_2)}} \rightsquigarrow \mathcal{N}(0,1)$

Distribution de la fonction	$U = \frac{(\widehat{p}_1 - \widehat{p}_2) - (p_1 - p_2)}{\sqrt{(p_1(1 - p_1)/p_1) + (p_2(1 - p_2)/p_2)}} \sim \mathcal{N}(0, 1)$
pivotale	$\sqrt{(p_1(1-p_1)/n_1)+(p_2(1-p_2)/n_2)}$
Intervalle de confiance $1-\alpha$,	$P\left[u_{rac{lpha}{2}} \leq U \leq u_{1-rac{lpha}{2}} ight] = 1-lpha \ o$ ù $u_{1-rac{lpha}{2}} = \Phi^{-1}\left(1-rac{lpha}{2} ight) \ et \ u_{rac{lpha}{2}} = -u_{1-rac{lpha}{2}}$
symétrique et centré en 0	$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$IC_{1-\alpha}(p_1-p_2)=\left[(\widehat{p}_1-\widehat{p}_2)\pm u_{1-\frac{\alpha}{2}}\sqrt{(\widehat{p}_1(1-\widehat{p}_1)/n_1)+(\widehat{p}_2(1-\widehat{p}_2)/n_2)}\right]$
Intervalle de confiance	$IC_{1-lpha}(p_1-p_2) \subset \left[(\widehat{p}_1-\widehat{p}_2)\pm rac{u_{1-rac{lpha}{2}}}{2}\sqrt{1/n_1+1/n_2} ight]$
Erreur	$e = (\widehat{p}_1 - \widehat{p}_2) - (p_1 - p_2) $
Marge d'erreur à 1 – α	$\varepsilon = e_{max} = u_{1-\frac{\alpha}{2}} \sqrt{(\widehat{p}_1(1-\widehat{p}_1)/n_1) + (\widehat{p}_2(1-\widehat{p}_2)/n_2)} \leq \frac{u_{1-\frac{\alpha}{2}}}{2} \sqrt{1/n_1 + 1/n_2}$
Longueur de I $\mathcal{C}_{1-lpha}(p_1-p_2)$	$L = 2\varepsilon = 2u_{1-\frac{\alpha}{2}}\sqrt{(\widehat{p}_1(1-\widehat{p}_1)/n_1) + (\widehat{p}_2(1-\widehat{p}_2)/n_2)} \le u_{1-\frac{\alpha}{2}}\sqrt{1/n_1 + 1/n_2}$

e • Intervalle de confiance pour une variance : Soit $(X_1, ..., X_n)$ un échantillon i. i. d de la loi normale $\mathcal{N}(m, \sigma^2)$ (ou d'une population non-normale et de grande taille , n > 30)

0	m connue			
Distribution de la fonction	$H = \frac{1}{2} \sum_{n=1}^{\infty} (x_{n-n})^{2} + x^{2}(n)$			
pivotale	$H = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - m)^2 \sim \chi^2(n)$			
Intervalle de confiance 1 – α pour	$P\left[\chi_{\frac{\alpha}{2}}^2(n) \leq H \leq \chi_{1-\frac{\alpha}{2}}^2(n)\right] = 1-\alpha$			
la fonction pivotale	$F\left[\chi_{\frac{\alpha}{2}}(n) \le n \le \chi_{1-\frac{\alpha}{2}}(n)\right] - 1 - u$			
	$IC_{1-\alpha}(\sigma^2) = \left[\sum_{i=1}^n (X_i - m)^2 / \chi_{1-\frac{\alpha}{2}}^2(n) , \sum_{i=1}^n (X_i - m)^2 / \chi_{\frac{\alpha}{2}}^2(n) \right]$			
Intervalle de confiance	$IC_{1-\alpha}(\sigma) = \left[\sqrt{\sum_{i=1}^{n} (X_i - m)^2 / \chi_{1-\frac{\alpha}{2}}^2(n)} , \sqrt{\sum_{i=1}^{n} (X_i - m)^2 / \chi_{\frac{\alpha}{2}}^2(n)} \right]$			

	· · · · · · · · · · · · · · · · · · ·
omega.center.cp@gmail.com	https://web.facebook.com/OMEGACENTER2014
2	m inconnue
Distribution de la fonction pivotale	$W = \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{(n-1)S^2}{\sigma^2} \rightsquigarrow \chi^2(n-1)$
Intervalle de confiance $1-\alpha$ pour	-[2, 3,, 2, 3] .
la fonction pivotale	$P\left[\chi_{\frac{\alpha}{2}}^{2}(n-1)\leq W\leq \chi_{1-\frac{\alpha}{2}}^{2}(n)\right]=1-\alpha$
	$IC_{1-\alpha}(\sigma^2) = \left[\sum_{i=1}^n (X_i - \overline{X})^2 / \chi_{1-\frac{\alpha}{2}}^2 (n-1) , \sum_{i=1}^n (X_i - \overline{X})^2 / \chi_{\frac{\alpha}{2}}^2 (n-1) \right]$
Intervalle de confiance	$= \left[(n-1)S^2 \big/ \chi_{1-\frac{\alpha}{2}}^2 (n-1) \right. , (n-1)S^2 \big/ \chi_{\frac{\alpha}{2}}^2 (n-1) \right]$
	$IC_{1-lpha}(\sigma) = \left[\left(\sqrt{n-1/\chi_{1-rac{lpha}{2}}^2(n-1)} ight)S$, $\left(\sqrt{n-1/\chi_{rac{lpha}{2}}^2(n-1)} ight)S ight]$

• Intervalle de confiance pour le rappeort des variances : Supposons $(X_i)_{1 \le i \le n_1}$ et et $(Y_j)_{1 \le j \le n_2}$ $n_1 + n_2$ variables indépendantes et équidistribuées de moyenne m_1 et de variance σ_1^2 , pour le premier , et de moyenne m_2 et de variance σ_2^2 , pour le second. Nous signalons que comme dans le cas d'un échantillon , même lorsque les observations ne sont pas normales, il suffit d'avoir n_1 et $n_2 > 30$ pour conserver les mêmes procédures

	m_1 et m_2 sont inconnues		
Distribution de la fonction pivotale	$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim \mathcal{F}(n_1 - 1, n_2 - 1)$		
Intervalle de confiance 1 – α pour la fonction pivotale	$P\left[f_{\frac{\alpha}{2}}(n_1-1,n_2-1) \le F \le f_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)\right] = 1-\alpha$		
Intervalle de confiance	$IC_{1-\alpha}\left(\frac{\sigma_1^2}{\sigma_2^2}\right) = \left[\frac{S_1^2/S_2^2}{f_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)}, \frac{S_1^2/S_2^2}{f_{\frac{\alpha}{2}}(n_1-1,n_2-1)}\right]$		
Theer valle ac confiance	$IC_{1-\alpha}\left(\frac{\sigma_1}{\sigma_2}\right) = \left[\frac{S_1/S_2}{\sqrt{f_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)}}, \frac{S_1/S_2}{\sqrt{f_{\frac{\alpha}{2}}(n_1-1,n_2-1)}}\right]$		

https://web.facebook.com/OMEGACENTER2014

Tests d'hypothèses

C-1 • Principe et définitions :

On se place dans un modèle paramétrique $X=(X_1,...,X_n)$ i. i. d suivant une loi $(P_\theta$, $\theta\in\Theta)$. Supposons que $\Theta=\Theta_0\cup\Theta_1$ où Θ_0 et Θ_1 sont deux ensembles disjoints.

Connaissant une réalisation $(x_1, ..., x_n)$ de X, on voudrait décider si θ est dans Θ_0 ou Θ_1 . En pratique , on choisira toujours pour Θ_0 le plus petit des deux sous-espaces Θ_0 , Θ_1 . Ainsi, $\theta \in \Theta_0$ correspond à la version la plus simple du modèle.

a • Hypothèses de test : On pose une hypothèse nulle notée $H_0: \theta \in \Theta_0$ contre une hypothèse alternative notée $H_1: \theta \in \Theta_1$

 $oxed{oxed}$ Tests d'hypothèses simples : Un test d'hypothèses simples est un test dans lequel les hypothèses nulle et alternative sont simples toutes les deux. C'est donc un test du type : $H_0: \theta = \theta_0$ contre $H_1: \theta = \theta_1$

☑ Tests d'hypothèses composites: Un test d'hypothèses composites est un test
dans lequel l'une au moins des deux hypothèses est composite. Les tests les plus usuels
sont du type:

 $ightharpoonup Tests unilatéraux: On peut avoir <math>H_0$ et H_1 composites comme on peut avoir seulement H_1 composite

1 Unilatéral à droite : $H_0: \theta \leq \theta_0$ contre $H_1: \theta > \theta_0$

2 Unilatéral à gauche : $H_0: \theta \leq \theta_0$ contre $H_1: \theta < \theta_0$

 $m{b} \cdot \mathbf{Principe}$ général : On décide que $m{\theta}$ est dans $m{\Theta}_0$ ou $m{\Theta}_1$ à l'aide des observations \mathbf{r}_0 . Pour cela on chercheune rèale de décision qui prend la forme suivante

 (x_1, \dots, x_n) . Pour cela on chercheune règle de décision qui prend la forme suivante:

 \blacksquare Si $S(x_1,...,x_n) \in R_C$, alors on rejette H_0

lacksquare Si $S(x_1,...,x_n) \notin R_C$, alors on ne rejette pas H_0

Où S est une statistique (ou fonction) de test et R_C est une région critique. Le plus souvent, S est une fonction d'un estimateur de $\theta: \left(S = \psi(\widehat{\theta}_n, \theta)\right)$

ightharpoonup Remarque: Il vaut mieux dire ne pas rejeter H_0 que accepter H_0 . En effet, si on rejette H_0 , c'est que les observations sont telles qu'il est très improbable que H_0 soit vraie.

Si on ne rejette pas H_0 , c'est qu'on ne dispose pas de critères suffisants pour pouvoir dire que H_0 est fausse. Mais cela ne veut pas dire que H_0 est vraie. Un test permet de dire qu'une hypothèse est très probablement fausse ou seulement peut être vraie. Par exemple, si on n'a pas de preuve qu'un accusé est coupable, cela ne veut pas forcément dire qu'il est innocent (et réciproquement).

Par conséquent, dans un problème de test, il faut choisir les hypothèses H_0 et H_1 de façon à ce que ce qui soit vraiment intéressant, c'est de rejeter H_0 .

 $c \cdot R\`egle \ de \ d\'ecision$, seuil et p-valeur : Dans un test, l'hypothèse nulle H_0 est celle dont on choisit de maîtriser la probabilité de rejet à tort. C'est celle à laquelle on tient le plus, celle qu'il serait le coûteux de rejeter à tort.

 $oxed{oxed}$ Le seuil du test (ou risque de première espèce) : est la probabilité de rejeter H_0 à tort : $\alpha = P(Rejet\ de\ H_0|H_0\ vraie) = P(S(x_1,...,x_n)\in R_C|H_0\ vraie)$

☞ Règle de décision :

1 Test bilatéral :
$$H_0: \theta = \theta_0$$
 contre $H_1: \theta \neq \theta_0$

Rejet de
$$H_0 \Leftrightarrow S(x_1, ..., x_n) \notin IC_{1-\alpha}(\theta)$$
, où $IC_{1-\alpha}(\theta) = [c_1, c_2]$

2 Test unilatéral à droite :
$$H_0: \theta = \theta_0$$
 contre $H_1: \theta > \theta_0$

Rejet de $H_0 \Leftrightarrow S(x_1, ..., x_n) > c$

(3) Test unilatéral à gauche :
$$H_0$$
: $\theta = \theta_0$ contre H_1 : $\theta < \theta_0$

Rejet de
$$H_0 \Leftrightarrow S(x_1, ..., x_n) < c'$$

ightharpoonup La p-valeur: est le seuil pour lequel la valeur observée de la statistique de test serait la limite de la région de rejet. C'est la probabilité sous H_0 que la statistique de test soit au-delà de la valeur déjà observée.

ightharpoonup Le risque de deuxième espèce : est la probabilité d'"accepter" H_0 à tort , où encore la probabilité d'"accepter" H_0 quand l'hypotèse alternative H_1 est vraie :

https://web.facebook.com/OMEGACENTER2014

 $\beta = P(Non-Rejet\ de\ H_0|H_1\ vraie) = P(S(x_1,...,x_n)\in \overline{R}_C|H_1\ vraie) = P(S(x_1,...,x_n)\notin R_C|H_1\ vraie)$

☑ La puissance du test : La puissance du test est la probabilité de rejeter à

raison H_0

$$\pi = 1 - \beta = P(Rejet \ de \ H_0|H_1 \ vraie) = P(S(x_1, ..., x_n) \in R_C|H_1 \ vraie)$$

Réalité Décision	H ₀ vraie	H ₀ fausse
Non-rejet de H ₀	Correct 1 – α	Manque de puissance(risque de deuxième espèce) β
Rejet de H_0 Rejet à $tort(risque de première espèce)$ α		Puissance du test $\pi=1-oldsymbol{eta}$

C-2 • Méthode de Bayes :

On affecte des probabiliotés à priori P_0 et $P_1=1-P_0$ aux deux hypothèses H_0 et H_1 et on associe un coût à chaque décision , ce qui est schématisé dans le tableau ci-après :

		D écision		Probabiliotés a priori
		D_0	D_1	i i
Hyppothèse vraie	H_0	C_{00}	C_{01}	P_0
	<i>H</i> ₁	C_{10}	C ₁₁	P_1

 $\textit{La fonction de de vraisemblance}: \theta \mapsto \textit{L}(X_1, ..., X_n | \theta) \; \textit{est not} \\ \acute{e} \; \textit{L}_0 \; \textit{si} \; \theta \in \Theta_0 \; \; \textit{et} \; \textit{L}_1 \; \textit{si} \; \theta \in \Theta_1.$

Au vu d'une réalisation $(x_1,...,x_n)$, le théorème de Bayes permet de calculer les probabilités

$$a\ posteriori\ \eta_0\ et\ \eta_1=1-\eta_0\ des\ hypoth\`eses\ H_0\ et\ H_1: \eta_0=\frac{P_0L_0}{P_0L_0+P_1L_1}\ et\ \eta_1=\frac{P_1L_1}{P_0L_0+P_1L_1}$$

Ceci permet de calculer les espérances du coût de chaque décision :

$$\begin{cases}
E[C(D_0)] = C_{00}\eta_0 + C_{10}\eta_1 \\
E[C(D_1)] = C_{01}\eta_0 + C_{11}\eta_1
\end{cases}$$

ightharpoonup La règle de décision de Bayes : Est celle qui associe à la réalisation $(x_1, ..., x_n)$, la décision dont l'espérance du coût est la plus faible.

C-3 • Principe de Neyman :

On voudrait trouver des procédures de test qui minimisent les 2 erreurs.

Or il est facile de voir, que le plus souvent, si α diminue alors β augmente.

Le principe de Neyman consiste à fixer le niveau α à une valeur petite (typiquement 5% ou 1 %) et à chercher une région critique qui minimise $\beta(\theta)$ à α fixé.

En pratique:

- 1 On fixe le niveau α
- 2 On en déduit une région critique : $R_C(\alpha)$. Si plusieurs régions sont possibles, on choisiteelle qui minimise $\beta(\theta)$
 - 3 On conclut: $si S(x_1, ..., x_n) \in R_C(\alpha)$, on rejette H_0

On utilise parfois une alternative pour conclure. Au lieu de fixer α et de comparer la valeur de la statistique de test observée à la région critique $R_{\mathcal{C}}(\alpha)$, on estime un degré de significativité ou (p-value):

$$\widehat{\alpha}(X_1, ..., X_n) = \inf{\{\widehat{\alpha} \ tel \ que \ S(X_1, ..., X_n) \in R_C(\alpha)\}}$$

Ainsi le degré de significativité est le niveau le plus faible qu'on peut choisir pour conclure au rejet de H_0 . On dit parfois que c'est l'erreur que l'on fait quand on rejette H_0 Concrètement, on compare \widehat{a} au niveau α fixé.

C-4 • Principe de Neyman et optimalité :

On voudrait trouver des:

a • Test randomisé :

 $lacksquaresize Définition 1: Soit <math>(X_1,...,X_n)$ à valeurs dans $\big(X_i(\Omega)\big)^n$. Un test est une fonction aléatoire Ψ de $\big(X_i(\Omega)\big)^n \to [0,1]$.

Interprétation : La fonction Ψ représente la probabilité de décider H_1 :

- $Si \Psi(X_1, ..., X_n) = 0$, on conclut à H_0
- \blacksquare Si $\Psi(X_1,...,X_n) = 1$, on conclut à H_1
- \blacksquare Si $\Psi(X_1,...,X_n) \in]0,1[$, on tire au hasard la décision H_1 avec la probabilité $\Psi(X_1,...,X_n)$

Lorsque Ψ est à valeurs dans $\{0,1\}$, on parle de test pur, c'est à dire non randomisé. C'est le cas de la plupart des tests classiques.

☑ Définition 2 : Pour le test H_0 : $\theta \in \Theta_0$ contre H_1 : $\theta \in \Theta_1$

https://web.facebook.com/OMEGACENTER2014

- Le risque de $1^{\grave{e}re}$ espèce est la fonction $lpha(heta)=E_{ heta}[\Psi(X_1,...,X_n)]$, $\forall \; heta \in \Theta_0$
- lacksquare Le risque de $2^{\grave{ ext{e}}me}$ espèce est la fonction $eta(heta)=E_{ heta}[1-\Psi(X_1,...,X_n)]$, $orall \ heta\in\Theta_1$
- Le niveau est $\alpha = \sup_{\theta \in \Theta_0} \alpha(\theta)$
- La puissance du test est la fonction $\pi(\theta) = 1 \beta(\theta)$

L'utilisation de tests randomisés permet de considérer des tests de niveau α pour tout $\alpha \in [0,1].$ On peut donc définir la notion de test le plus puissant parmi les tests de niveau α

Définition 3: Un test associé à la fonction Ψ est un test uniformément plus puissant (UPP) au niveau α , si son niveau est inférieur ou égal à α et si pour tout test Ψ^* de niveau inférieur ou égal à α , $\pi_{\theta}[\Psi(X_1,...,X_n)] \geq \pi_{\theta}[\Psi^*(X_1,...,X_n)]$ pour tout $\theta \in \Theta_1$ δ • Tests uniformément plus puissants (UPP): Le lemme de Neyman-Pearson est important car il suggère un principe pour trouver de bonstests au sens du compromis entre une puissance forte et une erreur de première espèce faible.

 $\begin{tabular}{ll} $ \underline{ \begin{tabular}{ll} Lemme de Neyman-Pearson}: Soit (X_1,\ldots,X_n) un \'echantillon de vraisemblance $$ $L(X_1,\ldots,X_n|\theta)$. Pour tester $H_0:\theta=\theta_0$ contre $H_1:\theta=\theta_1$, $\theta_0\neq\theta_1$, pour tout $\alpha\in]0,1[$ fix\'e$, il existe $c>0$ et $\gamma\in [0,1[$ tels que le test: $$] $$ $$ $A_1=0$ and $A_2=0$ and $A_1=0$ and $A_2=0$ and $A_2=0$ and $A_1=0$ and $A_2=0$ and $A_1=0$ and A

$$\Psi(X_1, \dots, X_n) = \begin{cases} 1 \ , si \ L(X_1, \dots, X_n | \theta_1) / L(X_1, \dots, X_n | \theta_0) > c \\ \gamma \ , si \ L(X_1, \dots, X_n | \theta_1) / L(X_1, \dots, X_n | \theta_0) = c \\ 0 \ , si \ L(X_1, \dots, X_n | \theta_1) / L(X_1, \dots, X_n | \theta_0) < c \end{cases}$$

De plus ce test est uniformément plus puissant parmi les tests de niveau au plus α et c'est le seul. Ce test est appelé test de Neyman-Pearson associé à c et γ est déterminé par l'équation de test : $E_{\theta_0}[\Psi(X_1,\ldots,X_n)]=\alpha$, $(\gamma$ n'est pas forcément unique)

Remarque 1:

$$E_{\theta_0}[\Psi(X_1,\ldots,X_n)] = \left[1 \times P_{\theta_0}\left(\frac{L(X_1,\ldots,X_n|\theta_1)}{L(X_1,\ldots,X_n|\theta_0)} > c\right)\right] + \left[\gamma \times P_{\theta_0}\left(\frac{L(X_1,\ldots,X_n|\theta_1)}{L(X_1,\ldots,X_n|\theta_0)} = c\right)\right] + \left[0 \times P_{\theta_0}\left(\frac{L(X_1,\ldots,X_n|\theta_1)}{L(X_1,\ldots,X_n|\theta_0)} < c\right)\right]$$

- **rac{rac{rac{rac{rac{rac{rac}}{Remarque}}}{2}}{Remarque}}{2}}: E_{\theta_1}[\Psi(X_1, ..., X_n)]: puissance de Ψ**
- ${\color{red} {\it FRemarque 3}: E_{\theta_0}[\Psi(X_1,\ldots,X_n)]: niveau \ de \ \Psi \ qui \ est \ \'egal \ \`a}$
- Remarque 4 : Dans le cas continu, on retrouve un test pur de région critique :

$$R_C = \left\{ \frac{L(X_1, \dots, X_n | \theta_1)}{L(X_1, \dots, X_n | \theta_0)} > c \right\}$$

C-5 • Tests UPP pour les hypothèses composites :

Dans la partie précédente, nous avons montré des résultats (constructifs) d'existence et d'unicité pour des tests dont les hypothèses sont des singletons.

 $a \bullet Test \ unilatéral \ a \ droite \ (H_0: \theta \leq \theta_0 \ contre \ H_1: \theta > \theta_1): Pour \ le test \ unilatéral$ $H_0: \theta \leq \theta_0 \ contre \ H_1: \theta > \theta_0$, on peut construire un test UPP mais en se restreignant à certaines familles de lois.

 $rac{rac}{Remarque}$: On peut toujours supposer que h est strictement croissante quite à considérer $-U(X_1,...,X_n)$ à la place de $U(X_1,...,X_n)$

☑ Théorème : Soient $X_1, ..., X_n$ v. a. i. i. d suivant $(P_\theta)_{\theta \in \Theta}$ où $(P_\theta)_{\theta \in \Theta}$ est une famille à rapport de vraisemblance monotone . Pour tester $H_0: \theta \leq \theta_0$ contre $H_1: \theta > \theta_1$

 $il\ existe\ un\ test\ UPP\ de\ niveau\ \alpha\ de\ la\ forme:\ \Psi(X_1,\ldots,X_n) = \begin{cases} 1\ , si\ U(X_1,\ldots,X_n) > c \\ \gamma\ , si\ U(X_1,\ldots,X_n) = c \\ 0\ , si\ U(X_1,\ldots,X_n) < c \end{cases}$

où U est la statistique de la définition 1 et γ et c sont définies par $E_{\theta_0}[\Psi(X_1,\ldots,X_n)]=\alpha$

& • Test bilatéral $(H_0: \theta = \theta_0 \ contre \ H_1: \theta \neq \theta_0): Il \ n'existe \ pas \ en \ général \ de test \ UPP$ pour le test bilatéral $(H_0: \theta = \theta_0 \ contre \ H_1: \theta \neq \theta_0)$. En effet, pour être UPP, un test doit être le plus puissant pour tester $(H_0: \theta = \theta_0 \ contre \ H_1: \theta = \theta_1$, pour tout $\theta_1 \neq \theta_0$). Cependant, selon le lemme de Neyman-Pearson, la forme des tests les plus puissants diffère selon que $\theta_1 > \theta_0$ ou $\theta_1 < \theta_0$

☑ Tests sans biais : Un test est dit sans biais si sa puissance est toujours supérieure à son niveau, autrement dit si pour tester $H_0: \theta \in \Theta_0$ contre $H_1: \theta \in \Theta_1$, pour tout $\theta_1 \in \Theta_1$, $E_{\theta_1}[\Psi(X_1, ..., X_n)] \geq \sup_{\theta \in \Theta_0} E_{\theta}[\Psi(X_1, ..., X_n)]$, c'est à dire qu'on a souvent raison quand on conlcut H_1

☑ Proposition: Un test UPP est forcément sans biais.

https://web.facebook.com/OMEGACENTER2014

momega.center.cp@gmail.com

C-6 • Tests convergent:

Soit R_{C_n} la région critique d'untest basé sur un échantillon $(X_1, ..., X_n)$ i. i. d suivant $(P_\theta)_{\theta \in \Theta}$.

Posons
$$\alpha_n = P(R_{C_n}|\theta \in \Theta_0)$$
 et $\pi_n = 1 - \beta_n = P(R_{C_n}|\theta \in \Theta_1)$.

Le test est dit convergent ,
$$si: \begin{cases} \forall \theta \in \Theta_0 \text{ , } \alpha_{n+1} \leq \alpha_n \\ \forall \theta \in \Theta_1 \text{ , } \lim_{n \to +\infty} \pi_n = 1 \end{cases}$$

C-7 • Tests classiques :

a • Tests paramétriques pour des moyennes, des variances ou des corrélations :

- 🚺 Test de Student
- 2 Test de Fisher
- 3 Analyse de la variance (variance inter-classe/variance intra-classe)
- 4 Test de Pearson

& • Tests non paramétriques pour des moyennes, des variances ou des corrélations :

On les utilise quand on a de petits échantillons dont on ne connait pas la distribution.

- 1 Test du signe, test des signes et rangs de Wilcoxon ou mann-Whitney Wilcoxon
- 2 Test de Kruskal-Wallis
- 🔞 Test de Spearman
- 4 Test du τ de Kendall

c • Test d'adéquation ou de comparaison de distribution :

- 1 Tets du χ^2 : loi discrête
- 2 Test de Kolmogorov, Cramer-von Mises 🛭 loi continue quelconque
- 3 Test de Shapiro-Wilk: loi normale

C-8 • Tests d'hypothèses paramétriques usuels :

a • Test sur une moyenne m: Soit $(X_1, ..., X_n)$ un échantillon i. i. d de la loi normale

399

 $\mathcal{N}(m,\sigma^2)$ ou d'une population non-normale et de grande taille , n>30

https://web.facebook.com/OMEGACENTER2014

Test bilatéral : $H_0: m=m_0$ contre $H_1: m \neq m_0$, cas où σ connu

Distribution de la statistique de décision:
$S(x_1,,x_n) = \psi(\widehat{m},m) = \psi(\overline{X},m)$
Région critique

$$\psi(\widehat{m}, m) = \frac{(\overline{X} - m)}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

Risque de première espèce : α

$$R_{\mathcal{C}} = \{(x_1, \dots, x_n) | \overline{X} > c_2\} \cup \{(x_1, \dots, x_n) | \overline{X} < c_1\}$$

$$\alpha = P\left(\left| \frac{(\overline{X} - m)}{\sigma / \sqrt{n}} \right| > k \middle| m = m_0 \right)$$

Valeurs critiques

$$\begin{cases} c_2 = m_0 + \Phi^{-1}(1 - \alpha/2) \, \sigma/\sqrt{n} \\ et \\ c_1 = m_0 - \Phi^{-1}(1 - \alpha/2) \, \sigma/\sqrt{n} \end{cases}$$

Règle de décision

$$On\ rejette\ H_0\ si\ egin{dcases} ar{X}_{obs} > m_0 + \Phi^{-1}(1-lpha/2)\ \sigma/\sqrt{n} \ ou \ ar{X}_{obs} < m_0 - \Phi^{-1}(1-lpha/2)\ \sigma/\sqrt{n} \end{cases}$$

Risque de deuxième espèce : eta $H_0: m = m_0$ contre $H_1: m = m_1(m_1
eq m_0)$

$$\beta = P\left(\left|\frac{\overline{X} - m}{\sigma/\sqrt{n}}\right| < k \middle| m = m_1\right) = P(c_1 < \overline{X} < c_2 | m = m_1)$$

 $Puissance\ du\ test:\ \pi=1-eta \ H_0: m=m_0\ contre\ H_1: m=m_1(m_1
eq m_0)$

$$\pi = 1 - \beta = P\left(\left|\frac{\overline{X} - m}{\sigma/\sqrt{n}}\right| > k \middle| m = m_1\right)$$
$$= P(\overline{X} > c_2 | m = m_1) + P(\overline{X} < c_1 | m = m_1)$$

 $\overline{Test} \ bilat\acute{e}ral : H_0 : m = m_0 \ contre \ H_1 : m \neq m_0$, cas où σ inconnu

Distribution de la statistique de décision: $S(x_1,...,x_n) = \psi(\widehat{m},m) = \psi(\overline{X},m)$

$$\psi(\widehat{m}, m) = \frac{X - m}{S / \sqrt{n}} \rightsquigarrow \mathcal{T}(n - 1)$$

Région critique

$$R_C = \{(x_1, \dots, x_n) | \overline{X} > c_2\} \cup \{(x_1, \dots, x_n) | \overline{X} < c_1\}$$

$$\alpha = P\left(\left| \frac{\overline{X} - m}{c_1 / \sqrt{n}} \right| > k \middle| m = m_0\right)$$

Risque de première espèce : α

$$\begin{cases} c_2 = m_0 + t_{1-\frac{\alpha}{2}}(n-1)(S/\sqrt{n}) \\ et \end{cases}$$

Valeurs critiques

$$c_1 = m_0 - t_{1-\frac{\alpha}{2}}(n-1)\left(S/\sqrt{n}\right)$$

$$\sqrt{X_{obs}} > m_0 + t_{1-\frac{\alpha}{2}}(n-1)\left(S/\sqrt{n}\right)$$

Règle de décision

On rejette
$$H_0$$
 si $\begin{cases} \overline{X}_{obs} > m_0 + t_{1-\frac{\alpha}{2}}(n-1) \left(S/\sqrt{n}\right) \\ ou \\ \overline{X}_{obs} < m_0 - t_{1-\frac{\alpha}{2}}(n-1) \left(S/\sqrt{n}\right) \end{cases}$

Risque de deuxième espèce : eta $H_0: m = m_0$ contre $H_1: m = m_1(m_1
eq m_0)$

$$\beta = P\left(\left|\frac{\overline{X} - m}{S/\sqrt{n}}\right| < k \middle| m = m_1\right) = P(c_1 < \overline{X} < c_2 | m = m_1)$$

Puissance du test : $\pi = 1 - \beta$ $H_0: m = m_0 \ contre \ H_1: m = m_1(m_1 \neq m_0)$

$$\pi = 1 - \beta = P\left(\left|\frac{\overline{X} - m}{S/\sqrt{n}}\right| > k \middle| m = m_1\right)$$
$$= P(\overline{X} > c_2 | m = m_1) + P(\overline{X} < c_1 | m = m_1)$$

Test unilatéral à droite $: H_0 : m = m_0$ contre $H_1 : m > m_0$, cas où σ connu

Distribution de la statistique de décision: $S(x_1,...,x_n) = \psi(\widehat{m},m) = \psi(\overline{X},m)$

$$\psi(\widehat{m},m) = \frac{\overline{X} - m}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$$

Région critique

$$R_C = \{(x_1, \dots, x_n) | \overline{X} > c\}$$

Risque de première espèce : α

$$\alpha = P\left(\frac{\overline{X} - m}{\sigma/\sqrt{n}} > k \middle| m = m_0\right)$$

Valeurs critiques

$$c = m_0 + \Phi^{-1}(1 - \alpha) \frac{\sigma}{\sqrt{n}}$$

Règle de décision

On rejette
$$H_0$$
 si $\overline{X}_{obs} > m_0 + \Phi^{-1}(1-\alpha) \frac{\sigma}{\sqrt{n}}$

Risque de deuxième espèce : β $H_0: m = m_0 \ contre \ H_1: m = m_1 \ (m_1 > m_0)$

$$\beta = P\left(\frac{\overline{X} - m}{\sigma/\sqrt{n}} < k \middle| m = m_1\right) = P(\overline{X} < c | m = m_1)$$

Puissance du test : $\pi = 1 - \beta$ $H_0: m = m_0$ contre $H_1: m = m_1(m_1 > m_0)$

$$\pi = 1 - \beta = P\left(\frac{\overline{X} - m}{\sigma/\sqrt{n}} > k \middle| m = m_1\right) = P(\overline{X} > c | m = m_1)$$

https://web.facebook.com/OMEGACENTER2014

Test unilatéral à droite : $H_0: m=m_0$ contre $H_1: m>m_0$, cas où σ inconnu

Distribution de	la statistique de décision:
$S(x_4 - x_1)$	$= \operatorname{dr}(\widehat{m} \ m) = \operatorname{dr}(\overline{X} \ m)$

$$(x_n) = \psi(\widehat{m}, m) = \psi(\overline{X}, m)$$

Risque de première espèce : a

Valeurs critiques

Règle de décision

Risque de deuxième espèce : \(\beta \) $H_0: m = m_0 \ contre \ H_1: m = m_1 (m_1 > m_0)$

Puissance du test : $\pi = 1 - \beta$

$$H_0: m = m_0 \ contre \ H_1: m = m_1 (m_1 > m_0)$$

 $\psi(\widehat{m},m) = \frac{\overline{X} - m}{\varsigma / \sqrt{n}} \rightsquigarrow \mathcal{T}(n-1)$

$$R_{\mathcal{C}} = \{(x_1, \dots, x_n) | \overline{X} > c\}$$

$$\alpha = P\left(\frac{\overline{X} - m}{S/\sqrt{n}} > k \middle| m = m_0\right)$$

$$c = m_0 + t_{1-\alpha}(n-1)(S/\sqrt{n})$$

On rejette H_0 si $\overline{X}_{obs} > m_0 + t_{1-\alpha}(n-1)(S/\sqrt{n})$

$$\beta = P\left(\frac{\overline{X} - m}{S / \sqrt{n}} < k \middle| m = m_1\right) = P(\overline{X} < c | m = m_1)$$

$$\pi = 1 - \beta = P\left(\frac{\overline{X} - m}{S/\sqrt{n}} > k \middle| m = m_1\right) = P(\overline{X} > c | m = m_1)$$

Test unilatéral à gauche $: H_0 : m = m_0$ contre $H_1 : m < m_0$, cas où σ connu

Distribution de la statistique de décision: $S(x_1,...,x_n) = \psi(\widehat{m},m) = \psi(\overline{X},m)$

Région critique

Risque de première espèce : α

Valeurs critiques

Règle de décision

Risque de deuxième espèce : \(\beta \) $H_0: m = m_0 contre H_1: m = m_1 (m_1 < m_0)$

Puissance du test : $\pi = 1 - \beta$ $H_0: m = m_0 \ contre \ H_1: m = m_1 (m_1 < m_0)$ $\psi(\widehat{m}, m) = \frac{\overline{X} - m}{\sigma / \sqrt{n}} \rightsquigarrow \mathcal{N}(0, 1)$

$$R_C = \{(x_1, \dots, x_n) | \overline{X} < c\}$$

 $\alpha = P\left(\frac{\overline{X} - m}{\sigma / \sqrt{n}} < k \middle| m = m_0\right)$

$$c = m_0 - \Phi^{-1}(1 - \alpha) \frac{\sigma}{\sqrt{n}}$$

On rejette H_0 si $\overline{X}_{obs} < m_0 - \Phi^{-1}(1-\alpha) \frac{\sigma}{\sqrt{n}}$

 $\beta = P\left(\frac{\overline{X} - m}{\sigma / \sqrt{n}} > k \middle| m = m_1\right) = P(\overline{X} > c | m = m_1)$

 $\pi = 1 - \beta = P\left(\frac{\overline{X} - m}{\sigma/\sqrt{n}} < k \middle| m = m_1\right) = P(\overline{X} < c \middle| m = m_1)$

 $Test\ unilat$ éral à $gauche: H_0: m = m_0\ contre\ H_1: m < m_0$, cas où σ inconnu

Distribution de la statistique de décision:

 $S(x_1,...,x_n) = \psi(\widehat{m},m) = \psi(\overline{X},m)$

Région critique

 $\psi(\widehat{m}, m) = \frac{\overline{X} - m}{S/\sqrt{n}} \rightsquigarrow \mathcal{T}(n-1)$

Risque de première espèce : α

 $\alpha = P\left(\frac{\overline{X} - m}{\frac{C}{\sqrt{n}}} < k \middle| m = m_0\right)$ Valeurs critiques

Règle de décision

Risque de deuxième espèce : β $H_0: m = m_0 \text{ contre } H_1: m = m_1 (m_1 < m_0)$

Puissance du test : $\pi = 1 - \beta$ $H_0: m = m_0 \ contre \ H_1: m = m_1(m_1 < m_0)$ $c = m_0 - t_{1-\alpha}(n-1)(S/\sqrt{n})$

On rejette H_0 si $\overline{X}_{obs} < m_0 - t_{1-lpha} (n-1) ig(S/\sqrt{n} ig)$

 $\beta = P\left(\frac{\overline{X} - m}{S / \sqrt{n}} > k \middle| m = m_1\right) = P(\overline{X} > c | m = m_1)$

 $\pi = 1 - \beta = P\left(\frac{\overline{X} - m}{\sqrt{S} / \sqrt{n}} < k \middle| m = m_1\right) = P(\overline{X} < c \middle| m = m_1)$

 $n_1 + n_2$ variables indépendantes et équidistribuées de moyenne m_1 et de variance σ_1^2 , pour le premier , et de moyenne m_2 et de variance σ_2^2 , pour le second. Nous signalons que comme dans le cas d'un échantillon , même lorsque les observations ne sont pas

 $\pmb{b} \cdot \pmb{Test}$ sur la différence de deux moyennes $m_1 - m_2 : Supposons(X_i)_{1 \le i \le n_1}$ et $(Y_j)_{1 \le i \le n_2}$

normales, il suffit d'avoir n_1 et $n_2 > 30$ pour conserver les mêmes procédures

omega.center.cp@gmail.com https://web.facebook.com/OMEGACENTER2014

Test bilatéral : $H_0: m_1 - m_2 = \mu_0$ contre $H_1: m_1 - m_2 \neq \mu_0$

 σ_1 et σ_2 sont connus Distribution de la statistique de décision: $\psi = [(\bar{X} - \bar{Y}) - (m_1 - m_2)] / \sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2} \sim \mathcal{N}(0, 1)$

 $S\left\{ \left. (x_i)_{i \in [1,n_1]}, \left(y_j \right)_{j \in [1,n_2]} \right\} = \psi \left(\left(\overline{X} - \overline{Y} \right), \left(m_1 - m_2 \right) \right)$ $R_{C} = \left\{ (x_{i})_{i \in [1, n_{1}]}, (y_{j})_{i \in [1, n_{2}]} \middle| (\overline{X} - \overline{Y}) > c_{2} \right\} \cup \left\{ (x_{i})_{i \in [1, n_{1}]}, (y_{j})_{i \in [1, n_{2}]} \middle| (\overline{X} - \overline{Y}) < c_{1} \right\}$ Région critique

 $lpha = P\left(\left| [(\overline{X} - \overline{Y}) - (m_1 - m_2)] / \sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2} \right| > k \middle| m_1 - m_2 = \mu_0 \right)$ Risque de première espèce : α

Valeurs critiques $\left(N.B. \Phi^{-1}\left(1-\frac{\alpha}{2}\right)=u_{1-\frac{\alpha}{2}}\right)$ $c_2 = \mu_0 + u_{1-\frac{\alpha}{2}} \int \sigma_1^2 / n_1 + \sigma_2^2 / n_2$ et $c_1 = \mu_0 - u_{1-\frac{\alpha}{2}} \int \sigma_1^2 / n_1 + \sigma_2^2 / n_2$

> On rejette Ho si $(\overline{X} - \overline{Y})_{obs} > \mu_0 + u_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} ou (\overline{X} - \overline{Y})_{obs} < \mu_0 - u_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ Règle de décision

> > Test bilatéral: $H_0: m_1-m_2=\mu_0$ contre $H_1: m_1-m_2
> > eq\mu_0$ σ_1 et σ_2 sont inconnus, avec l'hypothèse: $\sigma_1 \neq \sigma_2$

Distribution de la statistique de décision: $\psi = \left[(\overline{X} - \overline{Y}) - (m_1 - m_2) \right] / \sqrt{S_1^2 / n_1 + S_2^2 / n_2} \sim \mathcal{T}(n_1 + n_2 - 2)$ $S\left\{\left(x_{i}\right)_{i\in\left[1,n_{1}\right]},\left(y_{j}\right)_{j\in\left[1,n_{2}\right]}\right\}=\psi\left(\left(\overline{X}-\overline{Y}\right),\left(m_{1}-m_{2}\right)\right)$

 $R_{C} = \left\{ (x_{i})_{i \in [1, n_{1}]}, (y_{j})_{i \in [1, n_{2}]} \middle| (\overline{X} - \overline{Y}) > c_{2} \right\} \cup \left\{ (x_{i})_{i \in [1, n_{1}]}, (y_{j})_{j \in [1, n_{2}]} \middle| (\overline{X} - \overline{Y}) < c_{1} \right\}$ Région critique

 $\alpha = P\left(\left| \left[(\overline{X} - \overline{Y}) - (m_1 - m_2) \right] / \sqrt{S_1^2 / n_1 + S_2^2 / n_2} \right| > k \middle| m_1 - m_2 = \mu_0 \right)$ Risque de première espèce : α

 $c_2 = \mu_0 + t_{1-rac{lpha}{2}}(n_1 + n_2 - 2)\sqrt{S_1^2/n_1 + S_2^2/n_2} = et$ Valeurs critiques $\begin{cases} c_1 = \mu_0 - t_{1-\frac{\alpha}{2}}(n_1 + n_2 - 2)\sqrt{S_1^2/n_1 + S_2^2/n_2} \end{cases}$

On rejette H₀ si

 $\left((\overline{X} - \overline{Y})_{obs} > \mu_0 + t_{1 - \frac{\alpha}{2}}(n_1 + n_2 - 2) \sqrt{S_1^2/n_1 + S_2^2/n_2}\right)$ Règle de décision $\left| (\overline{X} - \overline{Y})_{obs} < \mu_0 - t_{1 - \frac{\alpha}{2}} (n_1 + n_2 - 2) \sqrt{S_1^2 / n_1 + S_2^2 / n_2} \right|$

Test bilatéral : $H_0: m_1-m_2=\mu_0$ contre $H_1: m_1-m_2\neq \mu_0$

 σ_1 et σ_2 sont inconnus, avec l'hypothèse : $\sigma_1 = \sigma_2$ Distribution de la statistique de décision:

 $\psi = [(\overline{X} - \overline{Y}) - (m_1 - m_2)]/S\sqrt{1/n_1 + 1/n_2} \sim \mathcal{T}(n_1 + n_2 - 2)$

 $R_{\mathcal{C}} = \left\{ (x_i)_{i \in [1, n_1]}, (y_j)_{i \in [n_2]} \middle| (\overline{X} - \overline{Y}) > c_2 \right\} \cup \left\{ (x_i)_{i \in [1, n_1]}, (y_j)_{i \in [n_2]} \middle| (\overline{X} - \overline{Y}) < c_1 \right\}$ Région critique

 $\alpha = P(|[(\overline{X} - \overline{Y}) - (m_1 - m_2)]/S\sqrt{1/n_1 + 1/n_2}| > k|m_1 - m_2 = \mu_0)$ Risque de première espèce : a

 $\int c_2 = \mu_0 + t_{1-\frac{\alpha}{2}}(n_1 + n_2 - 2)S\sqrt{1/n_1 + 1/n_2}$ $\begin{cases} et \\ c_1 = \mu_0 - t_{1-\frac{\alpha}{2}}(n_1 + n_2 - 2)S\sqrt{1/n_1 + 1/n_2} \end{cases}$ Valeurs critiques

 $\left((\overline{X} - \overline{Y})_{obs} > \mu_0 + t_{1 - \frac{\alpha}{2}}(n_1 + n_2 - 2)S\sqrt{1/n_1 + 1/n_2}\right)$ $\left\{ (\overline{X} - \overline{Y})_{obs} < \mu_0 - t_{1 - \frac{\alpha}{2}} (n_1 + n_2 - 2) S \sqrt{1/n_1 + 1/n_2} \right\}$

Règle de décision

https://web.facebook.com/OMEGACENTER2014

omega.center.cp@gmail.com

Test unilatéral à droite : $H_0: m_1 - m_2 = \mu_0$ contre $H_1: m_1 - m_2 > \mu_0$ σ_1 et σ_2 sont connus

Distribution de la statistique de décision:

 $\psi = [(\bar{X} - \bar{Y}) - (m_1 - m_2)] / \sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2} \sim \mathcal{N}(0, 1)$

Région critique

 $\mathbf{R}_{\mathbb{C}} = \left\{ \left(\mathbf{x}_{i}\right)_{i \in \llbracket \mathbf{1}, \mathbf{n}_{1}
rbracket}, \left(\mathbf{y}_{j}\right)_{j \in \llbracket \mathbf{1}, \mathbf{n}_{2}
rbracket} \middle| (\overline{\mathbf{X}} - \overline{\mathbf{Y}}) > c
ight\}$

Risque de première espèce : α

 $\alpha = P\left(\left[(\bar{X} - \bar{Y}) - (m_1 - m_2)\right] / \sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2} > k \middle| m_1 - m_2 = \mu_0\right)$

Valeurs critiques (N. B. $\Phi^{-1}(1-\alpha) = u_{1-\alpha}$)

 $c = \mu_0 + u_{1-\alpha_2} / \sigma_1^2 / n_1 + \sigma_2^2 / n_2$

Règle de décision

On rejette H_0 si $(\overline{X} - \overline{Y})_{obs} > \mu_0 + u_{1-\alpha_0} / \sigma_1^2 / n_1 + \sigma_2^2 / n_2$

Test unilatéral à droite : H_0 : $m_1-m_2=\mu_0$ contre H_1 : $m_1-m_2>\mu_0$ σ_1 et σ_2 sont inconnus, avec l'hypothèse : $\sigma_1 \neq \sigma_2$

Distribution de la statistique de décision: $S\left\{(x_i)_{i\in[1,n_1]},(y_j)_{j\in[1,n_2]}\right\} = \psi((\overline{X}-\overline{Y}),(m_1-m_2))$

 $\psi = \left[(\overline{X} - \overline{Y}) - (m_1 - m_2) \right] / \left| S_1^2 / n_1 + S_2^2 / n_2 \right| \sim \mathcal{T}(n_1 + n_2 - 2)$

Région critique

 $R_C = \left\{ (x_i)_{i \in [1,n_1]}, \left(y_j \right)_{j \in [1,n_2]} \middle| (\overline{X} - \overline{Y}) > c \right\}$

Risque de première espèce : α

 $\alpha = P\left(\left[(\overline{X} - \overline{Y}) - (m_1 - m_2)\right] / \sqrt{S_1^2 / n_1 + S_2^2 / n_2} > k \middle| m_1 - m_2 = \mu_0\right)$

Valeurs critiques

 $c = \mu_0 + t_{1-\alpha}(n_1 + n_2 - 2) / S_1^2 / n_1 + S_2^2 / n_2$

Règle de décision

On rejette H_0 si $(\overline{X} - \overline{Y})_{obs} > \mu_0 + t_{1-\alpha}(n_1 + n_2 - 2)\sqrt{S_1^2/n_1 + S_2^2/n_2}$

Test unilatéral à droite : $H_0: m_1 - m_2 = \mu_0$ contre $H_1: m_1 - m_2 > \mu_0$ σ_1 et σ_2 sont inconnus, avec l'hypothèse : $\sigma_1 = \sigma_2$

Distribution de la statistique de décision:

 $\psi = [(\overline{X} - \overline{Y}) - (m_1 - m_2)]/S\sqrt{1/n_1 + 1/n_2} \sim \mathcal{T}(n_1 + n_2 - 2)$

Région critique

 $R_C = \left\{ (x_i)_{i \in [1,n_1]}, (y_j)_{j \in [1,n_2]} \middle| (\overline{X} - \overline{Y}) > c \right\}$

Risque de première espèce : a

 $\alpha = P([(\overline{X} - \overline{Y}) - (m_1 - m_2)]/S\sqrt{1/n_1 + 1/n_2} > k|m_1 - m_2 = \mu_0)$

Valeurs critiques

 $c = \mu_0 + t_{1-\alpha}(n_1 + n_2 - 2)S\sqrt{1/n_1 + 1/n_2}$

Règle de décision

On rejette H_0 si $(\overline{X}-\overline{Y})_{obs}>\mu_0+t_{1-\alpha}(n_1+n_2-2)S\sqrt{1/n_1+1/n_2}$

Test unilatéral à gauche : $H_0: m_1 - m_2 = \mu_0$ contre $H_1: m_1 - m_2 < \mu_0$ σ_1 et σ_2 sont connus

Distribution de la statistique de décision:

 $\psi = [(\bar{X} - \bar{Y}) - (m_1 - m_2)] / \sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2} \sim \mathcal{N}(0, 1)$

Région critique

 $R_C = \left\{ (x_i)_{i \in [1,n_1]}, (y_j)_{j \in [1,n_2]} \middle| (\overline{X} - \overline{Y}) < c \right\}$

Risque de première espèce : α

 $lpha = P\left(\left[\left(\overline{X} - \overline{Y}\right) - (m_1 - m_2)\right] / \sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2} < k \middle| m_1 - m_2 = \mu_0\right)$

Valeurs critiques (N.B. $\Phi^{-1}(1-\alpha) = u_{1-\alpha}$)

 $c = \mu_0 - u_{1-\alpha_1} \sqrt{\sigma_1^2/n_1 + \sigma_2^2/n_2}$

Règle de décision

On rejette H_0 si $(\overline{X} - \overline{Y})_{obs} < \mu_0 - u_{1-\alpha_1} / \sigma_1^2 / n_1 + \sigma_2^2 / n_2$

fhttps://web.facebook.com/OMEGACENTER2014

8

Test unilatéral à gauche: H_0 : $m_1-m_2=\mu_0$ contre H_1 : $m_1-m_2<\mu_0$; σ_1 et σ_2 sont inconnus avec l'hypothèse: $\sigma_1\neq\sigma_2$

Distribution de la statistique de décision: $S\left\{(x_i)_{i\in[1,n_1]},(y_j)_{j\in[1,n_2]}\right\} = \psi((\overline{X}-\overline{Y}),(m_1-m_2))$

$$\psi = \left[(\overline{X} - \overline{Y}) - (m_1 - m_2) \right] / \sqrt{S_1^2 / n_1 + S_2^2 / n_2} \sim \mathcal{T}(n_1 + n_2 - 2)$$

Région critique

$$R_C = \left\{ (x_i)_{i \in [1,n_1]}, \left(y_j \right)_{j \in [1,n_2]} \middle| (\overline{X} - \overline{Y}) < c \right\}$$

Risque de première espèce : α

$$\alpha = P\left(\left[(\overline{X} - \overline{Y}) - (m_1 - m_2) \right] / \sqrt{S_1^2 / n_1 + S_2^2 / n_2} < k \middle| m_1 - m_2 = \mu_0 \right)$$

Valeurs critiques

$$c = \mu_0 - t_{1-\alpha}(n_1 + n_2 - 2) \sqrt{S_1^2/n_1 + S_2^2/n_2}$$

Règle de décision

On rejette H_0 si $(\overline{X}-\overline{Y})_{obs}<\mu_0-t_{_{1-lpha}}(n_1+n_2-2)\sqrt{S_1^2/n_1+S_2^2/n_2}$

9

Distribution de la statistique de décision: $S\{(x_i)_{i\in[1,n_1]},(y_j)_{i\in[1,n_1]}\} = \psi((\overline{X}-\overline{Y}),(m_1-m_2))$

$$\psi = [(\overline{X} - \overline{Y}) - (m_1 - m_2)]/S\sqrt{1/n_1 + 1/n_2} \sim \mathcal{T}(n_1 + n_2 - 2)$$

Région critique

$$R_{\mathcal{C}} = \left\{ (x_i)_{i \in [1, n_1]}, (y_j)_{j \in [1, n_2]} \middle| (\overline{X} - \overline{Y}) < c \right\}$$

Risque de première espèce : α

$$\alpha = P([(\overline{X} - \overline{Y}) - (m_1 - m_2)]/S\sqrt{1/n_1 + 1/n_2} < k | m_1 - m_2 = \mu_0)$$

Valeurs critiques

$$c = \mu_0 - t_{1-\alpha}(n_1 + n_2 - 2)S\sqrt{1/n_1 + 1/n_2}$$

Règle de décision

On rejette
$$H_0$$
 si $(\overline{X}-\overline{Y})_{obs}<\mu_0-t_{1-lpha}(n_1+n_2-2)S\sqrt{1/n_1+1/n_2}$

c • Test sur une proportion p: Soit $(X_i)_{1 \le i \le n}$ un échantillon i. i. d de la loi B(1,p).

 $\widehat{p} = \overline{X} \text{ est un ESBC efficace de } p \Rightarrow T.L.C: U = \frac{(\widehat{p} - p)}{\sqrt{p(1 - p)/n}} \sim \mathcal{N}(0, 1)$

Test bilatéral : $H_0: p = p_0$ contre $H_1: p \neq p_0$

Distribution de la statistique de décision: $S(x_1, ..., x_n) = \psi(\hat{p}, p)$

$$\psi(\widehat{p},p)=(\widehat{p}-p)/\sqrt{p(1-p)/n} \rightsquigarrow \mathcal{N}(0,1)$$

Région critique

$$R_{C} = \{(x_{1}, ..., x_{n}) | \widehat{p} > c_{2}\} \cup \{(x_{1}, ..., x_{n}) | \widehat{p} < c_{1}\}$$

Risque de première espèce : α

$$\alpha = P(|(\widehat{p} - p)/\sqrt{p(1 - p)/n}| > k|m = m_0)$$

Valeurs critiques

$$c_2 = p_0 + \Phi^{-1} \left(1 - \frac{\alpha}{2}\right) \sqrt{p_0 (1 - p_0)/n}$$
 et $c_1 = p_0 - \Phi^{-1} \left(1 - \frac{\alpha}{2}\right) \sqrt{p_0 (1 - p_0)/n}$

On rejette H_0 si:

Règle de décision

$$\widehat{p}_{obs} > p_0 + \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \sqrt{p_0 (1 - p_0)/n} \ ou \ \widehat{p}_{obs} < p_0 - \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \sqrt{p_0 (1 - p_0)/n}$$

Risque de deuxième espèce : β H_0 : $p = p_0$ contre H_1 : $p = p_1 (p_1 \neq p_0)$

$$\beta = P(\left|(\widehat{p} - p)/\sqrt{p(1 - p)/n}\right| < k | p = p_1) = P(c_1 < \widehat{p} < c_2 | p = p_1)$$

 $\frac{Puissance\ du\ test: \pi = 1 - \beta}{Puissance\ du\ test}$

$$\pi = 1 - \beta = P(|(\hat{p} - p)/\sqrt{p(1 - p)/n}| > k|p = p_1) = P(\hat{p} > c_2|p = p_1) + P(\hat{p} < c_1|p = p_1)$$

Test unilatéral à droite : H_0 : $p = p_0$ contre H_1 : $p > p_0$

Distribution de la statistique de décision: $S(x_1, ..., x_n) = \psi(\hat{p}, p)$

$$\psi(\widehat{p}\,,p)=(\widehat{p}-p)/\sqrt{p(1-p)/n} \rightsquigarrow \mathcal{N}(0,1)$$

Région critique Risque de première espèce : α

$$R_{\mathcal{C}} = \{(x_1, \dots, x_n) | \widehat{p} > c\}$$

Valeurs critiques

 $\alpha = P \big((\widehat{p} - p) / \sqrt{p(1-p)/n} > k \big| p = p_0 \big)$

Règle de décision

 $c=p_0+\Phi^{-1}(1-lpha)\sqrt{p_0(1-p_0)/n}$ On rejette H_0 si $\widehat{p}_{obs}>p_0+\Phi^{-1}(1-lpha)\sqrt{p_0(1-p_0)/n}$

Risque de deuxième espèce : β H_0 : $p = p_0$ contre H_1 : $p = p_1 (p_1 > p_0)$

$$\beta = P \big((\widehat{p} - p) / \sqrt{p(1-p)/n} < k \big| p = p_1 \big) = P (\widehat{p} < c | p = p_1)$$

Puissance du test : $\pi = 1 - \beta$ $H_0: p = p_0 contre H_1: p = p_1$

 $\pi = 1 - \beta = P((\hat{p} - p) / \sqrt{p(1 - p)/n} > k | p = p_1) = P(\hat{p} > c | p = p_1)$

https://web.facebook.com/OMEGACENTER2014

Test unitates at a gracine \cdot $H_0 \cdot p - p_0$ contre $H_1 \cdot p < p_0$		
Distribution de la statistique de décision: $S(x_1,, x_n) = \psi(\hat{p}, p)$	$\psi(\widehat{p},p)=(\widehat{p}-p)/\sqrt{p(1-p)/n} \rightsquigarrow \mathcal{N}(0,1)$	
Région critique	$R_C = \{(x_1, \dots, x_n) \widehat{p} < c\}$	
Risque de première espèce : α	$\alpha = P((\widehat{p} - p)/\sqrt{p(1 - p)/n} < k p = p_0)$	
Valeurs critiques	$c = m_0 - \Phi^{-1}(1 - \alpha) \left(\sigma / \sqrt{n} \right)$	
Règle de décision	On rejette H_0 si $\widehat{p}_{obs} < p_0 - \Phi^{-1}(1-lpha)\sqrt{p_0(1-p_0)/n}$	
Risque de deuxième espèce : β	$\mathbf{p}(\hat{\mathbf{p}}_{\mathbf{p}}, \mathbf{p}_{\mathbf{p}}) = \mathbf{p}(\hat{\mathbf{p}}_{\mathbf{p}}, \mathbf{p}_{\mathbf{p}})$	
H_0 : $p = p_0$ contre H_1 : $p = p_1 (p_1 < p_0)$	$\beta = P((\widehat{p} - p)/\sqrt{p(1-p)/n} > k p = p_1) = P(\widehat{p} > c p = p_1)$	
Puissance du test : $\pi=1-oldsymbol{eta}$	$\pi = 1 - \beta = P((\hat{p} - p) / \sqrt{p(1 - p) / n} < k p = p_1) = P(\hat{p} < c p = p_1)$	

 $d \cdot Test \ sur \ la \ diff$ érence de deux proportions $p_1 - p_2$: Supposons $(X_i)_{1 \le i \le n_1}$ et $(Y_j)_{1 \le j \le n_2}$

 $n_1 + n_2$ variables indépendantes et équidistribuées issus respectivement des lois de Bernoulli

$$B(1,p_1)$$
 et $B(1,p_2)$. $\hat{p}_1 = \overline{X}$ et $\hat{p}_2 = \overline{Y}$ des ESBC efficaces,

T.L. C (pour
$$n_1, n_2 > 30$$
):
$$\frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{p_1(1 - p_1)/n_1 + p_2(1 - p_2)/n_2}} \sim \mathcal{N}(0, 1)$$

Test bilatéral : $H_0: p_1 - p_2 = p_0$ contre $H_1: m_1 - m_2 \neq p_0$

stribution de la stat de déc	Ċ
$S\left\{\left(x_{i}\right)_{i\in\left[1,n_{1}\right]},\left(y_{j}\right)_{j\in\left[1,n_{2}\right]}\right\}$	
$=\psi((\widehat{p}_1-\widehat{p}_2),(p_1-p_2))$	

Di.

$$\psi = \frac{[(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)]}{\sqrt{p_1(1 - p_1)/n_1 + p_2(1 - p_2)/n_2}} \sim \mathcal{N}(0, 1)$$

Région critique

$$R_{C} = \left\{ (x_{i})_{i \in [1,n_{1}]}, (y_{j})_{j \in [1,n_{2}]} \middle| (\widehat{p}_{1} - \widehat{p}_{2}) > c_{2} \right\} \cup \left\{ (x_{i})_{i \in [1,n_{1}]}, (y_{j})_{j \in [1,n_{2}]} \middle| (\widehat{p}_{1} - \widehat{p}_{2}) < c_{1} \right\}$$

Risque de première espèce : α

$$\alpha = P\left(\left|\frac{(\widehat{p}_1 - \widehat{p}_2) - (p_1 - p_2)}{\sqrt{p_1(1 - p_1)/n_1 + p_2(1 - p_2)/n_2}}\right| > k \middle| p_1 - p_2 = p_0\right)$$

Valeurs critiques $[N.B. \max_{p_i \in [0,1]} [p_j(1-p_j)] = \frac{1}{4}, pour j \in \{1,2\}]$

$$c_2 = p_0 + \frac{u_{1-\frac{\alpha}{2}}}{2} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \ et \ c_1 = p_0 - \frac{u_{1-\frac{\alpha}{2}}}{2} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Règle de décision

$$On\ rejette H_0\ si(\widehat{p}_1-\widehat{p}_2)_{obs} > p_0 + \frac{u_{1-\frac{\alpha}{2}}}{2}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\ ou\ (\widehat{p}_1-\widehat{p}_2)_{obs} < p_0 - \frac{u_{1-\frac{\alpha}{2}}}{2}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Test unilateral à droite : $H_0: p_1 - p_2 = p_0$ contre $H_1: p_1 - p_2 > p_0$

Distribution de la stat de déci	sion:
$S\left\{\left(x_{i}\right)_{i\in\left[1,n_{1}\right]},\left(y_{j}\right)_{j\in\left[1,n_{2}\right]}\right\}$	
$=\psi((\widehat{p}_1-\widehat{p}_2),(p_1-p_2))$	

$$\psi = \frac{[(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)]}{\sqrt{p_1(1 - p_1)/n_1 + p_2(1 - p_2)/n_2}} \sim \mathcal{N}(0, 1)$$

Région critique

$$\mathbf{R}_{\mathsf{C}} = \left\{ (\mathbf{x}_{\mathsf{i}})_{\mathsf{i} \in [\mathsf{1}, \mathsf{n}_{\mathsf{1}}]}, \left(\mathbf{y}_{\mathsf{j}} \right)_{\mathsf{j} \in [\mathsf{1}, \mathsf{n}_{\mathsf{2}}]} \middle| (\widehat{p}_{\mathsf{1}} - \widehat{p}_{\mathsf{2}}) > c \right\}$$

Risque de première espèce : a

$$\alpha = P\left(\frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{p_1(1 - p_1)/n_1 + p_2(1 - p_2)/n_2}} > k \middle| p_1 - p_2 = p_0\right)$$

Valeurs critiques

$$c = p_0 + \frac{u_{1-\alpha}}{2} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

 $\left(N.B. \max_{p_j \in [0,1]} [p_j(1-p_j)] = \frac{1}{4}, pour j \in \{1,2\}\right)$

$$c=\boldsymbol{p}_0+\frac{n_1-a}{2}\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$$

Règle de décision

On rejette
$$H_0$$
 si $(\widehat{p}_1-\widehat{p}_2)_{obs}>p_0+rac{u_{1-lpha}}{2}\sqrt{rac{1}{n_1}+rac{1}{n_2}}$

<u> ✓ omega.center.cp@gmail.</u>com

https://web.facebook.com/OMEGACENTER2014

3

Test unilatéral à gauche : $H_0: p_1 - p_2 = p_0$ contre $H_1: p_1 - p_2 < p_0$

Distribution de la statistique de décision :

 $\psi = \frac{(\widehat{p}_1 - \widehat{p}_2) - (p_1 - p_2)}{\sqrt{p_1(1 - p_1)/n_1 + p_2(1 - p_2)/n_2}} \sim \mathcal{N}(0, 1)$

 $\frac{S\left\{\left(x_{i}\right)_{i\in\left[1,n_{1}\right]},\left(y_{j}\right)_{j\in\left[1,n_{2}\right]}\right\}=\psi\left(\left(\widehat{p}_{1}-\widehat{p}_{2}\right),\left(p_{1}-p_{2}\right)\right)}{R\acute{e}gion\ critique}$

 $R_C = \left\{ (x_i)_{i \in [1,n_1]}, \left(y_j\right)_{j \in [1,n_2]} \middle| (\widehat{p}_1 - \widehat{p}_2) < c
ight\}$

Risque de première espèce : α

 $\alpha = P\left(\frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{p_1(1 - p_1)/n_1 + p_2(1 - p_2)/n_2}} < k \middle| p_1 - p_2 = p_0\right)$

ique de premiere espece .

 $c = p_0 - \frac{u_{1-\alpha}}{2} \sqrt{1/n_1 + 1/n_2}$

 $egin{aligned} Valeurs \ critiques \ &\left(ext{N.B.} \ \max_{p_j \in [0,1]} \left[p_j(1-p_j)
ight] = rac{1}{4} \ , pour \ j \in \{1,2\}
ight) \end{aligned}$

Règle de décision

On rejette H_0 si $(\widehat{p}_1 - \widehat{p}_2)_{obs} < p_0 - \frac{u_{1-\alpha}}{2} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

e • Test sur la variance σ^2 : Soit $(X_1, ..., X_n)$ un échantillon i. i. d de la loi normale

 $\mathcal{N}(m,\sigma^2)$ (ou d'une population non-normale et de grande taille , n>30)

Test bilatéral : $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 \neq \sigma_0^2$, cas où m connue Distribution de la statistique de $\psi(\widehat{\sigma}^2, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^{N} (X_i - m)^2 \rightsquigarrow \chi^2(n)$ $d\acute{e}cision: S(x_1, ..., x_n) = \psi(\hat{\sigma}^2, \sigma^2)$ $R_{\mathcal{C}} = \{(x_1, \dots, x_n) | \sum_{i=1}^n (X_i - m)^2 > c_2\} \cup \{(x_1, \dots, x_n) | \sum_{i=1}^n (X_i - m)^2 < c_1\}$ Région critique $\alpha = P\left(\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - m)^2 > k_2 \middle| \sigma^2 = \sigma_0^2\right) + P\left(\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - m)^2 < k_1 \middle| \sigma^2 = \sigma_0^2\right)$ Risque de première espèce : a $c_2 = \sigma_0^2 \chi_{1-\frac{\alpha}{2}}^2(n)$ et $c_1 = \sigma_0^2 \chi_{\alpha}^2(n)$ Valeurs critiques On rejette H_0 si $\left|\sum_{i=1}^n (X_i - m)^2\right| > \sigma_0^2 \chi_{1-\frac{\alpha}{2}}^2(n)$ ou $\left|\sum_{i=1}^n (X_i - m)^2\right| < \sigma_0^2 \chi_{\frac{\alpha}{2}}^2(n)$ Règle de décision Risque de deuxième espèce: β $\beta = P\left(k_1 < \frac{1}{2}\sum_{i=1}^n (X_i - m)^2 < k_2 \middle| \sigma^2 = \sigma_1^2\right) = P\left(c_1 < \sum_{i=1}^n (X_i - m)^2 < c_2 \middle| \sigma^2 = \sigma_1^2\right)$ H_0 : $\sigma^2 = \sigma_0^2$ contre H_1 : $\sigma^2 = \sigma_1^2$ $\pi = 1 - \beta = P\left(\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - m)^2 > k_2 \middle| \sigma^2 = \sigma_1^2\right) + P\left(\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - m)^2 < k_1 \middle| \sigma^2 = \sigma_1^2\right)$ Puissance du test: $\pi = 1 - \beta$ Test bilatéral : $H_0:\sigma^2=\sigma_0^2$ contre $H_1:\sigma^2\neq\sigma_0^2$, cas où m inconnue Distribution de la statistique de $\psi(S^2, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^{N} (X_i - \overline{X})^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ $d\acute{e}cision$: $S(x_1, ..., x_n) = \psi(\hat{\sigma}^2, \sigma^2) = \psi(S^2, \sigma^2)$ $R_{C} = \{(x_{1}, ..., x_{n}) \left| \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} > c_{2} \} \cup \{(x_{1}, ..., x_{n}) \left| \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} < c_{1} \right\} \right|$ Région critique $\alpha = P\left(\frac{1}{\sigma^2}\sum_{i=1}^n(X_i-\overline{X})^2 > k_2\Big|\sigma^2 = \sigma_0^2\right) + P\left(\frac{1}{\sigma^2}\sum_{i=1}^n(X_i-\overline{X})^2 < k_1\Big|\sigma^2 = \sigma_0^2\right)$ Risque de première espèce : a $c_2 = \sigma_0^2 \chi_{1-\frac{\alpha}{2}}^2 (n-1)$ et $c_1 = \sigma_0^2 \chi_{\frac{\alpha}{2}}^2 (n-1)$ Valeurs critiques $\left| \sum_{i=1}^{n} (X_i - \overline{X})^2 \right| > \sigma_0^2 \chi_{1-\frac{\alpha}{2}}^2 (n-1) \ ou \ \left| \sum_{i=1}^{n} (X_i - \overline{X})^2 \right| < \sigma_0^2 \chi_{\frac{\alpha}{2}}^2 (n-1)$ Règle de décision $\beta = P\left(k_1 < \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - \overline{X})^2 < k_2 \middle| \sigma^2 = \sigma_1^2\right)$ Risque de deuxième espèce: ß H_0 : $\sigma^2 = \sigma_0^2$ contre H_1 : $\sigma^2 = \sigma_1^2 (\sigma_1^2 \neq \sigma_0^2)$ $= P(c_1 < \sum_{i=1}^n (X_i - \overline{X})^2 < c_2 | \sigma^2 = \sigma_1^2)$ $\pi = 1 - \beta = P\left(\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - \overline{X})^2 > k_2 \middle| \sigma^2 = \sigma_1^2\right)$ Puissance du test $+P\left(\frac{1}{\sigma^{2}}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}< k_{1}\middle|\sigma^{2}=\sigma_{1}^{2}\right)$

Test unilatéral à droite : $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 > \sigma_0^2$, cas où m connue

Distribution de la stat de	
$d\acute{e}cision: S(x_1,, x_n) = \psi(\hat{\sigma}^2, \sigma^2)$)

$$\psi(\widehat{\sigma}^2, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - m)^2 \sim \chi^2(n)$$

$$R_C = \{(x_1, ..., x_n) | \sum_{i=1}^n (X_i - m)^2 > c\}$$

$$\alpha = P\left(\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - m)^2 > k \middle| \sigma^2 = \sigma_0^2\right)$$

Valeurs critiques

$$c = \sigma_0^2 \chi_{1-\alpha}^2(n)$$

Règle de décision

On rejette
$$H_0$$
 si $\left[\sum_{i=1}^n (X_i - m)^2\right]_{obs} > \sigma_0^2 \chi_{1-\alpha}^2(n)$

Risque de deuxième espèce :
$$\beta$$

 H_0 : $\sigma^2 = \sigma_0^2$ contre H_1 : $\sigma^2 = \sigma_1^2$

$$\beta = P\left(\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - m)^2 < k \middle| \sigma^2 = \sigma_1^2\right)$$

Puissance du test :
$$\pi = 1 - \beta$$

$$\pi = 1 - \beta = P\left(\frac{\overline{X} - m}{\sigma/\sqrt{n}} > k \middle| \sigma^2 = \sigma_1^2\right)$$

4

Test unilatéral à droite : $H_0:\sigma^2=\sigma_0^2$ contre $H_1:\sigma^2>\sigma_0^2$, cas où m inconnue

Distribution de la statistique de décision:
$$S(x_1, ..., x_n) = \psi(\hat{\sigma}^2, \sigma^2) = \psi(S^2, \sigma^2)$$

$$\psi(S^2, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 = (n-1)S^2/\sigma^2 \rightsquigarrow \chi^2(n-1)$$

 $\frac{sion: s(x_1, ..., x_n) = \psi(\sigma_1, \sigma_2) = \psi(s_1, \sigma_2)}{Région\ critique}$

$$R_{C} = \{(x_{1}, \dots, x_{n}) | \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} > c\}$$

Risque de première espèce : α

$$\alpha = P\left(\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2} > k \middle| \sigma^2 = \sigma_0^2\right)$$

Valeurs critiques

$$c = \sigma_0^2 \chi_{1-\alpha}^2(n-1)$$

Règle de décision

On rejette
$$H_0$$
 si $\left[\sum_{i=1}^n (X_i - \overline{X})^2\right]_{obs} > \sigma_0^2 \chi_{1-\alpha}^2 (n-1)$

Risque de deuxième espèce :
$$\beta$$

 $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 = \sigma_1^2$ $(\sigma_1^2 > \sigma_0^2)$

$$\beta = P\left(\frac{\sum_{i=1}^{n}(X_i - \overline{X})^2}{\sigma^2} < k \middle| \sigma^2 = \sigma_1^2\right)$$

Puissance du test : $\pi = 1 - \beta$

$$\pi = 1 - \beta = P\left(\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{\sigma^2} > k \middle| \sigma^2 = \sigma_1^2\right)$$

Test unilatéral à gauche $: H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 < \sigma_0^2$ cas où m connu

Distribution de la statistique de
$d\acute{e}cision: S(x_1,, x_n) = \psi(\hat{\sigma}^2, \sigma^2)$

$$\psi(\widehat{\sigma}^2, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - m)^2 \rightsquigarrow \chi^2(n)$$

ision: $S(x_1, ..., x_n) = \psi(\hat{\sigma}^2, \sigma^2)$ Région critique

$$R_C = \{(x_1, \dots, x_n) | \sum_{i=1}^n (X_i - m)^2 < c \}$$

Risque de première espèce : α

$$\alpha = P\left(\frac{\sum_{i=1}^{n}(X_i - m)^2}{\sigma^2} < k \middle| \sigma^2 = \sigma_0^2\right)$$

Valeurs critiques

$$c = \sigma_0^2 \chi_\alpha^2(n)$$

Règle de décision

On rejette
$$H_0$$
 si $\left[\sum_{i=1}^n (X_i - m)^2\right]_{obs} < \sigma_0^2 \chi_\alpha^2(n)$

Risque de deuxième espèce : $oldsymbol{eta}$ $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 = \sigma_1^2$ $(\sigma_1^2 < \sigma_0^2)$

$$\beta = P\left(\frac{\sum_{i=1}^{n} (X_i - m)^2}{\sigma^2} > k \middle| \sigma^2 = \sigma_1^2\right)$$

Puissance du test : $\pi = 1 - \beta$

$$\pi = 1 - \beta = P\left(\frac{\sum_{i=1}^{n}(X_i - m)^2}{\sigma^2} < k \middle| \sigma^2 = \sigma_1^2\right)$$

https://web.facebook.com/OMEGACENTER2014

Test unilatéral à gauche : $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 < \sigma_0^2$, cas où m inconnu

Distribution de la statistique de décision:

$$S(x_1,...,x_n) = \psi(\widehat{\sigma}^2, \sigma^2) = \psi(S^2, \sigma^2)$$

$$\psi(S^2, \sigma^2) = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

Région critique

$$R_C = \{(x_1, \dots, x_n) | \sum_{i=1}^n (X_i - \overline{X})^2 < c\}$$

Risque de première espèce : α

$$\alpha = P\left(\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 < k \middle| \sigma^2 = \sigma_0^2\right)$$

Valeurs critiques

$$c = \sigma_0^2 \chi_\alpha^2 (n-1)$$
On rejette H_0 si

Règle de décision

$$\left[\sum_{i=1}^{n} (X_i - \overline{X})^2\right]_{\text{obs}} < \sigma_0^2 \chi_a^2 (n-1)$$

Risque de deuxième espèce : $oldsymbol{eta}$ $H_0: \sigma^2 = \sigma_0^2 \ contre \ H_1: \sigma^2 = \sigma_1^2 \ (\sigma_1^2 < \sigma_0^2)$

$$\beta = P\left(\frac{1}{\sigma^2}\sum_{i=1}^n(X_i - \overline{X})^2 > k \middle| \sigma^2 = \sigma_1^2\right)$$

Puissance du test : $\pi = 1 - \beta$

$$\pi = 1 - \beta = P\left(\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - \bar{X})^2 < k \middle| \sigma^2 = \sigma_1^2\right)$$

 $f \cdot Test sur le rapport de variance <math>\sigma_1^2/\sigma_2^2 : Supposons(X_i)_{1 \le i \le n_1} et(Y_j)_{1 < i < n_2}, n_1 + n_2 v. a.$

 $indépendantes\ et\ équidistribuées\ ,\ avec,\ \forall i,\ E(X_i)=m_1\ et\ V(X_i)=\sigma_1^2\ et\ \forall j,\ E(Y_j)=m_2\ et\ V(Y_j)=\sigma_2^2$

Nous signalons que comme dans le cas d'un échantillon même lorsque les observations ne sont pas normales, il suffit d'avoir n_1 et $n_2 > 30$ pour conserver les mêmes procédures.

Test bilatéral : $H_0:\sigma_1^2/\sigma_2^2=1$ contre $H_1:\sigma_1^2/\sigma_2^2\neq 1$, m_1 et m_2 supposées inconnues

istribution de	la stat de	décision:
$(\sigma_1^2 \ \widehat{\sigma}_1^2)$. (-2 :-2	2 . 2

$$\psi(S_1^2/S_2^2, \sigma_1^2/\sigma_2^2) = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \rightsquigarrow \mathcal{F}(n_1 - 1, n_2 - 1)$$

Région critique

 $\sqrt{\overline{\sigma_2^2}}$

$$R_{\mathcal{C}} = \left\{ (x_i)_{i \in [1, n_1]}, (y_j)_{j \in [1, n_2]} \, \middle| \, S_1^2 / S_2^2 > c_2 \right\} \cup \left\{ (x_i)_{i \in [1, n_1]}, (y_j)_{j \in [1, n_2]} \middle| \, S_1^2 / S_2^2 < c_1 \right\}$$

Risque de première espèce : α

$$\alpha = P\left(\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} > k_2 \middle| \sigma_1^2/\sigma_2^2 = 1\right) + P\left(\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} < k_1 \middle| \sigma_1^2/\sigma_2^2 = 1\right)$$

Valeurs critiques (N. B. $[\sigma_1^2/\sigma_2^2]_{sous\ H_0} = 1$)

$$c_2 = f_{1-\frac{\alpha}{2}}(n_1-1,n_2-1) \ \ et \ \ c_1 = f_{\frac{\alpha}{2}}(n_1-1,n_2-1)$$
 Rejet de H_0 : $[S_1^2/S_2^2]_{obs} > f_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)$ ou $[S_1^2/S_2^2]_{obs} < f_{\frac{\alpha}{2}}(n_1-1,n_2-1)$

Règle de décision Risque de deuxième espèce : ß

$$\beta = P\left(k_1 < \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} < k_2 \middle| \sigma_1^2/\sigma_2^2 = \epsilon\right)$$
, où $(\epsilon \neq 1)$

 H_0 : $\sigma_1^2/\sigma_2^2 = 1$ contre H_1 : $\sigma_1^2/\sigma_2^2 = \epsilon$ Puissance du test : $\pi = 1 - \beta$

$$\pi = 1 - \beta = P\left(\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} > k_2 \middle| \sigma_1^2/\sigma_2^2 = \epsilon\right) + P\left(\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} < k_1 \middle| \sigma_1^2/\sigma_2^2 = \epsilon\right)$$

Distribution de la stat de décision : $\psi\!\left(\sigma_1^2/\sigma_2^2 \right.$, $\widehat{\sigma}_1^2/\widehat{\sigma}_2^2\right) = \psi\!\left(S_1^2/S_2^2 \right.$, $\sigma_1^2/\sigma_2^2\right)$

Test unilatéral à droite :
$$H_0: \sigma_1^2/\sigma_2^2 = 1$$
 contre $H_1: \sigma_1^2/\sigma_2^2 > 1$. m_1 et m_2 supposées inconnues bution de la stat de décision :
$$\psi(S_1^2/S_2^2: \sigma_1^2/\sigma_2^2) = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \rightsquigarrow \mathcal{F}(n_1 - 1, n_2 - 1)$$

Région critique

$$R_C = \left\{ (x_i)_{i \in [1, n_1]}, (y_j)_{j \in [1, n_2]} \middle| S_1^2 / S_2^2 > c \right\}$$

Risque de première espèce : α

$$\alpha = P\left(\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} > k \middle| \sigma_1^2/\sigma_2^2 = 1\right)$$

Valeurs critiques Règle de décision

$$c = f_{1-\alpha}(n_1 - 1, n_2 - 1); (N.B. [\sigma_1^2/\sigma_2^2]_{sous H_0} = 1)$$

$$On \ rejette \ H_0 \ si [S_1^2/S_2^2]_{obs} > f_{1-\alpha}(n_1 - 1, n_2 - 1)$$

Risque de deuxième espèce : ß

$$eta = P\left(rac{S_1^2/S_2^2}{\sigma_\epsilon^2/\sigma_0^2} < k \middle| \sigma_1^2/\sigma_2^2 = \epsilon
ight)$$
 , où $\epsilon > 1$

 $H_0: H_0: \sigma_1^2/\sigma_2^2 = 1 \ contre \ H_1: \sigma_1^2/\sigma_2^2 = \epsilon$

$$\pi = 1 - \beta = P\left(\frac{S_1^2/S_2^2}{\sigma^2/\sigma^2} > k \middle| \sigma_1^2/\sigma_2^2 = \epsilon\right)$$

https://web.facebook.com/OMEGACENTER2014

11.// 12 2/2 4

Test unilatéral à gauche : $H_0: \sigma_1^2/\sigma_2^2 = 1$ contre $H_1: \sigma_1^2/\sigma_2^2 < 1$. m_1 et m_2 supposées inconnues

Distribution de la stat de décision : $\psi(\sigma_1^2/\sigma_2^2, \hat{\sigma}_1^2/\hat{\sigma}_2^2) = \psi(S_1^2/S_2^2, \sigma_1^2/\sigma_2^2)$

 $\psi\left(\frac{S_1^2}{S_2^2}, \frac{\sigma_1^2}{\sigma_2^2}\right) = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \rightsquigarrow \mathcal{F}(n_1 - 1, n_2 - 1)$

Région critique

 $R_{\mathcal{C}} = \left\{ (x_i)_{i \in [1,n_1]}, (y_j)_{j \in [1,n_2]} \middle| S_1^2 / S_2^2 < c \right\}$

Risque de première espèce : α

 $lpha = P\left(rac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} < k \middle| \sigma_1^2/\sigma_2^2 = 1
ight)$

Valeurs critiques $(N.B. [\sigma_1^2/\sigma_2^2]_{sous H_0} = 1)$

 $c = f_{\alpha}(n_1 - 1, n_2 - 1)$

Règle de décision

On rejette H_0 si $\left[S_1^2/S_2^2\right]_{obs} < f_{lpha}(n_1-1,n_2-1)$

Risque de deuxième espèce : eta $H_0: H_0: \sigma_1^2/\sigma_2^2 = 1 \ contre \ H_1: \sigma_1^2/\sigma_2^2 = \epsilon$ $eta=Pigg(rac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\!>kigg|\,\sigma_1^2/\sigma_2^2=\epsilonigg)$; où $\epsilon<1$

Puissance du test : $\pi = 1 - \beta$

$$\pi = 1 - \beta = P\left(\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} < k \middle| \sigma_1^2/\sigma_2^2 = \epsilon\right)$$

C-9 • Test d'indépendance (du Khi-deux) :

Soit X et Y deux caractères (qualitatifs ou quantitatifs) à respectivement r et s modalités.

Soit n_{ij} le nombre d'individus d'une population de taille $n = \sum_{i=1}^r \sum_{j=1}^s n_{ij}$ qui possèdent

simultanément la modalité i, $(1 \le i \le r)$ du caractère X et la modalité j, $(1 \le j \le s)$ du caractère Y et p_{ij} la probabilité correspondante.

Au vu de ces observations on désire tester l'indépendancede ces deux caractères i.e. résoudre le , problème de test :

$$H_0: p_{ij} = p_{i\cdot} \times p_{\cdot j} \left(o \mathring{u} \ p_{i\cdot} = \sum_{j=1}^{s} p_{ij} \ et \ p_{\cdot j} = \sum_{i=1}^{r} p_{ij} \right)$$
, contre $H_1: p_{ij} \neq p_{i\cdot} \times p_{\cdot j}$

On utilise pour cela la statistique :

$$D = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{n \left(n_{ij} - \frac{n_{i \cdot} \times n_{\cdot j}}{n} \right)^{2}}{n_{i \cdot} \times n_{\cdot j}} = n \left[\left(\sum_{i=1}^{r} \sum_{j=1}^{s} \left(\frac{n_{ij}^{2}}{n_{i \cdot} \times n_{\cdot j}} \right) \right) - 1 \right] \sim \chi^{2}[(r-1)(s-1)]$$

La région critique du test de seuil lpha est $D \geq k$, telle que $lpha = Pig(D \geq k \big| p_{ij} = p_{i\cdot} imes p_{\cdot j}ig)$

Règle de décision : On rejette H_0 (l'hypothèse d'indépendance)

$$si \, D_{obs} \geq \chi^2_{1-\alpha}[(r-1)(s-1)]$$

C-10 • Test d'adéquation :

Soit $(X_1, ..., X_n)$ un n-échantillon d'une v.a. X et F une f. r. donnée.

https://web.facebook.com/OMEGACENTER2014

On désire tester : $H_0: X$ à pour f.r. F contre $H_1: X$ n'a pas pour f.r. F

Pour cela on répartit les n observations en k classes $[a_{i-1}, a_i[$ d'effectifs n_i , $(1 \le i \le k)$

et on calcule
$$p_i = F(a_i) - F(a_{i-1})$$
 puis $D = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i} = \left(\sum_{i=1}^k \frac{n_i^2}{np_i}\right) - n$

La région critique du test de seuil α est $D \ge k$ telle que $\alpha = P(D \ge k|H_0) \sim \chi^2(k-1)$

Règle de décision : On rejette H_0 si $D_{obs} \ge \chi^2_{1-\alpha}(k-1)$

L'effectif np_i de la classe $[a_{i-1}$, $a_i[$ doit être supérieur ou égal à 5; si non, on regroupe deux (ou plus) classes consécutives.

Exercice 1 : (MMV-Propriétés des estimateurs-Transformations de variables)

Énoncé

Soit une variable continue dont la densité dépend d'un paramètre a > 0 telle que :

$$f(x,a) = \left(\frac{3x^2}{a}\right)e^{-\frac{x^3}{a}}$$

- 1) Soit un échantillon de taille n d'une même loi que X, déterminer l'estimateur du maximum de vraisemblance de a noté \hat{a} .
- 2) Calculer $\frac{\partial \ln[f(x,a)]}{\partial a}$ et en déduire $E(X^3)$
- 3) Calculer la quantité d'information de Fisher I(a) et en déduire $V(X^3)$
- 4) Montrer que à est un estimateur sans biais et convergent de a. Est-il efficace?
- 5) On considère la variable $Y = \frac{X^3}{a}$. Calculer la densité de Y. Montrer que Y suit une loi usuelle et retrouver $E(X^3)$ et $V(X^3)$

Corrigé

1) Calculons $L(x_i, a)$, la fonction de vraisemblance du n-échantillon i. i. d $X_1, X_2, ..., X_n$:

$$\begin{split} L(x_i, a) &= \prod_{i=1}^n f(x_i, a) = \prod_{i=1}^n \left[\left(\frac{3x_i^2}{a} \right) \left(e^{-\frac{x_i^3}{a}} \right) \right] = \prod_{i=1}^n \left[(3a^{-1}) \left(x_i^2 \right) \left(e^{-\frac{x_i^3}{a}} \right) \right] \\ &= \left[\prod_{i=1}^n (3a^{-1}) \right] \left[\prod_{i=1}^n \left(x_i^2 \right) \right] \left[\prod_{i=1}^n \left(e^{-\frac{x_i^3}{a}} \right) \right] \end{split}$$

Ainsi,
$$L(x_i, a) = \left[3^n a^{-n}\right] \left[\prod_{i=1}^n x_i\right]^2 \left[exp\left(-\frac{1}{a}\sum_{i=1}^n x_i^3\right)\right]$$

Il en résulte le logarithme de la fonction de vraisemblance :

$$\ln[L(x_i, a)] = n \ln 3 - n \ln a + 2 \sum_{i=1}^{n} \ln(x_i) - \frac{1}{a} \sum_{i=1}^{n} x_i^3$$

Calculons les dérivées partielles premières et secondes de $\ln[L(x_i,a)]$ par rapport à la

$$variable \ a: \boxed{\frac{\partial \ln[L]}{\partial a} = -\frac{n}{a} + \left(\frac{1}{a^2} \sum_{i=1}^{n} x_i^3\right)} \Rightarrow \boxed{\frac{\partial^2 \ln[L]}{\partial a^2} = \frac{n}{a^2} - \left(\frac{2}{a^3} \sum_{i=1}^{n} x_i^3\right)}$$

 \widehat{a} L'EMV de a sera la solution du système suivant : $\begin{cases} \dfrac{\partial \ln[L]}{\partial a} = 0 \\ \dfrac{\partial^2 \ln[L]}{\partial a^2} < 0 \end{cases}$

fhttps://web.facebook.com/OMEGACENTER2014

$$\widehat{a} \text{ solution } de \begin{cases} \frac{\partial \ln[L]}{\partial a} = 0 \\ \frac{\partial^2 \ln[L]}{\partial a^2} < 0 \end{cases} \Leftrightarrow \begin{cases} -\frac{n}{\widehat{a}} + \left(\frac{1}{\widehat{a}^2} \sum_{i=1}^n x_i^3\right) = 0 \\ \frac{n}{\widehat{a}^2} - \left(\frac{2}{\widehat{a}^3} \sum_{i=1}^n x_i^3\right) < 0 \end{cases} \Leftrightarrow \begin{cases} -\frac{n}{\widehat{a}^2} \left(\widehat{a} - \frac{1}{n} \sum_{i=1}^n x_i^3\right) = 0 \\ \frac{n}{\widehat{a}^3} \left(\widehat{a} - \frac{2}{n} \sum_{i=1}^n x_i^3\right) < 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \widehat{a} = \frac{1}{n} \sum_{i=1}^{n} x_i^3 \\ \frac{n}{\widehat{a}^3} (\widehat{a} - 2\widehat{a}) < 0 \end{cases} \Leftrightarrow \begin{cases} \widehat{a} = \frac{1}{n} \sum_{i=1}^{n} x_i^3 \\ -\frac{n}{\widehat{a}^2} < 0 \text{, } (v \acute{e}rifi\acute{e}e) \end{cases}$$

$$D'où$$
 $\hat{a} = \frac{1}{n} \sum_{i=1}^{n} x_i^3$ est L'EMV de θ

2)

$$\ln[f(x,a)] = \ln\left[\left(\frac{3x^2}{a}\right)e^{-\frac{x^3}{a}}\right] = \ln 3 - \ln a + 2\ln(x) - \frac{x^3}{a} \Rightarrow \boxed{\frac{\partial \ln[f(x,a)]}{\partial a} = -\frac{1}{a} + \frac{x^3}{a^2}}$$

On démontre que
$$E\left(\frac{\partial \ln L}{\partial a}\right) = 0$$
 ou encore $E\left(\frac{\partial \ln f}{\partial a}\right) = 0$

Par la suite
$$E\left(-\frac{1}{a} + \frac{X^3}{a^2}\right) = 0 \Leftrightarrow -\frac{1}{a} + \frac{1}{a^2}E(X^3) = 0$$

$$D'où E(X^3) = a$$

3)

On
$$a: \frac{\partial^2 \ln[f(x,a)]}{\partial a^2} = \frac{\partial \left[-\frac{1}{a} + \frac{x^3}{a^2} \right]}{\partial a} = \frac{1}{a^2} - \frac{2x^3}{a^3}$$

Calculons, maintenant la quantité d'information de Fisher sur a apportée par X:

$$I(a) = E\left[-\left(\frac{\partial^2 \ln[f(x,a)]}{\partial a^2}\right)\right] = E\left[\frac{2X^3}{a^3} - \frac{1}{a^2}\right] = \frac{2}{a^3}\underbrace{E(X^3)}_{a} - \frac{1}{a^2} = \frac{1}{a^2}$$

$$I(a)=\frac{1}{a^2}$$

On démontre que :
$$I(a) = E\left[-\left(\frac{\partial^2 \ln[f(x,a)]}{\partial a^2}\right)\right] = E\left[\left(\frac{\partial \ln[f(x,a)]}{\partial a}\right)^2\right] = V\left(\frac{\partial \ln[f(x,a)]}{\partial a}\right)$$

$$Par\ la\ suite: V\left(\frac{\partial \ln[f(x,a)]}{\partial a}\right) = \frac{1}{a^2} \Leftrightarrow V\left(-\frac{1}{a} + \frac{X^3}{a^2}\right) = \frac{1}{a^2} \Leftrightarrow \frac{1}{a^4}V(X^3) = \frac{1}{a^2} \Leftrightarrow \frac{1}{a^4}V(X^3) = \frac{1}{a^2} \Leftrightarrow \frac{1}{a^4}V(X^3) = \frac{1}{a^4} \Leftrightarrow \frac{1}{a^4}V(X^4) = \frac{1$$

https://web.facebook.com/OMEGACENTER2014

$$\mathbf{D}'\mathbf{o}$$
ù $V(X^3) = \mathbf{a}^2$

4)

Biais:

$$\begin{aligned} \textit{Biais}(\widehat{a}, a) &= E(\widehat{a}) - a = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{3}\right) - a = \frac{1}{n}E\left(\sum_{i=1}^{n}X_{i}^{3}\right) - a = \left(\frac{1}{n}\sum_{i=1}^{n}\underbrace{E(X_{i}^{3})}_{a}\right) - a \\ &= \left(\frac{1}{n}\sum_{i=1}^{n}a\right) - a = \frac{na}{n} - \theta \end{aligned}$$

$$D'où$$
 Biais(\hat{a} , a) = 0 et \hat{a} Sans biais de a

Convergence:

$$\overline{On \, a \lim_{n \to +\infty} E(\widehat{a})} = a \quad (1)$$

on démontre que $X_1^3, X_2^3, ..., X_n^3$ reste un échantillon aléatoire simple i.i.d

$$\lim_{n \to +\infty} V(\widehat{a}) = \lim_{n \to +\infty} V\left(\frac{1}{n} \sum_{i=1}^{n} X_i^3\right) = \lim_{n \to +\infty} \frac{1}{n^2} V\left(\sum_{i=1}^{n} X_i^3\right) = \lim_{n \to +\infty} \frac{1}{n^2} \sum_{i=1}^{n} V(X_i^3) = \lim_{n \to +\infty} \frac{1}{n^2} \sum_{i=1}^{n} a^2$$

$$= \lim_{n \to +\infty} \frac{na^2}{n^2} = \lim_{n \to +\infty} \frac{a^2}{n}$$

$$\lim_{n\to+\infty}V(\widehat{a})=0 \quad (2)$$

(1) et (2)
$$\Rightarrow$$
 L'estimateur \hat{a} converge en moyenne quadratique vers a

Efficacité:

La quantité d'information de Fisher sur a apportée par l'échantillon $X_1, ..., X_n$ est :

$$I_n(a) = nI(a) = \frac{n}{a^2}$$

$$Eff(\widehat{a}) = \frac{\left(\frac{\partial E(\widehat{a})}{\partial a}\right)^2}{I_n(a)Var(\widehat{a})}$$
, or $E(\widehat{a}) = a \Rightarrow \frac{\partial E(\widehat{a})}{\partial a} = 1$

$$Ainsi: Eff(\widehat{a}) = \frac{1}{I_n(a)Var(\widehat{a})} = \frac{1}{\frac{n}{a^2} \times \frac{a^2}{n}} = 1 \ d'où \ \widehat{a} \ est \ dit \ un \ estimateur \ efficace$$

5)

$$F_Y(y) = P(Y \le y) = P\left(\frac{X^3}{a} \le y\right) = P(X^3 \le ay) = P\left(X \le \sqrt[3]{ay}\right) = F_X\left(\sqrt[3]{ay}\right)$$
, pour tout $y \ge 0$

https://web.facebook.com/OMEGACENTER2014

$$\forall y > 0: f_Y(y) = \frac{dF_Y(y)}{dy} = \left[F_X(\sqrt[3]{ay})\right]' = \left[\sqrt[3]{ay}\right]' f_X(\sqrt[3]{ay}) = a^{\frac{1}{3}} \left[y^{\frac{1}{3}}\right]' f_X(\sqrt[3]{ay}) = \frac{1}{3} a^{\frac{1}{3}} y^{-\frac{2}{3}} f_X(\sqrt[3]{ay})$$

$$Or \ \forall y > 0 \ , f_X(\sqrt[3]{ay}) = \left(\frac{3\left(a^{\frac{1}{3}}y^{\frac{1}{3}}\right)^2}{a}\right)e^{-\frac{\left(a^{\frac{1}{3}}y^{\frac{1}{3}}\right)^3}{a}} = \left(3\frac{a^{\frac{2}{3}}y^{\frac{2}{3}}}{a}\right)e^{-\frac{ay}{a}} = \left(3a^{-\frac{1}{3}}y^{\frac{2}{3}}\right)e^{-y}$$

$$Par\ la\ suite:\ \forall y \geq 0: f_Y(y) = \left(\frac{1}{3}a^{\frac{1}{3}}y^{-\frac{2}{3}}\right)\left(3a^{-\frac{1}{3}}y^{\frac{2}{3}}\right)e^{-y} = e^{-y}$$

$$D'$$
 où la d. d. p de la v. a $Y:$
$$f_Y(y) = \begin{cases} e^{-y}, si \ y \ge 0 \\ 0, si \ non \end{cases} et \ Y \sim \mathcal{E}(1)$$

$$Ainsi: \begin{cases} E(Y) = 1 \\ V(Y) = 1 \end{cases} \Leftrightarrow \begin{cases} E\left(\frac{X^3}{a}\right) = 1 \\ V\left(\frac{X^3}{a}\right) = 1 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{a}E(X^3) = 1 \\ \frac{1}{a^2}V(X^3) = 1 \end{cases}$$

$$d'$$
 où on retrouve : $E(X^3) = a$ et $V(X^3) = a^2$

Exercice 2 : (MMV-Propriétés des estimateurs-Intervalle de confiance-Tests d'hypothèses)

Énoncé

Soit X une variable aléatoire de densité de probabilité:

$$f(x,\theta) = \begin{cases} \frac{1}{2\theta\sqrt{x}} \left(e^{-\frac{\sqrt{x}}{\theta}}\right), si \ x > 0 \\ 0, si \ x \le 0 \end{cases}; \ \theta > 0$$

- 1) Soit $X_1, X_2, ..., X_n$ un échantillon aléatoire simple i. i. d de la variable aléatoire X. Déterminer l'estimateur du maximum de vraisemblance $\widehat{\theta}$ de θ .
- 2) Sachant que si on pose $Y = \sqrt{X}$, on démontre que $\begin{cases} E(Y) = \theta \\ V(Y) = \theta^2 \end{cases}$ et que $Y_1, Y_2, ..., Y_n$ reste un échantillon aléatoire simple i. i. d de la variable aléatoire Y.

Étudier les propriétés de l'estimateur $\hat{\theta}$ de θ :

- a) Biais
- b) Convergence
- c) Efficacité
- 3) On admet que la variable aléatoire $2n\widehat{\theta}/\theta$ suit une loi de Khi-deux de degrés de libertés 2n .

Construire un intervalle de confiance de niveau 0,90 pour θ en prenant des

Momega.center.cp@gmail.com fhttps://web.facebook.com/OMEGACENTER2014

risques symétriques.

Application numérique : $\sum_{i=1}^{10} \sqrt{x_i} = 17,4$

4) On se propose de tester : $\begin{cases} H_0 : \theta = 1 \\ H_a : \theta = 2, 5 \end{cases}$

Pour cela on adopte la règle de décision suivante : si $\sum_{i=1}^{10} \sqrt{x_i} > c$, on décide de

rejeter H_0

- a) Déterminer la valeur critique c pour $\alpha = 0,05$
- b) On observe $\sum_{i=1}^{10} \sqrt{x_i} = 7$. Quelle est la décision à prendre?
- c) Déduire la puissance du test

<u>Corrigé</u>

2) Calculons $L(x_i, \theta)$, la fonction de vraisemblance du n-échantillon i. i. d $X_1, X_2, ..., X_n$:

$$\begin{split} L(x_i,\theta) &= \prod_{i=1}^n f(x_i,\theta) = \prod_{i=1}^n \left[\frac{1}{2\theta\sqrt{x_i}} \left(e^{-\frac{\sqrt{x_i}}{\theta}} \right) \right] = \prod_{i=1}^n \left[(2\theta)^{-1} \left(x_i^{-\frac{1}{2}} \right) \left(e^{-\frac{\sqrt{x_i}}{\theta}} \right) \right] \\ &= \left[\prod_{i=1}^n (2\theta)^{-1} \right] \left[\prod_{i=1}^n \left(x_i^{-\frac{1}{2}} \right) \right] \left[\prod_{i=1}^n \left(e^{-\frac{\sqrt{x_i}}{\theta}} \right) \right] \end{split}$$

Ainsi,
$$L(x_i,\theta) = \left[(2\theta)^{-n} \right] \left[\prod_{i=1}^n x_i \right]^{-\frac{1}{2}} \left[exp\left(-\frac{1}{\theta} \sum_{i=1}^n \sqrt{x_i} \right) \right]$$

Il en résulte le logarithme de la fonction de vraisemblance :

$$\ln[L(x_i,\theta)] = -n\ln(2\theta) - \frac{1}{2}\sum_{i=1}^n \ln(x_i) - \frac{1}{\theta}\sum_{i=1}^n \sqrt{x_i}$$

Calculons les dérivées partielles premières et secondes de $\ln[L(x_i,\theta)]$ par rapport à la variable θ :

$$\boxed{\frac{\partial \ln[L]}{\partial \theta} = -\frac{n}{\theta} + \left(\frac{1}{\theta^2} \sum_{i=1}^n \sqrt{x_i}\right)} \Rightarrow \boxed{\frac{\partial^2 \ln[L]}{\partial \theta^2} = \frac{n}{\theta^2} - \left(\frac{2}{\theta^3} \sum_{i=1}^n \sqrt{x_i}\right)}$$

 $\widehat{\boldsymbol{\theta}}$ L'EMV de $\boldsymbol{\theta}$ sera la solution du système suivant :

https://web.facebook.com/OMEGACENTER2014

$$\widehat{\theta} \text{ solution } de \begin{cases} \frac{\partial \ln[L]}{\partial \theta} = 0 \\ \frac{\partial^2 \ln[L]}{\partial \theta^2} < 0 \end{cases} \Leftrightarrow \begin{cases} -\frac{n}{\widehat{\theta}} + \left(\frac{1}{\widehat{\theta}^2} \sum_{i=1}^n \sqrt{x_i}\right) = 0 \\ \frac{n}{\widehat{\theta}^2} - \left(\frac{2}{\widehat{\theta}^3} \sum_{i=1}^n \sqrt{x_i}\right) < 0 \end{cases} \Leftrightarrow \begin{cases} -\frac{n}{\widehat{\theta}^2} \left(\widehat{\theta} - \frac{1}{n} \sum_{i=1}^n \sqrt{x_i}\right) = 0 \\ \frac{n}{\widehat{\theta}^3} \left(\widehat{\theta} - \frac{2}{n} \sum_{i=1}^n \sqrt{x_i}\right) < 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \sqrt{x_i} \\ \frac{n}{\widehat{\theta}^3} (\widehat{\theta} - 2\widehat{\theta}) < 0 \end{cases} \Leftrightarrow \begin{cases} \widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \sqrt{x_i} \\ -\frac{n}{\widehat{\theta}^2} < 0 \text{, (v\'erifi\'ee)} \end{cases}$$

$$D'où \widehat{\theta} = \frac{1}{n} \sum_{i=1}^{n} \sqrt{x_i} \ est \ L'EMV \ de \ \theta$$

2)

a) Biais

$$Biais(\widehat{\theta}, \theta) = E(\widehat{\theta}) - \theta = E\left(\frac{1}{n}\sum_{i=1}^{n}\sqrt{X_{i}}\right) - \theta = \frac{1}{n}E\left(\sum_{i=1}^{n}\sqrt{X_{i}}\right) - \theta = \left(\frac{1}{n}\sum_{i=1}^{n}E(\sqrt{X_{i}})\right) - \theta$$
$$= \left(\frac{1}{n}\sum_{i=1}^{n}E(Y_{i})\right) - \theta = \left(\frac{1}{n}\sum_{i=1}^{n}\theta\right) - \theta = \frac{n\theta}{n} - \theta$$

$$D'où$$
 $Biais(\widehat{\theta}, \theta) = 0$ et $\widehat{\theta}$ Sans biais de θ

b) Convergence:

On $a \lim_{n \to +\infty} E(\widehat{\theta}) = \theta$ (1)

$$\begin{split} \lim_{n \to +\infty} V(\widehat{\theta}) &= \lim_{n \to +\infty} V\left(\frac{1}{n} \sum_{i=1}^{n} \sqrt{X_i}\right) = \lim_{n \to +\infty} V\left(\frac{1}{n} \sum_{i=1}^{n} Y_i\right) = \lim_{n \to +\infty} \frac{1}{n^2} V\left(\sum_{i=1}^{n} Y_i\right) \\ &= \lim_{n \to +\infty} \frac{1}{n^2} \sum_{i=1}^{n} V(Y_i) \; \; ; car \, Y_1, Y_2, \dots, Y_n \; est \; un \; \acute{e}chantillon \; al\acute{e}atoire \; simple \; i. \; i. \; d \\ &= \lim_{n \to +\infty} \frac{1}{n^2} \sum_{i=1}^{n} \theta^2 = \lim_{n \to +\infty} \frac{n\theta^2}{n^2} = \lim_{n \to +\infty} \frac{\theta^2}{n} \end{split}$$

 $\lim_{n\to+\infty}V(\widehat{\theta})=0 \quad (2)$

(1) et (2) \Rightarrow L'estimateur $\hat{\theta}$ converge en moyenne quadratique vers θ

c) Efficacité:

Calculons la quantité d'information de Fisher sur θ apportée par l'échantillon X_1, \dots, X_n :

https://web.facebook.com/OMEGACENTER2014

$$I_{n}(\theta) = E\left[-\left(\frac{\partial^{2} \ln L}{\partial \theta^{2}}\right)\right] = E\left[\left(\frac{2}{\theta^{3}}\sum_{\underline{i=1}}^{n}\sqrt{X_{i}}\right) - \frac{n}{\theta^{2}}\right] = E\left[\frac{2n\widehat{\theta}}{\theta^{3}} - \frac{n}{\theta^{2}}\right] = \frac{2n}{\theta^{3}}\underbrace{E(\widehat{\theta})}_{\theta} - \frac{n}{\theta^{2}} = \frac{2n\theta}{\theta^{3}} - \frac{n}{\theta^{2}}$$

$$I_n(\theta) = \frac{n}{\theta^2}$$

$$Eff(\widehat{\theta}) = \frac{\left(\frac{\partial E(\widehat{\theta})}{\partial \theta}\right)^2}{I_n(\theta)Var(\widehat{\theta})} \text{ , or } E(\widehat{\theta}) = \theta \Rightarrow \frac{\partial E(\widehat{\theta})}{\partial \theta} = 1$$

$$Ainsi: Eff(\widehat{\theta}) = \frac{1}{I_n(\theta) Var(\widehat{\theta})} = \frac{1}{\frac{n}{\theta^2} \times \frac{\theta^2}{n}} = 1 \ d'où \ \boxed{\widehat{\theta} \ est \ dit \ un \ estimateur \ efficace}$$

3)

$$On\ a\ W_n = \frac{2n\widehat{\theta}}{\theta} \sim \chi^2(2n)$$

On se propose de construire un intervalle de confiance de niveau $1-\alpha=0,90$ pour θ en prenant des risques symétriques.

On
$$\alpha P(k_1 \le W_n \le k_2) = 1 - \alpha \Leftrightarrow P(W_n \in [k_1, k_2]) = 1 - \alpha \Leftrightarrow P(W_n \in (]-\infty, k_1[\cup]k_2, +\infty[)) = \alpha$$

$$\Leftrightarrow P(W_n \in]-\infty, k_1[) + P(W_n \in]k_2, +\infty[) = \alpha \Leftrightarrow P(W_n < k_1) + P(W_n > k_2) = \alpha$$

L'intervalle étant bilatéral symétrique, donc, $P(W_n < k_1) = P(W_n > k_2) = \frac{\alpha}{2}$

$$\textit{Ce qui donne}: \begin{cases} P(W_n < k_1) = \frac{\alpha}{2} \\ P(W_n > k_2) = \frac{\alpha}{2} \end{cases} \Leftrightarrow \begin{cases} P(W_n < k_1) = \frac{\alpha}{2} \\ P(W_n < k_2) = 1 - \frac{\alpha}{2} \end{cases} \Leftrightarrow \begin{cases} k_1 = \chi_{\frac{\alpha}{2}}^2(2n) \\ k_2 = \chi_{1-\frac{\alpha}{2}}^2(2n) \end{cases}, \textit{car } W_n \sim \chi^2(2n)$$

$$Par\ la\ suite:\ P\left(\chi_{\frac{\alpha}{2}}^{2}(2n)\leq W_{n}\leq \chi_{1-\frac{\alpha}{2}}^{2}(2n)\right)=1-\alpha \Leftrightarrow P\left(\chi_{\frac{\alpha}{2}}^{2}(2n)\leq \frac{2n\widehat{\theta}}{\theta}\leq \chi_{1-\frac{\alpha}{2}}^{2}(2n)\right)=1-\alpha$$

$$\Leftrightarrow P\left(\frac{1}{\chi_{1-\frac{\alpha}{2}}^{2}(2n)} \leq \frac{\theta}{2n\widehat{\theta}} \leq \frac{1}{\chi_{\frac{\alpha}{2}}^{2}(2n)}\right) = 1 - \alpha \Leftrightarrow P\left(\frac{2n\widehat{\theta}}{\chi_{1-\frac{\alpha}{2}}^{2}(2n)} \leq \theta \leq \frac{2n\widehat{\theta}}{\chi_{\frac{\alpha}{2}}^{2}(2n)}\right) = 1 - \alpha$$

D'où la construction de l'intervalle de confiance, bilatéral et symétrique de niveau $1-\alpha\ pour\ \theta:$

https://web.facebook.com/OMEGACENTER2014

$$IC_{1-\alpha}(\theta) = \left[\frac{2n\widehat{\theta}}{\chi_{1-\frac{\alpha}{2}}^{2}(2n)}, \frac{2n\widehat{\theta}}{\chi_{\frac{\alpha}{2}}^{2}(2n)}\right]$$

Application numérique :

$$n = 10$$
, $\sum_{i=1}^{10} \sqrt{x_i} = 17,4$ par la suite : $\hat{\theta} = \frac{1}{10} \sum_{i=1}^{10} \sqrt{x_i} = 1,74$

$$\textit{d'autre part}: \begin{cases} \chi^2_{1-\frac{\alpha}{2}}(2n) = \chi^2_{0,95}(20) = 31,41 \\ \chi^{\frac{\alpha}{2}}(2n) = \chi^2_{0,05}(20) = 10,85 \end{cases}$$

$$IC_{90\%}(\theta) = \left[\frac{20 \times 1,74}{31,41}, \frac{20 \times 1,74}{10,85}\right]$$

$$IC_{90\%}(\theta) = [1, 108, 3, 207]$$

4)

a) On se propose de tester $H_0: \theta = 1$ contre $H_a: \theta = 2,5$ un niveau de signification $\alpha = 0.05$

Il s'agit donc d'un test unilatéral à droite, puisque $\theta_1 > \theta_0$, avec $\theta_0 = 1$ et $\theta_1 = 2, 5$

Distribution de la statistique de décision :

$$W_n = \frac{2n\widehat{\theta}}{\theta} \sim \chi^2(2n) ou \ encore \ \frac{2}{\theta} \sum_{i=1}^n \sqrt{X_i} \sim \chi^2(2n)$$

Région et Valeurs critiques :

$$\mathcal{R}_{\mathcal{C}} = \left\{ (X_1, \dots, X_n) \middle| \sum_{i=1}^{10} \sqrt{x_i} > c \right\}$$

$$avec, \alpha = P(Rejeter\ H_0|H_0\ vraie) = P\left(\sum_{i=1}^{10} \sqrt{x_i} > c \middle| \theta = \theta_0\right) \ ; où\ \theta_0 = 1$$

$$=P\left(\frac{2}{\theta}\sum_{i=1}^{10}\sqrt{x_i}>\frac{2c}{\theta}\left|\theta=\theta_0\right.\right)=P\left(W_n>\frac{2c}{\theta}\left|\theta=\theta_0\right.\right)=P\left(W_n>\frac{2c}{\theta_0}\right)$$

$$\alpha = 1 - P\left(W_n \le \frac{2c}{\theta_0}\right)$$
. Ainsi, $P\left(W_n \le \frac{2c}{\theta_0}\right) = 1 - \alpha \Leftrightarrow \frac{2c}{\theta_0} = \chi_{1-\alpha}^2(2n)$

$$D'où \ le \ point \ critique : \boxed{c = \frac{\theta_0}{2} \chi^2_{1-\alpha}(2n)} \ avec \ , \theta_0 = 1 \ \ et \ \chi^2_{1-\alpha}(2n) = \chi^2_{0.95}(20) = 31,41$$

$$c = \frac{1}{2}\chi_{0,95}^2(20) = 15,705$$

418

b)

Règle de décision :

<u>omega.center.cp@gmail.com</u>

fhttps://web.facebook.com/OMEGACENTER2014

On rejette
$$H_0$$
 si $\left[\sum_{i=1}^{10} \sqrt{x_i}\right]_{obs} > c$

Or on observe
$$\sum_{i=1}^{10} \sqrt{x_i} = 7 \text{ et } c = 15,705 \Rightarrow \left[\sum_{i=1}^{10} \sqrt{x_i}\right]_{obs} \Rightarrow c$$

On ne rejettera pas H_0 , avec un risque de première espèce lpha=5%

c)

La puissance du test étant : $\pi = 1 - \beta = P(Rejeter H_0|H_0 fausse)$

$$= P(Rejeter H_0|H_1 vraie)$$

avec β , risque de deuxième espèce : $\beta = P(Non\text{-rejet de } H_0|H_0 \text{ fausse})$

$$\pi = P\left(\sum_{i=1}^{10} \sqrt{x_i} > c \middle| \theta = \theta_1\right); \text{où } \theta_1 = 2, 5 = P\left(\frac{2}{\theta} \sum_{i=1}^{10} \sqrt{x_i} > \frac{2c}{\theta} \middle| \theta = \theta_1\right) = P\left(W_n > \frac{2c}{\theta} \middle| \theta = \theta_1\right)$$

$$\pi = P\left(W_n > \frac{2c}{\theta_1}\right)$$

Ainsi,
$$1-\pi=P\left(W_n\leq \frac{2c}{\theta_1}\right)\Leftrightarrow \frac{2c}{\theta_1}=\chi^2_{1-\pi}(2n)$$
; avec $c=15,705$, $n=10$ et $\theta_1=2,5$

$$\Leftrightarrow \frac{2 \times 15,705}{2.5} = \chi^2_{1-\pi}(20) \Leftrightarrow 12,564 = \chi^2_{1-\pi}(20) \Leftrightarrow 1-\pi = 10,47\%$$

$$D'où \pi = 89,53\%$$

Exercice 3 : (Intervalle de confiance pour le rapport des variances -Intervalle de confiance pour la différence de deux moyennes -Test bilatéral)

<u>Énoncé</u>

Un expert financier désire comparer les prix X et Y de titres financiers dans deux pays

$$(X \sim \mathcal{N}(\mu_1, \sigma_1^2)) et(Y \sim \mathcal{N}(\mu_2, \sigma_2^2))$$
.

Il choisit au hasard un échantillon de titre par pays, et il trouve les résultats suivants :

Pour le pays 1 :
$$n_1 = 25$$
; $\overline{X} = 200$; $S_1^2 = \frac{1}{24} \sum_{i=1}^{25} (X_i - \overline{X})^2 = 36$

Pour le pays 2 :
$$n_2 = 21$$
; $\overline{Y} = 220$; $S_2^2 = \frac{1}{20} \sum_{i=1}^{21} (Y_i - \overline{Y})^2 = 49$

- 1) Donner un intervalle de confiance de niveau $1 \alpha = 0$, 90 pour le rapport des variances des prix $\left(\frac{\sigma_1^2}{\sigma_1^2}\right)$
- 2) On suppose que $\sigma_1^2=\sigma_2^2$, construire un intervalle de confiance de niveau $1 - \alpha = 0,90$ pour la différence de moyenne des prix $(\mu_1 - \mu_2)$
- 3) Déduire si l'expert financier est indifférent entre les deux alternatives.

Corrigé :

1)

Distribution de la fonction pivotale :

 $(X_i)_{1 \leq i \leq n_1} et\left(Y_j\right)_{1 \leq i \leq n_2} n_1 + n_2 \ variables \ indépendantes \ et \ équidistribuées \ de \ moyenne \ \mu_1$ et de variance σ_1^2 , pour le premier , et de moyenne μ_2 et de variance σ_2^2 , pour le second.

Il en résulte la statistique de Fisher :
$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \leadsto \mathcal{F}(n_1-1,n_2-1)$$

On se propose de construire un intervalle de confiance de niveau $1-\alpha=0$, 90 pour $\frac{\sigma_1^2}{\sigma_1^2}$ en prenant des risques symétriques.

$$On \ \alpha \ P(k_1 \le F \le k_2) = 1 - \alpha \Leftrightarrow P(F \in [k_1, k_2]) = 1 - \alpha \Leftrightarrow P(F \in (]-\infty, k_1[\ \cup \]k_2, +\infty[)) = \alpha$$
$$\Leftrightarrow P(F_n \in]-\infty, k_1[) + P(F \in [k_2, +\infty[)] = \alpha \Leftrightarrow P(F < k_1) + P(F > k_2) = \alpha$$

L'intervalle étant bilatéral, donc, $P(F < k_1) = P(F > k_2) = \frac{\alpha}{2}$

$$\textit{Ce qui donne}: \begin{cases} P(F < k_1) = \frac{\alpha}{2} \\ P(F > k_2) = \frac{\alpha}{2} \end{cases} \Leftrightarrow \begin{cases} P(F < k_1) = \frac{\alpha}{2} \\ P(F < k_2) = 1 - \frac{\alpha}{2} \end{cases} \Leftrightarrow \begin{cases} k_1 = f_{\frac{\alpha}{2}}(n_1 - 1, n_2 - 1) \\ k_2 = f_{1 - \frac{\alpha}{2}}(n_1 - 1, n_2 - 1) \end{cases}$$

$$car F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim \mathcal{F}(n_1 - 1, n_2 - 1)$$

$$Par\ la\ suite:\ P\left(f_{\frac{\alpha}{2}}(n_1-1,n_2-1)\leq F\leq f_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)\right)=1-lpha$$

$$\Leftrightarrow P\left(f_{\frac{\alpha}{2}}(n_1-1,n_2-1) \leq \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \leq f_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)\right) = 1-\alpha$$

$$\Leftrightarrow P\left(\frac{1}{f_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)} \leq \frac{\sigma_1^2/\sigma_2^2}{S_1^2/S_2^2} \leq \frac{1}{f_{\frac{\alpha}{2}}(n_1-1,n_2-1)}\right) = 1-\alpha$$

fhttps://web.facebook.com/OMEGACENTER2014

$$\Leftrightarrow P\left(\frac{S_1^2/S_2^2}{f_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)} \leq \frac{\sigma_1^2}{\sigma_2^2} \leq \frac{S_1^2/S_2^2}{f_{\frac{\alpha}{2}}(n_1-1,n_2-1)}\right) = 1-\alpha$$

D'où la construction de l'intervalle de confiance, bilatéral de niveau $1-\alpha$ pour $\frac{\sigma_1^2}{\sigma_2^2}$:

$$IC_{1-\alpha}\left(\frac{\sigma_1^2}{\sigma_2^2}\right) = \left[\frac{S_1^2/S_2^2}{f_{1-\frac{\alpha}{2}}(n_1-1,n_2-1)}, \frac{S_1^2/S_2^2}{f_{\frac{\alpha}{2}}(n_1-1,n_2-1)}\right]$$

Application numérique:

$$n_1 = 25$$
; $S_1^2 = 36$; $n_2 = 21$; $S_2^2 = 49$ et $1 - \alpha = 0$, 90

$$d'autre\ part: \begin{cases} f_{\frac{\alpha}{2}}(n_1-1,n_2-1) = \frac{1}{f_{1-\frac{\alpha}{2}}(n_2-1,n_1-1)} = \frac{1}{f_{0.95}(20,24)} = \frac{1}{2,03} = 0,49 \\ f_{1-\frac{\alpha}{2}}(n_1-1,n_2-1) = f_{0.95}(24,20) = 2,08 \end{cases}$$

$$IC_{90\%}(\theta) = \left[\frac{36/49}{2,08}, \frac{36/49}{0,49}\right]$$

$$IC_{90\%}\left(\frac{\sigma_1^2}{\sigma_2^2}\right) = [0, 353; 1, 499]$$

2)

Distribution de la fonction pivotale :

 $(X_i)_{1 \leq i \leq n_1}$ et $\left(Y_j\right)_{1 \leq j \leq n_2}$ $n_1 + n_2$ variables indépendantes et équidistribuées de moyenne μ_1 et de variance σ_1^2 , pour le premier , et de moyenne μ_2 et de variance σ_2^2 , pour le second. ous l'hypothèse, $\sigma_1^2 = \sigma_2^2$ on obtient , la statistique de Student :

$$T = rac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S\sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim \mathcal{T}(n_1 + n_2 - 2)$$
, où $S^2 = rac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$, la variance

empirique jointe corrigée.

On se propose de construire un intervalle de confiance de niveau $1-\alpha=0,90$ pour la différence de moyenne des prix $(\mu_1-\mu_2)$, en prenant des risques symétriques.

$$\begin{aligned} &\textit{On a } P(k_1 \leq T \leq k_2) = 1 - \alpha \Leftrightarrow P(T \in [k_1, k_2]) = 1 - \alpha \Leftrightarrow P(T \in (] - \infty, k_1[\ \cup \]k_2, + \infty[)) = \alpha \\ &\Leftrightarrow P(T \in] - \infty, k_1[) + P(T \in]k_2, + \infty[) = \alpha \Leftrightarrow P(T < k_1) + P(T > k_2) = \alpha \end{aligned}$$

https://web.facebook.com/OMEGACENTER2014

L'intervalle étant bilatéral, donc, $P(T < k_1) = P(T > k_2) = \frac{\alpha}{2}$

Ce qui donne:
$$\begin{cases} P(T < k_1) = \frac{\alpha}{2} \\ P(T > k_2) = \frac{\alpha}{2} \end{cases} \Leftrightarrow \begin{cases} P(T < k_1) = \frac{\alpha}{2} \\ P(T < k_2) = 1 - \frac{\alpha}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} k_1 = t_{\frac{\alpha}{2}}(n_1 + n_2 - 2) = -t_{1-\frac{\alpha}{2}}(n_1 + n_2 - 2) = -t_{1-\frac{\alpha}{2}}^{(n_1 + n_2 - 2)} \\ k_2 = t_{1-\frac{\alpha}{2}}(n_1 + n_2 - 2) = t_{1-\frac{\alpha}{2}}^{(n_1 + n_2 - 2)} \end{cases}$$

$$car T = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim \mathcal{T}(n_1 + n_2 - 2)$$

Par la suite : $P\left(-t_{1-\frac{\alpha}{2}}^{(n_1+n_2-2)} \le T \le t_{1-\frac{\alpha}{2}}^{(n_1+n_2-2)}\right) = 1-\alpha$

$$\Leftrightarrow P\left(-t_{1-\frac{\alpha}{2}}^{(n_{1}+n_{2}-2)} \leq \frac{(\overline{X}-\overline{Y})-(\mu_{1}-\mu_{2})}{S\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \leq t_{1-\frac{\alpha}{2}}^{(n_{1}+n_{2}-2)}\right) = 1-\alpha$$

$$\Leftrightarrow P\left(-t_{1-\frac{\alpha}{2}}^{(n_{1}+n_{2}-2)} \leq \frac{(\mu_{1}-\mu_{2})-(\overline{X}-\overline{Y})}{S\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \leq t_{1-\frac{\alpha}{2}}^{(n_{1}+n_{2}-2)}\right) = 1-\alpha$$

$$\Leftrightarrow P\left[-\left(S\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}\right)t_{1-\frac{\alpha}{2}}^{(n_1+n_2-2)} \leq (\mu_1-\mu_2)-(\overline{X}-\overline{Y}) \leq \left(S\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}\right)t_{1-\frac{\alpha}{2}}^{(n_1+n_2-2)}\right] = 1-\alpha$$

$$\Leftrightarrow P\left[(\overline{X}-\overline{Y})-\left(S\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right)t_{1-\frac{\alpha}{2}}^{(n_{1}+n_{2}-2)} \leq \mu_{1}-\mu_{2} \leq (\overline{X}-\overline{Y}) + \left(S\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right)t_{1-\frac{\alpha}{2}}^{(n_{1}+n_{2}-2)}\right] = 1-\alpha$$

D'où la construction de l'intervalle de confiance, bilatéral de niveau $1-\alpha$ pour $\mu_1-\mu_2$:

$$IC_{1-\alpha}(\mu_1 - \mu_2) = \left[(\overline{X} - \overline{Y}) \pm \left(S \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right) t_{1-\frac{\alpha}{2}}(n_1 + n_2 - 2) \right]$$

Application numérique:

$$n_1=25$$
 ; $\overline{X}=200$; $\overline{Y}=220$; $S_1^2=36$; $n_2=21$; $S_2^2=49$ et $1-\alpha=0,90$

La variance empirique jointe corrigée : $S^2 = \frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$

https://web.facebook.com/OMEGACENTER2014

$$S^{2} = \frac{(24 \times 36) + (20 \times 49)}{25 + 21 - 2} = 41,91 \Rightarrow S = 6,47$$

 $\textit{d'autre part}: t_{1-\frac{\alpha}{2}}(n_1+n_2-2) = t_{0,95}(44) \cong \Phi^{-1}(0,95) = 1,645$

$$IC_{90\%}(\mu_1 - \mu_2) = \left[(200 - 220) \pm \left(6,47 \times \sqrt{\frac{1}{25} + \frac{1}{21}} \times 1,645 \right) \right] = [-20 \pm 3,15]$$

$$IC_{90\%}(\mu_1 - \mu_2) = [-23, 15; -16, 85]$$

3) Un test bilatéral $\left(H_0:\sigma_1^2/\sigma_2^2=1\ contre\ H_a:\sigma_1^2/\sigma_2^2\neq 1\right)$, m_1 et m_2 supposées inconnues serait équivalent à un intervalle de confiance de niveau

$$1-\alpha=0,90~pour~\frac{\sigma_1^2}{\sigma_2^2}.$$

On arrive à la décision suivante :

 $1 \in IC_{90\%}\left(\frac{\sigma_1^2}{\sigma_2^2}\right) puisque\ IC_{90\%}\left(\frac{\sigma_1^2}{\sigma_2^2}\right) = [0, 353; 1, 499\]\ ce\ qui\ implique\ un\ non-rejet\ de\ H_0$

toujours sous un niveau de signification $\alpha=10\%$ qui signifie aussi un non-rejet de l'hypothèse d'égalité des variances $\left(\sigma_1^2=\sigma_2^2\right)$, et cela se traduit par un risque identique quant aux variations des prix des titres financiers dans les deux pays.

Plus tard, en se basant sur cette hypothèse d'égalité des variances $\left(\sigma_1^2=\sigma_2^2\right)$, il pourra

Ainsi tester l'hypothèse d'égalité des moyennes des actions des deux pays :

 $\left(H_0: \mu_1 - \mu_2 = 0 \ contre \ H_a: \mu_1 - \mu_2 \neq 0 \right) \ qui \ serait \ aussi \ \'equivalent \ \grave{a} \ un \ intervalle \ de$ $confiance \ de \ niveau \ 1 - \alpha = 0,90 \ pour \ la \ diff\'erence \ de \ moyenne \ des \ prix \ (\mu_1 - \mu_2) \ .$

On arrive à la décision suivante :

 $0 \notin IC_{90\%}(\mu_1 - \mu_2)$, puisque $IC_{90\%}(\mu_1 - \mu_2) = [-23, 15; -16, 85]$, ce qui implique un rejet de H_0 toujours sous un niveau de signification $\alpha = 10\%$ qui signifie aussi un rejet de l'hypothèse d'égalité des moyennes $(\mu_1 = \mu_2)$

Il ne sera donc pas indifférent quant aux prix des titres financiers dans les deux pays et il doit opter pour une alternative autrement dit un pays .

Exercice 4: (Test sur une proportion)

Énoncé

Un bureau de contrôle des impôts a décidé de procéder à un sondage de 100 déclarations annuelles de personnes morales afin de vérifier leur conformité par rapport à leurs déclarations mensuelles.

Dans le cas où il y a un écart entre la somme des déclarations mensuelles et la déclaration annuelle, le bureau de contrôle considère la déclaration annuelle non conforme et invite la personne contrôlée à justifier l'écart.

Dans le cas contraire, la personne morale n'est pas convoquée et la déclaration est considérée conforme.

Le bureau de contrôle souhaite tester si la proportion des déclarations non conformes est de 5% ou si elle est supérieure (auquel cas il faut procéder à une campagne de sensibilisation).

Le bureau jugera de la nécessité de lancer une campagne de sensibilisation dans le cas où la proportion des déclarations non conforme dans l'échantillon dépasse 8%.

Dans le cas contraire, le bureau de contrôle ne lancera pas de campagne de sensibilisation et considèrera que le taux des déclarations annuelles non conformes est acceptable.

- 1) Construire le test (Hypothèses, variables, règle de décision, région critique).
- 2) Donner la signification pratique de l'erreur de première espèce.
- 3) Calculer le risque de première espèce.
- 4) Calculer la puissance du test dans le cas où la proportion serait passée à 10%

Corrigé :

1) Soit la variable aléatoire X_i définie par :

 $X_i = egin{cases} 1 \ si \ une \ d\'elaration \ annuelle \ d'une \ personne \ morale \ i \ est \ non \ conforme \ 0 \ si \ non \end{cases}$

 $Donc X_i \sim \mathcal{B}(1, p)$

Loi de probabilité de X_i : $P(X = x_i) = p^{x_i}(1-p)^{x_i}$; $x_i \in \Omega_X = \{0,1\}$

 $E(X_i) = p \ et \ V(X_i) = p(1-p)$

On se propose de tester : H_0 : $p = p_0 = 0.05$ contre H_1 : $p > p_0$, sous un niveau de signification α qui sera calculé par la suite.

https://web.facebook.com/OMEGACENTER2014

Il s'agit d'un test unilatéral à droite

La statistique de décision :

 $(X_i)_{i\in\{1,2,\ldots,n\}}$ est un échantillon i. i. d de taille n=100 issu la loi Bernoulli $\mathcal{B}(1,p)$

$$\widehat{p} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 est un estimateur sans biais, convergent et efficace.

En appliquant le théorème de la limite centrée pour cet échantillon de taille

$$n = 100 > 30 \ on \ obtient : U = \frac{\overline{X} - E(\overline{X})}{\sqrt{V(\overline{X})}} = \frac{\widehat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \sim \mathcal{N}(0,1)$$

Région critique :

$$\mathcal{R}_{\mathcal{C}} = \left\{ (X_i)_{i \in \{1,2,\dots,n\}} \middle| \widehat{p} > c \right\}$$

Risque de première espèce : $\alpha = P(Rejeter H_0|H_0 vraie)$

$$P(\widehat{p} > 8\% / p = p_0) = \alpha \Leftrightarrow P\left(\frac{\widehat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} > \frac{0.08 - p}{\sqrt{\frac{p(1-p)}{n}}} / p = p_0\right) = \alpha \Leftrightarrow P\left(U > \frac{0.08 - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}\right) = \alpha$$

$$\Leftrightarrow P\left(U > \frac{0,08-0,05}{\sqrt{\frac{0,05(1-0,05)}{100}}}\right) = \alpha \Leftrightarrow P(U > 1,38) = \alpha$$

Règle de décision :

On rejette H_0 Si on observe $\hat{p} > 8\%$ ou encore si on observe $U_0 > 1,38$,

$$où U_0 = \frac{\widehat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

- 2) L'erreur de première espèce est le risque de rejeter à tort H_0 en d'autre termes, le risque de lancer une campagne de sensibilisation alors que la proportion des déclarations non conformes est de 5%: $(H_0 \ vraie)$
- 3) $\alpha = P(Rejeter\ H_0|H_0\ vraie) = P(\widehat{p} > 0,08\ |p=p_0) = P(U > 1,38) = 1 P(U \le 1,38)$ = $1 - \Phi(1,38) = 1 - 0,9162$

$$D'o\dot{u}$$
 $\alpha = 8,38\%$

425

4) $\pi = 1 - \beta = P(Rejeter H_0|H_0 fausse)$ étant la puissance du test

avec $\beta = P(Non\text{-rejet de } H_0|H_0 \text{ fausse})$, risque de deuxième espèce

fhttps://web.facebook.com/OMEGACENTER2014

$$\pi = 1 - \beta = P(\widehat{p} > 0,08 | p = p_1)$$
, où $p_1 = 10\% = P\left(\frac{\widehat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} > \frac{0,08 - p}{\sqrt{\frac{p(1-p)}{n}}}\right| p = p_1\right)$

$$= P\left(U > \frac{0,08 - 0,1}{\sqrt{\frac{0,1(1 - 0,1)}{100}}}\right) = P(U > -0,67) = 1 - P(U \le -0,67) = 1 - \Phi(-0,67) = \Phi(0,67)$$

= 74,86%

D'où la puissance du test $\pi = 74,86\%$

Exercice 5 : (MMV-Propriétés des estimateurs-Intervalle de confiance-Test sur la variance)

Énoncé

Soit la variable aléatoire X suivant la loi normale de moyenne m=0 et de variance σ^2 inconnue .

- 1) Déterminer l'estimateur de σ^2 par la méthode de maximum de vraisemblance.
- 2) Étudier les propriétés de $\hat{\sigma}^2$.
- 3) Donner un intervalle de confiance de niveau 95% pour sachant que la taille de l'échantillon n=10 et $\sum_{i=1}^{10} X_i^2=100$
- 4) On se propose de tester une hypothèse $H_0: \sigma^2 = 4$ contre une hypothèse alternative $H_a: \sigma^2 = 5$.
 - a) Construire la région critique du test au seuil de 5%
 - b) Quelle est la décision à prendre.
 - c) Calculer le risque de deuxième espèce. En déduire la puissance du test.

Corrigé :

1)

On considère une variable aléatoire X de loi $\mathcal{N}(0,\sigma^2)$, on suppose que σ^2 est inconnue et on possède un n-échantillon indépendant (X_1,X_2,\dots,X_n)

$$L(x_i, \sigma^2) = \prod_{i=1}^n f(x_i, \sigma^2) = \prod_{i=1}^n \left(\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x_i^2}{2\sigma^2}}\right) = \left(\prod_{i=1}^n \sigma^{-1}\right) \left(\prod_{i=1}^n (2\pi)^{-\frac{1}{2}}\right) \left(exp\sum_{i=1}^n -\frac{x_i^2}{2\sigma^2}\right)$$

https://web.facebook.com/OMEGACENTER2014

$$= \sigma^{-n}.(2\pi)^{-\frac{n}{2}}.exp\left[-\frac{1}{2\sigma^2}\sum_{i=1}^n x_i^2\right]$$

$$\ln[L(x_i, \sigma^2)] = -n \ln(\sigma) - \frac{n}{2} \ln(2\pi) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} x_i^2$$

ou encore
$$\ln[L(x_i,v)] = -\frac{n}{2}\ln(v) - \frac{n}{2}\ln(2\pi) - \frac{1}{2v}\sum_{i=1}^n x_i^2$$
, où $v = \sigma^2$

$$\frac{\partial \ln[L(x_i, v)]}{\partial(v)} = -\frac{n}{2v} + \frac{1}{2v^2} \sum_{i=1}^{n} x_i^2$$

$$\frac{\partial^2 \ln[L(x_i, v)]}{\partial v^2} = \frac{n}{2v^2} - \frac{1}{v^3} \sum_{i=1}^n x_i^2$$

$$\widehat{v}$$
 L'EMV de a sera la solution du système suivant :
$$\begin{cases} \frac{\partial \ln[L]}{\partial v} = 0\\ \frac{\partial^2 \ln[L]}{\partial v^2} < 0 \end{cases}$$

$$\widehat{v} \ solution \ de \ \begin{cases} \frac{\partial \ln[L]}{\partial v} = 0 \\ \frac{\partial^2 \ln[L]}{\partial v^2} < 0 \end{cases} \Leftrightarrow \begin{cases} -\frac{n}{2\widehat{v}} + \frac{1}{2\widehat{v}^2} \sum_{i=1}^n x_i^2 = 0 \\ \frac{n}{2\widehat{v}^2} - \frac{1}{\widehat{v}^3} \sum_{i=1}^n x_i^2 < 0 \end{cases} \Leftrightarrow \begin{cases} -\frac{n}{2\widehat{v}^2} \left(\widehat{v} - \frac{1}{n} \sum_{i=1}^n x_i^2\right) = 0 \\ \frac{n}{2\widehat{v}^3} \left(\widehat{v} - \frac{2}{n} \sum_{i=1}^n x_i^2\right) < 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \widehat{v} = \frac{1}{n} \sum_{i=1}^{n} x_i^2 \\ \frac{n}{2\widehat{v}^3} (\widehat{v} - 2\widehat{v}) < 0 \end{cases} \Leftrightarrow \begin{cases} \widehat{v} = \widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 \\ -\frac{n}{2\widehat{v}^2} < 0, (v \acute{e}rifi\acute{e}e) \end{cases}$$

$$D'où$$
 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \ est \ L'EMV \ de \ \sigma^2$

2)

Biais:

$$Biais(\widehat{\sigma}^2 \text{ , } \sigma^2) = E(\widehat{\sigma}^2) - \sigma^2 = E\left(\frac{1}{n}\sum_{i=1}^n X_i^2\right) - \sigma^2 = \frac{1}{n}E\left(\sum_{i=1}^n X_i^2\right) - \sigma^2 = \frac{1}{n}\sum_{i=1}^n E\left(X_i^2\right) - \sigma^2$$

$$Or \ \forall i = 1, 2, ..., n : E(X_i^2) = V(X_i) + \left(\underbrace{E(X_i)}_{0}\right)^2 = \sigma^2$$

https://web.facebook.com/OMEGACENTER2014

Ainsi, Biais
$$(\hat{\sigma}^2, \sigma^2) = \frac{1}{n} \sum_{i=1}^n \sigma^2 - \sigma^2 = \sigma^2 - \sigma^2 = 0$$

$$D'où$$
 $Biais(\widehat{\sigma}^2, \sigma^2) = 0$ et $\widehat{\sigma}^2$ sans biais de σ^2

Convergence:

$$\overline{On \, a \, \lim_{n \to +\infty} E(\widehat{\sigma}^2)} = \sigma^2 \quad (1)$$

Or $(X_1, X_2, ..., X_n)$ est une suite de v. a i. i. d de $\mathcal{N}(0, \sigma^2)$, par la suite :

$$\frac{X_i}{\sigma} \sim \mathcal{N}(0,1) \Rightarrow \frac{1}{\sigma^2} \underbrace{\sum_{i=1}^n X_i^2}_{n\widehat{\sigma}^2} \sim \chi^2(n) \text{ ou encore } \frac{n\widehat{\sigma}^2}{\sigma^2} \sim \chi^2(n)$$

$$\textit{On obtient donc} : \begin{cases} E\left(\frac{n\widehat{\sigma}^2}{\sigma^2}\right) = n \\ V\left(\frac{n\widehat{\sigma}^2}{\sigma^2}\right) = 2n \end{cases} \Leftrightarrow \begin{cases} \frac{n}{\sigma^2}E(\widehat{\sigma}^2) = n \\ \frac{n^2}{\sigma^4}V(\widehat{\sigma}^2) = 2n \end{cases} \Leftrightarrow \begin{cases} E(\widehat{\sigma}^2) = \sigma^2 \\ V(\widehat{\sigma}^2) = \frac{2\sigma^4}{n} \end{cases}$$

$$\lim_{n\to+\infty} V(\widehat{\sigma}^2) = \lim_{n\to+\infty} \frac{2\sigma^4}{n} = 0 \quad (2)$$

(1) et (2)
$$\Rightarrow$$
 L'estimateur $\hat{\sigma}^2$ converge en moyenne quadratique vers σ^2

Efficacité:

La quantité d'information de Fisher sur σ^2 apportée par l'échantillon X_1, \dots, X_n est :

$$\begin{split} I_n(\sigma^2) &= I_n(v) = E\left[-\left(\frac{\partial^2 \ln[L(x_i,v)]}{\partial v^2}\right)\right] = E\left[\left(\frac{1}{v^3}\sum_{\substack{i=1\\n\widehat{v}}}^n X_i^2\right) - \frac{n}{2v^2}\right] = E\left[\frac{n\widehat{v}}{v^3} - \frac{n}{2v^2}\right] = \frac{n}{v^3}\underbrace{E(\widehat{v})}_v - \frac{n}{2v^2} \\ &= \frac{nv}{v^3} - \frac{n}{2v^2} = \frac{2n}{2v^2} - \frac{n}{2v^2} = \frac{n}{2v^2} = \frac{n}{2\sigma^4} \\ \hline I_n(\theta) &= \frac{n}{2\sigma^4} \end{split}$$

$$Eff(\widehat{\sigma}^2) = \frac{\left(\frac{\partial E(\widehat{\sigma}^2)}{\partial \sigma^2}\right)^2}{I_n(\sigma^2)Var(\widehat{\sigma}^2)} \text{ , or } E(\widehat{\sigma}^2) = \sigma^2 \Rightarrow \frac{\partial E(\widehat{\sigma}^2)}{\partial \sigma^2} = 1$$

$$Ainsi: Eff(\widehat{\sigma}^2) = \frac{1}{I_n(\sigma^2)Var(\widehat{\sigma}^2)} = \frac{1}{\frac{n}{2\sigma^4} \times \frac{2\sigma^4}{n}} = 1 \ d'où \left[\widehat{\sigma}^2 \ est \ dit \ un \ estimateur \ efficace \right]$$

428

3)

omega.center.cp@gmail.com fhttps://web.facebook.com/OMEGACENTER2014

On
$$a: W_n = \frac{1}{\sigma^2} \sum_{i=1}^n X_i^2 \sim \chi^2(n)$$

On se propose de construire un intervalle de confiance de niveau $1-\alpha=0,95$ pour σ^2 en prenant des risques symétriques.

On a
$$P(k_1 \leq W_n \leq k_2) = 1 - \alpha \Leftrightarrow P(W_n \in [k_1, k_2]) = 1 - \alpha$$

$$\Leftrightarrow P(W_n \in (]-\infty, k_1[\ \cup\]k_2, +\infty[)) = \alpha \Leftrightarrow P(W_n \in]-\infty, k_1[) + P(W_n \in]k_2, +\infty[) = \alpha$$

$$\Leftrightarrow P(W_n < k_1) + P(W_n > k_2) = \alpha$$

L'intervalle étant bilatéral symétrique, donc, $P(W_n < k_1) = P(W_n > k_2) = \frac{\alpha}{2}$

$$\textit{Ce qui donne}: \begin{cases} P(W_n < k_1) = \frac{\alpha}{2} \\ P(W_n > k_2) = \frac{\alpha}{2} \end{cases} \Leftrightarrow \begin{cases} P(W_n < k_1) = \frac{\alpha}{2} \\ P(W_n < k_2) = 1 - \frac{\alpha}{2} \end{cases} \Leftrightarrow \begin{cases} k_1 = \chi_{\frac{\alpha}{2}}^2(n) \\ k_2 = \chi_{1-\frac{\alpha}{2}}^2(n) \end{cases}, \textit{car } W_n \sim \chi^2(n)$$

Par la suite :

$$P\left(\chi_{\frac{\alpha}{2}}^{2}(n) \leq W_{n} \leq \chi_{1-\frac{\alpha}{2}}^{2}(n)\right) = 1 - \alpha \Leftrightarrow P\left(\chi_{\frac{\alpha}{2}}^{2}(n) \leq \frac{1}{\sigma^{2}} \sum_{i=1}^{n} X_{i}^{2} \leq \chi_{1-\frac{\alpha}{2}}^{2}(n)\right) = 1 - \alpha$$

$$\Leftrightarrow P\left(\frac{1}{\chi_{1-\frac{\alpha}{2}}^{2}(n)} \leq \frac{\sigma^{2}}{\sum_{i=1}^{n} X_{i}^{2}} \leq \frac{1}{\chi_{\frac{\alpha}{2}}^{2}(n)}\right) = 1 - \alpha \Leftrightarrow P\left(\frac{\sum_{i=1}^{n} X_{i}^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}(n)} \leq \sigma^{2} \leq \frac{\sum_{i=1}^{n} X_{i}^{2}}{\chi_{\frac{\alpha}{2}}^{2}(n)}\right) = 1 - \alpha$$

D'où la construction de l'intervalle de confiance, bilatéral et symétrique de niveau $1-\alpha\ pour\ \sigma^2:$

$$IC_{1-\alpha}(\sigma^2) = \left[\left(\sum_{i=1}^n X_i^2 / \chi_{1-\frac{\alpha}{2}}^2(n) \right); \left(\sum_{i=1}^n X_i^2 / \chi_{\frac{\alpha}{2}}^2(n) \right) \right]$$

Application numérique:

$$n=10$$
 , $\sum_{i=1}^{10} X_i^2=100$, $d'autre\ part: \begin{cases} \chi_{1-rac{lpha}{2}}^2(n)=\chi_{0,975}^2(10)=20,5 \ \chi_{rac{lpha}{2}}^2(n)=\chi_{0,025}^2(10)=3,25 \end{cases}$

$$IC_{95\%}(\sigma^2) = \left[\frac{100}{20.5}, \frac{100}{3.25}\right]$$

$$IC_{95\%}(\sigma^2) = [4,878; 30,769]$$
 ou encore $IC_{95\%}(\sigma) = [2,209; 5,547]$

429

4)

a) On se propose de tester $H_0: \sigma^2 = 4$ contre $H_a: \sigma^2 = 5$ un niveau de signification $\alpha = 0.05$

Il s'agit donc d'un test unilatéral à droite, puisque $\sigma_1^2>\sigma_0^2$, avec $\sigma_0^2=4$ et $\sigma_1^2=5$

Distribution de la statistique de décision :

$$W_n = \frac{1}{\sigma^2} \sum_{i=1}^n X_i^2 \sim \chi^2(n)$$

Région et Valeurs critiques :

$$\mathcal{R}_{\mathcal{C}} = \left\{ (X_1, \dots, X_n) \middle| \sum_{i=1}^n X_i^2 > c \right\}$$

avec, $\alpha = P(Rejeter H_0|H_0 vraie)$, le risque de première espèce

$$= P\left(\sum_{i=1}^{n} X_{i}^{2} > c \middle| \sigma^{2} = \sigma_{0}^{2}\right) ; où \sigma_{0}^{2} = 4 = P\left(\frac{1}{\sigma^{2}} \sum_{i=1}^{n} X_{i}^{2} > \frac{c}{\sigma^{2}} \middle| \sigma^{2} = \sigma_{0}^{2}\right)$$

$$=P\left(W_n>\frac{c}{\sigma^2}\left|\sigma^2=\sigma_0^2\right.\right)=P\left(W_n>\frac{c}{\sigma_0^2}\right)=1-P\left(W_n\leq\frac{c}{\sigma_0^2}\right)$$

Ainsi,
$$P\left(W_n \leq \frac{c}{\sigma_0^2}\right) = 1 - \alpha \Leftrightarrow \frac{c}{\sigma_0^2} = \chi_{1-\alpha}^2(n)$$

 $D'où \ le \ point \ critique : c = \sigma_0^2 \times \chi_{1-\alpha}^2(n) \ avec \ , \sigma_0^2 = 4 \ \ et \ \chi_{1-\alpha}^2(n) = \chi_{0.95}^2(10) = 18.3$

$$c = 4 \times 18, 3 = 73, 2$$

le point critique :
$$c = 73, 2$$
 et la région critique : $\mathcal{R}_{\mathcal{C}} = \left\{ (X_1, \dots, X_n) \middle| \left[\sum_{i=1}^n X_i^2 \right]_{obs} > 73, 2 \right\}$

b)

Règle de décision :

On rejette
$$H_0$$
 si $\left[\sum_{i=1}^n X_i^2\right]_{obs} > 73,2$

Or on observe
$$\sum_{i=1}^{n} X_i^2 = 100 \Rightarrow \left[\sum_{i=1}^{10} \sqrt{x_i}\right]_{obs} > 73, 2$$

On rejettera H_0 , avec un risque de première espèce $\alpha=5\%$

c)

 $\beta = P(Non\text{-rejet de } H_0|H_0 \text{ fausse})$, le risque de deuxième espèce

https://web.facebook.com/OMEGACENTER2014

$$= P(Non\text{-rejet de } H_0|H_a \ vraie) = P\left(\frac{1}{\sigma^2}\sum_{i=1}^n X_i^2 \le \frac{c}{\sigma^2} \middle| \sigma^2 = \sigma_1^2\right); \text{ où } \sigma_1^2 = 5$$

$$= P\left(W_n \le \frac{c}{\sigma^2} \middle| \sigma^2 = \sigma_1^2\right) = P\left(W_n \le \frac{c}{\sigma_1^2}\right)$$

$$\beta = P(W_n \le \frac{73,2}{5}) = P(W_n \le 14,64) \ et \ W_n \sim \chi^2(10) \Rightarrow \chi^2_{\beta}(10) = 14,64 \ \Rightarrow \boxed{\beta \cong 85\%}$$

Ainsi la puissance du test sera : $\pi = P(Rejeter H_0|H_0 fausse) = 1 - \beta \Rightarrow \boxed{\pi \cong 15\%}$

La puissance de ce test n'est pas satisfaisante, vue la petite taille de l'échantillon.

En effet pour n = 27 et dans l'hypothèse où c reste égale à 73, 2, on obtient :

$$\chi_{\beta}^{2}(27) = 14,64 \Rightarrow \beta \cong 2,5\% \Rightarrow \pi \cong 97,5\%$$

Mais le problème réside dans le fait que le point critique c dépend aussi de la taille de l'échantillon donc les risques et la règle de décision

Institut de Financement du Développement du Maghreb Arabe CONCOURS DE RECRUTEMENT DE LA XXXVIIème PROMOTION (ASSURANCE)

Avril 2018

Exercice 6 – Deuxième Partie : (5 points : 1+1+1,5+1,5)

ÉNONCÉ

Le gain associé à un projet industriel suit une loi exponentielle telle que définie

ci-dessous (Axe
$$\bigcirc$$
): Exercice 7-Partie 1): $f(x) = \begin{cases} \theta e^{-\theta x}, pour \ x \ge 0 \\ 0, sinon \end{cases}$; $\theta > 0$

Le projet peut prendre deux formes distinctes notées A et B pour lesquels le paramètres de la variable gain correspondant est soit a soit b, avec a et b deux paramètres inconnus positifs différents.

On dispose de n réalisations indépendantes $X_1, X_2, ..., X_n$ suivant toutes la même loi que la variable X de paramètre a et de n autres réalisations indépendantes $Y_1, Y_2, ..., Y_n$ suivant toutes la même loi que la variable X de paramètre b

omega.center.cp@gmail.com

 1)

- Déterminer les estimations de a et de b par la méthode de maximum de vraisemblance.
- ii. Ces estimations sont-elles efficaces? Justifier votre réponse
- 2) On dispose de n = 10 observations indépendantes pour chacun des deux types de projets.

		1	2	3	4	5	6	7	8	9	10
	A	12	5	10	17	14	11	13	9	8	11
Ī	В	15	11	17	6	12	13	17	11	12	16

- i. Comparer les deux projets A et B au sens de gain espéré
- ii. Comparer les deux projets A et B au sens du risque associé au gain

<u>Corrigé</u>

1)

i.

Calculons $L(u_i,\theta)$, la fonction de vraisemblance du n-échantillon i. i. d $U_1,U_2,...,U_n$ d'une

$$loi\ \mathcal{E}(\theta)\ ;\ f(u_i,\theta) = \begin{cases} \theta e^{-\theta u_i}\ , pour\ u_i \geq 0 \\ 0\ , si\ non \end{cases}\ ;\ \theta > 0\ :$$

$$L(u_i,\theta) = \prod_{i=1}^n f(u_i,\theta) = \prod_{i=1}^n [\theta e^{-\theta u_i}] = \prod_{i=1}^n \theta \prod_{i=1}^n e^{-\theta u_i} = \theta^n exp\left(-\theta \sum_{i=1}^n u_i\right)$$

Ainsi,
$$L(u_i, \theta) = \theta^n exp\left(-\theta \sum_{i=1}^n u_i\right)$$

Il en résulte le logarithme de la fonction de vraisemblance :

$$\ln[L(u_i,\theta)] = n \ln \theta - \theta \sum_{i=1}^n u_i$$

Calculons les dérivées partielles premières et secondes de $\ln[L(u_i, \theta)]$ par rapport à la variable θ :

$$\boxed{\frac{\partial \ln[L]}{\partial \theta} = \frac{n}{\theta} - \sum_{i=1}^{n} u_i} \Rightarrow \boxed{\frac{\partial^2 \ln[L]}{\partial \theta^2} = -\frac{n}{\theta^2}}$$

 $\widehat{ heta}$ L'EMV de heta sera la solution du système suivant : $egin{cases} rac{\partial \ln |L|}{\partial heta} = 0 \ rac{\partial^2 \ln |L|}{\partial heta^2} < 0 \end{cases}$

fhttps://web.facebook.com/OMEGACENTER2014

$$\widehat{\theta} \ solution \ de \ \begin{cases} \frac{\partial \ ln[L]}{\partial \theta} = 0 \\ \frac{\partial^2 \ ln[L]}{\partial \theta^2} < 0 \end{cases} \Leftrightarrow \begin{cases} \frac{n}{\widehat{\theta}} - \sum_{i=1}^n u_i = 0 \\ -\frac{n}{\widehat{\theta}^2} < 0 \ (\text{\'e}vidente) \end{cases} \Leftrightarrow \begin{cases} \frac{n}{\widehat{\theta}} = \sum_{i=1}^n u_i \\ -\frac{n}{\widehat{\theta}^2} < 0 \ (\text{\'e}vidente) \end{cases}$$

$$\Leftrightarrow \begin{cases} \widehat{\theta} = n / \sum_{i=1}^{n} U_{i} = 1 / \overline{U} \\ -\frac{n}{\widehat{\theta}^{2}} < 0 \text{ (Évidente)} \end{cases}$$

$$D'où \widehat{\theta} = \frac{n}{\sum_{i=1}^{n} U_i} = \frac{1}{\overline{U}} est L'EMV de \theta : \begin{cases} \widehat{a} = \frac{n}{\sum_{i=1}^{n} X_i} = \frac{1}{\overline{X}} \\ \widehat{b} = \frac{n}{\sum_{i=1}^{n} Y_i} = \frac{1}{\overline{Y}} \end{cases}$$

ii.

On se propose de calculer $E(\widehat{m{ heta}})$ et $V(\widehat{m{ heta}})$:

$$U_i \sim \mathcal{E}(\theta) \Leftrightarrow U_i \sim \Gamma\left(1, \frac{1}{\theta}\right)$$

$$Or(U_1, U_2, ..., U_n) \ est \ n\text{-\'echantillon i. i. d} \ de \ \Gamma\left(1, \frac{1}{\theta}\right) \Rightarrow Z = \sum_{i=1}^n U_i \sim \Gamma\left(\sum_{\substack{i=1\\ n}}^n 1, \frac{1}{\theta}\right)$$

$$\Rightarrow Z = \sum_{i=1}^n U_i \sim \Gamma\left(n, \frac{1}{\theta}\right) \ de \ densit \\ \acute{e}: f_Z\left(z, n, \frac{1}{\theta}\right) = \begin{cases} \frac{z^{n-1}e^{-\frac{x}{1/\theta}}}{\Gamma(n)(1/\theta)^n} = \frac{\theta^n z^{n-1}e^{-\theta z}}{\Gamma(n)} \ , \ si \ z \in [0, +\infty[n]] \end{cases}$$

Biais:

$$E(\widehat{\theta}) = E\left(\frac{n}{\sum_{i=1}^{n} U_{i}}\right) = nE\left(\frac{1}{Z}\right) = n\int_{0}^{+\infty} \frac{1}{z} f_{Z}(z) dz = n\int_{0}^{+\infty} \frac{1}{z} \frac{\theta^{n} z^{n-1} e^{-\theta z}}{\Gamma(n)} dz = \frac{n\theta^{n}}{\Gamma(n)} \int_{0}^{+\infty} \frac{z^{n-1} e^{-\theta z}}{z} dz$$

$$E(\widehat{\theta}) = \frac{n\theta^n}{\Gamma(n)} \int_0^{+\infty} z^{n-2} e^{-\theta z} dz$$

· Calculons, $\int_{0}^{+\infty} z^{n-2}e^{-\theta z}dz$, par une intégration par parties :

https://web.facebook.com/OMEGACENTER2014

$$\begin{cases} C(t) = e^{-\theta z} \\ D'(t) = z^{n-2} \end{cases} \Rightarrow \begin{cases} C'(t) = -\theta e^{-\theta z} \\ D(t) = \frac{z^{(n-2)+1}}{(n-2)+1} = \frac{z^{n-1}}{n-1} \end{cases}$$

$$\int_{0}^{+\infty} z^{n-2} e^{-\theta z} dz = \underbrace{\left[\frac{z^{n-1} e^{-\theta z}}{n-1}\right]_{0}^{+\infty}}_{0} - \int_{0}^{+\infty} \frac{-\theta e^{-\theta z} z^{n-1}}{n-1} dz = \int_{0}^{+\infty} \frac{\theta e^{-\theta z} z^{n-1}}{n-1} dz$$

Par la suite,
$$E(\widehat{\theta}) = \frac{n\theta^n}{\Gamma(n)} \int_0^{+\infty} z^{n-2} e^{-\theta z} dz = \frac{n\theta^n}{\Gamma(n)} \int_0^{+\infty} \frac{\theta e^{-\theta z} z^{n-1}}{n-1} dz = \frac{n\theta}{n-1} \int_0^{+\infty} \frac{\theta^n z^{n-1} e^{-\theta z}}{\Gamma(n)} dz$$
$$= \frac{n\theta}{n-1} \int_0^{+\infty} f_Z(z) dz$$

$$E(\widehat{\theta}) = \left(\frac{n}{n-1}\right)\theta \neq \theta \Longrightarrow \widehat{\theta} = \frac{1}{\overline{U}}$$
 est un estimateur biaisé de θ

$$\begin{cases} \widehat{a} = \frac{n}{\sum_{i=1}^{n} X_i} = \frac{1}{\overline{X}} \text{ est un estimateur biais\'e de a} \\ \widehat{b} = \frac{n}{\sum_{i=1}^{n} Y_i} = \frac{1}{\overline{Y}} \text{ est un estimateur biais\'e de b} \end{cases} \Rightarrow \begin{cases} \widehat{a} \text{ n'est pas efficace} \\ \widehat{b} \text{ n'est pas efficace} \end{cases}$$

$$\textit{Cependant} \text{ , } \lim_{n \to +\infty} E(\widehat{\theta}) = \lim_{n \to +\infty} \Big(\frac{n}{n-1}\Big) \theta = \theta \implies \widehat{\theta} \text{ est asymptotiquement non-bias\'ee}$$

· On peut en déduire un estimateur sans biais de θ :

On
$$a: E\left(\left(\frac{n-1}{n}\right)\widehat{\theta}\right) = \left(\frac{n-1}{n}\right)E(\widehat{\theta}) = \left(\frac{n-1}{n}\right)\left(\frac{n}{n-1}\right)\theta = \theta$$

$$D'où$$
, $\widetilde{ heta} = \left(\frac{n-1}{n}\right)\widehat{ heta} = \frac{n-1}{\sum_{i=1}^n U_i} = \frac{n-1}{n\overline{U}}$ sans biais de $heta$

$$\begin{cases} \widetilde{a} = \frac{n-1}{\sum_{i=1}^{n} X_i} = \frac{n-1}{n\overline{X}} \text{ sans biais de } a \\ \widetilde{b} = \frac{n-1}{\sum_{i=1}^{n} Y_i} = \frac{n-1}{n\overline{Y}} \text{ sans biais de } b \end{cases}$$

Convergence:

$$\cdot E\left(\frac{1}{Z^{2}}\right) = \int_{0}^{+\infty} \frac{1}{z^{2}} f_{Z}(z) dz = \int_{0}^{+\infty} \frac{1}{z^{2}} \frac{\theta^{n} z^{n-1} e^{-\theta z}}{\Gamma(n)} dz = \frac{\theta^{n}}{\Gamma(n)} \int_{0}^{+\infty} \frac{z^{n-1} e^{-\theta z}}{z^{2}} dz = \frac{\theta^{n}}{\Gamma(n)} \int_{0}^{+\infty} z^{n-3} e^{-\theta z} dz$$

https://web.facebook.com/OMEGACENTER2014

· Calculons, $\int z^{n-3}e^{-\theta z}dz$, par une intégration par parties :

$$\begin{cases} C(t) = e^{-\theta z} \\ D'(t) = z^{n-3} \end{cases} \Rightarrow \begin{cases} C'(t) = -\theta e^{-\theta z} \\ D(t) = \frac{z^{(n-3)+1}}{(n-3)+1} = \frac{z^{n-2}}{n-2} \end{cases}$$

$$\int_{0}^{+\infty} z^{n-3} e^{-\theta z} dz = \underbrace{\left[\frac{z^{n-2} e^{-\theta z}}{n-2}\right]_{0}^{+\infty}}_{0} - \int_{0}^{+\infty} \frac{-\theta e^{-\theta z} z^{n-2}}{n-2} dz = \int_{0}^{+\infty} \frac{\theta e^{-\theta z} z^{n-2}}{n-2} dz$$

$$E\left(\frac{1}{Z^2}\right) = \frac{\theta^n}{\Gamma(n)} \int_0^{+\infty} z^{n-3} e^{-\theta z} dz = \frac{\theta^n}{\Gamma(n)} \int_0^{+\infty} \frac{\theta e^{-\theta z} z^{n-2}}{n-2} dz$$

$$Or E\left(\frac{1}{Z}\right) = \frac{\theta^{n}}{\Gamma(n)} \int_{0}^{+\infty} e^{-\theta z} z^{n-2} dz , donc, E\left(\frac{1}{Z^{2}}\right) = \frac{\theta}{n-2} \underbrace{\left[\frac{\theta^{n}}{\Gamma(n)} \int_{0}^{+\infty} e^{-\theta z} z^{n-2} dz\right]}_{E\left(\frac{1}{Z}\right)} = \left(\frac{\theta}{n-2}\right) \left(\frac{\theta}{n-1}\right)$$

$$E\left(\frac{1}{Z^2}\right) = \frac{\theta^2}{(n-2)(n-1)}$$

ainsi,
$$V\left(\frac{1}{Z}\right) = E\left(\frac{1}{Z^2}\right) - \left(E\left(\frac{1}{Z}\right)\right)^2 = \frac{\theta^2}{(n-2)(n-1)} - \frac{\theta^2}{(n-1)^2} = \frac{\theta^2}{(n-1)} \left[\frac{1}{(n-2)} - \frac{1}{(n-1)}\right]$$

$$V\left(\frac{1}{Z}\right) = \frac{\theta^2}{(n-1)} \left[\frac{n-1-n+2}{(n-2)(n-1)} \right] = \frac{\theta^2}{(n-2)(n-1)^2}$$

$$V(\widetilde{\theta}) = V(\frac{n-1}{Z}) = (n-1)^2 V(\frac{1}{Z}) = \frac{(n-1)^2 \theta^2}{(n-2)(n-1)^2}$$

$$V(\widetilde{\theta}) = \frac{\theta^2}{(n-2)}$$
 et $\lim_{n \to +\infty} V(\widetilde{\theta}) = 0$. D'où $\widetilde{\theta}$ est un estimateur convergent de θ

$$\begin{cases} V(\widetilde{a}) = \frac{a^2}{(n-2)} \ et \ \lim_{n \to +\infty} V(\widetilde{a}) = \mathbf{0} \ . D'où \ \widetilde{a} \ est \ un \ estimateur \ convergent \ de \ a \\ \\ V(\widetilde{b}) = \frac{b^2}{(n-2)} \ et \ \lim_{n \to +\infty} V(\widetilde{b}) = \mathbf{0} \ . D'où \ \widetilde{b} \ est \ un \ estimateur \ convergent \ de \ b \end{cases}$$

$$V(\widetilde{b}) = rac{b^2}{(n-2)} \ et \ \lim_{n o +\infty} V(\widetilde{b}) = 0 \ .$$
 D'où \widetilde{b} est un estimateur convergent de b

Efficacité:

Calculons la quantité d'information de Fisher sur θ apportée par l'échantillon $(U_1, U_2, ..., U_n)$:

https://web.facebook.com/OMEGACENTER2014

$$I_n(\theta) = E\left[-\left(\frac{\partial^2 \ln L}{\partial \theta^2}\right)\right] = E\left[-\left(-\frac{n}{\theta^2}\right)\right] = \frac{n}{\theta^2}$$

$$I_n(\theta) = \frac{n}{\theta^2}$$

$$Eff(\widehat{\theta}) = \frac{\left(\frac{\partial E(\widehat{\theta})}{\partial \theta}\right)^2}{I_n(\theta)Var(\widehat{\theta})} \text{ , or } E(\widehat{\theta}) = \theta \Rightarrow \frac{\partial E(\widehat{\theta})}{\partial \theta} = 1$$

$$Ainsi: Eff(\widetilde{\theta}) = \frac{1}{I_n(\theta)Var(\widetilde{\theta})} = \frac{1}{\frac{n}{\theta^2} \times \frac{\theta^2}{(n-2)}} = \frac{n-2}{n} \neq 1 \ d'où \left[\widetilde{\theta} \ n'est \ pas \ efficace\right]$$

$$\begin{cases} \widetilde{a} \ n'est \ pas \ efficace \\ \widetilde{b} \ n'est \ pas \ efficace \end{cases}$$

Cependant,
$$\lim_{n \to +\infty} Eff(\widetilde{\theta}) = \lim_{n \to +\infty} \frac{n-2}{n} = 1 \implies \widetilde{\theta} \ est \ asymptotique ment \ efficace$$

 \widetilde{b} est asymptotiquement efficace \widetilde{b} est asymptotiquement efficace

· On pourra déterminer un estimateur sans bais de la variance d'une loi exponentielle :

$$U_i \sim \mathcal{E}(\theta) \Longrightarrow Var(U_i) = \frac{1}{\theta^2} = \sigma^2$$

Or $\widetilde{\theta} = \frac{n-1}{n\overline{U}}$ sans biais de θ , a-t-on $\widetilde{\theta}^2$ un estimateur de θ^2 ?

$$E(\widetilde{\theta}^2) = V(\widetilde{\theta}) + \left(E(\widetilde{\theta})\right)^2 = \frac{\theta^2}{n-2} + \theta^2 = \left(\frac{n-1}{n-2}\right)\theta^2 \Rightarrow E\left(\left(\frac{n-2}{n-1}\right)\widetilde{\theta}^2\right) = \theta^2$$

$$Ainsi\ \breve{\theta}^2 = \left(\frac{n-2}{n-1}\right) \widetilde{\theta}^2 = \left(\frac{n-2}{n-1}\right) \frac{(n-1)^2}{n^2 \overline{U}^2} = \frac{(n-2)(n-1)}{n^2 \overline{U}^2} \text{ , sans biais de } \theta^2$$

$$\begin{cases} \breve{a}^2 = \frac{(n-2)(n-1)}{(\sum_{i=1}^n X_i)^2} = \frac{(n-2)(n-1)}{n^2 \overline{X}^2} \text{ sans biais de } a^2 \\ \breve{b}^2 = \frac{(n-2)(n-1)}{(\sum_{i=1}^n Y_i)^2} = \frac{(n-2)(n-1)}{n^2 \overline{Y}^2} \text{ sans biais de } b^2 \end{cases}$$

2)

i.

		1	2	3	4	5	6	7	8	9	10
	A	12	5	10	17	14	11	13	9	8	11
	В	15	11	17	6	12	13	17	11	12	16

mega.center.cp@gmail.com fhttps://web.facebook.com/OMEGACENTER2014

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = 11$$
 $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = 13$

$$X_i \sim \mathcal{E}(a) \Longrightarrow E(X_i) = \frac{1}{a} \ \ et \ \ \widetilde{a} = \frac{n-1}{n\overline{X}}$$

$$Y_i \sim \mathcal{E}(b) \Longrightarrow E(Y_i) = \frac{1}{b} et \widetilde{b} = \frac{n-1}{n\overline{Y}}$$

Le gain espéré du projet A est estimé à : $\widetilde{E(X_t)} = \frac{1}{\widetilde{a}} = \frac{n\overline{X}}{n-1} = 12,22$

Le gain espéré du projet B est estimé à : $\widetilde{E(Y_i)} = \frac{1}{\widetilde{b}} = \frac{n\overline{Y}}{n-1} = 14,44$

Ainsi le projet B serait plus préféré au projet A, au sens de gain espéré

ii.

$$\cdot \ X_i \sim \mathcal{E}(a) \Longrightarrow V(X_i) = \frac{1}{a^2} \ \ et \ \widecheck{a}^2 = \frac{(n-2)(n-1)}{n^2 \overline{X}^2}$$

$$Y_i \sim \mathcal{E}(b) \Longrightarrow V(Y_i) = \frac{1}{b^2} \ \ et \ \ b^2 = \frac{(n-2)(n-1)}{n^2 \overline{Y}^2}$$

La variance du projet A est estimée à : $\widetilde{V(X_i)} = \frac{1}{\widecheck{a}^2} = \frac{n^2 \overline{X}^2}{(n-2)(n-1)} = 168,06 \Rightarrow \widecheck{\sigma}_{X_i} = 12,96$

La variance du projet B est estimée à : $\widetilde{V(Y_i)} = \frac{1}{\widetilde{h}^2} = \frac{n^2 \overline{Y}^2}{(n-2)(n-1)} = 234,72 \Rightarrow \widecheck{\sigma}_{Y_i} = 15,32$

Le projet A présente un risque plus faible, il est donc préféré au projet B, au sens du risque

Institut de Financement du Développement du Maghreb Arabe CONCOURS DE RECRUTEMENT DE LA XXXIXème PROMOTION (ASSURANCE)

Juin 2022

Exercice 7: (8 points: 2+2+2+2)

ÉNONCÉ

Le nombre X d'accidents commis par un client d'une compagnie d'assurance durant une période donnée suit une loi de Poisson de paramètre λ , avec $\lambda>0$

On rappelle que :
$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

- 1- Calculer E(X) et $E(X^2)$
- 2- Déterminer en fonction de λ la valeur du paramètre $\theta = P(X \le 1)$. En déduire un estimateur de θ en fonction d'un échantillon d'observations $X_1, X_2, ..., X_n$ indépendantes et de même loi que X.
- 3- En admettant que n est élevé, expliquer sans faire de calcul comment on peut déterminer un intervalle de confiance à un niveau $(1-\alpha)\%$ du paramètre λ , où α est un scalaire strictement compris entre 0 et 1.
- 4- La compagnie d'assurance a fixé pour chacun de ses clients le nombre de remboursement Y à m, inférieur ou égal à 2.

Déterminer la distribution de Y ainsi que son espérance mathématique. Conclure.

Corrigé

$$X \sim \mathcal{P}(\lambda) \Longrightarrow \overline{E(X) = V(X) = \lambda}$$

$$Or E(X^2) = V(X) + [E(X)]^2 = \lambda + \lambda^2$$

$$E(X^2) = \lambda(1+\lambda)$$

2-

•
$$\theta = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{e^{-\lambda} \lambda^0}{0!} + \frac{e^{-\lambda} \lambda^1}{1!} = e^{-\lambda} + \lambda e^{-\lambda}$$

$$D'o$$
ù: $\theta = P(X \le 1) = (1 + \lambda)e^{-\lambda}$

• $(X_1, ..., X_n)$ est un n-échantillon i. i. d de $\mathcal{P}(\lambda)$

Or, $\lambda = E(X)$ donc l'estimateur naturel de λ par la méthode des moments sera :

$$\hat{\lambda} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 On demontrera facilement qu'il s'agit d'un estimateur sans biais,

438

convergent et efficace de λ .

https://web.facebook.com/OMEGACENTER2014

• Soit $\varphi(t)=(1+t)e^{-t}$, ce qui implique que $\theta=\varphi(\lambda)$, or $\hat{\lambda}=\overline{X}_n$ est un estimateur de λ .

Par conséquent $\varphi(\hat{\lambda})=(1+\overline{X}_n)e^{-\overline{X}_n}$ est une stimateur de $\varphi(\lambda)$

$$\widehat{\boldsymbol{\theta}} = (1 + \overline{X}_n)e^{-\overline{X}_n}$$

Remarque: Ce n'est pas parce que $\hat{\lambda}$ est un bon estimateur de λ que $\varphi(\hat{\lambda})$ est un

bon estimateur de $\varphi(\lambda)$.

3-

D'après le théorème de la limite centrée $: U_n = \frac{\overline{X}_n - E(\overline{X}_n)}{\sqrt{V(\overline{X}_n)}} \sim \mathcal{N}(0, 1)$

$$\bullet E(\overline{X}_n) = E\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n}E\left(\sum_{i=1}^n X_i\right) = \frac{1}{n}\sum_{i=1}^n \underbrace{E(X_i)}_{\lambda} = \frac{1}{n}\sum_{i=1}^n \lambda = \frac{n\lambda}{n} = \lambda$$

$$V(\overline{X}_n) = V\left(\frac{1}{n}\sum_{i=1}^n X_i\right) = \frac{1}{n^2}V\left(\sum_{i=1}^n X_i\right) = \frac{1}{n^2}\left[\sum_{i=1}^n \underbrace{V(X_i)}_{\lambda} + 2\sum_{1 \leq i < j \leq n} \underbrace{Cov(X_i, X_j)}_{0}\right] = \frac{1}{n^2}\sum_{i=1}^n \lambda = \frac{n\lambda}{n^2}$$

$$V(\overline{X}_n) = \frac{\lambda}{n}$$

•
$$U_n = \frac{\hat{\lambda} - \lambda}{\sqrt{\lambda/n}} \sim \mathcal{N}(0, 1)$$
 sera la fonction pivotale

• Déterminons k_1 et k_2 tels que $P[k_1 \le U_n \le k_2] = 1 - \alpha$

$$P[k_1 \leq U_n \leq k_2] = 1 - \alpha \Leftrightarrow P[(U_n < k_1) \cup (U_n > k_2)] = \alpha \Leftrightarrow P(U_n < k_1) + P(U_n > k_2) = \alpha$$

L'intervalle étant bilatéral symétrique, donc, $P(U_n < k_1) = P(U_n > k_2) = \frac{\alpha}{2}$

$$\textit{Ce qui donne:} \begin{cases} P(U_n < k_1) = \frac{\alpha}{2} \\ P(U_n > k_2) = \frac{\alpha}{2} \end{cases} \Leftrightarrow \begin{cases} P(U_n < k_1) = \frac{\alpha}{2} \\ P(U_n \leq k_2) = 1 - \frac{\alpha}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} k_1 = \Phi^{-1}\left(\frac{\alpha}{2}\right) = -\Phi^{-1}\left(1 - \frac{\alpha}{2}\right) = -u_{1 - \frac{\alpha}{2}} \\ k_2 = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) = u_{1 - \frac{\alpha}{2}} \end{cases}$$

$$Par\ la\ suite:\ P\left(-u_{1-\frac{\alpha}{2}}\leq U_{n}\leq u_{1-\frac{\alpha}{2}}\right)=1-\alpha \Leftrightarrow P\left(-u_{1-\frac{\alpha}{2}}\leq \frac{\hat{\lambda}-\lambda}{\sqrt{\lambda/n}}\leq u_{1-\frac{\alpha}{2}}\right)=1-\alpha$$

$$\Leftrightarrow P\left(-u_{1-\frac{\alpha}{2}} \leq \frac{\lambda - \hat{\lambda}}{\sqrt{\lambda/n}} \leq u_{1-\frac{\alpha}{2}}\right) = 1 - \alpha \Leftrightarrow P\left(-u_{1-\frac{\alpha}{2}}\sqrt{\lambda/n} \leq \lambda - \hat{\lambda} \leq u_{1-\frac{\alpha}{2}}\sqrt{\lambda/n}\right) = 1 - \alpha$$

$$\Leftrightarrow P\left(\widehat{\lambda} - u_{1-\frac{\alpha}{2}}\sqrt{\lambda/n} \leq \lambda \leq \widehat{\lambda} + u_{1-\frac{\alpha}{2}}\sqrt{\lambda/n}\right) = 1 - \alpha$$

https://web.facebook.com/OMEGACENTER2014

Or les bornes d'un intervalle de confiance doivent être indépendantes du paramètre à estimer (λ) .

 $\sqrt{\hat{\lambda}}/n$ sera une bonne approximation de $\sqrt{\lambda/n}$

D'où la construction de l'intervalle de confiance, bilatéral et symétrique de niveau $1-\alpha\ pour\ (\lambda)$:

$$\boxed{IC_{1-\alpha}(\lambda) = \left[\hat{\lambda} \pm u_{1-\frac{\alpha}{2}}\sqrt{\hat{\lambda}/n}\right] = \left[\overline{X}_n \pm u_{1-\frac{\alpha}{2}}\sqrt{\overline{X}_n/n}\right]}$$

1

$$Y = \begin{cases} X, pour \ 0 \le x < 2 \\ 2, pour \ x \ge 2 \end{cases} \Rightarrow Y(\Omega) = \{0, 1, 2\}$$

$$P(Y = 0) = P(X = 0) = \frac{e^{-\lambda} \lambda^0}{0!} = e^{-\lambda}$$

$$P(Y = 1) = P(X = 1) = \frac{e^{-\lambda} \lambda^{1}}{1!} = \lambda e^{-\lambda}$$

$$P(Y=2) = P(X \ge 2) = 1 - P(X < 2) = 1 - P(X \le 1) = 1 - \theta = 1 - (1 + \lambda)e^{-\lambda}$$

•
$$E(Y) = \sum_{y \in \{0,1,2\}} yP(Y=y) = \underbrace{[0 \times P(Y=0)]}_{0} + [1 \times P(Y=1)] + [2 \times P(Y=2)]$$

$$E(Y) = \lambda e^{-\lambda} + \left[2\left(1 - (1+\lambda)e^{-\lambda}\right)\right] = \lambda e^{-\lambda} + 2 - 2(1+\lambda)e^{-\lambda} = 2 + (\lambda - 2 - 2\lambda)e^{-\lambda}$$

$$E(Y) = 2 - (2 + \lambda)e^{-\lambda}$$

 $E(X) = \lambda$, étant le nombre moyen des sinistres

$$Or$$
 $\begin{cases} (2+\lambda)e^{-\lambda} > 0 \\ E(Y) = 2 - (2+\lambda)e^{-\lambda} \end{cases}$, $donc, E(Y) < 2$

La compagnie d'assurance, pour couvrir ces risques et réaliser l'essentiel de son profit doit s'assurer que le nombre moyen des sinistres (λ) reste strictement supérieur à 2 avant de s'engager à indemniser l'assuré à hauteur de la somme équivalente à un plafond de remboursement égal à 2.

• Remarque:

On pourra comparer E(X) à E(Y) en étudiant la fonction:

$$\varphi(\lambda) = E(X) - E(Y) = \lambda - \left[2 - (2 + \lambda)e^{-\lambda}\right] = (\lambda - 2) + (\lambda + 2)e^{-\lambda}$$

On démontrera graphiquement que $\forall \lambda > 0$, on a toujours: E(X) > E(Y)

https://web.facebook.com/OMEGACENTER2014

- En rouge le nombre moyen des accidents : $E(X) = g(\lambda) = \lambda$
- En vert le nombre moyen des remboursements : $E(Y) = h(\lambda) = 2 (2 + \lambda)e^{-\lambda}$

Institut de Financement du Développement du Maghreb Arabe CONCOURS DE RECRUTEMENT DE LA XLIIème PROMOTION (BANQUE)
Septembre 2022

Exercice 8: (5 points: 1+2+2)

<u>Énoncé</u>

L'observation du chiffre d'affaire d'une entreprise, noté y_t , durant 24 mois, soit 12 mois avant période Covid (t=1,2,...,12) et 12 mois durant la période Covid (t=13,14,...,24) a conduit aux statistiques par sous périodes suivantes :

$$\sum_{t=1}^{12} y_t = 144, \sum_{t=1}^{12} y_t^2 = 1802, \sum_{t=13}^{24} y_t = 126, \sum_{t=13}^{24} y_t^2 = 1348$$

On suppose que les y_t pour t=1,2,...,24 sont des réalisations de variables normales indépendantes d'espérance mathématique, notées pour les deux sous périodes m_1 et m_2 , et de même variance σ^2 .

1) Calculer \hat{m}_1 et \hat{m}_2 les moyennes empiriques pour les deux sous périodes ainsi que la moyenne empirique globale \hat{m} et la variance empirique $\hat{\sigma}^2$ de y_t sur toute

https://web.facebook.com/OMEGACENTER2014

momega.center.cp@gmail.com

la période.

- 2) Expliquer la démarche à suivre pour évaluer et tester l'effetéventuel du Covid sur le niveau moyen du chiffre d'affairede cette entreprise.
- 3) Effectuer les calculs numériques. Conclure.

Indication : pour simplifier les calculs numériques, on suppose que les distributions de Student sont approximées par des distributions normales.

Corrigé

5-1

• $(Y_t)_{1 \le t \le T_1}$ est une suite de variables aléatoires i.i.d de la loi $\mathcal{N}(m_1, \sigma^2)$, avec $T_1 = 12$ $Or, \forall t = 1, 2, ..., 12, m_1 = E(Y_t)$ donc l'estimateur naturel de m_1 par la méthode des moments ainsi que la méthode du maximum de vraisemblance, sera :

$$\widehat{m}_1 = \overline{Y}_1 = \frac{1}{T_1} \sum_{t=1}^{T_1} Y_t = \frac{1}{12} \sum_{t=1}^{12} Y_t = \frac{144}{12} = 12$$
, il est sans bias, convergent et efficace de m_1

$$\widehat{m}_1 = 12$$

• $(Y_t)_{T_1+1\leq t\leq T}$ est une suite de variables aléatoires i.i.d de la loi $\mathcal{N}(m_2,\sigma^2)$, avec $T_1=12$ $et T = 24 = T_1 + T_2 où T_1 = T_2 = 12$

 $Or, \forall t = 13, 14, ..., 24, m_2 = E(Y_t)$ donc l'estimateur naturel de m_2 par la méthode des moments ainsi que la méthode du maximum de vraisemblance, sera :

$$\hat{m}_2 = \overline{Y}_2 = \frac{1}{T_2} \sum_{t=T_1+1}^{T} Y_t = \frac{1}{12} \sum_{t=13}^{24} Y_t = \frac{126}{12} = 10, 5$$
, il est sans bias, convergent et efficace

 $de m_2$

$$\widehat{m}_2 = 10, 5$$

La moyenne empirique globale n'est autre que la moyenne pondérée des moyennes

 $partielles\ sur\ les\ deux\ sous\ p\'eriodes: \widehat{m}=rac{T_1\widehat{m}_1+T_2\widehat{m}_2}{T_1+T_2}$, or $T_1=T_2\ et\ T=T_1+T_2=2T_1$

Par la suite :
$$\hat{m} = \frac{T_1 \hat{m}_1 + T_1 \hat{m}_2}{2T_1} = \frac{\hat{m}_1 + \hat{m}_2}{2} = \frac{12 + 10, 5}{2} = 11, 25$$

$$\widehat{m}=11,25$$

• $(Y_t)_{1 \leq t \leq T_1}$ est une suite de variables aléatoires i.i.d de la loi $\mathcal{N}(m_1, \sigma^2)$ et $(Y_t)_{T_1 + 1 \leq t \leq T}$ est une suite de variables aléatoires i.i.d de la loi $\mathcal{N}(m_2, \sigma^2)$

$$\forall t = 1, 2, \dots, 24, V(Y_t) = \sigma^2$$

https://web.facebook.com/OMEGACENTER2014

l'estimateur naturel de σ^2 par la méthode des moments ainsi que la méthode du maximum de vraisemblance, sera :

$$S_1^2 = \frac{1}{T_1 - 1} \sum_{t=1}^{T_1} (Y_t - \overline{Y}_1)^2$$
, la variance empirique corrigée sur la première sous période,

$$S_2^2 = rac{1}{T_2-1}\sum_{t=T_1+1}^T (Y_t-\overline{Y}_2)^2$$
, la variance empirique corrigée sur la deuxième sous période

L'estimateur sans bias et convergent de σ^2 sera la variance empirique corrigée conjointe

$$S^2 = \frac{(T_1-1)S_1^2+(T_2-1)S_2^2}{T_1+T_2-2}$$
. $Or, T=24=T_1+T_2$ où $T_1=T_2=12$, par la suite :

$$S^2 = \frac{S_1^2 + S_2^2}{2}$$

$$^{\circ} S_{1}^{2} = \frac{1}{T_{1} - 1} \sum_{t=1}^{T_{1}} (Y_{t} - \overline{Y}_{1})^{2} = \frac{1}{T_{1} - 1} \left(\sum_{t=1}^{T_{1}} Y_{t}^{2} - T_{1} \overline{Y}_{1}^{2} \right) = \frac{1}{11} \left(1802 - (12 \times 12^{2}) \right) = \frac{74}{11}$$

$$^{\circ} S_{2}^{2} = \frac{1}{T_{2} - 1} \sum_{t = T_{1} + 1}^{T} (Y_{t} - \overline{Y}_{2})^{2} = \frac{1}{T_{2} - 1} \left(\sum_{T_{1} + 1}^{T} Y_{t}^{2} - T_{2} \overline{Y}_{2}^{2} \right) = \frac{1}{11} \left(1348 - (12 \times (10, 5)^{2}) \right) = \frac{25}{11} \left(1348 - (12 \times (10, 5)^{2}) \right) = \frac{25}{11} \left(1348 - (12 \times (10, 5)^{2}) \right) = \frac{1}{11} \left(1348 - (12 \times (10, 5)^{2}) \right)$$

$$S^2 = \frac{\frac{74}{11} + \frac{25}{11}}{2} = \frac{\frac{74}{11} + \frac{25}{11}}{2} = 4,5$$

$$\widehat{\sigma}^2 = S^2 = \frac{S_1^2 + S_2^2}{2} = 4,5$$

5-2

Il s'agit d'un test (unilatéral à droite) sur la différence de deux moyennes.

On se propose de confronter l'hypothèse nulle H_0 : $m_1 - m_2 = 0$ qui suppose l'absence de l'effet Covid sur les chiffres d'affaires durant les deux sous périodes contre l'alternative H_1 : $m_1 - m_2 > 0$ qui postule une baisse des chiffres d'affaires.

 σ_1 et σ_2 sont inconnus, mais $\sigma_1=\sigma_2=\sigma$, ce qui justifie l'utilisation de la variance empirique conjointe corrigée :

$$S^2 = \frac{(T_1 - 1)S_1^2 + (T_2 - 1)S_2^2}{T_1 + T_2 - 2} = \frac{S_1^2 + S_2^2}{2}$$

https://web.facebook.com/OMEGACENTER2014

La statistique de décision :
$$\Psi = \frac{(\widehat{m}_1 - \widehat{m}_2) - (m_1 - m_2)}{\sqrt{\frac{S^2}{T_1} + \frac{S^2}{T_2}}} \sim \mathcal{T}\left(\underbrace{\frac{T_1 + T_2}{T_1} - 2}\right)$$
, loi de

Student de d. d. $l (T_1 + T_2 - 2)$.

$$\Psi = \frac{(\widehat{m}_1 - \widehat{m}_2) - (m_1 - m_2)}{S\sqrt{\frac{1}{T_1} + \frac{1}{T_1}}} = \frac{(\widehat{m}_1 - \widehat{m}_2) - (m_1 - m_2)}{S\sqrt{\frac{2}{T/2}}} = \frac{(\widehat{m}_1 - \widehat{m}_2) - (m_1 - m_2)}{S\sqrt{\frac{4}{T}}}$$

$$\Psi = \frac{(\widehat{m}_1 - \widehat{m}_2) - (m_1 - m_2)}{2S/\sqrt{T}} \rightsquigarrow \mathcal{T}(T - 2)$$

· Région critique :

$$\mathcal{R}_{\mathcal{C}} = \left\{ (Y_t)_{i \in [1, T_1]}, (Y_t)_{j \in [T_1 + 1, T]} \middle| (\widehat{m}_1 - \widehat{m}_2) > c \right\}$$

Risque de première espèce : $\alpha = P(Rejeter H_0|H_0 vraie)$

$$P(\Psi > k|m_1 - m_2 = 0) = \alpha \Leftrightarrow P\left(\frac{(\widehat{m}_1 - \widehat{m}_2) - (m_1 - m_2)}{2S/\sqrt{T}} > k \middle| m_1 - m_2 = 0\right) = \alpha$$

$$\Leftrightarrow P\left(\frac{(\widehat{m}_1 - \widehat{m}_2) - 0}{2S/\sqrt{T}} > k\right) = \alpha \Leftrightarrow P\left(\frac{(\widehat{m}_1 - \widehat{m}_2)}{2S/\sqrt{T}} \le k\right) = 1 - \alpha \Leftrightarrow k = t_{1-\alpha}(T - 2)$$

• Valeurs critiques :

$$\frac{\widehat{m}_1 - \widehat{m}_2}{2S/\sqrt{T}} > t_{1-\alpha}(T-2) \Leftrightarrow \widehat{m}_1 - \widehat{m}_2 > \underbrace{\frac{2St_{1-\alpha}(T-2)}{\sqrt{T}}}_{\text{constant}}$$

Règle de décision :

On rejette
$$H_0$$
 Si on observe $(\widehat{m}_1 - \widehat{m}_2)_{obs} > \frac{2St_{1-\alpha}(T-2)}{\sqrt{T}}$

5-3

$$H_0: m_1 - m_2 = 0 \ contre \ H_1: m_1 - m_2 > 0$$

$$H_0 : m_1 - m_2 = 0 \ contre \ H_1 : m_1 - m_2 > 0$$
 • La statistique de décision : $\Psi = \frac{(\widehat{m}_1 - \widehat{m}_2) - (m_1 - m_2)}{2S/\sqrt{T}} \rightsquigarrow \mathcal{T}(22)$

Règle de décision :

•
$$(\widehat{m}_1 - \widehat{m}_2)_{obs} = 12 - 10, 5 = 1, 5$$

•
$$t_{1-\alpha}(T-2) = t_{0.95}(22) \cong \Phi^{-1}(0.95) = 1.645$$

$$\Rightarrow c = \frac{2St_{1-\alpha}(T-2)}{\sqrt{T}} = \frac{2 \times \sqrt{4,5} \times 1,645}{\sqrt{24}} = \frac{\sqrt{4,5} \times 1,645}{\sqrt{6}} = 1,645\sqrt{0,75} = 1,425$$

Téléphone: (+216) 97 619191 / 54 619191

https://web.facebook.com/OMEGACENTER2014

mega.center.cp@gmail.com

$$En\ effet: \underbrace{(\widehat{m}_1 - \widehat{m}_2)_{obs}}_{1,5} > \underbrace{\frac{2St_{1-\alpha}(T-2)}{\sqrt{T}}}_{1,425}$$

Avec un risque de première espèce, $\alpha = 5\%$, on rejettera l'hypothèse nulle d'absence d'effet Covid sur le niveau moyen du chiffre d'affaire de cette entreprise.

Institut de Financement du Développement du Maghreb Arabe CONCOURS DE RECRUTEMENT DE LA XLème PROMOTION (ASSURANCE) Mai 2024

Exercice 9: (6 points: 1+1+1+1+1)

Énoncé

Le nombre d'accidents, noté X, enregistré durant une période donnée est une variable aléatoire définie sur l'ensemble des entiers positifs ou nuls selon la distribution de probabilité: $P[X = x] = K \frac{\lambda^{2x}}{x!}$ où λ est un paramètre strictement positif et x! désigne factoriel de l'entier positif x

1- Déterminer en fonction du paramètre λ la valeur de la constante K.

Identifier cette distribution

- **2-** Calculer la valeur de λ sachant que $E(X^2) = 6$
- 3- Calculer en fonction de x le rapport $\frac{P[X=x+1]}{P[X=x]}$. En déduire le mode de la variable X
- 4- Calculer la probabilité conditionnelle $P[(X \ge 2|X \ge 1)]$
- 5- En fait, le paramètre λ est inconnu indépendantes $X_1, X_2, ..., X_n$ de la même distribution de X
 - 5-1 Déterminer l'expression de la vraisemblance. En déduire l'estimation ponctuelle de λ . Est-elle sans biais?
 - 5-2 Expliquer, sans faire de calcul, comment on peut déterminer un intervalle de confiance à un niveau de confiance donné du paramètre λ

https://web.facebook.com/OMEGACENTER2014

Corrigé

1-

P[X = x] est une loi de probabilité si et seulement si :

$$\sum_{x=0}^{+\infty} P[X=x] = 1 \Leftrightarrow \sum_{x=0}^{+\infty} K \frac{\lambda^{2x}}{x!} = 1 \Leftrightarrow K \sum_{x=0}^{+\infty} \frac{(\lambda^2)^x}{x!} = 1 \Leftrightarrow K e^{\lambda^2} = 1 \Leftrightarrow K e^{\lambda^2}$$

$$D'où: P[X = x] = \begin{cases} \frac{e^{-\lambda^2}(\lambda^2)^x}{x!}, si \ x \in \mathbb{N} \\ 0, si \ non \end{cases} et X \sim \mathcal{P}(\lambda^2)$$

2-

$$X \sim \mathcal{P}(\lambda^2) \Longrightarrow E(X) = V(X) = \lambda^2$$

Or
$$E(X^2) = V(X) + [E(X)]^2$$
, par la suite $E(X^2) = \lambda^2 + \lambda^4$

Ainsi trouver λ tels que $E(X^2)=6$ ça revient au même de résoudre l'équation $\lambda^4+\lambda^2=6$

Posons
$$\beta = \lambda^2$$
, on obtient par la suite :
$$\begin{cases} \beta^2 + \beta - 6 = 0 \text{ } \\ \beta = \lambda^2, \beta > 0 \end{cases}$$

$$\textit{R\'esolvons} \ \ \textcircled{1}: \ \Delta = 1^2 - \left(4 \times 1 \times (-6)\right) = 25 \Longrightarrow \beta_{1,2} = \frac{-1 \pm \sqrt{25}}{2 \times 1}$$

$$\Rightarrow \begin{cases} \beta_1 = \frac{-1-5}{2} = -3 < 0, \text{ à rejeter} \\ \beta_2 = \frac{-1+5}{2} = 2 \end{cases}$$

2:
$$\lambda^2 = 2 \Leftrightarrow \begin{cases} \lambda = -\sqrt{2} < 0, \text{ à rejeter} \\ \lambda = \sqrt{2} \end{cases}$$

$$D'o$$
ù : $X \sim \mathcal{P}(2)$

3-

• On
$$a: P[X = x] = \begin{cases} \frac{e^{-2}2^x}{x!}, si \ x \in \mathbb{N} \\ 0, si \ non \end{cases}$$

• Calculons le ratio des probabilités consécutives :
$$\frac{P[X = x + 1]}{P[X = x]}$$

https://web.facebook.com/OMEGACENTER2014

$$\frac{P[X=x+1]}{P[X=x]} = \frac{\frac{e^{-2}2^{x+1}}{(x+1)!}}{\frac{e^{-2}2^x}{x!}} = \frac{2^{x+1}}{(x+1)!} \times \frac{x!}{2^x} = \frac{2 \times 2^x}{2^x} \times \frac{x!}{(x+1)(x!)}$$

$$D'ou: \overline{\frac{P[X=x+1]}{P[X=x]}} = \frac{2}{x+1}$$

• Le mode d'une loi de Poisson est la valeur de x qui maximise la probabilité P(X = x).

 M_o étant la valeur qui vérifie : $\forall x \in X(\Omega), P[X = x] \leq P[X = M_o]$

Or il s'agit d'une variable discrète, donc discontinue. Pour ce faire, nous considérons

le ratio des probabilités consécutives : $\frac{P[X = x + 1]}{P[X = x]}$,

ainsi M_o doit vérifier $\frac{P[X=x+1]}{P[X=x]} \leq 1$, avec $M_o \in \mathbb{N}$

L'idée étant de trouver M_o tels que $P[X = M_o + 1] \le P[X = M_o] \Leftrightarrow \frac{P[X = M_o + 1]}{P[X = M_o]} \le 1$

$$Or \frac{P[X = M_o + 1]}{P[X = M_o]} = \frac{2}{M_o + 1}$$

On obtient ainsi: $\frac{2}{M_o + 1} \le 1 \Leftrightarrow 2 \le M_o + 1 \Leftrightarrow 1 \le M_o$

$$\Leftrightarrow \boxed{M_o = \lfloor 1 \rfloor = 1 \text{ ou } M_o = \lfloor 1 \rfloor + 1 = 2}$$

On pourra facilement vérifier soit par le calcul ou par le diagramme en bâtons

(représentation graphique de la loi de Poisson de paramètre 2)

• Par le calcul:
$$P[X = 2] = \frac{e^{-2}2^2}{2!} = \frac{e^{-2}2^1}{1!} = P[X = 1]$$

· Par le diagramme en bâtons :

https://web.facebook.com/OMEGACENTER2014

$$P[(X \ge 2 | X \ge 1)] = \frac{P\left[\overbrace{(X \ge 2) \cap (X \ge 1)}^{X \ge 2}\right]}{P[X \ge 1]} = \frac{P[X \ge 2]}{P[X \ge 1]} = \frac{1 - P[X < 2]}{1 - P[X < 1]} = \frac{1 - P[X \le 1]}{1 - P[X \le 0]}$$

$$P[(X \ge 2 | X \ge 1)] = \frac{1 - (P[X = 1] + P[X = 0])}{1 - P[X = 0]} = \frac{1 - (2e^{-2} + e^{-2})}{1 - e^{-2}} = \frac{1 - 3e^{-2}}{1 - e^{-2}} = \frac{e^2 - 3}{e^2 - 1}$$

$$D'où$$
 : $P[(X \ge 2|X \ge 1)] = \frac{e^2 - 3}{e^2 - 1}$

5-1

$$L(x_1, \dots, x_n | \lambda) = \prod_{i=1}^n P(X = x_i | \lambda) = \prod_{i=1}^n \frac{e^{-\lambda^2} (\lambda^2)^{x_i}}{x_i!} = \left(\prod_{i=1}^n e^{-\lambda^2}\right) \left(\prod_{i=1}^n (\lambda^2)^{x_i}\right) \left(\prod_{i=1}^n \frac{1}{x_i!}\right)$$

$$L(x_1,\ldots,x_n|\lambda) = \frac{\left(e^{-\lambda^2}\right)^n\left((\lambda^2)^{\sum_{i=1}^n x_i}\right)}{\prod_{i=1}^n x_i!} = \frac{\left(e^{-n\lambda^2}\right)\left((\lambda^2)^{n\overline{\lambda}}\right)}{\prod_{i=1}^n x_i!}$$

$$L(x_1, ..., x_n | \lambda) = \frac{\left(e^{-n\lambda^2}\right) \left(\lambda^{2n\overline{\lambda}}\right)}{\prod_{i=1}^n x_i!}$$

Il en résulte le logarithme de la fonction de vraisemblance :

$$\ln[L(x_i,\lambda)] = \ln\left[\frac{\left(e^{-n\lambda^2}\right)\left(\lambda^{2n\overline{X}}\right)}{\prod_{i=1}^n x_i!}\right] = \ln\left(e^{-n\lambda^2}\right) + \ln\left(\lambda^{2n\overline{X}}\right) - \ln\left(\prod_{i=1}^n x_i!\right)$$

$$\ln[L(x_i,\lambda)] = -n\lambda^2 + 2n\overline{X}\ln(\lambda) - \sum_{i=1}^n \ln(x_i!)$$

Calculons les dérivées partielles premières et secondes de $\ln[L(x_i,\lambda)]$ par rapport à la variable λ :

$$\left| \frac{\partial \ln[L]}{\partial \lambda} = -2n\lambda + \frac{2n\overline{X}}{\lambda} \right| \Rightarrow \left| \frac{\partial^2 \ln[L]}{\partial \lambda^2} = -2n - \frac{2n\overline{X}}{\lambda^2} \right|$$

$$\hat{\lambda}$$
 L'EMV de λ sera la solution du système suivant :
$$\begin{cases} \frac{\partial \ln[L]}{\partial \lambda} = 0 \\ \frac{\partial^2 \ln[L]}{\partial \lambda^2} < 0 \end{cases}$$

momega.center.cp@gmail.com

 $\hat{\lambda}$ solution de $\begin{cases} -2n\lambda + \frac{2n\overline{X}}{\lambda} = 0 & \text{1} \\ -2n - \frac{2n\overline{X}}{\lambda^2} < 0 & \text{2} \end{cases}$

$$2:-2n-\frac{2n\overline{X}}{\widehat{\lambda}^2}=-2n-\frac{2n\overline{X}}{\overline{X}}=-4n<0$$

$$m{D}'m{o}$$
ù: $\widehat{m{\lambda}}_{m{MMV}}=\widehat{m{\lambda}}=\sqrt{\overline{m{X}}}$

Biais:

$$\cdot E(\hat{\lambda}) = E(\sqrt{\overline{X}})$$

$$\textit{Soit } g(t) = \sqrt{t} \Rightarrow g'(t) = \frac{1}{2\sqrt{t}} = \frac{1}{2}t^{-\frac{1}{2}} \Rightarrow g''(t) = \frac{1}{2} \times \left(-\frac{1}{2}\right)t^{-\frac{1}{2}-1} = -\frac{1}{4t\sqrt{t}} < 0, \forall t > 0$$

Ainsi $g(t) = \sqrt{t}$ est concave et d'après l'négalité de Jensen on a: E(g(U)) < g(E(U))

Où U est une variable aléatoire.

En particulier $E(g(\overline{X})) < g(E(\overline{X}))$

•
$$E(g(\overline{X})) = E(\sqrt{\overline{X}}) = E(\hat{\lambda})$$

•
$$E(\overline{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}E\left(\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}\underbrace{E(X_{i})}_{\lambda^{2}} = \frac{1}{n}\sum_{i=1}^{n}\lambda^{2} = \frac{n\lambda^{2}}{n} = \lambda^{2}$$

$$\Rightarrow g(E(\overline{X})) = g(\lambda^2) = \lambda$$

En effet, on réalise que : $E(\hat{\lambda}) < \lambda$ et $\hat{\lambda}$ est biasé de λ , elle le sous- estime

Remarque : On démontrera facilement que $\hat{\lambda}^2$ est sans biais de λ^2

5-2

D'après le théorème de la limite centrée $: U_n = \frac{\overline{X} - E(\overline{X})}{\sqrt{V(\overline{X})}} \sim \mathcal{N}(0,1)$, avec $\overline{X} = \hat{\lambda}^2$

•
$$E(\overline{X}) = \lambda^2$$

$$V(\overline{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}V\left(\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\left[\sum_{i=1}^{n}\underbrace{V(X_{i})}_{\lambda^{2}} + 2\sum_{1\leq i< j\leq n}\underbrace{Cov(X_{i},X_{j})}_{0}\right] = \frac{1}{n^{2}}\sum_{i=1}^{n}\lambda^{2} = \frac{n\lambda^{2}}{n^{2}}$$

449

$$V(\overline{X}) = \frac{\lambda^2}{n}$$

•
$$U_n = \frac{\hat{\lambda}^2 - \lambda^2}{\sqrt{\lambda^2/n}} = \frac{\hat{\lambda}^2 - \lambda^2}{\lambda/\sqrt{n}} \sim \mathcal{N}(0, 1)$$
 sera la fonction pivotale

• Déterminons k_1 et k_2 tels que $P[k_1 \le U_n \le k_2] = 1 - \alpha$

$$P[k_1 \leq U_n \leq k_2] = 1 - \alpha \Leftrightarrow P[(U_n < k_1) \cup (U_n > k_2)] = \alpha \Leftrightarrow P(U_n < k_1) + P(U_n > k_2) = \alpha$$

L'intervalle étant bilatéral symétrique, donc, $P(U_n < k_1) = P(U_n > k_2) = \frac{\alpha}{2}$

$$\textit{Ce qui donne}: \begin{cases} P(U_n < k_1) = \frac{\alpha}{2} \\ P(U_n > k_2) = \frac{\alpha}{2} \end{cases} \Leftrightarrow \begin{cases} P(U_n < k_1) = \frac{\alpha}{2} \\ P(U_n \leq k_2) = 1 - \frac{\alpha}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} k_1 = \Phi^{-1}\left(\frac{\alpha}{2}\right) = -\Phi^{-1}\left(1 - \frac{\alpha}{2}\right) = -u_{1 - \frac{\alpha}{2}} \\ k_2 = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) = u_{1 - \frac{\alpha}{2}} \end{cases}$$

$$Par\ la\ suite:\ P\left(-u_{1-\frac{\alpha}{2}} \leq U_n \leq u_{1-\frac{\alpha}{2}}\right) = 1 - \alpha \Leftrightarrow P\left(-u_{1-\frac{\alpha}{2}} \leq \frac{\hat{\lambda}^2 - \lambda^2}{\lambda/\sqrt{n}} \leq u_{1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$\Leftrightarrow P\left(-u_{1-\frac{\alpha}{2}} \leq \frac{\lambda^2 - \hat{\lambda}^2}{\lambda/\sqrt{n}} \leq u_{1-\frac{\alpha}{2}}\right) = 1 - \alpha \Leftrightarrow P\left(-u_{1-\frac{\alpha}{2}} \frac{\lambda}{\sqrt{n}} \leq \lambda^2 - \hat{\lambda}^2 \leq u_{1-\frac{\alpha}{2}} \frac{\lambda}{\sqrt{n}}\right) = 1 - \alpha$$

$$\Leftrightarrow P\left(\hat{\lambda}^2 - u_{1-\frac{\alpha}{2}}\frac{\lambda}{\sqrt{n}} \leq \lambda^2 \leq \hat{\lambda}^2 + u_{1-\frac{\alpha}{2}}\frac{\lambda}{\sqrt{n}}\right) = 1 - \alpha$$

$$\Leftrightarrow P\left(\sqrt{\hat{\lambda}^2 - u_{1-\frac{\alpha}{2}}\frac{\hat{\lambda}}{\sqrt{n}}} \leq \lambda \leq \sqrt{\hat{\lambda}^2 + u_{1-\frac{\alpha}{2}}\frac{\hat{\lambda}}{\sqrt{n}}}\right) = 1 - \alpha$$

Or les bornes d'un intervalle de confiance doivent être indépendantes du paramètre à estimer (λ) .

$$\frac{\hat{\lambda}}{\sqrt{n}}$$
 sera une bonne approximation de $\frac{\lambda}{\sqrt{n}}$

 $\textbf{\textit{D'où la construction de l'intervalle de confiance, bilat\'eral et sym\'etrique de niveau}$

 $1 - \alpha \ pour(\lambda)$:

$$IC_{1-\alpha}(\lambda) = \left[\sqrt{\hat{\lambda}^2 - u_{1-\frac{\alpha}{2}}\frac{\hat{\lambda}}{\sqrt{n}}}, \sqrt{\hat{\lambda}^2 + u_{1-\frac{\alpha}{2}}\frac{\hat{\lambda}}{\sqrt{n}}}\right] = \left[\sqrt{\overline{X} - u_{1-\frac{\alpha}{2}}\sqrt{\frac{\overline{X}}{n}}}, \sqrt{\hat{\lambda}^2 + u_{1-\frac{\alpha}{2}}\sqrt{\frac{\overline{X}}{n}}}\right]$$

450

Tables Statistiques

Table de la f.r. empirique de la loi Normale centrée-réduite $\mathcal{N}(0,1)$

$$Si\ X \sim \mathcal{N}(m,\sigma^2)$$
, $alors\ \forall x \in \mathbb{R}$, $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left[-\frac{(x-m)^2}{2\sigma^2}\right]}$, $E(X) = m\ et\ V(X) = \sigma^2$.

On note quelque fois U la v.a. gaussienne centrée-réduite et Φ sa f.r.; $U = \frac{X-m}{\sigma} \rightsquigarrow \mathcal{N}(0,1)$.

La table qui suit donne les valeurs de la f.r. empirique de la loi normale centrée-réduite $\Phi(u)$.

On notera que pour $u \ge 4: \Phi(u) \cong 1$ et $\Phi(-u) \cong 0$ $\forall u \ge 0: \Phi(u) = P(U \le u) = P(U \ge -u) = 1 - P(U \le -u) = 1 - \Phi(-u)$ où $U \rightsquigarrow \mathcal{N}(0,1)$ et $u = u_1 + u_2$

	∀ u ≥	$0:\Phi(u)=I$	$P(U \leq u) = I$	$P(U \ge -u) =$	$1-P(U\leq -1)$	$-u)=1-\Phi$	(− u) o ù U ∼	$\mathcal{N}(0,1)$ et \imath	$u=u_1+u_2$	
					u_2					
u_1	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56356	0.56749	0.57142	0.57535
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871	0.60257	0.60642	0.61026	0.61409
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683	0.64058	0.64431	0.64803	0.65173
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364	0.67724	0.68082	0.68439	0.68793
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884	0.71226	0.71566	0.71904	0.72240
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215	0.74537	0.74857	0.75175	0.75490
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337	0.77637	0.77935	0.78230	0.78524
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234	0.80511	0.80785	0.81057	0.81327
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894	0.83147	0.83398	0.83646	0.83891
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314	0.85543	0.85769	0.85993	0.86214
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493	0.87698	0.87900	0.88100	0.88298
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435	0.89617	0.89796	0.89973	0.90147
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149	0.91309	0.91466	0.91621	0.91774
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647	0.92785	0.92922	0.93056	0.93189
1.5	0.93319	0.93448	0.93574	0.93699	0.93822	0.93943	0.94062	0.94179	0.94295	0.94408
1.6	0.94520	0.94630	0.94738	0.94845	0.94950	0.95053	0.95154	0.95254	0.95352	0.95449
1.7	0.95543	0.95637	0.95728	0.95818	0.95907	0.95994	0.96080	0.96164	0.96246	0.96327
1.8	0.96407	0.96485	0.96562	0.96638	0.96712	0.96784	0.96856	0.96926	0.96995	0.97062
1.9	0.97128	0.97193	0.97257	0.97320	0.97381	0.97441	0.97500	0.97558	0.97615	0.97670
2.0	0.97725	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169
2.1	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574
2.2	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899
2.3	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	0.99086	0.99111	0.99134	0.99158
2.4	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361
2.5	0.99379	0.99396	0.99413	0.99430	0.99446	0.99461	0.99477	0.99492	0.99506	0.99520
2.6	0.99534	0.99547	0.99560	0.99573	0.99585	0.99598	0.99609	0.99621	0.99632	0.99643
2.7	0.99653	0.99664	0.99674	0.99683	0.99693	0.99702	0.99711	0.99720	0.99728	0.99736
2.8	0.99744	0.99752	0.99760	0.99767	0.99774	0.99781	0.99788	0.99795	0.99801	0.99807
2.9	0.99813	0.99819	0.99825	0.99831	0.99836	0.99841	0.99846	0.99851	0.99856	0.99861
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99896	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0.99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0.99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0.99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997

Fractiles de la loi Normale centrée réduite $\mathcal{N}(0,1)$

 $u_\alpha = \Phi^{-1}(\alpha) \ \ \text{où} \ \ \alpha = \alpha_1 + \alpha_2 \ . \ Pour \ les \ valeurs \ de \ \alpha < 0,5 \ , on \ utilisera \ la \ relation : \ u_\alpha = -u_{1-\alpha} \ .$

	$u_{\alpha} - \mathbf{q}$	(u) ou u	$u - u_1 + u_2$.	i our les vu	α_2	< 0, 5 , on at	ittisera ta r	etation · a	$\alpha - u_{1-\alpha}$	
α_2	0.000	0.001	0.002	0.003	$0.00\overline{4}$	0.005	0.006	0.007	0.008	0.009
0.500	0.0000	0.0025	0.0050	0.0075	0.0100	0.0125	0.0150	0.0175	0.0201	0.0226
0.510	0.0251	0.0276	0.0301	0.0326	0.0351	0.0376	0.0401	0.0426	0.0451	0.0476
0.520	0.0502	0.0527	0.0552	0.0577	0.0602	0.0627	0.0652	0.0677	0.0702	0.0728
0.530	0.0753	0.0778	0.0803	0.0828	0.0853	0.0878	0.0904	0.0929	0.0954	0.0979
0.540	0.1004	0.1030	0.1055	0.1080	0.1105	0.1130	0.1156	0.1181	0.1206	0.1231
0.550	0.1257	0.1282	0.1307	0.1332	0.1358	0.1383	0.1408	0.1434	0.1459	0.1484
0.560	0.1510	0.1535	0.1560	0.1586	0.1611	0.1637	0.1662	0.1687	0.1713	0.1738
0.570	0.1764	0.1789	0.1815	0.1840	0.1866	0.1891	0.1917	0.1942	0.1968	0.1993
0.580	0.2019	0.2045	0.2070	0.2096	0.2121	0.2147	0.2173	0.2198	0.2224	0.2250
0.590	0.2275	0.2301	0.2327	0.2353	0.2378	0.2404	0.2430	0.2456	0.2482	0.2508
0.600	0.2533	0.2559	0.2585	0.2611	0.2637	0.2663	0.2689	0.2715	0.2741	0.2767
0.610	0.2793	0.2819	0.2845	0.2871	0.2898	0.2924	0.2950	0.2976	0.3002	0.3029
0.620	0.3055	0.3081	0.3107	0.3134	0.3160	0.3186	0.3213	0.3239	0.3266	0.3292
0.630	0.3319	0.3345	0.3372	0.3398	0.3425	0.3451	0.3478	0.3505	0.3531	0.3558
0.640	0.3585	0.3611	0.3638	0.3665	0.3692	0.3719	0.3745	0.3772	0.3799	0.3826
0.650	0.3853	0.3880	0.3907	0.3934	0.3961	0.3989	0.4016	0.4043	0.4070	0.4097
0.660	0.4125	0.4152	0.4179	0.4207	0.4234	0.4261	0.4289	0.4316	0.4344	0.4372
0.670	0.4399	0.4427	0.4454	0.4482	0.4510	0.4538	0.4565	0.4593	0.4621	0.4649
0.680	0.4677	0.4705	0.4733	0.4761	0.4789	0.4817	0.4845	0.4874	0.4902	0.4930
0.690	0.4959	0.4987	0.5015	0.5044	0.5072	0.5101	0.5129	0.5158	0.5187	0.5215
0.700	0.5244	0.5273	0.5302	0.5330	0.5359	0.5388	0.5417	0.5446	0.5476	0.5505
0.710	0.5534	0.5563	0.5592	0.5622	0.5651	0.5681	0.5710	0.5740	0.5769	0.5799
0.720	0.5828	0.5858	0.5888	0.5918	0.5948	0.5978	0.6008	0.6038	0.6068	0.6098
0.730	0.6128	0.6158	0.6189	0.6219	0.6250	0.6280	0.6311	0.6341	0.6372	0.6403
0.740	0.6433	0.6464	0.6495	0.6526	0.6557	0.6588	0.6620	0.6651	0.6682	0.6713
0.750	0.6745	0.6776	0.6808	0.6840	0.6871	0.6903	0.6935	0.6967	0.6999	0.7031
0.760	0.7063	0.7095	0.7128	0.7160	0.7192	0.7225	0.7257	0.7290	0.7323	0.7356
0.770	0.7388	0.7421	0.7454	0.7488	0.7521	0.7554	0.7588	0.7621	0.7655	0.7688
0.780	0.7722	0.7756	0.7790	0.7824	0.7858	0.7892	0.7926	0.7961	0.7995	0.8030
0.790	0.8064	0.8099	0.8134	0.8169	0.8204	0.8239	0.8274	0.8310	0.8345	0.8381
0.800	0.8416	0.8452	0.8488	0.8524	0.8560	0.8596	0.8632	0.8669	0.8706	0.8742
0.810	0.8779	0.8816	0.8853	0.8890	0.8927	0.8965	0.9002	0.9040	0.9078	0.9116
0.820	0.9154	0.9192	0.9230	0.9269 0.9661	0.9307	0.9346	0.9385	0.9424	0.9463	0.9502
0.830 0.840	0.9542 0.9945	0.9581 0.9986	0.9621 1.0027	1.0069	0.9701 1.0110	0.9741 1.0152	0.9782 1.0194	0.9822 1.0237	0.9863 1.0279	0.9904 1.0322
0.840	1.0364	1.0407	1.0027	1.0069	1.0110	1.0152	1.0194	1.0237	1.0279	1.0322
0.860	1.0803	1.0407	1.0450	1.0494	1.0337	1.1031	1. 1077	1.1123	1.0714	1.1217
0.870	1.1264	1.1311	1.1359	1.1407	1.1455	1.1503	1.1552	1.1123	1.1170	1.1717
0.880	1.1750	1.1311	1.1359	1.1407	1.1455	1. 2004	1. 1352	1. 2107	1.2160	1.2212
0.890	1.1750	1.2319	1. 2372	1.2426	1.1932	1.2536	1.2591	1.2646	1.2702	1.2759
0.890	1.2816	1.2873	1.2930	1.2988	1.3047	1.3106	1.3165	1.3225	1.3285	1.3346
0.910	1.3408	1.3469	1.3532	1.3595	1.3658	1.3722	1.3787	1.3852	1.3203	1.3984
0.910	1.4051	1.4118	1.3332	1.4255	1.4325	1.4395	1.4466	1.4538	1.4611	1.4684
0.930	1.4758	1.4833	1.4909	1.4985	1.5063	1.5141	1.5220	1.5301	1.5382	1.5464
0.940	1.5548	1.5632	1.5718	1.5805	1.5893	1.5982	1.6072	1.6164	1.6258	1.6352
0.950	1.6449	1.6546	1.6646	1.6747	1.6849	1.6954	1.7060	1.7169	1.7279	1.7392
0.960	1.7507	1.7624	1.7744	1.7866	1.7991	1.8119	1.8250	1.8384	1.8522	1.8663
0.970	1.8808	1.8957	1.9110	1.9268	1.9431	1.9600	1.9774	1.9954	2.0141	2.0335
0.980	2.0537	2.0749	2.0969	2.1201	2.1444	2.1701	2.1973	2.2262	2.2571	2.2904
0.990	2.3263	2.3656	2.4089	2.4573	2.5121	2.5758	2.6521	2.7478	2.8782	3.0902
0.770						,				J. J. J. J. L.

Fractiles de la loi du Khi-Deux

pour α ∈{0,005; 0,01; 0.02; 0,025; 0,05; 0,1; 0.15; 0.2; 0.25; 0.3; 0.4; 0.5}

 $Si\,X \rightsquigarrow \chi^2(\nu)\,, alors\,f_X(x) = \frac{x^{\left(\frac{\nu}{2}-1\right)}e^{-\frac{x}{2}}}{\Gamma\left(\frac{\nu}{2}\right)2^{\frac{\nu}{2}}}\,, (pour\,x \in [0,+\infty[)\,, E(X) = \nu\,et\,V(X) = 2\nu\,o\grave{\mathrm{u}}\,\nu\,est\,le\,nombre\,de\,degr\acute{\mathrm{e}}s\,de\,libert\acute{\mathrm{e}}$

 $et \ \alpha = P(X \le k) \ avec \ k = \chi_{\alpha}^{2}(\nu) \ . \ \ Si \ \nu > 50 \ alors \ \sqrt{2X} - \sqrt{2\nu - 1} \sim \mathcal{N}(0, 1) \ et \ \chi_{\alpha}^{2}(\nu) = \frac{1}{2} \left[\Phi^{-1}(\alpha) + \sqrt{2\nu - 1} \right]^{2}$ $X \sim \chi^{2}(\nu) \Rightarrow X \xrightarrow[n \to +\infty]{\mathcal{L}} \mathcal{N}(\nu, 2\nu) \ , (en \ pratique \ pour \ \nu > 100)$

				, ()	<i>n</i> →+∞	77(3-1			•			
ν	0,005	0,01	0.02	0,025	0,05	α 0 , 1	0. 15	0.2	0.25	0.3	0.4	0.5
1	0.0000393	0,000157	0.001	0,0010	0.00393	0.0158	0.036	0.064	0.102	0.148	0.275	0.455
2	0.01	0,0201	0.040	0,0506	0.103	0.211	0.325 0.798	0.446 1.005	0.575	0.713	1.022	1.386
3 4	0.0717 0.207	0, 115 0, 297	0. 185 0. 429	0, 216 0, 484	0.352 0.711	0.584 1.064	1.366	1.649	1. 213 1. 923	1.424 2.195	1.869 2.753	2.366 3.357
5	0.412	0, 297	0.429	0, 484	1.145	1.610	1. 994	2.343	2.675	3.000	3.656	4.351
6	0.412	0, 334	1.134	1,24	1.635	2.204	2.661	3.070	3.455	3.828	4.570	5.348
7	0.878	1,24	1. 154	1, 69	2.167	2.833	3.358	3.822	4. 255	4.671	5.493	6.346
8	1.34	1, 65	2.032	2, 18	2.733	3.490	4.078	4. 594	5.071	5.527	6.423	7.344
9	1.73	2,09	2.532	2, 70	3.325	4. 168	4.817	5.380	5.899	6.393	7.357	8.343
10	2.16	2,56	3.059	3, 25	3.940	4. 865	5.570	6.179	6.737	7.267	8.295	9.342
11	2.60	3,05	3.609	3,82	4. 575	5.578	6.336	6.989	7.584	8. 148	9.237	10.341
12	3.07	3,57	4. 178	4,40	5. 226	6.304	7.114	7.807	8.438	9.034	10.182	11.340
13	3.57	4, 11	4.765	5, 01	5.892	7.041	7.901	8.634	9.299	9.926	11.129	12.340
14	4.07	4,66	5.368	5,63	6.571	7.790	8.696	9.467	10.165	10.821	12.078	13.339
15	4.60	5, 23	5. 985	6, 26	7.261	8.547	9.499	10.307	11.037	11.721	13.030	14.339
16	5.14	5, 81	6.614	6, 91	7.962	9.312	10.309	11.152	11.037	12.624	13.983	15.338
17	5.70	6,41	7. 255	7,56	8.672	10.085	11.125	12.002	12.792	13.531	14.937	16.338
18	6.26	7,01	7.906	8, 23	9.390	10.865	11.946	12.857	13.675	14.440	15.893	17.338
19	6.84	7,63	8.567	8,91	10.117	11.651	12.773	13.716	14.562	15.352	16.850	18.338
20	7.43	8, 26	9.237	9,56	10.851	12.443	13.604	14.578	15.452	16.266	17.809	19.337
21	8.03	8, 90	9.915	10,3	11.591	13.240	14.439	15.445	16.344	17.182	18.768	20.337
22	8.64	9, 54	10.600	11,0	12.338	14.041	15.279	16.314	17.240	18.101	19.729	21.337
23	9.26	10, 2	11.293	11,7	13.091	14.848	16.122	17.187	18.137	19.021	20.690	22.337
24	9.89	10,9	11.992	12,4	13.848	15.659	16.969	18.062	19.037	19.943	21.652	23.337
25	10.5	11,5	12.697	13, 1	14.611	16.473	17.818	18.940	19.939	20.867	22.616	24.337
26	11.2	12,2	13.409	13,8	15.379	17.292	18.671	19.820	20.843	21.792	23.579	25.336
27	11.8	12,9	14.125	14,6	16.151	18.114	19.527	20.703	21.749	22.719	24.544	26.336
28	12.5	13,6	14.847	15,3	16.928	18.939	20.386	21.588	22.657	23.647	25.509	27.336
29	13.1	14,3	15.574	16,0	17.708	19.768	21.247	22.475	23.567	24.577	26.475	28.336
30	13.8	15,0	16.306	16.8	18.493	20.599	22.110	23.364	24.478	25.508	27.442	29.336
31	14.5	15.7	17.042	17.5	19.281	21.434	22.976	24.255	25.390	26.440	28.409	30.336
32	15.1	16.4	17.783	18.3	20.072	22.271	23.844	25.148	26.304	27.373	29.376	31.336
33	15.8	17.1	18.527	19	20.867	23.110	24.714	26.042	27.219	28.307	30.344	32.336
34	16.5	17.8	19.275	19.8	21.664	23.952	25.586	26.938	28.136	29.242	31.313	33.336
35	17.2	18.5	20.027	20.6	22.465	24.797	26.460	27.836	29.054	30.178	32.282	34.336
36	17.9	19.2	20.783	21.3	23.269	25.643	27.336	28.735	29.973	31.115	33.252	35.336
37	18.6	20	21.542	22.1	24.075	26.492	28.214	29.635	30.893	32.053	34.222	36.336
38	19.3	20.7	22.304	22.9	24.884	27.343	29.093	30.537	31.815	32.992	35.192	37.335
39	20	21.4	23.069	23.7	25.695	28.196	29.974	31.441	32.737	33.932	36.163	38.335
40	20.7	22.2	23.838	24.4	26.509	29.051	30.856	32.345	33.660	34.872	37.134	39.335
41	21.4	22.9	24.609	25.2	27.326	29.907	31.740	33.251	34.585	35.813	38.105	40.335
42	22.1	23.7	25.383	26	28.144	30.765	32.626	34.157	35.510	36.755	39.077	41.335
43	22.9	24.4	26.159	26.8	28.965	31.625	33.512	35.065	36.436	37.698	40.050	42.335
44	23.6	25.1	26.939	27.6	29.787	32.487	34.400	35.974	37.363	38.641	41.022	43.335
45	24.3	25.9	27.720	28.4	30.612	33.350	35.290	36.884	38.291	39.585	41.995	44.335
46	25	26.7	28.504	29.2	31.439	34.215	36.180	37.795	39.220	40.529	42.968	45.335
47	25.8	27.4	29.291	30	32.268	35.081	37.072	38.708	40.149	41.474	43.942	46.335
48	26.5	28.2	30.080	30.8	33.098	35.949	37.965	39.621	41.079	42.420	44.915	47.335
49	27.2	28.9	30.871	31.6	33.930	36.818	38.859	40.534	42.010	43.366	45.889	48.335
50	28	29.7	31.664	32.4	34.764	37.689	39.754	41.449	42.942	44.313	46.864	49.335

Fractiles de la loi du Khi-Deux
pour α ∈{0.6; 0.7; 0.75; 0.8; 0.85; 0.9; 0.95; 0.975; 0.98; 0.99; 0.995; 0.999}

 $Si\,X \rightsquigarrow \chi^2(\nu)\,, alors\,f_X(x) = \frac{x^{\left(\frac{\nu}{2}-1\right)}e^{-\frac{x}{2}}}{\Gamma\left(\frac{\nu}{2}\right)2^{\frac{\nu}{2}}}\,, (pour\,x \in [0,+\infty[)\,, E(X) = \nu\,et\,V(X) = 2\nu\,o\grave{\mathrm{u}}\,\nu\,est\,le\,nombre\,de\,degr\acute{\mathrm{e}}s\,de\,libert\acute{\mathrm{e}}$

et $\alpha = P(X \le k)$ avec $k = \chi_{\alpha}^{2}(\nu)$. Si $\nu > 50$ alors $\sqrt{2X} - \sqrt{2\nu - 1} \rightsquigarrow \mathcal{N}(0, 1)$ et $\chi_{\alpha}^{2}(\nu) = \frac{1}{2} \left[\Phi^{-1}(\alpha) + \sqrt{2\nu - 1} \right]^{2}$ $X \rightsquigarrow \chi^{2}(\nu) \Rightarrow X \xrightarrow{\mathcal{L}} \mathcal{N}(\nu, 2\nu)$, (en pratique pour $\nu > 100$)

			Λ χ	$(V) \rightarrow X - n$			ruiique p	oui v > 1	00)			
ν	0.6	0.7	0.75	0.8	0.85	α 0.9	0.95	0,975	0.98	0.99	0, 995	0.999
1	0.708	1.074	1.323	1.642	2.072	2.706	3.841	5.02	5.412	6.635	7.88	10.827
2	1.833	2.408	2.773	3.219	3.794	4.605	5.991	7.38	7.824	9.210	10.6	13.815
3	2.946	3.665	4.108	4.642	5.317	6.251	7.815	9.35	9.837	11.345	12.8	16.266
4	4.045	4.878	5.385	5.989	6.745	7.779	9.488	11.1	11.668	13.277	14.9	18.466
5	5. 132	6.064	6.626	7.289	8.115	9.236	11.070	12.8	13.388	15.086	16.7	20.515
6	6.211	7.231	7.841	8.558	9.446	10.645	12.592	14.4	15.033	16.812	18.5	22.457
7	7.283	8.383	9.037	9.803	10.748	12.017	14.067	16.0	16.622	18.475	20.3	24.321
8	8.351	9.524	10.219	11.030	12.027	13.362	15.507	17.5	18.168	20.090	22.0	26.124
9	9.414	10.656	11.389	12.242	13.288	14.684	16.919	19.0	19.679	21.666	23.6	27.877
10	10.473	11.781	12.549	13.442	14.534	15.987	18.307	20.5	21.161	23.209	25.2	29.588
11	11.530	12.899	13.701	14.631	15.767	17.275	19.675	21.9	22.618	24.725	26.8	31.264
12	12.584	14.011	14.845	15.812	16.989	18.549	21.026	23.3	24.054	26.217	28.3	32.909
13	13.636	15.119	15.984	16.985	18.202	19.812	22.362	24.7	25.471	27.688	29.8	34.527
14	14.685	16.222	17.117	18.151	19.406	21.064	23.685	26.1	26.873	29.141	31.3	36.124
15	15.733	17.322	18.245	19.311	20.603	22.307	24.996	27.5	28.259	30.578	32.8	37.698
16	16.780	18.418	19.369	20.465	21.793	23.542	26.296	28.8	29.633	32.000	34.3	39.252
17	17.824	19.511	20.489	21.615	22.977	24.769	27.587	30.2	30.995	33.409	35.7	40.791
18	18.868	20.601	21.605	22.760	24.155	25.989	28.869	31.5	32.346	34.805	37.2	42.312
19	19.910	21.689	22.718	23.900	25.329	27.204	30.144	32.9	33.687	36.191	38.6	43.819
20	20.951	22.775	23.828	25.038	26.498	28.412	31.410	34.2	35.020	37.566	40.0	45.314
21	21.992	23.858	24.935	26.171	27.662	29.615	32.671	35.5	36.343	38.932	41.4	46.796
22	23.031	24.939	26.039	27.301	28.822	30.813	33.924	36.8	37.659	40.289	42.8	48.268
23	24.069	26.018	27.141	28.429	29.979	32.007	35.172	38.1	38.968	41.638	44.2	49.728
24	25. 106	27.096	28.241	29.553	31.132	33.196	36.415	39.4	40.270	42.980	45.6	51.179
25	26.143	28.172	29.339	30.675	32.282	34.382	37.652	40.6	41.566	44.314	46.9	52.619
26	27.179	29.246	30.435	31.795	33.429	35.563	38.885	41.9	42.856	45.642	48.3	54.051
27	28.214	30.319	31.528	32.912	34.574	36.741	40.113	43.2	44.140	46.963	49.6	55.475
28	29.249	31.391	32.620	34.027	35.715	37.916	41.337	44.5	45.419	48.278	51.0	56.892
29	30.283	32.461	33.711	35.139	36.854	39.087	42.557	45.7	46.693	49.588	52.3	58.301
30	31.316	33.530	34.800	36.250	37.990	40.256	43.773	47.0	47.962	50.892	53.7	59.702
31	32.349	34.598	35.887	37.359	39.124	41.422	44.985	48.2	49.226	52.191	55.0	61.098
32	33.381	35.665	36.973	38.466	40.256	42.585	46.194	49.5	50.487	53.486	56.3	62.487
33	34.413	36.731	38.058	39.572	41.386	43.745	47.400	50.7	51.743	54.775	57.6	63.869
34	35.444	37.795	39.141	40.676	42.514	44.903	48.602	52.0	52.995	56.061	59.0	65.247
35	36.475	38.859	40.223	41.778	43.640	46.059	49.802	53.2	54.244	57.342	60.3	66.619
36	37.505	39.922	41.304	42.879	44.764	47.212	50.998	54.4	55.489	58.619	61.6	67.985
37	38.535	40.984	42.383	43.978	45.886	48.363	52.192	55.7	56.730	59.893	62.9	69.348
38	39.564	42.045	43.462	45.076	47.007	49.513	53.384	56.9	57.969	61.162	64.2	70.704
39	40.593	43.105	44.539	46.173	48.126	50.660	54.572	58.1	59.204	62.428	65.5	72.055
40	41.622	44. 165	45.616	47.269	49.244	51.805	55.758	59.3	60.436	63.691	66.8	73.403
41	42.651	45.224	46.692	48.363	50.360	52.949	56.942	60.6	61.665		68.1	74.744
42	43.679	46. 282	47.766	49.456	51.475	54.090	58.124	61.8	62.892	66.206	69.3	76.084
43	44.706	47.339	48.840	50.548	52.588	55.230	59.304	63.0	64.116	67.459	70.6	77.418
44	45.734	48.396	49.913	51.639	53.700	56.369	60.481	64.2	65.337	68.710	71.9	78.749
45	46.761	49.452	50.985	52.729	54.810	57.505	61.656	65.4	66.555	69.957	73.2	80.078
46	47.787	50.507	52.056	53.818	55.920	58.641	62.830	66.6	67.771	71.201	74.4	81.400
47	48.814	51.562	53.127	54.906	57.028	59.774	64.001	67.8	68.985	72.443	75.7	82.720
48	49.840	52.616	54.196	55.993	58.135	60.907	65.171	69.0	70.197	73.683	77.0	84.037
48 49	50.866	53.670	55.265	57.079	59.241	62.038	66.339	70.2	71.406	74.919	78.2	85.350
50	51.892	54.723	56.334		60.346	63.167			72.613		79.5	
- 50	31.894	34. / 43	30.334	58 . 164	OU. 340	03.10/	67.505	71.4	/4.013	76.154	/ 7. 3	86.660

Fractiles de la loi de Student powr a ∈{0.55; 0.6; 0.65; 0.7; 0.75; 0.8; 0.85; 0.9; 0.95; 0.975; 0.99; 0.995; 0.9975; 0.9995}

$$Si\ X \sim \mathcal{T}(\nu)\ , \nu \in \mathbb{N}^*, alors\ f_X(x) = \frac{1}{\sqrt{\nu\pi}} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\left(\frac{\nu+1}{2}\right)}\ , E(X) = 0\ , si\ \nu > 1\ et\ V(X) = \frac{\nu}{\nu-2}\ , si\ \nu > 2$$

et pour $\alpha = P(X \le k)$ avec $k = t_{\alpha}(\nu)$. Pour les valeurs de $\alpha < 0, 5$, on utilisera la relation : $t_{\alpha} = -t_{1-\alpha}$ $\forall x \ge 0 : P(X \le x) = P(X \ge -x) = 1 - P(X \le -x)$ $X \sim \mathcal{T}(\nu) \Rightarrow X \xrightarrow{L} \mathcal{N}(0, 1)$, (en pratique pour $\nu > 100$)

				<i>X</i> ∼	$(J(V) \Rightarrow I$	$X \xrightarrow[n \to +\infty]{N}$	$(0,1)$, $(\mathbf{e}\mathbf{r})$	ı pratiqu	ie pour v	> 100)				
ν	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	0.975	0.99	0.995	0.9975	0.9995
1	0.1584	0.3249	0.5095	0.7265	1	1.3764	1.9626	3.0777	6.3137	12.706	31.821	63.656	127.32	636.58
2	0.1421	0.2887	0.4447	0.6172	0.8165	1.0607	1.3862	1.8856	2.92	4.3027	6.9645	9.925	14.089	31.6
3	0.1366	0.2767	0.4242	0.5844	0.7649	0.9785	1.2498	1.6377	2.3534	3.1824	4.5407	5.8408	7.4532	12.924
4	0.1338	0.2707	0.4142	0.5686	0.7407	0.941	1.1896	1.5332	2.1318	2.7765	3.7469	4.6041	5.5975	8.6101
5	0.1322	0.2672	0.4082	0.5594	0.7267	0.9195	1.1558	1.4759	2.015	2.5706	3.3649	4.0321	4.7733	6.8685
6	0.1311	0.2648	0.4043	0.5534	0.7176	0.9057	1.1342	1.4398	1.9432	2.4469	3.1427	3.7074	4.3168	5.9587
7	0.1303	0.2632	0.4015	0.5491	0.7111	0.896	1.1192	1.4149	1.8946	2.3646	2.9979	3.4995	4.0294	5.4081
8	0.1297	0.2619	0.3995	0.5459	0.7064	0.8889	1.1081	1.3968	1.8595	2.306	2.8965	3.3554	3.8325	5.0414
9	0.1293	0.261	0.3979	0.5435	0.7027	0.8834	1.0997	1.383	1.8331	2.2622	2.8214	3.2498	3.6896	4.7809
10	0.1289	0.2602	0.3966	0.5415	0.6998	0.8791	1.0931	1.3722	1.8125	2.2281	2.7638	3.1693	3.5814	4.5868
11	0.1286	0.2596	0.3956	0.5399	0.6974	0.8755	1.0877	1.3634	1.7959	2.201	2.7181	3.1058	3.4966	4.4369
12	0.1283	0.259	0.3947	0.5386	0.6955	0.8726	1.0832	1.3562	1.7823	2.1788	2.681	3.0545	3.4284	4.3178
13	0.1281	0.2586	0.394	0.5375	0.6938	0.8702	1.0795	1.3502	1.7709	2.1604	2.6503	3.0123	3.3725	4.2209
14	0.128	0.2582	0.3933	0.5366	0.6924	0.8681	1.0763	1.345	1.7613	2.1448		2.9768	3.3257	4.1403
15	0.1278	0.2579	0.3928	0.5357	0.6912	0.8662	1.0735	1.3406	1.7531	2.1315	2.6025	2.9467	3.286	4.0728
16	0.1277	0.2576	0.3923	0.535	0.6901	0.8647	1.0711	1.3368	1.7459	2.1199	2.5835	2.9208	3.252	4.0149
17	0.1276	0.2573	0.3919	0.5344	0.6892	0.8633	1.069	1.3334	1.7396		2.5669	2.8982	3.2224	3.9651
18	0.1274	0.2571	0.3915	0.5338	0.6884	0.862	1.0672	1.3304		2.1009	2.5524	2.8784	3.1966	3.9217
19	0.1274	0.2569	0.3912	0.5333	0.6876	0.861	1.0655	1.3277	1.7291	2.093	2.5395	2.8609	3.1737	3.8833
20	0.1273	0.2567	0.3909	0.5329	0.687	0.86	1.064	1.3253	1.7247	2.086	2.528	2.8453	3.1534	3.8496
21	0.1272	0.2566	0.3906	0.5325	0.6864	0.8591	1.0627	1.3232	1.7207	2.0796	2.5176	2.8314	3.1352	3.8193
22	0.1271	0.2564	0.3904	0.5321	0.6858	0.8583	1.0614	1.3212	1.7171		2.5083	2.8188	3.1188	3.7922
23	0.1271	0.2563	0.3902	0.5317	0.6853	0.8575	1.0603	1.3195	1.7139	2.0687	2.4999	2.8073	3.104	3.7676
24	0.127	0.2562	0.39	0.5314	0.6848	0.8569	1.0593	1.3178		2.0639		2.797	3.0905	3.7454
25	0.1269	0.2561	0.3898	0.5312	0.6844	0.8562	1.0584	1.3163	1.7081	2.0595	2.4851	2.7874	3.0782	3.7251
26	0.1269	0.256	0.3896	0.5309	0.684	0.8557	1.0575	1.315	1.7056	2.0555	2.4786	2.7787	3.0669	3.7067
27	0.1268	0.2559	0.3894	0.5306	0.6837	0.8551	1.0567	1.3137	1.7033	2.0518	2.4727	2.7707	3.0565	3.6895
28	0.1268	0.2558	0.3893	0.5304	0.6834	0.8546	1.056	1.3125		2.0484	2.4671	2.7633	3.047	3.6739
29	0.1268	0.2557	0.3892	0.5302	0.683	0.8542	1.0553	1.3114	1.6991	2.0452	2.462	2.7564	3.038	3.6595
30	0.1267	0.2556	0.389	0.53	0.6828	0.8538	1.0547	1.3104	1.6973	2.0423	2.4573	2.75	3.0298	3.646
31	0.1267	0.2555	0.3889	0.5298	0.6825	0.8534	1.0541	1.3095	1.6955		2.4528	2.744	3.0221	3.6335
32	0.1267	0.2555	0.3888	0.5297	0.6822	0.853	1.0535	1.3086	1.6939	2.0369	2.4487	2.7385	3.0149	3.6218
33	0.1266	0.2554	0.3887	0.5295	0.682	0.8526	1.053	1.3077	1.6924	2.0345	2.4448	2.7333	3.0082	3.6109
34	0.1266	0.2553	0.3886	0.5294	0.6818	0.8523	1.0525	1.307	1.6909	2.0322	2.4411	2.7284	3.002	3.6007
35	0.1266	0.2553	0.3885	0.5292	0.6816	0.852	1.052	1.3062	1.6896	2.0301	2.4377	2.7238	2.9961	3.5911
36	0.1266	0.2552	0.3884	0.5291	0.6814	0.8517	1.0516	1.3055	1.6883	2.0281	2.4345	2.7195		3.5821
37	0.1265	0.2552	0.3883	0.5289	0.6812	0.8514	1.0512	1.3049	1.6871	2.0262	2.4314	2.7154	2.9853	3.5737
38	0.1265	0.2551	0.3882	0.5288	0.681	0.8512	1.0508	1.3042	1.686	2.0244	2.4286	2.7116	2.9803	3.5657
39	0.1265	0.2551	0.3882	0.5287	0.6808	0.8509	1.0504	1.3036	1.6849	2.0227	2.4258	2.7079		3.5581
40	0.1265	0.255	0.3881	0.5286	0.6807	0.8507	1.05	1.3031	1.6839	2.0211	2.4233	2.7045	2.9712	3.551
41	0.1264	0.255	0.388	0.5285	0.6805	0.8505		1.3025			2.4208		2.967	3.5443
42	0.1264	0.255	0.388		0.6804						2.4185			3.5377
43	0.1264	0.2549					1.0491							
44		0.2549	0.3878	0.5282	0.6801	0.8499			1.6802		2.4141		2.9555	
45	0.1264	0.2549	0.3878	0.5281	0.68	0.8497	1.0485		1.6794				2.9521	
46	0.1264	0.2548	0.3877	0.5281	0.6799			1.3002			2.4102	2.687	2.9488	
47		0.2548	0.3877	0.528	0.6797	0.8493	1.048	1.2998			2.4083		2.9456	
48	0.1263	0.2548	0.3876	0.5279	0.6796	0.8492	1.0478		1.6772		2.4066			3.505
49	0.1263	0.2547	0.3876	0.5278	0.6795	0.849	1.0475	1.2991		2.0096		2.68	2.9397	3.5005
50	0.1263	0.2547	0.3875	0.5278			1.0473			2.0086				3.496
	J							,						

Téléphone: (+216) 97 619191 / 54 619191

fhttps://web.facebook.com/OMEGACENTER2014

Momega.center.cp@gmail.com

Fractiles de la lai de Fisher (pour $\alpha=0,9$ et $n \in \{1;2;...;50\}$)

											c owner	V		, , , ,							_	
n.	1		3	4	5	6	7	8	9	10 m	11	12	13	14	15	16	17	18	19	20		
	9.863	49.500	53.593	55.833	57.240	58.204	58.906	59.439	59.858	60.195	60.473	60.705	60.903	61.073	61.220	61.350	61.464	61.566	61.658	61.740	et	
_																					po	
	3.526	9.000	9.162	9.243	9.293	9.326	9.349	9.367	9.381	9.392	9.401	9.408	9.415	9.420	9.425	9.429	9.433	9.436	9.439	9.441	nc	
	5.538	5.462	5.391	5.343	5.309	5. 285	5.266	5. 252	5.240	5.230	5.222	5.216	5.210	5.205	5.200	5.196	5.193	5.190	5.187	5.184	1 7	
	. 545	4.325	4.191	4.107	4.051	4.010	3.979	3.955	3.936	3.920	3.907	3.896	3.886	3.878	3.870	3.864	3.858	3.853	3.849	3.844	- ~	
	1.060	3.780	3.619	3.520	3.453	3.405	3.368	3.339	3.316	3.297	3.282	3.268	3.257	3.247	3.238	3.230	3.223	3.217	3.212	3.207	ټ ا	
_	3.776	3.463	3.289	3.181	3.108	3.055	3.014	2.983	2.958	2.937	2.920	2.905	2.892	2.881	2.871	2.863	2.855	2.848	2.842	2.836	P(X	
	3.589	3.257	3.074	2.961	2.883	2.827	2.785	2.752	2.725	2.703	2.684	2.668	2.654	2.643	2.632	2.623	2.615	2.607	2.601	2.595	ĺΛ	
	8.458	3.113	2.924	2.806	2.726	2.668	2.624	2.589	2.561	2.538	2.519	2.502	2.488	2.475	2.464	2.455	2.446	2.438	2.431	2.425	3	
3	3.360	3.006	2.813	2.693	2.611	2.551	2.505	2.469	2.440	2.416	2.396	2.379	2.364	2.351	2.340	2.329	2.320	2.312	2.305	2.298) a	
3	3.285	2.924	2.728	2.605	2.522	2.461	2.414	2.377	2.347	2.323	2.302	2.284	2.269	2.255	2.244	2.233	2.224	2.215	2.208	2.201	ре	
. 3	3.225	2.860	2.660	2.536	2.451	2.389	2.342	2.304	2.274	2.248	2.227	2.209	2.193	2.179	2.167	2.156	2.147	2.138	2.130	2.123	Š	
3	3.177	2.807	2.606	2.480	2.394	2.331	2.283	2.245	2.214	2.188	2.166	2.147	2.131	2.117	2.105	2.094	2.084	2.075	2.067	2.060	k =	
3	3.136	2.763	2.560	2.434	2.347	2.283	2.234	2.195	2.164	2.138	2.116	2.097	2.080	2.066	2.053	2.042	2.032	2.023	2.014	2.007	"	
3	3.102	2.726	2.522	2.395	2.307	2.243	2.193	2.154	2.122	2.095	2.073	2.054	2.037	2.022	2.010	1.998	1.988	1.978	1.970	1.962	, a	
3	3.073	2.695	2.490	2.361	2.273	2.208	2.158	2.119	2.086	2.059	2.037	2.017	2.000	1.985	1.972	1.961	1.950	1.941	1.932	1.924	ű,	
	3.048	2.668	2.462	2.333	2.244	2.178	2.128	2.088	2.055	2.028	2.005	1.985	1.968	1.953	1.940	1.928	1.917	1.908	1.899	1.891	5	
	3.026	2.645	2.437	2.308	2.218	2. 152	2.102	2.061	2.028	2.001	1.978	1.958	1.940	1.925	1.912	1.900	1.889	1.879	1.870	1.862	Ÿ	
	3.007	2.624	2.416	2.286	2.196	2.130	2.079	2.038	2.005	1.977	1.954	1.933	1.916	1.900	1.887	1.875	1.864	1.854	1.845	1.837	20	13
	2.990	2.606	2.397	2.266	2.176	2.109	2.058	2.017	1.984	1.956	1.932	1.912	1.894	1.878	1.865	1.852	1.841	1.831	1.822	1.814	7	(2)
	2.975	2.589	2.380	2.249	2.158	2.091	2.040	1.999	1.965	1.937	1.913	1.892	1.875	1.859	1.845	1.833	1.821	1.811	1.802	1.794	les	\$
	2.961	2.575	2.365	2.233	2.142	2.075	2.023	1.982	1.948	1.920	1.896	1.875	1.857	1.841	1.827	1.815	1.803	1.793	1.784	1.776		II
	2.949	2.561	2.351	2.219	2.128	2.060	2.008	1.967	1.933	1.904	1.880	1.859	1.841	1.825	1.811	1.798	1.787	1.777	1.768	1.759	al	n
_	2.937	2.549	2.339	2.207	2.115	2.047	1.995	1.953	1.919	1.890	1.866	1.845	1.827	1.811	1.796	1.784	1.772	1.762	1.753	1.744	valeurs	m(n
	. 927	2.538	2.327	2.195	2.103	2.035	1.983	1.941	1.906	1.877	1.853	1.832	1.814	1.797	1.783	1.770	1.772	1.748	1.739	1.730	rs	
	2.918	2.528	2.327	2.193	2. 103	2.024	1.971	1.929	1.895	1.866	1.841	1.820	1.802	1.785	1.771	1.770	1.746	1.736	1.726	1.718	de	$2)^2(n$
	2.909	2.519	2.317	2.174	2.092	2.024	1.961	1.919	1.884	1.855	1.830	1.820	1.790	1.774	1.760	1.747	1.735	1.724	1.715	1.716	â	<u>z</u>
	2.901	2.511	2.307	2.165	2.073	2.014	1.952	1.919	1.874	1.845	1.820	1.799	1.780	1.764	1.749	1.736	1.733	1.714	1.713	1.695	^	- 1
	2.894	2.511	2.299	2.157	2.064	1.996	1.932	1.909	1.865	1.836	1.820	1.799	1.771	1.754	1.749	1.736	1.724	1.714	1.694	1.685	,0	
	2.887	2.495	2.283	2.137			1.935	1.892	1.857	1.827	1.802	1.781	1.762		1.740	1.720		1.695	1.685	1.676	Ĺ	ž
			2.283		2.057	1.988								1.745			1.705				9	, si n
	2.881	2.489		2.142	2.049	1.980	1.927	1.884	1.849	1.819	1.794	1.773	1.754	1.737	1.722	1.709	1.697	1.686	1.676	1.667	n I	~
	2.875	2.482	2.270	2.136	2.042	1.973	1.920	1.877	1.842	1.812	1.787	1.765	1.746	1.729	1.714	1.701	1.689	1.678	1.668	1.659	1 2	4
	2.869	2.477	2.263	2.129	2.036	1.967	1.913	1.870	1.835	1.805	1.780	1.758	1.739	1.722	1.707	1.694	1.682	1.671	1.661	1.652	is	
	2.864	2.471	2.258	2.123	2.030	1.961	1.907	1.864	1.828	1.799	1.773	1.751	1.732	1.715	1.700	1.687	1.675	1.664	1.654	1.645	er	
	2.859	2.466	2.252	2.118	2.024	1.955	1.901	1.858	1.822	1.793	1.767	1.745	1.726	1.709	1.694	1.680	1.668	1.657	1.647	1.638	al	
	2.855	2.461	2.247	2.113	2.019	1.950	1.896	1.852	1.817	1.787	1.761	1.739	1.720	1.703	1.688	1.674	1.662	1.651	1.641	1.632	1 0	
	2.850	2.456	2.243	2.108	2.014	1.945	1.891	1.847	1.811	1.781	1.756	1.734	1.715	1.697	1.682	1.669	1.656	1.645	1.635	1.626	e.	
	2.846	2.452	2.238	2.103	2.009	1.940	1.886	1.842	1.806	1.776	1.751	1.729	1.709	1.692	1.677	1.663	1.651	1.640	1.630	1.620	elation	
	2.842	2.448	2.234	2.099	2.005	1.935	1.881	1.838	1.802	1.772	1.746	1.724	1.704	1.687	1.672	1.658	1.646	1.635	1.624	1.615	io	
	. 839	2.444	2.230	2.095	2.001	1.931	1.877	1.833	1.797	1.767	1.741	1.719	1.700	1.682	1.667	1.653	1.641	1.630	1.619	1.610	, n	
	. 835	2.440	2.226	2.091	1.997	1.927	1.873	1.829	1.793	1.763	1.737	1.715	1.695	1.678	1.662	1.649	1.636	1.625	1.615	1.605	<u>_</u>	
	2.832	2.437	2.222	2.087	1.993	1.923	1.869	1.825	1.789	1.759	1.733	1.710	1.691	1.673	1.658	1.644	1.632	1.620	1.610	1.601	£.	
_	2.829	2.434	2.219	2.084	1.989	1.919	1.865	1.821	1.785	1.755	1.729	1.706	1.687	1.669	1.654	1.640	1.628	1.616	1.606	1.596	ָ הָ	
2	2.826	2.430	2.216	2.080	1.986	1.916	1.861	1.817	1.781	1.751	1.725	1.703	1.683	1.665	1.650	1.636	1.624	1.612	1.602	1.592	5	
2	2.823	2.427	2.213	2.077	1.983	1.913	1.858	1.814	1.778	1.747	1.721	1.699	1.679	1.662	1.646	1.632	1.620	1.608	1.598	1.588	l II	
2	2.820	2.425	2.210	2.074	1.980	1.909	1.855	1.811	1.774	1.744	1.718	1.695	1.676	1.658	1.643	1.629	1.616	1.605	1.594	1.585	1-1	
2	2.818	2.422	2.207	2.071	1.977	1.906	1.852	1.808	1.771	1.741	1.715	1.692	1.672	1.655	1.639	1.625	1.613	1.601	1.591	1.581	' _{1-α} (
	2.815	2.419	2.204	2.068	1.974	1.903	1.849	1.805	1.768	1.738	1.712	1.689	1.669	1.652	1.636	1.622	1.609	1.598	1.587	1.578	(n)	_
	2.813	2.417	2.202	2.066	1.971	1.901	1.846	1.802	1.765	1.735	1.709	1.686	1.666	1.648	1.633	1.619	1.606	1.594	1.584	1.574	Ħ	
	2.811	2.414	2.199	2.063	1.968	1.898	1.843	1.799	1.763	1.732	1.706	1.683	1.663	1.645	1.630	1.616	1.603	1.591	1.581	1.571		
	2.809	2.412	2.197	2.061	1.966	1.895	1.840	1.796	1.760	1.729	1.703	1.680	1.660	1.643	1.627	1.613	1.600	1.588	1.578	1.568	1	
		4. T14	2 . 1 / /	4.001	1. 700	1.073	I. UTU	1.770	1.700	1.147	1.703	1.000	1.000	I. UTJ	1.04/	1.013	1.000	1.500	1.3/0	1.300	J.	

omega.center.cp@gmail.com

Fractiles de la lai de Fisher (pour $\alpha=0.9$ et $n \in \{51; 52; ...; 100\}$)

								Fu	icities tie	a ca ca a	e Fisher ($paur \alpha = 0$	$v, y \text{ et } n \in \{$	ə1 ; ə2 ;	; 100})						
										m											
n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	2
51	2.807	2.410	2.194	2.058	1.964	1.893	1.838	1.794	1.757	1.727	1.700	1.677	1.658	1.640	1.624	1.610	1.597	1.586	1.575	1.565	er pour
52	2.805	2.408	2.192	2.056	1.961	1.891	1.836	1.791	1.755	1.724	1.698	1.675	1.655	1.637	1.621	1.607	1.594	1.583	1.572	1.562	,
53 54	2.803 2.801	2.406	2. 190 2. 188	2.054	1.959	1.888 1.886	1.833	1.789 1.787	1.752	1.722	1.695	1.672	1.652	1.635	1.619	1.605	1.592	1.580	1.570 1.567	1.560 1.557	
54	2.799	2.404		2.052	1.957		1.831		1.750	1.719	1.693	1.670	1.650	1.632	1.616	1.602	1.589	1.578			'
55		2.402	2.186	2.050	1.955	1.884	1.829 1.827	1.785	1.748	1.717 1.715	1.691	1.668	1.648	1.630	1.614	1.600	1.587	1.575	1.564	1.555	
56	2.797	2.400	2.184	2.048	1.953	1.882		1.782	1.746		1.688	1.666	1.645	1.628	1.612	1.597	1.585	1.573	1.562	1.552	1
57 58	2.796 2.794	2.398	2.182	2.046 2.044	1.951 1.949	1.880 1.878	1.825 1.823	1.780 1.779	1.744 1.742	1.713 1.711	1.686 1.684	1.663 1.661	1.643 1.641	1.625 1.623	1.610	1.595 1.593	1.582 1.580	1.571 1.568	1.560 1.558	1.550 1.548	1
50 59	2.794	2.395	2. 181 2. 179	2.044	1.949	1.876	1.821	1.777	1.742	1.711	1.682	1.659	1.639	1.623	1.607	1.593	1.578	1.566	1.555	1.546	
60	2.793	2.393	2.177	2.043	1.947	1.875	1.819	1.775	1.738	1.707	1.680	1.657	1.637	1.619	1.603	1.589	1.576	1.564	1.553	1.543	1
61	2.791	2.393	2.176	2.041	1.946	1.873	1.818	1.773	1.736	1.707	1.679	1.656	1.635	1.619	1.601	1.587	1.576	1.562	1.551	1.543	
	2.788	2.392	2.174	2.039	1.944	1.871	1.816	1.771	1.735	1.703	1.677	1.654	1.634	1.617	1.601	1.585	1.574	1.562	1.549	1.541	
62 63	2.787	2.389	2.174	2.036	1.942	1.871	1.814	1.771	1.733	1.703	1.675	1.652	1.634	1.614	1.598	1.583	1.572	1.558	1.549	1.540	
	2.786	2.387			1.941	1.868	1.813	1.768	1.731	1.702		1.652	1.632			1.582	1.569	1.557			,
64	2.784		2. 171 2. 170	2.035		1.868	1.813	1.768			1.673	1.649		1.612	1.596 1.594	1.582	1.569		1.546	1.536 1.534	
65 66	2.784	2.386 2.385	2.170	2.033	1.938 1.937	1.867	1.811	1.767	1.730 1.728	1.699 1.697	1.672 1.670	1.649	1.628 1.627	1.610 1.609	1.594	1.580	1.567	1.555 1.553	1.544 1.542	1.534	1
67	2.783	2.385	2.169	2.032	1.937	1.865	1.810	1.764	1.728	1.697	1.669	1.646	1.627	1.609	1.593	1.578	1.564	1.553	1.542	1.532	
68	2.782	2.384	2.166	2.031	1.935	1.863	1.808	1.764	1.727	1.696	1.667	1.644	1.625	1.607	1.591	1.577	1.564	1.552	1.541	1.531	1
69	2.781	2.381	2.165	2.029	1.933	1.861	1.806	1.762	1.723	1.693	1.666	1.643	1.622	1.604	1.588	1.574	1.560	1.548	1.538	1.527	ł
70	2.779	2.381	2.164	2.028	1.933	1.860	1.804	1.761	1.724	1.693	1.665	1.641	1.622	1.603	1.587	1.574	1.559	1.546	1.536	1.527	
71	2.778	2.379	2.163	2.027	1.931	1.859	1.803	1.758	1.723	1.690	1.663	1.640	1.619	1.601	1.585	1.572	1.557	1.545	1.535	1.524	ł
72	2.777	2.379	2.161	2.025	1.930	1.858	1.802	1.757	1.721	1.689	1.662	1.639	1.619	1.600	1.584	1.569	1.556	1.545	1.533	1.524	ł
73	2.776	2.377	2.160	2.023	1.929	1.856	1.802	1.756	1.720	1.687	1.661	1.637	1.617	1.599	1.583	1.568	1.555	1.543	1.533	1.523	
74	2.775	2.376	2.159	2.024	1.927	1.855	1.800	1.755	1.719	1.686	1.659	1.636	1.616	1.597	1.581	1.567	1.553	1.543	1.532	1.520	ł
75	2.774	2.375	2.159	2.022	1.927	1.854	1.798	1.754	1.716	1.685	1.658	1.635	1.614	1.596	1.580	1.565	1.552	1.541	1.529	1.520	
76	2.774	2.374	2.157	2.021	1.925	1.853	1.797	1.752	1.715	1.684	1.657	1.634	1.613	1.595	1.579	1.564	1.551	1.539	1.528	1.519	
77	2.773	2.374	2.156	2.019	1.923	1.852	1.796	1.751	1.714	1.683	1.656	1.632	1.613	1.594	1.578	1.563	1.550	1.538	1.527	1.516	
78	2.772	2.373	2.155	2.019	1.923	1.851	1.795	1.751	1.713	1.682	1.655	1.631	1.611	1.593	1.576	1.562	1.548	1.536	1.525	1.515	
79	2.771	2.372	2.154	2.017	1.922	1.850	1.794	1.749	1.713	1.681	1.654	1.630	1.610	1.592	1.575	1.561	1.547	1.535	1.524	1.513	
80	2.769	2.371	2.154	2.017	1.921	1.849	1.793	1.748	1.712	1.680	1.653	1.629	1.609	1.590	1.574	1.559	1.546	1.534	1.523	1.513	
81	2.769	2.369	2.153	2.016	1.920	1.848	1.792	1.747	1.711	1.679	1.652	1.628	1.608	1.589	1.573	1.558	1.545	1.533	1.523	1.513	
82	2.768	2.368	2.152	2.015	1.919	1.847	1.791	1.746	1.710	1.678	1.651	1.627	1.607	1.588	1.573	1.557	1.544	1.532	1.521	1.512	
83	2.767	2.368	2.151	2.013	1.918	1.846	1.790	1.745	1.708	1.677	1.650	1.626	1.606	1.587	1.571	1.556	1.543	1.531	1.521	1.509	
84	2.766	2.367	2.150	2.013	1.917	1.845	1.790	1.744	1.707	1.676	1.649	1.625	1.605	1.586	1.571	1.555	1.542	1.530	1.519	1.508	
85	2.765	2.366	2.149	2.013	1.916	1.845	1.789	1.744	1.706	1.675	1.648	1.624	1.604	1.585	1.569	1.554	1.541	1.529	1.518	1.507	
86	2.765	2.365	2.149	2.012	1.915	1.844	1.788	1.743	1.705	1.674	1.647	1.623	1.603	1.584	1.568	1.553	1.540	1.528	1.517	1.506	
<i>87</i>	2.764	2.365	2.148	2.011	1.915	1.843	1.787	1.742	1.705	1.673	1.646	1.622	1.602	1.583	1.567	1.552	1.539	1.527	1.516	1.505	
88	2.763	2.364	2.147	2.010	1.914	1.842	1.786	1.741	1.704	1.672	1.645	1.622	1.601	1.583	1.566	1.551	1.538	1.526	1.515	1.504	
89	2.763	2.363	2.146	2.009	1.913	1.841	1.785	1.741	1.703	1.671	1.644	1.621	1.600	1.582	1.565	1.550	1.537	1.525	1.514	1.503	
90	2.762	2.363	2.146	2.008	1.912	1.841	1.785	1.739	1.702	1.670	1.643	1.620	1.599	1.581	1.564	1.550	1.536	1.524	1.513	1.503	
91	2.761	2.362	2.145	2.008	1.912	1.840	1.784	1.739	1.701	1.670	1.643	1.619	1.598	1.580	1.564	1.549	1.535	1.523	1.513	1.502	
92	2.761	2.361	2.144	2.007	1.911	1.839	1.783	1.738	1.701	1.669	1.642	1.618	1.598	1.579	1.563	1.548	1.534	1.523	1.511	1.501	
93	2.760	2.361	2.144	2.006	1.910	1.838	1.782	1.737	1.701	1.668	1.641	1.617	1.597	1.578	1.562	1.547	1.534	1.521	1.511	1.500	
94	2.760	2.360	2.143	2.006	1.910	1.838	1.782	1.736	1.699	1.667	1.640	1.617	1.596	1.578	1.561	1.546	1.533	1.521	1.509	1.499	
95	2.759	2.359	2.142	2.005	1.909	1.837	1.781	1.736	1.698	1.667	1.640	1.616	1.595	1.577	1.560	1.545	1.532	1.521	1.509	1.498	<u>,</u>
96	2.759	2.359	2.142	2.004	1.908	1.836	1.780	1.735	1.698	1.666	1.639	1.615	1.594	1.576	1.560	1.545	1.531	1.519	1.508	1.497	ι-α
97	2.758	2.358	2.141	2.004	1.908	1.836	1.780	1.734	1.697	1.665	1.638	1.614	1.594	1.575	1.559	1.544	1.530	1.518	1.507	1.497	z)
98	2.757	2.358	2.141	2.003	1.907	1.835	1.779	1.734	1.696	1.665	1.637	1.614	1.593	1.575	1.558	1.543	1.530	1.517	1.506	1.496	$f_{1-\alpha}(n,m)$
99	2.757	2.357	2.140	2.003	1.906	1.835	1.778	1.733	1.696	1.664	1.637	1.613	1.592	1.574	1.557	1.542	1.529	1.517	1.505	1.495	ح
100	2.756	2.356	2.139	2.003	1.906	1.834	1.778	1.732	1.695	1.663	1.636	1.612	1.592	1.573	1.557	1.542	1.528	1.516	1.505	1.494	
100	2 . 750	2.000	<u> </u>	2.002	1. 700	1.00 F	1. , , 0	1.702	1.075	1.000	1.000	1.012	1.0/2	1.575	1.557	1.012	1.020	1.510	1.505	1.1/1	1

omega.center.cp@gmail.com

								Frac	tiles de l	a loi de .	Fisher (p	ow α=0,9	5 et n ∈{1 ;	2 ; ; 10	<i>(</i> }) (
n	1	2	3	4	5	6	7	8	9	m 10	11	12	13	14	15	16	17	18	19	20	
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	242.98	243.90	244.69	245.36	245.95	246.47	246.92	247.32	247.69	248.02	
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.40	19.41	19.42	19.42	19.43	19.43	19.44	19.44	19.44	19.45	et
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74	8.73	8.71	8.70	8.69	8.68	8.67	8.67	8.66	et pour
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91	5.89	5.87	5.86	5.84	5.83	5.82	5.81	5.80	our
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	4.68	4.66	4.64	4.62	4.60	4. 59	4.58	4.57	4.56	α ,
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00	3.98	3.96	3.94	3.92	3.91	3.90	3.88	3.87	(
7 8	5.59 5.32	4.74 4.46	4.35 4.07	4. 12 3. 84	3.97	3.87 3.58	3.79 3.50	3.73 3.44	3.68	3.64	3.60	3. 57 3. 28	3.55 3.26	3.53	3.51 3.22	3.49	3.48	3.47 3.17	3.46 3.16	3.44	$= P(X \leq$
9	5.12	4.46	3.86	3.63	3. 69 3. 48	3.37	3.29	3.23	3.18	3.14	3.10	3. 20	3.05	3.03	3.01	2.99	2.97	2.96	2.95	2.94	IA .
, 10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	2.91	2.89	2.86	2.85	2.83	2.81	2.80	2.79	2.77	<u>&</u>
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	2.79	2.76	2.74	2.72	2.70	2.69	2.67	2.66	2.65	ar ar
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.72	2.69	2.66	2.64	2.62	2.60	2.58	2.57	2.56	2.54	ec
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.60	2.58	2.55	2.53	2.51	2.50	2.48	2.47	2.46	
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.57	2.53	2.51	2.48	2.46	2.44	2.43	2.41	2.40	2.39	
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.48	2.45	2.42	2.40	2.38	2.37	2.35	2.34	2.33	$f_{\alpha}(m,$
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46	2.42	2.40	2.37	2.35	2.33	2.32	2.30	2.29	2.28	n, n) . P
7	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.41	2.38	2.35	2.33	2.31	2.29	2.27	2.26	2.24	2.23	$\begin{bmatrix} \Gamma(\frac{m}{2})\Gamma(\frac{n}{2}) \end{bmatrix}$ $et V(X) = \frac{2n^2(m+n)}{m(n-2)^2(n)}$ n). Pour les valeurs de α
.8	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	2.34	2.31	2.29	2.27	2.25	2.23	2.22	2.20	2.19	0u + V
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34	2.31	2.28	2.26	2.23	2.21	2.20	2.18	2.17	2.16	V(X)
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.31	2.28	2.25	2.22	2.20	2.18	2.17	2.15	2.14	2.12	r(
21 22	4.32	3.47	3.07	2.84	2.68	2.57 2.55	2.49	2.42	2.37	2.32	2.28	2.25	2.22	2.20	2.18	2.16	2.14	2.12	2.11	2.10	$=\frac{2n^2}{m(n)}$ $=\frac{2n^2}{m(n)}$ s valeu
3	4.30 4.28	3.44	3.03	2.82	2.66 2.64	2.53	2.46	2.40	2.34	2.30	2.24	2.23	2.18	2.17 2.15	2.13	2.13 2.11	2.11	2.10	2.08	2.07	$\frac{2n^2}{2n}\Gamma\left(\frac{2n^2}{n}\right)\Gamma\left(\frac{2n^2}{n}\right)$
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.22	2.18	2.15	2.13	2.11	2.09	2.07	2.05	2.04	2.03	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.20	2.16	2.14	2.11	2.09	2.07	2.05	2.04	2.02	2.01) n+ 2) ² 3 de
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.18	2.15	2.12	2.09	2.07	2.05	2.03	2.02	2.00	1.99	$n \rightarrow n$
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.17	2.13	2.10	2.08	2.06	2.04	2.02	2.00	1.99	1.97	(mx -2) -4
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15	2.12	2.09	2.06	2.04	2.02	2.00	1.99	1.97	1.96	55 - +
9	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.14	2.10	2.08	2.05	2.03	2.01	1.99	1.97	1.96	1.94	$-n)^{\left(\frac{n}{2}\right)}$, $sin > 4$, on utilisera
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13	2.09	2.06	2.04	2.01	1.99	1.98	1.96	1.95	1.93	$(n)^{\left(\frac{n}{2}\right)}$, $si \ n > 4$, on utili
32	4.15	3.29	2.90	2.67	2.51	2.40	2.31	2.24	2.19	2.14	2.10	2.07	2.04	2.01	1.99	1.97	1.95	1.94	1.92	1.91	
4	4.13	3.28	2.88	2.65	2.49	2.38	2.29	2.23	2.17	2.12	2.08	2.05	2.02	1.99	1.97	1.95	1.93	1.92	1.90	1.89	sera la
36	4.11	3.26	2.87	2.63	2.48	2.36	2.28	2.21	2.15	2.11	2.07	2.03	2.00	1.98	1.95	1.93	1.92	1.90	1.88	1.87	
8 0	4.10 4.08	3.24	2.85 2.84	2.62	2.46	2.35 2.34	2.26	2.19 2.18	2.14	2.09	2.05 2.04	2.02	1.99 1.97	1.96 1.95	1.94 1.92	1.92 1.90	1.90 1.89	1.88 1.87	1.87 1.85	1.85 1.84	la r
2	4.07	3.23	2.83	2.59	2.43	2.32	2.24	2.17	2.12	2.06	2.04	1.99	1.96	1.94	1.92	1.89	1.87	1.86	1.84	1.83	·ela
4	4.06	3.21	2.82	2.58	2.43	2.31	2.23	2.16	2.10	2.05	2.01	1.98	1.95	1.92	1.90	1.88	1.86	1.84	1.83	1.81	la relation
6	4.05	3.20	2.81	2.57	2.42	2.30	2.22	2.15	2.09	2.04	2.00	1.97	1.94	1.91	1.89	1.87	1.85	1.83	1.82	1.80	tion:
18	4.04	3.19	2.80	2.57	2.41	2.29	2.21	2.14	2.08	2.03	1.99	1.96	1.93	1.90	1.88	1.86	1.84	1.82	1.81	1.79	
50	4.03	3.18	2.79	2.56	2.40	2.29	2.20	2.13	2.07	2.03	1.99	1.95	1.92	1.89	1.87	1.85	1.83	1.81	1.80	1.78	$f_{\alpha}(m,n)$
55	4.02	3.16	2.77	2.54	2.38	2.27	2.18	2.11	2.06	2.01	1.97	1.93	1.90	1.88	1.85	1.83	1.81	1.79	1.78	1.76	n, n,
50	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92	1.89	1.86	1.84	1.82	1.80	1.78	1.76	1.75) <u> </u>
55	3.99	3.14	2.75	2.51	2.36	2.24	2.15	2.08	2.03	1.98	1.94	1.90	1.87	1.85	1.82	1.80	1.78	1.76	1.75	1.73	= <u>f</u>
70	3.98	3.13	2.74	2.50	2.35	2.23	2.14	2.07	2.02	1.97	1.93	1.89	1.86	1.84	1.81	1.79	1.77	1.75	1.74	1.72	<u>-α</u>
75	3.97	3.12	2.73	2.49	2.34	2.22	2.13	2.06	2.01	1.96	1.92	1.88	1.85	1.83	1.80	1.78	1.76	1.74	1.73	1.71	(n) 1
80 or	3.96	3.11	2.72	2.49	2.33	2.21	2.13	2.06	2.00	1.95	1.91	1.88	1.84	1.82	1.79	1.77	1.75	1.73	1.72	1.70	$\frac{1}{a(n,m)}$
85 90	3.95 3.95	3.10	2.71 2.71	2.48	2.32	2.21	2.12 2.11	2.05	1.99 1.99	1.94 1.94	1.90 1.90	1.87 1.86	1.84 1.83	1.81	1.79 1.78	1.76 1.76	1.74 1.74	1.73 1.72	1.71 1.70	1.70 1.69	
) 95	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94	1.89	1.86	1.83	1.80	1.78	1.75	1.74	1.72	1.70	1.68	
00	3.94	3.09	2.70	2.46	2.31	2.19	2.11	2.04	1.97	1.93	1.89	1.85	1.82	1.79	1.77	1.75	1.73	1.71	1.69	1.68	
00	J. /T	3.07	4.70	4. TU	4.31	4.17	2.10	4.03	1. //	1. 73	1.07	1.03	1.04	1. / /	1.//	1./3	1. / 3	1. / 1	1.07	1.00	1

M omega.center.cp@gmail.com

Fractiles de la lai de Fisher (paur $\alpha = 0.975$ et $n \in \{1:2:...:100\}$)

								Fract	iles de lo	ı loi de F	isher (pa	w α=0,97	75 et $n \in \{1$; 2 ; ; 10	(O}) (
	1	2	3	4	5	6	7	8	9	m 10	11	12	13	14	15	16	17	18	19	20	
เ 1	647.79	799.48	864.15	899.60	921.83	937.11	948.20	956.64	963.28	968.63	973.03	976.72	979.84	982.55	984.87	986.91	988.72	990.35	991.80	993.08	
2	38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37	39.39	39.40	39.41	39.41	39.42	39.43	39.43	39.44	39.44	39.44	39.45	39.45	е
3	17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54	14.47	14.42	14.37	14.34	14.30	14.28	14.25	14.23	14.21	14.20	14.18	14.17	et pour
	12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98	8.90	8.84	8.79	8.75	8.72	8.68	8.66	8.63	8.61	8.59	8.58	8.56	nou
5	10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76	6.68	6.62	6.57	6.52	6.49	6.46	6.43	6.40	6.38	6.36	6.34	6.33	ır α
6	8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60	5. 52	5.46	5.41	5.37	5.33	5.30	5.27	5.24	5.22	5.20	5. 18	5.17	
7	8.07	6.54	5.89	5.52	5.29	5.12	4.99	4.90	4.82	4.76	4.71	4.67	4.63	4.60	4.57	4.54	4.52	4.50	4.48	4.47	$=P(X\leq$
8	7.57	6.06	5.42	5.05	4.82	4.65	4.53	4.43	4.36	4.30	4.24	4.20	4.16	4.13	4.10	4.08	4.05	4.03	4.02	4.00	X
)	7.21	5.71	5.08	4.72	4.48	4.32	4.20	4.10	4.03	3.96	3.91	3.87	3.83	3.80	3.77	3.74	3.72	3.70	3.68	3.67	≤ k)
0	6.94	5.46	4.83	4.47	4.24	4.07	3.95	3.85	3.78	3.72	3.66	3.62	3.58	3.55	3.52	3.50	3.47	3.45	3.44	3.42	k) a
1	6.72	5.26	4.63	4.28	4.04	3.88	3.76	3.66	3.59	3.53	3.47	3.43	3.39	3.36	3.33	3.30	3.28	3.26	3.24	3.23	avec
2	6.55	5. 10	4.47	4.12	3.89	3.73	3.61	3.51	3.44	3.37	3.32	3.28	3.24	3.21	3.18	3.15	3.13	3.11	3.09	3.07	c k
3	6.41	4.97	4.35	4.00	3.77	3.60	3.48	3.39	3.31	3.25	3.20	3.15	3.12	3.08	3.05	3.03	3.00	2.98	2.96	2.95	ii
4	6.30	4.86	4.24	3.89	3.66	3.50	3.38	3.29	3.21	3.15	3.09	3.05	3.01	2.98	2.95	2.92	2.90	2.88	2.86	2.84	fa
5	6.20	4.77	4.15	3.80	3.58	3.41	3.29	3.20	3.12	3.06	3.01	2.96	2.92	2.89	2.86	2.84	2.81	2.79	2.77	2.76	E .
6	6.12	4.69	4.08	3.73	3.50	3.34	3.22	3.12	3.05	2.99	2.93	2.89	2.85	2.82	2.79	2.76	2.74	2.72	2.70	2.68	$\Gamma\left(\frac{n}{m}\right)\Gamma\left(\frac{n}{m}\right)$ $et V(X) = \frac{2n^{2}(m)}{m(n-1)}$ $k = f_{\alpha}(m, n). Pour les valeurs$
7	6.04	4.62	4.01	3.66	3.44	3.28	3.16	3.06	2.98	2.92	2.87	2.82	2.79	2.75	2.72	2.70	2.67	2.65	2.63	2.62). P
8	5.98	4.56	3.95	3.61	3.38	3.22	3.10	3.01	2.93	2.87	2.81	2.77	2.73	2.70	2.67	2.64	2.62	2.60	2.58	2.56	ou V
9	5.92	4.51	3.90	3.56	3.33	3.17	3.05	2.96	2.88	2.82	2.76	2.72	2.68	2.65	2.62	2.59	2.57	2.55	2.53	2.51	V(X) = V(X) = V(X)
0	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84	2.77	2.72	2.68	2.64	2.60	2.57	2.55	2.52	2.50	2.48	2.46	r() =
1	5.83	4.42	3.82	3.48	3.25	3.09	2.97	2.87	2.80	2.73	2.68	2.64	2.60	2.56	2.53	2.51	2.48	2.46	2.44	2.42	$=\frac{2n^{2}(m+r)}{m(n-2)^{2}}$ s valeurs de
2	5.79	4.38	3.78	3.44	3.22	3.05	2.93	2.84	2.76	2.70	2.65	2.60	2.56	2.53	2.50	2.47	2.45	2.43	2.41	2.39	$\frac{\frac{n}{2}\Gamma}{2n^2}\Gamma$ $\frac{2n^2}{m(n)}$ aleu
3	5.75	4.35	3.75	3.41	3.18	3.02	2.90	2.81	2.73	2.67	2.62	2.57	2.53	2.50	2.47	2.44	2.42	2.39	2.37	2.36	2 (2) 1 2 (2)
4	5.72	4.32	3.72	3.38	3.15	2.99	2.87	2.78	2.70	2.64	2.59	2.54	2.50	2.47	2.44	2.41	2.39	2.36	2.35	2.33	$(m+\frac{(m+1)}{2})$ $(m+\frac{(m+1)}{2})^2$ $(m+1)^2$ $(m+1)^2$ $(m+1)^2$
5	5.69	4.29	3.69	3.35	3.13	2.97	2.85	2.75	2.68	2.61	2.56	2.51	2.48	2.44	2.41	2.38	2.36	2.34	2.32	2.30	
6	5.66	4.27	3.67	3.33	3.10	2.94	2.82	2.73	2.65	2.59	2.54	2.49	2.45	2.42	2.39	2.36	2.34	2.31	2.29	2.28	\ \ \ \ \ \ \ <u>\</u>
7 8	5. 63 5. 61	4.24	3.65	3.31	3.08	2.92	2.80	2.71	2.63 2.61	2.57	2.51 2.49	2.47 2.45	2.43	2.39	2.36	2.34	2.31	2.29	2.27	2.23	2) 0,5
9	5.59	4. 20	3.61	3.27	3.04	2.88	2.76	2.67	2.59	2.53	2.49	2.43	2.39	2.36	2.34	2.32	2.27	2.25	2.23	2.23	3, c
ó	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57	2.51	2.46	2.41	2.37	2.34	2.31	2.28	2.26	2.23	2.21	2.21	$-n)^{\left(\frac{m+n}{2}\right)}$, $si \ n > 4$
2	5.53	4.15	3.56	3.22	3.00	2.84	2.71	2.62	2.54	2.48	2.43	2.38	2.34	2.31	2.28	2.25	2.22	2.20	2.18	2.16	ti > 2
4	5.50	4.12	3.53	3.19	2.97	2.81	2.69	2.59	2.52	2.45	2.40	2.35	2.31	2.28	2.25	2.22	2.20	2.17	2.15	2.13)] 4 lis
6	5.47	4.09	3.50	3.17	2.94	2.78	2.66	2.57	2.49	2.43	2.37	2.33	2.29	2.25	2.22	2.20	2.17	2.15	2.13	2.11	er
8	5.45	4.07	3.48	3.15	2.92	2.76	2.64	2.55	2.47	2.41	2.35	2.31	2.27	2.23	2.20	2.17	2.15	2.13	2.11	2.09	isera la
0	5.42	4.05	3.46	3.13	2.90	2.74	2.62	2.53	2.45	2.39	2.33	2.29	2.25	2.21	2.18	2.15	2.13	2.11	2.09	2.07	5
2	5.40	4.03	3.45	3.11	2.89	2.73	2.61	2.51	2.43	2.37	2.32	2.27	2.23	2.20	2.16	2.14	2.11	2.09	2.07	2.05	relation:
4	5.39	4.02	3.43	3.09	2.87	2.71	2.59	2.50	2.42	2.36	2.30	2.26	2.22	2.18	2.15	2.12	2.10	2.07	2.05	2.03	tio
6	5.37	4.00	3.42	3.08	2.86	2.70	2.58	2.48	2.41	2.34	2.29	2.24	2.20	2.17	2.13	2.11	2.08	2.06	2.04	2.02	n 1
8	5.35	3.99	3.40	3.07	2.84	2.69	2.56	2.47	2.39	2.33	2.27	2.23	2.19	2.15	2.12	2.09	2.07	2.05	2.02	2.01	<u></u>
0	5.34	3.97	3.39	3.05	2.83	2.67	2.55	2.46	2.38	2.32	2.26	2.22	2.18	2.14	2.11	2.08	2.06	2.03	2.01	1.99	n –
5	5.31	3.95	3.36	3.03	2.81	2.65	2.53	2.43	2.36	2.29	2.24	2.19	2.15	2.11	2.08	2.05	2.03	2.01	1.99	1.97	- 2 n, n)
0	5.29	3.93	3.34	3.01	2.79	2.63	2.51	2.41	2.33	2.27	2.22	2.17	2.13	2.09	2.06	2.03	2.01	1.98	1.96	1.94	
5	5.26	3.91	3.32	2.99	2.77	2.61	2.49	2.39	2.32	2.25	2.20	2.15	2.11	2.07	2.04	2.01	1.99	1.97	1.95	1.93	
0	5.25	3.89	3.31	2.97	2.75	2.59	2.47	2.38	2.30	2.24	2.18	2.14	2.10	2.06	2.03	2.00	1.97	1.95	1.93	1.91	1-0
5	5.23	3.88	3.30	2.96	2.74	2.58	2.46	2.37	2.29	2.22	2.17	2.12	2.08	2.05	2.01	1.99	1.96	1.94	1.92	1.90	$\frac{1}{a(n,m)}$
0	5.22	3.86	3.28	2.95	2.73	2.57	2.45	2.35	2.28	2.21	2.16	2.11	2.07	2.03	2.00	1.97	1.95	1.92	1.90	1.88	m
5	5.21	3.85	3.27	2.94	2.72	2.56	2.44	2.35	2.27	2.20	2.15	2.10	2.06	2.02	1.99	1.96	1.94	1.91	1.89	2.07	\cup I
0	5.20	3.84	3.26	2.93	2.71	2.55	2.43	2.34	2.26	2.19	2.14	2.09	2.05	2.02	1.98	1.95	1.93	1.91	1.88	1.86	
5	5.19	3.84	3.26	2.92	2.70	2.54	2.42	2.33	2.25	2.19	2.13	2.08	2.04	2.01	1.98	1.95	1.92	1.90	1.88	1.86	
0	5. 18	3.83	3.25	2.92	2.70	2.54	2.42	2.32	2.24	2.18	2.12	2.08	2.04	2.00	1.97	1.94	1.91	1.89	1.87	1.85	

Téléphone: (+216) 97 619191 / 54 619191

fhttps://web.facebook.com/OMEGACENTER2014

momega.center.cp@gmail.com

								Frac	tiles de l	la loi de	Fisher (_f	our α=0,9	9 et n ∈{1	; 2 ; ; 10	<i>'0</i> }) (
	1	2	3	4	5	6	7	8	9	m 10	11	12	13	14	15	16	17	18	19	20
n 1	4052	4999.4	5403.5	5624.3	5764	5859	5928	5981	6022	6056	6083.4	6106.7	6126	6143	6157	6170	6181	6191.4	6201	6209
2	98.50	99.00	99.16	99.25	99.30	99.33	99.36	99.38	99.39	99.40	99.41	99.42	99.42	99.43	99.43	99.44	99.44	99.44	99.45	99.45
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.34	27.23	27.13	27.05	26.98	26.92	26.87	26.83	26.79	26.75	26.72	26.69
4	21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80	14.66	14.55	14.45	14.37	14.31	14.25	14.20	14.15	14.11	14.08	14.05	14.02
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05	9.96	9.89	9.82	9.77	9.72	9.68	9.64	9.61	9.58	9.55
6	13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.79	7.72	7.66	7.60	7.56	7.52	7.48	7.45	7.42	7.40
7	12.25	9. 55	8.45	7.85	7.46	7.19	6.99	6.84	6.72	6.62	6.54	6.47	6.41	6.36	6.31	6.28	6.24	6.21	6.18	6.16
8	11.26	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.73	5.67	5.61	5.56	5.52	5.48	5.44	5.41	5.38	5.36
9	10.56	8.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.18	5.11	5.05	5.01	4.96	4.92	4.89	4.86	4.83	4.81
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.77	4.71	4.65	4.60	4.56	4.52	4.49	4.46	4.43	4.41
11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.46	4.40	4.34	4.29	4.25	4.21	4.18	4.15	4.12	4.10
12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.22	4.16	4.10	4.05	4.01	3.97	3.94	3.91	3.88	3.86
13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	4.02	3.96	3.91	3.86	3.82	3.78	3.75	3.72	3.69	3.66
14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94	3.86	3.80	3.75	3.70	3.66	3.62	3.59	3.56	3.53	3.51
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.73	3.67	3.61	3.56	3.52	3.49	3.45	3.42	3.40	3.37
16 17	8. 53 8. 40	6. 23 6. 11	5. 29 5. 19	4.77 4.67	4.44 4.34	4.20 4.10	4. 03 3. 93	3.89	3.78 3.68	3.69	3.62 3.52	3.55 3.46	3.50 3.40	3.45 3.35	3.41	3.37	3.34	3.31	3.28 3.19	3.26 3.16
18	8.29	6. 01	5. 19	4. 57	4.34	4.10	3.84	3.79	3.60	3.59	3.43	3.40	3.32	3.33	3.31	3.19	3.16	3.13	3.19	3.16
19	8. 18	5.93	5.01	4.50	4. 17	3.94	3.77	3.63	3.52	3.43	3.36	3.30	3.34	3.19	3.15	3.12	3.08	3.15	3.03	3.00
20	8. 10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.29	3.23	3.18	3.13	3.09	3.05	3.02	2.99	2.96	2.94
21	8.02	5. 78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.24	3.17	3.12	3.07	3.03	2.99	2.96	2.93	2.90	2.88
22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	3.18	3.12	3.07	3.02	2.98	2.94	2.91	2.88	2.85	2.83
23	7. 88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.14	3.07	3.02	2.97	2.93	2.89	2.86	2.83	2.80	2.78
24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.09	3.03	2.98	2.93	2.89	2.85	2.82	2.79	2.76	2.74
25	7.77	5. 57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13	3.06	2.99	2.94	2.89	2.85	2.81	2.78	2.75	2.72	2.70
26	7.72	5. 53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	3.02	2.96	2.90	2.86	2.81	2.78	2.75	2.72	2.69	2.66
27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06	2.99	2.93	2.87	2.82	2.78	2.75	2.71	2.68	2.66	2.63
28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.96	2.90	2.84	2.79	2.75	2.72	2.68	2.65	2.63	2.60
29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00	2.93	2.87	2.81	2.77	2.73	2.69	2.66	2.63	2.60	2.57
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.91	2.84	2.79	2.74	2.70	2.66	2.63	2.60	2.57	2.55
32	7.50	5.34	4.46	3.97	3.65	3.43	3.26	3.13	3.02	2.93	2.86	2.80	2.74	2.70	2.65	2.62	2.58	2.55	2.53	2.50
34	7.44	5. 29	4.42	3.93	3.61	3.39	3.22	3.09	2.98	2.89	2.82	2.76	2.70	2.66	2.61	2.58	2.54	2.51	2.49	2.46
36	7.40	5. 25	4.38	3.89	3.57	3.35	3.18	3.05	2.95	2.86	2.79	2.72	2.67	2.62	2.58	2.54	2.51	2.48	2.45	2.43
38	7.35	5.21	4.34	3.86	3.54	3.32	3.15	3.02	2.92	2.83	2.75	2.69	2.64	2.59	2.55	2.51	2.48	2.45	2.42	2.40
40	7.31	5. 18 5. 15	4.31	3.83	3.51	3.29	3. 12 3. 10	2.99	2.89	2.80	2.73 2.70	2.66	2.61	2.56 2.54	2.52	2.48	2.45	2.42	2.39	2.37
42 44	7.28	5. 15	4.29 4.26	3.80 3.78	3.49 3.47	3.27	3.10	2.97 2.95	2.86	2.78	2.70	2.64	2.59	2.54	2.50 2.47	2.46	2.43	2.40	2.35	2.34
44	7.25 7.22	5. 12	4.26	3.76	3.44	3.24	3.08	2.93	2.84	2.75 2.73	2.66	2.62	2.56 2.54	2.52	2.47	2.44	2.40	2.37	2.33	2.32
48	7.19	5. 08	4.24	3.74	3.43	3.20	3.04	2.91	2.82	2.73	2.64	2.58	2.53	2.48	2.44	2.42	2.37	2.33	2.31	2.28
50	7.17	5.06	4.22	3.74	3.41	3.19	3.02	2.89	2.78	2.71	2.63	2.56	2.51	2.46	2.42	2.38	2.35	2.32	2.29	2.27
55	7.17	5.01	4.16	3.68	3.37	3.15	2.98	2.85	2.75	2.66	2.59	2.53	2.47	2.42	2.38	2.34	2.31	2.28	2.25	2.23
60	7.08	4. 98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56	2.50	2.44	2.39	2.35	2.31	2.28	2.25	2.22	2.20
65	7.04	4.95	4.10	3.62	3.31	3.09	2.93	2.80	2.69	2.61	2.53	2.47	2.42	2.37	2.33	2.29	2.26	2.23	2.20	2.17
70	7.01	4.92	4.07	3.60	3.29	3.07	2.91	2.78	2.67	2.59	2.51	2.45	2.40	2.35	2.31	2.27	2.23	2.20	2.18	2.15
75	6.99	4.90	4.05	3.58	3.27	3.05	2.89	2.76	2.65	2.57	2.49	2.43	2.38	2.33	2.29	2.25	2.22	2.18	2.16	2.13
80	6.96	4.88	4.04	3.56	3.26	3.04	2.87	2.74	2.64	2.55	2.48	2.42	2.36	2.31	2.27	2.23	2.20	2.17	2.14	2.12
85	6.94	4.86	4.02	3.55	3.24	3.02	2.86	2.73	2.62	2.54	2.46	2.40	2.35	2.30	2.26	2.22	2.19	2.15	2.13	2.10
90	6.93	4.85	4.01	3.53	3.23	3.01	2.84	2.72	2.61	2.52	2.45	2.39	2.33	2.29	2.24	2.21	2.17	2.14	2.11	2.09

 $pour x \ge 0, E(X) = \frac{n}{n-2}, si n >$

6.91

4.84

3.99

3.52

3.22

2.44

2.38

2.32

2.28

2.27

2.23

2.20

2.16

2.13

2.10

2.08

3.00

2.83

2.82

2.70

2.60

2.51

: Table des matières

Échantillonnage..... 377 Les échantillons i.i.d.: La fonction de vraisemblance : Statistique ou fonction pivotale: **Estimation ponctuelle:** Définition: La méthode du maximum de vraisemblance: Méthode des moments: Propriétés des estimateurs: Le Biais: L'absence de biais : $\overline{\mathbf{v}}$ Estimateurs asymptotiquement non-biaisés: ① Limite de l'espérance: ② Espérance de la limite: Le risque quadratique ou erreur quadratique moyenne: La convergence: ① Convergence en probabilité: ② Convergence en moyenne quadratique: $\overline{\mathsf{V}}$ Remarque: Estimation d'une fonction d'un paramètre : Remarque <u>L'efficacité</u>: ① Estimateur optimal: \checkmark Remarque ② Quantité d'information de Fisher: Propriétés: ③ Inégalité de Fréchet-Darmois-Cramer-Rao (FDCR): <u>4</u> Efficacité d' un estimateur: Exhaustivité : ① Définition: 2 Théorème de factorisation: 3 Statistiques exhaustives et MVB(ou efficace): <u>4</u> La fonction score: Estimation ponctuelle-Principaux résultats : Lois des fonctions pivotales associées aux échantillons i.i.d de $N(m, \sigma^2)$, ou issus d'observation non-normale et de grande taille: Un échantillon: \checkmark Remarque: **Proportion:** Échantillons indépendants: Distribution de la différence des proportions: Estimation par intervalle de confiance. Définition: Remarque: Construction d'un intervalle de confiance: **Construction pratique:** Intervalle de confiance unilatéral: Intervalle de confiance bilatéral à risques symétriques: Propriétés: Intervalles de confiance pour les paramètres de la loi normale ou asymptotiquement normale (échantillon de grande taille): Intervalle de confiance pour la moyenne: ① σ connu: ② σ inconnu: Intervalle de confiance pour la différence de deux moyennes : $\bigcirc \sigma_1$ et σ_2 sont connus : $2\sigma_1$ et σ_2 sont inconnus avec l'hypothèse : $\sigma_1 \neq \sigma_2$ $\Im \sigma_1$ et σ_2 sont inconnus avec l'hypothèse : $\sigma_1 = \sigma_2$ Intervalle de confiance pour une proportion: Intervalle de confiance pour la différence de deux proportions Intervalle de confiance pour une variance: 2 m inconnue: Intervalle de confiance pour le rapport des variances: Tests d'hypothèses... Principe et définitions:

momega.center.cp@gmail.com

https://web.facebook.com/OMEGACENTER2014

- Hypothèses de test: Tests d'hypothèses simples: Tests d'hypothèses composites: Test bilatéral : Tests unilatéraux: <u>①Unilatéral à droite</u>: ② Unilatéral à gauche: Principe général: Remarque: Règle de décision, seuil et p-valeur : Le seuil du test (ou risque de première espèce) : Règle de décision . ①Test bilatéral : ② Test unilatéral à droite: 3 Test unilatéral à gauche: La p-valeur : $\sqrt{}$ Le risque de deuxième espèce :
- Méthode de Bayes:

La règle de décision de Bayes :

La puissance du test:

- Principe de Neyman:
- Principe de Neyman et optimalité:
 - a. <u>Test randomisé:</u>
 - ☑ <u>Définition 1 :</u>
 - ☑ Définition 2 :
 - ✓ <u>Définition 3 :</u>
 - b. <u>Tests uniformément plus puissants (UPP) :</u>
 - ✓ Lemme de Neyman-Pearson :
 - Remarque 1 :
 - Remarque 2 :
 - Remarque 3 :
 - ▼ Remarque 4:
- <u>Tests UPP pour les hypothèses composites:</u>
 - a. Test unilatéral à droite $(H_0: \theta \le \theta_0 \text{ contre } H_1: \theta > \theta_1)$:
 - ☑ <u>Définition 1 :</u>
 - Remarque :
 - <u>Théorème :</u>
 - **Test bilatéral** $(H_0: \theta = \theta_0 \text{ contre } H_1: \theta \neq \theta_0)$:

 - ✓ Proposition:
- <u>Tests convergent</u>:
- <u>Tests classiques:</u>
 - a. <u>Tests paramétriques pour des moyennes, des variances ou des corrélations :</u>
 - b. <u>Tests non paramétriques pour des moyennes , des variances ou des corrélations :</u>
 - c. <u>Test d'adéquation ou de comparaison de distribution:</u>
- Tests d'hypothèses paramétriques usuels :
 - a. <u>Test sur une moyenne m :</u>
 - ① Test bilatéral : $H_0: m = m_0$ contre $H_1: m \neq m_0$, cas où σ connu
 - ② Test bilatéral : $H_0: m = m_0$ contre $H_1: m \neq m_0$, cas où σ inconnu
 - 3 Test unilatéral à droite : $H_0: m = m_0$ contre $H_1: m > m_0$, cas où σ connu
 - **④** Test unilatéral à droite : $H_0: m = m_0$ contre $H_1: m > m_0$, cas où σ inconnu **⑤** Test unilatéral à gauche : $H_0: m = m_0$ contre $H_1: m < m_0$, cas où σ connu
 - **(6)** Test unilatéral à gauche $:H_0: m=m_0$ contre $H_1: m < m_0$, cas où σ inconnu
 - b. <u>Test sur la différence de deux moyennes m₁-m₂ :</u>
 - ① Test bilatéral : $H_0: m_1 m_2 = \mu_0$ contre $H_1: m_1 m_2 \neq \mu_0$, cas où σ_1 et σ_2 sont connus
 - ② Test bilatéral: $H_0: m_1 m_2 = \mu_0$ contre $H_1: m_1 m_2 \neq \mu_0$, cas où σ_1 et σ_2 sont inconnus, avec l'hypothèse: $\sigma_1 \neq \sigma_2$
 - 3 Test bilatéral : $H_0: m_1 m_2 = \mu_0$ contre $H_1: m_1 m_2 \neq \mu_0$, cas où σ_1 et σ_2 sont inconnus, avec l'hypothèse : $\sigma_1 = \sigma_2$
 - **(4)** Test unilatéral à droite : $H_0: m_1 m_2 = \mu_0$ contre $H_1: m_1 m_2 > \mu_0$, cas où σ_1 et σ_2 sont connus
 - $\textbf{(§) Test unilatéral à droite} : H_0 : m_1 m_2 = \mu_0 \ contre \ H_1 : m_1 m_2 > \mu_0 \ . \ cas \ o \ \cup \ \sigma_1 \ et \ \sigma_2 \ sont \ inconnus \ . \ avec \ l'hypothèse: \ \sigma_1 \neq \sigma_2 \ sont \ inconnus \ . \ avec \ l'hypothèse: \ \sigma_1 \neq \sigma_2 \ sont \$
 - **(§)** Test unilatéral à droite: $H_0: m_1 m_2 = \mu_0$ contre $H_1: m_1 m_2 > \mu_0$, cas où σ_1 et σ_2 sont inconnus, avec l'hypothèse: $\sigma_1 = \sigma_2$
 - Test unilatéral à gauche : $H_0: m_1 m_2 = \mu_0$ contre $H_1: m_1 m_2 < \mu_0$, cas où σ_1 et σ_2 sont connus
 - § Test unilatéral à gauche: H_0 : $m_1 m_2 = \mu_0$ contre H_1 : $m_1 m_2 < \mu_0$, cas où σ_1 et σ_2 sont inconnus avec l'hypothèse: $\sigma_1 \neq \sigma_2$. § Test unilatéral à gauche: H_0 : $m_1 - m_2 = \mu_0$ contre H_1 : $m_1 - m_2 < \mu_0$, σ_1 et σ_2 sont inconnus, avec l'hypothèse: $\sigma_1 = \sigma_2$
 - c. Test sur une proportion p :
 - ① Test bilatéral : $H_0: p = p_0$ contre $H_1: p \neq p_0$
 - ② Test unilatéral à droite: $H_0: p = p_0$ contre $H_1: p > p_0$
 - ③ Test unilatéral à gauche : $H_0: p = p_0$ contre $H_1: p < p_0$
 - d. <u>Test sur la différence de deux proportions p₁-p₂ :</u>
 - ① Test bilatéral : $H_0: p_1 p_2 = p_0$ contre $H_1: m_1 m_2 \neq p_0$
 - ② Test unilatéral à droite: $H_0: p_1-p_2=p_0$ contre $H_1: p_1-p_2>p_0$
 - e. Test sur la variance σ^2 :
 - ① Test bilatéral : $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 \neq \sigma_0^2$, cas où m connue
 - ② Test bilatéral : $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 \neq \sigma_0^2$, cas où m inconnue

 - **(4)** Test unilatéral à droite : $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 > \sigma_0^2$, cas où m inconnue

BEN AHMED MOHSEN

Téléphone: (+216) 97 619191 / 54 619191

Momega.center.cp@gmail.com

https://web.facebook.com/OMEGACENTER2014

⑤ Test unilatéral à gauche : $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 < \sigma_0^2$ cas où m connu. ⑥ Test unilatéral à gauche : $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 < \sigma_0^2$, cas où m inconnu

Test sur le rapport de variance σ_1^2/σ_2^2 :

- ① Test bilatéral : $H_0: \sigma_1^2/\sigma_2^2 = 1$ contre $H_1: \sigma_1^2/\sigma_2^2 \neq 1$, m_1 et m_2 supposées inconnues
- ② Test unilatéral à droite: $H_0: \sigma_1^2/\sigma_2^2 = 1$ contre $H_1: \sigma_1^2/\sigma_2^2 > 1$. m_1 et m_2 supposées inconnues
- ③ Test unilatéral à gauche : $H_0: \sigma_1^2/\sigma_2^2 = 1$ contre $H_1: \sigma_1^2/\sigma_2^2 < 1$. m_1 et m_2 supposées inconnues
- Test d'indépendance (du Khi-deux) :
- Test d'adéquation:

Exercice 1 (MMV-Propriétés des estimateurs-Transformations de variables) :
Exercice 2 (MMV-Propriétés des estimateurs-Intervalle de confiance-Tests d'hypothèses) :
Exercice 3 (Intervalle de confiance pour le rapport des variances -Intervalle de confiance pour la différence de deux moyennes -Test bilatéral) :419
Exercice 4 (Test sur une proportion) :
Exercice 5 (MMV-Propriétés des estimateurs-Intervalle de confiance-Test sur la variance) :
Exercice 6 : (I.FI.D XXXVII ^{ème} PROMO Assuranc- Avril 2018)431
Exercice 7 : (I.FI.D XXXIX ^{ème} PROMO Assurance-Juin 2022)438
Exercice 8 : (I.FI.D XLII ^{ème} PROMO Banque- Septembre 2022)441
Exercice 9 : (I.FI.D XL ^{ème} PROMO Assurance - Mai 2024)
Tables Statistiques
• <u>Table de la Loi Normale:451</u>
• Fractiles de la loi Normale centrée réduite :
• Fractiles de la loi du Khi-Deux pour α ε(0,005; 0,01; 0.02; 0,025; 0,05; 0,1; 0.15; 0.2; 0.25; 0.3; 0.4; 0.5)
• Fractiles de la loi du Khi-Deux pour α ε(0.6; 0.7; 0.75; 0.8; 0.85; 0.9; 0.95; 0.975; 0.98; 0.99; 0.995; 0.999):
• Fractiles de la loi de Student:
• Fractiles de la loi de Fisher (pour α=0,9 et n ε(1; 2;; 50)):
• Fractiles de la loi de Fisher (pour α=0,9 et n ε(51; 52;; 100)):
• Fractiles de la loi de Fisher (pour α=0,95 et n ∈{1;2;;100}):
• Fractiles de la loi de Fisher (pour α=0,975 et n ∈{1; 2;; 100}):
• Fractiles de la loi de Fisher (pour α=0,99 et n ∈{1;2;;100}):