Metody Inżynierii Wiedzy Modelowanie i wnioskowanie rozmyte wykład 13

Adam Szmigielski aszmigie@pjwstk.edu.pl materiały: ftp(public): //aszmigie/MIW

Zasada sprzeczności

- Jan Łukasiewicz wyróżnił 3 aspekty zasady sprzeczności:
 - 1. logiczną: $\neg(a \land \neg a)$,
 - 2. ontologiczną "Niemożliwym jest aby coś było i nie było jednocześnie",
 - 3. psychologiczną jako prawo psychologiczne.
- Zdanie o przyszłości nie są ani prawdziwe ani fałszywe.
- Zdania o przyszłości są jednocześnie fałszywe i prawdziwe sprzeczność.

Trzecia wartość logiczna

- Jan Łukasiewicz chciał stworzyć systemu logik nie-arystotelesowskich (nie uznających zasady sprzeczności),
- Można tego dokonać poprzez odpowiedni dobór aksjomatów eliminujących zasadę sprzeczności,
- Jan Łukasiewicz wprowadził trzecią wartość logiczną $\frac{1}{2}$.

Logika Ł-3

Opis semantyczny ("tabelkowy") definiuje 4 operatory pierwotne \land , $\lor \Rightarrow i \lnot$

• koniunkcja $a \wedge b$:

$a \setminus b$	0	$\frac{1}{2}$	1
0	0	0	0
$\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$
1	0	$\frac{1}{2}$	1

• negacja $\neg a$:

a	$\neg a$
0	1
$\frac{1}{2}$	$\frac{1}{2}$
1	0

Logika Ł-3

• alternatywa: $a \lor b$

a b	0	$\frac{1}{2}$	1
0	0	$\frac{1}{2}$	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1
1	1	1	1

• implikacja: $a \Rightarrow b$

a b	0	$\frac{1}{2}$	1
0	1	1	1
$\frac{1}{2}$	$\frac{1}{2}$	1	1
1	0	$\frac{1}{2}$	1

Dowodzenie w Ł-3

Dla tabelek z 3 wartościami jeśli formuła jest tautologią to w ostatniej kolumnie ma same jedynki.

• Czy formuła $a \to \neg \neg a$ jest tautologią?

a	$\neg a$	$\neg \neg a$	$a \rightarrow \neg \neg a$
0	1	0	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1
1	0	1	1

• Formuła $a \to \neg \neg a$ jest tautologią w Ł-3.

Dowodzenie w Ł-3 cd.

• Czy formuła $a \vee \neg a$ jest tautologią?

a	$\neg a$	$a \lor \neg a$
0	1	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	0	1

• Formuła $a \vee \neg a$ nie jest tautologią w Ł-3.

Dowodzenie w Ł-3 cd.

a	$\neg a$	$a \wedge \neg a$	$\neg(a \land \neg a)$
0	1	0	1
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
1	0	0	1

• Formuła $\neg(a \land \neg a)$ nie jest tautologią w Ł-3.

Klasyczny Rachunek Zdań (KRZ) i Ł-3

• Można zauważyć że macierze funktorów \land , \lor , \rightarrow można stworzyć następująco:

$$-a \wedge b = min(a, b)$$

$$-a \vee b = max(a, b)$$

$$-a \rightarrow b = \begin{cases} 1 & gdy & a \leq b \\ 1 - a + b & gdy & a > b \end{cases}$$

- Reguły te obowiązują również dla KRZ.
- Każde tautologia w Ł-3 jest również tautologią w KRZ.

Logiki wielowartościowe Łukasiewicza

- Łukasiewicz opisywał obszerną klasę logik wielowartościowych $L_2, L_3, \ldots L_i, \ldots$
- oraz jeden system logik nieskończenie (przeliczalnie) wielowartościowych L_{\aleph_0} .
- Ogólnie dla logik n-wartościowej (n = 2, 3, 4, ...) L_n zbiór wartości logicznych ma postać:

$$A_n = \{0, \frac{1}{n-1}, \frac{2}{n-1}, \dots, \frac{n-2}{n-1}, 1\}$$

• Zbiór wartości logiki L_{\aleph_0} przyjmuje wartości ułamków z przedziału <0,1>.

Logiki wielowartościowe Łukasiewicza

- Dla systemów "skończenie wartościowych" L_n , $n < \aleph_0$ można dowodzić twierdzeń "metodą tabelkową".
- W przypadku twierdzeń w logice L_{\aleph_0} dowody twierdzeń są znacznie trudniejsze.
- Można wyobrazić sobie system logiki L_{∞} .

Logika rozmyta

- $\bullet\,$ Zbiór wartości logicznych zawiera się w przedziale <0,1>
- Nie można konstruować tabel prawdy
- Powstaje problem określenia funktorów \land , \lor , \Rightarrow

Logika rozmyta

- Według Zadeha istnieje konflikt: znaczenia precyzja,
- Zbiór rozmyty jest nośnikiem znaczenia,
- Logika rozmyta służy do modelowania informacji subiektywnej
- Logika rozmyta jest narzędziem do tłumaczenia informacji subiektywną na ontologiczną.

Klasyczne pojęcie zbioru

Funkcja charakterystyczna

$$f_A: X \to \{0,1\}$$

Np. Niech A będzie zbiorem liczb całkowitych większych od 5 i mniejszych od 10.

Wtedy:

$$f_A = \begin{cases} 1 & dla & x = \{6, 7, 8, 9\} \\ 0 & dla & pozostałych \end{cases}$$

Modelowanie rozmyte

A - zbiór tych x, że x jest młodą osobą

• zbiór klasyczny:

$$A = \{x : x \in <0, 20 > \}$$

• zbiór rozmyty:

$$\mu_A(x) \to [0,1]$$

Podobnie jak w przypadku klasycznych zbiorów na zbiorach rozmytych można określić różne relacje (np. suma, część wspólna, implikacja itd.). Na szczególną uwagę zasługuje relacja sumy i części wspólnej zbiorów określonych jako *minimum i maksimum*

$$\mu_{A \cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}\tag{1}$$

$$\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}.$$
 (2)

Zmienna lingwistyczna

• Zadeh [1975]:

"Przez zmienną lingwistyczną rozumiem zmienną, której wartościami są słowa lub zdania w języku naturalnym i sztucznym. Dla przykładu Wiek jest zmienną lingwistyczną, jeśli jej wartości są wyrażone słowami, a nie liczbami, to znaczy młody, niemłody, bardzo młody, całkiem młody, stary, nie bardzo stary i nie bardzo młody itd. zamiast 20, 21, 22, 23,"

Reprezentacja zmiennej lingwistycznej

 Na ogół przyjmuje się szablon związany z pojęciem zmiennej lingwistycznej

$$\langle X, LX \rangle$$

gdzie X - oznacza nazwę zmiennej lingwistycznej (np. wiek), a LX oznacza wartości tej zmiennej lingwistycznej (np. młody)

Zbiory rozmyte

 \bullet Zbiór rozmyty A w przestrzeni X:

$$A = \{\mu_A(x), x\}$$

gdzie funkcja przynależności $\mu_A(x): X \to <0, 1>$

• Np. Zbiór liczb naturalnych *mniej więcej* równych 5:

$$A = \{(0.1, 3), (0.6, 4), (1.0, 5), (0.6, 6), (0.1, 7)\}$$

albo inny zapis:

$$A = \{\frac{0,1}{3}, \frac{0,6}{4}, \frac{1}{5}, \frac{0,6}{6}, \frac{0,1}{7}\}$$

Zbiory rozmyte

- Zbiory A i B są równe (A = B) gdy dla każdego $x \in X$ $\mu_A(x) = \mu_B(x),$
- Zbiory A i B są równe w stopniu $e(A =_e B)$ $e = 1 - \max |\mu_A(x) - \mu_B(x)|$
- A jest podzbiorem B gdy dla każdego $x \in X \ \mu_A(x) \leq \mu_B(x)$
- A jest podzbiorem B w stopniu I gdy: $I = \min \mu_B(x), x \in T \text{ gdzie}$ $T = \{x \in X : \mu_A(x) \le \mu_B(x)\}$

Operacje na zbiorach rozmytych

• Dopełnienie A:

$$\mu_{\neg A}(x) = 1 - \mu_A(x)$$

• Przecięcie A z B:

$$\mu_{A\cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}\$$

• Suma A i B:

$$\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}\$$

T-norma i S-norma

- Uogólnienie części wspólnej *T-norma*
- $\bullet\,$ Uogólnienie sumy zbiorów S-norma

Własności T-normy

T - norma powinna spełniać następujące własności

- Przemienność: T(a,b) = T(b,a)
- Monotoniczność: $T(a,b) \leq T(c,d)$ jeśli $a \leq c$ i $b \leq d$
- Laczność: T(a, T(b, c)) = T(T(a, b), c)
- Posiadać element neutralny: T(a, 1) = a

Własności S-normy

S - norma powinna spełniać następujące własności

- Przemienność: S(a,b) = S(b,a)
- Monotoniczność: $S(a,b) \leq S(c,d)$ jeśli $a \leq c$ i $b \leq d$
- Laczność: S(a, S(b, c)) = S(S(a, b), c)
- Posiadać element neutralny: S(a, 0) = a

Przykłady T-normy i S-normy

	T-norma	S-norma
Zadeha	$\min\{a,b\}$	$max\{a,b\}$
probabilistyczna	$a \cdot b$	$a+b-a\cdot b$
Łukasiewicza	$\max\{0, a+b-1\}$	$\min\{a+b,1\}$

Implikacje

- Implikacja $a \Rightarrow b$ można zapisać jako $\neg(a \land \neg b)$
- Implikacja $a \Rightarrow b$ można zapisać jako $\neg a \lor b$
- \bullet Pełna interpretacja implikacji $a\Rightarrow b$ wymaga określenia stopnia prawdziwości implikacji.
- Implikacja $a \Rightarrow b$ jest prawdziwa gdy $\mu(a) \leq \mu(b)$ tj.:

$$(a \Rightarrow b) = \begin{cases} 1 & \text{gdy } \mu(a) \leq \mu(b) \\ 0 & \text{w pozostałych przypadkach} \end{cases}$$

Implikacje przykład

Niech a = "x jest większy niż 10" i niech b = "x jest większa niż 9".

- Można zauważyć, że $a \Rightarrow b$ jest prawdziwe, ponieważ nigdy nie może się zdarzyć, że a jest większa od 10 i a nie jest większa niż 9.
- \bullet Ta właściwość implikacji może być interpretowana jako: Jeśli $X\subset Y$ to $X\Rightarrow Y$
- Inną interpretacją operatora implikacji jest

$$X \Rightarrow Y = \sup\{Z|X \cap Z \subset Y\}$$

Popularne implikacje

Larsen: $a \Rightarrow b = a \cdot b$

Łukasiewicz: $a \Rightarrow b = min\{1, 1 - a + b\}$

Mamdani: $a \Rightarrow b = min\{a, b\}$

Standard Strict: $a \Rightarrow b = \begin{cases} 1 & \text{gdy } a \leq b \\ 0 & \text{w pozostalych przypadkach} \end{cases}$ Godel: $a \Rightarrow b = \begin{cases} 1 & \text{gdy } a \leq b \\ b & \text{w pozostalych przypadkach} \end{cases}$

Gaines: $(a \Rightarrow b) = \begin{cases} 1 & \text{gdy } a \leq b \\ \frac{a}{b} & \text{w pozostałych przypadkach} \end{cases}$

Kleene-Dienes: $a \Rightarrow b = max\{1 - a, b\}$

Kleene-Dienes-Łuk.: $a \Rightarrow b = 1 - a + ab$

Uwagi co do implikacji

- Podobnie jak z T-normą i S-normą nie ma jakiejś uniwersalnej metody wyboru implikacji,
- W praktycznych zastosowaniach najbardziej popularna jest implikacja Mandamiego. Przy czym dla zerowych a=0 i b=0 mamy $(a\Rightarrow b)=min\{a=0,b=0\}=0$ co nie jest prawdą.

α cięcie zbioru rozmytego

- Nośnik (baza) zbioru (ang. support): $supp(A) = \{x \in X : \mu_A(x) > 0\},$
- Jądro zbioru (ang. core): $core(A) = \{x \in X : \mu_A(x) = 1\},$
- α -cięcie: (ang. αcat) $A_{\alpha} = \{x \in X : \mu_A(x) \geq \alpha\},\$
- Wysokość zbioru: $h = max_x(\mu_A(x))$ (może przyjmować wartości: $max_x \leq 1$),
- Zbiór rozmyty jest normalny jeśli: $\exists_x \mu_A(x) = 1$.

Aproksymacja zbioru rozmytego.

Zbiór rozmyty można aproksymować ciągiem zbiorów wstępujących:

$$A_{\alpha_1} \subseteq A_{\alpha_2} \subseteq A_{\alpha_3}$$

Modelowanie rozmyte

A - zbiór tych x, że x jest młodą osobą

• zbiór klasyczny:

$$A = \{x : x \in <0, 20 > \}$$

• zbiór rozmyty:

$$\mu_A(x) \rightarrow [0,1]$$

Wnioskowanie rozmyte

Zadaniem wnioskowania rozmytego jest modelowanie ludzkiego wnioskowania.

Niech A (zbiór rozmyty duże) oznacza wartość zmiennej lingwistycznej ciśnienie, D (zbiór rozmyty mała) oznacza wartość zmiennej lingwistycznej objętość. Rozmyta reguła wnioskowania ma postać:

JEŚLI x jest A **TO** z jest D

tj. Jeśli jest wysokie ciśnienie to jest mała objętość.

Reguły bardziej złożone

- Proste reguly typu:
 JEŚLI x jest A TO z jest D
- Można rozbudować do bardzie złożonych reguł (rozbudowany poprzednik implikacji) np.

JEŚLI x jest A i y jest B **TO** z jest D

gdzie B - może oznaczać wartość temperatury gazu (tj. zbiór rozmyty niska). Wówczas możemy napisać regułę złożoną:

JEŚLI jest wysokie ciśnienie i niska temperatura **TO** objętość gazu jest mała.

Rozmyta baza wiedzy

- Baza reguł zbiór reguł stworzonych pod kątem sterowania jakimś obiektem (np. klimatyzacją, aparatem fotograficznym),
- Bazę reguł tworzy ekspert (człowiek potrafiącym sterować),
- Ekspert określa reguły oraz odpowaidające im zbiory rozmyte (reguły eksperta mają charakter subiektywny).

Fuzyfikacja (rozmycie) i poziom zapłonu reguły

- Poziom zapłonu reguły określa stopień przynależności ostrej wartości do rozmytego poprzednika implikacji.
- Fuzyfikacja w oparciu o poziom zapłonu reguły przekształca ostrą wartość w zbiór rozmyty.

Wnioskowanie rozmyte

Implikacja rozmyta może być również zdefiniowana na wiele sposobów. Najbardziej popularna jest implikacja Mandamiego oparta na operacji iloczynu $x \to y \equiv x \wedge y$. Następnik implikacji rozmytej jest zbiorem rozmytym $\mu_N(y)$ o postaci

$$\mu_N(y) = \min\{\mu_A(x), \mu_B(y)\},\$$

gdzie $\mu_A(x)$ określa tzw. stopień zapłonu danej reguły.

Sterowanie rozmyte

- Sterowanie rozmyte może być alternatywą sterowania w trudnych dla formalnego opisu zagadnieniach np. spalanie w piecach, dobór ostrości itp.
- W wielu przypadkach, gdy znana jest ekspertowi technika sterowania daje ono dość prosty formalizm implementacji tej wiedzy.

Dyskretny zbiór rozmyty

Zbiór rozmyty może być zbiorem ciągłym lub dyskretnym. W przypadku, gdy chcemy wykorzystać komputer do obliczeń numerycznych, ciągły zbiór rozmyty należy poddać dyskretyzacji. Postać rozmytego zbioru dyskretnego A ma postać:

$$\mu(x)_A = \{ \frac{0}{10}, \frac{0}{12}, \frac{0}{14}, \frac{0.2}{16}, \frac{0.5}{18}, \frac{1}{20}, \frac{1}{22}, \frac{0.5}{24}, \frac{0.2}{26}, \frac{0}{28}, \frac{0}{30} \}.$$

Licznik ułamka określa stopień przynależności mianownika do zbioru A.

Suma i część wspólna

Dane są dwa zbiory rozmyte:

$$\mu_A(x) = \{\frac{0}{10}, \frac{0}{12}, \frac{0}{14}, \frac{0.2}{16}, \frac{0.5}{18}, \frac{1}{20}, \frac{1}{22}, \frac{0.5}{24}, \frac{0.2}{26}, \frac{0}{28}, \frac{0}{30}\}$$

i

$$\mu_B(x) = \{\frac{0}{10}, \frac{0}{12}, \frac{0}{14}, \frac{0}{16}, \frac{0.2}{18}, \frac{0.5}{20}, \frac{0.7}{22}, \frac{1}{24}, \frac{1}{26}, \frac{1}{28}, \frac{1}{30}\}.$$

Suma zbiorów:

$$\mu_{A \cup B}(x) = \{ \frac{0}{10}, \frac{0}{12}, \frac{0}{14}, \frac{0.2}{16}, \frac{0.5}{18}, \frac{1}{20}, \frac{1}{22}, \frac{1}{24}, \frac{1}{26}, \frac{1}{28}, \frac{1}{30} \}$$

Część wspólna:

$$\mu_{A \cap B}(x) = \{ \frac{0}{10}, \frac{0}{12}, \frac{0}{14}, \frac{0}{16}, \frac{0.2}{18}, \frac{0.5}{20}, \frac{0.7}{22}, \frac{0.5}{24}, \frac{0.2}{26}, \frac{0}{28}, \frac{0}{30} \}.$$

Zadanie

Zbiory N i M opisują średnią i dużą moc wentylatora

$$\mu_N(y) = \{\frac{0}{1}, \frac{0}{2}, \frac{0}{4}, \frac{0.2}{6}, \frac{0.5}{8}, \frac{1}{10}, \frac{1}{12}, \frac{0.5}{14}, \frac{0.2}{16}, \frac{0}{18}, \frac{0}{20}\}$$

$$\mu_M(y) = \{\frac{0}{1}, \frac{0}{2}, \frac{0}{4}, \frac{0}{6}, \frac{0.2}{8}, \frac{0.5}{10}, \frac{0.7}{12}, \frac{1}{14}, \frac{1}{16}, \frac{1}{18}, \frac{1}{20}\}$$

a zbiory A i B opisują średnią i wysoką temperaturę (patrz poprzedni slajd). Stosując następujące reguły

- 1. JEŚLI średnia temperatura TO średnia moc wentylatora (JEŚLI x jest A TO y jest N).
- 2. JEŚLI wysoka temperatura TO duża moc wentylatora (JEŚLI x jest B TO y jest M).

określ jako powinna moc wentylatora dla temperatury $20^{\circ}C$.

Rozwiązanie zadania

Dla obu reguł obliczamy stopnie zapłonu (stopnie przynależności temperatury 20^oC do zbiorów A i B). Wynoszą one odpowiednio $\tau_1=\mu_A(20)=1$ i $\tau_2=\mu_B(20)=0.5$.

Następnie obliczamy następniki reguł N i M (??):

$$\mu_{\widehat{N}}(y) = \{\frac{0}{1}, \frac{0}{2}, \frac{0}{4}, \frac{0.2}{6}, \frac{0.5}{8}, \frac{1}{10}, \frac{1}{12}, \frac{0.5}{14}, \frac{0.2}{16}, \frac{0}{18}, \frac{0}{20}\}$$

$$\mu_{\widehat{M}}(y) = \{\frac{0}{1}, \frac{0}{2}, \frac{0}{4}, \frac{0}{6}, \frac{0.2}{8}, \frac{0.5}{10}, \frac{0.5}{12}, \frac{0.5}{14}, \frac{0.5}{16}, \frac{0.5}{18}, \frac{0.5}{20}\}$$

oraz sumę zbiorów N i M (2)

$$\mu_{N \cup M}(y) = \{ \frac{0}{1}, \frac{0}{2}, \frac{0}{4}, \frac{0.2}{6}, \frac{0.5}{8}, \frac{1}{10}, \frac{1}{12}, \frac{0.5}{14}, \frac{0.5}{16}, \frac{0.5}{18}, \frac{0.5}{20} \}.$$

Po defuzyfikacji zbioru $N \cup M$ (metodą środka ciężkości) otrzymujemy:

$$Moc = \frac{0.2 \cdot 6 + 0.5 \cdot 8 + 1 \cdot 10 + 1 \cdot 12 + 0.5 \cdot 14 + 0.5 \cdot 16 + 0.5 \cdot 18 + 0.5 \cdot 20}{0.2 + 0.5 + 1 + 1 + 0.5 + 0.5 + 0.5 + 0.5} = 13$$

Zadania na ćwiczenia

Do realizacji zadań można posłużyć się biblioteką SciKit-Fuzzy

- 1. Określ zbiór reguł (min 4 reguły) dla zadania wskazanego przez prowadzącego ^a. Określ zakres dziedziny i wartości wynikowych oraz zbiory rozmyte,
- 2. Zrealizuj rozmytą maszynę wnioskującą dla danego zagadnienia,
- 3. Zaprezentuj otrzymane wyniki dla całej dziedziny wejściowej.

^azużycie paliwa w zależności od prędkości, droga hamowania w zależności od prędkości, wegetacja od nasłonecznienia etc.