Max 1375 HW21

Write the expression as one of the six trigonometric functions.

(a)
$$\cos(x) \cdot \tan(x)$$
 (b) $\sec(x) \cdot \cot(x)$ (c) $\frac{\csc(x)}{\sec(x)}$

a)
$$\cos(x)$$
 tan(x) = $\cos(x)$ $\frac{\sin(x)}{\cos(x)}$ = $\sin(x)$

a)
$$cos(x) \cdot tan(x) = cos(x) \cdot \frac{sin(x)}{cos(x)} = sin(x)$$

b) $sec(x) \cdot cot(x) = \frac{1}{cos(x)} \cdot \frac{cos(x)}{sin(x)} = \frac{1}{sin(x)} = csc(x)$

Exercise 21.2

Determine if the identity is true or false. If the identity is true, then give an argument for why it is true.

$$\sqrt{a}$$
) $\cos(x) \cdot \csc(x) = \sin(x) \cdot \sec(x)$

LHS =
$$\cos(x) \cdot \csc(x) = \cos(x) \cdot \frac{1}{\sin(x)} = \cot(x)$$
.

RHS =
$$sin(x)$$
 $sec(x) = sin(x) \cdot \frac{1}{cos(x)} = tan(x)$

Simplify the expression as much as possible.

a)
$$\frac{\cos^2(x)-1}{\sin(x)}$$

b)
$$\frac{1-\sin^2(x)}{(x)^2}$$

$$(k) 1 + \frac{\cos^2(x)}{\sin^2(x)}$$

$$\frac{\tan^2(x)}{\cos^2(x)} - 1$$

a)
$$\frac{\cos^2(x)-1}{\sin(x)}$$
 b) $\frac{1-\sin^2(x)}{\cot(x)}$ c) $1+\frac{\cos^2(x)}{\sin^2(x)}$ d) $\frac{\tan^2(x)}{\sec^2(x)}-1$ le) $\cos(x)+\frac{\sin^2(x)}{\cos(x)}$ f) $\sec(x)-\frac{\tan^2(x)}{\sec(x)}$

$$\oint \sec(x) - \frac{\tan^2(x)}{\sec(x)}$$

$$(1 + \sin(x)) \cdot (1 - \sin(x))$$
 h) $(1 - \sec(x)) \cdot (1 + \sec(x))$

h)
$$(1 - \sec(x)) \cdot (1 + \sec(x))$$

C)
$$\left[+ \frac{\cos^2(x)}{\sin^2(x)} = \frac{\sin^2(x) + \cos^2(x)}{\sin^2(x)} = \frac{1}{\sin^2(x)} \left(- \csc^2(x) \right) \right]$$

C)
$$\left| + \frac{\cos^2(x)}{\sin^2(x)} \right| = \frac{\sin^2(x) + \cos^2(x)}{\sin^2(x)} = \frac{1}{\sin^2(x)} \left(= \csc^2(x) \right)$$

$$\frac{\sin^2(x)}{\sec^2(x)} - 1 = \frac{\tan^2(x) - \sec^2(x)}{\sec^2(x)} = -\cos^2(x)$$

$$\frac{1}{\sin^2(x)} \left(= \csc^2(x) \right)$$

e)
$$\cos(x) + \frac{\sin^2(x)}{\cos(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos(x)} = \frac{1}{\cos(x)} = \sec(x)$$

f)
$$Sec(x) - \frac{\tan^2(x)}{sec(x)} = \frac{Sec^2(x) - \tan^2(x)}{sec(x)} = \frac{1}{sec(x)} = cos(x)$$

g) $(1 + \sin(x)) \cdot (1 - \sin(x)) = 1 - \sin^2(x) = cos^2(x)$

g) (
$$1+\sin(x)$$
)· ($1-\sin(x)$) = $1-\sin^2(x) = \cos^2(x)$
 $\sin^2(x) + \cos^2(x) = 1$

Exercise 21.4

Determine whether the identity is true or false. If the identity is true, then give an argument for why it is true.

(a)
$$\sin(x) - \sin(x) \cos^2(x) = \sin^3(x)$$

b)
$$\cot^2(x) - \csc^2(x) = \tan^2(x) - \sec^2(x)$$

c)
$$\tan^2(x) + \sec^2(x) = 1$$

d)
$$\sin^3(x) - \sin(x) = -\sin(x) \cdot \cos^2(x)$$

$$(\cos(x) - \sin(x)) = \cos^2(x)$$

$$(\sin(x) - \cos(x))^2 = 1 - 2\sin(x)\cos(x)$$

$$\sqrt{3}(x) + \cos^2(x) = 1$$

a) LHS =
$$sin(x) - sin(x) cos^2(x) = sin(x) (1 - cos^2(x)) = sin(x) \cdot sin^2(x) = sin^3(x)$$

RHS = $sin^3(x) \implies LHS = RHS$ True.

e)
$$sin(x) (cos(x) - sin(x)) = cos^{2}(x)$$

$$\Rightarrow sin(x) \cdot cos(x) - sin^2(x) = cos^2(x)$$

$$\Rightarrow$$
 $Sin(x) \cdot cos(x) = cos^2(x) + sin^2(x)$

f) LHS =
$$(sin(x) - cos(x))^2 = sin^2(x) + cos^2(x) - 2 sin(x) cos(x)$$

=
$$1 - 2\sin(x)\cos(x) = RHS$$
 True

Exercise 21.5

Simplify the expression as much as possible.

(a)
$$\sin(x + \pi)$$
 (b) $\tan(\pi - x)$ (c) $\cot(x + \frac{\pi}{2})$ (d) $\cos(x + \frac{3\pi}{2})$

a)
$$Sin(x+TT) = Sin(x) cos(TT) + cos(x) · Sin(TT)$$

= $-sin(x)$

b)
$$\tan(\pi-x) = \frac{\sin(\pi-x)}{\cos(\pi-x)} = \frac{\sin(\pi)\cos(x) - \cos(\pi)\sin(x)}{\cos(\pi)\cos(x)} = \frac{\sin(x)}{-\cos(x)} = -\tan(x)$$

Exercise 21.6

Find the exact values of the trigonometric functions of $\frac{\alpha}{2}$ and of 2α by using the half-angle and double-angle formulas.

a)
$$\sin(\alpha) = \frac{4}{5}$$
, and α in quadrant I $\cos(\alpha) = \frac{7}{13}$, and α in quadrant IV $\sin(\alpha) = \frac{-3}{5}$, and α in quadrant III

b)
$$\cos(\alpha) = \frac{7}{13}$$
 and α in \overline{N}

$$sin^2(\alpha) + cos^2(\alpha) = 1 \implies sin^2(\alpha) + \left(\frac{7}{13}\right)^2 = 1 \implies sin^2(\alpha) = \left[-\frac{49}{169} = \frac{120}{169}\right]$$

$$Sin(x) = 5 \frac{120}{199} = 5 \frac{2\sqrt{30}}{13} \left(sin(x) < 0 \right)$$

$$\cos(2\alpha) = \cos(\alpha)\cos(\alpha) - \sin(\alpha)\sin(\alpha) = \left(\frac{7}{13}\right)^2 - \left(-\sqrt{\frac{120}{169}}\right)^2 = \frac{49}{169} - \frac{120}{169} = \frac{7}{169}$$

$$\cos(\frac{1}{2}) = \pm \sqrt{\frac{1 + \cos(\alpha)}{2}} = \pm \sqrt{\frac{1 + \frac{1}{13}}{2}} = \pm \sqrt{\frac{10}{13}} = \pm \sqrt{\frac{10}{13}} = \pm \sqrt{\frac{10}{13}}$$

$$\forall$$
 is in $\mathbb{I} \Rightarrow \frac{\partial}{\partial z}$ in \mathbb{I} $\Rightarrow \cos(\frac{\partial}{\partial z}) = -\frac{\sqrt{130}}{13}$

c)
$$\sin(\alpha) = -\frac{3}{5}$$
 and α in III .

$$\cos^2(\alpha) + \sin^2(\alpha) = 1 \implies \cos^2(\alpha) + \left(-\frac{3}{5}\right)^2 = 1 \implies \cos^2(\alpha) = |-\left(\frac{9}{25}\right)| = \frac{16}{25}$$

$$\Rightarrow \cos(x) = \frac{16}{25} = \frac{4}{5} \left(x \text{ is in } \mathbf{II} \Rightarrow \cos(x) < 0 \right)$$

$$\sin(2\alpha) = \sin(\alpha + \alpha) = \sin(\alpha) \cos(\alpha) + \cos(\alpha) \sin(\alpha)$$

$$= 2 \cdot \sin(\alpha) \cos(\alpha) = 2 \cdot \left(-\frac{3}{5}\right) \left(-\frac{4}{5}\right) = \frac{24}{25}$$

$$SIN(\frac{1}{2}) = \pm \sqrt{\frac{1-(-\frac{1}{5})}{2}} = \pm \sqrt{\frac{9}{10}} = \pm \sqrt$$

dis
$$\overline{\text{In}} = \frac{3}{2} \overline{\text{Is in }} \text{I or } \overline{\text{II}} = \frac{3}{10} \overline{\text{Io}}$$

$$(\overline{\text{Sin}} \otimes \overline{\text{Sin}}) > 0$$