Math 415 - Lecture 36

Minima, maxima and saddle points, Constrained Optimization

Wednesday December 2nd 2015

Review

Textbook reading: Chapter 6.1

Textbook reading: Chapter 6.1

Suggested practice exercises: Chapter 6.1, # 1, 16

Textbook reading: Chapter 6.1

Suggested practice exercises: Chapter 6.1, # 1, 16

Strang lecture: Lecture 27: Positive definite matrices and minima

Review

${\sf Spectral\ theorem:}$

• A is a symmetric matrix if $A^T = A$.

- A is a symmetric matrix if $A^T = A$.
- Any $n \times n$ symmetric matrix A has n real eigenvalues and an orthonormal eigenbasis $\{q_1, \dots, q_n\}$.

- A is a **symmetric** matrix if $A^T = A$.
- Any $n \times n$ symmetric matrix A has n real eigenvalues and an orthonormal eigenbasis $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$.
- So, we can write $A = QDQ^T$ where

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} \text{ and } Q = \begin{bmatrix} | & & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ | & & | \end{bmatrix}$$
matrix of eigenvalues

- A is a **symmetric** matrix if $A^T = A$.
- Any $n \times n$ symmetric matrix A has n real eigenvalues and an orthonormal eigenbasis $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$.
- So, we can write $A = QDQ^T$ where

$$D = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix} \text{ and } Q = \begin{bmatrix} | & & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ | & & | \end{bmatrix}$$
matrix of eigenvalues

• A is called **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$.

- A is a **symmetric** matrix if $A^T = A$.
- Any $n \times n$ symmetric matrix A has n real eigenvalues and an orthonormal eigenbasis $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$.
- So, we can write $A = QDQ^T$ where

$$D = \underbrace{\begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}}_{\text{matrix of eigenvalues}} \text{ and } Q = \underbrace{\begin{bmatrix} & & & \\ & \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ & & & \end{bmatrix}}_{\text{matrix of eigenvectors}}$$

- A is called **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$.
- a function of the form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is called a **quadratic** form.

- A is a **symmetric** matrix if $A^T = A$.
- Any $n \times n$ symmetric matrix A has n real eigenvalues and an orthonormal eigenbasis $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$.
- So, we can write $A = QDQ^T$ where

$$D = \underbrace{\begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}}_{\text{matrix of eigenvalues}} \text{ and } Q = \underbrace{\begin{bmatrix} & & & \\ & \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ & & & \end{bmatrix}}_{\text{matrix of eigenvectors}}$$

- A is called **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$.
- a function of the form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is called a **quadratic** form.
- Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then

- A is a **symmetric** matrix if $A^T = A$.
- Any $n \times n$ symmetric matrix A has n real eigenvalues and an orthonormal eigenbasis $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$.
- So, we can write $A = QDQ^T$ where

$$D = \underbrace{\begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}}_{\text{matrix of eigenvalues}} \text{ and } Q = \underbrace{\begin{bmatrix} & & & \\ & \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ & & & \end{bmatrix}}_{\text{matrix of eigenvectors}}$$

- A is called **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$.
- a function of the form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is called a **quadratic** form.
- Let $\lambda_1, \dots, \lambda_n$ be the eigenvalues of A. Then • If all $\lambda_i > 0$, then A is positive definite,

- A is a **symmetric** matrix if $A^T = A$.
- Any $n \times n$ symmetric matrix A has n real eigenvalues and an orthonormal eigenbasis $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$.
- So, we can write $A = QDQ^T$ where

$$D = \underbrace{\begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}}_{\text{matrix of eigenvalues}} \text{ and } Q = \underbrace{\begin{bmatrix} & & & \\ & \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ & & & \end{bmatrix}}_{\text{matrix of eigenvectors}}$$

- A is called **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$.
- a function of the form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is called a **quadratic** form.
- Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then
 - If all $\lambda_i > 0$, then A is positive definite,
 - ② If all $\lambda_i < 0$, then $\mathbf{x}^T A \mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$

- A is a **symmetric** matrix if $A^T = A$.
- Any $n \times n$ symmetric matrix A has n real eigenvalues and an orthonormal eigenbasis $\{\mathbf{q}_1, \dots, \mathbf{q}_n\}$.
- So, we can write $A = QDQ^T$ where

$$D = \underbrace{\begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}}_{\text{matrix of eigenvalues}} \text{ and } Q = \underbrace{\begin{bmatrix} | & & | \\ \mathbf{q}_1 & \cdots & \mathbf{q}_n \\ | & & | \end{bmatrix}}_{\text{matrix of eigenvectors}}$$

- A is called **positive definite** if $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$.
- a function of the form $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is called a **quadratic** form.
- Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A. Then
 - If all $\lambda_i > 0$, then A is positive definite,
 - 2 If all $\lambda_i < 0$, then $\mathbf{x}^T A \mathbf{x} < 0$ for all $\mathbf{x} \neq \mathbf{0}$
 - 3 If some $\lambda_i > 0$, some $\lambda_j < 0$, $\mathbf{x}^T A \mathbf{x}$ will have both positive and negative values.

2nd derivative test

Definition

Let $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, the **Hessian** matrix of f

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial^2 x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{0}) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial^2 x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\mathbf{0}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial x_n \partial x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial^2 x_n}(\mathbf{0}) \end{bmatrix}$$

Let $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, the **Hessian** matrix of f

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial^2 x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{0}) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial^2 x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\mathbf{0}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial x_n \partial x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial^2 x_n}(\mathbf{0}) \end{bmatrix}$$

Idea

If $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable and

Let $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, the **Hessian** matrix of f

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial^2 x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{0}) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial^2 x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\mathbf{0}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial x_n \partial x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial^2 x_n}(\mathbf{0}) \end{bmatrix}$$

Idea

If $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable and

Let $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, the **Hessian** matrix of f

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial^2 x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{0}) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial^2 x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\mathbf{0}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial x_n \partial x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial^2 x_n}(\mathbf{0}) \end{bmatrix}$$

Idea

If $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable and $\mathbf{0}$ is a critical point, then

Let $f: \mathbb{R}^n \to \mathbb{R}$ is twice differentiable, the **Hessian** matrix of f

$$H = \begin{bmatrix} \frac{\partial^2 f}{\partial^2 x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(\mathbf{0}) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial^2 x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(\mathbf{0}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(\mathbf{0}) & \frac{\partial^2 f}{\partial x_n \partial x_2}(\mathbf{0}) & \dots & \frac{\partial^2 f}{\partial^2 x_n}(\mathbf{0}) \end{bmatrix}$$

Idea

If $f : \mathbb{R}^n \to \mathbb{R}$ is twice differentiable and $\mathbf{0}$ is a critical point, then $f(\mathbf{x}) \approx f(\mathbf{0}) + \frac{1}{2}\mathbf{x} \cdot H\mathbf{x}$.

• *H* is always symmetric

- H is always symmetric
- We're approximating $f(\mathbf{x})$ by $f(\mathbf{0})$ plus a quadratic function,

- H is always symmetric
- We're approximating $f(\mathbf{x})$ by $f(\mathbf{0})$ plus a quadratic function,

- H is always symmetric
- We're approximating $f(\mathbf{x})$ by $f(\mathbf{0})$ plus a quadratic function, $\frac{1}{2}\mathbf{x} \cdot H\mathbf{x}$!

- *H* is always symmetric
- We're approximating $f(\mathbf{x})$ by $f(\mathbf{0})$ plus a quadratic function, $\frac{1}{2}\mathbf{x} \cdot H\mathbf{x}$!
- We understand $q(\mathbf{x}) = \frac{1}{2}\mathbf{x} \cdot H\mathbf{x} \implies$

- H is always symmetric
- We're approximating $f(\mathbf{x})$ by $f(\mathbf{0})$ plus a quadratic function, $\frac{1}{2}\mathbf{x} \cdot H\mathbf{x}$!
- We understand $q(\mathbf{x}) = \frac{1}{2}\mathbf{x} \cdot H\mathbf{x} \implies$

- H is always symmetric
- We're approximating $f(\mathbf{x})$ by $f(\mathbf{0})$ plus a quadratic function, $\frac{1}{2}\mathbf{x} \cdot H\mathbf{x}$!
- We understand $q(\mathbf{x}) = \frac{1}{2}\mathbf{x} \cdot H\mathbf{x} \implies$ we understand if $\mathbf{0}$ is a max, min or neither for f!

- H is always symmetric
- We're approximating $f(\mathbf{x})$ by $f(\mathbf{0})$ plus a quadratic function, $\frac{1}{2}\mathbf{x} \cdot H\mathbf{x}$!
- We understand $q(\mathbf{x}) = \frac{1}{2}\mathbf{x} \cdot H\mathbf{x} \implies$ we understand if $\mathbf{0}$ is a max, min or neither for f!
- Turns out:

- H is always symmetric
- We're approximating $f(\mathbf{x})$ by $f(\mathbf{0})$ plus a quadratic function, $\frac{1}{2}\mathbf{x} \cdot H\mathbf{x}$!
- We understand $q(\mathbf{x}) = \frac{1}{2}\mathbf{x} \cdot H\mathbf{x} \implies$ we understand if $\mathbf{0}$ is a max, min or neither for f!
- Turns out:

- H is always symmetric
- We're approximating $f(\mathbf{x})$ by $f(\mathbf{0})$ plus a quadratic function, $\frac{1}{2}\mathbf{x} \cdot H\mathbf{x}$!
- We understand $q(\mathbf{x}) = \frac{1}{2}\mathbf{x} \cdot H\mathbf{x} \implies$ we understand if $\mathbf{0}$ is a max, min or neither for f!
- Turns out: q(x) is determined by eigenvectors and eigenvalues of H!

Theorem (2nd derivative test)

Theorem (2nd derivative test)

If $f: \mathbb{R}^n \to \mathbb{R}$ has a critical point at $\mathbf{0}$, then

• If all eigenvalues of H are positive, then $\mathbf{0}$ is a local min. H is positive-definite, graph is a bowl.

Theorem (2nd derivative test)

- If all eigenvalues of H are positive, then is a local min. H is positive-definite, graph is a bowl.
- ② If all eigenvalues of H are negative, then **0** is a local max. H is negative-definite, graph is a dome.

Theorem (2nd derivative test)

- If all eigenvalues of H are positive, then $\mathbf{0}$ is a local min. H is positive-definite, graph is a bowl.
- 2 If all eigenvalues of H are negative, then $\mathbf{0}$ is a local max. H is negative-definite, graph is a dome.
- \odot If one eigenvalue of H is positive and one is negative, then \odot is neither a max nor a min. H is indefinite, graph is a saddle

Theorem (2nd derivative test)

- If all eigenvalues of H are positive, then $\mathbf{0}$ is a local min. H is positive-definite, graph is a bowl.
- ② If all eigenvalues of H are negative, then $\mathbf{0}$ is a local max. H is negative-definite, graph is a dome.
- \odot If one eigenvalue of H is positive and one is negative, then \odot is neither a max nor a min. H is indefinite, graph is a saddle
- 4 Otherwise (e.g. all eigenvalues positive or zero), no information!

Theorem (2nd derivative test)

If $f: \mathbb{R}^n \to \mathbb{R}$ has a critical point at $\mathbf{0}$, then

- If all eigenvalues of H are positive, then $\mathbf{0}$ is a local min. H is positive-definite, graph is a bowl.
- ② If all eigenvalues of H are negative, then $\mathbf{0}$ is a local max. H is negative-definite, graph is a dome.
- \odot If one eigenvalue of H is positive and one is negative, then \odot is neither a max nor a min. H is indefinite, graph is a saddle
- 4 Otherwise (e.g. all eigenvalues positive or zero), no information!

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at $\mathbf{0}$ and

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at $\mathbf{0}$ and

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at $\mathbf{0}$ and has Hessian

$$H = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}.$$

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at **0** and has Hessian

$$H = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
. Does f have local max, min or neither at **0**?

(An example of such a function is $f(x,y) = \frac{1}{2}x^2 + 2xy + \frac{1}{2}y^2$).

Solution

Solution

We showed that H has eigenvalues 3 and -1. So

Solution

We showed that H has eigenvalues 3 and -1. So f has a saddle point at 0.

Figure : Graph of the function $f(x, y) = \frac{1}{2}x^2 + 2xy + \frac{1}{2}y^2$

Example

Suppose $f:\mathbb{R}^2 o \mathbb{R}$ has a critical point at $oldsymbol{0}$ and

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at $\mathbf{0}$ and has Hessian

$$H = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}.$$

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at $\mathbf{0}$ and has Hessian

$$H = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$$
. Does f have local max, min or neither at $\mathbf{0}$?

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at $\mathbf{0}$ and has Hessian

$$H = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$$
. Does f have local max, min or neither at $\mathbf{0}$?

Solution

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at **0** and has Hessian

$$H = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$$
. Does f have local max, min or neither at $\mathbf{0}$?

Solution

Eigenvalues: Sum $\lambda_1 + \lambda_2 = Tr(H)$

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at **0** and has Hessian

$$H = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$$
. Does f have local max, min or neither at $\mathbf{0}$?

Solution

Eigenvalues: Sum $\lambda_1 + \lambda_2 = \text{Tr}(H) = 4$

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at $\mathbf{0}$ and has Hessian

$$H = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$$
. Does f have local max, min or neither at $\mathbf{0}$?

Solution

Eigenvalues: Sum
$$\lambda_1 + \lambda_2 = \text{Tr}(H) = 4$$

Product $\lambda_1 \lambda_2 = \det(H)$

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at $\mathbf{0}$ and has Hessian

$$H = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$$
. Does f have local max, min or neither at $\mathbf{0}$?

Solution

Eigenvalues: Sum
$$\lambda_1 + \lambda_2 = \text{Tr}(H) = 4$$

Product $\lambda_1 \lambda_2 = \det(H) = 2$.

◆ロト ◆団ト ◆量ト ◆量ト ■ めの(で)

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at $\mathbf{0}$ and has Hessian $\begin{bmatrix} 1 & -1 \end{bmatrix}$

$$H = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$$
. Does f have local max, min or neither at $\mathbf{0}$?

Solution

Eigenvalues: Sum $\lambda_1 + \lambda_2 = \text{Tr}(H) = 4$

Product $\lambda_1\lambda_2 = \det(H) = 2$.

So, λ_1, λ_2 must be positive!

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at $\mathbf{0}$ and has Hessian

$$H = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$$
. Does f have local max, min or neither at $\mathbf{0}$?

Solution

Eigenvalues: Sum $\lambda_1 + \lambda_2 = \text{Tr}(H) = 4$

Product $\lambda_1\lambda_2 = \det(H) = 2$.

So, λ_1, λ_2 must be positive!

(positive product \implies both positive or both negative.

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at **0** and has Hessian

$$H = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$$
. Does f have local max, min or neither at **0**?

Solution

Eigenvalues: Sum $\lambda_1 + \lambda_2 = \text{Tr}(H) = 4$

Product $\lambda_1\lambda_2 = \det(H) = 2$.

So, λ_1, λ_2 must be positive!

(positive product \implies both positive or both negative.

positive sum \implies both positive.)

Example

Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ has a critical point at $\mathbf{0}$ and has Hessian

$$H = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix}$$
. Does f have local max, min or neither at **0**?

Solution

Eigenvalues: Sum $\lambda_1 + \lambda_2 = \text{Tr}(H) = 4$

Product $\lambda_1 \lambda_2 = \det(H) = 2$.

So, λ_1, λ_2 must be positive!

(positive product \implies both positive or both negative.

positive sum \implies both positive.)

2nd derivative test says: f(0) is local min.

Figure : Graph of the function $f(x,y) = \frac{1}{2}x^2 - xy + \frac{3}{2}y^2$

Constrained optimization

Problem: Given a quadratic from q(x), find the maximum or minimum value q(x) for x in some specified set. Typically, the problem can be arranged such that \mathbf{x} varies over the set of vectors with $\mathbf{x}^T\mathbf{x} = 1$

Example

Let
$$A = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
. Find the maximum and minimum values of $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$.

Review

Problem: Given a quadratic from q(x), find the maximum or minimum value q(x) for x in some specified set. Typically, the problem can be arranged such that x varies over the set of vectors with $\mathbf{x}^T\mathbf{x} = 1$

Example

Let
$$A = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
. Find the maximum and minimum values of $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$.

Solution

The quadratic form is $q(x_1, x_2, x_3) = 9x_1^2 + 4x_2^2 + 3x_3^2$. We are interested in the maximal value for q when (x_1, x_2, x_3) is such that $x_1^2 + x_2^2 + x_2^2 = 1$.

Problem: Given a quadratic from q(x), find the maximum or minimum value q(x) for x in some specified set. Typically, the problem can be arranged such that x varies over the set of vectors with $\mathbf{x}^T\mathbf{x} = 1$

Example

Let
$$A = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
. Find the maximum and minimum values of $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$.

Solution

The quadratic form is $q(x_1, x_2, x_3) = 9x_1^2 + 4x_2^2 + 3x_3^2$. We are interested in the maximal value for q when (x_1, x_2, x_3) is such that $x_1^2 + x_2^2 + x_3^2 = 1$. Now we can give an upper bound for q: we obviously have

$$q(\mathbf{x}) \le 9x_1^2 + 9x_2^2 + 9x_3^2 = 9$$

So $q(\mathbf{x})$ can not be bigger than 9, for any \mathbf{x} . Can we get $q(\mathbf{x}) = 9$ for some \mathbf{x} ?

So $q(\mathbf{x})$ can not be bigger than 9, for any \mathbf{x} . Can we get $q(\mathbf{x}) = 9$ for some \mathbf{x} ?

So $q(\mathbf{x})$ can not be bigger than 9, for any \mathbf{x} . Can we get $q(\mathbf{x}) = 9$ for some \mathbf{x} ? Obviously for $\mathbf{x} = (1,0,0)$ we achieve the upper bound, so 9 is the maximum value for q (under this constraint.)

So $q(\mathbf{x})$ can not be bigger than 9, for any \mathbf{x} . Can we get $q(\mathbf{x}) = 9$ for some \mathbf{x} ? Obviously for $\mathbf{x} = (1,0,0)$ we achieve the upper bound, so 9 is the maximum value for q (under this constraint.) What is a lower bound?

So $q(\mathbf{x})$ can not be bigger than 9, for any \mathbf{x} . Can we get $q(\mathbf{x}) = 9$ for some \mathbf{x} ? Obviously for $\mathbf{x} = (1,0,0)$ we achieve the upper bound, so 9 is the maximum value for q (under this constraint.) What is a lower bound? For which \mathbf{x} is the lower bound achieved?

What if *A* is not diagonal?

What if *A* is not diagonal?

Theorem

Let A be a symmetric matrix and let λ_m be the least eigenvalue and λ_M be the greatest eigenvalue of A. Then

$$\lambda_m = \min\{\mathbf{x}^T A \mathbf{x} : \mathbf{x}^T \mathbf{x} = 1\},\$$

moreover if \mathbf{u}_m is a unit eigenvector corresponding to λ_m , then $\mathbf{u}_m^T A \mathbf{u}_m = \lambda_m$. In addition,

$$\lambda_M = \max\{\mathbf{x}^T A \mathbf{x} : \mathbf{x}^T \mathbf{x} = 1\},$$

moreover if \mathbf{u}_M is a unit eigenvector corresponding to λ_M , then $\mathbf{u}_M^T A \mathbf{u}_M = \lambda_M$.

What if *A* is not diagonal?

Theorem

Let A be a symmetric matrix and let λ_m be the least eigenvalue and λ_M be the greatest eigenvalue of A. Then

$$\lambda_m = \min\{\mathbf{x}^T A \mathbf{x} : \mathbf{x}^T \mathbf{x} = 1\},\$$

moreover if \mathbf{u}_m is a unit eigenvector corresponding to λ_m , then $\mathbf{u}_m^T A \mathbf{u}_m = \lambda_m$. In addition,

$$\lambda_M = \max\{\mathbf{x}^T A \mathbf{x} : \mathbf{x}^T \mathbf{x} = 1\},$$

moreover if \mathbf{u}_M is a unit eigenvector corresponding to λ_M , then $\mathbf{u}_M^T A \mathbf{u}_M = \lambda_M$.

We know by the spectral theorem that $A = QDQ^T$, and so we can write $q(\mathbf{x}) = \mathbf{x}^T QDQ^T \mathbf{x} = u^T Du = \lambda_M u_1^2 + \dots + \lambda_m u_m^2$, where $u = Q^T x$.

We know by the spectral theorem that $A = QDQ^T$, and so we can write $q(\mathbf{x}) = \mathbf{x}^T QDQ^T \mathbf{x} = u^T Du = \lambda_M u_1^2 + \dots + \lambda_m u_m^2$, where $u = Q^T x$.

We know by the spectral theorem that $A = QDQ^T$, and so we can write $q(\mathbf{x}) = \mathbf{x}^T QDQ^T \mathbf{x} = u^T Du = \lambda_M u_1^2 + \dots + \lambda_m u_m^2$, where $u = Q^T x$. As before we see that the largest eignvalue λ_M is the upper bound for q, achieved for $u = (1, 0, \dots, 0)$ or $\mathbf{x} = Qu$, the normalized eigenvector corresponding to λ_M .

We know by the spectral theorem that $A = QDQ^T$, and so we can write $q(\mathbf{x}) = \mathbf{x}^T QDQ^T\mathbf{x} = u^TDu = \lambda_M u_1^2 + \dots + \lambda_m u_m^2$, where $u = Q^Tx$. As before we see that the largest eigenvalue λ_M is the upper bound for q, achieved for $u = (1, 0, \dots, 0)$ or $\mathbf{x} = Qu$, the normalized eigenvector corresponding to λ_M . Same argument for λ_m .

Let
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$
. Find the maximum and minimum values of $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$.

Solution

We first find eigenvectors and eigenvalues for A.

Let
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$
. Find the maximum and minimum values of $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$.

Solution

We first find eigenvectors and eigenvalues for A. Let us ask Wolfram Alpha: $\det(A)$, Eigenvalues and eigenvectors .

Let
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$
. Find the maximum and minimum values of $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$.

Solution

We first find eigenvectors and eigenvalues for A. Let us ask Wolfram Alpha: $\det(A)$, Eigenvalues and eigenvectors . So $\lambda=6,3,1$, with eigenvectors

$$v_1 = rac{1}{\sqrt{3}} egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}, \quad v_2 = rac{1}{\sqrt{6}} egin{bmatrix} -1 \ -1 \ 2 \end{bmatrix}, \quad rac{1}{\sqrt{2}} egin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$
. Find the maximum and minimum values of $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$.

2nd derivative test

Solution

We first find eigenvectors and eigenvalues for A. Let us ask Wolfram Alpha: $\det(A)$, Eigenvalues and eigenvectors . So $\lambda=6,3,1$, with eigenvectors

$$v_1 = rac{1}{\sqrt{3}} egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}, \quad v_2 = rac{1}{\sqrt{6}} egin{bmatrix} -1 \ -1 \ 2 \end{bmatrix}, \quad rac{1}{\sqrt{2}} egin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}$$

Then q(x) has maximum value 6, and $q(v_1) = v_1^T A v_1 = 6 ||\mathbf{v_1}|| = 6$.

Let
$$A = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$
. Find the maximum and minimum values of $q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ subject to the constraint $\mathbf{x}^T \mathbf{x} = 1$.

Solution

We first find eigenvectors and eigenvalues for A. Let us ask Wolfram Alpha: $\det(A)$, Eigenvalues and eigenvectors . So $\lambda=6,3,1$, with eigenvectors

$$v_1 = rac{1}{\sqrt{3}} egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}, \quad v_2 = rac{1}{\sqrt{6}} egin{bmatrix} -1 \ -1 \ 2 \end{bmatrix}, \quad rac{1}{\sqrt{2}} egin{bmatrix} 1 \ -1 \ 0 \end{bmatrix}$$

Then q(x) has maximum value 6, and $q(v_1) = v_1^T A v_1 = 6 ||\mathbf{v_1}|| = 6$. The minimal value is 1 and $q(v_3) = v_2^T A v_3 = 1 ||\mathbf{v_3}|| = 1$.