

# Feature Learning in Clinical Time Series using Deep Learning

Biswajit Paria<sup>1</sup>, David Kale<sup>2</sup>, and Yan Liu<sup>2</sup>

<sup>1</sup>Indian Institute of Technology Kharagpur; <sup>2</sup>University of Southern California biswajitsc@iitkgp.ac.in, {dkale, yanliu.cs}@usc.edu



## CRITICAL CARE MEDICINE

## Among the most important areas of medicine.

- >5 million US patients admitted to annually.<sup>a</sup>
- US cost in 2005: \$81.7 bn, ~1% GDP.<sup>a</sup>
- Mortality up to 30%, depending on condition.<sup>a</sup>
- Impact: impairment, pain, depression.

#### Modeling critical illness: a grand challenge.

- *Big Data*: 100's of data points/patient/hour.
- Diverse conditions: respiratory failure, sepsis, etc.
  Symptoms complex, vary across patients, overlap between conditions.

aSociety of Critical Care Medicine: http://www.sccm.org/ Communications/Pages/CriticalCareStats.aspx

## PHENOTYPE DISCOVERY AS FEATURE LEARNING

#### **Medicine**: *phenotypes*, *biomarkers*

- Measurable attributes of patient/disease.
- Independent of other biomarkers.
- Separate patients into meaningful groups.
- Improve outcome prediction, risk assessment.
- Clinically plausible, interpretable.

#### Machine learning: features, representations

- Measurable properties of objects.
- Independent, disentangle factors of variation.
- Form natural clusters.
- Useful for discriminative, predictive tasks.
- Interpretable, provide insight into problem.

# Multivariate time series of vital signs and test results



Temporal phenotype detection using deep learning



## FEATURE LEARNING USING DEEP LEARNING

#### **Stacked Denoising Autoencoders**

- can perform complex feature transformations.
- can learn high level features.
- can capture complex interactions between input features.





# EXPERIMENTAL RESULTS

#### Prediction of Acute Respiratory Distress Syndrome (ARDS)

#### **ARDS**

- not enough oxygen from the lungs and into the blood.
- fluid buildup in lungs.
- treated in an ICU.
- patients often deeply sedated.



Area under curve (AUC) = 81.10%

# **Analysis of learnt features**

Top three features selected based on logistic layer weights for ARDS label.



# Variables trends for learnt features

- High pcrr  $\implies$  Dehydration.
- Low tgcs  $\implies$  Unconscious.
- Low sao2 ⇒ Impaired oxygen intake.
- High fio2  $\implies$  Oxygen masks.

# **Symptoms of ARDS**

- Severe shortness of breath.
- Labored and unusually rapid breathing.
- Low blood pressure.

# EXPERIMENTAL SETUP

# **Deep Learning Setting**

- Unsupervised Pre-Training: SDAs for complex feature transformation.
- Supervised Finetuning Gradient Descent using Back Propagation.

## **Neural Network Parameters**

- **Layers:** In  $\rightarrow$  500 nodes  $\rightarrow$  100 nodes  $\rightarrow$  100 nodes  $\rightarrow$  Out.
- **Regularizers:** L1 cost on highest layer weigths to impose sparsity on learnt features.
- **Stopping Criterion:** Early stopping based on validation error.

# INTERPRETING LEARNT FEATURES

Goal: To interpret learnt features as traditional diagnostic rules.

**Decision Trees (DT)** can extract set of *if else* rules for learnt features.

Gradient Boosted Decision Trees (GBDT) can extract set of weighted Decision Trees for learnt features.

# Learning DTs for the learnt feature A

|   |     | Model                            | RMSE   |
|---|-----|----------------------------------|--------|
|   | Ι   | DT - max leaf nodes = 50         | 0.6167 |
|   | II  | GBDT - depth = 2, est = 1        | 0.3285 |
|   | III | GBDT - depth = $2$ , est = $10$  | 0.2497 |
| - | IV  | GBDT - depth = $2$ , est = $100$ | 0.1995 |
|   |     |                                  |        |





DT rules can approximate neural net features, are interpretable but complex. Promising direction for understanding deep learning.

# OBSERVATIONS AND FUTURE WORK

# Observations

- Decision trees approximate the learnt features fairly well and are often interpretable.
- Multiple trends are learnt by a single feature.
- Redundant features pose a challenge to interpretation.

# **Future work**

• Use *dropout*, etc., to impose further sparsity and disentangle features.

Learnt features

and symptoms

of ARDS look

similar

- Prevent duplication of features by imposing a *prior* (e.g., disease ontologies).
- Experiment with recurrent, convolutional nets.

# PUBLICATIONS

- D. Kale, Z. Che, Y. Liu, and R. Wetzel. Computational discovery of physiomes in critically ill children using deep learning. 1st
- AMIA DMMI Workshop, 2014.

   Z. Che<sup>†</sup>, D. Kale<sup>†</sup>, W. Li, T. Bahadori, and Y. Liu. Deep Computational Phenotyping, SICKDD 2015.
- tational Phenotyping. SIGKDD 2015.
  D. Kale, Z. Che, T. Bahadori, W. Li, Y. Liu, and R. Wetzel. Causal
- Phenotype Discovery via Deep Networks. AMIA 2015.
  Y. Bengio, et al. Representation Learning: A Review and New Perspectives. TPAMI 35 (8): 1798-1828, Aug 2013.