		Tipo de Prova Exame Época Normal	Ano letivo 2016/2017	Data 14-06-2017
P. PORTO	ESCOLA SUPERIOR	Curso Licenciatura em Engenharia Informática		Hora 10:00
	DE TECNOLOGIA E GESTÃO	Unidade Curricular Sistemas Digitais e Arquitetura de Computadores		Duração 90 minutos

Observações

O teste é sem consulta.

Pode ser utilizada máquina de calcular simples

Apresente todos os cálculos e justificações

Coloque o nome em todas as folhas (incluindo o enunciado)

Nome:

Parte I (responda na folha do enunciado)

(Cada questão certa vale 1 valor. Cada questão errada desconta um terço da cotação da questão.)

1. A figura representa a tabela de verdade de:

- a) Um codificador com prioridade à entrada de maior peso
- b) Um descodificador com saídas ativas nível alto
- c) Um codificador com prioridade à entrada de menor peso
- d) Um descodificador com saídas ativas nível baixo

	Saidas		Entradas							
50	51	52	EO	E1	E2	В	E4	E5	E6	E7
20	21	22								
					25	n das entrad	N.º de order			
			0	i	2	3	4	5	6	7
0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
1	0	1	0	0	0	1	0	1	0	0
0	0	1	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

- 2. Das afirmações seguintes referentes a circuito sequenciais indique a incorreta
 - a) No Latch SR a combinação de entradas S=1 e R=1 leva a saída indefinida
 - b) O Latch D síncrono garante que as entradas nunca podem ter o mesmo valor lógico em simultâneo
 - c) Os flip-flops permitem "operações" de memorização
 - d) Os Latchs são sempre assíncronos
- 3. Quando é que ocorre overflow numa soma em complemento para dois? (assinale a opção correta)
 - a) Apenas na soma de números negativos
 - b) Quando os números a somar são do mesmo sinal e o resultado tem sinal contrário
 - c) Sempre que há transporte
 - d) Sempre que se somam mais de dois números

4. Assinale a afirmação incorreta:

- a) O Par de registos HL contém o endereço da pilha
- b) O Instruction Register (IR) contém a instrução que está a ser executada pelo processador
- c) A comunicação entre a unidade de processamento e a unidade de controlo é executada através dos bits de estado
- d) A comunicação entre a unidade de controlo e a unidade de processamento é executada através das palavras de controlo

ESTG-PR05-Mod013V2 Página1de3

		Tipo de Prova Exame Época Normal	Ano letivo 2016/2017	Data 14-06-2017
P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Curso Licenciatura em Engenharia Informática		Hora 10:00
		Unidade Curricular Sistemas Digitais e Arquitetura de Computadores		Duração 90 minutos

- 5. Assinale a afirmação incorreta:
 - a) A ALU pode ativar bits especiais (Flags)
 - b) A unidade de processamento fornece os sinais necessários para controlar a operação da ALU e a transferência de dados entre a ALU e os registos
 - c) A unidade aritmética e lógica (ALU) realiza as operações matemáticas e lógicas
 - d) O Instruction Register (IR) contém a instrução que está a ser executada no momento pelo processador

Parte II

- 1. Execute as conversões indicadas
 - a) $317_{10} = ?_2$
 - b) 1010111₂ = ?₁₆
 - c) $5B_{16} = ?_8$
 - d) $61_8 = ?_{10}$
 - e) –35₁₀= ?₂ (notação complemento para dois com 8 bits)
- 2. Implementar a seguinte função empregando um multiplexer de 8 canais de entrada.

$$F = X Y + X \overline{Y} W + \overline{X} Y \overline{Z} + \overline{Y} Z \overline{W}$$

3. Complete o diagrama de tempo do latch D Síncrono sensível ao nível 1

4. Indique a tabela de verdade de um flip-flop JK com entradas Preset e Clear ativas nível baixo

ESTG-PR05-Mod013V2 Página 2 de3

		Tipo de Prova Exame Época Normal	Ano letivo 2016/2017	Data 14-06-2017
P.PORTO	ESCOLA SUPERIOR	Curso Licenciatura em Engenharia Informática		Hora 10:00
,	DE TECNOLOGIA E GESTÃO	Unidade Curricular Sistemas Digitais e Arquitetura de Computadores		Duração 90 minutos

5. Utilize o algoritmo de Booth para efetuar a multiplicação de 1010₂ por 0111₂. (notação complemento para dois com 4 bits)

6. Indique e explique brevemente quais os possíveis métodos de substituição de blocos numa cache de mapeamento associativo.

7. Considere o seguinte programa escrito em Assembly com as instruções do z 8085 indicado na figura

Endereços	Programa em Assembly
1007H	LXI SP, 1FFFH
100AH	LXI D, 03E8H
100DH	LXI H, 1205H
1010H	MOV A, L
1011H	ADD E
1012H	CALL 1503H

Indique, justificando,

- a) o conteúdo do par de registos HL e do acumulador A após a execução da instrução ADD E
- b) o conteúdo do Program Couter (PC) após a execução da instrução CALL 1503H

8. Elabore um programa que coloque o valor C1H no registo D, leia o conteúdo da posição de memória 1010H utilizando o par HL como apontador de memória e faça uma chamada a uma rotina onde esse valor deve ser multiplicado por dois e somado ao registo D. Voltando ao programa principal deve-se guardar o resultado obtido anteriormente na posição 1020H e enviá-lo para o porto PORT2 cujo endereço é 02H. O SP deve ser inicializado com 2040H.

ESTG-PR05-Mod013V2 Página 3 de3