Optimisation TP7 : Méthode de gradient

ZHONG Ming

5 avril 2019

Table des matières

1	Rap	pel du problème		
	1.1	algorithme du gradient		
	1.2	3 versions d'algorithme du gradient		
2				
	2.1	fonctions de test		
	2.2	méthode du gradient à pas fixé		
	2.3	méthode du gradient à pas optimal		
3	Rési	ultats		
	3.1	validation de GF pour J1 et J2		
	3.2	validation de GO pour J1 et J2		
	3.3	validation de GF et GO pour JR		
	3.4	validation de GF et GO pour JH		
4	Cod	e en scilab		

1 Rappel du problème

le but de ce TP est d'implémenter en Scilab un code pour valider et expérimenter l'algorithme du gradient.

1.1 algorithme du gradient

L'algorithme du gradient est destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien qui utilise la direction du gradient, fait partie de la famille des algorithmes à directions de descente.

1.2 3 versions d'algorithme du gradient

On considère l'algorithme du gradient à pas fixé/variable/optimal :

$$\left\{ \begin{array}{l} x_{0} \in \mathbb{R}^{n}, \text{ donn\'e} \\ x_{k+1} = x_{k} - \rho \nabla f\left(x_{k}\right) \end{array} \right.$$

- GF(la méthode du gradient à pas fixé) :

$$\rho = constant$$

- GV(la méthode du gradient à pas variable) :

$$\rho = variable$$

- GO(la méthode du gradient à pas optimal) : à chaque itération k le pas ρ_k minimise la fonction $f(\rho) = J\left(u_k - \rho \nabla J\left(u_k\right)\right)$

2 Implémentation

2.1 fonctions de test

Pour les expérimentations et validations, on considérera les fonctions suivantes :

 $J_1(v) = \sum_{i=1}^{i=N} (v_i - 1)^2$

 $J_2(v) = \sum_{i=1}^{i=N} (v_i - i)^2$

 $J_R(v) = \sum_{i=1}^{i=N-1} \left\{ \left(v_{i+1} - v_i^2 \right)^2 + \left(v_i - 1 \right)^2 \right\}$

 $J_H(x,y) = (x^2 + y - 2)^2 + (y^2 - 2x + 1)^2$

2.2 méthode du gradient à pas fixé

Algorithm 1: gradient à pas fixé

```
Result: u_k

initialisation de N, epsg, Kmax, u_k, \rho

while k = 1: Kmax do

 [J,G] = cost(uk)
 if (norm(G) < epsg) then
 | break
 else
 | u_k = u_k - \rho^*G
 end
end
```

2.3 méthode du gradient à pas optimal

Construction l'approximation parabolique de la fonction $f(t) = J(u_k - t\nabla J(u_k))$

$$f(t) = J(u_k - t\nabla J(u_k)) = a_0 + a_1 \cdot t + a_2 \cdot t^2$$

Donc on a:

$$a_{0} = f(0) = J(u_{k})$$

$$a_{1} = f'(0) = -\|G(u_{k})\|^{2}$$

$$a_{2} = (J(u_{k} - t_{k-1} \cdot G(u_{k})) - a_{0} - a_{1} \cdot t_{k-1})/t_{k-1}^{2}$$

$$t_{k} = -a_{1}/2a_{2}$$

Algorithm 2: gradient à pas optimal

```
Result: u_k initialisation de N, epsg, Kmax, u_k while k = 1 : Kmax do

[J,G] = cost(uk)

if (norm(G) < epsg) then

| break

else

| a0 = J

a1 = -norm(G)^2

J1,G1= cost(uk-t(k-1)*G)

a2 = (J1-a0-a1*t(k-1)) / t(k-1)^2

t(k) = -a1/(2*a2)

u_k = u_k - t(k)*G

end

end
```

3 Résultats

3.1 validation de GF pour J1 et J2

on prend le seuil de convergence $epsg=10^{-6}$, un pas fixe t = 1, le nombre d'itération maximal Kmax = 100

cost function : J1 , N = 10, 20, 40 de gauche à droit

Ensuite, on prend un pas fixe t = 0.5

cost function : J1 , N = 10, 20, 40 de gauche à droit

Ensuite, on prend un pas fixe t = 0.05

cost function : J1 , N = 10, 20, 40 de gauche à droit

cost function : J2, N = 10, 20, 40 de gauche à droit

On constant que pour fonctions J1 et J2, le pas = 1 ou 0.5 est trop grand, il converge trop vite. En outre, pour différents N, les figures sont simulaires.

3.2 validation de GO pour J1 et J2

FIG. 1: cost function=J1,N=40

FIG. 2: cost function=J2,N=40

3.3 validation de GF et GO pour JR

FIG. 3: cost function=JR,N=40,pasfixe=0.03

3.4 validation de GF et GO pour JH

FIG. 4: cost function=JH,N=2,pasfixe=0.03,u0=(0,0)

FIG. 5: cost function=JH,N=2,pasfixe=0.07,u0=(1.5,-1.5)

On peut constater que quand u0 = (0,0), il tombe dans un piège(optimum local), GF et GO tombe dans 2 différents pièges. Quand u0 = (1.5,-1.5), ces deux méthodes marchent très bien.

4 Code en scilab

//MAM_OPT_TP7

```
//auteur : ZHONG Ming
clear()
function [J,G]=cost1(v)
    J = 0
    n = length(v)
    for i=1:n
        J = J + (v(i)-1)^2
    end
   G = 2*v-2
endfunction
function [J,G]=cost2(v)
    J = 0
    n = length(v)
   G = zeros(n)
    for i=1:n
        J = J + (v(i)-i)^2
       G(i) = 2*(v(i)-i)
    end
endfunction
function [J,G] = costR(v)
    J = 0
   n = length(v)
   G = zeros(n-1)
    for i = 1: n-1
        J = J + (v(i+1)-v(i)^2)^2 + (v(i)-i)^2
       G(i) = -4*v(i)*(v(i+1)-v(i)^2)+2*(v(i)-1)
    end
    J = J + (v(n)-1)^2
   G(n) = 2*(v(n)-i)
endfunction
function [J,G]=costH(v)
   x = v(1)
    y = v(2)
    J = (x^2+y-2)^2+(y^2-2*x+1)^2
   G(1) = 4*x*(x^2+y-2)+4*(y^2-2*x+1)
   G(2) = 2*(x^2+y-2)+4*y*(y^2-2*x+1)
```

endfunction

```
//MAM_OPT_TP7
 //auteur : ZHONG Ming
 // exec('optim_fonction.sci')
 function [J,G] = cost(v)
                    [J,G] = costH(v)
 endfunction
N = 10
epsg = 10^-6
Kmax = 100
uk = [1.5; -1.5]
J_cost_gf = zeros(Kmax, 1)
 J_cost_go = zeros(Kmax, 1)
 pas_fixe = 0.07
 for k = 1:Kmax
                    [J,G] = cost(uk)
                    J_cost_gf(k) = J
 //
                              if (norm(G) < epsg) then break; end
                                       u1 = uk - pas_fixe*G
                                       uk = u1
end
 // parabolique : f(t) = a0 + a1*t + a2*t^2 = J(uk - t*G(uk))
 // f'(t) = a1 + 2*a2*t : f'(tk) = 0 ====> tk = -a1/(2*a2)
 // f(0) = a0 = J(uk)
 // f'(0) = a1 = -G(uk)*G(uk)
 //\,\,f(\,t\,k\,-1) \;=\; a0\;\;+\;\; a\,1\,*\,t\,k\,-1\;\;+\;\; a\,2\,*\,t\,k\;-1\,^2\,\;=\;\; J\,(\,u\,k\;\;-\;\;t\,k\,-1\,*\,G(\,u\,k\;)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\;\;-\;\;t\,k\,-1\,*\,G(\,u\,k\;)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\;\;-\;\;t\,k\,-1\,*\,G(\,u\,k\;)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\;\;-\;\;t\,k\,-1\,*\,G(\,u\,k\;)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\;\;-\;\;t\,k\,-1\,*\,G(\,u\,k\;)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\;\;-\;t\,k\,-1\,*\,G(\,u\,k\;)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\;\;-\;t\,k\,-1\,*\,G(\,u\,k\;)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\;\;-\;t\,k\,-1\,*\,G(\,u\,k\;)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\,\;-\;t\,k\,-1\,*\,G(\,u\,k\;)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\,\;-\;t\,k\,-1\,*\,G(\,u\,k\;)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\,\;-\;t\,k\,-1\,*\,G(\,u\,k\;)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\,\;-\;t\,k\,-1\,*\,G(\,u\,k\,)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\,\;-\;t\,k\,-1\,*\,G(\,u\,k\,)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\,\;-\;t\,k\,-1\,*\,G(\,u\,k\,)\,) \qquad ===>\;\; a\,2\;\;=\;\; (\,J\,(\,u\,k\,-\;t\,k\,-1\,*\,G(\,u\,k\,)\,) \qquad ===>\;\; a\,2\;\;=\;\; a\,2\;\;=\; a\,2\;\;=\;\; a\,2\;=\;\; a\,2\;\;=\;\; a\,2\;\;=\;\; a\,2\;\;=\;\; a\,2\;\;=\;\; a\,2\;\;=\;\; a\,2\;\;=\;\; a\,2\;\;=\;
                 tk-1*G(uk)) - a0 - a1*tk-1) / tk-1^2
                                                                                                                                                                                                                                                                                                                                           = (J(uk -
 11
                 tk-1*G(uk)) - J(uk) - G(uk)*tk-1) / tk-1^2
u = [1.5; -1.5]
kappa = 1
 t = zeros(Kmax, 1)
 t(1) = 1
 for k = 2:Kmax
                    [J,G] = cost(u)
                    if(norm(G) < epsg) then break
                                        else
                                        J_cost_go(k) = J
                                       a0 = J
```

```
a1 = -norm(G)^2

[J1,G1] = cost(u-t(k-1)*G)
a2 = (J1-a0-a1*t(k-1)) / t(k-1)^2
t(k) = -a1/(2*a2)
t(k) = t(k) * kappa
u2 = u - t(k)*G
u = u2
end

end

scf(1)
plot2d(J_cost_gf, style=11)
plot2d(J_cost_go, style=22)
legend("pas_fixe", "pas_optimal")
```