CS61B Lecture #20: Trees

Last modified: Mon Oct 8 21:21:22 2018

A Recursive Structure

- Trees naturally represent recursively defined, hierarchical with more than one recursive subpart for each instance.
- Common examples: expressions, sentences.
 - Expressions have definitions such as "an expression consi literal or two expressions separated by an operator."
- Also describe structures in which we recursively divide a multiple subsets.

Last modified: Mon Oct 8 21:21:22 2018

Formal Definitions

- Trees come in a variety of flavors, all defined recursively:
 - -61A style: A tree consists of a label value and zero branches (or children), each of them a tree.
 - -61A style, alternative definition: A tree is a set of not vertices), each of which has a label value and one or monodes, such that no node descends (directly or indirectly itself. A node is the parent of its children.
 - Positional trees: A tree is either empty or consists of containing a label value and an indexed sequence of zero children, each a positional tree. If every node has two power have a binary tree and the children are its left and rightness. Again, nodes are the parents of their non-empty contains the containing a label value and an indexed sequence of zero children, each a positional tree. If every node has two powers are the parents of their non-empty contains the containing a label value and an indexed sequence of zero children, each a positional tree. If every node has two powers are the parents of their non-empty contains the containing a label value and an indexed sequence of zero children, each a positional tree. If every node has two powers are the parents of their non-empty contains the containing a label value and an indexed sequence of zero children, each a positional tree. If every node has two powers are the parents of their non-empty contains the containing and the children are its left and right trees.
 - We'll see other varieties when considering graphs.

Tree Characteristics (I)

- The root of a tree is a non-empty node with no parent in the (its parent might be in some larger tree that contains that a subtree). Thus, every node is the root of a (sub)tree.
- The order, arity, or degree of a node (tree) is its number (monumber) of children.
- \bullet The nodes of a *k-ary tree* each have at most k children.
- A leaf node has no children (no non-empty children in the positional trees).

Tree Characteristics (II)

- The height of a node in a tree is the smallest distance to That is, a leaf has height 0 and a non-empty tree's heigh more than the maximum height of its children. The height o is the height of its root.
- The depth of a node in a tree is the distance to the root tree. That is, in a tree whose root is R, R itself has depth and if node $S \neq R$ is in the tree with root R, then its depth greater than its parent's.

A Tree Type, 61A Style

```
public class Tree<Label> {
    // This constructor is convenient, but unfortunately causes
    // (harmless) warnings that we will explain later.
    public Tree(Label label, Tree<Label>... children) {
        _label = label;
        _kids = new ArrayList<>(Arrays.asList(children));
    }
    public int arity() { return _kids.size(); }
    public Label label() { return _label; }
    public Tree<Label> child(int k) { return _kids.get(k); }
    private Label _label;
    private ArrayList<Tree<Label>> _kids;
}
```

Fundamental Operation: Traversal

- Traversing a tree means enumerating (some subset of) its n
- Typically done recursively, because that is natural descripti
- As nodes are enumerated, we say they are visited.
- Three basic orders for enumeration (+ variations):
 - Preorder: visit node, traverse its children.
 - Postorder: traverse children, visit node.
 - Inorder: traverse first child, visit node, traverse second (binary trees only).

Preorder Traversal and Prefix Expressions

(Assume Tree<Label> is means "Tree whose labels have type

```
static String toLisp(Tree<String> T) {
  if (T.arity() == 0) return T.label();
  else {
    String R; R = "(" + T.label();
    for (int i = 0; i < T.arity(); i += 1)
        R += " " + toLisp(T.child(i));
    return R + ")";
  }
}</pre>
```

Inorder Traversal and Infix Expressions

To think about get rid of all the theses.

```
static String toInfix(Tree<String> T) {
  if (T.arity() == 0) {
    return T.label();
  } else if (T.arity() == 1) {
    return "(" T.label() + toInfix(T.child(0)) + ")";
  } else {
    return "(" toInfix(T.child(0)) + T.label() + toInfix(T.child(0))
```

Postorder Traversal and Postfix Expressions

}

A General Traversal: The Visitor Pattern

```
void preorderTraverse(Tree<Label> T, Consumer<Tree<L
{
  if (T != null) {
    visit.accept(T);
    for (int i = 0; i < T.arity(); i += 1)
        preorderTraverse(T.child(i), visit);
  }
}</pre>
```

- java.util.function.Consumer<AType> is a library interformerks as a function-like type with one void method, acceptakes an argument of type AType.
- Now, using Java 8 lambda syntax, I can print all labels in the preorder with:

```
preorderTraverse(myTree, T -> System.out.print(T.label() +
```

Iterative Depth-First Traversals

 Tree recursion conceals data: a stack of nodes (all the T arg and a little extra information. Can make the data explicit:

```
void preorderTraverse2(Tree<Label> T, Consumer<Tree<Label>> vis
Stack<Tree<Label>> work = new Stack<>();
work.push(T);
while (!work.isEmpty()) {
   Tree<Label> node = work.pop();
   visit.accept(node);
   for (int i = node.arity()-1; i >= 0; i -= 1)
      work.push(node.child(i)); // Why backward?
}
```

- This traversal takes the same $\Theta(\cdot)$ time as doing it recursive also the same $\Theta(\cdot)$ space.
- That is, we have substituted an explicit stack data structure for Java's built-in execution stack (which handles function of

Level-Order (Breadth-First) Traversal

Problem: Traverse all nodes at depth 0, then depth 1, etc:

Breadth-First Traversal Implemented

A simple modification to iterative depth-first traversal gives be first traversal. Just change the (LIFO) stack to a (FIFO) queue

Times

- The traversal algorithms have roughly the form of the boom in §1.3.3 of Data Structures—an exponential algorithm.
- ullet However, the role of M in that algorithm is played by the h0 the tree, not the number of nodes.
- In fact, easy to see that tree traversal is *linear*: $\Theta(N)$, we is the # of nodes: Form of the algorithm implies that ther visit at the root, and then one visit for every *edge* in the Since every node but the root has exactly one parent, and that none, must be N-1 edges in any non-empty tree.
- ullet In positional tree, is also one recursive call for each empty t # of empty trees can be no greater than kN, where k is ari
- For k-ary tree (max # children is k), $h+1 \le N \le \frac{k^{h+1}-1}{k-1}$, wheight.
- So $h \in \Omega(\log_k N) = \Omega(\lg N)$ and $h \in O(N)$.
- Many tree algorithms look at one child only. For them, wortime is proportional to the *height* of the tree— $\Theta(\lg N)$ —a that tree is *bushy*—each level has about as many nodes as p

Recursive Breadth-First Traversal: Iterative Dee

- ullet Previous breadth-first traversal used space proportional to to of the tree, which is $\Theta(N)$ for bushy trees, whereas deptraversal takes $\lg N$ space on bushy trees.
- ullet Can we get breadth-first traversal in $\lg N$ space and $\Theta(N)$ bushy trees?
- ullet For each level, k, of the tree from 0 to lev, call doLevel(T,1

```
void doLevel(Tree T, int lev) {
  if (lev == 0)
    visit T
  else
    for each non-null child, C, of T {
      doLevel(C, lev-1);
    }
}
```

- So we do breadth-first traversal by repeated (truncated) first traversals: iterative deepening.
- In doLevel (T, k), we skip (i.e., traverse but don't visit) the before level k, and then visit at level k, but not their children are the second contractions.

Iterative Deepening Time?

- ullet Let h be height, N be # of nodes.
- Count # edges traversed (i.e, # of calls, not counting null no
- First (full) tree: 1 for level 0, 3 for level 1, 7 for level 2, 15 to 3.
- Or in general $(2^1-1)+(2^2-1)+\ldots+(2^{h+1}-1)=2^{h+2}-h$ since $N=2^{h+1}-1$ for this tree.
- Second (right leaning) tree: 1 for level 0, 2 for level 2, 3 for
- Or in general $(h+1)(h+2)/2 = N(N+1)/2 \in \Theta(N^2)$, since N for this kind of tree.

Iterators for Trees

- Frankly, iterators are not terribly convenient on trees.
- But can use ideas from iterative methods.

```
class PreorderTreeIterator<Label> implements Iterator<Label
  private Stack<Tree<Label>> s = new Stack<Tree<Label>>();

public PreorderTreeIterator(Tree<Label> T) { s.push(T);

public boolean hasNext() { return !s.isEmpty(); }

public T next() {

  Tree<Label> result = s.pop();

  for (int i = result.arity()-1; i >= 0; i -= 1)

      s.push(result.child(i));

  return result.label();
  }
}
```

Example: (what do I have to add to class Tree first?)

```
for (String label : aTree) System.out.print(label + " ")
```

Tree Representation

(a) Embedded child pointers(+ optional parent pointers)

(c) child/sibling pointers

(b) Array of child po (+ optional parent po

0	1	2	3

(d) breadth-first a (complete trees