НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет прикладної математики Кафедра прикладної математики

Звіт

із лабораторної роботи №3

з дисципліни «Системи глибинного навчання»

на тему: "Нейромережеве розпізнавання кібератак"

Bapiaнт 7 – Розпізнавання мережевої кібератаки типу guess_passwd на базі PNN

Виконав: Викладач: студент групи КМ-01 Професор кафедри ПМА

Іваник Ю. П. Терейковський І. А.

Зміст

Теоретичні відомості	3
Основна частина	. 4
Перелік посилань	. 7
Додаток А – Код програми	8

Теоретичні відомості

Імовірнісна нейронна мережа (PNN) є прямопрогонною нейронною мережею, яка широко використовується в завданнях класифікації та визначення шаблонів. У PNN батьківська функція розподілу ймовірностей для кожного класу наближається за допомогою методу ядерних оцінок густини ймовірності з використанням Гаусових ядер.

Операції в PNN організовані у багатошарову прямопрогонну мережу з чотирма рівнями:

- 1. Вхідний рівень: Кожен нейрон цього рівня відображає змінну прогнозування.
- 2. Рівень шаблонів: Цей рівень включає один нейрон для кожного випадку в навчальному наборі даних.
- 3. Рівень додавання: В PNN присутній один нейрон шаблону для кожної категорії цільової змінної.
- 4. Вихідний рівень: Вихідний рівень порівнює зважені голоси для кожної цільової категорії, накопичені в рівні шаблонів, і використовує найвищий голос для прогнозування цільової категорії.

PNN часто використовують у завданнях класифікації, вони виникли як результат поєднання концепцій Байєсової мережі та статистичного алгоритму.

Основна частина

За індивідуальним варіантом завдання треба розробити нейронну мережу на базі PNN, яка буде розпізнавати мережеві кібератаки типу 'guess_passwd'.

Для цього нам знадобиться датасет NSL-KDD, який містить дані про мережеві кібератаки та типи цих атак. Датасет було взято з інтернет ресурсу Kaggle.

Датасет містить такі назви колонок:

duration	num_root	srv_diff_host_rate
protocol_type	num_file_creations	dst_host_count
service	num_shells	dst_host_srv_count
flag	num_access_files	dst_host_same_srv_rate
src_bytes	num_outbound_cmds	dst_host_diff_srv_rate
dst_bytes	is_host_login	dst_host_same_src_port_rate
land	is_guest_login	dst_host_srv_diff_host_rate
wrong_fragment	count	dst_host_serror_rate
urgent	srv_count	dst_host_srv_serror_rate
hot	serror_rate	dst_host_rerror_rate
num_failed_logins	srv_serror_rate	dst_host_srv_rerror_rate
logged_in	rerror_rate	attack
num_compromised	srv_rerror_rate	level
root_shell	same_srv_rate	
su_attempted	diff_srv_rate	

Мітками типів атак ϵ колонка 'attack'.

Завантажимо тренувальний та тестовий датасети. Об'єднаємо їх в один, залишимо лише ті записи, які мають атаку guess_passwd або normal. 75 % даних будуть навчальними, а 25 % тестовими.

```
Розмір навчального набору: 58752
Розмір тестового набору: 19585
```

Перевіримо скільки записів із типом атаки `guess_passwd`, скільки із `normal`.

```
Кількість записів із 'guess_passwd' у навчальному наборі : 963
Кількість записів із 'guess_passwd' у тестовому наборі : 321
Кількість записів із 'normal' у навчальному наборі : 57789
Кількість записів із 'normal' у тестовому наборі : 19264
```

Перекодуємо категорійні дані в числові

Подивимось чи співпадають колонки після автоматичного перекодування

```
Колонок y 'filtered_train_data': 78
Колонок y 'filtered_test_data': 76
Кількість спільних колонок: 75

Унікальні колонки в filtered_train_data:
{'flag_RSTOSO', 'flag_SH', 'service_link'}

Унікальні колонки в filtered_test_data:
{'service_remote_job'}
```

Колонки не співпадають. Подивимось скільки даних, які утворюють ці колонки

```
Кількість записів із 'link' у навчальному наборі: 1
Кількість записів із 'SH' у навчальному наборі: 2
Кількість записів із 'RSTOSO' у навчальному наборі: 1
Кількість записів із 'remote_job' у тестовому наборі : 1
```

Бачимо, що таких даних дуже мало порівняно з величиною датасету, тому просто видалимо ці записи.

Перекодовуємо знову

```
Колонок y 'filtered_train_data': 75
Колонок y 'filtered_test_data': 75
Кількість спільних колонок: 75
```

Нормалізовуємо дані, для передачі їх у PNN. Ініціалізуємо мережу.

Навчаємо PNN на навчальному наборі даних із параметром sigma = 1.0

Тестуємо мережу та подивимось метрики

```
Accuracy (Точність): 93.55596 %
Precision (Точність): 20.27795 %
Recall (Повнота) : 100.0 %
F1 Score (F-міра) : 33.71849 %
```

Із цих метрик варто звернути увагу на повноту. Мережа виявила усі атаки, які дійсно були атаками, точність не настільки висока, тому намалюємо матрицю помилок та подивимось у скількох випадках модель помилилась

PNN помилилась у 1262 випадках. Але правильно класифікувала 321 атаку, вважаю, що цей результат ϵ хорошим, оскільки основною задачею мережі ϵ передбачати атаки, а вона передбачила усі 'реальні' атаки.

Перелік посилань

- 1. Руденко О.Г. Штучні нейронні мережі. Навч. посіб. / О. Г. Руденко, €. В. Бодянський.
- 2. NSL-KDD https://www.kaggle.com/datasets/hassan06/nslkdd/data?select=KDDTrain%2B _ 20Percent.txt

Додаток А – Код програми

```
# КМ-01, Іваник Юрій, Лаб 3
### Імпортуємо бібліотеки
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score,
confusion matrix
### Завантажимо датасет NSL-KDD
train_data = pd.read_csv('KDDTrain+.txt')
test_data = pd.read_csv('KDDTest+.txt')
### Даємо назви колонкам у датафреймі
columns
(['duration','protocol_type','service','flag','src_bytes','dst_bytes','land','wrong_fragment
','urgent','hot',
'num_failed_logins','logged_in','num_compromised','root_shell','su_attempted','num_r
oot'.
'num file creations', 'num shells', 'num access files', 'num outbound cmds', 'is host l
ogin', 'is_guest_login',
'count','srv_count','serror_rate','srv_serror_rate','rerror_rate','srv_rerror_rate','same_sr
v_rate',
'diff_srv_rate','srv_diff_host_rate','dst_host_count','dst_host_srv_count','dst_host_sam
e_srv_rate',
```

```
'dst_host_diff_srv_rate','dst_host_same_src_port_rate','dst_host_srv_diff_host_rate','d
st host serror rate',
'dst host srv serror rate', 'dst host rerror rate', 'dst host srv rerror rate', 'attack', 'lev
el'])
train data.columns = columns
test_data.columns = columns
### Об'єднюємо датасети -> Залишаємо лише 'guess passwd' та 'normal' -> 75 %
навчання, 25 % тест
# Поєднання двох датафреймів
combined_data = pd.concat([train_data, test_data], axis=0)
# Розділення за типом атаки
attack data = combined data[combined data['attack'] == 'guess passwd']
normal_data = combined_data[combined_data['attack'] == 'normal']
# Розбиття на навчальний та тестовий набір
                                     train_test_split(attack_data,
train_attack,
                test_attack
                                                                    test_size=0.25,
random_state=42)
train_normal,
                                     train_test_split(normal_data,
                                                                    test_size=0.25,
                test_normal
random_state=42)
# Об'єднання навчальних та тестових наборів
train data = pd.concat([train attack, train normal], axis=0)
test_data = pd.concat([test_attack, test_normal], axis=0)
# Виведення розмірів навчального та тестового наборів
print(fРозмір навчального набору: {train data.shape[0]}')
```

```
print(f Розмір тестового набору: {test data.shape[0]}')
### Перевіримо кількість записів які містять тип атаки 'guess passwd' або 'normal'
count_train_guess_pass = (train_data['attack'] == 'guess_passwd').sum()
count test guess pass = (test data['attack'] == 'guess passwd').sum()
count train normal = (train data['attack'] == 'normal').sum()
count_test_normal = (test_data['attack'] == 'normal').sum()
print(f"Кількість
                   записів
                              <u>i</u>3
                                  'guess passwd'
                                                                        наборі
                                                    У
                                                        навчальному
{count_train_guess_pass}")
print(f"Кількість
                   записів
                             <u>i</u>3
                                 'guess passwd'
                                                      тестовому
                                                                   наборі
                                                  y
{count_test_guess_pass}")
print(f"Кількість записів із 'normal'
                                                         навчальному наборі :
{count_train_normal}")
print(f"Кількість записів із 'normal'
                                      у тестовому наборі : {count test normal}")
### Перекодуємо категорійні значення
# Використання one-hot encoding для категорійних змінних
filtered train data = pd.get dummies(train data, drop first=True)
filtered test data = pd.get dummies(test data, drop first=True)
### Перевіримо чи співпадають назви колонок та їх кількість
Це важливо оскільки ми передаємо ці значення в нейронну мережу
print(f'Колонок y \'filtered_train_data\': {filtered_train_data.shape[1]}')
print(f'Колонок y \'filtered_test_data\': {filtered_test_data.shape[1]}')
# Отримання назв колонок для обох датафреймів
columns_train = set(filtered_train_data.columns)
columns_test = set(filtered_test_data.columns)
# Знаходження спільних назв колонок
common_columns = columns_train.intersection(columns_test)
```

```
# Виведення назв та кількості спільних колонок
print('Кількість спільних колонок:', len(common columns))
# Знаходження унікальних колонок у кожному датафреймі
unique_columns_train = columns_train.difference(columns_test)
unique columns test = columns test.difference(columns train)
# Виведення назв унікальних колонок у кожному датафреймі
print(f\nУнікальні колонки в filtered train data: \n{unique_columns_train}')
print(f\nУнікальні колонки в filtered test data: \n{unique_columns_test}')
### Подивимось наскільки багато цих даних і чи можемо ми їх позбутися
service_link = (train_data['service'] == 'link').sum()
flag_SH = (train_data['flag'] == 'SH').sum()
flag_RSTOS0 = (train_data['flag'] == 'RSTOS0').sum()
service remote job = (test data['service'] == 'remote job').sum()
print(f"Кількість записів із 'link'
                                    у навчальному наборі: {service link}")
print(f"Кількість записів із 'SH'
                                    у навчальному наборі: {flag SH}")
print(f''Кількість записів із 'RSTOS0'
                                       у навчальному наборі: {flag RSTOS0}")
print(f"Кількість
                   записів
                              <u>i</u>3
                                   'remote job'
                                                      тестовому
                                                                          наборі:
                                                  У
{service_remote_job}")
### Видаляємо дані
Тренувальний датасет містить більше 58 тис. даних, а тестовий датасет 19 тис.
Тому видалення такої кількості даних не повинно сильно вплинути на результати
досліджень
train_data = train_data[(train_data['service'] != 'link') &
```

```
test data = test data[(test data['service'] != 'remote job')]
### Перевіримо чи зараз співпадають назви та кількість колонок
# Розділення 'attack' від інших змінних
attacks_train = train_data[['attack']]
attacks_test = test_data[['attack']]
# Видалення 'attack' з оригінального набору даних
train data = train data.drop(columns=['attack'])
test data = test data.drop(columns=['attack'])
# Перекодування за допомогою pd.get dummies() для інших змінних
filtered_train_data = pd.get_dummies(train_data, drop_first=True)
filtered_test_data = pd.get_dummies(test_data, drop_first=True)
# Додавання нового стовпця 'attack guess passwd'
filtered_train_data['attack_guess_passwd'] = attacks_train['attack'].map(lambda x: 1.0
if x == 'guess_passwd' else 0.0)
filtered_test_data['attack_guess_passwd'] = attacks_test['attack'].map(lambda x: 1.0 if
x == 'guess_passwd' else 0.0)
print(f'Колонок y \'filtered_train_data\': {filtered_train_data.shape[1]}')
print(f'Колонок y \'filtered_test_data\': {filtered_test_data.shape[1]}')
# Отримання назв колонок для обох датафреймів
columns train = set(filtered train data.columns)
columns test = set(filtered test data.columns)
```

(train_data['flag'] != 'SH') &

(train_data['flag'] != 'RSTOS0')]

```
# Знаходження спільних назв колонок
common_columns = columns_train.intersection(columns_test)
# Виведення назв та кількості спільних колонок
print(fКількість спільних колонок: \t {len(common_columns)}')
### Для коректної роботи НМ треба нормалізувати дані
scaler = MinMaxScaler()
new_columns = filtered_train_data.columns
filtered_train_data[new_columns]
                                                                               =
scaler.fit_transform(filtered_train_data[new_columns])
filtered test data[new columns] = scaler.transform(filtered test data[new columns])
### Створюємо клас ймовірнісної нейронної мережі (PNN)
class PNN:
  def __init__(self, input_size, output_size):
    self.input_size = input_size
    self.output_size = output_size
    self.mean vectors = None
    self.sigma = None
    self.weights = None
  def train(self, X, y, sigma=1.0):
    self.mean_vectors = []
    self.sigma = sigma
    # Обчислюємо середні вектори для кожного класу
```

```
for class_label in range(self.output_size):
       class\_samples = X[y == class\_label]
       mean_vector = np.mean(class_samples, axis=0)
       self.mean_vectors.append(mean_vector)
     self.mean_vectors = np.array(self.mean_vectors)
     # Обчислюємо ваги для кожного класу
    self.weights = np.ones(self.output_size) / self.output_size
  def predict(self, X):
     predictions = []
     for sample in X:
       probabilities = []
       # Розраховуємо ймовірності для кожного класу
       for class_label in range(self.output_size):
          mean_vector = self.mean_vectors[class_label]
         sample = sample.astype(float)
         activation = np.exp(-0.5 * np.sum((sample - mean\_vector) ** 2) / (self.sigma)
** 2))
         probability = activation * self.weights[class_label]
         probabilities.append(probability)
       # Визначаємо клас з найвищою ймовірністю
       predicted_class = np.argmax(probabilities)
```

predictions.append(predicted_class)

```
return np.array(predictions)
### Розділимо датафрейми 'filtered train data' та 'filtered test data' на X train,
X_test, y_train, y_test
X train = filtered train data.drop(columns=['attack guess passwd'])
y train = filtered train data['attack guess passwd']
X_test = filtered_test_data.drop(columns=['attack_guess_passwd'])
y_test = filtered_test_data['attack_guess_passwd']
### Ініціалізуємо модель PNN
input_size = train_data.shape[1]
output size = 2 # розмірність вихідного шару (два класи: guess passwd та normal)
pnn = PNN(input_size, output_size)
### Навчання PNN
pnn.train(X_train, y_train, sigma=1.0)
### Використання PNN
predictions = pnn.predict(X test.values)
### Знайдемо метрики, щоб зрозуміти наскільки хороших результатів було
досягнуто
y_true = y_test
accuracy = accuracy_score(y_true, predictions)
precision = precision_score(y_true, predictions)
recall = recall_score(y_true, predictions)
f1 = f1_score(y_true, predictions)
print(f"Accuracy (Точність): {round(accuracy * 100, 5)} %")
print(f"Precision (Точність): {round(precision * 100, 5)} %")
```