Zermelo-Fraenkel Set Theory

Gerald Chu

April 14, 2022

Contents

L	Language	1
2	Axioms	2
3	Rules of Inference	4

1 Language

The symbols of the Zermelo-Fraenkel set theory \mathcal{T} (or simply the theory \mathcal{T}) are the following:

- Variable symbols: x, y, z, \cdots
- Logical symbols: \Box , τ , \neg , \Longrightarrow
- Predicate symbols: =, \in
- Auxiliary symbols: (,)

Formulas (relations or terms) in the theory \mathcal{T} are those sequences of symbols which can be constructed by the following rules:

- If x is a variable symbol, then x is a term.
- If T and U are terms, then $(T \in U)$ and (T = U) are relations.
- If R is a relation, then $(\neg R)$ is a relation.
- If R and S are relations, then $(R \implies S)$ is a relation.
- If R is a relation, x is a variable symbol, then $\tau_x R$, which is τR with each occurrence of x replaced by the symbol \square and connected to the front most τ , is a term.

Example 1.

$$\tau \qquad (\qquad \Box \qquad \in \qquad y \qquad) \qquad)$$

is a term abbreviated by $\tau_x(\neg(x \in y))$.

Some abbreviations are made for convenience, which are shown as follows:

- If R is a relation, T is a term, x is a variable symbol, then we use (T|x)R for the relation obtained by replacing each occurrence of x in R with the term T.
- If R, S are relations, then we use $(R \vee S)$ for $((\neg R) \implies S)$, use $(R \wedge S)$ for $(\neg((\neg R) \vee (\neg S)))$ and use $(R \iff S)$ for $((R \implies S) \wedge (S \implies R))$.
- If R is a relation, x is a variable symbol, then we use $\exists_x R$ for $(\tau_x R|x)R$ and use $\forall_x R$ for $(\tau_x (\neg R)|x)R$.
- If R is a relation, T is a term, x is a variable symbol, then we use $\forall_{x \in T} R$ for $\forall_x ((x \in T) \implies R)$ and use $\exists_{x \in T} R$ for $\exists_x ((x \in T) \land R)$.
- If R is a relation, x and y are different variable symbols, then we use $\exists !_x R$ for $\exists_x \forall_y (R \iff (x = y))$.

2 Axioms

Certain relations in theory T are called axioms.

Theory \mathcal{T} contains the following rules to construct logical axioms:

• If R and S are relations, then

$$(R \Longrightarrow (S \Longrightarrow R))$$

is an axiom.

• If R and S are relations, then

$$(((\neg R) \implies (\neg S)) \implies (S \implies R))$$

is an axiom.

• If R, S and G are relations, then

$$((R \implies (S \implies G)) \implies ((R \implies S) \implies (R \implies G)))$$

is an axiom.

• If R is a relation, T is a term, x is a variable symbol, then

$$((T|x)R \implies \exists_x R)$$

is an axiom.

• If R is a relation, T and U are terms, x is a variable symbol, then

$$((T = U) \implies ((T|x)R \iff (U|x)R))$$

is an axiom.

• If R and S are relations, x is a variable symbol, then

$$(\forall_r (R \iff S) \implies (\tau_r R = \tau_r S))$$

is an axiom.

In the rest of this section, we assume x, y, z, s are different variable symbols. Theory \mathcal{T} contains the following set-theoretic axioms:

• Axiom of Empty Set

$$\exists_s \forall_x (\neg(x \in s))$$

We use \emptyset as an abbreviation of

$$\tau_s \forall_x (\neg (x \in s)).$$

• Axiom of Extensionality

$$\forall_x \forall_y \forall_z (((z \in x) \iff (z \in y)) \implies (x = y))$$

• Axiom of Pairing

$$\forall_x \forall_y \exists_s \forall_z ((z \in s) \iff ((z = x) \lor (z = y)))$$

If T, U are terms, then we use $\{T, U\}$ as an abbreviation of

$$\tau_s \forall_z ((z \in s) \iff ((z = T) \lor (z = U))).$$

Especially, we use $\{T\}$ as the same as $\{T, T\}$.

• Axiom of Power Set

$$\forall_y \exists_s \forall_z ((z \in s) \iff \forall_{x \in z} (x \in y))$$

If T is a term, then we use $\mathcal{P}(T)$ as an abbreviation of

$$\tau_s \forall_z ((z \in s) \iff \forall_{x \in z} (x \in T)).$$

• Axiom of Union

$$\forall_y \exists_s \forall_z ((z \in s) \iff \exists_{x \in y} (z \in x))$$

If T is a term, then we use $\bigcup T$ as an abbreviation of

$$\tau_s \forall_z ((z \in s) \iff \exists_{x \in T} (z \in x)).$$

• Axiom of Infinity

$$\exists_s ((\emptyset \in s) \land \forall_{x \in s} (\bigcup \{x, \{x\}\} \in s))$$

We use Ω_0 as an abbreviation of

$$\tau_s((\emptyset \in s) \land \forall_{x \in s}(\bigcup \{x, \{x\}\} \in s)).$$

• Axiom of Regularity

$$\forall_y ((\neg (y = \emptyset)) \implies \exists_{x \in y} \forall_{z \in y} (\neg (z \in x)))$$

Theory \mathcal{T} contains the following rules to construct axioms:

• Rule of Separation

If R is a relation which does not contain the variable symbol s, then

$$\forall_y \exists_s \forall_x ((x \in s) \iff ((x \in y) \land R))$$

is an axiom.

If R is a relation which does not contain the variable symbol s, T is a term, then we use $\{x \in T|R\}$ as an abbreviation of

$$\tau_s \forall_x ((x \in s) \iff ((x \in T) \land R)).$$

• Rule of Replacement

If R is a relation which does not contain the variable symbol s, then

$$\forall_z(\forall_{x\in z}\exists!_yR\implies\exists_s\forall_y((y\in s)\iff\exists_{x\in z}R))$$

is an axiom.

If R is a relation which does not contain the variable symbol s, T is a term, then we use R[T] as an abbreviation of

$$\tau_s \forall_y ((y \in s) \iff \exists_{x \in z} R).$$

3 Rules of Inference

The relation R is called a theorem of the theory \mathcal{T} , if at least one of the following conditions is satisfied:

- R is an axiom of the theory \mathcal{T} .
- There are theorems S, G of the theory \mathcal{T} such that G is $(S \Longrightarrow R)$.