Elliptic Curves - Homework 3

Francesco Minnocci

December 17, 2024

8. To find an isomorphism between $C: x^2+y^2+z^2=0$ and $\mathbb{P}^1_{\overline{\mathbb{Q}}}$, we first observe that C is isomorphic to $C': x^2+y^2=z^2$ via

$$C' \to C$$

$$[x:y:z] \mapsto [x:y:iz],$$

with inverse $[x:y:z]\mapsto [x:y:-iz]$. Furthermore, C' is isomorphic to $\mathbb{P}^1_{\overline{\mathbb{Q}}}$ via the map constructed in the first homework, and we can compose the two isomorphisms to get

$$\varphi: \mathbb{P}^{1}_{\mathbb{Q}} \to C$$
$$[x:y] \mapsto [y^{2} - x^{2}: 2xy: i(x^{2} + y^{2})],$$

whose inverse is given by the morphism

$$\varphi^{-1}: C \longrightarrow \mathbb{P}^{1}_{\mathbb{Q}}$$

$$[x:y:z] \longmapsto \begin{cases} [y:x-iz] \text{ if } y(x-iz) \neq 0\\ [-x-iz:y] \text{ if } y(-x-iz) \neq 0 \end{cases}$$

We have thus found an isomorphism between C and $\mathbb{P}^1_{\overline{\mathbb{Q}}}$ over $\overline{\mathbb{Q}}$, which shows that C is a twisted form of $\mathbb{P}^1_{\mathbb{Q}}$. To find a corresponding cocycle, notice that φ is already defined over $\mathbb{Q}(i)$. This means that the action of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the group $\operatorname{Aut}(\mathbb{P}^1_{\overline{\mathbb{Q}}})$ factors through $\operatorname{Gal}(\mathbb{Q}(i)/\mathbb{Q})$, and so for $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ we have that

$$\varphi^{-1}\circ\sigma(\varphi)=\varphi^{-1}\circ(\sigma\circ\varphi\circ\sigma^{-1}):\mathbb{P}^1_{\overline{\mathbb{O}}}\longrightarrow\mathbb{P}^1_{\overline{\mathbb{O}}}$$

sends

$$[x:y] \longmapsto \begin{cases} [x:y] & \text{if } \sigma(i) = i \\ [-y:x] & \text{if } \sigma(i) = -i, \end{cases}$$

as can be checked directly by the explicit formulas for φ and φ^{-1} .

9. In the following, we denote by \overline{E} the $\overline{\mathbb{F}}_q$ -points of the elliptic curve E. Taking the exact sequence

$$0 \to \overline{E}[\ell] \to \overline{E} \to \overline{E} \to 0$$

yields a following exact sequence in cohomology:

$$\cdots \longrightarrow E(\mathbb{F}_q) \stackrel{\ell}{\longrightarrow} E(\mathbb{F}_q) \longrightarrow H^1(\mathbb{F}_q, \overline{E}[\ell]) \longrightarrow \underline{H^1(\mathbb{F}_q, \overline{E})} \longrightarrow \cdots$$

where the last term is zero by Lemma 12.12 in the notes. In others words, the group $H^1(\mathbb{F}_q, \overline{E}[\ell])$ is a quotient of the finite abelian group $E(\mathbb{F}_q)$, hence finite itself.

Finally, for all but finitely many ℓ (all except those dividing the order of $E(\mathbb{F}_q)$), multiplication by ℓ is an automorphism of the group $E(\mathbb{F}_q)$, which in particular has trivial cokernel $H^1(\mathbb{F}_q, \overline{E}[\ell])$. This shows that the group $H^1(\mathbb{F}_q, \overline{E}[\ell])$ is trivial for all but finitely many ℓ .

10. (in collaboration with Marco Sanna) Let \overline{K} be a fixed algebraic closure of K. By the Néron-Ogg-Shafarevich criterion, the curve E has good reduction if and only the whole Tate module is fixed by the inertia subgroup I.

In the case of bad reduction, we will show that E cannot have additive reduction over $K^{\rm nr}$; this implies that it has either good reduction over $K^{\rm nr}$ (and we have seen that in this case E has good reduction over K) or multiplicative reduction over $K^{\rm nr}$. In this last case, E must also have multiplicative reduction over K (which is our goal); indeed, if the E has equation $y^2 = x^3 + Ax + B$ over K with minimal discriminant Δ , and assume by contradiction that E has additive reduction over K (that is, up to translation $\overline{A} = \overline{B} = 0$). Then, since E has multiplicative reduction over $K^{\rm nr}$, the valuation $v_{K^{\rm nr}}(\Delta)$ cannot be minimal (otherwise we could use the equation $y^2 = x^3$ for its reduction and it would be additive), and so there is some coordinate change

$$x = u^2 x', \quad y = u^3 y'$$

sends Δ to $u^{-12}\Delta$, and

$$v_{K^{\operatorname{nr}}}(u^{-12}\Delta) < v_{K^{\operatorname{nr}}}(\Delta) = v_K(\Delta).$$

After fixing a uniformizer π of \mathcal{O}_K (which is also a uniformizer of $\mathcal{O}_{K^{\operatorname{nr}}}$), we can write u as $w \cdot \pi^r$ for some $w \in \mathcal{O}_{K^{\operatorname{nr}}}$ and $r \in \mathbb{Z}$. Then, we have we can write u as $w \cdot \pi^r$, and the coordinate change

$$x \to \pi^{2r} x$$
, $y \to \pi^{3r} y$

sends Δ to $\pi^{-12r}\Delta$, which contradicts the minimality of $v_K(\Delta)$:

$$v_K(\pi^{-12r}\Delta) = v_{K^{nr}}(u^{-12}\Delta) < v_K(\Delta).$$

Suppose now that E has additive reduction over K^{nr} , and let κ be the residue field of K^{nr} . As in the proof of Theorem 13.4, we first choose m large enough such that

$$l^m > |E(K^{\rm nr})/E(K^{\rm nr})^{(0)}|.$$

By assumption, there is some non-trivial element (P_i) of $T_{\ell}(E)$ which is fixed by I. Setting

$$\overline{n} := \min\{n : \pi_n((P_i)) \neq O\},\$$

by definition of $T_{\ell}(E)$ this means that

$$Q := \pi_{\overline{n}+m-1}((P_i))$$

has order ℓ^m , and since Q is fixed by I, it is defined over K^{nr} . By our choice of m, the order ℓ subgroup generated by $(l^{m-1}Q)$ must be contained in $E(K^{\mathrm{nr}})^{(0)}[l]$, but since $E(K^{\mathrm{nr}})^{(1)}$ has no ℓ -torsion, the reduction map r is an injection on $E(K^{\mathrm{nr}})^{(0)}[l]$, which should send $(l^{m-1}Q)$ to a point of order ℓ in $\overline{E}(\kappa)_{\mathrm{smooth}} \simeq \kappa^+ \simeq \overline{\mathbb{F}}_p^+$. This yields the a contradiction, as $\overline{\mathbb{F}}_p^+$ has no points of order ℓ for $\ell \neq p$, and so E cannot have additive reduction over K^{nr} , which concludes. K.