

Разработка методов долгосрочной памяти для больших языковых моделей при помощи методов обучения с подкреплением

Выполнила: Белова Ю. Д.

Научный руководитель: Кривцов А. М.

Консультант: Свидченко О. А.

Механизм внимания в архитектуре трансформера

Рисунок 1. Механизм внимания в трансформере¹

Ограничения классического трансформера

1. Квадратичная сложность операции внимания.

Если увеличили размер входа в 10 раз, то вычислительных ресурсов и памяти на обработку текста потребуется в 100 раз больше.

2. Ограничение на максимальную длину входа.

Языковой модели сложно адаптироваться к новой длине входа, на которой она еще не обучалась.

¹ Ashish, Vaswani., Noam, Shazeer., Niki, Parmar., Jakob, Uszkoreit., Llion, Jones., Aidan, N., Gomez., Lukasz, Kaiser., Illia, Polosukhin. (2017). Attention is All you Need.

Как обрабатывать длинные последовательности?

1. Эффективные трансформеры

Цель: оптимизировать вычислительную сложность механизма внимания вплоть до линейной. Наиболее популярные работы: Longformer 1 , Reformer 2 , Big Bird 3 , Ring Attention 4 .

2. Рекуррентная память

Санкт-Петербургская школа

физико-математических и

компьютерных наук

Цель: создать механизм памяти, с помощью которого осуществляется передача информации между сегментами, на которые разделяется входная последовательность.

Рисунок 2. Разбиение текста на сегменты при обработке длинных последовательностей

¹ Beltagy, Iz, Matthew E. Peters, and Arman Cohan. "Longformer: The long-document transformer." (2020).

² Kitaev, Nikita, Łukasz Kaiser, and Anselm Levskaya. "Reformer: The efficient transformer." (2020).

³ Zaheer, Manzil, et al. "Big bird: Transformers for longer sequences." (2020).

⁴ Liu, Hao, Matei Zaharia, and Pieter Abbeel. "Ring attention with blockwise transformers for near-infinite context." (2023).

Подходы к рекуррентной памяти языковых моделей

- Работы: Transformer XL¹, Compressive Transformers², Memorizing Transformers³
- В качестве памяти скрытые состояния или матрицы ключей и значений.

Рисунок 3. Transformer XL

- Работы: Recurrent Memory Transformer⁴, AutoCompressors⁵
- В качестве памяти специальные токены.

Рисунок 4. Recurrent Memory Transformer

¹Dai, Zihang, et al. "Transformer-xl: Attentive language models beyond a fixed-length context." (2019).

² Rae, Jack W., et al. "Compressive transformers for long-range sequence modelling." (2019).

³ Wu, Yuhuai, et al. "Memorizing transformers." (2022).

⁴ Bulatov, Aydar, Yury Kuratov, and Mikhail Burtsev. "Recurrent memory transformer." (2022)

⁵ Chevalier, Alexis, et al. "Adapting language models to compress contexts." (2023).

Цель исследования и поставленные задачи

Цель исследования: разработать и валидировать метод долгосрочной памяти в больших языковых моделях с применением обучения с подкреплением.

Поставленные задачи:

- 1. Создать датасет, содержащий достаточно длинные тексты.
- 2. Разработать подход к внедрению долгосрочной памяти в большие языковые модели.
- 3. Реализовать предложенный метод, провести его обучение и настройку гиперпараметров.
- 4. Сравнить полученные результаты с выбранным бейзлайном.

Сбор русскоязычного датасета с длинными текстами

Рисунок 5. Схема формирования элемента датасета

Схема предложенного подхода

Рисунок б. Взаимодействие агента (Модель памяти) и дообучаемой языковой модели (LLM-LTM)

Характеристики и параметры обучения

- Предобученная языковая модель, которая лежит в основе LLM-LTM GPT3small¹.
- Для обучения агента был выбран алгоритм REINFORCE с модификациями.
- Награда агента на сегменте s_t определяется следующим образом:

$$R_{t} = -\frac{1}{k} \sum_{i=1}^{k} \mathcal{L}_{LLM-LTM} (s_{t+1} [0:l_{i}])$$

$$l_i \in [1, len(s_{t+1})]$$

где:

- t номер сегмента, или шаг в эпизоде
- $\mathscr{L}_{\mathsf{LLM-LTM}}$ функция потерь LLM-LTM
- I_i длина префикса сегмента, выбираемая случайно
- Каждый пример разбивается на сегменты размером 256 токенов.
- Размер памяти 10 векторов размерностью 64.
- Оптимизатор AdamW, скорость обучения 3e-5.

Санкт-Петербургская школа

физико-математических и

компьютерных наук

Результаты обучения модели

Обучение моделей

В качестве бейзлайна выступает GPT3, выбранная в качестве основы для LLM-LTM, дообученная на тренировочной выборке с помощью LoRA.

Рисунок 7. Функция потерь бейзлайна и LLM-LTM на валидационной выборке

Гипотеза 1: агенту требуется предобучение

Рисунок 8. Суммарная награда на задаче генерации векторов, похожих на эмбеддинги

Награда агента

$$R_t = d_{t-1} - d_t$$

$$d_t = \sum_{i} \min_{j} ||A \cdot \text{memory}_{t,i} - \text{emb}_{j}||$$

где:

- Rt награда агента на шаге t
- memory_{t,i} вектор в памяти на i-й позиции на шаге t
- emb_i вектор в матрице эмбеддингов на j-й позиции
- А случайно инициализированная матрица перехода

Результаты обучения модели с предобучением агента

Рисунок 9. Функция потерь бейзлайна, LLM-LTM без предобучения агента и LLM-LTM с предобучением агента на валидационной выборке

Гипотеза 2: требуется предобучить LLM-LTM, помещая в память эмбеддинги с предыдущего сегмента

Рисунок 10. Сравнение функции потерь бейзлайна, LLM-LTM без модификаций, LLM-LTM с предобучением агента и LLM-LTM с предобучением LLM-LTM на валидационном множестве

языковых моделей

Метрики на тестовой выборке

Модель	Кросс-энтропия	Перплексия	
Бейзлайн	2.925 ± 0.004	18.724 ± 0.081	
LLM-LTM с предобучением агента	2.929 ± 0.009	18.808 ± 0.082	
LLM-LTM без предобучения агента	2.937 ± 0.004	18.947 ± 0.082	

Таблица 1. Сравнение значений кросс-энтропии и перплексии на тестовой выборке

Модель	K=5	K=10	K=20	K=50	K=100
Бейзлайн	0.6542	0.7173	0.7730	0.8380	0.8805
LLM-LTM с предобучением агента	0.6539	0.7171	0.7728	0.8377	0.8802
LLM-LTM без предобучения агента	0.6531	0.7165	0.7721	0.8371	0.8795

Таблица 2. Сравнение значений метрики top-k ассигасу на тестовой выборке

Итоги исследования

- 1. Собран русскоязычный датасет с поддержкой формирования контекста.
- 2. Разработан и реализован подход к созданию долгосрочной памяти для больших языковых моделей.
- 3. Проведено обучение предложенных моделей, выдвинуты и проверены гипотезы по улучшению предложенного подхода.
- 4. Выбранные метрики оценки качества предложенного подхода демонстрируют схожие, но не превосходящие результаты по сравнению с бейзлайном, не использующим механизмы памяти. Требуется дальнейший анализ метрик, оценивающих эффективность использования памяти.

Рисунок 11. Архитектура модели памяти

Рисунок 12. Архитектура LLM-LTM

Рисунок 13. Архитектура блока «Параметры распределения действия»