Cours 2 : Deep Learning pour les données séquentielles

François HU - 13/10/2020

Data Scientist au DataLab de la Société Générale Assurances Doctorant à l'ENSAE-CREST

Les cours se trouvent ici : https://curiousml.github.io/

Sommaire

1. Introduction

2. Recurrent Neural Network (RNN)

- Modèles RNN « classique »
- D'autres architectures RNN
- Modèle Bidirectional-RNN (BRNN)
- Modèle Deep RNN

3. OPTION

- [option] LSTM / GRU
- [option] BERT

Programme

Introduction

Représentations vectorielles

Deep Learning pour NLP

Active Learning

Introduction

Pourquoi les modèles séquentiels?

- classification de textes / analyse de sentiment
- Named Entity Recognition (NER)
- génération de textes / de musiques
- traducteur de langue automatique

- ...

Pourquoi pas les réseaux de neurones « standard » ?

Introduction

Pourquoi les modèles séquentiels?

- classification de textes / analyse de sentiment
- Named Entity Recognition (NER)
- génération de textes / de musiques
- traducteur de langue automatique
- ...

Pourquoi pas les réseaux de neurones « standard » ?

- inputs / outputs peuvent être de tailles différentes
- ne tient pas en compte des différentes positions des mots

2. Recurrent Neural Networks (RNN)

Modèle RNN « classique » (1/3)

Word embedding (plongement de mot en français) : vectorisation des mots de sorte que les mots apparaissant dans des contextes similaires ont des significations apparentées

- possibilité de manipuler des séquences de taille variable
- tout calcul futur tient compte des calculs passés
- les poids / paramètres sont partagés dans le temps

Modèle RNN « classique » (2/3)

Propagation avant (forward propagation) d'un RNN :

Pour voir l'animation :

https://curiousml.github.io/teaching/ DSA/RNNforward.html

étant donné les poids w_{intput} , $w_{transition}$ et w_{output} , nous allons calculer a_t , \hat{y}_t et $l_t = l(y_t, \hat{y}_t)$

Au temps t = 0 :
$$a_0 = \vec{0}$$

Au temps t > 0 :
$$a_t = \sigma_{transition}(w_{transition} \cdot a_{t-1} + w_{input} \cdot x_t)$$
 $\hat{y}_t = \sigma_{output}(w_{output} \cdot a_t)$

Modèle RNN « classique » (2/3)

Propagation avant (forward propagation) d'un RNN :

Pour voir l'animation :

https://curiousml.github.io/teaching/ DSA/RNNforward.html

étant donné les poids w_{intput} , $w_{transition}$ et w_{output} , nous allons calculer a_t , \hat{y}_t et $l_t = l(y_t, \hat{y}_t)$

Au temps t = 0 :
$$a_0 = \vec{0}$$

Au temps
$$t > 0$$
:

Exemple de fonction de perte : **Cross-Entropy**

Exemple de fonction d'activation :

 $\sigma_{transition} \leftarrow \text{tanh ou ReLu}$

 $\sigma_{output} \leftarrow \text{sigmoid ou softmax}$

Modèle RNN « classique » (3/3)

Propagation arrière (back-propagation) d'un RNN:

Pour voir l'animation :

https://curiousml.github.io/teaching/ DSA/RNNbackprop.html

mettre à jour les poids w_{intput} , $w_{transition}$ et w_{output} afin de minimiser les fonctions de pertes $l_t = l(y_t, \hat{y}_t)$

Modèle RNN « classique » (3/3)

Propagation arrière (back-propagation) d'un RNN:

Pour voir l'animation :

https://curiousml.github.io/teaching/ DSA/RNNbackprop.html

mettre à jour les poids w_{intput} , $w_{transition}$ et w_{output} afin de minimiser les fonctions de pertes $l_t = l(y_t, \hat{y}_t)$

Par descente de gradient

Architecture N-N, N-1, 1-N, N-M

Architecture N-N

Named Entity Recognition (NER)

Architecture N-N, N-1, 1-N, N-M

Architecture N-N

Named Entity Recognition (NER)

Architecture N-1

Classification de textes

Architecture N-N, N-1, 1-N, N-M

Architecture N-N

Named Entity Recognition (NER)

Architecture N-1

Classification de textes

Architecture 1-N

Génération de séquences (textes, musique)

Architecture N-N, N-1, 1-N, N-M

Architecture N-N

Named Entity Recognition (NER)

Architecture N-1

Classification de textes

Architecture 1-N

Génération de séquences (textes, musique)

Architecture N-M

Traducteur automatique

• oui, avec l'exemple : Je pense que Paul est né le 10 juillet 1989

- oui, avec l'exemple : Je pense que Paul est né le 10 juillet 1989
- non, avec l'exemple : Je pense que Paul est une boulangerie fondée en 1889

- oui, avec l'exemple : Je pense que **Paul** est né le 10 juillet 1989
- non, avec l'exemple : Je pense que Paul est une boulangerie fondée en 1889

Souvent, la prédiction d'une instance doit dépendre des instances futures

Pour voir l'animation:

https://curiousml.github.io/teaching/ DSA/BRNNforward.html

étant donné les poids w_{intput} , w'_{intput} , $w_{transition}$, $w'_{transition}$ et w_{output} , nous calculons :

- les activations a_t et les activation a_t'
- lacksquare puis les prédictions $\hat{y}_t = \sigma(w_{output} \cdot [a_t, a_t'])$ et les fonctions de perte l_t

propagation arrière : mise à jour des poids **par descente de gradient** afin de minimiser les pertes

Modèle deep RNN

- Empiler les couches cachées
 - Généralement entre 2 et 4 couches cachées (car grande complexité de calcul)

Modèle deep RNN

→ - Empiler les couches cachées

- Généralement entre 2 et 4 couches cachées (car grande complexité de calcul)

Ces couches supplémentaires n'ont pas de connections horizontales

Problème de la disparition du gradient

- les RNN classiques ne sont pas très bon pour les dépendances à long terme à cause de la disparition du gradient
- solution: LSTM / GRU (classique) / BERT (2018) sont des variantes des RNN

Résumé

Modèle RNN « classique »

D'autres architectures RNN

Modèles Bidirectional-RNN (BRNN)

Modèle Deep RNN (DRNN)