

Redução da dimensionalidade em bigdata

Lucca de Castro Machado – 32292783 Prof. Dr. Anderson Borba

Introdução

Problemas

Crescimento exponencial dos dados

Fonte: https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

Introdução

Problemas

Processamento de dados

Espaço de armazenamento

Introdução

Objetivo principal

Técnicas de redução da dimensionalidade

PCA (Principal Component Analysis)

Extração de características

Aprendizagem não supervisionada

Processamento de dados lineares

LDA (Linear Discriminant Analysis)

Seleção de características

Aprendizagem supervisionada

Processamento de dados lineares

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

Fonte: https://sebastianraschka.com/Articles/2014_python_lda.html

Kernel PCA

Extração de características

Aprendizagem não supervisionada

Processamento de dados não lineares

Fonte: https://www.semanticscholar.org/paper/Software-defect-prediction-based-on-kernel-PCA-and-Xu-Liu/fe246ded4da28ab5668f799fb08cb32a797c009e

Procedimentos metodológicos Mackenzie

Bases de dados utilizadas

\$501

Adult data set

50 mil registros 15 atributos

House prices

22 mil registros 21 atributos

Imagens

200 imagens 31,6 MB

Procedimentos metodológicos Mackenzie

Hardware

- AMD Ryzen 7 5700G 3.80 GHz
- Memória RAM 32GB (2x16) DDR4 3600MHz
- SSD 512GB
 - Leitura 3100MBs
 - Gravação 1500MBs

Sotfwares

- Jupyter Notebook 6.5.2
- Python 3.10.2

Bibliotecas:

- Time
- Panda
- Seaborns
- Matplotlib
- Sklearn

Procedimentos metodológicos Mackenzie

Base de dados Não estruturado

Bases de dados estruturado - Classificação

Base sem redução da dimensionalidade

Taxa de acerto	Tempo de execução
0.9404	2.563

Base reduzida pelo LDA

n_components	Taxa de acerto	Tempo de execução	
1	0.8908	2.981	

Base reduzida pelo PCA

n_components	Taxa de acerto	Tempo de execução
14	0.9404	2.341
12	0.9404	2.303
10	0.9404	2.244
8	0.9404	2.349
6	0.9404	2.401
4	0.9404	2.474
2	0.9404	2.821

Base reduzida pelo kernel PCA

n_components	Taxa de acerto	Tempo de execução
14	0.9396	2.201
12	0.9384	2.274
10	0.9355	2.311
8	0.9312	2.383
6	0.9304	2.424
4	0.9186	2.481
2	0.8972	2.868

Bases de dados estruturado - Regressão

Base sem redução da dimensionalidade

Taxa de acerto	Erro	Tempo de execução
0.875	76620	274.181

Base reduzida pelo LDA

N_components	Taxa de acerto	Erro	Tempo de execução
16	0.881	76.323	275.234
14	0.871	77.894	288.409
12	0.852	84.612	274.185
10	0.850	84.187	271.937
8	0.823	91.019	265.443
6	0.800	97.137	261.267
4	0.781	102.447	255.100
2	0.762	108.197	253.292

Base reduzida pelo PCA

N_components	Taxa de acerto	Erro	Tempo de execução
16	0.881	74.811	274.498
14	0.875	77.400	278.630
12	0.865	78.189	268.266
10	0.829	89.368	264.268
8	0.813	89.841	257.877
6	0.763	105.411	253.703
4	0.666	135.690	252.057
2	0.632	143.166	245.153

Base reduzida pelo kernel PCA

N_components	Taxa de acerto	Erro	Tempo de execução
16	0.716	90.505	305.011
14	0.705	95.932	297.465
12	0.688	101.872	269.198
10	0.666	102.646	273.449
8	0.659	107.767	277.718
6	0.597	119.540	260.827
4	0.530	141.316	248.274
2	0.463	159.849	237.248

Bases de dados não estruturado - 200 Imagens

Base sem redução da dimensionalidade

Tamanho em MB	Tempo de impressão
31,6	26.153

Base reduzida pelo PCA

N_components	Tamanho em MB	Tempo de impressão
100	4,45	20.521
50	4,21	19.842
20	3,68	17.987
5	2.80	17.130

Analisando uma imagem

N_components	-	100	50	20	5
Armazenamento	139KB	36KB	35,5KB	32,3KB	25KB
Variância	-	0.987	0.965	0.913	0.776

Considerações finais

- Na base de classificação, o algoritmo PCA teve resultados melhores, não perdendo informações que faria o a precisão do Random Forest decrescer e aumentando a performance em 12.5% nos melhores dos seus parâmetros.
- Na base de regressão, o algoritmo mais eficaz foi o LDA, perdendo em média de 10.29% da precisão calculada pelo Random Forest, resultando melhor precisão em comparado com o PCA e Kernel PCA que teve uma perda de informação de 22.80% e 33.94% respectivamente
- O kernel PCA teve resultados satisfatórios na base de classificação, porém para haver total do seu desempenho, a base teria que ser nãolinear, diferentes das bases testadas.
- Na base de imagens, o melhor resultado que tivemos foi com o parâmetro PCA **n_components = 100**, que teve uma diminuição de armazenamento de sua base de 85.9%, um aumento na velocidade da sua impressão de 21.6%, tudo isso perdendo somente 1.30% de suas informações.

Dúvidas?

in https://www.linkedin.com/in/lucca-de-castro-machado/

lucca465@gmail.com

Lucca de Castro Machado - 32292783

Referências

- ANOWAR, Farzana; SADAOUI, Samira; SELIM, Bassant. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Computer Science Review. Montreal, Canada, p. 1-13. jan. 2021.
- H., Telgaonkar Archana; SACHIN, Deshmukh. Dimensionality Reduction and Classification through PCA and LDA. International Journal Of Computer Applications. Aurangabad, p. 0975-8887. jul. 2015.
- Belarbi, Mohammed Amin & Saïd, Mahmoudi & Belalem, Ghalem. (2017). PCA as Dimensionality Reduction for Large-Scale Image Retrieval Systems. International Journal of Ambient Computing and Intelligence. 8. 14. 10.4018/IJACI.2017100104.