Results:

The following parameters have been varied:

- 1. Discount factor. (γ)
- 2. Learning Rate. (a)

The path chosen is as follows: (This path has been chosen for ALL results illustrated below)

Forward
$$\rightarrow$$
 Right \rightarrow Stop \rightarrow Left \rightarrow Forward \rightarrow Stop (OR)
F0 \rightarrow R1 \rightarrow S3 \rightarrow L2 \rightarrow F0 \rightarrow S3

Discount Factor:

States	F	R	L	S
F0	28. 6525	38. 7438	28. 7792	28. 4576
F1	22. 5994	20. 4063	22. 7846	32. 3782
F2	29. 3042	-1. 99553	-1. 99863	-1. 99732
F3	19. 0582	18. 9571	32. 1115	18. 8491
R0	0	0	0	0
R1	34. 9921	33. 3451	34. 956	42. 6093
R2	27. 3351	-1. 99732	-1. 99636	-1. 99746
R3	20. 4635	17. 7096	29. 4989	18. 7091
LO	0	0	0	0
L1	22. 8138	19. 9556	21. 3218	31. 2335
L2	41. 0718	9. 98358	9. 9891	9. 99017
L3	20. 4277	18. 3828	31. 1132	20. 4659
S0	0	0	0	0
S1	22. 3179	21. 0361	22. 9176	31. 3149
S2	28. 6085	-1. 99479	-1. 9953	-1. 99392
S3	32. 2783	31. 081	41. 5576	30. 9583

(Figure 2.4: Gamma = 0.9)

States	F	R	L	S
F0	6. 4215	13. 2198	8. 54023	6. 04327
F1	2. 35307	2. 57579	2. 56346	9. 60369
F2	6. 01301	-1. 99718	-1. 99553	-1. 99718
F3	1. 26252	1. 11339	8. 47032	1. 06074
R0	0	0	0	0
R1	14. 4673	14. 318	14. 4558	21. 6017
R2	5. 87446	-1. 99831	-1. 99759	-1. 99617
R3	1. 12093	0. 992242	8. 34939	1. 19741
LO	0	0	0	0
L1	2. 57782	2. 41608	2. 56867	9. 6653
L2	17. 9752	9. 97525	9. 98729	9. 99066
L3	1. 41327	1. 20677	8. 34243	1. 14306
S0	0	0	0	0
S1	2. 54241	2. 32004	2. 62545	9. 56156
S2	5. 85305	-1. 99771	-1. 99654	-1. 99173
S3	13. 2119	12. 8805	20. 4272	13. 1977

(Figure 2.5: Gamma = 0.6)

States	F	R	L	S
F0	-9. 31638e-05	1. 4503	1. 18092	1. 59538
F1	-2. 097	-2.09644	-2. 09952	-0. 908223
F2	-1.8426	-1. 99597	-1. 99291	-1. 99505
F3	-2. 16965	-2. 17698	-0. 999972	-2. 17609
R0	0	0	0	0
R1	9. 88464	9. 88756	9. 88229	11. 0801
R2	-1.8372	-1. 99876	-1. 99597	-1. 99746
R3	-2. 17734	-2. 17858	-0. 997945	-2. 17177
LO	0	0	0	0
L1	-2. 0963	-2. 09834	-2. 09767	-0. 913804
L2	10. 0985	9. 99411	9. 98358	9. 97257
L3	-2. 17192	-2. 17821	-0. 99816	-2. 1765
S0	0	0	0	0
S1	-2. 09377	-2. 09603	-2. 09267	-0. 907638
S2	-1.84318	-1. 99597	-1. 99913	-1. 99782
S3	9. 80875	9. 79793	10. 9796	9. 8143

(Figure 2.6: Gamma = 0.1)

Figure 2.7 (Figure Compares total rewards received for 3 values of γ : 0.1, 0.6, 0.9)

Observations:

- If γ ~0, the agent will be completely myopic and will only learn about actions that produce an immediate reward. If γ ~1, the agent learns actions that produce rewards that complement future transitions.
- As observed in figure 2.4, for γ value of 0.9 the rewards are: **High** (Numerically) and **Well distributed.**
- As observed in figure 2.6, for γ value of 0.1 the rewards are: **Low** (Numerically) and **extremely biased.**
- The given path: $F0 \rightarrow R1 \rightarrow S3 \rightarrow L2 \rightarrow F0 \rightarrow S3$
- Let's take the first transition F0 → R1. In figure 2.4 the max Q value for F0 is 38.7 in column R. Which confirms with the path, since the agent is transitioning from F0 → R1.
- However, in figure 2.6 the max Q-value for **F0** is 1.59 in column **S**. Which is **wrong**.
- This is inaccuracy in max Q-values confirms the concept behind the discount factor. In figure 3, the agent with a γ value of 0.1 only learnt actions with immediate rewards. Thus, it failed to learn the eventual actions for future state transitions along the path.

Learning Rate And Epsilon:

- Epsilon is a parameter used to implement the epsilon-greedy policy of q-learning.
- Simply put for $\varepsilon = 1$, the agent will **only explore**. For $\varepsilon = 0$, the agent will **only exploit**.
- The policy is essentially a probability distribution of the actions the agent has a propensity to take at any time state.
- Below figure 2.8 is the State transition table. Both the x and y axes are states. The numbers represent the Q-values (Added across 5000 episodes) used by the agent to transition from a **row to a column**. Rows represent initial state, the columns represent final states.

Figure 2.8

(State Transition Table for the path: $F0 \rightarrow R1 \rightarrow S3 \rightarrow L2 \rightarrow F0 \rightarrow S3$)

Observations:

- The difference in Q-values shown in the Q-table for **\varepsilon** values ranging from 0.05 to 0.95 was **minuscule**.
- The reason is that, the difference in Q-values for exploring and exploiting **further** accentuates, when there are a plethora of actions possible.
- Imagine we have 100 actions possible. For an ε value of 0.1, the distribution would be extremely biased towards one action and less towards the rest 99. **This** situation would accurately illustrate the sheer difference in outcomes in an agent trying to explore and exploit. Because of the sheer number of actions possible, the agent will take a very long time figuring out the path if it exploits.
- In leman's terms, the agent has an extremely high propensity to get biased and not recover from it, if there are a plethora of actions.
- However, in our environment, the difference is barely noticed due to there only being 4 possible actions. Thus, even if $\mathbf{\epsilon} = \mathbf{0.05}$ (Propensity to exploit). The action probability distributions would look like [0.05 0.05 0.85 0.05]. Which is a very limited number of actions to accentuate the difference in outcomes of exploring and exploiting.
- Lastly, figure 2 illustrates the state transition table to give us a better idea of the transitions. The numbers represent Q-values.

•