Let (E, || ||) be a normed vector space. Recall from Section 9.7 that a sequence (u_k) of vectors $u_k \in E$ converges to a limit $u \in E$, if for every $\epsilon > 0$, there some natural number N such that

$$||u_k - u|| < \epsilon$$
, for all $k > N$.

We write

$$u = \lim_{k \to \infty} u_k$$
.

If E is a finite-dimensional vector space and $\dim(E) = n$, we know from Theorem 9.5 that any two norms are equivalent, and if we choose the norm $\|\cdot\|_{\infty}$, we see that the convergence of the sequence of vectors u_k is equivalent to the convergence of the n sequences of scalars formed by the components of these vectors (over any basis). The same property applies to the finite-dimensional vector space $M_{m,n}(K)$ of $m \times n$ matrices (with $K = \mathbb{R}$ or $K = \mathbb{C}$), which means that the convergence of a sequence of matrices $A_k = (a_{ij}^{(k)})$ is equivalent to the convergence of the $m \times n$ sequences of scalars $(a_{ij}^{(k)})$, with i, j fixed $(1 \le i \le m, 1 \le j \le n)$.

The first theorem below gives a necessary and sufficient condition for the sequence (B^k) of powers of a matrix B to converge to the zero matrix. Recall that the spectral radius $\rho(B)$ of a matrix B is the maximum of the moduli $|\lambda_i|$ of the eigenvalues of B.

Theorem 10.1. For any square matrix B, the following conditions are equivalent:

- (1) $\lim_{k\to\infty} B^k = 0$,
- (2) $\lim_{k\to\infty} B^k v = 0$, for all vectors v,
- (3) $\rho(B) < 1$,
- (4) ||B|| < 1, for some subordinate matrix norm || || .

Proof. Assume (1) and let $\| \|$ be a vector norm on E and $\| \|$ be the corresponding matrix norm. For every vector $v \in E$, because $\| \|$ is a matrix norm, we have

$$||B^k v|| \le ||B^k|| ||v||,$$

and since $\lim_{k\to\infty} B^k = 0$ means that $\lim_{k\to\infty} \|B^k\| = 0$, we conclude that $\lim_{k\to\infty} \|B^k v\| = 0$, that is, $\lim_{k\to\infty} B^k v = 0$. This proves that (1) implies (2).

Assume (2). If we had $\rho(B) \ge 1$, then there would be some eigenvector $u \ne 0$ and some eigenvalue λ such that

$$Bu = \lambda u, \quad |\lambda| = \rho(B) \ge 1,$$

but then the sequence $(B^k u)$ would not converge to 0, because $B^k u = \lambda^k u$ and $|\lambda^k| = |\lambda|^k \ge 1$. It follows that (2) implies (3).

Assume that (3) holds, that is, $\rho(B) < 1$. By Proposition 9.12, we can find $\epsilon > 0$ small enough that $\rho(B) + \epsilon < 1$, and a subordinate matrix norm $\| \cdot \|$ such that

$$||B|| \le \rho(B) + \epsilon,$$