PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-157653

(43) Date of publication of application: 13.06.2000

(51)Int.CI.

A63B 53/04

A63B 53/06

(21)Application number: 10-339963

(71)Applicant: BRIDGESTONE SPORTS CO

LTD

(22)Date of filing:

30.11.1998

(72)Inventor: SHIMAZAKI HIDEO

(54) GOLF CLUB HEAD

(57) Abstract:

PROBLEM TO BE SOLVED: To use a material of high specific gravity in a wide range of the outside of a head body and to increase a degree of freedom in design of a position of center of gravity.

SOLUTION: This golf club head is manufactured by integrally forming a hosel 6 for inserting a shaft, on a head body 1 including a face part, a back face part, a sole part 2 and the like. On this occasion, a weight member 5 made of a metallic alloy of above 10 of specific gravity and 110-320 of Vickers hardness is mounted in an opening formed on one of the sole part 2, the back face part, and a zone from the sole part 2 to the back

face part, being exposed to a surface of the head body 1.

[0011]

As described above, after a weight member 5 made of a tungsten alloy is fixed to a cup 3, the cup 3 is fitted into an opening 2A of a sole portion 2 of a head body 1 and then sticking thereto. Such a sticking is carried out by welding. The cup 3 and the head body 1 are preferably made of the same materials in view of better weldability.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-157653 (P2000-157653A)

(43)公開日 平成12年6月13日(2000.6.13)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

A 6 3 B 53/04

53/06

A 6 3 B 53/04

G 2C002

53/06

С

審査請求 未請求 請求項の数5 OL (全 5 頁)

(21)出願番号

特願平10-339963

(22)出願日

平成10年11月30日(1998.11.30)

(71)出顧人 592014104

プリヂストンスポーツ株式会社

東京都品川区南大井6丁目22番7号

(72)発明者 島崎 秀夫

東京都品川区南大井6丁目22番7号 プリ

ヂストンスポーツ株式会社内

(74)代理人 100078824

弁理士 増田 竹夫

Fターム(参考) 20002 AA03 CH02 CH03 LL01 MM04

PP03

(54) 【発明の名称】 ゴルフクラブヘッド

(57)【要約】

【課題】 ヘッド本体の外側に比重の大きい材料を広い 範囲で設けることができ、重心位置の設計自由度も大き くする。

【解決手段】 フェース部7、バックフェース部8、ソール部2等を含むヘッド本体1にシャフト挿入用ホーゼル6を一体形成した金属製のゴルフクラブヘッドにおいて、ソール部2、バックフェース部8、ソール部2からバックフェース部8にわたる部分のいずれかに形成された開口部に比重10以上でピッカース硬度110~320の金属合金からなるウェイト部材5をヘッド本体1の表面に露出させて設けた。

(2)

【特許請求の範囲】

【請求項1】 フェース部、バックフェース部、ソール 部等を含むヘッド本体にシャフト挿入用ホーゼルを一体 形成した金属製のゴルフクラブヘッドにおいて、

1

ソール部、バックフェース部、ソール部からバックフェ ース部にわたる部分のいずれかに形成された開口部に比 重10以上でピッカース硬度110~320の金属合金 からなるウェイト部材をヘッド本体の表面に露出させて 設けたことを特徴とするゴルフクラブヘッド。

若しくはその合金からなる椀状のカップにウェイト部材 を収容固定し、このウェイト部材が固定されたカップを ヘッド本体に形成された開口部に固定してヘッド本体の 一部を構成するようにしたことを特徴とする請求項1に 記載のゴルフクラブヘッド。

【請求項3】 ソール部に設けたウェイト部材はソール 面積の20%以上露出するように設けられることを特徴 とする請求項1又は2に記載のゴルフクラブヘッド。

【請求項4】 前記ウェイト部材にはタングステンが3 0%以上含まれていることを特徴とする請求項1ないし 20 3のいずれか1項に記載のゴルフクラブヘッド

【請求項5】 前記ウェイト部材はタングステンと銅と を主成分とする合金あるいはタングステンとニッケルと を主成分とする合金であることを特徴とする請求項1な いし3のいずれか1項に記載のゴルフクラブヘッド

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、ゴルフクラブへ ッドに関する。

[0002]

【従来の技術】従来のウェイト部材を付加したゴルフク ラブヘッドとしては、特開平10-211304号公報 や特開平10-94623号公報に記載のものが知られ ている。前者は、ソール部からバックフェース部の下端 側にかけて挿入体(ウェイト部材)を設けたものであ り、ヘッド本体をチタニウム又はその合金、挿入体をタ ングステンから形成してある。挿入体が設けられるヘッ ド本体の部位には、凹所を形成してあり、この凹所に挿 入体を挿入してねじの切られた固定具で固定してある。 後者は、金属製中空ゴルフクラブヘッドのソール部を形 40 成するソールプレートに圧入嵌合部を設け、この圧入嵌 合部に比重10以上の円柱状のタングステン焼結金属か らなる重量体(ウェイト部材)を圧入固定し、ソールプ レートと重量体を貫通する貫通孔に延性を有する金属か らなるピンを通して、このピンの上下端を圧潰して重量 体をソールプレートの内側に固定するものである。

【0003】タングステンは、比重19.3と大きいた め、ヘッドの重心の位置を変更し易いという利点を有す るが、きわめて硬い(ピッカース硬度Hv425)の で、加工性が悪く、そのため、上述した従来例のように 50 ト部材 5 がトウ側とヒール側に多くの重量が配分された

ねじで固定したり、延性を有するピンを圧潰して固定し ていた。

[0004]

【発明が解決しようとする課題】ねじ(ねじの切られた 固定具)でタングステン製の挿入体をヘッド本体に固定 する場合、接着剤も併用されるが、このような固定方法 では、挿入体にあけるねじ挿通孔の加工や凹所に合わせ るためのタングステンの加工の精度が必要となり、コス ト髙となるのみならず、ボールとの衝突や地面との接触 【請求項2】 前記ウェイト部材とは種類の異なる金属 10 の際に挿入体の振動が生じるおそれがあり、使用中に挿 入体のガタつきに伴って異音が発生するおそれもあっ た。また、ピンによる固定方法では、使用する重量体の 使用量が限定され、思ったほど重量を付加することがで きず、重心位置の変更に大きな効果を期待できなかっ た。さらに、複雑なヘッド形状のものでは、タングステ ン合金などの比重の重い金属を圧入することは難しかっ

> 【0005】そこで、この発明は、ヘッド本体の外側に 比重の大きい材料を広い範囲で設けることができ、重心 位置の設計自由度も大きく、ヘッド形状が複雑な形状で あっても比重の大きい材料を圧入することのできるゴル フクラブヘッドを提供することを目的とする。

[0006]

【課題を解決するための手段】上述の目的を達成するた め、この発明は、フェース部、バックフェース部、ソー ル部等を含むヘッド本体にシャフト挿入用ホーゼルを一 体形成した金属製のゴルフクラブヘッドにおいて、ソー ル部、バックフェース部、ソール部からバックフェース 部にわたる部分のいずれかに形成された開口部に比重1 0以上でピッカース硬度110~320の金属合金から なるウェイト部材をヘッド本体の表面に露出させて設け たものである。

[0007]

【発明の実施の形態】以下に、この発明の好適な実施例 を図面を参照にして説明する。

【0008】図1に示す実施例では、ヘッド本体1の一 部、この例ではソール部2の中央部分を切り欠いて形成 された開口部2Aを別体の後付け部材である椀状のカッ プ3で埋めて形成し、このカップ3に穴や溝などの収容 スペース4を形成し、この収容スペース4内に比重10 以上でピッカース硬度Hv110~320の金属合金か らなるウェイト部材5を収容し固定するようになってい る。そして、このウェイト部材5が収容されたカップ3 をヘッド本体 1 の開口部 2 A、すなわちソール 2 の中央 部分に嵌め込んで固着する。また、図中6はヘッド本体 1に一体形成されたホーゼルを示す。このホーゼル6に は図示しないシャフトが挿入固着される。

【0009】図2は、カップ3の収容スペース4の形状 及びウェイト部材5の形状を変えたものを示し、ウェイ

3

ものとなっている。低重心化のみならずトウ側とヒール 側に重量配分されることによりスィートエリアの拡大も 図れる。

【0010】図3乃至図5はカップ3の収容スペース4 にウェイト部材5を固着する手段の一例を示す断面図で ある。カップ3を形成する材料としては、硬さHv(ピ ッカース硬度)が330の鋳造チタン合金とし、収納ス ペース4に圧入されるウェイト部材5は硬さHvが32 0以下の比重10以上の材料とした。このウェイト部材 5としては、タングステンを全体の約60%含み、銅を 10 約40%、残りは他の化学成分から成る比重13.1、 硬さHv180のタングステン合金を用いた。収容スペ ース4の底にはアンダーカット部4Aを形成し、ウェイ ト部材5を圧入したときにウェイト部材5の下端側がこ のアンダーカット部4Aに圧潰されて入り込むようにな っている。また、カップ3の収容スペース4の開口側周 縁には薄肉の突条3Aを形成してある。図4に示すよう にウェイト部材5を収容スペース4に圧入したならば、 図5に示すように突条3Aを内側にかしめ加工する。

合金のウェイト部材5を固定したならば、このカップ3 をヘッド本体1のソール部2の開口部2Aに嵌め込んで 固着する。この固着方法は溶接による。カップ3とヘッ ド本体1との材料は同一材料である方が溶接性が良く、 好ましい。

【0012】完成されたゴルフクラブヘッドの中央縦断 面を図6に示す。ウェイト部材5はソール部2の面積の 20%以上となるように外部に露出する。図6において 符号7はフェース部、符号8はバックフェース部をそれ ぞれ示す。この実施例ではバックフェース部8にキャビ 30 ティ9を形成し、このキャビティ9はカップ3が嵌め込 まれる開口部2Aの個所まで連通して設けてある。

【0013】図示した実施例においては、ソール部2の 一部分をカップ3とウェイト部材5で形成したが、ヘッ ド本体1のキャビティ9を取り囲むリブの一部、すなわ ちバックフェース部8の一部やソール部2からバックフ ェース部8にかけてウェイト部材5を収容したカップ3 を固着するようにすることもできる。また、アイアンへ ッドのみならず、ウッドクラブのヘッドやパターヘッド などの各種ゴルフクラブヘッドにも適用できる。

【0014】ウェイト部材5の比重を10以上としたの は、比重が10未満だと重心設計にあまり効果的ではな いためである。従来真鍮などの銅合金を用いた例がある が、このような銅合金の比重は8.5前後であり、ヘッ ド本体 1 をステンレス材料で形成した場合、ステンレス

材料の比重7.8とあまり差がなく、重心設計に効果的 ではなかった。上述した銅を約40%含むタングステン 合金は比重13.1、硬さHv180である。硬さHv 110を超える材料であればウェイト部材5を形成する ことができ、カップ3の形成材料はウェイト部材5より も硬ければよい。ウェイト部材5をカップ3に圧入する ためには、ウェイト部材5の硬さHvはカップ3の硬さ Hvより小さいことが必要であるが、ウェイト部材5の 硬さHvが320を超えると、硬すぎて圧入しにくくな り、圧入される材料を受けるカップ3の収納スペース4 との間に隙間ができ易くなる。カップ3を形成する材料 としては、上述したチタン合金の他に炭素鋼、ステンレ ス、アルミ合金等が使用できる。また、ヘッド本体1と ウェイト部材5との比重差は4以上あることが好まし く、少なくとも1.7以上必要である。

【0015】上述した実施例において、ソール部2の全 体面積においてウェイト部材5が露出する面積は20% 以上であることが好ましく、圧入される材料を受けるカ ップ3のヘッド本体1への溶接代を鑑みれば、80%以 【0011】上述したように、カップ3にタングステン 20 下であることが好ましい。但し、アイアンヘッドにおけ るソール部2の場合には、ウェイト部材5の露出面積は 20%~50%、より好ましくは25%~35%であ る。さらにまた、ウェイト部材5とカップ3の外周縁と は、5mm以上の間隔があることが好ましい。このこと は、カップ3の溶接により外周縁にひけや変形が起こ り、圧入したウェイト部材5と収容スペース4との間に 隙間が生じてしまったり、熱により変色してしまう恐れ があるためである。20g以上のかたまりを圧入するこ とができ、30g以上150g以下が好ましい。特に4 5g以上80g以下が良い。20g未満では、特にこの ような複雑な製造方法をとる必要もなく、150gより 重いウェイトは、重すぎて、ヘッドが小さくなってしま うおそれがある。上述の図示した実施例において、ウェ イト部材5に使用したタングステン合金の重量は約62 gとし、ソール部2の全体の面積は約19.5cm2、 ウェイト部材5の露出面積は約6.5 c m² でソール部 2全体の面積の約33%とした。

> 【0016】カップ3をヘッド本体1に溶接したのち、 溶接により生じたビードを研磨して最終製品とした。こ の図示する実施例を5番アイアンのヘッドとし、一般に 使用されている5番アイアン、低重心の市販されている 5番アイアン、タングステンを接着した市販の5番アイ アンをそれぞれ比較した結果を次の表1に示す。

[0017]

【表1】

	本美明ヘッド	一般市販ヘッド	低量心市版ヘッド	ラングステン付き 市取ヘッド
ロフト為	25. 3*	25. 7*	28, 1*	25. 5"
ヘッド重量	Z 4 1 g	2 4 8 g	2 4 4 g	2 4 8 g
フールセンター 幅	21, 5mm	17, 6mm	2 2. 3 mm	1 8. 6 mm
重心高さHGR	16.8mm	20. 5mm	18, 0 mm	17. 8 mm
豊心深さZG	7. 1 mm	Z. Zmm	3, 9 mm	8. 5 mm
性性モカト I X	8,5g 'em 'sec'	7.2 g • mm • sec ¹	5.4g • mm • sec1	6.4g · ma · sec ^t
仮性モルト Y	22,1g - #m - sec1	27.5 g - ma - seo 1	24.5g - mm - sec²	25.7g • ma • sec*

【0018】上記表1からも明らかなように重心高さH GRは本発明の実施例に係るヘッドが最も低く、それぞ れの5番アイアンを試打した結果も、本発明の5番アイ アンでは球が上がり易く安定しているとの評価を得た。 【0019】ウェイト部材5として、タングステンを3 0%、銅を70%とした合金を用いた場合、硬さHvは 125となり、鋳造チタン合金(Hv330)のヘッド 本体1に対し圧入することができる。この場合は、カッ プ3を使用せずにヘッド本体1の開口部2Aに直接ウェ イト部材5を圧入することができる。一般に、チタン合 金製のヘッド本体1に純チタンや真鍮を圧入する場合、 純チタンなどの硬さHvは100~130程度であるた め、硬さHv125の上記合金製のウェイト部材5であ れば圧入することができる。なおまた、タングステンと ニッケルの合金をウェイト部材5として使用することも できる。

【0020】タングステンと銅との組成比率における加 工性の良否を以下の表2に示す。

[0021] 【表2】

銅組成比率	タンクステン組成比率	比重	Hv硬度	加工性
0	100	19.3	4 2 5	×
1 0	. 90	17. 2	3 7 0	Δ
2 0	8 0	15.6	2 7 5	Δ~0
3 0	7 0	14. 2	203	0
4 0	6 0	13.1	180	0
5 0	5 0	12.2	155	0
7 0	3 0	10,6	1 2 5	0

【0022】タングステン100%では、カップ3に圧 入しようとしてもタングステンはほとんど潰れず、製造 不可能であった。銅10%、タングステン90%の合金 (Hv370)では、カップ3との間に隙間が生じ、商 品としての価値が低かった。表2中の×は製造不可、△ は見栄えが悪く商品化困難、○は良好、を夫々示す。こ の結果から、カップ3に圧入するウェイト部材5として は、ピッカース硬度(Hv)320以下が良い。また、 ソール部2に用いる場合、地面や砂などとの接触を考慮 すると、傷がつき易くない程度の硬さが必要であり、H 40 v 1 1 0以上の硬さは必要である。したがって、ウェイ ト部材5は、Hv110~320、好ましくはHv14 0~210の硬さである。

【0023】カップ3へのウェイト部材5の圧入とは、 カップ3の収容スペース4を受け口とし、そこに圧入さ れる材料(ウェイト部材5)を圧力をかけて強制的に嵌 め込むことをいい、また「かしめ」とは、突条3Aを潰 してカップ3内に挿入又は圧入したウェイト部材5を抜 け出ないようにすることをいう。このように挿入及びか しめ、あるいは圧入又は/及びかしめによりヘッド本体 50 由度が大きくなる。また、ウェイト部材とは種類の異な

1又はカップ3に固定されたウェイト部材5は、円筒状 の孔にタングステン棒を細かく切ってヘッドに固定する よりも、ヘッド本体1の表面に比重の重いウェイト部材 5を露出するようにしてあるので、重心位置よりもでき るだけ遠くに存在することとなり、それだけ重心位置を 目的の位置へ動かし易くなる。

[0024]

【発明の効果】以上説明したように、この発明によれ ば、フェース部、バックフェース部、ソール部等を含む ヘッド本体にシャフト挿入用ホーゼルを一体形成した金 属製のゴルフクラブヘッドにおいて、ソール部、バック フェース部、ソール部からバックフェース部にわたる部 分のいずれかに形成された開口部に比重10以上でピッ カース硬度110~320の金属合金からなるウェイト 部材をヘッド本体の表面に露出させて設けたので、ヘッ ド本体に穴などをあけてタングステンを設ける場合に比 べて、比較的広い面積でウェイト部材を露出させ得ると ともに、かなりの重量のウェイト部材をヘッド本体の外 側に位置させることもできるので、重心位置の設計の自

る金属若しくはその合金からなる椀状のカップにウェイ ト部材を収容固定し、このウェイト部材が固定されたカ ップをヘッド本体に形成された開口部に固定したもので は、ヘッド本体に直接圧入する場合に比べてウェイト部 材を量的に増やすことが容易であるとともに、タングス テンの含有量の多い合金を使用することもでき、より一 層重心位置の移動が簡単となる。特にソール面にウェイ トを配置すると低重心となるため、ロフト角25°以下 のロングアイアン、ユーティリティークラブ、フェアウ ェイウッドに効果的である。

【図面の簡単な説明】

【図1】この発明の好適な実施例を示す分解斜視図。

【図2】カップとウェイト部材の変形例を示す分解斜視

【図3】カップにウェイト部材を収容する直前の断面 図。

【図4】ウェイト部材をカップに圧入した状態の断面

【図5】ウェイト部材を圧入後突条をかしめ加工した状 態の断面図。

【図6】カップをヘッド本体に溶接した状態の中央縦断 面図。

【符号の説明】

- 1 ヘッド本体
- 2 ソール部
- 10 3 カップ
 - 4 収容スペース
 - 5 ウェイト部材
 - 6 ホーゼル
 - 7 フェース部
 - 8 バックフェース部

【図1】

