

PREP: Pre-training with Temporal Elapse Inference for Popularity Prediction

Qi Cao, Huawei Shen, Yuanhao Liu, Jinhua Gao, Xueqi Cheng {caoqi, shenhuawei, liuyuanhao20z, gaojinhua, cxq}@ict.ac.cn

Data Intelligence System Research Center, Institute of Computing Technology, Chinese Academy of Sciences

1. Motivation

1.1 Various Popularity Prediction Settings

• There are various popularity prediction tasks settings in different situation, e.g., varying length of observation time or prediction horizon, different types of prediction label...

1.2 Existing Paradigm: Separate Training

 Existing methods generally train a separate prediction model for each prediction task

 Drawbacks: Causing a great waste of training time and computational resources.

There still lacks a both effective and efficient popularity prediction model that can handle various task settings

2. Method

2.1 Pre-training Framework

PREP: Pre-training a general deep representation model

 Advantages: The pre-trained model can be effectively and efficiently transferred into various popularity prediction tasks

2.2 Pretext Tasks for Pre-training: Temporal Elapse Inference

Randomly samples pairs of time slices of popularity dynamics and aims to infer the time elapsed between these two time slices

• Intuition Behind: the pre-trained model have to understand the temporal context information and capture the evolution pattern of popularity dynamics, which is critical for downstream popularity prediction tasks

3. Experiment

3.1 Prediction Performance

	Task \mathcal{T}_1		Task \mathcal{T}_2		Task \mathcal{T}_3		Task \mathcal{T}_4	
Methods	MRSE	R-Acc	MRSE	R-Acc	MRSE	R-Acc	C-Acc	F1
	Separa	te Traini	ng on W	eibo with	Massive	Labels		
Seismic	-	-	-	35.1%	-	37.5%	52.4%	0.508
DeepHawkes	0.510	35.7%	0.379	38.9%	0.342	40.7%	49.8%	0.000
CasCN	0.347	40.8%	0.372	38.4%	0.326	44.5%	65.4%	0.664
Feature-based	0.251	42.6%	0.212	43.9%	0.172	53.6%	59.2%	0.690
TCN	0.232	47.4%	0.175	52.4%	0.137	63.1%	73.6%	0.713
Transfer Pre	-trained	(or rando	om initial	lized) mo	del on W	eibo wit	h Few La	bels
TCN-f	0.809	0.4%	0.396	25.2%	0.396	25.2%	49.7%	0.000
PREP-TCN-f	0.322	33.5%	0.258	40.1%	0.236	44.1%	66.6%	0.645
TCN	0.262	43.8%	0.191	51.0%	0.168	57.0%	68.1%	0.674
PREP-TCN	0.238	47.8%	0.184	51.7%	0.147	61.4%	70.9%	0.669
	Separat	te Trainii	ng on Tw	itter witl	n Massiv	e Labels		
Seismic	-	-	-	60.7%	-	66.4%	61.4%	0.520
Feature-based	0.077	77.8%	0.106	70.6%	0.084	77.9%	65.3%	0.582
TCN	0.054	82.3%	0.086	74.3%	0.063	81.9%	70.9%	0.634
Transfer Pre-	-trained (or rando	m initial	ized) mod	del on Tv	vitter wit	h Few La	abels
TCN-f	0.238	40.7%	0.258	37.7%	0.258	37.7%	54.8%	0.000
PREP-TCN-f	0.166	53.1%	0.192	48.0%	0.217	46.1%	65.6%	0.534
TCN	0.073	76.1%	0.100	70.6%	0.084	76.7%	70.7%	0.614
PREP-TCN	0.057	83.0%	0.090	71.9%	0.069	79.9%	70.6%	0.630

- When transfer the pre-trained model into downstream tasks with few labels, our pre-trained model (PREP-TCN) significantly outperform the random initialized TCN model
- The PREP-TCN which is finetuned with few downstream labels even achieves comparable prediction performance when compared with TCN trained with massive downstream labels under the paradigm of separate training

3.2 Efficiency

 Even taking into account the time of pre-training, the pre-training framework (PREP-TCN) is much more efficient than separately trained TCN

The code is publicly available in Github (https://github.com/CaoQi92/PREP). More details please refer to our paper.