Contents

Introduction

 Physical and Link Layers Protocols (IoT Access Technologies)

Mostly adopted from Chapters 4, 5, and 6 of IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Thing, Cisco press, 2017

Contents

- Introduction
 - Connecting Smart Objects
 - IoT Protocol Stack (Standards, Protocols and Technologies)
- Physical and Link Layers Protocols (IoT Access Technologies)

Mostly adopted from Chapters 4, 5, and 6 of IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Thing, Cisco press, 2017

IoT Protocol Stack: Why layering

Dealing with *complex systems*:

- explicit structure allows identification relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system

IoT Protocol Stack

OSI and TCP/IP Networking Models

OSI model

TCP/IP model

7 Application							
6 Presentation							
5 Session							
4 Transport							
3 Network							
2 Data link							
1 Physical							

Application						
Transport						
Internet						
Network access & physical						

Protocol layering and data

Each layer takes data from above

- adds header information to create new data unit
- passes new data unit to layer below

Physical and Link Layers Protocols- IEEE 802.15.4

- "Networking Technologies"
 - Enable IoT devices to communicate with other devices, applications, and services running in the cloud
 - Network Access & Physical Layer," Presented in Lecture 3 (*Chapter 4).
 - Internet Layer: IP as the IoT Network Layer, Presented in Lecture 4 (*Chapter 5)
 - Transport & Application Layers, Presented in Lecture 5 (*Chapter 6)
 - As you look further down the stack toward physical transmission technologies, you face more challenges that are specific to IoT devices and IoT contexts.

^{*} IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Thing, Cisco press, 2017

IoT Protocol Stack

IoT network protocols mapped to the TCP/IP model

IoT Protocol Stack

Application Layer

MQTT

CoAP

Transport Layer

TCP

UDP

Network Layer

IPv4, IPv6

6LoWPAN

Link Layer

Physical Layer

IEEE 802.15.4, IEEE 802.11, ZigBee, LoRaWAN, NB-IoT, LP Wi-Fi, BLE, PLC

Contents

- Introduction
- Physical and Link Layers Protocols (IoT Access Technologies)
 - Physical Layer Issues
 - Communication Technologies Criteria
 - Communication Technologies and Protocols

Mostly adopted from Chapters 4, 5, and 6 of IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Thing, Cisco press, 2017

Contents

- Introduction
- Physical and Link Layers Protocols (IoT Access Technologies)
 - Physical Layer Issues
 - Communication Technologies Criteria
 - Communication Technologies and Protocols

Mostly adopted from Chapters 4, 5, and 6 of IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Thing, Cisco press, 2017

Physical Layer issues

- Media (Electrical Channel)
- Frequency Ranges
- Signal
 - Signal Power
 - Signal Frequency Spectrum
 - Signal Propagation
- Transceivers Structure
 - Modulation and Demodulation
 - Coding

Physical Media

- Transmission Medium
 - Physical path between transmitter and receiver
- Categories of physical medium
 - Guided Media
 - Waves are guided along a solid medium
 - E.g., copper twisted pair, copper coaxial cable, optical fiber
 - Unguided Media
 - Provides means of transmission but does not guide electromagnetic signals
 - Usually referred to as wireless transmission
 - £.g., atmosphere, outer space

Difference Between Wireless and Wired Networks

- Layers Affected by the Wireless Transmission
 - Wireless and Wired Networks are not so different at application and transport layers!
 - They are mostly different at following layers:
 - Physical Layer
 - Media (Electrical Channel)
 - Frequency range
 - Signal
 - Modulation and Demodulation
 - Multiplexing

- Data Link Layer
 - Logical link control (LLC)
 - Media Access Control (MAC)
- Network Layer
 - Packet Forwarding
 - Routing

Frequency Range

- Radio
 - Signal carried in electromagnetic spectrum
 - Propagation environment effects:
 - Reflection
 - Obstruction by objects
 - Interference

Frequency Range

Frequency	Wavelength	Designation	Abbreviation
3 - 30 Hz	10^5km-10^4km	Extremely low frequency	ELF
30 - 300 Hz	10^4km-10^3km	Super low frequency	SLF
300 - 3000 Hz	10^3km-100km	Ultra low frequency	ULF
3 - 30 kHz	100km-10km	Very low frequency	VLF
30 - 300 kHz	10km-1km	Low frequency	LF
300 kHz - 3 MHz	1km-100m	Medium frequency	MF
3 - 30 MHz	100m-10m	High frequency	HF
30 - 300 MHz	10m-1m	Very high frequency	VHF
300 MHz - 3 GHz	1m-10cm	Ultra high frequency	UHF
3 - 30 GHz	10cm-1cm	Super high frequency	SHF
30 - 300 GHz	1cm-1mm	Extremely high frequency	EHF
300 GHz – 3 THz	1 mm – 0.1 mm	Tremendously high frequency	THE

Radio Frequency

- Required antenna size for good reception is inversely proportional to the signal frequency
 - so moving to a higher frequency allows for more compact antennas

- Received signal power with nondirectional antennas is proportional to the inverse of frequency squared.
 - So it's hard to cover large distances with higher frequency signals (with nondirectional antennas)

^{*}Adopted from Wireless Communication by Goldsmith (Chapter2)

Frequency Range

Radio frequency range

- 30 MHz to 30 GHz
- Suitable for omnidirectional applications
- Frequencies of 1 GHz and above are conventionally called microwave

Millimeter Wave

Frequencies of 30 GHz and above are designated.

Infrared frequency range

- Roughly, 3x10^11 (300 GHz) to 2x10^14 (200 THz)
- Useful in local point-to-point multipoint applications within confined areas

Frequency Range

- Most wireless applications reside in radio frequency between 30MHz to 30 GHz (VHF, UHF and SHF)
- Why these frequencies?
 - They are not affected by earth curvature
 - Require only moderated size antennas

Example of ISM frequency allocation

Frequen	cy range	Center frequency	Bandwidth	Туре	Availability	Licensed users
6.765 MHz	6.795 MHz	6.78 MHz	30 kHz	Α	Subject to local acceptance	FIXED SERVICE & Mobile service
13.553 MHz	13.567 MHz	13.56 MHz	14 kHz	В	Worldwide	FIXED & Mobile services except Aeronautical mobile (R) service
26.957 MHz	27.283 MHz	27.12 MHz	326 kHz	В	Worldwide	FIXED & MOBILE SERVICE except <u>Aeronautical mobile service</u> , <u>CB</u> <u>Radio</u>
40.66 MHz	40.7 MHz	40.68 MHz	40 kHz	В	Worldwide	Fixed, Mobile services & Earth exploration-satellite service
433.05 MHz	434.79 MHz	433.92 MHz	1.74 MHz	Α	only in Region 1, subject to local acceptance	AMATEUR SERVICE & RADIOLOCATION SERVICE, additional apply the provisions of footnote 5.280. For Australia see footnote AU.
902 MHz	928 MHz	915 MHz	26 MHz	В	Region 2 only (with some exceptions)	FIXED, Mobile except aeronautical mobile & Radiolocation service; in Region 2 additional Amateur service
2.4 GHz	2.5 GHz	2.45 GHz	100 MHz	В	Worldwide	FIXED, MOBILE, RADIOLOCATION, Amateur & Amateur-satellite service
5.725 GHz	5.875 GHz	5.8 GHz	150 MHz	В	Worldwide	FIXED-SATELLITE, RADIOLOCATION, MOBILE, Amateur & Amateur-satellite service
24 GHz	24.25 GHz	24.125 GHz	250 MHz	В	Worldwide	AMATEUR, <u>AMATEUR-SATELLITE</u> , RADIOLOCATION & Earth exploration-satellite service (active)
61 GHz	61.5 GHz	61.25 GHz	500 MHz	Α	Subject to local acceptance	FIXED, <u>INTER-SATELLITE</u> , MOBILE & RADIOLOCATION SERVICE
122 GHz	123 GHz	122.5 GHz	1 GHz	Α	Subject to local acceptance	EARTH EXPLORATION-SATELLITE (passive), FIXED, INTER-SATELLITE, MOBILE, SPACE RESEARCH (passive) & Amateur service
244 GHz	246 GHz	245 GHz	2 GHz	Α	Subject to local acceptance	RADIOLOCATION, RADIO ASTRONOMY, Amateur & Amateur-satellite service

Frequency Range

Frequency Bands

Signal

Signal:

- physical representation of data
- function of time and location
- signal parameters: parameters representing the value of data
- classification
 - continuous time/discrete time
 - continuous values/discrete values
 - analog signal = continuous time and continuous values
 - digital signal = discrete time and discrete values
- signal parameters of periodic signals: period T, frequency f=1/T, amplitude A, phase shift ϕ sine wave as special periodic signal for a carrier: $s(t) = A_t \sin(2\pi f_t t + \phi_t)$

$$s(t) = A_t \sin(2\pi f_t t + \varphi_t)$$

Signal

Different representations of signals

amplitude (amplitude domain)

frequency spectrum (frequency domain)

phase state diagram (amplitude M and phase ϕ in polar coordinates)

- Composed signals transferred into frequency domain using Fourier transformation
- Digital signals need

infinite frequencies for perfect transmission

modulation with a carrier frequency for transmission (analog signal!)

Signal Propagation Ranges

- Propagation in free space always like light (straight line, line of sight)
- Receiving power proportional to
 - $1 / (d \times f)^2$ (ideal) $1/(d \times f)\alpha$ ($\alpha = 3...4$ realistically) d = distance between sender and receiver
- Receiving power additionally influenced by

fading (frequency dependent)
shadowing
reflection at large obstacles
scattering at small obstacles
diffraction at edges

Multipath propagation

- Time dispersion: signal is dispersed over time
 interference with "neighbor" symbols, Inter Symbol Interference (ISI)
- The signal reaches a receiver directly and phase shifted distorted signal depending on the phases of the different parts

Transceiver Structure: Communications Block Diagram

Physical Layer Issues

Modulation

- Transceiver Structure
 - Digital modulation
 - Digital data is translated into an analog signal (baseband) ASK, FSK, PSK
 - Differences in spectral efficiency, power efficiency, robustness

Analog modulation

Shifts center frequency of baseband signal up to the radio carrier

Motivation

- Smaller antennas (e.g., $\lambda/4$)
- Frequency Division Multiplexing
- Medium characteristics

Contents

- Introduction
- Physical and Link Layers Protocols (IoT Access Technologies)
 - Physical Layer Issues
 - Communication Technologies Criteria
 - Communication Technologies and Protocols

Mostly adopted from Chapters 4, 5, and 6 of IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Thing, Cisco press, 2017