## Homework 3 Cong Zhang

## Cong Zhang

1. **Textbook problem 2.1** Listed below are values of survival time in years for 6 males and 6 females from the *WHAS100* study. Right-censored times are denoted by a "+" as a superscript.

```
Males: 1.2, 3.4, 5.0<sup>+</sup>, 5.1, 6.1, 7.1
Females: 0.4, 1.2, 4.3, 4.9, 5.0, 5.1<sup>+</sup>
```

Using these data, compute the following without a software package:

- a. (2 pts) The Kaplan-Meier estimate of the survival function for each gender.
- b. (2 pts) Pointwise 95 % confidence intervals for the survival functions estimated in problem (1a).
- c. (2 pts) Pointwise 95 % confidence interval estimates of the 50th percentile of the survival time distribution for each gender.
- d. (2 pts) The estimated mean survival time for each gender using all available times, upto 7.1.
- e. (2 pts) A graph of the estimated survival functions for each gender computed in problem (1a) along with the point wise and overall 95 % limits computed in problem (1b).

## Answer

The Kaplan-Meier estimate and 95 % confidence intervals of the survival function for each gender were shown in Table 1&2 and Figure 1. 95% confidence intervals were computed using log-log approaches.

95 % confidence interval estimates of the 50th percentile of the survival time and estimated mean survival time were shown in Table 3.

```
> library(dplyr)
> library(tibble)
> library(tidyverse)
> library(knitr)
> library(kableExtra)
> fit.surv <- function(dat){</pre>
      dat %>% mutate(n.risk = c(N, N - cumsum(event+censored))[-7] ) %>%
          filter(censored == 0) %>%
+
+
          mutate(km_s = (n.risk - event)/n.risk, S.km= cumprod(km_s)) %>%
          mutate(kk = event/(n.risk*(n.risk - event)),
                 std_err = sqrt((S.km)^2*cumsum(kk)),
                 logsd = sqrt(1/(-log(S.km))^2*cumsum(kk)),
                 lowerCI = log(-log(S.km)) + qt(0.975, Inf)*logsd,
                 upperCI = log(-log(S.km)) - qt(0.975, Inf)*logsd) %>%
          mutate(lowerCI = ifelse(exp(-exp(lowerCI))<0, 0, exp(-exp(lowerCI))),</pre>
                 upperCI = ifelse(exp(-exp(upperCI))>1, 1, exp(-exp(upperCI)) )) %>%
          select( time, n.risk, event, S.km, std_err, lowerCI, upperCI )
 m \leftarrow tibble(time = c(1.2, 3.4, 5.0, 5.1, 6.1, 7.1),
                     event = c(1, 1, 0, 1, 1, 1),
                      censored = c(0, 0, 1, 0, 0, 0)
> male <- fit.surv(m)</pre>
> kable(round(male, 3), caption = "KM estimator for male")
```

Table 1: KM estimator for male

| time | n.risk | event | S.km  | $\mathrm{std}\_\mathrm{err}$ | lowerCI | upperCI |
|------|--------|-------|-------|------------------------------|---------|---------|
| 1.2  | 6      | 1     | 0.833 | 0.152                        | 0.273   | 0.975   |
| 3.4  | 5      | 1     | 0.667 | 0.192                        | 0.195   | 0.904   |
| 5.1  | 3      | 1     | 0.444 | 0.222                        | 0.066   | 0.785   |
| 6.1  | 2      | 1     | 0.222 | 0.192                        | 0.010   | 0.615   |
| 7.1  | 1      | 1     | 0.000 | NaN                          | NA      | NA      |

Table 2: KM estimator for female

| $\overline{\text{time}}$ | n.risk | event | S.km  | std_err | lowerCI | upperCI |
|--------------------------|--------|-------|-------|---------|---------|---------|
| 0.4                      | 6      | 1     | 0.833 | 0.152   | 0.273   | 0.975   |
| 1.2                      | 5      | 1     | 0.667 | 0.192   | 0.195   | 0.904   |
| 4.3                      | 4      | 1     | 0.500 | 0.204   | 0.111   | 0.804   |
| 4.9                      | 3      | 1     | 0.333 | 0.192   | 0.046   | 0.676   |
| 5.0                      | 2      | 1     | 0.167 | 0.152   | 0.008   | 0.517   |

```
> get.median <- function(dat)</pre>
+ {
      dat \% mutate(t50 = min(time[S.km <= 0.5]),
                      u50 = max(time[S.km >= (0.5 + 0.1)]),
                      150 = \min(\text{time}[S.km \leftarrow (0.5 - 0.1)]),
                      f50 = (S.km[time == u50] - S.km[time == 150])/(150 - u50),
                      se50 = std_err[time == t50]/f50,
                      lower50 = t50 - qt(0.975, Inf)*se50,
                      upper50 = t50 + qt(0.975, Inf)*se50,
                      prod = \max(cumsum(c(1, S.km)[-6]*diff(c(0, time))))
      ) %>%
          filter(time == 1.2) %>%
          select(t50, lower50, upper50, prod)
+ }
> t <- round(rbind(get.median(male), get.median(female)), 3)
> colnames(t) <- c("Median", "LowerCL", "UpperCL", "E(MeanSurvTime)")
> rownames(t) <- c("Male", "Female")</pre>
> kable(t,caption = "Median survival time")
```

Table 3: Median survival time

|        | Median | LowerCL | UpperCL | E(MeanSurvTime) |
|--------|--------|---------|---------|-----------------|
| Male   | 5.1    | 2.454   | 7.746   | 4.833           |
| Female | 4.3    | -0.141  | 8.741   | 3.467           |



Figure 1: Survival curves and 95% CI

```
> library(ggplot2)
> data <- bind_rows(list(male = male, female = female), .id = "gender") %>%
+ add_row(gender = "male",time = 0, n.risk = 0, S.km = 1, .before = 1) %>%
+ add_row(gender = "female",time = 0, n.risk = 0, S.km = 1, .before = 1)
> ggplot(data = data, aes(colour = gender, shape=gender)) +
+ geom_step(aes(x = time, y = S.km))+
+ facet_wrap(gender ~ ., scale = "free") +
+ scale_y_continuous(breaks=seq(0,1,by=0.1)) +
+ geom_ribbon(aes(x = time, ymax = upperCI, ymin = lowerCI, fill = gender),
+ linetype = 0,alpha = 0.10) +
+ ylab("Survival")
```