1. Probar que en el conjunto $\{a,b\}$ hay tres órdenes posibles. ¿Y en $\{a,b,c\}$ y $\{a,b,c,d\}$?

Solución COMPLETAR.

- 2. En $(\mathbb{N}, |)$, donde | denota la relación «divide a»:
 - a) Verificar que $(\mathbb{N}, |)$ es un conjunto ordenado.
 - b) ¿Es también un conjunto totalmente ordenado?
 - c) Si S es el conjunto de los divisores de 60, graficar el conjunto ordenado inducido por | en S.

Soluciones

a)

- Reflexividad: Sea $n \in \mathbb{N}$, luego $n = n * 1 \iff n | n$.
- Antisimetría: Sean $n, m \in \mathbb{N}/n|m \wedge m|n$ luego n = m*c y m = n*k. Finalmente:

$$n = n * k * c \iff 1 = k * c \iff k = c = 1$$

por lo que n = m * 1 = m.

b) No lo es pues para cualquier par de primos p_1 y p_2 resulta: $p_1 \parallel p_2$.

c)

3. Yoneda Lemma: Probar que en un preorden (P, \preceq) vale: $x \preceq y \iff \forall z : z \preceq x \Rightarrow z \preceq y$.

Solución

- \blacksquare \Longrightarrow : Sea $z \leq x$, luego por transitividad: $z \leq x \leq y$.
- \sqsubseteq : Por reflexididad tenemos $x \leq x$ y por hipotesis: $x \leq x \Rightarrow x \leq y$.
- 4. Sea A un conjunto arbitrario. Verificar que $(\mathcal{P}(A), \subseteq)$ es un conjunto ordenado. ¿Es también un conjunto totalmente ordenado?

Solución

- Reflexividad: Sea $X \in \mathcal{P}(A)$, luego $x \in X \Rightarrow x \in X$ por lo que $X \subseteq X$.
- \bullet Antisimetría: Sean $X,Y\in\mathcal{P}\left(A\right)$ luego si $X\subseteq Y\wedge Y\subseteq X$ resulta X=Y por definición.
- Transitividad: Sean $X, Y, Z \in \mathcal{P}(A)/X \subseteq Y \land Y \subseteq Z$ luego $x \in X \Rightarrow x \in Y \Rightarrow x \in Z$ por lo que $X \subseteq Z$.

No necesariamente es totalment ordenado. Por ejemplo para $A = \{1, 2, 3\}$ resulta $\{1, 2\} \parallel \{2, 3\}$.

5. Sea $V = \{a, b, c, d, e\}$. El grafo dirigido de la siguiente figura define un orden en V de la siguiente manera: $x \leq y \iff x = y$ o existe un xy-camino dirigido.

a) Insertar el símbolo correcto $(\preceq,\succeq,\parallel)$ entre cada par de elementos:

1) a e . 3) d a.

2) *b* c . 4) c d.

b) ¿Es un conjunto totalmente ordenado? ¿Tiene elemento máximo y/o mínimo? ¿Tiene elementos maximales y/o minimales?

Soluciones

a)

1) $a \succeq e$.

 $2) \quad b \quad \parallel \quad c \; .$

b)

- No es totalmente ordenado pues existen elementos que no son comparables.
- a es elemento máximo. No existe elemento mínimo.
- d y e son minimales. a es maximal.
- 6. Sean (P, \preceq) un conjunto ordenado, X un conjunto, y $f: X \to P$ una función. Se define la relación H sobre elementos de X como $xHx'\iff$ $f(x) \leq f(x')$. ¿Que tipo de relación es H? Dar condiciones para que H sea un conjunto ordenado.

Solución

- Reflexividad: $x \in X \Rightarrow f(x) \in P \Rightarrow f(x) \leq f(x) \iff xHx$.
- Transitividad: Sean $x, y, z \in X/xHy \land yHz$ luego:

$$f(x) \leq f(y) \land f(y) \leq f(z) \Rightarrow f(x) \leq f(z) \iff xHz$$

■ Antisimetría: Si agregamos la hipotesis de que f sea inyectiva, entonces si $xHy \wedge yHx$ resultara:

$$f(x) \leq f(y) \land f(y) \leq (x) \Rightarrow f(x) = f(y) \Rightarrow x = y$$

- 7. En (Prop, D), donde Prop son las fórmulas del cálculo proposicional y $\phi D\psi \iff \{\phi\} \vdash \psi$:
 - a) Verificar si (Prop, D) es un conjunto ordenado. En caso de no serlo, clasificarlo.
 - b) ¿La realación es total? ¿Tiene elemento máximo y/o mínimo? ¿Tiene elementos maximales y/o minimales?

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- 8. En (Prop, I), donde $\phi I \psi \iff \emptyset \vdash \phi \Rightarrow \psi$.
 - a) Verificar si (Prop, I) es un conjunto ordenado. En caso de no serlo, clasificarlo.
 - b) ¿La realación es total? ¿Tiene elemento máximo y/o mínimo? ¿Tiene elementos maximales y/o minimales?
 - c) Explique el nexo entre esta relación y la del ejercicio anterior.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- 9. Sea (P, \preceq) un preorden. Construir un conjunto ordenado $(P/\sim, \sqsubseteq)$, donde $x \sim y$ si y solo si $x \preceq y$ y $y \preceq x$, tal que $\pi: P \to P/\sim$ sea monótona.

Aplicar esta construcción a la relación (Prop, D) del ejercicio anterior. Para este caso partricular, la construcción se llama «álgrebra de Lindenbaum-Tarski».

Solución COMPLETAR.

- 10. Probar que:
 - a) Si R define un orden en el conjunto V, entonces R^{-1} tambien define un orden en V, llamado «orden inverso».
 - b) Si R define un orden total en el conjunto V, entonces R^{-1} tambien define un orden total en V.
 - c) Si (A, \preceq) es un orden no total, puede existir un $S \subseteq A$ tal que (S, \preceq) es un orden total.

Soluciones

a)

- Reflexividad: Sea $x \in V$, luego $xRx \Rightarrow xR^{-1}x$.
- Antisimetría: Sean $x, y \in V$ tales que $xR^{-1}y$ y $yR^{-1}x$, luego xRy y yRx. Por antisimetría de R resulta x=y.
- Transitividad: Sean $x, y, z \in V/xR^{-1}y \wedge yR^{-1}z$ luego $yRx \wedge zRy$ y por transitividad zRx. Por definición de R^{-1} resulta $xR^{-1}z$.
- b) Supongamos existen $x,y\in V$ tales que $x\parallel_{R^{-1}} y$, luego $x\parallel_R y$. Contradicción.
- c) Lo propuesto ocurre por ejemplo con $A = \{2, 3, 4\}$ y $S = \{2, 4\}$ con la relación |.
- 11. Sea (P, \preceq) un preorden. Probar que si existe un elemento máximo, entonces todos los maximales son máximos.

Solución Sea M un elemento máximo de P y m un elemento maximal. Como m es minimal resulta $\forall x: m \leq x \Rightarrow x \leq m$, en particular para x = M tenemos $m \leq M \Rightarrow M \leq m$. Veamos que m es máximo: sea $x \in P$ luego, $x \leq M \leq m$, es decir $\forall x: x \leq m$.

- 12. Sean (A, \leq_1) y (A, \leq_2) dos conjuntos ordenados (con el mismo conjunto subyacente).
 - a) ¿Define $\leq_1 \cap \leq_2$ un orden en A?
 - b) ¿Define $\leq_1 \cup \leq_2$ un orden en A?

Soluciones

- a) COMPLETAR.
- b) No. Sean $x \neq y$ luego para $\leq_1 = \Delta_A \cup \{(x,y)\}$ y $\leq_2 = \Delta_A \cup \{(y,x)\}$ en $\leq_1 \cup \leq_2$ se rompe la antisimetría.
- 13. Probar que el conjunto de todos los elementos maximales (minimales) de un conjunto ordenado, es una anticadena.

Solución

- Sean $a \neq b$ en el conjunto de todos los elementos maximales. Supongamos $a \leq b$ luego $b \leq a$ y por antisimetría a = b. Contradicción. Análogo si $b \leq a$.
- Análogo para minimales.
- 14. Considerar el conjunto de los enteros positivos \mathbb{Z}^+ y el de los enteros negativos \mathbb{Z}^- con sus órdenes usuales. Probar que $\mathbb{Z}^+ \not\simeq \mathbb{Z}^-$.

Solución COMPLETAR.

15. Sea (A, \preceq) un conjunto ordenado. Para todo elemento $a \in A$ definamos

$$S(a) = \{x \in A : x \leq a\}$$

Si $\mathcal{A} = \{S(a) : a \in A\}$, ordenado por la inclusión, demostrar que $A \simeq \mathcal{A}$.

Solución COMPLETAR.

- 16. Sean (X, \preceq_X) y (Y, \preceq_Y) dos conjuntos ordenados
 - a) Dar un ejemplo de conjuntos (X, \preceq_X) y (Y, \preceq_Y) y una función $f: X \to Y$ que sea sobreyectiva y preserve el orden pero que no sea un isomorfismo de conjuntos ordenados.
 - b) Probar que son equivalentes:
 - 1) $X \in Y$ son isomorfos.

- 2) Existe $f: X \to Y$ sobreyectiva tal que $f(a) \preceq_Y f(b)$ si y solo si $a \preceq_X b$.
- 3) Existen $f: X \to Y \text{ y } g: Y \to X$ homomorfismos de conjuntos ordenados tales que $f \circ g = id_Y \text{ y } g \circ f = id_X$.
- c) Mostrar que $(X \to Y, \preceq_{X \to Y})$ es un conjunto ordenado, donde $X \to Y$ representa las funciones entre (X, \preceq_X) y (Y, \preceq_Y) , y el orden está definido por $f \preceq_{X \to Y} g$ si y solo si $\forall x : f(x) \preceq_Y g(x)$.
- d) Mostrar que $(X \times Y, \preceq_{X \times Y})$ es un conjunto ordenado, donde $(x, y) \preceq_{X \times Y} (x', y')$ si y solo si $x \preceq_X x'$ y $y \preceq_Y y'$.

Soluciones

- a) COMPLETAR.
- b)
- 1) COMPLETAR.
- 2) COMPLETAR.
- 3) COMPLETAR.
- c) COMPLETAR.
- d) COMPLETAR.
- 17. Sean (X, \leq_X) y (Y, \leq_Y) dos conjuntos ordenados. Una «conexión Galois» es un par de funciones (f_*, f^*) con $f_*: X \to Y$ y $f^*: Y \to X$ tales que para todos $x \in X$ e $y \in Y$ vale:

$$f_*(x) \preceq_Y y \iff x \preceq_X f^*(y)$$

- a) Probar que si $f_*: X \to Y$ es un isomorfismo, entonces (f_*, f_*^{-1}) es una conexión de Galois.
- b) Dada una función $A \to B$, probar que se puede construir una conexión de Galois entre el conjunto potencia de A y el de B utilizando los operadores que calculan la imagen de f sobre un subconjunto de A y la imagen inversa de f sobre un subconjunto de B.
- c) Considerando los órdenes usuales sobre \mathbb{N} y \mathbb{Q}_0^+ , encontrar f^* tal que (f_*, f^*) sea una conexión Galois donde $f_* : \mathbb{N} \to \mathbb{Q}_0^+$ es la inclusión.

- d) Dada una conexión Galois (f_*,f^*) entre X e Y, probar que para todo $x\in X,y\in Y$ vale $x\preceq_X f^*\left(f_*\left(x\right)\right)$ y $f_*\left(f^*\left(y\right)\right)\preceq_Y y$.
- e) Dada una conexion de Galois (f_*,f^*) entre Xe Y, probar que f_* y f^* son monótonas.

Soluciones

- a) COMPLETAR.
- b) COMPLETAR.
- c) COMPLETAR.
- d) COMPLETAR.
- 18. Probar que la relación de isomorfismo entre conjuntos ordenados es una relación de equivalencia.

Solución COMPLETAR.