Números complejos

7.1	El cuerpo de los números complejos	87
7.2	Módulo y argumento	90
7.3	Forma exponencial de un complejo	92
7.4	Rotación de un compleio	93

7.1 El cuerpo de los números complejos

Podemos pensar en las ampliaciones de los conjuntos numéricos como el método necesario para resolver ecuaciones algebraicas progresivamente complicadas. Así, el paso de $\mathbb N$ a $\mathbb Z$ se justificaría por la necesidad de dar solución a una ecuación como x+5=0, y el paso de $\mathbb Z$ a $\mathbb Q$ por la necesidad de dar solución a ecuaciones de la forma 5x=1. El paso de $\mathbb Q$ a $\mathbb R$ es más complejo de explicar, puesto que es más topológico que algebraico, pero permite además dar solución a ecuaciones como $x^2-2=0$. El paso de $\mathbb R$ a $\mathbb C$ viene motivado históricamente por la necesidad de trabajar con las soluciones de ecuaciones como $x^2+1=0$, es decir, con raíces cuadradas de números negativos. Inicialmente se trabaja con dichas raíces, llamadas números imaginarios, como paso intermedio hasta llegar a un número real (típicamente elevando el número imaginario al cuadrado en algún momento de los razonamientos). En los siglos XVIII y XIX se formaliza la noción de número complejo, lo que convierte a estas entidades algebraicas en "miembros de pleno derecho" de las familias numéricas.

La manera más sencilla de trabajar con los números complejos es dar un nombre abreviado a $\sqrt{-1}$. El número $\sqrt{-1}$ se denotará por j, en contra de la notación matemática habitual¹. Ahora, suponiendo inicialmente que esta cantidad "se porta bien", ya podemos realizar cálculos como $\sqrt{-25} = \sqrt{25 \cdot (-1)} = \sqrt{25} \sqrt{-1} = 5j$.

Dados dos números reales a y b, se define un número complejo como una expresión de la forma $\overline{z}=a+j\cdot b$. A esta representación la llamamos *forma binómica* del número complejo. A partir de ahora se denotará por $\mathbb C$ al conjunto de los números complejos. Observemos que cualquier número real se puede considerar como un complejo, con representación $a=a+j\cdot 0$. Análogamente, existe un conjunto destacado de números complejos formado por aquellos de la forma $j\cdot b=0+j\cdot b$. A estos números se los denomina *imaginarios puros*. Dado un complejo $\overline{z}=a+j\cdot b$, nos referiremos a a como a su *parte real* y a b como su *parte imaginaria*: $a=\mathrm{Re}(\overline{z})$, $b=\mathrm{Im}(\overline{z})$, por lo que $\overline{z}=\mathrm{Re}(\overline{z})+j\cdot\mathrm{Im}(\overline{z})$.

Puesto que un complejo $\overline{z}=a+j\cdot b$ se puede ver como una pareja (a,b) de números reales, es natural representarlo como un punto do plano \mathbb{R}^2 . Llamaremos plano complejo al plano \mathbb{R}^2 cuando pensemos en él como formado por números complejos. En el plano complejo el eje de abscisas está formado por los números reales, y el eje de ordenadas por los números imaginarios puros.

¹En los libros de Matemáticas se usa la letra *i*, mientras que en los de Electricidad se usa la *j*, para evitar confusiones con la intensidad de corriente eléctrica.

Figura 7.1: Representación de algunos complejos.

Se definen las operaciones elementales de suma y producto.

Suma:
$$(a+j\cdot b)+(c+j\cdot d)=(a+c)+j\cdot (b+d)$$

Producto: $(a+j\cdot b)(c+j\cdot d)=ac+j^2\cdot bd+j\cdot ad+j\cdot bc=ac-bd+j\cdot (ad+bc)$

No es difícil comprobar que la suma posee las propiedades conmutativa y asociativa, que tiene un elemento neutro, el $0=0+j\cdot 0$, y que todo complejo $a+j\cdot b$ tiene opuesto : $-a-j\cdot b$. Igualmente, es fácil comprobar que el producto es conmutativo y asociativo, que tiene un elemento neutro, o $1=1+j\cdot 0$, y que todo elemento distinto de 0 tiene inverso. Si denotamos por $c+j\cdot d$ al inverso de $a+j\cdot b$, para conocer su valor basta con resolver la ecuación $(a+j\cdot b)(c+j\cdot d)=1+j\cdot 0$

$$(a+j\cdot b)(c+j\cdot d) = ac - bd + j\cdot (ad+bc) = 1 + j\cdot 0 \Rightarrow \begin{cases} ac - bd = 1\\ ad + bc = 0 \end{cases}$$

$$ac - bd = 1 \begin{vmatrix} ac - bd = 1\\ bc + ad = 0 \end{vmatrix} \begin{vmatrix} -abc + b^2d = -b\\ abc + a^2d = 0 \end{cases} \Rightarrow (a^2 + b^2)d = -b \Rightarrow d = \frac{-b}{a^2 + b^2}$$

$$ac - bd = 1 \begin{vmatrix} ac - bd = 1\\ ad + bc = 0 \end{vmatrix} \begin{vmatrix} a^2c - abd = a\\ bc + ad = 0 \end{vmatrix} \Rightarrow (a^2 + b^2)c = a \Rightarrow c = \frac{a}{a^2 + b^2}$$

También se verifica que el producto es distributivo respecto de la suma. Se dice entonces que los números complejos, junto con las operaciones suma y producto, tienen estructura de *cuerpo conmutativo*.

Definición 7.1.1 Dado un complejo $\bar{z} = a + j \cdot b$ definimos su conjugado $\bar{z}^* = a - j \cdot b$.

Curso 2022-23 Cálculo. E.U.Politécnica de Ferrol

Proposición 7.1.2 Propiedades de la conjugación de complejos.

(1) Si $\overline{z} = a + j \cdot 0$ es real entonces $\overline{z} = \overline{z}^*$,

(2)
$$(\bar{z}^*)^* = \bar{z}$$
,

(3)
$$\bar{z} \cdot \bar{z}^* = a^2 + b^2$$

Demostración.

(1) Si \overline{z} entonces $\overline{z}^* = a - j \cdot 0 = \overline{z}$.

(2) Si
$$\overline{z}=a+j\cdot b$$
 entonces $\overline{z}^*=a-j\cdot b$ y $(\overline{z}^*)^*=(a-j\cdot b)^*=a+j\cdot b=\overline{z}.$

(3) Si
$$\bar{z} = a + j \cdot b$$
 entonces $\bar{z} \cdot \bar{z}^* = (a + j \cdot b)(a - j \cdot b) = a^2 - j \cdot ab + j \cdot ba - j^2 \cdot b^2 = a^2 + b^2$.

Las operaciones anteriores nos permiten halar de una *resta* (sumar un opuesto) y una *división* (multiplicar por un inverso). Dados $\bar{z}_1 = a + j \cdot b$ y $\bar{z}_2 = c + j \cdot d$, su resta es:

$$\overline{z}_1 - \overline{z}_2 = (a + j \cdot b) - (c + j \cdot d) = (a - c) + j \cdot (b - d),$$

y si $\overline{z}_2 \neq 0 + j \cdot 0$, la propiedad (3) de la proposición 7.1.2 permite calcular una división de la siguiente forma:

$$\frac{\overline{z}_1}{\overline{z}_2} = \frac{a+j \cdot b}{c+j \cdot d} = \frac{a+j \cdot b}{c+j \cdot d} \frac{c-j \cdot d}{c-j \cdot d} = \frac{ac-j^2 \cdot bd-j \cdot ad+j \cdot bc}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + j \cdot \frac{-ad+bc}{c^2+d^2}$$

Ejemplo 7.1.3 Si $\bar{z}_1 = 3 - j \cdot 4$, $\bar{z}_2 = 7 - j \cdot 6$, entonces

$$\bar{z}_1 - \bar{z}_2 = (3 - j \cdot 4) - (7 - j \cdot 6) = 3 - j \cdot 4 - 7 + j \cdot 6) = -4 + j \cdot 2$$

У

$$\frac{\bar{z}_1}{\bar{z}_2} = \frac{3-j\cdot 4}{7-j\cdot 6} = \frac{3-j\cdot 4}{7-j\cdot 6} \frac{7+j\cdot 6}{7+j\cdot 6} = \frac{21+j\cdot 18-j\cdot 28-j^2\cdot 24}{(7-j\cdot 6)(7+j\cdot 6)} = \frac{21-j\cdot 10+24}{49-j^2\cdot 36} = \frac{45-j\cdot 10}{85} = \frac{45}{85} - \frac{j\cdot 10}{85}.$$

Proposición 7.1.4 Operaciones con complejos. Dados $\bar{z}, \bar{z}_1, \bar{z}_2 \in \mathbb{C}$ se verifica:

(1)
$$(\bar{z}_1 + \bar{z}_2)^* = \bar{z}_1^* + \bar{z}_2^*$$
,

(2)
$$(\bar{z}_1 \cdot \bar{z}_2)^* = \bar{z}_1^* \cdot \bar{z}_2^*$$
,

(3)
$$\left(\frac{\overline{z}_1}{\overline{z}_2}\right)^* = \frac{\overline{z}_1^*}{\overline{z}_2^*}$$
 para $\overline{z}_2 \neq 0$,

(4)
$$\operatorname{Re}(\bar{z}) = \frac{\bar{z} + \bar{z}^*}{2}$$
,

(5)
$$\text{Im}(\bar{z}) = \frac{\bar{z} - \bar{z}^*}{j \cdot 2}.$$

Demostración.

(1) Sea $\overline{z}_1 = a + j \cdot b$ y $\overline{z}_2 = c + j \cdot d$ entonces:

$$(\overline{z}_1 + \overline{z}_2)^* = [(a+c) + j \cdot (b+d)]^* = (a+c) - j \cdot (b+d) = (a-j \cdot b) + (c-j \cdot d) = \overline{z}_1^* + \overline{z}_2^*,$$

(2) Sea $\overline{z}_1 = a + j \cdot b$ y $\overline{z}_2 = c + j \cdot d$ entonces:

Profesor: Vicente Suárez Peñaranda Curso 2022-23

$$(\overline{z}_1 \cdot \overline{z}_2)^* = [(a+j \cdot b)(c+j \cdot d)]^* = [(ac-bd) + j \cdot (ad+bc)]^* = (ac-bd) - j \cdot (ad+bc)$$

$$\overline{z}_1^* \cdot \overline{z}_2^* = (a-j \cdot b)(c-j \cdot d) = (ac-bd) - j \cdot (ad+bc),$$

(3) Sea $\overline{z}_1 = a + j \cdot b$ y $\overline{z}_2 = c + j \cdot d \neq 0$ entonces:

$$\begin{split} \frac{\bar{z}_1}{\bar{z}_2} &= \frac{ac+bd}{c^2+d^2} + j \cdot \frac{-ad+bc}{c^2+d^2}, \left(\frac{\bar{z}_1}{\bar{z}_2}\right)^* = \frac{ac+bd}{c^2+d^2} - j \cdot \frac{-ad+bc}{c^2+d^2}, \\ \frac{\bar{z}_1^*}{\bar{z}_2^*} &= \frac{a-bj}{c-dj} = \frac{a-bj}{c-dj} \frac{c+dj}{c+dj} = \frac{ac+bd}{c^2+d^2} - j \cdot \frac{-ad+bc}{c^2+d^2}. \end{split}$$

(4) Puesto que $\overline{z}=\mathrm{Re}(\overline{z})+j\cdot\mathrm{Im}(\overline{z})$ y $\overline{z}^*=\mathrm{Re}(\overline{z})-j\cdot\mathrm{Im}(\overline{z})$, se cumple:

$$\bar{z} + \bar{z}^* = 2\operatorname{Re}(\bar{z}) \Rightarrow \operatorname{Re}(\bar{z}) = \frac{\bar{z} + \bar{z}^*}{2}$$

(5) Puesto que $\overline{z} = \text{Re}(\overline{z}) + j \cdot \text{Im}(\overline{z})$ y $\overline{z}^* = \text{Re}(\overline{z}) - j \cdot \text{Im}(\overline{z})$, se cumple:

$$\bar{z} - \bar{z}^* = j \cdot 2\operatorname{Im}(\bar{z}) \Rightarrow \operatorname{Im}(\bar{z}) = \frac{\bar{z} - \bar{z}^*}{j \cdot 2}$$

7.2 Módulo y argumento

Si pensamos en un complejo $\bar{z}=a+j\cdot b$ como un punto del plano, podemos referirnos a él de varias formas. La primera, con la propia notación binomial. Otra forma de describir ese punto del plano sería decir a qué distancia está el punto del origen (el $0=0+j\cdot 0$) y qué ángulo forma la parte positiva del eje de abscisas con el segmento que une 0 y \bar{z} (ver Figura (7.2)). Se llama *módulo* de \bar{z} a la lonxitud del segmento que une 0 con \bar{z} , y se denota por $|\bar{z}|$ (una cantidad estrictamente positiva, salvo en el caso de $\bar{z}=0$, que es nula). Utilizando el Teorema de Pitágoras se verifica:

$$|\overline{z}| = \sqrt{a^2 + b^2} = \sqrt{\overline{z} \cdot \overline{z}^*}$$

Figura 7.2: Módulo y argumento.

7. Números complejos 91

El argumento de un número complejo \overline{z} distinto de 0, denotado por $\operatorname{Arg}(\overline{z})$, es el ángulo que forma la parte positiva del eje de abscisas con el segmento que une 0 y \overline{z} , siendo el sentido positivo para la medida de dicho ángulo el antihorario. Si $a \neq 0$, el argumento verifica la siguiente relación: $\operatorname{Arg}(\overline{z}) = \arctan\left(\frac{b}{a}\right)$. Esta igualdad no determina de forma unívoca el valor de $\operatorname{Arg}(\overline{z})$, ya que para cada número real t existen dos ángulos $\alpha_1 \in [0,\pi)$ y $\alpha_2 \in [\pi,2\pi)$ para los que $\tan(\alpha_1) = \tan(\alpha_2) = t$.

Para elegir el valor correcto de $\operatorname{Arg}(\overline{z})$ se debe tener en cuenta que si \overline{z} pertenece al primer o segundo cuadrantes entonces $\operatorname{Arg}(\overline{z}) \in [0,\pi)$, mientras que se pertenece al tercer o al cuarto se verifica $\operatorname{Arg}(\overline{z}) \in [\pi,2\pi)$. En el caso en que a=0, se verifica $\operatorname{Arg}(\overline{z})=\frac{\pi}{2}$, si b>0, y $\operatorname{Arg}(\overline{z})=\frac{3\pi}{2}$, si b<0.

Figura 7.3: Gráfica de $y = \tan(x)$, con $x \in [0, 2\pi]$.

Por supuesto, es posible recuperar la forma binómica del complejo $\overline{z} = a + j \cdot b$ a partir de su módulo y su argumento. Denotando por θ al argumento de \overline{z} , se puede ver que:

$$a = |\bar{z}| \cos(\theta), \ b = |\bar{z}| \sin(\theta),$$

de manera que se cumple:

$$\overline{z} = |\overline{z}| \cos(\theta) + j \cdot |\overline{z}| \sin(\theta) = |\overline{z}| [\cos(\theta) + j \cdot \sin(\theta)].$$

Nótese que esta presentación del complejo es formalmente binómica, pero a la vez deja a la vista quienes son el módulo y el argumento de \bar{z} . En muchas ocasiones, un complejo \bar{z} con módulo $|\bar{z}|$ y argumento θ se representa de las siguientes formas: $\bar{z}=|\bar{z}|\underline{/\theta}$ o \bar{z}_{θ} .

Ejercicio 7.2.1 ¿Existe alguna relación de igualdad entre el módulo de la suma de dos complejos y la suma de sus módulos?

<u>Solución</u>: Veamos que no existe tal relación. Para eso comentaremos varios casos en los que se dan diferentes relaciones.

- Caso 1: Números reales positivos. Si $\overline{z}_1 = 3$ y $\overline{z}_2 = 5$ entonces el módulo de la suma coincide con la suma de los módulos.
- Caso 2: Un número real positivo y otro negativo. Si $\overline{z}_1 = 3$ e $\overline{z}_2 = -5$ entonces el módulo de la suma es el valor absoluto de la diferencia de los módulos.
- Caso 3: Un número real y un imaginario puro. Si $\overline{z}_1 = 1$ y $\overline{z}_2 = j$ entonces el módulo de la suma es $\sqrt{|\overline{z}_1|^2 + |\overline{z}_2|^2}$.

Profesor: Vicente Suárez Peñaranda Curso 2022-23

Con el ejemplo anterior vemos que no se verifica la relación: "módulo de la suma=suma de los módulos".

7.3 Forma exponencial de un complejo

A continuación se presenta la notación exponencial, probablemente la más usada. Merece la pena tener presente este modo de referirse a los números complejos distintos de 0.

Definición 7.3.1 Para todo número real θ se define $e^{j \cdot \theta} = \cos(\theta) + j \cdot \sin(\theta)$.

Si \overline{z} es un complejo de módulo $|\overline{z}|$ y argumento θ , se puede escribir $\overline{z} = |\overline{z}| e^{j \cdot \theta}$. Comprobaremos lo útil que resulta la notación exponencial a la hora de multiplicar y dividir complejos.

Para multiplicar complejos de esta forma recordemos las siguientes igualdades trigonométricas:

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta), \tag{7.1}$$

$$\operatorname{sen}(\alpha + \beta) = \operatorname{sen}(\alpha) \cos(\beta) + \cos(\alpha) \operatorname{sen}(\beta). \tag{7.2}$$

Si escribimos $\bar{z}_1 = |\bar{z}_1| \left[\cos(\theta_1) + j \cdot \sin(\theta_1)\right]$ y $\bar{z}_2 = |\bar{z}_2| \left[\cos(\theta_2) + j \cdot \sin(\theta_2)\right]$, entonces el producto toma la expresión:

$$\overline{z}_1 \cdot \overline{z}_2 = |\overline{z}_1| \left[\cos(\theta_1) + j \cdot \sin(\theta_1) \right] \cdot |\overline{z}_2| \left[\cos(\theta_2) + j \cdot \sin(\theta_2) \right]
= |\overline{z}_1| |\overline{z}_2| \left[\cos(\theta_1) \cos(\theta_2) - \sin(\theta_1) \sin(\theta_2) + j \cdot \sin(\theta_1) \cos(\theta_2) + j \cdot \cos(\theta_1) \sin(\theta_2) \right]
= |\overline{z}_1| |\overline{z}_2| \left[\cos(\theta_1 + \theta_2) + j \cdot \sin(\theta_1 + \theta_2) \right]
= |\overline{z}_1| |\overline{z}_2| e^{j \cdot (\theta_1 + \theta_2)}$$

Análogamente, para calcular el cociente se usan las relaciones

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta),\tag{7.3}$$

$$\operatorname{sen}(\alpha - \beta) = \operatorname{sen}(\alpha) \cos(\beta) - \cos(\alpha) \operatorname{sen}(\beta). \tag{7.4}$$

que se obtienen, respectivamente, de 7.1 y 7.2 . Así, teniendo en cuenta la paridad de las funciones sen y cos ,

$$\frac{\bar{z}_{1}}{\bar{z}_{2}} = \frac{|\bar{z}_{1}| [\cos(\theta_{1}) + j \cdot \sin(\theta_{1})]}{|\bar{z}_{2}| [\cos(\theta_{2}) + j \cdot \sin(\theta_{2})]} = \frac{|\bar{z}_{1}| [\cos(\theta_{1}) + j \cdot \sin(\theta_{1})] [\cos(\theta_{2}) - j \cdot \sin(\theta_{2})]}{|\bar{z}_{2}| [\cos(\theta_{2}) + j \cdot \sin(\theta_{2})] [\cos(\theta_{2}) - j \cdot \sin(\theta_{2})]}$$

$$= \frac{|\bar{z}_{1}|}{|\bar{z}_{2}|} \frac{[\cos(\theta_{1}) \cos(\theta_{2}) + \sin(\theta_{1}) \sin(\theta_{2})] + j \cdot [\sin(\theta_{1}) \cos(\theta_{2}) - \cos(\theta_{1}) \sin(\theta_{2})]}{\cos^{2}(\theta_{2}) + \sin^{2}(\theta_{2})}$$

Curso 2022-23

7. Números complejos 93

$$= \frac{|\overline{z}_{1}|}{|\overline{z}_{2}|} ([\cos(\theta_{1}) \cos(\theta_{2}) + \sin(\theta_{1}) \sin(\theta_{2})] + j \cdot [\sin(\theta_{1}) \cos(\theta_{2}) - \cos(\theta_{1}) \sin(\theta_{2})])$$

$$= \frac{|\overline{z}_{1}|}{|\overline{z}_{2}|} [\cos(\theta_{1} - \theta_{2}) + j \cdot \sin(\theta_{1} - \theta_{2})] = \frac{|\overline{z}_{1}|}{|\overline{z}_{2}|} e^{j \cdot (\theta_{1} - \theta_{2})}.$$

Veamos lo mismo escrito con la notación exponencial. Si $\bar{z}_k = |\bar{z}_k| \, \mathrm{e}^{j\,\theta_k}$, k=1,2, entonces:

$$\bar{z}_1 \cdot \bar{z}_2 = |\bar{z}_1| e^{j\theta_1} |\bar{z}_2| e^{j\theta_2} = |\bar{z}_1| |\bar{z}_2| e^{j(\theta_1 + \theta_2)}$$

У

$$\frac{\bar{z}_1}{\bar{z}_2} = \frac{|\bar{z}_1| e^{j\theta_1}}{|\bar{z}_2| e^{j\theta_2}} = \frac{|\bar{z}_1|}{|\bar{z}_2|} e^{j(\theta_1 - \theta_2)}.$$

La exponencial compleja nos permite escribir las funciones trigonométricas sen y \cos de una nueva forma. Teniedo en cuenta que $e^{j\theta} = \cos(\theta) + j \sin(\theta)$ se verifica:

$$e^{-j\theta} = e^{j(-\theta)} = \cos(-\theta) + j \operatorname{sen}(-\theta) = \cos(\theta) - j \operatorname{sen}(\theta).$$

Por tanto:

$$e^{j\theta} + e^{-j\theta} = 2\cos(\theta) \Rightarrow \cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
$$e^{j\theta} - e^{-j\theta} = 2j \operatorname{sen}(\theta) \Rightarrow \operatorname{sen}(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2i}$$

7.4 Rotación de un complejo

Las operaciones en forma módulo-argumento nos permiten ver con facilidad que el producto de un complejo \bar{z} cualquiera por otro con módulo 1 y argumento α provoca en \bar{z} un giro con ángulo α . En concreto, si $\bar{z}=|\bar{z}| \ / \ \theta$ y $\bar{u}=1 \ / \ \alpha$ entonces $\bar{z}\cdot \bar{u}=|\bar{z}| \ / \ \theta+\alpha$. Se puede ver esta propiedad en la Figura (7.4).

Figura 7.4: Rotación de un complejo.