Statistics 141SL Exercise Four Professor Esfandiari Winter 2014

PART ONE

Contingency table for two categorical variables Endorsing women in public office = outcome Level of education = Predictor

>table1<-table(femaleoffice,edu)
> table1 # print table

edu

femaleoffice	Four year	Graduate	HS or less	Two year college
Yes	322	260	398	378
No	62	49	217	141

> margin.table(table1,1)

femaleoffice

Yes No 1358 469

> margin.table(table1,2)

edu

Four year college Graduate HS or less two year college 384 309 615 519

Endorsing women for	Four year	Graduate	High school	Two year	Column total
public office	college		or less	college	
Yes	322	260	398	378	1358
No	62	49	217	141	469
Column total	384	309	615	519	1827

PART Two

Calculation and interpretation of odds ratios resulting from the contingency table given in part one.

The odds of participants with a four-year degree to endorse women in public office

```
> (322/384)/(62/384)

[1] 5.193548 = odds

> log(5.193548)

[1] 1.647417= log of the odds
```

(This is the intercept; four-year college was coded as the reference group).

The odds of endorsing women for public office for participants with a graduate degree compared to those with a four-year college degree.

```
> (260/49)/(322/62)
[1] 1.021676 = odds
> log(1.021767)
[1] 0.02153348 = log of odds
This is not statistically significant
```

The odds of endorsing women for public office with a high school degree compared to those with a graduate degree.

```
> (398/217)/(322/62)
[1] 0.35315 = odds
> log(0.35315)
[1] -1.040862 = log of odds
```

The odds of endorsing women for public office participants with a two-year college degree compared to those with a graduate degree.

```
> (378/141)/(322/62)

[1] 0.5161887 = odds

log(0.5161877)

[1] -0.6612848 = log of odds
```

PART THREE

> m1<-glm(femaleoffice~edu, family="binomial") > summary(m1)

Call:

 $glm(formula = femaleoffice \sim edu, family = "binomial")$

Deviance Residuals:

Min 1Q Median 3Q Max -1.9191 -1.4434 0.5935 0.7963 0.9329

Coefficients:

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	1.64742	0.13869	11.879	< 2e-16 ***
edugraduate	0.02144	0.20854	0.103	0.918098
eduHS or less	-1.04086	0.16234	-6.411	1.44e-10 ***
edutwo year college	-0.66128	0.17021	-3.885	0.000102 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2081.3 on 1826 degrees of freedom Residual deviance: 2015.4 on 1823 degrees of freedom

(423 observations deleted due to missingness)

AIC: 2023.4

 $> \exp(\operatorname{coef}(m1))$

(Intercept) edugraduate eduHS or less edutwo year college 5.1935484 1.0216758 0.3531500 0.5161887

NOTICE THAT...

- THE ESTIMATES FROM THE REGRESSION MODEL ARE THE LOG OF THE ODDS CALCULATED BASED ON THE TABLE OF FREQUENCIES.
- WHEN THE LOG OF THE ODDS ARE EXPONENTIATED, WE GET THE ODDS RATIOS CALCULATED FROM THE TABLE OF FREQUENCIES.
- AS YOU NOTICE TWO OUT OF THREE ODDS RATIOS ARE LESS THAN ONE. IN THE FOLLOWING, WE WILL DISCUSS THE BEST WAY TO INTERPRET THEM.

PART FOUR

Interpreting odds ratios less than one

Method one: When you are interpreting an odds ratio (or any ratio for that matter), it is often helpful to look at how much it deviates from 1. So, for example, an odds ratio of 0.75 means that in one group the outcome is 25% less likely. An odds ratio of 1.33 means that in one group the outcome is 33% more likely."

Method two: When we encounter an odds ratio that is less than one, it can only be interpreted as follows: "The odds of the first group experiencing an event is less than the odds of the second group experiencing it". In practice, when dealing with the odds ratio less than 1, we can calculate and interpret the inverse. For example, suppose we find the odds ratio to be 0.25. This implies that the odds of the first group experiencing an event compared to the odds of the second group experiencing it is 0.25. The inverse is equal to 1/0.25 = 4. We could then say the odds for the second group to experience the event compared to the first group is four.

These are the results we got

Outcome variable: Endorsing vs. not endorsing women for public office **Predictor**: Level of education (graduate, four-year college, two-year college, and high school).

	Odds of endorsing women for public office	Interpretation one	Interpretation two	Interpretation three Recommended over method two
Four- year college	5.1935484 P=0.000	For participants, with a four-year college degree, the odds of endorsing women for public office vs. not endorsing them is 5.2		
Graduate vs. four- year college	1.021676 (P=0.92)	Participants with four-year college degree and graduate degree are equally likely to endorse having women in public office		
Two- year vs. four- year college	0.5161887 P=0.000	The odds of endorsing women in public office is less for participants with two-year than those with four-year college graduates.	The participants with a two-year college degree are 48% less likely to endorse women in public office than those with a four-year college degree.	1/0.5161887= 1.937276 The odds of endorsing women for public office is 1.93 times higher for participants with four-year college degree compared to those with two-year college degrees. (322/62)/(378/141) [1] 1.937276
High school vs. four- year college	0.3531500 P=0.000	The odds of endorsing women in public office is less for participants with high school degree than those with four-year college degrees.	The participants with a high school degree are 65% less likely to endorse women in public office than those with a four-year college degree.	1/0.3531500 2.831658 The odds of endorsing women for public office is 2.83 times higher for participants with four-year college degree compared to those with high school degree. > (322/62)/(398/217) [1] 2.831658

PART FIVE

Another potential and interesting variable for recommending women for public office could be discrimination against women. We would expect the participants who do not endorse having women in public office to have a higher score on discrimination. We can examine this hypothesis by conducting a two-sample test of the mean.

> t.test(discrimination~femaleoffice)

data: discrimination by femaleoffice t = 8.2695, df = 726.507, p-value = 6.401e-16 alternative hypothesis: true difference in means is not equal

to 0

95 percent confidence interval:

6.560748 10.645695

sample estimates:

Mean for discrimination against women in group who do not endorse women in public office = 52.12646

Mean for discrimination against women in group who do not endorse women in public office = 43.52323

Conclusion: On average participants who do not endorse women for public office score higher on discrimination against women.

> m2<-glm(femaleoffice~discrimination, family="binomial") > summary(m2)

Coefficients:

Estimate Std. Error z value Pr(>|z|)(Intercept) 2.293826 0.174330 13.158 < 2e-16 *****discrimination** -0.026676 0.003305 -8.071 6.97e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1856.9 on 1603 degrees of freedom Residual deviance: 1786.8 on 1602 degrees of freedom

(646 observations deleted due to missingness)

AIC: 1790.8

> exp(-0.026676) [1] 0.9736767 > exp(-0.026676*10) [1] 0.7658569

Interpretation. If we increase the score on discrimination against women ten points, the odds of endorsing women in public office decreases by 24%. (1-0.76).

> m3<-glm(femaleoffice~edu+discrimination,family="binomial") > summary(m3)

Deviance Residuals:

Min 1Q Median 3Q Max -2.3368 -1.1502 0.6287 0.8241 1.3925

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	2.728137	0.219578	12.424	< 2e-16 ***
edugraduate	-0.065180	0.217954	-0.299	0.764898
eduHS or less	-0.936560	0.173512	-5.398	6.75e-08 ***
edutwo year college	-0.680482	0.179918	-3.782	0.000155 ***
discrimination	-0.024270	0.003347	-7.251	4.13e-13 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1852.3 on 1599 degrees of freedom Residual deviance: 1738.6 on 1595 degrees of freedom

(650 observations deleted due to missingness)

AIC: 1748.6

> exp(coef(m3))

(Intercept)	edugraduate	eduHS or less	edutwo year college	discrimination
15.3043442	0.9368986	0.3919740	0.5063726	0.9760220 It

Interpretation of the coefficients:

If we partial out the effect of discrimination against women..,

- The odds of recommending women for public office is similar for participants with four-year college degree and those with graduate degree.
- 1/0.39 = 2.56:The odds of recommending women for public office is 2.56 times larger for participants with a four-year college degree than those with a high school education or less.
- 1/0.51= 1.96: The odds of recommending women for public office is 1.96 times larger for participants with a four-year college degree than those with a two-year college degree.

If we partial out the effect of level of education, and if we increase discrimination against women ten points, the odds of recommending women for public office decreases by 22%.

exp(-0.024270*10)
[1] 0.784506

PART SIX

Given the following outputs, answer the following questions.

- a) What are the dependent and independent variables and how were they measured (see codebook pages 12- 16)
- b) Using output one below, show how you can calculate odds of endorsing women to deal with social issues for urban compared to rural communities.
- c) What does output two show?
- d) What does output three show?
- e) What does output four show?
- f) Interpret the odds ratios given for the different predictors in output four WITHIN CONTEXT.

OUTPUT ONE

> table(communitytype)

communitytype

R S U 445 986 814

➤ table(representpublicr)

representpublicr

men women 384 621

> table(representpublicr,communitytype)

representpublicr	communitytype		
	R	S	U
men	102	148	133
women	108	273	239

OUTPUT TWO

> chisq.test(representpublicr,communitytype)

Pearson's Chi-squared test

data: representpublic and communitytype X-squared = 12.1681, df = 2, p-value = 0.002279

OUTPUT THREE

> t.test(leadership~representpublicr)

Welch Two Sample t-test

data: leadership by representpublicr

t = -4.1925, df = 385.392, p-value = 3.425e-05

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-11.250453 -4.067064

sample estimates:

mean in group men mean in group women

39.47562 47.13438

OUTPUT FOUR

> m6<-glm(representpublicr~leadership+communitytype,family="binomial") > summary(m6)

Deviance Residuals:

Min 1Q Median 3Q Max -1.9616 -1.2524 0.7890 0.9997 1.4261

Coefficients:

Estimate	Std. Error	z value	Pr(> z)
-1.067735	0.339659	-3.144	0.00167 **
0.023320	0.005819	4.007	6.14e-05 ***
0.575974	0.268545	2.145	0.03197 *
0.668372	0.279160	2.394	0.01666 *
	0.023320 0.575974	-1.067735 0.339659 0.023320 0.005819 0.575974 0.268545	-1.067735 0.339659 -3.144 0.023320 0.005819 4.007 0.575974 0.268545 2.145

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 573.26 on 426 degrees of freedom Residual deviance: 549.87 on 423 degrees of freedom (1823 observations deleted due to missingness)

AIC: 557.87

$> \exp(\operatorname{coef}(\mathbf{m6}))$

(Intercept) leadership communitytypeS communitytypeU 0.3437863 1.0235942 1.7788630 1.9510593 > exp(0.023320 *10) [1] 1.262634

Exercise to be done for week eight.

Do this as a group and present the results to the class in week eight.

Using the subset of sex discrimination data set and the codebook posted on week seven, conduct a logistic regression with two qualitative and one quantitative variable. Interpret the coefficients of the resulting model within context. If you like, you can also try interaction between the two qualitative variables as well.

Code book for the subset of sex discrimination data

edu

Level of education

- a) Graduate
- b) Four-year college
- c) Two-year college
- d) High school or less

race

- a) White
- b) Black
- c) Others

citizen

- a) US citizen
- b) Not US citizen

USborn

- a) US born
- b) Not US born

boyorgirl

If you could have only one child what would you want?

- a) Boy
- b) Girl
- c) Either

son

Do you have a son?

- a) Yes
- b) No

daughter

Do you have a daughter?

- a) Yes
- b) No

leadership

High scores indicate endorsing women in leadership positions

lifesatisfacion

High scores indicate satisfaction with life

Discrimination

High scores means participant is pro discrimination toward women

Publicoffice

High scores indicate respondent endorses having women in public office

happywithlife

Score on life satisfaction is categorized above and below median

femaleoffice

Score on endorsing having women in public office is categorized above and below median

Femaledisc

Score on discrimination against women is categorized above and below median

femaleleader

Score on endorsing having women in the position of leadership is categorized into below and above median

Census region

- a) Midwest
- b) South
- c) North east
- d) West

Community type

- a) Suburban
- b) Rural
- c) Urban

Language

- a) English
- b) Spanish

gender

- a) Female
- b) Male

age

Party

- a) Republican
- b) Democrat

Partyln

As of today, do you lean more toward the Republican or the Democratic party?

- a) Republican
- b) Democratic
- c) Do not know

ideology

- a) Conservative
- b) Very conservative

popdensity

(population density)

- a) High
- b) Low

Standingup

Who is more likely to stand up?

- a) Men
- b) Women
- c) No difference

keepgovhonest

Who is more likely to keep government honest?

- a) Men
- b) Women
- c) No difference

standingup

Who is more likely to stand up?

- a) Men
- b) Women
- c) No difference

compromise

Who is more likely to compromise?

- a) Men
- b) Women
- c) No difference

publicsaftey

Who is more likely to keep public safety?

- a) Men
- b) Women
- c) No difference

dealsocialissue

Who is more likely to deal with social issues?

- a) Men
- b) Women
- c) No difference

representpublic

Who can represent the public better?

- a) Men
- b) Women
- c) No difference

Nationalsecurity

Who is better at dealing with issues related to national security?

- a) Men
- b) Women
- c) No difference

The above variables were recoded and no difference was set equal to (NA)

Standingupr

Who is more likely to stand up?

- a) Men
- b) Women

keepgovhonest

Who is more likely to keep government honest?

- a) Men
- b) Women

Standingup1

Who is more likely to stand up?

- a) Men
- b) Women

compromiser

Who is more likely to compromise?

- a) Men
- b) Women

publicsafteyr

Who is more likely to keep public safety?

- a) Men
- b) Women

dealsocialissuer

Who is more likely to deal with social issues?

- a) Men
- b) Women

representpublicr

Who can represent the public better?

- a) Men
- b) Women

Nationalsecurityr

Who is better at dealing with issues related to national security?

- a) Men
- b) Women

It can be shown that...

$$\log\left(\frac{\theta(x)}{1-\theta(x)}\right) = \beta_0 + \beta_1 x$$

$$\log\left(\frac{\theta(x)}{1-\theta(x)}\right)$$

₩

Is known as logit

$$\left(\frac{\theta(x)}{1-\theta(x)}\right)$$

Is known as odds

Odds of success or odds in favor of success

$$\left(\frac{\theta}{1-\theta}\right) = \left(\frac{P(success)}{1-P(success)}\right)$$

Odds of failure or odds against success

$$\left(\frac{1-\theta}{\theta}\right) = \left(\frac{1-P(success)}{P(success)}\right)$$

$$\log(\frac{\boldsymbol{\theta}_{x}^{'}}{(1-\boldsymbol{\theta}_{x}^{'})} = \boldsymbol{\beta}_{0}^{'} + \boldsymbol{\beta}_{1}^{'} x$$