Pour toute variable aléatoire X telle que l'ensemble de ses valeurs images $X(\Omega)$ est un sous-ensemble fini de \mathbb{N} , on définit sa fonction génératrice par :

$$g_X: t \mapsto \mathrm{E}\left(t^X\right)$$

où E désigne l'espérance.

Soit X une telle variable aléatoire. On note $m \in \mathbb{N}$ sa valeur image maximale, ainsi $X(\Omega) \subset \{0, 1, 2, \dots, m\}$.

- 1. Justifier que g_X est une fonction polynomiale.
- 2. (a) Calculer $g_X(1)$.
 - (b) Montrer que $g'_X(1) = E(X)$.
 - (c) Montrer que $q_Y''(1) = E(X(X-1))$.
 - (d) Exprimer V(X) (où V désigne la variance) en fonction de $g_X'(1)$ et $g_X''(1)$.
- 3. (a) Exprimer g_{X+1} à l'aide de g_X .
 - (b) Exprimer g_{2X} à l'aide de g_X .
- 4. Dans cette question, on suppose que $X \hookrightarrow \mathcal{B}(n,p)$ où $(n,p) \in \mathbb{N} \times [0,1]$.
 - (a) Calculer g_X .
 - (b) Retrouver les valeurs de E(X) et V(X) à l'aide de la fonction génératrice.