Definition 1

If a matrix Y in a linear space of matrices is orthogonal to every matrix in a subspace \mathcal{U} , Y is said to be *orthogonal* to \mathcal{U} .

The statement that Y is orthogonal to \mathcal{U} is sometimes abbreviated to $Y \perp \mathcal{U}$.

Definition 2

Similarly, to indicate that every matrix in a subspace \mathcal{U} is orthogonal to every matrix in a subspace \mathcal{W} , one says that \mathcal{U} is orthogonal to \mathcal{W} or writes $\mathcal{U} \perp \mathcal{W}$.

Lemma 3

- Let Y represent a matrix in a linear space V, let U and W represent subspaces of V, and take $\{X_1, \ldots, X_s\}$ to be a set of matrices that spans \mathcal{U} and $\{Z_1, \ldots, Z_t\}$ to be a set that spans W. Then, $Y \perp U$ if and only if $Y \cdot X_i = 0$ for i = 1, ..., s; that is, Y is orthogonal to \mathcal{U} if and only if Y is orthogonal to each of the matrices X_1, \ldots, X_s .
- ▶ And, similarly, $\mathcal{U} \perp \mathcal{W}$ if and only if $X_i \cdot Z_i = 0$ for $i=1,\ldots,s$ and $j=1,\ldots,t$; that is, \mathcal{U} is orthogonal to \mathcal{W} if and only if each of the matrices X_1, \ldots, X_s is orthogonal to each of the matrices Z_1, \ldots, Z_t .

By applying Lemma (3) in the special case where $\mathcal{V} = \mathcal{R}^{m \times 1}$ and \mathcal{U} and \mathcal{W} are the column spaces of two matrices (each of which has m rows), we obtain the following corollary.

Corollary 4

Let \mathbf{y} represent an m-dimensional column vector, and let X represent an $m \times n$ matrix and Z an $m \times p$ matrix. Then, \mathbf{y} is orthogonal to $\mathcal{C}(X)$ if and only if $X'\mathbf{y} = 0$. Similarly, $\mathcal{C}(X)$ is orthogonal to $\mathcal{C}(Z)$ if and only if X'Z = 0.

Theorem 5

Let Y represent a matrix in a linear space V, and let U represent an r-dimensional subspace of \mathcal{V} . Then there exists a unique matrix Z in $\mathcal U$ such that $(Y-Z)\perp \mathcal U$, that is, such that the difference between Y and Z is orthogonal to every matrix in \mathcal{U} . If r=0, then Z = 0, and, if r > 0, Z is expressible as

$$Z = c_1 X_1 + \dots + c_r X_r, \qquad (1)$$

where $\{X_1, \ldots, X_r\}$ is any orthonormal basis for \mathcal{U} and $c_i = Y \cdot X_i$ (j = 1, ..., r). Moreover, Z = Y if and only if $Y \in \mathcal{U}$.

Proof: Consider first the case where r = 0. In this case, the only matrix in \mathcal{U} is the null matrix 0. Clearly, Y - 0 is orthogonal to 0. Thus, there exists a unique matrix Z in \mathcal{U} such that $(Y - Z) \perp \mathcal{U}$, namely, Z=0. Moreover, it is clear that Y=Z if and only if $Y \in \mathcal{U}$

Consider now the case where r > 0. Take $\{X_1, \ldots, X_r\}$ to be any orthonormal basis for U, and define $c_i = Y \cdot X_i$ (j = 1, ..., r). Clearly, $\sum_i c_i X_i \in \mathcal{U}$, and

$$(\mathbf{Y} - \sum_{i} c_{j} \mathbf{X}_{j}) \cdot \mathbf{X}_{i} = (\mathbf{Y} \cdot \mathbf{X}_{i}) - c_{i} = 0$$

for i = 1, ..., r, implying (from Lemma 3) that $(Y - \sum_{i} c_{i}X_{j}) \perp \mathcal{U}.$

Moreover, for any matrix X such that $X \in \mathcal{U}$ and $(Y - X) \perp \mathcal{U}$, we find that $(X - \sum_i c_i X_i) \in \mathcal{U}$ and hence

$$(X - \sum_{j} c_j X_j) \cdot (X - \sum_{j} c_j X_j) = (Y - \sum_{j} c_j X_j) \cdot (X - \sum_{j} c_j X_j)$$
$$-(Y - X) \cdot (X - \sum_{j} c_j X_j)$$
$$= 0 - 0 = 0,$$

so that $(X - \sum_i c_i X_i) = 0$ or equivalently $X = \sum_i c_i X_i$.

Definitions and notations

00000000

We conclude that there exists a unique matrix Z in \mathcal{U} such that $(Y-Z) \perp \mathcal{U}$, namely, $Z = \sum_i c_i X_i$. To complete the proof, observe that, if Y = Z, then obviously, $Y \in \mathcal{U}$, and conversely, if $Y \in \mathcal{U}$, then, since Y - Y is orthogonal to $\mathcal{U}, Y = Z$.

Definition 6

Suppose that $\mathcal U$ is a subspace of a linear space $\mathcal V$. Then, it follows from Theorem 5 that, corresponding to each matrix Y in $\mathcal V$, there exists a unique matrix Z in $\mathcal U$ such that Y-Z is orthogonal to $\mathcal U$. The matrix Z is called the *orthogonal projection* of Y on $\mathcal U$ or simply the *projection* of Y on $\mathcal U$.

Theorem 7

Let Y_1, \ldots, Y_p represent matrices in a linear space \mathcal{V} , let \mathcal{U} represent a subspace of \mathcal{V} , and let Z_1, \ldots, Z_p represent the projections of Y_1, \ldots, Y_p , respectively, on \mathcal{U} . Then, for any scalars k_1, \ldots, k_n , the projection of the linear combination $k_1 Y_1 + \cdots + k_p Y_p$ (on \mathcal{U}) is the corresponding linear combination $k_1Z_1 + \cdots + k_nZ_n$ of Z_1, \ldots, Z_n .

Proof: By definition, $Z_i \in \mathcal{U}$ and $(Y_i - Z_i) \perp \mathcal{U}$ (i = 1, ..., p). Thus, $(k_1Z_1 + \cdots + k_pZ_p) \in \mathcal{U}$. Moreover, for every matrix X in \mathcal{U} ,

$$[k_1Y_1 + \dots + k_pY_p - (k_1Z_1 + \dots + k_pZ_p)] \cdot X$$

$$= [k_1(Y_1 - Z_1) + \dots + k_p(Y_p - Z_p)] \cdot X$$

$$= k_1[(Y_1 - Z_1) \cdot X] + \dots + k_p[(Y_p - Z_p) \cdot X]$$

$$= k_10 + \dots + k_p0 = 0.$$

Proof: So that $[k_1Y_1 + \cdots + k_pY_p - (k_1Z_1 + \cdots + k_pZ_p)] \perp \mathcal{U}$. We conclude that $k_1Z_1 + \cdots + k_pZ_p$ is the projection of $k_1 Y_1 + \cdots + k_p Y_p$ on \mathcal{U} .

Theorem 8

Let z represent the projection (with respect to the usual inner product) of an n-dimensional column vector \mathbf{v} on a subspace \mathcal{U} of \mathbb{R}^n , and let X represent any $n \times p$ matrix whose columns span \mathcal{U} . Then.

$$z = Xb^*$$

for any solution b* to the linear system

$$X'Xb = X'y$$
 (in b).

Proof: Suppose that b^* is a solution to the linear system X'Xb = X'y. Then $X'(y - Xb^*) = 0$, implying that $y - Xb^*$ is orthogonal to $\mathcal{C}(X)$ and hence [since $\mathcal{C}(X) = \mathcal{U}$] to \mathcal{U} . Since $Xb^* \in \mathcal{U}$, we conclude that Xb^* is the projection of y on \mathcal{U} and hence, by definition, that $z = Xb^*$.

Corollary 9

Let z represent the projection (with respect to the usual inner product) of an n-dimensional column vector \mathbf{y} on a subspace \mathcal{U} of \mathbb{R}^n , and let X represent any $n \times p$ matrix whose columns span \mathcal{U} . Then.

$$z = X(X'X)^{-}X'y.$$

Corollary 10

Let y represent an n-dimensional column vector, X an $n \times p$ matrix, and W any $n \times q$ matrix such that C(W) = C(X). Then,

$$Wa^* = Xb^*$$

for any solution \mathbf{a}^* to the linear system $W'W\mathbf{a} = W'y$ (in \mathbf{a}) and any solution b^* to the linear system X'Xb = X'y (in b).

Projection **Projection**

Corollary 11

Let y represent an n-dimensional column vector, and X an $n \times p$ matrix. Then, $Xb_1 = Xb_2$ for any two solutions b_1 and b_2 to the linear system X'Xb = X'y (in b).

Projection Projection

The following theorem gives a converse of Theorem 8.

Theorem 12

Let z represent the projection (with respect to the usual inner product) of an n-dimensional column vector \mathbf{y} on a subspace \mathcal{U} of \mathbb{R}^n , and let X represent any $n \times p$ matrix whose columns span \mathcal{U} . Then any $p \times 1$ vector b^* such that $z = Xb^*$ is a solution to the linear system X'Xb = Xy (in b).

Proof: In light of Theorem 8, X'Xb = X'y has a solution, say a, and z = Xa. Thus,

$$X'Xb^* = X'z = X'Xa = X'y.$$
 (2)

Let us find the projection (with respect to the usual inner product) of an *n*-dimensional column vector y on a subspace \mathcal{U} of \mathbb{R}^n in the special case where n=2, y=(4,8)', and $\mathcal{U}=\operatorname{sp}\{x\}$, where x = (3, 1)'.

Upon taking X to be the 2×1 matrix whose only column is x, the linear system X'Xb = X'y becomes (10)b = (20), which has the unique solution $\mathbf{b} = (2)$.

Thus, the projection of y on \mathcal{U} is

$$z = \begin{pmatrix} 3 \\ 1 \end{pmatrix} (2) = \begin{pmatrix} 6 \\ 2 \end{pmatrix}.$$

Example

FIGURE 12.1. The projection z of a two-dimensional column vector y on a one-dimensional subspace \mathcal{U} of \mathcal{R}^2 .

Let us find the projection of an n-dimensional column vector y on a subspace \mathcal{U} of \mathbb{R}^n in the special case where n=3, $\mathbf{v} = (3, -38/5, 74/5)'$ and $\mathcal{U} = \text{sp}\{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$, where

$$\mathbf{x}_1 = \begin{pmatrix} 0 \\ 3 \\ 6 \end{pmatrix}, \ \mathbf{x}_2 = \begin{pmatrix} -2 \\ 2 \\ 4 \end{pmatrix}, \ \mathbf{x}_3 = \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}.$$

Clearly, x_1 and x_2 are linearly independent, and $x_3 = x_2 - (1/3)x_3$. Thus $dim(\mathcal{U}) = 2$.

Example

Upon taking X to be 3×3 matrix whose columns are x_1 , x_2 , and x_3 , respectively, the normal equations X'Xb = X'y become

$$\begin{pmatrix} 54 & 30 & 15 \\ 30 & 24 & 14 \\ 15 & 14 & 9 \end{pmatrix} \mathbf{b} = \begin{pmatrix} 66 \\ 38 \\ 16 \end{pmatrix}.$$

Example

One solution to these equations is the vector (32/15, -1/2, -1)'. Thus, the projection of y on \mathcal{U} is

$$z = \begin{pmatrix} 0 & -2 & -2 \\ 3 & 2 & 1 \\ 6 & 4 & 2 \end{pmatrix} \begin{pmatrix} 32/15 \\ -1/2 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 22/5 \\ 44/5 \end{pmatrix}.$$

FIGURE 12.2. The projection z of a three-dimensional column vector y on a two-dimensional subspace \mathcal{U} of \mathbb{R}^3 .

Theorem 13

Let \mathcal{U} represent any subspace of the linear space \mathbb{R}^n of all n-dimensional column vectors. Then, there exists a unique matrix A of dimension $n \times n$ such that Ay is the projection of y on \mathcal{U} for every column vector y in \mathbb{R}^n . Moreover, $A = P_X = X(X'X)^{-}X$ for any matrix X such that $C(X) = \mathcal{U}$.

Proof: Let X represent any matrix such that $\mathcal{C}(X) = \mathcal{U}$. Then it follows from Corollary 9 that for every $\mathbf{y} \in \mathbb{R}^n$, $P_X\mathbf{y}$ is the projection of \mathbf{y} on \mathcal{U} . Moreover, if a matrix A is such that $A\mathbf{y}$ is the projection then by Theorem 8 $A\mathbf{y} = P_X\mathbf{y}$ for every \mathbf{y} , implying that $A = P_X$. We conclude that there exists a unique matrix A such that $A\mathbf{y}$ is the projection of \mathbf{y} on \mathcal{U} for every $\mathbf{y} \in \mathbb{R}^n$ and that $A = P_X$.

Corollary 14

Let A represents the projection matrix for a subspace \mathcal{U} of a linear space \mathbb{R}^n of all n-dimensional column vectors. Then, $A = P_X$ for any matrix X such that $C(X) = \mathcal{U}$.

Corollary 15

A matrix A is a projection matrix if and only if $A = P_X$ for some matrix X.

Theorem 16

Let X represent any $n \times p$ matrix. Then,

- (1) $P_XX = X$, that is, $X(X'X)^-X'X = X$, that is, $(X'X)^-X'$ is a generalized inverse of X;
- (2) $P_X = XB^*$ for any solution B^* to the (consistent) linear system X'XB = X' (in B);
- (3) $P'_{X} = P_{X}$;

Theorem 16

Let X represent any $n \times p$ matrix. Then,

- (4) $X[(X'X)^-]'X'X = X$; that is, $[(X'X)^-]'X'$ is a generalized inverse of X;
- (5) $X'P_X = X'P'_X = X'$; that is, $X'X(X'X)^-X' = X'X[(X'X)^-]'X' = X'$; that is $X(X'X)^-$ and $X[(X'X)^-]'$ are generalized inverses of X'.
- (6) $P_X^2 = P_X$, that is P_X is idempotent;

Projection Matrix

Theorem 16

Let X represent any $n \times p$ matrix. Then,

(7)
$$C(P_X) = C(X)$$
 and $R(P_X) = R(X')$;

- (8) $rank(P_X) = rank(X)$;
- (9) $rank(I P_X) = n rank(X)$.

Proof:

(1) By definition nof generalized inverse we have

$$X'X(X'X)^{-}X'X = X'X.$$

Projection matrices 00000

Now consider

$$(X(X'X)^{-}X'X - X)'(X(X'X)^{-}X'X - X)$$
= $((X'X)^{-}X'X - I)'(X'X(X'X)^{-}X'X - X'X)$
= $0.$

This proves the claim.

Projection matrices

Proof:

(2) In order to prove this result we need the following result:

Theorem 17

A matrix X^* is a solution to a consistent linear system AX = B (in X) if and only if

$$X^* = A^-B + (I - A^-A)Y$$

for some matrix Y.

Proof:

(2) If B^* is a solution to the linear system X'XB = X' then by Theorem ??.

$$B^* = (X'X)^-X' + [I - (X'X)^-X'X]Y$$

Projection matrices 00000

for some matrix Y. Now from Part (1) we get

$$XB^* = P_X + (X - P_XX)Y = P_X.$$

Proof:

(3) First we shall show that $[(X'X)^{-}]'$ is a g-inverse of X'X. Observe that

$$X'X[(X'X)^{-}]'X'X = [X'X(X'X)^{-}X'X]'$$
$$= [X'X]'$$
$$= X'X.$$

Now, since $[(X'X)^{-}]'$ is g-inverse of X'X, therefore $[(X'X)^{-}]'X'$ is a solution to the linear system X'XB = X'. Thus applying Part (2) we find that

$$X(X'X)^{-}X' = P_X = X[(X'X)^{-}]'X'$$

Proof:

(4) It follows from Parts (1) and (3) that

$$X[(X'X)^{-}]'X'X = P'_{X} = P_{X} = X$$

Projection matrices 00000

Proof:

(5) Making use of Parts (3) and (1) we get

$$X'P_X = X'P_X' = [P_XX]' = X'.$$

00000

Proof:

(6) Making use of Part (1), we find that

$$P_X^2 = P_X X(X'X)^- X' = X(X'X)^- X' = P_X.$$

Projection matrices 00000

Proof:

(7) To prove this result we need the following Theorem:

Theorem 17

For any $m \times n$ matrix A and $n \times p$ matrix F, $\mathcal{C}(AF) \subset \mathcal{C}(A)$. Similarly, for any $m \times n$ matrix A and $q \times m$ matrix L, $\mathcal{R}(LA) \subset \mathcal{R}(A)$.

In light of above Theorem and by definition of P_X we have $\mathcal{C}(P_X) \subset \mathcal{C}(X)$. From Part (1), we have $\mathcal{C}(X) \subset \mathcal{C}(P_X)$. Thus, $\mathcal{C}(P_X) = \mathcal{C}(X)$. Next, note that $\mathcal{C}(P_X) = \mathcal{C}(X)$ if and only if $\mathcal{R}(P_X') = \mathcal{R}(X')$. Thus, $\mathcal{R}(P_X) = \mathcal{R}(X')$.

Proof:

(8) Directly follows from Part (7).

Projection matrices

Proof:

(9) To prove this result, following Theorem is needed:

Theorem 17

For any square matrix A such that $A^2 = kA$ for some scalar k, trace(A) = krank(A).

Now,

$$rank(I - P_X) = trace(I - P_X) = n - trace(P_X)$$

= $n - rank(P_X)$.

Least Squares

Theorem 18

Let Y represent a matrix in a linear space V, and let U represent a subspace of V. Then, for $W \in \mathcal{U}$, the distance ||Y - W|| between Y and W is minimized uniquely by taking W to be the projection Z of Y on 11 Moreover

$$||\mathbf{Y} - \mathbf{Z}||^2 = \mathbf{Y} \cdot (\mathbf{Y} - \mathbf{Z}).$$

Least Squares

Proof: For any matrix W in \mathcal{U} ,

$$||Y - W||^2 = ||(Y - Z) - (W - Z)||^2$$

= $(Y - Z) \cdot (Y - Z) - 2(Y - Z) \cdot (W - Z)$
+ $(W - Z) \cdot (W - Z)$.

Least Squares

Further, W – Z is in \mathcal{U} and, by definition, Y – Z is Proof: orthogonal to every matrix in \mathcal{U} . Thus, $(Y - Z) \cdot (W - Z) = 0$, and hence

$$||Y - W||^2 = (Y - Z) \cdot (Y - Z) + (W - Z) \cdot (W - Z)$$

= $||Y - Z||^2 + ||W - Z||^2$
\geq ||Y - Z||^2,

with equality holding if and only if W = Z. It follows that, for $W \in \mathcal{U}$, $||Y - W||^2$ and, consequently, ||Y - W|| are minimized uniquely by taking W = Z.

That $||Y - Z||^2 = Y \cdot (Y - Z)$ is clear upon observing Proof: that $Z \in \mathcal{U}$ and hence that $Z \cdot (Y - Z) = 0$.