Exercise 1.1

1. Let Z be the set of integers, and * is a usual product, is < Z, *> an algebraic system?

2. Let R be the set of real numbers, and * is a usual division, is * a commutative on R?

3. Let Z be the set of integers, for any $a, b \in Z$, $a * b = a^2 + b - a$, is the operation * commutative or associative on Z?

4. Let $S = \{a, b, c\}$ Show the properties of the operation *

		(, ,	
*	а	b	С
а	а	b	С
b	а	С	b
С	b	а	С

Exercise 1.2

1. Let $\langle Z, + \rangle$ be an algebraic structure, where Z is the set of integers, and * is a usual product, is $\langle Z, + \rangle$ a semigroup?

- 2. Let $\langle R, + \rangle$ be an algebraic structure, where R is the set of real numbers, and + is a usual addition, is $\langle R, + \rangle$ a commutative semigroup?
- 3. Let R be the set of all real numbers, for any $a, b, c \in R$, $a * b = a^2 + b a$, which of the $\langle R, * \rangle$ is a semigroup or monoid?

4. Let $S = \{a, b, c\}$, which of the following tables defines a semigroup?

*	а	b	С
а	b	b	а
b	b	с	b
С	b	а	С

 Table1

 *
 a
 b
 c

 a
 b
 b
 b

 b
 b
 b
 b

 c
 b
 b
 b

Table2

5. Let $\langle S, * \rangle$ and $\langle T, *' \rangle$ be monoid with identities e and e', respectively. Let $f: S \to T$ be an homomorphism from $\langle S, * \rangle$ to $\langle T, *' \rangle$. Thus f(e) = e'

6. Let f be a homomorphism from a semigroup $\langle S, * \rangle$ to semigroup $\langle T, *' \rangle$ If S' is a subsequence of $\langle S, * \rangle$, then $f(S') = \{t \in T | t = f(s) \text{ for some } s \in S'\}$ the image of S' under f is a sub-semigroup of $\langle T, *' \rangle$

Exercise 1.3

1. $\langle Z, + \rangle$ is a group. Write the n-th power of every integer.

2. Let $\langle G, * \rangle$ be a group, $a, b, e \in G$, where e is the identity element then prove:

a)
$$(a^{-1})^{-1} = a$$

b)
$$(ab)^{-1} = b^{-1}a^{-1}$$

c)
$$a^n a^m = a^{n+m}$$

d)
$$(a^n)^m = a^{nm}$$