A relation R is in 4NF if and only if the following conditions are satisfied:

- R is already in 3NF or BCNF
- If it is contained no MVDs

Multi Valued Dependency(MVD)

- It is the dependency where one attribute value is potentially a **multi valued fact** about other
- Important:
 - There must be 3 or more attributes
 - Attributes must be independent of each other

F.D($\alpha \rightarrow \beta$) says that we can't have two tuples with same α value but different β value

- MVD($\alpha \rightarrow \beta$): if any legal relation r(R) for all pairs of tuples t1 and t2 in r such that t1(α)=t2(α) then there exist tuple t3 and t4 in r such that
 - $t3(\alpha)=t4(\alpha)=t1(\alpha)=t2(\alpha)$
 - $t3(\beta)=t1(\beta)$
 - $t4(\beta)=t2(\beta)$

Multi Valued Dependency(MVD)

Person(P)	Mobile(M)	FOOD_LIKE(F)
P1	M1	F1
	M2	F2
P2	M3	F2

 α β Mobile(M) FOOD LIKE(E)

	Person(P)	Mobile(M)	FOOD_LIKE(F)	t.
t1	P1	M1	F1	(P→→M)
t2	P1	M2	F2	$(P \rightarrow \rightarrow F)$
t3	P1	M1	F2	
t4	P1	M2	F1	
	P2	M3	F2	

 $t3(\alpha)=t4(\alpha)=t1(\alpha)=t2(\alpha)$ $t3(\beta)=t1(\beta)$ $t4(\beta)=t2(\beta)$

Multi Valued Dependency(MVD)

- MVD occurs if two or more independent relations are kept in a single relation.
- Consider 2 relations: R1(Sid, Sname) R2(Cid, Cname)

Sid	Sname
S1	Α
S2	В

Cid	Cname
C1	С
C2	В

Merging using cross product

Sid Sname Cid Cname

$$(Sid \rightarrow Cid)$$

 $(Sid \rightarrow Cname)$

Consider the following table Student(name, computer, language) with the following records. Normalize the table. Is the table is in 4NF? If no decompose to 4NF

Name	Computer	Language	
Aman	Windows/ Apple	English Hindi	
Mohan	Linux	English Spanish	R1

Name Computer Name Computer Name Language Aman Windows Aman Windows English Aman Apple Aman Aman Aman Windows Hindi Linux Mohan Mohan English Aman Apple Mohan Spanish Key: (name,compr) key(name,language) **Aman Apple** Hindi Mohan Linux English name->>computer name->>language Mohan Spanish Linux

R2

Language

English

English

Hindi

• Consider the following table Student(name, computer, language) with the following records. Normalize the table. Is the table is in 4NF? If no decompose to 4NF

Name	Computer	Language	
Aman	Windows/ Apple	English Hindi	
Mohan	Linux	English Spanish	F

Name	Computer	Language
Aman	Windows	English
Aman	Windows	Hindi
Aman	Apple	English
Aman	Apple	Hindi
Mohan	Linux	English
Mohan	Linux	Spanish

name Language
Aman English
Aman Hindi
Mohan English
Mohan Spanish

Key: (name,computer)

name → → computer

- Consider the following table . The table has multivalued dependencies as:
- a)Department→job
- b) Department → part

Department → → Job

- c) Both a and b
- d) none

Solution:

t1 : d1	j1	p2
t3: d1	j1	p2
t4: d1	j2	p1
t2: d1	j2	p2
$X \rightarrow Y$: t1(x	r)=t2(x) then
	t1(x	=t2(x)=t3(x)=t4(x)
	t1(y)=t3(y) and $t2(y)=t4(y)$
	t1(z)= t4(Z) and t2(z)=t3(z)

Department	Job	Part
d1	j1	p1
d1	j1	p2
d1	j2	p1
d1	j2	p2
d2	j3	p2
d2	j3	p4
d2	j4	p2
d2	j4	p4
d2	j 5	p2
d2	j5	p4
d3	j2	p5
d3	j2	p6

Fifth Normal Form (5NF)

• Consider a relation R

Supplier	Parts	Project
S1	P1	R1
S1	P2	R2
S2	P1	R1
S2	P1	R2

R1

Supplier	Parts
S1	P1
S1	P2
S2	P1

R2

Supplier	Project
S1	R1
S1	R2
S2	R1
S2	R2

R3

Project
R1
R2
R2

Fifth Normal Form (5NF)

```
    R must be in 4NF
    If join dependency not exist
        →5NF
    else join dependency exist
        if only trivial JD (R->R1,R2,R3 and any Ri is R)=> R-> R R2 R3
        →5NF
    else (all Ri is superkey)
        →5NF
    else
        not in 5NF
```

<u>Fifth Normal Form(5NF):</u> A relation R is in 5th normal form if and only if the following conditions are satisfied simultaneously

- i. R is already in 4NF(No M.V.D in R)
- ii. It cant be further non-loss decomposed

<u>Join Dependency</u>: Let 'R' be a relation schema and R1,R2,....Rn be the decomposition of R, R is said to satisfy the join dependency (R1,R2,...Rn) if and only if

 $\pi R1(R)\bowtie \pi R2(R)\bowtie \dots \bowtie \pi Rn(R)=\mathbf{R}$ (Order of Join Doesn't matter)

OR

If and only if every legal instance r(R) equal to join of its projections on R1,R2,..,Rn

Example of Join Dependency

Agent	Company	Product
Aman	C1	Pendrive
Aman	C1	MIC
Aman	C2	Speaker
Mohan	C1	Speaker

Join Dependency Rule: Holds good only if a table can be retransformed back without any loss of information from the

join of certain specified projections on it

[find JDs in table and if it exists the table is not in 5NF]

R1

Agent	Company
Aman	C1
Aman	C2
Mohan	C1

R2

Agent	Product
Aman	Pendrive
Aman	MIC
Aman	Speaker
Mohan	Speaker

R1 ⋈ R2

R3

Company	Product
C1	PD
C1	MIC
C1	Speaker
C2	Speaker

Agent	Company	Product
Aman	C1	PD
Aman	C1	MIC
Aman	C1	Speaker
Aman	C2	PD
Aman	C2	MIC
Aman	C2	Speaker
Mohan	C1	Speaker
	A D	

R

Agent	Company	Product
Aman	C1	Pendrive
Aman	C1	MIC
Aman	C2	Speaker
Mohan	C1	Speaker

A relation R is in 5NF w.r.t a set of F of functional, multivalued and join dependencies if for every non trivial join dependency (R1,...Rn) in F+, every R1 is a superkey of R

Q. Is the table in 5NF

Pname	Skill	Job
Aman	DBA	J1
Mohan	DBA	J2
Rohan	Programmer	J3
Sohan	Analyst	J1

R1(Pname, Skill)

Pname	Skill
Aman	DBA
Mohan	Tester
Rohan	Programmer
Sohan	Analyst

(R1⋈R2⋈R3)=R

Pname	Skill	Job
Aman	DBA	J1
Mohan	Tester	J2
Rohan	Prog	J3
Sohan	Analyst	J1 -

Skill	Job
DBA	J1
 Tester	J2
Programmer	J3
Analyst	J1

R2(Pname, Job)

Pname	Job
Aman	J1
Mohan	J2
Rohan	J3
Sohan	J1

'R' is not in 5NF

not equal to Key of 'R'