REVIEW EXERCISE 03

Question 1. The N-queens problem requires you to place N queens on an $N \times N$ chessboard such that no queen attacks another queen. (A queen attacks any piece in the same row or column or diagonal). Here are some important facts:

- The states are any configurations where <u>all</u> *N* queens are on the board, one per column.
- The *moveset* includes all possible states generated by moving a single queen to another square in the same column. The function to obtain these states is called the *successor* function.
- The heuristic function *h(state)* is the number of **attacking** pairs of queens.

a)	Consider <i>N</i> =4. How many states are the	re in	tota	l? Ex	plaiı	ı your answer.
b)	For each state, how many successor state	tes ar	e th	ere i	n the	e moveset? Explain your answer
c)	What value will the heuristic function $h(state)$ return for state S shown aside? Explain your answer.	\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\		
					W	

d) Use some hill-climbing variant that can lead to a solution. Draw the search tree from S (Only draw the branches that lead to a solution; for each node on the tree, write down its *h*() value).

Question 2. Consider the game search tree shown below, in which a square denotes MAX's move and a circle for MIN's move. Write down the utility value for each node of the tree using Minimax algorithm. Show where alpha-beta pruning occurs by crossing out corresponding branches. Briefly explain for each case.

