Metody Inżynierii Wiedzy

Recurrent Neural Networks – Long Short-Term Memory Networks – Transformers

RNN – LSTM –

Dr inż. Michał Majewski

mmajew@pjwstk.edu.pl

materialy: ftp(public): //mmajew/MIW

- 1. Przetwarzanie języka naturalnego (NLP):
 - Tłumaczenie maszynowe
 - Analiza sentymentu
 - Generowanie tekstu
- 2. Przewidywanie szeregów czasowych:
 - Prognozowanie cen akcji
 - Przewidywanie pogody
 - Analiza trendów sprzedaży
- 3. Rozpoznawanie mowy:
 - Konwersja mowy na tekst
 - Transkrypcja nagrań
 - Asystenci głosowi

- 4. Przetwarzanie sygnałów:
- Analiza sygnałów EEG/ECG (zapisy aktywności elektrycznej mózgu/ elektryczną aktywność serca)
 - Rozpoznawanie wzorców w danych sensorycznych
 - Kompresja i rekonstrukcja sygnałów
- 5. Przetwarzanie wideo:
 - Analiza ruchu
 - Opis i kategoryzacja klipów wideo
 - Rozpoznawanie aktywności wideo

Rekurencyjne Sieci Neuronowe (RNN) są typem sieci neuronowych zaprojektowanych do przetwarzania sekwencji danych, gdzie wyjście z jednej iteracji jest używane jako wejście do następnej, co pozwala im na modelowanie zależności czasowych.

☐ Długoterminowe Pamięci Krótkotrwałe (LSTM) to ulepszona wersja RNN, która wprowadza specjalne mechanizmy, takie jak komórki pamięci i bramki, aby skuteczniej zarządzać długoterminowymi zależnościami i zapobiegać problemowi znikającego gradientu.

□ Sieci transformers to zaawansowane architektury, które wykorzystują mechanizmy uwagi (attention mechanisms) do równoczesnego przetwarzania całych sekwencji danych, co umożliwia równoległe obliczenia i efektywne modelowanie zależności długozasięgowych, osiągając znakomite wyniki w zadaniach związanych z przetwarzaniem języka naturalnego i nie tylko.

Output

Probabilities

Softmax

Linear

Add & Non

Feed

(shifted right)

Przykłady rekurencji

```
n! = \begin{cases} 1 \operatorname{dla} n = 0 \\ n(n-1)! \operatorname{dla} n \ge 1 \end{cases}
```


RNN:

- 1 Warstwa wejściowa z 1 węzłem
- 2 Warstwa ukryta z 1 neuronem (w1,b1,ReLU) i pętlą sprzężenia zwrotnego (w2)
- 3 Warstaw wyjściowa z 1 neuronem (w3, b2, bez funkcji aktywacji)

Rekurencyjne Sieci Neuronowe (RNN) – a w czym problem?

Rekurencyjne Sieci Neuronowe (RNN) – a w czym problem?

Zakładamy, że uwzględniami 50 sekwencyjnych danych:

propagacja wsteczna (backpropagation) ->

pochodna funkcji złożonej (chain rule) ->

Input1 x (w2=2.0)^50 ->

eksplodujący gradient

Rekurencyjne Sieci Neuronowe (RNN) – a w czym problem?

Kodujemy

Źródła inspiracji : https://keras.io/api/layers/recurrent layers/

public/mmajew/MIW/10/00_rnn_function .py / .ipynb

Kodujemy

Źródła inspiracji : https://keras.io/api/layers/recurrent layers/rnn/
public/mmajew/MIW/10/01_rnn_EURtoPLN
public/mmajew/MIW/10/01_rnn_EURtoPLN
public/mmajew/MIW/10/01_rnn_EURtoPLN
https://keras.io/api/layers/recurrent layers/rnn/

Ciag czasowy

Dane treningowe

Dane testowe

Google colab

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

Cell State - Long-Term Memory

Sigmoid - od 0 do 1

$$f(x) = \frac{e^x}{e^x + 1}$$

$$f(10) = \frac{e^{10}}{e^{10} + 1}$$

$$= 0.99995$$

$$f(x) = \frac{e^x}{e^x + 1}$$

$$f(-5) = \frac{e^{-5}}{e^{-5} + 1}$$

$$= 0.01$$

Hyperbolic tangent - od -1 do 1

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$f(2) = \frac{e^2 - e^{-2}}{e^2 + e^{-2}}$$

$$= 0.96$$

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$f(-5) = \frac{e^{-5} - e^{5}}{e^{-5} + e^{5}}$$

Cell State - Long-Term Memory

Cell State - Long-Term Memory

Projekt 6

Zaprogramuj sieć neuronową z warstwami LSTM przewidującą przebieg danych sekwencyjnych na następny dzień. Jako dane sekwencyjne możesz wykorzystać dane z https://stooq.pl/:

- 1. wybieramy interesejący nas instrument finansowy/kursy walut/notowania akcji,
- 2. klikamy po lewo "dane historyczne",
- 3. wybieramy zakres dat jaki nas interesuje, interwał czasowy, wyłączenia,
- 4. klikamy "Pobierz dane w pliku csv..."

Pobrane dane podziel w stosunku: około 60-70 % na dane treningowe, pozostałe 40-30% dane testowe.

Wygeneruj wykres przewidywania sieci neuronowej dla danych treningowych i dla danych testowych.

Projekt 6 - przykładowy wynik korzystając z sieci LSTM

Źródła inspiracji : https://keras.io/2.16/api/layers/recurrent_layers/lstm/

public/mmajew/MIW/10/02_lstm_EURtoPLN .py / .ipynb

