COMPUTER SYSTEMS FUNDAMENTALS (4COSCO04W)

Lecture: Week 2

Previous weeks:

- Introduction to the module
 - Structure
 - Administration
- Positional Number Systems
 - Denary
 - Binary

Tutorials

- See YOUR personalised timetable to find out time & tutor
- Online exercises on Blackboard Live now
 - Apps to help
- Tutor available to assist
- Will cover all topics from lectures
- Feedback after each attempt
- Re-attempt each exercise until you achieve full marks
- Always wear a face mask unless you are exempt

HEXADECIMAL BASE 16

Positive Integers

By the end of this lecture, you will:

- Be able to convert Hexadecimal Positive Integers to their Binary values
- Be able to convert Binary Positive Integers to their Hexadecimal values
- Be able to convert Hexadecimal Positive Integers to their Denary values

Hexadecimal

- Base-16
- Each digit can be a value 0-F
 - One of 16 different values

Denary	Hexadecimal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	А
11	В
12	С
13	D
14	Е
15	F

Why Hexadecimal?

- Denary works well for us humans
- Binary works for digital computers
 - 00101011
 - 0100101000101011
- Hexadecimal is convenient way to represent Binary values:
 - Base-16
 - One Hexadecimal digit maps to a 4-Bit Binary Nibble
 - Each 4-Bit Binary Nibble maps to a Hexadecimal digit

Hexadecimal Table

Denary	E	3in	ar	y	Hexadecimal
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	2
3	0	0	1	1	3
4	0	1	0	0	4
5	0	1	0	1	5
6	0	1	1	0	6
7	0	1	1	1	7
8	1	0	0	0	8
9	1	0	0	1	9
10	1	0	1	0	Α
11	1	0	1	1	В
12	1	1	0	0	С
13	1	1	0	1	D
14	1	1	1	0	Е
15	1	1	1	1	F

Binary: Bit weightings

2 ³	2 ²	2 ¹	20
8	4	2	1

Denary		Bir	ary	/
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

Binary: Bit weightings

2 ³	2 ²	2 ¹	20
8	4	2	1

Denary	E	3in	ar	У	Hexadecimal
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	2
3	0	0	1	1	3
4	0	1	0	0	4
5	0	1	0	1	5
6	0	1	1	0	6
7	0	1	1	1	7
8	1	0	0	0	8
9	1	0	0	1	9
10	1	0	1	0	А
11	1	0	1	1	В
12	1	1	0	0	С
13	1	1	0	1	D
14	1	1	1	0	Е
15	1	1	1	1	F

ı	3in	ar	y	Hexadecimal
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Α
1	0	1	1	В
1	1	0	0	С
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

Try it for yourself

■ Generate the Hexadecimal Nibble (4-bit) Table with its corresponding columns for Binary and Hexadecimal values

ı	3in	ar	y	Hexadecimal
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Α
1	0	1	1	В
1	1	0	0	С
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

Converting from Hexadecimal to Binary

	2 A						В				3				
0	0	1	0	1	0	1	0	1	0	1	1	0	0	1	1

E	3in	ar	y	Hexadecimal
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Α
1	0	1	1	В
1	1	0	0	С
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

Converting from Binary to Hexadecimal

0	0	1	0	1	0	1	0	1	0	1	1	0	0	1	1
	2	2			A				E	3			3	3	

E	3in	ar	y	Hexadecimal
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	Α
1	0	1	1	В
1	1	0	0	С
1	1	0	1	D
1	1	1	0	Е
1	1	1	1	F

Try it for yourself

- Convert a long (no less than sixteen bits long) binary number to Hexadecimal
- Convert the Hexadecimal value you found back to Binary

Number System Triangle

Converting from Hexadecimal to Denary

- Base 16
- Weighting of each position are successive powers of 16

16^3	16 ²	16 ¹	16 ⁰
4096	256	16	1

409	6 table	256	table	16	table
1	4096	1	256	1	16
2	8192	2	512	2	32
3	12288	3	768	3	48
4	16384	4	1024	4	64
5	20480	5	1280	5	80
6	24576	6	1536	6	96
7	28672	7	1792	7	112
8	32768	8	2048	8	128
9	36864	9	2304	9	144
10	40960	10	2560	10	160
11	45056	11	2816	11	176
12	49152	12	3072	12	192
13	53248	13	3328	13	208
14	57344	14	3584	14	224
15	61440	15	3840	15	240

Number System Triangle

In this lecture we have covered:

Hexadecimal:

- Converting values from Hexadecimal to Binary
- Converting values from Binary to Hexadecimal
- Converting values from Hexadecimal to Decimal

Further reading:

- Foundation Maths
 - Chapter 14
- Computer Science Illuminated
 - Chapter 2

Thank you

© The University of Westminster (2021)

These notes were modified from the lecture slides generated by Noam Weingarten.

The right of Noam Weingarten to be identified as author of this work has been asserted by them in accordance with the Copyright, Designs and Patents Act 1988