Find the synchronous speed of an 8-pole 60 Hz AC motor in revolution per minute.

A .450

B. 900

C. 750

D. 1500

ANSWER: B

50.  $N_{c} = 120f = 120x603015 = 900$  P 842

If an R-L load is drawing 8 kW at a power factor of 0.8 (lagging) from a single-phase A.C. supply, find the apparent power drawn by the load.

A. 10 VA

B. 6.4 VA

C. 6.4 kVA

D. 10 Kva

ANSWER: D

| P=8KW COSO:         | = 0.8                       |
|---------------------|-----------------------------|
| $cos \phi = real P$ |                             |
| app P               |                             |
| 0.8 = 8×10-3        | P= 8×103 = 10,000 VA        |
| P                   | 0.8                         |
|                     | $cos \phi = real P$ $app P$ |

The average value of sine wave with the peak value of

400 Vis \_\_\_\_\_V

A. 1127.4

B. 254.6

C. 1282.8

D. 1200

ANSWER: B

| 48. | Cuphin Bank under 2                                  | papergrid Date: / / |
|-----|------------------------------------------------------|---------------------|
| 47  | $V_g = 0.636 V_m$ $V_g = 0.636 (400)$ $= 254.4V_{H}$ | m cm mm m           |

A wave completes one cycle in 10 m sec, its frequency will be \_\_\_\_\_ Hz

A. 1

B. 50

C. 100

D. 10

ANSWER: C

| 41. | Base = 10                                     |  |
|-----|-----------------------------------------------|--|
|     | $f = 1 = 1 = 1 \times 10^3$ T 10ms 10×10-3 10 |  |
|     | $= 0.1 \times 10^3$ $= 100 \mu$               |  |
| 20  | 100/,                                         |  |

3.A DC motor takes an armature current of 110A at 480V. The armature circuit resistance is .20hm. the machine has 6poles and the armature is lap connected with 864conductors. the flux per pole is 0.05wb .calculate speed and torque developed by the armature.

- a)N=630rpm&T=750N-m
- c)N=636rpm&T=756N-m
- b)N=635rpm&T=786N-m
- d)N=536rpm&T=856N-m

Answer: C

philadelphia.edu.jo/academics/fobeidat/uploads/Electric%20machines%20I/7%20DC%20machines-%20DC%20motors.pdf

## **Armature Torque of DC Motor**

Example: A DC motor takes an armature current of 110A at 480V. The armature circuit resistance is  $0.2\Omega$ . The machine has 6 poles and the armature is lap-connected with 864 conductors. The flux per pole is 0.05wb. Calculate the speed and the gross torque developed by the armature.

$$E_A = V_T - I_A R_A = 480 - 110 \times 0.2 = 458V$$

$$E_A = \frac{\phi ZN}{60} \times \frac{P}{A} = \frac{0.05 \times 864 \times N}{60} = 458$$

$$N = 636 \, rpm$$

$$T_a = 9.55 \frac{E_A I_A}{N} = 9.55 \frac{458 \times 110}{636} \approx 756 \text{N. m}$$

Or 
$$T_a = 0.159 \times \phi \times Z \times I_A = 0.159 \times 0.05 \times 864 \times 110 \approx 756$$
N. m

Example: Determine armature torque and motor speed of 220V, 4-pole series motor with 800 conductors wave connected supplying a load by taking 45A from

























6. A Solenoid is wound with a coil of 100 turns. The coil is of length 50cm and is carrying a current of 2A.Determine the magnetic field strength at the line of the solenoid.

- a)450AT/m
- b)400AT/m
- c)500AT/m
- d)600AT/m

Answer: B

| bigs | papergrid Date:                                                                | 48 |
|------|--------------------------------------------------------------------------------|----|
| 24.  | $N = 100$ $I = 50 \text{cm} \Rightarrow 50 \times 10^{-2} \text{m}$ $I = 2A$   | 4- |
|      | $H = NI = 106 \times 2 = 4 \times 100 = 400 \text{ AT}$ 1 56× 10 <sup>-2</sup> | 14 |
| 21   | 0-9                                                                            |    |

8. What is the reluctance of a material that has a length of 0.07 m, a cross-sectional area of 0.014 m2, and a permeability of 4,500 Wb/At × m?

a)1111 At/Wb

b)111 At/Wb

c)11 At/Wb

d)1 At/Wb

Answer: A

| 26.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S= ? M.S.                              | •  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----|
| The same of the sa | l=0.07m                                |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $A = 0.014m^2$                         | 33 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | µ = 4500 10 11                         | -  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 X 50 2 (op that)                     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ما |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Moura                                  | 1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pav Pav                                | 4  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S = 0.07 . 000                         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47 x 10-7 x 4500 x 0.014               | 1  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 10 |
| 5 = 1 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 884.19                               | -  |
| 17-20-420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | -  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S = 1 = 0.07                           |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MA 4500 x 0.014 x 106                  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 1111 At/Wb/.                         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |    |

8. What is the reluctance of a material that has a length of 0.07 m, a cross-sectional area of 0.014  $m^2,$  and a permeability of 4,500  $\mu Wb/At \times m?$ 



○(B) 111 At/Wb

O(C) 11 At/Wb

O(D) 1 At/Wb

Correct Answer

Answer: Option A



9.A 47 Ohm resistor and a capacitor with a capacitive reactance of 120 are in series across an ac source. What is the circuit impedance, Z

- a)1260hm
- b)127ohm
- c)1280hm
- d)129ohm

Answer: D

| _   |                                                                   |    |
|-----|-------------------------------------------------------------------|----|
| 27. | 47_2 XC = 120                                                     | 00 |
|     | _m_+L                                                             | 00 |
|     | Z=?                                                               | 00 |
|     | 7                                                                 | 00 |
|     | $Z = \sqrt{R^2 + \chi_c^2}$                                       | 20 |
|     | $Z = \sqrt{(41)^2 + (120)^2}$ R                                   |    |
|     | = \[ \frac{2209 + 14400}{} = \sqrt{16509} = \[ \frac{128.87}{} \] | -  |
|     | $(OY)$ $Z=R-jX_{c} \Rightarrow 47-j120$                           | 00 |
|     | 47_2-j120_2_,·                                                    | 00 |
|     |                                                                   | -  |

12.A DC generator is rotated at 50 revolutions/sec .how many times does the dc output voltage reach maximum in each second?

- a)50
- b)100
- c)150
- d)3000

Answer: B

| - | I gycle ie completed in one revolution. In cycle, |
|---|---------------------------------------------------|
| • | it obtains two times man value.                   |
| - | H = 45 mo mp 18                                   |
| - | 2 x 50 = 100 times //.                            |
|   |                                                   |

1.In a series RC circuit, 12V is measured across the resistor and 15V is measured across the capacitor. The source voltage is

a)3V

b)27V

c)19.2V

d)12V

Answer: C

|   | 31.     | RC 12V                                                                              |     |
|---|---------|-------------------------------------------------------------------------------------|-----|
|   |         |                                                                                     |     |
|   |         | $\frac{\sqrt{5}}{5} = 12 + 15 = 27$ $\frac{\sqrt{5}}{5} = \sqrt{5} + \sqrt{5} = 27$ |     |
| - |         | tymb = R                                                                            |     |
| • |         | $= \sqrt{(12)^2 + (15)^2} = \sqrt{144 + 225} = \sqrt{36}$                           |     |
|   |         | = 19.20                                                                             | Vj. |
|   |         | Too = 1 = 2                                                                         |     |
|   | 1010 41 | o a x ooter that                                                                    |     |

8. The synchronous speed of a4 pole induction motor for 50hz power supply is -----rpm.

- a)1500
- b)1000
- c)750
- d)1440

Answer: A

| = 12                    | lox f | = 120x 50 25 | -  |
|-------------------------|-------|--------------|----|
|                         | polis | K 21         | 6  |
| Book of a little of the |       | = 1500 rpm/- | 00 |

For an alternating current with the frequency 50 Hz, the reactance of the capacitor is 10 ohms. When the frequency is increased to 60 Hz, the reactance of the capacitor becomes \_\_\_\_ ohms.

A. 7.56

B. 9.44

C. 8.33

D. 6.83

ANSWER: C

| Marian and Marian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5d. Xc = 1                                                              |
| STATE OF THE PARTY | 271fc                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x_{c1} = \frac{1}{2\pi f_1 c}$                                         |
| To the last of the | X,                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 211 21 13.                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x_{c_1} = f_1 = 1 \times f_2 = f_2$                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Xcr I ft I f,                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $X_{c1} = f_2$                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Xc2 f, 14.                                                              |
| Salara Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x_{c2} = ?$ $f_2 = 60Hz$ $\frac{8.33}{12x}$                            |
| No. of Concession, Name of Street, or other Designation, Name of Street, or other Designation, Name of Street, | - 44                                                                    |
| 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Xc2 50                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{10 = 6}{20} = \frac{3}{20} \times \frac{10}{20} = \frac{5}{20}$  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{10 - 3}{20} = \frac{10 - 3}{10} = \frac{10}{10} = \frac{5}{10}$  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $x_{12} = 5 \times 105 = 25 = 8.33$ $x_{23} = 5 \times 105 = 25 = 8.33$ |

14. The primary winding of a transformer has 110v across it. What is the secondary voltage if the turns ratio is 8?

a)8.8V

b)88V

c)880V

d)8800V

Answer: C

| $V_1 = N_1$ $V_2 = 8$ $V_2 = 880V$        | 051+34                        | 20.17 |  |
|-------------------------------------------|-------------------------------|-------|--|
| V2 = 20.                                  |                               |       |  |
| A5 990V                                   |                               | 8=7.  |  |
| × 1 10 10 10 10 10 10 10 10 10 10 10 10 1 | 182-1-162 1<br>1(41)-4-(120)- |       |  |
| E & 1 = 100 51 }                          | = 004444 (800 2)              |       |  |

15.A magnetizing force of 8000A/m is applied to a circular magnetic circuit of mean diameter 30cm by passing a current through a coil wound on the circuit is 750 turned. If the coil is uniformly wound, calculate the current flow in the circuit.

a)10.05A

b)9.8A

c)11A

d)12A

Answer: A





Problem 3. A magnetizing force of 8000 A/m is applied to a circular magnetic circuit of mean diameter 30 cm by passing a current through a coil wound on the circuit. If the coil is uniformly wound around the circuit and has 750 turns, find the current in the coil.

$$H = 8000 \text{ A/m}$$
;  $l = \pi d = \pi \times 30 \times 10^{-2} \text{ m}$ ;  $N = 750 \text{ turns}$ 

Since 
$$H = \frac{NI}{l}$$
 then,  $I = \frac{Hl}{N} = \frac{8000 \times \pi \times 30 \times 10^{-2}}{750}$ 

Thus, current I = 10.05 A



















16. What will be the magnetic potential difference across the air gap of 2cm length in magnetic field of 200 AT/m?

- a)2AT
- b)4AT
- c)6AT
- d)10AT

Answer: B

| 16. | H = 200 AT/m                                          |
|-----|-------------------------------------------------------|
| 4   | $H = 200 \text{ AT/m}$ $L = 200 = 200^{-2} \text{ m}$ |
|     | 9                                                     |
|     | H= NI = mmf                                           |
|     | L L                                                   |
| -   | NI (or) mmf = HXL = 200 x 2x 10-2                     |
|     | $= 400 \times 10^{-2} = 400 4$                        |
|     | 106                                                   |
|     | = 4 AT                                                |
|     |                                                       |

- 2.Each phase of a 3phase star connected alternator produces a voltage of 11000V and current of 1000A at power factor 0.9.find line voltage, line current and total capacity of the alternator.
  - a)VL=19053V,IL=1000A,Capacity=29.7MW
  - c)VL=19053V,IL=1000A, Capacity=29.7MW
  - b)VL=2000V, IL=1500A, Capacity=25MW
  - d)VL=2500V,IL=500A, Capacity=35MW

Answer: A

Power factor =  $\cos \phi = 0.9$ Line Voltage =  $\sqrt{3} \times \text{Phase}$  voltage =  $\sqrt{3} \times 11000$  $\approx 19053 \text{ V}$ 

Line Current = Phase Current = 1000 A

Capacity = Power =  $\sqrt{3} \text{ V_LI_L} \cos \phi$ =  $\sqrt{3} \times (\sqrt{3} \times 11000) \times (1000) \times 0.9$ 

= 29.7 x 10° W = 29.7 MW