LAPORAN PRAKTIKUM KE-4

" Ujian Tengah Praktikum"

Oleh:

A.Rofiqi Maulana (125090500111025)

Asisten:

1. Angga Wahyu Pratama (115090500111061)

2. Apriliantono (115090507111005)

LABORATORIUM STATISTIKA
PROGRAM STUDI STATISTIKA
JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS BRAWIJAYA
MALANG
2014

BAB IV HASIL DAN PEMBAHASAN

4.1 Bangkitkan data secara acak mengikuti sebaran binomial $n=50,\ x=10,\ p=0.5.$ Buatlah fungsi untuk menghitung simpangan baku, rata - rata, modus, dan kuartil

No	Source Code dan penjelasan
1	x=rbinom(50,10,0.5)
	Membuat bilangan acak yang mengikuti sebaran binomial
	dengan 50 observasi, banyaknya percobaan 10 kali dengan
	peluang sukses = 0.5
2	#mencari simpangan baku
	Memberikan komentar untuk menghitung simpangan baku
3	std=function(x){
	Membuat fungsi menghitung simpangan baku dengan
	nama fungsi std dari data x
4	n=length(x);
	Menyimpan banyaknya data ke variabel n
5	ragam= $(sum(x*x)-((sum(x)^2)/n))/(n-1)$ }
	Menghitung ragam dari data x yaitu dengan rumus
	$Ragam = \left(\sum x^2 - \left(\sum x\right)^2/n\right)/(n-1)$
6	std=sqrt(ragam)
	Menghitung simpangan baku yaitu akar dari ragam
7	simpangan_baku=std(x)
	Menyimpan nilai dari std(x) ke simpangan_baku
8	simpangan_baku
	Memanggil atau menampilkan hasil dari perhitungan
	simpangan baku
9	#Mencari rata-rata
	Membuat komentar dalam perhitungan rata-rata
10	rata=function(x){
	Membuat fungsi menghitung rata-rata dengan nama fungsi
	rata dari data x
11	n=length(x);
	Menyimpan banyaknya data ke variabel n
12	rata=sum(x)/n
	Membuat perhitungan rata – rata yaitu
	Rata-rata = $\sum x/n$
13	rata_rata=rata(x)

	Menyiman hasil perhitungan rata-rata ke variabel rata_rata
14	rata_rata
	Memanggil hasil dari perhitungan rata-rata dari data
	tersebut
15	#Mencari kuartil bawah
	Membuat komentar dalam perhitungan kuartil bawah (Q1)
16	q1=function(x){
10	Membuat fungsi menghitung kuartil 1 dari suatu data x
17	n=length(x);odd=(n+1)%% 4;
	Menyimpan banyaknya data ke variabel n. odd sisa hasil
	bagi dari (n+1) dibagi dengan 4.
18	y=sort(x)
	Membuat variabel y yang digunakan untuk menyimpan
	data x yang telah diurutkan
19	if(odd==0){
/	Merupakan kondisi saat sisa hasil bagi = 0 (artinya n+1
	habis dibagi 4)
20	q1=(y[((n+1)/4)])
	Mencari kuartil 1 dengan cara mencari data ke (n+1)/4
	dari data yang telah diurutkan
21	else
	Merupakan kondisi saat odd tidak habis dibagi 4
22	q1=(y[floor((n+1)/4)]+y[ceiling((n+1)/4)])/2
	Floor berfungsi untuk melakukan pembulatan ke bawah
	(misal 4.5 dibulatkan ke 4). Ceiling berfungsi melakukan
	pembulatan bilangan ke atas (misal 4.5 dibulatkan ke 5).
	Mencari kuartil 1 dengan cara q1=Data ke (n+1)/4. Jika n
	= 6 maka q1 = data ke(6+1)/4 = data ke 1,75 = (data ke 1)
	+ data ke-2)/2.
23	kuartil_bawah=q1(x)
	Menyiman hasil perhitungan q1 ke variabel kuartil_bawah
24	kuartil_bawah
	Memanggil hasil perhitungan Q1 dari data tersebut
25	#mencari median
	Memberikan komentar dalam perhitungan median atau
	kuartil 2
26	I mod-tunction(v)
	med=function(x){
20	Membuat fungsi menghitung kuartil 2 dengan nama fungsi
27	

	Menyimpan banyaknya data ke variabel n. odd sisa hasil
	bagi dari (n+1) dibagi dengan 2.
28	y=sort(x)
	Membuat variabel y yang digunakan untuk menyimpan
	data x yang telah diurutkan
29	$if(odd==0){$
	Merupakan kondisi saat sisa hasil bagi = 0 (artinya n+1
	habis dibagi 2)
30	med=(y[(n+1)/2])
	Menghitung nilai median yaitu data ke (n+1)/2
31	else
	Merupakan kondisi saat odd tidak habis dibagi 4
32	med=(y[floor(n+1)/2]+y[ceiling(n+1)/2])/2
	Floor berfungsi untuk melakukan pembulatan ke bawah
	(misal 4.5 dibulatkan ke 4). Ceiling berfungsi melakukan
	pembulatan bilangan ke atas (misal 4.5 dibulatkan ke 5).
	Mencari median dengan cara med=Data ke (n+1)/2. Jika n
	= 6 maka med $=$ data ke $(6+1)/2 =$ data ke $3,5 =$ (data ke-3)
	+ data ke-5)/2.
33	#Mencari q3
	Memberikan komentar dalam perhitungan kuartil 3
34	n=length(x);odd=(n+1)%% 4;
	Menyimpan banyaknya data ke variabel n. odd sisa hasil
	bagi dari (n+1) dibagi dengan 4.
35	y=sort(x)
	Membuat variabel y yang digunakan untuk menyimpan
26	data x yang telah diurutkan
36	if(odd==0){
	Merupakan kondisi saat sisa hasil bagi = 0 (artinya n+1
37	habis dibagi 4)
31	q3=(y[3*(n+1)/4])
	Mencari kuartil 3 dengan cara mencari data ke 3(n+1)/4 dari data yang telah diurutkan
38	else
36	Merupakan kondisi saat odd tidak habis dibagi 4
39	q3=(y[floor(3*(n+1)/4)]+y[ceiling(3*(n+1)/4)])/2
27	Floor berfungsi untuk melakukan pembulatan ke bawah
	(misal 4.5 dibulatkan ke 4). Ceiling berfungsi melakukan
	pembulatan bilangan ke atas (misal 4.5 dibulatkan ke 5).
	Mencari kuartil 3 dengan cara q3=Data ke 3(n+1)/4. Jika
	Interiori Kuartii 5 uchgan cara 45–Data ke 5(11+1)/4. Jika

	6 1 1 1 1 0/6 1)/4 1 1 7 07 /1 1 1
	n = 6 maka $q1 = data$ ke $3(6+1)/4 = data$ ke $5,25 = (data$ ke
4.0	5 + data ke-6)/2.
40	kuartil_atas=q3(x)
	Menyiman hasil perhitungan q3 ke variabel kuartil_atas
41	kuartil_atas
	Memanggil hasil perhitungan Q3 dari data tersebut
42	#mencari modus
	Memberikan komentar dalam perhitungan modus
43	n=length(x)
	Membuat variabel n yang digunakan untuk menyimpan
	banyaknya data (ukuran data)
44	for(i in 1:n){
	Melakukan perulangan dari i =1 sampai n
45	mo=0
	Proses inisiasi bahwa modus = 0
56	j=i+1
	Membuat variabel baru yaitu j dengan j= i+1 yang variabel
	j tersebut akan dilakuka perulangan
57	for(j in i:n){
	Melakukan perulangan dari j dimulai dari i sampai n
58	if(x[i] == x[j])
	Merupakan kondisi saat data ke i sama dengan data ke j
59	mo=mo+1}
	Saat data ke i sama dengan data ke j, maka modus yaitu
	banyaknya data yang sama akan bertambah 1,2 ,3 dst
	sesuai dengan banyaknya data yang sama
60	mi[i]=mo}
	mi merupakan variabel yang menyimpan banyaknya bilan
	gan yang sama (m0).mi[1] = 2 artinya data ke 2 mempuny
	ai frekuensi yang sama sebanyak dua kali
61	mod=max(mi)
	Dari semua data, akan diperbandingkan frekuensi dan frek
	uesi tersbesar yang muncul disimpan dalam variabel mod
62	for(k in 1:n){
	Melakukan perulangan k dari 1 sampai n.
63	if(mi[k]==mod)
	Merupaka kondisi saat frekuensi data ke k sama dengan m
	od.
64	modus=x[k]

	Data tersebut di cari yang menghasilkan frekuensi data ke k sama dengan mod. Dan modus adalah data ke k yang me mpunyai frekuensi paling besar
65	modus
	Memanggil hasil pencarian modus data tersebut

Berikut merupakan perbandingan hasil perhitungan secara komputasi dan secara langsung menggunakan perintah di R.

Perintah langsung di R

```
Simpangan
           > mean(x)
           [1] 5.16
baku, rata-
           > sd(x)
rata
           [1] 1.718566
Kuartil
           > summary(x)
              Min. 1st Qu. Median
                                    Mean 3rd Qu.
                                                   Max.
              1.00
                     4.00
                            6.00
                                    5.16
                                                   8.00
                                           6.00
           > table(as.vector(x))
Modus
              2 3 4 5 6 7 8
           1 2 7 9 4 16 8 3
```

Perhitungan secara komputasi

```
Simpangan
baku

> x=rbinom(50,10,0.5)
> #mencari simpangan baku
> std=function(x){
+ n=length(x);
+ ragam=(sum(x*x)-((sum(x)^2)/n))/(n-1)
+ std=sqrt(ragam)
+ }
> simpangan_baku=std(x)
> simpangan_baku
[1] 1.718566
>
```

```
Rata – rata
               > #Mencari rata-rata
               > rata=function(x){
                       n=length(x);
               +
                       rata=sum(x)/n
               > rata_rata=rata(x)
               > rata_rata
                [1] 5.16
Kuartil 1
                #Mencari kuartil bawah
              > q1=function(x){
                    n=length(x); odd=(n+1)\% 4;
                    y=sort(x)
                    if(odd==0){
                        q1=(y[((n+1)/4)])
                    else
                        q1=(y[floor((n+1)/4)]+y[ceiling((n+1)/4)])/2
              > kuartil_bawah=q1(x)
              > kuartil_bawah
              [1] 4
                #mencari median
Kuatil 2
              > med=function(x){
                    n=length(x); odd=(n+1)\%\% 2;
                    y=sort(x)
                    if(odd==0){
                        med=(y[(n+1)/2])
                    else
                        med=(y[floor(n+1)/2]+y[ceiling(n+1)/2])/2
              > median=med(x)
              > median
              [1] 6
              >
Kuartil 3
              > q3=function(x){
                   n=length(x); odd=(n+1)% 4;
                   y=sort(x)
                    if(odd==0){
                       q3=(y[3*(n+1)/4])
                   else
                       q3=(y[floor(3*(n+1)/4)]+y[ceiling(3*(n+1)/4)])/2
              > kuartil_atas=q3(x)
              > kuartil_atas
              [1] 6
```

Didapatkan hasil perhtungan sebagai berikut

Rata-rata	5,16
Simpangan	1,718566
baku	
Q1	4
Q2	6
Q3	6
Modus	6

Dari perhitungan secara komputasi dan menggunakan perintah secara langsung di R , hasil yang didapatkan sama.

4.2 Buat grafik fungsi sebaran normal baku Sebaran normal baku mempunyai rentang x dari – 4 sampai +4.

No	Source code dan penjelasan
1	x=seq(-4,4,length=500)
	Membuat rentang x dari -4 sampai 4 dengan banyak observasi = 500 (ukuran data = 500)
2	y=dnorm(x,0,1)

	Membuat fungsi kepekatan peluang dari sebaran normal baku (
	rata –rata =0 dan ragam=1)
3	plot(x,y,type="1",lwd=3,col="red")
	Membuat plot sebaran normal baku dengan dengan tipe garis line,
	ketebalan garis 3 titik, dan menggunakan warna merah

Berikut merupakan grafik sebaran normal baku

4.3 Hitung peluang sebaran normal baku untuk z=1.645, z=1.96, z=2.25

	E-1.013, E-1.70, E-2.23
No	Source Code dan penjelasan
1	pnorm(q = 1.645,mean=0,sd=1,lower.tail=F)
	Menghitung peluang sebaran normal baku P(z>1.645). lower.tail
	=F artinya peluang yang digunakan bukan komulatif, tapi
	peluang lebih dari 1.645
2	pnorm(q = 1.96,mean=0,sd=1,lower.tail=F)
	Menghitung peluang sebaran normal baku P(z>1.96). lower.tail
	=F artinya peluang yang digunakan bukan komulatif, tapi
	peluang lebih dari 1.96
3	pnorm(q = 2.25,mean=0,sd=1,lower.tail=F)
	Menghitung peluang sebaran normal baku P(z>2.25). lower.tail
	=F artinya peluang yang digunakan bukan komulatif, tapi
	peluang lebih dari 2.25

Berikut merupakan hasil perhitungan sebaran normal baku untuk beberapa nilai z tersebut

```
> pnorm(q = 1.645,mean=0,sd=1,lower.tail=F)
[1] 0.04998491
> pnorm(q = 1.96,mean=0,sd=1,lower.tail=F)
[1] 0.0249979
> pnorm(q = 2.25,mean=0,sd=1,lower.tail=F)
[1] 0.01222447
```

Dapat diringkas dalam suatu tabel

Nilai z	P(Z>z)
1.645	0.0499
1.96	0.024
2.25	0.0124

4.4 Hitung nilai z untuk peluang berikut p = 0.1, p=0.01, p=0.05

No	Source code dan penjelasan
1	qnorm(0.1,mean=0,sd=1,lower.tail=F)
	Menghitung nilai nilai z sebaran normal baku dengan peluang 0.1.
	Menghitung z sedemikian hingga $P(Z>z) = 0.1$. Lower.tail=F
	artinya peluang yang digunakan bukan komulatif, tapi peluang
	lebih dari [P(Z>z)]
2	qnorm(0.01,mean=0,sd=1,lower.tail=F)
	Menghitung nilai nilai z sebaran normal baku dengan peluang 0.1.
	Menghitung z sedemikian hingga $P(Z>z) = 0.01$. Lower.tail=F
	artinya peluang yang digunakan bukan komulatif, tapi peluang
	lebih dari [P(Z>z)]
3	qnorm(0.05,mean=0,sd=1,lower.tail=F)
	Menghitung nilai nilai z sebaran normal baku dengan peluang 0.1.
	Menghitung z sedemikian hingga $P(Z>z) = 0.05$. Lower.tail=F
	artinya peluang yang digunakan bukan komulatif, tapi peluang
	lebih dari [P(Z>z)]

Berikut merupakan hasil perhitungan nilai z dari beberapa peluang tersebut

```
> qnorm(0.1,mean=0,sd=1,lower.tail=F)
[1] 1.281552
> qnorm(0.01,mean=0,sd=1,lower.tail=F)
[1] 2.326348
> qnorm(0.05,mean=0,sd=1,lower.tail=F)
[1] 1.644854
> |
```

Dapat diringkas dalam suatu tabel

P(Z>z)	Nilai z
0.1	1.28
0.01	2.32
0.05	1.645

BAB V PENUTUP

5.1 Kesimpulan

- 1. Perhitungan menggunakan perintah langsung di R dengan secara komputasi menghasilkan hasil akhir yang sama
- 2. Dalam membuat grafik sebaran normal baku, sumbu x adalah berkisar dari -4 sampai 4.
- 3. Secara umum, menghitung nilai peluang dari peluang sebaran normal baku adalah pnorm(q,mean,sd=1,lower.tail=F) dengan q adalah quantile
- 4. Secara umum, menghitung nilai z dari peluang sebaran normal baku adalah qnorm(p,mean=0,sd=1,lower.tail=F) dengan p adalah peluang sebaran normal baku

5.2 Saran

Dalam membuat plot suatu sebaran tertentu harus diperhatikan batas interval sumbu x. Karena akan menentukan densitas dari sebaran tersebut. Jika selang interval sumbu x tidak tepat, maka plot akan terlihat berbeda dari yang sebenarnya. Hati = hati juga dalam membuat plot menggunakan tipe garis lin atau histogram karena akan memberikan gambar yang berbeda.