Paul Gustafson

Texas A&M University - Math 447

Instructor: Dr. Johnson

HW 3, due Thurs., February 14

17.7 If $f:D\to\mathbb{R}$ is measurable and $g:\mathbb{R}\to\mathbb{R}$ is continuous, show that $g\circ f$ is measurable.

Proof. Let $U \subset \mathbb{R}$ be open. Then $g^{-1}(U)$ is open, so $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ is measurable.

11 Let $G \subset [0,1]$ be open, containing the interval rationals, and having m(G) < 1/2. Prove that $f = \chi_G$ is Borel measurable but cannot be equal a.e. to a Riemann integrable function.

Proof. f is obviously Borel measurable. For the other conclusion, suppose g=f on $[0,1]\setminus N$ where m(N)=0. Then g=1 on $H:=G\setminus N$, and g=0 on $C:=([0,1]\setminus G)\setminus N$. Note that m(C)=1-m(G)>1/2. Hence, it suffices to show that H is dense, for then every point of C will be a point of discontinuity of g.

To see that H is dense, let $U \subset [0,1]$ be open. Since G is open and dense, there exists an interval $I \subset (G \cap U)$. Since m(N) = 0, N cannot contain I. Hence, $I \cap H = I \cap (G \setminus N) \neq \emptyset$. Thus, H intersects U.

12 If $f:[a,b]\to\mathbb{R}$ is Lipschitz with constant K, and if $E\subset[a,b]$, show that $m^*(f(E))\leq Km^*(E)$. In particular, f maps null sets to null sets.

Proof. Consider the case when E is an interval. Then, by the Lipschitz condition, $m^*(f(E)) \leq \sup_{x,y \in E} |f(x) - f(y)| \leq \sup_{x,y \in E} K|x - y| = Km(E)$.

For the general case, let $\epsilon > 0$, and let (I_n) be a cover of E by open intervals such that $\sum_n m(I_n) \leq m^*(E) + \epsilon$. Then $(f(I_n))$ covers f(E), so by the special case above, $m^*(f(E)) \leq \sum_n m^*(f(I_n)) \leq \sum_n Km^*(I_n) \leq Km^*(E) + K\epsilon$. Letting $\epsilon \to 0$ gives the desired inequality.

17 If $f,g:\mathbb{R}\to\mathbb{R}$ are Borel measurable, show that $f\circ g$ is Borel measurable. If f is Borel measurable and g is Lebesgue measurable, show that $f\circ g$ is Borel measurable. If f is Borel measurable and g is Lebesgue measurable, show that $f\circ g$ is Lebesgue measurable.

Proof. Let O denote the collection of all open sets in \mathbb{R} . By a theorem in class, for any function g, we have $\sigma(g^{-1}(O)) = g^{-1}(\sigma(O))$. Hence, if $U \subset \mathbb{R}$ is open and f is Borel measurable, we have $(f \circ g)^{-1}(U) = g^{-1}(f^{-1}(U)) \in g^{-1}(\sigma(O)) = \sigma(g^{-1}(O))$.

18(e) Show that there is a Lebesgue measurable function F and a continuous function G such that $F \circ G$ is not Lebesgue measurable.

Proof. Let $0 < \alpha < 1$ and Δ_{α} be the corresponding Cantor-like set. Since $m(\Delta_{\alpha}) > 0$, it contains an unmeasurable set E. Let $G : \Delta_{\alpha} \to \Delta$ be a homeomorphism (We proved Δ homeomorphic to $\{0,1\}^{\mathbb{N}}$ in 446; the same proof goes through for Δ_{α}). Let $F = \chi_{G(E)}$. Note that $m^*(G(E)) \leq m^*(\Delta) = 0$, so G(E) is measurable. Hence, F is measurable. However, $(F \circ G)^{-1}((1/2, \infty)) = G^{-1}(F^{-1}((1/2, \infty))) = G^{-1}(G(E)) = E$ is unmeasurable.

37 Give an example showing that a. u. convergence does not imply uniform convergence a.e.

Proof. Let $f_n:[0,1]\to [0,1]$ be defined by $f_n(x)=x^n$. On [0,c], $f_n\leq c^n$ converges uniformly. Since c can be picked arbitrarily close to 1, f converges an

On the other hand, suppose f_n converged uniformly on $[0,1] \setminus N$ with m(N) = 0. Since N cannot contain an interval, there exists a sequence $(x_n) \subset [0,1] \setminus N$ with $x_n \to 1$. By the uniform convergence, pick N such that $\forall n \geq N$, $\sup_{[0,1)} |f_n| < 1/2$. Pick M such that $x_M > (1/2)^{1/N}$. Then $f_N(x_M) > 1/2$, a contradiction.

40 If f is Lebesgue measurable, prove that there is a Borel measurable function g such that f = g except, possibly, on a Borel set of measure zero. [Hint: Every null set is contained in a Borel set of measure zero.]

Proof. To justify the hint, if N is a null set, there exist open sets $U_n \supset N$ with $m(U_n) = 1/n$. The required Borel set is $\bigcap_n U_n$.

Since f is measurable, f^+ and f^- are measurable. If we find Borel functions g^+ , g^- such that $f^+ = g^+$ except on a Borel set of measure zero and the same for g^- , then $f = f^+ - f^- = g^+ - g^-$ except on the union of Borel null sets, which is also a Borel null set. Moreover, $g^+ - g^-$ is Borel measurable since g^+ and g^- are Borel (the proof that the Lebesgue functions form a vector space works verbatim for Borel functions). Thus, by breaking up f into positive and negative parts, we may assume that f > 0.

Then there exist simple functions $f_n \to f$ with $0 \le f_n \le f_{n+1}$. Write $f_n = \sum_{i=0}^m a_i \chi_{A_i}$ in standard form. For each i, we have $A_i = B_i \cup N_{n,i}$ where B_i is Borel, and N_i is a null set. Let $\widetilde{N} = \bigcup_{n,i} N_{n,i}$. By the hint, there exists a Borel null set $N \supset \widetilde{N}$. Define $g_n := \sum_{i=0}^m a_i \chi_{A_i \setminus N}$. Since $A_i \setminus N = B_i \cup N_{n,i} \setminus N = B_i \setminus N$, each g_n is Borel.

To see that $g := \lim_{n \to \infty} g_n$ is Borel, first note that g^n is increasing on N^c since $g_n = f_n$ on N^c . Moreover, $g^n = 0$ on N for all n. Hence, g^n are increasing on \mathbb{R} . Thus, for all $a \in \mathbb{R}$, we have $g^{-1}((a, \infty)) = \bigcup_n g_n^{-1}((a, \infty))$ is a Borel set, so g is a Borel function.

Moreover, $g_n = f_n$ on N^c , so g = f on N^c .

41 Let $E \subset \mathbb{R}$ be closed, and let $f: E \to \mathbb{R}$ be continuous. Prove that f extends to a continuous function $g: \mathbb{R} \to \mathbb{R}$ with $\sup_{\mathbb{R}} |g| \leq \sup_{E} |f|$.

Proof. E^c is an open set, hence the union of disjoint open intervals (I_n) . If E is empty, set g := 0. Otherwise, (I_n) contains at most two semi-infinite intervals. Set the constant value of g on any such interval to the value of f at the finite endpoint. For any bounded interval (a,b) of (I_n) , set g to be the linear function interpolating the points (a, f(a)) and (b, f(b)).

By construction, $\sup_{\mathbb{R}} |g| \leq \sup_{E} |f|$, and g is continuous on E_c . It is given that g is continuous on the interior of E. The remaining case is to check that g is continuous on the boundary of E.

Let $x \in E$ be a boundary point of E. I will check right continuity; the left continuity case is analogous.

If x is an isolated point of $E \cap [x, \infty)$, then pick an open interval U containing x such that $U \cap E \cap [x, \infty) = x$. By construction, g is linear hence continuous on $U \cap [x, \infty)$.

If x is not an isolated point of $E \cap [x, \infty)$, let $\epsilon > 0$. By the continuity of f, pick $\delta > 0$ such that $\operatorname{osc}(f, (B_{\delta}(x) \cap E \cap [x, \infty)) < \epsilon$. Since x is a limit point of $E \cap [x, \infty)$, there exists $y \in B_{\delta}(x) \cap E \cap (x, \infty)$. Note that $\operatorname{osc}(g, [x, y]) \leq \operatorname{osc}(f, [x, y]) \leq \epsilon$. Hence, g is right continuous at x.

43 Let $f:[a,b] \to [-\infty,\infty]$ be a measurable and finite a.e., and let $\epsilon > 0$. Show that there is a polynomial p such that $m(\{|f-p| \ge \epsilon\}) < \epsilon$.

Proof. By Theorem 17.20, there exists a continuous function $g:[a,b]\to\mathbb{R}$ such that $m(\{|f-g|\geq \epsilon/2\})<\epsilon/2$. By the Weierstrauss approximation theorem, there exists p such that $|g-p|<\epsilon/2$. Then, since $|f-p|\leq |f-g|+|g-p|=|f-g|+\epsilon/2$, we have

$$m(\{|f-p| \ge \epsilon\}) \le m(\{|f-g| + \epsilon/2 \ge \epsilon\}) \le m(\{|f-g| \ge \epsilon/2\}) < \epsilon/2.$$

44 Let $f:[a,b] \to [-\infty,\infty]$ be a measurable and finite a.e. Prove that there is a sequence of polynomials (g_n) on [a,b] such that $g_n \to f$ a.e. on [a,b]. [Hint: For each n choose g_n so that the $E_n = \{|f - g_n| \ge 2^{-n}\}$ has $m(E_n) < 2^{-n}$. Now argue that $g_n \to f$ off the set $E = \limsup_{n \to \infty} E_n$.]

Proof. By (43), we can define g_n , E_n , and E as in the hint. Since $\sum_n m(E_n) < \infty$, Corollary 16.24 implies m(E) = 0. Suppose $x \notin E$. Then there exists N such that $x \notin \bigcup_{n=N}^{\infty} E_n$. Thus, for $n \geq N$, we have $|f(x) - g_n(x)| < 2^{-n}$. Hence, $g_n(x) \to f(x)$.

45 Let $f:[a,b] \to [-\infty,\infty]$ be a measurable and finite a.e., and let $\epsilon > 0$. Show that there is a continuous function g on [a,b] with $m\{f \neq g\} < \epsilon$. [Hint: Combine Exercises 41 and 44 and Egorov's theorem to find (g_n) and a closed set F with $m([a,b] \setminus F) < \epsilon$ and $g_n \to f$ uniformly on F. Now argue that $f|_F$ extends to a continuous function g.]

46 (Luzin's Theorem) Show that $f: \mathbb{R} \to \mathbb{R}$ is measurable if and only if, for each $\epsilon > 0$, there is a measurable set E with $m(E) < \epsilon$ such that the restriction of f to $\mathbb{R} \setminus E$ is continuous.

Proof. Break $\mathbb R$ into countably many disjoint compact intervals $(I_n)_{n=1}^{\infty}$ such that $m((\bigcup_n I_n)^c) < \epsilon/2$. Apply (45) to f on each I_n to find continuous $g_n: I_n \to R$ and measurable $F_n \subset I_n$ with $m(I_n \setminus F_n) < \epsilon 2^{-n-1}$ such that $g_n = f$ on F_n . Let $E = \mathbb R \setminus \bigcup_n F_n$. Then $m(E) \leq m((\bigcup_n I_n)^c) + m(\bigcup_n I_n \setminus F_n) \leq \epsilon/2 + \epsilon/2$. Note that since F_n are disjoint, and $f = g_n$ on F_n is continuous, we have f is continuous on $\mathbb R \setminus E$.

48 Show that there is a measurable set $K \subset [0,1]$ such that χ_K is everywhere discontinuous in $[0,1] \setminus N$ for any null set N.

Proof. Let A_n be a countable base for [0,1] of open intervals. For each A_n , let $\Delta_n \subset A_n$ be a nowhere-dense, positive measure set (pick a generalized Cantor set out of A_n). Let $K := \bigcup_n \Delta_n$.

Let N be a null set. To see that $K \setminus N$ is dense in [0,1], let $U \subset \mathbb{R}$ be open and nonempty. Then for some $n, \Delta_n \subset A_n \subset U$. Since Δ_n has positive measure, $\Delta_n \setminus N$ is nonempty. Thus, $K \setminus N$ is dense in [0,1], so K is dense in $[0,1] \setminus N$.

Since Δ_n is nowhere dense, K is first category. Thus, by Corollary 9.12, $[0,1] \setminus K$ is dense in [0,1], so $[0,1] \setminus K$ is dense in $[0,1] \setminus N$. Thus, since $K \setminus N$ and $[0,1] \setminus (K \setminus N)$ are both dense in $[0,1] \setminus N$, we have that χ_K is everywhere discontinuous on $[0,1] \setminus N$.