

Data Science & ML Course Lesson #18 Linear Regression

Ivanovitch Silva November, 2018

- One variable
- Multiples variables
- We discuss the application of linear regression to housing price prediction
- Present the notion of a cost function
- Introduce the gradient descent method for learning.
- Refresher on linear algebra concepts.

Update from repository

git clone https://github.com/ivanovitchm/datascience2machinelearning.git

Or

git pull

Regression

5 kilograms

200 kilograms

1.5 kilograms

????


```
import pandas as pd
   from sklearn import linear model
   import matplotlib.pyplot as plt
  #read data
  df = pd.read fwf('brain body.txt')
  X = df[['Brain']]
  y = df[['Body']]
11 #train model on data
  model = linear model.LinearRegression()
  model.fit(X, y)
14
15 #visualize results
16 plt.scatter(X.values, y.values)
17 plt.plot(X.values, model.predict(X), color='red')
18 plt.xlabel('Brain weight (kg)')
19 plt.ylabel('Body weight (kg)')
20
21 plt.show()
```


Linear Regression - Housing Price

Linear Regression with One Variable

m = 14

Notation:

- m number of training examples
- X's input variable/features
- y's output variable/ target variable

$X^{(1)} = 31770$	$y^{(1)} = 215000$
$X^{(2)} = 11622$	$y^{(2)} = 105000$
$X^{(3)} = 14267$	$v^{(3)} = 172000$

	5.00 5.00	3183828 31883
	31770	215000
	11622	105000
65	14267	172000
	11160	244000
	13830	189900

Lot Area

 $(X^{(i)},y^{(i)}) = i^{th}$ training example

Model Representation (linear reg. one variable)

How do we represent h?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost Function

"minimize the error"

Cost Function (Linear Reg. One Var.)

m = 1465

Hypothesis $h_{\theta}(x) = \theta_0 + \theta_1 x$

 θ_i = parameters

How to choose θ_i ?

Training Set

Lot Area	SalePrice
31770	215000
11622	105000
14267	172000
11160	244000
13830	189900

Cost Function Intuition #01 (linear reg. One var)

Cost Function (square error function)

Training Set (m instances)

	Lot Area	SalePrice	
x ⁽¹⁾	31770	215000	y ⁽¹⁾
$x^{(2)}$	11622	105000	y ⁽²⁾
$\mathbf{x}^{(3)}$	14267	172000	y (3)
x ⁽⁴⁾	11160	244000	y ⁽⁴⁾
x ⁽⁵⁾	13830	189900	y ⁽⁵⁾

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left[h_{\theta}(x^{(i)}) - y^{(i)} \right]^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Idea:

- choose θ_0 , θ_1 so that $h_{\theta}(x)$ is close to y for our training examples $(x^{(i)}, y^{(i)})$
- minimize (θ_0, θ_1)

Cost Function[step #01] - Select the feature x

Cost Function[step #01] - Select the feature x₁

```
1 train[['Garage Area', 'Gr Liv Area', 'Overall Cond', 'Lot Area', 'SalePrice']].corr()
```

	Garage Area	Gr Liv Area	Overall Cond	Lot Area	SalePrice
Garage Area	1.000000	0.473506	-0.145705	0.213122	0.625335
Gr Liv Area	0.473506	1.000000	-0.134157	0.248676	0.706364
Overall Cond	-0.145705	-0.134157	1.000000	-0.042415	-0.108979
Lot Area	0.213122	0.248676	-0.042415	1.000000	0.267714
SalePrice	0.625335	0.706364	-0.108979	0.267714	1.000000

Cost Function Intuition #01 $(\theta_0 = 0)$

$$\hat{y} = h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\hat{y} = h_{\theta}(x) = \theta_1 x$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left[\theta_1 x^{(i)} - y^{(i)} \right]^2$$

A1: 227

Cost Function Intuition #02 (linear reg. One var)

-200

theta_1

Surface

0

400

600

-200k

-100k

100k theta_0

200k

300k

Cost Function Intuition #02

(θ_0 and θ_1 are defined)

$$\hat{y} = h_{ heta}(x) = heta_0 + heta_1 x$$

$$J(heta_0, heta_1) = rac{1}{2m} \sum_{i=1}^m \left[h_ heta(x^{(i)}) - y^{(i)})
ight]^2$$

Gradient Descent (linear reg. One var)

Algorithm - Idea

 $\begin{array}{ccc} \text{Have some function J}(\theta_0,\!\theta_1) \\ \text{Want} & & \min_{\theta_0,\!\theta_1} \text{J}(\theta_0,\!\theta_1) \\ & & \theta_0,\!\theta_1 \end{array}$

Start with some θ_0, θ_1 Keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at a minimum

repeat until converge {

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

}

a - learning rate

repeat until converge {

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

Correct update

$$aux_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$
$$aux_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 = aux_0$$

$$\theta_1 = aux_1$$

Incorrect update

$$aux_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 = aux_0$$

$$aux_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 = aux_1$$

repeat until converge {

$$aux_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left[h_{\theta}(x^{(i)}) - y^{(i)} \right]$$

$$aux_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left[h_{\theta}(x^{(i)}) - y^{(i)} \right] x^{(i)}$$

$$\theta_0 = aux_0$$

$$\theta_1 = aux_1$$

}

Learning rate tradeoff

Gradient Descent Pitfalls

Hypothesis

$$\hat{y} = h_{\theta}(x) = \theta_0 + \theta_1 x$$

Gr Liv Area	SalePrice
2480	205000
1829	237000
2673	249000
1005	133500
1768	224900 to plot.ly »

$$hypothesis = \begin{bmatrix} 1 & 2480 \\ 1 & 1829 \\ 1 & 2679 \\ 1 & 1005 \\ 1 & 1768 \end{bmatrix} \times \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} 2480 \ \theta_1 + \theta_0 \\ 1829 \ \theta_1 + \theta_0 \\ 2679 \ \theta_1 + \theta_0 \\ 1005 \ \theta_1 + \theta_0 \\ 1768 \ \theta_1 + \theta_0 \end{bmatrix}$$

$$\times \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} 2480 & \theta_1 + \theta_0 \\ 1829 & \theta_1 + \theta_0 \\ 2679 & \theta_1 + \theta_0 \\ 1005 & \theta_1 + \theta_0 \\ 1768 & \theta_1 + \theta_0 \end{bmatrix}$$

def cost_function(X, y, theta):
 return np.sum(np.square(np.matmul(X, theta) - y)) / (2 * len(y))

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left[h_{\theta}(x^{(i)}) - y^{(i)} \right]^2$$

Gr Liv Area	SalePrice
2480	205000
1829	237000
2673	249000
1005	133500
1768	224900 Export to plot.ly »

$$J(\theta_0, \theta_1) = \frac{1}{2 \times 5} \sum \left(\begin{bmatrix} 2480 \ \theta_1 + \theta_0 \\ 1829 \ \theta_1 + \theta_0 \\ 2679 \ \theta_1 + \theta_0 \\ 1005 \ \theta_1 + \theta_0 \\ 1768 \ \theta_1 + \theta_0 \end{bmatrix} - \begin{bmatrix} 205000 \\ 237000 \\ 249000 \\ 133500 \\ 224900 \end{bmatrix} \right)^2$$


```
def gradient descent(X, y, alpha, iterations, theta):
   m = len(y)
    all thetas = [theta]
    for i in range(iterations):
        t0 = theta[0] - (alpha / m) * np.sum(np.dot(X, theta) - y)
        t1 = theta[1] - (alpha / m) * np.sum((np.dot(X, theta) - y) * X[:,1])
        theta = np.array([t0, t1])
        all thetas.append([t0,t1])
    return theta, np.array(all thetas)
```

This is why the algorithm called **Batch Gradient** Descent

repeat until converge {
$$aux_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left[h_\theta(x^{(i)}) - y^{(i)} \right]$$

 $aux_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left[h_{\theta}(x^{(i)}) - y^{(i)} \right] x^{(i)}$ $\theta_0 = aux_0$

$$= aux_0$$

$$uux_1$$

 $\theta_1 = aux_1$

$$aux_1$$

2_The linear Regression Model.ipynb

PREVIOUSLY ON...

lesson #18

Linear Regression - Housing Price

Lot Area (square feet)

Training Set (m instances)

	Lot Area	SalePrice	
x ⁽¹⁾	31770	215000	y ⁽¹⁾
$x^{(2)}$	11622	105000	y ⁽²⁾
$x^{(3)}$	14267	172000	y (3)
x ⁽⁴⁾	11160	244000	y ⁽⁴⁾
x ⁽⁵⁾	13830	189900	y ⁽⁵⁾

Cost Function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left[h_{\theta}(x^{(i)}) - y^{(i)} \right]^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Gradient Descent

- We are going to start by covering linear regression
 - Multiple variables
- We discuss the application of linear regression to housing price prediction

Linear Regression with Multiple Variables

Notation:

- m number of training examples
- n number of features
- x⁽ⁱ⁾ input features of ith training example
- x_j⁽ⁱ⁾ value of feature j in ith training example
 y⁽ⁱ⁾ target value of ith training examples

$$m = 5$$

X_1	X	X ₃	X ₄	У
Lot Area	Overall Qual	Year Built	Yr Sold	SalePrice
31770	6	1960	2010	215000

n = 4

Lot Area	Overall Qual	Year Built	Yr Sold	SalePrice
31770	6	1960	2010	215000
11622	5	1961	2010	105000
14267	6	1958	2010	172000
11160	7	1968	2010	244000
13830	5	1997	2010	189900

Hypothesis (previously)

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multivariable case

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

For convenience of notation, define $x_0=1$. In other words: $x_0^{(i)}=1$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$h_{\theta}(x) = \begin{bmatrix} \theta_0 & \theta_1 & \theta_1 & \dots & \theta_n \end{bmatrix} \times \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \theta^T x$$

Gradient Descent (linear reg. multiple variables)

Hypothesis: $h_{\theta}(x) = \theta^{T} x = \theta_{0} x_{0} + \theta_{1} x_{1} + \theta_{2} x_{2} + ... + \theta_{n} x_{n}$

Parameters:
$$\theta_0, \theta_1, \theta_2, \dots, \theta_n$$

Cost function:

$$J(\theta_0, \theta_1, \theta_2, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent: repeat { $\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta_0, \dots, \theta_n)$

Gradient descent:

repeat until the convergence {

$$\theta_{j} = \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)} \qquad \text{for } j = 0, \dots, n$$

Gradient Descent: trick #1 - Feature Scaling

Gradient Descent: trick #1 - Feature Scaling

Z-Score or Standardization

$$z = \frac{x - \mu}{\sigma}$$

$$\mu$$
 - 0 σ - 1

Min-Max Scaling

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Gradient Descent: trick #2 - Debugging α

- 1. Make a plot with number of iterations on the x-axis.
- 2. Now plot the cost function, $J(\theta)$ over the number of iterations of gradient descent.
- 3. If $J(\theta)$ ever increases, then you probably need to decrease α .
- It has been proven that if learning rate α is sufficiently small, then J(θ) will decrease on every iteration.
- 5. Automatic convergence test

Gradient Descent: trick #2 - Debugging α

- If α is too small:
 - Slow convergence
- If α is too large:
 - \circ J(Θ) may not decrease on every iteration;
 - \circ J(Θ) may not converge.

```
To choice α: ..., 0.0001, ..., 0.01, ..., 0.1, ..., 1, ..., 10, ...
```


normal equation: method to
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

Normal Equation

Lot Area	Overall Qual	Year Built	Yr Sold	SalePrice
31770	6	1960	2010	215000
11622	5	1961	2010	105000
14267	6	1958	2010	172000
11160	7	1968	2010	244000
13830	5	1997	2010	189900

$$X\theta = y$$

$$X^{T}X\theta = X^{T}y$$

$$\theta = (X^{T}X)^{-1}X^{T}y$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \end{bmatrix} = \begin{bmatrix} \theta_0 + 31770\theta_1 + 6\theta_2 + 1960\theta_3 + 2010\theta_4 \\ \theta_0 + 11622\theta_1 + 5\theta_2 + 1961\theta_3 + 2010\theta_4 \\ \theta_0 + 14267\theta_1 + 6\theta_2 + 1958\theta_3 + 2010\theta_4 \\ \theta_0 + 11160\theta_1 + 7\theta_2 + 1968\theta_3 + 2010\theta_4 \\ \theta_0 + 13830\theta_1 + 5\theta_2 + 1997\theta_3 + 2010\theta_4 \end{bmatrix}$$

There is **no need** to do feature scaling with the normal equation.

The following is a comparison of gradient descent and the normal equation:

Gradient Descent	Normal Equation
Need to choose alpha	No need to choose alpha
Needs many iterations	No need to iterate
O (kn^2)	O (n^3), need to calculate inverse of $X^T X$
Works well when n is large	Slow if n is very large

With the normal equation, computing the inversion has complexity $\mathcal{O}(n^3)$. So if we have a very large number of features, the normal equation will be slow. In practice, when n exceeds 10,000 it might be a good time to go from a normal solution to an iterative process.

If X^TX is **noninvertible**, the common causes might be having :

- Redundant features, where two features are very closely related (i.e. they are linearly dependent)
- Too many features (e.g. $m \le n$). In this case, delete some features or use "regularization" (to be explained in a later lesson).

