

SEMANTIC TABLEAUX / TABLO SEMANTIK

- Digunakan untuk membuktikan konsekuensi logis $A1, ..., An \models B$
- Caranya dengan menunjukkan bahwa A1, ..., An dan $\neg B$ tidak dapat satisfiable secara bersamaan
- Ingat kembali definisi Satisfiable!!
- Sistem Tablo Semantik didasarkan pada Aturan Dekomposisi Formula:
 - Mereduksi kebenaran formulanya ke kebenaran sub formulanya

INGAT TABEL KEBENARAN LOGIKA PREPOSISI

- 1. ¬:
 - $(\neg T)$ For $\neg A$ to be true, A must be false.
 - $(\neg F)$ For $\neg A$ to be false, A must be true.
- 2. \(\Lambda\):
 - $(\land T)$ For $A \land B$ to be true, A must be true and B must be true.
 - (\wedge F) For $A \wedge B$ to be false, A must be false or B must be false.
- 3. V:
 - (\vee T) For $A \vee B$ to be true, A must be true or B must be true.
 - $(\lor F)$ For $A \lor B$ to be false, A must be false and B must be false.

INGAT TABEL KEBENARAN LOGIKA PREPOSISI

 $4. \rightarrow$:

 $(\rightarrow T)$ For $A \rightarrow B$ to be true, A must be false or B must be true.

 $(\rightarrow F)$ For $A \rightarrow B$ to be false, A must be true and B must be false.

5. ↔:

 $(\leftrightarrow T)$ For $A \leftrightarrow B$ to be true, A and B must be true or A and B must be false.

(↔ F) For A ↔ B to be false, A must be true and B must be false or A must be false and B must be true.

ATURAN UNTUK POHON SEMANTIK

Rules for semantic tableaux in propositional logic

Non-branching rules (α-rules)		Branching rules (β-rules)	
(∧T)	$A \wedge B : T$ \downarrow $A : T, B : T$	(∧F)	$A \wedge B : F$ $A : F B : F$
(∨F)	$A \lor B : F$ \downarrow $A : F, B : F$	(∨T)	$A \lor B : T$ $A : T B : T$
$(\rightarrow F)$	$A \rightarrow B : \mathbb{F}$ \downarrow $A : \mathbb{T}, B : \mathbb{F}$	$(\to T)$	$A \rightarrow B : T$ $A : F B : T$
(¬T)	¬A: T ↓ A: F	$(\leftrightarrow$ T)	$A \leftrightarrow B : T$ $A : T, B : T A : F, B : F$
(¬F)	¬A : F ↓ A : T	$(\leftrightarrow F)$	$A \leftrightarrow B : F$ $A : T, B : F \qquad A : F, B : T$

Membangun Tablo Semantik

Misal ingin mencari konsekuensi logis dari : $A1, ..., An \models B$ Langkah-langkahnya:

- Tempatkan di root :A1 : T, ..., An : T,B : F
- Lakukan secar a berulang-ulang penerapan dari aturan dekomposisi untuk formula-formula yang terlihat dalam tree
 - Pilih cabang yang ada di tree
 - Formula pada cabang tersebut atau formula yang ditandai, dipilih dimana aturan komposisi belum diterapkan pada percabangan tersebut
 - Terapkan aturan dekomposisi pada formula yang terpilih. Satu node (untuk α -rules) atau dua node (untuk β -rules) ditambahkan pada cabang anaknya.
- Lakukan berulang hingga :
 - Sepasang formula yang kontradiksi (tandai dengan x, cabang dinyatakan close) → tidak perlu di extend
 - Tidak ada yang bisa diterapkan lagi dari aturan dekomposisinya (tandai dengan o, cabang dinyatakan dengan open)

Lanjutan

- Jika ada yang cabang yang open, maka premis tidak mempunyai konsekuensi logis terhadap konklusi (invalid)
- Jika semua cabang di Tablo close, maka seluruh tablo dinyatakan close.
 - Dikatakan bahwa *B* is derived from *A1*,..., *An* in *ST*
 - Dinotasikan:

$$A1, ..., An \vdash_{s\tau} B$$

- $A1, ..., An \vdash_{ST} B iff A1, ..., An \models B$
- Secara khusus B : F closes iff B is a tautology

Contoh:

1. Show that $\neg(p \to \neg q) \to (p \lor \neg r)$ is a tautology:

$$\neg(p \to \neg q) \to (p \lor \neg r) : F
\downarrow \\
\neg(p \to \neg q) : T, (p \lor \neg r) : F^1
\downarrow \\
p \to \neg q : F
\downarrow \\
p : T, \neg q : F
\downarrow \\
q : T
\downarrow^1
\\
p : F, \neg r : F
\times$$

Lanjutan Contoh

2. Check if $\neg p \vDash \neg (p \lor \neg q)$.

$$\neg p : T, \neg (p \lor \neg q) : F$$
 \downarrow
 $p : F$
 \downarrow
 $p \lor \neg q : T$
 \swarrow
 $p : T \quad \neg q : T$
 $\times \quad \downarrow$
 $q : F$
 \bigcirc

• Karena ada yang open maka keseluruhan tablo adalah open, sehingga $\neg p \not\models \neg (p \lor \neg q)$

Lanjutan Contoh

3. Check whether $(\neg p \rightarrow q), \neg r \models p \lor \neg q$:

Lanjutan contoh

4. Check whether $((p \land \neg q) \rightarrow \neg r) \leftrightarrow ((p \land r) \rightarrow q)$ is a tautology.

$$((p \land \neg q) \to \neg r) \leftrightarrow ((p \land r) \to q) : F$$

The tableau closes and hence the formula is a tautology.

Soal Latihan 1

1. Check which of the following formulae are tautologies.

- (a) $((p \ Vq) \rightarrow \neg r) \rightarrow \neg (\neg q \land r)$
- (b) $((p \rightarrow r) \land (q \rightarrow r)) \rightarrow ((p \lor q) \rightarrow r)$
- (c) $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$
- 2. Check which of the following logical consequences are valid.
- (a) $(p \land q) \rightarrow r \models (p \rightarrow r) \lor (q \rightarrow r)$
- (b) $(\neg p \land q) \rightarrow \neg r, r \models p \lor \neg q$

Lanjutan Soal

- 3. Buktikan dengan Tablo Semantik! Cek apakah argumen ini valid?
- (a) Rule of propositional resolution:

$$p \lor r, q \lor \neg r$$

 $p \lor q$

(b)

$$\frac{(p \lor q) \to r, \ p \lor r}{r}$$

(c)

$$\frac{p \to q, \ \neg q \lor r, \neg p}{\neg p}$$

Lanjutan Soal

- 4. Let P, Q, R and S be propositions. Check whether:
- (a) if $P \rightarrow Q$, $Q \rightarrow R$ and $P \land S$ are true, then $R \land S$ is true;
- (b) if R and $(P \land \neg R)$ are false and $\neg P \rightarrow \neg Q$ is true, then Q is false;
- (c) if $Q \rightarrow (R \land S)$ is true and $Q \land S$ is false, then $R \land Q$ is false;
- (d) if $P \rightarrow Q$ and $Q \rightarrow (R \lor S)$ are true and $P \rightarrow R$ is false, then S is true;
- (e) if $Q \to (R \land S)$ is true and $Q \land S$ is false, then Q is false.

ADA PERTANYAAN?