define the set $S\subseteq\{1,2,\ldots,n\}\times\{1,2,\ldots,f+g\}$, and assume the entry $\left[A_{\mathrm{true}}\ B_{\mathrm{true}}\right]_{ij}$ is given for all $(i,j)\in S$. The set of systems compatible with the prior knowledge is given by

$$\Sigma_{pk}(S) := \left\{ (A, B) \mid \left[A B \right]_{ij} = \left[A_{\text{true}} B_{\text{true}} \right]_{ij} \forall (i, j) \in S \right\}.$$
(6)

Subsequently, we define the set of systems compatible with both the data and the prior knowledge as

$$\Sigma := \Sigma_d \cap \Sigma_{pk}(S). \tag{7}$$

Note that the case that all entries of $A_{\rm true}$ and $B_{\rm true}$ are unknown can be captured by setting $S=\varnothing$, which implies $\Sigma=\Sigma_d$. It is clear from (2) and (6) that the system $(A_{\rm true},B_{\rm true})$ belongs to Σ . However, in general, Σ contains other systems because the data may not uniquely determine $A_{\rm true}$ and $B_{\rm true}$, even if some entries of $A_{\rm true}$ and $B_{\rm true}$ are known.

The goal of this paper is to find a controller that stabilizes the origin of the system $(A_{\rm true}, B_{\rm true})$. Since on the basis of the data and the prior knowledge we cannot distinguish between $(A_{\rm true}, B_{\rm true})$ and any other system in Σ , we need to find a single controller that stabilizes the origin of all systems in Σ . This motivates the following definition of informative data for stabilization of polynomial systems. In the rest of the paper, we assume that

$$F(0) = 0.$$

Definition 1 The data $(\dot{\mathcal{X}}, \mathcal{X}, \mathcal{U})$ are called *informative* for stabilization if there exist a radially unbounded function $V \in \mathcal{V}$ and a continuous controller $K : \mathbb{R}^n \to \mathbb{R}^m$ such that K(0) = 0 and

$$\frac{\partial V(x)}{\partial x}(AF(x) + BG(x)K(x)) < 0 \quad \forall x \in \mathbb{R}^n \setminus \{0\}, \ (8)$$

for all $(A, B) \in \Sigma$.

Note that for a controller K satisfying K(0) = 0, the origin of the closed-loop system

$$\dot{x} = AF(x) + BG(x)K(x),\tag{9}$$

is an equilibrium point, as F(0) = 0. If (8) holds then the origin is globally asymptotically stable for all closed-loop systems obtained by interconnecting any system $(A, B) \in \Sigma$ with the controller u = K(x).

In this paper, we study the following two problems.

Problem 1 (Informativity) Find conditions under which the data $(\dot{\mathcal{X}}, \mathcal{X}, \mathcal{U})$ are informative for stabilization.

Problem 2 (Controller design) Suppose the data $(\dot{\mathcal{X}}, \mathcal{X}, \mathcal{U})$ are informative for stabilization. Find a controller u = K(x) satisfying K(0) = 0 and (8).

3 Connection to previous work

Current approaches for data-driven control of polynomial systems [8,9] build on the model-based method proposed in [15]. These methods do not incorporate prior knowledge and instead focus on designing a common stabilizing controller for all systems compatible with the data. In these works, the controller is considered to be of the form

$$K(x) = Y(x)PZ(x),$$

where $Y \in \mathbb{R}^{m \times p}[x]$, $P \in \mathbb{S}^p$ is positive definite, and $Z \in \mathbb{R}^p[x]$ is radially unbounded satisfying

$$F(x) = H(x)Z(x), \tag{10}$$

for some $H \in \mathbb{R}^{f \times p}[x]$. The choice of candidate Lyapunov function

$$V(x) = Z^{\top}(x)PZ(x), \tag{11}$$

then leads to

$$\frac{\partial V}{\partial x}(x)(AF(x) + BG(x)K(x)) = 2Z^{\top}(x)P\Theta(x)PZ(x),$$

where

$$\Theta(x) := \frac{\partial Z}{\partial x}(x) \left[A \ B \right] \begin{bmatrix} H(x)P^{-1} \\ G(x)Y(x) \end{bmatrix}.$$

The main idea in this line of work is to find P and Y(x) such that

$$-\Theta(x) - \Theta^{\top}(x) > 0 \quad \forall x \in \mathbb{R}^n \setminus \{0\}, \qquad (12)$$

for all systems (A, B) compatible with the data. In the earlier work [8], H(x) is taken to be equal to the identity matrix, which implies that Z(x) = F(x). In contrast, [9] considers more general Z(x) satisfying (10). This strategy is appealing because it leads to data-based linear matrix inequalities for control design. Unfortunately, however, the method also has some major limitations.

(1) The matrix $\frac{\partial Z}{\partial x}(x)$ must have full row rank for all $x \in \mathbb{R}^n \setminus \{0\}$.

Indeed, suppose that there exists a nonzero x such that $\frac{\partial Z}{\partial x}(x)$ does not have full row rank. Then $\Theta(x)$ is singular, which implies that (12) does not hold. Note that the full row rank condition can only hold if $p \leq n$, i.e., the number of polynomials in Z is less than or equal to the state-space dimension of the system. This limits the class of Lyapunov functions of the form (11) that can be considered by the