Tabăra de pregătire a lotului național de informatică

Baia Mare, 7-14 mai 2013 Baraj 3 - Juniori

Descrierea soluției - pascal

autor prof. Cheşcă Ciprian Liceul Tehnologic "Costin Neniţescu" Buzău

Varianta 1 ("brute force")

Se generează termenii triunghiului lui Pascal folosind o matrice sau 2 vectori, cu ajutorul binecunoscutei formule de recurență C(n,k) = C(n-1,k) + C(n-1,k-1). Se verifică apoi câți dintre aceștia sunt multipli de p. Acesta variantă are complexitate $O(n^2)$.

Varianta 2 (teorema lui Legendre)

Pentru fiecare termen al triunghiului se calculeaza exponentul la care apare p în n!, în k! și respectiv în (n-k)! adică, cu alte cuvinte care este exponentul lui p în C(n,k). Dacă această valoare este nenulă înseamnă că termenul respectiv este multiplu de p. Acesta variantă are complexitate $O(n^2)$.

Varianta 3

Se utilizează următorul rezultat matematic:

Numărul termenilor din șirul numerelor C(n,0), C(n,1), ..., C(n,n) care sunt multipli de p este egal cu:

$$n+1 - (n_1+1) (n_2+1) ... (n_k+1)^{1}$$

unde n_1 , n_2 ,..., n_k sunt cifrele scrierii lui n în baza p. Spre exemplu dacă n=7 și p=2 atunci în șirurile:

- C(2,0), C(2,1), C(2,2) sunt 2+1-(1+1)(0+1)=1 multipli de 2, deoarece $2(\hat{n} \text{ baza } 2) = 10$
- C(3,0), C(3,1), ..., C(3,3) sunt 3+1-(1+1)(1+1)=0 multipli de 2, deoarece $3(\hat{n} \text{ baza } 2) = 11$
- C(4,0), C(4,1), ..., C(4,4) sunt 4+1-(1+1)(0+1)(0+1)=3 multipli de 2, deoarece $4(\hat{1}n \text{ baza } 2)=100$
- C(5,0), C(5,1), ..., C(5,5) sunt 5+1-(1+1)(0+1)(1+1)=2 multipli de 2, deoarece $5(\hat{1}n \text{ baza } 2) = 101$

¹ Gazeta Matematica nr. 4/1983, pag. 176, Probleme pregătitoare pentru O.I.M., autor Ioan Tomescu

Tabăra de pregătire a lotului naţional de informatică

Baia Mare, 7-14 mai 2013 Baraj 3 - Juniori

- C(6,0), C(6,1), ..., C(6,6) sunt 6+1-(1+1)(1+1)(0+1)=3 multipli de 2, deoarece $6(\hat{1}n \text{ baza } 2)=110$
- C(7,0), C(7,1), ..., C(7,7) sunt 7+1-(1+1)(1+1)(1+1)=0 multipli de 2, deoarece $8(\hat{1}n \text{ baza } 2)=111$

În total vor fi 1+0+3+2+3+0 = 9 multipli de 2 în primele 8 rânduri ale triunghiului lui Pascal.

Acest rezultat matematic reduce ordinul de complexitate de la $O(n^2)$ în cazul variantelor anterioare, la $O(n*log\ n)$.

Varianta 4

Se calculează termenii din triunghiul lui Pascal modulo p și se observă apariția unor "modele" în formarea acestuia. Mai precis elementele nule din triunghi împreună cu elementele nenule formează un fractal cunoscut sub numele de triunghiul lui

Sierpinski.

Acum se poate explica și restricția impusă și anume că n+1 trebuie să fie o putere a lui p, astfel încât fractalul să se încheie cu un triunghi complet. Determinarea numărului cerut de problemă se poate face acum recurent cu relația:

$$\mathbf{M}(\mathbf{x}) = \begin{cases} 0, dac\breve{a} \, x = 0 \\ p*(p+1)/2*M(x-1) + (p-1)*p/2*t*(t-1)/2, dac\breve{a} \, x > 0 \end{cases}$$

unde t este o putere a lui p, iar x este un nivel complet al fractalului. Ordinul de complexitate al acestei soluții este $O(\log n)$.

Varianta 5

Prof. Pit-Rada Ionel-Vasile Colegiul Naţional "Traian"

Complexitate timp : O(logpn)
Complexitate spatiu : O(1)

Tabăra de pregătire a lotului național de informatică

Baia Mare, 7-14 mai 2013

Baraj 3 - Juniori

Se observă următoarea relație de recurență:

$$\begin{split} y[1] &= p - 1 \\ y[i] &= \frac{p \cdot (p+1)}{2} y[i-1] + p - 1 + \frac{p \cdot (p-1)}{2} \cdot \frac{(p^{i-1}-1) \cdot (p^{i-1}-2)}{2} \\ &\text{pentru i = 2, 3, ...,} \\ \end{split}$$

Se va afişa
$$y[\log_p(n+1)]-n$$