Алгебра 1 семестр ПИ, Лекция, 09/17/21

Собрано 27 сентября 2021 г. в 19:09

Содержание

1.	Основы теории чисел	1
	1.1. Делимость	1
	1.2. Наибольший общий делитель	9

1.1. Делимость

Def. 1.1.1. a:b unu $b|a \Leftrightarrow \exists q: a=b \cdot q, b \neq 0$

Свойства:

- 1. Рефлексивность. $a:a, a \neq 0$
- 2. Антисимметричность на \mathbb{N} . $a:b,b:a\Rightarrow a=b$
- 3. Транзитивность. $a:b, :c \Rightarrow a:c$
- 4. $a|b, a|c \Rightarrow a|(b \pm c)$.

Доказательство.
$$b = a \cdot q_1, c = aq_2 \Rightarrow b \pm c = aq_1 \pm aq_2 = a(q_1 \pm q_2)$$

- 5. $a|b \Rightarrow \forall c \rightarrow a|bc$
- 6. Пусть $a|b_i, i = 1, ..., n, a|(b_1 + ... + b_n + c) \Rightarrow a|c|$

Доказательство.
$$b_1 + ... + b_n + c = aq, aq_1 + aq_2 + ... + aq_n + c = aq \Rightarrow c = a(q - q_1 - ... - q_n)$$

 $\Rightarrow a|c$

- 7. $a|b \Rightarrow \forall k \neq 0 \rightarrow ka|kb$
- 8. $ka|kb \Rightarrow a|b$

Теорема 1.1.2 (О делении с остатком).

$$\forall a \land \forall b > 0 \ \exists !q, r, 0 \leqslant r < b : a = bq + r$$

Def. 1.1.3. a - делимое, b - делитель, q - частное (неполное частное), r - остаток

Доказательство. \exists -ние. Рассмотрим a-bq. Выберем q так, чтобы a-bq>0 было наименьшим. Положим $r=a-bq\geqslant 0 \Rightarrow a=bq+r$. По выбору $q\to a-b(q+1)<0 \Rightarrow a< b(q+1) \Rightarrow r=a-bq< b(q+1)-bq=b$.

Единственность. Преположим, что $a = bq_1 + r_1 = bq_2 + r_2, 0 \leqslant r_1, r_2 < b$

$$|r_1 - r_2| < b, bq_1 + r_1 = bq_2 + r_2 \Rightarrow b(q_1 - q_2) = r_2 - r_1 \Rightarrow |b(q_1 - q_2)| \geqslant b$$

Ho $|r_1 - r_2| < b$ - противоречие.

1.2. Наибольший общий делитель

Def. 1.2.1. Общим делителем $a_1, a_2, ..., a_n$ называется $d: d | a_i, i = 1, ..., n$.

Def. 1.2.2. Наибольший общий делитель $a_1, a_2, ..., a_n$ называется d такое, что

- 1. d > 0
- 2. $d|a_i, i = 1, ..., n$
- 3. $ec_{i}u d'|a_{i}, i = 1, ..., n, mo d'|d$

Обозначается $gcd(a_1, a_2, ..., a_n) = (a_1, a_2, ..., a_n)$

Замечание 1.2.3. По определению gcd(0,0) = 0. $a \neq 0$, то gcd(a,0) = 0

Свойства:

1.
$$b|a \Rightarrow (a,b) = b$$

$$d|(a,b)\Rightarrow d|b$$

$$d|b\Rightarrow d|a(\text{по транзитивности})\Rightarrow d|(a,b)$$

2.
$$a = bq + c \Rightarrow (a, b) = (b, c)$$

3.

Алгоритм 1.2.4 (Алгоритм Евклида).

$$a = bq_1 + r_1, 0 \leqslant r_1 < b$$

$$b = r_1q_1 + r_2, 0 \leqslant r_2 < r_1$$

$$r_1 = r_2q_3 + r_3, 0 \leqslant r_3 < r_2$$

$$...$$

$$r_{n-2} = r_{n-1}q_n + r_n, 0 \leqslant r_n < r_{n-1}$$

$$r_{n-1} = r_nq_{n+1}$$

Теорема 1.2.5. $r_n = \gcd(a, b)$

Доказательство. $r_1 > r_2 > r_3 > \dots \geqslant 0 \Rightarrow \exists r_{n+1} = 0.$ $r_n | r_{n-1}.$

$$r_n = (r_n, r_{n-1}) = (r_{n-1}, r_{n-2}) = \dots = (r_2, r_1) = (b, r_1) = (a, b)$$

- 4. $(ma, mb) = m \cdot (a, b)$
- 5. $d|a,d|b \Rightarrow \left(\frac{a}{d},\frac{b}{d}\right) = \frac{(a,b)}{d}$

Доказательство. $(a,b)=\left(d\cdot \frac{a}{d},d\cdot \frac{b}{d}\right)=d\cdot \left(\frac{a}{d},\frac{b}{d}\right)$

6.
$$(a,b) = 1 \Rightarrow (a,bc) = (a,c)$$

Доказательство. Докажем, что (a,bc)|(a,c)

$$(a,bc)|a,(a,bc)|ac,(a,bc)|bc \Rightarrow (a,bc)|(ac,bc) \Rightarrow (a,bc)|(a,b) \cdot c = c \Rightarrow (a,bc)|(a,c)$$

Теперь докажем, что (a,c)|(a,bc)

$$(a,c)|a,(a,c)|c \Rightarrow (a,c)|bc \Rightarrow (a,c)|(a,bc) \Rightarrow (a,bc) = (a,c)$$

7. $(a,b) = 1, b|ac \Rightarrow b|c$

Доказательство.

$$b|bc, b|ac \Rightarrow b|(bc, ac) = c$$

8.
$$(a,b) = (a-b,b)$$

Теорема 1.2.6 (Линейное представление НОД).

$$(a,b) = d \Rightarrow \exists u,v : u \cdot a + v \cdot b = d$$

Доказательство. Из алгоритма Евклида:

$$r_{n-2} = r_{n-1} \cdot q_n + r_n \Rightarrow d = r_n = r_{n-2} - r_{n-1} \cdot q_n$$

$$r_{n-3} = r_{n-2} \cdot q_{n-1} + r_{n-1} \Rightarrow d = r_{n-2} - (r_{n-3} - r_{n-2} \cdot q_{n-1})q_n$$

Из следующей строки выражаем r_{n-2} и т.д. \Rightarrow останутся a и $b \Rightarrow d = u \cdot a + v \cdot b$