ECE 707: Linear Systems (1)

T. Kirubarajan

Department of Electrical and Computer Engineering
McMaster University
Hamilton, Ontario, Canada

These viewgraphs are based on the text "Linear System: Theory and Design" by Chi-Tsong Chen Oxford University Press, 1999.

1. Introduction

System Theory: Deals with mathematical representation of input-output relationships (or internal representation).

Model: Describes the evolution of the system over time and I/O relationship at any time using vectors, matrices and functions.

Used for

interpretation of past behavior (estimation) prediction of future behavior(prediction) modification of behavior (control) accumulation of knowledge (learning).

Purpose: Understand behavior and eventually improve it.

Matrices

 a_{ij} element in row i and column j. $a_{ij} \in \text{field}$, F.

Field: A set of scalars that include an identity element "1" and a zero element "0" with addition and multiplication operations so that

- (i) $\alpha, \beta \in F \Rightarrow \alpha + \beta \in F, \ \alpha \cdot \beta \in F$
- (ii) $\alpha + 0 = \alpha$, $\alpha \cdot 0 = 0$, $\alpha \cdot 1 = \alpha \ \forall \alpha \in F$.

There exists an unique negative $(-\alpha)$ and unique inverse (α^{-1}) for each $\alpha \in F$. such that

- (iii) $\alpha + (-\alpha) = 0$
- (iv) $\alpha \cdot (\alpha^{-1}) = (\alpha^{-1}) \cdot \alpha = 1$ for $\alpha \neq 0$.

Finally, commutative, associative, distributive properties of algebra holds for $+,\cdot$ operators.

Elements of matrices A, B, C are from a field F

(i)
$$A+B=[a_{ij}+b_{ij}]=[b_{ij}+a_{ij}]=B+A$$
 ("+" operation commutative)

(ii)
$$A + (B + C) = (A + B) + C$$
 ("+" operation associative)

(iii)
$$A \cdot (B+C) = AB + AC$$
 (distributive)

(iv)
$$\alpha \cdot (A+B) = \alpha A + \alpha B$$
 (distributive) also

$$(\alpha + \beta) \cdot A = \alpha A + \beta A$$

(v)
$$\alpha \cdot (\beta \cdot A) = (\alpha \cdot \beta) \cdot A$$
 (associative)

But $AB \neq BA$ in general, i.e., "." operation is not commutative for matrices.

Some Special Operations on Matrices

Transpose of a matrix $A = A^T$: $A = [a_{ij}], A^T = [a_{ji}].$

Conjugation of a matrix
$$A = A^*$$
: $A = [a_{ij}], A^* = [a_{ji}^*].$

Trace of a matrix $A = \text{Tr}(A) = \sum_{i=1}^{n} a_{ii}$ (only for square matrices).

$$\frac{dA(t)}{dt} = \left[\frac{da_{ij}(t)}{dt}\right] \quad \text{and similarly} \quad \int_{t_1}^{t_2} A(t) dt = \left[\int_{t_1}^{t_2} a_{ij}(t) dt\right].$$

Special Matrices

- (1) Identity $I_n = n \times n$ matrix $[\delta_{ij}]$; where $\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & \text{else} \end{cases}$
- (2) Diagonal $D = n \times n$ matrix d_{ij}] where $d_{ij} = \begin{cases} d_i, & i = j \\ 0, & \text{else} \end{cases}$
- (3) Vector $\underline{x} = n \times 1$ matrix (column matrix).
- (4) Real matrix $A = A^* \Rightarrow a_{ij} = a_{ij}^*$.
- (5) Symmetric $A = A^T \Rightarrow a_{ij} = a_{ji}$.
- (6) Hermitian $A = A^{*T} = A^{\check{H}} \Rightarrow a_{ij} = a_{ji}^*$.

Some Useful Properties

(1)
$$\underline{x}^T \underline{y} = \underline{y}^T \underline{x}$$
 (2) $\underline{x}^{*T} \underline{x} = 0 \Leftrightarrow \underline{x} = 0$ (3) $(AB)^T = B^T A^T$.

Linear Vector Spaces

LVS over a field F denoted as (X,F) consists of a set X of vectors, a field F and 2 operations vector addition and scalar multiplication that satisfy

- 1. $\forall \underline{x}_1, \underline{x}_2 \in X$ $\underline{x}_1 + \underline{x}_2 \in X$ (closure under vector addition)
- 2. $\underline{x}_1 + \underline{x}_2 = \underline{x}_2 + \underline{x}_1$ (addition is commutative)
- 3. $(\underline{x}_1 + \underline{x}_2) + \underline{x}_3 = \underline{x}_1 + (\underline{x}_2 + \underline{x}_3)$ (addition is associative)
- **4.** $\exists \underline{0} \in X$ such that $\underline{0} + \underline{x} = \underline{x} \ \forall \underline{x} \in X$ (zero vector)
- 5. $\forall \underline{x} \in X \ \exists (-\underline{x}) \in X \ \text{such that} \ \underline{x} + (-\underline{x}) = \underline{0} \ \ \text{(negative of a vector)}$
- **6.** $\forall \alpha \in F \text{ and } \forall \underline{x} \in X \ \alpha \underline{x} \in X$
- 7. $\forall \alpha, \beta \in F$ and $\forall \underline{x} \in X$ $\alpha(\beta \underline{x}) = (\alpha \beta)\underline{x}$ (scalar multiplication is associative)
- 8. $\alpha(\underline{x}_1 + \underline{x}_2) = \alpha \underline{x}_1 + \alpha \underline{x}_2$ (scalar multiplication is distributive w.r.t vector addition)
- 9. $\forall \underline{x} \in X \quad 1\underline{x} = \underline{x}$ ("1" is the unity element in F) Example (\Im^n, \Re) or (\Im^n, \Im) but not (\Re^n, \Im) why?

Linear Dependence: The set of vectors $\{\underline{x}_i\}_{i=1}^n$ in the LVS (X,F) is linearly dependent if $\exists \{\alpha_i\}_{i=1}^n$, not all zero, such that $\sum \alpha_i \underline{x}_i = \underline{0}$. If the above holds only for $\alpha_i = 0 \ \forall i$ then $\{\underline{x}_i\}_{i=1}^n$ are linearly independent. This can be expressed as

$$\underline{\alpha} \stackrel{\triangle}{=} \mathsf{col}(\alpha_1, \cdots, \alpha_n), \ \ [\underline{x}_1, \underline{x}_2, \cdots, \underline{x}_n]\underline{\alpha} = \underline{0} \Leftrightarrow \underline{\alpha} = \underline{0}$$
 (1)

Dimension of the LVS: Maximum number of linearly independent vectors in the space.

For the LVS (\Re^2,\Re) any vector \underline{x} can be represented by different sets of linearly independent vectors as shown in Fig. 1.1.

Example: Consider a linear vector space (\Re^n, \Re) .

Let
$$\underline{e}_i = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 , the element in row i is 1 and rest are zeros, where

Here
$$\sum_{i=1}^n \alpha_i \underline{e}_i = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \underline{0} \Rightarrow \underline{\alpha} = \underline{0}$$
. Thus $\{\underline{e}_i\}_{i=1}^n$ are linearly independent.

For any vector
$$\underline{x} \in \Re^n$$
, $\underline{x} = \left[\begin{array}{c} \frac{x_1}{x_2} \\ \vdots \\ x_n \end{array} \right] = \sum_{i=1}^n x_i \underline{e}_i$.

Hence $\{\underline{x},\underline{e}_1,\underline{e}_2,\cdots,\underline{e}_n\}$ are not linearly independent for any \underline{x} . Dimension of LVS (\Re^n,\Re) is n.

Span of a LVS: Vectors $\underline{x}_1,\underline{x}_2,\cdots,\underline{x}_n$ span a LVS if every $\underline{x}\in X$ can be expressed as a linear combination $\underline{x}=\sum_{i=1}^n\alpha_i\underline{x}_i$, for $\alpha_i\in F$.

Example: $\underline{x}_1 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right], \underline{x}_2 = \left[\begin{array}{c} 0 \\ 1 \end{array} \right], \underline{x}_3 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right]$ Since $\underline{x}_1 + \underline{x}_2 - \underline{x}_3 = \underline{0} \Rightarrow$ vectors are not Linearly independent. For any $y \in \Re^2$

$$\underline{y} = \left[\begin{smallmatrix} a \\ b \end{smallmatrix} \right] = \alpha_1 \underline{x}_1 + \alpha_2 \underline{x}_2 + \alpha_3 \underline{x}_3 = \left[\begin{smallmatrix} \alpha_1 + \alpha_3 \\ \alpha_2 + \alpha_3 \end{smallmatrix} \right] \quad \forall a, b$$

provided $\alpha_1=a-\alpha_3,\ \alpha_2=b-\alpha_3.$ Thus $\{\underline{x}_1,\underline{x}_2,\underline{x}_3\}$ span the LVS (\Re^2,\Re) . However, the choice of α_i 's is not unique.

Basis: Any set of k lin. indep. vectors $\{\underline{x}_1,\underline{x}_2\cdots,\underline{x}_n\}$ of a LVS of dimension k is called a basis for the space.

Example: $\{\underline{e}_1,\underline{e}_2,\cdots,\underline{e}_n\}$ forms a basis of (\Re^n,\Re) .

Theorem: Any vector in a LVS can be expressed as an unique linear combination of the basis vectors.

Proof: Let $\{\underline{x}_1, \underline{x}_2 \cdots, \underline{x}_k\}$ be a basis of (X, F). Then for any $\underline{y} \in X$

$$\alpha_1\underline{x}_1 + \alpha_2\underline{x}_2 + \dots + \alpha_k\underline{x}_k + \alpha_0\underline{y} = \underline{0}$$
 for some $\underline{\alpha} \neq 0$

Otherwise dimension > k. Also $\alpha_0 \neq 0$; otherwise basis vectors are not linearly independent. Hence

$$\underline{y} = -\frac{1}{\alpha_0} \sum_{i=1}^k \alpha_i \underline{x}_i = \sum_{i=1}^k \beta_i \underline{x}_i$$

Suppose β_i are not unique, i.e., $\underline{y} = \sum_{i=1}^k \beta_i \underline{x}_i = \sum_{i=1}^k \gamma_i \underline{x}_i, \ \underline{\beta} \neq \underline{\gamma}$. Then $\sum_{i=1}^n (\beta_i - \gamma_i)\underline{x}_i = \underline{0}$ or, $\{\underline{x}_1, \underline{x}_2 \cdots, \underline{x}_k\}$ are not lin. indep., a contradiction.

Thus "representation" $\underline{\beta}$ of \underline{y} for the basis $\{\underline{x}_1,\underline{x}_2\cdots,\underline{x}_k\}$ is unique.

Example: Let

X= set of polynomials of degree n-1 or less in variable s and $F=\Re.$

Let $e_i = s^{i-1}, \ i = 1, 2, \dots, n$. Prove that e_i 's form a basis for (X, \Re) . Proof: For an arbitrary $x \in X$

$$x = \sum_{i=1}^{n} \alpha_i e_i = \sum_{i=1}^{n} \alpha_i s^{i-1} = [e_1 \ e_2 \cdots e_n] \underline{\alpha}$$

Clearly e_i 's span (X, \Re) . To prove that they form a basis, we need to further prove that they are lin. indep.

Lin. indep. of $\{e_1 \cdots e_n\}$ requires x=0 for all s has unique solution $\underline{\alpha}=\underline{0}$.

As $|s| \to \infty$, $x \to \alpha_n e_n = \alpha_n s^{n-1}$, or, x = 0 means $\alpha_n = 0$.

For $\alpha_n=0,\,x\to\alpha_{n-1}s^{n-2}$ when $|s|\to\infty,$ i.e., $x=0\Rightarrow\alpha_{n-1}=0,$ so on.

Thus $x = 0 \Rightarrow \underline{\alpha} = \underline{0}$. (proved)

Linear Transformation and Matrices

Let $T(\)$ be a transformation of $\underline{x} \in X$ to $\underline{y} \in Y$; i.e., $\underline{y} = T(\underline{x})$. \underline{x} is called "domain" of T and Y is called "range space" of T.

Fig. 1.2

The transformation $T(\cdot)$ is linear if and only if

(i)
$$T(\underline{x}_1 + \underline{x}_2) = T(\underline{x}_1) + T(\underline{x}_2) \ \forall \underline{x}_1, \underline{x}_2 \in X$$

(ii)
$$T(\alpha \underline{x}) = \alpha T(\underline{x}) \ \forall \underline{x} \in X, \alpha \in F.$$

 $T(\)$ linear and (X,F) a LVS \Rightarrow (Y,F) a LVS. (Hint: Prove the properties of LVS for $\forall y \in Y$)

In finite dimension $T(\cdot)$ can be expressed by a matrix.

Proof: Without loss of generality (WLOG) we consider

$$\underline{x} = [\underline{u}_1 \cdots \underline{u}_n]\underline{\alpha} = U\underline{\alpha} \ \forall \underline{x} \in \mathbb{S}^n, \alpha_i \in \mathbb{S}$$

$$\underline{y} = [\underline{w}_1 \cdots \underline{w}_m]\underline{\beta} = W\underline{\beta} \ \forall \underline{y} \in \mathbb{S}^m, \beta_i \in \mathbb{S}$$

Then $T(\underline{x}) = T(\sum_{i=1}^{n} \alpha_i \underline{u}_i) = \sum_{i=1}^{n} \alpha_i T(\underline{u}_i)$. (note that \underline{u}_i 's form a basis of \Im^n .)

Let $T(\underline{u}_i)=W\underline{b}_i,\ i=1,2,\cdots,n.$ (Since columns of W forms a basis for $\Im^m.$)

We have $W\underline{\beta} = T(\underline{x}) = \sum_{i=1}^n \alpha_i W \underline{b}_i = W[\underline{b}_1 \ \underline{b}_2 \cdots \underline{b}_n] \underline{\alpha} \stackrel{\triangle}{=} W B \underline{\alpha}$. This means $\underline{\beta} = B\underline{\alpha}$. (Since W is invertible. Special case $W = [\underline{e}_1 \cdots \underline{e}_m] = I_m$.)

Therefore $m \times n$ matrix $B = [\underline{b}_1 \ \underline{b}_2 \cdots \underline{b}_n]$ is a linear operator that maps say (\Im^n, \Im) to (\Im^m, \Im) .

Determinant of a Matrix

Symbol det(A) or |A|, only defined for square matrices.

If A is $n \times n$, then det(A) is n-fold product of the elements of A.

Each term of the product contains one and only one element from each row and each column of $\cal A$.

Sign of each term depends the sequence of on leading and trailing subscripts.

Example:
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11}a_{22}a_{33} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{31}a_{22}a_{13}$$

First set second (trailing) subscript in ascending order $(1 \rightarrow 2 \rightarrow 3)$. Now the sign depends on the number of reversals of the leading subscripts from the order $(1 \rightarrow 2 \rightarrow 3 \rightarrow 1)$. For even number of reversals sign is "+" and for odd number of reversals sign is "-". Example: $a_{21}a_{12}a_{33}$ has $a_{12}a_{23}$ has $a_{12}a_{23}$ has $a_{13}a_{23}$ has $a_{13}a_{23}$ has $a_{13}a_{23}$ reversals, sign $a_{13}a_{23}$ has $a_{13}a_{23}$ has $a_{13}a_{23}$ reversals, sign $a_{13}a_{23}$

Can prove $|AB| = |A| \cdot |B|$. The tedious proof is avoided but the result is important.

Example: Consider Any matrix $A_{n\times n}$ and a special matrix $E_{n\times n}$ defined below.

$$\begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \cdot \begin{bmatrix} \operatorname{row} 1 \\ \operatorname{row} 2 \\ \vdots \\ \operatorname{row} n \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} \alpha_{1i} \operatorname{row} i \\ \operatorname{row} 2 \\ \vdots \\ \operatorname{row} n \end{bmatrix}$$

$$E$$

We have $|EA| = |E||A| = \alpha_{11}|A|$.

From the above we have following properties of determinant

- (1) Replacing row j by $\sum_{i=1}^{n} \alpha_{ji} \times \text{row } i$ changes |A| by α_{jj} .
- (2) If rows (or columns) of A are not linearly independent then |A| = 0.

Proof: (1) is a general case of the example. (2) can be proved by choosing β_i such that $\sum_{i=1}^n \beta_i \times \text{row}_i = \underline{0}^T$.

Adjoint of a Matrix

Let a $n \times n$ matrix $A = [a_{ij}]$.

 $M_{ij}\stackrel{\triangle}{=}$ determinant of A less row i and column j (i,j th minor of A).

$$\Delta_{ij}\stackrel{\triangle}{=} (-1)^{i+j} M_{ij}$$
 (cofactor i,j of A).

Adjoint of A is defined as

$$\operatorname{adj}(A) = \left[\begin{array}{cccc} \Delta_{11} & \Delta_{21} & \cdots & \Delta_{n1} \\ \Delta_{12} & \Delta_{22} & \cdots & \Delta_{n2} \\ \vdots & \vdots & \cdots & \vdots \\ \Delta_{1n} & \Delta_{2n} & \cdots & \Delta_{nn} \end{array} \right] = [\Delta_{ji}]$$

Laplace Expansion of |A|

$$|A| = \sum_{i=1}^{n} a_{ij} \Delta_{ij} = \sum_{j=1}^{n} a_{ij} \Delta_{ij}$$

Matrix Inverse

Let $B = \operatorname{adj}(A)$ and C = AB. Then we have

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = \sum_{k=1}^{n} a_{ik} \Delta_{jk} = \begin{cases} 0, & i \neq j \\ |A|, & i = j \end{cases}$$

i = j part follows from Laplace expansion over row i.

When $i \neq j$ the expression is equal to $\det(\tilde{A})$ where j th row of A is replaced by its i th row. As a result the rows become linearly dependent.

Hence $A \cdot \operatorname{adj}(A) = |A|I_n$.

If
$$|A| \neq 0$$
 then $A \frac{\operatorname{adj}(A)}{|A|} = I$ or $A^{-1} = \frac{\operatorname{adj}(A)}{|A|}$.
If A^{-1} exists $\Leftrightarrow |A| \neq 0$.

Proof:
$$\Leftarrow A^{-1} = \frac{\operatorname{adj}(A)}{|A|}$$
 if $|A| \neq 0$ \Rightarrow suppose A^{-1} exists then $|A||A^{-1}| = |AA^{-1}| = |I| = 1 \Rightarrow |A| \neq 0$

If
$$|A| \neq 0$$
 then $A^{-1} = \frac{\operatorname{adj}(A)}{|A|}$ is unique.

Proof: Suppose BA = CA = I, $|A| \neq 0$.

Then
$$BA \cdot \operatorname{adj}(A) = CA \cdot \operatorname{adj}(A) \ \Rightarrow B|A| = C|A| \ \Rightarrow B = C.$$

Rank of a Matrix $A_{m \times n}$

r n-r

If
$$PAQ = {r \atop m-r} \left[{\begin{array}{*{20}c} I_r & 0 \cr 0 & 0 \end{array}} \right]$$
 where $r \leq \min(m,n)$.

Also if $P_{m \times m}$ and $Q_{n \times n}$ are non-singular matrices then rank of A is r.

A has r linearly independent rows and columns.

Proof: We have

$$PA = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \tilde{Q}_{11} & \tilde{Q}_{12} \\ \tilde{Q}_{21} & \tilde{Q}_{22} \end{bmatrix} = \begin{bmatrix} \tilde{Q}_{11} & \tilde{Q}_{12} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} r \\ m-r \end{bmatrix}$$

- (1) Since Q^{-1} exists its rows are linearly independent.
- (2) Since P is non-singular A, PA has same number of lin. indep. rows.

The above equation and the rules prove A has r lin. indep. rows.

Summary: $A_{m \times n}$ has equal number of lin. indep. rows and columns, $r \leq \min(m,n)$.

Non-singular matrices P, Q exist to yield $PAQ = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$.

Special Case: $A_{n \times n}$ or square matrix.

If r = n, A has n lin. indep. rows and columns and A^{-1} exists.

Fig. 1.3 Range Space of A

$$R(A) \stackrel{\triangle}{=} \{ \underline{y} | A\underline{x} = \underline{y}, \ \underline{x} \in X \}$$

For $A_{m \times n} = [a_{ij}]$ if $a_{ij} \in \Im$ and $X \in \Im^n$ then R(A) is a linear subspace of \Im^m , i.e., a LVS contained in (\Im^m, \Im) .

Proof: (1) Let
$$\underline{y}_1,\underline{y}_2\in R(A)$$
 where $A\underline{x}_i=\underline{y}_i.$ Then $\underline{y}_1+\underline{y}_2=A\underline{x}_1+A\underline{x}_2=A(\underline{x}_1+\underline{x}_2)\in R(A).$ So $\forall \underline{y}_1,\underline{y}_2\in R(A),\ \underline{y}_1+\underline{y}_2\in R(A).$ (2) For every $\alpha\in\Im$ and $y\in R(A)$

 $\alpha y = \alpha A \underline{x} = A(\alpha \underline{x}) \in R(A).$

We can also show that the commutative, associative and distributive properties of vector addition and scalar multiplication holds.

Again $A\underline{0} = \underline{0}$, hence R(A) contains zero vector.

Finally if $A\underline{x}=\underline{y}$, then $A(-\underline{x})=(-\underline{y}).$ Thus for every $\underline{y}\in R(A),$ $(-y)\in R(A).$

The above discussion proves that $(R(A), \Im)$ forms a LVS.

Note: $\underline{y} = A\underline{x} = [\underline{a}_1 \ \underline{a}_2 \cdots \underline{a}_n]\underline{x} = \sum_{i=1}^n x_i\underline{a}_i$, i.e., \underline{y} is a linear combination of the columns of A.

Hence R(A) is spanned by the columns of A.

 $\rho(A)$ =dimension of R(A) =rank of A.

Null Space of A

$$N(A) \stackrel{\triangle}{=} \{ \underline{x} \in X | A\underline{x} = \underline{0} \}$$

 $\gamma(A)$ =dimension of null space of A.

$$A_{m \times n} \Rightarrow \rho(A) + \gamma(A) = n$$

Proof: Consider $A = [\underline{a_1} \ \underline{a_2} \cdots \underline{a_r} \ \underline{a_{r+1}} \cdots \ \underline{a_n}]; \ \rho(A) = r.$

Assume for simplicity that $\underline{a}_1,\underline{a}_2,\cdots,\underline{a}_r$ are linearly independent and which means rest are not.

Then
$$\underline{a}_j = \beta_{j1}\underline{a}_1 + \dots + \beta_{jr}\underline{a}_r = \sum_{i=1}^r \beta_{ji}\underline{a}_i, \ j=r+1, \dots, n.$$
 or $-\sum_{i=1}^r \beta_{ji}\underline{a}_i + \underline{a}_j = \underline{0}, \ j=r+1, \dots, n$

Thus $\underline{v}_{r+1},\underline{v}_{r+2},\cdots,\underline{v}_n$ are in N(A) and are linearly independent by construction. Hence $\gamma(A) \geq n-r$.

Consider any vector $\underline{s} \in N(A)$. Then

$$A\underline{s} = [\underline{a}_1 \cdots \underline{a}_r \ \underline{a}_{r+1} \cdots \underline{a}_n]\underline{s} = \sum_{i=1}^r \underline{a}_i s_i + \sum_{j=r+1}^n \underline{a}_j s_j = \underline{0}$$

Since \underline{a}_j must satisfy $\underline{a}_j = \sum_{i=1}^r \beta_{ji} \underline{a}_i, \ j=r+1,\cdots,n$, we have

$$\sum_{i=1}^{r} \underline{a_i} s_i + \sum_{j=r+1}^{n} s_j \sum_{j=1}^{r} \underline{a_i} \beta_{ji} = \sum_{i=1}^{r} \underline{a_i} (s_i + \sum_{j=r+1}^{n} s_j \beta_{ji}) = \underline{0}$$

However $\underline{a}_1, \cdots, \underline{a}_r$ are lin. indep. So this requires that

$$s_i + \sum_{j=r+1}^n s_j \beta_{ji} = 0$$

$$\text{Thus } \underline{s} = \begin{bmatrix} -\sum_{i=r+1}^n s_j \beta_{j1} \\ \vdots \\ -\sum_{i=r+1}^n s_j \beta_{jr} \\ \vdots \\ s_{r+1} \end{bmatrix} = \sum_{j=r+1}^n \underline{v}_j s_j = [\underline{v}_{j+1} \cdots \underline{v}_n] \begin{bmatrix} s_{r+1} \\ \vdots \\ s_n \end{bmatrix}$$

Indicating that any $\underline{s}\in N(A)$ is a lin. comb. of $\underline{v}_{r+1},\cdots,\underline{v}_n$. Hence $\gamma(A)=n-r$.

Example: Find a set of basis for the null space of A.

$$A_{3\times 5} = \left[\begin{array}{ccccc} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \end{array} \right]$$

Solution: (Clearly
$$\rho(A) = 3, \ n = 5, \ \gamma(A) = 5 - 3 = 2.$$
)
Consider $A\underline{x} = \underline{0} \ \Rightarrow \left\{ \begin{array}{l} x_1 + x_4 = 0 \\ x_2 + x_4 + 2x_5 = 0 \\ x_3 + x_5 = 0 \end{array} \right.$

 \underline{x} can be written as, $\underline{x} = \begin{bmatrix} x_1 & x_1 + 2x_2 & x_3 & -x_1 & -x_3 \end{bmatrix}^T$ Clearly x_1 and x_3 can be chosen arbitrarily.

Two independent variables mean N(A) has two dimensions. Basis vectors can be obtained by choosing two sets of linearly independent values of $\{x_1, x_3\}$.

For example, $\underline{y}_1 = [1 \ 1 \ 0 \ -1 \ 0]^T \quad (x_1 = 1, x_3 = 0);$ $\underline{y}_2 = [0 \ 2 \ 1 \ 0 \ -1]^T \quad (x_1 = 0, x_3 = 1).$ Therefore $\{\underline{y}_1, \underline{y}_2\}$ forms a basis for N(A).

If C = AB, then $\rho(C) \leq \min(\rho(A), \rho(B))$.

Proof: Let us consider $A_{m \times n}$, $B_{n \times q}$ and $\rho(A) = r$, $\rho(B) = p$. It can be shown that columns of C are linear combinations of columns of A.

Furthermore, columns of A span r dimensional space. So columns of C span a space whose dimension is $\leq r$. Thus $\rho(C) \leq r$.

Again it can be shown that rows of C are linear combinations of rows of B. Using similar argument we can prove that $\rho(C) \leq p$.

So we have

$$\rho(C) \leq r, p \ \Rightarrow \rho(C) \leq \min(r, p) \ \Rightarrow \rho(C) \leq \min(\rho(A), \rho(B)).$$

If P non-singular then $\rho(PA) = \rho(A)$.

Proof: Consider $P_{m \times m}$ and $A_{m \times n}$.

Then $\rho(PA) \leq \min\left(\rho(P), \rho(A)\right) = \min\left(m, \rho(A)\right) = \rho(A)$ as $\rho(A) \leq \min(m, n)$.

 $\operatorname{Again}\,\rho(A)=\rho(P^{-1}PA)\leq \min\left(\rho(P^{-1}),\rho(PA)\right)\leq \rho(PA).$

Thus we have $\rho(PA) \leq \rho(A)$ and $\rho(PA) \geq \rho(A)$. So $\rho(PA) = \rho(A)$.

Similarly it can be shown that for non-singular Q, $\rho(AQ)=\rho(A)$. In general, multiplication of A with non-singular matrices does not change it's rank.

Linear Systems of Equations: $A\underline{x} = \underline{y}$ where A is $m \times n$

 $A\underline{x} = \underline{y}$ has a solution $\Leftrightarrow \underline{y} \in R(A)$ as when a solution exists \underline{y} is linear combination of columns of A.

Let $W \stackrel{\triangle}{=} [A \ y]_{m \times n+1}$. Two cases arise

- (1) If $\rho(W) < \rho(A)$, no solution exists since $\underline{y} \notin R(A)$, i.e., not in a subspace spanned by columns of A.
- (2) If $\rho(W)=\rho(A)$, $\underline{y}\in R(A)$ and atleast one solution exists. Consider two cases:
 - (a) $\rho(A)=n, \ \gamma(A)=0 \ (m\geq n).$ Solution is unique. Proof: Suppose $A\underline{x}_1=A\underline{x}_2=\underline{y}, \ \underline{x}_1\neq\underline{x}_2.$ Then $A(\underline{x}_1-\underline{x}_2)=\underline{0}, \ \text{with} \ \underline{x}_1-\underline{x}_2\neq\underline{0} \ \text{which violets the fact that null space is empty.}$
 - (b) $\rho(A) < n, \, \gamma(A) > 0.$ Solution not unique. The difference between solutions for example $\underline{x}_1 \underline{x}_2$ must be in null space N(A).

Solution of $A\underline{x} = y$, for $A_{n \times n}$, $|A| \neq 0$

The solution is $\underline{x} = A^{-1}\underline{y}$, where $A^{-1} = \frac{\operatorname{adj}(A)}{|A|}$.

Direct way of finding \underline{x} is computationally expansive.

It can be proved that for any $A_{n\times n}$ we can have non-singular P such that $PA=U,\ U$ =upper triangular matrix.

Then $U\underline{x}=P\underline{y}\stackrel{\triangle}{=}\underline{z}$. Now can solve $U\underline{x}=\underline{z}$ due to nature of U. (Note that $u_{ii}\neq 0$ if $|A|\neq 0$.)

$$\begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1,n-1} & u_{1n} \\ 0 & u_{22} & \cdots & u_{2,n-1} & u_{2n} \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & u_{n-1,n-1} & u_{n-1,n} \\ 0 & 0 & \cdots & 0 & u_{nn} \end{bmatrix} \underline{x} = \underline{z}$$

This gives
$$x_n = z_n/u_{nn}$$
; $x_{n-1} = (z_{n-1} - u_{n-1,n}z_n)/u_{n-1,n-1}$; $\cdots x_1 = (z_1 - u_{12}x_2 - u_{13}x_3 - \cdots - u_{1n}x_n)/u_{11}$.

P,U are not unique. These can be found in various ways.

(a) Gauss Elimination

Step 1. Let $P_1A \stackrel{\triangle}{=} A_1 = [a_{ij}^1]$ interchange row 1, row j where $|a_{j1}| = \max_i |a_{i1}|$.

Step 2. Let $P_2A_1=A_2=[a_{ij}^2]$ zero out column 1 below (1,1) element of A_1 .

$$P_2 = \left[\begin{array}{cccc} 1 & 0 & 0 & \cdots & 0 \\ -a_{21}^1/a_{11}^1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_{n1}^1/a_{11}^1 & 0 & 0 & \cdots & 1 \end{array} \right], \ P_2A_1 = \left[\begin{array}{cccc} a_{11}^1 & a_{12}^1 & \cdots & a_{1n}^1 \\ 0 & a_{22}^2 & \cdots & a_{2n}^2 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2}^2 & \cdots & a_{nn}^2 \end{array} \right] = A_2$$

Repeat this process an last n-1 rows of A_2 , etc.

Repeat n-2 times until $P=P_{2(n-1)}\cdots P_2P_1,\ PA=U.$

(b) Householder Transform

$$\begin{aligned} & \text{Consider } A = [\underline{a_1} \ \underline{a_2} \cdots \underline{a_n}]. \\ & \text{Let } \underline{u_1} = \begin{bmatrix} \sqrt{\underline{a_1^{*T}}\underline{a_1}} \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \ \underline{w} = \underline{a_1} - \underline{u_1}, \ P_1 = I_n - \frac{2\underline{w} \, \underline{w^{*T}}}{\underline{w^{*T}}\underline{w}} \\ & \text{Then } P_1 A = \begin{bmatrix} \sqrt{\underline{a_1^{*T}}\underline{a_1}} & \mathbf{x} \cdots \mathbf{x} \\ \underline{0} & A_2 \end{bmatrix} \text{ where } A_2 = [\underline{a_1^2} \ \underline{a_2^2} \cdots \underline{a_{n-1}^2}]. \\ & \text{Let} \\ & \underline{u_2} = \begin{bmatrix} \sqrt{(\underline{a_1^2})^{*T}}\underline{a_1^2} \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \ \underline{w_2} = \underline{a_1^2} - \underline{u_2}, \ P_2 = \begin{bmatrix} 1 & \underline{0}^T \\ \underline{0} & \tilde{P_2} \end{bmatrix}, \ \tilde{P_2} = I_{n-1} - \frac{2\underline{w_2}\underline{w_2^{*T}}}{\underline{w_2^{*T}}\underline{w_2}} \\ & \text{Then } P_2 P_1 A = \begin{bmatrix} \sqrt{\underline{a_1^{*T}}\underline{a_1}} & 0 & \mathbf{x} \cdots \mathbf{x} \\ 0 & \sqrt{(\underline{a_1^2})^{*T}}\underline{a_1^2} & \mathbf{x} \cdots \mathbf{x} \\ \underline{0} & A_3 \end{bmatrix} \\ & \text{Continue until } P_{n-1} P_{n-2} \cdots P_1 A = U. \end{aligned}$$

Example: Find \underline{x} using the following information.

$$A\underline{x} = \underline{y}; \ A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}, \ \underline{y} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

(1) Gauss Elimination

$$P_{1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \ P_{1}A = \begin{bmatrix} 2 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$

$$P_{2} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1/2 & 0 & 1 \end{bmatrix}, \ P_{2}P_{1}A = \begin{bmatrix} 2 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 1 & 3/2 \end{bmatrix}$$

$$P_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \ P_{3}P_{2}P_{1}A = \begin{bmatrix} 2 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 5/2 \end{bmatrix}$$

$$\begin{split} P_3P_2P_1\underline{y} &= P_3P_2 \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] = P_3 \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \\ \text{We have } \left[\begin{array}{cc} 2 & 2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 5/2 \end{array} \right] \underline{x} = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \\ \text{or,} \quad 5/2x_3 = 1 \Rightarrow x_3 = 2/5; \ x_2 - x_3 = 0 \Rightarrow x_2 \end{split}$$

or,
$$5/2x_3 = 1 \Rightarrow x_3 = 2/5$$
; $x_2 - x_3 = 0 \Rightarrow x_2 = 2/5$; $2x_1 + 2x_2 + x_3 = 0 \Rightarrow x_1 = -3/5$.

(2) Householder Transform

$$\underline{a}_{1} = \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \ \underline{a}_{1}^{T}\underline{a}_{1} = 9, \ \underline{u} = \begin{bmatrix} 3\\0\\0 \end{bmatrix}, \underline{w} = \underline{a}_{1} - \underline{u} = \begin{bmatrix} -2\\2\\2 \end{bmatrix}
P_{1} = I_{3} - 2 \frac{\underline{w}\underline{w}^{T}}{\underline{w}^{T}\underline{w}} = 1/3 \times \begin{bmatrix} 1 & 2 & 2\\2 & 1 & -2\\2 & -2 & 1 \end{bmatrix}, \ P_{1}A = \begin{bmatrix} 3 & 8/3 & 8/3\\0 & 1/3 & 4/3\\0 & 4/3 & 1/3 \end{bmatrix}$$

$$\begin{split} A_2 &= \left[\begin{array}{cc} 1/3 & 4/3 \\ 4/3 & 1/3 \end{array} \right], \ \underline{a}_1^2 = \left[\begin{array}{c} 1/3 \\ 4/3 \end{array} \right], \ \underline{u} = \left[\begin{array}{c} 1.3744 \\ 0 \end{array} \right], \ \underline{w} = \underline{a}_1^2 - \underline{u} = \\ \left[\begin{array}{c} -1.0410 \\ 4/3 \end{array} \right] \\ \tilde{P}_2 &= I_2 - 2 \frac{\underline{w} \, \underline{w}^T}{\underline{w}^T \underline{w}} = \left[\begin{array}{c} 0.2425 & 0.9701 \\ 0.9701 & -0.2425 \end{array} \right], \ P_2 = \left[\begin{array}{c} 1 & \underline{0}^T \\ \underline{0} & \tilde{P}_2 \end{array} \right] \\ P_2 P_1 A &= \left[\begin{array}{cc} 3 & 8/3 & 8/3 \\ 0 & 1.3743 & 0.6467 \\ 0 & 0 & 1.2126 \end{array} \right], \ P_2 P_1 \underline{y} = \left[\begin{array}{cc} 1/3 \\ 0.8084 \\ 0.4851 \end{array} \right] \\ \text{Therefore} \quad \left[\begin{array}{cc} 3 & 8/3 & 8/3 \\ 0 & 1.3743 & 0.6467 \\ 0 & 0 & 1.2126 \end{array} \right] \underline{x} = \left[\begin{array}{cc} 1/3 \\ 0.8084 \\ 0.4851 \end{array} \right] \Rightarrow \underline{x} = \left[\begin{array}{cc} -3/5 \\ 2/5 \\ 2/5 \end{array} \right] \end{split}$$