对任何 $x \in I$,显然有 $x \leq a$,从而 $x \in \varphi(a)$ 。也就是说, $I \subset \varphi(a)$ 。

而对任何 $x \in \varphi(a)$,由 $\varphi(a)$ 的定义知, $x \preccurlyeq a$ 。由于 $x \in L$, $a \in I$,而 I 是理想,所以 $x \in I$ 。从而有 $\varphi(a) \subseteq I$ 。也即 $\varphi(a) = I$ 。

这就证明了 $\varphi(L) = I(L)$, $\varphi \in L$ 到 I(L) 的满同态, 从而是同构。

19.25

19.26

证明: $\forall a, b \in B$,

$$a \lor (\bar{a} \land b) = (a \lor \bar{a}) \land (a \lor b)$$
 (分配律)
 $= 1 \land (a \lor b)$ (补元定义)
 $= a \lor b$ ($a \lor b \preccurlyeq 1$ 、教材定理 19.2)
 $a \land (\bar{a} \lor b) = (a \land \bar{a}) \lor (a \land b)$ (分配律)
 $= 0 \lor (a \land b)$ (补元定义)
 $= a \land b$ ($a \land b \preccurlyeq 0$ 、教材定理 19.2)

19.27 首先证明如下结论:

引理 **19.2** 设 $\langle B, \wedge, \vee, \bar{}, 0, 1 \rangle$ 是布尔代数,则 $\forall a, b \in B$,有 $\overline{(a \wedge \bar{b}) \vee (\bar{a} \wedge b)} = (\bar{a} \wedge \bar{b}) \vee (a \wedge b).$

证明:

$$\overline{(a \wedge \overline{b}) \vee (\overline{a} \wedge b)} = \overline{a \wedge \overline{b}} \wedge \overline{a} \wedge \overline{b} \qquad (教材定理 19.23(2))$$

$$= (\overline{a} \vee \overline{b}) \wedge (\overline{a} \vee \overline{b}) \qquad (教材定理 19.23(2))$$

$$= (\overline{a} \vee b) \wedge (a \vee \overline{b}) \qquad (教材定理 19.23(1))$$

$$= (\overline{a} \wedge (a \vee \overline{b})) \vee (b \wedge (a \vee \overline{b})) \qquad (分配律)$$

$$= (\overline{a} \wedge a) \vee (\overline{a} \wedge \overline{b}) \vee (b \wedge a) \vee (b \wedge \overline{b}) \qquad (\rightarrow \overline{b})$$

$$= 0 \vee (\overline{a} \wedge \overline{b}) \vee (b \wedge a) \vee 0 \qquad (\rightarrow \overline{b})$$

$$= (\overline{a} \wedge \overline{b}) \vee (b \wedge a) \qquad (0 \text{ 是全下界、教材定理 19.2)}$$

$$= (\overline{a} \wedge \overline{b}) \vee (a \wedge b) \qquad (\overline{C})$$