MACHINE LEARNING LAB-5:LOGISTIC REGRESSION:

Submitted by:

Name: **Stebin George**

Register Number: 21122061

Class: 2MSCDS

Lab Overview

Objectives

TO get to know more anbout the logistic regression using the breast cancer dataset

LIBRARIES:

```
In [1]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
```

Questions:

Apply Logistic Regression for Breast Cancer Dataset. Use 60:40 train-test ratio for splitting the dataset.

- 1. Demonstrate the Logistic Regression for different penalties/regularisation methods none, l1, l2 (you may use 'saga' solver as the parameter)
- 2. What happens when the Maximum Iterations are kept as 1, 2, 5, 10, 20, 50, 100, 500 and 1000? Is there any change in the accuracy.
- 3. Get the attributes: classes, coef and intercept_ and print the same in the above case.

Problem Definition:

This problem tries to predict the cancer predictions amoung the cancer dataset. The dataset used is cancer dataset in kaggle.

Approach

- Importing the necessary libraries
- analysing the data and doing the basic operations
- doing the EDA and pre-processing steps
- Loading the logistic regression function

- · checking for the accuracy
- usage of penalties and maximum iter

Sections

- 1. Libraries
- 2. introduction
- 3. EDA
- 4. MODEL BUILDING
- 5. Q&A
- 6. Conclusion

References

- 1. https://www.quora.com/What-is-regularization-in-machine-learning
- 2. https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
- 3. https://towardsdatascience.com/regularization-an-important-concept-in-machine-learning-5891628907ea

Loading Dataset:

```
In [2]:
          df=pd.read csv(r"C:\Users\stebi\OneDrive\Desktop\data.csv")
In [3]:
          df.head()
Out[3]:
                                radius_mean texture_mean perimeter_mean area_mean smoothness_mean
              842302
                                       17.99
                                                      10.38
                                                                     122.80
                                                                                1001.0
                                                                                                  0.11840
         0
                             Μ
              842517
                             Μ
                                       20.57
                                                      17.77
                                                                     132.90
                                                                                1326.0
                                                                                                  0.08474
           84300903
                                                                                                  0.10960
                                       19.69
                                                      21.25
                                                                     130.00
                                                                                1203.0
                             Μ
            84348301
                                       11.42
                                                      20.38
                                                                      77.58
                                                                                 386.1
                                                                                                  0.14250
                                                                                                  0.10030
            84358402
                                       20.29
                                                      14.34
                                                                     135.10
                                                                                1297.0
                             M
        5 rows × 33 columns
In [4]:
          #checking the shape
          df.shape
Out[4]: (569, 33)
        Datset has 569 rows and 33 columns
In [5]:
          df.describe()
```

id radius_mean texture_mean perimeter_mean

Out[5]:

area_mean smoothness_mean

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.096360
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.014064
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.052630
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.086370
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.095870
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.105300
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.163400

8 rows × 32 columns

GIVES THE SUMMARY OF THE DATASET

CHECKING NULL VALUES:

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 33 columns):

pata #	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius mean	569 non-null	float64
3	texture mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	<pre>fractal_dimension_mean</pre>	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	<pre>fractal_dimension_se</pre>	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	fractal_dimension_worst	569 non-null	float64
32	Unnamed: 32	0 non-null	float64

```
dtypes: float64(31), int64(1), object(1)
         memory usage: 146.8+ KB
In [7]:
         df.isna().sum()
                                       0
Out[7]: id
         diagnosis
                                       0
         radius_mean
                                       0
         texture_mean
                                       0
         perimeter_mean
                                       0
         area_mean
                                       0
         smoothness_mean
                                       0
         compactness_mean
                                       0
         concavity_mean
                                       0
         concave points_mean
         symmetry_mean
         fractal_dimension_mean
         radius_se
                                       0
         texture_se
         perimeter_se
         area_se
         smoothness_se
         compactness_se
         concavity_se
         concave points_se
         symmetry_se
         fractal_dimension_se
         radius_worst
         texture_worst
         perimeter_worst
         area_worst
         smoothness_worst
         compactness_worst
                                       0
         concavity_worst
                                       0
         concave points_worst
                                       0
         symmetry_worst
                                       0
         fractal_dimension_worst
                                       0
         Unnamed: 32
                                     569
         dtype: int64
```

df.dropna(axis=1,inplace=True)

We have dropped the entire column with null values.

LabelEnocding

In [8]:

```
from sklearn.preprocessing import LabelEncoder
labelencoder = LabelEncoder()
df.iloc[:,1] = labelencoder.fit_transform(df.iloc[:,1].values)
```

Here the target variables are being encoded into numerical values as the exisiting dataset contains out put as 'M', 'B'.

```
In [10]:
           df.head()
Out[10]:
                        diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean
           0
                842302
                                          17.99
                                                        10.38
                                                                        122.80
                                                                                    1001.0
                                                                                                     0.11840
           1
                842517
                                         20.57
                                                        17.77
                                                                        132.90
                                                                                   1326.0
                                                                                                     0.08474
```

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean
2	84300903	1	19.69	21.25	130.00	1203.0	0.10960
3	84348301	1	11.42	20.38	77.58	386.1	0.14250
4	84358402	1	20.29	14.34	135.10	1297.0	0.10030

5 rows × 32 columns

```
→
```

Here 'M' is 1 and 'B' is 0.

EDA:

```
ax = sns.countplot(df.diagnosis,label="Count")
B, M =df.diagnosis .value_counts()
print('Number of Benign: ',B)
print('Number of Malignant : ',M)
```

Number of Benign: 357 Number of Malignant: 212

C:\Users\stebi\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid p ositional argument will be `data`, and passing other arguments without an explicit k eyword will result in an error or misinterpretation.

warnings.warn(

THE benign tumour has a number of 357 whereas the malignant tumour has the size of about 212.

```
In [12]: # Correlation Matrix
   plt.figure(figsize=(30,30))
   corr_matrix = df.corr()
   sns.heatmap(corr_matrix, annot = True, fmt = '.2f',)
   plt.title("Feature Correlation")
   plt.show()
```


The above graph shows the correlation plot of the different variables in the dataset.

In [13]: df.corr()

Out[13]:		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_me
	id	1.000000	0.039769	0.074626	0.099770	0.073159	0.0968
	diagnosis	0.039769	1.000000	0.730029	0.415185	0.742636	0.7089
	radius_mean	0.074626	0.730029	1.000000	0.323782	0.997855	0.9873
	texture_mean	0.099770	0.415185	0.323782	1.000000	0.329533	0.3210
	perimeter_mean	0.073159	0.742636	0.997855	0.329533	1.000000	0.9865
	area_mean	0.096893	0.708984	0.987357	0.321086	0.986507	1.0000
	smoothness_mean	-0.012968	0.358560	0.170581	-0.023389	0.207278	0.1770
	compactness_mean	0.000096	0.596534	0.506124	0.236702	0.556936	0.4985
	concavity mean	0.050080	0.696360	0.676764	0.302418	0.716136	0.6859

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_me
concave points_mean	0.044158	0.776614	0.822529	0.293464	0.850977	0.8232
symmetry_mean	-0.022114	0.330499	0.147741	0.071401	0.183027	0.1512
fractal_dimension_mean	-0.052511	-0.012838	-0.311631	-0.076437	-0.261477	-0.2831
radius_se	0.143048	0.567134	0.679090	0.275869	0.691765	0.7325
texture_se	-0.007526	-0.008303	-0.097317	0.386358	-0.086761	-0.0662
perimeter_se	0.137331	0.556141	0.674172	0.281673	0.693135	0.7266
area_se	0.177742	0.548236	0.735864	0.259845	0.744983	0.8000
smoothness_se	0.096781	-0.067016	-0.222600	0.006614	-0.202694	-0.1667
compactness_se	0.033961	0.292999	0.206000	0.191975	0.250744	0.2125
concavity_se	0.055239	0.253730	0.194204	0.143293	0.228082	0.2076
concave points_se	0.078768	0.408042	0.376169	0.163851	0.407217	0.3723
symmetry_se	-0.017306	-0.006522	-0.104321	0.009127	-0.081629	-0.0724
fractal_dimension_se	0.025725	0.077972	-0.042641	0.054458	-0.005523	-0.0198
radius_worst	0.082405	0.776454	0.969539	0.352573	0.969476	0.9627
texture_worst	0.064720	0.456903	0.297008	0.912045	0.303038	0.2874
perimeter_worst	0.079986	0.782914	0.965137	0.358040	0.970387	0.9591
area_worst	0.107187	0.733825	0.941082	0.343546	0.941550	0.9592
$smoothness_worst$	0.010338	0.421465	0.119616	0.077503	0.150549	0.1235
compactness_worst	-0.002968	0.590998	0.413463	0.277830	0.455774	0.3904
concavity_worst	0.023203	0.659610	0.526911	0.301025	0.563879	0.5126
concave points_worst	0.035174	0.793566	0.744214	0.295316	0.771241	0.7220
symmetry_worst	-0.044224	0.416294	0.163953	0.105008	0.189115	0.1435
fractal_dimension_worst	-0.029866	0.323872	0.007066	0.119205	0.051019	0.0037

32 rows × 32 columns

Feature contributions to the target variable:

```
In [14]:
    df_mean = df[df.columns[:]]
    plt.figure(figsize=(20, 8))
    df_mean.drop('diagnosis', axis=1).corrwith(df_mean.diagnosis).plot(kind='bar', grid=
```


MODEL BUILDING:

LOGISTIC REGRESSION:

```
import warnings
warnings.filterwarnings('ignore')
```

Splitting the data

```
In [16]: X = df.iloc[:,2:]
y = df.iloc[:,1]
```

In [17]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,random_state

In [18]: X_train.head()

Out[18]:		radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mear
	296	10.91	12.35	69.14	363.7	0.08518	0.04721
	490	12.25	22.44	78.18	466.5	0.08192	0.05200
	519	12.75	16.70	82.51	493.8	0.11250	0.11170
	513	14.58	13.66	94.29	658.8	0.09832	0.08918
	473	12.27	29.97	77.42	465.4	0.07699	0.03398

5 rows × 30 columns

→

Standardizing the dataset:

```
In [19]:
    sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.fit_transform(X_test)
```

LOGISTIC REGRESSION:

```
In [20]:
    classifer = LogisticRegression()
    classifer.fit(X_train, y_train)
```

Out[20]: LogisticRegression()

Prediction on Unseen data:

O2:

What happens when the Maximum Iterations are kept as 1, 2, 5, 10, 20, 50, 100, 500 and 1000? Is there any change in the accuracy.

```
In [23]: score1=pd.DataFrame()
    score1['iteration']=iteration1
    score1['accuracy']=accuracy
    score1
```

```
Out[23]:
              iteration accuracy
           0
                        0.934211
                     1
           1
                     2 0.969298
           2
                     5 0.991228
           3
                    10 0.982456
                    20 0.982456
           4
           5
                    50
                        0.982456
           6
                   100 0.982456
```

	iteration	accuracy
7	500	0.982456
8	1000	0.982456

The accuaracy is maximum at 5 iteration state and the accuracy changes for each iterations as well

Q1:

Demonstrate the Logistic Regression for different penalties/regularisation methods - none, I1, I2 (you may use 'saga' solver as the parameter.

Regularization in Machine Learning As mentioned above, regularization is used to avoid overfitting due to complex models. When a regularization model is used, the learning model takes only a limited set of parameters. Instead of choosing parameters from a discrete grid, this process chooses values from a continuum that produces a smoothing effect (thereby reducing the noise terms). In ML models, individual significance of variables and interaction effects is not observed stage wise. In such a case, regularization also helps in the selection process of features contribute to the model. The regularization methods in ML generally adds some kind of penalty to the cost function which is further used in the adjustment process.

L1 and L2 are two types of regularization techniques. Both of these models introduces an additional term of "penalty" on the model based on the error function. The process of weight adjustment hence will also consider the penalty that is applied by these penalties. The key difference between these two is the penalty term.

- **L1 Regularization**: L1 (Lazzo) regularization uses the sum of the absolute values of the weights is considered as a penalty. This type is preferred when the model is generally linear in nature with lesser number of coefficients, since it encourages the convergence towards 0. It is also useful for the case of considering a categorical variable with many levels (as mention above, helps in feature selection).
- **L2 Regularization**: L2 (Ridge) regularization uses the sum of squared values of weights as the penalty. It tries to make the convergence closer to 0 and prevents overfitting; which becomes very useful when the number of variables are very large and smaller data samples. Genomic data is a very good example to apply L2 regularization.

The regularization parameter penalizes all parameters except intercept; and as the complexity of the model is increased, it also adds penalty for the higher terms. Apart from L1 and L2 regularization techniques, there is something also known as "Elastic Net" which is a hybrid type of both of these techniques.

```
In [24]:

12=['l1','l2','none']
    pen=[]
    accuracy=[]
    iteration=[]
    l1=[1, 2, 5, 10, 20, 50, 100, 500,1000]
    for i in l1:
        for j in l2:
            classifer = LogisticRegression(penalty=j,solver='saga',max_iter=i)
```

```
classifer.fit(X_train, y_train)
predictions = classifer.predict(X_test)
pen.append(j)
accuracy.append(accuracy_score(y_test,predictions))
iteration.append(i)
```

```
In [25]:
    score=pd.DataFrame()
    score['penalty']=pen
    score['iteration']=iteration
    score['accuracy']=accuracy
    score
```

Out[25]:		penalty	iteration	accuracy
	0	I1	1	0.978070
	1	12	1	0.978070
	2	none	1	0.982456
	3	I1	2	0.982456
	4	12	2	0.978070
	5	none	2	0.978070
	6	I1	5	0.986842
	7	12	5	0.991228
	8	none	5	0.986842
	9	I1	10	0.986842
	10	12	10	0.986842
	11	none	10	0.986842
	12	I1	20	0.986842
	13	12	20	0.986842
	14	none	20	0.986842
	15	I1	50	0.986842
	16	12	50	0.986842
	17	none	50	0.986842
	18	I1	100	0.986842
	19	12	100	0.986842
	20	none	100	0.986842
	21	I1	500	0.982456
	22	12	500	0.982456
	23	none	500	0.986842
	24	I1	1000	0.986842
	25	12	1000	0.982456
	26	none	1000	0.978070

the value of the accuracy changes for different penalties.

Confusion Matrix for different iteration values and penalties:

for penalty:11 iteration :1

for penalty:12 iteration :1

for penalty:none iteration :1

for penalty:11 iteration :2

for penalty:12 iteration :2

for penalty:none iteration :2

for penalty:11 iteration :5

for penalty:12 iteration :5

for penalty:none iteration :5

for penalty:11 iteration :10

for penalty:12 iteration :10

for penalty:none iteration :10

for penalty:11 iteration :20

for penalty:12 iteration :20

for penalty:none iteration :20

for penalty:11 iteration :50

for penalty:12 iteration :50

for penalty:none iteration :50

for penalty:11 iteration :100

for penalty:12 iteration :100

for penalty:none iteration :100

for penalty:11 iteration :500

for penalty:12 iteration :500

for penalty:none iteration :500

for penalty:11 iteration :1000

for penalty:12 iteration :1000

for penalty:none iteration :1000

Q3)

Get the attributes: classes, coef and intercept_ and print the same in the above case.

```
In [27]: print(classifer.classes_)
[0 1]
```

Class will give the classification criteria's

coef_ attribute is also used to view the model's coefficients.

```
In [29]: print(classifer.intercept_)
[0.50431558]
```

The value of b_0 , also called the intercept, shows the point where the estimated regression line crosses the y axis.

coeff, class and intercept in a single dataframe:

```
In [30]:
          12=['11','12','none']
          pen=[]
          accuracy=[]
          iteration=[]
          cls=[]
          intercept=[]
          11=[1, 2, 5, 10, 20, 50, 100, 500, 1000]
          for i in l1:
              for j in 12:
                   classifer = LogisticRegression(penalty=j,solver='saga',max_iter=i)
                   classifer.fit(X_train, y_train)
                   predictions = classifer.predict(X_test)
                  pen.append(j)
                   accuracy.append(accuracy_score(y_test,predictions))
                   iteration.append(i)
```

```
cls.append(classifer.classes_)
intercept.append(classifer.intercept_)
```

```
In [31]:
    score=pd.DataFrame()
    score['penalty']=pen
    score['iteration']=iteration
    score['class']=cls
    score['intercept']=intercept
    score['accuracy']=accuracy
    score
```

```
Out[31]:
                 penalty iteration
                                                           intercept accuracy
                                     class
             0
                      11
                                     [0, 1] [-0.23668199745488105]
                                                                      0.978070
             1
                      12
                                     [0, 1] [-0.13829212325660264]
                                                                      0.973684
             2
                                             [-0.2183925010149449]
                                                                      0.969298
                                  1
                                     [0, 1]
                   none
             3
                      11
                                  2
                                     [0, 1]
                                             [-0.2884212079162961]
                                                                      0.978070
             4
                      12
                                  2
                                             [-0.2475204446078854]
                                                                      0.978070
                                     [0, 1]
             5
                                     [0, 1] [-0.22035714382121543]
                   none
                                                                      0.973684
             6
                      11
                                  5
                                     [0, 1]
                                               [-0.316585280847195]
                                                                      0.991228
             7
                                  5
                                             [-0.2892900699067467]
                                                                      0.991228
                      12
                                     [0, 1]
             8
                                  5
                                     [0, 1]
                                             [-0.3403412463853296]
                                                                      0.991228
                   none
             9
                                 10
                                     [0, 1] [-0.32936068945772773]
                                                                      0.986842
                      11
            10
                                             [-0.3380908986415193]
                                                                      0.986842
                      12
                                 10
                                     [0, 1]
                                                                      0.986842
            11
                   none
                                 10
                                     [0, 1] [-0.32709034019805494]
            12
                                     [0, 1] [-0.35457779897449415]
                                                                      0.986842
                      11
                                 20
            13
                      12
                                 20
                                     [0, 1] [-0.33119958977486996]
                                                                      0.986842
            14
                                             [-0.3051862912161733]
                                                                      0.986842
                   none
                                 20
                                     [0, 1]
                                                                      0.986842
            15
                      11
                                 50
                                     [0, 1]
                                               [-0.289659664434936]
            16
                      12
                                 50
                                     [0, 1]
                                               [-0.290007174746684]
                                                                      0.986842
            17
                                                                      0.986842
                   none
                                 50
                                     [0, 1] [-0.23370248527047907]
            18
                      11
                                100
                                     [0, 1] [-0.22760880047779694]
                                                                      0.986842
            19
                      12
                                100
                                     [0, 1] [-0.24405867192623548]
                                                                      0.986842
                                     [0, 1] [-0.18748281702627992]
            20
                   none
                                100
                                                                      0.986842
            21
                      11
                                500
                                     [0, 1] [-0.11619733973993761]
                                                                      0.982456
            22
                                     [0, 1] [-0.16782756752390357]
                                                                      0.982456
                      12
                                500
            23
                                500
                                     [0, 1]
                                             [0.21018414315765624]
                                                                      0.986842
                   none
            24
                      11
                               1000
                                     [0, 1]
                                             [-0.1211145418156155]
                                                                      0.986842
            25
                      12
                               1000
                                     [0, 1]
                                             [-0.1680448619854572]
                                                                      0.982456
            26
                   none
                               1000
                                     [0, 1]
                                                [0.508756889918008]
                                                                      0.978070
```

```
In [36]: | 12=['11','12','none']
```

```
l1=[1, 2, 5, 10, 20, 50, 100, 500,1000]
for i in l1:
    for j in l2:
        print(f"\033[1m for penalty:{j} iteration :{i} \033[0m")
        classifer = LogisticRegression(penalty=j,solver='saga',max_iter=i)
        classifer.fit(X_train, y_train)
        print(classifer.coef_)
```

```
for penalty:11 iteration :1
0.20199335 0.1976854
                         0.21550931 0.31057107 0.14607356 0.05067992]]
for penalty:12 iteration :1
[[ 0.30772722  0.1476935
                        0.30861533 0.2923931
                                                 0.12821557 0.16855408

      0.2158799
      0.32387895
      0.11171781
      -0.09178241
      0.20290227
      0.02332918

      0.18086412
      0.1852561
      -0.00465121
      -0.01015706
      -0.06885493
      0.06500782

  0.02061968 -0.1127541
                         0.18703813 0.19074379 0.21417831 0.32611309 0.24138634 0.06907217]]
for penalty:none iteration :1
[[ \ 0.27469465 \ \ 0.17003401 \ \ 0.27766449 \ \ 0.26539881 \ \ 0.08244562 \ \ 0.14305233
  0.2106261
             0.28895639 0.07347412 -0.11867997 0.248041
                                                          -0.00448318
  0.0438492 -0.10621651 0.31875083 0.21893434 0.31568956 0.29270389
  0.16854376   0.18382287   0.21094366   0.27244141   0.22007961   0.04526099]]
for penalty:l1 iteration :2
[[ \ 0.33829162 \ \ 0.23386688 \ \ 0.33997084 \ \ 0.32466593 \ \ 0.11034657 \ \ 0.15426222 ]
  0.22922791  0.35662294  0.07947149 -0.13017008  0.25399705  0.01460276
  -0.04025172 \ -0.12436324 \ \ 0.37279925 \ \ 0.31008387 \ \ 0.36246884 \ \ 0.33871322
  0.27269515  0.20763707  0.21387935  0.36341307  0.22129434  0.05979718]]
for penalty:12 iteration :2
[[\ 0.35339251\ \ 0.25375568\ \ 0.35327903\ \ 0.33624326\ \ 0.12707273\ \ 0.14536483
  0.2677804
             0.37462159 0.12556224 -0.15581954 0.25383968 0.00723874
  0.22094989 \quad 0.23172696 \quad -0.00814101 \quad -0.02348042 \quad -0.09185266 \quad 0.03898864
  -0.06912468 \ -0.13841692 \ \ 0.38674038 \ \ 0.30696819 \ \ 0.37606186 \ \ 0.35532
  for penalty:none iteration :2
[[ 0.34636964  0.28303896  0.34564975  0.33273381  0.1414206
                                                            0.14343421
  0.23222568 \quad 0.3694578 \quad 0.11979331 \quad -0.13730083 \quad 0.28051877 \quad 0.04720744
  0.23608029 \quad 0.24434868 \quad 0.03979101 \quad -0.03449645 \quad -0.07998958 \quad 0.05726532
  -0.06196175 \ -0.11797087 \ \ 0.40164194 \ \ 0.35272008 \ \ 0.38987062 \ \ 0.3725973
  0.2420742 0.21341227 0.21589479 0.35471664 0.23804865 0.07598705]]
for penalty:11 iteration :5
[[ \ 0.38376144 \ \ 0.31847653 \ \ 0.38021393 \ \ 0.37761412 \ \ 0.13902705 \ \ 0.08906467]
  0.3116361 \quad 0.42769034 \quad 0.07161173 \quad -0.17012565 \quad 0.35313265 \quad 0.0442934
  0.29387375 \quad 0.31709502 \quad 0.01954113 \quad -0.08724767 \quad -0.06803709 \quad 0.02787578
  -0.06943368 -0.16886369 0.45528505 0.44307697 0.44142588 0.43274744
  0.31623088 0.20032659 0.32290752 0.4262394
                                                 0.27317331 0.07085504]]
for penalty:12 iteration :5
0.17552827 0.13919266
  0.32536381 \quad 0.43818923 \quad 0.10728577 \quad -0.20040481 \quad 0.36124387 \quad 0.04538398
  0.30513521 \quad 0.30046977 \quad -0.0075254 \quad -0.08150228 \quad -0.10530781 \quad 0.05939097
  -0.04696101 -0.22868053 0.44915094 0.45112733 0.43469771 0.41764376
  0.28103829 0.2235578
                         for penalty:none iteration :5
[ 0.38182557  0.36907094  0.37944693  0.36362404  0.14580082  0.12626525
  0.28101901 \quad 0.28773488 \quad 0.03927148 \quad -0.07534254 \quad -0.11662489 \quad 0.07708085
  -0.09465232 \ -0.23699369 \ \ 0.45344206 \ \ \ 0.47118153 \ \ 0.43907709 \ \ 0.41060821
  0.29274929 0.23483244 0.33607566 0.45341343 0.30615813 0.06767348]]
for penalty:11 iteration :10
[[ 3.96198087e-01 4.29313939e-01 3.89488140e-01 3.73520465e-01
  1.62168341e-01 2.77885076e-02 3.31437041e-01 4.89165432e-01
  5.36389576e-06 -2.24976803e-01 4.46503432e-01 1.15557048e-05
  3.51934374e-01 3.31731656e-01 4.27418514e-04 -1.27967479e-01
  -4.40104435e-02 6.32273181e-02 -6.56277994e-02 -2.42253911e-01
```

```
5.06388081e-01 5.78824716e-01 4.76260724e-01 4.42588176e-01
  3.98618906e-01 2.20170725e-01 3.79931010e-01 5.23235520e-01
  4.04723175e-01 2.31771985e-02]]
for penalty:12 iteration :10
[ [ \ 0.41941747 \ \ 0.45906641 \ \ 0.41591248 \ \ 0.40829462 \ \ 0.15201517 \ \ 0.07948994 ]
  0.36403677 \quad 0.5103782 \quad 0.04736961 \quad -0.24404907 \quad 0.42348776 \quad 0.02029938
  0.34029301 \quad 0.34363196 \quad 0.03064147 \quad -0.18155487 \quad -0.08759354 \quad 0.10859683
 -0.07349085 \ -0.26170407 \ \ 0.51832857 \ \ \ 0.58082694 \ \ \ 0.49106679 \ \ \ 0.47388565
  for penalty:none iteration :10
[[ 0.44562897  0.45404026  0.44035359  0.43108006  0.1834904
                                                       0.07161801
  0.36914814 \quad 0.51829503 \quad 0.09525705 \quad -0.28954151 \quad 0.43681873 \quad 0.02381722
  0.35952995 \quad 0.3583238 \quad -0.00227082 \quad -0.16151479 \quad -0.06033966 \quad 0.1287562
 -0.11350016 -0.29276203 0.54621978 0.6138418 0.52347148 0.49767698
  0.40855762 0.22093002 0.39580888 0.52865719 0.44238544 0.02967586]]
for penalty:11 iteration :20
[[ 4.40231065e-01 4.83507648e-01 4.31520036e-01 4.25472065e-01
  1.42543068e-01 -1.07736534e-02 3.84543448e-01 5.79690147e-01
  1.61830094e-02 -2.48705473e-01 5.35336874e-01 0.00000000e+00
  3.97174372e-01 4.01690552e-01 4.66080095e-02 -1.96592686e-01
 -1.30749350e-02 5.30828443e-02 -9.87159256e-02 -3.08594964e-01
  5.74466784e-01 \quad 7.15424040e-01 \quad 5.33484730e-01 \quad 5.05804623e-01
  4.73794135e-01 1.63345385e-01 4.74153052e-01 5.88118714e-01
  5.27715492e-01 9.82069535e-05]]
for penalty:12 iteration :20
[[ 0.45320678  0.52238668  0.44675951  0.44972474  0.18082247 -0.01920401
  0.44304546 0.60029309 0.05200331 -0.31702633 0.56299018 0.006834
  -0.17635533 -0.34060727 0.58567172 0.73454268 0.5463635
                                                       0.53618722
  0.47633752 0.18480659 0.49566197 0.59197061 0.55606115 0.06760426]]
for penalty:none iteration :20
[ 0.4812579  0.54851965  0.47389464  0.46508425  0.21185817  -0.01300231
  0.44533364 \quad 0.43981714 \quad 0.04256684 \quad -0.3033888 \quad -0.06383586 \quad 0.1725
 -0.19539964 \ -0.37932804 \ \ 0.6330252 \ \ \ 0.78914767 \ \ 0.59426062 \ \ 0.56749893
  0.49661036 0.18421017 0.51991502 0.64614214 0.57225619 0.03577191]]
for penalty:11 iteration :50
[[ 4.07802743e-01 4.70901319e-01 3.92249050e-01 3.97854700e-01
  5.83361077e-02 -6.84250529e-02 5.08376664e-01 7.51027775e-01
 -1.31203743e-05 -2.31467336e-01 7.78258347e-01 0.00000000e+00
  5.12561124e-01 4.90102309e-01 3.35801518e-02 -2.97584947e-01
  0.00000000e+00 6.42312377e-02 -1.82266287e-01 -3.61662175e-01
  6.72013201e-01 9.17622286e-01 5.80426760e-01 5.81364368e-01
  5.77159439e-01 0.00000000e+00 6.16856900e-01 7.00986417e-01
  6.95174159e-01 0.00000000e+00]
for penalty:12 iteration :50
[[ 0.44303254  0.54755447  0.4328543
                                 0.44511794 0.15235449 -0.19709656
  0.58352925  0.73021129  -0.02786279  -0.3556872
                                            0.78642064 -0.02437329
  0.57040928 0.11717825 0.69809937 0.71178847 0.79475155 0.07464551]]
for penalty:none iteration :50
[ 0.49736723  0.60050208  0.48436341  0.51241812  0.17646815  -0.25905724
  -0.32604859 -0.4878151 0.75634013 1.03374472 0.6782791
  0.64854579 0.09284599 0.76250045 0.79270128 0.88354061 0.06307404]]
for penalty:11 iteration :100
[[ 0.34673037  0.39013184  0.31975111  0.34007073  0.
                                                      -0.14422924
  0.51596789 0.88928443 0.
                                -0.24512859 1.00425995 -0.00118011
  0.57647357 0.55766497 0.08603144 -0.38698624 0.
                                                       0.09192926
 -0.26978916 -0.37586444 0.73879984 1.04496375 0.58859516 0.61304358
                       0.70540062 0.79782131 0.80094965 0.
  0.58652575 0.
                                                                11
for penalty:12 iteration :100
[ 0.40773037  0.50351243  0.39651623  0.42629377  0.11180759  -0.36125847
  -0.36249553 -0.53089677 0.69788103 1.05381051 0.59555572 0.63627551
  0.58105029    0.02788771    0.85165356    0.76657564    0.96172491    0.08620203]]
```

```
for penalty:none iteration :100
0.81699166 0.17775634 -0.72368638 0.04104597 0.40030454
 -0.47304065 \ -0.61282205 \ \ 0.83981487 \ \ 1.27748661 \ \ 0.70283242 \ \ 0.76989035
  0.74410104 -0.02593649 1.02538436 0.93400569 1.19681534 0.07729285]]
for penalty:11 iteration :500
[[ 0.09942307 0.
                                 0.04756677 0.
                                                     -0.28736338
                       0.
            1.63038357 -0.0395516 -0.14574306 1.74672597 -0.18748129
  0.3936746
  0.24451607 0.51952105 0.33650585 -0.42395256 0.
                                                      0.
 -0.39581297 \; -0.43395239 \; \; 1.09434836 \; \; 1.52538061 \; \; 0.51265529 \; \; 0.6969349
                       0.86241045 0.7920336
                                            0.94297659 0.
  0.14729482 0.
                                                               ]]
for penalty:12 iteration :500
[ 0.34632665  0.37593378  0.33215519  0.38072418  0.06697511  -0.61452759
  0.68716378 \quad 0.78960385 \quad 0.19360474 \quad -0.53876739 \quad -0.05320761 \quad 0.4611827
 -0.4782114 -0.58505165 0.73161406 1.25926256 0.54701638 0.67650765
  0.52108261 -0.12780369 0.97321302 0.79245267 1.19078126 0.08734025]]
for penalty:none iteration :500
[ 0.15825705  0.13183933  0.11697332  0.30636312  -0.01937243  -1.69493282
  1.30402939 1.98165392 -0.67607374 0.0985928
                                          2.22831296 -0.43161465
  1.13253674 1.53398264 0.28653934 -0.72643076 -0.225322
                                                      0.97175132
 -0.83651605 -1.02728228 1.12916501 2.29472773 0.63525771 1.09596056
  0.64666011 -0.60473457 1.80938616 1.33323996 2.29431496 0.08096472]]
for penalty:11 iteration :1000
                                                     -0.36682026
[[ 0.
            0.
                       0.
                                 0.
                                            0.
  0.06761165 2.17993447 -0.03879955 -0.05006121 2.21331147 -0.25453858
            0.20951252 0.37734838 -0.35459297 0.
                                                      0.
 -0.45424632 -0.48182749 1.36315278 1.58902282 0.34668349 0.6730379
  0.02692501 0.
                       1.06868851 0.58762021 0.98973026 0.
                                                               ]]
for penalty:12 iteration :1000
[ 0.34639001 0.37610794 0.33208593 0.37980665 0.06685985 -0.61406818
  0.68672152  0.7879627  0.19351172  -0.53841164  -0.0534161
                                                      0.46142304
 -0.47860888 -0.5848871
                       0.73212821 1.25905338 0.54745748 0.67646847
  0.521094
           for penalty:none iteration :1000
[[-0.07882635 -0.24498037 -0.13768613 0.14231281 -0.03167762 -2.60117816
  1.64039222 2.92240727 -1.05215044 0.60767148 2.98600451 -0.59782787
  1.14886751 2.04957068 0.31126595 -0.31466219 -0.73844323 1.42676336
 -1.07581279 -1.38631151 1.28951001 2.92226389 0.43060565 1.27314487
  0.37501298 -1.0472406 2.31729758 1.45818651 3.00350223 0.01099899]]
```

Conclusion:

Basic idea about logistic regression was obtained. The accuracy and cionfusion matrix were obtained.