$$2\pi \text{ (radians)} \equiv 360^{\circ} \equiv 1 \text{ revolution}$$

$$\theta = \frac{s}{r}$$
 (radians) $v = \frac{s}{t}$ $\omega = \frac{\theta}{t}$

$$v = \frac{S}{t}$$

$$\omega = \frac{\theta}{t}$$

$$3600 \ rev / minute = \frac{3600 \ rev}{1 \ min} \frac{2\pi \ (radians)}{1 \ rev} \frac{1 \ min}{60 \ sec} = \frac{120\pi \ (radians)}{1 \ sec}$$

$$r = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2}$$

$$(x-h)^2 + (y-k)^2 = r^2$$

$\sin \theta = \frac{Opposite}{Hypotenuse} = \frac{opp}{hyp}$	$\csc\theta = \frac{hyp}{opp} = \frac{1}{\sin\theta}$
$\cos \theta = \frac{Adjacent}{Hypotenuse} = \frac{adj}{hyp}$	$\sec \theta = \frac{hyp}{adj} = \frac{1}{\cos \theta}$
$\tan \theta = \frac{opposite}{adjacent} = \frac{opp}{adj} = \frac{\sin \theta}{\cos \theta}$	$\cot \theta = \frac{adj}{opp} = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}$

Angle θ in degree	Angle θ in <i>radian</i>	$sin \theta$	$\cos \theta$	$tan \theta$	cot θ	sec θ	csc θ
0°	0	0	1	0	∞ (undefined)	1	∞ (undefined)
30°	π/6	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2
45°	$\pi/4$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	π/3	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$
90°	$\pi/2$	1	0	$\pm \infty$	0	$\pm \infty$	1
120°	$2\pi/3$	$\frac{\sqrt{3}}{2}$	- 1 /2	-√3	$-\frac{\sqrt{3}}{3}$	-2	$\frac{2\sqrt{3}}{3}$
135°	$3\pi/4$	$\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$	-1	-1	- √2	$\sqrt{2}$
150°	5π/6	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{3}}{3}$	-√3	$-\frac{2\sqrt{3}}{3}$	2
180°	π	0	-1	0	$\pm \infty$	-1	± ∞

$$\cos^2 \alpha + \sin^2 \alpha = 1$$

$$1 + \tan^2 \alpha = \sec^2 \alpha$$

$$1 + \cot^2 \alpha = \csc^2 \alpha$$

$$\cos(-\alpha) = \cos\alpha$$

$$\sin(-\alpha) = -\sin\alpha$$

$$tan(-\alpha) = -tan\alpha$$

$$cos(90^{\circ} - \alpha) = sin\alpha$$

$$\sin(90^{\circ} - \alpha) = \cos\alpha$$

$$tan(90^{\circ} - \alpha) = cot\alpha$$

$$cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$$

$$cos(\alpha + \beta) = cos\alpha cos\beta - sin\alpha sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

Half-Angle:
$$\cos\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$
 $\sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos\alpha}{2}}$ $\tan\left(\frac{\alpha}{2}\right) = \frac{\sin\alpha}{1+\cos\alpha} = \frac{1-\cos\alpha}{\sin\alpha}$

$$\sin\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1-\cos\alpha}{2}}$$

$$\tan\left(\frac{\alpha}{2}\right) = \frac{\sin\alpha}{1+\cos\alpha} = \frac{1-\cos\alpha}{\sin\alpha}$$

Double-Angle

$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ $= 1 - 2\sin^2 \alpha$ $= 2\cos^2 \alpha - 1$	$\sin 2\alpha = 2\sin \alpha \cos \alpha$	$\tan 2\alpha = \frac{2\tan\alpha}{1-\tan^2\alpha}$
$\cos^2\alpha = \frac{1 + \cos 2\alpha}{2}$	$\sin^2\alpha = \frac{1 - \cos 2\alpha}{2}$	$\tan^2 \alpha = \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}$

Product-to-Sum:

$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin (\alpha + \beta) + \sin (\alpha - \beta) \right]$	$\cos \alpha \sin \beta = \frac{1}{2} \left[\sin (\alpha + \beta) - \sin (\alpha - \beta) \right]$
$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos (\alpha + \beta) + \cos (\alpha - \beta) \right]$	$\sin \alpha \sin \beta = \frac{1}{2} \left[\cos (\alpha - \beta) - \cos (\alpha + \beta) \right]$

Sum-to-Product:

$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$	$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$
$\cos x - \cos y = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$	$\sin x - \sin y = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$

$$a\sin x + b\cos x = k\sin(x+\alpha) \quad \text{where } k = \sqrt{a^2 + b^2} \text{, } \sin \alpha = \frac{b}{\sqrt{a^2 + b^2}} \text{, and } \cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$$

$$y = \cos^{-1} x \quad \text{iff} \quad x = \cos y \quad \text{where } -1 \le x \le 1 \quad \text{and} \quad 0 \le y \le \pi$$

$$y = \sin^{-1} x \quad \text{iff} \quad x = \sin y \quad \text{where } -1 \le x \le 1 \quad \text{and} \quad -\pi/2 \le y \le \pi/2$$

Law of Sines:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

Law of Cosines:
$$a^2 = b^2 + c^2 - 2bc \cos A$$
 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

$$b^2 = a^2 + c^2 - 2ac \cos B$$
 $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$

$$c^2 = a^2 + b^2 - 2ab \cos C$$
 $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

Vectors:

Magnitude:
$$|V| = \sqrt{a^2 + b^2}$$
 Angle: $\cos \theta = \frac{U \cdot V}{|U||V|}$

Dot Product: $U \cdot V = (ai + bj) \cdot (ci + dj) = ac + bd$

$$z = r(\cos\theta + i\sin\theta) = r\operatorname{cis}\theta$$
 $r = \sqrt{x^2 + y^2}$ $\cos\theta = \frac{x}{r}$, $\sin\theta = \frac{y}{r}$, and $\tan\theta = \frac{y}{x}$