

空间曲面的幼平面与法线

主讲人: 张文龙

大连理工大学数学科学学院

空间曲线的切线与法平面

空间光滑曲线
$$\Gamma$$
:
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) & (\alpha \le t \le \beta) \\ z = \omega(t) \end{cases}$$

在 $t = t_0$ 对应点 $M_0(x_0, y_0, z_0)$ 处

切线方程:
$$\frac{x-x_0}{\varphi'(t_0)} = \frac{y-y_0}{\psi'(t_0)} = \frac{z-z_0}{\omega'(t_0)}$$

法平面方程:
$$\varphi'(t_0)(x-x_0)+\psi'(t_0)(y-y_0)+\omega'(t_0)(z-z_0)=0$$

空间曲面的切平面与法线:

1. 隐式情况

空间曲面 S的方程为: F(x,y,z) = 0,

 $M_0(x_0, y_0, z_0)$ 为曲面上一点,且设

F(x,y,z)在该点偏导连续且不全为 0。

在曲面S上, 过 M_0 任意作曲线 Γ ,

下面证: 曲面S上过 M_0 的任何曲线的切线都处在同一个平面上。该平面称为曲面S在 M_0 点处的切平面。

证:在设曲面 S上,过 M_0 作任意曲线 Γ

方程为:
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \\ z = \omega(t) \end{cases} (\alpha \le t \le \beta), M_0 点对应 t = t_0$$

且 $\varphi'(t_0)$, $\psi'(t_0)$, $\omega'(t_0)$ 不同时为0。

则曲线 Γ 在 M_0 点处的切线的切向量为:

$$\vec{s} = (\varphi'(t_0), \ \psi'(t_0), \ \omega'(t_0))$$

另一方面,由曲线 Γ 在曲面 S上,则: $F(\varphi(t), \psi(t), \omega(t)) = 0$

曲线 Γ 在曲面 S上,则: $F(\varphi(t), \psi(t), \omega(t)) = 0$

对 t求导, 然后令 $t = t_0$, 则有:

$$F_{x}(x_{0}, y_{0}, z_{0})\varphi'(t_{0}) + F_{y}(x_{0}, y_{0}, z_{0})\psi'(t_{0}) + F_{z}(x_{0}, y_{0}, z_{0})\omega'(t_{0}) = 0$$

$$\Rightarrow \vec{n} = (F_x(x_0, y_0, z_0), F_y(x_0, y_0, z_0), F_z(x_0, y_0, z_0))_{\underline{\ }}$$

由曲线 Γ 在 M_0 点处的切线的切向量:

$$\vec{s} = (\varphi'(t_0), \ \psi'(t_0), \ \omega'(t_0))$$

则有: $\vec{n} \cdot \vec{s} = 0$, 即: $\vec{n} \perp \vec{s}$

故:过 M_0 的所有曲线的切线都在同一平面上。

该平面称为曲面S在 M_0 点处的切平面

切平面的法向量: $\vec{n} = (F_x(x_0, y_0, z_0), F_y(x_0, y_0, z_0), F_z(x_0, y_0, z_0))$

切平面方程:

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

过 M₀垂直于切平面的直线称为曲面在该点的法线

法线方程:

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$

2. 显式情况

空间曲面 S的显式方程为: z = f(x, y), 即: f(x, y) - z = 0

故: 当函数 f(x,y) 在点 (x_0,y_0) 处有连续偏导时,曲面 S 在点

$$M_0(x_0, y_0, z_0)$$
处切平面的法向量为: $\vec{n} = (f_x(x_0, y_0), f_y(x_0, y_0), -1)$

切平面方程:
$$z-z_0=f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)$$

法线方程:
$$\frac{x-x_0}{f_x(x_0,y_0)} = \frac{y-y_0}{f_y(x_0,y_0)} = \frac{z-z_0}{-1}$$

例1: 求曲面 xy + yz + zx - 1 = 0 在点 $M_0(3, -1, 2)$ 处的切平面与 法线方程。

解:
$$\diamondsuit F(x,y,z) = xy + yz + zx - 1$$
, 由

$$F_x = y + z$$
, $F_y = x + z$, $F_z = x + y$

在 $M_0(3,-1,2)$ 点, 切平面的法向量: $\vec{n}=(1,5,2)$

切平面方程:
$$(x-3)+5(y+1)+2(z-2)=0$$
 $(x+5y+2z=2)$

法线方程:
$$\frac{x-3}{1} = \frac{y+1}{5} = \frac{z-2}{2}$$

空间曲面 S 在曲面上一点 $M_0(x_0, y_0, z_0)$ 处的切平面与法线:

曲面
$$S$$
的方程为:
$$\begin{cases} 1. & F(x,y,z) = 0 \\ 2. & z = f(x,y) \ (\diamondsuit F(x,y,z) = f(x,y) - z) \end{cases}$$
 如乎面方程:

切平面方程:

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

法线方程:

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$