Visual Analytics Dashboard for Boardgames

- Task 2: Group games that follow similar trends
- Task 3: Investigate impact of mechanics on board game recommendations

Girish Mohan: Design (0.5 hrs), D3 visualization (3 hrs), Interactions (1 hr), Presentation (0.5 hrs). Shashwata Sourav Roy Samya: Design (0.5 hrs), Preprocessing (3 hrs), Presentation (0.5 hrs).

The Data

- Two files: bgg_Gameitems.csv & recommendations-2021-12-31.csv
- bgg_Gameitems.csv shape:
 113,904 rows, 37 columns

recommendations-2021-12-31.csv shape: 1000 rows, 37 columns

- **bgg_Gameitems.csv** key observations: Several ID-columns (**bga_id**, **dbpedia_id**, etc.) were 100% null. Metadata flags like **cooperative**, **implementation**, **integration** also >90% null
- recommendations-2021-12-31.csv key observations:
 28 recommendation columns; after 6, null rate jumps to ~33%.
 Other fields (Name, URL, Thumbnail) are complete.

The Data Cleaning & Processing

For bgg_Gameitems.csv:

Dropped extremely sparse columns (>90% null)

Removed redundant player-count variants
Originally three sets of min/max player counts: **raw**, **recommended** and **best**.
For most analyses, the raw counts suffice. Columns pruning leaves only **min_players** & **max_players**.

Dropped the original **rank** column Final reduction from **37** → **19 columns**

Parsing list-style fields mechanic, family, categories now a true Python list[str]

Filled up null numeric fields with respective column's median values Filled up null categorical fields with Unknown

Downcasting & type refinement year, play times, ages, ratings, votes: casted from float64 to float32 name, publisher, game_type, artist: converted to pandas category dtype

Re-ranked games by bayesian estimate, secondarily by vote count

The Data Cleaning & Processing

For recommendations-2021-12-31.csv:

Dropped sparse recommendation columns (>33% null): *recommendation7* to *recommendation28* Collapsed the remaining recommendation columns into a single list-column *fans_liked*

Dropped URL and Thumbnail columns as they bloats the file and duplicates data we already have

Lowercased and **renamed** columns for consistency (e.g. **ID** → **bgg_id**, **Average** → **avg_rating**, etc.).

Downcasting & type refinement Year and rank to int16; num_votes to int32 avg_rating & bayes_rating to float32; parsed fans_liked into Python list[int].

The Data Cleaning & Processing

- Merged both dataframes which carries over full metadata plus top-6 recommendations
- Renamed any columns that appear twice in both datasets with a suffix _rec
- Constructed JSON records and exported it to further visualization

Why these tasks?

• Task 2:

"Which games have similar trends?"

An analyst can explore trends within clusters and understand what defines a cluster.

• Task 3:

"Why a board game is recommended from another?"

An analyst can compare the similarity of recommended games and correlate based on mechanics.

Goal: Explore

Means: Identify

Target: Trends

Attribute: Mechanics

Cardinality: All

The user wants to (explore) and (identify) (trends) in board game (mechanics) for (all) games.

Why these tasks?

• Task 2:

"Which games have similar trends?"

An analyst can explore trends within clusters and understand what defines a cluster.

• Task 3:

"Why a board game is recommended from another?"

An analyst can compare the similarity of recommended games and correlate based on mechanics.

Goal: Describe

Means: Locate

Target: Correlate

Attribute: Score + Recommendation + Features

Cardinality: All

The user wants to (describe) and (locate) (correlations) that impact boardgames recommendations for (all) games.

How are these helpful?

- Task 2:
 - "Which games have similar trends?"
 - An analyst can explore trends within clusters and understand what defines a cluster.
- Task 3:
 - "Why a board game is recommended from another?"
 - An analyst can compare the similarity of recommended games and correlate based on mechanics.

How are these helpful?

- Task 2:
 - "Which games have similar trends?"
 - An analyst can explore trends within clusters and understand what defines a cluster.
- Task 3:
 - "Why a board game is recommended from another?"
 - An analyst can compare the similarity of recommended games and correlate based on mechanics.

Demo

http://localhost:3000

What could be improved?

- Projection based on more features
- Panels clutter scatterplot
- More interactions