

MirrorMatch: Real-Time Detection of Repetitive Movements using Smartphone Camera

Noah Jennings & Shubham Jain

Department of Computer Science, Old Dominion University, Norfolk, VA

Introduction

Objective: An automated approach for monitoring exercise movements to help beginners improve their form and prevent injuries.

Background:

- ☐ The popularity of weight training exercises and related injuries have been on a rise.
- There is a lack of tools to assist users in monitoring their performance.

System Overview

- Provides real-time movement analysis and feedback.
- ☐ Designed to be easily accessible by relying only on a smartphone camera.
- Uses object detection techniques for detecting and tracking user's exercise equipment.
- Unlike existing approaches that use wearable sensors, MirrorMatch offers a cost-effective and scalable solution to make fine-grained movement tracking more accessible.

System Design

MirrorMatch generates the following metrics in real-time:

- ☐ Repetition count
- ☐ Time spent during lifting and lowering phases.
- ☐ Velocity of the bar movement during lifting and lowering phases.
- Range of movement for each rep.

REP 1 INFO:

Range Of Motion (in pixels): 299 pixels
Lift time (s): 2.63333 seconds
Lower time (s): 2 seconds
Lifting velocity (p/s): 69.8734 p/s
Lowering velocity (p/s): 57.5 p/s

Figure 1 A snapshot of MirrorMatch output statistics

Methodology

- I Start of a workout session is indicated by a touch command to start capturing frames through the device camera
- For each captured frame, the user equipment (e.g. a barbell) is detected via a HAAR cascade classifier.
- Upon detection, the system tracks the bar to identify its position in each frame.
- ☐ A series of bar positions obtained during a rep exhibit peaks and troughs.
- Each trough represents the end of a previous rep and the beginning of the next one.
- Each peak represents the halfway mark for a rep.
- The statistics associated with each rep are displayed to the user in real-time.

Experimental Design

We collected data from

- ☐ Four different individuals
- Two exercises: bicep curls and bent over rows
- ☐ Total of 50 reps

Results

- True Positive Rate for offline repetition detection: 100%
- ☐ Median error for lifting duration: 0.43 seconds
- ☐ Median error for lowering duration: 0.33 seconds
- ☐ Median error for range of motion: 70 pixels
- ☐ Median error for lifting velocity: 51.5 p/s
- Median error for lowering velocity: 45.1 p/s

Future Work

- ☐ Include a wider range of weight lifting exercises.
- ☐ Map pixels to real-world distance
- ☐ Voice-activated commands for start and stop of each set.
- ☐ Audio feedback, similar to a coach.
- ☐ Extend application scenario to physical therapy and rehabilitation.

Acknowledgements

This research was partially supported by the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health under award 1T34GM118259-01A1 and matching support from ODU.