Towards a Query-by-Example System for Knowledge Graphs

Nandish Jayaram (UT-Arlington)

Arijit Khan (UCSB, now at ETH Zurich)

Chengkai Li (UT-Arlington)

Xifeng Yan (UCSB)

Ramez Elmasri (UT-Arlington)

GRADES 2014 June 22, Snowbird, UT

Knowledge Graphs

Large and **complex** graphs capturing millions of entities and relationships between them!

Ubiquitous today: Linking Open Data: 52 billion RDF triples

Freebase: 1.8 billion facts

DBpedia: 470 million facts

YAGO: 120 million facts

How to Query Knowledge Graphs?

➤ Graph Search / Structured Querying


```
SELECT F.obj, F.src
FROM F, G, H, L, P
WHERE F.prop = 'founded'
AND G.prop = 'education
AND H.prop = 'headquartered_in'
AND L.prop = 'places_lived'
AND P.prop = 'place_founded'
AND F.obj = H.src
AND F.obj = P.src
AND E.src = L.src
AND L.obj = H.obj
AND E.src = G.src
```

- > Expertise in constructing structured queries required.
- A good knowledge of the schema of the knowledge graph is required.

Improving Usability of Knowledge Graphs: Prior Arts

➤ Keyword Search

"Software companies located in the Silicon Valley and their founders who studied at Stanford University."

- ➤ Keyword search on graphs [Karger11].
- ➤ Keyword based query formulation [Pound10] [Yao12].

➤ Natural Language Query

> Natural language questions based querying [Yahya12].

➤ Visual Query Interfaces

- ➤ Interactive and form based query construction [Demidova12] [Jarrar12].
- Visual interface for query graph construction [Chau08] [Jin10].

➤ Schemaless Graph Querying

> Use transformations to find matches to a naïve query graph [Yang14].

Query by Example Entity Tuples

Given an input n-entity tuple(s) (called n-tuple), a knowledge graph, and k, find top-k n-tuples that are most similar to the input tuple(s).

Answer Tuples

Input Tuple: Donald Knuth, Stanford University, Turing Award

Overall Architecture

Exemplar Queries [Mottin14]

Maximal Query Graph Discovery

- ➤ Given an example tuple like < Jerry Yang, Yahoo! >
 - > Define importance of edges by assigning weights to them.
 - Find a small sub-graph with important edges and nodes in the neighborhood of *Jerry Yang* and *Yahoo!*, to form the Maximal Query Graph (MQG).

Answer Space Modeling

Query Processing

Lattice evaluation terminated after top-k answers are obtained!

Finding Matching Answer Graphs

- Exact sub-graph matching, based on indexing techniques.
 - Search on graph databases [Shasha02] [Yan04] [Zhao07] [Zou08].
 - Search on single large graph [Ullman76] [Cordella04] [Shang08] [Zhang09].
- > Approximate sub-graph matching.
 - ➤ Use various indexes to quickly find approximate matches [Tian08] [Mongiovi10] [Khan13].
 - ➤ NESS: uses neighborhood-based indexes to quickly find approximate matches to a query graph [Khan11].

Experiments

QUERIES:

- 20 Queries on Freebase dataset (47 M edges, 27 M nodes, 5.4 K properties)
- > 8 Queries on **DBpedia** dataset (2.6 M edges, 759 K nodes, 9 K properties)

Accuracy Comparison with NESS:

Efficiency Results

Single Query Execution Times (in seconds)

Work in Progress

Maximal Query Graph Discovery:

- Does not capture the user-intent exactly.
- Iterative and interactive edge suggestion.

Query Processing:

- Materializing intermediate join results (millions of rows) can be expensive.
- Is a better join mechanism when we have more memory at our disposal possible?
- Distributed lattice exploration mechanism.

➤ Obtaining User Feedback:

User feedback on relevance of answer tuples to re-weight edges.

Work by Xifeng Yan's group at UCSB

(SIGMOD 2014 demo, VLDB 2014)

Demo and Technical Details:

- > Demo:
 - ➤ URL: <u>idir.uta.edu/gqbe</u>
 - ➤ Demo paper: GQBE: Querying knowledge graphs by example entity tuples, ICDE 2014.
- > Technical Details:
 - > Full paper under review
 - > Archived version: http://arxiv.org/abs/1311.2100