Computer Lab: Quantile Regression

Convex analysis, monotone operators and optimization Olivier Fercoq olivier.fercoq@telecom-paristech.fr 12 December 2019

You can choose any programming language and work either alone or in pairs. Please send your code and answers to the questions to olivier.fercoq@telecom-paristech.fr before Wednesday, December 18th.

1 Data

We will be using the census dataset for this computer lab. Please download the dataset and helper file on

https://perso.telecom-paristech.fr/ofercoq/tp_qr/.

2 Quantile regression with linear kernels

For $\tau \in (0,1)$, let us consider the pinball loss defined as $L_{\tau}(v) = \max\{-(1-\tau)v, \tau v\}$.

Question 2.1

Calculate L_{τ}^* , $\operatorname{prox}_{\gamma L_{\tau}^*}(v)$ and $\operatorname{prox}_{\gamma L_{\tau}}(v)$ for $\gamma > 0$.

The quantile regression problem consists in estimating conditional quantiles. Given a pair of random variables $(X,Y) \in \mathbb{R}^d \times \mathbb{R}$ and a number $\tau \in [0,1]$, our goal is to estimate the conditional quantile function

$$\mu_{\tau}(x) = \inf\{\mu \in \mathbb{R} : \mathbb{P}(Y \le \mu \mid X = x) \ge \tau\}.$$

Given a training set $\{(x_{i,:}, y_i)\}_{0 \le i \le n-1}$, we estimate the conditional quantile using the solution of the following optimization problem:

$$\min_{w \in \mathbb{R}^d, w_0 \in \mathbb{R}} \frac{\alpha}{2} \sum_{j=1}^d w_j^2 + \sum_{i=1}^n L_\tau \left(y_i - \sum_{j=1}^d x_{i,j} w_j - w_0 \right)$$
 (1)

where $\alpha > 0$ is a regularization constant and set $\hat{\mu}_{\tau}(x) = \sum_{j=1}^{d} x_j w_j - w_0$. In the rest of the lab, we shall take $\alpha = 1$.

Question 2.2

Define $g:(w,w_0)\mapsto \frac{\alpha}{2}\|w\|^2$. Calculate $\operatorname{prox}_{\gamma g}((w,w_0))$.

Question 2.3

For $z \in \mathbb{R}^n$, denote $\mathbf{L}_{\tau}(z) = \sum_{i=1}^n L_{\tau}(z_i)$ and $e = (1, \dots, 1)$. Show that

$$\min_{w \in \mathbb{R}^d, w_0 \in \mathbb{R}} \frac{\alpha}{2} ||w||^2 + \mathbf{L}_{\tau}(y - xw - w_0 e) = \min_{w \in \mathbb{R}^d, w_0 \in \mathbb{R}} \max_{z \in \mathbb{R}^n} \frac{\alpha}{2} ||w||^2 - \mathbf{L}_{\tau}^*(z) + z^{\top}(y - xw - w_0 e)$$

$$= \max_{z \in \mathbb{R}^n} y^{\top} z - \frac{1}{2\alpha} ||x^{\top} z||^2 - \mathbf{L}_{\tau}^*(z) - \iota_{\{0\}}(e^{\top} z)$$

$$= \max_{z \in \mathbb{R}^n} \min_{u \in \mathbb{R}} y^{\top} z - \frac{1}{2\alpha} ||x^{\top} z||^2 - \mathbf{L}_{\tau}^*(z) - u e^{\top} z$$

3 Implementation

Question 3.1

Implement at least two algorithms for the resolution of the quantile regression problem. You may choose test_size = 0.99 in order to test your algorithm on small data.

Question 3.2

Define a stopping criterion. Why did you choose it?

Question 3.3

Compare the performance of the algorithms you implemented on the census dataset with $\tau = 0.7$ and test_size=0.33.