

Proyecto Final

DOCENTE	CARRERA	CURSO
PhD(c) Vicente Machaca	Maestría en Ciencia de la	Algoritmos y Estructura de
Arceda	Computación	datos

1. Competencias del curso

- Analiza e implementa algoritmos eficientes para la solución de problemas computacionales.
- Implementa estructuras de datos adecuadas, según el tipo de problema.

2. Equipos y materiales

- Javascript
- Navegador Web
- Cuenta en Github
- IDE de desarrollo

3. Entregables

- Elaborar un informe para el trabajo de investigación.
- El informe debe tener un enlace al repositorio y el video de exposición. La nota será individual según la contribución de cada alumno en el repositorio.

4. Trabajo de investigación

La estructura KD-Tree es una estructura multidimensional de k dimensiones. Esta permite implementar busquedas por similitud como K Nearest Neighbor o Closest point. Adicionalmente, se puede usar esta estructura como un clasificador. Usted debe implementar este clasificador en el tema de su preferencia. A continuación detallamos el algoritmo:

Algorithm 1: KNN Classifier

Input: X: training data; y: object to be classified.

Output: Classification for y. Extract features of each sample;

Build KD-Tree;

Select KNN of y in X;

 $Class(y) \leftarrow max of classes (k closest objects);$

Algunos ejemplos pueden ser:

- Clasificación de señales de transito.
- Clasificación de emociones faciales.
- Clasificación de tumores malignos y benignos.
- Clasificación de correo spam.
- Etc.

Usted es libre de escoger el descriptor. Este descriptor es un método que toma como entrada una muestra de la base de datos y retorna un vector de carácterísticas, luego este vector representa un punto en el KD-Tree. Usted tambien, puede evaluar varios descriptores y hacer comparativas. Entre algunos descriptores tenemos:

- Para imágenes:
 - Key points: SIFT.
 - Bordes: Canny.
 - Texturas: Local Binary Patterns.
 - Histograms.
- Para texto:
 - Frecuencia de palabras clave.
 - Bolsa de palabras.
- Para otras señales en general:
 - Fourier.
 - Wavelets.
- Seguido a un descriptor, puede aplicar reducción de dimensiones como PCA o eliminar atributos: recursive feature elimination.

5. Rúbricas

Rúbrica	Cumple	Cumple con obs.	No cumple
Informe: El informe debe estar en Latex, con un formato limpio, buena presentación y redacción.	2	1	0
Implementación: Implementa adecuadamente todas las funcionalidades del kd-Tree.	4	2	0
Trabajo de investigación: Implementa el trabajo de investigación, analiza que atributos utilizar y hace un uso adecuado del kd-tree.	12	6	0
Presentación: El alumno demuestra dominio del tema y conoce con exactitud cada parte de su trabajo.	2	1	0