Linear Regression (Multiple Regression Case)

Additional Considerations

- Have multiple possible explanatory variables
- Assume that explanatory variables are (roughly) independent
- Will need to select best subset of explanatory variables to use

 Interpretation of β: same as simple linear regression but when the condition that <u>all</u> <u>other predictors are fixed</u>

Exercises: US Crime Data

- Built-in data in package "MASS"
 - ?UScrime for detailed information
 - Aggregate data on 47 states of the USA for 1960
- Response: rate of crimes y (scaled)
- Fifteen possible explanatory variables
- Will want to choose best subset of these 15 variables for modeling crime rate

Exercises: US Crime Data

Aggregate data on 47 states of the USA for 1960

M: percentage of males aged 14–24.

So: indicator variable for a Southern state.

Ed: mean years of schooling.

Po1: police expenditure in 1960.

Po2: police expenditure in 1959.

LF: labour force participation rate.

Pop: state population.

M.F: number of males per 1000 females w: number of non-whites per 1000 people.

U1: unemployment rate of urban males 14–24.

U2: unemployment rate of urban males 35–39.

GDP: gross domestic product per head.

Ineq: income inequality.

Prob: probability of imprisonment.

Time: average time served in state prisons.

y: rate of crimes.

Exercise: Visual Inspection

Pairwise scatter plot for first 10 variables.

e.g.,

X-axis: Po1

Y-axis: Ed

Exercise: Visual Inspection

- What does this plot tell us about relationships among the various predictors?
- What does the plot tell us about possible predictors for crime rate?

Multicollinearity

Problems with highly correlated predictors:

- Model is more complicated to interpret
- Predictors confound each other
- Variance estimates will be larger
- Predictions will be less reliable
- Want predictors to not be highly dependent on each other
- Can not be detected from diagnostics plots

Simulation studies: Why multicollinearity matters?

- Use drinking data from chapter6
- Download data SimData_multicoll.csv
- What happens if two variables are <u>perfectly correlated</u>? (i.e., corr=1)
 - 1. Generate a new variable alcohol2=3*alcohol
 - 2. Run a regression on cirrhosis with alcohol and alcohol2
 - 3. Check the result
- What happens if two variables are <u>highly correlated?</u>
 - 1. Generate a new variable alcohol3=3*alcohol + e, e $^{\sim}$ N(0,0.1)
 - 2. Check their correlation
 - 3. Run a regression on cirrhosis with alcohol and alcohol3
 - 4. Run a simple regression, separately
 - 5. Compare results

Simulation studies: Why multicollinearity matters?

(i) Regression with perfectly correlated predictors

Simulation studies: Why multicollinearity matters?

(i) Regression with highly correlated predictors

```
lm.multicol2 = lm(cirrhosis~alcohol+alcohol3, data=dr
inking.new)

summary(lm.multicol2)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.99254 2.21610 -2.704 0.0192 *
## alcohol 1.92351 6.42640 0.299 0.7698
## alcohol3 0.01814 2.14085 0.008 0.9934
## ---
## F-statistic: 44.59 on 2 and 12 DF, p-value: 2.783e-06
```

Checking for High Correlation

- Pairwise scatter plot for correlation between pairs of variables
- Use variance inflation factors (VIFs)
 - vif() in package "car" for calculating VIFs
- $\bullet \ VIF_j = \frac{1}{1 R_j^2}$
- VIF_j >10 means at least 90% of x_j explained by other predictors

Exercise: US Crime Data

- Fit y as a function of all the other variables and obtain the VIF values
- Predictors exceeding the VIF cutoff of 10?
- Omit the predictor with largest VIF and refit

Do not remove variables all at once! Remove sequentially

- Any terms with VIF above the cutoff now?
- Which terms seem to be significant in this model?
- Any noticeable issues in the diagnostics?

R output

lm.crime3=lm(y~.-Po2-GDP, data=UScrime)

```
summary(lm.crime3)
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6041.0176 1515.7345 -3.986 0.000351 ***
               8.4035
                         4.0896 2.055 0.047879 *
## M
              35.2894 143.7092 0.246 0.807543
## So
             18.5920 5.9820 3.108 0.003861 **
## Ed
             10.5094 2.1766 4.828 3.06e-05 ***
## Po1
             -0.1280 1.3924 -0.092 0.927317
## LF
             2.0125 2.0107 1.001 0.324141
## M.F
             -0.6822 1.2761 -0.535 0.596494
## Pop
              0.1391 0.6048 0.230 0.819502
## NW
            -5.7484 4.1469 -1.386 0.174980
## U1
            18.0736 8.0840 2.236 0.032251 *
## U2
              6.0732 1.7917 3.390 0.001829 **
## Ineq
## Prob
          -4517.0792 2160.3360 -2.091 0.044315 *
               -0.5337
                         6.6346 -0.080 0.936366
## Time
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 207.9 on 33 degrees of freedom
## Multiple R-squared: 0.7927, Adjusted R-squared:
## F-statistic: 9.707 on 13 and 33 DF, p-value: 7.32e-08
```

Model Hypothesis Test (F-test in multiple linear regression)

Null Hypothesis:

- ✓ Conceptually: The multiple linear regression model does *not* fit the data better than the baseline model.
- ✓ Conceptually: There is no linear relationship between x's and y
- ✓ Statistically: $\beta_1 = \beta_2 = = \beta_p = 0$

Alternative Hypothesis:

- ✓ Conceptually: The multiple linear regression model does fit the data better than the baseline model.
- ✓ Conceptually: There is linear relationship between some of x's and y
- ✓ **Statistically:** at least one β is non zero

Individual Term Hypothesis Test (t-test for each predictor)

For example, for j-th predictor x_i

- Null Hypothesis:
 - ✓ Conceptually: There is no linear relationship between x_j
 and y
 - ✓ **Statistically:** $\beta_i = 0$
- Alternative Hypothesis:
 - ✓ Conceptually: There is linear relationship between x_i and y
 - ✓ Statistically: $\beta_i \neq 0$

Model Selection

- This is an "unsolved" problem in statistics: there are no magic procedures to get you the "best model."
- Two approaches in our class
 - Automatic selection
 - based on significance of the predictors
 - Best subset approach
 - based on penalized goodness of fit measure (simple but good prediction model)
- Depending on the goal of the study

Model Selection: Automatic Variable Selection

- Through algorithms that pick the variables to include/ remove in your regression model
 - Forward Selection -- start with no terms, sequentially add significant terms
 - Backward Selection -- start with all terms, sequentially remove insignificant terms
 - Stepwise Selection start with no terms, alternate between forward and backward steps
- Final model will depend on significance level (threshold for enter/removal) that we set for algorithms
- "Greedy" search always take the biggest jump (up or down)

Model Selection: Automatic Variable Selection

##									
##	Stepwise Selection Summary								
##									
##			Added/		Adj.				
##	Step	Variable	Removed	R-Square	R-Square	C(p)	AIC	RMSE	
##									
##	1	Po1	addition	0.473	0.461	40.9230	668.3155	283.9259	
##	2	Ineq	addition	0.580	0.561	25.8080	659.5957	256.1874	
##	3	Ed	addition	0.666	0.642	14.2270	650.9145	231.3136	
##	4	M	addition	0.700	0.672	10.6880	647.7503	221.5397	
##	5	Prob	addition	0.738	0.706	6.7180	643.4641	209.7205	
##	6	U2	addition	0.766	0.731	4.2710	640.1661	200.6899	
##									

- Final model from stepwise selection
 - Y ~ Po1 + Ineq + Ed + M + Prob + U2
- Additional information R-square, Adj. R-square, C(p) etc.

Model Selection: Best Subset Approach

- Compare all possible models using a set of predictors, and displays the best-fitting models that contain one predictor, two predictors, and so on.
- Search all possible models (not "Greedy") thus computation is heavy (takes longer time in R)

Model Selection: Best Subset Approach

 Search all possible models (not "Greedy") thus computation is heavy (takes longer time in R)

## ## ·		Best Subsets Regression
	Model	Index Predictors
	1	Po1
	2	Po1 Ineq
##		Ed Po1 Ineq
##	4	M Ed Po1 Ineq
##	5	M Ed Po1 Ineq Prob
##	6	M Ed Po1 U2 Ineq Prob
##	7	M Ed Po1 U1 U2 Ineq Prob
##	8	M Ed Po1 M.F U1 U2 Ineq Prob
##	9	M Ed Po1 M.F Pop U1 U2 Ineq Prob
##	10	M So Ed Po1 M.F Pop U1 U2 Ineq Prob
##	11	M So Ed Po1 M.F Pop NW U1 U2 Ineq Prob
##	12	M So Ed Po1 LF M.F Pop NW U1 U2 Ineq Prob
##	13	M So Ed Po1 LF M.F Pop NW U1 U2 Ineq Prob Time
##		

Model Selection: Best Subset Approach

- For each candidate, we compare
 - Adjusted R-square
 - AIC, BIC, SBC..
 - Mallow's Cp
- Goodness of fit + model simplicity
 - Model with small errors but as simple as possible
- Compare different criteria and choose one. Sometimes the results do not point to one best model and your judgment is required.
- Predictors in the final model are always significant?
 (FALSE) --> this approach doesn't care about the significance of each term

Adjusted R²

- When more variables are added, R² values always increase
 - R² as a criterion, "optimum" is to take the biggest model
 - When p=n, $R^2 = 1$ (perfect fit but not meaningful)
- Impose penalty for larger model (large p) and define adj- R²

$$\overline{R}^2 = 1 - \frac{(n-i)(1-R^2)}{n-p}$$
 $n = \text{the number of observations}$
 $p = \text{the number of parameters in the model}$

- This value will not necessarily increase as additional terms are introduced into the model, thus we want a model with the maximum adjusted R²
- Bigger the better

AIC, BIC, SBC ..

Penalized-likelihood criteria

```
AIC(M) = -2 \log L(M) + 2 \cdot p
BIC(M) = -2 \log L(M) + \log n \cdot p
```

- -2 log L(M): approximates regression error (model performace)
- 2 · p or log n · p : penalty term proportional to p (model complexty)
- Smaller the better

Mallows' C_p

Mallows' C_p is a simple indicator of effective variable selection

$$C_p = rac{SSE_p}{S^2} - N + 2P_1$$

- Again, penalized goodness-of-fit measure
- Look for models with $C_p \leq p$, where p equals the number of predictors in the model, including the intercept.
 - Mallows recommends choosing the first (fewest variables or simpler) model where C_p approaches p.

Part of R output – Best Subset Approach

ии		[Bigger the bet	ter	Cp<=P		Smaller better	the	
## ##			Adj.	Pred	V				
## ##	Model	R-Square	R-Square	R-Square	C(p)	AIC	SBIC	ŠBC	MSEP
 ##	1	0.4728	0.4611	0.3926	40.9229	668.3155	NA	673.8659	3789009.5774
##	2	0.5803	0.5612	0.4856	25.8077	659.5957	NA	666.9963	3086424.3129
##	3	0.6656	0.6423	0.5748	14.2266	650.9145	NA	660.1652	2517546.1300
##	4	0.7004	0.6719	0.6089	10.6882	647.7503	NA	658.8512	2310597.8418
##	5	0.7379	0.7060	0.6412	6.7180	643.4641	NA	656.4151	2071865.4454
##	6	0.7659	0.7307	0.6662	4.2708	640.1661	NA	654.9673	1898463.0711
##	7	0.7738	0.7332	0.6622	5.0024	640.5387	NA	657.1900	1882110.8120
##	8	0.7888	0.7444	0.6676	4.6158	639.3151	NA	657.8166	1804845.5315
##	9	0.7913	0.7405	0.6506	6.2296	640.7719	NA	661.1235	1833665.3821
##	10	0.7923	0.7347	0.6362	8.0554	642.5250	NA	664.7267	1876172.0917
##	11	0.7926	0.7274	0.6118	10.0155	644.4681	NA	668.5201	1929019.7157
##	12	0.7927	0.7195	0.5715	12.0065	646.4553	NA	672.3574	1986931.4697
## ##	13	0.7927	0.7110	0.5175	14.0000 	648.4461	NA	676.1983	2048621.2922

AIC: Akaike Information Criteria

SBIC: Sawa's Bayesian Information Criteria

SBC: Schwarz Bayesian Criteria

MSEP: Estimated error of prediction, assuming multivariate normality

##

Example: Stepwise Selection

- Start with all the predictors and significance levels of .1 for adding and for retaining terms
- What is the final model?
- Amount of variation in crime rate described by model?
- Problems in the diagnostics for this model?
- Stepwise can handle highly correlated variables (usually one of them has large pvalue)

Exercise: Forward Selection

- Use forward selection and entry significance level of .1
- Compare steps of the selection process
- What is the final model?
- Amount of variation in crime rate described by model?
- Problems in the diagnostics for this model?

Exercise: Backward Selection

- Use backward selection and significance level of .1 for keeping terms
- Compare steps of the selection process
- What is the final model?
- Amount of variation in crime rate described by model?
- Problems in the diagnostics for this model?

Exercise: Selection through Best Subset Approach

- Best model with adj. R^2 criterion
 - Bigger the better
- Best model with AIC criterion
 - Smaller the better
- Best model with Mallow's Cp
 - Model with $C_p \le p$ with the fewest variables (i.e., smallest p satisfying $C_p \le p$)
- Compare selected models from each criterion

Regression with categorical variables

- Coding of categorical variables
 - 0/1 (this is reference cell coding): default
 - -1/1 (deviations from means coding)
- ANOVA is a special case of linear regression model with only categorical variables
- Interpretation of coefficient should be different
 - One unit increase in x ... does not make sense for categorical variable
- Estimated coefficient represents difference between
 Reference (a group coded as 0) vs. Comparison group (the other group coded as 1)

Example with categorical variable: professor.csv

- SALARY: continuous response
- Gender: categorical predictor
- TIME/ CITS/ PUBS: continuous predictors

```
    (1) SALARY ~ Gender + PUBS (w/out interaction)
    (2) final ~ Gender + PUBS + Gender*PUBS (w/interaction)
```

- R automatically handles factor variable (with reference cell coding) and we can check which group is set as a reference group (coded as 0) from the output
- If interaction term is significant, it implies: the effect of PUBS differs depending on Gender

Example with categorical variable: w/out interaction

```
summary(lm(SALARY~Gender+PUBS, data=professor)) ##

##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 41911.98 2353.34 17.810 < 2e-16 ***
## GenderMale 7143.82 2533.25 2.820 0.00653 **
## PUBS 470.28 90.42 5.201 2.61e-06 ***
## ---</pre>
```

Gender=Female (reference group - coded as 0)

$$\hat{Y} = 41911.9 + 470.28*PUBS$$

Gender=Male (comparison group - coded as 1)

$$\hat{Y} = (41911.9 + 7143) + 470.28 * PUBS$$

 Interpretation: On average, males earn 7143 more than females do when the number of publications is same

Example with categorical variable: w/ interaction

- Decide to include interaction -> include main effects
- Gender=Female (reference group coded as 0)

$$\hat{Y} = 47680.3 + 102.1 * PUBS$$

Gender=Male (comparison group – coded as 1)

$$\hat{Y} = (47680.3-1998.6) + (102.1+535.9)*PUBS$$

Regression with categorical variables: More than 2 levels

- What if a categorical variable has more than two levels in it? E.g., A1, A2, A3
- Same manner one reference group (e.g., A1) and two estimates are expected differences between (A2 vs. A1) and (A3 vs. A1)
- Example with ToothGrowth data (used in ANOVA)

Regression with categorical variables: ToothGrowth.csv

```
## 'data.frame': 60 obs. of 3 variables:
## $ Toothlength: num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
summary(lm(Toothlength ~ Dose, data=tooth))
##
## Call:
## lm(formula = Toothlength ~ Dose, data = tooth)
##
## Residuals:
  Min
              1Q Median 3Q
##
## -7.6000 -3.2350 -0.6025 3.3250 10.8950
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 10.6050 0.9486 11.180 5.39e-16 ***
## Dose1 9.1300 1.3415 6.806 6.70e-09 ***
## Dose2 15.4950 1.3415 11.551 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

With log transformation

- Additive change
 - ✓ Same amount of change in Y regardless of x values
- Multiplicative change
 - ✓ Change of Y depends on x values
- We expect to see β increase in log(Y) with one unit increase in X (-> hard to get what it means)
- Important to interpret with original scale of Y
 - Meaning of positive or negative β
 - Multiplicative change instead of additive change