

الامتمان الوطني الموحد للبكالوريا

الدورة الاستدراكية **2014** الموضوع

المركز الوطني للتقويم والامتحانات والتوجيه

RS 24

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب)	الشعبة أو المسلك

- مدة إنجاز الموضوع هي أربع ساعات.
- يتكون الموضوع من ستة تمارين مستقلة فيما بينها.
- يمكن إنجاز التمارين حسب الترتيب الذي يرغب فيه المترشح.
- التمرين الأول يتعلق بحساب الاحتمالات (2ن)
 التمرين الثاني يتعلق بالحسابيات (1ن)
 التمرين الثالث يتعلق بالبنيات الجبرية (3.75ن)
 التمرين الرابع يتعلق بالأعداد العقدية (25.8ن)
 التمرين الخامس يتعلق بالتحليل (2.5ن)
 التمرين السادس يتعلق بالتحليل (2.5ن)

يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة

لا يسمح باستعمال اللون الأحمر بورقة التحرير

	_	
الصفحة		الامتحان الوطني الموحد للبكالوريا – الحورة الاستحراكية 2014 – الموضوع
$\overline{}$	1 RS 24	الموسود - عام الموسود على المعامل الموسود على الموسود الموسود الموسود
1.4	II I	– ماحة : الرياضيات — شعبة العلوم الرياضية (أ) و(ببم)
4	RS 24	- معتود عمرة على (د) والجناء المعتود عمرة على (جناء)

التمرين الأول: (2 ن)

نعتبر ثلاثة صناديق U و V و W.

يحتوي الصندوق W على كرة سوداء و كرتين بيضاوين و يحتوي كل صندوق من الصندوقين U و V على كرتين سوداوين و كرتين بيضاوين.

نقوم بالتجربة التالية: نسحب كرة من الصندوق W.إذا كانت هذه الكرة بيضاء نضعها في الصندوق U تم نسحب منه تأنيا كرتين، أما إذا كانت هذه الكرة سوداء فنضعها في الصندوق V تم نسحب منه تأنيا كرتين.

0.25 | 1- ما هو احتمال أن يتم السحب من الصندوق U ؟

0.75 | 2- ما هو احتمال الحصول على كرتين بيضاوين في نهاية التجربة؟

X المتغير العشوائي الذي يساوي عدد الكرات البيضاء المحصل عليها في نهاية التجربة.

X حدد قانون احتمال المتغير العشوائى

التمرين الثاني: (1 ن)

1

لیکن n عددا صحیحا طبیعیا غیر منعدم.

 $c_{\scriptscriptstyle n} = 2.10^{\scriptscriptstyle n}$ - 1 د $b_{\scriptscriptstyle n} = 2.10^{\scriptscriptstyle n} + 1$ نضع:

(b و a هو القاسم المشترك الأكبر للعددين الصحيحين a و b

 $b_n x_n + c_n y_n = 1$. فوجد زوجا (x_n, y_n) من (x_n, y_n) من -2

التمرين الثالث: (3,75 ن)

 $J=\left]-1,1\right[$ نضع

 $a*b = \frac{a+b}{1+ab}$ نضع: $A*b = \frac{a+b}{1+ab}$ نضع: A*b = a*b

J في المتنتج أن * قانون تركيب داخلي في J^2 J^2 J^2 1+ J^2 1- تحقق أن: 0.75

0.5 | 2- أ) بين أن القانون * تبادلي و تجميعي.

بین أن (J,*) یقبل عنصرا محایدا یتم تحدیده.

ج)بين أن (*,J)زمرة تبادلية.

 $f(x) = \frac{e^x - 1}{e^x + 1}$:بما يلي: $f(x) = \frac{e^x - 1}{e^x + 1}$ المعرف على المعرف على المعرف ا

J نحو الدالة f تقابل من نحو 0.75

. (تحدید g غیر مطلوب) . 2- لیکن g غیر مطلوب) .

 $x \perp y = f\left(g\left(x\right) \times g\left(y\right)\right)$ نضع: J نضع x و y من y عنصرین

 $J^*=J$ - $\left\{0
ight\}$ حيث: $\left(J^*,\perp
ight)$ نحو $\left(J^*,\perp
ight)$ نحو $\left(J^*,\perp
ight)$ حيث f نشاكل من

J في J نذكر أن $(x,*_{\square})$ زمرة تبادلية، ونقبل أن القانون L توزيعي بالنسبة للقانون L

بين أن $(J,*,\perp)$ جسم تبادلي.

التمرين الرابع: (3.25 ن)

(Re(a)>0 : يرمز لحل المعادلة بحيث t=0 المعادلة t=0 المعادلة بحيث a

1+a حدد معيار و عمدة العدد العقدي 0.5

$$cos \frac{p_{\div}}{8} = \frac{\sqrt{2 + \sqrt{2}}}{2}$$
 (0.25)

1-a عند الشكل المثلثي للعدد (1+a) ثم استنتج الشكل المثلثي للعدد (1-a) تحقق أن: a

الامتحان الوطني الموحد للبكالوريا - الحورة الاستحراكية 2014 - الموضوع RS 24	
- ماحة : الرياخيات – شعبة العلوم الرياخية (أ) و(بح)	,
M' و B و A و نعتبر النقط O,u,v ، نعتبر النقط B و M و M'	
zz'+i=0 التي ألحاقها على التوالي هي a و a و تفترض أن	
\overline{z} مرافق \overline{z} مرافق \overline{z}	
بين أن المستقيمين (OM') و (OM') متعامدان.	0.25
$z'-a=irac{z-a}{az}$: بین أن	0.25
$\dfrac{z'-a}{z'+a}=-\dfrac{z-a}{z+a}$ و z'^1-a فإن z^1-a فإن z^1-a	0.5
3- نفترض أن النقط A و B و M غير مستقيمية. بين أن النقطة M تنتمي إلى الدائرة المحيطة بالمثلث ABM	0.5
التمرين الخامس: (7.5 نقط)	l
$f(x) = \frac{-\ln x}{\sqrt{x}}$ الدالة العددية المعرفة على المجال $0,+\infty$ بما يلي: $f(x) = \frac{-\ln x}{\sqrt{x}}$	
$\left\ \stackrel{\Gamma}{i} ight\ = 1$ وليكن $\left(C ight)$ المنحنى الممثل للدالة f في معلم متعامد ممنظم $\left(C ight)$ بحيث:	
ا - أحسب $\lim_{x o 0^+} f(x)$ و $\lim_{x o +\infty} f(x)$ ثم أعط تأويلا هندسيا للنتيجتين المحصل عليهما.	1
$]0,+\infty$ على المجال $[0,+\infty]$ على المجال f على المجال f على المجال f	0.75
$g_n(x)$ المعرفة على $0,1$ بما يلي: $g_n(x)$ نعتبر الدالة العددية $g_n(x)$ المعرفة على $0,1$ بما يلي:	
اً) بين أن الدالة g_n تناقصية قطعا على المجال $]0,1[$	0.25
$f(lpha_n)$ = $(lpha_n)^n$:بوجد عدد حقيقي وحيد $lpha_n$ من المجال $0,1[$ بحيث n من n من n استنتج أنه لكل n من n	0.5
$g_n(a_{n+1})\!\!< 0$: بین أن لکل n من * \square لدینا n	0.5
د) بين أن المتتالية $\left(lpha_{n} ight)_{n\geq1}$ تزايدية قطعا ثم استنتج أنها متقاربة.	0.75
$l=\lim_{n \circledast orall} a_n$ نضع -4	
0 < a_1 £ l £ 1 أنحقق أن 1	0.25
$h(x) = -\frac{1}{2} + \frac{\ln(-\ln(x))}{\ln x}$: حيث $("n eq otag otag $	0.25
l=1 : بین أن	0.5
$\lim_{n o +\infty}(lpha_n)^n=0$ د) استنتج أن $=0$	0.25
$\cdot \stackrel{*}{}_{+}$ اکل x من x کا ادرس إشارة التکامل $\int_{x}^{1} f(x) dx$ اکل x من التکامل x التکامل x التکامل x التکامل x التکامل x التکامل x التکامل التکامل x التکامل التکامل x ا	0.25
$("x$ خ ، $^*_+)$ $\int_x^1 f(x) dx = 4 - 4\sqrt{x} + 2\sqrt{x} \ln x$: باستعمال طریقة المکاملة بالأجزاء بین أن	0.5
ج) أستنتج بالوحدة cm^2 مساحة الحيز المستوي المحصور بين المنحنى (C) و المستقيمات التي معادلاتها على التوالي:	0.25
$y = 0$ و $x = e^2$ و $x = 1$	
	1

الصفحة 4 RS 24	الامتدان الوطني الموحد للوكالوريا - الدورة الاستحراكية 2014 - الموضوع	
4	– ماحة : الرياخيات – شعبة العلوم الرياخية (أ) و(بم)	
	$u_n = \frac{1}{n} \sum_{k=1}^{k=n} f\left(\frac{k}{n}\right)$ -2 لکل عدد صحیح طبیعی غیر منعدم n نضع	
نا:	ا) بین أنه لکل عددین صحیحین طبیعیین n و k بحیث $2 \geq n$ و $1 \leq k \leq n-1$ لدین	0.5
	$\frac{1}{n}f\left(\frac{k+1}{n}\right) \le \int_{\frac{k}{n}}^{\frac{k+1}{n}} f(x)dx \le \frac{1}{n}f\left(\frac{k}{n}\right)$	0.5
	$("n \dot{\succeq} \overset{*}{\ })$ $\int_{\frac{\pi}{n}}^{1} f(t)dt \pounds u_n \pounds \frac{1}{n} f \underbrace{\xi \frac{1}{n} \dot{\vdash}}_{n} + \int_{\frac{1}{n}}^{2} f(t)dt :$ $\int_{\frac{\pi}{n}}^{1} f(t)dt \pounds u_n \pounds \frac{1}{n} f(t)dt \pounds u_n \pounds \frac{1}{n} f(t)dt :$ $\int_{\frac{\pi}{n}}^{1} f(t)dt \pounds u_n \pounds \frac{1}{n} f(t)dt \pounds u_n u_n \pounds u_n u_n \pounds u_n u$	0.5
	$\lim_{n \oplus + rac{1}{4}} u_n = 4$ استنتج أن $n \oplus + rac{1}{4}$	0.5
	التمرين السادس (2.5 نقط)	
	$g\left(x ight)=\int_{\sqrt{x}}^{1}e^{-t^{2}}dt$:بما يلي إلى المعرفة على المجال إلى المعرفة على المجال يات المعرفة على المجال إلى المعرفة على المجال إلى المعرفة على المجال المعرفة على المحرفة على المجال المعرفة على المحرفة على	
	$k(x)=\int\limits_{1}^{x}e^{-t^{2}}dt$: ککل x من ، نضع -1	
	$g\left(x ight)=-k\left(\sqrt{x} ight)$ الدينا: $\left[0,+\infty ight[$ من المجال x من المجال أيتحقق أنه لكل	0.25
	$[0,+\infty]$ بين أن الدالة g متصلة على $[0,+\infty]$ وقابلة للاشتقاق على $[0,+\infty]$	0.5

$$g(x)=-k(\sqrt{x})$$
 الدينا: $[0,+\infty[$ من المجال x من المجال x من المجال x الدينا:

$$]0,+\infty[$$
 بين أن الدالة g متصلة على $]0,+\infty[$ وقابلة للاشتقاق على $]0,+\infty[$

$$[0,+\infty[$$
 لكل x من $g,+\infty[$ ثم استنتج أن الدالة g تناقصية قطعا على المجال $g,+\infty[$ ثم الكل $g,+\infty[$ على المجال $g,+\infty[$

$$\left(\forall x \in \square^*_+\right)$$
 بين أن: $\left(\forall x \in \square^*_+\right)$ جين أن: $\left(\forall x \in \square^*_+\right)$

ب) استنتج أن الدالة
$$g$$
 غير قابلة للاشتقاق على اليمين في 0 و أعط تأويلا هندسيا للنتيجة المحصل عليها.

انتهی

الامتدان الوطني الموحد للبكالوريا

الدورة الاستدراكية **2014** عناصر الإجابة

المركز الوطنى للتقويم والامتحانات والتوجيه

RR 24

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب)	الشعبة أو المسلك

عناصر الإجابة و سلم التنقيط

		ماعس الإجاب والمعم التعييد	
التمرين الأول	2 نقط	عناصر الإجابة	النقطة الممنوحة
	-1	$\frac{2}{3}$: W هو احتمال سحب كرة بيضاء من الصندوق	تمنح 0.25 نقطة
	-2	$p(2b) = p(2b/U) \cdot p(U) + p(2b/V) \cdot p(V) = \frac{7}{30}$	تمنح 0.75 نقطة
	-3	$\left\{0,1,2 ight\}$ مجموعة قيم X هي:	تمنح 0.25 نقطة لمجموعة القيم
		$p(1b) = \frac{18}{30}$ o $p(0b) = \frac{5}{30}$	تمنح 0.75 نقطة لتحديد قانون الاحتمال
التمرين الثاني	1 نقطة		
	-1	و تطبيق مبر هنة أقايدس $b_{\scriptscriptstyle n} = c_{\scriptscriptstyle n} + 2$	تمنح 0.25 نقطة
		ثم $c_n=1$ وتطبيق مبر هنة بوزو.	تمنح 0.25 نقطة
		و تقبل أية طريقة صحيحة أخرى	
	-2	زوج معاملات بوزو	تمنح 0.5نقطة
التمرين الثالث	3.75 نقط		
	-1- <i>I</i>	التحقق و الاستنتاج	تمنح 0.25 نقطة للتحقق
			تمنح 0.5 نقطة للاستنتاج
	-2 ([†]	القانون تبادلي القانون تجميعي	تمنح 0.25 نقطة تمنح 0.25 نقطة
	ب)	تحديد العنصر المحايد	تمنح 0.25 نقطة

7 . 11	71			
<u>الصفحة</u> 2	RR 24	نبي الموحد للبكالوريا – الحورة الاستحراكية 2014 – عناصر الإجابة ماحة : الرياضياند – هعية العلوم الرياضية (أ) و(بم)		l
4	تمنح 0.5 نقطة	زمرة تبادلية	(c	
	تمنح 0.75 نقطة	نقبل مختلف الأجوبة الصحيحة	-1- <i>II</i>	
	تمنح 0.5 نقطة	التشاكل	-2	
	تمنح 0.5 نقطة	جسم تبادلي بتوظيف التشاكل التقابلي	-3	
			3.25	التمرين
			نقط	الرابع
	تمنح 0.5 نقطة	$-\frac{\sqrt{2}}{2}(1-i)$ علي المعادلة: $(1-i)$ $\frac{\sqrt{2}}{2}$ و	-1- <i>I</i>	
			([†] -2	
	تمنح 0.25 نقطة لكل نتيجة	$arg(1+a)$: $-\frac{p}{8}[2p]$ $_{9} 1+a =\sqrt{2+\sqrt{2}}$		
	تمنح 0.25 نقطة	$cos \frac{p}{8} = \frac{\sqrt{2+\sqrt{2}}}{2}$ الإستنتاج:	ب)	
	تمنح 0.25 نقطة	التحقق	ج)	
	تمنح 0.25 نقطة	الاستنتاج		
		لدينا <u>" - تخيلي</u> صرف 7	-1- <i>II</i>	
	تمنح 0.25 نقطة	z z		
	تمنح 0.25 نقطة	المتساوية	([†] -2	
	تمنح 0.5 نقطة	المتساوية	ب)	
	تمنح 0.5 نقطة	النقط A و B و M و ' M متداورة انطلاقا من نتيجة السؤال 2-ب)	-3	
			7.5 نقط	التمرين الخامس
	تمنح 0.25 نقطة لكل نهاية	حساب النهايتين	-1- <i>I</i>	
	و 0.25نقطة لكل تأويل هندسي صحيح	التأويل الهندسي		
	تمنح 0.25 نقطة لحساب	- حساب الدالة المشتقة الأولى	-2	
	f'(x)			

تغيرات الدالة

(^j-3

تناقصية قطعا كمجموع دالتين تناقصيتين g_n

تمنح 0.5نقطة للتغيرات

تمنح 0.25نقطة

	الامتحان الوط	ني الموحد للبكالوريا - الحورة الاستحراكية 2014 - عناصر الإجابة		RR 24		
	-	ماحة : الرياخيات — شعبة العلوم الرياخية (أ) و(بب)	 ```^-			
	ب)	الكل n من * $rac{4}{3}$ الدالة g_n متصلة و رتيبة قطعا على المجال 0.1 إدن	تمنح 0.5نقطة			
		تقابل من]0,1[نحو] ¥ +.1 [
		و تقبل أية طريقة صحيحة أخرى				
	(c	$g_n(a_{n+1}) = a_n^n(a_n - 1)$	تمنح 0.5نقطة			
	(7	$g_n(a_{n+1}) < g_n(a_n)$: المنتالية تزايدية قطعا	تمنح 0.5نقطة			
		المتتالية متقاربة	تمنح 0.25نقطة			
	(1-4	$0 < a_{\scriptscriptstyle 1} < a_{\scriptscriptstyle n} < 1$ الإنطلاق من كون	تمنح 0.25نقطة			
		و تقبل أية طريقة صحيحة أخرى				
	ب)	التحقق	تمنح 0.25نقطة			
	(₹	افتراض أن $l < 1$ و الحصول على تناقض من خلال استعمال نتيجة السؤال السابق وكون الدالة h متصلة في l	تمنح 0.5نقطة			
		و تقبل أية طريقة صحيحة أخرى				
	(7	استعمال : $f\left(a_{n} ight)=\left(a_{n} ight)^{n}$ و كون الدالة f متصلة في 1	تمنح 0.25نقطة			
		و تقبل أية طريقة صحيحة أخرى				
	(¹ -1- <i>II</i>	إشارة التكامل	تمنح 0.25نقطة			
	ب)	حساب التكامل	تمنح 0.5نقطة			
	(c	استنتاج المساحة	تمنح 0.25نقطة			
	(¹ -2	[0,1] المتفاوتة المزدوجة من خلال كون f تناقصية قطعا على المجال	تمنح 0.5نقطة			
	ب)	اثبات المتفاوتة المزدوجة	تمنح 0.5نقطة			
	(₹	تحديد النهاية	تمنح 0.5نقطة			
التمرين السادس	2.5نقط					
	(1-1	التحقق	تمنح 0.25نقطة			
	ب)	الاتصال	تمنح 0.25نقطة			
		الأشتقاق	تمنح 0.25نقطة			
	(ट	g'(x)حساب	تمنح 0.25نقطة			
		الإستنتاج	تمنح 0.25نقطة			

RR 24	نبي الموحد للبكالوريا - الحورة الاستحراكية 2014 – نمناصر الإجابة ماحة : الرياضيانت – شعبة العلوم الرياضية (أ) و(بج)		1
تمنح 0.5نقطة	الدالة g متصلة على القطعة $[0,x]$ و قابلة للاشتقاق على المجال - الدالة	(أ -2	
	وتطبيق مبرهنة التزايدات المنتهية على القطعة $[0,x]$ بالنسبة $[0,x]$		
	للدالة ع		
تمنح 0.25نقطة	- الدالة تناقصية قطعا للحصول على المتفاوتة		
تمنح 0.5نقطة إذا حصل	وتقبل أية طريقة صحيحة أخرى		
المترشح على المتفاوتة			
مباشرة			
تمنح 0.25نقطة	الاستنتاج	ب)	
تمنح 0.25نقطة للتأويل	التأويل الهندسي		
الهندسي			