Nguyễn Khắc Sơn, MSSV: 21085691

BTVN B2

Bài 1: Dựa trên những kiến thức đã học trên lớp và đọc thêm tài liệu ở nhà, em hãy lấy một ví dụ thực thế liên quan tới lĩnh vực IoT có thể giải quyết thông qua bài toán xấp xỉ hàm. Giải thích ngắn gọn lý do.

Ví dụ:

Hệ thống IoT quản lý, theo dõi chất lượng không khí của thành phố

Các cảm biến IoT được lắp đặt khắp nơi trên địa bàn để đo lường nồng độ các chất ô nhiễm như CO2, NO2, PM2.5,... và nhiệt độ, độ ẩm không khí.

Hệ thống này sẽ dự đoán chất lượng không khí trong thời gian sắp tới để đưa ra các cảnh báo sớm.

Lý do:

Xấp xỉ hàm giúp tìm ra mối quan hệ phi tuyến giữa các yếu tố môi trường và chất lượng không khí.

Từ đó, mô hình dự đoán sẽ giúp thành phố dự đoán được mức độ ô nhiễm, để kịp thời đưa ra quyết định về việc điều chỉnh hoạt động sản xuất, hoặc khuyến cáo người dân về mức độ ô nhiễm.

Bài 2: (Giải bài toán bằng bút và máy tính cầm tay)

Trong một tòa nhà thông minh, thông qua việc xử lý ảnh để đo được chiều cao của 1 một người, chương trình sẽ dự đoán cân nặng của người đó. Sử dụng hồi quy tuyến tính để xây dựng mô hình dự đoán cân nặng dựa trên chiều cao. Sau đó hãy thử dự đoán cân nặng của một người mới chuyển đến tòa nhà có chiều cao là 185 cm. Biết rằng đã có một tập dữ liệu có sẵn như sau:

Mẫu	Số phòng	Chiều cao (cm)	Cân nặng (kg)	Chỉ số cư dân		
1	301	147	49	Rất tốt		
2	312	150	50	Tốt		
3	320	153	51	Khá		
4	401	155	52	Tốt		
5	402	158	54	Trung bình		
6	408	160	56	Khá		
7	409	163	58	Khá		
8	503	165	59	Tốt		
9	507	168	60	Trung bình		
10	520	170	72	Kém		
11	606	173	63	Tốt		
12	607	175	64	Tốt		
13	608	178	66	Khá		
14	609	180	67	Kém		
15	610	183	68	Rất tốt		

		3								Ngày:						100
	Bai	2:														1
			CAO	NA	NG		τ	y		nez		y				
	1.		147	49			721)3	21	609		240	1			1
	2.		150	56	100		750	00	22	500		250	0			1000
	3.		153	5.1	- 10		786)3	23	409		260				1
	4.		-155	52			80	60	24	025		270	4			
	5.		158	54			85	52		964		291				
	6		.160	56			890	0	25	COO		3.13	6			
	7.		163	58			949	4	26	569		336	4			1
	8.		165	59			973	5	27	225		348	1			1
	9.		168	60			100	30	28	224		360	0			I
	.10.		170	72			122	40	28	900		5.18	4			1
	ЯL		173	63			801.	99	29	929		396	9			
	-12		175	64			112	00	30	625		400	96			I
	.13	,	178	66			1.17	48	31	684		439	6			I
	14.		180	67			120	60	32	400		448	9			1
	,15.	1	183	GS			124	94	33	489		468	4			1
SUM:		20	178	889			1479	18	1,	14.15	7	534	21			1
AUG:		5	65,2	59,2	67		986			7410			6.1.4			1
			ē'	4			70			72		4	+			1
								_								1
YKY	=	7€.1 Jzez.	- (ž)	2.5	- (7	<u>0</u> ,	Ш	0,	1.550	7	=)	y=	0.1	DE 21		1
B 0,	= -	78.4		(y) (C68					y=-	58,	51110	.1891	- 15
AQ	<u> </u>	<u>-</u>	02	. Z	= +	38,	3.14	5			(1=	70,	96.1	(160)	
											200	 ∫fa	hasa	a	(4.9)	

Bài 3: (Giải bài toán bằng cách lập trình)

Sử dụng Python, lập một chương trình dự đoán tự động. Đầu vào nhập một mẫu dữ liệu mới là chiều cao của một người (ví dụ một người mới chuyển đến tòa nhà có chiều cao là 185 cm). Đầu ra in ra kết quả dự đoán cân nặng (kg). So sánh kết quả thu được với kết quả tính toán ở bài 2.

```
dudoan_cannang_2.py >  nhap_du_lieu_moi
      import numpy as np
     from sklearn.linear_model import LinearRegression
     def du_doan_can_nang(model):
        new_height = float(input("Nhập chiều cao mới (cm): "))
        # Dự đoán cân nặng dựa trên chiều cao mới
        predicted_weight = model.predict(np.array([[new_height]]))
          print(f"Cân nặng dự đoán cho người có chiều cao {new_height} cm là {predicted_weight[0]:.2f} kg.")
        return new_height, predicted_weight[0]
     def nhap_du_lieu_moi():
          so_mau = int(input("Nhập số lượng mẫu dữ liệu: (tối thiểu 15 mẫu) "))
         while so_mau < 15:
             print("Ban phải nhập tối thiểu 15 mẫu dữ liệu!")
             so_mau = int(input("Nhập số lượng mẫu dữ liệu: (tối thiểu 15 mẫu) "))
          # Nhâp chiều cao tất cả mẫu cùng lúc
          chieu_cao_str = input(f"Nhập chiều cao của {so_mau} mẫu (cách nhau bằng dấu cách): ")
          chieu_cao_moi = list(map(float, chieu_cao_str.split()))
          # Kiểm tra số lượng mẫu có khớp không
          while len(chieu_cao_moi) != so_mau:
             print(f"Bạn phải nhập đủ {so_mau} mẫu chiều cao!")
             chieu_cao_str = input(f"Nhập chiều cao của {so_mau} mẫu (cách nhau bằng dấu cách): ")
             chieu_cao_moi = list(map(float, chieu_cao_str.split()))
          can_nang_str = input(f"Nhập cân nặng của {so_mau} mẫu (cách nhau bằng dấu cách): ")
          can_nang_moi = list(map(float, can_nang_str.split()))
          while len(can_nang_moi) != so_mau:
             print(f"Bạn phải nhập đủ {so_mau} mẫu cân nặng!")
              can_nang_str = input(f"Nhập cân nặng của {so_mau} mẫu (cách nhau bằng dấu cách): ")
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS
```

```
dudoan_cannang_2.py > ...
     def nhap_du_lieu_moi():
          while len(can_nang_moi) != so_mau:
             print(f"Ban phải nhập đủ {so mau} mẫu cân nặng!")
             can_nang_str = input(f"Nhập cân nặng của {so_mau} mẫu (cách nhau bằng dấu cách): ")
             can_nang_moi = list(map(float, can_nang_str.split()))
          return np.array(chieu cao moi).reshape(-1, 1), np.array(can nang moi)
      def ve_bieu_do(chieu_cao, can_nang, model):
          # Dự đoán cân nặng dựa trên chiều cao
          chieu_cao_moi = np.linspace(min(chieu_cao), max(chieu_cao), 100).reshape(-1, 1)
          can_nang_du_doan = model.predict(chieu_cao_moi)
          # Trực quan hóa dữ liệu
          plt.scatter(chieu_cao, can_nang, color='blue', label='Dữ liệu thực tế') # Dữ liệu gốc
          plt.plot(chieu_cao_moi, can_nang_du_doan, color='red', label='Đường hồi quy') # Đường hồi quy
          plt.title("Biểu đồ hồi quy tuyến tính")
          plt.xlabel("Chieu cao (cm)")
          plt.ylabel("Cân nặng (kg)")
          plt.legend()
          plt.show()
60
      # Dữ liệu từ bảng ban đầu
     chieu_cao = np.array([147, 150, 153, 155, 158, 160, 163, 165, 168, 170, 173, 175, 178, 180, 183]).reshape(-1, 1)
     can_nang = np.array([49, 50, 51, 52, 54, 56, 58, 59, 60, 72, 63, 64, 66, 67, 68])
```

```
print("Tùy chọn:")
print("1. Nhập chiều cao mới để dự đoán cân nặng.")
print("2. Nhập mẫu dữ liệu mới để dự đoán cân nặng.")
option = int(input("Chọn 1 hoặc 2: "))
if option == 1:
    model = LinearRegression()
    model.fit(chieu_cao, can_nang)
    new_height, predicted_weight = du_doan_can_nang(model)
    ve_bieu_do(chieu_cao, can_nang, model) # Ve bieu đô với dữ liệu ban đầu
elif option == 2:
    # Nhập mẫu dữ liệu mới
    chieu_cao_moi, can_nang_moi = nhap_du_lieu_moi()
    model = LinearRegression()
    model.fit(chieu_cao_moi, can_nang_moi)
    new_height, predicted_weight = du_doan_can_nang(model)
    ve_bieu_do(chieu_cao_moi, can_nang_moi, model) # Ve bieu do voi du lieu moi
    print("Không hợp lệ!")
```

Kết quả thực hiện:

Bài tập VD3: dự đoán chiều dài cuộn dây thép

	VD3>			. rguy.	
	Mail	M	y		
	THE RESIDENCE AND PARTY.		dai	g = - (20) = 00 + 0, 20	
	1	30	70	= 1 = -20 - 1 3 70	
	2	40	90	J - O - J A	
	3	40	100		
	4	50	120	1 r= 0,98076	
	5	50	130	3 0, = -20	
	6	50	150	10, = 3	
	7	60	160		
erjan-	8	70	190		
	9	70	200	Vay: vot 20 = 35	
4-1	10	80	200	=> Dir ctoan:	
	,u	80	220		
	12	80	230	ŷ = -20-13. (35)	
				9 = 85	
	Nháp (ASIO 57	9		
	IMO	DEI 131	[2]	de nhập mâi	
			T	1 : 0	
	-7 /361.	FT 15			
				(2): 0,	4
			-	131: r: hè số tương quam mã	