Package 'zic'

October 14, 2022

Version 0.9.1
Date 2017-08-22
Title Bayesian Inference for Zero-Inflated Count Models
Author Markus Jochmann <markus.jochmann@ncl.ac.uk></markus.jochmann@ncl.ac.uk>
Maintainer Markus Jochmann <markus.jochmann@ncl.ac.uk></markus.jochmann@ncl.ac.uk>
Description Provides MCMC algorithms for the analysis of zero-inflated count models. The case of stochastic search variable selection (SVS) is also considered. All MCMC samplers are coded in C++ for improved efficiency. A data set considering the demand for health care is provided.
License GPL (>= 2)
Depends R (>= $3.0.2$)
Imports Rcpp (>= 0.11.0), coda (>= 0.14-2)
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN
Date/Publication 2017-08-22 12:26:54 UTC
R topics documented:
docvisits
zic
zic.svs
Index 8

2 docvisits

docvisits

Demand for Health Care Data

Description

This data set gives the number of doctor visits in the last three months for a sample of German male individuals in 1994. The data set is taken from Riphahn et al. (2003) and is a subsample of the German Socioeconomic Panel (SOEP). In contrast to Riphahn et al. (2003) only male individuals from the last wave are considered. See Jochmann (2013) for further details.

Usage

```
data(docvisits)
```

Format

This data frame contains 1812 observations on the following 22 variables:

```
docvisits number of doctor visits in last 3 months
age age
agesq age squared / 1000
age30 1 if age >= 30
age35 1 if age >= 35
age40 1 if age >= 40
```

age45 1 if age >= 45 **age50** 1 if age >= 50 **age55** 1 if age >= 55

age60 1 if age >= 60

health health satisfaction, 0 (low) - 10 (high)

handicap 1 if handicapped, 0 otherwise

hdegree degree of handicap in percentage points

married 1 if married, 0 otherwise

schooling years of schooling

hhincome household monthly net income, in German marks / 1000

children 1 if children under 16 in the household, 0 otherwise **self** 1 if self employed, 0 otherwise

civil 1 if civil servant, 0 otherwise

bluec 1 if blue collar employee, 0 otherwise

employed 1 if employed, 0 otherwise

public 1 if public health insurance, 0 otherwise

addon 1 if add-on insurance, 0 otherwise

zic 3

References

Jochmann, M. (2013). "What Belongs Where? Variable Selection for Zero-Inflated Count Models with an Application to the Demand for Health Care", *Computational Statistics*, 28, 1947–1964.

Riphahn, R. T., Wambach, A., Million, A. (2003). "Incentive Effects in the Demand for Health Care: A Bivariate Panel Count Data Estimation", *Journal of Applied Econometrics*, 18, 387–405.

Wagner, G. G., Frick, J. R., Schupp, J. (2007). "The German Socio-Economic Panel Study (SOEP) – Scope, Evolution and Enhancements", *Schmollers Jahrbuch*, 127, 139–169.

zic

Bayesian Inference for Zero-Inflated Count Models

Description

zic fits zero-inflated count models via Markov chain Monte Carlo methods.

Usage

```
zic(formula, data, a0, b0, c0, d0, e0, f0,
    n.burnin, n.mcmc, n.thin, tune = 1.0, scale = TRUE)
```

Arguments

formula	A symbolic description of the model to be fit specifying the response variable and covariates.
data	A data frame in which to interpret the variables in formula.
a0	The prior variance of α .
b0	The prior variance of β_j .
c0	The prior variance of γ .
d0	The prior variance of δ_j .
e0	The shape parameter for the inverse gamma prior on σ^2 .
f0	The inverse scale parameter the inverse gamma prior on σ^2 .
n.burnin	Number of burn-in iterations of the sampler.
n.mcmc	Number of iterations of the sampler.
n.thin	Thinning interval.
tune	Tuning parameter of Metropolis-Hastings step.
scale	If true, all covariates (except binary variables) are rescaled by dividing by their respective standard errors.

4 zic

Details

The considered zero-inflated count model is given by

$$\begin{aligned} y_i^* &\sim \text{Poisson}[\exp(\eta_i^*)], \\ \eta_i^* &= \alpha + x_i'\beta + \varepsilon_i, \ \varepsilon_i \sim \text{N}(0, \sigma^2), \\ d_i^* &= \gamma + x_i'\delta + \nu_i, \ \nu_i \sim \text{N}(0, 1), \\ y_i &= 1(d_i^* > 0)y_i^*, \end{aligned}$$

where y_i and x_i are observed. The assumed prior distributions are

$$\alpha \sim \mathrm{N}(0, a_0),$$
 $\beta_k \sim \mathrm{N}(0, b_0), \quad k = 1, \dots, K,$ $\gamma \sim \mathrm{N}(0, c_0),$ $\delta_k \sim \mathrm{N}(0, d_0), \quad k = 1, \dots, K,$ $\sigma^2 \sim \mathrm{Inv\text{-}Gamma}\left(e_0, f_0\right).$

The sampling algorithm described in Jochmann (2013) is used.

Value

A list containing the following elements:

alpha	Posterior draws of α (coda mcmc object).
beta	Posterior draws of β (coda mcmc object) .
gamma	Posterior draws of γ (coda mcmc object).
delta	Posterior draws of δ (coda mcmc object).
sigma2	Posterior draws of σ^2 (coda mcmc object).
acc	Acceptance rate of the Metropolis-Hastings step.

References

Jochmann, M. (2013). "What Belongs Where? Variable Selection for Zero-Inflated Count Models with an Application to the Demand for Health Care", *Computational Statistics*, 28, 1947–1964.

Examples

zic.svs 5

zic.svs	SVS for Zero-Inflated Count Models

Description

zic.svs applies SVS to zero-inflated count models

Usage

Arguments

formula	A symbolic description of the model to be fit specifying the response variable and covariates.
data	A data frame in which to interpret the variables in formula.
a0	The prior variance of α .
g0.beta	The shape parameter for the inverse gamma prior on κ_k^{β} .
h0.beta	The inverse scale parameter for the inverse gamma prior on κ_k^{β} .
nu0.beta	Prior parameter for the spike of the hypervariances for the β_k .
r0.beta	Prior parameter of ω^{β} .
s0.beta	Prior parameter of ω^{β} .
e0	The shape parameter for the inverse gamma prior on σ^2 .
f0	The inverse scale parameter the inverse gamma prior on σ^2 .
с0	The prior variance of γ .
g0.delta	The shape parameter for the inverse gamma prior on κ_k^{δ} .
h0.delta	The inverse scale parameter for the inverse gamma prior on κ_k^{δ} .
nu0.delta	Prior parameter for the spike of the hypervariances for the δ_k .
r0.delta	Prior parameter of ω^{δ} .
s0.delta	Prior parameter of ω^{δ} .
n.burnin	Number of burn-in iterations of the sampler.
n.mcmc	Number of iterations of the sampler.
n.thin	Thinning interval.
tune	Tuning parameter of Metropolis-Hastings step.
scale	If true, all covariates (except binary variables) are rescaled by dividing by their respective standard errors.

6 zic.svs

Details

The considered zero-inflated count model is given by

$$\begin{aligned} y_i^* &\sim \text{Poisson}[\exp(\eta_i^*)], \\ \eta_i^* &= \alpha + x_i'\beta + \varepsilon_i, \ \varepsilon_i \sim \text{N}(0, \sigma^2), \\ d_i^* &= \gamma + x_i'\delta + \nu_i, \ \nu_i \sim \text{N}(0, 1), \\ y_i &= 1(d_i^* > 0)y_i^*, \end{aligned}$$

where y_i and x_i are observed. The assumed prior distributions are

$$\begin{split} \alpha &\sim \mathrm{N}(0,a_0),\\ \beta_k &\sim \mathrm{N}(0,\tau_k^\beta \kappa_k^\beta),, \quad k=1,\ldots,K,\\ \kappa_j^\beta &\sim \mathrm{Inv\text{-}Gamma}(g_0^\beta,h_0^\beta),\\ \tau_k^\beta &\sim (1-\omega^\beta)\delta_{\nu_0^\beta}+\omega^\beta\delta_1,\\ \omega^\beta &\sim \mathrm{Beta}(r_0^\beta,s_0^\beta),\\ \gamma &\sim \mathrm{N}(0,c_0),\\ \delta_k &\sim \mathrm{N}(0,\tau_k^\delta \kappa_k^\delta), \quad k=1,\ldots,K,\\ \kappa_k^\delta &\sim \mathrm{Inv\text{-}Gamma}(g_0^\delta,h_0^\delta),\\ \tau_k^\delta &\sim (1-\omega^\delta)\delta_{\nu_0^\delta}+\omega^\delta\delta_1,\\ \omega^\delta &\sim \mathrm{Beta}(r_0^\delta,s_0^\delta),\\ \sigma^2 &\sim \mathrm{Inv\text{-}Gamma}\left(e_0,f_0\right). \end{split}$$

The sampling algorithm described in Jochmann (2013) is used.

Value

A list containing the following elements:

vs of α (coda mcmc object).
vs of β (coda mcmc object).
vs of γ (coda mcmc object).
vs of δ (coda meme object).
vs of σ^2 (coda mcmc object).
vs of indicator whether τ_j^{β} is one (coda mcmc object).
vs of indicator whether τ_j^{δ} is one (coda mcmc object).
vs of ω^{β} (coda mcmc object).
vs of ω^{δ} (coda mcmc object).
ate of the Metropolis-Hastings step.
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜

zic.svs 7

References

Jochmann, M. (2013). "What Belongs Where? Variable Selection for Zero-Inflated Count Models with an Application to the Demand for Health Care", *Computational Statistics*, 28, 1947–1964.

Examples

Index

```
* datasets
docvisits, 2
docvisits, 2
zic, 3
zic.svs, 5
```