Solutions to Midterm #1

- 1. (a) Solution. $u_x = v_y$ and $u_y = -v_x$.
- (b) Solution. Here $u = e^{-x} \cos y$ and $v = -e^{-x} \sin y$. These two functions are defined in all of \mathbb{C} , an open set. All of the first partial derivatives exist and are continuous in all of \mathbb{C} . It is easy to check that the Cauchy-Riemann equations hold at every point. By the theorem on sufficiency of the Cauchy-Riemann equations, f'(z) exists at every point in \mathbb{C} .
- 2. Does not exist. (I.e. problem 2 does not exist!)
- **3**. (a) Solution. The sketch is of an open annulus centered at -i = (0, -1). The inner radius is one and the outer radius 2.
- (b) Solution. A domain is an open connected set.
- (c) Solution. The set in part **a** is open (and not closed). It is connected and therefore it is a domain.
- 4. (a) Solution. $u = x^3 3xy^2$, $v = -3yx^2 + y^3$.
- (b) Solution. f'(i) does not exist because the Cauchy-Riemann equations do not apply at i. In particular, $u_x(0,1) = +3$ but $v_y(0,1) = -3$.
- (c) (Note the typo in the problem; the goal is to show f'(0) does exist.) Solution. f'(0) exists by the definition, as follows. (Note that checking Cauchy-Riemann at a point is not sufficient to prove that f'(z) exists). Compute:

$$f'(0) = \lim_{\Delta z \to 0} \frac{\left(\overline{0 + \Delta z}\right)^3}{\Delta z} = \lim_{\Delta z \to 0} \overline{\Delta z}^2 \frac{\overline{\Delta z}}{\Delta z}$$

Now the fraction $\overline{\Delta z}/\Delta z$ is a bounded function on the plane, in fact,

$$\left| \frac{\overline{\Delta z}}{\Delta z} \right| = 1.$$

So the limit above is zero because $\lim_{\Delta z \to 0} \overline{\Delta z}^2 = 0$. Thus f'(0) exists and f'(0) = 0.

 $5. \quad \lim_{z \to z_0} \operatorname{Re} z = \operatorname{Re} z_0$

Proof. Let $\epsilon > 0$. Define δ to be exactly ϵ . If $|z - z_0| < \delta$ then

$$|\operatorname{Re} z - \operatorname{Re} z_0| = |x - x_0| = \sqrt{(x - x_0)^2} \le \sqrt{(x - x_0)^2 + (y - y_0)^2} = |z - z_0| < \delta = \epsilon.$$

- **6**. Solution. For all $z \neq 0$, Arg z is the angle $\theta \in (-\pi, \pi]$ so that $z = re^{i\theta}$ for some positive r.
- 7. Solution.

$$\frac{4i}{(1-i)(2-i)(3-i)} = \frac{4i}{(1-3i)(3-i)} = \frac{4i}{-10i} = -\frac{2}{5}.$$