3.1 Motion through pose composition

A fundamental aspect of the development of mobile robots is the motion itself. In an idyllic world, motion commands are sent to the robot locomotion system, which perfectly executes them and drives the robot to a desired location. However, this is not a trivial matter, as many sources of motion error appear:

- wheel slippage,
- inaccurate calibration,
- temporal response of motors,
- limited resolution during integration (time increments, measurement resolution),
 or
- unequal floor, among others.

These factors introduce uncertainty in the robot motion. Additionally, other constraints to the movement difficult its implementation.

After executing a motion command, the robot would end up in a different position/orientation from the initial one. This particular chapter explores the concept of *robot's pose* used to represent these positions/orientations, and how we deal with it in a probabilistic context.

The pose itself can take multiple forms depending on the problem context:

- **2D location**: In a planar context we only need to a 2d vector $[x, y]^T$ to locate a robot against a point of reference, the origin (0, 0).
- 2D pose: In most cases involving mobile robots, the location alone is insufficient. We need an additional parameter known as orientation or *bearing*. Therefore, a robot's pose is usually expressed as $[x,y,\theta]^T$ (see Fig. 1). In the rest of the book, we mostly refer to this one.
- **3D pose**: Although we will only mention it in passing, for robotics applications in the 3D space, *i.e.* UAV or drones, not only a third axis z is added, but to handle the orientation in a 3D environment we need 3 components, *i.e.* roll, pitch and yaw. This course is centered around planar mobile robots so we will not use this one, nevertheless most methods could be adapted to 3D environments.

In this chapter we will explore how to use the **composition of poses** to express poses in a certain reference system, while the next two chapters describe two probabilistic methods for dealing with the uncertainty inherent to robot motion, namely the **velocity-based** motion model and the **odometry-based** one.

Notebook context: move that robot!

The figure below shows a Giraff robot, equipped with a rig of RGB-D sensors and a 2D laser scanners. The robot is gathering information from said sensors to collect a dataset.

Datasets are useful to train and test new techniques for navigation, perception, etc. However, if the robot remains static, the dataset will only contain information about the part of the room that it is currently inspecting, so, we need to move it!

Your task in this notebook will be to command the robot to move through the environment and calculate its new position after executing a motion command. Let's go!

```
In [1]: %matplotlib widget

# IMPORTS

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from IPython.display import display, clear_output
import time

import sys
sys.path.append("..")
from utils.DrawRobot import DrawRobot
from utils.tcomp import tcomp
```

OPTIONAL

In the Robot motion lecture, we started talking about *Differential drive* motion systems. Include as many cells as needed to introduce the background that you find interesting about it and some code illustrating some related aspect, for example, a code computing and plotting the *Instantaneus Center of Rotation (ICR)* according to a number of given parameters.

```
In [14]: # Function to compute the ICR
         def icr(vl, vr, b):
             # Special case: if vl == vr, the robot moves straight, ICR is at infi
             if vl == vr:
                 return np.inf, 0
             # Compute R (distance to ICR from the robot's center)
             R = (b / 2) * (vl + vr) / (vr - vl)
             # ICR is along the x-axis, so y=0
             return R, 0
         # Function to plot the ICR
         def plot icr(vl, vr, b):
             R, = icr(vl, vr, b)
             # Create a plot
             plt.figure(figsize=(6, 6))
             # Plot the wheels and the robot's midpoint
             plt.plot([b / 2, -b / 2], [0, 0], 'bo-', label="Wheels")
             # Plot the ICR
             if np.isinf(R):
                 plt.text(1, 0.5, "Straight Motion (ICR at infinity)", fontsize=12
             else:
                 plt.plot(R, 0, 'ro', label="ICR")
                 plt.plot([0, R], [0, 0], 'r--', label="ICR distance")
             # Formatting the plot
             plt.xlim([-abs(R) - 1, abs(R) + 1])
             plt.ylim([-2, 2])
             plt.axhline(0, color='black',linewidth=0.5)
             plt.axvline(0, color='black',linewidth=0.5)
             plt.title("Instantaneous Center of Rotation (ICR)")
             plt.legend()
             plt.gca().set aspect('equal', adjustable='box')
             plt.grid(True)
             plt.show()
         # Example usage:
         plot icr(1, 0.5, 1)
```

Figure

END OF OPTIONAL PART

3.1 Pose composition

The composition of posses is a tool that permits us to express the *final* pose of a robot in an arbitrary coordinate system. Given an initial pose p_1 and a pose differential Δp (pose increment), *i.e.* how much the robot has moved during an interval of time, the final pose p can be computed using the **composition of poses** function (see Fig.1):

$$p_1 = egin{bmatrix} x_1 \ y_1 \ heta_1 \end{bmatrix}, \;\; \Delta p = egin{bmatrix} \Delta x \ \Delta y \ \Delta heta \end{bmatrix} \ p_2 = egin{bmatrix} x \ y \ heta \end{bmatrix} = p_1 \oplus \Delta p = egin{bmatrix} x_1 + \Delta x \cos heta_1 - \Delta y \sin heta_1 \ y_1 + \Delta x \sin heta_1 + \Delta y \cos heta_1 \ heta_1 + \Delta heta \end{pmatrix} \ (1)$$

Fig. 1: Example of an initial 2D robot pose (p_1) and its resultant pose (p_2) after completing a motion (Δp) .

The differential Δp , although we are using it as control in this exercise, normally is calculated given the robot's locomotion or sensed by the wheel encoders.

You are provided with a function called $pose_2 = tcomp(pose_1, u)$ that apply the composition of poses to pose $pose_1$ and pose increment u and returns the new pose $pose_2$. Below you have a code cell to play with it.

```
In [2]: # Pose increments' playground!
        # You can modify pose and increment here to experiment
        pose 1 = np.vstack([0, 0, 0]) # Initial pose
        u = np.vstack([2, 2, np.pi/2]) # Pose increment
        pose 2 = tcomp(pose 1, u) # Pose after executing the motion
        # NUMERICAL RESULTS
        print(f"Initial pose: {pose 1}")
        print(f"Pose increment: {u}")
        print(f"New pose after applying tcomp: {pose_2}")
        # VISUALIZATION
        fig, ax = plt.subplots()
        plt.grid('on')
        plt.xlim((-2, 10))
        plt.ylim((-2, 10))
        h1 = DrawRobot(fig, ax, pose_1);
        h2 = DrawRobot(fig, ax, pose_2, color='blue')
        plt.legend([h1[0],h2[0]],['pose 1','pose 2']);
       Initial pose: [[0]
        [0]
        [0]
       Pose increment: [[2.
                                    1
        [2.
                   1
        [1.57079633]]
       New pose after applying tcomp: [[2.
                                                   ]
        [2.
        [1.57079633]]
```

Figure

OPTIONAL

Implement your own methods to compute the composition of two poses, as well as the inverse composition. Include some examples of their utilization, also incorporating plots.

```
In [3]: # Implement your own methods to compute the composition of two poses, as
        def tcomp2(pose1, u):
            Function to compute the composition of two poses.
            Args:
            posel -- np.array of shape (3, 1) representing the initial pose.
            u -- np.array of shape (3, 1) representing the pose increment.
            Returns:
            pose2 -- np.array of shape (3, 1) representing the new pose after app
            # Pose increment
            x, y, theta = u
            # Initial pose
            x1, y1, thetal = pose1
            # New pose after applying the motion
            x2 = x1 + x*np.cos(theta1) - y*np.sin(theta1)
            y2 = y1 + x*np.sin(theta1) + y*np.cos(theta1)
            theta2 = theta1 + theta
            pose2 = np.vstack([x2, y2, theta2])
            return pose2
```

```
def tcomp inv2(pose1, pose2):
    Function to compute the inverse composition of two poses.
    Args:
    posel -- np.array of shape (3, 1) representing the initial pose.
    pose2 -- np.array of shape (3, 1) representing the new pose after app
    Returns:
    u -- np.array of shape (3, 1) representing the pose increment.
    # Initial pose
    x1, y1, theta1 = pose1
    # New pose after applying the motion
    x2, y2, theta2 = pose2
    # Pose increment
    x = (x2 - x1)*np.cos(theta1) + (y2 - y1)*np.sin(theta1)
    y = -(x2 - x1)*np.sin(theta1) + (y2 - y1)*np.cos(theta1)
    theta = theta2 - theta1
    u = np.vstack([x, y, theta])
    return u
```

```
In [4]: # Pose increments' playground!
        # You can modify pose and increment here to experiment
        pose_1 = np.vstack([0, 0, 0]) # Initial pose
        u = np.vstack([2, 2, np.pi/2]) # Pose increment
        pose_2 = tcomp2(pose_1, u) # Pose after executing the motion
        # We make sure tcomp and tcomp2 are consistent printing the results
        # print(assert np.allclose(pose 2, tcomp(pose 1, u)))
        pose 2 tcomp = tcomp(pose 1, u)
        print("tcomp == tcomp2")
        print(pose 2 tcomp)
        print(pose 2)
        pose_1_inverse = tcomp_inv2(pose_2, u)
        print("INVERSE")
        print(pose_1_inverse)
        print(pose 1)
        # NUMERICAL RESULTS
        print(f"Initial pose: {pose 1}")
        print(f"Pose increment: {u}")
        print(f"New pose after applying tcomp: {pose_2}")
        # VISUALIZATION
        fig, ax = plt.subplots()
        plt.grid('on')
        plt.xlim((-2, 10))
        plt.ylim((-2, 10))
        h1 = DrawRobot(fig, ax, pose 1)
        h2 = DrawRobot(fig, ax, pose_2, color='blue')
        h3 = DrawRobot(fig, ax, pose 1 inverse, color='green')
        plt.legend([h1[0],h2[0]],['pose_1','pose_2', 'pose_1_inverse'])
```

```
tcomp == tcomp2
[[2.
             ]
 [2.
             ]
 [1.57079633]]
[[2.
             ]
[2.
 [1.57079633]]
INVERSE
[[0.]
 [0.]
[0.]]
[[0]]
 [0]
 [0]]
Initial pose: [[0]
 [0]
 [0]]
Pose increment: [[2.
                              ]
 [2.
 [1.57079633]]
New pose after applying tcomp: [[2.
                                              ]
 [2.
 [1.57079633]]
```

Out[4]: <matplotlib.legend.Legend at 0x79e53cb26a80>

END OF OPTIONAL PART

ASSIGNMENT 1: Moving the robot by composing pose increments

Take a look at the Robot() class provided and its methods: the constructor, step() and draw(). Then, modify the main function in the next cell for the robot to describe a $8m \times 8m$ square path as seen in the figure below. You must take into account that:

- The robot starts in the bottom-left corner (0,0) heading north and
- moves at increments of 2m each step.
- Each 4 steps, it will turn right.

Example

Fig. 2: Route of our robot.

```
In [6]: def main(robot):

# PARAMETERS INITIALIZATION
    num_steps = 15 # Number of robot motions
    turning = 4 # Number of steps for turning
    u = np.vstack([2., 0., 0.]) # Motion command (pose increment)
    angle_inc = -np.pi/2 # Angle increment

# VISUALIZATION
    fig, ax = plt.subplots()
    plt.ion()
    plt.draw()
    plt.vlim((-2, 10))
    plt.ylim((-2, 10))
    plt.fill([2, 2, 6, 6],[2, 6, 6, 2],facecolor='lightgray', edgecolor='
```

```
plt.grid()
robot.draw(fig, ax)
# MAIN LOOP
for step in range(1, num steps+1):
    # Check if the robot has to move in straight line or also has to
    # and accordingly set the third component (rotation) of the motio
    if step % turning == 0:
        u[2] = angle_inc # Set the rotation component
    else:
        u[2] = 0
    # Execute the motion command
    robot.step(u)
    # VISUALIZATION
    robot.draw(fig, ax)
    clear output(wait=True)
    display(fig)
    time.sleep(0.1)
plt.close()
```

Execute the following code cell to **try your code**. The resulting figure must be the same as Fig. 2.

```
In [7]: # RUN
    initial_pose = np.vstack([0., 0., np.pi/2])
    robot = Robot(initial_pose)
    main(robot)
```


3.2 Considering noise

In the previous case, the robot motion was error-free. This is overly optimistic as in a real use case the conditions of the environment and the motion itselft are a huge source of uncertainty.

To take into consideration such uncertainty, we will model the movement of the robot as a (multidimensional) gaussian distribution $\Delta p \sim N(\mu_{\Delta p}, \Sigma_{\Delta p})$ where:

- The mean $\mu_{\Delta p}$ is still the pose differential in the previous exercise, that is $\Delta p_{
 m given}$.
- The covariance $\Sigma_{\Delta p}$ is a 3×3 matrix, which defines the amount of error at each step (time interval). It looks like this:

$$\Sigma_{\Delta p} = egin{bmatrix} \sigma_x^2 & 0 & 0 \ 0 & \sigma_y^2 & 0 \ 0 & 0 & \sigma_ heta^2 \end{bmatrix}$$

To gain insight into the vocariance matrix, let's suppose that we've commanded Giraff to move two meters forward, one to the left, and turns pi/2 to the left a total of twenty times, and we've measured its final position. This is the result:

```
In [8]: # Array of motion measurements [x i,y i,theta i]
        data = np.array([
            [1.9272377, 0.61826959, 1.56767043],
            [2.32512511, 1.00742,
                                   1.5908133],
            [2.18640042, 0.98655067, 1.68010124],
            [1.98890723, 0.96641266, 1.5478623],
            [2.0729443, 0.82685635, 1.67115959],
            [1.975565,
                         1.20433306, 1.62406736],
            [1.88160001, 1.17310891, 1.54204513],
            [2.21991591, 0.92045473, 1.55294863],
            [1.79006882, 0.97170525, 1.60347324],
            [2.13932179, 1.17665025, 1.57022972],
            [1.89099453, 0.86546558, 1.52364342],
            [1.78903666, 0.93264142, 1.60133537],
            [2.05418773, 1.34436849, 1.58577607],
            [2.12027142, 1.15626879, 1.5552685],
            [2.04842395, 1.22015604, 1.58246969],
            [2.00209448, 0.77744971, 1.55656092],
            [2.06276761, 0.88401541, 1.62989382],
            [1.70384096, 1.12819609, 1.61440142],
            [1.84918712, 1.26022099, 1.50058668],
            [2.02138316, 1.12614774, 1.52156016]
        ])
```

ASSIGNMENT 2: Calculating the covariance matrix

Complete the following code to compute the covariance matrix characterizing the motion uncertainty of the Giraff robot. Ask yourself what the values in the diagonal mean, and what happens if they increase/decrease.

```
Hints: np.var() , np.diag()
```

```
In [9]: # Compute the covariance matrix (since there is no correlation, we only d
        cov_x = np.var(data[:,0])
        cov y = np.var(data[:,1])
        cov theta = np.var(data[:,2])
        # Form the diagonal covariance matrix
        covariance_matrix = np.diag([cov_x, cov_y, cov_theta])
        # PRINT COVARTANCE MATRIX
        print("Covariance matrix:")
        print(covariance matrix)
        # VISUALIZATION
        fig, ax = plt.subplots()
        plt.xlim((1.5, 2.5))
        plt.ylim((0, 2))
        plt.grid('on')
        # Commanded pose
        DrawRobot(fig, ax, np.vstack([2, 1, np.pi/2]), color='blue')
        # Noisy poses
        for pose in data:
            DrawRobot(fig, ax, np.vstack([pose[0],pose[1],pose[2]]))
        plt.xlabel('X position')
        plt.ylabel('Y position')
        plt.title('Noisy Pose Measurements')
        plt.show()
       Covariance matrix:
```


Expected results:

Covariance matrix:	
[[0.02342594 0. 0.]
[0. 0.03246639 0.]
[0. 0. 0.00212976	5]]

ASSIGNMENT 3: Adding noise to the pose motion

Now, we are going to add a Gaussian noise to the motion, assuming that the incremental motion now follows the probability distribution:

$$\Delta p = N(\Delta p_{given}, \Sigma_{\Delta p}) ~with ~\Sigma_{\Delta p} = egin{bmatrix} 0.04 & 0 & 0 \ 0 & 0.04 & 0 \ 0 & 0 & 0.01 \end{bmatrix} ext{(units in } m^2 ext{ and } rad^2)$$

For doing that, complete the **NosyRobot()** class below, which is a child class of the previous **Robot()** one. Concretely, you have to:

- Complete this new class by adding some amount of noise to the movement (take a look at the step() method. Hints: np.vstack(),
 stats.multivariate normal.rvs().
- Remark that we have now two variables related to the robot pose:
 - self.pose , which represents the expected, ideal pose, and
 - **self.true_pose**, that stands for the actual pose after carrying out a noisy motion command.
- Along with the expected pose drawn in red (self.pose), in the draw() method plot the real pose of the robot (self.true_pose) in blue, which as commented is affected by noise.

Run the cell several times to see that the motion (and the path) is different each time. Try also with different values of the covariance matrix.

Example

Fig. 3: Movement of our robot using pose compositions. Containing the expected poses (in red) and the true pose

affected by noise (in blue)

```
In [10]: class NoisyRobot(Robot):
             """Mobile robot implementation. It's motion has a set ammount of nois
                 Attr:
                     pose: Inherited from Robot
                     true pose: Real robot pose, which has been affected by some a
                     covariance: Amount of error of each step.
             .....
             def __init__(self, mean, covariance):
                 super().__init__(mean)
                 self.true pose = mean
                 self.covariance = covariance
             def step(self, step increment):
                  """Computes a single step of our noisy robot.
                      super().step(...) updates the expected pose (without noise)
                     Generate a noisy increment based on step increment and self.c
                     Then this noisy increment is applied to self.true pose
                 super().step(step increment)
                 true step = stats.multivariate normal.rvs(step increment.flatten(
                 self.true pose = tcomp(self.true pose, np.vstack(true step))
             def draw(self, fig, ax):
                 super().draw(fig, ax)
                 DrawRobot(fig, ax, self.true pose, color='blue')
In [11]: # RUN
         initial pose = np.vstack([0., 0., np.pi/2])
         cov = np.diag([0.04, 0.04, 0.01])
         robot = NoisyRobot(initial pose, cov)
         main(robot)
```


Thinking about it (1)

Now that you are an expert in retrieving the pose of a robot after carrying out a motion command defined as a pose increment, **answer the following questions**:

- Why are the expected (red) and true (blue) poses different?
 Because the true pose is affected by noise, which is modeled by the covariance matrix.
- In which scenario could they be the same?
 - When the covariance is smaller, the true pose is closer to the expected pose. Both the red and the blue would be the same if the covariance matrix had 0 in the diagonal
- How affect the values in the covariance matrix $\Sigma_{\Delta p}$ the robot motion?

The values in the covariance matrix affect the robot motion by adding noise to the motion increment. The top value of the diagonal affect the noise in the X axis, the middle one the noise in the Y axis and the last one, affects the noise in the angle of the pose.