Coresets for *k*-center Clustering

TOP: Data Clustering 076/091

Instructor: Sayan Bandyapadhyay
Portland State University

Outline

- 1 Introduction
- 2 Coresets for *k*-center
- 3 Coreset Construction
- 4 Analysis of the Algorithm
- 5 Distributed *k*-center
- 6 Streaming *k*-center

Summary of the dataset

Summary of the dataset

■ Subset of the original set

Summary of the dataset

- Subset of the original set
- \blacksquare Has size much smaller than n (often independent of n)

Summary of the dataset

- Subset of the original set
- \blacksquare Has size much smaller than n (often independent of n)
- A subset of points good enough for clustering

Summary of the dataset

- Subset of the original set
- \blacksquare Has size much smaller than n (often independent of n)
- A subset of points good enough for clustering

Advantages

Makes clustering much faster

Summary of the dataset

- Subset of the original set
- \blacksquare Has size much smaller than n (often independent of n)
- A subset of points good enough for clustering

Advantages

- Makes clustering much faster
- Small space complexity: suitable for distributed and streaming setting

Outline

- 1 Introduction
- 2 Coresets for *k*-center
- 3 Coreset Construction
- 4 Analysis of the Algorithm
- 5 Distributed *k*-center
- 6 Streaming *k*-center

Euclidean *k*-center

Given a set X of n points in \mathbb{R}^d

■ Find a set C of K balls (clusters) in \mathbb{R}^d that contains all the points in X and minimizes,

$$cost(C) = \max_{c \in C} radius(c)$$

Euclidean *k*-center

Given a set X of n points in \mathbb{R}^d

■ Find a set C of k balls (clusters) in \mathbb{R}^d that contains all the points in X and minimizes,

$$cost(\mathbf{C}) = \max_{\mathbf{c} \in \mathbf{C}} radius(\mathbf{c})$$

(ϵ -expansion.) An ϵ -expansion of a clustering C is a new set of balls obtained from C by expanding the radii of the balls in C by $\epsilon \cdot cost(C)$

Euclidean *k*-center

Given a set X of n points in \mathbb{R}^d

■ Find a set C of k balls (clusters) in \mathbb{R}^d that contains all the points in X and minimizes,

$$cost(\mathbf{C}) = \max_{\mathbf{c} \in \mathbf{C}} radius(\mathbf{c})$$

(ϵ -expansion.) An ϵ -expansion of a clustering C is a new set of balls obtained from C by expanding the radii of the balls in C by $\epsilon \cdot cost(C)$

(ϵ -coreset.) A subset $S \subseteq X$ is an ϵ -coreset if for any clustering C of S, the ϵ -expansion of C contains X

An Example Coreset

Red points form the coreset

A Clustering of the Coreset

ϵ -expansion of the Clusters

Outline

- 1 Introduction
- 2 Coresets for *k*-center
- 3 Coreset Construction
- 4 Analysis of the Algorithm
- 5 Distributed *k*-center
- 6 Streaming *k*-center

An Algorithm

■ For the time being, assume that we know the optimal clusters/balls *O*

An Algorithm

- For the time being, assume that we know the optimal clusters/balls *O*
- For each ball, cover it by an ∈ OPT/2d length d-dimensional grid

An Algorithm

- For the time being, assume that we know the optimal clusters/balls *O*
- For each ball, cover it by an ∈ OPT/2d length d-dimensional grid
- From each non-empty grid cell, pick one point of X, and add it to coreset S

Overlaying the Grid

Selecting Points

Red points are added to coreset

Outline

- 1 Introduction
- 2 Coresets for *k*-center
- 3 Coreset Construction
- 4 Analysis of the Algorithm
- 5 Distributed *k*-center
- 6 Streaming *k*-center

■ Each OPT radius ball in *O* is contained in a hypercube of length 2 OPT

- Each OPT radius ball in *O* is contained in a hypercube of length 2 OPT
- Overlay an $\epsilon OPT/2d$ length grid on this hypercube

- Each OPT radius ball in *O* is contained in a hypercube of length 2 OPT
- Overlay an $\epsilon OPT/2d$ length grid on this hypercube
- The number of cells $(2OPT)^d/(\epsilon OPT/2d)^d = (4d/\epsilon)^d$

- Each OPT radius ball in *O* is contained in a hypercube of length 2 OPT
- Overlay an $\epsilon OPT/2d$ length grid on this hypercube
- The number of cells $(2OPT)^d/(\epsilon OPT/2d)^d = (4d/\epsilon)^d$
- Total size $k(4d/\epsilon)^d$ for k balls

Why *S* is a Coreset?

 $lue{}$ Consider any clustering C of S

Why *S* is a Coreset?

- Consider any clustering *C* of *S*
- Need to show: the ϵ -expansion of C contains X

Clustering C of S

Might not cover all points of X

An Uncovered Point p

p' must be in the coreset and so covered

How far are p and p'?

$$||p - p'|| \le \sqrt{d}(\epsilon OPT/2d) \le (\epsilon/2)OPT$$

ϵ -expansion of C contains X

Expansion by $(\epsilon/2)OPT \le (\epsilon/2)(1+\epsilon)cost(C) \le \epsilon cost(C)$ is sufficient to cover X

Why *S* is a Coreset?

- Consider any clustering *C* of *S*
- Need to show: the ϵ -expansion of C contains X
- Consider any point *p* of *X* not in the coreset
- \blacksquare Consider the gridcell g that p is in
- p is not in S, so $p' \in g$ is chosen in S
- $||p-p'|| \leq \sqrt{d}(\epsilon OPT/2d) \leq (\epsilon/2)OPT$
- Expansion by $(\epsilon/2)OPT \le (\epsilon/2)(1+\epsilon)cost(C) \le \epsilon cost(C)$ is sufficient to cover X

How to Guess OPT?

How to Guess OPT?

■ Compute a 2-approximation *A* of OPT - Greedy 1/2

How to Guess OPT?

- Compute a 2-approximation *A* of OPT Greedy 1/2
- $cost(A) \in [OPT, 2OPT]$ is a good estimator of OPT

How to Guess OPT?

- Compute a 2-approximation A of OPT Greedy 1/2
- $cost(A) \in [OPT, 2OPT]$ is a good estimator of OPT
- Instead of optimal balls overlay the grid on balls of *A*

How to Guess OPT?

- Compute a 2-approximation A of OPT Greedy 1/2
- $cost(A) \in [OPT, 2OPT]$ is a good estimator of OPT
- Instead of optimal balls overlay the grid on balls of *A*
- Use gridcells of length $\epsilon cost(A)/4d$ instead of $\epsilon OPT/2d$

How to Guess OPT?

- Compute a 2-approximation *A* of OPT Greedy 1/2
- $cost(A) \in [OPT, 2OPT]$ is a good estimator of OPT
- Instead of optimal balls overlay the grid on balls of *A*
- Use gridcells of length $\epsilon cost(A)/4d$ instead of $\epsilon OPT/2d$
- Finer granularity: $\epsilon cost(A)/4d \in [\epsilon OPT/4d, \epsilon OPT/2d]$

Outline

- 1 Introduction
- 2 Coresets for *k*-center
- 3 Coreset Construction
- 4 Analysis of the Algorithm
- 5 Distributed *k*-center
- 6 Streaming *k*-center

 \blacksquare set X of n data points distributed over m machines

- set X of n data points distributed over m machines
- Each machine has limited storage of << *n*

- set X of n data points distributed over m machines
- Each machine has limited storage of << *n*
- Communication between machines is possible

- set X of n data points distributed over m machines
- Each machine has limited storage of << *n*
- Communication between machines is possible
- Machines are synced in rounds

- set X of n data points distributed over m machines
- Each machine has limited storage of << *n*
- Communication between machines is possible
- Machines are synced in rounds
- The goal is to compute a *k*-center clustering of *X* each machine should know the *k* centers

Algorithm Distributed *k*-center

Require: Set of points X_i in machine i for $1 \le i \le m$, $\epsilon > 0$

- 1: Each machine *i* computes an ϵ -coreset C_i of X_i in round 1
- 2: Each machine *i* except 1 sends C_i to machine 1 in round 2
- 3: Machine 1 computes a k-center clustering of $\cup_i C_i$ and sends the k centers to all machines in round 3

Algorithm Distributed *k*-center

Require: Set of points X_i in machine i for $1 \le i \le m$, $\epsilon > 0$

- 1: Each machine *i* computes an ϵ -coreset C_i of X_i in round 1
- 2: Each machine i except 1 sends C_i to machine 1 in round 2
- 3: Machine 1 computes a k-center clustering of $\cup_i C_i$ and sends the k centers to all machines in round 3

Space complexity: $O(mk(d/\epsilon)^d)$

Algorithm Distributed *k*-center

Require: Set of points X_i in machine i for $1 \le i \le m$, $\epsilon > 0$

- 1: Each machine *i* computes an ϵ -coreset C_i of X_i in round 1
- 2: Each machine i except 1 sends C_i to machine 1 in round 2
- 3: Machine 1 computes a k-center clustering of $\cup_i C_i$ and sends the k centers to all machines in round 3

Space complexity: $O(mk(d/\epsilon)^d)$

We show: the union $C = \bigcup_i C_i$ is an ϵ -coreset of X

Algorithm Distributed *k*-center

Require: Set of points X_i in machine i for $1 \le i \le m$, $\epsilon > 0$

- 1: Each machine *i* computes an ϵ -coreset C_i of X_i in round 1
- 2: Each machine i except 1 sends C_i to machine 1 in round 2
- 3: Machine 1 computes a k-center clustering of $\cup_i C_i$ and sends the k centers to all machines in round 3

Space complexity: $O(mk(d/\epsilon)^d)$

We show: the union $C = \bigcup_i C_i$ is an ϵ -coreset of $X \Rightarrow$ we obtain a $2(1 + \epsilon)$ -approximation

Additive Property of Coresets

If C_1 is an ϵ -coreset of X_1 and C_2 is an ϵ -coreset of X_2 , then $C_1 \cup C_2$ is an ϵ -coreset of $X_1 \cup X_2$.

Additive Property of Coresets

If C_1 is an ϵ -coreset of X_1 and C_2 is an ϵ -coreset of X_2 , then $C_1 \cup C_2$ is an ϵ -coreset of $X_1 \cup X_2$.

- Consider any clustering T of $C_1 \cup C_2$
- Need to show: the ϵ -expansion of T contains $X_1 \cup X_2$

Clustering T of $C_1 \cup C_2$

 C_1 : Red, C_2 : Blue

Focus on C_1

The clusters in T might not cover all points of X_1

ϵ -expansion of T contains X_1

Additive Property of Coresets

If C_1 is an ϵ -coreset of X_1 and C_2 is an ϵ -coreset of X_2 , then $C_1 \cup C_2$ is an ϵ -coreset of $X_1 \cup X_2$.

- Consider any clustering T of $C_1 \cup C_2$
- Need to show: the ϵ -expansion of T contains $X_1 \cup X_2$
- \bullet ϵ -expansion of T contains X_1

Additive Property of Coresets

If C_1 is an ϵ -coreset of X_1 and C_2 is an ϵ -coreset of X_2 , then $C_1 \cup C_2$ is an ϵ -coreset of $X_1 \cup X_2$.

- Consider any clustering T of $C_1 \cup C_2$
- Need to show: the ϵ -expansion of T contains $X_1 \cup X_2$
- \bullet ϵ -expansion of T contains X_1
- Similarly, ϵ -expansion of T contains X_2

Focus on C_2

The clusters in T might not cover all points of X_2

ϵ -expansion of T contains X_2

Algorithm Distributed *k*-center

Require: Set of points X_i in machine i for $1 \le i \le m$, $\epsilon > 0$

- 1: Each machine *i* computes an ϵ -coreset C_i of X_i in round 1
- 2: Each machine i except 1 sends C_i to machine 1 in round 2
- 3: Machine 1 computes a k-center clustering of $\cup_i C_i$ and sends the k centers to all machines in round 3

Space complexity: $O(mk(d/\epsilon)^d)$

We show: the union $C = \bigcup_i C_i$ is an ϵ -coreset of $X \Rightarrow$ we obtain a $2(1 + \epsilon)$ -approximation Proved!

Outline

- 1 Introduction
- 2 Coresets for *k*-center
- 3 Coreset Construction
- 4 Analysis of the Algorithm
- 5 Distributed *k*-center
- 6 Streaming *k*-center

■ *n* data points arrive one at a time

- n data points arrive one at a time
- The goal is to compute *k* centers of an approximate clustering at the end

- n data points arrive one at a time
- The goal is to compute *k* centers of an approximate clustering at the end
- We have only sub-linear space

- n data points arrive one at a time
- The goal is to compute *k* centers of an approximate clustering at the end
- We have only sub-linear space

- n data points arrive one at a time
- The goal is to compute *k* centers of an approximate clustering at the end
- We have only sub-linear space

We will maintain an ϵ -coreset of the arrived points at each step

The Algorithm

Algorithm Streaming *k*-center

```
Require: Data stream X of n points, an integer s (bucket size)
 1· i ← 1
 2: repeat
        Add arriving data point p to X_i
 3.
        if |X_i| == s then
 4:
            Compute an \epsilon-coreset C_i of X_i
 5.
 6:
            Remove X_i
            i \leftarrow i + 1
 7.
        end if
 9: until there are no points left
10: return \bigcup_i C_i
```


Algorithm Streaming *k*-center

```
Require: Data stream X of n points, an integer s (bucket size)
 1: i ← 1
 2: repeat
        Add arriving data point p to X_i
 3:
        if |X_i| == s then
 4:
            Compute an \epsilon-coreset C_i of X_i
 5.
            Remove X_i
 6:
 7.
            i \leftarrow i + 1
        end if
 9: until there are no points left
10: return ∪_i C_i
```

Algorithm Streaming *k*-center

```
Require: Data stream X of n points, an integer s (bucket size)

1: i \leftarrow 1

2: repeat

3: Add arriving data point p to X_i

4: if |X_i| == s then

5: Compute an \epsilon-coreset C_i of X_i

6: Remove X_i

7: i \leftarrow i + 1

8: end if

9: until there are no points left

10: return \bigcup_i C_i
```

 $\cup_i C_i$ is an ϵ -coreset of X due to the additive property

Algorithm Streaming *k*-center

```
Require: Data stream X of n points, an integer s (bucket size)

1: i \leftarrow 1

2: repeat

3: Add arriving data point p to X_i

4: if |X_i| == s then

5: Compute an \epsilon-coreset C_i of X_i

6: Remove X_i

7: i \leftarrow i + 1

8: end if

9: until there are no points left

10: return \bigcup_i C_i
```

 $\cup_i C_i$ is an ϵ -coreset of X due to the additive property

Space complexity: $O(s + \frac{n}{s} \cdot k(d/\epsilon)^d)$

Algorithm Streaming *k*-center

```
Require: Data stream X of n points, an integer s (bucket size)

1: i \leftarrow 1

2: repeat

3: Add arriving data point p to X_i

4: if |X_i| == s then

5: Compute an \epsilon-coreset C_i of X_i

6: Remove X_i

7: i \leftarrow i + 1

8: end if

9: until there are no points left

10: return \bigcup_i C_i
```

 $\cup_i C_i$ is an ϵ -coreset of X due to the additive property

Space complexity:
$$O(s + \frac{n}{s} \cdot k(d/\epsilon)^d) = O(\sqrt{nk(d/\epsilon)^d})$$
 setting $s = \sqrt{nk(d/\epsilon)^d}$