MA101 Mathematics I

Department of Mathematics Indian Institute of Technology Guwahati

Jul - Nov 2013

Slides originally created by: Dr. Bikash Bhattacharjya

Instructors:

Rafikul Alam, Bhaba K. Sarma, Sriparna Bandyopadhyay, Kalpesh Kapoor

ver. 21 Sept 2013, 10:18 (bks)

1/18

Slides 6

PLAN

- Determinant of Matrices
- Eigenvalues and Eigenvectors

Determinant of a matrix

Recall:

$$\bullet \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

$$\bullet \quad \det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$= a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

Definition

Let $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{F})$. The determinant of A is defined by

$$det(A) = a_{11}$$
, if $n = 1$, i.e., $A = [a_{11}]$. For $n \ge 2$:

$$\det(A) = a_{11}\det(A_{11}) - a_{12}\det(A_{12}) + \ldots + (-1)^{1+n}a_{1n}\det(A_{1n}),$$

where A_{ij} be the submatrix of A obtained by deleting the i-th row and the j-th column of A.

Note that $\det(A) \in \mathbb{F}$.

3 / 18

Properties of Determinant

Let A be a square matrix.

- 1 If B is obtained by interchanging two rows of A, then det(B) = -det(A).
- ② If A has a zero row, then det(A) = 0.
- 3 If A has two identical rows, then det(A) = 0.
- 4 If B is obtained by multiplying a row of A by a scalar α , then $det(B) = \alpha det(A)$.
- If the matrices A, B and C are identical except that one of the rows of C is the sum of the corresponding rows of A and B, then det(C) = det(A) + det(B).
- 1 If B is obtained by adding a multiple of one row of A to another row, then det(B) = det(A).

Example

$$\det\begin{bmatrix} 1 & 5 & 0 & 0 \\ 2 & 0 & 8 & 0 \\ 3 & 6 & 9 & 0 \\ 4 & 7 & 10 & 1 \end{bmatrix} = 1 \cdot \det\begin{bmatrix} 0 & 8 & 0 \\ 6 & 9 & 0 \\ 7 & 10 & 1 \end{bmatrix} - 5 \cdot \det\begin{bmatrix} 2 & 8 & 0 \\ 3 & 9 & 0 \\ 4 & 10 & 1 \end{bmatrix} = -18.$$

or

$$= \det \begin{bmatrix} 1 & 5 & 0 & 0 \\ 0 & -10 & 8 & 0 \\ 0 & -9 & 9 & 0 \\ 0 & -13 & 10 & 1 \end{bmatrix} \begin{matrix} E_{21}(-2) \\ E_{31}(-3) \\ E_{41}(-4) \end{matrix} = 18 \cdot \det \begin{bmatrix} 1 & 5 & 0 & 0 \\ 0 & 5 & -4 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -13 & 10 & 1 \end{bmatrix} \begin{matrix} E_{2}(-\frac{1}{2}) \\ E_{3}(-\frac{1}{9}) \end{matrix}$$

$$= 18 \cdot \det \begin{bmatrix} 1 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -3 & 1 \end{bmatrix} \xrightarrow{E_{23}(-5)}_{E_{43}(13)} = 18 \cdot (-1) \cdot \det \begin{bmatrix} 1 & 5 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_{43}(3)}_{E_{23}}$$

$$= 18$$

Result

The determinant of a diagonal, upper or lower triangular matrix is the product of its diagonal entries.

5 / 18

Result

Let $A \in \mathcal{M}_n(\mathbb{F})$. Then for any $i, j \in \{1, ..., n\}$

$$det(A) = (-1)^{i+1} a_{i1} A_{i1} + (-1)^{i+2} a_{i2} A_{i2} + \dots + (-1)^{i+n} A_{in} C_{in}$$

$$(Expansion along the i-th row)$$

$$= (-1)^{1+j} a_{1j} A_{1j} + (-1)^{2+j} a_{2j} A_{2j} + \dots + (-1)^{n+j} a_{nj} A_{nj}$$

$$(Expansion along the j-th column).$$

Result

- For any $A, B \in \mathcal{M}_n(\mathbb{F})$, $\det(AB) = \det(A)\det(B)$.
- Determinants of elementary matrices: $\det E_{ij} = -1$, $\det E_i(\alpha) = \alpha$, $\det E_{ij}(\alpha) = 1$.
- For any elementary matrix E, $\det(E) = \det(E^T)$.

Two important properties

Suppose $A \in \mathcal{M}_n$. Now, $A = E_k \cdots E_1 \cdot \text{rref}(A)$ for some elementary E_i . We have

$$\det(A) = \det(E_k) \cdots \det(E_1) \det(\operatorname{rref}(A)).$$

Thus,

 $\det(A) \neq 0$ iff $\det(\operatorname{rref}(A)) \neq 0$ iff $\operatorname{rref}(A) = I_n$ iff A is invertible.

Definition

A matrix $A \in \mathcal{M}_n$ is said to be singular or non-singular according as det(A) = 0 or $det(A) \neq 0$.

Result

A matrix $A \in \mathcal{M}_n$ is invertible if and only if it is non-singular.

Result

For any matrix $A \in \mathcal{M}_n$, $\det(A) = \det(A^T)$.

Optional: For some additional material, you may consult books or the write up on determinant available at MA101 webpage.

7 / 18

Eigenvalues and Eigenvectors

Suppose \mathbb{V} is a vector space and $T: \mathbb{V} \to \mathbb{V}$ is a linear transformation. Suppose $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of \mathbb{V} and $\lambda_i \in \mathbb{F}$ be such that $T(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$. Then, T is nicely described by

$$T(\alpha_1\mathbf{v}_1 + \cdots + \alpha_n\mathbf{v}_n) = \lambda_1\alpha_1\mathbf{v}_1 + \cdots + \lambda_n\alpha_n\mathbf{v}_n.$$

Remark

- $\bullet \ [T\mathbf{v}_i]_B = \alpha[\mathbf{v}_i]_B.$
- $[T]_B = [[T(\mathbf{v}_1)]_B, \dots, [T(\mathbf{v}_n)]_B] = diag\{\lambda_1, \dots, \lambda_n\}.$

Definition

Suppose $\mathbb V$ is a vector space over $\mathbb F$ and $T: \mathbb V \to \mathbb V$ is a linear transformation. Suppose there is $\lambda \in \mathbb F$ and $\mathbf 0 \neq \mathbf v \in \mathbb V$ such that $T(\mathbf v) = \lambda \mathbf v$. Then, λ is called an eigenvalue of T and $\mathbf v$ an eigenvector of T corresponding to λ .

Example

Let
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $T(\mathbf{x}) = A\mathbf{x}$, where $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$.

Then, 4 is an eigenvalue of T with $[1,1]^t$ as a corresponding eigenvector.

Definition

Let $A \in \mathcal{M}_n(\mathbb{F})$. If $A\mathbf{x} = \lambda \mathbf{x}$ for some $\lambda \in \mathbb{F}$ and $\mathbf{0} \neq \mathbf{x} \in \mathbb{F}^n$, then λ is called an eigenvalue of A and \mathbf{x} an eigenvector of A corresponding to λ .

Remark

• Suppose $\dim(\mathbb{V}) = n$, and $T : \mathbb{V} \to \mathbb{V}$ is an LT. Then $T(\mathbf{v}) = \lambda \mathbf{v}$ iff $[T(\mathbf{v})]_B = \lambda [\mathbf{v}]_B$ for any ordered basis B of \mathbb{V} . This gives the motivation for studying eigenvales/eigenvectors of square matrices.

9/18

Definition

Let λ be an eigenvalue of a matrix A. Then

$$E_{\lambda} = \{ \mathbf{x} \mid A\mathbf{x} = \lambda \mathbf{x} \}$$

is called the eigenspace of λ . Note that E_{λ} consists of all eigenvectors of A corresponding to λ , together with the zero vector.

Result

- $E_{\lambda} = null(A \lambda I)$, and therfore E_{λ} is a subspace of \mathbb{C}^n .
- λ is an eigenvalue of A iff $det(A \lambda I) = 0$.

Definition

Let A be an $n \times n$ matrix. Then

- $det(A \lambda I)$ is called the characteristic polynomial of A.
- $det(A \lambda I) = 0$ is called the characteristic equation of A.

Result

- The eigenvalues of A are the zeroes of the characteristic polynomial $det(A \lambda I)$ of A.
- The eigenvalues of a triangular matrix are its diagonal entries.
- A is invertible iff 0 is not an eigenvalue of A.

Example

What are the eigenvalues of $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$ and their eigenspaces? We have

$$\det (A - \lambda I) = \det \begin{bmatrix} 1 - \lambda & 3 \\ 3 & 1 - \lambda \end{bmatrix} = 0 \Leftrightarrow \lambda = 4, -2,$$

$$\mathbf{E_4} = \mathsf{null}(A - 4I) = \left\{ \mathbf{x} : \begin{bmatrix} -3 & 3 \\ 3 & -3 \end{bmatrix} \mathbf{x} = \mathbf{0} \right\} = \mathsf{span}([1, 1]^T),$$

$$\underline{\boldsymbol{E}_{(-2)}} = \mathsf{null}(A+2I) = \left\{ \mathbf{x} : \begin{bmatrix} 3 & 3 \\ 3 & 3 \end{bmatrix} \mathbf{x} = \mathbf{0} \right\} = \mathsf{span}([1,-1]^T), \quad _{11/18}$$

To find eigenvalues and bases for eigenspaces of A

- **1** Compute the char. poly. $det(A \lambda I)$.
- 2 Solve the char. eqn. $det(A \lambda I) = 0$ for eigenvalues λ .
- **3** For each eigenvalue λ , find $\text{null}(A \lambda I) = E_{\lambda}$.
- Find a basis for each eigenspace.

Example

A real matrix may have complex eigenvalues and complex eigenvectors. No wonder, every real matrix is also a complex matrix. Consider $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. The char. poly. of A is $\lambda^2 + 1$ and so the eigenvalues are $\pm i$. Corresponding to the eigenvalues $\pm i$, it has eigenvectors $[1,i]^T$ and $[i,1]^T$, respectively. The eigenspaces E_i and $E_{(-i)}$ are one dimensional.

Example

What are the eigenvalues and the corresponding eigenspaces of

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
? Eigenvalues are $1,1,1$ (1 appearing three times,

multiplicity three). Moreover,

$$E_1 = \operatorname{null} \left(\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \right) = \operatorname{span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right).$$

We have $dim(E_1) = 1$.

Definition

Let λ be an eigenvalue of a matrix A.

- The algebraic multiplicity of λ is the multiplicity of λ as a root of the characteristic polynomial of A.
- The geometric multiplicity of λ is the dimension of E_{λ} .

For an eigenvalue, the algebraic and geometric multiplicities can be different. See previous example.

13 / 18

Result

Eigenvectors corresponding to distinct eigenvalues are linearly independent.

PROOF. Suppose that $\lambda_1, \ldots, \lambda_m$ are distinct eigenvalues of A, \mathbf{x}_i is an eigenvector of A corresponding to λ_i . Suppose, if possible, \mathbf{x}_i are not LI. Then there is k > 1 such that $\{\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}\}$ is LI, but $\{\mathbf{x}_1, \ldots, \mathbf{x}_k\}$ is not. Let $\mathbf{x}_k = \alpha_1 \mathbf{x}_1 + \cdots + \alpha_{k-1} \mathbf{x}_{k-1}$. Then,

$$A\mathbf{x}_k = \lambda_1 \alpha_1 \mathbf{x}_1 + \dots + \lambda_{k-1} \alpha_{k-1} \mathbf{x}_{k-1}.$$

Therefore,
$$\mathbf{0} = \lambda_k \mathbf{x}_k - A \mathbf{x}_k$$

= $(\lambda_k - \lambda_1)\alpha_1 \mathbf{x}_1 + \dots + (\lambda_k - \lambda_{k-1})\alpha_{k-1} \mathbf{x}_{k-1}$.

Since $\{\mathbf{x}_1, \dots, \mathbf{x}_{k-1}\}$ is LI,

$$(\lambda_k - \lambda_1)\alpha_1 = \cdots = (\lambda_k - \lambda_{k-1})\alpha_{k-1} = 0,$$

i.e., $\alpha_1 = \cdots = \alpha_{k-1} = 0$ (as λ_i are distinct), i.e. $\mathbf{x}_k = \mathbf{0}$, a contradiction.

CAYLEY-HAMILTON THEOREM

Let $p(\lambda)$ be the characteristic polynomial of a matrix A. Then $p(A) = \mathbf{0}$, the zero matrix.

[This is a beautiful and useful theorem. However, we omit the proof.]

Exercise

Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
.

- Verify that char. poly. of A is $\lambda^2 2\lambda 3$.
- Verify that $A^2 2A 3I = 0$.
- Use the fact $A^2 = 2A + 3I$ to compute A^5 without computing any matrix multiplication.
- Argue that A is invertible using its char. poly. Since $3I = A^2 2A$, we should have $A^{-1} = \frac{1}{3} [A 2I]$. Verify.

15 / 18

The Fundamental Theorem of Invertible Matrices: Version III

For $A \in \mathcal{M}_n(\mathbb{F})$, $(\mathbb{F} = \mathbb{R} \text{ or } \mathbb{C})$ the following are equivalent.

- 1. *A* is invertible.
- 2. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{F}^n .
- 3. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 4. The reduced row echelen form of A is I_n .
- 5. A is a product of elementary matrices.
- 6. $\operatorname{rank}(A) = n$.
- 7. $\operatorname{nullity}(A) = 0$.
- 8. The column vectors of A are linearly independent.
- 9. The column vectors of A span \mathbb{F}^n .
- 10. The column vectors of A form a basis for \mathbb{F}^n .
- 11. The row vectors of A are linearly independent.
- 12. The row vectors of A span \mathbb{F}^n .
- 13. The row vectors of A form a basis for \mathbb{F}^n .

The Fundamental Theorem ... Contd.

- **14**. The map $T: \mathbb{F}^n \to \mathbb{F}^n$ given by $T(\mathbf{x}) = A\mathbf{x}$ is one-one.
- 15. The map $T: \mathbb{F}^n \to \mathbb{F}^n$ given by $T(\mathbf{x}) = A\mathbf{x}$ is onto.
- **16**. The map $T: \mathbb{F}^n \to \mathbb{F}^n$ given by $T(\mathbf{x}) = A\mathbf{x}$ is a bijection.
- 17. det $A \neq 0$, i.e., A is non-singular.
- 18. 0 is not an eigenvalue of A.

Exercise

• Find the eigenvalues and the corresponding eigenspaces of the following matrices:

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{bmatrix} \text{ and } \begin{bmatrix} -1 & 0 & 1 \\ 3 & 0 & -3 \\ 1 & 0 & -1 \end{bmatrix}.$$

17 / 18

Exercise

- Let A be a matrix with eigenvalue λ and corresponding eigenvector \mathbf{x} .
 - For any positive integer n, show that λ^n is an eigenvalue of A^n with corresponding eigenvector \mathbf{x} .
 - If A is invertible, then show that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with corresponding eigenvector \mathbf{x} .
 - If A is invertible then show that for any integer n, λ^{-n} is an eigenvalue of A^{-n} with corresponding eigenvector \mathbf{x} .
- Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be eigenvectors of a matrix A with corresponding eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_m$, respectively. Let $\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_m \mathbf{v}_m$. Show that for any positive integer k,

$$A^k \mathbf{x} = c_1 \lambda_1^k \mathbf{v}_1 + c_2 \lambda_2^k \mathbf{v}_2 + \ldots + c_m \lambda_m^k \mathbf{v}_m.$$