Continuous Distributions

Random Variable of the Continuous Type

Consider a function X that assigns to each element Sim a continuous interval S one and only one real number X(S)=x. S is now a continuous interval.

Probability Density Function (polf)

The polf f(x) of a continuous random variable X is a function that satisfies the following:

- (A) f(x) > 0 YS
 - (B) I f(x) dx=1. Normalited
 - (c) The probability of the event X belonging to a set A is $P(X \in A) = \int_A f(x) dx$

Distribution Function

The distribution function of a random variable X is given by

$$F(x) = P(X \leq x) = \int_{\infty}^{x} f(t)dt$$

F(x) accumulate: all of the probability less than or equal to x

· Mathematical Expectation

The expected value of X or the mean value of X is

$$\mu = E[X] = \int_{-\infty}^{\infty} f(x) dx$$

 $\langle x \rangle = \int_{-\infty}^{\infty} x f(x) dx$

Compare in QM, Por example

Example: The Normal (or Gaussian) Distribution
The random variable X has a normal distribution if its

The random variable X has a normal did butin if its PDF is defined as

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-a)^2}{2\sigma^2}\right] - \infty < x < \infty$$

In the homework, you will check to see that

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

and the probability of lying within an interval Rom a tob is Pla = X = b] = f(x)dx $= \int_{0}^{0} \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{(x-u)^{2}}{2\sigma^{2}}\right]$

Councetion between Discrete and Continuous Distributions

We can unify the way me write down probability distributions by using the Dirac Delta Function.

Recall

$$S(x-\alpha) = + \infty \qquad x=\alpha$$

$$x \neq \alpha$$

such that

the that
$$\int_{a}^{b} S(x-\alpha)dx = 1 \quad \text{if } \alpha \text{ is within } a \leq x \leq b$$
The distribution of the property of t

and
$$\int_{a}^{b} f(x) \delta(x-\alpha) dx = f(\alpha) \text{ if } \alpha \text{ is within } a \leq x \leq b$$

$$0 \text{ otherwise}$$

Dirac delta hinchons "Pick ont" discrete values, but can be integrable.

"If a discrete variable can take in different values among real numbers, then we can write the probability density function as

$$f(t) = \sum_{i=1}^{N} p_i S(t-x_i)$$

Where Xi are discrete values on X

This allows us to calculate using all the standard methods of continuous dumbutions, even with a set of discrete values.

End Math!

Now we can do physics!

In general, we will see that both discrete and continuous distributions are important for understanding statistical ensembles.

Random Walks

Random walks, which show up in physics, ecology, psychology, chemistry, bio, finance..., can be described as a path that consists of a succession of random steps.