UNCLASSIFIED

AD NUMBER AD093276 CLASSIFICATION CHANGES

TO: unclassified

FROM: confidential

LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited

FROM:

Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; 02 APR 1956. Other requests shall be referred to National Aeronautics and Space Administration, Washington, DC.

AUTHORITY

NASA ltr dtd 16 May 1959; NASA TR Server website

CONFIDENTIAL DISTRIBUTION OF THE PROPERTY OF T

Armed Services Technical Information Agency

Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, 0 HIO

This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794.

THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.

Copy RM L55L13

RESEARCH MEMORANDUM

INVESTIGATION OF JET EFFECTS ON A FLAT SURFACE DOWNSTREAM

OF THE EXIT OF A SIMULATED TURBOJET NACELLE AT A

FREE-STREAM MACH NUMBER OF 1.39

By Walter E. Bressette and Abraham Leiss

Langley Aeronautical Laboratory
Langley Field, Va.

CLASSIFIED DOCUMENT

This material contains information affecting the National Defense of the United States within the meaning of the espionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

April 2, 1956

CONFIDENTIAL

APR 1 1 1956

CONFIDENTIAL

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

INVESTIGATION OF JET EFFECTS ON A FLAT SURFACE DOWNSTREAM

OF THE EXIT OF A SIMULATED TURBOJET NACELLE AT A

FREE-STREAM MACH NUMBER OF 1.39

By Walter E. Bressette and Abraham Leiss

SUMMARY

An investigation at a free-stream Mach number of 1.39 utilizing a blowdown-type tunnel was made to determine the effects of a propulsive jet on a zero angle-of-attack wing surface located in the vicinity of both a choked convergent nozzle and a convergent-divergent nozzle. Static-pressure surveys were made on a flat surface that was located in the vicinity of the propulsive jet. The nozzles were operated over a varied range of both exit static- and total-pressure ratios at different, fixed vertical distances from the flat surface.

Within the scope of this investigation, it was found that shock waves, formed in the external flow because of the presence of the jet exhaust, impinged on the flat surface and greatly altered the pressure distribution. An integration of this pressure distribution for the choked convergent nozzle, with the location of the propulsive-jet exit varied from 1.747 jet-exit diameters to 4.981 jet-exit diameters below the wing surface, resulted in a positive incremental normal force on the wing at all positions.

INTRODUCTION

It has been shown previously that a propulsive jet issuing from the rear of a nacelle into free-stream supersonic flow produced strong disturbances which were responsible for the formation of shock waves in the free stream downstream of the jet exit. Reference 1 shows that, at a free-stream Mach number of 2.02, when these shock waves in the external flow impinged upon an adjacent surface, a positive pressure rise was produced and resulted in an induced lift on the adjacent surface. The present report is a continuation, in a more detailed manner, of the investigation of reference 1 at a free-stream Mach number of 1.39.

CONFIDENTIAL

APR 1 1 1956

The investigation was conducted in the preflight jet of the Langley Pilotless Aircraft Research Station at Wallops Island, Va. A small-scale nacelle mounted beneath a flat plate was used to simulate a turbojet engine and wing combination. The nacelle was both vertically and horizontally adjustable with respect to the flat surface. The nacelle was operated with both hot and cold exhaust jets utilizing a convergent nozzle as well as a convergent-divergent nozzle.

The data presented were obtained over a range of jet total-pressure ratios from 2 to 15 at a free-stream Mach number of 1.39 and at angles of attack and sideslip of 0° . The Reynolds number per foot for the tests was approximately $10 \times 10^{\circ}$.

SYMBOLS

∆CN	incremental normal-force coefficient, (Normal force) $_n$ - (Normal force) $_f$
	$q_{\mathbf{o}}S_{\mathbf{j}}$
$\mathbf{c}_{\mathbf{T}}$	gross thrust coefficient, T/q_0S_j
D	diameter, in.
D_{B}	diameter of nacelle base, in.
H	total pressure, lb/sq in.
$H_{\mathbf{j}}/p_{0}$	nacelle-exit total-pressure ratio
M	Mach number
p	static pressure, lb/sq in.
p _j /p _o	nacelle-exit static-pressure ratio
P	pressure coefficient, $\frac{p_W - p_O}{q_O}$
q	dynamic pressure, $\gamma pM^2/2$, lb/sq in.
S	area, sq in.
T	gross thrust, $\gamma p_j M_j^2 S_j + p_j S_j - p_o S_j$, 1b

x	chordwise	distance	from	nacelle	exit	(downstream	is p	ositive),
	in.							

- y spanwise distance from nacelle center line, in.
- α secondary jet-on wave angle, deg
- specific-heat ratio, 1.40 for air, 1.67 for helium, and 1.27 for the hot test
- θ primary jet-on wave angle, deg
- angle of inclination of a straight line between nacelle exit and impingement point on wing of primary shock wave, deg

Subscripts:

- i nacelle exit
- j* sonic throat
- local conditions
- n propulsive jet on
- o free stream
- w wing

APPARATUS

The tests were made in the preflight jet facility of the Langley Pilotless Aircraft Research Station at Wallops Island, Va. (ref. 2). A Mach number 1.39, 27- by 27-inch nozzle was used for all the tests. A photograph of the nacelle mounted in the test position beneath the flat-surface wing at the exit of the 27- by 27-inch nozzle is shown as figure 1.

Nacelle,

A sketch of the nacelle with its principal dimensions is shown as figure 2. Also shown and tabulated in figure 2 are the different components of the nacelle used in the hot and cold tests.

The nacelle was designed to produce a hot propulsive jet (burning of hydrogen and air) or a cold propulsive jet. In the hot tests, metering flow nozzles were used to determine the fuel and air rates and ignition was accomplished with a black-powder squib in combination with a magnesium burnout restriction mounted at the exit of the nacelle. Immediately after ignition, the restriction was burned and blown from the nacelle.

The body of the nacelle had a maximum diameter of 1.12 inches with an overall length of 11.65 inches. Two types of interchangeable nacelle-exit nozzles were used for the tests, a convergent nozzle providing a sonic exit and a convergent-divergent nozzle providing a supersonic exit. The physical dimensions of both nozzles are given in figure 2.

The nacelle was mounted on a hollow strut which served as a housing for the fuel, air, and pressure tubes as well as a support for the nacelle. The leading edge of the strut was swept back at a 25° angle, while the trailing edge was swept back at a 40° angle and the strut had a hexagonal cross section as shown in figure 2.

Wing

The wing used in the tests consisted of a 1-inch maximum thickness built-up steel section that completely spanned the exit of the preflight-jet nozzle as shown in figure 1. The wing had welded supports that were bolted to the exit of the preflight-jet nozzle. The leading edge of the wing was 2.5 inches inside the nozzle as shown in figure 3, and approximately one-half of the total vertical distance up from the lower nozzle plate. The wing had a flat under surface and was of rectangular plan form with a 16.5-inch chord and an 8° bevel on the upper surfaces of the leading edge.

Figure 3 also shows the location of the nacelle with respect to the wing and preflight-jet-nozzle exit for all the positions tested.

INSTRUMENTATION

The internal static pressure of the nacelle was measured for all tests through a 0.03-inch-diameter orifice shown in figure 2. Also shown in figure 2 is the manifolded total-pressure tube used in recording the internal total pressure of the nacelle for all cold tests. A #150-pound maximum thrust-drag balance was used to measure both the total drag (nacelle jet off) and the net thrust (nacelle jet on).

C.

The static pressure on the wing was measured through 47 staticpressure orifices 0.06 inch in diameter. The position of each of these orifices with respect to the nacelle exit is shown in figure 4.

Tunnel pressures measured were the free-stream total pressure in the section upstream of the 27- by 27-inch nozzle, and the stream static pressure on the wall 1/2 inch upstream from the nozzle exit. All pressures were recorded by electrical pressure recorders of the strain-gage type. A 10-cps timer correlated all time histories on paper records. Shadowgraphs, which were photographed at an exposure of approximately 0.003 second, were obtained by using a carbon-arc light source and an opaque-glass screen.

TEST AND METHODS

The tests were made at a free-stream Mach number of 1.39 with a Reynolds number per foot of approximately 10×10^6 .

With the arrangement shown in figure 3, the complete test field was within the Mach wedge of the preflight-jet nozzle with the upper half of nozzle flow being diverted by the wing. For all tests, the nacelle-exit center line was located vertically below the center line of the wing. The only variation between individual tests was the vertical distance between wing and nacelle center line at position I and the horizontal distance between the nacelle exit and the wing trailing edge at positions I_b and II_b , as shown in figure 3. At all times the nacelle was at an angle of attack and sideslip of 0^o with respect to both the wing surface and the center line of the preflight jet.

A high-frequency strain-gage balance was used to measure both the total drag (nacelle jet off) and the net thrust (nacelle jet on). The gross thrust was then obtained by an algebraic summation of these measurements. From the gross thrust, the static pressure at the exit of the nacelle was calculated by using the one-dimensional-flow theory applied to the momentum equation as follows:

$$T = \gamma p_j M_j^2 S_j + p_j S_j - p_o S_j$$

Therefore

$$p_{\mathbf{j}} = \frac{\mathbf{T} + p_{0}S_{\mathbf{j}}}{S_{\mathbf{j}}(\gamma M_{\mathbf{j}}^{2} + 1)}$$

A nacelle static pressure was measured (fig. 2) for all test runs as well as a total pressure for all cold test runs, and the thrust determined from these measurements was used as a check on the strain-gage balance readings for the different nacelle positions tested.

The static pressure at the exit of the nacelle for the hot, the air, and the helium sonic propulsive jets is different for the same gross thrust because the values of γ are different for each of these gases. Since p_j varies with γ and H_j is not constant, a plot of the variation of p_j/p_o with H_j/p_o for all test runs is presented in figure 5. Figure 5 also indicates the ranges of pressure ratios covered in these tests. Although the nacelle could be operated with a hot propulsive jet, the short pressure-ratio range obtainable from the hot jet plus the excessive heating of the nacelle components in repeated tests was considered undesirable. Therefore, in order to expedite the investigation, a cold helium propulsive jet was used for most of the tests. A cold air propulsive jet was also tested for comparative purposes. Both helium and air propulsive jets were tested at position In (fig. 3) to determine which could more nearly duplicate the pressure distribution on the wing as obtained from the hot propulsive jet. From the results of these tests, as discussed later in the "jet-on" section of this paper, it was decided to use helium for most of the tests.

The incremental normal force due to the presence of the propulsive jet was determined from an integration of the measured pressures on the lower wing surface.

ACCURACY

By accounting for the instrument error of 1 percent of full-scale range, the probable error is believed to be within the following limits:

M_{O}		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•		•	±0.02
$\mathtt{P}_{\mathbf{f}}$	and	P,	ı	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	±0.02
H ₁ /	′р _о ;	and	i	24/	/p	2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		±0.05

All measured angles are believed to be accurate to ±1°. The magnitude of error in the force-balance measurements was ±1 percent for full-scale deflection. The estimated error of the air-flow and fuel-flow measurements was ±2 percent.

RESULTS AND DISCUSSION

Jet-Off Pressure Coefficients

The measured jet-off pressure coefficients $P_{\mathbf{f}}$ on the wing surface are tabulated in table I and are plotted in figure 6 as a function of distance from the nacelle exit x/D_j for four spanwise positions. value of Pr as obtained in these tests includes all the interference effects on the wing pertaining to this particular investigation. chordwise pressure distributions on the wing for positions In, Ic, and IIb along the nacelle center line (fig. 6(a)) in general are characterized first by the expansion to a low negative pressure region near the vicinity of the exit of the nacelle and second by a pressure rise to a positive pressure through the shock wave originating from the nacelle wake (fig. 7). As the nacelle is lowered from position Ia, the low pressure regions although moved farther to the rear on the wing are of the same magnitude. In turn, the pressure rise through the shock waves also takes place farther to the rear on the wing and the profiles are generally of the same shape, with the fall off in positive pressure increasing until a common pressure point is reached just forward of the wing trailing edge. This common point of pressure indicates an influence on the jet-off pressure from the flow over the upper surface of the wing similar to base pressure effect at supersonic speeds. Although the maximum positive pressure is of approximately the same value for each position along the nacelle center line (fig. 6(a)), there is a gradual reduction in this pressure at each position as the spanwise distance is increased. (Compare figs. 6(a), 6(b), 6(c), and 6(d).) A typical jetoff pressure field on the wing is presented in figure 8.

Jet-On Pressure Coefficients

Effect of jet properties.— Tabulated in table II (parts (a) to (g)), are the experimental jet—on pressure coefficient P_n obtained with a helium jet for individual orifice locations at all the test positions investigated as well as two other types of jets tested at position I_b . For reasons explained, in the test and methods section, it was considered necessary to use a simple cold propulsive jet for the majority of tests in this investigation. Therefore, both helium and air propulsive jets were tested at position I_b to determine which could more nearly duplicate the P_n distribution on the wing as obtained from the hot propulsive jet.

Presented in figure 9 are the shadowgraph pictures of the flow field about the nacelle exit for $H_{\rm j}/p_{\rm o}=7$ from the three types of sonic

propulsive jets at test position T_b . Clearly visible, downstream of the nacelle exit, in each of the three pictures presented in figure 9 are two shock waves that impinge upon the wing surface and then are reflected. The aerodynamics of the formation and existence of these shock waves is discussed in reference 3. In keeping with the nomenclature of this investigation, the first part of which has already been published in reference 1, the first and second shock waves downstream from the nacelle exit will be called the primary and secondary shock waves, respectively.

CONFIDENTIAL

Figure 10 presents the chordwise variation of P_n on the wing along the nacelle center line and at 1.40D_j spanwise from the nacelle center for the three types of sonic propulsive jets tested at $H_j/p_0 = 7$. The chordwise profiles of P_n for all the propulsive jets tested at $H_j/p_0 = 7$ differ in magnitude and position only in the immediate vicinity of the first and second P_n rises in both figures 10(a) and 10(b). The orifices located approximately one D_j behind the first and second P_n rise show essentially the same value of P_n . This indicates that the fall off in P_n behind the intersection of the shock waves on the wing takes place at a similar rate.

In reference 3 it is shown that both $p_{\mathbf{j}}/p_0$ and γ have an effect upon the initial inclination of the propulsive jet boundary and this boundary together with M_{2} distribution determines θ . In the case for the primary shock wave, the M1 distribution for the three propulsive jets tested should be the same because the geometry of the components used in the tests is the same. The combined effects of both $p_{\mathbf{j}}/p_{\mathbf{0}}$ and γ are visible in figure 10, but in order to separate the effects of these parameters a plot of the variation of P_n with H_j/P_o is presented in figure 11 for the orifices located at 2.43D; behind the nacelle exit for the three propulsive jets tested. The general trend of the curves in figure 11 shows the effect on Pn from the movement of the primary shock wave when $H_{\rm j}/p_{\rm o}$ is increased. When $H_{\rm j}/p_{\rm o}$ is increased at a constant value of γ (for $M_j = 1$) p_j/p_0 will also increase. is increased, θ will increase and the point of intersection with the wing will move toward the nacelle exit. The result of this forward movement of the impingement on the wing of the primary shock wave is shown in figure 11 by the rapid Pn rise at the stationary orifice position when the shock wave passes over. This Pn rise apparently begins at a lower value of H_{j}/p_{O} for the hot tests and is progressively delayed in the air test and helium test. Also shown in figures 11(a) and 11(b) is the progressive decrease in P_n at a constant value of H_j/p_o for

the hot jet, air jet, and helium jet. These significant differences in P_n with a variation or a constant value of H_j/p_0 for the three types of propulsive jets indicate that θ is progressively greater as the value of p_j/p_0 is increased and also as γ is decreased. This trend is also shown by theoretical calculations in reference 3.

In order to eliminate the effects on P_n due to the increase in $p_{\bf j}/p_o$ while decreasing γ ($p_{\bf j}/p_o$ increases proportionally with a decrease in γ when $M_{\bf j}$ = 1) a plot of the variation of P_n with $p_{\bf j}/p_o$ is presented in figure 12 for the orifices located at 2.43Dj behind the nacelle exit from the three propulsive jets tested. The smaller differences in P_n visible in figure 12 as compared with figure 11 indicates that a variation of $p_{\bf j}/p_o$ is the main reason for the variation of the primary shock location on the wing in these tests and that the effect of γ is of secondary order.

The general trend of the curves as presented in figure 13 shows the effect on Pn from the movement of the secondary shock wave when ${\rm H_{j}/p_{o}}$ is increased. As ${\rm H_{j}/p_{o}}$ is increased, the secondary shock wave, which is formed in the propulsive jet structure (ref. 3), moves downstream as shown in figure 13 by the rapid P_n drop at the stationary orifice position when the shock wave passes over. This Pn drop begins at a lower value of H_{j}/p_{O} for the air jet than for both the hot jet and the helium jet. As in the case of the primary shock wave, Mi as well H_{j}/p_{O} and γ will determine the intersection point on the wing of the secondary shock wave. However, unlike the conditions of equal M1 in front of the primary shock wave, the M1 distribution in front of the secondary shock wave will be influenced by the mixing of the propulsive jet and free stream at their interface. A plot of P_{n} against p_{j}/p_{o} will not isolate the effect of p_{j} at the secondary shock wave as it did in the vicinity of the primary shock wave, because the values of P_n in figure 13 are not in the same systematic order with the variation of both H_{j}/p_{o} and γ as they were in figure 11. Therefore, along with the possible expected effects of both $\,\mathrm{H_{1}/p_{0}}\,$ and $\,\gamma\,$ on $\,\mathrm{P}_{n}\,$ from the secondary shock wave, the data indicate by inspection that there is a variation of P_n from a change in M_l distribution.

A light gas, such as helium, has high sonic velocities comparable to those of a hot jet and the duplication of the effect due to mixing on the $M_{\tilde{l}}$ distribution should be closely approximated. The limited comparable data between the three types of propulsive jets tested indicate this to be so in both figures 10 and 13 with the resulting P_n

distribution from the secondary shock wave in close agreement with the hot jet when a helium jet is used.

From the results as indicated in figures 10, 11, 12, and 13, a reasonable approximation of a hot jet's influence on the wing pressure distribution can be obtained by the use of a cold helium propulsive jet. This can be done by plotting the P_n profile with H_j/p_0 and then correcting the profile for the maximum forward position of the primary shock wave from the variation of θ with p_j/p_0 , as presented in figure 14.

Effect of nacelle position. In figure 15, the chordwise variation of P_m is plotted at four spanwise positions as a function of distance from the nacelle exit x/D_j for test positions I_a , I_b , and I_c at H_j/p_o of 7. There are two separate positive pressure rises on the wing at each position caused by the interaction on the wing of both the primary and the secondary shock waves visible in the jet-on shadowgraph pictures in figure 16. Figure 15 shows a reduction in the maximum positive pressure and a rearward movement of the complete pressure profile as the nacelle is lowered in position as well as a general reduction in pressure at each position as the spanwise distance is increased. This reduction at each position as the spanwise distance is increased, as well as the impingement on the wing of both the primary and secondary shock waves, is shown in a sketch of a typical jet-on pressure field on the wing presented in figure 17.

Presented in figure 18 is the chordwise variation of P_n along the nacelle center line for positions I_b and II_b at H_j/p_o = 7. In figure 18 both positive pressure rises on the wing appear to take place for each position at the same distance downstream of the nacelle exit indicating that both the primary and secondary shock waves are duplicated at each position. The small variation in P_n at some of the locations indicates the effects of different wing surface conditions because P_n for the two positions at the same value of x/D_j was measured at different locations on the wing. Also visible in figure 18 is the effect on P_n from the location of the wing trailing edge. The value of P_n behind the secondary shock wave for position II_b falls off more rapidly than it does for position I_b until a similar value of P_n is obtained at an equal distance from the wing trailing edge.

Effect of jet exit Mach number. In figures 19(a) to 19(e) is presented the chordwise variation of P_n along the wing center line, at test position I_b for both the sonic and supersonic nacelle exits, at H_j/p_o of 4, 6, 8, 10, and 12. Also included in figure 19 are

shadowgraph pictures taken at these same values of H_j/p_o . In general, the P_n profiles for both the sonic and supersonic nacelle exits are similar in that they both normally have two positive P_n rises. Note in figures 19(a) to 19(e) the upstream movement of the first positive P_n rise for both the sonic and supersonic nacelle exits as H_j/p_o is increased. This indicates that θ is increasing for both the somic and supersonic exits when p_j/p_o is increased by increasing H_j/p_o .

The first rise which is caused by the intersection on the wing of the primary shock wave, visible in all of the pictures, begins farther forward on the wing and is higher for the sonic exit than for the supersonic exit at the same value of H_{j}/p_{0} . With an increase in H_{j}/p_{0} , the secondary shock wave moves downstream for both the sonic and supersonic exit at what appears to be nearly the same rate.

Other differences between the sonic and supersonic exit P_n plots of figure 19 (best examples, 19(d) and 19(e)) are the more gradual fall off in P_n behind the primary shock wave for the supersonic exit than for the sonic exit, and the more pronounced negative P_n values in front of the secondary shock wave for the sonic exit.

In reference 3 it is shown from characteristic calculations that a jet boundary increases in size with an increase in nozzle divergence angle at the same value of p_{j}/p_{o} . Therefore, it could be expected that the supersonic nacelle exit in these tests, with a nozzle divergence angle of approximately 50, would create at the same value of larger value of 0 than would be obtained from the sonic exit. Another variable that might change θ at the same value of p_j/p_o in these tests is the effect of base annulus area. This might account for a larger value of θ for the supersonic exit than for the sonic exit because D_{ii}/D_{B} is greater for the supersonic exit than it is for the sonic exit. The effect of either or both nozzle divergence angle and base annulus area on P_n at the same value of p_j/p_o can be seen in figure 20 by observing the value of P_n for the orifice located at x/D_{i} = 2.43 for both the sonic and supersonic exits. A value of P_{n} of approximately -0.086 was obtained for the sonic exit while a walue of P_n of approximately 0.124 was obtained for the supersonic exit. This shows that for a given value of $p_{\mathbf{j}}/p_{o}$, θ is larger for the supersonic exit and intersects the wing upstream of the orifice location.

Shock Waves

From the shadowgraph pictures in conjunction with the measured wing pressure data over the nacelle center line, it was possible to locate the point of impingement of the shock waves on the flat-surface wing. In the jet-off case, the rise in Pf in figure 6 indicates the intersection on the wing of a possible shock wave, but the shadowgraph pictures as presented in figure 7 are not definite enough to establish an angle measurement. In the jet-on case for the sonic exit, two shock waves impinged on the wing as shown by the pressure rise in figure 15 and the shadowgraph pictures in figure 16. In the shadowgraph pictures for position I_a (fig. 16(a)), it can be seen that as H_j/p_0 is increased the primary shock wave and its accompanying reflected shock wave from the wing is rapidly changing shape until a nearly normal shock-wave condition is visible in the shadowgraph picture for $H_j/p_0 = 14$. This rapid change of the primary shock wave and its accompanying reflected shock wave from opposite oblique shock waves to a condition of a single nearly normal shock wave is not visible in either of the series of shadowgraph pictures presented for position I_b and I_c (figs. 16(b) and 16(c)). In chapter 4 of reference 4, a discussion on the analysis of the reflection of an oblique shock wave from a rigid wall indicates that if the Mach number behind the oblique shock wave is of such a low value that a reflecting shock wave is not possible then the only shock wave possible at the wall is a normal shock wave. In the case for position In, the proximity of the maximum diameter of the propulsive jet to the undersurface of the wing could be restricting the flow to such an extent that the required pressure rise in the free stream must be generated by a stronger shock wave which becomes nearly normal for the high jet pressure ratios.

Because the jet-on shock waves did not have a fixed origin in these tests, the angular variation between the wing surface and a straight line drawn along the shock wave was measured representing the angular variation between the nacelle center line and the shock wave. The primary jet-on wave angle, θ , as presented for the present tests in figure 21 was obtained only from the shadowgraph pictures for test positions I_b and I_c . Figure 21 shows that θ for the sonic exit from the present tests varied from approximately 44° at $p_j/p_0 = 1$ to approximately 49° at $p_j/p_0 = 1$ and then seems to level out. This leveling out of θ appears to occur simultaneously with a change in the shape of the primary shock wave from a pure oblique shock wave to one having two legs at the nacelle exit (figs. 16(b) and 16(c)). After the bifurcated oblique shock wave is formed, then a further increase in p_j/p_0 only tends to increase the angle between the legs and cause the leading leg to form farther up on the nacelle boattail.

The secondary jet-on shock wave for the sonic exit, although moving farther downstream with an increase in H_j/p_0 (fig. 16), appeared to have a constant wave angle α of approximately 47° .

Also presented in figure 21 are the measurements of θ and α as obtained at $M_O=2.02$ from reference 1. As can be seen in figure 21, both θ and α decreased with an increase in M_O at a constant value of p_j/p_O throughout the comparable range of p_j/p_O obtained in both tests.

When using the pressure data presented in the tables to estimate lift, it is necessary to locate the apex for both the primary and secondary shock waves at the nacelle center line. From this apex location, approximate intersections of both shock waves on the wing can be determined from a simple conical projection. Therefore, the variation of $p_{\rm j}/p_{\rm o}$ with the angle of inclination of a line drawn from the point of intersection on the wing of the primary shock wave to the nacelle exit is presented in figure 22 for positions I_a , I_b , and I_c . Figure 22 again indicates a difference in the primary shock wave at position I_a from both positions I_b and I_c as discussed previously because θ varies similarly for positions I_b and I_c , while for position I_a there is a distinct difference.

In figure 23 is presented the variation of the point of intersection on the wing center line of the secondary shock wave from the nacelle exit with H_j/p_0 for positions I_a , I_b , and I_c . The measurements in figure 23 can be used in conjunction with α as presented in figure 21 to determine a good approximate intersection on the wing of the secondary shock wave by a simple conical projection.

Incremental Normal Force

As previously discussed in the jet-off section, P_{f} as measured in these tests must include all the interference effects on the wing pertaining to this particular investigation. It can be expected that these same jet-off interference effects combined with the effects from the propulsive jet will be included in the P_{n} measurements. Therefore, to isolate the effects of the propulsive jet an incremental pressure coefficient $(P_{n}-P_{f})$ was obtained. It seems reasonable that this incremental pressure coefficient could be applied to estimate the propulsive jet effects on different missile and airplane configurations when the conditions for the propulsive jet are the same.

In order to determine whether P_n - P_f would remain the same when P_f was different for the same propulsive jet conditions, a test was performed at position II_b . As can be seen in figures 6(a) to 6(d), the P_f profiles on the wing are different for position II_b than they are for position I_b . Also as shown in figure 18, the axial P_n profile for position II_b is different from the one obtained for position I_b , but the axial P_n - P_f profile as presented in figure 24 for both of these positions is for all practical purposes the same.

The major significance of the plot in figure 24 is that it indicates that the profiles of P_n - P_f from these tests at each vertical position can be used to determine ΔC_N on a surface with the trailing edge at any position less than $x/D_j = 11.4$. As mentioned in the shock-wave section of this paper, the points of intersection on a surface of both the primary and secondary shock waves can be determined at a given vertical distance from the nacelle center line by a simple conical projection. Once these intersections are located the values of P_n - P_f from table III at the given vertical distance can be fitted to the intersections and the profiles terminated for any value of trailing edge less than $x/D_j = 11.4$ before integrating for ΔC_N .

In figure 25 is presented the chordwise variation of $P_n - P_f$ at two spanwise stations for positions I_a , I_b , and I_c at $H_1/p_0 = 7$. When jet-on and jet-off wing pressure data were combined to form the incremental pressure data, positive P_n - P_f resulted immediately behind the intersection on the wing of the jet-on primary shock wave. This positive Pn - Pf gradually decreases until it becomes negative upstream of the intersection on the wing of the secondary shock wave, rises in a positive direction through the secondary shock wave, and then becomes more negative again to the end of the wing. As was the case with the Pn profiles for the same vertical positions, the maximum values of $\mathbf{P}_{\mathbf{n}}$ - $\mathbf{P}_{\mathbf{f}}$ gradually decrease both as the nacelle is lowered in position (fig. 25(a)) and also as the spanwise distance is increased at the same position (figs. 25(a) and 25(b)). Because the data from table III were obtained by using helium, it is necessary to correct the data for a change in the inclination of the primary shock wave due to the high value of y. The dotted lines in figure 25 represent a correction of the data obtained with helium to a value of γ of a hot jet (1.27). Presented in figure 26 is a typical chordwise and spanwise variation of $P_n - P_f$.

Shown in figure 27 is the variation of incremental normal-force coefficient ΔC_N , based on S_j , with H_j/p_O for test positions I_a ,

 I_b , and I_c . The values of ΔC_N were calculated from an integration of the $P_n - P_f$ profiles for $x/D_j = 11.4$ corrected to a γ of 1.27; ACN represents the change in normal force due to the presence of the propulsive jet. Positive ΔC_N resulted at each of the positions with a gradual positive rise as H_1/p_0 is increased from a value of 2 to a value of approximately 6. As H_j/p_0 is further increased to a value of 14, the increase of ΔC_N first becomes more rapid at each of the positions with position Ia subsequently leveling out, position Ib tending to level out, and position Ic appearing to be unaffected. It is obvious from inspection of figures 25 and 26 that the positive P_n - P_f behind the intersection on the wing of the primary shock wave is responsible for the positive values of ΔC_{N} . It can be expected that as H_{j}/p_{O} is increased this positive $P_n - P_f$ will also increase, because the inclination of the primary shock wave will increase. However, with an increase in H_j/p_o , the negative $P_n - P_f$ is also increasing. The combination of both increasing positive and negative $P_n - P_f$ as H_j/p_o is increased resulted in the leveling out of ΔC_N in figure 27 first for position I_a and then for position I_b while position I_c continued to rise.

The calculated gross thrust coefficient C_T , based on S_j , is presented in figure 28 as it varies with H_j/p_0 for a sonic propulsive jet having a γ of 1.27. Shown in figure 29 is the variation of $\Delta C_N/C_T$ with H_j/p_0 at positions I_a , I_b , and I_c for the sonic exit. The incremental normal force to thrust ratio decreased rapidly from a maximum of 2.9 at H_j/p_0 = 2 for test position I_a to a minimum of 0.55 at H_j/p_0 = 6 for test position I_c . The difference in the variation of $\Delta C_N/C_T$ with H_j/p_0 is consistent with the difference in the variation of ΔC_N with H_j/p_0 for test positions I_a , I_b , and I_c since C_T is a constant for any given H_j/p_0 at any position.

CONCLUDING REMARKS

Within the limits of the present tests conducted in a Mach number 1.39, free jet of a small-scale propulsive jet operated with both a choked convergent nozzle and a convergent-divergent nozzle located in the vicinity of a flat-surface wing, the results may be summarized as follows:

1. Shock waves, formed in the external flow because of the presence of the propulsive jet, impinged on the flat-surface wing and greatly altered the pressure distribution.

CONFIDENTIAL

- 2. An integration of this pressure distribution, for the choked convergent nozzle, with the location of the propulsive jet exit varied from 1.747 propulsive jet exit diameters to 4.981 propulsive jet exit diameters below the wing resulted in a positive incremental normal force on the wing at all positions.
- 3. The pressure distribution on the wing was altered when a convergent-divergent nozzle was used but not as severely as when a choked convergent nozzle was used over the same range of propulsive-jet total pressure ratios.
- 4. A helium sonic propulsive jet can be used to approximate closely the pressure distribution on the wing from a hot sonic propulsive jet at the same value of exit total pressure, provided that the maximum forward position of the impingement on the wing of the primary shock wave is corrected for the variation in exit static pressure due to the difference in γ between the helium gas and the hot exhaust gas.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., November 29, 1955.

REFERENCES

- 1. Bressette, Walter E.: Investigation of the Jet Effects on a Flat Surface Downstream of the Exit of a Simulated Turbojet Nacelle at a Free-Stream Mach Number of 2.02. NACA RM 154E05a, 1954.
- 2. Faget, Maxime A., Watson, Raymond S., and Bartlett, Walter A., Jr.: Free-Jet Tests of a 6.5-Inch-Diameter Ram-Jet Engine at Mach Numbers of 1.81 and 2.00. NACA RM 150106, 1951.
- 3. Love, Eugene S., and Grigsby, Carl E.: Some Studies of Axisymmetric Free Jets Exhausting From Sonic and Supersonic Nozzles Into Still Air and Into Supersonic Streams. NACA RM L54L31, 1955.
- 4. Ferri, Antonio: Elements of Aerodynamics of Supersonic Flows. The Macmillan Co., 1949.

TABLE I

VALUES OF JET-OFF PRESSURE COEFFICIENTS FOR ALL WING ORIFICE POSITIONS

	rifice linates	<u> </u>					
x/D _j	y/Dj	Ia	Ib(helium)	I _{b(air)}	Ib(hot)	I _c	IIb
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 -1.73 -2.77	'.	-0.018 .030 .058 .066 .079 .063 .070 .092 035 122 096 200	-0.021 .034 .064 .086 .095 .080 .010 086 084 127	-0.017 .037 .067 .085 .095 .078 .010 086 083 128	-0.017 .037 .067 .085 .095 .078 .010 086 083 128	-0.012 .046 .075 .090 .102 066 047 117 056 041 008	-0.012 .056 .081 .106 .070 073 086 130 020 020 .005
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 35 1.69 -1.73 -2.77	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	-:016 .026 .048 .062 .058 .060 .080 .068 -:118 -:075 -:140 -:060	- 024 - 028 - 075 - 082 - 076 - 075 - 083 - 100 - 092 0	021 .028 .055 .076 .074 .073 090 087 101 095	021 .028 .055 .076 .074 .073 090 087 101 095	014 .038 .065 .086 .084 073 046 119 049 027 010	018 .058 .069 .103 024 074 101 104 024 0
10.76 9.72 8.68 7.63 6.59 5.55 3.47 2.43 1.39 69	4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17	002 .009 .012 040 080 042 060 010	008 .005 .007 .018 051 101 060 070 .010	012 0 .006 .020 047 101 065 071 .010 .020 01.0	012 0 .006 .020 047 101 065 071 .010 .020	.006 .020 .015 050 099 072 079 .005 .010	.001 .010 007 088 108 128 026 .021 .010 .020 010
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	\$\$\$\$\$\$\$\$\$ 6666666666666666666666666666	.018 009 007 099 139 163 100	.010 007 072 097 151 137 060	.006 009 075 102 156 143 060	.006 009 075 102 156 143 060 010	.030 .047 064 098 070 110 070	049 060 094 094 101 060
10.76 9.72 8.68 7.63 6.59 5.55	11.11 11.11 11.11	106 080 057 04	115 072 048 030	120 075 051 030	120 .073 051 030	083 058 042 040	067 030 044 030

 $^{^*}$ Actual measured pre-run values used in obtaining incremental pressure coefficients tabulated in table III.

TABLE II

· VALUES OF JET-ON PRESSURE COEFFICIENTS FOR ALL WING ORIFICE POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(a) Helium at test position Ia (sonic exit)

	ifice linates		,,	Pressure	e coeff:	Lcients	for nac	elle-e	it tota	al-press	sure rat	tio Hj	/p _o of		,
x/D	y/D _j	2	3	, 14	5	6	7	8	9	10	11	12	13	14	15
10.76	0.00	-0.034	-0.032	-0.031	-0.029	-0.027	-0.026	-0.025	-0.028	-0.030	-0.025	-0.020	-0.015	-0.010	-0.006
		.012	.014	.015	.019	.025	.021	.012	.019	.021	.023	.033	.035	.037	.033
9.72	.00	.038	.042	.045	.047	.049	.050	.047	.053	.062	.067	.067	.056	.028	.012
7.63	.00	.050	.051	.052	.052	.054	.057	•062	.061	.047	.020	•009	.013	.024	.035
6.59	.00	.060	.060	.060	.060	.062	.069	•055	.025	.029	.039	.052	.070	.092	.112
5.55 4.51	.00	.038	,038	.039	.042	.023	.014	.024	.042	.064	.086	.109	.131	.143	.144
4.51	00	.025	.031	.034	.023	.019	.048	.075	.097	.109	.093	095	188	205	217
3.47		.040	.054	.040	.065	.085	.092	116	128	135	139	143	145	147	147
2.43		.070	.081	•090	038	050	043	037	-,031	025	018	011	002	.008	.017
1.39		.080	.051	.075	.099	.120	.141	.159	.177	.194	.212	.229	.245	.260	.272
1 .35	.00	096	.096	096	096	095	089	030	.064	.125	.155	.195	.215	.240	259
69	.00	200	200	200	200	200	200	200	200	200	200	200	200	200	200
10.76		035	032	030	028	024	025	-,025	030	029	- 016	020	017	014	010
9.72	1.40	•006	.010	.013	.015	.019	.014	•009	.014	.019	.020	.030	.033	.030	.022
8.68	1.40	.035	.036	.037	.038	.039	.040	.042	.048	.051	.051	.043	.020	•004	.005
7.63	1.40	.051	.051	.052 .044	.053	.055	.058	•060	.055	.031	.015	.016	.024	.038	.050
6.59		.044	.048	•044	.ó48	.052	.050	.020	.021	.029	.028	.055	.070	.089	.110
5.55	1.40	.028	.029	.030	.031	.012	.013	.035	.057	.077	.094	.108	.114	.099	.004
4.51	1.40	.031	.034	.031	.020	.039	.060	.076	.085	047	154	167	174	178	180
3.47		.047	.044	-057	.069	.070	084	-,096	095	094	095	094	092	089	087
2.43		.071	.098	011	014	004	.001	.009	.020	.027	.031	.039	049	.054	.064
1.39	1.40	075	 058	.064	.117	.141	.164	.183	.199	.207	.214	.227	.243	.257	.269
69	1.40	140	140	140	140	140	130	120	110	060	030	.020	.070	.110	.140
1	1	060	 060	060	060	060	060	060	060	060	 060	060	060	060	060
10.76	4.17	020	013	022	021	012	019	021	018	015	013	018	027	035	037
9.72	2 4.17	014	016	017	016	009	017	016	018	030	033	035	~.035	031	020
8.68	3 4.17	015	015	015	015	015	017	030	033	030	023	015	008	003	0
7.63	4.17	009	009	-,009	009	017	019	009	0	.006	.010	.010	.004	026	066
6.59	4.17	014	011	016	021	010	000	007	048	095	115	120	122	123	123
5.55	4.17	002	004	003	0 .	032	067	076	076	076	075	075	074	073	072
4.51	4.17	.040	.046	.021	.007	.007	•009	.012	.014	.015	.017	.018	.020	.021	.022
3.47		039	030	003	.039	.073	.090	.101	.108	.112	.116	.119	.122	.125	.128
2.43		060	060 010	060	060 010	060 010	040 010	020 010	.010	.060 010	.100	.130	.150		.160 010
1.39		010	010	010	010	010	010	010	010 010	010	010	010 010	010	010 010	010
15	1				010	010	010	010	010	010	010	010	010	010	010
10.76	6.94	004	007	006	002	.003	009	015	010	006	.003	001	.001	.004	.002
9.72	6.94	•007	.006	.006	.009	.014	.010	.006	.006	.021	.036	.051	.065	.077	.088
8.68	6.94	007	007	007	006	003	022	048	057	- 060	061	060	060	059	- 058
7.63	6.94	028	028	028	038	047	053	056	056	054	053	051	049	048	046
6.59	6.94	122	099	099	081	065	061	059	057	055	054	052	083	089	083
5.55		163	163	163	163	155	134	092	063	050	047	040	035	032	028
4.53		100	100	100	100	090	090	090	080	070	060	050	030	010	0
3.47	6.94	010	010	010	010	010	010	010	010	010	010	010	010	010	010
10.76	11.11	109	109	092	074	054	048	043	040	037	036	034	033	032	030
9.73	2 11.11	080	080	080	080	074	063	047	027	013	005	0	.003	.006	.007
8.68		057	057	057	055	052	054	059	055	051	044	028	015	.002	.014
7.63	3 11.11	040	040	040	040	040	040	040	040	040	040	040	040	040	030

TABLE II .- Continued,

VALUES OF JET-ON PRESSURE COEFFICIENTS FOR ALL WING ORIFICE POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(b) Helium at test position I_b (sonic exit)

Orif ordin			I	ressure	coeffi	lcients	for nac	elle-ex	it tota	al-press	ure rat	:10 H _J /	/p _o of	_	
x/Dj	y/Dj	2	3	4	5	6	7	· ė	9.	10	11	12	13	14	15
10.76	0.00	-0.035	-0.032	-0.028	-0.031	-0.029	-0.025	-0,028	-0.026	-0.020	-0.017	-0.025	-0.025	-0 .0 52	-0.053
9.72	.00	.015	020	.023	.023	.022	.018	.019	.021	.016	.006	010	012	011	007
8.68	.00	.050	.050	.055	.050	.050	.051	.050	.039	.024	.027	.033	.042	.051	.062
7.63	•00	.070	.065	.066	.065	.067	.053	.040	.054	.060	.075	.090	.104	.118	.130
6.59	.00	•065	.065	.065 .040	.065	.050	.064	.080	.095	.113	.130	.127	.002	091	100
5.55 4.51	•00	.045 .045	.050 .049	.068	.050 .040	.070 044	044	.035	086 041	093	094	095	095	096	.095
3.47	.00	.057	.078	.026	.034	.038		043		039 .072	035	033	029	028	025
2.43	.00	086	086	086	085		.051 .064	.058 .130	.065	.174	.072 .189	.083	.090	095	.099
1.39	.00	127	127	127	127	039 127	127	123	.155 120	117	115	.200 114	.215	.217	.225 114
•35	.00	.004	.004	.003	.004	.004	0	.004	001	.004	.004	.004	001	.004	.001
69	.00	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0
10.76	1.40	040	035	033	032	031	033	031	033	027	027	028	039	063	059
9.72	1.40	.012	.017	.019	.019	.013	.012	.013	.015	.010	011	016	015	011	008
8.68	1.40	.041	.041	.042	.041	.041	.043	.041	.025	.019	.026	.032	040	.050	.058
7.63	1.40	061	.061	.060	.061	.061	.059	.042	.054 .084	.070	.083	.095	.100	.119	.127
6.59	1.40	.046	.050	.052	.035	.037	052	.067	.084	.095	.092	001	082	097	099
5.55	1.40	.039	.037	.027	.049	.066	.067	074	084	086	087	087	066	086	086
4.51 3.47	1.40	005 .046	.033 .044	.068	028 .045	055	031 .064	028	026	023 084	020	017	014	012	009
2.43	1.40	101	102	.033 102	- 102	100	079	.071 .015	.076	.154	.090 .181	.096	.102	.107	.112
1.39	1.40	092	092	092	092	092	092	.092	092	092	092	092	092	092	092
	1.40	0	0	0	0	0	0	0	0	0	0	0	0	0	0
69	1.40	ŏ	ŏ	ő	ŏ	Ö	ŏ	ŏ	ŏ	ŏ.	o o	ŏ "	ő	Ö	ŏ
10.76	4.17	027	018	015	017	028	029	029	030	040	048	047	038	032	022
9.72	4.17	010	011	009	013	015	019	031	034	030	021	015	003	•004	.015
8.68	4.17	017	014	011	011	025	026	017	006	.003	.012	.018	.017	003	060
7.63	4.17	007	002	007	012	001	.009	.013	034	093	102	102	102	101	101
6.59	4.17	010	005	.005	.005	058	075	076	075	075	073	073	072	071	069
5.55	4.17	.001	.014	026	030	027	025	022	020	017	015	013	012	010	009
4.51 3.47	4.17 4.17	063 070	064 070	042 070	.032 070	.057 069	.066 069	.071 065	.074 052	.079 018	.082	.086 .096	.089	.091	.094 .180
2.43	4.17	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.137	.010	.010
1.39	4.17	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020
-35	4.17	010	010	010	010	010	010	010	010	010	010	010	010	010	010
10.76	6.94	013	008	003	007	020	021	014	007	003	002	007	036	051	074
9.72	6.94	006	.010	.009	.006	0	0	.025	.053	.068	.075	.078	.079	.078	.077
8.68	6.94	004	002	0	015	040	045	045	045	047	045	043	042	040	039
7.63	6.94	040	038	035	035	034	033	030	029	027	025	022	020	016	014
6.59	6.94	154	152	150	139	106	068	040	030	024	019	017	012	011	008
5.55	6.94	142	142	140	141	141	140	141	140	133	125	102	067	035	018
4.51	6.94	060	060	060	060 0	060 0	060	060	060	060	060	060	060	060	060
3.47			-			_					-			-	[-
10.76	11.11	116	108	105	087	067	048	041	034	031	028	026	021	019	014
9.72	11.11	075	075	075	075	075	075	067	055	038	013	.005	.015	.025	.056
1 0 20							. <u>^</u> E^						. ^-		
8.68	11.11	052	052	052	- 052	052	052 030	052	052	052	052	052	014	040 050	029

TABLE II.- Continued

VALUES OF JEP-ON PRESSURE COEFFICIENTS FOR ALL WING ORIFICE POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(c) Helium at test position I_c (sonic exit)

Orif ordin			F	ressure	coeffi	cients	for nac	elle-ex	rit tota	l-press	ure rat	10 H _J /	/p _o of	.	
x/D _j	y/Dj	2	3	4	5	6	7	8	9	10	11	12	13	. 14	15
10.76	0.00	-0.027	-0.025	-0.024	-0.024	-0.026	-0.027	-0.023	-0.023	-0.028	-0.038	-0.042	-0.040	-0.036	-0.032
9.72	.00	.027	.027	.027	.027	.027.	.027	.021	.006	.007	.015	.023	.032	.040	.048
8.68	.00	.054	.056	.051	.057	.049	.033	.042	.049	.065	.076	.090	.097	.104	.105
7.63	.00	.060	.065	.067	.042	.058	.071	.083	.093	.099	-005	066	070	071	070
6.59	.00	.072	.076	.082	.089	.099	005	023	-,023	023	023	023	023	023	022
5.55 4.51	.00	.050	.068	.036	0	•004	.007	.009	.011	.013	.015	.017	.019	.021	.023
4.51	.00	030	.034	.049	.057	.066	.072	.078	.082	.088	-094	.098	.100	.105	.108
3.47	.00	117	117	115	114	114	107	040	.035	.112	.153	.170	.180	.195	.200
2.43	.00	056 041	056 041	057 041	057 041	057 041	057 041	058 041	059 041	060 041	061 041	061	061	062	062 041
•35	.00	008	008	008	008	008	008	008	008	008	008	008	008	008	008
69	.00	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010
			V		•			,		1	,				, , , , ,
10.76	1.40	037	034	027	030	031	030	026	025	035	044	044	040	034	029
9.72	1.40	.024	.025	.021	.020	.021	.021	.008	0	.006	.014	.019	.029	.040	.049
8.68	1.40	.047	.047	.044	.049	.036	.028	.039	.051	.062	.072	.082	.091	.097	.065
7.63	1.40	.056	.060	.059 .064	.041	058	.075	.087	.094	.038	053	062	064	065	064
6.59 5.55	1.40	.052 .044	.057 .064	.003	.075	.075	.022	025 .011	025 .013	025 .015	024	024 .019	.021	023 .023	.026
4.51	1.40	046	058	.050	.062	.071	.078	.085	.091	.096	.102	.106	.110	.113	.116
3.47	1.40	119	119	119	119	119	119	118	095	015	.075	.130	.150	.179	.190
2.43	1.40	049	049	049	049	049	050	052	052	052	052	054	055	056	056
1.39	1.40	027	027	027	027	027	027	027	027	027	027	027	027	027	027
-35	1.40	010	010	010	010	010	010	~.010	010	010	010	010	010	010	010
69	1.40	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010
10.76	4.17	006	008	010	013	018	031	041	035	027	018	010	001	.007	.015
9.72	4.17	004	005	013	021	026	026	017	004	.009	.019	.025	.022	017	090
8.68	4.17	010 003	004	015	017	005	.004	.006	049	099	105	106	106	106	105
7.63	4.17 4.17	005	.003	030	.010	050 024	063	062 016	061 016	060	059 011	059 009	058 007	057 006	057 006
5.55	4.17	076	076	- 057	.007	.023	.030	.036	.040	.044	.047	.050	.052	055	
5.55 4.51	4.17	079	079	079	079	079	079	079	078	057	0	.059	.105	.133	.057 .148
3.47	4.17	.006	.006	.006	005	.005	.005	.004	.004	.004	.003	.003	.003	.002	.002
2.43	4.17	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.oio	.010
1.39	4.17	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010	.010
-35	4.17	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020
10.76	6.94	.010	.009	.006	.004	.002	.001	.004	.022	.054	.069	.072	.073	.073	.072
9.72	6.94	.004	.005	004	008	.031	.045	.048	.049	.050	.050	.049	.048	.048	.046
8.68	6.94	0	.009	019	019	-,020	018	016	012	009	008	004	003	002	001
7.63	6.94	098	098	085	035	015	008	002	.005	.011	.016	.020	.023	.025	.027
6.59	6.94	070	070	070	070	070	070	070	070	057	028	010	.012	.012	.016
5.55	6.94	110	110	110	110	110	110	110	110	110	110	110	110	110	110
4.51	6.94	070	070	070	070	070	070	070	070	070	070	070	070	070	- 080
3.47	6.94	0	0	0	0	0	0	0	0	0	0 .	0	010	010	o1o
10.76	11.11	083	083	083	080	069	052	033	016	005	.001	.006	.009	.012	.014
	11.11	058	- 058	058	058	058	058	058	057	051	040	028	012	.010	.027
	11.11	042	042	042	042	042	042	042	042	C4I	040	039	038	037	036
7.63	11.11	040	040	040	040	040	040	040	040	040	040	040	040	040	040
L	L	L	L	<u> </u>	L	L	L		L	<u></u>	ļ	L	Щ	<u> </u>	L

TABLE II.- Continued

VALUES OF JET-ON PRESSURE COEFFICIENTS FOR ALL WING ORIFICE POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(d) Helium at test position II_b (sonic exit)

Orii ordin			F	ressure	coeffi	cients	for nac	elle-ex	it tota	al-press	ure rat	io H _J /	p _o of	-	
x/Dj	y/Dj	2	3	14	5	6	7.	.8	9	10	11	12	13	14	15
8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 -35 -1.73 -2.77	0.00	-0.022 .037 .060 .075 .083 .088 128 020 020	-0.025 .035 .061 .075 .082 088 126 020 .005	-0.026 .034 .063 .072 .101 .029 088 124 020 .005	-0.027 .033 .059 .113 .036 .081 127 020 .005	-0.026 .042 .042 .079 -010 .014 -125 -020 -020 .005	-0.021 .029 .043 .095 007 .052 .106 126 020 .005	-0.016 .015 .060 .106 .060 .143 125 020 .005	-0.024 .016 .076 .089 006 .064 .160 124 020 .005	-0.037 .029 .090 065 006 .068 .173 124 020 020	-0.039 .043 .1071 .006 .074 .183 020 .020 .005	-0.035 .058 .112 072 003 .081 .193 123 020 020	-0.029 .073 .114 073 0 .086 .202 122 020 .005	-0:019 .089 .025 .007 .002 .091 .211 -120 -020 .005	-0.009 .104 -078 -073 .004 .095 .218 -119 -020 -020
8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 -1.73 -2.77	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	-029 .025 .046 .074 .075 .060 099 104 024	029 .017 .046 .077 .072 .069 099 104 024 0	029 .017 .047 .068 .088 .038 099 104 024	- 029 .018 .047 .066 .085 .047 - 099 - 104 - 00	028 .025 .030 .086 001 .055 095 104 024	022 .020 .041 .108 004 .062 046 104 024 0	021 .001 .056 .095 003 .068 .045 104 024 0	030 .012 .072 030 002 .074 .117 104 024 0	042 .021 .084 055 001 .080 .153 104 024 0	039 .033 .092 059 0 .086 .170 104 024 0	036 .045 .103 060 .002 .092 .184 104 024 0	028 .059 .040 060 .008 .098 .196 104 .024 0	018 .070 087 059 .011 .102 .207 104 024 0	010 .078 099 058 .012 .106 .215 104 024
8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 -1.73	4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17	028 008 008 .022 109 123 026 .021 .010	028 012 010 .018 109 125 026 .021 .010	028 011 009 .003 101 126 026 .021 .010	020 022 .006 019 067 126 026 .021 .010	023 015 .003 020 0 126 026 .021 .010 .020 010	028 003 048 018 .030 125 026 .021 .010	.001 .008 075 015 .041 125 026 .021 .010	.003 0 080 013 .048 125 026 .021 .010	.012 193 079 011 .053 115 026 .021 .010 .020 010	.017 074 078 009 .057 087 026 .021 .010	.020 110 077 007 .061 037 026 .021 .010	.016 117 076 005 .065 022 026 .021 .010	.015 117 075 003 .068 025 026 .021 .010	040 116 073 001 .070 075 026 .021 .010 .020 010
8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	\$\$\$\$\$\$\$\$\$.006 .011 092 096 094 101 060	.006 .005 094 097 094 101 060	.003 .005 094 099 094 101 060	.003 .007 .085 100 094 101 060	011 .007 057 100 094 101 060	026 .005 021 099 094 101 060	036 .003 .010 098 094 101 060	035 .001 .026 097 094 101 060	034 0 038 095 094 101 060	.030 002 .044 083 094 101 060	032 004 .048 066 094 101 060	032 006 .051 043 094 101 060	032 006 .054 019 094 101 060	032 006 .053 .004 094 101 060
7.63 6.59	11.11 11.11 11.11 11.11	065 030 044 030	072 030 044 030	073 030 044 030	072 030 044 030	068 030 044 030	066 030 044 030	063 030 044 030	061 030 044 030	058 030 044 030	055 030 044 030	054 030 044 030	053 030 044 030	045 030 044 030	037 030 044 030

TABLE II .- Continued

VALUES OF JET-ON PRESSURE COEFFICIENTS FOR ALL WING ORIFICE . POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(e) Helium at test position $I_{\rm b}$ (supersonic exit)

	fice nates		F	ressure	coeffi	cients	for nac	elle-ex	it tota	ıl-press	sure rat	io Hj/	p _o of	-	
x/Dj	y/Dj	2	. 3	4	5	6	7	8	9	10	11	12	13	14	15
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	0.00 .00 .00 .00 .00 .00	-0.037 .015 .047 .076 .065 .037 .039 .050 -079 -121 -014	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.026 .028 .055 .064 .053 .053 .059 .079 .121 .014	-0.028 .026 .054 .063 .071 .051 .052 .079 .121	-0.026 .027 .054 .063 .069 .036 .054 .022 079 121	-0.025 .025 .050 .055 .059 .041 .053 .028 058 014	-0.026 .023 .053 .060 .047 002 .036 .023 121 014	-0.026 .022 .053 .055 .070 .049 066 .080 .121 014	-0.0439 .056 .0599 .0599 .0599 .1016 .0	-0.019 .020 .040 .064 .088 057 .057 .119 016	-0.017 .010 .038 .075 .095 050 066 .063 .123 117 016	-0.020 0 .040 .086 .100 055 005 .068 .131 116 018	-0.029 003 .046 .097 .090 058 005 .072 .139 116 018	-0.040 005 .055 .108 022 058 003 .076 .146 114 019
10.76 9.72 8.68 7.63 7.55 4.51 3.47 2.43 1.39 69	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	027 .009 .039 .067 .043 .020 .042 095 105 0	027 .020 .043 .060 .045 .041 .061 095 105	.027 .019 .046 .061 .045 .045 .046 .095 .095	027 .018 .045 .060 .052 .031 .054 .010 095 105	027 .018 .044 .060 .050 .035 .059 .019 095 105	027 .015 .043 .061 .040 .039 .038 .030 095 105	027 .015 .045 .060 .046 .043 .001 .041 091 105	027 .015 .044 .050 .052 .036 0 .050 062 105	027 .013 .038 .056 .059 030 0 .057 003 105	025 .009 .033 .068 .067 039 .001 .063 .060 105	025 .004 .034 .079 .074 043 .002 .068 .105 105	028 006 .040 .090 .053 045 .073 .125 105	035 007 .046 .100 016 046 .078 .137 105	051 006 .054 .105 055 046 .088 .083 .146 105 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 2.43 1.39	4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17	029 013 013 010 011 005 068 0 .020 .010	010 004 013 007 .001 .003 060 068 0	011 004 013 003 015 .012 060 068 0	017 010 013 003 003 057 066 0 .020	016 012 013 013 010 008 022 064 0	021 013 016 009 001 020 .023 061 0	023 016 020 005 033 018 .046 059 0	026 020 016 0 044 016 .056 057 0	026 024 008 005 014 054 054 0	028 020 0 041 049 012 .069 050 0	032 013 .007 074 049 010 .074 045 0	.031 005 .012 085 049 008 .077 036 0	025 .002 .013 086 048 006 .081 020 0	023 .008 .002 086 047 003 .084 .005 0
	6.94 6.94 6.94 6.94 6.94 11.11	004 .003 008 033 154 151 060 .010	004 005 004 027 151 060 .010	004 002 0 022 149 151 060 .010	004 .006 .002 027 149 151 060 .010	004 .006 .003 035 145 151 060 .010	010 .003 005 035 137 151 060 .010	012 .001 022 033 117 151 060 .010	010 .005 028 031 091 151 060 .010	007 .023 029 027 070 151 060 .010	0 .040 029 023 053 151 060 .010	.006 .052 027 019 045 151 060 .010	.005 .056 026 016 036 151 060 .010	005 .057 025 014 054 151 060 .010	026 .057 024 013 027 151 060 .010
8.68	11.11 11.11 11.11	056	076 056 030	076 056 030	076 056 030	076 056 030	076 056 030	076 056 030	076 056 030	075 056 030	072 056 030	068 056 030	060 056 030	051 056 030	056 050

TABLE II. - Continued

VALUES OF JET-ON PRESSURE COEFFICIENTS FOR ALL WING ORIFICE POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(f) Air at test position I_b (sonic exit)

Orif ordin		Pres	sure coe	fficient	s for na	celle-ex	it total	-pressur	e ratio	H _J /P _o	of -
· x/Dj	у/pj	6	7	8	9	10	11.	12	13	14	15
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43	0.00	-0.018 .028 .050 .054 .052 .058 058 .038 .041	-0.017 .024 .050 .053 .066 .055 059 .044 .128	-0.018 .019 .047 .055 .082 101 058 .050 .159 125	-0.020 .015 .043 .063 .096 111 058 .056 .177 125	-0.022 .012 .043 .055 .098 116 057 .062 .191	-0.026 .010 .050 .091 055 119 056 .068 .204 126	-0.030 .010 .059 .105 123 122 052 .073 .213	-0.033 .013 .070 .116 131 124 053 .078 .222 125	-0.035 .019 .083 .120 137 125 050 .082 .230 115	-0.035 .028 .094 .101 142 126 049 .086 .237 052
69	.00	0	0	0	0	0	0	0	0	0	0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	021 .016 .040 .052 .045 .054 044 .050 093 095	018 .017 .040 .048 .054 042 .059 .003 095 0	026 .010 .037 .054 .065 100 039 .067 .136 095	026 .005 .033 .065 .074 104 037 .074 .172 095	026 .003 .036 .075 .010 107 035 .079 .191 095 0	027 .004 .045 .090 111 109 033 .206 095 0	034 .006 .060 .100 116 110 031 .090 .217 095 0	034 .009 .066 .102 119 111 029 .095 .227 095 0	054 .017 .076 .058 121 112 027 .099 .235 095	034 .027 .087 080 122 113 026 .103 .242 094
10.76 9.72 8.68 7.63	4.17 4.17 4.17 4.17	017 013 020 .002	012 013 013 005	019 013 007 060	025 012 002	029 009 001	020 004 035	019 .004 113	013 .009 164	008 .010 176	.003 .002 182
6.59 5.55 4.51 3.47 2.43 1.39	4.17 4.17 4.17 4.17 4.17 4.17 4.17	074 029 .065 067 .010 .020	077 026 .082 062 .010 .020	077 024 .078 045 .010 .020	077 023 .082 .005 .010 .020	.078 021 .086 .075 .010 .020	077 020 .089 .145 .010 .020	076 018 .091 .173 .010	.076 017 .093 .189 .010 .020	076 016 .095 .200 .010 .020	076 015 .096 .207 .010 .020
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	\$\$\$\$\$\$\$\$\$ 6.666666666666666666666666666	008 .010 041 027 097 143 060 010	.001 .040 042 027 045 143 060 010	.001 .076 043 026 028 143 060	011 .085 043 025 022 142 060 010	047 .087 044 025 019 123 060 010	096 .087 044 023 013 070 060	126 .087 044 022 014 031 060 010	132 .087 044 020 011 008 050 010	135 .087 043 019 010 .004 050 010	136 .087 043 018 009 .011 040 010
10.76 9.72 8.68 7.63	11.11 11.11 11.11 11.11	059 070 051 030	028 064 051 030	025 053 051 030	025 032 051 030	023 005 051 030	016 .014 046 030	016 .023 039 030	016 .029 025 030	013 .032 004 030	012 .034 .019 030

NACA RM L55L13

VALUES OF JET-ON PRESSURE COEFFICIENTS FOR ALL WING ORIFICE POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(g) Hydrogen and air at test position $I_{\mbox{\scriptsize b}}$ (hot sonic exit)

Orif: ordin	4	Press		s for nacelle-entio H_j/p_0 of -		ure
×/Dj	y/D _j	6.50	6.75	7.00	7.25	7.50
10.76	0.00	-0.025	-0.027	-0.028	-0.023	-0.023
9.72	.00	. 033	.032	.030	.038	.033
8.68	.00	.050	.051	.051	.053	.053
7.63	.00	.059	053	.062	.062	.062
6.59	.00	.060	.063	.067	.071	.075
5.55	.00	.061	.064	.068	.070	.075
4.51	.00	061	060	060	061	060
3.47	.00	.033	.036	.039	.041	.043
	.00	.121	.130	.139	.146	.152
2.43	.00	123	121	122	123	123
1.39		007	~.005	006	006	006
.35	.00	0	0	0	0	0 .
69	.00				,	
10.76	1.40	028 .022	031 .020	032 .019	024 .025	025 .022
9.72 8.68	1.40	.039	.045	.037	.044	.044
	1.40	.057	.059	.057	.056	.055
7.63	1.40	.043	.044	.049	.056	.050
6.59	1.40	.061	.064	.065	.065	.054
5.55 4.51	1.40	044	043	043	041	041
3.47	1.40	.050	.052	.054	.058	059
2.43	1.40	.008	.021	.073	.102	.128
1.39	1.40	107	106	109	104	107
•35	1.40	0	0	0	0	0
- ,69	1.40	ŏ	ŏ	ŏ	o .	o 🐔
10.76	4.17	019	027	032	015	022
9.72	4.17	012	016	018	010	013
8.68	4.17	016	017	019	01:7	015
7.63	4.17	•004	.004	.008	.008	.010
6.59	4.17	069	071	071	083	077
5.55	4.17	028	027	026	025	024
4.51	4.17	.068	.069	.073	•075	.077
3.47	4.17	067	066	065	062	058
2.43	4.17	.010	.010	.010	.010	.010
1.39	4.17	.020	.020	.020	.020	.020
•35	4.17	.010	.020	.020	•020	.020
10.76	6.94	011	016	018	005	010
9.72	6.94	.001	.002	. 0	0	.005
8.68	6.94 6.94	041	044	049	O ļi 4	045
7.63	6.94	033	036	039	029	032
6.59	6.94	063	059	048	036	034
5.55	6.94	148	148	148	148	148
4.51	6.94	060	 060	060	060	060
3.47	6.94	010	010	010	010	010
10.76	11.11	049	050	047	035	034
9.72	11.11	078	074	072	066	053
8.68	11.11	054	056	056	051	054
7.63	11.11	030	030	030	030	030

TABLE III

VALUES OF INCREMENTAL PRESSURE COEFFICIENTS FOR ALL WING ORIFICE POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(a) Helium at test position I_{a} (sonic exit)

	fice nates														
×/Dj	y/Dj	2	3 .	, 4 .	5	6	7	8	9	10	11	12	13	14	15
10.76 9.72 8.68 7.659 5.551 3.47 2.43 1.39	0.00 .00 .00 .00 .00 .00 .00 .00	-0.016 018 020 019 025 045 052 052 052	-0.014 016 015 019 025 039 038 .116 .173	-0.013 015 013 014 019 024 036 052 052 125 .197 0	-0.011 011 014 019 022 047 027 003 .023	-0.009 005 009 017 040 051 007 015 015 001	-0.008 009 009 010 049 022 0008 007	-0.007 018 011 004 029 059 005 208 002 081 066	-0.010 011 005 005 054 027 220 .004 .299 .160	-0.012 009 .004 019 050 .001 .039 .227 .010 .316	-0.007 007 .009 046 040 .023 .023 231 .017 .334 .251	-0.002 .003 .009 057 027 .046 165 235 .024 .351 .291	0.003 .005 002 053 009 .068 258 237 .033 .367 .311	0.008 .007 .030 042 .013 .080 275 239 .043 .382 .336	0.012 .003 046 031 .033 .081 287 239 .052 .355
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	019 020 013 011 014 032 049 021 .189 0	016 016 012 011 010 031 046 024 .216 .017 0	014 013 011 010 014 030 049 011 .107 .139	012 011 010 009 010 029 060 .001 .104 .186	008 007 009 006 048 041 .002 .114 .216	009 012 008 004 008 047 020 152 .119 .239	009 017 006 002 038 025 004 164 127 .258 .020	014 012 0 007 037 003 .005 163 .274 .030	013 007 .003 031 029 .017 127 162 .145 .282 .080	0 006 .003 047 030 .034 234 163 .149 .289 .110	004 .004 005 046 003 .048 247 162 .157 .302 .160	001 .007 028 038 .012 .054 254 .160 .167 .318 .210	.002 .004 044 024 .031 .039 258 157 .172 .332 .250	.006 004 043 012 .052 056 260 155 .182 .344 .280
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17	018 023 015 018 026 .038 .120 .003 0	011 025 015 018 023 .036 .126 .012 0	020 026 015 018 028 .037 .101 .039 0	019 025 015 .018 033 .040 .087 .081	010 018 015 026 022 .008 .087 .115	017 026 017 028 012 027 .089 .132 .020	019 025 030 018 029 036 .092 .143 .040	016 027 033 009 060 036 .094 .150 .070	013 039 030 003 107 036 .095 .154 .120	011 042 023 .001 127 035 .097 .158 .160	016 044 015 .001 .132 035 .098 .161 .190 0	025 044 008 005 034 034 100 .164 .210	033 040 003 .035 135 033 .101 .167 .220	035 029 0 075 135 032 .102 .170 .220
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	5. まままままままままままままままままままままままままままままままままままま	022 .016 0 .071 .017 0	.025 .015 0 .074 .021 0	024 .015 0 .071 .040 0	020 .018 .001 .061 .058 0	021 .023 .004 .052 .074 .008	027 .019 015 .046 .078 .029 .010	033 .015 041 .043 .080 .071 .010	038 .015 050 .043 .082 .100 .020	024 .030 053 .045 .084 .113 .030	021 .045 054 .046 .085 .116 .040	019 .060 053 .048 .087 .123 .050	019 .074 053 .050 .056 .128 .070	022 .086 052 .051 .050 .131 .090	020 .097 051 .053 .056 .135 .100
9.72 8.68	11.11 11.11 11.11 11.11	003 0 0 0	003 0 0	.014 0 0 0	.032 0 .002 0	.052 .006 .005 0	.058 .017 .003	.063 .033 =.002 0	.066 .053 .002 0	.069 .067 .006 0	.070 .075 .013	.072 .080 .029	.073 .083 .042 0	.074 .086 .059	.076 .087 .043 .010

TABLE III .- Continued

VALUES OF INCREMENTAL PRESSURE COEFFICIENTS FOR ALL WING ORIFICE POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(b) Helium at test position T_b (sonic exit)

Orif ordin			P	ressure	coeffi	cients	for nac	elle-ex	it tota	l-press	ure rat	:10 H _J ,	/p _o of		
x/Dj	y/Dj	2	3	4 .	5	6	7 ·	8	9	10	11	12	1.3	14	15
10.76 9.72 8.68 7.63 6.59 5.55 4.51 2.43 1.39	0.00	-0.014 019 014 016 030 035 .035 .143 002 0	-0.011 014 021 030 030 .039 .164 002 0	-0.007 011 009 020 030 040 .058 .112 002 0	-0.010 011 014 021 030 030 .120 001 0	-0.08 -0.014 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015 -0.015	-0.004 -016 -013 -033 -031 -02 -054 -137 -148 0	0.055 0.055	-0.005 013 025 0 166 051 .151 .239 .007 005	0.001 018 040 026 .018 173 049 .158 .258 .010	0.004 028 037 011 .035 174 045 .158 .273 .012	-0.004 044 031 .004 .032 175 043 .169 .284 .013	-0.004 046 022 018 095 175 039 176 299 005	-0.031 045 013 106 176 038 .181 .301 .014	-0.032 041 002 .044 195 .015 035 .185 .309 .013 003
10.76 9.72 8.63 7.659 5.551 3.47 2.43 1.395 69	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	016 012 021 030 034 .088 .129 001 0	011 012 021 026 036 .126 .127 002 0	009 011 022 024 046 .161 .116 002 0	008 009 012 021 041 024 065 128 002	007 015 012 021 039 007 .060 .139 0	009 016 010 023 024 006 .062 .147 .021	007 015 012 040 009 147 .065 .154 .115 0	009 013 028 028 057 .067 .159 .200 0	003 018 034 012 .019 159 .070 .167 .254 0	035 039 027 .001 .016 160 .073 .173 .281 0	004 044 021 .013 077 160 .076 .179 .288 0	015 043 013 .018 158 159 .079 .185 .314 0	039 039 003 .037 173 159 .081 .190 .320 0	035 036 .005 055 175 159 .084 .195 .327 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17	019 015 024 025 .041 .102 003 0	010 016 021 020 .046 .115 004 0	007 014 018 025 .056 .075 .018 0	009 008 018 030 .056 .071 .092 0	020 020 032 019 007 .074 .117 .001 0	021 024 033 009 024 .076 .126 .001 0	021 036 024 005 025 025 .079 .131 .005 0	022 039 013 052 024 .081 .134 .018	032 -,035 004 111 024 .084 .139 .052 0	040 026 .005 120 022 .086 .142 .107 0	039 020 .011 120 022 .088 .146 .166	030 068 120 021 089 .149 .207	024 001 010 119 020 .091 .151 .235	014 .010 067 119 018 .092 .154 .250 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	तंत्रं तंत्रं तंत्रं ७७७७७७७७	023 .013 .068 .057 003 005 0	018 .017 .070 .059 001 005	013 .016 .072 .062 .001 003	017 .013 .057 .062 .012 004	030 .007 .032 .063 .045 004	031 .007 .027 .064 .083 003	024 .032 .027 .067 .111 004	017 .060 .027 .068 .121 003 0	013 .075 .025 .070 .127 .004	012 .082 .027 .072 .133 .012	017 .085 .029 .075 .134 .035	046 .086 .050 .077 .159 .070	061 .085 .032 .081 .140 .102	084 .084 .033 .083 .143 .119 0
8.68	11.11 11.11 11.11 11.11	001 003 004 0	.007 003 004 0	.010 003 004 0	.028 003 004 0	.048 003 004 0	.067 003 004 0	.074 .005 004	.081 .017 004 0	.084 .034 004	.087 .059 004 0	.089 .077 004 0	.094 .087 .004	.096 .097 .008	.101 .128 .019 0

TABLE III .- Continued

VALUES OF INCREMENTAL PRESSURE COEFFICIENTS FOR ALL WING ORIFICE POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(c) Helium at test position I_c (sonic exit)

	fice nates		I	ressure	coeffi	cients	for nac	elle-ex	it tote	ıl-press	sure rat	io H _j	/p _o of	_	, .
x/Þj	y/Þj	2	3	4.	5	6	7	8	9	10	11	12	13	14	15
10.76 9.72 8.68 7.55 4.51 3.47 2.43 1.39 69	0.00 .00 .00 .00 .00 .00 .00 .00	-0.015 019 021 030 030 .116 .017 0	-0.013 019 025 026 025 026 034 081 081 081	-0.012 019 023 020 .102 .096 .002 001 0	-0.012 019 018 048 013 .066 .104 .001 0	-0.014 019 026 032 003 .070 .113 .003 001 0	-0.015019042019107 .073 .119 .010001 0	-0.011 025 033 007 125 075 002 0	-0.011 040 026 .003 125 .077 .129 .152 003 0	-0.016 039 010 .009 135 .079 .135 .229 004 0	-0.026 -0.031 .001 -085 125 .081 .141 .270 005 0	-0.030 023 .015 156 125 .083 .145 .287 005 0	-0.028 014 .022 160 125 .085 .147 005 0	-0.024 006 029 161 125 .087 .152 .312 006 0	-0.020 .002 .030 160 124 .089 .155 .317 006 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 .35	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	023 014 018 030 032 .117 0 0 0	020 013 018 026 027 .137 .008 0	013 017 021 027 020 .076 .096 0	016 018 016 045 009 .074 .108 0	017 017 029 028 009 .078 .117 0 0	016 017 037 011 106 .081 .124 0 001 0	012 030 026 .001 109 .062 .131 .001 003 0	011 038 014 .008 109 .086 .137 .024 003	021 032 003 048 109 .058 .142 .104 003 0	050 024 .007 139 108 .090 .148 .194 003 0	030 019 .017 148 108 .092 .152 .249 005 0	026 009 .026 150 108 .094 .156 .269 006 0	020 .002 .032 151 107 .096 .159 .298 007 0	015 .011 0 150 106 .099 .162 .309 007 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17	012 024 025 03 03 03 03 03	014 025 019 .053 .104 004 0 .001	016 033 030 .061 .069 .015 0 .001	019 041 031 .060 .071 .079 0 0	024 046 020 0 075 0 0 0 0 0	037 046 011 013 .082 .102 0 0	047 037 009 012 .083 .108 0 001 0	041 024 064 011 .083 .112 .001 001 0	035 011 114 010 .085 .116 .022 001 0	024 001 120 009 .088 .119 002 0	016 .005 121 009 .090 .129 .138 002 0	007 .002 121 008 .092 .131 .184 002 0	.001 037 121 007 .093 .134 .212 003 0	.009 110 120 007 .093 .136 .227 003 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	6.94 6.94 6.94 6.94	020 043 .064 0 0 0	021 042 073 0 0 0	024 051 .045 .013 0 0 0	026 055 .045 .063 0	028 016 .044 .083 0	029 002 .046 .090 0	026 .001 .048 .096 0	008 .002 .052 .093 0 0	.024 .003 .055 .087 .013 .0	.039 .003 .056 .114 .042 0	.042 .002 .060 .118 .060 0	.043 .001 .061 .075 .082 0 0	.043 .001 .062 .123 .082 0	.042 001 .063 .125 .086 0 01
9.72 8.68	11.11 11.11 11.11 11.11	0 0	0 0 .	000	.003 0 0 0	.014 0 0 0	.031 0 0	.050 0 0	.067 001 0 0	.078 .007 .001	.084 .018 .002 0	.089 .030 .003	.092 .046 .004 0	.095 .068 .005	.097 .085 .006 0

TABLE III .- Continued

VALUES OF INCREMENTAL PRESSURE COEFFICIENTS FOR ALL WING ORIFICE

POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(d) Helium at test position IIb (sonic exit)

	fice nates		Pressure coefficients for nacelle-exit total-pressure ratio H _j /p _o of -												
x/Dj	y/Dj	2	3	45	5	6	7	8	9	10	11	1,2	13	14	15
8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 -1.73 -2.77	0.00	-0.010 019 021 031 .013 .141 002 0	-0.013 021 020 031 .021 .155 002 0	-0.014 035 018 034 .051 .102 002 .006 0	-0.015 033 018 047 .043 .005 .003 0	-0.014 014 039 027 080 .116 .100 .005 0	-0.009 027 038 011 077 .125 .192 .004 0	-0.004 041 021 0 076 .133 .229 .005 0	-0.012 040 .005 017 076 .137 .246 .006 0	-0.025 027 .009 171 076 .141 .259 .006 0	-0.027 013 .022 177 076 .147 .269 .006	-0.023 .002 .031 178 073 .154 .107 .007 0	-0.017 .017 .033 179 070 .159 .288 .008 0	-0.007 .033 106 179 072 .164 .297 .010 0	0.003 .048 159 179 074 .168 .304 .011 0
8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 -1.73 -2.77	1.49	011 033 023 029 .039 .134 .002 0	011 041 025 026 .096 .145 .002	011 041 022 035 .112 .002 0 0 0	011 040 022 037 .109 .121 .002 0 0	010 033 039 017 .023 .129 .006 0 0	004 038 028 .005 .020 .136 .055 0	003 057 013 008 .021 .142 .146 0	012 046 .003 133 .022 .148 .218 0	024 037 .015 158 .023 .154 .254 0	021 025 .023 .162 .024 .160 .271 0	018 013 .033 163 .026 .166 .285 0 0	010 .001 029 163 .016 .172 .297 0 0 0	0 .012 156 .162 .035 .176 .308 0 0	.008 .020 168 161 .036 .180 .316 0 0
8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 -1.73	4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17	029 018 001 .110 001 .005 0 0	029 022 003 .106 001 .003 0 0	029 021 002 .110 001 .002 0 0	021 032 .013 .069 .041 .002 0	024 025 .010 .060 .108 .002 0	029 013 041 .070 .138 .003 0	0 002 068 .073 .149 .003 0 0	.002 010 073 .075 .156 .003 0	.011 203 072 .077 .161 .013 0 0	.016 084 071 .079 .165 .041 0	.019 120 070 .081 .169 .091 0 0	.015 127 069 .083 .173 .006 0	.014 127 068 .085 .176 .105 0 0	041 126 .066 .087 .178 .053 0 0 0
8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	6.94	.055 .071 .002 0 0 0	.055 .065 0 001 0 0	.052 .065 0 003 0 0	.052 .067 .009 004 0 0	.038 .067 .037 004 0 0	.023 .065 .073 003 0 0	.013 .063 .104 002 0 0	.014 .061 .120 001 0 0	.015 .060 .056 .001 0	.019 .058 .138 .013 0 0	.017 .056 .142 .030 0 0	.017 .054 .145 .053 0 0	.017 .054 .148 .077 0 0	.017 .054 .147 .100 0 0
7.63 6.59	11.11 11.11 11.11	.002 0 0 0	005 0 0 0	006 0 0 0	005 0 0 0	001 0 0 0	.001 0 0	.004 0 0 0	.006 0 0	.009 0 0 0	.012 0 0 0	.013 0 0 0	.014 0 0 0	0022	.030 0 0 0

TABLE III .- Continued

VALUES OF INCREMENTAL PRESSURE COEFFICIENTS FOR ALL WING ORIFICE

POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(e) Helium at test position $I_{\rm b}$ (supersonic exit)

	fice nates		I	ressure	e coeff	icients	for na	celle-e	xit tota	al-press	ure rat	io H _{j/}	/p _O of	-	
x/Dj	y/Dj	2	3	4	5	. 6	7	8	9.	10	11	12	13	14	15
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	0.00 00 00 00 00 00 00 00 00 00	-0.012 .017 015 028 038 .029 .135 0	-0.001 007 007 013 027 031 .044 .154 0	-0.001 004 007 016 025 022 .040 .177 0	-0.003 006 008 017 022 031 .041 .147 0	-0.001 005 008 017 024 039 .044 .107 0	0 007 012 015 034 043 .113 .021 0	-0.001 009 009 020 033 028 012 .121 .102	-0.001 010 009 025 026 016 .128 .159 0	0.001 009 013 024 013 056 018 .135 .178 0 002	0.006 012 022 016 005 118 017 .142 .192 .002 002	0.008 022 024 005 002 004 148 .202 .004 002	0.005 132 022 .006 .007 130 015 153 .210 .005 004	-0.004 035 016 .017 003 133 015 .157 .218 .005 004	-0.015 037 007 .028 115 133 013 .161 .225 .007 005
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	1.40	0 013 015 012 029 038 .105 .130 0 0	0 002 011 019 027 031 .119 .149 0	0 003 008 018 024 027 .131 .164 0	0 004 009 019 020 041 .139 .099 0	0 004 010 019 022 037 .144 .107 0	0 007 011 018 032 033 .123 .118 0 0	0 007 009 019 026 029 .086 .129 .004 0	0 007 010 029 020 036 .085 .138 .033	0 009 016 023 013 042 .085 .145 .092 0	.002 013 021 005 111 .086 .151 .155 0	.002 018 020 0 .002 115 .087 .156 .200 0	001 028 014 .011 019 117 .089 .161 .220 0	008 029 008 088 118 .091 .166 .232 0	024 028 0 .026 127 118 .093 .171 .241 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17	007 008 011 028 .035 096 0	.012 .001 015 025 .047 .104 0	.011 .001 015 .021 .031 .113 0 0	.005 005 015 021 .043 .120 .003 .002 0	.006 007 015 031 .056 .093 .004 0	.001 008 018 027 .045 .083 .007 0	001 011 022 023 .013 .083 .106 .009	004 015 018 018 .002 .085 .116 .011	004 019 010 023 002 087 124 014 0	006 015 002 059 003 .089 .129 .018 0	010 008 .005 092 003 .111 .134 .023	.009 0 .010 .103 003 .093 .017 .032 0	003 .003 .001 104 002 .095 .141 .048	001 .013 0 104 001 .098 .144 .073 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	\$\$\$\$\$\$\$\$\$\$	0 .013 .072 .069 0 0	0 .005 .076 .075 .003 0	0 .008 .080 .080 .005 0	0 .016 .082 .075 .005 0	0 .016 .083 .067 .009 0 0	.006 .013 .075 .067 .017 0	008 .011 .058 .069 .037 0	006 .015 .052 .071 .063 0	003 .033 .051 .075 .084 0	.004 .050 .051 .079 .101	.010 .062 .053 .083 .192 0	.009 .066 .054 .086 .118	001 .067 .055 .088 .120 0	022 .067 .056 .089 .127 0
8.68	11.11 11.11 11.11 11.11	.009 0 0 0	.012 0 0 0	.018 0 0 0	.015 0 0 0	.016 0 0 0	.027 0 0 0	-:057 0 0 0	.058 0 0 0	.069 .001 0	.077 .004 0	.087 .008 0	.093 .016 0 0	.096 .025 0	.099 .0 3 6 0

TABLE III.- Continued

VALUES OF INCREMENTAL PRESSURE COEFFICIENTS FOR ALL WING ÓRIFICE POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(f) Air at test position I_b (sonic exit)

	Orifice ordinates		sure coe	fficient	s for na	celle-ex	it total	-pressur	e ratio	Hj/Po	of -
x/Dj	y/Dj	6	7	8	9	10	11	12	13	14	. 15
10.76 9.72 8.63 76.59 5.55 4.47 2.43 1.39 5.69	0.00	-0.001 009 017 031 043 020 068 .124 .124 0	0 013 017 032 029 023 069 .130 .211 .003 0	-0.001 016 020 030 013 179 068 .136 .242 .003	-0.003 022 024 022 061 189 068 142 060 0.003	-0.005 025 024 010 .003 198 067 .148 .274 .003	-0.009 027 017 .006 160 197 066 .154 .287 .002 0	-0.013 027 008 .020 218 200 062 .159 .003 0	-0.016 024 .003 .031 226 202 063 .164 .305 .003	-0.018016 .016 .045232203060 .168 .313 .013	-0.018 009 .027 .016 237 204 059 .172 .320 .076 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39 69	1.40 1.40 1.40 1.40 1.40 1.40 1.40 1.40	0 012 015 024 029 019 .046 .137 .008 0	.003 .011 015 028 020 119 .048 .146 .104 0	005 018 018 022 009 173 051 154 237 0	005 023 022 011 0 177 .053 .161 .273 0 0	005 025 019 001 064 180 .055 .166 .292	006 024 010 .014 185 182 .057 .002 .307	013 022 .005 .024 190 183 .059 .177 .318	013 019 .011 .026 193 184 .061 .182 .328 0	013 011 .021 018 195 185 .063 .186 .336	013 001 .032 156 196 186 064 .190 .343 .001 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	4.17 4.17 4.17 4.17 4.17 4.17 4.17	005 013 026 018 027 .072 .130	0 013 019 025 030 .075 .147 .009	007 013 013 080 030 .077 .143	013 012 008 030 .078 .147 .076	017 009 007 031 .080 .151 .146	018 004 041 030 .081 .154 .116	007 .004 119 029 .083 .156 .244	001 .009 170 029 .084 .158 .260	.004 .010 182 029 .085 .160 .271	.015 .002 188 029 .086 .161 .278
2.43 1.39 .35	4.17 4.17 4.17	0	000	0 0	0	0	0	0	0	0	0 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	014 .019 .034 .075 .059 0	005 .049 .033 .075 .111 0	005 .085 .032 .076 .128 0	017 .094 .032 .077 .134 .001	053 .096 .031 .077 .137 .020	102 .096 .031 .079 .143 .073	132 .096 .031 .080 .142 .112	138 .096 .031 .082 .145 .135	141 .096 .032 .083 .146 .147 .010	142 .096 .032 .084 .147 .154 .020
10.76 9.72 8.68 7.63	11.11 11.11 11.11 11.11	.061 .003 0	.092 .009' 0	.095 .020 0	.095 .041 0	.097 .068 0	.104 .087 .005	.104 .096 .012 0	.104 .102 .026	.107 .105 .047	.108 .107 .070

TABLE III .- Concluded

VALUES OF INCREMENTAL PRESSURE COEFFICIENTS FOR ALL WING ORIFICE POSITIONS FOR TOTAL-PRESSURE RATIOS OF 2 TO 15

(g) Hydrogen and air at test position I_b (hot sonic exit)

Orif: ordin		Pressu		for nacelle-exit	total-pressure	
×/Dj	y/D _j	6.50	6.75	7.00	7.25	7.50
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43	0.00 .00 .00 .00 .00 .00	-0.008 004 017 026 035 017 071 .119 .204 .005 007	-0.010 005 016 032 032 014 070 .122 .213 .007 005	-0.011 007 016 023 028 010 070 .125 .222 .006 006	-0.006 .001 014 025 024 008 071 .127 .229 .005 006	-0.006 004 014 023 020 003 070 .129 .235 .005 006
69 10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	.00 1.40 1.40 1.40 1.40 1.40 1.40 1.40 1	0 007 006 016 019 031 012 .046 .037 .093 012 0	010 008 010 017 030 009 .047 .139 .122 011	0 011 009 018 019 025 008 .047 .141 .174 014	0 003 001 020 018 008 .049 .145 .203 009	0 004 006 011 021 024 019 .049 .146 .229 012 0
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47 2.43 1.39	4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17	007 012 022 016 022 .073 .133 .004 0	015 016 023 016 .024 .074 .134 .005	020 018 025 012 024 .075 .138 .006	003 010 023 012 036 .076 .140 .009	010 013 021 010 030 .077 .142 .013
10.76 9.72 8.68 7.63 6.59 5.55 4.51 3.47	\$\$\$\$\$\$\$\$\$\$\$\$\$	017 .010 .034 .069 .093 005	022 .011 .031 .066 .097 005	024 .009 .026 .063 .108 005	011 .009 .031 .073 .120 005	016 .014 .030 .070 .122 005
10.76 9.72 8.68 7.63	11.11 11.11 11.11 11.11	.071 005 003 0	.070 001 005 0	.073 .001 005 0	.085 .007 0 0	.086 .020 003 0

Figure 1.- Photograph of the nacelle mounted beneath the flat-surface wing in the 27- by 27-inch preflight-jet nozzle.

CONFIDENTIAL

All dimensions are in inches. Figure 2.- Schematic diagram of nacelle.

by 27-inch preflight-jet nozzle and wing for the four test positions. Figure 3.- Arrangement of the nacelle relative to the exit of the 27-Dimensions are in inche's except as otherwise noted.

Figure 4.- Location of the wing static-pressure orifices.

Figure 5.- Variation of static-pressure ratio with total-pressure ratio all propulsive jets tested

(a) Along nacelle center line.

(b) 1.40D $_{\mbox{\scriptsize j}}$ spanwise from nacelle center line.

Figure 6.- Chordwise variation of jet-off pressure coefficients for all test positions.

(c) $4.17D_{\rm j}$ spanwise from nacelle center line.

(d) $6.94D_{\rm j}$ spanwise from nacelle center line.

Figure 6.- Concluded.

*/Dj -2 0 2 4 6

Position I_a

Position I_b

Position Ic

Position II_b

L-91682

Figure 7.- Shadowgraph pictures of the flow field about the nacelle exit with jet off for test positions I_a , I_b , I_c , and II_b .

Figure 8.- Typical jet-off pressure field on the wing.

(a) Hot propulsive jet, $p_j/p_o = 3.87$

(b) Helium propulsive jet, $p_j/p_0 = 3.42$

(c) Air propulsive jet, $p_j/p_0 = 3.69$

Figure 9.- Shadowgraph pictures of the flow field about the nacelle exit for a total-pressure ratio of 7 at test position $\, {\rm I}_b . \,$

(a) Along nacelle center line.

(b) 1.40D_j spanwise from nacelle center line.

Figure 10.- Chordwise variation of jet-on pressure coefficients at test position Ib for two wing spanwise positions from both hot and cold propulsive jets at a nacelle-exit total-pressure ratio of 7.

(a) At nacelle center line.

(b) At 1.40D; spanwise from nacelle center line.

Figure 11.- Variation of jet-on pressure coefficient with nacelle-exit total-pressure ratio for the orifices located 2.43 jet diameters behind the exit at test position Ib from both hot and cold propulsive jets.

(b) At 1.40D; spanwise from nacelle center line.

Figure 12.- Variation of jet-on pressure coefficient with nacelle-exit static-pressure ratio for the orifices located 2.43 jet diameters behind the exit at test position $\, {\rm I}_b \,$ from both hot and cold propulsive jets.

(a) At nacelle center line.

(b) At 1.40D, spanwise from nacelle center line.

Figure 13.- Variation of jet-on pressure coefficient with nacelle-exit total-pressure ratio for the orifices located 5.55 jet diameters behind the exit at test position Ib from both hot and cold propulsive jets.

the wing of the primary shock wave and the nacelle exit with nacelle-Figure 14.- Variation of the angle between the point of intersection on exit static-pressure ratio for the three types of propulsive jets tested.

(b) 1.40D; spanwise from nacelle center line.

Figure 15.- Chordwise variation of jet-on pressure coefficients for test positions I_a , I_b , and I_c using a cold helium propulsive jet at a nacelle-exit total-pressure ratio of 7.

(d) $6.94D_{\rm j}$ spanwise from nacelle center line.

Figure 15.- Concluded.

(a) Position Ia.

L-91684

Figure 16.- Shadowgraph pictures of the flow field about the nacelle exit with jet on and jet off for test positions I_a , I_b , I_c , and II_b .

(b) Position I_b.

L-91685

Figure 16.- Continued.

(c) Position Ic.

Figure 16.- Continued.

L-91686

(d) Position II_b.

L-91687

Figure 16.- Concluded.

Figure 17.- Typical jet-on pressure field on the wing.

Figure 18.- Chordwise variation of jet-on pressure coefficient for test positions $\rm\,I_{b}$ and $\rm\,II_{b}$ at a nacelle-exit total-pressure ratio of 7 along the nacelle center line

Sonic nacelle exit, $p_j/p_0 = 1.96$, $M_j = 1.0$

Figure 19.- Chordwise variation of jet-on pressure coefficients with shadowgraph pictures at test positions I_b for both sonic and supersonic nacelle exits at nacelle-exit total-pressure ratios of 4, 6, 8, 10, and 12 for the helium propulsive jet.

(a) $H_{j}/p_{0} = 4$.

Sonic nacelle exit, $p_j/p_0 = 2.94$, $M_j = 1.0$

Supersonic nacelle exit, $p_j/p_o = 0.98$, $H_j = 1.79$ L-91689

(b)
$$H_{j}/p_{0} = 6$$
.

Figure 19.- Continued.

Sonic nacelle exit, $p_j/p_0 = 3.93$, $M_j = 1.0$

Supersonic nacelle exit, $p_j/p_0 = 1.30$, $M_i = 1.79$ L-91700

(c) $H_{j}/p_{0} = 8$.

Figure 19.- Continued.

Sonic nacelle exit, $p_j/p_0 = 4.90$, $M_j = 1.0$

(d) $H_j/p_0 = 10$.

Figure 19. - Continued.

Sonic nacelle exit, $p_j/p_0 = 5.87$, $M_j = 1.0$

Supersonic nacelle exit, $p_j/p_o = 1.96$, $m_j = 1.79$ L-91702

Distance.from nacelie exit, $x/D_{j_{\#}}$

(e)
$$H_{j}/p_{0} = 12.$$

Figure 19.- Concluded.

for both sonic and supersonic nacelle exits at a nacelle-exit static pressure ratio of 1.96. Figure 20.- Chordwise variation of jet-on pressure coefficients along the wing center line at test position $\, {\rm I}_{\rm b} \,$

Figure 21.- Variation of primary and secondary jet-on shock wave angles with nacelle-exit static-pressure ratio for a sonic evit

the wing of the primary shock wave and the nacelle exit with nacelle-Figure 22.- Variation of the angle between the point of intersection on exit static-pressure ratio for the three vertical positions tested.

Ia, $I_{\rm b},$ and $I_{\rm c}$ as measured from the shadowthe wing of the secondary shock wave with nacelle-exit total-pressure Figure 23.- Variation of the point of intersection on the center line of ratio at test positions graph pictures.

Incremental pressure coefficient, $P_{\mathbf{n}}^{-1}\mathbf{r}_{\mathbf{l}}$

 $\mathbf{I}_{\mathbf{b}}$ and $\mathbf{II}_{\mathbf{b}}$ at a nacelle-exit total-pressure ratio Figure 24.- Chordwise variation of incremental pressure coefficient for test positions

of 7 along the nacelle center line

(b) $4.17D_{
m j}$ spanwise from nacelle center line.

Figure 25.- Chordwise variation of incremental pressure coefficient P_n - P_f at two spanwise stations for positions I_a , I_b , and I_c at a nacelleexit total-pressure ratio of 7.

Figure 26.- Typical chordwise and spanwise variation of incremental pressure coefficient $P_{\rm n}$ - $P_{\rm f}$.

Figure 27.- Variation of incremental normal-force coefficient, based on

nacelle exit area, with nacelle-exit total-pressure ratio for test positions $\rm L_{b},~and~\rm L_{c}.$

Incremental normal-force coefficient, $\Delta C_{\rm R}$

Figure 28.- Variation of gross thrust coefficient with nacelle-exit total-pressure ratio for $\gamma = 1.27$.

Figure 29.- Variation of incremental normal force to thrust ratio with nacelle-exit total-pressure ratio for test positions $\rm L_{a}$, $\rm L_{b}$, and for the sonic exit.

CONFIDENTIAL SIMULATED TURBOJET NACELLE AT A FREE-INVESTIGATION OF JET EFFECTS ON A FLAT SURFACE DOWNSTREAM OF THE EXIT OF A STREAM MACH NUMBER OF 1.39. Walter E. National Advisory Committee for Aeronautics Bressette and Abraham Leiss. April 1956. diagrs., photos., tabs. (NACA RM L55L13) NACA RM L55L13

Static-pressure surveys were made on a flat surface formed in the external flow from the presence of the gration of this pressure distribution for the converconvergent-divergent nozzle at a free-stream Mach gent sonic nozzle resulted in a positive incremental that was located in the vicinity of the propulsive jet propulsive jet, impinged on the flat surface and number of 1.39. It was found that shock waves, from both a convergent sonic nozzle and a greatly altered the pressure distribution. normal force on the flat surface.

Copies obtainable from NACA, Washington

CONFIDENTIAL

- Flow, Jet-Mixing
- (1.4.3)Interference, Jet -Exits
- (4.1.1.1)(1.7.2.1.3)Loads, Aerodynamic -Missiles Wings
 - Bressette, Walter E. NACA RM L55L13 Leiss, Abraham

CONFIDENTIAL

CONFIDENTIAL SIMULATED TURBOJET NACELLE AT A FREE-INVESTIGATION OF JET EFFECTS ON A FLAT SURFACE DOWNSTREAM OF THE EXIT OF A STREAM MACH NUMBER OF 1.39. Walter E. National Advisory Committee for Aeronautics. Bressette and Abraham Leiss. April 1956. diagrs., photos., tabs. (NACA RM L55L13)

(1.7.2.1.3)

Missiles

Interference, Jet -

બં સ

(4.1.1.1)

Wings

Bressette, Walter E.

NACA RM L55L13

Leiss, Abraham

Loads, Aerodynamic -

4

(1.1.3.3)

Flow, Jet-Mixing

CONFIDENTIAL

Static-pressure surveys were made on a flat surface greatly altered the pressure distribution. The inteformed in the external flow from the presence of the gration of this pressure distribution for the converconvergent-divergent nozzle at a free-stream Mach that was located in the vicinity of the propulsive jet gent sonic nozzle resulted in a positive incremental number of 1.39. It was found that shock waves, propulsive jet, impinged on the flat surface and from both a convergent sonic nozzle and a normal force on the flat surface.

Copies obtainable from NACA, Washington

CONFIDENTIAL

CONFIDENTIAL

- Flow, Jet-Mixing
- (1.1.3.3)Exits

SIMULATED TURBOJET NACELLE AT A FREE-

Bressette and Abraham Leiss. April 1956. diagrs., photos., tabs. (NACA RM L55L13)

INVESTIGATION OF JET EFFECTS ON A FLAT

National Advisory Committee for Aeronautics

NACA RM L55L13

SURFACE DOWNSTREAM OF THE EXIT OF A STREAM MACH NUMBER OF 1.39. Walter E.

- (1.7.2.1.3)Interference, Jet -Missiles. લં છ
- (4.1.1.1)Loads, Aerodynamic -Bressette, Walter E. Wings 4

CONFIDENTIAL

Static-pressure surveys were made on a flat surface

NACA RM L55L13 Leiss, Abraham

CONFIDENTIAL

Copies obtainable from NACA. Washington

greatly altered the pressure distribution. The inte-

propulsive jet, impinged on the flat surface and

gration of this pressure distribution for the conver-

gent sonic nozzle resulted in a positive incremental

normal force on the flat surface.

formed in the external flow from the presence of the

number of 1.39. It was found that shock waves,

convergent-divergent nozzle at a free-stream Mach that was located in the vicinity of the propulsive jet

from both a convergent sonic nozzle and a

NACA RM L55L13		CONFIL
National Advisory Committee for Aeronautics.		
INVESTIGATION OF JET EFFECTS ON A FLAT	<u></u>	1. Flow, Je
SURFACE DOWNSTREAM OF THE EXIT OF A		•
SIMULATED TURBOJET NACELLE AT A FREE-	ci ·	Exits
STREAM MACH NUMBER OF 1.39. Walter E.		Interfere
Bressette and Abraham Leiss. April 1956. 70p.		Missiles
diagrs., photos., tabs. (NACA RM L55L13)	4	Loads, 1
CONFIDENTIAL		Wings

Static-pressure surveys were made on a flat surface greatly altered the pressure distribution. The inteformed in the external flow from the presence of the convergent-divergent nozzle at a free-stream Mach number of 1.39. It was found that shock waves, gration of this pressure distribution for the converthat was located in the vicinity of the propulsive jet gent sonic nozzle resulted in a positive incremental propulsive jet, impinged on the flat surface and from both a convergent sonic nozzle and a normal force on the flat surface.

Copies obtainable from NACA, Washington

NACA RM L55L13

CONFIDENTIAL SIMULATED TURBOJET NACELLE AT A FREE-STREAM MACH NUMBER OF 1.39. Walter E. INVESTIGATION OF JET EFFECTS ON A FLAT SURFACE DOWNSTREAM OF THE EXIT OF A National Advisory Committee for Aeronautics diagrs., photos., tabs. (NACA RM L55L13) Bressette and Abraham Leiss. April 1956.

Static-pressure surveys were made on a flat surface that was located in the vicinity of the propulsive jet from both a convergent sonic nozzle and a

greatly altered the pressure distribution. The inteformed in the external flow from the presence of the convergent-divergent nozzle at a free-stream Mach number of 1.39. It was found that shock waves, gration of this pressure distribution for the convergent sonic nozzle resulted in a positive incremental propulsive jet, impinged on the flat surface and normal force on the flat surface.

Copies obtainable from NACA, Washington

DENTIAL

- et-Mixing
- (1. 1. 3. 3) (1. 4. 3)
 - (1.7.2.1.3)(4.1.1.1)Aerodynamic ence, Jet -
 - Bressette, Walter E. NACA RM L55L13 Leiss, Abraham Hiti

CONFIDENTIAL

CONFIDENTIAL

- (1.1.3.3)Flow, Jet-Mixing
 - (1.4.3)Interference, Jet - Missiles (1.7.2.1.3) Loads, Aerodynamic -બં છ 4
- Bressette, Walter E. Wings
 - NACA RM L55L13 Leiss, Abraham

CONFIDENTIAL

CONFIDENTIAL SIMULATED TURBOJET NACELLE AT A FREE-INVESTIGATION OF JET EFFECTS ON A FLAT STREAM MACH NUMBER OF 1.39. Walter E. SURFACE DOWNSTREAM OF THE EXIT OF A National Advisory Committee for Aeronautics Bressette and Abraham Leiss. April 1956. diagrs., photos., tabs. (NACA RM L55L13)

Static-pressure surveys were made on a flat surface greatly altered the pressure distribution. The inteformed in the external flow from the presence of the gration of this pressure distribution for the converconvergent-divergent nozzle at a free-stream Mach that was located in the vicinity of the propulsive jet gent sonic nozzle resulted in a positive incremental propulsive jet, impinged on the flat surface and number of 1.39. It was found that shock waves, from both a convergent sonic nozzle and a normal force on the flat surface.

Copies obtainable from NACA, Washington

NACA RM L55L13

SIMULATED TURBOJET NACELLE AT A FREE-INVESTIGATION OF JET EFFECTS ON A FLAT STREAM MACH NUMBER OF 1.39. Walter E. SURFACE DOWNSTREAM OF THE EXIT OF A National Advisory Committee for Aeronautics. Bressette and Abraham Leiss. April 1956. diagrs., photos., tabs. (NACA RM L55L13)

CONFIDENTIAL

Static-pressure surveys were made on a flat surface greatly altered the pressure distribution. The inteformed in the external flow from the presence of the gration of this pressure distribution for the converconvergent-divergent nozzle at a free-stream Mach that was located in the vicinity of the propulsive jet gent sonic nozzle resulted in a positive incremental number of 1.39. It was found that shock waves, propulsive jet, impinged on the flat surface and from both a convergent sonic nozzle and a normal force on the flat surface.

Copies obtainable from NACA, Washington

CONFIDENTIAL

- Flow, Jet-Mixing
- (1.1.3.3)
 - Missiles (1.7.2.1.3) Interference, Jet -બં અં
- (4.1.1.1) Loads, Aerodynamic -Wings 4
 - Bressette, Walter E. NACA RM L55L13 Leiss, Abraham

CONFIDENTIAL

CONFIDENTIAL

- Flow, Jet-Mixing
- (1.1.3.3)
 - Interference, Jet -બં બ
- Missiles (1.7.2.1.3) (4.1.1.1)Loads, Aerodynamic -Wings 4
 - Bressette, Walter E. NACA RM L55L13 Leiss, Abraham 二出出

