PROBLÈME DE L'ENSEMBLE DOMINANT MINIMAL

MARIE JASSIGNEUX
PIERRE-HENRI CHUPIN

SOMMAIRE

DESCRIPTION DU PROBLÈME

CHOIX DU SOLVEUR

BENCHMARK

MODÉLISATION

STRATÉGIE DE RÉSOLUTION

COMPARAISONS

PROBLÈME DE L'ENSEMBLE DOMINANT MINIMAL

• Qu'est ce qu'un ensemble dominant minimal?

Problème NP-Complet

 Le problème de décision de l'ensemble dominant a été prouvé NP-complet par réduction avec le problème de couverture par sommets

CHOIX DU SOLVEUR

BENCHMARK

- Implémentation d'un générateur de graphe aléatoire à l'aide de Choco Graph
- Graphe obtenu :
 - Non orienté
 - Nombre de nœud
 - Probabilité d'arc par nœud

BENCHMARK -PROBABILITÉ

80% de chance d'avoir un arc entre deux nœuds

Plus un nœud à d'arcs, plus sa probabilité est réduite : -10%.

Ne peut pas descendre en dessous de 20%

80% - 10% * (Nombre d'arc) > 20%

MODÉLISATION

- N nœuds
- Objectif:
 - Minimaliser la taille de l'ensemble dominant
- Tous les nœuds sont instanciés entre 0 ou 1.
 - 0 : n'est pas dans l'ensemble dominant
 - 1 : est dans l'ensemble dominant
- Contrainte :
 - Pour chaque nœud du graphe, lui ou au moins un de ses voisins doivent être présent dans l'ensemble dominant.

STRATÉGIE DE RÉSOLUTION

COMPARAISON

TAILLE MINIMAL DE L'ENSEMBLE DOMINANT

SANS LA STRATÉGIE DE RÉSOLUTION AVEC LA STRATÉGIE DE RÉSOLUTION

COMPARAISON

TEMPS POUR TROUVER L'ENSEMBLE DOMINANT MINIMAL

SANS LA STRATÉGIE DE RÉSOLUTION AVEC LA STRATÉGIE DE RÉSOLUTION

100 80 40 20 1000 2000 3000 4000 5000 6000 7000 8000

CONCLUSION

MERCIPOUR VOTRE ATTENTION