Modern Control Systems

Matthew M. Peet Arizona State University

Lecture 13: The joy of Hilbert Space

Recall: Hilbert Spaces

Definition 1.

An inner product space which is complete in the norm $\|x\|^2 = \langle x, x \rangle$ is called a **Hilbert Space**.

Example: Define the following inner product on $L_2[0,\infty)$:

$$\langle x, y \rangle_{L_2} := \int_0^\infty x^T(s) y(s) ds$$

Then

$$||x||_{L_2}^2 = \int_0^\infty ||x(s)||^2 ds$$

And since L_2 is complete in this norm, $L_2[0,\infty)$ is a Hilbert Space.

M. Peet Lecture 13: 2 /

Hilbert Space

Adjoints

The previous lecture only required a Banach Algebra. From now on we will only consider linear operators on Hilbert spaces.

• $\mathcal{L}(H)$ is still a Banach space, though.

Operators $\mathcal{L}(H)$ acting on a Hilbert space H, have \mathbf{most} of the properties of matrices

Property 1: Adjoint

Definition 2.

Suppose V,Z are Hilbert spaces. For any $F\in\mathcal{L}(V,Z)$, we say that $F^*\in\mathcal{L}(Z,V)$ is the **adjoint** of F if

$$\langle z, Fv \rangle_Z = \langle F^*z, v \rangle_V$$

for all $z \in Z$ and $v \in V$.

M. Peet Lecture 13:

Adjoints

Examples

Proposition 1.

Suppose U,V are Hilbert. Then for any $F\in\mathcal{L}(U,V)$, F^* exists, is unique and

$$||F|| = ||F^*|| = \sqrt{||F^*F||}$$

Examples

- Matrix Transpose
- The convolution operator $F \in \mathcal{L}(L_2)$

$$(Fu)(t) = \int_0^t f(t-s)u(s)ds$$

Then

$$(F^*u)(t) = \int_0^t f^*(s-t)u(s)ds$$

M. Peet Lecture 13:

Self-Adjoint Operators

There are "symmetric" operators.

Definition 3.

An operator is **Self-Adjoint** if $F = F^*$.

- If $F = F^*$, then $\langle v, Fv \rangle \in \mathbb{R}$.
- Proof?

There are also "Positive" operators (related to Passivity, but not the same)

Definition 4.

A self-adjoint operator, $F=F^*\in\mathcal{L}(H)$ is **Positive Definite** (PD, denoted F>0) if there exists some $\epsilon>0$ such that

$$\langle v, Fv \rangle \ge \epsilon ||v||^2$$

• Note that $\langle v, Fv \rangle > 0$ for all v is not equivalent.

Self-Adjoint Operators

Square Root

Definition 5.

A self-adjoint operator, $F=F^*\in\mathcal{L}(H)$ is **Positive Semidefinite** (PSD, denoted $F\geq 0$) if

$$\langle v, Fv \rangle \ge 0$$

• F is Positive Definite if and only if $F - \epsilon I \ge 0$ for some $\epsilon > 0$

Property 2: Square Root

Proposition 2.

1. If $F \ge 0$ is PSD, then there exists some PSD operator $F^{1/2} \ge 0$ such that

$$F=F^{\frac{1}{2}}F^{\frac{1}{2}}$$

2. If F>0 is PD, then there exists some PD operator $F^{1/2}>0$ such that

$$F = F^{\frac{1}{2}}F^{\frac{1}{2}}$$

M. Peet Lecture 13: 6

Self-Adjoint Operators

Other Properties

Proposition 3.

If
$$M \in \mathcal{L}(V)$$
 and $M = M^*$, then $\rho(M) = ||M||$.

Corollary 6.

If $M \in \mathcal{L}(U, V)$, then

$$\rho(M^*M) = \|M\|^2$$

Positive Matrices have positive spectra.

Proposition 4.

- If $M=M^*$, then $\sigma(M)\subset \mathbb{R}$
- If $M=M^*\geq 0$, then $\sigma(M)\subset \mathbb{R}^+$

M. Peet Lecture 13: 7 /

More Operators

Unitary Operators

Definition 7.

An Operator $F \in \mathcal{L}(U, V)$ is **Isometric** if

$$F^*F = I_U$$

• If $F \in \mathcal{L}(U, V)$ is isometric, then for any $x, y \in U$

$$\langle Fx, Fy \rangle_V = \langle x, y \rangle_U$$

• If F is isometric, then ||F|| = 1. Proof:

$$\sup \frac{\|Fx\|^2}{\|x\|^2} = \sup \frac{\langle Fx, Fx \rangle}{\langle x, x \rangle} = \sup \frac{\langle x, x \rangle}{\langle x, x \rangle} = 1$$

M. Peet Lecture 13: 8 /

More Operators

Unitary Operators

Definition 8.

An operator $F \in \mathcal{L}(X,Y)$ is **Unitary** if

$$F^* = F^{-1}$$

• A unitary operator is obviously isometric since

$$F^*F = F^{-1}F = I$$

- If $F \in \mathcal{L}(X,Y)$ is unitary, then X and Z are isomorphic
 - ▶ There always exists a unitary operator between isomorphic spaces.

M. Peet Lecture 13: 9 /