Das Matrix-Tree-Theorem

Bachelorarbeit der Fakultät für Mathematik der Ludwig-Maximilians-Universität München

vorgelegt von

Christopher Mann

geboren in Freising

München, den

Inhalt

1	Einl	Einleitung				
2	Grundlegende Definitionen und Notationen					
3	Das Matrix-Tree-Theorem					
	3.1	Tuttes Matrix-Tree-Theorem	5			
	3.2	Kirchhoffs Matrix-Tree-Theorem	6			
4	Anz	ahl Spannbäume für bestimmte Graphenklassen	8			
	4.1	Warm-up	8			
	4.2	Vollständige Graphen - der Satz von Cayley	8			
	4.3	Vollständige multipartite Graphen	9			
	4.4	Fächer-Graphen	12			
	4.5	Rad-Graphen	13			
	4.6	Zirkuläre Graphen	15			
	4.7	Kartesische Produkte von Graphen	17			
L	eerzei	chen im Dokument!!!!!!!				
Q	uellei	doppelt und dreifach prüfen!!!!!!!				
E	vtl. ü	berflüssige Equationnumbers wegmachen				

1 Einleitung

Kirchhoff als "Erfinder" des MTT

Anwendungsgebiete des MTT außerhalb der Mathematik

Ausblick auf die Bachelorarbeit

Einleitung schreibe ich zuletzt

Er fand heraus, dass ein Zusammenhang zwischen einer speziellen Matrix und der Anzahl der Spannbäume eines Graphen besteht.

Über diesen Zusammenhang macht ein Matrix-Tree-Theorem eine Aussage.

Auch außerhalb der reinen Mathematik und der Theorie über elektrische Schaltkreise finden Matrix-Tree-Theorems eine Anwendung.

In der Chemie gibt es einen Zusammenhang zwischen Spannbäumen und...

Auch in der Informatik kann man Matrix-Tree-Theorems zum Beispiel dafür benutzen, die Anzahl von Spannbäumen von Netzwerken -die man als Graphen betrachen kann- zu berechnen, um dann Rückschlüsse über die Stabilität dieser Netzwerke zu ziehen.

In der Quantenphysik...

Das Anwendungsspektrum von Matrix-Tree-Theorems ist also vielseitig.

In dieser Arbeit werden wir uns zwei Matrix-Tree-Theorems erschließen und damit danach die Anzahl der Spannbäume von Graphen einiger Klassen bestimmen.

2 Grundlegende Definitionen und Notationen

Wir beginnen damit, ein paar wichtige Begriffe und Notationen einzuführen, die wir später häufiger benutzen werden. In einem Matrix-Tree-Theorem wird immer ein Zusammenhang zwischen bestimmten Matrizen und den Spannbäumen eines Graphen beschrieben. Daher bieten sich die folgenden zwei Definitionen an, wobei wir eine für ungerichtete und die andere für gerichtete Graphen verwenden werden.

Definition 2.1 Laplacematrix

$$l_{ij} = \begin{cases} d(i), \ falls \ i = j, \\ (-1), \ falls \ ij \in E, \\ 0, \ sonst. \end{cases}$$

Für einen Knoten i bezeichnen mit $d^-(i)$ seinen Ausgangsgrad.

Definition Multigraph bleibt wenn dann hier, im Kapitel "Tuttes..." stört das nur, ich weiß aber noch nicht ob die überhaupt nötig ist, das sollte allgemein bekannt sein

Definition 2.2 *Kirchhoffmatrix*

Für einen gerichteten Multigraphen D mit Knoten 1,...,n definieren wir die Kirchhoffmatrix K(D) wie folgt:

$$k_{ij} = \begin{cases} d^{-}(i), \ falls \ i = j, \\ (-m), \ wobei \ m \ die Anzahl \ der \ Kanten \ von \ i \ nach \ j \ ist. \end{cases}$$

Der Eintrag k_{ij} der Kirchhoff-Matrix gleich dem Ausgangsgrad des Knoten i, falls i = j, und gleich minus der Anzahl von Kanten von i nach j, für $i \neq j$.

Im Verlauf dieser Arbeit werden wir immer wieder die Anzahl der Spannbäume eines Graphen ausrechnen, daher verwenden wir k(G) als die Anzahl der Spannbäume eines beliebigen Graphen G.

Stand jetzt werde ich die Definitionen als solche hervorheben, Notation jedoch im Fließtext unterbringen, passt das so?

Definition aboreszenz nicht hier!!

3 Das Matrix-Tree-Theorem

Nachdem wir nun alle notwendigen Lemmas und Definitionen beisammen haben, können wir mit dem wichtigsten Teil dieser Arbeit anfangen, dem Beweis des Matrix-tree-theorems selbst. Wir beweisen zuerst eine Version für gerichtete Multigraphen, bevor wir uns der Version für ungerichtete Graphen als einem Spezialfall davon widmen.

3.1 Tuttes Matrix-Tree-Theorem

Um die Version des Matrix-Tree-Theorems für gerichtete Multigraphen und den Beweis zu verstehen, müssen wir erst den Begiff der Aboreszenz einführen.

Aboreszenz, branching, etc.

Satz 3.1.1 (Tuttes Matrix-Tree-Theorem) Sei D ein gerichteter Multigraph mit Kirchoffmatrix K(D). Die Anzahl der Aboreszenzen aus einem Knoten i ist gleich der $det(K_{\overline{i}}(D))$.

Um das zu beweisen lassen wir uns von [2] inspirieren. Also zeigen wir zuerst folgendes Lemma:

Lemma 3.1.2 Sei D ein gerichteter Multigraph mit maximalem Eingangsgrad = 1 und i ein Knoten in D.

Dann hat D maximal eine Aboreszenz mit Wurzel i. Desweiteren ist $det(K_{\bar{i}}(D)) \in \{0,1\}$ und genau dann, wenn D eine Aboreszenz mit Wurzel i besitzt, ist $det(K_{\bar{i}}(D)) = 1$.

Beweis von Lemma 3.1.2:

Wir nehmen zuerst an, dass D eine Aboreszenz mit Wurzel i hat.

Da der maximale Eingangsgrad = 1 ist, schließen wir, dass für jeden Knoten außer i, die eine eingehnende Kante in dieser Aboreszenz enthalten ist.

Weil das Vertauschen von Zeilen einer Matrix deren Determinante nicht ändert, dürfen wir annehmen, dass i = 1 ist und die übrigen Knoten in der Reihenfolge einer Breitensuche durchnummeriert sind.

Dann ist nämlich $K_{\bar{i}}(D)$ eine obere Dreiecksmatrix mit Diagonaleinträgen = 1, also $det(K_{\bar{i}}(D)) = 1$. Jetzt nehmen wir an, dass D keine Aboreszenz mit Wurzel i besitzt.

Falls ein anderer Knoten als *i* Eingangsgrad = 0 hat, sind die alle Einträge der entsprechenden Spalte von $K_{\bar{i}}(D)$ und damit auch $det(K_{\bar{i}}(D))$ gleich 0

Also dürfen wir zu guter Letzt annehmen, dass für alle von i verschiedenen Knoten der Eingangsgrad = 1 ist.

Da jedoch D keine Aboreszenz mit Wurzel i besitzt, hat D einen Zyklus, der i nicht enthält.

Da aber jeder Knoten $\neq i$ Eingangsgrad = 1 hat, sind die Spalten, die mit den Knoten in diesem Zyklus korrespondieren linear abhängig und damit $det(K_{\bar{i}}(D)) = 0$.

Damit haben wir unser Lemma bewiesen.

Nun können wir uns dem Beweis von Tuttes Matrix-Tree-Theorem widmen.

Beweis von Tuttes Matrix-Tree-Theorem: Wir werden die Matrix K(D) in kleinere Matrizen zerlegen und dann mit dem Lemma von oben arbeiten.

Für die Zerlegung in kleinere Matrizen erinnern wir uns an ein Ergebnis aus der linearen Algebra; Für eine Matrix aus Spalten $c_1,...,c_n$ mit jeweils n Elementen gilt:

$$det(c_1,...,(c_i+1c_i),...,c_n) = det(c_1,...,c_i,...,c_n) + det(c_1,...,1c_i,...,c_n)$$
(1)

5

Im folgenden Satz nachm Leerzeichen einfügen dieselben zwischen nxn und Matrix wieder wegmachen, das gehört nämlich zusammen

Weil sich die einzigen positiven Einträge von K(D) auf der Diagonale befinden und die Spaltensummen alle = 0 sind, können wir K(D) in $s = \prod_{i=1}^{n} k_{ii}$ $n \times n$ -Matrizen $K(D_i)$, $i \in \{1, ..., s\}$ zerlegen, indem wir jede Spalte als Summe von k_{ii} Spalten schreiben von denen jede mit einer in i eingehenden Kante korrespondiert.

Grafik oder Matrix

Ohne Beschränkung der Allgemeinheit können wir i = 1 annehmen.

Wir werden jetzt $det(K_{\bar{1}}(D))$ mithilfe der Matrizen von oben vereinfachen und dann ausrechnen. Hierzu sei \hat{D} der Graph der aus D durch löschen aller in den Knoten 1 eingehenden Kanten entsteht und $d^-(j)$ der Eingangsgrad eines Knoten j. Dann folgt:

$$det(K_{\bar{1}}(\hat{D})) = \sum_{e_2}^{d^{-}(2)} det(K_{e_2}(\hat{D}))$$
 (2)

,wobei $K_{e_j}(\hat{D})$ aus \hat{D} durch löschen aller in den Knoten j eingehenden Kanten außer e_j entsteht. Wiederholen wir das für die übrigen Knoten, bekommen wir:

$$det(K_{\bar{1}}(\hat{D})) = \sum_{e_2}^{d^{-}(2)} \dots \sum_{e_n}^{d^{-}(n)} det(K_{e_n})$$
(3)

Mit Lemma 3.1.2 schließen wir, dass genau das die Aboreszenzen mit Wurzel i zählt. Da $det(K_{\overline{i}}(D))$ aus K(D) durch löschen der mit Knoten i korrespondierenden Zeile und Spalte entstanden ist und wir ohne Beschränkung der Allgemeinheit i = 1 annehmen durften, gilt:

$$det(K_{\bar{1}}(\hat{D})) = det(K_{\bar{1}}(D)) = det(K_{\bar{i}}(D))$$
(4)

Das vervollständigt unseren Beweis von Tuttes Matrix-Tree-Theorem.

3.2 Kirchhoffs Matrix-Tree-Theorem

Nun werden wir das Matrix-Tree-Theorem für ungerichtete Graphen formulieren und beweisen, dass wir auch im weiteren Verlauf dieser Arbeit verwenden werden um die Anzahl der Spannbäume für verschiedene Graphenklassen zu bestimmen.

Satz 3.2.1 (Kirchoffs Matrix Tree Theorem) *Sei* G *ein ungerichteter Graph und* L_n *die dazuge-hörige Laplacematrix. Dann gilt:*

- (1) Die Anzahl der Spannbäume von G gleich einem beliebigen Kofaktor von L_n .
- (2) Die Anzahl der Spannbäume von G ist gleich $\frac{1}{n}\lambda_1...\lambda_{n-1}$, wobei $\lambda_1,...,\lambda_{n-1}$ die Eigenwerte von L_n sind, die ungleich null sind.

Beweis:

Teil 1 des Kirchhoffs Matrix-Tree-Theorem folgt quasi direkt aus Tuttes Matrix-Tree-Theorem. Sei \vec{G} der gerichtete Graph, der entsteht, wenn man jede Kante in G als zwei gerichtete ansieht. Wir betrachten einen beliebigen Knoten aus \vec{G} , der natürlich auch in G ist.

6

Da nach Definition jeder Knoten in jedem Spannbaum mit jedem anderen wegverbunden ist, korrespondiert jeder Spannbaum von G mit genau einer Aboreszenz (out-branching <- Reminder, nicht Teil der BA) mit unserem Knoten als Wurzel in \vec{G} .

Da jede Kante in \vec{G} auch in die entgegengesetzte Richtung vorhanden ist, können wir schließen, dass $L_n = K(\vec{G})$, wobei L_n die Laplacematrix von G ist.

Da die Anzahl der Spannbäume gegenüber Permutationen der Knotenmenge invariant ist, wissen wir, dass jeder Kofaktor von L_n also gleich jedem Kofaktor von $K(\vec{G})$ ist.

Wir folgern daraus mit Tuttes Matrix-Tree-Theorem, dass die Anzahl der Spannbäume in G gleich einem beliebigen Kofaktor von L_n ist.

Um Teil 2 zu zeigen, berufen wir uns auf ein bekanntes Ergebnis der linearen Algebra;

Das Produkt der Eigenwerte einer Matrix ist gleich der Summe seiner Hauptminoren. Das kann man zum Beispiel in [5] nachlesen.

Da L_n n Hauptminoren hat, folgt mit Teil 1, dass die Anzahl der Spannbäume von G ist gleich $\frac{1}{n}\lambda_1 \dots \lambda_{n-1}$, wobei $\lambda_1, \dots, \lambda_{n-1}$ die Eigenwerte von L_n sind, die ungleich null sind. Damit ist Kirchhoffs Matrix-Tree-Theorem bewiesen.

4 Anzahl Spannbäume für bestimmte Graphenklassen

Nachdem Kirchhoff's Matrix-Tree-Theorem nun bewiesen ist, werden wir damit im Folgenden Formeln für die Berechnung der Anzahl der Spannbäume für verschiedene Klassen von ungerichteten Graphen finden. Begegnen werden uns unter Anderem der vollständige Graph, multipartite Graphen, Räder und as Quadrat eines Kreises (Square of a cycle)). Dabei werden wir uns an der ein- oder anderen Stelle ein paar Eigenschaften bestimmter Matrizen, Determinanten, aber auch zum Beispiel von Chebychev-polynomen zunutze machen, da das Ausrechnen eines Kofaktors der Laplacematrix hier manchmal nicht der schnellste und intelligenteste Weg ist um ans Ziel zu kommen.

4.1 Warm-up

Als kleines Aufwärmprogramm für den Rest dieser Arbeit werden wir in diesem Kapitel die Anzahl der Spannbäume von ein paar wohlbekannten sehr einfachen Graphen mit Kirchhoffs Matrix-Tree-Theorem berechnen.

Unsere Ergebnisse aus diesem Kapitel wollen wir uns im Kapitel zu kartesischen Produkten von Graphen zu Nutze machen, deswegen werden wir jedes mal die Eigenwerte der Laplace Matrizen berechnen, weil wir diese später brauchen.

Dazu brauchen wir aber ersteinmal zusätzliches Werkzeug und zwar einen Zusammenhang zwischen

Lemma 4.1.1 *Der Pfad-Graph* P_n *mit n Knoten hat genau einen Spannbaum.*

Beweis:

Dass ein Pfad-Gaph nur einen Spannbaum hat ist offensichtlich; er ist ja selbst ein Baum.

Wir sind aber an den Eigenwerten der Laplacematrix interessiert.

Da wir die Knoten beliebig benennen dürfen, können wir ohne Beschränkung der Allgemeinheit annehmen, dass diese dann von der Form

ist.

Mit Kirchhoffs Matrix-Tree-Theorem folgt, dass P_n nur einen Spannbaum hat.

Lemma 4.1.2 *Der Kreis-Graph* C_n *mit n Knoten hat genau n Spannbäume.*

Beweis:

4.2 Vollständige Graphen - der Satz von Cayley

Satz 4.2.1 (Satz von Cayley) K_n besitzt genau n^{n-2} verschiedene Spannbäume.

Beweis:

Unser Beweis orientiert sich an [4]. Wir wollen das Matrix-Tree-Theorem verwenden und betrachten deshalb die Determinante der Matrix, die durch das Streichen der ersten Zeile und Spalte der Laplacematrix $L_n(K_n) \in M_n(\mathbb{Z})$ entsteht:

$$\begin{pmatrix} n-1 & -1 & \dots & \dots & -1 \\ -1 & n-1 & -1 & \dots & \dots & -1 \\ -1 & -1 & n-1 & -1 & \dots & -1 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & \dots & \dots & \dots & -1 & n-1 \end{pmatrix}$$
(6)

Da sich die Determinante durch elementare Zeilen- und Spaltenoperationen nicht ändert, dürfen wir die erste Spalte von allen anderen subtrahieren und erhalten:

$$det \begin{pmatrix} n-1 & -n & \dots & \dots & -n \\ -1 & n & 0 & \dots & \dots & 0 \\ -1 & 0 & n & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & 0 & \dots & \dots & 0 & n \end{pmatrix}$$
 (7)

Mit demselben Argument wie oben addieren wir zur ersten Zeile alle übrigen und es ergibt sich:

$$det \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ -1 & n & 0 & \dots & \dots & 0 \\ -1 & 0 & n & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & 0 & \dots & \dots & 0 & n \end{pmatrix}$$
(8)

Wir berechnen den Wert dieser Determinante durch Entwicklung nach der ersten Zeile. Weil die betrachtete Matrix eine $n-1 \times n-1$ Matrix ist, ist die Determinante gleich n^{n-2} .

Nach Kirchhoff's Matrix-Tree-Theorem ist genau das die Anzahl der Spannbäume des K_n .

4.3 Vollständige multipartite Graphen

Als nächste Graphenklasse betrachten wir vollständige multipartite Graphen.

Notation

Satz 4.3.1 Für die Anzahl der Spannbäume in einem vollständig m-partiten Graphen $K_{n_1,..,n_m}$ mit n Knoten gilt:

$$k(K_{n_1,..,n_m}) = n^{m-2} \prod_{i=1}^m (n-n_1)^{n_i-1}$$

Beweis: Wir beweisen den Satz ähnlich wie Austin in [1], der ein äquivalentes Problem zu dem ebengenannten bewiesen hat.

Dazu werden wir im Geist dieser Arbeit Kirchhoffs Matrix-Tree-Theorem verwenden.

Zuerst werden wir bemerken, dass alle Laplace-Matrizen, die unseren Sachverhalt beschreiben, bei geschickter Nummerierung Blockmatrizen einer bestimmten Gestalt sind und Schlüsse über deren Kofaktoren ziehen. Im nächsten Schritt werden wir dann einen beliebigen solchen Graphen auswählen und die entsprechenden Werte einsetzen.

Mit Kirchhoffs Matrix-Tree-Theorem folgt dann der Satz.

Wir beobachten, dass die Laplacematrix und die, die entsteht, wenn man davon die erste Zeile und Spalte streicht, von der Form

$$\begin{pmatrix} \gamma_{1}id_{d_{1}} & -V_{12} & \dots & \dots & -V_{1m} \\ -V_{21} & \gamma_{2}id_{d_{2}} & \dots & \dots & -V_{2m} \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & -V_{(m-1)m} \\ -V_{m1} & \dots & \dots & -V_{m(m-1)} & \gamma_{m}id_{d_{m}} \end{pmatrix}$$
(9)

Im folgenden Satz nachm Leerzeichen einfügen dieselben zwischen nxn und Matrix wieder wegmachen, das gehört nämlich zusammen

ist, wobei V_{ij} $(d_i) \times (d_j)$ -Matrizen sind, bei denen alle Einträge gleich -1 sind und $d_l \in \mathbb{N}$ für $l \in \{1, \ldots, m\}$.

Das ist eine symmetrische Matrix mit ganzzahligen Einträgen, deshalb wissen wir, dass alle Eigenwerte reell sind und wir die Determinante aus den Eigenwerten ausrechnen können.

Um die Eigenwerte herauszufinden betrachten wir das folgende Gleichungssystem:

Hier sind die $Y_i := (y_{i_1}, \dots, y_{i_j})^T$, wobei $j = d_i$. Für λ verschieden von $\gamma_1, \dots, \gamma_m$ können wir

!!!!!!If lamda is different from each of gamma1,gamma2, . . . , gammam then a consideration of the equations two at a time shows that each vector Yi must be a constant vector. !!!!!!

Deswegen können wir das Gleichungssystem in die m voneinander unabhängigen Gleichungen

$$\sum_{i=1}^{m} ((\gamma_j - d_j)\delta_{ij} - d_j)Y_j = \lambda_i Y_i \quad (i \in 1, \dots, m)$$

$$\tag{11}$$

umformulieren. Das gibt uns m von $\gamma_1, \ldots, \gamma_m$ verschiedene Eigenwerte, deren Produkt die Determinante der Matrix $K \in M_m(\mathbb{R})$ mit Einträgen $k_{i,j} = ((\gamma_j - d_j)\delta_{ij} - d_j)$ ist.

Die übrigen Eigenwerte müssen also aus $\gamma_1, \dots, \gamma_m$ sein.

Angenommen $\lambda = \gamma_i$ für ein $i \in \{1, ..., m\}$; Dann sehen wir bei Betrachtung des Gleichungssystems von oben, dass $Y_i = 0$ für $i \neq j$, !!!!!!!! $\sum_i y_{li} = 0$!!!!!.

Im folgenden Satz nachm Leerzeichen einfügen dieselben zwischen di-1 und facher wieder wegmachen, das gehört nämlich zusammen

Also ist γ_i ein (d_i-1) -facher Eigenwert. Wir schließen also

$$det \begin{pmatrix} \gamma_{1}id_{d_{1}} & -V_{12} & \dots & \dots & -V_{1m} \\ -V_{21} & \gamma_{2}id_{d_{2}} & \dots & \dots & -V_{2m} \\ \dots & \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots & -V_{(m-1)m} \\ -V_{m1} & \dots & \dots & -V_{m(m-1)} & \gamma_{m}id_{d_{m}} \end{pmatrix} = det(K) \prod_{i=1}^{m} \gamma_{i}^{(d_{i}-1)}$$

$$(12)$$

Um einen Kofaktor von $L(K_{n_1,...,n_m})$ zu berechnen, setzen wir in diese Gleichung jetzt die Werte für die Matrix ein, die entsteht wenn wir die erste Spalte und Zeile von $L(K_{n_1,...,n_m})$ streichen. Also setzen

wir $\gamma_i = (n - n_i)$ für $i \in \{1, ..., m\}$ und $d_1 = (n_1 - 1)$ und $d_i = n_i$ für $i \in \{2, ..., m\}$. Wir berechnen also

Um das auszurechnen, müssen wir die Determinante auswerten. Da elementare Zeilenoperationen die Determinante nicht ändern, subtrahieren wir die erste Zeile von allen anderen. Die zu berechnende Determinante ist nun

Jetzt addieren wir zur ersten Zeile für alle $i=2,\ldots,m$ das $\left(\frac{n_i}{n}\right)$ -fache der *i*-ten Zeile und erhalten

wobei $a = (n - n_1) + \sum_{i=2}^{m} \left(\frac{(1-n)n_i}{n} \right)$ ist.

Berücksichtigen wir die Gleichheit $n = n_1 + ... + n_m$, sehen wir leicht, dass $a = \frac{n-n_1}{n}$. Die Determinante einer Dreiecksmatrix können wir ablesen und folgern

Das setzen wir nun in(13) ein:

Damit haben wir erfolgreich einen Kofaktor der Laplacematrix von $K_{n_1,...,n_m}$ berechnet. Mit Kirchhoffs Matrix-Tree-Theorem folgt nun

$$k(K_{n_1,\dots,n_m}) = n^{m-2} \prod_{i=1}^m (n-n_1)^{n_i-1}$$
(18)

Damit ist der Satz über die Anzahl der Spannbäume in vollständig multipartiten Graphen bewiesen.

4.4 Fächer-Graphen

Fächergraphen als Name besser!

Nun werden wir Fächer-Graphen F_n , für $n \ge 1$ betrachten. Diese entstehen wenn wir an einen Pfad-Graphen P_n einen weiteren Knoten so ankleben, dass er mit allen übrigen Knoten adjazent ist.

Achtung: Fn bei uns ist Fn+1 im Paper

Wir wollen in diesem Kapital folgendes über die Anzahl der Spannbäume in Fächer-Graphen zeigen:

Satz 4.4.1

Beweis: Diesmal halten wir uns an einen Beweis von Bogdanowicz [3], wobei dieser F_n leicht anders definiert.

Zuerst werden wir zeigen, dass ein Kofaktor der Laplacematrix von Fächer-Graphen einer bestimmten Rekursion folgt und dann, dass Fib(2n) der die gleiche Rekursionsvorschrift einhält; Mit Kirchhoffs Matrix-Tree-Theorem folgt dann der Satz.

Wir betrachten also zunächst die Laplacematrix von F_n ; wir dürfen dazu die Knoten nummerieren wie wir wollen, also bekommen wir

Wir brauchen einen beliebigen Kofaktor davon, deshalb streichen wir die erste Zeile und Spalte und erhalten

Die Determinante dieser Matrix ist der gesuchte Kofaktor; wir benennen sie mit a_n .

Nun zeigen wir,dass die Folge $(a_n)_{n\in\mathbb{N}}$ der Rekursion $x^2-3x+1=0$ folgt,

wobei x den Shift-Operator $a_n = xa_{n-1}$ darstellt.

Wir entwickeln A_n nach der ersten Reihe und erhalten $a_n = 2b_{n-1} - b_{n-2}$, wobei b_i die Determinante der folgenden Hilfsmatrix ist:

Entwickeln wir die Determinante dieser Matrix für i = n ebenfalls nach der ersten Reihe, sehen wir, dass die Rekursion $b_n - 3b_{n-1} + b_{n-2}$ gilt.

Daraus schließen wir nun, dass a_n die gewünschte Rekursion $x^2 - 3x + 1 = 0$ von oben erfüllt.

Es bleibt also noch zu zeigen, dass sowohl Fib(2n), als auch die Formel $\frac{(3+\sqrt{5})^n-(3-\sqrt{5})^n}{2^n\sqrt{5}}$ dieser Rekursionsvorschrift genügen;

Das sind aber zwei sehr einfache Rechnungen, die wir uns an dieser Stelle sparen.

Damit ist unser Beweis vollständig.

Matrizen-Stil so in Ordnung?

4.5 Rad-Graphen

Der vorletzte Stop auf unserer Reise sind die sogenannten Wheel-Graphen. Hier wird zu einem zyklischen Graphen C_n mit Knoten $\{v_1,..,v_n\}$, $n \ge 3$ ein weiterer Knoten z hinzugefügt, der mit allen anderen Knoten benachbart ist, sodass der Wheel-Graph W_n entsteht (Achtung: W_n hat n+1 Knoten).

Satz 4.1 Für die Anzahl der Spannbäume in einem Rad gilt:

$$k(W_n) = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3+\sqrt{5}}{2}\right)^n - 2 \tag{22}$$

Beweis:

Um die Formel für die Berechnung der Anzahl der Spannbäume eines solchen Graphen herzuleiten, lassen wir von [6] inspirieren. Wir beobachten, dass wir den Fan-Graphen F_n bekommen, wenn wir die Kante v_1v_n aus W_n entfernen. Die Anzahl der Spannbäume von F_n kennen wir bereits von oben. Um die Anzahl der Spannbäume von Rädern zu berechnen, zeigen wir zuerst die rekursive Beziehung

$$k(W_{n+1}) = k(F_{n+1}) + k(F_n) + k(W_n)$$
(23)

Um das zu tun, werden die Spannbäume von W_{n+1} in drei verschiedene Klassen einteilen:

- 1) Alle Spannbäume, die die Kante $v_{n+1}v_1$, aber nicht die Kante $v_{n+1}z$ enthalten; das sind genau so viele, wie die Spannbäume von W_n , wie man in der Abbildung 1 sehen kann. Wir beachten hier, dass ein W_n entsteht, wenn man im F_n eine Kante zwischen den beiden Knoten mit Grad 2 hinzufügt.
- 2) Alle Spannbäume, die die Kante $v_{n+1}v_1$ nicht enthalten; das sind genau so viele, wie die Spannbäume von F_{n+1} ; das wird aus Abbildung 2 ersichtlich

3) Alle Spannbäume, die die Kante $v_{n+1}v_1$ und die Kante $v_{n+1}z$ enthalten; Wir beweisen gleich, dass das so viele sind, wie die Spannbäume von F_n .

V_{n+1}
V₁
F_{n+1}

Abb. 1: In Klasse 1 sind die Spannbäume dieses Graphen, wobei die schwarze Kante in diesen Spannbäumen enthalten sein muss und der grün markierte Teil ein F_n ist

Abb. 2: In Klasse 2 sind genau die Spannbäume dieses Graphen, wobei der grün markierte Teil ein F_{n+1} ist

Um zu zeigen dass die Klasse 3 genausoviele Spannbäume enthält, wie F_n , werden wir beweisen, dass für die Anzahl der Spannbäume in Klasse 3 den gleichen rekursiven Formeln genügen wie die von F_n .

Sei a_n die Anzahl der Subgraphen von F_n , die aus genau zwei Komponenten bestehen, von denen eine den Knoten z und die andere v_n enthält. Wir definieren b_n als die Anzahl der Spannbäume in Klasse 3, die die Kanten v_nv_{n+1} und v_nz nicht enthalten. Die nachfolgende Abbildung verdeutlicht, dass $k(F_{n+1}) = 2k(F_n) + a_n$ für $n \ge 2$.

Grafik Konstruktion von Fn+1 aus Fn, und diesmal stimmt der Beweis wirklich

Wenn die Grafik drin ist evtl noch ein-zwei Sätze dazu

Sei M_n die Menge der Spannbäume von W_{n+1} aus Klasse 3;

Die nächste Grafik zeigt, dass $|M_{n+1}| = 2|M_n| + b_n$ ist; wir erinnern uns dabei an dieser Stelle daran, dass wir die Knoten beliebig umnummerieren können.

Grafik zur Konstruktion, damit ist das offensichtlich

Wenn die Grafik drin ist, evtl. noch ein-zwei Sätze dazu

Wir sehen leicht, dass $k(F_2) = |M_2|$ und $a_2 = b_2$; daraus schließen wir, dass die Anzahl der Spannbäume in Klasse 3 gleich $k(F_n)$ ist, was wir zeigen wollten. Da jeder Spannbaum von W_{n+1} in genau einer der 3 Klassen ist, gilt die rekursive Beziehung

$$k(W_{n+1}) = k(F_{n+1}) + k(F_n) + k(W_n)$$
(24)

Wir werden nun den Beweis per Induktion über $n \in \mathbb{N}$, $n \ge 3$ vervollständigen, wobei uns natürlich zu Gute kommt, dass uns die Anzahl der Spannbäume von Fan-Graphen schon bekannt ist. Für unseren Induktionsanfang sehen wir -zum Beispiel durch Anwendung von Kirchhoffs Matrix-

Tree-Theorem- leicht, dass

$$k(W_3) = 16 = \left(\frac{3+\sqrt{5}}{2}\right)^3 + \left(\frac{3+\sqrt{5}}{2}\right)^3 - 2.$$
 (25)

Wir nehmen nun an, dass für ein $n \in \mathbb{N}$ die Formel

$$k(W_n) = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3+\sqrt{5}}{2}\right)^n - 2 \tag{26}$$

gilt.

Damit bleibt noch zu zeigen, dass

$$k(W_{n+1}) = \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} - 2.$$
 (27)

Das werden wir nun einfach ausrechnen. Nachdem wir im vorherigen Kapitel herausgefunden haben, wieviele Spannbäume Fan-Graphen haben, setzen wir das und unsere Induktionsannahme in die Gleichung (24) ein, und erhalten:

$$k(W_{n+1}) = \frac{\left(3 + \sqrt{5}\right)^{n+1} - \left(3 - \sqrt{5}\right)^{n+1}}{2^{n+1}\sqrt{5}} + \frac{\left(3 + \sqrt{5}\right)^{n} - \left(3 - \sqrt{5}\right)^{n}}{2^{n}\sqrt{5}} + \left(\frac{3 + \sqrt{5}}{2}\right)^{n} + \left(\frac{3 - \sqrt{5}}{2}\right)^{n} - 2$$
(28)

Wir bringen fast alles auf einen Nenner, sortieren die Terme und bekommen

$$k(W_{n+1}) = \frac{\left(3 + \sqrt{5} + 2 + 2\sqrt{5}\right) \left(3 + \sqrt{5}\right)^n}{2^{n+1}\sqrt{5}} - \frac{\left(3 + \sqrt{5} + 2 - 2\sqrt{5}\right) \left(3 - \sqrt{5}\right)^n}{2^{n+1}\sqrt{5}} - 2$$
(29)

zusammengehörige Terme farbig markieren

Ausrechnen führt uns zu

$$k(W_{n+1}) = \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} + \left(\frac{3+\sqrt{5}}{2}\right)^{n+1} - 2 \tag{30}$$

Damit ist unser Induktionsbeweis abgeschlossen und wir haben gezeigt, dass unser Satz 22 über die Anzahl der Spannbäume in einem Rad gilt.

4.6 Zirkuläre Graphen

Im Kapitel Warm-up ist uns schon ein zirkulärer Graph begegnet; der Kreis-Graph. Wir nennen einen Graphen zirkulär (engl. "circulant") mit n Knoten, wenn für $n \in \mathbb{N}$ und eine Menge $I \subset \{1,..,\lfloor \frac{n}{2} \rfloor \} \subset \mathbb{N}$ gilt, dass jeder Knoten v genau zu jedem Knoten $(v+i)(\mod n)$ mit $i \in I$

benachbart ist; wir bezeichnen solch einen Graphen kurz mit C_n^I .

Im folgenden Satz nachm Leerzeichen einfügen dieselben zwischen nxn und Matrix wieder wegmachen, das gehört nämlich zusammen

Wir erinnern uns, dass eine $n \times n$ -Matrix zyklisch genannt wird, falls jede Spalte aus der vorherigen durch Anwendung der Permutation (1...n) hervorgeht.

Das ist bei den Adjazenz- und Laplacematrizen von zirkulären Graphen, aufgrund dessen, wann Knoten benachbart sind, der Fall.

Zu Gute kommt uns das bei der Berechnung der Anzahl von Spannbäumen in zirkulären Graphen, denn die Eigenwerte einer zyklischen Matrix sind wohlbekannt.

Wir wollen in diesem Zusammenhang folgendes zeigen:

Satz 4.6.1 Für die Anzahl der Spannbäume in zusammenhängenden zirkulären Graphen von Grad d gilt:

case distinction

$$k\left(C_{n}^{I}\right) = \frac{1}{n} \prod_{j=1}^{n-1} \left(4 \sum_{i \in I} \sin^{2}\left(\frac{ij\pi}{n}\right)\right), falls \, d \, gerade \, ist \tag{31}$$

$$k\left(C_{n}^{I}\right) = \frac{1}{n} \prod_{j=1}^{n-1} \left(4 \sum_{i \in I} \sin^{2}\left(\frac{ij\pi}{n}\right) - (-1)^{j} + 1\right), falls \, d \, ungerade \, ist \tag{32}$$

Beweis:

Wir beweisen den Satz ähnlich wie [7], berechnen daher die Eigenwerte der Laplacematrix und können dann Kirchhoffs Matrix-Tree-Theorem anwenden.

Für unseren Graphen C_n^I ist die Laplacematrix zirkulär; wir können sie also durch die erste Spalte eindeutig beschreiben. Der erste Eintrag ist |I|, die Einträge (i+1) sind -1 für $i \in I$, die übrigen 0. Des weiteren ist sind die Eigenwerte von zirkulären Matrizen ein bekanntes Resultat aus der linearen Algebra:

$$\lambda_j = \sum_{k=1}^n l_k exp\left(\frac{2\pi i j}{n}\right), \quad j \in \{0, \dots, n-1\}$$
(33)

 l_k ist hier der k-te Eintrag der ersten Spalte.

Der Eigenwert $\lambda_0 = 0$. Da der Graph zusammenhängend ist, sind die übrigen Eigenwerte ungleich 0 und mit Kirchhoffs Matrix-Tree-Theorem folgt:

$$k(C_n^I) = \prod_{j=1}^{n-1} \lambda_j \tag{34}$$

An dieser Stelle machen wir die Fallunterscheidung, ob der Graph geraden Grad hat, oder nicht.

Fall 1: Grad gerade Fall 2: Grad ungerade

Beweis fertig schreiben

Bild von einem Square of a cycle

Herleitung Formel

4.7 Kartesische Produkte von Graphen

In diesem Teil zeigen wir, was im Bezug auf die Anzahl der Spannbäume geschieht, wenn man das kartesische Produkt von Graphen bildet.

Das kartesische Produkt $G_1 \times G_2$ zweier Graphen $G_1 = (V_1, E_1)$ und $G_2 = (V_2, E_2)$ bezeichnet dabei den Graphen mit Knotenmenge $V_1 \times V_2$ und Kantenmenge $(E_1 \times V_2) \cup (V_1 \times E_2)$, wobei zwei Knoten $(u_1, u_2), (v_1, v_2) \in (V_1 \times V_2)$ genau dann in $G_1 \times G_2$ benachbart sind, wenn entweder $u_1 = v_1$ in G_1 oder $u_2 = v_2$ in G_2 ist.

Ich werde wahrscheinlich ein/zwei Beispiele davon zeigen, z.B. Lattice-Graph, aber nicht mehr, weil das im Grund genommen einfach nur Rechnungen sind und das Matrix-Tree-Theorem nicht mehr als solches angewendet wird, sondern nur über den Satz unten(passt das?)—Antwort:JA->warmup-kapitel

Vielleicht ist es sinnvoll ein weiteres Kapitel mit einfachen Graphen wie Kreis-Graphen, Pfad-Graphen, etc. zu machen, dann könnte man sich in diesem Kapitel fast alle Rechnungen ersparen und nur ein/zwei Beispiele geben, was man daraus "basteln" kann (Gute Idee?)—Antwort:JA

Satz 4.7.1 Sei G ein Graph mit m Knoten und Eigenwerten $\mu_1(G),...,\mu_m(G)$ und H ein Graph mit n Knoten und Eigenwerten $\mu_1(H),...,\mu_n(H)$.

Dann hat der Graph $G \times H$ genau

$$\frac{1}{nm} \prod_{i,j} (\mu_i(G) + \mu_j(H)) 1_{\{\mu_i(G) + \mu_j(H) \neq 0\}}$$
(35)

Spannbäume.

Beweis:

Für diesen Beweis werden wir die Gestalt der Laplacematrix von $G \times H$ ausnutzen und dann mithilfe der linearen Algebra Aussagen über die Eigenwerte treffen.

Wir beobachten, dass die Laplacematrix von $G \times H$ die Kroneckersumme der Laplacematrizen von G und H ist.

Aus der linearen Algebra wissen wir nun, dass die Eigenwerte der Kroneckersumme $L(G) \oplus L(H)$ genau $\mu_i(G) + \mu_j(H)$ mit $i \in \{1,...,m\}, j \in \{1,...,n\}$ sind.

Mit Kirchhoffs Matrix-Tree-Theorem folgt nun

$$k(G \times H) = \frac{1}{nm} \prod_{i,j} (\mu_i(G) + \mu_j(H)) \mathbb{1}_{\{\mu_i(G) + \mu_j(H) \neq 0\}}$$
(36)

Damit ist unser Satz bewiesen.

Beweis ganz sauber fertigmachen, evtl. Quelle in der man was über ide Kroneckersumme nachlesen kann

Als erstes, sehr anschauliches Beispiel betrachten wir Zylinder-Graphen $C_{m,n}$; diese sind das kartesische Produkt eines Pfad-Graphen P_m mit einem Kreisgraphen C_n . In der Abbildung 3 sehen wir den Zylinder-Graphen $C_{3,8}$.

Abb. 3: C_{3,8}

Beispiel 4.7.2 (Zylinder-Graph) *Blablablablabla Blablablablabla*

Unser zweites Beispiel sind kartesische Produkte zweier Kreis-Graphen C_m , C_n ; Man nennt diese dann auch Torus-Graphen, kurz $T_{m,n}$. Hier sehen wir so einen Graphen:

Abb. 4: *T*_{3,6}

Beispiel 4.7.3 (Torus-Graph) kreis und Kreis

Lattice Graph ist wieder Mehrdeutig, Gittergraph hier falsch

Abb. 5: * Rooks-Graph $K_8 \times K_8$

Quelle: https://commons.wikimedia.org/wiki/File:Rook\%27s_graph.svg

Beispiel 4.7.4 (kartesisches Produkt von vollständigen Graphen)

Wir berechnen zunächst die Eigenwerte der Laplacematrix von vollständigen Graphen:

$$\begin{pmatrix} n-1 & -1 & \dots & \dots & -1 \\ -1 & n-1 & -1 & \dots & \dots & -1 \\ -1 & -1 & n-1 & -1 & \dots & -1 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & \dots & \dots & \dots & -1 & n-1-\lambda \end{pmatrix}$$
(37)

Wir beobachten, dass das eine zirkuläre Matrix ist. Für die Eigenwerte einer solchen Matrix gilt: Siehe cG.tex....

Beispiel Rechnungen fertigmachen!

References

- [1] TL Austin. The enumeration of point labelled chromatic graphs and trees. *Canadian Journal of Mathematics*, 12:535–545, 1960.
- [2] Jørgen Bang-Jensen and Gregory Z. Gutin. Digraphs. Springer Monographs in Mathematics, 2009.
- [3] Zbigniew Bogdanowicz. Formulas for the number of spanning trees in a fan. *Applied Mathematical Sciences (Ruse)*, pages 781 786, 01 2008.
- [4] Dietlinde Lau. Algebra und Diskrete Mathematik. Vol. 2, Lineare Optimierung, Graphen und Algorithmen, Algebraische Strukturen und Allgemeine Algebra mit Anwendungen. Springer, 2004.
- [5] Carl D. Meyer. *Matrix analysis and applied linear algebra*. SIAM, Society for Industrial and Applied Mathematics, 2005.
- [6] J Sedlacek. On the skeletons of a graph or digraph. *Proc. Calgary International Conference on Combinatorial Structures and their Applications, Gordon and Breach*, pages 387–391, 1970.
- [7] J. F. Wang and C. S. Yang. On the number of spanning trees of circulant graphs. *International Journal of Computer Mathematics*, 16(4):229–241, 1984.

Selbständigkeitserklärung

Ich versichere hiermit, die vorliegende Arbeit mit dem Titel
Das Matrix-Tree-Theorem
selbständig verfasst zu haben und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet zu haben.
Christopher Mann
München, den