Hints for CW 1

Q1

 \mathbb{C}^n with Euclidean topology is homeomorphic to \mathbb{R}^{2n} . In simpler terms, you can treat \mathbb{C}^n as \mathbb{R}^{2n} as far as Euclidean topology is concerned.

Q2 (b)

 $\mathbb{V}(y^3-x^2)$ is just an example of a closed affine algebraic variety. You can similarly prove that any closed affine algebraic variety in \mathbb{A}^n is compact with the Zariski topology.

Q3 (d)

You have a variety which is given as the intersection of hypersurfaces. To understand it, solve the equations like you did in high school:

$$y^2 - x^2(x^2 + 1) = 0,$$

$$y = zx.$$

and see what you get. To prove that different components are irreducible, you might use the idea from Q3(c) and Example 2.41 of the notes.

$\mathbf{Q4}$

Note that $V \neq V \cap \{a\}$.

(ii) Use Part (i) to write 1 as a linear combination of the generators with coefficients in $\mathbb{C}[x_1,\ldots,x_{n+1}]$.