DHANAMANJURI UNIVERSITY

JUNE 2022

Name of Programme : B.Sc Mathematics (Honours)

Semester : II

Paper Type : Core III
Paper Code : CMA-103
Paper Title : Real Analysis

Full Marks : 100

Duration : 3 Hours

The figures in the margin indicate full marks for the questions. Answer all the questions:

- 1. State the completeness property of \mathbb{R} . Prove that if A and B are nonempty subsets of \mathbb{R} that satisfy the property: $a \leq b$ for all $a \in A$ and all $b \in B$, then $\sup A \leq \inf B$.
- 2. Show that the series $\frac{1\cdot 2}{3^2\cdot 4^2} + \frac{3\cdot 4}{5^2\cdot 6^2} + \frac{5\cdot 6}{7^2\cdot 8^2} + \cdots$ is convergent.
- 3. Prove that a sequence cannot converge to more than one limit.
- 4. What is an absolutely convergent series? Prove that every absolutely convergent series is convergent.
- 5. Prove that an upper bound u of a nonempty set $S \subset \mathbb{R}$ is the supremum of S if and only if for every $\epsilon > 0$, there exists $s_{\epsilon} \in S$ such that $u \epsilon < s_{\epsilon}$.
- 6. Prove the following:
 - i) If $a \in \mathbb{R}$ and $a \neq 0$, then $a^2 > 0$.
 - ii) 1 > 0.
 - iii) If $n \in \mathbb{N}$, then n > 0.

/.	Prove that the following statements are equivalent.	
	i) S is a countable set.	
	ii) There exists a surjection from \mathbb{N} to S .	
	iii) There exists an injection from S to \mathbb{N} .	
		6
8.	State and prove the Archimedean Property.	6
9.	State and prove the Sandwich Theorem for limits.	6
10.	Prove that a necessary and sufficient condition for the convergence of a monotor sequence is that it is bounded.	nic 6
11.	State and prove Cantor's Theorem.	7
12.	If $I_n = [a_n, b_n], n \in \mathbb{N}$, is a nested sequence of closed bounded intervals, prove there exists a number $\xi \in \mathbb{R}$ such that $\xi \in I_n$ for all $n \in \mathbb{N}$.	nat 7
13.	If $S \subset \mathbb{R}$ contains at least two points and has the property that if $x, y \in S$ and $x <$ then $[x,y] \subseteq S$, prove that S is an interval.	<i>y</i> .
	Or	
	State and prove the Density Theorem for rational numbers.	
14.	State and prove the Bolzano-Weierstrass Theorem for sequences.	8
	Or	
	State and prove Cauchy's General Principle of Convergence.	
15.	State and prove Leibnitz's Test for the convergence of an alternating series.	8
16.	State and prove Cauchy's Root Test for the convergence of positive term series.	8