

CCH Visualization

Patrick Steil, Daniel-Delong Zhang | March 13, 2024

Original Graph

The original graph this visualization will showcase.

Original Graph

The respective weight is on the right side of the edge.

Contraction

Contraction on the undirected graph without metrics.

Ordered Graph

Contract vertex 1

Find the outgoing edges

Set the smallest one as the parent

Copy the remaining edges to the parent if it is possible

Contract vertex 2

Find the outgoing edges

Set the smallest one as the parent

Contract vertex 3

Find the outgoing edges

Set the smallest one as the parent

Copy the remaining edges to the parent if it is possible

Contract vertex 4

Find the outgoing edges

Set the smallest one as the parent

Copy the remaining edges to the parent if it is possible

Contract vertex 5

Find the outgoing edges

Set the smallest one as the parent

Copy the remaining edges to the parent if it is possible

Contract vertex 6

Find the outgoing edges

Set the smallest one as the parent

Copy the remaining edges to the parent if it is possible

Contract vertex 7

Find the outgoing edges

Set the smallest one as the parent

Copy the remaining edges to the parent if it is possible

Contract vertex 8

Find the outgoing edges

Set the smallest one as the parent

Copy the remaining edges to the parent if it is possible

Contract vertex 9

Find the outgoing edges

Set the smallest one as the parent

Contract vertex 10

Contraction done

Basic Customization

Apply the weights. Upweight is number above. downweight is number below.

Customize for vertex 1

Customize for vertex 2

Customize for vertex 3

 $\{1,3,4\}$ is a lower triangle of (3,4)

Update upweight if possible

Update downweight if possible

 $\{1,3,9\}$ is a lower triangle of (3,9)

Update upweight if possible

Update downweight if possible

 $\{1, 3, 10\}$ is a lower triangle of (3, 10)

Update upweight if possible

Update downweight if possible

Customize for vertex 4

 $\{1,4,9\}$ is a lower triangle of (4,9)

Update upweight if possible

Update downweight if possible

 $\{3,4,9\}$ is a lower triangle of (4,9)

Update upweight if possible

Update downweight if possible

 $\{1, 4, 10\}$ is a lower triangle of (4, 10)

Update upweight if possible

Update downweight if possible

 ${3,4,10}$ is a lower triangle of ${4,10}$

Update upweight if possible

Update downweight if possible

Customize for vertex 5

Customize for vertex 6

 $\{5,6,8\}$ is a lower triangle of $\left(6,8\right)$

Update upweight if possible

Update downweight if possible

 $\{6,7,8\}$ is a lower triangle of (7,8)

Update upweight if possible

Update downweight if possible

Customize for vertex 8

 $\{7,8,9\}$ is a lower triangle of (8,9)

Update upweight if possible

Update downweight if possible

Customize for vertex 9

 $\{1, 9, 10\}$ is a lower triangle of (9, 10)

Update upweight if possible

Update downweight if possible

 ${3,9,10}$ is a lower triangle of ${9,10}$

Update upweight if possible

Update downweight if possible

 $\{4, 9, 10\}$ is a lower triangle of (9, 10)

Update upweight if possible

Update downweight if possible

 $\{8, 9, 10\}$ is a lower triangle of (9, 10)

Update upweight if possible

Update downweight if possible

Customize for vertex 10

Basic customization done

Perfect Customization

Customize for vertex 10

Customize for vertex 9

Customize for vertex 8

 $\{8,9,10\}$ is a upper triangle of (8,9) and a middle triangle of (8,10)

Update upweight for upper triangle if possible

Mark edge as deleted because its weight was changed

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

 $\{7,8,9\}$ is a upper triangle of $\left(7,8\right)$ and a middle triangle of $\left(7,9\right)$

Update upweight for upper triangle if possible

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

Customize for vertex 6

 $\{6,7,8\}$ is a upper triangle of (6,7) and a middle triangle of (6,8)

Update upweight for upper triangle if possible

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

Customize for vertex 5

 $\{5,6,8\}$ is a upper triangle of (5,6) and a middle triangle of (5,8)

Update upweight for upper triangle if possible

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

Customize for vertex 4

 $\{4,9,10\}$ is a upper triangle of (4,9) and a middle triangle of (4,10)

Update upweight for upper triangle if possible

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

Customize for vertex 3

 $\{3,4,9\}$ is a upper triangle of $\left(3,4\right)$ and a middle triangle of $\left(3,9\right)$

Update upweight for upper triangle if possible

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

Mark edge as deleted because its weight was changed

 $\{3,4,10\}$ is a upper triangle of (3,4) and a middle triangle of (3,10)

Update upweight for upper triangle if possible

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

Mark edge as deleted because its weight was changed

 $\{3,9,10\}$ is a upper triangle of (3,9) and a middle triangle of (3,10)

Update upweight for upper triangle if possible

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

Customize for vertex 2

Customize for vertex 1

 $\{1,3,4\}$ is a upper triangle of (1,3) and a middle triangle of (1,4)

Update upweight for upper triangle if possible

Mark edge as deleted because its weight was changed

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

Mark edge as deleted because its weight was changed

 $\{1,3,9\}$ is a upper triangle of (1,3) and a middle triangle of (1,9)

Update upweight for upper triangle if possible

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

 $\{1,3,10\}$ is a upper triangle of (1,3) and a middle triangle of (1,10)

Update upweight for upper triangle if possible

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

 $\{1,4,9\}$ is a upper triangle of $\left(1,4\right)$ and a middle triangle of $\left(1,9\right)$

Update upweight for upper triangle if possible

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

 $\{1,4,10\}$ is a upper triangle of (1,4) and a middle triangle of (1,10)

Update upweight for upper triangle if possible

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

 $\{1,9,10\}$ is a upper triangle of (1,9) and a middle triangle of (1,10)

Update upweight for upper triangle if possible

Update downweight for upper triangle if possible

Update upweight for middle triangle if possible

Update downweight for middle triangle if possible

Perfect customization done

Query

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	∞	n/a	n/a
8	∞	∞	n/a	n/a
9	∞	∞	n/a	n/a
10	∞	∞	n/a	n/a

Query from vertex 4 to 6

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	∞	n/a	n/a
8	∞	∞	n/a	n/a
9	∞	∞	n/a	n/a
10	∞	∞	n/a	n/a

Source < target, so relax forward from source

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	∞	n/a	n/a
8	∞	∞	n/a	n/a
9	10	∞	4	n/a
10	16	∞	4	n/a

Relax outgoing edges with upweights

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	∞	n/a	n/a
8	∞	∞	n/a	n/a
9	10	∞	4	n/a
10	16	∞	4	n/a

Update source to its parent

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	∞	n/a	n/a
8	∞	∞	n/a	n/a
9	10	∞	4	n/a
10	16	∞	4	n/a

Target < source, so relax backward from target

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	3	n/a	6
8	∞	3	n/a	6
9	10	∞	4	n/a
10	16	∞	4	n/a

Relax outgoing edges with downweights

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	3	n/a	6
8	∞	3	n/a	6
9	10	∞	4	n/a
10	16	∞	4	n/a

Update target to its parent

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	3	n/a	6
8	∞	3	n/a	6
9	10	∞	4	n/a
10	16	∞	4	n/a

Target < source, so relax backward from target

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	3	n/a	6
8	∞	3	n/a	6
9	10	7	4	7
10	16	∞	4	n/a

Relax outgoing edges with downweights

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	3	n/a	6
8	∞	3	n/a	6
9	10	7	4	7
10	16	∞	4	n/a

Update target to its parent

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	3	n/a	6
8	∞	3	n/a	6
9	10	7	4	7
10	16	∞	4	n/a

Target < source, so relax backward from target

d_f	d_b	p_f	p_b
∞	∞	n/a	n/a
∞	∞	n/a	n/a
∞	∞	n/a	n/a
0	∞	4	n/a
∞	∞	n/a	n/a
∞	0	n/a	6
∞	3	n/a	6
∞	3	n/a	6
10	7	4	7
16	0	4	8
	∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ 10	$\begin{array}{cccc} \infty & \infty & \infty \\ \infty & \infty & \infty \\ \infty & \infty & \infty \\ 0 & \infty & \infty \\ \infty & \infty & \infty \\ \infty & 0 & \infty \\ \infty & 3 & 0 & 3 \\ 0 & 0 & 7 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Relax outgoing edges with downweights

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	3	n/a	6
8	∞	3	n/a	6
9	10	7	4	7
10	16	0	4	8

Update target to its parent

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	3	n/a	6
8	∞	3	n/a	6
9	10	7	4	7
10	16	0	4	8

Source = Target, Lowest common ancestor found so relax forward and backward

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	3	n/a	6
8	∞	3	n/a	6
9	10	7	4	7
10	16	0	4	8

Relax outgoing edges with upweights

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	3	n/a	6
8	∞	3	n/a	6
9	10	7	4	7
10	16	0	4	8

Relax outgoing edges with downweights

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	3	n/a	6
8	∞	3	n/a	6
9	10	7	4	7
10	16	0	4	8

Update LCA to its parent

Vertex	d_f	d_b	p_f	p_b
1	∞	∞	n/a	n/a
2	∞	∞	n/a	n/a
3	∞	∞	n/a	n/a
4	0	∞	4	n/a
5	∞	∞	n/a	n/a
6	∞	0	n/a	6
7	∞	3	n/a	6
8	∞	3	n/a	6
9	10	7	4	7
10	16	0	4	8

Relax forward and backward

d_f	d_b	p_f	p_b
∞	∞	n/a	n/a
∞	∞	n/a	n/a
∞	∞	n/a	n/a
0	∞	4	n/a
∞	∞	n/a	n/a
∞	0	n/a	6
∞	3	n/a	6
∞	3	n/a	6
10	7	4	7
16	0	4	8
	∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ 10	$\begin{array}{cccc} \infty & \infty & \infty \\ \infty & \infty & \infty \\ \infty & \infty & \infty \\ 0 & \infty & \infty \\ \infty & \infty & \infty \\ \infty & 0 & \infty \\ \infty & 3 & \infty & 3 \\ 10 & 7 & \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Reached root, so stop. Minimal distance is 16 with up-down path: $4 \rightarrow 10 \rightarrow 8 \rightarrow 6$

Path Retrieval

Recursively unpack up-down path consisting of shortcuts $(4, 10)_u, (8, 10)_d, (6, 8)_d$

Unpack upward shortcut $(4, 10)_u$

 $\{1,4,10\}$ is a lower triangle of $(4,10)_u$

Check for triangle equality: false, because $(1,4)_d$ was deleted

 $\{3,4,10\}$ is a lower triangle of $(4,10)_u$

Check for triangle equality: true

Substitute $(4, 10)_u$ by $(3, 4)_d$ and $(3, 10)_u$ and unpack recursively

Unpack downward shortcut $(3,4)_d$

Check for triangle equality: false, because $(1,4)_d$ and $(1,3)_u$ were deleted

No more lower triangles \rightarrow $(3,4)_d$ is an original edge

Unpack upward shortcut $(3, 10)_u$

 $\{1,3,10\}$ is a lower triangle of $(3,10)_u$

Check for triangle equality: true

Substitute $(3,10)_u$ by $(1,3)_d$ and $(1,10)_u$ and unpack recursively

Unpack downward shortcut $(1,3)_d$

No more lower triangles $\rightarrow (1,3)_d$ is an original edge

Unpack upward shortcut $(1, 10)_u$

No more lower triangles $\rightarrow (1, 10)_u$ is an original edge

Unpack downward shortcut $(8, 10)_d$

No more lower triangles \rightarrow $(8,10)_d$ is an original edge

Unpack downward shortcut $(6,8)_d$

 $\{5,6,8\}$ is a lower triangle of $(6,8)_d$

Check for triangle equality: true

Substitute $(6,8)_d$ by $(5,8)_d$ and $(5,6)_u$ and unpack recursively

Unpack downward shortcut $(5,8)_d$

No more lower triangles \rightarrow (5,8)_d is an original edge

Unpack upward shortcut $(5,6)_u$

No more lower triangles \rightarrow (5,6) $_{\it u}$ is an original edge

Final path on the original graph