第28届全国中学生物理竞赛决赛

实验试题参考答案及评分标准

2011年10月30日

实验一参考答案及评分标准

本题共30分。

1、(7分)利用 100 微安电流表和电阻箱改装成 2.00V 量程的电压表,利用所给元件设计该电压表的校验电路。要求画出测量内阻的电路图、测量原理和结果;自组电压表的示意图和元件的数值。

内阻测量采用电流半偏转法,电路如图,R1和R2为电阻箱,先把R1调30k欧姆,闭合S1,断开S2,调节电阻箱R1使得100微安电流表满偏,然后闭合S2,调节R2使得100微安电流表半偏转,此时R2的阻值为电流表的内阻值RG。

实测值电流表半偏时, R2=2500 欧姆。

严格的说,当 S2 闭合后,回路总电阻会降低,当 R2=RG 时,回路总电阻减小了 0.5RG,应该回路总电阻加上补偿,即在 R1 上增加 0.5RG,所以在闭合 S2 调节 R2 使 得电流表半偏的过程中,在电阻箱 R1 上增加 0.5R2。此方法称为:回路总电阻补偿的电流半偏法。

回路总电阻补偿的电流半偏法实测值, R2=2700 欧姆。

改装后的电压表电路图为(电流表内阻以实际为准);

评分标准:

电表内阻测量可以采用其它方法。

(1) 电路图及测量原理合理、正确,3分

使用误差大的方法如:

a:用毫安表检测 100 微安电流变化; b:用 30K 测量微安表内阻; c:使用 E=3V 标称值计算内阻; d:使用滑线变阻器比例值或阻值计算; 各 1 分

- (2) 改装电压表图和参数正确,1分(有其中之一错误,0分)
- (3) 内阻测量结果:

2700±100 欧姆, 3分

2700±200 欧姆, 2分

2700±300 欧姆, 1分

2(11分)画出测量待测电源 Ex 开路电压的电路图,简述测量待测电源 Ex 的开路电压的原理和步骤。

调节滑线变阻器 W,当开关 S_1 闭合、断开时,检流计 G 指针不动时(检流计指示为 0),电压表的示值即为测电源 EX 的开路电压值。

(1) 电路图合理、正确, 3分

使用误差大的方法如:

- a:利用滑线变阻器比例进行计算; b:利用 E=3V 标称值计算; 1分
 - (2) 说明补偿原理,1分
 - (3) 标明两个电源极性, 1分
- (4) 开路电压测量结果
- 1.62±0.04V, 6分

1.62±0.06V, 5分

1.62±0.08V, 4分

1.62±0.1V, 3分

超出范围 0 分

3(12 分)画出测量电源 E_X 短路电流的电路图,简述测量电源 E_X 短路电流的原理和步骤。

评分:

电路图评分:

(1) 电路图合理、正确,3分

使用误差大的方法如:

- a:利用滑线变阻器比例进行计算; b:利用 E=3V 标称值计算; 1分
 - (2) 两个电源极性均正确, 2分
- (3) 短路电流测量结果

14.5±0.5mA , 7分;

14.5±0.6 mA , 6分;

14.5±0.7 mA , 4分;

14.5±0.8mA , 2分;

少于三位有效数字, 扣1分

电源结构:

一、待测电源 EX 为非线性内阻电源,结构如下:

二、标称值 3V 直流电压源 E 结构如下:

$$-\frac{3V}{|I|} + \frac{15\Omega}{|I|}$$

实验试题二参考答案及评分标准

本题共30分。

1、测定光电管的伏安特性(14分)

1.1 实验电路图 (3分)

1.2 实验步骤 (3分)

- ① 将加挡光盖的汞灯及光电管安装在光具座上,使二者的输出、输入口正对,调 s=40.0cm,用专用电缆线将光电管与实验仪的"微电流输入"连接,接通汞灯及实验仪预热;
- ② 按电路图接线。电压表选 30V 档,在光电管入光孔上加 ϕ =8mm 光阑及 436nm 滤光片,选量程最大档,微电流计调零后开始试测,确定用 10^{-10} A(或 10^{-11} A)档测量;
- ③ 用 K_2 使光电管加反向电压,改变电位器 R,测量 U_{AK} 为-3~0V 对应的光电流 I,然后用 K_2 加正向电压,测 0~30 V 对应的光电流;
 - ④ 将光阑换为 $\phi=4$ mm,2 mm,重复③,测量 U_{AK} 、I 值。

1.3 数据记录 (5分)

 $\lambda = 436 \text{nm}, S = 40.0 \text{cm}$

U _{AK} /V		-3.0	-2.0	-1.0	-0.6	0	0.6	1.0	2.0	3.0	4.0	6.0	8.0
I/10 ⁻¹⁰	ø /8mm	-0.1	-0.1	0.6	3.8	7.4	13.1	18.0	27.5	33.0	36.6	43.0	51.3
A	ø /4mm	0.0	0.0	0.0	0.8	1.7	3.1	4.3	7.0	8.5	9.3	10.7	12.7
	φ/2mm	0.0	0.0	0.0	0.2	0.5	1.0	1.4	2.2	2.9	3.1	3.6	4.3

$U_{ m AK}/{ m V}$		11.0	14.0	17.0	20.0	23.0	26.0	30.0
I/10 ⁻¹⁰	ø /8mm	63.0	73.9	83.5	93.3	101.8	109.8	118.4
A	<i>ф</i> /4mm	15.8	18.9	21.8	24.5	26.9	29.0	31.4
	φ/2mm	5.4	6.3	7.5	8.4	9.3	10.0	10.5

1.4 U_{AK}~I 图 (3分)

2、测定普朗克常数、截止频率及逸出功(16分)

2.1 实验公式推导及原理简述(1分)

光电效应方程为:
$$h\nu = \frac{1}{2}mv_m^2 + A$$
 (1)

当光电管两极电压达到截止电压时,有:
$$\frac{1}{2}mv_m^2 = eU_a$$
 (2)

截止频率的定义为:
$$A = hv_0$$
 (3)

将(2)、(3)代入(1)式,则:
$$U_a = \frac{h}{e}(v - v_0)$$
, (4)

即 U_a 与频率v成线性关系。

实验原理:由式(4)可知,测出不同频率光照射光电管的截止电压 U_a 与照射光频率v的关系直线,则由直线的斜率K可以求出普朗克常数 h=eK,直线与横轴的截距为截止频率 v_0 ,由式(3)可以求出逸出功A.

2.2 实验步骤 (2分)

- (1)用专用连接线将光电管电压输入端与实验仪电源输出端连接,使用-2~+2 (或-2~0) V档;
- (3)分别将 λ =365nm,405nm,436nm,546nm,577nm 的滤光片装在光电管进光口上,从低到高调节电压,测量并记录光电流为零及两边的 5 组数据,确定使光电流为零的截止电压 U_a 。
 - (4) 电流计用 10⁻¹² (或 10⁻¹³A) 档。

2.3 数据记录 (5分)

 $S=30.0 \text{cm}, \phi = 4 \text{mm}$

$\lambda = 365 \text{nm}$

$I/10^{-13}$ A	-1.2	-1.0	0.0	5.0	10.0
$U_{\!\scriptscriptstyle m AK}/{ m V}$	-1.995	-1.978	-1.905	-1.760	-1.705

$\lambda = 405 \text{nm}$

$I/10^{-13}$ A	-1.2	-1.0	0.0	5.0	10.0
$U_{\!\scriptscriptstyle m AK}/{ m V}$	-1.682	-1.643	-1.548	-1.354	-1.288

λ=436nm

$I/10^{-13}$ A	-1.2	-1.0	0.0	5. 0	10.0
$U_{\!\scriptscriptstyle m AK}/{ m V}$	-1.366	-1.335	-1. 299	-1.213	-1.168

$\lambda = 546 \text{nm}$

$I/10^{-13}$ A	-1.2	-1.0	0.0	5.0	10.0
$U_{\!\scriptscriptstyle m AK}/{ m V}$	-0.754	-0.750	-0.730	0.684	-0.639

$\lambda = 577 \text{nm}$

$I/10^{-13}$ A	-1.2	-1.0	0.0	5.0	10.0
$U_{\!\scriptscriptstyle m AK}/{ m V}$	-0.661	-0.651	-0. 590	0.478	-0.421

根据以上数据,得:

λ/nm	365	405	436	546	577
$v = c/\lambda$ $/10^{14} \text{Hz}$	8. 22	7.41	6. 88	5. 49	5. 20
$ U_a /V$	1.905	1. 548	1. 299	0.730	0.590

2.4 |U_a|~v 图 (3 分)

2.5 计算普朗克常数 h (3分) 斜率:

$$K = \frac{1.790 - 0.520}{(8.00 - 5.00) \times 10^{14}} = \frac{1.270}{3.00 \times 10^{14}} = 4.23 \times 10^{-15} \,\text{V/Hz},$$

$$h=eK=1.60\times10^{-19}\times4.23\times10^{-15}=6.77\times10^{-34}\,\mathrm{Js}$$
,

2.6 读取光电管阴极材料的 v_0 及计算逸出功A(2分)

从|Ua|~v 图线的横轴截距得:

$$v_0 = 3.76 \times 10^{14} \,\text{Hz}, \quad A = hv_0 = 2.55 \times 10^{-19} \,J = 1.59 \,\text{eV}$$

评分细则:

- 1.1 电路图中不用 k_2 换向,其它均正确,给 2.5 分;电压表位置错或没有,扣 1 分;检流 计位置错或没有,扣 1 分;分压错,扣 1 分;无分压,0 分。
- 1.2 步骤中涵盖两项内容,给2分;1项,给1分;满3项,2.5分。
- 1.3 (1)根据每台仪器的实际电流值来判断数据的准确性,变化趋势正确,-3V、0V、2V、20V 和 30V 的数据偏离在 20%之内,5 分;其余按照偏离程度,酌情给分;超出 50%,0 分;量程错,扣 1 分。
 - (2) 有效数字记录有错, 扣1分。
- 1.4 *U_{AK}∼I* 图中
 - (1) 图名、 *l* , S、 *q* 出现一项, 0.5 分;
 - (2) 坐标轴标度、物理量及单位各 0.5 分;
 - (3) 曲线光滑连续各 0.5 分; 少 1 项, 扣 1 分; 自变量、因变量错, 扣 0.5 分。
- 2.1 写出 $\frac{1}{2}mv_m^2 = eU_a$, $A = hv_0$, $U_a = \frac{h}{e}(v v_0)$, h = eK , 四个公式, 1 分; 写出其中 2 或 3 个给 0.5 分。
- 2.2 (1) ⑤调零, 1分;
 - (2) 步骤全对, 1分; 涵盖两项以上内容, 0.5分。
- 2.3 (1) v 的有效数字三位, 0.5 分;
 - (2) 测出 5 组 U_a 数据, 0.5 分;
- (3) U_a 数值偏离实际值 30%之内,有效数字正确,4 分;大于 30%,0 分。 根据每台仪器的 U_a 数据来判断数据的准确性,10%之内,5 分;其余按照偏离程度,酌情给分,超出 30%,0 分。
- 2.4 |*U*_a|~v 图中
 - (1) 直线、光滑, 1分;
 - (2) 特征点, 1分;
 - (3) 坐标轴标度, 1分。
- 2.5 (1) K 数值在(2.96~5.50)×10⁻¹⁵,有过程(计算式),1分;
- (2) h 数值在 (6.000~7.252) ×10⁻³⁴Js, 1分; 有效数字错, 扣 0.5分; 无单位, 扣 0.5分;
- 2.6 (1) ν_0 在(3.40~4.10)×10¹⁴ Hz,单位正确,1分;
- (2) A 在(2.25 ~ 2.71)×10⁻¹⁹ J 或(1.41 ~ 1.69) eV, 1 分, (A 必须有算式,且单位正确)。