

实验设备清单

- 4 台 AR2220 路由器
- 4 台 \$5700 交换机
- 4 台 PC 机

第一部分; 二层网络配置要求;

1.1 VLAN

在 LSW1 LSW2 LSW3 LSW4 上均创建 VLAN10 VLAN20 VLAN30 VLAN40,分别在 LSW1 LSW2 上创建 VLAN100 VLAN200 VLAN300 VLAN400.

把下属接口划入相应的 VLAN 中;

VLAN10	LSW3 G0/0/1
VLAN20	LSW4 G0/0/1
VLAN30	LSW3 G0/0/3
VLAN40	LSW4 G0/0/4
VLAN100	LSW1 G0/0/10
VLAN200	LSW1 G0/0/11
VLAN300	LSW2 G0/0/10
VLAN400	LSW2 G0/0/11

1.2 链路聚合

1.3 Trunk

LSW1 LSW2 LSW3 LSW4 互联口的接口类型为 trunk,允许所有 VLAN 通过。

1.4 MSTP

LSW1 LSW2 LSW3 LSW4 都运行 MSTP.

VLAN 10、VLAN30 关联到 Instance 10,LSW1 作为 Primary Root,SW2 为 Secondary Root。VLAN20、VLAN40 关联到 Instance 20,LSW2 为 Primary Root,LSW1 为 Secondary Root。MSTP 的 Region-name 是 HANS,revision-level 为 1.

LSW3 LSW4 链接 PC 的接口 UP 后需要立即处于转发状态。当该端口收到 BPDU 报文后,需要接口自动关闭。

1.5 PPR

AR1与AR3、AR2与AR3通过POS口互联,封装类型为PPP。

AR3 需要对 AR1 进行 CHAP 认证,AR3 为认证端,AR1 为被认证端。验证的用户 名为 HCIE,密码为 HANS.

AR3 需要对 AR1 进行 PAP 认证,AR3 为认证端,AR2 为被认证端。验证的用户 名为 HCNP,密码为 HANS.

第二部分;IGP 配置

2.1 基本配置

所有设备 IP 地址规划;

AR1

e3/0/0 10.1.14.1/24

g0/0/0 10.1.100.1/24(与 SW1vlanif100 互联)

g0/0/2 10.1.12.1/24

g0/0/1 10.1.103.1/24(与 SW2vlanif300 互联)

pos2/0/0 10.1.13.1/24

Loopback0 10.1.1.1/32

AR2

g0/0/2 10.1.12.2/24

g0/0/0 10.1.102.2/24(与 SW1vlanif200 互联)

g0/0/1 10.1.104.2/24(与 SW2vlanif400 互联)

pos2/0/0 10.1.23.2/24

Loopback0 10.1.2.2/32

AR3

pos2/0/0 10.1.13.3/24

pos5/0/0 10.1.23.3/24

Loopback200 200.200.200.200/32

AR4

g0/0/0 10.1.14.4/24

Loopback0 10.1.4.4/24

SW1

vlanif100 10.1.100.10/24

vlanif200 10.1.102.10/24

SW2

vlanif300 10.1.103.10/24

vlanif400 10.1.104.10/24

2.2 OSPF

所有路由器的 OSPF 进程号为 1

AR1 AR2 LSW1 LSW2 互联接口以及 loopback0 都运行在 OSPF 区域 0 中。

2.3 OSPF 认证:

区域 0 要使用区域认证进行安全防护。认证方式使用 MD5 认证,认证密码为 HANS。

2.4 RIP

AR1 与 AR4 的互联口及 AR4 的 looback0 口运行在 RIPV2 中。

2.5 RIP 和 OSPF 互通

在 AR1 上 RIP 和 OSPF 互相进行路由引入,并且在 AR1 上做 AR4 loopback0 路由的汇总,汇总路由的 cost 为 100。

2.6 缺省路由通过

在 AR1 AR2 上做 OSPF 的缺省路由通过,以使得内网可以将访问外网的数据传输到出口设备 AR1 AR2.

配置完该部分后, 内网所有设备都能互通。

第三部分: BGP

3.1 EBGP

在 AR1 AR2 分别与 AR3 配置 EBGP 邻居关系,使用直连地址建立邻居。AR1 AR2 所属的 AS 为 100,AR3 所属的 AS 为 200.

3.2 BGP 路由

在 AR3 上分别针对 EBGP 邻居通过缺省路由。 在 AR3 上将自己的 200.200.200.000 地址宣告进去 BGP。

3.3 BGP 控制

要求内网访问 AS200 的数据流量在 AR1 与 AR3 没有问题的情况下将 AR1 作为出口,只有当 AR1 与 AR3 链路出现问题,流量切换到 AR2 上。

3.4 数据通信

配置完该部分要求内网 PC 能正常访问到 AS200 里的路由

第四部分; VRRP 配置;

在 LSW1 LSW2 上分别配置 VRRP 协议,针对 VLAN10 VLAN20 VLAN30 VLAN40 都做出正确的配置。

对于 VLAN10 VLAN30 LSW1 作为 VRRP 的 Master, 对于 VLAN 20 VLAN40 LSW2 作为 VRRP 的 Master。

VLAN10的虚拟 IP 为 10.1.10.254, VRID 为 10

VLAN20的虚拟 IP 为 10.1.20.254, VRID 为 20

VLAN30 的虚拟 IP 为 10.1.30.254, VRID 为 30

VLAN40 的虚拟 IP 为 10.1.40.254, VRID 为 40

为了安全的交换协议报文,要求 VRRP 开启认证,认证类型为 MD5,密码为 HANS。

第五部分; DHCP 配置;

网络中 AR4 模拟 DHCP 服务器,要求在 LSW1 LSW2 上配置 DHCP 的 relay。PC 通过 DHCP 获取地址。

为了 DHCP 服务器的安全性,需要在交换网络里开启 DHCP snooping 特性。 最终 PC 都能获取到正确的 IP 地址,同时能够访问外部网络。

