Notações Assintóticas

Rômulo César Silva

Unioeste

Dezembro de 2019

Sumário

Bibliografia

Notações Assintóticas

 $\acute{\text{E}}$ uma forma de descrever o comportamento de funções, mais especificamente seu crescimento.

Útil para efetuar comparações entre medidas de complexidade de algoritmos diferentes para um mesmo problema.

Veremos aqui 3 notações:

- notação O ("big" 0)
- notação Ω (ômega)
- notação ⊖ (theta)

Seja f(n) função não-negativa para todos inteiros.

f(n) é O(g(n)), denota-se $f(n) \in O(g(n))$, se existirem inteiro n_0 e constante c > 0 tal que para todo inteiro $n \ge n_0$,

$$f(n) \leq c.g(n)$$

Assim é estabelecido um **limite superior** para a taxa de crescimento de f em relação ao crescimento de n. Ou seja, f(n) cresce no máximo tão rapidamente quanto g(n).

O gráfico abaixo apresenta esquematicamente essa situação:

para valores maiores que n_0 , a função g multiplicada por uma constante c>0 sempre é maior que a função f.

Por exemplo: f(n) = 7n - 2 e g(n) = n. Escolhendo c = 7 e $n_0 = 1$, verifica-se que $f(n) \le 7n$ para $\forall n \ge n_0$. Logo, pode-se dizer que $f(n) \in O(g(n))$.

Notação Ω

Seja f(n) função não-negativa para todos inteiros.

f(n) é $\Omega(g(n))$, denota-se $f(n) \in \Omega(g(n))$, se existirem inteiro n_0 e constante c > 0 tal que para todo inteiro $n \ge n_0$,

$$0 \le c.g(n) \le f(n)$$

Assim é estabelecido um **limite inferior** para a taxa de crescimento de f em relação ao crescimento de n. Ou seja, f(n) cresce no mínimo tão rapidamente quanto g(n).

O gráfico abaixo apresenta esquematicamente essa situação:

para valores maiores que n_0 , a função g multiplicada por uma constante c>0 sempre é menor que a função f.

Por exemplo: f(n) = 7n - 2 e g(n) = n. Escolhendo c = 5 e $n_0 = 1$, verifica-se que $5n \le f(n)$ para $\forall n \ge n_0$. Logo, pode-se dizer que $f(n) \in \Omega(g(n))$. Seja f(n) função não-negativa para todos inteiros.

f(n) é $\Theta(g(n))$, denota-se $f(n) \in \Theta(g(n))$, se existirem inteiro n_0 e constantes c1 e $c_2 > 0$ tal que para todo inteiro $n \ge n_0$,

$$0 \leq c_1.g(n) \leq f(n) \leq c_2.g(n)$$

Assim é estabelecido um **limite assintótico exato** para a taxa de crescimento de f em relação ao crescimento de n.

Notação Θ

O gráfico abaixo apresenta esquematicamente essa situação:

para valores maiores que n_0 , a função g multiplicada por uma constante $c_1>0$ sempre é menor que a função f e ao mesmo tempo multiplicada por uma constante $c_2>0$ sempre é maior que a função f

Por exemplo: f(n) = 7n - 2 e g(n) = n.

Escolhendo $c_1 = 5$, $c_2 = 7$ e $n_0 = 1$, verifica-se que

$$0 \le 5n \le f(n) \le 7n$$
 para $\forall n \ge n_0$.

Logo, pode-se dizer que $f(n) \in \Theta(g(n))$.

Propriedades das notacões assintóticas

Transitiva

- Se $f(n) \in O(g(n))$ e $g(n) \in O(h(n))$ então $f(n) \in O(h(n))$
- Se $f(n) \in \Omega(g(n))$ e $g(n) \in \Omega(h(n))$ então $f(n) \in \Omega(h(n))$
- Se $f(n) \in \Theta(g(n))$ e $g(n) \in \Theta(h(n))$ então $f(n) \in \Theta(h(n))$

Reflexiva

- $f(n) \in O(f(n))$
- $f(n) \in \Omega(f(n))$
- $f(n) \in \Theta(f(n))$

Simétrica:

Se
$$f(n) \in \Theta(g(n))$$
 se e somente se $g(n) \in \Theta(f(n))$

Simetria Transposta:

$$f(n) \in O(g(n))$$
 se e somente se $g(n) \in \Omega(f(n))$

Propriedades das notações assintóticas

- Se $f_1(n) \in O(g_1(n))$ e $f_2(n) \in O(g_2(n))$ então:
 - $f_1(n) + f_2(n) \in O(max(g_1(n), g_2(n)))$
 - $f_1(n).f_2(n) \in O(g_1(n).g_2(n))$
- O(k.f(n)) = O(f(n)) para k constante
- Se f(n) é polinômio de grau k então $f(n) \in O(n^k)$

Observações

As notações assintóticas na prática permitem a comparação de conjuntos ("famílias") de funções. Assim, as famílias de funções mais comuns possuem nomes conforme abaixo:

• Constante: O(1)

• Logaritmica: $O(\lg n)$

• **Linear**: *O*(*n*)

Quadrática: O(n²)

• Cúbica: $O(n^3)$

• **Polinomial**: $O(n^k)$ para $k \ge 1$

• Exponencial: $O(a^n)$ para a > 1

Observações

A notação Θ indica que a função é ao mesmo tempo O e Ω da outra função.

Pode-se fazer uma analogia entre as notações assintóticas e a comparação entre número reais da seguinte maneira: sendo a um número real representando f(n) e b outro número real representa g(n):

- $f(n) \in O(g(n))$ significa $a \le b$
- $f(n) \in \Omega(g(n))$ significa $a \ge b$
- $f(n) \in \Theta(g(n))$ significa a = b

Dentro dessa analogia, pode-se usar a notação ${\it O}$ para comparar as famílias de funções:

$$O(1) < O(\lg n) < O(n) < O(n \lg n) < O(n^2) < O(n^3) < O(2^n)$$

Bibliografia I

[Cormen 1997] Cormen, T.; Leiserson, C.; Rivest, R. Introduction to Algorithms. McGrawHill, New York, 1997.

