ЛАБОРАТОРНАЯ РАБОТА № Y V

ИССЛЕДОВАНИЕ КЛЮЧЕВЫХ СТАБИЛИЗАТОРОВ ПОСТОЯННОГО НАПРЯЖЕНИЯ

Цель работы:

Закрепить знания принципов работы и рабочих свойств стабилизаторов постоянного напряжения с ключевым режимом работы регулирующего элемента.

Освоить методику экспериментального определения значений показателей качества компенсационных стабилизаторов постоянного напряжения с широтно-импульсным и релейным принципами регулирования и оценить достоинства и недостатки каждого из стабилизаторов путем сравнения численных значений показателей качества.

Описание лабораторного макета стабилизатора и указания по проведению экспериментальных исследований

Экспериментальные исследования проводится на макетах, смонтированных и установленных в рабочем отсеке лабораторной установки УНТЦ СПбГУТ

Для проведения исследований на вход исследуемой стабилизатора подается напряжение от встроенного источника постоянного нестабилизированного напряжения. Это напряжение регулируется в пределах от 5 до 20 вольт. Источник имеет защиту от кратковременной перегрузки по току нагрузки. При перегрузке начинает мигать светодиод «Перегрузка». Входное напряжение и потребляемый ток контролируются с помощью PVI и PAI лабораторной установки. Значение тока нагрузки устанавливается путём изменения сопротивления блока нагрузок (правая панель лабораторной установки, ручка переключателя «R_H грубо» и ручка переменного резистора «R_H точно»). Примерные пределы изменения R_H : от 1300 Ом в положении «1» до 17 ОМ в положении «11» переключателя « R_H грубо». В положении «X.X.» R_H Напряжение на нагрузке (выходное напряжение) контролируются вольтметром PV2 и миллиамперметром PA2.

Введение:

При оценке качества функционирования стабилизаторов напряжения необходимо определить численные значения его основных показателей качества:

- коэффициент стабилизации Кст;
- относительной нестабильности выходного напряжения δ_{U} ,%;
- выходного сопротивления $R_{вых}$;
- коэффициента полезного действия п.,

Коэффициент стабилизации выходного напряжения стабилизатора определяется при постоянном значении сопротивления нагрузки R_н $(R_{\rm H} = {\rm const})$ в соответствии с соотношением :

$$K_{cr} = \frac{\Delta U_{\text{вх}}}{U_{\text{вх ном}}} \frac{\Delta U_{\text{вых}}}{U_{\text{вых ном}}}$$
 (5.1)

 $K_{cr} = \frac{\Delta U_{\text{вх}}}{\Delta U_{\text{вых}}} \frac{U_{\text{вых ном}}}{U_{\text{вх ном}}}$ (5.2)

Номинальное значение входного напряжения $U_{\text{вх ном}}$, выходного напряжения U_{вых ном}, измеряются вольтметрами PV1 и PV2, установленным на приборной панели установки УСП-70.

Относительная нестабильность выходного напряжения $\delta_{\text{U}}\%$

$$\delta_{U}\% = \frac{\Delta U_{\text{вых}}}{U_{\text{вых ном}}} \cdot 100. \tag{5.3}$$

также определяется при постоянном значении сопротивления нагрузки $R_{\pi} = \mathrm{const}$.

Значение динамического <u>выходного сопротивления</u> стабилизатора $R_{\text{вых дин}}$ определяется при постоянной величине входного напряжения $U_{\text{вх}}$ - const (т.е. $\Delta U_{\text{вx}}$ =0)

$$R_{Bbix} = \begin{bmatrix} \Delta U_{Bbix} \\ - \Delta I_{H} \end{bmatrix}, \qquad (5.4)$$

где $\Delta U_{\text{вых}}$ - отклонение выходного напряжения стабилизатора от его номинального значения, соответствующее изменению тока нагрузки на величину $\Delta I_{\text{н}}$ ($\Delta I_{\text{H}} = I_{\text{H ROM}} - I_{\text{H min}}$).

Потери мощности в элементах стабилизатора оцениваются его коэффициентом полезного действия п

$$\eta = \frac{P_{\text{вых}}}{P_{\text{ex}}}$$
 (5.5)

или

$$\eta = \frac{U_{\text{BLIX HOM}} \cdot I_{\text{HAPP HOM}}}{U_{\text{BX HOM}} \cdot I_{\text{BX}}} \tag{5.6}$$

<u>Коэффициент пульсаций</u> выходного напряжения стабилизатора определяется при постоянном значении сопротивления нагрузки $R_{\rm H}$ ($R_{\rm H}$ = const) в соответствии с соотношением :

$$K_{\Pi} = \frac{0.5 \, U_{\text{pasm}}}{U_{\text{Bolx HOM}}} \cdot 100.$$
 (5.7)

Схема соединений коммутационными шнурами элементов установки Рис. для исследования компенсационного стабилизатора с широтно-импульсным регулированием

- Переключатель S1 на панели ИСН установить в верхнее положение.
- Переключатель «R_H грубо» установить в положение «5». 7
- Вольтметры PV1 и PV2 установить в режим измерения постоянного напряжения. Миллиамперметр РА1 установить в режим измерения постоянного тока.
- Включить электропитание установки.
- Включить источник постоянного напряжения.
- Входное напряжение установить регулятором Uип источника питания, контролировать вольтметром PV1.
- Выходное напряжение установить регулятором R1, контролировать
- Ток нагрузки установить регуляторами «R_H грубо» и «R_H точно», контролировать амперметром РА2.

Определение коэффициента стабилизации КСТ 1.

- Установить номинальный режим работы стабилизатора: UBX HOM = 15 B; UBLIX HOM = 3 B; IHATP HOM = 0,18 A = 180 m A
- Увеличить напряжение источника питания до максимально возможного U_{вх макс}. (Вольтметр PV1)
- Записать значение выходного напряжения стабилизатора Uвых 1 (Вольтметр PV2).

Рассчитать коэффициент стабилизации по входному напряжению по формуле (5.1) или (5.2)

2. Определение выходного сопротивления Rвых

- Установить: U_{вх ном}= 15 в U_{вых ном}= 3 в I_{нагр ном} = 0,15 А. С. (2 А
- Увеличить сопротивление нагрузки таким образом, чтобы ток нагрузки уменьшился в 3 4 раза. При этом поддерживать $U_{\rm BX} = {\rm const} = U_{\rm BX\;HOM} = 15\;{\rm B}$.
- Записать изменение выходного напряжения стабилизатора $\Delta U_{\text{Вых}}$ и тока нагрузки $\Delta I_{\text{НАГР}}$.
- Рассчитать выходное сопротивление по формуле (5.4).

3. Определение КПД

• Установить *номинальный* режим работы стабилизатора: $U_{BX \ HOM} = 15 \ B; \ U_{BbIX \ HOM} = 3 \ B; \ I_{HAГР \ HOM} = 0,18 \ A$. Записать значения I_{BX} (Миллиамперметр PAL) Рассчитать значение КПД по формуле (5.6)

4. Определение коэффициента пульсаций Кп

- Установить *номинальный* режим работы стабилизатора: $U_{BX \ HOM} = 15 \ B; \ U_{Bbix \ HOM} = 3 \ B; \ I_{HAIP \ HOM} = 0.18 \ A$.
- С помощью осциллографа определить частоту и размах пульсаций. Амплитуду пульсаций брать как половину размаха.
- Определить коэффициент пульсаций по формуле (5.7)

Снятие осциллограмм форм напряжений и токов в контрольных точках схемы стабилизатора широтно-импульсном управлении регулирующим элементом.

Режим работы осциллографа:

двухканальный, синхронизация по входу 1:

вход 1 — открытый; чувствительность $5~\mathrm{B}$ / деление; длительность развертки $20~\mathrm{mkc}$ / деление;

вход 2 - открытый; чувствительность 0,2 В / деление;

Установить *номинальный* режим работы стабилизатора: $U_{BX HOM} = 15 B$; $U_{BЫX HOM} = 3 B$; $I_{HA\GammaP HOM} = 0,18 A$.

- Получить на экране осциллографа устойчивое изображение формы напряжения в КТ2 и КТ4.
- Рассчитать и записать частоту переключения f_п.
- Визуально определить зависимость длительности управляющих импульсов и частоты переключения от величины Uвх, Uвых, Інлгр. Для этого наблюдать осциллограммы напряжений в КТ2 при различных режимах работы импульсного стабилизатора напряжения.
- Наблюдать осциллограммы напряжений в КТ3, КТ4, КТ6, КТ7, КТ9, КТ10, КТ8. Для этого подключать к указанным контрольным точкам вход 2 осциллографа. При необходимости переключать режим входа 2 «Открытый закрытый» и изменять его чувствительность.
- Те же осциллограммы наблюдать при различных режимах работы стабилизатора.
- II. Экспериментальное исследование транзисторного компенсационного стабилизатора с релейным регулированием

Перектоганов в (ублановей вничение пелогиение (си. парек ИСН)

- Установить номинальный режим работы стабилизатора:
 U_{BX} ном = 15 В; U_{ВЫХ ном} = 3 В; I_{НАГР ном} = 0,18 А . = (80 м А
- Определение коэффициента стабилизации, выходного сопротивления и КПД осуществляется как для стабилизатора с широтно-импульсным Регулированием по формулам (5.1) или (5.2), (5.4), (5.6)

Определение коэффициента пульсаций Кп

- Установить *номинальный* режим работы стабилизатора: $U_{BX \ HOM} = 15 \ B; \ U_{Bbix \ HOM} = 3 \ B; \ I_{HAIP \ HOM} = 0,18 \ A$.
- С помощью осциллографа определить частоту переключения и размах пульсаций.

Амплитуду пульсаций брать как половину размаха.

- Определить коэффициент пульсаций по формуле (5.7)
- Увеличить напряжение источника питания до максимально возможного $U_{\text{BX MAKC}}$. (Вольтметр PV1)
- С помощью осциллографа определить новую частоту переключения и размах пульсаций на этой частоте
 Амплитуду пульсаций брать как половину размаха.
- Определить коэффициент пульсаций по формуле (5.7)

Снятие осциллограмм форм напряжений и токов в контрольных точках схемы стабилизатора релейном управлении регулирующим элементом.

- Установить *номинальный* режим работы стабилизатора: $U_{\rm BX\; HOM} = 15\; \rm B;\;\; U_{\rm BMX\; HOM} = 3\; \rm B;\;\; I_{\rm HAIP\; HOM} = 0,18\; \rm A\; .$
- Получить на экране осциллографа устойчивое изображение формы напряжения в КТ2 и КТ4.
- Режим работы осциллографа:
 двухканальный, синхронизация по входу 1;
 вход 1 открытый; чувствительность 5 В / деление; длительность развертки 20 мкс / деление;
 вход 2 открытый; чувствительность 0,2 В / деление;

Рассчитать и записать частоту переключения f_п.

- Наблюдать осциллограммы напряжений в КТ3, КТ4, КТ6, КТ9, КТ10, КТ11. Для этого подключать к указанным контрольным точкам вход 2 осциллографа. При необходимости переключать режим входа 2 «Открытый закрытый» и изменять его чувствительность.
- Те же осциллограммы наблюдать при различных режимах работы стабилизатора

Таблица ХХХ

Режим	U _{BX HOM} , B	U _{BX max} , B	∆ U вх, В	U _{вых ном} , В	ΔU _{вых,} В	fп, кГц	f'n, кГц
с широтно- импульсным регулированием						-	
с релейным регулированием						-	3

III. Сводные таблицы показателей качества исследуемых схем стабилизаторов

Тип Коэффициент Выходное стабилизатора Стабилизации Сопротивление КПД КСТ R_{Вых}, Ом Стабилизации Сопротивление КПД КСТ Стабилизации Сопротивление КПД Стабилизации Стабилизации Сопротивление КПД Стабилизации Стабилизации Сопротивление КПД Стабилизации Стабилиз

Тип стабилизатора	Коэффициент	Таблица XXX Частота пульсаций, кГц			
Стабилизатора	пульсаций	$U_{\rm BX\ HOM} = 15\ {\rm B}$	U _{BX MAKC} =		
с широтно- импульсным регулированием					
с релейным регулированием					

IV. Снятие осциллограмм форм напряжения на индуктивности и тока индуктивности сглаживающего фильтра.

Для исключения нарушений в работе стабилизатора обязательно отсоедините вход 2 осциллографа от контрольных точек схемы стабилизатора!

а)

Рис. 3. Подключение осциллографа к макету стабилизатора при наблюдении формы напряжения на индуктивности сглаживающего фильтра

9

Подключите вход 1 осциллографа к КТ5 и КТ6 согласно рис. 3.

Наблюдать форму напряжения на индуктивности сглаживающего фильтра.

Рис. 4. Подключение осциллографа к макету стабилизатора при подении формы тока, протекающего через индуктивность кивающего фильтра

Подключите вход 1 осциллографа к КТЗ и КТ5 согласно рис. 4. Наблюдать форму тока, протекающего через индуктивность сглаживающего фильтра.

Выключить источник постоянного напряжения. Выключить электропитание установки.