Lezione del 24 Febbraio del Prof. Frigerio

Definizione 0.1 (Omeomorfismo locale).

 $f: X \to Y$ è un omeomorfismo locale se

$$\forall x \in \exists U \ni p \text{ aperto in } X \in V \ni f(p) \text{ aperto in } Y$$

tale che

$$f(U) = V e f_{|U} : U \to V$$
 omeomorfismo

Fatti 0.1.

1. Un omeomorfismo locale è una mappa aperta Sia $\Omega \subset X$ aperto, $\forall p \in X$ seleziono un aperto $U_p \ni p$ come nella definizione di sopra

$$f(\Omega) = f\left(\bigcup_{p \in X} (\Omega \cap U_p)\right) = \bigcup_{p \in X} f(\Omega \cap U_p)$$

Ora poichè U_p è omeomorfo mediante f ad un aperto di Y ne segue che $f(\Omega \cap U_p)$ è un aperto di un aperto di Y dunque aperto.

Ora la tesi segue in quanto unione di aperti è aperto

2. f omeomorfismo locale $\Rightarrow f^{-1}(y)$ discreto in YDato $x \in f^{-1}(y)$ per definizione di omeomorfismo locale, $\exists U \ni x$ aperto in X e tale che $f_{|U|}$ è iniettiva. Ora $f^{-1}(x) \cap U = \{x\}$ da cui $\{x\}$ è aperto

$\textbf{Definizione 0.2} \ (\text{Rivestimento}).$

Una mappa $p: E \to X$ è un rivestimento se

 $\bullet~X$ è connesso per archi

tali che $I \neq \emptyset$ e

$$\forall x \in X \quad \exists U \ni x \text{ aperto in } X \quad p^{-1}(U) = \coprod_{i \in I} V_i$$

 V_i aperto in Y e $p_{|V_i}:V_i\to U$ omeomorfismo $\forall i\in I$

 $\textbf{Definizione 0.3.} \ \ \textbf{Un intorno come nella definizione si dice ben rivestito }$

Fatti 0.2.

- 1. Un rivestimento è un omeomorfismo locale
- 2. Un rivestimento è surgettivo

Esempio 0.3. Sia $p: \mathbb{R} \to S^1$ con $p(t) = (\cos 2\pi t, \sin 2\pi t)$, $p \in un$ rivestimento.

Dimostrazione. Dato $x_0 \in S^1$, allora $x_0 = p(t_0)$ per qualche t_0 . Scelgo $U = S^1 \setminus \{-x_0\}$, ora

$$p^{-1}(U) = \coprod_{k \in \mathbb{Z}} \left(t_0 - \frac{1}{2} + k, t_0 + \frac{1}{2} + k \right)$$

Ora $\forall k$ la restrizione di p su $\left(t_0 - \frac{1}{2} + k, t_0 + \frac{1}{2} + k\right)$ è un omeomorfismo

Esemplo 0.4. Sia $p:(-1,1) \to S^1$ con $p(t) = (\cos 2\pi t, \sin 2\pi t)$.

Tale mappa è un omeomorfismo locale surgettivo, ma non è un rivestimento in quanto $(1,0) \in S^1$ non ha un intorno ben rivestito

Esercizio 0.5 (Retta con 2 origini).

 $Sia \sim la \ relazione \ su \ \mathbb{R} \times \{-1,1\} \ dato \ da$

$$(x,\varepsilon) \sim (y,\varepsilon') \quad \Leftrightarrow \quad (x,\varepsilon) = (y,\varepsilon') \ o \ (x=y \ e \ x \neq 0)$$

Allora la mappa $\pi: \frac{\mathbb{R} \times \{-1,1\}}{\sim} \to \mathbb{R}$ è un omomorfismo locale surgettivo $(0 \in \mathbb{R} \text{ non ha interni ben rivestiti})$

Esercizio 0.6. $\pi: S^n \to \mathcal{P}^n(\mathbb{R}) \ \dot{e} \ un \ rivestimento$

La dimostrazione verrà fatta avanti con strumenti diversi e non a mano.

Proposizione 0.7 (Unicità del sollevamento).

Sia $p: E \to X$ un rivestimento, Y connesso per archi $e f: Y \to X$.

Siano $\tilde{f}, \tilde{g}: Y \to E \text{ con } f = p \circ \tilde{f} = p \circ \tilde{g}.$

Se $\exists y_0 \in Y$ tale che $\tilde{f}(x_0) = \tilde{q}(x_0)$ allora $\tilde{f} = \tilde{q}$

Dimostrazione. Poichè Y è connesso per archi basta mostrare che $\Omega = \{y \in Y \mid \tilde{f}(y) = \tilde{g}(y)\}$ è sia aperto che è chiuso (Ω non è vuoto, dunque è tutto Y).

Mostriamo che Ω è aperto.

Sia $y \in \Omega$ allora $\tilde{x_0} = f(y) = \tilde{g}(y)$ e $x_0 = p(\tilde{x_0})$

Per definizione di rivestimento $\exists U \in I(x_0)$ ben rivestito dunque $\pi^{-1}(U) = \coprod V_i$.

Sia i_0 tale che $\tilde{x_0} \in V_{i_0}$.

Essendo \tilde{f} e \tilde{g} continue, $\exists W \in I(y)$ tale che $\tilde{f}(W) \subset V_{i_0}$ e $\tilde{g}(W) \subset V_{i_0}$

Ora $p_{|V_i|}$ è iniettiva dunque da $p \circ f = p \circ \tilde{g}$ deduco che $f_{|W} = \tilde{g}_{|W}$

Mostriamo Ω è chiuso, mostrando che $Y \setminus \Omega$ è aperto.

Sia $y \in Y \setminus \Omega$ per cui $f(y) \neq \tilde{g}(y)$, tuttavia $p \circ \tilde{f}(y) = p \circ \tilde{g}(y) = f(y) = x_0$.

Se U è un intorno ben rivestito di x_0 si ha $p^{-1}(U) \coprod V_i$.

Ora essenndo $\tilde{f}(y) \neq \tilde{g}(y)$ deduco che $\tilde{f}(y) \in V_{i_0}$ e $\tilde{g}(t) \in V_{i_1}$ con $i_0 \neq i_1$.

Dalla continuità delle funzioni $\exists W \in I(y) \text{ con } f(W) \subset V_{i_0} \in \tilde{g}(W) \subset V_{i_1}$.

Ora V_{i_0} e V_{i_1} sono disgiunti, da cui $W \in Y \setminus \Omega$

Proposizione 0.8 (Esistenza del sollevamento di cammini).

Siano $p: E \to X \ e \ \gamma: [0,1] \to X \ continua$.

Sia $x_0 = \gamma(0)$ e $\tilde{x_0} = p^{-1}(x_0)$, allora $\exists ! \tilde{\gamma} : [0,1] \to E$ continua con $\tilde{\gamma}(0) = \tilde{x_0}$ e $\gamma = p \circ \tilde{\gamma}$

Dimostrazione. L'unicità segue dalla proposizione precedente essendo [0, 1] connesso per archi e avendo fissato $\tilde{x_0}$.

Ricopriamo X con aperti ben rivestiti $\{U_i\}_{i\in I}$ e sia $\varepsilon>0$ un numero di Lebesgue per il ricoprimento.

Se $\frac{1}{n} < \varepsilon \ \forall k = 0, \dots, n-1$ si ha $\gamma\left(\left[\frac{k}{n}, \frac{k+1}{n}\right]\right) \subset U_k$ ben rivestito. Definisco induttivamente $\tilde{\gamma}$ su $\left[\frac{k}{n}, \frac{k+1}{n}\right]$ come segue. Per definizione di rivestimento $\exists V_0$ aperto di E tale che $\tilde{x_0} \in V_0$ e $p_0 = p_{|V_0}$ è un omeomorfismo.

 $\forall t \in \left[0, \frac{1}{n}\right]$ pongo $\tilde{\gamma}(t) = p_0^{-1}(\gamma(t))$. Una volta definito $\tilde{\gamma}$ continua su $\left[0, \frac{k}{n}\right]$, trovo $V_k \subset E$ tale che $\tilde{\gamma}\left(\frac{k}{n}\right) \in V_k$ e $p_k = p_{|V_k}$ omeomorfismo.

Pongo $\forall t \in \left[\frac{k}{n}, \frac{k+1}{n}\right] \tilde{\gamma} = p_k^{-1}(\gamma(t)).$