# Лаба 5. Контроль и исправление ошибок.

Лабораторная работа состоит из трех частей:

- 1. Контроль ошибок (CRC Cyclic Redundancy Checksum). Реализация принципа ARQ (Automatic Repeat reQuest)
- 2. Поиск и исправление ошибок (Error Correction Code, Hamming Code)
- 3. Маршрутизация

# Часть 1. Контроль ошибок (CRC - Cyclic Redundancy Checksum)

CRC - технология проверки последовательности на ошибки. Вкратце, имеется исходное сообщение определенного размера, в которое необходимо добавить "избыточные" биты информации, которые помогут определить, была ли допущена ошибка в исходном сообщении при передаче данных.

Таким образом, имеется:

- 1. Сообщение
- 2. CRC алгоритм
- 3. "избыточные" биты внедренные в сообщение

Все вместе называется Codeword:



В нашем случае, будем использовать готовый генерирующий последовательность полином для посчета контрольной суммы:

Generator Polynomial = 
$$X^4 + X^3 + X + 1$$
  
Message Data = 11100101

Алгоримт достаточно просто, необходимо делить генерирующий полином делить (применив операцию XOR) на исходной сообщение:

| 10101100            |                         |
|---------------------|-------------------------|
| 11011) 111001010000 |                         |
| 11011               |                         |
| 01111               | •                       |
| 00000               |                         |
| 11110               |                         |
| 11011               |                         |
| 01011               |                         |
| 00000               |                         |
| 10110               |                         |
| 11011               |                         |
| 11010               |                         |
| 11011               |                         |
| 00010               |                         |
| 00000               |                         |
| 00100               |                         |
| 00000               |                         |
| 0100                |                         |
| ,                   |                         |
| This b              | ecomes the checksum bit |

В итоге, получаем:



### Задание Части 1

- 1. Взяв за основу лабораторную работу №4, проверить на наличие ошибок при передачи файла (изображение\текстовый файл\и т.д.).
- 2. Выбрать размер "пакета" (исходного сообщения) [от 8 до 32 бит].
- 3. Использовать полином из описания CRC принципа.
- 4. Добавить "избыточность".

- 5. Отправить от сервера к клиенту.
- 6. При получении проверить на ошибки.
- 7. Если присутствуют ошибки, реализовать ARQ процесс.
- 8. Построить график зависимости среднего количества переотправок пакета от значения SNR, где SNR = [start=-5; end=3; step=1]
- 9. Оценить % избыточности информации.

## Часть 2. Поиск и исправление ошибок

В данном разделе рассмотрим один из простейших алгоритмов поиска и исправления ошибок, код Хэмминга.

| Bit Position      |    | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |
|-------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| Encoded data bits |    | pl | p2 | dl | p4 | d2 | d3 | d4 | p8 | d5 | d6 | d7 |
|                   | p1 | X  |    | X  |    | X  |    | X  |    | X  |    | X  |
| Parity bit        | p2 |    | X  | X  |    |    | X  | X  |    |    | X  | X  |
| coverage          | p4 |    |    |    | X  | X  | X  | х  |    |    |    |    |
|                   | p8 |    |    |    |    |    |    |    | X  | X  | X  | X  |

#### Задание Части 2

- 1. Поверх CRC добавить код Хэмминга.
- 2. Если присутствуют ошибки, реализовать ARQ процесс.
- 3. Построить график зависимости среднего количества переотправок пакета от значения SNR, где SNR = [start=-5; end=3; step=1]
- 4. Оценить % избыточности.

#### Часть 3. Маршрутизация

- 1. Необходимо добавить еще 2 клиентских приложения (+ 2 терминала, итого 3 клиентских, 1 серверный)
- 2. Разработать "протокол" передачи данных, где все данные будут проходить через серверное приложение. Протокол должен иметь возможность передавать каждый пакет конкретному пользователю.

- 3. Считать связь между всеми узлами беспроводную.
- 4. CRC + Hamming присутствуют в каждом пакете.