Twitter Sentiment Analysis: Apple vs Google

(GROUP 3 PRESENTATION)

Group Members

- 1 Maureen Auka
- 2. Ochieng' Ouma
- 3. Brian Kipchumba
- 4. Andrew Chege

INTRODUCTION

- In today's highly competitive technology industry, customer perception and sentiment play a crucial role in shaping brand reputation and influencing purchasing decisions.
- Apple and Google are two of the most recognized technology companies worldwide, and their products often generate strong opinions on social media platforms such as Twitter.

Project Goal:

- The goal of this project is to build a Natural Language Processing (NLP)
 model that can automatically classify the sentiment of Tweets related to
 Apple and Google products.
- By analyzing over 9,000 Tweets labeled as positive, negative, or neutral, the model will provide insights into how consumers feel about these brands and their products.

Objective:

 To build a model that can rate the sentiments of a Tweet based on its content.

DATA

- The dataset employed in the study was downloaded from https://data.world/crowdflower/brands-and-product-emotions/file/judge-1377884607 tweet product company.csv
- The dataset was taken through a series of data preparation, cleaning, and processing as detailed on the project's methodology.

METHODOLOGY

The adopted structure for the project was CRISP-DM that entails:

- A. Business Understanding;
- B. Data Understanding (Data Preparation, Data Cleaning, and Exploratory Data Analysis (EDA);
- C. Modelling;

A. Business understanding:

This proof-of-concept sentiment analysis has several potential business applications:

- Brand Monitoring
- ❖ Product Feedback
- ***** Competitive Insights
- Customer Engagement

NOTE: This project demonstrates how sentiment analysis can help organizations leverage unstructured text data from social media to make data-driven marketing, customer service, and product development decisions.

B. Data Understanding

Data Preparation & Cleaning;

Started with importing standard packages as shown below:

Exploratory Data Analysis (EDA);

Most Common word in the Dataset:

Frequently used words appear enlarged as compared to less frequently used words.

Common Words for Positive Sentiments

Common Words for Neutral Sentiments

C. Modelling

Data Processing:

- split data into X and y;
- data split into train and test;

Models used:

- i. Dummy Classifier Model
- ii. Logistic Regression
- iii. Decision Tree Model
- iv. Random Forest
- v. Naive Bayes and Support Vector Machine (SVM) models

Conclusion and Recommendations

- Logistic Regression and SVC improved recall for the negative class, making the model less biased toward neutral.
- Positive sentiment performance is moderate, while neutral remains strong.
- Next steps could include:
- Further threshold optimization per class.
- Feature engineering (e.g., combining char- and word-level n-grams).
- Addressing class imbalance to improve negative and positive precision.

THANKSI

Does anyone have any question?