Corrigés EXERCICES SQL 1ère partie

Extraire des données

1) La commande SELECT suivante est exécutée avec succès :

SELECT last_name, job_id, salary AS Sal FROM employees;

Vrai

2) L'instruction SELECT suivante est exécutée avec succès :

SELECT*

FROM job_grades;

Faux la table job grades n'existe pas

3) L'instruction suivante présente quatre erreurs de codage. Pouvez-vous les identifier?

SELECT employee_id, last_name

sal x 12 ANNUAL SALARY

FROM employees;

Les 4 erreurs

- 1. Il manque une virgule après last_name
- 2. la table employees n'a pas de colonne nommée sal
- 3. l'opérateur de multiplication est * et non x
- 4. l'alias ANNUAL SALARY contient une espace et doit être entourée de guillemets
- 4) Déterminer la structure de la table Departments

DESCRIBE departments

5) Afficher les données de la table DEPARTMENTS :

SELECT * FROM departments ;

6) Affichez la structure de la table EMPLOYEES.

DESCRIBE employees

7) Affichez le nom, l'ID de poste, la date d'embauche et l'ID d'employé de chaque employé, l'ID d'employé apparaissant en premier. Associez l'alias STARTDATE à la colonne HIRE_DATE.

SELECT employee_id, last_name, job_id, hire_date StartDate FROM employees;

8) Affichez tous les ID de poste unique de la table EMPLOYEES.

SELECT DISTINCT job id

FROM employees;

9) Affichez le nom concaténé avec l'ID de poste (en séparant les deux par une virgule et un espace) et intitulez la colonne Employee and Title.

SELECT last_name || ','|| job_id "Employee and Title"

FROM employees;

Restreindre et trier les données

1. Affichez le nom et le salaire des employés qui gagnent plus de 12000

SELECT last_name, salary

FROM employees

WHERE salary > 12000;

2. Créez un état affichant le nom et le numéro de département correspondant à l'ID d'employé 176.

SELECT last name, department id

FROM employees

WHERE employee_id=176;

3. Affichez les noms, salaires des employés qui gagnent entre 6000 et 10000

SELECT last name, salary

FROM employees

WHERE salary BETWEEN 6000 AND 10000;

4. Affichez le nom, l'ID de poste et la date d'embauche des employés nommés Matos et Taylor. Triez les données par ordre croissant en fonction de la date d'embauche.

SELECT last_name, job_id, hire_date

FROM employees

WHERE last name IN ('Matos', 'Taylor')

ORDER BY hire_date;

5. Affichez le nom et le numéro de département de tous les employés du département 20 ou 50 par ordre alphabétique croissant, en fonction du nom.

SELECT last_name, department_id

FROM employees

WHERE department id IN (20, 50)

ORDER BY last name ASC;

6. Affichez le nom et le salaire des employés qui gagnent entre 5000 et 12000, et travaillent dans le département 20 ou 50.

Intitulez respectivement les colonnes Employee et Monthly Salary. Enregistrez

SELECT last_name "Employee", salary "Monthly Salary"

FROM employees

WHERE salary BETWEEN 5000 AND 12000

AND department id IN (20, 50);

7. Affichez le nom et la date d'embauche de tous les employés embauchés en 1994.

SELECT last name, hire date

FROM employees

WHERE hire_date LIKE '%94';

8. Créez un état affichant le nom et l'intitulé de poste de tous les employés qui n'ont pas de manager.

SELECT last name, job id

FROM employees

WHERE manager_id IS NULL;

9. Affichez le nom et le salaire des employés qui gagnent plus qu'un montant saisi par l'utilisateur en réponse à une invite.

SELECT last_name, salary

FROM employees WHERE salary > &montant;

10. Affichez le nom de tous les employés dont le nom comporte un "a" et un "e".

SELECT last_name FROM employees WHERE last_name LIKE '%a%' AND last_name LIKE '%e%';

Fonctions monolignes

Ecrivez une interrogation permettant d'afficher la date système. Intitulez la colonne Date.
SELECT sysdate "Date"
FROM dual:

2. Afficher le numéro d'employé, le nom, le salaire et le salaire augmenté de 15,5 % (exprimé sous la forme d'un nombre entier) pour chaque employé. Nommez la colonne New Salary

SELECT employee_id, last_name, salary, ROUND(salary * 1.155, 0) "New Salary" FROM employees;

3. Ecrivez une interrogation permettant d'afficher le nom (la première lettre en majuscule et toutes les autres lettres en minuscules) et la longueur du nom de tous les employés dont le nom commence par les lettres "J", "A" ou "M". Attribuez à chaque colonne un libellé approprié. Triez les résultats en fonction du nom des employés.

SELECT INITCAP(last_name) "Name", LENGTH(last_name) "Length" FROM employees WHERE last_name LIKE 'J%' OR last_name LIKE 'M%' OR last_name LIKE 'A%' ORDER BY last_name;

4. Créez une interrogation permettant d'afficher le nom et le salaire de tous les employés. Formatez le salaire de sorte qu'il contienne 15 caractères et soit complété à gauche par le symbole \$. Intitulez la colonne SALARY.

SELECT last_name, LPAD(salary, 15, '\$') SALARY FROM employees;

5.Créez une interrogation permettant d'afficher le nom et le salaire de tous les employés. Formatez le salaire de sorte qu'il contienne 15 caractères et soit complété à gauche par le symbole \$. Intitulez la colonne SALARY

SELECT last_name,

LPAD(salary, 15, '\$') SALARY

FROM employees;

Fonctions de conversion et des expressions conditionnelles

1. Affichez le nom, la date d'embauche et le jour de la semaine où l'employé a commencé. Intitulez la colonne DAY. Triez les résultats en fonction de la date

SELECT last_name, hire_date, TO_CHAR(hire_date, 'DAY') DAY FROM employees ORDER BY hire_date;

2. Créez une interrogation qui affiche le nom et le montant de la commission de chaque employé. Si un employé ne perçoit pas de commission, indiquez "No Commission". Intitulez la colonne COMM.

SELECT last_name,

NVL(TO_CHAR(commission_pct), 'No Commission') COMM

FROM employees;

3. A l'aide de la fonction DECODE, écrivez une interrogation qui affiche le niveau de tous les employés sur la base de la valeur de la colonne JOB_ID, à l'aide des données suivantes :

Job	Grade
AD_PRES	Α
ST_MAN	В
IT_PROG	С
SA_REP	D
ST_CLERK	E
Sinon	0

SELECT job_id, decode (job_id,

'ST_CLERK', 'E',

'SA_REP', 'D',

'IT_PROG', 'C',

'ST MAN', 'B',

'AD PRES', 'A',

'0')GRADE

FROM employees

4. Réécrivez l'instruction dans l'exercice précédent à l'aide de la syntaxe CASE.

SELECT job id, CASE job id

WHEN 'ST_CLERK' THEN 'E'

WHEN 'SA REP' THEN 'D'

WHEN 'IT_PROG' THEN 'C'

WHEN 'ST_MAN' THEN 'B'

WHEN 'AD PRES' THEN 'A'

ELSE '0' END GRADE

FROM employees;

Fonctions de groupe

1. Les fonctions de groupe opèrent sur plusieurs lignes et produisent un résultat par groupe.

Vrai/Faux

VRAI

2. Les fonctions de groupe prennent en compte les valeurs NULL dans les calculs.

Vrai/Faux

FAUX

3. La clause WHERE limite les lignes avant inclusion dans un calcul de groupe. Vrai/Faux

VRAI

4..Déterminez le salaire le plus élevé, le salaire le plus bas, le salaire cumulé et le salaire moyen pour tous les employés. Intitulez respectivement les colonnes Maximum, Minimum, Sum et Average. Arrondissez les résultats à l'entier le plus proche

SELECT ROUND(MAX(salary),0) "Maximum",

ROUND(MIN(salary),0) "Minimum",

ROUND(SUM(salary),0) "Sum",

ROUND(AVG(salary),0) "Average"

FROM employees;

5. Ecrivez une interrogation permettant d'afficher le nombre de personnes occupant le même poste.

SELECT job_id, COUNT(*)

FROM employees

GROUP BY job_id;

6. Déterminez le nombre de managers sans répertorier ceux-ci. Intitulez la colonne "Number of Managers".

SELECT COUNT(DISTINCT manager_id) "Number of Managers" FROM employees;

7. Trouvez la différence entre le salaire le plus élevé et le salaire le plus bas. Intitulez la colonne DIFFERENCE.

SELECT MAX(salary) - MIN(salary) DIFFERENCE

FROM employees;