Intro to Machine Learning (CS436/CS580L)

Lecture 5 & 6: Linear Regression & Gradient Descent & Polynomial Regression

Xi Peng, Fall 2018

Thanks to Tom Mitchell, Andrew Ng, Ben Taskar, Carlos Guestrin, Eric Xing, Hal Daume III, David Sontag, Jerry Zhu, Tina Eliassi-Rad, and Chao Chen for some slides & teaching material.

This Class

- Linear Regression (One variable)
- Gradient Descend
- Linear Regression (Multiple variables)
- Polynomial Regression

Median

Have some function $J(\theta_0,\theta_1)$ Want $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

Outline:

- Start with some $heta_0, heta_1$
- Keep changing $heta_0, heta_1$ to reduce $J(heta_0, heta_1)$ until we hopefully end up at a minimum

Gradient descent algorithm

```
repeat until convergence {
\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right)
\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left( h_{\theta}(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}
}
```


 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) 700 600 Price \$ (in 1000s) 500 200 100 Training data Current hypothesis 0 1000 2000

Size (feet²)

 $J(\theta_0, \theta_1)$ (function of the parameters θ_0, θ_1)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) 700 600 500 200 100 Training data Current hypothesis 0 1000 2000 3000 4000

Size (feet²)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) 700 600 Price \$ (in 1000s) 000 \$ 300 000 \$ 500 500 200 100 Training data Current hypothesis 0

3000

Size (feet²)

4000

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) 700 600 Price \$ (in 1000s)
000 \$ 300
000 \$ 500 500 200 100 Training data Current hypothesis

3000

Size (feet²)

4000

0

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) 700 600 500 200 100 Training data Current hypothesis 0 1000 2000 3000 4000

Size (feet²)

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) 700 600 Price \$ (in 1000s) 000 \$ 000 000 \$ 000 500 200 100 Training data Current hypothesis

Size (feet²)

3000

4000

0

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x) 700 600 Price \$ (in 1000s)
000 \$ 500 200 100 Training data Current hypothesis 0

Size (feet²)

3000

4000

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

 $h_{\theta}(x)$ (for fixed θ_0, θ_1 , this is a function of x) 700 600 Price \$ (in 1000s)
000 \$ 500 100 Training data Current hypothesis 0

Size (feet²)

3000

4000

1000

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

