Faculté de Technologie Département ST (1^{ère} année) Durée : 1h30min

جابعة بحابة Tasdawit n Bgayet Université de Béjaia

Examen de rattrapage chimielI

Exercice 1:(9pts)

On considère une mole de gaz carbonique (gaz supposé parfait) à la température T_A =423K dans un volume V_A = 1 litre, et sous une pression P_A =3,52.10⁶ Pa. Ce gaz subit une détente adiabatique réversible jusqu'à un état B (A-B) où son volume vaut V_B =10 V_A , et sa température est T_B =196K. Le gaz subit ensuite une compression isotherme réversible qui l'amène à la pression initiale P_A (B-C). Le gaz est ensuite réchauffé jusqu'à la température T_A à pression constante (C-A).

Calculer P_B et V_C.

2- Tracer le cycle suivi par le gaz dans un diagramme de Clapeyron (p, V).

3- Calculer ΔU, ΔH, Q, W et ΔS au cours des trois transformations AB, BC et CA.

4- Calculer le travail et la quantité de chaleur au cours du cycle.

5- Calculer ΔU , ΔH et ΔS au cours du cycle.

6- Calculer le rendement de cette machine.

Donnée: $R = 8,31 \text{ J/mole.K. } \gamma = 1,33.$

Exercice 2:(4pts)

Un calorimètre de capacité calorifique $C=150J.K^{-1}$ contient une masse $m_1=200g$ d'eau à la température initiale $T_1=70^{\circ}C$. On y place un glaçon de masse $m_2=80g$ sortant du congélateur à la température -23°C. Déterminer la température d'équilibre du système. On suppose que le glaçon fond totalement et la température d'équilibre supérieure à la température de fusion. **Données:** $c_{p(H2O(liq))}=4,2J.g^{-1}.K^{-1}$, $c_{p(H2O(S))}=2,1J.g^{-1}.K^{-1}$, $L_{fus}=3.34.10^2J.g^{-1}$, T_{fus} (glace)=0°C.

Exercice 3:(7pts)

I- On considère la réaction suivante à 298K et P= 1atm :

 $CH_4(g) + NH_3(g) \rightarrow HCN(g) + 3H_2(g).$

1- Calculer l'enthalpie de la réaction à 298K.Donner la nature de cette réaction.

2- Calculer la chaleur de cette réaction à volume constant.

3- On élève la température à T'=393K. Calculer l'enthalpie de la réaction à cette température.

4- Calculer l'énergie de la liaison H-H.

<u>Données</u>: $\Delta H_{(C-H)}^0 = -410.9 \text{KJ/mol}, \Delta H_{Sub(C)}^0 = +718.4 \text{ KJ/mol}.$

Composé	$NH_3(g)$	CH ₄ (g)	HCN	$H_2(g)$
ΔH _f (KJ.mol 1)	-46,2	-74,9	130	-
Cp (J.K-1.mol-1)	34,30	35.57	77,84	28,80

- II- Connaissant les chaleurs de combustion exothermiques de C₂H₄Cl₂ gazeux: 1539,65 KJ/mol, et sachant que les chaleurs de formation de CO₂ et de H₂O valent respectivement: -392,5 KJ/mol et -285,8 KJ/mol.
- 1- Écrire la réaction de combustion deC2H4Cl2.

2- Déduire l'enthalpie standard de formation de C2H4Cl2.

3- Connaissant l'enthalpie standard de formation de C₂H₄ gazeux: 30,8 KJ/mol, calculer la chaleur mise en jeu dans la réaction : C₂H₄ + Cl₂ → C₂H₄Cl₂.

