Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
(a)	(i) small village so use census	Bi
	e.g. we electoral register or some othersuitable list	B1.
i.	(m) a la company	Bı
	(ii) Sample survey eg. list of times and days when no of vehicles travelling through can be counted. (some suitable list of time periods)*	ß(4)
,,,	eg. X = no. of vehicles passing through in a 10min period	BI
(6)	X could have a <u>Poisson</u> distribution	B1 (2)
	* time period must be specified e.g. 10 mins, 1 hour, 7 an-7pm but < 1 day	6
2. (a)	1 - U - L 20-H X080(0.9)	B1 cs.o. (1)
(૯)	Y = no. of accidents in next 6 months. Y~Po(5.4)	Bi
Ċ	$P(Y = 2) = e^{-5.4} (5.4)^2$ = 0.06585 0.065819	MI, AI (3)
(c)	M= no. of months with no accidents Identify Correct binomial	BI (T their (a))
	$P(H=2) = {4 \choose 2} (0.407)^2 (0.593)^2 = 0.3495 (0.349 \sim 0.350)$	1
		₹
•		

Stewart House 32 Russell Square London WC1B 5DN .

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
3.	Ho: ρ= 1/4 ; H,: ρ ≠ 1/4	B1; B1
	X = no. of gold leads in sample of 20. Under Ho Xalle, &	
	Critical Region P(x ≤ 1) = 0.0243 P(x ≤ 8) = 0.9591 P(x ≤ 8) = 0.9591 P(x ≤ 2) = 0.0913 P(x ≤ 2) = 0.0913	MI
	C.R. $\times 1$ $P(\times) = 1 - 0.8982$ = 2×0.0913 $= 0.1826$	A1 each value.
	Not significant (either x = 2 not in C.R. a pro-	МІ
	Insufficient evidence of a change in proportion of gold beads	A1√ (7)
4.	X = no. of letters marked 1st class X~B(10.0.20)	
(a`	$f(x)_{3} = 1 - f(x \le 2), = 1 - 0.6778 = 0.3222 $	MI, A1 (2)
્ હ	$P(X < 2) = P(X \le 1)$, = 0-3758 a 0.376	M1, A1 (2)
(c)	· · · · · · · · · · · · · · · · · · ·	MI (Normal aprox)
	$P(F \le 12) \approx P(Z \le \frac{12 \cdot 5 - 14}{\sqrt{11 \cdot 2}})$ $f(F \le 12) \approx P(Z \le \frac{12 \cdot 5 - 14}{\sqrt{11 \cdot 2}})$ Standardizing	AI JU AI GGG ² MI
	11 12 13 = P(2 < -0.4482) AWRT -0.45	AI
	= 1-0-6736	
	-0.45 (AWRT 0.826~0.327)	AI (7)
(a)	The 70 letters form a random sample or are representative	B1 (1)
	or letters are independent	(12)

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question	Scheme	Ma	ırks
number	•		
5.	X= no. of requests for bulbs in a week. X~Po(2)		·
(a)	$P(X=4) = e^{-2} \cdot 2^{4} \text{or} \left[P(X \le 4) - P(X \le 3) \right]$	Hi ·	
	4! 0.9473 - 0.8571 = 0.0902 or 0.090	Αţ	(2)
$\bigcirc \omega$	$P(x>5) = 1 - P(x \le 5), = 1 - 0.9834 = 0.0166$	MI, AI	(2)
		ē1	
(c)	Y=no. of requests in 3 weeks. Y~ Po(6)	H1, A1	(3)
	P(Y < 5), = 0-4457	111, 141	(3)
(d)	Ho: λ=2 (σ-μ=8); H1: λ<2 (σ-μ<8)	B1; B1	
	R= no. of requests in 4 weeks. R~Po(8)	HI, AI	
<u>[</u>	P(R & 3) = 0.0424 [C.R. & 3 & prob < 5%] sig	1	(5)
	there is evidence that the rate of requests has decreased	AIJ	(1)
6 (a)	$f(x) = df(x) = \frac{1}{27} \left(-3x^2 + 12x \right)$ Attempt d	MI	
	Q.A.	A2/110	-1 e.e.oo.
((e)	$\frac{d\left[f(x)\right]=0}{dx}=-6x+12=0, \Rightarrow x=1 \text{ is mode}$	MI, AI	(2)
(2)	F(x) 1	B1	
	z, f(x) axes maked and at least 1, 4	81	(3)
(d)	$\mu = \int_{1}^{4} \left(\frac{4z^{2}-z^{3}}{q^{2}} \right) dz$ Alteret $\int_{\infty}^{\infty} f(x) dx$	lx Mi a	e integration Herphad
	$= \frac{1}{9} \left[\frac{4x^3}{3} - \frac{x^4}{4} \right]_{1}^{4} = \left(\frac{256}{27} - \frac{256}{36} \right) - \left(\frac{4}{27} - \frac{1}{36} \right)$ Use of the correct limits and the correct limits are considered as the correct limits are correct limits are considered as the correct limits are correct limits	s MI	
,	= 1.25 or 9/4	Al	(3)
(e)	(4,007 0.51)	01	(1)
(+)	F(11) >0.5 => 11 > median		(from(e)) (10) (2)
	$F(2) = \frac{1}{27} (-8 + 24 - 5) = \frac{1}{27} = 0.407 \implies \text{mode} < \text{median}$	Q1	(14) (2)

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject STATISTICS 6684

Question number	Scheme	Marks
7,	(a) $f(\tau(0.2)) = 0.2$	B1 (1)
	(b) $\mu = E(\tau) = 0.5$	B ₁ (1)
	(c) $E(\tau^2) = \int_0^1 bt^2 dt = \left[t_3^3\right]_0^1$ [3]	MI-7 AI dep
	$Var(\tau) = (\frac{1}{3}) - (0) - \mu^2 = \frac{1}{12}$ \(\frac{1}{12}\)	HI (4)
	(d) X = no. of children with T<0.2 X 2B(20,0.2) Identify	1 .
	$P(x \leq 4)_{,} = 0.6296$	HI, AI (3)
	(e) Expect mean to still be close to 0.5 (or no change) Expect variace to be <u>reduced</u>	B1 (2)
	(f) $P(T<0.2) = \int_0^{0.2} 4t dt$ $= \left[4t_{1/2}^2\right]_0^{0.2}$ Afterpt $\int 4t dt$ between $0, 0.2$	н
	$= 2 \times (0.2)^2 - 0 = 0.08 $	Al cs.o. (2)
	(g) Y= no. of players stopping star in under 25.	M(
	7 56(13) 5 5 5	N ₁
	$f(Y)7) = 1 - f(Y \le 7)$ $= 1 - 0.7440$ $= 0.256$	A1 (4)
		(j
(S.c.	Nomal Approx N(6,5.52) \$ 5, \$ 5.52 M1 } 18.2/4 0.	તું