Analisis data bivariat dan multivariat

Data bivariat

Data bivariat mendeskripsikan hubungan antar dua buah variabel. Misalnya:

- Hubungan antara berat dan tinggi badan.
- Hubungan antara risiko penyakit jantung dengan jenis kelamin.
- dll.

Data bivariat, terdiri dari:

- 2 variabel kualitatif
- 1 variabel kualitatif dan 1 variabel kuantitatif.
- 2 variabel kuantitatif.

Data bivariat kualitatif

```
ratings <-
factor(c(2,4,3,3,2,1,1,2,3,4,2,3,3,4,1,3,2,4,3,2,1))
ratings
```

- 1. 2
- 2. 4
- 3. 3
- 4. 3
- 5. 26. 1
- 7. 1
- 8. 2
- 9. 3
- 10. 4
- 11. 2
- 12. 3 13. 3
- 14. 4
- 15. 1
- 16. 3
- 17. 2
- 18. 4
- 19. 3
- 20. 2
- 21. 1

▶ Levels:

```
kursus <-
factor(c(1,1,0,0,1,1,0,0,1,0,0,1,0,1,0,1,1,1,0,1))
kursus</pre>
```

- 1. 1
- 2. 1
- 3. 0
- 4. 0
- 5. 1

```
6. 1
 7. 0
 8. 0
9. 1
10. 0
11. 0
12. 0
13. 1
14. 0
15. 1
16. 0
17. 1
18. 1
19. 1
20.0
21. 1
```

► Levels:

```
levels(kursus) <- c('R', 'Python')</pre>
```

```
table(ratings, kursus)
```

```
kursus
ratings R Python
1 1 3
2 3 3
3 4 3
4 2 2
```

```
table(kursus, ratings)
```

```
ratings
kursus 1 2 3 4
R 1 3 4 2
Python 3 3 3 2
```


table(kursus, ratings)

Data bivariat kuantitatif

```
library(dplyr)
df <- read.csv("../data/GEStock.csv")
dates <- select(df, Date)
price <- select(df, Price)</pre>
```

boxplot(price) # hanya untuk univariat


```
plot(df$Price,
    xlab='Dates',
    ylab='Stock Price',
    col='red',
    type='l')
```


max(df\$Price)

156.8436842

which(df\$Price == max(df\$Price)) # indeks maksimum

364

```
df[which(df$Price == max(df$Price)),]
```

	DATE	PRICE
364	4/1/00	156.8437

Data multivariat

```
df <- read.csv("../data/murders.csv")
head(df)</pre>
```

STATE	ABB	REGION	POPULATION	POPULATIONDENSITY	MURDERS	GUNMURDERS	GUNOW
Alabama	AL	South	4779736	94.65	199	135	0.517
Arizona	AZ	West	6392017	57.05	352	232	0.311
California	CA	West	37253956	244.20	1811	1257	0.213
Colorado	CO	West	5029196	49.33	117	65	0.347
Connecticut	СТ	Northeast	3574097	741.40	131	97	0.167
Florida	FL	South	19687653	360.20	987	669	0.245

str(df)

```
'data.frame': 25 obs. of 8 variables:
$ state : Factor w/ 25 levels
"Alabama", "Arizona",..: 1 2 3 4 5 6 7 8 9 10 ...
$ abb : Factor w/ 25 levels
"AL", "AZ", "CA", ...: 1 2 3 4 5 6 7 8 9 10 ...
           : Factor w/ 4 levels "North
Central",..: 3 4 4 4 2 3 3 1 1 3 ...
$ population : int 4779736 6392017 37253956
5029196 3574097 19687653 9920000 12830632 6483802 4339367
$ PopulationDensity: num 94.7 57 244.2 49.3 741.4 ...
$ murders
            : int 199 352 1811 117 131 987 527
453 198 180 ...
$ gunmurders : int 135 232 1257 65 97 669 376 364
142 116 ...
$ gunownership : num 0.517 0.311 0.213 0.347 0.167
0.245 0.403 0.202 0.391 0.477 ...
```

summary(df)

state	abb	reg	ion				
population							
Alabama : 1	AL : 1	North Central	.: 6	Min. :			
3574097							
Arizona : 1	AZ : 1	Northeast	: 5	1st Qu.:			
5686986							
California : 1	CA : 1	South	:11	Median :			
6547629							
Colorado : 1	CO : 1	West	: 3	Mean			
:10155719							
Connecticut: 1	CT : 1			3rd			
Qu.:11536504							
Florida : 1	FL : 1			Max.			
:37253956							
(Other) :19	(Other):19						
PopulationDensity murders gunmurders							
gunownership							
Min. : 49.33	Min. : 11	7.0 Min. :	65.6	Min.			
:0.1230							
1st Qu.: 105.00	1st Qu.: 19	9.0 1st Qu.:	135.0	9 1st			
Qu.:0.2130							

Median: 182.50 Median: 419.0 Median: 286.0

Median: 0.3510

Mean: 282.57 Mean: 483.4 Mean: 329.9 Mean: 0.3305

3rd Qu.: 285.30 3rd Qu.: 527.0 3rd Qu.: 376.0 3rd Qu.: 0.4170

Max.: 1189.00 Max.: 1811.0 Max.: 1257.0 Max.: 0.5170

boxplot(df)

plot(df)

pairs(df[,-c(1,2,3)]) # tidak memasukan kolom no 1,2,3

 $dfsel \leftarrow df[,-c(1,2,3,4,5)] \# hanya memasukan data kuantitatif$

```
mat <- data.matrix(dfsel) # konversi data terseleksi ke
matriks
mat <- t(mat)</pre>
```

