STA 371G: Statistics and Modeling

Review of Basic Probability and Statistics: Introduction to Monte Carlo Simulation

Mingyuan Zhou McCombs School of Business The University of Texas at Austin

http://mingyuanzhou.github.io/STA371G

Why Simulation?

- Extremely useful to model uncertainty
- Can be incorporated into spreadsheet models
- Allow the input variables to be random
- Provide an entire distribution of results, including not only the most likely, but also the worst and the best
- Help analyze a system's sensitivity to changes in operation conditions
- Can be implemented in Excel with the RAND() function or some add-in package (such as @Risk)
- Extremely convenient to implement in R (also in Matlab, Python, ...)

Example: Simulation of Market Return

▶ Incorporate uncertainty into spreadsheet models

	Α	В	С	D
1	Economy	Probability	Market Return	(Market Return - Mean)^2
2	Rapid Expanding	12.00%	23%	0.005929
3	Moderate Expanding	40.00%	18%	0.000729
4	No Growth	25.00%	15%	9E-06
5	Moderate Contraction	15.00%	9%	0.003969
6	Serious Contraction	8.00%	3%	0.015129
7				
8	Expected Return	0.153	Simulated Return	0.152489879
9	Variance of Return	0.002811	Simulated variance	0.002769478
10	Standard Deviation of Return	0.053018865	Simulated sd	0.052625831
11				
12	Random #	Simulated Return	Lookup Probability Table	
13	0.39065967	18.00%	Cumulative probability	Market Return
14	0.951676654	3.00%	0	23%
15	0.902555852	9.00%	12%	18%
16	0.572895871	15.00%	52%	15%
17	0.929102096	3.00%	77%	9%
18	0.428496674	18.00%	92%	3%
19	0.683789167	15.00%		
20	0.582831026	15.00%		
21	0.362137678	18.00%		

Example: Estimate π with Monte Carlo Simulation

- ▶ The area of a circle with the radius of 1/2 is $\pi/4$
- ▶ The area of a unit square is 1
- A uniform random point in the unit square falls within the circle with probability $\pi/4$ Estimated Die Estimated Die

Law of Large Numbers

- Toss a die one million times
- ▶ Record the proportion of die tosses that are 6 after each toss
- ▶ The proportion tends to get closer to the probability 1/6 as the number of tosses increases

Toss a die 1 million times

Repeat the same experiment: toss a die one million times

Law of Large Numbers

- Probability: the probability of a random outcome is the proportion of the times that it would occur if the experiment is repeated an infinite number of times.
- Law of Large Numbers: As the number of experiments n increases towards ∞ , the proportion of a particular random outcome \hat{p}_n converges to the true probability p of that outcome.

Uniform Random Variable

- A random number uniformly distributed between 0 and 1
- ► Can be used to generate any other random numbers
- ▶ In Excel: =RAND()
 - ► Flip a coin: =IF(RAND()>0.5,"Head","Tail")
 - ▶ Roll a die:
 - ► =RANDBETWEEN(1,6)
 - or use =RAND() and a lookup table
- ▶ In R: runif
 - ► Flip a coin: runif(1)>0.5 or sample(0:1,1)
 - ► Roll a die: =ceiling(runif(1)*6) or sample(1:6,1)

Uniform Random Variable

Histogram of uniformly distributed random numbers In Excel: copy RAND() to n cells, where n is the number of experiments. What if $n = 10^9$?

In R: hist(runif(n))

Example: Flip Two Coins

In Excel: copy =(RAND()>0.5)+(RAND()>0.5) to n cells, use scatter plot to visualize the results

In R: x = (runif(n)>0.5) + (runif(n)>0.5)use hist(x) and plot(x) to visualize the results

Number of heads in two coin flips

Example: Toss Two Dice

In R:
$$hist(ceiling(runif(n)*6) + ceiling(runif(n)*6))$$
 or $hist(sample(1:6,n,replace=TRUE) + sample(1:6,n,replace=TRUE))$

Normal Random Variable

- $X \sim \mathcal{N}(\mu, \sigma^2)$
- ▶ In Excel: = NORMINV(RAND(), μ , σ)
- ▶ In R: $\operatorname{rnorm}(\mathbf{n}, \mu, \sigma)$, where n is the number of normal random numbers that we ask R to generate
- Let's simulate 1000 standard normal random numbers and visualize the results:

Histogram of rnorm(1000)

