

TABLE OF CONTENTS

INTRODUCTION

02

ABOUT ESP32

03

ESP32 THINGSBOARD

04

INTRODUCTION

LAST YEARS

Link github (https://bit.ly/30RHsZ3) https://github.com/hasbiida/TrainingEspRpi

ESP32 – Cloud/Rpi (dash python+database)

ESP32 simple webserver

HIGHLIGHTS THIS YEARS

ABOUT ESP32

GETTING STARTED

03

ESP32

A feature-rich MCU with integrated Wi-Fi and Bluetooth connectivity for a wide-range of applications

SPEC

Dual core
Wi-Fi and bluetooth
32 bit programs.
Freq up to 240MHz and
it has a 512 kB RAM
30 or 36 pins

PROGRAMMING ENV

Arduino IDE Espressif IDF Micropython JavaScript LUA

EXAMPLES OF ESP32 BOARDS

Lolin32 Lite pinout

Power GND

EN

txapuzas.blogspot.com

ARDUINO IDE

- Install IDE
- Add board manager URL

https://dl.espressif.com/dl/package_esp32_index.json

- Tools \rightarrow board \rightarrow board manager \rightarrow esp32
- Open example blink
- change pin 22 (led built in)
- Upload

ESP32 THINGSBOARD

ESP32 as IoT node devices

INSTALL LIBRARY

- Thingsboard
- ArduinoHttpClient
- ArduinoJson
- DHT sensor library

PROGRAM NODE IOT THINGSBOARD

- Untuk sensor DHT11
 - O ESP32_thingsboard_DHT11
- Untuk sensor Pulse Sensor
 - O ESP32_thingsboard_PulseS ensor

THINGSBOARD DASHBOARD

ThingsBoard is an open-source server-side platform yang memungkinkan untuk monitor dan control perangkat IoT. Gratis untuk digunakan secara personal dan commercial dan dapat digunakan dimana saja

FITUR DARI THINGSBOARD

- 1. **Provision** perangkat, aset, dan pelanggan serta menentukan hubungan di antara mereka.
- 2. Kumpulkan dan visualisasikan data dari perangkat dan aset.
- 3. **Menganalisis** telemetri yang masuk dan memicu alarm dengan pemrosesan peristiwa yang kompleks.
- 4. **Kontrol** perangkat Anda menggunakan remote produce call(RPC).
- 5. Buat **alur kerja** berdasarkan life cycle perangkat, event, REST API, RPC request, dll
- 6. Desain **dasbor** dinamis dan responsif serta telemetri perangkat atau aset dan wawasan terkini kepada pelanggan Anda
- 7. Aktifkan fitur khusus kasus penggunaan menggunakan **rule-chain** yang dapat disesuaikan.
- 8. Push data perangkat ke sistem lain.

THINGSBOARD

KONEKSI ESP DENGAN THINGSBOARD

- Add device dan copy access token pada demo.thingsboard.io
- Sesuaikan access token dengan device node (esp32)
- Cek koneksi pada telemetry
- Buat dashboard dengan data sesuai datatelemetry

ESP32 AS WEARABLE DEVICE

How to plot sensor data to smartphone (esp as webserver)

PERBEDAAN

ESP AS CLIENT

ESP AS WEBSERVER

Install ESP32 Filesystem
Uploader in Arduino IDE

Plot Sensor Readings in Real Time Charts – Web Server

- 1. Install Filesystem uploader plugin
- 2. Install Libaries **ESPAsyncWebServer** and **AsyncTCP**
- 3. Uploading Code and Files Tools > ESP32/ESP8266 Data Sketch Upload
 - 4. Web Server using SPIFFS (SPI Flash File System)

ESP32 LOW POWER

How to tuning ESP for lower energy usage

DESAIN METRIC

PARAMETER CONNECTIVITY

- 1. Range
- 2. Throughput
- 3. Power source
- 4. Topology

ESP32 Power Modes

Active: Inactive:

Last Minute
ENGINEERS.com

Radio

ESP32 Core

ULP Coprocessor

Peripherals

RTC

Power Consumption:

160~260mA

- Active Mode
- Modem Sleep Mode
- Light Sleep Mode
- Deep Sleep Mode
- Hibernation Mode

Code Diff (Thingsboard sleepy) using sleep timer

```
1. RTC store data
```

- 2. Init sleep timer (waker)
- 3. Function to print cause of wake up
- 4. Sleep command in main program

```
RTC_DATA_ATTR int bootCount = 0;

esp_sleep_enable_timer_wakeup(time_in_us)

void print_wakeup_reason()

esp_deep_sleep_start()
```


RTC store data

Function to print cause of wake up

Sleep command in main program

Code Diff (Chart webserver sleepy) using touch wake up

```
RTC_DATA_ATTR int bootCount = 0;
                                          #define Threshold 40
                                          touchAttachInterrupt(T3, callback, Threshold);
Init touchpin and threshold sensitivuty (waker)
                                    void print_wakeup_reason()
                                          esp sleep enable touchpad wakeup()
```

THANKS

Do you have any questions?

hasbiida@gmail.com

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by Freepik

Please keep this slide for attribution

