Blackhole Ledger: Budgets for Area, Bits, and Energy Flows

Evan Wesley, Rosetta Stone of Physics — Reality Encoded (build: September 2, 2025)

Purpose. A compact, event-ready accounting system for black-hole processes in the *bits* language. Each section is a plug-and-play worksheet: drop in masses, spins, or powers and read off bounds and balances.

1 Normalization and one-bit units

We keep G, \hbar , $k_{\rm B}$, c explicit. Entropy and bit count are

$$S = \frac{A}{4\ell_{\rm P}^2}, \qquad S_{\rm bits} = \frac{S}{\ln 2} = \frac{A}{4\ell_{\rm P}^2 \ln 2}.$$
 (1)

One-bit area and energy costs:

$$\Delta \mathcal{A}_{1\text{bit}} = 4 \,\ell_{\text{P}}^2 \,\ln 2 \,, \qquad \Delta E_{1\text{bit}} = k_{\text{B}} \,\ln 2 \,.$$
 (2)

For Kerr-Newman, the differential first law

$$dM = \frac{\kappa_{\rm H}}{8\pi} \, d\mathcal{A} + \Omega_{\rm H} \, dJ + \Phi_{\rm H} \, dQ \tag{3}$$

implies the one-bit cost at fixed (J,Q) is universal: $(\Delta M)_{J,Q} = \ln 2$.

2 Merger ledger (area theorem prior and ε bound)

For two holes (M_1, a_{*1}) , (M_2, a_{*2}) merging to (M_f, a_{*f}) with radiated fraction ε , the Kerr area is

$$\mathcal{A}(M, a_*) = 8\pi M^2 \left(1 + \sqrt{1 - a_*^2} \right),\tag{4}$$

so the **area theorem** requires $\mathcal{A}(M_f, a_{*f}) \geq \mathcal{A}(M_1, a_{*1}) + \mathcal{A}(M_2, a_{*2})$. With $M_f = (1 - \varepsilon)(M_1 + M_2)$ this yields

$$\varepsilon \le 1 - \sqrt{\frac{\sum_{i=1}^{2} M_i^2 \left(1 + \sqrt{1 - a_{*i}^2}\right)}{(M_1 + M_2)^2 \left(1 + \sqrt{1 - a_{*f}^2}\right)}}$$
 (5)

Bits budget:

$$\Delta S_{\text{bits}} = \frac{\mathcal{A}(M_f, a_{*f}) - \mathcal{A}(M_1, a_{*1}) - \mathcal{A}(M_2, a_{*2})}{4 \ell_{\text{P}}^2 \ln 2} \ge 0.$$
 (6)

Equal-mass, nonspinning gives $\varepsilon \leq 1 - 1/\sqrt{2} \approx 0.293$ and $\Delta S_{\rm bits} \to 0^+$ at saturation.

3 Accretion ledger (bits per baryon)

Let a hole of mass M accrete rest mass δm from a disk of efficiency η (radiation to infinity). The horizon mass increase is $\delta M = (1 - \eta) \delta m$. For Schwarzschild,

$$\mathcal{A} = 16\pi G^2 M^2 / c^4 \quad \Rightarrow \quad \delta \mathcal{A} = 32\pi G^2 M \, \delta M / c^4 \,. \tag{7}$$

The **bits gained** per accreted mass is

$$\frac{\delta N_{\text{bits}}}{\delta m} = \frac{\delta \mathcal{A}}{4 \ell_{\text{P}}^2 \ln 2 \, \delta m} = \frac{8\pi G M}{\hbar c \ln 2} \left(1 - \eta \right). \tag{8}$$

At fixed η , accretion onto more massive holes deposits more bits per kilogram. At the Eddington rate $\dot{m}_{\rm Edd}$ this defines a *bit influx N*_{bits}.

4 Jet ledger (bit-joule bound)

Given a jet/mechanical power $P_{\rm jet}$ and an efficiency factor $\epsilon_{\rm gb} \in (0,1)$ linking horizon thermodynamics to asymptotic power, the maximum horizon-mediated bit rate is

$$\dot{N_{
m bitsmax}} = \frac{\epsilon_{
m gb} P_{
m jet}}{k_{
m B} \ln 2} \,.$$
 (9)

Usage: insert bands for $P_{\rm jet}$ (e.g., M87*, Sgr A*) and an $\epsilon_{\rm gb}$ prior to draw a forbidden region for claims that exceed the bound.

5 Penrose/superradiance ledger (discounted μ_N)

Define the bit "chemical potential" $\mu_N \equiv \kappa_{\rm H} \ln 2/(2\pi)$ so that

$$dM = \mu_N dN + \Omega_H dJ + \Phi_H dQ. \qquad (10)$$

For reversible Penrose-like extraction $(dA \ge 0)$ with dJ < 0, the extracted energy per added bit is discounted near extremality where $\kappa_H \to 0$. A track $a_*: a_{*i} \to a_{*f}$ yields the ledger

$$\Delta E_{\text{ext}} = \int (\Omega_{\text{H}} \, dJ + \Phi_{\text{H}} \, dQ) - \int \mu_N \, dN, \qquad \Delta N \ge 0.$$
 (11)

6 Evaporation ledger (Hawking outflows)

For an isolated Schwarzschild hole, = $\hbar c^3/(8\pi k_{\rm B}GM)$ and the luminosity scales $P \propto 1/M^2$. The bit emission rate obeys

$$\dot{N_{\mathrm{bits}}} \lesssim \frac{P}{k_{\mathrm{B}} \ln 2} \propto \frac{1/M^2}{(1/M)} \propto \frac{1}{M}.$$
 (12)

Thus stellar and supermassive holes emit negligible bits per second; the ledger is dominated by mergers and accretion for any realistic timeframe.

7 Worked anchors (plug-and-play)

For quick use, the table shows scalings and example anchors; substitute your system and scale accordingly.

Process	Core relation	Scaling in M	Example anchor
Merger bound	$\varepsilon \le 1 - \sqrt{\frac{\sum M_i^2 (1 + \sqrt{1 - a_{*i}^2})}{(\sum M_i)^2 (1 + \sqrt{1 - a_{*f}^2})}}$	_	eqmass, $a_* = 0$: $\varepsilon \le 0.293$
Accretion bits	$\delta N/\delta m = \frac{8\pi GM}{\hbar g \ln 2} (1 - \eta)$	$\propto M$	$\eta = 0.1$: $\delta N/\delta m \approx \frac{8\pi GM}{\hbar c \ln 2} \times 0.9$
Jet bit rate	$\dot{N}_{ m max} = rac{\epsilon_{ m gb} P_{ m jet}}{k_{ m B} \ln 2}$	$\propto M \text{ (via 1/)}$	Sgr A*: tiny \Rightarrow huge formal $\dot{N}_{\rm max}$
Penrose track	$dM = \mu_N dN + \Omega_{ m H} dJ$	$\mu_N \downarrow \text{ as } a_* \to 1$	Energy/bit is discounted near extremal
Evaporation	$\dot{N} \lesssim P/(k_{\rm B} \ln 2)$	$\propto 1/M$	negligible for astrophysical BHs

8 How to use this ledger with data

- 1. **GW events:** draw posterior samples for $(M_1, a_{*1}), (M_2, a_{*2}), \varepsilon, a_{*f}$; reject any sample violating the area theorem; report the induced prior on ε and the distribution of ΔS_{bits} .
- 2. **AGN/XRB accretion:** adopt an efficiency prior η and an accretion rate; compute \dot{N} and compare to jet $\dot{N}_{\rm max}$ to form a closed bit budget.
- 3. Analogue horizons: set ^{eff} from the platform; test $\Delta E_{1\text{bit}} = k_{\text{B}}^{\text{eff}} \ln 2$.

Constants (for convenience)

$$m_{\rm P} = \sqrt{\hbar c/G}, \ \ell_{\rm P} = \sqrt{\hbar G/c^3}, \ \Delta(M^2) = m_{\rm P}^2 \frac{\ln 2}{4\pi}, \ \Delta A_{\rm 1bit} = 4\ell_{\rm P}^2 \ln 2.$$