Maths Exercices 29 11 2023

28 Novembre, 2023

Lucas Duchet-Annez

Exercice 18

1.
$$S(n) = a\frac{q^n - 1}{q - 1} = 1\frac{5^n - 1}{1 - 5} = \frac{5^n - 1}{4}$$

2. D'après la question précédente

$$5^n = 4S + 1$$

donc

$$5^n + 15 = 4S + 16 = 4(S + 4)$$

Or $S + 4 \in \mathbb{Z}$ donc $5^n + 15$ est bien un multiple de 4

Exercice 4

- 1. PGCD(a,b) = PGCD(r,b) On sait que $1078 = 3 \times 322 + 112$ et que $322 = 2 \times 112 + 98$ et 112 = 98 + 14 et $98 = 14 \times 7 + 0$ donc PGCD(1078, 322) = PGCD(14, 0) = 14
- 2. PGCD(a,b) = PGCD(a-b,b) On sait que 544 268 = 276, 276 268 = 8, 268 8 = 260, 260 8 = 252,252 8 = 244,244 8 = 236,236 8 = 228, ...

a	b	a-b
544	268	276
276	268	8
268	8	260
260	8	252
252	8	244
244	8	236
236	8	228
228	8	220
220	8	212
212	8	204
204	8	196
196	8	188
188	8	180
180	8	172
172	8	164
164	8	156
156	8	148
148	8	140

140	8	132
132	8	124
124	8	116
116	8	108
108	8	100
100	8	92
92	8	84
84	8	76
76	8	68
68	8	60
60	8	52
52	8	44
44	8	36
36	8	28
28	8	20
20	8	12
12	8	4
8	4	4

3. On sait que 1024 peut s'écrire comme 1×1024 2×512 4×256 8×128 16×64 32×32

et 652 peut s'écrire comme $1 \times 652 \times 326 \times 163$

Donc le PGCD(652, 1024) = 4

4.
$$PGCD(a, b) = PGCD(r, b)$$
 1248 = 1 × 640 + 608 640 = 1 × 608 + 32 608 = 32 × 19 + 0

Donc PGCD(1248, 640) = PGCD(32, 0) = 32

Exercice 13

On note s le nombre de sachets, c dragées au chocolat, a dragées aux amandes dans chaque sachet. On a alors 760 = cs et 1045 = as soit s un diviseur de 760 et 1045 car c et a sont des entiers. On cherche le nombre maximal de sachets s donc on cherche le PGCD(760, 1045)

En utilisant l'algorithme d'Euclide on obtient :

$$1045 = 1 \times 760 + 285$$

$$760 = 285 \times 2 + 190$$

$$285 = 190 \times 1 + 95$$

$$190 = 95 \times 2 + 0$$

$$\Rightarrow PGCD(760, 1045) = PGCD(95, 0) = 95$$

Parconséquent on peut faire au maximum 95 sachets dans lequel il y aura $\frac{1045}{95} = 11$ dragées aux amandes par sachet et $\frac{760}{95} = 8$ dragées au chocolat par sachet