

Exchange of experience of vector tiles service: pros and cons

Laura Alemany Gómez

<u>laura.alemany@cnig.es</u>
Centro Nacional de Información Geográfica (<u>CNIG</u>)

Spain

The team

Exchange of experience of vector tiles service: pros and cons

- Emilio López Romero
- Paloma Abad Power
- Laura Alemany Gómez
- Jose Maria García Malmierca
- Álvaro Bachiller

Index

Exchange of experience of vector tiles service: pros and cons

- 1) Introduction What is Vector Tiles Service
- 2) Pros & cons VT
- 3) Creating a VT with Geoserver

Data: Download, simplify, PostGIS Gridsets

What you need - Architecture Layers

Data stores Group layers

Styles Tile layers

- 4) Comparing with other technologies
- 5) Client-side: Simbolizing VT (.json)
- 6) Results
- 7) Visualization Maputnik

Vector Tiles

What is a Vector Tiles Service?

 A vector representation of geographic data covering a spatially contiguous and rectangular extent

Vector Tiles

WMTS and Vector Tiles

Vector Tiles

WMTS and Vector Tiles Service

	ВОТН
Belon	g to view services. Intended for visualization
	Based on tiles technology
Ca	n be served through the same interfaces
WMTS	Vector Tiles Service
Deliver raster images	Deliver geographic data in a vector format split into squared tiles
Encoded in png, jpg	Geojson, topojson, pbf
+ satellite map	+ streets with labels available in many languages

VT – Pros & Cons

Vector Tiles Services

PROS:

- Smaller data size and therefore lower disk space requirement:

According to Mapbox 75% less

- The visualization is on Client side \rightarrow More flexibility in application development
- Client (not the server) decides on styling: Font, if an element should be rendered...
- Geometries are delivered to the client.
- Only need to tile data once to have multiple styled maps
- Drawn vector can look better on high-resolution displays
 Allows overzoom without loosing resolution

CONS:

- The map is rendering on the client side and requires a bit more powerful hardware
 Nowadays this is not a problem
- Data is generalized and therefore not suitable for direct edits

Why Geoserver?

PROS

- Easy to learn and use. It has a graphic interface.
- No need of high knowledge of programming
- Most of our services use Geoserver and we know the technology
- It has a big community

CONS

Less customisable and configurable than others.

0) DATA: Sources and conversions

1) Download Official Geographical Information

- Transport Network (CNIG)
- Hidrographic Network (CNIG)
- Buildings (D.G. Cadastre)
- Addresses(CNIG)
- Geographical names(CNIG)
- Administrative Units (CNIG, IHM)
- Forestal Map (Ministry of Environment)
- Protected Sites (Ministry of Environment)

Simplification

Keep only fields needed to identify, classify and simbolize features.

Such as name, class, ref, geometry...

Import to PostGIS

- Easier management
- Higher performance

0) What you need

Vector Tiles Extension for GeoServer (<u>Link</u>)

- GeoWebCache (Java)
 - a) Integrated with GeoServer
 - b) Also available as a standalone product
 - Tiling Server
 - Proxy between a map client and a map server
 - Caching and storing tiles as they are requested

Workflow - Architecture

If GWC has the tile → It gives to the viewer

If not → Ask Geoserver, save it and give it to the viewer

1) Data Stores

Uncheck "Support on the fly geometry simplification" because we want **raw data**.

If you don't uncheck it, Geoserver simplify the geometry on his own

2) Data Styles

2) Data Styles → 1 per layer

SLD

Styles defined in Geoserver are **meaningless because they change with the client-side styles** (defined in the **.json file**)

We can use it for WMTS

You can raster vector tiles using **Mapnik**The same style for WMTS

Why is it so important?

GeoWebCache uses SLD filters for cahing tiles

The visualizer will process all data unless you filter it in the style you define in Geoserver

2) Data Styles → 1 per layer

SLD

What do you have to define?

- 1) Attribute filter (Also in BD)
- 2) Max Min zoom / level

Example: Tunnel

```
Nombre del estilo

rt0-autopista_lin

rt0-autovia_lin

rt0-carretera_nacional_lin
```

```
tsld:Rule><!--Autovia E 1:150K SUB-->
 <sld:Name>Autovia</sld:Name>
 <sld:Title>Autovia E 1:150K</sld:Title>
 <sld:Abstract>Linea gris #CDC0B7 con ancho de 2 v borde 1</sld:</p>
 <ogc:Filter>
   <ogc:PropertyIsEqualTo>
       <ogc:PropertyName>tunel</ogc:PropertyName>
       <ogc:Literal>T</ogc:Literal>
   </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <sld:MinScaleDenominator>30000</sld:MinScaleDenominator>
 <sld:MaxScaleDenominator>150000</sld:MaxScaleDenominator>
 <sld:LineSymbolizer>
   <sld:Stroke>
     <sld:CssParameter name="stroke">#B5A195</sld:CssParameter>
     <sld:CssParameter name="stroke-width">3</sld:CssParameter>
   </sld:Stroke>
 </sld:LineSymbolizer>
 <sld:LineSymbolizer>
   <sld:Stroke>
     <sld:CssParameter name="stroke">#CDC0B7</sld:CssParameter>
     <sld:CssParameter name="stroke-width">2</sld:CssParameter>
   </sld:Stroke>
```


3) Gridsets

Gridset	CRS	Tile Dimensions	Zoom levels		
VT-EPSG:3857 - 512	EPSG:3857	512 x 512		0	256x256
VT-EPSG:3857 - 256	EPSG:3857	256 x 256			•••
VT-EPSG:3857 - 2048	EPSG:3857	2048 x 2048			
VT-EPSG:3857 - 1024	EPSG:3857	1024 x 1024			•••
				21	2048x2048

3) Gridsets

Gridset	CRS	Tile Dimensions
VT-EPSG:3857 - 512	EPSG:3857	512 x 512

https://epsg.io/3857

WGS 84 / Pseudo-Mercator -- Google Maps, OSM, Bing, ArcGIS MapBox is done for visualizing tiles in EPSG:3857

4) Layers

4) Layers

SLD Apply style for each layer

Server defined legends are meaningless with vector tiles because they change with the clientside styles

5) Layer groups

Datos	Publicación	Cacheado de Teselas
Nombre		
rt0		
Título		
Transport Net	twork v0	

Capas

ORDER OF LAYERS

- WMTS → Very important
- Vector Tiles Service → Don't mind
 .json defines the order

	Orden de dibujo	Сара	Estilo por defecto	Estilo	Elimin
1	1	vt_rt:aerodromo_pol		rt0-aerodromos_pol	
2	1 1	vt_rt:aerodromo_pto		rt0-aerodromos_pto	
3	1 1	vt_rt:autopista_lin		rt0-autopista_lin	
4	1 1	vt_rt:autovia_lin	•	rt0-autovia_lin	
5	1 1	vt_rt:carretera_nacional_lin		rt0-carretera_nacional_lin	
6	1 1	vt_rt:ferrocarril_lin		rt0-ferrocarril_lin	
7	1 1	vt_rt:ferrocarril_pk_pto		rt0-ferrocarril_pk_pto	
8	1 1	vt_rt:ferrocarril_pol		rt0-ferrocarril_pol	
9	1 1	vt_rt:carretera_primaria_lin		rt0-carretera_primaria_lin	
10	1 1	vt_rt:carretera_secundaria_lin		rt0-carretera_secundaria_lin	

5) Layer groups

Add the GridSets you want the service has associated

GWC can only cache these GridSets

5) Layer groups

What is the content of a Tile (pbf)?

.pbf is a binary format

```
Subjaksina
Sundater (* Sudenoclass" aga
Sundake (* Sudenoclass" aga
Landcover (* Sudenoclass" aga
Sundake (* Sudenoclass) aga
Sundake (* Suden
```



```
Cacheado de Teselas
                 "type": "FeatureCollection",
                 "features": [
                         "type": "Feature",
                         "geometry": {
                             "type": "Polygon",
                             "coordinates": [
                                         2.0841461420059204,
                                         41.3572947924726
              Geometries
                                         2.08415687084198,
                                         41.35727667298437
                         "properties": {
                             "class": "lake",
                             "vt laver": "water"
                         "id": 2
                         "type": "Feature",
                         "geometry": {
                             "type": "Polygon",
                             "coordinates": [
                                         2.086804211139679,
                                         41.3596522961968
                                         2.087574005126953,
                                         41.35787662669159
                                         2.087574005126953,
                                         41.35706527858204
```


5) Layer groups

What is the content of a Tile (pbf)?

http://geojson.io/

Inspire Helsinki 2019

You can see it:

Cacheado de Teselas "type": "FeatureCollection", "features": ["type": "Feature", "geometry": { "type": "Polygon", "coordinates": [2.0841461420059204, 41.3572947924726 **Geometries** 2.08415687084198, 41.35727667298437 "properties": { "class": "lake", "vt laver": "water" "id": 2 "type": "Feature", "geometry": { "type": "Polygon", "coordinates": [2.086804211139679, 41.3596522961968 2.087574005126953, 41.35787662669159 2.087574005126953, 41.35706527858204

6) Tile Layers (pre-caching)

Bounding box

Default: All World

Better specify the BBOX (of Spain)

Comparing technologies

DATA:	TILES GENERATION		CEDVICE
Transport Network	Software	Result	SERVICE
geojson – seq files Allows tippecanoe to distribute tasks. Uses all available cores	Tippecanoe (.ini)	MBTiles (SQLite + .pbf) 1 per zoom level	node.js own development
DB Postgis	GeoServer GeoWebCache	.pbf	GeoWebCache

https://tms-redes-

 $\underline{transporte.idee.es/demoVectorTiles/comparador/comparador.html \#4.8/36.555/-6.927}$

Workflow - architecture

If GWC has the tile → It gives to the viewer

If not → Ask Geoserver, save it and give it to the viewer

/var/opt/tomcat/webapps/geoserver/data/gwc/VT_RT, vt_rt_rt0

Nombre

Ext

```
.json
```

```
EPSG 3857 11
                                                      VT-EPSG_3857_-_1024_06
"version": 8, → Mapbox style specification
                                                       VT-EPSG_3857_-_1024_10
"name": "Geoserver", → style name
                                                       VT-EPSG_3857_-_1024_11
                                                       VT-EPSG_3857_-_1024_12
"metadata": {
                                                       VT-EPSG_3857_-_1024_13
    "mapbox:autocomposite": false,
                                                       VT-EPSG 3857 - 1024 14
    "mapbox:type": "template",
    "maputnik:renderer": "mbgljs",
                                                       VT-EPSG_3857_-_1024_15
    "openmaptiles:version": "3.x"
                                                       VT-EPSG_3857_-_1024_16
                                                       VT-EPSG_3857_-_1024_17
                                                       VT-EPSG_3857_-_1024_18
"sources": {
    "rt0-1024": { → "rt0-512", "rt0-1024"...
        "type": "vector",
        "scheme": "tms", → GeoWebCache ZXY
                                                                             GridSet
                                                  Workspace:layer group
        "tiles": [
Template
          "https://tms-redes-transporte.idee.es/rt/vt rt:rt0@VT-EPSG:3857-
for VT
           1024@pbf/{z}/{x}/{y}.pbf"
        "minzoom": 06,
        "maxzoom": 18
"sprite": "mapbox://sprites/mapbox/basic-v9",
"glyphs": "mapbox://fonts/mapbox/{fontstack}/{range}.pbf",
```

.json

SPRITE:

```
"sprite": "mapbox://sprites/mapbox/basic-v9",
```

An individual image that has all the icons included in a style.

For Mapbox: + .png with images

+ .json with name and relative cordinates

Advantages:

- 1 image for all icons → Less requests → Higher performance

GLYPHS:

```
"glyphs": "mapbox://fonts/mapbox/{fontstack}/{range}.pbf",
```

For texts

- fontstack: Open Sans Bold

.json

```
"layers": [
      "id": "area de servicio pol-fill-14-->18",
       "type": "fill",
       "source": "rt0-512",
       "source-layer": "area_de_servicio_pol",
       "paint": {
          "fill-color": "#DCDCDC",
          "fill-opacity": 1.0,
          "fill-outline-color": "#ccccc"
       "minzoom": 14
       "id": "via_servicio_lin_0-line-14-->18",
       "type": "line",
       "filter":[
         "all",
          ["==", "tunel", "F"]
       "source": "rt0-512",
       "source-layer": "via_servicio_lin",
```

.json

```
"id": "portal_pto-symbol-17-->18",
"type": "symbol",
"source": "rt0-256",
"source-layer": "portal_pto",
"layout": {
   "text-field": "{nombre}",
   "text-size": 8,
   "text-padding": 10,
   "text-font": [
      "Lato Light"
"paint": {
   "text-color": "#666565",
   "text-opacity": 1.0,
   "text-halo-color": "#ffffff",
   "text-halo-width": 2.0,
   "text-halo-blur": 1.0
},
```

Results

Transport Network JSON:

https://tms-redes-transporte.idee.es/demoVectorTiles/style/style-full-

geoserver vtRT-GS.json

Results

Transport Network JSON:

https://tms-redes-transporte.idee.es/demoVectorTiles/style/style-full-geoserver_vtRT-GS.json

JSON for Transport Network, Buildings, Hydrography, etc:

- https://vts.larioja.org/style/mapa-base-igo-v1.json (Official information)
- https://vts.larioja.org/style/mapa-base-vector-v1.json (OSM)
- https://vts.larioja.org/style/mapa-oscuro-vector-v1.json
- https://vts.larioja.org/style/mapa-hibrido-v1.json

WORKLOAD

Visualization - Client

TOOLS, SOFTWARE

- MapBoxGL JS
- Open Layers (Libraries)
- Leaflet (Libraries)

SEE RESULTS & MODIFY THE STYLE

Maputnik

https://maputnik.github.io/editor/#13.78/40.48196/-3.66936

Mapbox Studio: https://studio.mapbox.com/

Example with Maputnik

Give shadow to our buildings

1) Open Maputnik:

https://maputnik.github.io/editor/#16.32/40.454378/-3.689535

2) Open the following .json in Maputnik

JSON for Transport Network, Buildings, Hydrography, etc:

https://vts.larioja.org/style/mapa-base-igo-v1.json (Official information)

3) Copy the layer of Buildings and translate it

Inspire Helsinki 2019

Exchange of experience of vector tile service: pros and cons

Thank you

Centro Nacional de Información Geográfica (<u>CNIG</u>) **Spain**

Laura Alemany Gómez

laura.alemany@cnig.es

Jose Maria García Malmierca

jmgmalmierca@fomento.es

Álvaro Bachiller

alvaro.bachiller@cnig.es