Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

1 ПОСТАНОВКА ЗАДАЧИ	5
1.1 Описание входных данных	5
1.2 Описание выходных данных	5
2 МЕТОД РЕШЕНИЯ	7
3 ОПИСАНИЕ АЛГОРИТМОВ	8
3.1 Алгоритм функции main	8
3.2 Алгоритм конструктора класса Triangle	8
3.3 Алгоритм метода calculate_perimeter класса Triangle	9
3.4 Алгоритм метода calculate_square класса Triangle	9
4 БЛОК-СХЕМЫ АЛГОРИТМОВ	10
5 КОД ПРОГРАММЫ	12
5.1 Файл main.cpp	12
5.2 Файл Triangle.cpp	12
5.3 Файл Triangle.h	13
6 ТЕСТИРОВАНИЕ	14
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	15

1 ПОСТАНОВКА ЗАДАЧИ

Создать объект «треугольник», который содержит длины сторон треугольника.

Значения длин сторон натуральные числа.

Объект вычисляет периметр и площадь треугольника.

Функционал:

- параметризированный конструктор с параметрами длин сторон;
- метод вычисления и возврата значения периметра;
- метод вычисления и возврата значения площади.

Написать программу:

- 1. Вводит стороны треугольника.
- 2. Создает объект «треугольник»,
- 3. Выводит периметр.
- 4. Выводит площадь.

1.1 Описание входных данных

Три целых числа, соответствующие длинам сторон треугольника, разделенные пробелом.

Подразумевается, что для заданных данных треугольник существует.

1.2 Описание выходных данных

Первая строка:

P = «периметр»

Вторая строка:

S = «площадь»

2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект cin класса istream;
- объект cout класса ostream;
- объект класса Triangle;
- функция sqrt для извлечение квадратного корня.

Класс Triangle:

- свойства/поля:
 - о поле сторона треугольника:
 - наименование a_;
 - тип int;
 - модификатор доступа private;
 - о поле сторона треугольника:
 - наименование b_;
 - тип int;
 - модификатор доступа private;
 - о поле сторона треугольника:
 - наименование c_;
 - тип int;
 - модификатор доступа private;
- функционал:
 - о метод calculate_square вычисление площади треугольника;
 - о метод calculate_perimeter вычисление периметра треугольника.

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм функции main

Функционал: точка входа в программу.

Параметры: нет.

Возвращаемое значение: целочисленное - индикатор корректности завершения программы.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

N₂	Предикат	Действия	No
			перехода
1		Объявление переменных а,b,с	2
2		Ввод значений переменных а,b,с с клавиатуры	3
3		Объявление объекта triangle класса Traingle	4
4		Вывод "P = "; вызов метода calculate_perimeter();	5
5		Вывод "S = "; вызов метода calculate_square()	Ø

3.2 Алгоритм конструктора класса Triangle

Функционал: параметрезированный конструктор.

Параметры: целочисленные a,b,c - стороны треугольника.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса Triangle

No	Предикат	Действия	N₂
			перехода
1		присваивание значений параметров а, b, c к закрытым свойствам	Ø

3.3 Алгоритм метода calculate_perimeter класса Triangle

Функционал: вычисление периметра треугольника.

Параметры: нет.

Возвращаемое значение: вещественное число двойной точности.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода calculate_perimeter класса Triangle

N₂	Предикат	т Действия	
			перехода
1		Возврат а_ + b_ + с_	Ø

3.4 Алгоритм метода calculate_square класса Triangle

Функционал: вычисление площади треугольника.

Параметры: нет.

Возвращаемое значение: вещественное число двойной точности.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода calculate_square класса Triangle

N₂	Предикат	Действия	
			перехода
1		Иницализация вещественной переменной двойной точности р =	2
		(a+b+c) / 2	
2		Инициализация вещественной переменной двойной точности S =	3
		рассчитаной через полупериметр площади треугольника	
3		Возврат Ѕ	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-2.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл таіп.срр

Листинг 1 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>

#include "Triangle.h"

int main()
{
   int a, b, c;
   std::cin >> a >> b >> c;

   Triangle triangle(a,b,c);

std::cout << "P = " << triangle.calculate_perimeter() << std::endl;
   std::cout << "S = " << triangle.calculate_square();
   return 0;
}</pre>
```

5.2 Файл Triangle.cpp

Листинг 2 – Triangle.cpp

```
#include "Triangle.h"
#include <cmath>
#include <iostream>

Triangle::Triangle(double a, double b, double c) {
    a_ = a;
    b_ = b;
    c_ = c;
}

double Triangle::calculate_perimeter() {
```

```
return a_ + b_ + c_;
}

double Triangle::calculate_square() {
   double p = calculate_perimeter() / 2;
   double S = std::sqrt(p*(p - a_)*(p - b_)*(p - c_));
   return S;
}
```

5.3 Файл Triangle.h

Листинг 3 – Triangle.h

```
#ifndef ZANASHIH_TRIANGLE_H
#define ZANASHIH_TRIANGLE_H

class Triangle {
  private:
    int a_, b_, c_;

public:
    Triangle(double a, double b, double c);

  double calculate_perimeter();
  double calculate_square();
};
#endif
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 5.

Таблица 5 – Результат тестирования программы

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
3 4 5	P = 12 S = 6	P = 12 S = 6
1 2 3	P = 6 S = 0	P = 6 S = 0

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratornyh_ra bot_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).