Многочлены.

Многочленом от неизвестного X над множеством P называют сумму целых неотрицательных степенней неизвестного X с коэффициентами из множества P.

Пример:
$$f(\tilde{o}) = 2\tilde{o}^6 - 3\tilde{o}^3 + 4\tilde{o} - 1$$
 $f(x)$ — многочлен шестой степени
$$f(\tilde{o}) = 3\tilde{o}^4 - 4\tilde{o}^{-3} + 5\tilde{o}^{-2} + 4$$
 — не многочлен
$$f(\tilde{o}) = 4\tilde{o}^3 - 5\tilde{o}^{\frac{1}{2}} + 8$$
 — не многочлен

Два многочлена от неизвестного x над множеством P называются равными, если равны их коэффициенты при одинаковых степенях неизвестного.

Чтобы сложить два многочлена, нужно сложить коэффициенты при одинаковых степенях неизвестного.

Пример: Найти сумму многочленов
$$\delta(\tilde{o})$$
 и $q(\tilde{o})$, если $\delta(\tilde{o}) = 2\tilde{o}^3 + 3\tilde{o}^2 - 4\tilde{o} + 5$, $q(\tilde{o}) = 7\tilde{o}^3 - 3\tilde{o}^2 - 9$.
$$\delta(\tilde{o}) + q(\tilde{o}) = (2\tilde{o}^3 + 3\tilde{o}^2 - 4\tilde{o} + 5) + (7\tilde{o}^3 - 3\tilde{o}^2 - 9) = (2 + 7)\tilde{o}^3 + (3 - 3)\tilde{o}^2 + (-4)\tilde{o} + (5 - 9) = 9\tilde{o}^3 - 4\tilde{o} - 4$$
.

При умножении многочлена $\check{\partial}(\tilde{o})$ на многочлен $q(\tilde{o})$ просто раскрывают скобки, руководствуясь правилом $\grave{A}\tilde{o}^i \times \hat{A}\tilde{o}^{\delta} = (\grave{A} \times \hat{A})\tilde{o}^{i+\delta}$, и приводят подобные слагаемые.

Пример: Найти произведение многочленов
$$\,\check{\partial}(\tilde{o})\,$$
и $\,q(\tilde{o})\,$, если $\,\check{\partial}(\tilde{o})=2\tilde{o}^3+5\tilde{o}^2+4\tilde{o}+3\,$, $\,q(\tilde{o})=7\tilde{o}^2+6\,$. $\,\check{\partial}(\tilde{o})q(\tilde{o})=\left(2\tilde{o}^3+5\tilde{o}^2+4\tilde{o}+3\right)\left(7\tilde{o}^2+6\right)=2\tilde{o}^3\cdot7\tilde{o}^2+2\tilde{o}^3\cdot6+5\tilde{o}^2\cdot7\tilde{o}^2+5\tilde{o}^2\cdot6+4\tilde{o}\cdot7\tilde{o}^2+4\tilde{o}\cdot6+3\cdot7\tilde{o}^2+3\cdot6+3\tilde{o}^2+12\tilde{o}^3+35\tilde{o}^4+30\tilde{o}^2+28\tilde{o}^3+24\tilde{o}+21\tilde{o}^2+18=14\tilde{o}^5+35\tilde{o}^4+40\tilde{o}^3+51\tilde{o}^2+24\tilde{o}+18\,$.

Решить уравнение — это значит найти такие значения неизвестного x, при которых многочлен, стоящий в левой части уравнения обращается в «0».

І. Наибольший общий делитель Алгоритм Евклида

Задача № 1. С помощью алгоритма Евклида найти наибольший общий делитель многочленов:

$$f(\tilde{o}) = \tilde{o}^5 + 3\tilde{o}^4 - 12\tilde{o}^3 - 52\tilde{o}^2 - 52\tilde{o} - 12$$
 и $\phi(\tilde{o}) = \tilde{o}^4 + 3\tilde{o}^3 - 6\tilde{o}^2 - 22\tilde{o} - 12$.

Замечание. Наибольший общий делитель двух многочленов находится однозначно с точностью до постоянного множителя, поэтому условились в качестве наибольшего общего делителя многочленов брать тот, у которого старший коэффициент равен 1. Так как постоянные множители не влияют на делимость многочленов, то в процессе применения алгоритма Евклида, чтобы исключить дробные коэффициенты, можно делимые и делители умножить на любое, отличное от нуля, число. Решение: Разделим с остатком многочлен $f(\tilde{o})$ на многочлен $\phi(\tilde{o})$. Процесс деления будем

осуществлять «углом».
$$x^5+3x^4-12x^3-52x^2-52x-12$$
 $x^5+3x^4-6x^3-22x^2-12x$ X $x^5+3x^4-6x^3-240x-12$

Итак,
$$r_1(\tilde{o}) = -6\tilde{o}^3 - 30\tilde{o}^2 - 40\tilde{o} - 12$$
.

Делим $\phi(\tilde{o})$ на $r_1(\tilde{o})$. Чтобы избежать дробных коэффициентов, умножим $\phi(\tilde{o})$ на 3, а $r_1(\tilde{o})$ на $-\frac{1}{2}$

$$3\phi(\tilde{o}) = 3\tilde{o}^{4} + 9\tilde{o}^{3} - 18\tilde{o}^{2} - 66\tilde{o} - 36$$

$$-\frac{1}{2}r_{1}(\tilde{o}) = 3\tilde{o}^{3} + 15\tilde{o}^{2} + 20\tilde{o} + 6.$$

$$3x^{4} + 9x^{3} - 18x^{2} - 66x - 36$$

$$3x^{4} + 15x^{3} + 2x^{2} + 6x$$

$$-6x^{3} - 38x^{2} - 72x - 36$$

$$-6x^{3} - 30x^{2} - 40x - 12$$

$$-8x^{2} - 32x - 24$$

Имеем:
$$r_2(\tilde{o}) = -8\tilde{o}^2 - 32\tilde{o} - 24$$
Делим $-\frac{1}{2}r_1(\tilde{o})$ на $-\frac{1}{8}r_2(\tilde{o})$.
$$3x^3 + 15x^2 + 20x + 6$$

$$3x^3 + 12x^2 + 9x$$

$$3x^2 + 11x + 6$$

$$3x^2 + 12x + 9$$

$$-x - 3$$

Получили, что $r_3(\tilde{o}) = -\tilde{o} - 3$. Умножив $r_3(\tilde{o})$ на -1, делим $\tilde{o}^2 + 4\tilde{o} + 3$ на $\tilde{o} + 3$.

$$\begin{array}{c|cccc}
x^2 + 4x + 3 & x + 3 \\
x^2 + 3x & x + 1 \\
\hline
x + 3 & x + 3 \\
\hline
0 & & & \\
\end{array}$$

Таким образом, четвертый остаток $r_{\scriptscriptstyle A}(\tilde{o})$ равен нулю. Значит наибольший общий делитель многочленов f(x) и $\phi(x)$ равен x+3.

Other: $D(f(x), \varphi(x)) = x+3$.

Задача №2 Пользуясь алгоритмом Евклида подобрать полиномы u(x) и v(x) так, чтобы

 $f(x)u(x)+\varphi(x)v(x)=d(x)$,

где $d(x)=D(f(x),\phi(x)),$

 $f(x)=x^4+x^3-3x^2-4x-1$,

 $\varphi(x)=x^3+x^2-x-1$.

При решении данного примера используют алгоритм Евклида, но этот произвол, состоящий в умножении многочленов на постоянные множители, допускать нельзя, так как здесь используются и частные, которые при данном произволе искажаются.

Найдем сначала наибольший общий делитель многочленов f(x) и $\phi(x)$.

при данном произволе искажаются.
наибольший общий делитель многочленов
$$f(x)$$
 и $\phi(x)$.
$$x^4 + x^3 - 3x^2 - 4x - 1 \qquad x^3 + x^2 - x - 1 \qquad x^4 + x^3 - x^2 - x \qquad x$$

$$x^3 + x^2 - x - 1 \qquad x^3 + \frac{3}{2}x^2 + \frac{1}{2}x \qquad -\frac{1}{2}x^2 - \frac{3}{2}x - 1 \qquad -\frac{1}{2}x^2 - \frac{3}{4}x - \frac{1}{4}$$

$$-2x^2 - 3x - 1 \qquad -\frac{3}{4}x - \frac{3}{4} \qquad -2x^2 - 2x \qquad -\frac{8}{3}x - \frac{4}{3}$$

$$-x - 1 \qquad -x - 1 \qquad 0$$

Итак, $d(x) = x+1 = -\frac{4}{3} r_2(x)$.

Чтобы выразить d(x) через многочлены f(x) и $\phi(x)$, выпазим сначала через них $r_2(x)$. Для этого найдем $r_2(x)$ из второго деления в алгоритме Евклида: $r_2(x) = \varphi(x) - r_1(x)(-\frac{1}{2}x + \frac{1}{4})$

Подставив в это равенство вместо $r_1(x)$ его выражение, найденное из первого деления в алгоритме Евклида, получим:

$$r_2(x) = \phi(x) - (f(x) - \phi(x)x)(-\frac{1}{2}x + \frac{1}{4}) = -f(x)(-\frac{1}{2}x + \frac{1}{4}) + \phi(x)(-\frac{1}{2}x^2 + \frac{1}{4}x + 1) = f(x)(\frac{1}{2}x - \frac{1}{4}) + \phi(x)(-\frac{1}{2}x^2 + \frac{1}{4}x + 1) = f(x)(\frac{1}{2}x - \frac{1}{4}) + \phi(x)(-\frac{1}{2}x^2 + \frac{1}{4}x + 1)$$

Учитывая, что $d(x) = -\frac{4}{3} r_2(x)$ имеем:

$$d(x) = f(x)(-\frac{2}{3}x + \frac{1}{3}) + \phi(x)(\frac{2}{3}x^2 - \frac{1}{3}x - \frac{4}{3})$$

Получим, что $u(x) = (-\frac{2}{3}x + \frac{1}{3})$

$$v(x) = (\frac{2}{3}x^2 - \frac{1}{3}x - \frac{4}{3})$$

2. Корни многочлена. Теорема Безу. Схема Горнера.

Задача №1

Найти кратность корня х=5 многочлена

$$f(x) = x^5 - 15x^4 + 76x^3 - 140x^2 + 75x - 125.$$

Число с называется корнем многочлена f(x), если f(c)=0.

Теорема. Число с тогда и только тогда является корнем многочлена f(x), когда f(x): (x-c).

Число с называется k-кратным корнем многочлена f(x), если f(x) : $(x-c)^k$, но f(x) не делится $(x-c)^{k+1}$.

Решение: Используя схему Горнера.

	a ₀	a_1	\mathbf{a}_2	• • •	a_n
c	$b_0 = a_0$	$b_1 = a_1 + cb_0$	$b_2 = a_2 + cb_1$	•••	$b_n=a_n+cb_{n-1}=f(c)$

Имеем:

	1	-15	76	-140	75	-125
5	1	-10	26	-10	25	0

Получим, что $f(x)=(x-5)(x^4-10x^3+26x^2-10x+25)$.

Число 5 является корнем f(x). Если 5 будет корнем и $\phi(x) = x^4 - 10x^3 + 26x^2 - 10x + 25$, то 5 будет корнем многочлена f(x) второй кратности или выше.

Проверим, будет ли 5 корнем $\varphi(x)$ по схеме Горнера:

	1	-10	26	-10	25
5	1	-5	1	-5	0

 $\phi(5)=0$, следовательно, 5 – корень $\phi(x)$.

$$f(x)=(x-5)^2(x^3-5x^2+x-5)$$

Проверим, будет ли число 5 корнем многочлена $g(x) = x^3 - 5x^2 + x - 5$

•	1	-5	1	-5
5	1	0	1	0

Число 5 является корнем g(x), отсюда имеем:

$$g(x) = (x-5)(x^2+1)$$
, a $f(x) = (x-5)^3(x^2+1)$.

Число 5 корнем многочлена x^2+1 уже не является, следовательно, f(x): $(x-5)^3$ но не делится на $(x-5)^4$, значит кратность корня 5 многочлена f(x) равна 3.

Процесс решения можно оформить следующим образом:

	1	-15	76	-140	75	-125
5	1	-10	26	-10	25	0
5	1	-5	1	-5	0	
5	1	0	1	0		
5	1	5	26≠0			

Число 5 являются трехкратным корнем многочлена

$$f(x) = x^5 - 15x^4 + 76x^3 - 140x^2 + 75x - 125$$
 T.e.

$$f(x) = (x-5)^3(x^2+1)$$
.

Задача №2

Пользуясь схемой Горнера, разложить многочлен f(x)=x5+3x4+2x-4 по степени x-1, найти значения многочлена f(x) и всех его производных при x=1.

Решение: По формулам Тейлора имеем:
$$f(x) = f(1) + \frac{f'(1)}{1!}(x-1) + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3 + \frac{f^{IV}(1)}{4!}(x-1)^4 + \frac{f^{V}(1)}{5!}(x-1)^5 -$$
разложение многочлена

Как видно из формулы, для решения задачи нужно найти значения многочлена f(x) и его производных при x=1. Это можно сделать, непосредственно находя производные многочлена f(x), а затем их значения при х=1.

Но для решения этой задачи можно использовать также и схему Горнера.

Запишем разложение многочлена f(x) по степеням (x-1) с неопределенными коэффициентами:

$$f(x)=c_0+c_1(x-1)+c_2(x+1)^2+c_3(x+1)^3+c_4(x+1)^4+c_5(x+1)^5$$
.

Числа с₀,с₁, с₂,с₃,с₄, с₅ равны соответственно остаткам от деления многочленов

 $f(x),q_1(x),q_2(x),q_3(x),q_4(x),q_5(x)$ на x-1, где $q_1(x)$ есть частное от деления f(x) на x-1, $q_2(x)$ есть частное от деления $q_1(x)$ на x-1 и т.д. Наконец $q_5(x)$ есть частное от деления $q_4(x)$ на x-1.

Все решение можно записать в таблицу:

	1	3	0	0	2	-4
1	1	4	4	4	6	2
1	1	5	9	13	19	
1	1	6	15	28		
1	1	7	22			
1	1	8				
1	1					

Отсюда:
$$f(1)=2$$
, $\frac{f'(1)}{1!}=19$, $\frac{f''(1)}{2!}=28$, $\frac{f'''(1)}{3!}=22$, $\frac{f^{IV}(1)}{4!}=8$, $\frac{f^{V}(1)}{5!}=1$, тогда $f(1)=2$, $f'(1)=19$, $f''(1)=192$, $f^{V}(1)=120$.

Подставляем найденные значения в формулу Тейлора, имеем:

 $f(x)=2+19(x-1)+28(x+1)^2+22(x+1)^3+8(x+1)^4+(x+1)^5$.

3. Приводимые и неприводимые многочлены над множеством.

Задача №1

Разложить многочлен $f(x)=x^6-1$ на неприводимые множители над множеством рациональных , действительных и комплексных чисел.

Для рациональных, действительных и комплексных чисел обозначаются соответственно через Q, R,C.

Над множеством C неприводимы лишь полиномы первой степени, поэтому всякий многочлен n-ой степени разлагается над C на n линейных множителей. Над множеством R неприводимы полиномы первой степени ,и часть полиномов второй степени ,а именно те, дискриминант которых меньше нуля. Над множеством рациональных чисел Q могут быть неприводимыми любой степени.

Решение: Найдём сначала разложение над множеством С.

$$X^{6}-1=(x^{2})^{3}-1^{3}=(x^{2}-1)(x^{4}+x^{2}+1)=(x-1)(x+1)(x^{4}+x^{2}+1).$$

Чтобы разложить многочлен x4+x2+1 не приводимые множители над C, найдём его корни.x4+x2+1=0.Обозначим x2=y,тогда y2+y+1=0.

$$y = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1 \pm \sqrt{-3}}{2};$$

$$y_1 = \frac{-1 \pm i\sqrt{3}}{2}, \quad y_2 = \frac{-1 - i\sqrt{3}}{2};$$

$$x^2 = \frac{-1 + i\sqrt{3}}{2}, \quad x^2 = \frac{-1 - i\sqrt{3}}{2}.$$

Чтобы извлечь корень из числа $-\frac{1}{2} + i\frac{\sqrt{3}}{2}$,

Представим его в тригонометрической форме:- $\frac{1}{2} + i \frac{\sqrt{3}}{2} = 1(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3})$.

Тогда
$$\sqrt{\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}} = \cos\frac{\frac{2\pi}{3} + 2r\pi}{2} + i\sin\frac{\frac{2\pi}{3} + 2r\pi}{2}$$
.

При r=0 получим $x_1 = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3} = \frac{1}{2} + i \frac{\sqrt{3}}{2}$,

При r=1 получим $x_2 = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} = -\frac{1}{2} - i \frac{\sqrt{3}}{2}$.

Аналогично
$$-\frac{1}{2} - i\frac{\sqrt{3}}{2} = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}$$

$$\sqrt{\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3}} = \cos\frac{\frac{4\pi}{3} + 2r\pi}{2} + i\sin\frac{\frac{4\pi}{3} + 2r\pi}{2};$$

При r=0 получим $x_3 = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$,

При r=1 получим $x_4 = \cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3} = \frac{1}{2} - i \frac{\sqrt{3}}{2}$.

Получим, что $x^4+x^2+1=(x-\frac{1}{2}-i\frac{\sqrt{3}}{2})(x+\frac{1}{2}+i\frac{\sqrt{3}}{2})(x+\frac{1}{2}-i\frac{\sqrt{3}}{2})(x-\frac{1}{2}+i\frac{\sqrt{3}}{2}).$

Тогда разложение многочлена x^6 -6 над множеством C имеет вид: x^6 -6=(x-1)(x+1)(x- $\frac{1}{2}$ - $i\frac{\sqrt{3}}{2}$)

$$(\ X+\frac{1}{2}+i\frac{\sqrt{3}}{2})(\ X+\frac{1}{2}-i\frac{\sqrt{3}}{2})(\ X-\frac{1}{2}+i\frac{\sqrt{3}}{2}).$$

Найдём разложение данного многочлена над множеством действительных чисел R.Для этого в полученном разложении перемножим множители, соответствующие сопряжённым корням.

Перемножим третий и шестой множители: $(x - \frac{1}{2} - i\frac{\sqrt{3}}{2})(x - \frac{1}{2} + i\frac{\sqrt{3}}{2}) = (x - \frac{1}{2})^2 - (i\frac{\sqrt{3}}{2})^2 = (x^2 - x + 1).$

Аналогично перемножим четвёртый и пятый множители: $(x+\frac{1}{2}+i\frac{\sqrt{3}}{2})(x+\frac{1}{2}-i\frac{\sqrt{3}}{2})=$

$$(x + \frac{1}{2})^2 - l(i\frac{\sqrt{3}}{2})^2 = (x^2 + x + 1).$$

Отсюда имеем разложение многочлена x^6 -6 на неприводимые множители над множеством R: x^6 -6=(x-1)(x+1) $(x^2$ -x+1) $(x^2$ +x+1).

Это же разложение имеет многочлен $\varphi(\chi) = x^6 - 1$ и над множеством рациональных чисел.

Задача №2

Разложить многочлен $f(X)=x^4+10$ на неприводимые множители над множествами C, R, Q. Решение: чтобы найти разложение многочлена над множеством C, найдём его корни. Для этого извлечём корень четвёртой степени из -10.

извлечём корень четвёртой степени из -10.
$$\sqrt[4]{-10} = \sqrt[4]{10(\cos\pi + i\sin\pi)} = \sqrt[4]{10}(\cos\frac{\pi + 2r\pi}{4} + i\sin\frac{\pi + 2r\pi}{4}).$$
 Придавая r значения $0,1,2,3$, получим

четыре корня:

$$X_1 = \sqrt[4]{10}(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}), \ X_1 = \sqrt[4]{10}(-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}), \ X_1 = \sqrt[4]{10}(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}), \ X_1 = \sqrt[4]{10}(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}).$$

Теперь можно записать разложение многочлена $f(x)=x^4+10$ над множеством $C:x^4+10=(x-\frac{\sqrt[4]{40}}{2}-i\frac{\sqrt[4]{40}}{2})$ $(x+\frac{\sqrt[4]{40}}{2}-i\frac{\sqrt[4]{40}}{2})$ $(x+\frac{\sqrt[4]{40}}{2}+i\frac{\sqrt[4]{40}}{2})$ $(x-\frac{\sqrt[4]{40}}{2}+i\frac{\sqrt[4]{40}}{2})$. Перемножая первый и четвёртый

множители ,а затем второй и третий, получим разложение многочлена f(x) над множеством :

$$(x - \frac{\sqrt[4]{40}}{2} - i \frac{\sqrt[4]{40}}{2}) (x - \frac{\sqrt[4]{40}}{2} - i \frac{\sqrt[4]{40}}{2}) = (x - \frac{\sqrt[4]{40}}{2})^2 - (i \frac{\sqrt[4]{40}}{2})^2 = x^2 - \sqrt[4]{40}x + \sqrt{10}.$$

$$(x + \frac{\sqrt[4]{40}}{2} - i \frac{\sqrt[4]{40}}{2}) (x = \frac{\sqrt[4]{40}}{2} + i \frac{\sqrt[4]{40}}{2}) = (x + \frac{\sqrt[4]{40}}{2})^2 - (i \frac{\sqrt[4]{40}}{2})^2 = x^2 + \sqrt[4]{40}x + \sqrt{10}.$$

$$x^4 + 10 = (x^2 - \sqrt[4]{40}x + \sqrt{10})(x^2 + \sqrt[4]{40}x + \sqrt{10}).$$

Над множеством рациональных чисел Q данный многочлен неприводим, так как существует простое число p=2 /или 5/,на которое первый коэффициент 1 не делится ,все остальные коэффициенты делятся, а свободный член 10,делится на 2 ,не делится на 2^2 /критерий Эйзенштейна/.

4. Многочлены над множеством действительных чисел.

Задача №1

Построить полином наименьшей степени над множеством действительных чисел со старшим коэффициентом a0=2,имеющий следующие корни : -1- двукратный ,(3-i) – простой корень. Решение: Известно ,что если многочлен f(X) с действительными коэффициентами имеет комплексный корень a+bi, то он имеет также корень a-bi, т.е. комплексные корни многочлена с действительными коэффициентами попарно сопряжены. Следовательно, корнем искомого многочлена f(X) должно быть такое число 3+i.

Так как нужно построить многочлен наименьшей степени с корнями -1 ,-1, 3+i, 3-I,то можно сделать вывод ,что f(X) будет иметь четвёртую степень. Учитывая что старший коэффициент $a_0=2$, находим: $f(X)=2(X+1)^2(X-3+i)(x-3-i)=2(x^2+2x+1)(x^2-6x+10)=2x^4-8x^3-2x^2+28x+20$.

Для решения этой задачи можно использовать и форму Виета.

Искомый многочлен имеет вид:

$$F(X)=a_0x^4+a_1x^3+a_2x^2+a_3x+a_4$$

Если
$$\alpha 1, \alpha 2, \alpha 3, \alpha 4$$
 его корни ,то $\alpha 1 + \alpha 2 + \alpha + \alpha 4 = -\frac{a1}{a0}$,

$$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = -a_1/a_0$$

$$\alpha_1\alpha_2+\alpha_1\alpha_3+\alpha_1\alpha_4+\alpha_2\alpha_3+\alpha_2\alpha_4+\alpha_3\alpha_4=a_2/a_3$$

$$\alpha_1\alpha_2\alpha_3+\alpha_1\alpha_2\alpha_4+\alpha_1\alpha_3\alpha_4+\alpha_2\alpha_3\alpha_4=$$
 - a_3/a_0 ,

 $\alpha_1\alpha_2\alpha_3\alpha_4 = a_4/a_0$.

В нашем случае α_1 = -1, α_2 = -1, α_3 = 3-i, α_4 = 3+i; α_0 = 2.

Тогда
$$-1+(-1)+3-i-3+3-i=-a_1/2$$
. Отсюда $a_1=-2$;

$$1-3+i-3-i-3+i-3-i+10=a_1/2$$
, $a_3=28$;

$$10 = a_4/2$$
, $a_4 = 20$.

$$F(x) = 2x^4 - 8x^3 - 2x^2 + 28x + 20.$$

5. Уравнения третьей и четвёртой степени

Заадача№1

Решить уравнение третьей степени по формуле Кардано:

$$x^3-3x^2-3x-1=0$$
.

Решение :Приведём уравнение к виду , не содержащему второй степени неизвестного. Для этого воспользуемся формулой

 $x = y - \frac{a}{3}$, где а коэффициент при x^2 .

Имеем : x=y+1.

$$(y+1)^3-3(y+1)^2-3(y+1)-1=0.$$

Раскрыв скобки и приведя подобные члены ,получим:

$$y^3$$
- 6y-6=0.

Для корней кубического уравнения у ³+ру+q=0 имеется формула Кардано:

 $yi=\alpha i + \beta i$ (i=1,2,3,),где αi — значение радикала

$$\alpha = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}, \quad \beta i = -\frac{p}{3\alpha i}.$$

Пусть $\alpha 1$ —одно /любое/ значение радикала α . Тогда два других значения находятся следующим образом:

$$\alpha_2 = \alpha_1 \epsilon_1$$
, $\alpha_3 = \alpha_1 \epsilon_2$, где $\epsilon_1 = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$, $\epsilon_2 = -\frac{1}{2} - i \frac{\sqrt{3}}{2}$ - корень третьей степени из единицы.

Если положить
$$\beta_1 = -\frac{p}{3\alpha 1}$$
, то получим $\beta_2 = \beta_1 \epsilon_2$, $\beta_3 = \beta_1 \epsilon_1$

Подставляя полученные значение в формулу $yi = \alpha i + \beta i$, найдём корни уравнения yi + py + q = 0:

$$y_1 = \alpha_1 + \beta_1$$
,

$$y_2 = -1/2(\alpha_1 + \beta_1) + i \frac{\sqrt{3}}{2}(\alpha_1 - \beta_1),$$

$$y_3 = -1/2(\alpha_1 + \beta_1) - i\frac{\sqrt{3}}{2}(\alpha_1 - \beta_1),$$

В нашем случае p = -6, q = -6.

$$\alpha = \alpha = \sqrt[3]{-\frac{q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}} = \sqrt[3]{3 + \sqrt{9 - (\frac{6}{3})^3}} = \sqrt[5]{4}$$

Одно из значений этого радикала равно $\sqrt[8]{4}$. Поэтому положим $\alpha_1 = \sqrt[8]{4}$. Тогда $\beta_1 = -\frac{p}{3\alpha_1} = -\frac{-6}{3\sqrt[8]{4}} = \sqrt[8]{2}$,

$$v_1 = \sqrt[8]{4} + \sqrt[8]{2}$$

$$y_2 = -\frac{1}{2}(\sqrt[8]{4} + \sqrt[8]{2}) + i\frac{\sqrt{3}}{2}(\sqrt[8]{4} + \sqrt[8]{2}),$$

$$y_2 \!\! = \!\! - \frac{\scriptscriptstyle 1}{\scriptscriptstyle 2} \! \left(\sqrt[8]{4} + \sqrt[8]{2} \right) - i \frac{\scriptscriptstyle \sqrt{3}}{\scriptscriptstyle 2} \! \left(\sqrt[8]{4} + \sqrt[8]{2} \right) .$$

Наконец, находим значение x по формуле x = y+1.

$$x_1 = \sqrt[8]{4} + \sqrt[8]{2} + 1$$

$$x_2 = -\frac{1}{2} (\sqrt[8]{4} + \sqrt[8]{2}) + i \frac{\sqrt{3}}{2} (\sqrt[8]{4} + \sqrt[8]{2}) + 1,$$

$$x_3 = -\frac{1}{2} (\sqrt[8]{4} + \sqrt[8]{2}) - i \frac{\sqrt{3}}{2} (\sqrt[8]{4} + \sqrt[8]{2}) + 1.$$

Задача№2

Решить способом Феррари уравнение четвёртой степени:

$$x^4-4x^3+2x^2-4x+1=0$$
.

Решение: Перенесём три последних члена в правую часть и оставшиеся два члена дополним до полного квадрата .

$$x^4-4x^3=-2x^2+4x-1$$
,

$$x^4-4x^3+4x^2=4x^2-2x^2+4x-1$$

$$(x^2-2x)^2=2x^2+4x-1$$
.

Введём новое неизвестное следующим образом:

$$(x^2-2x+\frac{y}{2})^2=2x^2+4x-1+(x^2-2x)y+\frac{y^2}{4}$$

$$(x^2-2x+\frac{y}{2})^2=(2+y)x^2+(4-2y)x+(\frac{y^2}{4}-1)$$
 /1/.

Подберём у так, чтобы и правая часть равенства была полным квадратом .Это будет тогда ,когда B^2 -4AC=0, где A=2+y, B=4-2y, C= $\frac{y^2}{4}$ -1.

Имеем: B^2 -4AC=16-16y+4 y^2 - y^3 -2 y^2 +4y+8=0

Или y^3 -2 y^2 +12y-24=0.

Мы получили кубическую резольвенту ,одним из корней которой является y=2. Подставим полученное значение y=2 в 1/,

Получим $(x^2-2x+1)^2=4x^2$.Откуда $(x^2-2x+1)^2-(2x)^2=0$ или $(x^2-2x+1-2x)$ $(x^2-2x+1+2x)=0$.

Мы получим два квадратных уравнения:

$$x^2-4x+1=0$$
 и $x^2+1=0$.

Решая их, находим корни первоначального уравнения:

$$x_1=2-\sqrt{3}$$
, $x_2=2+\sqrt{3}$, $x^3=-I$, $x^4=i$.

6.Рациональные корни многочлена

Задача№1

Найти рациональные корни многочлена

 $f(x)=8x^5-14x^4-77x^3+128x^2+45x-18$.

Решение :Для того, чтобы найти рациональные корни многочлена ,пользуемся следующими теоремами.

Теорема 1. Если несократимая дробь $\frac{p}{q}$ является корнем многочлена f(x) с целыми

коэффициентами ,то p есть делитель свободного члена, а q- делитель старшего коэффициента многочлена f(x).

Замечание: Теорема 1 даёт необходимое условие для того, чтобы рациональное число $\frac{p}{q}$. Было

корнем многочлена ,но этого условия недостаточно , т.е. условие теоремы 1 может выполняться и для такой дроби $\frac{p}{a}$, которая не является корнем многочлена.

Теорема 2: Если несократимая дробь $\frac{p}{q}$ является корнем многочлена f(x) с целыми

коэффициентами, то при любом целом m ,отличном от $\frac{p}{q}$, число f(m) делится на число p-qm, т.е $\frac{f(m)}{p-qm}$ целое число.

В частности полагая m=1, а затем m=-1, получим:

если $\frac{p}{q}$ корень многочлена, не равный ± 1 , то f(x) : (p-q) и f(-x):.(p+q) , т.е. $\frac{f(1)}{p-q}$, $\frac{f(-1)}{p+q}$ - целые числа.

Замечание: Теорема 2 даёт ещё одно необходимое условие для рациональных корней многочлена. Это условие удобно тем, что оно легко проверяется практически. Находим сначала f(1) и f(-1), а затем для каждой испытываемой дроби проверяем указанное условие. Если хотя бы одно из чисел $\frac{f(1)}{p-q}$, $\frac{f(-1)}{p+q}$ дробное, то $\frac{p}{q}$ корнем многочлена f(x) не является.

Решение: По теореме 1 корни данного многочлена следует искать среди несократимых дробей, числители которых являются делителями 18, а знаменателями 8. Следовательно, если несократимая дробь $\frac{p}{q}$ есть корень f(x), то p равно одному из чисел : ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 ; q равно одному из

чисел

 $\pm 1, \pm 2, \pm 4, \pm 8$

Учитывая, что $\frac{-p}{-a} = \frac{p}{a}$, $\frac{p}{-a} = \frac{-p}{a}$, знаменатели дробей будем брать лишь положительными.

Итак, рациональными корнями данного многочлена могут быть следующие числа: ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18 , $\pm \frac{3}{2}$, $\pm \frac{3}{2}$, $\pm \frac{9}{2}$, $\pm \frac{1}{4}$, $\pm \frac{3}{4}$, $\pm \frac{9}{4}$, $\pm \frac{1}{8}$, $\pm \frac{3}{8}$, $\pm \frac{9}{8}$.

Воспользуемся вторым необходимым.

Так как f(1)=72, f(-1)=120,отсюда в частности следует, что 1 и -1 не являются корнями f(x). Теперь для каждой возможной дроби $\frac{p}{q}$ будем проверять условия теоремы 2 при m=1 и m=-1, т. е. будем

устанавливать, целыми или дробными являются числа : $\frac{f(1)}{p-q} = \frac{72}{p-q}$ и $\frac{f(-1)}{p+q} = \frac{120}{p+q}$

Результаты сведём в таблицу, где буквы"ц" и "д" означают соответственно, целым или дробным является число $\frac{f(1)}{p-q}$ или $\frac{f(-1)}{p+q}$

P	2	-	3	-	6	-	9	-	18	-	1	-	3	-	9	-	1	-	3	-	9	-	1	-	3	-	9	-
		2		3		6		9		18		1		3		9		1		3		9		1		3		9
Q	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	4	4	4	4	4	4	8	8	8	8	8	8
$\frac{72}{v-q}$	Ц	Ц	Ц	Ц	Д	Д	Ц	Д	Д	Д	Ц	Ц	Ц	Д	Д	Д	Ц	Д	Ц	Д	Д	Д	Д	Ц	Д	Д	Ц	Д
$\frac{120}{p+q}$	Ц	Ц	Ц	Ц			Ц				Ц	Ц	Ц				Ц		Д					Д			Д	

Из полученной таблицы видно, что $\frac{72}{p-q}$ и $\frac{120}{p+q}$ являются целыми лишь в тех случаях, когда $\frac{p}{q}$ равно одному из чисел: 2, -2, 3, -3, $\frac{1}{2}$, $-\frac{1}{2}$, $\frac{3}{2}$, $\frac{1}{4}$.

По следствию из теоремы Безу число α - корень f(x) тогда и только тогда, когда f(x) \vdots $(x-\alpha)$. Следовательно, для проверки оставшихся девяти целых чисел можно применить схему Горнера деление многочлена на двучлен.

	8	-14	-77	128	45	-18
2	8	2	-73	-18	9	0
2	8	18	-37	-92	-172≠0	

2 – корень.

Отсюда имеем : x=2 — простой корень f(x). Остальные корни данного многочлена совпадают с корнями многочлена.

 $F_1(x) = 8x^4 + 2x^3 - 73x^2 - 18x + 9$.

Аналогично проверим остальные числа.

	ne npesepnine	• 1 000 1D 11D 1 0 111 0 1 1 1 1			
	8	2	-73	-18	9
-2	6	-14	-45	72	-139≠0
3	8	26	5	-3	0
3	8	50	155	462≠0	
-3	8	2	-1	0	
-3	8	-22	65≠0		
9	8	74	665≠0		
1/2	8	6	2≠0		
-1/2	8	-2	0		
-1/2	8	<i>6</i> ≠0			
3/2	8	10≠0			
1/4	8	0			

-2 – не корень, 3 – корень, -3 –корень, 9 – не корень, $\frac{1}{2}$ – не корень, -1/2 –корень, 3/2 – не корень, $\frac{1}{4}$ – корень.

Итак, многочлен $f(x) = 8x^5 - 14x^4 - 77x^3 + 128x^2 + 45x - 18$ имеет пять рациональных корней: $\{2, 3, -3, -1/2, \frac{1}{4}\}$.