Лекция 4

Формула Тейлора

Пусть функция y = f(x) задана на интервале (a, b) и в точке x_0 этого интервала имеет производные до порядка (n+1) включительно. Поставим задачу найти многочлен P(x), значения которого в окрестности точки x_0 приближенно совпадали бы со значениями функции y = f(x) в соответствующих точках. Тогда можно будет считать, что $f(x) \approx P(x)$, и задачу вычисления значений функции y = f(x) в окрестности точки x_0 можно заменить более легкой задачей вычисления значений многочлена P(x).

Пусть искомый многочлен имеет степень n. Будем искать его в виде:

$$P_n(x) = a_0 + a_1(x - x_0) + \dots + a_n(x - x_0)^n, \ a_n \neq 0.$$

Для того, чтобы значения многочлена в точке x_0 были близки к значениям функции y = f(x), необходимо выполнение следующих равенств:

$$P_n(x_0) = f(x_0), P'_n(x_0) = f'(x_0), ..., P_n^{(n)}(x_0) = f^{(n)}(x_0).$$

Поскольку $P_n(x_0) = a_0$, то $a_0 = f(x_0)$. Дифференцируя $P_n(x)$, получаем

$$P_n'(x) = a_1 + 2a_2(x - x_0) \dots + na_n(x - x_0)^{n-1},$$

откуда $P_n'(x_0) = a_1, a_1 = f'(x_0).$

Продолжая дифференцирование, получим, что

$$P_n^{(n)}(x) = n(n-1)...1 \cdot a_n,$$

откуда
$$P_n^{(n)}(x_0) = n(n-1)...1 \cdot a_n$$
, $a_n = \frac{f^{(n)}(x_0)}{n!}$.

Таким образом,

$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.$$

Определение. Многочлен $\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ называется многочленом Тейлора порядка n функции y=f(x) и обозначается $T_n(x)$.

Теорема.
$$f(x) - T_n(x) = o((x - x_0)^n)$$
 при $x \to x_0$.

Определение. Представление

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n), x \to x_0$$

называется формулой Тейлора n-го порядка функции f(x) с остаточным членом $r_{n+1}(x) = o((x-x_0)^n)$, $x \to x_0$, в форме Пеано.

Если $x_0 = 0$, то формула Тейлора называется формулой Маклорена с остаточным членом в форме Пеано и имеет вид

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n}), x \to x_{0}.$$

Формула Тейлора с остаточным членом в форме Лагранжа

Предположим, что функция y = f(x) имеет производные до порядка n+1 в некоторой окрестности точки x_0 . Это означает, что производные f'(x), f''(x), ..., $f^{(n)}(x)$ непрерывны в $U(x_0)$.

Пусть
$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 — многочлен Тейлора n -го порядка функции $f(x)$.

Определение. Представление

$$f(x) = T_n(x) + R_{n+1}(x),$$

называется формулой Тейлора n-го порядка, функция $R_{n+1}(x)$ называется остаточным членом.

Теорема. Остаточный член $R_{n+1}(x)$ формулы Тейлора можно представить в виде

$$R_{n+1}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$
- остаточный член в форме Лагранжа,

где c лежит между x_0 и x.

Выведем формулу Маклорена для $f(x) = e^x$. Заметим, что

$$(e^{x})^{(k)} = e^{x}, f^{(k)}(0) = e^{0} = 1,$$

$$R_{n+1}(x) = \frac{e^{c}}{(n+1)!} x^{n+1}, c \in (0,x), \forall n \in \mathbb{N} \cup \{0\}.$$

получаем представление $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \frac{e^c}{(n+1)!} x^{n+1}, c \in (0,1)$

Формулы Маклорена для некоторых функций

1.
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{e^c}{(n+1)!} x^{n+1}, c \in (0,1).$$

2.
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^{m+1} \frac{x^{2m-1}}{(2m-1)!} + (-1)^m \frac{x^{2m+1}}{(2m+1)!} \cos c , c \in (0,1)$$

3.
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2m}}{(2m)!} + (-1)^{m+1} \frac{x^{2m+2}}{(2m+2)!} \cos c , c \in (0,1)$$

4.
$$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n+1} \frac{x^n}{n} + (-1)^n \frac{x^{n+1}}{(n+1)(1+c)^{n+1}}, x > -1, c \in (0,1)$$

•

Применение формул Тейлора и Маклорена

Пример. Вычислить число e с точностью до 0, 001.

Подставим x = 1 в разложение

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \frac{e^{c}}{(n+1)!} x^{n+1}, c \in (0,1),$$

получим

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{e^c}{(n+1)!}, c \in (0,1).$$

Поскольку $e^c < e < 3$, то необходимо найти наименьшее n, при котором выполняется неравенство

$$\frac{3}{(n+1)!} < \frac{1}{1000}.$$

Такое n = 6, поэтому

$$e \approx 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{6!} = 2 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \frac{1}{720} = 2,7180555, e \approx 2,718.$$