Lecture 10 MORE ABOUT CAUCHY FORMULA

IHM: If $f: D \rightarrow C$ is analytic, γ simple closed curve so that inside of γ is in D.

Trig Integrals

[27 (trig function) do -> is actually a line integral

If $z=e^{i\theta}$ then $\cos\theta=\frac{1}{2}(z+\frac{1}{2})$

$$\sin(\partial\theta) \rightarrow is$$
 actually a line integral

 $\cos\theta = \frac{1}{2}(\Xi + \frac{1}{\Xi})$
 $\sin\theta = \frac{1}{2}(\Xi - \frac{1}{\Xi})$
 $d\theta = \frac{1}{2}d\Xi$

(1-low toget this?)

 $d\theta = \frac{d\theta}{d\theta} = ie^{i\theta}d\theta$
 $d\theta = \frac{d\theta}{d\theta} = ie^{i\theta}d\theta$

Ex: Find

$$= \int_{\gamma} \frac{1}{2+\frac{1}{2i}} \frac{dz}{(z-\frac{1}{2})}$$

$$= \int_{\gamma} \frac{1}{2+\frac{1}{2i}} \frac{dz}{(z-\frac{1}{2})}$$

$$= \int_{\gamma} \frac{1}{1} \frac{2i d \Xi}{4i + (\Xi - \frac{1}{\Xi})}$$

$$= \int_{\gamma} \frac{2d \Xi}{4i \Xi + \Xi^2 - 1}$$

$$= 2 \int \frac{dz}{z^2 + 4iz - 1}$$

$$= 2 \left(\frac{dz}{dz + (u_1(z))} \right) = 2^{\frac{1}{2} - (u_1(z))^2 + (u_1(z))}$$

$$= 2 \int \frac{dz}{z^2 + 4iz - i}$$
 recall: Gaushy formula up there

$$= 2 \int_{\mathbb{Z}^{2} + 4i\mathbb{Z}^{-1}}^{\mathbb{Z}^{2} + 4i\mathbb{Z}^{-1}} | \text{recall: (analy formula up there}$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))} | \mathbb{Z}^{2} + 4i\mathbb{Z}^{-1} = 0$$

$$= 2 \int_{\mathbb{Z}^{2} - (2\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))}^{\mathbb{Z}^{2} + (4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i))^{\mathbb{Z}^{2} + (4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{Z}^{+}(4\sqrt{3}i)(\mathbb{$$

$$(2) = \frac{1}{2 + (2 + \sqrt{3})}$$
 = $-2i \pm \sqrt{3}i$
= $(-2 \pm \sqrt{3})$

$$= \frac{2}{(-2+\sqrt{3}i + (2+\sqrt{3})i} \cdot 2\pi i$$

$$= \frac{4\pi}{2\sqrt{3}}$$

(-2-V3)i

one inside &, one outside

THM: Suppose f is analytic in D, $z \in D$. Then we can find a disk $D_{R}(z)$ & a power series representation of f. $f(z) = \sum a_{R}(z-z_{0})^{R}$ which cyges absolutely in $D_{R}(z_{0})$.

Moreover, a_k is given by $a_k = \frac{1}{2\pi i} \int_{X} \frac{f(z)}{(z-z)^{k+1}} dz$ where X is a simple closed curve around Z_0

 $(z_0=0,k+1=31,k=30) \Rightarrow \int \frac{\cos z}{z^{31}} dz = 2\pi i \alpha_{30} = \frac{2\pi i}{30/2}$

$$\cos z = \sum \frac{(-1)^{n} z^{2n}}{(2n)!}$$

$$\cos z = \frac{(-1)^{1/2}}{30!} = \frac{-1}{30!}$$

Pf: (Easy Part) Suppose $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^n$ converges in $D_{\epsilon}(z_0)$:

 $\frac{1}{2\pi i} \int_{(\Xi-\Xi_0)^k}^{f(\Xi)} d\Xi = \frac{1}{2\pi i} \int_{\zeta} \left(\sum_{n=0}^{\infty} \frac{a_n(\Xi-\Xi_0)^n}{(\Xi-\Xi_0)^k} \right) d\Xi = \frac{1}{2\pi i} \int_{(\Xi-\Xi_0)^{k-n+1}}^{\infty} d\Xi$ $=\frac{1}{2\pi i}\sum_{n=0}^{\infty}\frac{\alpha_n}{(z-z)^{k-n+1}}dz$ $= \frac{1}{2\pi i} \mathcal{Q}_{k} \cdot 2\pi i \quad (n=k)$ $= \mathcal{Q}_{k}$ = (n+k) $= (2\pi i) \quad m=1$

(Hard Part). Show such sories converges. (skip)

COR: If f is analytic, then so is f'. Hence f is infinitely diff.

Ex: Not true for real diff. functions.

$$f(x) = \begin{cases} -x^2 & x < 0 \\ x^2 & x > 0 \end{cases}$$

$$f(x) = 2|x|$$

COR: Suppose f is analytic in D of for some point $z_0 \in D$ we have $f^{(k)}(z_0) = 0$ for all $z \in D$.

[$a_k = f^{(k)}(z_0)$]