Intro to Time Series and Semester Review

3 Apr 2012 Dr. Sean Ho

busi275.seanho.com

- Please download: 12-TheFed.xls
- Presentations next week!

Outline for today

- Time series data: dependent observations
- Trend-based approach:
 - Trends, cycles, seasons
 - Dummy coding a seasonal model
 - Additive vs. multiplicative model
- Autoregressive approach:
 - Autocorrelation
 - Correlogram and the AR(p) model
 - Finite differencing and the ARIMA model
- Semester review

Time series data

- Time is one of the independent variables
 - Often only 1 DV and 1 IV (time)
 - But can also have other time-varying IVs
- Why not just use regression with time as the IV?
 - Assumptions of regression: in particular, observations need to be independent!
- Two (complementary) approaches:
 - Model time-varying patterns and factor them out, leaving independent (uncorrel) resids
 - Model the conditional dependence of current value on past values

Patterns / trends

- Patterns to look for:
 - Trend: linear growth/loss
 - Or non-linear: t^λ, ln(t), S-curve, etc.
 - Cycle: multi-year repeating pattern
 - Season: pattern that repeats each year
 - e.g., if data is quarterly, use dummy vars for each season: b₂S₂ + b₃S₃ + b₄S₄
- Additive model:
 - Y_t = (b₀ + b₁t) + (cyclical component)
 + (seasonal component) + (residual)
- Assumptions: residuals are independent, normally distributed, with constant variance

Seasonal pattern

- e.g., quarterly retail sales
- Use dummy vars:
 - Pick a base case, say Wi
 - 3 dummy vars: Sp, Su, Fa
- Additive seasonal model:

•
$$\hat{Y}_t = (b_0 + b_1^*t) + b_2^*Sp + b_3^*Su + b_4^*Fa$$

(predicted) = (trend) + (seasonal)

Nayland College

- 1+3 predictors
- If monthly data instead,
 - Try 11 dummy vars

Sales

Sp

Su

Fa

Otr

BUSI275: review

Additive vs. multiplicative

- Homoscedasticity of residuals is often an issue
- Check residual plot: resids vs. predicted value
 - Or similar "Spread vs. level" plot:
 - √(std resids) vs. predicted
- If you see a distinct "fan" shape,
 - i.e., the SD of residuals grows with the level of the variable,
- Then apply a log transform to the variable:
 - ln(Y₊) = (linear) + (cyclic) + (seasonal)
- This is equivalent to a multiplicative model:
 - Y₊ = (linear) * (cyclic) * (seasonal)

Outline for today

- Time series data: dependent observations
- Trend-based approach:
 - Trends, cycles, seasons
 - Dummy coding a seasonal model
 - Additive vs. multiplicative model
- Autoregressive approach:
 - Autocorrelation
 - Correlogram and the AR(p) model
 - Finite differencing and the ARIMA model
- Semester review

Autocorrelation

- Another approach models the correlation of the current value against past values:
 - P(Y_t | Y_{t-1})
 - Or in general: P(Y, | {Y, all s<t})
- The autocorrelation (ACF) r_p of a variable Y is the correlation of the variable against a time-shifted version of itself:
 - p is the lag (always positive): number of time units to shift
 - p.629 #14-64c: (sales) vs. (ad in prev wk)
- e.g., quarterly seasonal data may have large r₄

Correlogram and AR model

- The correlogram is a column chart illustrating the autocorrelation for various lags
- Statistical software will also show the critical value for each autocorrelation
 - Autocorrelations that are significant suggest an autoregressive model with lag p: AR(p)
- TheFed data: AR(2) model
- Current rate depends on prev 2 years ("memory")

ARIMA model

- ARIMA model combines three parts:
 - AR (autoregression) uses recent values to predict current value
 - MA ("moving average") uses recent errors in prediction (residuals) to predict current resid
 - ("integration") uses finite differencing to factor out consistent trends
 - Looks at Y_t Y_{t-d}, where d is the lag
 - ◆ Year-over-year change (annual data): d=1
 - ◆ Year-over-year change (quarterly): d=4
- The Box-Jenkins method is a way to find the 3 lags that parameterise an ARIMA(p,d,q) model

Combining approaches

- The trend-based approach and the autoregressive approach can be combined:
- First fit broad trends/cycles/seasons
 - Resulting residuals
 (de-trended, de-seasonalized data)
 may still be auto-correlated
- Use correlograms to choose an ARIMA model for the residuals
- Goal is to get the residuals to be small, independent, normally distributed, and with constant variance

Outline for today

- Time series data: dependent observations
- Trend-based approach:
 - Trends, cycles, seasons
 - Dummy coding a seasonal model
 - Additive vs. multiplicative model
- Autoregressive approach:
 - Autocorrelation
 - Correlogram and the AR(p) model
 - Finite differencing and the ARIMA model
- Semester review

Overview: foundation

- Intro: variables, sampling (Ch1)
- Exploring data:
 - Via charts (Ch2), via descriptives (Ch3)
- Probability and independence (Ch4)
- Probability distributions:
 - Discrete: binom, Poisson, hypg (Ch5)
 - Continuous: norm, unif, expon (Ch6)
- Sampling distributions (Ch7, 8)
 - SDSM (norm and t-dist), binomial
 - Types of problems: % area, conf. int., n
- Hypothesis testing (Ch9):
- TRINITY H₀/H_A, rej / fail rej, Type-I/II, α/β, p-value

 BUSI275: review
 3 Apr 2012

Overview: statistical tests

- *T*-tests (Ch10):
 - 1 sample mean (ch9)
 - Two independent samples (het σ , hom σ)
 - Paired data (Excel type 1)
- Regression (Ch14-15):
 - Linear model, predicted ŷ, residuals
 - R², F-test, t-test on slopes, interaction
- ANOVA (ch12):
 - One-way + Tukey-Kramer
 - Blocking (w/o repl) + Fisher's LSD
 - Two-way (w/repl), interaction

Ch7-8: Sampling distributions

- Sampling distributions:
 - SDSM, w/ σ : NORMDIST(), SE = σ/\sqrt{n}
 - SDSM, w/s: TDIST(), SE = s/\sqrt{n}
 - Binomial proportion: norm, $SE = \sqrt{(pq / n)}$
- Types of problems: area, μ, thresh, n, σ
 - Area: prob of getting a sample in given range
 - Threshold: e.g., confidence interval
 - n: minimum sample size

Ch9: Hypothesis testing

- Decision making
- H_0 vs. H_A , in words and notation (e.g., $\mu_1 \neq \mu_2$)
- Conclusions: reject H₀ vs. fail to reject H₀
- Risks/errors: Type-I vs. Type-II
 - Level of significance: α
 - Power: 1-β
- p-value: what is it, how do we use it?

Ch10: t-tests

- T-test on 1 sample (ch8-9):
 - SDSM: $SE = s/\sqrt{n}$
 - Binomial proportions: SE = √(pq/n)
- T-test on two independent samples, general:
 - $SE = \sqrt{(SE_1^2 + SE_2^2)}$, df = complicated
- T-test on two independent samples, similar σ:
 - $SE = s_p \sqrt{(1/n_1 + 1/n_2)}$, $df = df_1 + df_2$
- T-test on two proportions:
 - $SE = \sqrt{(SE_1^2 + SE_2^2)}$, use z instead of t
- T-test on paired data:
 - SE = s_d / \sqrt{n} , df = (#pairs) 1

Ch14: Regression

- Scatter plots and correlation, t-test on r
 - R² and % variability explained
- Linear model $Y = b_0 + b_1 X + \epsilon$
 - Finding+interpreting slope+intercept
 - Finding+interpreting s_ε (STEYX)
- Assumptions / diagnostics:
 - Linearity + homoscedasticity (residual plots)
 - Normality of residuals (histogram)
 - (skip: non-collinearity + indep of resids)
- ch15: only concepts of multiple regression, especially moderation

Ch12-13: Categorical data

- Ch12: ANOVA:
 - H₀ / H_A, global F-test, concept of follow-up
 - One-way ANOVA + Tukey-Kramer
 - Blocking ANOVA + Fisher's LSD
 - F-test for main factor effect
 - F-test for whether blocking is needed
 - Two-way ANOVA
 - F-test for each main effect
 - F-test for interaction
- Ch13: χ² (○ vs. E)
 - 1 var vs. uniform, normal
 - 2 vars (contingency table): independence

TODO

- Presentations next week
 - Remember your potential clients: what questions would they like answered?
 - Tell a story/narrative in your presentation
- Email me your preferences (if any) for time slot
 - I will post the schedule tomorrow
- You will be writing feedback to each group
 - Short answer form, on myCourses
- Upload or share your presentation slides
 - Can be done shortly after your presentation
- Paper is due 16Apr, final exam is 26Apr 9am

