推定

第10講 - 確率分布を特徴づけるパラメタを推測する

村田 昇

講義概要

- 点推定
 - 不偏推定量
 - Cramér-Rao の不等式
- 最尤推定量
- 区間推定
 - 信頼区間
 - 正規母集団の区間推定
 - 漸近正規性にもとづく区間推定

推定とは

統計解析の目的

- 観測データを確率変数の実現値と考えてモデル化
- ・ 観測データの背後の確率分布を 推定
 - 分布のもつ特性量(平均や分散など)を評価する
 - 分布そのもの(確率関数や確率密度)を決定する
- 統計学で広く利用されている推定方法を説明
 - 点推定
 - 区間推定

推定の標準的な枠組

- 観測データは独立同分布な確率変数列 X_1, X_2, \ldots, X_n
- X_i の従う共通の法則 £ を想定
 - £ として全ての分布を考察対象とすることは困難
 - * 対象とする範囲が広くなりすぎる
 - * データ数 n が大きくないと意味のある結論を導き出せない
 - 確率分布 \mathcal{L} を特徴づけるパラメタ θ を考察対象
 - * £ の平均・分散・歪度・尖度など
 - * ₤ の確率関数・確率密度関数のパラメタ

点推定

点推定

定義

 \mathcal{L} に含まれるパラメタ θ を $X_1, ..., X_n$ の関数

$$\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$$

で推定することで、 $\hat{\theta}$ を θ の **推定量** と呼ぶ.

- 記述統計量は分布のパラメタの1つ
- 推定量の例

 \mathcal{L} の平均 μ を標本平均 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ によって推定することが点推定であり, \bar{X} は μ の推定量となる.

良い推定量

- 一般に1つのパラメタの推定量は無数に存在
- 推定量の良さの代表的な基準: 不偏性・一致性
 - *θ̂ が θ* の不偏推定量

$$\mathbb{E}[\hat{\theta}] = \theta$$

- *θ̂* が *θ* の (強) 一致推定量

 $\hat{\theta}$ が θ に収束する確率が 1 $(n \to \infty)$

- 良い推定量の例

標本平均,不偏分散はそれぞれ £ の平均,分散の不偏かつ一致性をもつ推定量

良い不偏推定量

• 一般に不偏推定量も複数存在

例: £ の平均 μ の不偏推定量

- 標本平均 \bar{X}
- X_1, \ldots, X_n のメディアン (\mathcal{L} が $x = \mu$ に関して対称な場合)
- X₁(最初の観測データだけ信じる極端な例)
- 不偏推定量の良さを評価する基準が必要
- 一様最小分散不偏推定量

 θ の任意の不偏推定量 $\hat{\theta}'$ に対して推定値のばらつき (分散) が最も小さいもの

$$Var(\hat{\theta}) \leq Var(\hat{\theta}')$$

Cramér-Rao の不等式

定理

 \mathcal{L} は 1 次元パラメタ θ を含む連続分布とし、その確率密度関数 $f_{\theta}(x)$ は θ に関して偏微分可能であるとする。このとき、緩やかな仮定の下で、 θ の任意の不偏推定量 $\hat{\theta}$ に対して以下の不等式が成り立つ。

$$\operatorname{Var}(\hat{\theta}) \ge \frac{1}{nI(\theta)},$$

ただし

$$I(\theta) = \int_{-\infty}^{\infty} \left(\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right)^{2} f_{\theta}(x) dx.$$

一様最小分散不偏推定量

- 用語の定義
 - 下界 $1/nI(\theta)$: Cramér-Rao 下界
 - $-I(\theta)$: Fisher 情報量
- 定理 (Cramér-Rao の不等式の系)

 θ の不偏推定量 $\hat{\theta}$ で分散が Cramér-Rao 下界 $1/nI(\theta)$ に一致するものが存在すれば,それは一様最小分散不偏推定量となる.

例: 正規分布モデルの標本平均

- \mathcal{L} は平均 μ , 分散 σ^2 の正規分布
 - 平均パラメタ μ に関する Fisher 情報量:

$$I(\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \frac{(x-\mu)^2}{\sigma^4} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sigma^2}$$

- Cramér-Rao 下界: σ^2/n
- 標本平均 \bar{X} の分散: σ^2/n (=Cramér-Rao 下界)
- X は μ の一様最小分散不偏推定量

実習

練習問題

- X を一様乱数に従う確率変数とし、平均値の推定量として以下を考える。それぞれの推定量の分散を 比較しなさい。
 - 標本平均 (mean)
 - 中央値 (median)
 - 最大値と最小値の平均 ((max+min)/2)
- ヒント: 以下のような関数を作り、Monte-Carlo 実験を行えばよい

```
estimate_means <- function(n, min, max){ # 観測データ数 x <- runif(n, min=min, max=max) # 一様乱数を生成, 範囲は引数から return(c(xbar=mean(x),med=median(x),mid=(max(x)+min(x))/2)) } # 3つまとめて計算する関数
```

最尤法

離散分布の場合

- 観測値 $X_1 = x_1, X_2 = x_2, ..., X_n = x_n$ の同時確率
 - 確率 (質量) 関数: f_θ(x)
 - 確率関数のパラメタ: $\theta = (\theta_1, \dots, \theta_p)$
 - 独立な確率変数の同時確率:

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \prod_{i=1}^n P(X_i = x_i)$$
$$= \prod_{i=1}^n f_{\theta}(x_i) = f_{\theta}(x_1) \cdot f_{\theta}(x_2) \cdots f_{\theta}(x_n)$$

尤度関数

定義

パラメタ θ に対して観測データ X_1, X_2, \dots, X_n が得られる理論上の確率

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} f_{\boldsymbol{\theta}}(X_i)$$

 $e\theta$ の尤度 と言い, θ の関数 L を 尤度関数 と呼ぶ.

- 観測データ X_1, X_2, \dots, X_n が現れるのにパラメタ θ の値がどの程度尤もらしいかを測る尺度

最尤法

• 最尤法

観測データに対して「最も尤もらしい」パラメタ値を θ の推定量として採用する方法を最 尤法という.

- 最尤推定量
 - Θ を尤度関数の定義域として、尤度関数を最大とする $\hat{m{ heta}}$

$$L(\hat{\boldsymbol{\theta}}) = \max_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta}).$$

を θ の最尤推定量という。以下のように書くこともある。

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}).$$

最尤推定量の計算

• 対数尤度関数

$$\ell(\boldsymbol{\theta}) = \log L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log f_{\boldsymbol{\theta}}(X_i).$$

- 対数関数は狭義単調増加
- $-\ell(\theta)$ の最大化と $L(\theta)$ の最大化は同義
- 扱い易い和の形なのでこちらを用いることが多い
- 大数の法則を用いて対数尤度関数の収束が議論できる
- 最尤推定量の性質

広い範囲の確率分布に対して最尤推定量は 一致性 を持つ

連続分布の場合

- 確率密度関数 $f_{\theta}(x)$ を用いて尤度を定義
- 尤度関数

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} f_{\boldsymbol{\theta}}(x_i) = f_{\boldsymbol{\theta}}(x_1) \cdot f_{\boldsymbol{\theta}}(x_2) \cdots f_{\boldsymbol{\theta}}(x_n)$$

• 対数尤度関数

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f_{\theta}(X_i)$$

例: Poisson 分布の最尤推定

- \mathcal{L} をパラメタ $\lambda > 0$ の Poisson 分布でモデル化
 - 確率質量関数

$$f(x) = \frac{\lambda^x}{x!}e^{-\lambda}, \quad x = 0, 1, \dots$$

- 対数尤度関数 (未知パラメタ:λ)

$$\ell(\lambda) = \sum_{i=1}^{n} \log \frac{\lambda^{X_i}}{X_i!} e^{-\lambda} = \sum_{i=1}^{n} (X_i \log \lambda - \log X_i!) - n\lambda$$

- 少なくとも 1 つの i について $X_i > 0$ を仮定する
- (Poisson 分布のつづき)
 - ℓ(λ) の微分

$$\ell'(\lambda) = \frac{1}{\lambda} \sum_{i=1}^n X_i - n, \quad \ell''(\lambda) = -\frac{1}{\lambda^2} \sum_{i=1}^n X_i < 0$$

- 方程式 $\ell'(\lambda) = 0$ の解が $\ell(\lambda)$ を最大化
- λの最尤推定量

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

例:指数分布の最尤推定

- ・ £ をパラメタ λ > 0 の指数分布でモデル化
 - 確率密度関数

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & (x > 0) \\ 0 & (x \le 0) \end{cases}$$

- 対数尤度関数 (未知パラメタ: λ)

$$\ell(\lambda) = \sum_{i=1}^{n} \log \lambda e^{-\lambda X_i} = n \log \lambda - \lambda \sum_{i=1}^{n} X_i$$

- (指数分布のつづき)
 - ℓ(λ) の微分

$$\ell'(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} X_i, \quad \ell''(\lambda) = -\frac{n}{\lambda^2} < 0$$

- 方程式 $\ell'(\lambda) = 0$ の解が $\ell(\lambda)$ を最大化
- λの最尤推定量

$$\hat{\lambda} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} X_i}$$

例: ガンマ分布の最尤推定

- \mathcal{L} をパラメタ $\nu, \alpha > 0$ のガンマ分布でモデル化
 - 確率密度関数

$$f(x) = \begin{cases} \frac{\alpha^{\nu}}{\Gamma(\nu)} x^{\nu - 1} e^{-\alpha x} & (x > 0) \\ 0 & (x \le 0) \end{cases}$$

ただしガンマ関数 $\Gamma(\nu)$ は以下で定義される

$$\Gamma(\nu) = \int_0^\infty x^{\nu - 1} e^{-x} dx$$

- (ガンマ分布のつづき)
 - 対数尤度関数 (未知パラメタ: ν,α)

$$\ell(\nu,\alpha) = \sum_{i=1}^{n} \log \frac{\alpha^{\nu}}{\Gamma(\nu)} X_i^{\nu-1} e^{-\alpha X_i}$$
$$= n\nu \log \alpha - n \log \Gamma(\nu) + \sum_{i=1}^{n} \{(\nu - 1) \log X_i - \alpha X_i\}$$

- $-\ell(\nu,\alpha)$ を最大化する ν,α は解析的に求まらないので実際の計算では数値的に求める
- R での計算例 (ガンマ分布の最尤推定量)

```
start = list(nu = nu0, alpha = alpha0), # 初期値
method = "BFGS", # 最適化方法 (選択可能)
nobs = length(x)) # 観測データ数
return(coef(est)) # 推定値のみ返す
}
```

演習

練習問題

- 東京都の気候データ (tokyo weather.csv) の風速 (wind) の項目について以下の問に答えよ.
 - 全データを用いてヒストグラム (密度)を作成しなさい.
 - ガンマ分布でモデル化して最尤推定を行いなさい.
 - 推定した結果をヒストグラムに描き加えて比較しなさい.
- 自身で収集したデータを用いて、モデル化と最尤推定を試みよ、

区間推定

推定誤差

- 推定量 â には推定誤差が必ず存在
- 推定結果の定量評価には推定誤差の評価が重要
 - "誤差 $\hat{\theta}$ θ が区間 [l,u] の内側にある確率が $1-\alpha$ 以上"

$$P(l \le \hat{\theta} - \theta \le u) \ge 1 - \alpha$$

- "外側にある確率が α 以下"と言い換えてもよい
- パラメタの範囲の推定に書き換え
 - " θ が含まれる確率が $1-\alpha$ 以上となる区間 [$\hat{\theta}-u,\hat{\theta}-l$]"

$$P(\hat{\theta} - u \le \theta \le \hat{\theta} - l) \ge 1 - \alpha$$

区間推定

定義

区間推定とは未知パラメタ θ とある値 $\alpha \in (0,1)$ に対して以下を満たす確率変数L,Uを観測データから求めることをいう。

$$P(L \leq \theta \leq U) \geq 1{-}\alpha$$

- 区間 [*L*, *U*]: 1-α **信頼区間** (100(1-α) % と書くことも多い)
- $-L:1-\alpha$ 下側信頼限界
- $-U:1-\alpha$ 上側信頼限界
- $1-\alpha$: 信頼係数 ($\alpha = 0.01, 0.05, 0.1$ とすることが多い)

信頼区間の性質

- 信頼区間は幅が狭いほど推定精度が良い
 - 真のパラメタが取りうる値の範囲を限定することになるため
- 最も推定精度の良い 1-α 信頼区間 [L,U]

$$P(L \le \theta \le U) = 1 - \alpha$$

- 信頼区間の幅が狭いほど $P(L \le \theta \le U)$ は小さくなるため
- 実行可能である限り $1-\alpha$ 信頼区間 [L,U] は上式を満たすように L,U を決定する

正規母集団の区間推定

平均の区間推定 (分散既知)

- 正規分布に従う独立な確率変数の重み付き和は正規分布に従う
- 一般の場合

 Z_1,Z_2,\ldots,Z_k を独立な確率変数列とし、各 $i=1,2,\ldots,k$ に対して Z_i は平均 μ_i 、分散 σ_i^2 の正規分布に従うとする。このとき a_0,a_1,\ldots,a_k を (k+1) 個の 0 でない実数とすると、 $a_0+\sum_{i=1}^k a_iZ_i$ は平均 $a_0+\sum_{i=1}^k a_i\mu_i$ 、分散 $\sum_{i=1}^k a_i^2\sigma_i^2$ の正規分布に従う。

• 同分布の場合

$$k = n, \mu_i = \mu, \sigma_i^2 = \sigma^2, a_0 = 0, a_i = 1/n \ (i = 1, ..., n)$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 (標本平均)

は平均 μ , 分散 σ^2/n の正規分布に従う.

• 同分布を標準化した場合

$$k=1$$
 , $\mu_1=\mu$, $\sigma_1^2=\sigma^2/n$, $a_0=-\sqrt{n}\mu/\sigma$, $a_1=\sqrt{n}/\sigma$

$$Z = \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma}$$

は標準正規分布に従う.

• 標準正規分布の α 分位点

 $0 < \alpha < 1$ に対して、標準正規分布に従う確率変数を X としたとき、

$$P(X \le z_{\alpha}) = \alpha$$

を満たす実数 z_{α} のこと.

標準正規分布

• 標準化した確率変数の確率

 $z_{1-lpha/2}$ を標準正規分布の 1-lpha/2 分位点とすれば

$$P\Big(-z_{1-\alpha/2} \leq \frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \leq z_{1-\alpha/2}\Big) = 1-\alpha$$

- 区間の外側 (正負両側にある) の確率が α となる

標準正規分布

• 信頼区間の構成

μについて解くと

$$P\left(\bar{X}-z_{1-\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}\leq\mu\leq\bar{X}+z_{1-\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}\right)=1-\alpha$$

となるので、 σ が既知の場合の平均 μ の $1-\alpha$ **信頼区間** は以下で構成される.

$$\left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

平均の区間推定 (分散未知)

χ² 分布の特徴付け

標準正規分布に従うk個の独立な確率変数の二乗和は自由度kの χ^2 分布に従う

• t 分布の特徴付け

Zを標準正規分布に従う確率変数, Y を自由度 k の χ^2 分布に従う確率変数とし, Z,Y は独立であるとする. このとき確率変数

$$\frac{Z}{\sqrt{Y/k}}$$

は自由度 k の t 分布に従う

χ² 分布

図 1: χ^2 分布 (自由度 3)

• 見本空間: [0,∞)

母数:自由度ν

• 密度関数:

$$f(x) = \frac{1}{2^{\nu/2}\Gamma(\frac{\nu}{2})} x^{\nu/2-1} e^{-x/2}$$

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt$$

- 備考: ν 個の標準正規分布に従う確率変数の2乗和の分布で、区間推定や検定に利用される.

• t 分布

図 2: t 分布 (自由度 3)

• 見本空間: (-∞,∞)

母数:自由度ν

• 密度関数:

$$f(x) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi} \Gamma\left(\frac{\nu}{2}\right)} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{1}{2}(\nu+1)}$$

- 備考:標準正規分布と自由度 ν の χ^2 分布に従う確率変数の比に関する分布で,区間推定や検定に利用される.

• 標本平均と不偏分散の性質

 X_1, X_2, \dots, X_n は独立同分布な確率変数列で、平均 μ 、分散 σ^2 の正規分布に従うとする.不偏分散を

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

とすると, \bar{X} と s^2 は独立であり、確率変数 $(n-1)s^2/\sigma^2$ は自由度 n-1 の χ^2 分布に従う.

• 標準化した確率変数の性質

前の命題と $\sqrt{n}(\bar{X} - \mu)/\sigma$ が標準正規分布に従うことから、確率変数

$$T = \frac{\sqrt{n}(\bar{X} - \mu)}{s} = \frac{\sqrt{n}(\bar{X} - \mu)/\sigma}{\sqrt{(n-1)s^2/\sigma^2/(n-1)}}$$

は自由度 n-1 の t 分布に従う.

• 信頼区間の構成

 $t_{1-\alpha/2}(n-1)$ を自由度 n-1 の t 分布の $1-\alpha/2$ 分位点とすれば

$$P\left(-t_{1-\alpha/2}(n-1) \le \frac{\sqrt{n}(\bar{X}-\mu)}{s} \le t_{1-\alpha/2}(n-1)\right) = 1-\alpha$$

となるので、分散が未知の場合の平均 μ の $1-\alpha$ **信頼区間** は以下で構成される.

$$\left[\bar{X} - t_{1-\alpha/2}(n-1) \cdot \frac{s}{\sqrt{n}}, \ \bar{X} + t_{1-\alpha/2}(n-1) \cdot \frac{s}{\sqrt{n}}\right]$$

分散の区間推定

• 不偏分散の性質

 $(n-1)s^2/\sigma^2$ は自由度 n-1 の χ^2 分布に従う

• 不偏分散の確率

 $\chi^2_{\alpha/2}(n-1)$, $\chi^2_{1-\alpha/2}(n-1)$ をそれぞれ自由度 n-1 の χ^2 分布の $\alpha/2, 1-\alpha/2$ 分位点とすれば

$$P\left(\chi_{\alpha/2}^{2}(n-1) \le \frac{(n-1)s^{2}}{\sigma^{2}} \le \chi_{1-\alpha/2}^{2}(n-1)\right) = 1-\alpha$$

- 左右非対称なので、2つの分位点が必要となる
- 信頼区間の構成

$$\sigma^2$$
 について解くと

$$P\left(\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}(n-1)} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{\alpha/2}(n-1)}\right) = 1 - \alpha$$

となるので、 σ^2 の $1-\alpha$ 信頼区間 は以下で構成される.

$$\left[\frac{(n-1)s^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)s^2}{\chi^2_{\alpha/2}(n-1)}\right]$$

漸近正規性にもとづく区間推定

推定量の漸近正規性

• 漸近正規性

多くの推定量 f の分布は正規分布で近似できる

- モーメントに基づく記述統計量は漸近正規性をもつ
- 最尤推定量は広い範囲の確率分布に対して漸近正規性をもつ
- いずれも中心極限定理にもとづく
- 正規分布を用いて近似的に信頼区間を構成することができる

標本平均の漸近正規性

• 定理

確率分布 \mathcal{L} が 2 次のモーメントを持てば, \mathcal{L} の平均 μ の推定量である標本平均は漸近正規性をもつ.

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

 \mathcal{L} の標準偏差を σ とすれば、任意の $a \leq b$ に対して以下が成立する。 (ϕ は標準正規分布の確率密度関数)

$$P\left(a \le \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \le b\right) \to \int_a^b \phi(x)dx \quad (n \to \infty)$$

平均の区間推定 (分散既知)

• 標本平均の確率

 $z_{1-\alpha/2}$ を標準正規分布の $1-\alpha/2$ 分位点とすれば

$$P\left(-z_{1-\alpha/2} \le \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \le z_{1-\alpha/2}\right) \to 1-\alpha \quad (n \to \infty)$$

となるので、μについて解くと以下が成り立つ.

$$P\left(\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$

 $\rightarrow 1-\alpha \quad (n \rightarrow \infty)$

信頼区間の構成

 σ が既知の場合の平均 μ の $1-\alpha$ **信頼区間**は以下で構成される.

$$\left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \ \bar{X} + z_{1-\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right]$$

(サンプル数 n が十分大きい場合に近似的に正しい)

平均の区間推定 (分散未知)

- σ をその一致推定量 $\hat{\sigma}$ で置き換えてもそのまま成立する
 - φ としては例えば不偏分散の平方根を用いる

$$\hat{\sigma} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2}$$

- 実問題で平均はわからないが、分散はわかるという場合はあまりない
- -t 分布は自由度 $n \to \infty$ で標準正規分布になる
- 信頼区間の構成

 σ が未知の場合の平均 μ の $1-\alpha$ **信頼区間**は以下で構成される.

$$\left[\bar{X} - z_{1-\alpha/2} \cdot \frac{\hat{\sigma}}{\sqrt{n}}, \ \bar{X} + z_{1-\alpha/2} \cdot \frac{\hat{\sigma}}{\sqrt{n}}\right]$$

- サンプル数 n が十分大きい場合に近似的に正しい

最尤推定量の区間推定

- ・ 定理 (最尤推定量の漸近正規性)
 - \mathcal{L} が 1 次元パラメタ θ を含む連続分布とするとき,最尤推定量 $\hat{\theta}$ は平均 θ (真の値),分散 $1/(nI(\hat{\theta}))$ の正規分布で近似できる.
- 信頼区間の構成
 - θ の 1- α 信頼区間 は以下で構成される.

$$\left[\hat{\theta} - z_{1-\alpha/2} \cdot \frac{1}{\sqrt{nI(\hat{\theta})}}, \ \hat{\theta} + z_{1-\alpha/2} \cdot \frac{1}{\sqrt{nI(\hat{\theta})}}\right]$$

- サンプル数 n が十分大きい場合に近似的に正しい

実習

練習問題

- 東京都の気候データ (tokyo_weather.csv) の日射量 (solar) の項目について以下の間に答えよ.
 - 全データによる平均値を計算しなさい.
 - ランダムに抽出した 50 点を用いて、平均値の 0.9(90%) 信頼区間を求めなさい。
 - 上記の推定を 100 回繰り返した際, 真の値 (全データによる平均値) が信頼区間に何回含まれるか確認しなさい.
- 自身で収集したデータで区間推定を試みよ.

次回の予定

- 検定
 - 帰無仮説と対立仮説
 - 棄却域
 - **-** p-値
- 平均の検定
- 分散の検定
- 平均の差の検定
- 分散の比の検定