Unit 7: Imperfect Competition I – monopoly

Prof. Antonio Rangel

January 2, 2016

1 Monopoly without price discrimination

1.1 Basic model

- Model of the consumers is as before:
 - C consumers
 - $U_i(q, m) = B_i(q) + m$
 - $-w_i$ endowment of m-good
 - price takers
 - utility maximization problem generates individual demand $x^{D}(p)$, as before
- Model of the firm is different:
 - -1 firm
 - firm is NOT a price taker
 - Firm knows the aggregate demand function $X^D(p)$ (and thus the inverse aggregate demand $p^D(q)$)
 - The firm's cost function, c(q), satisfies decreasing returns to scale
 - The firm chooses how much to produce to maximize its profits, taking into account how its actions affect market prices
- Monopolist's problem:

- $-\max_{q\geq 0}p^D(q)q-c(q)$
- Important: as before, Profits = Revenue Cost.
- But now price depends on the quantity q supplied by the monopolist!
- FOCs for the monopolist's problem:

$$MR(q) = MC(q)$$
$$q\frac{dp^{D}}{dq} + p^{D} = c'$$

- Corner solution if $MR(0) \leq MC(0)$
- SOCs satisfied if marginal revenue decreases with q
- Important: See the graphical depiction of equilibrium in the video lectures
- Intuition: Why does MR tend to decrease with q?

$$dMR = (\stackrel{+}{p} + \stackrel{-}{qp'})dq$$

- -p term dominates when q small
- -qp' term dominates when q large
- Caveat: Possible to construct cases in which $\frac{dMR}{dq}$ not always negative
- Remark: What if there are FCs/SFCs?
 - Solve the monopolist's problem in several steps
 - Step 1: Compute optimal monopoly profits conditional on positive production: $\Pi_{q>0}^m$

 - Step 3: Compare the profits at the two cases and select the one with the largest profits:
- Efficiency analysis:

- Compare monopoly outcome to competitive outcome
- $-q^m$ = equilibrium quantity in the monopolist case
- $-q^* = \text{optimal level of production}$
- Get

$$DWL = \int_{q^m}^{q^*} \left(p^D(q) - c'(q) \right) dq$$

- Why does FWT fail?
 - Compare equilibrium in case of perfect competition vs. monopoly
 - For simplicity, assume every demand and supply function involves an interior solution in equilibrium
 - Competitive market:

$$MB_i = p = MC_j$$
 $\uparrow \qquad \uparrow$
 U max price-taking + profit max

 $\implies MB_i = MC_j \implies \text{P.O.}$

- Monopoly:

$$MB_i = p > MR = MC$$
 $\uparrow \qquad \uparrow$
 U max monopoly + profit max

 $\implies MB_i > MC \implies q^m$ inefficiently low

• Distributional analysis:

(see the graph in the video lecture for meaning of symbols)

	Competition	Monopoly	Change
PS	C + D + F	B + C + D	B - F
CS	A + B + E	A	- (B + E)

Get redistribution of SS if concentrated firm ownership

1.2 Example

• Consider a monopolistic market (without price discrimination) with:

$$- X^{D}(p) = 1000 - p$$
$$- c(q) = q^{2}$$

• We get that:

$$-TR(q) = qp^{D}(q) = q(1000 - q)$$

$$- \implies MR(q) = 1000 - 2q$$

- Also,
$$MC(q) = 2q$$

•
$$q^{mon}$$
 given by $MR = MC \implies q^{mon} = 250, p^{mon} = 750$

1.3 Sources of monopoly power

- What characteristics of markets lead to monopolistic competition?
- Economies of scale in production:
 - Competitive market forces w/ entry and exit $\implies \#Firms^{LR} \approx \frac{q_{LR}^*}{q_{ATC}^{min}}$
 - When ATC minimized at sufficiently large q, competitive forces can push all firms but one out of market, leading to monopoly
- Network externalities in consumption:
 - Benefit of consumption increases w/ q^{others}
 - E.g. facebook, software, HBO
 - One firm will tend to capture the market, because its value to any consumer increases with the size of its customer base
- Ownership of rare and critical resources:

- Ex: Suez Canal

- Ex: rare minerals

- Government assignment of monopoly rights:
 - Arises from political patronage
 - Also used to give firms incentives to make costly infrastructure investments (e.g. roads)

• Patents & copyrights:

- Innovator's dilemma: large expense required to design a product, but then it can be produced at $MC \approx 0$ + the design is easy to copy
- E.g. software, movies, medications
- Patents and copyrights: give monopoly power to innovator for n years to recoup large expense
- Fundamental trade-off: innovation vs. efficiency in production ex-post

2 Monopoly with price discrimination

2.1 Perfect price discrimination

- Price discrimination
 - Charge different prices to different customers despite identical production costs
 - Ex: Senior citizen discounts at movies
- Basic model of price discrimination:
 - Two types of consumers:
 - * n_R Red consumers, each with $p_R^D(q)$ inverse demand function
 - * n_B Blue consumers, each with $p_B^D(q)$ inverse demand function
 - No resales
 - Producer perfectly observes consumers types
 - It charges a price schedule $\Pi_c(q)$ to each consumer c

- Each consumer solves $\max_q B(q) \prod_c(q)$
- Monopolist has decreasing returns to scale production function w/ no fixed-costs or semi-fixed-costs.
- Monopolist's problem: choose $\Pi_R(\cdot), \Pi_B(\cdot)$ to maximize profits
- \bullet Key remark: Monopolist can extract all consumer benefit at any q
- Solution to monopolist's problem:
 - By previuos remark, can rewrite monopolist's problem as:

$$\max_{q_R,q_B} n_R B(q_R) + n_B B(q_B) - c(n_R q_R + n_B q_B)$$

- This problem is identical to the one that characterizes the Pareto optimal allocation.
- FOCs given by $n_R B_R' = n_R c'$ and $n_B B_B' = n_B c'$
- Get solution: $q_R^{mon} = q_R^{opt}$ and $q_B^{mon} = q_B^{opt}$

• Remarks

- 1. Allocation is Pareto optimal.
- 2. PS = SS, CS = 0
- 3. Distributional properties of equilibrium depend on distribution of firm ownership
- 4. Price schedule is not uniquely defined at optimum (though quantity is)
- How is price discrimination implemented in practice?
 - Model described here is an idealization
 - Perfect price discrimination not possible in practice: too much info required + often illegal
 - However, there are good approximations in practice. Ex: supermarket discount cards

2.2 Quantity discrimination

- Consider a limited form of price discrimination, which entails using very simple price schedules
- Basic model:
 - Simple price schedule for imperfect price discrimination: (p_1, p_2, \bar{q}) , $p_2 \leq p_1$
 - Consumer can buy up to \bar{q} units at price p_1 , additional units sold at p_2
 - Note: when $p_1 = p_2$, this is regular monopoly with no price discrimination
 - Monopolist's cost function: $c(q) = \mu q$
 - C identical consumers, each with inversed demand $p^{D}(q)$
- Solution to the consumer's problem (see graphs in video lectures for details):
 - Case 1: Price schedule's kink below p^D : buy q^*
 - Case 2: Price schecule above $p^{\cal D}$ for all q: buy zero
 - Case 3: Price schedule's kink crosses p^D and $p_1 < p^D(0)$: \underline{q}^* if $B \geq C$, \bar{q}^* if $B \leq C$
 - Case 4: Price schedule's kink crosses p^D and $p_1 \geq p^D(0)$: 0 if $B \geq C, \bar{q}^*$ if $B \leq C$
- Result: With identical consumers, monopolist gets all social surplus and allocation is Pareto optimal
 - Equilibrium price schedule has $p_1 = p^D(0)$, $p_2 = \mu$, and $\bar{q} = q^{opt}/2$.
 - Intution: consumers' overpay for initial units, but are willing to do so in order to buy discounted units
- In general, the result does not extend to heterogeneous consumers

2.3 Multi-market discrimination

- Basic model
 - Single firm with centralized production with cost function c(q)
 - Firm sells goods in m separate markets
 - Firm allowed to charge different price p_i in each market i, but not to engage in price discrimination within each market
- Firm's problem:

$$\max_{q_1,\dots,q_m} \sum_i p_i^D(q_i) q_i - c \left(\sum_i q_i\right)$$

• At solution: $MR_i = MC$ in each market i

3 Government policy in monopoly

- What policy instruments can the government use to improve the outcomes generated by monopolistic markets?
- Instrument 1: Promote competition
 - Example: Eliminate government created monopolies
 - Example: Fund research & development in new technologies that could increase competition
 - Instrument ineffectual if there are strong 'network effects' in market
- Instrument 2: Regulation
 - Suppose government has full information about market: knows $c(\cdot), X^D$
 - Then government can compute p^{opt}, q^{opt}
 - Price regulation:

* Set
$$p = p^{opt}$$

- * Allow monopolist to sell any quantity at price p
- Quantity regulation:
 - * Set $q = q^{opt}$
 - * Monopolist must produce q, but allowed to charge any unique price
- Remarks:
 - 1. Regulation replicates allocation of the competitive market equilibrium
 - 2. Often unfeasible in practice since it requires sufficient information to be able to compute p^{opt} , q^{opt}
- Instrument 3: Subsidization of production
 - Required subsidy per-unit produced: $\sigma = aMB(q^{opt}) MR(q^{opt})$
 - Monopolist's problem becomes:

$$\max_{q \ge 0} p^D(q)q - (c(q) - \sigma q)$$

- As before, solution given by FOCs: MR = MC
- Get solution: $p_{\sigma}^{mon} = p^{opt}, q_{\sigma}^{mon} = q^{opt}$
- Remarks:
 - 1. P.O. possible only if cost of subsidy policy can be financed using lump-sum taxes
 - 2. This policy has bad distributional properties if firm ownership concentrated in small number of consumers
 - 3. P.O. requires government to have sufficient information to be able to compute the optimal subsidy

4 Summary

- Markets with monopoly generate very different allocations than those with perfect competition
 - Monopolist without price discrimination: MR = MC, DWL > 0

- Monopolist with perfect price discrimination: PS = SS, DWL = 0
- Monopolist with imperfect multi-market price discrimination: DWL > 0
- Feasible policy options provided that the government has sufficient information:
 - Price or quantity regulation
 - Subsidy
 - All these policies restore optimal allocation DWL = 0