Łukasz Patryk Woźny

email: lukasz.wozny@sgh.waw.pl akson.sgh.waw.pl/~1w23957

semestr zimowy 2007

konsultacje: 18.40-19.40, poniedziałek, KTSR

Lista zadań - mikroekonomia II

Lista zadań:

Czynnik czasu [2]: 2.39,2.40,2.41.

Teoria konsumenta [CN]: 1.2.12-14, 1.2.17, 1.2.28, 1.2.38,

1.3.21-22, 1.4.22, 1.4.39 oraz [2]: 2.1-

2.4, 2.7, 2.9, 2.10.

Teoria gier gry podane na zajęciach

Wybór w warunkach ryzyka [CN]: 6.3.1, 6.3.7, 6.3.9, 6.3.11.

Aukcje. Problem pryncypała i agenta na zajęciach

Teoria producenta [CN]: 2.4.23, 2.4.26.

Oligopol [CN]: 5.4.9, 5.4.17, 5.4.20, 4.4.1, 4.4.10.

Teoria równowagi ogólnej i dobrobyt [CN]: 8.4.1, 8.4.10.

Niesprawności mechanizmu rynkowego [CN]: 9.4.3, 9.4.4, 9.4.10.

Literatura

- [2] Zbiorek 2. Ktsr. akson.sgh.waw.pl/~lw23957.
- [CN] E. Czarny and E. Nojszewska. *Mikroekonomia. Zbiór zadań*. PWE, 2000.

1 Zbiorek 1

2 Zbiorek 2

Oznaczenia: p - cena, X,Y - dobra (lub produkcja), C - koszty, FC - koszty stałe, VC - koszty zmienne, R - utarg (sprzedaż), L - nakłady pracy, K - nakłady kapitału, w - płaca, v - cena jednostki kapitału, U - użyteczność, m - dochód konsumenta, ε - elastyczność cenowa popytu. Litery T,A,M - oznaczają odpowiednio całkowite, jednostkowe (przeciętne), krańcowe (np. AVC - przeciętne koszty zmienne).

Teoria konsumenta

Zadanie 2.1 Adam osiąga zadowolenie z 3 dóbr: muzyki (M), wina (W) i sera (S). Jego funkcja użyteczności ma postać: U(M, W, S) = M + 2W + 3S.

- $Zakładając, \dot{z}e$ "konsumpcja" muzyki wynosi 10, skonstruuj krzywe obojętności dla U=40 i U=70.
- Pokaż, że MRS wina na ser jest stała dla wszystkich wartości W i S na krzywych obojetności.

Zadanie 2.2 Narysuj krzywą obojętności dla poniższych funkcji użyteczności: (i) U(X,Y) = 3X + Y, (ii) $U(X,Y) = (XY)^{\frac{1}{2}}$, (iii) $U(X,Y) = (X^2 + Y^2)^{\frac{1}{2}}$, (iv) $U(X,Y) = X^{\frac{2}{3}}Y^{\frac{1}{3}}$, (v) $U(X,Y) = \ln X + \ln Y$.

Zadanie 2.3 Masz następujące krzywe użyteczności: (i) U(X,Y) = XY, (ii) $U(X,Y) = X^2Y^2$, (iii) $U(X,Y) = \ln X + \ln Y$. Pokaż, że każda z nich charakteryzuje się malejącą MRS, ale wykazują się one stałą, rosnącą i malejącą użytecznością krańcową względem każdego dobra.

Zadanie 2.4 Zadowolenie Kowalskiego z posiadania dóbr X i Y dane jest funkcją użyteczności jak w zadaniu 2.2 (iii). Jakie będzie maksimum użyteczności Kowalskiego jeśli ceny $p_x = 3$, $p_y = 4$, i ma on do wydania 50 zł.

Zadanie 2.5 Pan A. czerpie zadowolenie z picia martini (M) w proporcji do ilości drinków: U(M)=M. Warunkiem jednak tej satysfakcji jest zmieszanie martini z 2 częściami ginu (G) i 1 częścią vermouthu (V). Tym samym prawdziwa funkcja użyteczności pana A.: $U(M)=U(G,V)=\min(\frac{G}{2},V)$. Narysuj krzywą obojętności w funkcji G i V dla różnych poziomów użyteczności. Pokaż, że niezależnie od cen obu dodatków pan A. nigdy nie zmieni sposobu mieszania martini.

Zadanie 2.6 Niech funkcja użyteczności $U(X,Y) = (XY)^{\frac{1}{2}}$. (i) jeżeli $p_x = 20$, $p_y = 10$, dochód m = 200 to ile należy kupić X i Y by zmaksymalizować użyteczność? (ii) obliczyć funkcje indywidualnego popytu na X i Y jako funkcje p_x i p_y .

Zadanie 2.7 Jeśli konsument ma funkcję użyteczności $U(X,Y) = XY^4$, to jaką część dochodu wyda on na dobro Y?

Zadanie 2.8 Znajdź optymalny koszyk jeżeli wiesz, że $U(X,Y)=[X(1+Y)]^{\frac{1}{2}},\ p_x=5, p_y=20,\ zaś\ m=10.\ Co_3$ zmieni się jeśli m=100?

Zadanie 2.9 Znajdź optymalny koszyk dóbr jeśli wiadomo, że funkcja użyteczności ma postać $U(X,Y)=(XY)^{\frac{1}{3}}$, $p_x=0.5$, $p_y=4$, zaś ograniczenie dochodowe wynosi 40. Jak zmieni się optymalny koszyk jeśli dochód konsumenta podwoi się?

Zadanie 2.10 Konsument o którym wiadomo, że ma wypukłe preferencje i dochód w wysokości 100 wybrał pewien optymalny koszyk. W koszyku tym było 20 jednostek X. Ustalić ile było w koszyku dóbr Y i cenę Y (p_y) , jeśli wiemy, iż $p_x = 2$ oraz że w punkcie optimum krańcowa stopa substytucji MRS=1.

Funkcja produkcji

Zadanie 2.11 Kopanie robaków wymaga tylko nakładów pracy. Ilość wykopanych robaków na godzinę (X) dana jest funkcją $X(L) = 100L^{\frac{1}{2}}$. [L - nakład pracy na godzinę]. Narysuj zależność X od L. Jaka jest przeciętna produkcyjność pracy? Pokaż, że krańcowa produkcyjność pracy przy kopaniu robaków jest mniejsza od przeciętnej dla wszystkich wartości L.

Zadanie 2.12 Ilość wytworzonych narzędzi (X) dana jest przez funkcję produkcji $X(K,L) = K^{\frac{1}{2}}L^{\frac{1}{2}}$.

- Jaka jest przeciętna produkcyjność pracy i kapitału?
- oblicz krańcową stopę technicznej substytucji MRTS dla produkcji X = 10, w punktach (K, L): (10, 10), (25, 44), (4, 25). Czy mamy do czynienia z malejącą MRTS?

Zadanie 2.13 Rozważ funkcję produkcji $X(K,L) = b_0 + b_1(KL)^{\frac{1}{2}} + b_2K + b_3L$, gdzie $0 \le b_i \le 1$, i = 1, 2, 3. Jeżeli ta funkcja ma wyrażać stałe przychody względem skali jakie ograniczenia należy nałożyć na b_i ? Pokazać, że przy stałych przychodach względem skali funkcja ta wykazuje malejące produkcyjności krańcowe.

Zadanie 2.14 Zbadaj przychody względem skali funkcji produkcji $X(K, L) = a(\frac{K}{L})^{\frac{1}{2}}$, gdzie a > 0. Czy produkcyjności krańcowe względem pracy i kapitału są rosnące czy malejące?

Zadanie 2.15 Funkcja produkcji ma postać $X(K,L) = K^{\frac{1}{4}}L^{\frac{1}{4}}$. Wyznacz krótkookresowe funkcje kosztu przeciętnego i krańcowego (w krótkim okresie kapitał jest stały i wynosi $K_0 = 16$), jeśli wiemy, że cena jednostki kapitału v = 10 a cena jednostki pracy w = 2. Oblicz ATC i MC dla X = 10.

Koszty produkcji

Zadanie 2.16 Przedsiębiorstwo "Wesoła Lokomotywa" wytwarzające drezyny kolejowe posiada majątek trwały o wartości 50 mld zł i zatrudnia 175 osób. Roczna wielkość produkcji wynosi 100 szt. Obliczyć roczny zysk netto przedsiębiorstwa jeśli wiadomo, że stawka amortyzacji 5%, średnia płaca miesięczna - 2 mln zł a jednostkowy koszt materialny 41 mln zł. Przedsiębiorstwo zaciągnęło kredyt 4 mld zł oprocentowany w skali rocznej 10%. Cena drezyny wynosi 120 mln zł, a stopa podatku dochodowego wynosi 40%.

- Przy jakiej stopie oprocentowania kredytów zysk netto zniknie?
- Jaka jest minimalna wielkość produkcji zapewniająca rentowność jeśli do kosztów stałych zaliczymy amortyzację, koszty płacowe i koszty finansowe oraz wiemy, że TVC zmieniają się proporcjonalnie do wielkości produkcji?
- jak wyżej przyjmując, że płace stanowią koszty zmienne.

Zadanie 2.17 Niech w przedsiębiorstwie FC = 1000, a AVC = 3 (AVC = const.). Jeśli firma sprzedaje po 8 zł/szt. jaka jest minimalna, opłacalna skala produkcji?

Zadanie 2.18 W przedsiębiorstwie koszt stały FC = 300, jednostkowy koszt zmienny AVC = 1 (AVC = const.). Firma sprzedaje swe wyroby po cenie p = 8. Dla jakiej minimalnej wielkości produkcji zysk netto wyniesie przynajmniej 100, jeśli ustalono stopę podatku dochodowego na 50%?

Zadanie 2.19 Dysponujemy dwiema technologiami produkcji dobra H. Jedna - pozwala wytworzyć w zakładzie do 200 sztuk H rocznie przy wydatkowaniu w postaci kosztów stałych 1000 zł i przy stałych, jednostkowych kosztach zmiennych 2 zł/szt. Druga, nowsza technologia wymaga 6000 zł kosztów stałych i AVC=1 zł (AVC=const.) a maksymalna skala produkcji 2000 sztuk rocznie. Jeśli przewidywany popyt roczny wynosi 1000 szt. która z dwóch ewentualności jest bardziej opłacalna: (i) jeden zakład w nowej technologii, (ii) 5 zakładów w starej technice?

Zadanie 2.20 Funkcja produkcji ma postać $X(S,J) = S^{\frac{1}{2}}J^{\frac{1}{2}}$. S,J - nakłady pracy Smitha i Jonesa. Płaca za 1 godzinę $w_S = 3$, $w_J = 12$. Nakład pracy S = 900. (i) Ile godzin musi spędzić Jones by skończyć książkę o 150, 300, 450 stronach? (ii) jaki jest krańcowy koszt 150 skończonej strony?

Zadanie 2.21 Firma produkuje kije hokejowe. Funkcja produkcji $X(K, L) = 2K^{\frac{1}{2}}L^{\frac{1}{2}}$. W krótkim czasie $K_0 = 100$, koszt jednostki kapitału v = 1, płaca w = 4. i krótkookresowa funkcja kosztu całkowitego, przeciętnego? (ii) krótkookresowa funkcja kosztu krańcowego? Obliczyć TC, ATC, MC dla produkcji 25 sztuk, 50, 100, 200.

Zadanie 2.22 Funkcja kosztu całkowitego: $C(X) = X^3 + 2X + 2$. FC, VC, AVC, AC, MC = ?

Równowaga w przedsiębiorstwie

Zadanie 2.23 Obliczyć punkt równowagi przedsiębiorstwa wolnokonkurencyjnego którego funkcja kosztu całkowitego $C(X) = 100 + 6X + X^2$, cena p = 126. Obliczyć utarg, zysk, AC, MC w punkcie równowagi. Przy jakiej cenie zysk spadnie do zera?

Zadanie 2.24 Niech funkcja kosztu całkowitego $C(X) = 16 + \frac{X^2}{100}$. Wyznaczyć funkcję podaży firmy.

5

- **Zadanie 2.25** Wyznaczyć krótkookresową krzywą podaży p(X), jeśli wiemy, że koszt całkowity $C(X) = 100 + 12X + X^2$.
- **Zadanie 2.26** Funkcja produkcji dla przedsiębiorstw zajmujących się składaniem kalkulatorów jest dana $X(L)=2L^{\frac{1}{2}}$, gdzie X ilość produktów, a L nakłady pracy. Jeśli firma działa w warunkach konkurencyjnych wyznacz funkcję podaży X=f(p,w), gdzie p cena sprzedaży, zaś w płaca robocza.
- **Zadanie 2.27** Przedsiębiorstwo wie, że jego utarg krańcowy MR(X) = 100 5X, a funkcja kosztu całkowitego C(X) = 150 + 50X. (X wielkość produkcji). Oblicz maksymalny zysk firmy. (Przy zerowej produkcji utarg całkowity wynosi 0).
- Zadanie 2.28 Przedsiębiorstwo wie, że funkcja popytu na jego wyroby ma postać: p(X) = 120 4X. Koszt zmienny jednostkowy AVC = X + 20, koszt stały FC = 400. Obliczyć dla jakiej wielkości produkcji przedsiębiorstwo osiąga (i) maksimum zysku, (ii) maksimum utargu, (iii) minimum całkowitego kosztu przeciętnego. (p cena, X produkcja).
- **Zadanie 2.29** Niech X(p) = 50 0.5p, C(X) = 50 + 40X. Znaleźć punkt równowagi i cenę. Elastyczność w punkcie równowagi. Porównaj z sytuacją $gdy \ p(X) = 160 3X$.
- **Zadanie 2.30** p(X) = -10X + 400, MC(X) = 5X + 100, FC = 0. Obliczyć X, p, MC, zysk, w stanie r'ownowagi.
- **Zadanie 2.31** $TC(X) = 0.1X^2 + 10X + 40$. Wyznacz funkcję podaży firmy. Punkt równowagi dla p = 20 (wolna konkurencja), zysk = ?
- **Zadanie 2.32** W monopolu funkcja utargu krańcowego MR(X) = 100-4X, zaś kosztu całkowitego $TC(X) = 8X^2 + 20X 24$. Jeśli w punkcie równowagi współczynnik cenowej elastyczności popytu wynosi $\varepsilon = 3$, to jaki jest zysk firmy?
- **Zadanie 2.33** MC = 40, FC = 50. Dla posegmentowanego rynku monopolistycznego $X_1 = 32 0.4p_1$, $X_2 = 18 0.1p_2$. Znaleźć punkt równowagi, X_1 , X_2 , p_1 , p_2 . Obliczyć zysk, porównać z sytuacją kiedy nie różnicuje się cen.
- **Zadanie 2.34** Załóżmy, że w gałęzi działa 100 identycznych firm. Każda z nich ma krótkookresową krzywą kosztu całkowitego $C(X) = \frac{X^3}{300} 0.2X^2 + 4X$. Oblicz krótkookresową krzywą podaży z X jako funkcją ceny p. Zakładając brak zależności między kosztami firm w gałęzi, wylicz krzywą podaży gałęzi. Przyjmując funkcję popytu rynkowego Q(p) = -200p + 12000 wyznaczyć kombinację cena ilość zapewniającą równowagę w gałęzi.
- Zadanie 2.35 Na rynku ukształtowała się równowaga: sprzedaje się 200 szt. po 9 zł. Zakładając, że na rynku funkcjonują identyczne przedsiębiorstwa (w każdym FC = 1000 zł, AVC = 3 zł, maksymalna zdolność produkcyjna 500 szt.) ustalić ile przedsiębiorstw może utrzymać się na rynku? [przyjmujemy, że produkcja rozkłada się równomiernie między firmy]. Co zmieni się jeśli sprzedaż wynosi 600 szt. po 8.5 zł?

Zadanie 2.36 Respektując założenia zadania poprzedniego określić ile firm utrzyma się na rynku jeśli sprzedaje się 600 szt. po 8.5 zł , ale AVC wzrosło do 4 zł?

Zadanie 2.37 Niech funkcja popytu ma postać: p(X) = 8.5 - 0.0025X, gdzie X - podaż (popyt) gałęzi. Wszystkie firmy wytwarzające dobro X są identyczne: FC = 1000 zł, AVC = 3 zł, maksymalna zdolność produkcyjna Y = 500 szt. Ile przedsiębiorstw utrzyma się na rynku? Ile wytwarzać będzie pojedyncze przedsiębiorstwo przy równomiernym rozłożeniu produkcji? Co zmieni się jeżeli krzywa popytu przyjmie postać: (i) p(X) = 6.5 - 0.0025X, (ii) p(X) = 7.5 - 0.0025X? Określić maksymalną ilość przedsiębiorstw na rynku jeśli - przy pierwotnej krzywej popytu - AVC wzrośnie do 4.5 zł.

Zadanie 2.38 W duopolu funkcja popytu rynkowego względem ceny ma postać D(p) = A - p, A > 0. Obie firmy mają stałe, choć różne, koszty krańcowe produkcji odpowiednio c_x i c_y . Wylicz produkcję każdej firmy i całego rynku, cenę oraz zysk firm jeśli: (i) obie zachowują się zgodnie z modelem Cournota, (ii) jedna odgrywa rolę lidera, druga - zachowuje się zgodnie z modelem Cournota, (iii) pojawia się zmowa. Co by było gdyby rynek miał charakter konkurencyjny? Jak zmieniają się zyski firm pod wpływem zmiany własnych kosztów i kosztów rywala?

Wartość pieniądza w czasie

Zakładamy zerowa inflację

Zadanie 2.39 Pewna inwestycja trwa 2 lata, a rozkład nakładów inwestycyjnych w czasie jest następujący: 1 rok - 31 mln zł, 2 rok - 1 mln zł. Obiekt funkcjonuje przez 3 lata przynosząc zyski po 13 mln zł rocznie. Czy inwestycja jest opłacalna? Czy coś zmieni się jeśli nakłady inwestycyjne będą rozłożone 1 rok - 1 mln zł, 2 rok - 31 mln zł?

Zadanie 2.40 Rozważamy kupno modemu mając do wyboru urządzenia: PL Robotics i Pyxel. Parametry urządzeń są następujące: PL Robotics: cena: 300 zł; szybkość: 15 tys. bit/sec, Pyxel: cena 1550 zł; szybkość: 27 tys. bit/sec. Roczne zapotrzebowanie na informacje jest 30 mld bitów. Koszt połączenia telefonicznego wynosi 3.6 zł/h. Okres eksploatacji urządzenia 4 lata. Które urządzenie opłaca się kupić? Co będzie, gdy zapotrzebowanie na informacje jest 25 mld bitów?

Zadanie 2.41 Czy kupiłabyś za 120 zł obligację o wartości nominalnej 200 zł i terminie wykupu za 3 lata, jeśli wiesz, że jej oprocentowanie wynosi 2.5% rocznie, stopa lokaty bankowej 5.0%, a stopa ryzyka 7.0%?