Unsupervised Learning Lecture 3: Naïve Bayes Classifier and Evaluation Scheme

Tho Quan qttho@hcmut.edu.vn

Agenda

- Discriminative vs. Generative Classifiers
- Naïve Bayes Classifier
- Evaluation scheme: which method is better?
- NB for Text Classification and IR Metrics

Classification Methodologies

- There are three methodologies:
 - a) Model a classification rule directly

Examples: k-NN, linear classifier, SVM, neural nets, ...

b) Model the probability of class memberships given input data

Examples: logistic regression, probabilistic neural nets (softmax),...

c) Make a probabilistic model of data within each class

Examples: Naive Bayes....

Classification of Classifications

	Probabilistic	Non- Probabilistic
Discriminati ve	Logistic RegressionProbabilistic neural nets	K-nnLinear classifierSVMNeural networks
Generative	Naïve Bayes	N.A. (?)

Probability Basics

- Prior, conditional and joint probability for random variables
 - Prior probability: P(x)
 - Conditional probability: $P(x_1 | x_2), P(x_2 | x_1)$
 - Joint probability: $\mathbf{x} = (x_1, x_2), P(\mathbf{x}) = P(x_1, x_2)$
 - Relationship: $P(x_1, x_2) = P(x_2 | x_1)P(x_1) = P(x_1 | x_2)P(x_2)$
 - Independence:

$$P(x_2 | x_1) = P(x_2), P(x_1 | x_2) = P(x_1), P(x_1, x_2) = P(x_1)P(x_2)$$

Bayesian Rule

$$P(c \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid c)P(c)}{P(\mathbf{x})}$$
Posterior =
$$\frac{Likelihood \times Prior}{Evidence}$$
Discriminative

Generative

Probabilistic Classification Principle

- Maximum A Posterior (MAP) classification rule
 - For an input x, find the largest one from L probabilities output by a discriminative probabilistic classifier $P(c_1 \mid x), ..., P(c_L \mid x)$.
 - Assign x to label c^* if $P(c^* | x)$ is the largest.
- Generative classification with the MAP rule
 - Apply Bayesian rule to convert them into posterior probabilities

$$P(c_i \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid c_i)P(c_i)}{P(\mathbf{x})} \propto P(\mathbf{x} \mid c_i)P(c_i)$$

$$for i = 1, 2, \dots, L$$
Common factor for all L probabilities

Then apply the MAP rule to assign a label

Naïve Bayes

Bayes classification

$$P(c \mid \mathbf{x}) \propto P(\mathbf{x} \mid c)P(c) = P(x_1, \dots, x_n \mid c)P(c) \text{ for } c = c_1, \dots, c_L.$$

Difficulty: learning the joint probability $P(x_1, \dots, x_n \mid c)$ is infeasible!

- Naïve Bayes classification
 - Assume all input features are class conditionally independent!

$$P(x_1, x_2, \dots, x_n \mid c) = \underbrace{P(x_1 \mid x_2, \dots, x_n, c)} P(x_2, \dots, x_n \mid c)$$
Applying the independence assumption
$$= \underbrace{P(x_1 \mid c)} P(x_2, \dots, x_n \mid c)$$

$$= P(x_1 \mid c) P(x_2 \mid c) \dots P(x_n \mid c)$$

Summarization for Example

Bayes' Theorem
$$P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$$

Training tuples

Class-labeled training tuples from the AllElectronics customer database.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Naïve Bayesian Classification

1. D is a training set.

 $X = (age = youth, income = medium, student = yes, credit_rating = fair)$

2. m classes: C_i, i=1..m

$$P(C_i \mid X) = \frac{P(X \mid C_i)P(C_i)}{P(X)}$$

- P(buys_computer=yes | age=youth, income=medium student=yes, credit_rating=fair)
- \rightarrow We maximize P(C_i | X).

Naïve Bayesian Classification

- 3. $P(C_i) = |C_{i,D}|/|D|$
 - Or: $P(C_1) = P(C_2) = ... = P(C_m)$

Naïve Bayesian Classification

- 4. Compute $P(X \mid C_i)$:
 - Assume: Class conditional independence

$$P(X \mid C_i) = \prod_{k=1}^n P(x_k \mid C_i) = P(x_1 \mid C_i) * P(x_2 \mid C_i) * ... * P(x_n \mid C_i)$$

- 5. Class label of X is C_i
 - $P(C_i|X) > P(C_j|X) \text{ v\'oi } 1 <= j <= m, j <> i$

Example

 $X = (age = youth, income = medium, student = yes, credit_rating = fair)$

 $C_1 = \{X'|X'.buys_computer = yes$

 $C_2 = \{X''|X''.buys_computer = no\}$

$$P(age = youth \mid buys_computer = yes)$$
 = $2/9 = 0.222$

$$P(age = youth \mid buys_computer = no)$$
 = $3/5 = 0.600$

$$P(income = medium \mid buys_computer = yes) = 4/9 = 0.444$$

$$P(income = medium \mid buys_computer = no) = 2/5 = 0.400$$

$$P(student = yes \mid buys_computer = yes) = 6/9 = 0.667$$

$$P(student = yes \mid buys_computer = no)$$
 = $1/5 = 0.200$

$$P(credit_rating = fair \mid buys_computer = yes) = 6/9 = 0.667$$

$$P(credit_rating = fair \mid buys_computer = no) = 2/5 = 0.400$$

$$P(X|buys_computer = yes) = P(age = youth \mid buys_computer = yes) \times P(income = medium \mid buys_computer = yes) \times$$

$$P(student = yes \mid buys_computer = yes) \times$$

$$P(credit_rating = fair \mid buys_computer = yes)$$

$$=0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044.$$

$$P(X|buys_computer = no) = 0.600 \times 0.400 \times 0.200 \times 0.400 = 0.019.$$

$$P(X|buys_computer = yes)P(buys_computer = yes) = 0.044 \times 0.643 = 0.028$$

$$P(X|buys_computer = no)P(buys_computer = no) = 0.019 \times 0.357 = 0.007$$

$$P(buys_computer = no) = 5/14 = 0.357$$

 $P(buys_computer = yes) = 9/14 = 0.643$

Zero probability

- Zero probability elimination
 - 1,000 tuples: 0 tuples with *income = low, 990 tuples with income = medium, and 10* tuples with *income = high.*
 - Using the Laplacian correction
 - →Assume that our training database, D, is **so large** that **adding one to each count** that we need would only make a negligible difference in the estimated probability value, yet would conveniently avoid the case of probability values of zero.
 - we pretend that we have 1 more tuple for each incomevalue pair.

Zero probability

```
Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)

Use Laplacian correction (or Laplacian estimator)

Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003
```

Model Evaluation and Selection

- Evaluation metrics: How can we measure accuracy? Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy:
 - Holdout method, random subsampling
 - Cross-validation

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C_1	¬ C ₁	
C_1	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

Actual class\Predicted	buy_computer	buy_computer	Total
class	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given m classes, an entry, $CM_{i,j}$ in a confusion matrix indicates # of tuples in class # that were labeled by the classifier as class #
- May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A∖P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

 Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

Accuracy = (TP + TN)/AII

Error rate: 1 – accuracy, or
 Error rate = (FP + FN)/All

Class Imbalance Problem:

- One class may be rare, e.g. fraud, or HIV-positive
- Significant majority of the negative class and minority of the positive class
- Sensitivity: True Positive recognition rate
 - Sensitivity = TP/P
- Specificity: True Negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

 Precision: exactness – what % of tuples that the classifier labeled as positive are actually positive

$$precision = \frac{TP}{TP + FP}$$

- **Recall:** completeness what % of positive tuples did the classifier label as positive?
- Perfect score is 1.0
- Inverse relationship between precision & recall
- **F** measure (F_1 or **F**-score): harmonic mean of precision and

recall,
$$F = \frac{2 \times precision \times recall}{precision + recall}$$
• F_{β} : weighted measure of precision and recall as to precision

- - assigns ß times as much weight to recall as to precision

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (accuracy)

$$Recall = 90/300 = 30.00\%$$

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: k folds where k = # of tuples, for small sized data
 - *Stratified cross-validation*: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

Train, Validation, Test

Uses of NB classification

- Text Classification
- Spam Filtering
- Hybrid Recommender System
 - Recommender Systems apply machine learning and data mining techniques for filtering unseen information and can predict whether a user would like a given resource
- Online Application
 - Simple Emotion Modeling

Examples of Text Classification

- CLASSES=BINARY
 - "spam" / "not spam"
- CLASSES =TOPICS
 - "finance" / "sports" / "politics"
- CLASSES = OPINION
 - "like" / "hate" / "neutral"
- CLASSES =TOPICS
 - "AI" / "Theory" / "Graphics"
- CLASSES = AUTHOR
 - "Shakespeare" / "Marlowe" / "Ben Jonson"

Naive Bayes for Text Categorization

Attributes are text positions, values are words.

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i} P(x_{i} | c_{j})$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) P(x_{1} = \text{"our"} | c_{j}) \cdots P(x_{n} = \text{"text"} | c_{j})$$

- Still too many possibilities
- Assume that classification is independent of the positions of the words
 - Use same parameters for each position
 - Result is bag of words model (over tokens not types)

Naïve Bayes: Learning

- From training corpus, extract Vocabulary
- Calculate required $P(c_i)$ and $P(x_k | c_i)$ terms
 - For each c_i in C do
 - $docs_j \leftarrow$ subset of documents for which the target class is c_j

•
$$P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$$

- Text_i ← single document containing all docs_i
- for each word x_k in *Vocabulary*
 - $-n_k \leftarrow$ number of occurrences of x_k in $Text_j$

$$P(x_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid Vocabulary \mid}$$

Naïve Bayes: Classifying

- positions ← all word positions in current document which contain tokens found in *Vocabulary*
- Return c_{NB} , where

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$