

Predicting which subscribers will buy new phone soon with binary classification model

using Vodafone Ukraine dataset

Author: Omelchuk Igor

Contents

- 1. Project timeline
- 2. Executive summary
- 3. Business understanding
- 4. Data exploration
- 5. Data preprocessing & feature engineering
- 6. Algorithms, models and features selection
- 7. Model evaluation
- 8. Analyzing key factors
- 9. Getting model ready for deployment

1. Project timeline

- Feb 15 Project start
 setting up Google cloud VM (e2 instance with 16vCPU and 64 Gb RAM),
 installing Anaconda and some libraries.
- 2. Feb 16 to Feb 21 Exploratory analysis & Data preprocessing
- 3. Feb 22 to Feb 24 Creating baseline models selecting several algorithms, creating simple models w/o tuning, using feature importance to drop unimportant features for models of each algorithm type.
- 4. Feb 25 to Feb 27 Hyperparameters tuning and choosing best model
- 5. Feb 27 to Mar 1 Evaluating best model on test set
- 6. Mar 13 to Mar 17 Analyzing key factors and preparing model for deployment

2. Executive summary

ROC-AUC: **0.68**

F1-score: **0.22**

Precision: **0.13**

Recall: **0.67**

- Result of this project trained model(s) that predict whether subscriber will buy a new phone next month.
 (LightGBM
- Best model identifies 67% of users that will buy new phone, while also having specificity of 58%,

Main model skill evaluation metrics:

Classification report

	precision	recall	f1-score	support
0.0	0.95	0.58	0.72	155662
1.0	0.13	0.67	0.22	14439
accuracy			0.59	170101
macro avg	0.54	0.62	0.47	170101
weighted avg	0.88	0.59	0.68	170101

Confusion matrix

/

3. Business understanding

Business target: In the scope of Vodafone Retail promotion (sale of phones in stores), we need to identify subscribers inclined to replace their phone.

Target audience: Subscribers who are very likely to buy new phone next month.

Expected outcome: notified subscribers will buy phones in Vodafone Retail shops.

Data used: Vodafone dataset with features from CDR, DPI and Network statistics

Objective: train model that detects as many subscribers inclined to change their phone as possible, while keeping specificity at reasonable level

4. Data exploration

Data understanding (1/4)

1.Datasets description

Туре	Dataset Name	Description	Shape	Dtypes	Unique id	Size
	DEVICE_MODEL_FE	Vitrin with data on subscribers usage patterns from different sources	205 625 rows X 878 columns	float/int: 878 cols	abon_id	1,4 Gb
Train (60%)	DEVICE_B_NUM	Data on subscribers interaction with short numbers	836 780 rows X 7 columns	float/int: 6 cols bytes: 1 col	abon_id + bnum	0,07 Gb
	DEVICE_DPI	Data on Applications usage from DPI system	6 647 895 rows X 6 columns	float/int: 6 cols	abon_id + Application	0,31 Gb
	DEVICE_MODEL_T_FE	*Same as on train dataset*	170 101 rows X 878 columns	*Same as on train dataset*	*Same as on train dataset*	1,2 Gb
Test (40%)	DEVICE_B_NUM_TEST	*Same as on train dataset*	772 356 rows X 7 columns	*Same as on train dataset*	*Same as on train dataset*	0,07 Gb
	DEVICE_DPI_TEST	*Same as on train dataset*	5 463 705 rows X 6 columns	*Same as on train dataset*	*Same as on train dataset*	0,26 Gb

Data scheme:

Data understanding (2/4)

2.Target variable distribution

Train set (3:1 ratio)

Test set (10:1 ratio)

!Different target variable distribution in train and test sets and unbalanced classes – needs to be treated

(no missing target values found)

3. Fraction of missing values distribution

Most features have less than 1% of missing values

Data understanding (3/4)

4. Categorical features analysis (encoding possibilities)

3.1 All features in main vitrine are of the float type:

Float64Index: 205625 entries, 1215806.0 to 1492899.0 Columns: 877 entries, device id to device price

dtypes: float32(877) memory usage: 689.5 MB

- **3.2** Most of the categorical features have only 2 unique values and description suppose binary type, no need for encoding
- **3.3** Only device OS version and Tariff Plan features may be encoded.

5. Analysis of DPI and bnum datasets

Only small fraction of Applications/bnums account for most part of events/traffic, most bnums used by small amount of subscribers

719 unique Applications

17k unique bnums

TOP-3 bnums by outgoing calls:

- 1) 111 Vodafone CC
- 2) 3700 PrivatBank
- 3) 102 Police

8

Data understanding (4/4)

6. Outliers

Some features had enormous outliers which probably appeared after data encryption. Example:

	Balance_uah
count	2.044270e+05
mean	-1.742508e+13
std	3.791837e+15
min	-8.569925e+17
25%	4.804599e-04
50%	1.851271e-01
75%	2.143376e+01
max	1.672381e+15

- Most values centered around zero, but with huge outliers on both sided
- Needs to be handled keeping in mind that non-linear transformations were applied during encryption and we may not know anything about true sample distribution

Data preprocessing & enrichment

[✓] Formed merged train dataset with 4.9k features (to be reduced on feature importance step)

My approach for choosing best model and tuning hyperparameters:

- 1) Choosing several model types, performance-oriented and known for producing good results
- 2) Training simple model of each type with "educated guess"-like hyperparameters value. Additionally train simple baseline model (logistic regression) to later compare results.
- 3) Using feature importance plots to remove non-important features
- 4) Tuning hyperparameters with K-fold Cross-validation for each model, applying weights to positive examples to account for imbalanced data, and using early stopping to prevent overfitting
- 5) Comparing best models of each type by key metrics and average fit/predict time using CV

Algorithms selection

- Models that were included in my short-list are: **LightGBM**, **XGBoost** and **RandomForest** binary classifiers
- All of them are tree-based methods that are known for good performance.

 (I also tried Support Vector Classifier model, but it was more than 10x slower comparing to other chosen models)
- Pros of tree-based algorithms:
 - -Relatively fast to train
 - -Interpretable (to certain degree at least)
 - -Can classify not linearly separable data
 - -Robust to unscaled data
 - -Robust to outliers

Feature importance step

- I have trained baseline models of each type, with AUC evaluation metric, using validation set (70-30)
- Algorithms based on decision-trees can all show feature importance by several metrics.

For each model:

Final features list = set(99% + 99%)
of importance
by split metric features that account for features list = set(99%) for importance for features that account for features list = set(99%) for importance for features that account for features list = set(99%) for importance for features list = set(99%)

As a result, around 900 features of 4900 left after feature importance step for each model (x5.5 reduction).

(X% importance threshold can be tuned if we need to drop more features, final model was fast enough with selected value)

Hyperparameter tuning

- During Hyperparameter tuning, I used **Optuna** library to make this process easier.
- For each model, I used randomized Grid Search with 3-Fold CV, accounting for class imbalance via weighting positive class instances. Evaluation metric – ROC AUC.
- - "lambda": trial.suggest_float("lambda", 1e-8, 1.0, log=True),

 "alpha": trial.suggest_float("alpha", 1e-8, 1.0, log=True),

 "max_depth": trial.suggest_int("max_depth", 1, 9),
 - "gamma": trial.suggest_float("gamma", 1e-8, 1.0, log=True)
 - In case of LightGBM model, Optuna library provides step-wise tuning approach option.

Final model selection

Evaluation process of best models:

- 1) Get best hyperparameters for each model type from tuning step
- **2)** Use 10-Fold Stratified CV to train and evaluate models. Code snippet:

```
def evaluate_model(model, folds, X,y, scoring_metrics = ['roc_auc','f1','precision','recall']):
    kfold = StratifiedKFold(n_splits=folds, random_state=17, shuffle=True)
    results = cross_validate(model,X,y, cv=kfold, scoring=scoring_metrics)
    return results
```

Validation Results:

Baseline model

(logistic regression classifier)

```
Mean fit_time is 27.31
Mean score_time is 5.12
Mean test_roc_auc is 0.52
Mean test_f1 is 0.36
Mean test_precision is 0.25
Mean test recall is 0.64
```


LightGBM

Mean	fit_time is 65.88
Mean	score_time is 0.46
Mean	test_roc_auc is 0.69
Mean	test_f1 is 0.45
Mean	test_precision is 0.38
Mean	test recall is 0.55

XGBoost

Mean	fit_time is 146.57
Mean	score_time is 0.46
Mean	test_roc_auc is 0.67
Mean	test_f1 is 0.44
Mean	test_precision is 0.36
Mean	test recall is 0.56

RandomForest

```
Mean fit_time is 173.26
Mean score_time is 1.11
Mean test_roc_auc is 0.63
Mean test_f1 is 0.41
Mean test_precision is 0.32
Mean test_recall is 0.57
```


Among tree-based models, **LightGBM** model has slightly better ROC-AUC and F1-score, and is 2-3x times faster. Baseline model showed substantially worse results than tree-based ensemble algorithms.

Best model evaluation on test set (1/2)

- 1) Loaded test dataset, preprocessed it same way as train dataset.
- 2) Dropped features that are in only one of train/test datasets
- 3) Chose best binarization threshold on validation set using 5-Fold CV (2 options):
 - 1. F-beta score metric, beta=2

(lean towards recall as we want to find as many subscribers who will buy new phone next month as possible)

best threshold

0.45

2. G-mean metric

(balance between performance for majority and minority classes)

best threshold

0.51

4) Train model on whole train dataset, getting predicted probabilities on test dataset, plotting ROC-curve:

AUC on test set = 0.68

(Mean AUC on validation sets = 0.69)

Best model evaluation on test set (2/2)

5) Plotting TOP-20 most important features (overall **913** features used in final model):

6) Calculating evaluation metrics (with best threshold by f-beta score metric):

Classification report

		precision	recall	f1-score	support
	0.0	0.95	0.58	0.72	155662
	1.0	0.13	0.67	0.22	14439
accur	racy			0.59	170101
macro	_	0.54	0.62	0.47	170101
eighted		0.88	0.59	0.68	170101

Best model Hyperparameters:

{'metric': 'auc',
 'verbosity': -1,
 'boosting_type': 'gbdt',
 'is_unbalance': True,
 'feature_pre_filter': False,
 'lambda_l1': 4.3,
 'lambda_l2': 6.7,
 'num_leaves': 31,
 'feature_fraction': 0.58,
 'min_child_samples': 5}

Key results:

ROC-AUC: **0.68** F1-score: **0.22** Recall: **0.67**

Precision: **0.13**

Key factors analysis (1/2)

• Below is analysis of key factors that are inherent to subscribers who bought new device:

Key factors analysis (2/2)

• By combining factors shown on previous slide, we extract subgroup of subscribers, in which almost every third changed their device, as opposed to 17% on average:

Filters: Device with 2 SIM and no LTE support, active App#806 user

Wrapping model in a Class instance and serializing it

- I have wrapped model in a Class with preprocess and predict methods
 - -preprocess method checks and accounts for data consistency (if prediction set columns match model features)
 - -predict method outputs target prediction (either 0 or 1) for each subscriber row that is passed to method, using previously selected binarization threshold
- Then I have created instance of this Class and serialized it in .pkl object

Serializing and loading model

```
lgb_cls_instance = LightGBM_binary_clf()

joblib.dump(lgb_cls_instance, 'Lightgbm_model_class.pkl')

loaded_lgb_instance= joblib.load('Lightgbm_model_class.pkl')

predictions = loaded_lgb_instance.predict(test_device_model_df)
```

Loaded model output example

```
predictions[0:100]

[1,
    0,
    0,
    1,
    1,
    0,
    .
    .
```

- 1) Things I tried during project implementation but which did not improve results:
 - -Scaling data (MinMax, Standard scalers). Tree-based methods are robust to scaling so I skipped it
 - -Using PCA on less important features to reduce features amount
 - -Using SMOTE & majority class undersampling to treat class imbalance on preprocessing step
 - -Dividing subscribers by groups (by Tariff Plan) and making predictions inside those groups

2) Recommendations:

-Select some of most important features from final model related to DPI data, try to collect additional metrics by most important Applications if possible and retune model

3) Lessons learned:

- -Try everything you think is well-reasoned for improving model/reaching business goal.
- -Enrich data as much as you can before feeding into models.

CONTACTS:

Omelchuk Ihor

Data Analyst, M.Sc. in System Analysis

+380 (97) 333-77-71

ihoromelchuk505@gmail.com

Thank you!