

MULTI-INSTANCE GPUs IN CONTAINERS AND KUBERNETES

Kevin Klues kklues@nvidia.com


```
apiVersion: v1
kind: Pod
metadata:
 name: gpu-example
spec:
  containers:
    - name: gpu-example
      image: nvidia/cuda
      resources:
        limits:
          nvidia.com/gpu: 4
 nodeSelector:
    nvidia.com/gpu.product: A100-PCIE-40GB
    nvidia.com/cuda.runtime: 11.0
    nvidia.com/cuda.driver: 450.51.06
```



```
apiVersion: v1
kind: Pod
metadata:
 name: gpu-example
spec:
  containers:
    - name: gpu-example
      image: nvidia/cuda
      resources:
        limits:
      nvidia.com/gpu: 4
 nodeSelector:
    nvidia.com/gpu.product: A100-PCIE-40GB
    nvidia.com/cuda.runtime: 11.0
    nvidia.com/cuda.driver: 450.51.06
```



```
apiVersion: v1
kind: Pod
metadata:
 name: gpu-example
spec:
  containers:
    - name: gpu-example
      image: nvidia/cuda
      resources:
        limits:
         nvidia.com/gpu: 4
 nodeSelector:
    nvidia.com/gpu.product: A100-PCIE-40GB
   nvidia.com/cuda.runtime: 11.0
   nvidia.com/cuda.driver: 450.51.06
```


Slices of a full GPU with dedicated memory and compute resources

Slices of a full GPU with dedicated memory and compute resources

Slices of a full GPU with dedicated memory and compute resources

Create multiple "GPU Instances" on a single GPU: Dedicated SM, Memory, L2 cache, Bandwidth for hardware QoS & isolation

Slices of a full GPU with dedicated memory and compute resources

Create multiple "GPU Instances" on a single GPU: Dedicated SM, Memory, L2 cache, Bandwidth for hardware QoS & isolation

Simultaneous Workload Execution With Guaranteed Quality Of Service:

All GPU instances run in parallel with predictable throughput & latency

Slices of a full GPU with dedicated memory and compute resources

Create multiple "GPU Instances" on a single GPU: Dedicated SM, Memory, L2 cache, Bandwidth for hardware QoS & isolation

Simultaneous Workload Execution With Guaranteed Quality Of Service:

All GPU instances run in parallel with predictable throughput & latency

Right Sized GPU Allocation:

Different sized GPU instances based on target workloads

Slices of a full GPU with dedicated memory and compute resources

Create multiple "GPU Instances" on a single GPU:

Dedicated SM, Memory, L2 cache, Bandwidth for hardware QoS & isolation

Simultaneous Workload Execution With Guaranteed Quality Of Service:

All GPU instances run in parallel with predictable throughput & latency

Right Sized GPU Allocation:

Different sized GPU instances based on target workloads

Diverse Deployment Environments:

Supported with Bare metal, Container and Virtualized Env.

OUTLINE

- Multi-Instance GPUs (MIG)
- GPUs and Containers
- GPUs and Kubernetes
- MIG in Containers
- MIG in Kubernetes
- System-Level Interface for MIG
- Best-Practices for Provisioning MIG
- Putting it all together Demo

Use Cases

Use Cases

Use Cases

Single User → Multiple Apps

E.g. Multiple inference jobs

Use Cases

Single User → Multiple Apps

Single Tenant → Multi-User

App App App

Aloo

E.g. Multiple inference jobs

E.g. Jupyter notebooks for model exploration

Use Cases

Single User → Multiple Apps

E.g. Multiple inference jobs

Single Tenant → Multi-User

E.g. Jupyter notebooks for model exploration

Multi-Tenant → Multi-User

E.g. Managed Cloud Services

Relative Performance

BERT Large Inference Throughput

Relative Performance

BERT Large Inference Throughput

Relative Performance

BERT Large Inference Throughput

GPU Instances, Compute Instances, and MIG Devices

5GB	5GB	5GB	5GB	5GB	5GB	5GB	5GB
	1 compute						

NVIDIA A100 (40GB)

GPU Instances, Compute Instances, and MIG Devices

GPU Instances, Compute Instances, and MIG Devices

NVIDIA A100 (40GB)

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

10GB	10GB	10GB	10GB	10GB	10GB	10GB	10GB
	1 compute						

NVIDIA A100 (80GB)

8 x 10GB Memory Slices

7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

6GB	6GB	6GB	6GB
1 compute	1 compute	1 compute	1 compute

NVIDIA A30 (24GB)

4 x 6GB Memory Slices

4 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

5GB	5GB	5GB	5GB	5GB	5GB	5GB	5GB
	1 compute						

NVIDIA A100 (40GB)

8 x 5GB Memory Slices

7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

NVIDIA A100 (40GB)

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

5GB	5GB	5GB	5GB	5GB	5GB	5GB	5GB	
	1g.5gb	 GPU Instance Fixed partition of memory and compute Fixed amount of "other" GPU Engines (depending on size) 						
	1 compute	1 compute	1 compute	1 compute	1 compute	1 compute	1 compute	

NVIDIA A100 (40GB)

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

5GB	5GB	5GB	5GB	5GB	5GB	5GB	5GB
	1 compute						

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

5GB	5GB	5GB	5GB	5GB	5GB	5GB	5GB
	1 compute	1 compute					

- 8 x 5GB Memory Slices
- 7 Compute Slices

GPU Instances, Compute Instances, and MIG Devices

7g.40gb

• 1 x 7g.40gb

		1 x 7g.40gb or				
3g.2	3g.20gb 3g.20gb					
2g.10gb 2g.10gb		2g.10gb			or 3 x 2g.10gb	

7g.40gb								
3g.20gb				3g.20gb				
2g.10gb 2g.10gb		2g.10gb						
1g.5gb	1g.5gb	1g.5gb	1g.5gb	1g.5gb	1g.5gb	1g.5gb		

- 1 x 7g.40gb or
- 2 x 3g.20gbor
- 3 x 2g.10gb or
- 7 x 1g.5gb

7g.40gb									
3g.20gb				3g.20gb					
2g.10gb		2g.1	2g.10gb		2g.10gb				
1g.5gb	1g.5gb	1g.5gb	1g.5gb	1g.5gb	1g.5gb	1g.5gb			

- 1 x 3g.20gband
- 1 x 2g.10gb and
- 2 x 1g.5gb

- 1 x 3g.20gb and
- 2 x 2g.10gb

7g.40gb								
	3g.2	20gb		3g.20gb				
2g.10gb		2g.10gb		2g.10gb				
1g.5gb	1g.5gb	1g.5gb	1g.5gb	1g.5gb	1g.5gb	1g.5gb		

- 2 x 2g.10gband
- 3 x 1g.5gb

- 1 x 3g.30gb and
- 2 x 2g.10gb and
- $3 \times 1g.5gb$

- 2 x 2g.10gb and
- 7 x 1g.5gb

GPU Instances, Compute Instances, and MIG Devices

2 x 2g.10gband

7 x 1g.5gb

No Overlapping Verticals

GPUs AND CONTAINERS

The NVIDIA Container Toolkit

GPUs AND CONTAINERS

The NVIDIA Container Toolkit

nvidia kernel-driver (v1)
Linux Kernel

nvidia kernel-driver (v2) Linux Kernel

GPUs AND CONTAINERS

The NVIDIA Container Toolkit

The NVIDIA Container Toolkit

nvidia kernel-driver (v1)
Linux Kernel


```
$ docker run \
    --gpus '"device=0,1"' \
    nvidia/cuda:11.1-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
```

```
$ docker run \
    --gpus '"device=0,1"' \
    nvidia/cuda:11.1-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
```

- nvidia-docker
- nvidia-container-runtime
- nvidia-container-toolkit
- libnvidia-container


```
$ docker run \
  --gpus '"device=0,1"' \
 nvidia/cuda:11.1-base nvidia-smi -L
GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
```

- nvidia-docker
- nvidia-container-runtime
- nvidia-container-toolkit
- libnvidia-container


```
$ docker run \
    --gpus '"device=0,1"' \
    nvidia/cuda:11.1-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
```

- nvidia-docker
- nvidia-container-runtime
- nvidia-container-toolkit
- libnvidia-container


```
$ docker run \
    --gpus '"device=0,1"' \
    nvidia/cuda:11.1-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
```

- nvidia-docker
- nvidia-container-runtime
- nvidia-container-toolkit
- libnvidia-container


```
$ docker run \
  --gpus '"device=0,1"' \
 nvidia/cuda:11.1-base nvidia-smi -L
GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
```

- nvidia-docker
- nvidia-container-runtime
- nvidia-container-toolkit
- libnvidia-container

The NVIDIA Container Toolkit

```
$ docker run \
  --gpus '"device=0,1"' \
 nvidia/cuda:11.1-base nvidia-smi -L
GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
```

- nvidia-docker
- nvidia-container-runtime
- nvidia-container-toolkit

```
libnvidia-container
```

Majority of code for MIG support in containers added here v1.3.0+


```
$ cat /etc/docker/daemon.json
    "default-runtime": "nvidia",
   "runtimes": {
        "nvidia": {
          "path": "/usr/bin/nvidia-container-runtime",
          "runtimeArgs": []
```



```
$ cat /etc/containerd/config.toml
[plugins]
  [plugins."io.containerd.grpc.v1.cri"]
    [plugins."io.containerd.grpc.v1.cri".containerd]
     default_runtime_name = "nvidia"
      [plugins."io.containerd.grpc.v1.cri".containerd.runtimes]
        [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.nvidia]
          privileged without host devices = false
          runtime engine = ""
          runtime root = ""
          runtime type = "io.containerd.runc.v2"
          [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.nvidia.options]
            BinaryName = "/usr/bin/nvidia-container-runtime"
```



```
$ cat /usr/share/containers/oci/hooks.d/oci-nvidia-hook.json
    "version": "1.0.0",
    "hook": {
       "path": "/usr/bin/nvidia-container-toolkit",
        "args": ["nvidia-container-toolkit", "prestart"]
   },
    "when": {
        "always": true,
        "commands": [".*"]
    "stages": ["prestart"]
```



```
apiVersion: v1
kind: Pod
metadata:
 name: gpu-example
spec:
  containers:
    - name: gpu-example
      image: nvidia/cuda
      resources:
        limits:
      nvidia.com/gpu: 4
 nodeSelector:
    nvidia.com/gpu.product: A100-PCIE-40GB
    nvidia.com/cuda.runtime: 11.0
    nvidia.com/cuda.driver: 450.51.06
```

- k8s-device-plugin
- gpu-feature-discovery


```
apiVersion: v1
kind: Pod
metadata:
 name: gpu-example
spec:
  containers:
    - name: gpu-example
      image: nvidia/cuda
      resources:
        limits:
         nvidia.com/gpu: 4
 nodeSelector:
    nvidia.com/gpu.product: A100-PCIE-40GB
   nvidia.com/cuda.runtime: 11.0
   nvidia.com/cuda.driver: 450.51.06
```

- k8s-device-plugin
- gpu-feature-discovery


```
$ docker run \
    --gpus '"device=0,1"' \
    nvidia/cuda:11.1-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
```

```
$ docker run \
    --gpus '"device=0,1"' \
    nvidia/cuda:11.1-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
```

```
$ docker run \
    --gpus '"device=0:0,0:1,1:0,1:1"' \
    nvidia/cuda:11.1-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
    MIG 1g.5gb Device 0: (UUID: MIG-GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa/3/0)
    MIG 1g.5gb Device 1: (UUID: MIG-GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa/4/0)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
    MIG 1g.5gb Device 0: (UUID: MIG-GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125/3/0)
    MIG 1g.5gb Device 1: (UUID: MIG-GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125/4/0)
```

```
$ docker run \
    --gpus '"device=0,1"' \
    nvidia/cuda:11.1-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
```

```
$ docker run \
    --gpus '"device=0:0,0:1,1:8,1:1" \
    nvidia/cuda:11.1-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
    MIG 1g.5gb Device 0: (UUID: MIG-GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa/3/0)
    MIG 1g.5gb Device 1: (UUID: MIG-GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa/4/0)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
    MIG 1g.5gb Device 0: (UUID: MIG-GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125/3/0)
    MIG 1g.5gb Device 1: (UUID: MIG-GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125/4/0)
```

```
$ docker run \
    --gpus '"device=0,1"' \
    nvidia/cuda:11.1-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
```

```
$ docker run \
    --gpus '"device=0:0,0:1<1:0,MIG-GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125/4/0"'\
    nvidia/cuda:11.1-base nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa)
    MIG 1g.5gb Device 0: (UUID: MIG-GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa/3/0)
    MIG 1g.5gb Device 1: (UUID: MIG-GPU-238f350c-0ed9-09cf-9945-fc0649ef02aa/4/0)
GPU 1: A100-SXM4-40GB (UUID: GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125)
    MIG 1g.5gb Device 0: (UUID: MIG-GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125/3/0)
    MIG 1g.5gb Device 1: (UUID: MIG-GPU-dc36c15c-b7f1-cf33-f79a-bd01c0de7125/4/0)</pre>
```

```
apiVersion: v1
kind: Pod
metadata:
  name: gpu-example
spec:
  containers:
    - name: gpu-example
      image: nvidia/cuda
      resources:
        limits:
         nvidia.com/gpu: 1
  nodeSelector:
    nvidia.com/gpu.product: A100-PCIE-40GB
```

```
apiVersion: v1
kind: Pod
metadata:
  name: gpu-example
spec:
  containers:
    - name: gpu-example
      image: nvidia/cuda
      resources:
        limits:
          nvidia.com/gpu: 1
  nodeSelector:
    nvidia.com/gpu.product: A100-PCIE-40GB
```

```
apiVersion: v1
kind: Pod
metadata:
 name: gpu-example
spec:
  containers:
    - name: gpu-example
      image: nvidia/cuda
      resources:
       limits:
      nvidia.com/mig-1g.5gb: 1
  nodeSelector:
    nvidia.com/gpu.product: A100-PCIE-40GB
```

```
apiVersion: v1
kind: Pod
metadata:
  name: gpu-example
spec:
  containers:
    - name: gpu-example
      image: nvidia/cuda
      resources:
        limits:
          nvidia.com/gpu: 1
  nodeSelector:
    nvidia.com/gpu.product: A100-PCIE-40GB
```

```
apiVersion: v1
kind: Pod
metadata:
 name: gpu-example
spec:
  containers:
    - name: gpu-example
      image: nvidia/cuda
      resources:
                            Mixed Strategy
       limits:
      nvidia.com/mig-1g.5gb: 1
  nodeSelector:
    nvidia.com/gpu.product: A100-PCIE-40GB
```



```
apiVersion: v1
kind: Pod
metadata:
 name: gpu-example
spec:
  containers:
    - name: gpu-example
      image: nvidia/cuda
                             Mixed Strategy
      resources:
        limits:
          nvidia.com/mig-1g.5gb: 1
         nvidia.com/mig-2g.10gb: 1
          nvidia.com/mig-3g.20gb: 1
         nvidia.com/gpu:
  nodeSelector:
    nvidia.com/gpu.product: A100-PCIE-40GB
```

Allocate MIG Devices to pods in a Kubernetes Cluster

DGX-A100


```
apiVersion: v1
kind: Pod
metadata:
 name: gpu-example
spec:
  containers:
    - name: gpu-example
      image: nvidia/cuda
      resources:
                              Single Strategy
        limits:
         nvidia.com/gpu: 1
  nodeSelector:
    nvidia.com/gpu.product: A100-PCIE-40GB(MIG 1g.5g
```

Allocate MIG Devices to pods in a Kubernetes Cluster

NVIDIA Container Toolkit

nvidia-docker	v2.5.0+
IIVIUIA-UUCKEI	VZ.J.0T

nvidia-container-runtime v3.4.2+

nvidia-container-toolkit v1.4.2+

libnvidia-container v1.3.3+

Kubernetes

k8s-device-plugin v0.8.2+

gpu-feature-discovery v0.4.1+

Injecting GPUs and MIG devices into a container

Injecting GPUs and MIG devices into a container

For full GPUs:

```
Inject all of:
      /dev
          nvidiactl
          nvidia-modeset
          nvidia-uvm
          nvidia-uvm-tools
Selectively inject for isolation:
      /dev
      — nvidia0
         - nvidia1
      L—— nvidia2
```

Injecting GPUs and MIG devices into a container

For full GPUs:

```
Inject all of:
      /dev
          nvidiactl
          nvidia-modeset
          nvidia-uvm
          nvidia-uvm-tools
Selectively inject for isolation:
      /dev
         - nvidia0
         - nvidia1
      L—— nvidia2
```

```
Limit /proc view of:
     /proc/driver/nvidia/gpus
         - 0000:07:00.0
          0000:0f:00.0
          0000:47:00.0
Folders represent PCIeBusID of each full
GPU whose device node is injected
```


Injecting GPUs and MIG devices into a container

For MIG devices:

```
Inject all of:
      /dev
           nvidiactl
           nvidia-modeset
           nvidia-uvm
           nvidia-uvm-tools
Selectively inject for isolation:
      /dev
           nvidia0
           nvidia-caps
               nvidia-cap16
```

Injecting GPUs and MIG devices into a container

For MIG devices:

```
Inject all of:
      /dev
           nvidiactl
           nvidia-modeset
           nvidia-uvm
           nvidia-uvm-tools
Selectively inject for isolation:
      /dev
           nvidia0
                                  MIG Device
           nvidia-cans
                                 <GPU, GI, CI>
```

nvidia-capabilities

Set of nvidia-capabilities in /proc

nvidia-capabilities

Set of nvidia-capabilities in /proc

/proc/driver nvidia capabilities — gpu0 — mig access ci0 access access

nvidia-capabilities

Set of nvidia-capabilities in /proc

```
/proc/driver
    nvidia
         capabilities
                          access
                          access
                          ci0
                             - access
```

```
$ nvidia-smi -L
GPU 0: A100-SXM4-40GB (UUID: GPU-...)
 MIG 1g.5gb Device 0: (UUID: MIG-GPU-...)
```


nvidia-capabilities

Set of nvidia-capabilities in /proc

```
/proc/driver
    nvidia
        capabilities
                            access
                         access
                        ci0
                          — access
```

```
$ nvidia-smi -L
GPU 0: A100-SXM4-40GB (UUID: GPU-...)
 MIG 1g.5gb Device 0: (UUID: MIG-GPU-...)
$ cat /proc/.../gpu0/mig/gi0/access
DeviceFileMinor: 15
```

SYSTEM LEVEL INTERFACE FOR MIG

nvidia-capabilities

Set of nvidia-capabilities in /proc

```
/proc/driver
    nvidia
        capabilities
                          access
                     gi1
                         access
                         ci0
                           — access
```

Point to /dev/nvidia-caps for access control

```
$ nvidia-smi -L
GPU 0: A100-SXM4-40GB (UUID: GPU-...)
 MIG 1g.5gb Device 0: (UUID: MIG-GPU-...)
$ cat /proc/.../gpu0/mig/gi0/access
DeviceFileMinor: 15
$ cat /proc/.../gpu0/mig/gi0/ci0/access
DeviceFileMinor: 16
```


SYSTEM LEVEL INTERFACE FOR MIG

nvidia-capabilities

Set of nvidia-capabilities in /proc

```
/proc/driver
   - nvidia
      - capabilities
                        access
                           access
                    gi1
                        access
                      — ci0
                        L— access
```

Point to /dev/nvidia-caps for access control

```
$ nvidia-smi -L
GPU 0: A100-SXM4-40GB (UUID: GPU-...)
 MIG 1g.5gb Device 0: (UUID: MIG-GPU-...)
$ cat /proc/.../gpu0/mig/gi0/access
DeviceFileMinor: 15
$ cat /proc/.../gpu0/mig/gi0/ci0/access
DeviceFileMinor: 16
$ ls /dev/nvidia-caps
cr----- 1 root root 238, 1/2 nvidia-cap15
cr--r-- 1 root root 238, 15 nvidia-cap16
```


SYSTEM LEVEL INTERFACE FOR MIG

Limiting the view of /proc/driver/nvidia/capabilities

For MIG devices:

```
Additionally limit /proc view of:
      /proc/driver/nvidia/capabilities
          gpu0
                    access
Access files point to nvidia-caps whose
devices nodes are injected
```

How do I create a MIG Device in the first place?

How do I create a MIG Device in the first place?

Two distinct workflows when configuring a GPU for use with MIG

- Enabling MIG mode on a GPU in the first place
- Configuring MIG devices on a GPU that is already in MIG mode

```
# Enable MIG mode
nvidia-smi -mig 1
# Create 7 x 1g.5gb MIG devices
nvidia-smi mig -cgi 19,19,19,19,19,19 -C
```

How do I create a MIG Device in the first place?

Enabling MIG mode on a GPU

- Complete all running GPU workloads
- Disconnect all driver clients from the GPU
- Enable MIG mode on the GPU
- Perform a GPU reset

Challenges:

- Hard to enumerate all driver clients and reconnect them after the reset
- Requires a full node reboot under GPU pass-through virtualization

How do I create a MIG Device in the first place?

Enabling MIG mode on a GPU

- Complete all running GPU workloads
- Disconnect all driver clients from the GPU
- Enable MIG mode on the GPU
- Perform a GPU reset

Very Heavy-weight operation

Should be done very infrequently

Challenges:

- Hard to enumerate all driver clients and reconnect them after the reset
- Requires a full node reboot under GPU pass-through virtualization

How do I create a MIG Device in the first place?

Configuring MIG devices on a GPU

- Complete all running GPU workloads
- Perform device reconfiguration

Challenges:

- The order in which MIG devices are created matters
- Need to restart any components caching previous MIG device state
- Does not persist configuration across a GPU reset (or a node reboot)
- Hard to manage MIG device state across a cluster of machines

https://github.com/NVIDIA/mig-parted

https://github.com/NVIDIA/mig-parted

```
version: v1
mig-configs:
  all-1g.5gb:
    - devices: all
      mig-enabled: true
     mig-devices:
        "1g.5gb": 7
  all-2g.10gb:
    - devices: all
      mig-enabled: true
      mig-devices:
        "2g.10gb": 3
  all-3g.20gb:
    - devices: all
      mig-enabled: true
      mig-devices:
        "3g.20gb": 2
```

Declaratively define the set of possible MIG partitions you want to create on GPUs throughout your cluster

https://github.com/NVIDIA/mig-parted

```
version: v1
mig-configs:
  all-1g.5gb:
    - devices: all
      mig-enabled: true
      mig-devices:
        "1g.5gb": 7
  all-2g.10gb:
    - devices: all
      mig-enabled: true
      mig-devices:
        "2g.10gb": 3
  all-3g.20gb:
    - devices: all
      mig-enabled: true
      mig-devices:
        "3g.20gb": 2
```

- Declaratively define the set of possible MIG partitions you want to create on GPUs throughout your cluster
- Make this file available to all of their nodes (as an actual file or a configMap)

https://github.com/NVIDIA/mig-parted

```
version: v1
mig-configs:
  all-1g.5gb:
    - devices: all
      mig-enabled: true
      mig-devices:
        "1g.5gb": 7
   ll-2g.10gb:
    - devices: all
     mig-enabled: true
     mig-devices:
        "2g.10gb":
  all-3g.20gb:
    - devices: all
      mig-enabled: true
      mig-devices:
        "3g.20gb": 2
```

- Declaratively define the set of possible MIG partitions you want to create on GPUs throughout your cluster
- Make this file available to all of their nodes (as an actual file or a configMap)
- Use nvidia-mig-parted to apply one of these configurations on a given node

```
$ nvidia-mig-parted apply -f config.yaml -c all-2g.10gb
```

https://github.com/NVIDIA/mig-parted

```
version: v1
mig-configs:
  all-1g.5gb:
    - devices: all
      mig-enabled: true
      mig-devices:
        "1g.5gb": 7
   ll-2g.10gb:
    - devices: all
     mig-enabled: true
     mig-devices:
        "2g.10gb":
  all-3g.20gb:
    - devices: all
      mig-enabled: true
      mig-devices:
        "3g.20gb": 2
```

systemd service wrapper

- Persists MIG configurations across node reboots
- Applies MIG mode changes without the NVIDIA driver loaded
- Automatically handles start/stop of GPU clients across configuration https://github.com/NVIDIA/mig-parted/tree/master/deployments/systemd

https://github.com/NVIDIA/mig-parted

```
version: v1
mig-configs:
  all-1g.5gb:
    - devices: all
      mig-enabled: true
      mig-devices:
        "1g.5gb": 7
    1-2g.10gb:
    - devices: all
     mig-enabled: true
     mig-devices:
        "2g.10gb":
  all-3g.20gb:
    - devices: all
      mig-enabled: true
      mig-devices:
        "3g.20gb": 2
```

systemd service wrapper

- Persists MIG configurations across node reboots
- Applies MIG mode changes without the NVIDIA driver loaded
- Automatically handles start/stop of GPU clients across configuration <u>https://github.com/NVIDIA/mig-parted/tree/master/deployments/systemd</u>

kubernetes service wrapper (coming soon)

- Provides similar functionality as the systemd service wrapper
- But integrated as a Kubernetes service instead
- Will become part of the GPU Operator

PUTTING IT ALL TOGETHER

Demo

- 1. Show full GPUs
- 2. Run mig-parted
- 3. Show mixed strategy
- 4. Show single strategy

```
kubecon-demo:~# cat /etc/nvidia-mig-manager/config.yaml
version: v1
mig-configs:
 all-disabled:
    - devices: all
     mig-enabled: false
 all-1g.5gb:
    - devices: all
     mig-enabled: true
     mig-devices:
        "1g.5gb": 7
  all-2g.10gb:
    - devices: all
     mig-enabled: true
     mig-devices:
       "2g.10gb": 3
  all-3g.20gb:
   - devices: all
     mig-enabled: true
     mig-devices:
        "3g.20gb": 2
 all-balanced:
    - devices: all
     mig-enabled: true
     mig-devices:
        "1g.5gb": 2
```

SUMMARY AND CONCLUSION

https://docs.nvidia.com/datacenter/cloud-native/kubernetes/mig-k8s.html

- MIG provides hardware support for sharing GPUs
- Support exists in both standalone containers and Kubernetes
- The nvidia-mig-parted tool simplifies partitioning MIG on a node

Integrated support on EKS, GKE, and AKS coming very soon

