Assignment 7 Structured Products

1. Case Study: Structured bond

On the 16 Sep 2011, the Bank XX issues a structured bond, whose hedging termsheet is described in the annex. Determine the upfront X% in the Structured bond issue, in a single-curve interest rate modeling setting, and neglecting the counterparty risk. Market parameters for Depo & Swap Rates, Cap Volatilities and payment dates can be found in the SpreadSheet CapData.xls.

2. Exercise: Pricing

Compute call prices C according to a NIG model with parameters $\sigma = 25\%$; $\kappa = 1$; $\eta = 5$; t=1; for moneyness x between -20% and 20% (in a grid with 1% steps). F_0 , discount and ttm are the values in the Assignment 6. Compute prices according to the following methods:

- a. FFT;
- b. Quadrature;
- c. MonteCarlo.
- d. Facultative: Consider a VG model with same parameters (same values for a different model). Compute C with FFT. Comment the results: Do you observe significant differences with NIG results?

3. Case study: Volatility surface calibration

Calibrate NIG model parameters considering EUROSTOXX 50 volatility surface via a global calibration with constant weights. F_0 , discount and ttm are the values in the Assignment 6. Plot implied volatility obtained with the model and compare it with market's one.

Exercise 9.1, Annex:

Indicative Terms and Conditions as of 16 September 2011

Swap Termsheet

Principal Amount (N): 50 MIO EUR

Party A: Bank XX

Party B: I.B.

Trade date: today

Start Date: 20 Sep 2011

Maturity Date (t): 6 years after the Start Date, subject to the Following Business Day

Convention.

Party A pays: Euribor 6m + 1.10%

Party A payment dates: Semiannually, subject to Modified Business Convention

Daycount: Act/360

Party B pays @ Start Date: X% of the Principal Amount

Party B pays @ Maturity Date: Coupon

Party B payment dates: Semiannually, subject to Modified Business Convention

First Semester Coupon: 3%

Next Semester Coupons: [Up to (and including) the third year] Euribor 6m+ 1.10% capped at 4.20%

[After the third year] Euribor 6m+ 1.10% capped at 4.60%

Function signatures:

 $caplet Volatilities = Caplet From Cap Volatilities (cap Volatility Data, \ discount Curve) \ with$

capVolatilityData, struct containing:	maturities:	vector of cap maturities
Containing.	strikes:	vector of fixed strikes
	atm:	vector with the cap volatilities for the ATM strike
	surface:	matrix (length(strikes) x length(maturities)) with the cap volatilities
	payment_dates:	vector with the payment dates of the underlying caplets (except for first element which is the fixing date of the first caplet)
discountCurve, struct containing:	dates:	vector with dates associated to discount factors. The first date is the settlement date.
	discounts:	vector of discounts. The first one is 1.
capletVolatilities:		Matrix (length(strikes) x length(payment_dates) - 1) with caplet volatilitites

upfront = certificatePricing(certificate, discountCurve, capletVolatilityData) with

certificate, struct containing:	setDate:	settlement date (and certificate start date)
	maturity:	Maturity
	fixingEUR6M:	Fixing EURIBOR 6M at settlement date, i.e. 1.736%
	spol:	spread over Libor
	flagYearfrac:	flag for yearfrac conv. (floating leg): 2 for Act/360
discountCurve, struct containing:	dates:	vector with dates associated to discount factors. The first date is the settlement date.
	discounts:	vector of discounts. The first one is 1.
capletVolatilityData:	strikes:	vector of fixed strikes
	fixings:	vector of fixing dates associated to the caplets
	surface:	matrix (identical to capletVolatilities from previous exercise)

prices = CallPricesNIGFFT(forward, discount, moneyness, timeToMaturity, sigma, k, eta, numericalMethodParameters)

prices = CallPricesNIGQuadrature(forward, discount, moneyness, timeToMaturity, sigma, k, eta, numericalMethodParameters)

moneyness:	moneyness of interest as a vector
numericalMethodParameters:	parameters of the numerical method as a struct, e.g. x1, xN, dx, z1, zN, dz, M for fft x1, xN for quadrature

prices = CallPricesNIGMC(forward, discount, moneyness, timeToMaturity, sigma, k, eta, numberOfSamples)

[sigma, k, eta] = CalibrateNIGToVolatilitySurface(volatilityData, discountCurve) with

volatilityData, struct provided		input data set
as cSelect in		
'eurostoxx_Poli.mat':		
discountCurve, struct	dates:	vector with dates associated to discount factors.
containing:		The first date is the settlement date.
	discounts:	vector of discounts. The first one is 1.

Notes:

1. all dates are to be considered numeric.