Juri Chomé 5. März 2012

Kapitel 4 - Northcott (Fortsetzung)

Hilfssatz 4.3:

Für jedes $x \in K \subset L$ gilt

$$H_L(x) = H_K(x)^d$$
 mit $d = [L:K]$.

Beweisverlauf:

Für Einbettungen klar, da $\sigma:K\to\mathbb{C}$ genau d Einbettungen σ_i liefert. Bleiben die Primideale zu überprüfen:

(i) Betrachte $x \in \mathbb{Z}_K$ mit $x\mathbb{Z}_K = \wp^e \mathcal{A}$, $\wp \nmid \mathcal{A}$ und erweitere auf L mit $\wp_L = \prod \mathfrak{Q}_i^{e_i}$, $\mathfrak{Q}_i \in \mathbb{Z}_L$.

Zeige, dass $\prod |x|_{\Omega_i} = |x|_{\omega}^d$.

- (ii) Zeige $|x|_{\mathbb{Q}_i} = |x|_{\omega}^{\theta_i}$, $\theta_i > 0$ und daher $|x|_{\mathbb{Q}_i} > 1 \Leftrightarrow |x|_{\omega} > 1$.
- (iii) Verallgemeinere auf alle $x \in K^*$, da $x = x_1/x_2$, $x_1, x_2 \in \mathbb{Z}_K$ und die Bewertung multiplikativ ist.
- (iv) Bemerke, dass jedes Primideal $Q \subset \mathbb{Z}_L$ eindeutig mit einem $\wp \subset \mathbb{Z}_K$ zusammenhängt.

Alles zusammen ergibt, dass das Produkt über alle \wp genau dem über alle $\mathfrak Q$ ist und die Behauptung folgt.

Satz (Northcott): Für jedes $T \in \mathbb{R}$ gilt

$$\#\{x \in K | H_K(x) \leq T\} < \infty.$$

Beweisverlauf:

Klar für $K = \mathbb{Q}$ wegen $H(r/s) = \max\{|r|, |s|\}$. Betrachte nun ein beliebiges x und dessen charakteristisches Polynom

$$P(t) = (t - \sigma_1(x)) \cdots (t - \sigma_d(x)) \in \mathbb{Q}[t].$$

Definiere $\mathcal{K} := \mathbb{Q}(\sigma_1(x), \dots, \sigma_d(x))$ und betrachte einen Koeffizienten q von P als Polynom in $\mathbb{Z}[\sigma_1(x), \dots, \sigma_d(x)]$.

Schätze nun H ab mit

$$H_{\mathbb{Q}}^{[\mathcal{K}:\mathbb{Q}]}(q) = H_{\mathcal{K}}(q)$$

 $\leq (2T)^{d[\mathcal{K}:\mathbb{Q}]}.$

Da Northcott für \mathbb{Q} gilt, haben wir also nur endlich viele Möglichkeiten q zu wählen, also ebenfalls endlich viele für P, da die q die Koeffizienten von P sind. Da x eine Nullstelle von P ist folgt die Behauptung, da es auch für x nur endlich viele Möglichkeiten geben kann.