

Experiment 2.2

Student Name: Mayank Kumar UID: 20BCS1353

Branch: CSE Section/Group:20BCS_DM-705 A
Semester: 6th Date of Performance:07/04/2023

Subject Name: Data Mining Lab Subject Code: 20CSP-376

1. Aim:

To perform classification using Bayesian classification algorithm using R.

2. Objective:

Performing Bayesian classification algorithm using R.

3. Script and Output:

```
library(caTools)
library(caret)

bc=read.csv("/Users/Akanksha/Documents/Semester 6th/Data Mining
Lab/Breast_Cancer.csv")
nrow(bc)
train =bc[1:450,]
test =bc[451:569,]
head(test)
levels(train$diagnosis)

model=naiveBayes(diagnosis~.,data = train)
pred= predict(model,test)
table(pred)
pred
table(test$diagnosis)
```

#confusionMatrix m1 <-table(test\$diagnosis, pred) library(scales) accuracy=percent((85+25)/119) accuracy

confusionMatrix(m1)

4. Dataset Used:

5. Output:

```
R 4.1.2 · ~/ ≈
> library(e1071)
> library(gmodels)
> library(dplyr)
> iris <-read.csv('iris_1.csv')
> str(iris)
'data.frame':
                    150 obs. of 5 variables:
 $ sepal_length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ sepal_width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ petal_length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ petal_width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ class : chr "Iris-setosa" "Iris-setosa" "Iris-setosa" "Iris-setosa" ...
> summary(iris)
   sepal_length
                       sepal_width
                                           petal_length
                                                               petal_width
                   Min. :2.000 Min. :1.000
                                                              Min. :0.100 Length:150
 Min. :4.300
 1st Qu.:5.100
                     1st Qu.:2.800
                                          1st Qu.:1.600
                                                              1st Qu.:0.300
                                                                                  Class : character
 Median :5.800
                    Median : 3.000
                                          Median :4.350
                                                              Median :1.300
                                                                                  Mode :character
         :5.843
                    Mean
                              :3.054
                                          Mean
                                                  :3.759
                                                                      :1.199
                                                              Mean
 3rd Qu.:6.400
                     3rd Qu.:3.300
                                          3rd Qu.:5.100
                                                              3rd Qu.:1.800
         :7.900
                    Max.
                              :4.400
                                          Max.
                                                  :6.900
                                                              Max.
                                                                       :2.500
> index = sample(2,nrow(iris),prob=c(0.8,0.2),replace=TRUE)
> set.seed(1234)
> #training set
> train= iris[index==1,]
> #testing set
> test= iris[index==2,]
> #test_data will be given as an input to the model to predict species
> test_data = test[1:4]
> #test_labels are the actual values of species of the test data
> test_label=test[,5]
> print(test_label)
 [1] "Iris-setosa"
[6] "Iris-setosa"
                             "Iris-setosa"
                                                    "Iris-setosa"
                                                                           "Iris-setosa"
                            "Iris-setosa"
                                                    "Iris-setosa"
                                                                          "Iris-versicolor" "Iris-versicolor"
[11] "Iris-versicolor" "Iris-versicolor" "Iris-versicolor" "Iris-versicolor" "Iris-versicolor"
[16] "Iris-virginica" "Iris-virginica" "Iris-virginica" "Iris-virginica" "Iris-virginica" "Iris-virginica" [21] "Iris-virginica" "Iris-virginica" "Iris-virginica" "Iris-virginica" "Iris-virginica" "Iris-virginica" "Iris-virginica"
                                                    "Iris-virginica" "Iris-virginica" "Iris-virginica"
[26] "Iris-virginica" "Iris-virginica"
> model=naiveBayes(train$class~.,train)
Naive Bayes Classifier for Discrete Predictors
naiveBayes.default(x = X, y = Y, laplace = laplace)
A-priori probabilities:
     Iris-setosa Iris-versicolor Iris-virginica
        0.3414634
                              0.3495935
                                                   0.3089431
Conditional probabilities:
                      sepal_length
  [,1] [,2]
Iris-setosa 5.009524 0.3369950
Iris-versicolor 5.986047 0.5138934
Iris-virginica 6.586047 0.5138934
  Iris-virginica 6.586842 0.6597178
                       sepal_width
                        [,1] [,2]
3.419048 0.3690714
  Iris-setosa
  Iris-versicolor 2.783721 0.2910819
Iris-virginica 2.968421 0.3425700
                      petal_length
                     [,1] [,2]
1.473810 0.1767726
  Iris-setosa
  Iris-versicolor 4.295349 0.4765718
  Iris-virginica 5.568421 0.5723849
                      petal_width
                              [,1]
                        0.250000 0.1109823
  Iris-setosa
  Iris-versicolor 1.330233 0.1994455
Iris-virginica 2.023684 0.2755184
```


DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Discover. Learn. Empower.

- > test_result=predict(model,test_data)
- > test_result

[1] Iris-setosa Iris-setosa Iris-setosa Iris-setosa

[6] Iris-setosa Iris-setosa Iris-setosa Iris-versicolor

[11] Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor Iris-versicolor

[16] Iris-virginica Iris-virginica Iris-virginica Iris-virginica Iris-virginica

[21] Iris-virginica Iris-virginica Iris-versicolor Iris-virginica Iris-virginica

[26] Iris-virginica Iris-virginica

Levels: Iris-setosa Iris-versicolor Iris-virginica

- > #compare the predicted and actual values
- > CrossTable(x=test_label, y=test_result)

Levels. It is second It is related to It is ringinical

- > #compare the predicted and actual values
- > CrossTable(x=test_label, y=test_result)

Cell Contents

| N | Chi-square contribution | N / Row Total | N / Col Total | N / Table Total

Total Observations in Table: 27

test_label	test_result Iris-setosa	Iris-versicolor	Iris-virginica	Row Total
Iris-setosa	8	0	0 [8
	13.370	2.370	3.259	1
	1.000	0.000	0.000	0.296
	1.000	0.000	0.000	
	0.296	0.000	0.000	1
Iris-versicolor	0	7	0	7
	2.074	11.699	2.852	* Î
	0.000	1.000	0.000	0.259
	0.000	0.875	0.000	1
	0.000	0.259	0.000	Î
Iris-virginica 	0	1	11	12
	3.556	1.837	7.639	1
	0.000	0.083	0.917	0.444
	0.000	0.125	1.000	Î
	0.000	0.037	0.407	į
Column Total	8	8	11	27
	0.296	0.296	0.407	ĺ