

(11)Publication number:

11-267926

(43) Date of publication of application: 05.10.1999

(51)Int.CI.

B23H 7/04

B23H 7/02

(21)Application number: 10-092855

(71)Applicant: SODICK CO LTD

(22)Date of filing:

20.03.1998

(72)Inventor: TOYONAGA TATSUO

KANEKO YUJI

(54) WIRE CUT ELECTRIC DISCHARGE MACHINING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To improve the surface roughness by performing the ON/OFF control of a main power source depending on the fluctuation of the voltage applied to a clearance, and setting the ON/OFF time of the sub-power source of an auxiliary power source circuit depending on the average pulse current carried to the clearance.

SOLUTION: When the voltage of a cap is lowered to a threshold Vr slightly lower than non-load voltage, a first detecting circuit 14 detects the generation of a discharge. According to this detection signal S1, a voltage is applied from the power source E1 of a main power source circuit 8 to a working clearance 12 to supply a large average pulse current only for a prescribed time Ton. Independently of the operation of the first detecting circuit 14, a second detecting circuit 16 monitors the average pulse current, regards the time when the average pulse current of the gap is slightly raised after the actual start of discharge as the start of

discharge, and stops the supply of current from a power source E2 when a set time Soff for auxiliary power source interruption has passed.

LEGAL STATUS

[Date of request for examination]

01.04.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-267926

(43)公開日 平成11年(1999)10月5日

(51) Int.Cl.⁶

識別配号

FΙ

B 2 3 H 7/04 7/02

B23H 7/04

D

7/02

R

審査請求 未請求 請求項の数3 FD (全 10 頁)

-		1	
(21)出願番号	特顧平10-92855	(71)出願人	000132725
			株式会社ソディック
(22)出顧日	平成10年(1998) 3月20日		神奈川県横浜市都筑区仲町台3丁目12番1
			号 2
٠		(72)発明者	豊永 竜生
			神奈川県横浜市都筑区仲町台3-12-1
			株式会社ソディック本社・技術研修センタ
			一内
		(72)発明者	金子 雄二
•			神奈川県横浜市都筑区仲町台3-12-1
			株式会社ソディック本社・技術研修センタ
			一内
		(74)代理人	
		(14/10年人	开程工 技术 辛瓜

(54) 【発明の名称】 ワイヤカット放電加工装置

(57)【要約】

【課題】 パルス幅がより短い、例えば1μS以下の、しかも高いピーク電流値、例えば50~1000A程度の加工電流パルスを安定して供給できるワイヤカット放電加工装置を提供する。

【解決手段】 放電加工用の出力電圧値を有する主電源 E1と加工電流の供給を制御する第1のスイッチング素 子Tr1を含むワイヤ電極4と被加工物6との間に形成された間隙12に所望の加工電流を供給する主電源E2とそのオンオフを制御する第2スイッチング素子Tr2を含むトリガ用の補助電源回路10と、間隙12に流れる電流を監視して放電が発生したとみなす第2検出回路16と、第1検出回路14の検出信号に応じて第1スイッチング素子Tr2を所定の期間だけオンすると共に、第2スイッチング素子Tr2を所定の加工条件に従いオンし、第2検出回路16の検出信号に応じて第2スイッチング素子Tr2を対応の加工条件に従いオンし、第2検出回路16の検出信号に応じて第2スイッチング素子Tr2をオフするようにした制御回路18とを備える。

【特許請求の範囲】

【請求項1】 ワイヤ電極と被加工物との間に形成され る間隙に所望の加工電流を供給する主電源回路と、前記 主電源回路に並列に接続される補助電源回路と、前記主 電源回路に含まれる少なくとも1つの第1スイッチング 案子と、前記補助電源回路に含まれる少なくとも1つの 第2スイッチング素子と、所定のしきい値を有し前記間 隙の電圧を監視する第1検出回路と、所定のしきい値を 有し前記間隙に流れる電流を監視する第2検出回路と、 前記第2スイッチング素子をオンしてから前記第1検出 回路の検出信号に応じて前記第1スイッチング素子を所 定の期間だけオンすると共に、前記第2検出回路の検出 信号に応じて前記第2スイッチング素子をオフするよう に制御する制御回路とを備えたことを特徴とするワイヤ カット放電加工装置。

【請求項2】 前記制御回路は、前記第2検出回路の検 出信号に応じて、予め設定された所定時間が経過した後 に前記第2スイッチング素子をオフすることを特徴とす る請求項1記載のワイヤカット放電加工装置。

【請求項3】 前記第1検出回路の前記しきい値が無負 荷電圧よりも5~20V低い値であることを特徴とする 請求項1または2記載のワイヤカット放電加工装置。

【発明の詳細な説明】

[000.1]

【発明の属する技術分野】本発明は、ワイヤカット放電 加工装置に係り、特に、放電を誘起する補助電源回路と 所望の加工電流を供給する主電源回路を備えたワイヤカ ット放電加工装置の改良に関する。

[0002]

【従来の技術】一般に、ワイヤカット放電加工装置にお 30 いては、加工電流パルス幅(電流のオン時間)が長くな るとワイヤ電極が断線したり加工面の面粗度が粗くなっ たりし、逆に電流値が小さいと加工速度が遅くなる。そ こで、加工電流パルス幅が短く且つ高いピーク電流値の 加工電流で加工をすることが望まれる。

【0003】ところで、高いピーク電流値の加工電流を 供給するためには、好ましい無負荷電圧に対してより大 きい電圧がギャップに供給される必要がある。例えば、 現在の一般的な水系の放電加工液を使用するワイヤカッ ト放電加工では、好ましい無負荷電圧が80V程度と考 40 えられ、一方、高いピーク電流値を得るための加工中の 印加電圧は、ファーストカットで265V、セカンドカ ット(端面加工)ではそれより低い値ではあるが、前記 無負荷電圧よりもかなり高い値が必要である。

【0004】このように、好ましい無負荷電圧と、好ま しい高いピーク電流値の加工電流パルスを得るのに十分 な電圧とが異なっているのに、その無負荷電圧と同じ電 圧でその高いピーク電流値の加工電流と同じ電流値の加 工電流を供給しようとすると、加工電流パルス幅を長く しなければならない。ところが、加工電流パルス幅を長 50 例えば40V程度に設定されている。図5 (B) は放電

くすると、既に説明したように、ワイヤ電極の断線や面 粗度の低下が生じる。

【0005】また、放電の発生を検出してから設定オン 時間後に電源回路を遮断するように構成して、加工電流 パルス幅を一定にするようにし、加工電流値のばらつき を防止することも行なわれている。しかし、実際に放電 が発生した時点と、放電の発生を検出した信号との間に は時間的に差が生じているので、短いパルス幅の加工電 流を供給するのには限界がある。そのため、所望の短い 加工電流パルス幅を得ようとすると、所望のピーク電流 値に達する前に加工電流パルスを遮断しなければならな くなる。

【0006】このようなことから、特公昭61-507 37号公報等に開示されているような、主電源回路と補 助電源回路の2つの電源回路を設け、加工間隙に電圧を 印加してから放電が発生するまでの無負荷時間中は、好 ましい無負荷電圧を発生する低い電流値の補助電源回路 で放電を誘起し、放電の発生後は大きな電流値の電流を 供給できる主電源回路から加工電流パルスを供給する方 式が提案されている。この種の方式では、加工電圧値に 近い値のしきい値で検出することによって放電の発生を 検出し、これにより両電源回路の出力の切り換えを行な うとともに、主電源回路から供給される加工電流のパル ス幅を一定にしている。また、この低い電流値の補助電 源回路により放電を誘起するようにしておけば、加工に とって望ましくない、例えばギャップにリーク電流や短 絡電流が流れるなどの異常放電(放電が発生したか否か に関わらず、以下異常放電と言う)であった場合に、大 きい電流値の加工電流を供給しないようにできることか ら、異常放電の発生時の加工面や加工精度への影響を阻 止できるという利点もある。

[0007]

【発明が解決しようとする課題】ところで、単に加工電 圧を監視することによって放電の発生を検出する従来方 式では、①放電の発生から加工電圧までギャップの電圧 が降下する時間、②放電の発生の検出信号を得て制御装 置に入力してから主電源回路のスイッチング索子をオン すると共に補助電源回路のスイッチング素子をオフする までの時間、③設定された加工電流のオン時間後に主電 源回路のスイッチング素子をオフして、加工電流がピー ク値から降下して遮断されるまでの時間等の、微視的に 見れば多くの遅延時間がかかっている。また、異常放電 を検知して主電源回路を制御しようとする場合には、異 常を判別するための時間も遅延の原因になる。

【0008】この点を図5を参照して具体的に説明す る。図5(A)はワイヤ電極と被加工物で形成される加 工間隙に印加されるギャップ (両極間) の電圧パルスの 波形図であり、P1が実際の放電開始時点を示し、放電 の発生を検出するしきい値Th1は加工電圧に近い値、

検時間を示す波形図、図5 (C) は放電検出信号を示す 波形図、図5 (D) は補助電源回路のスイッチング素子 のオンオフを示す波形図、図5 (E) は主電源回路のスイッチング素子のオンオフを示す波形図、図5 (F) は 加工電流を示す波形図である。

【0009】図示するように、最初に補助電源回路から加工間隙に電圧が印加されると、同時にギャップの電圧波形が次第に上昇し、無負荷電圧に到達してから加工間隙の状態に応じて放電開始点P1で放電が発生してギャップの電圧が急激に低下する。そして、ギャップの電圧 10がしきい値Th1より低下した時点で図5(C)に示すように放電が検出される。なお、図5(B)に示すように補助電源回路がオンされると同時に所定の期間だけ放電検出動作を禁止する検出時間を設定している。

【001 C】ここで、実際の放電開始点P1よりギャップの電圧がしきい値Th1まで低下して放電の発生を検出するまでの間だけ遅延時間Aが発生している。そして、放電の発生が検出されると、補助電源回路を遮断し(図5 (D))、これと略同時に主電源回路を予め定められた一定の期間だけ導通して(図5 (E))、大きな20加工電流をギャップに供給する(図5 (F))。この時、放電検出より主電源回路のスイッチング素子をオンするまでの間だけ遅延時間Bが発生している。従って、図5 (F)に示すようにギャップに加工電流が流れている時間、すなわち加工電流パルス幅がかなり長くなってしまう。この加工電流パルス幅が長くなる主たる原因は、放電が発生してから主電源回路を投入するまでの間の検出遅延時間T1が長くなっているからである。

【0011】そのため、主電源回路から供給される加工電流のパルス幅を短くしても、全体の加工電流パルス幅 30 T 2 は長くなってしまう。特に、 1μ S (マイクロ秒)以下のパルス幅の加工電流を得ることは困難である。また、この検出遅延時間のために、異常放電を検知した場合でも、補助電源回路からの加工電流の供給を中止するまでの間に流れる電流値がより大きくなり、このため、結果的には加工面の状態をそれだけ悪化させることになる。

【0012】そこで、放電の発生を検出する時点を、ギャップの電圧波形(図5(A))が立ち下がっている時ではなく、立ち上がって無負荷電圧に到達している時に 40行なうことにより、放電の発生の検出を検出する時点を従来より早期にすることで、主電源回路から加工電流を供給する時点を早くするとともに、補助電源回路からの加工電流の供給時間を短くすることも考えられる。

【0013】しかしながら、電圧を加工間隙に印加してから無負荷電圧に到達するまでに、ギャップの電圧波形は直線的に垂直に立ち上がるわけではなく、各電圧パルス毎にかなりのばらつきがある。しかも、パルス幅が短く、且つ高いピーク電流値の加工電流パルスを供給するための回路の設計(例えば、低インダクタンスの同軸ケ

ーブルの使用)、加工間隙の距離の変化、被加工物の板厚による差異などを原因として、図6に示すようにギャップのキャパシタンスが変化することによる影響で、ギャップの電圧の立ち上がりの波形と時間は安定していない。従って、ただ単に放電の発生を検出する時点を早期にするわけにはいかず、ギャップの電圧の立ち上りの時間を考慮しなければならない。

【0014】例えば、図6に示されるように、ギャップのキャパシタンスをa, b, cとしてこれらの値がa < b < cの場合には、ギャップの電圧パルスの立ち上りの波形はa, b, cのように異なる。従って、放電の発生を検出する時点を決定する検出時間は、考えられる立ち上がりの最も遅いギャップの電圧波形を想定して設定せざる得ない。従って、依然として、高いピーク電流値で短いパルス幅の加工電流を供給することも、異常放電が発生したときに加工電流の供給を早期に遮断することも、何れの問題も解消されない。

【0015】本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の主たる目的は、パルス幅がより短い、例えば 1μ S以下であって、しかもより高いピーク電流値、例えば50~1000A程度の加工電流パルスを安定して供給できるワイヤカット放電加工装置を提供することにある。

[0016]

【課題を解決するための手段】本発明は、上記問題点を解決するために、ワイヤ電極と被加工物との間に形成される間隙に所望の加工電流を供給する主電源回路と、前記主電源回路に並列に接続された補助電源回路と、前記主電源回路に含まれる少なくとも1つの第1スイッチング素子と、前記補助電源回路に含まれる少なくとも1つの第2スイッチング素子と、所定のしきい値を有し前記間隙に流れる電流を監視する第2検出回路を有し前記間隙に流れる電流を監視する第2検出回路と、前記第2スイッチング素子をオンしてから前記第1 検出回路の検出信号に応じて前記第1スイッチング素子を所定の期間だけオンすると共に、前記第2検出回路の検出信号に応じて前記第2スイッチング素子をオフするように制御する制御回路とを備えるように構成したものである。

【0017】好ましくは、前記第2検出回路の検出信号に応じて、補助電源回路を遮断をするために予め設定された設定時間が経過した後、前記第2スイッチング素子をオフさせるように制御回路を構成する。また、第1検出回路のしきい値が加工電圧よりも高く無負荷電圧よりも低い電圧値、望ましくは無負荷電圧より5~20V低い電圧値に設定する。

[0018]

【作用】制御回路から供給されるゲート信号で第2スイッチング素子をオンすることにより補助電源回路から加工間隙に電圧を印加すると、ギャップの電圧が上昇して

無負荷電圧に到達し、ある無負荷時間経過後に放電が発 生する。放電が発生するとギャップの電圧が急激に低下 して、予め設定されている所定のしきい値を越えて小さ くなり、ギャップの電圧を監視する第1検出回路が、こ の放電の発生を検出する。この検出信号に応じて第1ス イッチング素子がオンし、予め設定された一定期間後に オフして、主電源回路より所望の高いピーク電流値の主 加工電流が供給される。

【0019】一方、実際の放電の発生と略同時にギャッ プに加工電流が流れてその電流値が次第に増加する。ま 10 た、加工間隙がよくない状態で、異常放電によりギャッ プの電圧が無負荷電圧まで立ち上がらなかった場合で も、ギャップに電流が流れてその電流値は増加する。第 2検出回路は、このギャップに供給される加工電流を監 視してその電流値が予め設定されている所定のしきい値 以上になったことを検出する。そして、この第2検出回 路の検出信号により、上記第2スイッチング素子をオフ して補助電源回路からの電圧の供給を停止する。従っ て、ギャップの放電の状態に関わらず、補助電源回路が 遮断され、ギャップへの電流の供給が停止される。

【0020】このため、電圧パルスの立ち上りの波形の ばらつきや異常放電の発生に対する検出時間を考慮する 必要がなくなり、放電の発生を検出する第1検出回路の しきい値を高くできるので、電圧パルスのオン時間中の より早い時期に放電の発生を検出することができる。従 って、全体としての加工電流パルス幅がより短くでき、 しかも、高いピーク電流値の加工電流を供給することが 可能となる。このとき、ギャップの電流を検出してから 所定の設定時間経過後に補助電源回路を遮断するように しておけば、主電源回路から電流が供給される前に補助 30 電源回路が遮断されて、電流が途切れてしまうという恐 れがない。また、第1検出回路のしきい値を無負荷電圧 より5~20 V程度低いレベルに設定しておけば、より 早期にかつ正確に放電の発生を検出できる。

[0021]

【発明の実施の形態】以下に、本発明に係るワイヤカッ ト放電加工装置の一実施例を添付図面に基づいて詳述す る。図1は本発明に係るワイヤカット放電加工装置を示 すプロック回路構成図、図2は図1に示す回路構成中の 各部における波形のタイミングチャート、図3は制御回 路の回路構成図である。また、図4は制御回路中の補助 電源回路のスイッチング素子をオンオフするゲート信号 を発生する主要な部材の出力波形のタイミングチャート である。

【0022】図示するように、このワイヤカット放電加 工装置は、被加工物6を挟んで設けられる一対のガイド 2、2間にワイヤ電極4を更新走行させつつ、このワイ ヤ電極4と被加工物6との間に間欠的に放電を発生させ て、放電加工を行なう。なお、図1では、ワイヤ電極4 に給電する通電子をガイド2、2に含ませて示してい

る。その他、このワイヤカット放電加工装置の具体的な 機械的構成は、従来公知の構成であってもよいので、そ の詳細な説明は省略する。

【0023】そして、上記ワイヤ電極4と被加工物6と の間に形成される加工間隙12に電圧を印加するため に、主電源回路8と補助電源回路10が設けられる。ま た、ギャップの電圧を監視することによって放電の発生 を検出する第1検出回路14及びギャップに流れる加工 電流を監視することによって補助電源回路を遮断する第 2検出回路16が設けられる。これらの各電源回路8、 10や検出回路14、16は例えばマイクロコンピュー タ等よりなる制御回路18によりその動作が制御され

【0024】上記主電源回路8は主として所望の高いピ ーク電流値の加工電流を供給するためものであり、できょ る限りインダクタンス値を低く、また抵抗値が低くなる ように構成される。主電源回路8は、ギャップに直列に 接続される60~300V程度の範囲で可変になされた 直流電源E1(主電源)、及び電源E1とギャップとの 間に直列に接続された逆流阻止ダイオードD1と例えば MOSFETよりなる少なくとも1つの第1スイッチン グ素子Tr1の直列回路を含んで構成される。

【0025】また、上記第1検出回路14は、被加工物 6とワイヤ電極4との間に直列接続された分配抵抗R 1、R2を有している。一方の分配抵抗R1には、低電 圧を出力する、第1検出回路のしきい値を調整できる可 変の検出電源20、抵抗R3及びフォトカプラ22の直 列回路が並列に接続されている。フォトカプラ22内の フォトダイオードの順方向と検出電源20の+方向は逆 方向になされており、また、この検出電源20は主電源 E1に対して逆パイアスをかけるようになっている。そ して、上記フォトカプラ22の出力(検出信号) S1 は、制御回路18へ入力されるようになっている。この 第1検出回路14は、後述する副電源の出力電圧よりも 5~20Vだけ低い電圧値にしきい値Vrが設定される (図2(A)参照)。例えば、無負荷電圧が80Vのと きに、検出電源20の出力電圧を20Vとすると、ギャ ップの電圧が60V以上になったときにフォトカプラ2 2からの検出信号S1が立ち上がる。そして、制御回路 18は、検出信号S1の立ち下がりを検出することでギ ャップの電圧がしきい値以下に降下したことを検出し て、放電が発生したことを検知する。

【0026】一方、上記補助電源回路10は、加工間隙 12に無負荷電圧を印加して、放電を誘起させるための ものであり、60~120V程度の範囲で可変の直流電 源 E 2 (副電源)を含み、主電源回路 8 に並列に接続さ れている。そして、電源 E 2 と加工間隙 1 2 との間に、 逆流阻止ダイオードD2と、電流制限抵抗R4と、例え ばMOSFETよりなる少なくとも1つの第2スイッチ 50 ング素子Tr2とが直列に接続される。

【0027】また、上記第2検出回路16は、逆流阻止 ダイオードD3と電流制限抵抗R5と例えばMOSFE Tよりなる放電検出用スイッチング素子Tr3と電流検 出用抵抗R6とよりなる直列回路でなり、電源E2とギ ャップとの間に直列に、かつ第2スイッチング素子Tr 2と電流制限抵抗R4との直列回路に並列に接続され る。検出抵抗R6の両端に接続された差動増幅器26の 一方の入力端子には検出電源24が接続されて基準電圧 値が入力される。第2検出回路16に流れる電流は、可 変の直流電源E2の設定された電圧値に影響するので、 検出電源24は、1.5~5V程度の範囲で可変にし て、上記基準電圧値を所要の電圧値に調整する。従っ て、無負荷電圧値が変更されれば、検出電源24の出力 を調整して、第2検出回路16のしきい値を所定のレベ ルにする。差動増幅器26は、ギャップに所定の電流値 以上の電流が流れたときに制御回路18へ検出信号S2 を出力する。

【002!8】この第2検出回路16は、ギャップのキャ パシタンスなどの影響を考慮して、誤検出が生じない限 りに低い電流値にしきい値Irが設定されるべきである (図2(B)参照)。放電検出用のスイッチング素子T r3は、制御回路18からのゲート信号G2により第2 スイッチング素子Tr2と同時にオンオフ制御され、少 なくとも電圧パルスのオフ時間中に放電回路から切り離 してギャップに電流が流れないようにしている。一方、 主電源回路8の第1スイッチング素子Tr1は、制御回 路18からのゲート信号G1によりオンオフ制御され る。

【0029】しきい値設定部28は、無負荷電圧が変更 された場合には、直流電源E2の電圧値を変更するとと もに、それに応じて上述した各検出回路14、16の各 しきい値を調整するように各検出電源20、24の出力 電圧を変更する。また、加工によって各検出電源20、 24の出力電圧の少なくとも何れか一方を変更して、し きい値を変更することができる。加工条件設定部30 は、この装置に必要な各種の加工条件を設定するもので あり、ここでは特に、オン時間(主電源回路から印加さ れる電圧のオン時間) Tonと、オフ時間 (電圧パルス のオフ時間)Toffと、補助電源遮断用の設定時間S offを制御回路18へ出力し、少なくとも補助電源回 40 路10の出力電圧(無負荷電圧値)Vをしきい値設定回 路28に出力する。

【0030】次に、以上のように構成されたワイヤカッ ト放電加工装置の動作について図2に示すタイミングチ ャートを参照して説明する。図2(A)はギャップの電 圧波形を示し、図2 (B) はギャップに流れる電流波形 を示し、図2(C)は検出信号S1の波形を示し、図2 (D) はゲート信号G1の波形を示し、図2 (E) は検 出信号S2の波形を示し、図2(F)はゲート信号G2

30より、上述したオン時間Ton(図2(D)参 照)、オフ時間Toff(図2(A)参照)、及び上記 設定時間Soff (図2 (F) 参照) を含む各種のパラ メータを入力し、この入力値に基づいて制御回路18 は、各スイッチング素子のオンオフ動作を制御する。 【0031】また、第1検出回路及び第2検出回路1 4、16の各しきい値Vr、Irをしきい値段定回路2 8を介して設定する。この場合、加工条件設定部30か ら入力値に基づいて各しきい値Vr、Irを直接設定す る構成にすることを妨げない。既述したが、電源E2が 80 Vの場合には、しきい値 Vrは、これより5~20 V程度低い値、例えば60Vとする。この点、従来にあ っては、電源E2が80Vの場合には、加工電圧値を基 準にして30~40V程度にしきい値を設定していたこ とから、放電の発生を検出するタイミングが遅くなって いた。一方、しきい値Irは、可能な限り小さくするべ きであり、概ねギャップのキャパシタンスの影響による 誤検出がない程度に低い値、例えば1.5A程度に設定 されればよい。

【0032】本発明の動作の特徴は次の点である。ま ず、補助電源回路10の電源E2から放電を誘起するた めに加工間隙12に電圧を印加し、実際に放電が発生し てギャップの電圧が無負荷電圧より若干低いしきい値V rまで降下すると、第1検出回路14が放電が発生した ことを検出する。この時点は、ギャップの電圧が加工電 圧値まで降下してほぼ一定のレベルで安定する時点より も以前である。この検出信号S1に応じて、主電源回路 8の電源E1から加工間隙12に電圧を印加して所定の 時間Tonだけ大きな加工電流を供給する。また、第1 検出回路14の動作とは別に、第2検出回路16は加工 電流を監視しており、実際に放電が始まって僅かにギャ ップの加工電流が上昇したときに放電が開始されたもの とみなし(実際には放電が発生していない場合があって も)、その後、補助電源遮断用の設定時間Soffが経 過した時に電源E2からの電流の供給を停止する。従っ て、より早期に放電の発生を検出するので、その時間だ け遅延時間を短くでき、全体としての加工電流パルス幅 T2(図2(B)参照)が短くでき、また、高いピーク 値の加工電流パルスが供給できる。

【0033】以上の動作をより詳しく説明する。まず、 制御回路18がゲート信号G2を出力すると補助電源回 路10の第2スイッチング素子Tr2、放電検出用スイ ッチング素子Tr3が共にオンとなって、電源E2から 加工間隙12に電圧が印加され、ギャップの電圧が次第 に上昇して行く(図2(A))。そして、ギャップの電 圧が無負荷電圧まで立ち上がって、点 (放電開始点) P 1で放電が発生し、これと同時にギャップの電圧が過渡 的に低下する。そして、ギャップの電圧が僅かに低下し た所で、例えば20V程度低下したところでこのギャッ の波形を示す。まず、加工に先立って、加工条件設定部 50 プの電圧は第1検出回路のしきい値Vrを横切り、更に

30

9

ギャップの電圧は低下して行く。

【0034】上記のようにギャップの電圧がしきい値Vrより大きい間は、第1検出回路14のフォトカプラ22からはH(ハイレベル、以下同じ)の信号が制御回路18は検出信号S1のパルスが立ち下がった時点を放電開始と認識する。放電の発生を検出したならば、制御回路18は直ちに主電源回路8の第1スイッチング素子Tr1に向けてオン指令を出そうとするが、不可避的な回路遅延Cの後に、ゲート信号G1(図2(D)参照)が出力されて第1スイッチング素子Tr1は所定のオン時間Tonだけオンされ、主電源回路8から大きな加工電流がギャップに供給される。図2(B)に示すようにギャップには、放電の発生と共に加工電流が流れ始めるが、主電源回路8から電流が供給されると、加工電流波形は急峻に立ち上がり、一気に加工電流が増大する。

【0035】一方、加工間隙12に放電が発生して加工電流が第2検出回路16のしきい値Irに達すると、検出信号S2が出力されて制御回路18へ入力される。すると、制御回路18は、検出信号S2の入力後、補助電源遮断用の設定時間Soffが経過した時にゲート信号G2の出力を止めるが、実際にはこの設定時間Soffに不可避的な遅延時間Dが加わった時間が経過した時に、ゲート信号G2の出力が止められて第2スイッチング素子Tr2がオフし、これにより補助電源回路10の電源E2からの電力供給を遮断する。

【0036】このようにすることにより、実際に放館が 開始した時点から主電源回路8から電流が供給されるま で遅延時間C(図2(C)参照)が小さくなるので、ギ ャップに供給される全体としての加工電流パルスT2 (図2(B)参照)を大幅に短くすることが可能とな る。また、加工電流のピーク値を低くすることなく、高 く維持することができる。更に、ギャップの浮遊容量の 変化によって、電圧の立ち上がりがまちまちであって も、「検出時間」という設定値が存在しないために、実 際に放電が開始された時点に、より近い時点で即座に放 電の発生を検知することができる。一方、補助電源回路 10の電源 E2からの電圧印加直後に、ギャップの電圧 が無負荷電圧まで立ち上がらないでギャップへ電流が流 れてしまう異常放電が発生した時には、検出信号S1は 出力されないが、検出信号S2は出力されるので、第2 スイッチング素子Tr2は直ちにオフされて補助電源回 路10からの電流の供給が停止され、加工上、問題を生 じることは殆どない。

【0037】次に、図3及び図4を参照して前記ゲート信号G1、G2を生成する制御回路18の一例を説明する。図3は制御回路の回路構成図、図4は図3に示す回路中のゲート信号S2を出力する各主要部材の出力信号の波形とギャップの電流とギャップの電圧の波形を模式的に示す図である。図3中において、40はオシレータ

10

であり、図4(C)に示すクロック信号CKを出力する。41はカウンタ、42はコンパレータ、43は設定値Tonを記憶するROM、44はCPU(演算処理部)、45は単安定マルチバイブレータ、46はフリップフロップ、47はインバータ、48はスリーステートバッファ、49はカウンタ、50はコンパレータ、51は補助電源遮断用の設定時間Soffを記憶するROM、52はインバータ、53はフリップフロップ、54はカウンタ、55はコンパレータ、56は電圧パルスオフ時間Toffを記憶するROM、57、58はインバータである。

【0038】既に説明したが、第1検出回路14の検出信号S1は、放電が発生したことを検出するとL(ローレベル、以下同じ)になる。単安定マルチバイブレータ45は、第1検出回路14の検出信号S1がLに立ち下がったときに、放電開始を示す1ショットパルスを出力する。第1検出回路14は、フリップフロップ46は、この「放電開始信号」が入力されるとセットされてし出力となる。カウンタ41は、常時、フリップフロップ46のH出力を入力してリセットされており、「放電開始信号」を受けたフリップフロップ46のL出力でリセットが解除されて、オシレータ40からのクロックをカウントする。

【0039】コンパレータ42は、ROM43からの設定値Tonのデータ値と放電が発生したときからカウント値を出力するカウンタ41からのカウント値とが一致したときに一致信号を出力する。従って、コンパレータA=Bから一致信号が出力されるタイミングは、主電源回路8のスイッチング素子Tr1をオフするべき時点に一致する。一方、コンパレータ42からの一致信号は、フリップフロップ46がH出力になり、カウンタ41がリセットされる。そして、カウンタ41がリセットされる。そして、カウンタ41がリセットされるとコンパレータ42におけるカウンタ41のカウント値とROM43からのデータ値とが一致しなくなるから、コンパレータ42から出力される一致信号はL出力になる。従って、この一致信号は、ほぼワンショットパルス状の信号である。

【0040】フリップフロップ46は、上述したように、放電開始信号を入力してL信号を出力し、コンパレータ42の一致信号を入力してリセットされてH信号を出力するので、フリップフロップがL信号を出力している時間は、設定値Tonの時間に一致する。従って、フリップフロップ46のL出力をインバータ47で反転した信号が、第1スイッチング案子Tr1に印加されるゲート信号G1として出力される。

【0041】フリップフロップ53は、第2検出回路16からの電流を検出した検出信号S2でセットされ、コンパレータ55の一致信号でリセットされる。このとき、図1に示された第2検出回路16の差動増幅器26

の構成では、論理回路上は図4(F)に示すように、電流を検出したときにLになるから、インバータ52で反転させてHにした信号をフリップフロップ53に入力する。一方、コンパレータ55は、オフ時間Toffの終了、言い換えれば、次の電圧パルスのオンで一致信号を出力するようにされている。従って、フリップフロップ53は、ギャップに電流が流れたことを検出してから次の電圧パルスのオンまでL信号を出力する(図4(E))。

【0042】スリーステートバッファ48は、コンパレ 10 ータ50の一致信号が出力していない入力信号がLのときに、オシレータ40のクロックCLの出力を禁止する。また、コンパレータ50は、後述するが、補助電源遮断用の設定時間Soffが終了してから次の電圧パルスがオンするまでの間に一致信号が出力されるようにされている。そのため、スリーステートバッファ48は設定時間Soffが経過してから次の電圧パルスがオンされるまでの間はクロックCKが出力されないクロックCK・を出力する(図4(D))。

【0043】カウンタ49は、フリップフロップ53のH出力を受けて、電圧パルスのオンからギャップに電流が流れるまでの間はリセットされている。また、設定時間Soffが経過してから次の電圧パルスがオンするまでの間は、スリーステートバッファ48によりクロック CKを入力していない。従って、カウンタ49は、第2 検出回路の検出信号S2を受けてフリップフロップ53 の出力がLになってから、次の電圧パルスがオンするまでの間カウントするが、設定時間Soffが終了する時点までカウントしたところでクロックを入力しなくなるので、設定時間Soffが終了してからリセットされるまでの間は一定のカウント値を出力をしたままとなる。

【0044】コンパレータ50は、カウンタ49のカウント値とROM51からの設定時間Soffとが一致して一致信号を出力する。一方で、オフ時間Toffが終了してフリップフロップ53がH信号を出力し、カウンタ49がリセットされて、ROM51の設定時間と一致しなくなる時点で、コンパレータ50のA=BはLになり一致信号を出力しなくなる。要するに、コンパレータ50は、設定時間Soffの終了後から次の電圧パルスがオンするまでの間に一致信号を出力している(図4(G))。従って、このコンパレータ50の一致信号をインバータ58で反転した信号を補助電源回路10の第2スイッチング案子Tr2のゲート信号G2として出力

【0045】カウンタ54は、コンパレータ50の出力をインバータ57で反転した信号をリセットに入力するので、ゲート信号G2が出力している間はリセットされ、補助電源回路10の遮断とともにカウントを開始する。コンパレータ55は、ROM56からのオフ時間Toffのデータを受けてカウンタ54のカウント値と一

する(図4(H))。

12

致したときに一致信号を出力し、フリップフロップ53 をリセットする。上述したように、フリップフロップ53がリセットされると、コンパレータ50の出力がLになるのでカウンタ54がリセットされる。カウンタ54 がリセットされると、カウンタ54とROM56のデータは一致しなくなるので、コンパレータ55のA=Bは、L出力になる。従って、カウンタ54と、コンパレータ55と、ROM56とは、次の電圧パルスを印加する時間を決めている。(図4(B)及び(H))。

【0046】以上のようにして、検出信号S1及びS2と、所定の設定値とに基づいてゲート信号G1及びG2が生成されることになる。なお、上記実施例において用いた各数値例は、単に一例を示したに過ぎず、これらに限定されないのは勿論である。また、制御回路の具体的な構成は、図3に示されたものに限らず、論理回路の設計により種々の応用が可能である。

[0047]

【発明の効果】以上説明したように、本発明のワイヤ放 電加工装置によれば、次のように優れた作用効果を発揮 することができる。主電源のオンオフ制御は間隙に印加 されている電圧の変動に依存して行ない、他方で補助電 源回路の副電源のオンオフ時間は間隙に流れる加工電流 に依存するようにしているので、加工電流パルス幅をよ り短くして、且つ高いピーク電流値の加工電流パルスを 安定して供給することができる。その結果、面粗度をよ り向上させることかできるのみならず、加工速度が遅く なったり、加工効率が低下したりすることも阻止でき る。また、間隙に印加された電圧が、予定された無負荷 電圧あるいは無負荷電圧に近い加工電圧よりも相当高く 設定されたしきい値に到達せずに放電したり、放電せず に短絡して間隙に電流が流れたときにも、所定の時間を 越えて補助電源回路から電流が供給されることがなく、 面粗度の悪化を防止することができる。

【図面の簡単な説明】

【図1】本発明に係るワイヤカット放電加工装置を示す ブロック回路構成図である。

【図2】図1に示す回路構成中の各部における波形のタイミングチャートである。

【図3】制御回路の回路構成図である。

【図4】図3に示す回路中の一部の波形とギャップの電流とギャップの電圧の波形を模式的に示す図である。

【図5】従来のワイヤカット放電加工装置における電 圧、電流波形を示す波形図である。

【図6】ギャップのキャパシタンスの変化によりギャップの電圧の立ち上がりが変化する状態を示す図である。 【符号の説明】

- 4 ワイヤ電極
- 6 被加工物
- 8 主電源回路
- 50 10 補助電源回路

30

(8)

特開平11-267926

13

12 加工間隙 14 第1検出回路

16 第2検出回路

18 制御回路

20 検出電源

24 検出電源

26 差動增幅器

E1 主電源

E 2 副電源

Tr1 第1スイッチング案子

Tr2 第2スイッチング案子

Soff 補助電源遮断用の設定時間

14

【図1】

【図3】

[図5]

運転時間A 判別時点前に放電が開始した場合の検出時間の遅延 遅延時間B 検出後の主電原回路配流供給までの回路遅延

【図6】

