SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Evidenčné číslo: FEI-5384-64329

LÚŠTENIE HISTORICKÝCH ŠIFIER NA GRIDE DIPLOMOVÁ PRÁCA

Študijný program: Aplikovaná informatika

Číslo študijného odboru: 2511

Názov študijného odboru: 9.2.9 Aplikovaná informatika

Školiace pracovisko: Ústav informatiky a matematiky

Vedúci záverečnej práce: Ing. Eugen Antal

Bratislava 2017 Martin Eliáš

Obsah

Úvod				1
1	Klasické šifry			2
	1.1	Históri	ia	2
	1.2	Charal	kteristika	3
	1.3	Útoky		4
		1.3.1	Hrubou silou	4
		1.3.2	Slovníkový útok	5
		1.3.3	Genetické a evolučné algoritmy	6
		1.3.4	Iné	6
Záver				7
Zo	Zoznam použitej literatúry			

$\mathbf{\acute{U}vod}$

Tu bude krasny uvod s diakritikou atd. A mozno aj viac riadkovy uvod.

1 Klasické šifry

V tejto kapitole sa budeme zaoberať históriou a stručným prehľadom klasických šifier. Spomenieme si aj niektoré základné útoky na klasické šifry.

1.1 História

História klasických šifier a utajovania písomného textu je pravdepodobne tak stará ako samotné písmo. Písmo, v podobe akej ho poznáme a používame dnes, pravdepodobne pochádza asi spred 3000 rokov pred Kristom a za jeho objaviteľov sa považujú Feničania. V niektorých prípadoch predstavovalo už použitie písma utajenie samotného textu. Príkladom môžu byť Egyptské hieroglyfy alebo klinové písmo používané v Mezopotámii. Iným príkladom môžu byť semitské jazyky, ktoré sú charakteristické používaním iba spoluhlások bez použitia samohlások, pretože tie zaviedli až Aremejci a po nich následné Gréci aby pomocou nich boli schopný rozlíšiť jazyky [1]. Aj diakritika ako taká má schopnosť rozlišovať významy slov, čo si ale až do 15.storočia nikto nevšímal, až pokiaľ ju Arabi nezačali používať pri kryptoanalýze rôznych šifier.

Z historického hľadiska nie je možné presne zoradiť ako jednotlivé šifry vznikali, pretože súčasne vznikali na viacerých miestach sveta. Komunikácia a s ňou spojené sírenie informácii nebolo také rýchle ako dnes, až do roku 1440 keď Johan Guttenberg vynašiel kníhtlač, čo zjednodušilo výmenu a uchovávanie informácii.

Ku kryptografii ako aj k rôznym iným vedným disciplínam prispelo v minulosti staré Grécko. Jedným z najvýznamnejších príspevkov starých Grékov bolo široké rozšírenie abecedy a písomného prejavu. Gréci písmo prebrali od Feničanov, ktorí na rozdiel od Egypťanov používali jednoduchšie písmo.

V Európe vďaka rozšíreniu abecedy začali vznikať aj prvé šifry, medzi ktoré patrí napríklad Cézarova šifra, ktorá vznikla v Rímskej ríši. Iným príkladom môže byť transpozičná šifra skytalé, ktorá bola používaná v Sparte.

Pád Rímskej ríše spôsobil úpadok kryptografie, ktorý trval až do obdobia stredoveku. Typickým znakom kryptografie v tomto období bolo napríklad písanie odzadu, alebo vertikálne, používanie cudzích jazykov, alebo vynechávanie samohlások [1].

V stredoveku, kvôli bojom medzi pápežmi Ríma a Avignonu, bola kryptografia zdokonalená a začali sa používať rôzne kódy a nomenklátory. Ich charakteristickým znakom bolo zamieňanie písmen alebo nahradzovanie mien a titulov osôb v správach. V tomto období zabezpečovanie utajenia správ pokročilo až na takú úroveň, že na doručovanie správ boli použitý špeciálne vycvičení kuriéri. V prvej polovici 20. storočia ľudia, ktorí pracovali v oblasti utajovanej komunikácie verili, že na to aby bola zabezpečená utajovaná komunikácia musí byť utajený kľúč a okrem neho aj šifrovací algoritmus. Toto ale odporovalo Kerckhoffovmu princípu, ktorý hovorí že: "Bezpečnosť šifrovacieho algoritmu musí závisieť výlučne na utajení kľúča a nie algoritmu". Okrem toho sformuloval aj niekoľko požiadaviek na kryptografický systém, medzi ktoré patria:

- 1. systém musí byť teoreticky, alebo aspoň prakticky bezpečný
- 2. narušenie systému nesmie priniesť ťažkosti odosielateľovi a adresátovi
- 3. kľúč musí byť ľahko zapamätateľný a ľahko vymeniteľný
- 4. zašifrovaná správa musí byť prenášateľná telegrafom
- 5. šifrovacia pomôcka musí byť ľahko prenosná a ovládateľná jedinou osobou
- 6. systém musí byť jednoduchý, bez dlhého zoznamu pravidiel, nevyžadujúci nadmerné sústredenie

Tieto princípy sú popísané v pôvodnej publikácii od Kerckhoffa [2].

Existovala ale aj iná skupina vedcov, medzi ktorých patril aj Lester S. Hill, ktorý si uvedomoval že kryptológia je úzko spätá z matematikou. V roku 1941 si na Hillových prácach zakladal A. Adrian Albert, ktorý pochopil, že v šifrovaní je možné použiť viacero algebraických štruktúr. Neskôr toto všetko usporiadal a zdokonalil Claude E. Shannon, čo možno považovať za ukončenie éry klasických šifier [1].

1.2 Charakteristika

Na rozdiel od moderných šifier, ktoré sa používajú dnes, sú tie klasické rozdielne v niektorých hlavných črtách. Môžeme spomenúť niekoľko:

- Šifrovanie a dešifrovanie klasickej šifry možno realizovať zväčša pomocou papiera a ceruzky alebo nejakej mechanickej pomôcky.
- V dnešnej dobe aj vďaka rozšírenému použitiu počítačov stratila väčšina týchto algoritmov svoj význam.
- Utajuje sa algoritmus a aj kľúč a neuplatňuje sa Kerckhoffov princíp.
- Na rozdiel od moderných šifier sa používajú malé abecedy.

- V klasických šifrách je otvorený text, zašifrovaný text a kľúč v abecede reálneho jazyka, pričom v moderných šifrách sa používa binárne kódovanie.
- Na klasické šifry sa zväčša dá použiť štatistická analýza.

Z spomenutých charakteristík existujú aj výnimky. Napríklad pri Vigenerovej šifre sa algoritmus neutajoval. To platí aj pre Vernamovu šifru, ktorá okrem toho používa navyše binárne znaky. Vernamova šifra je perfektne bezpečná v podľa Shannonovej teórie [1].

Klasické šifry môžeme rozdeliť do niekoľkých základných kategórii:

- Substitučné šifry. V prípade že šifra permutuje znaky zdrojovej abecedy, hovoríme o monoalfabetickej šifre. Ako príklad možeme uviesť šifru Atbaš prípadne Cézarovu šifru, alebo iné. V inom prípade ak sa aplikuje viacero permutácii podľa polohy znaku v otvorenom texte, tak hovoríme o polyalfabetickej šifre. Príkladom je Vigenerova šifra. Daľsím prípadom je polygramová šifra, kde sa z otvoreného textu najprv vytvoria bloky, na ktoré sa potom aplikuje nejaká permutácia.
- Transpozičné šifry. Transpozičné šifry sú vlastne blokové šifry, ktoré pri šifrovaní a dešifrovaní aplikujú pevne zvolenú permutáciu na každý blok otvoreného/zašifrovaného textu. Od polyalfabetickej šifry sa líši v poradí vykonávania operácii.
- Homofónne šifry. Homofónne šifry sú šifry, ktoré majú znáhodnený zašifrovaný text. Tieto šifry sa snažia zabrániť frekvenčnej analýze textu.
- Substitučno-permutačné šifry. Ak aplikujeme viacero substitučný a permutačných šifier na otvorený text tak hovoríme o substitučno-permutačných šifrách. Šifrovanie prebieha tak, že blok otvoreného textu sa rozdelí na menšie bloky, na ktoré je potom aplikovaná substitúcia, a permutácia, ktorá sa aplikuje na celý blok. Substitúcia zabezpečuje konfúziu a permutácia difúziu.

1.3 Útoky

1.3.1 Hrubou silou

Útok hrubou silou (bruteforce) je typ útoku, ktorý sa snaží zlomiť kľúč tak, že sa prehľadáva celý priestor kľúčov. Aby bol takýto útok možný a prakticky realizovateľný, priestor prehľadávaných kľúčov nesmie byť vačší ako hranica daná dostupnými prostriedkami alebo časom potrebným na riešenie.

Pre ilustráciu si uveďme jednoduchý príklad. Majme zašifrovaný text "VECDOXSORSC-DYBSMUIMRCSPSOBXKQBSNO", ktorý vieme že bol zašifrovaný šifrou podobnou Cézarovej šifre. Pre získanie otvoreného textu potrebujeme vyskúšať všetkých 26 možností posunov, čo je v tomto prípade kľúč, tak aby sme dostali zmysluplný text.

klúč 1

VECDOXSORSCDYBSMUIMRCSPSOBXKQBSNO WFDEPYTPSTDEZCTNVJNSDTQTPCYLRCTOP

klúč 2

VECDOXSORSCDYBSMUIMRCSPSOBXKQBSNO XGEFQZUQTUEFADUOWKOTEURUQDZMSDUPQ

kľúč 3

VECDOXSORSCDYBSMUIMRCSPSOBXKQBSNO YHFGRAVRUVFGBEVPXLPUFVSVREANTEVQR

... // ďaľšie klúče 4..26

Po prezretí všetkých možností by sme zistili že kľúč 16 sa dešifruje na "LUSTENIE-HISTORICKYCHSIFIERNAGRIDE".

1.3.2 Slovníkový útok

Slovníkový útok narozdiel od útoku hrubou silou skúša iba niektoré možnosti z vopred pripraveného slovníka kľúčov.

Ukážme si ako by v príncípe mohol fungovať slovníkový útok na šifru Vigenere. Nech zašifrovaný text je "SYKESUMWSWZXGCWJOQNVZMXTSYRSRFPHW". Útočník má k dispozícii slovník slov "ABC, SOMAR, HESLO, …".

kľúč JANO

SYKESUMWSWZXGCWJOQNVZMXTSYRSRFPHW JYXQJUZIJWMJXCJVFQAHQMKFJYEEIFCTN

kľúč SOMAR

SYKESUMWSWZXGCWJOQNVZMXTSYRSRFPHW AKYEBCYKSFHJUCFRAENEHYLTBGDGROXTK

klúč HESLO

SYKESUMWSWZXGCWJOQNVZMXTSYRSRFPHW LUSTENIEHISTORICKYCHSIFIERNAGRIDE

- 1.3.3 Genetické a evolučné algoritmy 1.3.4 Iné

Záver

Conclusion is going to be where? Here.

Zoznam použitej literatúry

- 1. GROŠEK, O., VOJVODA, M. a ZAJAC, P. *Klasické šifry*. Slovenská technická univerzita, 2007. ISBN 978-80-227-2653-5.
- 2. KERCKHOFFS, A. a CONGRESS), George Fabyan Collection (Library of. La cryptographie militaire, ou, Des chiffres usités en temps de guerre: avec un nouveau procédé de déchiffrement applicable aux systèmes à double clef. Librairie militaire de L. Baudoin, 1883. Extrait du Journal des sciences militaires.