50. Determine, para a tensão e as correntes representadas:

- 50.1 O período;
- 50.2 A frequência;
- 50.3 O valor máximo;
- 50.4 O valor mínimo;
- 50.5 O valor médio.

51. Determine, para a corrente representada:

- 51.1 O período;
- 51.2 A frequência;
- 51.3 O valor máximo;
- 51.4 O valor mínimo;
- 51.5 O valor médio;
- 51.6 O valor eficaz.

- 52. Determine o valor eficaz da tensão u(t) tal que $u(t) = U_{Máx}$ sen ωt .
- 53. Determine o valor eficaz da tensão u(t) tal que $u(t) = U_{Máx} sen(\omega t + \theta)$.
- 54. Relativamente à tensão $u(t) = 325 \cdot sen(314t + 0.524)$ (V), calcule:
 - 54.1 O período;
 - 54.2 A frequência;
 - 54.3 O valor no instante t = 0;
 - 54.4 O valor máximo;
 - 54.5 O valor mínimo;
 - 54.6 O valor médio;
 - 54.7 O valor eficaz.

55. Complete o quadro com o valor da impedância de cada receptor monofásico, para as frequências e os valores de R, L e C que estão indicados.

$\overline{\overline{Z}}$ $\overline{\overline{I}}$ $Z = \frac{U}{\overline{I}}$			R=10Ω]	L=1,59mH	I	C=15,9μF	
		1Hz	10Hz	100Hz	1kHz	10kHz	100kHz	1MHz
	Z = R							
── 0000	$Z = \omega L$							
C	$Z = \frac{1}{\omega C}$							
R L 0000	$Z = \sqrt{R^2 + (\omega L)^2}$							
R C ← C	$Z = \sqrt{R^2 + \left(\frac{1}{\omega C}\right)^2}$	_		_				
	$Z = \left \omega L - \frac{1}{\omega C} \right $							

56. Uma rede monofásica é alimentada por uma tensão alternada sinusoidal u(t) de frequência f.

56.1 Complete o quadro.

$\mathbf{u}(\mathbf{t})$ $\mathbf{v}(\mathbf{t})$	Valor eficaz de $\mathbf{u}(\mathbf{t})$: \mathbf{U} =100 \mathbf{V} \mathbf{R} =10 \mathbf{k} $\mathbf{\Omega}$ \mathbf{C} =8 \mathbf{n} \mathbf{F}			
$\begin{array}{c} R \\ \hline \\ u_R(t) \end{array}$	f=200Hz	f=2kHz	f=20kHz	
Valor eficaz de $\mathbf{u}_{\mathbf{R}}(\mathbf{t})$	$\mathbf{U}_{\mathbf{R}}$			
Valor eficaz de $\mathbf{u}_{\mathrm{C}}(t)$	$\mathbf{U}_{\mathbf{C}}$			
Valor eficaz de i(t)	I			
Desfasamento angular entre $\mathbf{u}(\mathbf{t})$ e $\mathbf{u}_{\mathbf{C}}(\mathbf{t})$	$\Delta heta_{ m C}$			
Desfasamento temporal entre $\mathbf{u}(t)$ e $\mathbf{u}_{\mathrm{C}}(t)$	Δt_{C}			
Desfasamento angular entre $\mathbf{u}(\mathbf{t})$ e $\mathbf{u}_{\mathbf{R}}(\mathbf{t})$	$\Delta heta_{ m R}$			
Desfasamento temporal entre $\mathbf{u}(t)$ e $\mathbf{u}_{\mathbf{R}}(t)$	$\Delta t_{ m R}$			

57. Uma rede monofásica é alimentada por uma tensão alternada sinusoidal de frequência f.

57.1 Complete o quadro.

Ī	U=230V			
$\overline{\mathbf{U}}$ ($\mathbf{\overline{I}}_{\mathrm{R}}$ $\mathbf{\overline{I}}_{\mathrm{L}}$ $\mathbf{\overline{I}}_{\mathrm{C}}$	R=10Ω L=31,8mH C=318μF			
$\begin{array}{c c} R & C \\ \hline \overline{I}_R & \overline{\overline{I}}_L & \overline{\overline{I}}_C \end{array}$	f=5Hz f=50Hz f=500Hz			
Valor da corrente na resistência ${f I}_R$				
$\begin{tabular}{ll} Valor da corrente na bobina & I_L \end{tabular}$				
Valor da corrente no condensador I_{C}				
Valor da corrente debitada pela fonte				
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
$\begin{tabular}{lll} Valor da impedância da bobina & & Z_L \end{tabular}$				
${\bf V} {\it alor} \ da \ impedância \ do \ condensador \qquad \qquad {\bf Z}_{C}$				
Valor da impedância equivalente do conjunto Z				
Potência activa em jogo na resistência P_R				
Potência reactiva em jogo na resistência Q_R				
Potência aparente em jogo na resistência S_R				
Potência activa em jogo na bobina \mathbf{P}_{L}				
Potência reactiva em jogo na bobina \mathbf{Q}_{L}				
Potência aparente em jogo na bobina S_L				
Potência activa em jogo no condensador P_{C}				
Potência reactiva em jogo no condensador \mathbf{Q}_{C}				
Potência aparente em jogo no condensador S_{C}				
Potência activa total P				
Potência reactiva total Q				
Potência aparente total S				

58. O receptor representado na figura é alimentado por uma tensão alternada sinusoidal u(t), que tem um valor eficaz igual a 5V e uma frequência de 1kHz. Determine:

- 58.1 a reactância indutiva da bobina.
- 58.2 o valor da impedância do receptor.
- 58.3 o valor eficaz de i(t).
- 58.4 o valor eficaz de $u_L(t)$.
- 58.5 a potência activa em jogo no receptor.
- 58.6 o desfasamento temporal entre u(t) e $u_L(t)$.

- 59. O receptor representado na figura é percorrido por uma corrente alternada sinusoidal i(t), que tem um valor eficaz igual a 2A e uma frequência de 2kHz. Determine:
 - 59.1 a reactância indutiva da bobina.
 - 59.2 a reactância capacitiva do condensador.
 - 59.3 o valor da impedância do receptor.
 - 59.4 o valor eficaz de $u_C(t)$.
 - 59.5 a potência activa em jogo no receptor.
 - 59.6 o desfasamento temporal entre u(t) e $u_C(t)$.

60. Os quatro receptores representados estão ligados a uma rede monofásica de 230V / 50Hz.

Rede monofásica de 230V / 50 Hz

Preencha o quadro:

$I_1 =$ Desfasamento angular entre a tensão da rede e a corrente que alimenta a instalação Desfasamento temporal entre a tensão da rede e a corrente que alimenta a instalação Potência activa da instalação Potência reactiva da instalação Potência aparente da instalação Factor de potência da instalação Potência reactiva do componente que, uma vez acrescentado à instalação, permite eliminar o consumo de energia reactiva da mesma

Complete o diagrama fasorial da instalação.

61. Oito receptores de uma instalação funcionam nos respectivos valores estipulados, sempre em conjunto, 16 horas por dia.

61.1 Complete o quadro.

Os receptores funcio	onam nos respectivos valores estipulados,	sempre em conjunto, 16 horas por dia.		
	Potência activa em jogo no receptor			
Receptor 1 (puramente resistiv	P ₁ = $P_1 = P_1$	$Q_1 =$		
Receptor 2: 11kW, 15kVAr	$Q_2 =$			
Receptor 3 (bobina): 15kVA	$Q_3 =$			
Receptor 4: 8kW, –4kVAr	P ₄ =	$Q_4 =$		
Receptor 5: 5kW	P ₅ =	$Q_5 =$		
Receptor 6 (indutivo): 4kW, 5	$Q_6 =$			
Receptor 7: 10kVA, -6kVAr	Receptor 7: $10kVA$, $-6kVAr$ $P_7 =$			
Receptor 8 (condensador): 1kV	$Q_8 =$			
Potência activa em jogo no conjunto dos receptores: $P_{conj} =$				
Potência reactiva em jogo no conjunto dos receptores: Q _{conj} =				
Tipo de receptor formado pelo conjunto dos receptores:				
Potência aparente em jogo no conjunto dos receptores: $S_{conj} =$				
Factor de potência da instalação: fp _{conj} =				
Energia activa consumida pelo conjunto dos receptores em 7 dias: $W_{a \text{ conj}} =$				
Energia reactiva consumida pelo conjunto dos receptores em 7 dias: $W_{r \text{ conj}} =$				
Custo da energia eléctric	ca consumida pelo conjunto dos receptoro	es em 7 dias: C _{conj} =		
Energia activa		ergia reactiva		
	Fornecida pela rede (indutiva)	Fornecida à rede (capacitiva)		
0,15€/kWh	0,1€/kVArh	0,08€/kVArh		

62. Uma oficina é alimentada por uma rede monofásica de 230V / 50Hz e dispõe dos seguintes receptores monofásicos:

- Um motor de 1750W / 230V / 50Hz / η =0,951 / $\cos \varphi$ =0,8 (i)
- 10 lâmpadas de incandescência de 230V / 60W

O motor funciona 8 horas por dia e as lâmpadas funcionam – todas em simultâneo – 16 horas por dia. A energia activa e a energia reactiva consumidas pela oficina são cobradas às taxas apresentadas na tabela.

Enongio octivo	Energia reactiva			
Energia activa	Fornecida pela rede (indutiva)	Fornecida à rede (capacitiva)		
0,15€/kWh	0,1€/kVArh	0,08€/kVArh		

- 62.1 Determine o valor nominal da impedância do motor.
- 62.2 Calcule o valor da corrente fornecida pela rede à oficina quando todos os receptores estão ligados.
- 62.3 Determine o factor de potência da oficina quando todos os receptores estão ligados.
- 62.4 Calcule o custo mensal da energia eléctrica consumida pela oficina.
- 62.5 Investigue um dispositivo que, ligado à rede de forma conveniente, permita reduzir ao mínimo o custo mensal da energia eléctrica consumida pela oficina. Devem verificar-se as seguintes condições:
 - Todos os receptores previamente instalados devem funcionar nas respectivas condições estipuladas e durante os períodos indicados;
 - O novo dispositivo não deve consumir energia activa.
- 62.6 Determine a tensão e a corrente em jogo no novo dispositivo.
- 62.7 Determine a impedância do novo dispositivo.
- 62.8 Determine a característica eléctrica do novo dispositivo.
- 62.9 Quando é que o novo dispositivo deve estar ligado?
- 62.10 Quando é que o novo dispositivo deve estar desligado?
- 62.11 Em que ponto da instalação deve ser introduzido o novo dispositivo?
- 62.12 Determine o valor da corrente fornecida pela rede à oficina quando todos os receptores estão ligados, incluindo o novo dispositivo.
- 62.13 Determine o valor do factor de potência da oficina quando todos os receptores estão ligados, incluindo o novo dispositivo.
- 62.14 Determine os valores da potência activa e da potência reactiva em jogo na oficina quando todos os receptores estão ligados, incluindo o novo dispositivo.

63. Na chapa de características de um receptor monofásico constam os seguintes dados:

400V	2kW	50Hz	$\cos \varphi = 0.92 (i)$

63.1 Determine a corrente absorvida e a potência em jogo no receptor quando este é alimentado a uma tensão de 230V, 50Hz.