Homework 1

Mike Gao 260915701 Prof. Prakash Panangaden

Question 1

We have $f: \Sigma \to M$ and want $f^*: \Sigma^* \to M$ to be a homomorphism.

First we define $\Sigma^* = \Sigma_0 \cup \Sigma_1 \cup ...$ where Σ_k is the set containing words of length k

We define f^* on Σ_0 be the map to identity element. $f^*(\epsilon) = \epsilon$, on Σ_1 as equal to the element in Σ such that $\forall e \in \Sigma : f^*(e) = f(e)$, and on Σ_{i+1} given $mn \in \Sigma_{i+1}$ where $m \in \Sigma_i$ and $n \in \Sigma$ we define $f^*(mn) = f^*(m)f(n)$

In order to prove f^* is a monoid homomorphism, we show that the identity element is preserved $f^*(\epsilon) = \epsilon$ by definition. We also need to prove the binary operations is preserved. Let \star be the binary operation on M and \circ be the binary operation on Σ^* . Let $ai, bi \in \Sigma$

```
f^*(x) \star f^*(y) = (f(a_1) \star f(a_2) \star f(a_3) \star \cdots \star f(a_n)) \star (f(b_1) \star f(b_2) \star f(b_3) \star \cdots \star f(b_n))
= f(a_1) \star f(a_2) \star f(a_3) \star \cdots \star f(a_n) \star (f(b_1) \star f(b_2) \star f(b_3) \star \cdots \star f(b_n) \text{ by associativity}
= f^*(a_1 \circ a_2 \circ a_3 \circ \cdots \circ b_n)
= f^*(x \circ y)
```

In order to prove uniqueness, we can do it with induction. Any other g which agree with f^* on Σ_i will agree on Σ_{i+1} since $g(xy) = g(x)f(y) = f^*(x)f(y) = f^*(xy)$

Question 2

 (\rightarrow) Let $A=(Q,A,i,\delta,T)$ be a DFA such that it recognizes L and let T(A) be the transition monoid of A. Let $f:A^*\to T(A)$ the function associating the string with the effect of the string on the set Q. Let I=f(L) be the image of the language in the transition monoid. Clearly, $L\subseteq f^{-1}(I)$ Let $x\in f^{-1}(I)$, Then by definition there exist an $y\in L$ such that f(x)=f(y). But $y\in L(A)$ and so $x\in L(A)$ hence $x\in L$

(\leftarrow)Proving the converse: Suppose that L is recognized by a finite monoid. There is a monoid homomorphism $f:A^*\to M$ and a subset $S\subseteq M$ such that $L=f^{-1}(S)$. Define $A=\{M,A,i,\delta,S\}$ where i is the identity of M and $\delta(p,q)=p\circ f(q)$ It is clear that A is a finite automaton. If q is a string that is in A^* then $\delta^*(p,q)=p\circ f(q)$ We have that $x\in L(A)$ if and only if $i\circ f(x)\in S$ if and only if $x\in f^{-1}(S)$ which is L. So L(A)=L

Question 3

Suppose h is not inflationary, i.e. $V = \{x|x > h(x)\}$ and V not emptyset. W is well-founded so that V has minimal element such that $v_0 > h(v_0)$. Since $\forall y < v_0, \ y \leq h(y)$, we have $h(v_0) \leq h(h(v_0))$. However, since h is strictly monotone, we can deduce $h(v_0) \geq h(h(v_0))$ from $v_0 \geq h(v_0)$ Thus an contradiction is found.

Question 4

4.1

4.2

4.3

Question 5

We assume (S, s_0, F, δ) is a DFA that recognizes L. We now construct a NFA (Q, Q_0, F, Δ) for middle(L).

$$Q = \underbrace{S}_{\text{be when } v \text{ ends}}^{\text{guess where DFA will}} \underbrace{Q}_{\text{be when } v \text{ ends}}^{\text{guess where DFA will}} \times \underbrace{S}_{\text{track } u}^{S} \times \underbrace{S}_{\text{track } u}^{S} \times \underbrace{S}_{\text{track } u}^{S}$$

$$Q_{0} = \{(s, s, t, \{s_{0}\}, \{t\})\}$$

$$F' = \{(t, s, t, X, Y) | Y' \cup F \neq \emptyset, s \in X\}$$

 $\Delta((s, s_c, t, X, Y), a) = (s', s_c, t, X', Y')$ where $\delta(s, a) = s', X'$ and Y' are the sets of states the DFA can reach from X and Y respectively reading any symbol

Since this is clearly a NFA that recognizes middle(L), this is a regular language.

Question 6

6.1

6.2

Suppose that for contradiction we can find a correct DFA that has 4 states.

By the Pigeonhole Principle, if we choose 5 strings over Σ , then at least two of those strings must end at the same state q.

Let wi and wj be these 2 strings that satisfies the above. For any string x, if wi and wj end at q, then wix and wjx must also end at the same state r and hence must both be accepted or rejected by the DFA. If we can pick for 5 strings such that, for any pair of them, for some x, that wix is NOT in L (rejected) and wjx is in L (accepted), then we have a contradiction, and what must assumed (we can find a correct DFA with 4 states) must be FALSE.

We pick the following four strings

 $W0 = \epsilon$

W1 = 110

W2 = 010

W3 = 111

W4 = 101

For one of the pairs of strings, the supposed 4-state DFA is forced into the same state for both strings (because of Pigeonhole principle), and $W_i x$ and $W_j x$ must be both accepted or rejected, for any string x. We will now show that for each pair this is NOT true.

```
Pair 1 Choose x = \epsilon
W_0 x = \epsilon reject W_1 x = 110 accept
Pair 2 Choose x = 0
W_0x = 0 reject W_2x = 0100 accept
Pair 3 Choose x = 10
W_0 x = 10 \text{ reject } W_3 x = 11110 \text{ accept}
Pair 4 Choose x = 10
W_0 x = 10 \text{ reject } W_4 x = 10110 \text{ accept}
Pair 5 Choose x = \epsilon
W_1x = 110 accept W_2x = 010 reject
Pair 6 Choose x = \epsilon
W_1x = 110 accept W_3x = 111 reject
Pair 7 Choose x = \epsilon
W_1x = 110 accept W_4x = 101 reject
Pair 8 Choose x = 10
W_2x = 01010 \text{ reject } W_3x = 11110 \text{ accept}
Pair 9 Choose x = 10
W_2 x = 01010 \text{ reject } W_4 x = 10110 \text{ accept}
Pair 10 Choose x = 0
W_3 x = 1110 \text{ accept } W_4 x = 1010 \text{ reject}
A contradiction is found.
```

Question 7

Assume (S, s_0, F, δ) is a DFA that recognizes L. We know that a boolean matrix is finite and can be used in a NFA. Let M_{n*n} be a boolean matrix where M_{ij} stores if NFA can get from s_i to s_j in $2^{|w|}$ steps where |w| is the number of characters that has been read. So from M we can know if there exists a y such that $xy \in L$ and $|y| = 2^{|x|}$

```
Lets now construct an NFA (Q,Q_0,F,\Delta) Q = \underbrace{S} \times \underbrace{S} \times M track the state of the machine reading x track where the machine will end up Q_0 = \{(s_0,M)\} F' = \{(s_i,M)|M_{ij}=1 \text{ for } s_j \in F\} \Delta((s,M),a) = \{(\delta(s,a),M^2)\} This is clearly regular
```

Question 8

8.1

Demon pick p > 0 We choose $w = a^{2p}b^p$ such that |w| > p always hold. Demon pick $y = a^k$, where $1 \le k \le p$, I pick i = 0, then $xy^0z = xz = a^{2p-k}b^p$ If $xy^0z \in L$, then 2p - k = 2p which means k = 0, but $k \le 1$ so we conclude that it is not regular.

8.2

Demon pick p>0. We choose $w=a^{(p+1)^2}$. In order to satisfy pumping lemma $|xy|\leq p$ and |y|>0, y need to consist exclusively with a. So $y=a^k$ for $0\leq k < p$. We then pick i=2, then new string $=xy^2z=a^{(p+1)^2+k}$ Since $(p+1)^2+k>(p+1)^2$ and $k\leq p$ we can then conclude that $(p+1)^2+k\leq (p+1)^2+p<(p+2)^2$ and obviously $xy^2z\notin L$ So by pumping lemma it is not regular.

Question 9

Proof by counterexample. Let $\Sigma = \{x,y,z\}$, $L = \{x^*zy^*\}$ Since L and x^*y^* can be written as a regular expression, they are both regular. Now we need to prove outer(L) is not regular by showing $outer(L) \cap \{x^*y^*\}$ is not regular. Since there is no z in $\{x^*y^*\}$, for $uw \in outer(L) \cap \{x^*y^*\}$ there is no z in u or w, so z can only be in v Since $L = x^*zy^*$ and that z can only be in v, $u = x^*$ and $w = y^*$ and $v = x^*zy^*$ with |u| = |w| = |v| So $u = x^n$, $w = y^n$ with some $n \ge 1$ So $outer(L) \cap \{x^*y^*\} = \{x^*y^*, n \ge 1\}$ Then, using pumping lemma to prove this is not regular. Demon pick p > 0, I choose $w = x^py^p$. Demon is forced to pick $Y = x^k$, $k \ge 1$ in order to satisfy |XY| < p I choose i=2. Then $XY^iZ = x^{p+k}y^p \notin \{x^ny^n|n \ge 1\}$ Since $outer(L) \cap \{x^*y^*\}$ is not regular, outer(L) cannot be regular.

Question 10

 $\Sigma = \{1\}$ Build an NFA with nine states arranged in loops of length two and seven, Assign start and final state so that the shortest rejected string is of length 14 = 2*7 and it is strictly greater than nine.

