WTF is an Arduino?

George Brindeiro

NÃO LEMBRO DE MAIS NADA DA SEMANA PASSADA...

Potenciômetro

- Resistor ajustável
- Kit: 2 × 100 kΩ

Símbolo em esquemas:

Fonte:

Potenciômetro: como usar

- Ligar pinos laterais na alimentação
- Ligar pino central
 V_{out} em um pino
 de entrada
 analógico

Fonte:

Divisor de tensão: Potenciômetro

Using a potentiometer as a variable voltage divider

ADC: Conversor Digital-Analógico

- VREF: máximo do ADC
- Resolução: tamanho da variável inteira (digital) usada pra representar sinal (analógico)
- # de Canais: quanto sinais dá pra ler com o mesmo circuito ADC

PWM: Modulação por Largura de Pulso

Pulse Width Modulation Duty Cycles

- Contador de 8 bits: ciclos de 0 -> 255
- Circuitos "lentos": só respondem ao valor médio!
- Outros casos pedem um capacitor... mas não vem ao caso

Vetores

- Às vezes você quer guardar vários dados de forma fácil...
- Vetores permitem você fazer isso, acessando com índices
- Tamanho fixo, determinado quando você declara!

WHILE

MAP

ANALOGREAD

DO/WHILE

CONTINUE

BREAK

FOR

ANALOGWRITE

ARDUINO REFERENCE

http://arduino.cc/en/Reference/HomePage

Atualizando o sketchbook

- Arquivos do curso:
 https://github.com/georgebrindeiro/wtf-is-an-arduino
- Download ZIP e extrair em seguida
- File -> Preferences -> Sketchbook location
- Colocar a pasta extraída wtf-is-an-arduino/sketchbook

Desafios: Conseguiram?

- Lesson2_5_UpDownBar + Lesson_3_2_AnalogInOutSerial
 - Quero que o potenciômetro mude o brilho dos LEDs
 - E os botões digam quantos estão ligados/desligados!
- Árvore de natal
 - Quero três padrões diferentes de pisca
 - O potenciômetro deve mudar a velocidade de todos padrões
 - Os botões devem permitir escolher qual padrão é executado

Entradas

Botões: pinos A1 e A2

Potenciômetro: pino A0

Saídas

LEDs: pinos 11, 10, 9, 6, 5, 3

4

TEMPORIZAÇÃO E INTERRUPÇÕES: INDO ALÉM DO SETUP E LOOP

Vamos montar!

- 6 resistores 330R
- 5 LEDs
- 1 botão
- Fios jumper
- Protoboard
- Arduino

Lesson4_1_TestSemaphoreCircuit

- Esse código vai testar se está tudo ligado corretamente
- Vale a pena sempre pensar em códigos assim em projetos maiores. Isso impede que você fique na dúvida se o problema tá no circuito ou no código!
- Operador módulo (%) retorna o resto de uma divisão inteira
 - -7/4 = 1 (divisão inteira) ou 3.75 (divisão ponto flutuante)
 - -7 % 4 = 3 (resto da divisão inteira)
- Isso permite criar ciclos de tamanho fixo de forma fácil!

Como implementar a lógica?

GO!

- Quais situações existem?
- Quais eventos externos são relevantes para o sistema?
- Quais os critérios para a troca de comportamento?

Estados do sistema

Estado	Carros	Pedestres	Transição
0	VERDE	VERMELHO	pedWaiting && (t > t0)
1	AMARELO	VERMELHO	(t > t1)
2	VERMELHO	VERMELHO	(t > t2)
3	VERMELHO	VERDE	(t > t3)
4	VERMELHO	VERMELHO	(t > t4)

Máquina de Estados

Lesson4_2_TestStateMachine

- Esse código vai mostrar como programar uma máquina de estados usando switch/case, para projetos com Arduino
- Para simplificar, vamos usar o botão para ativar a transição de um estado para outro. Nos próximos exemplos vamos incluir a temporização e a interação com o pedestre
- Usamos funções para deixar o código mais legível

```
int fatorial(int n)
 int res = 1;
 for(int num = 1; num < n; num++)</pre>
     res = res*num;
 return res;
```

```
int fatorial(int n)
 int res = 1;
 for(int num = 1; num < n; num++)</pre>
     res = res*num;
 return res;
```

PARÂMETROS

Variáveis que são "enviadas" para uso dentro das funções

```
int fatorial(int n)
 int res = 1;
 for(int num = 1; num < n; num++)</pre>
     res = res*num;
 return res;
```

ESCOPO

Tempo/Espaço de vida das variáveis

```
int fatorial(int n)
 int res = 1;
 for(int num = 1; num < n; num++)</pre>
     res = res*num;
 return res;
```

RETORNO

Variáveis que são "retornadas" como resultado das funções

```
int quemGanhou(int golsTime1, int golsTime2)
if(golsTime1 > golsTime2)
    return 1:
else if(golsTime1 < golsTime2)</pre>
    return 2;
else
    return 0:
```

RETORNO

Podemos passar quantas variáveis quisermos como parâmetro, mas só retornar uma como resultado

Lesson4_3_TestOutputFunctions

- Esse código vai mostrar como usar funções para simplificar a leitura do que é feito em cada estado, além de evitar repetir trechos de código sem necessidade
- Poucas mudanças! Apenas adicionamos funções auxiliares para acender as luzes de acordo com a nossa lógica
- Quando começamos a fazer muita coisa em cada estado, demora pro Arduino verificar se o botão foi pressionado...
- Como lidar com essa situação?

Interrupção Externa

- Interatividade sem tomar todo o tempo
- 0 sinal em um pino desvia o fluxo do programa imediatamente!
- Não funciona em todos os pinos... (no UNO, pinos 2 e 3)

attachInterrupt(interrupt, ISR, mode)

- interrupt: 0 (pino 2) ou 1 (pino 3)
- ISR: nome da função que vai ser chamada
- mode: LOW, CHANGE, RISING, FALLING

Lesson4_4_TestButtonInterrupt

- Esse código funciona exatamente da mesma forma que o primeiro, mas permite a resposta imediata ao botão
- Mesmo se adicionarmos um delay grande na função de cada estado, não temos problemas de interatividade
- Ainda existe o problema de "bounce"... como lidar?
- Exemplo de código comentado usando temporização

Temporização

- Já ouviram falar em clock de um computador?
- Quantos GHz tem o seu computador?
- 0 que isso significa?

Temporização

- O microcontrolador no "coração" do Arduino UNO, o ATmega328, usa um cristal de 16 MHz
- Dá pra gente usar isso pra contar o tempo, usando um contador interno de pulsos do clock!

Que horas são?

- função millis(): quanto tempo desde o início do programa?
- unsigned long: 32 bits (faixa de 0 a 4 294 967 295)
- Contador volta para zero depois de aproximadamente 50 dias

unsigned long millis()

retorna: quantos milisegundos desde o início do programa

CUIDADO: fazer contas de tempo com outros tipos inteiros pode te dar problemas. Evite dores de cabeça e use sempre unsigned long!

Já chegamos? Já chegamos?

```
boolean isStateTimeOver(int state)
unsigned long t = millis();
if(t-t init > t state[state])
   return true;
else
   return false;
```

Lesson4_5_TestTiming

- Esse código vai fazer a transição de estados baseada
 exclusivamente em intervalos de tempo pré-estabelecidos
- O botão de pedestre está ativado, mas não influencia na lógica do programa! Vamos fazer isso no próximo passo 😊
- MUITO IMPORTANTE: guardar novo tempo de início t_init em cada transição! Sem isso, o sistema fica perdido!

Lesson4_6_TestBlink

- Esse código vai adicionar apenas o LED piscando quando o tempo para pedestres está terminando
- Usando mais uma variável de estado (blink_state) e um intervalo de tempo (t_blink) podemos incorporar isso sem muito problema com um while
- Notem: agora o código entra uma só vez na função state_4()

Lesson4_7_Semaphore

- Agora é só integrar o botão de pedestre!
- Fazemos isso com uma variável booleana (true/false) que chamamos de pedWaiting, que muda para true quando o botão é pressionado, para sinalizar que há alguém esperando
- Essa variável é resetada para false quando o sinal fecha novamente, o que faz com que toques no meio do ciclo não levem o sinal a abrir novamente
- Usamos essa variável na condição de transição do estado 0!

Próxima aula

- Conceber um projeto em grupo, com orientação
- Apresentação sobre sensores/atuadores
- Dicas de onde comprar e onde aprender mais
- Mais um projeto passo-a-passo, como o de hoje

MAIS ALGUMA IDÉIA?