分类模型

授课教师: 吴翔

邮箱: wuhsiang@hust.edu.cn

March 18-25, 2019

- 1 统计学习概述
- 2 基本分类模型
- ③ 聚类模型
- 4 树模型
- 5 支持向量机

统计学习概述

统计学习方法

统计机器学习 (statistical machine learning) 可分为:

- 有监督学习 (supervised learning) vs 无监督学习 (unsupervised learning):
 聚类分析即为典型的无监督学习
- 参数方法 (parametric methods) vs 非参数方法 (non-parametric methods)
- 回归 (regression) 问题 vs 分类 (classification) 问题: 分别针对连续变量和分类变量

测试均方误差的分解

测试均方误差的期望值 (expected test MSE) 可以分解为如下三个部分:

$$E(y-\hat{f}(x))^2 = \underbrace{\mathrm{Var}(\hat{f}(x))}_{\text{variance}} + \underbrace{[\mathrm{Bias}(\hat{f}(x))]^2}_{\text{bias}} + \underbrace{\mathrm{Var}(\epsilon)}_{\text{irreducible}} \; .$$

- 模型方差 (variance): 针对不同的训练数据, \hat{f} 的变化程度。
- 模型偏误 (bias): 通过相对简化的模型来近似真实世界的问题时所引入的误差。

权衡模型偏误与方差

图 1: bias-variance trade-off

如何选择统计模型?

- 传统统计模型的局限:线性回归模型等统计模型通常最小化训练数据的均方误差, 但是其测试均方误差(test MSE)却较大。换言之,传统统计模型执着于寻求"真实规律",以致于将一些随机因素误判为 f 的真实性质。
- 权衡模型偏误与方差 (bias-variance trade-off): 随着模型灵活性 (或自由度) 的增加,模型方差随之增大,但模型偏误则相应减小 (过度拟合问题)。通过交叉验证 (cross-validation) 来实现两者的权衡。
- 权衡预测精度与可解释性 (accuracy-interpretability trade-off): 诸如 bagging、boosting、support vector machines 等非线性模型具有很高的预测 精度,但不易解释; linear models 等易于解释,但预测精度不高。两者的权衡取 决于研究目的。

交叉验证

交叉验证将原始数据集分为训练集 (training set) 和验证集 (validation set), 并以验证集的错误率选择最佳模型。

- 留一交叉验证法 (leave-one-out cross validation, LOOCV)
- k 折交叉验证法 (k—fold CV): 将观测集随机分为 k 个大小基本一致的组,或说 折 (fold)。每次选取其中一折作为验证集,而剩余 k-1 折作为训练集。通常,取 k=5 或 k=10。

分类模型验证集错误率:

$$\mathsf{CV}_{(k)} = \frac{1}{k} \sum_{i=1}^k \mathsf{Err}_k = \frac{1}{k} \sum_{i=1}^k \frac{1}{m_k} \sum_{i=1}^{m_k} I(y_i \neq \hat{y}_i).$$

分类模型概述

预测分类响应变量 (categorical response variable):

- 基本分类模型 (basic classifier)
- ② 树模型 (tree-based models)

Dradicted Class

分类模型的评价

FP

FN

TP

Confusion Matrix and ROC Curve

		No	Yes
Observed Class	No	TN	FP
	Yes	FN	TP
TN	True Negati	ive	

False Positive

False Negative

True Positive

Accuracy	= (TN+TP)/(TN+FP+FN+TP)

Model Performance

Precision = TP/(FP+TP)

Sensitivity = TP/(TP+FN)

Specificity = TN/(TN+FP)

图 2: confusion matrix

ROC 曲线

AUC

基本分类模型

基本分类模型 (basic classifier)

- ① 逻辑斯蒂回归 (logistic regression)
- ② 朴素贝叶斯分类器 (naive bayes classifier)
- 二次判别分析 (quadratic discriminant analysis, QDA)
- $oldsymbol{5}$ K 最近邻 (K-nearest neighbor, KNN)

logistic 回归

给定 X 条件下事件 Y 发生的概率 $p(X) = \Pr(Y=1|X)$,据此可以将发生比 (odd) 的对数建模为 X 的线性函数

$$\log[\frac{p(X)}{1 - p(X)}] = \beta X.$$

上式左侧称为对数发生比(\log -odd)或分对数(\log it),其取值范围在 $(-\infty,\infty)$ 。

当类别 $K \geq 2$ 时,则采用多类别 logistic 回归模型。

似然函数

可以通过**最大似然估计** (maximum likelihood estimation, MLE) 得到 logistic 回归的参数值。

参数记为 θ , 数据记为 D。似然函数 (likelihood function) 是参数 θ 的函数,且定义为给定参数 θ 时,观测到数据 D 的概率:

$$l(\theta) = p(D|\theta).$$

例如, logistic 回归模型的似然函数

$$l(\beta) = \prod_{i=1}^{n} p(X_i)^{y_i} [1 - p(X_i)]^{1 - y_i}.$$

贝叶斯定理

贝叶斯定理阐述了随机变量 X 和 Y 的条件概率之间的关系:

$$p(Y|X) = \frac{p(X,Y)}{p(X)} = \frac{p(Y) \cdot p(X|Y)}{p(X)}.$$

或从"数据-参数"的视角而言,参数 θ 的后验分布 $\pi(\theta)=p(\theta|D)$ 正比于参数的先验分布 $p(\theta)$ 和似然函数 $l(\theta)$ 之积:

$$\pi(\theta) = \frac{p(\theta)p(D|\theta)}{p(D)} = \frac{p(\theta)l(\theta)}{p(D)}.$$

课堂板书: 贝叶斯定理推导及概念解释

贝叶斯定理与分类

对于分类 (categorical) 响应变量 Y 而言,运用贝叶斯定理:

$$p(Y=k|X=x) = \frac{p(Y=k) \cdot p(X=x|Y=k)}{p(X=x)}.$$

假定 X 是 m 维向量 (即特征数量), 简写为

$$p(C_k|X) = \frac{p(C_k) \cdot p(X|C_k)}{p(X)} \propto p(C_k) \prod_{i=1}^m p(X_i|C_k)$$

朴素贝叶斯分类器

朴素贝叶斯分类器 (naive bayesian classifier) 选择后验概率 $p(C_k|X)$ 最大的类别,作为分类结果,即 $\arg\max p(C_k|X)$ 。

LDA

线性判别分析 (linear discriminant analysis, LDA) 假定 $p(X=x|Y=k)\sim N(\mu_k,\Sigma)\text{. LDA} \text{ 即是条件概率 }p(X|Y)\text{ 为正态分布时的贝叶 斯分类器,其判别函数 }f(x)\text{ 为线性函数.}$

QDA

二次判别分析 (quadratic discriminant analysis, QDA) 假定 $p(X=x|Y=k)\sim N(\mu_k,\Sigma_k)\text{. QDA 即是条件概率 }p(X|Y)\text{ 为正态分布时的贝叶斯分类器,其判别函数 }f(x)\text{ 为二次函数.}$

LDA vs QDA

- 左图: 对于两个类别,均有 $\rho(X_1, X_2) = 0.7$
- 右图: 对于橙色类别, $ho(X_1,X_2)=0.7$; 对于蓝色类别, $ho(X_1,X_2)=-0.7$

LDA versus QDA

KNN

基本分类模型比较

分类效果比较

聚类模型

分类模型

聚类模型 (clustering models)

- ① K 均值聚类 (K—means clustering)
- ② 系统聚类 (hierarchical clustering)

K 均值聚类

树模型

树模型 (tree-based models)

- 决策树
- ② 装袋法 (bagging)
- ③ 随机森林 (random forest)
- 提升法 (boosting)

决策树

支持向量机

支持向量机