Séries Temporais

Filipe Duarte 8/17/2019

Atividade nº 1

Escolher 3 séries temporais no repositório TDSL.

Uma série para cada tipo:

- a. Com sazonalidade
- b. Com tendência determinística
- c. Série Financeira ou climática

Para cada série plotar:

- a. A série própria e nas escalas de tempo: Mês e Ano.
- b. ACF e PACF.
- c. Série decomposta.
- d. ACF sobre o resíduo da decomposição.

1^a Série: Com Sazonalidade

A série selecionada com sazonalidade foi a 5ª série de Metereologia. Essa série representa a mensuração mensal de dióxido de carbono sobre Manua Loa, Hawaii, entre janeiro de 1959 e dezembro de 1990.

Gráfico da série

Essa série possui uma tendência crescente como pode ser visto no gráfico abaixo. Além disso, possui sazonalidade, uma vez que possui picos e vales frequentes de mesmo padrão ao longo do ano.

Boxplot da série

Vamos visualizar no gráfico de boxplot abaixo quais meses representam os aumentos sazonais da emissão dióxido de carbono.

Gráfico Boxplot mensal

Verificou-se um aumento na emissão do dióxido de carbono em maio e uma redução considerável da emissão nos meses de setembro e outubro.

Tendência da série

O próximo elemento a ser analisado é a tendência da série. Obtém-se através da agregação dos dados mensais em anuais.

Gráfico da Tendência

Diante do gráfico acima, verifica-se uma forte tendência crescente. Essa tendência apresenta um comportamento determinístico, pois não há uma quebra estrutural que demonstre uma inversão em sua direção.

Decomposição da série

No que diz respeito à decomposição da série temporal, foi realizada a decomposição aditiva, pelo fato da variância não aumentar ao longo do tempo, como pode-se verificar abaixo.

Decomposition of additive time series

A decomposição aditiva é representada pela soma dos componentes: Tendência, Sazonalidade e Erro, como demonstra a equação a seguir:

$$x_t = m_t + s_t + zt$$

onde, m_t é a tendência, s_t é a sazonalidade e z_t é o termo do erro.

Desse gráfico, percebe-se a tendência crescente e com comportamento semelhante ao linear; sazonalidade expressiva relevando comportamento cíclico presente nos meses de maio e setembro/outubro.

gráfico da série entre xt e xt+1

Correlograma

O gráfico ACF apresenta no eixo x os lags e no eixo y, o valor da autocorrelação em cada lag. Portanto, conclui-se que ela possui elevados valores de autocorrelação serial. O gráfico da função de autocorrelação serial demonstra que a série possui um decaimento muito suave da autocorrelação, com forte autocorrelação em cada lag. Além disso, percebe-se a sazonalidade uma vez que a autocorrelação tende a aumentar em alguns lags.

No que diz respeito ao PACF, função de autocorrelação parcial, verifica-se a perda de autocorrelação a partir do primeiro lag. Isso demonstra que a série tem forte autocorrelação com lag 1 e até com o lag 2 (de forma negativa).

Sendo assim, os valores mais próximos, isto é, o lag 1 e o lag 2, são os que possuem as maiores autocorrelação.

Entretanto, vale ressaltar que o lag 2 está correlacionado de forma negativa com os demais lags.

ACF sobre o resíduo da decomposição

A seguir, verifica-se o gráfico ACF para o resíduo da série.

ACF sobre o resíduo da decomposição

Percebe-se uma considerável autocorrelação entre a série e os lags 2, 5, 6 e 7. Contudo, há uma inversão do sinal do lag 2 em relação ao lag 5.

$2^{\underline{a}}$ Série: com tendência determinística

A segunda série desta atividade possui uma tendência determinística. O seu gráfico lembra uma reta. A série é demográfica e representa a população civil autraliana, em milhares de pessoas, entre fevereiro de 1978 e abril de 1991.

