Jia Guo

September 27, 2018

1 Libraries

```
In [1]: import pandas as pd
    import numpy as np
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.metrics import mean_squared_error
    sns.set_style("dark")
    sns.set_palette("bright", 10)
```

2 Read in data

```
In [2]: df = pd.read_csv('data.csv')
        df = df.sort_values(by='date') # make sure the date column is in asscending order
        df.head()
Out [2]:
                                              weather cloud.indicator
                 date day.of.week car.count
        0 2010-01-01
                           Friday
                                         101
                                                   0.1
                                                                 clear
        1 2010-01-02
                                          34
                         Saturday
                                                   0.2
                                                                cloudy
        2 2010-01-03
                                                   0.4
                           Sunday
                                         113
                                                                 clear
        3 2010-01-04
                                           5
                                                   0.6
                           Monday
                                                                cloudy
        4 2010-01-05
                          Tuesday
                                         124
                                                   0.1
                                                                 clear
```

3 check if any null within the dataframe

4 Feature Engineering

```
In [4]: # create new column indicate the year and month of each row
        df['year'] = pd.DatetimeIndex(df['date']).year
        df['month'] = pd.DatetimeIndex(df['date']).month
        df.head()
Out [4]:
                 date day.of.week car.count weather cloud.indicator
                                                                         year
           2010-01-01
                                                   0.1
                           Friday
                                          101
                                                                  clear
                                                                         2010
                                                                                   1
          2010-01-02
                         Saturday
                                           34
                                                   0.2
                                                                 cloudy
                                                                         2010
                                                                                    1
        2 2010-01-03
                           Sunday
                                          113
                                                   0.4
                                                                  clear
                                                                         2010
                                                                                    1
        3 2010-01-04
                           Monday
                                            5
                                                   0.6
                                                                 cloudy
                                                                         2010
                                                                                    1
        4 2010-01-05
                          Tuesday
                                          124
                                                   0.1
                                                                  clear
                                                                         2010
                                                                                   1
In [5]: # convert the string day of week to numeric number
        weekdays = {
            'Monday':1,
            'Tuesday':2,
            'Wednesday':3,
            'Thursday':4,
            'Friday':5,
            'Saturday':6,
            'Sunday':7
        }
        df['day.of.week'] = df['day.of.week'].map(lambda x: weekdays[x])
        df.head()
Out [5]:
                       day.of.week
                                     car.count
                                                weather cloud.indicator
                 date
                                                                          year
                                                                                month
        0
         2010-01-01
                                  5
                                           101
                                                    0.1
                                                                   clear
                                                                          2010
                                                                                     1
        1 2010-01-02
                                  6
                                            34
                                                    0.2
                                                                  cloudy 2010
                                                                                    1
                                  7
        2 2010-01-03
                                           113
                                                    0.4
                                                                   clear
                                                                          2010
                                                                                    1
                                                                  cloudy 2010
        3 2010-01-04
                                                    0.6
                                  1
                                             5
                                                                                    1
          2010-01-05
                                           124
                                                    0.1
                                                                   clear 2010
In [6]: # use label encoder to conver the categorical data to numerica label
        df['cloud.indicator'] = df['cloud.indicator'].map(lambda x: 1 if x=='clear' else 0)
        df.head()
Out [6]:
                       day.of.week
                                     car.count
                                                weather
                                                         cloud.indicator
                                                                           year
           2010-01-01
                                                    0.1
                                  5
                                           101
                                                                           2010
                                                                                     1
                                                                        1
        1 2010-01-02
                                  6
                                            34
                                                    0.2
                                                                           2010
                                                                        0
                                                                                     1
        2 2010-01-03
                                  7
                                           113
                                                    0.4
                                                                           2010
                                                                        1
                                                                                     1
        3 2010-01-04
                                  1
                                             5
                                                    0.6
                                                                        0
                                                                           2010
                                                                                     1
        4 2010-01-05
                                  2
                                           124
                                                    0.1
                                                                        1 2010
                                                                                     1
```

5 Exploratory data analysis

5.0.1 visualize the year factor which affects the car count

```
In [7]: # plot the average car count in each year ---> shows the max car count in year 2012, m
    plt.figure(figsize=(12,5))
    sns.barplot(x=df.groupby(['year']).mean()['car.count'].index, y=df.groupby(['year']).meplt.grid(True)
    plt.grid(True)
    plt.show()

plt.figure(figsize=(12,5))
    plt.plot(df.groupby(['year']).mean()['car.count'])
    plt.xlabel('year')
    plt.ylabel('car.count')
    plt.grid(True)
    plt.show()
```


plots show that most number of cars occurs in year 2012, fewest year is in year 2015

5.0.2 visualize the month factor which affects the car count

```
In [8]: # plot the average car count in each month ---> shows the max car count in September,
    plt.figure(figsize=(12,5))
    sns.barplot(x=df.groupby(['month']).mean()['car.count'].index, y=df.groupby(['month'])
    plt.grid(True)
    plt.show()

    plt.figure(figsize=(12,5))
    plt.plot(df.groupby(['month']).mean()['car.count'])
    plt.xlabel('month')
    plt.ylabel('car.count')
    plt.grid(True)
    plt.show()
```


Summer time is the popular months--May to October

5.0.3 visualize the day of week factor which affects the car count

```
In [9]: # plot the average car count in each day in week ---> shows the max car count in Satur
    plt.figure(figsize=(12,5))
    sns.barplot(x=df.groupby(['day.of.week']).sum()['car.count'].index, y=df.groupby(['day
    plt.grid(True)
    plt.show()

    plt.figure(figsize=(12,5))
    plt.plot(df.groupby(['day.of.week']).mean()['car.count'])
    plt.xlabel('day')
    plt.ylabel('car.count')
    plt.grid(True)
    plt.show()
```


Saturday always has the most number of car, Thursday is the day with fewest car

5.0.4 correlation heatmap

Cloud situation is mostly positively correlated to car count

5.0.5 visualize the cloud situation effects on month, year by year

```
In [13]: dff = df
```

6 SVR regression model to predict the car.count

```
In [14]: df = df[['day.of.week', 'weather', 'cloud.indicator', 'car.count']]
         df.head()
Out[14]:
            day.of.week weather cloud.indicator car.count
                       5
                              0.1
                                                  1
                                                            101
                       6
                              0.2
                                                  0
                                                             34
         1
         2
                       7
                              0.4
                                                  1
                                                            113
                              0.6
                       1
                                                              5
                              0.1
                                                            124
In [15]: # set X be the feature matrix, y be the response(predictor) vector
         X = df.iloc[:, 1:-1].values
         y = df.iloc[:, -1].values
In [16]: from sklearn.preprocessing import MinMaxScaler
         sc_X = MinMaxScaler()
         sc_y = MinMaxScaler()
         X = sc_X.fit_transform(X)
         y = sc_y.fit_transform([[i] for i in y])
         y = [i \text{ for } j \text{ in } y \text{ for } i \text{ in } j]
In [17]: train_idx = int(len(df) * .85)
In [18]: X_train, y_train, X_test, y_test = X[:train_idx], y[:train_idx], X[train_idx:], y[tra
In [19]: from sklearn.svm import SVR
         svr = SVR()
         svr.fit(X_train, y_train)
         y_pred = svr.predict(X_test)
```

```
In [20]: # Visualising the SVR results
    plt.figure(figsize=(40,10))
    plt.plot(y_test, color = 'red')
    plt.plot(svr.predict(X_test), color = 'blue')
    plt.grid(True)
    plt.show()
```


this model prediction seems mostly greater than the actual value, so I believe it's great for predict the max car.count for future days

7 Random Forest Regression model to predict car.count

this model prediction seems mostly greater than the actual value, so I believe it's great for predict the max car.count for future days

8 ARIMA model to predicting the car.count

```
In [25]: df = pd.read_csv('data.csv')
        df = df[['date', 'car.count']]
        df = df[['car.count']]
        from sklearn.preprocessing import MinMaxScaler
        scaler = MinMaxScaler()
        df = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
        df.head()
Out[25]:
           car.count
        0 0.422594
         1 0.142259
         2
            0.472803
            0.020921
            0.518828
In [26]: plt.figure(figsize=(40,15))
        plt.grid(True)
        plt.plot(df['car.count'].tolist())
Out[26]: [<matplotlib.lines.Line2D at 0x1a1f6596a0>]
```


since the ADF statistic is less than the critical value ==> reject the null hypothesis,say that the series is stationary!

the data is sationarity, seasonal, and it is good to form ARIMA model

In [29]: import statsmodels.api as sm


```
In [31]: # try the model to predict the 2016-1-1 to 2016-6-30 car count, and compare with the
    pred = results.get_prediction(start = 2192, end = 2373, dynamic=False)
    pred_ci = pred.conf_int()

    plt.figure(figsize=(20,5))
    plt.grid(True)
    plt.plot(pred.predicted_mean, color='blue', label='predicted')
    plt.plot(df.iloc[2191:2373, :].values, color='red', label='observed')
    plt.legend()
    plt.show()
```

Out[32]: 0.0025080627939369176

0.2

9 Keras Model of binary classification

9.0.1 use the features of day.of.week, weather, and car.count to predict the cloud.indicator

```
In [33]: df = dff[[ 'day.of.week', 'weather', 'car.count', 'cloud.indicator']]
        df = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
        df['cloud.indicator'] = df['cloud.indicator'].astype(int)
         # set X be the feature matrix, y be the response(predictor) vector
        X = df.iloc[:, :-1].values
        y = df.iloc[:, -1].values
In [34]: df.head()
Out [34]:
           day.of.week weather car.count cloud.indicator
        0
              0.666667 0.440000 0.422594
        1
              0.833333 0.453333 0.142259
         2
              1.000000 0.480000 0.472803
                                                            1
                                                            0
         3
              0.000000 0.506667 0.020921
              0.166667 0.440000 0.518828
                                                            1
In [35]: # split the dataset into 80% training set, and 20% for testing
        from sklearn.model_selection import train_test_split
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_star
In [36]: # balance the dataset
        from imblearn.over_sampling import SMOTE
         smote = SMOTE(kind = "regular")
        X_train, y_train = smote.fit_sample(X_train, y_train)
In [37]: #importing the keras libraries and keras
        import keras
         from keras.models import Sequential
        from keras.callbacks import BaseLogger, ModelCheckpoint, EarlyStopping, TensorBoard,
         from keras.layers import Dense, Activation, Flatten
        model = Sequential()
        model.add(Dense(units= 100, kernel_initializer ='glorot_uniform', bias_initializer ='g
                        activation = 'relu', input_dim = X.shape[1]))
         # add hidden layers
        for i in range(4):
            model.add(Dense(units= 120, kernel_initializer = 'glorot_uniform', bias_initializer
                            activation = 'relu'))
         # Adding the output layer
```

model.add(Dense(units = 2, kernel_initializer='glorot_uniform', bias_initializer='glorot_uniform')

```
baselogger = BaseLogger()
                 checkpointer = ModelCheckpoint(filepath ='weights.{epoch:02d}-{val_loss:.2f}.hdf5', meaning to the content of the content
                                                                             save_best_only = False, save_weights_only = False, mode
                 earlystopper = EarlyStopping(monitor ='val_acc', min_delta = 0, patience = 5, verbose
                 tensor_board = TensorBoard(log_dir ='./logs', histogram_freq = 0, batch_size = 10, wr
                                                                      write_images = True, embeddings_freq = 0, embeddings_layer
                                                                      embeddings_metadata = None)
                 reduced_lr = ReduceLROnPlateau(monitor = 'val_loss', factor = 0.25, patience = 1, verb
                                                                             cooldown = 0, min_lr = 0)
                 callbacks_list = [baselogger, checkpointer, earlystopper, tensor_board, reduced_lr]
                 model.compile(optimizer ='adam' , loss ='sparse_categorical_crossentropy', metrics =
                 history = model.fit(X_train, y_train, validation_split = 0.33,
                                                      batch_size = 100, epochs = 10,
                                                      verbose = 1, shuffle = True,
                                                      validation_data = (X_test, y_test),
                                                      callbacks = callbacks_list)
                 print(history)
/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the secondases.
    from ._conv import register_converters as _register_converters
Using TensorFlow backend.
Train on 2146 samples, validate on 475 samples
Epoch 1/10
Epoch 00001: saving model to weights.01-0.64.hdf5
Epoch 2/10
Epoch 00002: saving model to weights.02-0.43.hdf5
Epoch 3/10
Epoch 00003: saving model to weights.03-0.39.hdf5
Epoch 4/10
```

activation ='sigmoid'))

```
Epoch 00004: saving model to weights.04-0.39.hdf5
Epoch 5/10
Epoch 00005: saving model to weights.05-0.39.hdf5
Epoch 00005: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628.
Epoch 6/10
Epoch 00006: saving model to weights.06-0.39.hdf5
Epoch 00006: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05.
Epoch 7/10
Epoch 00007: saving model to weights.07-0.38.hdf5
Epoch 00007: early stopping
<keras.callbacks.History object at 0x1c37782be0>
In [38]: # model accuracy inprovement interval
       score = model.evaluate(X_test, y_test, verbose=0)
       score
Out [38]: [0.38373624262056855, 0.8105263157894737]
In [39]: # summarize history for accuracy
       plt.figure(figsize=(10,7))
       plt.plot(history.history['acc'])
       plt.plot(history.history['val_acc'])
       plt.title('model accuracy')
       plt.ylabel('accuracy')
       plt.xlabel('epoch')
       plt.legend(['train', 'validate'], loc='upper left')
       plt.show()
       # summarize history for loss
       plt.figure(figsize=(10,7))
       plt.plot(history.history['loss'])
       plt.plot(history.history['val_loss'])
       plt.title('model loss')
       plt.ylabel('loss')
       plt.xlabel('epoch')
       plt.legend(['train', 'validate'], loc='upper left')
       plt.show()
```



```
In [40]: # Predicting the Test set results
        y_pred = model.predict(X_test)
         # conver the probability to actual prediction grade label
        y_predict = [ np.argmax(a) for a in y_pred ]
        y_test = np.asarray(y_test)
        y_predict = np.asarray(y_predict)
In [41]: from sklearn.metrics import precision_score
         from sklearn.metrics import recall_score
        from sklearn.metrics import f1_score, accuracy_score
        print("precision = ", precision_score(y_test, y_predict, average='macro'))
        print("recall = ", recall_score(y_test, y_predict, average='macro'))
        print("f1_score = ", f1_score(y_test, y_predict, average='macro') )
        print("accuracy = ", accuracy_score(y_test, y_predict) )
precision = 0.8177923387096775
recall = 0.7886904761904762
f1 score = 0.7964285714285714
accuracy = 0.8105263157894737
In [42]: # heatmap visualization of the model performance
         import seaborn as sn
         import pandas as pd
         import matplotlib.pyplot as plt
        from sklearn.metrics import confusion_matrix
        df_cm = pd.DataFrame(confusion_matrix(y_test, y_predict), index = [i for i in "01"],
                           columns = [i for i in "01"])
        plt.figure(figsize = (10,7))
         sn.heatmap(df_cm, annot=True)
Out[42]: <matplotlib.axes._subplots.AxesSubplot at 0x1c397d2cc0>
```

