## Japan Patent Office

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application: November 15, 2002

Application Number: Japanese Patent Application

No.2002-331723

[ST.10/C]: [JP2002-331723]

Applicant(s): RICOH COMPANY, LTD.

September 3, 2003

Commissioner,

Japan Patent Office Yasuo Imai (Seal)

Certificate No.2003-3071858

# 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年11月15日

出 願 番 号 Application Number:

特願2002-331723

[ST. 10/C]:

[ J P 2 0 0 2 - 3 3 1 7 2 3 ]

出 願 人
Applicant(s):

株式会社リコー

2003年 9月 3日

特許庁長官 Commissioner, Japan Patent Office 今井康



【書類名】 特許願

【整理番号】 0207284

【提出日】 平成14年11月15日

【あて先】 特許庁長官 太田 信一郎 殿

【国際特許分類】 G06F 15/62

【発明の名称】 画像送信装置、画像受信装置、ネットワークシステム、

プログラム及び記憶媒体

【請求項の数】 10

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 大根田 章吾

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 鈴木 啓一

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 門脇 幸男

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 佐野 豊

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 矢野 隆則

【発明者】

【住所又は居所】 東京都大田区中馬込1丁目3番6号 株式会社リコー内

【氏名】 福田 実

## 【特許出願人】

【識別番号】

000006747

【氏名又は名称】

株式会社リコー

【代表者】

桜井 正光

## 【代理人】

【識別番号】

100101177

【弁理士】

【氏名又は名称】

柏木 慎史

【電話番号】

03(5333)4133

【選任した代理人】

【識別番号】

100102130

【弁理士】

【氏名又は名称】 小山 尚人

【電話番号】

03(5333)4133

【選任した代理人】

【識別番号】

100072110

【弁理士】

【氏名又は名称】

柏木明

【電話番号】

03(5333)4133

【手数料の表示】

【予納台帳番号】

063027

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

9808802

【包括委任状番号】

0004335

【プルーフの要否】

## 【書類名】 明細書

【発明の名称】 画像送信装置、画像受信装置、ネットワークシステム、プログラム及び記憶媒体

#### 【特許請求の範囲】

【請求項1】 動画像データをフレームごとに1又は複数の小領域に分割してこの小領域ごとに階層的に圧縮符号化した符号列を対象として、その符号列データの構文を解析する構文解析手段と、

この解析結果に基づいて前記符号列から新たな符号列を作成する符号列変換手段と、

この作成した符号列をネットワークを介して送信する送信手段と、

前記作成前の符号列と前記新たな符号列とのデータの誤差量を前記ネットワークのトラフィックの混み具合に応じて指定して、この指定した誤差量となるように前記符号列変換手段に前記作成を行なわせる誤差量指定手段と、

を備えている画像送信装置。

【請求項2】 前記誤差量指定手段は、前記誤差量の指定を前記ネットワークを介して前記符号列の送信先から受信する、請求項1に記載の画像送信装置。

【請求項3】 前記符号列変換手段は、前記作成前の符号列に含まれている 当該符号列の符号を破棄することによる前記誤差量を表わすデータを読取って前 記作成を行なう、請求項1又は2に記載の画像送信装置。

【請求項4】 前記符号列変換手段は、前記作成前の符号列の作成にウェーブレット変換が用いられている場合に、当該符号列の各ウェーブレット変換係数についてウェーブレット変換係数ごとの量子化ビット数を前記作成後の符号列の画像についての視覚的劣化度順に並べた複数のテーブルから、前記誤差量指定手段で指定した前記誤差量に応じてテーブルを選択し、このテーブルのデータに基づいて前記作成を行なう、請求項1~3の何れかの一に記載の画像送信装置。

【請求項5】 前記符号列変換手段は、指定された画像のフレームレートに 応じて前記作成を行なう、請求項1~4の何れかの一に記載の画像送信装置。

【請求項6】 前記作成前の符号列について画像の動き量を検出する動き量 検出手段を備え、 前記符号列変換手段は、前記検出した動き量に応じて前記作成を行なう、請求項1~5の何れかの一に記載の画像送信装置。

【請求項7】 動画像データを圧縮符号化した符号列をネットワークを介して受信する受信手段と、

この受信した符号列の単位時間当たりの受信したデータ量から前記ネットワークのトラフィックの混み具合を検出するデータ読込量検出手段と、

この混み具合に応じて、動画像データをフレームごとに1又は複数の小領域に 分割してこの小領域ごとに階層的に圧縮符号化した符号列から各符号を部分的に 符号破棄するようにして前記受信手段で受信した符号列を作成する際の、両符号 列のデータの誤差量を求める誤差量作成手段と、

この求めた誤差量を前記符号列の送信先に送信する送信手段と、 を備えている画像受信装置。

【請求項8】 請求項1~6の何れかの一に記載の画像送信装置と、

この画像送信装置がネットワークを介して送信する前記符号列を受信する請求項7に記載の画像受信装置と、

を備えているネットワークシステム。

【請求項9】 請求項1~7の何れかの一に記載の発明の前記各手段の機能 を実行するコンピュータに読み取り可能なプログラム。

【請求項10】 請求項9に記載のプログラムを記憶している記憶媒体。

## 【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、画像送信装置、画像受信装置、ネットワークシステム、プログラム 及び記憶媒体に関する。

[0002]

【従来の技術】

従来、サーバから動画像データを供給し、クライアントからは動画像データの 転送要求をサーバに対して行なって、受け取ったデータをもとにクライアントで 動画像を再生する、動画像配信技術が存在する。かかる技術において、クライア ント側の再生装置がサーバから動画像データを受信して再生する手法には、大別 してダウンロード再生とストリーム再生が知られている。

## [0003]

ダウンロード再生とは、サーバからクライアントのバッファ上にダウンロードされたデータを再生するものであり、このタイプは、一旦バッファにデータをとりこんだ後に再生するため、バッファの記憶容量の制限により動画像データを再生できる時間が短くなるという短所があるが、すべてのデータを受け取ってから再生すれば、サーバ側の処理負担や伝送路の速度や混雑状況によらず、動画像の再生が行なえる長所がある。

### [0004]

一方、ストリーミング再生とは、クライアント側の再生装置がサーバから連続的にデータを要求し、そのデータをバッファ上に取得する作業と並行して動画像の再生処理を行なうものである。このタイプは、クライアントが連続的に動画像データを受け取るため、自己のバッファ上のデータを再生したら放棄する一方で、新たなデータを上書きしていく。従って、バッファの記憶容量の制限を受けることなく長時間の動画像の再生が可能であるという長所がある。

#### [0005]

しかし、サーバに同時にアクセスしているクライアント数の増加によるサーバ 負荷の増大や、伝送線路の速度に影響を受けやすいという短所がある。よって、 サーバの負荷増大や、伝送線路の速度低下により動画像の再生がストップしてし まうというような重大な問題を引き起こす可能性がある。一般に、このような重 大な影響を回避する手法として、動画像データの容量を変化させるスケーラビリ ティという手法が知られている。

#### [0006]

また、従来から、画像圧縮伸長アルゴリズムとして、動画像専用のMPEG1/MPE G2/MPEG4や、静止画像を連続したフレームとして扱うMotion JPEGが使用されているが、最近では、後者のMotion静止画像の符号化については、国際標準として Motion JPEG2000という新しい方式が規格化されつつある。

#### [0007]

## 【特許文献1】

特開2001-274861公報

[(8000)]

## 【発明が解決しようとする課題】

しかし、従来の動画像配信技術では、一般にサーバ上に配信コンテンツをあらかじめ複数のスケーラビリティで保存しておき、通信路の送信能力やクライアントの再生能力に応じて、最もふさわしいスケーラビリティをユーザが選択してストリーミング再生を行なうのが普通である。

#### [0009]

この場合は、クライアントを操作するユーザが通信路の制約等を考慮してスケーラビリティを選択するが、通信路の状態が途中で変化すること、あるいは与えられた選択肢の中に最適な条件があるとは限らず、制約に対して最適な画像を得られるとは限らない。これに対応するためには、用意された元画像を元に通信路の負荷等に応じて動的にスケーラビリティを変化させることが考えられるが、データ量だけに着目して制御すると、複雑なシーンでは画質が悪くなり、複雑でないシーンでは必要以上の符号量を使ってしまい、通信路などの利用効率が悪くなってしまう。

## [0010]

この発明の目的は、動画像データの配信先に通信路のトラフィックの混雑状況 に応じて動的にスケーラビリティを変化させた画像の送信を可能とすることであ る。

## $\{0011\}$

この発明の別の目的は、動的にスケーラビリティを変化させつつ画質の劣化を 防止することである。

## [0012]

#### 《課題を解決するための手段》

請求項1に記載の発明は、動画像データをフレームごとに1又は複数の小領域 に分割してこの小領域ごとに階層的に圧縮符号化した符号列を対象として、その 符号列データの構文を解析する構文解析手段と、この解析結果に基づいて前記符 号列から新たな符号列を作成する符号列変換手段と、この作成した符号列をネットワークを介して送信する送信手段と、前記作成前の符号列と前記新たな符号列とのデータの誤差量を前記ネットワークのトラフィックの混み具合に応じて指定して、この指定した誤差量となるように前記符号列変換手段に前記作成を行なわせる誤差量指定手段と、を備えている画像送信装置である。

## [0013]

したがって、ネットワークのトラフィックが混雑してきたときは誤差量を大き くして送信する符号列のデータ量を低減することにより、ネットワークのトラフィックに応じて動的にスケーラビリティを変化させて画像の送信を行なうことができる。

## [0014]

請求項2に記載の発明は、請求項1に記載の画像送信装置において、前記誤差 量指定手段は、前記誤差量の指定を前記ネットワークを介して前記符号列の送信 先から受信する。

## [0015]

したがって、ネットワークのトラフィックに応じて送信側で指定してきた誤差量を用いて、ネットワークのトラフィックに応じて動的にスケーラビリティを変化させて画像の送信を行なうことができる。

#### $[0\ 0\ 1\ 6]$

請求項3に記載の発明は、請求項1又は2に記載の画像送信装置において、前 記符号列変換手段は、前記作成前の符号列に含まれている当該符号列の符号を破 棄することによる前記誤差量を表わすデータを読取って前記作成を行なう。

#### [0017]

したがって、新たな符号列の作成前の符号列に含まれている当該符号列の符号を破棄することによる誤差量を表わすデータをヘッダ情報などから読取って新たな符号列を作成し、ネットワークのトラフィックに応じて動的にスケーラビリティを変化させて画像の送信を行なうことができる。

#### [0018]

請求項4に記載の発明は、請求項1~3の何れかの一に記載の画像送信装置に

おいて、前記符号列変換手段は、前記作成前の符号列の作成にウェーブレット変換が用いられている場合に、当該符号列の各ウェーブレット変換係数についてウェーブレット変換係数ごとの量子化ビット数を前記作成後の符号列の画像についての視覚的劣化度順に並べた複数のテーブルから、前記誤差量指定手段で指定した前記誤差量に応じてテーブルを選択し、このテーブルのデータに基づいて前記作成を行なう。

## [0019]

したがって、ウェーブレット変換係数を調節することで、ネットワークのトラフィックに応じて動的にスケーラビリティを変化させて画像の送信を行なうことができる。

## [0020]

請求項5に記載の発明は、請求項1~4の何れかの一に記載の画像送信装置に おいて、前記符号列変換手段は、指定された画像のフレームレートに応じて前記 作成を行なう。

## [0021]

したがって、ネットワークのトラフィックのみならず、フレームレートに応じて動的にスケーラビリティを変化させるので、画像の劣化を防止することができる。

### [0022]

請求項6に記載の発明は、請求項1~5の何れかの一に記載の画像送信装置に おいて、前記作成前の符号列について画像の動き量を検出する動き量検出手段を 備え、前記符号列変換手段は、前記検出した動き量に応じて前記作成を行なう。

#### [0023]

したがって、ネットワークのトラフィックのみならず、画像の動き量に応じて動的にスケーラビリティを変化させるので、画像の劣化を防止することができる

#### [0024]

請求項7に記載の発明は、動画像データを圧縮符号化した符号列をネットワークを介して受信する受信手段と、この受信した符号列の単位時間当たりの受信し

たデータ量から前記ネットワークのトラフィックの混み具合を検出するデータ読込量検出手段と、この混み具合に応じて、動画像データをフレームごとに1又は複数の小領域に分割してこの小領域ごとに階層的に圧縮符号化した符号列から各符号を部分的に符号破棄するようにして前記受信手段で受信した符号列を作成する際の、両符号列のデータの誤差量を求める誤差量作成手段と、この求めた誤差量を前記符号列の送信先に送信する送信手段と、を備えている画像受信装置である。

#### [0025]

したがって、符号列の送信先では、ネットワークのトラフィックが混雑してきたときは誤差量を大きくして送信する符号列のデータ量を低減することにより、ネットワークのトラフィックに応じて動的にスケーラビリティを変化させて画像の送信を行なうことが可能となる。

## [0026]

請求項8に記載の発明は、請求項1~6の何れかの一に記載の画像送信装置と 、この画像送信装置がネットワークを介して送信する前記符号列を受信する請求 項7に記載の画像受信装置と、を備えているネットワークシステムである。

#### [0027]

したがって、請求項1~6の何れかの一に記載の発明、及び、請求項7に記載の発明と同様の作用、効果を奏することができる。

#### [0028]

請求項9に記載の発明は、請求項1~7の何れかの一に記載の発明の前記各手 段の機能を実行するコンピュータに読取り可能なプログラムである。

## [0029]

したがって、請求項1~7の何れかの一に記載の発明と同様の作用、効果を奏することができる。

## [0030]

請求項10に記載の発明は、請求項9に記載のプログラムを記憶している記憶媒体である。

### [0031]

したがって、請求項9に記載の発明と同様の作用、効果を奏することができる。

### [0032]

## 【発明の実施の形態】

[JPEG2000アルゴリズムの概要]

まず、本発明の実施の形態における前提技術となるJPEG2000アルゴリズムの概要について説明する。

## [0033]

図1は、JPEG2000アルゴリズムの基本を説明するための説明図である。JPEG20 00のアルゴリズムは、色空間変換・逆変換部111、2次元ウェーブレット変換・逆変換部112、量子化・逆量子化部113、エントロピー符号化・復号化部114、タグ処理部115で構成されている。

## [0034]

図2に示すように、カラー画像は、一般に、原画像の各コンポーネント(ここではRGB原色系)が、矩形をした領域(タイル)121,122,123によって分割される。そして、個々のタイル、例えば、R00,R01,…,R15 /G00,G01,…,G15/B00,B01,…,B15が、圧縮伸長プロセスを実行する際の基本単位となる。従って、圧縮伸長動作は、コンポーネント毎、そしてタイル毎に、独立に行なわれる。

## [0035]

画像データの符号化時には、各コンポーネントの各タイルのデータが、図1の 色空間変換・逆変換部111に入力され、色空間変換を施されたのち、2次元ウェーブレット変換・逆変換部112で2次元ウェーブレット変換(順変換)が適 用されて周波数帯に空間分割される。

#### [0036]

図3には、デコンポジション・レベル数が3の場合の、各デコンポジション・レベルにおけるサブ・バンドを示している。すなわち、原画像のタイル分割によって得られたタイル原画像(0LL)(デコンポジション・レベル0(131))に対して、2次元ウェーブレット変換を施し、デコンポジション・レベル1(

132)に示すサブ・バンド(1 L L, 1 H L, 1 L H, 1 H H)を分離する。そして引き続き、この階層における低周波成分1 L L に対して、2次元ウェーブレット変換を施し、デコンポジション・レベル2(133)に示すサブ・バンド(2 L L, 2 H L, 2 L H, 2 H H)を分離する。順次、同様に、低周波成分2 L L に対しても、2次元ウェーブレット変換を施し、デコンポジション・レベル3(134)に示すサブ・バンド(3 L L, 3 H L, 3 L H, 3 H H)を分離する。さらに、図3では、各デコンポジション・レベルにおいて符号化の対象となるサブ・バンドを、斜線で表してある。例えば、デコンポジション・レベル数を3とした時、斜線で示したサブ・バンド(3 H L, 3 L H, 3 H H, 2 H L, 2 L H, 2 H H, 1 H L, 1 L H, 1 H H)が符号化対象となり、3 L L サブ・バンドは符号化されない。

## [0037]

次いで、指定した符号化の順番で符号化の対象となるビットが定められ、図1の量子化・逆量子化部113で対象ビット周辺のビットからコンテキストが生成される。量子化の処理が終わったウェーブレット係数は、個々のサブバンド毎に、「プレシンクト」と呼ばれる重複しない矩形に分割される。これは、インプリメンテーションでメモリを効率的に使うために導入されたものである。図5に示すように、一つのプレシンクトは、空間的に一致した3つの矩形領域からなっている。更に、個々のプレシンクトは、重複しない矩形の「コード・ブロック」に分けられる。これは、エントロピー・コーディングを行なう際の基本単位となる。

#### [0038]

ウェーブレット変換後の係数値は、そのまま量子化し符号化することも可能であるが、JPEG2000では符号化効率を上げるために、係数値を「ビットプレーン」単位に分解し、画素あるいはコード・ブロック毎に「ビットプレーン」に順位付けを行なうことができる。図 6 には、その手順を簡単に示した。この例は、原画像( $32\times32$ 画素)を $16\times16$ 画素のタイル4つで分割した場合で、デコンポジション・レベル1のプレシンクトとコード・ブロックの大きさは、各々 $8\times8$  画素と $4\times4$  画素としている。プレシンクトとコード・ブロックの番号は、ラ

スター順に付けられる。タイル境界外に対する画素拡張にはミラーリング法を使い、可逆(5×3)フィルタでウェーブレット変換を行ない、デコンポジションレベル1のウェーブレット係数値を求めている。また、タイル0/プレシンクト3/コード・ブロック3について、代表的な「レイヤー」についての概念図をも併せて示している。レイヤーの構造は、ウェーブレット係数値を横方向(ビットプレーン方向)から見ると理解し易い。1つのレイヤーは任意の数のビットプレーンから構成される。この例では、レイヤー0,1,2,3は、各々、1,3,1の3つのビットプレーンから成っている。そして、LSBに近いビットプレーンを含むレイヤー程、先に量子化の対象となり、逆に、MSBに近いレイヤーは最後まで量子化されずに残ることになる。LSBに近いレイヤーから破棄する方法はトランケーションと呼ばれ、量子化率を細かく制御することが可能である。

## [0039]

エントロピー符号化・復号化部114 (図1参照)では、コンテキストと対象 ビットから確率推定によって、各コンポーネントのタイルに対する符号化を行な う。こうして、原画像の全てのコンポーネントについて、タイル単位で符号化処 理が行われる。最後にタグ処理部115は、エントロピコーダ部からの全符号化 データを1本のコード・ストリームに結合するとともに、それにタグを付加する 処理を行なう。図4には、コード・ストリームの構造を簡単に示した。図4に示 すように、コード・ストリームの先頭と各タイルを構成する部分タイルの先頭に はヘッダと呼ばれるタグ情報が付加され、その後に、各タイルの符号化データが 続く。そして、コード・ストリームの終端には、再びタグが置かれる。

#### (0040)

一方、復号化時には、符号化時とは逆に、各コンポーネントの各タイルのコード・ストリームから画像データを生成する。図1を用いて簡単に説明する。この場合、タグ処理部115は、外部より入力したコード・ストリームに付加されたタグ情報を解釈し、コード・ストリームを各コンポーネントの各タイルのコード・ストリームに分解し、その各コンポーネントの各タイルのコード・ストリーム毎に復号化処理が行われる。コード・ストリーム内のタグ情報に基づく順番で復号化の対象となるビットの位置が定められるとともに、量子化・逆量子化部11

3で、その対象ビット位置の周辺ビット(既に復号化を終えている)の並びからコンテキストが生成される。エントロピー符号化・復号化部114で、このコンテキストとコード・ストリームから確率推定によって復号化を行ない、対象ビットを生成し、それを対象ビットの位置に書き込む。このようにして復号化されたデータは周波数帯域毎に空間分割されているため、これを2次元ウェーブレット変換・逆変換部112で2次元ウェーブレット逆変換を行なうことにより、画像データの各コンポーネントの各タイルが復元される。復元されたデータは色空間変換・逆変換部111によって元の表色系のデータに変換される。

## [0041]

[発明の実施の形態]

本発明の一実施の形態について説明する。

## [0042]

図7は、本実施の形態1のネットワークシステム10を示すブロック図である。図7に示すように、本ネットワークシステム10は、動画の画像データをMotion JPEG2000等のアルゴリズムで圧縮符号化した符号列をインターネットなどのネットワーク3を介して送信するサーバ1と、このサーバ1から符号列を受信するクライアント2からなる。

## [0043]

図8は、サーバ1、クライアント2の電気的な接続を示すブロック図である。 図8に示すように、サーバ1、クライアント2は、それぞれ本発明の画像送信装 置、画像受信装置を実施するもので、各種演算を行ないサーバ1(またはクライ アント2)の各部を集中的に制御するCPU11と、各種のROMやRAMから なるメモリ12とが、バス13で接続されている。

#### [0044]

バス13には、所定のインターフェイスを介して、記憶装置となるハードディスクなどの磁気記憶装置14と、マウスやキーボードなどで構成される入力装置15と、LCDやCRTなどの表示装置16と、光ディスクなどの本発明の記憶媒体を実施する記憶媒体17を読取る記憶媒体読取装置18と、ネットワーク3と通信を行なう通信装置となる所定の通信インターフェイス19とが接続されて

いる。なお、記憶媒体17としては、CDやDVDなどの光ディスク、光磁気ディスク、フレキシブルディスクなどの各種方式のメディアを用いることができる。また、記憶媒体読取装置18は、具体的には記憶媒体17の種類に応じて光ディスクドライブ、光磁気ディスクドライブ、フレキシブルディスクドライブなどが用いられる。

## [0045]

磁気記憶装置14には、本発明のプログラムを実施する画像送信プログラム(または画像受信プログラム)が記憶されている。一般的には、この画像送信プログラム(または画像受信プログラム)は、本発明の記憶媒体を実施する記憶媒体 17から記憶媒体読取装置18により読取ることでサーバ1(またはクライアント2)にインストールするが、ネットワーク3からダウンロードするなどして、磁気記憶装置14にインストールしたものである。このインストールによりサーバ1、クライアント2は動作可能な状態となる。この画像送信プログラム、画像 受信プログラムは、特定のアプリケーションソフトの一部をなすものであってもよい。また、所定のOS上で動作するものであってもよい。

## [0046]

図9は、ネットワークシステム10が画像送信プログラム、画像受信プログラム等に基づいて実行する処理を説明する機能ブロック図である。

#### [0047]

まず、サーバ1が画像送信プログラム等に基づいて行なう処理について説明する。サーバ1のバッファ30(磁気記憶装置14)には、例えば、Motion JPEG2 000アルゴリズムで動画像データを圧縮符号化した符号列が蓄積されており、従って、この符号列は動画像データをフレームごとに1又は複数のタイルという小領域に分割して、このタイルごとに階層的に圧縮符号化されたものである。サーバ1は、かかる符号列をクライアント2からの要求に従ってストリーミング配信する。すなわち、バッファ30に格納されている符号列のヘッダ情報から当該符号列の構文を構文解析手段21により解析し、この解析の結果に基づいて符号列作成手段22が当該符号列をMotion JPEG2000アルゴリズムによる新たな符号列に変換し(その詳細については後述する)、この変換後の符号列を、送信手段で

ある送受信手段23が、通信インターフェイス19、ネットワーク3を介して、 クライアント2に送信する。

#### [0048]

次に、クライアント2が画像受信プログラム等に基づいて行なう処理について 説明する。クライアント2では、送信手段、受信手段である送受信手段24が通 信インターフェイス19を介して、この符号列を受信し、この受け取った符号列 をバッファ31(磁気記憶装置14)に格納後、この符号列を復号手段25で復 号し、表示手段26が表示装置16に表示する。

#### [0049]

また、データ読込量検出手段27が、単位時間当たりに送受信手段24で読み込まれた符号列のデータ量を監視し、これにより、ネットワーク3のトラフィックの混み具合を判断する。そして、誤差量作成手段28が、このネットワーク3のトラフィックの混み具合に応じてサーバ1が配信するデータのパラメータを決定し、これを送信手段29がサーバ1に対して通知する。このパラメータは、符号列作成手段22が、送信対象となる符号列の各符号を部分的に符号破棄するように符号列作成手段22で新たな符号列を作成したときの、元データに対するデータの誤差量を指定するものである。この誤差量については詳細を後述する。

## [0050]

サーバ1では、クライアント2から送受信手段23で受信したパラメータに従い、符号列作成手段22で前記の新たな符号列への変換を行なう。

#### $[0\ 0\ 5\ 1]$

図10は、符号列作成手段22の一構成例を示すブロック図である。バッファ30に格納された符号列は構文解析手段21(図9)によりヘッダ情報が解読され、そのヘッダ情報に基づいて、符号列を構成する各符号を部分的に符号破棄したときの元データに対するデータの誤差量が、誤差量指定手段である量子化テーブル選択手段41に入力される。また、量子化テーブル選択手段41には、クライアント2から送信されたパラメータが入力される。この量子化テーブル選択手段41は、入力された誤差量とパラメータとに基づいて、所定のテーブルデータ(量子化テーブル)を選択し、これを、符号列変換手段である量子化手段42に

送る。量子化手段42は、その量子化テーブルのデータに従って符号列から符号 を選択的に破棄し、また、ヘッダを書き換えて、新たな符号列を生成する。

## [0052]

量子化テーブルには、図11に例示するような各ウェーブレット変換係数について、図12に示すようにウェーブレット変換係数ごとの量子化ビット数(符号破棄量)が記録されている。この量子化テーブルは、図13に示すように、複数の量子化テーブル(量子化ビット数)を量子化後の視覚的劣化度順にIndexと対応付けて並べた量子化テーブル群として保持されている。量子化テーブル選択手段41は、符号列から符号を部分的に破棄したときの誤差量が、量子化テーブルを組み合わせたときにクライアント2から送信されたパラメータで指定されている誤差量となるIndexの量子化テーブルを選択する。

## [0053]

したがって、前述のクライアント2の誤差量作成手段28は、例えば、ネットワーク3のトラフィックの混み具合を段階的に判断し、この段階に応じた量子化ビット数で誤差量を指定すればよい。例えば、トラフィックの混み具合を5段階で判断し、段階5が最も混雑している場合を示しているとすれば、トラフィックの混み具合の段階1~5を、それぞれ誤差量となる量子化ビット数1~5に対応させればよい。なお、通常は量子化後の視覚的劣化度合いと前述の誤差量とは単調増加の関係にあるため、パラメータどおりの誤差量になる量子化テーブルを選択することは容易である。この量子化テーブルは、一般的には、視覚的に劣化が目立たないように、高周波成分よりも低周波成分を重要視して量子化するように構成するのが望ましい。

### [0054]

図14は、符号列作成手段22の別の構成例についての機能ブロック図である。バッファ30に格納された符号列は構文解析手段21(図9)により、ヘッダ情報が解読され、ヘッダ情報中から各符号を部分的に符号破棄したときの元データに対するデータの誤差量が、量子化テーブル選択手段41に入力される。動き量検出手段43は、構文解析手段21で解析された各ウェーブレット変換係数の符号量に基づいて画像の動き量を検出する。量子化テーブル選択手段41は、入

力された誤差量と、クライアント2から送信されたパラメータが指定する誤差量、クライアント2から指定されるフレームレート(この例では、クライアント2側からフレームレートの指定をサーバ1に送信可能であることを前提としている)、及び、動き量検出手段43で検出された動き量に基づいて、前述と同様の量子化テーブルを選択し、これを量子化手段42に送る。量子化手段42は、その量子化テーブルのデータとクライアント2から指定されたフレームレートとに基づいて、符号列から部分的に符号を破棄し、また、ヘッダを書き換えて、新たな符号列を生成する。

#### [0055]

複数の量子化テーブルからのテーブルの選択は、図11~図13を参照して説明した前記の例と同様であるが、量子化テーブル選択手段41には複数の量子化テーブル群が保持されており、フレームレート及び動き量により所定のテーブル群を選択し、適応している。

## [0056]

動き量検出手段43は、次のようにして画像の動き量を検出する。図15は、MOtion JPEG2000方式における画像の動き量の考え方を説明する説明図である。図15に示すように、インターレース画像において、動きが高速な画像は図15(a)のように長い横エッジが発生する(インターレースのくし型と言う)。それに対し、動きが低速な画像は図15(c)のように短い横エッジが発生する。図15(b)は、これらの中間である動きが中速である場合を示している。これらの違いは、高周波成分の横エッジ量をあらわす1LH成分に大きく現れる。つまり、動き量の大きな画像は1LH成分の係数の絶対値が大きくなり、その結果、1LH成分の符号量は大きくなる。但し、1LH成分の符号量のみで画像の動き量を判定すると、画像によって閾値が変わる可能性があるので、1LH成分の符号量を1HL成分の符号量で正規化し、その値を画像の動き量の検出の特徴量としてもよい。

## [0057]

さらに、前記の特徴はビットプレーンを削る(ポスト量子化)前の符号量に大きく現れるので、ビットプレーンを削る前の1LHと1HL符号量を符号に記述



#### [0058]

図16は、この場合における画像の動き量の判定処理の一例を示すフローチャートである。

## [0059]

図16に示すように、まず、1LHのロスレス符号量の和(sum1LH)を算出し(ステップS1)、また、1HLのロスレス符号量の和(sum1HL)を算出し(ステップS2)、 "sum1LH"を "sum1HL"で除算して(ステップS3)、その結果(speed)を所定の閾値(th1)と比較し、 "speed>th1"のときは(ステップS3のY)、画像の動き量が大きいと判定する(ステップS4)。 "speed≦th1"であるときは(ステップS3のN)、逆に画像の動き量が小さいと判定する(ステップS5)。

## [0060]

また、高速な画像の場合、前記のくし型を残すように量子化することで視覚的 劣化度合いを抑えることができる。ただし、フレームを間引いてフレームレート を落としていくと、1フレームが長く表示されることになり、結果的にくし型が 目立つことになる。従って、フレームレートを落とす場合には、高速な画像にお いてもくし型が残らないような量子化をする必要がある。その組み合わせを表1 に示す。すなわち、フレームレートが高いときは、動き量が大きいときにくし型 を保存し、小さいときには保存しない。フレームレートが低いときは、動き量の 大小にかかわらずくし型を保存しない。

### [0061]

## 【表1】

|          | 高速                         | 低速                         |
|----------|----------------------------|----------------------------|
| フレームレート高 | くし型保存<br>(1LHを1HLより残す)     | くし型保存せず<br>(1LHと1HLを同様に残す) |
| フレームレート低 | くし型保存せず<br>(1LHと1HLを同様に残す) | くし型保存せず<br>(1LHと1HLを同様に残す) |

## [0062]

以上のクライアント2、サーバ1の処理を、図17、図18のフローチャートに整理して説明すると次のようになる。まず、図17に示すように、クライアント2は、サーバ1から符号列の受信があるときは(ステップS11のY)、データ読込量検出手段27で単位時間当たりの符号列の読込量を検出し(ステップS12)、誤差量作成手段28が、この検出値から誤差量のパラメータを作成し(ステップS13)、サーバ1に送信する(ステップS14)。

## [0063]

図18に示すように、サーバ1は、送信すべき符号列があるときは(ステップ S21のY)、クライアント2から受信した誤差量(図14の例の場合は、さらに、フレームレート、画像の動き量)から前述のように量子化テーブルを選択して(ステップS22)、この量子化テーブルに従って新たな符号列を作成し(ステップS23)、この作成後の符号列を送信する(ステップS24)。

## [0064]

このように、本ネットワークシステム10によれば、ネットワーク3のトラフィックが混雑してきたときは誤差量を大きくして、送信する符号列のデータ量を低減することにより、ネットワーク3のトラフィックに応じて動的にスケーラビリティを変化させて画像の送信を行なうことができる。

#### [0065]

また、図14以下を参照して説明した構成例によれば、ネットワーク3のトラフィックのみならず、フレームレートや画像の動き量に応じて動的にスケーラビリティを変化させるので、画像の劣化を防止することができる。

## [0066]

#### 【発明の効果】

請求項1に記載の発明は、ネットワークのトラフィックが混雑してきたときは 誤差量を大きくして送信する符号列のデータ量を低減することにより、ネットワークのトラフィックに応じて動的にスケーラビリティを変化させて画像の送信を 行なうことができる。

#### [0067]

請求項2に記載の発明は、請求項1に記載の発明において、ネットワークのトラフィックに応じて送信側で指定してきた誤差量を用いて、ネットワークのトラフィックに応じて動的にスケーラビリティを変化させて画像の送信を行なうことができる。

## [0068]

請求項3に記載の発明は、請求項1又は2に記載の発明において、新たな符号 列の作成前の符号列に含まれている当該符号列の符号を破棄することによる誤差 量を表わすデータをヘッダ情報などから読取って新たな符号列を作成し、ネット ワークのトラフィックに応じて動的にスケーラビリティを変化させて画像の送信 を行なうことができる。

## [0069]

請求項4に記載の発明は、請求項1~3の何れかの一に記載の発明において、 ウェーブレット変換係数を調節することで、ネットワークのトラフィックに応じ て動的にスケーラビリティを変化させて画像の送信を行なうことができる。

## [0070]

請求項5に記載の発明は、請求項1~4の何れかの一に記載の発明において、 ネットワークのトラフィックのみならず、フレームレートに応じて動的にスケー ラビリティを変化させるので、画像の劣化を防止することができる。

## [0071]

請求項6に記載の発明は、請求項1~4の何れかの一に記載の発明において、 ネットワークのトラフィックのみならず、画像の動き量に応じて動的にスケーラ ビリティを変化させるので、画像の劣化を防止することができる。

#### [0072]

請求項7に記載の発明は、符号列の送信先では、ネットワークのトラフィックが混雑してきたときは誤差量を大きくして送信する符号列のデータ量を低減することにより、ネットワークのトラフィックに応じて動的にスケーラビリティを変化させて画像の送信を行なうことが可能となる。

#### [0073]

請求項8に記載の発明は、請求項1~6の何れかの一に記載の発明、及び、請

求項7に記載の発明と同様の作用、効果を奏することができる。

#### [0074]

請求項9, 10 に記載の発明は、請求項 $1\sim7$  の何れかの一に記載の発明と同様の作用、効果を奏することができる。

#### 【図面の簡単な説明】

#### 【図1】

JPEG2000アルゴリズムの基本を説明するための説明図である。

## [図2]

カラー画像の各コンポーネントについて説明するための説明図である。

#### 【図3】

デコンポジション・レベル数が3の場合の、各デコンポジション・レベルにおけるサブ・バンドを示す説明図である。

#### 【図4】

コード・ストリームの構造の説明図である。

#### 【図5】

一つのプレシンクトが空間的に一致した3つの矩形領域からなっていることの 説明図である。

## 【図6】

係数値をビットプレーン単位に分解し、画素あるいはコード・ブロック毎にビットプレーンに順位付けを行なうことの説明図である。

#### 【図7】

本発明の一実施の形態であるネットワークシステムの概略構成のブロック図である。

#### 【図8】

サーバ、クライアントの電気的な接続のブロック図である。

#### 【図9】

ネットワークシステムの機能ブロック図である。

#### 【図10】

符号列作成手段を説明する機能ブロック図である。

## 【図11】

各ウェーブレット変換係数の説明図である。

#### 【図12】

ウェーブレット変換係数と量子化ビット数の関係を示す説明図である。

#### 【図13】

量子化テーブルの説明図である。

#### 【図14】

符号列作成手段の他の例を説明する機能ブロック図である。

## 【図15】

インターレースのくし型の説明図である。

## 【図16】

画像の動き量を判断する処理のフローチャートである。

### 【図17】

クライアントが行なう処理のフローチャートである。

### 【図18】

サーバが行なう処理のフローチャートである。

#### 【符号の説明】

- 1 画像送信装置
- 2 画像受信装置
- 3 ネットワーク
- 17 記憶媒体
- 21 構文解析手段
- 23 送信手段
- 2 4 送信手段、受信手段
- 27 データ読込量検出手段
- 28 誤差量作成手段
- 4 1 誤差量指定手段
- 4 2 符号列変換手段
- 43 動き量検出手段

ページ: 21/E

# 【書類名】 図面

## 【図1】



[図2]



【図3】



# 【図4】

| Main header | Tile-part header | bit stream |              |
|-------------|------------------|------------|--------------|
|             | Tile-part header | bit stream |              |
|             | Tile-part header | bit stream |              |
|             | Tile-part header | bit stream |              |
|             |                  | Fnd o      | f codestream |

【図5】



【図6】



【図7】



# 【図8】



【図9】



【図10】



# 【図11】



# 【図12】

| ウェーブレット変換係数 | 量子化ビット数 |
|-------------|---------|
| 1 HH        | 5       |
| 1 L H       | 3       |
| 1 HL        | 3       |
| 2HH         | 3       |
| 2LH         | 2       |
| 2HL         | 2       |
| 3HH         | 2       |
| 3LH         | 1       |
| 3HL         | 1       |
| 3LL         | 0       |

# 【図13】

| ] ndex | 量子化テーブル                      |
|--------|------------------------------|
| 1      | O, O, O, O ····· D           |
| 2      | 1, 0, 0, 0 ····· 0           |
| 3      | 1, 1, 0, 0 0                 |
| 4      | 1, 1, 1, 0 0                 |
| 5      | 2, 1, 1, 0 0                 |
| ×      | 5, 3, 3, 3, 2, 2, 2, 1, 1, 0 |
| Y      | 8, 8, 8                      |

【図14】



【図15】







# 【図16】



【図17】



# 【図18】



## 【書類名】 要約書

## 【要約】

【課題】 動画像データの配信先に通信路のトラフィックの混雑状況に応じて動 的にスケーラビリティを変化させた画像の送信を可能とする。

【解決手段】 クライアント2は、データ読込量検出手段27でサーバ1から受信した符号列の単位時間当たりの読込量を検出し、誤差量作成手段28が、この検出値から誤差量のパラメータを作成し、サーバ1に送信する。サーバ1では、符号列作成手段22が、クライアント2から受信した誤差量から量子化テーブルを選択して、この量子化テーブルに従って新たな符号列を作成し、クライアント2に送信する。誤差量とは、符号列作成手段22で作成前の符号列と作成後の新たな符号列とのデータの誤差量である。量子化テーブルは、符号列の各ウェーブレット変換係数についてウェーブレット変換係数ごとの量子化ビット数を符号列作成手段22で作成後の符号列の画像についての視覚的劣化度順に並べた複数のテーブルからなる。

#### 【選択図】 図9

## 特願2002-331723

## 出願人履歴情報

## 識別番号

[000006747]

1. 変更年月日 [変更理由]

1990年 8月24日

住所

新規登録

東京都大田区中馬込1丁目3番6号

名 株式会社リコー

2. 変更年月日

2002年 5月17日

[変更理由]

住所変更

住所

東京都大田区中馬込1丁目3番6号

氏 名 株式会社リコー