ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

Факультет прикладної математики та інформатики

Кафедра інформаційних систем

Звіт до завдання №1

з дисципліни «Методи комп'ютерних обчислень»

Виконала:

Студентка групи ПМІ-31

Падалка Н.М

Варіант 15

Перевірив:

Ас. Остапов О.Ю.

1.Постановка задачі

Знайти функцію u = u(x), яка на відрізку [0,1] задовольняє наступні рівняння:

$$-T(x)\frac{d^2u}{dx^2} + b(x)\frac{du}{dx} + \sigma(x)u = f(x) \quad (1) \quad \Box x\varepsilon(0,1),$$

$$u(1) = 0, -T(x)\frac{du}{dx}|_{x=0} = \overline{q}$$
, (2)

2. Варіаційне формулювання

Для того щоб сформулювати варіаційну задачу виконаємо такі кроки:

1. Рівняння (1) домножуємо на довільну функцію $v = v(x) \in V$,

де
$$V := H_0^1() = \{v \in H^1() : v(1) = 0\}$$
:

$$[-T(x)\frac{d^{2}u}{dx^{2}} + b(x)\frac{du}{dx} + \sigma(x)u] v(x) = f(x) v(x)(3)$$

2.Інтегруємо даний вираз по області = [0,1]:

$$\int_{0}^{1} \left[-T(x) \frac{d^{2}u}{dx^{2}} + b(x) \frac{du}{dx} + \sigma(x)u \right] v(x) dx = \int_{0}^{1} f(x)v(x) dx$$
(4)
$$\int_{0}^{1} -T(x) \frac{d^{2}u}{dx^{2}} v(x) dx + \int_{0}^{1} b(x) \frac{du}{dx} v(x) dx + \int_{0}^{1} \sigma(x)u \ v(x) dx = \int_{0}^{1} f(x)v(x) dx$$
(4)

Проінтегруємо перший доданок лівої частини методом інтегрування частинами:

$$\int_{0}^{1} -T(x) \frac{d^{2}u}{dx^{2}} v(x) dx = -T(x) \frac{du}{dx} v(x) \frac{du}{dx} \Big|_{0}^{1} + \int_{0}^{1} \frac{du}{dx} \frac{dTv}{dx} dx$$

Позначимо

$$-T(x)\frac{du}{dx}v(x)\frac{du}{dx}\Big|_0^1 = qv$$

Підставимо ці значення у вираз

$$\int_{0}^{1} \frac{du}{dx} \frac{dTv}{dx} dx + b(x) \frac{du}{dx} v(x) dx + \sigma(x) uv dx = \int_{0}^{1} f(x) v(x) dx - qv(5)$$

Крайова задача (1), (2) допускає варіаційне формулювання такого вигляду:

$$\{a(u,v) = < l, v > \forall v \in V \}$$

3 такими структурними елементами:

$$V := H_0^1() = \{ v \in H^1() : v(1) = 0 \}$$

$$a(u, v) = \int_0^1 \frac{du}{dx} \frac{dTv}{dx} dx + b(x) \frac{du}{dx} v(x) dx + \sigma(x) uv$$

$$\langle l, v \rangle = \int_0^1 f(x) v dx - qv \quad \forall v, u \in V$$

Враховуючи головні крайові умови варіаційної задачі, одержимо, що $q_n = 0$ Запишемо кусково-лінійну апроксимацію так:

$$u_h = \sum q_i \varphi_i(x)$$

Тут ми явно виражаємо апроксимацію МСЕ як лінійну комбінацію кусково-визначених базисних функцій Куранта:

$$\varphi_i(x) = \begin{cases} 0, x_0 < x \le x_{i-1} \\ \frac{x - x_{i-1}}{x_i - x_{i-1}}, x_{i-1} < x \le x_i \\ \frac{x_{i+1} - x_i}{x_{i+1} - x_i}, x_i < x \le x_{i+1} \\ 0, x_{i+1} < x \le x_N \end{cases}$$

Власне ця система функцій і формує базис вибраного нами простору апроксимацій Vh, відображаючи, що $\dim V_h = N$

3. Хід розв'язування

Згідно з крайовими умовами (2) вводимо вхідні параметри

T(x), $\sigma(x)$, q, підставляємо в рівняння (1) і отримуємо

$$\begin{aligned} x_i &= \frac{1}{n}i, \ i &= 0, \dots, \ n \\ h &= x_i - x_{i-1}, \ i &= 1, \dots, n \\ x_{i-\frac{1}{2}} &= x_i - \frac{h}{2}, \ i &= 1, \dots, n \\ x_{i+1} &= x_i + \frac{h}{2}, \ i &= 0, \dots, n-1 \end{aligned}$$

2. Шукаємо матрицю А та вектор І за формулами:

$$\begin{split} a_u &= \frac{1}{h} * T(x_{i-\frac{1}{2}}) + \frac{1}{h} * T(x_{i+\frac{1}{2}}) - \frac{1}{2} * b(x_{i+\frac{1}{2}}) + \frac{1}{2} * b(x_{i-\frac{1}{2}}) + \frac{h}{3} * \sigma(x_{i-\frac{1}{2}}) + \frac{h}{3} * \sigma(x_{i-\frac{1}{2}}) \\ a_{i,i+1} &= -\frac{1}{h} * T(x_{i+\frac{1}{2}}) + \frac{1}{2} * b(x_{i+\frac{1}{2}}) + \frac{h}{6} * \sigma(x_{i+\frac{1}{2}}) & i = 1, \dots, n-1 \\ a_{i+1,i} &= -\frac{1}{h} * T(x_{i+\frac{1}{2}}) - \frac{1}{2} * b(x_{i+\frac{1}{2}}) + \frac{h}{6} * \sigma(x_{i+\frac{1}{2}}) & i = 1, \dots, n-1 \end{split}$$

$$a_{00} = \frac{1}{h} * T(x_{0+\frac{1}{2}}) + \frac{1}{2} * b(x_{0+\frac{1}{2}}) + \frac{h}{3} * \sigma(x_{0+\frac{1}{2}}) .$$

Для заданих крайових умов

$$\begin{array}{l} l_n = 0 \\ l_i = \frac{h}{2} * f(x_{i-\frac{1}{2}}) \ + \ \frac{h}{2} * f(x_{i+\frac{1}{2}}) \ , \ i = l,...,n-1 \\ l_0 = \frac{h}{2} * f(x_{0+\frac{1}{2}}) \ + \overline{q} \end{array}$$

Заповнивши їх ми отримаємо систему рівнянь Aq = l

Систему алгебраїчних рівнянь розв'язуємо методом прогонки, який є спрощенням методу Гауса для СЛАР з тридіагональною матрицею.

Нехай маємо таку систему алгебраїчних рівнянь

$$\begin{bmatrix} b_1 & c_1 & & & 0 \\ a_2 & b_2 & c_2 & & & \\ & a_3 & b_3 & \ddots & & \\ & & \ddots & \ddots & c_{n-1} \\ 0 & & & a_n & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_n \end{bmatrix}$$

Розв'язок проводиться в два кроки, як і в методі Гауса, прямому, та зворотному. В прямому ході ми обчислюємо:

$$c_1' = rac{c_1}{b_1}; \ c_i' = rac{c_i}{b_i - c_{i-1}' a_i}, \ i = \overline{2, n-1}$$

та

$$d_1' = rac{d_1}{b_1}; \ d_i' = rac{d_i - d_{i-1}' a_i}{b_i - c_{i-1}' a_i}, \ i = \overline{2,n}$$

Тепер розв'язок знаходимо зворотнім ходом: Методом прогонки ми знайшли вектор q. За наступними формулами шукаємо норму наближеного розв'язку та похибку:

$$\|u_h(x)\|_{H_0^1} = \sqrt{\int_0^1 ((\frac{du_h}{dx})^2 + u_h^2(x)) dx}$$

$$\|e_h(x)\|_{H_0^1} = \sqrt{\int_0^1 [(\frac{du}{dx} - \frac{du_h}{dx})^2 + (u(x) - u_h(x))^2] dx}$$

4. Графіки, таблиця

Вхідні дані:

$$T(x) = 5$$

$$b(x) = 5 * x$$

$$\sigma(x) = e^x + 2 * x^3$$

$$f(x) = -30 * sin(x - 1) * (cos2(x - 6)) - 3 * sin3(x - 6) + 15 * x * cos(x - 1) * sin2(x - 6) + (ex + 2 * x3) * sin3(x - 1)$$

q = -5.738605509257195

Точний розвязок: $u(x) = sin^3(x-1)$

Отримаю такі графіки апроксимацій і точної функції:

Та таблицю з нормами та похибкою:

	N	h	u	u_h	e_h	max e_h
2	20	0.050000	0.770275	0.615323	0.292441	0.905484
3	40	0.025000	0.770275	0.611523	0.294288	0.934517
4	80	0.012500	0.770276	0.580870	0.326612	0.924721
5	160	0.006250	0.770276	0.534266	0.380052	0.893530
6	320	0.003125	0.770276	0.481750	0.443137	0.852940
7	640	0.001563	0.770276	0.430000	0.505008	0.810990
8	1280	0.000781	0.770276	0.382166	0.559485	0.772210
9	2560	0.000391	0.770276	0.339223	0.604618	0.738532
10	5120	0.000195	0.770276	0.301123	0.640766	0.710340
11	10240	0.000098	0.770276	0.267440	0.669198	0.687257

5. Висновки

За допомогою методу скінченних елементів розв'язала крайову задачу згідно з заданим диференціальним рівнянням і крайовими умовами. Обчисливши похибки, дійшла до висновку, що зі збільшенням кількості вузлів сітки, похибки зменшуються. Власне завдяки цьому факту і можна досягнути максимального наближення до точної функції