Dan Casas

FACS.

FACS example

Upper Face Action Units									
AU 1	AU 2	AU4	AU 5	AU 6	AU 7				
100	- 6	700 100	700	(m) (m)	100 Mar.				
Inner Brow	Outer Brow	Brow	Upper Lid	Cheek	Lid				
Raiser	Raiser	Lowerer	Raiser	Raiser	Tightener				
*AU 41	*AU 42	*AU 43	AU 44	AU 45	AU 46				
06	00	00	30	00	-				
Lid	Slit	Eyes	Squint	Blink	Wink				
Droop		Closed	_						
Lower Face Action Units									
AU 9	AU 10	AU 11	AU 12	AU 13	AU 14				
-	-	and a	3	-	100				
Nose	Upper Lip	Nasolabial	Lip Corner	Cheek	Dimpler				
Wrinkler	Raiser	Deepener	Puller	Puffer	_				
AU 15	AU 16	AU 17	AU 18	AU 20	AU 22				
13	1	1	3		0				
Lip Corner	Lower Lip	Chin	Lip	Lip	Lip				
Depressor	Depressor	Raiser	Puckerer	Stretcher	Funneler				
AU 23	AU 24	*AU 25	*AU 26	*AU 27	AU 28				
3	-	=	=	10	-				
Lip	Lip	Lips	Jaw	Mouth	Lip				
Tightener	Pressor	Part	Drop	Stretch	Suck				

FACS. Codificación facial.

FACS: Facial Action Coding System supone dividir toda expresión facial en un conjunto de movimientos faciales básicos llamados **Action Units**, de manera que cuando se combinan crean una expresión facial.

Cada componente observable de movimiento facial se denomina Unidad de Acción o AU.

Todas las expresiones faciales se pueden desglosar en su constituyente UA.

FACS es una herramienta de investigación útil para medir cualquier expresión facial que un ser humano puede hacer.

AU6+12+25 AU4+17+23+24 AU15+17 AU12

FACS. Codificacion facial.

Se identifican 46 AU.

Combinaciones originales de AU producen una variedad grande de expresiones faciales creíbles. También **expresiones-tipo**.

Por ejemplo, AU 23 es "Labio Estirado"; AU 19 es "Lengua fuera".

El problema es que hablamos de combinaciones fijas, y no todo lo deseado por el animador. Además no incluyen "hablar".

$$\mathbf{f} = \sum_{k=0}^{n} w_k \mathbf{b}_k$$

Blendshapes

- Combinación base de expresiones faciales
- Interpolación lineal

Problema: f = Bw es una transformación global, fijate qué pasa si nacemos esto:

$$\mathbf{f} = w_1 + w_2 + w_3$$

Solución: Delta blendshape formulation

$$\mathbf{f} = \mathbf{b}_0 + \sum_{k=1}^n w_k (\mathbf{b}_k - \mathbf{b}_0)$$

- Una expresión es designada la neutral
- El resto de bases son la diferencia entre cada una de las otras expresiones y la expresión neutral

Solución: Delta blendshape formulation

- Una expresión es designada la neutral
- El resto de bases son la diferencia entre cada una de las otras expresiones y la expresión neutral
- Esto permite aplicar sólamente deformaciones locales
- También permite exagerar expresiones cuando $w_k > 1$

Solución: Delta blendshape formulation

- Una expresión es designada la neutral
- El resto de bases son la diferencia entre cada una de las otras expresiones y la expresión neutral
- Esto permite aplicar sólamente deformaciones locales
- También permite exagerar expresiones cuando $w_k > 1$
- Maya y Blender utilizan esta técnica

Snappers Facial Rig

https://www.youtube.com/watch?v=8qeOFibRmoo

Snappers Facial Rig

https://www.youtube.com/watch?v=8qeOFibRmoo

MATLAB demo

¿Cómo conseguimos las expresiones base 3D?

• Un artista puede modelarlas

¿Cómo conseguimos las expresiones base 3D?

- Un artista puede modelarlas
- Se pueden capturar

The back-projected points generate rays which intersect at the 3D scene point

Stereo reconstruction