- Active/linear
- Saturation
- Cutoff

Collector current, Emitter current (mA) Base current micro Ampere.

BE forward biased CB reverse biased

Transistor Biasing

Fixed dc current and fixed dc voltage should be established

Agenda

Introduction

- Any increase in ac voltage, current, or power is the result of a transfer of energy from the applied dc supplies.
- The analysis or design of any electronic amplifier therefore has two components: a dc and an ac portion.
- Basic Relationships/formulas for a transistor:

$$V_{BE} = 0.7 \text{ V}$$

$$I_E = I_B + I_C = I_B + \beta I_B = I_B (1 + \beta)$$

$$I_C = \beta I_B$$

 Biasing means applying of dc voltages to establish a fixed level of current and voltage. >>> Q-Point

Operating Point

Base current, collector current, emitter current, VCE, VBE

- For transistor amplifiers the resulting dc current and voltage establish an operating point on the characteristics that define the region that will be employed for amplification of the applied signal.
- Because the operating point is a fixed point on the characteristics, it is also called the quiescent point (abbreviated Q-point).

Transistor Regions Operation:

1. Linear-region operation:

Base—emitter junction forward-biased Base—collector junction reverse-biased

2. Cutoff-region operation:

Base-emitter junction reverse-biased Base-collector junction reverse-biased

3. Saturation-region operation:

Base-emitter junction forward-biased Base-collector junction forward-biased

For the BJT to be biased in its linear or active operating region the following must be true:

- 1. The base-emitter junction must be forward-biased (p-region voltage more positive), with a resulting forward-bias voltage of about 0.6 V to 0.7 V.
- 2. The base-collector junction must be reverse-biased (n-region more positive), with the reverse-bias voltage being any value within the maximum limits of the device.

TRANSISTOR DC BIAS CONFIGURATIONS

- Fixed-Bias Configuration
- Emitter-Bias Configuration
- Voltage-Divider Bias Configuration
- Collector Feedback Configuration
- Emitter-Follower Configuration
- Common-Base Configuration

CE (common emitter)
4 types

CC (Common collector), output is taken from emitter

CB, CE, CC

Fixed-Bias Configuration

First step is to find I_B Then determine $I_c = I_E$ Afterwards, we can find the value of V_{CE}

Fixed-bias circuit.

DC equivalent ct.

$$V_{BE} = 0.7 \text{ V}$$

$$I_E = I_B + I_C = I_B + \beta I_B = I_B (1 + \beta)$$

$$I_C = \beta I_B$$

Fixed-bias circuit.

DC equivalent ct.

First step is to find I_B Then determine $I_c = \beta I_B = I_E$ Afterwards, we can find the value of V_{CE}

Fixed-bias circuit.

Base–emitter loop.

Collector–emitter loop.

First step is to find I_B Then determine $I_c = \beta I_B = I_E$ Afterwards, we can find the value of V_{CE}

Fixed-bias circuit.

· DC equivalent ct.

Base–emitter loop.

$$V_{CC} = I_B R_B + V_{BE}$$

$$+V_{CC} - I_B R_B - V_{BE} = 0$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

Collector–emitter loop.

Fixed-Bias Configuration Example

EXAMPLE 4.1 Determine the following for the fixed-bias configuration of Fig. 4.7.

 $V_{BC}=V_{B}-V_{C}$

- a. I_{B_Q} and I_{C_Q} .
- b. V_{CE_o} .
- c. V_B and V_C .
- d. V_{BC} .

Solution

$$I_{B_Q} = \frac{V_{CC} - V_{BE}}{R_B} = \frac{12 \text{ V} - 0.7 \text{ V}}{240 \text{ k}\Omega} = 47.08 \,\mu\text{A}$$

 $I_{C_Q} = \beta I_{BQ} = (50)(47.08 \,\mu\text{A}) = 2.35 \,\text{mA}$

$$V_{CE_Q} = V_{CC} - I_C R_C$$

= 12 V - (2.35 mA)(2.2 k Ω)
= 6.83 V

$$V_B = V_{BE} = 0.7 \text{ V}$$

 $V_C = V_{CE} = 6.83 \text{ V}$

Using double-subscript notation yields

$$V_{BC} = V_B - V_C = 0.7 \text{ V} - 6.83 \text{ V}$$

= -6.13 V

with the negative sign revealing that the junction is reversed-biased, as it should be for linear amplification.

$$V_{CE}=V_{C}-V_{F}$$

2 Circuit the information appearing in Fig. 4.119, determine:

$$V_{BE} = 0.7 \text{ V}$$

$$I_E = I_B + I_C = I_B + \beta I_B = I_B (1 + \beta)$$

$$I_C = \beta I_B$$

on appearing in Fig. 4.120, determine:

b.
$$V_{CC}$$
.

d.
$$R_B$$
.

$$V_{BE} = 0.7 \text{ V}$$
$$I_C = \beta I_B$$

 $V_{C}=V_{CE}=6$ V

$$I_{C}$$
 R_{B}
 I_{C}
 R_{C}
 I_{C}
 I_{C

$$I_B = \frac{V_{CC} - 0.7}{R_B}$$

$$I_C = \beta I_B$$

$$V_{CE} = V_{CC} - I_C R_C$$

Fixed-Bias Configuration Example

Transistor Saturation

- Saturation regions:
 - (a) Actual
 - (b) approximate.

Determining I_{Csat} for the fixed-bias configuration.

$$I_{C_{\text{sat}}} = \frac{V_{CC}}{R_C}$$

$$I_{C(sat)} = rac{V_{CC}}{R_C}$$
 $V_{CE}(off) = V_{CC}$

Load Line Analysis For Fixed Biased

$$V_{CE} = V_{CC} - I_C R_C$$

$$V_{CE} = V_{CC} - (0)R_C$$

$$V_{CE} = V_{CC}|_{I_C = 0 \,\text{mA}}$$

$$I_{C(sat)} = \frac{V_{CC}}{R_C}$$

Load line analysis (a) network (b) device caharcteristics

Ic (mA)

↓ I_C (mA)

Movement of the Q-point with increasing level of I_B .

Effect of an increasing level of R_C on the load line and the Q-point.

Effect of lower values of V_{CC} on the load line and the Q-point.

Draw the load-line for the above network

Load line for Fixed Biased

$$I_{C(sat)} = \frac{V_{CC}}{R_C}$$

$$V_{CE}(off) = V_{CC}$$

Solution: From Fig. 4.16,

and

and

$$V_{CE} = V_{CC} = 20 \text{ V} \text{ at } I_C = 0 \text{ mA}$$

$$I_C = \frac{V_{CC}}{R_C} \text{ at } V_{CE} = 0 \text{ V}$$

$$R_C = \frac{V_{CC}}{I_C} = \frac{20 \text{ V}}{10 \text{ mA}} = 2 \text{ k}\Omega$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B}$$

 $R_B = \frac{V_{CC} - V_{BE}}{I_B} = \frac{20 \text{ V} - 0.7 \text{ V}}{25 \,\mu\text{A}} = 772 \text{ k}\Omega$

Given the load line of Fig. 4.16 and the defined Q-point, determine the required values of V_{CC} , R_C , and R_B for a fixed-bias configuration.

Formula's for Fixed Bias:

$$I_{B} = \frac{V_{CC} - 0.7}{R_{B}}$$

$$I_{C} = \beta I_{B}$$

$$V_{CE} = V_{CC} - I_{C}R_{C}$$

$$I_{C(Sat)} = \frac{V_{CC}}{R_C}$$

Cutoff voltage $V_{CE(off)}=V_{cc}$

Emitter-Bias Configuration

BJT bias circuit with emitter resistor.

 $q V_{CC}$

DC equivalent ct

-Emitter Loop

$$+V_{CC} - I_B R_B - V_{BE} - I_E R_E = 0$$

$$I_E = (\beta + 1)I_B$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$$

 $R_i = (\beta + 1)R_E$

imitter-Bias Configuration

$$I_{BE} = 0.7 \text{ V}$$

$$I_{E} = I_{B} + I_{C} = I_{B} + \beta I_{B} = I_{B}(1 + \beta)$$

$$I_{C} = \beta I_{B}$$

resistor.

DC equivalent ct

Base-emitter loop:

 $Vcc = I_BR_B + V_{BE} + I_E R_E$

Emitter-Bias Configuration

DC equivalent ct

$$\begin{split} V_{CC} &= I_C R_C + V_{CE} + I_E R_E \\ V_{CE} &= V_{CC} - I_C R_C - I_E R_E \\ V_{CE} &= V_{CC} - I_C (R_C + R_E) \end{split}$$

Collector-Emitter Loop

$$+I_E R_E + V_{CE} + I_C R_C - V_{CC} = 0$$
$$I_E \cong I_C$$

$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

$$V_E = I_E R_E$$

$$V_{CE} = V_C - V_E$$

$$V_C = V_{CE} + V_E$$

$$V_B = V_{CC} - I_B R_B$$

$$V_C = V_{CC} - I_C R_C$$

$$V_B = V_{BE} + V_E$$

EXAMPLE 4.4 For the emitter-bias network of Fig. 4.23, determine:

Solution:

a. Eq. (4.17):
$$I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E} = \frac{20 \text{ V} - 0.7 \text{ V}}{430 \text{ k}\Omega + (51)(1 \text{ k}\Omega)}$$
$$= \frac{19.3 \text{ V}}{481 \text{ k}\Omega} = 40.1 \,\mu\text{A}$$

b.
$$I_C = \beta I_B$$

= $(50)(40.1 \,\mu\text{A})$
 $\approx 2.01 \,\text{mA}$
13.97 V= Vc - 2
0.7= VB - 2 =
VBC= VB - VC

c. Eq. (4.19):
$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$

= 20 V - (2.01 mA)(2 k Ω + 1 k Ω) = 20 V - 6.03 V
= 13.97 V

d.
$$V_C = V_{CC} - I_C R_C$$

= 20 V - (2.01 mA)(2 k Ω) = 20 V - 4.02 V
= 15.98 V

e.
$$V_E = V_C - V_{CE}$$

= 15.98 V - 13.97 V
= **2.01 V**
or $V_E = I_E R_E \cong I_C R_E = (2.01 \text{ mA})(1 \text{ k}\Omega) = 2.01 V$

f.
$$V_B = V_{BE} + V_E$$

= 0.7 V + 2.01 V
= 2.71 V

g.
$$V_{BC} = V_B - V_C$$

= 2.71 V - 15.98 V
= -13.27 V (reverse-biased as required)

Load line for

Emitter-Bias Configuration

Formula's for emitter Bias:

$$I_B = \frac{V_{CC} - 0.7}{R_B + (\beta + 1)R_E}$$

$$I_C = \beta I_B$$

$$V_{CE} = V_{CC} - I_C (R_C + R_E)$$

$$I_{C(Sat)} = \frac{V_{CC}}{R_C + R_E}$$

Cutoff voltage $V_{CE(off)}=V_{cc}$

- a. Draw the load line for the network of Fig. 4.26a on the characteristics for the transistor appearing in Fig. 4.26b.
- b. For a Q-point at the intersection of the load line with a base current of 15 μ A, find the values of I_{C_Q} and V_{CE_Q} . c. Determine the dc beta at the Q-point.
- d. Using the beta for the network determined in part c, calculate the required value of R_R

Q-point?

(mA)

- 1. Exact analysis
- 2. Approximation analysis (design)

 Voltage-divider bias configuration.

Exact Analysis

$$v_{CC}$$
 R_{C}
 R_{C}
 R_{C}
 R_{C}
 R_{C}

$$R_{\rm Th} = R_1 \| R_2$$

Applying the voltage-divider rule gives

$$E_{\rm Th} = V_{R_2} = \frac{R_2 V_{CC}}{R_1 + R_2}$$

$$R_{\rm Th} = R_1 \| R_2$$

The Thévenin network is then redrawn

$$E_{\rm Th} = V_{R_2} = \frac{R_2 V_{CC}}{R_1 + R_2}$$

by first applying Kirchhoff's voltage law

$$E_{\rm Th} - I_B R_{\rm Th} - V_{BE} - I_E R_E = 0$$

Substituting $I_E = (\beta + 1)I_B$ and solving for I_B yields

$$I_B = \frac{E_{\text{Th}} - V_{BE}}{R_{\text{Th}} + (\beta + 1)R_E}$$

FIG. 4.31

Formula's for Voltage Divider Bias:

For Exact Method

$$I_B = \frac{V_{th} - 0.7}{R_{th} + (\beta + 1)R_E}$$

$$I_C = \beta I_B$$

$$V_{CE} = V_{CC} - I_C (R_C + R_E)$$

$$R_{\rm Th} = R_1 \| R_2$$

$$V_{th} = R_2 \frac{V_{CC}}{R_1 + R_2}$$

$$I_{C(Sat)} = \frac{V_{CC}}{R_C + R_E}$$

Cutoff voltage $V_{CE(off)}=V_{cc}$

Find I_c and V_{CE} in the following circuit.

Approximate Analysis

We assume that the base current I_B is zero

$$\beta R_E \ge 10R_2$$

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC}$$

$$V_{BE} = V_{B} - V_{E}$$

$$V_E = V_B - V_{BE}$$

and the emitter current can be determined from

$$I_E = \frac{V_E}{R_E}$$

and

$$I_{C_Q} \cong I_E$$

The collector-to-emitter voltage is determined by

$$V_{CE} = V_{CC} - I_C R_C - I_E R_E$$

but because $I_E \cong I_C$,

$$V_{CE} = V_{CC} - I_C (R_C + R_E)$$

Formula's for Voltage Divider Bias:

Approximate Analysis

$$V_B = \frac{R_2 V_{CC}}{R_1 + R_2}$$

$$V_{BE} = V_B - V_E$$

$$V_E = V_B - V_{BE} = V_B - 0.7$$

$$V_E = I_E R_E$$

$$I_E = \frac{V_E}{R_E}, \text{ and } I_E \cong I_C$$

$$V_{CE} = V_{CC} - I_C (R_C + R_E)$$

Determine the voltage and current levels in the following circuit.

Determine the voltage and current levels in the following circuit.

$$\beta R_E \ge 10R_2$$

(50)(1.2 k Ω) $\ge 10(22 k\Omega)$
 $60 k\Omega \not\ge 220 k\Omega$ (not satisfied)

EXAMPLE 4.31 Determine V_{CE} for the voltage-divider bias configuration of Fig. 4.86.

Load line for

Voltage-Divider Configuration

COLLECTOR FEEDBACK CONFIGURATION

Base-Emitter Loop

$$V_{CC} - I'_C R_C - I_B R_F - V_{BE} - I_E R_E = 0$$

but I'_C (where $I'_C = I_C + I_B$).

However.

$$I_C' \cong I_C$$
 Substituting $I_C' \cong I_C = \beta I_B$ and $I_E \cong I_C$ results in $V_{CC} - \beta I_B R_C - I_B R_F - V_{BE} - \beta I_B R_E = 0$

$$V_{CC} - V_{BE} - \beta I_B (R_C + R_E) - I_B R_F = 0$$

$$I_B = \frac{V_{CC} - V_{BE}}{R_F + \beta (R_C + R_E)}$$

COLLECTOR FEEDBACK CONFIGURATION

$$V_{CC} = I_E R_E + V_{CE} + I'_C R_C$$

Because $I'_C \cong I_C$ and $I_E \cong I_C$, we have $I_C (R_C + R_E) + V_{CE} - V_{CC} = 0$

$$V_{CE} = V_{CC} - I_C(R_C + R_E)$$