Designing and fitting neural ODEs

Background and preliminary results

Elisabeth Rösch

University of Melbourne

9 July 2019

Example

Motivation

Ordinary Differential Equation (ODE)

$$\frac{\delta u}{\delta t} = f(u)$$

u: Species, t: Time, f: Function

Neural ODE [Chen et al., 2018]

$$\frac{\delta u}{\delta t} = f(u)$$

u: Species, t: Time, f: Neural net

In Julia: DiffEqFlux.jl [Rackauckas et al., 2019]

Fitting neural ODEs: Optimize loss functions

Before and after training: Observed and predicted species over time

7 / 22

Loss functions

- **1** L2
- Collocation based
- Mixtures

Loss function: L2

Loss function: Collocation based [Liang and Wu, 2008]

Loss function: Mixture

Performance: Accuracy

a. L2 norm as loss function b. Collocation as loss c. Mixture loss function

Performance: Convergence

a. L2 norm as loss function b. Collocation as loss c. Mixture loss function

Performance: Time

Effect on performance: Data size

Biological application: Van der Pol Oscillator

Biological application: FIND EASY

to add

Biological application: MEK-ERK dynamics [Filippi et al., 2016]

Biological application: Collocation based model

Biological application: Collocation based model with multiple shooting

to add

Outlook: Hybrid modeling

Acknowledgements

Supervision/Mentoring:

- Michael Stumpf, Heejung Shim
- Chris Rackauckas

Support/Discussions:

- Julia community
 Differential Equations/ Machine Learning Chris Rackauckas, Lyndon White.
- TheoSysBio group Melbourne:
 Lucy Ham, Anissa Guillemin, Megan Anne Coomer, Leo Diaz.
- TheoSysBio group London: David Schnoerr, Rowan Brackston, Ivan Croydon Veleslavov, Leanne Massie, Tom Layshon.

Bibliography

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential equations.

CoRR.

Filippi, S. et al. (2016).

Robustness of MEK-ERK Dynamics and Origins of Cell-to-Cell Variability in MAPK Signaling.

Cell Reports, 15(11):2524-2535.

Liang, H. and Wu, H. (2008).

Parameter estimation for differential equation models using a framework of measurement error in regression models.

Journal of the American Statistical Association.

Rackauckas, C., Innes, M., Ma, Y., Bettencourt, J., White, L., and Dixit, V. (2019). Diffeqflux.jl - a julia library for neural differential equations.