EULER'S PHI FUNCTION

- 1. What is Euler's phi function?
 - A function that counts the number of divisors of an integer.
 - A function that counts the number of prime factors of an integer.
 - A function that counts the number of integers less than a given integer n that are relatively prime to n.
 - A function that counts the number of integers less than a given integer n that are divisible by n.

Ans: A function that counts the number of integers less than a given integer n that are relatively prime to n.

- 2. What is the relationship between the values of $\phi(n)$ and $\phi(p^k)$ for prime p and positive integer k?
 - $\phi(n) = p^k 1$
 - $B)\phi(n) = p^{k-1}$
 - $C)\phi(n) = p^k$
 - $D)\phi(n) = (p-1)*p^{(k-1)}$

Ans: D) $\phi(n) = (p-1)*p^{(k-1)}$

- 3. What is the relationship between the values of $\phi(n)$ and $\phi(m)$ for coprime positive integers n and m?
 - $\phi(nm) = \phi(n) + \phi(m)$
 - $\mathbf{B})\phi(\mathbf{n}\mathbf{m}) = \phi(\mathbf{n})\phi(\mathbf{m})$
 - C) $\phi(nm) = \phi(n) \phi(m)$
 - D)None of the above

Ans: B. $\phi(nm) = \phi(n) \phi(m)$

This property of Euler's phi function is known as multiplicativity, and it holds true for any two coprime positive integers.

- 4. What is the output of phi(324)?
 - 98
 - 90
 - 108
 - 120

Ans:108

- 324=2power 2×3 power4 means $2^2 * 3^4$.
- 1. Euler's phi function formula: For each prime factor pi raised to power ki, the contribution to phi(n) is (pi 1) * pi^(ki-1).
- 2. Applying the formula:
 - For $2^2: (2-1) * 2^2: (2-1) = 1 * 2 = 2$
 - For 3^4 : $(3 1) * 3^4 = 2 * 3^3 = 54$
- 3. Multiplicativity property: Since 2 and 3 are coprime, we multiply the individual contributions: phi(324) = 2 * 54 = 108
- 5. What is the φ function of the number 3?
 - 0
 - 1
 - 2
 - 3

Ans: 2

```
The Euler's \phi (phi) function of a prime number p is given by: \phi(p)=p-1 For p=3: \phi(3)=3-1=2 So, the correct option is: C) 2
```

- 6. What is the φ function of the number 8?
 - 0
 - 1
 - 2
 - 4

Ans: 4

- 7. What is the value of phi(n) for n = 12 using Euler's phi function?
 -]
 - 2
 - 6
 - 4

Ans: 4

To find $\phi(12)$, we need to use Euler's totient function formula:

$$\phi(n) = n \left(1 - rac{1}{p_1}
ight) \left(1 - rac{1}{p_2}
ight) \cdots \left(1 - rac{1}{p_k}
ight)$$

where p_1, p_2, \ldots, p_k are the distinct prime factors of n.

For n=12:

$$\phi(12)=12\left(1-rac{1}{2}
ight)\left(1-rac{1}{3}
ight)$$

$$\phi(12)=12\cdot rac{1}{2}\cdot rac{2}{3}$$

$$\phi(12)=4$$

So, the correct option is:

D) 4

8. What is the φ function of the number 12?

- ()
- 1
- 2
- 4

Ans: 4

```
The \phi (phi) function of the number 12 is calculated using Euler's totient function formula: \phi(12)=12\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right) \phi(12)=12\cdot\frac{1}{2}\cdot\frac{2}{3} \phi(12)=4 So, the correct option is: D) 4
```

9. Which of the following is a property of Euler's phi function?

- $\varphi(n)$ is always even for any positive integer n.
- $\varphi(n)$ is equal to the number of divisors of n.
- $\varphi(p) = p-1$ for any prime number p.
- $\varphi(n)$ is always greater than n for any positive integer n.

Ans: $\varphi(p) = p-1$ for any prime number p.

This is a property of Euler's phi function.

For a prime number p, $\phi(p)$ is equal to p-1.

10. What is the value of Euler's Totient Function for the number 2000?

- A)789
- B)880
- C)800
- D)670

Ans: 800

