```
\begin{array}{l} a+b\in\mathbb{N}\\ a\times b\in\mathbb{N}\\ a+b=b+a\\ (a+b)+c=a+(b+c)\\ n\times 1=nforalln\in\mathbb{N}\\ ifm\times z=n\times zforsomez\in\mathbb{N} thenm=n\\ a\times (b+c)=(a\times b)+(a\times c)\\ m \text{ is a multiple of }n \text{ if there is a natural number }r \text{ such that }m=rn \end{array}
```

If a and b are multiplies of n the, for all $x,y\in\mathbb{N},xa+yb$ is a a multiple of n

For any natural numbers m and n, the statement m < n means that there is some $x \in \mathbb{N}$ such that m + x = n If a < b and b < c then a < c

Given any natural numbers m and n, exactly one of the three statements m < n, m = n, n < m is true.

Suppose that P(n) is a statement with the following properties: (i) P(1) is true: *induction basis*

(ii) if P(k) is true (induction hypothesis) then P(k+1) (induction step) is true for every $k \in \mathbb{N}$.

Then P(n) is true for all $n \in \mathbb{N}$

strong: (ii) assume $P(i)1 \le i \le k$ is true then P(k+1) is true for every $k \in \mathbb{N}$

Let X be a subset of \mathbb{N} . An element $l \in X$ is a **least member** of X if $l \leq x$ for all $x \in X$. An element $g \in X$ is a **greatest member** of X if $g \geq x$ for all $x \in X$. Often l and g are referred to as the **minimum** and **maximum** of X. Every non-empty subset of X of \mathbb{N} has a least member. Suppose that X and Y are sets. We say that we have a **function** f **from** X **to** Y if for each x in X we can specify a unque element in Y, which we denote by f(x).

The function f from X to Y is a **surjection** if every y in Y is a value f(x) for at least one x in X. It is an **injection** if every y in Y is a value f(x) for at most one x in X. It is a **bijection**

if it is both a surjection and an injection, that is, if every y in Y is a value f(x) for exactly one x in X.

For any set X the function $i:X\to X$ defined by i(x)=x for all $x\in X$ is called the **identity** function on X. If X is a subset of Y, the function $j:X\to Y$ defined by j(x)=x is called the **inclusion** function from X to Y.

If $f: X \to Y$ and $g: Y \to Z$ are injections, then so is the composite $gf: X \to Z$. If f and g are surjections then so is gf. if f and g are bijections then so is gf.

A function $f: X \to Y$ has an **inverse** function $g: Y \to X$ if, for all x in X and y in Y (gf)(x) = x, (fg)(y) = y. In other words gf is the identity function on X and fg is the identity function on Y.

A function has an inverse if and only if it is a bijection. Let m be a natural number. Then the following statement is true for every natural number n: if there is an injection from $\mathbb{N}_n to \mathbb{N}_m$, then $n \leq m$.

If there is a bijective correspondence between S and \mathbb{N}_m then we say that S has size, or cardinality, m and we write |S|=m. If a set S is such that |S|=s and |S|=t, then s=t. A set S is **finite** if it is empty of if |S|=n for some $n\in\mathbb{N}$. A set which is not finite is said to be **inifite**.

The set \mathbb{N} is infinite.

If the set S is such that there is a bijection $b: \mathbb{N} \to S$, then S is infinite.

A **relation** R on a set X is a set of ordered pairs of members of X

reflexive xRx, symmetric xRy, transitive xRy and yRz hence xRz

An **equivalence relation** is a relation that is reflexive, symmetric and transitive.

Let R be an equivalence relation on X. A non-empty set $C \subseteq X$ is an **equivalence class** with respect to R if (i) any two members of C are R-related; and

(ii) C contains every member of X that is R-related to any member of C.

in symbols, C is such that,

if $x \in C$ then $y \in C \iff xRy$

Given an equivalence relation R on X, every member of X is one and only one equivalence class (with respect to R). x + 0 = x for every $x \in \mathbb{Z}//$ If $x \times z = y \times z$ and $z \neq 0$ then

x = y

For any $x \in \mathbb{Z}$ there is an element -x of \mathbb{Z} such that x + (-x) = 0.

If $x \leq y$ and 0 leq z, then $x \times z \leq y \times z$.

The integer b is a **lower bound** for a set $X \subseteq \mathbb{Z}$ if $b \le x$ for all $x \in X$.

If a non-empty set $S\subseteq \mathbb{Z}$ has a lower bound, then S has a least member.

Given positive integers a and b there exist q and r in \mathbb{N}_0 such that a = bq + r and $0 \le r \le b$.

If a and b are positive integers (or zero) we say that d is the **greatest common divisor (gcd)** of a and b provided that (i) d|a and d|b; (ii) if c|a and c|b, then $c \leq d$.

Let a and b be positive integers, and let d = gcd(a, b). Then there are integers m and n such that d = ma + nb.

If gcd(a,b)=1 then we say that a and b are **coprime**. In this case the Theorem asserts that there are integers m and n such that ma+nb=1.

A positive integer p is a **prime** if $p \ge 2$ and the only positive integers which divide p are 1 and p itself.

If p is a prime and x_1, x_2, \ldots, x_n are any integers such that $p|x_1x_2\ldots x_n$ then $p|x_i$ for some $x_i(1\leq i\leq n)$.

(The Fundamental Theorem of Arithmetic) A positive integer $n \geq 2$ has a unique prime factorization, apart from the order of the factors.