Performance Evaluation of Bat Algorithm to Solve Deterministic and Stochastic Optimization Problems

Ratnaji Vanga, Manu K. Gupta and J. Venkateswaran

Industrial Engineering and Operations Research IIT Bombay

ISCI - 2013

Outline

- Objective
- Bat Algorithm
- Different Optimization Problems
- Implementation Details
- Results and Discussion
- Conclusions and Future work

Objective

- There are many approaches to solve deterministic optimization problems while very few methods were implemented in stochastic settings.
- Propose a new simulation based optimization approach to solve the non-linear stochastic optimization problems.
- Interface a meta-heuristic in simulation based optimization.
- Bat algorithm is one such newly developed meta-heuristic.
- Study the effect of dimensionality vs stochasticity.

Bat Algorithm

- Nature inspired meta-heuristic optimization algorithm.
- First proposed by Yang (2010).
- Based on echolocation behaviour of bats.
- Applied on continuous optimization problem by Parpinenli and Lopes (2011).
- Solved numerical optimization problems by *Tsai et al. (2011)*.
- Used to solve multi objective optimization problems by *Yang* (2011).
- Applied for multi-stage, multi-machine, multi-product scheduling by *Musikapun and Pongcharoen* (2012).

Bat Algorithm Contd...

Three Rules of Bat Algorithm

- All bats use echolocation to sense distance, and they also know the difference between food prey and background barriers in some magical way.
- Bats fly randomly with velocity v_i at position x_i with a fixed frequency f_{min} , varying wavelength λ and loudness A_0 to search for prey. They can automatically adjust the wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission $r_i \in [0,1]$, depending on the proximity of their target.
- Although the loudness can vary in many ways, assume that the loudness varies from a large (positive) A_0 to a minimum constant value A_{min} .

Bat Algorithm Contd...

• Movement of virtual bat is simulated by following equations:

$$f_{i} = f_{min} + (f_{max} - f_{min})\beta$$

$$v_{i}^{t} = v_{i}^{t-1} + (\vec{x}^{t-1} - \vec{x}_{*})f_{i}$$

$$\vec{x}_{i}^{t} = \vec{x}_{i}^{t-1} + v_{i}^{t}$$

Modified Bat Algorithm

• To explore locally in both the directions:

$$\vec{x}^t = \vec{x}_i^{t-1} + \vec{v}_i^t * e, \ e \in [-1, 1]$$

- Keep track of only one best solution.
- Elimination of random generation of new solution.
- Modifications on conditions for updating r_i and A_i .

Bat Algorithm Mechanism

- Step 1. Initialization: Randomly spread the bats into the solution space.
- Step 2. Move the bats by predefined rules. Generate a random number. If it is greater than the fixed pulse emission rate, move the bat by the random walk process.
- Step 3. Evaluate the fitness of the bats and update the global near best solution.
- Step 4. Check the termination condition to decide whether go back to step 2 or terminate the program and output the near best result.

Modified Bat Algorithm

```
Require: parameters n, \alpha, \gamma, Number of iterations (N), lb, ub
 1: Initialize the bats population \vec{x_i} randomly, t = 0, f_i, r_i^0, v_i^0 and A_i.
 2: Compute fitness of each bat F(\vec{x_i}), \forall i = 1, 2, \dots n and find the current best \vec{x_*}
 3: while (t < N) do</p>
 4:
        Itebest ← large value
 5:
        for i = 1 to n do
 6:
            Generate new solutions by adjusting frequency, velocity and location
 7:
            if (rand > r_i) then
                Generate a local solution around the selected best solution: \vec{x_i}^t = \vec{x_*} + \epsilon \bar{A}.
 8:
                \epsilon \in unif[-1,1]
 9:
            end if
10:
            if (\vec{x_i}^t \notin [lb, ub]) then
11:
                Generate a random solution in the range [lb, ub]
12:
            end if
            if rand < A_i \& F(\vec{x}_i^t) < F(\vec{x}_i^{t-1}) then
13:
                Increase r_i: r_i = r_i^0 (1 - exp(-\gamma t)) and Decrease A_i: A_i = \alpha A_i
14:
15:
            end if
16:
            Update iteration best (itebest)
17:
         end for
18:
         Find the current best \vec{x}_*, t = t + 1
19: end while
20: Post process results and visualisation
```

Optimization problems

Rosenbrock: D dimensional Rosenbrock function is defined by

$$f(x_1, x_2, \cdots, x_D) = \sum_{d=1}^{D-1} 100(x_{d+1} - x_d^2)^2 + (x_d - 1)^2$$
 (1)

The above function is for deterministic case and stochastic version of given function is as follows:

$$f(x_1, x_2, \cdots, x_D) = \sum_{d=1}^{D-1} 100r(x_{d+1} - x_d^2)^2 + (x_d - 1)^2$$
 (2)

where r is a random variable.

Global Optima

It has a global minimum at $(x_1, x_2, \dots, x_D) = (1, 1, \dots, 1)$ where $f(x_1, x_2, \dots, x_D) = 0$.

Rosenbrock

The global minimum is inside a long, narrow, parabolic shaped flat valley. To find the valley is trivial. To converge to the global minimum, however, is difficult.

Figure: Rosenbrock Function 3-D plot

Rastrigin

Rastrigin D dimensional Rastrigin function is defined by

$$f(x_1, x_2, \dots, x_D) = 10D + \sum_{i=1}^{D} [x_i^2 - 10\cos 2\pi x_i]$$
 (3)

The above function is for deterministic case and stochastic version of given function is as follows:

$$f(x_1, x_2, \dots, x_D) = 10D + \sum_{i=1}^{D} r \left[x_i^2 - 10 \cos 2\pi x_i \right]$$
 (4)

where r is a random variable.

Global Optima

It has a global minimum at $(x_1, x_2, \dots, x_D) = (0, 0, \dots, 0)$ where $f(x_1, x_2, \dots, x_D) = 0$.

Rastrigin

Rastrigin function has many local minima i.e. the "valleys" in the plot. However, the function has just one global minimum

Figure: Rastrigin Function 3-D plot

Simulation based optimization algorithm

- 1: Initial_experiment_setup
- 2: Call initializeAlgo()
- 3: **while** stopping condition not met, say, iterations $\leq 10^* M$ **do**
- 4: **for** current_replication = 1 ... Max_replication **do**
- 5: Obtain the new solution by calling setVariable() {Before simulation run}
- 6: Update the solution in the Anylogic Model
- 7: Simulate the model
- 8: Record the objective value obtained from simulation model{After_simulation_run}
- 9: After_Iteration
- 10: end for
- 11: Send the mean objective value using functionEval(objective)
- 12: end while

Experimentation details

Experiments:

We studied following 12 cases.

$$\left\{ \begin{array}{l} \textit{Rosenbrock} \\ \textit{Rastrigin} \end{array} \right\} \times \left\{ \begin{array}{l} \textit{Deterministic} \\ \textit{Stochastic} - r \in \textit{U}[0,1] \\ \textit{Stochastic} - r \in \textit{U}[0,10] \end{array} \right\} \times \left\{ \begin{array}{l} 2 - \textit{D} \\ 6 - \textit{D} \end{array} \right\}$$

Each function is tested with 10 different seeds for 100000 evaluations.

Measure of Performance

- Quality of solution
- Execution time
- Number of Iterations

Parameter Setting

- Static factors: $\alpha = 0.9$ and $\gamma = 0.9$
- Dynamic factors: n, f_{max} , \bar{v}_i^0 , r_i^0

	n	f _{max}	\bar{v}_i^0	r_i^0
Rosenbrock - Deterministic	1	0.01	0.4	0.4
Rastrigin - Deterministic	2	0.01	0.5	0.5
Rosenbrock - Stochastic	1	0.01	0.4	0.4
Rastrigin - Stochastic	2	0.01	0.5	0.5

Table: Parameter setting based on initial experiments

Rosenbrock Deterministic - 2D

						Z≤0.05			Z≤0.1		
	Iteration	Time(ms)	Zbest	Х	Y	Iteration	Time	Z	Iteration	Time	Z
Min	37401	152	0.0004	0.9686	0.9379	28	0	0.0056	28	0	0.028
Max	99982	377	0.0058	1.0762	1.1588	9845	42	0.0464	1059	14	0.0993
Avg	72610	289.6	0.0024	1.00504	1.0187	1213.5	12	0.02951	252.2	8.5	0.06402

Figure: Iterations-vs-best objective

Figure: Time-vs-best objective

Summary tables

2D Case

Function model	Iteration	Time(ms)	Zbest	Х	Υ
Rastrigin-Determinstic	68868.9	275.2	0.07365	-0.00233	0.00233
Rastrigin-UNIF(0,1)	76105.8	2513.3	0.08878	-0.00511	0.10189
Rastrigin-UNIF(0,10)	63672.9	2841.7	0.05187	-0.10462	0.403
Rosenbrock-Deteminstic	72610	289.6	0.0024	1.00504	1.0187
Rosenbrock-Unif(0,1)	71314.9	2167.3	0.00057	1.00153	1.0036
Rosenbrock-Unif(0,10)	84844.4	3439.7	0.00213	1.00126	1.00797

6D Case

Function	Iteration	Time	Zbest	X1	X2	Х3	X4	X5	X6
Ras-D	69539.8	2775.8	16.8201	-0.43278	0.75327	-0.11037	0.01637	0.27124	0.19124
Ras-U(0,1)	84743.7	1837.1	4.54323	0.49579	-1.17359	-0.0986	0.61771	0.19573	1.78118
Ras-U(0,10)	71676.7	1414.1	10.78911	0.00788	-0.89448	1.30638	1.77143	2.10919	-1.7045
Ros-D	50995.8	1048	35.20167	-0.20311	0.45405	0.43338	0.38025	0.21873	0.3118
Ros-U(0,1)	54793.8	1144.1	7.52775	0.81628	0.68104	0.45017	0.71196	0.06243	0.4085
Ros-U(0,10)	53361.8	674.4	15.31221	0.43724	0.3053	-0.19337	0.50185	0.17153	0.9007

Observations

- In 2-D case, solution improves when small variance is present for Rosenbrock function while it deteriorates for Rastrigin function.
- In 2-D case with higher variance, the performance of BA for Rosenbrock function deteriorates while it improves for Rastrigin function.
- In 6-D case, solution improves when variance is small and deteriorates when variance is high.
- It implies that there should be some optimal level of stochasticity in the system to get the optimal solutions.
- Best solution obtained with 6-D case is 4.51 while in 2-D case we always obtained the convergence level of 0.1.
- BA algorithm performs well for less number of bats.

Summary

- A simulation based optimization approach for non-linear stochastic problems is proposed.
- Modified BA is proposed and interfaced with anylogic model.
- Tested dimensionality vs stochasticity for rosenbrock and rastrigin functions.
- Results shows that BA initially converges very fast for all tested conditions.

Future work

- This approach can be applied to other optimization problems like queueing models and (s, S) inventory system.
- Other meta-heuristics (genetic algorithm, particle swarm optimization etc.) can be implemented in this setting and results can be compared.

P. Musikapun and P. Pongcharoen.

Solving multi-stage multi-machine multi-product scheduling problem using bat algorithm.

In International Conference on Management and Artificial Intelligence. IACSIT press, 2012.

R. Parpinelli and H. Lopes.

New inspirations in swarm intelligence: a survey. *Int. J. Bio-Inspired Computation*. 2011.

P. W. Tsai, J. S. Pan, B. Y. Liao, M. J. Tsai, and V. Istanda. Bat algorithm inspired algorithm for solving numerical optimization problems. *Applied Mechanics and Materials*, 148-149:134–137, 2011.

X. S. Yang.

A new mataheuristic bat inspired algorithm. Studies in Computational Intelligence, 2010.

X. S. Yang.

Bat algorithm for multiobjective optimization.

international journal of Bio-Inspired Computation, 3(5):267-274, 2011.

Thank you!!!