

IMPLEMENTAÇÃO DE UMA SOMADOR COMPLETO EM DIFERENTES TECNOLOGIAS

DISCIPLINA: PROJETO DE CI EM TECNOLOGIAS FINFET

DISCENTE: GERSON DANTAS ROCHA

DOCENTE: Alexandra Lackmann Zimpeck

Síntese

- → IMPLEMENTAÇÃO DE UMA SOMADOR COMPLETO EM DIFERENTES TECNOLOGIAS.
 - ►Introdução.
 - ► Metodologia.
 - Resultados.
 - **■**Conclusão.
 - **■** Referencias.

Introdução

■ Somador é um circuito aritmético que pode ser analógico ou digital, com finalidade de realizar uma soma, seja de parâmetros elétricos como tensão ou digitais.(Pedroni, 2004).

Introdução

- Objetivo
 - Medir atraso de propagação.
 - Energia.
 - Potência.
- Diferentes Tecnologias
 - 16nm HP
 - **■** 16nm LP
 - 22nm HP
 - **■** 32nm HP
 - **■** 45nm HP

Figura 1 Simbologia do somador completo.

Introdução

■Descrição SPICE.

A	B	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Figura 2 Tabela-verdade somador completo.

Introdução

Circuito digital proposto.

Figura 3 Topologia escolhida para implementação em descrição SPICE.

Metodologia

Subcircuito NAND2.

Figura 4 Porta NAND2.

Metodologia

→ Arcos de atraso.

Saída Soma	Saída Carry-out
1º caso: A, B fixos em 0. C varia.	1º caso: A, C fixos em 0 e 1. B varia.
2º caso: A, B fixos em 1. C varia.	2º caso: B, C fixos em 1 e 0. A varia.
3° caso: B, C fixos em 0. A varia.	3º caso: A, B fixos em 1 e 0. C varia.
4º caso: C, A fixos em 1 e 0. B varia.	4º caso: A, B fixos em 0 e 1. C varia.

Metodologia

→ Piecewise Linear (PWL)

Figura 5 Entradas Somador completo feitos na fonte PWL.

Metodologia

→ Medição atraso, energia e potência.

.MEASURE TRAN td_lh_c0 TRIG v(CIN) VAL=0.5 RISE=1 TARG v(SUM) VAL=0.5 RISE=1

.measure tran energ_FAvdd INTEG i(vvdd) from=0.01n to=24n

.measure tran avgi_a AVG i(va) from=0.01n to=24n

.measure tran Potencia PARAM = $(((avgi_a) + (avgi_b * (-1)) + (avgi_cin)) * Vdd)$

Resultados

■Saídas do somador.

Figura 6 Saídas Carry-out e Soma do Somador completo.

Resultados

Resultados para tecnologia 16nm HP

Atr	asos na teci	nologi	a de 16nm l	HP	
td_lh_c0	3,06E-05	targ	1,04E-03	trig	1,01E-03
td_hl_c0	5,39E-05	targ	2,06E-03	trig	2,01E-03
td_lh_c1	3,05E-05	targ	4,04E-03	trig	4,01E-03
td_hl_c1	5,39E-05	targ	5,06E-03	trig	5,01E-03
td_lh_a0	1,07E-03	targ	8,08E-03	trig	7,01E-03
td_hl_a0	7,06E-05	targ	8,08E-03	trig	8,01E-03
td_lh_b0	5,47E-05	targ	1,01E-02	trig	1,00E-02
td_hl_c0	8,38E-05	targ	1,11E-02	trig	1,10E-02
td_lh_bcout0	2,05E-03	targ	1,31E-02	trig	1,10E-02
td_hl_bcout0	2,07E-03	targ	1,41E-02	trig	1,20E-02
td_lh_acout0	3,54E-05	targ	1,60E-02	trig	1,60E-02
td_hl_acout0	5,75E-05	targ	1,71E-02	trig	1,70E-02
td_lh_ccout0	3,50E-05	targ	1,90E-02	trig	1,90E-02
td_hl_ccout0	5,61E-05	targ	2,01E-02	trig	2,00E-02
td_lh_ccout1	3,50E-05	targ	2,20E-02	trig	2,20E-02
td_hl_ccout1	5,61E-05	targ	2,31E-02	trig	2,30E-02

Resultados

Resultados para tecnologia 16nm LP

Atr	asos na teci	nologi	ia de 16nm	LP	
td_lh_c0	1,22E-04	targ	1,13E-03	trig	1,01E-03
td_hl_c0	2,08E-04	targ	2,21E-03	trig	2,01E-03
td_lh_c1	1,22E-04	targ	4,13E-03	trig	4,01E-03
td_hl_c1	2,08E-04	targ	5,21E-03	trig	5,01E-03
td_lh_a0	1,28E-03	targ	8,28E-03	trig	7,01E-03
td_hl_a0	2,78E-04	targ	8,28E-03	trig	8,01E-03
td_lh_b0	2,29E-04	targ	1,02E-02	trig	1,00E-02
td_hl_c0	3,35E-04	targ	1,13E-02	trig	1,10E-02
td_lh_bcout0	2,21E-03	targ	1,32E-02	trig	1,10E-02
td_hl_bcout0	2,29E-03	targ	1,43E-02	trig	1,20E-02
td_lh_acout0	1,42E-04	targ	1,61E-02	trig	1,60E-02
td_hl_acout0	2,26E-04	targ	1,72E-02	trig	1,70E-02
td_lh_ccout0	1,41E-04	targ	1,91E-02	trig	1,90E-02
td_hl_ccout0	2,20E-04	targ	2,02E-02	trig	2,00E-02
td_lh_ccout1	1,41E-04	targ	2,21E-02	trig	2,20E-02
td_hl_ccout1	2,20E-04	targ	2,32E-02	trig	2,30E-02

Resultados

Resultados para tecnologia 22nm HP

At	rasos na teci	nologi	a de 22nm l	HP	
td_lh_c0	2,79E-05	targ	1,03E-03	trig	1,01E-03
td_hl_c0	4,92E-05	targ	2,05E-03	trig	2,01E-03
td_lh_c1	2,79E-05	targ	4,03E-03	trig	4,01E-03
td_hl_c1	4,92E-05	targ	5,05E-03	trig	5,01E-03
td_lh_a0	1,07E-03	targ	8,07E-03	trig	7,01E-03
td_hl_a0	6,81E-05	targ	8,07E-03	trig	8,01E-03
td_lh_b0	7,32E-05	targ	1,01E-02	trig	1,00E-02
td_hl_c0	6,23E-05	targ	1,11E-02	trig	1,10E-02
td_lh_bcout0	2,06E-03	targ	1,31E-02	trig	1,10E-02
td_hl_bcout0	2,07E-03	targ	1,41E-02	trig	1,20E-02
td_lh_acout0	3,49E-05	targ	1,60E-02	trig	1,60E-02
td_hl_acout0	5,33E-05	targ	1,71E-02	trig	1,70E-02
td_lh_ccout0	3,45E-05	targ	1,90E-02	trig	1,90E-02
td_hl_ccout0	5,19E-05	targ	2,01E-02	trig	2,00E-02
td_lh_ccout1	3,45E-05	targ	2,20E-02	trig	2,20E-02
td_hl_ccout1	5,19E-05	targ	2,31E-02	trig	2,30E-02

Resultados

Resultados para tecnologia 32nm HP

Atr	asos na teci	nologi	a de 32nm	HP	
td_lh_c0	4,11E-05	targ	1,05E-03	trig	1,01E-03
td_hl_c0	8,22E-05	targ	2,09E-03	trig	2,01E-03
td_lh_c1	4,10E-05	targ	4,05E-03	trig	4,01E-03
td_hl_c1	8,22E-05	targ	5,09E-03	trig	5,01E-03
td_lh_a0	1,10E-03	targ	8,11E-03	trig	7,01E-03
td_hl_a0	1,03E-04	targ	8,11E-03	trig	8,01E-03
td_lh_b0	7,33E-05	targ	1,01E-02	trig	1,00E-02
td_hl_c0	1,23E-04	targ	1,11E-02	trig	1,10E-02
td_lh_bcout0	2,07E-03	targ	1,31E-02	trig	1,10E-02
td_hl_bcout0	2,11E-03	targ	1,41E-02	trig	1,20E-02
td_lh_acout0	4,99E-05	targ	1,61E-02	trig	1,60E-02
td_hl_acout0	8,66E-05	targ	1,71E-02	trig	1,70E-02
td_lh_ccout0	4,93E-05	targ	1,91E-02	trig	1,90E-02
td_hl_ccout0	8,54E-05	targ	2,01E-02	trig	2,00E-02
td_lh_ccout1	4,93E-05	targ	2,21E-02	trig	2,20E-02
td_hl_ccout1	8,54E-05	targ	2,31E-02	trig	2,30E-02

Resultados

Resultados para tecnologia 45nm HP

Atra	asos na teci	nologi	a de 45nm	HP	
td_lh_c0	2,48E-05	targ	1,03E-03	trig	1,01E-03
td_hl_c0	3,34E-05	targ	2,04E-03	trig	2,01E-03
td_lh_c1	2,47E-05	targ	4,03E-03	trig	4,01E-03
td_hl_c1	3,34E-05	targ	5,04E-03	trig	5,01E-03
td_lh_a0	1,06E-03	targ	8,06E-03	trig	7,01E-03
td_hl_a0	5,70E-05	targ	8,06E-03	trig	8,01E-03
td_lh_b0	5,87E-05	targ	1,01E-02	trig	1,00E-02
td_hl_c0	7,80E-05	targ	1,11E-02	trig	1,10E-02
td_lh_bcout0	2,06E-03	targ	1,31E-02	trig	1,10E-02
td_hl_bcout0	2,06E-03	targ	1,41E-02	trig	1,20E-02
td_lh_acout0	3,37E-05	targ	1,60E-02	trig	1,60E-02
td_hl_acout0	3,81E-05	targ	1,70E-02	trig	1,70E-02
td_lh_ccout0	3,30E-05	targ	1,90E-02	trig	1,90E-02
td_hl_ccout0	3,71E-05	targ	2,00E-02	trig	2,00E-02
td_lh_ccout1	3,30E-05	targ	2,20E-02	trig	2,20E-02
td_hl_ccout1	3,71E-05	targ	2,30E-02	trig	2,30E-02

Conclusão

- Dados medidos com eficiência.
- Somador de complexidade baixa.
- Arcos de atraso devem ser feitos com atenção.
- → Medição no NGSPICE.
- Trabalhos Futuros.

Referências

■ [1] PEDRONI, Volnei A. Circuit design with VHDL. MIT press, 2004.