AM 3C – Equações Diferenciais Ordinárias (EDO)

Felipe B. Pinto 71951 – EQB 2 de janeiro de 2025

Conteúdo

1 EDO de Primeira Ordem	2	5 Equação de Bernoulli e a equa-	
Exemplo 1	2	ção de Riccati	14
Exemplo 2	2	Exemplo 10 Eq de Bernoulli	15
Exemplo 3 Campo de direções da		Exemplo 11 Eq Bernoulli	16
equação	2	Exemplo 12 Eq Ricatti	17
2 Equação autonoma	3	6 Operador de Derivação	18
Exemplo 4 Pontos de equilíbrio .	4	7 Equação Diferencial Linear de	
Exemplo 5 Equilíbrio semiestável	5	ordem n	19
Exemplo 6	6	8 Abaixando a ordem de uma EDO	21
3 Equação Linear de Primeira Or-		Exemplo 13 Baixamento de grau	
dem [°]	8	de uma Eq lin homogenea	22
Exemplo 7	10	9 Wronskiano: check dependen-	
Exemplo 8	11	cia linear	23
4 Método de Variação das cons-		10 Método de variação das cons-	
tantes	12	tantes abitrárias para equação	0.4
Exemplo 9	13	linear de ordem $n \dots \dots$	24
		Exemplo 14 Metodo das var const	25
		arb	Z

$$F(x, y(x), y'(x)) = 0$$

F é definida num conjunto aberto $D\subset\mathbb{R}^3$. Dado um intervalo aberto $I\subset\mathbb{R}$, Diz-se que uma função $\phi:I\to\mathbb{R}$ diferenciavel em I é uma solução da equação diferencial acima se:

- 1. $(x, \phi(x), \phi'(x)) \in D$, $\forall x \in I$
- 2. $F(x, \phi(x), \phi'(x)) = 0, \quad \forall x \in I$

Ordem de uma equação diferencial é a ordem da derivada mais elevada referida na equação

Exemplo 1

A equação

$$y'-rac{y}{x}=x\,e^x$$

é de primeira ordem e as funções

$$y(x) = c \, x + x \, e^x \, \, \, c \in \mathbb{R}$$

são soluções em $]0,\infty[$ desta equação.

Exemplo 2

A equação

$$y" + 4y = 0$$

é de segunda ordem e as funções

$$egin{aligned} y(x) &= c_1\,\cos2\,x \ &+ c_2\,\sin2\,x, \ c_1, c_2 &\in \mathbb{R} \end{aligned}$$

São soluções em ℝ desta equação

Forma normal

$$y'(x) = f(x, y(x))$$

Com f definida no conjunto aberto $A \subset \mathbb{R}^2$. As equações de primeira ordem na forma normal admitem uma interpretação geométricas relativamente simples e que permite ter uma ideia aproxiamada dos gráficos das soluções destas esquações.

Campo de direções da equação

Com uma equação diferencial de primeira ordem na forma normal definida no conjunto aberto $A \subset \mathbb{R}^2$, se a cada ponto (x,y) de A se associar a direção das retas de declive igual a f(x,y), se obtem aquilo a que usualmente se chama de campo de direções da equação.

Exemplo 3 Campo de direções da equação

2 Equação autonoma

Uma EDO em que não aparece explicitamente a variável independente. Se for y a função icógnita e x a variável independente, uma equa;cão diferencial autónoma de primeira ordem é uma equação da forma F(y,y')=0 ou na forma normal:

$$rac{\mathrm{d} y}{\mathrm{d} x} = f(y)$$

Pontos de equilíbrio (críticos ou estacionários) são os zeros da função

$$f(c)=0 \implies y(x)=c$$
 é solução de $f(x)=rac{\mathrm{d} y}{\mathrm{d} x}$

y(x) = c chama-se solução de equilíbrio (ou estacionária)

Classificação dos pontos de equilíbrio (Eq autónomas)

Prestando atenção nos limites:

$$f(c) = 0$$

$$x \to +\infty$$
 $\implies y(x) \to c \implies c$ é um ponto de eq estável $x \to -\infty$ $\implies y(x) \to c \implies c$ é um ponto de eq instável $x \to -\infty \land x \to +\infty$ $\implies y(x) \to c \implies c$ é um ponto de eq semiestável

Exemplo 4 Pontos de equilíbrio

Considere-se a equação autónoma

$$rac{\mathrm{d} y}{\mathrm{d} x} = y(a-b\,y); a,b \in \mathbb{R}^+$$

Pontos de equilíbrio:

$$c = y : y(a - by) = 0 \begin{cases} y = 0 \\ y = \frac{a}{b} \end{cases}$$

$$\therefore y(x) = 0 \lor y(x) = a/b$$

Podemos prever o comportamento da equalção pela seguinte tabela

y	sign			
	y	a - by	y(a-by)	
y < 0		+		
0 < y < a/b	+	+	+	
a/b < y	+			

Se desenharmos um grafico das soluções de equilíbrio

Podemos ver que as tres regiões divididas pelos dois pontos de equilíbrio tem um comportamento: R_1 Decrescente, R_2 Crescente e R_3 Decrescente Seja y(x) = 0 a solução que verifica a condição inicial $y(0) = y_0$:

$$y_0 < 0$$

$$\begin{cases} x \to -\infty & \Longrightarrow y(x) \to 0 \\ x \to +\infty & \Longrightarrow y(x) \to -\infty \end{cases}$$

$$0 < y_0 < a/b$$

$$\begin{cases} x \to -\infty & \Longrightarrow y(x) \to 0 \\ x \to +\infty & \Longrightarrow y(x) \to a/b \end{cases}$$

$$\begin{cases} x \to -\infty & \Longrightarrow y(x) \to a/b \\ x \to +\infty & \Longrightarrow y(x) \to a/b \end{cases}$$

$$\begin{cases} x \to -\infty & \Longrightarrow y(x) \to a/b \\ x \to +\infty & \Longrightarrow y(x) \to a/b \end{cases}$$

Podemos dizer que y(x)=0 é um ponto de equilíbrio instável e que y(x)=a/b é um ponto de equilíbrio estável

Exemplo 5 Equilíbrio semiestável

A equação autónoma

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (y-1)^2$$

tem y=1 como único ponto de equilíbrio. Observando a reta fase, verificase que qualquer solução y(x) em qualquer um dos intervalos $]-\infty,1[e]1,+\infty[$ é crescente

Podemos caracterizar esse ponto como ponto de equilíbrio semiestável

Soluções implicitas e explicitas

Soluções explicitas

$$y = f(x)$$

y isolado

Soluções implicitas

$$G(x,y)=0$$

Define implicitamente uma função y(x) solução da equação.

Exemplo 6

Da equação

$$y^2 y' = x^2$$

Podemos tirar a solução de duas formas

Da forma implicita

$$y^3 - x^3 - 8 = 0$$

Da forma explicita

$$y = \varphi(x) = \sqrt[3]{8 + x^3}$$

Famílias de Soluções

$$G(x,y,z)=0$$

Tal como sucede no cálculo da primitiva de uma função, em que aparece uma constante c de integração, quando se resolve uma EDO de primeira ordem, geralmente obtém-se com solução uma expressão contendo uma constante (ou parâmetro) c, e que representa um conjunto de soluções a que se chamará família de soluções a um parâmetro.

Soluções particulares são obtidas quando atribuimos valores ao parametro da familia de soluções

Solucções singulares nem sempre existem mas existem, não podem ser obtidas atribuindo um valor a constante c

Integral Geral Uma família de soluções que define todas as soluções de uma EDO para um intervalo ${\cal I}$

$$y' = f(x,y) \iff y' + p(x)y = q(x)$$

Com p(x) e q(x) funções contínuas num intervalo aberto $I \subseteq \mathbb{R}$

Exemplo

$$y' + 2xy = x^3 \begin{cases} p(x) = 2x \\ q(x) = x^3 \end{cases}$$

Equação linear homgénea

Equação linear em que q(x)=0, quando em uma equação linear completa $(q(x) \neq 0 \land p(x) \neq 0)$ substituirmos q(x) por 0, obtemos a equação linear homogénea associada.

Solução geral de equações lineáres de primeira ordem

$$y' + p(x) y = q(x) \implies y = rac{c}{arphi(x)} + rac{1}{arphi(x)} \int arphi(x) \, \mathrm{d}x$$
 $arphi(x) = \exp \int p(x) \, \mathrm{d}x$

$$y=rac{c}{arphi(x)}:q(x)=0$$
 (eq Homogênea)

Demonstração

$$y' + p(x) y = q(x) \implies (y' + p(x) y) \varphi(x) =$$

$$= y' \exp\left(\int p(x) dx\right) + p(x) y \exp\left(\int p(x) dx\right) = \left(y \exp\int p(x) dx\right)' =$$

$$= q(x) \varphi(x) = q(x) \exp\int p(x) dx \implies$$

$$\implies y \exp\int p(x) dx = c + \int q(x) \exp\left(\int p(x) dx\right) dx \implies$$

$$\implies y = \frac{c}{\exp\int p(x) dx} + \frac{1}{\exp\int p(x) dx} \int q(x) \exp\left(\int p(x) dx\right) dx =$$

$$= \frac{c}{\varphi(x)} + \frac{1}{\varphi(x)} \int q(x) \varphi(x) dx$$

Exemplo 7

Considere a equação

$$y' + (1 - 1/x) y = 2 x,$$
 $x < 0$

Encontre a solução para a equação acima e a equação homgénea associada

Resposta

$$y = \frac{c_0}{\varphi(x)} + \frac{1}{\varphi(x)} \int (2x) \varphi(x) dx =$$

$$= c_0 \frac{x}{c_3 e^x} + \frac{c_3 x}{e^x} \int (2x) \frac{e^x}{c_3 x} dx =$$

$$= \frac{c_0}{c_3} \frac{x}{e^x} + \frac{x}{e^x} 2 \int e^x dx =$$

$$= \frac{c_0}{c_3} \frac{x}{e^x} + \frac{2x}{e^x} (c_4 + e^x) = c \frac{x}{e^x} + 2x;$$

$$c = \frac{c_0}{c_3} + 2c_4;$$

$$\varphi(x) = \exp\left(\int (1 - 1/x) dx\right) = \exp(c_1 + x - (c_2 + \ln x)) =$$

$$= c_3 \frac{\exp x}{x} = c_3 \frac{e^x}{x};$$

$$c_3 = \exp(c_1 - c_2)$$

Equação homgénea

$$y' + (1 - 1/x) y = 0 \implies y = \frac{c_0}{\varphi(x)} = c_0 \frac{x}{c_3 e^x} = c_5 \frac{x}{e^x}; c_5 = c_0/c_3$$

Exemplo 8

Na investigação de um homicídio, é, muitas vezes importante estimar o instante em que a morte ocorreu. A partir de observações experimentais, a lei de arrefecimento de Newton estabelece, com uma exatidão satisfatória, que a taxa de variação da temperatura T(t) de um corpo em arrefecimento é proporcional à diferença entre a temperatura desse corpo e a temperatura constante T_a do meio ambiente, isto é:

$$rac{\mathrm{d}T}{\mathrm{d}t}=-k\left(T-T_{a}
ight)$$

Suponhamos que duas horas depois a temperatura é novamente medida e o valor encontrado é $T_1=23\,^{\circ}$ C. O crime parece ter ocorrido durante a madrugada e corpo foi encontrado pela manhã bem cedo, pelas 6 horas e 17 minutos. A perícia então faz a suposição adicional de que a temperatura do meio ambiente entre a hora da morte e a hora em que o cadáver foi encontrado se manteve mais ou menos constante nos 20°C. A perícia sabe também que a temperatura normal de um ser humano vivo é de 37°C. Vejamos como, com os dados considerados, a perícia pode determinar a hora em que ocorreu o crime.

Resposta

$$\begin{split} & \Rightarrow T(t) = ce^{-kt} + 20 = \\ & \Rightarrow T(t) = ce^{-kt} + 20 = \\ & \Rightarrow T(t) = ce^{-kt} + 20 = 37 \implies \\ & \Rightarrow t \cong -\frac{1}{0.602} \ln(17/10) \cong -0.881 \, \text{h} \cong -52.888 \, \text{min}; \\ & T(0) = ce^{-k*0} + 20 = 30 \implies c = 30 - 20 = 10; \\ & T(2) = ce^{-k*2} + 20 = 10 \, e^{-k*2} + 20 = 23 \implies \\ & \Rightarrow k = -0.5 \ln(3/10) \cong 0.602; \\ & \frac{\mathrm{d}T}{\mathrm{d}t} = -k \, (T - 20) \implies T' + k \, t = k \, 20 \implies \\ & \Rightarrow y = \frac{c_0}{\varphi(t)} + \frac{1}{\varphi(t)} \int k \, 20 \, \varphi(t) \, \, \mathrm{d}t = \\ & = \frac{c_0}{c_2 \, e^{kt}} + \frac{1}{c_2 \, e^{kt}} \int k \, 20 \, c_2 \, e^{kt} \, \, \mathrm{d}t = \frac{c_0}{c_2} \, e^{-kt} + \frac{1}{c_2} \, e^{-kt} \frac{k \, 20 \, c_2}{k} \int e^{kt} \, \, \mathrm{d}(k \, t) = \\ & = \frac{c_0}{c_2} \, e^{-kt} + 20 \, c_3 \, e^{-kt} + 20 \, e^{-kt} \, e^{kt} = \\ & = c \, e^{-kt} + 20; \\ & c = \frac{c_0}{c_2} + 20 \, c_3; \\ & \varphi(t) = \exp\left(\int (k) \, \, \mathrm{d}t\right) = \exp\left(k \, t + c_1\right) = e^{kt} \, c_2; \\ & c_2 = e^{c_1} \end{split}$$

4 Método de Variação das constantes

$$egin{aligned} y &= rac{c_0(x)}{arphi(x)} : \left(rac{c_0(x)}{arphi(x)}
ight) + p(x) \left(rac{c_0(x)}{arphi(x)}
ight) = q(x) \ y_h' + p(x) \, y_h &= q(x) \iff y_h = rac{c_0}{arphi x} \implies y = rac{c_0(x)}{arphi x} \end{aligned}$$

Podemos resolver a equação homogênea associada y_h substituir $c_0 \to c_0(x)$ e aplicar $y=c_0(x)/\varphi(x)$ na equação linear original, dessa forma podemos obter $c_0(x)$ e por sequencia $y=c_0(x)/\varphi x$

Método usando solução particular

$$y = rac{c_0}{arphi(x)} + rac{1}{arphi(x)}\,\int q(x)\,arphi(x)\;\mathrm{d}x = y_h + y_h$$

- $\cdot y_h$ é a solução da equação homogênea associada
- y_i é uma solução particular

Mesmo y_i aparecer como uma solução particular em que $c_0=1$, por estarmos trabalhando com uma solução arbitrária, isso não impede de ser qualquer solução particular, da no mesmo ao final das contas

Exemplo 9

$$y'-rac{2x}{x^2+1}y=1$$

Encontre a solução geral usando o método de variação das constantes

Resposta

$$y: y' - \frac{2x}{x^2 + 1} y = 1 \implies$$

$$\implies y = c_0(x) (x^2 + 1) =$$

$$= (\arctan(x) + c_2) (x^2 + 1);$$

$$y' - \frac{2x}{x^2 + 1} y = (c_0(x) (x^2 + 1))' - \frac{2x}{x^2 + 1} (c_0(x) (x^2 + 1)) =$$

$$= c'_0(x) (x^2 + 1) + c_0(x) 2x - 2x c_0(x) = c'_0(x) (x^2 + 1) = 1 \implies$$

$$\implies c'_0(x) = \frac{1}{x^2 + 1} \implies c_0(x) = \int \frac{1}{x^2 + 1} dx = \arctan x + c_1;$$

$$y' + \frac{2x}{x^2 + 1} y = 0 \implies y = \frac{c_0}{\varphi(x)} = c_0 (x^2 + 1);$$

$$\varphi(x) = \exp\left(\int \frac{2x}{x^2 + 1} dx\right) = \frac{1}{x^2 + 1}$$

5 Equação de Bernoulli e a equação de Riccati

São equações não lineares que, após mudanças de variáveis apropriadas, se transformam em equações lineares:

5.1 Eq de Bernoulli

$$y' + a(x) \, y = b(x) \, y^k; \ z = y^{1-k} \implies z' + (1-k) \, a(x) \, z = (1-k) \, b(x)$$

Quando encontramos uma EDO que possa ser escrita na forma acima, podemos realizar a substituição de $z=y^{1-k}$ transformando a EDO em uma equação linear, assim podemos encontrar a solução geral para z que pode ser substituida para encontrar a solução de y que é a equação original.

5.2 Eq de Ricatti

$$y' + a(x) \, y = b(x) + c(x) \, y^2; \ y(x) = y_1(x) + rac{1}{z(x)} \implies z' + (2 \, c(x) \, y_1 - a(x)) z = -c(x)$$

Exemplo 10 Eq de Bernoulli

Considere o problma de valores iniciais (PVI)

$$y' - x y = x y^3,$$
 $y(0) = 1$

$$y : y' + -xy = xy^{3};$$

$$y = z^{-1/2} = \frac{1}{\sqrt{c_{z,0} e^{-x^{2}} - 1}} = \frac{1}{\sqrt{2 e^{-x^{2}} - 1}};$$

$$c_{z,0} : y(0) = (z(0))^{-1/2} = (c_{z,0} e^{-0^{2}} - 1)^{-1/2} = (c_{z,0} - 1)^{-1/2} = 1 \implies$$

$$\Rightarrow c_{z,0} = 2;$$

$$z = y^{1-3} = y^{-2} \implies$$

$$\Rightarrow z' + 2xz = -2x$$

$$z = \frac{c_{z,0}}{\varphi_{z}(x)} + \frac{1}{\varphi_{z}(x)} \int -2\varphi_{z}(x) dx =$$

$$= \frac{c_{z,0}}{e^{x^{2}}} + \frac{-2}{e^{x^{2}}} \int e^{x^{2}} dx = c_{z,0} e^{-x^{2}} - 1;$$

$$\varphi_{z}(x) = \exp\left(\int (2x) dx\right) = e^{x^{2}}$$

Exemplo 11 Eq Bernoulli

Suponhamos que numa comunidade constituida por N individuos

- y(t) representa o número de intectados pelo vírus da gripe A
- x(t) = N y(t) representa a população não infectada.

Considere-se que o vírus se propaga pelo contacto entre infectados e não infectados e que a propagação é proporcional ao número de contactos entre estes dois grupos. Suponhamos também que os elementos dos dois grupos se relacionam livremente entre si de modo que o número de contactos entre infectados e não infectados é proporcional ao produto de x(t) por y(t) isto é

$$k x(t) = k (N - y(t)) y(t)$$

em que k é a constante de proporcionalidade. se y_0 é o numero inicial de infectados, o número de infectados y(t) no instante t é a solução PVI

$$y' = k (N - y) y;$$
 $k > 0;$ $y(0) = y_0$

Incompleta:

 $\overline{c_2} = e^{c_1}$

$$y : y' = k (N - y) y \implies y' - N k y = -k y^{2};$$

$$y = z^{-1} = \left(c e^{-Nkt} + \frac{1}{Nt}\right)^{-1} = \dots = \frac{N y_{0}}{(N - y_{0}) e^{-Nkt} + y_{0}};$$

$$c : y(0)^{-1} = (z(0)) = c e^{-Nk*0} + \frac{1}{N*0} = y_{0}^{-1};$$

$$z = y^{1-2} = 1/y \implies$$

$$\implies z' + N k z = kz = \frac{c_{0}}{\varphi(t)} + \frac{1}{\varphi(t)} \int k \varphi(t) dt =$$

$$= \frac{c_{0}}{c_{2} e^{Nkt}} + \frac{1}{c_{2} e^{Nkt}} \int k c_{2} e^{Nkt} dt = e^{-Nkt} \frac{c_{0}}{c_{2}} + e^{-Nkt} \frac{k c_{2}}{c_{2}} \frac{e^{Nkt}}{Nkt} = c e^{-Nkt} + \frac{1}{Nt};$$

$$c = c_{0}/c_{2};$$

$$\varphi(t) = \exp\left(\int N k dt\right) = \exp\left(N k t + c_{1}\right) = c_{2} e^{Nkt};$$

Exemplo 12 Eq Ricatti

Determine a solução do PVI

$$y'-y=-2\,x+rac{1}{2\,x^2}\,y^2, \qquad y(1)=-2, \qquad x>0$$

Sabendo que a equação admite a solução y = 2x

Resposta

$$y' + (-1) y = (-2x) + \frac{1}{2x^2} y^2;$$

$$y(x) = y_1(x) + z^{-1} = -2 + z^{-1} = -2 + (\frac{c - e^x}{2x^2 e^x})^{-1} = -2 + \frac{2x^2 e^x}{c - e^x};$$

$$z : z' + \left(2\frac{1}{2x^2} (-2) - (-1)\right) zz' + \left(1 - \frac{2}{x^2}\right) z = -\frac{1}{2x^2}$$

$$z = \dots = \frac{c - e^x}{2x^2 e^x}$$

Operador de Derivação

$$egin{aligned} ext{D}_x^n &= rac{ ext{d}^n}{ ext{d}x^n} \ ext{D}_x^k : C^n(I)
ightarrow C^{n-k}(I) \ ext{D}_x^k : y
ightarrow y^{(k)} &= rac{ ext{d}^k y}{ ext{d}x^k} \end{aligned}$$

$$\mathrm{D}^r_x$$

Equação Diferencial Linear de ordem *n*

$$\sum_{i=0}^n a_i \; \mathrm{D}_x^i(y) = \left(\sum_{i=0}^n a_i \; \mathrm{D}_x^i
ight) y = P \, y = f(x)$$

- a_n é o Coeficiente lider
- Forma normal é quando esta escrita de forma que $a_n=1$

Example

$$\mathrm{D}_{x}^{3}(y) + x^{2} \mathrm{D}_{x}^{2}(y) - 5 x \mathrm{D}_{x}(y) + y = x \mathrm{cos}(x)$$

está escrita na forma normal

$$P = \mathrm{D}^n_x + \sum_{i=0}^{n-1} a_i \; \mathrm{D}^i_x$$

Linearidade

Dadas duas funções $y_1, y_2 \in C^n(I)$ e α, β numeros reais

$$P(\alpha y_1 + \beta y_2) = \alpha P y_1 + \beta P y_2$$

Espaço Solução da equação

$$\operatorname{nuc}(P) : A = \{ y \in C^n(I) : P y = 0 \}$$

O conjunto á é nucleo do operador P, sendo portanto um subespaço de $\mathbb{C}^n(I)$. Este subespaço é designado por espaço solução da equação

Teorema: Solução que satisfaz P y = 0

$$egin{aligned} y &= arphi(x) : \operatorname{D}_x^i arphi(x_0) = lpha_i \ x_0 &\in I \wedge lpha_i \in \mathbb{R} \ \ orall \ i \end{aligned}$$

Dado um x_0 no intervalo aberto I e constantes reais arbitrarias α , existe uma e só uma função que satisfaz Py=0

Finidade da dimensão de nuc(P)

$$\dim(\operatorname{nuc}(P)) = n \iff P = \operatorname{D}_x^n + \sum_{i=0}^{n-1} a_i \operatorname{D}_x^i$$

m Sendo o espaço solução da equação Py=0 (nuc(P)) um subespaço do espaço liear $C^n(I)$, Não limitado a ter dimenção infinita, a dimensão do nucleo de P deve ser n (limitado).

Solução trivial

$$lpha_i = 0 \quad orall \, i
oting = \sum_{i=0}^n lpha_i \, y_i(x) = 0 : \{y\}$$
 é linearmente idependente

Sistema fundamental de soluções de Py = 0

$$y = \sum_{i=1}^n c_i \, y_i$$

- $\{y_i \, \forall \, i\}$ é um sistema fundamental de soluções de $P \, y = 0$
- $c_i \, \forall \, i$ são constantes arbitrárias que consituem a sua solução (ou integral) geral

Quaisquer n soluções linearmente idependentes de P y=0 que constituem uma base de $\operatorname{nuc}(P)$

Abaixando a ordem de uma EDO

$$z(x): y = arphi(x) \int \left(z
ight) \, \mathrm{d}x;$$
 $P\,y = 0$

• $\varphi(x)$ é uma solução particular da equação linear homogenea de ordem n (Py=0)

Exemplo 13 Baixamento de grau de uma Eq lin homogenea

Determine a solução geral da equação

$$P\,y=0; \qquad P=({
m D}_x^2+rac{1}{x^2}\,{
m D}_x-rac{1}{x^2}); \qquad x>0$$

Sabendo que $\varphi(x) = x$ é uma solução.

Resposta

$$\begin{split} P\,y &= \left(\mathsf{D}_x^2 + \frac{1}{x}\,\mathsf{D}_x - \frac{1}{x^2} \right) y = 0; \\ y &= \varphi(x)\,\int z(x)\;\mathrm{d}x = x\,\int \frac{c}{x^3}\,\mathrm{d}x = x\,c\left(c_1 + \frac{x^{-2}}{-2}\right) = x\,c_2 + \frac{c_3}{x}; \\ z &= \frac{c}{x^3}; \\ c &\in \mathbb{R}; \end{split}$$

$$P y = \left(D_x^2 + \frac{1}{x} D_x - \frac{1}{x^2} \right) \left(x \int z(x) \, dx \right) =$$

$$= (2z + xz') + \frac{1}{x} \left(\int z(x) \, dx + xz \right) - \frac{1}{x^2} \left(x \int z(x) \, dx \right) =$$

$$= 3z + xz' = 0;$$

$$D_x y = D_x \left(\varphi(x) \int z(x) \, dx \right) = D_x \left(x \int z(x) \, dx \right) = \int z(x) \, dx + x \, z;$$

$$\mathrm{D}_{x}^{2}y = \mathrm{D}_{x}^{2}\bigg(arphi(x) \, \int z(x) \, \mathrm{d}x \bigg) = z + z + x \, z' = 2 \, z + x \, z'$$

9 Wronskiano: check dependencia linear

$$W(f_1,f_2,\ldots,f_n)(x)=\det(w); \;\; w\in \mathcal{M}_{n,m}: w_{i,j}=\operatorname{D}_x^j f_i$$

$$W(f_1,f_2,\ldots,f_n)(x)egin{cases} = 0 & ext{Linear depedent} \
eq 0 & ext{Linear independent} \end{cases}$$

10 Método de variação das constantes abitrárias para equação linear de ordem n

$$y:egin{pmatrix} a_1(x)\ +a_1(x) & \mathrm{D}_x\ +a_2(x) & \mathrm{D}_x^2\ +a_3(x) & \mathrm{D}_x^3 \end{pmatrix} y=f(x)$$

$$y = c_1(x)\,y_1(x) + c_2(x)\,y_2(x) + c_3(x)\,y_3(x)$$

$$\left\{egin{aligned} c_1'(x) \; \mathrm{D}_x^0 y_1(x) + c_2'(x) \; \mathrm{D}_x^0 y_2(x) + c_3'(x) \; \mathrm{D}_x^0 y_3(x) = 0 \ c_1'(x) \; \mathrm{D}_x \, y_1(x) + c_2'(x) \; \mathrm{D}_x \, y_2(x) + c_3'(x) \; \mathrm{D}_x \, y_3(x) = 0 \ c_1'(x) \; \mathrm{D}_x^2 \, y_1(x) + c_2'(x) \; \mathrm{D}_x^2 \, y_2(x) + c_3'(x) \; \mathrm{D}_x^2 \, y_3(x) = rac{f(x)}{a_3(x)}
ight\} \end{array}
ight.$$

Exemplo 14 Metodo das var const arb

Considere a equação

$$y'' + 9y = 1/\cos(3x); \quad x \in]-\pi/6, \pi/6[$$

As funções $\cos(3x)$ e $\sin(3x)$ são duas soluções linearmente idependentes da equação homogénea

$$y'' + 9y = 0$$

Pelo que seu integral geral será dado por

$$y=c_1\,\cos{(3\,x)}+c_2\,\sin{(3\,x)};\quad c_1,c_2\in\mathbb{R}$$

Utilizemos o método da variação das constantes arbitrárias para determinar o integral geral da equação completa

Resposta

$$y = c_1(x) y_1(x) + c_2(x) y_2(x) =$$

$$= (\cos(3x)) (-\ln(\cos(3x)) - c_3) + (\sin(3x)) (x/3 + c_4)$$
using (1) (2) (3)

$$\begin{cases} y_1 = \cos(3x) \\ y_2 = \sin(3x) \end{cases} \tag{1}$$

$$c_1(x) = \int c_1'(x) dx =$$
 Using (4)

$$= \int \left(3 \frac{\sin(3x)}{\cos(3x)}\right) dx = -\int \frac{d\cos(3x)}{\cos(3x)} = -\ln(\cos(3x)) - c_3;$$
 (2)

$$c_2(x) = \int c_2'(x) \, \mathrm{d}x =$$

$$= \int (1/3) \, \mathrm{d}x = x/3 + c_4 \tag{3}$$

Using (5)

using (6) (9)

$$c'_1(x) = \frac{1}{W(y_1, y_2)} \begin{vmatrix} 0 & D_x^0 y_2 \\ \frac{1}{\cos(3x)} & D_x y_2 \end{vmatrix} =$$

$$= \frac{1}{3} \begin{vmatrix} 0 & \sin(3x) \\ \frac{1}{\cos(3x)} & 3\cos(3x) \end{vmatrix} = 3 \frac{\sin(3x)}{\cos(3x)} \tag{4}$$

$$c_2'(x) = \frac{1}{W(y_1, y_2)} \begin{vmatrix} D_x^0 y_1 & 0 \\ D_x y_1 & \frac{1}{\cos(3x)} \end{vmatrix} =$$
 using (6) (8)

$$= \frac{1}{3} \begin{vmatrix} \cos(3x) & 0 \\ -3\sin(3x) & \frac{1}{\cos(3x)} \end{vmatrix} = 1/3 \tag{5}$$

$$W(y_1, y_2) = \det \begin{bmatrix} \mathbf{D}_x^0 y_1 & \mathbf{D}_x^0 y_2 \\ \mathbf{D}_x y_1 & \mathbf{D}_x y_2 \end{bmatrix} =$$
 using (8) (9)

$$= \det \begin{bmatrix} \cos(3x) & \sin(3x) \\ -3\sin(3x) & +3\cos(3x) \end{bmatrix} = 3\cos^2(3x) + 3\sin^2(3x) = 3$$
 (6)

$$\begin{cases}
c'_1(x) \ D_x^0 y_1(x) + c'_2(x) \ D_x^0 y_2(x) &= 0 \\
c'_1(x) \ D_x y_1(x) + c'_2(x) \ D_x y_2(x) &= \frac{1}{\cos(3x)}
\end{cases}$$
(7)

$$D_x y_1 = D_x \cos(3x) = -3 \sin(3x); \tag{8}$$

$$D_x y_2 = D_x \sin(3x) = +3\cos(3x)$$
(9)