Woher kommen die Zahlen?

zur Geschichte des Zählens und Rechnens

Jochen Ziegenbalg

Email: ziegenbalg.edu@gmail.com

Internet: https://jochen-ziegenbalg.github.io/root/

Zahlen – zur frühen Entstehungsgeschichte

Eines der frühesten dokumentierten Beispiele aus der Jungsteinzeit

Strich-Markierungen auf einem Wolfsknochen;

Fundort: Vestonice (dt. Wisternitz), Südmähren, Tschechien)

Z.B. zur Zählung von Tieren in einer Herde

Perioden der Steinzeit (grobe Datierung):

Altsteinzeit (Paläolithikum):

ab etwa 2 Mill. Jahren bis etwa 10. Jahrtausend v. Chr.

Jungsteinzeit (Neolithikum):

ab etwa 10. Jahrtausend bis etwa 4. Jahrtausend v. Chr.

Etymologie:

Das Wort Zahl entwickelte sich aus dem althochdeutschen Wort zala,

welches "eingekerbtes Merkzeichen" bedeutet.

Zahlen in frühen Hochkulturen

Keine Hochkultur kommt ohne Zahlen aus.

Anwendungen: Handel und Gewerbe, Architektur, Bauwesen, Ackerbau, Feldvermessung,

Logistik (auch: Kriegswesen), Astronomie

In jeder der frühen Hochkulturen gab es deshalb mehr oder weniger brauchbare Zahlschreibweisen und, damit verbunden, Rechenverfahren.

antikes Ägypten (ab ca. 4000/3000 v.Chr.)

Sumer, Babylon, Mesompotamien (ab ca. 4000/3000 v.Chr.)

antike griechische Kultur (ab ca. 800 v.Chr. – 500 n.Chr.)

Römer (ab ca. 750 v.Chr. – 500 n.Chr.)

Chinesen (ab ca. 4000/3000 v.Chr.)

Induskultur (ab ca. 3000 v.Chr.)

Maya, Mittelamerika (ab ca. 3000 v.Chr.)

Die Ägypter (ca. 3000 – 500 v. Chr.)

Die Ägypter (ca. 3000–500 v. Chr.) gebrauchten eine Zehnerstufungs-Darstellung (aber kein Zehner*system*) zur Darstellung der natürlichen Zahlen.

Finger

Strich Mess-Schnur Huf Lotusblume

Gott der Unendlichkeit Kaulquappe

Stele des Königs Sesostris III. aus der Festung Semna am zweiten Katarakt

Karnak Tempel bei Luxor

Die ägyptische Multiplikation

Ein Beispiel zum Verfahren (in unserer heutigen Schreibweise)

Gesucht ist das Produkt 52 mal 67:

Ergebnis: 52 mal 67 = 3484

Im übrigen ist das Verfahren der ägyptischen Multiplikation auch aus der Perspektive des Computereinsatzes sehr interessant. Es stellt eine Anwendung des heuristischen Prinzips von "Teile und Herrsche" und ist deshalb sehr laufzeit-effizient.

Die Sumerer und Babylonier (ca. 3000–200 v. Chr.)

Die Babylonier verwendeten die *Keilschrift*. Sie verfügten fast schon über ein 60-er Stellenwertsystem.

1 Y	11 ∢٣	21 ≪ Y	31 ⋘ ₹	41 ÆY	51 AT
2	12 < TY	22 « TY	32 (***)	42 XY	52 X TY
3 777	13 < ???	23 《 YYY	33 ((())	43 XYYY	53 XYYY
4 🗫	14	24	34 WY	44 🏕 👺	54 *
5 XX	15	25	35 444 777	45	
6 ***	16 ∢₹₹ ₹	8 8	36 ⋘₩	29 50 50	55 ANT
7 187	17 4 1	27 🕊 🐯		47	56 4
				7	57 🍂 🐯
8 W	18 ₹₩	28 ≪₩	38 ⋘₩	48	58 Æ
9 🗱	19 ⊀ ₩	29 ≪ ₩	39 ₩₩	49 春 🏋	
10 🕊	20 €€	30 ₩	40	50 🍂	59 Æ

Die Sumerer und Babylonier (ca. 3000 – 200 v. Chr.)

Auflistung verschiedener Mengen von Gerstenschrot und Malz Uruk ca. 3400–3000 v. Chr.

Die Sumerer und Babylonier (ca. 3000 – 200 v. Chr.)

Tontafel mit Zahlenreihen Nippur, ca. 3000 v. Chr.

Zum effektiven Rechnen in einem Zahlensystem muss man das (kleine) Ein-mal-Eins beherrschen. Im Zehnersystem bedeutet dies, dass man die 100 Multiplikationen von 1 x 1 bis 10 x 10 "im Kopf" hat. Als Vorübung dazu werden heute im Unterricht die Zahlenreihen thematisiert (Zweier-, Dreier-, ... Neuner-, Zehner-Reihe). Die babylonischen Schüler mussten ihr kleines Ein-mal-Eins, also alle 3600 Produkte von 1 x 1 bis 60 x 60 und die zugehörigen Reihen beherrschen.

Die babylonische 18-er-Reihe

Transskription:

```
18 ara (mal) 1 \rightarrow 18

ara 2 \rightarrow 36

ara 3 \rightarrow 54

ara 4 \rightarrow 72

ara 5 \rightarrow 90

ara 6 \rightarrow 108

ara 7 \rightarrow 126

ara 8 \rightarrow 144
```

Die Sumerer und Babylonier (ca. 3000 – 200 v. Chr.)

Das babylonisch-symerische Verfahren zur Berechnung von Quadratwurzeln (ca. 1700 – 1800 v.Chr.)

Abbildung 3.5

Die Sumerer und Babylonier (ca. 3000 – 200 v. Chr.)

Das babylonisch-symerische Verfahren zur Berechnung von Quadratwurzeln: Transskription

Genauigkeit:

babylonischer Wert: 1.41421296296296 heutiger Wert (abgeschnitten): 1.41421356237468...

Fernwirkung des babylonischen Zahlsystems

Das babylonische 60-er-System hatte einen außerordentlich großen Einfluss, der bis in unsere Zeit hinein wirkt.

- In der Zeitmessung:
 - 1 Stunde hat 60 Minuten
 - 1 Minute hat 60 Sekunden
- Bei der Winkelmessung Der Vollkreis besteht aus 360 Grad (= 6 * 60 Grad).

Chinesische Zahlschreibweisen

Die kulturgeschichtliche Entwicklung in China setzte ab etwa 2000 v.Chr. ein.

Für die Zahlschreibweise verwendeten die Chinesen eine Zehnerstufung – aber in der Antike ohne ein Symbol für die Null. Ähnlich wie im Falle der ägyptischen Zahlen kann man die chinesische Zahlschreibweise im Zeitraum der Antike nicht als Stellenwertsystem bezeichnen.

Im Hinblick auf die Größe des geographischen Raums und die Länge der Zeitdauer gab es sehr unterschiedliche Zahlschreibweisen.

Hier zwei Kostproben:

	==	=		\mathbf{x}
1	2	m	4	5
1	+	\leq	Хŋ	-
6	7	8	9	10
V	ϵ		₩	\uparrow
20	30	40	50	60
⊗	▧			₩
100	200	300	400	500
7	7	₹	₽	★
1000	2000	3000	4000	5000

Example:

Der chinesische Abakus

Chinesisches Rechengerät: Suan Pan

Bis in die zweite Hälfte des letzten Jahrhunderts hinein (selbst nachdem elektronische Taschenrechner lange in Gebrauch waren) war der Suan Pan das weltweit am meisten genutzte Rechenhilfsmittel (*).

(*) Man konnte bis in unsere Zeit hinein in asiatischen Ländern gelegentlich beobachten, dass die Kassiererin an einer Einkaufskasse das Ergebnis mit einem Taschenrechner ausrechnete – und dann sicherheitshalber noch mal mit einem Suan Pan kontrollierte.

Das "Pascalsche" Dreieck bei den Chinesen

Chinesische Mathematik

Yang Hui (ca. 1238-98): Sein Buch Xiangjie Jiuzhang Suanfa (1261) enthält die älteste noch erhaltene schriftliche Darstellung des "Pascalschen Dreiecks". Er schreibt, dass er das Dreieck in einer Arbeit von Jia Xian (ca. 1010-1070) kennen gelernt habe. Die bei uns als Pascalsches Dreieck bekannte Figur wird in China als Yang Hui's Dreieck bezeichnet. (Diesem Dreieck kann man insbesondere auch die damalige chine-sische Zahlschreibweise entnehmen.)

Blaise Pascal, 1623-1662, französischer Mathematiker, Philosoph und Theologe

Die Maya (ab dem 3. Jahrtausend v. Chr.)

Die Maya verwendeten ein System zur Basis Zwanzig.

P. Beckmann schreibt in dem Buch A History of Pi: "... it is clear that with a positional notation closely resembling our own of today, the Maya could out-calculate the Egyptians, the Babylonians, the Greeks, and all Europeans up to the Renaissance".

$^{\circ}$	1	2	3	4
5	6 •	7	8	9
10	<u>11</u>	12 ••	13	14
15	16 •	17 ••	18	19 ••••
20	21	22	23	24
0	•	••	•••	••••
25	26 •	27 •	28 •	29 •
	•	••	•••	••••

Die Inder – Erfinder unseres Zehnersystems

Entscheidende Idee (etwa im 6. Jahrh. n.Chr.): **Die Erfindung der Null.** Genauer: Die Erfindung eines Schreib-Symbols (einer Ziffer) für Null.

It is like coining the Nirvana into dynamos. Der Mathematikhistoriker *G. B. Halsted*

Etymologie der Wortes "Ziffer":

Ein **Zahlzeichen** beziehungsweise eine **Ziffer** (aus dem Sanskrit *sunya* für "Leere", über das Arabische *aṣ-ṣifr* "die Leere, das Nichts") ist ein Schriftzeichen, das für die Darstellung von Zahlen verwendet wird.

Die Verbreitung der indischen Zahlen

- Ab dem 700 Jh. n.Chr. Entwicklung des Dezimalsystems (Erfindung der Null!) in Indien
- In der Folgezeit: Verbreitung der indischen Zahlen besonders in Richtung Westen: Zentralasien, Persien, arabische Welt
- Ca.780-850 AD: Abu Ja'far Mohammed ibn Musa al-Khowarizmi Autor des einflussreichen (im Original verloren gegangenen) Buches "Über das Rechnen mit den indischen Zahlen"
- In den folgenden Jahrhunderten: Verbreitung der indischen Zahlen nach Westen über den gesamten arabischen Einflussbereich bis nach Andalusien und andere Landstriche Spaniens.
- Übersetzung des Buches von al-Khowarizmi ins Lateinische, ca. 1140 durch Johannes von Sevilla (Johannes Hispaniensis); Titel der lateinischen Übersetzung "Algoritmi de numero Indorum" (Al-Khowarizmi über die indischen Zahlen)
- In den folgenden Jahrhunderten: Verbreitung der "arabischen" Zahlen in der Welt des europäischen Mittelalters; insbesondere Leonardo von Pisa (Fibonacci) ca. 1170-1250; Liber Abaci 1202.
- Damit verbunden: Häufiges Zitieren von al-Khowarizmi, oft eingeleitet durch die Worte "dixit Algorithmi ..." (Algorithmi hat gesagt ...); z.B. durch den Übersetzer ("Arabisten") Robert of Chester (ca. 1150) und durch Adam Ries 1492-1559
- In den folgenden Jahrhunderten: Entwicklung des Begriffs Algorithmus (durch Sprachtransformation); Bedeutungswandel: vom Rechnen in den Grundrechenarten hin zum allgemeinen mathematischen Begriff der Berechenbarkeit (einschliesslich der *Programmierbarkeit* von Computern)

Einige Protagonisten des Ziffernrechnens

Al Khowarizmi

Leonardo von Pisa (Fibonacci)

Adam Ries

Al Khowarizmi (al Chwarizmi, al Hwarizmi)

Abu Ja'far Mohammed ibn Musa *al-Khowarizmi* (ca.780-850 AD)

Algorithmus

Al-kitab al-muhtasar fi hisab *al-jabr* w'al-muqabala (*)

Das Buch über Ergänzung (al-jabr) und Ausgleich (al-muqabala)

Algebra

Al-kitab al-muhtasar fi hisab *al-jabr* w'al-muqabala

Aus: Liber Ab(b)aci Kaninchenaufgabe

Liber abbaci, MS Biblioteca Nazionale di Firenze, Codice Magliabechiano cs cI 2616, fol. 124r:

Berechnung der "Kaninchenaufgabe" mit Fibonacci-Reihe

deminar, fle ff ifo mele para + er quib'i uno mile ono pomant geminat in telo mele parta coniclor. The fi parts 4 Tho m te er quib tim panar pursi 7 ffi ique mete para s er qb parta 4 gemmar aha parta 4 quill'additte quirift 8 fina ut pura 17 Tonto mete. er qu' parra 4 q geminata fuere 71fo mie fi scipite i fo finte fialia a parapatiant ofic thi ferro mele ध्यापा = । त्ये वृष्टि अववास्य ध्यापार । इत् तुलामार्या रिक्षम् व वर्षे रे म्हि mira ? + cu quib addint purift : 19 geminat ? comino mete. ert i po pura 4 4 cu quib addur puruf 7 + q geminat i no no mete ert रे मिंक parta s 🤊 ब्रों quil addiur rurfit partir 99 a geminat i deamo. ert ipo parti 1 + e ci quib adduit rurfit pariff 8 o वे geminar i undecimo meter ert i que paria t t en qb'4 adding parife (1+ + q geminar in ultimo mele eritr miru + 7.7 gror parta pepit fin par 7 pfaro loco 7 capite uni im potet e unde I hao margine quali boc opan fumil e quirmi कृता मामा त्या कि मारेका । ता र दिला व स्वका न्यंता की वृष्का न्यूंन Aler ell ze ; 7 hum flou cuniclou fund undelics. +77 The pollet face pordine to Thinter mile mefil. withou boier fit quou pin lost piet but driot soot ump riel que ीर्मार विनिध् ह । रही न्यूरिंग्या प्रमार कार्निश् हम अन्येश न्यूमी नुमार hate ofter 77 derit grundfig hate. 10de hot unt nuter i und ere ार १ वृं मार्स टे देशी कारी सिमार ठारावार मीवन मान honni. 1000 वर निमास भागार भाविति रक्त एको क्षामा हु ती वृत्ता का के के में 1000ई में में किर्म filma erqua fi ermirit ditot pimi fi 7 ten boit. 1. 7 vemanebir क्षण भेरा वेरे १ ६ किसी व्यक्ति वेर्ता है स्ट्राम है। किस rich rout hois temanebite pimo hoi de 1 = Rurti fi de deige + ? क्रमानकार ह 4 . त. वर्षे चंता न्यूंग्म क्रिक न्यूंगा किराद प्रकार किराद प्रकार कर किराद कर कर किराद कर कर किरा प्रथमानमानिर्मित्व वर्षे ६ विभिन्नार्थमान् वर्षेत्र । च कृमा विवरित्त व िका रही क रेहा कर हो। के व्याप मामाणी कि प्रकेरे में द ्रिया भीत अरेक द । एक मार्च वित्री व्यापत क्रम मार्च वृत्ता व्यापत व्रापत क्रमार्थ क्र shimiler if polivoir que solm politir que n. Si ur ife e solm pollo ab histori folui ni posti cognosait tale o tudini embetili midelia गाउँ कि रेंद्र ? व्या ? शामा रहे शिक्षां राम वृत्तिक कि वर्षे विव्यास विविद्ध रहे वर्ष धी न्दी की भी दे । के आरं मार्ग मार्ग मार्ग के कि न की की न दे की

mini

pm

Side

Khowarizm / Khorezm relativ zur arabischen Welt

Die Griechen und die Mathematik

Die **Griechen** waren hervorragende Mathematiker. In der Zeit der griechischen Antike entwickelte sich die Mathematik zur eigentlichen Wissenschaft. Sie prägten auch den Begriff "Mathematik":

Mathematik (altgriechisches Adjektiv μαθηματική [τέχνη] *mathēmatikē* [téchnē] ,,[die Kunst des] Lernen[s], zum Lernen gehörig"

- Thales von Milet (ca. 624–546 v.Chr.)
- Pythagoras von Samos (ca. 580–500 v.Chr.)
- Theodorus von Kyrene (ca. 460–399 v.Chr.)
- Theaitetos (ca. 414–369 v.Chr.)
- Eudoxos von Knidos (ca. 400–347 v.Chr.)
- Euklid von Alexandria (ca. 365–300 v.Chr.)
- Archimedes von Syrakus (ca. 287–212 v.Chr.)
- Eratosthenes von Kyrene (ca. 276–194 v.Chr.)
- Apollonius von Perge (ca. 260–190 v.Chr.)
- Heron von Alexandria (ca. 60 n.Chr.)
- Klaudios Ptolemaios (ca. 85–165 n.Chr.)
- Diophantos von Alexandria (ca. 250 n.Chr.)
- Hypatia of Alexandria (ca. 370–415 n.Chr.)

Die Griechen und ihre Zahlschreibweise

Die Mathematik der Griechen war überwiegend Geometrie.

Um Mathematik zu betreiben, brauchten sie konkrete Zahlen nur selten. Und wenn, dann veranschaulichten sie die Zahlen durch Strecken.

Bei all ihren epochalen mathematischen Leistungen hatten die Griechen allerdings ein ziemlich schlechtes Zahlensystem hatten, das sie aber nur im Bereiche von Handel und Gewerbe verwendeten.

Wenn sie "heftig" zu rechnen hatten, also z.B. im Zusammenhang mit astronomischen Problemen (Ptolemaios), verwendeten sie die babylonischen Zahlen.

1	α	alpha	10	ι	iota	100	ρ	rho
2	β	beta	20	κ	kappa	200	σ	sigma
3	γ	gamma	30	λ	lambda	300	τ	tau
4	δ	delta	40	μ	mu	400	v	upsilon
5	€	epsilon	50	ν	nu	500	ϕ	phi
6	ς	vau*	60	ξ	xi	600	χ	chi
7	ζ	zeta	70	0	omicron	700	ψ	psi
8	η	eta	80	π	pi	800	ω	omega
9	θ	theta	90	9	koppa*	900	У	sampi

*vau, koppa, and sampi are obsolete characters

Die Myriade (griechisch, dann auch im Lateinischen) steht für eine Anzahl von 10.000 (altgriech. μύριας – myrias).

Der Plural Myriaden steht oft für eine "unzählbare" Menge (griech μύριος – *myrios*: unzählig, unendlich).

Die Römer

Zur Zeit der **Römer** und im (europäischen) Mittelalter verfiel der grösste Teil des bis dahin erworbenen mathematischen Wissens.

Das Zahlensystem der Römer war aus mathematischer Sicht, hochgradig ungeeignet zum Zählen, Messen und Rechnen.

I	1
II	2
III	3
IV	4
V	5
VI	6
VII	7
VIII	8
IX	9
X	10
XI	11
XII	12
XIII	13
XIV	14
XV	15
XVI	16
XVII	17
XVIII	18
XIX	19
XX	20

XI	21	XLI	41
XII	22	XLII	42
XIII	23	XLIII	43
XIV	24	XLIV	44
XV	25	XLV	45
XVI	26	XLVI	46
XVII	27	XLVII	47
XVIII	28	XLVIII	48
XIX	29	XLIX	49
XX	30	L	50
XXI	31	LI	51
XXII	32	LII	52
XXIII	33	LIII	53
XXIV	34	LIV	54
XXV	35	LV	55
XXVI	36	LVI	56
XXVII	37	LVII	57
XXVIII	38	LVIII	58
XXXIX	39	LIX	59
L	40	LX	60

LXI	61
LXII	62
LXIII	63
LXIV	64
LXV	65
LXVI	66
LXVII	67
LXVIII	68
LXIX	69
LXX	70
LXXI	71
LXXII	72
LXXIII	73
LXXIV	74
LXXV	75
LXXVI	76
LXXVII	77
LXXVIII	78
LXXIX	79
LXXX	80

LXXXI	81
LXXXII	82
LXXXIII	83
LXXXIV	84
LXXXV	85
LXXXVI	86
LXXXVII	87
LXXXVIII	88
LXXXIX	89
XC	90
XCI	91
XCII	92
XCIII	93
XCIV	94
XCV	95
XCVI	96
XCVII	97
XCVIII	98
XCIX	99
C	100
D	500
M	1000

Wie wurde in der Antike gerechnet?

- 1. Für intensive, umfangreiche Rechnungen (z.B. astronomische Berechnungen oder aufwendige Statik- bzw. Volumen-Berechnungen in der Baukunst) wurde mit den babylonischen Zahlen gerechnet.
- 2. Für Rechnungen aus dem Bereich des täglichen Bedarfs wurde mit einfachen Rechengeräten (Abakus, suan pan, soroban, stschoti) sowie auf Rechentischen mit Rechensteinen gerechnet.

Die Rechnungen wurden von *Rechenmeistern* ausgeführt, zu denen man ging, wenn man etwas auszurechnen hatte – und dieser Dienst war zu bezahlen. (Ähnliche Situation wie mit den *Schreibern*.)

Etymologie:

```
abax (griechisch): Brett, Tisch → Abakus calculus (lat.): Steinchen → Kalkül, Kalkulieren, Kalkulation / engl. calculus
```

Interaktiver Rechentisch im Adam Ries Museum (online version):

http://www.adam-ries-bund.de/

Erste Rechenhilfsmittel

Die salaminische Rechentafel, Fundort: Insel Salamis; geschätzte Datierung ca. 300 Jh.v.Chr.

Die Salaminische Rechentafel, das bis heute einzige erhaltene große Rechenbrett der alten Kulturwelt. Maße 149 \times 75 \times 4,5 (am Rand 7,5) cm. Nationalmuseum, Athen.

2478 + 3674

Die unterschiedliche Einfärbung der "Calculi" sollte zu Beginn des Verfahrens der besseren Identifizierbarkeit der beiden Summanden dienen. Für den weiteren Verlauf entfällt dieser Aspekt und die Calculi werden alle weiss eingefärbt. Gelegentlich werden einige von ihnen zur Verdeutlichung des Verfahrens auch schwarz eingefärbt.

Ergebnis: 6152

Adam Ries: Rechenbücher

Das erste Rechenbuch von Adam Ries (1518)

Rechnung auff der linihen

Ries beschreibt darin das Rechnen auf den Linien eines Rechenbretts

Es war also ganz dem Abakusrechnen gewidmet Rechtung auf der linihent gemacht durch Adam Riesen vonn Staffels steyns in massen man es pflegt tzu lern in allen rechenschulen grundlich begriffen anno 1518. pleysigklich pberlesens und zum andern mall in trugk porfertiget.

Gehwargen Hoint.

Adam Ries: Rechenbücher

Das zweite Rechenbuch von Adam Ries (1522)

Rechenung auff der linihen und federn...

Neben dem Rechnen auf dem Rechenbrett beschreibt er in diesem Buch das Ziffernrechnen mit indischen/arabischen Ziffern. Zielgruppe waren Lehrlinge kaufmännischer und handwerklicher Berufe. Es wurde zu seinen Lebzeiten über hundertmal, bislang mindestens 120 mal aufgelegt.

Kellenung duff per unden und febern in galimas und gem begen allerley handictione, gemache vond ga famen geleker durch Idani Riefen vo Geaffild Rechenmeys fier in Erster

Titelblatt der Auflage 1532

Titelblatt der Auflage 1522

Adam Ries: Rechenbücher

Das *dritte Rechenbuch* von Adam Ries (1550)

Rechenung nach der lenge/ auff den Linihen vnd Feder

Oft zitiert unter dem Kurztitel "Practica". Das Buch zeigt erstmals auch ein Portrait des Autors, das als einziges zeitgenössisches Bild von Ries auch einen Hinweis auf sein Geburtsjahr gibt.

Der Siegeszug des Zehnersystems

Die Verbreitung des indischen (arabischen?) Zahlensystems dauerte mehrere Jahrhunderte.

Es gab viele Widerstände und Anfeindungen (heidnische Praxis, Teufelszeug, ...).

Das Rechnen mit den Rechentischen wurde teilweise noch bis ins 18. Jahrhundert praktiziert.

Dennoch war der Siegeszug der indischen Zahlen nicht aufzuhalten.

Für den sich ausbreitenden Handel war wichtig, dass man mit diesen Zahlen nicht nur rechnen konnte, sondern dass die Rechnung zugleich ihre eigene *Dokumentation* war.

Das Bild rechts veranschaulicht den Streit zwischen den Rechentisch-Rechnern (*Abakisten*) und den Anhängern der indischen Methode (*Algoristen*).

Gregor Reisch: Margarita Philosophica, Straßburg 1504

Was ist an den Stellenwertsystemen so wichtig?

Die Stellenwertdarstellung von (natürlichen) Zahlen bringt folgende Vorteile mit sich:

- Man benötigt nur relativ wenige (auf jeden Fall nur endlich viele) Grundsymbole, um jede (natürliche) Zahl, so groß sie auch sei, in eindeutiger Weise darzustellen.
- Aber dazu braucht man ein Symbol für die Null. Ohne Null kein Stellenwertsystem!
- Die Grundrechenarten (Addition, Subtraktion, Multiplikation, Division) sind universell und in transparenter Weise ausführbar und sie sind relativ leicht zu erlernen. Heute ist dies Bestandteil des Mathematikunterrichts in den ersten Schuljahren; im Mittelalter gab es nur wenige Universitäten, an denen die "enorm schwierige" Technik des Dividierens gelehrt wurde

(vgl. auch: Rede von Melanchton).

• Man gelangt in ganz natürlicher Weise zur Darstellung von Brüchen (z.B. Dezimalbrüche; allgemein: Systembrüche).

Ich beginne mit einem (sicher geläufigen) Beispiel aus unserem Zehnersystem Die Zahlschreibweise 20534 bedeutet (ausführlicher dargestellt):

Zehntausender	Tausender	Hunderter	Zehner	Einer
Stufe 4	Stufe 3	Stufe 2	Stufe 1	Stufe 0
10000	1000	100	10	1
10*10*10*10	10*10*10	10*10	10	1
104	10^{3}	10 ²	101	100
2	0	5	3	4
2 * 104	$+ 0 * 10^3$	+ 5 * 102	+ 1 * 101	+ 4 * 100

Ein Beispiel aus dem Achtersystem

Die Zahlschreibweise 20534 bedeutet (ausführlicher dargestellt):

Stufe 4	Stufe 3	Stufe 2	Stufe 1	Stufe 0
		Vierundsechziger	Achter	Einer
8*8*8*8	8*8*8	8*8	8	1
84	83	82	81	80
2	0	5	3	4
Darstellung im Zehnersystem:				
Basiszahlen:				
4096	512	64	8	1
Wert der Zahl 20534 (Achtersystem) im Zehnersystem:				
8192	0	320	24	4
				= 8540

Ein Beispiel aus dem System zur Basis g

Die Zahlschreibweise 20534 bedeutet (ausführlicher dargestellt):

Stufe 4	Stufe 3	Stufe 2	Stufe 1	Stufe 0
				Einer
g*g*g*g	g*g*g	g*g	g	1
g^4	g^3	g^2	g^1	g^0
2	0	5	3	4
Darstellung im Zehnersystem:				
Basiszahlen:				
g^4	g^3	g^2	g^1	g^0
Wert der Zahl 20534 (Achtersystem) im Zehnersystem:				
2 * g ⁴	$0 * g^3$	$5*g^2$	$3 * g^1$	4 * g ⁰

Das Dualsystem (Binärsystem): Basis 2

Ziffern: 0, 1 dual dezimal

0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

10000	16
10001	17
10010	18
10011	19
10100	20
10101	21
10110	22
10111	23
11000	24
11001	25
11010	26
11011	27
11100	28
11101	29
11110	30
11111	31

u.s.w.

Das Hexadezimalsystem (Sechzehnersystem): Basis 16

Ziffern: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
A	10
В	11
С	12
D	13
Е	14
F	15

10	16
11	17
12	18
13	19
14	20
15	21
16	22
17	23
18	24
19	25
1A	26
1B	27
1C	28
1D	29
1E	30
1F	31

Die Hexadezimaldarstellung ist im Computerbereich die Standarddarstellung; z.B. zur Adressierung von Speicherbereichen. Eine zweistelliger Speicherblock für hexadezimale Darstellungen wird auch als ein *Byte* bezeichnet.

Dies lässt die Adressierung von 16*16 = 256 Speicherzellen zu. Oft wird zur Adressierung auch ein Block aus 2 Bytes verwendet.

0000 FFFF

Dies macht die Adressierung von 16⁴ = 65536 Speicherzellen möglich.

Probleme mit der babylonischen Zahl-Schreibweise

- 1. Wenn die (Basis-) Ziffern aus unzusammenhängenden Zeichen bestehen, geht die Eindeutigkeit der Interpretation verloren.
- 2. Die babylonische Zahldarstellung lässt die "Tabellenstruktur" von Stellenwertsystemen nicht klar erkennen.

Beispiele: Zu (1.): unzusammenhängende Ziffern Einer Dies könnte (dezimal) 11 bedeuten. Dann wäre es eine einzige Ziffer. Dies könnte (dezimal) 601 bedeuten. Dann wären es zwei Ziffern. Einer Sechziger

Probleme mit der babylonischen Zahl-Schreibweise

Beispiele: zu (2.): fehlende Eindeutigkeit der Tabellenstruktur

60	1

$$10+10+7 \rightarrow 27$$

3600	60	1

3600	60	1

$$(10+10)*60+7 \rightarrow 127$$

Philipp Melanchton (1497-1560) zur Arithmetik

Ich glaube, ... noch etwas über die leichte Erlernbarkeit [der Arithmetik] anfügen zu müssen. Ich weiß, dass sich die jungen Leute durch das Vorurteil ihrer Schwierigkeit von diesen Wissenschaften abschrecken lassen. Aber hinsichtlich der Elemente der Arithmetik, die man normalerweise an den Schulen lehrt und die für die tägliche Praxis herangezogen werden, irren sie sich sehr, wenn sie meinen, sie seien ungemein schwer. Die Rechenkunst leitet sich unmittelbar aus der Beschaffenheit des menschlichen Geistes ab und besitzt Beweise mit dem höchsten Gewißheitsgrad. Daher können ihre Grundlagen weder unverständlich noch schwierig sein, die ersten Regeln sind im Gegenteil so klar, dass auch Kinder sie begreifen können, weil dieses ganze Wissensgebiet aus der Beschaffenheit des menschlichen Geistes hervorgeht. Zweitens erfordern die Regeln der Multiplikation und der Division zwar etwas mehr Genauigkeit, aber ihre Gründe können dennoch von aufmerksamen Schülern schnell begriffen werden. Diese Wissenschaft verlangt genauso Übung und praktische Anwendung wie alle anderen.

(Aus Philipp Melanchthons 1536 in lateinischer Sprache abgefasster Rede über den Nutzen der Arithmetik oder Vorrede zur Arithmetik des Georg Joachim Rheticus (1514 - 1576), Corpus Reformatorum 11, Sp. 284 - 292, übersetzt von Gerhard Wenig)

Mathematik und der mündige Bürger

Zur Zeit von Philipp Melanchton war es nicht üblich, dass jedermann rechnen (oder auch schreiben) konnte. Wenn man etwas auszurechnen hatte, musste man in der Regel die Dienste eines (zu bezahlenden) Rechenmeisters in Anspruch nehmen, der die Rechnungen für seinen Kunden durchführte. Natürlich war der Kunde dem Rechenmeister im Hinblick auf die Korrektheit des Ergebnisses völlig ausgeliefert. Er hatte kaum die Möglichkeit, das Ergebnis des Rechenmeisters zu überprüfen.

Durch das Wirken der Mathematiker und in diesem Fall besonders auch der Rechenmeister wurde im Laufe der Zeit nahezu jedermann in die Lage versetzt, die Rechnungen des täglichen Lebens (und einiges darüber hinaus) selbst auszuführen.

Die Menschen gewannen, nicht zuletzt auch dadurch, ein erhebliches Maß an geistiger Autonomie und Mündigkeit -- und dies stellt eine wesentliche Voraussetzung für den aufgeklärten Bürger dar, ohne den ein demokratisches Staatswesen kaum möglich ist.

Danke für die Aufmerksamkeit