CSE 417T Introduction to Machine Learning

Lecture 12

Instructor: Chien-Ju (CJ) Ho

Logistics: Reminders

- HW 2: Feb 24, 2020 (Monday)
 - Reserve time for submissions
 - No extensions will be given for last-minute technical reasons

- Exam 1: March 3, 2020 (Tuesday)
 - In-class exam (the same time/location as the lecture)
 - Exam duration: 75 minutes
 - Planned exam content: LFD Chapter 1 to 5
 - Check seat assignments on Piazza the night before the exam
 - More details in the Slides on Feb 18

Recap

Overfitting and Its Cures

Overfitting

- Fitting the data more than is warranted
- Fitting the noise instead of the pattern of the data
- Decreasing E_{in} but getting larger E_{out}
- When *H* is too strong, but *N* is not large enough

Regularization

• Intuition: Constraining H to make overfitting less likely to happen

Validation

• Intuition: Reserve data to estimate E_{out}

Regularization (Constraining H)

Weight decay

$$H(C) = \{ h \in H_Q \text{ and } \overrightarrow{w}^T \overrightarrow{w} \leq C \}$$

• Algorithm: Find $g \in H(C)$ such that $g \approx f$

Constrained optimization

Unconstrained optimization

$$\begin{array}{c} \text{minimize } E_{in}(\overrightarrow{w}) \\ \text{subject to } \overrightarrow{w}^T\overrightarrow{w} \leq C \end{array} \qquad \begin{array}{c} \text{equivalent} \\ \end{array} \qquad \begin{array}{c} \text{minimize } E_{in}(\overrightarrow{w}) + \frac{\lambda_C}{N}\overrightarrow{w}^T\overrightarrow{w} \\ \text{Augmented error} \end{array}$$

Augmented Error

- Define augmented error
 - $E_{aug}(\vec{w}) = E_{in}(\vec{w}) + \frac{\lambda_C}{N} \vec{w}^T \vec{w}$
 - Algorithm: Find $\vec{w}^* = argmin E_{aug}(\vec{w})$

 $H(C) = \{ h \in H_Q \text{ and } \overrightarrow{w}^T \overrightarrow{w} \leq C \}$

- A bit more discussion
 - When $C \to \infty$, $\lambda_C = 0$
 - Smaller *C* (stronger constraints)
 - => larger λ_C
 - => smaller *H*
 - => stronger regularization
 - Use λ_C to tune the level of regularization

Side notes:

You will see people/us interchangeably use λ_C and $\frac{\lambda_C}{N}$ to be the constant, depending on whether the dependency on N is emphasized.

General Form of Regularization

$$E_{aug}(h,\lambda,\Omega) = E_{in}(\overrightarrow{w}) + \frac{\lambda}{N}\Omega(h)$$

- Key components
 - Ω : Regularizer
 - λ : Amount of regularization
- Does the form look familiar? Recall in the VC Theory (treating δ as a constant)

•
$$E_{out}(g) \le E_{in}(g) + O\left(\sqrt{d_{vc} \frac{\ln N}{N}}\right)$$

• If we pick the right Ω , E_{aug} can be a good proxy for E_{out}

How to Pick the Right Ω

- Intuition: pick Ω that leads to "smoother" hypothesis
 - Overfitting is due to noise
 - Informally, noise is generally "high frequency"

- Computation: prefer Ω that makes the optimization easier (e.g., convex/differentiable)
 - Similar to picking the error measure

- We might have some other objective in mind
 - Ex: L-1 regularizer leads to weight vectors with more 0s

Brief Lecture Notes Today

The notes are not intended to be comprehensive. They should be accompanied by lectures and/or textbook. Let me know if you spot errors.

More Discussion on Regularization

Why $\overrightarrow{w}^T\overrightarrow{w}$ is Called Weight Decay

• Run gradient descent on $E_{aug}(\vec{w}) = E_{in}(\vec{w}) + \lambda_C \vec{w}^T \vec{w}$

The update rule would be

$$\overrightarrow{w}(t+1) \leftarrow \overrightarrow{w}(t) - \eta \nabla_{\overrightarrow{w}} E_{aug}(\overrightarrow{w}(t))$$

$$\Rightarrow \overrightarrow{w}(t+1) \leftarrow (1 - 2\eta \lambda_C) \overrightarrow{w}(t) - \eta \nabla_{\overrightarrow{w}} E_{in}(\overrightarrow{w}(t))$$

We are decaying the weights first, then do the update

Linear Regression with Weight Decay

•
$$E_{aug}(\overrightarrow{w}) = E_{in}(w) + \frac{\lambda_C}{N} \overrightarrow{w}^T \overrightarrow{w} = \frac{1}{N} ||X\overrightarrow{w} - \overrightarrow{y}||^2 + \frac{\lambda_C}{N} \overrightarrow{w}^T \overrightarrow{w}$$

- Solve $\nabla_{\overrightarrow{w}} E_{aug}(\overrightarrow{w})|_{\overrightarrow{w}=\overrightarrow{w}_{reg}}=0$, we get
 - $\frac{2}{N} (X^T X \overrightarrow{w}_{reg} X^T \overrightarrow{y} + \lambda_C \overrightarrow{w}_{reg}) = 0$
 - $(X^TX + \lambda_C I)\vec{w}_{reg} = X^T\vec{y}$
 - $\overrightarrow{w}_{reg} = (X^T X + \lambda_C I)^{-1} X^T \overrightarrow{y}$

Notation: I is an identity matrix: only the elements in the diagonals are 1, and all others are 0.

This is called "Ridge Regression" in statistics.

Effect of Regularization (Different λ)

• Minimizing $E_{in}(\vec{w}) + \frac{\lambda}{N} \vec{w}^T \vec{w}$ with different λ

Overfitting and Underfitting

Need to pick the right λ : Using validation: Focus of this lecture

Variations on Weight Decay (Different Ω)

Uniform Weight Decay

Low Order Fit

Weight Growth!

$$\sum_{q=0}^{Q} q w_q^2$$

Regularization Parameter, λ

$$\sum_{q=0}^{Q} \frac{1}{w_q^2}$$

How to Pick the Right Ω

- As discussed earlier
 - Intuition: pick Ω that leads to "smoother" hypothesis
 - Overfitting is due to noise
 - Informally, noise is generally "high frequency"
 - Computation: prefer Ω that makes the optimization easier (e.g., convex/differentiable)
 - Similar to picking the error measure
 - We might have some other objective in mind
 - Ex: L-1 regularizer leads to weight vectors with more 0s
- What if we pick the wrong Ω (weight growth)
 - We might still fix it by picking the right λ using validation

Summarizing Regularization

- Regularization is everywhere in machine learning
- Two main ways of thinking about regularization
 - Constraining H to make overfitting less likely to happen
 - Will discuss more regularization methods in the 2nd half of the semester
 - Pruning for decision trees, early stopping / dropout for neural networks, etc
 - Define augmented error E_{aug} to better approximate E_{out}

•
$$E_{aug}(h, \lambda, \Omega) = E_{in}(\overrightarrow{w}) + \frac{\lambda}{N}\Omega(h)$$

- We show the equivalence of the two for weight decay
 - The conceptual equivalence is general with Lagrangian relaxation (will cover later in the semester)

Validation

Prevent Overfitting

$$E_{out}(g) = E_{in}(g) + \text{overfit penalty}$$

- Regularization
 - Choose a regularizer Ω to approximate the penalty
- Validation
 - Directly estimate E_{out} (The real goal of learning is to minimize E_{out})

Test Set (Want to Estimate E_{out})

- Out-of-sample error $E_{out}(g) = \mathbb{E}_{\vec{x}}[e(g(\vec{x}), y)]$
 - Key: \vec{x} need to be out of sample
- Test set $D_{test} = \{(\vec{x}_1, y_1), ..., (\vec{x}_K, y_K)\}$
 - Reserve K data points used to estimate E_{out}
 - None of the data points in test set can be involved in training

- Using the data in test set to estimate E_{out}
 - Since all data points in D_{test} are out of sample

Test Set

- Test set $D_{test} = \{(\vec{x}_1, y_1), ..., (\vec{x}_K, y_K)\}$
- For a g learned using only training set
- Let $E_{test}(g) = \frac{1}{K} \sum_{k=1}^{K} e(g(\vec{x}_k), y_k)$
 - $E_{test}(g)$ is an unbiased estimate of $E_{out}(g)$
 - $\mathbb{E}[E_{test}(g)] = \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[e(g(\vec{x}_k), y_k)] = E_{out}(g)$
 - Single hypothesis Hoeffding bound applies

•
$$E_{out}(g) \le E_{test}(g) + O\left(\sqrt{\frac{1}{K}}\right)$$

Where are Test Set From?

- Given a data set D of N points
 - $D = D_{train} \cup D_{test}$
 - Reserving K points for test set means we only have N-K points for training
- Effect of the choice of *K*

Where are Test Set From?

- Given a data set D of N points
 - $D = D_{train} \cup D_{test}$
 - Reserving K points for test set means we only have N-K points for training
- Effect of the choice of *K*

Rule of Thumb:
$$K^* = \frac{N}{5}$$

Utilizing the Whole D

Process:

- $D = D_{train} \cup D_{test}$ where $|D_{test}| = K$, $|D_{train}| = N K$
- Learn some hypothesis g^- using only D_{train}
- Estimate $E_{out}(g^-)$ using D_{test}
- Let g be the hypothesis that would be learned using D
- Generally (informally, not theoretically proven)
 - Training on more data leads to better learned hypothesis
 - $E_{out}(g) \leq E_{out}(g^-)$

Validation: Beyond Test Set

• What if we want to estimate E_{out} multiple times?

- Model selection:
 - Should I use linear models or decision trees?
 - Should I set the regularization parameter λ to 0.1, 0.01, or 0.001?
 - A model with different λ can be considered as different model
- Validation set
 - $D = D_{train} \cup D_{val}$
 - Key difference: We need to account for the multiple usage of D_{val}

Model Selection

• Which model should we choose?

Model Selection using Validation

Which model should we choose?

Choose H_{m^*} such that $E_{val}(g_{m^*}^-) \leq E_{val}(g_m^-)$ for all m

Question...

Which of the following is true?

(a)
$$\mathbb{E}[E_{val}(g_{m^*}^-)] = E_{out}(g_{m^*}^-)$$

(b)
$$\mathbb{E}[E_{val}(g_{m^*}^-)] \leq E_{out}(g_{m^*}^-)$$

(c)
$$\mathbb{E}[E_{val}(g_{m^*}^-)] \geq E_{out}(g_{m^*}^-)$$

Choose H_{m^*} such that $E_{val}(g_{m^*}^-) \leq E_{val}(g_m^-)$ for all m

Question...

Which of the following is true?

(a)
$$\mathbb{E}[E_{val}(g_{m^*}^-)] = E_{out}(g_{m^*}^-)$$

(b)
$$\mathbb{E}[E_{val}(g_{m^*}^-)] \leq E_{out}(g_{m^*}^-)$$

(c)
$$\mathbb{E}[E_{val}(g_{m^*}^-)] \geq E_{out}(g_{m^*}^-)$$

Choose H_{m^*} such that $E_{val}(g_{m^*}^-) \leq E_{val}(g_m^-)$ for all m

Equivalent to use D_{val} to choose from $H = \{g_1^-, ..., g_M^-\}$

$$E_{out}(g_{m^*}^-) \leq E_{val}(g_{m^*}^-) + O\left(\sqrt{\frac{\ln M}{K}}\right) \\ \text{ => Hoeffding Bound for Multiple Hypothesis}$$

Question...

• Which of the following is true?

(a)
$$\mathbb{E}[E_{val}(g_{m^*}^-)] = E_{out}(g_{m^*}^-)$$

(b)
$$\mathbb{E}[E_{val}(g_{m^*}^-)] \leq E_{out}(g_{m^*}^-)$$

(c)
$$\mathbb{E}[E_{val}(g_{m^*}^-)] \geq E_{out}(g_{m^*}^-)$$

Equivalent to use D_{val} to choose from $H = \{g_1^-, ..., g_M^-\}$

$$E_{out}(g_{m^*}^-) \leq E_{val}(g_{m^*}^-) + O\left(\sqrt{\frac{\ln M}{N}}\right) \text{ => Hoeffding Bound for Multiple Hypothesis}$$

Utilizing the Whole D

 $g_{\widehat{m}}$: the hypothesis minimizes in-sample error over $\{H_1, \dots, H_M\}$

	Outlook	Relationship to E_{out}
E_{in}		
E_{val}		
E_{test}		

	Outlook	Relationship to E_{out}
E_{in}	Incredibly optimistic	
E_{val}	Slightly optimistic	
E_{test}	Unbiased	

	Outlook	Relationship to E_{out}
E_{in}	Incredibly optimistic	VC-bound
E_{val}	Slightly optimistic	Hoeffding's bound (multiple hypotheses)
E_{test}	Unbiased	Hoeffding's bound (single hypothesis)

Note that the outlook comparisons are "in expectation" If you only get one "draw" of D_{train} , D_{val} , D_{test} , you cannot say anything "for certain"

Remember that ML results are under the condition "with high probability"

The Dilemma When Choosing K

• The main ideas behind validation

Want large K(E_{val} estimates E_{out} well)

$$E_{out}(g) \approx E_{out}(g^{-}) \approx E_{val}(g^{-})$$

Want small *K*

(didn't sacrifice too much training data)

Leave-One-Out Cross Validation (LOOCV)

Getting the best of the both world

Intuition: Setting K = 1 but do it many times...

Illustrative Example

Properties of LOOCV

- LOOCV is unbiased (If not used for model selection)
 - E_{CV} is an unbiased estimator of $\bar{E}_{out}(N-1)$

(expected E_{out} when learning on N-1 points)

• The "effective number" of examples in $E_{\it CV}$ estimation is high for LOOCV

- However, LOOCV is computationally expensive
 - Need to train N models, each on N-1 points

V-Fold Cross Validation

- Split D into V equally sized data sets: $D_1, D_2, ..., D_V$
 - Let g_i^- be the hypothesis learned using all data sets except D_i
 - Let $e_i = E_{val}(g_i^-)$ where the validation uses data set D_i
- The V-fold cross validation error is $\frac{1}{V}\sum_{i=1}^{V}e_i$

• Practical rule of thumb: V = 10