Tutorato Geometria e Algebra Informatica

Andrea Pizzi

18 Aprile 2023

Esercizio 1. Sia V uno spazio vettoriale. Dimostra che 0v = 0 per ogni $v \in V$ utilizzando soltanto le altre proprietà della definizione di spazio vettoriale. (Suggerimento: parti da 0 + 0 = 0)

Dimostra che (-1)v + v = 0 e che (-1)v = -v per ogni $v \in V$. Come conseguenza, dimostra che se $v, v_1, v_2 \in V$ sono tali che $v_1 + v = 0 = v_2 + v$, allora $v_1 = v_2$. (L'opposto di un vettore è univocamente determinato)

Esercizio 2. Dimostra che l'insieme delle matrici diagonali, cioè quelle matrici A tali che $A_{ij} = 0$ se $i \neq j$, è un sottospazio vettoriale delle matrici quadrate. Parti mostrandolo per le matrici 2×2 .

Fare lo stesso per le matrici triangolari inferiori, cioè quelle matrici A tali che $A_{ij} = 0$ se j > i. Denotiamo con D lo spazio vettoriale delle matrici diagonali e con M_T quello delle matrici triangolari inferiori. Studiare le dimensioni e trovare delle basi per gli spazi vettoriali D, M_T , $D \cap M_T$ e $D + M_T$ facendo uso della Formula di Grassmann.

Esercizio 3. a) Mostra che $\{(2,1),(1,1)\},\{(1,3),(2,3)\}$ e $\{(-1,1),(-1,-1)\}$ sono basi di \mathbb{R}^2 .

- b) Per quali valori di $t \in \mathbb{R}$ l'insieme $\{(2,t),(t,2)\}$ è una base di \mathbb{R}^2 ?
- c) * Dimostra che $\{(a,c),(b,d)\}$ è una base di \mathbb{R}^2 se e solo se $ad-bc\neq 0$.

Esercizio 4. Dimostra che $\{(1,0,0),(1,1,0),(1,1,1)\}$ è una base di \mathbb{R}^3 mentre $\{(1,1,1),(1,2,3),(2,3,4)\}$ non lo è.

Esercizio 5. Consideriamo i polinomi $p_1(x) = 1 + x$, $p_2(x) = 1 + 2x + x^2$ e $p_3(x) = x - x^2$ in $\mathbb{R}[x]_{\leq 2}$. Dimostra che formano una base di $\mathbb{R}[x]_{\leq 2}$.

Esercizio 6. Considera i seguenti vettori di \mathbb{R}^4 :

$$v_1 = (1, 1, 0, 1)$$
 , $v_2 = (1, 1, 0, 0)$, $v_3 = (0, 0, 0, 0)$ $v_4 = (2, 2, 0, 3)$ $v_5 = (1, 0, 1, 1)$, $v_6 = (2, 0, 2, 0)$, $v_7 = (1, 7, 3, 2)$

Dimostra che formano un sistema di generatori dello spazio \mathbb{R}^4 ed estrai una base di \mathbb{R}^4 dall'insieme $\{v_1,\ldots,v_7\}$.

Esercizio 7. Determinare le soluzioni del seguente sistema omogeneo

$$\begin{cases} x+y+z=0\\ 2x-3y+z=0\\ x-4y+2z=0 \end{cases}$$

Sia A la matrice associata al sistema. Determinare la dimensione e una base per Im(A) e per Ker(A) e commentare il risultato.

Esercizio 8. Determinare le soluzioni del seguente sistema omogeneo.

$$\begin{cases} 2x + y - 2z + 3w = 0 \\ 3x + 2y - z + 2w = 0 \\ 3x + 3y + 3z - 3w = 0 \end{cases}$$

Studiare Im(A) e Ker(A), dove A è la matrice associata al sistema, trovando la loro dimensione e delle basi per ognuno.

Esercizio 9. Determinare le soluzioni dei seguenti sistemi omogenei

$$\begin{cases} x + 2y + 3z = 0 \\ 2x + 3y + 8z = 0 \\ 3x + 2y + 17z = 0 \end{cases}$$

$$\begin{cases} 2x + y - 3z = 0 \\ 3x - 2y + 2z = 0 \\ 5x - 3y - z = 0 \end{cases}$$

Studiare Im(A) e Ker(A), dove A è la matrice associata al sistema, trovando la loro dimensione e delle basi per ognuno.

Esercizio 10. Siano $U = Span\{(1,0,1)\}$ e $W = Span\{(2,1,1),(0,1,0)\}$ due sottospazi di \mathbb{R}^3 . Dimostra che $\mathbb{R}^3 = U \oplus W$. Studia inoltre lo spazio vettoriale $U \cap W$, trovandone la dimensione (Formula di Grassmann) ed una base.

Esercizio 11. Considera i seguenti sottospazio di \mathbb{R}^4 :

$$U = Span\{(2,1,1,3), (1,0,1,4), (-1,-1,0,1)\}$$

$$V = Span\{(1,3,3,1), (2,4,3,0), (0,2,3,2)\}$$

- i) Calcola la dimensione di U e di V e trovane delle basi.
- ii) Qual'è la dimensione di $U \cap V$? Completa una base di $U \cap V$ a una base di \mathbb{R}^4 .
- iii) Qual'è la dimensione di U+V. Completala una base di U+V a una base di \mathbb{R}^4 . La somma è diretta?

Esercizio 12. Considera i seguenti sottospazio di \mathbb{R}^4 :

$$U = Span\{(1,0,3,0), (0,1,-1,1)\}$$

$$V = Span\{(1,1,4,1), (-1,1,2,1), (0,3,5,3)\}$$

Trova una base di U e una di V. Facendo uso della formula di Grassmann trovare le dimensioni e delle basi per $U \cap V$ e U + V. La somma è diretta?

Esercizio 13. Siano

$$U = \{(x, y, z) \in \mathbb{R}^3 : x - y = z = 0\}$$
$$V = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0\}$$

Trova una base di U e una di V. Facendo uso della formula di Grassmann trovare le dimensioni e delle basi per $U \cap V$ e U + V. La somma è diretta?

Esercizio 14. Sia

$$U = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{cases} x - y = 3 \\ x + y + z = 0 \end{cases} \right\}$$

Descrivi geometricamente $Span\{U\}$, e trovane una base

Esercizio 15. * Considera il sottoinsieme di $M_{2,2}(\mathbb{R})$ dato da

$$V = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2,2}(\mathbb{R}) : a + b + c = 0 \right\}$$

Dimostra che V è un sottospazio vettoriale di $M_{2,2}(\mathbb{R})$ e calcolane la dimensione.

Esercizio 16. ** Per quali polinomi $p \in \mathbb{R}[x]$ il grafico $\Gamma = \{(x, p(x)) : x \in \mathbb{R}\}$ è un sottospazio vettoriale di \mathbb{R}^2 ?

Esercizio 17. *** Siano v_1, \ldots, v_n vettori linearmente indipendenti dello spazio vettoriale su \mathbb{R} V, e poniamo $u_j = v_1 + v_2 + \cdots + \hat{v}_j + \cdots + v_n$, dove indica che l'elemento non compare nella somma. Dimostra che u_1, \ldots, u_n sono linearmente indipendenti e deduci che $Span\{v_1, \ldots, v_n\} = Span\{u_1, \ldots, u_n\}$. Se consideriamo V come spazio vettoriale su \mathbb{Z}_2 è ancora vero?