Continuous Optimization

Chapter 3: Constrained Optimization

1 Definitions

In this chapter we will consider constrained optimization problems with the following shape

$$\min_{x \in C} f(x) \\
\text{s.t. } x \in C$$
(1)

Definition 1.1 (Convex Set). A set C is said to be convex if given $x_1, x_2 \in C$ and $\lambda \in [0, 1]$, then $\lambda x_1 + (1 - \lambda)x_2 \in C$.

Definition 1.2 (Convex Function). A function $f: C \to \mathbb{R}$ defined on a convex set C is said to be convex if given $x_1, x_2 \in C$ and $\lambda \in [0, 1]$, then

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2).$$

Definition 1.3 (Strictly Convex Function). A function $f: C \to \mathbb{R}$ defined on a convex set C is said to be strictly convex if given $x_1, x_2 \in C$ and $\lambda \in [0, 1]$, then

$$f(\lambda x_1 + (1 - \lambda)x_2) < \lambda f(x_1) + (1 - \lambda)f(x_2).$$

A function is called concave if -f is convex and strictly concave if -f is strictly convex.

2 First Order Characterizations of Convex Functions

Theorem 2.1 (Gradient inequality for convex functions). Let $f \in C^1(C)$, where C is convex. Then f is convex over C if and only if

$$f(x) + \nabla f(x)^T (y - x) \le f(y) \quad \forall x, y \in C.$$

Proof. Exercise. \Box

Proposition 2.1 (Sufficiency of stationarity under convexity). Let $f \in C^1(C)$, where $C \subseteq \mathbb{R}^n$ is convex. Suppose that $\nabla f(x^*) = 0$ for some $x^* \in C$. Then x^* is a global minimizer of f over C.

3 Stationarity

Definition 3.1 (Stationary points of convex constrained problems). Let $f \in C^1(C)$, where C is closed and convex. Then x^* is a stationary point of (1) if $\nabla f(x^*)(x-x^*) \geq 0 \ \forall x \in C$.

In words, this means that there are no feasible descent directions of f at x^* . This suggests that stationarity is in fact a necessary condition for a local minimum of (1).

Theorem 3.1 (Stationarity as necessary optimality condition). Let $f \in C^1(C)$, where C is closed and convex and let x^* be a local minimum of (1). Then x^* is a stationary point of (1).

Proof. Let x^* be a local minimum of f and assume by contradiction that is not a stationary point of (1). Then there exists $x \in C$ such that $\nabla f(x^*)(x-x^*) < 0$. Therefore, f'(x,d) < 0, where $d=x-x^*$. Hence, by Lemma 1.1 of Chapter 2, there exists $\epsilon \in (0,1)$ such that $f(x^*+td) < f(x^*) \ \forall t \in (0,\epsilon)$. Since C is convex, we have that $x+td=(1-t)x^*+tx \in C$, leading to the conclusion that x^* is not a local optimum of (1), which is a contradiction.

Theorem 3.2 (Stationarity as necessary optimality condition). Let $f \in C^1(C)$, where C is closed and convex and f is also convex. Let x^* be a local minimum of (1). Then x^* is a stationary point of (1) iff x^* is a optimal solution of (1).

Proof. The necessity of the stationarity condition follows from Theorem 3.1. To prove the sufficiency, assume that x^* is a stationary point of (1) and let $x \in C$. Then

s

References