

上海交通大学

计算机视觉

教师: 赵旭

班级: AI4701

2024 春

11. 运动特征-光流

主要内容

- * 运动场
- ※ 光流
- * Lucas-Kanade 算法

运动和感知组织

* 有些情况下,运动是唯一线索

slides from Grauman

运动和感知组织

* 甚至很少的运动数据就可以唤起强烈的感知

运动和感知组织

运动信息可以做什么?

- * 估计三维结构
- * 物体分割
- * 学习动态模型
- * 识别动作和事件
- * 提升视频质量(运动补偿)

举例: 运动分割

* 运动分割: 将视频分割为多个具有运动一致性的运动物体

运动: 视频角度

* 视频: 时序图像序列

运动估计的方法

- * 基于稀疏特征的方法: 点对应
 - * 提取视觉特征(角点、纹理区域), 然后跟踪这些特征
 - * 虽然是稀疏的运动场,但是更易达成鲁棒的跟踪
 - * 适合场景: 图像运动较大
- * 密集的像素级运动估计
 - * 从图像像素的时空亮度变化中恢复图像运动
 - * 不需要计算特征
 - * 密集运动场,对表观的变化更敏感
 - * 适合场景:图像运动较小(<10像素)

运动场

* 二维图像运动场是三维场景运动的二维图像投影

运动场和视差

- * **P**(t): 三维运动点
 - ❖ 速度: V = dP/dt
- * **p**(*t*) = (*x*(*t*), *y*(*t*)): **P**的图像 投影
 - * 图像点的运动速度 $\mathbf{v} = (v_x = dx/dt, v_y = dy/dt)$
 - * 这些构成了图像运动场

运动场和视差

$$\mathbf{V} = (V_x, V_y, V_Z) \quad \mathbf{p} = f \frac{\mathbf{P}}{Z}$$

为了求解 v, 对p关于t求导:

$$\mathbf{v} = f \frac{Z\mathbf{V} - V_z \mathbf{P}}{Z^2}$$

$$v_x = \frac{f V_x - V_z x}{Z} \qquad v_y = \frac{f V_y - V_z y}{Z}$$

图像运动是三维运动和三维点深度的函数

Quotient rule:

$$D(f/g) = (g f' - g' f)/g^2$$

运动场和视差

纯平移: V 处处为常数

$$v_{x} = \frac{fV_{x} - V_{z}x}{Z}$$

$$v = \frac{1}{Z}(\mathbf{v}_{0} - V_{z}\mathbf{p}),$$

$$v_{y} = \frac{fV_{y} - V_{z}y}{Z}$$

$$\mathbf{v}_{0} = (fV_{x}, fV_{y})$$

Vz 非零: 所有的运动向量指向(或远离) v₀, 平移方向的消影点

Vz 为零:运动与图像平面平行,所有的运动向量平行

运动视差

* 运动向量的长度与深度成反比关系, 距离摄像头越近, 运动越快(在图像平面内)

$$v_{x} = \frac{fV_{x} - V_{z}x}{Z}$$

$$v_{y} = \frac{fV_{y} - V_{z}y}{Z}$$

Figure 1.2: Two images taken from a helicopter flying through a canyon and the computed optical flow field.

摄像机运动引起的运动场

Zoom out

Zoom in

Pan right to left

光流

- * 定义: 图像中亮度模式的显著运动
- * 理想情况下,光流和运动场相同
- * 但是,即使没有实际运动,光照的变化也会引起亮度模式的显著运动

显著运动~=运动场

Apparent motion ~= motion field

Figure 12-2. The optical flow is not always equal to the motion field. The a smooth sphere is rotating under constant illumination—the image does not change, yet the motion field is nonzero. In (b) a fixed sphere is illuminated by moving source—the shading in the image changes, yet the motion field is zero.

光流估计

- * 给定时序相邻的两帧图像,估计显著运动场
- * 光流三假设
 - ❖ 亮度恒常假设: 相同的点的投影在每帧图像中看起来相同
 - * 微小运动假设: 每个点的运动幅度较小
 - * 空间一致性: 相同局部邻域内的点具有相近的运动

空间一致性

- * Neighboring points in the scene typically belong to the same surface and hence typically have similar motions.
- * Since they also project to nearby points in the image, we expect spatial coherence in image flow.

亮度恒常

Figure 1.5: Data conservation assumption. The highlighted region in the right image looks roughly the same as the region in the left image, despite the fact that it has moved.

亮度恒常约束

$$(x + u, y + v)$$

$$I(x,y,t)$$

Brightness Constancy Equation:

$$I(x, y, t-1) = I(x + u(x, y), y + v(x, y), t)$$

Linearizing (assuming small (u,v)) using Taylor series expansion:

$$I(x,y,t-1) \approx I(x,y,t) + I_x \cdot u(x,y) + I_y \cdot v(x,y)$$

So

shorthand: $I_x = \frac{\partial I}{\partial x}$

$$I_x \cdot u + I_y \cdot v + I_t \approx 0$$

How many equations and unknowns per pixel?
 One equation, two unknowns

$$I_x \cdot u + I_y \cdot v + I_t = 0$$

Intuitively, what does this constraint mean?

$$\nabla I \cdot (u, v) + I_t = 0$$

 The component of the flow perpendicular to the gradient (i.e., parallel to the edge) is unknown

If (u, v) satisfies the equation, so does (u+u', v+v') if $\nabla I \cdot (u', v') = 0$

$$I_{x}u + I_{y}v + I_{t} = 0$$

$$\nabla I^{T}\mathbf{u} = -I_{t}$$

$$\mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix} \quad \nabla I = \begin{bmatrix} I_{x} \\ I_{x} \end{bmatrix}$$

At a single image pixel, we get a line:

- ❖ 因此,我们最多可以得到"法向量流" 在一点上, 仅可检测到垂直于亮度梯度的运动
- *解决方案:在中心像素的周围取更多的像素点

光圈问题

光圈问题

"理发店杆"错觉

http://en.wikipedia.org/wiki/Barberpole_illusion

Barber pole illusion

光圈问题求解

- * 如何得到更多的方程?
- * **空间一致性假设:** 假设像素周边邻域的其他像素具有相同的 (u,v)
 - * 因此, 5x5 窗口可以给出 25个方程

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

$$\begin{array}{cccc}
A & d = b \\
25 \times 2 & 2 \times 1 & 25 \times 1
\end{array}$$

RGB 版本: 25*3=75

$$0 = I_t(\mathbf{p_i})[0, 1, 2] + \nabla I(\mathbf{p_i})[0, 1, 2] \cdot [u \ v]$$

$$\begin{bmatrix} I_{x}(\mathbf{p_{1}})[0] & I_{y}(\mathbf{p_{1}})[0] \\ I_{x}(\mathbf{p_{1}})[1] & I_{y}(\mathbf{p_{1}})[1] \\ I_{x}(\mathbf{p_{1}})[2] & I_{y}(\mathbf{p_{1}})[2] \\ \vdots & \vdots & \vdots \\ I_{x}(\mathbf{p_{25}})[0] & I_{y}(\mathbf{p_{25}})[0] \\ I_{x}(\mathbf{p_{25}})[1] & I_{y}(\mathbf{p_{25}})[1] \\ I_{x}(\mathbf{p_{25}})[2] & I_{y}(\mathbf{p_{25}})[2] \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_{t}(\mathbf{p_{1}})[0] \\ I_{t}(\mathbf{p_{1}})[1] \\ I_{t}(\mathbf{p_{1}})[2] \\ \vdots \\ I_{t}(\mathbf{p_{25}})[0] \\ I_{t}(\mathbf{p_{25}})[1] \\ I_{t}(\mathbf{p_{25}})[1] \end{bmatrix}$$

Note that RGB is not enough to disambiguate because R, G & B are correlated just provides better gradient

光圈问题求解

* 问题: 方程数多于未知数

$$A \quad d = b$$

$$25 \times 2 \quad 2 \times 1 \quad 25 \times 1$$

$$25 \times 2 \quad 2 \times 1 \quad 25 \times 1$$
minimize $||Ad - b||^2$

Solution: solve least squares problem

* 最小二乘解(关于d):

$$(A^{T}A) \ d = A^{T}b$$

$$2 \times 2 \qquad 2 \times 1 \qquad 2 \times 1$$

$$\begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_{x}I_{t} \\ \sum I_{y}I_{t} \end{bmatrix}$$

- * 求和: K x K 窗口内的所有像素
- 算法: Lucas & Kanade (1981)

有解的条件

- * 什么情况下可求解?
 - ◆ ATA s可逆
 - * ATA 不是太小
 - * ATA的特征值 λ_1 和 λ_2 不是太小
 - * ATA 为非病态矩阵
 - $\frac{\lambda_1}{\lambda_2}$ 不太大 $(\lambda_1 = 大特征值)$

边缘

* $\lambda_1, \sqrt{\lambda_2}$ $\sum \nabla I(\nabla I)^T$

$$\sum
abla I (
abla I)^T$$

低纹理区域

* $1 \setminus \lambda_1, 1 \setminus \lambda_2$ $\sum \nabla I(\nabla I)^T$

$$\sum
abla I (
abla I)^T$$

高纹理区域

* 大 λ_1 , 大 λ_2

$$\sum \nabla I(\nabla I)^T$$

光圈问题得到解决!

光圈问题得到解决!

思考

- ◆ 本质上,光流问题需用到两幅图像,但是
 - * 可通过观察一副图像评估敏感性!
 - * 可判断哪些像素更容易跟踪,哪些更难
 - * 在特征跟踪时很有用

Lukas-Kanade算法的问题

- * 出现问题的潜在诱因?
 - ♦ 假设 ATA 是性质良好的可逆阵
 - * 假设图像中的噪声不多
- * 下列假设不满足时
 - * 亮度恒常性不满足
 - * 不是小的运动
 - ❖ 一个点的运动和邻域点不一致
 - * 窗口太大
 - * 怎么确定理想的窗口大小

- * 这样的运动是不是足够小?
 - * 大于一个像素
 - * 如何解决?

小运动假设

- * 当小运动假设不满足时,如何解决?
 - * 降低分辨率!

Coarse-to-fine 光流估计

结果

结果

From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

光流

- * 运动还是表观?
 - * 小运动假设
 - * 亮度恒常性