5.贝叶斯分类

朴素贝叶斯

题目举例

那么既然是朴素贝叶斯分类算法,它的核心算法又是什么呢?

是下面这个贝叶斯公式:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

换个表达形式就会明朗很多,如下:

$$p(类别特征)=\frac{p(特征|类别)p(类别)}{p(特征)}$$

我们最终求的p(类别|特征)即可! 就相当于完成了我们的任务。

例题分析

下面我先给出例子问题。

给定数据如下:

帅?。	性格好?	身高?∞	上进?。	嫁与否。	
J r þ ₽	不好。	矮。	不上进。	不嫁。	
不帅↵	好↩	矮。	上进↩	不嫁↵	
J ф <i>₽</i>	好↩	矮↵	上进↵	嫁↩	
不帅↵	好↩	高₽	上进↩	嫁↩	
孙 →	不好↵	矮↓	上进↩	不嫁↵	
帅↩	不好。	矮。	上进↩	不嫁↩	
ì ゆ ↔	好↩	賣₽	不上进。	嫁↩	
不帅↵	好↩	中。	上进↩	嫁↩	
孙 ↔	好↩	中。	上进↩	嫁↩	
不帅。	不好。	高₽	上进↩	嫁↩	
帅。	好↩	矮♪	不上进。	不嫁↩	
帅↩	好↩	矮↓	不上进↵	不嫁↵	,

现在给我们的问题是,如果一对男女朋友,男生想女生求婚,男生的四个特点分别是不帅,性格不好, 身高矮,不上进,请你判断一下女生是嫁还是不嫁?

这是一个典型的分类问题,**转为数学问题就是比较p(嫁|(不帅、性格不好、身高矮、不上进))与p(不嫁| (不帅、性格不好、身高矮、不上进))的概率**,谁的概率大,我就能给出嫁或者不嫁的答案!

这里我们联系到朴素贝叶斯公式:

p(g|不帅、性格不好、身高矮、不上进 $)=\frac{p($ 不帅、性格不好、身高矮、不上进 $|g)*p(g)}{p(不帅、性格不好、身高矮、不上进<math>)}$

我们需要求p(嫁|(不帅、性格不好、身高矮、不上进),这是我们不知道的,但是通过朴素贝叶斯公式可以 转化为好求的三个量,p(不帅、性格不好、身高矮、不上进|嫁)、p(不帅、性格不好、身高矮、不上 进)、p(嫁)(至于为什么能求,后面会讲,那么就太好了,将待求的量转化为其它可求的值,这就相当 于解决了我们的问题!)

朴素贝叶斯算法的朴素一词解释

那么这三个量是如何求得?

是根据已知训练数据统计得来,下面详细给出该例子的求解过程。

回忆一下我们要求的公式如下:

p(g|不帅、性格不好、身高矮、不上进 $)=\frac{p($ 不帅、性格不好、身高矮、不上进 $|g)*p(g)}{p(不帅、性格不好、身高矮、不上进<math>)}$

那么我只要求得p(不帅、性格不好、身高矮、不上进|嫁)、p (不帅、性格不好、身高矮、不上进)、p(嫁)即可,好的,下面我分别求出这几个概率,最后一比,就得到最终结果。

p(不帅、性格不好、身高矮、不上进|嫁) = p(不帅|嫁)*p(性格不好|嫁)*p(身高矮|嫁)*p(不上进|嫁),那么我就要分别统计后面几个概率,也就得到了左边的概率!

等等,为什么这个成立呢?学过概率论的同学可能有感觉了,这个等式成立的条件需要特征之间相互独立吧!

对的! 这也就是为什么朴素贝叶斯分类有朴素一词的来源,朴素贝叶斯算法是假设各个特征之间相互独立,那么这个等式就成立了!

但是为什么需要假设特征之间相互独立呢?

1、我们这么想,假如没有这个假设,那么我们对右边这些概率的估计其实是不可做的,这么说,我们这个例子有4个特征,其中帅包括{帅,不帅},性格包括{不好,好,爆好},身高包括{高,矮,中},上进包括{不上进,上进},**那么四个特征的联合概率分布总共是4维空间,总个数为2*3*3*2=36个。**

24个,计算机扫描统计还可以,但是现实生活中,往往有非常多的特征,每一个特征的取值也是非常之多,那么通过统计来估计后面概率的值,变得几乎不可做,这也是为什么需要假设特征之间独立的原因。

2、假如我们没有假设特征之间相互独立,那么我们统计的时候,就需要在整个特征空间中去找,比如统计p(不帅、性格不好、身高矮、不上进 | 嫁),

我们就需要在嫁的条件下,去找四种特征全满足分别是不帅,性格不好,身高矮,不上进的人的个数, 这样的话,由于数据的稀疏性,很容易统计到0的情况。 这样是不合适的。

根据上面俩个原因,朴素贝叶斯法对条件概率分布做了条件独立性的假设,由于这是一个较强的假设,朴素贝叶斯也由此得名!这一假设使得朴素贝叶斯法变得简单,但有时会牺牲一定的分类准确率。

好的,上面我解释了为什么可以拆成分开连乘形式。那么下面我们就开始求解!

我们将上面公式整理一下如下:

 $p(\slashed{y}|\slashed{x})$ 字 $p(\slashed{x}|\slashed{x})$ 字 $p(\slashed{x}|\slashed{x})$ 字 $p(\slashed{x}|\slashed{x})$ 字 $p(\slashed{x}|\slashed{x})$ 字 $p(\slashed{x}|\slashed{y})$ 字 $p(\slashed{x}|\slashed{x})$ 字 $p(\slashed{x}|\slashed{y})$ 字 $p(\slashed{x}|\slashed{x})$ 字 $p(\slashed{x}|\slashed{y})$ 字 $p(\slashed{y}|\slashed{y})$ 字 $p(\slashed{y}|\slashed{y})$ 字 $p(\slashed{y}|\slashed{y})$ $p(\slashed{y}|\slashed{y}|\slashed{y})$ $p(\slashed{y}|\slash$

下面我将一个一个的进行统计计算(**在数据量很大的时候,根据中心极限定理,频率是等于概率的,这 里只是一个例子,所以我就进行统计即可**)。

p(嫁)=?

首先我们整理训练数据中,嫁的样本数如下:

炒申? 。	性格好?ℯ	身高?』	上进?。	嫁与否∞	4
ÿ ф ₽	好↩	矮↵	上进↩	嫁↩	
不帅↵	好↩	高↩	上进↵	嫁↩	4
ÿ ф <i>₽</i>	好↩	高↩	不上进₽	嫁↩	4
不帅↵	好↩	中。	上进↩	嫁↩	4
ì ф ₽	好↩	中。	上进↩	嫁↩	
不帅↵	不好↩	高↩	上进↩	嫁↵	1

则 p(嫁) = 6/12 (总样本数) = 1/2

p(不帅|嫁)=? 统计满足样本数如下:

帅?。	性格好?	身高?』	上进?』	嫁与否∞	e
不帅↵	好ℯ	高↩	上进↩	嫁↵	4
不帅↵	好↩	中↩	上进↵	嫁↩	4
不帅↵	不好↩	高↩	上进↵	嫁↩	÷

则p(不帅|嫁) = 3/6 = 1/2

p(性格不好|嫁)=? 统计满足样本数如下:

炉? 。	性格好?	身高?。	上进?"	嫁与否。	÷
不帅↵	不好₽	高↩	上进↵	嫁↵	é

**

p (矮|嫁) = ?统计满足样本数如下:

帅?。	性格好?	身高?』	上进?』	嫁与否。	ø
J ф ₽	好↩	矮↩	上进↵	嫁↵	ø

则p(矮|嫁) = 1/6

p(不上进|嫁) = ?统计满足样本数如下:

帅?"	性格好?	身高?』	上进?。	嫁与否。	ø
Jh <i>₽</i>	好↩	吉↩	不上进↵	嫁↵	٠

则p(不上进|嫁) = 1/6

下面开始求分母, p(不帅), p (性格不好), p (矮), p (不上进)

统计样本如下:

∮仲? →	性格好?	身高?。	上进?	嫁与否。	ø
帅↵	不好↵	矮↓	不上进↵	不嫁↩	4
不帅。	好↩	矮♪	上进↩	不嫁。	٥
帅↵	好↵	矮。	上进↩	嫁↵	٠
不帅₽	好↩	高₽	上进↩	嫁↓	4
帅↩	不好↩	矮。	上进↩	不嫁↩	4
帅↩	不好↩	矮。	上进↩	不嫁↩	4
帅↵	好↩	高↵	不上进₽	嫁↩	4
不帅。	好↩	中。	上进↩	嫁。	ø
坤⇨	好⇨	中。	上进。	嫁。	÷
不帅↵	不好♪	賣⋄	上进↩	嫁♪	4J
帅⋄	好↩	矮。	不上进↵	不嫁↩	٥
ù 中 ∿	好↩	矮。	不上进↵	不嫁↩	4

不帅统计如上红色所示, 占4个, 那么p (不帅) = 4/12 = 1/3

炉? 。	性格好?	身高?₄	上进?	嫁与否。	
坤↩	不好。	矮。	不上进。	不嫁。	•
不帅↵	好↵	矮↵	上进。	不嫁↵	+
帅。	好⋄	矮↓	上进。	嫁。	4
不帅↵	好↵	高↩	上进。	嫁↵	4
坤↩	不好♪	矮♪	上进↩	不嫁。	+
坤↩	不好₽	矮。	上进↵	不嫁。	4
帅。	好↩	高↩	不上进。	嫁↩	4
不帅↵	好↵	中。	上进。	嫁↵	4
帅。	好↩	中。	上进。	嫁↩	4
不帅₽	不好。	高→	上进↵	嫁。	4
帅。	好↩	矮₽	不上进。	不嫁₽	4
孙 ↔	好↩	矮₽	不上进。	不嫁↩	4

性格不好统计如上红色所示,占4个,那么p(性格不好)=4/12=1/3

帅? 。	性格好?。	身高?∞	上进?♪	嫁与否∞	
帅 ₽	不好₽	矮ℯ	不上进₽	不嫁↵	
不帅↵	好↩	矮ℯ	上进↩	不嫁↩	
沙	好↩	矮↩	上进↩	嫁↩	
不帅↵	好↩	高↩	上进↩	嫁↩	
J r ₽	不好₽	矮↩	上进↩	不嫁↩	
Jrp ₽	不好₽	矮ℯ	上进↩	不嫁↩	
ù 中 ₽	好↩	声↩	不上进。	嫁↩	
不帅↵	好↩	中₽	上进↩	嫁↩	
ìlф ≈	好↩	中₽	上进↩	嫁↩	
不帅↵	不好↵	高↩	上进↩	嫁↩	
<mark>Jr</mark> h ₽	好↩	矮ℯ	不上进↵	不嫁↩	
冲 ₽	好↩	矮↩	不上进♪	不嫁↩	

身高矮统计如上红色所示,占7个,那么p(身高矮) = 7/12

# /帅?	性格好?	身高?ℯ	上进?』	嫁与否》	4
J r	不好₽	矮↵	不上进↩	不嫁⋄	÷
不帅↵	好↩	矮↵	上进↵	不嫁↵	٩
J ф <i>₀</i>	好↵	矮↵	上进↵	嫁ℯ	٠
不帅↵	好↩	高↩	上进↵	嫁↵	ø
ì ф <i>₀</i>	不好↵	矮ℯ	上进↵	不嫁↵	ø
ì ф <i>₀</i>	不好↩	矮↩	上进↵	不嫁↵	٠
ì ф	好ℯ	高↩	不上进↩	嫁↩	÷
不帅↵	好↩	中↩	上进↵	嫁↩	٠
孙 ◆	好ℯ	中。	上进↵	嫁↩	ø
不帅↵	不好↩	高↩	上进↵	嫁↩	ø
J ф <i>₽</i>	好ℯ	矮♪	不上进↩	不嫁⋄	٠
J ф ∅	好↩	矮↓	不上进↩	不嫁↩	4

不上进统计如上红色所示, 占4个, 那么p (不上进) = 4/12 = 1/3

到这里,要求p(不帅、性格不好、身高矮、不上进|嫁)的所需项全部求出来了,下面我带入进去即可,

 $p(g|\text{不帅、性格不好、身高矮、不上进}) = \frac{p(\text{不帅、性格不好、身高矮、不上进}|g)*p(g)}{p(\text{不帅、性格不好、身高矮、不上进})} = \frac{p(\text{不帅}|g)*p(性格不好|g)*p(身高矮|g)*p(不上进|g)*p(g)}{p(不帅)*p(性格不好)*p(身高矮)*p(不上进)}$

=(1/21/61/61/61/2)/(1/31/37/12*1/3)

下面我们根据同样的方法来求p(不嫁|不帅,性格不好,身高矮,不上进),完全一样的做法,为了方便理解,我这里也走一遍帮助理解。首先公式如下:

下面我也一个一个来进行统计计算,这里与上面公式中,分母是一样的,于是我们分母不需要重新统计 计算!

p (不嫁) =? 根据统计计算如下 (**红色为满足条件**):

帅?。	性格好?	身高?』	上进?。	嫁与否。	4
帅	不好₽	矮↵	不上进₽	不嫁↵	4
不帅₽	好↩	矮↵	上进↩	不嫁♪	+
J ф ₽	好↩	矮↵	上进↵	嫁↩	4
不帅↵	好↩	高↩	上进↩	嫁↩	+
帅 ₽	不好₽	矮↩	上进↩	不嫁。	4
坤↩	不好↩	矮↩	上进↩	不嫁♪	+
帅↩	好↩	高↩	不上进。	嫁↩	4
不帅↵	好↩	中↩	上进↵	嫁↩	+
帅 ₽	好↵	中↩	上进↵	嫁ℯ	4
不帅↵	不好↩	高↩	上进↵	嫁↩	+
Jr h ₽	好₽	矮↵	不上进₽	不嫁↵	4
帅↩	好↩	矮♪	不上进ℯ	不嫁♪	f

则p(不嫁)=6/12 = 1/2

p(不帅|不嫁)=?统计满足条件的样本如下(红色为满足条件):

帅?"	性格好?。	身高?	上进?⋄	嫁与否。	4
小	不好↵	矮↩	不上进↵	不嫁↵	φ
不帅↵	好↩	矮↩	上进↩	不嫁。	P
沙 中 ₽	好↩	矮↩	上进↵	嫁↵	P
不帅↵	好↩	高↩	上进↩	嫁↩	P
孙 ↔	不好↵	矮ℯ	上进。	不嫁↩	ē.
孙 ↔	不好↵	矮↩	上进↩	不嫁。	ø
帅 ↩	好↩	高↩	不上进↵	嫁↩	ø
不帅↵	好↩	中↩	上进↩	嫁↩	P
ो्र	好↩	中。	上进。	嫁↩	P
不帅↵	不好↵	高↩	上进↩	嫁↩	ø
ो्र	好↩	矮ℯ	不上进。	不嫁。	e
∫ 中	好↩	矮↩	不上进↵	不嫁↩	P

则p (不帅|不嫁) = 1/6

p (性格不好|不嫁) = ? 据统计计算如下 (**红色为满足条件**):

帅?"	性格好?。	身高?』	上进?。	嫁与否∞	4
帅₽	不好♪	矮↩	不上进↩	不嫁↩	4
不帅↵	好↩	矮↵	上进↩	不嫁。	+
帅 ↩	好↩	矮↵	上进↩	嫁↵	4
不帅↵	好↩	吉↩	上进↩	嫁↩	+
帅⋄	不好₽	矮≠	上进↩	不嫁↩	4
帅↩	不好♪	矮↩	上进↩	不嫁↩	+
孙 ↩	好↩	高↩	不上进↵	嫁↩	4
不帅↵	好↩	中亞	上进↵	嫁↩	4
冲 ≈	好↵	中 🕫	上进↵	嫁↩	4
不帅↵	不好↵	吉↩	上进↩	嫁ℯ	+
帅 ↩	好↩	矮↵	不上进。	不嫁↵	4
冲 ⊸	好↩	矮↵	不上进。	不嫁。	+

则p (性格不好|不嫁) =3/6 = 1/2

p (矮|不嫁) =?据统计计算如下(红色为满足条件):

帅?。	性格好?	身高?∞	上进?』	嫁与否∞	
J ф ₽	不好♪	矮↵	不上进↵	不嫁♪	
不帅↵	好↩	矮↩	上进↩	不嫁↵	
J ф ₽	好↩	矮↓	上进。	嫁↵	
不帅↵	好↩	高⋄	上进。	嫁↩	
J ф ₽	不好♪	矮↓	上进↩	不嫁♪	
帅 ₽	不好₽	矮♪	上进↩	不嫁₽	
J ф <i>₽</i>	好↩	高⋄	不上进↵	嫁↵	
不帅↵	好↩	中。	上进。	嫁↩	
J φ ₽	好↵	中。	上进。	嫁↵	
不帅↵	不好₽	高₽	上进。	嫁↩	
J φ ₽	好₽	矮。	不上进₽	不嫁₽	
帅 ₽	好↩	矮↓	不上进↓	不嫁♪	

则p (矮|不嫁) = 6/6 = 1

p (不上进|不嫁) =?据统计计算如下(红色为满足条件):

帅?。	性格好?	身高?』	上进?。	嫁与否。	
帅 。	不好↵	矮♪	不上进♪	不嫁。	
不帅₽	好↩	矮。	上进↵	不嫁。	
J ф <i>₽</i>	好↩	矮。	上进。	嫁↩	
不帅 ₽	好↵	高♪	上进。	嫁。	
帅。	不好↵	矮↓	上进↵	不嫁。	
帅。	不好↵	矮。	上进。	不嫁。	
帅。	好↩	高↩	不上进。	嫁。	
不帅。	好↵	中。	上进。	嫁。	
帅。	好↩	中。	上进。	嫁。	
不帅↵	不好↵	高₽	上进。	嫁↵	
坤∘	好↩	矮。	不上进。	不嫁。	
坤↩	好↩	矮。	不上进。	不嫁。	

则p (不上进|不嫁) = 3/6 = 1/2

那么根据公式:

 $p(\pi | x_{p} | x_{p}) = \frac{p(\pi | x_{p} | x_{p}) + p(\pi | x_{p}) + p(\pi | x_{p})}{p(\pi | x_{p}) + p(\pi | x_{p}) + p$

p (不嫁 | 不帅、性格不好、身高矮、不上进) = ((1/61/211/2)1/2)/(1/31/37/12*1/3)

很显然(1/6*1/2*1*1/2) > (1/2*1/6*1/6*1/6*1/2)

于是有p (不嫁|不帅、性格不好、身高矮、不上进)>p (嫁|不帅、性格不好、身高矮、不上进)

所以我们根据朴素贝叶斯算法可以给这个女生答案,是不嫁!!!!

优缺点

优点:

- (1) 算法逻辑简单,易于实现
- (2) 分类过程中时空开销小

缺点:

理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为 朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或 者属性之间相关性较大时,分类效果不好。

而在属性相关性较小时, 朴素贝叶斯性能最为良好。对于这一点, 有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。

贝叶斯网络

贝叶斯网络的定义

令G = (I,E)表示一个有向无环图(DAG),其中I代表图形中所有的节点的集合,而E代表有向连接线段的集合,且令 $X = (Xi)i \in I$ 为其有向无环图中的某一节点i所代表的随机变量,若节点X的联合概率可以表示成:

$$p(x) = \prod_{i \in I} p(x_i \mid x_{pa(i)})$$

则称X为相对于一有向无环图G 的贝叶斯网络, 其中,

表示节点i之"因",或称pa(i)是i的parents (父母)。

此外,对于任意的随机变量,其联合概率可由各自的局部条件概率分布相乘而得出:

$$p(x_1,\ldots,x_K) = p(x_K|x_1,\ldots,x_{K-1})\ldots p(x_2|x_1)p(x_1)$$

如下图所示, 便是一个简单的贝叶斯网络:

因为a导致b, a和b导致c, 所以有

$$p(a,b,c) = p(c|a,b)p(b|a)p(a)$$

2.2 贝叶斯网络的实例

给定如下图所示的贝叶斯网络:

其中,各个单词、表达式表示的含义如下:

- smoking表示吸烟,其概率用P(S)表示, lung Cancer表示的肺癌,一个人在吸烟的情况下得肺癌的概率用P(C|S)表示,X-ray表示需要照医学上的X光,肺癌可能会导致需要照X光,吸烟也有可能会导致需要照X光(所以smoking也是X-ray的一个因),所以,因吸烟且得肺癌而需要照X光的概率用P(X|C,S)表示。
- Bronchitis表示支气管炎,一个人在吸烟的情况下得支气管炎的概率用P(B|S), dyspnoea表示呼吸困难,支气管炎可能会导致呼吸困难,肺癌也有可能会导致呼吸困难 (所以lung Cancer也是dyspnoea的一个因),因吸烟且得了支气管炎导致呼吸困难的概率用P(D|C,B)表示。

lung Cancer简记为C,Bronchitis简记为B,dyspnoea简记为D,且C = 0表示lung Cancer不发生的概率,C = 1表示lung Cancer发生的概率,B等于0(B不发生)或1(B发生)也类似于C,同样的,D=1表示D发生的概率,D=0表示D不发生的概率,便可得到dyspnoea的一张概率表,如上图的最右下角所示。

2.3 贝叶斯网络的3种结构形式

给定如下图所示的一个贝叶斯网络,

从图上可以比较直观的看出:

• \1. x1,x2,...x7的联合分布为

$$p(x_1)p(x_2)p(x_3)p(x_4|x_1,x_2,x_3)p(x_5|x_1,x_3)p(x_6|x_4)p(x_7|x_4,x_5)$$

- \2. x1和x2独立 (对应head-to-head);
- \3. x6和x7在x4给定的条件下独立(对应tail-to-tail)。

根据上图,第1点可能很容易理解,但第2、3点中所述的条件独立是啥意思呢?其实第2、3点是贝叶斯网络中3种结构形式中的其中二种。为了说清楚这个问题,需要引入D-Separation (D-分离)这个概念。

D-Separation是一种用来判断变量是否条件独立的图形化方法。换言之,对于一个DAG(有向无环图)E, D-Separation方法可以快速的判断出两个节点之间是否是条件独立的。

2.3.1 形式1: head-to-head

贝叶斯网络的第一种结构形式如下图所示

所以有: P(a,b,c) = P(a)P(b)P(c|a,b)成立, 化简后可得:

$$\sum_{c} P(a,b,c) = \sum_{c} P(a) * P(b) * P(c \mid a,b)$$
$$\Rightarrow P(a,b) = P(a) * P(b)$$

即在**c未知的条件下,a、b被阻断(blocked),是独立的**,称之为head-to-head条件独立,对应本节中最开始那张图中的"x1、x2独立"。

2.3.2 形式2: tail-to-tail

贝叶斯网络的第二种结构形式如下图所示

有P(a,b,c)=P(c)*P*(*a*|*c*)P(b|c),则: P(a,b|c)=P(a,b,c)/P(c),然后将P(a,b,c)=P(c)*P*(*a*|*c*)P(b|c)带入上式,得到: P(a,b|c)=P(a|c)*P(b|c)。

即**在c给定的条件下, a, b被阻断(blocked), 是独立的**, 称之为tail-to-tail条件独立, 对应本节中最开始那张图中的"x6和x7在x4给定的条件下独立"。

2.3.3 形式3: head-to-tail

贝叶斯网络的第三种结构形式如下图所示:

有: P(a,b,c)=P(a)P(c|a)P(b|c)。

化简后可得:

$$P(a, b|c)$$

= $P(a, b, c)/P(c)$
= $P(a)*P(c|a)*P(b|c) / P(c)$
= $P(a, c)*P(b|c) / P(c)$
= $P(a|c)*P(b|c)$

即: 在c给定的条件下, a, b被阻断(blocked), 是独立的, 称之为head-to-tail条件独立。

插一句: 这个head-to-tail其实就是一个链式网络,如下图所示:

在xi给定的条件下,xi+1的分布和x1,x2...xi-1条件独立。即:xi+1的分布状态只和xi有关,和其他变量条件独立,这种顺次演变的随机过程,就叫做马尔科夫链(Markov chain)。且有:

$$P(X_{n+1} = x | X_0, X_1, X_2, \dots, X_n) = P(X_{n+1} = x | X_n)$$

- OK,今天在总结贝叶斯网络中的上述3种结构时,发现跟河流关系比较相像,比如:
 - ①两条小河流入一条大河,叫head-to-head,由P(a,b,c)=P(c|a,b)P(b)P(a),可得: P(a,b) = P(a)*P(b),即c未知的条件下,a、b被阻断(blocked),是独立的。同时,也谓之汇连,且汇连是条件依赖的(C依赖于A、B的联合分布),汇连这种情况也称为一个v-结构;

 ②一条大河到某处分叉成两条支流,称之为tail-to-tail,由P(a,b,c)=P(b|c)P(a|c)P(c),可得: P(a,b|c)=P(a|c)*P(b|c),即在c给定的条件下,a,b被阻断(blocked),是独立的。同时,也谓之分连;

• ③一条大河流到底,中间不分叉不汇入其它河流,但可能其中的某段叫什么江,另一段叫什么江,称之为head-to-tail,由P(a,b,c)=P(b|c)P(c|a)P(a),化简可得:P(a,b,c)=P(a)P(c|a)P(b|c),即在c给定的条件下,a,b被阻断(blocked),是独立的。同时,也谓之顺连;

不知道读者对这个河流的比喻怎么看? -

接着,将上述结点推广到结点集,则是:对于任意的结点集A,B,C,考察所有通过A中任意结点到B中任意结点的路径,若要求A,B条件独立,则需要所有的路径都被阻断(blocked),即满足下列两个前提之一:

- 1. A和B的"head-to-tail型"和"tail-to-tail型"路径都通过C;
- 2. A和B的"head-to-head型"路径不通过C以及C的子孙;

最后,举例说明上述D-Separation的3种情况,则是如下图所示:

上图中左边部分是head-to-tail,右边部分的右上角是tail-to-tail,右边部分的右下角是head-to-head。