| دورة سنة 2009 العادية | الشهادة المتوسطة                             | وزارة التربية والتعليم العالي<br>المديرية العامة للتربية<br>دائرة الامتحانات |
|-----------------------|----------------------------------------------|------------------------------------------------------------------------------|
| الاسم:<br>الرقم:      | مسابقة في مادة الفيزياء<br>المدة: ساعة واحدة |                                                                              |

# Cette épreuve est constituée de trois exercices obligatoires répartis sur deux pages. L'usage des calculatrices non programmables est autorisé.

## **Premier exercice (7 points)**

# Marche d'un rayon lumineux à travers une sphère en verre

Dans la figure ci-contre, un rayon lumineux SI passe de l'air dans une sphère en verre de centre O.

OI représente la normale en I à la surface de séparation du système (air-verre) et OI' la normale en I'.

Le but de cet exercice est d'étudier le comportement de SI après avoir pénétré dans la sphère.

- 1) a) Quelle est la valeur de l'angle d'incidence de SI en I ?
  - **b**) Quelle est la valeur de l'angle de réfraction correspondant ?





- 3) Démontrer que la valeur de l'angle d'incidence du rayon II' au point I' est 42°.
- 4) a) Le rayon II' émerge dans l'air. Pourquoi?
  - b) Déterminer la valeur de l'angle de réfraction en I'.
- 5) Reproduire la figure ci-dessus et compléter la marche du rayon II'.
- 6) a) Calculer l'angle de déviation D<sub>1</sub> que subit le rayon SI en I.
  - **b**) Calculer l'angle de déviation D<sub>2</sub> que subit le rayon II' en I'.
  - c) En déduire l'angle de déviation totale D que subit le rayon SI.

# Deuxième exercice (7 points)

#### Rôle d'un fusible

Dans le but de mettre en évidence le rôle d'un fusible, on réalise le circuit de la figure ci-contre. Ce circuit comporte, montés en série :

- un générateur (G) délivrant, entre ses bornes, une tension continue constante  $U_{PN}=U=24\ V$  ;
- deux lampes identiques  $(L_1)$  et  $(L_2)$  assimilables à des conducteurs ohmiques et portant les inscriptions (12 V; 0.6 A);
- un fusible (F) portant l'indication 0,65 A et de résistance négligeable.
- 1) a) Donner la signification de chacune des inscriptions portées par les lampes.
  - **b**) Déterminer la résistance de chacune des deux lampes.
- 2) a) La tension aux bornes de (F) est nulle. Pourquoi?



- **b**) Déterminer les valeurs des tensions  $U_1$  et  $U_2$  respectivement aux bornes de  $(L_1)$  et  $(L_2)$ .
- c) En déduire que les lampes fonctionnent normalement.
- d) Que vaut alors l'intensité I du courant traversant le circuit ?
- 3) On court-circuite  $(L_2)$ .
  - a) Donner la valeur de la tension  $U_2$  aux bornes de  $(L_2)$ . Justifier.
  - **b**) En déduire la valeur de la tension  $U_1$  aux bornes de  $(L_1)$  ainsi que la valeur I' de l'intensité du courant traversant le circuit.
  - c) (L<sub>1</sub>) risque de griller. Pourquoi ?
  - d) En réalité (L<sub>1</sub>) ne grille pas mais s'éteint. Expliquer.

## Troisième exercice (6 points)

# Profondeur d'un puits

On désire déterminer graphiquement la profondeur h (en m) de l'eau contenue dans un puits. Dans ce but on place, au fond du puits, une capsule manométrique qui donne la pression totale en un point B de ce fond.

Données:

- masse volumique de l'eau : 1000 kg/m³ ;
- pression atmosphérique : 103360 Pa;
- -g = 10 N/kg.
- 1) Donner la valeur de la pression Po en A.
- 2) Exprimer, en fonction de h, la pression  $P_1$  (en  $P_2$ ) exercée par l'eau au point  $P_2$ .
- 3) Montrer que la pression totale P au point B, exprimée en Pa, s'écrit sous la forme :  $P = 10000h + P_o$ .
- 4) Tracer, sur le papier millimétré, le graphe donnant les variations de  $\Delta P = (P-P_o)$  en fonction de h.

Échelles : en abscisses : 1 cm pour 0,1 m;

en ordonnées: 1 cm pour 1000 Pa.

- 5) En un certain jour d'été, la pression donnée par la capsule a pour valeur P = 105360 Pa.
  - a) Calculer alors la valeur de  $\Delta P$ .
  - b) En déduire graphiquement la profondeur h de l'eau du puits ce jour là.

