WHAT IS CLAIMED IS:

1	1.	A solid-state device comprising:
2		a terminal having a plurality of fingers; and
3		wherein said fingers are arranged so that the device is heat transfer
4	balanced.	
1	2.	The device of Claim 1, wherein said fingers are arranged in a row and
2	spaced non-un	iformly in the row.
1	3.	The device of Claim 1, wherein each said finger is associated with a
2	corresponding	one of a plurality of sub-cells, wherein said sub-cells are arranged in a row
3	and spaced no	n-uniformly.
1	4.	The device of Claim 3, wherein each said sub-cell includes one finger.
1	5.	The device of Claim 3, wherein each said sub-cell is associated with one
2	of a plurality of	of rows of sub-cells.
1	6.	The device of Claim 3, wherein the device has a terminal area defining
2	opposed edges	s, and wherein adjacent ones of said sub-cells are spaced a greater distance
3	at or near a ce	nter of the device than at or near the opposed edges.
1	7.	The device of Claim 3, wherein a number of fingers in a sub-cell at or nea
2	a center of the	device is less than a number of fingers in a sub-cell at or near an edge of a
3	device.	
1	8.	The device of Claim 7, wherein the device is an HBT.

The device of claim 8, wherein the device is a SiGe HBT.

9.

1

1	10. The device of Claim 7, wherein the device defines a terminal region and		
2	the terminal region is sized for a high power application.		
1	11. The device of Claim 1, wherein each finger is biased for its maximum		
2	current density during operation.		
1	12. The device of Claim 1, wherein the device defines a layout, and the layo	ul	
2	is a ballasting resistors-free layout.		
1	13. The device of Claim 1, wherein said fingers are emitter fingers.		
1	14. The device of Claim 1, wherein said fingers are arranged so that a peak		
2	oscillation frequency, f _{max} , associated with the device is generally independent of the		
3	number of fingers.		
1	15. The device of Claim 1, wherein each said finger is associated with a		
2	corresponding one of a plurality of sub-cells, and wherein said sub-cells are spaced so		
3	that at least one of consecutive adjacent pairs of said sub-cells are spaced differently.		
1	16. A solid-state device comprising:		
2	a terminal having a plurality of fingers;		
3	wherein said fingers are arranged so that a peak oscillation frequency, f _m	na x	
4	associated with the device is generally independent of the number of said fingers.		
•			
1	17. The device of Claim 16, wherein said fingers are arranged in a row and		
2	spaced non-uniformly in the row.		
1	18. The device of Claim 16, wherein each said finger is associated with a		
2	corresponding one of a plurality of sub-cells, wherein said sub-cells are arranged in a ro) W	

3

and spaced non-uniformly.

1	19.	The device of Claim 18, wherein said sub-cells are arranged in a plurality	
2	of non-uniformly spaced rows.		
1	20.	The device of Claim 18, wherein said sub-cells each includes one finger	
1	21.	The device of Claim 17, wherein the device has a terminal area defining s, and wherein adjacent ones of said sub-cells are spaced a greater distance	
2	at or near a center of the device than at or near the opposed edges.		
3	at of fical a cc	mer of the device than at or near the opposed eages.	
1	22.	The device of Claim 16, wherein each finger is biased for its maximum	
2	current density.		
1	23.	The device of Claim 16, wherein the device is an HBT, and said fingers	
2	are emitter fingers.		
1	24.	A method of producing a high power solid-state device comprising:	
2		providing a substrate for supporting a terminal having a plurality of	
3	fingers; and		
4 5	that the device	arranging the fingers in a plurality of sub-cells defining at least one row so	
3	that the device	e is near transfer baraneed.	
1	25.	The method of Claim 24, wherein said sub-cells are arranged so that	
2	consecutive ac	djacent pairs of the sub-cells in the at least one row are spaced differently.	
1	26.	The method of Claim24, wherein the at least one row includes a plurality	
2	of rows.		
1	27.	The method of Claim 26, wherein the sub-cells between the plurality of	

2

rows are spaced non-uniformly.

The method of Claim 24, further comprising determining a number of the 1 28. sub-cells and spacings between the sub-cells using a thermal simulation program. 2 The method of Claim 28, wherein the thermal simulation program uses 29. 1 2 finite element analysis. The method of Claim 24, wherein the device is one of an HBT and a FET. 1 30. The method of Claim 24, wherein the device defines a layout that is 1 31. 2 ballasting resistors-free. A method of heat transfer balancing a solid-state device, the method 1 32. 2 comprising: arranging a plurality of fingers of a terminal of the device so that a 3 junction temperature across the device in operation is generally uniform without using 4 5 ballasting resistors. The method of Claim 32, wherein each finger is biased for its maximum 1 33. 2 current density. 1 The method of Claim 33, wherein the device is an HBT, and the terminal is 2 an emitter terminal.