Capítulo 21 - Análise Combinatória - Métodos de Contagem

Exercícios Respondidos, Básicos, Complementares e Questões de Vestibular

Daniel de Lima Claudino

Referência Bibliográfica

PAIVA, Manoel Rodrigues. Matemática. Vol. 2. São Paulo: Moderna, 2004.

Sumário

1	Mapa Mental - Análise Combinatória		
2	Exer	rcícios Resolvidos	1
3	Exercícios Básicos		
4	Exercícios Básicos		5
Li	ista 1 2	de Figuras Mapa Mental - Análise Combinatória	

Lista de Tabelas

1 Mapa Mental - Análise Combinatória

Figura 1: Mapa Mental - Análise Combinatória

Fonte:Site Infinittus - Conhecimento nas medidas exatas

2 Exercícios Resolvidos

- **R1** Uma montadora de automóveis apresenta um carro em **quatro modelos** diferentes e em **cinco cores** diferentes. Um consumidor que quiser arquirir esse veículo terá quantas opções de escolha ?
 - ① **O que contar?:** Quantas opções de escolha de veículo o consumidor terá?
 - ② **Restrições do(s) Experimento(s):** Nenhuma.
 - ③ **Experimento 1:** Escolher uma das opções de modelo. n_1 possui 5 resultados possíveis.
 - **4** Experimento 2: Escolher uma das opções de cor. n_2 possui 4 resultados possíveis.
 - **S Cálculo:** Pelo princípio fundamental da contagem (PFC), o experimento composto 1 e 2, nessa ordem, tem $n_1 \times n_2$ resultados possíveis, ou seja, $5 \times 4 = 20$ opções de escolha.
 - **©** Conclusão: existem 20 opções de escolha de veículos para o consumidor.

- **R2** Quantos números naturais de três algarismos podem ser formados com os algarismos $A = \{1, 2, 6, 8, 9\}$?
 - ① **O que contar?:** Quantos números naturais de três algarismos podem ser formados com os algarismos dados.
 - ② Restrições do(s) Experimento(s): Nenhuma.
 - ③ **Experimento 1:** E_1 = Preencher a posição das unidades com um dos algarismos dados. Sendo n_1 o número de resultados possíveis do **experimento 1**, n_1 possui n(A) resultados possíveis, ou seja, $n_1 = n(A) = 5$.
 - **Experimento 2:** E_2 = Preencher a posição das dezenas com um dos algarismos dados. Sendo n_2 o número de resultados possíveis do **experimento 2**, n_2 possui n(A) resultados possíveis, já que nenhuma restrição existe para realizarmos o experimento, ou seja, $n_2 = n(A) = 5$.
 - ⑤ Experimento 2: E_3 = Preencher a posição das centenas com um dos algarismos dados. Sendo n_1 o número de resultados possíveis do **experimento 2**, n_3 possui n(A) resultados possíveis, já que nenhuma restrição existe para realizarmos o experimento, ou seja, $n_3 = n(A) = 5$.
 - **© Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2 e 3 apresentam, respectivamente, n_1 , n_2 e n_3 resultados possíveis, logo o experimento composto 1, 2 e 3 possuem, nessa ordem, $n_1 \times n_2 \times n_3$ ou $5 \times 5 \times 5 = 125$ resultados possíveis.
 - © Conclusão: Podemos formar 125 números naturais de três algarismos com os números dados.
- **R3** Quantos números naturais de três algarismos **distintos** podem ser formados com os algarismos $A = \{1, 2, 6, 8, 9\}$?
 - ① **O que contar?:** Quantos números naturais de três algarismos **distintos** podem ser formados com os algarismos dados.
 - ② Restrições do(s) Experimento(s): Os números escolhidos em cada experimento devem ser distintos.
 - ③ Experimento 1: E_1 = Preencher a posição das unidades com um dos algarismos dados. Sendo n_1 o número de resultados possíveis do **experimento 1**, n_1 possui n(A) resultados possíveis, ou seja, $n_1 = n(A) = 5$.
 - **Experimento 2:** E_2 = Preencher a posição das dezenas com um dos algarismos dados. Sendo n_2 o número de resultados possíveis do **experimento 2**, n_2 possui n(A) 1 resultados possíveis, pois um dos algarismos já foi escolhido no experimento 1, ou seja, $n_2 = n(A) 1 = 5 1 = 4$.
 - **Experimento 3:** E_3 = Preencher a posição das centenas com um dos algarismos dados. Sendo n_3 o número de resultados possíveis do **experimento 3**, n_3 possui n(A) 2 resultados possíveis, pois um dos algarismos já foi escolhido no **experimento 1** e outro no **experimento 2**, ou seja, $n_2 = n(A) 2 = 5 2 = 3$.
 - **© Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2 e 3 apresentam, respectivamente, n_1 , n_2 e n_3 resultados possíveis, logo o experimento composto 1, 2 e 3 possuem, nessa ordem, $n_1 \times n_2 \times n_3$ ou $5 \times 4 \times 3 = 60$ resultados possíveis.
 - Conclusão: Podemos formar 60 números naturais de três algarismos distintos com os números dados.

- **R4** Quantos números naturais de três algarismos **distintos** podem ser formados com os algarismos $A = \{0, 1, 2, 6, 8\}$?
 - ① **O que contar?:** Quantos números naturais de três algarismos **distintos** podem ser formados com os algarismos dados.
 - 2 Restrições do(s) Experimento(s):
 - a) Os números escolhidos em cada experimento devem ser distintos.
 - b) A posição da **centena** não pode conter o número zero (0), pois, nesse caso, o número natural formado não terá três algarismos, e sim dois.
 - ③ Experimento 1: E_1 = Preencher a posição das centenas com um dos algarismos dados, observando as duas restrições apontadas do experimento. Lembrando que o zero não pode ser excolhido. Sendo n_1 o número de resultados possíveis do experimento 1, n_1 possui n(A) resultados possíveis, ou seja, $n_1 = n(A) - 1 = 4$.
 - Experimento 2: E₂ = Preencher a posição das dezenas com um dos algarismos dados, observando as duas restrições apontadas do experimento.
 Lembrando que: (1) Já foi escolhido o algarismo das centenas e (2) para casa das dezenas o zero pode ser escolhido.
 Sendo n₂ o número de resultados possíveis do experimento 2, n₂ possui n(A) 1 resultados possíveis,pois um dos algarismos já foi escolhido no experimento 1 e o zero
 - ⑤ Experimento 3: E₂ = Preencher a posição das unidades com um dos algarismos dados, observando as duas restrições apontadas do experimento.
 Lembrando que: (1) Já foi escolhido o algarismo das centenas e das dezenas e (2) para casa das unidades o zero pode ser escolhido.
 Sendo n₂ o número de resultados possíveis do experimento 2, n₂ possui n(A) 2 resultados possíveis, pois um dos algarismos já foi escolhido no experimento 1, outro algarismo no experimento 2 e o zero pode ser escolhido, ou seja, n₂ = n(A) 2 = 5 2 = 3.
 - **© Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2 e 3 apresentam, respectivamente, n_1 , n_2 e n_3 resultados possíveis, logo o experimento composto 1, 2 e 3 possuem, nessa ordem, $n_1 \times n_2 \times n_3$ ou $4 \times 4 \times 3 = 48$ resultados possíveis.
 - Conclusão: Podemos formar 48 números naturais de três algarismos distintos com os números dados.
- **R5** Quantos divisores naturais possui o número 72?
 - ① **Que contar?** Quantos divisores naturais possui o número 72.

pode ser escolhido, ou seja, $n_2 = n(A) - 1 = 5 - 1 = 4$.

- ② Restrições do(s) Experimento(s): Nenhum.
- 3 Fatoramos o número 72.

Fatoração do número 72

72	2
36	2
18	2
9	3
3	3
1	$2^4 \cdot 3^2$

④ A partir da fatoração realizada no item 3, podemos construir uma lista de divisores do número 72. Qualquer número que pode ser escrito através do produto $2^{\{0..3\}} \times 3^{\{0..2\}}$, com $x \in \{0, 1, 2, 3\}$ e $y \in \{0, 1, 2\}$, é um divisor de 72. Ou seja, os divisores são:

$$D(72) = \{2^0 \times 3^0, 2^0 \times 3^0, 2^0 \times 3^1, 2^0 \times 3^2, 2^1 \times 3^0, 2^1 \times 3^1, 2^1 \times 3^2, 2^2 \times 3^0, 2^2 \times 3^1, 2^2 \times 3^2, 2^3 \times 3^0, 2^3 \times 3^1, 2^3 \times 3^2\}$$
ou
$$D(72) = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72\}$$

Um outra forma, mais genérica e rápida, de constatar que 72 possui 12 divisores é descobrir de quantas maneiras, no produto $2^{\{0...3\}} \times 3^{\{0...2\}}$, com $x \in \{0,1,2,3\}$ e $y \in \{0,1,2\}$, eu posso preencher o expoente do 2 e o expoente do 3.

Percebe-se que, tal qual respondemos nas questões anteriores, pelo princípio fundamental da contagem (PFC), temos dois experimentos: E_1 = Preencher o expoente do 2 e E_2 = Preencher o expoente do 3. Sendo n_1 o número de resultados possíveis do experimento E_1 e n_2 o número de resultados possíveis do experimento E_2 , temos que pelo PFC, o experimento composto E_1 e E_2 , nessa ordem, apresenta $n_1 \times n_2$ resultados possíveis, ou seja $4 \times 3 = 12$ números (divisores).

© Conclusão: O número 72 possui 12 divisores naturais

R6 Quantos subconjuntos possui o conjunto $A = \{a, b, c, d\}$?

Figura 2: Os elementos dos subconjuntos do conjunto A

$$\mathsf{A} = \{\mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d}\}$$

Fonte: Autor

- ① **O que contar?:** Quantos subconjuntos possui o conjunto A.
- ② Restrições do(s) Experimento(s): Nenhum.
- 3 Experimento: trata-se de um experimento composto de vários experimentos, conforme explicitamos abaixo.
 - ① E_1 Escolher se o $\mathbf{1}^{\mathbf{0}}$ elemento do conjunto de A, "a", será ou não escolhido. Esse experimento possui $n(E_1) = 2$ resultados possíveis (presente ou não presente).
 - ② E_1 Escolher se o **2º** elemento do conjunto de A, "b", será ou não escolhido. Esse experimento possui $n(E_2) = 2$ resultados possíveis (presente ou não presente)
 - ③ E_1 Escolher se o $\mathbf{3}^{\mathbf{0}}$ elemento do conjunto de A, "c", será ou não escolhido. Esse experimento possui $n(E_3)=2$ resultados possíveis (presente ou não presente)
 - ① E_1 Escolher se o **4º** elemento do conjunto de A, "d", será ou não escolhido. Esse experimento possui $n(E_4) = 2$ resultados possíveis (presente ou não presente)
- **@ Cálculo:** Pelo princípio fundamental da contagem (PFC), os experimentos 1, 2, 3 e 4 apresentam, respectivamente, n_1 , n_2 , n_3 e n_4 resultados possíveis, logo o experimento composto 1, 2, 3 e 4 possuem, nessa ordem, $n_1 \times n_2 \times n_3 \times n_4$ ou $2 \times 2 \times 2 \times 2 = 16$ resultados possíveis.
- © Conclusão: Podemos formar 16 subconjuntos de A, incluindo o conjunto vazio.

3 Exercícios Básicos

- **B1** Duas linhas de ônibus vão de uma cidade A para uma cidade B e três linhas vão da cidade B para uma cidade C. De quantos modos diferentes um usuário dessas linhas pode ir de A para C, passando por B?
- **B2** Quantos números naturais de quatro algarismos podem ser formados com os algarismos 3, 4, 5, 6, 7, 8 e 9?
- **B3** Quantos números naturais de quatro algarismos distiMos podem ser formados com os algarismos 3, 4, 5, 6, 7, 8 e 9?
- **B4** Quantos números naturais de cinco algarismos distintos podem ser formados com os algarismos 0, 3, 4, 5, 6,7, 8 e 9?
- **B5** Quantos números pares e positivos de três algarismos distintos podem ser formados com os algarismos 3, 4, 5, 6, 7, 8 e 9?
- **B6** Quatro linhas de ónibus unem a cidade A à cidade B e três linhas unem a cidade B à cidade C. Um usuário vai viajar de A para C passando por B e vai voltar para A, passando novamente por B. De quantos modos diferentes esse usuário poderá escolher as linhas, se na volta ele não puder usar a linha que usou na ida?
- **B7** Oito atletas participam de uma corrida. Serão premiados apenas os três primeiros lugares. De quantas maneiras diferentes os prêmios podem ser distribuídos?
- **B8** Uma prova é constituída por dez testes do tipo "verdadeiro ou falso". De quantas maneiras diferentes um candidato poderá responder aos dez testes, não deixando nenhum sem resposta e assinalando apenas uma alternativa em cada um?
- **B9** Quantos números de telefone de seis dígitos podem ser formados com os dígitos 1, 2, 3, 4, 5, 6 e 7, de modo que os três primeiros dígitos sejam distintos?
- **B10** Uma placa de automóvel é formada por três letras seguidas de quatro algarismos, por exemplo: "BNP 0339". Quantas placas podem ser formadas com pelo menos um algarismo não-nulo, dispondo-se das 26 letras do alfabeto e dos dez algarismos do sistema decimal? (Incluímos as letras Y, W e K.)
- **B11** Qual o número de divisores naturais de $n-2^4 \times 3^3 \times 5$?
- **B12** Qual o número de divisores naturais de n = 504 ?

4 Exercícios Complementares

- C1 Quantas funções bijetoras têm domínio $A = \{1, 2, 3, 4\}$ e contradomínio $B = \{5, 6, 7, 8\}$?
- C2 Quantas funções injetoras podem ser definidas em $A = \{1, 2, 3, 4\}$ com imagens em $B = \{a, b, c, d, e, f\}$?
- C3 Quantos subconjuntos tem o conjunto $A = \{a, b, c, d, e\}$?
- **C4** O número $n = 2^x \times 3^4 \times 5^2$, com $x \in \mathbb{N}$, possui sessenta divisores naturais. Determine x.
- C5 Quamos números naturais pares de quatro algarismos podem ser formados com os algarismos 1, 2, 3, 4 e 5?

- **C6** Quantos números naturais pares de quatro algarismos distintos podem ser formados com os algarismos 1, 2, 3, 4 e 5?
- C7 Quantos números naturais maiores do que 400 de três algarismos podem ser formados com os algarismos 1, 2, 4, 5 e 6?
- C8 Quantos números naturais maMres do que 400 e de três algarismos distintos podem ser formados com os algarismos 1, 2, 4, 5 e 6?