

Micromegas vertex tracker for the Clas12 Experiment (or "Cabbages and Kings")

Irakli Mandjavidze on behalf of the Saclay Clas12 group

IRFU, CEA Saclay[‡], 91191 Gif-sur-Yvette, France

†Institut de Recherche sur les lois Fondamentales de l'Univers (Irfu), Centre de Saclay, Commissarat à l'énergie atomique et aux énergies alternatives (CEA)

Overview

Detector

- → Clas12
- → Micromegas tracker
- Read-out electronics
 - → Signal cables
 - → Dream ASIC
 - → Frontend Unit (FEU)
 - → Backend Unit (BEU)
- Current status
 - → Conclusive remarks

Strange classification

Voltaire

Miracle

Dream

Fire

Weed

The Clas12 experiment: Where

saclay

- Thomas Jefferson National Accelerator Facility (JLab)
 - → Newport News, Virginia, USA

Continuous

Electron

Beam

Accelerator

Facility

- Upgrade
 - \rightarrow 6 GeV \rightarrow 12 GeV
 - \rightarrow 2014-2015

The Clas12 experiment: What

Clas upgrade

 \rightarrow Hall B

 \rightarrow 6 GeV \rightarrow 12 GeV

 \rightarrow Luminosity: 10^{35} /cm²s

 \rightarrow 2013-2015

CEBAF

Large

Acceptance

Spectrometer

The Clas12 experiment: Why

Study of structure of nucleons and nuclei

Proton in 1920

- → generalized parton distributions (GPDs): kind of a "3D image" of nucleons
 - Correlation between spatial and impulse distributions

Fixed target experiment

→ Example process: deeply virtual Compton scattering (DVCS)

The Clas12 experiment: How

Central detector:

- → 5T solenoid
- → Central neutron detector
- → Central time-of-flight
- → Micromegas barrel & forward trackers
- → Barrel silicon tracker

Forward detector:

- \rightarrow 6T torus
- → High threshold Cherenkov counters
- → Drift chambers (3 regions)
- → Low threshold Cherenkov counters
- → Forward time-of-flight
- → Preshower calorimeter
- → E.M. calorimeter
- → Inner calorimeter

Micromegas Vertex Tracker

Micromegas Vertex Tracker

Barrel MVT

- → 6 cylindrical layers
 - Alternated X and Y coordinates
 - **2.7** m²
- → Coverage: 145°-35°
- → Precision: ~220µ in X and ~100µ in Y
 - ~19 000 strips

Forward MVT

- \rightarrow 6 disks
 - Alternated X and Y coordinates
 - 1.3 m²
- → Coverage 35°-5°
- → Precision: ~100µ
 - ~6 000 strips

- → 5T Magnetic field
- → Low allowed material budget
- → No space for electronics
- → Minimal dead zones
- → 20 MHz background

Micro Mesh Gaseous Structure

Large gain: sensitivity

Fast signals: high rate

Gaseous: low material

Printed circuit board technology: cheap

Curved self-sustained Micromegas tiles

Cylindrical station formed with 3 tiles

High voltage and gas leakage tests

- Large active area: ~500 mm x ~500 mm
- 200µ thick PCB
- Number of strips: ~800
 - \rightarrow 5 μ copper

Readout electronics: requirements

saclay

- Number of channels: ~25 000
 - → Barrel: 18 curved tiles: ~19 000
 - → Forward 6 disk: ~6 000
- Physics background: 20 MHz
 - → Up to 60 kHz hit rate
- Trigger rate: 20 kHz
 - \rightarrow pipeline: 16 µs
- Timing resolution: ~10 ns
- Charge measurements dynamics: 10-bit
- Large detector capacitances: 100-150 pF
 - → Signal to Noise ~ 40
- Hostile on-detector area
 - → No place for electronics
 - → Limited off-detector area
 - 0.8T residual magnetic field

Readout electronics: off-detector

Micro-coaxial cables

- Extremely compact micro-coaxial cable assemblies
- Round cables
 - → Up to 300 coaxes in a 6-7 mm diameter

- Flat woven cables
 - \rightarrow 32 coaxes in 24 mm x 1 mm
 - → Weight of 20-coax assembly : 8 g/m
 - 2 kg for 96 cables of forward region

- Standard: linear capacitances down to 40 pF/m
 - → Clas12 production: 40 pF/m

Read-out implementation

In numbers

- → ~500 64-channel micro-coaxial assemblies pF
- → ~60 512-channel FEUs
 - 500 Dream chips
- → 60 optical links @ 2.5 Gbit/s
- \rightarrow 1 or 2 BEU(s)

Challenges

- → Large input capacitance100-200 pF
- → Trigger rate 20 kHz
 - Pipeline 16 µs
- → Limited off-detector space
- → Residual magnetic field ~1T

Read-out principles

Real time synchronous & asynchronous system

Readout principles

saclay

- Signals are continuously pre-amplified, shaped, sampled at 20-30 MHz and kept in a circular analog memory
 - → Deep enough to sustain 16 µs trigger latency

- At each trigger 4 6 corresponding samples are readout and digitized
 - → Readout does not disturb sampling

- → Common noise subtraction
- → Zero suppression
- → Measure charge and time

Better immunity to common noise sources

Timing precision better than sampling period

Oscilloscope-like operation

Data volume reduction by a factor of 70

DREAM

Dead-timeless Read-out Electronics ASIC for Micromegas

saclay

Characteristics

- → 64 channels
- → 4 gain ranges: 60 fC, 120 fC, 240 fC, 1 pC
- → 16 programmable peaking times: from 50 ns à 1 µs
- → Sampling rate: 1- 50 MHz
- → 512-cell deep analog memory per channel
 - Trigger pipeline of 16 µs
- → Readout rate: 20 (40) MHz
- → 140-pin 0.4 mm package
 - Small 17 mm x 17 mm footprint

Versatile chip

- → Adapted for different detector types
- → Tailored for detectors with high capacitances

Front-End Unit: FEU

- Mixed digital-analog design under development
 - \rightarrow 233 mm x 200 mm PCB
 - → 8 Dreams: 4 on each side
 - → Analog Device AD9222 8-channel 40 MHz Flash ADC
 - → Xilinx Virtex-6 FPGA
 - → 2.5 Gbit/s optical link with BEU (Back-End Unit): Trigger / DAQ system
 - or Ethernet for test bench activities

Front-End Unit: FEU

- Automatically generated image from electronics CAD
 - \rightarrow 233 mm x 200 mm PCB
 - → 512 channels
 - → Pressurized air cooling

Air cooling pipes

Back-End Unit: BEU

- Single 6U VXS crate
- Trigger Interface
 - → Distribution of system clock & trigger signals
 - Synchronous, <1ns accuracy</p>
 - Over VXS and optical links
- DAQ interface
 - → Event builder and slow control links
 - Over VME and Ethernet
- Adaptation of JLAB developments
 - → Firmware and software

Tests with cosmic rays

- Validate & characterize detectors
 - → R&D and production
 - ~30 detectors to produce
- Validate off-detector electronics
 - → Impact of cable length
- Based on current tests S/N of ~35 is expected

Summary

Challenges

- → Curved large detectors
- → 5T magnetic field
- → High background rate
- → Off-detector frontend electronics 1.5m away
- Pre-production detector prototypes under tests
 - → Cosmic rays
- New read-out ASIC Dream developed and validated
 - → Ongoing series production run
- Pre-series production of micro-coaxial cable assemblies underway
- Frontend boards under prototyping
- Large scale tests of entire system from 2014
- Commissioning and installation in fall 2014

First tracks expected in 2015

Le mot (pathétique) de la fin

For a society to have a chance to progress

→ parents must have the possibility to study cosmic rays

"Cosmic Rays" by Victor F Hess in 1912

Something more to celebrate in 2013

→ youths always and everywhere must have the possibility to read good books

"Treasure Island" by Robert Louis Stevenson

"A Good Book" by Paul Fischer