Walrasian Equilibrium in an exchange economy

1.	Homothetic preferences	2
2.	Walrasian Equilibrium in an exchange economy	13
3.	The market valesignment Project Exam Help	19

https://powcoder.com

Remark: If you prefer you may call a Walrasian Equilibrium a Price-taking Equilibrium

Add WeChat powcoder

1. Homothetic preferences

Analysis of markets is greatly simplified if we are willing to make two strong assumptions

- 1. Identical strictly increasing utility functions
- 2. Utility is homothetic

Definition: Homothetic preferences

Homothetic preference Assignment Project Exam Help

Preferences are homothetic if for any consumption bundle x^1 and x^2 preferred to x^1 , θx^2 is preferred to θx^1 , for all $\theta > 0$. https://powcoder.com

(Scaling up the consumption bundles does not change the preference ranking). Add WeChat powcoder

*

A. Homothetic preferences

Analysis of markets is greatly simplified if we are willing to make two strong assumptions

- 1. Identical strictly increasing utility functions
- 2. Utility is homothetic

Definition: Homothetic preferences

Preferences are homothetic if for any consumption bundle x^1 and x^2 preferred to x^1 , θx^2 is preferred to θx^1 , for all **Assignment Project Exam Help**

(Scaling up the consumption bundles does not change the preference ranking). https://powcoder.com

Homothetic utility function

A utility function is homothetic in form of paturous bodies x^1 and x^2 ,

$$U(x^2) \ge U(x^1)$$
 implies that $U(\theta x^2) \ge U(\theta x^1)$ for all $\theta > 0$

$$U(x^2) = U(x^1)$$
 implies that $U(\theta x^2) = U(\theta x^1)$ for all $\theta > 0$

$$U(x^2) > U(x^1)$$
 implies that $U(\theta x^2) > U(\theta x^1)$ for all $\theta > 0$

Remark: The second and third statements follow from the first so you only have to check the first.

Slide only for those interested (not covered in the lecture)

Lemma 1: If (1) $U(x^2) \ge U(x^1)$ implies that $U(\theta x^2) \ge U(\theta x^1)$ for all $\theta > 0$

then (2) $U(x^2) = U(x^1)$ implies that $U(\theta x^2) = U(\theta x^1)$ for all $\theta > 0$

Proof: $U(x^2) = U(x^1)$ implies that $U(x^2) \ge U(x^1)$. Appealing to (1), $U(\theta x^2) \ge U(\theta x^1)$ for all $\theta > 0$ Assignment Project Exam Help $U(x^2) = U(x^1)$ implies that $U(x^1) \ge U(x^2)$. Appealing to (1), $U(\theta x^1) \ge U(\theta x^2)$ for all $\theta > 0$.

Combining these conclusions, https://powcoder.com

 $U(\theta x^1) \ge U(\theta x^2) \ge U(\theta x^1)$ for all $\theta > 0$. Add WeChat powcoder

Therefore

$$U(\theta x^1) = U(\theta x^2)$$
.

Lemma 2: If (1) $U(x^2) \ge U(x^1)$ implies that $U(\theta x^2) \ge U(\theta x^1)$ for all $\theta > 0$

then (3) $U(x^2) > U(x^1)$ implies that $U(\theta x^2) > U(\theta x^1)$ for all $\theta > 0$

Sketch of proof: Suppose that $U(x^2) > U(x^1)$ then $U(\theta x^2) \ge U(\theta x^1)$ for all $\theta > 0$

Suppose that for some θ , $U(\theta x^2) = U(\theta x^1)$. Then show that this contradicts Lemma 1.

 x_2

Proposition: With identical homothetic preferences, market demand is the same as the demand of a single representative consumer with all of the income.

Proof by contradiction:

Let \overline{x} be optimal for a consumer with income 1. i.e.

$$\overline{x}$$
 solves $\underset{x>0}{Max}\{U(x) \mid p \cdot x \leq 1\}$.

Since $I\overline{x}$ costs I it is a feasible consumption bundle

for a consumer with income signment Project Exam Help

Suppose that the bundle is not optimal. Then nttps://powcoder.com

 \hat{x} solves $\max_{x>0} \{U(x) \mid p \cdot x \leq I\}$ and $U(\hat{x}) > U(I\overline{x})$

**

Add WeChat powcoder

$$p \cdot x = I$$

 $p \cdot x = 1$

 x_1

Proposition: With identical homothetic preferences, market demand is the same as the demand of a single representative consumer with all of the income.

Proof by contradiction:

Let \overline{x} be optimal for a consumer with income 1. i.e.

$$\overline{x}$$
 solves $\max_{x \ge 0} \{ U(x) \mid p \cdot x \le 1 \}$. (*)

 $I\overline{x}$ is a feasible consumption bundle for a consumer with income I.

Suppose that the bundle ssignment Project Exam Help

$$\hat{x}$$
 solves $\max_{x \geq 0} \{U(x) \mid p \cdot x \leq I\}$ and $U(\hat{x}) > U(I\overline{x})$ powcoder.com

By homotheticity, it follows that

$$U(\theta \hat{x}) > U(\theta I \bar{x})$$
 for all θ . Add WeChat powcoder

Setting
$$\theta = \frac{1}{I}$$
 , $U(\frac{1}{I}\hat{x}) > U(\overline{x})$

*

Proposition: With identical homothetic preferences, market demand is the same as the demand of a single representative consumer with all of the income.

Proof by contradiction:

Let \overline{x} be optimal for a consumer with income 1. i.e.

$$\overline{x}$$
 solves $\max_{x \ge 0} \{ U(x) \mid p \cdot x \le 1 \}$. (*)

 $I\overline{x}$ costs I so is a feasible consumption bundle with income I.

Suppose that the bundle ssignment Project Exam Help

$$\hat{x}$$
 solves $\max_{x \ge 0} \{U(x) \mid p \cdot x \le I\}$ and $U(\hat{x}) > U(I\bar{x})$ nttps://powcoder.com

By homotheticity, it follows that

$$U(\theta \hat{x}) > U(\theta I \bar{x})$$
 for all θ . We Chat powcoder

Setting
$$\theta = \frac{1}{I}$$
, $U(\frac{1}{I}\hat{x}) > U(\bar{x})$

Since $\frac{1}{I}\hat{x}$ costs 1, it is a feasible consumption bundle for a consumer with income 1.

But then \overline{x} is not optimal for the consumer with income 1, contradicting (*)

Homothetic preferences

For any $\bar{x} >> 0$ and any $\theta > 0$ $MRS(\theta \bar{x}) = MRS(\bar{x})$

Why?

 x_2

Assignment Project Exam Help

https://powcoder.com

 $p \cdot x = I$

 $p \cdot x = \theta I$

 $\theta \overline{x}$

Add WeChat powcoder

 x_1

© John Riley

Examples of homothetic utility functions

(i)
$$U(x) = a_1x_1 + a_2x_2 = a \cdot x$$
, $a \gg 0$

(ii)
$$U(x) = x_1^{\alpha_1} x_2^{\alpha_2} x_3^{\alpha_3}, \ \alpha >> 0$$

(iii)
$$U(x) = (x_1^{1/2} + x_2^{1/2})^2$$

- (iv) $U(x) = -\frac{1}{x_1} \frac{2}{x_2} + \frac{3}{x_3} = 1$ ignment Project Exam Help
- (v) $U(x) = x_1^2 + x_2^2$ https://powcoder.com

Add WeChat powcoder

Definition: Market demand

If $x^h(p,I^h)$, h=1,...,H uniquely solves $\max_{x\geq 0}\{U^h(x)\mid p\cdot x\leq I^h\}$, then the market demand for H consumers with incomes $I^1,...,I^H$ is

$$x(p) = \sum_{h=1}^{H} x^{h}(p, I^{h})$$

** Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

© John Riley

Definition: Market demand

If $x^h(p,I^h)$, h=1,...,H uniquely solves $\max_{x>0}\{U^h(x)\mid p\cdot x\leq I^h\}$, the market demand for Hconsumers with incomes $I^1,...,I^H$ is

$$x(p) = \sum_{h=1}^{H} x^{h}(p, I^{h})$$

Consider a 2 consumer Assigniment Project. Exam Help

Proposition: Market demand in a 2 person economy with identical homothetic preferences. https://powcoder.com $x(p,I^1)+x(p,I^2)=x(p,I^1+I^2)$

$$x(p,I^1) + x(p,I^2) = x(p,I^1 + I^2)$$

Proof:

Add WeChat powcoder

If x(p,I) is the demand for a consumer with income I then $x(p,I^h) = I^h x(p,1)$ and so

$$x(p,I^1) + x(p,I^2) = I^1x(p,1) + I^2(x(p,1)) = (I^1 + I^2)x(p,1)$$

Also

$$x(p,I^1+I^2)=(I^1+I^2)x(p,1).$$

Corollary: Representative consumer

Suppose that consumers have identical strictly increasing homothetic preferences and that

$$\overline{x}$$
 solves $\underset{x\geq 0}{Max}\{U(x) \mid p \cdot x \leq I = \sum_{h=1}^{H} I^h\}$

Then \bar{x} is a market demand.

Assignment Project Exam Help

Proof: Follows almost immediately from the proposition https://powcoder.com

Add WeChat powcoder

B. Walrasian equilibrium (WE) in an exchange economy

In a WE consumer h knows his own endowment and preferences but knows nothing about the economy except the vector of prices. Consumer h then solves for the set of Walrasian (utility maximizing) demands $x^h(p,\omega^h)$.

The price vector is a WE price vector if there is some WE demand $\bar{x}^h \in x^h(p,\omega^h)$, h=1,...,H such that the sum of these demands (the market demand) is equal to the total endowment. Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Walrasian equilibrium (WE) in an exchange economy with identical homothetic preferences

Consider the representative consumer with endowment $\omega = \sum_{h=1}^{H} \omega^h$. We assume $\omega >> 0$.

Let \overline{x} be a demand of the representative consumer. Then \overline{x} solves $\max_{x} \{U(x) \mid p \cdot x \le p \cdot \omega = I\}$

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Walrasian equilibrium (WE) in an exchange economy with identical homothetic preferences

Consider the representative consumer with endowment $\omega = \sum_{h=1}^{H} \omega^h$. We assume $\omega >> 0$.

Let \bar{x} be a demand of the representative consumer. Then \bar{x} solves $\max_{x} \{U(x) \mid p \cdot x \le p \cdot \omega = I\}$

FOC for a maximum.

$$\frac{1}{p_1} \frac{\partial U}{\partial x_1}(x) = \dots = \frac{1}{p_1} \frac{\partial U}{\partial x_2}(x)$$
Project Exam Help

$$\frac{1}{p_1} \frac{\partial U}{\partial x_1}(\omega) = \dots = \frac{1}{p_n} \frac{\partial U}{\partial x_n}(\omega) \cdot \text{dd WeChat powcoder}$$

Note that this only determines relative prices (i.e. price ratios.)

*

© John Riley

Walrasian equilibrium (WE) in an exchange economy with identical homothetic preferences

Consider the representative consumer with endowment $\omega = \sum_{h=1}^{H} \omega^h$. We assume $\omega >> 0$.

Let \bar{x} be a demand of the representative consumer. Then \bar{x} solves $\max_{x} \{U(x) \mid p \cdot x \leq p \cdot \omega \equiv I\}$

FOC for a maximum.

$$\frac{1}{p_1} \frac{\partial U}{\partial x_1}(x) = \dots = \frac{1}{p_1} \frac{\partial U}{\partial x_2}(x)$$
Project Exam Help

$$\frac{1}{p_1} \frac{\partial U}{\partial x_1}(\omega) = \dots = \frac{1}{p_n} \frac{\partial U}{\partial x_n}(\omega) \frac{\partial U}{\partial x_n}(\omega) + \dots = \frac{1}{p_n} \frac{\partial U}{\partial x_n}(\omega) \frac{\partial U}{\partial x_n}(\omega) = \dots = \frac{1}{p_n} \frac{\partial U}{\partial x_n}(\omega) \frac{\partial U}{\partial x_n}(\omega) = \dots = \frac{1}{p_n} \frac{\partial U}{\partial x_n}(\omega) \frac{\partial U}{\partial x_n}(\omega) = \dots = \frac{1}{p_n} \frac{\partial U}{\partial x_n}(\omega) \frac{\partial U}{\partial x_n}(\omega) \frac{\partial U}{\partial x_n}(\omega) = \dots = \frac{1}{p_n} \frac{\partial U}{\partial x_n}(\omega) \frac{\partial U}{\partial x_n}(\omega)$$

Note that this only determines relative prices (i.e. price ratios.)

Above we argued that if consumer h has an endowment of value $p \cdot \omega^h = I^h$ then

$$\overline{x}^h = \frac{I^h}{I} \overline{x} = \frac{I^h}{I} \omega$$
, where I is the sum of all the incomes $I = I^1 + ... + I^H$

is a WE demand.

Therefore in the WE of the homothetic economy, consumer h consumes a fraction $\frac{I^h}{I}$ of the aggregate endowment.

Example:
$$U^h(x^h) = \ln x_1^h + 2\ln x_2^h$$
 $\omega^1 = (36,6)$ $\omega^2 = (12,42)$

Exercise: Use the representative consumer to show that $p = (\frac{1}{3}, \frac{2}{3})$ is the unique WE price vector normalized so that the sum of the prices is 1.

The trade triangles are depicted in the figure.

C. The market value of attributes

In studying industries like the airline industry economist often try to determine the implicit value of different attributes (for example, air travel: leg-room, percentage on-time arrival etc.)

We now consider a simple example to illustrate.

Each unit of commodity 1 and commodity 2 (flights on different airlines) have different amounts of two attributes

Assignment Project Exam Help commodity 1 commodity 2

Attribute A

2 https://powcoder.com

Attribute B

1 Add WeChat powcoder

Total endowment

Assignment Project Exam Help commodity 2

2 https://powcoder.com

*

C. The market value of attributes

In studying industries like the airline industry economist often try to determine the implicit value of different attributes (for example, air travel: leg-room, percentage on-time arrival etc.)

We now consider a simple example to illustrate.

Each unit of commodity 1 and commodity 2 (flights on different airlines) have different amounts of two attributes

(attribute A and B) Assignment Project Exam Help commodity 1 commodity 2

2 https://powcoder.com Attribute A

Add We Chat powcoder Attribute B

Total endowment

A consumer cares about the quantity of each attribute consumed. Let $(x_1, x_2, x_3, ...)$ be the consumption choice

$$a = 2x_1 + 1x_2$$
, $b = 1x_1 + 3x_2$
 $U^h = U^h(a,b,x_3,...,x_n) = \ln a + \ln b + \alpha_3 \ln x_3....$
 $= \ln(2x_1 + x_2) + \ln(x_1 + 3x_2) + \alpha_3 \ln x_3 + ...$

To keep the model simple we assume that every consumer has the same log utility function.

Exercise: Is the log utility function homothetic?

Exercise: Show that the WE price ratio for the first two commodities must be $\frac{p_2}{p} = \frac{4}{3}$.

An alternative approach

Attribute A Attribute B

Imagine a market for attributes. What would be the market clearing prices of each attribute?

Assignment Project Exam Help

commodity 2 Total endowment of each attribute commodity 1

https://powcoder.com 2×40+1×20=100 Add WeChat powcoder

Total commodity endowment 20 40

Let $\lambda = (\lambda_a, \lambda_b)$ be the shadow (implicit) price vector for the two attributes.

Exercise: (a) Show that $\frac{\lambda_b}{\lambda} = 1$.

(b) Using these attribute prices, what is the value of each commodity?

Group Exercise

Each unit of commodity 1, 2 and 3 (flights on different airlines) have different amounts of two attributes

(attribute A and B)

commodity 1 commodity 2 commodity 3

Attribute A 2 1 5

Attribute B Assignment Project Exam Help

Total endowment 40 20 10

A consumer cares about the quantity of each attribute consumed.

 $a = 2x_1 + 1x_2 + 5x_3$, $b = 1x_1 + 3x_2$ We Chat powcoder

 $U^h = U^h(a,b,x_3,...,x_n) = \ln a + \ln b +$

 $= \ln(2x_1 + x_2 + 5x_3) + \ln(x_1 + 3x_2 + 5x_3) + \alpha_4 \ln x_4 + \dots$

Left-hand groups: Solve for the equilibrium prices directly

Right-hand groups: Solve for the shadow prices of each attribute, (λ_a, λ_b)