Ploting codes

```
library(tidyverse)
setwd("C:/Users/KimMinyoung/Desktop/2020-1 학기/오픈소프트웨어프로젝트/Lec03")
pdf <- read.table("PDF.txt")</pre>
cdf <- read.table("CDF.txt")</pre>
stretched_PDF <- read.table("stretched_PDF.txt")</pre>
equalized_PDF_gray <-read.table("equalized_PDF_gray.txt")</pre>
PDF RGB<-read.table("PDF RGB.txt")</pre>
equalized_PDF_RGB<-read.table("equalized_PDF_RGB.txt")
equalized_PDF_YUV<-read.table("equalized_PDF_YUV.txt")</pre>
matched_PDF_gray<-read.table("matched_PDF_gray.txt")</pre>
matched_PDF_YUV<-read.table("matched_PDF_YUV.txt")</pre>
trans func stretch <- read.table("trans func stretch.txt")</pre>
trans_func_eq <-read.table("trans_func_eq.txt")</pre>
trans_func_eq_RGB<-read.table("trans_func_eq_RGB.txt")</pre>
trans_func_eq_YUV <-read.table("trans_func_eq_YUV.txt")</pre>
trans_func_ma_gray<-read.table("trans_func_ma_gray.txt")</pre>
trans_func_ma_YUV<-read.table("trans_func_ma_YUV.txt")</pre>
matched_PDF_gray<-read.table("matched_PDF_gray.txt")</pre>
matched PDF YUV<-read.table("matched PDF YUV.txt")</pre>
names(pdf)<- c("x","y")</pre>
names(cdf)<- c("x","y")</pre>
names(stretched PDF)<- c("x","y")</pre>
names(equalized_PDF_gray)<- c("x","y")</pre>
names(PDF_RGB)<-c("x","color1_R","color2_G","color3_B")</pre>
names(equalized_PDF_RGB)<-c("x","color1_R","color2_G","color3_B")
names(equalized_PDF_YUV)<-c("x","color1_R","color2_G","color3_B")</pre>
names(trans_func_stretch)<- c("x","y")</pre>
names(trans_func_eq)<- c("x","y")</pre>
names(trans_func_eq_RGB)<-c("x","color1_R","color2_G","color3_B")
names(trans_func_eq_YUV)<- c("x","y")</pre>
names(trans_func_ma_gray)<- c("x","y")</pre>
names(trans_func_ma_YUV)<- c("x","y")</pre>
names(matched_PDF_gray)<- c("x","y")</pre>
names(matched_PDF_YUV)<- c("x","color1_R","color2_G","color3_B")</pre>
```

Practice1 - PDF/CDF Generation

```
ggplot(pdf,aes(x,y))+geom_bar(stat="identity")+ggtitle("PDF")+xlab("intensity
")
ggplot(cdf,aes(x,y))+geom_bar(stat="identity")+ggtitle("CDF")+xlab("intensity")
```


Pratice2 - Histogram Stretching

```
ggplot(pdf,aes(x,y))+geom_bar(stat="identity")+ggtitle("PDF")+xlab("intensity
")
ggplot(stretched_PDF,aes(x,y))+geom_bar(stat="identity")+ggtitle("stretched_P
DF(Stetching)")+xlab("intensity")
trans_func_eq_RGB<-trans_func_eq_RGB%>%
    gather(`color1_R`,`color2_G`,`color3_B`,key = "color", value="y")
ggplot(trans_func_stretch,aes(x,y))+geom_point()+ggtitle("trans_func_stretch")
```


practice3 - histogram Equalization gray

```
ggplot(pdf,aes(x,y))+geom_bar(stat="identity")+ggtitle("PDF")+xlab("intensity")
ggplot(equalized_PDF_gray,aes(x,y))+geom_bar(stat="identity")+ggtitle("hist_e
q_PDF(gray)")+xlab("intensity")
```

ggplot(trans_func_eq,aes(x,y))+geom_point()+ggtitle("trans_func_eq")

practice4 - histogram Equalization RGB

```
PDF_RGB<-PDF_RGB%>%
   gather(`color1_R`,`color2_G`,`color3_B`,key = "color", value="y")
equalized_PDF_RGB<-equalized_PDF_RGB%>%
   gather(`color1_R`,`color2_G`,`color3_B`,key = "color", value="y")
equalized_PDF_YUV<-equalized_PDF_YUV%>%
   gather(`color1_R`,`color2_G`,`color3_B`,key = "color", value="y")

ggplot(PDF_RGB,aes(x,y,fill=color))+geom_bar(stat="identity")+ggtitle("PDF(RGB)")+facet_wrap(~color,ncol=1)

ggplot(equalized_PDF_RGB,aes(x,y,fill=color))+geom_bar(stat="identity")+ggtitle("equalized_PDF(RGB)")+facet_wrap(~color,ncol=1)

ggplot(trans_func_eq_RGB,aes(x,y,color=color))+geom_point()+ggtitle("trans_func_eq_RGB")
```

PDF(RGB)

practice5 - histogram Equalization YUV ggplot(PDF_RGB,aes(x,y,fill=color))+geom_bar(stat="identity")+ggtitle("PDF(RG B)")+facet_wrap(~color,ncol=1) ggplot(equalized_PDF_YUV,aes(x,y,fill=color))+geom_bar(stat="identity")+ggtit le("equalized_PDF_YUV")+facet_wrap(~color,ncol=1) ggplot(trans_func_eq_YUV,aes(x,y))+geom_point()+ggtitle("trans_func_eq_YUV")

→ 0.02 가 넘는 outlier 때문에 분포가 잘 보이지 않기때문에 분포를 보기위해 큰 값을 0.02 로 바꿔넣어 그려보면 아래와 같다.

Homework1 - histogram matching gray

ggplot(matched_PDF_gray,aes(x,y))+geom_bar(stat="identity")+ggtitle("matched_ PDF_gray")

ggplot(trans_func_ma_gray,aes(x,y))+geom_point()+ggtitle("trans_func_ma_gray")

Homework2 - histogram matching YUV

```
matched_PDF_YUV$color1_R[1]<-0.02
matched_PDF_YUV$color3_B[256]<-0.02
matched_PDF_YUV<-matched_PDF_YUV%>%
    gather(`color1_R`,`color2_G`,`color3_B`,key = "color", value="y")

ggplot(matched_PDF_YUV,aes(x,y,fill=color))+geom_bar(stat="identity")+ggtitle("matched_PDF_YUV")+facet_wrap(~color,ncol=1)

ggplot(trans_func_ma_YUV,aes(x,y))+geom_point()+ggtitle("trans_func_ma_YUV")
```


