$$codomain = 1R^2$$

range =
$$IR^2 \leftarrow RHS = \begin{pmatrix} y \\ x \end{pmatrix} = y \begin{pmatrix} 1 \\ 0 \end{pmatrix} + x \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$T(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} ; T(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Ly let
$$\vec{n} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \notin \vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
. Then LHS= $\vec{\tau} \left(\vec{cu} + \vec{dv} \right) = \begin{pmatrix} \vec{cu} + \vec{dv} \end{pmatrix} = \begin{pmatrix} \vec{cu} + \vec{dv} \end{pmatrix}$

$$C(u_i)+d(v_i)=(cu_i+dv_i)$$
. Hence, LHJ=RHS.

$$(10) = (1); T (0) = (0)$$

$$(x) = x (1) = x$$
where x L.T.

$$(\hat{x}) = X (\hat{i}) = XV$$
, where \hat{V} L.I.

so range $\approx IR$.

is linear

Ly LHS =
$$T\left(\frac{cu_1+dv_1}{cu_2+dv_2}\right) = \left(\frac{cu_1+dv_1}{cu_1+dv_1}\right) + \left(\frac{cu_2+dv_2}{cu_1}\right)$$

RHS = $cT\left(\frac{u_1}{u_2}\right)+dT\left(\frac{v_1}{v_2}\right) = \left(\frac{cu_1+cu_2}{cu_1}\right)+\left(\frac{dv_1+dv_2}{dv_2}\right)$

= $\left(\frac{cu_1+dv_1+cu_2+dv_2}{cu_1+dv_1}\right) = LHS$.

· Domain = 1R2; codom = 1R2; range = 1R2

$$T(\frac{1}{0}) = (\frac{1}{1}); T(\frac{0}{0}) = (\frac{1}{0})$$

$$Ly (\frac{x+y}{x}) = x (\frac{1}{0}) + y (\frac{1}{0}) = x \sqrt{1 + y} \sqrt{2}$$
where $\sqrt{1}$, $\sqrt{2}$ L.I. So range = $1\mathbb{R}^2$,

 $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

· 15 surjective (range (T)= Codom (T))

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

· Not surjective (range & codom; also, (#) not hit if # # 0)

```
(e) Is linear
```

•
$$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
; $T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$; $\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 1 \\ 0 \end{pmatrix} = x \vec{v}_1 + y \vec{v}_2 \quad \omega / \vec{v}$

· Not injective (4 has L.D. Cols) Note: This DOESN'T violate the invertible matrix theorem; that · is surjective (coolon = range) I only holds for square matrices!

$$T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}; T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T(\nabla 0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$

$$T(\nabla$$

• dom =
$$1R^3$$
; cod = $1R^4$; range = $1R^3 \leftarrow \begin{pmatrix} y \\ y \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$T(\frac{1}{6}) = (\frac{1}{6}); T(\frac{1}{6}) = (\frac{1}{6}); T(\frac{$$

(h) • is linear

• dom=
$$IR^{4}$$
; codom = IR^{4} ; range = IR^{4} + $\binom{w}{y} = W\binom{i}{0} + x\binom{i}{0} + y\binom{i}{0} + z\binom{0}{0}$

• $T\binom{i}{0} = \binom{0}{0}$; $T\binom{0}{0} = \binom{0}{0}$; $= W\vec{v}_{1} + x\vec{v}_{2} + y\vec{v}_{3} + z\vec{v}_{4}$ we all vectors L.I. => range $\approx IR^{4}$

- · injective (A has L.I. cols)
- · surjective (range = coolom)

$$T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1; T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = 1.$$

, surjective (codorn = range).

ange = IR
1 (w+x+y+z) = w(1) + x(1) + y(1) + z(1)
(*) = w vi + x vi + y vi + z vy where

$$v_{z_1}v_{z_1}v_{z_2}v_{y_3}v_{y_4}v_{y_5}v_{z_2}v_{y_5}$$

3.
$$5: \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mapsto \begin{pmatrix} x_2 \\ x_1 \end{pmatrix} \Rightarrow A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$T: \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} y_2 \\ y_1 \end{pmatrix} \Rightarrow B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

=>
$$T \circ S$$
 has matrix $BA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

(b) S:
$$\begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} \mapsto \begin{pmatrix} \chi_2 \\ \chi_3 \end{pmatrix} \Rightarrow A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$T: \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \mapsto \begin{pmatrix} y_1 \\ y_2 \\ y_1 + 2y_2 \end{pmatrix} \Rightarrow B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix}$$

$$\Rightarrow \text{ ToS has matrix } BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

$$(c) S: \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} \mapsto \begin{pmatrix} \chi_1 - \chi_2 \\ \chi_2 - \chi_3 \\ \chi_1 + \chi_2 + \chi_3 \\ \chi_1 \end{pmatrix} \Rightarrow A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$T:\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} \longmapsto \begin{pmatrix} y_1 \\ y_2 - y_3 - y_4 \end{pmatrix} \Rightarrow B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 \end{pmatrix}$$

=> To S has matrix
$$BA = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -1 & 0 \\ -2 & 0 & -2 \end{pmatrix}$$

4. (a) •
$$A^{3}$$
 DNE

• $A^{7} = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$
• $A^{7} = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$
• $A^{7} = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$
• $A^{7} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
• $A^{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

$$A^{T} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$det(A) = 0$$

$$A^{T} = 0$$

$$(g) \cdot A^{3} = \begin{pmatrix} 1 & 42 & 239 \\ 0 & 64 & 380 \\ 0 & 0 & 216 \end{pmatrix}$$

$$A^{T} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 5 & 6 \end{pmatrix}$$

•
$$A^{T} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 5 & 6 \end{pmatrix}$$
• $det(A) = 24$
• $A^{-1} = \begin{pmatrix} 1 & -1/2 & -1/12 \\ G & 1/4 & -5/24 \\ 0 & 0 & 1/6 \end{pmatrix}$

(i) $\begin{bmatrix} -6 & -14 & -3 & 25 \end{bmatrix}$

$$\frac{1}{1} = \begin{cases} 1 & -1/2 & -1/12 \\ 0 & 1/4 & -5/24 \\ 0 & 0 & 1/6 \end{cases}$$

$$\frac{1}{3} = \begin{cases} 12 & 85 & 70 & -63 \\ 12 & 85 & 70 & -63 \end{cases}$$

(e)
$$A^3 = \begin{pmatrix} 81 & 118 \end{pmatrix}$$
 (f) $A^3 = \begin{pmatrix} 8 & 3 \\ 8 & 4 \end{pmatrix}$
• $A^7 = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$ • $A^7 = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$
• $dut(A) = 1(4) - 3(2)$ • $dut(A) = 1$

(2)
$$AT = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

 $AT = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

(h) •
$$A^{3} = \begin{pmatrix} 510 & 624 & 834 \\ 1146 & 1401 & 1872 \\ 2014 & 2462 & 3290 \end{pmatrix}$$

• $A^{T} = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 11 \end{pmatrix}$

· det(A) = -6

$$A^{-1} = \begin{pmatrix} -7/6 & -1/3 & 1/2 \\ 1/3 & 5/3 & -1 \\ 1/2 & -1 & 1/2 \end{pmatrix}$$

$$1 -2 \quad 3 \quad 0 \quad \text{def}(A) = -1$$

(i)
$$A^{3} = \begin{bmatrix} -6 & -14 & -3 & 25 \\ 12 & 85 & 70 & -63 \\ -39 & -5 & 23 & 80 \\ 69 & 52 & 5 & -143 \end{bmatrix}$$
 $A^{7} = \begin{bmatrix} 1 & 1 & -2 & 3 \\ -1 & 4 & 0 & 2 \\ 1 & 4 & 1 & 1 \\ 2 & -2 & 3 & -5 \end{bmatrix}$ $A^{-1} = \begin{bmatrix} 1/3 & 5/6 & -13/6 & -3/2 \\ -1/6 & 19/12 & -41/12 & 1/4 \\ 1/6 & 12 & 12 & 1/4 \end{bmatrix}$

Note: dut (A)=0 => A-1 DNE.

5. Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$. Write **true** or **false** for each of the following statements about A.

Hint: You may not need to work super-hard for most of these!

- (a) Ax = 0 has non-trivial solutions.
- (b) The RREF of A is equal to the 3×3 identity matrix I_3 .
- (c) The columns of A form a linearly dependent set.
- (d) The transformation $x \mapsto Ax$ is one-to-one.
- (e) The transformation $x \mapsto Ax$ is onto.
- (f) The columns of A span \mathbb{R}^3 . False
- (g) The range of the transformation $x \mapsto Ax$ equals its codomain.
- (h) The matrix A^{-1} exists. Follow
- (i) $\det(A) = 7$
- (j) There exists some $b \in \mathbb{R}^3$ for which Ax = b doesn't have a solution.
- (k) A^{T} is invertible.

All follows from invertible matrix thm!

71