MALARIA DETECTION

Roula Krayem

INTRODUCTION

- □ What is Malaria?
- Malaria caused 627000 deaths in 2020
- Diagnoses methods including Blood Smear test
- Microscopic images of Red Blood Cells (RBCs)

PROBLEM DEFINITION

Millions of Malaria cases and handers of thousands deaths annually

Providers study each RBCs sample individually under the microscope

Slow process that could delay treatment

SOLUTION

Build a Neural Network model to expedite and facilitate Malaria detection

STEP 1

Perform data
Exploration and note
key takeaways

STEP 2

Build and test multiple
Neural Network
models to reach the
best performing
Model

STEP 3

Select the best performing model and provide recommendations

MODEL CONVERSATION

FROM SCRATCH

First Model

Base Model

Second Model

DATA AUGMENTATION

Data	Precision	Precision	Recall	Recall	F1 Score	F1 Score	Accuracy	Misclassified	Misclassified
Image	Unin*	Para*	Unin*	Para*	Unin*	Para*		Para*	Unin*
Process									
Zoom	0.97	0.99	0.99	0.97	0.98	0.98	98%	37	17
Shear	0.98	0.99	0.99	0.98	0.98	0.98	98%	30	15
Rotation	0.98	0.98	0.98	0.98	0.98	0.98	98%	22	21
Width	0.97	0.99	0.99	0.97	0.98	0.98	98%	39	11
Shift									
Height	0.99	0.98	0.98	0.99	0.98	0.98	98%	14	31
Shift									
Vertical	0.97	0.99	0.99	0.97	0.98	0.98	98%	38	15
Flip									
Horizontal	0.98	0.99	0.99	0.98	0.99	0.98	98%	29	10
Flip									
All	0.98	0.99	0.99	0.98	0.98	0.98	98%	28	15

VGG16

Learning	Precision	Precision	Recall	Recall	F1 Score	F1 Score	Accuracy	Misclassified	Misclassified
rate / batch	Unin*	Para*	Unin*	Para*	Unin*	Para*		Para*	Unin*
size									
0.001/32	0.98	0.84	0.82	0.98	0.89	0.91	90%	24	238
0.00001/23	0.96	0.89	0.89	0.96	0.92	0.93	92%	50	147
0.00001/65	0.95	0.91	0.91	0.95	0.93	0.93	93%	66	123
0.0000/100	0.96	0.89	0.88	0.96	0.92	0.93	92%	48	154

^{*}Para= Parasitized and Unin = Uninfected

BEST MODEL

MODEL (1)

M = J = 1				- 1
Mode]	L:	sec	uenti	Laı

ayer (type)	Output Shape	Param #
onv2d (Conv2D)	(None, 64, 64, 32)	416
nax_pooling2d (MaxPooling2D	(None, 32, 32, 32)	0
conv2d_1 (Conv2D)	(None, 32, 32, 32)	4128
max_pooling2d_1 (MaxPooling PD)	(None, 16, 16, 32)	0
dropout (Dropout)	(None, 16, 16, 32)	0
conv2d_2 (Conv2D)	(None, 16, 16, 32)	4128
nax_pooling2d_2 (MaxPooling PD)	(None, 8, 8, 32)	0
dropout_1 (Dropout)	(None, 8, 8, 32)	0
conv2d_3 (Conv2D)	(None, 8, 8, 32)	4128
nax_pooling2d_3 (MaxPooling PD)	(None, 4, 4, 32)	0
conv2d_4 (Conv2D)	(None, 4, 4, 32)	4128
nax_pooling2d_4 (MaxPooling PD)	(None, 2, 2, 32)	0
dropout_2 (Dropout)	(None, 2, 2, 32)	Ø
flatten (Flatten)	(None, 128)	0
lense (Dense)	(None, 512)	66048
dropout_3 (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 2)	1026
otal params: 84,002		

Total params: 84,002 Trainable params: 84,002 Non-trainable params: 0

82/82 [=====	=======] - 0s							
	precision	recall	f1-score	support				
0	1.00	0.97	0.99	1306				
1	0.97	1.00	0.99	1300				
accuracy			0.99	2600				
macro avg	0.99	0.99	0.99	2606				
weighted avg	0.99	0.99	0.99	2600				

RECOMMENDATIONS

MODEL FUTURE IMPROVEMENTS

- 1. Try different learning rates and batch-size when fitting the second model using the data image generator.
- 2. Use the Ensemble technique with multiple weak models to improve the results.

POLICYMAKERS

- Adopting the first model to automate and accelerate Malaria detection.
- 2. Requiring a revision of the images classified as uninfected by a physician before making the final clinical decision.

