Teste para processo seletivo - Lopes

Luiz Guilherme Monteiro

Igmonteiro7@gmail.com

Sumário

- 1 Análise inicial e tratamento dos dados
- 2 Correlação entre as variáveis (básico)
- 3 Modelo inicial de regressão logística
- 4 Multilayer Perceptron básico
- 5 Análise Aprofundada
- 6 Modelo Final (Transfer Learning Ensemble)
- 7 Conclusões

1. Análise inicial e tratamento dos dados

1.1. Análise geral de qualidade dos dados

Não existem indivíduos com dados faltantes e a maioria das colunas possuem tipos compatíveis com os dados.

Duas características chamam a atenção:

- * alcohol que deveria ser um valor numérico apresenta tipo object;
- * quality é um valor discreto, não existe nota 5.5, por exemplo;

```
In [1]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        sns.set(style="whitegrid")
        plt.style.use('ggplot')
        raw_df = pd.read_csv('./data/raw/winequality.csv', sep = ';')
        raw_df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 6497 entries, 0 to 6496
        Data columns (total 13 columns):
                                    Non-Null Count Dtype
         #
             Column
         0
             type
                                    6497 non-null
                                                    object
         1
             fixed acidity
                                    6497 non-null
                                                    float64
         2
             volatile acidity
                                    6497 non-null
                                                    float64
                                                     float64
         3
             citric acid
                                    6497 non-null
             residual sugar
                                    6497 non-null
                                                     float64
         5
                                    6497 non-null
                                                     float64
             chlorides
         6
             free sulfur dioxide
                                    6497 non-null
                                                     float64
         7
             total sulfur dioxide 6497 non-null
                                                    float64
         8
                                    6497 non-null
                                                    float64
             density
         q
                                    6497 non-null
                                                    float64
             рΗ
         10
             sulphates
                                    6497 non-null
                                                    float64
         11
             alcohol
                                    6497 non-null
                                                    object
         12
             quality
                                    6497 non-null
                                                     int64
        dtypes: float64(10), int64(1), object(2)
        memory usage: 660.0+ KB
```

1.1. Explorando a coluna alcohol

É importante entender qual é o motivo que levou a coluna alcohol a ser identificada como object.

Uma simples verificação do set de valores já clarifica algumas questões:

Claramente existem valores com formatação errada, tais como 923.333.333.333.333 e 113.666.666.667.

Antes de tentarmos fazer um trabalho mais complexo para tentar corrigir esses valores, vamos verificar qual é a proporção dos dados com problema:

```
In [3]: error_count = sum(map(lambda x: 1 if x.count('.')>1 else 0, raw_df.alcohol.va
lues))
print('proporção de individuos com problema na coluna alcohol: %f' % (error_c
ount/len(raw_df)))
```

proporção de individuos com problema na coluna alcohol: 0.006157

Podemos fazer duas considerações:

- 1. Os dados com problema aparentemente estão dentro da faixa comum para os valores de alcohol se considerarmos os primeiros algarismos;
- 2. É uma suposição e, devemos levar em consideração a baixíssima proporção e possibilidade de introdução de ruído.

Vamos removê-los a princípio, mas não será descartada a possibilidade de voltar e estudar melhor esse problema:

```
In [4]: treated df = raw df
          treated df.alcohol = pd.to numeric(raw df.alcohol, errors='coerce')
          treated df.alcohol.unique()
          treated_df = treated_df.dropna()
          treated_df.alcohol.unique()
Out[4]: array([ 8.8 , 9.5 , 10.1 , 9.9 , 9.6 , 11. , 12. 12.4 , 11.4 , 12.8 , 11.3 , 10.5 , 9.3 , 10.
                                                                               9.7 , 10.8 ,
                                                                           , 10.4 , 11.6 ,
                  12.3 , 10.2 , 9. , 11.2 , 8.6 , 9.4 , 9.1 , 8.9 , 10.3 , 12.6 , 10.7 , 12.7 ,
                                                                      9.8 , 11.7 , 10.9 ,
                                                                      10.6 ,
                                                                               9.2 ,
                  11.5 , 11.8 , 12.1 , 11.1 ,
                                                     8.5 , 12.5 , 11.9 , 12.2 , 12.9 ,
                  13.9 , 14. , 13.5 , 13.3 , 13.2 , 13.7 , 13.4 , 13. , 8. , 13.1 , 13.6 , 8.4 , 14.2 , 11.94, 10.98, 11.05, 9.75, 11.35,
                   9.55, 10.55, 11.45, 14.05, 12.75, 13.8 , 12.15, 13.05, 11.75,
                  10.65, 10.15, 12.25, 11.85, 11.65, 13.55, 11.95, 11.55, 12.05,
                  14.9 , 9.95, 9.25, 9.05, 10.75])
```

1.2. Explorando a coluna type

Vale também verificar a outra variável com tipo não numérico, procurando algo fora do comum:

In [5]: #Vamos ver se os tipos de vinho tem alguma sujeira
sns.countplot(x=treated_df["type"])

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbab4367670>

Não há problemas com os tipos, apenas desbalanceamento. Existe a possibilidade de tratar esse problema mais à frente no treino do modelo, se for uma feature importante para o aprendizado.

1.3. Análise da qualidade dos dados nas colunas numéricas

In [6]: raw_df.describe()

Out[6]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	
count	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497.000000	6497
mean	7.215307	0.339666	0.318633	5.443235	0.056034	30.525319	115.744574	1
std	1.296434	0.164636	0.145318	4.757804	0.035034	17.749400	56.521855	7
min	3.800000	0.080000	0.000000	0.600000	0.009000	1.000000	6.000000	0
25%	6.400000	0.230000	0.250000	1.800000	0.038000	17.000000	77.000000	0
50%	7.000000	0.290000	0.310000	3.000000	0.047000	29.000000	118.000000	0
75%	7.700000	0.400000	0.390000	8.100000	0.065000	41.000000	156.000000	0
max	15.900000	1.580000	1.660000	65.800000	0.611000	289.000000	440.000000	103
4								•

Avaliando as informações, nota-se um desvio incompatível com o desvio padrão dos quartis de algumas colunas se olharmos para os valores máximos e mínimos e seus desvios padrão, o que indica **presença de outliers**.

Um boxplot ou violinplot com os dados normalizados podem ajudar a visualizar melhor esse problema:

```
In [7]: from sklearn.preprocessing import StandardScaler
    cols_to_norm = [x for x in treated_df.columns if x not in ['type','quality']]
    norm_df = treated_df.iloc[:,1:12]
    norm_df[cols_to_norm] = StandardScaler().fit_transform(treated_df[cols_to_norm])
    sns.boxplot(data=norm_df)
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7fba6fd74be0>

fixed/alaitiiley aitiviletsii diulal efdeyeishellfair solibhuideleonsiidye pHsulphatalesohol

Vemos claramente a presença de valores muito destoantes dos valores médios encontrados em cada coluna Temos algumas formas de remover esses pontos, por exemplo:

- Inter Quartile Range (IQR)
- Z-value
- · Tukey Fences

Para essa análise, será usado o método do z-value, pois assim tenho mais controle sobre a remoção dos outliers. Temos que levar em consideração que nosso dataset não é muito grande e que podemos lidar com outliers não muito destoantes da média de outras formas, como será visto mais a frente.

Temos para o z-value a seguinte equação:

$$z = rac{x - \mu}{\sigma}$$

Onde:

- x é o ponto
- μ é a média
- σ é o desvio padrão

Dessa forma posso controlar o valor do z-score para que seja mais ou menos agressivo

```
In [8]: from scipy import stats
   import numpy as np
   z = np.abs(stats.zscore(norm_df))
   norm_df_clean = norm_df[(z < 2.150).all(axis=1)]</pre>
```

Vemos um resultado mais equilibrado, mas não a ponto de reduzir drasticamente nossos dados

```
In [9]: sns.boxplot(data=norm_df_clean)
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7fba6f9fd700>

fixed/olaidilleyoididesidual ofdesideelfalrodideimside pHsulphatelsohol

Ajustando os dados categóricos e preparando o dataset para as análises:

```
In [10]: final_df = norm_df_clean.copy()
    final_df['type'] = raw_df.iloc[:,0]
    final_df['quality'] = raw_df.iloc[:,-1]
    final_df = final_df.replace("White", -1)
    final_df = final_df.replace("Red", 1)
    final_df = final_df[raw_df.columns]
```

2. Correlações entre as variáveis (básico)

Primeiramente vamos analisar as correlações utilizando-se o coeficiente de correlação de Pearson e o coeficiente de correlação tau de Kendall.

Sendo o coeficiente de correlação de Pearson descrito por:

$$ho = rac{ ext{cov}(X,Y)}{\sigma_x \sigma_y}$$

Onde a estimativa tem como base em r:

$$r=rac{\sum_{i=1}^n(x_i-\overline{x})(y_i-\overline{y})}{\sqrt{\sum_{i=1}^n(x_i-\overline{x})^2(y_i-\overline{y})^2}}$$

Assim, temos:

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7fba70c30df0>

Podemos ver pela matriz que os dados em sua completude tendem a dar maior importância para o alcool, sendo alcool e qualidade positivamente correlacionadas.

A acidez volátil e os cloretos tem correlação negativa com a qualidade do vinho.

Sendo tau de Kendall:

$$au=rac{c-d}{c+d}=rac{S}{\left(rac{n}{2}
ight) }=rac{2S}{n(n-1)}$$

O mesmo comportamento é esperado para tau de Kendall, porém com resultados de correlação positiva um pouco mais relaxados, uma vez que a variável de interesse apresenta distribuição muito próxima à normal.

In [12]: corr_matrix_plot('kendall')

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7fba6f7f2490>

3. Modelo inicial de regressão logística

O treinamento será realizado utilizando XGBoost e a otimização dos hiperparâmetros será feita por otimização Bayesiana.

A otimização Bayesiana é um método de otimização ótimo para encontrarmos máximos em funções com menos iterações que outros métodos, ainda mantendo certo nível de explicabilidade. A decisão de usar esse método foi feita de modo a manter essa análise com custo computacional não muito alto, mas ainda prática.

A otimização bayesiana baseia-se em dois pontos importantes:

• Função de aquisição, na forma:

$$aLCB(x;xn,yn, heta)=\mu(x;xn,yn, heta)-\kappa\sigma(x;xn,yn, heta)$$

sendo k uma constante de balancemento da exploração global e local.

• Função de covariância, definida por:

$$r2(x,x')=XDd=1(xd-x'd)2/ heta^2d$$

Assim podemos treinar um modelo com os dados e analisarmos algumas métricas para vermos o resultado básico do aprendizado:

```
In [13]: from yellowbrick.classifier import ConfusionMatrix
          from xgboost import XGBClassifier, plot_importance
         from sklearn.model_selection import train_test_split
          from sklearn.metrics import roc_auc_score
          import scipy
          from bayes_opt import BayesianOptimization
          from sklearn.metrics import classification_report
         from sklearn.metrics import accuracy_score
         X = final_df.iloc[:,0:12]
         Y = final_df.iloc[:,12]
          test size = 0.3
         X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size
          , random_state=28)
         X_{\text{test\_ensemble}} = X
         y_{\text{test_ensemble}} = Y
         def generic model(gamma, learning rate, max depth, min child weight,
                     reg_alpha, reg_lambda, subsample):
             model = XGBClassifier(gamma=gamma,
                               learning_rate=learning_rate,
                               max_depth=int(max_depth),
                               min_child_weight=min_child_weight,
                               n estimators=1000,
                               reg_alpha=reg_alpha,
                               reg lambda=reg lambda,
                               subsample=subsample,
                               seed=28,
                               nthread = 8,
                               eval_metric = 'auc')
             model.fit(X_train, y_train)
             y pred = model.predict proba(X test)
              return roc_auc_score(y_test, y_pred, average='weighted', multi_class='ov
         0')
          # Bounded region of parameter space
          pbounds = {'gamma': (0,4),}
                           'learning_rate':(0.01,0.06),
                           'max depth': (3,7),
                           'min_child_weight':(0,3),
                           'reg_alpha':(0,3),
                           'reg_lambda':(0,3),
                           'subsample':(0.5,0.9),}
         optimizer = BayesianOptimization(
              f=generic model,
             pbounds=pbounds,
              random_state=1,
         def bay_optimizer(optimizer):
             optimizer.maximize(
              init_points=5,
             n iter=20,
          #bay optimizer(optimizer)
         model = XGBClassifier(objective = 'reg:logistic',
                          gamma=0.2911,
                          learning rate=0.0302,
                          max depth=7,
                          min child weight = 0.02947,
                          reg_alpha = 1.951,
                          reg lambda=2.793,
                          n_estimators=1000,
```

/home/luiz/Documentos/processos/proc-lopes/venv/lib/python3.8/site-packages/s klearn/utils/deprecation.py:144: FutureWarning: The sklearn.metrics.classific ation module is deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.metrics. Anything that cannot be imported from sklearn.metrics is now part of the private API.

warnings.warn(message, FutureWarning)

	precision	recall	f1-score	support
3	0.00	0.00	0.00	4
4	0.60	0.20	0.31	44
5	0.67	0.68	0.67	441
6	0.65	0.74	0.69	672
7	0.60	0.53	0.56	245
8	0.85	0.40	0.54	58
9	0.00	0.00	0.00	3
accuracy			0.65	1467
macro avg	0.48	0.36	0.40	1467
weighted avg	0.65	0.65	0.64	1467

Accuracy: 65.24%

OBS: os hiperparâmetros do modelo já foram otimizados, se quiser ver o otimizador funcionando, descomente a linha 57

/home/luiz/Documentos/processos/proc-lopes/venv/lib/python3.8/site-packages/s klearn/metrics/_classification.py:1272: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samp les. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

Temos um resultado básico sobre um modelo sem feature engineering e sem maiores análises. Vamos tentar ganhar mais performance.

4. Multilayer Perceptron básico

Vamos, por curiosidade, analisar como uma rede MLP se sai com os dados sem feature engineering para compararmos com a regressão logística.

```
In [14]: from keras.models import Sequential
         from keras.layers import Dense
         from keras.wrappers.scikit_learn import KerasClassifier
         from sklearn.model_selection import cross_val_score
         from sklearn.model selection import KFold
         from keras import backend as K
         X = final_df.iloc[:,0:12]
         Y = final_df.iloc[:,12]
         def mlp():
             model = Sequential()
             model.add(Dense(12, input_dim=12, kernel_initializer='normal', activation
             model.add(Dense(128, activation='relu'))
             model.add(Dense(64, activation='relu'))
             model.add(Dense(10, activation = 'softmax'))
             model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', m
         etrics=['acc'])
             return model
         estimator = KerasClassifier(build_fn=mlp, epochs=6, batch_size=5, verbose=0)
         kfold = KFold(n_splits=6, shuffle=True)
         results = cross_val_score(estimator, X, Y, cv=kfold)
         print("Accuracy: %.2f%" % (results.max()*100))
```

Using TensorFlow backend.

Accuracy: 57.91%

5. Análise aprofundada

5.1. Verificação da existência de centróides bem definidos na amostra

Sabemos que existem diferentes tipos de vinho até agora: Tinto e Branco. Além destes, existam talvez grupos que não estão tão explícitos e que possam nos interessar.

Iniciaremos a verificação detectando possíveis formações ótimas de grupos (elbow method):

```
In [15]: from sklearn.cluster import KMeans
from yellowbrick.cluster.elbow import kelbow_visualizer

X = final_df.iloc[:,0:12]

kelbow_visualizer(KMeans(init ='k-means++', random_state=4), X, k=(1,11))
```


/home/luiz/Documentos/processos/proc-lopes/venv/lib/python3.8/site-packages/s klearn/base.py:193: FutureWarning: From version 0.24, get_params will raise a n AttributeError if a parameter cannot be retrieved as an instance attribute. Previously it would return None.

warnings.warn('From version 0.24, get_params will raise an '

> k=None, locate_elbow=True, metric='distortion', model=None, timings=True)

Obtemos que o melhor número de grupos possível é 3, mas ainda não sabemos qual é aqualidade dessa distinção.

Vamos criar um modelo e avaliarmos os PCAs:

```
In [16]: from yellowbrick.cluster import intercluster_distance
   kmeans = KMeans(n_clusters=3, init ='k-means++', max_iter=300, n_init=10,rand
   om_state=0 )
   y_kmeans = kmeans.fit_predict(X)
   intercluster_distance(kmeans, X)
```


/home/luiz/Documentos/processos/proc-lopes/venv/lib/python3.8/site-packages/s klearn/base.py:193: FutureWarning: From version 0.24, get_params will raise a n AttributeError if a parameter cannot be retrieved as an instance attribute. Previously it would return None.

warnings.warn('From version 0.24, get_params will raise an '

Out[16]: InterclusterDistance(ax=<matplotlib.axes._subplots.AxesSubplot object at 0x7f ba6f7880d0>,

embedding='mds', is_fitted='auto', legend=True,
legend_loc='lower left', legend_size=1.5, max_size=2500
0,
min_size=400, model=None, random_state=None,
scoring='membership')

Temos três componentes claramente definidos.

5.2. Distribuição de notas entre os grupos

Vamos visualizar a distribuição de notas menos comuns em cada um desses grupos levando o tamanho de cada um em consideração.

Vamos responder a seguinte pergunta: Se eu tirar um indivíduo qualquer desse grupo, qual é a probabilidade de ser de nota X? (Considerando apenas as notas 3,4,7,8,9)

```
In [17]: final_df['kmeans_group'] = y_kmeans
         total_group_count = final_df.kmeans_group.value_counts()
         group0_df = final_df[final_df['kmeans_group']==0]
         group0_counts = group0_df.quality.value_counts()
         group0 maping = dict()
         for i in range(3,10):
             if i not in (5,6):
                 group0_maping[i] = 0
         for item in group0_counts.keys():
             if item not in (5,6):
                 group0 maping[item] = group0 counts[item]/total group count[0]*100
         group0 maping = dict(sorted(group0 maping.items()))
         fig = plt.figure(figsize=(9,4))
         plt.bar(group0_maping.keys(), group0_maping.values(), width=.5, color='g')
         plt.xlabel("Nota")
         plt.ylabel("Probabilidade de ocorrência (%)")
         plt.title("Probabilidade de ocorrência de notas altas e baixas (Grupo 0)")
         plt.ylim(0, 35)
         plt.show()
         group1_df = final_df[final_df['kmeans_group']==1]
         group1_counts = group1_df.quality.value_counts()
         group1_maping = dict()
         for i in range(3,10):
             if i not in (5,6):
                 group0_maping[i] = 0
         for item in group1_counts.keys():
             if item not in (5,6):
                 group1 maping[item] = group1 counts[item]/total group count[1]*100
         group1 maping = dict(sorted(group1 maping.items()))
         plt.figure(figsize=(9,4))
         plt.bar(group1_maping.keys(), group1_maping.values(), width=.5, color='b')
         plt.xlabel("Nota")
         plt.ylabel("Probabilidade de ocorrência (%)")
         plt.title("Probabilidade de ocorrência de notas altas e baixas (Grupo 1)")
         plt.ylim(0, 35)
         plt.show()
         group2 df = final df[final df['kmeans group']==2]
         group2_counts = group2_df.quality.value_counts()
         group2 maping = dict()
         for i in range(3,10):
             if i not in (5,6):
                 group2_maping[i] = 0
         for item in group2_counts.keys():
             if item not in (5,6):
                 group2_maping[item] = group2_counts[item]/total_group_count[2]*100
         group2_maping = dict(sorted(group2_maping.items()))
         plt.figure(figsize=(9,4))
         plt.bar(group2 maping.keys(), group2 maping.values(), width=.5, color='r')
         plt.xlabel("Nota")
         plt.ylabel("Probabilidade de ocorrência (%)")
         plt.title("Probabilidade de ocorrência de notas altas e baixas (Grupo 2)")
         plt.ylim(0, 35)
         plt.show()
```


Os grupos mostram diferentes erros padrão, podemos nos aproveitar desse fato para tirarmos um pouco mais de performance na nossa modelagem.

5.3. Covariância em cada grupo

Vamos verificar as relações de cada grupo utilizando a *explanação aditiva de Shapley* com a nossa variável de interesse, treinando um modelo distinto para cada grupo:

```
In [18]: from yellowbrick.classifier import ConfusionMatrix
          from xgboost import XGBClassifier
          from sklearn.model_selection import train_test_split
          from sklearn.metrics import balanced_accuracy_score
          import scipy
          import shap
          test_size = 0.1
          random_state=28
          X = group0_df.iloc[:, 0:12]
          Y = group0_df.iloc[:, 12]
         X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size
          , random_state=28)
         def train_model(X_train, y_train):
             model = XGBClassifier(objective = 'reg:logistic',
                                       gamma=0.5,
                                       learning_rate=0.05207,
                                       max depth=4,
                                       min_child_weight=1.2,
                                       n_estimators=100,
                                       reg_alpha=1,
                                       reg_lambda=0.7 ,
                                       subsample=0.8,
                                       seed=28,
                                       nthread = 8,
                                       eval metric = 'auc')
              model.fit(X_train, y_train)
              return model
         model_kmeans_0 = train_model(X_train, y_train)
          explainer = shap.TreeExplainer(model kmeans 0)
          shap values = explainer.shap_values(X)
          shap.summary plot(shap values, X)
         X = group1_df.iloc[:, 0:12]
          Y = group1_df.iloc[:, 12]
         X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size
          , random_state=random_state)
         model_kmeans_1= train_model(X_train, y_train)
explainer = shap.TreeExplainer(model_kmeans_1)
          shap_values = explainer.shap_values(X)
          shap.summary_plot(shap_values, X)
         X = group2_df.iloc[:, 0:12]
         Y = group2 df.iloc[:, 12]
         X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=test_size
          , random state=random state)
         model_kmeans_2 = train_model(X_train, y_train)
          explainer = shap.TreeExplainer(model_kmeans_2)
          shap_values = explainer.shap_values(X)
          shap.summary_plot(shap_values, X)
```

Setting feature_perturbation = "tree_path_dependent" because no background da ta was given.

mean(|SHAP value|) (average impact on model output magnitude)

Cada um dos grupos mostra diferentes principais atributos para a nota final. O modelo único só considera o mais importante para a maioria, que como vimos, é o alcool. Mas repare como as importâncias são diferentes para diferentes grupos!

Podemos usar isso a nosso favor.

6. Modelo Final (Transfer Learning - Ensemble)

Com os modelos treinados para cada grupo, podemos criar um ensemble com o seguinte pipeline:

```
In [19]: X = final_df.iloc[:,0:12]
          Y = final_df.iloc[:,12]
         X_{train}, X_{test}, Y_{train}, Y_{test} = train_test_split(X, Y, test_size=test_size
          , random_state=28)
          X_{\text{test\_ensemble}} = X
          X_test_ensemble['quality'] = list(Y)
          X_test_ensemble['kmeans_group'] = kmeans.fit_predict(X_test_ensemble.iloc[:,0
          X_{\text{test\_ensemble}} = X_{\text{test\_ensemble}}.sort_values(['kmeans_group'], ascending=[1])
          1)
          X_test_ensemble 0 = X_test_ensemble[X_test_ensemble['kmeans_group']==0].iloc
          [:,0:12]
          y_test_ensemble_0 = X_test_ensemble[X_test_ensemble['kmeans_group']==0].iloc
          [:,12].values
          X_test_ensemble 1 = X_test_ensemble[X_test_ensemble['kmeans_group']==1].iloc
          [:,0:12]
          y_test_ensemble 1 = X_test_ensemble[X_test_ensemble['kmeans_group']==1].iloc
          [:,12].values
          X_{\text{test\_ensemble}} = X_{\text{test\_ensemble}} [X_{\text{test\_ensemble}} | x_{\text{test\_ensemble}}] = 2].iloc
          [:,0:12]
          y_test_ensemble_2 = X_test_ensemble[X_test_ensemble['kmeans_group']==2].iloc
          [:,12].values
          predictions_group_0 = model_kmeans_0.predict(X_test_ensemble_0)
          predictions_group_1 = model_kmeans_1.predict(X_test_ensemble_1)
          predictions_group_2 = model_kmeans_2.predict(X_test_ensemble_2)
          final_predictions = []
          final_true_y = []
          final_predictions = list(predictions_group_0) + list(predictions_group_1) + l
          ist(predictions_group_2)
          final_true_y = list(y_test_ensemble_0) + list(y_test_ensemble_1) + list(y_test_ensemble_1)
          t_ensemble_2)
          print(classification report(final true y, final predictions, digits=2, output
          _dict=False))
          print("Accuracy: %.2f%" % (accuracy_score(final_true_y, final_predictions)*1
          00))
```

	precision	recall	f1-score	support
3	0.00	0.00	0.00	10
4	0.95	0.39	0.56	147
5	0.80	0.78	0.79	1522
6	0.70	0.87	0.78	2171
7	0.81	0.56	0.66	878
8	0.96	0.29	0.45	157
9	0.00	0.00	0.00	5
accuracy			0.75	4890
macro avg	0.60	0.41	0.46	4890
weighted avg	0.77	0.75	0.74	4890

Accuracy: 75.13%

Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero division` parameter to control this behavior.

7. Conclusões

Conseguimos melhorar nossa performance com algumas análises mais aprofundadas. Temos indícios de over/underfitting em algumas classes, mas um pouco mais de exploração ajudaria a resolvermos este e outros pequenos problemas.

Ainda daria pra fazer muita coisa. Feature engineering, como já citado, é uma delas. Como essa análise é um teste inicial, não vou me aprofundar mais, mas qualquer dúvida sinta-se livre pra me contatar :)