1. 기본 알고리즘

⑤ 속성② September 5, 2021 5:28 PM▲ 작성자웹 김현빈

기본 알고리즘: Selection, Bubble, Insertion

기본 알고리즘은 간단하지만 수행 시간이 느리다는 것이 단점이다. Selection, Bubble, Insertion의 공통점은 (n-1)번의 round로 매 라운드마다 값(숫자) 하나를 정렬된 순서 상의 제자리(정렬 순서에 맞는 위치)로 보내게 된다.

ex] A = [12, 4, 9, 10, 21, 3, 8, 0, 7, 9, 5]

Selection

Selection은 리스트 안에 있는 최댓값을 찾아 그 수를 맨 뒤로 보내는 방법이다.

```
def selection:
for i in A: # -> n(n-1)/2번 비교
# 1. find maximum
# 2. swap max and last number (except exchanged last number) -> (n-1)번 교환
```

이 알고리즘은 한번 씩 돌 때 마다 n-1번의 숫자를 비교한다. 따라서 (n-1) + (n-2) + ... + 1 = n(n-1)/2 번의 비교를 한다. 스왑은 한 번 돌 때마다 1번씩만 수행하니 전체 교환 횟수는 (n-1)이 된다.

⇒ n(n-1)번의 비교와 (n-1)번의 교환이 이루어진다.

Bubble

Bubble은 Selection처럼 최대 값을 맨 뒤로 보내는 방법은 같다. 하지만 Bubble은 Selection과 달리 맨 처음 리스트의 수와 그 다음 수를 시작으로 2개를 짝지어 비교하게 된다. 예를 들어, 리스트 A일 때, 12와 4를 비교한 후 12가 크니 4와 12를 스왑한다. 그다음 12와 9를 비교하게 된다. 그러면 12가 또 크니 다시 9와 12를 스왑한다. 이렇게 쭉 가게 되면마지막에는 가장 큰 수가 맨 오른쪽에 가게 된다.

```
def bubble:
for j in A: # 비교: n-1번
# 1. 2개 숫자씩 비교 -> 최악의 경우 매번 교환이 이루어짐: n(n-1)/2번의 비교
# 2. 최대값 -> 오른쪽으로 스왑: n(n-1)/2번의 교환
```

1. 기본 알고리즘 1

⇒ 전체 비교 횟수 = n(n-1)/2번, 교환 횟수: n(n-1)/2번이 된다.

최악의 경우에는 Selection알고리즘보다 교환 횟수가 많아 진다.

Insertion

Insertion 알고리즘은 삽입이라는 이름과 걸맞게 뒤에 있는 숫자들이 앞의 있는 숫자들 사이에 삽입되어야 하는 위치를 탐색하여 자신의 위치를 찾아 들어가는 것이다.

ex] B = [12,4,9,10,21,3,8,0,7,9,5]가 있을 때, 처음에는 12와 4를 비교한다. 12는 4 보다 크니 서로 스왑을 하게 된다. ⇒ B=[4,12,9,10,21,3,8,...,5]

비교: 1, 교환: 1번

그 다음 숫자인 9는 알맞게 정렬되어 있는 4와 12사이에 자신이 들어갈 자리를 찾게 된다. 12와 비교한 후 12 앞에 위치하게 되고, 4와 비교한 후 4 뒤에 위치하게 된다. \Rightarrow B = [4, 9, 12, ...,5]

비교: 2번, 교환: 1번(최악의 경우는 2번)

다음으로 10은 4, 9, 12와 비교하여 자신이 들어갈 자리를 찾는다.

비교: 3번, 교환: 최악의 경우 3번 but 여기서는 1번

⇒ 전체 비교 횟수 = n(n-1)/2번, 교환 횟수: n(n-1)/2번이 된다.

결국 기본 알고리즘 Selection, Bubble, Insertion의 비교 + 교환의 최악의 상황의 수행 시간은 O(n²)가 된다.

이 각각의 알고리즘들은 매 라운드마다, 최대값을 찾거나, 서로 스왑할 하거나, 자기자리를 찾을 때, 상수 개의 변수면 항상 수행이 가능하다.

따라서 리스트 만큼의 또 다른 리스트의 추가 메모리를 사용하지 않기 때문에 In-place **알고** 리즘이다.

입력의 순서대로 정렬 순서를 유지하는지?

Selection: Not-stable

Bubble, Insertion: stable알고리즘이다.

1. 기본 알고리즘 2