федеральное государственное автономное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

ОТЧЕТ

по лабораторной работе №4 Вариант №3

по дисциплине «Системы искусственного интеллекта»

Автор: Кулаков Н. В.

Факультет: ПИиКТ

Группа: Р3230

Преподаватель: Королёва Ю.А.

1) Текст задания.

Va	Part1 func	Part2 data	Hyperparameters
r			
3	Absolute(Sin(x)) X: -6.36.3 Y:	Handwritten	Regularization L2, output layer
	01.2	digits	activation type

There are represented such hyperparameters as

- Layer count
- Neurons count per layer (actually it's not hyperparameter but structure parameter)
- Learn rate
- Regularization L1 and L2
- Output layer activation type
- Layer activation type
- Loss function type
- Epoch count
- 1) By changing these hyperparameters try to reach max accuracy value(at least 0.95) for Part2 model with fixed epoch count 20
- 2) Change 1st hyperparameter's value from min to max with minimal step depends on your variant
- 3) Show impact on result using graphs
- 4) Describe impact of each hyperparameter on accuracy.
- 5) Set hyperparameter value back to one which produced max accuracy
- 6) Repeat 2-5 steps for second hyperparameter

Make a report including:

- Each hyperparameter description and its impact on accuracy.
- Hyperparameters' values which were used to reach accuracy value 0.95
- Graphs for these hyperparameters' values

2) Выполнение.

2.1) Часть 1.

Функция исходная и с шумами:

Параметры, при которых удалось достичь наибольшей достоверности:

При любых параметрах нейронная сеть утыкается в определенное решение и не хочет изменяться после 1500 эпохи. Дальше нейронная сеть начинает переобучаться. Из-за большой погрешности изначальной функции, максимальный результат, который удалось достичь:

Accuracy: 0.925000011920929

Графики:

2.2) Часть 2. Нахождение параметров для достижения максимальной ассигасу.

Параметры, при которых удалось достичь максимальной полноты:

Достоверность (accuracy) макс: 0.9024

Перепробовал все возможные варианты параметров. Это наилучшее, что удалось получить, не пытаясь по многу раз перезапускать разделение тестовой и тренировочной выборки и построение модели в надежде на чудо.

2.3) Часть 2. Зависимость ассиracy от output layer activation type.

softmax:

relu:

tanh:

2.4) Часть 2. Зависимость ассиracy от Regularization L2.

L2 -0.1:

L2 0.0001:

L2 0.0005:

L2 0.001:

L2 0.005:

L2 0.1:

3) Вывод

В ходе выполнения данной лабораторной работы я изучил обычные нейронные сети, как они устроены, а также как влияют различные параметры и функции(loss, batch size, learn rate, regularization L1 and L2, функции активации, количество эпох, количество нейроной на каждом слое) на результаты достоверности получаемой нейронной сети.