Tree Terminology

Trees

Topics

- Tree terminology
- Tree traversals

Tree Terminology

Trees

- A set of nodes (or vertices)
 with a single starting point
 - called the root
- Each node is connected by an edge to another node
- A tree is a connected graph
 - There is a path to every node in the tree
 - A tree has one less edge than the number of nodes

Is it a Tree?

Tree Relationships

- Node v is said to be a child of u, and u the parent of v if
 - There is an edge between the nodes u and v, and
 - u is above v in the tree,
- This relationship can be generalized
 - E and F are descendants of A
 - D and A are ancestors of G
 - B, C and D are siblings
 - F and G are?

More Tree Terminology

- A *leaf* is a node with no children
- A path is a sequence of nodes $v_1 \dots v_n$
 - where v_i is a parent of v_{i+1} ($1 \le i \le n$)
- A subtree is any node in the tree along with all of its descendants
- A binary tree is a tree with at most two children per node
 - The children are referred to as left and right
 - We can also refer to left and right subtrees

Tree Terminology Example

Binary Tree Terminology

Measuring Trees

- The height of a node v is the length of the longest path from v to a leaf
 - The height of the tree is the height of the root
- The depth of a node v is the length of the path from v to the root
 - This is also referred to as the level of a node
- Note that there is a slightly different formulation of the height of a tree
 - Where the height of a tree is said to be the number of different levels of nodes in the tree (including the root)

Height of a Binary Tree

Perfect Binary Trees

- A binary tree is perfect, if
 - No node has only one child
 - And all the leaves have the same depth
- A perfect binary tree of height h has
 - 2^{h+1}-1 nodes, of which 2^h are leaves
- Perfect trees are also complete

Nodes in a Perfect Tree

- Each level doubles the number of nodes
 - Level 1 has 2 nodes (2¹)
 - Level 2 has 4 nodes (2²) or 2 times the number in Level 1
- Therefore a tree with h levels has 2^{h+1} 1 nodes

Complete Binary Trees

- A binary tree is complete if
 - The leaves are on at most two different levels,
 - The second to bottom level is completely filled in and
 - The leaves on the bottom level are as far to the left as possible

Balanced Binary Trees

- A binary tree is balanced if
 - Leaves are all about the same distance from the root
 - The exact specification varies
- Sometimes trees are balanced by comparing the height of nodes
 - e.g. the height of a node's right subtree is at most one different from the height of its left subtree
- Sometimes a tree's height is compared to the number of nodes
 - e.g. red-black trees

Balanced Binary Trees

Unbalanced Binary Trees

Tree Traversals

Binary Tree Traversals

- A traversal algorithm for a binary tree visits each node in the tree
 - Typically, it will do something while visiting each node!
- Traversal algorithms are naturally recursive
- There are three traversal methods
 - Inorder
 - Preorder
 - Postorder

InOrder Traversal Algorithm

```
inOrder(Node* nd) {
   if (nd != NULL) {
      inOrder(nd->leftChild);
      visit(nd);
      inOrder(nd->rightChild);
   }
}
```

The visit function would do whatever the purpose of the traversal is, for example print the data in the node

PreOrder Traversal

PostOrder Traversal

