الإمتحات الوطنى الموحد

لنيل شهادة البكالوريا الدورة العادية 2004

مادة الرياضيات مسلك العلوم الرياضية أو ب المعامل 10 مدة الإنجاز: أربع ساعات

استعمال الحاسبة الغير القابلة للبرمجة مسموح به

<u> التمرين الأول: (3,0 ن)</u>

- ا لیکن n عددا صحیحا طبیعیا (1)
- . $n^2 \equiv 1[8]$ بين أنه إذا كان n عددا فرديا فإن (
- . $n^2 \equiv 4[8]$ او $n^2 \equiv 0[8]$ او $n^2 \equiv 0[8]$ او $n^2 \equiv 0$ او $n^2 \equiv 0$
 - ایکن a و b و c أعداد صحيحة طبيعية فردية 2
 - ایس مربعا کاملا. $a^2 + b^2 + c^2$ لیس مربعا کاملا.
 - $2(ab+bc+ac)\equiv 6[8]$: بين أن \bigcirc بين أن \bigcirc 0,50

- . استنتج أن يا 2(ab+bc+ac) ليس مربعا كاملا يا 3(ab+bc+ac)
 - ايس مربعا كاملا. (ab+bc+ac) ليس مربعا كاملا.

التمرين الثانى: (3,0 ن)

$$M_a = egin{pmatrix} a & rac{1}{\sqrt{3}} \left(a - rac{1}{a}
ight) \ 0 & rac{1}{a} \end{pmatrix}$$
: لتكن E مجموعة المصفوفات التي تكتب على شكل التي

$$N_a = egin{pmatrix} a & rac{1}{\sqrt{3}} \Big(a - rac{1}{a}\Big) \ -a\sqrt{3} & -a \end{pmatrix}$$
 : يلي المعرفة بما يلي :

- . $(\forall (a,b) \in \mathbb{R}^{*2})$; $M_a \times M_b = M_{ab}$: نُولُ نُلُلُ نُولُ نُلِنُ لِلْ لِلْمُ لِلِي لِلْمُ نُلِلْ نُلْلُ نُلْلًا نُلْلِنُ لِلْمُ لِلْمُ ل
- . $\varphi(a)=M_a$: نحو E بما يلي φ التطبيق المعرف من \mathbb{R}^* نحو E بما يلي φ ليكن و التطبيق المعرف من \mathbb{R}^*
 - (E,\times) بین أن (E,\times) من (\mathbb{R}^*,\times) نحو (E,\times)
 - . (E, \times) استنتج البنية الجبرية لـ \bigcirc استنتج البنية الجبرية الحبرية الحبري
 - . $(orall (a,b) \in \mathbb{R}^{*2})$; $N_a imes N_b = M_{rac{b}{a}}$ بين أن $(\mathfrak{2})$ بين أن $(\mathfrak{3})$
 - زمرة . (G, \times) : نضع $G = E \cup F$ نضع Θ
 - بادلية ؟ (G, \times) زمرة تبادلية ? 0,50

الأجوبة من اقتراح الأستاذ بدر الدين الفاتحي -

- رمضان **2012 - الصفحة** : **23**

التمرين الثالث: (3,5 ن)

0,75 ن

.
$$z^2+z+1=0$$
 خل في $\mathfrak D$ المعادلة : $\mathfrak D$

$$z'=rac{1}{z^2+z+1}$$
 : نضع $z=e^{i heta}=\cos heta+i\sin heta$: نضع $z=e^{i heta}=\cos heta+i\sin heta$

$$\theta \neq \frac{-2\pi}{3}$$
 و $\theta \neq \frac{2\pi}{3}$ و $-\pi \leq \theta \leq \pi$: عم

$$1 + z + z^2 = Z(1 + z + \overline{z})$$
 : نحقق أن (0.75

احسب معیار و عمدة
$$z'$$
 بدلالة θ .

.
$$(x,y)\in\mathbb{R}^2$$
 حیث $z'=x+iy$: نضع نضع $z'=x+iy$

.
$$x^2 + y^2 = (1 - 2x)^2$$
: بين أن

ماربیه و مقاربیه و مقاربیه و مقاربیه
$$Z'$$
 تنتمی الی هدلول یتم تحدید مرکزه و رأسیه و مقاربیه و 0.50

التمرين الرابع: (10 ن)

$$\left(f(x)=rac{e^{-x}}{x}
ight)$$
 : يعتبر f الدالة العددية المعرفة على \mathbb{R}^* بما يلي f بعتبر f

$$oxedsymbol{1}$$
 فحسب نهایات f عند محدات مجموعة تعریفها $oxedsymbol{1}$.

$$f$$
 أدرس تغيرات الدالة g أدرس أ

المنحنى الممثل للدالة
$$f$$
 في معلم متعامد ممنظم. (8) ليكن

باللتى المتتالية العددية المعرفة بما يلي :
$$u_{n+1}=u_n{}^2f(u_n)=u_ne^{-u_n}$$
 ; $(\forall n\epsilon\mathbb{N})$: $u_0=1$

.
$$(\forall x \in \mathbb{R})$$
 ; $e^x \ge x + 1$: بين أن (1) بين أن (25)

$$(\forall x > 0) ; x^2 f(x) \le \frac{x}{x+1} : 0.25$$

$$(\forall n \in \mathbb{N})$$
 ; $0 < u_n \leq \frac{1}{n+1}$: نأن بالترجع بين أن نابر هان بالترجع بين أن نابر كالتربي كالتربي نابر كالتربي كالتربي

بين أن المتتالية
$$(u_n)$$
 متقاربة و حدد نهايتها. \bullet

$$\left(v_n=\sum_{k=0}^{n-1}u_k
ight):\mathbb{N}^*$$
 نضع من أجل كل عنصر n من \mathfrak{A}

$$(\forall n \in \mathbb{N}^*)$$
 ; $v_n = \ln\left(\frac{1}{u_n}\right)$: نین آن ن 0.75

.
$$(v_n)$$
 حدد نهایة المتتالیه \bigcirc

الأجوية من اقتراح الأستاذ بدر الدين الفاتحي ـ الصالح عنه المالح الأستاذ الأستاذ الأستاذ المالح المال

: بما يلي الدالة العددية F المعرفة على $[0,+\infty]$ بما يلي (III

$$F(0) = 2 \ln 2$$
 $\forall x > 0$; $F(x) = \int_{x^2}^{4x^2} f(t) dt$

$$(\forall x > 0)$$
 ; $\int_{x^2}^{4x^2} \frac{1}{t} dt = 2 \ln 2$: نحقق أن (1) نحقق أن (25)

.
$$(\forall t>0)\; ; \; -t < e^{-t}-1 \leq 0 \;\; :$$
 باستعمال نتیجة السؤال 1 من الجزء الثاني بین أن $1\leq 0$ باستعمال نتیجة السؤال $1\leq 0$

.
$$(\forall x > 0) \; ; \; -3x^2 \le F(x) - 2 \ln 2 \le 0 \; : ن (j) 2$$
 بين أن (j)

استنتج أن
$$F$$
 متصلة و قابلة للإشتقاق على اليمين في 0 .

.
$$(\forall t \geq 1)$$
 ; $f(t) < e^{-t}$ بين أن (\mathfrak{z}) بين أن (\mathfrak{z})

$$\lim_{x \to +\infty} F(x)$$
 : استنتج النهاية التالية Θ استنتج النهاية التالية

$$F'(x)$$
 بين أن F قابلة للإشتقاق على المجال $+\infty$ و احسب $(\hat{j})(4)$ و احسب $(\hat{j})(4)$

$$F$$
 اعط جدول تغیرات الداله Θ اعط جدول تغیرات الداله ا

منظم منعامد ممنظم . في معلم متعامد ممنظم .
$$\mathfrak{E}$$

$$G(x) = \int_{x}^{4x} e^{-t} \ln t \ dt$$
 : يما يلي $G(x) = \int_{x}^{4x} e^{-t} \ln t \ dt$: ياكن $G(x) = \int_{x}^{4x} e^{-t} \ln t \ dt$

.
$$(\forall x > 0)$$
 ; $G(x) = F(\sqrt{x}) - e^{-4x} ln(4x) + e^{-x} ln(x)$: نين أن (0.50)

$$\lim_{x \to 0} (e^{-x} - e^{-4x}) \ln x$$
 : غيب النهاية التالية : في المنابقة التالية التالية : في المنابقة : في المن

$$\lim_{\substack{x \to 0 \\ x > 0}} G(x) : \frac{0.25}{2}$$

الصفحة: 25

% وه چوه و چوه

(€)(2) ■

لتمرين الأول: (3,0 <u>ن)</u>

لیکن n عددا فردیا

 $(\exists k \in \mathbb{N})$; n = 2k + 1 : إذن

 \Leftrightarrow $(\exists k \in \mathbb{N})$; $n^2 = (2k+1)^2$

 \Leftrightarrow $(\exists k \in \mathbb{N})$; $n^2 = 4k^2 + 4k + 1$

 \Leftrightarrow $(\exists k \in \mathbb{N})$; $n^2 = 4k(k+1) + 1$

و (k+1) عددان صحيحان طبيعيان و متتابعان إذن أحدهما فردي k و الآخر زوجي. و منه فإن الجداء k(k+1) عدد زوجي دائما.

 $(\exists m \in \mathbb{N})$; k(k+1) = 2m : إذن

 $n^2 = 4k(k+1) + 1 = 8m+1$: و بالتالي

 $\iff n^2 - 1 = 8m$

 \Leftrightarrow $n^2 \equiv 1[8]$

اب(1) **ب** ليكن n عددا زوجيا .

 $(\exists k \epsilon \mathbb{N}) \; ; \; n = 2k \; :$ هذا يعنى أن

العدد الصحيح الطبيعي k يمكن أن يكون فرديا أو زوجيا .

<u>الحالة الأولى: k عدد زوجي</u>

 $(\exists p \in \mathbb{N})$; k=2p : إذن

 $n^2 = 16p^2 = 8(2p^2)$: يعني n = 4p

 $n^2 \equiv 0$ [8] : و منه $8 \, / \, n^2$

الحالة الثانية: k: عدد فردي

 $(\exists q \in \mathbb{N})$; k = 2q + 1 : إذن

 $n^2 - 4 = 8(2q^2 + 2q)$ يعني n = 4q + 2 و منه :

 $n^2 \equiv 4[8]$: و منه $8/(n^2-4)$: إذن

<u>الخلاصة :</u>

 $n^2 \equiv 4[8]$ أو $n^2 \equiv 0[8]$ أو عددا زوجيا فإن $n^2 \equiv 0[8]$

—(j)(**2**)■

نُذَكِّرُ في البداية أن مجموع ثلاثة أعداد فردية هو عدد فردي و أن مربع أي عدد فردي يكون دائما عددا فرديا.

نفترض أن $(a^2 + b^2 + c^2)$ مربع كامل.

(1) $(\exists d \in \mathbb{N})$; $a^2 + b^2 + c^2 = d^2$: إذن

بما أن a و b و c أعداد فردية فإن $(a^2+b^2+c^2)$ عدد فردي كذلك .

$$\left\{egin{aligned} a^2 &\equiv 1[8] \ b^2 &\equiv 1[8] \end{aligned}
ight.$$
 و منه حسب نتيجة السؤال $\left(\mathbf{1}\right)$ السؤال $\left(\mathbf{1}\right)$

(2) $a^2 + b^2 + c^2 \equiv 3[8]$: إذن $d^2 = a^2 + b^2 + c^2 = 3[8]$: لدينا $d^2 = a^2 + b^2 + c^2 = 3[8]$

(3) $d^2 \equiv 1$ [8] (غير السوال (3) (3) (3) (3) (3) (3) (3)

من (1) و (2) و (3) نستنتج أن : $[8] \equiv 3$

يعني أن : 2 / 8 و هذا مستحيل حدوثه

و بالتالي $(a^2 + b^2 + c^2)$ ليس مربعا كاملا.

لدينا a و b و b أعداد فردية.

 $\begin{cases} a^2 \equiv 1[8] \\ b^2 \equiv 1[8] \end{cases}$ إذن حسب نتيجة السؤال $\mathbf{1}$ السؤال $\mathbf{1}$

(4) $a^2 + b^2 + c^2 \equiv 3[8]$: و منه

و بما أن a و b و b عدد فردي كذلك و بما أن a

(5) $(a+b+c)^2 \equiv 1[8]$ (1) السؤال (18) و منه حسب نتیجة السؤال (19) و (5) نستنتج أن

 $(a+b+c)^2 - (a^2+b^2+c^2) \equiv 1-3[8]$

 $(a+b+c)^2 - (a^2+b^2+c^2) \equiv -2[8]$: يعنى

و نعلم أن : [8]6 ≡ 2−

 $(a+b+c)^2 - (a^2+b^2+c^2) \equiv 6[8]$! إذن

 $(\star)\Big[2(ab+ac+bc)\equiv 6[8]\Big]$: و منه

 $(a+b+c)^2 = (a^2+b^2+c^2) + 2(ab+ac+bc)$: ڏن

نفترض أن العدد (ab+ac+bc) مربع كامل.

 $(\exists m \in \mathbb{N})$; $2(ab+ac+bc)=m^2$: إذن

و لدينا (ab + ac + bc) عدد زوجي و منه: m^2 عددان زوجيان.

إذن حسب نتيجة السؤال 🕽 🕒 :

$m^2 \equiv 0[8]$ في الحالة الأولى $m^2 \equiv 0$

 $m^2 \equiv 6[8]$ لدينا حسب نتيجة السؤال

6 و هذا مستحیل. لأن 8 لا تقسم 6

$m^2 \equiv 4[8]$ في الحالة الثانية

 $m^2 \equiv 6[8]$ لدينا حسب نتيجة السؤال 2

2 و هذا مستحیل. لأن 8 لا تقسم $6 \equiv 4[8]$ إذن :

و بالتالي: (ab + bc + ac) ليس مربعا كاملا.

الصفحة: 26

- ②① ■

(j)(2) **■**

بما أن φ تشاكل تقابلي من (\mathbb{R}^*,\times) نحو (E,\times) فإن φ يحافظ على بنية الزمرة.

يما أن : (\mathbb{R}^*, \times) زمرة تبادلية عنصرها المحايد هو العدد 1 و كل عنصر $\frac{1}{a}$ عنصر a يقبل $\frac{1}{a}$ كمماثل.

و كل $\varphi(1)$ زمرة تبادلية عنصرها المحايد هو العدد $\varphi(1)$ و كل عنصر $\varphi(\frac{1}{a})$ عنصر عنصر M_a يقبل و كمماثل.

$$arphi(1)=M_1=egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}=I$$
 : ولدينا

$$\varphi\left(\frac{1}{a}\right) = M_{\frac{1}{a}} = \begin{pmatrix} \frac{1}{a} & \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{a} - a \end{pmatrix} \\ 0 & a \end{pmatrix} \quad 9$$

F عنصرین من N_a لیکن N_a عنصرین

$$\begin{split} N_a \times N_b &= \begin{pmatrix} a & \frac{1}{\sqrt{3}} \left(a - \frac{1}{a}\right) \\ -a\sqrt{3} & -a \end{pmatrix} \begin{pmatrix} b & \frac{1}{\sqrt{3}} \left(b - \frac{1}{b}\right) \\ -b\sqrt{3} & -b \end{pmatrix} \\ &= \begin{pmatrix} ab - b \left(a - \frac{1}{a}\right) & \frac{a}{\sqrt{3}} \left(b - \frac{1}{b}\right) - \frac{b}{\sqrt{3}} \left(a - \frac{1}{a}\right) \\ -ab\sqrt{3} + ab\sqrt{3} & -a \left(b - \frac{1}{b}\right) + ab \end{pmatrix} \\ &= \begin{pmatrix} \frac{b}{a} & \frac{1}{\sqrt{3}} \left(\frac{b}{a} - \frac{1}{b}\right) \\ 0 & \frac{1}{b} \end{pmatrix} = M_{\frac{b}{a}} \end{split}$$

— (₺)(2) ■

 $G = E \cup F$: نضع

في البداية يجب أن نبر هن على أن :

 $\forall (a,b) \in (\mathbb{R}^*)^2 \; ; \; M_a \times N_b = N_{\underline{b}}$

 $\forall (a,b) \in (\mathbb{R}^*)^2 \; ; \; N_b \times M_a = N_{ab}$

لدينا

$$M_a \times N_b = \begin{pmatrix} a & \frac{1}{\sqrt{3}} \left(a - \frac{1}{a} \right) \\ 0 & \frac{1}{a} \end{pmatrix} \begin{pmatrix} b & \frac{1}{\sqrt{3}} \left(b - \frac{1}{b} \right) \\ -b\sqrt{3} & -b \end{pmatrix}$$
$$= \begin{pmatrix} \frac{b}{a} & \frac{1}{\sqrt{3}} \left(\frac{b}{a} - \frac{a}{b} \right) \\ \frac{-b}{a}\sqrt{3} & \frac{-b}{a} \end{pmatrix} = N_{\frac{b}{a}}$$

نفترض أن : (ab+bc+ac) مربع كامل.

 $(\exists m \in \mathbb{N})$; $(ab+bc+ac)=m^2$: إذن

لدينا : a و b و b أعداد فردية.

اذن : (ab+bc+ac) عدد فردي كذلك.

و منه m^2 عدد فردي . إذن m عدد فردي

 $m^2 \equiv 1[8] : (\hat{\mathbf{j}})$ و منه حسب

 $ab + bc + ac \equiv 1[8]$:

 $2(ab + bc + ac) \equiv 2[8]$: و منه

 (\star) عسب (خاك حسب (خاك حسب (خاك دينا $2(ab+bc+ac)\equiv 6[8]$

 $6 \equiv 2[8]$ إذن:

يعني: 4/8 و هذا بطبيعة الحال مستحيل.

و بالتالي : (ab+bc+ac) ليس مربعا كاملا

لتمرين الثاني: (3,0 ن)

-(j)(**1**) ■

E د من عنصرین من M_a ایکن M_a

$$M_{a} \times M_{b} = \begin{pmatrix} a & \frac{1}{\sqrt{3}} \left(a - \frac{1}{a} \right) \\ 0 & \frac{1}{a} \end{pmatrix} \begin{pmatrix} b & \frac{1}{\sqrt{3}} \left(b - \frac{1}{b} \right) \\ 0 & \frac{1}{b} \end{pmatrix}$$

$$= \begin{pmatrix} ab & \frac{a}{\sqrt{3}} \left(b - \frac{1}{b} \right) + \frac{1}{b\sqrt{3}} \left(a - \frac{1}{a} \right) \\ 0 & \frac{1}{ab} \end{pmatrix}$$

$$= \begin{pmatrix} ab & \frac{1}{\sqrt{3}} \left(ab - \frac{1}{ab} \right) \\ 0 & \frac{1}{\vdots} \end{pmatrix} = M_{ab}$$

 $ab \neq 0$: فإن : $a \neq 0$ و منه $b \neq 0$ و منه $M_b \in E$ و منه $M_a \in E$: بما أن

 \mathbb{R}^* ليكن a و b عنصرين من

$$arphi$$
 : $(\mathbb{R}^*, imes) o (E, imes)$ الحينا : $a o arphi(a) = M_a$

$$arphi(a imes b) = M_{ab} = M_a imes M_b = arphi(a) imes arphi(b)$$
 : لدينا

$$(E, \times)$$
 نحو (\mathbb{R}^*, \times) نحو (E, \times)

$$(\forall y \in E), (\exists! \ a \in \mathbb{R}^*) \ ; \ y = \varphi(a) = M_a : و لدينا : (\mathbb{R}^*) : \ (\mathbb{R}^* : \mathbb{R}^*) : (\mathbb{R$$

 (E,\times) نحو (\mathbb{R}^*,\times) نحو (Φ,\times) .

. (E,\times) نحو (\mathbb{R}^*,\times) نحو (Φ,\times) نحو و بالتالي Φ

أجوية الدورة العادية 2004 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 27

$$\begin{split} N_b \times M_a &= \begin{pmatrix} b & \frac{1}{\sqrt{3}} \left(b - \frac{1}{b} \right) \\ -b\sqrt{3} & -b \end{pmatrix} \begin{pmatrix} a & \frac{1}{\sqrt{3}} \left(a - \frac{1}{a} \right) \\ 0 & \frac{1}{a} \end{pmatrix} \\ &= \begin{pmatrix} ab & \frac{1}{\sqrt{3}} \left(ab - \frac{1}{ab} \right) \\ -ab\sqrt{3} & -ab \end{pmatrix} = N_{ab} \end{split}$$

نحن الآن مسلحون بأربع خاصيات مهمة و هي:

$$\begin{cases} M_{a} \times M_{b} = M_{ab} & (1) \\ N_{a} \times N_{b} = M_{\frac{b}{a}} & (2) \\ M_{a} \times N_{b} = N_{\frac{b}{a}} & (3) \\ N_{b} \times M_{a} = N_{ab} & (4) \end{cases}$$

G فی کان \times قانون ترکیب داخلی فی G اليكن X و Y عنصرين من إذن نفصل هنا بين أربع حالات:

$y \in E$ و $X \in E$ الحالة الأولى

 $X \times Y \in G$: إذن حسب الخاصية رقم (1) $X \times Y \in E$

$Y \in F$ و $X \in F$

 $X \times Y \in G$: إذن حسب الخاصية رقم (2) $X \times Y \in E$

$Y \in F$ و $X \in E$: الحالة الثالثة

 $X \times Y \in G$: إذن حسب الخاصية رقم $X \times Y \in F$: (3) إذن حسب الخاصية

$y \in E$ و $X \in F$ الحالة الرابعة

 $X \times Y \in G$: إذن حسب الخاصية رقم $X \times Y \in F$: (4) إذن حسب الخاصية

نلاحظ أنه في جميع هذه الحالات الأربع لدينا:

 $\forall (X,Y) \in G^2 ; X \times Y \in G$

و بالتالي \times قانون تركيب داخلي في \times

البحث عن العنصر المحايد:

نعلم أن M_1 هو العنصر المحايد للقانون imes في E و ذلك حسب نتيجة السؤال (1)(ج)

و نعلم كذلك أن العنصر المحايد إن وجد يكون دائما وحيدا.

يكفى الآن أن نبر هن أن:

 $\forall A \in G ; A \times M_1 = M_1 \times A = A$

التكن A مصفو فة من G نفصل بين حالتين:

الحالة الأولى: A فرد من أفراد E.

 $(\exists! \ a \in \mathbb{R}^*)$; $A = M_a$: إذن و لدينا حسب الخاصية رقم (1):

 $M_a \times M_1 = M_a$ $M_1 \times M_a = M_a$

 $A \times M_1 = M_1 \times A = A$: إذن

الحالة الثانية: A فرد من أفراد F.

 $(\exists! \ a \in \mathbb{R}^*)$; $A = N_a$: إذن

 $N_a \times M_1 = N_{a \times 1} = N_a$: (4) و منه حسب الخاصية

 $M_1 \times N_a = N_{\frac{a}{2}} = N_a$: (3) و كذلك حسب الخاصية $A \times M_1 = M_1 \times A = A$: نستنتج إذن أن

في كلتا الحالتين لدينا:

 $\forall A \epsilon G \ ; \ A \times M_1 = M_1 \times A = A$

. G هو العنصر المحايد لضرب المصفوفات في M_1

التماثل:

 $M_{\underline{1}}$: هو مماثل کل عنصر M_a يمتلك مماثلا و هو (E, imes)

F مجموعة تتكون من اتحاد مجموعتين و هما E و G

F نبحث عن مماثلات عناصر

F عنصرا من N_a ليكن

 $N_a imes N_a = M_{ar a} = M_1$: (2) إذن حسب الخاصية

و منه کل عنصر N_a من F بتماثل مع نفسه

و بالتالي جميع عناصر G تمتلك مماثلات من E و بالتالي

خلاصة السؤال (-): (G,\times) زمرة لأن \times قانون تركيب داخلى في و یقبل عنصر ا محایدا وحیدا M_1 و کل عنصر GG يمتلك مماثلا وحيدا من

(ب)(2) ■

F عنصرا من E و M_a عنصرا من M_a

 $M_a \times N_b = N_{\underline{b}}$: (3) لاينا حسب الخاصية

 $N_b imes M_a = N_{ab}$: (4) و لدينا حسب الخاصية

 $M_a \times N_b \neq N_b \times M_a$: إذن

G و بالتالى : \times ليس تبادليا فى

. يعنى : الزمرة (G, \times) ليست تبادلية

الصفحة: 28) رمضان 2012 من إعداد الأستاذ بدر الدين الفاتحى: (أجوبة الدورة العادية 2004

$$\Leftrightarrow x^2 + y^2 = \left(\frac{1 + 2\cos(\theta) - 2\cos(\theta)}{1 + 2\cos(\theta)}\right)^2$$

$$\Leftrightarrow x^2 + y^2 = \left(1 - 2\left(\frac{\cos(\theta)}{1 + 2\cos(\theta)}\right)\right)^2$$

$$\Leftrightarrow x^2 + y^2 = (1 - 2x)^2$$

$$x^{2} + y^{2} = 1 + 4x^{2} - 4x$$
 : من آخر نتیجهٔ نستخرج ما یلي $\Rightarrow -3x^{2} + 4x + y^{2} = 1$

$$\Leftrightarrow x^{2} - \frac{4}{3}x - \frac{1}{3}y^{2} = \frac{-1}{3}$$

$$\Leftrightarrow \left(x - \frac{2}{3}\right)^{2} - \frac{1}{3}y^{2} = \frac{-1}{3} + \frac{4}{9}$$

$$\iff \left(\frac{\left(x - \frac{2}{3}\right)^2}{\left(\frac{1}{3}\right)^2} - \frac{y^2}{\left(\frac{\sqrt{3}}{3}\right)^2} = 1 \right)$$

$$C\left(rac{2}{3},0
ight)$$
 و منه : $M(z')$ تنتمي إلى الهذلول الذي مركزه هو النقطة $S_2\left(rac{1}{3},0
ight)$ و رأساه هما $S_1(1,0)$

و مقارباه هما المستقيمان (Δ) و (Δ') المعرفين بما يلي :

$$\begin{cases} (\Delta) : y = \sqrt{3}x - \frac{2\sqrt{3}}{3} \\ (\Delta') : y = -\sqrt{3}x + \frac{2\sqrt{3}}{3} \end{cases}$$

التمرين الرابع: (10 ن)

· (1)(I) **•**

$$\forall x \in]-\infty, 0[\cup]0, +\infty[: f(x) = \frac{e^{-x}}{x}$$
 البينا

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(\frac{e^{-x}}{x} \right) = \lim_{\substack{u \to -\infty \\ u = -x}} - \left(\frac{e^{u}}{u} \right) = \boxed{-\infty}$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(\frac{e^{-x}}{x} \right) = \lim_{\substack{u \to 0^{+} \\ u = -x}} - \left(\frac{e^{u}}{u} \right) = \boxed{-\infty}$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(\frac{e^{-x}}{x} \right) = \lim_{u \to 0^-} -\left(\frac{e^u}{u} \right) = \boxed{+\infty}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(\frac{e^{-x}}{x} \right) = \lim_{\substack{u \to -\infty \\ u = -x}} - \left(\frac{e^{u}}{u} \right) = \boxed{0}$$

<u>التمرين الثالث: (3,5 ن)</u>

$$\Delta = \left(i\sqrt{3}\right)^2$$
 : نحسب Δ نجد أن

 z_2 و z_1 إذن المعادلة تقبل حلين متر افقين

$$z_1 = \frac{-1}{2} - i\frac{\sqrt{3}}{2} = e^{\frac{-2\pi i}{3}} = \bar{j}$$

$$z_2 = \frac{-1}{2} + i\frac{\sqrt{3}}{2} = e^{\frac{2\pi i}{3}} = j$$

 $zar{z}=1$ (ز) $z=e^{i heta}$ (دینا: $z=e^{i heta}$) و منه

$$z(1+z+\bar{z}) = z+z^2+z\bar{z} = z+z^2+1$$
 : لدينا إذن

$$z^2+z+1 \neq 0$$
 لدينا $z^2+z+1 \neq 0$ فإن $z^2+z+1 \neq 0$ لدينا

$$1+z+z^2=z(1+z+ar{z})$$
 : (ز) و لدينا حسب السؤال

$$z' = \frac{1}{1+z+z^2} = \frac{1}{z(1+z+\bar{z})}$$
 : \dot{z}

و منه :

$$|z'| = \left|\frac{1}{z}\right| \cdot \left|\frac{1}{1+z+\bar{z}}\right| = 1 \cdot \frac{1}{1+2\cos\theta} = \left(\frac{1}{1+2\cos\theta}\right)$$

$$Arg(z^{'}) \equiv Arg\left(rac{1}{z}
ight) + Arg\left(rac{1}{1+z+ar{z}}
ight)[2\pi]$$
 و لدينا كذلك :

$$\Leftrightarrow$$
 $Arg(z') \equiv -Arg(z) + 0[2\pi]$

$$\Leftrightarrow Arg(z') \equiv -\theta[2\pi]$$

$$z^{'}=\left(rac{1}{1+2\cos heta}
ight)e^{-i heta}$$
 و بالنالي :

 $z' = x + iy = \left(\frac{1}{1 + 2\cos\theta}\right)e^{-i\theta}$ ينيا:

$$x = x + iy = \left(\frac{1 + 2\cos\theta}{1 + 2\cos\theta}\right)e^{-i\theta}$$
 ينا

$$\begin{cases} x = \frac{\cos(-\theta)}{1 + 2\cos(\theta)} \\ y = \frac{\sin(-\theta)}{1 + 2\cos(\theta)} \end{cases}$$
: i.i.

ر من هذه النظمة نستنتج أن :

$$x^{2} + y^{2} = \frac{\cos^{2}(-\theta)}{(1 + 2\cos(\theta))^{2}} + \frac{\sin^{2}(-\theta)}{(1 + 2\cos(\theta))^{2}}$$

$$\Leftrightarrow x^2 + y^2 = \frac{\cos^2(-\theta) + \sin^2(-\theta)}{(1 + 2\cos(\theta))^2}$$

$$\Leftrightarrow x^2 + y^2 = \left(\frac{1}{1 + 2\cos(\theta)}\right)^2$$

2004 من إعداد الأستاذ بدر الدين الفاتحي : () رمضان 2012 الصفحة : 9

·(2)(I)■

 \mathbb{R}^* ليكن x عنصرا من

$$f'(x) = \frac{-xe^{-x} - e^{-x}}{x^2} = \frac{-e^{-x}(x+1)}{x^2}$$
 : لدينا

(x+1) متعلقة فقط بإشارة $f^{'}(x)$ فإن إشارة $\dfrac{-e^{-x}}{x^2} < 0$: بما أن

نستنتج إذن الجدول التالى:

-(j)(3)(I)■

الفروع اللانهائية:

$$\lim_{x \to 0^-} f(x) = -\infty$$
 و $\lim_{x \to 0^+} f(x) = +\infty$: لينا

إذن محور الأراتيب مقارب عمودي L (\mathscr{C})

 $\lim_{x \to +\infty} f(x) = 0 \quad :$ و لدينا

 $+\infty$ إذن محور الأفاصيل مقارب أفقي بجوار

$$\lim_{x \to -\infty} \frac{f(x)}{x} = +\infty$$
 و لاينا $\lim_{x \to -\infty} f(x) = -\infty$: و لاينا

إذن (٣) يقبل فرعا شلجميا في اتجاه محور الأراتيب نحو الأسفل.

-(•)(3)(I)■

تمثيل الدالة <u>. f</u>

——(1)(II) **■**

$$\varphi(x) = e^x - x - 1$$
: نعتبر الدالة

$$\varphi'(x) = e^x - 1$$
: لدينا

$$arphi'(x)=0$$
 : فإن $x=0$

$$\varphi'(x) > 0$$
 : فإن $x > 0$

$$\varphi'(x) < 0$$
 : فإن $x < 0$

$$\lim_{x \to -\infty} f(x) = +\infty$$
 : و لدينا

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \left(\frac{e^x}{x} - 1 - \frac{1}{x} \right) = +\infty \quad :$$
و لدينا

نستنتج جدول التغيرات التالي:

0 دالة متصلة على \mathbb{R} و قيمتها الدنوية هي نلاحظ أن ϕ

 $(\forall x \in \mathbb{R})$; $\varphi(x) \geq 0$: إذن

 $(\forall x \in \mathbb{R})$; $e^x \ge (x+1)$:

— (2)(II) ■

 $(\forall x \in \mathbb{R}^+)$; $e^x \ge x + 1$: (1) لدينا حسب السؤال

$$\Leftrightarrow \quad \frac{1}{e^x} \le \frac{1}{x+1}$$

$$\Leftrightarrow e^{-x} \le \frac{1}{x+1}$$

$$\Leftrightarrow$$
 $(\forall x > 0)$; $xe^{-x} \le \frac{x}{x+1}$

$$\Leftrightarrow$$
 $(\forall x > 0)$; $\frac{x^2}{x}e^{-x} \le \frac{x}{x+1}$

$$\iff$$
 $(\forall x > 0)$; $x^2 f(x) \le \frac{x}{x+1}$

_____(j3(II)■

$$u_0=1$$
 من أجل $n=0$ من أجل

$$0 < u_0 \le \frac{1}{0+1}$$
 : يعني

n=0 إذن العبارة صحيحة بالنسبة ل

الصفحة: 30

) رمضان 2012

من إعداد الأستاذ بدر الدين الفاتحى: (

جوبة الدورة العادية 2004

ڲؖڡۅڲؿڡۿڲۉٷٷڲ؈ڲؿڡڰڲۄڡڲؿڡڰڲڡۿڲۅۿڲۿۅڲۿٷٷٷڰۿۅڰڲڡۅڲ ؙؙؙڰڡڲؿڡڰڲۿۅڰڲ؈ڰۿۅڰڲۄڡڲؿڡڰڲۿۄڰڲۿۅڰڲۿۅڰڲۿۅڰڲۿۅڰڲۿۅڰڲ

 $(u_n)_n$ لدينا حسب تعريف المتتالية. $k \in \mathbb{N}$ ليكن

$$(\forall k \in \mathbb{N})$$
 ; $u_k = u_{k-1}e^{-u_{k-1}}$

$$\Leftrightarrow (\forall k \in \mathbb{N}) \; ; \; \frac{1}{u_k} = \frac{e^{u_{k-1}}}{u_{k-1}}$$

$$\iff$$
 $(\forall k \in \mathbb{N})$; $\ln\left(\frac{1}{u_k}\right) = \ln\left(\frac{e^{u_{k-1}}}{u_{k-1}}\right)$

$$\iff$$
 $(\forall k \in \mathbb{N})$; $\ln\left(\frac{1}{u_k}\right) = \ln(e^{u_{k-1}}) - \ln(u_{k-1})$

$$\implies \sum_{k=1}^{n} \ln\left(\frac{1}{u_k}\right) = \sum_{k=1}^{n} u_{k-1} - \sum_{k=1}^{n} \ln(u_{k-1})$$

$$\Rightarrow \sum_{k=1}^{n} \ln\left(\frac{1}{u_k}\right) = \sum_{k=0}^{n-1} u_k - \sum_{k=0}^{n-1} \ln(u_k)$$

$$\Rightarrow ln\left(\frac{1}{u_n}\right) + \sum_{k=1}^{n-1} ln\left(\frac{1}{u_k}\right) = v_n - \sum_{k=1}^{n-1} ln(u_k) - \underbrace{ln(u_0)}_{0}$$

$$\Rightarrow ln\left(\frac{1}{u_n}\right) + \left(\sum_{k=1}^{n-1} \ln\left(\frac{1}{u_k}\right) + \sum_{k=1}^{n-1} \ln(u_k)\right) = v_n$$

$$\implies ln\left(\frac{1}{u_n}\right) + \sum_{k=1}^{n-1} \left(ln\left(\frac{1}{u_k}\right) + ln(u_k)\right) = v_n$$

$$\implies \ln\left(\frac{1}{u_n}\right) + \sum_{k=1}^{n-1} \ln\left(\frac{u_k}{u_k}\right) = v_n$$

$$\Rightarrow ln\left(\frac{1}{u_n}\right) + \sum_{i=1}^{n-1} \ln(1) = v_n$$

$$\Rightarrow ln\left(\frac{1}{u_n}\right) + 0 = v_n$$

$$\Rightarrow \left[ln\left(\frac{1}{u_n}\right) = v_n \right]$$

(4)(II)**■**

$$\lim_{n\to+\infty}u_n=0$$
 : لدينا

$$ln\left(\frac{1}{u_n}\right) = v_n$$
 : و لدينا

$$\lim_{n \to +\infty} v_n = \lim_{n \to +\infty} \ln \left(\frac{1}{u_n} \right) = +\infty$$
 ; إذن

الصفحة: 31

 $(\forall n \in \mathbb{N})$; $0 < u_n \le \frac{1}{n+1}$: نفترض أن

$$u_n \leq \frac{1}{n+1}$$
 ننطاق من الطرف

$$\Leftrightarrow$$
 $(n+1)u_n \le 1$

$$\Leftrightarrow$$
 $n u_n + u_n \le 1$

$$\Leftrightarrow$$
 $n u_n + (2u_n - u_n) \le 1$

$$\iff$$
 $n u_n + 2u_n \le 1 + u_n$

$$\Leftrightarrow$$
 $(n+2)u_n \le (1+u_n)$

$$\iff \frac{(n+2)u_n}{(1+u_n)} \le 1$$

$$\Leftrightarrow \left(\begin{array}{c} u_n \\ 1 + u_n \end{array} \le \frac{1}{n+2} \right) (*)$$

: (2) النوال و لدينا $u_n \geq 0$ النوال و لدينا

$$(u_n)^2 f(u_n) \le \frac{u_n}{1 + u_n} \tag{**}$$

$$(u_n)^2 f(u_n) \le \frac{1}{n+2}$$
 : من (**) من (**) من (**) من الستنتج

$$\Leftrightarrow$$
 $(\forall n \in \mathbb{N})$; $0 < (u_n)^2 f(u_n) \le \frac{1}{n+2}$

$$\iff (\forall n \in \mathbb{N}) \; \; ; \; \; 0 < u_{n+1} \le \frac{1}{(n+1)+1}$$

(n+1) إذن العبارة صحيحة بالنسبة لـ

$$\Leftrightarrow \left((orall n \epsilon \mathbb{N}) \; ; \; \; 0 < u_n \leq rac{1}{n+1} \;
ight] \; \; :$$
 و بالنالي \circ

—(÷)(3)(II) ■

$$(\forall n \in \mathbb{N})$$
 ; $0 < u_n \le \underbrace{\left(\frac{1}{n+1}\right)}_{n \infty}$: نما أن 0

 $\lim_{n \to \infty} u_n = 0$ فإن نتالية متقاربة و $(u_n)_{n \in \mathbb{N}}$:

(3)(III) ■

 $(orall t \geq 1) \; ; \; f(t) \leq e^{-t} \; : \; (i)$ لدينا حسب السؤال

 $(orall t>0) \; ; \; f(t)\geq 0 \quad f$ و لدينا كذلك حسب التمثيل المبياني للدالة

$$\Rightarrow$$
 $(\forall t > 1)$; $f(t) \ge 0$

 $(\forall t \geq 1)$; $0 < f(t) \leq e^{-t}$: و منه

$$\Rightarrow 0 < \int_{x^2}^{4x^2} f(t) dt \le \int_{x^2}^{4x^2} e^{-t} dt$$

$$\implies 0 < F(x) \le e^{-x^2} - e^{-4x^2}$$

$$\implies 0 < F(x) \le e^{-x^2} (1 - e^{-3x^2})$$

$$\lim_{x \to +\infty} e^{-x^2} (1 - e^{-3x^2}) = 0(1 - 0) = 0$$
 : ليينا

$$\lim_{x \to +\infty} F(x) = 0$$
 : و بالتالي

(j)(j(j) الدينا j دالة متصلة على j

 ϕ إذن فهي تقبل دالة أصلية نرمز لها بالرمز

$$\varphi'(x) = f(x)$$
 : بحیث

$$F(x) = \int_{x^2}^{4x^2} f(t) dt$$
 ; $x > 0$: البينا

$$\Leftrightarrow F(x) = \int_{x^2}^0 f(t) dt + \int_0^{4x^2} f(t) dt$$

$$\Leftrightarrow F(x) = \int_0^{4x^2} f(t) dt - \int_0^{x^2} f(t) dt$$

$$\Leftrightarrow$$
 $F(x) = \varphi(4x^2) - \varphi(x^2)$

$$\Rightarrow F'(x) = 8x\varphi'(4x^2) - 2x\varphi'(x^2)$$

$$\Rightarrow F'(x) = 8xf(4x^2) - 2xf(x^2)$$

$$\Rightarrow F'(x) = \frac{8xe^{-4x^2}}{4x^2} - \frac{2xe^{-x^2}}{x^2}$$

$$\Rightarrow F'(x) = \frac{2e^{-4x^2}}{x} - \frac{2e^{-x^2}}{x}$$

$$\Rightarrow \left(F'(x) = \frac{2e^{-x^2}(e^{-3x^2} - 1)}{x} \right)$$

_(j)(1)(III)■

x > 0: ليكن

$$\int_{x^2}^{4x^2} \frac{1}{t} dt = [\ln t]_{x^2}^{4x^2} = \ln(4x^2) - \ln(x^2) = \ln 4$$

—(•)(1)(III) **■**

 $(\forall x \in \mathbb{R}) \; ; \; e^x \geq x+1 \; \; (\mathbf{II})$ لاينا حسب نتيجة السؤال

$$e^{-x} \ge -x + 1$$
 : من أجل العدد $-x$ نحصل على

$$e^{-x}-1\geq -x$$
 : يعني

$$-x < 0$$
 ليكن $x > 0$ إذن

$$\left[egin{array}{c} e^{-x}-1\leq 0 \end{array}
ight]$$
: يعني $e^{-x}<1$

$$(\forall x>0)$$
 ; $-x\leq e^{-x}-1\leq 0$: من (2) و (2)

(j)(2)(III)

ليكن χ عددا حقيقيا موجبا

$$-1 < \frac{e^{-t}}{t} - \frac{1}{t} \le 0$$
 و منه $-t < e^{-t} - 1 \le 0$ البينا $+ t \le 0$ و منه $-t \le 0$ البينا $+ t \le 0$ و منه $-t \le 0$

$$\Leftrightarrow \quad -3x^2 < F(x) - \ln 4 \le 0$$

—(-)(2)(III) ■

$$(\forall x > 0)$$
 ; $-3x^2 \le F(x) - \ln 4 \le 0$: لاينا

$$\Leftrightarrow -3x^2 < \frac{F(x) - 2\ln 2}{x} \le 0$$

$$\Leftrightarrow$$
 $-3x^2 < \frac{F(x) - F(0)}{x - 0} \le 0$

$$\lim_{r\to 0^+} -3x = \lim_{r\to 0^+} 0 = 0$$
 : e part is in the second of the se

$$\lim_{x \to 0^+} \frac{F(x) - F(0)}{x - 0} = 0 \quad :$$
فإن

و بالتالي F دالة قابلة للإشتقاق على اليمين في الصفر و نعلم أن الإشتقاق يستلزم الإتصال إذن F متصلة على اليمين في الصفر.

<u>—(j)(3)(III)</u>∎

 $\frac{1}{t} \leq 1$ اذن $t \geq 1$ ليكن عددا حقيقيا بحيث $t \geq 1$

نصرب طرفي هذه المتفاوتة في العدد الحقيقي الموجب قطعا e^{-t} نجد:

$$\frac{e^{-t}}{t} \le e^{-t}$$

$$\iff f(t) \le e^{-t}$$

2012 11 2012

أجوية الدورة العادية 2004

(→)(5)(III) **■**

$$\lim_{x \to 0^+} (e^{-x} - e^{-4x}) \ln x = \lim_{x \to 0^+} e^{-x} (1 - e^{-3x}) \ln x$$

$$= \lim_{x \to 0^{+}} \underbrace{(3xe^{-x})}_{x} \underbrace{\left(\frac{e^{-3x} - e^{0}}{-3x - 0}\right)}_{x} \underbrace{(x \ln x)}_{0^{+}} = 0$$

(হ)(হ)(হাII) **=**

$$G(x) = F(\sqrt{x}) - e^{-4x}(\ln 4 + \ln x) + e^{-x}\ln x$$
 : لدينا

$$\iff G(x) = F(\sqrt{x}) + (e^{-x} - e^{-4x}) \ln x - e^{-4x} \ln 4$$

$$\lim_{x \to 0^{+}} G(x) = \lim_{x \to 0^{+}} \left(\underbrace{F(\sqrt{x})}_{x \to 0^{+}} + \underbrace{(e^{-x} - e^{-4x}) \ln x}_{0^{+}} - \underbrace{e^{-4x} \ln 4}_{x \to 0^{+}} \right)$$

$$\ln 4 \qquad 0 \qquad -\ln 4$$

$$\lim_{x\to 0^+} G(x)=0$$
 : و بالتالي

_ و الحمد لله رب العامين ■

$\frac{2e^{-x^2}}{x^2} > 0$: لدينا

$$e^{-3x^2}-1$$
 و منه فإن إشارة $F^{'}(x)$ متعلقة بإشارة

$$e^{-3x^2} < 1$$
 : و لدينا : $0 > 3x^2 < 0$: و لدينا : $0 > 0$:

و بالتالي :
$$(\forall x > 0)$$
 ; $F'(x) < 0$: نستنتج إذن جدول تغير ات الدالة F كما يلى :

(আ)(4)(আ)∎

(j)(5)(III) **■**

ليكن
$$x>0$$
 سوف نستعمل مكاملة بالأجزاء.

$$u'(t) = \frac{1}{t}$$
: نضع $u(t) = \ln t$ نضع

$$v(t) = -e^{-t}$$
 : و نضع $v^{'}(t) = e^{-t}$: و نضع

$$G(x) = \int_x^{4x} e^{-t} \ln t \ dt = [uv] - \int vu'$$
 : لدينا

$$\Leftrightarrow G(x) = [-\ln t \cdot e^{-t}]_x^{4x} - \int_x^{4x} \frac{-e^{-t}}{t} dt$$

$$\iff G(x) = e^{-x} \ln(x) - e^{-4x} \ln(4x) + \int_{(\sqrt{x})^2}^{4(\sqrt{x})^2} \frac{e^{-t}}{t} dt$$

$$\iff \int G(x) = e^{-x} \ln(x) - e^{-4x} \ln(4x) + F(\sqrt{x})$$

الصفحة: 33) رمضان 2012 من إعداد الأستاذ بدر الدين الفاتحى: (أجوبة الدورة العادية 2004