Experimental methods II

ADEC781001: Empirical Behavioral Economics

Lawrence De Geest (lrdegeest.github.io)

ADEC781001: Empirical Behavioral Economics

Power Analysis Randomization

POWER ANALYSIS

Experimental methods II

Power Analysis
Randomization

FURTHER READING

 A lot of this lecture (especially the power analysis) is derived from two great sources

- Moffatt, Peter G. Experimetrics: Econometrics for experimental economics.
 Macmillan International Higher Education, 2015.
- List, John A., Sally Sadoff, and Mathis Wagner. "So you want to run an experiment, now what? Some simple rules of thumb for optimal experimental design."
 Experimental Economics 14, no. 4 (2011): 439.

ADEC781001: Empirical Behavioral Economics

Experimental methods II

2 / 26

Power Analysis

Randomization

DO YOU HAVE THE POWER?

- You run a study and estimate an ATE
 - ♦ focus here is on difference in means with t-test (e.g. via regression)
 - also applies to Wilcoxon test
- ▶ But did your study have the power to yield a reliable estimate?
- ► The power of a statistical test is P(detect true result | true result exists)
 - e.g. P(ATE significant | significant ATE exists)
- Recall there are two types of errors
 - ⋄ Type 1 or false positive (reject H_0 when it is true)
 - also known as test size or significance $\alpha \in [0, 1]$
 - generally considered "costlier" (so you want to minimize probability of making it)
 - \diamond Type 2 or false negative (reject to reject H_0 when it is false)
 - also known as β
 - implies P(reject $H_0 \mid H_0$ is false) is 1β
 - $\pi = 1 \beta$ is power
 - Note: for fixed n you can't reduce probability of one error without increasing the other
- Convention $\alpha=0.05$, $\pi=0.8$ (so $\beta=0.2$)
 - implies 4:1 tradeoff between Type 2 and Type 1 error
 - \diamond objective is to find minimum n that satisfies π

ADEC781001: Empirical Behavioral Economics Experimental methods II

SET-UP

Randomization

Randomization

ONE SAMPLE

Power

► Continuous outcome Y (e.g. share of a pie offered in an ultimatum game)

- \blacktriangleright Population mean is μ
- Hypotheses:
 - Φ $H_0: \mu = \mu_0, H_A: \mu = \mu_1, \mu_1 > \mu_0$
- test statistic: t-test, $t = \frac{\bar{y} \mu_0}{SE} \sim t_d f$, $SE = \frac{s}{\sqrt{n}}$, df = n 1
 - \diamond Given α , rejection rule is $t > t_{df,\alpha}$
 - ♦ Assume you will draw sufficiently large *n* so Central Limit Theorem binds
 - \diamond Then rejection rule is $t>z_{\alpha}$ (i.e. you compare to standard normal distribution)

ADEC781001: Empirical Behavioral Economics

Experimental methods II

Randomization

Power Analysis

Experimental methods II

COMPARATIVE STATICS

Power Analysis

ONE SAMPLE

Power

Plug in our values

$$\diamond z_{\alpha} = \Phi(1 - 0.05) = \text{qnorm}(1 - 0.05) = 1.645$$

$$\diamond z_{\beta} = \Phi(0.80) = \text{qnorm}(0.80) = 0.841$$

$$\Rightarrow n = \frac{6.17s^2}{(\mu_1 - \mu_0)^2}$$

▶ Let
$$\mu_1 = 12, \mu_0 = 10, s = 5$$

$$\diamond n = \frac{6.17 \times 25}{4} = 38.6 \rightarrow 39$$
 (need integers for subjects!)

▶ In R: power.t.test(power = .80, delta = 2, sd=5, type = "one.sample", alternative = "one.sided")

• What is probability test statistic t greater than z_{α} if $\mu = \mu_1$?

$$P(t > z_{\alpha} \mid \mu = \mu_{1}) = P\left(\frac{\bar{y} - \mu_{0}}{SE} > z_{\alpha} \mid \mu = \mu_{1}\right)$$

$$= P\left(\bar{y} > \mu_{0} + \frac{z_{\alpha}}{SE} \mid \mu = \mu_{1}\right)$$

$$= P\left(\frac{\bar{y} - \mu_{1}}{SE} > \frac{\mu_{1} - \mu_{0} - z_{\alpha}SE}{SE} \mid \mu = \mu_{1}\right)$$

$$= \Phi\left(\frac{\mu_{1} - \mu_{0} - z_{\alpha}SE}{SE}\right)$$

► To get a power of
$$1 - \beta$$
: $\left(\frac{\mu 1 - \mu_0 - z_\alpha SE}{SE}\right) = z_\beta$
► Solve for n : $n = \frac{s^2(z_\alpha + z_\beta)^2}{(\mu_1 - \mu_0)^2}$

Solve for
$$n$$
: $n = \frac{s^2(z_\alpha + z_\beta)^2}{(\mu_1 - \mu_0)^2}$

ONE SAMPLE

ADEC781001: Empirical Behavioral Economics

ADEC781001: Empirical Behavioral Economics Experimental methods II

assumes $\alpha = 0.05$

TWO SAMPLES

Randomization

TWO SAMPLES

EQUAL SAMPLE SIZES

► Let $n = n_T = n_C$ ► Then $t = \frac{\bar{y_T} - \bar{y_C}}{s_p \sqrt{2/n}}$

- ► Calculating ATE in an experiment usually implies control vs treatment group (2 samples)
- $\blacktriangleright \mu_T$ is mean of treatment, μ_C is mean of control
 - \diamond effect size: $d = \mu_T \mu_C$
 - estimate d from previous studies/priors/pilot studies
- ► $H_0: d = 0$
 - \diamond test statistic: $t=rac{ar{y_T}-ar{y_C}}{s_p\sqrt{rac{1}{n_T}+rac{1}{n_C}}}$
 - s_p is pooled variance, $s_p = \sqrt{\frac{(n_T-1)s_T^2 + (n_C-1)s_C^2}{n_T + n_C 2}}$

ADEC781001: Empirical Behavioral Economics

Experimental methods II

Randomization

ADEC781001: Empirical Behavioral Economics

Experimental methods II

Power Analysis

TWO SAMPLES

COMPARATIVE STATICS

Power Analysis

Randomization

TWO SAMPLES

EQUAL SAMPLE SIZES, UNEQUAL VARIANCES

ightharpoonup Suppose as before d=2, and $s_T=7.84$, $s_C=4$

► Power of the test: $P(t > z_{\alpha} \mid d) = \Phi\left(\frac{d - z_{\alpha} s_{p} \sqrt{2/n}}{s_{p} \sqrt{2/n}}\right)$ ► For test power $1 - \beta$: $z_{\beta} = \frac{d - z_{\alpha} s_{p} \sqrt{2/n}}{s_{p} \sqrt{2/n}}$ ► Solve for n: $n = \frac{2s_{p}^{2}(z_{\alpha} + z_{\beta})^{2}}{d^{2}}$

- estimate these from previous studies/priors/pilot studies
- \diamond s_p is about 6 (average of s_T and s_C)
 - Recall s_n is a weighted average where the weights are the sample degrees of freedoms
- ♦ R: MESS::power_t_test(n=NULL, sd=4, power=.8, ratio=1, sd.ratio=7.84/4, delta=2, alternative = "one.sided")
 - Returns n = 121
 - · Pretty close to hand calculation

ADEC781001: Empirical Behavioral Economics

Experimental methods II

ADEC781001: Empirical Behavioral Economics

Experimental methods II

Randomization

TWO SAMPLES

EQUAL SAMPLE SIZES, UNEQUAL VARIANCES

- ▶ In reality you will have a budget constraint
- ightharpoonup Rule of thumb: choose sample sizes so $rac{n_T}{n_C} \propto \sqrt{rac{c_C}{c_T}}$
 - ⋄ c_C is cost per control subject
 - \diamond c_T is cost per treatment subject
- Example: experiment varies incentives (high-incentive treatment, low-incentive control)
 - \diamond suppose $c_T = 4c_C$
 - then we should expect about twice as many subjects in low-incentive control
- R: MESS::power_t_test(n=NULL, sd=7.84, power=.8, ratio=2, sd.ratio=7.84/4, delta=2, alternative = "one.sided")
 - see R script (be_bc_power.R) for explanation

ADEC781001: Empirical Behavioral Economics

Experimental methods I

13 / 2

Randomization

POWER ANALYSIS WITH GROUPS

- ▶ So far we have assumed independence between subjects
 - each subject is their own group
- But this won't hold in a strategic setting where payoffs and thus actions are dependent
 - ⋄ i.e. when subject are clustered
- ► Let's suppose subject *i* is put into group *j*
 - outcomes between groups are independent (i.e. each group is an independent observation)
 - but outcomes within groups are dependent
- ▶ Let *u_i* be the group-specific error-term
 - \diamond model: $Y_{iiT} = \alpha + \beta_T + \mu_i + \varepsilon_{ii}$, $T = \{0, 1\}$
- ▶ Basic idea: dependence "inflates" the variation
- So you need a "variance inflation factor" that increases n

TWO SAMPLES COMPARATIVE STATICS

Power Analysis
Randomize

POWER ANALYSIS WITH GROUPS

ADEC781001: Empirical Behavioral Economics

VARIANCE INFLATION FACTOR

- Assume equal sample sizes and variances
- ► Then List (2011) shows $n = \left(\frac{2s_{\rho}^{2}(z_{\alpha}+z_{\beta})^{2}}{d^{2}}\right)(1+(c-1)\rho)$
 - $\diamond 1 + (c-1)\rho$ is the variance inflation
 - ⋄ c is group size
 - $\diamond~
 ho$ is "coefficient of intracluster correlation": $ho = rac{\mathit{var}(u_j)}{\mathit{var}(u_j) + \mathit{var}(\varepsilon_{ij})}$
- Suppose no differences between groups
 - \diamond then $var(u_i) = 0 \implies \rho = 0 \implies$ no change in n
- Suppose differences between groups but all individuals within groups behave identically
 - \diamond then $var(\varepsilon_{ii}) = 0 \implies \rho = 1 \implies$ multiply n by c
- ▶ In reality we expect some intergroup differences and intersubject differences

$$\diamond$$
 i.e. $var(u_j) \neq var(\varepsilon_{ij}) \neq 0$

ADEC781001: Empirical Behavioral Economics Experimental methods II 15 / 26 ADEC781001: Empirical Behavioral Economics Experimental methods II

Randomization

POWER ANALYSIS WITH GROUPS EXAMPLE

Same as before: $n = \frac{2s_p^2(z_\alpha + z_\beta)^2}{d^2} = 112$

▶ But now group size is c = 4

▶ Suppose $\rho = 0.05$

▶ Inflation factor is 1.15

▶ New sample size is $112 \times 1.15 = 129$

⋄ need number divisible by c: round down (128) or round up (132)

▶ Where do you get estimates of $var(\varepsilon_{ij})$ and $var(u_i)$?

hard to find in other papers (not always reported)

best-case: pilot studies

ADEC781001: Empirical Behavioral Economics

Experimental methods I

17 /

Randomization

MULTIPLE HYPOTHESIS TESTING

Correcting α

Power Analysis

- \blacktriangleright You have to cut your α if you are testing multiple hypotheses
 - in terms of power this means you are going to need more data
- \blacktriangleright Many ways to adjust α , still an open discussion
 - ⋄ For a detailed discussion see List et al. (2016)¹
- Some methods
 - Bonferroni adjustment
 - False Discovery Rate (FDR)
 - $\diamond\;\;$ Though these don't adjust for dependence in hypotheses
 - See List et. al (2016)
 - · adjustments much more complicated for dependent hypotheses

MULTIPLE HYPOTHESIS TESTING

- ▶ Suppose you have three treatments $T \in \{0, 1, 2\}$
- When you estimate the ATEs you are now testing two hypotheses (assuming T=0 is the reference)
- ightharpoonup Testing multiple hypothesis at once leads to " α inflation"
 - \diamond P(make Type 1 error) = α
 - ♦ P(not make Type 1 error) = 1α
 - ♦ P(not make Type 1 error in m tests) = $(1 \alpha)^m$
 - \diamond P(make at least **one** Type 1 error in m tests) = $1 (1 \alpha)^m$

ADEC781001: Empirical Behavioral Economics

Experimental methods II

wer Analysis

MULTIPLE HYPOTHESIS TESTING BONFERRONI AND FDR ADJUSTMENTS

- Most conservative approach: Bonferonni correction
 - \diamond Reject H_0 if $p < \frac{\alpha}{m}$ where m is the number of hypotheses
 - assumes hypotheses are independent
 - \diamond problem: as m grows it leads to high Type 2 error (false negative) rate
 - i.e. power goes down
- ► False Discovery Rate (FDR)
 - basically a Bonferonni adjustment on ordered p-values
 - first order the p-values smallest to largest
 - \diamond then check if k^{th} ordered p-value greater than $\frac{\alpha}{m}$

ADEC781001: Empirical Behavioral Economics Experimental methods II 19 / 26 ADEC781001: Empirical Behavioral Economics Experimental methods II 20

¹List, John A., Azeem M. Shaikh, and Yang Xu. "Multiple hypothesis testing in experimental economics." Experimental Economics (2016): 1-21.

ower Analysis

Randomization

Power Analysis

TAKEAWAYS

- ▶ Power analysis generates suggested sample sizes under best-case scenarios
- Lots of tradeoffs to make
 - \diamond N, α , β , etc.
 - requires estimates of variance and treatment sizes, often difficult to obtain without pilot studies
- ▶ Overall: helpful to get you thinking about your design and analysis
 - Good to do many power calculations for different scenarios
- Other practical benefits
 - minimize cost of data collection
 - many grants require power calculations
- > P.S. Other software to calculate power
 - ♦ Stata: power
 - G*Power: http://www.psychologie.hhu.de/arbeitsgruppen/ allgemeine-psychologie-und-arbeitspsychologie/gpower.html

ADEC781001: Empirical Behavioral Economics

Experimental methods II

21 / 2

Power Analysis

APPROACHES TO RANDOMIZATION

- ► Randomization is the key to identification
 - as in identifying (and estimating) the ATE, a causal relationship
- Simplest case is a completely randomized design
 - draw a random sample from the subject pool
 - randomly assign subjects to control/treatment
- Pros: ensures no correlation between treatment assignment and subject characteristic
- ▶ Cons: sample sizes are random to each treatment so possibility for high variance
 - ♦ high variance ⇒ harder to identify ATE

RANDOMIZATION

ADEC781001: Empirical Behavioral Economics

Experimental methods I

Power Analysis

Randomization

FACTORIAL DESIGNS

- ▶ Assign pre-determined sample size to each treatment
 - e.g. each treatment has n subjects
- Example: 2x2 dictator game
 - low stakes (L) or high stakes (H)
 - communication (C) or no communication (NC)
 - ♦ 2x2 = 4 treatments (L-C, H-C, L-NC, H-NC)
 - ⋄ assign n subjects to each treatment
 - "full factorial design" because all treatment combinations are covered
 - allows you to estimate ATEs as well as interactions
 - e.g. average effect of L and interaction L-C
- ightharpoonup In general: factorial design requires 2^m trials for m treatments
- Make sure to randomize assignment to treatments
 - e.g. don't assign treatments (or roles within treatments) by order in which subjects arrive (since early arrival may be correlated with behavior in the game)

ADEC781001: Empirical Behavioral Economics Experimental methods II 23 / 26 ADEC781001: Empirical Behavioral Economics Experimental methods II 2

Power Analysis Randomizatio

BLOCK DESIGN

- $Y = \alpha_i + \beta T + \mathbf{X} \gamma + \varepsilon$
 - ⋄ T is treatment
 - ⋄ X are observable subject characteristics (e.g. gender)
- ► If goal is to remove role of **X** on treatment then randomize *within* (not between) "blocks"
- ▶ "Blocking factor" is source of variation not of primary interest
 - the variable on which "blocking" is applied is the blocking factor
 - e.g. block on gender to control for variation due to gender (and not treatment)

ADEC781001: Empirical Behavioral Economics

Experimental methods II

25.11

Power Analysis
Randomizat

WITHIN-SUBJECT DESIGN

- ► Extension of block design
 - assign same subject to multiple treatments
 - experimenter blocks on a single subject

$$Y = \alpha_i + \beta T + \mathbf{X} \gamma + \varepsilon$$

- $\diamond \ \alpha_i$ is subject-specific effect
- easier to estimate (and thus improve precision of ATE estimate) using within design
- ▶ Let β_{ws} be the ATE of the within design and β_{bs} the between design

$$\diamond V(\beta_{ws}) = V(\beta_{bs}) - \frac{2}{N}V(\alpha_i)$$

- $V(\cdot)$ is the variance
- \diamond If subjects are identical $V(\alpha_i) = 0$
 - no difference in within or between design
- \diamond If subjects are not identical $V(\alpha_i) \neq 0$
 - benefit of within design increases with $V(\alpha_i)$

ADEC781001: Empirical Behavioral Economics

Experimental methods II

06.106