Assignment 3

October 23, 2018

1 Assignment 3 Question 2

```
In [299]: #Open packages
           import numpy as np
           import matplotlib.pyplot as plt
           from matplotlib.ticker import MultipleLocator
In [300]: #Running a simulation model
           def normal_income_sim(p):
                11 11 11
               Requires a simulation profile, p, structured as a dictionary
               p = \{
                    'mu'
                                  : 0,
                                                 #mean of the standard normal distribution
                                  : 0.13,
                                                 #standard deviation
                    'siqma'
                                  : 0.13, #standard de: 80000, #starting in : 0.025, #growth rate
                    'inc'
                                                 #starting income
                    'gr'
                    'rho'
                                  : 0.4,
                                                 #persistence
                    'st_year' : int(2018), #start year
'w_years' : 40, #no. of work
'num_draws' : 10000 #simulations
                                                 #no. of working years
               7
                n n n
               #set random seed
               np.random.seed(524)
               errors = np.random.normal(p['mu'], p['sigma'], (p['w_years'], p['num_draws']))
               #create a matrix (w_years, num_draws)
               income_sim_matrix = np.zeros((p['w_years'], p['num_draws']))
               #fill the matrix
               income_sim_matrix[0, :] = np.log(p['inc']) + errors[0, :]
               #loop and apply model
```

```
for yr in range(1, p['w_years']):
                 income\_sim\_matrix [yr, :] = (1 - p['rho'])*(np.log(p['inc']) + p['gr']*yr) +
             income_sim_mat = np.exp(income_sim_matrix) #dealing with large numbers so put in
             return income_sim_mat
In [301]: simulation_profile = {
                 'mu'
                              : 0,
                                           #mean of the standard normal distribution
                              : 0.13,
                                           #standard deviation
                 'sigma'
                              : 80000,
                 'inc'
                                           #starting income
                               : 0.025,
                                           #growth rate
                 'gr'
                 'rho'
                               : 0.4,
                                           #persistence
                 'st_year'
                              : int(2020), #start year
                 'w_years'
                              : 40,
                                           #no. of working years
                 'num_draws' : 10000
                                           #simulations
             }
         income = normal_income_sim(simulation_profile)
         print(income)
[[ 66409.15585396 98274.13534194 101939.81109509 ... 98720.39690442
  72404.51636886 68710.32820307]
 [\ 80020.53020329 \ 67383.19350738 \ 84557.85626308 \ \dots \ 68247.7770509
  74518.33613244 80555.96068584]
 [ 75805.26636606 66134.42494243 91458.20304692 ... 67268.53350159
  90012.42673528 80645.62355527]
 [272690.56519108 217821.73027242 184724.24512469 ... 159922.45424852
 253961.68337673 209741.55004062]
 [231539.17420799 202509.15149494 197955.96626493 ... 199502.43481758
 210951.71828579 205420.27946389]
 [197895.95201384 165115.10025278 172644.86927513 ... 248654.44847819
 234237.14656466 221566.29879732]]
2(a) Plotting one person's income
In [302]: %matplotlib inline
         p = simulation_profile
         year_vec = np.arange(p['st_year'], p['st_year'] + p['w_years'])
```

```
individual = 125
fig, ax = plt.subplots()
plt.plot(year_vec, income[:, individual])
minorLocator = MultipleLocator(1)
ax.xaxis.set_minor_locator(minorLocator)
plt.grid(b=True, which='major', color='0.65', linestyle='-')
plt.title('Individual simulated lifetime income', fontsize=10)
plt.xlabel(r'Year $t$')
plt.ylabel(r'Annual income (\$s)')
```

Out[302]: Text(0,0.5,'Annual income (\\\$s)')

2(b) Plotting a histogram for year 2020

Out[320]: Text(0.5,1,'MACSS Class of 2020 Income in Bins')


```
In [304]: len(income[0, :] [income [0, :] > 100000]) / len(income[0, :])
Out[304]: 0.0417
    4.17% of the class will earn more than $100,000 in the first year of the program.
In [305]: len(income[0, :] [income [0, :] < 70000]) / len(income[0, :])
Out[305]: 0.1512</pre>
```

15.12% of the class will earn less than \$70,000 in the first year of the program. The distribution of the curve is slightly not normal and it is slightly rightly skewed.

2(c) Plotting histogram of how many years it takes to pay \$95,000

Out[314]: Text(0.5,1,'Distribution of Number of Years To Pay Off Loans in Bins')

Out[315]: 0.1678

16.78% of the simulations are able to pay off the loan in 10 years.

2 (d) Running the new model

```
In [316]: simulation_profile = {
          'mul' : 0,  #mean of the standard normal distribution
```

```
'sigma1'
                           : 0.17, #standard deviation
                              : 90000,
                 'inc1'
                                          #starting income
                               : 0.025,
                 'gr1'
                                          #growth rate
                                         #persistence
                 'rho1'
                               : 0.4,
                             : int(2018), #start year
                 'st_year1'
                 'w_years1'
                               : 40,
                                           #no. of working years
                 'num_draws1'
                               : 10000 #simulations
             }
         new_income = new_normal_income_sim(simulation_profile)
         print(new_income)
[[ 70550.46142451 117783.33011091 123561.20729139 ... 118483.24080508
  78992.81966812 73764.25171169]
[ 89615.63768821 71575.56495871 96317.75493523 ... 72778.88084775
  81644.3347736 90400.57899801]
 103848.93176006 89949.09077038]
 . . .
 [338309.11761165 252187.52025149 203293.03644369 ... 168361.21927259
 308250.29858492 240024.49205936]
 [271061.07048342 227502.32436192 220836.5697397 ... 223095.32811759
 239983.96514044 231788.44418303]
 [219057.46748997 172865.33333479 183245.71710131 ... 295275.8618388
 273090.00167035 253934.86273481]]
In [325]: loan=0.1*new_income
         m = []
         for i in range(10000):
                paid=loan[:,i][0]
                 for j in range(1,40):
                    if paid<95000:</pre>
                        paid=paid+loan[:,i][j]
                    else:
                        m.append(j)
                        break
         print(m)
[10, 10, 9, 9, 11, 10, 10, 10, 11, 10, 12, 9, 11, 9, 10, 10, 9, 9, 11, 9, 9, 10, 9, 11, 9, 11,
In [326]: #As there are 5 unique years (8, 9, 10, 11, 12) in which people pay off their debt,
         plt.hist(m, bins=5)
         plt.xlabel("Years")
         plt.title("Distribution of the New Number of Years To Pay Off Loans in Bins")
Out[326]: Text(0.5,1,'Distribution of the New Number of Years To Pay Off Loans in Bins')
```


Out[327]: 0.7602

76.02% of the simulations are able to pay off the loan in 10 years.