8.1

Définition de la fonction logarithme népérien

Maths Spé terminale - JB Duthoit

On a vu que la fonction exponentielle est strictement croissante et continue sur \mathbb{R} . De plus, $\lim_{x\to +\infty}e^x=+\infty$ et $\lim_{x\to -\infty}e^x=0$.

D'après le corollaire du théorème des valeurs intermédiaire, quel que soit le réel k strictement positif, l'équation $e^x = k$ admet une solution unique α dans \mathbb{R} .

Définition

Soit k un réel strictement positif. On appelle logarithme népérien de k l'unique solution de l'équation $e^x = k$. Ce nombre est noté ln(k).

Définition

La fonction logarithme népérien est la fonction qui à tout $x \in]0; +\infty[$ associe le nombre ln(x).

Conséquence

Ainsi, $y = ln(x) \Leftrightarrow x = e^y$. Ainsi, notamment :

- $ln(1) = ... \text{ car } e^0 = 1$
- $ln(e) = ... car e^1 = e$

Remarque

🗥 Python utilise la notation log pour le logarithme népérien.

Propriété

Dans un repère orthonormé, la courbe de la fonction ln est symétrique à la courbe de la fonction exponentielle par rapport à la droite d'équation y=x

Propriété

La fonction f définie par f(x) = ln(x) est dérivable sur $]0; +\infty[$ et pour tout réel $x \in]0; +\infty[$, $f'(x) = \frac{1}{x}$.

Exercice 8.1

Montrer que la fonction logarithme népérien est concave sur $]0; +\infty[$.

Propriété

La fonction logarithme népérien est concave sur $]0; +\infty[$.

Propriété

- 1. La fonction ln est continue et strictement croissante sur $]0; +\infty[$.
- 2. $\forall x \in \mathbb{R}, ln(e^x) = x$.
- 3. $\forall x \in]0; +\infty[, e^{\ln(x)} = x.$
- 4. $\forall a \in]0; +\infty[, \forall b \in]0; +\infty[, a = b \Leftrightarrow ln(a) = ln(b)$
- 5. $\forall a \in]0; +\infty[, \forall b \in]0; +\infty[, a < b \Leftrightarrow ln(a) < ln(b)$

∠Démonstration 9- (Exigible) -

Calcul de la dérivée de la fonction logarithme népérien. Soit f la fonction logarithme népérien.

On suppose que la fonction f est dérivable sur $]0; +\infty[$, et on note f' sa dérivée. On considère la fonction g définie sur $]0; +\infty[$ par $g(x) = e^{f(x)}$.

- 1. Montrer que $\forall x \in]0; +\infty[, g(x) = x, \text{ et en déduire } g'(x).$
- 2. En utilisant $(v \circ u)' = (v' \circ u) \times u'$, donner une autre expression de g'(x).
- 3. Conclure

Savoir-Faire 8.32

SAVOIR RÉSOUDRE DES ÉQUATIONS OU INÉQUATION AVEC DES LOGARITHMES Déterminer les conditions d'existence des équations suivantes, puis les résoudre dans \mathbb{R} :

1. Un premier exemple corrigé, avec ln(2x+3) = ln(x)

Solution possible:

$$\ln(x)$$
et $\ln(2x+3)$ existent si et ssi $x>0$ et $2x+3>0$ si et ssi $x>0$ et $x>\frac{-3}{2}$ si et ssi $x>0$

De plus,

$$ln(x) = ln(2x+3) \Leftrightarrow x = 2x+3$$

Comme $-3 \notin]0; +\infty[$, l'équation n'admet pas de solution et $S=\emptyset$

2.
$$2ln(x) + 1 = 7$$
 4. $5ln(x) < 10$

4.
$$5ln(x) < 10$$

6.
$$e^{x-3} > 5$$

$$3. 3e^x + 3 = 9$$

3.
$$3e^x + 3 = 9$$
 5. $5 - 2ln(x) \ge 1$

Exercice 8.2

Déterminer les conditions d'existence des équations, puis les résoudre dans $\mathbb R$:

1.
$$ln(5x+1) = ln(x)$$

3.
$$3e^{2x+3} = e$$

$$2. \ 2ln(x) + 2 = 5$$

4.
$$4 - 2e^{x-4} > 0$$

Exercice 8.3

On considère les équations suivantes. Pour chacune d'elles, déterminer les conditions d'existence de cette équation, et la résoudre ensuite dans \mathbb{R} :

1.
$$ln(x^2 - 49) = 0$$

3.
$$e^{\frac{x}{x+2}} = 3$$

2.
$$ln(2x^2 - 7x + 6) = ln(10)$$

4.
$$ln(e^{2x} + 1) = 1$$

Exercice 8.4

On considère les inéquations suivantes. Pour chacune d'elles, déterminer les conditions d'existence de cette inéquation, et la résoudre ensuite dans \mathbb{R} :

1.
$$ln(x-3) > 1$$

4.
$$e^{x^2-1} \le -1$$

2.
$$e^{2-x} < 3$$

3.
$$ln(4x^2 - x) < ln(3x)$$

5.
$$e^{x^2-1} > 2$$

Exercice 8.5

On considère les équations ou inéquations suivantes. Résoudre chacune d'elles dans $\mathbb R$ en posant un changement de variable:

1.
$$(ln(x))^2 + 2ln(x) = 3$$
 en posant $X = ln(x)$
2. $5e^{4x} - 13e^{2x} - 6 = 0$ en posant $X = e^{2x}$
3. $(ln(x))^2 - 2ln(x) = 15$
4. $e^{2x} - 2e^x - 15 < 0$

3.
$$(ln(x))^2 - 2ln(x) = 15$$

2.
$$5e^{4x} - 13e^{2x} - 6 = 0$$
 en posant $X = e^{2x}$

$$4 e^{2x} - 2e^x - 15 < 0$$

Propriété

Soit u une fonction dérivable sur un intervalle I tel que $\forall x \in I, u(x) > 0$.

La fonction f définie sur I par f(x) = ln(u(x)) est dérivable sur I et $\forall x \in I$, $f'(x) = \frac{u'(x)}{u(x)}$.

Autrement dit, $(ln(u))' = \frac{u'}{u}$.

Savoir-Faire 8.33

SAVOIR ÉTUDIER UNE FONCTION AVEC LOGARITHMES

- 1. Étudier les variations de la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{ln(x)}{x}$
- 2. Soit f la fonction définie par $f(x) = ln\left(\frac{2x}{x-2}\right)$.
 - a) Quel est l'ensemble de définition de f?

b) Étudier les variation de f sur l'ensemble de définition trouvé précédemment.

Exercice 8.6

- 1. Étudier les variations de la fonction f définie sur $]0; +\infty[$ par f(x) = 2x + 3 ln(x)
- 2. Soit f la fonction définie par $f(x) = \ln\left(\frac{2x+3}{x-2}\right)$.
 - a) Quel est l'ensemble de définition de f?
 - b) Étudier les variation de f sur l'ensemble de définition trouvé précédemment.

• Exercice 8.7

- 1. Étudier les variations de la fonction f définie sur [1;11] par $f(x) = -0.5x^2 + 2x + 15ln(x)$
- 2. Étudier les variations de la fonction f définie sur \mathbb{R} par $f(x) = e^x(e^x 1)$.

Exercice 8.8

- 1. Étudier les variations de la fonction g définie sur $[0; +\infty]$ par $g(x) = x 1 + \ln(x)$
- 2. Calculer g(1) et en déduire le signe de g(x) sur $[0; +\infty]$
- 3. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{x-1}{x} \times ln(x)$.
 - a) Montrer que pour tout $x \in]0; +\infty[, f'(x) = \frac{g(x)}{x^2}$
 - b) En déduire les variations de \boldsymbol{f}

Exercice 8.9

Soit f la fonction définie sur $]0;+\infty]$ par $f(x)=\left(\ln(x)\right)^3+x$ et C_f sa courbe représentative.

- 1. Calculer f'(x)
- 2. Déterminer l'équation réduite de T_1 , tangente à C_f en 1.
- 3. Étudier la position relative de C_f et de T_1 .