

### AMD - K8™ System Clock Chip

#### **Recommended Application:**

AMD K8 System Clock with AMD, VIA or ALI Chipset

#### **Output Features:**

- 2 Differential pair push-pull CPU clocks @ 3.3V
- 9 PCICLK (Including 1 free running) @ 3.3V
- 3 Selectable PCICLK/HTTCLK @ 3.3V
- 1 HTTCLK @ 3.3V
- 1 48MHz @ 3.3V fixed.
- 1 24/48MHz @ 3.3V
- 3 REF @ 3.3V, 14.318MHz.

#### Features:

- · Programmable output frequency.
- Programmable output divider ratios.
- Programmable output rise/fall time.
- · Programmable output skew.
- Programmable spread percentage for EMI control.
- Watchdog timer technology and RESET# output to reset system
  - if system malfunctions.
- Programmable watch dog safe frequency.
- Support I<sup>2</sup>C Index read/write and block read/write operations.
- Uses external 14.318MHz crystal.
- Supports Hyper Transport Technology (HTTCLK).

**Functionality** 

| FS3 | FS2 | FS1 | FS0 | CPU    | HTT   | PCI   |
|-----|-----|-----|-----|--------|-------|-------|
| гээ | F32 | 5   | F30 | MHz    | MHz   | MHz   |
| 0   | 0   | 0   | 0   | 100.90 | 67.27 | 33.63 |
| 0   | 0   | 0   | 1   | 133.90 | 66.95 | 33.48 |
| 0   | 0   | 1   | 0   | 168.00 | 67.20 | 33.60 |
| 0   | 0   | 1   | 1   | 202.00 | 67.33 | 33.67 |
| 0   | 1   | 0   | 0   | 100.20 | 66.80 | 33.40 |
| 0   | 1   | 0   | 1   | 133.50 | 66.75 | 33.38 |
| 0   | 1   | 1   | 0   | 166.70 | 66.68 | 33.34 |
| 0   | 1   | 1   | 1   | 200.40 | 66.80 | 33.40 |
| 1   | 0   | 0   | 0   | 150.00 | 60.00 | 30.00 |
| 1   | 0   | 0   | 1   | 180.00 | 60.00 | 30.00 |
| 1   | 0   | 1   | 0   | 210.00 | 70.00 | 35.00 |
| 1   | 0   | 1   | 1   | 240.00 | 60.00 | 30.00 |
| 1   | 1   | 0   | 0   | 270.00 | 67.50 | 33.75 |
| 1   | 1   | 0   | 1   | 233.33 | 66.67 | 33.33 |
| 1   | 1   | 1   | 0   | 266.67 | 66.67 | 33.33 |
| 1   | 1   | 1   | 1   | 300.00 | 75.00 | 37.50 |

**Pin Configuration** 

|                        | 1 111 001 | mgaranc    | <u>/11</u>             |
|------------------------|-----------|------------|------------------------|
| *FS0/REF0              | 1         |            | 48 REF1/FS1*           |
| VDDHTT                 | 2         |            | 47 GND                 |
| X1                     | 3         |            | 46 VDDREF              |
| X2                     | 4         |            | 45 REF2/FS2*           |
| GND                    | 5         |            | 44 Reset#              |
| *ModeA/HTTCLK0         | 6         |            | 43 VDDA                |
| *ModeB/PCICLK8/HTTCLK1 | 7         |            | 42 GND                 |
| PCICLK9/HTTCLK2        | 8         |            | 41 CPUCLK8T0           |
| VDDPCI                 | 9         | 10         | 40 CPUCLK8C0           |
| GND                    | 10        | 9          | 39 GND                 |
| PCICLK11/HTTCLK3       | 11        | 05         | 38 VDDCPU              |
| PCICLK10               | 12        | CS950405   | 37 CPUCLK8T1           |
| PCICLK0                | 13        | $\ddot{c}$ | 36 CPUCLK8C1           |
| PCICLK1                | 14        | _          | 35 VDDCPU              |
| GND                    | 15        |            | 34 GND                 |
| VDDPCI                 | 16        |            | 33 GND                 |
| PCICLK2                | 17        |            | 32 PD#*                |
| PCICLK3                |           |            | 31 48MHz/FS3**         |
| VDDPCI                 | 19        |            | 30 GND                 |
| GND                    |           |            | 29 AVDD48              |
| <sup>2X</sup> PCICLK4  |           |            | 28 24_48MHz/Sel24_48#* |
| <sup>2X</sup> PCICLK5  |           |            | 27 GND                 |
| <sup>2X</sup> PCICLK6  | 23        |            | 26 SDATA               |
| <sup>2X</sup> PCICLK7  | 24        |            | 25 SCLK                |
| ·                      | 48-       | SSOP       |                        |

48-55UP

<sup>\*</sup> Internal Pull-Up Resistor

 $<sup>^{\</sup>rm 2X}\,{\rm This}$  Output has 2X Default Drive and can be programmaed lower via IIC



### **Pin Descriptions**

| PIN# | PIN NAME                   | PIN<br>TYPE       | DESCRIPTION                                                                                                                                                        |
|------|----------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | *FS0/REF0                  | I/O               | Frequency select latch input pin / 14.318 MHz reference clock.                                                                                                     |
| 2    | VDDHTT                     | PWR               | Supply for HTT clocks, nominal 3.3V.                                                                                                                               |
|      | X1                         | IN                | Crystal input, Nominally 14.318MHz.                                                                                                                                |
| 4    | X2                         | OUT               | Crystal output, Nominally 14.318MHz                                                                                                                                |
| 5    | GND                        | PWR               | Ground pin.                                                                                                                                                        |
| 6    | *ModeA/HTTCLK0             | I/O               | Mode selection latch input pin / Hyper Transport output.                                                                                                           |
| 7    | *ModeB/PCICLK8/HTTCLK1     | I/O               | Mode selection latch input pin / PCI clock output / Hyper Transport output.                                                                                        |
| 8    | PCICLK9/HTTCLK2            | OUT               | PCI clock output / Hyper Transport output.                                                                                                                         |
| 9    | VDDPCI                     | PWR               | Power supply for PCI clocks, nominal 3.3V                                                                                                                          |
| 10   | GND                        | PWR               | Ground pin.                                                                                                                                                        |
| 11   | PCICLK11/HTTCLK3           | I/O               | PCI clock output / Hyper Transport output.                                                                                                                         |
| 12   | PCICLK10                   | OUT               | PCI clock output.                                                                                                                                                  |
| 13   | PCICLK0                    | OUT               | PCI clock output.                                                                                                                                                  |
| 14   | PCICLK1                    | OUT               | PCI clock output.                                                                                                                                                  |
| 15   | GND                        | PWR               | Ground pin.                                                                                                                                                        |
| 16   | VDDPCI                     | PWR               | Power supply for PCI clocks, nominal 3.3V                                                                                                                          |
| 17   | PCICLK2                    | OUT               | PCI clock output.                                                                                                                                                  |
| 18   | PCICLK3                    | OUT               | PCI clock output.                                                                                                                                                  |
| 19   | VDDPCI                     | PWR               | Power supply for PCI clocks, nominal 3.3V                                                                                                                          |
| 20   | GND                        | PWR               | Ground pin.                                                                                                                                                        |
| 21   | 2XPCICLK4                  | OUT               | PCI clock output. This output is default @ 2X drive and can be programmed to lower drive via IIC.                                                                  |
| 22   | 2XPCICLK5                  | OUT               | PCI clock output. This output is default @ 2X drive and can be programmed to lower drive via IIC.                                                                  |
|      | 2XPCICLK6                  | OUT               | PCI clock output. This output is default @ 2X drive and can be programmed to lower drive via IIC.                                                                  |
| 24   | 2XPCICLK7                  | OUT               | PCI clock output. This output is default @ 2X drive and can be programmed to lower drive via IIC.                                                                  |
| 25   | SCLK                       | IN                | Clock pin of I2C circuitry 5V tolerant                                                                                                                             |
| 26   | SDATA                      | I/O               | Data pin for I2C circuitry 5V tolerant                                                                                                                             |
| 27   | GND                        | PWR               | Ground pin.                                                                                                                                                        |
| 28   | 24_48MHz/Sel24_48#*        | I/O               | 24/48MHz clock output / Latched select input for 24/48MHz output. 0=48MHz, 1 = 24MHz.                                                                              |
| 29   | AVDD48                     | PWR               | Power for 24/48MHz outputs and fixed PLL core, nominal 3.3V                                                                                                        |
| 30   | GND                        | PWR               | Ground pin.                                                                                                                                                        |
| 31   | 48MHz/FS3**                | I/O               | Fixed 48MHz clock output. 3.3V / 'Frequency select latch input pin                                                                                                 |
| 32   | PD#*                       | IN                | Asynchronous active low input pin used to power down the device into a low power state.  The internal clocks are disabled and the VCO and the crystal are stopped. |
| 33   | GND                        | PWR               | Ground pin.                                                                                                                                                        |
|      | GND                        | PWR               | Ground pin.                                                                                                                                                        |
| 35   | VDDCPU                     | PWR               | Supply for CPU clocks, 3.3V nominal                                                                                                                                |
| 36   | CPUCLK8C1                  | OUT               | Complimentary clock of differential 3.3V push-pull K8 pair.                                                                                                        |
| 37   | CPUCLK8T1                  | OUT               | True clock of differential 3.3V push-pull K8 pair.                                                                                                                 |
|      | VDDCPU                     | PWR               | Supply for CPU clocks, 3.3V nominal                                                                                                                                |
| 39   | GND                        | PWR               | Ground pin.                                                                                                                                                        |
| 40   | CPUCLK8C0                  | OUT               | Complimentary clock of differential 3.3V push-pull K8 pair.                                                                                                        |
|      | CPUCLK8T0                  | OUT               | True clock of differential 3.3V push-pull K8 pair.                                                                                                                 |
| 42   | GND                        | PWR               | Ground pin.                                                                                                                                                        |
| 43   | VDDA                       | PWR               | 3.3V power for the PLL core.                                                                                                                                       |
| 44   | Reset#                     | OUT               | Real time system reset signal for frequency gear ratio change or watchdog timer timeout.  This signal is active low.                                               |
| 45   | REF2/FS2*                  | I/O               | 14.318 MHz reference clock / Frequency select latch input pin.                                                                                                     |
|      |                            |                   |                                                                                                                                                                    |
|      |                            |                   |                                                                                                                                                                    |
|      | REF1/FS1*                  |                   |                                                                                                                                                                    |
| 47   | VDDREF<br>GND<br>REF1/ES1* | PWR<br>PWR<br>I/O | Ref, XTAL power supply, nominal 3.3V Ground pin.  14.318 MHz reference clock / Frequency select latch input pin.                                                   |

<sup>\*</sup> Internal Pull-Up Resistor \*\* Internal Pull-Down Resistor ~ 1.5X Drive Strength



#### **General Description**

The ICS950405 is a main system clock solution for desktop designs using the AMD K8 CPU. It provides all necessary clock signals for Clawhammer and Sledgehammer with AMD, VIA or ALI systems.

The ICS950405 is part of a whole new line of ICS clock generators and buffers called TCH™ (Timing Control Hub). This part incorporates ICS's newest clock technology which offers more robust features and functionality. Employing the use of a serially programmable I²C interface, this device can adjust the output clocks by configuring the frequency setting, the output divider ratios, selecting the ideal spread percentage, the output skew, the output strength, and enabling/disabling each individual output clock. M/N control can configure output frequency with resolution up to 0.1MHz increment.

#### **Block Diagram**





# **Power Groups**

| Pin N | umber    | Description           |
|-------|----------|-----------------------|
| VDD   | GND      | Description           |
| 2     | 5        | Xtal, POR             |
| 9     | 10       | PCICLK, HTTCLK O/p    |
| 16,19 | 15,20    | PCICLK Outputs        |
| 29    | 27,30,33 | 48 MHz, Fix Analog    |
| 35,38 | 34,39    | CPU Outputs           |
| 43    | 42       | Analog, CPU PLL, MCLK |
| 46    | 47       | REF, Digital Core     |

### **Mode Functionality Tables**

| ModeA | ModeB | Pin7    | Pin8    | Pin11    |
|-------|-------|---------|---------|----------|
| 0     | 0     | HTTCLK1 | HTTCLK2 | PCICLK11 |
| 0     | 1     | HTTCLK1 | HTTCLK2 | HTTCLK3  |
| 1     | 0     | PCICLK8 | PCICLK9 | PCICLK11 |
| 1     | 1     | HTTCLK1 | PCICLK9 | PCICLK11 |

**Table1: Frequency Selection Table** 

| Bit3 | Bit2 | Bit1 | Bit0 | CPU    | HTT   | PCI   |
|------|------|------|------|--------|-------|-------|
| FS3  | FS2  | FS1  | FS0  | MHz    | MHz   | MHz   |
| 0    | 0    | 0    | 0    | 100.90 | 67.27 | 33.63 |
| 0    | 0    | 0    | 1    | 133.90 | 66.95 | 33.48 |
| 0    | 0    | 1    | 0    | 168.00 | 67.20 | 33.60 |
| 0    | 0    | 1    | 1    | 202.00 | 67.33 | 33.67 |
| 0    | 1    | 0    | 0    | 100.20 | 66.80 | 33.40 |
| 0    | 1    | 0    | 1    | 133.50 | 66.75 | 33.38 |
| 0    | 1    | 1    | 0    | 166.70 | 66.68 | 33.34 |
| 0    | 1    | 1    | 1    | 200.40 | 66.80 | 33.40 |
| 1    | 0    | 0    | 0    | 150.00 | 60.00 | 30.00 |
| 1    | 0    | 0    | 1    | 180.00 | 60.00 | 30.00 |
| 1    | 0    | 1    | 0    | 210.00 | 70.00 | 35.00 |
| 1    | 0    | 1    | 1    | 240.00 | 60.00 | 30.00 |
| 1    | 1    | 0    | 0    | 270.00 | 67.50 | 33.75 |
| 1    | 1    | 0    | 1    | 233.33 | 66.67 | 33.33 |
| 1    | 1    | 1    | 0    | 266.67 | 66.67 | 33.33 |
| 1    | 1    | 1    | 1    | 300.00 | 75.00 | 37.50 |



# General I<sup>2</sup>C serial interface information

#### **How to Write:**

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

| Ind            | dex Block W                 | √rit                 | e Operation |  |  |
|----------------|-----------------------------|----------------------|-------------|--|--|
| Cor            | ntroller (Host)             | ICS (Slave/Receiver) |             |  |  |
| Т              | starT bit                   |                      |             |  |  |
| Slav           | e Address D2 <sub>(H)</sub> |                      |             |  |  |
| WR             | WRite                       |                      |             |  |  |
|                |                             |                      | ACK         |  |  |
| Begi           | inning Byte = N             |                      |             |  |  |
|                |                             |                      | ACK         |  |  |
| Data           | Byte Count = X              |                      |             |  |  |
|                |                             |                      | ACK         |  |  |
| Begir          | nning Byte N                |                      |             |  |  |
|                |                             |                      | ACK         |  |  |
|                | 0                           | ţ.                   |             |  |  |
|                | 0                           | X Byte               | 0           |  |  |
|                | 0                           | $ \times $           | 0           |  |  |
|                |                             |                      | 0           |  |  |
| Byte N + X - 1 |                             |                      |             |  |  |
|                |                             |                      | ACK         |  |  |
| Р              | stoP bit                    |                      |             |  |  |

#### How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address D2 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X<sub>(H)</sub> was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

| In    | Index Block Read Operation  |                     |                    |  |  |  |  |  |  |
|-------|-----------------------------|---------------------|--------------------|--|--|--|--|--|--|
| Cor   | troller (Host)              | IC                  | S (Slave/Receiver) |  |  |  |  |  |  |
| T     | starT bit                   |                     |                    |  |  |  |  |  |  |
|       | e Address D2 <sub>(H)</sub> |                     |                    |  |  |  |  |  |  |
| WR    | WRite                       |                     |                    |  |  |  |  |  |  |
|       |                             |                     | ACK                |  |  |  |  |  |  |
| Begi  | nning Byte = N              |                     |                    |  |  |  |  |  |  |
|       |                             |                     | ACK                |  |  |  |  |  |  |
| RT    | Repeat starT                |                     |                    |  |  |  |  |  |  |
| Slave | e Address D3 <sub>(H)</sub> |                     |                    |  |  |  |  |  |  |
| RD    | ReaD                        |                     |                    |  |  |  |  |  |  |
|       |                             | ACK                 |                    |  |  |  |  |  |  |
|       |                             |                     |                    |  |  |  |  |  |  |
|       |                             | Data Byte Count = X |                    |  |  |  |  |  |  |
|       | ACK                         |                     |                    |  |  |  |  |  |  |
|       |                             |                     | Beginning Byte N   |  |  |  |  |  |  |
|       | ACK                         |                     |                    |  |  |  |  |  |  |
|       |                             | X Byte              | 0                  |  |  |  |  |  |  |
|       | 0                           | B                   | 0                  |  |  |  |  |  |  |
|       | 0                           | $ \times $          | 0                  |  |  |  |  |  |  |
|       | 0                           |                     |                    |  |  |  |  |  |  |
|       |                             | Ш                   | Byte N + X - 1     |  |  |  |  |  |  |
| N     | Not acknowledge             |                     |                    |  |  |  |  |  |  |
| Р     | stoP bit                    |                     |                    |  |  |  |  |  |  |



I<sup>2</sup>C Table: Frequency Select Register

| Ву    | rte 0 | Pin # | Name        | Control Function  | Туре | 0                                     | 1        | PWD   |  |
|-------|-------|-------|-------------|-------------------|------|---------------------------------------|----------|-------|--|
| Bit 7 | -     |       | SS_EN       | Spread Enable     | RW   | OFF                                   | ON       | 1     |  |
| Bit 6 | -     | •     | SEL24_48MHz | Output Select     | RW   | 48MHz                                 | 24MHz    | Latch |  |
| Bit 5 | -     | •     | Reserved    | Reserved          | RW   | Reserved                              | Reserved | X     |  |
| Bit 4 | -     |       | Reserved    | Reserved          | RW   | Reserved                              | Reserved | X     |  |
| Bit 3 | -     |       | FS3         | Freq Select Bit 3 | RW   |                                       | _        | Latch |  |
| Bit 2 | -     | •     | FS2         | Freq Select Bit 2 | RW   | See Table1: Frequency Selection Table |          | Latch |  |
| Bit 1 | -     | •     | FS1         | Freq Select Bit 1 | RW   |                                       |          | Latch |  |
| Bit 0 | -     | •     | FS0         | Freq Select Bit 0 | RW   |                                       |          | Latch |  |

I<sup>2</sup>C Table: Output Control Register

|       | <del></del> |                  |                         |      |         |        |     |
|-------|-------------|------------------|-------------------------|------|---------|--------|-----|
| Byt   | te 1 Pin #  | Name             | <b>Control Function</b> | Туре | 0       | 1      | PWD |
| Bit 7 | 1           | REF0             | Output Control          | RW   | Disable | Enable | 1   |
| Bit 6 | 6           | HTTCLK0          | Output Control          | RW   | Disable | Enable | 1   |
| Bit 5 | 7           | PCICLK8/HTTCLK1  | Output Control          | RW   | Disable | Enable | 1   |
| Bit 4 | 8           | PCICLK9/HTTCLK2  | Output Control          | RW   | Disable | Enable | 1   |
| Bit 3 | 11          | PCICLK11/HTTCLK3 | Output Control          | RW   | Disable | Enable | 1   |
| Bit 2 | 12          | PCICLK10         | Output Control          | RW   | Disable | Enable | 1   |
| Bit 1 | 13          | PCICLK0          | Output Control          | RW   | Disable | Enable | 1   |
| Bit 0 | 14          | PCICLK1          | Output Control          | RW   | Disable | Enable | 1   |

I<sup>2</sup>C Table: Output Control Register

| Ву    | rte 2 | Pin # | Name     | Control Function | Туре | 0       | 1      | PWD |
|-------|-------|-------|----------|------------------|------|---------|--------|-----|
| Bit 7 | 1     | 7     | PCICLK2  | Output Control   | RW   | Disable | Enable | 1   |
| Bit 6 | 1     | 8     | PCICLK3  | Output Control   | RW   | Disable | Enable | 1   |
| Bit 5 | 2     | 1     | PCICLK4  | Output Control   | RW   | Disable | Enable | 1   |
| Bit 4 | 2     | 2     | PCICLK5  | Output Control   | RW   | Disable | Enable | 1   |
| Bit 3 | 2     | 3     | PCICLK6  | Output Control   | RW   | Disable | Enable | 1   |
| Bit 2 | 2     | 4     | PCICLK7  | Output Control   | RW   | Disable | Enable | 1   |
| Bit 1 | 2     | 8     | 24_48MHz | Output Control   | RW   | Disable | Enable | 1   |
| Bit 0 | 3     | 1     | 48MHz    | Output Control   | RW   | Disable | Enable | 1   |

I<sup>2</sup>C Table: Output Control Register

| Ву    | rte 3 | Pin # | Name         | Control Function       | Туре | 0              | 1              | PWD |
|-------|-------|-------|--------------|------------------------|------|----------------|----------------|-----|
| Bit 7 | 37,   | 36    | CPUCLK8T/C_1 | Output Control         | RW   | Disable        | Enable         | 1   |
| Bit 6 | 41,   | 40    | CPUCLK8T/C_0 | Output Control         | RW   | Disable        | Enable         | 1   |
| Bit 5 | 4     | 5     | REF2         | Output Control         | RW   | Disable        | Enable         | 1   |
| Bit 4 | 4     | 8     | REF1         | Output Control         | RW   | Disable        | Enable         | 1   |
| Bit 3 | -     | •     | PCI_Str1     | PCI9,8 Strength        | RW   | 00: 0.5X Drive | 10: 1.5X Drive | 0   |
| Bit 2 | -     |       | PCI_Str0     | Control only           | RW   | 01: 1.0X Drive | 11: 2.0X Drive | 1   |
| Bit 1 | -     | •     | PCI_Str1     | PCI11 Strength Control | RW   | 00: 0.5X Drive | 10: 1.5X Drive | 0   |
| Bit 0 | -     | •     | PCI_Str0     | only                   | RW   | 01: 1.0X Drive | 11: 2.0X Drive | 1   |



I<sup>2</sup>C Table: Output Control Register

|       | o rable: output control negister |       |         |                       |      |                |                |     |  |  |
|-------|----------------------------------|-------|---------|-----------------------|------|----------------|----------------|-----|--|--|
| Ву    | rte 4                            | Pin # | Name    | Control Function      | Туре | 0              | 1              | PWD |  |  |
| Bit 7 | -                                |       | PCIStr1 | All other PCICLK      | RW   | 00: 0.5X Drive | 10: 1.5X Drive | 0   |  |  |
| Bit 6 | -                                |       | PCIStr0 | Strength Control      | RW   | 01: 1.0X Drive | 11: 2.0X Drive | 1   |  |  |
| Bit 5 | -                                |       | PCIStr1 | PCICLK (7:6) Strength | RW   | 00: 0.5X Drive | 10: 1.5X Drive | 1   |  |  |
| Bit 4 | -                                |       | PCIStr0 | Control               | RW   | 01: 1.0X Drive | 11: 2.0X Drive | 1   |  |  |
| Bit 3 | -                                |       | PCIStr1 | PCICLK (5) Strength   | RW   | 00: 0.5X Drive | 10: 1.5X Drive | 1   |  |  |
| Bit 2 | -                                |       | PCIStr0 | Control               | RW   | 01: 1.0X Drive | 11: 2.0X Drive | 1   |  |  |
| Bit 1 | -                                |       | PCIStr1 | PCICLK (4) Strength   | RW   | 00: 0.5X Drive | 10: 1.5X Drive | 1   |  |  |
| Bit 0 | -                                |       | PCIStr0 | Control               | RW   | 01: 1.0X Drive | 11: 2.0X Drive | 1   |  |  |

I<sup>2</sup>C Table: Reserved Register

|       | 0. 110001 V | · · · · · · · · · · · · · · · · · · · |          |                  |      |          |          |     |
|-------|-------------|---------------------------------------|----------|------------------|------|----------|----------|-----|
| Ву    | rte 5       | Pin #                                 | Name     | Control Function | Туре | 0        | 1        | PWD |
| Bit 7 | -           |                                       | Reserved | Reserved         | RW   | Reserved | Reserved | Х   |
| Bit 6 | -           |                                       | Reserved | Reserved         | RW   | Reserved | Reserved | Х   |
| Bit 5 | -           |                                       | Reserved | Reserved         | RW   | Reserved | Reserved | Х   |
| Bit 4 | -           | •                                     | Reserved | Reserved         | RW   | Reserved | Reserved | Х   |
| Bit 3 | -           |                                       | Reserved | Reserved         | RW   | Reserved | Reserved | Х   |
| Bit 2 | -           |                                       | Reserved | Reserved         | RW   | Reserved | Reserved | Х   |
| Bit 1 | -           |                                       | Reserved | Reserved         | RW   | Reserved | Reserved | X   |
| Bit 0 | -           |                                       | Reserved | Reserved         | RW   | Reserved | Reserved | Х   |

I<sup>2</sup>C Table: Byte Count Register

| Ву    | rte 6 | Pin # | Name | Control Function   | Туре | 0                                            | 1 | PWD |
|-------|-------|-------|------|--------------------|------|----------------------------------------------|---|-----|
| Bit 7 | -     |       | BC7  |                    | RW   |                                              | 0 |     |
| Bit 6 | -     | •     | BC6  |                    | RW   |                                              | 0 |     |
| Bit 5 | -     |       | BC5  |                    | RW   | Writing to this register will configure how  |   | 0   |
| Bit 4 | -     | - BC4 |      | Byte Count         | RW   | many bytes will be                           | 0 |     |
| Bit 3 | -     |       | BC3  | Programming b(7:0) | RW   | 06 = 6                                       | · | 0   |
| Bit 2 | -     | •     | BC2  |                    | RW   | <u>/                                    </u> |   | 1   |
| Bit 1 | -     |       | BC1  |                    | RW   |                                              |   | 1   |
| Bit 0 | -     |       | BC0  |                    | RW   |                                              |   | 0   |

I<sup>2</sup>C Table: Byte Count and Vendor <u>ID Register</u>

|       | <b>,</b> |       |            |                  |      |   |   |     |
|-------|----------|-------|------------|------------------|------|---|---|-----|
| Ву    | rte 7    | Pin # | Name       | Control Function | Туре | 0 | 1 | PWD |
| Bit 7 | -        |       | REV_ID3    |                  | RW   | - | - | 0   |
| Bit 6 | -        |       | REV_ID2    | Revision ID      | RW   | - | - | 0   |
| Bit 5 | -        |       | REV_ID1    | TIEVISIONID      | RW   | - | - | 0   |
| Bit 4 | -        |       | REV_ID0    |                  | RW   | - | - | 0   |
| Bit 3 | -        | •     | Vendor_ID3 |                  | RW   | - | - | 0   |
| Bit 2 | -        |       | Vendor_ID2 | Vendor ID        | RW   | - | - | 0   |
| Bit 1 | -        |       | Vendor_ID1 | Vendor ib        | RW   | - | - | 0   |
| Bit 0 | -        |       | Vendor_ID0 |                  | RW   | - | - | 1   |



I<sup>2</sup>C Table: Skew Control Register

| Ву    | rte 8 | Pin # | Name        | Control Function    | Туре | 0        |          | 1        |          | PWD |
|-------|-------|-------|-------------|---------------------|------|----------|----------|----------|----------|-----|
| Bit 7 | -     |       | PCI/HTTSkw3 |                     | RW   | 0000:0   | 0100:150 | 1000:300 | 1100:450 | 1   |
| Bit 6 | -     |       | PCI/HTTSkw2 | CPU-PCI/HTT 7 Step  | RW   | 0001:N/A | 0101:N/A | 1001:N/A | 1101:600 | 1   |
| Bit 5 | =     |       | PCI/HTTSkw1 | Skew Control (ps)   | RW   | 0010:N/A | 0110:N/A | 1010:N/A | 1110:750 | 0   |
| Bit 4 | -     |       | PCI/HTTSkw0 |                     | RW   | 0011:N/A | 0111:N/A | 1011:N/A | 1111:900 | 0   |
| Bit 3 | -     |       | PCISkw3     |                     | RW   | 0:0000   | 0100:150 | 1000:300 | 1100:450 | 1   |
| Bit 2 | -     |       | PCISkw2     | CPU-PCI 7 Step Skew | RW   | 0001:N/A | 0101:N/A | 1001:N/A | 1101:600 | 1   |
| Bit 1 | -     |       | PCISkw1     | Control (ps)        | RW   | 0010:N/A | 0110:N/A | 1010:N/A | 1110:750 | 0   |
| Bit 0 | -     |       | PCISkw0     |                     | RW   | 0011:N/A | 0111:N/A | 1011:N/A | 1111:900 | 0   |

I<sup>2</sup>C Table: WD Time Control & Async Frequency Selection Register

| By    | rte 9 | Pin #   | Name     | Control Function     | Туре | 0                                          | 1                     | PWD   |
|-------|-------|---------|----------|----------------------|------|--------------------------------------------|-----------------------|-------|
| Бу    | 10 3  | 1 111 # | Name     | Control Lanction 1   |      | · ·                                        | •                     | 1 110 |
| Bit 7 | _     |         | ASEL     | Async Frequency      | RW   | 66MHz                                      | 75.4MHz               | 0     |
| Dit 7 |       |         | AOLL     | Select               | 1100 | OOIVII 12                                  | 7 O. HIVII 12         | O     |
| Bit 6 | _     |         | AEN      | AGP/PCI/ Freq Source | RW   | FIX PLL                                    | CPU PLL               | 1     |
| DIL 0 |       |         | ALIV     | Select               | 1100 | TIXTEE                                     | OI O I LL             | 1     |
| Bit 5 | -     |         | Reserved | Reserved             | RW   | -                                          | -                     | X     |
| Bit 4 | -     |         | Reserved | Reserved             | RW   | -                                          | -                     | Х     |
| Bit 3 | _     |         | WDTCtrl  | Watch Dog Time base  | RW   | 290ms Base                                 | 1160ms Base           | 0     |
| DIL 3 |       |         | WDTGIII  | Control              | LAAA | 200m3 base                                 | Trooms base           | U     |
| Bit 2 | -     |         | WD2      | WD Timer Bit 2       | RW   | These bits represen                        | t X*290ms (or 1.16S)  | 1     |
| Bit 1 | -     |         | WD1      | WD Timer Bit 1       | RW   | the watchdog timer waits before it goes to |                       | 1     |
| Bit 0 | -     |         | WD0      | WD Timer Bit 0       | RW   | alarm mode. Defau                          | It is 7 X 290ms = 2s. | 1     |

I<sup>2</sup>C Table: VCO Control Select Bit & WD Timer Control Register

| Byt   | te 10 | Pin # | Name     | Control Function                     | Туре | 0                             | 1                       | PWD |
|-------|-------|-------|----------|--------------------------------------|------|-------------------------------|-------------------------|-----|
| Bit 7 | -     |       | M/NEN    | M/N Programming<br>Enable            | RW   | Disable                       | Enable                  | 0   |
| Bit 6 | -     |       | WDEN     | Watchdog Enable                      | RW   | Disable                       | Enable                  | 0   |
| Bit 5 | -     |       | WDStatus | WD Alarm Status                      | R    | Normal                        | Alarm                   | 0   |
| Bit 4 | -     |       | WD SF4   |                                      | RW   |                               |                         | 0   |
| Bit 3 | -     |       | WD SF3   | Watch Dog Cofo Erog                  | RW   | Mriting to those hit w        | vill configure the cofe | 0   |
| Bit 2 | -     |       | WD SF2   | Watch Dog Safe Freq Programming bits | RW   |                               | vill configure the safe | 0   |
| Bit 1 | -     |       | WD SF1   | i rogramming bits                    | RW   | frequency as Byte0 bit (4:0). |                         | 0   |
| Bit 0 | -     |       | WD SF0   |                                      | RW   |                               |                         | 0   |

I<sup>2</sup>C Table: VCO Frequency Control Register

| <u> </u> | <del>0 0 .</del> . | - oquonoj | Outlied Hogiston |                       |      |                                             |                         |     |
|----------|--------------------|-----------|------------------|-----------------------|------|---------------------------------------------|-------------------------|-----|
| Ву       | te 11              | Pin #     | Name             | Control Function      | Туре | 0                                           | 1                       | PWD |
| Bit 7    | -                  | -         | N Div8           | N Divider Prog bit 8  | RW   | The decimal represe                         | ntation of N Divider in | Χ   |
| Bit 6    | -                  |           | N Div9           | N Divider Prog bit 9  | RW   | Byte 11 and 12                              |                         | Χ   |
| Bit 5    | -                  |           | M Div5           |                       | RW   | The decimal representation of M and N       |                         | Х   |
| Bit 4    | -                  |           | M Div4           |                       | RW   | Divier in Byte 11 and 12 will configure the |                         | Х   |
| Bit 3    | -                  |           | M Div3           | M Divider Programming | RW   | VCO frequency. Default at power up =        |                         | X   |
| Bit 2    | -                  | -         | M Div2           | bits (5:0)            | RW   | latch-in or Byte 0 Rom table.               |                         | Х   |
| Bit 1    |                    | •         | M Div1           |                       | RW   | VCO Frequency = 14.318 x [NDiv(9:0)+8]      |                         | Х   |
| Bit 0    | -                  | -         | M Div0           |                       | RW   | / [MDiv                                     | [5:0)+2]                | Х   |

0802F—04/22/05



I<sup>2</sup>C Table: VCO Frequency Control Register

|       |       |       | Control riograte. |                       |      |                                                                                   |                      |     |
|-------|-------|-------|-------------------|-----------------------|------|-----------------------------------------------------------------------------------|----------------------|-----|
| Ву    | te 12 | Pin # | Name              | Control Function      | Туре | 0                                                                                 | 1                    | PWD |
| Bit 7 | -     |       | N Div7            |                       | RW   | The decimal representation of M and N Divier in Byte 11 and 12 will configure the |                      | Х   |
| Bit 6 | -     |       | N Div6            |                       | RW   |                                                                                   |                      | X   |
| Bit 5 | _     | •     | N Div5            |                       | RW   |                                                                                   |                      | X   |
| Bit 4 | -     | •     | N Div4            | N Divider Programming | RW   | VCO frequency. D                                                                  | efault at power up = | X   |
| Bit 3 | -     |       | N Div3            | bit (7:0)             | RW   | latch-in or Byt                                                                   | e 0 Rom table.       | X   |
| Bit 2 | -     | •     | N Div2            |                       | RW   | / [MDiv(5:0)+2]                                                                   |                      | X   |
| Bit 1 | -     |       | N Div1            |                       | RW   |                                                                                   |                      | Χ   |
| Bit 0 | -     | •     | N Div0            |                       | RW   |                                                                                   |                      | Χ   |

I<sup>2</sup>C Table: Spread Spectrum Control Register

| <u> </u> | <b>5. 5 p. 5 a. a.</b> |       | in Control Hogicto | •                  |      |                                                                                                          |   |     |
|----------|------------------------|-------|--------------------|--------------------|------|----------------------------------------------------------------------------------------------------------|---|-----|
| Byt      | te 13                  | Pin # | Name               | Control Function   | Туре | 0                                                                                                        | 1 | PWD |
| Bit 7    | -                      |       | SSP7               |                    | RW   |                                                                                                          |   | Χ   |
| Bit 6    | -                      |       | SSP6               |                    | RW   | Th O                                                                                                     | Х |     |
| Bit 5    | -                      |       | SSP5               |                    | RW   | These Spread Spectrum bits in Byte 13 and 14 will program the spread pecentage. It is recommended to use |   | Х   |
| Bit 4    | -                      |       | SSP4               | Spread Spectrum    | RW   |                                                                                                          |   | Х   |
| Bit 3    | -                      |       | SSP3               | Programming b(7:0) | RW   | , ,                                                                                                      |   | Х   |
| Bit 2    | -                      |       | SSP2               |                    | RW   | programming.                                                                                             |   | X   |
| Bit 1    | -                      |       | SSP1               |                    | RW   |                                                                                                          |   | Χ   |
| Bit 0    | -                      |       | SSP0               |                    | RW   |                                                                                                          |   | Х   |

I<sup>2</sup>C Table: Spread Spectrum Control Register

| Byt   | Byte 14 Pin # |   | Name     | Control Function    | Туре | 0                                          | 1                | PWD |
|-------|---------------|---|----------|---------------------|------|--------------------------------------------|------------------|-----|
| Bit 7 | -             | • | Reserved | Reserved            | R    | -                                          | -                | 0   |
| Bit 6 | -             |   | SSP14    |                     | RW   |                                            |                  | Χ   |
| Bit 5 | -             |   | SSP13    |                     | RW   | These Spread Spec                          | Χ                |     |
| Bit 4 | -             |   | SSP12    | Spread Spectrum     | RW   | and 14 will program the spread             |                  | Χ   |
| Bit 3 | -             |   | SSP11    | Programming b(14:8) | RW   |                                            | commended to use | Х   |
| Bit 2 | -             |   | SSP10    |                     | RW   | ICS Spread % table for spread programming. |                  | Χ   |
| Bit 1 | -             |   | SSP9     |                     | RW   |                                            |                  | Χ   |
| Bit 0 | -             |   | SSP8     |                     | RW   | 1                                          |                  | Χ   |



### **Absolute Maximum Ratings**

Supply Voltage..... 3.8V

Logic Inputs . . . . . . . . . . . . GND -0.5~V to  $~V_{DD}$  +3.8~V

Ambient Operating Temperature . . . . .  $0^{\circ}$ C to  $+70^{\circ}$ C Storage Temperature . . . . .  $-65^{\circ}$ C to  $+150^{\circ}$ C

ESD Protection ...... Input ESD protection usung human body model > 1KV

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

#### **Electrical Characteristics - Input/Supply/Common Output Parameters**

 $T_A = 0 - 70$ °C; Supply Voltage  $V_{DD} = 3.3 \text{ V} + /-5\%$  (unless otherwise stated)

| PARAMETER                      | SYMBOL               | CONDITIONS                                                | MIN                   | TYP | MAX            | UNITS |
|--------------------------------|----------------------|-----------------------------------------------------------|-----------------------|-----|----------------|-------|
| Input High Voltage             | $V_{IH}$             |                                                           | 2                     |     | $V_{DD} + 0.3$ | V     |
| Input Low Voltage              | $V_{IL}$             |                                                           | V <sub>SS</sub> - 0.3 |     | 0.8            | V     |
| Input High Current             | I <sub>IH</sub>      | $V_{IN} = V_{DD}$                                         |                       |     | 5              | mA    |
| Input Low Current              | $I_{\rm IL1}$        | $V_{IN} = 0 \text{ V}$ ; Inputs with no pull-up resistors | -5                    |     |                | mA    |
| Input Low Current              | I <sub>IL2</sub>     | V <sub>IN</sub> = 0 V; Inputs with pull-up resistors      | -200                  |     |                | mA    |
| Operating Supply Current       | I <sub>DD(op)</sub>  | C <sub>L</sub> = 0 pF; Select @ 100MHz                    |                       |     | 180            | mA    |
| Power Down Supply<br>Current   | I <sub>DDPD</sub>    | $C_L = 0$ pF; With input address to Vdd or GND            |                       |     | 40             | mA    |
| Input frequency                | $F_{i}$              | $V_{DD} = 3.3 \text{ V};$                                 | 11                    |     | 16             | MHz   |
| Input Capacitance <sup>1</sup> | $C_{IN}$             | Logic Inputs                                              |                       |     | 5              | рF    |
| input Capacitance              | $C_{INX}$            | X1 & X2 pins                                              | 27                    |     | 45             | pF    |
| Transition Time <sup>1</sup>   | $T_{trans}$          | To 1st crossing of target Freq.                           |                       |     | 3              | ms    |
| Clk Stabilization <sup>1</sup> | $T_{STAB}$           | From $V_{DD} = 3.3 \text{ V}$ to 1% target Freq.          |                       |     | 3              | ms    |
| Skew <sup>1</sup>              | T <sub>CPU-PCI</sub> | $V_T = 1.5 \text{ V}$                                     | 1.5                   |     | 4              | ns    |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design, not 100% tested in production.



#### **Electrical Characteristics - K8 Push Pull Differential Pair**

 $T_A = 0 - 70$ °C;  $V_{DD} = 3.3 \text{ V +/-5}\%$ ;  $C_L = AMD64 \text{ Processor Test Load}$ 

| TA = 0 70 0, VDD = 0.0                      | V 17 0 70, OL -       | AMD04 PT0Cessor Test Load                                                                                                                                           |       |     |      |       |       |
|---------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-------|-------|
| PARAMETER                                   | SYMBOL                | CONDITIONS                                                                                                                                                          | MIN   | TYP | MAX  | UNITS | NOTES |
| Rising Edge Rate                            | $\delta V/\delta t$   | Measured at the AMD64 processor's                                                                                                                                   | 2     |     | 10   | V/ns  | 1     |
| Falling Edge Rate                           | $\delta V/\delta t$   | test load. 0 V +/- 400 mV (differential                                                                                                                             | 2     |     | 10   | V/ns  | 1     |
| Differential Voltage                        | $V_{DIFF}$            |                                                                                                                                                                     | 0.4   |     | 2.3  | V     | 1     |
| Change in V <sub>DIFF_DC</sub><br>Magnitude | $\Delta V_{DIFF}$     | Measured at the AMD64 processor's                                                                                                                                   | -150  |     | 150  | mV    | 1     |
| Common Mode Voltage                         | $V_{CM}$              | test load. (single-ended measurement)                                                                                                                               | 1.05  |     | 1.45 | V     | 1     |
| Change in Common<br>Mode Voltage            | $\Delta V_{CM}$       |                                                                                                                                                                     | -200  |     | 200  | mV    | 1     |
| Jitter, Cycle to cycle                      | t <sub>jcyc-cyc</sub> | Measurement from differential wavefrom. Maximum difference of cycle time between 2 adjacent cycles.                                                                 | 0     |     | 200  | ps    | 1     |
| Jitter, Accumulated                         | t <sub>ja</sub>       | Measured using the JIT2 software package with a Tek 7404 scope. TIE (Time Interval Error) measurement technique: Sample resolution = 50 ps, Sample Duration = 10 µs | -1000 |     | 1000 |       | 1,2,3 |
| Duty Cycle                                  | d <sub>t3</sub>       | Measurement from differential wavefrom                                                                                                                              | 45    |     | 53   | %     | 1     |
| Output Impedance                            | R <sub>ON</sub>       | Average value during switching transition. Used for determining series termination value.                                                                           | 15    |     | 55   | Ω     | 1     |
| Group Skew                                  | t <sub>src-skew</sub> | Measurement from differential wavefrom                                                                                                                              |       |     | 250  | ps    | 1     |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design and characterization, not 100% tested in production.

 $<sup>^{2}\,\</sup>mathrm{All}$  accumulated jitter specifications are guaranteed assuming that REF is at 14.31818MHz

<sup>&</sup>lt;sup>3</sup> Spread Spectrum is off



#### **Electrical Characteristics - PCICLK**

 $T_A = 0 - 70^{\circ}C; V_{DD} = 3.3 V, +/-5\%; C_L = 30 pF$ 

|                         |                         | - '                                              |     |     |     |       |
|-------------------------|-------------------------|--------------------------------------------------|-----|-----|-----|-------|
| PARAMETER               | SYMBOL                  | CONDITIONS                                       | MIN | TYP | MAX | UNITS |
| Output High Voltage     | $V_{OH1}$               | I <sub>OH</sub> = -18 mA                         | 2.1 |     |     | V     |
| Output Low Voltage      | $V_{OL1}$               | $I_{OL} = 9.4 \text{ mA}$                        |     |     | 0.4 | V     |
| Output High Current     | I <sub>OH1</sub>        | $V_{OH} = 2.0 \text{ V}$                         |     |     | -22 | mA    |
| Output Low Current      | I <sub>OL1</sub>        | $V_{OL} = 0.8 \text{ V}$                         | 16  |     | 57  | mA    |
| Rise Time <sup>1</sup>  | t <sub>r1</sub>         | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$ |     |     | 2   | ns    |
| Fall Time <sup>1</sup>  | t <sub>f1</sub>         | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$ |     |     | 2   | ns    |
| Duty Cycle <sup>1</sup> | d <sub>t1</sub>         | $V_T = 1.5 V$                                    | 45  |     | 55  | %     |
| Skew <sup>1</sup>       | t <sub>sk1</sub>        | $V_T = 1.5 V$                                    |     |     | 500 | ps    |
| Jitter                  | t <sub>jcyc-cyc</sub> 1 | $V_T = 1.5 V$                                    |     |     | 500 | ps    |
| Jillei                  |                         | $V_T = 1.5 \text{ V}$                            |     |     | 500 | ps    |

<sup>&</sup>lt;sup>1</sup>Guaranteed by design, not 100% tested in production.

#### **Electrical Characteristics - ZCLK**

 $T_A = 0 - 70$ °C; VDD=3.3V +/-5%;  $C_L = 10$ -30 pF (unless otherwise specified)

| PARAMETER           | SYMBOL                       | CONDITIONS                                                  | MIN | TYP | MAX  | UNITS |
|---------------------|------------------------------|-------------------------------------------------------------|-----|-----|------|-------|
| Output Frequency    | F <sub>O1</sub>              |                                                             |     |     |      | MHz   |
| Output Impedance    | R <sub>DSP1</sub> 1          | $V_O = V_{DD}^*(0.5)$                                       | 12  |     | 55   | Ω     |
| Output High Voltage | V <sub>OH</sub> <sup>1</sup> | $I_{OH} = -1 \text{ mA}$                                    | 2.4 |     |      | V     |
| Output Low Voltage  | V <sub>OL</sub> <sup>1</sup> | I <sub>OL</sub> = 1 mA                                      |     |     | 0.55 | V     |
| Output High Current | l <sub>OH</sub> <sup>1</sup> | V <sub>OH@MIN</sub> = 1.0 V, V <sub>OH@MAX</sub> = 3.135 V  | -33 |     | -33  | mA    |
| Output Low Current  | l <sub>OL</sub> <sup>1</sup> | $V_{OL @MIN} = 1.95 \text{ V}, V_{OL @MAX} = 0.4 \text{ V}$ | 30  |     | 38   | mA    |
| Rise Time           | $t_{r1}^1$                   | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$            | 0.5 |     | 2    | ns    |
| Fall Time           | t <sub>f1</sub> 1            | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$            | 0.5 |     | 2    | ns    |
| Duty Cycle          | d <sub>t1</sub> <sup>1</sup> | $V_T = 1.5 \text{ V}$                                       | 45  |     | 55   | %     |
| Skew                | t <sub>sk1</sub> 1           | $V_T = 1.5 \text{ V}$                                       |     |     | 250  | ps    |
| Jitter              | t <sub>jcyc-cyc</sub> 1      | $V_T = 1.5 \text{ V} 3V66$                                  |     |     | 250  | ps    |



#### **Electrical Characteristics - AGPCLK**

 $T_A = 0 - 70$ °C; VDD=3.3V +/-5%;  $C_L = 10$ -30 pF (unless otherwise specified)

| ·A · · · · · · · ·  |                                |                                                             |     |     |      |       |
|---------------------|--------------------------------|-------------------------------------------------------------|-----|-----|------|-------|
| PARAMETER           | SYMBOL                         | CONDITIONS                                                  | MIN | TYP | MAX  | UNITS |
| Output Frequency    | F <sub>O1</sub>                |                                                             |     |     |      | MHz   |
| Output Impedance    | R <sub>DSP1</sub> <sup>1</sup> | $V_O = V_{DD}^*(0.5)$                                       | 12  |     | 55   | Ω     |
| Output High Voltage | V <sub>OH</sub> <sup>1</sup>   | $I_{OH} = -1 \text{ mA}$                                    | 2.4 |     |      | V     |
| Output Low Voltage  | V <sub>OL</sub> <sup>1</sup>   | I <sub>OL</sub> = 1 mA                                      |     |     | 0.55 | V     |
| Output High Current | l <sub>OH</sub> <sup>1</sup>   | V <sub>OH@MIN</sub> = 1.0 V, V <sub>OH@MAX</sub> = 3.135 V  | -33 |     | -33  | mA    |
| Output Low Current  | $I_{OL}^{1}$                   | $V_{OL @MIN} = 1.95 \text{ V}, V_{OL @MAX} = 0.4 \text{ V}$ | 30  |     | 38   | mA    |
| Rise Time           | $t_{r1}^1$                     | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$            | 0.5 |     | 2    | ns    |
| Fall Time           | t <sub>f1</sub> 1              | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$            | 0.5 |     | 2    | ns    |
| Duty Cycle          | $d_{t1}^{-1}$                  | $V_T = 1.5 \text{ V}$                                       | 45  |     | 55   | %     |
| Skew                | t <sub>sk1</sub> 1             | $V_T = 1.5 \text{ V}$                                       |     |     | 250  | ps    |
| Jitter              | t <sub>jcyc-cyc</sub> 1        | $V_T = 1.5 \text{ V} 3V66$                                  |     |     | 250  | ps    |

### **Electrical Characteristics - REF**

 $T_A = 0 - 70^{\circ}\text{C}$ ;  $V_{DD} = 3.3 \text{ V}$ , +/-5%;  $C_L = 10 - 20 \text{ pF}$  (unless otherwise stated)

| PARAMETER               | SYMBOL                 | CONDITIONS                                       | MIN | TYP | MAX  | UNITS |
|-------------------------|------------------------|--------------------------------------------------|-----|-----|------|-------|
| Output High Voltage     | $V_{\mathrm{OH5}}$     | $I_{OH} = -12 \text{ mA}$                        | 2.6 |     |      | V     |
| Output Low Voltage      | $V_{OL5}$              | $I_{OL} = 9 \text{ mA}$                          |     |     | 0.4  | V     |
| Output High Current     | I <sub>OH5</sub>       | $V_{OH} = 2.0 \text{ V}$                         |     |     | -22  | mA    |
| Output Low Current      | I <sub>OL5</sub>       | $V_{OL} = 0.8 \text{ V}$                         | 16  |     |      | mA    |
| Rise Time <sup>1</sup>  | t <sub>r5</sub>        | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$ |     |     | 4    | ns    |
| Fall Time <sup>1</sup>  | t <sub>f5</sub>        | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$ |     |     | 4    | ns    |
| Duty Cycle <sup>1</sup> | $d_{t5}$               | $V_T = 1.5 \text{ V}$                            | 45  |     | 55   | %     |
| Jitter <sup>1</sup>     | t <sub>jcyc-cyc5</sub> | $V_T = 1.5 \text{ V}$                            |     |     | 1000 | ps    |
| Jiller                  |                        | $V_T = 1.5 \text{ V}$                            |     |     | 800  | ps    |



# Shared Pin Operation - Input/Output Pins

The I/O pins designated by (input/output) on the ICS950405 serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period.

Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.



Fig. 1





300 mil SSOP Package

| SYMBOL   | In Millir<br>COMMON D |       |                | nches<br>DIMENSIONS |
|----------|-----------------------|-------|----------------|---------------------|
| STIVIDOL | MIN                   | MAX   | MIN            | MAX                 |
| Α        | 2.41                  | 2.80  | .095           | .110                |
| A1       | 0.20                  | 0.40  | .008           | .016                |
| b        | 0.20                  | 0.34  | .008           | .0135               |
| С        | 0.13                  | 0.25  | .005           | .010                |
| D        | SEE VARIATIONS        |       | SEE VARIATIONS |                     |
| E        | 10.03                 | 10.68 | .395           | .420                |
| E1       | 7.40                  | 7.60  | .291           | .299                |
| е        | 0.635 BASIC           |       | 0.025          | BASIC               |
| h        | 0.38                  | 0.64  | .015           | .025                |
| Ĺ        | 0.50                  | 1.02  | .020           | .040                |
| N        | SEE VARIATIONS        |       | SEE VAI        | RIATIONS            |
| α        | 0°                    | 8°    | 0°             | 8°                  |

| ΑF |  |  |
|----|--|--|
|    |  |  |
|    |  |  |

| N  | Dm  | ım.   | D (inch) |      |      |
|----|-----|-------|----------|------|------|
|    | MIN | MAX   | MIN      | MAX  |      |
| 48 | }   | 15.75 | 16.00    | .620 | .630 |

Reference Doc.: JEDEC Publication 95, MO-118

10-0034

### **Ordering Information**

### ICS950405<u>y</u>FLF-T





**Revision History** 

|      | <u>-</u>   |                                                |        |
|------|------------|------------------------------------------------|--------|
| Rev. | Issue Date | Description                                    | Page # |
| 0.1  | 4/21/2005  | Updated Byte 11/12 M/N programming description | 8-9    |
|      |            |                                                |        |