Legile lui DeMorgan:

 $\overline{x\vee y} = \overline{x} \wedge \overline{y}; \overline{x\wedge y} = \overline{x} \vee \overline{y}$

Decala unei expresii:

Dacă $E(V_1, ..., V_n)$ este o expresie, atunci expresia decală: $E^d(V_1, ..., V_n)$ se obtine interschimbând 1 cu 0 si \vee cu \wedge .

 $E(x, y, z) = x \lor (y \land \overline{z}) \Rightarrow E^d(x, y, z) = x \land (y \lor \overline{z})$

Principiul dualitătii: $E_1(V_1,...,V_n) = E_2(V_1,...,V_n) \Leftarrow$

 $E_1^d(V_1, ..., V_n) = E_2^d(V_1, ..., V_n)$

 $(A, \vee, \wedge, \bar{}, 0, 1)$ Algebră Boole:

 $\bullet x \to y := \overline{x} \vee y$

 $x \le y \Leftrightarrow x \to y = 1$

$$x \rightarrow (y \rightarrow x) = 1, (x \rightarrow y) \rightarrow ((y \rightarrow z) \rightarrow (x \rightarrow z)) = 1$$

 $\bullet x \leftrightarrow y := (x \to y) \land y \to x$

 $x \leftrightarrow y = 1 \Leftrightarrow x = y$

 $\overline{x} \Leftrightarrow \overline{y} = x \leftrightarrow y, (x \leftrightarrow y) \leftrightarrow z = x \leftrightarrow (y \leftrightarrow z)$

 $\bullet x + y := (x \leftrightarrow y)^d = (\overline{x} \land y) \lor (\overline{(y)} \lor x)$

x + x = 0, x + y = y + x

 $x + z \le (x + y) \lor (y + z)$

Operatia $(x, y) \mapsto x + y$ are proprietatile unei distante.

Definim $x \cdot y = x \wedge y$

 $R(A) = (A, \vee, \wedge, \bar{0}, 0, 1)$ este <u>inel Boole</u> cu $x \cdot x = X$, or. $x \in A$

 $\bullet x \cdot y + y \cdot x = 0, \ y \cdot x = -(x \cdot y)$

 $(x+y) \cdot (x+y) = x+y \Rightarrow x+x \cdot y + y \cdot x + y = x+y$

 $\bullet x + x = 0, x = -x$

 $\bullet x \cdot y = y \cdot x$

 $x \cdot y = -(x \cdot y) = y \cdot x$

Definim $x \lor y := x + y + x \cdot y \text{ si } x \land y = x \cdot y$

 $(A, \bigcap, \bigcup, \bar{}, \emptyset, A)$ este algebră Boole de functii

 $\bullet 0, 1, \in F; f_1, f_2 \in F \Rightarrow f_1 \lor f_2, f_1 \land f_2 \in F, \overline{f_1} \in F$

• or. $x \in X$, 0(x) = 0, 1(x) = 1, $\overline{f_1} = \overline{f_1(x)}$

 $(f_1 \vee f_2)(x) = f_1(x) \vee f_2(x); (f_1 \vee f_2)(x) = f_1(x) \wedge f_2(x)$

S este subalgebră a lui A dacă:

 $\bullet(A, \vee, \overline{\wedge, 0, 1})$ algebră Boole; $S \subseteq A$

 $\bullet 0, 1 \in S; x, y \in S \Rightarrow x \lor x, x \land y, \overline{x} \in S$

O functie $f:A\to B$ este morfism de algebră Boole dacă:

 $\bullet f(O_A) = O_B, f(1_A) = 1_B$

 $\bullet f(\bar{(}x)) = f(x)$

 $\bullet f(x \vee_A y) = f(x) \vee_B f(y), f(x \wedge_A y) = f(x) \wedge_B f(y)$

Un morfism injectiv se numeste <u>scufundare</u>

Un <u>izomorfism</u> este un morfism bijectiv.

Algebrele Boole A si B sunt izomorfe dacă există un izomor-

fism $f: A \to B$. În acest caz scriem $A \simeq B$

O congruentă pe A este o relatie $\equiv \subseteq AxA$ care verifică

•

este relatie de echivalenta

 $\bullet x \equiv y \Rightarrow \overline{x} \equiv \overline{y}$

 $\bullet x_1 \equiv y_1 \text{ si } x_2 \equiv y_2 \Rightarrow x_1 \lor x_2 \equiv y_1 \lor y_2, \, x_1 \land x_2 \equiv y_1 \land y_2$

Constructia algebrei cât:

 $\overline{\text{Pe }A/\equiv \text{definim:}}$

 $\hat{x} \lor \hat{y} = \widehat{x \lor y}, \, \hat{x} \land \hat{y} = \widehat{x \land y}, \, \hat{\bar{x}} = \bar{\hat{x}}$

Atunci $(A/\equiv, \vee, \wedge, \bar{0}, \hat{1})$ este algebră Boole

O submultime $F \subseteq A$ s.n. filtru daca:

 $1 \in F$; $x \in F$, $x \subseteq y \Rightarrow y \in F$, $x, y \in F \Rightarrow x \land y \in F$

Un filtru e propriu dacă $0 \notin F(F \neq A)$

 $0 \in F, x \in \overline{F, x \le y} \Rightarrow y \in F, x, y \in F \Rightarrow x \land y \in F$

Un ideal e propriu dacă $1 \notin F(F \neq A)$

Teoremă

(1) Dacă $F \subseteq A$ filtru, definim $\equiv F \subseteq AxA$ prin:

 $x \equiv_F y \Leftrightarrow x \leftrightarrow y \in F \Leftrightarrow x \to y \in F \text{ si } y \to x \in F$

(2) Dacă $\equiv \not\subseteq AxA$ este o congruentă pe A definim:

 $F_{\equiv} := \hat{1} = \{ x \in A/x \equiv 1 \}$

Atunci F_{\equiv} este filtru în A

(3) Dacă $F\subseteq A$ este un filtru si $\equiv\subseteq AxA$ este o congruentă: Atunci $F=F_{\equiv_F},$ si $\equiv=\equiv_{F_\equiv}$

Un <u>ultrafiltru</u> este un filtru care verifică:

(1) $x \in F \Leftrightarrow \overline{x} \notin F$ or. $x \in A$

(2) $x \lor y \in F \Leftrightarrow x \in F \text{ sau } y \in F \text{ or. } x, y \in F$

(3) $F \subseteq U$, U filtru propriu $\Rightarrow F = U$

Lema lui Zorn

Fie (R,\leq) mpo cu proprietatea că or. lant $C\subseteq P$ are majorant

Atunci P are cel putin un element maximal.

 $\underline{\mathbf{P}} \colon \mathrm{Dac} \Breve{a} \ x \in A, \ x \neq 0$ atunci exista U un ultrafiltru a.î. $x \in U$

 \Rightarrow Multimea ultrafilt
relor este nevidă

 $\Rightarrow \bigcap \{\bigcup \subseteq A / \cup \text{ultrafiltru}\} = \{1\}$

Teorema de reprezentare a lui Stone:

Pt. orice algebră Boole A există X o multime si un morfism injectiv $\alpha:A\to P(x)$

Elementele minimale din $A \setminus \{0\}$ se numesc <u>atomi</u>. Algebra A s.n. <u>atomică</u> dacă pentru or. $x \neq 0$ există un atom $a \in A$ a.î. $a \subseteq x$. <u>Teoremă</u>: Dacă A o algebră Boole finită, atunci $\simeq P(At(A))$ si izomorfismul este: $d: A \to P(At(A)), d(x) = \{a \in A \mid a \text{ atom}, a \leq x\}$, or. $x \neq 0$