Automatentheorie und ihre Anwendungen Teil 1: endliche Automaten auf endlichen Wörtern

Wintersemester 2018/19 Thomas Schneider

AG Theorie der künstlichen Intelligenz (TdKI)

http://tinyurl.com/ws1819-autom

Grundbegriffe Textsuche Abschlusseig. Reguläre Ausdrücke Charakterisierungen Entscheidungsprobleme

Vorlesungsübersicht

Kapitel 1: endliche Automaten auf endlichen Wörtern

Kapitel 2: endliche Automaten auf endlichen Bäumen

Kapitel 3: endliche Automaten auf unendlichen Wörtern

Kapitel 4: endliche Automaten auf unendlichen Bäumen

Ziel dieses Kapitels

- Wiederholung der Definitionen & Resultate zu endlichen Automaten aus "Theoretische Informatik 1"
- Kennenlernen zweier Anwendungen endlicher Automaten

Grundbegriffe Textsuche Abschlusseig. Reguläre Ausdrücke Charakterisierungen Entscheidungsprobleme

Überblick

- Grundbegriffe
- 2 Anwendung: Textsuche
- Abschlusseigenschaften
- 4 Reguläre Ausdrücke und Anwendungen
- 6 Charakterisierungen
- 6 Entscheidungsprobleme

Und nun ...

- Grundbegriffe
- 2 Anwendung: Textsuche
- 3 Abschlusseigenschafter
- 4 Reguläre Ausdrücke und Anwendungen
- 6 Charakterisierungen
- 6 Entscheidungsprobleme

Wörter, Sprachen, . . .

- Symbole *a*, *b*, . . .
- Alphabet Σ : endliche nichtleere Menge von Symbolen
- (endliches) Wort w über Σ : endliche Folge $w = a_1 a_2 \dots a_n$ von Symbolen $a_i \in \Sigma$
- leeres Wort ε
- Wortlänge $|a_1 a_2 \dots a_n| = n$, $|\varepsilon| = 0$
- Menge aller Wörter über Σ : Σ^*
- Sprache L über Σ : Teilmenge $L \subseteq \Sigma^*$ von Wörtern
- Sprachklasse \mathcal{L} : Menge von Sprachen

Endliche Automaten

Definition 1.1

Grundbegriffe

Ein nichtdeterministischer endlicher Automat (NEA) über einem Alphabet Σ ist ein 5-Tupel $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$, wobei

- Q eine endliche nichtleere **Zustandsmeng**e ist,
- Σ ein Alphabet ist,
- $\Delta \subseteq Q \times \Sigma \times Q$ die Überführungsrelation ist, (*)
- $I \subseteq Q$ die Menge der Anfangszustände ist,
- $F \subseteq Q$ die Menge der akzeptierenden Zustände ist.

Charakterisierungen

Endliche Automaten

Definition 1.1

Ein nichtdeterministischer endlicher Automat (NEA) über einem Alphabet Σ ist ein 5-Tupel $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$, wobei

- Q eine endliche nichtleere Zustandsmenge ist,
- Σ ein Alphabet ist,
- $\Delta \subseteq Q \times \Sigma \times Q$ die Überführungsrelation ist, (*)
- $I \subseteq Q$ die Menge der Anfangszustände ist,
- $F \subseteq Q$ die Menge der akzeptierenden Zustände ist.
- (*) bedeutet: Δ besteht aus Tripeln (q, a, q') mit $q, q' \in Q$ und $a \in \Sigma$
- $(q, a, q') \in \Delta$ bedeutet intuitiv: ist A in Zustand q und liest ein a, geht er in Zustand q' über.

Grundbegriffe

Betrachte A = $\{\{q_0, q_1\}, \{a, b\}, \{(q_0, a, q_0), (q_0, b, q_1), (q_1, b, q_1)\}, \{q_0\}, \{q_1\}\}$

- Zustände: *q*₀, *q*₁
- Alphabet {a, b}
- Übergänge: von q_0 mittels a zu q_0, \ldots
- Anfangszustand q₀
- \bullet einziger akzeptierender Zustand q_1

Beispiel und graphische Repräsentation von NEAs

Betrachte A = $\{\{q_0, q_1\}, \{a, b\}, \{(q_0, a, q_0), (q_0, b, q_1), (q_1, b, q_1)\}, \{q_0\}, \{q_1\}\}$

- Zustände: q₀, q₁
- Alphabet {a, b}
- Übergänge: von q₀ mittels a zu q₀, ...
- Anfangszustand q₀
- \bullet einziger akzeptierender Zustand q_1

Definition 1.2

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NEA.

• Ein Run von \mathcal{A} auf $w = a_1 a_2 \dots a_n$ ist eine Folge

$$r=q_0q_1q_2\ldots q_n,$$

so dass für alle $i=0,\ldots,n-1$ gilt: $(q_i,a_{i+1},q_{i+1})\in\Delta$. Man sagt/schreibt: w überführt q_0 in $q_n,\ q_0\vdash_{\mathcal{A}}^wq_n$

Definition 1.2

Grundbegriffe

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NEA.

• Ein Run von \mathcal{A} auf $w = a_1 a_2 \dots a_n$ ist eine Folge

$$r=q_0q_1q_2\ldots q_n,$$

so dass für alle $i=0,\ldots,n-1$ gilt: $(q_i,a_{i+1},q_{i+1})\in\Delta$. Man sagt/schreibt: w überführt q_0 in $q_n,\ q_0\vdash_{\mathcal{A}}^wq_n$

• Ein Run $r = q_0 q_1 q_2 \dots q_n$ von \mathcal{A} auf w ist erfolgreich, wenn $q_0 \in I$ und $q_n \in F$.

Definition 1.2

Grundbegriffe

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NEA.

• Ein Run von \mathcal{A} auf $w = a_1 a_2 \dots a_n$ ist eine Folge

$$r=q_0q_1q_2\ldots q_n,$$

so dass für alle $i=0,\ldots,n-1$ gilt: $(q_i,a_{i+1},q_{i+1})\in\Delta$. Man sagt/schreibt: w überführt q_0 in $q_n,\ q_0\vdash_{\mathcal{A}}^wq_n$

- Ein Run $r = q_0 q_1 q_2 \dots q_n$ von \mathcal{A} auf w ist erfolgreich, wenn $q_0 \in I$ und $q_n \in F$.
- \mathcal{A} akzeptiert w, wenn es einen erfolgreichen Run von \mathcal{A} auf w gibt.

Definition 1.2

Grundbegriffe

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NEA.

• Ein Run von \mathcal{A} auf $w = a_1 a_2 \dots a_n$ ist eine Folge

$$r=q_0q_1q_2\ldots q_n,$$

so dass für alle $i=0,\ldots,n-1$ gilt: $(q_i,a_{i+1},q_{i+1})\in\Delta$. Man sagt/schreibt: w überführt q_0 in $q_n,\ q_0\vdash_{\mathcal{A}}^wq_n$

- Ein Run $r = q_0 q_1 q_2 \dots q_n$ von \mathcal{A} auf w ist erfolgreich, wenn $q_0 \in I$ und $q_n \in F$.
- \mathcal{A} akzeptiert w, wenn es einen erfolgreichen Run von \mathcal{A} auf w gibt.
- Die von \mathcal{A} erkannte Sprache ist $L(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ akzeptiert } w \}.$

$$L(A_1) =$$

$$L(\mathcal{A}_1) = \{a^n b^m \mid n \geqslant 0, m \geqslant 1\}$$

Grundbegriffe Textsuche Abschlusseig. Reguläre Ausdrücke Charakterisierungen Entscheidungsprobleme

Erkennbare Sprache

Definition 1.3

Eine Sprache $L \subseteq \Sigma^*$ ist (NEA-)erkennbar, wenn es einen NEA \mathcal{A} gibt mit $L = L(\mathcal{A})$.

Definition 1.4

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NEA.

Enthält Δ für jedes $q \in Q$ u. jedes $a \in \Sigma$ genau 1 Tripel (q, a, q') und enthält I genau 1 Zustand,

dann ist A ein deterministischer endlicher Automat (DEA).

Definition 1.4

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NEA.

Enthält Δ für jedes $q \in Q$ u. jedes $a \in \Sigma$ genau 1 Tripel (q, a, q') und enthält I genau 1 Zustand,

dann ist A ein deterministischer endlicher Automat (DEA).

 \rightarrow Nachfolgezustand für jedes Paar (q, a) eindeutig bestimmt

Grundbegriffe

Definition 1.4

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NEA.

Enthält Δ für jedes $q\in Q$ u. jedes $a\in \Sigma$ genau 1 Tripel (q,a,q') und enthält I genau 1 Zustand,

dann ist A ein deterministischer endlicher Automat (DEA).

- ightharpoonup Nachfolgezustand für jedes Paar (q, a) eindeutig bestimmt
 - Jeder DEA ist ein NEA,
 aber nicht umgekehrt (z. B. A₁, A₃ auf Folie 10).

Grundbegriffe

Definition 1.4

Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$ ein NEA.

Enthält Δ für jedes $q \in Q$ u. jedes $a \in \Sigma$ genau 1 Tripel (q, a, q') und enthält I genau 1 Zustand,

dann ist A ein deterministischer endlicher Automat (DEA).

- \sim Nachfolgezustand für jedes Paar (q, a) eindeutig bestimmt
 - Jeder DEA ist ein NEA,
 aber nicht umgekehrt (z. B. A₁, A₃ auf Folie 10).
 - Auf Folie 10 ist nur A_2 ein DEA; A_1 kann mittels Papierkorbzustand zum DEA werden; T 1.1 bei A_3 genügt auch das nicht.

Grundbegriffe Textsuche Abschlusseig. Reguläre Ausdrücke Charakterisierungen Entscheidungsprobleme

Potenzmengenkonstruktion

Frage: Sind DEAs und NEAs gleichmächtig?

Frage: Sind DEAs und NEAs gleichmächtig?

Antwort: Ja!

Frage: Sind DEAs und NEAs gleichmächtig?

Antwort: Ja!

Grundbegriffe

Satz 1.5 (Rabin, Scott 1959)

Für jeden NEA \mathcal{A} gibt es einen DEA \mathcal{A}^d mit $L(\mathcal{A}^d) = L(\mathcal{A})$.

Frage: Sind DEAs und NEAs gleichmächtig?

Antwort: Ja!

Grundbegriffe

Satz 1.5 (Rabin, Scott 1959)

Für jeden NEA \mathcal{A} gibt es einen DEA \mathcal{A}^d mit $L(\mathcal{A}^d) = L(\mathcal{A})$.

Beweisskizze: Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$.

Wir konstruieren $A^d = (Q^d, \Sigma, \Delta^d, I^d, F^d)$ wie folgt.

- $Q^d = 2^Q$ (Potenzmenge der Zustandsmenge)
- $I^d = \{I\}$
- $(S, a, S') \in \Delta^d$ gdw. $S' = \{q' \mid \exists q \in S : (q, a, q') \in \Delta\}$
- $F^d = \{S \subset Q \mid S \cap F \neq \emptyset\}$ T 1.2

Frage: Sind DEAs und NEAs gleichmächtig?

Antwort: Ja!

Grundbegriffe

Satz 1.5 (Rabin, Scott 1959)

Für jeden NEA \mathcal{A} gibt es einen DEA \mathcal{A}^d mit $L(\mathcal{A}^d) = L(\mathcal{A})$.

Beweisskizze: Sei $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$.

Wir konstruieren $A^d = (Q^d, \Sigma, \Delta^d, I^d, F^d)$ wie folgt.

- $Q^d = 2^Q$ (Potenzmenge der Zustandsmenge)
- $I^d = \{I\}$
- $(S, a, S') \in \Delta^d$ gdw. $S' = \{q' \mid \exists q \in S : (q, a, q') \in \Delta\}$
- $F^d = \{ S \subseteq Q \mid S \cap F \neq \emptyset \}$ T1.2

Im schlimmsten Fall kann \mathcal{A}^d im Vergleich zu \mathcal{A} exponentiell viele Zustände haben (s. Hopcroft et al. 2001, S. 65).

Und nun ...

- Grundbegriffe
- 2 Anwendung: Textsuche
- 3 Abschlusseigenschafter
- 4 Reguläre Ausdrücke und Anwendungen
- 6 Charakterisierungen
- 6 Entscheidungsprobleme

Stichwortsuche

Typisches Problem aus dem Internetzeitalter

Gegeben sind Stichwörter $w_1, \ldots, w_n \in \Sigma^*$ und Dokumente $D_1, \ldots, D_M \in \Sigma^*$.

Finde alle j, so dass D_j mindestens ein (alle) w_i als Teilwort hat.

- relevant z.B. für Suchmaschinen
- übliche Technologie: invertierter Index
 speichert für jedes im Internet auftretende w_i
 eine Liste aller Dokumente D_i, die w_i enthalten
- invertierte Indizes sind zeitaufwändig zu erstellen und setzen voraus, dass die D_i sich nur langsam ändern

Stichwortsuche ohne invertierte Indizes?

Invertierte Indizes versagen, wenn

- die (relevanten) Dokumente sich schnell ändern:
 - Suche in tagesaktuellen Nachrichtenartikeln
 - Einkaufshelfer sucht nach bestimmten Artikeln in aktuellen Seiten von Online-Shops
- die Dokumente nicht katalogisiert werden können:
 - Online-Shops wie Amazon generieren oft Seiten für ihre Artikel nur auf Anfragen hin.
- → Wie kann man dennoch Stichwortsuche implementieren?

Ein Fall für endliche Automaten!

Gegeben sind Stichwörter $w_1, \ldots, w_n \in \Sigma^*$ und Dokumente $D_1, \ldots, D_M \in \Sigma^*$.

Finde alle j, so dass D_j mindestens ein w_i als Teilwort hat.

Ziel: konstruiere NEA \mathcal{A} , der

- \bullet ein D_j zeichenweise liest und
- \bullet in einen Endzustand geht gdw. er eins der w_i findet

Der Einfachheit halber legen wir fest, dass A ein Wort w akzeptiert, wenn A bereits nach Lesen eines *Teilworts* einen akz. Zustand erreicht.

Ein Fall für endliche Automaten!

Gegeben sind Stichwörter $w_1, \ldots, w_n \in \Sigma^*$ und Dokumente $D_1, \ldots, D_M \in \Sigma^*$.

Finde alle j, so dass D_j mindestens ein w_i als Teilwort hat.

Ziel: konstruiere NEA \mathcal{A} , der

- \bullet ein D_j zeichenweise liest und
- \bullet in einen Endzustand geht gdw. er eins der w_i findet

Der Einfachheit halber legen wir fest, dass A ein Wort w akzeptiert, wenn A bereits nach Lesen eines *Teilworts* einen akz. Zustand erreicht.

Beispiel 1.6

 $w_1 = \text{web und } w_2 = \text{ebay}$

T 1.3

Implementation des NEAs ${\cal A}$

Eine Möglichkeit:

- Determinisierung (Potenzmengenkonstruktion)
- ② Simulation des resultierenden DEA \mathcal{A}^d

```
Wird \mathcal{A}^d nicht zu groß? (2<sup>27</sup> > 134 Mio. Zustände bei Stichw. "Binomialkoeffizient", "Polynom")
```

Implementation des NEAs ${\cal A}$

Eine Möglichkeit:

- Determinisierung (Potenzmengenkonstruktion)
- ② Simulation des resultierenden DEA \mathcal{A}^d

```
Wird \mathcal{A}^d nicht zu groß? (2^{27}>134\,\mathrm{Mio}. Zustände bei Stichw. "Binomialkoeffizient", "Polynom")
```

Nein,

- mit der leicht geänderten Definition von Akzeptanz
- und unserer Variante der Potenzmengenkonstruktion

wird \mathcal{A}^d genauso viele Zustände haben wie \mathcal{A} !

T 1.4

Und nun ...

- 1 Grundbegriffe
- 2 Anwendung: Textsuche
- 3 Abschlusseigenschaften
- 4 Reguläre Ausdrücke und Anwendungen
- 5 Charakterisierungen
- 6 Entscheidungsprobleme

Operationen auf Sprachen sind Operationen auf Mengen

Wie können (NEA-erkennbare) Sprachen kombiniert werden?

Operationen auf Sprachen sind Operationen auf Mengen

Wie können (NEA-erkennbare) Sprachen kombiniert werden?

• Boolesche Operationen

```
Vereinigung L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ oder } w \in L_2 \}

Schnitt L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ und } w \in L_2 \}

Komplement \overline{L} = \{ w \in \Sigma^* \mid w \notin L \}
```

Operationen auf Sprachen sind Operationen auf Mengen

Wie können (NEA-erkennbare) Sprachen kombiniert werden?

Boolesche Operationen

Vereinigung
$$L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ oder } w \in L_2 \}$$

Schnitt $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ und } w \in L_2 \}$
Komplement $\overline{L} = \{ w \in \Sigma^* \mid w \notin L \}$

Wortoperationen

Konkatenation
$$L_1 \cdot L_2 = \{vw \mid v \in L_1 \text{ und } w \in L_2\}$$

Kleene-Hülle $L^* = \bigcup_{i \geqslant 0} L^i$,
wobei $L^0 = \{\varepsilon\}$ und $L^{i+1} = L^i \cdot L$ für alle $i \geqslant 0$

Charakterisierungen

Die Menge der erkennbaren Sprachen heißt abgeschlossen unter . . .

- Vereinigung, falls gilt:
 - Falls L_1, L_2 erkennbar, so auch $L_1 \cup L_2$.
 - Komplement, falls gilt: Falls L erkennbar, so auch L.
 - Schnitt, falls gilt: Falls L_1, L_2 erkennbar, so auch $L_1 \cap L_2$.
 - Konkatenation, falls gilt: Falls L_1, L_2 erkennbar, so auch $L_1 \cdot L_2$.
 - Kleene-Stern, falls gilt: Falls L erkennbar, so auch L^* .

Abgeschlossenheit

Die Menge der erkennbaren Sprachen heißt abgeschlossen unter . . .

- Vereinigung, falls gilt: Falls L_1, L_2 erkennbar, so auch $L_1 \cup L_2$.
- Komplement, falls gilt:
 Falls L erkennbar, so auch L̄.
- Schnitt, falls gilt:
 Falls L₁, L₂ erkennbar, so auch L₁ ∩ L₂.
- Konkatenation, falls gilt:
 Falls L₁, L₂ erkennbar, so auch L₁ · L₂.
- Kleene-Stern, falls gilt:
 Falls L erkennbar, so auch L*.

Unter welchen Op. sind die NEA-erkennbaren Sprachen abgeschlossen?

Abgeschlossenheit

Satz 1.7

Die Menge der NEA-erkennbaren Sprachen ist abgeschlossen unter den Operationen \cup , \cap , $\overline{\ }$, \cdot , *.

Beweis: Siehe Thl 1.

Und nun ...

Grundbegriffe

- 1 Grundbegriffe
- 2 Anwendung: Textsuche
- Abschlusseigenschafter
- 4 Reguläre Ausdrücke und Anwendungen
- 5 Charakterisierungen
- 6 Entscheidungsprobleme

Grundbegriffe Textsuche Abschlusseig. Reguläre Ausdrücke Charakterisierungen Entscheidungsprobleme

Reguläre Ausdrücke und Anwendungen

Reguläre Ausdrücke sind . . .

- bequeme Charakterisierung NEA-erkennbarer Sprachen
- besonders praktisch für Anwendungen

Reguläre Sprachen

Definition 1.8

Eine Sprache $L \subseteq \Sigma^*$ ist regulär, falls gilt:

- $L = \emptyset$ oder
- $L = \{\varepsilon\}$ oder
- $L = \{a\}, a \in \Sigma$, oder
- L lässt sich durch (endlichmaliges) Anwenden der Operatoren
 ∪, •, * aus den vorangehenden Fällen konstruieren.

Reguläre Sprachen

Definition 1.8

Eine Sprache $L \subseteq \Sigma^*$ ist regulär, falls gilt:

- $L = \emptyset$ oder
- $L = \{\varepsilon\}$ oder
- $L = \{a\}, a \in \Sigma$, oder
- L lässt sich durch (endlichmaliges) Anwenden der Operatoren \cup , •, * aus den vorangehenden Fällen konstruieren.

Beispiele:

$$(\{a\} \cup \{b\})^* \cdot \{a\} \cdot \{b\}$$
 (siehe \mathcal{A}_3 auf Folie 10)
 $\{b\}^* \cdot \{a\} \cdot \{a\}^* \cdot \{b\} \cdot (\{a\} \cup \{b\})^*$ (s. \mathcal{A}_2 auf Folie 10)

Reguläre Ausdrücke

Definition 1.9

Ein regulärer Ausdruck (RA) r über Σ und die zugehörige Sprache $L(r) \subset \Sigma^*$ werden induktiv wie folgt definiert.

- ist ein RA mit $L(r) = \emptyset$ \bullet $r = \emptyset$
- \bullet $r = \varepsilon$ ist ein RA mit $L(r) = \{\varepsilon\}$
- r = a, für $a \in \Sigma$, ist ein RA mit $L(r) = \{a\}$
- ist ein RA mit $L(r) = L(r_1) \cup L(r_2)$ $r = (r_1 + r_2)$
- $r = (r_1 r_2)$ ist ein RA mit $L(r) = L(r_1) \cdot L(r_2)$
- $r = (r_1)^*$ ist ein RA mit $L(r^*) = (L(r))^*$

Reguläre Ausdrücke

Definition 1.9

Ein regulärer Ausdruck (RA) r über Σ und die zugehörige Sprache $L(r) \subseteq \Sigma^*$ werden induktiv wie folgt definiert.

```
• r = \emptyset ist ein RA mit L(r) = \emptyset
```

•
$$r = \varepsilon$$
 ist ein RA mit $L(r) = \{\varepsilon\}$

•
$$r = a$$
, für $a \in \Sigma$, ist ein RA mit $L(r) = \{a\}$

•
$$r = (r_1 + r_2)$$
 ist ein RA mit $L(r) = L(r_1) \cup L(r_2)$

•
$$r = (r_1 r_2)$$
 ist ein RA mit $L(r) = L(r_1) \cdot L(r_2)$

•
$$r = (r_1)^*$$
 ist ein RA mit $L(r^*) = (L(r))^*$

Beispiele: (wir lassen Klammern weg soweit eindeutig) $(a + b)^*ab$ (siehe A_3 auf Folie 10)

$$b^*aa^*b(a+b)^*$$
 (siehe A_2 auf Folie 10)

Reguläre und NEA-erkennbare Sprachen

Satz 1.10 (Kleene 1956)

Sei $L \subseteq \Sigma^*$ eine Sprache.

- **1** L ist regulär gdw. es einen RA r gibt mit L = L(r).
- ② L ist regulär gdw. L NEA-erkennbar ist.

Reguläre und NEA-erkennbare Sprachen

Satz 1.10 (Kleene 1956)

Sei $L \subseteq \Sigma^*$ eine Sprache.

- **1** L ist regulär gdw. es einen RA r gibt mit L = L(r).
- 2 L ist regulär gdw. L NEA-erkennbar ist.

Beweis.

- Folgt offensichtlich aus Def. 1.8, 1.9.
- Benutze Punkt 1.
 - $..\Rightarrow$ ": Induktion über Aufbau von r. IA: gib Automaten an, die \emptyset , $\{\varepsilon\}$, $\{a\}$ erkennen.

IS: benutze Abschlusseigenschaften (Satz 1.7)

..←": siehe Theoretische Informatik 1.

Anwendungen regulärer Ausdrücke

 RAs werden verwendet, um "Muster" von zu suchendem Text zu beschreiben

z. B.: suche alle Vorkommen von "PLZ Ort":
$$(0 + \cdots + 9)^5 \sqcup (A + \cdots + Z)(a + \cdots + z)^*$$

- Programme zum Suchen von Mustern im Text übersetzen RAs in NEAs/DEAs und simulieren diese.
- wichtige Klassen von Anwendungen: lexikalische Analyse, Textsuche

Komfortablere Syntax regulärer Ausdrücke

- UNIX und andere Anwendungen erweitern Syntax von RAs
- Hier: nur "syntaktischer Zucker" die Erweiterungen, die nicht aus den regulären Sprachen herausführen

Komfortablere Syntax regulärer Ausdrücke

- UNIX und andere Anwendungen erweitern Syntax von RAs
- Hier: nur "syntaktischer Zucker" die Erweiterungen, die nicht aus den regulären Sprachen herausführen
- Alphabet Σ: alle ASCII-Zeichen
- RA . mit $L(.) = \Sigma$
- RA $[a_1 a_2 \dots a_k]$, Abkürzung für $a_1 + a_2 + \dots + a_k$
- RAs für Bereiche: z. B. [a-z0-9], Abkü. für [ab...z01...9]
- Operator | anstelle +
- Operator ?: r? steht für $\varepsilon + r$
- Operator +: r+ steht für rr*
- Operator {n}: r{5} steht für rrrrr
- Klammern und * wie gehabt

Komfortablere Syntax regulärer Ausdrücke

- UNIX und andere Anwendungen erweitern Syntax von RAs
- Hier: nur "syntaktischer Zucker" die Erweiterungen, die nicht aus den regulären Sprachen herausführen
- Alphabet Σ: alle ASCII-Zeichen
- RA . mit $L(.) = \Sigma$
- RA $[a_1 a_2 \dots a_k]$, Abkürzung für $a_1 + a_2 + \dots + a_k$
- RAs für Bereiche: z. B. [a-z0-9], Abkü. für [ab...z01...9]
- Operator | anstelle +
- Operator ?: r? steht für $\varepsilon + r$
- Operator +: r+ steht für rr*
- Operator {n}: r{5} steht für rrrrr
- Klammern und * wie gehabt

PLZ-Ort-Beispiel: $[0-9]{5}_{\sqcup}[A-Z][a-z]*$

Anwendung: lexikalische Analyse

- Lexer (auch: Tokenizer) durchsucht Quellcode nach Token: zusammengehörende Zeichenfolgen, z. B. Kennwörter, Bezeichner
- Ausgabe des Lexers: Token-Liste, wird an Parser weitergegeben
- Mit RAs: Lexer leicht programmier- und modifizierbar

Anwendung: lexikalische Analyse

- Lexer (auch: Tokenizer) durchsucht Quellcode nach Token: zusammengehörende Zeichenfolgen, z. B. Kennwörter, Bezeichner
- Ausgabe des Lexers: Token-Liste, wird an Parser weitergegeben
- Mit RAs: Lexer leicht programmier- und modifizierbar
- UNIX-Kommandos lex und flex generieren Lexer
 - Eingabe: Liste von Einträgen RA + Code
 - Code beschreibt Ausgabe des Lexers für das jeweilige Token
 - generierter Lexer wandelt alle RAs in einen DEA um, um Vorkommen der Tokens zu finden (siehe Folie 17)
 - anhand des Zustands des DEAs lässt sich bestimmen, welches Token gefunden wurde

```
else
  {return(ELSE);}
[A-Za-z][A-za-z0-9]*
  {<Trage gefundenen Bezeichner in Symboltabelle ein>;
  return(ID);}
>=
  {return(GE):}
  {return(EQ);}
```

(Lexer-Generator muss Prioritäten beachten: else wird auch vom 2. RA erkannt, ist aber reserviert)

Anwendung: Finden von Mustern im Text

Beispiel: Suchen von Adressen (Str. + Hausnr.) in Webseiten Solche Angaben sollen gefunden werden:

Parkstraße 5 Enrique-Schmidt-Straße 12a Breitenweg 24A Knochenhauergasse 30-32

Charakterisierungen

Beispiel: Suchen von Adressen (Str. + Hausnr.) in Webseiten Solche Angaben sollen gefunden werden:

Parkstraße 5 Enrique-Schmidt-Straße 12a Breitenweg 24A Knochenhauergasse 30-32

aber auch solche:

```
Straße des 17. Juni 17
...boulevard, ...allee, ...platz, ...
Postfach 330 440
Am Wall 8
```

Anwendung: Finden von Mustern im Text

Beispiel: Suchen von Adressen (Str. + Hausnr.) in Webseiten Solche Angaben sollen gefunden werden:

```
Parkstraße 5
Enrique-Schmidt-Straße 12a
Breitenweg 24A
Knochenhauergasse 30-32
```

aber auch solche:

```
Straße des 17. Juni 17
...boulevard, ...allee, ...platz, ...
Postfach 330 440
Am Wall 8
```

- → Ausmaß der Variationen erst während der Suche deutlich.
- → Gesucht: einfach modifizierbare Beschreibung der Muster

Mustersuche mit regulären Ausdrücken

Mögliches Vorgehen:

- (1) Beschreibung des Musters mit einem einfachen RA
- (2) Umwandlung des RA in einen NEA
- (3) Implementation des DEA wie auf Folie 17+18
- (4) Test
- (5) Wenn nötig, RA erweitern/ändern und Sprung zu Schritt 2

So kann sich der RA entwickeln:

• Vorkommen von "straße" etc.:¹ straße|str\.|weg|gasse

So kann sich der RA entwickeln:

- Vorkommen von "straße" etc.:¹ straße|str\.|weg|gasse
- Plus Name der Straße und Hausnummer:

Charakterisierungen

Adresssuche mit regulären Ausdrücken

So kann sich der RA entwickeln:

- Vorkommen von "straße" etc.:¹ straße|str\.|weg|gasse
- Plus Name der Straße und Hausnummer:

```
[A-Z][a-z]*(straße|str\.|weg|gasse) [0-9]*
```

So kann sich der RA entwickeln:

- Vorkommen von "straße" etc.:¹ straße|str\.|weg|gasse
- Plus Name der Straße und Hausnummer:
 [A-Z] [a-z]*(straße|str\.|weg|gasse) [0-9]*
- Hausnummern mit Buchstaben (12a), -bereiche (30–32):

So kann sich der RA entwickeln:

- Vorkommen von "straße" etc.:¹ straße|str\.|weg|gasse
- Plus Name der Straße und Hausnummer:

$$[A-Z][a-z]*(straße|str\.|weg|gasse) [0-9]*$$

• Hausnummern mit Buchstaben (12a), -bereiche (30–32):

So kann sich der RA entwickeln:

- Vorkommen von "straße" etc.:¹ straße|str\.|weg|gasse
- Plus Name der Straße und Hausnummer:

$$[A-Z][a-z]*(straße|str\.|weg|gasse) [0-9]*$$

• Hausnummern mit Buchstaben (12a), -bereiche (30–32):

$$([0-9]*[A-Za-z]?-)?[0-9]*[A-Za-z]?$$

- und mehr:
 - Straßennamen mit Bindestrichen
 - "Straße" etc. am Anfang
 - Plätze, Boulevards, Alleen etc.
 - Postfächer
 - . . .

Entscheidungsprobleme

 $^{^{1}}$ Weil der UNIX-RA . für Σ reserviert ist, steht \. für {.}

Und nun ...

- 1 Grundbegriffe
- 2 Anwendung: Textsuche
- Abschlusseigenschaften
- 4 Reguläre Ausdrücke und Anwendungen
- Charakterisierungen
- 6 Entscheidungsprobleme

Pumping-Lemma

Wie zeigt man, dass L nicht NEA-erkennbar (regulär) ist?

Pumping-Lemma

Wie zeigt man, dass L nicht NEA-erkennbar (regulär) ist?

Satz 1.11 (Pumping-Lemma)

Sei *L* eine NEA-erkennbare Sprache.

Dann gibt es eine Konstante $p \ge 0$, so dass für alle Wörter $w \in L$ mit $|w| \ge p$ gilt:

Es gibt eine Zerlegung w = xyz mit $y \neq \varepsilon$ und $|xy| \leqslant p$, so dass $xy^iz \in L$ für alle $i \geqslant 0$.

Beweis: siehe Thl 1.

Benutzen Kontraposition:

```
Wenn es für alle Konstanten p \ge 0
ein Wort w \in L mit |w| \ge p gibt, so dass es
für alle Zerlegungen w = xyz mit y \ne \varepsilon und |xy| \le p
ein i \ge 0 gibt mit xy^iz \notin L,
dann ist L keine NEA-erkennbare Sprache.
```

T 1.5

Charakterisierungen

Bemerkungen zum Pumping-Lemma

Die Bedingung in Satz 1.11 ist . . .

- notwendig dafür, dass L NEA-erkennbar ist
- nicht hinreichend Bsp.: $\{a^n b^k c^k \mid n, k \ge 1\} \cup \{b^n c^k \mid n, k \ge 0\}$

→ Pumping-L. nur zum Widerlegen von Erkennbarkeit verwendbar, nicht zum Beweisen, dass L regulär ist

(Notwendige und hinreichende Variante: Jaffes Pumping-Lemma)

Der Satz von Myhill-Nerode

Ziel: notwendige und hinreichende Bedingung für Erkennbarkeit

Definition 1.12

Sei $L \subseteq \Sigma^*$ eine Sprache.

Zwei Wörter $u, v \in \Sigma^*$ sind *L*-äquivalent (Schreibweise: $u \sim_L v$), wenn für alle $w \in \Sigma^*$ gilt:

 $uw \in L$ genau dann, wenn $vw \in L$

Der Satz von Myhill-Nerode

Ziel: notwendige und hinreichende Bedingung für Erkennbarkeit

Definition 1.12

Sei $L \subseteq \Sigma^*$ eine Sprache.

Zwei Wörter $u, v \in \Sigma^*$ sind *L*-äquivalent (Schreibweise: $u \sim_L v$), wenn für alle $w \in \Sigma^*$ gilt:

 $uw \in L$ genau dann, wenn $vw \in L$

 \sim_L heißt Nerode-Rechtskongruenz und ist Äquivalenzrelation (Reflexivität, Symmetrie, Transitivität sind offensichtlich)

Index von ∼ı: Anzahl der Äguivalenzklassen

Grundbegriffe Textsuche Abschlusseig. Reguläre Ausdrücke Charakterisierungen Entscheidungsprobleme

Der Satz von Myhill-Nerode

Satz 1.13 (Myhill-Nerode)

 $L \subset \Sigma^*$ is NEA-erkennbar gdw. \sim_L endlichen Index hat.

Beweis: siehe Thl 1.

Automatentheorie u. i. A. WiSe 2018/19

rundbegriffe Textsuche Abschlusseig. Reguläre Ausdrücke Charakterisierungen Entscheidungsprobleme

Der Satz von Myhill-Nerode

Satz 1.13 (Myhill-Nerode)

 $L \subset \Sigma^*$ is NEA-erkennbar gdw. \sim_L endlichen Index hat.

Beweis: siehe Thl 1.

T 1.6

Interessantes "Nebenprodukt" des Beweises:

Endlicher Index n von \sim_L

= minimale Anzahl von Zuständen in einem DEA, der *L* erkennt.

Und nun ...

- 1 Grundbegriffe
- 2 Anwendung: Textsuche
- 3 Abschlusseigenschafter
- 4 Reguläre Ausdrücke und Anwendungen
- 5 Charakterisierungen
- 6 Entscheidungsprobleme

Entscheidbarkeit

Grundbegriffe

(Entscheidungs-)Problem

- ullet ... ist eine Teilmenge $X\subseteq M$
 - Eingabe: $m \in M$; Frage: $m \in X$?
 - $m \in X$: Ja-Instanzen; $m \in M \setminus X$: Nein-Instanzen

(Entscheidungs-)Problem

- ... ist eine Teilmenge $X \subseteq M$
 - Eingabe: $m \in M$; Frage: $m \in X$?
 - $m \in X$: Ja-Instanzen; $m \in M \setminus X$: Nein-Instanzen
- Beispiele:
 - $X = \text{Menge aller Primzahlen}, M = \mathbb{N}$
 - $X = \text{Menge aller NEAs } A \text{ mit } L(A) \neq \emptyset$, M = Menge aller NEAs

Entscheidbarkeit

(Entscheidungs-)Problem

- ... ist eine Teilmenge $X \subseteq M$
 - Eingabe: $m \in M$; Frage: $m \in X$?
 - $m \in X$: Ja-Instanzen; $m \in M \setminus X$: Nein-Instanzen
- Beispiele:
 - $X = \text{Menge aller Primzahlen}, M = \mathbb{N}$
 - $X = \text{Menge aller NEAs } A \text{ mit } L(A) \neq \emptyset$, M = Menge aller NEAs
- man stelle sich eine Blackbox vor:

$$m \in M$$
 Eingabe $m \in X$? Ausgabe , "ja" $\Rightarrow m \in X$, "nein" $\Rightarrow m \notin X$

Entscheidbarkeit

(Entscheidungs-)Problem

- ... ist eine Teilmenge $X \subseteq M$
 - Eingabe: $m \in M$; Frage: $m \in X$?
 - $m \in X$: Ja-Instanzen; $m \in M \setminus X$: Nein-Instanzen
- Beispiele:
 - $X = \text{Menge aller Primzahlen}, M = \mathbb{N}$
 - $X = \text{Menge aller NEAs } A \text{ mit } L(A) \neq \emptyset,$ M = Menge aller NEAs
- man stelle sich eine Blackbox vor:

Entscheidbarkeit: X ist entscheidbar, wenn es einen Algorithmus A gibt, der die Blackbox implementiert.

Komplexität:

Komplexität:

zusätzliche Anforderungen an Zeit-/Speicherplatzbedarf von A

• Polynomialzeit: Anzahl Rechenschritte von A ist $\leq |m|^k$, |m|: Länge der Eingabe; k: beliebige Konstante

Komplexität:

- Polynomialzeit: Anzahl Rechenschritte von A ist $\leq |m|^k$, |m|: Länge der Eingabe; k: beliebige Konstante
- Polynomieller Platz: von A benötigter Speicherplatz $\leq |m|^k$

Komplexität:

- Polynomialzeit: Anzahl Rechenschritte von A ist $\leq |m|^k$, |m|: Länge der Eingabe; k: beliebige Konstante
- Polynomieller Platz: von A benötigter Speicherplatz $\leq |m|^k$
- Exponentialzeit: Anzahl Rechenschritte von A ist $\leq 2^{|m|^k}$

Komplexität:

- Polynomialzeit: Anzahl Rechenschritte von A ist $\leq |m|^k$, |m|: Länge der Eingabe; k: beliebige Konstante
- Polynomieller Platz: von A benötigter Speicherplatz $\leq |m|^k$
- Exponentialzeit: Anzahl Rechenschritte von A ist $\leq 2^{|m|^k}$
- . .

Einige übliche Komplexitätsklassen

Name	Bedeutung	Beispiel-Problem
L NL P	logarithm. Speicherplatz nichtdetermin. log. Platz Polynomialzeit	Erreichbarkeit, ungerichtete Graphen Erreichbarkeit, gerichtete Graphen Primzahlen
NP PSpace	nichtdeterminist. Polyzeit polynom. Speicherplatz	Erfüllbarkeit Aussagenlogik Erfüllbarkeit QBF
ExpTime NExpTime ExpSpace	Exponentialzeit nichtdet. Exponentialzeit exponentieller Platz :	Gewinnstrategie $n \times n$ -Schach Clique f. schaltkreiscodierte Graphen Äquiv. regulärer Ausdrücke mit " \cdot 2"
	unentscheidbar	Erfüllbarkeit Prädikatenlogik

Komplementklassen: coNL, coNP etc.

(Polynomielle) Reduktion von $X \subseteq M$ nach $X' \subseteq M'$ ist eine (in Polyzeit) berechenbare Funktion $\pi: M \to M'$ mit $m \in X$ gdw. $\pi(m) \in X'$

(Polynomielle) Reduktion von $X\subseteq M$ nach $X'\subseteq M'$ ist eine (in Polyzeit) berechenbare Funktion $\pi:M\to M'$ mit

$$m \in X$$
 gdw. $\pi(m) \in X'$

(Polynomielle) Reduktion von $X\subseteq M$ nach $X'\subseteq M'$ ist eine (in Polyzeit) berechenbare Funktion $\pi:M\to M'$ mit

$$m \in X$$
 gdw. $\pi(m) \in X'$

Schreibweise: $X \leq X'$ bzw. $X \leq_P X'$ (X auf X' reduzierbar) T 1.7

(Polynomielle) Reduktion von $X\subseteq M$ nach $X'\subseteq M'$ ist eine (in Polyzeit) berechenbare Funktion $\pi:M\to M'$ mit

$$m \in X$$
 gdw. $\pi(m) \in X'$

Schreibweise: $X \leq X'$ bzw. $X \leq_P X'$ (X auf X' reduzierbar) T 1.7

Wenn alle Probleme aus Komplexitätsklasse C auf X reduzierbar, dann ist X schwer für C.

Bestimmung der Komplexität

Normalerweise zeigt man, dass ein Problem $X \subseteq M \dots$

- ullet in einer Komplexitätsklasse ${\mathcal C}$ liegt, indem man
 - einen Algorithmus A findet, der X löst
 - zeigt, dass A korrekt ist (ja/nein-Antworten) und terminiert
 - zeigt, dass A für jedes $m \in M$ höchstens die $\mathcal C$ -Ressourcen braucht
 - \dots A kann z. B. eine Reduktion zu einem Problem aus $\mathcal C$ sein

Bestimmung der Komplexität

Normalerweise zeigt man, dass ein Problem $X \subseteq M \dots$

- ullet in einer Komplexitätsklasse ${\mathcal C}$ liegt, indem man
 - einen Algorithmus A findet, der X löst
 - zeigt, dass A korrekt ist (ja/nein-Antworten) und terminiert
 - zeigt, dass A für jedes $m \in M$ höchstens die \mathcal{C} -Ressourcen braucht
 - \dots A kann z. B. eine Reduktion zu einem Problem aus $\mathcal C$ sein
- ullet schwer (hard) für $\mathcal C$ ist, indem man
 - ein Problem $X' \subseteq M'$ findet, dass schwer für C ist
 - und eine Reduktion von X' nach X angibt

Bestimmung der Komplexität

Normalerweise zeigt man, dass ein Problem $X \subseteq M \dots$

- ullet in einer Komplexitätsklasse ${\mathcal C}$ liegt, indem man
 - einen Algorithmus A findet, der X löst
 - zeigt, dass A korrekt ist (ja/nein-Antworten) und terminiert
 - zeigt, dass A für jedes $m \in M$ höchstens die $\mathcal C$ -Ressourcen braucht
 - \dots A kann z. B. eine Reduktion zu einem Problem aus $\mathcal C$ sein
- ullet schwer (hard) für $\mathcal C$ ist, indem man
 - ein Problem $X' \subseteq M'$ findet, dass schwer für C ist
 - ullet und eine Reduktion von X' nach X angibt
- ullet vollständig für $\mathcal C$ ist, indem man zeigt, dass es
 - ullet in ${\mathcal C}$ liegt und
 - ullet schwer für ${\mathcal C}$ ist

Entscheidungsprobleme für endliche Automaten

- Betrachten wesentliche Eigenschaften von Sprachen (Sprachen repräsentiert durch NEAs oder reguläre Ausdr.)
 - Ist eine gegebene Sprache leer?
 - Ist ein gegebenes Wort w in einer Sprache L?
 - Beschreiben zwei Repräsentationen einer Sprache tatsächlich dieselbe Sprache?

Entscheidungsprobleme für endliche Automaten

- Betrachten wesentliche Eigenschaften von Sprachen (Sprachen repräsentiert durch NEAs oder reguläre Ausdr.)
 - Ist eine gegebene Sprache leer?
 - Ist ein gegebenes Wort w in einer Sprache L?
 - Beschreiben zwei Repräsentationen einer Sprache tatsächlich dieselbe Sprache?
- Wichtig für Anwendungen (siehe Einführung)

Entscheidungsprobleme für endliche Automaten

- Betrachten wesentliche Eigenschaften von Sprachen (Sprachen repräsentiert durch NEAs oder reguläre Ausdr.)
 - Ist eine gegebene Sprache leer?
 - Ist ein gegebenes Wort w in einer Sprache L?
 - Beschreiben zwei Repräsentationen einer Sprache tatsächlich dieselbe Sprache?
- Wichtig für Anwendungen (siehe Einführung)
- Art der Repräsentation spielt manchmal eine Rolle: NEA, DEA, regulärer Ausdruck, Typ-3-Grammatik etc.
 Wir betrachten im Folgenden NEAs und DEAs.

Eingabe: NEA (oder DEA) \mathcal{A}

Frage: Ist $L(A) = \emptyset$?

d. h.
$$LP_{NEA} = \{A \mid A \text{ NEA}, L(A) = \emptyset\},\ LP_{DEA} = \{A \mid A \text{ DEA}, L(A) = \emptyset\}$$

Das Leerheitsproblem

Eingabe: NEA (oder DEA) \mathcal{A}

Frage: Ist $L(A) = \emptyset$?

d. h.
$$LP_{NEA} = \{A \mid A \text{ NEA}, L(A) = \emptyset\},\ LP_{DEA} = \{A \mid A \text{ DEA}, L(A) = \emptyset\}$$

Satz 1.14

Grundbegriffe

LP_{NEA} und LP_{DEA} sind entscheidbar und coNL-vollständig.

Das Leerheitsproblem

Eingabe: NEA (oder DEA) \mathcal{A}

Frage: Ist $L(A) = \emptyset$?

d. h.
$$LP_{NEA} = \{A \mid A \text{ NEA}, L(A) = \emptyset\},\ LP_{DEA} = \{A \mid A \text{ DEA}, L(A) = \emptyset\}$$

Satz 1.14

LP_{NEA} und LP_{DEA} sind entscheidbar und co**NL**-vollständig.

Beweis.

- Entscheidbarkeit (in Polyzeit): siehe ThI 1
- coNL-Zugehörigkeit:
 Reduktion zu Erreichbarkeit in gerichteten Graphen, siehe T1.7
- coNL-Härte:
 Reduktion von Erreichbarkeit, analog

Das Wortproblem

Grundbegriffe

Eingabe: NEA (oder DEA) \mathcal{A} , Wort $w \in \Sigma^*$

Frage: Ist $w \in L(A)$?

d. h. $\mathsf{WP}_{\mathsf{NEA}} = \{(\mathcal{A}, w) \mid \mathcal{A} \; \mathsf{NEA}, \; w \in \mathcal{L}(\mathcal{A})\},\ \mathsf{WP}_{\mathsf{DEA}} = \{(\mathcal{A}, w) \mid \mathcal{A} \; \mathsf{DEA}, \; w \in \mathcal{L}(\mathcal{A})\}$

Das Wortproblem

Eingabe: NEA (oder DEA) \mathcal{A} , Wort $w \in \Sigma^*$

Frage: Ist $w \in L(A)$?

d. h. $\mathsf{WP}_{\mathsf{NEA}} = \{(\mathcal{A}, w) \mid \mathcal{A} \; \mathsf{NEA}, \; w \in \mathcal{L}(\mathcal{A})\},\ \mathsf{WP}_{\mathsf{DEA}} = \{(\mathcal{A}, w) \mid \mathcal{A} \; \mathsf{DEA}, \; w \in \mathcal{L}(\mathcal{A})\}$

Satz 1.15

WP_{NEA} und WP_{DEA} sind entscheidbar.

WP_{NEA} ist NL-vollständig; WP_{DEA} ist L-vollständig.

Das Wortproblem

Eingabe: NEA (oder DEA) \mathcal{A} , Wort $w \in \Sigma^*$

Frage: Ist $w \in L(A)$?

d. h. $\mathsf{WP}_{\mathsf{NEA}} = \{(\mathcal{A}, w) \mid \mathcal{A} \; \mathsf{NEA}, \; w \in \mathcal{L}(\mathcal{A})\},\ \mathsf{WP}_{\mathsf{DEA}} = \{(\mathcal{A}, w) \mid \mathcal{A} \; \mathsf{DEA}, \; w \in \mathcal{L}(\mathcal{A})\}$

Satz 1.15

WP_{NEA} und WP_{DEA} sind entscheidbar.

 WP_{NEA} ist **NL**-vollständig; WP_{DEA} ist **L**-vollständig.

Beweis.

- Entscheidbarkeit (in Polyzeit): siehe Thl 1 (Reduktion zum LP: $w \in L(A)$ gdw. $L(A) \cap L(A_w) \neq \emptyset$)
- NL-Vollst.: ≈ Erreichbarkeit in gerichteten Graphen

Das Äquivalenzproblem

Grundbegriffe

Eingabe: NEAs (oder DEAs) A_1, A_2

Frage: Ist $L(A_1) = L(A_2)$?

d. h.
$$\ddot{\mathsf{A}}\mathsf{P}_{\mathsf{NEA}} = \{(\mathcal{A}_1, \mathcal{A}_2) \mid \mathcal{A}_1, \mathcal{A}_2 \; \mathsf{NEAs}, \; L(\mathcal{A}_1) = L(\mathcal{A}_2)\}, \\ \ddot{\mathsf{A}}\mathsf{P}_{\mathsf{DEA}} = \{(\mathcal{A}_1, \mathcal{A}_2) \mid \mathcal{A}_1, \mathcal{A}_2 \; \mathsf{DEAs}, \; L(\mathcal{A}_1) = L(\mathcal{A}_2)\}$$

Das Äquivalenzproblem

Eingabe: NEAs (oder DEAs) A_1, A_2

Frage: Ist $L(A_1) = L(A_2)$?

d. h.
$$\ddot{\mathsf{A}}\mathsf{P}_{\mathsf{NEA}} = \{(\mathcal{A}_1, \mathcal{A}_2) \mid \mathcal{A}_1, \mathcal{A}_2 \; \mathsf{NEAs}, \; L(\mathcal{A}_1) = L(\mathcal{A}_2)\}, \\ \ddot{\mathsf{A}}\mathsf{P}_{\mathsf{DEA}} = \{(\mathcal{A}_1, \mathcal{A}_2) \mid \mathcal{A}_1, \mathcal{A}_2 \; \mathsf{DEAs}, \; L(\mathcal{A}_1) = L(\mathcal{A}_2)\}$$

Satz 1.16

ÄP_{NEA} und ÄP_{DEA} sind entscheidbar.

ÄP_{NEA} ist **PSpace**-vollständig; ÄP_{DEA} ist **NL**-vollständig.

Das Äquivalenzproblem

Eingabe: NEAs (oder DEAs) A_1, A_2

Frage: Ist $L(A_1) = L(A_2)$?

d. h.
$$\ddot{\mathsf{A}}\mathsf{P}_{\mathsf{NEA}} = \{(\mathcal{A}_1, \mathcal{A}_2) \mid \mathcal{A}_1, \mathcal{A}_2 \; \mathsf{NEAs}, \; L(\mathcal{A}_1) = L(\mathcal{A}_2)\}, \\ \ddot{\mathsf{A}}\mathsf{P}_{\mathsf{DEA}} = \{(\mathcal{A}_1, \mathcal{A}_2) \mid \mathcal{A}_1, \mathcal{A}_2 \; \mathsf{DEAs}, \; L(\mathcal{A}_1) = L(\mathcal{A}_2)\}$$

Satz 1.16

ÄP_{NEA} und ÄP_{DEA} sind entscheidbar.

 $\ddot{A}P_{NEA}$ ist PSpace-vollständig; $\ddot{A}P_{DEA}$ ist NL-vollständig.

Beweis.

- Entscheidbarkeit: siehe Thl 1 (Red. zum LP: $L(A_1) = L(A_2)$ gdw. $L(A_1) \triangle L(A_2) = \emptyset$)
- Komplexität: Automat für $L(A_1) \triangle L(A_2)$ ist exponentiell in der Größe der Eingabe-NEAs; polynomiell im Fall von DEAs Details: siehe [Holzer & Kutrib 2011]

Das Universalitätsproblem

Grundbegriffe

Eingabe: NEA (oder DEA) \mathcal{A}

Frage: Ist $L(A) = \Sigma^*$?

d. h.
$$UP_{NEA} = \{A \mid A \text{ NEA}, L(A) = \Sigma^*\},\ UP_{DEA} = \{A \mid A \text{ DEA}, L(A) = \Sigma^*\}$$

Das Universalitätsproblem

Eingabe: NEA (oder DEA) \mathcal{A}

Frage: Ist $L(A) = \Sigma^*$?

d. h.
$$UP_{NEA} = \{ \mathcal{A} \mid \mathcal{A} \text{ NEA}, \ \mathcal{L}(\mathcal{A}) = \Sigma^* \},$$

 $UP_{DEA} = \{ \mathcal{A} \mid \mathcal{A} \text{ DEA}, \ \mathcal{L}(\mathcal{A}) = \Sigma^* \}$

Satz 1.17

UP_{NEA} und UP_{DEA} sind entscheidbar.

Beweis: Übungsaufgabe

Grundbegriffe Textsuche Abschlusseig. Reguläre Ausdrücke Charakterisierungen Entscheidungsprobleme

Überblick Entscheidungsprobleme für NEAs/DEAs

		für DEAs	für NEAs
Problem	entscheidbar?	effizient lösbar?	effizient lösbar?
LP	1	√	√
WP	✓	✓	✓
ÄP	✓	✓	X *
UP	\checkmark	✓	X *

^{*} unter den üblichen komplexitätstheoretischen Annahmen (z. B. PSpace ≠ P)

Literatur für diesen Teil (Basis)

John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman.

Introduction to Automata Theory, Languages and Computation.

2. Auflage, Addison-Wesley, 2001.

Kapitel 1,2.

Verfügbar in SUUB (verschiedene Auflagen, auch auf Deutsch)

Meghyn Bienvenu.

Automata on Infinite Words and Trees.

Vorlesungsskript, Uni Bremen, WS 2009/10.

http://www.informatik.uni-bremen.de/tdki/lehre/ws09/automata/automata-notes.pdf

Literatur für diesen Teil (weiterführend)

Markus Holzer, Martin Kutrib.

Descriptional and computational complexity of finite automata – A survey.

Information and Computation 209:456-470, 2011.

Kapitel 3: sehr umfassender Überblick über Entscheidungsprobleme für endliche Automaten und deren Komplexität; viel Literatur

Verfügbar in SUUB (elektronisch)

https://doi.org/10.1016/j.ic.2010.11.013