Convergence Concepts

Feng-Chang Lin

Department of Biostatistics University of North Carolina at Chapel Hill

flin@bios.unc.edu

(C&B §5.5)

Introduction

- For random samples from the normal distribution, we derived the *exact* joint distribution of (\bar{X}, S^2) .
- For other distributions, the exact distribution may be too complicated to be of practical use.
- Instead, approximate distribution may be easier to derive or be computed.
- In this section, we will study the behavior of sample statistics in large samples, or say, $n \to \infty$.
- The term large sample theory or asymptotic theory refers to this approach.

Two Basic Tools

- Law of large numbers (LLN) and central limit theorem (CLT)
- That says, loosely, when sample size is large, the sample mean is close to the population mean (LLN) and the sample mean is approximately normally distributed (CLT).
- We will need Taylor's expansion from calculus, Slutsky's theorem, and delta method
- All these tools rely on the mathematical notion of convergence.

Convergent Non-Random Sequences

- Sequences will be denoted by either a_1, a_2, \cdots or by $\{a_n\}$.
- A sequence $\{a_n\}$ of real numbers is said to *converge* if there is a point *a* with the following property:
- For every $\epsilon > 0$, there is an integer N such that $n \geq N$ implies that $|a_n a| < \epsilon$.
- In this case we say that $\{a_n\}$ converges to a, or that a is the limit of $\{a_n\}$, and we write $\lim_{n\to\infty} a_n = a$, or $a_n \to a$ as $n \to \infty$.
- If $\{a_n\}$ does not converge, it is said to *diverge*.
- The above definitions apply as well to sequences in R^k (finite k), with $|\cdot|$ replaced by Euclidean distance $||\cdot||$.

Convergent Random Sequences

- Does a sequence {X_n} of random variables converge to a limit random variable X?
- Is there a meaningful way to say that " $X_n \to X$ as $n \to \infty$ "?
- Remember $\{X_n\}$ is a "random" sequence, so whether $\{X_n\}$ converges to X or not is a "random" event.
- That means, some sequences converge, others do not.
- Since $\{X_n \to X \text{ as } n \to \infty\}$ is a random event, we can put

$$P(X_n \to X \text{ as } n \to \infty) = 1.$$

- We claim "the sequence of random variables X_1, X_2, \cdots , converges almost surely to a random variable X.
- Written as $P(\lim_{n\to\infty} |X_n X| = 0) = 1$.

Converge Almost Surely

- Recall, a random variable is a real-value function defined on the sample space S.
- One may also write almost sure convergence as

$$P(\{s: \lim_{n\to\infty}|X_n(s)-X(s)|=0\})=1$$

- Notation: $X_n \to_{a.s.} X$ as $n \to \infty$.
- Almost sure convergence means that $X_n(s) X(s)$ for all $s \in S$, except possibly for a subset of S that has zero probability.
- **Example** S is uniform on [0,1], and define $X_n(s) = s + s^n$. For every $s \in [0,1)$, $X_n(s) \to s$. But for s = 1, $s^n \to 1$, and $X_n(1) \to 2 \neq 1$.
- One can still claim $X_n \to_{a.s.} s = X(s)$ as $n \to \infty$ since P(S = 1) = 0.

Strong Law of Large Numbers (SLLN)

• Let X_1, \dots, X_n be iid random variables with $EX_i = \mu$ and $VarX_i = \sigma^2 < \infty$. Let $\bar{X}_n = \sum_{i=1}^n X_i/n$. Then, for every $\epsilon > 0$,

$$P(\lim_{n\to\infty}|\bar{X}_n-\mu|<\epsilon)=1.$$

- That is, \bar{X}_n converges almost surely to μ .
- The property $\bar{X}_n \to_{a.s.} \mu$ is called *strong consistency* of \bar{X}_n as an estimator of μ .
- One may also say that \bar{X}_n is a *strongly consistent estimator* of μ .

Lin (UNC-CH) Bios 661 January 31, 2019 7 / 27

Converge in Probability

- A weaker form of convergence.
- A sequence of random variables X_n converges in probability to a random variable X if, for every ε > 0,

$$\lim_{n\to\infty} P(|X_n-X|<\epsilon)=1.$$

- One may say, for $\epsilon > 0$, define $a_n(\epsilon) = P(|X_n X| < \epsilon)$.
- Convergence in probability means that $a_n(\epsilon) \to 1$ as $n \to \infty$, for every $\epsilon > 0$.
- Notation: $X_n \to_p X$ as $n \to \infty$.
- Convergence in probability, not almost surely see example 5.5.8 in C&B.

Lin (UNC-CH) Bios 661

Weak Law of Large Numbers (WLLN)

• Let X_1, \dots, X_n be iid random variables with $EX_i = \mu$ and $VarX_i = \sigma^2 < \infty$. Let $\bar{X}_n = \sum_{i=1}^n X_i/n$. Then, for every $\epsilon > 0$,

$$\lim_{n\to\infty} P(|\bar{X}_n - \mu| < \epsilon) = 1.$$

- That is, \bar{X}_n converges in probability to μ .
- The property $\bar{X}_n \to_p \mu$ is called *consistency* of \bar{X}_n .
- Comment: The condition that EX_i exists and is finite is *sufficient* in both WLLN and SLLN.

9/27

Converge in Distribution

- Let F_{X_n} be the cdf of X_n .
- A sequence of random variables X_n converges in distribution to a random variable X if,

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

at all points x where $F_X(x)$ is continuous.

- Notation: $X_n \to_d X$ as $n \to \infty$.
- Convergence in distribution does not imply that X_n and X approximate each other.
- It only says that, for large n, the cdf of X_n becomes close to the cdf of X.

10 / 27

Central Limit Theorem (CLT)

• Let X_1, \dots, X_n be iid random variables with $EX_i = \mu$ and $VarX_i = \sigma^2 < \infty$. Define $\bar{X}_n = \sum_{i=1}^n X_i/n$, $Z_n = \sqrt{n}(\bar{X}_n - \mu)/\sigma$, and let G_n denote the cdf of Z_n . For any $-\infty < z < \infty$,

$$lim_{n\to\infty}G_n(z)=\Phi(z).$$

• That is, Z_n has a limiting standard normal distribution, $Z_n \rightarrow_d N(0,1)$ as $n \rightarrow \infty$.

<ロ > ∢♪ ∢♪ ∢ き > ∢き > うへの

11/27

Central Limit Theorem (cont'd)

- **Example** Suppose that X_1, \dots, X_n are iid Bernoulli(p), and define $Y = \sum_{i=1}^n X_i$. The CLT states that $Z_n = \sqrt{n}(\bar{X}_n p)/\sqrt{p(1-p)}$ is approximately N(0,1) for large n.
- Since $Z_n = (Y np)/\sqrt{np(1-p)}$, that shows one can use a normal approximation to the binomial distribution of Y.
- Suppose n = 100 and p = 0.5. One can calculate $P(Y \le 57) = 0.933$, which is close to $\Phi(z) = \Phi(1.4) = 0.919$.

12 / 27

Relationships between Modes of Convergence

- $\bullet \ \ X_n \to_{a.s.} X \Rightarrow X_n \to_p X \Rightarrow X_n \to_d X.$
- The converse statements are "generally" not true.
- **Example** A special case for $X_n \to_d X \Rightarrow X_n \to_p X$: If c is a non-random constant, P(X = c) = 1 then $X_n \to_d X$ implies that $X_n \to_p c$ (proofs in C&B).
- That is, convergence in distribution to a degenerate one-point distribution implies convergence in probability.

13 / 27

Slutsky's Theorem

- If $X_n \rightarrow_d X$ and $Y_n \rightarrow_p a$, where a is a finite constant, then

 - $2 Y_n + X_n \rightarrow_d a + X;$
- Slutsky's theorem allows substituting consistent estimators when proving convergence in distribution.
- X_n and Y_n need not be independent.
- **Example** Suppose that $X \sim N(0, \sigma^2)$ and $T_n \to_d X$ as $n \to \infty$. By Slutsky's theorem, $T_n/\sigma \to_d X/\sigma$. Since $X/\sigma \sim N(0, 1)$, we conclude that $T_n/\sigma \to_d N(0, 1)$.

Convergence of Transformed Sequences

- Suppose that h is a continuous function.
- One has

 - 2 If $X_n \to_p X$ then $h(X_n) \to_p h(X)$.
 - If $X_n \to_d X$ then $h(X_n) \to_d h(X)$.
- h needs be continuous only on the range of X. For example, if X is non-negative, the behavior of h(x) for x < 0 does not matter.
- **Example** Let X_1, \dots, X_n be iid random variables with mean μ and variance $\sigma^2 < \infty$. Does the sample variance S_n^2 converge to σ^2 in some sense? Write

$$S_n^2 = \frac{1}{n-1} \left\{ \sum_{i=1}^n X_i^2 - n \bar{X}_n^2 \right\} = \frac{n}{n-1} \frac{\sum_{i=1}^n X_i^2}{n} - \frac{n}{n-1} \bar{X}_n^2$$

Lin (UNC-CH) Bios 661

Convergence of Transformed Sequences (cont'd)

• As $n \to \infty$, $n/(n-1) \to 1$,

$$\frac{\sum_{i=1}^{n} X_{i}^{2}}{n} \rightarrow_{a.s.} EX_{1}^{2} = \mu^{2} + \sigma^{2},$$

and

$$ar{\mathit{X}}_{\mathit{n}}^{2}
ightarrow_{\mathit{a.s.}} \mu^{2}.$$

- Slutsky's theorem and convergence of transformed random sequences lead to the result that $S_n^2 \to_{a.s.} \sigma^2$ as $n \to \infty$.
- **Example** Suppose that $\{T_n\}$ is a random sequence with $\sqrt{n}(T_n \theta) \rightarrow_d N(0, \sigma^2)$. The asymptotic distribution of T_n is centered about θ . But, does T_n converge to θ in some sense? That is, is $T_n \rightarrow_p \theta$?

Lin (UNC-CH) Bios 661

Convergence of Transformed Sequences (cont'd)

- Let $Z_n = \sqrt{n(T_n \theta)/\sigma} \rightarrow_d N(0, 1)$
- Given $\epsilon > 0$, one has

$$P(|T_n - \theta| < \epsilon) = P(-\sqrt{n}\epsilon/\sigma < Z_n < \sqrt{n}\epsilon/\sigma)$$

$$< P(-\sqrt{n}\epsilon/\sigma < Z_n \le \sqrt{n}\epsilon/\sigma)$$

$$= P(Z_n \le \sqrt{n}\epsilon/\sigma) - P(Z_n \le -\sqrt{n}\epsilon/\sigma).$$

- Since Z_n converges in distribution, $P(Z_n \leq \sqrt{n}\epsilon/\sigma) \to 1$ and $P(Z_n < -\sqrt{n}\epsilon/\sigma) \to 0.$
- Hence $P(|T_n \theta| < \epsilon) \to 1$ as $n \to \infty$. That means, $T_n \to_p \theta$.

17/27

Lin (UNC-CH) **Bios 661**

Delta Method - Univariate

• Suppose that $\{T_n\}$ is a random sequence with $\sqrt{n}(T_n-\theta)\to_d N(0,\sigma^2)$, and g is a function with $g'(\theta)$ exists and is not 0. Then

$$\sqrt{n}\{g(T_n)-g(\theta)\}\rightarrow_d N(0,\{g'(\theta)\}^2\sigma^2).$$

- We say that θ is the *asymptotic mean* of T_n . However θ may or may not be the mean of T_n . In fact, the mean of T_n may not even exist (example below).
- **Example** Suppose that X_1, \dots, X_n are iid Bernoulli(θ), $0 < \theta < 1$, and we want to make statistical inferences about the log-odds, which is defined by

$$\psi = \log\left(\frac{\theta}{1 - \theta}\right).$$

18 / 27

Delta Method - Univariate (cont'd)

- Define $g(u) = \log\{u/(1-u)\}$ for $u \in (0,1)$, so $\psi = g(\theta)$.
- By SLLN, $\bar{X}_n \to_{a.s.} \theta$. Since g is continuous at $\theta \in (0,1)$, one has that $g(X_n) \to_{a.s.} g(\theta)$.
- Since $g'(\theta) = 1/\{\theta(1-\theta)\} \neq 0$ for $\theta \in (0,1)$, the delta method gives

$$\sqrt{n}(g(\bar{X}_n)-g(\theta))\rightarrow_d N(0,\{g'(\theta)\}^2\theta(1-\theta)),$$

or, equivalently,

$$\sqrt{n}(g(\bar{X}_n)-\psi)\to_{d} N\left(0,\frac{1}{\theta(1-\theta)}\right).$$

- The asymptotic mean of $g(\bar{X}_n)$ is ψ .
- The exact mean $Eg(\bar{X}_n)$ does not exist because $g(0) = -\infty$, $P(\bar{X}_n = 0) > 0$, $g(1) = \infty$, $P(\bar{X}_n = 1) > 0$, $Eg(\bar{X}_n) = \infty \infty$.

Delta Method - Univariate (cont'd)

- Can the distribution above be used in practice? Why?
- We know that if a random variable Z follows a $N(0, 1/\{\theta(1-\theta)\})$, then $\sqrt{\theta(1-\theta)}Z$ follows a N(0, 1).
- Is the following statement true?

$$\sqrt{\theta(1-\theta)}\sqrt{n}(g(\bar{X}_n)-\psi)\to_{d}N(0,1),$$

and

$$\sqrt{\bar{X}(1-\bar{X})}\sqrt{n}(g(\bar{X}_n)-\psi)\rightarrow_d N(0,1).$$

• To construct a 95% CI for log-odds ψ , which one to use?

20 / 27

Second-order Delta Method

• Suppose that T_n is a random sequence with $\sqrt{n}(T_n-\theta)\to_d N(0,\sigma^2)$, and g is a function with $g'(\theta)=0$ and $g''(\theta)$ exists and is not 0. Then

$$n\{g(T_n)-g(\theta)\} \rightarrow_d \sigma^2 \frac{g''(\theta)}{2} \chi_1^2$$

• Example $g(T_n) = \bar{X}_n(1 - \bar{X}_n), g(\theta) = \theta(1 - \theta), g'(\theta) = 1 - 2\theta,$ $g''(\theta) = -2$. If $\theta = 1/2$, one can have

$$n\left\{\bar{X}_n(1-\bar{X}_n)-\frac{1}{4}\right\}\to_d-\frac{1}{4}\chi_1^2.$$

Lin (UNC-CH) Bios 661 Janua

Delta Method - multivariate

- Let the *p*-dimensional random vectors X_1, \dots, X_n be a random sample with $EX_{ij} = \mu_j$ $(j = 1, \dots, p)$ and $Cov(X_{ij}, X_{ik}) = \sigma_{ik}^2$.
- The population mean vector will be denoted by $\mu = (\mu_1, \cdots, \mu_p)$.
- If a function g maps R^p into R and has continuous first partial derivatives, $\partial g(t)/\partial t_i$, then

$$\sqrt{n}\{g(\bar{X}_1,\cdots,\bar{X}_p)-g(\mu_1,\cdots,\mu_p)\}\rightarrow_d N(0,\tau^2),$$

where

$$\tau^{2} = \sum_{j=1}^{p} \sum_{k=1}^{p} \sigma_{jk}^{2} \frac{\partial g(\mu)}{\partial \mu_{j}} \frac{\partial g(\mu)}{\partial \mu_{k}},$$

provided that $\tau^2 > 0$.

22 / 27

Pair-Matched Case-Control Study

- A case (i.e., a diseased person, denoted D) is "matched" (on covariates such as age, race, and sex) to a control (i.e., non-diseased person, denoted \bar{D}).
- Each member of the pairs is then interviewed as to the presence (E) or absence (\bar{E}) of a history of exposure to some harmful substance (e.g., cigarette smoke, asbestos, benzene, etc.)
- The data from such study involving n case-control pairs can be presented in tabular form as follows:

		D			
		Ε	Ē		
D	Ē	Y ₁₁ Y ₀₁	Y ₁₀ Y ₀₀		
D	Ē	Y_{01}	Y_{00}		
				n	

- Y₁₁ is the number of pairs where both case and control are exposed (i.e., both have a history of exposure).
- Y_{10} is the number of pairs where case is exposed but the control is not, and so on.
- Clearly $\sum_{j=0}^{1} \sum_{k=0}^{1} Y_{jk} = n$.
- Assume that $\{Y_{ij}\}$ have a multinomial distribution with sample size n and associated cell probabilities $\{\pi_{ij}\}$, where

$$\sum_{j=0}^{1} \sum_{k=0}^{1} \pi_{jk} = 1.$$

• The interpretation is that π_{10} is the probability of obtaining a pair in which the case is exposed and its matched control is not.

4 D > 4 D > 4 E > 4 E > E 900

Lin (UNC-CH) Bios 661 January 31, 2019 24 / 27

- In such study, the parameter measuring the association between exposure and disease is the odds ratio $\psi=\pi_{10}/\pi_{01}$. Intuitively, the estimator for ψ is $\hat{\psi}=Y_{10}/Y_{01}$.
- To derive the large sample distribution of $\hat{\psi}$, it will be easier to work on $\log(\hat{\psi})$, instead of $\hat{\psi}$.
- By the delta method in the multivariate case, think about $g(\pi_{10}, \pi_{01}) = \log(\pi_{01}/\pi_{01})$.
- Then, one has

$$\sqrt{n}\{\log(Y_{10}/Y_{01}) - \log(\pi_{10}/\pi_{01})\} \rightarrow_d N(0,\tau^2),$$

where

$$\tau^2 = A + B + C,$$

25/27

With

$$A = \left\{ \frac{\partial g(\pi_{10}, \pi_{01})}{\partial \pi_{10}} \right\}^2 \sigma_{10}^2 = \frac{1}{\pi_{10}^2} \pi_{10} (1 - \pi_{10}),$$

$$B = \left\{ \frac{\partial g(\pi_{10}, \pi_{01})}{\partial \pi_{01}} \right\}^2 \sigma_{01}^2 = \frac{1}{\pi_{01}^2} \pi_{01} (1 - \pi_{01})$$

and

$$C=2\frac{\partial g(\pi_{10},\pi_{01})}{\partial \pi_{01}}\frac{\partial g(\pi_{10},\pi_{01})}{\partial \pi_{10}}\sigma_{10,01}^2=\frac{-2}{\pi_{10}\pi_{01}}(-\pi_{10}\pi_{01}).$$

That concludes,

$$\tau^2 = \frac{1}{\pi_{10}}(1 - \pi_{10}) + \frac{1}{\pi_{01}}(1 - \pi_{01}) + 2 = \frac{1}{\pi_{10}} + \frac{1}{\pi_{01}}.$$

Lin (UNC-CH) Bios 661

• A common way to express $Var\{\log(\hat{\psi})\}$ is

$$Var\{\log(\hat{\psi})\} \approx \frac{1}{n\pi_{10}} + \frac{1}{n\pi_{01}}.$$

ullet That gives a common estimator for the variance of $\log(\hat{\psi})$ as

$$\widehat{Var}\{\log(\hat{\psi})\} pprox rac{1}{Y_{10}} + rac{1}{Y_{01}}.$$

ullet And, the large sample distribution of $\log(\hat{\psi})$ is

$$\frac{\log(\hat{\psi}) - \log(\psi)}{\sqrt{\widehat{Var}\{\log(\hat{\psi})\}}} \sim N(0, 1).$$

Lin (UNC-CH) Bios 661