Influência da Diversidade das Faces

Bruno Costa João Varela

02/08/2019

INSTITUTO DE ENGENHARIA DE SISTEMAS E COMPUTADORES, TECNOLOGIA E CIÊNCIA

Enquadramento/Objetivos

- Análise das métricas mais relevantes para o reconhecimento facial:
 - Principal Component Analysis (PCA)
 - Reduzir a dimensionalidade do problema
- Construir um classificador minimizando os recursos utilizados:
 - K-means Clustering
 - Escolher as melhores imagens possíveis para o treino do classificador (as que garantem um dataset com mais variabilidade)
- Comparar o desempenho de classificadores:
 - Segundo o tamanho do dataset de treino
 - Segundo a variabilidade das imagens dentro do dataset de treino

Construção do Dataset

Construção do Dataset

Name	Same	Diff
Dalai Lama	462	353
Abdullah_II_of_Jordan	410	391
Aditya_Seal	401	409
Aishwarya_Rai	312	509
Alain_Traoré	312	286
Alex_Gonzaga	299	422
Angélique_Kidjo	423	292
Anne, Princess Royal	293	372
Cavaco_Silva	542	359
Aya_Miyama	276	261
Conan O'Brien	423	427
Zélia_Duncan	491	273

Number of Images per Class

Análise das métricas mais relevantes

- Através dos pontos faciais foram retiradas 39 métricas (distâncias, áreas, rácios e contrastes).
- O PCA permitiu encontrar as métricas que melhor representam os dois datasets.

Análise das métricas mais relevantes

Distances

- Areas

Ratios

Contrasts

Zélia Duncan

39 Métricas

11 Métricas (Contraste e Rácios)

Comparação da Variabilidade dos Datasets

Diff Average Variance
Same Average Variance

K-fold Cross Validation

- Para avaliar a capacidade de generalização do modelo recorreu-se à técnica de validação cruzada, mais especificamente ao método K-fold.
- Treinou-se o classificador usando dois modelos diferentes:
 - Custom Model (5 camadas)
 - Resnet18

Comparação da Accuracy

	Same Dataset	Diff Dataset
Custom Model	0.35	0.8
ResNet18	0.37	0.78

Accuracy Comparison

Guided Selection

- Com o intuito de minimizar o tamanho do dataset de treino, tentaram-se escolher as melhores imagens do dataset inicial, recorrendo a um método que usa o algoritmo de clustering K-means para selecionar as imagens que garantem a maior variabilidade possível.
- Compararam-se os desempenhos dos classificadores usando 50, 100, 200 e 300 imagens de treino selecionadas de forma aleatória e de forma guiada (através do K-means).

Guided Selection

Comparação da Accuracy

Comparação da Accuracy

Conclusões e Trabalho Futuro

- É possível reduzir a dimensionalidade do problema devido à reprodutibilidade das métricas em todas as personagens.
- Observou-se que existe uma correlação entre a variabilidade das métricas do dataset e o desempenho do classificador.
- Utilizando uma seleção guiada das imagens para treino, conseguimos diminuir os recursos utilizados, mantendo o desempenho do classificador.
 - Custom Model: redução de 217 imagens por personagem
 - o Resnet18: redução de 137 imagens por personagem
- Trabalho Futuro:
 - Comparar o desempenho de classificadores segundo um número de épocas variável.