241-A55-VM

Projet 1

Rapport Final

Mardi 11 avril 2023

Préparé par: Paul-Édouard Lainé

Table des matières

241-A	55-VM	1
1.	Introduction	4
1.1	Description du projet	4
2.	Justifications des solutions retenues	4
2.1	Dispositif de maintien en position	4
2.1.1	Dowel pin	4
2.1.2	Toggle clamp	4
Rôle	4	
2.1.3	Colonne	4
Rôle	4	
2.1.4	Matériau utilisé	5
2.2	Plaque du gabarit.	5
2.2.1	Rôle	5
2.2.2	Matériau utilisé	5
2.3	Bouton d'appui (Rest buttons).	5
2.3.1	Rôle	5
2.3.2	Matériau utilisé	5
2.3.3	Précision dimensionnelle	5
2.4	Canons	5
2.4.1	Rôle	5
2.4.2	Matériau utilisé	6
2.5	Liner	6
3.	Modélisation 3D Images	6
3.1	Vue isométrique	6
3.2	Vue de face	6
4.	Analyse de tolérances dimensionnelles et géométriques	7
4.1	Ajustements	7
4.2	Ajustements Des colonnes et trous :	7
4.2.1	Ajustement colonne-PS	7
4.2.2	Ajustement PI-colonne	8
4.2.3	Ajustement PI-butée	9

4.3	Tol Dim et Géométrique	10
4.3.1	Transfert de côte trou A axe X	10
4.3.2	Transfert de côte trou B axe X	10
4.3.3	Transfert de cote trou C axe X	10
4.3.4	Transfert de côte trou A axe Y	11
4.3.5	Transfert de côte trou B axe Y	11
4.3.6	Transfert de côte trou C axe Y	12
5.	Mise en Plans assemblage et détails	12
5.1	MEP de la pièce client PC	13
5.1.1	13	
5.2	Assemblage	13
5.3	MEP de la plaque inférieure	14
5.4	MEP de la plaque supérieure	15

1. Introduction

1.1 Description du projet

Ce gabarit permet de percer des trous sur une plaque:

2. Justifications des solutions retenues

2.1 Dispositif de maintien en position

2.1.1 Dowel pin

Rôle

Empêche la piece client de bouger en translation x et translation y

2.1.2 Toggle clamp

Rôle

Maintenir la pièce client en place

2.1.3 Colonne

Rôle

Garder la plaque supérieure et inférieure alignée l'un à l'autre

JLR

2.1.4 Matériau utilisé

Acier

2.2 Plaque du gabarit.

2.2.1 Rôle

Les plaques sont la structure du gabarit. On installe le reste des composantes du gabarit sur celles-ci.

2.2.2 Matériau utilisé

Acier

2.3 Bouton d'appui (Rest buttons).

2.3.1 Rôle

Garder une distance entre la plaque de gabarit et la pièce pour faciliter l'évacuation des copeaux.

2.3.2 Matériau utilisé

Acier

2.3.3 Précision dimensionnelle

2.4 Canons

2.4.1 Rôle

Le rôle d'un canon de perçage est de guider le foret de perçage.

JLR

2.4.2 Matériau utilisé

Acier allié avec un % de carbone élevé pour avoir une dureté HRC 53 pour pouvoir résister au frottement du forêt

2.5 Liner

2.5.1.1 Rôle

Il maintient en position et guide le canon amovible.

3. Modélisation 3D Images

3.1 Vue isométrique

JLR

3.2 Vue de face

4. Analyse de tolérances dimensionnelles et géométriques

- 4.1 Ajustements.
- 4.2 Ajustements Des colonnes et trous :
 - 4.2.1 Ajustement colonne-PS

L'ajustement entre la colonne et la plaque supérieure

4.2.2 Ajustement PI-colonne

L'ajustement entre la colonne et la plaque inférieu

			Ш			MH	LC4 ENTRE CO	LONNE ET PL	AQUE INF.	
COLONNE	=	0,7500	Ц							
TOL min	÷	0,001					CLEARANCE	HOLE	SHAFT	_PLA(
TOL MAX	=	0,003	Ш			min	0	0	-0,0002	
						MAX	0,0055	0,0035	0	_ X
12	=	0,75000								
S2Max	=	0,75300								
S2min	=	0,75100								
ITS2	=	0,00200			ITS	=	LCMax		LCmin	
					ITS	=	0,0055		0	
					ITS	=	0,00550			
S	=	S2	٠	S1						
SMax	=	S2Max	٠	S1min						
S1min	=	S2Max	٠	SMax						
S1min	=	0,75300	٠	0,00550						
S1min	=	0,74750			ITS	=	ITS1	+	ITS2	
					ITS1	=	ITS	•	ITS2	NTERESTRE AND
					ITS1	=	0,00550	•	0,00200	NTERFÉRENCE
S	=	\$2	٠	S1	ITS1	=	0,00350			
Smin	=	S2min	٠	S1Max						
S1Max	=	S2min	٠	Smin	ITS1	=	S1Max	•	S1min	
S1Max	=	0,75100	٠	0,00000	ITS1	=	0,75100	•	0,74750	
S1Max	=	0,75100			ITS1	=	0,00350			

4.2.3 Ajustement PI-butée

L'ajustement entre la plaque inférieure et les butées latérale

Ajustement PI/PS- rest button

L'ajustement entre les plaques et les rest button

4.3 Tol Dim et Géométrique.

4.3.1 Transfert de côte trou A axe X

Les calculs pour de transfert du trou A à partir de la colonne pour l'axe X

4.3.2 Transfert de côte trou B axe X

Les calculs pour le transfert de côte du trou B à partir de la colonne pour l'axe X

4.3.3 Transfert de cote trou C axe X

Les calculs pour le transfert de côte du trou C à partir de la colonne pour l'axe X

4.3.4 Transfert de côte trou A axe Y

Les calculs pour le transfert de côte du trou A à partir de la colonne pour l'axe Y

4.3.5 Transfert de côte trou B axe Y

Les calculs pour le transfert de côte du trou B à partir de la colonne pour l'axe Y

4.3.6 Transfert de côte trou C axe Y

Les calculs pour le transfert de côte du trou C à partir de la colonne pour l'axe Y

5. Mise en Plans assemblage et détails

5.1.1

5.2 Assemblage

5.3 MEP de la plaque inférieure

5.4 MEP de la plaque supérieure

