

Introduction to GPU Acceleration

October 24, 2025 Andrew Monaghan

rc-help@colorado.edu

Be Boulder.

View the Slides

https://github.com/ResearchComputing/Intro_GPU_Acceleration

Meet the User Support Team

Layla Freeborn

John Reiland

Brandon Reyes

Dylan Gottlieb

Andy Monaghan

Mohal Khandelwal

Michael Schneider

Ragan Lee

Session Overview

Basics Of GPUs

Code Optimization

Monitoring GPU Usage

3

CPUs vs GPUs

Processing Unit

CPUs vs GPUs

Central

Processing Unit

CPUs vs GPUs

Central Graphics

Computational Offloading

Graphic Source

Data Offloading CPU -> GPU

Data needs to be copied from CPU to GPU, computation is on the GPU, then output is transferred back to CPU.

Criteria for GPU Acceleration

- The time spent on computationally intensive parts of the workflow exceeds the time spent transferring data to and from GPU memory
- Computations are massively parallel- the computations can be broken down into hundreds or thousands of independent units of work

- 1 Computational Intensity
- 2 Data Dependency
- 3 Data Type
- 4 Code/Algorithmic Complexity

1 Computational Intensity

GPUs perform best when there is a lot of processing compared to loading and storing data (FLOP per Byte ratio).

2 Data Dependency

Data Dependency- A situation in which an instruction is dependent on a result from a sequentially previous instruction before it can complete its execution. (avoid!)

3 Data Type

- Operations on strings are slow unless they can be treated as numbers.
- Performance per GPU can vary if workflows include 16-bit and 64-bit floats.

4 Code/Algorithmic Complexity

Simple code is better ported to GPUs.

- Deeply-branched code and whileloops may perform poorly on GPUs
- Recursive functions need to be rewritten

Alpine GPU Partitions

	NVIDIA			AMD
Partition	aa100 (atesting_a100)	al40	gh200*	ami100 (attesting_mi100)
# Nodes	12	3	2	8
GPU Type	A100	L40	GH200	MI100
GPUs/Node	3	3	1	3
Cores/GPU	7k	15K	17k	7.7k
VRAM/GPU	40 / 80	48	96	32
Purpose	General	Al Inference	Al Training, High Data I/O	General

Exploring Alpine GPU Partitions

Try these commands.

\$ssh <username>@login.rc.colorado.edu

\$ sinfo -- Format Partition

\$ sinfo –partition aa100,ami100,atesting_a100,atesting_mi100 --Format=Partition,Nodes,Time

\$ scontrol show partition atesting_a100

\$ scontrol show node c3gpu-c2-u13

Requesting Alpine GPUs with Slurm batch script

Slurm flags needed to request 1 NVIDIA GPU node with 2 GPUs and 20 CPU cores

```
--partition=aa100
```

- --gres=gpu:2
- --ntasks=20

```
in a job script submitted with sbatch command
```

```
#SBATCH --partition=aa100
#SBATCH --qos=normal
#SBATCH --gres=gpu:2
#SBATCH --nodes=1
#SBATCH --ntasks=20
#SBATCH --time=12:00:00
#SBATCH --job-name=gpu_test
#SBATCH --output=gpu_test_%j.out
#SBATCH --error=gpu_test_%j.err
```

Requesting Alpine GPUs with Slurm interactive

#request one NVIDIA GPU on the A100 testing partition:

sinteractive --partition=atesting_a100 --qos=testing --gres=gpu:1 --nodes=1 --ntasks=10 -- time=1:00:00

Note: Queue waits for non-testing GPU partitions are typically long (12-24 hours). Therefore, interactive jobs -- which require you to wait for the job to start -- will usually be run on the testing partitions during the onboarding and debugging stages of your workflow.

Code Optimization

GPU Icon

https://rapids.ai

#create dataset with 100,000 points

```
from sklearn.datasets import make_circles
X, y = make_circles(n_samples=int(1e5), factor=.35, noice=.05)
```

#run DBSCAN clustering algorithm

```
from sklearn.cluster import DBSCAN
db = DBSCAN(eps=0.6, min_samples=2)
y_db = db.fit_predict(X)
```



```
#create dataset with 100,000 points
from sklearn.datasets import make_circles
X, y = make_circles(n_samples=int(1e5), factor=.35, noice=.05)
```

```
#run DBSCAN clustering algorithm
from sklearn.cluster import DBSCAN
db = DBSCAN(eps=0.6, min_samples=2)
y_db = db.fit_predict(X)
```



```
#create dataset with 100,000 points
from sklearn.datasets import make_circles
X, y = make_circles(n_samples=int(1e5), factor=.35, noice=.05)
#convert dataset to Pandas DataFrame
```

```
#run DBSCAN clustering algorithm
from sklearn.cluster import DBSCAN
db = DBSCAN(eps=0.6, min_samples=2)
y_db = db.fit_predict(X)
```



```
#create dataset with 100,000 points
from sklearn.datasets import make circles
X, y = make circles(n samples=int(1e5), factor=.35, noice=.05)
#convert dataset to Pandas DataFrame
import pandas as pd
import cudf
X_df = pd.DataFrame({'fea%d'%i: X[:,i] for i in range(X.shape[1])})
X gpu = cudf.DataFrame.from pandas(X df)
#run DBSCAN clustering algorithm
from sklearn.cluster import DBSCAN
db = DBSCAN(eps=0.6, min samples=2)
y db = db.fit predict(X)
```



```
#create dataset with 100,000 points
from sklearn.datasets import make circles
X, y = make circles(n samples=int(1e5), factor=.35, noice=.05)
#convert dataset to Pandas DataFrame
import pandas as pd
import cudf
X_df = pd.DataFrame({'fea%d'%i: X[:,i] for i in range(X.shape[1])})
X gpu = cudf.DataFrame.from pandas(X df)
#run DBSCAN clustering algorithm
                                          #run GPU-accelerated DBSCAN
from sklearn.cluster import DBSCAN
                                          from cuml import DBSCAN
db = DBSCAN(eps=0.6, min samples=2)
y db = db.fit predict(X)
```



```
#create dataset with 100,000 points
from sklearn.datasets import make circles
X, y = make circles(n samples=int(1e5), factor=.35, noice=.05)
#convert dataset to Pandas DataFrame
import pandas as pd
import cudf
X_df = pd.DataFrame({'fea%d'%i: X[:,i] for i in range(X.shape[1])})
X gpu = cudf.DataFrame.from pandas(X df)
#run DBSCAN clustering algorithm
                                          #run GPU-accelerated DBSCAN
from sklearn.cluster import DBSCAN
                                          from cuml import DBSCAN
db = DBSCAN(eps=0.6, min samples=2)
y db = db.fit predict(X)
```



```
#create dataset with 100,000 points
    from sklearn.datasets import make circles
    X, y = make_circles(n_samples=int(1e5), factor=.35, noice=.05)
    #convert dataset to Pandas DataFrame
    import pandas as pd
import cudf
   X_df = pd.DataFrame({'fea%d'%i: X[:,i] for i in range(X.shape[1])})
    X_gpu = cudf.DataFrame.from_pandas(X_df)
    #run GPU-accelerated DBSCAN
    from cuml import DBSCAN
    db = DBSCAN(eps=0.6, min samples=2)
    y db = db.fit predict(X)
```


GPU-Enabled Frameworks (deep learning)

Known for: comprehensiveness, scalability

Known for: Flexibility, pythonic, intuitive

Known for: Ease of use

Known for: Distributed training

Key Terms

- Host == CPU
- Device == GPU
- Kernel == Functions launched on GPU

Kernel directives

Generate parallel accelerator kernels for the loop following the directive.

Kernel directives

Generate parallel accelerator kernels for the loop following the directive.

```
//Hello_World_OpenACC.c
void Print_Hello_World()
{
    #pragma acc kernels
    for(int i=0; i<5; i++)
    {
        printf("Hello World!\n")
     }
}</pre>
```


Kernel directives

Generate parallel accelerator kernels for the loop following the directive.

```
//Hello_World_OpenACC.c
void Print_Hello_World()
{
    #pragma acc kernels
    for(int i=0; i<5; i++)
    {
        printf("Hello World!\n")
     }
}</pre>
```

Data directives

Generate code to manage specific data operations to support parallelism

Kernel directives

Generate parallel accelerator kernels for the loop following the directive.

```
//Hello_World_OpenACC.c
void Print_Hello_World()
{
    #pragma acc kernels
    for(int i=0; i<5; i++)
    {
        printf("Hello World!\n")
     }
}</pre>
```

Data directives

Generate code to manage specific data operations to support parallelism

```
//Hello_World_OpenACC.c
#pragma acc data copy(a)
{
    #pragma acc kernels
    for(int i=0; i<5; i++)
    {
        printf("Hello World!\n")
     }
}</pre>
```

GPU Languages

- OpenCL (NVIDIA, AMD, & CPUs)
 - Flexible / portable option
- HIP (AMD -> NVIDIA)
 - AMD developed
 - Can convert CUDA code via `hippify`
- CUDA (NVIDIA only)
 - Most robust and largest developer community

Monitoring GPU Usage

- Nvidia-smi
- rocm-smi

 NVIDIA-SMI 510.47.03 Drive	r Version: 510.47.03	CUDA Version: 11.6			
 GPU Name Persistence- Fan Temp Perf Pwr:Usage/Ca 	•	•			
=====================================	=+====================================	•			
1 NVIDIA A100-PCI Off N/A 36C P0 40W / 250W 	00000000:81:00.0 Off 0MiB / 40960MiB	0 0% Default Disabled			
2 NVIDIA A100-PCI Off N/A 37C P0 40W / 250W 					
Processes: GPU GI CI PID Type Process name GPU Memory ID ID Usage No running processes found					

Monitoring GPU Usage on NVIDIA GPUs

https://curc.readthedocs.io/en/latest/programming/profiling-nvidia-gpu-performance.html

Troubleshooting GPU Workflows

• Is your application and/or code GPU accelerated?

Confirm that you installed the GPU accelerated version!

- Does your application or code support multi-GPU acceleration?
- Is your application ROCM- or CUDA-aware?

You can't run CUDA code on AMD GPUs. Not all applications are available for AMD GPUs.

- Can your application "see" the GPU?
- Did you request enough CPUs and RAM?

Documentation

https://curc.readthedocs.io/en/latest/

Survey and feedback

Survey: http://tinyurl.com/curc-survey18

