

Geração automática de código LaTeX a partir de expressões matemáticas manuscritas

Acadêmico: Emanuel H. Farias

Orientador: Dr. André Tavares da Silva

Roteiro

- Objetivo
- Etapas do reconhecimento de expressões
- Escopo do TCC
- Resultados
- Conclusão
- Trabalhos Futuros

Objetivo

- Reconhecedor de expressões matemáticas manuscritas
- Aplicação web
 - Upload de uma imagem, ou foto via webcam

$$f(x) = \sum_{m=0}^{\infty} \frac{f^{(m)}(a)}{m!} (x-a)^m$$

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

LaTeX:

f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}

Entrada

Saída

Etapas do Reconhecimento

Pré-processamento

- Conversão da imagem para tons de cinza
- Redução de ruídos com filtro de mediana 7x7
- Limiarização Adaptativa

$$f(x) = \sum_{m=0}^{\infty} \frac{f'''(a)}{m!} (x-a)^m$$

$$f(x) = \sum_{m=0}^{\infty} \frac{f'''(a)}{m!} (x-a)^m$$

Segmentação

Isolar cada símbolo da expressão matemática

Método: Componentes Conexos

Pós-segmentação

Tratar os símbolos antes de serem classificados.

· Redimensionar para 32 x 32

Reconhecimento/Classificação

- Atribuir rótulos as imagens
- Aprendizado de Máquina Supervisionado
- Classificador: Redes Neurais Convolucionais (CNN)

Treinamento

- 4 datasets foram utilizadas:
 - HWRT Símbolos matemáticos variados, dígitos, alfabeto latino
 - Chars74K
 Dígitos e alfabeto latino
 - MNIST
 Dígitos (0-9)
 - Base do próprio autor
 Símbolos matemáticos variados

Treinamento

- O conjunto de dados final possui 27 classes
 - **Dígitos:** 0-9
 - Caracteres: a, b, c, d, e, f, x, y, z
 - Delimitadores: (,)
 - Operadores: +, -, integral, somatório e raiz
 - Outros: ponto
- A dataset final possui 66271 símbolos divididos em 3 conjuntos:
 - Treino (60%)
 - Validação (20%)
 - Teste (20%)

Arquitetura da CNN

Adaptação da arquitetura da LeNet-5 (LeCun, 1998)

Entrada: imagem 32×32 normalizada em [0.0, 1.0]

camada 1: 32 features maps de convolução 5×5 com stride = 1

Ativação com Rectified Linear Unit (ReLU)

camada 2: $Pool (2 \times 2)$

camada 3: 15 features maps de convolução 3×3 com stride = 1

Ativação ReLU

camada 4: $Pool (2 \times 2)$

Dropout de 20%

camada 5: Conversão de matriz para vetor

camada 6: 256 neurônios totalmente conectados com a camada anterior

Ativação ReLU

camada 7: 128 neurônios totalmente conectados com a camada anterior

Ativação ReLU

camada 8: 27 neurônios totalmente conectados com a camada anterior

Ativação softmax

Saída: vetor com 27 elementos variando de [0.0, 1.0]

Parâmetros Treinamento

- Função de erro: cross-entropy ou log loss
- Otimizador: ADAM (gradiente descendente estocástico)
- Inicialização dos pesos: aleatoriamente seguindo a distribuição gaussiana.
- Iterações: 25
- **Batch-size:** 500

Resultados do Treinamento

• Erro: 1.43% (em relação ao conjunto de testes)

Criação da Árvore de expressões matemáticas

Imagem Original

(, 2, +, 3,), *, 4

Símbolos já identificados

Árvore de Expressões

Criação da Árvore de expressões matemáticas

Análise Estrutural

Minimum Spanning Tree (MATSAKIS, 1999)

Baseline Structure Tree (ZANIBBI; BLOSTEIN; CORDY, 2001)

• BST e MST (TAPIA, **2005**)

Dominância e Aspecto Comportamental

Centroides e Limiares

Grafia:

- Central
- Ascendente
- Descendente

Grafo

 Construção de um grafo totalmente conectado (todos os símbolos conectam com todos)

Pesos das arestas:

- Se um símbolo domina o outro, o peso da aresta é a menor distância (aproximada) entre os bounding-boxes dos símbolos
- Caso contrário, o peso é a distância euclidiana entre os centroides dos símbolos

MST

Aplicar Prim ou Kruskal no grafo

BST

- Construção da Árvore de Baselines se divide em três passos:
 - 1) Encontrar a baseline principal
 - 2) Encontrar as demais baselines que estão associadas com a principal (analisando a dominância e MST)
 - 3) Aplicar o algoritmo recursivamente para cada nova baseline encontrada

Análise Estrutural: Árvore de Baselines

Análise Estrutural: Árvore de Baselines

Análise Estrutural: resumo

- 1) Definir centroides e limiares para cada símbolo conforme a grafia
- 2) Construir grafo e MST da expressão matemática
- 3) Construir árvore de baselines (BST)

Conversão da Árvore para código Latex

Escopo

Todos os símbolos devem estar separados

- Expressões que podem ser reconhecidas:
 - Aritméticas básicas (soma, subtração, multiplicação e divisão)
 - Polinômios
 - Funções Racionais (divisão de polinômios)
 - Funções Exponenciais
 - Integrais e Somatórios

Escopo

- A região da imagem selecionada (crop) para o reconhecimento deve ter apenas uma expressão matemática
- A escrita da expressão deve ser em folhas que não possuam linhas, ou seja, folhas de caderno não são aceitas
- A expressão deve ser escrita em uma única linha, ou seja, não pode haver quebra da expressão e continuar na próxima linha
- A expressão deve ser escrita de forma alinhada na horizontal

3x-y+4

Escopo: outras restrições

- Expressões matemáticas que o sistema não reconhece:
 - Funções trigonométricas
 - Números com casas decimais (vírgulas e pontos)
 - Raizes (algumas reconhecem)

• Porém, com ajustes na *dataset* e e na etapa de análise estrutural, estas expressões podem ser reconhecidas

Resultados

- Foram coletadas expressões matemáticas de seis pessoas
- A seguir algumas expressões que foram reconhecidas corretamente:

Resultado:
$$\frac{5}{4} + 12x - 4y$$

Resultado:
$$\frac{1}{2^3-4^2}$$

Resultado:
$$\frac{12^4}{x^3}$$

Resultados: corretas

Resultados: incorretas

Erros se propagam nas etapas seguintes

Resultados: incorretas

Conclusão

- Este é um trabalho completo (implementa todas as etapas) de um reconhecedor offline de expressões matemáticas manuscritas.
- O sistema apresentou bons resultados, mesmo utilizando métodos comuns da área de processamento de imagens
- Para implementar um sistema mais robusto, todas as etapas podem ser melhoras com métodos mais avançados.

Trabalhos Futuros

- **Pré-processamento:** estratégias mais avançadas para tratar documentos utilizam clustering para separar o fundo da escrita.
- **Segmentação:** utilizar o método *Projection Profile Cutting* que utiliza histogramas verticais e horizontais, ou ainda, utilizar redes neurais próprias para auxiliar a segmentação.
- **Treinamento:** aumentar a *dataset* inserindo o alfabeto latino completo, alfabeto grego, e outros símbolos matemáticos (>, <, {}, [])
- Análise Estrutural: definir limiares e classes comportamentais específicas para cada símbolo.
- Adicionar etapa de correção de erros pós análise estrutural, que analisa a semântica dos símbolos (ex: abre e fecha parenteses)

Geração automática de código LaTeX a partir de expressões matemáticas manuscritas

Acadêmico: Emanuel H. Farias

Orientador: Dr. André Tavares da Silva