

Transmitted herewith for filing under 37 C.F.R. §1.53(b) is the patent application of: Inventors: Ezio MUSSO, Giampiero BASILE and Sauró GIROLOMONI

For: FOAMING COMPOSITIONS

- XX Specification (44 pages)
- XX Declaration and Power of Attorney attached.
- XX Assignment Document with cover sheet
- XX Return Receipt Postcard
- XX Preliminary Amendment
- Priority of Italian Patent Application No. MI 98 A 001905 filed on August 19, 1998 is claimed under 35 U.S.C. §119.
- A certified copy of priority document is attached along with a English Language Translation.

A filing fee, calculated as shown below:

i v	(Col. 1)	(Col. 2)
FOR:	No. Filed	No. Extra
BASIC FEE		
TOTAL CLAIMS	20-20 =	0
INDEP CLAIMS	1-3=	0
MULȚIPLE DEPEN	IDENT CLAIM PI	RESENTED

^{*} If the difference in Col. 1 is less than zero, enter "0" in Col. 2

Small Entity

Siliali	Entity	_	5ma
RATE	FEE		RATE
72X	\$380	or	242
× 9=		or	× 18 =
× 39 =		or	× 78 =
-130 =		or	+260 =

or	1212
or	× 18
or	× 78
or	+260

OI

TOTAL	

٢	× 18 =	
r	× 78 =	
٢	+260 =	
•		\$760

Other Than A Small Entity

> FEE \$760

A check in the amount of \$800.00 to cover the \$760.00 filing fee and \$40.00 assignment recordation

XX The Commissioner is hereby authorized to charge payment for any additional filing fees associated with this communication or credit any overpayment to Deposit Account No. 14-1060.

Respectfully submitted

NIKAIDO, MARMELSTÉIN, MURRAY & ORAM LLP

ames A. Poulos. Reg. No. 31,714

Metropolitan Square 655 Fifteenth Street, N.W. Suite 330 - G Street Lobby Washington, D.C. 20005-5701 (202) 638-5000

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Ap	plication of)		
MUSSO et	all	}	Art Unit:	To be assigned
Serial No.	To be assigned	}	Examiner	To be assigned
Filed:	August 16,1999)		
For: Foar	ning Compositions	,		

PRELIMINARY AMENDMENT

August 16,1999

Assistant Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

Prior to issuing an official action on the merits please amend the subject application as set forth below:

In the Claims

Kindly amend the claims as set forth below:

Claim 3, lines 1 and 2, change "claims 1 and 2" to --claim 1--.

Claim 4, line 2, change "claims 1 and 2" to --claim 1--.

Claim 5, line 2, change "claims 1 and 2" to --claim 1--.

Claim 6, line 2, change "claims 1 and 2" to --claim 1--.

Claim 7, line 2, change "claims 1 and 2" to --claim 1--.

Claim 8, line 2, change "claims 1 and 2" to --claim 1--.

Claim 10, line 1, change "claims 8 and 9" to --claim 8--.

Claim 11, line 2, change "claims 1-10" to --claim 1--.

Claim 12, lines 2 and 3, change "claims 1-7 and 11" to --claim 1--.

Claim 17, lines 1 and 2, change "claims from 1 to 16" to --claim 1--.

Claim 18, line 2, change "claims 1-11" to --claim 1--.

Please cancel claims 19-21 without prejudice or disclaimer.

Claim 22, line 2, change "claims 12 and 17" to --claim 12--.

Claim 23, line 2, change "claims 18 and 21" to --claim 18--.

REMARKS

By the above amendments applicants have deleted both proper and improper multiple dependent claims. No new matter is added.

In view of the foregoing applicants respectfully request an early action on the merits.

In the event this paper is deemed not timely filed the applicant hereby petitions for an appropriate extension of time. The fee for this extension may be charged to Deposit Account No.14-1060 along with any other additional fees which may be required with respect to this paper; any overpayment should be credited to the account.

Respectfully submitted,

Nikaido, Marmelstein, Murray & Oram, LLP

James A. Poulos, III
Registration No. 31,714

Nikaido, Marmelstein, Murray & Oram, LLP Metropolitan Square 655 Fifteenth Street, NW Washington, D.C. 20005-5701 (202) 638-5000

Attorney Docket No. 8910-9024

The present invention relates to azeotropic or near azeotropic compositions to be used as trichlorofluoromethane (CFC 11) substitutes in the foaming field.

More specifically the present invention relates to azeotropic or near azeotropic mixtures characterized by zero ODP (Ozone Depletion Potential), low GWP (Global Warming Potential) and VOC (Volatile Organic Compounds) values.

The foamed polyurethanes represent a class of materials widely used for applications concerning the furnishing, car and in general transport, building and cooling industry.

Polyurethanes are polyaddition products between isocyanates and polyols; depending on the precursor features, it is possible to obtain flexible, rigid foams, or foams having intermediate characteristics.

The former are used in the furnishing and car sector, while rigid polyurethanes are widely used in the thermal insulation field for building and cooling industry.

All the polyurethane foams require a foaming agent for their preparation in order to obtain cellular structures, density, mechanical and insulation properties suitable for any application type.

As known, the common foaming agent used for the preparation of foamed polyurethanes has been for a long time CFC 11.

CFCs and specifically CFC 11 have, however, the drawback to show a high destroying power on the stratospheric ozone layer, therefore, the production and commercialization have been subjected to rules and then banned since January 1, 1995.

In the foamed polyurethane field, the use versatility of these products, which allows applications in different fields with the use of suitable technologies and raw material formulations, has made impossible the identification of a single product valid for the replacement of CFC 11 in all applications.

The alternative solutions which now result widely used foresee the use of hydrocarbons (n-pentane, iso-pentane and cyclo-pentane) or of HCFC 141b (1,1-dichloro-1-fluoroethane).

Hydrocarbons, due to their high flammability, have not a generalized use and require large investments to avoid fire and explosion risks in plants using them. Furthermore, these foaming agents constitute an atmospheric pollution source since, if exposed to the sun light in the presence of nitrogen oxides, they undergo oxidative degradation phenomena, with formation of the so called ozone-rich "oxidizing smog". Due to this negative characteristic, these products are classified as

VOC compounds (Volatile Organic Compound). HCFC 141b, which has been and is one of the most valid substitutes for above applications, has however the drawback to be moderately flammable and especially to be characterized by an ODP value equal to 0.11 (CFC 11 has ODP=1) and therefore it has been subjected to restricted use. There was a need to have available substitutes able to furtherly limit or overcome the above mentioned environmental and safety problems and which allow a simpler and generalized use as foaming agents.

In a previous patent application in the name of the Applicant foaming compositions using specific hydrofluoropolyethers have been described. However said hydrofluoropolyethers are very expensive for their obtainment process.

The need was therefore felt to have available foaming compositions based on said hydrofluoropolyethers (HFFE) having an azeotropic or near azeotropic behaviour as to be used as substitute of CFC 11 but with low environmental impact expressed in terms of ODP, GWP and VOC values.

The Applicant has unexpectedly found that the hydrofluoropolyether-based mixtures (HFPE), object of the present invention, are characterized by chemical-physical properties such to be suitable as substitutes of CFC 11, they have an environmental impact expressed in terms of ODP equal to zero and low GWP and VOC values.

It is an object of the present invention azeotropic or near azeotropic compositions to be used as foaming agents having a low environmental impact, consisting essentially of:

composition

			weight
		general	preferred
I)	difluoromethoxy bis(difluoromethyl ether)	1-95	25-95
	(HCF ₂ OCF ₂ OCF ₂ H); n-pentane	99-5	75 - 5
II)	difluoromethoxy bis(difluoromethyl ether)	1-99	25-98
	(HCF ₂ OCF ₂ OCF ₂ H); iso-pentane	99-1	75-2
III)	difluoromethoxy		
	<pre>bis(difluormethyl ether) (HCF,OCF,OCF,H);</pre>	1-60	20-60
	dimethyl ketone (acetone)	99-40	80-40
IV)	<pre>difluoromethoxy bis(difluoromethyl ether) (HCF,OCF,OCF,H);</pre>	1-99	10-98
	1,1,1,3,3-pentafluorobutane (CF ₃ CH ₂ CF ₂ CH ₃ , HFC 365 mfc)	99-1	90-2
V)	difluoromethoxy bis(difluoromethyl ether)	1-40	10-40
	(HCF ₂ OCF ₂ OCF ₂ H); 1,1,1,4,4,4-hexafluorobutane (CF ₃ CH ₂ CH ₂ CF ₃ , HFC 356 ffa)	99-60	90-60
VI)	difluorometoxy		
	<pre>bis(difluoromethyl ether) (HCF,OCF,OCF,H);</pre>	1-96	25-96
	methoxymethyl methylether	99-14	75-14
VII)	<pre>difluoromethoxy bis(difluoromethyl ether) (HCF,OCF,OCF,H);</pre>	30-99	35-98
	n-hexane	70-1	65-2
VIII)	1-difluoromethoxy 1,1,2,2-tetrafluoroethyl		
	difluoromethyl ether	1-93	25-93

	(HCF ₂ OCF ₂ CF ₂ OCF ₂ H); n-pentane	99-7	75 - 7
IX)	1-difluoromethoxy 1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF ₂ OCF ₂ CF ₂ OF ₂ H); dimethyl ketone (acetone)	30-99 70-1	50-98 50-2
X)	1-difluoromethoxy 1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF ₂ OCF ₂ CF ₂ OCF ₂ H); n-hexane	15-99 85-1	25-98 75-2
XI)	1-difluoromethoxy 1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF_OCF_CF_OCF_H); ethyl alcohol	5-99 95-1	10-98

Difluoromethoxy-bis(difluoromethyl ether) is indicated as HFFE1; 1-difluoromethoxy-1,1,2,2-tetrafluoroethyl difluoromethyl ether is indicated as HFPE2. More specifically the azeotropic compositions, in correspondence of which an absolute minimum or maximum in the boiling temperature at the pressure of 1.013 bar with respect to the pure products is noticed, are defined as follows:

Compositions are defined within +/- 2 % by weight

A)	<pre>difluoromethoxy-bis(difluoromethyl (HCF,OCF,OCF,H);</pre>	ether)	62%	bу	wt.
	n-pentane		38%	by	wt.
B)	<pre>difluoromethoxy-bis(difluoromethyl (HCF,OCF,OCF,H);</pre>	ether)	63%	by	wt.
	iso-pentane		36%	by	wt.
C)	<pre>difluoromethoxy-bis(difluoromethy1 (HCF,OCF,OCF,H);</pre>	ether)	42%	by	wt.
	dimethyl ketone (acetone)		58%	bу	wt.

D)	<pre>difluoromethoxy-bis(difluoromethyl ether) (HCF_OCF_OCF_H); 1,1,1,3,3-pentafluorobutane (CF_CH_2CF_2CH_3, HFC 365 mfc)</pre>			wt. wt.
E)	difluoromethoxy-bis(difluoromethyl ether) (HCF_OCF_OCF_H); 1,1,1,4,4,4-hexafluorobutane (CF_CH_2CH_2CF_3, HFC 356 ffa)	20% 80%	-	
F)	<pre>difluoromethoxy-bis(difluoromethyl ether) (HCF2OCF2OCF2H); methoxymethyl methyl ether</pre>	59% 41%		
G)	$\begin{array}{ll} \mbox{difluoromethoxy-bis(difluoromethyl ether)} \\ \mbox{(HCF_2OCF_2OCF_2H);} \\ \mbox{n-hexane} \end{array}$	75% 25%		
H)	<pre>1-difluoromethoxy-1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF2OCF2CF2OCF2H); n-pentane</pre>	61% 39%		
I)	1-difluoromethoxy-1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF ₂ OCF ₂ CF ₂ OCF ₂ H); dimethyl ketone (acetone)	79% 21%		
L)	1-difluoromethoxy-1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF ₂ OCF ₂ CF ₂ CF ₂ H); n-hexane	74% 26%	_	
M)	1-difluoromethoxy-1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF ₂ OCF ₂ CF ₂ OF ₂ H ₂); ethyl alcohol	95 % 5%	_	wt. wt.

The mixtures having an azeotropic or near azeotropic behaviour are of great importance in order to avoid fractionation or considerable variations of their composition during handling, dosage and storage operations wherein accidental losses can take place due to liquid evaporation and consequently variations of the composition of the fluid.

The composition variations which take place in all the cases when non azeotropic mixtures are used, involve deviations of the foaming agent performances and the need to make suitable refillings in order to restore the original composition and therefore the mixture chemical-physical characteristics.

Furthermore, when the non azeotropic or non near-azeotropic compositions contain more volatile flammable components, the vapour phase becomes rich in such component until reaching the flammability limit, with evident risks for the use safety. Likewise, when the flammable component is less volatile, it concentrates in the liquid phase giving rise to a flammable liquid.

Mixtures having azeotropic or near azeotropic behaviour avoid the above disadvantage even when a flammable compound is present.

An azeotrope is a particular composition which has singular chemical-physical, unexpected and unforeseeable properties of which the most important ones are reported hereinafter.

An azeotrope is a mixture of two or more fluids which has the same composition in the vapour phase and in the liquid one when it is in equilibrium under determined conditions.

The azeotropic composition is defined by particular tem-

perature and pressure values; in these conditions the mixtures undergo phase changes at constant composition and temperature as pure compounds.

A near azeotrope is a mixture of two or more fluids which has a vapour composition substantially equal to that of the liquid and undergoes phase changes without substantially modifying the composition and temperature. A composition is near azeotropic when, after evaporation at a constant temperature of 50% of the liquid initial mass, the per cent variation of the vapour pressure between the initial and final composition results lower than 10%; in the case of an azeotrope, no variation of the vapour pressure between the initial composition and the one obtaind after the 50% liquid evaporation is noticed.

Azeotropic or near azeotropic mixtures belong to the cases showing meaningful, both positive and negative, deviations from the Raoult law. As known to the skilled in the art such law is valid for ideal systems.

When such deviations are sufficiently marked, the mixture vapour pressure in the azeotropic point must therefore be characterized by values either lower or higher than those of the pure compounds.

It is evident that, if the mixture vapour pressure curve shows a maximum, this corresponds to a minimum of boiling

temperature; viceversa to a vapour pressure minimum value, a maximum of boiling temperature corresponds.

The azeotropic mixture has only one composition for each temperature and pressure value.

However, by changing temperature and pressure, more azeotropic compositions starting from the same components can be obtained.

For example, the combination of all the compositions of the same components which have a minimum or a maximum in the boiling temperature at different pressure levels form an azeotropic composition field.

Hydrofluoropolyethers used in the compositions of the present invention: HFPE1 and HFPE2, are obtained by decarboxylation processes of the alkaline salts obtained by hydrolysis and salification of the corresponding acylfluorides, using processes known in the art. For example, decarboxylation is carried out in the presence of hydrogendonor compounds, for example water, at temperatures of 140°-170°C and under a pressure of at least 4 atm. See for example EP 695,775 and the examples reported therein; this patent is herein incorporated by reference.

The characteristics of the two hydrofluoropolyethers used in the compositions of the present invention are reported in Table 1 in comparison with CFC 11 and HCFC 141b as regards ODP

and GWP.

It has been found that the near azeotropic compositions of points II, III, IV, V, VI, remain near azeotropic also when a portion of difluoromethoxy-bis(difluoromethyl ether) is substituted with 1-difluoromethoxy-1,1,2,2-tetrafluoroethyl-difluoromethyl ether, up to 40% by weight. They are used as foaming agents.

The same for compositions of points IX and X when a portion of 1-difluoromethoxy-1,1,2,2-tetrafluoroethyl difluoromethyl ether is substituted by difluoromethoxy-bis(difluoromethyl ether), up to 40% by weight. They are used as foaming agents

The same for compositions of points I and VII wherein a portion of difluoromethoxy-bis(difluoromethyl ether) is replaced by 1-difluoromethoxy-1,1,2,2-tetrafluoroethyl difluoromethyl ether up to 50% by weight. They are used as foaming agents.

Likewise the compositions of points VIII and X, wherein a portion of 1-difluoromethoxy-1,1,2,2-tetrafluoroethyl difluoromethyl ether is replaced by difluoromethoxy-bis(difluoromethyl ether) up to 50% by weight.

Another object of the present invention are ternary near azeotropic compositions essentially consisting of:

% by weight

XII)	<pre>difluoromethoxy-bis(difluoromethyl (HCF_OCF_OCF_H);</pre>	ether)	1-64
	1,1,1,3,3-pentafluorobutane (CF,CH,CF,CH,, HFC 365 mfc)	9	8-1
	hydrocarbon		1-35
XIII)	<pre>difluoromethoxy-bis(difluoromethyl (HCF,OCF,OCF,H);</pre>	ether)	1-22
	1,1,1,4,4,4-hexafluorobutane (CF ₃ CH ₂ CH ₂ CF ₃ , HFC 356 ffa) hydrocarbon	9	8-43
			1-35

used as foaming agents.

Among hydrocarbons, n-pentane and iso-pentane are preferred preferably in the range 1-20% by weight.

A further object of the present invention are azeotropic or near azeotropic compositions to be used as foaming agents, as described at points from I) to XIII) and from A) to M), wherein a portion of HFPE1 and/or HFPE2 is replaced by hydrofluoropoly-ethers having the same structure of HFPE1 or HFPE2 but boiling point in the range of 5°-80°C. Therefore, it is possible to refer to fluids consisting essentially of HFPE1 and/or HFPE2.

The compositions mentioned at points I, II, IV, V, VI, VII, VIII, X, A, B, D, E, F, G, H and L are preferred as foaming agents for foamed polyurethanes, and represent a good substitute for CFC 11 for their good balance of foaming properties.

The polyurethane foams produced with the azeotropic or near azeotropic compositions of the present invention are obtained by reaction between polyols and isocyanates in the presence of catalysts and other additives usually employed for preparing polyurethane foams, by using known methods. Depending on the desired foams to be prepared, polyols and isocyanates will be used such as to obtain in combination with the present invention compositions the chemical-physical and mechanical characteristics required for each specific application.

Another advantage of the present invention, in the polyurethane foam preparation field, is that to be able to modulate the affinity of the mentioned mixtures with the different types of polyols used for the different applications in order to obtain the desired manufactured article features in terms of density, mechanical and insulation properties, with the possibility, therefore, of a more generalized use of the foaming agent which changes, depending on the applications, only the composition.

Azeotropic or near azeotropic compositions are added to the formulations in amounts in the range 1-15% by weight on the total preparation, including the same foaming agent. Preferably 1.5-10% by weight, more preferably 1.5-8% by weight on the total formulation for the foam preparation.

The mentioned compositions can be advantageously used in combination with H_2O and/or CO_2 , for example gas phase.

In particular they can be used in combination with water, as in the past it was done for the CFC 11, CF 11 "reduce"-based formulations and today it is commonly done for the HCFC 141b-based formulations.

Water can be added to the formulations in amount in the range 0.5-7, preferably 1-6, and more preferably 1-4 parts by weight on one hundred parts of polyol.

The ${\rm CO}_2$ can be used in concentrations in the range 0.6-10 parts, preferably 1-8 parts by weight on one hundred parts by weight of polyol.

The mixtures of the invention can be used in combination with stabilizing agents in order to limit the radicalic decomposition reactions which, as known, are favoured by the temperature, by the presence of metals and by very reactive polyurethane formulations (for example due to polyols and/or catalysts of basic nature used in such formulations).

The degradation reactions especially concerning the mixtures containing HFC 356 ffa and 365 mfc, can be prevented or reduced by the use of nitroparaffins and/or organic substances having double bond double bonds in the molecule.

The stabilizing agents are generally used in amounts of 0.1-5% by weight.

can be used for the preparation of thermoplastic foams. These compositions can be used as foaming agents above all for foamed polystyrenes and polyethylenes; these materials were prepared in the past by using, as main foaming agents. dichlorofluoromethane (CFC 12), CFC 11 or mixtures thereof. At present polystyrenes and polyethylenes for thermal insulation applications are produced by using HCFC-based mixtures (HCFC 22: chlorotrifluoro methane; HFC 142b: 1 chloro-1,1 difluoro ethane), which however have been restricted for their environmental impact. The above compositions of the invention used for the preparation of foamed polystyrenes and polyethylenes can be advantageously used in combination with foaming agents selected from CO2, HFC 134a (1,1,1,2 tetrafluoroethane), HFC 227ea, HFC 152a (1,1 difluoroethane), HFC 236ea (1,1,1,2,3,3 hexafluoropropane) and their binary mixtures. The latter can be used in amount up to 95% by weight of the foaming agent. The amount of the foaming agent to be used for the foamed thermoplastic polymer synthesis is in the range 5-30% by weight on the thermoplastic polymer.

The following examples are given for illustrative but not limitative purpose of the present invention.

EXAMPLE 1

Azeotropic or near azeotropic behaviour evaluation

The mixture of known composition and weight is introduced

in a small glass cell, previously evacuated, having an internal volume equal to about 20 cm³, equipped with metal connections, feeding valve and a pressure transducer to evaluate the system vapour pressure.

The filling volumetric ratio is initially equal to about 0.8%v.

The cell is introduced in a thermostatic bath and the temperature is slowly changed until obtaining a vapour pressure equilibrium value equal to 1.013 bar. The corresponding temperature is recorded and it represents the mixture boiling temperature at the 1.013 bar pressure.

The temperature is measured close to the equilibrium cell with a thermometer the accuracy of which is equal to +/-0.01 °C; particular attention was paid so that the external temperature measured in the bath is really the internal one of the cell.

By changing the mixture composition it is possible to estimate possible deviations with respect to the ideality and therefore to identify the azeotropic composition which, as said, will be characterized by an absolute minumum or maximum with respect to the pure components.

In order to confirm the azeotropic or near azeotropic behaviour, the mixture characterized by a minumum or a maximum in the boiling temperature and others identified close to the azeotrope were subjected to evaporation test at the azeotrope constant temperature.

The cell content is removed at constant temperature by evaporation until having a loss corresponding to 50% by weight of the initial amount.

From the evaluation of the initial and final pressure the per cent variation of the vapour pressure is calculated: if the decrease is equal to zero the mixture in those conditions is an azeotrope, if the decrease is < 10% its behaviour is of a near azotrope.

It is known that a near azetropic mixture has a behaviour closer and closer to a true azeotrope if the per cent variation is lower and lower and near zero.

As a further confirmation of the azeotropic and near azeotropic behaviour, together with the above reported evaluations, analyses of the composition of some mixtures object of the present invention, have been carried out by gaschromatographic method before and after the evaporation test.

The azeotropic mixtures maintain unchanged, within the limits of the error of the analytical methods, the composition after the liquid evaporation, while in the case of near azeotropic systems, limited composition variations are observed.

In all the measurements reported in Tables from 2 to 13 the visual observation of the liquid phase at its normal boiling temperature has at any rate shown that no phase separations took place and that the solutions were limpid and homogeneous.

Table 1: Chemical-physical and toxicological characteristics of hydrofluoropolyethers

Chemical formula	HCF2OCF2OCF2H	HCF2OCF2CF2OCF2H	CC1 ₃ F CFC 11	CC1 ₂ FCH ₃ HCFC 141b
Molecular mass	184.04	234.05	137.37	116.94
ODP CFC 11=1	0	0	1	0.11
GWP lifetime, years	<10	<10	55	10.8

Table 2: boiling temperature evaluation at the pressure of 1.013 bar HCF,OCF,OCF,H/n-pentane binary mixture

COMPOSITION HCF ₂ OCF ₂ OCF ₂ H (% by weight)	BOILING TEMPERATURE (°C)
0	35.79
12.6	26.42
25.9	23.00
50.0	21.45
61.9	21.32
74.9	21.35
83.4	21.49
87.0	21.70
95.6	25.18
100	35.39

Table 2a: evaluation of the azeotropic and near azeotropic behaviour by determination of the vapour pressure per cent variation after evaporation of 50% of the initial liquid mass

Initial compo- sition (% by wt.) HCF ₂ OCF ₂ OCF ₂ H/ n-pentane\	Temperature (°C)	Initial pressure (bar)	ΔP/Px100 (%)
61.9/38.1	21.32	1.013	0
50.3/49.7	21.32	1.010	2.47
84.3/15.7	21.32	1.006	3.08

Table 3: evaluation of the boiling temperature at the pressure of 1.013 bar HCF,OCF,OCF,#/iso-pentane binary mixture

COMPOSITION HCF ₂ OCF ₂ OCF ₂ H (% by wt.)	BOILING TEMPERATURE (°C)
0	27.18
14.2	21.02
20.4	20.00
39.5	17.70
61.0	17.40
63.1	17.35
80.1	17.68
90.4	19.80
100	35.39

Table 4a: evaluation of the azeotropic and near azeotropic behaviour by determination of the vapour pressure per cent variation after evaporation of 50% of the initial liquid mass

Initial compo- sition (% by wt.) HCF_2OCF_2OCF_2H/ iso-pentane	Temperature (°C)	Initial pressure (bar)	ΔP/Px100 (%)
63.0/37.0	17.35	1.013	0
39.0/61.0	17.35	1.003	1.49
79.8/20.2	17.35	1.003	4.79

Table 4: evaluation of the boiling temperature at the pressure of 1.013 bar
HCF_OCF_JOCF_H/acetone binary mixture

COMPOSITION HCF ₂ OCF ₂ OCF ₂ H (% by wt.)	BOILING TEMPERATURE
0	56.50
28.1	57.88
41.7	58.11
51.0	57.98
61.2	56.63
74.8	53.62
100	35.39

Table 4a: evaluation of the azeotropic and near azeotropic behaviour by determination of the vapour pressure per cent variation after evaporation of 50% of the initial liquid mass.

Initial com- position (% by wt.) HCF ₂ OCF ₂ OCF ₂ H/ acetone	Temperature (°C)	Initial pressure (bar)	New composition after evaportion of 50% by weight of the liquid (% by wt.) HCF ₂ OCF ₂ OCF ₂ H/ acetone	ΔP/Px100 (%)
41.7/58.3	58.11	1.013	41.8/58.2	0
28.0/72.0	58.11	1.021	31.1/68.9	0.88
50.4/49.6	58.11	1.019	49.7/50.3	1.37

Table 5: evaluation of the boiling temprature at the pressure of 1.013 bar HCF,OCF,OCF,H/HFC 365 mfc binary mixture

COMPOSITION HCF ₂ OCF ₂ OCF ₂ H (% by wt.)	BOILING TEMPERATURE (°C)
0	40.09
10.0	36.89
20.0	34.92
30.0	33.71
40.1	33.01
50.1	32.66
60.1	32.60
75.0	33.13
80.0	33.54
100	35.39

Table 5a: evaluation of the azeotropic and near azeotropic behaviour by determination of the vapour pressure per cent variation after evaporation of 50% of the initial liquid mass

Initial composition (% by wt.) HCF_2OCF_2OCF_2H/ HFC 365mfc	Temperature (°C)	Initial pressure (bar)	ΔP/Px100 (%)
60.1/39.9	32.60	1.013	0
21.0/78.9	32.60	0.937	5.21
82.1/17.9	32.60	0.968	7.73

Table 6: evaluation of the boiling temperature at the pressure of 1.013 bar HCF_OCF_OCF_H/HFC 356 ffa binary mixture

COMPOSITION HCF ₂ OCF ₂ OCF ₂ H (% by wt.)	BOILING TEMPERATURE (°C)
0	24.71
10.1	24.16
19.9	24.05
29.9	24.22
40.0	24.65
49.9	25.29
60.1	26.24
70.1	27.60
80.1	29.65
100	35.39

Table 6a: evaluation of the azeotropic and near azeotropic behaviour by determination of the vapour pressure per cent variation after evaporation of 50% of the initial liquid mass

Initial composition (% by wt.) HCF_2OCF_2OCF_3H/ HFC 356 ffa	Temperature (°C)	Initial pressure (bar)	ΔP/Px100 (%)
19.9/80.1	24.05	1.013	0
4.2/95.8	24.05	1.000	0.41
38.2/61.8	24.05	0.994	2.21

Table 7: evaluation of the boiling temperature at the pressure of 1.013 bar HCF_OCF_H/methoxymethyl methyl ether binary mixture

COMPOSITION BOILING TEMPERATURE, HCF ₂ OCF ₂ OCF ₂ H, % by wt.		
0	41.96	
20.1	42.80	
27.5	43.05	
38.1	43.40	
50.6	43.78	
59.1	43.74	
60.2	43.76	
65.0	43.53	
72.1	42.95	
78.7	41.66	
100	35.39	

Table 7a: evaluation of the azeotropic and near azeotropic behaviour by determination of the vapour pressure per cent variation after evaporation of 50% of the initial liquid mass

Initial composition (% by wt.) HCF20CF20CF2H/ methoxymethyl methyl ether	Temperature (°C)	Initial pressure (bar)	ΔΡ/Px100 (%)
59.1/40.9	43.74	1.013	0
72.1/27.9	43.74	1.045	2.39
27.5/72.5	43.74	1.041	2.02

Table 8: evaluation of the boiling temperature at the pressure of 1.013 bar
HCF,OCF,OCF,H/n·hexane binary mixture

COMPOSITION HCF ₂ OCF ₂ OCF ₂ H (% by wt.)	BOILING TEMPERATURE (°C)
0	68.00
15.4	43.86
34.0	35.15
50.8	33.12
65.6	32.42
74.7	32.10
78.1	32.15
90.1	32.22
100	35.39

Table 8a: evaluation of the azeotropic and near azeotropic behaviour by determination of the vapour pressure per cent variation after evaporation of 50% of the initial liquid mass

Initial composition (% by wt.) HCF2OCF2H/ n-hexane	Temperature (°C)	Initial pressure (bar)	ΔP/Px100 (%)
74.7/25.3	32.10	1.013	0
65.6/34.4	32.10	1.006	0.60
90.1/9.9	32.10	1.011	0.89

Table 9: evaluation of the boling temperature at the pressure of 1.013 bar HCF_OCF_CF_OCF_H/n-pentane binary mixture

COMPOSITION HCF ₂ OCF ₂ CF ₂ OCF ₂ H (% by wt.)	BOILING TEMPERATURE (°C)
0	35.79
17.3	31.75
29.1	31.52
60.8	31.2
68.0	31.04
72.1	31.08
74.3	31.15
79.3	31.25
84.3	31.77
93.4	35.83
100	58.21

Table 9a: azeotropic and near azeotropic behaviour evaluation by determination of the vapour pressure per cent variation after evaporation of 50% of the initial liquid mass

Initial compo- sition (% by wt.) HCF ₂ OCF ₂ CF ₂ OCF ₂ H/ n-pentane	Temperature (°C)	Initial pressure (bar)	ΔP/Px100 (%)
60.8/39.2	31.02	1.013	0
17.3/82.7	31.02	1.002	4.59
74.3/25.7	31.02	1.008	4.36

Table 10: boiling temperature evaluation at the pressure of 1.013 bar HCF2OCF2CF2OCF3H/acetone binary mixture

COMPOSITION HCF ₂ OCF ₂ CF ₂ OCF ₂ H (% by wt.)	BOILING TEMPERATURE (°C)
0	56.50
15.5	56.83
30.8	58.23
40.7	59.45
58.6	62.87
70.0	65.04
79.4	65.96
85.5	65.28
89.9	64.41
100	58.21

Table 10a: azeotropic and near azeotropic behaviour evaluation by determination of the vapour pressure per cent variation after evaporation of 50% of the initial liquid mass

Initial composition (% by wt.) HCF_0CF_2CF_0CF_2H/ acetone	Temperature (°C)	Initial pressure (bar)	New composition after liquid evaporation of 50% by weight HCF_OCF_CF_OCF_H/ acetone (% by wt.)	ΔP/ Px100 (%)
79.5/20.5	65.96	1.013	79.3/20.7	0
69.5/30.5	65.96	1.044	73.9/26.1	2.78
84.8/15.2	65.96	1.035	82.5/17.5	2.90

Table 11: boiling temperature evaluation at the pressure of 1.013 bar HCF₂OCF₂CF₂OCF₂H/n-hexane binary mixture

COMPOSITION HCF ₂ OCF ₂ CF ₂ OCF ₂ H (% by wt.)	BOILING TEMPERATURE (°C)
0	68.00
20.6	56.24
39.7	48.81
59.9	46.74
73.8	46.66
78.7	46.76
89.9	49.00
100	58.21

Table 11a: azeotropic and near azeotropic behaviour evaluation by determination of the vapour pressure per cent variation after evaporation of 50% of the initial liquid mass

Initial composi- tion (% by wt.) HCF2OCF2CF2OCF2H/ n-hexane	Temperature (°C)	Initial pressure (bar)	ΔP/Px100 (%)
73.8/26.2	46.66	1.013	0
39.8/60.2	46.66	0.938	7.57
89.9/10.1	46.66	0.935	8.02

Table 12: boiling temperature evaluation at the pressure of 1.013 bar HCF₂OCF₂CF₂CF₂H/ethyl alcohol binary mixture

COMPOSITION HCF ₂ OCF ₂ CF ₂ OCF ₂ H (% by wt.)	BOILING TEMPERATURE (°C)
0	78.50
20.6	72.35
48.9	63.70
62.6	60.12
80.0	57.33
89.7	56.07
94.7	55.65
98.0	55.75
99.0	56.02
100	58.21

Table 12a: azeotropic and near azeotropic behaviour evaluation by determination of the vapour pressure per cent variation after evaporation of 50% of the initial liquid mass

Initial composition (% by wt.) HCF_OCF_CF_OCF_H/ ethyl alcohol	Temperature (°C)	Initial pressure (bar)	New composition after eva- poration of 50% by weight of the liquid (% by wt.) HCF_OCF_FCF_H/ ethyl alcohol	ΔP/Px100 (%)
94.7/5.3	55.65	1.013	95.0/5.0	0
79.4/20.6	55.65	0.954	75.6/24.4	1.26
99.0/1.0	55.65	1.005	99.3/0.7	2.99

Table 13: evaluation of the azeotropic behaviour of ternary mixtures by determination of the vapour pressure per cent variation after evaporation of 50% of the initial liquid

Ternary mixtures

Initial composition (% by wt) HCF2OCF2OCF3H/HCF2OCF2CF2OCF2H/ acetone	Boiling temperature (°C)	Initial pressure (bar)	ΔP/Px100 (%)
12.0/18.0/70.0	57.75	1.013	3.16
HCF ₂ OCF ₂ OCF ₂ H/HCF ₂ OCF ₂ CF ₂ OCF ₂ H n-pentane 30.0/20.0/50.0	25.50	1.013	0.30

EXAMPLE 2

Use of HFPE-based mixtures as foaming agents for the preparation of rigid polyurethanes

Foams have been prepared according to the following procedure:

In a polyethylene cylindrical container (diameter 12 cm; height 18 cm) 100 g of polyol, the required water amount for each kind of formulation and the foaming agent used for the test, are introduced.

The content is mixed with mechanical stirrer for one minute at the rate of 1900 rpm, then isocyanate is added and stirring is continued at the same speed for 15 seconds.

The foam is allowed to freely expand until the completion of the reaction.

A foam portion is drawn in the central part of the foam for the visual observation of the homogeneity, of the cellularity properties of the foam and for the density determination.

The data are reported in Table 15 in comparison with those obtained with CFC 11 and HCFC 141b (α and β comparative examples).

33 Table 14

	Example α (comp)	Example β (comp)	Example γ	Example δ	Example $arepsilon$
Polyol* polyether (g)	100	100	100	100	100
Water pbw (g)	2	2	2.6	2.7	2.6
Aminic catalyst + pbw (g)	2.5	2.5	2.5	2.5	2.5
CFC 11 pbw (g)	30*				
HCFC 141b pbw (g)		28§			
HFPE1/ HFC 365mfc (60/40) pbw (g)			29.8*		-
HFPE1/ HFC 356ffa (20)(80) pbw (g)				28.5*	
HFPE1/ HFPE2/ n-pentane (18)(72) (10) pbw (g)					33*
ISOCYA- NATE ∳ pbw (g)	160	160	170	175	170
Density kg/m³	30	29.7	30.0	29.8	30.0
Foam appearance	GOOD	GOOD	GOOD	GOOD	GOOD

HFPE1 = HCF2OCF2OCF2H

HFPE2 = HCF2OCF2CF2OCF2H

*: non flammable

§: flammable

 polyol polyether with a number of hydroxyl equal to 500 mg KOH/g and containing silicone surfactant

- ♦: N,N-dimethyl cyclohexylamine
- Polymeric methylendiphenylisocyanate (MDI)-DESMODUR
 44V20 by Bayer

pbw: parts by weight per 100 g of polyol

The HFPE-based mixtures allow to obtain polyurethane foams with good homogeneity and cellularity characteristics with densities similar to the reference products.

Sufficiently low densities (about $30 \, \text{Kg/m}^3$) are obtained with amounts of fluorinated foaming agent and water comparable with the amounts used in the reference formulations with CFC 11 and HCFC 141b.

A further advantage given by the mixtures containing HFPE is that to eliminate or limit the inflammability due to the other flammable components present in the mixture (n-pentane, HFC 365 mfc, HFC 356 ffa) with remarkable advantages in terms of foaming agent handling and in terms of reaction with fire of the final polyurethanic manufactured articles.

CLAIMS

Use as foaming agents having a low environmental impact
of azeotropic or near azeotropic compositions, based on
difluoromethoxy-bis(difluoromethyl ether) and/or 1-difluoromethoxy-1,1,2,2-tetrafluoroethyl difluoromethyl
ether, essentially consisting of:

composition

		% by weight
I)	<pre>difluoromethoxy bis(difluoromethyl ether) (HCF2OCF2OCF2H); n-pentane</pre>	1-95 99-5
II)	<pre>difluoromethoxy bis(difluoromethyl ether) (HCF2OCF2OCF2H); iso-pentame</pre>	1-99 99-1
III)	<pre>difluoromethoxy bis(difluormethyl ether) (HCF_OCF_OCF_H); dimethyl ketone (acetone)</pre>	1-60 99-40
IV)	difluoromethoxy bis(difluoromethy1 ether) (HCF ₂ OCF ₂ H); 1,1,1,3,3-pentafluorobutane (CF ₂ CH ₂ CF ₂ CH ₃ , HFC 365 mfc)	1-99 99-1
V)	difluoromethoxy bis(difluoromethyl ether) (HCF ₂ OCF ₂ CF ₂ H); 1,1,1,4,4,4,4-hexafluorobutane (CF ₃ CH ₂ CH ₂ CF ₃ , HFC 356 ffa)	1-40 99-60
VI)	difluorometoxy bis(difluoromethyl ether) (HCF ₂ OCF ₂ H); methoxymethyl methylether	1-96 99-14
VII)	<pre>difluoromethoxy bis(difluoromethyl ether) (HCF₂OCF₂OCF₂H); n-hexane</pre>	30-99 70-1

(AF 9930/031.EST)

VIII) 1-difluoromethoxy

2.

	1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF ₂ OCF ₂ CF ₂ H); n-pentane		1-93 99-7
IX)	1-difluoromethoxy 1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF ₂ OCF ₂ CF ₂ OF ₂ H); dimethyl ketone (acetone)		30-99 70-1
X)	1-difluoromethoxy 1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF ₂ OCF ₂ CF ₂ OF ₂ H); n-hexane		15-99 85-1
XI)	1-difluoromethoxy 1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF20CF2CF30CF2H); ethyl alcohol		5-99 95-1
	of azeotropic or near azeotropic con	_	
acco	.amig to craim I essentially consist	comp	or: osition weight
I)	difluoromethoxy bis(difluoromethyl ether) (HCF_OCF_OCF_H):		25-95

<pre>difluoromethoxy bis(difluoromethyl ether) (HCF_OCF_OCF_PI); n-pentane</pre>	25-95 75-5
<pre>difluoromethoxy bis(difluoromethyl ether) (HCF_OCF_OF_#); iso-pentane</pre>	25-98 75-2
<pre>difluoromethoxy bis(difluormethy1 ether) (HCF₂OCF₂OF₂H); dimethy1 ketone (acetone)</pre>	20-60 80-40
<pre>bis(difluoromethyl ether) (HCF2OCF2OCF2H); 1,1,1,3,3-pentafluorobutane</pre>	10-98 90-2
	(HCF ₂ OCF ₂ OCF ₂ H); n-pentane difluoromethoxy bis(difluoromethyl ether) (HCF ₂ OCF ₂ OCF ₂ H); iso-pentane difluoromethoxy bis(difluormethyl ether) (HCF ₂ OCF ₂ OCF ₃ H); dimethyl ketone (acetone) difluoromethoxy bis(difluoromethyl ether) (HCF ₂ OCF ₂ OCF ₃ H);

	<pre>bis(difluoromethyl ether) (HCF₂OCF₂OCF₂H);</pre>	10-40
	1,1,1,4,4,4-hexafluorobutane (CF ₃ CH ₂ CH ₂ CF ₃ , HFC 356 ffa)	90-60
VI)	<pre>difluorometoxy bis(difluoromethyl ether) (HCF,OCF,H);</pre>	25-96
	methoxymethyl methylether	75-14
VII)	<pre>difluoromethoxy bis(difluoromethyl ether) (HCF₂OCF₂OCF₂H);</pre>	35-98
	n-hexane	65-2
VIII	1-difluoromethoxy	
	1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF,OCF,OCF,OCF,H);	25-93
	n-pentane	75-7
IX)	1-difluoromethoxy	
	<pre>1,1,2,2-tetrafluoroethyl difluoromethyl ether (HCF2OCF2CF2OCF2H);</pre>	50-98
	dimethyl ketone (acetone)	50-2
X)	1-difluoromethoxy	
Δ)	1,1,2,2-tetrafluoroethyl	
	<pre>difluoromethy1 ether (HCF₂OCF₂CF₂OCF₂H);</pre>	25-98
	n-hexane	75 - 2
XI)	1-difluoromethoxy 1,1,2,2-tetrafluoroethyl	
	difluoromethyl ether (HCF2OCF2CF2OCF2H);	10-98
	ethyl alcohol	90-2

- 3. Use of azeotropic compositions according to claims 1 and 2 in correspondence of which an absolute minimum or maximum of the boiling temperature at the pressure of 1.013 bar with respect to the pure products is noticed, defined as follows:
 - A) difluoromethoxy-bis

	38	
	<pre>(difluoromethy1 ether) (HCF₂OCF₂OCF₂H); n-pentane</pre>	62% by wt. 38% by wt.
B)	<pre>difluoromethoxy- bis(difluoromethyl ether) (HCF2OCF2OCF2H); iso-pentane</pre>	63% by wt. 36% by wt.
C)	difluoromethoxy- bis(difluoromethyl ether) (HCF,OCF,OCF,H); dimethyl ketone (acetone)	42% by wt. 58% by wt.
D)	difluoromethoxy- bis(difluoromethyl ether) (HCF ₂ OCF ₂ OCF ₂ H); 1,1,1,3,3-pentafluorobutane (CF ₃ CH ₂ CF ₂ CH ₃ , HFC 365 mfc)	60% by wt.
E)	difluoromethoxy- bis(difluoromethyl ether) (HCF ₂ OCF ₂ OCF ₂ H); 1,1,1,4,4,4-hexafluorobutane (CF ₃ CH ₂ CH ₂ CF ₃ , HFC 356 ffa)	20% by wt. 80% by wt.
F)	<pre>difluoromethoxy- bis(difluoromethy1 ether) (HCF,OCF,OCF,H); methoxymethy1 methy1 ether</pre>	59% by wt.
G)	<pre>difluoromethoxy- bis(difluoromethy1 ether) (HCF₂OCF₂OCF₂H); n-hexane</pre>	75% by wt. 25% by wt.
H)	<pre>1-difluoromethoxy-1,1,2,2-tetra- fluoroethyl difluoromethyl ether (HCF₂OCF₂CF₂OCF₂H); n-pentane</pre>	61% by wt. 39% by wt.
I)	1-difluoromethoxy-1,1,2,2-tetra- fluoroethy1 difluoromethy1 ether (HCF ₂ OCF ₂ CF ₂ OF ₂ H); dimethy1 ketone (acetone)	79% by wt.
L)	1-difluoromethoxy-1,1,2,2-tetra- fluoroethyl difluoromethyl ether (HCF,OCF,CF,OCF,H); n-hexane	74% by wt. 26% by wt.
M)	1-difluoromethoxy-1,1,2,2-tetra- fluoroethyl difluoromethyl ether (HCF ₂ OCF ₂ CF ₂ OCF ₂ H);	95% by wt.

ethyl alcohol

5% by wt.

 Use as foaming agents of near azeotropic compositions according to claims 1 and 2 essentially consisting of:

		composition % by wt.		
II)	<pre>difluoromethoxy-bis(difluoromethyl ether) (HCF2OCF2OCF2H);</pre>	1-99		
	iso-pentane	99-1		
III)	<pre>difluoromethoxy-bis(difluormethyl ether) (HCF,OCF,OCF,H);</pre>	1-60		
	dimethyl ketone (acetone)	99-40		
IV)	<pre>difluoromethoxy-bis(difluoromethyl ether) (HCF₂OCF₂OCF₂H);</pre>	1-99		
	1,1,1,3,3-pentafluorobutane (CF ₃ CH ₂ CF ₂ CH ₃ , HFC 365 mfc)	99-1		
V)	<pre>difluoromethoxy-bis(difluoromethy1 ether) (HCF,OCF,H);</pre>	1-40		
	1,1,1,4,4,4,4-hexafluorobutane (CF ₃ CH ₂ CH ₂ CF ₃ , HFC 356 ffa)	99-60		
VI)	<pre>difluoromethoxy-bis(difluoromethyl ether) (HCF,OCF,OCF,H);</pre>	1-96		
	methoxymethyl methyl ether	99-14		
wherein the difluoromethoxy-bis(difluoromethyl ether)				
part	contains up to 40% by weight of 1-difl	uoromethoxy-		
1,1,2,2-tetrafluoroethyldifluoromethyl ether.				

5. Use as foaming agents of near azeotropic compositions according to claims 1 and 2 essentially consisting of:

composition

% by wt.

IX) 1-difluoromethoxy-1,1,2,2tetrafluoroethyl

30-99

	<pre>difluoromethy1 ether (HCF₂OCF₂CF₂OCF₂H); dimethy1 ketone (acetone)</pre>	70-1
X)	1-difluoromethoxy-1,1,2,2- tetrafluoroethyl difluoromethyl ether (HCF,OCF,CF,OCF,H);	15-99
	n-hexane	85-1

wherein 1-difluoromethoxy-1,1,2,2-tetrafluoroethyl difluoromethyl ether contains up to 40% by weight of difluoromethoxy-bis(difluoromethyl ether).

6. Use as foaming agents of near azeotropic compositions according to claims 1 and 2 essentially consisting of:

composition

% by wt.

I) difluoromethoxy-bis(difluoromethyl ether) 1-95 (HCF2OCF2OCF2H); n-pentane 99-5

VII) difluoromethoxy-bis(difluoromethyl ether) (HCF2OCF2OCF2H); n-hexane 70-1

wherein difluoromethoxy-bis(difluoromethyl ether) con-

tains up to 50% of 1-difluoromethoxy-1,1,2,2-tetrafluoromethyl difluoromethyl ether.

7. Use as foaming agents of near azeotropic compositions according to claims 1 and 2 essentially consisting of:

composition % by wt.

VII	I) 1-difluoromethoxy-1,1,2,2- tetrafluoroethyl difluoromethyl ether	1-93
	(HCF ₂ OCF ₂ CF ₂ OCF ₂ H); n-pentane	99-7
X)	1-difluoromethoxy-1,1,2,2- tetrafluoroethyl difluoromethyl ether	15-99
	(HCF ₂ OCF ₂ CF ₂ OCF ₂ H); n-hexane	85-1

wherein 1-difluoromethoxy-1,1,2,2-tetrafluoroethyl difluoromethyl ether contains up to 50% by weight of difluoromethoxy-bis(difluoromethyl ether).

8. Use as foaming agents of ternary near azeotropic compositions according to claims 1 and 2 essentially consisting of:

composition % by wt. XII) difluoromethoxy-bis 1-64 (difluoromethyl ether) (HCF2OCF2OCF2H); 1,1,1,3,3-pentafluorobutane 98-1 (CF₃CH₂CF₂CH₃, HFC 365 mfc) hydrocarbon 1-35 XIII) difluoromethoxy-bis 1-22 (difluoromethyl ether) (HCF2OCF2OCF2H); 1,1,1,4,4,4-hexafluorobutane 98-43 (CF₃CH₂CH₂CF₃, HFC 356 ffa) hydrocarbon 1-35

- Use of the compositions according to claim 8 wherein hydrocarbon is selected between n-pentane and isopentane.
- 10. Use of compositions according to claims 8 and 9 wherein

hydrocarbon is present in the range 1-20% by weight.

- 11. Use of azeotropic or near azeotropic compositions according to claims 1-10 wherein the ether portion HFPE1 and/or HFPE2 can contain at least up to 10% by weight of hydrofluoropolyethers having the same structure but with boiling point in the range 5°-80°C.
- 12. Use as foaming agents, for the preparation of polyurethanes, of the compositions according to claims 1-7 and 11, mentioned at points I, II, IV, V, VI, VII, VIII, X, A, B, D, E, F, G, H and L.
- 13. Use of the compositions according to claim 12 in amounts in the range 1-15% by weight on the total preparation, including the same foaming agent; preferably 1.5-10% by weight, more preferably 1.5-8% by weight on the total formulation for the foam preparation.
- Use of the compositions according to claim 12 in combination with H.O and/or CO.
- 15. Use of the compositions according to claim 14 wherein the water amount is in the range 0.5-7, preferably 1-6, and more preferably 1-4 parts by weight on one hundred parts of polyol.
- 16. Use of the compositions according to claim 14 wherein the CO₂ amount is in the range 0.6-10 parts, preferably

- 1-8 parts by weight on one hundred parts of polyol.
- 17. Use of the compositions according to claims from 1 to 16 wherein stabilizers for radicalic decomposition reactions are added, the concentration of which is in the range 0.1-5% by weight with respect to the foaming agent.
- 19. Use of the compositions according to claim 18 in combination with foaming agents of physical type selected from CO₂, HFC 134a, HFC 227ea, HFC152a (1,1 difluoroethane), HFC 236ea (1,1,1,2,3,3 hexafluoropropane) or mixtures thereof.
- 20. Use of the compositions according to claims 18 and 19 in amounts in the range 5-30% by weight on the thermoplastic polymer.
- 21. Use of the compositions according to claims from 1 to 11 and from 18 to 20 wherein stabilizers for radicalic decomposition reactions are added, the concentration of which is in the range 0.1-5% by weight with respect to the foaming agent.
- 22. Polyurethane compositions comprising the foaming

compositions according to claims 12-17.

23. Compositions of thermoplastic polymers according to claims 18-21.

FOAMING COMPOSITIONS

ABSTRACT

Use as foaming agents having a low environmental impact of azeotropic or near azeotropic compositions using difluoromethoxy-bis(difluoromethyl ether) and/or 1-difluoromethoxy-1,1,2,2-tetrafluoroethyl difluoromethyl ether.

Declaration For U.S. Patent Application

As a below named inventor, I hereby declare the	As a below	named	inventor.	I	hereby	declare	that
---	------------	-------	-----------	---	--------	---------	------

My residence, post office address and citizenship are as stated below my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled (Insert Title) "FOAMING COMPOSITIONS"

ne specification of	which is attached hereto unless t	he following box is che	ecked:	
	was filed on Application Number	as United and was amend	States Application Number or PCT ed on(if	International applicable).
hereby state that I i		contents of the above-i	dentified specification, including the	claim(s), as amended
hereby claim foreig ertificate, or §365(a elow and have also	on priority benefits under 35 U.S. a) of any PCT International appli	.C. §119(a)-(d) or §36: cation which designate lication for patent or inv	ibility as defined in 37 C.F.R. §1.56 5(b) of any foreign application(s) for d at least one country other than the entor's certificate or PCT Internation	patent or inventor's United States, listed al Application having
	MI98 A 001905	ITALY	19 August 1998	Priority Claime XX□ Yes □ No
(List prior foreign applications.	(Number)	(Country)	(Day/Month/Year Filed)	□ Yes □ No
See note A on back of	(Number)	(Country)	(Day/Month/Year Filed)	
this page)	(Number)	(Country)	(Day/Month/Year Filed)	_ □ Yes □ No
	(Application Number)	(Filing	Date)	
	(Application Number)	(Filing	Date)	
(See Note B on bac of this page)	k 🗀 See attached li	st for additional prior	foreign or provisional applications.	
lesignating the Unite lisclosed in the prior the duty to disclose it	ed States of America listed below r application(s) (U.S. or PCT) in	and, insofar as the sub the manner provided b patentability as defined	stion(s) or §365(c) of any PCT Intern ject matter of each of the claims of ty the first paragraph of 35, U.S.C. in 37 C.F.R. §1.56 which became a ling date of this application.	his application is not §112, I acknowledge
Applications or PCT International	(Application Serial No.)	(Filing Date)	(Status) (patented, p	ending, abandoned)
Applications or PCT International applications	(Application Serial No.) (Application Serial No.)	(Filing Date)		ending, abandoned)
E. Oram, Jr., Reg. 1 No. 32,131; Dougl	(Application Serial No.) at as principal attorneys David T. No. 27,931; Robert B. Murray, I	(Filing Date) Nikaido, Reg. No. 22, Reg. No. 22,980; Mart 25; Kevin C. Brown,	(Status) (patented, p 663; Charles M. Marmelstein, Reg. in S. Postman, Reg. No. 18,570; E Reg. No. 32,402; Monica Chin Kit	ending, abandoned) No. 25,895; George Marcie Emas, Reg.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of second joint investes, if any, GIAMPIERO BASILE	
Inventor's signature (film have found	August 2, 1999
Residence ALESSANDRIA. Italy	Date
Citizenship Italian	
Post Office Address Via San Giovanni Bosco 37 - ALESSANDRIA, Italy	
Full name of third joint inventor, if any SAURO GIROLOMONI	
Inventor's signature Fiele moni	August 2, 1999
Residence SPINETTA MARENGO, Alessandria, Italy	Date
Citizenship Italian	
Post Office Address Via Gambalera 102 - SPINETTA MARENGO, Alessando	ria, Italy
Full name of fourth joint inventor, if any	
Inventor's signature	Date
Residence	Date
Citizenship	
Post Office Address	
Full name of fifth joint inventor, if any	
Inventor's signature	Date
Residence	Date
Citizenship	
Post Office Address	
Full name of sixth joint inventor, if any	
Inventor's signature	Date
Residence	
Citizenship	
Post Office Address	
Full name of seventh joint inventor, if any	
Inventor's signature	Date
Residence	
Citizenship	
Post Office Address	
Full name of eighth joint inventor, if any	
Inventor's signature	
Residence	Date
Citizenship	
Post Office Address	
100 01100 1101000	
Full name of ninth joint inventor, if any	
Inventor's signature	
Residence	Date
Citizenship	
P-+ Off- Add	