Part 4:

Our model includes batch normalization – 100 inputs on each batch .

The size of the hidden layer is 100

Regularization: 5e-5

Optimizer: Adam (pytorch)

Number of epochs – 2 for pos, 6 for ner

Lr = 1e-3

Batch size = 159

We implemented the embedding matrix mechanism like task 3.

Our results:

1. Sub-words unit , not pre trained

Pos: accuracy – 95.27

Ner: accuracy – 81.046

2. Sub – words unit, pre trained

Ner: accuracy – 80.227 4 epochs

Pos: accuracy:95.724 2 epochs

Comparisons

- The model without the pre trained matrix give the same results as the model with the pre trained
- The model with the pre trained and the subwords is better than the model without the subwords .

The subwords give significant improvement

- We can see that the models with the pre trained matrix aren't much better
- Conclusion : the models with the subwords have more power than the others .
 - The models with the pre trained matrix aren't much better then the models without.
 - we think the subwords give significant improvement because there is strong connection between the tagging tasks (pos and ner) and suffixes and prefixes of words. That's make differences