Prelim 1 – Problem 1 CHEME 5440 Spring 2020 Shu-Han Wang (sw2227)

1.

a)

| IPTG   | <n></n>     | 10,,,, | la i a la | IPTG   | <n></n>    | 10,,,,   | laiala   |
|--------|-------------|--------|-----------|--------|------------|----------|----------|
| (mM)   | (mRNA/cell) | low    | high      | (mM)   | (nmol/gDW) | low      | high     |
| 0      | 19          | 18     | 20        | 0      | 0.112719   | 0.106787 | 0.118652 |
| 0.0005 | 21          | 17     | 26        | 0.0005 | 0.124585   | 0.100854 | 0.154248 |
| 0.005  | 41          | 37     | 44        | 0.005  | 0.243237   | 0.219506 | 0.261034 |
| 0.012  | 67          | 65     | 69        | 0.012  | 0.397484   | 0.385619 | 0.409349 |
| 0.053  | 86          | 84     | 88        | 0.053  | 0.510204   | 0.498338 | 0.522069 |
| 0.216  | 93          | 91     | 95        | 0.216  | 0.551732   | 0.539867 | 0.563597 |
| 1      | 93          | 92     | 94        | 1      | 0.551732   | 0.545799 | 0.557664 |

The section in yellow (right) is the converted values.

Conversion was done by multiplying 0.0059326, which is calculated by using  $< m_c > = 2.8 \times 10^{-13}$  found on bionumbers:

$$\frac{10^9 \, nmol}{1 \, mol} \, \times \, \frac{1 \, mol}{6.02 \times 10^{23}} \, \times \, \frac{1 \, Cell}{2.8 \times 10^{-13} gDW} \, = 0.0059326$$

Detailed calculations is shown in the problem1 excel file on Github resp.

1.

d)

Using Excel, the semilogx plot is plotted as the following:



However, since the data is not continuous, I tried using python to plot it again. Using python, the semilogx plot is plotted as the following:



One can see that the model fits quite well and is in the correct shape.