

# Text Technologies for Data Science INFR11145

# **Query Expansion**

Instructor: Walid Magdy

24-Oct-2017

## **Lecture Objectives**

- <u>Learn</u> about Query Expansion
  - Query expansion methods
  - Relevance feedback in IR
  - Rocchio's algorithm
  - PRF
- <u>Implement</u>:
  - Rochhio RF

THE UNIVERSITY of EDINBURGH

#### **Query Expansion**

- Query: representation of user's information need
  - Many times it can be suboptimal
- Different words can have the same meaning
  - replacement, replace, replacing, replaced → Stemming
  - go, gone, went → Lemmatisation (NLP)
  - car, vehicle, automobile → ??
  - US, USA, the states, united states of America → ??
- Stemming/Lemmatisation → could be applied to normalise document and queries
  - Research show that no significant difference between both
- Query Expansion (QE) → add more words of the same meaning to your query for better retrieval

Walid Magdy, TTDS 2017/2018



## **Query Expansion: Methods**

- Thesaurus
  - Group words into sets of synonyms (synsets)
  - Typically grouping is on the word level (neglects context)
  - Manually built: e.g. WordNet
    - NLTK wordnet: http://www.nltk.org/howto/wordnet.html
  - Automatically built:
    - Words co-occurence
    - Parallel corpus of translations
- Retrieved documents-based expansion
  - Relevance feedback
  - Pseudo (Blind) relevance feedback
- Query logs



#### **Automatic Thesaurus: co-occurence**

- Words co-occurring in a document/paragraph are likely to be (in some sense) similar or related in meaning
- Built using collection matrix (term-document matrix)
- For a collection matrix A, where A<sub>t,d</sub> is the normalised weight of term t in document d, similarity matrix could be calculated as follows:

#### $C = A \cdot A^T$

where,  $C_{u,v}$  is the similarity score between terms u and v. The higher the score, the more similar the terms

Advantage: unsupervised
 Disadvantage: related words more than real synonyms

Walid Magdy, TTDS 2017/2018



#### **Automatic Thesaurus: co-occurence**

Example

| Word        | Nearest neighbors                                |
|-------------|--------------------------------------------------|
| absolutely  | absurd, whatsoever, totally, exactly, nothing    |
| bottomed    | dip, copper, drops, topped, slide, trimmed       |
| captivating | shimmer, stunningly, superbly, plucky, witty     |
| doghouse    | dog, porch, crawling, beside, downstairs         |
| makeup      | repellent, lotion, glossy, sunscreen, skin, gel  |
| mediating   | reconciliation, negotiate, case, conciliation    |
| keeping     | hoping, bring, wiping, could, some, would        |
| lithographs | drawings, Picasso, Dali, sculptures, Gauguin     |
| pathogens   | toxins, bacteria, organisms, bacterial, parasite |
| senses      | grasp, psyche, truly, clumsy, naive, innate      |

▶ Figure 9.4 An example of an automatically generated thesaurus. This example is based on the work in Schütze (1998), which employs latent semantic indexing (see Chapter 18).

https://nlp.stanford.edu/IR-book/html/htmledition/automatic-thesaurus-generation-1.html#fig:autothesaurus



## **Automatic Thesaurus: parallel corpus**

- Parallel corpus are the main training resource for machine translation systems
- Nature: sets of two parallel sentences in two different languages (source and target language)
- Idea:
  - More than one word in language X can be translated into the same word in language Y
    - → these words in language X could be considered synsets
- Requirement: the presence of parallel corpus (training data) → supervised method

Walid Magdy, TTDS 201<u>7/2018</u>





## **Automatic Thesaurus: parallel corpus**

Example

| motor |      | weight |      | travel  |      | color  |      | link          |        |
|-------|------|--------|------|---------|------|--------|------|---------------|--------|
| motor | 0.63 | weight | 0.86 | travel  | 0.67 | color  | 0.56 | link          | 0.4    |
| engin | 0.36 | wt     | 0.14 | move    | 0.19 | colour | 0.25 | connec        | t 0.18 |
|       |      |        |      | displac | 0.14 | dye    | 0.19 | bond          | 0.17   |
|       |      |        |      |         |      |        |      | crosslink0.13 |        |
|       |      |        |      |         |      |        |      | bind          | 0.12   |

| cloth  |       | tube |      | area   |      | game |     | play        |      |
|--------|-------|------|------|--------|------|------|-----|-------------|------|
| fabric | 0.36  | tube | 0.88 | area   | 0.4  | set  | 0.6 | set         | 0.3  |
| cloth  | 0.3   | pipe | 0.12 | zone   | 0.23 | game | 0.4 | play        | 0.24 |
| garmen | t 0.2 |      |      | region | 0.2  |      |     | read        | 0.17 |
| tissu  | 0.14  |      |      | surfac | 0.17 |      |     | game        | 0.16 |
|        |       |      |      |        |      |      |     | reproduc0.1 |      |

Walid Magdy, TTDS 2017/2018



#### **Thesaurus-based QE**

- Works for very specific applications (e.g. medical domain)
- Many times fails to improve retrieval
  - Sometimes reduces both precision and recall
  - How?
- When it works, it is hard to get a consistent performance over all queries:
  - Improves some, and reduces others. Significant?
- Why it fails?
  - Lack of context
- Current research: word embeddings
  - · No consistent improvement still



#### **Relevance Feedback**

- Idea: let user give feedback to the IR system about samples of what is relevant and what is not.
- User feedback on relevance of docs in initial results
  - User issues a (short, simple) query
  - The user marks some results as relevant or non-relevant.
  - The system computes a better representation of the information need based on feedback.
  - Relevance feedback can go through one or more iterations
- From user perspective: it may be difficult to formulate a good query when you don't know the collection well, BUT easier to judge particular documents





## **Example 2: Text Search**

- Initial query: New space satellite applications
- Initial Results
  - 1. NASA Hasn't Scrapped Imaging Spectrometer
  - 2. NASA Scratches Environment Gear From Satellite Plan
  - 3. Science Panel Backs NASA Satellite Plan, But Urges Launches of Smaller Probes
  - 4. A NASA Satellite Project Accomplishes Incredible Feat: Staying Within Budget
  - 5. Scientist Who Exposed Global Warming Proposes Satellites for Climate Research
  - 6. Report Provides Support for the Critics Of Using Big Satellites to Study Climate
  - 7. Arianespace Receives Satellite Launch Pact From Telesat Canada
  - 8. Telecommunications Tale of Two Companies
- User then marks relevant documents with "+"
- System learns new terms

Walid Magdy, TTDS 2017/2018



THE UNIVERSITY of EDINBURGH

#### New terms common in selected docs

| 2.074 | new        | 15.10 | space       |
|-------|------------|-------|-------------|
| 30.81 | satellite  | 5.660 | application |
| 5.991 | nasa       | 5.196 | eos         |
| 4.196 | launch     | 3.972 | aster       |
| 3.516 | instrument | 3.446 | rianespace  |
| 3.004 | bundespost | 2.806 | SS          |
| 2.790 | rocket     | 2.053 | scientist   |
| 2.003 | broadcast  | 1.172 | earth       |
| 0.836 | oil        | 0.646 | measure     |
|       |            |       | 0.817/s     |

## Adding new terms to the query

- 1. NASA Scratches Environment Gear From Satellite Plan
- 2. NASA Hasn't Scrapped Imaging Spectrometer
- 3. When the Pentagon Launches a Secret Satellite, Space Sleuths Do Some Spy Work of Their Own
- 4. NASA Uses 'Warm' Superconductors For Fast Circuit
- 5. Telecommunications Tale of Two Companies
- 6. Soviets May Adapt Parts of SS-20 Missile For Commercial Use
- Gaping Gap: Pentagon Lags in Race To Match the Soviets In Rocket Launchers
- 8. Rescue of Satellite By Space Agency To Cost \$90 Million

#### Hopefully better results!

THE UNIVERSITY of EDINBURGH

Walid Magdy, TTDS 2017/2018

## **Theoretical Optimal Query**

- Found closer to rel docs and away from irrel ones.
- Challenge: we don't know the truly relevant docs



## **Rocchio's Algorithm**

- Key Concept: Vector Centroid
- Recall that, in VSM, we represent documents as points in a high-dimensional space
- The centroid is the centre mass of a set of points

$$\vec{\mu}(C) = \frac{1}{|C|} \sum_{\vec{d} \in C} \vec{d}$$

where C is a set of documents.

Introduced 1963



THE UNIVERSITY

Walid Magdy, TTDS 2017/2018

## **Rocchio Algorithm: theory**

• Rocchio seeks the query  $\vec{q}_{opt}$  that maximizes

$$\vec{q}_{opt} = \underset{\vec{q}}{\operatorname{argmax}}[sim(\vec{q}, C_{rel}) - sim(\vec{q}, C_{irrel})]$$

For Cosine similarity

$$\vec{q}_{opt} = \frac{1}{|C_{rel}|} \sum_{\vec{d_j} \in C_{rel}} \vec{d_j} - \frac{1}{|C_{irrel}|} \sum_{\vec{d_j} \notin C_{rel}} \vec{d_j}$$

$$\vec{q}_{opt} = \vec{\mu}(C_{rel}) - \vec{\mu}(C_{irrel})$$



## **Rocchio Algorithm: in practice**

Only small set of docs are known to be rel or irrel

$$\vec{q}_m = \alpha \vec{q}_0 + \beta \frac{1}{|D_{rel}|} \sum_{\overrightarrow{d_j} \in D_{rel}} \overrightarrow{d_j} - \gamma \frac{1}{|D_{irrel}|} \sum_{\overrightarrow{d_j} \in D_{irrel}} \overrightarrow{d_j}$$

 $\vec{q}_0$  = original query vector

 $D_{rel}$  = set of known relevant doc vectors

 $D_{irrel}$  = set of known non-relevant doc vectors

 $\vec{q}_m$  = modified query vector

 $\alpha$  = original query weights (hand-chosen or set empirically)

 $\beta$  = positive feedback weight

 $\gamma$  = negative feedback weight

 New query moves toward relevant documents and away from non-relevant documents

Walid Magdy, TTDS 2017/2018



## Notes about setting weights: $\alpha$ , $\beta$ , $\gamma$

- Values of  $\beta$ ,  $\gamma$  compared to  $\alpha$  are set high when large judged documents are available.
- In practice, +ve feedback is more valuable than -ve feedback (usually, set  $\beta > \gamma$ )
  - Many systems only allow positive feedback ( $\gamma$ =0).
  - Or, use only highest-ranked negative document.
- When  $\gamma$ >0, some weights in query vector can go -ve.
- In practice, top  $n_t$  terms in  $\overrightarrow{d}_i \in D_{rel}$  are only selected
  - $n = 5 \to 50$
  - Top  $n_t$  are identified using e.g. TFIDF

THE UNIVERSITY of EDINBURGH



#### Effect of Relevance Feedback on Retrieval

- Relevance feedback can improve recall and precision
- In practice, relevance feedback is most useful for increasing recall in situations where recall is important.
- Empirically, one round of relevance feedback is often very useful. Two rounds is sometimes marginally useful.



#### **Relevance Feedback: Issues**

- Long queries are inefficient for typical IR engine.
  - · High cost for retrieval system.
  - Long response times for user.
- It's often harder to understand why a particular document was retrieved after applying relevance feedback
- Users are often reluctant to provide explicit feedback

Walid Magdy, TTDS 2017/2018



#### **Relevance Feedback: Evaluation**

- Assess on all documents in the collection
  - Spectacular improvements, but ... it's cheating!
- Use documents in residual collection (set of documents minus those assessed relevant) for second result set
  - Measures usually then lower than for original query
  - · Relative performance of RF variants can be validly compared
  - Hard to compare with and without RF
- Use two collections each with their own relevance assessments
  - $q_0$  and user feedback from first collection
  - Both  $q_0$  and  $q_m$  run on second collection and measured
- User Studies (time-based comparison)



#### **Relevance Feedback: Evaluation**

- True evaluation of usefulness must compare to other methods taking the same amount of time.
- Practically:

User revises and resubmits query

- Users may prefer revision/resubmission to having to judge relevance of documents.
- Useful for query suggestion to other users
- Is there a way to apply relevance feedback without user's input?

Walid Magdy, TTDS 2017/2018



#### Pseudo (Blind) Relevance Feedback

- Solves the problem of users hate to provide feedback
- Feedback is applied blindly (PRF)
  - Automates the "manual" part of true relevance feedback.
- Algorithm:
  - Retrieve a ranked list of hits for the user's query
  - Assume that the top k documents are relevant
  - Do relevance feedback (e.g. Rocchio)
  - Typically applies only positive relevance feedback ( $\gamma$ =0)
- Mostly works
  - Still can go horribly wrong for some queries (when top k docs are not relevant)
  - Several iterations can lead to query drift



### PRF (BRF)

- Was proven to be useful for many IR applications
  - News search (learn names and entities)
  - Social media search (learn hashtags)
  - Web search (implicit feedback is used more = clicks)
- Some domains are more challenging
  - Patent search
    - · Top documents are usually not relevant
    - · Patent text in general is unclear/confusing
- PRF is the most basic QE method for IR
  - Unsupervised
  - · Language independent
  - · Does not require any kind of language resources

Walid Magdy, TTDS 2017/2018



## PRF (BRF): Evaluation

- In practice, different number of feedback docs (n<sub>d</sub>) and terms (n<sub>t</sub>) are usually tested for PRF
  - $n_d$ : 1  $\rightarrow$  50
  - $n_t^2: 5 \to 50$
- Results of PRF are directly compared to baseline (with no PRF)
  - It is <u>not</u> considered cheating in this case. Why?
  - It is essential to show that improvement is significant, and preferred to show the % of queries improved vs degraded.

THE UNIVERSITY of EDINBURGH

#### **Summary**

- QE: automatically add more terms to user's query to better match relevant docs
- QE via thesaurus
  - Manual/automatic thesaurus: useful for specific applications
  - Fail when context is important
- Relevance feedback
  - Get samples of rel/irrel docs for extracting QE useful terms
  - Rocchio's is one of the most common algorithms for query modification
- PRF
  - Skips user's input for the feedback process
  - · Found to be useful in many applications

Walid Magdy, TTDS 2017/2018



#### **Resources**

- Text book 1: Intro to IR, Chapter 9
- Text book 2: IR in Practice, Chapter 6.2, 6.3
- Reading:

Magdy W. and G. J. F. Jones. A Study on Query Expansion Methods for Patent Retrieval. PAIR 2011 - CIKM 2011

THE UNIVERSITY