

IMPORTANT POINTS FOR PHASOR OF TRANSFORMER

- Transformer when excited at no load, only takes excitation current which leads the working Flux by Hysteretic angle α.
- Excitation current is made up of two components, one in phase with the applied Voltage V is called Core Loss component (Ic) and another in phase with the working Flux Ø called Magnetizing Current (Im).
- Electromotive Force (EMF) created by working Flux Ø lags behind it by 90 degree.
- When Transformer is connected with a Load, it takes extra current I' from the Source so that $N_1I' = N_2I_2$ where I' is called load componete of Primary Current I

IMPORTANT POINTS FOR PHASOR OF TRANSFORMER

• So under load condition, I ₁ = Primary Current, is phasor Sum of I' and Excitation Current Ie.

• Working Flux Ø taken as Reference

Flux Ø

 \circ Excitation Current Ie leading \emptyset by α .

• Induced EMF E1 and E2 lagging Flux by 90 degree.

$$\circ$$
 V1' = -E1

• Voltage drop r1Ie in Primary.

Voltage drop IeX1 in Primary due to reactance.

Source Voltage V1 = V1'+r1Ie +jIeX1, phasor sum.

No load Power Factor = $Cos\Theta$

- As load is inductive, secondary current will lag secondary load voltage V2 by some angle.
- r1 = Primary winding Resistance
- X1 = Primary winding leakage Reactance
- r2 = Secondary winding Resistance
- X2 = Secondary winding leakage Reactance

 \bullet E2 = V2+I2r2+jI2X2, phasor sum

• Primary Power Factor= Cos θ1, angle between V1 & I1.

• As load is capacitive, secondary current will lead secondary load voltage V2 by some angle.

 \circ Working Flux \emptyset is taken as reference.

• For Resistive Load, load current will be in phase with the load Voltage V2.

• Working Flux Ø is taken as reference.

COMMENTS? / QUESTIONS???

