Análisis Reto 3

Juan David Aparicio Gutiérrez 202116532 j.apariciog@uniandes.edu.co Requerimiento 3

Paula Cecilia Daza Díaz 202111276 p.dazad@uniandes.edu.co Requerimiento 2

Análisis de complejidades

Requerimiento 1. Contar los avistamientos en una ciudad.

La complejidad de este requerimiento es de $O(m \log(m))+O(k)$, siendo m el número de avistamientos en la ciudad ingresada por parámetro, y k el número de ciudades diferentes que hay. Tiene dicha complejidad porque para resolverlo usamos un get (O(1)) para obtener la lista con los avistamientos de la ciudad consultada, y un merge sort $(O(m \log(m)))$ para ordenarlos según su fecha y hora. De este modo, queda la complejidad mayor. Y a esto se suma la operación para buscar la ciudad con mayor número de avistamientos, la cual tiene una complejidad O(k).

Requerimiento 2. Contar los avistamientos por duración.

La complejidad de este es $O(m^*k)+O(p\log(p))$. Donde m es el número de listas que entran dentro del rango de segundos, k es el número de avistamientos dentro de cada lista, y p el número total de avistamientos dentro del rango de segundos. Tiene esta complejidad porque se obtiene una lista con las listas de avistamientos dentro del rango, y se recorre esta lista (O(m)). Dentro de cada lista se recorren todos sus elementos para agregarlos a una lista filtrada (O(k)), y finalmente se hace merge sort a la lista con los elementos filtrados $(O(p\log(p)))$.

Requerimiento 3. Contar avistamientos por hora/minuto del día.

Su complejidad es O(m*k log(k)). En la que m es el número de listas de avistamientos que entran dentro del rango, y k el número de avistamientos que hay en cada lista. Debido a que después de hacer una lista con las listas que entran dentro del rango con la función values, se recorre cada una (O(m)) y en cada lista se realiza un merge sort (k log(k)).

Requerimiento 4. Contar los avistamientos en un rango de fechas.

Al igual que el requerimiento 2, la complejidad del requerimiento 4 es O(m*k)+O(p log(p)). Siendo m el número de listas que entran en el rango de fechas, k el número de avistamientos en cada fecha, y p el número de avistamientos que están dentro del rango. En este también se recorre una lista de listas (O(m)) y en cada una se recorren todos sus elementos (O(k)) para añadirlos a una lista filtrada, y después se realiza un merge sort (O(p log(p))).

Requerimiento 5. Contar los avistamientos de una zona geográfica.

Su complejidad es de $O(m^*k^*t)$, en donde m es el número de mapas cuya longitud entra en el rango, k es el número de listas por latitud (que ya están filtradas dentro del rango de longitud) que entran dentro del rango de latitud, y t el número de avistamientos que hay en cada lista por latitud filtrada. En este requerimiento primero se toma una lista de mapas que entran dentro de las longitudes ingresadas, e ingresa a cada mapa dentro de esa lista (O(m)). Después, en cada mapa toma una lista de listas que ingresan dentro del rango de latitudes (O(k)) y en cada lista recorre todos los avistamientos para agregarlos a una lista con los elementos filtrados (O(t)).

Requerimiento 6.

Su complejidad es la misma que la del requerimiento 5, O(m*k*t). Esto debido a que la lista filtrada por zona geográfica se obtiene con la misma función que en el requerimiento 5, y a partir de esa lista se crea el mapa. El proceso de creación del mapa es O(t), y al sumarlo con la complejidad de filtrar los avistamientos, se deja sólo el mayor (O(m*k*t)).