Indoor Positioning Using the OpenHPS Framework

Maxim Van de Wynckel, Beat Signer

Web & Information Systems Engineering Lab Vrije Universiteit Brussel

What is OpenHPS?

An Open Source Hybrid Positioning System

What is OpenHPS?

An Open Source Hybrid Positioning System

- Any technology
- Any algorithm
- Various use cases
- Flexible processing and output
 - Accuracy over battery consumption, reliability, ...
- Aimed towards
 - Developers
 - Researchers

Process Network Design

Process Network Design ...

Process Network Design ...

Modularity

Modularity ...

Communication

Socket, MQTT, REST API, ...

Data Storage

MongoDB, LocalStorage, RDF, ...

Positioning Algorithms

IMU, fingerprinting, OpenVSLAM, ...

Abstractions

Geospatial, location-based services, geojson, ...

Other

React-Native, NativeScript, Sphero, ...

Data Processing

Knowledge

Processed Data

DataObject

Absolute and Relative Positions

Absolute

► 2D, 3D, Geographical, ...

Relative

- ► Distance, angle, velocity, ...
- Relative to another object

DataFrame

DataFrame ...

Pushing Data

DataFrame ...

Pulling Data

DataFrame ...

Pushing Error

SymbolicSpace

An object that semantically defines a space

- Spatial hierarchy
- Graph connectivity with other spaces
- Geocoding
- GeoJSON compatibility
- Can be used as a location
- Can be extended ...

SymbolicSpace...


```
const building = new Building("PL9")
    .setBounds({
        topLeft: new GeographicalPosition(
                50.8203,
                4.3922),
        width: 46.275,
        height: 37.27,
        rotation: -34.04
   });
const floor = new Floor("PL9.3")
    .setBuilding(building)
    .setFloorNumber(3);
const office = new Room("PL9.3.58")
    .setFloor(floor)
    .setBounds([
        new Absolute2DPosition(4.75, 31.25),
        new Absolute2DPosition(8.35, 37.02),
    ]);
```

Location-based Service

getCurrentPosition("me", ...)

Location-based Service ...

setCurrentPosition("me", ...)

Location-based Service ...

watchPosition("me", ...)

Demonstration

- ► Indoor positioning use case
- Use existing techniques
- Validation of flexibility and modularity

Positioning Model

Positioning Model ...

Positioning Model ...

Positioning Model ...

Positioning Model...

Positioning Model

OpenHPS

Online App

Positioning Model

Online App

```
ModelBuilder.create()
    .addShape(GraphBuilder.create()
        .from(new IMUSourceNode({
            source: new DataObject(phoneUID),
            interval: 20,
            sensors: [
                SensorType.ACCELEROMETER,
                SensorType.ORIENTATION
        .via(new SMAFilterNode(
            frame => [frame, "acceleration"],
            { taps: 10 }
        ))
        .via(new GravityProcessingNode({
            method: GravityProcessingMethod.ABSOLUTE_ORIENTATION
        }))
```

Dataset

Dataset ...

Total BLE Beacons: 11

Total detected WLAN access points: 220

Total stable WLAN access points: 199

	Training	Test
Datapoints	110	30
Total fingerprints	440	120
Duration (per orientation)	20s	20s
Avg. WLAN Scans (per fingerprint)	6	6
Avg. BLE Advertisements (per fingerprint)	16	15

Validation Results

Static Positioning

	WLAN fingerprinting	BLE fingerprinting	BLE multilateration	Fusion
failed points	0	6	12	0
average error	1.23 m	3.23 m	4.92 m	1.37 m
minimum error	0.01 m	0.17 m	0.74 m	0.01 m
maximum error	4.77 m	15.39 m	19.26 m	9.75 m
hit rate	95.82 %	80.83 %	52.50 %	96.67 %

Validation Results ...

Trajectories

Validation Results ...

Trajectories

	WLAN + BLE	WLAN + BLE + IMU
average error	3.28 m	1.26 m
maximum error	9.60 m	3.10 m
average update frequency	3.04 s	0.52 s

Sensor fusion

WLAN & BLE Cell-ID

Expected trajectory

Trajectory start

Contributions and Conclusions

- OpenHPS: open source framework for hybrid positioning
 - Aimed towards developers and researchers
- Abstractions such as location-based services and spaces
- Validation of an indoor positioning use case
- ► Configurable and interchangeable nodes and services
- Public dataset with multiple orientations

Visit https://openhps.org for additional resources, documentation, source code and more!