```
Examen: Primer examen final
Profesor: Ing. Roberto mandujano Wild
Materia: Diseño digital moderno
Nombre Alumno: Barrera Peña Víctor Miguel
```

1.- Implementar un circuito combinacional que obtenga la siguiente función algebráica:

Y(X,Z) = 3X + 2X - 3Z - 2, donde X y Z, son números binarios de 2 bits c/u y Y es un número signado.

TIPO A) Implementar usando ROM,

TIPO B) Implementar usando un PLA (no necesariamente PLA mínimo).

Ojo: Es necesario construir la TABLA DE PROGRAMACION tanto para la ROM como para el PLA

(2 PUNTOS) (30 minutos)

Solución

2.- Minimize la siguiente función booleana usando el Método de Quine McCluskey:

TIPO A) f1
$$\equiv \sum m(2,3,7,10,12,15,27) + dc(5,18,19,21,23)$$
,

TIPO B) f2 = $\sum m(6,9,13,18,19,25,27,29,41,45,57,61)$ (2 PUNTOS) (30 minutos)

Solución

2 Tabla de m 3	Tabla de minimizaciones						
 generacion	indice	bits	miniterminos				
6							
7 0	1	00010	2				
8 0	2	00011	3				
9 0	3	00111	7				
0 0	2	01010	10				
1 0	2	01100	12				
2 0	4	01111	15				
3 0	4	11011	27				
4 0	2	00101	5				
5 0	2	10010	18				
6 0	3	10011	19				
7 0	3	10101	21				
8 0	4	10111	23				

1 1 1 2 2 2 2 3 3	0001- 0-010 -0010 00-11 -0011 001-1 -0101 1001- 0-111	2,3 2,10 2,18 3,7 3,19 5,7 5,21 18,19 7,15	
1 2 2 2 2 3	-0010 00-11 -0011 001-1 -0101 1001-	2,18 3,7 3,19 5,7 5,21 18,19	
2 2 2 2 2 3	00-11 -0011 001-1 -0101 1001-	3,7 3,19 5,7 5,21 18,19	
2 2 2 2 3	-0011 001-1 -0101 1001-	3,19 5,7 5,21 18,19	
2 2 2 3	001-1 -0101 1001-	5,7 5,21 18,19	
2 2 3	-0101 1001-	5,21	
2	1001-	18,19	
3			
	0-111	7,15	
3			
	-0111	7,23	
3	1-011	19,27	
3	10-11	19,23	
3	101-1	21,23	
1	-001-	2,3,18,19	
2	-0-11	3,7,19,23	
2	-01-1	5,7,21,23	
	3 3 1 2	3	3

```
46 | 19,27
                      0 0 0 0 0 0 10 0 1 0 0
47 | 7,15
                      0 0 1 0 0 1 0 0 0 0 0 0
48 | 2,10
                      |1 |0 |0 |1 |0 |0 |0 |0 |0 |0 |0
49 | 12
                      0 0 0 0 10 0 0 0 0 0 0
51
52 Miniterminos Resultado
54 | generacion | indice | bits | miniterminos
56 | 1
            | 1
                     | 0-010 | 2,10
      | 2 | 01100 | 12
57 | 0
58 | 1
                      | 0-111 | 7,15
            | 3
59 | 1
      | 3 | 1-011 | 19,27
60 | 2
           | 2
                     | -01-1 | 5,7,21,23
61 2
      | 1
                      | -001- | 2,3,18,19
         | 2
                     | -0-11 | 3,7,19,23
62 2
64
65
fsp=A'C'DE' + A'BCD'E' + A'CDE + AC'DE + B'CE + B'C'D + B'DE
```

TIPO A) 3.- Dada la siguiente función Booleana expresada en mintérminos:

 $f(A,B,C,D,E)=\sum m(0,4,12,13,22,24)$, determine los términos <u>Don't Care</u>, que la describen, para que la función Booleana minimizada sea:

f(A,B,C,D,E) = A'D'E'+A'BD'+BC'D'+B'CDE'

(1 PUNTO) (10 minutos)

Solución

solución

TIPO A) 5.- Dadas las siguientes ecuaciones de estado:

A(t+1) = (CD'+C'D)x + (CD+C'D')x'

B(t+1) = A

C(t+1) = B

D(t+1) = C

- a) Obtenga la secuencia de estados (diagrama de estados) cuando x = 1, empezando en el estado ABCD = 0001.
- b) Obtenga la secuencia de estados (diagrama de estados) cuando x = 0, empezando en el estado ABCD = 0000.

(2 PUNTOS) (20 minutos)

solución

Problema 6

solución

Problema 7		
solución		
Problema 8		
solución		