

Curso: CIÊNCIA DA COMPUTAÇÃO								
Disciplina: Circuitos Lógicos e Digitais	Turma: CC2M	Data: 06/06/2023	Nota:	Rubrica do Coordenador				
Avaliação: 2º Bimestre (a)	Semestre: 2023/1	Valor: 10 (dez) ¹						
Professor: Gilberto Costa Drumond Sousa								
GABARITO (V.a)								

1) Questão estilo ENADE. (1 ponto)

Analise as afirmativas seguintes circuitos lógicos, e depois marque a alternativa correta.

- I Os sistemas computacionais em sua maioria utilizam a representação de complemento de dois para tratar os números com sinal. (V)
- II A subtração de números com sinal é mais facilmente realizada usando a representação sinal magnitude. (F)
- III Na representação por complemento de dois, o MSB indica se um número é positivo ou negativo, mas a forma de representar seu módulo depende se este é positivo ou negativo. (V)
- IV Não há possibilidade de overflow ao somarmos um número positivo a um negativo, se ambos estão no formato de complemento de dois. (V)

É correto apenas o que se afirma em:

(a) I, II, III (b) I, III e IV (c) III e IV (d) II e III (e) II, III e IV

2) (3 pontos)

- a) Um sistema digital utiliza 5 bits (A₄A₃A₂A₁A₀) na representação de seus números. Num certo momento, tem-se A₄A₃A₂A₁A₀ = 10101. Diga seu equivalente decimal, se: a.1) Este número for entendido como sendo sem sinal; a.2) Ele for interpretado na representação por complemento de dois. a.1) 21₁₀ a.2) -11₁₀.
- b) Dois números binários na representação de complemento de dois precisam ser somados. Dado que A = 01111 e B = 10110, obtenha a soma S = A + B e seu equivalente decimal. 00101 = +5₁₀.
- c) Um sistema digital utiliza 5 bits (A₄A₃A₂A₁A₀) na representação de seus números, usando o complemento de 2, sendo A₄ o bit de sinal. Sejam os números X=01110 e Y=01100. Obtenha a soma S=X+Y e a diferença D=X-Y. Confira suas respostas, realizando estas operações usando os decimais equivalentes. Faça uma análise do que ocorreu. Ambos os resultados são válidos?

S=X+Y=11010, que não é válido, já que representa o decimal -6. D=X-Y= 00010, que é válido, já que representa o decimal 2.

Na base 10: X = 14 e Y=12. Logo S=26 não é representável com 5 bits, no C.2; D=14-12=2 está correto.

3) (2 pontos).

Observe as figuras (a) e (b) a seguir. Responda de forma objetiva:

- a) Diga o nome (ou função) de cada circuito representado nas figuras.
- b) Qual o cuidado que se deve ter ao usar o circuito da figura (a), para garantir o seu correto funcionamento? Se não há nenhuma entrada ativa, o que aparece em O₁O₀?
- a) (a) é um codificador e (b) um decodificador.
- b) Apenas uma entrada deve estar ativa em qualquer instante. Se nenhuma entrada estiver ativa, teremos $O_1O_0=00$.

4) (2 pontos)

Considere a figura (a) abaixo, e depois leve em conta as entradas mostradas na figura (b).

- a) Cite o nome (ou classificação) do circuito da figura (a);
- b) As entradas SET e RESET são ativas no modo ALTO ou BAIXO?
- c) Se as entradas mostradas na figura (b) forem aplicadas a este circuito, considerando que o estado inicial da saída Q é BAIXO, desenhe o sinal da saída até o instante final.
- a) Latch com portas NAND.
- b) SET e RESET são ativas no modo BAIXO

5) (2 pontos)

Considere o circuito da figura a seguir.

- a) Diga para que ele é utilizado, diga seu nome e o significado de cada variável.
- b) Construa sua tabela verdade, relacionando todas as entradas e as saídas numa única tabela.

a) É um somador completo, utilizado para somar dois números A e B de 1 bit cada, assim como um bit de carry C_{IN}. As saídas são a soma S e o carry out C_{OUT}.

b)

Entradas de bits da 1ª parcela	Entradas de bits da 2ª parcela	Entradas de bits do carry	Saída de bits da soma	Saída de bits do carry	В	
Α	В	C _{IN}	S	C _{OUT}		
0	0	0	0	0	- ₩	
0	0	1	1	0		
0	1	0	1	0	→ S	
0	1	1	0	1		
1	0	0	1	0	C _{IN} 	
1	0	1	0	1		
1	1	0	0	1	→ C _{OI}	ıт
1	1	1	1	1		,
	I	I I	I	I	A	