CHAPITRE 1

LA LOGIQUE

1.1 Proposition

Définition:

Une proposition est un texte mathématique qui a un sens et qui soit vrai soit faux pas les deux en même temps.

Exemples:

- La proposition : " $3 \times 2 = 16$ " est fausse
- la proposition : " Deux droites strictement parallèles se coupent" est fausse
- La proposition : " 5 > 3 " est vraie.

1.2 Les quantificateurs

1.2.1 Le quantificateur existentielle ("∃")

a) Définition:

La proposition " $(\exists x \in E)$: P(x)" signifie qu'il existe au moins un élément $x \in E$ qui vérifie P(x). et qu'elle soit vrai lorsqu'on trouve au moins un élément x de E qui vérifie P(x).

Le symbole ∃ est appelé "le quantificateur existentielle" et se lit "il existe au moins".

b) Remarques:

La proposition " $(\exists! x \in E) : P(x)$ " signifie qu'il existe un seule élément x de E qui vérifie P(x).

Exemples:

- 1) La proposition P_1 : " $(\exists x \in \mathbb{R})$: 2x + 1 = 0" est vraie, (car l'élément $-\frac{1}{2} \in \mathbb{R}$) vérifie 2x + 1 = 0.
- 2) La proposition P_2 : " $(\exists x \in \mathbb{R})$: $x^2 = -1$ " est fausse, (car il n'existe pas d'élément de \mathbb{R} qui vérifie $x^2 = -1$.
- 4) La proposition P_3 : " $(\exists x \in \mathbb{N})$: n+1=0" est fausse, (car il n'existe pas d'élément de \mathbb{N} qui vérifie n=-1. $(-1 \notin \mathbb{N})$.

Exercice 1

Déterminer la valeur de vérité des propositions suivantes :

- 1. Q_1 : " $(\exists x \in \mathbb{R})$: 4x 3 = 0"
- 2. Q_2 : " $(\exists x \in \mathbb{R})$: $x^2 + x 2 = 0$ "

3.
$$Q_3$$
: " $(\exists x \in \mathbb{R})$: $x^2 - x + 2 = 0$ "

4.
$$Q_4$$
: " $(\exists x \in \mathbb{R})$: $4x - 16 > 0$ "

1.2.2 Le quantificateur universel ("∀")

a) Définition :

Soit " $(x \in E)$: P(x)" une fonction propositionnelle $(E \neq \emptyset)$.

La proposition " $(\forall x \in E)$: P(x)" signifie que tout élément $x \in E$ vérifie P(x). et qu'elle soit vrai lorsque pour tout $x \in E$ on a P(x) est vraie.

Le symbole ∀ est appelé "le quantificateur universel" et se lit "pour tout" ou "quel que soit".

Exemples:

- 1) La proposition P_4 : " $(\forall x \in R)$: 2x + 1 = 0" est fausse, (car l'élément $0 \in \mathbb{R}$) ne vérifie pas 2x + 1 = 0.
- 2) La proposition P_5 : " $(\forall x \in R)$: $x^2 > 0$ " est vraie, (car pour tout $x \in \mathbb{R}$ on a $x^2 > 0$.

Exercice 2

Déterminer la valeur de vérité des propositions suivantes :

1.
$$Q_4$$
: " $(\forall x \in \mathbb{R})$: $x^2 + x + 2 > 0$ "

2.
$$Q_5$$
: " $(\forall x \in \mathbb{R})$: $x^2 + 1 \ge 1$ "

3.
$$Q_6$$
: "($\forall x \in \mathbb{R}$): $4x + 16 > 0$ "

Exercice 3

- 1. Écrire les propositions suivantes à l'aide des quantificateurs :
 - P: " pour tout entier naturel n le nombre $\frac{n(n+1)}{2}$ est un entier naturel".
 - Q: "il existe au moins deux entier relatif n et m tel que: n m = 5".
- 2. Déterminer la valeur de vérité des propositions P et Q.

1.3 Opérations sur les propositions

1.3.1 La négation d'une proposition

a) Définition:

Définition 1.1

La négation d'une proposition P notée (non P) ou (\overline{P}) ou (\overline{P}) est la proposition qui est vraie si P est fausse et qui est fausse si P est vraie.

b) Exemples

- La négation de la proposition " $P: 1 > \sqrt{2}$ " est " $P: 1 \le \sqrt{2}$ ".
- La négation de la proposition " $Q: \sqrt{2} \in \mathbb{Q}$ " est " $Q: \sqrt{2} \in \mathbb{Q}$ ".
- La négation de la proposition "R: $(-2)^2 = -4$ " est "R: $(-2)^2 \neq -4$ ".

c) Remarques

1. Pour déterminer la négation d'une proposition il faut déterminer la négation de Certains Symboles :

Le symbole	=	<	>	\in	\cup	\forall
la négation	\neq	\geq	\leq	∉	$\not\sqsubseteq$	\exists

2. La négation de la proposition " $(\exists x \in E)$: P(x)". est " $(\forall x \in E)$: P(x)".

La négation de la proposition " $(\forall x \in E) : P(x)$ ". est " $(\exists x \in E) : P(x)$ ".

3. Pour montrer que la proposition " $(\forall x \in E)$: P(x)" est fausse il suffit de montrer que sa négation " $(\exists x \in E)$: P(x)" est vraie, et donc il suffit de donnée un exemple.

Exercice 4

Monter que la proposition : $"(\forall n \in \mathbb{N}) : \frac{n}{2} \in \mathbb{N}"$ est fausse.

Exercice 5

1) Déterminer la négation des proposition suivantes :

 $P_1: (\forall x \in \mathbb{R})(\exists n \in \mathbb{N}): x \leq n$

 $P_2: (\exists x \in \mathbb{R}): 2x+1=3$

 $P_3: \mathbb{Z} \subset \mathbb{N}$

 $P_4: (\forall n \in \mathbb{N}): n \in \mathbb{Z}$

 $P_5: (\forall x \in \mathbb{R}): 4x+16 \ge x$

2) Déterminer la valeur de vérité des propositions précédentes.

1.3.2 Conjonction de deux propositions

a) Activité :

L'étudiant Omar enseigne à la fois L'arabe; Le français et L'anglais.

Déterminer la valeur de vérité des proposition suivantes :

 P_1 : Omar enseigne "l'arabe et le français.

 P_2 : Omar enseigne "l'arabe et l'espagnol.

 P_3 : Omar enseigne "l'espagnol et l'allemand.

b) Définition

Définition 1.2

la conjonction de deux propositions notée ("P et Q") ou ($P \wedge Q$) est une proposition qui est vraie si P et Q sont vraies. et qui est fausse sinon.

On résume ceci en une table de vérité : V F

	P	Q	P et Q
	V	V	V
:	V	F	F
	F	V	F
	F	F	F

c) Exemples

- 1. la proposition "Deux droites strictement parallèles se coupent" et " $2 \in \mathbb{N}$ " est une proposition fausse.
- 2. la proposition " $\sqrt{\sqrt{9}} = \sqrt{3}$ " et $\sqrt{3} \in Q$. est fausse.
- 3. la proposition " $\mathbb{N} \subset \mathbb{Z}$ " et "3 est impair" est une proposition vraie.

Remarque

Les propositions (P et Q) et (Q et P) ont même vérité. On dit que la conjonction est commutative.

1.3.3 La disjonction de deux propositions

a) Activité:

L'étudiant Omar enseigne à la fois L'arabe; Le français et L'anglais.

Déterminer la valeur de vérité des proposition suivantes :

 P_1 : Omar enseigne "l'arabe ou le français.

 P_2 : Omar enseigne "l'arabe ou l'espagnol.

P₃: Omar enseigne "l'espagnol ou l'allemand.

b) Définition

Définition 1.3

la disjonction de deux propositions notée ("P ou Q") ou ($P \lor Q$) est une proposition qui est fausse si P et Q sont fausses, et qui est vraie sinon.

On résume ceci en une table de vérité :

	P	Q	<i>P</i> ou <i>Q</i>
	V	V	V
:	V	F	V
	F	V	V
	F	F	F

c) Exemples

- 1. la proposition "Deux droites strictement parallèles se coupent" ou " $2 \in \mathbb{N}$ " est une proposition vraie.
- 2. la proposition " $\sqrt{\sqrt{9}} = \sqrt{3}$ " ou $\sqrt{3} \in Q$. est vraie.
- 3. la proposition " $\mathbb{Z} \subset \mathbb{N}$ " ou " $\mathbb{R} \subset \mathbb{N}$ " est une proposition fausse.

Remarque

Les propositions (P ou Q) et (Q ou P) ont même vérité. On dit que la disjonction est commutative.

Proprieté 1.1

La négation de la proposition (P ou Q) est la proposition (P et Q). La négation de la proposition (P et Q) est la proposition (P ou Q).

1.3.4 Implication de deux propositions

a) activité

a) Définition

Définition 1.4

L'implication de la proposition P vers la proposition Q est la proposition notée $P \Rightarrow Q$ qui est fausse si P est vraie et Q est fausse et qui est vraie sinon.

On résume ceci en une table de vérité :

	P	Q	$P \Rightarrow Q$
	V	V	V
:	V	F	F
	F	V	V
	F	F	V

b) Exemples

- 1. " $9 > 4 \Rightarrow 9 > 2$ est une proposition vraie.
- 2. " $\sqrt{2} \in \mathbb{N} \Rightarrow \sqrt{2} \in \mathbb{Q}$ " est une proposition vraie.
- 3. "3 est nombre impair \Rightarrow 4 est un nombre impair " est une proposition fausse.
- 4. "4 est nombre impair \Rightarrow 3 est un nombre impair " est une proposition vraie.

c) Remarques

- 1. La proposition $P \Rightarrow Q$ se lit « P implique Q » (ou si P alors Q).
- 2. les deux propositions $P \Rightarrow Q$ et $Q \Rightarrow P$ elles ont pas le même sens.
- 3. L'implication $Q \Rightarrow P$ est l'implication réciproque de l'implication $P \Rightarrow Q$.

4. Pour montrer que la proposition $P \Rightarrow Q$ est vraie, on commence de la proposition P et il faut trouver la proposition Q. (on suppose que P est vraie et on montre que Q est vraie).

Exercice 6

Soit f la fonction définie par : $f(x) = ax^2 + c$, $(a \ne 0)$. Considérons les deux propositions : P: "l'équation f(x) = 0 admet deux solutions". Q: "ac < 0". Montrer que : $P \Rightarrow Q$.

1.3.5 Équivalence de deux propositions

a) Définition

Définition 1.5

l'équivalence de deux propositions P et Q est une proposition notée $(P \Leftrightarrow Q)$ qui est vraie si P et Q ont même vérité et qui est fausse dans les cas contraires.

	P	Q	$P \Leftrightarrow Q$	
	V	V	V	
On résume ceci en une table de vérité :	V	F	F	" $P \Leftrightarrow Q$ " signifie que " $P \Rightarrow Q$ et $Q \Rightarrow P$ ".
	F	V	F	
	F	F	V	

b) Exemples

" $|2-\pi|=\pi-2 \Leftrightarrow \sqrt{2}^2=2$ " est une proposition vraie.
" $1+\sqrt{3}^2=4 \Leftrightarrow 12=2^2\times 3^2$ " est une proposition fausse.
" $-1\in\mathbb{N}\Leftrightarrow -1>0$ " est une proposition vraie.
" $(\exists n\in\mathbb{Z}):2n-1=0\Leftrightarrow 2$ est un nombre impair " est fausse.

c) Remarque

- 1. $P \Leftrightarrow Q$ se lit (P équivaut à Q) ou (P si et seulement si : Q) ou (P si équivalant à Q).
- 2. $P \Leftrightarrow Q$ est la proposition $(P \Rightarrow Q \text{ et } Q \Rightarrow P)$.
- 3. Les deux propositions $P \Leftrightarrow Q$ et $Q \Leftrightarrow P$ ont le même sens.
- 4. On général pour montrer que $P \Leftrightarrow Q$ il suffi de montrer que $P \Rightarrow Q$ et $Q \Rightarrow P$.

 $^{(\}exists n \in \mathbb{Z}) : 2n-1 = 0 \Leftrightarrow 2 \text{ est un nombre impair } \text{ est rausse}$