

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

(11) 827538

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву —

(22) Заявлено 14.08.78 (21) 2673722/23-04

(51) М.Кл.³ С 10 М 5/02

с присоединением заявки № —

(23) Приоритет —

(43) Опубликовано 07.05.81. Бюллетень № 17

(53) УДК 621.892.8
(088.8)

(45) Дата опубликования описания 30.07.81

(72) Авторы изобретения

Г. В. Старикова, Д. И. Белый и В. Н. Стариков

(71) Заявители

Гомельский Государственный университет
и Гомельский филиал
Белорусского ордена Трудового Красного Знамени
политехнического института

(54) АНТИФРИКЦИОННАЯ МЕТАЛЛОПЛАКИРУЮЩАЯ СМАЗКА

1

Изобретение относится к технологии масел, используемых для уменьшения износа трещущихся поверхностей.

В современной технике широко используется большое число различного состава консистентных смазок и масел, обладающих высокими антифрикционными характеристиками.

Известны смазки с добавлением различных наполнителей, в том числе порошков металлов [1].

Наибольшее распространение нашли облагающие рядом ценных преимуществ металлоплакирующие смазки.

Известна металлоплакирующая смазка на основе пластичной мыльной смазки, например ЦИАТИМ-201 или ЦИАТИМ-203, содержащая 5—60 вес. % порошкообразного металла, например олова, свинца, меди, цинка [2].

Однако, повышая противозадирные свойства смазки в целом и износостойкость пар трения, данная смазка обеспечивает это повышение в незначительной степени; например линейная интенсивность износа пар трения с применением известной смазки равна $4,8 \cdot 10^{-8} \div 5,2 \cdot 10^{-8}$, а с применением только смазки основы $-5,72 \cdot 10^{-8}$, т. е. линейная интенсивность износа умень-

2

шилась на 17—9%. Таким образом, износостойкость пар трения с применением известной смазки повысилась на 10—20% по сравнению с применением смазки ЦИАТИМ-201, т. е. повышение это незначительное. Это обусловлено тем, что относительно невелика пластичность частиц металлоплакирующей присадки на основе антифрикционных металлов, содержащихся в известной смазке. Кроме того, частицы меди и сплавов на ее основе имеют свойство наклеиваться на трещущихся поверхностях, а это повышает их твердость и уменьшает пластичные свойства. Это, в свою очередь, приводит к тому, что при работе в тяжелых режимах происходит частичное отслоение плакирующей пленки, приводящее к схватыванию и задире поверхностей, т. е. к уменьшению износостойкости трещущихся пар.

Во-вторых, недостатком известной смазки является то, что плакирующая присадка добавляется в большом количестве (до 60 вес. %), что удорожает стоимость смазки, так как в состав присадки могут входить дорогостоящие (дефицитные) металлические компоненты, а их получение (диспергирование) связано со значительными трудовыми и энергетическими затратами.

827538

5

6

Таблица 1

Смазки	Линейная интенсивность износа, $I_h \cdot 10^6$
ЦИАТИМ-201	5,72
ЦИАТИМ-201+5% Си	5,2
ЦИАТИМ-201+20% Си	4,2
ЦИАТИМ-201+10% Си	4,6
ЦИАТИМ-201+6% Си	5,6
ЦИАТИМ-201+5% Sn	4,8
ЦИАТИМ-201+20% Sn	3,0
ЦИАТИМ-201+40% Sn	3,4
ЦИАТИМ-201+60% Sn	5,0
ЦИАТИМ-201+1% Bi-Pb-Sn	3,12
ЦИАТИМ-201+5% Bi-Pb-Sn	0,45
ЦИАТИМ-201+10% Bi-Pb-Sn	0,62
ЦИАТИМ-201+20% Bi-Pb-Sn	0,91
ЦИАТИМ-201+30% Bi-Pb-Sn	2,41
ЦИАТИМ-201+40% Bi-Pb-Sn	2,56

тенсивности износа по сравнению со смазками известного технического решения. Из табличных данных также видно, что интервал оптимального процентного содержания присадки в предлагаемой смазке лежит в пределах от 5 до 20 вес. %, в то время как для известной смазки — в пределах 20—40%.

Для определения влияния дисперсности используемого наполнителя на интенсивность износа испытывают по указанной выше методике смазки, оптимальный процент содержания наполнителя в которых соответствует минимальному значению интенсивности износа (см. табл. 2).

Таблица 2

Смазка	Дисперсность наполнителя, мкм	Линейная интенсивность износа, $I_h \cdot 10^6$
ЦИАТИМ-201+ +20% Си	5—10 10—20 60—100	4,52 4,2 4,8—5,0
ЦИАТИМ-201+ +20% Sn	5—10 10—20 60—100	3,0—3,21 3,3 3,6—4,0
ЦИАТИМ-201+ +5% Bi-Pb-Sn	5—10 10—20 60—100	0,45 0,68 3,15

Как видно из табл. 2, увеличение размера частиц от 5 до 60 мкм в известной смазке к значительному изменению интенсивности износа не приводит, в то время, как для предлагаемой смазки это изменение существенно, а минимальной интенсивности износа соответствует дисперсность от 5 до 10 мкм.

Практически не влияет на линейную интенсивность износа пары трения и величина зерна в частицах порошка наполнителя известной смазки, в то время как в предлагаемой смазке величина зерна в частицах наполнителя зависит от процентного содержания компонент сверхпластичного сплава (см. табл. 3) и при его отклонении от оптимального на более чем $\pm 3\%$ приводит к увеличению интенсивности износа в 5—10 раз.

Для определения эксплуатационных характеристик предлагаемой смазки ЦИАТИМ-201 + 5% Bi-Pb-Sn проводят испытания пары трения латунь Л63 — сталь 9ХС в среде различных смазок и при различных нагрузках. После часовой приработки при удельной нагрузке 10 кгс/см² нагрузку увеличивают через каждые 20 мин на 10 кгс/см². Испытание ведут 20 мин при каждой нагрузке с целью стабилизации процесса трения. В ходе эксперимента определяют коэффициент трения и температуру в зоне трения. Определение линейной интенсивности износа проводят для каждой нагрузки по указанной выше методике. Испытания проводят до достижения нагрузки заедания. Определение температуры в зоне трения проводят методом комбинированной термопары. Данные испытаний сведены в табл. 4.

Как видно из таблицы, при добавлении в основную смазку 5% сплава примерно в 2 раза расширяется рабочий диапазон удельных нагрузок узла трения по сравнению с известной смазкой и в 3 раза по сравнению с базовой смазкой ЦИАТИМ-201. Резко уменьшается коэффициент трения и при удельных нагрузках 100 кгс/см² он равен 0,02, т. е. в четыре раза меньше минимального значения коэффициента трения для смазки ЦИАТИМ-201 + 5% Sn, в шесть раз меньше, чем для смазки ЦИАТИМ-201 + 5% Си и в 8 раз меньше, чем для ЦИАТИМ-201.

Температурный режим в зоне трения при работе узла со смазкой ЦИАТИМ-201 + 5% Bi-Pb-Sn, как видно из таблицы, становится более стабильным при удельной нагрузке выше 30 кгс/см², в то время как для известных смазок с увеличением нагрузки температура возрастает по экспоненте, что приводит к протеканию в смазке деструкционных процессов, отрицательно сказывающихся на ее долговечности и приводящих к работе пары трения с заедом.

Вследствие того, что процесс трения с использованием предлагаемой смазки характеризуется низкими значениями коэффициента трения и стабильной температурой в зоне трения в указанном диапазоне нагрузок, значительно уменьшается интенсивность износа и увеличиваются противов-

827538

7

8

Таблица 3

Смазка	Содержание компонент в сплаве висмут — свинец — олово	Весичина серна в частицах порошка, мкм	Линейная ин- тенсивность износа, $I_h \cdot 10^3$
ЦИАТИМ-201 + 5 вес. % висмут — свинец — олово	Эвтектическая концентрация 50 вес. %, 33 вес. %, 17 вес. % Отклонение компоненты висмут на — 3 вес. % 47 вес. % висмута, 35 вес. % свинца, 18 вес. % олова Отклонение компоненты висмут на + 3 вес. % 53 вес. % висмута, 31 вес. % свинца, 16 вес. % олова Отклонение компоненты свинец на — 3 вес. % 52 вес. % висмута, 30 вес. % свинца, 18 вес. % олова Отклонение компоненты свинец на + 3 вес. % 47,5 вес. % висмута, 36 вес. % свинца, 16,5 вес. % олова Отклонение компоненты олово на — 3 вес. % 52 вес. % висмута, 34 вес. % свинца, 14 вес. % олова Отклонение компоненты олово на + 3 вес. % 48 вес. % висмута, 32 вес. % свинца, 20 вес. % олова Отклонение компоненты висмут на — 5 вес. % 45 вес. % висмута, 36,5 вес. % свинца, 1,5 вес. % олова Отклонение компоненты висмут на + 5 вес. % 55 вес. % висмута, 29,5 % свинца, 16,5 вес. % олова Отклонение компоненты висмут на — 10 вес. % 40 вес. % висмута, 39,5 вес. % свинца, 20,5 вес. % олова Отклонение компоненты висмут на + 10 вес. % 60 вес. % висмута, 26 вес. % свинца, 14 вес. % олова	0,5—1,5 1,2—2,5 1,5—2,50 1,25—2,5 1,45—2,5 1,2—2,0 1,5—2,0 5—7,5 6,5—8,0 8,5—12,5 8,0—13	0,45 0,48 0,50 0,55 0,54 0,50 0,55 3,51 3,6 6,24 6,12

Таблица 4

	Эксплуатационные характеристики смазки	Удельная нагрузка P , кгс/см ²	Коэффициент, μ	Температура в зоне трения, $T^\circ C$	Линейная интенсивность износа, $S_h \cdot 10^4$	Скорость скольжения V , м/с	Примечание
Известная	ЦИАТИМ-201	10	0,2	Деструкция смазки	2,88	0,73	Аналогичные результаты получены и при изготовлении смазок на основе ЦИАТИМ-203, ЛИТОЛ-24, ОКБ-122-7
		30	0,19		5,72		
		60	—		Схватывание		
		100	—				
Известная	ЦИАТИМ-201 + +20 % Cu	10	0,15	Деструкция смазки	2,16	0,73	
		30	0,13		4,2		
		60	0,17		Схватывание		
		100	—				
Известная	ЦИАТИМ-201 + +20 % Cu	10	0,11	Деструкция смазки	1,92	0,73	
		30	0,09		3,0		
		60	0,13		4,70		
		100	—		Схватывание		
Предлагаемая	ЦИАТИМ-201 + +5 % Bi-Pb-Sn	10	0,10	Деструкция смазки	0,29	0,73	
		30	0,06		0,45		
		60	0,03		0,14		
		100	0,02		0,05 и менее		

827538

9

задирные свойства, т. е. поставленная цель достигается.

Кроме того, применение предлагаемой смазки значительно расширяет рабочий диапазон удельных нагрузок для труящихся пар, а также ввиду низкого оптимального процентного содержания металлопластирующей присадки позволяет почти в три раза уменьшить стоимость смазки.

10

пар трения, в качестве порошкообразной металлической добавки смазка содержит 5—20 вес. % сплава висмут — свинец — олово при содержании компонентов в сплаве, вес. %:

Олово	14—20
Свинец	30—36
Висмут	Остальное.

10

Формула изобретения

Антифрикционная металлопластирующая смазка на основе пластичной мыльной смазки, содержащая порошкообразную металлическую добавку, отличающуюся тем, что, с целью повышения противозадирочных свойств смазки и износостойкости

Источники информации, принятые во внимание при экспертизе:
 1. Авторское свидетельство СССР № 278938, кл. C 10 M 5/02, 1968.
 2. Авторское свидетельство СССР № 179409, кл. C 10 M 5/02, 1962 (прототип).

15

Редактор П. Горькова	Техред Л. Куклина	Корректор С. Файн
Заявка 573/517	Изз. № 368	Тираж 553
НПО «Поиск» Государственного комитета СССР по делам изобретений и открытий		Подписано
113035, Москва, Ж-35, Раушская наб., д. 4/5		11/03/09

Тип. Харьк. фир. пред. «Патент»