Analysis Workflow with Wireshark

One of our fellow admins noticed a weird connection from Bob's host when analyzing the baseline captures we have been gathering. He asked us to check it out and see what we think is happening.

In this project we will practice analysis workflow template. We will follow this template to determine what is happening with the host.

- 1. what is the issue?
 - a. a brief summary of the issue.
- 2. define our scope and the goal (what are we looking for? which time period?)
 - a. Scope: We are looking for suspicious traffic activity from Bob's host ip == 10.129.43.4
 - b. when the issue started: Within 48 hours
 - c. supporting info: guided-analysis.pcap
- 3. define our target(s) (net / host(s) / protocol)
 - a. Target hosts: host with ip == 10.129.43.4 and anyone with connection to it.
- 4. capture network traffic / read from previously captured PCAP.

We are performing live capture of traffic from suspicious host. Possibly we will catch something in real time.

And loaded pre-captured pcap file on second machine.

	•					
ı	1 0.000000	VMware_b9:93:48	Broadcast	ARP	60 request	Who has 10.129.43.4? Tell 10.129.43.29
	2 0.000085	VMware_b9:6c:2c	VMware_b9:93:48	ARP	42 reply	10.129.43.4 is at 00:50:56:b9:6c:2c
1	3 0.000215	10.129.43.29	10.129.43.4	TCP	66	50612 → 4444 [SYN] Seq=0 Win=8192 Len=0
	4 0.000270	10.129.43.4	10.129.43.29	TCP	66	4444 → 50612 [SYN, ACK] Seq=0 Ack=1 Wir
	5 0.000415	10.129.43.29	10.129.43.4	TCP	60	50612 → 4444 [ACK] Seq=1 Ack=1 Win=2102
	6 0.070797	10.129.43.29	10.129.43.4	TCP	175	50612 → 4444 [PSH, ACK] Seq=1 Ack=1 Wir
	7 0.070843	10.129.43.4	10.129.43.29	TCP	54	4444 → 50612 [ACK] Seq=1 Ack=122 Win=64
	8 10.676486	10.129.43.4	10.129.43.29	TCP	61	4444 → 50612 [PSH, ACK] Seq=1 Ack=122 V
	9 10.745086	10.129.43.29	10.129.43.4	TCP	60	50612 → 4444 [ACK] Seq=122 Ack=8 Win=21
	10 10.745121	10.129.43.29	10.129.43.4	TCP	110	50612 → 4444 [PSH, ACK] Seq=122 Ack=8 V
	11 10.745135	10.129.43.4	10.129.43.29	TCP	54	4444 → 50612 [ACK] Seq=8 Ack=178 Win=64
	12 15.202665	10.129.43.4	10.129.43.29	TCP	63	4444 → 50612 [PSH, ACK] Seq=8 Ack=178 V
	13 15.211515	10.129.43.29	10.129.43.4	TCP	64	50612 → 4444 [PSH, ACK] Seq=178 Ack=17
	14 15.211538	10.129.43.4	10.129.43.29	TCP	54	4444 → 50612 [ACK] Seq=17 Ack=188 Win=€
	15 15.261797	10.129.43.29	10.129.43.4	TCP	254	50612 → 4444 [PSH, ACK] Seq=188 Ack=17
	16 15.261833	10.129.43.4	10.129.43.29	TCP	54	4444 → 50612 [ACK] Seq=17 Ack=388 Win=6
	17 15.261986	10.129.43.29	10.129.43.4	TCP	841	50612 → 4444 [PSH, ACK] Seq=388 Ack=17
	18 15.261992	10.129.43.4	10.129.43.29	TCP	54	4444 → 50612 [ACK] Seq=17 Ack=1175 Win=
	19 21.584905	10.129.43.4	10.129.43.29	TCP	61	4444 → 50612 [PSH, ACK] Seq=17 Ack=1175
	20 21.626201	10.129.43.29	10.129.43.4	TCP	68	50612 → 4444 [PSH, ACK] Seq=1175 Ack=24
	21 21.626254	10.129.43.4	10.129.43.29	TCP	54	4444 → 50612 [ACK] Seq=24 Ack=1189 Win=
	22 22.582605	10.129.43.4	10.129.43.29	TCP	58	4444 → 50612 [PSH, ACK] Seq=24 Ack=1189
	23 22.646451	10.129.43.29	10.129.43.4	TCP	60	50612 → 4444 [ACK] Seq=1189 Ack=28 Win=
	24 22.646488	10.129.43.29	10.129.43.4	TCP	255	50612 → 4444 [PSH, ACK] Seq=1189 Ack=28
	25 22.646503	10.129.43.4	10.129.43.29	TCP	54	4444 → 50612 [ACK] Seg=28 Ack=1390 Win=

5. identification of required network traffic components (filtering)

We are interested in traffic related to host 10.129.43.4. So we will filter traffic unrelated to it.

lip.	ip.addr == 10.129.43.4									
No.	▼ Time	Source	Destination	Protocol	Length Opcode	Info				
	3 0.000215	10.129.43.29	10.129.43.4	TCP	66	50612 → 4444 [
	4 0.000270	10.129.43.4	10.129.43.29	TCP	66	4444 → 50612 [
	5 0.000415	10.129.43.29	10.129.43.4	TCP	60	50612 → 4444 [
	6 0.070797	10.129.43.29	10.129.43.4	TCP	175	50612 → 4444 [
	7 0.070843	10.129.43.4	10.129.43.29	TCP	54	4444 → 50612 [
	8 10.676486	10.129.43.4	10.129.43.29	TCP	61	4444 → 50612 [
	9 10.745086	10.129.43.29	10.129.43.4	TCP	60	50612 → 4444 [
	10 10.745121	10.129.43.29	10.129.43.4	TCP	110	50612 → 4444 [
	11 10.745135	10.129.43.4	10.129.43.29	TCP	54	4444 → 50612 [
	12 15.202665	10.129.43.4	10.129.43.29	TCP	63	4444 → 50612 [
	10 15 011515	10 120 12 20	10 120 42 4	TCD	64	E0612 4444 F				

6. An understanding of captured network traffic

Once we have filtered out the noise, it's time to dig for our targets. Start broad and close the circle around our scope.

7. note taking / mind mapping of the found results.

Most noticable is vast amount of traffic related to port 4444 and port 50612 This is conversations tab from Wireshark.

Ethernet · 3	IPv4·3	IPv6	TCP · 1	UDP · 2			
Address A 🔻	Port A	Address	s B	Port B	Packets	Bytes	Stream ID
10.129.43.29	50612	10.129.	43.4	4444	35	3.756 KiB	0

In total we can notice 3 captured conversations with our target host.

10.129.43.4 10.129.0.1 4 216 bytes 4 10.129.43.4 239.255.255.250 1 179 bytes 1 10.129.43.29 10.129.43.4 35 3.756 KiB 35	Address A 🔻	Address B	Packets	Bytes	Total Packets
	10.129.43.4	10.129.0.1	4	216 bytes	4
10.129.43.29 10.129.43.4 35 3.756 KiB 35	10.129.43.4	239.255.255.250	11	179 bytes	1
	10.129.43.29	10.129.43.4	35	3.756 KiB	35

This is protocol hierarchy statistics. We can see here that this PCAP is mostly TCP traffic, with a bit of UDP traffic.

Protocol	Percent Packets	Packets	Percent Bytes	Bytes	Bits/s	End Packets	End Byte
▼ Frame	100.0	40	100.0	4241	661	0	0
▼ Ethernet	100.0	40	13.6	578	90	0	0
 Internet Protocol Version 4 	100.0	40	18.9	800	124	0	0
 User Datagram Protocol 	12.5	5	0.9	40	6	0	0
Simple Service Discovery Protocol	2.5	1	3.2	137	21	1	137
NAT Port Mapping Protocol	10.0	4	1.1	48	7	4	48
 Transmission Control Protocol 	87.5	35	62.2	2638	411	17	364
Data	45.0	18	45.1	1914	298	18	1914

Still this little amount of UDP communication is worth investigating first.

	_					
!to	:р					
No.	▼ Time	Source	Destination	Protocol	Length Opcode	Info
	1 0.000000	VMware_b9:93:48	Broadcast	ARP	60 request	Who has 10.129.43.4? Tell 10.129.43.
	2 0.000085	VMware_b9:6c:2c	VMware_b9:93:48	ARP	42 reply	10.129.43.4 is at 00:50:56:b9:6c:2c
	33 46.323616	10.129.43.4	239.255.255.250	SSDP	179	M-SEARCH * HTTP/1.1
	34 48.326022	10.129.43.4	10.129.0.1	NAT-PMP	54	Map TCP Request
	35 48.576398	10.129.43.4	10.129.0.1	NAT-PMP	54	Map TCP Request
	36 49.076670	10.129.43.4	10.129.0.1	NAT-PMP	54	Map TCP Request
	37 50.077133	10.129.43.4	10.129.0.1	NAT-PMP	54	Map TCP Request
	43 53.385803	VMware_b9:6c:2c	VMware_b9:4d:df	ARP	42 request	Who has 10.129.0.1? Tell 10.129.43.4
	44 53.386099	VMware_b9:4d:df	VMware_b9:6c:2c	ARP	60 reply	10.129.0.1 is at 00:50:56:b9:4d:df

4 ARP packets, 4 NAT and 1 SSDP. This is normal traffic. Nothing abnormal.

Let's investigate further TCP communication.

3 0.000215	10.129.43.29	10.129.43.4	TCP	66	50612 → 4444 [SYN]
4 0.000270	10.129.43.4	10.129.43.29	TCP	66	4444 → 50612 [SYN,
5 0.000415	10.129.43.29	10.129.43.4	TCP	60	50612 → 4444 [ACK]
6 0.070797	10.129.43.29	10.129.43.4	TCP	175	50612 → 4444 [PSH,
7 0.070843	10.129.43.4	10.129.43.29	TCP	54	4444 → 50612 [ACK]
8 10.676486	10.129.43.4	10.129.43.29	TCP	61	4444 → 50612 [PSH,
9 10.745086	10.129.43.29	10.129.43.4	TCP	60	50612 → 4444 [ACK]
10 10.745121	10.129.43.29	10.129.43.4	TCP	110	50612 → 4444 [PSH,

TCP Port 4444 is a default listener port for Metasploit which may suggest that we are dealing with shell communication. Lets follow TCP stream.

```
::\Users\mrb3n\Downloads>cd c:\
cd c:\
c:\>dir
Volume in drive C has no label.
Volume Serial Number is E8C0-6EAE
Directory of c:\
07/16/2016 04:47 AM <DIR>
                                PerfLogs
05/10/2021 01:08 PM <DIR>
                                Program Files
05/10/2021 01:08 PM <DIR>
                                Program Files (x86)
05/10/2021 07:34 PM <DIR>
                                Users
                                Windows
05/10/2021 12:46 PM <DIR>
       0 File(s)
                    0 bytes
      5 Dir(s) 21,421,400,064 bytes free
c:\>net user hacker Passw0rd1 /add
net user hacker Passw0rd1 /add
The command completed successfully.
c:\>net localgroup administrators hacker /add
net localgroup administrators hacker /add
The command completed successfully.
```

Wireshark · Follow TCP Stream (tcp.stream eq 0 Microsoft Windows [Version 10.0.14393] (c) 2016 Microsoft Corporation. All rights reserved. c:\Users\mrb3n\Downloads>whoami whoami nta-rdp-srv01\mrb3n c:\Users\mrb3n\Downloads>ipconfig ipconfig Windows IP Configuration Ethernet adapter Ethernet0: Connection-specific DNS Suffix .:.htb IPv6 Address..........: dead:beef::f8a1:e285:126d:3b73 Temporary IPv6 Address. : dead:beef::70c2:7f40:2ff2:dffb Link-local IPv6 Address : fe80::f8a1:e285:126d:3b73%4 IPv4 Address....:10.129.43.29 Subnet Mask : 255.255.0.0 Default Gateway : fe80::250:56ff:feb9:4ddf%4 10.129.0.1 Tunnel adapter isatap..htb:

- 1. We can notice that someone was doing basic recon. Using whoami, and ipconfig commands he could determine his privileges and position in network.
- 2. Then he moved through system and discovered files and directories contained in device.
- 3. Biggest alarm bell is creation of new administrator account called **Hacker**.

Let's return to real time capture. We can notice another communication via port 4444. We can't be sure that this is another malicious communication but considering that pre-captured pcap had malicious TCP communication via port 4444 we can be suspicious of this attempt.

TCP	74 36690 → 4444 [SYN] Seq=0 N
TCP	60 4444 → 36690 [RST, ACK] Se
ARP	60 Who has 172.16.10.2? Tell
ARP	42 172.16.10.2 is at 00:50:50
ARP	42 Who has 172.16.10.90? Tell
ARP	60 172.16.10.90 is at 00:50:
ARP	60 Who has 172.16.10.1? Tell
ARP	60 Who has 172.16.10.1? Tell
ARP	60 Who has 172.16.10.1? Tell
TCP	74 36702 → 4444 [SYN] Seq=0 N
TCP	74 49586 → 21 [SYN] Seq=0 Wi
TCP	60 4444 → 36702 [RST, ACK] Se

8. summary of the analysis (what did we find?)

Our analysis determined that host 10.129.43.29 communicated with host 10.129.43.4 that included executing of commands. Host performed recon operations and then proceeded to create new account with privileges of administrator called **hacker** via net commands. It looks like someone used Bob's device to perform these actions. Live capture suggest another attempts to communicate via port 4444 that was used in previously mentioned communication

It is our opinion to complete Incident Response procedure to ensure that threat is stopped from spreading further.

This concludes this lab exercises. Thanks for reading and I hope you found the information here useful.

Source: https://academy.hackthebox.com/module/81/section/962