Introdução à álgebra booleana. Expressões lógicas.

Eduardo Furlan Miranda 2024-08-01

Baseado em: Tangon, LG; Santos, RC. Arquitetura e organização de computadores. EDE, 2016. ISBN 978-85-8482-382-6.

• Estes slides são tirados do livro-texto

Estudar pelo livro

• Fazer os exercícios do livro e trazer as dúvidas

Introdução à álgebra booleana

- Usa variáveis (ex.: "A") e operações lógicas (ex.: "OU")
- Variáveis podem ter valor lógico
 - 1 (verdadeiro)
 - 0 (falso)

- Cada variável pode assumir um único valor
 - 0 ou 1, verdadeiro ou falso, true ou false, sim ou não, aberto ou fechado, aceso ou apagado

Simbologia de Operações Lógicas

Operações Lógicas Básicas	AND (E)	OR (OU)	NOT (NÃO)
Simbologia utilizada na matemática	•	+	1
Simbologia utilizada em computação	^	V	! OU ⁻

• Ex.:

A AND B = A
$$\bullet$$
 B = A \wedge B
A OR B = A + B = A \vee B
NOT A = !A = \overline{A}

A = Ana viaja

B = Ana brinca

 $A \wedge B \rightarrow Ana viaja e Ana brinca$

A ∨ B → Ana Viaja **ou** Ana Brinca

!A → Ana **não** viaja

AND → Produto Lógico

OR → Soma Lógica

Not → Negação

Tabela-verdade AND

• As duas proposições tem de ser verdadeiras

р	Q	p ∧ q
0	0	0
0	1	0
1	0	0
1	1	1

Exemplo

```
x = 3

y = 5

A expressão (x = 4) \wedge (y = 5) é verdadeira (1) ou Falsa (0)?

(x = 4) representa p

(y = 5) representa q

p = 1

q = 0

p \wedge q = 0
```

Tabela-verdade OR

р	q	p∨q
0	0	0
0	1	1
1	0	1
1	1	1

Exemplo

```
k = azul
w = verde
```

A expressão (k = vermelho) v (w = verde) é verdadeira ou falsa?

```
(k = vermelho) v (w = verde) →
```

Falso v verdadeiro =

(veja segunda linha da tabela-verdade)

O resultado para esse p v q é 1 (verdade)

Tabela-verdade NOT

р	!p
0	1
1	0
1	1

Porta lógica NAND (p x q)!

р	q	p ∧ q!
0	0	1
0	1	1
1	0	1
1	1	0

Porta Lógica NOR (p v q)!

р	q	p ∨ q!
0	0	1
0	1	0
1	0	0
1	1	0

Porta Lógica XOR

• OU EXCLUSIVO (⊕)

р	Q	p ⊕ q
0	0	0
0	1	1
1	0	1
1	1	0

Porta Lógica XNOR (p ⊕ q)!

Complemento da XOR

р	Q	p ⊕ q!
0	0	1
0	1	0
1	0	0
1	1	1

Expressões lógicas Adição booleana

Adição booleana = porta OR

- Termo-soma = soma de literais
 - literal é uma notação usada para representar um valor fixo diretamente no código fonte, ex.:
 - Inteiros: 42, -7; Booleanos: true, false

Exemplo

• A partir de A, B, C e D, determine os respectivos valores para que o termo-soma A + \overline{B} + C + \overline{D} seja igual a 0

- Para que seja 0 o termo-soma, cada uma das literais tem de ser 0
 - Para que $\overline{B} = 0$, o B deve ser 1
 - A = 0, B = 1, C = 0, e D = 1
- A + \overline{B} + C + \overline{D} = 0 + $\overline{1}$ + 0 + $\overline{1}$ = 0 + 0 + 0 = 0

Multiplicação booleana (porta AND)

O termo-produto é o produto de literais

O símbolo • representa AND

Exemplo

• Determine os valores para as literais A, B, C e D que transforme o resultado do termo-produto \overline{ABCD} igual a 1

•
$$A\overline{B}C\overline{D} = 1 \cdot \overline{0} \cdot 1 \cdot \overline{0} = 1 \cdot 1 \cdot 1 \cdot 1 = 1$$

Leis e regras da álgebra booleana

- Lei Comutativa da Adição → A + B = B + A
- Lei Comutativa da Multiplicação Symbol → AB = BA
- Associativa da Adição Symbol → A + (B + C) = (A + B) + C

- Lei Associativa da Multiplicação → A(BC) = (AB)C
- Lei Distributiva → A(B + C) = AB + AC

Regras da Álgebra Booleana

$$1. A + 0 = A$$

$$2. A + 1 = 1$$

3.
$$A \bullet 0 = 0$$

5.
$$A + A = A$$

6.
$$A + \overline{A} = 1$$

7.
$$A \bullet A = A$$

8.
$$A \bullet \overline{A} = 0$$

9.
$$\bar{A} = A$$

10.
$$A + AB = A$$

11.
$$A + \overline{AB} = A + B$$

12.
$$(A + B)(A + C) = A + BC$$

A, B ou C podem representar uma única variável ou uma combinação de variáveis.

Exemplos

- Regra 1 → A + 0 = A → Para qualquer valor de A (0 ou 1)
 com a porta lógica OR, dará sempre o resultado do valor de
 A (lembra da tabela verdade?)
- Regra 5 → A + A = A → Para qualquer valor de A (0 ou 1)
 dará sempre A. Note que se A = 0, teremos 0 + 0 = 0 e se
 A = 1, teremos 1 + 1 = 1 (também da tabela verdade OR)

 Regra 12 → (A + B)(A + C) = A + BC → Nesta colocamos o A em evidência, ficando A + BC

Teoremas de De Morgan

•
$$(\overline{x + y}) = \overline{x} \cdot \overline{y}$$
 e $(\overline{x \cdot y}) = \overline{x} + \overline{y}$

• Ex.:

Reduzir a expressão (AB + C) usando o primeiro teorema:

•
$$(A\overline{B} + C) = (A\overline{B}) \cdot \overline{C}$$

Aplicando o segundo teorema:

•
$$(\overline{AB})$$
• $\overline{C} = (\overline{A} + \overline{B})$ • C

Substituindo as negações:

•
$$(\overline{A} + B) \cdot \overline{C} = \overline{AC} + B\overline{C}$$

3 variáveis ou termos

$$X + Y + Z = X \bullet Y \bullet Z$$

$$\overline{X \bullet Y \bullet Z} = \overline{X} + \overline{Y} + \overline{Z}$$

$$\overline{AB} \bullet \overline{CD} \bullet \overline{EF} =$$

$$\overline{AB} + \overline{CD} + \overline{EF} =$$

$$AB + CD + EF$$