

Acknowledgments

- Webinar and Validation Manual prepared by Cambridge Systematics, Inc.
 - Thomas Rossi
 - David Kurth
- Prepared for Federal Highway Administration
 - H. Sarah Sun
- Arranged by Texas Transportation Institute
 - Gary Thomas

Acknowledgments

- Review panel of experts
 - Paul Agnello, Virginia DOT
 - Ken Cervenka, FTA
 - Alan Horowitz, Univ. of Wisconsin, Milwaukee
 - Ken Kaltenbach, The Corradino Group
 - Guy Rousseau, Atlanta Regional Commission
 - David Schmitt, AECOM
 - Ed Weiner, consultant

3

Travel Model Validation and Reasonability Checking Manual Travel Model Validation and Reasonability Checking Manual Travel Model Validation and Reasonability Checking Manual Identifying Agratia Inspirer Their Planting Analysis Technique TMIP

Manual Chapters

- 1: Introduction today
- 2: Model Validation Plan Specification today
- 3: Validating Model Inputs today
- 4: Socioeconomic Models today
- 5: Amount of Travel/Activity- today

5

Manual Chapters (continued)

- 6: Trip Distribution/Destination Choice/ Location Choice – today
- 7: Mode Choice tomorrow
- 8: Time of Day tomorrow
- 9: Assignment Procedures
 - Highway today
 - Transit tomorrow

Manual Chapters (continued)

- 10: Temporal Validation and Sensitivity Testing tomorrow
- 11: Validation Documentation today

5

Webinar Focus

- Why update the 1997 manual?
 - Validation practices peer exchange questions
- New information in the manual
- Examples of procedures
 - Not a detailed review (you can read the manual)
- A "living" document

Peer Exchange Questions

- How important is it to match base year observations?
- How close is "close enough?"
- What steps needed to ensure accurate validation data?
- How should model sensitivity be tested?

9

Peer Exchange Questions

- Other tests to assess ability to forecast future travel?
- Should risk analysis of future forecasts be performed?
- What is the role of validation documentation in raising model credibility?

The New Manual Discusses, for Each Model Process...

- Sources of Data
- Aggregate Checks
- Disaggregate Checks
- Criteria Guidelines
- Reasonability and Sensitivity Testing
- Troubleshooting Strategies
- Forecasting Checks

11

Validation Is...

- "Essentially, all models are wrong, but some are useful...the practical question is how wrong do they have to be to not be useful." – George Box
- So validation may be defined as "steps to verify the ability of the model system to make reasonable predictions over a range of development patterns, transportation operations, and external factors."

Validation Is Not...

- Standards a model must meet
- "Proof" of a model's
 - Appropriateness
 - Accuracy
- A "check-off" report card for the model

Model Calibration

- More than just regionwide validation "adjusting constants"
- Segmentation variables revising, adding, deleting
- Adjusting network parameters and settings
- Often "points back" to issues with other model steps

15

Overall Model Validation

- The overall results are the results of the final step (assignment)
- But results may indicate things to check in earlier model steps:
 - Screenline issues → check trip distribution
 - VMT too high or low → check trip rates
 - Link volume issues → check networks

Aggregate and Disaggregate Validation

- Disaggregate validation required for disaggregate models
 - Explores how well model fits observed data at the household or individual level
 - Involves defining subgroups of observations
 - Compares model results with observed data to reveal systematic biases
- Aggregate validation required for aggregate and disaggregate models
 - Provides a general overview of model performance through regional travel characteristics
 - Applies model at the regional, district, and zonal level

17

What's New (Compared to 1997 Validation Manual)

- Taking advantage of new experience, data, and insights
- Validating emerging models (e.g. ABM)
- Validation plans
- Documentation of validation
- Web-based document

Model Validation Plan Specification (Chapter 2)

"You've got to be very careful if you don't know where you are going, because you might not get there." – Yogi Berra

19

Planning for Validation Tests

- Reason for test what it is to demonstrate
- Detail required
- Goals for accuracy and sensitivity
- Observed data required / data sources
- Guide allocation of available funds for:
 - Model development
 - Model validation
 - Validation data collection

Planned Tests

- Define validation context how/why models will be used
- Planned model uses help define validation tests and tolerance

21

ExampleDaily Activity Pattern Model Validation Tests

AGGREGATION LEVEL		VALIDATION MEASURES	Е	EXPECTED OUTCOMES	PRIORITY
Comparison of model parameters to other regions	•	Comparison of model coefficients to:	٠	No expectations; comparison only.	Level 1
Disaggregate	•	Prediction success of modeled daily activity pattern choices against observed survey estimation data	•	Prediction success likely to be very low	Level 3
Aggregate	•	Numbers or percents of residents making tours and intermediate stops by activity type: For the region By county By household size and income group By gender and age group		Compare modeled to expanded observed numbers or percents Review for reasonable patterns	Level 2
	•	Percent of "immobiles" by:	•	Compare to results summarized in external report	
Source: DRCC)G				

Example

Volume-Over-Count Ratios and Percent Error

Standards	Statistic Acceptable	Preferable
Freeway Volume-over-Count (FT1x, FT8x, FT9x)	+/- 7%	+/- 6%
Divided Arterial Volume-over-Count (FT2x)	+/- 15%	+/- 10%
Undivided Arterial Volume-over-Count (FT3x)	+/- 15%	+/- 10%
Collector Volume-over-Count (FT4x)	+/- 25%	+/- 20%
One way/Frontage Road Volume-over-Count (FT6x)	+/- 25%	+/- 20%
Freeway Peak Volume-over-Count	75% of links @ +/-20%	50% of links @ +/-10%
Major Arterial Peak Volume-over-Count	75% of links @ +/-30%	50% of links @ +/-15%
Assigned VMT-over-Count Areawide	+/-5%	+/-2%
Assigned VHT-over-Count Areawide	+/-5%	+/-2%
Assigned VMT-over-Count by FT/AT/NL	+/- 25%	+/- 15%
Assigned VHT-over-Count by FT/AT/NL	+/- 25%	+/- 15%

23

Source:

Florida DOT

Identifying Required Validation Data

- For each data item
 - Content
 - How used in validation
 - Geographic scale and extent
 - Time when data were collected
 - Consistency with previous data

Identifying Required Validation Data

- Validation data are subject to sampling error
 - Fallacy of "tight validation" to something with large confidence interval
- Assessment can focus/provide priorities for validation data collection
 - Assembly/mining of existing data
 - Collection of new data

25

Example Allocation of Modeling Resources

Model Development Process Component	Desired Resource Allocation (Percent)
Data collection	39
Estimation	16
Calibration	17
Validation	17
Documentation	9

Source: FHWA Travel Model Validation Practices Peer Exchange

The Major Input Data Groups

- Network data
 - Highway
 - Transit
- Socioeconomic data ("zone" data)
 - Households/persons by type
 - Employment by type
 - Other

Aggregate Input Data Checks

- Socioeconomic data
 - Summation of TAZ data for different segments
 - Comparison to other sources of observed data
- Network data
 - Aggregation of coded network data by segment
 - Comparison to independently summarized data for the same strata

29

Disaggregate Input Data Checks

- Comprehensive disaggregate checks generally not feasible (no independent data source)
- Spot checks
- More ACS data becoming available for checking socioeconomic data
- Check all links in the region for "exceptional" characteristics

Forecasting Checks Example Population Range 500,000- 200,000-50,000-Region > 1,000,000 1,000,000 500,000 200,000 **Average Growth Rates** 1.8% California 1.3% 2.0% 0.8% 1.3% Midwest 0.7% 0.6% 0.6% 0.4% 0.5% Northeast 0.3% 0.4% 0.7% 0.3% 0.4% Other West 2.1% 2.1% 1.9% 2.0% South Central 1.6% 1.5% 2.0% 1.4% 1.3% 1.5% Southeast All 1.3% 1.3% 1.1% 0.9% 1.1% Ranges of Growth Rates California 0.2%-3.5% 0.8%-2.7% -0.2%-2.3% 0.9%-2.6% -0.2%-3.5% -0.7%-1.9% -0.5%-2.9% -1.0%-1.9% -1.0%-2.9% Midwest -0.3%-1.5% -0.5%-1.4% -0.3%-1.2% -0.3%-2.4% -0.8%-2.8% -0.8%-2.8% Northeast Other West 1.2%-4.5% 0.5%-3.6% 0.3%-4.7% 0.3%-6.7% 0.3%-6.7% 1.2%-3.8% -0.3%-3.5% -0.8%-1.9% -0.8%-3.8% South Central 0.7%-3.4% 0.7%-3.3% 0.8%-4.7% Southeast -0.9%-3.7% -0.5%-10.7% -0.9%-10.7% All -0.5%-4.5% -0.7%-4.7% -0.9%-4.7% -1.0%-10.7% -1.0%-10.7% 32

Network Skims and Path Building Transit Path-Building Prediction Success Table

PM Period Work		Modeled Boardings				
to Rail	Trips Using Walk to Rail		1	2	3+	
rdings	No Path	0	0	0	0	
	1	7	3	4	0	
0	2	1	0	0	0	
Repo	3+	0	0	0	0	

33

Socioeconomic Models (Ch. 4)

- Aggregate share models
- Discrete choice models
- Population synthesis

ExampleVehicle Availability Model

	County									
Variable	Moe	Larry	Curly	Groucho	Chico	Harpo	Zeppo	Region		
Percent 0 Vehicles										
Observed	5%	13%	12%	7%	12%	7%	37%	17%		
Model	3%	8%	8%	3%	5%	4%	24%	11%		
Percent 1 Ve	hicle									
Observed	28%	35%	35%	31%	34%	33%	42%	35%		
Model	27%	38%	38%	30%	34%	33%	49%	37%		
Percent 2 Ve	hicles									
Observed	44%	37%	38%	44%	38%	43%	18%	34%		
Model	47%	39%	39%	45%	43%	43%	21%	36%		
Percent 3 Ve	hicles									
Observed	22%	14%	15%	18%	16%	17%	3%	13%		
Model	22%	15%	15%	21%	18%	20%	5%	15%		
Average Nun	nber of Ve	hicles								
Observed	1.86	1.55	1.57	1.78	1.58	1.74	0.88	1.44		
Model	1.95	1.65	1.65	1.90	1.79	1.82	1.11	1.59		

35

ExampleAggregate Share Vehicle Availability Model

	0 Ve	hicles	1 Ve	hicle	icle 2 Vehicles		3+ Ve		
Range	Obs.	Model	Obs.	Model	Obs.	Model	Obs.	Model	Total
0.00-0.05	181	181	0	0	0	0	0	0	181
0.25-0.35	308	293	28	33	5	15	8	8	349
0.35-0.45	29	35	17	7	0	3	0	2	46
0.45-0.55	382	391	115	119	38	34	33	23	568
:									
2.85–2.95	28	6	47	22	49	30	94	160	218
2.95 or more	143	10	178	31	87	73	113	406	521

Data Sources

- Household travel/activity survey
 - Aggregate validation of trip-based
 - Aggregate & disaggregate validation of activitybased
- National sources
 - Aggregate validation of trip-based
 - Aggregate validation of activity-based

National Averages – Person Trips / Day by Household Size & MSA Size

	Person Trips / Day (All Trip Purposes) Number of Persons						
		All					
MSA Size	1	2	3	4	5+	Households	
MSA population greater than 3 million	3.4	8.6	12.4	16.8	22.2	10.7	
MSA population between 1 and 3 million	3.4	8.9	13.2	17.5	22.1	10.6	
MSA population between 500,000 and 1 million	3.3	9.0	12.4	17.4	22.8	10.9	
MSA population between 250,000 and 500,000	3.4	8.8	12.8	17.0	24.2	10.8	
MSA population less than 250,000	3.8	8.9	13.0	19.4	22.2	10.7	
Not in MSA	3.2	8.5	12.8	17.0	21.4	10.2	

	Home- Based Work	Home- Based Nonwork	Nonhome- Based
MSA population greater than 3 million	14%	55%	31%
MSA population between 1 and 3 million	15%	53%	32%
MSA population between 500,000 and 1 million	14%	54%	32%
MSA population between 250,000 and 500,000	14%	54%	33%
MSA population less than 250,000	14%	53%	34%
Not in MSA	14%	52%	34%

Source: 2001 NHTS

39

Types of Amount of Travel / Activity Checks

Type of Check	Trip-Based	Activity-Based
Trips per person or household by purpose	✓	✓
Activities per person or household by type		✓
Percent of trips by purpose	✓	✓
Number of activities tours by type		✓
Percent of persons making 0, 1, 2 tours		✓
Percent of "immobile" persons		✓
Production / attraction balance	✓	
Trips per person or household by area type	✓	✓

Trip Distribution/Destination Choice/Location Choice (Ch. 6)

Trip-based Models

- Gravity models
- Destination choice models

Activity-based Models

- Regular workplace / school place location
- Destination choice models
- Intermediate stop location

41

Data Sources

- Household travel/activity survey
 - Aggregate trip length frequency distributions
 - Aggregate district interchange (limited)
 - Disaggregate validation of activity-based
- National sources (Census, ACS, NHTS)
 - Aggregate trip length frequency distributions
 - Aggregate district interchange

National Averages – Reported Average Trip Durations by MSA Size

	Reported Average Trip Length in Minutes				
	Home-Based	Home-Based	Nonhome-		
MSA Size	Work	Nonwork	Based		
MSA population greater than 3 million	31	17	18		
MSA population between 1 and 3 million	25	17	19		
MSA population between 500,000 and 1 million	24	18	18		
MSA population between 250,000 and 500,000	21	18	20		
MSA population less than 250,000	20	18	21		
Not in MSA	21	19	19		

Source: 2001 NHTS

43

44

Types of Trip Distribution / Destination Choice Checks

- Average trip length
- Trip length frequency distribution
- Coincidence ratio

Assignment Procedures (Ch. 9) Highway Assignment

An R² value of 0.88 is an arbitrary value – achieving such a standard is neither necessary nor sufficient in establishing the validity of a travel model.

Example VMT Guidelines by Functional Class and Area Type Modeled Versus Observed VMT FHWA-Stratification 1990 Ohioa Floridab Michigan Functional Class Acceptable Preferable Freeways/Expressways Principal Arterials ±10% ±10% ±10% ±15% ±7% Minor Arterials ±10% ±15% ±10% ±10% ±15% Collectors ±25% All Links Агеа Туре CBD ±10% ±25% ±15% ±25% Urban ±10% ±25% ±15% ±10% ±25% ±15% Suburban Rural ±10% ±15% **50**

Validation Documentation (Ch. 11)

- Purposes of validation documentation
 - Establish confidence in model
 - Identify model capabilities
 - Identify model limitations
 - Limit "misuse" of models...
 - Establish basis for "next round" of improvements

"Essentially, all models are wrong, but some are useful...the practical question is how wrong do they have to be to not be useful." (George Box)

51

Validation Documentation Suggestions

- Stand alone document
 - Establish importance of validation
 - Space to cover necessary information

Suggested Validation Documentation Chapters

- Executive summary
 - For the non-modeler (or your executive director)
 - Not the place to mention R² or %RMSE
- Model component validation
 - Sensitivity of model parameters
- System validation
 - Mention R² or %RMSE here

53

Suggested Validation Documentation Chapters

- Model sensitivities
 - Sensitivity to changes in model inputs
 - Temporal validation
- Model limits (or limitations)
- Recommended model development / enhancement steps
 - Priorities and plans