

SPECIFICATION

TITLE OF THE INVENTION

MULTISTAGE STROKE CYLINDER APPARATUS

5

TECHNICAL FIELD

The present invention relates to a multistage stroke cylinder apparatus suitable for use in which a stroke of a cylinder needs to be adjusted in a plurality of stages like in a gun cylinder or the like in a spot welding device.

PRIOR ART

A movable-side electrode in a spot welding device needs to have at least two stages of stop positions with respect to a fixed-side electrode. In other words, in a gun cylinder, it is necessary to occupy a fully open position where the electrodes of a pair are open when an object to be welded is sandwiched between the electrodes, a welding preparatory position where the electrodes of the pair are caused to face the object to be welded positioned between the electrodes through relatively short working strokes so as to minimize a length of the stroke to carry out a plurality of times of spot welding, and a welding operating position where both the electrodes are pressed

against the object.

In welding operation under present circumstances, it is also required to increase a degree of freedom of a welding stroke to be adaptable to many kinds of members to be welded and a demand for an electric (servo) welding gun for achieving it is growing. However, the electric (servo) welding gun under present circumstances has a price problem, problems of deposition accidents in line operations, and problems in terms of practicality such as difficulty in handling.

The above-described problems are found not only in the spot welding gun cylinder but also in a device such as a pressurizing unit of various clamping devices in which a head mounted to a tip end of a main rod is repeatedly pushed against a workpiece. In this case, there are similar problems.

DISCLOSURE OF THE INVENTION

An object to be achieved by the present invention is basically to provide a simple mechanism for solving the above problems to a prior-art fluid pressure cylinder for a spot welding gun or the like.

It is a further concrete object of the invention to provide a multistage stroke cylinder apparatus which has at least two stages of stop positions with respect to an

object and in which a freedom of a stroke is increased so as to be adaptable to many kinds of members to be welded.

It is another object of the invention to provide a multistage stroke cylinder apparatus less expensive and with better operability than an electric (servo) welding gun.

It is another object of the invention to provide a multistage stroke cylinder apparatus having a cushioning mechanism to be adaptable to reduction of wear of a welding rod and other tools and diminishing of a collision sound.

It is another object of the invention to provide a multistage stroke cylinder in which each stroke can be adjusted by remote operation which is supply and discharge of fluid by a solenoid valve.

It is another object of the invention to provide a multistage stroke cylinder apparatus in which an operating form of the main rod operating in a complicated manner can be detected.

To achieve the above objects, according to the invention, there is provided a multistage stroke cylinder apparatus comprising: a main cylinder including a main piston housed for sliding in a cylinder tube and driven by fluid pressure supplied to pressure chambers on opposite sides of the main piston and a main rod connected to the

main piston, a head cover and a rod cover being mounted to opposite ends of the cylinder tube; an intermediate stop position setting mechanism for setting an intermediate stop position of the main piston; and a return position setting mechanism for setting a return position of the main piston, wherein the intermediate stop position setting mechanism includes a stop position setting piston disposed for sliding between the main piston in the cylinder tube and the head cover to define the intermediate stop position of the main piston by coming in contact with the main piston, an auxiliary rod connected to the stop position setting piston and having a tip end passing through the head cover and extending outside, a stopper fitted with the tip end of the auxiliary rod to stop the stop position setting piston in a necessary position by coming in contact with a contact portion of the head cover, and a changing mechanism for changing a stop position of the stop position setting piston by the stopper and the return position setting mechanism includes a return position setting piston provided for sliding to the head cover and a position setting rod connected to the return position setting piston and having a tip end projecting behind the stop position setting piston.

In a concrete example of the invention, the changing mechanism has at least one of a mechanism for changing a

10
15
20
25

mounting position of the stopper on the auxiliary rod and a mechanism for changing a position of the contact portion by a contact position adjusting piston.

To put it more concretely, the mechanism for changing the mounting position of the stopper has a plurality of stepped portions formed on opposite sides of an inner hole of the stopper and having different depths and a stepped portion formed on an outer periphery of the auxiliary rod and is formed to be able to change the mounting position of the stopper on the auxiliary rod by changing an orientation of the stopper to selectively bring any of the stepped portions into contact with the stepped portion of the auxiliary rod. The mechanism for changing the position of the contact portion has the contact position adjusting piston having the contact portion and the adjusting piston is mounted to the head cover and driven by fluid pressure in such directions as to approach and move away from the stopper.

According to another concrete embodiment of the invention, the auxiliary rod passes for sliding through the return position setting piston and the position setting rod and projects outside the head cover and has a flow path connecting a port for supplying pressure fluid and the pressure chamber on one side of the main piston in the auxiliary rod.

5 In the multistage stroke cylinder apparatus of the invention, the main cylinder may have a cushioning mechanism for reducing a speed of the main piston by restricting a discharge flow rate of fluid discharged from a discharge-side pressure chamber at an end of a stroke of the main piston.

10 It is also possible that the main cylinder has a stroke detector for outputting an electric signal according to a stroke position of the main rod and that the stroke detector is connected to a detection controller for detecting an operating form of the main rod based on the output.

15 Furthermore, it is possible to attach a balance mechanism to the cylinder apparatus, the balance mechanism being for causing the stop position setting piston to stop in a position where the stop position setting piston has moved toward the main piston when pressure fluid at the same pressure is supplied to pressure chambers on opposite sides of the stop position setting piston in order to 20 eliminate necessity of consideration of a degree of fluid pressure supplied to each the pressure chamber in connection with a difference between the pressure receiving areas on opposite sides of the stop position setting piston.

20

25

In the multistage stroke cylinder apparatus having

10
15
20
25

the above structure, the main rod is driven in an axial direction by driving by fluid pressure of the main piston. In order to set the intermediate stop position of the main piston, the stop position setting piston with which the main piston comes in contact and stops is provided, the auxiliary rod extending from the piston extends outside from the head cover, and the stopper is mounted to the tip end of the auxiliary rod. Therefore, by bringing the stopper into contact with the contact portion of the head cover to position the stop position setting piston, the stop position of the main piston can be set. Furthermore, because the stop position of the stop position setting piston defined by the stopper can be changed, the intermediate stop position of the main rod can be adjusted.

20

25

As the return position setting mechanism for setting the return position of the main piston, the tip end of the position setting rod connected to the return position setting piston is caused to face a back of the stop position setting piston to set the return position of the main piston. Therefore, by driving or non-driving of the return position setting piston, the return position of the main piston can be adjusted in two positions, i.e., the full stroke of the main cylinder can be adjusted in two stages.

As a result, according to the invention, it is possible to obtain the multistage stroke cylinder apparatus which has at least two stages of stop positions with respect to the object and in which the degree of freedom of the stroke is increased so as to be adjustable to many kinds of members to be welded.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a partial sectional view of an entire structure of a first embodiment of a cylinder apparatus according to the present invention.

FIG. 2 is an enlarged vertical sectional view of an essential portion (main cylinder) taken in a different direction from FIG. 1 of the first embodiment.

FIG. 3 is a vertical sectional view of an essential portion (intermediate stop position setting means) in the first embodiment.

FIG. 4 is an enlarged vertical sectional view of an essential portion (cushioning mechanism) in a different position from FIG. 2 of the first embodiment.

FIG. 5 is an explanatory view for explaining an example of a form of operation of a multistage stroke cylinder according to the invention.

FIG. 6 is a sectional view of an essential portion of a second embodiment in which balance means for eliminating

5 necessity of pressure adjustment of fluid to each supply/ discharge port is added to the multistage stroke cylinder of the first embodiment.

10 FIG. 7 is a partial half sectional view of a structure of a third embodiment of the multistage stroke cylinder according to the invention.

15 FIG. 8 is a partial half sectional view of a structure of a fourth embodiment of the multistage stroke cylinder according to the invention.

20 DETAILED DESCRIPTION

25 FIGS. 1 to 4 show a first embodiment of multistage stroke cylinder apparatus according to the present invention. The cylinder apparatus is a cylinder apparatus driven by pressure of fluid such as air and suitable for use in a case in which a plurality of stages of strokes and adjustable strokes are required like in a gun cylinder for spot welding. The cylinder apparatus includes a main cylinder 1 (see FIGS. 1 and 2) having a main piston 12 for sliding in a sealed state in a cylinder tube 10 and a main rod 13 passing through a rod cover 11 of the cylinder tube 10 and driven in an axial direction. To the main cylinder 1, an intermediate stop position setting mechanism 2 for setting an intermediate stop position of the main piston 12 and a return position setting mechanism

10
15
20
25

4 for setting a return position of the main piston 12 are attached.

The intermediate stop position setting mechanism 2 has a stop position setting piston 21 housed for sliding in a sealed state in a position facing the main piston 12 in the cylinder tube 10 and an auxiliary rod 22 connected to the piston 21. The auxiliary rod 22 extends through a head cover 14 of the cylinder tube 10 to an outside and a stopper 23 is mounted to a tip end of the auxiliary rod 22. The stopper 23 comes in contact with a contact portion 31a of a contact position adjusting piston 31. By this contact, a stop position of the stop position setting piston 21, i.e., the intermediate stop position of the main piston 12 is set.

As clearly shown in FIG. 3, the stopper 23 is fixed by a nut 26 screwed over the auxiliary rod 22 in a state in which the auxiliary rod 22 is inserted into a hole 23a at a center of the stopper 23 and stepped portions 24 formed at end portions of the hole 23a are brought into contact with a stepped portion 25 formed on a peripheral face of the auxiliary rod 22. In the drawing, a reference numeral 29 designates a damper.

The stepped portions 24 are formed respectively on opposite sides of the hole 23a and are at different distances from hole ends, i.e., have different depths. By

10
15
20
25

detaching the nut 26 and reversing the stopper 23 in a longitudinal direction, a mounting position of the stopper 23 on the auxiliary rod 22 can be changed and, as a result, a contact stroke of the stopper 23 with respect to the contact position adjusting piston 31, i.e., a stroke of the stop position setting piston 21 can be changed.

FIGS. 1 and 3 show states in which orientations of the stopper 23 are reverse to each other and the piston 21 has different strokes from each other. Therefore, the stepped portions 24, 24 formed on opposite sides of the hole 23a of the stopper 23 and having different depths form a changing mechanism for changing the stop position of the stop position setting piston 21 together with the stepped portion 25 of the auxiliary rod 22.

It is also possible to prepare a plurality of stoppers 23 having the stepped portions 24 with different depths and to variously change the stroke of the stop position setting piston 21 by exchanging the stoppers 23.

The contact position adjusting piston 31 is housed for sliding with a small stroke in a cylinder-shaped cover 32 provided on an outer end side of the head cover 14 and the contact portion 31a on an outer end face of the contact position adjusting piston 31 is exposed outside from the cylinder-shaped cover 32 and faces the stopper 23. The auxiliary rod 22 passes through a central hole of

10
11
12
13
14
15

the piston 31 and the piston 31 can slide in a sealed state along and with respect to the auxiliary rod 22.

5 The contact position adjusting piston 31 is driven by pressure fluid (compressed air) supplied from a port 35 provided to a supply/discharge block 34 of the head cover 14 to a pressure chamber 36 to displace the contact portion 31a between two positions, i.e., a projecting position and a return position to thereby change a stop position of the stopper 23. Therefore, the contact position adjusting piston 31 also forms a changing mechanism for changing the stop position of the stop position setting piston 21. As a result, by combining a position change of the contact portion 31a by the contact position adjusting piston 31 and a position change of the stopper 23 on the auxiliary rod 22 by selection of the stepped portions 24, 24, it is possible to adjust the stop position of the stop position setting piston 21 in multiple stages. Especially, because position adjustment by the contact position adjusting piston 31 is carried out 20 by supplying the pressure fluid from the port 35, it is possible to carry out the position adjustment by remote operation of a valve.

25 Although adjustment of the stop position of the stop position setting piston 21 may be carried out by both means of changing a fixed position of the stopper 23 on

the auxiliary rod 22 and means of changing the position of the contact portion 31a by the contact position adjusting piston 31, it is also possible to carry out the adjustment by only one of the means. If the position of the contact portion 31a is not changed, the contact portion 31a can be directly mounted to the outer end face of the head cover 14.

The stop position setting piston 21 is driven by supplying and discharging pressure fluid (compressed air) from and to a port 28 provided to a main body 41 in the head cover 14 to and from a pressure chamber 27 behind the piston 21. In other words, the stop position setting piston 21 is moved to a predetermined intermediate stop position determined by the stopper 23 by supplying the pressure fluid from the port 28 to the pressure chamber 27 and the piston 21 is returned when the piston 21 is pressed by the returning main piston 12 in a state in which the pressure fluid is discharged through the port 28.

The return position setting mechanism 4 for setting the return position of the main piston 12 is formed by disposing a return position setting piston 43 for sliding in a sealed state in a cylinder portion 41a provided in the main body 41 and causing a position setting rod 44 connected to the piston 43 to face a back of the stop

10
11
12
13
14
15
20
21
22
23
24
25

10
15
20
25

position setting piston 21 through a damper 45. The position setting rod 44 is fitted in a sealed state over an outer periphery of the auxiliary rod 22 of the stop position setting piston 21 and slides on the auxiliary rod 22. Between the return position setting piston 43 and the supply/discharge block 34 in the head cover 14, a driving-side pressure chamber 47 is formed. By supplying the pressure fluid such as compressed air to the pressure chamber 47 through a port 46 (in a different position from the port 35) for setting the return position, the piston 43 is driven and the position setting rod 44 occupies two positions, i.e., a projecting position for shortening an entire stroke of the main piston 12 and a return position for maximizing the stroke.

15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
944

5 tube 10 to each other when the cushion ring 51 enters the recessed portion 52 is provided to a mouth edge of the recessed portion 52. As shown in FIG. 2, the recessed portion 52 has a port 55 for supplying compressed air to the pressure chamber 54 for returning the main piston 12 and the cushion packing 53 provides one-way sealing in which the compressed air from the port 55 is all owed to flow into the pressure chamber 54 while a flow of the compressed air from the pressure chamber 54 into the recessed portion 52 is intercepted.

10 As shown in FIG. 4, a throttle valve 57 for discharging the compressed air in the pressure chamber 54 through the recessed portion 52 to the port 55 in a cushioning stroke of the main piston 12 is provided in a flow path 56 for connecting the pressure chamber 54 and an inner side of the cushion packing 53 in the recessed portion 52. Not only the throttle valve 57 but also a single or a plurality of groove(s) (not shown) on a peripheral face of the cushion ring 51 can be provided 15 between the pressure chamber 54 and the recessed portion 52 to discharge through the groove(s).

20

25 On the other hand, a port 59 for supplying compressed air to a pressure chamber 58 on a side opposite to the main piston 12 is provided to an outer end of the auxiliary rod 22 connected to the stop position setting

10
20
25

piston 21 and communicates with the pressure chamber 58 through a flow path 60 extending through the auxiliary rod 22.

5
In this cushioning mechanism, the main piston 12 is driven by supplying the compressed air to the pressure chamber 58. When the cushion ring 51 rushes into the cushion packing 53, a flow path for directly discharging from the exhaust-side pressure chamber 54 through the port 55 is closed. Air remaining in the pressure chamber 54 is discharged only through the flow path 56 provided with the throttle valve 57 or the groove provided to the peripheral face of the cushion ring 51. As a result, pressure in the pressure chamber 54 increases and the pressure exerts a cushioning operation on the main piston 12.

Such a cushioning mechanism is effective on demands such as reduction of wear of a tool such as a welding rod and diminishing of a collision sound which a prior-art cylinder for a pneumatic spot welding gun or the like cannot satisfy.

20
If there is no necessity of provision of the cushioning mechanism, the main piston 12 does not need to be driven by the compressed air and it is possible to use arbitrary pressure fluid.

25
As shown in FIG. 1, the rod cover 11 is provided with a stroke detector 63. The stroke detector 63 reads a

magnetic scale attached onto the main rod 13 with a head 63a to thereby output an electric signal according to a stroke position of the main rod 13 and is connected to a detection controller. Based on the output, the detection controller can detect at which stroke the main rod 13 is operating, based on which not only an operating form of the multistage stroke cylinder but also a wear amount or the like of electrodes can be grasped based on a position of the main rod in pressurization of an object. There is no harm in using a detector for detecting the stroke by other measuring means.

In the cylinder apparatus having the above structure, the main rod 13 is driven basically by supplying pressure fluid such as compressed air to one of the pressure chambers 54 and 58 on opposite sides of the main piston 12 and discharging the compressed air from the other of the pressure chambers at the same time. To put it more concretely, by supplying the compressed air to the pressure chamber 58 of the main cylinder 1 from the port 59 at a tip end of the auxiliary rod 22 through the flow path 60 in the auxiliary rod 22, the main rod 13 is driven in a projecting direction through the main piston 12. By simultaneously discharging the compressed air of the pressure chamber 58 and supplying the compressed air to the other pressure chamber 54, the main piston 12 and the

main rod 13 are returned.

The intermediate stop position of the main piston 12 is set by the intermediate stop position setting mechanism 2. In other words, if the compressed air is supplied from the port 28 provided to the head cover 14 to the pressure chamber 27 behind the stop position setting piston 21, the stop position setting piston 21 moves to and stops in a position where the stopper 23 at the tip end of the auxiliary rod 22 connected to the piston 21 comes into contact with the contact portion 31a on the outer face of the contact position adjusting piston 31. As a result, the stop position setting piston 21 moves to an intermediate position (a position shown in a chain line in FIGS. 1 and 2) for setting the stop position of the main piston 12.

The intermediate position where the stop position setting piston 21 stops can be adjusted in multiple stages by one or both of the above-described two changing mechanisms, i.e., a mechanism for changing the mounting position of the stopper 23 by selecting the stepped portion 24 of the stopper 23 and a mechanism for changing the contact position of the stopper 23 by the contact position adjusting piston 31. To put it concretely, in the former changing mechanism, the adjustment can be done by detaching the nut 26 and reversing the stopper 23 in

10
DRAFT
15
DRAFT
20
DRAFT
25

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

the longitudinal direction or by exchanging the stopper 23 for another stopper 23 having stepped portions 24 with different depths. In the latter changing mechanism, the contact position of the stopper 23 can be changed by 5 supplying and discharging the pressure fluid to and from the pressure chamber 36 through the port 35 provided to the supply/discharge block 34 to drive the contact position adjusting piston 31 to thereby displace the contact portion 31a to the projecting position or the return position. By combining both the mechanisms, the stop position of the stop position setting piston 21 can be adjusted in multiple stages.

As described above, by changing the intermediate position where the stop position setting piston 21 stops by the changing mechanisms, it is possible to adjust a moving position of the stop position setting piston 21 when the pressure fluid is supplied from the port 28 to the pressure chamber 27 to thereby adjust the return position of the main piston 12.

20 The return position of the main piston 12, i.e., a full stroke of the main piston 12 is set by the return position setting mechanism 4. To put it concretely, by 25 supplying and discharging the pressure fluid to and from the pressure chamber 47 through the port 46 for setting the return position and provided to the supply/discharge

block 34, the return position setting piston 43 and the position setting rod 44 are moved forward or rearward and the tip end of the rod 44 is displaced to two positions, i.e., the projecting position and the return position behind the stop position setting piston 21 to thereby adjust the full stroke of the main cylinder in two stages.

In the cylinder apparatus, because a pressure receiving area of the contact position adjusting piston 31 on a side of the pressure chamber 36 is set to be larger than a pressure receiving area of the stop position setting piston 21 on a side of the pressure chamber 27, the contact position adjusting piston 31 is not pushed back by a force received from the stopper 23 in a state in which the pressure fluid has been supplied from the port 35 to the pressure chamber 36 to drive the contact position adjusting piston 31, the pressure fluid at the same pressure has been supplied from the port 28 to the pressure chamber 27 to drive the stop position setting piston 21, and the stopper 23 has come in contact with the contact portion 31a of the contact position adjusting piston 31.

However, in the state in which the pressure fluid has been supplied from the port 28 to the pressure chamber 27 to drive the stop position setting piston 21 and the stopper 23 has come in contact with the contact portion

10
15
20
25

31a of the contact position adjusting piston 31, if the pressure fluid at the same pressure is supplied from the port 59 at the end portion of the auxiliary rod 22 through the flow path 60 in the auxiliary rod 22 to the pressure chamber 58, the stop position setting piston 21 is pushed back by a force from the side of the pressure chamber 58 because the pressure receiving area of the stop position setting piston 21 on the side of the pressure chamber 58 is larger than the pressure receiving area on the side of the pressure chamber 27.

Therefore, the pressure of the fluid supplied from the port 28 is preferably higher to such a degree as not to cause the above-described pushing back than the pressure of the fluid supplied from the port 59 and the pressure of fluid supplied from the port 35 is also preferable to be increased with this increase.

FIG. 5 shows an example of an operating form of the cylinder apparatus. In this example, by supplying the pressure fluid through the port 28 to the pressure chamber 27 from a stroke start position A of the full stroke set by the return position setting piston 43, the stop position setting piston 21 is driven and thus, the main piston 12 is pushed by the stop position setting piston 21 and driven and reaches an intermediate stop position B. Then, by alternately repeating supply and discharge of the

pressure fluid to and from the pressure chambers 58 and 54 on opposite sides of the main piston 12, a working stroke of reciprocation between points B and C for multipoint welding or the like is repeated. When this repetition 5 finishes, the pressure fluid in the pressure chamber 27 is discharged from the port 28 in a state in which the pressure fluid has been supplied to the pressure chamber 54 and the main piston 12 is returned to the original stroke start position.

In the above multistage stroke cylinder apparatus of the first embodiment, as described above, degrees of pressures of fluid supplied to the respective ports need to be adjusted in order to carry out necessary operation in connection with a difference between the pressure receiving areas on opposite sides of the stop position setting piston 21. However, in second to fourth 10 embodiments shown in FIGS. 6 to 8, a balance mechanism for eliminating necessity of such pressure adjustment by 15 adjustment or the like of pressure receiving areas of the respective pistons, i.e., a mechanism for setting the stop 20 position of the stop position setting piston when the pressure fluid at the same pressure is supplied to the pressure chambers on the opposite sides of the piston at a position where the piston has moved toward the main piston 25 is attached to the intermediate stop position setting

10
15
20
25

mechanism 2.

First, the second embodiment in FIG. 6 is one in which the above balance mechanism is added to the head cover 14 of the first embodiment. To put it concretely, the head cover 14 is provided with a cylinder-shaped cover 65 having a port 67 instead of the cylinder-shaped cover 32 of the first embodiment and a rod encapsulating tube 66 with which the auxiliary rod 22 is covered in a sealed state is attached to the cylinder-shaped cover 65. The port 67 is connected to the rod encapsulating tube 66 and compressed air is supplied and discharged to and from the pressure chamber 58 from the port 67 through an inside of the encapsulating tube 66 and the port 59 at the tip end of the auxiliary rod 22. Because the rod encapsulating tube 66 is provided, inner and outer peripheries of a shaft-shaped portion forming the contact portion 31a in the contact position adjusting piston 31 are sealed with sealing members. Because other structures are not different from those of the first embodiment, they are provided with the same reference numerals as those of the first embodiment.

According to the second embodiment, in a state in which the stop position setting piston 21 has been driven by supplying the pressure fluid from the port 28 to the pressure chamber 27 and the stopper 23 has come in contact

10
COMBINED
DRAWINGS
15
20
25

with the contact portion 31a of the contact position
adjusting piston 31, if the pressure fluid at the same
pressure is supplied to the pressure chamber 58 from the
port 67 through the rod encapsulating tube 66 and the port
59 at the end portion of the auxiliary rod 22, fluid
pressure also acts on the end face of the auxiliary rod 22
in the rod encapsulating tube 66. Therefore, fluid
pressure operating forces acting on opposite sides of the
stop position setting piston 21 and the auxiliary rod 22
become substantially equal to each other. Therefore, the
stop position setting piston 21 is not pushed back by the
force from the side of the pressure chamber 58.

In the third embodiment in FIG. 7, a projecting lever
75 is provided to a stop position setting piston 73. The
projecting lever 75 projects into a pipe 74 forming the
main rod 13 through an insertion hole 72 of a main piston
71. The flow path 60 in the auxiliary rod 22 opens into a
pressure chamber 77 between the main piston 71 and the
stop position setting piston 73 through a hole 76 provided
20 to the projecting lever 75 and opens into the pipe 74
through a through hole 78 in the projecting lever 75. A
locking member 79 to be locked to a hole edge of the
insertion hole 72 of the main piston 71 is provided to a
tip end of the projecting lever 75 projecting into the
25 pipe 74. The projecting lever 75 has substantially the

10
COMBINED
15
20
25

same diameter as the auxiliary rod 22 connected to the stop position setting piston 73 and extending outside on the side of the head cover.

With this structure, in a state in which the pressure fluid has been supplied from the port 28 to the pressure chamber 27, even if the pressure fluid at the same pressure is supplied through the flow path 60 from the hole 76 to the pressure chamber 77 between the stop position setting piston 73 and the main piston 71 and is supplied from the through hole 78 into the pipe 74, because the locking member 79 is locked to the main piston 71, the fluid pressure in the pressure chamber 77 does not act as a force for moving the main piston 71 and the stop position setting piston 73 and the fluid pressure in the pipe 74 only acts as a force for pushing back the stop position setting piston 73. Therefore, the piston 73 is not pushed back.

In a fourth embodiment in FIG. 8, a projecting lever 85 is provided to a stop position setting piston 83 and the projecting lever 85 is fitted in a sealed state in opposite directions in an insertion hole 82 provided in a main piston 81. A diameter of the projecting lever 85 is set to be larger than the diameter of the auxiliary rod 22. The flow path 60 in the auxiliary rod 22 opens through a small hole 86 provided to the projecting lever

10
NOVEMBER 2000
11
12
13
14
15
16

5

85 into a pressure chamber 87 between the main piston 81 and the stop position setting piston 83. The insertion hole 82 provided to the main piston 81 is connected through a through hole 88 in the main rod 13 to the port 55 opening into a recessed portion 89 in the rod cover 11.

Because of this structure, in the state in which the pressure fluid is supplied from the port 28 to the pressure chamber 27, even if the pressure fluid at the same pressure is supplied through the flow path 60 to the pressure chamber 87 between the stop position setting piston 83 and the main piston 81 through the small hole 86, the stop position setting piston 83 is not pushed back because the pressure receiving area of the stop position setting piston 83 facing the pressure chamber 87 is smaller than the pressure receiving area facing the other pressure chamber 27.

20

25

When the main piston 81 returns, the stop position setting piston 83 is not pushed back by the returning main piston 81. In other words, if the compressed air in the pressure chamber 87 is discharged and the compressed air is supplied from the port 55 through the cushion packing 53 and the like to the return-side pressure chamber 54 at the same time, the main piston 81 returns to a position shown in a chain line and comes in contact with the stop position setting piston 83. At this time, the compressed

air also flows into the insertion hole 82 in the main piston 81 through the passage 88. The compressed air acts in the insertion hole 82 in such a direction as to push back the projecting lever 85 while acting on the main piston 81 in such a direction as to move the main piston 81 forward. Therefore, the operating forces cancel each other and, as a result, air pressure operating forces acting on the main piston 81 and the stop position setting piston 83 are obtained from air pressure supplied to the pressure chamber 87 and the pressure chamber 27. Here, because the pressure receiving area of the main piston 81 is smaller than the pressure receiving area of the stop position setting piston 83, the stop position setting piston 83 is not pushed back by the main piston 81.

Because other structures and operations of the third and fourth embodiments are substantially similar to those of the first embodiment, main portions in the drawings are provided with the same reference numerals as those of the first embodiment to omit description of them.

The cylinder apparatus in each the above-described embodiment can be used not only as a gun pressurizing device for a welding assembly line of an automobile body, steel furniture, or the like but also as a cylinder of a pressurizing unit in various clamping devices and other cylinders for various uses in which an intermediate stop

10
10
10
10
10
15
15
15
20
20
20
25
25

is required.

According to the invention described above in detail, it is possible to provide at a low cost a cylinder apparatus with a simple mechanism by which problems of a prior-art fluid pressure cylinder for a spot welding gun or the like are solved. To put it more concretely, the cylinder apparatus has at least two stages of stop positions with respect to an object and a degree of freedom of a stroke is increased to be adaptable to various kinds of members to be welded. As a result, it is possible to obtain the cylinder apparatus less expensive and with better operability than an electric (servo) welding gun.

10
15
20

25