S&DS 351: Stochastic Processes - Homework 8

Bryan SebaRaj

Professor Ilias Zadik

April 18, 2025

Chang Problems:

[5.8] The strong Markov property is an extension of the restarting property of Proposition 5.5 from fixed times c to random stopping times γ : For a stopping time γ , the process x defined by $X(t) = W(\gamma + t) - W(\gamma)$ is a Brownian motion, independent of the path of W up to time γ . Explain the role of the stopping time requirement by explaining how the restarting property can fail for a random time that isn't a stopping time. For example, let $M = \max\{B_t : 0 \le t \le 1\}$ and let $\beta = \inf\{t : B_t = M\}$; this is the first time at which B achieves its maximum height over the time interval [0,1]. Clearly β is not a stopping time, since we must look at the whole path $\{B_t : 0 \le t \le 1\}$ to determine when the maximum is attained. Argue that the restarted process $X(t) = W(\beta + t) - W(\beta)$ is not a standard Brownian motion.

Because $B_{\beta+t} \leq B_{\beta}$ for every $0 \leq t \leq 1-\beta$, we get $X(1-\beta) = B_1 - B_{\beta} \leq 0$ almost surely, contradicting the symmetry of a $N(0, 1-\beta)$ law and hence proving that X cannot be a standard Brownian motion, which shows why the strong Markov property demands β to be a stopping time.

[5.9] [Ornstein-Uhlenbeck process] Define a process X by

$$X(t) = e^{-t}W(e^{2t})$$

for $t \geq 0$, where W is a standard Brownian motion. X is called an Ornstein-Uhlenbeck process.

(a) Find the covariance function of X.

The process X is obtained from a standard Brownian motion W by the deterministic space—time change

$$X(t) = e^{-t}W(e^{2t}), t > 0.$$

Because W is Gaussian with mean 0, X is also Gaussian with mean 0, so its second-order behaviour is completely described by its covariance function. Fix $s,t\geq 0$ and—without loss of generality—assume $s\leq t$; then

$$\mathbb{E} \big[X(s) X(t) \big] = \mathbb{E} \Big[e^{-s} W(e^{2s}) \; e^{-t} W(e^{2t}) \Big] = e^{-(s+t)} \, \mathbb{E} \Big[W(e^{2s}) \, W(e^{2t}) \Big].$$

Brownian motion has the covariance $\mathbb{E}[W(u)W(v)] = \min\{u, v\}$, so

$$\mathbb{E}[X(s)X(t)] = e^{-(s+t)}\min\{e^{2s}, e^{2t}\} = e^{-(s+t)}e^{2s} = e^{-(t-s)}.$$

By symmetry in (s,t) this extends to all $s,t \geq 0$ and gives

$$\operatorname{Cov}(X(s), X(t)) = e^{-|t-s|}, \quad s, t \ge 0.$$

Hence X is a stationary centered Gaussian process with exponentially decaying covariance, the hallmark of the Ornstein–Uhlenbeck family.

(b) Evaluate the functions μ and σ^2 , defined by

$$\mu(x,t) = \lim_{h \downarrow 0} \frac{1}{h} \mathbb{E}[X(t+h) - X(t) \mid X(t) = x]$$

$$\sigma^2(x,t) = \lim_{h\downarrow 0} \frac{1}{h} \operatorname{Var}[X(t+h) - X(t) \mid X(t) = x].$$

To identify the "infinitesimal" drift and diffusion of X, expand X(t+h) around t. Write

$$\Delta_h := W(e^{2(t+h)}) - W(e^{2t}), \quad \text{so that} \quad X(t+h) = e^{-(t+h)} [W(e^{2t}) + \Delta_h].$$

Conditional distribution of Δ_h . Since W has independent increments, Δ_h is independent of $W(e^{2t})$ and is Gaussian with mean 0 and variance

$$Var(\Delta_h) = e^{2(t+h)} - e^{2t} = e^{2t}(e^{2h} - 1).$$

Conditioning on X(t) = x. The event $\{X(t) = x\}$ pins down the value of $W(e^{2t})$:

$$X(t) = x \implies e^{-t}W(e^{2t}) = x \implies W(e^{2t}) = e^tx.$$

Therefore, under this conditioning,

$$\mathbb{E}[\Delta_h | X(t) = x] = 0, \quad \text{Var}[\Delta_h | X(t) = x] = e^{2t}(e^{2h} - 1).$$

First conditional moment.

$$\mathbb{E}[X(t+h) - X(t) \mid X(t) = x] = \mathbb{E}[e^{-(t+h)}W(e^{2t}) - e^{-t}W(e^{2t}) + e^{-(t+h)}\Delta_h \mid X(t) = x]$$

$$= (e^{-(t+h)} - e^{-t}) e^t x + e^{-(t+h)}\mathbb{E}[\Delta_h \mid X(t) = x]$$

$$= (e^{-h} - 1)x.$$

Hence

$$\mu(x,t) = \lim_{h \downarrow 0} \frac{1}{h} \mathbb{E} \big[X(t+h) - X(t) \, | \, X(t) = x \big] = \lim_{h \downarrow 0} \frac{e^{-h} - 1}{h} \, x = -x.$$

Second conditional moment.

$$Var[X(t+h) - X(t) | X(t) = x] = Var[e^{-(t+h)} \Delta_h]$$

$$= e^{-2(t+h)} Var[\Delta_h | X(t) = x]$$

$$= e^{-2h} (e^{2h} - 1)$$

$$= 2h + o(h) \quad (h \downarrow 0).$$

Consequently

$$\sigma^{2}(x,t) = \lim_{h \to 0} \frac{1}{h} \operatorname{Var} \left[X(t+h) - X(t) \, | \, X(t) = x \right] = 2.$$

Interpretation. The limits $\mu(x,t) = -x$ and $\sigma^2(x,t) = 2$ coincide with the drift and twice the diffusion coefficient in the stochastic differential equation

$$dX_t = -X_t dt + \sqrt{2} dW_t$$

whose unique stationary solution is precisely the Ornstein–Uhlenbeck process we constructed by the time–space transform of Brownian motion.

[5.10] Let W be a standard Brownian motion.

(i) Defining $\tau_b = \inf\{t : W(t) = b\}$ for b > 0 as above, show that τ_b has probability density function

$$f_{\tau_b}(t) = \frac{b}{\sqrt{2\pi}} t^{-3/2} e^{-b^2/(2t)}$$

for t > 0.

(i) Density of the hitting time τ_b .

For b > 0 let

$$\tau_b = \inf\{t > 0 : W(t) = b\}.$$

By the reflection principle

$$P\{\tau_b \le t\} = P\Big\{\sup_{0 \le s \le t} W(s) \ge b\Big\} = 2P\{W(t) \ge b\}.$$

Because $W(t) \sim \mathcal{N}(0, t)$ we have

$$P\{W(t) \ge b\} = 1 - \Phi\left(\frac{b}{\sqrt{t}}\right),$$

where Φ is the standard normal distribution function and $\varphi(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$ its density. Hence

$$F_{\tau_b}(t) = 2\left[1 - \Phi\left(\frac{b}{\sqrt{t}}\right)\right] \qquad (t > 0).$$

Differentiate to obtain the density:

$$f_{\tau_b}(t) = 2\varphi\left(\frac{b}{\sqrt{t}}\right)\left(-\frac{b}{2}t^{-3/2}\right)(-1) = \frac{b}{\sqrt{2\pi}}t^{-3/2}\exp\left(-\frac{b^2}{2t}\right), \qquad t > 0.$$

Thus τ_b has the inverse–Gaussian density claimed.

(ii) Show that for $0 < t_0 < t_1$,

$$P\{W(t) = 0 \text{ for some } t \in (t_0, t_1)\} = \frac{2}{\pi} \tan^{-1} \left(\sqrt{\frac{t_1}{t_0} - 1} \right) = \frac{2}{\pi} \cos^{-1} \left(\sqrt{\frac{t_0}{t_1}} \right).$$

[Hint: The last equality is simple trigonometry. For the previous equality, condition on the value of $W(t_0)$, use part (i), and Fubini (or perhaps integration by parts).]

Fix $0 < t_0 < t_1$ and write $\Delta = t_1 - t_0$. By the Markov property, conditioning on $W(t_0) = x$ and letting

$$\tau_{|x|} = \inf\{s > 0 : W_x(s) = 0\} \quad (W_x(0) = x),$$

we obtain

$$P\{W(t) = 0 \text{ for some } t \in (t_0, t_1)\} = \int_{\mathbb{R}} P\{\tau_{|x|} \le \Delta\} \frac{e^{-x^2/(2t_0)}}{\sqrt{2\pi t_0}} dx.$$

Because $\tau_{|x|}$ has the density from part (i) with b = |x|,

$$P\{\tau_{|x|} \le \Delta\} = \int_0^\Delta \frac{|x|}{\sqrt{2\pi}} s^{-3/2} \exp\left(-\frac{x^2}{2s}\right) ds.$$

Insert this and use symmetry to restrict to x > 0:

$$P = 2 \int_0^\infty \frac{e^{-x^2/(2t_0)}}{\sqrt{2\pi t_0}} \int_0^\Delta \frac{x}{\sqrt{2\pi}} s^{-3/2} e^{-x^2/(2s)} \, ds \, dx.$$

Fubini's theorem allows us to swap the integrals:

$$P = \frac{2}{2\pi\sqrt{t_0}} \int_0^\Delta s^{-3/2} \int_0^\infty x \exp\left(-x^2 \left(\frac{1}{2t_0} + \frac{1}{2s}\right)\right) dx ds.$$

For $\alpha > 0$, $\int_0^\infty x e^{-\alpha x^2} dx = \frac{1}{2\alpha}$; here

$$\alpha = \frac{1}{2t_0} + \frac{1}{2s} = \frac{s+t_0}{2st_0}, \quad \frac{1}{2\alpha} = \frac{st_0}{s+t_0}$$

Therefore

$$P = \frac{1}{2\pi\sqrt{t_0}} \int_0^{\Delta} \frac{2t_0 \, s^{-1/2}}{s + t_0} \, ds = \frac{\sqrt{t_0}}{\pi} \int_0^{\Delta} \frac{s^{-1/2}}{s + t_0} \, ds.$$

Set $s = t_0 u^2$ $(u \ge 0)$; then $ds = 2t_0 u du$ and the upper limit becomes

$$u_{\text{max}} = \sqrt{\frac{\Delta}{t_0}} = \sqrt{\frac{t_1}{t_0} - 1}.$$

Substituting gives

$$P = \frac{\sqrt{t_0}}{\pi} \int_0^{u_{\text{max}}} \frac{1}{\sqrt{t_0 u}} \frac{2t_0 u}{t_0 (1 + u^2)} du = \frac{2}{\pi} \int_0^{u_{\text{max}}} \frac{du}{1 + u^2} = \frac{2}{\pi} \tan^{-1}(u_{\text{max}}).$$

Finally

$$u_{\text{max}} = \sqrt{\frac{t_1}{t_0} - 1}$$
, so $P = \frac{2}{\pi} \tan^{-1} \left(\sqrt{\frac{t_1}{t_0} - 1} \right) = \frac{2}{\pi} \cos^{-1} \left(\sqrt{\frac{t_0}{t_1}} \right)$,

the last equality being the elementary identity

$$\tan^{-1}(\sqrt{z-1}) = \cos^{-1}(z^{-1/2})$$
 $(z > 1).$

[5.13] Let (X(t), Y(t)) be a two-dimensional standard Brownian motion; that is, let $\{X(t)\}$ and $\{Y(t)\}$ be standard Brownian motion processes that are independent of each other. Let b > 0, and define $\tau = \inf\{t : X(t) = b\}$. Find the probability density function of $Y(\tau)$. That is, find the probability density of the height at which the two-dimensional Brownian motion first hits the vertical line x = b.

[Hint: The answer is a Cauchy distribution.]

Let

$$\tau = \inf\{t > 0 : X(t) = b\}, \qquad b > 0.$$

so that $(X(\tau), Y(\tau)) = (b, Y(\tau))$ is the first point where the planar Brownian motion hits the vertical line x = b. Because X and Y are independent one-dimensional Brownian motions started at 0, the law of $Y(\tau)$ can be obtained in three steps. 1. Density of the hitting time τ . From the reflection principle (see Problem 5.10 (i))

$$f_{\tau}(t) = \frac{b}{\sqrt{2\pi}} t^{-3/2} e^{-b^2/(2t)}, \quad t > 0.$$

2. Conditional law of $Y(\tau)$ given $\tau = t$. For fixed t the increment Y(t) is independent of X and satisfies

$$Y(\tau) \mid \{\tau = t\} \sim \mathcal{N}(0, t), \text{ i.e. } g_t(y) = \frac{1}{\sqrt{2\pi t}} e^{-y^2/(2t)}, \quad y \in \mathbb{R}.$$

3. Unconditional density of $Y(\tau)$. Using the law-of-total-probability and Fubini,

$$f_{Y(\tau)}(y) = \int_0^\infty g_t(y) f_\tau(t) dt$$

$$= \int_0^\infty \frac{1}{\sqrt{2\pi t}} e^{-y^2/(2t)} \frac{b}{\sqrt{2\pi}} t^{-3/2} e^{-b^2/(2t)} dt$$

$$= \frac{b}{2\pi} \int_0^\infty t^{-2} \exp\left(-\frac{b^2 + y^2}{2t}\right) dt.$$

Evaluate the integral by the substitution $u = (b^2 + y^2)/(2t)$, so that $t = (b^2 + y^2)/(2u)$ and $dt = -\frac{b^2 + y^2}{2u^2} du$:

$$\int_0^\infty t^{-2} e^{-(b^2 + y^2)/(2t)} dt = \int_\infty^0 \left(\frac{2u}{b^2 + y^2}\right)^2 e^{-u} \left(-\frac{b^2 + y^2}{2u^2}\right) du$$
$$= \frac{1}{\frac{1}{2}(b^2 + y^2)} \int_0^\infty e^{-u} du = \frac{2}{b^2 + y^2}.$$

Substituting back,

$$f_{Y(\tau)}(y) = \frac{b}{2\pi} \frac{2}{b^2 + y^2} = \frac{b}{\pi (b^2 + y^2)}, \quad y \in \mathbb{R}$$

4. Identification with the Cauchy distribution. The density

$$y \longmapsto \frac{b}{\pi (b^2 + y^2)}$$

is the centered Cauchy density with scale parameter b. Hence

$$Y(\tau) \sim \text{Cauchy}(0, b),$$

confirming the hint and completing the proof.

[5.15] Let 0 < s < t < u.

(a) Show that $\mathbb{E}(W_s W_t \mid W_u) = \frac{s}{t} \mathbb{E}(W_t^2 \mid W_u)$.

Fix 0 < s < t < u and recall that $\{W_r\}_{r \geq 0}$ is a centred Gaussian process with independent increments. Because W_u is non-degenerate, any finite-dimensional vector built from the path is jointly Gaussian, so conditional expectations are obtained by linear regression. A convenient way to organise the calculation is to decompose the *Brownian bridge*

$$W_r = -\frac{r}{u}W_u + B_r, \qquad 0 \le r \le u,$$

where $\{B_r\}_{0 \le r \le u}$ is a (mean–0) Gaussian bridge independent of W_u with covariance

$$\mathbb{E}[B_r B_{r'}] = \frac{r(u - r')}{u}, \qquad r \le r'.$$

Step 1: Conditional second moment of W_t .

$$W_t^2 = \left(\frac{t}{u}W_u\right)^2 + 2\frac{t}{u}W_uB_t + B_t^2.$$

Taking conditional expectation given W_u (noting that B_t is independent of W_u and has mean 0):

$$\mathbb{E}(W_t^2 \mid W_u) = \frac{t^2}{u^2} W_u^2 + \mathbb{E}(B_t^2) = \frac{t^2}{u^2} W_u^2 + \frac{t(u-t)}{u}.$$

Step 2: Conditional mixed moment $\mathbb{E}(W_sW_t \mid W_u)$. Using the same decomposition,

$$W_s W_t = \left(\frac{s}{u} W_u + B_s\right) \left(\frac{t}{u} W_u + B_t\right)$$
$$= \frac{st}{u^2} W_u^2 + \frac{s}{u} W_u B_t + \frac{t}{u} W_u B_s + B_s B_t.$$

Conditioning on W_u kills the linear terms in B_s, B_t and replaces B_sB_t by its covariance:

$$\mathbb{E}(W_s W_t \mid W_u) = \frac{st}{u^2} W_u^2 + \mathbb{E}(B_s B_t) = \frac{st}{u^2} W_u^2 + \frac{s(u-t)}{u}.$$

Step 3: Relation asserted in part (a). Multiply the result of Step 1 by $\frac{s}{t}$:

$$\frac{s}{t} \mathbb{E}(W_t^2 \mid W_u) = \frac{s}{t} \left(\frac{t^2}{u^2} W_u^2 + \frac{t(u-t)}{u} \right) = \frac{st}{u^2} W_u^2 + \frac{s(u-t)}{u} = \mathbb{E}(W_s W_t \mid W_u),$$

which establishes

$$\boxed{\mathbb{E}(W_s W_t \mid W_u) = \frac{s}{t} \mathbb{E}(W_t^2 \mid W_u).}$$

(b) Find $\mathbb{E}(W_t^2 \mid W_u)$ [you know $\text{Var}(W_t \mid W_u)$ and $\mathbb{E}(W_t \mid W_u)!$] and use this to show that

$$Cov(W_s, W_t \mid W_u) = \frac{s(u-t)}{u}.$$

We already have

$$\mathbb{E}(W_t^2 \mid W_u) = \frac{t(u-t)}{u} + \frac{t^2}{u^2} W_u^2.$$

For the conditional covariance,

$$Cov(W_s, W_t \mid W_u) = \mathbb{E}(W_s W_t \mid W_u) - \mathbb{E}(W_s \mid W_u) \mathbb{E}(W_t \mid W_u).$$

Since $\{W_r\}$ is a martingale,

$$\mathbb{E}(W_r \mid W_u) = \frac{r}{u} W_u \qquad (0 \le r \le u),$$

so that

$$\mathbb{E}(W_s \mid W_u) \, \mathbb{E}(W_t \mid W_u) = \frac{st}{u^2} W_u^2.$$

Subtracting this from the expression in Step 2 yields

$$Cov(W_s, W_t \mid W_u) = \frac{s(u-t)}{u}.$$

[5.17] Verify that the definitions (5.13) and (5.14) give Brownian bridges.

(5.13)
$$X(t) = W(t) - tW(1)$$
 for $0 \le t \le 1$.

(5.14)
$$Y(t) = (1-t)W\left(\frac{t}{1-t}\right)$$
 for $0 \le t < 1$, $Y(1) = 0$

Solution. Definition of a Brownian bridge on [0,1].

A centred, continuous Gaussian process $\{B(t)\}_{0 \le t \le 1}$ is called a Brownian bridge provided

$$B(0) = B(1) = 0$$
, $Cov(B(s), B(t)) = min\{s, t\} - st, \ 0 \le s, t \le 1$.

The covariance formula is often written, when $s \leq t$, as s(1-t).

(5.13)
$$X(t) = W(t) - tW(1), \ 0 \le t \le 1.$$

Claim: X is a Brownian bridge.

(1) End points.
$$X(0) = W(0) = 0$$
, $X(1) = W(1) - W(1) = 0$.

(2) Gaussianity. X(t) is a fixed linear combination of $\{W(r)\}_{0 \le r \le 1}$, so every finite-dimensional distribution is multivariate normal.

(3) Mean.
$$\mathbb{E}[X(t)] = \mathbb{E}[W(t)] - t\mathbb{E}[W(1)] = 0.$$

(4) Covariance. For $0 \le s \le t \le 1$,
 $Cov(X(s), X(t)) = \mathbb{E}[(W(s) - sW(1))(W(t) - tW(1))]$
 $= \min\{s, t\} - ts - s(1) + st$
 $= s(1 - t).$

This is $\min\{s,t\} - st$ in general.

(5) Continuity. X inherits almost–sure continuity from W.

All axioms being satisfied, X is a Brownian bridge.

(5.14)
$$Y(t) = \begin{cases} (1-t) W(\frac{t}{1-t}), & 0 \le t < 1, \\ 0, & t = 1. \end{cases}$$

Claim: Y is a Brownian bridge.

Let $\theta(t) = \frac{t}{1-t}$, so that $\theta: [0,1) \to [0,\infty)$ is strictly increasing.

(1) End points.
$$Y(0) = (1-0)W(0) = 0$$
, $Y(1) = 0$ by definition.

(2) Gaussianity. For t < 1, Y(t) is a scalar multiple of $W(\theta(t))$; any finite vector $(Y(t_1), \ldots, Y(t_k))$ is therefore a linear image of $(W(\theta(t_1)), \ldots, W(\theta(t_k)))$, hence Gaussian.

(3) Mean.
$$\mathbb{E}[Y(t)] = 0$$
.

(4) Covariance. Fix
$$0 \le s \le t < 1$$
. $\theta(s) \le \theta(t) \implies \min\{\theta(s), \theta(t)\} = \theta(s)$.
$$\operatorname{Cov}(Y(s), Y(t)) = (1 - s)(1 - t) \mathbb{E} \Big[W\big(\theta(s)\big) W\big(\theta(t)\big) \Big]$$

$$= (1 - s)(1 - t) \theta(s)$$

$$= (1 - s)(1 - t) \frac{s}{1 - s} = s(1 - t).$$

Thus $Cov(Y(s), Y(t)) = min\{s, t\} - st$ for all $s, t \le 1$.

(5) Continuity and the value at t = 1.

First compute the variance: $\operatorname{Var}[Y(t)] = t(1-t) \xrightarrow[t\to 1^-]{} 0$. Hence $Y(t) \to 0$ in L^2 and therefore in probability as $t \to 1^-$. Because W admits a continuous modification, one may choose that modification and verify that $t \mapsto Y(t)$ is almost surely continuous on [0,1) and converges to 0 at t=1; redefining Y(1)=0 yields an a.s. continuous version on [0,1].

X and Y both satisfy the defining properties of a Brownian bridge on [0,1].

Consequently, (5.13) and (5.14) indeed "manufacture" Brownian bridges from a single standard Brownian motion.

Problem 1. (15 points) Let $W(t), t \ge 0$ be a standard Brownian motion. Prove that it is a Gaussian process, i.e., for all $n \in \mathbb{N}, t_1, \ldots, t_n \ge 0$ and $a_1, \ldots, a_n \in \mathbb{R}$, the distribution of $\sum_{i=1}^n a_i W(t_i)$ is Gaussian.

We recall the usual definition of a standard Brownian motion $\{W(t)\}_{t\geq 0}$:

$$W(0) = 0, \qquad \text{for } 0 \leq s < t \;,\; W(t) - W(s) \sim N(0, t - s), \qquad \{W(t) - W(s)\}_{0 \leq s < t} \text{ are independent}.$$

In what follows let

$$n \in \mathbb{N}, \quad t_1, \dots, t_n \ge 0, \quad a_1, \dots, a_n \in \mathbb{R},$$

and set

$$S := \sum_{i=1}^{n} a_i W(t_i).$$

Our task is to prove that S is (univariate) Gaussian. Step 1. Reduction to strictly increasing

times. If some of the t_i are equal we can merge coefficients; if they are merely unordered we may relabel indices so that

$$0 \le t_{(1)} < t_{(2)} < \dots < t_{(m)}, \qquad b_j := \sum_{i: t_i = t_{(j)}} a_i, \quad 1 \le j \le m \le n,$$

and write $S = \sum_{j=1}^{m} b_j W(t_{(j)})$. Hence without loss of generality we assume $0 < t_1 < \cdots < t_n$. Step 2.

Express S in terms of increments. Define the independent Gaussian increments

$$\Delta_1 := W(t_1) - W(0) = W(t_1), \qquad \Delta_k := W(t_k) - W(t_{k-1}), \ 2 \le k \le n.$$

Then S can be rewritten as

$$S = \sum_{i=1}^{n} a_i \left(\Delta_1 + \dots + \Delta_i \right) = \sum_{k=1}^{n} \left(\sum_{i=k}^{n} a_i \right) \Delta_k =: \sum_{k=1}^{n} c_k \Delta_k,$$

where we set $c_k := \sum_{i=k}^n a_i$. Step 3. Use closure of the Gaussian family under linear combina-

tions. Each increment Δ_k is Gaussian:

$$\Delta_k \sim N(0, t_k - t_{k-1})$$
 (put $t_0 := 0$),

and the vector $(\Delta_1, \ldots, \Delta_n)$ has independent components by definition of Brownian motion. Because independent Gaussian variables are also jointly Gaussian, any deterministic linear combination of them is again Gaussian. Concretely,

$$S = \sum_{k=1}^{n} c_k \Delta_k$$

is a sum of independent $N(0, \sigma_k^2)$ variables multiplied by deterministic scalars c_k , hence

$$S \sim N(0, \sum_{k=1}^{n} c_k^2 (t_k - t_{k-1})),$$

i.e. S is Gaussian. Step 4. Characteristic-function verification (optional but instructive). For completeness, compute the characteristic function of S:

$$\varphi_S(\lambda) = \mathbb{E} e^{i\lambda S} = \prod_{k=1}^n \mathbb{E} \exp(i\lambda c_k \Delta_k)$$
$$= \prod_{k=1}^n \exp\left(-\frac{1}{2}\lambda^2 c_k^2 (t_k - t_{k-1})\right) = \exp\left(-\frac{1}{2}\lambda^2 \sum_{k=1}^n c_k^2 (t_k - t_{k-1})\right),$$

the characteristic function of a centred normal distribution, confirming the previous step. Conclusion.

For arbitrary n, times $t_1, \ldots, t_n \geq 0$ and coefficients $a_1, \ldots, a_n \in \mathbb{R}$, the linear form $S = \sum_{i=1}^n a_i W(t_i)$ is Gaussian. Therefore the finite-dimensional distributions of $\{W(t)\}$ are multivariate normal, so W is indeed a Gaussian process.