Seminar 10

- Chain rule: $D(f \circ g)(x) = Df(g(x))Dg(x)$.
- Directional derivative: $Df_v(x) := \lim_{h \to 0} \frac{f(x+hv) f(x)}{h} = \nabla f(x) \cdot v$, for $v \in \mathbb{R}^n$.
- Direction of steepest ascent: $\nabla f(x)$. Direction of steepest descent: $-\nabla f(x)$.
- Hessian matrix $H(x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{i,j=\overline{1,n}}$.
- Gradient perpendicular to the level set. Tangent: $\nabla f(x_0, y_0) \cdot (x x_0, y y_0) = 0$.
- 1. For each of the following functions, compute $\frac{df}{dt}$ directly and using the chain rule:
 - (a) $f(x,y) = \ln(x^2 + y^2),$ $x = t, y = t^2.$

- (b) $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$, $x = \cos t$, $y = \sin t$, z = t > 0.
- 2. Let $f(u, v, w) = u^2 + v^2 w$ and $u(x, y, z) = x^2 y$, $v(x, y, z) = y^2$, $w(x, y, z) = e^{-xz}$. Find $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ directly and using the chain rule.
- 3. For $f: \mathbb{R}^2 \to R, f(x, y) = x^2 + xy$ find:
 - (a) the gradient of f and the direction of steepest descent at the point (1,0).
 - (b) the directional derivative at the point (1,0) in the direction of $e_1 + e_2 = (1,1)$.
- 4. Let $f: \mathbb{R}^n \to \mathbb{R}$, $f(x) = \frac{1}{2}||x||^2$. Find the gradient of f. Find the directional derivative $D_v f(x)$ in two ways: using the definition and using the gradient.
- 5. Let $D = \operatorname{diag}(d_1, \dots, d_n)$ be a diagonal $n \times n$ matrix and consider the quadratic function $f: \mathbb{R}^n \to R, f(x) = \frac{1}{2}x^TDx$. Prove that $\nabla f(x) = Dx$ and H(x) = D.
- 6. Find the equation of the tangent line to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at an arbitrary point (x_0, y_0) .