Wednesday, October 25

Fall 2023

Section 6: Universality of the Uniform, Normal, Expo, and Moments Srihari Ganesh

Based on section note formatting template by Rachel Li and Ginnie Ma '23

1 Summary

No MGF problems on the pset this week.

1.1 Universality of the Uniform

Recall that the standard uniform, $U \sim \text{Unif}(0,1)$, has support (0,1) with PDF 1 in the support.

Theorem 1 (Universality of the Uniform, UoU). *If F is a valid CDF that is continuous and strictly increasing over the support, then*

- 1. Let $U \sim Unif(0,1)$. Then $F^{-1}(U)$ is a random variable with CDF F.
- 2. Let X have CDF F. Then $F(X) \sim Unif(0,1)$.

The first result applies to discrete random variables as well. The second result only works for continuous random variables.

Proof. For continuous random variables with *F* as described in the theorem,

1. For $x \in \mathbb{R}$,

$$P(F^{-1}(U) < x) = P(F(F^{-1}(U)) < F(x)) = P(U < F(x)) = F(x).$$

So $F^{-1}(U)$ has CDF F. We used the CDF of U in the last step, since $F(x) \in [0,1]$.

2. For $u \in [0, 1]$,

$$P(F(X) < u) = P(F^{-1}(F(X)) < F^{-1}(u)) = P(X < F^{-1}(u)) = F(F^{-1}(u)) = u,$$

so $F(X) \sim \text{Unif}(0,1)$ since it has the CDF of a standard uniform.

1.2 Normal distribution

Definition 2 (Standard Normal). $Z \sim \mathcal{N}(0,1)$ is a **standard Normal** random variable with support \mathbb{R} . We notate the CDF as Φ and PDF as ϕ .

Result 3 (Symmetry). The standard Normal is symmetric about 0. In math, for $x \in \mathbb{R}$, $\phi(x) = \phi(-x)$.

• This also implies that $\Phi(x) = 1 - \Phi(-x)$.

- So
$$\Phi(0) = 0.5$$
.

• For $Z \sim \mathcal{N}(0,1)$, $-Z \sim \mathcal{N}(0,1)$ as well.

Result 4 (Empirical rule/68-95-99.7 rule).

$$P(-1 < Z < 1) \approx 0.68,$$

 $P(-2 < Z < 2) \approx 0.95,$
 $P(-3 < Z < 3) \approx 0.997.$

In this class, you can give exact answers in terms of Φ and ϕ . On psets, you should also use a calculator/programming language/the empirical rule to get numerical approximations of Φ .

Definition 5 (General Normal). $X \sim \mathcal{N}(\mu, \sigma^2)$ (with $\mu \in \mathbb{R}, \sigma > 0$) is a **Normal** random variable with mean μ and variance σ^2 , and also has support \mathbb{R} .

Result 6 (Location-scale). For $Z \sim \mathcal{N}(0,1)$, $\mu + \sigma Z \sim \mathcal{N}(\mu, \sigma^2)$. More generally, for $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $\mu_2 + \sigma_2 X \sim \mathcal{N}(\mu_2 + \mu_1 \sigma_2, \sigma_1^2 \sigma_2^2)$.

Result 7 (Standardization). For $X \sim \mathcal{N}(\mu, \sigma^2)$, $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0, 1)$. We often use this to get results in terms of Φ :

$$P(X < x) = P(\frac{X - \mu}{\sigma} < \frac{x - \mu}{\sigma}) = \Phi(\frac{x - \mu}{\sigma}).$$

Corollary 8 (Empirical rule). *For* $X \sim \mathcal{N}(\mu, \sigma^2)$,

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.68$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.95$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.997$$

Result 9 (Sum of independent Normals). Let $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ with X, Y independent. Then

$$X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2),$$

 $X - Y \sim \mathcal{N}(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2).$

\textcircled{*} 10 (Variance when subtracting). See that we always add the variance above! This is also a general rule: for any independent random variables *X* and *Y*,

$$Var(X + Y) = Var(X - Y) = Var(X) + Var(Y).$$

1.3 Exponential distribution

Definition 11 (Exponential distribution). $X \sim \text{Expo}(\lambda)$ is an **Exponential** random variable with mean $\frac{1}{\lambda}$ and variance $\frac{1}{\lambda^2}$. λ is called the **rate parameter**.

Result 12 (Memorylessness). For $X \sim \text{Expo}(\lambda)$ and any s, t > 0, the **memoryless** property of the Exponential distribution states the following (equivalent) results:

$$P(X > s + t | X > s) = P(X > t)$$
$$(X - s | X > s) \sim \text{Expo}(\lambda).$$

See specifically that X - s | X > s is independent of the value of s.

The Exponential distribution is the only continuous distribution with this property. Additionally, the Geometric distribution is the only discrete distribution with support $\{0, \ldots, \}$ that is memoryless.

★ 13. For most results we talk about, you can't put a random variable in the place of a constant - you might recall from last week's problem set that we couldn't let the sum of N independent $\operatorname{Pois}(\lambda)$ r.v.s, with N random, be distributed $\operatorname{Pois}(N\lambda)$. However, with memorylessness, you can put random variables in the place of the s above - so for some random variable Y, $(X - Y|X > Y) \sim \operatorname{Expo}(\lambda)$ still.

Example 14 (Memorylessness). Suppose you're waiting for a bus that will arrive in $X \sim \text{Expo}(\lambda)$ minutes. If you wait for the bus for 10 minutes and it has not arrived, then the remaining time that you have to wait is still distributed $\text{Expo}(\lambda)$: $X - 10|X > 10 \sim \text{Expo}(\lambda)$. So no matter how long you wait, the remaining time for you to wait has the same distribution.

Result 15 (Minimum of Expos). The minimum of n i.i.d. $\text{Expo}(\lambda)$ random variables is distributed $\text{Expo}(n\lambda)$. In notation, for $X_1, \ldots, X_n \overset{i.i.d.}{\sim} \text{Expo}(\lambda)$, $\min(X_1, \ldots, X_n) \sim \text{Expo}(n\lambda)$.

 \bigstar **16** (Maximum of Expos). The maximum of n i.i.d. Exponential distributions is *not* does not have an Exponential distribution.

Remark 17 (Finding the distribution of minimums/maximums). The proofs for the results above can be found in the book, but they provide a general template for finding the distributions of minimums and maximums.

Let $X_1, ..., X_n$ be any random variables. Then the events $\{\min(X_1, ..., X_n) > x\}$ and $(X_1 > x) \cap (X_2 > x) \cap ... \cap (X_n > x)$ are equivalent. To convince yourself of this, think about what this means in words: the minimum of a set of numbers is greater than x if and only if each one of the numbers is great than x.

To find the CDF of $min(X_1, ..., X_n)$, a common workflow is

$$P(\min(X_1,\ldots,X_n) \le x) = 1 - P(\min(X_1,\ldots,X_n) > x) = 1 - P(X_1 > x, X_2 > x,\ldots,X_n > x).$$

If X_1, \ldots, X_n are independent, then we can get that

$$P(X_1 > x, X_2 > x, ..., X_n > x) = P(X_1 > x)P(X_2 > x) \cdot ... P(X_n > x)$$

If X_1, \ldots, X_n are also identically distributed, we conclude with

$$P(X_1 > x)P(X_2 > x) \cdots P(X_n > x) = (P(X_1 > x))^n$$
.

For maximums, we follow a similar workflow, except instead using the fact that

$$\{\max(X_1,\ldots,X_n) < x\} = \bigcap_{i=1}^n (X_i < x).$$

1.4 Moments/Moment Generating Functions

Definition 18 (Moments). For a random variable X, the $\mathbf{n^{th}}$ moment is $E(X^n)$.

Definition 19 (Moment Generating Function). For a random variable X, the **moment generating function (MGF)** is $M_X(t) = E(e^{tX})$ for $t \in \mathbb{R}$. If the MGF exists, then

$$M_X(0) = 1,$$

$$\frac{d^n}{dt^n} M_X(t)|_{t=0} = M_X^{(n)}(t) = E(X^n).$$

You should sanity-check that $M_X(0) = 1$ whenever you calculate an MGF.

2 Practice Problems

- 1. Xavier and Youssef are running a 10K race. Xavier's time (in minutes) is $X \sim \mathcal{N}(50, 3^2)$, while Youssef's time is $Y \sim \mathcal{N}(52, 4^2)$. Their times are independent.
 - (a) What is the probability that Youssef runs the 5K in under an hour? Answer in terms of Φ .

Solution

We can standardize Y to get that $\frac{Y-52}{4} \sim \mathcal{N}(0,1)$; let $Z = \frac{Y-52}{4}$ for convenience. So

$$P(Y < 60) = P(\frac{Y - 52}{4} < \frac{60 - 52}{4})$$
$$= P(Z < 2) = \Phi(2).$$

(b) Use the empirical rule to give a simple numerical approximation for your answer to (a).

Solution

The empirical rule tells us that $P(-2 < Z < 2) \approx 0.95$. In terms of Φ , this means

$$0.95 \approx \Phi(2) - \Phi(-2).$$

By the symmetry of the standard normal, $\Phi(-2) = 1 - \Phi(2)$, so

$$0.95 \approx 2\Phi(2) - 1.$$

Finally, rearranging to solve for $\Phi(2)$ (our answer to (a)) gives us

$$\Phi(2) \approx \frac{0.95 + 1}{2} = 0.975.$$

(c) What is the probability that Xavier beats Youssef by at least a minute? Give your answer in terms of Φ .

Solution

We want to solve for P(X + 1 < Y).

$$P(X + 1 < Y) = P(X - Y < -1).$$

Since X and Y are independent, $X-Y\sim\mathcal{N}(50-52,3^2+4^2)$, so $X-Y\sim\mathcal{N}(-2,5^2)$. Let $Z=\frac{(X-Y)+2}{5}$ be a standardized r.v., with $Z\sim\mathcal{N}(0,1)$. Then

$$P(X - Y < -1) = P(X - Y + 2 < 1) = P(\frac{X - Y + 2}{5} < \frac{1}{5}) = \Phi(\frac{1}{5}).$$

(d) What is the probability that Xavier beats Youssef by at least two minutes? Give an exact answer.

Solution

Slightly modifying the solution to (c),

$$P(X - Y < -2) = P(X - Y + 2 < 0) = P(\frac{X - Y + 2}{5} < 0) = \Phi(0).$$

By the symmetry of the standard normal, $\Phi(0) = 0.5$.

- 2. This problem is meant to develop a strong base to do Problem 5 on this week's problem set. Let $T_1, T_2 \stackrel{i.i.d.}{\sim} \operatorname{Expo}(\lambda)$ be the times it takes for two radioactive particles to decay. Define $M = \max(T_1, T_2)$.
 - (a) Find the CDF of *M. Hint: use the strategy from remark* 17.

Solution

For m > 0 we can solve

$$P(M > m) = P(T_1 > m, T_2 > m)$$
 by Remark 16
= $P(T_1 > m)P(T_2 > m)$ by independence
= $(P(T_1 > m))^2$ by symmetry

So the CDF is

(b) Express *M* as the sum of two Expo random variables, and find the rate parameters for each of those random variables. *Hint: use both memorylessness (Result 12) and the distribution of the minimum of Expos (Result 15).*

Solution

Let L be the time that the earliest particle decays; then M-L is the time between the two particle decays. See that M=L+(M-L), so showing that L and M-L are Expo will solve the problem.

 $L = \min(T_1, T_2)$, so by Result 15 we have $L \sim \text{Expo}(2\lambda)$.

To find the distribution of M-L, consider that by construction we know M>L: given the time of the earliest particle decay, we know the other particle decay must take longer. So M-L is the remaining time for the next particle decay given the time of the first decay. By memorylessness (see Result 12 and Biohazard 13), this means $(M-L|M>L)\sim \operatorname{Expo}(\lambda)$ since the particle decays are distributed $\operatorname{Expo}(\lambda)$. Since the maximum must always be at least the minimum, $M-L\sim \operatorname{Expo}(\lambda)$ since the condition is implied. Memorylessness also gives us that M-L is independent of the value of L, so M-L and L are independent.

So our solution is to write M = L + (M - L), with $L \sim \text{Expo}(2\lambda)$ and $M - L \sim \text{Expo}(\lambda)$ and L, M - L independent.