Preliminary Statements

Theorem (Definition of Countability). *A set S is countable if and only if there exists an injection* $f: S \hookrightarrow \mathbb{N}$.

Proof. Let S be countable.

Case 1: We have S is finite if and only if there is a map $f: S \to \{1, 2, ..., n\}$, where f is a bijection. Letting id: $\{1, 2, ..., n\} \to \mathbb{N}$ be defined by id(n) = n, it is clear that id is an injection.

Considering the map $id \circ f : S \to \mathbb{N}$, since id is injective and f is injective, so too is $id \circ f$, meaning our desired injection is $id \circ f$.

Case 2: By definition, a set S is countably infinite if and only if there exists a bijection $g: S \to \mathbb{N}$, which is our desired injection.

1.1

1.2

Problem. Given bijections $f : \mathbb{N} \to \mathbb{Z}$ and $P : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, show that the function $h : \mathbb{Z} \times \mathbb{Z} \to \mathbb{N}$ defined by $h(x, y) = P(f^{-1}(x), f^{-1}(y))$ is bijective.

Solution. We begin by showing injectivity. Since f is bijective, so too is f^{-1} , meaning that for

$$h(x,y) = h(x',y'),$$

we have

$$P\left(f^{-1}(x), f^{-1}(y)\right) = P\left(f^{-1}(x'), f^{-1}(y')\right)$$
$$f^{-1}(x) = f^{-1}(x')$$
$$f^{-1}(y) = f^{-1}(y')$$

since P is bijective

meaning

$$x = x'$$
$$y = y'$$

since f^{-1} is bijective.

Thus, h is injective.

Let $n \in \mathbb{N}$. Since P is surjective, there exist a, b such that P(a,b) = n. Since f^{-1} is surjective, there exists $x,y \in \mathbb{Z}$ such that $f^{-1}(x) = a$ and $f^{-1}(y) = b$. Thus, there exist $x,y \in \mathbb{Z}$ such that h(x,y) = n.

1.3

Problem. If A and B are countably infinite, show that A × B is countably infinite.¹

Solution. By the definition of countably infinite sets, there exist bijections $\alpha: A \to \mathbb{N}$ and $\beta: B \to \mathbb{N}$. Additionally, we know that there exists a bijection $P: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

Define $h: A \times B \to \mathbb{N}$ by $h(a,b) = P(\alpha(a),\beta(b))$. Then, since h is a composition of bijections, h is a bijection between $A \times B$ and \mathbb{N} .

^IAssuming the axiom of choice.

1.5

Problem. If $A_1, A_2,...$ is an infinite sequence of disjoint finite sets, show that the union $\bigcup_{n=1}^{\infty} A_n$ is countably infinite.

Solution. Let a_n be defined by the bijection $\alpha_n : A_n \to \{1, 2, ..., a_n\}$.

1.6

1.7

Problem. Construct an explicit polynomial bijection between $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ and \mathbb{N} .

Solution. Let $Q : \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be defined by Q(x, y, z) = P(P(x, y), z), where $P(x, y) = \frac{(x+y)(x+y+1)}{2} + x$ is a bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} .

We know that Q is a bijection since it is a composition of bijections. I do not want to expand this expression.

Extra Problem 1

Prove that if A and B are finite sets, then $A \cup B$ is finite.

Extra Problem 2

Prove that for every $n \in \mathbb{N}$, every subset of $\{0, 1, ..., n\}$ is finite.

Extra Problem 3

Prove that every subset of a finite set is finite.

Extra Problem 4

Problem. Prove that every infinite subset of $\mathbb N$ is denumerable.

Solution. Let $A \subseteq \mathbb{N}$ be infinite.

Since A is nonempty, by the well-ordering principle, there must exist a least element of A, which we label as a_0 .

Consider $A \setminus \{a_0\}$. Since A is infinite, $A \setminus \{a_0\}$ must also be infinite, meaning there is a least element of $A \setminus \{a_0\}$ by the well-ordering principle. We label this element as $\{a_1\}$.

Now, we consider $A \setminus \{a_0, a_1\}$, and use the well-ordering principle to extract a_2 , and inductively extract a_i by using the well ordering principle on $A \setminus \{a_0, a_1, \dots, a_{i-1}\}$.

The function $f: A \to \mathbb{N}$ defined by $f(a_i) = i$ is a bijection, since $f(a_i) = f(a_i)$ if and only if i = j.

Thus, f is a denumeration of A.