PROGETTO DI DATA SCIENCE LAB

Previsione del prezzo dell'energia nel mercato elettrico italiano

BORSOTTI MATTIA

PIANCONE ANDREA

PICHINI MARCELLO

PRESENTAZIONE DEL PROBLEMA

 DATI RELATIVI AL PREZZO DELL'ELETTRICITÀ NEL MERCATO ITALIANO.

• DATI DISPONIBILI: DATA, INTERVALLO ORARIO, PREZZO.

PERIODO DI RIFERIMENTO: TRIENNIO 2017-2018-2019

• OBIETTIVO: COSTRUIRE MODELLI PREDITTIVI DEL PREZZO DELL'ELETTRICITÀ NEL MERCATO ITALIANO.

Preprocessing

PREPROCESSING

CONVERSIONE

ACQUISIZIONE DATI

PREPROCESSING

DATA CLEANING

RIMOZIONE DELLE
FEATURES
SUPERFLUE

A CAUSA DEL CAMBIO
ORA LEGALE-ORA
SOLARE, ALCUNI GIORNI
HANNO 23 O 25
INTERVALLI

ELIMINATA LA 25-ESIMA ORA; REPLICATA LA 23-ESIMA ORA PER OTTENERE LA 24-ESIMA.

LA DATA E L'INTERVALLO
ORARIO SONO
AGGREGATE
PER COSTRUIRE
UN UNICO ATTRIBUTO
DI TIPO DATETIME.

FEATURES ENGINEERING

PER GESTIRE LA STAGIONALITÀ PRESENTE NELLA SERIE STORICA SI INTRODUCONO...

REGRESSORI SINUSOIDALI DUMMY GIORNO DELLA SETTIMANA

DUMMY GIORNO FESTIVO

PREPROCESSING

Risultato finale...

	Data	PUN	Giorno_Vacanza	Friday	Monday	Saturday	Sunday	Thursday	Tuesday	Wednesday	 sinu365.23
0	2017- 01-01 00:00:00	53.30	1	0	0	0	1	0	0	0	 0.248940
1	2017- 01-01 01:00:00	52.00	1	0	0	0	1	0	0	0	 -0.482206
2	2017- 01-01 02:00:00	51.00	1	0	0	0	1	0	0	0	 0.685111
3	2017- 01-01 03:00:00	47.27	1	0	0	0	1	0	0	0	 -0.844881
4	2017- 01-01 04:00:00	45.49	1	0	0	0	1	0	0	0	 0.951454

ALLA VARIABILE PUN È STATA APPLICATA LA TRASFORMAZIONE DI BOX COX CON LAMBDA = 0.688 **TRAIN MAE: 5.698**

TRAIN MAPE: 10.86%

TEST MAE: 2.727

TEST MAPE: 5.737%

LSTM (LONG SHORT-TERM MEMORY)

PARAMETRI

4 LSTM LAYER CON DROPOUT PER

LA REGOLARIZZAZIONE.

BATCH SIZE: 1024

EPOCHE: 100

TEMPO DI APPRENDIMENTO: 83

MINUTI

TRAIN MAE: 6.005

TRAIN MAPE: 3.432%

TEST MAE: 2.309

TEST MAPE: 7.014%

ELASTIC NET

ALPHA = 0.6 L1_RATIO = 0.4 TEMPO DI APPRENDIMENTO: 30 MINUTI

PERFORMANCE

TRAIN MAE: 6.248

TRAIN MAPE: 12.323%

TEST MAE: 3.883

TEST MAPE: 15.563%

SUPPORT VECTOR REGRESSION

KERNEL: LINEARE

C = 5

 $GAMMA = 1E^-7$

EPSILON = 1.5

TRAIN MAE: 5.840

TRAIN MAPE: 11.39%

TEST MAE: 3.473

TEST MAPE: 18.14%

MULTILAYER PERCEPTRON

3 LAYER CON DROPOUT PER LA

REGOLARIZZAZIONE. BATCH SIZE: 2048

EPOCHE: 100

TEMPO DI APPRENDIMENTO: 30

MINUTI

PERFORMANCE

TRAIN MAE: 2.00

TRAIN MAPE: 9.30%

TEST MAE: 2.40

TEST MAPE: 9.30%

SIMPLE RECCURENT NEURAL NETWORK

4 LAYER CON DROPOUT PER LA REGOLARIZZAZIONE.

BATCH SIZE: 1024

EPOCHE: 100

TEMPO DI APPRENDIMENTO:

20 MINUTI

PERFORMANCE

TRAIN MAE: 5.822

TRAIN MAPE: 3.358%

TEST MAE: 2.580

TEST MAPE: 7.025%

GATED RECURRENT UNIT (GRU)

4 LAYER GRU CON DROPOUT PER LA REGOLARIZZAZIONE.

BATCH SIZE: 2048

EPOCHE: 50

TEMPO DI APPRENDIMENTO: 40

MINUTI

PERFORMANCE

TRAIN MAE: 6.635

TRAIN MAPE: 3.528%

TEST MAE: 2.702

TEST MAPE: 7.064%

- SI OSSERVA COME, IN GENERALE I MODELLI CONSIGLIATI DALLA LETTERATURA PER IL TRATTAMENTO DI SERIE STORICHE (ARIMA E RETI NEURALI) OTTENGANO RISULTATI MIGLIORI RISPETTO AGLI ALTRI MODELLI.
- FRA LE RETI NEURALI RICORRENTI, SI OSSERVA CHE IN TERMINI DI PERFORMANCE IL MIGLIOR MODELLO È IL LSTM, MA È IL PIÙ LENTO AD ADDESTRARSI. IL SRNN È QUELLO CHE OTTIENE IL MIGLIOR TRADEOFF TRA EFFICACIA ED EFFICIENZA.
- IL PRINCIPALI LIMITI INCONTRATI CHE HANNO "LIMITATO" LA BONTÀ DEI MODELLI SONO I LIMITI DI TEMPO E DI POTENZA COMPUTAZIONALE A DISPOSIZIONE.

RIFERIMENTI

- HYNDMAN, R.J., & ATHANASOPOULOS, G. (2018) FORECASTING:
 PRINCIPLES AND PRACTICE, 2ND EDITION, OTEXTS: MELBOURNE,
 AUSTRALIA.
- CHOLLET, F., 2018. DEEP LEARNING WITH PYTHON.
- HTTPS://WWW.KAGGLE.COM/THEBROWNVIKING20/INTRO-TO-RECURRENT-NEURAL-NETWORKS-LSTM-GRU

GRAZIE PER LATTENZIONE!