Оглавление

3.5. Колебания прямоугольной мембраны	. 1
5. Ур эллиптич вида	. 2
5.1 Задачи, приводящие к ур-ю Лапласа	. 2
4.2. Реш задачи о тепл-ти в ∞стержне методом Фурье	. 2
3.6 Колеб круглой мемб	. 2
5.3 Общие св-ва гармонич. ф-ций	. 3
5.4 Краевые задачи для ур-ия Лапласа	. 3
5.5 Решение ур Лапласа методом разд перем	. 4
5.2 Частные решения ур-я Лапласа	. 4
3.1.2 Продольные колебания стержня	. 4
3.1.3 Поперечные колебания мембраны	. 5
3.2 Гр и нач усл	. 5
3.3 Метод распространяющихся волн	. 5
3.4 Метод разделения переменных	. 5
Физическая интерпретация решения	. 6
ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ СТРУНЫ	. 6
4.3 Решение задачи о теплопроводности для конечного отрезка	. 6
4.3.1. Однородная задача	. 6
4.3.2 Неоднородная задача	. 6
4.4 Ортогональные криволинейные системы координат	. 7
4.5 Распространение тепла в бесконечном цилиндре	. 7
4.1 Линейная задача о распространении тепла	. 8
4.1.2 Начальные и краевые условия	. 8
4.1.3 Пространственная задача теплопроводности	. 8
4.1.4 Начальные и краевые условия	
4.1.5. Задачи диффузии	. 9
3.5. Колебания прямоугольной мембраны	
Р! мембр., имеющую в покое форму прямоуг, огр прямыми $x=0,x=l,y=0,y=m$. Ур-ие колеб. мембр. $u_{tt}=a^2(u_{xx}+u_{yy})$ (108) нач. $u(x,y,0)=f(x,y)$, (109), $u_t(x,y,0)=F(x,y)$ (110) гр усл $u(0,y,t)=0$, $u(l,y,t)=0$, $u(x,0,t)=0$, $u(x,m,t)=0$. (111) Решаем методом Фурье. Найдем реш в виде произведения 3 ф-ций: $u(x,y,t)=X(x)Y(y)T(t)$. (112) Из (111) следует $X(0)=0$, $X(l)=0$,	/СЛ
переменные: $\frac{T''}{a^2T} = \frac{X''}{X} + \frac{Y''}{Y}$	
$\frac{X''}{X} = -\lambda^2, \frac{Y''}{Y} = -\mu^2, \frac{T''}{T} = -(\lambda^2 + \mu^2)$ (114). Для ф-ции X(x) получаем $X'' + \lambda^2 X = 0, X(0) = X(l) = 0$ (115) , для Y (y): $Y'' + \mu^2 Y = 0, Y(0) = Y(m) = 0$ (116), для T(t): $T'' + a^2(\lambda^2 + \mu^2)T = 0$ (117) . Реш-ие (115) имеет вид	
$X(x) = C1\cos\lambda x + C2\sin\lambda x$, (118). Реш-ие (116) имеет вид $Y(y) = D1\cos\mu y + D2\sin\mu y$. (119). Из краевого усл-ия $X(0) = X(l) = 0$ находим $C1 = 0$ и $\lambda l = \pi k$, где k – целое число. Аналогично, из $Y(0) = Y(m) = 0$ находим $D1 = 0$ и $\mu m = \pi n$, где n – целое число.	=
В рез-те получаем собств. числа и собств. ϕ -ции $\lambda_k = \frac{\pi k}{l}$, $X_k(x) = \sin\frac{\pi kx}{l}$ (120), $\mu_n = \frac{\pi n}{m}$, $Y_n(y) = \sin\frac{\pi ny}{m}$ 121). Ур-е для ϕ -ции T (t) примет в	вид:
$T^{\prime\prime\prime}+\pi^2a^2(rac{k^2}{l^2}+rac{n^2}{m^2})T(t)=0$ (122). Реш-е этого ур-я, зависящее от 2 параметров k и n , имеет вид: $T_{kn}(t)=a_{kn}{ m cos}\omega_{kn}t+b_{kn}{ m sin}\omega_{kn}t$ (123).	
Здесь $\omega_{kn}=\pi a\sqrt{\frac{k^2}{l^2}+\frac{n^2}{m^2}}$ (124)- собств. частоты колеб мембр. Т.о., ЧР ур-я колеб.прямоуг. мембраны имеет вид $u_{kn}(x,y,t)=(a_{kn}{\rm cos}\omega_{kn}t)$	+

. $b_{kn}\mathrm{sin}\omega_{kn}t)\mathrm{sin}\lambda_kxsin\mu_ny$ (125) Можно его привести : $u_{kn}(x,y,t)=F_{kn}\mathrm{sin}(\omega_{kn}t+\varphi_{kn})\mathrm{sin}\lambda_kxsin\mu_ny$ (126) где $F_{kn}=\sqrt{a_{kn}^2+b_{kn}^2}$, $tan\varphi_{kn}=\frac{1}{2}$

 $rac{a_{kn}}{L}$. Видно, что каждая т-ка мембраны с коорд. (x,y) совершает простое гармонич. колеб. с частотой ω_{kn} и амплитудой $F_{kn}{
m sin}\lambda_k x sin\mu_n y$ Все т-ки колеблются в одной фазе. Точки, координаты которых удовл-ют ур-ям $\sin\!\lambda_k x = 1, \sin\!\mu_n y = 1$ будут колебаться с наиб. амплитудой наз-ся пучностями. Линии, т-ки которых не колеблются (амплитуда равна нулю), наз-ся узловыми линиями. Общ. реш-ие задачи о колеб. мембр. представляется как сумма частных $u(x,y,t) = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} (a_{kn} \cos \omega_{kn} t + b_{kn} \sin \omega_{kn} t) \sin \lambda_k x \sin \mu_n y$ (127) Неизв. коэф-ты а и b ищутся из нач. усл.: $u(x,y,0) = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} a_{kn} \sin \frac{\pi k}{l} x sin \frac{\pi n}{m} y = f(x,y)$ (128) $u_t(x,y,0) = \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \omega_{kn} b_{kn} \sin \frac{\pi k}{l} x sin \frac{\pi n}{m} y = F(x,y)$ (129) Формулы (128) и (129) предс-ют собой разложение ф-ии 2 перем. в двойной ряд Фурье. Коэф-ты этого разложения находятся аналогично коэф-там однократного ряда и имеют вид $a_{kn} = \frac{4}{lm} \int_0^l \int_0^m f(x,y) \sin \frac{\pi k}{l} x sin \frac{\pi n}{m} y dx dy$ (130) $b_{kn} = \frac{4}{lm\omega_{kn}} \int_0^l \int_0^m F(x,y) \sin \frac{\pi k}{l} x sin \frac{\pi n}{m} y dx dy$ (131)

5. Ур эллиптич вида

К ур-ям эллиптич. типа обычно приводит p!-е стац процессов различной физ. природы. Чаще всего встречается ур-е Лапласа: $\Delta u=0$. Гармонич ф-ции – ф-ции, кот. непрерывны в некоторой обл. вместе со своими производными до 2-го порядка включительно, и уд. в этой обл. vp-ю Лапласа.

Оператор Лапласа в декартовых координатах имеет вид: $\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$ (246)

- в цилиндрических координатах: $\Delta u = \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial u}{\partial r}) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \varphi^2} + \frac{\partial^2 u}{\partial z^2}$ (247)
 в сферических координатах: $\Delta u = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial u}{\partial r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial u}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \varphi^2}$ (248)

5.1 Задачи, приводящие к ур-ю Лапласа

- 1) Стационарное тепловое поле
- В нестац. случае температура уд. ур-ю теплопроводности $u_t = a^2 \Delta u$
- В стац. случае, когда распределение температуры не меняется с течением времени u=u(x,y,z), приходим к ур-ю Лапласа $\Delta u=0$
- В случае наличия тепловых источников получаем ур-е Пуассона $\Delta u = -g$
- 2) Электрическое поле неподвижных зарядов

Напряженность эл. поля уд. ур-ю, выражающему Th Гаусса в дифф. форме: $divE = 4\pi \rho$, где $\rho(x,y,z)$ - объемная плотность зарядов. Напряженность поля связана со скалярным потенциалом $E=-grad \varphi$. В рез-те получаем: $(-grad \varphi)=-\Delta \varphi=4\pi
ho$ или $\Delta \varphi=-4\pi
ho$ (т.е. получили ур-ие Пуассона). В случае отсутствия объемных зарядов приходим к ур-ю Лапласа: $\Delta \phi = 0$.

4.2. Реш задачи о тепл-ти в ∞стержне методом Фурье

Рассм теплопр-й стержень, боковая пов-ть которого теплоизолир. Ур теплопр-ти имеет вид $\frac{\delta u}{\delta t} = a^2 \frac{\delta^2 u}{\delta x^2}$ (178). Стержень считают бесконечным. В рез-те имеем только нач усл u(x,0)=f(x) (179), что соотв задаче Коши. Заменим $\tau=a^2t$, тогда $\frac{\delta u}{\delta t}=\frac{\delta u \delta \tau}{\delta \tau \delta t}=a^2\frac{\delta u}{\delta \tau}$ и ур принимает вид $\frac{\delta u}{\delta \tau}=\frac{\delta^2 u}{\delta x^2}$ (180), нач усл u(x,0)=f(x). Будем искать реш в виде $u(x,\tau)=X(x)T(\tau)$. Подст его в (180): $\frac{T'(\tau)}{T(\tau)}=\frac{X''(x)}{X(x)}$ (181). Т.к. левая часть этого ур зависит только от τ , а правая – только от x, то рав-во возм только если левая и правая части равны константе: $\frac{T'(\tau)}{T(\tau)}$ $rac{X''(x)}{X(x)}=eta(182)$. В рез для T(au)получаем $T(au)=\mathcal{C}e^{eta au}$. Т.к. темп стержня должна ост ∞ при $t o\infty$, то eta<0, т.е. мы можем положить eta=0X(x) X(x) X(x) X(x) X(x) принимает вид $X''(x) + \lambda^2 X(x) = 0$ и его о.р. $X(x) = D\cos\lambda x + E\sin\lambda x$. Тогда ч.р. ур (180) принимает вид $X''(x) + \lambda^2 X(x) = 0$ и его о.р. $X(x) = D\cos\lambda x + E\sin\lambda x$. Тогда ч.р. ур (180) принимает вид $U(x,\tau) = (A\cos\lambda x + B\sin\lambda x)e^{-\lambda^2\tau}$ (183). В общем случае в (183) $A = A(\lambda)$, $B = B(\lambda)$ и семейство ч.р. ур (180) имеет вид $U_{\lambda}(x,\tau) = 0$ 0. $(A(\lambda)\cos\lambda x + B(\lambda)\sin\lambda x)e^{-\lambda^2\tau}$, $-\infty < \lambda < \infty(184)$. О.Р. ур (180) записывается как суперп ч.р. $u(x,\tau) = \int_{-\infty}^{\infty} (A(\lambda)\cos\lambda x + B(\lambda)\sin\lambda x)e^{-\lambda^2\tau}$ $B(\lambda){
m sin}\lambda x)e^{-\lambda^2 au}d\lambda (185)$. Неизв $A(\lambda)$ и $B(\lambda)$ подбир так, чтобы удовл нач усл: u(x,0)=f(x)кот примет вид $\int_{-\infty}^{\infty}(A(\lambda){
m cos}\lambda x+a)$ $B(\lambda)\sin\lambda x)d\lambda=f(x)(186)$. Рав-во (186) — разлож f(x)в инт-л Фурье, кот в общ сл имеет вид: $f(x)=rac{1}{2\pi}\int_{-\infty}^{\infty}d\lambda\int_{-\infty}^{\infty}f(\xi)\cos\lambda(\xi-1)d\xi$ $x)d\xi(187)$ или с учетом $\cos\lambda(\xi-x)=\cos\lambda\xi\cos\lambda x+\sin\lambda\xi\sin\lambda x(188)$ получаем $f(x)=\int_{-\infty}^{\infty}\{(\frac{1}{2\pi}\int_{-\infty}^{\infty}f(\xi)\cos\lambda\xi d\xi)\cos\lambda x+\sin\lambda\xi\sin\lambda x(188)\}$ $(\frac{1}{2\pi}\int_{-\infty}^{\infty}f(\xi)\sin\lambda\xi d\xi)\sin\lambda x\}d\lambda$ (189). Сравнивая (186) и (189), найдем $A(\lambda)=\frac{1}{2\pi}\int_{-\infty}^{\infty}f(\xi)\cos\lambda\xi d\xi$, $B(\lambda)=\frac{1}{2\pi}\int_{-\infty}^{\infty}f(\xi)\sin\lambda\xi d\xi$ (190). Подст (190) в (185): $u(x,\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\lambda \int_{-\infty}^{\infty} f(\xi) \cos\lambda(x-\xi) e^{-\lambda^2 \tau} d\xi$ (191). Т.о. получили реш задачи о тепл-ти в ∞ стержне. Для физ интерп изменим порядок интегр-я: $u(x,\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\xi) \{ \int_{-\infty}^{\infty} e^{-\lambda^2 \tau} \cos \lambda (x-\xi) d\lambda \} d\xi$ (192). Преобр внутр инт-л. Для этого заменим $\lambda = \frac{\sigma}{\sqrt{\tau}}$ и $\frac{x-\xi}{\sqrt{\tau}} = \omega$: $\int_{-\infty}^{\infty} e^{-\lambda^2 \tau} \cos \lambda (x-\xi) d\lambda = \frac{1}{\sqrt{\tau}} \int_{-\infty}^{\infty} e^{-\sigma^2} \cos \sigma \omega d\sigma = \frac{1}{\sqrt{\tau}} I(\omega).$ Для вычисления $I(\omega) = \int_{-\infty}^{\infty} e^{-\sigma^2} \cos \sigma \omega d\sigma$ найдем его пр-ю: $I'(\omega) = \int_{-\infty}^{\infty} e^{-\lambda^2 \tau} \cos \lambda (x-\xi) d\lambda$ $-\int_{-\infty}^{\infty}e^{-\sigma^2}\sigma\mathrm{sin}\sigma\omega d\sigma\text{ и проинт по частям: }I'(\omega)=-\int_{-\infty}^{\infty}e^{-\sigma^2}\sigma\mathrm{sin}\sigma\omega d\sigma=\frac{1}{2}e^{-\sigma^2}\mathrm{sin}\sigma\omega|_{-\infty}^{\infty}-\frac{1}{2}\omega\int_{-\infty}^{\infty}e^{-\sigma^2}\mathrm{cos}\sigma\omega d\sigma=\frac{-1}{2}\omega I(\omega)\text{. Т.о. для }I'(\omega)=-\int_{-\infty}^{\infty}e^{-\sigma^2}\sigma\mathrm{sin}\sigma\omega d\sigma=\frac{1}{2}e^{-\sigma^2}\mathrm{sin}\sigma\omega|_{-\infty}^{\infty}-\frac{1}{2}\omega\int_{-\infty}^{\infty}e^{-\sigma^2}\mathrm{cos}\sigma\omega d\sigma=\frac{-1}{2}\omega I(\omega)\text{. Т.о. для }I'(\omega)=-\int_{-\infty}^{\infty}e^{-\sigma^2}\sigma\mathrm{sin}\sigma\omega d\sigma=\frac{1}{2}e^{-\sigma^2}\mathrm{sin}\sigma\omega d\sigma=\frac{-1}{2}\omega\int_{-\infty}^{\infty}e^{-\sigma^2}\mathrm{cos}\sigma\omega d\sigma=\frac{-1}{2}\omega I(\omega)$ $I(\omega)$ получаем ДУ $I'(\omega)=rac{-1}{2}\omega I(\omega)rac{I'(\omega)}{I(\omega)}=rac{-\omega}{2}$. Отсюда $\ln I(\omega)=rac{-\omega^2}{4}+\ln \mathcal{C}$, $I(\omega)=\mathcal{C}e^{-\omega^2/4}$. Т.к. $I(0)=\int_{-\infty}^{\infty}e^{-\sigma^2}d\sigma=-\sqrt{\pi}$ (инт-л Пуассона), то $I(\omega) = \sqrt{\pi}e^{-\omega^2/4}$ и возвр к старым перем: $\int_{-\infty}^{\infty}e^{-\lambda^2\tau}\cos\lambda(x-\xi)d\lambda = \frac{1}{\sqrt{\tau}}I(\omega) = \sqrt{\frac{\pi}{\tau}}e^{-(x-\xi)^2/4\tau}$. Окончательно $u(x,\tau) = \frac{1}{\sqrt{\tau}}e^{-(x-\xi)^2/4\tau}$. $\frac{1}{2\sqrt{\pi\tau}}\int_{-\infty}^{\infty}f(\xi)e^{-(x-\xi)^2/4\tau}d\xi$ (193). Подставим $\tau=a^2t$ в (193): $u(x,\tau)=\frac{1}{2a\sqrt{\pi t}}\int_{-\infty}^{\infty}f(\xi)e^{-(x-\xi)^2/4a^2t}d\xi$ (194). Ф-я $G(x,\xi,t)=\frac{1}{2a\sqrt{\pi t}}e^{-(x-\xi)^2/4a^2t}$ явл фунд реш-м ур-я теплопр-ти. Физич тепл импульсом наз нач распр темп-ры $f_{\xi}(x)=\{u_0,|x-x_0|<arepsilon;0|x-x_0|>arepsilon$ (196). В этом сл реш имеет вид: $u(x,t)=\frac{2\varepsilon u_0}{2a\sqrt{\pi t}}e^{-(x-\xi)^2/4a^2t}$ Точеч тепл импульс соотв $\varepsilon \to 0$. Кол-во теплоты, перед стержню, пропорц $2\varepsilon u_0$ и при $\varepsilon \to 0$ должно ост $<\infty$. Пусть $2arepsilon u_0=1$, тогда $u_0\to\infty$ при $arepsilon\to0$. Т.о. точеч тепл импульс мб записан в виде ф-ции Дирака: $f(x)=\delta(x-x_0)$. Подст в (194): $u(x,t)=rac{1}{2a\sqrt{\pi t}}e^{-(x-\xi)^2/4a^2t}$ (199) и получ фунд реш $G(x,\xi,t)$ при $\xi=x_0$. Т.о. можем утв, что $G(x,\xi,t-t_0)=rac{1}{2a\sqrt{\pi t-t_0}}e^{-(x-\xi)^2/4a^2(t-t_0)}$ (200) дает темп в $(\cdot)x$ в момент врем t, если в нач момент врем $t=t_0$ в $(\cdot)\xi$ возн точеч тепл импульс. Ф-я $G(x,\xi,t-t_0)$ наз ф-цией Грина, с ее пом реш зап в виде $u(x,t)=\int_{-\infty}^{\infty}f(\xi)G(x,\xi,t)d\xi(201)$.

3.6 Колеб круглой мемб

Применим метод реш зад о колеб прямоу мембр. Пусть мембр в покое занимает круг радиуса R с центром в начале коорд. Введем полярные координаты r и φ : $x = rcos \varphi$, $y = rsin \varphi$

Заменим $u(x,y,t) \to u(r,\varphi,t)$ ур колеб мембр приводится к виду $u_{tt}=a^2(u_{rr}+\frac{1}{r}u_r+\frac{1}{r^2}u_{\varphi\varphi})$. Гр усл и Нач усл $u(R,\varphi,t)=0$ $u(r,\varphi,0)=f(r,\varphi)u_t(r,\varphi,0)=F(r,\varphi)$. Р! осесимм колеб мембр, т.е. нач усл не зав от угла φ . Очевидно, что в любой момент времени скорости и отклонения точек не будут зависеть от угла, поэтому наша задача упрощается: $u_{tt}=a^2(u_{rr}+rac{1}{r}u_r)$. Гр усл u(R,t)=0 и нач усл u(r,0)=0 $f(r)u_t(r,0)=F(r)$. Будем искать реш в виде u(r,t)=U(r)T(t). Из гр усл находим U(R)=0. Тогда $\frac{T''}{a^2T}=\frac{U''+U'/r}{U}=-\lambda^2$. В рез имеем: $T''+\frac{1}{2}$ $\lambda^2 a^2 T = 0U'' + \frac{1}{r}U' + \lambda^2 U = 0$ в последнем заменим $\xi=\lambda r$: $U'=rac{dU}{dr}=rac{dU}{d\xi}rac{d\xi}{dr}=\lambdarac{dU}{d\xi}U''=rac{dU'}{dr}=rac{dU'}{d\xi}rac{d\xi}{dr}=\lambdarac{dU'}{d\xi}=\lambda^2rac{d^2U}{d\xi^2}$. Получим: $rac{d^2U}{d\xi^2}+rac{1}{\xi}rac{dU}{d\xi}+U=0$ Получившееся ур явл **частным сл ур Бесселя:** $y'' + \frac{1}{x}y' + (1 - \frac{k^2}{x^2})y = 0$. Реш-ми последнего ур при заданном k наз бесселевыми ф-ми порядка k. Найдем реш ур (138). Очевидно, что оно имеет особую точку при x=0, поэтому его реш будем искать в виде степенного ряда. Для этого преобр его к виду: $x^2y'' + xy' + (x^2 - k^2)y = 0$ Записываем ряд: $y(x) = x^{\gamma}(a_0 + a_1x + a_2x^2 + \dots + a_lx^l + \dots)$ Подставляя его в предыдущее и приравнивая коэфф при каждой степени х нулю, получим систему ур: $a_0(\gamma^2-k^2)=0$; ... $a_l[(\gamma-l)^2-k^2]=0$ $0;\; l=2,3 \ldots$ Предполагая, что $a_0 \neq 0$, находим $\gamma^2 - k^2 = 0 \Rightarrow \gamma = \pm k$. Из второго ур находим a1=0 и преобр l-ур в системе: $(\gamma + l + k)$ $k)(\gamma+l-k)a_l+a_{l-2}=0$ и получаем рекуррентную формулу: $a_l=rac{-a_{l-2}}{(\gamma+l+k)(\gamma+l-k)}$. С учетом a1=0 делаем вывод что все нечетные коэфф x=0. при y=-k реш обращается в ∞ при x=0. Р! случай y=k. Для четных коэфф получаем: $a_{2m}=-a_{2m-2}rac{1}{2^2m(m+k)}$. Применяя ее m-1раз, получим: $a_{2m}=(-1)^m\frac{a_0}{2^{2m}m!(k+1)(k+2)(k+3)...(k+m)}$. Полагая $a_0=\frac{1}{2^kk!}$ получим $a_{2m}=(-1)^m\frac{1}{2^{2m+k}m!(m+k)!}$. В результате, полученное решение $y(x)\equiv J_k(x)$ наз ф-ей Бесселя первого рода k —ого порядка и имеет вид: $J_k(x)=\sum_{m=0}^{\infty}(-1)^m\frac{1}{m!(m+k)!}(\frac{x}{2})^{2m+k}$. При $\gamma=-k$ имеем $J_{-k}(x) = \sum_{m=k}^{\infty} (-1)^m rac{1}{m!(m-k)!} (rac{x}{2})^{2m-k}$. Заменим $m=k+n, n=0,1,2\dots$; $J_{-k}(x) = \sum_{n=0}^{\infty} (-1)^{k+n} rac{1}{(k+n)!(n)!} \Big(rac{x}{2}\Big)^{2n+k} = (-1)^k J_k(x)$. В сл круглой мемб реш-м ур явл ф-я Бесселя первого рода нулевого порядка $U(\xi)=U(\lambda r)=J_0(\lambda r)$ из гр усл u(R,t)=0 имеем U(R)=0 и находим собств числа задачи $J_0(\lambda R)=0$ которыми явл величины $\lambda_k=rac{\mu_k}{R}$ где μ_k нули ф. Бесселя. Теперь решаем ур для Т: $T_k(t) = a_k \cos \lambda_k at + b_k \sin \lambda_k at$ и получаем собств ф-ии: $u_k(r,t) = (a_k \cos \lambda_k at + b_k \sin \lambda_k at) J_0(\lambda_k r)$. Сумма собств ф-ий: $u(r,t) = a_k \cos \lambda_k at + b_k \sin \lambda_k at$ $\sum_{k=1}^{\infty}(a_k\mathrm{cos}\lambda_kat+b_k\mathrm{sin}\lambda_kat)J_0(\lambda_kr)$. Коэфф подбираем чтобы удовл н.у.: $u(r,0)=\sum_{k=1}^{\infty}a_kJ_0\left(\mu_krac{r}{R}
ight)=f(r)$; $u_t(r,0)=\int_{-\infty}^{\infty}a_kJ_0\left(\mu_krac{r}{R}
ight)=f(r)$ $\sum_{k=1}^{\infty} rac{a\mu_k}{R} b_k J_0(\mu_k rac{r}{R}) = F(r)$ В посл. равенствах заменим $x = rac{r}{R}$: $\sum_{k=1}^{\infty} a_k J_0(\mu_k x) = f(Rx)$ и $rac{a}{R} \sum_{k=1}^{\infty} \mu_k b_k J_0(\mu_k x) = F(Rx)$. Lля нахожд коэфф исп усл ортогональности ϕ -ий $J_0(\mu_k x)$: $\int_0^1 x J_0(\mu_k x) J_0(\mu_n x) dx = \delta_{kn} \frac{1}{2} J_0^2(\mu_k)$ а также соотн $J_0'(x) = -J_1(x)$. Теперь находим: $a_k = -J_1(x)$ $\frac{2}{J_1^2(\mu_k)} \int_0^1 x J_0(\mu_k x) f(Rx) dx \; ; \; b_k = \frac{2R}{a\mu_k J_1^2(\mu_k)} \int_0^1 x J_0(\mu_k x) F(Rx) dx$

5.3 Общие св-ва гармонич. ф-ций

Интегральная Th Остроградского-Гаусса имеет вид: $\iiint_T div A d au = \iint_S A d\sigma$ (251)

где T — некоторый объем, ограниченный достаточно гладкой поверхностью S, $d\sigma = nd\sigma$, где n — вектор внешней нормали к поверхности S

 $A=Pi+Qj+Rk, divA=rac{\partial P}{\partial x}+rac{\partial Q}{\partial y}+rac{\partial R}{\partial z}$ Если положить $P=urac{\partial v}{\partial x}, Q=urac{\partial v}{\partial y}, R=urac{\partial v}{\partial z}$, где u=u(x,y,z), v=v(x,y,z)— ф-ции, непрерывные вместе со своими 1ми производными

внутри T + S, и имеющие непрер. 2е производные внутри T , то из (251) получаем первую формулу Грина: $\iiint_T u\Delta v d\tau = \iint_S u \frac{dv}{dn} d\sigma$ —

 $\iint_T \left(\frac{\partial u \partial v}{\partial x \partial x} + \frac{\partial u \partial v}{\partial y} \frac{\partial v}{\partial y} + \frac{\partial u \partial v}{\partial z} \frac{\partial v}{\partial z} \right) (252)$, где $\frac{\partial v}{\partial n} = ngradv$ — производная по направлению внешней нормали. Формулу Грина можно переписать с учетом $gradugradv = \nabla u \nabla v = \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial z} \frac{\partial v}{\partial z}$

в результате получаем: $\iiint_T u\Delta v d\tau = \iint_S u \frac{\partial v}{\partial n} d\sigma - \int_T \nabla u \nabla v d\tau$ (253), меняя местами и и v, получаем: $\iiint_T v\Delta u d\tau = \iint_S v \frac{\partial u}{\partial n} d\sigma - \int_T v\Delta v d\tau$ $\iiint_T \nabla v \nabla u d au$ (254). Для того, чтобы получить 2ю формулу Грина, вычтем из (253) формулу (254): $\iiint_T (u \Delta v - v \Delta u) d au = \iint_S (u \frac{\partial v}{\partial n} - v \Delta u) d au$ $v\frac{\partial u}{\partial n}$) $d\sigma$ (255).

Основные св-ва гармонич. ф-ций:

- **1.** Если v- функция, гармоническая в области T , ограниченной поверхностью S, то $\iint_{S_1} \frac{\partial v}{\partial n} d\sigma = 0$ (256), где S1 любая замкнутая поверхность, целиком лежащая в области T . Т.к. v– гармоническая, то $\Delta v = 0$. Полагая, кроме того, в первой формуле Грина u = 1 получаем (256).
- **2.** Th среднего значения. Если ϕ -ция u(x,y,z)=u(M)гармонична в некоторой обл. Т , а M_0 произвольная точка, лежащая внутри обл. Т , то $u(M_0) = rac{1}{4\pi a^2} \iint_{S(a)} \! u d\sigma$ (257), где S(a) — сфера радиуса а с центром в точке M_0 , целиком лежащая в обл. Т .
- 3. Принцип максимального значения. Если ϕ -ция u(M), определенная и непрерывная в замкнутой обл. T+S, уд. ур-ю $\Delta u=0$ внутри \top , то тах и min значения ϕ -ции u(M) достигаются на поверхности S. Следствие: если ϕ -ции u и v непрерывны в обл. T+S, гармоничны в \top и $u\leq 1$ v на S, то $u \leq v$ всюду внутри T.

5.4 Краевые задачи для ур-ия Лапласа

1. Внутр. задача Дирихле формулируется так: Требуется найти ф-цию u, кот.: a) определена и непрерывна в замкнутой обл. T+S, b) уд. внутри обл. T ур-ию $\Delta u = 0$, c) принимает на границе S заданные значения f.

!-ть реш-я первой внутр-й краевой задачи для ур-ия Лапласа доказывается сл. образом. Пусть сущ. две различные ф-ции u_1 и u_2 , являющиеся реш-ми задачи. Очевидно, что ф-ция $u=u_1-u_2$ также будет гармонической в T , но при этом $u|_S=0$. Т.к. ф-ция и должна принимать max и min значение на S, то получаем, что $u \equiv 0$.

- **2.** Внеш. краевая задача Дирихле формулируется так. Требуется найти ϕ -цию u, кот.: a) $\Delta u=0$ в неогр. обл. T, b) непрер. всюду, включая поверхность S, c) принимает на границе S заданные значения f, d) $u(M) \to 0$ при $M \to \infty$. !-ть реш-я внеш. задачи Дирихле доказывается аналогично внутренней.
- 3. Внутр. задача Неймана формулир. так: Требуется найти ф-цию u, кот.: а) определена и непрерывна в замкнутой обл. T+S, b) уд. внутри обл. Т ур-ию $\Delta u=0$, c) уд. на границе S усл.: $\frac{\partial u}{\partial n}|_S=f$. Решение внутр. задачи Неймана определяется с точностью до произвольной постоянной. Для док-ва предположим, что у нас есть две ф-ции u_1 и u_2 , являющ. реш-ми нашей краевой задачи. Рассмотрим ф-цию $u=u_1-u_2$, для нее получаем $\Delta u=0$ и $\frac{\partial u}{\partial n}|_S=0$. Полагая в 1й формуле Грина u=v и с учетом 2х последних соотнош., получаем $\iiint_T ((\frac{\partial u}{\partial x})^2+(\frac{\partial u}{\partial y})^2+(\frac{\partial u}{\partial y})^2)d\tau=0$. Отсюда в силу непрер. ф-ции и ее 1х производных находим $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=\frac{\partial u}{\partial z}=0$, отсюда u=const. 4. Внеш. задача Неймана формулируется так: Требуется найти ф-цию u, кот.: а) $\Delta u=0$ в неогранич. обл. T , b) непрерывна всюду, включая
- 4. Внеш. задача Неймана формулируется так: Требуется найти ф-цию u, кот.: а) $\Delta u = 0$ в неогранич. обл. Т , b) непрерывна всюду, включая поверхность S, c)удовлетворяет на границе S условию: $\frac{\partial u}{\partial n}|_S = f$, d) $u(M) \to 0$ при $M \to \infty$. Единственность реш-я внеш. задачи Неймана докся аналогично внутр.

5.5 Решение ур Лапласа методом разд перем

Р! краевую задачу для круга, кот. формулир. так: найти ф-цию и, уд. ур-ию $\Delta u=0$ внутри круга, и граничному условиюu=f на границе круга, гдеf - заданная ф-ция. Такая задача носит название внутр. задачи Дирихле на плоскости. Р! также внеш. задачу. В полярных коорд. наше ур-ие будет иметь вид: $\Delta u=\frac{1}{r}\frac{\partial}{\partial r}(r\frac{\partial u}{\partial r})+\frac{1}{r^2}\frac{\partial^2 u}{\partial \varphi^2}=0$ (258). Будем искать реш в виде: $u(r,\varphi)=R(r)\Phi(\varphi)$. Подставляя в ур, получаем $r\frac{d(rdR/dr)}{Rdr}=-\frac{d^2\varphi}{\Phi d\varphi^2}$. В рез. получаем 2 ур-я: $\Phi''+\lambda\Phi=0$ (259), $r\frac{d}{dr}(r\frac{dR}{dr})-\lambda R=0$ (260). Реш-е 1го имеет вид: $\Phi(\varphi)=Acos\sqrt{\lambda\varphi}+B\sin\sqrt{\lambda\varphi}$. Из однозначности Φ -ции $u(r,\varphi)=u(r,\varphi)$ получаем усл. периодичности: $\Phi(\varphi)=Acos\sqrt{\lambda\varphi}+B\sin\sqrt{\lambda\varphi}$. Из однозначности Φ -ции $u(r,\varphi)=u(r,\varphi)$ получаем усл. периодичности: $\Phi(\varphi)=Acos\sqrt{\lambda\varphi}+B\sin n\varphi$. Ур-е на Φ -цию в примет вид: $r^2R''+rR'-n^2R=0$. Будем искать его реш-е в виде: $R=Cr^\alpha$. Подставляя, получаем: $\alpha^2-n^2=0\Rightarrow \alpha=\pm n$ и в рез-те $R(r)=Cr^n+Dr^{-n}$. В случ. внутр. задачи мы должны положить D=0, а в случ. внеш. C=0. Т. о., мы нашли частные реш-я нашей задачи $u_n(r,\varphi)=r^n(A_ncosn\varphi+B_nsinn\varphi), r\leq a$ (261) и $u_n(r,\varphi)=\frac{1}{r^n}(A_ncosn\varphi+B_nsinn\varphi), r\geq a$ (262). Сумма частн. реш-й: внутр $u(r,\varphi)=\sum_{n=0}^\infty r^n(A_ncosn\varphi+B_nsinn\varphi)$ (263), внеш $u(r,\varphi)=\sum_{n=0}^\infty \frac{1}{r^n}(A_ncosn\varphi+B_nsinn\varphi)$ (264). Для нахожд. неизв коэфф-в исп гр усл. $u(a,\varphi)=\sum_{n=0}^\infty a^n(A_ncosn\varphi+B_nsinn\varphi)=f(265)$. Разложим функцию $f(\varphi)$ в ряд Фурье: $f(\varphi)=\frac{a_0}{2}+\sum_{n=1}^\infty (\alpha_ncosn\varphi+\beta_nsinn\varphi)$ (266), где $a_0=\frac{1}{r}\int_{-\pi}^\pi f(\psi)d\psi$, $a_0=\frac{1}{r}\int_{-\pi}^\pi f(\psi)cosn\psi$ для внутр. задачи: $a_0=\frac{a_0}{2}$, $a_0=\frac{a_0}{2}$

5.2 Частные решения ур-я Лапласа

Рассмотрим реш-я ур-я Лапласа, обладающие сферической или цилиндрической симметрией, т.е. зависящие только от одной переменной г. В сферич. случае u=u(r)ур-е Лапласа будет иметь вид: $\frac{d}{dr}(r^2\frac{dv}{dr})=0$

Интегрируя последнее ур-е получаем: $u = \frac{A}{r} + B$, где A и B – произвольные постоянные. Если A = 1 и B = 0, то получим фундаментальное реше ур-я Лапласа в пространстве: $u = \frac{1}{r}(249)$

В цилиндрич. случае u = u(r) ур-е Лапласа будет иметь вид: $\frac{1}{r}\frac{d}{dr}(r\frac{du}{dr})=0$

Интегрируя его, получаем: u = Alnr + B, где A и B – произв. пост. Если A = -1 и B = 0, то получим фундаментальн. реш-е ур-я Лапласа на плоскости: $u = \ln \frac{1}{r}$ (250)

3 Уравнения гиперболического типа

3.1 Основные задачи

Р! струну, колеб в одной пл-ти. Для описан процесса колеб ввод ф-ия u(x,t) — вертикальное смещ струны, так что u=u(x,t) — ур струны в данный мом. В нашей модели струна — гибкая упруг нить, что означ, что напряж в струне всегда направл по касательной к струне. Мы будем р!-ть мал колеб струны. В этом приближении можно показ, что сила натяж струны не зав от x и t, т.е. $T(x)=T_0=const$ Для получ ур-я мал колеб струн составим ее ур-е движ Р! элемент струны от х до $x+\Delta x$ и запишем для него ур-е движ в проекции на вертик ось : $Tsin\alpha|_{x+\Delta x}-Tsin\alpha|_x+F(x,t)\Delta x=\rho(x)\Delta xu_{tt}$:Т.к. мы р! мал колеб, то мож пренебречь велич высшего порядка малости по сравн с $tan\alpha=u_x$ В этом приближ $\sin\alpha=\frac{tan\alpha}{\sqrt{1+tan^2\alpha}}$ В рез-те ур движ мб перепис в виде $T\frac{1}{\Delta x}(u_x(x+\Delta x)-u_x(x))+F(x,t)=\rho(x)u_{tt}$ При $\Delta x\to 0$ получ $Tu_{xx}+F(x,t)=\rho(x)u_{tt}$ Получ

ур малых попереч колеб струны. В случ однор струны ho = const его можно перепис в виде $a^2u_{xx} + f(x,t) = u_{tt}$ где $a = \sqrt{\frac{T}{\rho}}$; $f(x,t) = \frac{F(x,t)}{\rho}$ – плотность силы, отнесенная к единице массы. При отсутствии внеш силы получ однор ур-е $a^2u_{xx} - u_{tt} = 0$

3.1.2 Продольные колебания стержня

Ур-е прод колеб однород стерж имеет вид: $a^2u_{xx}+f(x,t)=u_{tt}$ где $a=\sqrt{\frac{k}{
ho}};k$ — модуль Юнга стержня, $f(x,t)=\frac{F(x,t)}{
ho}$

3.1.3 Поперечные колебания мембраны

Р! попереч коле мемб. ДУ таких колеб имеет вид $T_0(u_{xx}+u_{yy})+F(x,y,t)=\rho(x,y)u_{tt}$ Для однор мемб $a^2(u_{xx}+u_{yy})+f(x,y,t)=u_{tt}$ где $a=\sqrt{\frac{T_0}{\rho}}; \ f(x,y,t)=\frac{F(x,y,t)}{\rho}$

3.2 Гр и нач усл

В сл простейш зад о попереч колеб струн доп усл мб 2x вид: нач и гранич. Нач усл показ в каком сост наход струн в мом нач колеб. Нач полож точек струн задается услов $u|_{t=0}=f(x)$, нач скорость $u_t|_{t=0}=F(x)$ где f(x) и F(x) – заданные ф-и. Гр усл показ, что происх на концах струн во время колеб. Если концы струн закрепл, то $u|_{x=0}=0$, $u|_{x=t}=0$. Если нас интерес явл в теч мал промежутка врем, когда влияние границ еще несущественно, то полн зад можно замен предельной зад с нач усл для неогр обл: найти реш ур-я $u_{tt}=a^2u_{xx}+f(x,t)$. $-\infty < x < \infty$, t>0 с нач усл $u|_{t=0}=f(x)$; $u_t|_{t=0}=F(x)$ Эта зад назыв зад Коши.

3.3 Метод распространяющихся волн

Р! задачу с н. у. для неогр-ой струны: $u_{tt}-a^2u_{xx}=0$, $(56)\ u(x,0)=\varphi(x)(57)$, $u_t(x,0)=\psi(x)$. Преобразуем наше ур-е к канон. виду. Запишем характер-ое ур-е $dx^2-a^2dt^2=0$ Характер-ое ур-е распадается на два: dx-adt=0 и dx+adt=0. Интегралы x-at=C1 и x+at=C2. Сделаем замену перем. по общим правилам $\xi=x+at$, $\eta=x-at$. $u_t(\xi(x,t),\eta(x,t))=u_\xi\xi_t+u_\eta\eta_t=u_\xi a-u_\eta a$, $u_{tt}=u_\xi\xi_ta^2-u_{\xi\eta}a^2+u_{\eta\eta}a^2-u_{\eta\xi}a^2$, $u_x=u_\xi+u_\eta$, $u_{xx}=u_{\xi\xi}+u_{\eta\eta}+2u_{\xi\eta}$. Подставляем: $u_\xi\xi_ta^2-u_{\xi\eta}a^2+u_{\eta\eta}a^2-u_{\eta\xi}a^2-u_{\eta\xi}a^2-a^2u_{\xi\xi}-a^2u_{\eta\eta}-2a^2u_{\xi\eta}=0$, $u_{\xi\eta}=0$. Общ. реш. полученного уравнения $u(\xi,\eta)=f_1(\xi)+f_2(\eta)(58)$ или $u(x,t)=f_1(x+at)+f_2(x-at)(59)$ Теперь мы должны потребовать, чтобы реш. (59) удовл. н. у. : $u(x,0)=f_1(x)+f_2(x)=\varphi(x)(60)$, $u_t(x,0)=af_1'(x)-af_2'(x)=\psi(x)(61)$. Проинтегрируем (61): $f_1(x)-f_2(x)=\frac{1}{a}\int_{x_0}^x\psi(z)dz+C$. В рез-ате получаем систему для нахождения f1 и f2: $f_1(x)+f_2(x)=\varphi(x)(62)$, $f_1(x)-f_2(x)=\frac{1}{a}\int_{x_0}^x\psi(z)dz+C(63)$. Складывая и вычитая, находим: $f_1(x)=\frac{1}{2}\varphi(x)+\frac{1}{2a}\int_{x_0}^x\psi(z)dz+\frac{C}{2}(64)$, $f_2(x)=\frac{1}{2}\varphi(x)-\frac{1}{2a}\int_{x_0}^x\psi(z)dz-\frac{C}{2}(65)$. Подставим найденные f1 и f2 в (59): $u(x,t)=\frac{1}{2}(\varphi(x+at)+\varphi(x-at))+\frac{1}{2a}\int_{x_0}^{x+at}\psi(z)dz-\int_{x_0}^{x-at}\psi(z)dz$ (66). $u(x,t)=\frac{1}{2}(\varphi(x+at)+\varphi(x-at))+\frac{1}{2a}\int_{x_0}^{x}\psi(z)dz-\int_{x_0}^{x-at}\psi(z)dz$

Формула (67) — ф-ла Даламб. Она была получена в предположении сущ-ия реш-ия р!-мой задачи. Любое реш. задачи Коши для ∞ струны дается ф-лой Даламб, что док-ает !-ть реш. Сам метод вывода ф-лы Даламб доказывает сущ-е реш-я. Полученное реш с физ точки зрения

представляет собой процесс распр-я нач отклон и нач скорости. Ф-я f(x-at) представляет собой неизменный профиль f(x), перемещающийся в «+» направлении оси х со скоростью а — распр-ся или бегущая волна; функция f(x+at) — волна, бегущая в «-» направлении оси х. Т. о., общ. реш. задачи Коши для ∞ струны представляет собой суперпозицию двух волн, одна из кот распр направо со скоростью а, другая налево с той же скоростью.

Для иссл-я решения (67) удобно ввести пл-ть состояний или фазовую плоскость (x,t). Р! фикс-ную точку $M(x_0,t_0)$ и проведем через нее характеристики $x-at=C_1=x_0-at_0$ и $x+at=C_2=x_0+at_0$. Очевидно, что эти характеристики пересекут ось х в точках $x_1=x_0-at_0$ и $x_2=x_0+at_0$. Найдем значение ϕ -ции u(x,t) в точке M: $u(x_0,t_0)=f_1(x_0-at_0)+f_2(x_0+at_0)=f_1(x_1)+f_2(x_2)$ (68)

Т.о., отклонение струны в точке M определяется нач. откл в вершинах хар-ого треугольника PQM и значением начальной скорости на стороне PQ: $u(M) = \frac{1}{2}(\varphi(P) + \varphi(Q)) + \frac{1}{2a}\int_{PQ}\psi(z)dz$ (69)

3.4 Метод разделения переменных

Метод раздел перем наз мет Фурье. P! его на прим струн с закрепл концами. У-е колеб $u_{tt}=a^2u_{xx}(1)$ Гр усл u(0,t)=0, u(l,t)=0 Нач усл $u(x,0)=\varphi(x)$, $u_t(x,0)=\psi(x)$ Будем иск реш в вид произвед φ -и зависящ только от x и только от t: u(x,t)=X(x)T(t)(2) Подставляя (2) в (1) получаем $X''T=\frac{1}{a^2}T''X$ Раздел лев и прав часть рав-ва на произвед $XT:\frac{x''}{x}=\frac{1}{a^2}\frac{T''}{T}$ лев част явл φ -й только x, прав—только t, причем оно должно выпол во всей обл знач перемен. Это возмож тольк t только t только t только t, причем оно должно выпол во всей обл знач перемен. Это возмож тольк t только t только

Для вычисл интегр в лев част послед рав воспольз тригоном формул $sin\alpha sin\beta = \frac{1}{2} \left(\cos(\alpha-\beta) - \cos(\alpha+\beta)\right)$: $\int_0^l \sin\frac{\pi n}{l} x sin\frac{\pi m}{l} x dx = \frac{1}{2} \int_0^l \cos\frac{\pi(n-m)}{l} x dx - \frac{1}{2} \int_0^l \cos\frac{\pi(n+m)}{l} x dx = \frac{1}{2} \frac{l}{\pi(n-m)} \sin\frac{\pi(n-m)}{l} x \big|_0^l - \frac{1}{2} \frac{l}{\pi(n+m)} \sin\frac{\pi(n+m)}{l} x \big|_0^l = 0$, есль $m \neq n$ и $= \frac{1}{2} l$, если m = n т.о. $\int_0^l \sin\frac{\pi n}{l} x sin\frac{\pi m}{l} x dx = \delta_{mn} \frac{l}{2}$ (7) Подстав (7) в (6), получ $A_m = \frac{2}{l} \int_0^l \varphi(x) \sin\frac{\pi m}{l} x dx$ Аналог для Bm получ $B_m = \frac{2}{\pi ma} \int_0^l \psi(x) \sin\frac{\pi m}{l} x dx$

Физическая интерпретация решения

Перепишем функцию $u_n(x)$ в другом виде $u_n(x,t)=(A_n\cos\frac{\pi n}{l}at+B_n\sin\frac{\pi n}{l}at)\sin\frac{\pi n}{l}x=C_n\sin\frac{\pi n}{l}x\cos\frac{\pi n}{l}a(t+\gamma_n)$ где $C_n=\sqrt{A_n^2+B_n^2};\frac{\pi n}{l}a\gamma_n=-arctg\frac{B_n}{A_n}$ Т.О., кажд опред (.) струны с коорд x0 колеб по закону $u_n(x_0,t)=C_n\sin\frac{\pi n}{l}x_0\cos\frac{\pi n}{l}a(t+\gamma_n)$ или $z_n(t)=Z_n\cos\frac{\pi n}{l}a(t+\gamma_n)$ где $Z_n=C_n\sin\frac{\pi n}{l}x_0$ — амплитуда колеб. Т.е. все (.)струны колеб в одинак фазе, но с разными амплитуд. Такое движ струны представ-т из себя стоячую волну. (.), у кото амплитуда колеб =0 наз узлами стоячей вол, (.) у кот амплитуда max— пучности стоячей волны. Частоты колеб всех (.)струны одинак и равны $\omega_n=\frac{\pi n}{l}a$ и носят назв собств частот колеб струны. Самая низкая частота (n=1) или самый низкий тон называется основным тоном струны: $\omega_1=\frac{\pi}{l}a$ ост тона, соответств частотам, кратным ω 1, называются обертонами.

ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ СТРУНЫ

Метод разд. перем. позволяет реш. зад. о вын. колеб. струны: $a^2u_{xx}+f(x,t)=u_{tt}$. Н.у. :u(0,t)=0,u(l,t)=0 , кр.у.: $u(x,0)=\varphi(x),u_t(x,0)=\varphi(x),u_t(x,0)=\psi(x)$. Ищем реш. в виде суммы двух ф-ций:u(x,t)=v(x,t)+w(x,t). При этом ф-ция v(x,t)будет реш. одн. ур-я $a^2v_{xx}=v_{tt}$ с н.у. и кр.у:: $v(0,t)=0,v(l,t)=0,v(x,0)=\varphi(x),v_t(x,0)=\psi(x)$. А ф-ция w(x,t)должна удовл неодн ур-ю $a^2w_{xx}+f(x,t)=w_{tt}$ с нул. н.у. и гр.у.: w(0,t)=w(l,t)=0, w(x,t)=0, w(x,t)=0, w(x,t)=0, опис своб колеб струны, происх. вследствие нач возмущения, w(x,t)=0, вын. колеб. без нач. возмущений. Решение v(x,t)уже известно. w(x,t) ищем в виде ряда по собств. ф-циям однор. задачи: w(x,t)=0, w(x,t

4.3 Решение задачи о теплопроводности для конечного отрезка

Р! задачу о теплопр-ти на отр: $u_t = a^2 u_{xx} + g(x,t)$, (0 < x < l, t > 0). Н.у: u(x,0) = f(x), однор гр.у.: u(0,t) = 0, u(l,t) = 0

4.3.1. Однородная задача

Р! Однор. Здчу: $u_t = a^2 u_{xx}$. Будем искать реш-е в виде: u(x,t) = X(x)T(t). Пдствим в ур-е: $\frac{1}{a^2}\frac{T'}{T} = \frac{X''}{X} = -\lambda$. В рез-ате получим 2 ОДУ: $X'' + \lambda X = 0$ и $T' + a^2 \lambda T = 0$

Из гр.у. для и получаем гр.у. для X: X(0)=0, X(l)=0. В р-те для ф-ции X(x) мы получаем задачу о собств. значениях(Штурма-Лиувилля): $X''+\lambda X=0$, X(0)=0, X(l)=0. Ранее было показано, что собств. знач этой задачи: $\lambda_n=(\frac{\pi n}{l})^2$ соотв собств. ф-циям: $X_n(x)=\sin\lambda_n x=\sin\frac{\pi n}{l}x$. Далее нах-м ф-цию T(t): $T_n(t)=C_ne^{-a^2\lambda_n t}$. Т.о. мы нашли чр однор задачи: $u_n(x,t)=C_ne^{-a^2\lambda_n t}\sin\frac{\pi n}{l}x$.

Общ. реш-е задачи запишем как суперпозицию частных: $u(x,t) = \sum_{n=1}^{\infty} C_n e^{-(\frac{\pi n}{l})^2 a^2 t} \sin \frac{\pi n}{l} x$. Из н.у. получаем: $f(x) = \sum_{n=1}^{\infty} C_n \sin \frac{\pi n}{l} x$ (215). Последнее выр-е есть разлож ф-ции f(x) в ряд Фурье по синусам на интервале (0, I). Для нахождения Сп домножим ур-е (215) на $\sin \frac{\pi m}{l} x$ и проинт: $\int_0^l f(x) \sin \frac{\pi m}{l} x dx = \sum_{n=1}^{\infty} C_n \int_0^l \sin \frac{\pi n}{l} x \sin \frac{\pi m}{l} x dx$. С учетом ф-лы: $\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$ получим для интеграла в правой части: $\int_0^l \sin \frac{\pi n}{l} x \sin \frac{\pi m}{l} x dx = \frac{1}{2} \delta_{nm} l$. В рез-те для коэф-та C_n имеем: $C_n = \frac{2}{l} \int_0^l f(\xi) \sin \frac{\pi n}{l} \xi d\xi$.

Подставим в реш-е найденное значение \mathcal{C}_n : $u(x,t) = \sum_{n=1}^{\infty} [\frac{2}{l} \int_0^l f(\xi) \sin \frac{\pi n}{l} \xi d\xi] \, e^{-(\frac{\pi n}{l})^2 a^2 t} \sin \frac{\pi n}{l} x$. Поменяем порядок суммирования и интегрирования: $u(x,t) = \int_0^l \frac{2}{l} \sum_{n=1}^{\infty} e^{-(\frac{\pi n}{l})^2 a^2 t} \sin \frac{\pi n}{l} \xi \sin \frac{\pi n}{l} x \, f(\xi) d\xi$

Введем ф-ю: $G(x,\xi,t)=\frac{2}{l}\sum_{n=1}^{\infty}e^{-\left(\frac{nn}{l}\right)^2a^2t}\sin\frac{\pi n}{l}\xi\sin\frac{\pi n}{l}x$ - ф-цию мгнов точечного источника или ф-цию темпер-ого влияния мгновенного точечного источника тепла. С ее использ. реш-е задачи будет иметь вид: $u(x,t)=\int_0^lG(x,\xi,t)f(\xi)d\xi$. Покажем, что ф-ция $G(x,\xi,t)$ предст-ет собой распр-е темп-ры в стержне в момент времени t, если в нач. момент темп.=0 и в этот момент в т. $x=\xi$ мгновенно выделяется некоторое кол-во тепла, при том что на краях стержня поддерж-ся нулевая темп. Для кол-ва тепла, выделившегося в некоторой окр. (.) ξ можно записать: $c\rho\int_{\xi-\varepsilon}^{\xi+\varepsilon}f_{\varepsilon}(x)dx=Q$,где ξ - температура в этой окр., вызванная появлением тепла. Причем ξ в всюду, кроме отр. ξ - ξ

4.3.2 Неоднородная задача

Перейдем к неоднор. Ур-ю теплопроводности $u_t=a^2u_{xx}+g(x,t)$ (223) с нулевыми нач. и граничю усл-ми: u(x,0)=0, u(0,t)=0, u(l,t)=0 Будем искать реш-е в виде ряда по собств. Ф-ям задачи Штурма-Лиувилля $\sin\frac{\pi n}{l}x$: $u(x,t)=\sum_{n=1}^{\infty}u_n(t)\sin\frac{\pi n}{l}x$ Разлагая g(x, t) в ряд по тем же собств ф-ям, будем иметь: $g(x,t) = \sum_{n=1}^{\infty} g_n(t) \sin \frac{\pi n}{l} x$ Где $g_n(t) = \frac{2}{l} \int_0^l g(\xi,t) \sin \frac{\pi n}{l} \xi d\xi$ Подставляя все в исходное ур-е, получим $\sum_{n=1}^\infty \sin rac{\pi n}{l} x[(rac{\pi n}{l})^2 a^2 u_n(t) + \acute{u}_n(t) - g_n(t)] = 0$ Отсюда получаем $(\frac{\pi n}{l})^2a^2u_n(t)+\acute{u}_n(t)-g_n(t)=0$ или $\acute{u}_n(t)+(\frac{\pi n}{l})^2a^2u_n(t)=g_n(t)$. Из нач. усл-й: $u(x,0) = \sum_{n=1}^{\infty} u_n(0)\sin\frac{\pi n}{l}x = 0$. Отсюда $u_n(0) = 0$. У нас получилось неоднор. Ур-е вида $u' + a_1 u = g(t)$ (224) с нулевым начальным условием u(0)=0. Его реш-е может быть записано в виде $u(t)=\int_0^t U(t-\tau)g(\tau)d au$, что можно проверить простой подстановкой, здесь $\mathsf{U}(\mathsf{t})$ — решение однор. ур-я: $U' + a_1 U = 0$ с нач усл. $\mathsf{U}(\mathsf{0})$ = 1. Действительно, находим $u'(t) = \int_0^t U'(t-\tau)g(\tau)d\tau + U(0)g(t) = 0$ $\int_0^t U'(t- au)g(au)d au + g$ Далее, подставляем в ур-е (224): $\int_0^t U'(t- au)g(au)d au + g(t) + a_1 \int_0^t U(t- au)g(au)d au = g(t)$, $\int_0^t \left(U'(t-\tau) + a_1 U(t-\tau) \right) g(\tau) d\tau + g(t) = g(t)$ g(t)=g(t) Представляя $U(t)=e^{\gamma t}$ и подставляя в наше ур-е $\ \acute{u}_n(t)+(rac{\pi n}{l})^2a^2u_n(t)=0$, получим $\ \gamma+(rac{\pi n}{l})^2a^2=0$. Отсюда, $\gamma=-(rac{\pi n}{l})^2a^2$ и

 $U(t) = e^{-(rac{\pi n}{l})^2 a^2 t}$. В рез-те, для $u_n(t)$ получаем $u_n(t) = \int_0^t e^{-\left(rac{\pi n}{l}
ight)^2 a^2 (t- au)} g_n(au) d au$ (225), а реш-е неоднор. ур-я теплопроводности

 $u(x,t) = \sum_{n=1}^{\infty} \left[\int_{0}^{t} e^{-\left(\frac{\pi n}{l}\right)^{2} a^{2}(t-\tau)} g_{n}(\tau) d\tau \right] \sin \frac{\pi n}{l} x \quad (226)$

Подставляя сюда выражение для g_n , получим

 $u(x,t)=\int_0^t\int_0^l G(x,\xi,t- au)g(\xi, au)d\xi d au$ (227) где функция источника определяется

 $G(x,\xi,t- au)=rac{2}{l}\sum_{n=1}^{\infty}e^{-(rac{\pi n}{l})^2a^2(t- au)}\sinrac{\pi n}{l}\xi\sinrac{\pi n}{l}x$. Для выяснения физ-го смысла получ. ответа предп-жим, что ф-ия срg (ξ, au) , Тогла обич представляющая собой плотность тепловых источников, отлична от нуля только в достаточно малой окр. (.) (ξ 0, t0). Тогда общ. кол-во тепла, ееся на отрезке (0, I) за время действия источников, будет равно

 $Q = \int_{\tau_0 - \varepsilon_1 \xi_0 - \varepsilon_2}^{\tau_0 + \varepsilon_1 \xi_0 + \varepsilon_2} \int c\rho g(\xi, \tau) d\xi d\tau \quad (228)$

По Th о среднем найдем $u(x,t)=\int_{\tau_0-\varepsilon_1\xi_0-\varepsilon_2}^{\tau_0+\varepsilon_1\xi_0+\varepsilon_2}\int_{\square}^{\square}G(x,\xi,t-\tau)g(\xi,\tau)d\xi d\tau=G\left(x,\tilde{\xi},t-\tilde{\tau}\right)\int_{\tau_0-\varepsilon_1\xi_0-\varepsilon_2}^{\tau_0+\varepsilon_1\xi_0+\varepsilon_2}\int_{\square}^{\square}g(\xi,\tau)d\xi d\tau=G\left(x,\tilde{\xi},t-\tilde{\tau}\right)\frac{\varrho}{\varepsilon\rho}$ Переходя в последнем ур-и к пределу $\varepsilon 1\to 0,\varepsilon 2\to 0$, при этом $\tau^{\sim}\to \tau 0,\xi^{\sim}\to \xi 0$, находим

 $u(x,t) = \frac{Q}{c\rho}G(x,\xi_0,t- au_0)$ (230) Если положить Q = ср, то $G(x,\xi_0,t- au_0)$ есть ф-ия влияния мгн-го источника тепла, сосред-го в момент времени тО в (.) $\xi 0$. Если тепл. источники действуют в области ($\xi, \xi + \Delta \xi$) в течение времени ($\tau, \tau + \Delta \tau$), то получаем $Q = c \rho g(\xi, \tau) \Delta \xi \Delta \tau$ и $u(x,t) = G(x,\xi,t-\tau)g(\xi,\tau)\Delta \xi \Delta \tau$. Если источники распределены непрерывно, то суммируя по всем источникам в области [0, I] за время [0, t], находим $u(x,t) = \int_0^t \int_0^t G(x,\xi,t-\tau)g(\xi,\tau)d\xi d\tau$, что совпадает с выражением (227). Т.о., решение (227) могло быть получено исходя из физ-го смысла ф-ии источника. Мы нашли реш-е неоднор. Ур-ия теплопроводности с нулевыми нач. усл-и. В случае, когда нач усл отлично от нуля, реш-ем будет сумма реш-я однор ур-я с заданным нач усл и реш-я неоднор ур-ия с нулевым нач усл

4.4 Ортогональные криволинейные системы координат

x, y, z – декартовы координаты, q1, q2, q3 – криволинейные координаты. Квадрат элемента длины: $ds^2 = dx^2 + dy^2 + dz^2 = h_1^2 dq_1^2 + h_2^2 dq_2^2 + h_3^2 dq_3^2$ (231) где hi = s $\partial x \partial qi \ 2 + \partial y \partial qi \ 2 + \partial z \partial qi \ 2$, i = 1, 2, 3 (232) -метрические коэффициенты или коэффициенты Ламэ. В криволинейных координатах: $\nabla = \sum_{j=1}^3 a_j \frac{1}{h_i} \frac{d}{dq_i}$ (233)

 $\Delta = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial q_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial}{\partial q_1} \right) + \frac{\partial}{\partial q_2} \left(\frac{h_1 h_3}{h_2} \frac{\partial}{\partial q_2} \right) + \frac{\partial}{\partial q_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial}{\partial q_3} \right) \right] (234)$ Цилиндрическая система координат $\mathbf{x} = \rho \cos \phi$, $\mathbf{y} = \rho \sin \phi$, $\mathbf{z} = \mathbf{z}$, $\mathbf{h} \mathbf{1} = \mathbf{1}$, $\mathbf{h} \mathbf{2} = \rho$, $\mathbf{h} \mathbf{3} = \mathbf{1}$ $\nabla = a_1 \frac{\partial}{\partial \rho} + a_2 \frac{1}{\rho} \frac{\partial}{\partial \phi} + a_3 \frac{\partial}{\partial z} (235)$

 $\Delta = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2} (236)$

 $\nabla = a_1 \frac{\partial}{\partial \rho} + a_2 \frac{1}{\rho} \frac{\partial}{\partial \theta} + a_3 \frac{1}{\rho \sin \theta} \frac{\partial}{\partial \phi} (237)$ $\Delta = \frac{1}{\rho^2} \frac{\partial}{\partial \rho} (\rho^2 \frac{\partial}{\partial \rho}) + \frac{1}{\rho^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\rho^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} (238)$

4.5 Распространение тепла в бесконечном цилиндре

Р! цилиндр радиуса R, боковая пов-сть которого поддерживается при постоянной темп-ре. Если в нач момент времени темп-ра в каждой (.) зависит только от ее расстояния r до оси цилиндра, то и в последующие моменты времени темп-ра будет зависеть только от r и t: u = u(r, t). Переходя в пространственном ур-и теплопроводности к цилиндрическим координатам, получим $\frac{du}{dt} = a^2 \left(\frac{d^2u}{dr^2} + \frac{1}{r} \frac{d^{\Box}u}{dr^{\Box}} \right)$ (239) Нач усл u(r,0) = f(r) краевое условие — условие постоянства температуры боковой поверхности цилиндра — $u(R,t) = u_0$. Р! случай однор. краевого условия, т.е. u0 = 0. В противоположном случае надо сделать замену $u(r,t) o ilde u(r,t) = u(r,t) - u_0$ при этом само у-е не изменится, а нач и краев усл примут вид $\tilde{u}(r,0)=f(r)-u_0, \tilde{u}(R,t)=0$. Будем решать задачу методом раздел перем u(r,t)=U(r)T(t), в рез-те получим $\frac{T'(t)}{a^2T(t)} = \frac{U''(r) + \frac{1}{r}U'(r)}{U(r)} = -\lambda^2$ (240). Далее находим $T(t) = Ce^{-\lambda^2a^2t}$ (241), а для функции U(r) получаем ур-е $U''(r) + \frac{1}{r}U'(r) + \lambda^2 U(r) = 0$ (242) реш-ем которого явл-ся ф-ия Бесселя нулевого порядка $U(r) = J_0(\lambda r)$ Из краевого усл находим $J_0(\lambda r)=0$. Т.е., собств числа задачи выражаются через нули ϕ -ции Бесселя $\mu_k(J(\mu_k)=0)$ λ_k = μ_k/R Каждому собств. знач λk соответствует собств ϕ -ия $u_k(r,t)=e^{-\lambda_k^2a^2t}J_0(\lambda_k r)$ (243) в рез-те реш-е исх. задачи принимает вид

 $u(r,t) = \sum_{k=1}^{\infty} C_k e^{-\lambda_k^2 a^2 t} J_0(\lambda_k r)$ (244) С учетом нач. условия получаем $u(r,0) = \sum_{k=1}^{\infty} C_k J_0(\lambda_k r) = \sum_{k=1}^{\infty} C_k J_0(\frac{\mu_k}{R} r) = f(r)$ Сделаем замену перем $x = \frac{r}{R}$, в рез-те получим $\sum_{k=1}^{\infty} C_k J_0(\mu_k x) = f(Rx)$

Последнее соотношение аналогично (155). Находим аналогичным образом коэффициенты Cn: $C_n = \frac{2}{J_1^2(\mu_k)} \int_0^1 x J_0(\mu_k x) f(Rx) dx$

4.1 Линейная задача о распространении тепла

P! Однор стержень с изолир. бок. пов-ю. Если стержень в нач. момент неравном нагрет, то в нем будет происх передача тепла от более нагретых частей к менее нагретым. Если торцы теплоизолир, то в итоге темп станет одинак у всех точек стержня. Если же может происх теплообмен с окр рс, то распр темп станет сложнее. p! лин задачу о распр тепла, поэтому будем считать, что в каждый момент темп всех точек в одном попер сечении одинаковы. Пусть стержень распол вдоль оси x, тогда u(x,t) – темп в сечении стержня с абсц x в момент t. $\frac{\partial u}{\partial x}$ будет определять скорость изм темп вдоль оси x. Осн физ законом-ти: Количество тепла Q_1 кот необх сообщить однор телу, чтобы повысить его темп на Δu , равно $Q = c\rho V \Delta u$, где c – уд теплоемкость, ρ – плотность, V – объем тела. Кол-во тепла Q, протек через попер сеч за время Δt , пропорц площади сеч, скорости изм темп в направлении, перпенд сеч, и времени Δt : $Q = \frac{\partial u}{\partial x}$

 $-kSrac{\partial u}{\partial x} \Delta t$, где k- коэфф-т теплопр-ти.

P! участок стержня, огр попер сеч с коорд x и $x+\Delta x$. Запишем для него ур теплового баланса. Кол-во тепла, проход через левое попер сеч: $Q_1=-kS\frac{\partial u}{\partial x}\Delta t$. Для нахожд тепла, проход через правое попер сеч, заметим, что с точностью до беск малых высших порядков, $f(x+\Delta x,t)=f(x)+\frac{\partial f}{\partial x}\Delta x$ или если $f(x,t)=\frac{\partial u}{\partial x}(x,t)$, то $\frac{\partial u}{\partial x}(x+\Delta x,t)=\frac{\partial u}{\partial x}+\frac{\partial^2 u}{\partial x^2}\Delta x$. Тогда находим: $Q_2=-kS(\frac{\partial u}{\partial x}+\frac{\partial^2 u}{\partial x^2}\Delta x)\Delta t$. Кол-во теплоты, сообщенное выбранному участку за время Δt : $\Delta Q=Q_1-Q_2$; $\Delta Q=-kS\frac{\partial u}{\partial x}\Delta t+kS(\frac{\partial u}{\partial x}+\frac{\partial^2 u}{\partial x^2}\Delta x)\Delta t$; $\Delta Q=kS\frac{\partial^2 u}{\partial x^2}\Delta x\Delta t$. С др стороны, $\Delta Q=c\rho S\Delta x\Delta u=c\rho S\Delta x\frac{\partial u}{\partial t}\Delta t$

Приравнивая выр-я для ΔQ : $c \rho \frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ (159). Обозн $a^2 = \frac{k}{c \rho}$, получаем ур теплопр-ти для однор стержня без тепл источников: $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$ где $a = \sqrt{\frac{k}{c \rho}}$ коэф-т температуропроводности.

Р! сл наличия тепл источников. Введем F(x,t) - плотность тепл источников – кол-во теплоты, выдел в единицу врем на единице длины. Тогда вместо ур (159) получим: $c\rho \frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + \frac{1}{s} F(x,t)$. Отсюда $\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + g(x,t)$, где $g(x,t) = \frac{1}{c\rho S} F(x,t)$.

4.1.2 Начальные и краевые условия

Нач усл – задание темп во всех (.) стержня в нач момент: u(x,0) = f(x)

Гр усл – усл в тех точках, где мб теплообмен с окр ср – на торц сеч стержня. Простейшие гр усл – концы поддерж при пост темп: $u(0,t)=\tilde{u}_0,u(l,t)=\tilde{u}_l$ где \tilde{u}_0 и \tilde{u}_{l} - заданные числа. В общ сл на торц сеч происх теплообмен с окр ср по закону Ньютона: поток тепла через единицу пов-ти в единицу времени пропорц разности темп тела и окр ср, т.е. равен $h(u-\tilde{u})$, где u- темпратура конца стержня, \tilde{u} - темп окр ср, h-коэф-т теплообмена, причем h>0, если тепло уходит из стержня.

Тепловой поток, проход через правое торц сеч в рез-те теплопр-ти равен: $-kS\Delta t \frac{\partial u}{\partial x}|_{x=l}$. Через левое торцевое сеч-е: $kS\Delta t \frac{\partial u}{\partial x}|_{x=0}$. С учетом закона сохр-я энергии, получаем для правого торц сеч-я: $-k \frac{\partial u}{\partial x}|_{x=l} = h_l[u(l,t)-\tilde{u}_l(t)]$. Для левого торцевого сеч-я: $k \frac{\partial u}{\partial x}|_{x=0} = h_0[u(0,t)-\tilde{u}_0(t)]$, где $\tilde{u}_0(t)$ и $\tilde{u}_l(t)$ - заданные темп внеш. среды.

Т.О. задача теплопр-ти для однор. стержня с теплоизолир боковой пов-ю без тепловых источников сводится к отысканию темп u=u(x,t), удовл ур-ю $\frac{\partial u}{\partial t}=a^2\frac{\partial^2 u}{\partial x^2}$ нач усл u(x,0)=f(x) и гр усл $k\frac{\partial u}{\partial x}|_{x=0}=h_0[u(0,t)-\tilde{u}_0(t)]$, $-k\frac{\partial u}{\partial x}|_{x=l}=h_l[u(l,t)-\tilde{u}_l(t)]$.

4.1.3 Пространственная задача теплопроводности

Р! равном нагретое тело, темп которого в каждой (.) (x,y,z)в момент времени t определяется ϕ -ей u(x,y,z,t). В любой момент t ϕ -я u определяет скалярное поле темп-ры, кот явл нестац. В ϕ ник момент t совок-ть точек, в кот u(x,y,z,t)=const образует изотерм пов-ть. Форма и располож изотерм пов-тей будет со временем меняться. Направление наиб скорости измен темп u совп с направлением градиента ϕ -ции u(x,y,z,t) при ϕ ник t: $gradu=\frac{\partial u}{\partial x}i+\frac{\partial u}{\partial y}j+\frac{\partial u}{\partial z}k$. Во всех точках изотерм пов-ти градиент направлен по нормали к этой пов-ти в сторону увел-я знач u и модуль градиента равен: $|gradu|=\frac{\partial u}{\partial n}$. Величина теплового потока через малый участок $\Delta\sigma$ изотерм пов-ти за время Δt равна $\Delta Q=-k\frac{\partial u}{\partial n}\Delta\sigma\Delta t$, где k- коэ ϕ -т теплопр-ти. Последняя ϕ -ла вып для любых пов-тей. Производная по любому направлению, заданному единичным вектором нормали к произвольной поверхности n мб записана так: $\frac{\partial u}{\partial n}=gradu\cdot n$. Тогда поток тепла через участок $\Delta\sigma$ любой пов-ти за время Δt равен $\Delta Q=-k(gradu\cdot n)\Delta\sigma\Delta t$. Если ввесто вектор тепл потока A=-kgradu, то $\Delta Q=A_n\Delta\sigma\Delta t$. Если рI поток через замкнутую пов-ть, то $Q=\Delta t$ $\oint_S A_n d\sigma$. Применяя th Остроградского-Гаусса, получаем $\oint_S A_n d\sigma=\int_V div Adv$, где V - часть тела, огр пов-ю S. $div A=-kdiv gradu=-k\Delta u$, где $\Delta =\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$ - оператор Лапласа. Тогда $Q=\Delta t$ $\oint_S A_n d\sigma=\Delta t$ $\int_V div Adv=-\Delta t$ $\int_V k\Delta u dv$ и кол-во тепла Q1, приобр выделенной частью тела за счет прохожд теплового потока равно $Q_1=-Q=\Delta t$ $\int_V k\Delta u dv$ Если в теле есть тепловые источники, плотность кот F(x,y,z,t), то в выдел части тела за время Δt выделится тепло $Q_2=\Delta t$ $\int_V C\rho dv dv$ ∂t 0. Т.О. кол-во тепла, сообщ выдел объему: $Q_3=Q_1+Q_2$, но оно может быть записано так: $Q_3=\int_V c\rho dv \Delta u$ 0. Сл-но ∂t 0 ∂t 1 ∂t 2 ∂t 3 ∂t 4 ∂t 4 ∂t 5 ∂t 6 ∂t 6 ∂t 6 ∂t 7 ∂t 8 ∂t 8 ∂t 9 ∂t 9

4.1.4 Начальные и краевые условия

изнутри тела через любую часть пов-ти тела G пропорц перепаду темп на этой части границы: $A_n=h(u-\tilde{u})$, где $u^{\tilde{}}-$ темп окр ср в гранич с телом (.) (G), h — коэфф теплообмена. С учетом $A_n=-k(gradu\cdot n)=-k\frac{\partial u}{\partial n}$ получаем: $-k\frac{\partial u}{\partial n}|_G=h(u|_G-\tilde{u})$. В частных случаях гр усл упрощается. Напр, h=0, что соотв теплоизолир границе $\frac{\partial u}{\partial n}|_G=0$ Другой частный случай $h\to\infty$, т.е. коэфф внешней теплопр-ти очень большой. Получаем $u|_G=\tilde{u}$, что озн, что на границе тело имеет темп

4.1.5. Задачи диффузии

В задачах диффузии находится неизв ф-я — концентрация диффундирующего вещ-ва, обозначаемая c=c(x,y,z,t). Процесс диффузии аналогичен теплопр-ти, поэтому ур диффузии будет иметь вид $\frac{\partial c}{\partial t}=D\Delta c$, где D- коэфф диффузии. Нач.усл.- c(x,y,z,0)=f(x,y,z) мы задаем нач концентрацию. Гр усл- $\frac{\partial c}{\partial n}|_G=0$ соотв тому, что граница G непроницаема для диффундирующего вещества, $c|_G=0$ - концентрация на границе.