Theoretische Physik IV (Statistische Physik) - physik520

$\overline{Modul\text{-}Nr.}$	physik520		
Kategorie	Pflicht		
Le ist ung spunkte	9		
Semester	5.		

Modul: Theoretische Physik IV (Statistische Physik)

Modulbe standteile:

$\overline{\mathbf{Nr}}$	Lehrveranstaltung	LV-Nr.	LP	LV-Art	SWS	Semester
1	Theoretische Physik IV (Statistische Physik)	physik521	9	Vorl. + Üb.	4+3	WS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

Mathematik I - III für Physiker (math140, math240, math340)

Theoretische Physik I - III (physik220, physik320, physik420)

Physik I - IV (physik110, physik210, physik310, physik410)

Inhalt: Thermodynamik, Entropie, Phasenübergänge; Klassische und Quanten-Statistik; Gesamtheiten, Fermi- und Bosegas, Stochastische Prozesse

Lernziele/Kompetenzen: Umgang mit Konzepten und Rechenmethoden der Statistischen Physik

Prüfungsmodalitäten: Zulassungsvoraussetzung zur Modulprüfung (Klausur): erfolgreiche Teilnahme an den Übungen

Dauer des Moduls: 1 Semester

Max. Teilnehmerzahl: ca. 200

Anmeldeformalitäten: s. https://basis.uni-bonn.de u. http://bamawww.physik.uni-bonn.de

Anmerkung:

PDF version of this page.

Theoretische Physik IV (Statistische Physik) - physik521

$\overline{Lehr veran staltung}$	Theoretische Physik IV (Statistische Physik)
LV-Nr.	physik521

Kategorie	LV-Art	Sprache	SWS	LP	Semester
Pflicht	Vorlesung mit Übungen	deutsch	4+3	9	WS

Zulassungsvoraussetzungen:

Empfohlene Vorkenntnisse:

Mathematik I - III für Physiker (math140, math240, math340)

Theoretische Physik I - III (physik220, physik320, physik420)

Physik I - IV (physik110, physik210, physik310, physik410)

Studien- und Prüfungsmodalitäten: Zulassungsvoraussetzung zur Modulprüfung (Klausur): erfolgreiche Teilnahme an den Übungen

Dauer der Lehrveranstaltung: 1 Semester

Lernziele der LV: Umgang mit Konzepten und Rechenmethoden der Statistischen Physik

Inhalte der LV:

Klassische Thermodynamik:

Hauptsätze, thermodynamische Potentiale, Entropie, ideale/reale Gase, thermodynamische Maschinen, Phasenübergänge

Klassische und Quanten-Statistik:

Mikrokanonische, kanonische und großkanonische Gesamtheit, Dichteoperator, Zustandssumme, Verteilungsfunktion, Fermi- und Bosegas, Bosekondensation, Schwarzkörperstrahlung, Magnetismus, Isingmodell, stochastische Prozesse

Literaturhinweise:

- L. Landau, E. Lifschitz; Lehrbuch der Theoretischen Physik Bd. 5: Statistische Physik Teil 1 (Harri Deutsch, Frankfurt a. Main 8. korr. Aufl. 1991)
- L. Landau; E. Lifschitz; Lehrbuch der Theoretischen Physik Bd. 9: Statistische Physik Teil 2 (Harri Deutsch, Frankfurt a. Main 4. ber. Aufl. 1992)
- R. K. Pathria; Statistical Mechanics (Butterworth Heinemann, Oxford 1996)
- L. E. Reichl; A Modern Course in Statistical Physics (Wiley + Sons, Wiesbaden, 2. Aufl. 1998)
- F. Schwabl; Statistische Mechanik (Springer, Heidelberg 2. Aufl. 2004)

PDF version of this page.