

高云半导体 HCLK 资源用户指南

概述

高云半导体 FPGA 产品具有丰富的高速时钟资源,具有低抖动和低偏差性能,可以支持 I/O 完成高性能数据传输,是专门针对源时钟同步的数据传输接口而设计的。高速时钟模块对时钟进行 2、3.5、4、5、8 分频,可为IDES4/IVIDEO/IDES8/IDES10/IDES16/OSER4/OVIDEO/OSER8/OSER10/OSER16 等 IO Logic 资源提供时钟。

GW1N-1

HCLK 资源数量为 2 个,位于 Bank2。Bank2 的左半 Bank 和右半 Bank 分别有一个 HCLK 资源,位于左半 Bank 上的 HLCK 资源只能用于左半 Bank 上的 IO Logic 资源,右半 Bank 上的 HLCK 资源只能用于右半 Bank 上的 IO Logic 资源。

任何一个 HCLK 的时钟输入信号可送到另一个 HCLK。

图 1 GW1N-1 HCLK 分布示意图

www.gowinsemi.com.cn 1(11)

Bank0、Bank1、Bank3 没有 HCLK 资源,但对应的 IO Logic 时钟可以由全局时钟提供。

GW1NZ-1

HCLK资源分布和使用同GW1N-1器件。

GW1N-4/GW1NR-4

HCLK 资源数量为 6 个, Bank1、Bank2、Bank3 各有 2 个 HCLK 资源。Bank1 的上半 Bank 和下半 Bank 分别有一个 HCLK 资源,位于上半 Bank 上的 HLCK 资源只能用于上半 Bank 上的 IO Logic 资源,下半 Bank 上的 HLCK 资源只能用于下半 Bank 上的 IO Logic 资源。Bank2 和 Bank3 的 HCLK 使用方法同 Bank1。

图 2 GW1N-4/GW1NR-4 HCLK 分布示意图

该芯片内部有 HCLKMUX 资源,即 HCLK 桥接。HCLKMUX 能将 Bank1、Bank2、Bank3 中的任何一个 HCLK 时钟输入信号送到 Bank1、Bank2、Bank3 中任何一个 Bank 中 HCLK,这使得 HCLK 的使用更加灵活。

图 3 GW1N-4/GW1NR-4 HCLKMUX 示意图

Bank0 没有 HCLK 资源,但对应的 IO Logic 时钟可以由全局时钟提供。

www.gowinsemi.com.cn 2(11)

GW1N-9/GW1NR-9

HCLK 资源数量为 8 个, Bank0、Bank1、Bank2、Bank3 各有 2 个 HCLK 资源。Bank0 的左半 Bank 和右半 Bank 分别有一个 HCLK 资源,位于左半 Bank 上的 HLCK 资源只能用于左半 Bank 上的 IO Logic 资源,右半 Bank 上的 HLCK 资源只能用于右半 Bank 上的 IO Logic 资源。Bank1、Bank2 和 Bank3 的 HCLK 使用方法同 Bank0。

图 4 GW1N-9/GW1NR-9 HCLK 分布示意图

该芯片内部有HCLKMUX资源,即HCLK桥接。HCLKMUX能将Bank0、Bank1、Bank2、Bank3中的任何一个HCLK时钟输入信号送到Bank0、Bank1、Bank2、Bank3中任何一个Bank中HCLK,这使得HCLK的使用更加灵活。

图 5 GW1N-9/GW1NR-9 HCLKMUX 示意图

www.gowinsemi.com.cn 3(11)

GW1NS-2

HCLK 资源数量为 8 个, Bank0、Bank1、Bank2、Bank3 各有 2 个 HCLK 资源。Bank0 的 2 个 HCLK 资源只能用于 Bank0 上的 IO Logic 资源。Bank1、Bank2 和 Bank3 的 HCLK 使用方法同 Bank0。

图 6 GW1NS-2 HCLK 分布示意图

该芯片内部有HCLKMUX资源,即HCLK桥接。HCLKMUX能将Bank0、Bank1、Bank2、Bank3中的任何一个HCLK时钟输入信号送到Bank0、Bank1、Bank2、Bank3中任何一个Bank中HCLK,这使得HCLK的使用更加灵活。

图 7 GW1NS-2 HCLKMUX 示意图

GW2A-18/ GW2AR-18

HCLK 资源数量为 8 个,分别位于 Bank0、Bank1、Bank2、Bank3、Bank4、Bank5、Bank6、Bank7。Bank0 和 Bank1 上的 HCLK 资源可以共

www.gowinsemi.com.cn 4(11)

享,用于 Bank0 和 Bank1 上的 IO Logic 资源。Bank2 和 Bank3、Bank4 和 Bank5、Bank6 和 Bank7 的 HCLK 使用方法同 Bank0 和 Bank1。

图 8 GW2A-18/ GW2AR-18 HCLK 分布示意图

该芯片内部有 HCLKMUX 资源,即 HCLK 桥接。HCLKMUX 能将 Bank 中的任何一个 HCLK 时钟输入信号送到其他任何一个 Bank 中 HCLK,这使得 HCLK 的使用更加灵活。

图 9 GW2A-18/ GW2AR-18 HCLK 示意图

www.gowinsemi.com.cn 5(11)

GW2A-55

HCLK资源和使用同GW2A-18器件。

www.gowinsemi.com.cn 6(11)

BANK 左右/上下 HCLK 资源

表 1 TOP 左右 HCLK 资源划分

器件	LEFT_start	LEFT _end	RIGHT_start	RIGHT _end
GW1NS-2K	IOT2	IOT10	IOT11	IOT19
GW1N-1K				
GW1N-4K				
GW1N-9K	IOT2	IOT28	IOT29	IOT46
GW2A-18K	ІОТ2	IOT27	ІОТ30	IOT55
GW2A-55K	ІОТ2	IOT45	IOT48	IOT91

表 2 BOTTOM 左右 HCLK 资源划分

器件	LEFT_start	LEFT _end	RIGHT_start	RIGHT _end
GW1NS-2K	IOB7	IOB10	IOB11	IOB19
GW1N-1K	IOB2	IOB10	IOB11	IOB19
GW1N-4K	IOB7	IOB19	IOB20	IOB37
GW1N-9K	IOB2	IOB28	IOB29	IOB46
GW2A-18K	IOB2	IOB27	IOB30	IOB55
GW2A-55K	IOB2	IOB45	IOB48	IOB91

表 3 LEFT 上下 HCLK 资源划分

器件	UP_start	UP _end	DOWN _start	DOWN _end
GW1NS-2K	IOL2	IOL5	IOL7	IOL9
GW1N-1K				
GW1N-4K	IOL2	IOL9	IOL11	IOL18
GW1N-9K	IOL2	IOL18	IOL20	IOL27
GW2A-18K	IOL2	IOL27	IOL29	IOL54

www.gowinsemi.com.cn 7(11)

器件	UP_start	UP _end	DOWN _start	DOWN _end
GW2A-55K	IOL2	IOL44	IOL46	IOL83

表 4 RIGHT 上下 HCLK 资源划分

器件	UP_start	UP _end	DOWN _start	DOWN _end
GW1NS-2K	IOR2	IOR5	IOR7	IOR9
GW1N-1K		1	1	1
GW1N-4K	IOR2	IOR9	IOR11	IOR18
GW1N-9K	IOR2	IOR18	IOR20	IOR27
GW2A-18K	IOR2	IOR27	IOR29	IOR54
GW2A-55K	IOR2	IOR44	IOR46	IOR83

应用举例

HCLK 原语

VHDL

```
COMPONENT CLKDIV
         GENERIC(
            DIV_MODE: STRING:= "2";
            GSREN: STRING:= "false"
          );
         PORT(
            HCLKIN: IN std_logic;
            RESETN: IN std_logic;
            CALIB: In std_logic;
            CLKOUT: OUT std_logic
          );
      end COMPONENT;
Verilog
   module CLKDIV(HCLKIN, RESETN, CALIB, CLKOUT);
   input HCLKIN;
   input RESETN;
```

www.gowinsemi.com.cn 8(11)

input CALIB;
output CLKOUT;
parameter DIV_MODE = "2";
parameter GSREN = "false";
endmodule

www.gowinsemi.com.cn 9(11)

端口

表 5 CLKDIV 端口信号

端口	描述
HCLKIN	时钟输入。
RESETN	复位信号,低有效。
CALIB	动态信号调整,调整输出时钟,3.5分频时使用,输入值为"1"。
CLKOUT	时钟输出。

参数

表 6 CLKDIV 参数描述

The second secon		
参数	描述	默认
DIV_MODE	分频系数: 2,3.5,4,5,8	2
GSREN	全局复位使能信号: false,true	false

应用示意图

图 10 CLKDIV 应用示意图

www.gowinsemi.com.cn 10(11)

技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: http://www.gowinsemi.com.cn/

E-mail: support@gowinsemi.com

Tel: 00 86 0755 82620391

版本信息

日期	版本	说明
2018/01/05	1.0	初始版本。
2018/04/20	1.1	增加 "BANK 左右/上下 HCLK 资源"。

www.gowinsemi.com.cn 11(11)

版权所有© 2018 广东高云半导体科技股份有限公司

未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。