Introduction to Natural Language Understanding

(incorporating structured and opportunistic approaches)
Sections 6.3, 7.1,7.2, Chapter 14 (omitting 14.3,14.4)

Natural Language Understanding

- The difficulties of dealing with context and breadth were grossly underestimated
- Recently, NLU systems have been more successful as they incorporate more domain knowledge
- Natural language text generation is a simpler task
- e.g. generate an explanation in English of the rules that were used to solve a problem in an expert system

Natural Language Understanding

- One of the earliest efforts in AI was to develop systems that could understand natural language; e.g. the Eliza system
- Well-respected researchers stated that machines would be able to understand natural language within 15 years

◆ These efforts (obviously!) did not meet with success

NLU vs. Speech Understanding

- We tend to think of speech and language as being very similar, just because speaking and listening are natural things to us
- But actually understanding speech as opposed to reading text is a much more significant problem
- Really we're adding perception to the reasoning problems already inherent in NLU
- ♦ We've seen how difficult perception can be!

__

Speech Understanding

- We've also seen that context plays a huge rule in perception (e.g. knowing we're in a hallway makes a robot look for a second wall where it's seen one already)
- Similarly, much of understanding speech in a noisy environment is about using context to fill in gaps where what is heard is uncertain
- We all have the experience of saying "what?" to somebody and then before they even answer, realize what they were talking about

Natural Language Understanding

- The goal of an NLU system is to understand a collection of words
- ◆ The words are presented in written form (i.e. machine readable: each word is a separate unit, punctuation is included)
- The system produces a symbolic description of the meaning of the words
- Understanding is association with known (symbolic) concepts – that's usually what we mean when WE say we understand something

- - -

Basic Model of NLU

- Natural language understanding involves several phases, looking from the lowest level up:
- Morphological analysis:
 - determine the type of each word (e.g. noun, verb, etc.)
- ◆ Syntactic analysis:
 - determine the structure of the words: phrases, sentences

Basic Model of NLU

- Semantic analysis:
 - determine the meaning of the individual phrases
- Pragmatic analysis:
 - determine the meaning of the phrases together (the utterance or passage as a whole)
- We'll look at a simple breakdown of each step (though each can itself get very complicated!)

C

Morphological Analysis

- Morphological analysis involves determining the type of each word
- The processing involves determining the primitive units (morphemes) of each word
- ◆ For example, many words can be broken into– [prefix] root [suffix]
- ♦ incoming → in come ing
- Not all words break up in this manner, and the root can be disguised sometimes
- ♦ Worse in some languages than others

Morphological Analysis

- ◆ You can see why we took basic search stuff before looking at applications, because you should see how it can be applied here (e.g. looking at possibilities for breakdown)
- Strong procedural components here as well: looking roots up in a dictionary, templates for many words that can save us search
- May have several hypotheses (uncertainty here too!) if the use of the word is ambiguous
- Output is a breakdown into morphemes, label of word type, and the looked-up meaning of each word

Syntactic Analysis

- Syntactic analysis involves determining the structure of the words in each sentence
- uses surface reasoning; does not determine the meaning of the words
- The goal of syntactic analysis is to produce a symbol structure that indicates the word groupings
- ◆ Note that often the morphology won't be accurate until this is – some words can be used as nouns or verbs, for example

Syntactic Analysis

- Syntactic analysis involves parsing the words according to a description of the valid combinations of word types
- Pure syntactic analysis is performed without any domain knowledge -- this may result in phrases that are ambiguous and cannot be parsed completely
- ◆ Part of the power of our natural language is its flexibility – but this flexibility is just what makes NLU difficult

Syntactic Analysis

- ◆ One common method used to parse sentences is using a grammar, as we would artificial languages such as programming languages
- ◆ The grammar consists of rules that define the valid combinations of words
- ◆ The grammar defines the parts of each sentence and the valid terminal symbols that may occur

Syntactic Analysis

◆ A simple grammar:

$$S \rightarrow NP VP$$

$$NP \rightarrow the ADJ N$$

$$NP \rightarrow PRO$$

$$VP \rightarrow V$$

$$VP \rightarrow V NP$$

$$N \rightarrow file \mid printer$$

$$ADJ \rightarrow short \mid long \mid fast$$

$$PRO \rightarrow I$$

14

Syntactic Analysis

◆ The result of parsing a set of sentences is a parse tree of the components of each sentence

◆ Note this is a trivial grammar!

Syntactic Analysis

- Parsing can be carried out in a top-down manner (backward search)
- ♦ begin with the S symbol in the grammar
- Parsing may also be carried out in a bottomup manner (forward search)
- begin with the words and match them to the terminal strings in the grammar; work towards the S

Syntactic Analysis

- At this point we have an uncertain morphology and an uncertain parse tree (possibly many candidates)
- And we still haven't gotten into the meaning of much of this at all, we're just putting the pieces together
- ◆ Really, reducing the enormous uncertainty of meaning by structuring the problem and what we know about it before attempting to analyze meaning

Semantic Analysis

- ◆ Semantic analysis determines the meaning of the words in each of the phrases: deep reasoning
- Semantic processing creates a symbolic description of the meaning of the phrases
- ◆ How do we do this? If understanding means the association between ideas or concepts, we need to give our system concepts to associate
- e.g. "The cat came back" vs. "The boomerang came back" – it needs to know the difference between these two objects to understand the context

17

18

Describing Concepts

- ◆ If I want to describe some object or process, this obviously is made up of many different components and connections to others
- ◆ Cats: colour, size, attitude, the fact they're alive, fragile, bite, etc...
- You can envision describing these with rules and facts, but this becomes tedious
- ◆ Too many individual items
- ◆ No organization our cat facts blend with boomerangs and 10,000,000 other things

Describing Concepts

- ◆ Because of this we use Structured Representations for deep reasoning (and also for convenience in shallow reasoning)
- Structured representations lay a structuring onto the basic facts and rules
- ◆ This structuring provides an organization for the use and management of this knowledge
- ◆ These basic ideas were experimented with in AI 40 years ago, and led to today's object oriented approaches that you're familiar with
- ◆ they tend to be much more dynamic, however

Frames

◆ Frames are the most basic type of structured approach in AI – they provide inheritance as you'd expect

Frames

- ◆ All this is DYNAMIC we can change any slot at any level at any time, and the behaviour changes
- ◆ e.g. by changing the a-kind-of slot, we can shift inheritance completely – not normally possible in (static) object-oriented languages
 - but necessary for flexibility of representation here
 - so somebody talking about their mercury could let you shift your concept from a kind of car to a kind of chemical...
- ◆ Procedural attachments a la OO also possible

Frames

- ♦ Search for a value starts bottom up, allowing specific instances to override general defaults
 - You see the ease of doing default reasoning with these!
- ♦ Search goes from instances to higher level objects through specially named slot connections: is-a (instance relationship), akind-of (subclass relationship)
- ◆ Also possible to define our own such links for broad multiple inheritance: e.g. containment, possession, causality relationships)

Structured Approaches and NLU

- ◆ Frames are most normally see in expert systems
- ♦ In NLU, an analogous structured approach called Conceptual Dependency Theory is often employed
 - specialized for the kind of thing we need to represent in NLU
- Conceptual dependency theory associates each phrase with the primitive acts that the phrase describes
- Primitive acts are structured in a fashion similar to the way that frames structure objects

Conceptual Dependency Theory

- ◆ There are numerous primitive act categories:
- physical acts: move, propel, ingest, expel, grasp
- state change acts: change the location of a physical object; change in an abstract relationship (e.g. sell a house)
- communication acts: speak, attend (receive information)
- ◆ mental acts: remember, recall, think

Conceptual Dependency Theory

- These primitive acts are combined into very explicit conceptual dependency structures that indicate the purpose of each word in the phrase
- ◆ Defining the primitive actions in conceptual dependency theory is much more complex than defining a syntax grammar
- ◆ The meaning of each type of phrase must be defined completely (at least so far as we want the system to understand it!)

Conceptual Dependency Theory

Most acts refer to an agent, an object, a source, and a destination:

"John threw the ball into the yard."

 This information can be represented in a frame structure

Act: Move Object

Agent: John Object: ball

Source: John's hand

Destination: the yard

Time: past

Semantic Analysis

- Semantic analysis involves assigning a meaning to the individual phrases (or events)
- "Fred wanted to play baseball but it rained."
- "Fred wanted to play racquetball but it rained."
- ◆ Semantic analysis would generate the same semantic structures for these sentences even though a different meaning is intended:
 - Fred desired some activity, but this did not occur
 - the fault of this was because of the weather

26

Semantic Analysis

- this can sometimes be much more subtle than the previous example:
 - "John wanted to golf but it snowed" vs
 - "John wanted to go bowling but it snowed"
 - The latter is an indoor game that weather should not interrupt – however, there is the possibility that the required travel to the bowling alley is impossible

Pragmatic Analysis

- ◆ Consider the sentence:
- "Mary drove to the restaurant, had lobster, and then left for the movie."
- ◆ What time of day is it?
- Did Mary pay for the lobster?
- ◆ Was the lobster cooked?
- ◆ Did Mary eat ONLY lobster?
- ◆ Did Mary leave her car?
- We infer a tremendous amount of information from this sentence because of we are familiar with restaurants

Pragmatic Analysis

- Pragmatic analysis determines the meaning of the phrases as a whole (the gestalt)
- The system requires a detailed domain model in order to be able to infer information that is not stated explicitly
- ◆ This goes far beyond what we needed in semantic analysis – we need explicit domain knowledge to fill in information that is NOT included in the utterance
- ◆ The model must contain knowledge about actors, situations, props, expectations, etc

Scripts

- We need another specialized representation for this
- Scripts are a structured form of knowledge that attempt to describe the goings-on in a domain
 what normally happens, what to expect
- ◆ All the world really is a stage in this sense
- Like a theatre script, these involve describing actors, props, settings, and sequences of expected events
- ◆ To understand the example of Mary, we need to understand what happens in specific types of restaurants

30

- 3

Scripts

- ◆ As we said Scripts are structured
- This means we link scripts together
- Going to a restaurant involves getting there (temporal connections)
- ◆ Each script contains lower-level acts
- Eating is a script: not normally a thrilling sequence of events, but certainly a set of expectations placed on behaviour
- Eventually these break down into the primitive acts of conceptual dependency theory

Pragmatic Analysis

- Involves applying this domain knowledge to the structuring we've already produced to provide an understanding of the phrases
- ◆ We invoke one or more scripts that allow us to understand elements that aren't specifically explained in the dialogue
 - also uncertainty management involved here; e.g. type of restaurant
- ...and also to further resolve ambiguities in interpretation!

33

34

Pragmatic Analysis

- We can then ask questions (like whether Mary paid for her lobster), and link an overall dialogue together
- ◆ This is an example of the kind of specialized knowledge that is needed to apply AI techniques to complex tasks
- ◆ You can see the general techniques we started out with would fail miserably!!!
- Scripts are also one approach to representing common-sense knowledge for a specific purpose
 - might not be so useful for other purposes!

Pragmatic Analysis

- Obviously the most difficult (which is why we try to pare down the number of possibilities to this point)
- ◆ But also the phase where the most interesting elements happen – where we answer the most difficult questions
- ◆ e.g. deciding which of many possible interpretations is valid for complex phrases; for example: "Sam saw Diane in the park with a telescope"
- ◆ Is Diane an astronomer or is Sam creepy?
- A significant part of complex language use in humour, poetry, songs, etc. involves dealing with this level, and would likely be completely incomprehensible without it

NLU Summary

- ◆ There is still a significant amount of knowledge that is needed before an NLU system is able to function at or near the human level
- discourse knowledge: knowledge of how people converse
- belief knowledge: knowledge about the (differing) beliefs of people
- ◆ commonsense knowledge about the world and the way that people and objects in the world function – this is a huge undertaking!

- see Cyc!

37

NLU Summary

♦ NLU involves very complex processing that can not easily be subdivided into neat packages (syntax analysis etc.) that are independent of each other

38

Interaction Between Levels

- ◆ I've presented this as separate levels but really they're heavily interactive
- As we said, syntactic knowledge alone leaves us with many candidate interpretations
- You can look at resolving those (finding the correct one) using later stages
- ◆ This is why speech understanding is so much harder: think of the number of candidates we get when we go to a lower level (recognizing parts of syllables!)

Opportunistic Approaches

- ♦ It turns out working completely bottom up isn't a useful way of doing things – too much uncertainty, too many candidate interpretations, especially at lower levels
 - e.g. whether a word is a noun or a verb

- ◆ There are times where we appear to work top down ourselves (e.g. when we miss a word, we fill it in with likely candidates given the context of the dialog)
- ◆ But completely top down would be silly too!

Opportunistic Approaches

- ◆ Really what we want to do is work in both directions, and at any point choose what makes the most sense to do – e.g. hypothesize a couple of word usages, then see if they work in a grammar, and so on
- We want to recognize opportunities to make large solution steps (e.g. recognize when a certain word would fit in context even if we haven't recognized it
 - we do this all the time: opportunistic search as opposed to purely forward/backward

Opportunistic Approaches

- ◆ Rely on an agenda of some sort: we do the most important thing at any point and modify the agenda as we go to reflect new opportunities
- ◆ A blackboard approach is the most commonly used of the opportunistic approaches
- Metaphor based on the idea of a cluster of experts working around a blackboard, with one piece of chalk
- ◆ Everybody tries to contribute when we can, the agenda decides on which expert gets to go

41

42

The Blackboard Model

- Our experts are called knowledge sources: each has a set of preconditions indicating when it's useful
 - A grammar KS might say it's useful when we have a morphology of a particular word that is uncertain between two word types (e.g. party as a noun and a verb)
- Hypotheses, facts are kept on a global blackboard accessible (and alterable) by all

Knowledge Sources

- The agenda manager manages a list of potential knowledge source activations
 - When a KS's preconditions are met, it can place itself on this agenda
 - The agenda is ranked by the agenda manager (this may itself be a knowledge source – knowledge about which experts are useful when!)
 - * agenda is reranked after each KS run
 - When it's at the top of the agenda, the KS can use it's specialized reasoning approach to work and alter the blackboard, potentially stimulating other experts

Similar to?

- ◆ Rule-Based systems
 - Condition-action components in KS's
 - BB -> working memory
 - Agenda manager: conlict resolution strategy
- ◆ Difference?
 - Granularity
 - Here we're talking about complete systems specialized for various purposes
 - Think of interacting expert systems!
 - This is really a primitive example of a Multi-Agent approach to problem solving

Multi-Level Blackboards

- Most systems partition the blackboard into multiple levels
 - Allows knowledge sources to effectively move data from one level to another
 - Many problems are naturally partitioned in levels: NLU!
- ◆ e.g. Hearsay-II a speech understanding system
 - Blackboard contains hypotheses regarding the meaning of an uttered phrase
 - Divided into many levels: candidate syllables, words, partial phrases
 - support from lower levels can drive support for higherlevel hypotheses

Hearsay example

Example - somewhat contrived

Word level Wordhypothesis KS Syllable level Au shun to

Hearsay example

◆ Example - somewhat contrived

- islands of certainty
- As we have said, we observe processes like this in NLU (and in signal processing in general!) all the time