Circuitos Eléctricos

Intensidad y Tensión sinusoidales

Dario Astudillo

10 de abril de 2017

Introdución

Al aplicar las leyes de kirchhoff en un circuito cualquiera de una malla el resultado es , en general una integrodiferencial . Los métodos de resolución clásicos de ecuaciones diferenciales proporcionan la solución del problema eléctrico. Ahora bien , la intensidad de corriente , que suele ser la incógnita, debida a una determinada tension aplica, viene dad por una suma de dos funciones . Una de ellas corresponde a la intensidad del régimen transitorio que, normalmente se anula a las pocas fracciones de segundo , y la otra constituye la intensidad en régimen permanente , la cual perdura mientras existe excitación.

Como muchos estudiantes cuando comienzan el estudio del análisis de circuitos no conocen todavía la técnica de resolución de ecuaciones diferencia bles , solo analizaremos el régimen permanente prescindiendo de momento , del transitorio correspondiente .

Intensidades de corriente sinusoidales

En la tabla 1 aparecen las tensiones en bornes de los tres primeros elementos R, L, C puros en el caso de que la corriente que circule por ellos sea de tipo seno o coseno.

Tabla 1: Tension en bornes V de un elemento puros si la corriente es senoidal

Elementos	$V ext{ si } i ext{ es general }$	$V \operatorname{si} i = I_m \sin(wt)$	$V \operatorname{si} i = I_m \cos(wt)$
Resistencia R	$V_R = RI$	$V_R = RI_m \sin wt$	$V_R = I_m \cos(wt)$
$oxedsymbol{eta}$ Autoinduccion I	$V_L = L \frac{di}{dt}$	$V_L = wLI_m\cos(wt)$	$V_L = wLI_m(-\sin(wt))$
Capacitancia C	$V_c = \frac{1}{c} \int idt$	$V_c = \frac{I_m}{wC}(-\cos(wt))$	$V_c = \frac{I_m}{wC}(\sin(wt))$

Tabla 2: Corriente en bornes I de un e	elemento puros si la	corriente es	senoidal
--	----------------------	--------------	----------

Elementos	$ I \text{ si } V \text{ es general } I \text{ si } v = v_m \sin(wt)$	$ I \operatorname{si} v = I_m \cos(wt) $
Resistencia R	$i_R = \frac{V}{R}$ $i_R = \frac{V_m}{R} sin(wt)$	$i_R = \frac{V_m}{R} \cos(wt)$
$oxedsymbol{\mid}$ Autoinduccion I	$i_L = \frac{1}{L} \int v dt \mid i_L = \frac{V_m}{wL} - \cos(wt)$	$i_L = \frac{V_m}{wL}\sin(wt)$
$oxed{ \mbox{Capacitancia } C}$	$i_c = C \frac{dv}{dt} \mid i_c = wCV_m(\cos(wt))$	$i_c = wCV_m(-\sin(wt))$

1 Tensiones Sinusoidales

En la tabla 2 aparecen las intensidades de corriente por los tes elementos R, L, C puros en el caso de la que la tension aplicada a cada uno de ellos sea de tipo seno o coseno.

2 Impedancias

La impedancia de un elemento asilado , o de una rama de varios elementos o de un circuito completo, es la relación entre la tension aplicada y la tension de corriente que circula.

$$Impedancia = \frac{Funci\'{o}n~de~Tension}{Funci\'{o}n~de~intensidad}$$

ullet Resistencia R En un elemento resistivo puro la intensidad de corriente y la tension están en fase .

Figura 1: Relación Voltaje Corriente en un circuito resistivo puro

• Autoindución L En una bobina pura la intensidad de corriente se retrasa 90^{0} o $\frac{\pi}{2}$ respecto de la tension Figura 2. El modulo de la impedancia es wL.

Figura 2: Relación Voltaje Corriente en un circuito inductivo puro

• Capacidad C En un condensador puro , la intensidad de corriente se adelanta 90^0 ó $\frac{\pi}{2}$ a la tensión . Figura 3 el modulo de la impedancia es $\frac{1}{wC}$

Figura 3: Relación Voltaje Corriente en un circuito capacitivo puro

- CircuitoRL La intensidad de corriente se retrasa respecto de la tension un angulo igual a $\arctan(\frac{wL}{R})$ Figura 4-a el modulo de la impedancia es $\sqrt{R^2+(wL)^2}$
- Circuito RC La intensidad de corriente adelanta a la tension en un angulo igual a $\arctan(\frac{wC}{R})$ Figura 4-b. El modulo de la impedancia es $\sqrt{R^2 + (\frac{1}{wC})^2}$

Figura 4: Formas de onda en circuitos RC,RL