Geometría de Poisson Computacional

Pablo Suárez Serrato, Miguel Angel Evangelista Alvarado, José Crispin Ruiz Pantaleón

Instituto de Matemáticas UNAM

Octubre, 2020

MÉMOIRE

Sur la Variation des Constantes arbitraires dans les questions de Mécanique,

Lu à l'Institut le 16 Octobre 1809; Par M. Polsson.

ANALYSE.

281

constante a ni la constante b; dans d'autres cas elle ne contiendra aucune constante arbitraire, et se réduira à une constante déterminée; mais, afin de rappeler l'origine de cette quantité, qui représente une certaine combinaison des différences partielles des valeurs de a et b, nous ferons usage de cette notation (b, a), pour la désigner; de manière que nous aurons généralement

$$\frac{db}{ds} \cdot \frac{da}{d\varphi} - \frac{da}{ds} \cdot \frac{db}{d\varphi} + \frac{db}{du} \cdot \frac{da}{d\psi} - \frac{da}{du} \cdot \frac{db}{d\psi} + \frac{db}{dv} \cdot \frac{da}{d\varphi} - \frac{da}{ds} \cdot \frac{db}{d\varphi} = (b, a).$$

Oscilador Armónico

Ec. de Movimiento:

$$\ddot{x} = -cx, \qquad c > 0$$

■ Posición de Reposo

Perturbaciones

$$(F_k = -kx, \text{Hooke}) \& (F_k = m\ddot{x}, \text{Newton})$$

Oscilador Armónico

Ec. de Movimiento:

$$\ddot{x} = -x, \qquad (c=1)$$

Sist. de Ecuaciones:

$$\dot{q} = p$$

$$\dot{p} = -q$$

Retrato Fase:

$$(q=x, p=\dot{x})$$

Oscilador Armónico (Sistema Hamiltoniano)

Sist. de Ecuaciones:

$$\dot{q} = p$$

$$\dot{p} = -q$$

$$H(q,p) = \frac{1}{2} q^2 + \frac{1}{2} p^2$$

$$\dot{q} = \frac{\partial H}{\partial p}$$

$$\dot{p} = -\frac{\partial H}{\partial q}$$

Oscilador Armónico (Sistema Hamiltoniano)

$$\begin{array}{l} \blacksquare \ H(q,p) \ = \ \frac{1}{2} \, q^2 + \frac{1}{2} \, p^2 \\ \\ \dot{q} \ = \ \frac{\partial H}{\partial p} \\ \\ \dot{p} \ = - \frac{\partial H}{\partial q} \end{array}$$

Notemos que, si $X = (q, p)^{\top}$, entonces

$$\dot{X} = \mathbb{J} \, \nabla H$$

donde

$$\mathbb{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \mathbf{y} \qquad \nabla H = \begin{pmatrix} \frac{\partial H}{\partial q} \\ \frac{\partial H}{\partial p} \end{pmatrix}$$

Oscilador Armónico (Estructura Simpléctica)

$$\dot{X} = \mathbb{J} \nabla H, \qquad \mathbb{J} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Dados dos campos vectoriales $u = (u_1, u_2)^{\top}$ y $v = (v_1, v_2)^{\top}$, $u_i, v_i \in C^{\infty}_{\mathbb{R}^2}$,

$$\omega(u,v) = u^{\top} \mathbb{J} v = u_1 v_2 - u_2 v_1$$

J induce una 2-forma diferencial.

Oscilador Armónico (Corchete de Poisson)

$$\omega(u,v) = u^{\mathsf{T}} \mathbb{J} v = u_1 v_2 - u_2 v_1$$

■ Definimos $\{,\}: C_{\mathbb{R}^2}^{\infty} \times C_{\mathbb{R}^2}^{\infty} \to C_{\mathbb{R}^2}^{\infty}$ por

$$\{f,g\}_{\omega} := -\omega(\nabla f, \nabla g) = \frac{\partial f}{\partial p} \frac{\partial g}{\partial q} - \frac{\partial f}{\partial q} \frac{\partial g}{\partial p}$$

■ Entonces,

$$\dot{q} = \{H, q\}_{\omega}, \qquad \dot{p} = \{H, p\}_{\omega}$$

■ En general, para cualquier observable:

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \{H, f\}_{\omega}, \qquad f = f(q, p)$$

Corchetes de Poisson en \mathbb{R}^2

$$\{,\}:\,C^\infty_{\mathbb{R}^2}\times C^\infty_{\mathbb{R}^2}\,\,\longrightarrow\,\,C^\infty_{\mathbb{R}^2}$$

- \blacksquare \mathbb{R} -linealidad.
- Antisimetría: $\{f,g\} = -\{g,f\}$
- Identidad de *Jacobi*:

$$\{f, \{g, h\}\} = \{\{f, g\}, h\} + \{g, \{f, h\}\}$$

■ Regla de *Leibniz*:

$$\{f,g\cdot h\}\,=\,g\cdot\{f,h\}+h\cdot\{f,g\}$$

$$\textit{Nota:} \ \ C^{\infty}_{\mathbb{R}^2} \, := \, \{ \, f : M \to \mathbb{R} \, \big| \, f \text{ es lisa} \, \}$$

Sist. Hamiltonianos en $\mathbb{R}^{2n} = \{(q_1, \dots, q_n, p_1, \dots, p_n)\}$

Dado $H \in C^{\infty}_{\mathbb{R}^{2n}}$:

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \qquad \dot{p}_i = -\frac{\partial H}{\partial q_i}$$

■ Defínase $\{,\}:C^{\infty}_{\mathbb{R}^{2n}}\times C^{\infty}_{\mathbb{R}^{2n}}\to C^{\infty}_{\mathbb{R}^{2n}}$ por

$$\{f,g\} := \sum_{i=1}^{n} \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} - \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i}$$

■ Entonces,

$$\dot{q}_i = \{H, q_i\}, \qquad \dot{p}_i = \{H, p_i\}$$

Corchete de Poisson $\{,\}: C_M^{\infty} \times C_M^{\infty} \longrightarrow C_M^{\infty}$

- \blacksquare \mathbb{R} -linealidad.
- Antisimetría: $\{f,g\} = -\{g,h\}$
- Identidad de Jacobi:

$$\{f,\{g,h\}\} \,=\, \{\{f,g\},h\} + \{g,\{f,h\}\}$$

■ Regla de Leibniz:

$${f,gh} = g{f,h} + h{f,g}$$

Ejemplo

En \mathbb{R}^3_x , dada

$$\psi: \mathbb{R}^3 \to \mathbb{R}^3, \qquad \psi(x) = (\psi_1(x), \psi_2(x), \psi_3(x))^{\top}$$

■ Se define

$$\{f,g\}_{\psi} = \langle \psi, \nabla f \times \nabla g \rangle$$

■ Identidad de Jacobi:

$$\langle \psi, \operatorname{rot} \psi \rangle = 0$$

Nota: $\{f,g\}_{\psi} = \nabla f^{\top} \Pi_{\psi}, \nabla g$, donde

$$\Pi_{\psi} = \begin{pmatrix} 0 & \psi_3 & -\psi_2 \\ -\psi_3 & 0 & \psi_1 \\ \psi_2 & -\psi_1 & 0 \end{pmatrix}$$

Foliaciones Inducidas por Campos Vectoriales

Existencia y Unicidad

Foliación por Curvas Integrales

Campos Vectoriales vs Distribuciones

Campo Vectorial

Distribución

Foliaciones por Distribuciones Singulares

Stefan-Sussman

■ Foliación por Variedades Integrales

Estructura de Poisson \leftrightarrow Foliación Simpléctica

Sea Π tensor de Poisson:

$$D^{\Pi} := \{ X_f \mid f \in C_M^{\infty} \},$$

con
$$X_f(g) = \{f, g\}.$$

Afirmación:

 D^{Π} es integrable.

Foliación simpléctica.

Ejemplo: $\mathfrak{so}(3)$

$$\psi_1 = x_1, \quad \psi_2 = x_2, \quad \psi_3 = x_3$$

•
$$\psi_1 = x_1, \quad \psi_2 = x_2, \quad \psi_3 = x_3$$
• $\Pi_{\psi} = \begin{pmatrix} 0 & x_3 & -x_2 \\ -x_3 & 0 & x_1 \\ x_2 & -x_1 & 0 \end{pmatrix}, \{f, g\}_{\psi} = \langle \psi, \nabla f \times \nabla g \rangle$

Ejemplo: $\mathfrak{sl}(2)$

Estructuras de Poisson

■ Sistema Hamiltoniano:

$$\dot{x} = \{H, x\}, \quad x \in \mathbb{R}^n$$

■ Campo Hamiltoniano:

$$X_h = \mathbf{i}_{\mathrm{d}h} \Pi$$

■ Función de Casimir, $K \in C_M^{\infty}$ tq

$$X_K = 0$$

■ Campo de Poisson:

$$\mathcal{L}_Z\Pi=0.$$

