Over Dispersion

This occurs when $var(Y) > \mathbb{E}(Y)$.

Several sources of over dispersion:

▶ Correlated sampling: $Y = \sum_{i=1}^{m} Z_i$, where $Z_i \sim Poisson(\lambda_i)$ are correlated with $corr(Z_i, Z_j) = \rho_{ij} > 0$. Then

$$\mathbb{E}(Y) = \sum_{i=1}^m \lambda_i, \; \mathsf{var}(Y) = \sum_{i=1}^m \lambda_i + c > \mathbb{E}(Y)$$

- ▶ Clustering: $Y = U_1 + \cdots + U_N$ where U_i are iid from some distribution taking integer values, and $N \sim Poisson(\lambda)$.
- ▶ Poisson-Gamma model: $Y|\mu \sim Poisson(\mu)$ and $\mu \sim Gamma(\alpha, \beta)$

Diagnostics with half-normal plot:

- Order the absolute value of residuals (Pearson or deviance residuals) without dispersion
- ▶ Plot $|r_{(i)}|$ (y coordinates) against $\Phi^{-1}(\frac{n+i+0.5}{2n+1.125})$ (x coordinates), for $i=1,\cdots,n$
- ▶ Reference line is a straight line through origin with slope 1
- ► Linear deviation from the reference line indicates constant over-dispersion
- Empirical slope is roughly $\sqrt{\phi}$

Modeling Over-Dispersion

Two ways to model over dispersion:

- ▶ Poisson regression with a dispersion parameter
- ► Negative binomial regression

Poisson regression with a dispersion parameter:

In general, without knowing the mechanism that generates the over-dispersion, one can assume $\mathrm{var}(Y) = \phi \mathbb{E}(Y)$ and estimate ϕ using

$$\hat{\phi} = \frac{G}{n-p} = \frac{\sum (Y_i - \hat{\mu}_i)^2 / \hat{\mu}_i}{n-p}.$$

Then,

$$egin{aligned} egin{aligned} eta_Q &= eta_{ extit{MLE}} \ & \operatorname{cov}(eta_Q) &= \hat{\phi} \operatorname{cov}(\hat{eta}_{ extit{MLE}}) \end{aligned}$$

Deviance analysis with dispersion:

Assume we separate predictors into two sets $\boldsymbol{X}=(\boldsymbol{X}_1,\boldsymbol{X}_2)$. We want to test

$$H_0: \boldsymbol{\beta}_2 = \boldsymbol{0} \text{ vs } H_1: \boldsymbol{\beta}_2 \neq \boldsymbol{0}$$

- ▶ Model 1: $\eta = \boldsymbol{X}_1 \boldsymbol{\beta}_1$
- Model 2: $\eta = X_1 \beta_1 + X_2 \beta_2$

Steps:

- 1. Calculate deviance D_1 from Model 1 (without over dispersion)
- 2. Calculate deviance D_2 from Model 2 (without over dispersion)
- 3. Estimate ϕ from the larger model (Model 2) by

$$\hat{\phi} = G/(n-p1-p2)$$

4. Conduct F test

$$\frac{D_1 - D_2}{p_2 \hat{\phi}} \sim F(p_2, n - p_1 - p_2), \text{ under } H_0$$

Negative binomial regression:

- ▶ $Y \sim NB(r, p)$: # of successes before r failures (with success rate p)
- ▶ Mean pr/(1-p), variance $pr/(1-p)^2$
- ▶ Reparameterization (mean $\mu > 0$ and dispersion parameter $\phi > 0$):

$$\mathbb{P}(Y = y) = \frac{\Gamma(y + \phi)}{\Gamma(y + 1)\Gamma(\phi)} \frac{\mu^{y}\phi^{\phi}}{(\mu + \phi)^{\phi + y}}$$

with mean μ and variance $\mu + \mu^2/\phi$.

Negative-Binomial regression model can handle over dispersion:

$$Y_i \sim NB(\mu_i, \phi)$$

$$\log(\mu_i) = \mathbf{x}_i \boldsymbol{\beta}$$

Example: Wave Damage

For ship i, let n_{ij} be the number of months in the jth period, and Y_{ij} be the number of damages accordingly.

- $ightharpoonup Y_{ij}$ may be correlated across j
- ▶ This may cause over-dispersion

Zero-Inflated Poisson Regression

Sometimes, response may have excessive zeros

- State wildlife biologists want to model how many fish are being caught by visitors in a state park. Some visitors did not fish. Some visitors did fish but didn't catch any fish.
- ▶ In next-generation RNA sequencing study, gene expressions are measured by read counts. Some genes have no expression in a tissue sample, while others have but not detectable.

- Poisson or NB models tend to underestimate the number of zeros
- ▶ Need to model two processes separately:
 - one drives whether the value is always 0
 - one drives the value of potentially non-zero count
- ▶ Zero-inflated Poisson (ZIP) model

ZIP model for Y_i :

 \triangleright Z_i is a latent binary variable that generates structural zeros

$$\mathbb{P}(Z_i=0)=\pi_i$$

► The response satisfies

$$Y_i|(Z_i=0)=0$$

$$Y_i|(Z_i=1) \sim Poisson(\lambda_i)$$

- Consider two types of models
 - ▶ $\log(\lambda_i) = \mathbf{z}_i \boldsymbol{\beta}$ and $logit(\pi_i) = \mathbf{z}_i \boldsymbol{\gamma}$ Suitable for the fishing example
 - ▶ $\log(\lambda_i) = \mathbf{x}_i \boldsymbol{\beta}$ and $logit(\pi_i) = -\tau \mathbf{x}_i \boldsymbol{\beta}$ ($\tau > 0$) Suitable for the RNA-Seq example

Example: Fishing in the Park

It is of interest to investigate what factors are related to the number of fish caught in a state park.

camper	persons	${\tt child}$	${\tt count}$
0	1	0	0
1	1	0	0
0	1	0	0
1	2	1	0
0	1	0	1
1	4	2	0

We assume whether a group fished or not depends on *persons*, and how many fish they got (if they fished) depends on *camper* and *child*.