08-27-2021-shift-2(1-15)

1

EE24BTECH11055 - Sai Akhila Reddy Turpu

1) The angle between the straight lines, whose direction cosines are given by the

2) Let $A = \begin{pmatrix} [x+1] & [x+2] & [x+3] \\ [x] & [x+3] & [x+3] \\ [x] & [x+2] & [x+4] \end{pmatrix}$ where [t] denotes the greatest integer less than or equal to t. If det(A) = 192, then the set of values of x is the interval:

c) $\cos^{-1}\left(\frac{8}{9}\right)$ d) $\frac{\pi}{3}$

c) [65, 66)

d) [60,61)

equations 2l + 2m - n = 0 and mn + nl + lm = 0, is :

b) $\pi - \cos^{-1}(\frac{4}{9})$

a) [68, 69)

b) [62, 63)

3) Let M and m respectively be the maximum and minimum values of the function $f(x) = \tan^{-1}(\sin x + \cos x)$ in $\left[0, \frac{\pi}{2}\right]$, then the value of $\tan(M - m)$ is equal to:		
a) $2 + \sqrt{3}$ b) $2 - \sqrt{3}$	c) $3 + 2\sqrt{2}$ d) $3 - 2\sqrt{2}$	
4) Each of the persons A and B independently tosses three fair coins. The probability that both of them get the same number of heads is:		
a) $\frac{1}{8}$ b) $\frac{5}{8}$	c) $\frac{5}{16}$	d) 1
5) A differential equation representing the family of parabolas with axis parallel to y axis and whose length of latus rectum is the distance of the point $(2, -3)$ from the line $3x + 4y = 5$, is given by:		
a) $10 \frac{d^2 y}{dx^2} = 11$ b) $11 \frac{d^2 x}{dy^2} = 10$	c) $10 \frac{d^2 x}{dy^2} = 11$ d) $11 \frac{d^2 y}{dx^2} = 10$	
6) If two tangents drawn from a point P to the parabola $y^2 = 16(x-3)$ are at righ angles, then the locus of point P is:		
a) $x + 3 = 0$ b) $x + 1 = 0$	c) $x + 2 = 0$ d) $x + 4 = 0$	
7) The equation of the plane passing through the line of intersection of planes \vec{r} $(\hat{i} + \hat{j} + \hat{k}) = 1$ and $\vec{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0$ and parallel to the x-axis is:		

a)
$$\overrightarrow{r} \cdot (\hat{j} - 3\hat{k}) + 6 = 0$$

b) $\overrightarrow{r} \cdot (\hat{i} + 3\hat{k}) + 6 = 0$

c)
$$\overrightarrow{r} \cdot (\hat{i} - 3\hat{k}) + 6 = 0$$

b)
$$\overrightarrow{r} \cdot (\hat{i} + 3\hat{k}) + 6 = 0$$

c)
$$\overrightarrow{r} \cdot (\hat{i} - 3\hat{k}) + 6 = 0$$

d) $\overrightarrow{r} \cdot (\hat{j} - 3\hat{k}) - 6 = 0$

8) If the solution curve of the differential equation $(2x - 10y^3) dy + y dx = 0$, passes through the points (0,1) and $(2,\beta)$, then β is a root of the equation:

a)
$$y^5 - 2y - 2 = 0$$

c)
$$2y^5 - y^2 - 2 = 0$$

d) $y^5 - y^2 - 1 = 0$

b)
$$2y^5 - 2y - 1 = 0$$

d)
$$y^5 - y^2 - 1 = 0$$

9) Let $\mathbf{A}(a,0)$, $\mathbf{B}(b,2b+1)$ and $\mathbf{C}(0,b)$, $b \neq 0$, $|b| \neq 1$, be points such that the area of the triangle ABC is 1 sq. unit, then the sum of all possible values of a is:

a) $\frac{-2b}{b+1}$ b) $\frac{2b}{b+1}$

c) $\frac{2b^2}{b+1}$ d) $\frac{-2b^2}{b+1}$

10) Let $[\lambda]$ be the greatest integer less than or equal to λ . The set of all values of λ for which the system of linear equations x + y + z = 4, 3x + 2y + 5z = 3, 9x + 4y + 4y + 5z = 3 $(28 + [\lambda])z = [\lambda]$ has a solution is:

- a) \mathbb{R}
- b) $(-\infty, -9) \cup (-9, \infty)$
- c) [-9, -8)
- d) $(-\infty, -9) \cup (-8, \infty)$

11) The set of all values of k > -1, for which the equation $(3x^2 + 4x + 3)^2$ $(k+1)(3x^2+4x+3)(3x^2+4x+2)+k(3x^2+4x+2)^2=0$ has real roots, is:

a) $(1, \frac{5}{2}]$ b) [2, 3)

c) $\left[-\frac{1}{2}, 1\right)$ d) $\left(\frac{1}{2}, \frac{3}{2}\right] - \{1\}$

12) A box open from top is made from a rectangular sheet of dimension $a \times b$ by cutting squares each of side x from each of the four corners and folding up the flaps. If the volume of the box is maximum, then x is equal to:

- a) $\frac{a+b-\sqrt{a^2+b^2-ab}}{a^2+b^2-ab}$

- b) $\frac{12}{a+b-\sqrt{a^2+b^2+ab}}$ c) $\frac{a+b-\sqrt{a^2+b^2-ab}}{6}$ d) $\frac{a+b+\sqrt{a^2+b^2-ab}}{6}$

13) The Boolean expression $(p \land q) \implies ((r \land q) \land p)$ is equivalent to:

a) $(p \wedge q) \implies (r \wedge q)$

c) $(p \land q) \implies (r \lor q)$

b) $(q \wedge r) \implies (p \wedge q)$

d) $(p \wedge r) \implies (p \wedge q)$

14) Let \mathbb{Z} be the set of all integers, $A = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : (x - 2)^2 + y^2 \le 4\},$

$$A = \left\{ (x, y) \in \mathbb{Z} \times \mathbb{Z} : (x - 2)^2 + y^2 \le 4 \right\},\,$$

$$B = \left\{ (x,y) \in \mathbb{Z} \times \mathbb{Z} : x^2 + y^2 \le 4 \right\},$$

$$C = \left\{ (x,y) \in \mathbb{Z} \times \mathbb{Z} : (x-2)^2 + (y-2)^2 \le 4 \right\},$$
If the total number of relations from $A \cap B$ to $A \cap C$ is 2^p , then the value of p is:

a) 16

c) 49

b) 25

d) 9

15) The area of the region bounded by the parabola $(y-2)^2 = (x-1)$, the tangent to it at the point whose ordinate is 3 and the x-axis is:

a) 9

- b) 10
- c) 4

d) 6