HOMEWORK 3

SAI SIVAKUMAR

- (1) What are the boundaries of the following sets? No proof required.
 - (a) \mathbb{Q} as subset of the metric space \mathbb{R} .
 - (b) \mathbb{Q} as a subset of the metric space \mathbb{Q} (as a subspace of \mathbb{R}).
 - (c) $S = \{(x, \sin(\frac{1}{x})) : x \in (0,1)\} \subseteq \mathbb{R}^2$ as a subset of the Euclidean space \mathbb{R}^2 . Note, S is the graph of the function $f:(0,1) \to \mathbb{R}$ defined by $f(x) = \sin(\frac{1}{x})$.
- (2) Give an example of a subset E of a metric space X such that $\partial E^{\circ} \neq \partial E$. No proof required, but you must provide some justification for your identification of both ∂E° and ∂E .
- (3) Suppose X = (X, d) be a metric space and E a subset of X. Show if E is both open and closed, then $\partial E = \emptyset$. Is the converse true? Proof or counterexample.
- (1) Boundaries:
 - (a) $\partial \mathbb{O} = \mathbb{R}$
 - (b) $\partial \mathbb{Q} = \emptyset$ (viewing \mathbb{Q} as a subspace of \mathbb{R})
 - (c) $\partial S = S \cup \{(0,t): t \in [-1,1]\}$
- (2) Take E = S and $X = \mathbb{R}^2$, with S as defined above, so that $\partial E^{\circ} = \emptyset \neq S \cup \{(0,t): t \in [-1,1]\} = \partial E$. The interior of E is empty, because any open set containing at least one point of E intersects nontrivially with $\mathbb{R}^2 \setminus S$. The boundary of E is the boundary of S, which is the set of all points for which every open set containing these points intersect nontrivially with S and $\mathbb{R}^2 \setminus S$.
- (3) A subset of a metric space is open and closed if and only if its boundary is the empty set.

Proof. Suppose X is a metric space and let E be a subset of X.

Suppose E is open and closed so that $X \setminus E$ is open. Then $E^{\circ} = E$ and $(X \setminus E)^{\circ} = X \setminus E$, from which it follows that the boundary of E is empty since X is the disjoint union of the interior, boundary, and exterior of E.

Conversely, suppose ∂E is empty. This means that there are no open sets in X which intersect nontrivially with E and simultaneously intersect nontrivially with $X \setminus E$. It follows that any open set in X is either contained in E or is contained in $X \setminus E$. Hence every point of E has a neighborhood contained in E; similarly, every point of E has a neighborhood contained in E. We have that E and its complement are open, so that E is both open and closed. \Box

Redo:

- (1) Boundaries:
 - (a) $\partial \mathbb{Q} = \mathbb{R}$
 - (b) $\partial \mathbb{Q} = \emptyset$ (viewing \mathbb{Q} as a subspace of \mathbb{R})
 - (c) $\partial S = S \cup \{(0,t) : t \in [-1,1]\} \cup \{(1,\sin(1))\}$
- (3) A subset of a metric space is open and closed if and only if its boundary is the empty set.

Proof. Suppose X is a metric space and let E be a subset of X.

Suppose E is open and closed so that $X \setminus E$ is open. Then $E^{\circ} = E$ and $(X \setminus E)^{\circ} = X \setminus E$, from which it follows that the boundary of E is empty since X is the disjoint union of the interior, boundary, and exterior of E.

Conversely, suppose ∂E is empty. This means that there are no points p in X satisfying the condition that every neighborhood of p intersects nontrivially with E and simultaneously intersects nontrivially with E. So for any E in follows that there exists a neighborhood of E which either does not intersect E or does not intersect E. Both cannot happen simultaneously since every neighborhood of E contains E, and E is either in E or E. Hence every point of E has a neighborhood contained in E; similarly, every point of E has a neighborhood contained in E. We have that E and its complement are open, so that E is both open and closed.