Real Lecture 20: Hierarchical and K-means Clustering

Clustering

Goal:

- Identify groups of related points in a dataset
 - points in each group are more similar to each other than to points in other groups

Examples

- market segmentation
- recommendation systems
- Natural language processing

Hierarchical Clustering

Results in a Tree of Clusters

Make every point a cluster

while(#clusters > 1):

pick the two *closest* clusters

merge them

Example printed from code

What do we mean by closest

Need to define distance between 2 points

- General question for any clustering algorithm
- Somewhat easy when data are points in \mathbb{R}^n
 - although even then there are many choices

(age, wealth)

- How do we define the distance between ...
 - pairs of purchase histories
 - pairs of documents
 - pairs of images
 - pairs of Facebook profiles
 - ...
- This is the secret sauce for good clustering

What do we mean by closest

What is the distance between two clusters?

 this question is more specific to hierarchical clustering

- some choices:
 - distance between the means
 - distance between the closest points
 - distance between the farthest points
- each of these choices may lead you astray in some situations

Aside: List Comprehensions

Simple shorthand notation for building lists

```
syntax: [ expr for var in list]
- Shorthand for
    rv = []
    for var in list:
        rv.append(expr)
```

Hierarchical Clustering

Pros:

Helpful when number of clusters is unknown

Can help uncover structure in the data

Cons:

No theoretical guarantees

K-means clustering

Divide a set of points into exactly K clusters

- minimize the sum-of-squares of the distances to the mean for each cluster
- naïve algorithm is exponential
- iterative algorithm is fast and effective in practice
 - but it's not guaranteed to converge to the right result

k-means clustering algorithm

X = set of k points to represent the partitions while(not converged):

- -partition the points by assigning each data point to the closest point in X
- -update the representative points X to correspond to the mean of each partition

What if one of the partitions is empty? reassign that representative to a new random point.

