

utad

Teoria de Conjuntos

TÓPICOS DE MATEMÁTICA DISCRETA

EInf & MACD

- 16/17/18 de novembro de 2020 -

Diagrama de Hasse

Considere-se um conjunto parcialmente ordenado (S, \preceq) .

- . Cada elemento de S é representado por um ponto chamado ${\bf v\acute{e}rtice}.$
- . Se y é sucessor imediato de x, coloca-se o vértice de y acima do vértice de x, ligados por um segmento de reta, dita **aresta**.

Exemplo

Consideremos $S=\{1,2,3\}$ e o conjunto parcialmente ordenado

$$(\mathcal{P}(S),\subseteq)=(\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\},\subseteq)$$

Exemplo

Consideremos a relação "|" definida em $A=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14\}$. O diagrama de Hasse deste c.p.o é

Elementos especiais num conjunto parcialmente ordenado

Num conjunto parcialmente ordenado (S, \preceq) :

- . se existir um elemento $y\in S$ tal que $y\preceq x$ para todo o $x\in S$, diz-se que y é o elemento mínimo de (S,\preceq)
- . um elemento $y \in S$ diz-se **minimal** em (S, \preceq) se não existir $x \in S$ tal que $x \prec y$
- . se existir um elemento $y \in S$ tal que $y \succeq x$ para todo o $x \in S$, diz-se que y é o elemento máximo de (S, \preceq)
- . um elemento $y \in S$ diz-se **maximal** em (S, \preceq) se não existir $x \in S$ tal que $x \succ y$

Nota: Um elemento mínimo é sempre minimal e um elemento máximo é sempre maximal. O contrário nem sempre se verifica.

Teorema: Num conjunto parcialmente ordenado (S, \preceq) ,

- (a) se existe um elemento mínimo ele é único.
- (b) se existe um elemento máximo ele é único.

Relação de ordem total

Uma relação binária definida num conjunto S que seja transitiva e tricotómica diz-se uma relação de ordem total ou cadeia.

Exemplos

- . A relação "<" no conjunto dos números reais é uma relação de ordem total;
- . A relação " \leq " no conjunto dos números reais não é uma relação de ordem total;

Relação de equivalência

Um relação binária definida num conjunto S que seja reflexiva, simétrica e transitiva diz-se uma relação de equivalência em S.

Exemplo

. Reflexividade: $\forall x \in \mathbb{Z}, x \rho x$;

. Simetria: $\forall x,y \in \mathbb{Z}, x\rho y \to y\rho x$;

. Transitividade: $\forall x,y,z \in \mathbb{Z}, (x\rho y \wedge y\rho z) \rightarrow x\rho z;$

Exemplo (cont.)

Nas relações de equivalência assume particular importância o conjunto de todos os elementos que estão em relação com um dado elemento a. Vejamos, para a relação definida atrás, os exemplos para a=1,2,3:

$$\begin{array}{ll} . \ a_1 = \{x \in \mathbb{Z} : x \rho 1\}. \ \ \text{Temos} \\ x \rho 1 & \Leftrightarrow x - 1 \ \text{\'e} \ \text{divis\'ivel por 3} \\ & \Leftrightarrow x - 1 = 3k, \ \text{para algum} \ k \in \mathbb{Z} \\ & \Leftrightarrow x = 3k + 1, \ \text{para algum} \ k \in \mathbb{Z} \\ & \Leftrightarrow x \ \text{tem resto 1 na divis\~ao por 3} \end{array}$$

$$\begin{array}{l} .\ a_2 = \{x \in \mathbb{Z} : x \rho 2\}. \ \ \text{Temos} \\ x \rho 2 \quad \Leftrightarrow x - 2 \ \text{\'e divis\'el por 3} \\ \quad \Leftrightarrow x - 2 = 3k, \ \ \text{para algum} \ k \in \mathbb{Z} \\ \quad \Leftrightarrow x = 3k + 2, \ \ \text{para algum} \ k \in \mathbb{Z} \\ \quad \Leftrightarrow x \ \ \text{tem resto 2 na divis\~ao por 3} \\ \end{array}$$

	17 w tem resto 2 na arvisao por 5		
	. $a_3=\{x\in\mathbb{Z}:x ho 3\}$. Temos		
$x ho 2 \;\;\Leftrightarrow x-3$ é divisível por 3			
	$\Leftrightarrow x-3=3k,$ para algum $k\in\mathbb{Z}$		
	$\Leftrightarrow x=3k+3,$ para algum $k\in\mathbb{Z}$		
	$\Leftrightarrow x=3(k+1), para algum k \in \mathbb{Z}$		
	A r tem resto 0 na divisão nor 3		

			,
a_0	a_1	a_2	4
3 0	4 1	5 2	
-225	-227	53	
99	87	-254	
-3 ···	-5 ···	-10 · · ·	

5/9

Classe de Equivalência

Se ρ é uma relação de equivalência definida no conjunto S e $x \in S$, representa-se por [x] o conjunto de todos os elementos de S relacionados com x e chama-se classe de equivalência de x:

$$[x] = \{ y \in S : x \rho y \}$$

Exemplo

Seja $S=\mathbb{N}_0 imes \mathbb{N}_0$ e ho a relação binária definida sobre S, por

$$(a,b)\rho(c,d)$$
 se e só se $a+d=b+c$.

- . Mostre que ρ é uma relação de equivalência;
 - Determine as classes de equivalência dos elementos (0,0),(m,0) e (0,n) onde $m,n\in\mathbb{N};$
- . Mostre que $\{[(0,0)],[(m,0)],[(0,n)]:m,n\in\mathbb{N}\}$ é uma partição de S.

 $S=\mathbb{N}_0 imes\mathbb{N}_0$ e (a,b)
ho(c,d) se e só se a+d=b+c.

7/9

$$S = \mathbb{N}_0 \times \mathbb{N}_0 \text{ e } (a,b)\rho(c,d) \text{ se e só se } a+d=b+c.$$

$$\left\{ \left[(0,0)\right], \left[(m,0)\right], \left[(0,n)\right]: m,n \in \mathbb{N} \right\}$$

$$\begin{bmatrix} 0,0 \end{bmatrix} \begin{bmatrix} (0,0)\end{bmatrix} \begin{bmatrix} (0,0)\end{bmatrix} \begin{bmatrix} (0,0)\end{bmatrix} \begin{bmatrix} (0,0)\end{bmatrix} \begin{bmatrix} (0,0)\end{bmatrix} \begin{bmatrix} (0,0)\end{bmatrix}$$

$$\begin{bmatrix} 0,0 \end{bmatrix} \begin{bmatrix} (0,0)\end{bmatrix}$$

$$\begin{bmatrix} 0,0 \end{bmatrix}$$

0

Para toda a relação de equivalência ρ definida num conjunto S, o conjunto das classes de equivalência distintas de S constitui uma partição de S.

Dada uma partição de um conjunto S, a relação ρ definida por $x\rho y$ se e só se "x e y pertencem ao mesmo subconjunto da partição" é uma relação de equivalência.

Exemplo

Dada a partição $\{\{1,2\}\,,\{3,4\}\}$ do conjunto $S=\{1,2,3,4\}$, liste os pares ordenados da correspondente relação de equivalência.

Conjunto Quociente

O conjunto das classes de equivalência definidas num conjunto S, diz-se o conjunto quociente de S por ρ e escreve-se:

$$S/\rho = \{ [x] : x \in S \}$$

Para toda a relação de equivalência ρ definida num conjunto S, existe uma bijeção entre S e S/ρ .