a)
$$\sum_{i=1}^{m} Lf(i) \approx \sum_{i=1}^{m} f(i)$$

0/10

Vamos dividir a prova um duas partus:

1. Sufii) i untivo, tumos que:
$$Lf(u)J = f(u)$$
, untoo
 $\sum_{u=1}^{m} f(u) = \sum_{u=1}^{m} f(u)$

2. Su f(ii) não u intuiro, tumos que: Lf(ii) < f(ii), untão $\sum_{i=1}^{n} Lf(ii) < \sum_{i=1}^{n} f(ii).$

Tonto um (1) quonto um (2) prova-si qui a imprussõe $\sum_{i=1}^{m} [f(i)] \approx \sum_{i=1}^{m} f(i)$ u falsa, pois um (1) isõo <u>uguais</u> u não pronimos, u um (2) uma ú minor qui a outra.

austo 1

10/10

b) $lg n \approx log n$

 $\lim_{n \to \infty} \frac{\log n}{\log n} = \frac{\log n}{\log n} = \lim_{n \to \infty} \log n = \log 10 \neq 1$

Jalso.

a) Varnos priovar par indução um n que $S(n) = n^2$ para todo $n \in \mathbb{N}$.

Hup. Indution: Suja $a \in \mathbb{N}$ tal que: $S(K) = K^2$ para todo $K \in [0...a7]$

Passo Indutivo: Vomos provar que $6(a+1) = (a+1)^2$. Vomos dividir a prova um dois casos:

1. a ú par:

 $G(a+1) = (a+1)^{2}$ $= a^{2} + 2a + 1$ = 2a + 1 + S(a)Onde S(a) if par a 2a + 1 is imparted.

Entro $(a+1)^{2}$ is imparted.

2. a ú úmpar:

 $S(a+1) = (a+1)^{2}$ $= a^{2}+2a+1$ = 2a+1+S(a)Onde S(a) is impart a 2a+1 is part.

Entoo $(a+1)^{2}$ is part.

base'

austoe 2

b) Guia S(n) o número de somas e sultirações na unicussão do algoritmo.

Vomes prover per induçõe um n qui: $S(n) \leq G(LUg nJ+1) p/todo n > 1$.

Hip. Indutina: Suja P € N tal que: S(K) < G(Lilg KJ+1) P/todo K 6 [1...]

Passo Indutio: Vomos provar que S(p+1) < 6(Lilg(p+1)]+1).

Do algoritmo temos que, para n>0:

$$S(p+1) = 6 + S([\frac{n}{2}])$$

 $S(p+1) = 6 + S([\frac{p+1}{2}])$

Da H.I. tumos que 5(n) < 6 (Lulg n/+1), untoo:

S(p+1) = 6+6(Lug([])]+1)

= 6([ug([P]])]+2)

= 6(Lug(型))+2)

 $= 6(\lfloor \log(p+1) - 1 \rfloor + 2)$

=6([Lug(p+1)]-1+2)

= 6(Lilg(p+1)]+1).

Basi Indutivia: Vamos provar para (=) n=11. $S(\mathbf{4})=6$.

2.6(Lug 1)+1)=6(1)=6.

austo 3

Hip. Indutiva: Existe um primo P_K ≤ 2^{2K-4} p/todo K € [1.a]

$$P_1 = 2^1$$