

ENCODER

Presented by

Nabanita Das

Assistant Professor, Department of CSE & IT

ENCODER

- An Encoder is a combinational logic circuit. It performs the inverse operation of Decoder.
- An Encoder converts an active input signal into a coded output signal.
- It has '2N' inputs and 'N' outputs.
- An Encoder has '2N' input lines, only one of which is activated at a given time, and produces an N-bit output code, depending on which input is activated.

	INP	UTS		OUTPUTS			
D_0	D_1	D_2	D_3	A	В		
1	0	0	0	0	0		
0	1	0	0	0	1		
0	0	1	0	1	0		
0	0	0	1	1	1		

ENCODER

- Encoders are used to translate the rotary or linear motion into a digital signal. Rotary encoders are a type of sensor that measures the rotation of a mechanical shaft.
- The difference between Decoder and Encoder is that Decoder has Binary Code as an input while Encoder has Binary Code as an output.
- Encoder is an Electronics device that converts the analog signal to digital signal such as BCD Code.
- The most common technique to change an analog signal to digital data is called pulse code modulation (PCM). A PCM encoder has the following three processes:
 - a.Sampling
 - b.Quantization
 - c.Encoding

Types of Encoders

- i. Priority Encoder
- ii. Decimal to BCD Encoder
- iii. Octal to Binary Encoder
- iv. Hexadecimal to Binary Encoder

PRIORITY ENCODER:

- As the name indicates, the priority is given to inputs line.
- If two or more input lines are high at the same time i.e 1 at the same time, then the input line with high priority shall be considered.
- Block diagram and Truth table of Priority Encoder are shown below.

TRUTH TABLE:

	INP	UTS		OUT	PUTS	V
D_3	D_2	$D_1 \mid D_0 \mid$		Y_1	Y_0	
0	0	0	0	X	X	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

- There are four inputs D_0 , D_1 , D_2 , D_3 and two outputs Y_1 and Y_2 .
- D_3 has highest priority and D_0 is at lowest priority.
- If $D_3=1$ irrespective of other inputs then output $Y_1Y_0=11$.
- D₃ is at highest priority so other inputs are considered as don't care.

K-map for Y_1 and Y_0

$LOGIC\ DIAGRAM\ OF\ PRIORITY\\ ENCODER$

DECIMAL TO BCD ENCODER

It has ten inputs corresponding to ten decimal digits (from 0 to 9) and four outputs (A,B,C,D) representing the BCD.

Truth table

INPUTS								BCD OUTPUTS					
0	1	2	3	4	5	6	7	8	9	A	В	C	D
1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	0	1	0	1
0	0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	0	0	1	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	0	1	1	0	0	1

- From Truth Table it is clear that the output Ais HIGH when input is 8 OR 9 is HIGH Therefore A=8+9
- The output B is HIGH when 4 OR 5 OR 6 OR 7 is HIGH Therefore B=4+5+6+7
- The output C is HIGH when 2 OR 3 OR 6 OR 7 is HIGH Therefore C=2+3+6+7
- Similarly D=1+3+5+7+9

DECIMAL TO BCD ENCODER

OCTAL TO BINARY ENCODER

- It has eight inputs and three outputs.
- Only one input has one value at any given time.
- Each input corresponds to each octal digit and output generates corresponding Binary Code.

TRUTH TABLE

INPUT								OUTPUT			
D_0	D_1	D_2	D_3	D_4	D_5	D_6	D_7	X	Y	Z	
1	0	0	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	0	0	1	0	
0	0	0	1	0	0	0	0	0	1	1	
0	0	0	0	1	0	0	0	1	0	0	
0	0	0	0	0	1	0	0	1	0	1	
0	0	0	0	0	0	1	0	1	1	0	
0	0	0	0	0	0	0	1	1	1	1	

From Truth table

$$X = D_4 + D_5 + D_6 + D_7$$

$$Y = D_2 + D_3 + D_6 + D_7$$

$$Z = D_1 + D_3 + D_5 + D_7$$

- It is assume that only one input is HIGH at any given time. If two outputs are HIGH then undefined output will produced. For example D_3 and D_6 are HIGH, then output of Encoder will be 111. This output neither equivalent code corresponding to D_3 nor to D_6 .
- To overcome this problem, priorities should be assigned to each input.
- Form the truth table it is clear that the output X becomes 1 if any of the digit D₄ or D₅ or D₆ or D₇ is 1.
- D_0 is considered as don't care because it is not shown in expression.
- If inputs are zero then output will be zero. Similarly if D_0 is one, the output will be zero.

LOGIC DIAGRAM:

