MI3080 GIẢI TÍCH PHỰC VÀ ỨNG DỤNG

Phiên bản:2019.1.0

Mục tiêu: Trang bị cho sinh viên các kiến thức cơ bản về số phức và hàm phức từ đó sinh viên có thể sử dụng kiến thức liên quan đến số phức để gải quyết các bài toán sơ cấp trong kĩ thuật chẳng hạn như áp dụng vào mạch điện xoay chiều, hệ dao động cơ học. Nâng một mức độ cao hơn là sinh viên sử dụng kiến thức đầy đủ về lý thuyết hàm biến phức, về ánh xạ bảo giác ứng dụng trong lý thuyết thế vị được áp dụng cho các bài toán trạng thái dừng của quá trình truyền nhiệt, tình trạng không nén được của dòng chảy chất lỏng và trường tĩnh điện. Bên cạnh đó sinh viên biết vận dụng phương pháp phức để tính toán được rất nhiều tích phân thực và phức nảy sinh trong thực tế như tính tích phân Fourier trong xử lý tín hiệu hay trong quá trình khôi phục hàm gốc của biến đổi Laplace... và một số tích phân phức tạp khác mà các phương pháp của giải tích thực không thể tính toán được.

Objective: Equip students with basic knowledge of complex numbers and complex functions so that they can use this knowledge to solve elementary problems in engineering, such as applying it to alternating current circuits and mechanical oscillation systems. At a higher level, students can use comprehensive knowledge of complex function theory and conformal mapping applications in potential theory to solve steady-state problems in heat transfer processes, incompressible fluid flow, and electrostatic fields. Additionally, students will learn to apply complex methods to compute various real and complex integrals arising in practice, such as calculating Fourier integrals in signal processing or in the process of restoring the original function from the Laplace transform, and other complex integrals that real analysis methods cannot solve.

Nội dung: Số phức, giới hạn, đạo hàm, hàm giải tích, phương trình Cauchy – Riemann, hàm điều hòa, tích phân phức. Khai triển chuỗi Taylor, Laurent, thặng dư và ứng dụng thặng dư, ánh xạ bảo giác và ứng dụng giải tích phức trong lý thuyết thế vị.

Content: Complex numbers, limits, derivatives, analytic functions, Cauchy-Riemann equations, harmonic functions, complex integrals. Taylor series expansion, Laurent series, residues and their applications, conformal mapping, and the application of complex analysis in potential theory.

1. THÔNG TIN CHUNG

Tên học phần: Giải tích phức và ứng dụng

(Complex Analysis and Its Applications)

Mã số học phần: MI3080

Khối lượng: 3(3-1-0-6)

Lý thuyết: 45 tiết
Bài tập/BTL: 15 tiết (nếu có bài tập lớn cần ghi rõ)

Thí nghiệm: 0 tiết

Học phần tiên quyết: -

Học phần học trước: - MI2060 Cơ sở giải tích hàm hoặc MI3020 Giải tích hàm

Học phần song hành: - Không

2. MÔ TẢ HỌC PHẦN

Phần thực và phần ảo của hàm giải tích là nghiệm của phương trình Laplace được áp dụng để giải quyết các bài toán kĩ thuật nảy sinh trong lý thuyết thế vị phẳng. Đồng thời rất nhiều tích phân phức tạp nảy sinh trong ứng dụng được giải quyết bởi phương pháp phức

3. MỤC TIỀU VÀ CHUẨN ĐẦU RA CỦA HỌC PHẦN

Sinh viên hoàn thành học phần này có khả năng:

Mục tiêu/CĐR	Mô tả mục tiêu/Chuẩn đầu ra của học phần	CĐR được phân bổ cho HP/ Mức độ (I/T/U)
[1]	[2]	[3]

4. TÀI LIỆU HỌC TẬP

Giáo trình:

[1] Phan Bá Ngọc, Hàm biến phức và phép biến đổi Laplace, Nhà xuất bản giáo dục, 1988.

Sách tham khảo:

- [1] Ahlfors, L.V., Complex Analysis, 3rd ed. New York, McGraw-Hill, 1979.
- [2] Erwin Kreyszig., Advanced Engineering Mathematics, John Winley and sons, inc. 1993.
- [3] Rudin, W., Real and Complex Analysis, 3rd ed. McGraw-Hill, 1987.

5. CÁCH ĐÁNH GIÁ HỌC PHẦN

Điểm thành phần	Phương pháp đánh giá cụ thể	Mô tả	CĐR được đánh giá	Tỷ trọng
[1]	[1] [2]		[4]	[5]
A1. Điểm quá trình(*)	rình(*) Đánh giá quá trình			50%
	A1.1. Chuyên cần học tập	Điểm danh, ý thức		20%
	A1.2. Điểm thi giữa kỳ	Thi viết		30%
A2. Điểm cuối kỳ	A2.1 Thi cuối kỳ	Thi viết		50%

^{*} Điểm quá trình sẽ được điều chỉnh bằng cách cộng thêm điểm chuyên cần. Điểm chuyên cần có giá trị từ -2 đến +2, theo Quy chế Đào tạo đại học hệ chính quy của ĐH Bách Khoa Hà Nội

6. KÉ HOẠCH GIẢNG DẠY

Tuần	Nội dung		Hoạt động dạy và học	Bài đánh giá
[1]	[2]	[3]	[4]	[5]
1	 Chương 1: Số phức Số phức, dạng lượng giác, các phép toán trong số phức Các hàm đặc biệt: hàm mũ, hàm lượng giác, hàm hyperbolic Áp dụng số phức trong mạch AC 		Giảng bài	A1.1
2	 Chương 2: Hàm biến phức Tô pô trong mặt phẳng phức. Giới hạn, tính liên tục, đạo hàm, Điều kiện Cauchy – Riemann và tính giải tích Phương trình Laplace và hàm điều hòa, hàm điều hòa đối ngẫu 		Đọc trước tài liệu; Giảng bài, Thảo luận	A1.1 A1.2 A2.1
3	- Tích phân đường trong mặt phẳng phức, hai phương pháp tính tích phân phức, các ví dụ		Đọc trước tài liệu; Giảng bài,	A1.1

Tuần	Nội dung	CĐR học phần	Hoạt động dạy và học	Bài đánh giá
[1]	[2]	[3]	[4]	[5]
	 Điểm kì dị, kì dị bỏ được và kì dị không bỏ được, cực điểm Định lý và công thức tích phân Cauchy (miền đơn liên, miền đa liên) và đạo hàm của hàm giải tích Thặng dư Cauchy cùng các ví dụ 		Thảo luận	A1.2 A2.1
4	Chương 3: Chuỗi số phức		Đọc trước tài liệu;	A1.1
	 Chuỗi số phức, kiến thức cơ bản về chuỗi chẳng hạn như điều kiện hội tụ, miền hội tụ 		Giảng bài, Thảo luận	A1.2 A2.1
5	 Chuỗi Taylor, các phương pháp khai triển chuỗi Taylor Chuỗi hàm, chuỗi lũy thừa, chuỗi hội tụ đều 		Đọc trước tài liệu; Giảng bài, Thảo luận	A1.1 A1.2 A2.1
6	 Khai triển Laurent và các phương pháp khai triển chuỗi Laurent, tính duy nhất của khai triển chuỗi Các điểm kì dị dưới ngôn ngữ khai triển chuỗi. Không điểm Thặng dư Loga, định lý Rouche 		A1.1 A1.2 A2.1	
7	Chương 4: Lý thuyết thặng dư - Thặng dư, định nghĩa và cách tính các ví dụ - Ứng dụng trong tính tổng chuỗi số Dọc trước tài liệ Giảng bài, Thảo luận		_	A1.1 A1.2 A2.1
8	Úng dụng thặng dư trong một số tích phân thực, tính tích phân suy rộng, tích phân Fourier, khôi phục hàm gốc trong biến đổi Laplace		Đọc trước tài liệu; Giảng bài, Thảo luận	A1.1 A1.2 A2.1
9	 Tích phân Cauchy lấy theo giá trị chính (theo hai phương pháp dịch chuyển điểm kì dị và dịch chuyển đường cong) Hàm Dirac 		Đọc trước tài liệu; Giảng bài, Thảo luận	A1.1 A1.2 A2.1
10	Úng dụng thặng dư trong một số tích phần đặc biệt khác (tích phần suy rộng của một số hàm có vô hạn điểm kỳ dị)		Đọc trước tài liệu; Giảng bài, Thảo luận	A1.1 A1.2 A2.1
11	 Chương 5: Ánh xạ bảo giác Ánh xạ bời một số hàm đặc biệt Ánh xạ bảo giác, hàm phân tuyến tính, các ví dụ điển hình xây dựng ánh xạ bảo giác giữa các miền 		Đọc trước tài liệu; Giảng bài, Thảo luận	A1.1 A1.2 A2.1
12	 Biến đổi Schwarz-Christoffel và ánh xạ ngược của biến đổi Schwarz-Christoffel. Dạng đóng của biến đổi Schwarz-Christoffel. Đa giác đóng và mở, xây dựng biến đổi Schwarz-Christoffel 		Đọc trước tài liệu; Giảng bài, Thảo luận	A1.1 A1.2 A2.1
13	 Phép biến hình của các hàm lượng giác, mặt cầu Riemann Hàm điều hòa và bài toán Dirichlet 		Đọc trước tài liệu; Giảng bài,	A1.1 A1.2 A2.1

Tuần	Nội dung		Hoạt động dạy và học	Bài đánh giá
[1]	[2]		[4]	[5]
			Thảo luận	
14	 Chương 6: Lý thuyết thế vị phẳng Sử dụng ánh xạ bảo giác trong trường tĩnh điện Bài toán truyền nhiệt 		Đọc trước tài liệu; Giảng bài, Thảo luận	A1.1 A1.2 A2.1
15	 Úng dụng vào luồng chất lỏng trên mặt phẳng – bài toán dòng chảy chất lỏng Tích phân Poisson và nhìn lại tính chất tổng quát của hàm điều hò 		Đọc trước tài liệu; Giảng bài, Thảo luận	A1.1 A1.2 A2.1

7. QUY ĐỊNH CỦA HỌC PHẦN

(Các quy định của học phần nếu có)

Tuân thủ quy định học tập trong Quy chế đào tạo của ĐHBK Hà Nội.

	•	•	_	
8.		DITE	DITTE.	
х -	NIAY	РНК.	1 J I Y H. I *	
v.	110/11		<i>-</i>	

Chủ tịch Hội đồng

Nhóm xây dựng đề cương

9. QUÁ TRÌNH CẬP NHẬT

Lần cập nhật	Nội dung điều chỉnh	Ngày tháng được phê duyệt	Áp dụng từ kỳ/khóa	Ghi chú
1				
2				