

Белорусская республиканская олимпиада по физике (Гродно, 1991 г.)

9 класс

- **9-1.** Максимальная дальность полета камня, выпущенного из неподвижной катапульты, равна $S = 22,5 \, m$. Найдите максимально возможную дальность полета камня, выпущенного из этой же катапульты, установленной на платформе, которая движется горизонтально с постоянной скоростью $v = 15,0 \, m/c$. Сопротивление воздуха не учитывать, ускорение свободного падения считать $g = 10,0 \, m/c^2$.
- **9-2.** Два одинаковых груза массой M каждый, соединенные пружиной, лежат на шероховатой горизонтальной плоскости в поле тяжести земли. Какую минимальную горизонтальную силу необходимо приложить к

правому грузу, чтобы пришел в движение левый груз? Коэффициент трения грузов о плоскость μ . В начальном состоянии пружина не деформирована.

9-3. В углу аквариума находится клин массой M с углом при вершине α ,

который может скользить вдоль вертикальной стенки. Какой максимальный уровень воды установится аквариуме, если коэффициент трения стенку Ширина вертикальную μ ? клина l, плотность жидкости ρ .

9-4. В теплоизолированный цилиндрический сосуд поместили кусок льда при нулевой температуре и прочно прикрепили его ко дну. Затем залили этот лед таким же по массе количеством воды. Вода полностью покрыла лед и достигла уровня $H = 20 \, \text{сm}$. Определите, какова была температура этой воды, если после установления теплового равновесия уровень ее опустился на $b = 0.40 \, \text{cm}$. Плотность воды $\rho_0 = 1.0 \cdot 10^3 \, \text{кг} / \text{m}^3$, льда $\rho_1 = 0.90 \cdot 10^3 \, \text{кг} / \text{m}^3$, удельная теплоемкость воды $c_0 = 4.2 \, \text{кДж} / (\text{кг} \cdot \text{K})$,

удельная теплоемкость льда в два раза меньше. Удельная теплота плавления льда $L=3.3\cdot 10^5~{\rm Джc}~/~{\rm кz}$.

9-5. Одна сторона тонкой металлической пластинки освещена Солнцем. При температуре воздуха T_0 освещенная сторона имеет температуру T_1 , противоположная — T_2 . Какими будут значения температур, если взять пластину двойной толщины?

10 класс

- **10-1.** Два автомобиля, движущиеся по прямой с одинаковыми скоростями V на расстоянии l друг от друга, преодолевают участок "плохой" дороги, где их скорость уменьшается наполовину. Какой путь пройдет один автомобиль относительно другого при прохождении препятствия?
- **10-2.** На квадратном плоту размером $2.0 \times 2.0 \times 0.50 M$, сделанном из дерева плотностью $\rho = 900 \kappa c / M^3$, стоит физик массой $m = 80 \kappa c$. На какое минимальное расстояние от центра плота он должен медленно отойти, чтобы край плота окунулся в воду?
- **10-3.** Внутри гладкой горизонтальной трубы находятся два легкоподвижных поршня, соединенных между собой упругой пружиной. Между поршнями находится один моль идеального одноатомного газа при температуре $T_0 = 300\,K$. Газ нагрели до температуры $T_1 = 400\,K$. Какое количество теплоты было

сообщено газу при нагревании, если длина пружины увеличилась в $\eta = 1,1$ раза?

10-4. На наклонную плоскость, составляющую угол α с горизонтом, кладут маленькую заряженную шайбу D, коэффициент трения которой о плоскость μ (μ < $tg\alpha$). В основании наклонной плоскости закреплен такой же точечный заряд Q. Шайба

