МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

УРАЛЬСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ имени первого Президента России Б. Н. Ельцина

ИНСТИТУТ ЕСТЕСТВЕННЫХ НАУК И МАТЕМАТИКИ

Кафедра алгебры и фундаментальной информатики

Различение слов перестановочными автоматами

Направление подготовки 02.04.02 «Фундаментальная информатика и информационные технологии»

Допустить к защите:	Магистерская диссертация
Зав. кафедрой:	Карповой
доктор физико-математических	Ольги Дмитриевны
наук	
профессор М.В. Волков	
—————————————————————————————————————	Научный руководитель:
кандидат физимо-математических	доктор физико-математических
наук	наук,
доцент И.И. Иванов	профессор А.М. Шур

Екатеринбург 2018

Содержание

B	ВЕД	ЕНИЕ	2
1	Осн	овные определения	3
2	Пос	становка задачи	4
3	Полезные факты		5
4	Серии тождеств		6
	4.1	Тождетсва из двух блоков	6
	4.2	Тождества из трех блоков	6
	4.3	Тождества из четырех и более блоков	6
5	Зак	лючение	7

ВВЕДЕНИЕ

Задача о различении двух наборов входных данных - одна из самых простых вычислительных задач, которые можно себе представить. Обычно, входные данные представлены в виде двух строк u и v над конечным алфавитом Σ и известны заранее.

В мощной вычислительной модели, такой как RAM, задача решается за константную память (помимо памяти, занимаемой строками): нам достаточно одного регистра для того, чтобы найти позицию, в которой различаются u и v.

Однако для более слабой модели, например, для конечных автоматов, задача существенно усложняется, и ее уже нельзя решить за константую память. Задача об определении минимального размера конечного автомата, различающего два данных слова, NP-трудна. Более того, не всё известно об асимптотике минимального количества вершин, необходимого, чтобы построить различающий автомат для каждой пары слов, длина которых меньше либо равна заданному наперед числу. Это и есть задача о различении слов автоматами, и на данный момент известны только верхняя и нижняя границы искомой функции, между которыми довольно большой разрыв.

Далее в работе будут даны все необходимые определения, задача будет поставлена более формально, также будет показана эквивалентность этой задачи поиску тождеств в полгруппе преобразований и группе перестановок. Более того, будут приведены серии тождеств, одна из которых позволяет слегка поднять нижнюю границу искомой функции.

1 Основные определения

Пусть $\mathscr{A}=(\Sigma,Q,\delta,s,T)$ – детерминированный конечный автомат, где Σ – входной алфавит, из которого формируются слова, принимаемые автоматом, $\Sigma \neq \emptyset$,

Q – множество состояний автомата, $Q \neq \emptyset$,

 δ – функция переходов, определенная как отображение $\delta: Q \times \Sigma \to Q$,

s – начальное состояние, $s \in Q$

T – множество терминальных (конечных) состояний, $T \subseteq Q$.

Определение 1.1. Автомат \mathscr{A} – перестановочный, если переход из любого состояния по любому символу является перестановкой состояний, или, что тоже самое, для любого символа x из Σ и любых состояний q и p $\delta(q,x) \neq \delta(p,x)$.

Определение 1.2. Автомат принимает слово, если по окончании его обработки он находится в терминальном состоянии.

Определение 1.3. Пусть u и v – слова над алфавитом Σ . Говорят, что автомат различает слова u и v, если он принимает одно из них и не принимает другое.

Определение 1.4. Пару слов (u, v) будем называть тождеством для некоторого автомата, если он либо принимает и u, и v, либо отвергает и u, и v, то есть не различает их.

Обозначим за sep(u,v) количество состояний в минимальном детерминированном конечном автомате, различающем u и v, за sepp(u,v) – количество состояний в перестановочном автомате, различающем u и v. Например, автомат на рисунке 1 различает слова 0010 и 1000.

2 Постановка задачи

3 Полезные факты

- 4 Серии тождеств
- 4.1 Тождетсва из двух блоков
- 4.2 Тождества из трех блоков
- 4.3 Тождества из четырех и более блоков

5 Заключение

Список литературы