Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 3

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte) $z^2 - 4z + 5 = (2+i)^2 - 4(2+i) + 5 = 4 + 4i + i^2 - 8 - 4i + 5 =$ **3p** 2p **3p** 2p 3p 2p 4. Mulțimea numerelor naturale de cinci cifre distincte, formate cu cifre din mulțimea 2p $\{1,2,3,4,5\}$ are 5!=120 de elemente, deci sunt 120 de cazuri posibile Numerele naturale de cinci cifre distincte, formate cu cifre din mulțimea $\{1,2,3,4,5\}$, care au 2p cifra zecilor egală cu 2 și cifra unităților egală cu 3, sunt 6, deci sunt 6 cazuri favorabile 1p $CA = CB \Leftrightarrow \sqrt{(4-0)^2 + (a-1)^2} = \sqrt{(4-2)^2 + (a-3)^2}$ 3p 16+ a^2 -2a+1=4+ a^2 -6a+9 $\Leftrightarrow a$ =-1
6. $A+B+C=\pi$, 2B=A+C2p 3p $3B = \pi \Rightarrow B = \frac{\pi}{3}$ 2p

SUBIECTUL al II-lea (30 de pur		
1.a)	$A(1) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} =$	3p
	=1+0+0-0-0-0=1	2p
b)	$A(x)A(y) = \begin{pmatrix} 1 & 0 & 2 + \ln(xy) \\ 0 & xy & 0 \\ 0 & 0 & 1 \end{pmatrix} = $	2p
	$= \begin{pmatrix} 1 & 0 & 2 + \ln(yx) \\ 0 & yx & 0 \\ 0 & 0 & 1 \end{pmatrix} = A(y)A(x), \text{ pentru orice } x, y \in (0, +\infty)$	3p
c)	$A\left(\frac{1}{3}\right)A(3) = \begin{pmatrix} 1 & 0 & 2\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}, \ A\left(\frac{1}{2}\right)A(2) = \begin{pmatrix} 1 & 0 & 2\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$	2p
	$A\left(\frac{1}{3}\right) \cdot A\left(\frac{1}{2}\right) \cdot A(1) \cdot A(2) \cdot A(3) = A\left(\frac{1}{3}\right) \cdot A(3) \cdot A\left(\frac{1}{2}\right) \cdot A(2) \cdot A(1) = \begin{pmatrix} 1 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow n = 5$	3р

Probă scrisă la matematică M_mate-info

2.a)	$1*2=1\cdot 2-4(1+2)+10=$	3p
	=2-12+10=0	2p
b)	$x*5 = x \cdot 5 - 4(x+5) + 20 = 5x - 4x - 20 + 20 = x$, pentru orice număr real x	2p
	5 * x = 5x - 4(5 + x) + 20 = 5x - 20 - 4x + 20 = x, pentru orice număr real x, deci $e = 5$ este	3р
	elementul neutru al legii de compoziție "*"	ъp
c)	x * y = (x-4)(y-4) + a-16, pentru orice numere reale x şi y	2p
	$x, y \in H \Rightarrow x - 4 \ge 0$ şi $y - 4 \ge 0$ şi, cum $a \ge 20$, obţinem $x * y \ge 4 \Rightarrow x * y \in H$, deci H	3р
	este parte stabilă a mulțimii numerelor reale în raport cu legea de compoziție "*"	ъp
SUBIECTUL al III-lea (30 de puncte)		

SUBI	SUBIECTUL al III-lea (30 de pur		
1.a)	$f'(x) = 6^x \ln 6 - 3^x \ln 3 + 2^x \ln 2, \ x \in \mathbb{R}$	3p	
	$f'(0) = \ln 6 - \ln 3 + \ln 2 = \ln 4$	2p	
b)	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$ și, cum $f(0) = 1$, obținem $y = x \ln 4 + 1$	3p	
	$\ln(16e) = a \ln 4 + 1 \Rightarrow 1 + \ln 16 = \ln(4^a) + 1$, deci $a = 2$	2p	
c)	$\lim_{x \to 0} \frac{\ln(f(x))}{x} = \lim_{x \to 0} \frac{f'(x)}{f(x)} = \frac{f'(0)}{f(0)} =$	3p	
	$=\frac{\ln 4}{1}=\ln 4$	2p	
2.a)	$\int_{1}^{2} (x^{2} + 3) f(x) dx = \int_{1}^{2} (x^{2} + 3 - 2x - 2) dx = \int_{1}^{2} (x^{2} - 2x + 1) dx = \frac{(x - 1)^{3}}{3} \Big _{1}^{2} =$	3p	
	$=\frac{1}{3}-0=\frac{1}{3}$	2p	
b)	$\int_{0}^{1} f(x) dx = \int_{0}^{1} \left(1 - \frac{2x}{x^2 + 3} - \frac{2}{x^2 + 3} \right) dx = \left(x - \ln\left(x^2 + 3\right) - \frac{2}{\sqrt{3}} \operatorname{arctg} \frac{x}{\sqrt{3}} \right) \Big _{0}^{1} =$	3p	
	$= 1 - \ln 4 - \frac{2}{\sqrt{3}} \cdot \frac{\pi}{6} + \ln 3 = 1 - \ln \frac{4}{3} - \frac{\pi\sqrt{3}}{9}$	2p	
c)	Pentru orice $x \in [0,1]$, $f'(x) = \frac{2(x-1)(x+3)}{(x^2+3)^2} \le 0 \Rightarrow f(1) \le f(x) \le f(0) \Rightarrow 0 \le f(x) \le \frac{1}{3}$	2p	
	$0 \le I_n \le \int_0^1 \left(\frac{1}{3}\right)^n dx, \text{ deci } 0 \le I_n \le \left(\frac{1}{3}\right)^n \text{ si, cum } \lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0, \text{ obținem că } \lim_{n \to +\infty} I_n = 0$	3p	