Ce devoir est constitué de trois problèmes totalement indépendants. Le premier a essentiellement pour objet de fournir un support de révision à la Réduction, les deux autres, plus courts, de passer en revue les raisonnements les plus typiques de l'Algèbre euclidienne.

PROBLEME 1

Notations

Pour p et q entiers avec $p \le q$, [[p,q]] désigne l'ensemble des entiers compris au sens large entre p et q.

E désigne un espace vectoriel de dimension finie $n, n \ge 2$, sur le corps K, K désignant R ou C.

Dans tout le problème, f désigne un endomorphisme de E, $\left(f^{k}\right)$ la suite de ses itérés, Id désigne l'identité de E, et 0 l'endomorphisme nul. Par convention, $f^{0} = Id$.

Si $R = a_0 + a_1 X + ... + a_p X^p$ est un polynôme à coefficients dans \mathbf{K} , on note R(f) l'endomorphisme $a_0 Id + a_1 f + ... + a_p f^p$. On note alors $\mathbf{K}[f]$ l'algèbre engendrée par f, c'est-à-dire que $\mathbf{K}[f]$ est l'ensemble des endomorphismes de la forme R(f) où R parcourt $\mathbf{K}[X]$.

On note P_f le polynôme caractéristique de f: $P_f = \det(XId - f)$. On rappelle le théorème de Cayley-Hamilton : $P_f(f) = 0$.

On définit de même le polynôme caractéristique d'une matrice M de $M_n(\mathbf{K})$ par $P_M = \det(XI_n - M)$, où I_n désigne la matrice unité.

 $GL_n(\mathbf{K})$ désigne le groupe des matrices inversibles de $M_n(\mathbf{K})$.

On dit que f est <u>cyclique</u> s'il existe un vecteur x_0 de E tel que la famille $(x_0, f(x_0), ..., f^{n-1}(x_0))$ soit une base de E. On appelle <u>commutant</u> de f l'ensemble $Com(f) = \{g \in L(E) / f \circ g = g \circ f \}$.

On <u>admettra</u> que Com(f) est une algèbre de dimension au moins n sur K.

L'objectif de ce problème est d'étudier diverses caractérisations des endomorphismes cycliques.

Partie I Matrice Compagnon d'un endomorphisme cyclique

1. Montrer que f est cyclique si et seulement si il existe une base B de E dans laquelle f a une matrice de la forme :

$$C = \begin{bmatrix} 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & -a_1 \\ 0 & 1 & \ddots & \vdots & -a_2 \\ \vdots & \ddots & \ddots & \vdots \\ & & 1 & 0 & -a_{n-2} \\ 0 & & 0 & 1 & -a_{n-1} \end{bmatrix} \quad \text{où} \quad (a_0, a_1, \dots, a_{n-1}) \in \mathbf{K}^n .$$

On dira alors que C est une matrice compagnon de f

- 2. On conserve les notations de la question précédente. Déterminer le polynôme caractéristique P_C de C (on dira aussi que C est la matrice compagnon du polynôme P_C). Si f est un endomorphisme cyclique, f possède-t-il une unique matrice compagnon ?
- 3. Soit λ une valeur propre de C. Déterminer la dimension de l'espace propre associé à λ , et en déterminer une base. En supposant que C est une matrice complexe, donner une condition nécessaire et suffisante pour que C soit diagonalisable.

Partie II

Endomorphismes nilpotents

4. On suppose dans cette question que $f^{n-1} \neq 0$ et $f^n = 0$. Montrer que f est cyclique, et déterminer sa matrice compagnon.

Quelle est la dimension du noyau de f?

5. On suppose maintenant que f est nilpotent, c'est-à-dire qu'il existe un entier p supérieur ou égal à 2 tel que $f^{p-1} \neq 0$ et $f^p = 0$.

On pose, pour $k \in [[0, p]]$ $N_k = \operatorname{Ker} f^k$ et $n_k = \dim N_k$.

On suppose enfin que $n_1 = 1$.

- **a.** Montrer que $\forall k \in [[0, p-1]] N_k \subset N_{k+1}$ et $f(N_{k+1}) \subset N_k$.
- **b.** En considérant l'application : $r: N_{k+1} \to N_k$, montrer que $\forall k \in [[0, p-1]], n_{k+1} \le n_k + 1$. $x \mapsto f(x)$
- **c.** Montrer par récurrence que si $N_k = N_{k+1}$, alors $N_j = N_k \ \forall j \ge k$. En déduire que p = n et déterminer n_k pour tout k de $\lceil [0, n \rceil \rceil$.

Partie III

Une première caractérisation des endomorphismes cycliques

6. Prouver que si f est cyclique, la famille $(Id, f, f^2, ..., f^{n-1})$ est libre dans L(E). Ce résultat sera également utilisé dans la partie **IV**.

On suppose maintenant que la famille $(Id, f, f^2, ..., f^{n-1})$ est libre, et l'on veut prouver que f est cyclique.

7. On suppose dans toute cette question que K = C.

On factorise alors le polynôme caractéristique de f sous la forme $P_f = \prod_{k=1}^p (X - \lambda_k)^{m_k}$ où les λ_k sont les valeurs propres deux à deux distinctes de f.

On définit enfin le sous-espace caractéristique E_k associé à la valeur propre λ_k par $E_k = \text{Ker}((f - \lambda_k Id)^{n_k})$.

- **a.** Montrer que les sous-espaces E_k sont stables par f et que l'on a $E = E_1 \oplus ... \oplus E_p$.
- **b.** Pour $k \in [[1, p]]$, on note φ_k l'endomorphisme :

$$\varphi_k : \begin{cases} E_k \to E_k \\ x \mapsto f(x) - \lambda_k x \end{cases}$$

Déterminer $\varphi_k^{m_k}$. Quelle est la dimension de E_k ?

Montrer que $\varphi_k^{m_k-1}$ n'est pas l'endomorphisme nul.

c. En déduire, en utilisant les résultats de la partie \mathbf{II} , l'existence d'une base B de E dans laquelle f possède une matrice "diagonale par blocs", ces blocs appartenant à $M_{m_k}(\mathbf{C})$ et étant de la forme :

$$\begin{bmatrix} \lambda_k & 0 & \dots & & 0 \\ 1 & \lambda_k & & & & \vdots \\ 0 & 1 & \lambda_k & & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & & 0 & 1 & \lambda_k \end{bmatrix}.$$

2

d. En utilisant la matrice compagnon de f, prouver que f est cyclique.

- 8. On suppose dans toute cette question que K = R.
- **a.** Soient A et B deux matrices réelles, que l'on suppose semblables dans $M_n(\mathbb{C})$: $A = QBQ^{-1}$ avec Q élément de $GL_n(\mathbb{C})$. On écrit $Q = Q_1 + iQ_2$ où Q_1 et Q_2 sont deux matrices réelles.

Prouver l'existence d'un réel α tel que la matrice $Q_1 + \alpha Q_2$ soit inversible.

En déduire que A et B sont semblables dans $M_n(\mathbf{R})$.

b. Prouver que *f* est cyclique. Conclure.

Partie IV

Une caractérisation des endomorphismes cycliques par leur commutant

- **9.** On suppose que f est cyclique et on choisit x_0 dans E tel que $(x_0, f(x_0), ..., f^{n-1}(x_0))$ soit une base de E.
 - **a.** Soit g un élément de Com(f). Prouver l'existence de scalaires α_0 , α_1 , ..., α_{n-1} tels que :

$$g(x_0) = \sum_{k=0}^{n-1} \alpha_k f^k(x_0)$$
.

Prouver alors que $g = \sum_{k=0}^{n-1} \alpha_k f^k$, et donc que g est un élément de $\mathbf{K}[f]$.

- **b.** Montrer que g est un élément de Com(f) si et seulement si il existe un polynôme R de degré inférieur ou égal à n-1 tel que g=R(f).
- **10.** On suppose que $\mathbf{K}[f] = \text{Com}(f)$. Montrer que f est cyclique, et conclure.

Problème adapté de ENTPE 96.

PROBLÈME 2

- $M_{n,p}$ désigne l'epace des matrices <u>réelles</u> à n lignes et p colonnes ;
- à tout élément $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ de $M_{n,1}$ on associe le vecteur $x = (x_1, \dots, x_n)$ de \mathbf{R}^n ;
- si A est un élément de $M_{n,p}$, on désigne par Φ_A l'application linéaire de \mathbf{R}^p dans \mathbf{R}^n de matrice A dans les bases canoniques de \mathbf{R}^p et \mathbf{R}^n ;
 - si $x = (x_1, ..., x_n)$ et $y = (y_1, ..., y_n)$ sont dans \mathbf{R}^n , on pose $(x|y) = {}^t X.Y = \sum_{i=1}^n x_i y_i$ et $||x|| = ||X|| = \sqrt{(x|x)}$;
 - enfin, si A est un élément de $M_{n,p}$, on pose $\|A\| = \|\Phi_A\| = \sup_{x \neq 0} \frac{\|\Phi_A(x)\|}{\|x\|} = \sup_{X \neq 0} \frac{\|AX\|}{\|X\|}$.

L'objet de ce problème est l'étude de quelques questions liées à la résolution approchée d'équations de la forme AX = B, où A est un élément de $M_{n,p}$, B un élément de $M_{n,1}$, et X une inconnue de $M_{p,1}$.

Dans la partie I, A est supposée carrée et inversible. Il existe alors une solution unique. Il s'agit de savoir comment est modifiée cette solution quand B subit une variation ΔB . Dans la partie II, on étudie le cas d'équations ne possédant pas de solution ; on se contente alors de "pseudo-solutions".

Partie I

Dans cette partie, A est une matrice de $M_{n,n}$, supposée inversible.

1. Soit X l'unique solution de l'équation AX = B, où B est une matrice non nulle donnée de $M_{n,1}$. Quand B devient $B + \Delta B$, X devient $X + \Delta X$ tel que $A(X + \Delta X) = B + \Delta B$.

Montrer que

$$\frac{\left\|\Delta X\right\|}{\left\|X\right\|} \le \left\|A\right\| \left\|A^{-1}\right\| \frac{\left\|\Delta B\right\|}{\left\|B\right\|} \quad \text{et que} \quad \mu(A) = \left\|A\right\| \left\|A^{-1}\right\| \ge 1$$

- 2. On pose $A'={}^{t}A.A$.
- **a.** Prouver que les valeurs propres de A' sont réelles, strictement positives, et qu'il existe une matrice orthogonale P, une matrice diagonale D, telles que $D = P^{-1}A'P$.
- **b.** Les valeurs propres de A' étant notées $\left(\lambda_i'\right)_{1\leq i\leq n}$ et supposées rangées dans l'ordre croissant, montrer que pour tout Y de $M_{n,1}$, on a :

$$||AY|| \le \sqrt{\lambda_n'} ||Y||$$
, et qu'il existe Y_0 non nul vérifiant $||AY_0|| = \sqrt{\lambda_n'} ||Y_0||$.

En déduire ||A||.

- c. Montrer que ${}^tA.A$ et $A.{}^tA$ ont le même polynôme caractéristique. En remplaçant A par A^{-1} dans la question précédente, en déduire la valeur de $\mu(A)$ en fonction des valeurs propres de A'.
- **3. a.** On suppose *A* orthogonale. Calculer $\mu(A)$.
 - **b.** On suppose A symétrique. Exprimer $\mu(A)$ en fonction des valeurs propres de A.
 - c. Application numérique :

On donne
$$A = \begin{bmatrix} \sqrt{2} & 1 \\ 0 & \sqrt{2} \end{bmatrix}$$
 et $B = \begin{bmatrix} 2\sqrt{2} \\ 2 \end{bmatrix}$. Calculer $\mu(A)$, et déterminer ΔB (avec par exemple $\|\Delta B\| = 1$) de

telle sorte que $\frac{\|\Delta X\|}{\|X\|} = \mu(A) \frac{\|\Delta B\|}{\|B\|}$ (ce qui prouve que l'inégalité obtenue à la question **1.** ne peut être améliorée dans le cas général).

Partie II

Dans cette partie, A est une matrice de $M_{n,p}$, B un élément de $M_{n,1}$, et on suppose qu'il n'existe aucune matrice X de $M_{p,1}$ telle que AX = B (équation notée (E) dans la suite).

On appelle pseudo-solution de (E) toute matrice X_0 de $M_{p,1}$ telle que

$$||AX_0 - B|| = \inf\{||AX - B||, X \in \mathsf{M}_{p,1}\}$$

(ou encore $\|\Phi_A(x_0) - b\| = d(b, \operatorname{Im}\Phi_A)$ avec $d(b, \operatorname{Im}\Phi_A) = \inf \{\|\Phi_A(x) - b\|, x \in \mathbb{R}^p\}$).

- 1. a. En étudiant la projection orthogonale de b sur $Im\Phi_A$, prouver l'existence de pseudo-solutions pour l'équation (E).
 - **b.** On suppose de plus Φ_A injective. Montrer que (E) admet alors une pseudo-solution unique.
 - c. Montrer que les trois propriétés suivantes sont équivalentes :
 - i. x est pseudo-solution de (E);
 - ii. $\forall y \in \mathbf{R}^p, (\Phi_A(y)|\Phi_A(x)-b)=0$;
 - $iii. {}^{t}AAX = {}^{t}AB$.

2. Application:

Dans le plan affine euclidien muni d'un repère orthonormé (O,i,j), on donne n points $M_k(x_k,y_k)$, $1 \le k \le n$. Soit D la droite d'équation y = ax + b. On définit, pour $1 \le k \le n$, les points $H_k(x_k,ax_k+b)$, et on se propose de déterminer D de façon à ce que $\sum_{k=1}^n \|M_k H_k\|^2$ soit minimum.

Montrer que ce problème revient à la recherche des pseudo-solutions d'une équation AX = B où A, B et X sont trois matrices que l'on explicitera.

À quelle condition sur les points M_k l'application Φ_A est-elle injective ? Déterminer alors la pseudo-solution du système.

3. Généralisation:

Soit C une partie de \mathbf{R}^p , non vide et différente de l'espace tout entier. On suppose que $\Phi_A(C)$ est une partie convexe et fermée de \mathbf{R}^n . On recherche les pseudo-solutions de l'équation $\Phi_A(x) = b$ pour x décrivant C.

a. Montrer l'existence d'une suite (x_k) d'éléments de C telle que :

$$\lim_{k \to 0} \left\| \Phi_A(x_k) - b \right\| = d(b, \Phi_A(C)).$$

- **b.** Prouver que la suite $(\Phi_A(x_k))$ est une suite de Cauchy.
- **c.** En déduire l'existence de pseudo-solutions pour l'équation $\Phi_A(x) = b$ pour x décrivant C.