CSC2420 - Algorithm Design, Analysis and Theory

Fall 2022

Lecture 6: Online Bipartite Matching and Secretary Problem

Lecturer: Calum MacRury Scribe: Kevin Gao

6.1 Online Bipartite Matching in ROM

In the random order model (ROM), the nodes V of G are presented to A uniformly at random, so the matching A(G) returned by A is random.

Performance of \mathcal{A} , namely $\mathbb{E}[w(\mathcal{A}(G))]$, is averaged over π . The competitive ratio of \mathcal{A} in the random order model is then

 $\inf_{G} \frac{\mathbb{E}[w(\mathcal{A}(G))]}{OPT(G)}$

Huang et al. 2018 introduced a generalization of Weighted-Ranking, defined using a function g(x, y) where $g: [0, 1]^2 \to [0, 1]$.

The price of $u \in U$ is then $w_u \cdot g(X_u, Y_V)$ where $X_U \sim \mathcal{U}[0, 1]$ is the rank of $u \in U$ and $Y_V \sim \mathcal{U}[0, 1]$ is the arrival time of vertex $v \in V$.

For fixed $x \in [0,1]$, if $y_1 < y_2$, then $g(x,y_2) < g(x,y_1)$. Thus, the later a vertex v arrives, the larger Y_V is, the lower the prices for v.

Theorem 6.1. Generalized-Ranking achieves a competitive ratio of 0.6534 in the vertex-weighted ROM setting.

6.2 Online Matching with Edge Weight

We have so far only considered the case when G = (U, V, E) is vertex weighted. All the arrival models and corresponding competitive ratios generalize to the edge weighted setting.

However, in the adversarial arrival model, no algorithm attains a constant competitive ratio. This is true even when |U| = 1 and |V| = 2. Consider the case when $w_{e_1} \ll w_{e_2}$.

6.2.1 The Secretary Problem

When |U| = 1, $E = \{u\} \times V$, observe that $OPT(G) = \max_{e \in E} w_e$. This is the secretary problem. Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random. The secretary algorithm is simple:

SECRETARY

- 1 pass on the first n/e arriving edges
- 2 accept the first edge whose weight is at least as large as the first n/e edges

If the max edge is in the first n/e edges, we don't pick anything. The probability of this happening is 1/e.

Problem 6.2.

Input: Let there be n applicants, say $1, \ldots, n$, where w_i is the "value/weight" of applicant i.

Goal: Output $I \in \{1, ..., n\}$ such that

$$\mathbb{E}[w_I] \ge \alpha \cdot \max_{1 \le i \le n} w_i$$

In the following pseudocode, π is a random permutation of the applicants.

THRESHOLD-SECRETARY

```
1 for t = 1 to c \cdot n - 1

2 pass on applicant \pi(t)

3 for t = c \cdot n to n

4 if w_{\pi(t)} \ge \max\{w_{\pi(1),\dots,w_{\pi(cn-1)}}\}

5 return w_{\pi(t)}
```

Theorem 6.3. If $j = \arg \max_{1 \le i \le n} w_i$,

$$\Pr[I=i] \ge \alpha$$

where $\alpha = 1/e$.

Proof: Let I be the output of the cn threshold. We would like to find a lower bound on $\Pr[w_I = \max\{w_1, \dots, w_n\}]$. This probability can be expressed as

$$\Pr[w_I = \max\{w_1, \dots, w_n\}] = \sum_{t=1}^n \Pr[I = \pi(t) \land w_{\pi(t)} = \max\{w_1, \dots, w_n\}]$$
(6.1)

Observation: $\pi(t)$ is selected if and only if $\pi(t)$ is the best amongst the first cn candidates and all candidates from $\pi(cn)$ to $\pi(t-1)$ are rejected. Equivalently, this is equal to the probability that $\pi(t)$ is the best applicant AND $\pi(cn), \ldots, \pi(t-1)$ are rejected.

$$\Pr[I = \pi(t) \land \pi(t) \text{ is the best}] = \Pr[\pi(cn), \dots, \pi(t-1) \text{ rejected} \mid \pi(t) \text{ is the best}] \cdot \Pr[\pi(t) \text{ is the best}]$$

$$= \Pr[\pi(cn), \dots, \pi(t-1) \text{ rejected} \mid \pi(t) \text{ is the best}] \cdot \frac{1}{n}$$

For every job $\pi(j)$ between $\pi(cn)$ and $\pi(t-1)$, it is rejected if and only if $w_{\pi(j)} < \max\{w_{\pi(1)...w_{\pi(cn-1)}}\}$. This transforms the event of "all jobs rejected" into "all jobs have value smaller than the max of the first cn-1 jobs", which is something that we can calculate.

$$\Pr\left[\bigcap_{j=cn}^{t-1} \left(w_{\pi(j)} < \max\left\{w_{\pi(1),\dots,w_{\pi(cn-1)}}\right\}\right)\right] = \Pr\left[\text{best applicant amongst the first } t-1 \text{ arrivals in the first } cn-1\right]$$

$$= \frac{cn-1}{t-1}$$

Substitute this result back to (5.1).

$$\Pr[w_I = \max\{w_1, \dots, w_n\}] = \sum_{t=c_n}^n \frac{c_n - 1}{t - 1} \cdot \frac{1}{n}$$
(6.2)

As $n \to \infty$, (5.2) can be upper bounded as follows.

$$\sum_{t=cn}^{n} \frac{cn-1}{t-1} \cdot \frac{1}{n} = (1+o(1))c \cdot \sum_{t=cn}^{n} \frac{1}{t-1}$$

$$\leq (1+o(1))c \int_{s=cn}^{n} \frac{1}{s} ds$$

$$= (1+o(1))c \cdot [\ln(n) - \ln(cn)]$$

$$= c \ln c$$

This attains maximum for $c = \frac{1}{e}$.

It turns out this ratio can be achieved in the general case where we have more than one offline vertices as well. The algorithm is as follows.

SECRETARY-MATCHING

```
\mathcal{M} = \emptyset
     G_0 = (U, \emptyset, \emptyset)
      for t = 1, ..., n
 4
            input v_t and compute G_t by updating G_{t-1} to contain v_t
 5
 6
                   pass on v_t
 7
            else
 8
                   compute an optimal matching \mathcal{M}_t of G_t
 9
                   e_t = the edge matched to v_t via \mathcal{M}_t
                   if e_t = (u_t, v_t) exists and u_t is unmatched
10
                          \mathcal{M} = \mathcal{M} \cup \{e_t\}
11
12
      return \mathcal{M}
```

Theorem 6.4 (Kesselheim 2013, ESA). Secretary-Matching attains an asymptotic as $|V| \to \infty$ competitive ratio of 1/e for the case |U| > 1.