특강원고

결측값의 대치법

Imputation of Missing Values

윤 성 철 Sung-Cheol Yun

서울대학교 자연과학대학 통계학과 Department of statistics, Seoul National University

소 개

결측/무응답은 사회과학 및 자연과학 등의 전반적 분야의 관측 또는 실험되어 얻어지는 자료에 종종 나타나는 현상이다. 이런 결측/무응답을 가진 자료는 복잡한 통계적 분석 기법을 요한다. 일반적으로 결측/무응답을 가진 자료를 분석 할 때는다음 세가지점이 고려된다.

첫째, 효율성(efficiency) 문제

둘째, 자료 처리 및 분석의 복잡성 문제 셋째, 관측된 자료와 결측된 자료간의 차 이에서 기인하는 편이(bias) 문제

많은 연구자들은 보편적으로 결측/무응 답을 가진 자료를 분석할 때는 적절한 가 정 하에 (Missing Completely at Random) 불 완전한 자료는 무시하고 완전하게 관측 또는 실험 된 자료만으로 표준적 통계기 법으로 분석을 하게 되는데, 이는 분석의 간편성을 가지는 장점이 있는 반면, 효율 성의 문제와 가정이 맞지 않았을 경우에 통계적 추론이 틀릴 수 있다는 문제가 있 다. 결측/무응답을 가지는 자료를 분석 할 수 있는 모형은 최근 10여년 사이에 많은 연구가 되었다²³⁴. 특히 무시 할 수 없는 결 측을 가진 자료 분석을 위한 통계 모형들 은 여전히 많은 통계학자들에 의해 현재 활발히 연구가 진행 중에 있다. 본서에서 는 결측/무응답을 가진 자료를 무시하지 않고 분석 할 수 있는 통계 방법론의 하나 인 대치법(imputation)과 간단한 문제에 대 하여 일반 연구자들이 쉽게 분석 할 수 있 는 SAS 프로시져를 소개한다.

단순 대치법 (Single Imputation)

1. Completes Analysis

불완전 자료는 모두 무시하고 완전하게 관측된 자료만으로 표준적 통계기법에 의 해 분석하는 방법을 말한다. 분석이 쉽다 는 장점이 있지만 부분적 관측된 자료를 무시하므로 생기는 효율성 상실과 통계적 추론의 타당성 문제가 있다.

2. 평균 대치법(Mean Imputation)

이 방법은 관측 또는 실험되어 얻어진 자료의 적절한 평균값으로 결측값을 대 치해서 불완전한 자료를 완전한 자료로 만든 후, 완전한 자료를 마치 관측 또는 실험되어 얻어진 자료라 생각하고 분석 하는 방법을 말한다. 대표적 방법으로 비 조건부 평균 대치법과 조건부 평균 대치 법이 있다. 조건부 평균 대치법의 확장으 로써 Buck's' 방법이 일반적으로 많이 알려 져 있다.

예1) 비조건부 평균 대치법

10	?	15	19	12	18	?	?	16
10	15	15	19	12	18	15	15	16

sol> 관측값의 평균 : 15 = 10+15+19+12+18+16 결측값 대치 : ? = 15

평균 대치법은 사용하기가 간단하고 Completes Analysis에 비해 효율성이 향상 된다. 그러나 관측된 자료를 토대로 한 추 정값으로 결측값을 대치함으로써 통계량 의 표준오차가 과소 추정되는 문제가 있 다.

예2) 조건부 평균 대치법(Regression Imputation)

Y_1	Y_2	Y_3	Y_3
10	15	20	20
12	25	30	30
15	35	40	40
25	48	57	57
30	49	60	60
35	55	65	65
37	47	70	70
40	60	$?_1$	76.89
42	65	$?_2$	81.67
50	70	?3	92.39

sol> $Y_{3i}=\beta_0+\beta_1Y_{1i}+\beta_2Y_{2i}+\varepsilon_i$, $i=1,\dots,7$ $\rightarrow \beta_0+3.69$, $\beta_1=0.099$, $\beta_2=0.56$ $\gamma_1=3.69+40 \cdot 0.99+60 \cdot 0.56=76.89$

3. 단순 확률 대치법

(Single Stochastic Imputation)

이 방법은 평균대치법에서 추정량 표준 오차의 과소 추정문제를 보완하고자 고안된 방법으로 Hot-deck²방법, Nearest-Neighbour² 방법 등이 있다. 기본적 아이디어는 평균대치법에서 관측된 자료를 토대로 추정된 통계량으로 결측값을 대치할때 어떤 적절한 확률값을 부여 한 후 대치하는 방법이다. 이 방법은 추정량의 표준오차가 과소 추정되는 문제는 보완 되지만, 간단 문제를 제외한 대부분의 경우에추정량의 표준오차계산자체가 어려운 문제가 있다.

다중 대치법 (Multiple Imputation)

단순 대치법 (Single Imputation)은 결측치를 가진 자료 분석에 사용하기가 용이하고, 통계적 추론에 사용된 통계량의 효율

성 및 일치성 등의 문제를 부분적 보완을 해 준다. 그러나 추정량 표준오차의 과소 추정 또는 계산의 난해성의 문제를 여전히 가지고 있다. 이 장에서는 단순 대치법의 문제를 보완 할 수 있는 다중 대치법에 관하여 소개한다. 다중 대치법은 단순 대치법을 한번 하지 않고 m번의 대치를 통한 m개의 가상적 완전한 자료를 만들어서 분석하는 방법으로 다음과 같이 3가지 단계로 구성되어있다.

1 단계 : 대치 (Imputations step)

2 단계: 분석 (Analysis step)

3 단계: 결합 (Combination step)

1. 대치 단계(Imputation Step)

결측/무응답을 가진 자료 분석을 할 때 일반적 결측 메카니즘(Missing Mechanism) 에 대해서는 MAR (Missing at Random)'을 가정을 하게 된다. 이 가정 하에서 보편적 으로 사용되는 대치법들의 통계적 추론이 유효하다. 본서에도 MAR이라는 가정 하 에 결측을 가진 자료를 분석 할 수 있는 대 치법을 소개한다.

대치 단계에서 일반적으로 많이 사용되 는 대치 모형은 다양하다. 결측 되어지는 자료의 형태가 Monotone할 때 모수적 모형 으로는 회귀 방법(Regression Method), 비모 수적 모형으로는 Propensity 방법 등이 있 고, Non-monotone한 경우에는 일반적으로 MCMC(Markov Chain Monte Carlo)4 방법이 많이 사용되어 진다. 이러한 대치 방법을 이용해서 가상의 완전한 자료를 m개를 생 성한다. 가상 데이터 set의 수 m을 많이 생 성하면 할수록 보다 바람직한 결과를 도 출 할 수 있지만, 분석에 있어서 너무 많은 시간이 소요된다. 일반 적으로 m은 3개에 서 5개정도 충분하다고 알려져 있다. m의 가상 데이터 수에 기저한 대치 추정량의 효율성은 식1 로 알려져 있다. 여기서 r은 결측정보비(Proportion Missing Information) 로써 3.절에서 자세히 소개하도록 하겠다. $\langle 41 \rangle (1 + \frac{r}{m})^{-1}$

표1 로부터 만약 결측정보비가 0.3이하 일 경우 m이 3개에서 5개 정도만 되어도 m=∞에 대해 효율성이 크게 저하되지 않 음을 알수 있다.

	r						
m	0.1	0.3	0.5	0.7	0.9		
3	97%	91%	86%	81%	77%		
5	98%	94%	91%	88%	85%		
10	99%	97%	95%	93%	92%		
20	100%	99%	98%	97%	96%		

표1 : 결측정보비 r와 가상데이터 수 m에 기저한 다중 대치법의 효율성

2. 분석 단계(Analysis Step)

이 단계에서는 대치단계에서 만든 m개의 완전한 가상 자료 각각을 표준적 통계분석을 통하여 관심이 있는 추정량 Θ,와분산 V/을 계산한다 (*i*=1,···,m). 만약 원 자료가 결측/무응답이 없는 자료일 때 분석하는 표준적 통계분석법과 같은 기법을 사용하는 것이다.

3. 결합 단계(Combination Step)

이 단계에서는 분석단계에서 생성된 m 개의 추정량과 분산의 결합통한 통계적 추론를 한다. 추론 방법 및 결합은 다음과 같다.

-다중 대치 추정량 : $\Theta_M = \frac{1}{m} \sum_{i=1}^{m} \Theta_i$

-다중 대치 추정량의 분산:

 $T=V+(1+m^{-1})B$

대치내 분산(Within imputation variance):

$$V = \frac{1}{m} \sum V_i$$

대치간 분산(Between imputation variance):

$$B = \frac{1}{m-1} \sum_{i=1}^{m} (\Theta_i - \Theta_{Mi})^2$$

-통계적 추론 : MI의 $(1-a) \cdot 100\%$ 신뢰구간 $\Theta_{M} \sim T$ 분포 : $\Theta_{M} \pm t_{c}(df)\sqrt{T}$,

$$df = (m-1)[1 + \frac{V}{(1+m^{-1})B}]^2$$

-결측정보비(Proportion Missing Information)

$$r = \frac{R + \frac{2}{(df+3)}}{R+1}$$
 $\Leftrightarrow 7 \mid k \mid R = \frac{(1+m')B}{V}$

SAS 프로시져

다중 대치법을 이용할 수 있는 소프트웨어 패키지는 여러 종류가 있다. 예를 들면 SOLAS, SAS, S-plus, MICE 등이 있으며, 이러한 패키지들은 나름대로의 장단점들을

가지고 있다. 본서에서는 일반 사용자들이 많이 사용하고 있는 SAS프로그램에서의 다중 대치법 사용방법을 간략히 설명한다. SAS에서는 현재까지 자료들의 값이 연속형인 경우에 한에서 만 대치할 수있다.

- 대치 단계 : Proc MI MI 프로시저에서의 대치 모형으로는 Regression, Propensity, MCMC 방법을 제 공해준다.
- 분석 단계: Proc GLM, REG, Logistic, etc. 분석 단계에서는 일반 사용자가 흔히 사용하는 프로시저를 토대로 분석을 시행한다.
- 결합 단계 : Proc MIANALYZE 분석 단계에서 생성된 m개의 추정량에 대한 결합 및 통계적 추론을 제공해준다. 기본적 프로그램은 다음과 같고 기타 자세 한 내용은 SAS 메뉴얼을 참고하기 바란다.

참고문헌

- 1. Rubin, D.B. (1976). Inference and Missing Data, Biometrika, 63, 581-590.
- Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys, New York; Wiely.
- 3. Rubin, D.B. (1996). Multiple Imputation 18+Years, Journal of the American Statistical Association, 91, 473-489.
- 4. Schafer, J.L. (1999). Multiple Imputation: A primer, Statistical Method in Medical Resealch, 8, 3-15.
- Buck, S.F. (1960). A method of estimation of missing values in multivariate data suitable for use with an electronic computer, Journal of the Royal Statistical Society, Series B, 22, 302-306.
- 6. Rosenbaum, P.R. and Rubin, D.B. (1983). Assessing Sensitivity to an Unobserved Binary Covariate in an Observational Study with Binary Outcome, Journal of the Royal Statistical Society, Series B, 45, 212-218.

Data Step

DATA YU Input Y X1 Datalins;	*							
44.609	11.37	178	45.313	10.07	185	54.294	8.65	156
59.571			49.874	9.22		44.811	11.63	176
	11.95	176		10.85		39.442	13.08	174
60.055	8.63	170	50.541			37.388	14.3	186
44.754	11.12	176	47.273			51.855	10.33	166
49.156	8.95	180	40.836	10.95	168	46.672	10.00	
46.774	10.25		50.388	10.08	168	39.407	12.63	174
46.080	11.17	156	45.441	9.63	164		8.92	
45.118	11.08		39.203	12.88	168	45.790	10.47	186
50.545	9.93	148	48.673	9.40	186	47.920	11.50	170
47.467	10.50	170						
;RUN;								

Imputation Step

PROC MI data=YUN seed=1234 noprint out=miout;

MCMC; VAR Y X1 X2; RUN;

Analysis Step

PROC REG data=miout outest=outreg covout noprint;

MODEL Y=X1 X2;

by_Imputation_; run;

Combination Step

PROC MIANALYZE data=outreg;

VAR intercept X1 X2; run;