DATA VIZ - HOMEWORK IV

NATHANIEL ASIEDU SAKYI

2023-02-27

Loading Complete Data Set into R

```
## [1] "data.frame"
## [1] 259146
   [1] "iso_code"
   [2] "continent"
##
  [3] "location"
##
  [4] "date"
   [5] "total_cases"
##
##
   [6] "new_cases"
  [7] "new cases smoothed"
##
##
  [8] "total_deaths"
## [9] "new deaths"
## [10] "new_deaths_smoothed"
## [11] "total cases per million"
## [12] "new_cases_per_million"
## [13] "new_cases_smoothed_per_million"
## [14] "total_deaths_per_million"
## [15] "new_deaths_per_million"
## [16] "new_deaths_smoothed_per_million"
## [17] "reproduction_rate"
## [18] "icu_patients"
## [19] "icu_patients_per_million"
## [20] "hosp_patients"
## [21] "hosp_patients_per_million"
## [22] "weekly_icu_admissions"
## [23] "weekly_icu_admissions_per_million"
## [24] "weekly hosp admissions"
## [25] "weekly_hosp_admissions_per_million"
## [26] "total tests"
## [27] "new_tests"
## [28] "total_tests_per_thousand"
## [29] "new_tests_per_thousand"
## [30] "new_tests_smoothed"
## [31] "new_tests_smoothed_per_thousand"
## [32] "positive_rate"
## [33] "tests_per_case"
## [34] "tests_units"
```

```
## [35] "total_vaccinations"
## [36] "people_vaccinated"
## [37] "people_fully_vaccinated"
## [38] "total_boosters"
## [39] "new_vaccinations"
## [40] "new vaccinations smoothed"
## [41] "total_vaccinations_per_hundred"
## [42] "people_vaccinated_per_hundred"
## [43] "people_fully_vaccinated_per_hundred"
## [44] "total_boosters_per_hundred"
## [45] "new_vaccinations_smoothed_per_million"
## [46] "new_people_vaccinated_smoothed"
## [47] "new_people_vaccinated_smoothed_per_hundred"
## [48] "stringency_index"
## [49] "population_density"
## [50] "median_age"
## [51] "aged_65_older"
## [52] "aged 70 older"
## [53] "gdp_per_capita"
## [54] "extreme poverty"
## [55] "cardiovasc_death_rate"
## [56] "diabetes_prevalence"
## [57] "female_smokers"
## [58] "male smokers"
## [59] "handwashing_facilities"
## [60] "hospital_beds_per_thousand"
## [61] "life_expectancy"
## [62] "human_development_index"
## [63] "population"
## [64] "excess_mortality_cumulative_absolute"
## [65] "excess_mortality_cumulative"
## [66] "excess_mortality"
## [67] "excess_mortality_cumulative_per_million"
## [1] "Asia"
                                        "Europe"
                                                        "Africa"
## [5] "North America" "South America" "Oceania"
```

Comments: The data set is a dataframe of 259146 observations and 67 variables collected on several nations falling in one of 7 continents.

Subsetting the South American Continent

```
## 'data.frame':
                   14106 obs. of 6 variables:
## $ iso_code
                       : chr "ARG" "ARG" "ARG" "ARG" ...
                       : POSIXct, format: "2020-01-01" "2020-01-02" ...
   $ date
## $ hosp_patients
                      : num 0000000000...
## $ total vaccinations: num 0 0 0 0 0 0 0 0 0 ...
                       : Ord.factor w/ 12 levels "Jan"<"Feb"<"Mar"<..: 1 1 1 1 1 1 1 1 1 1 ...
##
   $ month
                       : Factor w/ 4 levels "2020", "2021", ...: 1 1 1 1 1 1 1 1 1 1 ...
   $ year
  [1] "ARG" "BOL" "BRA" "CHL" "COL" "ECU" "FLK" "GUY" "PRY" "PER" "SUR" "URY"
## [13] "VEN"
```

Comment: For the South American continent, there were a total of 13 continents, named as can be seen above.

Fetching The Total Vaccinations of Respective Nations

##	# 1	A tibble:	15 x 4		
##	# (Groups:	iso_code	e [4]	
##		iso_code	year to	tal_vaccinations	labs
##		<chr></chr>	<fct></fct>	<dbl></dbl>	<chr></chr>
##	1	ARG	2020	104484	0%
##	2	ARG	2021	10755209034	20.25%
##	3	ARG	2022	37581832225	70.75%
##	4	ARG	2023	4785496718	9.01%
##	5	BOL	2020	0	0%
##	6	BOL	2021	1330732443	26.21%
##	7	BOL	2022	3746377098	73.79%
##	8	BOL	2023	0	0%
##	9	BRA	2020	0	0%
##	10	BRA	2021	47441604401	24.56%
##	11	BRA	2022	125910962899	65.18%
##	12	BRA	2023	19807550399	10.25%
##	13	CHL	2020	22606	0%
##	14	CHL	2021	7926071394	25.67%
##	15	CHL	2022	20633039238	66.82%

Data Visualization of Nations Total Vaccinations Across Time

Cookbook Attempt: Bar Plot of Total Vaccinations

Drawbacks of Barplot: The barplot above illustrates the total vaccinations per country from 2020 to 2023. As it can be seen, although the visualization is clear, the information of the vaccinations trend across time does not come out so obviously. Much effort is required to make comparisons for a given year across countries; and this undermines Tufte's 2nd Design Principle of Maximizing Every Graphical Element. Secondly, although it tries to apply Tufte's Principle of Utilizing Layering, the plot area seems to have an overly fancy appeal to color, and that makes it a bit clumsy.

Improved Final Attempt: Line Plot of Total Vaccinations

Trend of Vaccinations Per Country: South America (2020–2023)

Remarks: Similarly, the time series plot is the preferred plot for revealing the information that must be conveyed in our Data Visualization. This is because, besides making trend comparisons of total vaccinations both across countries and within a country easy to do, it raises a genuine interest to further investigate the clear fluctuations in the trend for any country across time. It Secondly, it is preferred because it applies Tufte's 1st Design Principle of Maximizing Data-to-ink ratio. There is not too much ink used on the background of the visualization which makes it simple and easy to grasp. Finally, it does well to apply Tufte's 5th Design Principle as it Provides the User with Details on Demand.

Source

https://ourworldindata.org/coronavirus