www.nucleuseducation.in

NURTURE

IIT CHEMISTRY

ORGANIC CHEMISTRY

ACID & BASES

EXERCISE # I

- Write correct order of acidic strength of following compounds: 1.
- (a) NO₂-CH₂-C-O-H (i)

(ii)

- (iii)

- (iv) (a) CH₃-CH₂-O-H

(b) CH_3 –CH–O–HĊH₃

- CH₃ (c) CH₃–C–O–H ĊH₃
- (v)
- COOH

- (vi) COOH

- (vii) (a) H-F
- (b) H-Cl
- (c) H-Br
- (d) H-I

- (viii) (a) CH₄
- (b) NH₃
- (c) H_2O
- (d) H–F

(a) F-CH₂-CH₂-O-H (ix)

(c) Br-CH₂-CH₂-O-H

(b) NO₂-CH₂-CH₂-O-H

(d) $NH_3 - CH_2 - CH_2 - O - H$

- (x) (a) CH₃COOH
- (b) CH₃CH₂OH
- (c) C_6H_5OH
- (d) $C_6H_5SO_3H$

Among the following pairs, which compound is stronger acid?

- 3. Which of the following would you predict to be the stronger acid?
 - (a) Benzoic acid or para-nitrobenzoic acid
 - (b) CH₃-CH₂-CH₂-OH or CH₃-CH=CH-OH
 - (c) CH₃-CH=CH-CH₂-OH or CH₃-CH=CH-OH
- 4. Arrange the given phenol & its derivative in their decreasing order of acidity:
 - (I) C_6H_5 -OH
- (II) F
- OH (III) Cl-

Select the correct answer from the given code:

- (A) IV > III > I > II (B) IV > II > III > I

- (C) IV > III > II > I (D) IV > I > III > II
- 5. Which one of the following is the most acidic?

- (C)
- (D) $CH_2=CH-CH_3$

Which of the following is weakest acid? 6.

- 7. Arrange pH of the given compounds in decreasing order:
 - (1) Phenol
- (2) Ethyl alcohol
- (3) Formic acid
- (4) Benzoic acid

- (A) 1 > 2 > 3 > 4
- (B) 2 > 1 > 4 > 3
- (C) 3 > 2 > 4 > I
- (D) 4 > 3 > 1 > 2
- 8. Arrange acidity of given compounds in decreasing order:
 - (I) CH₃-NH-CH₂-CH₂-OH
- (II) CH_3 -NH- CH_2 - CH_2 - CH_2 -OH
- (III) $(CH_3)_3$ $N-CH_2-CH_3-OH$
- (A) III > I > II
- (B) III > II > I
- (C) I > II > III
- (D) II > I > III

(D) I and II

9. Which of the following compounds on reaction with NaHCO₃ gives CO₂ gas?

- **10.** Which pk_a belong to the given functional group in case of following amino acids :
 - (i) cysteine : HS $\begin{array}{c} \text{COOH} \\ \text{NH}_3^{\oplus} \end{array}$ 1.8, 8.3 & 10.8 (ii) glutamic acid : HO₂C $\begin{array}{c} \text{COOH} : 2.19, 4.25, 9.67} \\ \text{NH}_3^{\oplus} \end{array}$
- 11. Arrange the following sets of compounds according to increasing pK_a (= $-\log K_a$)

$$(a) \begin{picture}(60,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0)$$

- (b) 1-butyne, 1-butene, butane
- (c) Propanoic acid, 3-bromopropanoic acid, 2-nitropropanoic acid
- (d) Phenol, o-nitrophenol, o-cresol
- (e) Hexylamine, aniline, methylamine
- **12.** Write correct order of acidic strength of following compounds:

$$(iv) \quad (a) \qquad (b) \qquad (c) \qquad (d) \qquad (d)$$

13. Select the strongest acid in each of the following sets:

ONUCLEUS EDUCATION ENTRE OF EXCELLERGE

(iv) (a)
$$NO_2$$
 (b) NO_2 (c) NO_2 (d) NO_2 NO_2

- **14.** The strongest acid is:
 - (A) HF
- (B) CH₃CO₂H
- (C) $HF + SbF_5$
- (D) H_2S
- **15.** The weakest acid (does not show acidic character) is:
 - (A) $HC \equiv CH$
- (B) $CH_2 = CH_2$
- (C) Me₃CH
- (D) Ph₃CH
- **16.** Select correct order regarding acidic strength of given compounds :
 - (1) o-methylbenzoic acid

(2) m-methylbenzoic acid

(3) p-methylbenzoic acid

(4) benzoic acid

- (A) 1 > 2 > 3 > 4
- (B) 4 > 3 > 2 > 1
- (C) 1 > 4 > 2 > 3
- (D) 3 > 2 > 4 > 1

Paragraph for Question 17 to 18

The most important condition for resonance to occur is that the involved atoms in resonating structure must be coplanar or nearly coplanar for maximum delocalisation. If this condition does not fulfil, involved orbitals cannot be parallel- to each other and as a consequence delocalisation cannot occur. Bulky groups present on adjacent atoms inhibit the planarity of atoms involved in resonance. This phenomenon is known as steric inhibition of resonance. Steric inhibition of resonance has profound effect on

- (1) Physical properties
- (2) Acidity and basicity (3) Reactivity of organic compounds
- **17.** Arrange the following in the increasing order of basicity:

(II)

(IV) NH_2 NO_2

- (A) I > II > III > IV
- (B) IV > III > II > I

CH₃-N-CH₃

- (C) II > I > IV > III
- (D) I > IV > III > II

18. Which of the following is most acidic :

19. How many following compounds are more acidic than water?

20. How many of the following are incorrect order of pK_a .

(A) HF < HCl < HBr < HI

$$(B) \xrightarrow{F} COOH > \xrightarrow{F} F COOH > \xrightarrow{F} F$$

$$OH OH OH OH$$

$$(C) \longrightarrow NO_2 > \bigcirc$$

$$NO_2$$

(D) $\mathrm{HF} < \mathrm{H_2O} < \mathrm{CH} \equiv \mathrm{CH} < \mathrm{NH_3} < \mathrm{CH_2} = \mathrm{CH_2}$

EXERCISE # II

- 1. Write increasing order of basic strength of following compounds/species:
- (i) (a) CH_3^-
- (b) NH_2^-
- (c) OH⁻
- $(d) F^{-}$

- (ii) (a) F⁻
- (b) CГ
- (c) Br⁻
- (d) **Γ**

- (iii) (a) NH₃
- (b) MeNH₂
- (c) Me₂NH
- (d) Me_3N
- (in H₂O)

- (iv) (a) NH₃
- (b) MeNH₂
- (c) Me₂NH
- (d) Me₃N
- (Gas phase)

- (v) (a) R–NH₂
- (b) Ph-NH₂
- (c) R-C-NH₂

- (vi)
- (a) NH

 NH_2

- (b) NH
- $(c) \overbrace{ \begin{matrix} \begin{matrix} \\ \begin{matrix} \\ \end{matrix} \end{matrix} \\ \begin{matrix} \begin{matrix} \\ \end{matrix} \end{matrix} \\ Me}$

(vii) (a)

- (b) NH₂
- $(c) \overbrace{NH}$

- (viii) (a) O₂N
- (b) Ne
- (c) N

- (ix) (a) $\underset{\text{NH}_3}{\bigoplus}$ NH₂
- (b) NH
- (c) CH₃
- **2.** Write increasing order of basic strength of following:
- (i) (a) CH₃–CH₂–NH₂
- (b) CH_3 – CH_2 =NH
- (c) $CH_3-C\equiv N$

- (ii) (a) CH₃-C-NH₂
- (b) CH_3 – CH_2 – NH_2
- (c) CH₃–C–NH₂ || NH
- (d) NH₂-C-NH₂

- (iii) (a)
- (b) N
- (c) NH₂

 NH_2

 $\dot{N}H_2$

(d)

$$(v) \qquad (a) \qquad (b) \qquad NH_2 \qquad NH_2 \qquad NO_2 \qquad (c) \qquad NO_2$$

$$(vi) \qquad (a) \qquad \begin{matrix} NH_2 \\ Me \end{matrix} \qquad (b) \qquad \begin{matrix} NH_2 \\ Me \end{matrix} \qquad Me \end{matrix}$$

$$(viii) \quad (a) \qquad \qquad (b) \qquad (c) \qquad (d) \qquad$$

$$(ix) \quad (a) \qquad \begin{matrix} NH_2 \\ CH_3 \end{matrix} \qquad (b) \qquad \begin{matrix} NH_2 \\ CH_3 \end{matrix} \qquad (c) \qquad (d) \qquad \begin{matrix} NH-CH_3 \\ CH_3 \end{matrix}$$

Select the strongest base in following compound:

(iv) (a)
$$NLi^+$$

4. Arrange the following compound in decreasing order of their basicity.

- (a) $H_2C = CHNa$ (i)
- (b) CH₃CH₂Na
- (c) CH₃CH₂ONa
- (d) $HC \equiv CNa$

$$\text{(ii)} \qquad \text{(a)} \\ \\ \bigcirc \\ \\ \text{NH}_2$$

- (iii) (a) HO
- (b) NH₃
- (c) H_2O
- (d) HSO_4^-

5. Consider the following bases:

- (I) o-nitroaniline
- (II) m-nitroaniline
- (III) p-nitroaniline

The decreasing order of basicity is:

- (A) II > III > I
- (B) II > I > III
- (C) I > II > III
- (D) I > III > II

6. Consider the basicity of the following aromatic amines:

- (I) aniline
- (II) p-nitroaniline
- (III) p-methoxyaniline (IV) p-methylaniline

The correct order of decreasing basicity is:

- (A) III > IV > I > II (B) III > IV > II > I
- (C) I > II > III > IV
- (D) IV > III > II > I

7. Which one of the following is least basic in character?

- **8.** In each of the following pair of compounds, which is more basic?
 - (a) CH₃NH₂ or CF₃NH₂

(b)
$$CH_3CONH_2$$
 or H_2N NH_2

- (c) CH₃CH₂CH₂NH₂ or CH₃CN
- (d) $C_6H_5N(CH_3)_2$ or 2,6-dimethyl-N-N-dimethylaniline
- **9.** Choose the member of each of the following pairs of compounds that is likely to be the weaker base.
 - (a) H_2O or H_3O^+

(b) Cl⁻, SH⁻

(c) F⁻, OH⁻, NH₂⁻, CH₃⁻

(d) HF, H₂O, NH₃

- (e) OH^- , SH^- , SeH^-
- **10.** Which compound in given pair is the weaker base?

(b) CH_2 –CH–CH=CH– CH_2 or CH_2 =CH– CH_2

$$\begin{array}{cccc} \text{COO}^- & & \text{COOH} \\ \text{(c)} & | & \text{or} & | \\ \text{COOH} & & \text{COOH} \\ \end{array}$$

$$(d) \begin{picture}(600,0){\line(1,0){100}} \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100}}$$

- 11. Arrange the basic strength of the following compounds.
 - (a) OH

CH₃COO⁻

 Cl^{-}

(i)

(ii)

(iii)

(b) CH≡C⁻

 $CH_2=CH^-$

CH₃CH₂

(i)

(ii)

(iii)

- (c) CH₂=CHCH₂NH₂
- $CH_3CH_2CH_2NH_2$
- $CH \equiv C CH_2NH_2$

(i)

(ii)

(iii)

NH-C₆H₅
(ii)

- NH₂
- **12.** Arrange the following compounds in order of increasing basicity.
 - (a) CH₃NH₂, CH₃NH₃[⊕], CH₃NH⁻
- (b) CH₃O⁻, CH₃NH⁻, CH₃CH₂⁻
- **13.** Which of the following is most basic :

14. Basicity order of N in following compound is:

$$\begin{array}{c} CH_3 \\ O \\ H_2N-C-CH_2 \\ CH_3 \\ CH_3 \\ \end{array} \begin{array}{c} CH_3 \\ CH_2-NH-C-CH_3 \\ NH \\ a \\ \end{array}$$

- (A) b > d > a > c
- (B) a > b > d > c
- (C) a > b > c > d
- (D) a > c > b > d
- **15.** Which of the following possess highest basic conjugate base?

$$(B) \overbrace{\hspace{1cm}}^{\text{COOH}}_{\text{NO}_2}$$

16. Which of the following compound has least pK_b value :

17. Which of the following order(s) is(are) correct.

(D) $NaNH_2 > NaOH > NaSH$ - Basic Strength

18. Which one of the following option is correct regarding basic strength:

$$(A) \ NH_{2} \ NH_{$$

19. The conjugate base of serotonin (used as tranquilisers) is given as follows:

$$O^- \begin{picture}(200,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0$$

How many basic groups present in given compound?

20. The structure of saccharin is given as follows:

How many following compounds are more basic than saccharin?

- (i) CH₃–C–NH
- (ii) H₂N–C–NI || || || NH
- (iii) CH₃–C–NH || O
- (iv) CN-H

EXERCISE # III

1. In given reaction Gas liberated is/are

- (A) CO₂ & SO₃
- (B) SO₃ & ¹⁴CO₂
- (C) $^{14}CO_2$ only
- (D) SO₂ only
- **2.** Arrange marked atom in decreasing order of acidic strength :

- (A) 1 > 2 > 3
- (B) 3 > 2 > 1
- (C) 2 > 1 > 3
- (D) 2 > 3 > 1

3. Column-I

(A)

(P) React with NaOH

Column-II

(B)

(Q) React with NaHCO₃

(C) \bigvee_{NO_2}

(R) React with NaH

 $(D) \qquad \begin{matrix} OH \\ \hline \\ NO_2 \end{matrix}$

- (S) React with Na
- (T) React with NaNH₂

4. Compounds which can give effervescences with NaHCO₃ are :

5. Statement-1: For the given two compounds-I is more acidic than compounds-II.

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3
 OH
 OH
 OH
 (II)

and

Statement-2 : Due to presence of $-CH_3$ group at ortho positions to $-NO_2$; the plane of $-NO_2$ deviates, w.r.t plane of ring.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.

and

Statement 2 : Lone pair electrons on nitrogen in compound (I) does not participate in resonance.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (C) Statement-1 is True, Statement-2 is False.
- (D) Statement-1 is False, Statement-2 is True.
- 7. Match Column-I with Column-II.

Column-I (Facts)

(A) Guanidine is proton sponge

- Carbanion stability $CCl_3 > CF_3$ (B)
- (C) Alkyne is more acidic than alkene
- Acidity: / < / (D)

Column-II (Reasons)

- 3 equivalent structures of conjugate acid (P)
- Due to s-character of central atoms (Q)
- (R) Due to d-orbital resonance
- Due to formation of aromatic anion (S)
- Stability of conjugate base due to more (T) number of equivalent resonating structure
- 8. Match Column-I with Column-II.

Column-I (Compounds)

- (B)
- (C)
- (D)

Column-II (pK_a)

- (P) 7.15
- 10.14 (Q)
- 9.98 (R)
- 9.38 **(S)**
- pKa is more than phenol (T)

(Comprehension) (Q.9 to Q.11)

Observe the following reaction which are feasible:

Answer the following question:

9. Which of the following is the correct order of acidic strength?

(D) None

10. Which of the following compound does not react with NaHCO₃

11. Identify the feasible reactions

COOH
$$(A) \bigcirc + NaHCO_3 \longrightarrow \bigcirc + H_2O + CO_2$$

$$NH_2 \qquad NHNa$$

$$(B) \bigcirc + NaHCO_3 \longrightarrow \bigcirc + H_2O + CO_2$$

$$OH \qquad ONa$$

$$(C) \bigcirc + NaHCO_3 \longrightarrow \bigcirc + H_2O + CO_2$$

$$(D) \bigcirc + \bigcirc \longrightarrow \bigcirc + \bigcirc \bigcirc + \bigcirc \bigcirc$$

$$NO_2 + \bigcirc \bigcirc$$

12. Identify the non-feasible reaction

(A)
$$CH_3-C \equiv CH + NH_2^- \rightleftharpoons CH_3 - C \equiv \stackrel{:}{C} + NH_3$$

(B)
$$CH_3CH_2$$
 $-OH + NaH \Longrightarrow CH_3CH_2ONa + H_2$

(C)
$$CH_3$$
– $OH + Na \Longrightarrow CH_3ONa + 1/2H_2$

(D)
$$HC \equiv CH + NaOH \Longrightarrow HC \equiv CNa + H_2OH$$

13. Select the number of compounds in which deprotonation gives aromatic anion :

Paragraph for Questions 14 and 15

14. Identify salt 'A'?

15. Identify compound 'C'?

$$(A) \bigcirc OH \qquad (C) \bigcirc OH \qquad (D) \bigcirc COOH$$

- **16.** Which of the following reactions is/are feasible in forward direction.
 - (A) $CH \equiv CH + Na \longrightarrow$
 - (B) Paranitrophenol + Caustic soda →
 - (C) Carbonic Acid + Carbolic acid →
 - (D) Ethyl alcohol + Carbonic acid →

Answer Q.17, Q.18 and Q.19 by appropriately matching the information given in the three columns of the following table.

Column 1, 2 and 3 contain starting materials, reagents and resonating structure of product involving monoion only.

	Column-I	Column-II	Column-II
(I)	Cl	(i) Aq. NaOH	(P) 5
(II)		(ii) AlCl ₃	(Q) 7
(III)	Cl	(iii) NaH	(R) 6
(IV)	OH	(iv) SbCl ₅	(S) 10

- **17.** Which of the following represent CORRECT combination?
 - $(A)\ (III)\ (iv)\ (R)$
- (B) (I) (ii) (P)
- $(C)\,(II)\,(iii)\ (Q)$
- $(D)\,(IV)\,(iii)\,(S)$
- **18.** Which of the following CORRECT combination represent equivalent resonating structures ?
 - (A) (I) (ii) (R)
- $(B)\,(III)\,(iv)\,(Q)$
- (C) (II) (iii) (P)
- (D) (IV) (i) (S)
- **19.** Which of the following represent INCORRECT combination?
 - (A) (I) (iv) (R)
- (B) (III) (ii) (Q)
- (C) (IV) (i) (S)
- (D) (II) (iii) (P)

- **20.** (a) H₃C–SO₃H
- (b) COOH CH₃
- (c) OH CH₃
- (d) OH NO_2

- (e) OHOH
- (f) CH₂-OH
- (g) NO₂
- (h) //

- (i)
- (j) ^OF

In above given compounds if

- (i) Total number of compounds which gives $CO_2(\uparrow)$ on reacting with $NaHCO_3 = A$
- (ii) Total number of compounds which are soluble in aq. NaOH are = B

Then what would be the value of B^A

EXERCISE-IV

1. Which of the following dipolar structure of the amino acid is considered more correct?

CH₂COO⁻

CH₂COOH

(B) H₃NCHCOOH

(C) Both

(D) None

2. Which of the nitrogen of histidine is first protonated?

 $(A) \alpha$

(B) β

(C) p

(D) q

3. Histidine, a heterocyclic amino acid has following structure at pH < 1.82,

At pH > 1.82 it should have which structure?

(A) $\stackrel{+}{\underset{N}{\bigvee}}$ $\stackrel{+}{\underset{N}{\bigvee}}$ $\stackrel{+}{\underset{N}{\bigvee}}$ $\stackrel{+}{\underset{N}{\bigvee}}$ $\stackrel{+}{\underset{N}{\bigvee}}$ $\stackrel{+}{\underset{N}{\bigvee}}$

(B) $\stackrel{\text{HN}}{\underset{\text{N}}{\bigvee}}$ $\stackrel{\text{NH}_3}{\underset{\text{CH}_2\text{CHCOOH}}{\bigvee}}$

(C) HN - NH₂
- CH₂CHCOOH

- (D) $\stackrel{\text{N}}{\swarrow}$ $\stackrel{\text{N}}{\swarrow}$ $\stackrel{\text{N}}{\searrow}$ $\stackrel{\text{N}}{\searrow}$ $\stackrel{\text{N}}{\searrow}$ $\stackrel{\text{CH}_2\text{CHCOOH}}{\searrow}$
- **4.** Alanine forms Zwitter ion which exists as (pKa for two acids is 4.62 and 9.13):
 - (A) CH_3 – $CHCOO^{\Theta}$ in medium of pH = 7 $\oplus NH_3$

 - (C) CH_3 –CH– COO^{Θ} in a medium of pH = 13 NH_2
 - (D) CH_3 - $CHCOO^{\Theta}$ in a medium of pH = 2 $\oplus NH_3$

- In aqueous solution at $\overline{pH} = 7$, glycine is present as :

 - (A) $H_3N^+CH_2COO^-$ (B) $H_3N^+CH_2COOH$ (C) $H_2NCH_2COO^-$
- (D) All of these
- 6. In aqueous solution, the basic character of amino acids is due to:
 - (A) –NH₂ group
- (B) $-NH_3$ group
- (C) –COOH group
- (D) -COO⁻ group

- NH_2
- OOCCHCH₂COO[−] ⇒ product 7.

Product in the above reaction is:

 NH_2 (A) HOOCCHCH2COOH

 NH_2 (B) HOOCCHCH2COO

- NH_3
- (C) OOCCHCH2COO

- (D) Any of the three
 - NH_2
- The principle species present in the solution of lysine H₂N(CH₂)₄CHCOOH at pH 9 is: 8. (Given pk_a are 4.2, 8.1, 9.8)
 - NH₃ (A) H_3 ⁺N(CH₂)₄CHCOOH

 NH_2 (B) $H_3N^+(CH_2)_4C^+HCOO^-$

 NH_3 (C) H₂N(CH₂)₄CHCOO⁻

(D) H₃N(CH₂)₄CHCOO

ŃΗ₃

9. At, pH = 7, following amino acid predominantly exist as:

(Given pk_a are 2.2, 4.3, 8.9)

$$HOOC$$
 \longrightarrow
 NH_3

(A) HOO

(B) [©]OOC

- 10. Which of the following compounds forms anion at pH=7 dominantly?
 - (A) Benzene sulphonic acid
- (B) Carbolic acid

(C) Cinnamic acid

(D) Picric acid

EXERCISE # V (JEE MAIN)

1. Picric acid is – [AIEEE-2002]

COOH COOH OH COOH
$$NO_2$$
 (2) OH (3) NO_2 (4) NO_2 NO_2 NO_2

- 2. Which of the following speices acts both as bronsted acid & base [AIEEE-2002]
 - (1) NH₃
- $(2) HO^{-}$
- (3) HSO_4^{Θ}
- (4) 1 and 3 both
- 3. The correct order of increasing basic nature for the bases NH₃, CH₃NH₂ and (CH₃)₂NH is-

[AIEEE-2003]

- (1) $CH_3NH_2 < NH_3 < (CH_3)_2NH$
- (2) $(CH_3)_2NH_2 < NH_3 < CH_3NH_2$
- (3) $NH_3 < CH_3NH_2 < (CH_3)_2NH$
- (4) $CH_3NH_2 < (CH_3)_2NH < NH$
- **4.** Consider the acidity of the carboxylic acids-

[AIEEE-2004]

(i) PhCOOH

(ii) $o-NO_2C_6H_4COOH$

(iii) p-NO₂C₆H₄COOH

(iv) m-NO₂C₆H₄COOH

which of the following is the correct order of acidity-

- (1) i > ii > iii > iv
- (2) ii > iv > iii > i
- (3) ii > iv > i > iii
- (4) ii > iii > iv > i

5. Which of the following is the strongest base –

[AIEEE-2004]

$$(4) \bigcirc CH_2NH_2$$

6. Among the following acids which has the lowest pk_a value-

[AIEEE-2005]

- (1) CH₃CH₂COOH
- (2) (CH₃)₂ CHCOOH (3) HCOOH
- (4) CH₃COOH
- 7. Amongest the following the most basic compound is-

[AIEEE-2005]

- (1) p-nitro aniline
- (2) Acetanilide
- (3) Aniline
- (4) Benzylamine

8. What is the conjugate base of OH⁻?

[AIEEE-2005]

- $(1) H_2O$
- (3) O_2
- $(3) O^{2-}$
- $(4) O^{-}$
- **9.** Among the following acids which has the lowest pK_a value?

[AIEEE-2005]

- (1) HCOOH
- (2) CH₃COOH
- (3) CH₃CH₂COOH
- (4) (CH₃)₂CH–COOH

10. The correct order of increasing acid strength of the compounds is:

[AIEEE-2006]

- (a) CH₃CO₂H
- (b) MeOCH₂CO₂H
- (c) CF₃CO₂H
- (d) Me CO_2H

- (1) d < a < c < b
- (2) d < a < b < c
- (3) a < d < c < b
- (4) b < d < a < c
- 11. Which one of the following is strongest base in aqueous solution?

[AIEEE-2010]

- (1) Trimehylamine
- (2) Aniline
- (3) Dimethylamine
- (4) Methylamine
- 12. The correct order of increasing basicity of the given conjugated base (R=CH₃) is : [AIEEE-2010]
 - (1) $RCOO < HC = C < NH_2 < R$
- (2) $RCOO < HC = C < R < NH_2$
- $(3) \overline{R} < HC \equiv \overline{C} < RCOO < \overline{NH}_2$
- $(4) RCOO < NH₂ < HC \equiv C < R$
- **13.** The strongest acid amongst the following compounds is ?

[AIEEE-2011]

(1) CH₃CH₂CH(Cl)CO₂H

(2) ClCH₂CH₂CH₂CCOOH

(3) CH₃COOH

- (4) HCOOH
- **14.** The correct order of acid strength of the following compounds:

[AIEEE-2011]

- A. Phenol
- B. p-Cresol
- C. m-Nitrophenol
- D. p-Nitrophenol

- (1) C > B > A > D
- (B) D > C > A > B
- (C) B > D > A > C
- (D) A > B > D > C

15. In the following compounds:

[JEE(Main)-2012]

the order of basicity is as follows:

- (1) IV > III > II > I
- $(2) \ II > III > I > IV$
- $(3)\ I>III>II>IV$
- (4) III > I > II > IV
- **16.** The most basic compound among the following is:

[**JEE**(**Main**)-2012]

- (1) Acetanilide
- (2) Benzylamine
- (3) p-Nitro aniline
- (4) Aniline
- **17.** The order of basicity of amines in gaseous state is :

[JEE(Main)-2013]

(1) $3^{\circ} > 2^{\circ} > NH_3 > 1^{\circ}$

(2) $1^{\circ} > 2^{\circ} > 3^{\circ} > NH_3$

(3) NH₃ > 1° > 2° > 3°

(4) $3^{\circ} > 2^{\circ} > 1^{\circ} > NH_3$

18. Arrange the following compounds in order of decreasing acidity:

[JEE(Main)-2013]

- (1) II > IV > I > III
- (2) I > II > IIII > IV
- (3) III > I > II > IV
- (4) IV > III > I > II

19. The conjugate base of hydrazoic acid is:

[JEE(Main)-2014]

- (1) NH_3^-
- (2) N_3^-
- (3) N_2^-
- (4) N^{-3}
- **20.** Which of the following compounds will not be soluble is sodium bicarbonate?

[JEE(Main)-2014]

(1) Benzene sulphonic acid

(2) Benzoic acid

(3) o-Nitrophenol

- (4) 2, 4, 6-Trinitrophenol
- 21. Considering the basic strength of amines in aqueous solution, which one has the smallest pK_b value? [JEE(Main)-2014]
 - $(1) (CH_3)_3N$
- $(2) C_6 H_5 N H_2$
- $(3) (CH_3)_2NH$
- (4) CH₃NH₂
- 22. Among the following oxoacids, the correct deceasing order of acid strength is: [JEE(Main)-2014]
 - (1) $HClO_4 > HClO_3 > HClO_2 > HOCl$
 - (2) $HClO_2 > HClO_4 > HClO_3 > HOCl$
 - (3) $HOCl > HClO_2 > HClO_3 > HClO_4$
 - (4) $HClO_4 > HOCl > HClO_2 > HClO_3$
- 23. The correct decreasing order for acid strength is

[JEE(Main)-2019]

- (1) NO₂ CH₂ COOH > NCCH₂COOH > FCH₂ COOH > CICH₂ COOH
- (2) FCH₂ COOH > NCCH₂ COOH > NO₂ CHCOOH > CICH₂COOH
- $(3) \ NO_2 \ CH_2 \ COOH > FCH_2 \ COOH > CNCH_2 COOH > CICH_2 COOH$
- (4) CNCH₂ COOH> O₂NCH₂ COOH > FCH₂COOH > CICH₂ COOH

24. Arrange the following amines in the decreasing order of basicity:

[JEE(Main)-2019]

- (1) I > II > III
- (2) III > II > I
- (3) I > III > II
- (4) III > I > II
- **25.** Which amongst the following is the strongest acid?

[JEE(Main)-2019]

- (1) CHI₃
- (2) CHCI₃
- (3) CHB r_3
- (4) CH(CN)₃
- **26.** The increasing basicity order of the following compounds is :

[JEE(Main)-2019]

(A) CH₃CH₂NH₂

(B) CH₃CH₂NH

 CH_3

3) CH₃CH₂NI

(C) $H_3C-N-CH_3$

CH₃ (D) Ph–N–H

(1) (D) < (C) < (B) < (A)

(2)(A) < (B) < (D) < (C)

(3)(A) < (B) < (C) < (D)

- (4)(D) < (C) < (A) < (B)
- 27. The increasing order of the pKa values of the following compounds is: [JEE(Main)-2019]

(1) B < C < D < A

(2) C < B < A < D

(3) D < A < C < B

(4) B < C < A < D

28. In the following compound,

[JEE(Main)-2019]

the favourable site/s for protonation is/are:-

- (1)(a)
- (2) (a) and (d)
- (3) (a) and (e)
- (4) (b), (c) and (d)

29. The correct order for acid strength of compounds

[JEE(Main)-2019]

CH≡CH, CH₃–C≡CH and CH₂=CH₂

is as follows:

- (1) $CH \equiv CH > CH_2 = CH_2 > CH_3 C \equiv CH$
- (2) $HC \equiv CH > CH_3 C \equiv CH > CH_2 = CH_2$
- (3) $CH_3-C \equiv CH > CH_2 = CH_2 > HC \equiv CH$
- (4) $CH_3-C \equiv CH > CH \equiv CH > CH_2 = CH_2$
- 30. The increasing order of the pK_b of the following compound is:

[JEE(Main)-2019]

- (1)(A) < (C) < (D) < (B)
- (3)(B) < (D) < (A) < (C)

(B) H_1C G G

- (2) (C) < (A) < (D) < (B)
- (4)(B) < (D) < (C) < (A)
- 31. In the following compounds, the decreasing order of basic strength will be : [JEE(Main)-2019]
 - (1) $(C_2H_5)_2NH > C_2H_5NH_2 > NH_3$
- (2) $NH_3 > C_2H_5NH_2 > (C_2H_5)_2NH$
- (3) $(C_2H_5)_2NH > NH_3 > C_2H_5NH_2$
- (4) $C_2H_5NH_2 > NH_3 > (C_2H_5)_2NH$

EXERCISE # VI (JEE ADVANCE)

1. In the following compounds [IIT-JEE-1996]

The order of acidity is-

- (A) III > IV > I > II (B) I > IV > III > II(C) II > I > III > IV(D) IV > III > I > II
- Although phenoxide ion has more number of resonating structures than benzonate ion, benzoic 2. acid is a stronger acid than phenol. Why? [IIT-JEE-1997]
- Amongst the following, the most basic compound is: 3.

[IIT-JEE-2000]

 $(A) C_6H_5NH_2$

(B) $p-NO_2-C_6H_4NH_2$

(C) m-NO₂-C₆H₄NH₂

- (D) $C_6H_5CH_2NH_2$
- 4. The correct order of basicities of the following compounds is:

[IIT-JEE-2001]

5. Statement–I: p-Hydroxybenzoic acid has a lower boiling point that o-hydroxybenzoic acid. Because

Statement-II: o-Hydroxybenzoic acid has intramolecular hydrogen bonding. [IIT-JEE-2003]

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I

Acid

- (C) Statement-I is True, Statement-II is False.
- (D) Statement-I is False, Statement-II is True.
- **6.** Match K_a values with suitable acid:

[IIT-JEE-2003]

$$K_a$$
 Acid

 (A) 3.3×10^{-5}
 (P) \bigcirc —COOH

 (B) 4.2×10^{-5}
 (Q) Me— \bigcirc —COOH

 (C) 6.3×10^{-5}
 (R) Cl — \bigcirc —COOH

 (D) 6.4×10^{-5}
 (S) MeO— \bigcirc —COOH

 (E) 30.6×10^{-5}
 (T) O_2N — \bigcirc —COOH

HOOC

(a) Which of the following is more acidic and why?

8.
$$O_2N$$

$$\xrightarrow{2\text{Moles NaNH}_2} A. \text{ The product (A) will be:} \quad [\text{IIT-JEE-2007}]$$

ÓН HOOC $(A) O_2N$ ČΗ

"CH

$$(C) \underset{O^{\Theta}}{O_2N} \qquad CH$$

$$(B) \underset{O_2N}{O_2N} \longrightarrow OH$$

HOOC OH
$$O$$

9. The correct acidity order of the following is:

(B)
$$(IV) > (III) > (I) > (II)$$

(D) (II)
$$>$$
 (III) $>$ (IV) $>$ (I)

10. Amongst the following, the number of compounds soluble in aqueous NaOH is: [IIT-JEE-2010]

11. Among the following compounds, the most acidic is:

[IIT-JEE-2011]

(A) p-nitrophenol

(B) p-hydroxybenzoic acid

(C) o-hydroxybenzoic acid

- (D) p-toluic acid
- **12.** The carboxyl functional group (–COOH) is present in –

[IIT-JEE-2012]

- (A) piric acid
- (B) barbituric acid
- (C) ascorbic acid
- (D) aspirin

13. Identify the binary mixtures(s) that can be separated into the individual compounds, by differential extraction, as shown in the given scheme –
[IIT-JEE-2012]

- (A) C₆H₅OH and C₆H₅COOH
- (B) C₆H₅COOH and C₆H₅CH₂OH

(C) C₆H₅CH₂ and C₆H₅OH

- (D) C₆H₅CH₂ and C₆H₅CH₂COOH
- 14. The compound that does NOT liberate CO₂, on treatment with aqueous sodium bicarbonate solution, is [JEE-ADVANCE-2013]
 - (A) Benzoic acid

(B) Benzenesulphonic acid

(C) Salicylic acid

(D) Cabolic acid (phenol)

Hydrogen boiling plays a central role in the following phenomena

- (A) Ice floats in water
- (B) Higher Lewis basicity of primary amines that tertiary amines in aqueous solution
- (C) Formic acid is more acidic than acetic acid
- (D) Dimerisation of acetic acid in benzene

ÇO₂H

I

16. The correct order of acidity for the following compounds is:

- (A) I > II > III > IV
- (B) III > I > II > IV
- (C) III > IV > II > I
- (D) I > III > IV > II
- **17.** The order of basicity among the following compounds is

[JEE-ADVANCED-2017]

$$H_3C$$
 NH_2
 NH_2
 NH_3N
 NH_2
 NH_3N
 NH_2
 NH_3N
 NH_3N
 NH_4
 NH_5
 NH_5
 NH_5
 NH_5
 NH_5
 NH_7
 NH_7
 NH_7
 NH_8
 NH_8
 NH_9
 $NH_$

- (A) II > I > IV > III (B) IV > I > II > III (C) I > IV > III > II
- (D) IV > II > III > I
- **18.** The correct order of acid strength of the following carboxylic acids is:[JEE-ADVANCED-2019]

 $(A) \ I > II > III > IV \quad (B) \ I > III > II > IV \quad (C) \ II > I > IV > III \quad (D) \ III > II > IV$

5. (B)

ANSWER KEY

EXERCISE # I

- 1. (i) a > b > c > d,
- (ii) a > b > c,
- (iii) c > b > a,
- (iv) a > b > c,

- (v) c > b > a,
- (vi) a > b > c,
- (viii) d > c > b > a,
- (viii) d > c > b > a

- (ix) d > b > a > c
- (x) d > a > c > b
- **2.** (a) 2; (b) 2; (c) 1; (d) 1

- **3.** (a) 2; (b) 2; (c) 2
- **4.** (C)

6. (B)

- **7.** (B)
- **8.** (A)
- **9.** (A)

- 10. (i) cysteine : ${}^{HS}_{8.3}$ ${}^{COOH}_{1.8}$ ${}^{1.8}$
- (ii) glutamic acid : $^{\text{HO}_2\text{C}}_{4.25}$ $^{\text{COOH}}_{2.19}$ $^{\text{NH}_2}_{9.67}$
- **11.** (a) 3 < 2 < 1; (b) 1 < 2 < 3; (c) 3 < 2 < 1; (d) 2 < 1 < 3; (e) 2 < 3 < 1
- 12. (i) d > c > a > b,
- (ii) a > b > c, (iii) c > a > b > d, (iv) d > b > c > a,
- (v) a > b > c,
- (vi) b > a
- (vii) c > a > b
- **13.** (i) b, (ii) a, (iii) b, (iv) b
- **14.** (C)
- **15.** (C)
- **16.** (C)

- **17.** (C)
- **18.** (B)
- **19.** (4)
- **20.** (C)

EXERCISE # II

- 1. (i) a > b > c > d,
- (ii) a > b > c > d,
- (iii) c > b > d > a,
- (iv) a < b < c < d,

- (v) a > b > c,
- (vi) a > b > c,
- (vii) c > a > b,
- (viii) b > c > a,

- (ix) c > d > b > a
- 2. (i) a > b > c,
- (ii) d > c > b > a,
- (iii) b > c > a,
- (iv) d > c > b > a,

- (v) b > a > c,
- (vi) b < a,
- (vii) c > b > a,
- (viii) c < b < a < d

- (ix) a < b < c < d
- **3.** (i) d, (ii) b, (iii) a, (iv) a
- 4. (i) b > a > d > c,
- (ii) b > a > c > d,
- (iii) a > b > c > d

5. (A)

- 6.
- 7.

(A)

(A)

- **8.** (a) i, (b) ii, (c) i, (d) ii
- **9.** (a) 2; (b) 1; (c) 1; (d) 1; (e) 3
- **10.** (a) 2; (b) 1; (c) 2; (d) 2
- **11.** (a) 1 > 2 > 3; (b) 1 < 2 < 3; (c) 3 < 1 < 2; (d) 2 < 1 < 3
- **12.** (a) 2 < 1 < 3; (b) 1 < 2 < 3
- **13.**
- (C) **14.**
- 15.
- (D)
- **16.** (C)

- 17. (A,D) 18.
- (C)
- **19.**
- **(3) 20.**
- (6)

(B)

EXERCISE # III

- 1. (C)
- 2.
- (C)
- $(A) \rightarrow R, S, T; (B) \rightarrow P, R, S, T; (C) \rightarrow P, Q, R, S, T; (D) \rightarrow P, Q, R, S, T$ **3.**
- 4. (i), (ii) (iii) (iv), (v) (ix)
- 5.

6. (A)

- 7. $(A)\rightarrow P; (B)\rightarrow R; (C)\rightarrow Q; (D)\rightarrow S,T$ 8.
- $(A)\rightarrow R$; $(B)\rightarrow S$; $(C)\rightarrow P$; $(D)\rightarrow Q$, T

- 9. (A)
- **10.** (A)
- 11. (A, D)

(D)

12. (D)

- 13. (A, B, C, D)
- (B)
- **15.** (C)
- **16.** (A,B)
- **17.** (D)

- 18. (C)
- **19.** (A)

14.

- 20. (2401)

EXERCISE # IV

(A)

- 1. (A)
- 2. (B)
- **3.**
- 4.
- (A,B,C)
- 5. (A)

- 6. (D)
- 7.
- 8. (B)
- 9. (D)
- **10.** (A,C,D)

EXERCISE # V (JEE-MAIN)

- 1. (3)
- 2.
- (4)
 - **3.**

10.

(C)

- (3)
- 4.
- (4)
- 5.
- (3)
- 7.
- (4) (2)

- 8. (3)
- 9.
- (1)
- (2)
- 11.
- (3)
- **12.**
- (1) **13.**
- (1)

14.

- **15.** 22.
- (3) (1)
- **16.** (2) 23. (1)
- **17.**
- (4) (4)

(1)

- 18.
- (3) **19. 26.**
- (2)

(4)

20.

6.

- (3) 21.
- (3)

- 29.
- (4)
- **30**.

(II is most acidic)

- (3)
- 24. 31.
- 25.
- (4)
- (4)
- 27.
- (3)

(4)

(A, B, D)

- 28. (4)
- **EXERCISE # VI (JEE-ADVANCE)**
- 1. (D)

- 2. 5.
- Benzoate has equivalent resonating structures $A\rightarrow(S); B\rightarrow(Q); C\rightarrow(P); D\rightarrow(R); E\rightarrow(T)$
- **3.** (D)

4. (B)

7.

16.

- 8.
- (D)

(C)

- **6.** 9.
 - (A)
- **10.**

15.

11. (C)

12. (D)

(A)

- **13. 17.**
- (B, D)(B)
- **14. 18.**
- (D) (A)

