

# Adatbázisok analitikus környezetben

Adatbázisok elmélete 4. előadás Gajdos Sándor

### **Tartalom**

- Döntéstámogatás általában
- OSS vs. DSS
- Multidimenziós modellezés
- Hozzáférési módok, BI eszközök
- Lekérdezés optimalizálás dim. struktúrákon
- Adattárház architektúrák
- Megvalósítási módszertanok
- Tervezési kérdések
- Implementációs kérdések
- Dimenziós modellezési gyakorlat

# Döntéstámogatás

### Jelentősége...

- Kommunikáció-orientált
- Adat-orientált
- Dokumentáció-orientált
- Tudás-orientált
- Modell-orientált

# Döntéstámogatás II.

- Kommunikáció-orientált
  - Kommunikáció, együttműködés, megosztott döntéstámogatás
  - Hirdetőtábla, lev. lista
  - Telefon(konferencia), doku megosztás
- Adat-orientált
  - (sok, idősoros) adathoz való hozzáférés
  - EIS/VIR, GIS, DW, OLAP,

# Döntéstámogatás III.

- Dokumentáció-orientált
  - Strukturálatlan dokuk garmadája (audio, video is)
  - "Information retrieval"
  - AI/MI
  - Fuzzy módszerek,...
- Tudás-orientált ("szakértő rendszerek", intelligens DSS)
  - Szűk szakterület tudásanyaga
  - Spec. probléma megoldásának képessége

# Döntéstámogatás IV.

- Modell-orientált ("computation-oriented DSS")
  - matematikai/formális modellezés alkalmazása
  - Tip: statisztikai, pénzügyi, optimalizálási, szimulációs
  - What if?
  - Általában nem adat-intenzív
- Döntéstámogatás a gyakorlatban: ©

### Adat-orientált DSS története

- 60-as évek: batch riportok, nyomtatva,
- 70-es évek: terminál alapú (nehézkes lekérdezések, gyenge UI, gyenge forrásintegráció)
- 80-as évek: PC alapú hozzáférés, GUI, inkonzisztens adatok, kevés adat,
- 90-es évek: adattárházak (korábbi problémák megoldása, desktop OLAP, trendanalízis)
- 95-től: webes elérhetőség
- 2000- valós idejű
- 2010- mobil

# Lekérdezések támogatása I.

- Támogass "mindent"
  - Hardver támogatással
    - Brute force, MPP,...
- Támogass kiválasztott lekérdezéseket
  - NoSQL/Big Data technológiák (ld. később)
  - Hagyományos technológia, dimenziós adatstruktúrák (most)



# Lekérdezések támogatása I.

Hogyan????

# Lekérdezések támogatása III.

- Multidimenziós logikai adatstruktúra
  - Tényadatok: a dim/csillagstruktúra közepe.
     Numerikus, folyamatos értékkészlet, kevés attribútum, sok rekord
  - Dimenziós adatok: a dim/csillagstruktúra "ágai".
     Amik mentén a tényadatokat jellemezzük vagy változásait figyelemmel kísérjük. Sok, leíró jellegű attribútum.

# Lekérdezések támogatása IV.

### Teljes modell

- A ténytáblák csak dimenziókat, a dimenziók csak tényeket kapcsolnak össze
- Adattárház busz
- Konform dimenziók
  - Definíciója
  - Jelentősége
- Implementációs lehetőségek
  - Relációs
  - Natív multidimenziós
  - **–** 00,...

# Lekérdezések támogatása V.

- Aggregátumok
  - Előre kiszámított, majd eltárolt lekérdezés eredmény
  - Tip: tényadatok összegzése a dimenziók hierarchiái mentén
  - "Teljesítmény" kézben tartásának fontos eszköze
  - Aggregátumok lehetséges száma
  - Használati jellegzetességek

# Lekérdezések támogatása VI.

### Végfelhasználói hozzáférési módok

- Riportok
  - Konzerv
  - Paraméterezett
- OLAP (ROLAP, MOLAP, HOLAP)
  - Drill down, rolling up, drill across
- Ad-hoc lekérdezések
  - Aggregátumnavigáció
- Adatbányászat

### Lekérdezések támogatása VII. - optimalizálás

- Heurisztikus, szabály alapú optimalizálás
- Költség alapú optimalizálás
  - Katalógus költségbecslés
  - Operációk, műveletek áttekintése
  - Kifejezés-kiértékelés
  - Az optimális végrehajtási terv kiválasztása
- Lekérdezés optimalizálás csillagsémákon



### Optimalizálás - áttekintés



BME-TMIT 15/42

### Lekérdezés optimalizálás csillagsémákon

- Lényegében egy illesztés a ténytábla és a dimenziós táblák között
- Dimenziós táblákat sohasem join-olunk
- "Snowflake" séma: gyenge browsing teljesítmény, relációk növekvő száma



# Csillagséma optimális lekérdezése (feltételei, Oracle)

- Egyattribútumos bitmap index definiálása a tény valamennyi idegen kulcsára
- inicializáló paraméter beállítása (engedélyezés)
- költségalapú optimalizáló használata

# Csillagtranszformáció

Transzparens a felhasználónak

#### Elve:

- 1. Dimenziós ID-k meghatározása
- 2. pontosan a szükséges tényrekordok kiolvasása bitmap segítségével
- 3. dimenziós rekordok illesztése a tényrekordokhoz.

### Csillagtranszformáció példa

```
SELECT ch.channel class, c.cust city, t.calendar quarter des
FROM sales s, times t, customers c, channels ch
WHERE s.time id = t.time id
AND s.cust id = c.cust id
AND s.channel id = ch.channel id
AND c.cust_state province = 'CA'
AND ch.channel desc IN ('Internet', 'Catalog')
AND t.calendar quarter desc IN ('2016-Q1', '2016-Q2')
SELECT ch.channel class, c.cust city, t.calendar quarter desc FROM
sales WHERE
time id IN
  (SELECT time id FROM times WHERE calendar quarter desc
       IN('2016-01','2016-02'))
AND cust id IN
  (SELECT cust id FROM customers WHERE cust state province='CA')
AND channel id IN
  (SELECT channel id FROM channels WHERE channel desc IN
        ('Internet', 'Catalog'));
```

### Működése

- a dimenziók általában kevés rekordot tartalmaznak
- dimenziók lekérdezése a dimenziós ID-kra
- time\_id bitmap azonosítja a 2016. első negyedévi tényrekordokat
- time\_id bitmap azonosítja a 2016. második negyedévi tényrekordokat
- hasonló bitmap-ek azonosítják a megfelelő customer-hez és channel-hez tartozó tényrekordokat
- a bitmap-eket kombináljuk logikai műveletekkel
- tényrekordok elővétele a diszkről
- dimenziós rekordok join-ja a tényrekordokhoz (módja hagyományos optimalizálás során dől el)

# Mikor jó?

- Ha a where predikátuma kellően szelektív a tényrekordokra
- Ha sok tényrekord érintett az eredmény előállításában, akkor full table scan jobb lehet...

# Inmon adattárház definíciója

#### **Data Warehouse Definition**

A Data Warehouse is a subject-oriented, integrated, time-variant, nonvolatile collection of data in support of management decisions.

- Subject-oriented: data that has some commonality from a business perspective, not silos of data based on how they are arranged from a systems perspective.
- Integrated: Provide consistent coding and formats.
- Time-variant: Data is organized by time and is stored in any number of ways to support historical reporting.
- Nonvolatile: No updates are allowed. Only load (append) and retrieval (query) operations is allowed.

Inmon, W. H., Building the Data Warehouse



# Üzleti intelligencia (BI)

### Definíció (EPICOR, 2005):

"The art of science of knowing what the heck is going on with your business as it is happening, having the **facts** to **understand** it and **support** it, and having the ability to **quickly do something** about it."

### Dimenziós modellezés

### Dimenziós modellezés előnyei:

- lekérdezése könnyen optimalizálható
- a modell bővítése egyszerű, nem kell átstrukturálni az adatbázist, ha bővül a modell
- laikusok által is könnyen lekérdezhető

# Négylépéses dimenziós modellezés

- 1. Üzleti folyamat azonosítása
- Tényadat granularitásának megválasztása (üzleti szinten)
- 3. Dimenziók (és attribútumaik) azonosítása
- 4. Tény attribútumok azonosítása

# 1. Üzleti folyamat izolálása

#### Példák:

- szolgáltatás használata,
- hitelek igénylése és felvétele,
- bevételek alakulása,
- kinnlevőségek,
- rendelések
- személyzeti ügyek
- számlázás
- javítások és reklamációk, stb.



# 2. Tényadat granularitásának megválasztása

- milyen részletes adatok tárolását támogatjuk
- túl részletes: sok adat, nagy diszkigény, nagy CPU igény
- nem elég részletes: elemzéseket akadályozhat meg
- LE KELL ÍRNI A TÉNYREKORD PONTOS JELENTÉSÉT

### 3. Dimenziók azonosítása

- Mi alapján akarjuk rendezni, lekérdezni, csoportosítani a tényadatokat?
- Sok és részletes dimenzió változatosabb analízisek
- Dimenziók azonosítása szigorúan az adatok használata (ld. üzleti igények) alapján
- Dimenzió lesz minden, ami...
- Inkább szöveges attribútumok, de lehet numerikus is

# 4. Tények azonosítása

- A használandó mennyiségek konkrét meghatározása (pl. eladási ár Ft-ban, darabszám, átlagos kisker. ár, ...)
- Általában folytonos értékkészletűek és numerikusak.

### Dimenziós tervezési elvek

- A pontosan ismerni és érteni az adatokat
- Dimenziós táblák: leíró attribútumuk, akár 50 is, a rekordok hossza kevéssé kritikus.
- Ténytáblák: a rekordok legyenek rövidek
- Konform dimenziókban gondolkodunk
- Minden dimenziónak legyen surrogate (anonym, kiegészítő, jelentés nélküli, mesterséges) kulcsa.

### Surrogate kulcs

### Előnyei:

- méretcsökkentés a ténytáblában
- forrásrendszeri kulcs változásaitól függetlenek leszünk
- az entitások időbeli változásait is le tudjuk így írni

### Hátránya:

 újra kell kulcsolni a tény és dimenziós rekordokat (jelentős betöltési többletteher)

### Dimenziós tábla tervezés

- A felesleges dimenziók teljesítményveszteséget eredményeznek.
- A dimenziós adatok nem feltétlenül nyerhetők ki valamely forrásrendszerből.
- Az idő, termék, hely, ügyfél a leggyakoribb dimenziók



# Idő dimenzió

| ☐ IDOSZAKOK_DIMENZIO       |           |           |
|----------------------------|-----------|-----------|
| IDOSZAK_ID                 | <pk></pk> | NUMBER(4) |
| NAPTARI_DATUM              |           | DATE      |
| NAP_MEGNEVEZESE            |           | CHAR(10)  |
| NAP_MEGNEVEZESE_ANGOL      |           | CHAR(9)   |
| NAP_ROVID_BETUJELE         |           | CHAR(3)   |
| NAP_ROVID_BETUJELE_ANGOL   |           | CHAR(3)   |
| HET_HANYADIK_NAPJA         |           | NUMBER(1) |
| HONAP_HANYADIK_NAPJA       |           | NUMBER(2) |
| EV_HANYADIK_NAPJA          |           | NUMBER(3) |
| PENZUGYI_NEGYEDEV_NAPJA    |           | NUMBER(3) |
| HONAP_HANYADIK_HETE        |           | NUMBER(2) |
| EV_HANYADIK_HETE           |           | NUMBER(2) |
| HONAP_ROVIDITESE           |           | CHAR(5)   |
| HONAP_ROVIDITESE_ANGOL     |           | CHAR(3)   |
| EV_HANYADIK_HONAPJA        |           | NUMBER(2) |
| NAPTARI_NEGYEDEV           |           | NUMBER(1) |
| NEGYEDEV_HONAPJA           |           | NUMBER(1) |
| NEGYEDEV_HETE              |           | NUMBER(2) |
| NEGYEDEV_NAPJA             |           | NUMBER(3) |
| PENZUGYI_NEGYEDEV          |           | NUMBER(1) |
| PENZUGYI_NEGYEDEV_HONAPJA  |           | NUMBER(1) |
| PENZUGYI_NEGYEDEV_HETE     |           | NUMBER(3) |
| HANYADIK_FELEV             |           | NUMBER(1) |
| HONAP_MEGNEVEZESE          |           | CHAR(10)  |
| HONAP_MEGNEVEZESE_ANGOL    |           | CHAR(9)   |
| EVSZAM                     |           | NUMBER(4) |
| ROVID_EVSZAM               |           | NUMBER(2) |
| PENZUGYI_EVSZAM            |           | NUMBER(4) |
| PENZUGYI_ROVID_EVSZAM      |           | NUMBER(2) |
| IDOSZAK_MEGNEVEZESE        |           | CHAR(40)  |
| IDOSZAK_MEGNEVEZESE_ANGOL  |           | CHAR(40)  |
| IDOSZAK_ROVID_NEVE         |           | CHAR(3)   |
| IDOSZAK_ROVID_NEVE_ANGOL   |           | CHAR(3)   |
| NAPOK_SZAMA_FIX_IDOPONTTOL |           | NUMBER(4) |
| KARACSONY_JELZO            |           | CHAR(1)   |
| HUSVET_JELZO               |           | CHAR(1)   |
| ALAPERTELMEZETT_IDOSZAK    |           | CHAR(1)   |
| NAPTIPUS BME-TMIT          |           | NUMBER(1) |
| NAPTIPUS_MEGNEVEZES        |           | CHAR(9)   |

# Ténytábla tervezés

Tényadatok a lehető legkisebb granularitásban (vö.: hiányzó "vásárlói kosár" analízis).

- Additív tényadatok
  - Hacsak lehetséges, összegezhetőnek kell választani.
- Nem additív tényadatok
  - Egyáltalán nem összegezhetők, egyetlen dimenzió mentén sem.
- Szemi-additív tényadatok
  - minden dimenzió szerint összegezhető, kivéve az időt. (általánosabban: bizonyos dimenziók szerint összegezhetők, mások szerint nem)



# Dimenziós tervezési minták I.

### Ténynélküli ténytáblák

- pl. diákok óralátogatási szokásai (idő, tárgy, terem, diák, tanár függvényében)
- (kampány) lefedettségi táblák
   Pl. az eladás ténye termék, bolt, idő,
   kampányjellemzők függvényében. Nem ad
   választ arra, hogy mit NEM adtak el abból,
   amiről a kampány szólt!
   Megoldás: egy másik ténytábla rekordja
   jelentse a kampányban való részvételt

tényrekord jelentése: van olyan...

Valójában klasszikus több-több kapcsolatok

### Dimenziós tervezési minták II.

### Állapot- és esemény-tények

- Esemény-tény: egyetlen időpont
- Állapot-tény: két időpont
  - Új tényrekord beszúrása egy másik lezárásával jár → alacsonyabb hatékonyság
  - valószínűbb információvesztés (ld. később)
- Általában egymásba átalakíthatók
  - Kik, mikor, hol, mit, stb. vásároltak
  - Kik azok a vásárlók, akiknek van ...
  - Melyek azok a termékek, amelyeket eladtak...
  - **—** ...
- A lekérdezések hatékonysága erősen különböző!

#### Dimenziós tervezési minták III.

#### Role-playing dimenziók

- pl. idő, cím,... többféle jelentést is hordozhat a tényadathoz kapcsolódóan
- egyetlen fizikai dimenzió, amely több idegen kulccsal kapcsolódik a tényrekordhoz

## Degenerált dimenziók

Számla, tételekkel. A tételek lesznek a tényadatok.

Mi legyen a számlaszámmal?

- Vannak olyan leíró (rövid, dimenziós jellegű) adatok, amelyeket a ténytáblában helyezünk el kapcsolódó dimenzió nélkül.
- Pl.: dokumentum egyedi azonosító száma
- A forrásrendszerben lehet könnyen azonosítani velük valamit
- Egyedi megfontolás. Normálisak, várhatók, hasznosak

#### Junk dimenziók

- Flag-ek és szöveges leírók nem mindig szervezhetők értelmes dimenziókba
- Ténytáblában nem célszerű elhelyezni
- Egy vagy néhány jelentés nélküli dimenziót alkothatnak.



# Ha a dimenzió is változik idővel... ("slowly changing dimensions", SCD)

- Pl. az ügyfél elköltözik, címe megváltozik
- 1. régi rekord felülírása
- 2. "old" mező képzése a dim. táblában
- új rekord a dim. táblában a surrogate kulcs új értékével

#### 1. felülírás

Pl.: az ügyfelek címei változhatnak, ha elköltözik.

| Ügyfél ID | Ügyfél neve | Ügyfél címe         |  |  |
|-----------|-------------|---------------------|--|--|
| 123       | Gipsz Jakab | Budapest, Tó u. 15. |  |  |
|           | •           | •                   |  |  |

#### 1. felülírás

| Ügyfél ID | Ügyfél neve | Ügyfél címe        |  |  |
|-----------|-------------|--------------------|--|--|
| 123       | Gipsz Jakab | Debrecen, Fő u. 3. |  |  |

Egyszerű, de nincs history.

#### 2. "old" mező létrehozása

| Ügyfél ID | Ügyfél neve | Ügyfél címe         |  |  |
|-----------|-------------|---------------------|--|--|
| 123       | Gipsz Jakab | Budapest, Tó u. 15. |  |  |
|           | •           | *                   |  |  |

2. A jelenlegi és az előző állapot jellemzésével

| Ügyfél ID | Ügyfél neve | Ügyfél előző címe   | Ügyfél jelenlegi<br>címe |  |
|-----------|-------------|---------------------|--------------------------|--|
| 123       | Gipsz Jakab | Budapest, Tó u. 15. | Debrecen, Fő u. 3.       |  |

egyszerű, de korlátozottak a lehetőségei.

# 3. Új dim. rekord készítése

| Ügyfél ID | Ügyfél neve | Ügyfél címe         |  |  |
|-----------|-------------|---------------------|--|--|
| 123       | Gipsz Jakab | Budapest, Tó u. 15. |  |  |
|           |             |                     |  |  |

#### 3. új dimenziós rekord minden változáshoz

| Ügyfél ID | fél ID Ügyfél neve Ügyfél címe |                     | Tól             | Ig              |  |
|-----------|--------------------------------|---------------------|-----------------|-----------------|--|
| 123       | Gipsz Jakab                    | Budapest, Tó u. 15. | 1989. júl. 15.  | 2005. szept. 6. |  |
| 123       | Gipsz Jakab                    | Debrecen, Fő u. 3.  | 2005. szept. 7. | ???????         |  |

particionálja a history-t, nehézkesebb a lekérdezés

#### Gyakorlat: Reklámkampány analízis

- 1. Mi a korreláció bizonyos oksági tényezők (engedmények, kiállítás módja, kuponok) és a pezsgősvödrök eladása között (darabban és Forintban) szupermarketenként, termékenként és 4 hetes eladási periódusonként?
- 2. Változik-e a pezsgősvödrök árérzékenysége üzletenként? Szükség van továbbá az alábbi standard riportokra:
- Piaci részesedés termékkategóriákként, szupermarketenként és időszakonként
- A legjobban fogyó márkák szupermarketenként és időszakonként Az adatforrások:
- a szupermarketek eladási adatai 4 hetes összesítésekben termékkódokként és szupermarketenként
- az így kapott file tartalmaz információt az alkalmazott kedvezményekről, a kiállítás módjáról, a kuponokról, az eladott darabszámról, az eladási árról, az átlagos kiskereskedelmi árról és a kereskedelmi hierarchiáról.

#### Attribútumlista:

Kedvezmények, átlagos kiskereskedelmi ár, márka, kategória, kuponok, szín, kiállítás módja, eladási ár, íz, üzlet, csomagolás, költség, év, évszak, termékkód, darabszám, hét, cím (üzlet), dátum

#### FIZIKAI TERVEZÉS

- 1. ld. fizikai adatbázis tervezésről eddig tanultak
- 2. összegzések tervezése

# Összegzések tervezése

- DEF.: előre kiszámított speciális lekérdezés, amikor a ténytábla tényadatait összegezzük bizonyos feltételek mentén.
- Másképpen: a dimenziókban lévő hierarchiák
   "összenyomása" és a tényadatok ennek megfelelő
   összeadása. (Ezért fontos a tényadatok additivitása.)
- Legfontosabb eszköz a teljesítmény kézbentartására
- Akár 1000 összegzés is létezhet egyidejűleg!

# Összegzések tárolása

Új tényrekordokra van szükség, amelyhez új dimenziós táblák kellenek és új mesterséges kulcs.

Az új rekordok kétféleképpen tárolhatók:

- új ténytáblában
- új szintjelző mezők segítségével (kevésbé jellemző)

## Összegzés új ténytáblában

- Az összegzett tényrekordokat új táblában helyezzük el (Praktikusan a meglévő ténytáblából is képezhetjük a szerkezetét).
- Hasonlóképpen az új dimenziós táblákat is képezhetjük a meglévő dimenziósakból, a granularitás csökkentésével
- Példa:
  - eredeti tény: termékek megrendelése, dimenzió: termék
  - aggregátum tény: márkák megrendelése, dimenzió: márka
- A tényrekordokat összegeztük márkák szerint, új kulcsot definiáltunk a márka dimenzióhoz.

## Összegzések méretezése 1.

- Elv: legalább 10:1 mértékű rekordszámcsökkenés
- A választás szempontjai a (dimenzió) kompressziója és az együttes előfordulási gyakoriság (density).
- A kompresszió: ha egy márkához átlagosan (!) 50 termék tartozik, akkor a márkára definiált összegzés 50-szeres kompressziójú.
- Termék-bolt-nap előfordulási gyakorisága: ha egy boltban egy nap eladják a termékek 10%-át (átlagosan)
- Márka-bolt-nap előfordulási gyakorisága: ugyanakkor egy boltban egy nap eladják a márkáknak az 50%-át (átlagosan)

#### Összegzések méretezése 2.

- A várható rekordok száma az összegzés ténytáblájában = <sorok száma a dimenziókban> szorozva <előfordulási gyakoriság>
- Az együttes előfordulási gyakoriságok előre általában nem ismertek...
- Megoldás: becslések, ill. tapasztalati méretezés (ha elég jó, akkor meghagyjuk ☺)

# Összegzések méretezése 3.

|                        | Termék        | Üzlet   | ldőszak |        |       |         | Gyakori- | szám       | Összeg-<br>zés komp- |
|------------------------|---------------|---------|---------|--------|-------|---------|----------|------------|----------------------|
| way                    | dim.          | dim.    | dim.    | Termék | Üzlet | Időszak | ság      | (millio)   | resszió              |
| 0                      | SKU           | üzlet   | nap     | 10000  | 1000  | 90      | 0.1      | 90,000,000 |                      |
| 1                      | márka         | üzlet   | nap     | 2000   | 1000  | 90      | 0.5      | 90,000,000 | 1                    |
| 1                      | SKU           | kerület | nap     | 10000  | 100   | 90      | 0.5      | 45,000,000 | 2                    |
| 1                      | SKU           | üzlet   | hónap   | 10000  | 1000  | 3       | 0.5      | 15,000,000 | 6                    |
| 2                      | márka         | kerület | nap     | 2000   | 100   | 90      | 0.8      | 14,400,000 | 6                    |
| 2                      | márka         | üzlet   | hónap   | 2000   | 1000  | 3       | 0.8      | 4,800,000  | 19                   |
| 2                      | SKU           | kerület | hónap   | 10000  | 100   | 3       | 0.8      | 2,400,000  | 38                   |
| 3                      | márka         | kerület | hónap   | 2000   | 100   | 3       | 1        | 600,000    | 150                  |
| Dimenzió kompressziók: |               |         |         |        |       |         |          |            |                      |
| Termék-márka           |               | 5:1     |         |        |       |         |          |            |                      |
|                        | Üzlet-kerület |         | 10:1    |        |       |         |          |            |                      |
|                        | Nap-hónap     |         | 30:1    |        |       |         |          |            |                      |

## Összegzés navigáció

- Új réteg. Nyilvántartja a létező összegzéseket és meghatározza, hogy melyik a legalkalmasabb a felhasználói lekérdezés kiszolgálására.
- Teljesítőképesség és kényelmes használat
- Nagy a veszélye a túl sok összegzés definiálásának
- Nem mindegyik összegzés csökkenti jelentősen a sorok számát, ezeket futási időben kell kiszámolni.
- Számos adatbáziskezelőnek része (pl. Oracle 8i-től)