Solving Ordinary Differential Equations (ODE) with Simulink

Faculty of Technology and Bionics

Problem Statement

Ordinary Differential Equation (ODE)

$$\ddot{x}(t) + \omega_0^2 \cdot x(t) = 0$$

Initial Conditions (IC)

$$\dot{x}(t=0)=0$$

$$x(t=0)=1$$

Initial Value Problem

The IC models an undamped, free oszillation with eigenfrequency $\omega_0=1$. Initially the system is in rest dx/dt=0 for t=0, the initial position is x=1.

Step 1

Transform the ODE into explicit form

$$\ddot{x}(t) = -\omega_0^2 \cdot x(t)$$

Step 2

Integrate the acceleration twice

$$\begin{array}{c} X'' \\ \hline \\ Integrator & Integrator 1 \end{array}$$

Step 3

Set up the Right-hand-Side (RHS) by use of gains, summation points etc.

Step 4

Set up the feedback loop

Step 5

Step 6

Start Simulation and analyse results

Solve the following equation in Simulink:

$$\ddot{x} + d \cdot sgn(\dot{x}) \cdot \dot{x}^2 + \omega_0^2 \cdot x = \sin(\omega \cdot t)$$

Parameter are:

$$\omega_0^2 = 5$$

$$\omega = 1$$

$$d = 0.4$$

Limit the maximal step-size of the integrator to h=0.01.

Possible block diagram

Simulation results

