

Nanoscale Based ThermalMagnetic Energy Harvesting

Ray C. J. Hsu, Kyle P. Wetzlar, & Gregory P. Carman

Active Materials Laboratory
Mechanical & Aerospace Engineering Department

AFOSR Supported Byung-Lip "Les" Lee, DARPA Brian Holloway

July 30th, 2012

including suggestions for reducing	this burden, to Washington Headqu uld be aware that notwithstanding ar	ion of information. Send comments a arters Services, Directorate for Infor my other provision of law, no person	mation Operations and Reports	, 1215 Jefferson Davis I	Highway, Suite 1204, Arlington	
1. REPORT DATE 30 JUL 2012		2. REPORT TYPE		3. DATES COVE 00-00-2012	red to 00-00-2012	
4. TITLE AND SUBTITLE					5a. CONTRACT NUMBER	
Nanoscale Based ThermalMagnetic Energy Harvesting				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
		5e. TASK NUMBER				
		5f. WORK UNIT NUMBER				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of California, Los Angeles (UCLA), Active Materials Laboratory, Mechanical & Aerospace Engineering Department, Los Angeles, CA,90095 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
Grantees'/Contrac Microsystems Held	nd Multifunctional M tors' Meeting for Al 1 30 July - 3 August	Materials for Defens FOSR Program on I 2012 in Arlington, V Federal Rights Licen	Mechanics of Mu /A. Sponsored by	ltifunctional [Materials &	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT				18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	22	RESPONSIBLE PERSON	

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

Background

Project goal:

Thermomagnetic Efficiency of 30~50% of Carnot

Thermoelectrics

Seebeck device: Efficiency is limited at ~20%

Thermomagnetics

1949 Brillouin

55% of Carnot

1959 Elliot

Materials affect performance

PERMANENT MAGNET

1984 Kirol

Regeneration 75 % of Carnot

1988 Solomon

Magnetic field increases efficiency

2007 UCLA

Multi-ferroic and small scale

2011 James

Multi-ferroic alloy

2012 UCLA

Single domain

AML's previous works

• Exploit nano-scale phenomena

Multi-domain

Single domain

100 nm

Thermal-magnetic philosophy

Miniaturized thermomagnetic generator

Application

Thermal energy harvesting

To power wireless network of sensors

Summary UCLA ThermoMagnetic

Spin Reorientation:

Gd Single Domain

trivial

NdCo₅ Single Domain

- $\eta_{rel} \approx 44\%$
- Energy Density = 2 MJ/m³

Curie Point Gd Harvesting:

Multi-Domain

- $\eta_{rel} \approx 12\%$
- Energy Density = 50 kJ/m³

Single Domain

- $\eta_{rel} \approx 30\%$
- Energy Density = 105 kJ/m³

Energy > NdFeB or larger than conventional EM designs
Three Journal articles Three being Written

Two Device concepts

- 1) Coil (Hoover Dam Approach)
 - a) Thermal
 - b) Magnetic
 - c) Electrical

- 2) Multi-ferroics (Smart Materials)
 - a) Thermal
 - b) Magnetic
 - c) Mechanic
 - d) Electrical

Focus on efficiency and energy production from thermal to magnetic

Thermomagnetic cycle

$$Q_{in} = \rho \cdot C_p \cdot (T_{hot} - T_{cold})$$

$$\Rightarrow W_{out} = \oint HdM(T, H)$$

$$cycle$$

$$\eta_{abs} = \frac{W_{out}}{Q_{in}} = \frac{Bounded \ M\text{-}H \ area}{\rho C_p \Delta T}$$

Bounded M-H area

Magnet

Hot

Ferromag

Cold

Magnet

Hot

Non-ferro

Cold

$$\eta_{rel} = \frac{\eta_{abs}}{\eta_{Carnot}} = \frac{\rho C_p \Delta T}{\frac{\Delta T}{T_{hot}}}$$
(% of Carnot)

Magneto-thermal Properties of Ferromagnetic Elements

For a thermomagnetic cycle of H = 3000Oe and $\Delta T = 5K$

Single domain – better ordered magnetic state

Single domain has high remanence giving higher conversion efficiency!

Single domain improves efficiency

Bounded M-H area

$$\eta_{\rm rel} = \frac{\eta}{\eta_{\it Carnot}} = \frac{\rho C_p \Delta T}{\frac{\Delta T}{T_{hot}}} \approx 10\% \text{ (Single domain)}$$

Nanobar structure: Issues

HR-TEM analysis:

M-H curves of Gd nanobar array

ISSUES

- ✓ Significant M_s reduction
- ✓ HCP to FCC transformation at the nanoscale
- ✓ Surface oxidation How to prevent?

Nanobar structure: New process

Gd Nanostructures to be tested this month

Basic Science Questions

	Ni	Gd	
Electron configurations	[Ar] 4s ² 3d ⁸	[Xe] 4f ⁷ 5d ¹ 6s ²	
Source of magnetic moment	3d shell	4f shell	
Relative shell position	Outmost shell	Inner shell	
Exchange coupling	Direct exchange	<i>Indirect</i> exchange	
Exchange length	~10 nm	?	
Single domain	Exist	Ş	
Superparamagnetic size	~20 nm	?	

Multiferroic Energy Transfer

<u>Can we Induce Single Domain from Multi-Domain</u> <u>Magnetic Structures</u>

Ferromagnetic

Ni, Gd, Terfenol-D

Experimental Demonstration

Analytical Model Development

Higher efficiency possible?

Spin-reorientation

- Gd

- NdCo₅

Spin-reorientation: Gd thin film

FIB/SEM image

Magnetocrystalline, function of temp.

XRD: Textured crystal structure

Moving to spin-reorientation harvesting

1968 Spin Reorientation: Horner and Varma

1968 1st SR Application: Ohkoshi: 8.6% of Carnot

2010 NdCo5 Thin Flims: M. Seifert

2012 Textured Gd Thin Flims: UCLA

Change of MCA energy in Gd

- The easy axis of magnetization is dependent on the minimum MCA energy state
- MCA energy can be thought of as "doing work" on the magnetic direction

Solving
$$\frac{dE_{mag}}{d\theta} = 0 \Rightarrow \theta = \pm \arccos\left(\sqrt{\frac{K_1(T) + 2K_2(T)}{2K_2(T)}}\right)$$

Problem very little energy available Gd 5kJ/m(3)

Gd vs. NdCo₅

Rare earth magnets

 Magnetization controlled by anisotropic 4f shell

Gadolinium

 Has a half-filled 4f shell -> Very low orbit moment resulting low MCA energy than other RE magnets

CEF & Orbital symmetry Orbit Spin L-S coupling Spin 120°

Gadolinium

H.P Klein, Magnetocrystalline Anisotropy of Light RE Cobalt Compounds

Analytical Model Single Domain NdCo₅

Magnetic Energy Model

- $E_{mag}(\theta, \phi, \alpha, \beta, T, H, N) = E_{ms}(\theta, \phi, \alpha, \beta, H) + E_{mca}(\theta, \phi, T) + E_{sh}(\theta, \phi, N)$
- Solving $\frac{dE_{mag}}{d\theta} = 0$ gives $\theta_{easy}(T)$ or the direction of M(T)

- Energy output potential E_{out} ≈ 2 MJ/m³ yielding η_{rel} ≈ 44%
- Currently fabricating film to test

Summary UCLA ThermoMagnetic

Spin Reorientation:

Gd Single Domain

- $\eta_{rel} < 1\%$
- Energy Density = 12 kJ/m³

NdCo₅ Single Domain

- $\eta_{rel} \approx 44\%$
- Energy Density = 2 MJ/m³

Curie Point Harvesting:

Multi-Domain

- $\eta_{rel} \approx 12\%$
- Energy Density = 50 kJ/m³

Single Domain

- $\eta_{rel} \approx 30\%$
- Energy Density = 105 kJ/m³

Energy Larger Than NdFeB or large than conventional EM designs

Summary

- ThermalMagnetics represents a very promising energy harvesting methodology
- Efficiency increases by 3X using single domain
 - More energy output nanobar structure
 - Multiferroic structure

Spin-reorientation

- MCA dominates work output
- NdCo₅ superior than Gd in terms of MCA change
- Very large energy density present in NdCo₅

The Nation that Controls

Magnetism will Control the
Universe.