MATH 255 Course Notes Honours Analysis 2, Prof. Rutsum Choksi

Alyx Postovskiy

Winter 2023

Contents

1	Review of Analysis over \mathbb{R}	2
	Point-Set Topology over \mathbb{R}	2
	The Cantor Set	4
	Compactness in \mathbb{R}	F

1 Review of Analysis over \mathbb{R}

I include all proofs and relevant results from Analysis 1 here for completion. Most of this section is just "bookkeeping."

Point-Set Topology over \mathbb{R}

Definition 1.1. The Euclidean distance function on \mathbb{R} (the standard distance between any two points) is d(x,y) = |y-x|.

Definition 1.2. An <u>open neighborhood</u> or <u>open ball</u> of radius ϵ about a point $x \in \mathbb{R}$ is $B_{\epsilon}(x) = \{y \in \mathbb{R} : d(x, y) = |y - x| < \epsilon\}.$

Note that $B_{\epsilon}(x) = (x - \epsilon, x + \epsilon)$.

Definition 1.3 (Open Set in \mathbb{R}). A set $U \subseteq \mathbb{R}$ is an *open* subset of \mathbb{R} if $\forall x \in U, \exists B_{\epsilon}(x) \subseteq U$.

Definition 1.4. A set $F \subseteq \mathbb{R}$ is <u>closed</u> in \mathbb{R} if its complement F^c is open.

Proposition 1.1.

- (a) The union of an abritrary number of open sets is open.
- (b) The intersection of a finite number of open sets is open.
- (c) The union of a finite number of closed sets is closed.
- (d) The intersection if an abritrary number of closed sets is closed.

Proof.

(a) Let I be some index set and for each $i \in I$ let $S_i \subseteq \mathbb{R}$ be open. The let $S = \bigcup_{i \in I} S_i$ be the intersection.

Let $x \in S$. Then for some $i, x \in S_i$. Since S_i is open, $\exists B_{\epsilon}(x) \subseteq S_i \subseteq S$.

- (b) Let $S = S_1 \cup ... \cup S_n$, where each $S_i \subseteq \mathbb{R}$ is open. Let $x \in S$. Then for each S_i , there exists a $B_{\epsilon_i}(x)$ subseteq S_i . Letting $\epsilon = \min\{\epsilon_1, ..., \epsilon_n\}$, we have that $B_{\epsilon}(x) \subseteq S_i$ for each S_i , so $B_{\epsilon}(x) \subseteq S$.
- (c) Let $S = S_1 \cup ... \cup S_n$, where each $S_i \subseteq \mathbb{R}$ is closed. Then $S^c = S_1^c \cap ... \cap S_n^c$ by De Morgan's laws. Each S_i^c is open, so by (b) S^c is open and thus S is closed.
- (d) Let I be some index set and for each $i \in I$ let $S_i \subseteq \mathbb{R}$ be closed. Then let $S = \bigcap_{i \in I} S_i$ be the intersection. By De Morgan's laws, $S^c = \bigcup_{i \in I} S_i^c$. Each S_i^c is open, so by (a) S^c is open and thus S is closed.

Definition 1.5 (Accumulation/Cluster/Limit Point). For a set $S \subseteq \mathbb{R}$, a point $x \in \mathbb{R}$ is a <u>cluster point</u> of S if $\forall B_{\epsilon}(x), (B_{\epsilon}(x) \setminus \{x\}) \cap S \neq \emptyset$. That is, every neighborhood of x contains a point of S that is not x.

Proposition 1.2. For a set $S \subseteq \mathbb{R}$ and a point $x \in \mathbb{R}$, the following are equivalent:

- (a) x is a cluster point of S.
- (b) Every $B_{\epsilon}(x)$ contains infinitely many points of S.
- (c) There exists a sequence in $S \setminus \{x\}$ which converges to x.

Proof.

- (a \Longrightarrow b). Let $B_{\epsilon_1}(x)$. Since x is a cluster point of S, there is a point $x_1 \in (B_{\epsilon}(x) \setminus \{x\}) \cap S$. Let $\epsilon_2 = d(x_1, x)$, and repeat this process to create x_2, x_3, \ldots Since $\epsilon_1 > \epsilon_2 > \ldots$, all $x_n \in B_{\epsilon_1}(x)$.
- (a \Longrightarrow c). For each $n \in \mathbb{N}^+$, let x_n be a point in $(B_{\frac{1}{n}}(x) \setminus \{x\}) \cap S$, which exists as x is a cluster point of S. Then $d(x_n, x) = \frac{1}{n} \to 0$, so we have created the sequence requored by (c).
- (c \Longrightarrow b). Let $(x_n) \subset S \setminus \{x\}$ converge to x, which exists by (c). Let $B_{\epsilon}(x)$. Then for all n greater than some N, $d(x, x_n)$, ϵ , so there are infinitely many points of S in $B_{\epsilon}(x)$.

Proposition 1.3. A set $F \subseteq \mathbb{R}$ is closed if and only if it contains all of its cluster points.

Proof. First, assume that F is closed and let $x \in \mathbb{R}$ be a cluster point of F. Assume towards a contradiction that $x \notin F$. Then $x \in F^c$, an open set, so $\exists B_{\epsilon}(x) \subseteq F^c$. Let $(x_n) \subseteq F \setminus \{x\}$ be a sequence converging to x, which exists by Prop. 1.2. But since each $x_n \in F$, $d(x_n, x) > \epsilon$, as $B_{\epsilon}(x) \subseteq F^c$, a contradiction.

Now assume that F contains all of its cluster points. Let $x \in F^c$. Consider $l = \inf\{d(x,y) : y \in F\}$. If l = 0, then there exists a sequence in F which converges to x, making x a cluster point of F, which is impossible by hypothesis. Then letting $\epsilon = \frac{l}{2}$, clearly $B_{\epsilon}(x) \cap F = \emptyset$, so $B_{\epsilon}(x) \subseteq F^c$. Thus, F^c is an open set and F is closed.

Definition 1.6 (Interior). For a set $S \subseteq \mathbb{R}$, a point $x \in S$ is an <u>interior point</u> if there exists some $B_{\epsilon}(x) \subseteq S$. The set of all interior points S^{o} is called the <u>interior</u> of S.

Definition 1.7. For a set $S \subseteq \mathbb{R}$, a point $x \in S$ is an <u>isolated point</u> of S if there exists some $B_{\epsilon}(x)$ such that $B_{\epsilon}(x) \cap S = \{x\}$.

Definition 1.8 (Boundary). For a set $S \subseteq \mathbb{R}$, a point $x \in \mathbb{R}$ is a <u>boundary point</u> of S if $\forall B_{\epsilon}(x)$, both $B_{\epsilon}(x) \cap S \neq \emptyset$ and $B_{\epsilon}(x) \cap S^{c} \neq \emptyset$. The set of all boundary points ∂S is called the boundary of S.

Definition 1.9. The closure of a set $S \subseteq \mathbb{R}$ is $\overline{S} = S \cup \partial S$.

Proposition 1.4. Let $S \subseteq \mathbb{R}$. Then

(a) S is open if and only if $S = S^o$.

(b) S is closed if and only if $S = \overline{S}$.

Proof. Let $S \subseteq \mathbb{R}$. Then

- (a) First, assume that S is open. Obviously $S^o \subseteq S$, so we prove the reverse inclusion. Let $x \in S$. Then $\exists B_{\epsilon}(x) \subseteq S$, so $x \in S^o$.
 - Now, assume that $S = S^o$. Let $x \in S$. Since $x \in S^o$, $\exists B_{\epsilon}(x) \subseteq S$, so S is open.
- (b) First, assume that S is closed. Clearly, $S \subseteq \overline{S}$, so we prove the reverse inclusion. It suffices to show that $\partial S \subseteq S$. Let $x \in \partial S$. Then $\forall B_{\epsilon}(x), S \cap B_{\epsilon}(x) \neq \emptyset$. But then $x \notin S^c$, an open set, as then there would be an open ball entirely inside S^c .

Now, assume that $S = \overline{S}$. Let $x \in S^c$. Since, $x \notin \overline{S}$, $\exists B_{\epsilon}(x)$ such that $B_{\epsilon}(x) \cap S = emptyset \implies B_{\epsilon}(x) \subseteq S^c$, so S^c is open.

Proposition 1.5. For a set $S \subseteq \mathbb{R}$, every point $x \in S$ is either an interior point or a boundary point.

Proof. Let $x \in S$ not be a boundary point. We will show that $x \in S^o$. Since $x \notin \partial S$, there exists a $B_{\epsilon}(x)$ such that $B_{\epsilon}(x) \cap S^c = \emptyset$. But then $B_{\epsilon}(x) \subseteq S$, so $x \in S^o$.

Proposition 1.6. For a set $S \subseteq \mathbb{R}$, if $x \in S$ is not an isolated point then it is a cluster point.

Proof. Let $x \in S$ not be a cluster point. Then $\exists B_{\epsilon}(x)$ such that $B_{\epsilon}(x) \cap S = \{x\}$, as if every ball contained some other point in S, x would be a cluster point. Thus x is isoated by definition.

Definition 1.10. A set $S \subseteq \mathbb{R}$ is <u>bounded</u> if $S \subseteq B_M(0)$ for some M > 0.

Definition 1.11 (Dense Set). A set $S \subseteq \mathbb{R}$ is <u>dense</u> in \mathbb{R} if $\overline{S} = \mathbb{R}$.

Definition 1.12 (Perfect Set). A set $S \subseteq \mathbb{R}$ if it is closed and every point of S is a cluster point.

The Cantor Set

Definition 1.13 (Cantor Set). Let the Cantor Set C be the intersection $\cap_{n\in\mathbb{N}}C_n$. We define C_n inductively. Let $C_0 = [0, 1]$. We then remove the middle third to define $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. Continue removing the middle third of each subinterval to define each C_n .

The Cantor set is closed as an intersection of finite unions of closed sets.

Note that $C \subset [0,1]$. We can also see that C is nonempty. Clearly it contains 0 and 1, but additionally the endpoints of the removed middle thirds are always present in the set. What's interesting, however, is that the total length of the removed intervals is 1 (proof by sum of a geometric series).

The Cantor set is the set of numbers in [0,1] with ternary expansions that contain no ones. This can lead to an argument that the Cantor set is uncountable.

Compactness in \mathbb{R}

Definition 1.14 (Open Cover). Let I be an index set and for all $i \in I$ let $G_i \subseteq \mathbb{R}$ be an open set. Then $\mathcal{O} = \{G_i\}_{i \in I}$ is an open cover of a set $S \subseteq \mathbb{R}$ if $S \subseteq \bigcup_{i \in I} G_i$.

A subcover of some open cover \mathcal{O} is a subset of \mathcal{O} that is also an open cover.

Example 1.1. Let $S \subseteq \mathbb{R}$. The following are open covers of S:

- (a) $\{\mathbb{R}\}$
- (b) $\{(-n,n)\}_{n\in\mathbb{N}^+}$
- (c) $\{(x-1,x+1)\}_{x\in\mathbb{R}}$

Definition 1.15 (Compact Set). A set $K \subseteq \mathbb{R}$ is <u>compact</u> if every open cover of K has a finite subcover.

Theorem 1.7. For a set $K \subseteq \mathbb{R}$, the following are equivalent:

- (a) K is compact.
- (b) K is closed and bounded.
- (c) Every sequence in K has a convergent subsequence with limit in K.