5G-NIDD: A Comprehensive Network Intrusion Detection Dataset Generated over 5G Wireless Network

Sehan Samarakoon*, Yushan Siriwardhana[†], Pawani Porambage[‡], Madhusanka Liyanage[§], Sang-Yoon Chang[¶],

Jinoh Kim^{||}, Jonghyun Kim**, Mika Ylianttila^{††}

*†‡§††Centre for Wireless Communications, University of Oulu, Finland

[‡]VTT Technical Research Centre, Finland

§School of Computer Science, University College Dublin, Ireland

¶Department of Computer Science, University of Colorado Colorado Springs, USA

||Computer Science Department, Texas A&M University–Commerce, USA

**Information Security Research Division, ETRI (Electronics and Telecommunications Research Institute), Korea Email: *†§††[firstname.lastname]@oulu.fi, †pawani.porambage@vtt.fi, §madhusanka@ucd.ie, ¶schang2@uccs.edu,

||jinoh.kim@tamuc.edu **jhk@etri.re.kr

Abstract-With a plethora of new connections, features, and services introduced, the 5th generation (5G) wireless technology reflects the development of mobile communication networks and is here to stay for the next decade. The multitude of services and technologies that 5G incorporates have made modern communication networks very complex and sophisticated in nature. This complexity along with the incorporation of Machine Learning (ML) and Artificial Intelligence (AI) provides the opportunity for the attackers to launch intelligent attacks against the network and network devices. These attacks often traverse undetected due to the lack of intelligent security mechanisms to counter these threats. Therefore, the implementation of real-time, proactive, and self-adaptive security mechanisms throughout the network would be an integral part of 5G as well as future communication systems. Therefore, large amounts of data collected from real networks will play an important role in the training of AI/ML models to identify and detect malicious content in network traffic. This work presents 5G-NIDD, a fully labeled dataset built on a functional 5G test network that can be used by those who develop and test AI/ML solutions. The work further analyses the collected data using common ML models and shows the achieved accuracy

Index Terms—5G Security, 5GTN, Dataset, Intrusion Detection, Machine Learning

I. INTRODUCTION

The advancements with 5th generation (5G) wireless systems increase the complexity of wireless networks in terms of heterogeneity, device count, and the amount of data generated. Beyond 5G, the 6G era drives a revolution of wireless networks from connected things to connected intelligence [1], leading towards more complex networks. Artificial Intelligence (AI) and Machine Learning (ML) play a substantial role in beyond 5G networks in many aspects including intelligent wireless communications, closed-loop optimization of networks, and big data analytics. The 6th generation (6G) era envisions the adoption of network-wide AI [2]. As the complexity of the networks grows higher, the threat surface

also becomes broader due to the heterogeneity, massive scale, and the plethora of applications served by these networks [3].

Security of 5G and 6G networks is of the utmost importance as the novel applications demand extreme requirements from the networking infrastructure [4]. The potential of adversaries uncovering network vulnerabilities using AI techniques increases the challenge of designing proper security mechanisms to protect the network. Conventional reactive security approaches where the resolution action starts after the attack is detected, are insufficient against such intelligent attacks [5]. Therefore, a paradigm of proactive, self-aware, and selfadaptive intelligent security systems is a must [2]. Proper use of massive data generated by future networks leads to uncovering anomalous network behaviors, hence providing valuable inputs for the designing of intelligent security mechanisms. Therefore, it is evident that the design and implementation of AI-based intrusion detection and prevention approaches are much needed to secure future networks [6], complementing and improving the present security designs.

The majority of data generated inside the network is extremely important as AI-based security mechanisms are capable of uncovering hidden patterns in large volumes of data. A prevailing problem in AI-based security research is the unavailability of comprehensive valid datasets that exerts complex network behaviors [7], mainly 5G network behaviors. In the regime of supervised learning, the training datasets are scarce, which prevents the accurate evaluation of novel AIbased security techniques for future networks. Some of the well-known publicly available datasets are outdated [8] and have limited applicability in 5G network security research. Mobile Network Operators (MNO) are usually reluctant to publicly share the data from their live network traffic due to privacy issues, and the potential threats of exposing network vulnerabilities to external parties. Hence, a comprehensive dataset from an actual running network that exerts 5G behavior has substantial benefits in AI-based 5G security research and those who test AI/ML algorithms.

This article publishes 5G-NIDD, a network intrusion detection dataset generated from a real 5G test network. To the best of our knowledge, there is no prior work in the state-of-theart that uses 5G network flows to create a dataset. Therefore, 5G-NIDD contains unique features that exist in 5G network flows compared with the past datasets. Usually, many available datasets are sourced from either virtualized networks or temporary networks specifically designed to create a dataset. Even though the simulators and virtual environments are frequently utilized for research and development, real-world settings and testbeds are necessary to assess the performance of new applications and services before deployment [9]. Aligning with that concept, 5G-NIDD is generated using a fully functional 5G network created for 5G testing purposes, thus providing a close resemblance to a real network scenario. The dataset is collected using the 5G Test Network (5GTN) in Oulu, Finland [10]. 5GTN serves as the core network and offers application developers a carrier-grade test network by deploying a variety of measuring and monitoring tools throughout the network [9]. 5G-NIDD presents a combination of attack traffic and benign traffic under different attack scenarios. We use real mobile devices attached to the 5GTN to generate benign traffic whereas in some other datasets pre-collected data has been added as benign traffic after post-processing. In particular, our contributions to this paper are as follows.

- Implement the whole network setup using appropriate hardware and software on a real 5G network environment and configure the roles and positions of attackers/targets to simulate different attack scenarios.
- Create and publish 5G-NIDD, a labeled network intrusion detection dataset that contains nine intrusion types along with benign network traffic. The dataset allows researchers to test novel intrusion detection algorithms.
- Provide extensive evaluation of 5G-NIDD using multiple ML techniques, present the accuracy levels and the validity of the dataset in network intrusion detection.

The remainder of the paper is organized as follows: Section II explains the background and related work including past datasets and their shortcomings. Section III presents details of the testbed attached to 5GTN which is used for the dataset generation. Section IV describes the attack scenarios, attack tools, and the methodology we followed to create the dataset. Section V explains the details of the post-processing of data. Section VI discusses the results obtained using different ML models to test the dataset. Section VII provides potential expansions of the testbed and future directions to create more sophisticated datasets. Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

This section presents a summary of the commonly available threat detection mechanisms of networks and explains why those threat detection mechanisms are inefficient in 5G and 6G networks. It also elaborates the behavioral-based anomaly

detection equipped with AI to complement the existing mechanisms. This section also summarizes some of the available datasets for ML-based intrusion detection.

A. Conventional Threat Detection

Conventional threat detection involves the use of knowledge-based or signature-based intrusion detection techniques. These signature-based threat detection systems use the available signatures which are stored in a database for pattern matching to detect the known threats [11]. The database keeps updating its signatures based on the new attacks. If a signature of a specific attack is missing in the database, the system fails to detect that as an attack. This detection scheme is not sufficient for 5G and beyond networks as the likelihood of occurring intelligent zero-day type attacks is high [12]. Furthermore, signature-based Intrusion Detection Systems (IDS) perform poorly when the attack spans across multiple numbers of packets as only individual packets are compared against the signatures database in general. The comparison of each packet with the signature database is expensive in terms of time and resources. This is intolerable in a real-time 5G network with applications demanding ultralow latencies.

B. ML based Threat Detection

ML based threat detection approaches have substantial popularity with the advancement of AI techniques [13]. Salo et al. performed a literature review to recognize 19 different methods for data mining that are frequently used in network intrusion detection [14], [15]. Subsequently, they proposed an ensemble feature selection and anomaly detection mechanism, highlighting the need for more ML-based research to implement real-time intrusion detection [16]. Li et al. proposed a decision tree based intrusion detection system for the connected and autonomous vehicles to identify both intra and intervehicle network attacks [17]. Verma et al. performed k-nearest neighbor classification and k-means clustering techniques to measure the performance of CIDDS-001 dataset using different evaluation metrics [18]. The work concludes that the two techniques are effective to use in anomaly detection in flow based CIDDS-001 dataset. Gumus et al. proposed an online implementation of Naive Bayes classifier with moving average and standard deviation. Injadat et al. proposed a multistage optimized ML based Network Intrusion Detection System (NIDS) framework to lower computing complexity while retaining detection performance [19]. The work compared the effect of oversampling techniques on training sample size and the effect of different feature selection techniques such as information gain and correlation based methods [19].

Self-adaptive ML based anomaly detection in 5G networks [20] utilizes AI algorithms to identify cyber threats and automatically adapts to optimize computing resources based on the traffic flow. These detection schemes use a large amount of data to learn and then apply the learned knowledge to identify traffic flows that deviate from normal traffic behaviors. The possession of high computational ability at commendable

speeds in today's 5G networks allows the proper use of AI/ML techniques in intrusion detection. AI/ML techniques have the potential to deliver real-time solutions in detecting and neutralizing more sophisticated attacks in 5G and beyond networks.

AI/ML-based threat detection schemes possess the ability to learn and enhance their detection capability from experience without a specific need for programming [21]. Several categories of AI-based techniques exist based on the way learning occurs, including supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning [22]. Supervised learning uses labeled data to reveal a relationship between inputs and outputs and predicts the output for a completely new set of inputs. Well-known supervised learning algorithms/models include Decision Tree, Random Forest, Naive-bayes, and deep neural networks. The presence of a labeled dataset with a sufficient amount of data is important in supervised learning to train a good model.

C. Existing Datasets

The first widely known dataset for ML based intrusion detection is DARPA dataset [23], [24] which consists of simulated Denial of Service (DoS) attacks, guess password, buffer overflow, synflood, and namp attacks. Research communities developed more datasets to support ML based intrusion detection to address the weaknesses of existing datasets by providing further improvements. Examples for such datasets include KDD Cup 99 [25], NSL KDD [26], DEFCON [27], CAIDA [28], LBNL [29], CTU-13 [30], UNSW-NB 15 [7], and Bot-IoT [31] datasets. A recent survey briefly explains a comprehensive summary of such datasets until 2020 that are effective to evaluate intrusion detection on networks [32]. The majority of these datasets are outdated for modern networks as they are compiled before some of the drastic technological evolutions. However, the CICIDS2017 and Bot-IoT datasets are more recent datasets. The CICIDS2017 dataset [33] contains multiple attack types including DoS, Distributed Denial of Service (DDoS), Heartbleed, and infiltration attacks. The dataset is based on a realistic network that combines an attack network and a victim network. The schedule for different attacks spans a period of four days. The benign traffic profile contains Hypertext Transfer Protocol (HTTP), Hypertext Transfer Protocol Secure (HTTPS), File Transfer Protocol (FTP), Secure Shell Protocol (SSH), and email protocols to simulate the behavior of a real network. The Bot-IoT dataset [31] proposed in 2018 consists of more than 72 million records. This dataset consists of DoS attacks, probing attacks, and information theft in an IoT network simulated using Node-red tool. The IoT devices include a weather station, a smart fridge, motion-activated lights, a remotely activated garage door, and a smart thermostat. The entire dataset was created using a virtual environment which is created inside one physical computer where the attackers and the victims are created as virtual instances. Some of the datasets were subjected to different critics such as the presence of artificial traffic, higher amounts of redundancy, ignorance of realworld conditions, lack of diversity, and the presence of highly anonymized content in packets [25]- [33].

D. Limitations in Existing work

The accuracy and the efficiency of ML-based intrusion detection heavily depend on the quality of the dataset and how close the behavior of the data is to the behavior of a real network scenario. Characteristics of a comprehensive and valid dataset include attack diversity, anonymity, available protocols, complete capture, complete interaction, complete network configuration, complete traffic, feature set, heterogeneity, labeling, and metadata [51]. Recent datasets such as CICIDS2017 exhibit these characteristics and have proven successful in ML based intrusion detection research. However, the behavior of 5G and beyond networks is far from the testbeds or the simulation platforms used to create these datasets. Moreover, there are few publicly available datasets from real MNO networks. Table I presents a summary of existing intrusion detection datasets along with their limitations. At the time of this writing, there is no suitable dataset generated using a real 5G network, which affects the AI-based intrusion detection research in 5G networks. The objective of this effort is to bridge that gap and create a novel dataset from a real 5G network implementation and publish it for the use of further research.

III. DATASET GNERATION ENVIRONMENT

This section extensively describes the environment we used for the generation of 5G-NIDD. It provides detailed information about the 5G Test Network (5GTN), which is the underlying infrastructure. Then it describes the additional testbed elements added to 5GTN for the purpose of creating the dataset and collecting the data. Finally, it provides details on benign user behavior and benign traffic extraction.

A. Testbed

1) 5GTN: 5G Test Network Finland [10] is an open and evolving innovation ecosystem supporting 5G and beyond technology research. It offers a leading edge environment to develop 5G and beyond, AI and cyber security based vertical industry solutions, services, systems and products. 5GTN deploys a number of measurement and monitoring tools in various network areas with the goal of providing application developers with a carrier quality test network [9]. We used the University of Oulu site of 5GTN for the dataset creation, which is an open test environment as shown in Fig. 1. The deployment of 5GTN used for the dataset creation has the Non-Standalone (NSA) option 3a [52].

2) Test Network: Fig. 2 depicts additional testbed elements we used along with the 5GTN for the purpose of data collection. We used two Nokia - Flexi Zone Indoor Pico Base Stations existing in 5GTN in our activity. We connected an attacker node and a set of benign traffic-generating devices to of these two base stations. A Dell - N1524 switch connects the attackers to the victim's network. The pico base stations are also connected to the eNodeB through the x2-c interface

TABLE I: Existing Intrusion Detection Datasets

Dataset	Scenario/application	Data production method	Attack types	Limitations/issues
DARPA [24]	Computer network intrusion detection system [34]	Transmission Control Protocol (TCP) dump and log data [35]	DoS, probing, privilege escalation	Usage of artificially simulated data for background traffic [35]
KDD Cup 99 [25]	Computer network intrusion detection system	Generated by processing the tcpdump portion of DARPA dataset [36]	DoS, probing, privilege escalation	Large number of redundant records, data corruptions which led to skewed testing results [36]
NSL KDD [26]	Computer network intrusion detection system	Selected records of KDD 99 dataset by removing redundant records [36]	DoS, probing, privilege escalation	Does not represent modern low foot print attack scenarios [36]
DEFCON [27]	Traffic produced during a capture the flag competition	Captured in packet based format [37]	Port Scanning, buffer overflow attacks	Traffic different from real world network traffic
CAIDA DDoS 2017 [28]	One hour DDoS attack traffic [8]	Traffic traces in pcap format [8]	DDoS	Datasets are very specific to particular events and are anonymized with their payload, protocol information and destination [38]
LBNL [29]	Network traffic within enter- prise networks [39]	Incoming, outgoing and in- ternally routed traffic streams at the LBNL edge routers in packet based format [8]	Port scans	Consists of anonymized traffic with only header data [40], [29]
CTU-13 [30]	Real mixed botnet traffic [34]	Captured in Pcaps and then converted to NetFlows, WebLogs etc. [41]	Botnets [42]	Higher percentage of unknown background traffic and com- plete traffic captures not avail- able publicly [43]
UNSW-NB 15	Computer network security dataset [44]	Used IXIA PerfectStorm tool to produce modern normal and ab- normal traffic in peap and argus file formats [7]	DoS, backdoors, exploits, fuzzers, port scans, worms	The dataset was designed based on a synthetic environment for generating attack activities. Class imbalance and class over- lap [44]
CICIDS 2017/2018 [33]	IDS dataset with common updated attacks	Captured in packet based format and converted to bi-directional flow based format [33]	DoS, DDoS, heartbleed, infiltration, Structured Query Language(SQL) injection, SSH brute force	Many redundant records and high class unbalance [45]
bot-IoT [31]	Emulation of both IoT and a botnet [46]	Captured in PCAPS and converted to flows [46]	DoS, probing, information theft	Odd composition of normal traffic simulated from softwares [46]
IoT-NI [47]	Network attacks in an IoT setting	Captured in 42 PCAP files under the monitor mode of a wireless network adaptor	DoS, Man In The Middle (MITM), host/port scan, Mirai	Small-scale data collection us- ing two home devices (speaker and camera) as victims
IoT-23 [48]	Network traffic captures under 23 scenarios	Captured in PCAP files with the associated IDS log (created by Zeek [49])	DDoS, C&C, FileDownload, HeartBeat, port scan, Botnet (Mirai, Okiru, Torii)	Small-scale collection with three types of home devices (speaker, bulb, door lock) and a high degree of class imbalance
MQTT-IoT- IDS2020 [50]	Four attack scenarios on a simulated network with 12 sensors	Captured in PCAP files with the corresponding packet- and flow-level feature set	Scan, password cracking	Simple brute force-mannered attacks included in the attack scenarios

while the connection between the pico base station and the switch is through S1-U interface.

- 3) Attacker Preparation: We configured Raspberry Pi 4 Model B devices as the attacker nodes. We set up Raspberry Pi 4 devices with Ubuntu operating system for easy use of open-source attacking tools. We connected the attackers to the pico base stations via Huawei E6878-870 5G modems. We set up the connection between the attacker node and the modem via WiFi and the connection between the modem and the base station was 5G. Fig. 3 shows the actual equipment setup for one base station. The setup includes the base station, attacker, benign users, and the data capturing Personal Computer (PC). Table II provides a list of devices used in the testbed.
- 4) Victim Placement: The victim/target was an Ubuntu server instance located in the Multi-access Edge Computing (MEC). MEC plays an important role in modern 5G networks. MEC facilitates essential requirements in 5G networks in

terms of low latency and high bandwidth [53]. We wanted to have the attackers and the target in different networks, therefore we placed the target in the MEC. To launch a successful attack, the attacker needs to send the attack traffic through the 5G network. This makes the deadset have more realistic flows. In 5G networks, attacker presence can be seen in different subnetworks.

TABLE II: Devices of the Testbed

Device	Description
Attacker	Raspberry Pi 4 Model B with Ubuntu 21.10 - Impish
Victim	HP with Ubuntu 18.04.5 LTS - Bionic
Base Station	Nokia - Flexi Zone Indoor Pico Base Station
Modem	HUAWEI - E6878
Mobile devices	Motorola - Moto g50 5G
Switch	Dell - N1524

Fig. 1: Architecture of 5GTN Oulu [9].

B. Benign Traffic Generation

A key feature that distinguishes 5G-NIDD from other datasets is the approach for benign traffic generation. Actual mobile devices in the network generate benign traffic instead of simulated traffic. Adding prior simulated benign traffic has been the common approach in most of the other datasets, which affects the traffic behavior in the dataset. We captured the live traffic from mobile devices in the network, which includes both the attack traffic and the benign traffic. The benign traffic profile includes protocols such as HTTP, HTTPS, SSH, and Secure File Transfer Protocol (SFTP). The sources for HTTP and HTTPS are live streaming services and web browsing. We deployed SSH clients and servers on mobile devices, generated SSH and SFTP traces, and added them to the dataset to increase variety.

IV. ATTACK TYPES AND ATTACKING TOOLS

This section describes the attack types and attacking tools that we considered for the generation of 5G-NIDD. As described below, mainly we evaluated for few variants of DoS attacks and Port Scan attacks.

A. DoS Attacks

A DoS attack is one of the most common attacks that can occur in a network. The aim of this attack is to slow down or completely shut down a target making it inaccessible to legitimate users. Flooding techniques and malicious content injection are some of the common methods to lunch a DoS attack. The network or a node will eventually undergo resource exhaustion and deny the nonmalicious users' access as a result of a DoS attack. Due to the heterogeneous nature of the 5G networks, DoS attacks impose a vital threat in 5G which may target the network nodes, devices, and applications [54]. This work focuses on the DoS/DDoS attacks targeted at user devices, but the attack may congest the network too. The nonguaranteed availability of security infrastructure for operating systems, applications, and configuration data on user devices

requires an adequate level of protection from the networking infrastructure [55]. Therefore, intrusion detection mechanisms implemented at the network level is important to detect these type of attacks.

Three most common categories of DoS/DDoS attacks are volume-based, protocol-based, and application layer attacks [56]. In volume-based DoS attacks, the attacker directs large volumes of attack traffic toward the target to deplete the network resources of the targeted server. Attackers exploit the weaknesses and deficiencies present in the protocols and launch protocol based DoS attacks. Moreover, DoS/DDoS attacks aimed at application layer services are also common. Our work represents all these categories of DoS/DDoS attacks.

1) ICMP Flood: Internet Control Message Protocol (ICMP) flood attacks use ICMP echo requests to flood a target at a very high frequency. Ideally, an ICMP echo reply follows the echo request to the same Internet Protocol (IP) address. In this type of attack, the target will send back echo replies to massive amounts of ICMP echo requests. The higher frequency of echo requests also leads to a higher frequency in the rate of response which eventually overwhelms the network and makes the services unavailable for normal users. We performed the ICMP flood attack with the Hping3 tool using the following command.

sudo hping3 -flood -rand-source -1 -p "Targeted port/Range of ports" "Target IP address"

2) UDP Flood: In a User Datagram Protocol (UDP) flood attack, attacker sends UDP packets at a higher rate. Since UDP is a connection-less protocol, it is possible to send a large amount of traffic. As the UDP packets arrive at the target destination, the reply is a "Destination Unreachable" packet if no associated application is found. Over time, as a higher amount of UDP packets are received and responded to, the system eventually becomes nonresponsive. We used the same Hping3 tool to perform the UDP flood attack by launching

Fig. 2: Network architecture of the testbed.

Fig. 3: Equipment setup for one base station.

the following command.

sudo hping3 -flood -rand-source -udp -p "Targeted port/range of ports" "Target IP address"

3) SYN Flood: SYN flood attack is a result of the exploitation of the TCP three way handshake. In a typical TCP communication between two nodes, the source nodes sends a SYN packet to the desired node for the initiation of the connection. The destination node replies with a SYN ACK to acknowledge the SYN packet. Finally, the source

sends another ACK to acknowledge receiving the SYN ACK, completing the three way handshake. In a SYN flood attack, the attacker does not perform the final step of the TCP handshake, therefore leaving the connection half open. The transmission of SYN packets at a higher frequency will leave large amounts of ports half open for a certain period and eventually the receiver will be exhausted once all ports are occupied preventing access for legitimate users. We performed the SYN flood attack using the Hping3 tool through the following command.

sudo hping3 -S -p "Targeted port/range of ports" -flood -rand-source "Target IP address"

4) HTTP Flood: HTTP flood attacks target the application layer. It is a popular method for DoS/DDoS attacks due to its proven effectiveness in mimicking normal human behavior and thereby staying undetected. We used Python based Goldeneye tool to conduct the HTTP flood attacks. To perform the application layer attacks, we deployed a web server at the victim MEC instance. The target was an Apache2 web server deployed in MEC. We used the following command to executes the attack.

sudo python3 ./goldeneye.py http://"Target IP address of the web server"

5) Slowrate DoS: Another exploitation of the application layer to conduct DoS attacks is the use of slow rate attacks. In terms of the speed and the number of packets directed at the target, it is comparatively different from other forms of DoS attacks. This slow nature of the traffic makes it harder to detect. In this exercise, we conducted two different forms of slow rate DoS attacks. As the first one, we performed slowloris attack through a python script. The attack establishes several connections with the targeted web server and maintain them for a longer period. We performed this by sending HTTP partial headers continuously to keep the connections open without completion [57]. The web server waits for the connections to complete which might never occur. The opening of a large number of such connections will eventually lead to resource exhaustion. We executed the slowloris attack using the following syntax from the terminal.

python3 slowloris.py "Target IP address of the web server"

In another case, the attacker sends slow POST requests to a web server. The POST requests comprises packets that specify a larger packet size in the header field, but the actual packet has a lesser size. The server then waits for the completion of the whole packet size specified in the header field [57]. We carried out this specific type of slow DoS attack using the tool Torshammer. We executed the following command from the terminal to perform the attack.

python2 torshammer.py -t "Target IP address of the web server"

B. Port Scans

A port scan usually precedes an actual attack to identify opportunities for attacks via open ports. Typically, port scans send requests to a targeted range of ports in a targeted host and observe the response. The response is sufficient to determine the status of a specific port in most cases. In some instances, deeper knowledge such as the operating system of the target may also be discovered [58]. Port scan is an efficient way to determine exploitable hosts in a network before the execution of attacks. The dataset contains attack data from different port scans such as the SYN scan, TCP Connect scan, and UDP scan. A brief explanation of each of these attacks is given below.

1) SYN Scan: The SYN scan uses part of the three way handshake in TCP connection establishment to discover open ports. The attacker sets the SYN flag in a TCP packet and sends to the target. If the targeted port/s is ready for a TCP connection, it returns a response packet with SYN and ACK flags set. This means the scan indicates an open port to the attacker. Ports that are not ready to establish a TCP connection send a RST packet indicating a closed port. As the attacker determines the state of the port from two packet flows, attacker cease the execution of the next step of the three way handshake. However, to terminate the connection the attacker

may send an RST packet to the target once the information on the status of the port is collected. If not, the target will keep sending packets with SYN and ACK flags set until a response is seen from the attacker. Other than *open* or *closed* ports, a *filtered* port may imply that a firewall is blocking the packets or the host is not reachable.

The incomplete three way handshake in SYN scan makes the scanning process quite fast in comparison to other available techniques. The SYN scan is one of the most popular scanning techniques. We performed the SYN scan through the Nmap open source tool in this work. We specified the targeted port range and the IP address using the following command which executed through the terminal.

sudo nmap -sS "Target IP address" -p "Targeted port/range of ports"

2) TCP Connect Scan: Similar to SYN scan, the TCP connect scan exploits the TCP handshake to perform the scanning process. However, the three way handshake is fully completed therefore, the time taken to scan the ports is higher compared with SYN Scan. Conversely, attackers may not need the same level of privileges to execute a TCP connect scan as they require for SYN scan.

The execution of the TCP connect scan is similar to SYN scan with the addition of the completion step in the three way handshake. This means that the two initial packet flows (SYN flag set packet and SYN ACK flags set packet) take place for an *open* port. Subsequently, the target replies with a packet set with ACK flag to complete the three way handshake. Although the opening of a TCP connection also offers the potential for data exchange, the attacking operating system makes sure the connection is terminated as soon as it detects that one has been made. In the event of a *closed* port, target sends a RST packet to the host similar to the SYN scan. *Filtered* ports may also exist in this scenario. We executed the TCP connect scan through the nmap tool using the following command.

sudo nmap -sT "Target IP address" -p "Targeted port/range of ports"

3) UDP Scan: UDP scan transmits UDP datagrams to the targeted ports of the targeted host. The attacker sends the UDP packets with a missing payload to ports that are not UDP. For UDP ports, a protocol-specific payload will exist. In UDP scan, the status of a port is defined based on the response of the target or the unresponsiveness of the target. As nonUDP ports receive a UDP datagram without a payload, the probability of getting a proper response is minimum. An open|filtered state is likely from such ports which indicates either a firewall is blocking the packets or packets are simply been forwarded from TCP/IP stack towards a listening application and discards them as invalid. Because of this, it might be challenging to precisely identify whether a port is open for nonUDP ports. In the case of UDP

TABLE III: Schedule of the Port Scans

Type of Port Scan	Date	Period of attack (Attacker 1)	Period of attack (Attacker 2)
SYN Scan	26/08/2022	12.20pm-12.30pm	12.20pm-12.30pm
TCP Connect Scan	26/08/2022	12.45pm-12.55pm	12.45pm-12.55pm
UDP Scan	26/08/2022	2.45pm-3.15pm	2.45pm-3.15pm

TABLE IV: Schedule of the DoS/DDoS Attacks

Type of DoS/DDoS Attack	Date	Period of data collection	Period of attack (Base Station 1)	Period of attack (Base Station 2)
ICMP flood	26/08/2022	2.45pm-3.15pm	2.50pm-3.00pm	2.55pm-3.05pm
UDP flood	26/08/2022	3.50pm-4.20pm	3.55pm-4.05pm	4.00pm-4.10pm
SYN flood	29/08/2022	10.30am-11.00am	10.35am-10.45am	10.40am-10.50am
HTTP flood	29/08/2022	1.15pm-1.45pm	1.20pm-1.30pm	1.25pm-1.35pm
Slow rate DoS - Slowloris	29/08/2022	02.10pm-2.40pm	2.15pm-2.25pm	2.20pm-2.30pm
Slow rate DoS - Torshammer	29/08/2022	2.45pm-3.15am	2.50pm-3.00pm	2.55pm-3.05pm

ports, a response may be recognized as a clear indicator of an *open* port. A port is judged to be closed if the response is an ICMP port unreachable error. We used the nmap tool to conduct UDP scan through the following command on the terminal.

sudo nmap -sU "Target IP address" -p "Targeted port/range of ports"

V. DATA COLLECTION AND PROCESSING

This section provides a detailed explanation of the schedule of various attacks, data capturing procedures, and the subsequent post-processing of captured data. This includes actions like removing the General Packet Radio Service Tunnelling Protocol (GTP) layer, converting pcap data to a network flow-based format, and feature selection. After the post-processing, the data is ready to feed ML algorithms.

A. File Capture

We performed the data collection process on two different days and captured both attack and benign traffic passing through the network at the two base stations.

We captured the data for each attack in different sessions in the pcap format. For port scans, we ensured that each session lasts for 10 minutes. During this time, we executed several port scans from both attackers, where each attacker is connected to a different base station. We also captured the benign traffic flows during the whole time. Table III shows the timings of each session of port scans.

A data capturing session for each DoS attack lasted for 30 minutes. However, during a 30 minutes session, we executed DoS attack from each attacker only for 10 minutes. We scheduled the 10 minutes attacking period such that there is a 5 minutes period where both attackers perform DoS attacks simultaneously. We generated the benign traffic at all times throughout the 30 minutes period and captured the same. Table IV shows the schedule of the DoS attacks.

B. Data Processing

We collected the data from each session for the two base stations into two pcap files. The duration of the overall captured traffic was 8 hours. The number of pcap files available was 18. Post processing of raw data was mandatory before feeding into the ML models. It is also important to obtain meaningful information and to increase the quality of the overall dataset. We performed a series of post-processing steps on the captured data as depicted in Fig. 4.

Fig. 4: Data processing steps after collection.

- 1) GTP layer removal: The capture of data from the radio interface of the base station is a novel approach which we do not see in other datasets. Due to this, the captured packets contained a GTP-U layer. GTP-U is a protocol used in IP based communications to transmit packets between the radio access network and the core network in Long-Term Evolution (LTE) or 5G New Radio (NR) networks. For the accurate identification of important features within the data, it was important to remove the GTP layer. We performed this process using the *Tracewrangler* tool on a Windows PC. *Tracewrangler* has the ability to remove the GTP layers in large batches of packets at once.
- 2) Generating Network flows: As the next step of the data processing, we converted the data from the packet-based format to a flow-based format. Intrusion detection systems consider network traffic in both the packet level as well as flow

level. However, with the massive number of packets generated under different attack scenarios, the scanning process of each individual packet is time consuming and a bottleneck for the performance of the entire network [59]. Moreover, modern attacks may span over multiple packets, therefore network flow based analysis provides better insights than the packet level analysis.

Hence, flow based formats are popular in ML based intrusion detection systems. A flow is a collection of packets with common characteristics such as the same source and destination IP addresses, same source, and destination ports as well as the same protocol [60]. The flow based format provides a high level description of the common features between transmissions [61]. This conversion resulted in a shrinking of the total data volume, which is an additional advantage in terms of processing in the detection stage.

We converted the traffic from packet based format to flow based format through *Argus* tool. *Argus* is an open source tool that supports network flow data generation for analysis. When converting to network flows, we generated 112 features to distinguish each flow using *Argus*. This included main features such as source and destination IP address, ports, protocol, packet size in bytes, number of packets.

3) Aggregation of data and labelling: We converted the flow data in argus format with 112 features into Comma Separated Values (CSV) format. The data collected at each attack session was available as separate CSV files. The data labeling process is an important step to ensure the quality of a dataset used for supervised learning. In this case, we labeled the data to differentiate between benign and attack traffic. We also assigned a different label for each attack.

After the labeling process, we aggregated the individual session data per base station. It makes sure that separate datasets are also available from multiple points of the network, if needed. Finally, we combined the two datasets from two base stations together to obtain a dataset with 1,215,890 flows.

4) Data encoding: We observed some categorical data in the 112 features extracted from the network flows. Since there is no meaning for categorical data in the context of ML, we converted them into numerical characters using a popular encoding technique; one hot encoding [62]. One hot encoding converts n observances in a particular variable with d distinct categories into d number of variables with n observations each. The n observations of these variables are represented with either 0 or 1 depending on the presence or absence of the particular category. We used one hot encoding in our own python script for this conversion.

C. Feature Selection

Feature selection is an important step before feeding data into ML models. Modern massive heterogeneous networks generate a massive amount of data. The higher volume of data requires higher processing and storage requirements. Therefore, the selection and extraction of the most important features is a common practice in AI/ML model training. This also reduces the training times significantly. Further,

the processing of high-dimensional data is challenging for most ML models. Feature selection removes irrelevant and redundant data effectively to save computational time and obtain higher learning efficiency [63], [64].

Feature selection picks a subset called the most important features from an original set of features using techniques such as filter, wrapper, and embedded method. We used the filter method to conserve the generality, as data will be used for training different ML models. The filter method uses a statistical approach which is performed before applying to a model. Therefore, it is independent of the characteristics or parameters of a model [65].

Before performing statistical-based filter methods for feature selection, we removed some obvious irrelevant features. Initially, we removed the features having null values and constant values throughout all the flows as they have no effect on the model accuracy. Then we removed certain features to maintain the generality of the intrusion detection system. These features include source and destination IP addresses and ports. We removed them because attack can be uniquely identified with their presence. For further reduction of features, we used statistical-based filter methods such as Pearson correlation and Chi-square test.

1) Pearson Correlation: From the remaining set of features, if more than one feature has the same relationship with the output label, then they are redundant. The dataset needs only one feature from those redundant features. We eliminated redundant features and further reduced the number of features without affecting the quality of data. We used the Pearson correlation coefficient for this. Pearson correlation coefficient is a statistical formulation used to determine the linear correlation between two variables based on (1). The correlation coefficient varies between -1 and +1 where +1 represents a high positive correlation and -1 represents a high negative correlation. A correlation value of 0 usually means that the two variables are uncorrelated.

$$\rho_{x,y} = \frac{COV(X,Y)}{\sigma_x \sigma_y} = \frac{E(X - \mu_x)(Y - \mu_y)}{\sigma_x \sigma_y}$$
(1)

We determined the pairwise correlation coefficient for every single pair of features. Fig. 5 shows the heatmap obtained using the Pearson correlation coefficient among all features. We considered the absolute values of the correlation coefficient since a high negative correlation coefficient also signifies a strong relationship. We chose a threshold of 0.90 to determine a high correlation among a pair of features and we removed one feature from such a pair. In this case, the eliminated feature out of a feature pair was the one with the least correlation to the target variable.

After the removal of all redundant features, we used the ANOVA F-value to determine the top features and we performed the same procedure for both binary and multiclass classifications.

2) ANOVA (Analysis of Variance) F-scores: Due to the presence of numerical data as input variables and the objective

Fig. 5: Heatmap with Pearson correlation between all features.

of categorizing the final output, we considered the ANOVA F-score as the ideal method to rank the top features [66]. The ANOVA F-score is a feature selection method that ranks features based on ratio between variances [67]. We used (2) and (3) for calculating the variance between the groups and within the groups respectively. Then we used the ratio of these two values to calculate the F-scores according to (4).

Variance between groups =
$$\frac{\sum_{i=1}^{n} n_i (\bar{Y}_i - \bar{Y})^2}{(K-1)}$$
 (2)

Variance within groups =
$$\frac{\sum_{i=1}^{K} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y})^2}{(N - K)}$$
 (3)

$$ANOVA\ F-score = \frac{Variance\ between\ groups}{Variance\ within\ groups} \quad \ (4)$$

where \bar{Y}_i is the sample mean of group i, n_i is the number of observations in group i, \bar{Y} is the mean of the overall data, K is the number of groups, N is the total sample size, and Y_{ij} is the observation j in group i.

We implemented the ANOVA test using Scikit learn library and determined ANOVA F-scores between each feature and the target variable to eliminate irrelevant features. We obtained the top 25 features for both binary classification and multiclass classification. Table V and Table VI respectively present the ANOVA F-scores for binary and multiclass classification with their scores.

TABLE V: Ranking of Top 25 Features based on ANOVA F-scores for Binary Classification

Feature	Score
Seq	329,589.08
Offset	223,791.80
sTtl	189,934.06
e	159,060.91
tcp	142,813.28
AckDat	80,707.00
RST	35,379.19
INT	33,941.29
TcpRtt	32,500.88
icmp	29,713.08
sMeanPktSz	26,963.61
FIN	24,472.87
sHops	24,055.76
Mean	23,238.27
dTtl	14,719.08
SrcBytes	12,836.57
TotBytes	11,701.19
dMeanPktSz	10,184.31
Status	9,574.53
cs0	7,384.06
SrcWin	6,928.11
sTos	6,341.94
e d	2,927.15
CON	2,668.01
REQ	750.70

TABLE VI: Ranking of Top 25 Features based on ANOVA F-scores for Multiclass Classification

Feature	Score
tcp	1,460,107.76
AckDat	283,300.90
sHops	159,802.03
Seq	52,291.33
RST	50,894.45
TcpRtt	47,017.48
REQ	44,521.06
dMeanPktSz	41,572.58
Offset	38,844.09
CON	37,448.56
FIN	36,644.63
sTtl	24,115.22
e	20,410.25
INT	17,248.98
Mean	15,394.60
Status	13,879.31
icmp	8,376.06
SrcTCPBase	6,592.89
e d	4,434.32
sMeanPktSz	4,183.54
DstLoss	2,625.58
Loss	1,954.14
dTtl	1,839.87
SrcBytes	1,606.26
TotBytes	1,587.40

D. Data normalization

The reduction of training time is a valuable metric to determine the efficiency of any intrusion detection system. Data normalization also helps to reduce training times. Data normalization before feeding data into a ML model for training involves the adjustment of values to a predetermined common range so that larger values will not dominate the smaller values during model training [68]. We used the Z-score normalization

TABLE VII: Description of All Files in the Dataset

File Name	Format	Description
Attackname_BSX.pcapng pcapng		Data collected from base station X on each attack session in packet-based format
Attackname_BSX_nogtp.pcapng	pcapng	Data collected from base station X on each attack session in packet-based format with GTP layer removed
AttacknameX.argus	argus	Further processed Attackname_BSX_nogtp.pcapng file to generate network flows
AttacknameX.csv	csv	Network flows in CSV format
BTS_X.csv	csv	Concatenated data for all attack scenarios for base station X as network flows
Combined.csv	csv	Concatenated data for all attack scenarios for both base stations as network flows
Encoded.csv	csv	Network flows from both base stations containing all attack scenarios with categorical data encoded

technique in this work as stated in (5). Z-score normalization uses the mean and the standard deviation of the dataset to re scale the data to have zero mean and unit variance [68].

$$\hat{x}_{i,n} = \frac{x_{i,n} - \mu_i}{\sigma_i} \tag{5}$$

E. File description

5G-NIDD contains data in both packet based format as well as in flow based formats. The data collected at each attack session from the two base stations are available separately in pcapng format. The same files with the removal of GTP layer are available in packet based pcapng format, argus and csv file formats. Argus and csv formats are flow based. We concatenated the GTP layer removed flow based csv files to produce files that contain all attacks from both base stations. The dataset contains csv files of all data collected from each base station as well as the combined dataset of base stations. Finally, the encoded version of the dataset is also available. This file does not contain unnecessary fields such as null fields. The dataset is available at http://ieee-dataport.org/10203. A summary of each of the files available in the dataset is shown in Table VII.

VI. ANALYSIS AND DISCUSSION

This section provides details on the analysis performed on the dataset using different ML models including deep neural networks. It also describes the performance measuring metrics individually along with the ML models used. The section concludes with a comparison of performance for each ML model for both binary and multiclass classification.

A. Performance measuring metrics

We used the most common performance evaluation matrices such as confusion matrix, accuracy, precision, and F1-score to evaluate the performance and compare the results.

1) Confusion Matrix: A confusion matrix is a primary metric that derives all other metrics in classification problems. In a binary classification problem, the classified data are either True Positive (TP), False Positive (FP), True Negative (TN), or False Negative (FN). Table VIII outlines the confusion matrix for binary classification and Table IX shows the confusion matrix for a multiclass classification. In both cases, the rows represent the predicted class whereas the columns represent the actual class.

TABLE VIII: Confusion Matrix for Binary Classification

	Actual Positive Class	Actual Negative Class
Predicted Positive Class	True Positive (TP)	False Negative (FN)
Predicted Negative Class	False Positive (FP)	True Negative (TN)

TABLE IX: Confusion Matrix for Multiclass Classification

		Actual		
	Classes	Class 1	Class 2	Class 3
	Class 1	TP	E_{21}	E_{31}
Predicted	Class 2	E_{12}	TP	E_{32}
	Class 3	E_{13}	E_{23}	TP

2) Accuracy: The accuracy is the ratio of correctly classified samples to all the samples. It is the primary metric used in determining the performance of ML models. In a multiclass problem, the accuracy can be calculated per class, or for the entire model.

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN} \tag{6}$$

3) Precision: Precision is the ratio of true positives to the total number of predicted positive values. In multiclass classifications, to calculate the precision of a given class, the true positives of that class and predicted positives of all the classes are taken into account.

$$Precision = \frac{TP}{TP + FP} \tag{7}$$

4) Recall: Recall is the ratio of positive class which is correctly classified to the total number of actual positives. With more classes, this is calculated per class. In that case, the Recall of a given class is the ratio between the number of correct predictions for that class and the total number of actuals in that class.

$$Recall = \frac{TP}{TP + FN} \tag{8}$$

5) F1-score: The f1-score is a weighted average or harmonic mean of both the precision and recall values. The precision and recall are inversely proportional to each other as the increase of one parameter leads to a decrease of the other. In such instances, the F1-score is a good measure to evaluate the performance of an ML model effectively.

$$F1 - Score = \frac{2 * (Precision * Recall)}{Precision + Recall}$$
 (9)

B. ML Algorithms

We considered different ML models to obtain the performance metrics to ensure the quality of the dataset. We also considered the training time and prediction times of each model in addition to the metrics previously mentioned. We tuned the hyperparameters using Grid search to select the most optimized parameters for each model before the execution of each model. A description of each model we used is given below.

- 1) Decision Tree: The decision tree algorithm is a common ML model in classification and regression problems. It classifies data samples based on specific rules. Decision trees have three components namely decision nodes, branches, and leaves. Each decision node recognizes a test attribute whereas a branch indicates the decision based on the value of the test attribute. Finally, the leaves represent the specific class that the attribute belongs to. We implemented the decision tree algorithm through Scikit learn library in Python.
- 2) Random Forest: The Random Forest algorithm is a collection of decision trees producing a result through a voting process. Each decision tree performs a class prediction and the class with the most votes is the final prediction class. The higher number of decision trees reduces the errors thereby increasing the accuracy levels. Specifically, the over-fitting problem in decision trees is solved by Random Forest, which also has a high tolerance for noise and outliers [69].
- 3) K-Nearest Neighbor: The K-Nearest Neighbor (KNN) classification is another well-established classification model in supervised learning tasks. In KNN, an unlabeled data point is assigned a category identifier based on the category of the nearest neighbors to the particular data point. Several parameters such as the number of neighbors to be considered can be specified in the model inputs. KNN produces desirable results, especially in IDS, and a suitable benchmark for other classifiers based on accuracy levels [70].
- 4) Naive Bayes: The Naive Bayes classifier is a more general classification algorithm based on the Bayesian theory. According to Bayesian theory, the probabilities of future events can be calculated through their prior frequency of occurrence. The Naive Bayes classifier works on the assumption that the values of attributes are conditionally independent given a target value [71]. Although Naive Bayes is a simple classifier, it has the capability to perform very well with high dimensional input data [71].
- 5) Multi Layer Perceptron: Multi Layer Perceptron (MLP) is a fully connected feed forward Artificial Neural Network (ANN) that is widely deployed as a sophisticated and versatile classification technique in IDS [72]. The design of an optimal MLP leads to better performance in speed and accuracy. The performance is mainly based on the number of hidden layers and the number of neurons in each layer [73]. For our work,

we used an MLP with 3 hidden layers having 10, 20, and 10 neurons in each layer to obtain optimal performance.

C. Binary Classification

We performed a binary classification on the dataset to distinguish the malicious flows from benign flows. We used a train test split of 70% and 30% out of the total flows. To determine the optimal number of features from the top 25 features, we conducted the experiments for 5, 10, 15, 20, and 25 of the topmost features obtained from the feature selection performed in ??. We achieved optimal performance in accuracy and computational time with the top 10 features. We repeated each experiment 10 times and used their average as the final value presented in this paper. Table X presents the evaluation metrics obtained for each of the models. Tables XI to XV show the confusion matrices obtained for each of the classification models. We executed the algorithms using Jupyter Notebook on a supercomputer known as CSC Puhti with hardware specifications; 4 CPU cores, 64 GB memory, and 20 GB local disk.

TABLE XI: Confusion Matrix for Decision Tree at 10 Features

	True - Benign	True - Malicious
Predicted - Benign	143,114	272
Predicted - Malicious	109	221,278

TABLE XII: Confusion Matrix for Random Forest at 10 Features

	True - Benign	True - Malicious
Predicted - Benign	143,329	80
Predicted - Malicious	114	221,245

TABLE XIII: Confusion Matrix for KNN at 10 Features

	True - Benign	True - Malicious
Predicted - Benign	143,059	350
Predicted - Malicious	134	221,219

TABLE XIV: Confusion Matrix for Naive Bayes at 10 Features

	True - Benign	True - Malicious
Predicted - Benign	135,861	7,574
Predicted - Malicious	5,751	215,572

TABLE XV: Confusion Matrix for MLP at 10 Features

	True - Benign	True - Malicious
Predicted - Benign	143,124	285
Predicted - Malicious	255	221,090

D. Multi Class Classification

We also performed a multiclass classification to validate the performance in detecting the attack type. We conducted this classification for 9 different attacks called HTTP flood, ICMP flood, SYN flood, SYN scan, Slowrate DoS, TCP connect

TABLE X: Results of Different Evaluation Metrics obtained for Binary Classification with top 10 Features

Model	Type	Precision	Recall	F1-Score	Accuracy	Training Time (s)	Prediction Time (s)	
Decision Tree	Benign	0.99922	0.99809	0.99867	0.998955772	4.322835279	0.028925467	
Decision free	Malicious	0.99877	0.99951	0.99913	0.996933772	4.322633219	0.028923407	
Random Forest	Benign	0.99921	0.99943	0.99934	0.999467331	8.763574076	0.221343637	
Random Forest	Malicious	0.99964	0.99949	0.99954	0.777407331	6.70337 4 070	0.221343037	
KNN	Benign	0.99906	0.99756	0.99831	0.998675045	2.20724678	338.5157223	
	Malicious	0.99842	0.99940	0.99890	0.550075045	2.20724070	330.3137223	
Naive	Benign	0.95937	0.94721	0.99831	0.963472299	1.241901278	0.064836335	
Bayes	Malicious	0.96606	0.97401	0.97004	0.703472277	1.241701270	0.004030333	
MLP	Benign	0.99821	0.99800	0.99812	0.998520425	150.2028009	0.260591626	
WILI	Malicious	0.99874	0.99883	0.99879	0.770320423	130.2020009	0.200391020	

scan, UDP flood, and UDP scan along with benign traffic flows. We used the same training test split of 70:30 in this classification too. Among experiments conducted with the top most 5, 10, 15, 20, and 25 features, the experiments with the top 10 features provided greater accuracy levels with acceptable training and prediction times. Table XVI shows the average results of 10 executions of the experiment for each model. Tables XVII to XXI present the confusion matrices for each model.

E. Analysis of Results

The overall results we obtained for binary classification were very good for all the ML models except for the Naive Bayes model. The evaluation metrics such as Accuracy, Precision, Recall, and F1-Score were almost identical for Decision Tree, Random Forest, KNN, and MLP with slight variations. The Naive Bayes classification showed considerably lower performance in all the evaluation metrics. The confusion matrices obtained for each of the models show that Random Forest performs better in identifying malicious traffic with the least amount of false negatives. Moreover, the Decision Tree has been able to produce the lowest amount of false positives.

Different models showed different training and prediction times. The Naive Bayes model took the least amount of time to train, followed by the KNN and Decision Tree models. The Multi Layer Perceptron neural network consumed a relatively higher time for the training process than the other models. The prediction time was quite low for all the models except for KNN which required a considerably larger amount of time for prediction than training.

The accuracy levels obtained for multiclass classification were also very good for each attack. Except for the Naive Bayes model which performed rather poorly, all other models performed exceptionally well in detecting the attack types almost at similar accuracy levels. We can safely say that this model is not a suitable model for these types of problems. A closer look at the confusion matrix obtained for each of the models shows that different models performed well in detecting certain types of attacks among others. The overall accuracy MLP is marginally ahead of others.

Generally among all models, the confusion matrices indicate that the classifier incorrectly classifies a considerable portion of UDP flood and UDP scan network flows as benign traffic compared with other flows. Furthermore, another common occurrence has been the mis-classification between HTTP flood and Slowrate DoS attack flows.

VII. DISCUSSIONS ABOUT POTENTIAL FUTURE WORK AND FURTHER USAGES OF TESTBED AND DATASET

This paper describes our 5G testbed and highlights its capability and application for mobile/cellular security research. More specifically, this paper focuses on the testbed enabling data-driven study to secure the availability of mobile networks against DoS threats. This section discusses other potential future directions enabled by the testbed and the dataset.

Distributed Detection: 5G-NIDD uses two attack sources and two base stations. We can make it distributed in both the attack and defense (distributed defense against DDoS) by placing the attackers and the target in different parts of the network. This would enhance the possibility of testing federated learning models. We can further expand the defense implementations, i.e., defense implementation on a greater number of network nodes, to study distributed/joint defense and its effectiveness gain compared to a single point of defense for future work. The defense effectiveness can improve in the detection accuracy (enabled by greater information sensed and collected from multiple sources) and in mitigation (containing the DoS threat impact by implementing active defenses in greater nodes). Furthermore, the defense network can utilize distributed ML or federated learning.

Active Defenses: This paper focuses on detection and information processing, which is critical as it builds the intelligence for active defense control. Potential future studies can involve the active defenses when the DoS threats are detected and identified, including filtering, networking bandwidth/rate control, re-routing, and priority channel construction.

More Threats: This paper implements and simulates eight DoS threat types to demonstrate the usage of the 5G testbed. We can explore more threats and test them in our testbed, including the other threat methods for DoS (e.g., source-address spoofing, reflector threat, amplification threat) or more advanced zero-day threats against networking. With the increasing attention to zero-day detection [74], [75], in particular, our dataset can be utilized to evaluate new mechanisms designed for the detection of DoS variations.

Dynamic Data Labeling: We control the attacker generating the DoS traffic and therefore have the ground-truth knowledge about when the attack is executed and which attack types.

TABLE XVI: Results of Different Evaluation Metrics obtained for Multiclass Classification with Top 10 Features

Model	Class	Precision	Recall	F1-Score	Accuracy	Training Time (s)	Prediction Time (s)	
	Benign	0.99309	0.99302	0.99306				
	HTTP Flood	0.98951	0.98712	0.98828				
	ICMP Flood	0.97894	0.99820	0.98775				
Decision	SYN Flood	0.99649	0.98289	0.98956				
Tree	SYN Scan	0.98283	0.99700	0.98954	0.991678249	3.880316758	0.038118291	
1100	Slowrate DoS	0.97575	0.97967	0.97760				
	TCP Connect Scan	0.98609	0.95721	0.97122				
	UDP Flood	0.99798	0.99598	0.99698				
	UDP Scan	0.89662	0.96370	0.92714				
	Benign	0.99503	0.99761	0.99633				
	HTTP Flood	0.98819	0.99281	0.99048				
	ICMP Flood	1.00000	0.99943	0.99971				
Random	SYN Flood	0.99702	0.99183	0.99439				
Forest	SYN Scan	0.99724	0.99695	0.99711	0.994812031	11.7032125	0.37769897	
Torest	Slowrate DoS	0.98643	0.97586	0.98108				
	TCP Connect Scan	0.99417	0.97523	0.98451				
	UDP Flood	0.99915	0.99724	0.9982				
	UDP Scan	0.95747	0.96848	0.96273				
	Benign	0.99666	0.99726	0.99698				
	HTTP Flood	0.98666	0.98946	0.98805				
	ICMP Flood	0.99878	0.99943	0.99910				
	SYN Flood	0.99436	0.99945	0.99690				
KNN	SYN Scan	0.99853	0.99637	0.99744	0.994835607	2.148859835	282.0652506	
	Slowrate DoS	0.97945	0.97656	0.97799				
	TCP Connect Scan	0.99547	0.98896	0.99220				
	UDP Flood	0.99931	0.99774	0.99853				
	UDP Scan	0.95534	0.97696	0.96588				
	Benign	0.40038	0.98916	0.57077				
	HTTP Flood	0.49171	0.00988	0.01895				
	ICMP Flood	0.00000	0.00000	0.00000				
Naive	SYN Flood	0.20000	0.00006	0.00014				
Bayes	SYN Scan	0.10000	0.09939	0.09969	0.409909614	1.292910719	0.227512336	
Dujes	Slowrate DoS	0.37849	0.00105	0.00208				
	TCP Connect Scan	0.77147	0.99439	0.86869				
	UDP Flood	0.00000	0.00000	0.00000				
	UDP Scan	0.00000	0.00000	0.00000				
	Benign	0.99650	0.99605	0.99630				
	HTTP Flood	0.98935	0.99345	0.99140				
	ICMP Flood	0.99855	0.99855	0.99855				
	SYN Flood	0.98990	0.99950	0.99465				
MLP	SYN Scan	0.99880	0.99545	0.99710	0.994992694	316.8805176	0.230028152	
	Slowrate DoS	0.98705	0.97955	0.9832				
	TCP Connect Scan	0.98775	0.99715	0.99240				
	UDP Flood	0.99720	0.99850	0.99785				
	UDP Scan	0.97995	0.94005	0.95955				

Instead of utilizing such ground truth for the labeling of the datasets, we can explore the dynamic labeling based on the performance degradation on the base stations or on the other legitimate users whose availability is getting denied and disrupted due to the DoS threats.

Adversarial Machine Learning: We can simulate the attacker tampering with the training of the ML for detection, including dynamically changing its behavior and injecting noise-like or carefully crafted data. In addition, it is getting more crucial for intrusion detectors to have the capability of resistance against evasion attacks, often relying on adversarial ML tools to make subtle perturbations [76]. Both the creation and detection of evasion attacks using adversarial ML techniques would be interesting and one of the potential areas for future explorations.

VIII. CONCLUSIONS

5G-NIDD contains a complete capture of the network traffic from a functional 5G network in the presence of different attack scenarios such as Port Scans and DoS attacks. In addition to the attack traffic, the dataset contains nonmalicious traffic from real users providing a more realistic dataset. The dataset is fully labeled specifying each flow to be malicious or benign. Moreover, each flow has a label that shows the attack type and the attacking tool used to aid multiclass classification.

The dataset consists of 1,215,890 network flows, where each falls under a specific type of attack or benign traffic as depicted in Table XXII. The benign traffic comprises HTTP, HTTPS, SSH, and SFTP traffic. In addition to the dataset with a total number of flows, the dataset is also available with data collected from each individual base station separately. The availability of such separated datasets from different points in the network is potentially beneficial for federated learning

TABLE XVII: Confusion Matrix for Decision Tree Multiclass Classification with 10 Features

	True -	True -	True -	True -	True -	True -	True	True -	True -
	Benign	HTTP	ICMP	SYN	SYN	Slowrate	- TCP	UDP	UDP
		flood	flood	flood	scan	DoS	connect	flood	scan
							scan		
Predicted - Benign	142,409	4	2	5	96	2	53	248	565
Predicted - HTTP flood	7	41,780	0	0	0	538	0	0	0
Predicted - ICMP flood	1	0	347	0	0	0	0	0	0
Predicted - SYN flood	37	0	0	2,874	3	0	10	0	0
Predicted - SYN scan	4	0	0	1	5,961	0	5	0	8
Predicted - Slowrate DoS	7	436	0	0	0	21,428	2	0	0
Predicted - TCP Connect Scan	243	1	0	4	4	1	5,753	0	4
Predicted - UDP flood	544	0	7	0	0	0	0	136,632	0
Predicted - UDP scan	149	0	0	0	13	0	11	0	4,586

TABLE XVIII: Confusion Matrix for Random Forest Multiclass Classification with 10 Features

	True - Benign	True - HTTP	True - ICMP	True - SYN	True - SYN	True - Slowrate	True - TCP	True - UDP	True -
	Demg.	flood	flood	flood	scan	DoS	connect	flood	scan
							scan		
Predicted - Benign	143,067	2	0	6	0	3	20	114	197
Predicted - HTTP flood	14	41,981	0	0	0	290	0	0	0
Predicted - ICMP flood	0	0	311	291	0	0	0	0	0
Predicted - SYN flood	16	0	0	2,318	1,187	0	9	0	2
Predicted - SYN scan	4	80	0	2	4,773	4,306	3	0	5
Predicted - Slowrate DoS	43	419	0	0	1	17,039	1,199	0	1
Predicted - TCP Connect Scan	149	2	0	0	4	1	4,663	27,390	4
Predicted - UDP flood	376	0	0	0	1	0	1	109,415	931
Predicted - UDP scan	139	0	0	0	12	0	3	0	4,597

TABLE XIX: Confusion Matrix for KNN multiclass Classification with 10 Features

	True - Benign	True - HTTP	True - ICMP	True - SYN	True - SYN	True - Slowrate	True - TCP	True - UDP	True - UDP
		flood	flood	flood	scan	DoS	scan	flood	scan
Predicted - Benign	143,016	50	0	11	1	7	24	94	206
Predicted - HTTP flood	8	41,840	0	0	0	437	0	0	0
Predicted - ICMP flood	0	0	347	0	0	0	0	0	0
Predicted - SYN flood	1	0	0	2,922	0	0	0	0	0
Predicted - SYN scan	6	0	0	5	5,957	0	2	0	7
Predicted - Slowrate DoS	4	510	0	0	0	21,539	0	0	0
Predicted - TCP Connect Scan	46	7	0	1	3	5	5,944	0	6
Predicted - UDP flood	310	0	0	0	0	0	0	136,873	0
Predicted - UDP scan	103	0	0	0	5	0	2	0	4,649

research.

As shown in the performance metrics, the dataset produces remarkable results in binary and multiclass classification problems with many ML models. This emphasizes that the dataset can be used as a valid resource by the researchers to test novel algorithms related to multiclass classification problems.

TABLE XXII: Number of Flows with Each Attack Type

Attack Type	Number of Flows
Benign	477,737
HTTP Flood	140,812
ICMP Flood	1,155
SYN Flood	9,721
SYN Scan	20,043
Slowrate DoS	73,124
TCP Connect Scan	20,052
UDP Flood	457,340
UDP Scan	15,906

ACKNOWLEDGEMENT

This work is supported by the Academy of Finland in 6Genesis Flagship (grant no. 318927) project. This work is also supported by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-02107, Collaborative research on element Technologies for 6G Security-by-Design and standardization-based International cooperation). This work has been performed utilizing the 5GTN infrastructure and resources at the Centre for Wireless Communications, University of Oulu.

REFERENCES

[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, "The Roadmap to 6G: AI Empowered Wireless Networks," *IEEE Communications Magazine*, vol. 57, no. 8, pp. 84–90, 2019.

TABLE XX: Confusion Matrix for Naive Bayes Multiclass Classification with 10 Features

	True -	True -	True -	True -	True -	True -	True	True -	True -
	Benign	HTTP	ICMP	SYN	SYN	Slowrate	- TCP	UDP	UDP
		flood	flood	flood	scan	DoS	connect	flood	scan
							scan		
Predicted - Benign	142,502	9	0	0	0	0	898	0	0
Predicted - HTTP flood	41,866	418	0	0	0	1	0	0	0
Predicted - ICMP flood	347	0	0	0	0	0	0	0	0
Predicted - SYN flood	2,510	0	0	0	0	0	413	0	0
Predicted - SYN scan	4,911	0	0	0	602	0	465	0	0
Predicted - Slowrate DoS	21,820	29	0	0	0	18	0	0	0
Predicted - TCP Connect Scan	34	0	0	0	0	0	5,977	0	0
Predicted - UDP flood	137,183	0	0	0	0	0	0	0	0
Predicted - UDP scan	4,758	0	0	0	0	0	0	0	0

TABLE XXI: Confusion Matrix for MLP Multiclass Classification with 10 Features

	True - Benign	True - HTTP flood	True - ICMP flood	True - SYN flood	True - SYN scan	True - Slowrate DoS	True - TCP connect scan	True - UDP flood	True - UDP scan
Predicted - Benign	142,549	6	1	20	4	4	68	387	76
Predicted - HTTP flood	3	42.185	0	0	0	276	0	0	0
Predicted - ICMP flood	1	0	354	0	0	0	0	0	0
Predicted - SYN flood	1	0	0	2,890	0	1	0	0	0
Predicted - SYN scan	5	0	0	8	5,898	1	4	0	11
Predicted - Slowrate DoS	0	443	0	0	0	21,288	1	0	0
Predicted - TCP Connect Scan	1	6	0	2	1	2	5,943	1	6
Predicted - UDP flood	210	0	0	0	0	0	0	137,350	0
Predicted - UDP scan	283	0	0	0	3	0	1	0	4,486

- [2] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, "AI and 6G Security: Opportunities and Challenges," in 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). IEEE, 2021, pp. 616–621.
- [3] W. Saad, M. Bennis, and M. Chen, "A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems," *IEEE Network*, vol. 34, no. 3, pp. 134–142, 2019.
- [4] P. Porambage, G. Gür, D. P. M. Osorio, M. Liyanage, A. Gurtov, and M. Ylianttila, "The Roadmap to 6G Security and Privacy," *IEEE Open Journal of the Communications Society*, vol. 2, pp. 1094–1122, 2021.
- [5] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, "Robust and Resilient Federated Learning for Securing Future Networks," in 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2022, pp. 351–356.
- [6] R. Santos, D. Souza, W. Santo, A. Ribeiro, and E. Moreno, "Machine Learning Algorithms to detect DDoS Attacks in SDN," *Concurrency and Computation: Practice and Experience*, vol. 32, no. 16, p. e5402, 2020
- [7] N. Moustafa and J. Slay, "UNSW-NB15: A Comprehensive Dataset for Network Intrusion Detection Systems (UNSW-NB15 Network Dataset)," in 2015 military communications and information systems conference (MilCIS). IEEE, 2015, pp. 1–6.
- [8] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, "Towards Generating Real-life Datasets for Network Intrusion Detection," *Int. J. Netw. Secur.*, vol. 17, no. 6, pp. 683–701, 2015.
- [9] E. Piri, P. Ruuska, T. Kanstren, J. Mäkelä, J. Korva, A. Hekkala, A. Pouttu, O. Liinamaa, M. Latva-Aho, K. Vierimaa et al., "5GTN: A Test Network for 5G Application Development and Testing," in 2016 European Conference on Networks and Communications (EuCNC). IEEE, 2016, pp. 313–318.
- [10] "5GTN." [Online]. Available: https://5gtnf.fi/
- [11] A. Khraisat, I. Gondal, and P. Vamplew, "An Anomaly Intrusion Detection System using C5 Decision Tree Classifier," in *Pacific-Asia Conference on Knowledge Discovery and Data Mining*. Springer, 2018, pp. 149–155.
- [12] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, "Survey of Intrusion Detection Systems: Techniques, Datasets and Challenges," *Cybersecurity*, vol. 2, no. 1, pp. 1–22, 2019.
- [13] S. Jayasinghe, Y. Siriwardhana, P. Porambage, M. Liyanage, and

- M. Ylianttila, "Federated Learning based Anomaly Detection as an Enabler for Securing Network and Service Management Automation in Beyond 5G Networks," in 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), 2022, pp. 345–350.
- [14] F. Salo, M. Injadat, A. B. Nassif, A. Shami, and A. Essex, "Data Mining Techniques in Intrusion Detection Systems: A Systematic Literature Review," *IEEE Access*, vol. 6, pp. 56 046–56 058, 2018.
- [15] F. Salo, M. Injadat, A. B. Nassif, and A. Essex, "Data Mining with Big Data in Intrusion Detection Systems: A Systematic Literature Review," arXiv preprint arXiv:2005.12267, 2020.
- [16] F. Salo, M. Injadat, A. Moubayed, A. B. Nassif, and A. Essex, "Clustering Enabled Classification using Ensemble Feature Selection for Intrusion Detection," in 2019 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2019, pp. 276–281.
- [17] L. Yang, A. Moubayed, I. Hamieh, and A. Shami, "Tree-based Intelligent Intrusion Detection System in Internet of Vehicles," in 2019 IEEE global communications conference (GLOBECOM). IEEE, 2019, pp. 1–6.
- [18] A. Verma and V. Ranga, "Statistical Analysis of CIDDS-001 Dataset for Network Intrusion Detection Systems using Distance-based Machine Learning," *Procedia Computer Science*, vol. 125, pp. 709–716, 2018.
- [19] M. Injadat, A. Moubayed, A. B. Nassif, and A. Shami, "Multi-stage Optimized Machine Learning Framework for Network Intrusion Detection," *IEEE Transactions on Network and Service Management*, vol. 18, no. 2, pp. 1803–1816, 2020.
- [20] L. F. Maimó, Á. L. P. Gómez, F. J. G. Clemente, M. G. Pérez, and G. M. Pérez, "A Self-adaptive Deep Learning-based System for Anomaly Detection in 5G Networks," *IEEE Access*, vol. 6, pp. 7700–7712, 2018.
- [21] T. Saranya, S. Sridevi, C. Deisy, T. D. Chung, and M. A. Khan, "Performance Analysis of Machine Learning Algorithms in Intrusion Detection System: A Review," *Procedia Computer Science*, vol. 171, pp. 1251–1260, 2020.
- [22] I. H. Sarker, "Machine Learning: Algorithms, Real-world Applications and Research Directions," SN Computer Science, vol. 2, no. 3, pp. 1–21, 2021.
- [23] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. Mc-Clung, D. Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham et al., "Evaluating Intrusion Detection Systems: The 1998 DARPA Off-line Intrusion Detection Evaluation," in Proceedings DARPA Information

- Survivability Conference and Exposition. DISCEX'00, vol. 2. IEEE, 2000, pp. 12–26.
- [24] M. L. Lab. (1998) 1998 DARPA Intrusion Detection Evaluation Dataset. [Online]. Available: https://www.ll.mit.edu/r-d/datasets/ 1998-darpa-intrusion-detection-evaluation-dataset
- [25] (1999) KDD Cup 1999 Data. [Online]. Available: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
- [26] (1999) NSL-KDD Dataset. [Online]. Available: https://www.unb.ca/cic/datasets/nsl.html
- [27] (2011) DEFCON. [Online]. Available: http://cctf.shmoo.com/
- [28] (2007) CAIDA DDoS 2007 Attack Dataset. [Online]. Available: https://www.impactcybertrust.org/dataset_view?idDataset=117
- [29] B. Nechaev, M. Allman, V. Paxson, and A. Gurtov, "Lawrence Berkeley National Laboratory (LBNL)/ICSI Enterprise Tracing Project," *Berkeley*, CA: LBNL/ICSI, 2004.
- [30] (2011) CTU-13. [Online]. Available: https://www.kaggle.com/datasets/ dhoogla/ctu13
- [31] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, "Towards the Development of Realistic Botnet Dataset in the Internet of Things for Network Forensic Analytics: Bot-IoT Dataset," *Future Generation Computer Systems*, vol. 100, pp. 779–796, 2019.
- [32] K. Shaukat, S. Luo, V. Varadharajan, I. A. Hameed, and M. Xu, "A Survey on Machine Learning Techniques for Cyber Security in the Last Decade," *IEEE Access*, vol. 8, pp. 222310–222354, 2020.
- [33] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization," in *ICISSp*, 2018, pp. 108–116.
- [34] O. Yavanoglu and M. Aydos, "A Review on Cyber Security Datasets for Machine Learning Algorithms," in 2017 IEEE international conference on big data (big data). IEEE, 2017, pp. 2186–2193.
- [35] C. Thomas, V. Sharma, and N. Balakrishnan, "Usefulness of DARPA Dataset for Intrusion Detection System Evaluation," in *Data Mining*, *Intrusion Detection, Information Assurance, and Data Networks Security* 2008, vol. 6973. SPIE, 2008, pp. 164–171.
- [36] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A Detailed Analysis of the KDD CUP 99 Data Set," in 2009 IEEE symposium on computational intelligence for security and defense applications. IEEE, 2009, pp. 1–6.
- [37] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, and A. Hotho, "A Survey of Network-based Intrusion Detection Data Sets," *Computers & Security*, vol. 86, pp. 147–167, 2019.
- [38] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, "Toward Developing a Systematic Approach to Generate Benchmark Datasets for Intrusion Detection," *computers & security*, vol. 31, no. 3, pp. 357–374, 2012.
- [39] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney, "A First Look at Modern Enterprise Traffic," in *Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement*, 2005, pp. 2–2.
- [40] S. Dwibedi, M. Pujari, and W. Sun, "A Comparative Study on Contemporary Intrusion Detection Datasets for Machine Learning Research," in 2020 IEEE International Conference on Intelligence and Security Informatics (ISI). IEEE, 2020, pp. 1–6.
- [41] S. Garcia and V. Uhlir, "The CTU-13 Dataset. A Labeled Dataset with Botnet, Normal and Background Traffic," S. Lab, Ed., ed, 2014.
- [42] S. Garcia, M. Grill, J. Stiborek, and A. Zunino, "An Empirical Comparison of Botnet Detection Methods," *computers & security*, vol. 45, pp. 100–123, 2014.
- [43] C. Nilă, V. Patriciu, and I. Bica, "Machine Learning Datasets for Cyber Security Applications," Security & Future, vol. 3, no. 3, pp. 109–112, 2019
- [44] Z. Zoghi and G. Serpen, "UNSW-NB15 Computer Security Dataset: Analysis through Visualization," arXiv preprint arXiv:2101.05067, 2021.
- [45] R. Panigrahi and S. Borah, "A Detailed Analysis of CICIDS2017 Dataset for Designing Intrusion Detection Systems," *International Journal of Engineering & Technology*, vol. 7, no. 3.24, pp. 479–482, 2018.
- [46] J. M. Peterson, J. L. Leevy, and T. M. Khoshgoftaar, "A Review and Analysis of the Bot-IoT Dataset," in 2021 IEEE International Conference on Service-Oriented System Engineering (SOSE). IEEE, 2021, pp. 20–27.
- [47] H. Kang, D. H. Ahn, G. M. Lee, J. D. Yoo, K. H. Park, and H. K. Kim, "IoT Network Intrusion Dataset," 2019. [Online]. Available: https://dx.doi.org/10.21227/q70p-q449

- [48] M. J. E. Sebastian Garcia, Agustin Parmisano, "A Labeled Dataset with Malicious and Benign IoT Network Traffic (Version 1.0.0)," 2020. [Online]. Available: http://doi.org/10.5281/zenodo.4743746
- [49] V. Paxson, "Bro: A System for Detecting Network Intruders in Real-Time," Computer Networks, vol. 31, no. 23-24, pp. 2435–2463, 1999. [Online]. Available: http://www.icir.org/vern/papers/bro-CN99.pdf
- [50] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and X. Bellekens, "Machine Learning based IoT Intrusion Detection System: An MQTT Case Study (MQTT-IoT-IDS2020 Dataset)," in *International Networking Conference*. Springer, 2021, pp. 73–84.
- [51] A. Gharib, I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, "An Evaluation Framework for Intrusion Detection Dataset," in 2016 International Conference on Information Science and Security (ICISS). IEEE, 2016, pp. 1–6.
- [52] M. Agiwal, H. Kwon, S. Park, and H. Jin, "A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation," *IEEE Access*, vol. 9, pp. 16193–16210, 2021.
- [53] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb, "Survey on Multi-access Edge Computing for Internet of Things Realization," *IEEE Communications Surveys & Tutorials*, vol. 20, no. 4, pp. 2961–2991, 2018.
- [54] N. Alliance, "5G Security Recommendations Package," White paper, 2016.
- [55] I. Ahmad, T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila, and A. Gurtov, "Overview of 5G Security Challenges and Solutions," *IEEE Communications Standards Magazine*, vol. 2, no. 1, pp. 36–43, 2018.
- [56] K. Singh, P. Singh, and K. Kumar, "Application Layer HTTP-GET Flood DDoS Attacks: Research Landscape and Challenges," *Computers & security*, vol. 65, pp. 344–372, 2017.
- [57] C. L. Calvert and T. M. Khoshgoftaar, "Impact of Class Distribution on the Detection of Slow HTTP DoS Attacks using Big Data," *Journal of Big Data*, vol. 6, no. 1, pp. 1–18, 2019.
- [58] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, "Surveying Port Scans and their Detection Methodologies," *The Computer Journal*, vol. 54, no. 10, pp. 1565–1581, 2011.
- [59] I. Sourdis, V. Dimopoulos, D. Pnevmatikatos, and S. Vassiliadis, "Packet Pre-filtering for Network Intrusion Detection," in 2006 Symposium on Architecture For Networking And Communications Systems. IEEE, 2006, pp. 183–192.
- [60] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller, "An Overview of IP Flow-based Intrusion Detection," *IEEE communications surveys & tutorials*, vol. 12, no. 3, pp. 343–356, 2010.
- [61] B. Li, J. Springer, G. Bebis, and M. H. Gunes, "A Survey of Network Flow Applications," *Journal of Network and Computer Applications*, vol. 36, no. 2, pp. 567–581, 2013.
- [62] K. Potdar, T. S. Pardawala, and C. D. Pai, "A Comparative Study of Categorical Variable Encoding Techniques for Neural Network Classifiers," *International journal of computer applications*, vol. 175, no. 4, pp. 7–9, 2017.
- [63] I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," *Journal of machine learning research*, vol. 3, no. Mar, pp. 1157–1182, 2003.
- [64] J. Cai, J. Luo, S. Wang, and S. Yang, "Feature Selection in Machine Learning: A New Perspective," *Neurocomputing*, vol. 300, pp. 70–79, 2018.
- [65] U. Stańczyk, "Feature Evaluation by Filter, Wrapper, and Embedded Approaches," in Feature Selection for Data and Pattern Recognition. Springer, 2015, pp. 29–44.
- [66] J. Brownlee, "How to Choose a Feature Selection Method for Machine Learning," Machine Learning Mastery, vol. 10, 2019.
- [67] K. Dissanayake and M. G. Md Johar, "Comparative Study on Heart Disease Prediction Using Feature Selection Techniques on Classification Algorithms," Applied Computational Intelligence and Soft Computing, vol. 2021, 2021.
- [68] D. Singh and B. Singh, "Investigating the Impact of Data Normalization on Classification Performance," Applied Soft Computing, vol. 97, p. 105524, 2020.
- [69] X. Tan, S. Su, Z. Huang, X. Guo, Z. Zuo, X. Sun, and L. Li, "Wireless Sensor Networks Intrusion Detection based on SMOTE and the Random Forest Algorithm," *Sensors*, vol. 19, no. 1, p. 203, 2019.
- [70] W.-C. Lin, S.-W. Ke, and C.-F. Tsai, "CANN: An Intrusion Detection System based on Combining Cluster Centers and Nearest Neighbors," *Knowledge-based systems*, vol. 78, pp. 13–21, 2015.

- [71] M. J. Islam, Q. J. Wu, M. Ahmadi, and M. A. Sid-Ahmed, "Investigating the Performance of Naive-bayes Classifiers and K-nearest Neighbor Classifiers," in 2007 international conference on convergence information technology (ICCIT 2007). IEEE, 2007, pp. 1541–1546.
- [72] C. A. Catania and C. G. Garino, "Automatic Network Intrusion Detection: Current Techniques and Open Issues," *Computers & Electrical Engineering*, vol. 38, no. 5, pp. 1062–1072, 2012.
- [73] J. Esmaily, R. Moradinezhad, and J. Ghasemi, "Intrusion Detection System based on Multi-layer Perceptron Neural Networks and Decision Tree," in 2015 7th Conference on Information and Knowledge Technology (IKT). IEEE, 2015, pp. 1–5.
- [74] L. Yang, A. Finamore, F. Jun, and D. Rossi, "Deep Learning and Zero-day Traffic Classification: Lessons Learned from a Commercial-grade Dataset," *IEEE Transactions on Network and Service Management*, vol. 18, no. 4, pp. 4103–4118, 2021.
- [75] C. Kim, S.-Y. Chang, J. Kim, D. Lee, and J. Kim, "Zero-day Malware Detection using Threshold-free Autoencoding Architecture," in 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021, pp. 1279–1284.
 [76] C. Zhang, X. Costa-Pérez, and P. Patras, "Adversarial Attacks Against
- [76] C. Zhang, X. Costa-Pérez, and P. Patras, "Adversarial Attacks Against Deep Learning-Based Network Intrusion Detection Systems and Defense Mechanisms," *IEEE/ACM Transactions on Networking*, 2022.