Charles

Betting and Formula 1

Rishyak Panchal and Juan Castano

STARTING GRID **ZND** RUSSELL ASTON MARTIN **ALONSO** 4TH **STROLL 6TH** HT8 **ALBON** HULKENBERG 10TH 12TH **TSUNODA** 14TH **MAGNUSSEN** 16TH **PIASTRI SARGEANT** 18TH **20TH** PEREZ

Predicting results of F1 races

Dataset

Data obtained from Kaggle Formula 1 World Championship (1950-2023)

Data size

dataset had 23,699 rows we potentially could use

Data chosen

We selected only data after 2014(3,707 rows)

Training data

Training data was 80% (2,965 rows)

Testing data

Testing data was 20% (742 rows)

Two models

Multiclass and Binary

Features

Grid Position
The starting position of a driver for a race

O2priver Standing
Driver's position in the championship, indicative of success

O3constructor Standing
Constructor's position in the championship, indicative of success

O4Driver Wins

Total number of wins for the driver, indicative of experience

Constructor Wins

Total number of wins for the constructor, indicative of experience

Features

Of Driver Points Points won by a driver during a championship, indicative of success

- Constructor Points

 Points won by a constructor during a championship, indicative of success
- OSCIRCUIT Latitude

 North-South position of a circuit, affects weather and temperatures
- OSCIRCUIT Longitude

 East-West position of a circuit, affects sunlight, times, and tyre behaviour
- Circuit Altitude
 Circuit height, affects oxygen density, aerodynamics, cooling, combustion

Logistic Regression

Logistic Regression (Binary)

	Binary Model							
	Lambda=0					da=0.1	Lambda=1	
Degree	Test accuracy	Training accuracy	Test accuracy	Training accuracy	Test accuracy	Training accuracy	Test accuracy	Training accuracy
1	91.51%	92.38%	91.51%	92.38%	91.51%	92.41%	91.64%	92.34%
2	91.51	92.72%	91.51%	92.72%	91.37%	92.75%	91.24%	92.78%
3	90.43%	95.99%	90.43%	95.21%	90.84%	94.50%	91.11%	94.10%
4	87.33%	100%	87.20%	98.92%	88.68%	97.74%	88.54%	96.49%
5	87.33%	100%	87.06%	99.63%	88.01%	98.92%	88.81%	99.77%

Logistic Regression (Binary)

Logistic Regression (Binary)

Logistic Regression (Multi-class)

		Multinomial Model							
	Lamb	Lambda=0		Lambda=0.01		Lambda=0.1		Lambda=1	
Degree	Test accuracy	Training accuracy	Test accuracy	Training accuracy	Test accuracy	Training accuracy	Test accuracy	Training accuracy	
1	88.95%	88.06%	88.95%	88.06%	88.95%	88.06%	88.81%	88.09%	
2	87.60%	89.98%	87.47%	89.98%	87.33%	89.81%	87.06%	90.05%	
3	83.56%	96.96%	85.31%	95.85%	86.25%	94.40%	87.06%	92.75%	
4	84.23%	100.00%	83.02%	99.46%	85.04%	98.55%	86.52%	96.36%	
5	83.69%	100.00%	83.29%	99.90%	84.37%	99.26%	85.44%	98.28%	

Logistic Regression (Multi-class)

Lambda = 0.1

Logistic Regression (Multi-class)

Support Vector Machines

SVM

SVM Polynomial

Polynomial SVM

SVM Polynomial

Cost	0.0	001	0.001		0.01		0.1	
Degree	Test accuracy	Training accuracy						
1	86.39%	84.99%	86.39%	84.99%	87.20%	85.53%	88.41%	86.51%
2	86.39%	84.99%	87.06%	85.50%	88.14%	86.14%	88.54%	86.34%
3	86.79%	85.40%	87.47%	85.94%	88.27%	86.48%	88.68%	87.62%
4	87.20%	85.70%	87.87%	86.14%	88.27%	86.75%	88.01%	88.30%
5	87.47%	85.94%	88.27%	86.68%	87.60%	87.49%	87.20%	89.34%
6	88.27%	86.61%	88.14%	87.32%	87.20%	88.36%	87.06%	89.78%
7	87.87%	87.22%	87.60%	87.82%	86.79%	89.14%	86.79%	90.62%
8	87.47%	87.55%	87.06%	88.26%	86.93%	89.51%	86.79%	90.93%
9	86.39%	88.13%	86.66%	88.84%	86.66%	90.32%	87.20%	91.57%
10	86.25%	88.47%	86.93%	89.54%	86.66%	90.59%	87.33%	91.80%
Cost	1		10		100		1,000	
Degree	Test accuracy	Training accuracy						
1	88.95%	87.28%	88.81%	88.09%	88.81%	88.33%	89.08%	88.26%
2	88.68%	87.25%	89.35%	88.33%	89.08%	88.80%	89.22%	88.97%
3	88.27%	89.61%	88.14%	90.86%	87.33%	92.68%	86.12%	94.44%
4	87.74%	89.98%	87.20%	91.74%	87.06%	94.33%	85.18%	96.73%
5	87.20%	91.13%	86.12%	93.42%	86.12%	95.28%	85.18%	97.34%
6	86.93%	91.74%	85.98%	93.96%	86.39%	95.89%	84.91%	97.74%
7	87.06%	92.82%	86.25%	94.47%	86.66%	96.12%	86.25%	97.84%
8	86.52%	93.12%	87.06%	94.64%	86.79%	96.19%	85.98%	97.71%
9	86.39%	93.56%	87.47%	94.74%	86.12%	96.19%	86.52%	97.47%
10	86.12%	93.59%	87.47%	94.74%	86.12%	96.05%	85.58%	97.37%

SVM Polynomial

SVM Polynomial

Polynomial SVM with cost 100.0

SVM RBF

Gamma	Best Cost	Test accuracy	Training accuracy
0.000001	1000	88.14%	86.07%
0.00001	1000	88.54%	86.81%
0.0001	1000	89.08%	87.35%
0.001	1000	89.22%	88.13%
0.01	100	88.81%	88.74%
0.1	0.1	88.54%	86.37%
1.000	1	87.33%	92.28%
10.00	1	86.39%	98.75%
100.0	1	86.39%	10000.00%

SVM RBF

RBF with \upgamma 0.001

we apologise for the x-axis

SVM RBF

Neural Network (Binary)

Neural Network (Binary)

Binary Neural Network Accuracies							
Hidden Layer 1	Hidden Layer 2	Output Layer	Accuracy				
ReLU	ReLU	ReLU	90.30%				
Delli	Delli	Cierre	00.200/				
ReLU	ReLU	Sigmoid	90.30%				
Sigmoid	Sigmoid	Sigmoid	91.11%				
tanh	tanh	Sigmoid	90.97%				
ELU	ELU	Sigmoid	91.24%				
SELU	SELU	Sigmoid	90.97%				

Neural Network (Multi-class)

Neural Network (Multi-class)

Multinomial Neural Network Accuracies							
Hidden Layer 1	Hidden Layer 2	Output Layer	Accuracy				
Dalli	Dalli	Dalli	CO 540/				
ReLU	ReLU	ReLU	69.54%				
ReLU	ReLU	Sigmoid	9.84%				
ReLU	ReLU	Softmax	10.38%				
Sigmoid	Sigmoid	Softmax	9.70%				
Softmax	tanh	Softmax	9.97%				

Neural Network (Simplified Multi-class)

91.64% Accuracy yayyyyy!

Conclusion

- Do not use this model for gambling
- Neural networks outperformed logistic regression which outperformed SVMs
- Surprisingly good results when predicting first place
- We need more features to have a better model
- Things like weather and driver experience are untracked

Thank You

Feel free to use our model but we are not responsible for any lost bets

