# SLUGGER: Lossless Hierarchical Summarization of Massive Graphs (Supplemental Document)

Kyuhan Lee\*, Jihoon Ko\*, and Kijung Shin Graduate School of AI, KAIST, Seoul, South Korea {kyuhan.lee, jihoonko, kijungs}@kaist.ac.kr



Fig. 1. Example input encodings and the memoized output encodings for the inputs where p-edges are in red, n-edges are in blue, h-edges are in yellow or in orange. Note that the number of p- and n-edges is reduced from 3 in (a) to 1 in (b), and it is reduced from 3 in (c) to 2 in (d).

TABLE I
(EXTENSION OF FIGURE 5(A) IN THE MAIN PAPER). RELATIVE SIZE OF OUTPUTS AND ABSOLUTE NUMBER OF TOTAL OUTPUT EDGES. THE PRESENTED VALUES ARE THE MEANS AND STANDARD DEVIATIONS OVER FIVE RUNS.

|            |              | Rela         | ative Size of Outp | outs         |               | Absolute Number of Output Edges |                    |                     |                    |                     |  |  |
|------------|--------------|--------------|--------------------|--------------|---------------|---------------------------------|--------------------|---------------------|--------------------|---------------------|--|--|
|            | Slugger      | SWeG         | MoSSo              | Randomized   | SAGS          | Slugger                         | SWeG               | MoSSo               | Randomized         | SAGS                |  |  |
| PR         | 0.094±0.0006 | 0.134±0.0011 | 0.152±0.0009       | 0.157±0.0025 | 0.346±0.0447  | 13754.4±145.95                  | 19544.8±160.052    | 22148.6±128.481     | 22900.4±366.495    | 50557.8±6529.62     |  |  |
| EM         | 0.743±0.0007 | 0.867±0.0004 | 0.899±0.0009       | 0.867±0.0013 | 0.921±0.0018  | 136537.4±268.455                | 159293.4±68.376    | 165223.0±164.373    | 159465.8±237.624   | 169353.0±328.773    |  |  |
| AM         | 0.700±0.0001 | 0.767±0.0001 | 0.791±0.0002       | 0.788±0.0001 | 0.814±0.0003  | 1709651.6±316.74                | 1874265.0±165.401  | 1933112.8±379.424   | 1925484.0±190.945  | 1988457.4±738.293   |  |  |
| DB         | 0.678±0.0001 | 0.775±0.0001 | 0.837±0.0006       | 0.792±0.0002 | 0.806±0.0006  | 712294.8±159.084                | 813241.2±130.435   | 878400.4±617.164    | 831704.4±233.059   | 846681.2±679.724    |  |  |
| НО         | 0.422±0.0002 | 0.567±0.0002 | 0.586±0.0001       | out of time  | 0.619±0.0005  | 48313317.4±23264.4              | 64949439.8±17778.3 | 67050002.8±10659.5  | out of time        | 70927316.4±57478.8  |  |  |
| FA         | 0.429±0.0015 | 0.526±0.0004 | 0.565±0.0122       | 0.548±0.0026 | 0.592±0.0014  | 37879.4±69.349                  | 46406.2±37.957     | 49853.2±1078.84     | 48390.6±228.607    | 52268.0±122.967     |  |  |
| YO         | 0.917±0.0003 | 1.014±0.0003 | 0.999±0.0003       | 0.990±0.0017 | 1.020±0.0003  | 2740180.0±290.493               | 3028638.6±963.088  | 2985537.0±932.299   | 2957932.8±5107.55  | 3047720.0±1016      |  |  |
| ES         | 0.718±0.0007 | 0.790±0.0007 | 0.817±0.0004       | out of time  | 0.874±0.0008  | 15203198.4±11859.1              | 16743709.2±13865.4 | 17306850.8±8392.24  | out of time        | 18512651.2±15915.1  |  |  |
| LJ         | 0.744±0.0001 | 0.833±0.0000 | 0.839±0.0001       | 0.848±0.0001 | 0.890±0.0006  | 25787399.0±1604.45              | 28891149.6±1532.51 | 29091762.8±4200.39  | 29413695.4±3717.88 | 30871010.6±19734.6  |  |  |
| CA         | 0.835±0.0010 | 0.929±0.0007 | 0.927±0.0020       | 0.916±0.0174 | 0.984±0.0060  | 44559.0±102.413                 | 49594.6±37.293     | 49470.4±104.361     | 48893.6±927.268    | 52541.8±320.642     |  |  |
| SK         | 0.542±0.0004 | 0.628±0.0004 | 0.649±0.0006       | 0.653±0.0008 | 0.710±0.0030  | 6018137.2±3665.37               | 6965689.4±4626.19  | 7195481.0±7040.29   | 7242379.4±8753.51  | 7875292.4±32890.7   |  |  |
| CN         | 0.216±0.0003 | 0.249±0.0002 | 0.301±0.0045       | 0.269±0.0036 | 0.365±0.0051  | 591144.2±731.872                | 681679.0±520.699   | 823187.4±12237.8    | 737583.4±9812.7    | 998554.6±13996.6    |  |  |
| EU         | 0.187±0.0007 | 0.253±0.0004 | 0.278±0.0007       | 0.273±0.0012 | 0.370±0.0029  | 3018421.0±3685.78               | 4079028.4±5832.04  | 4491985.2±11972.8   | 4400871.0±20056.6  | 5976099.4±47379.5   |  |  |
| IC         | 0.101±0.0002 | 0.127±0.0003 | 0.158±0.0007       | out of time  | 0.230±0.0012  | 15235678.0±30341.1              | 19207769.0±38374.8 | 23877230.2±106554.2 | out of time        | 34690454.2±179803   |  |  |
| U2         | 0.142±0.0001 | 0.170±0.0000 | 0.268±0.0001       | out of time  | 0.291±0.0015  | 37097478.4±6826.24              | 44605172.4±12026.3 | 70247704.6±28318.4  | out of time        | 76217765.0±381003.8 |  |  |
| U5         | 0.108±0.0000 | 0.128±0.0000 | out of memory      | out of time  | out of memory | 84753556.8±25189.8              | 99968601.0±23705   | out of memory       | out of time        | out of memory       |  |  |
| AVG. (-U5) | 0.498±0.0004 | 0.575±0.0003 | 0.604±0.0015       | out of time  | 0.656±0.0044  | 10443975.4±2253.68              | 12807641.4±1568.18 | 15077863.4±9473.82  | out of time        | 16818448.2±29149.83 |  |  |
| AVG.       | 0.474±0.0005 | 0.547±0.0003 | out of memory      | out of time  | out of memory | 15088324.2±1993.50              | 18255201.4±2721.78 | out of memory       | out of time        | out of memory       |  |  |

TABLE II (EXTENSION OF FIGURE 5(B) IN THE MAIN PAPER).  $\underline{\text{THe average running time.}}$  The presented values are the means and standard deviations over five runs.

|            | Slugger       | SWeG           | MoSSo         | Randomized    | SAGS          |
|------------|---------------|----------------|---------------|---------------|---------------|
| PR         | 1.458±0.253   | 2.303±0.377    | 5.618±0.107   | 7.215±0.219   | 0.456±0.020   |
| EM         | 6.946±0.215   | 4.594±0.261    | 9.983±0.19    | 107.67±2.455  | 0.982±0.088   |
| AM         | 34.384±0.296  | 32.769±0.845   | 108.12±1.418  | 260.91±15.12  | 10.259±0.126  |
| DB         | 13.356±0.219  | 14.790±0.47    | 41.086±0.54   | 61.222±0.813  | 5.422±0.046   |
| HO         | 13611.4±194.1 | 3849.9±52.27   | 12315.8±73.79 | out of time   | 600.86±12.29  |
| FA         | 1.826±0.141   | 2.588±0.373    | 4.382±0.144   | 5.448±0.074   | 0.688±0.026   |
| YO         | 139.62±2.955  | 59.644±0.388   | 226.15±7.144  | 11827.9±753.2 | 20.104±0.668  |
| ES         | 1605.6±19.41  | 443.67±5.361   | 4576.2±172.2  | out of time   | 182.77±21.45  |
| LJ         | 1745.0±17.83  | 713.64±8.158   | 1741.5±30.03  | 66401.0±761.4 | 151.36±2.510  |
| CA         | 1.934±0.078   | 1.440±0.118    | 4.124±0.169   | 29.487±3.250  | 0.627±0.050   |
| SK         | 320.97±3.208  | 176.96±2.475   | 773.26±15.21  | 38939.6±969.7 | 104.46±8.998  |
| CN         | 23.456±0.699  | 27.464±0.889   | 112.14±1.985  | 1291.4±36.7   | 17.078±3.179  |
| EU         | 182.63±2.486  | 175.17±1.54    | 708.82±11.23  | 33345.9±448.6 | 105.28±11.77  |
| IC         | 1953.6±34.33  | 2291.1±47.6    | 5199.1±73.8   | out of time   | 599.60±55.71  |
| U2         | 2239.7±22.95  | 2627.8±70.01   | 9853.3±108.1  | out of time   | 626.08±11.05  |
| U5         | 12892.5±533.3 | 24311.2±1035.7 | out of memory | out of time   | out of memory |
| AVG. (-U5) | 1458.79±17.22 | 694.921±4.618  | 2378.64±19.40 | out of time   | 161.734±3.880 |
| AVG.       | 2173.40±22.04 | 2170.94±66.96  | out of memory | out of time   | out of memory |

## TABLE III

ELAPSED TIME COMPARISON FOR PARTIAL DECOMPRESSION WITH SWEG. WE REPORT THE AVERAGE TIME TAKEN FOR RETRIEVING THE NEIGHBORS OF EACH NODE IN THE SUMMARY GRAPHS OBTAINED BY SLUGGER AND SWEG. WE USED ALGORITHM 1 IN THE SWEG PAPER FOR SWEG. NOTABLY, THE TIME TAKEN FOR SLUGGER WAS STRONGLY CORRELATED WITH THE AVERAGE DEPTH OF LEAF NODES IN HIERARCHY TREES. THE PEARSON COEFFICIENT BETWEEN THEM WAS ABOUT 0.82. THE PRESENTED VALUES ARE THE MEANS AND STANDARD DEVIATIONS OVER FIVE RUNS.

|    | Ave Death and of Neda    | Elapsed Time ( | Microseconds) |
|----|--------------------------|----------------|---------------|
|    | Avg. Depth per Leaf Node | Slugger        | SWeG          |
| PR | 1.75±0.050               | 10.08±0.445    | 2.65±0.093    |
| EM | 0.83±0.006               | 3.47±0.652     | 0.92±0.056    |
| AM | 1.37±0.001               | 3.26±0.029     | 0.78±0.011    |
| DB | 0.78±0.001               | 2.36±0.062     | 0.53±0.040    |
| НО | 1.74±0.007               | 11.38±0.569    | 5.40±0.089    |
| FA | 2.50±0.030               | 14.46±1.102    | 3.65±0.124    |
| YO | 0.23±0.001               | 1.03±0.040     | 0.40±0.035    |
| ES | 1.68±0.015               | 6.07±0.349     | 1.91±0.216    |
| IJ | 0.83±0.000               | 2.97±0.145     | 1.06±0.028    |
| CA | 0.48±0.003               | 2.24±0.174     | 0.72±0.076    |
| SK | 1.14±0.004               | 2.04±0.055     | 0.76±0.020    |
| CN | 0.93±0.007               | 2.41±0.049     | 0.57±0.012    |
| EU | 1.61±0.048               | 3.54±0.021     | 1.10±0.017    |
| IC | 1.33±0.006               | 3.18±0.116     | 0.90±0.004    |
| U2 | 1.28±0.002               | 2.23±0.168     | 0.78±0.027    |
| U5 | 1.36±0.005               | 3.20±0.221     | 3.12±0.118    |

TABLE IV

(Extension of Table III in the main paper with standard deviations). The effects of the iteration number T in Slugger. As T increased, the outputs became concise and the execution time of Slugger increased. The compression rates (i.e., Eq. (10)) almost converged after 40 iterations. The presented values are the means and standard deviations over five runs.

| т  |             |             | Relative Siz | e of Outputs |             |             | Running Time (Seconds) |              |              |              |             |             |  |
|----|-------------|-------------|--------------|--------------|-------------|-------------|------------------------|--------------|--------------|--------------|-------------|-------------|--|
| 1  | 1           | 5           | 10           | 20           | 40          | 80          | 1                      | 5            | 10           | 20           | 40          | 80          |  |
| PR | 0.147±0.001 | 0.098±0.001 | 0.095±0.001  | 0.094±0.001  | 0.093±0.000 | 0.093±0.000 | 0.91±0.037             | 1.25±0.210   | 1.19±0.098   | 1.46±0.253   | 1.57±0.172  | 1.66±0.215  |  |
| EM | 0.842±0.004 | 0.805±0.002 | 0.760±0.002  | 0.743±0.001  | 0.736±0.001 | 0.734±0.001 | 1.84±0.173             | 3.58±0.180   | 4.95±0.580   | 6.95±0.215   | 10.92±0.383 | 16.87±0.883 |  |
| AM | 0.776±0.000 | 0.731±0.000 | 0.708±0.000  | 0.700±0.000  | 0.697±0.000 | 0.696±0.000 | 10.81±0.144            | 19.45±0.345  | 23.88±0.489  | 34.38±0.296  | 47.17±0.307 | 79.48±1.584 |  |
| DB | 0.734±0.001 | 0.703±0.000 | 0.687±0.000  | 0.678±0.000  | 0.676±0.000 | 0.675±0.000 | 5.22±0.087             | 8.25±0.247   | 9.50±0.180   | 13.36±0.219  | 18.43±0.268 | 32.32±0.095 |  |
| НО | 0.572±0.003 | 0.485±0.001 | 0.445±0.000  | 0.422±0.000  | 0.412±0.000 | 0.408±0.000 | 2309.3±179.7           | 5677.0±166.8 | 8730.8±166.4 | 13611±194.1  | 21324±401.7 | 33797±511.3 |  |
| FA | 0.523±0.006 | 0.456±0.002 | 0.437±0.001  | 0.429±0.002  | 0.427±0.001 | 0.426±0.001 | 0.68±0.068             | 1.49±0.191   | 1.47±0.062   | 1.83±0.141   | 2.24±0.106  | 2.37±0.103  |  |
| YO | 0.962±0.001 | 0.951±0.000 | 0.934±0.001  | 0.917±0.000  | 0.909±0.000 | 0.905±0.000 | 20.77±0.756            | 49.68±1.082  | 74.86±3.268  | 139.62±2.955 | 239.39±2.55 | 456.13±11.2 |  |
| ES | 0.847±0.004 | 0.789±0.000 | 0.747±0.001  | 0.718±0.001  | 0.705±0.001 | 0.701±0.001 | 234.03±20.6            | 576.41±25.7  | 971.44±56.5  | 1605.6±19.41 | 2803.5±39.1 | 4965.2±55.0 |  |
| LJ | 0.831±0.000 | 0.795±0.000 | 0.762±0.000  | 0.744±0.000  | 0.736±0.000 | 0.734±0.000 | 273.46±5.78            | 643.16±15.7  | 1007.1±23.7  | 1745.0±17.83 | 3046.5±28.5 | 5514.1±68.1 |  |
| CA | 0.916±0.009 | 0.873±0.003 | 0.850±0.001  | 0.835±0.001  | 0.827±0.001 | 0.823±0.001 | 0.77±0.075             | 1.30±0.111   | 1.38±0.139   | 1.93±0.078   | 2.70±0.127  | 4.16±0.128  |  |
| SK | 0.698±0.003 | 0.586±0.000 | 0.556±0.000  | 0.542±0.000  | 0.537±0.000 | 0.535±0.000 | 63.46±5.011            | 150.29±2.86  | 200.53±5.03  | 320.97±3.208 | 473.48±14.5 | 778.85±19.3 |  |
| CN | 0.299±0.005 | 0.226±0.000 | 0.219±0.000  | 0.216±0.000  | 0.215±0.000 | 0.214±0.000 | 8.58±0.393             | 16.66±0.723  | 18.16±0.274  | 23.46±0.699  | 30.46±0.532 | 44.63±0.990 |  |
| EU | 0.283±0.002 | 0.206±0.000 | 0.194±0.000  | 0.187±0.001  | 0.183±0.000 | 0.182±0.000 | 55.35±0.972            | 116.00±3.50  | 134.04±2.91  | 182.63±2.486 | 234.41±4.68 | 331.22±6.13 |  |
| IC | 0.155±0.001 | 0.107±0.000 | 0.102±0.000  | 0.101±0.000  | 0.100±0.000 | 0.100±0.000 | 648.65±49.2            | 1666.3±55.8  | 1745.4±306.7 | 1953.6±34.33 | 2156.3±14.4 | 2773.3±68.5 |  |
| U2 | 0.210±0.000 | 0.148±0.000 | 0.144±0.000  | 0.142±0.000  | 0.141±0.000 | 0.141±0.000 | 695.46±12.3            | 1576.2±20.2  | 1730.5±27.0  | 2239.7±22.95 | 2772.1±27.5 | 4163.9±19.3 |  |
| U5 | 0.156±0.001 | 0.113±0.000 | 0.110±0.000  | 0.108±0.000  | 0.108±0.000 | 0.107±0.000 | 5752.5±89.9            | 11046±250.7  | 11170±177.3  | 12893±533.3  | 14111±339.9 | 19379±516.5 |  |

TABLE V

(Extension of Table IV in the main paper with standard deviations). The pruning step in Slugger is effective. Every substep successfully decreased the size of output representations, proving the benefits of our design choices. The presented values are the means and standard deviations over five runs.

|    |              | Avg. Ma    | x Height   |            |             | Avg. Depth p | er Leaf Node |             |             | Relative Size | e of Outputs |             |
|----|--------------|------------|------------|------------|-------------|--------------|--------------|-------------|-------------|---------------|--------------|-------------|
|    | 0            | 1          | 2          | 3          | 0           | 1            | 2            | 3           | 0           | 1             | 2            | 3           |
| PR | 50.4±3.362   | 9.2±1.095  | 9.0±1.414  | 9.0±1.414  | 4.572±0.125 | 1.904±0.050  | 1.847±0.046  | 1.746±0.050 | 0.115±0.001 | 0.097±0.001   | 0.097±0.001  | 0.094±0.001 |
| EM | 12.6±0.548   | 6.2±0.447  | 6.2±0.447  | 6.2±0.447  | 1.231±0.010 | 0.848±0.006  | 0.835±0.007  | 0.826±0.006 | 0.773±0.001 | 0.745±0.001   | 0.745±0.001  | 0.743±0.001 |
| AM | 10.0±0.000   | 6.2±0.447  | 6.2±0.447  | 6.2±0.447  | 1.705±0.001 | 1.436±0.001  | 1.413±0.001  | 1.370±0.001 | 0.720±0.000 | 0.705±0.000   | 0.703±0.000  | 0.700±0.000 |
| DB | 27.8±5.070   | 6.2±0.447  | 6.2±0.447  | 6.2±0.447  | 1.417±0.002 | 0.827±0.001  | 0.799±0.001  | 0.783±0.001 | 0.746±0.000 | 0.686±0.000   | 0.683±0.000  | 0.679±0.000 |
| НО | 183.0±0.000  | 14.8±0.837 | 14.8±0.837 | 14.8±0.837 | 4.702±0.014 | 2.048±0.006  | 2.047±0.005  | 1.739±0.007 | 0.439±0.000 | 0.430±0.000   | 0.430±0.000  | 0.422±0.000 |
| FA | 9.6±0.894    | 8.8±1.304  | 8.8±1.304  | 8.8±1.304  | 2.837±0.037 | 2.539±0.027  | 2.536±0.028  | 2.504±0.030 | 0.434±0.002 | 0.430±0.001   | 0.430±0.001  | 0.429±0.001 |
| YO | 17.6±2.302   | 6.8±0.837  | 6.8±0.837  | 6.8±0.837  | 0.385±0.002 | 0.239±0.001  | 0.228±0.001  | 0.227±0.001 | 0.936±0.000 | 0.919±0.000   | 0.918±0.000  | 0.917±0.000 |
| ES | 25.4±1.517   | 11.0±1.000 | 11.0±1.000 | 11.0±1.000 | 2.650±0.018 | 1.723±0.015  | 1.720±0.015  | 1.685±0.015 | 0.728±0.000 | 0.720±0.001   | 0.720±0.001  | 0.718±0.001 |
| LJ | 65.6±12.641  | 12.0±0.000 | 12.0±0.000 | 12.0±0.000 | 1.001±0.000 | 0.872±0.000  | 0.848±0.000  | 0.834±0.000 | 0.752±0.000 | 0.747±0.000   | 0.745±0.000  | 0.744±0.000 |
| CA | 18.8±3.493   | 4.8±0.447  | 4.8±0.447  | 4.6±0.548  | 1.501±0.025 | 0.506±0.002  | 0.485±0.003  | 0.484±0.003 | 0.950±0.001 | 0.837±0.001   | 0.836±0.001  | 0.836±0.001 |
| SK | 22.6±1.342   | 11.4±0.548 | 11.4±0.548 | 11.4±0.548 | 2.029±0.011 | 1.231±0.005  | 1.159±0.005  | 1.142±0.004 | 0.577±0.001 | 0.547±0.001   | 0.544±0.001  | 0.542±0.000 |
| CN | 44.2±1.924   | 9.6±0.894  | 9.6±0.894  | 9.6±0.894  | 2.774±0.013 | 0.998±0.005  | 0.945±0.007  | 0.928±0.007 | 0.259±0.000 | 0.219±0.000   | 0.218±0.000  | 0.216±0.000 |
| EU | 202.0±73.607 | 9.2±0.837  | 9.2±0.837  | 9.2±0.837  | 4.259±0.130 | 1.793±0.030  | 1.728±0.044  | 1.610±0.048 | 0.221±0.001 | 0.197±0.001   | 0.196±0.001  | 0.187±0.001 |
| IC | 502.2±3.033  | 12.0±0.707 | 12.0±0.707 | 12.0±0.707 | 4.196±0.043 | 1.433±0.004  | 1.379±0.005  | 1.330±0.006 | 0.126±0.000 | 0.104±0.000   | 0.104±0.000  | 0.101±0.000 |
| U2 | 488.8±25.044 | 12.4±0.548 | 12.4±0.548 | 12.4±0.548 | 4.034±0.006 | 1.400±0.001  | 1.317±0.001  | 1.281±0.002 | 0.177±0.000 | 0.145±0.000   | 0.144±0.000  | 0.142±0.000 |
| U5 | 499.8±0.837  | 13.6±1.517 | 13.6±1.517 | 13.6±1.517 | 5.014±0.010 | 1.492±0.004  | 1.395±0.004  | 1.356±0.005 | 0.136±0.000 | 0.110±0.000   | 0.110±0.000  | 0.108±0.000 |

### TABLE VI

(Extension of Table V in the main paper with standard deviations). The effects of the height of hierarchy trees. As the upper bound  $H_b$  of the height increased, the average depth of leaf nodes increased, and the relative size of outputs decreased. Notably, the average depth of leaf nodes was much lower than the upper bound  $H_b$ . The presented values are the means and standard deviations over five runs.

|    |            | Avg        | j. Depth per Leaf N | lode       |            | Relative Size of Outputs |             |             |             |             |  |
|----|------------|------------|---------------------|------------|------------|--------------------------|-------------|-------------|-------------|-------------|--|
|    | 2          | 5          | 7                   | 10         | ∞          | 2                        | 5           | 7           | 10          | ∞           |  |
| PR | 0.94±0.033 | 1.28±0.037 | 1.42±0.031          | 1.57±0.035 | 1.75±0.050 | 0.194±0.001              | 0.112±0.000 | 0.103±0.001 | 0.099±0.001 | 0.094±0.001 |  |
| EM | 0.70±0.002 | 0.80±0.005 | 0.80±0.004          | 0.80±0.004 | 0.83±0.006 | 0.757±0.001              | 0.743±0.001 | 0.743±0.001 | 0.743±0.001 | 0.743±0.001 |  |
| AM | 1.14±0.001 | 1.36±0.002 | 1.37±0.001          | 1.37±0.002 | 1.37±0.001 | 0.722±0.000              | 0.704±0.000 | 0.704±0.000 | 0.704±0.000 | 0.700±0.000 |  |
| DB | 0.67±0.000 | 0.75±0.001 | 0.75±0.002          | 0.76±0.001 | 0.78±0.001 | 0.722±0.000              | 0.682±0.000 | 0.680±0.000 | 0.679±0.000 | 0.679±0.000 |  |
| НО | 1.12±0.000 | 1.48±0.002 | 1.67±0.002          | 1.85±0.002 | 1.74±0.007 | 0.503±0.000              | 0.446±0.000 | 0.437±0.000 | 0.433±0.000 | 0.422±0.000 |  |
| FA | 1.50±0.005 | 2.26±0.012 | 2.42±0.043          | 2.46±0.072 | 2.50±0.030 | 0.463±0.001              | 0.433±0.000 | 0.433±0.002 | 0.432±0.002 | 0.429±0.001 |  |
| YO | 0.21±0.000 | 0.23±0.001 | 0.23±0.001          | 0.23±0.001 | 0.23±0.001 | 0.924±0.000              | 0.919±0.000 | 0.918±0.000 | 0.918±0.001 | 0.917±0.000 |  |
| ES | 1.22±0.006 | 1.47±0.007 | 1.56±0.010          | 1.63±0.018 | 1.68±0.015 | 0.742±0.001              | 0.725±0.001 | 0.722±0.000 | 0.721±0.000 | 0.718±0.001 |  |
| LJ | 0.71±0.000 | 0.82±0.001 | 0.82±0.000          | 0.83±0.001 | 0.83±0.000 | 0.755±0.000              | 0.747±0.000 | 0.746±0.000 | 0.746±0.000 | 0.744±0.000 |  |
| CA | 0.44±0.003 | 0.47±0.007 | 0.48±0.008          | 0.48±0.002 | 0.48±0.003 | 0.886±0.002              | 0.845±0.002 | 0.839±0.001 | 0.837±0.002 | 0.836±0.001 |  |
| SK | 0.84±0.001 | 1.07±0.001 | 1.12±0.004          | 1.14±0.004 | 1.14±0.004 | 0.579±0.000              | 0.547±0.000 | 0.545±0.000 | 0.545±0.000 | 0.542±0.000 |  |
| CN | 0.69±0.001 | 0.84±0.006 | 0.88±0.009          | 0.87±0.004 | 0.93±0.007 | 0.306±0.002              | 0.231±0.001 | 0.223±0.001 | 0.218±0.000 | 0.216±0.000 |  |
| EU | 1.10±0.007 | 1.45±0.012 | 1.55±0.024          | 1.62±0.012 | 1.61±0.048 | 0.285±0.001              | 0.206±0.000 | 0.200±0.001 | 0.197±0.000 | 0.187±0.001 |  |
| IC | 0.89±0.000 | 1.16±0.003 | 1.27±0.005          | 1.33±0.003 | 1.33±0.006 | 0.202±0.000              | 0.119±0.000 | 0.110±0.000 | 0.106±0.000 | 0.101±0.000 |  |
| U2 | 0.91±0.000 | 1.13±0.001 | 1.20±0.001          | 1.24±0.001 | 1.28±0.002 | 0.241±0.000              | 0.158±0.000 | 0.149±0.000 | 0.146±0.000 | 0.142±0.000 |  |
| U5 | 0.96±0.000 | 1.19±0.000 | 1.26±0.010          | 1.31±0.003 | 1.36±0.005 | 0.210±0.000              | 0.125±0.000 | 0.116±0.000 | 0.112±0.000 | 0.108±0.000 |  |

#### TABLE VII

The execution time of four graph algorithms on summarized graphs. The presented values are the means and standard deviations over three runs. We measured the running time of 4 common algorithms: Dijkstra's, BFS, PageRank, and triangle counting, on summarized graphs obtained by Slugger and SWeG. For Dijkstra's and BFS, the node with a maximum degree was chosen as the initial source node, and we assume the weight of every edge as 1. For PageRank, we chose a damping factor of 0.85. During execution, we partially decompressed the model based on Algorithm 4 to retrieve the neighbors of the nodes for Slugger and used Algorithm 1 in the SWeG paper for SWeG. As seen in the numbers below, there is a trade-off between the size of compressed graphs and the speed of algorithms.

| Toolso | ٦           | Friangle Countin | g            |             | BFS         |             | Dijkstra    |             |             | PageRank    |              |              |
|--------|-------------|------------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|
| Tasks  | Original    | SWeG             | Slugger      | Original    | SWeG        | Slugger     | Original    | SWeG        | Slugger     | Original    | SWeG         | Slugger      |
| PR     | 0.197±0.001 | 0.532±0.069      | 1.065±0.099  | 0.013±0.006 | 0.019±0.001 | 0.054±0.014 | 0.012±0.005 | 0.020±0.001 | 0.047±0.010 | 0.107±0.010 | 0.332±0.014  | 0.741±0.057  |
| EM     | 0.152±0.001 | 0.420±0.201      | 0.677±0.021  | 0.020±0.002 | 0.036±0.006 | 0.062±0.005 | 0.020±0.001 | 0.051±0.031 | 0.061±0.004 | 0.228±0.003 | 0.485±0.044  | 1.089±0.032  |
| AM     | 0.650±0.008 | 1.932±0.025      | 3.466±0.018  | 0.103±0.009 | 0.378±0.013 | 0.860±0.021 | 0.122±0.004 | 0.401±0.012 | 0.740±0.030 | 0.994±0.057 | 4.686±0.124  | 10.24±0.117  |
| DB     | 0.342±0.004 | 0.805±0.085      | 1.477±0.016  | 0.099±0.002 | 0.211±0.014 | 0.327±0.024 | 0.105±0.001 | 0.238±0.007 | 0.343±0.002 | 0.706±0.030 | 3.133±0.039  | 5.672±0.116  |
| НО     | 746.2±14.51 | 1905.8±76.91     | 4641.0±41.89 | 1.947±0.007 | 8.999±0.560 | 24.36±0.139 | 1.792±0.031 | 8.103±0.230 | 18.83±0.728 | 36.57±0.468 | 153.7±3.948  | 390.5±10.58  |
| FA     | 0.124±0.001 | 0.463±0.208      | 0.800±0.120  | 0.006±0.001 | 0.015±0.001 | 0.038±0.006 | 0.007±0.005 | 0.014±0.001 | 0.041±0.006 | 0.060±0.003 | 0.228±0.014  | 0.572±0.060  |
| YO     | 1.521±0.082 | 3.518±0.176      | 7.529±0.055  | 0.289±0.034 | 0.597±0.072 | 1.149±0.031 | 0.315±0.013 | 0.698±0.086 | 0.923±0.010 | 2.886±0.109 | 12.06±0.328  | 21.89±0.246  |
| ES     | 27.89±0.361 | 66.06±0.528      | 165.9±0.820  | 0.449±0.083 | 1.852±0.018 | 5.685±0.162 | 0.473±0.026 | 1.843±0.049 | 4.285±0.172 | 9.506±0.166 | 37.58±0.629  | 107.9±3.068  |
| LJ     | 27.08±0.100 | 78.35±0.423      | 179.4±3.113  | 2.006±0.263 | 6.295±0.116 | 12.90±1.249 | 2.248±0.184 | 5.577±0.074 | 10.78±0.374 | 22.52±0.417 | 93.52±1.436  | 206.6±2.199  |
| CA     | 0.023±0.001 | 0.056±0.002      | 0.110±0.018  | 0.007±0.001 | 0.017±0.001 | 0.022±0.001 | 0.009±0.001 | 0.024±0.005 | 0.023±0.002 | 0.085±0.025 | 0.285±0.008  | 0.535±0.006  |
| SK     | 5.983±0.193 | 17.67±0.449      | 38.26±0.739  | 0.299±0.027 | 1.421±0.037 | 3.195±0.146 | 0.472±0.039 | 1.546±0.025 | 2.844±0.113 | 7.227±0.175 | 36.74±0.459  | 82.87±0.627  |
| CN     | 0.741±0.009 | 2.391±0.155      | 5.466±0.350  | 0.058±0.008 | 0.218±0.014 | 0.430±0.040 | 0.068±0.003 | 0.239±0.011 | 0.414±0.010 | 1.741±0.051 | 7.120±0.112  | 15.68±0.138  |
| EU     | 7.168±0.112 | 25.59±0.590      | 56.90±1.079  | 0.302±0.003 | 1.377±0.042 | 2.824±0.086 | 0.317±0.006 | 1.141±0.005 | 2.465±0.082 | 7.429±0.072 | 31.69±1.071  | 75.88±2.145  |
| IC     | 916.7±14.61 | 5724.9±113.2     | 9113.0±158.7 | 1.992±0.262 | 11.60±0.219 | 26.77±0.173 | 2.242±0.061 | 10.30±0.257 | 20.14±0.228 | 60.89±4.812 | 336.5±8.746  | 707.5±10.39  |
| U2     | 88.55±1.111 | 373.4±2.729      | 859.9±21.82  | 7.313±2.205 | 26.92±0.843 | 62.78±1.405 | 5.262±0.228 | 19.46±0.211 | 39.13±0.635 | 111.4±1.484 | 530.4±13.55  | 1319.8±19.33 |
| U5     | 780.5±34.34 | 2023.6±25.24     | 4157.0±83.14 | 43.24±0.560 | 98.14±2.796 | 223.7±3.175 | 29.83±1.176 | 82.11±2.326 | 145.9±3.176 | 724.9±22.52 | 2110.6±33.33 | 4246.3±75.63 |

#### TABLE VIII

The effects of the maximum number of candidate set. As the maximum number of each candidate set increased, the relative size of outputs decreased, and the running time increased. The presented values are the means and standard deviations over five runs.

|    |             | Relative Size | e of Outputs |             |              | Running Tim  | ne (Seconds) |              |
|----|-------------|---------------|--------------|-------------|--------------|--------------|--------------|--------------|
|    | 20          | 100           | 500          | 2500        | 20           | 100          | 500          | 2500         |
| PR | 0.095±0.001 | 0.095±0.001   | 0.094±0.001  | 0.093±0.001 | 0.843±0.072  | 1.169±0.170  | 1.458±0.253  | 1.740±0.267  |
| EM | 0.759±0.002 | 0.747±0.001   | 0.743±0.001  | 0.743±0.001 | 2.724±0.090  | 4.334±0.117  | 6.946±0.215  | 9.401±1.044  |
| AM | 0.702±0.000 | 0.700±0.000   | 0.700±0.000  | 0.700±0.000 | 34.345±0.484 | 38.912±0.792 | 34.384±0.296 | 46.208±1.760 |
| DB | 0.680±0.000 | 0.678±0.000   | 0.678±0.000  | 0.678±0.000 | 14.823±0.144 | 16.763±0.346 | 13.356±0.219 | 16.822±0.252 |
| НО | 0.443±0.000 | 0.431±0.000   | 0.422±0.000  | 0.418±0.000 | 1318.1±14.15 | 3215.5±48.85 | 13611±194.1  | 52592±2053.7 |
| FA | 0.441±0.001 | 0.431±0.001   | 0.429±0.001  | 0.430±0.001 | 1.001±0.057  | 1.729±0.308  | 1.826±0.141  | 1.866±0.108  |
| YO | 0.931±0.001 | 0.923±0.001   | 0.917±0.000  | 0.914±0.001 | 59.500±0.597 | 83.644±2.310 | 139.62±2.955 | 308.98±14.95 |
| ES | 0.741±0.000 | 0.724±0.001   | 0.718±0.001  | 0.713±0.000 | 319.26±4.984 | 756.61±19.27 | 1605.6±19.41 | 5357.9±267.8 |
| LJ | 0.758±0.000 | 0.746±0.000   | 0.744±0.000  | 0.743±0.000 | 610.88±2.284 | 1147.6±22.85 | 1745.0±17.84 | 2616.4±93.79 |
| CA | 0.858±0.002 | 0.847±0.002   | 0.835±0.002  | 0.831±0.001 | 1.140±0.051  | 1.327±0.101  | 1.934±0.078  | 3.047±0.516  |
| SK | 0.558±0.000 | 0.547±0.000   | 0.542±0.000  | 0.539±0.000 | 135.54±1.802 | 190.09±2.039 | 320.97±3.208 | 690.63±37.73 |
| CN | 0.220±0.001 | 0.217±0.000   | 0.216±0.000  | 0.215±0.001 | 16.293±0.248 | 19.374±0.435 | 23.456±0.699 | 57.388±2.063 |
| EU | 0.192±0.001 | 0.189±0.000   | 0.187±0.000  | 0.186±0.000 | 86.701±1.195 | 120.04±2.749 | 182.63±2.486 | 469.15±19.43 |
| IC | 0.105±0.000 | 0.102±0.000   | 0.101±0.000  | 0.100±0.000 | 652.12±9.228 | 990.46±25.88 | 1953.6±34.33 | 7318.0±234.4 |
| U2 | 0.147±0.000 | 0.144±0.000   | 0.142±0.000  | 0.141±0.000 | 1343.6±8.465 | 1639.6±5.681 | 2239.7±22.95 | 4768.7±39.90 |
| U5 | 0.112±0.000 | 0.109±0.000   | 0.108±0.000  | 0.108±0.000 | 6404.4±92.88 | 9355.6±220.8 | 12893±533.3  | 17350±436.4  |