

Cálculo II

Ingeniería Civil

Prof. Víctor Aros Quinán

Segundo Semestre 2021

Clase Nº28: Cálculo II Ejercitación sobre Series Numéricas

1. Calcule, si existe, la suma de la siguientes series:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{(n+4)(n+5)}$$

(b)
$$\sum_{n=4}^{\infty} \sqrt{n+1} - \sqrt{n}$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{4^{n-2}} + \left(\frac{2}{3}\right)^{n-2}$$

$$(d)\sum_{n=1}^{3}4$$

2. Muestre que si $\lim_{n\to+\infty} f(n+1) = L$, donde L es un número real, entonces

$$\sum_{n=1}^{\infty} [f(n+1) - f(n)] = L - f(1)$$

3. Determine si las siguientes series numéricas son convergentes o divergentes:

(a)
$$\sum_{n=1}^{\infty} \frac{4n-1}{1+7k}$$
 (b) $\sum_{n=1}^{\infty} \frac{n}{n^3+1}$ (c) $\sum_{n=1}^{\infty} \frac{\ln(n+2)}{n}$

(d)
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt[3]{8n^5 + 7}}$$
 (e) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{2n-1}}{n 3^n}$ (f) $\sum_{n=1}^{\infty} \frac{n^n}{n!}$

(g)
$$\sum_{n=1}^{\infty} \frac{\operatorname{Arctan}(n)}{1+n^2}$$
 (h) $\sum_{n=1}^{\infty} \frac{3(-1)^{n+1}n}{4n+1}$ (i) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$

4. Determinar para que valores de $p \in \mathbb{R}$ la serie converge

$$\sum_{n=1}^{\infty} \frac{1}{n \ln(n) [\ln(\ln(n))]^p}$$

5. Utilice el criterio de Leibniz para mostrar que la siguiente serie es convergente:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n!}{3 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \cdots (2n+1)}$$

6. Determine el intervalo y radio de convergencia de las siguientes series de potencias.

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{2^n(n+1)^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{(x-5)^n}{n3^n}$ (c) $\sum_{n=1}^{\infty} n!(x+10)^n$

7. Muestre que:

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}, \text{ con } |x| < 1$$

- 8. Determine una expresión en series de potencias para la función $f(x) = \frac{1}{1+x}$ centrada en 3. HINT: en el denominador puedes sumar un 0 y hacer lo siguiente 1+x-3+3=4+(x-3)
- 9. Exprese mediante series de potencias las funciones

$$g(x) = \frac{2}{x+1}$$
 y $h(x) = \frac{1}{x-1}$

y luego deduzca la serie de potencias que representa a la función $f(x) = \frac{3x-1}{x^2-1}$. HINT: sumar las funciones puede ayudar.

- 10. Considere la función $f(x) = \frac{1}{2+x}$.
 - (a) Determine la serie de potencias que representa a f e indique su radio de convergencia.
 - (b) Determine la serie de potencias que representa a f' e indique su radio de convergencia.
 - (c) Use el resultado obtenido para calcular la suma de

$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{2^n}$$

- 11. Determine la serie de Maclaurin de $f(x) = \cos(x)$ y demuestre que la serie converge a cos(x) para todo $x \in \mathbb{R}$.
- 12. Determine la serie de Maclaurin de $f(x) = \sin(x^2)$ y luego aproxima mediante tres términos de la serie el valor de la siguiente integral

$$\int_0^1 \sin(x^2) \ dx$$

13. Use la serie de Maclaurin de la función seno y arcotangente, para determinar el valor de los siguientes límites:

(a)
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$

(a)
$$\lim_{x \to 0} \frac{\sin(x)}{x}$$
 (b) $\lim_{x \to 0} \frac{x - \operatorname{Arctan}(x)}{x^3}$

Series de Taylor y Maclaurin

Series de Maclaurin	Intervalos de convergencia
$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$	$(-\infty,\infty)$
$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$	$(-\infty,\infty)$
$\operatorname{sen} x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$	$(-\infty,\infty)$
$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} x^{2k+1}$	[-1, 1]
$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$	$(-\infty,\infty)$
$\operatorname{senh} x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$	$(-\infty,\infty)$
$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1} x^{k+1}$	[-1, 1]