計算機使用方法: for CASIO fx-350ES

基本統計功能: Mode 2 1 Shift 1 3 2 (reset data)

x = (input data) when finish AC

Shift 132 =: 平方總和 Sum of Squares

Shift 1 3 2 = : 總和 Sum

Shift 1 4 2 =: 算數平均 Arithmetic Mean

Shift 1 4 3 = : 標準差 Standard Deviation

Shift 1 4 4 = : 樣本標準差 Sample Standard Deviation

小數分數轉換: Shift Mode 1/2

Common distribution shapes

Median Mean Median Median (c) Left skewed (a) Right skewed (b) Symmetric

InterQuartile Range: Q3-Q1 (Q1=n/4, Q2 = n/2, Q3=n*3/4)

>> 籬笆 (Q1-1.5*IQR, min, Q1, Q2, Q3, Max, Q3+1.5*IQR)

>>若有觀測值落在盒鬚圖的籬笆外,則會將之視為離群值。

Conditional Probability

名詞解釋:

mean: 平均值

box plot: 盒狀圖/盒鬚圖

histogram: 柱狀圖

mode: 眾數

Multiplication Rules $P(A \text{ and } B) = P(A) \cdot P(B)$ Independent $P(A \text{ and } B) = P(A) \cdot P(B|A)$ Dependent

一、中央趨勢

2. 樣本平均數
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{x_1 + x_2 + ... + x_n}{n}$$

中位數:

$$\widetilde{x} = x_{\frac{n+1}{2}}$$
 差 n 為奇數

➤ 若 n 為偶數
$$\tilde{x} = \frac{x_{\frac{n}{2}} + x_{\frac{n+1}{2}}}{2}$$

- 眾數 mode:出現最多次數的數
- 5. 百分位數: $i = \frac{P}{100} \times n$,其中 n 為樣本個數,
 - ightharpoonup 若 i 為整數 $\frac{(x_i + x_{i+1})}{2}$ 為第 P 百分位數
 - ➤ 若 i 不為整數,將 i 無條件進位, x, 為第 P 百分位數

- 母體變異係數: $CV = \frac{\sigma}{\mu} \times 100\%$
- 樣本變異係數: $CV = \frac{S}{=} \times 100\%$

、平均數與標準差之應用

- 母體 Z 分數: $z_i = \frac{x_i \mu}{2}$
- 柴比雪夫定理:當 $k \ge 1$ 時,任一組資料至少有 $1 \frac{1}{k^2}$ 比例的觀測值會落在距離平均數k個
- 經驗法則:若資料呈鐘形分佈,則
 - ▶ 接近 68%的資料會落在距離平均數 1 個標準差之內
 - ▶ 接近 95%的資料會落在距離平均數 2 個標準差之內
 - ▶ 幾乎所有的資料會落在距離平均數3個標準差之內

四、離群值之判定:

- 四分位數:第1四分位數為Q,為第25百分位數,第2四分位數為Q,為第50百分位數,即中
- 位數;第3四分位數為Q,為第75百分位數
- 1. Z分數之判定法:若資料值 x_i 的 Z分數為 z_i ,當 $|z_i| > 3$,則 x_i 可視為離群值
- 2. 盒形圖判定法:將資料的最小值 $x_1 \cdot Q_1 \cdot Q_2 \cdot Q_3$ 及最大值 x_n 以盒形及直線之方式表示

- 若 Q_1 至 Q_2 的距離比 Q_2 至 Q_3 的距離長,資料偏右
- ightharpoonup 若 Q_1 至 Q_2 的距離短,資料偏左
- > $x_i Q_3 > 1.5IQR或Q_1 x_i > 1.5IQR, x_i$ 為懷疑之離群值 > $x_i Q_3 > 3IQR或Q_1 x_i > 3IQR, x_i$ 為認定之離群值

、分散度衡量

- 全距: R = x x.
- 四分位距: $IQR = Q_3 Q_1$
- 樣本變異數: $s^2 = \frac{\sum\limits_{i=1}^{n}(x_i x_i)^2}{n-1} = \frac{\sum\limits_{i=1}^{n}x^2}{n-1} \frac{(\sum\limits_{i=1}^{n}x_i)^2}{n(n-1)} = \frac{n\sum\limits_{i=1}^{n}x^2 (\sum\limits_{i=1}^{n}x_i)^2}{n(n-1)}$
- 母體標準差: $\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^{N} (x_i \mu)^2}{N}}$
- 樣本標準差: $s = \sqrt{s^2} = \sqrt{\sum_{i=1}^{n} (x_i \bar{x})^2} = \sqrt{\sum_{i=1}^{n} x^2 (\sum_{i=1}^{n} x_i)^2} = \sqrt{n \sum_{i=1}^{n} x^2 (\sum_{i=1}^{n} x_i)^2}$