Mining Novel Biomaterials

with scikit-learn

Materials Informatics

- Think bioinformatics, but using materials data.
- http://www.materialsproject.org/: open database of calculated materials data

Could we do something interesting with it?

Biocompatibility

- Does a material cause harm when introduced in the human body?
- Ill-defined; a more specific goal is hemocompatibility.
- How does a material interact with blood platelets?

Training Data: Labels

- Each dot is a material
- Upper left = bad
- Lower right = good
- Score = x y

Percentage of platelets remained after dynamic shear stress testing [%]

Training data: Features

- From the Materials Project API
- Four material parameters:
 - band_gap
 - e_above_hull
 - energy_per_atom
 - formation_energy_per_atom
- Standardisation with scikit-learn

Model

- Linear regression
- Best materials have same elements as training set
- Si seems worth exploring
- TODO: more data, implement CV

Chemical Formula	Model Score
Si ₂ CN ₄	0.385
Si(CN ₂) ₂	0.383
Si ₃ N ₄	0.347
Si ₂ N ₂ O	0.298
P_4N_6O	0.262
V_6C_5	0.256
V ₂ C	0.253
PNO	0.246
V ₈ C ₇	0.243