Compito n. 0	25/01/2024	1

Vome	Cognome	N	Numero di matricola		

Appello Invernale di Fisica del 25/01/2024.

Istruzioni per la consegna: Consegnare il presente foglio compilato, marcando le risposte corrette; per lo svolgimento, usare solo fogli bianchi forniti dai docenti; scrivere solo su un lato di ogni foglio; scrivere il proprio nome su ogni foglio consegnato; indicare chiaramente a quale domanda si riferisce ogni parte dello svolgimento; motivare i passaggi svolti.

Costanti numeriche: intensità dell'accelerazione gravitazionale in prossimità della superficie terrestre: $q = 10.0 \text{ m/s}^2$.

Problema 1: Un oggetto viene lanciato dal suolo con velocità di modulo v_0 e angolo di lancio α . Giunto al punto di massima altezza, l'oggetto si separa in due proiettili 1 e 2, di masse m_1 ed m_2 , per mezzo di una forza interna che compie un lavoro \mathcal{L} . Il proiettile 1 percorre una traiettoria verticale verso il suolo e urta, in modo totalmente anelastico, una piattaforma orizzontale

di ma	ssa <i>M</i> . La piattaforma	è sollevata dal suol	o per mezzo di un	a molla di costante	elastica k e lunghe	ezza a riposo ℓ_0 .
	lizzino i seguenti valori (60 N/m, $\ell_0=1.10$ m.	numerici: $v_0 = 21.0$	0 m/s, $\alpha = 0.780$	rad, $m_1 = 1.10 \text{ kg}$, $m_2=1.10$ kg, ${\cal L}$	= 370 J, <i>M</i> = 6.30 kg
Deter	minare:					
1.1)	il tempo $t_{\rm M}$ al quale l'o $t_{\rm M}$ [s] $=$	oggetto raggiunge il A 1.10	punto di massima B 2.35	a altezza; X 1.48	D 0.790	E 1.33
1.2)	la componente orizzont $p_{2,x}$ [kg m/s] =	tale $p_{2,x}$ della quant \mathbf{X} 32.8	tità di moto del pr B 118	oiettile 2 nell'istant C 89.2	te successivo a $t_{\rm M}$; D $\boxed{61.6}$	E 74.5
1.3)	l'energia cinetica E_1 de E_1 [J] =	el proiettile 1 nell'is A 238	tante successivo a B 83.6	$t_{M};$ X 62.4	D 185	E 219
1.4)	la distanza h_0 della piat h_0 [m] =	ttaforma dal suolo X 1.02	un istante prima d B 0.822	ell'urto; C 3.56	D 1.21	E 2.23
1.5)	il modulo v_{tot} della velo v_{tot} [m/s] =	ocità del sistema pia X 2.62	attaforma+proiett B 2.48	ile un istante dopo C 2.28	l'urto; D 2.10	E 7.74
1.6)	il periodo T di oscillazio T [s] =	one del sistema pia A 0.790	ttaforma+proiettil X 0.620	e; C 0.292	D 0.920	E 0.392
1.7)	il modulo a dell'accelera a [m/s ²] =	azione del sistema A 9.97	piattaforma+proie B 40.6	ettile quando è trasc C 24.2	corso un intervallo d X 17.7	di tempo $T/8$ dall'urto E $\boxed{31.0}$

Problema 2: Un cilindro di massa M e raggio R è libero di ruotare senza attrito attorno al proprio asse. La superficie del cilindro è in contatto con una sottile guaina di massa m, che circonda il cilindro. Tra le due superfici è presente attrito. Inizialmente il cilindro ruota con velocità angolare ω_0 e la guaina è ferma. L'attrito causa una accelerazione angolare α della guaina, fino al tempo t_1 , quando cilindro e guaina ruotano alla stessa velocità angolare. Si utilizzino i seguenti valori numerici: $M=5.90~{\rm kg}$, $R = 0.240 \text{ m}, m = 1.30 \text{ kg}, \omega_0 = 13.0 \text{ rad/s}, \alpha = 1.50 \text{ rad/s}^2.$

Determinare:

