Stats 545: Midterm exam

This is a 75-minute exam for 32 points. Write your name and PUID on each sheet, and also include the number of answer sheets. Attempt all questions.

1 Clustering [4 pts]

- 1. X_1 and X_2 are $n \times d$ matrices, each row being a d-dimensional observation. Recall that centroid-linkage clustering defines the distance between X_1 and X_2 as the distance between the mean of the observations of X_1 from the mean of observation in X_2 . Complete linkage clustering defines the distance as the largest distance between an observation in X_1 and one in X_2 . Write a few lines of R to do both of these. [3pts]
- 2. Explain why you might use complete-linkage clustering vs centroid-linkage.

[1pts]

2 Matrix operations

[11 pts]

Assume multiplying two $N \times N$ matrices requires N^3 operations while an $N \times N$ matrix times an $N \times 1$ vector requires N^2 operations. Let A be an $N \times N$ matrix, and b an $N \times 1$ vector. Define $A^4 = A \cdot A \cdot A \cdot A$.

- 1. How many operations are needed to calculate A^4 ? How many operations are needed to calculate $A^4 \cdot b$? [3pts]
- 2. What is the condition number $\kappa(A)$? Show that $\kappa(A) \geq 1$. Give a matrix where $\kappa(A) = 1$. [2pts]
- 3. Consider the system of equations Ax = b. With A fixed, for a small change δb in b, let the change in x be δx . Show that $\frac{\|\delta x\|}{\|x\|} \le \kappa(A) \frac{\|\delta b\|}{\|b\|}$. [2pts]
- 4. What is the QR decomposition of a matrix? Given the QR decomposition of A, how would you simulate an N-dim Gaussian with mean m and covariance A? You only can generate standard normals using rnorm. [2pts]
- 5. Let L be an $N \times N$ lower triangular matrix Write an expression for its determinant |L|. What is the structure of L^{-1} ? (lower/upper triang., diagonal, unstructured) [2pts]

3 Dynamic programming

[7 pts]

- 1. For a binary heap with N nodes, what
 - (a) is the cost of **removing** the **largest** element from the binary heap? [1pts]
 - (b) are the costs of finding the largest, fifth largest and smallest elements in the binary heap? [3pts]
- 2. Briefly explain the problem that the Needleman-Wunsch solves, and the forward pass of the dynamic program. Explain what the cost of the forward pass is. [3pts]

4 Exponential family distributions

[3 pts]

- 1. Let (X_1, X_2, \dots, X_T) be an N-state Markov chain, with $p(X_1 = i) = \pi_i$, and $p(X_{t+1} = j | X_t = i) = A_{ij}$. Show that $p(X_1, \dots, X_T)$ is exponential family and write down its sufficient statistics and natural parameters. [2pts]
- 2. Suppose we only observe X_2 and X_5 , with all other observations missing. Is $p(X_2, X_5)$ exponential family? Explain your answer. [1pts]

5 The EM algorithm

[7 pts]

The number of people who swipe into a building on weekdays is Poisson distributed with unknown mean λ (recall that the Poisson distribution has the form $p(x|\lambda) = \lambda^x \exp(-\lambda)/x!$). On weekends, only the security person might enter (with unknown probability π), else no one enters. We observe counts $X = (x_1, \ldots, x_T)$ of the number of people who entered for some T days (not in sequence). Unfortunately, we did not record the day of the week of each observation, all we know is that is was a weekend with probability 2/7, and weekday with probability 5/7. Write $W = (w_1, \ldots, w_T)$ for the set of missing indentifiers, with $w_i = 1$ indicating the ith observation was a weekday.

1. Write down the log joint-probability $\log p(X, W | \lambda, \pi)$.

[2pts]

2. Write down the EM lower-bound $\mathcal{F}(q,\pi,\lambda)$.

[2pts]

3. For λ and π given, write the $q_i(w_i)$ that maximizes \mathcal{F} for observation i. Given the q's how would you update π and λ ? If you don't derive the latter, then explain the intuition. [3pts]