

DATE: 18.Nov.2009

ZHIXUAN LCD-TFT

MODEL: ZXXS460-L04

The Information Described in this Specification is Preliminary and can be changed without prior notice

APPROVED BY	DATE	PREPARED BY	DATE
Nam-Heon Kim	18.Nov.2009	Yu-Geun Lee	18.Nov.2009

DID Development Team, LCD Business

ODEL ZXXS460-L04 Doc. N	o 05-000-G-081118	Page	1 / 27
-------------------------	-------------------	------	--------

* Revision History

Date	Rev. No	Page	Summary
Nov 18, 2009	000	all	First issued

MODEL ZXXS460-L04 Doc. No 05-000-G-081118 Page 3 / 27

General Description

Description

ZXXS460-L04 is a color active matrix liquid crystal display (LCD) that uses amorphous silicon TFT(Thin Film Transistor) as switching components. This model is composed of a TFT LCD panel, a driver circuit and a LED backlight unit. The resolution of a 46.0" is 1366 x 768 and this model can display up to 16.7 million colors with wide viewing angle of 89° or higher in all directions. This panel is intended to support applications to provide a excellent performance for Flat Panel Display such as Home-alone Multimedia TFT-LCD TV, Display terminals for AV application products, and Digital Information Display (DID).

Features

- RoHS compliance (Pb-free)
- High contrast ratio, High luminance
- SPVA(Super Patterned Vertical Align) mode
- Wide viewing angle (±178°)
- High speed response
- Super narrow bezel, Black top chassis
- Landscape / Portrait type compatible
- WXGA (1366 x 768 pixels) resolution (16:9)
- Low power consumption
- Direct Type 2100 LEDs(light emitting diode)
- DE(Data Enable) mode
- LVDS (Low Voltage Differential Signaling) interface (1pixel/clock)

General Information

Items	Specification	Unit	Note
Module Size	1025.653(W _{TYP}) x 579.844(H _{TYP})	mm	±1.0mm
Iviodule Size	58.53(D _{MAX})	- mm	
Weight	16,000(Max)	g	
Pixel Pitch	0.7455(H) x 0.7455(V)	mm	
Active Display Area	1018.353(H) x 572.544(V)	mm	
Surface Treatment	Haze 5.5%, Hard-coating (3H)		
Display Colors	8 bit - 16.7M	colors	
Number of Pixels	1920 x 1080	pixel	
Pixel Arrangement	RGB vertical stripe		
Display Mode	Normally Black		
Luminance of White	2000 (Typ.)	nit	

MODEL	ZXXS460-L04	Doc. No	05-000-G-081118	Page	4 / 27
-------	-------------	---------	-----------------	------	--------

1. Absolute Maximum Ratings

If the condition exceeds maximum ratings, it can cause malfunction or unrecoverable damage to the device.

Item		Sym	bol	Min.	Max.	Unit	Note
Power Supply Voltage		V _{DD}		GND-0.5	13.2	V	(1)
Storage temperature		T _{STG}		-20	60	C	(2)
Glass surface	Center	T _{CENTER}		0	50	C	(0) (5)
temperature (Operation)	T. Uniformity	ΔT		-	10	C	(2),(5)
Shook (non			x,y	-	TBD		(2)
Shock (non - operating)		S _{nop}	Z	-	TBD	G	(3)
Vibration (non	- operating)	V _n	ор	-	TBD	G	(4)

Note (1) Ta= 25 \pm 2 °C

- (2) Temperature and relative humidity range are shown in the figure below.
 - a. 90 % RH Max. (Ta \leq 39 °C)
 - b. Relative Humidity is 90% or less. (Ta > 39 °C)
 - c. No condensation
- (3) 11ms, sine wave, one time for $\pm X$, $\pm Y$, $\pm Z$ axis
- (4) 10-300 Hz, Sweep rate 10min, 30min for X,Y,Z axis

Fig. Temperature and Relative humidity range

MODEL ZXXS460-L0	Doc. No	05-000-G-081118	Page	5 / 27
------------------	---------	-----------------	------	--------

 $\triangle T$ should be less than 10 \mathcal{C} ($\triangle T = |T_{CENTER} - T_{CORNER}|$)

 T_{CENTER} : Temperature of the center of the glass surface (Test point 5) T_{CORNER} : Temperature of each edge of the glass surface (Test point 1~4)

2. Application information for DID (Digital Information Display)

A long-term display like DID application may cause uneven display including image retention. To optimize module's lifetime and function, several operating usages are required.

- 1. Normal operating condition
- Temperature: 20 ± 15 °C
- Humidity: 65 \pm 20 %
- Display pattern: moving picture or regular switchover display

Note) Long-term static information image may cause uneven display.

- 2. Operating usages under abnormal operating condition. Note (1)
 - a. Ambient condition
 - Well-ventilated place is recommended to set up DID system.
 - b. Power off and screen saver
 - Periodical power-off or screen saver is needed after long-term static display. Note (2)
- 3. Operating usages to protect uneven display due to long-term static information display
 - a. Suitable operating time for E-DID: under 20 hours a day.
 - b. Periodical display contents change from static image to moving picture.
 - Liquid crystal refresh time is required.
 - c. Periodical background color and character (image) color change
 - Use different colors for background and character (image), respectively.
 - Change colors periodically.
 - d. Avoid combination of background and character with large different luminance.

Note (1) Abnormal condition means every operating condition except normal operating condition.

Note (2) Moving picture or black pattern is strongly recommended for screen saver.

4. Lifetime in this spec is guaranteed only when DID is used under right operating usages.

MODEL ZXXS460-L04 Doc. No 05-000-G-081118 Page 6 / 27

3. Optical Characteristics

The optical characteristics should be measured in a dark room or equivalent. Measuring equipment: TOPCON BM-7,SPECTRORADIOMETER SR-3

(Ta = 25 \pm 2°C, VDD = 12V, fv = 60Hz, f_{DCLK} = 80MHz, I_L = 6.0mArms)

$(18 - 25 \pm 2 \text{ C}, \text{ VDD} - 12 \text{V}, \text{ IV} - 80 \text{Hz}, \text{I}_{\text{DCLK}} - 80 \text{IMHz}, \text{I}_{\text{L}} - 12 \text{V}, \text{IV} - 12 $						0.0111/ (11110		
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast (Center of s		C/R		3500	4500	-		(3) SR-3
	Rising	Tr		-	10	18		
Response Time	Falling	Tf		-	6	10	msec	(5) BM-7
Time	G-to-G	Tg		-	8	-		DIW 7
Luminance of (Center of s		Y _L	Normal θ L,R =0	-	-	2000	nit	(6) SR-3
	Dod	Rx	$\theta \mathbf{U}, \mathbf{D} = 0$		0.643			
	Red	Ry	Viewing		0.328			
	0	Gx	Angle	TYP. -0.03	0.271	TYP. +0.03		
Color	Green	Gy			0.599			(7),(8)
Chromaticity (CIE 1931)	DI.	Bx			0.143			SR-3
,	Blue	Ву			0.060			
	VA //	Wx			0.280			
	White	Wy			0.290			
Color Ga	ımut	-		-	78	-	%	(7) SR-3
Color Temp	erature	-		-	10000	-	К	(7) SR-3
	11	θ_{L}		75	89	-		
Viewing	Hor.	θ_{R}	C/D>10	75	89	-	Desme	(8)
Angle	Vor	$\theta_{\sf U}$	C/R≥10	75	89	-	Degree	SR-3
	Ver.	θ_{D}		75	89	-		
Brightness U		B _{uni}		-	-	15	%	(4) SR-3

Note (1) Test Equipment Setup

The measurement should be executed in a stable, windless and dark room between 40min and 60min after lighting the back light at the given temperature for stabilization of the back light. This should be measured in the center of screen.

Single lamp current: 380.0mA

Environment condition : Ta = 25 ± 2 °C

MODEL	ZXXS460-L02	Doc. No	05-000-G-081118	Page	7 / 27	
-------	-------------	---------	-----------------	------	--------	--

Note (2) Definition of test point

Note (3) Definition of Contrast Ratio (C/R)

: Ratio of gray max (Gmax) & gray min (Gmin) at the center point ⑤ of the panel

$$C/R = \frac{G \max}{G \min}$$

Gmax: Luminance with all pixels white Gmin: Luminance with all pixels black

MODEL	ZXXS460-L04	Doc. No	05-000-G-081118	Page	8 / 27	
-------	-------------	---------	-----------------	------	--------	--

Note (4) Definition of 9 points brightness uniformity

$$Buni = 100* \frac{(B \max - B \min)}{B \max}$$

Bmax : Maximum brightness Bmin : Minimum brightness

Note (5) Definition of Response time : Sum of Tr, Tf

Note (6) Definition of Luminance of White: Luminance of white at center point ⑤

Note (7) Definition of Color Chromaticity (CIE 1931)

Color coordinate of Red, Green, Blue & White at center point ⑤

Note (8) Definition of Viewing Angle : Viewing angle range (C/R ≥ 10)

MODEL	ZXXS460-L04	Doc. No	05-000-G-081118	Page	9 / 27
-------	-------------	---------	-----------------	------	--------

4. Electrical Characteristics

4.1 TFT LCD Module

The connector for display data & timing signal should be connected.

Ta = 25° C \pm 2 $^{\circ}$ C

	Item	Symbol	Min.	Тур.	Max.	Unit	Note
Voltage of	Power Supply	V _{DD}	10.8	12.0	13.2	V	(1)
Current (a) Black			-	450	-	mA	
of Power	(b) White	l _{DD}	-	480	-	mA	(2),(3
Supply	(c) N-Pattern		-	700	1000	mA	
Vsync Frequency		f _V	-	60	-	Hz	
Hsync Frequency		f _H	43	50	53	kHz	
Main Frequency		f _{DCLK}	65	80	85	MHz	
Rush Curre	ent	I _{RUSH}	-	-	6.0	А	(4)

Note (1) The ripple voltage should be controlled under 10% of $V_{\rm DD}$.

- (2) fv = 60Hz, fDCLK = 80MHz, V_{DD} = 12.0V, DC Current.
- (3) Power dissipation check pattern (LCD Module only)

(4) Measurement Conditions

Rush Current I_{RUSH} can be measured when T_{RUSH} . is 470 μ s.

MODEL	ZXXS460-L04	Doc. No	05-000-G-081118	Page	10 / 27
-------	-------------	---------	-----------------	------	---------

4.2 Back Light Unit

The back light unit contains >1 direct-lighting type LEDs (light emitting diode). The characteristics of lamps are shown in the following tables.

Ta=25 \pm 2°C

Item	Symbol	Min.	Тур.	Max.	Unit	Note
Lamp Current	IL	-	-	13.3	A	
Lamp Voltage	V _L	-	-	24	V	
Operating Life Time	Hr	50.000	-	-	Hour	(1)

Note (1) It is defined as the time to take until the brightness reduces to 50% of its original value. [Operating condition : Ta = 25 ± 2 °C, I_L = 5.5 mArms, For single lamp only.]

ı						
	MODEL	ZXXS460-L04	Doc. No	05-000-G-081118	Page	11 / 27

4.3 Inverter Input Condition & Specification

Itama	Currella a l	Conditions	Sį	pecificatio	ns	l lmit	Note
Items	Symbol	Conditions	Min.	Тур.	Max.	Unit	Note
Input Voltage	Vin	-	-	-	24	V	Ta=25 ±2 °C
Input Current	lin	Vin = 24.0V Vdim = 3.3V	-	-	11	А	After 1 hour
Lamp Current	I _{O,MAX}	Vdim = 3.3V	-	380	420	mArms	Warm-up
Frequency	F _{LAMP}	Vin = 24.0V	-	-	-	kHz	
Backlight	ON	Vin = 24.0V	2.4	-	5.25	V	
On/Off	OFF	Vin = 24.0V	0	-	0.8	V	
Dimming	V	Max Lum	3.3	-	-	V	
Control	V _{DIM}	Min. Lum	-	-	0	V	

Note (1) Power Consumption is measured at 800[nit] of luminance condition which is the typical luminance value. Lamp Current is measured at the point before Lamp.

MODEL ZXXS460-L04 Doc. No 05-000-G-081118 Page 12 / 27
--

Connector: FI-E30S (JAE)

5. Input Terminal Pin Assignment

5.1 LVDS Connector

Pin No.	Description	Pin No.	Description
1	No Connection (Note 1)	16	GND
2	No Connection (Note 1)	17	RxIN3-
3	No Connection (Note 1)	18	RxIN3+
4	GND	19	GND
5	RxIN0-	20	No Connection (Note 1)
6	RxIN0+	21	LVDS Option (Note 2)
7	GND	22	No Connection (Note 1)
8	RxIN1-	23	GND
9	RxIN1+	24	GND
10	GND	25	GND
11	RxIN2-	26	Vdd (12V)
12	RxIN2+	27	Vdd (12V)
13	GND	28	Vdd (12V)
14	RxCLK-	29	Vdd (12V)
15	RxCLK+	30	Vdd (12V)

Note (1) No Connection: These pins are only for SAMSUNG internal purpose.

(2) LVDS Option : High (3.3 V) \rightarrow Normal LVDS format

: Low (GND) or Open (N.C) \rightarrow JEIDA LVDS format

Sequence :On = $V_{DD}(T1) \ge LVDS$ Option $\ge Interface Signal(T2)$

Off = Interface Signal(T3) \geq LVDS Option \geq VDD

MODEL	ZXXS460-L04	Doc. No	05-000-G-081118	Page	13 / 27	
-------	-------------	---------	-----------------	------	---------	--

5.2 Inverter Input Pin Configuration

Connector: JST, S14B-PHA-SM3-TB

Pin No.	Pin Configuration(FUNCTION)
1	Vin (24V)
2	Vin (24V)
3	Vin (24V)
4	Vin (24V)
5	Vin (24V)
6	GND
7	GND
8	GND
9	GND
10	GND
11	No Connection
12	Backlight On /Off [On: 2.4 ~ 5.25 V, Off: 0 ~ 0.8 V]
13	Dimming Control [0V: Min, 3.3V: Max]
14	No Connection

5.3 Inverter Input Power Sequence

Default LVDS Option: JEIDA

5.4 LVDS Interface

- LVDS Receiver : Tcon (merged)

- Data Format (JEIDA & Normal)

		LVDS pin		JEIDA -DATA	VESA -D	VESA -DATA				
		TxIN/RxOU	T0	R2	R0					
		TxIN/RxOU	T1	R3	R1	R1				
		TxIN/RxOU	Γ2	R4	R2					
Tx	OUT/RxIN0	TxIN/RxOU	Т3	R5	R3					
		TxIN/RxOU	T4	R6	R4					
		TxIN/RxOU	T6	R7	R5					
		TxIN/RxOU	Т7	G2	G0					
		TxIN/RxOU	Т8	G3	G1					
		TxIN/RxOU	Т9	G4	G2					
	T. OUT/D. INA	TxIN/RxOUT	⁻ 12	G5	G3					
Tx	OUT/RxIN1	TxIN/RxOUT	⁻ 13	G6	G4					
TXGO TTT CALLET	TxIN/RxOUT	⁻ 14	G7	G5						
		TxIN/RxOUT	⁻ 15	B2	В0					
		TxIN/RxOUT	⁻ 18	В3	B1					
	TxIN/RxOUT	⁻ 19	B4	B2						
		TxIN/RxOUT	20	B5	В3					
		TxIN/RxOUT	⁻ 21	B6	B4					
Tx	OUT/RxIN2	TxIN/RxOUT	22	B7	B5	B3 B4				
		TxIN/RxOUT	⁻ 24	HSYNC	G3 G4 G5 B0 B1 B2 B3 B4					
		TxIN/RxOUT	⁻ 25	VSYNC						
		TxIN/RxOUT	⁻ 26	DEN	B3 B4 B5 HSYNC VSYNC DEN R6					
		TxIN/RxOUT	27	R0	R6					
		TxIN/RxOU	T5	R1	R7					
		TxIN/RxOUT	⁻ 10	G0	G6					
Tx	OUT/RxIN3	TxIN/RxOUT	⁻ 11	G1	G7					
		TxIN/RxOUT	⁻ 16	В0	B6					
		TxIN/RxOUT	- 17	B1	B7					
		TxIN/RxOUT	23	RESERVED	RESERVED					
DDEL	ZXXS460-L04	Doc. No	05:	-000-G-081118	Page	16 /				

5.5 Input Signals, Basic Display Colors and Gray Scale of Each Color

	DIODI AX		DATA SIGNAL DILUS														GRAY									
COLOR	DISPLAY (8bit)				RE	ΕD							GRI	EEN							BL	UE				SCALE LEVEL
		R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2	G3	G4	G5	G6	G7	В0	B1	B2	ВЗ	B4	B5	В6	В7	
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	-
	GREEN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	-
BASIC	CYAN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
COLOR	RED	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	MAGENTA	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	-
	YELLOW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	-
	WHITE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
E	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R0
		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R1
	DARK	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R2
GRAY SCALE OF RED ↓ LIGHT	:	:	:	:	:	:			:	:	:	:	:	:			:	:	:	:	:	:			R3~	
	J.	:	:	:	:	:	:			:	:	:	:	:	:			:	:	:	:	:	:			R252
	LIĞHT	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R253
		0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R254
	RED	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	R255
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G0
		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G1
	DARK	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G2
GRAY SCALE	↑	:	:	:	:	:	:			:	:	:	:	:	:			:	:	:	:	:	:			G3~
OF GREEN	J.	:	:	:	:	:	:			:	:	:	:	:	:			:	:	:	:	:	:			G252
0.122.1	LIĞHT	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G253
		0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G254
	GREEN	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	G255
	BLACK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	В0
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	B1
	DARK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	B2
GRAY SCALE	↑	:	:	:	:	:				:	:	:	:	:				:	:	:	:	:	:			B3~
OF BLUE	J.	:	:	:	:	:				:	:	:	:	:				:	:	:	:	:	:			B252
	LIĞHT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	B253
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	B254
	BLUE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	B255

Note) Definition of Gray:

Rn : Red Gray, Gn : Green Gray, Bn : Blue Gray (n = Gray level)

Input Signal : 0 = Low level voltage, 1 = High level voltage

MODEL	ZXXS460-L04	Doc. No	05-000-G-081118	Page	17 / 27	
-------	-------------	---------	-----------------	------	---------	--

6. Interface Timing

6.1 Timing Parameters (DE only mode)

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
Clock		1/T _C	65	80	85	MHz	-
Hsync	Frequency	F _H	43	50	53	KHz	-
Vsync		F _V	-	60	-	Hz	-
Vertical Display Term	Active Display Period	T_VD	-	768	-	Lines	-
	Vertical Total	T _v	773	838	1500	Lines	-
Horizontal Display Term	Active Display Period	T _{HD}	-	1366	-	Clocks	-
	Horizontal Total	T _H	1568	1600	2000	Clocks	-

Note) This product is DE only mode. The input of Hsync & Vsync signal does not have an effect on normal operation.

Test Point: TTL control signal and CLK at LVDS Tx input terminal in system

MODEL	ZXXS460-L04	Doc. No	05-000-G-081118	Page	18 / 27	
-------	-------------	---------	-----------------	------	---------	--

6.3 Power ON/OFF Sequence

To prevent a latch-up or DC operation of the LCD Module, the power on/off sequence should be as the diagram below.

T1: V_{DD} rising time from 10% to 90%

T2 : The time from V_{DD} to valid data at power ON.

T3 : The time from valid data off to V_{DD} off at power Off.

T4: V_{DD} off time for Windows restart

T5: The time from valid data to B/L enable at power ON.

T6: The time from valid data off to B/L disable at power Off.

- The supply voltage of the external system for the Module input should be the same as the definition of V_{DD}.
- Apply the lamp voltage within the LCD operation range. When the back light turns on before the LCD operation or the LCD turns off before the back light turns off, the display may momentarily show abnormal screen.
- In case of V_{DD} = off level, please keep the level of input signals low or keep a high impedance.
- T4 should be measured after the Module has been fully discharged between power off and on period.
- Interface signal should not be kept at high impedance when the power is on.

MODEL ZXXS460-L04 Doc. N	05-000-G-081118	Page	20 / 27
--------------------------	-----------------	------	---------

8. PACKING

- 8.1 CARTON (Internal Package)
 - (1) Packing Form
 Corrugated fiberboard box and corrugated cardboard as shock absorber

8.2 Packing Specification

Item	Specification	Remark
LCD Packing	10ea / (Packing- Pallet Box)	1. 150Kg / LCD (10ea) 2. 10 Kg / Cushion-pallet (2ea) 3. 8 Kg / Packing-Pallet Box (1ea) 4. Cushion-pallet Material : EPS 5. Packing-Pallet Box Material : DW4
Pallet	1Box / Pallet	1. Pallet weight = 8.8kg
Packing Direction	Vertical	
Total Pallet Size	H x V x height	1270mm(H) x 1150mm(V) x 844mm(height)
Total Pallet Weight	176.8kg	Pallet(8.8kg) + Module(150 kg) + Cushion(10kg) + Pallet-BOX(8kg)

MODEL	ZXXS460-L04	Doc. No	05-000-G-081118	Page	23 / 27
-------	-------------	---------	-----------------	------	---------

9. MARKING & OTHERS

A nameplate bearing followed by is affixed to a shipped product at the specified location on each product.

(1) Part number : ZXXS460-L04

(2) Revision: Three letters

(4) Nameplate Indication

(5) Packing box attach

(6) Others

After service part
 Lamps cannot be replaced because of the narrow bezel structure.

MODEL	ZXXS460-L01	Doc. No	05-000-G-081118	Page	24 / 27

10. General Precautions

10.1 Handling

- (a) When the Module is assembled, it should be attached to the system firmly using all mounting holes. Be careful not to twist and bend the Module.
- (b) Because the inverter use high voltage, it should be disconnected from power before it is assembled or disassembled.
- (c) Refrain from strong mechanical shock and / or any force to the Module. In addition to damage, this may cause improper operation or damage to the Module and LED back light.
- (d) Note that polarizers are very fragile and could be damage easily. Do not press or scratch the surface harder than a HB pencil lead.
- (e) Wipe off water droplets or oil immediately. If you leave the droplets for a long time, staining or discoloration may occur.
- (f) If the surface of the polarizer is dirty, clean it using absorbent cotton or soft cloth.
- (g) Desirable cleaners are water, IPA(Isopropyl Alcohol) or Hexane. Do not use Ketone type materials(ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction.
- (h) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, legs or clothes, it must be washed away with soap thoroughly.
- (i) Protect the Module from static, or the CMOS Gate Array IC would be damaged.
- (j) Use finger-stalls with soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (k) Do not disassemble the Module.
- (I) Do not pull or fold the lamp wire.
- (m) Do not adjust the variable resistor located on the Module.
- (n) Protection film for polarizer on the Module should be slowly peeled off just before use so that the electrostatic charge can be minimized.
- (o) Pins of I/F connector should not be touched directly with bare hands.

MODEL	ZXXS460-L04	Doc. No	05-000-G-081118	Page	25 / 27
-------	-------------	---------	-----------------	------	---------

10.2 Storage

- (a) Do not leave the Module in high temperature, and high humidity for a long time. It is highly recommended to store the Module with temperature from 0 to $35\,^{\circ}$ C and relative humidity of less than 70%.
- (b) Do not store the TFT-LCD Module in direct sunlight.
- (c) The Module should be stored in a dark place. It is prohibited to apply sunlight or fluorescent light in storing.

10.3 Operation

- (a) Do not connect or disconnect the Module in the "Power On" condition.
- (b) Power supply should always be turned on/off by the "Power on/off sequence"
- (c) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference should be done by system manufacturers.Grounding and shielding methods may be important to minimize the interference.
- (d) The cable between the back light connector and its inverter power supply should be connected directly with a minimized length. A longer cable between the back light and the inverter may cause lower luminance of lamp and may require higher startup voltage(Vs).

10.4 Operation Condition Guide

(a) The LCD product should be operated under normal conditions.Normal condition is defined as below;

- Temperature : 20±15 °C - Humidity : 55±20%

- Display pattern : continually changing pattern (Not stationary)

(b) If the product will be used in extreme conditions such as high temperature, humidity, display patterns or operation time etc.., It is strongly recommended to contact SEC for Application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at Airports, Transit Stations, Banks, Stock market, and Controlling systems.

MODEL	ZXXS460-L04	Doc. No	05-000-G-081118	Page	26 / 27
-------	-------------	---------	-----------------	------	---------

10.5 Others

- (a) Ultra-violet ray filter is necessary for outdoor operation.
- (b) Module should be turned clockwise (regular front view perspective) when used in portrait mode
- (c) Avoid condensation of water. It may result in improper operation or disconnection of electrode.
- (d) Do not exceed the absolute maximum rating value. (supply voltage variation, input voltage variation, variation in part contents and environmental temperature, and so on)
 Otherwise the Module may be damaged.
- (e) If the Module keeps displaying the same pattern for a long period of time, the image may be "sticked" to the screen.To avoid image sticking, it is recommended to use a screen saver.
- (f) This Module has its circuitry PCB's on the rear side and should be handled carefully in order not to be stressed.
- (g) Please contact SEC in advance when you display the same pattern for a long time.

MODEL	ZXXS460-L04	Doc. No	05-000-G-081118	Page	27 / 27