

Remarks

Claims 1-10, 12, 14, and 15 are pending. Applicants propose amending claim 1 to incorporate the requirement that the recited compounds are used in an interlayer of a photographic material to prevent migration of oxidized developer to other light sensitive layers. Support for this feature is found on page 1 and page 17. Applicants further propose amending claims 14 and 15 to delete the reference to formula VI. No new matter has been added.

The amendment to claim 1 is intended to place the case in condition for allowance by incorporating a patentable feature that has been argued previously. The feature will not require a new search by the Examiner. Since the amendment will further prosecution, Applicants submit that good cause exists to enter the amendment even though presented after final rejection.

The Examiner rejects claims 1-10 and 12 under 35 U.S.C. 102 as being anticipated by U.S. Pat. No. 5,597,854 ("Birbaum et al."). Applicants respectfully traverse this rejection.

The Examiner states that Birbaum discloses a silver halide photographic material containing benzofuranones. This statement assumes that the triazine UV-absorbers disclosed by Birbaum can also contain stabilizers of classes 1-14, which includes benzofuranones. Stabilizers 1-14 are taught as optionally added to the Birbaum compositions since they are active in polymer materials. With the exception of the hydroquinones (class 1.3), **none of the compounds 1-14 had been shown to function as an oxidized developer scavenger. This problem was not addressed in the Birbaum patent.**

To define the benzofuranones as stabilizers (class 14) Birbaum refers to a number of patents, such as, for example:

U.S. Pat. Nos. 4,325,863 and 4,338,244 both entitled "Benzofuranone or indolinone compounds useful as stabilizers for organic materials"; **U.S. Pat. No. 5,175,312** entitled 3-phenylbenzofuran-2-ones and describing organic material stabilized by means of 3-phenylbenzofuran-2-ones against thermal, oxidative and actinic degradation and to the

use of 3-phenylbenzofuran-2-ones for stabilizing organic materials; U.S. Pat. No. 5,216,052 entitled "Bisbenzofuran-2-one" and describing the use of Bisbenzofuran-2-one for stabilising organic materials and to the stabilised organic material thereby obtained; U.S. Pat. No. 5,252,643 entitled "Thiomethylated benzofuran-2-ones" describing compounds which are benzofuran-2-ones having two organothiomethyl substituents directly attached to the benzo ring are suitable for stabilizing organic materials against thermal, oxidative or light-induced degradation.

The above-mentioned patents clearly show that benzofuranone compounds have been added to the triazine UV-absorbers to further stabilize organic material. None of the patents give any hint that benzofuranone compounds can function as developed oxidizer scavengers.

The first part (columns 1-34) of Birbaum deals with the use of triazine UV-absorbers for stabilizing organic material. In the middle of column 34 (starting with line 25) it is said that the triazines can also be used in photographic material. Only the triazines are addressed. There is no reference to the addition of stabilizers 1-14. Furthermore it is said that the triazine UV-absorbers can be combined with further UV-absorbers when used in photographic material. In other words, the part of Birbaum dealing with photographic material does not list benzofuranones as an additional component. **In fact some of the compounds of classes 1-14 will have a negative effect on the stability of the dyes.** Especially negative effects would result from the use of the compounds listed in class 1.19 aminic antioxidants including phenolic compounds, which would behave as cyan couplers if incorporated into photographic material. See column 40 formula (E) and column 41 formula (E-7) and (E-8).

Claim 1 has been amended to define a process for preventing the migration of the oxidised developer in a color photographic material from the light sensitive silver halide emulsion layer in which it has been formed into another silver halide emulsion layer containing color couplers comprising the steps of **incorporating** a compound of the formula (1) into interlayer between the light sensitive silver halide emulsion layers and **scavenging** the oxidized form of a developer when migrating from the light sensitive silver halide emulsion layer in which it has been formed to the interlayer. The teachings in Birbaum do not disclose or suggest

practicing a process as claimed herein. Birbaum does not anticipate or render the claimed process unpatentable.

The Examiner rejects claims 14 and 15 under 35 U.S.C. 103 as being unpatentable over Birbaum in view of U.S. Pat. No. 4,325,863 ("Hinsken et al."). Applicants respectfully traverse this rejection.

The Examiner noted that the rejection was premised on the compounds of formula VI. Compound claims 14 and 15 have been amended to delete formula VI and thus R_y and R_g. In view of the Examiner's comments, Applicants submit that the claims are now in condition for allowance.

Applicants submit that the instant application is now in condition for allowance. In the event that minor amendments will further prosecution, Applicants request that the Examiner contact the undersigned representative.

Respectfully submitted,

David R. Crichton
Attorney for Applicants
Reg. No. 37,300

Ciba Specialty
Chemicals Corporation
540 White Plains Road
P.O. Box 2005
Tarrytown, New York 10591-9005
Tel: (914) 785-7124
Fax: (914) 785-7102
DRC/

Amended Claims with underlining and bracketing

1. (2X amended) Process-A process for preventing the migration of the oxidised developer in a colour photographic material from a light sensitive silver halide emulsion layer in which it has been formed into another silver halide emulsion layer containing colour couplers comprising the steps of: one colour sensitive layer to another by incorporating a compound of the formula I into said material

wherein, if $n = 1$,

R_1 is a cyclic residue selected from naphthyl, phenanthryl, anthryl, 5,6,7,8-tetrahydro-2-naphthyl, 5,6,7,8-tetrahydro-1-naphthyl, thieryl, benzo[b]thienyl, naphtho[2,3-b]thienyl, thianthrenyl, dibenzofuryl, chromenyl, xanthenyl, phenoxathiinyl, pyrrolyl, imidazolyl, pyrazolyl, pyrazinyl, pyrimidinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl, isoquinolyl, quinolyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, -carbolinyl, phenanthridinyl, acridinyl, perimidinyl, phenanthrolinyl, phenazinyl, isothiazolyl, phenothiazinyl, isoxazolyl, furazanyl, biphenyl, terphenyl, fluorenyl or phenoxazinyl, each of which is unsubstituted or substituted by C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, hydroxy, halogen, amino, C_1 - C_4 alkylamino, phenylamino or di(C_1 - C_4 -alkyl)amino; or R_1 is a radical of formula II

and, if $n = 2$,

R_1 is unsubstituted or C_1 - C_4 alkyl- or hydroxy-substituted phenylene or naphthylene; or $-R_{12}-X-R_{13}-$;

R_2 , R_3 , R_4 and R_5 are each independently of one another hydrogen; chloro; hydroxy; C_1 - C_{25} -alkyl; C_1 - C_9 phenylalkyl; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; C_1 - C_{18} alkoxy; C_1 - C_{18} alkylthio; C_1 - C_4 alkylamino; di(C_1 - C_4 -alkyl)amino; C_1 - C_{25} alkanoyloxy; C_1 - C_{25} alkanoylamino; C_3 - C_{25} alkenoyloxy; C_3 - C_{25} alkanoyloxy which is

interrupted by oxygen, sulphur or $\text{N}-R_{14}$; C_6 - C_9 cycloalkylcarbonyloxy; benzoyloxy or C_1 - C_{12} alkyl-substituted benzoyloxy; or R_2 and R_3 , or R_3 and R_4 , or R_4 and R_5 , together with the linking carbon atoms, form a benzene ring; or R_4 is $-C_mH_{2m}-COR_{15}$, $-O-(C_1H_{2v})-COR'_{15}$, $-O-(CH_2)_q-OR_{32}$, $-OCH_2-CH(OH)-CH_2-R'_{15}$, $-OCH_2-CH(OH)-CH_2-OR_{32}$, or $-(CH_2)_qOH$; or, if R_3 , R_5 and R_6 are hydrogen, R_4 is additionally a radical of formula III

wherein R_1 is as defined above for $n = 1$;

R_6 is hydrogen or, when R_4 is hydroxy, R_6 can also be C_1 - C_{25} alkyl or C_3 - C_{25} alkenyl; R_7 and R_9 , are each independently of one another hydrogen; halogen; C_1 - C_{25} alkyl; C_2 - C_{25} alkyl

which is interrupted by oxygen, sulphur or $\text{N}-R_{14}$; C_1 - C_{25} alkylthio; C_3 - C_{25} alkenyl; C_3 - C_{25} alkenyloxy; C_3 - C_{25} alkynyl; C_3 - C_{25} alkynyloxy; C_7 - C_9 phenylalkyl; C_7 - C_9 phenylalkoxy; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; unsubstituted or C_1 - C_4 alkyl- substituted phenoxy; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkyl; unsubstituted or C_1 - C_4 alkyl-substituted C_5 - C_8 cycloalkoxy; C_1 - C_4 alkylamino; di(C_1 - C_4 alkyl)amino; C_1 - C_{25} alkanoyl; C_3 - C_{25} alkanoyl which is interrupted by oxygen, sulphur or $\text{N}-R_{14}$; C_1 - C_{25} alkanoylamino; C_3 -

$C_{25}\text{alkenoyl}$; $C_3\text{-}C_{25}\text{alkenoyl}$ which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N - R_{14} \end{array}$; $C_3\text{-}C_{25}$.

alkenoyloxy; $C_3\text{-}C_{25}\text{alkenoyloxy}$ which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N - R_{14} \end{array}$; $C_6\text{-}C_9$.

cycloalkylcarbonyl; $C_6\text{-}C_9\text{cycloalkylcarbonyloxy}$; benzoyl or $C_1\text{-}C_{12}\text{alkyl-substituted benzoyl}$;

benzoyloxy or $C_1\text{-}C_{12}\text{alkyl-substituted benzoyloxy}$; $\begin{array}{c} R_{18} \\ | \\ -O-C-\overset{\text{O}}{\underset{||}{C}}-R_{15} \\ | \\ R_{19} \end{array}$ or

R_8 , R_{10} and R_{11} are each independently of one another hydrogen; halogen; hydroxy; $C_1\text{-}C_{25}\text{alkyl}$;

$C_2\text{-}C_{25}\text{alkyl}$ which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N - R_{14} \end{array}$; $C_1\text{-}C_{25}\text{alkoxy}$; $C_2\text{-}C_{25}\text{alkoxy}$

which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N - R_{14} \end{array}$; $C_1\text{-}C_{25}\text{alkylthio}$; $C_3\text{-}C_{25}\text{-alkenyl}$; $C_3\text{-}$

$C_{25}\text{alkenyloxy}$; $C_3\text{-}C_{25}\text{alkynyl}$; $C_3\text{-}C_{25}\text{alkynyoxy}$; $C_7\text{-}C_9\text{phenylalkyl}$; $C_7\text{-}C_9\text{phenylalkoxy}$; unsubstituted or $C_1\text{-}C_4\text{alkyl-substituted phenyl}$; unsubstituted or $C_1\text{-}C_4\text{alkyl- substituted phenoxy}$; unsubstituted or $C_1\text{-}C_4\text{alkyl-substituted } C_5\text{-}C_8\text{cycloalkyl}$; unsubstituted or $C_1\text{-}C_4\text{alkyl- substituted } C_5\text{-}C_8\text{cycloalkoxy}$; $C_1\text{-}C_4\text{alkylamino}$; di($C_1\text{-}C_4\text{alkyl}$)amino; $C_1\text{-}C_{25}\text{alkanoyl}$; $C_3\text{-}$

$C_{25}\text{alkanoyl}$ which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N - R_{14} \end{array}$; $C_1\text{-}C_{25}\text{alkanoyloxy}$; $C_3\text{-}$

$C_{25}\text{alkanoyloxy}$ which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N - R_{14} \end{array}$; $C_1\text{-}C_{25}\text{alkanoylamino}$;

$C_3\text{-}C_{25}\text{alkenoyl}$; $C_3\text{-}C_{25}\text{alkenoyl}$ which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N - R_{14} \end{array}$; $C_3\text{-}C_{25}$.

alkenoyloxy; $C_3\text{-}C_{25}\text{alkenoyloxy}$ which is interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N - R_{14} \end{array}$; $C_6\text{-}C_9$.

cycloalkylcarbonyl; C₆-C₉cycloalkylcarbonyloxy; benzoyl or C₁-C₁₂alkyl-substituted benzoyl;

benzoyloxy or C₁-C₁₂alkyl-substituted benzoyloxy; —O—C(R₁₈)—C(=O)—R₁₅ or

 or, in formula II, R, and R₈, or R₈ and R₁₁, together with the linking carbon atoms, form a benzene ring;

R₁₂ and R₁₃ are each independently of the other unsubstituted or C₁-C₄alkyl-substituted phenylene or naphthylene;

R₁₄ is hydrogen or C₁-C₈alkyl;

R₁₅ and R'₁₅ independently are hydroxy; $\left[-O \cdot \frac{1}{r} M^{r+} \right]$; C₁-C₂₀alkoxy; C₃-C₂₀alkoxy

interrupted by O and/or substituted by a radical selected from OH, phenoxy, C₁-C₁₅alkylphenoxy, C₇-C₁₅alkoxyphenoxy; or are C₅-C₁₂cycloalkoxy; C₇-C₁₇phenylalkoxy; phenoxy;

 ; or a group of the formula IIIa or IIIb

R_{16} and R_{17} are each independently of the other hydrogen, CF_3 , C_1 - C_{12} alkyl or phenyl, or R_{16} and R_{17} , together with the linking carbon atom, are a C_5 - C_8 cycloalkylidene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

R_{18} and R_{19} are each independently of the other hydrogen, C_1 - C_4 alkyl or phenyl;

R_{20} is hydrogen or C_1 - C_4 alkyl;

R_{21} is hydrogen; unsubstituted or C_1 - C_4 alkyl-substituted phenyl; C_1 - C_{25} alkyl; C_2 - C_{25} alkyl which is

interrupted by oxygen, sulphur or $\begin{array}{c} \diagup \\ N-R_{14} \end{array}$; C_1 - C_9 phenylalkyl which is unsubstituted or

substituted at the phenyl moiety by 1 to 3 C_1 - C_4 alkyl; C_1 - C_{25} phenylalkyl which is interrupted by

oxygen, sulphur or $\begin{array}{c} \diagup \\ N-R_{14} \end{array}$ and which is unsubstituted or substituted at the phenyl moiety

by 1 to 3 C_1 - C_4 alkyl; or R_{20} and R_{21} , together with the linking carbon atoms, form a C_5 - C_{12} cycloalkylene ring which is unsubstituted or substituted by 1 to 3 C_1 - C_4 alkyl;

R_{22} is hydrogen or C_1 - C_4 alkyl;

R_{23} is hydrogen; C_1 - C_{25} alkanoyl; C_3 - C_{25} alkenoyl; C_3 - C_{25} alkanoyl which is interrupted by oxygen,

sulphur or $\begin{array}{c} \diagup \\ N-R_{14} \end{array}$; C_2 - C_{25} alkanoyl which is substituted by a di(C_1 - C_6 alkyl)phosphonate

group; C_6 - C_9 cycloalkylcarbonyl; thenoyl; furoyl; benzoyl or C_1 - C_{12} alkyl-substituted benzoyl;

R_{24} and R_{25} are each independently of the other hydrogen or C_1 - C_{18} alkyl;

R₂₆ is hydrogen or C₁-C₈alkyl;

R₂₇ is a direct bond; C₁-C₁₈alkylene; C₂-C₁₈alkylene which is interrupted by oxygen, sulphur or

C₈bicycloalkylene; unsubstituted or C₁-C₄alkyl-substituted phenylene;

or

R₂₈ is hydroxy, $\left[-O \cdot \frac{1}{r} M^{r+}\right]$, C₁-C₁₈alkoxy or

R₂₉ is oxygen or -NH-;

R₃₀ is C₁-C₁₈alkyl or phenyl;

R₃₁ is hydrogen or C₁-C₁₈alkyl;

R₃₂ is C₁-C₁₈alkanoyl; C₁-C₈alkanoyl substituted by phenyl or C₇-C₁₅alkylphenyl; C₃-C₁₈alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a linking group of valency (k+1) and is as a divalent group

-O-;

Q-C₂-C₁₂alkylene-Q;

-O-CH₂-CH(OH)-CH₂-O-;

-Q-C₂-C₁₂alkylene-Q-CO-C_vH_{2v}-O-;

-O-C₂-C₁₂alkylene-O-CH₂-CH(OH)-CH₂-O-;

Q-phenylene-Q or

Q-phenylene-D-phenylene-Q with D being C₁-C₄alkylene, O, S, SO or SO₂;

L as a trivalent group is Q-capped C₃-C₁₂alkanetriyl, a trivalent residue of a hexose or a hexitol,

or a group (-O-CH₂)₃C-CH₂OH; -Q-C_aH_{2a}-N(C_bH_{2b}-Q-)-C_cH_{2c}-Q-;

-Q-C₃-C₁₂alkanetriyl(-Q-CO-C_vH_{2v}-O-);

-O-C₃-C₁₂alkanetriyl(-O-CH₂-CH(OH)-CH₂-O-); and

L as a tetravalent group is a tetravalent residue of a hexose or a hexitol;

-Q-C₄-C₁₂alkanetetryl(-Q-CO-C_vH_{2v}-O-)₃;

-O-C₄-C₁₂alkanetetryl(-O-CH₂-CH(OH)-CH₂-O-); Q-capped C₄-C₁₂alkanetetryl; a group

or a group

M is an r-valent metal cation;

Q is oxygen or -NH-;

X is a direct bond, oxygen, sulphur or -NR₃₁-;

Z is a linking group of valency (k+1) and is as a divalent group C₂-C₁₂alkylene; Q-interrupted C₄-

C₁₂alkylene; phenylene or phenylene-D-phenylene with D being C₁-C₄alkylene, O, S, SO or SO₂;

Z as a trivalent group is C₃-C₁₂alkanetriyl, a trivalent residue of a hexose or a hexitol, a group (-

CH₂)₃C-CH₂OH, or a group -C_aH_{2a}-N(C_bH_{2b}-)-C_cH_{2c}-; and

Z as a tetravalent group is a tetravalent, carbon-ended residue of a hexose or a hexitol, C₄-

C₁₂alkanetetryl, a group

or a group

a, b, c and k independently are 1, 2 or 3;

m is 0 or a number from the range 1-12;

n is 1 or 2;

q is 1, 2, 3, 4, 5 or 6;

r is 1, 2 or 3; and

s is 0, 1 or 2;

v is 1, 2, 3, 4, 5, 6, 7 or 8;

provided that, when R₇ is hydroxy, alkanoyloxy or alkanoyloxy interrupted by O, S or N(R₁₄) and

R₉ is hydrogen, R₁₀ is not identical with R₄; and when R₉ is hydroxy, alkanoyloxy or alkanoyloxy

interrupted by O, S or N(R₁₄) and R₇ is hydrogen, R₈ is not identical with R₄.

into an interlayer between the light sensitive silver halide emulsion layers thus scavenging the oxidized form of developer when migrating from the light sensitive silver halide emulsion layer in which it has been formed to the interlayer.

14. (2X amended) Compound of the formula V or VI

wherein

R_4 is $-O-(C_{v}H_{2v})-COR_{15}$; $-O-(CH_{2q})_q-OR_{32}$;
 $-OCH_2-CH(OH)-CH_2-R_{15}$; or $-OCH_2-CH(OH)-CH_2-OR_{32}$;

R'_7 is C_1-C_4 alkyl and R'_8 is hydrogen or C_1-C_4 alkyl;

R_{15} is hydroxy, $\left[-O \cdot \frac{1}{r} M^{r+} \right]$, C_1-C_{20} alkoxy; C_3-C_{20} alkoxy interrupted by O and/or substituted by a radical selected from OH, phenoxy, C_1-C_{15} alkylphenoxy, C_1-C_{15} alkoxyphenoxy;

or R_{15} is C_5-C_{12} cycloalkoxy; C_1-C_{17} phenylalkoxy; phenoxy; $\begin{array}{c} R_{24} \\ | \\ -N \\ | \\ R_{25} \end{array}$; or a group of formula

IIIa or IIIb;

R_{32} is C_1-C_{18} alkanoyl; C_1-C_8 alkanoyl substituted by phenyl or C_1-C_{15} alkylphenyl; C_3-C_{18} alkenoyl; cyclohexylcarbonyl; or naphthylcarbonyl;

L is a linking group of valency ($k+1$) and is, as a divalent group,

-O-;

$Q-C_2-C_{12}$ alkylene-Q;

-O-CH₂-CH(OH)-CH₂-O-;

-Q-C₂-C₁₂ alkylene-Q-CO-C_vH_{2v}-O-;

-O-C₂-C₁₂ alkylene-O-CH₂-CH(OH)-CH₂-O-;

Q-phenylene-Q or

Q-phenylene-D-phenylene-Q with D being C_1-C_4 alkylene, O, S, SO or SO₂;

L, as a trivalent group, is Q-capped C_3-C_{12} alkanetriyl, a trivalent residue of a hexose or a hexitol,

or a group (-O-CH₂)₃C-CH₂OH; -Q-C_aH_{2a}-N(C_bH_{2b}-Q-)-C_cH_{2c}-Q-;

-Q-C₃-C₁₂ alkanetriyl(-Q-CO-C_vH_{2v}-O-)₂;

-O-C₃-C₁₂ alkanetriyl(-O-CH₂-CH(OH)-CH₂-O-)₂; and

L, as a tetravalent group, is a tetravalent residue of a hexose or a hexitol;

-Q-C₄-C₁₂ alkanetetrayl(-Q-CO-C_vH_{2v}-O-)₃;

-O-C₄-C₁₂alkanetetryl(-O-CH₂-CH(OH)-CH₂-O-); Q-capped C₄-C₁₂alkanetetryl; a group

or a group

Q is oxygen or -NH-,

Z is a linking group of valency (k+1) and is as a divalent group C₂-C₁₂alkylene, Q-interrupted C₄-C₁₂alkylene, phenylene or phenylene-D-phenylene with D being C₁-C₄alkylene, O, S, SO or SO₂; Z, as a trivalent group, is C₃-C₁₂alkanetriyl, a trivalent residue of a hexose or a hexitol, a group (-CH₂)₃C-CH₂OH, or a group -C_aH_{2a}-N(C_bH_{2b}-)-C_cH_{2c}-; and

Z, as a tetravalent group, is a tetravalent residue of a hexose or a hexitol, C₄-C₁₂alkanetetryl, a

or a group

a, b, c and k independently are 1, 2 or 3,

m is 0 or a number from the range 1-12,

s is 1 or 2,

v is 1, 2, 3, 4, 5, 6, 7 or 8;

and all other residues are as defined in claim 1 for formula I if n is 1.

15. (amended) Process for stabilizing an organic material against deterioration by light, oxygen and/or heat, which process comprises incorporating a compound of the formula V and/or VI according to claim 14 as stabilizer into said organic material.