Lecture 19. Solving Recurrence Relations

Recursive Thinking

In the previous lecture note, we have seen some examples how to think recursively about a problem by describing it with a recurrence relation. Remember that any recurrence relation has two parts: a **base case** that describes some initial conditions, and a **recursive case** that describes a **future value in terms of previous values**. Armed with this way of thinking, we can model other problems using recurrence relations.

Recursive Thinking

In the previous lecture note, we have seen some examples how to think recursively about a problem by describing it with a recurrence relation. Remember that any recurrence relation has two parts: a **base case** that describes some initial conditions, and a **recursive case** that describes a **future value in terms of previous values**. Armed with this way of thinking, we can model other problems using recurrence relations.

Example 19.1. Ahmed lends money at outrageous rates of interest. He demands to be paid 10% interest *per week* on a loan, compounded weekly. Suppose you borrow 500 Dhs from him. Let M(n) = the money you owed at n-th week.

- (a) Find the recurrence relation for M(n).
- (b) If you wait four weeks to pay him back, how much will you owe?

Recursive Thinking

In the previous lecture note, we have seen some examples how to think recursively about a problem by describing it with a recurrence relation. Remember that any recurrence relation has two parts: a **base case** that describes some initial conditions, and a **recursive case** that describes a **future value in terms of previous values**. Armed with this way of thinking, we can model other problems using recurrence relations.

Example 19.1. Ahmed lends money at outrageous rates of interest. He demands to be paid 10% interest *per week* on a loan, compounded weekly. Suppose you borrow 500 Dhs from him. Let M(n) = the money you owed at n-th week.

- (a) Find the recurrence relation for M(n).
- (b) If you wait four weeks to pay him back, how much will you owe?

Answer:

$$M(n) = \begin{cases} 500 & \text{if } n = 0 \\ 1.10 M(n-1) & \text{if } n > 0 \end{cases}$$
 $M(4) = 732.05

Practice 19.2. Find a closed-form solution for the recurrence relation from

$$M(n) = \begin{cases} 500 & \text{if } n = 0\\ 1.10 M(n-1) & \text{if } n > 0 \end{cases}$$

Practice 19.2. Find a closed-form solution for the recurrence relation from

$$M(n) = \begin{cases} 500 & \text{if } n = 0\\ 1.10 M(n-1) & \text{if } n > 0 \end{cases}$$

Answer:
$$M(n) = 500(1.10)^n$$

Polynomial sequences: Using differences

Finding a closed-form solution for P(n) can be thought of as guessing a formula for the sequence P(0), P(1), P(2),

Polynomial sequences: Using differences

Finding a closed-form solution for P(n) can be thought of as guessing a formula for the sequence P(0), P(1), P(2),

One Idea. If we knew that

$$P(n) =$$
 a polynomial function of n

then we can detect such a sequence by looking at the differences between terms.

Polynomial sequences: Using differences

Finding a closed-form solution for P(n) can be thought of as guessing a formula for the sequence P(0), P(1), P(2),

One Idea. If we knew that

$$P(n) =$$
 a polynomial function of n

then we can detect such a sequence by looking at the differences between terms. Given any sequence,

$$a_0, a_1, a_2, ..., a_{n-1}, a_n$$

the differences

$$a_1 - a_0, a_2 - a_1, a_3 - a_2, ..., a_n - a_{n-1}$$

form another sequence, called the sequence of differences.

Given any sequence,

$$a_0, a_1, a_2, ..., a_{n-1}, a_n$$

the differences

$$a_1 - a_0, a_2 - a_1, a_3 - a_2, ..., a_n - a_{n-1}$$

form another sequence, called the sequence of differences.

- A linear sequence $a_n = An + B$ will have a constant sequence of differences (because a line has constant slop).
- A quadratic sequence $a_n = An^2 + Bn + C$ will have a linear sequence of differences.
- a cubic sequence $a_n = An^3 + Bn^2 + Cn + D$ will have a quadratic sequence of differences, etc.
- If we eventually end up with a constant sequence, then the original sequence is given by a polynomial function.
- The degree of the conjectured polynomial is the number of times we had to calculate the sequence of differences.

$$H(n) = \begin{cases} 1 & \text{if } n = 1 \\ H(n-1) + 6n - 6 & \text{if } n > 1 \end{cases}$$

$$H(n) = \begin{cases} 1 & \text{if } n = 1 \\ H(n-1) + 6n - 6 & \text{if } n > 1 \end{cases}$$

Answer. $H(n) = 3n^2 - 3n + 1$ is a good candidate for a closed-form solution.

Remark. The result of these procedures is still only a guess. To be sure that our guess is right, we need to prove that the formula matches the recurrence relation for all n.

$$H(n) = \begin{cases} 1 & \text{if } n = 1 \\ H(n-1) + 6n - 6 & \text{if } n > 1 \end{cases}$$

Answer. $H(n) = 3n^2 - 3n + 1$ is a good candidate for a closed-form solution.

Remark. The result of these procedures is still only a guess. To be sure that our guess is right, we need to prove that the formula matches the recurrence relation for all n.

Practice 19.4. Solve the recurrence relation $a_n = a_{n-1} + n$ with initial term $a_0 = 4$.

$$H(n) = \begin{cases} 1 & \text{if } n = 1 \\ H(n-1) + 6n - 6 & \text{if } n > 1 \end{cases}$$

Answer. $H(n) = 3n^2 - 3n + 1$ is a good candidate for a closed-form solution.

Remark. The result of these procedures is still only a guess. To be sure that our guess is right, we need to prove that the formula matches the recurrence relation for all n.

Practice 19.4. Solve the recurrence relation $a_n = a_{n-1} + n$ with initial term $a_0 = 4$.

Answer. $a_n = \frac{n(n+1)}{2} + 4$ for $n \ge 0$.

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \cdots + r_k a_{n-k}$$

where $r_1, r_2, ..., r_k$ are real numbers and $r_k \neq 0$ with k < n. This recurrence includes k initial conditions, $a_0 = \alpha_0, a_1 = \alpha_1, ..., a_k = \alpha_k$.

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \cdots + r_k a_{n-k}$$

where $r_1, r_2, ..., r_k$ are real numbers and $r_k \neq 0$ with k < n. This recurrence includes k initial conditions, $a_0 = \alpha_0, a_1 = \alpha_1, ..., a_k = \alpha_k$.

• **Linear**: Each term a_i in the relation appears with an exponent of 1.

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \cdots + r_k a_{n-k}$$

where $r_1, r_2, ..., r_k$ are real numbers and $r_k \neq 0$ with k < n. This recurrence includes k initial conditions, $a_0 = \alpha_0, a_1 = \alpha_1, ..., a_k = \alpha_k$.

- **Linear**: Each term a_i in the relation appears with an exponent of 1.
- **Homogeneous**: The relation contains no additional terms that directly depend on n (i.e., no external or independent functions of n).

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \cdots + r_k a_{n-k}$$

where $r_1, r_2, ..., r_k$ are real numbers and $r_k \neq 0$ with k < n. This recurrence includes k initial conditions, $a_0 = \alpha_0, a_1 = \alpha_1, ..., a_k = \alpha_k$.

- **Linear**: Each term a_i in the relation appears with an exponent of 1.
- **Homogeneous**: The relation contains no additional terms that directly depend on n (i.e., no external or independent functions of n).
- **Degree** k: Each term a_n is defined by the previous k terms in the sequence.

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \cdots + r_k a_{n-k}$$

where $r_1, r_2, ..., r_k$ are real numbers and $r_k \neq 0$ with k < n. This recurrence includes k initial conditions, $a_0 = \alpha_0, a_1 = \alpha_1, ..., a_k = \alpha_k$.

- **Linear**: Each term a_i in the relation appears with an exponent of 1.
- Homogeneous: The relation contains no additional terms that directly depend on n (i.e., no external or independent functions of n).
- **Degree** k: Each term a_n is defined by the previous k terms in the sequence.

Example 19.6. Linear and/or Homogeneous?

(a)
$$M_n = (1.1)M_{n-1}$$
 (b) $F_n = F_{n-1} + F_{n-2}$ (c) $a_n = a_{n-1} + a_{n-2}^2$ (d) $h_n = 2h_{n-1} + 1$

Linear Homogeneous Recurrence Relations **Definition 19.5**. A linear homogeneous recurrence relation of degree k with constant

coefficients is a recurrence relation of the form

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \cdots + r_k a_{n-k}$$

where $r_1, r_2, ..., r_k$ are real numbers and $r_k \neq 0$ with k < n. This recurrence includes k initial conditions, $a_0 = \alpha_0, a_1 = \alpha_1, ..., a_k = \alpha_k$.

- **Linear**: Each term a_i in the relation appears with an exponent of 1.
- **Homogeneous**: The relation contains no additional terms that directly depend on n (i.e., no external or independent functions of n).
- **Degree** k: Each term a_n is defined by the previous k terms in the sequence.

Example 19.6. Linear and/or Homogeneous?

(a)
$$M_n = (1.1)M_{n-1}$$
 (b) $F_n = F_{n-1} + F_{n-2}$ (c) $a_n = a_{n-1} + a_{n-2}^2$ (d) $h_n = 2h_{n-1} + 1$

(a) linear homogeneous recurrence relation of degree 1, (b) linear homogeneous recurrence relation of degree 2, (c) not linear, (d) not homogeneous,

• The basic approach is to look for solutions of the form $a_n = x^n$, where x is a constant.

- The basic approach is to look for solutions of the form $a_n = x^n$, where x is a constant.
- $a_n = x^n$ is a solution to the recurrence relation

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \cdots + r_k a_{n-k}$$

if and only if

- The basic approach is to look for solutions of the form $a_n = x^n$, where x is a constant.
- $a_n = x^n$ is a solution to the recurrence relation

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \cdots + r_k a_{n-k}$$

if and only if

$$x^{n} = r_{1}x^{n-1} + r_{2}x^{n-2} + \cdots + r_{k}x^{n-k}$$

- The basic approach is to look for solutions of the form $a_n = x^n$, where x is a constant.
- $a_n = x^n$ is a solution to the recurrence relation

$$a_n = r_1 a_{n-1} + r_2 a_{n-2} + \cdots + r_k a_{n-k}$$

if and only if

$$x^{n} = r_{1}x^{n-1} + r_{2}x^{n-2} + \cdots + r_{k}x^{n-k}$$

• Rearranging terms leads to the characteristic equation:

$$x^{n} - r_{1}x^{n-1} - r_{2}x^{n-2} - \cdots - r_{k}x^{n-k} = 0.$$

The characteristic equation:

$$x^{n} - r_{1}x^{n-1} - r_{2}x^{n-2} - \cdots - r_{k}x^{n-k} = 0.$$

Theorem 19.7. The characteristic equation of the recurrence relation $a_n = r_1 a_{n-1} + r_2 a_{n-2}$ is

$$x^2 - r_1 x - r_2 = 0.$$

If the characteristic equation has two distinct roots, x_1 and x_2 , then

$$a_n = px_1^n + qx_2^n$$
 for some p, q

is the explicit formula for the sequence. Here, p and q depend on the initial conditions.

Example 19.8. Find an explicit formula for the sequence defined by $a_n = 7a_{n-1} - 10a_{n-2}$ with $a_0 = 2$ and $a_1 = 3$.

The characteristic equation:

$$x^{n} - r_{1}x^{n-1} - r_{2}x^{n-2} - \cdots - r_{k}x^{n-k} = 0.$$

Theorem 19.7. The characteristic equation of the recurrence relation $a_n = r_1 a_{n-1} + r_2 a_{n-2}$ is

$$x^2 - r_1 x - r_2 = 0.$$

If the characteristic equation has two distinct roots, x_1 and x_2 , then

$$a_n = px_1^n + qx_2^n$$
 for some p, q

is the explicit formula for the sequence. Here, p and q depend on the initial conditions.

Example 19.8. Find an explicit formula for the sequence defined by $a_n = 7a_{n-1} - 10a_{n-2}$ with $a_0 = 2$ and $a_1 = 3$.

Answer:
$$a_n = \frac{7}{3}2^n - \frac{1}{3}5^n$$
.

Theorem 19.7. If the characteristic equation

$$x^2 - r_1 x - r_2 = 0$$

of the recurrence relation $a_n = r_1 a_{n-1} + r_2 a_{n-2}$ has two distinct roots, x_1 and x_2 , then

$$a_n = px_1^n + qx_2^n$$

where p and q depend on the initial conditions, is the explicit formula for the sequence.

Practice 19.9. (Fibonacci Sequence) Solve the recurrence relation $f_n = f_{n-1} + f_{n-2}$ with the initial conditions $f_0 = 0$ and $f_1 = 1$.

Theorem 19.7. If the characteristic equation

$$x^2 - r_1 x - r_2 = 0$$

of the recurrence relation $a_n = r_1 a_{n-1} + r_2 a_{n-2}$ has two distinct roots, x_1 and x_2 , then

$$a_n = px_1^n + qx_2^n$$

where p and q depend on the initial conditions, is the explicit formula for the sequence.

Practice 19.9. (Fibonacci Sequence) Solve the recurrence relation $f_n = f_{n-1} + f_{n-2}$ with the initial conditions $f_0 = 0$ and $f_1 = 1$.

Answer: $f_n = \frac{\phi^n - (1-\phi)^n}{\sqrt{5}}$, where $\phi = \frac{1+\sqrt{5}}{2}$. (Note that $\phi \approx 1.618~033~988~749...$ is a golden ratio.)

Theorem 19.10. If the characteristic equation

$$x^2 - r_1 x - r_2 = 0$$

of the recurrence relation $a_n = r_1 a_{n-1} + r_2 a_{n-2}$ has a single root, x, then

$$a_n = px_1^n + qnx_2^n$$

where p and q depend on the initial conditions, is the explicit formula for the sequence.

Practice 19.11. Solve the recurrence relation $b_n = 6b_{n-1} - 9b_{n-2}$ with the initial conditions $b_0 = 1$ and $b_1 = 4$.

Theorem 19.10. If the characteristic equation

$$x^2 - r_1 x - r_2 = 0$$

of the recurrence relation $a_n = r_1 a_{n-1} + r_2 a_{n-2}$ has a single root, x, then

$$a_n = px_1^n + qnx_2^n$$

where p and q depend on the initial conditions, is the explicit formula for the sequence.

Practice 19.11. Solve the recurrence relation $b_n = 6b_{n-1} - 9b_{n-2}$ with the initial conditions $b_0 = 1$ and $b_1 = 4$.

Answer: $b_n = 3^n + \frac{1}{3}n3^n$

Although we will not consider examples more complicated than these, this characteristic root technique can be applied to much more complicated recurrence relations.