MATH 10C: Calculus III (Lecture B00)

mathweb.ucsd.edu/~ynemish/teaching/10c

Today: Calculus of vector-valued functions. Tangent lines Next: Strang 3.4

Week 4:

homework 4 (due Friday, October 27)

Derivatives of vector-valued functions The derivative of a vector-valued function is r'(F) = provided that the limit exists. If Fit) exists, we say that If is differentiable at every point t from the interval (a,b), we say that it is differentiable on (a,b). Notice that if 7(+)= < (,(+), (2(+), (5(+)), then

(t) =

Calculus of vector-valued functions

Example Let $\vec{r}(t) = \langle \sin t, e^{2t}, t^2 - 4t + 2 \rangle$

Summary

Then

Calculus concepts (limit, continuity, derivative) are applied to vector-valued functions componentwise (apply to each component separately).

If it (+) represents the position of some object, then

• F'(+) is the velocity of this object (IIF'(+)II is speed)
• F''(+) is the acceleration of the object

Tangent vectors. Tangent lines

Let $\vec{r}(t)$ be a vector-valued function. Suppose that \vec{r} is differentiable at to.

 $\vec{r}(t) = \langle \cos t, \sin t \rangle$

Then vector r'(t) is

The targent line to is the line given by the vector equation

Tangent vectors. Tangent lines The tangent line 2(t) to r(t) at to has the Example Imagine satellite orbiting a planet. If the planet disappears at time to, then

Tangent vectors. Tangent lines Example Let $\vec{r}(t) = \langle t^2 - 2, e^{3t}, t \rangle$ Find the tangent line to P(t) at to=1. First, find the tangent vector at to=1 Next, find the position at to=1 Finally, we can write the equation for the tangent line Definition We call the principal unit tantent vector to raft. (provided || r'(t) || ≠ 0)

Integrals of vector-valued functions

Integration of vector-valued functions is done

and if a < b

$$\int_{0}^{2} (\sin t \cdot \vec{i} + (t^{2} + 2t) \cdot \vec{j} + e^{2t} \vec{k}) dt =$$

Integrals of vector-valued functions

Fundamental theorem of calculus

Let $f: [a,b] \to \mathbb{R}^3$ be a continuous vector-valued function.

Let $\vec{F}: [a,b] \to \mathbb{R}^3$ be such that $\vec{F}' = \vec{f}$ (\vec{F} is antiderivative of \vec{f}). Then

In particular,

- if $\vec{v}(t)$ is the velocity vector, $\vec{r}(t)$ is the position, then
 - gives the
 - · if a (t) is the acceleration, then

Properties of derivatives of vector-valued functions Thm 3.3. Let r(t) and u(t) be differentiable vector-valued functions, let f(t) be a differentiable scalar function, let c be a scalar.

$$(iii) \stackrel{d}{=} [f(t) \vec{r}(t)] =$$

$$(iv) \frac{dt}{dt} [\vec{r}(t) \cdot \vec{u}(t)] =$$

$$\frac{d}{dt} \left[\Gamma(t) \cdot \iota \iota (t) \right] =$$

$$(v) \frac{d}{dt} [\vec{r}(t) \times \vec{u}(t)] =$$

(product with scalar function)

(dot product)

$$(vi) \frac{d}{dt} [\vec{r}(f(t))] =$$

$$\frac{\text{Proof}}{\text{dt}} \left(iv \right) \frac{d}{dt} \left[\vec{r}(t) \cdot \vec{u}(t) \right]$$

Motion in space If $\vec{r}(t) = \langle x(t), y(t), z(t) \rangle$ is the position of the particle at time t, then • v(t)= ('(t)= <x'(t), y'(t), z'(t)) is the velocity, and • a (t) = r"(t) = (x"(t), y"(t), 2"(t)) is the acceleration, and · V(t) = || V(t) || = V(x'(t)) + (y'(t)) + (z'(t)) is the speed Example: Projectile motion Consider an object moving with initial velocity v. but with no forces acting on it other than gravity (ignore the effect of air resistance). Newton's second law: F= ma, where m = mass of the object Earth's gravity: IFg 11 = mg where g = 9.8 m/s2

Projectile motion Fix the coordinate system: Fg = -mg j = <0, -mg, 0> forward backward down Earth's gravity is the only Newton's second law: F= ma force acting on the object Earth's gravity: Fg = -mgj

Projectile motion

$$\vec{F}(t) = \vec{F}_g : m\vec{a}(t) = -mg \cdot \vec{j}$$

$$\vec{a}(t) = -g \cdot \vec{j} \quad (constant \ acceleration)$$
Since $\vec{a}(t) = \vec{v}'(t)$, we have $\vec{v}'(t) = -g \cdot \vec{j}$.

Take antiderivative: $\vec{v}(t) = \int -g \ dt \cdot \vec{j} + \vec{c}_1 = -gt \cdot \vec{j} + \vec{c}_1$

Determine \vec{c}_1 by taking $\vec{v}(0) = \vec{v}_0$ (initial velocity):

$$\vec{v}(0) = -g \cdot 0 \cdot \vec{j} + \vec{c}_1 = \vec{c}_1 = \vec{v}_0$$
This gives the velocity of the object:
$$\vec{v}(t) = -g \cdot t \cdot \vec{j} + \vec{v}_0.$$

Similarly, $\vec{v}(t) = \vec{r}'(t)$. By taking the antiderivative and $\vec{r}(0) = \vec{r}_0$.

$$\vec{r}(t) = \int \vec{v}(t) \ dt + \vec{c}_0 = \int (g \cdot t \cdot \vec{j} + \vec{v}_0) \ dt + \vec{c}_0 = -g \cdot t \cdot \vec{j} + t \cdot \vec{v}_0 + \vec{c}_0$$

$$\vec{r}'(0) = \vec{c}_0 = \vec{r}_0$$
, so $\vec{r}'(t) = -g \cdot t \cdot \vec{j} + t \cdot \vec{v}_0 + \vec{c}_0$

A projectile is shot by a howitzer with initial speed 800 m/s on a flat terrain. Determine the max distance the projectile can cover before hitting the ground. Since the initial speed is given, the initial velocity can be determined by the \rightarrow angle: $\vec{V}_0 = 800 < \cos\theta, \sin\theta$ Equation of the trajectory: $\vec{r}(t) = -10 \cdot t^2 \vec{j} + 800 t \cos\theta \vec{i} + 800 t \sin\theta \vec{j}$ Hitting the ground: second component or r(t) is 0: (-10t'+800tsin 0)=0 $t(-10t+800\sin\theta)=0$, so $t_h=\frac{800\cdot\sin\theta}{10}=80\cdot\sin\theta$. The position of the hit is $\vec{r}(t_h) = 0.\vec{j} + 800.80.\sin\theta.\cos\theta.\vec{t} = 64000.\frac{1}{2}\sin(2\theta)$. Maximum is achieved when $\sin(2\theta) = 1$, i.e., $2\theta = \frac{\pi}{2}$, $\theta = \frac{\pi}{4} = 45$. Max distance is 32 km.

Projectile motion