

CLAIMS:

1. Imaging module (1), comprising:
 - an image sensor chip (10);
 - a lens (20), wherein the lens (20) and the image sensor chip (10) are movable with respect to each other;
- 5 - first retaining means (54, 82) for retaining the lens (20) with respect to the image sensor chip (10) at a first distance; and
 - second retaining means (53, 82) for retaining the lens (20) with respect to the image sensor chip (10) at a second distance.
- 10 2. Imaging module (1) according to claim 1, wherein the retaining means (53, 54, 82) are designed such as to be brought in a deactivated state by a movement of the lens (20) and the image sensor chip (10) in an inward direction with respect to each other, and in an activated state by a movement of the lens (20) and the image sensor chip (10) in an outward direction with respect to each other.
- 15 3. Imaging module (1) according to claim 1 or 2, further comprising positioning means (32, 80) for automatically activating the second retaining means (53, 82) when the first retaining means (54, 82) are deactivated, and vice versa.
- 20 4. Imaging module (1) according to any of claims 1-3, wherein the image sensor chip (10) is located at an under portion (10, 30, 40, 50) of the imaging module (1), wherein the lens (20) is held by an upper portion (20, 60, 70, 80) of the imaging module (1), wherein the under portion (10, 30, 40, 50) and the upper portion (20, 60, 70, 80) are movable with respect to each other, wherein the under portion (10, 30, 40, 50) is provided with first engaging means (52), and wherein the upper portion (20, 60, 70, 80) is provided with second engaging means (82) for engaging the first engaging means (52).
- 25

5. Imaging module (1) according to claim 4, wherein the upper portion (20, 60, 70, 80) is provided with upper protrusions (82), and wherein the under portion (10, 30, 40, 50) comprises a recess (52) for receiving the upper protrusions (82).

5 6. Imaging module (1) according to claim 5, wherein the upper protrusions (82) have a triangular shape.

7. Imaging module (1) according to claim 5 or 6, wherein the recess (52) in the under portion (10, 30, 40, 50) comprises long slots (54) and short slots (53).

10 8. Imaging module (1) according to claim 7, wherein upper sides (55, 56) of the slots (53, 54) are inclined.

9. Imaging module (1) according to any of claims 5-8, wherein the under portion 15 (10, 30, 40, 50) comprises lower protrusions (32) which are positioned such as to contact the upper protrusions (82) of the upper portion (20, 60, 70, 80) of the imaging module (1).

10. Imaging module (1) according to claim 9, wherein the lower protrusions (32) have a triangular shape.

20 11. Imaging module (1) according to any of claims 5-10, wherein the upper portion (20, 60, 70, 80) comprises a rotatable rotor (80) supporting the upper protrusions (82).

25 12. Imaging module (1) according to any of claims 1-11, wherein the first distance corresponds to a focal distance of the lens (20), and wherein the second distance is smaller than the first distance.

13. Imaging module (1) according to any of claims 1-12, further comprising 30 pressing means (90) for pressing the lens (20) and the image sensor chip (10) in an outward direction with respect to each other, the pressing means preferably comprising a helical spring (90).

14. Cellular phone, comprising an imaging module according to any of claims 1-13.