Permit Number 7715

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air	Contaminant	Emission	<u>Rates</u>
Point No. (1)	Name (2)		Name (3)	<u>lb/hr</u>	TPY
1	Low Purity Storage (4)	PM ₁₀	PM 0.14	0.29 0.19	0.38
2A	Secondary Crusher Baghouse Stack		PM/PM ₁₀	0.34	1.50
3	No. 1 Raymond Mill Baghouse Stack		PM/PM_{10} SO_2 NO_x CO VOC	0.78 <0.01 0.38 0.32 0.02	3.29 0.01 1.32 1.11 0.07
4	No. 2 Raymond Mill Baghouse Stack		PM/PM ₁₀ SO ₂ NO _x CO VOC	0.78 <0.01 0.38 0.32 0.02	3.29 0.01 1.32 1.11 0.07
5	No. 3 Raymond Mill Baghouse Stack		PM/PM ₁₀ SO ₂ NO _x CO VOC	1.08 <0.01 0.38 0.32 0.02	4.61 0.01 1.32 1.11 0.07
6	No. 4 Raymond Mill Baghouse Stack		PM/PM ₁₀ SO ₂ NO _x CO VOC	0.91 <0.01 0.38 0.32 0.02	3.86 0.01 1.41 1.19 0.08

Emission	Source	Air Contaminant	Emission	Rates
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
6A	No. 5 Raymond Mill	PM/PM ₁₀	0.84	3.51
	Baghouse Stack	SO ₂	< 0.01	0.01
	-	NO_x	0.48	1.76
		CO	0.40	1.48
		VOC	0.03	0.10
6B	Williams Mill	PM/PM ₁₀	1.21	4.94
	Baghouse Stack	SO_2	0.01	0.03
		NO _x	1.14	4.64
		CO	0.96	3.90
		VOC	0.06	0.26
7	No. 1 Calcining Kettle	PM/PM ₁₀	0.45	1.90
	Baghouse Stack	SO_2	0.01	0.03
		NO_x	2.00	7.41
		CO	1.20	4.45
		VOC	0.08	0.29
7A	No. 2 Calcining Kettle	PM/PM ₁₀	0.61	2.59
	Baghouse Stack	SO_2	0.01	0.03
		NO _x	1.69	6.28
		CO	1.02	3.77
		VOC	0.07	0.25
8	No. 3 Calcining Kettle	PM/PM ₁₀	0.78	3.34
	Baghouse Stack	SO_2	0.01	0.03
		NO _x	1.69	6.28
		CO	1.02	3.77
		VOC	0.07	0.25
9	No. 4 Calcining Kettle	PM/PM ₁₀	0.43	1.84
	Baghouse Stack	SO_2	0.01	0.03
		NO_x	1.69	6.28
		CO	1.02	3.77
		VOC	0.07	0.25

Emission	Source	Air Contaminant	Emission R	<u>ates</u>
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY</u>
10B	MBR Kettle	PM/PM ₁₀	1.10	4.79
	Baghouse Stack	SO ₂	0.01	0.04
		NO_x	1.21	7.36
		CO	1.62	1.84
		VOC	0.08	0.34
11	No. 6 Calcining Kettle	PM/PM ₁₀	1.10	4.53
	Baghouse Stack	SO_2	0.01	0.04
		NO _x	2.00	7.41
		CO	1.20	4.45
		VOC	0.08	0.03
12	No. 7 Calcining Kettle	PM/PM ₁₀	1.05	1.90
	Baghouse Stack	SO ₂	0.01	0.03
	3	NO _x	2.00	7.41
		CO	1.20	4.45
		VOC	0.08	0.29
13	Oriental Machine Baghouse Stack	PM/PM ₁₀	0.39	0.28
13A	Durock Machine Baghouse Stack	PM/PM ₁₀	0.39	0.28
14	No. 4 Moulding Machine Baghouse Stack	PM/PM ₁₀	<0.01	<0.01
21	No. 2 Drying Kiln	PM/PM_{10} SO_2 NO_x CO	0.25 0.03 4.95 4.16	1.07 0.13 21.41 17.99
		VOC	0.27	1.18

Emission	Source	Air Contaminant	Emission	Rates
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY
23	No. 2 Pack Machine Baghouse Stack	PM/PM ₁₀	0.41	0.38
24	No. 3 Pack Machine Baghouse Stack	PM/PM ₁₀	0.35	0.43
25	No. 1 Pack Machine Baghouse Stack	PM/PM ₁₀	0.38	0.37
26	Land Plaster Silo Baghouse Stack	PM/PM ₁₀	0.03	0.15
27	No. 2 Silo Baghouse Stack	PM/PM ₁₀	0.03	0.15
28	No. 2 End Sawing Equipment Baghouse Stack	PM/PM ₁₀	0.43	1.88
31	Primary Crushing/Screening/ Unloading (4)	PM PM ₁₀	0.46 0.05	0.47 0.05
32	Waste Storage Pile (4)	PM/PM ₁₀		<0.01
40	Rock Loading (4)	PM PM ₁₀	0.09 0.05	0.04 0.02
41	Land Plaster Packing Baghouse Stack	PM PM ₁₀	0.36 0.36	1.58 1.58
42	Tube Mill Baghouse Stack	PM/PM ₁₀	0.09	0.38
43	Ty-Sa-Man Saw Baghouse Stack	PM/PM ₁₀	0.21	0.21

Emission	Source	Air Contaminant	Emission F	<u>Rates</u>
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY</u>
45	Perlite Expander Baghouse Stack	PM/PM_{10} SO_2 NO_x CO VOC	1.16 0.01 1.33 1.11 0.07	0.58 <0.01 0.66 0.56 0.04
46	Perlite Receiver Baghouse Stack	PM/PM ₁₀	0.08	0.01
47	Sluter Machine Baghouse Stack	PM/PM ₁₀	0.51	0.77
58	Crusher Waste Pile (4)	PM/PM ₁₀	0.11	0.04
59	Primary Storage Pile (4)	PM PM ₁₀	0.39 0.19	0.51 0.25
60	Gypsum Storage Pile (4)	PM PM ₁₀	0.19 0.10	0.25 0.13
61	HRA System Baghouse Stack	PM/PM ₁₀	0.13	0.56
62	1,000-Ton Stucco Silo Baghouse Stack	PM/PM ₁₀	0.44	1.93
63	Dry Mixing Equipment Baghouse Stack	PM _/ PM ₁₀	0.03	0.12
65	End Sawing Equipment No. 3 Baghouse Stack	PM/PM ₁₀	0.86	3.75

EMISSION SOURCES - MAXIMUM ALLOWARR E CONTROL ON A RASED ATA

Emission	Source	Air Contaminant	Emission	<u>Rates</u>
Point No. (1)	Name (2)	Name (3)	lb/hr	<u>TPY</u>
66	No. 3 Drying Kiln	$\begin{array}{c} PM/PM_{10} \\ SO_2 \\ NO_x \\ CO \\ VOC \end{array}$	0.70 0.08 13.90 11.68 0.76	2.74 0.33 54.71 45.95 3.01
67	Additive Dust Collector Baghouse Stack	PM/PM ₁₀	0.43	1.88
69	Plant LPG Tank 1,000 Gallon Capacity	VOC	<0.01	<0.01
70	Plant Diesel Tank 670 Gallon Capacity	VOC	<0.01	0.02
71	Quarry Gasoline Tank 1,000 Gallon Capacity	VOC	<0.01	0.02
72	Quarry Small Diesel Tank 300 Gallon Capacity	VOC	<0.01	0.02
73	Quarry Bulk Diesel Tank 15,200 Gallon Capacity	VOC	<0.01	0.02
74	Plant Gasoline Tank 1,000 Gallon Capacity	VOC	<0.01	0.02

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) PM particulate matter, suspended in the atmosphere, including PM₁₀.
 - PM_{10} particulate matter equal to or less than 10 microns in diameter. Where PM is not listed, it shall be assumed that no particulate matter greater than 10 microns is emitted.

SO₂ - sulfur dioxide

NO_x - total oxides of nitrogen

CO - carbon monoxide

VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.
- * Refer to Special Conditions No. 1 for throughput limitations and basis of emission rates.

Dated	