

日期:

核外电子

姓名:

时间:

		Date	e:	Time	:	Na	me:			
	初	露锋芒	•							
1.	以下是人	、们对原子结	构的认	、识所经历的几个	`重要历	史阶段,其中	中先后顺序	序正确的是	()
	①道尔顿	项提出的原 ^于	子论	②汤姆生提出的	的葡萄干	一面包原子模	型			
	③德谟克	克利特的古典	典原子i	论 ④卢瑟福的	的原子结	吉构行星模型				
	A. ①②	34	В.	3124	C.	3214	D.	3421		
2.	下列各组	且互为同位素	的是	()						
	A. 35Cl	! 和 ³⁷ Cl	В.	⁴⁰ K 和 ⁴⁰ Ca	C.	O ₂ 和 O ₃	D. H ₂ C)和 D ₂ O		
3.	用"质子	子数""中子	数"或	"电子数"等填	空:					
	(1) 决	定元素是否	属于同	一种类的是原子	中的	;				
	(2) 决	定同种元素	是否有	同位素的是原子	中的	;				
	(3) 决	定某种元素	的原子	的质量数是原子	中的	;				
	(4) 决	定整个原子	显电中	性的是原子中的		o				
4.	原子是	由居于		带正 =	电荷的		和			带负电荷的
			成的。							
5.	原子中的	可守恒关系 :								
(1)电性守	恒: 质子数	=	=杉	电荷数	=	;			
(2	2)质量守	恒:质量数	=	+		o				

根深蒂固

一、核外电子的运动状态

1. 电子云:

电子运动的特点: ①质量很小,带负电荷; ②运动的空间范围小; ③高速运动。

【思考】小黑点密度有什么意思?

【练一练】下列有关电子云及示意图的说法正确的是(

- A. 电子云是笼罩在原子核外的云雾
- B. 小黑点多的区域表示电子多
- C. 小黑点疏的区域表示电子出现机会少
- D. 电子云是用高速照相机拍摄的照片

2. 电子层

在含有多个电子的原子里,电子的能量并不相同,能量低的电子通常在离核近的区域运动,能量高的电子通常在离核远的区域运动。

1	2	3	4	5	6	7
K	L	M	N	О	P	Q
由内到外,能量逐渐升高						

3. 原子核外电子排布总结:

(①电子是在原子核外	卜距核由	,能量由_	的7	下同电子层上		排布,	第
一到	第七电子层的字母位	代号依次为:		°				
(②电子一般总是尽先	:排在	的电子层里,	即先排第一层,	当第一层排满后,	再排第	三层等	车 。
(③每层最多容纳的电	上子数为	(n 代表_),旨	 身外层的电子数不起	3过		
个 (3	第一层为最外层时,	电子数不超过	个)	; 次外层电子数	不能超过	个,	倒数:	第
三层	不能超过	个						

4. 元素原子的电子层排布:

核电荷数	元素名称	元素符号	各电子层	层的电子	数
			K层	L层	M层
1	氢	Н			
2	氦	Не			
3	锂	Li			
4	铍	Ве			
5	硼	В			
6	碳	С			
7	氮	N			
8	氧	О			
9	氟	F			
10	氖	Ne			
11	钠	Na			
12	镁	Mg			
13	铝	Al			
14	硅	Si			
15	磷	P			
16	硫	S			
17	氯	Cl			
18	氩	Ar			

5. 稀有气体元素原子的电子层排布

核电荷数	元素名称	元素符号		各	电子层	民电子数	<u></u>	
			K	L	M	О	P	Q
2	氦	Не	2					
10	氖	Ne	2	8				
18	氩	Ar	2	8	8			
36	氪	Kr	2	8	18	8		
54	氙	Xe	2	8	18	18	8	
86	氡	Rn	2	8	18	32	18	8

【练一练】

1. 下列关于核外电子层结构的说法中错误的是 (1.法中错误的是 ()
--------------------------	--------------

- A. N层为最外层时,最多只能容纳8个电子
- B. N层为最外层时,最多只能容纳 18 个电子
- C. 不管 L 层是否为最外层,最多只能容纳 8 个电子
- D. K 层最多只能容纳 2 个电子

2.	某元素的原子的核电荷数	发 是其电	子层数的5倍,	其质子数是最外层电子数的3倍。	该元素的原子电子层数
和-	最外层电子数分别是	()		

- A. 2和5 B. 2和7 C. 3和5 D. 3和7

3. 1~18 号元素原子结构特殊性

原子核中无中子的原子:

最外层是次外层电子数 2 倍的元素:

最外层电子数是次外层电子数 3 倍的元素:

最外层电子数是次外层电子数 4 倍的元素:

电子层数与最外层电子数相等的元素:

次外层电子数是最外层电子数 2 倍的元素: ______

内层电子数是最外层电子数 2 倍的元素:

二、原子核外电子排布表示方法

1. 原子结构示意图

(1) 原子的核外电子排布可以用原子结构示意图来表示,如下图所示:

(2) 元素周期表中前 20 号元素的原子结构示意图:

(+1) ₁							(+2) ²
氢(H)							氦(He)
$(+3)^2$	(+4) ² / ₂ ²	(+5) ² / ₂ ³	(+6) ₂ 4	(+7) ² 5	(+8) ² / ₂ 6	(+9) ² / ₇	(+10) ² / ₂ 8
锂(Li)	铍(Be)	硼(B)	碳(C)	氮, (N)	氧(0)	氟(F)	氖(Ne)
(+11)28 1)1	(12) 2) 3) 2) 3) 2	(+13)283 ///	(14) 284 284	(+15)285)))	(+16)286 //)6	(+17)287 ///	(+18)288 288 77)
钠 (Na)	镁(Mg)	铝(A1)	硅(Si)	磷(P)	硫(S)	氯(C1)	氩(Ar)

2. 离子结构示意图

- (1) 阳离子:核外电子数=质子数-离子所带的电荷数
- (2) 阴离子:核外电子数=质子数+离子所带的电荷数

例如:

3. 电子式

(1) 元素的化学性质主要由原子的最外层电子数决定,我们常用小黑点(或×)来表示元素的原子的最外层上的电子。如下的图式我们称为电子式。

H:	He:	C:
N:	0:	F:
Mg:	Ar:	

(2) 离子的电子式

在形成离子的过程中出现电子的得失,阴、阳离子的电子式的书写方法有很大的不同。

阳离子:主族金属元素的原子在形成简单阳离子时,原子的最外层电子全部失去,所以它的电子式就是其离子符号。如:______

阴离子: 非金属元素的原子形成阴离子时,得到电子,使其最外层达到稳定结构。

如:	

书写时应注意:

- ①在对应符号的右上角标出该离子的电性及所带的电荷数;
- ②对阴离子书写时都要加上"[]",电荷符号应该写在[]的外面;

③对某些复杂的阳离子,书写的时候也要加上"[]",如铵根离子的电子式要写成:

【练一练】

1. 填表并完成下列问题。

序号	微粒符	核内质子	核内中子	核内电子	结构示意图	电子式
	号	数	数	数		
1)	³ ⁴ S					
2	1 8O					
3	4 0 Ar					
4	1 6O					

(1) 属于同位素的微粒是	和	(填序号)
---------------	---	-------

(2)以上四种微粒中电子层已经达到稳定结构的是 (填微粒的序号)

三、微粒半径的大小比较

1.	原子半径:
1.	

电子层数相同时(同周期元素),随原子序数递增,原子半径逐渐_____(稀有气体元素除外)最外层电子数相同时(同主族元素),随电子层数递增,原子半径逐渐

2. 离子半径

- (1) 同种元素的离子半径: 阴离子 原子,原子 阳离子,低价阳离子 高价阳 离子
- (2) 电子层结构相同的离子,核电荷数越大,半径
- (3) 带相同电荷的离子(同主族元素的离子),电子层数越多,半径
- (4) 带电荷、电子层均不同的离子可选一种离子参考比较 如: 比较 K^+ 和 Mg^{2+} 可选 Na^+ (或 Ca^{2+})为参考,因为 K^+ > Na^+ , Na^+ > Mg^{2+} ,故 K^+ > Mg^{2+} 。

四、10 电子、18 电子微粒

1. 核外有 10 个电子的微粒

分子:	
阳离子:	
阴离子:	

2. 核外有 18 个电子的微粒

分子:		
函子.		

【练一练】

- 1. 写出下列微粒的化学式:
- (1) 由两个不同的原子核和 18 个电子组成的分子为______, 由两个原子核和 18 个电子 组成的 阴离子为 ;
- (2) 由三个原子核和 10 个电子组成的分子为______, 由五个原子核和 10 个电子组成的 阳离子为 。
 - 2. 几种微粒具有相同的核电荷数,则可说明 ()
 - A. 可能属于同一种元素
 - B. 一定是同一种元素
 - C. 彼此之间一定是同种原子
 - D. 核外电子个数一定相等

枝繁叶茂

知识点	1:核外电子排布规律
题型一:	概念辨析类
【例1】	下列叙述中,正确的是()
Α.	在多电子的原子里,能量高的电子通常在离核较远的区域内运动
В.	核外电子总是先排在能量低的电子层上,如 M 层只有排满 18 个电子后才能排 N 层
C. 1	两种微粒,若核外电子排布完全相同,则其化学性质一定相同
D. :	微粒的最外层只能是 8 个电子才稳定
变式 1:	下列关于原子的核外电子运动规律的叙述正确的是()
Α.	原子核外各电子层上的电子数均已达到 2n ²
В. :	最外层只有一个电子的原子失去一个电子后,其核外电子层结构与稀有气体元素原子的电子层结构相
同	
C. ,	用 n=1、2、3 表示电子运动区域离核的远近,它们分别表示第一层、第二层、第三层
D. j	能量高的电子一般在离核较近的区域运动
变式 2:	下列叙述中,正确的是 ()
A. 7	在多电子的原子里,能量高的电子通常在离核近的区域活动
B. 7	核外电子总是先排在能量低的电子层上
C. 1	两种微粒,若核外电子排布完全相同,则其化学性质一定相同
D. 3	微粒的最外层只能是 8 个电子才稳定
题型二:	应用类
【例 2】	第四层为最外层时,该电子层最多容纳的电子数目是 ()
A.	2 个 B. 8 个 C. 18 个 D. 32 个
变式 1:	某种元素的原子核外有三个电子层,其最外层电子数是其外层电子数的一半,则此元素是(
)	

A. C B. Si C. S D. Cl

变式 2: 原子核外的 M 电子层最多可容纳的电子数和 L 电子层最多可容纳的电子数的大小关系是()
A. 大于 B. 小于 C. 等于 D. 不能肯定
变式 3: 下列微粒中, K 层和 L 层电子数之和等于 M 层和 N 层电子数之和的是 ()
A. K B. Mg C. Ca D. S
【方法提炼】
每层最多排 2n²个电子(n表示层数),但第一层最多 2 个电子,第二层最多 8 个电子,当电子层达或
超过到四层时,倒数第二层不超过18个电子,当电子层超过四层时,倒数第三层最多不超过32个电子,
最外层不超过8个电子。
知识点 2: (原子、离子) 结构示意图
【例1】如图微粒的结构示意图,正确的是 ()
A. Mg ²⁺ B. Cl C. Ar D. K
A. Mg B. Cl C. Al D. K
变式 1: 根据下列叙述,写出元素名称并画出原子结构示意图。
(1) A 元素原子核外 M 层电子数是 L 层电子数的一半:
(2) B 元素原子的最外层电子数是次外层电子数的 1.5 倍:
(3) C 元素的次外层电子数是最外层电子数的一半:
(4) D元素原子核外 L 层电子数是 K 层电子数的 4 倍,且周期数等于 K 层电子数:
变式 2: 写出 1~18 号元素中符合下列条件的原子(离子)的微粒符号和结构示意图.
(1) 某元素原子 L 层上的电子数为 K 层的 3 倍:
(2) 某元素原子 L 层上的电子数为 K 层的一半:
(3)得到2个电子后,电子总数与氩原子的电子总数相同的离子:
(4) 某元素原子的最外层电子数等于次外层电子数的 2 倍:

【方法提炼】

要熟练掌握离子的核电荷数与核外电子数之间的关系, 粒子结构示意图的画法, 要弄清题目要求画的是原 子还是阴、阳离子的结构示意图。

知识点 3: 电子式

【例1】	下列电子式书写正确的是	()

A. $:\dot{C}:$ B. $:\ddot{S}:$ C. $\left[:\ddot{Q}:\right]^{-}$ D. $\left[\ddot{Mg}:\right]^{2^{+}}$

变式1:写出下列微粒的电子式:

Mg_____; Al_____; O_____; C_____; N_____; Cl _____

变式 2: 以下哪一种粒子的电子排布与氩原子相同 ()

A. $O^{2^{-}}$

 $B. F^{-}$

C. Ca²⁺

D. Na⁺

【方法提炼】

电子式表示的是最外层的电子, 注意阴阳离子电子式在书写时的区别。

1.	下列各组微粒中,	核外电子总数相等的	的是 ()	
	A. K ⁺ 和 Na ⁺	B. CO ₂ 和 NO ₂	C. CO和CO ₂	D. N ₂ 和 CO
2.	下列有关原子结构的	说法中,正确的是	()	
	A. 稀有气体元素原	子的最外层电子数都是	: 8	
	B. 非金属元素的最	外层电子数都大于3		
	C. 金属元素的最外	层电子数都小于 4		
	D. 非金属元素的最	外层电子数不一定比金	属元素的最外层电子数多	
3.	在所有原子中肯定含	有的微粒①质子 ②中子	- ③电子是 ()	
	A. 123 B	8. 仅① C. ①和③	D. ①和②	
4.	下列电子式书写正确 A. · <i>C</i> · B. : 5		D. $[\cdot \stackrel{"}{Mg} \cdot]^{2+}$	
5.	与 Na ⁺ 具有相同质子 A. NH ₄ ⁺ B. N		0. Mg^{2+}	
6.	从某微粒的原子结构 A. 质子数和中子数	示意图可以知道微粒的	()	
	B. 中子数和电子数			
		·电子层排布的电子数		
	D. 质量数和核外电			
	2. 从主纵作的/广泛	11/21 10111-11 39		
7.	某电子层当它作为最	外层时,最多只能容纳	8个电子,当它作为次外层	时,最多只能容纳 18 个电子,该电
子)	层可能是 ()			
I	A. M 层 B. N	层 C. L层 D	D. Q层	
8.	R 元素的原子,其次	外层的电子数为最外层	电子数的 2 倍,则 R 可能是	()
			D. S	

9.	电子数相等的微	粒叫等电子体,	下列各组微粒属	于等电子体的是 ()	
	A. N ₂ O ₄ 和 NO	D ₂ B.	C ₂ H ₄ 和 NH ₄ ⁺	C. Al ³⁺ 和 OH-	D. NO和CO	
10.	某元素X天然	存在的一个原子。	中共有质子、中 ⁻	子、电子共 93 个,其中	中 35 个粒子不带电,则	X 元素的该
原于	产的质量数为	()				
	A. 35	B. 30	C. 64	D. 58		
11.	某种元素的一位	介阴离子,核外有	ī 10 个电子,则	该元素的化学符号是	()	
	A. K	B. F	C. Ne	D. Na		
12.	在元素周期表的	內 1∼18 号元素中	¬,原子核外电	子层数等于最外层电子	层数的元素的种类是()
	A. 1种	B. 2种	C. 5种	D. 7种		
13.	今有 A、B 两种	中原子, A 原子的	M 层比 B 原子的	り M 层少 3 个电子, В	原子的L层的电子数恰	为 A 原子的
L层	层的电子数的 2 倍	音, A 和 B 分别是				
	A. 硅原子和铋	内原子 B. 硼原	子和氢原子 C	2. 氮原子和碳原子	D. 碳原子和铝原子	
14.	原子核外共有1	n 个电子层(n > :	3),则 (n-1)	层最多容纳的电子数 <i>为</i>	b ()	
	A. 8↑	B. 18 个				
	C. 32 个	D. 2 (n-1)	2个			
15.	三种元素 X、Y	Z、Z的原子,最	外层电子数之和	为 17,核内质子数之	和为 31,则这三种元素	是()
	A. N. P. Cl	B. P. O. S	C. N	, O, S D. O	O、F、Cl	
16.	M 层有 2 个电子	子的元素 A 与 L 。	层有 6 个电子的	元素 B 所形成的化合物	勿,其化学式为 ()
	A. MgO	B. CaS	C. MgS	D. BeO		
17.	元素 A 的核电	荷数为35,它的	原子结构示意图	中,正确的是 ()	
	A. (+35) 2 8 1	1888 +3 B.	5) 2 8 18 7	C. (+35) 2 8 17	\\ 8 \\ \D. \\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ 2 /

18. X 原子	² 的核电荷数	效为 a,它的阴离	子 X ^{m-} 与 Y 原子的	的阳离子 Yn+的电子层结构	J相同,则 Y 原子的核电荷数
为 ()				
A. a+	-m+n	B. a-m-n	C. m+n-a	D. m-n-a	
19. 下列領	数粒中与 OH	[离子具有不相同	司的质子数和相同!	的电子数,该微粒可能为	()双选。
A. F	-	B. Mg ²⁺	C. NH_2^-	D. CH ₄	
20. 写出了	下列微粒的组	吉构示意图与电子	式		
(1) 氦	(He)原子	·	;		
(2) 硼	(B) 原子_		;		
(3) 钙	(Ca) 原子	·	;		
(4) 钾	原子 (K)_		;		
(5) 硫	原子(S)_	,			
			,;		
(7) 硫	离子(S ²⁻)				
21. 根据门	下列叙述,写	 三出微粒符号和 原	子结构示意图:		
(1) 原子	核外有2个	电子层,核外有	10个电子的原子:		;
(2) 原子	核外有3个	电子层,最外层	有7个电子的原子	:	;
(3) 质量	数为 24,质	:子数等于中子数	的原子:		;
(4) L层	电子数是 K	层两倍的原子:			°
22. 请写出	出五种化学性	生质不同的物质的	的化学式,这些物 原	质的原子核外都具有 10 个	、 电子,它们的化学式分别为
	>		>		
23. 在1~1	18 号元素中	,填写符合下列	要求的元素符号:		
(1) 原子	L 层上有 3	个电子的元素是	o		
(2) 原子	M 层电子数	放为 L 层电子数-	一半的元素是	o	
(3) 原子	K 层与 M 层	层上的电子数之和	口等于 L 层上的电	子数的元素是	o
(4) 原子	最外层电子	数为其内层电子。	总数一半的元素是	o	
(5) 原子	最外层电子	数等于其电子层	数的元素是	°	
(6) 某元	素最外层电	子数是次外层电·	子数的 2 倍,该元	素符号是。	

(7) 次外层电子数为最外层电子数的 1/3 的元素为	,其原子结构示意图为。
(8) 最外层只有1个电子的元素有	_, 其中核电荷数最大的元素的原子结构示意图为
°	
24. 下列各题中的物质均由核电荷数为 1~10 的元素组	成。请按下列要求填写化学式:
(1) 只有 2 个原子核和 2 个电子构成的分子	0
(2) 1个最外层有5个电子和3个只有1个电子的原子	子结合的分子。
(3)1个最外层有4个电子的原子和2个最外层有6个	个电子的原子结合的分子。
(4) 由 3 个最外层是 6 个电子的原子结合而形成的分	子。
(5) 由 2 个原子核、10 个电子结合而形成的分子	o
(6) 由 5 个原子核、10 个电子结合而形成的分子	0
25. 关于下面 8 种微粒的问题,请分别选答。	
$^{18}_{\odot}$ $^{18}_{\odot}$ $^{18}_{\odot}$ $^{18}_{\odot}$ $^{12}_{\odot}$ 12	
$^{25}_{12}\text{Mg}$ $^{23}_{6}$ $^{11}_{11}$ Na $^{23}_{7}$ $^{11}_{11}$ Na ⁺ $^{35}_{8}$ $^{17}_{17}$ Cl	
(1) 中子数相同的微粒是 ()。	
A. 47 B. 123 C. 12 D.	467
(2) 关于这些微粒的结构示意图的判断,正确的是	()
A. ⑥与⑦的相同 B. ④与⑥的相同	
C. ④与⑤的相同 D. 前三项都不对	
(3) 微粒的结构示意图中,有2个电子层的结构有	()
A. 3 种 B. 4 种 C. 5 种 D. 6 种	

26. 某元素 R 的单质 8.4g,跟足量氧气反应可生成 RO₂ 18.0g,已知元素 R 原子中所含质子数等与中子数。(1) 求 R 的相对原子质量; (2) 写出 R 原子的结构示意图。