The H-function

This is code to accompany the book:

A Hitchhiker's Guide to Multiple Scattering

© 2016 Eugene d'Eon www.eugenedeon.com

Analytic Solution

H-function (Stibbs-Weir)

```
Clear[H];
```

$$\text{H}\left[\alpha_{_}, \, \text{u}_{_}\right] := \text{Exp}\left[\frac{-\text{u}}{\text{Pi}} \, \text{NIntegrate}\left[\frac{\text{Log}\left[1-\alpha \, \text{t} \, \text{Cot}\left[\text{t}\right]\right]}{\text{Cos}\left[\text{t}\right]^{2} + \text{u}^{2} \, \text{Sin}\left[\text{t}\right]^{2}}, \, \left\{\text{t, 0, } \frac{\text{Pi}}{2}\right\}\right]\right]$$

Special cases for no absorption (α = 1):

[Wiener and Hopf 1931]

$$(1+u) \, \operatorname{Exp}\left[\frac{u}{\operatorname{Pi}} \, \operatorname{NIntegrate}\left[\frac{\operatorname{Log}\left[\operatorname{Sin}\left[t\right]^{2} / \left(1-\operatorname{t}\operatorname{Cot}\left[t\right]\right)\right]}{\operatorname{Cos}\left[t\right]^{2}+u^{2} \, \operatorname{Sin}\left[t\right]^{2}}, \, \left\{t, \, 0, \, \frac{\operatorname{Pi}}{2}\right\}\right]\right]$$

[Placzek 1947]

$$\text{HPlaczek[u_]} := \frac{1}{\left(1+u\right)^{1/2}} \operatorname{Exp}\left[\frac{1}{\operatorname{Pi}} \operatorname{NIntegrate}\left[\frac{\operatorname{tArcTan[uTan[t]]}}{1-\operatorname{tCot[t]}}, \left\{\mathsf{t, 0, \frac{Pi}{2}}\right\}\right]\right]$$

In[157]:= Quiet[Table[{halfspaceAlbedoProblemIsotropic`H[1, u],

 $\texttt{HWienerHopf[u], HPlaczek[u]}, \ \{u,\ 0,\ 1,\ 0.1\}]]\ //\ \texttt{TableForm}$

Out[157]//TableForm=

1.	1.	1.
1.24735	1.24735	1.24735
1.45035	1.45035	1.45035
1.64252	1.64252	1.64252
1.82928	1.82928	1.82928
2.01278	2.01278	2.01278
2.19413	2.19413	2.19413
2.37397	2.37397	2.37397
2.5527	2.5527	2.5527
2.73059	2.73059	2.73059
2.90781	2.90781	2,90781

Approximate H-function

Hapke approximation 1

H1[w_, u_] :=
$$\frac{1+2 u}{1+2 u \sqrt{1-w}}$$

Hapke approximation 2

Grosjean 1958b approximation

$$\begin{split} & \text{HGrosjean}\left[w_{_}, \; u_{_}\right] \; := \; 1 \; + \; \frac{w \; u}{2} \; \text{Log}\left[\; \frac{1 \; + \; u}{u} \; \right] \; + \; \frac{2 \; w^2 \; u}{\left(1 \; + \; K \; u\right) \; \left(\frac{13 - 5 \; w}{8} \; + \; \frac{2}{3} \; \left(2 \; - \; w\right) \; K\right)} \; - \\ & \frac{w^2 \; u}{\left(\frac{13 - 5 \; w}{8} \; + \; \frac{2}{3} \; \left(2 \; - \; w\right) \; K\right)} \; \left(\frac{17}{32} \; + \; \frac{15}{16} \; u \; - \; u \; \left(1 \; + \; \frac{15}{16} \; u\right) \; \text{Log}\left[\; \frac{1 \; + \; u}{u} \; \right] \right) \; / \; \cdot \; K \; \rightarrow \; \left(\frac{3 \; \left(1 \; - \; w\right)}{2 \; - \; w}\right)^{1/2} \end{split}$$

NSE 1976 vol 27, 607 - 608 (two more approximations are given)

$$\begin{split} &\text{H32}[\mathtt{c}_{-},\,\mathtt{u}_{-}] \,:=\, \left(1-\frac{\mathtt{c}}{2}\left(\left(1-\mathtt{A}\,\mathtt{u}+\mathtt{B}\,\mathtt{u}^{2}\right)\,\mathtt{u}\,\mathtt{Log}\!\left[\frac{1+\mathtt{u}}{\mathtt{u}}\right]+\mathtt{A}\,\mathtt{u}\,+\,\left(\frac{\mathtt{u}}{2}-\mathtt{u}^{2}\right)\,\mathtt{B}\right)\right)^{-1}\,//\,.\\ &\left\{\mathtt{A}\to\alpha-\frac{2}{3}\,\mathtt{B},\,\mathtt{B}\to\frac{\mathtt{K}\,\mathtt{Log}\!\left[1+\mathtt{K}\right]+\left(\mathtt{K}+\mathtt{Log}\!\left[1-\mathtt{K}\right]\right)\,\alpha}{\frac{\mathtt{K}}{\mathtt{b}}+\left(\frac{2}{3}-\frac{1}{\mathtt{K}}\right)\,\mathtt{Log}\!\left[1-\mathtt{K}\right]-1},\,\,\alpha\to\frac{4}{\mathtt{c}}\,\left(1-\sqrt{1-\mathtt{c}}\right)-2\,,\\ &b\to1\bigg/\left(\frac{\sqrt{1-\mathtt{c}}}{2\,\mathtt{K}}-\frac{\mathtt{c}}{4\,\mathtt{K}^{2}}\,\mathtt{Log}\!\left[1-\mathtt{K}^{2}\right]\right),\,\,\mathtt{K}\to\mathtt{vexact}\!\left[\mathtt{c}\right]\right\} \end{split}$$

1.24997

Compare various approximations

```
u = 0.02;
Plot[
   H[c, u],
   H1[c, u],
   H2[c, u],
   HGrosjean[c, u]
    \{\texttt{c, 0, 1}\}\,,\,\, \texttt{PlotStyle} \rightarrow \{\texttt{Thick, Dashed, Red, DotDashed}\}
1.07
1.06
1.05
1.04
1.03
1.02
1.01
```

H-function moments

$$\begin{aligned} & \text{Hmoment1}[c_{-}] := \left(1 - \sqrt{1 - c}\right) \, \frac{2}{c} \\ & \\ & \text{HmomentApprox}[c_{-}, \, j_{-}] := \frac{1}{j + 1} \, \frac{2}{1 + y} \left(1 + \frac{j}{2 \, \left(j + 2\right)} \, \frac{1 - y}{1 + y}\right) \, / \cdot \, y \to \sqrt{1 - c} \end{aligned}$$

а

```
Plot[{
   NIntegrate[ H2[c, u], {u, 0, 1}],
   Hmoment1[c]
 }, {c, 0.01, .99}]
1.8
1.6
1.4
1.2
             0.2
                                                              1.0
                          0.4
                                      0.6
                                                  0.8
j = 5;
Plot[{
   NIntegrate \left[ u^{j} H2[c, u], \left\{ u, 0, 1 \right\} \right],
   HmomentApprox[c, j]
  }, {c, 0.01, .99}]
0.35
0.30
0.25
0.20
                          0.4
                                                              1.0
                                      0.6
                                                  0.8
```

Benchmark H-function data

```
Hfuncdata = Table[H[c, u],
                        \{c, \{0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90, 0.90,
                                       0.995,\, 0.999,\, 0.9999,\, 0.999999,\, 0.999999\}\},\, \{u,\, \{0.01,\, 0.1,\, 0.2,\, 0.5,\, 1\}\}];
Transpose[Join[
                        {Table[c, {c, {0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9, 0.95, 0.98,
                                                      0.99, 0.995, 0.999, 0.9999, 0.99999, 0.999999}}]], Transpose[Hfuncdata]]];
```

Grid[%]

0.001	1.00002	1.00012	1.00018	1.00027	1.00035
0.01	1.00023	1.0012	1.0018	1.00276	1.00349
0.05	1.00116	1.00609	1.00914	1.01409	1.01785
0.1	1.00235	1.01238	1.01864	1.02892	1.03682
0.2	1.00478	1.02562	1.03892	1.06118	1.07865
0.3	1.0073	1.03987	1.06115	1.09756	1.12684
0.5	1.01272	1.07237	1.11346	1.18774	1.25126
0.7	1.01887	1.11303	1.18252	1.31795	1.44475
0.8	1.02242	1.13881	1.22864	1.41326	1.59822
0.9	1.0266	1.17214	1.29143	1.55603	1.8501
0.95	1.02923	1.19523	1.33734	1.67179	2.07712
0.98	1.03131	1.21513	1.37876	1.78629	2.32579
0.99	1.03226	1.22488	1.39977	1.8486	2.47279
0.995	1.03289	1.23162	1.41463	1.89463	2.58735
0.999	1.03367	1.24042	1.43442	1.95869	2.75607
0.9999	1.03408	1.24518	1.44532	1.99545	2.85822
0.99999	1.03421	1.24667	1.44876	2.00728	2.89196
0.999999	1.03424	1.24713	1.44985	2.01104	2.90278