Statistics 745

Assignment 3

1. Solve:

(a) Determine θ_0 from the following optimization problem (loess d=0):

$$\min_{\theta_0} \sum_{i=1}^{n} K_{\lambda}(x_0, x_i) (y_i - \theta_0)^2$$

(b) Determine θ_0 and θ_1 from the following optimization problem (loess d = 1):

$$\min_{\theta_0, \theta_1} \sum_{i=1}^n K_{\lambda}(x_0, x_i) (y_i - \theta_0 - \theta_1 x_i)^2$$

2. Solve:

- (a) Let $H = x(x^Tx)^{-1}x^T$. Show that $\hat{f} = x\hat{\beta}^{(ls)} = Hy$. Also, what is tr(H)?
- (b) Let $H_{\lambda} = x(x^Tx + \lambda I)^{-1}x^T$. Show that $\hat{f} = x\hat{\beta}_{\lambda}^{(ridge)} = H_{\lambda}y$. What is $\operatorname{tr}(H_{\lambda})$ and how does it relate to $\operatorname{tr}(H)$?

3. Individual Part:

- (a) Program in **R** the loess estimators using the attached base code with $\lambda = \{0.01, 0.1, 0.5, 1, 100\}$.
- (b) Provide some explanation for the effect of λ on the result. Also what kind of difference did loess d=1 make compared to d=0?