Week 5: Two-way ANOVA and Repeated Measures ANOVA

Time stamper!!

Quizzes and canvas

Midterm/final

Two-way ANOVA

- When you have two categorical predictor variables (each with more than one level) and one quantitative response variable
 - Can keep going three-way, four-way, everything generally the same, but interpretation gets more complicated (88% correct)
- Didn't have you read the beginning of the chapter, because the first example they use is more of a 'repeated' measures ANOVA
 - Where each subject participates in each level
 - Book called this a randomized complete block design
 - Analyzed differently in SPSS
 - Will talk about later

Two-way ANOVA

- Variability between group still compared to variability with the groups, but now this is looked at separately for each grouping variable
- The assumptions are the same as for one-way ANOVA

Some terminology

- TV Type
 - 3 levels: Neutral, Violent, Sexual
- TV Length
 - 3 levels: Short, Medium, Long
- TV Type and TV Length are called:
 - Factors
 - Each factor tested separately (versus grand mean for that factor)
 - When test each factor, its called a main effect
 - Main effect of TV Type, would investigate whether recall differs for different TV types, regardless of length

Example: Do students at all levels of academic ability benefit from a practice exam?

- 132 students in an introduction to psychology class divided into three groups based on class standing (hi, medium, low), and into two groups based on whether they attended a review section or took a practice exam prior to the final exam. After completing the final exam, they rated their exam preparation on an 11 point scale.
- What are the factors?
 - Class standing, type of preparation
- How many levels does each one have?
 - 3 for class standing, 2 for type of prep
- · What is the response variable?
 - Rating of exam preparation
- What are the treatments/cells?
 - Hi-review, med-review, low-review, hi-prac, med-prac, low-prac
- The ANOVA is often referred to by the number of levels, so this would be a 3x2 ANOVA

What does the data look like?

- 22 students in each 'cell'
- Each experimental unit is a line, has a value for each factor
 - Each subject has a standing and a preparation value

		Type of p	preparation
		Review Section	Practice Exam
	Hi	Students in hi standing that went to a review section	Students in hi standing that took a practice exam
Class Standing	Medium	Students in medium standing that went to a review section	Students in medium standing that took a practice exam
Class (Low	Students in low standing that went to a review section	Students in low standing that took a practice exam

			a
1:			
	PREP	STANDING	RATING
56	PRACTICE	HI	5
57	PRACTICE	HI	6
58	PRACTICE	HI	4
59	PRACTICE	HI	6
60	PRACTICE	HI	8
61	PRACTICE	HI	7
62	PRACTICE	HI	9
63	PRACTICE	HI	8

Choose

- Saw already that we have two categorical and quantitative variable, lets make sure to look at our data.
- Use a line graph, where we use the factor with the smallest number of levels to create multiple lines
- Called an interaction plot, made through the ANOVA

Fit

• Looks a little different..... Can peek at results

Tests of Between-Subjects Effects

Dependent Variable: RATING

Bopondone vandbior					
Source	Type III Sum of	df	Mean Square	F	Sig.
	Squares				
Corrected Model	105.068 ^a	5	21.014	5.677	.000
Intercept	2921.523	1	2921.523	789.247	.000
PREP	38.189	1	38.189	10.317	.002
STANDING	39.591	2	19.795	5.348	.006
PREP * STANDING	27.288	2	13.644	3.686	.028
Error	466.409	126	3.702		
Total	3493.000	132			
Corrected Total	571.477	131			

a. R Squared = .184 (Adjusted R Squared = .151)

Assess: verify assumptions

- Have a mean of zero
- *
- Equal variance: have the same standard deviation for each group – each cell/treatment
 - Residual plot
 - Rule of thumb: gets a little crazy would have 6 stdev
 - Levene's test of equal variance
- · Follow a normal distribution
 - Normal probability plot
- Be independent
 - usually achieved by random assignment or random sampling
 - But all from one psychology class......

Assess the model

Equal variance:

 H_0 : $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2 = \sigma_5^2 = \sigma_6^2$ H_a : Not all variances are equal

- Fail to reject null hypothesis that all variances are equal, this along with the residual plot suggests we meet the assumption of equal variance
- But only has 5 'groups' not 6

Levene's Test of Equality of Error . Variances^a Dependent Variable: RATING

df1 df2 Tests the null hypothesis that the error

variance of the dependent variable is equal across groups. a. Design: Intercept + PREP + STANDING + PREP * STANDING

Descriptive Statistics

Dependent Variable: RATING

PREP	STANDING	Mean	Std. Deviation	N
	HI	6.14	1.726	22
PRACTICE	LOW	5.68	1.585	22
PRACTICE	MED	3.91	2.245	22
	Total	5 24	2.083	66
	HI	3.95	1.618	22
REVIEW	LOW	4.59	1.843	22
KLVILVV	MED	3.95	2.380	22
	Total	4.17	1.966	66
	HI	5.05	1.988	44
Total	LOW	5.14	1.786	44
Total	MED	3.93	2.286	44
	Total	4.70	2.089	132

Assess the model: normality

 Normality assumption met?

Use

- · Going to answer 3 questions
 - Are there significant differences in the mean preparation score for students with different class standings?
 - Are there significant differences in the mean preparation score for students who attend a review section compared to those who take a practice exam
 - Is there a significant interaction in the mean preparation scores between class standing and preparation method?

Tests of Between-Subjects Effects

Dependent Variable: RATING

Bopondone vandbio:					
Source	Type III Sum of	df	Mean Square	F	Sig.
	Squares				
Corrected Model	105.068 ^a	5	21.014	5.677	.000
Intercept	2921.523	1	2921.523	789.247	.000
PREP	38.189	1	38.189	10.317	.002
STANDING	39.591	2	19.795	5.348	.006
PREP * STANDING	27.288	2	13.644	3.686	.028
Error	466.409	126	3.702		
Total	3493.000	132			
Corrected Total	571.477	131			

a. R Squared = .184 (Adjusted R Squared = .151)

Use

- Going to answer 3 questions
 - Are there significant differences in the mean preparation score for students with different class standings?
 - Are there significant differences in the mean preparation score for students who attend a review section compared to those who take a practice exam
 - Is there a significant interaction on preparation scores between class standing and preparation method?
- The first two are tests for 'main effects', and the hypotheses are the same as in a 1-way ANOVA

$$H_0$$
: $\mu_1 = \mu_2 = \cdots = \mu_k$

H_a: the means are not all equal

- The third test is for the interaction
 - For now, lets ignore this one

• Test the main effect of type of preparation:

Use

 H_0 : $\mu_{review} = \mu_{pracexam}$

H_a: the means are not all equal

- Decision:
 - Since p<.01 and F=10.32, we can reject the null hypothesis.
- Conclusion:
 - This suggests that students in psychology feel more prepared on average when they take a practice exam compared to if they attend a review section
- When you investigate the main effect of one factor, you average across the other – the main effect of type or preparation is thought to be the same for ALL LEVELS of the other factor

Tests of Between-Subjects Effects

Dependent Variable:	RATING					
Source	Type III Sum of	df	Mean Square	F	Sig.	
	Squares					
Corrected Model	105.068 ^a	5	21.014	5.677	.000	
Intercept	2921.523	1	2921.523	789.247	.000	
PREP	38.189	1	38.189	10.317	.002	
STANDING	39.591	2	19.795	5.348	.006	
PREP * STANDING	27.288	2	13.644	3.686	.028	
PREP * STANDING Error	27.288 466.409	2 126	13.644 3.702	3.686	.028	
		2 126 132		3.686	.028	
Error	466.409			3.686	.028	

Main effect of preparation

Average across the levels of the other factor

Main effect of Class Standing

- Average across the levels of the other main effect
- Can do this because we think each factor is independent of each other

Use

· Test the main effect of class standing:

 H_0 : $\mu_{hi} = \mu_{med} = \mu_{low}$

H_a: the means are not all equal

Decision: Since p<.01, we can reject the null hypothesis.

Conclusion:

- This suggests that students mean rating of preparedness differs for different class standings.
- · What would we do to find out which class standings differ?
 - Posthoc tests: Tukey's
- Going to hold off for now and investigate interaction term

Tests of Between-Subjects Effects

Dependent Variable: Source Type III Sum of Mean Square Sig. Squares Corrected Model 105 068 21.014 5.677 000 Intercept 2921.523 2921.523 789.247 .000 38.189 38.189 10.317 002 STANDING 39.591 19.795 5.348 .006 2 PRFP STANDING 27.288 13 b44 ロフ8 Error 466.409 126 3.702 3493.000 132 Corrected Total 571.477 a. R Squared = .184 (Adjusted R Squared = .151)

Deliver of the state of the sta

What about interactions?

- Just like in regression, these higher order terms mess things up!!!!
- If there is an interaction, it implies you can't just simply collapse across, or average across the other factor, because the two factors interact with each other!
 - Interpreting the main effects makes no sense!!
 - Makes F-tests of main effects less trustworthy
 - Like in regression, an interaction implies the 'lines' aren't parallel.

Quick test for whether there might be an interaction is, whether the lines are parallel

Some say if the lines cross, but really there are two ways the graph can be plotted, so you would need to plot both to know if cross (32% correct)

So whether they deviate from parallel is best

Formal test for interaction

Hypothesis

 ${\rm H_0}$: the main effect of each factor is the same for each level of the other factor

H_a: the two factors interact

- · Decision:
 - Since p<.05, we can reject the null hypothesis that the two factors are independent of each other
- Conclusion:
 - The data suggests that students' average rating of preparedness depends on a combination of the class standing and type of preparation.
- · Not very satisfying.

Tests of Between-Subjects Effects

Dependent Variable:	RATING						
Source	Type III Sum of	df	Mean Square	F	Sig.		
	Squares						
Corrected Model	105.068 ^a	5	21.014	5.677	.000		
Intercept	2921.523	1	2921.523	789.247	.000		
PREP	38.189	1	38.189	10.317	.002		
STANDING	30,501	2	10,705	5.349	.006		
PREP * STANDING	27.288	2	13.644	3.686	.028		
Error	466.409	126	3.702				
Total	3493.000	132					
Corrected Total	571.477	131					
a D Cauarad = 191	a D. Causrad = 194 (Adjusted D. Causrad = 151)						

a. R Squared = .184 (Adjusted R Squared = .151)

What if there is an interaction?

- The data suggests that students average rating of preparedness depends on a combination of the class standing and type of preparation.
- This usually isn't very useful in helping to answer our question of interest:
 - Do students at all levels of academic ability benefit from a practice exam
- Depends on field, but might follow up with a series of t-tests, or one-way ANOVAs.

· Follow up by testing simple main effects

Pulling apart two factors

Investigate separately for each level of other fattor

 H_0 : $\mu_{hireview} = \mu_{hipracexam}$ and

 H_0 : $\mu_{\text{medreview}} = \mu_{\text{medpracexam}}$ and

 H_0 : $\mu_{lowreview} = \mu_{lowpracexam}$

But have to be careful of multiple comparisons

Mediu m

Type of preparation Review Section Practice Exam Students in hi standing that standing that took went to a review a practice exam section Students in Students in medium standing standing that that took a went to a review practice exam section Students in low Students in low standing that standing that took went to a review a practice exam

What if significant interaction

- This implies we should first look at whether the interaction is significant
- Because if it is, don't want to interpret main effects (82% correct).

Summary

- Learned about two-way ANOVA
- Same assumptions as one-way
- Learned about interactions higher order terms that mess things up
 - Can't simply interpret main effects in same way as you would if not an interaction.

Last kind of ANOVA: Repeated measures

- This is your friend very common in lots of fields of psychology.
- Easiest way to get a significant effect!

Repeated measures ANOVA

- Ideal for experimental designs
- Most commonly used when you are investigating an effect over time (longitudinal study)
 - Like weight loss
- But really used anytime the same people participate in all levels of a factor (94% correct)

Why RM ANOVA so cool ☺

- Remember idea of ANOVA is to compare the between group variability (what we are manipulating) to the within group variability (error due to randomness across subjects)
- Now RM ANOVA can further subdivide the error term can predict subject variability (Because have more than one measure per subj),
 - So reduces the error term, increasing significance!!!!

Assumptions similar: Sphericity

- Still have normality and randomness
- Except now instead of equal variance for each group, you have the assumption of sphericity
- Sphericity: is the condition where the variances of the differences between all combinations of related levels are equal
 - Quiz question: In repeated measures ANOVA, one of the assumptions is that the variances of each treatment must be equal -> 37% correct
- This is a big deal in RM ANOVA but easily testable and fixable
 - Mauchly's test of spehricity
 - H_o: the variances of the differences are equal
 - H_a: The variances of the differences are not equal
- If reject the null hypothesis, and fail the assumption of sphericity, can use the Greenhouse-Geisser correction
 - Changes degrees of freedom to correct for the increased risk of Type I error

Dataset: Diets and exercise

- Participants were randomly assigned to 2 different diet plans
- Their pulse was measured during 3 different types of exercise, low impact, med, and high impact
- What are the factors? And how many levels does each have?
 - Diet: 2, exercise: 3
- What type of factor are they?
 - Diet: between subject, exercise: within subject

Data organized differently

 Now each subject participated in multiple levels of a factor, and need to link them from level to level

	pulse1	pulse2	pulse3	diet
1	112.00	166.00	215.00	1.00
2	111.00	166.00	225.00	1.00
3	89.00	132.00	189.00	1.00
4	95.00	134.00	186.00	2.00
5	66.00	109.00	150.00	2.00
6	69.00	119.00	177.00	2.00
7	125.00	177.00	241.00	1.00
	05.00	117.00	100.00	1.00

Repeated Measures: Sphericity

Hypothesis:

H₀: the variances of the differences are equal H_a: The variances of the differences are not equal

- Decision/conclusion:
- Because p<.05, we reject the null hypothesis that the variances of the differences are equal. This suggests that we fail to meet the assumption of sphericity, and should use the Greenhouse-Geisser corrected significance.

Mauchly's Test of Sphericity^a

	11100000101 111E/10011E_1							
l	Within Subjects Effect	Mauchly's W	Approx. Chi-	df	Sig.	Epsilon ^b		
			Square			Greenhouse- Geisser	Huynh-Feldt	Lower-bound
	exerlevel	.502	10.328	2	.006	.668	.751	.500
L	T							

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix.

Measure: MEASURE 1

Within Subjects Design: exerlevel

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

a. Design: Intercept + diet

Normality

 Need to make the plot again just like in other ANOVA's, but saves the residuals out in multiple columns, one for each level of your repeated measures. Need to copy and paste them all into one column before plotting.

Repeated Measures: within subj effects

• Main effect of exercise intensity

 H_0 : $\mu_{low} = \mu_{med} = \mu_{high}$ H_a : the means are not all equal

- Decision:
 - p<.001, reject null
- Conclusion:
 - Average pulse rate differed significantly (p<.001, Greenhouse-Geisser corrected) across the three exercise intensity levels, regardless of diet plan (interaction p=.118, Greenhouse Geisser corrected)

Tests	of W	ithin-9	Subie	cts Et	ffects

rests of within-subjects Effects								
Measure: MEAS	URE_1							
Source		Type III Sum of	df	Mean Square	F	Sig.		
		Squares						
	Sphericity Assumed	93972.111	5	46086.056	690 666	.000		
exerlevel	Greenhouse-Geisser	93972.111	1.335	70370.245	690.666	.000		
exellevel	Huynh-Feldt	93972.111	1.503	02533.755	090.006	.000		
	Lower-bound	93972.111	1.000	93972.111	690.666	.000		
	Sphericity Assumed	344.926	2	172.463	2.535	.095		
exerlevel * diet	Greenhouse-Geisser	344.926	1.335	258.295	2.535	.118		
exemever diet	Huynh-Feldt	344.926	1.503	229.531	2.535	.112		
	Lower-bound	344.926	1.000	344.926	2.535	.131		
	Sphericity Assumed	2176.963	32	68.030				
[Greenhouse-Geisser	2176.963	21.366	101.888				
Error(exerlevel)	Huynh-Feldt	2176.963	24.044	90.541				
	Lower-bound	2176.963	16.000	136.060				

Between subject effects

Main effect of diet plan

 $H_0\text{: }\mu_{\text{diet1}} = \mu_{\text{diet2}}$

H_a: the means are not all equal

- Decision:
 - p<.01, reject null
- Conclusion:
 - Average pulse rate differed significantly between the diet plans (p<.001), such that on average people in diet plan 1 had a higher pulse rate than those on diet2.

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed variable: Average						
Source	ource Type III Sum of		Mean Square	F	Sig.	
	Squares					
Intercept	1014348.167	1	1014348.167	1113.315	.000	
diet	8791.130	1	8791.130	9.649	.007	
Error	14577.704	16	911.106			

But which exercise levels differed?

- · Can't do traditional posthoc tests.... But spss will do something similar:
- Choices are LSD, Bonferroni, or Sidak
 - Sidak is the 'just right' test this time
- Conclusion:
 - Average pulse rate differed for all three exercise levels (all p<.01), with pulse rate increasing from level1 to level3.

Pairwise Comparisons

MEAGUE 4

Measure: MEASURE_1						
(I) exerlevel	(J) exerlevel	Mean	Std. Error	Sig. ^b	95% Confidence Interval for	
		Difference (I-J)			Difference ^b	
					Lower Bound	Upper Bound
1	2	-46.611 [*]	2.155	.000	-52.354	-40.868
	3	-102.056 [*]	3.589	.000	-111.620	-92.491
2	1	46.611 [*]	2.155	.000	40.868	52.354
	3	-55.444*	2.269	.000	-61.491	-49.398
3	1	102.056	3.589	.000	92.491	111.620
	2	55.444 [*]	2.269	.000	49.398	61.491

Based on estimated marginal means

- *. The mean difference is significant at the
- b. Adjustment for multiple comparisons: Sidak.