GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA		
Ciencia de los Materiales		

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Noveno Semestre	170904	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante un panorama general de las aplicaciones que tiene la ciencia de los materiales y su incidencia en la ingeniería y la industria.

TEMAS Y SUBTEMAS

1. Defectos

- 1.1 Introducción a los defectos puntuales.
- 1.2 Vacancias y defecto Schottky.
- 1.3 Intersticiales y defecto Frenkel.
- 1.4 Centros de color.
- 1.5 Fallas de apilamiento.
- 1.6 Fronteras de grano y de macla.
- 1.7 Dislocaciones.

2. Propiedades mecánicas

- 2.1 Procesado y aleaciones
- 2.2 Tensión y deformación.
- 2.3 Dureza.
- 2.4 Deformación plástica en monocristalinos y policristalinos.
- 2.5 Fractura, fatiga y fluencia.

3. Diagrama de fase

- 3.1 Diagrama de fase de sustancias puras.
- 3.2 Regla de Gibbs.
- 3.3 Sistemas de aleaciones isomorfas binarias.
- 3.4 Regla de la palanca.
- 3.5 Aleaciones eutécticas binarias.
- 3.6 Aleaciones peritécticas binarias.
- 3.7 Diagrama de fase con fases y compuestos intermedios.

4. Cerámicos

- 4.1 Definición y estructura cerámica.
- 4.2 Cerámicos tradicionales y avanzados.
- 4.3 Silicatos y arcillas.
- 4.4 Lozas y porcelanas.
- 4.5 Refractarios, abrasivos y cementos.
- 4.6 Vidrios.
- 4.7 Técnicas principales de procesamiento.

5. Polímeros

- 5.1 Definición de monómero y polímero.
- 5.2 Clasificación.
- 5.3 Moléculas poliméricas.
- 5.4 Pesos moleculares.
- 5.5 Nomenclatura de polímeros.

COORDINACIÓN

GENERAL DE EDUCACIÓN
MEDIA SUPERIOR Y SUPERIOR

- 5.6 Técnicas principales de procesamiento.
- 5.7 Copolimerización.

6. Compuestos

- 6.1 Materiales compuestos de fibra reforzado con plástico.
- 6.2 Materiales compuestos de plástico reforzado con fibra.
- 6.3 Hormigón y asfalto.
- 6.4 Compósitos de matriz metálica y cerámica.
- 6.5 Compuestos híbridos.
- 6.6 Técnicas espectroscópicas más empleadas (rayos-x, microscopía electrónica, espectroscopía óptica, EPR, NMR).

7. Aplicaciones de los Materiales Industriales

- 7.1 Materiales eléctricos.
- 7.2 Dispositivos semiconductores.
- 7.3 Materiales térmicos.
- 7.4 Materiales ópticos.
- 7.5 Materiales magnéticos.
- 7.6 Superconductores.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso. Además se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías. Esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- 1. Fundamentos de la Ciencia e Ingeniería de Materiales, W. F. Smith, McGraw Hill, 1998, tercera edición
- 2. Ciencia de Materiales para Ingenieros, J. F. Schackelford, Pearson Educación, 2001.
- 3. La Ciencia e Ingeniería de los Materiales, D. R. Askeland, Grupo Editorial Iberoamérica, 1989.
- 4. **Materials Science and Engineering: An Introduction**, W. D. Callister, John Wiley & Sons, Seventh Edition, 2007.

Libros de Consulta:

- 1. Introducción a la Ciencia de los Materiales, W. Brostow, Limusa, 1981.
- 2. Introduction to Solid State Physics, C. Kittel, John Wiley, 2004, octava edición.
- Thermodynamics and Kinetics in Materials Science: A Short Course, B. S. Bokstein, Oxford University Press, 2005.

PERFIL PROFESIONAL DEL DOCENTE

Maestría y/o Doctorado en Ciencia de Materiales, Física de Materiales, Química de Materiales o en Metalurgia.

