HOT FLOW TESTING OF MULTIPLE NOZZLE EXHAUST EDUCTOR SYSTEMS

Daniel Roy Welch

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

HOT FLOW TESTING OF MULTIPLE NOZZLE EXHAUST EDUCTOR SYSTEMS

by

Daniel Roy Welch

September 1978

Thesis Advisor:

P. F. Pucci

Approved for public release; distribution unlimited.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESS	ION NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitie)	
	5. TYPE OF REPORT & PERIOD COVERED Engineer's Thesis
Hot Flow Testing of Multiple Nozzle Exhaust Eductor Systems	September 1978
Image Eddetol Bystems	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(#)
Daniel Roy Welch	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Postgraduate School	AREA & WORK UNIT NUMBERS
Monterey, California 93940	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Naval Postgraduate School	September 1978
Monterey, California 93940	13. NUMBER OF PAGES 131
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling C	Office) 15. SECURITY CLASS. (of the report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribu	tion unlimited.
17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if diff	erent from Report)
18. SUPPLEMENTARY NOTES	
SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block	number)
Hot Flow Model	
Multiple Nozzle Exhaust Eductor Syst	ems
20. ABSTRACT (Continue on reverse elde il necessary and identify by block	number)
Hot flow model tests of multiple n	
systems were conducted to evaluate eff	
temperature on eductor performance. A	
analysis of a simple eductor system ba of momentum for an incompressible gas	sed on conservation
the non-dimensional parameters governi	ng the flow phenomenon.
First govern	5 TTOW PITCHOMOTOR.

Eductor performance is defined in terms of these parameters.

SUCURITY CLASSIFICATION OF THIS PAGE(When Date Entered

(20. ABSTRACT Continued)

An experimental correlation of these parameters which was previously developed and used to correlate cold flow data was found to be effective in correlating both cold and hot flow data for eductor systems. Temperature data was obtained for the mixing stack wall and the exhaust flow at the mixing stack exit plane.

Approved for public release; distribution unlimited.

Hot Flow Testing of Multiple Nozzle Exhaust Eductor Systems

by

Daniel Roy Welch
Lieutenant, United States Navy
B.S.NavArch., United States Naval Academy, 1971

Submitted in partial fulfillment of the requirements for the degrees of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

and

MECHANICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL September 1978 W3885

ABSTRACT

Hot flow model tests of multiple nozzle exhaust eductor systems were conducted to evaluate effects of exhaust temperature on eductor performance. A one-dimensional analysis of a simple eductor system based on conservation of momentum for an incompressible gas was used in determining the non-dimensional parameters governing the flow phenomenon.

Eductor performance is defined in terms of these parameters. An experimental correlation of these parameters which was previously developed and used to correlate cold flow data was found to be effective in correlating both cold and hot flow data for eductor systems. Temperature data was obtained for the mixing stack wall and the exhaust flow at the mixing stack exit plane.

TABLE OF CONTENTS

I.	INT	RODU	CTION	15
II.	THE	ORY	AND ANALYSIS	18
	Α.	MOD	ELING TECHNIQUE	18
	В.	ONE	-DIMENSIONAL ANALYSIS OF A SIMPLE EDUCTOR	19
	C.	NON EDU	-DIMENSIONAL SOLUTION OF SIMPLE CTOR ANALYSIS	25
	D.	COR	RELATION OF EXPERIMENTAL DATA	29
III.	EXP	ERIM	ENTAL APPARATUS	31
	Α.	COM	BUSTION GAS GENERATOR	31
	В.	EDU	CTOR AIR METERING BOX	32
	C.	INS	TRUMENTATION	33
	D.	EDU	CTOR SYSTEM	36
		1.	Mixing Stack	36
		2.	Eductor Nozzles	36
		3.	Standoff Ratio	37
IV.	EXP	ERIM	ENTAL METHOD	38
♥.			ION OF EXPERIMENTAL RESULTS	
VI.	CONCLUSIONS		44	
VII.	RECOMMENDATIONS		45	
VIII.	FIG	URES		46
IX.	TAB	LES		95
APPENI	XIC	A:	Combustion Gas Generator Operation	118
APPENI	XIC	В:	Determination of the Exponent in the Non-Dimensional Pumping Coefficient	124
APPENI	XIC	C:	Uncertainty Analysis	125

BIBLIOGRAPHY	129
TNITTAL DISTRIBUTION LIST	130

LIST OF FIGURES

Figure	Description	Page
1	Schematic Diagram of Simple Exhaust Gas Eductor	46
2	Simple Single Nozzle Eductor System	47
3	Schematic Diagram of Combustion Gas Generator	48
4	Combustion Gas Generator	49
5	Schematic Diagram of Gas Generator Fuel System	50
6	Gas Generator Fuel Supply System	51
7	Eductor Air Metering Box	52
8	Eductor Air Metering Box Arrangement	53
9 .	Interior of Air Metering Box Showing Uptake Stack and Primary Nozzles	
10	Interior of Air Metering Box Showing Mixing Stack and Primary Nozzles	
11	Schematic Diagram of Pressure Measurement System	56
12	Manometer Board	57
13	Main Control Panel, Digital Pyrometers, Manometer Manifold Valves	58
14	Schematic Diagram of Temperature Measurement System	59
15	Entrance Nozzle Calibration Curve	60
16	Air Metering Box End Plate and Mixing Stack Collar	61
17	Dimensional Diagram of Primary Flow Nozzles	62

Figure	Description	Page
18	Dimensional Diagram of Primary Flow Nozzle Plate	63
19	Primary Flow Nozzle Plate (Back View)	64
20	Primary Flow Nozzle Plate (Front View)	65
21	Illustrative Plot of the Experimental Data Correlation in Equation 14	66
22	Primary Flow Nozzle Temperature Profiles	67
23	Uptake Stack Temperature Profile	68
24	Comparison of Cold Flow Performance Plots for L/D = 3.0	69
25	Comparison of Cold Flow Performance Plots for L/D = 2.5	70
26	Composite Performance Plot for all Temperatures, L/D = 3.0	71
27	Composite Performance Plot for all Temperatures, L/D = 2.5	72
28	Performance Plot, $L/D = 3.0$, Cold Flow -	73
29	Performance Plot, L/D = 3.0, TUPT = 550°F	74
30	Performance Plot, L/D = 3.0, TUPT = 650°F	75
31	Performance Plot, L/D = 3.0, TUPT = 750°F	76
32	Performance Plot, L/D = 3.0, TUPT = 850°F	77
33	Performance Plot, L/D = 2.5, Cold Flow -	78
34	Performance Plot, L/D = 2.5, TUPT = 550 °F	79
35	Performance Plot, L/D = 2.5, TUPT = 650°F	80

Figure	Description	Page
36	Performance Plot, L/D = 2.5, TUPT = 750°F	_ 81
37	Performance Plot, L/D = 2.5, TUPT = 850°F	_ 82
38	Mixing Stack Pressure Distribution, L/D = 3.0	_ 83
39	Mixing Stack Pressure Distribution, L/D = 2.5	_ 84
40	Mixing Stack Wall Temperature Distribution, L/D = 3.0	_ 85
41	Mixing Stack Wall Temperature Distribution, L/D = 2.5	_ 86
42	Comparison of Mixing Stack Wall Temperature Distributions	_ 87
43 .	Mixing Stack Exit Plane Temperature Profile, L/D = 3.0	- 88
44	Mixing Stack Exit Plane Temperature Profile, L/D = 2.5	- 89
45	Schematic Diagram of Compressor Layout	- 90
46	Cooling Tower Switches and Cooling Water Valve	- 91
47	Carrier Air Compressor, Butterfly Suction Damper and Cooling Water Valve	<u> </u>
48	Auxiliary Oil Pump and Switch	- 93
49	Main Air Supply Globe Valve	- 94

LIST OF TABLES

<u>Table</u>	Description	Page
I.	Summary of Results	- 95
II.	Entrance Transition Nozzle Calibration Data	- 96
III.	Primary Nozzle Temperature Profile Data	_ 97
IV.	Uptake Stack Temperature Profile Data	_ 98
v.	Performance Data for L/D = 3.0	_ 99
VI.	Performance Data for L/D = 2.5	_ 104
VII.	Mixing Stack Exit Plane Temperature Profile L/D = 3.0	_ 113
VIII.	Mixing Stack Exit Plane Temperature Profile L/D = 2.5	- 115
IX.	Uncertainties in Measured Values From Table VI	_ 117

NOMENCLATURE

ENGLISH LETTER SYMBOLS

A - Area, in²

C - Sonic velocity, ft/sec

D - Diameter, in

f - Friction factor

F - Functional denotation

F_{fr} - Wall skin-friction force, lbf

 g_c - Proportionality factor in Newton's Second Law, $g_c = 32.174 \text{ lbm-ft/lbf-sec}^2$

h - Enthalpy, Btu/lbm

k - Ratio of specific heats

L - Length, in

P - Pressure, in H₂0

Pa, B - Atmospheric pressure, in Hg

R - Gas constant for air, 53.34 ft-lbf/lbm-°R

S - Standoff distance, in

T - Temperature, °F, °R

U - Velocity, ft/sec

W, m - Mass flow rate, lbm/sec

x - Axial distance from mixing stack entrance, in

<u>Dimensionless Groupings</u>

A* - Secondary flow area to primary flow area ratio

Ke - Kinetic energy correction factor

K_m - Momentum correction factor at the mixing stack exit

K_p - Momentum correction factor at the primary nozzle exit

M - Mach number

ΔP* - Pressure coefficient

Re - Reynolds number

W* - Secondary mass flow rate to primary mass flow rate ratio

Secondary flow density to primary flow density ratio

Greek Letter Symbols

μ - Absolute viscosity, lbf-sec/ft²

ρ - Density, lbm/ft³

 $\beta \qquad - K_{\rm m} + \frac{f}{2} A_{\rm w}/A_{\rm m}$

Subscripts

Section within secondary air plenum

- Section at primary nozzle exit

2 · - Section at mixing stack exit

B - Burner

m - Mixed flow or mixing stack

P - Primary

s - Secondary

u - Uptake

w - Mixing stack inside wall

Tabulated Values

DELPN, PN - Pressure drop across entrance transition nozzle, in H₂0

FHZ - Fuel flow meter reading, Hz

P* - Pressure coefficient

PA, B - Ambient pressure, in Hg

PA-PS, \triangle PS - Pressure differential across secondary flow nozzles, in H_2O

PEH - Uptake static pressure, in H₂0

PMIX, PMS - Mixing stack static pressure, in H₂0

PNH - Static pressure upstream of entrance transition nozzle, in Hq

PU-PA - Uptake static pressure, in H₂0

P*/T* - Dimensionless pressure coefficient

T* - Absolute temperature ratio, secondary flow to primary flow

TAMB - Ambient temperature, °F

TMIX - Mixing stack wall temperature, °F

TUPT - Uptake temperature, °F

UM - Average velocity in mixing stack, ft/sec

UP - Primary flow velocity at nozzle exit, ft/sec

UU - Primary flow velocity in uptake, ft/sec

WP - Primary mass flow rate, lbm/sec

WS - Secondary mass flow rate, lbm/sec

WPA - Mass flow rate of primary air, lbm/sec

WPF - Mass flow rate of fuel, lbm/sec

W* - Secondary mass flow rate to primary flow rate ratio

ACKNOWLEDGEMENT

Sincere thanks go to the author's advisor, Professor
Paul F. Pucci, whose expertise and inspiration provided the
foundation and catalyst for this work. Great appreciation
is also expressed to Professor T. Sarpkaya who was always
available with words of wisdom and support. The assistance
and ingenuity provided by the personnel of the Department
of Mechanical Engineering Machine Shop, especially Mr.
George Bixler, is also sincerely appreciated.

Special thanks and grateful appreciation are due to my wife, Sharon, for the never ending encouragement and understanding she provided during the long days and late nights devoted to this study.

I. INTRODUCTION

The gas turbine engine is steadily becoming more and more attractive as a prime mover for various shipboard applications. One of the unique features of the use of gas turbine engines is its relatively hot and voluminous exhaust. This presents problems such as overheating of antennae and other equipment by exhaust plume impingement and the creation of an undesirable infra-red signature of the hot exhaust plume. An effective means of reducing the exhaust gas temperature is to mix it with ambient air prior to its discharge from the stack. Exhaust gas eductor systems presently in service have demonstrated their effectiveness in facilitating such a mixing process.

The subject of this investigation is the application of multiple nozzle eductor systems for cooling the exhaust gas from gas turbine powered ships. This research is an extension of work reported by Lt. C. R. Ellin [1], Lt. C. M. Moss [2], and Lt. J. P. Harrell [3]. Whereas this previous work has been carried out with cold flow testing, this investigation is concerned with testing using hot gas as the exhaust or primary flow. The scope of the work reported here includes completion of and subsequent changes to the combustion gas generator designed and built by Lcdr. P. D. Ross [4].

For the purpose of this investigation, the exhaust gas eductor system, illustrated schematically in Figure 1, is

defined as the portion of the uptake which discharges the exhaust gas through nozzles into a mixing stack. The purpose of the eductor system is to induce a flow of cool ambient air which is mixed with the hot exhaust gas in order to lower the temperature of the exhaust stack and exhaust plume. These gas eductors must meet three major requirements. They must pump large amounts of secondary (cooling) air into the mixing stack, they must adequately mix the hot high velocity exhaust gas and the cool low velocity secondary air, and they must not adversely affect the gas turbine's performance.

A one-dimensional flow analysis of a simple singlenozzle eductor system, as a unit, facilitates determination
of the non-dimensional parameters which govern the flow
phenomenon. An experimental correlation of these nondimensional parameters has been developed and is used to
evaluate eductor performance.

The geometric parameters which influence the gas eductor's performance include the number and size of primary nozzles, the length of the mixing stack, the ratio of the primary nozzle flow area to the mixing stack area, and the ratio of the length of the mixing stack to its diameter.

Numerous combinations of and variations in these parameters have been investigated and reported in References [1] through [3].

The intent of this investigation was to obtain data using hot flow testing of gas eductor systems to establish

the effect of uptake gas temperature on the eductor's performance. Correlation of hot flow data with previous cold flow data allows a validation of the hot gas generator and a validation of the use of cold flow models for hot flow prototypes.

Two exhaust eductor models were tested. Both geometries were tested previously using cold flow facilities. One geometry was tested by Moss [2] and by Harrell [3], each at a different scale; the other was tested by Staehli and Lemke [5]. All tests were made at the same flow parametric values.

II. THEORY AND ANALYSIS

Evaluation of the effects of eductor geometry on prototype eductor performance through experimentation with models requires the following: assurance of similitude (geometric, kinematic, and dynamic similarity) between model and prototype; the identification of the dimension-less groupings pertinent to the flow phenomenon; and a suitable means of data analysis and presentation. Dynamic similarity was maintained by using Mach number similarity to establish the model's primary flow rate. Determination of the dimensionless groupings that govern the flow was accomplished through the analysis of a simple air eductor system. Based on this analysis, an experimental correlation of the non-dimensional parameters was developed and used in presenting and evaluating experimental results.

A. MODELING TECHNIQUE

For the flow velocities considered, the primary flow through the model eductor is turbulent (Reynolds number based on diameter of approximately 10⁵). Consequently, turbulent momentum exchange is a predominant mechanism over shear interaction, and the kinetic and internal energy terms are more influential on the flow than are viscous forces. Since Mach number can be shown to represent the square root of the ratio of kinetic energy of a

flow to its internal energy, it is a more significant parameter than Reynolds number in describing the primary flow through the uptake.

Similarity of Mach number was therefore used to model the primary flow. Mach number is defined as the ratio of flow velocity to sonic velocity in the medium considered. Sonic velocity, represented by c, can be calculated using the relation

$$c = (g_c kRT)^{0.5}$$

if the fluid is assumed to behave as a perfect gas.

Geometric similarity was achieved through the use of a dimensional scale factor which is influenced by test facility flow capabilities, primary flow velocities and availability of modeling materials.

B. ONE-DIMENSIONAL ANALYSIS OF A SIMPLE EDUCTOR

The theoretical analysis of an eductor may be approached in two ways. One method attempts to analyze the details of the mixing process of the primary and secondary flows which takes place inside the mixing stack and thereby determines the parameters that describe the flow. This requires an interpretation of the mixing phenomenon, which, when applied to multiple-nozzle systems, becomes extremely complex. The second method, employed in this study, analyzes the overall performance of the eductor system as a unit.

Since details of the mixing process are not considered in this method, an analysis of the simple single-nozzle eductor system shown in Figure 2 leads to a determination of the dimensionless groupings governing the flow. The one-dimensional analysis that follows is essentially that of Ellin [1].

The driving or primary fluid, flowing at a rate W_p and at a velocity U_p , discharges into the entrance of the constant area section of the mixing stack, inducing a secondary flow rate of W_s at velocity U_s . The primary and secondary flows are mixed and leave the mixing stack at a flow rate of W_m and a bulk average velocity of U_m .

The one-dimensional flow analysis of the simple eductor system described depends on the simultaneous solution of the equations of continuity, momentum, and energy with an appropriate equation of state and specified boundary conditions.

The following simplifying assumptions are made:

- Both gas flows are treated as perfect gases with constant specific heats.
- Steady, incompressible flow throughout the eductor and plenum exists.
- 3. The flow throughout the eductor is adiabatic. The flow of secondary air from the plenum (at section 0) to the entrance of the mixing stack (at section 1) is isentropic. Irreversible adiabatic mixing occurs

- between the primary and secondary flows in the mixing stack (between sections 1 and 2).
- 4. The static pressure distributions across the entrance and exit planes of the mixing stack (at sections 1 and 2) are uniform.
- 5. At the mixing stack entrance (section 1), the primary flow velocity \mathbf{U}_{p} and temperature \mathbf{T}_{p} are uniform across the primary stream, and the secondary flow velocity \mathbf{U}_{s} and temperature \mathbf{T}_{s} are uniform across the secondary stream; but \mathbf{U}_{p} does not equal \mathbf{U}_{s} , and \mathbf{T}_{p} does not equal \mathbf{T}_{s} .
- 6. Incomplete mixing of the primary and secondary flows in the mixing stack is accounted for by the use of a non-dimensional momentum correction factor, K_m, which relates the actual momentum rate to the rate based on the bulk-average velocity and density and by the use of a non-dimensional kinetic energy correction factor, K_e, which relates the actual kinetic energy rate to the rate based on the bulk-average velocity and density.
- 7. Potential energy differences due to elevation are negligible.
- 8. Pressure changes Po to Pl and Pl to Pa are small relative to the static pressure so that the gas density is essentially dependent upon temperature (and atmosperic pressure).

9. Wall friction in the mixing stack is accounted for with the conventional pipe friction factor term based on the bulk-average flow velocity \mathbf{U}_{m} and the mixing stack wall area \mathbf{A}_{m} .

The conservation of mass principle for steady state flow yields

$$W_{m} = W_{p} + W_{s} \tag{1}$$

where

$$W_{p} = \rho_{p} U_{p} A_{p}$$

$$W_{s} = \rho_{s} U_{s} A_{s}$$

$$W_{m} = \rho_{m} U_{m} A_{m}$$
(1a)

Substituting for W_{m} , the bulk-average velocity becomes

$$U_{m} = \frac{W_{s} + W_{p}}{\rho_{m} A_{m}}$$
 (1b)

Now, from assumption 1

$$\rho_{\rm m} = \frac{P_{\rm a}}{R T_{\rm m}} \tag{2}$$

where $T_{\rm m}$ is calculated as the bulk-average temperature for the mixed flow. Applying assumptions 4 and 6, the momentum

equation for the flow in the mixing stack may be written

$$K_{p} \left[\frac{W_{p} U_{p}}{g_{c}} \right]_{1} + \left[\frac{W_{s} U_{s}}{g_{c}} \right]_{1} + P_{1}A_{1} = K_{m} \left[\frac{W_{m} U_{m}}{g_{c}} \right]_{2} + P_{2}A_{2} + F_{fr}$$
(3)

with $A_1 = A_2$. The momentum correction factor K_p is introduced to account for a possible non-uniform velocity profile across the primary nozzle exit. It is defined in a manner similar to that of K_m and by assumption 5 is equal to unity but is included here for completeness. The momentum correction factor for the mixing stack exit is defined by the relation

$$K_{m} = \frac{1}{W_{m}U_{m}} \int_{0}^{A_{m}} U_{2}^{2} \rho_{2} dA$$
 (4)

The actual variable velocity and a weighted average density at section 2 are used in the integrand. The wall skin-friction force F_{fr} can be related to the mean velocity by

$$F_{fr} = f A_{w} \left[\frac{U_{m}^{2} \rho_{m}}{2 g_{c}} \right]$$
 (5)

For turbulent flow, the friction factor may be calculated from the Reynolds number as

$$f = 0.046 \, (Re_m)^{-0.2}$$
, where $Re_m = \frac{\rho_m \, U_m \, D_m}{\mu_m}$ (6)

Applying the conservation of energy principle to the steady flow in the mixing stack with assumption 7

$$W_{p} [h_{p} + \frac{U_{p}^{2}}{2 g_{c}^{2}}] + W_{s} [h_{s} + \frac{U_{s}^{2}}{2 g_{c}^{2}}] = W_{m} [h_{m} + K_{e} \frac{U_{m}^{2}}{2 g_{c}^{2}}]$$
(7)

where K_{e} is the kinetic energy correction factor defined by the relation

$$K_e = \frac{1}{W_m U_m^2} \int_0^{A_m} U_2^3 \rho_2 dA$$
 (8)

It may be demonstrated that for the purpose of evaluating the mixed mean flow temperature $\mathbf{T}_{\mathbf{m}}$, the kinetic energy terms may be neglected to yield

$$h_{m} = \frac{W_{p}}{W_{m}} h_{p} + \frac{W_{s}}{W_{m}} h_{s}$$
 (9)

where $T_m = F(h_m)$ only from assumption 1.

Similarly, the energy equation applied to the flow of secondary air between the plenum entrance and the mixing stack entrance may be reduced to

$$\frac{P_0 - P_1}{\rho_S} = \frac{U_S^2}{2 g_C}$$
 (10)

The foregoing equations may be combined to yield the vacuum produced by the eductor in the plenum chamber

$$P_{a} - P_{o} = \frac{1}{g_{c} A_{m}} \left\{ K_{p} \frac{W_{p}^{2}}{A_{p} \rho_{p}} + \frac{W_{s}^{2}}{A_{s} \rho_{s}} [1 - \frac{A_{m}}{2 A_{s}}] - \frac{W_{m}^{2}}{A_{m} \rho_{m}} [K_{m} + \frac{f}{2} \frac{A_{w}}{A_{m}}] \right\}$$
(11)

where it is understood that A_p and ρ_p apply to the primary flow at the entrance to the mixing stack (section 1), A_s and ρ_s apply to the secondary flow at this same section, and A_m and ρ_m apply to the mixed flow at the exit of the mixing stack (section 2). P_a is atmospheric pressure and is equal to the pressure at the exit of the mixing stack P_2 . This equation also incorporates the assumption that $(\rho_s)_1 = (\rho_s)_0$ so that ρ_s may be taken as the density of the secondary flow in the plenum.

C. NON-DIMENSIONAL SOLUTION OF SIMPLE EDUCTOR ANALYSIS

In order to provide the criteria of similarity of flows with geometric similarity, the non-dimensional parameters which govern the flow must be determined. One means of determining these parameters is by normalizing equation (11) which leads to the following terms:

$$\Delta P^* = \frac{\frac{P_a - P_0}{\rho_s}}{\frac{U_p}{2 g_c}}$$

a pressure coefficient which compares the "pumped head" $\frac{P_a - P_0}{\rho_s} \text{ for the secondary flow to the "driving head"} \\ \frac{U_p^2}{2 \text{ g}_c} \text{ of the primary flow.}$

$$W^* = \frac{W}{W}$$

a flow rate ratio, secondary-toprimary mass flow rate.

$$T^* = \frac{T_s}{T_p}$$

an absolute temperature ratio, secondary-to-primary.

$$\rho^* = \frac{\rho_s}{\rho_p}$$

a flow density ratio. Note that since $P_s = P_p$ and the fluids are perfect gases, $\rho^* = \frac{T_p}{T_s} = \frac{1}{T^*}$.

$$A^* = \frac{A_s}{A_p}$$

area ratio of secondary flow area to primary flow area

$$\frac{A_p}{A_m}$$

area ratio of primary flow area to mixing stack cross sectional area

 $\frac{A_{w}}{A_{m}}$

area ratio of wall friction area to mixing stack cross sectional area

Kp

momentum correction factor for primary flow

 $K_{\mathbf{m}}$

momentum correction factor for mixed flow

f

wall friction factor

With these non-dimensional groupings, equation (11) may be written as

$$\frac{\Delta P^*}{T^*} = 2 \frac{A_p}{A_m} \{ [K_p - \frac{A_p}{A_m} \beta] - W^* (1 + T^*) \frac{A_p}{A_m} \beta + W^* T^* [\frac{1}{A^*} (1 - \frac{A_m}{2A^* A_p}) \beta - \frac{A_p}{A_m} \beta] \}$$
 (11a)

where

$$\beta = K_{m} + \frac{f}{2} \frac{A_{w}}{A_{m}}.$$

For a given eductor geometry, equation (lla) may be expressed in the form

$$\frac{\Delta P^*}{T^*} = C_1' + C_2 W^* (T^* + 1) + C_3 W^*^2 T^*$$
 (11b)

where

$$C_{1} = 2 \frac{A_{p}}{A_{m}} (K_{p} - \frac{A_{p}}{A_{m}} \beta)$$

$$C_{2} = -2 (\frac{A_{p}}{A_{m}})^{2} \beta$$

$$C_{3} = 2 \frac{A_{p}}{A_{m}} \{ \frac{1}{A^{*}} (1 - \frac{A_{m}}{2 A^{*} A_{p}}) \beta - \frac{A_{p}}{A_{m}} \beta \}$$
(11c)

Equation (11b) may be expressed as a simple functional relationship

$$\Delta P^* = F(W^*, T^*)$$
 (12)

A second means of determining the governing dimension-less parameters is through a dimensional analysis of the mixing process within the mixing stack. A presentation of this method by Ellin [1] yields the same simple functional relationship found in equation (12).

Two geometric dimensionless quantities were added to this investigation. The distance, S, from the primary flow nozzle exit to the mixing stack entrance and the distance,

x, from the entrance to the mixing stack, normalized with respect to the mixing stack diameter, D, were also defined as non-dimensional quantities. The two additional quantities are listed below:

 $\frac{x}{D}$ ratio of the axial distance from the mixing stack entrance to the diameter of the mixing stack.

standoff; the ratio of the axial distance between the primary nozzle exit plane and the mixing stack entrance to the diameter of the mixing stack.

D. CORRELATION OF EXPERIMENTAL DATA

The previous experiments by Ellin [1], Moss [2], and Harrell [3] were done in facilities which did not have the capability for varying the primary flow temperature. Thus T*, the ratio of the absolute secondary to primary flow temperatures was determined by the rise in temperature of the primary air in the blower supply and was near unity (approximately .85). A means of presenting the experimental data for a given geometric configuration in a form which results in a pseudo-independence of the dimensionless groupings P* and W* upon T* was developed. From reference [1] a satisfactory correlation of P*, T* and W* for all

temperatures and flow rates is

$$\Delta P^*/T^* = F(W^*T^*) \tag{13}$$

The details of the determination of 0.44 as the correlating exponent are presented in Appendix [B]. A plot of $\Delta P^*/T^*$ as a function of $W^*T^*^{0.44}$ from the experimental data yields the eductor's pumping characteristic curve. Variations in geometry will change the appearance of the pumping characteristic curve and facilitate a direct one to one comparison of pumping ability between various models and prototypes. For ease of discussion, $W^*T^*^{0.44}$ will henceforth be referred to as the pumping coefficient.

III. EXPERIMENTAL APPARATUS

Hot primary gas is supplied to the nozzle and mixing stack system by the combustion gas generator and associated ducting illustrated in Figures 3 and 4. The eductor system being tested is mounted in a secondary air plenum which facilitates the accurate measurement of the secondary air flow through the use of ASME long radius flow nozzles mounted on the secondary air plenum.

A. COMBUSTION GAS GENERATOR

The input air to the combustion gas generator is supplied by a Carrier Model 18P350 centrifugal air compressor. The compressor is located in an adjacent building and the input air is piped underground to an eight-inch inside diameter (ID) horizontal pipe with a butterfly-type shutoff valve and a globe-type bypass valve. All air demands for this testing can be met with the butterfly valve closed and the globe valve open as necessary.

The input air travels through an entrance transition piece that mates the eight inch ID compressor discharge piping with the four inch ID system piping. This nozzle is used to measure the primary air flow.

A portion of the input air travels straight through the piping to the exhaust stack while the remainder passes through the U-bend section to the combustion section. The

combustion section includes the burner can and igniter assembly from a Boeing model 502-6A gas turbine engine.

Certain fuel system components from this engine were also utilized. The fuel system is shown schematically in Figure 5 and pictured in Figure 6.

After the air is heated in the combustion section, it is mixed with the cooler air after both pass through the turbine nozzle box containing the bypass air mixer. By controlling the relative amount of air passing through the burner and the amount of fuel to the burner, the exhaust stack temperature can be controlled. The procedure for system light-off and operation is included in Appendix A.

The hot gas then passes up the exhaust stack to the primary nozzles and the eductor system. A flow straightening section was added to the uptake stack to de-swirl the hot gas after it leaves the turbine nozzle box.

B. EDUCTOR AIR METERING BOX

Secondary air flow is measured with a large metering box designed to enclose the entire eductor assembly and act as an air plenum. A set of standard ASME long radius flow nozzles of varying cross-sectional areas were chosen to be mounted in the metering box away from the eductor.

The metering box was designed with interchangeable stack seal plates to enable variation of both exhaust and mixing stack sizes up to 1 foot in diameter. The seal plates also have a limited range of vertical movement to facilitate

exhaust and mixing stack alignment. The entire box was designed to be movable along an angle iron track parallel to the gas generator stack longitudinal centerline. This enables variation of the mixing stack to nozzle separation distance without adjustment and realignment of the mixing stack. The mixing stack end plate was also designed to be movable to allow centering for various mixing stack lengths. An access door was added for eductor adjustment. The metering box general arrangement is pictured in Figure 7 and a dimensional layout is given in Figure 8.

Appendix D of Reference [1] outlines the design and construction of the ASME long radius secondary air flow nozzles. Flexibility is provided this secondary air flow measuring system by utilizing three different flow nozzle sizes: four of four inch throat diameter, three of two inch throat diameter and three of one and a half inch throat diameter, various combinations of which produce a wide variety of secondary cross sectional flow areas.

Mounted inside the air metering box are supports for the uptake stack and mixing stack. The interior of the air metering box is pictured in Figures 9 and 10.

C. INSTRUMENTATION

The performance of an eductor is calculated from pressure and temperature data taken at various points in the system.

Necessary measurements include the primary mass flow rate

(air and fuel), the secondary mass flow rate, the uptake

stack Mach number, and the mixing stack temperature and pressure profiles.

Pressure measurements are made with one of several manometers. Available are a 20 inch mercury upright manometer, a 20 inch water upright manometer and a two inch inclined water manometer. A manifold system allows selection of the instrument of proper range. Atmospheric pressure (PA) is measured with a mercury barometer. A schematic of the pressure measurement system is shown in Figure 11. The manometer board and manifold system are pictured in Figures 12 and 13.

Temperature measurements are made with either copperconstantan or chromel-alumel thermocouples wired to Newport
model 267A digital pyrometers. The pyrometers are capable
of monitoring 18 inputs each through barrel-type selector
switches. Secondary air or ambient air temperature (TAMB)
was measured with a mercury-glass thermometer. A schematic
of the temperature measurement system is shown in Figure 14.

Fuel flow measurement is made with a Cox Instrument model V40-A vortex flowmeter coupled to an Anadex Instruments model CPM-603 frequency counter.

The calculation of the primary air mass flow rate requires the measurement of the inlet absolute pressure to the transition nozzle (PNH), the pressure drop across this nozzle (DELPN), and the inlet air temperature. The calibration of this nozzle for the measurement of mass flow rate

as a function of these two pressure readings was previously accomplished by Ross and details of this calibration can be found in Reference [4]. The calibration curve is shown in Figure 15.

The calculation of the secondary air mass flow rate requires the measurement of the ambient pressure and temperature, and the pressure drop across the secondary air nozzles (PA-PS). The secondary air plenum is equipped with pressure taps mounted both in the rear section containing the air metering nozzles and in the front section containing the eductor under test. No measurable difference was detected between the two taps so the pressure tap nearest the eductor was used in the data runs.

The uptake stack Mach number calculation necessitates the measurement of the uptake temperature and pressure as well as the primary mass flow rate. The uptake temperature (TUPT) is measured with a chromel-alumel thermocouple inserted through the primary nozzle plate at the centerline and protruding approximately two inches into the stack. Uptake pressure (PEH) is measured through a four-point averaging pressure tap located approximately seven and one half inches (one diameter) upstream of the eductor nozzle entrance.

The mixing stack was constructed with pressure taps
every one-half diameter down the length of the stack. The
mixing stack pressure distribution (PMIX) is easily measured.
Chromel-alumel thermocouples were welded every one-half

diameter to the outside of the mixing stack to facilitate measurement of the temperature distribution.

Temperature profiles at the exit plane of the primary nozzles and the mixing stack are obtained using a chromelalumel thermocouple mounted on an adjustable traversing mechanism shown in Figure 16.

D. EDUCTOR SYSTEM

The eductor system includes the eductor nozzles and the mixing stack. Figure 1 shows the general eductor system arrangement.

1. The Mixing Stack

The mixing stack was constructed of 7.5 inch OD, 0.188 inch wall thickness stell pipe. Two lengths were tested. First a 3 diameter long (21.366 inch) stack was tested then a 2.5 diameter long (17.805 inch) stack was machined from the long stack and tested.

The mixing stack is supported inside the secondary air plenum by means of an adjustable saddle and held in place by an adjustable metal band. The stack is also supported by the adjustable collar at the plenum wall. This collar can be seen in Figure 16. The adjustable saddle and collar allows alignment of the mixing stack with the primary nozzles.

2. Eductor Nozzles

The eductor nozzles investigated consisted of two different four-nozzle geometries previously tested. The

first geometry was a mixing stack to total nozzle area ratio of 3:1 and the second was a mixing stack to total nozzle area ratio of 2.5:1. The nozzle elements were machined from steel tubing and welded to a circular nozzle plate which was bolted onto the exhaust stack. The nozzles are shown schematically in Figures 17 and 18 and are pictured in Figures 19 and 20.

Standoff Ratio (S/D)

Both geometries investigated were tested at an S/D value of 0.5. Previous testing [2] has shown this to be approximately the optimum standoff ratio.

IV. EXPERIMENTAL METHOD

The pumping coefficient, W*T* 0.44, provides the basis for the analysis of parameter variation effects on eductor pumping. Figure 21 graphically illustrates the eductor pumping characteristic curve defined by the experimental data correlation of equation (13). Design of the experimental apparatus facilitates determination of the dimensionless parameters in the experimental correlation with the exception of the secondary flow rate at the operating point. For the operational eductor system, little or no restriction of the secondary flow is present. Modeling of this operating point precludes the use of restrictive flow measuring devices, such as ASME flow nozzles used in model tests. The technique of determining the pumping coefficient at the operating point, then, is first to establish the pumping characteristics of the eductor system. This is accomplished by varying the secondary air flow rate from zero to its maximum measurable value, using the ASME flow nozzles mounted in the secondary air plenum and recording the temperatures and pressures required to calculate the corresponding dimensionless parameters. The "open to the environment" condition is then simulated by removal of the end plates on the secondary air plenum. Extrapolation of the characteristic curve to its intersection with the W*T*.44 axis locates the pumping coefficient for the operating point of the eductor system.

The mixing stack pressure and temperature distributions were obtained from a series of pressure taps and thermocouples at half diameter distances along the mixing stack. These pressures and temperatures were recorded at the "open to the environment" condition and then plotted versus the ratio of tap location (X) to mixing stack diameter (D) for each geometry tested.

A measure of the degree of mixing of the primary and secondary flows was obtained by plotting the mixing stack exit plane temperature profile at the "open to the environment" condition. Two temperature profile traverses were made. A greater degree of mixing of the flows will result in a flatter temperature profile.

V. DISCUSSION OF EXPERIMENTAL RESULTS

The intent of this investigation, as discussed earlier, was to conduct hot flow tests of exhaust eductor systems in an attempt to meet three primary objectives. The first objective was to test and verify the proper operation of the hot gas generator. The second was to validate the use of the correlating parameter (W*T*·44). The third objective was to obtain temperature data on the mixing stack wall and of the exhaust gas at the mixing stack exit plane.

Initial testing of the hot gas generator was concerned with ensuring that a sufficient range in uptake temperatures could be obtained while maintaining the desired Mach number. Uptake temperatures from 550°F to about 900°F were easily obtained. The lower limit exists due to the requirement for a minimum fuel pressure to the fuel nozzle. An attempt to lower the uptake temperature below 550°F necessitates too low a fuel flow rate to achieve proper fuel atomization and smoking or loss of ignition occurs. The upper limit exists because an attempt to go to higher uptake temperatures requires burner temperatures above the 1500°F maximum. Lower uptake temperatures are obtainable at higher Mach numbers, as are higher uptake temperatures at lower Mach numbers.

Primary nozzle exit plane temperature profiles taken by Ross [4] indicated that the exhaust was swirling up the exhaust stack. A flow straightener consisting of two wire

screens placed two inches apart was installed in the uptake stack one foot from the nozzle box. The temperature profiles shown in Figure 22 are basically consistent from one nozzle to another and are considerably flatter, indicating that the flow straightener is effective in taking the swirl out of the exhaust flow.

A temperature profile across the uptake stack at the mid-length point was taken and is presented in Figure 23. The temperatures taken at this point are normalized with a reference temperature taken on the stack centerline $1\frac{1}{2}$ inches upstream of the primary nozzles. The temperature profile is essentially flat, with the maximum temperature deviation less than 2%. The average value of this curve is approximately one. The reference position was therefore used to measure the uptake temperature, since it is essentially equal to the average mid-length temperature.

Verification of the experimental setup was made by duplicating previous cold flow results using the hot rig under cold flow conditions. Figure 24 shows the results of the cold flow test done by Moss [2] and the results obtained with this setup for an identical geometry but different scale. The pumping coefficients at the open to the environment condition (P*/T* = 0) differ by only 1.5%. Figure 25 gives a similar comparison for data taken by Staehli and Lemke [5] for a different identical geometry and different scale. Again the difference at P*/T* = 0 is about 1.5%.

Pumping performance data was taken at a range of uptake temperatures from 150°F (cold flow) to 850°F. Figures 26 and 27 show that although the performance data are contained within a narrow band, a temperature related trend is present. The cold flow data is at the upper edge of the band with data at increased temperature fanning out below it. This result is not predicted by the one-dimensional theory discussed earlier and is an area of possible future study. Possible causes include temperature effects on either primary or secondary air flow measurement. For example, a leak in the air metering box that is accentuated with temperature would lead to an underestimation of W which would lower W* and in turn lower W*T*. 44, shifting the performance plot. Figures 28 through 37 give the pumping performance plots at each condition individually. The pumping coefficients at the open to the environment condition are all within 8% of one another. The pumping coefficients of the $A_{\rm m}/A_{\rm p}$ = 2.5, L/D = 2.5 geometry (to be called the "2.5" geometry) are about 30% lower than those of the $A_m/A_p = 3.0$, L/D = 3.0geometry (to be called the "3.0" geometry). This agrees with data obtained by Moss [2] and Staehli and Lemke [5].

Temperature and pressure data was acquired every half diameter down the length of the mixing stack. The pressure distributions presented in Figures 38 and 39 show a rise in pressure down the stack indicating that the degree of mixing of the primary and secondary flows increases down the stack. Previous cold flow data gives similar results.

The mixing stack axial temperature distributions are given in Figures 40 and 41. Figure 42 shows the temperature distributions at TUPT = 850°F and A_m/A_p = 3.0 and L/D = 3.0 compared to the same uptake temperature and A_m/A_p = 2.5, L/D = 2.5. The smaller nozzles $(A_m/A_p$ = 3.0) cool the stack more effectively than the larger ones, as predicted by the greater pumping coefficient achieved by this geometry. The maximum stack temperature for the 3.0 geometry is 368°F compared to 428°F for the 2.5 geometry at the same uptake temperature (TUPT = 850°F).

Temperature profiles taken at the exit plane of the mixing stack and presented in Figures 43 and 44 show that the peak exhaust temperature for the 3.0 geometry is 11% lower than the 2.5 geometry. Again, this is as expected based on the larger pumping coefficient. These measurements indicate that the peak temperatures occur about one-half inch to the right of the stack centerline. A calculation of the misalignment angle required to produce a one-half inch offset gave an angle of about $1\frac{1}{2}$ degrees. A check of stack alignment revealed a small alignment error which would corroborate the offset. It is not felt that this offset had any noticeable effect on any other data taken.

Table 1 gives results of the findings for each geometry tested.

VI. CONCLUSIONS

The experimental results were presented in Section V and the resulting conclusions are summarized here.

- A. The hot gas generator performs as desired. It was verified that a wide range of uptake temperatures could be easily obtained. The system proved to be stable, repeatable and relatively simple to operate.
- B. The pumping coefficient (W*T*.44) is an acceptable parameter to measure a system's pumping performance. The performance plots were contained within a narrow region, which shows that the use of cold flow data presented in this way accurately correlates to hot flow tests. Cold flow pumping coefficients were corroborated with hot flow data.
- C. Mixing stack wall and exhaust temperature data follow the trends predicted by cold flow testing. The $A_m/A_p=3.0$, L/D=3.0 geometry cools the exhausgas more effectively than the 2.5 geometry.

VII. RECOMMENDATIONS

In addition to meeting the objectives mentioned in Section V, this research has also raised questions to be solved by further research. Some recommendations for further study are listed below.

- A. A study should be done to determine the cause of the slight temperature related spread in the performance data.
- B. Previous studies have used exhaust velocities as a measure of the mixing and hence, as a measure of the exhaust temperature profiles. Previously obtained velocity profiles predict a slight temperature depression at the stack centerline that is not present in the data obtained in this study. Exit velocity profiles should be obtained, allowing a direct comparison of velocity and temperature data.
- C. The end plate of the air metering box should be redesigned to allow greater freedom of mixing stack alignment.

FIGURE 1. Schematic Diagram of Simple Exhaust Gas Eductor

FIGURE 2. Simple Single Nozzle Eductor System

Schematic Diagram of Combustion Gas Generator FIGURE 3.

FIGURE 4. Combustion Gas Generator

FIGURE 5. Gas Generator Fuel System

Gas Generator Fuel Supply System

FIGURE 6.

51

FIGURE 8. Eductor Air Metering Box Arrangement

FIGURE 9. Interior of Air Metering Box Showing Uptake Stack and Primary Nozzles

FIGURE 10. Interior of Air Metering Box Showing Mixing Stack and Primary Nozzles

Schematic Diagram of Pressure Measurement System FIGURE 11.

FIGURE 13. Main Control Panel, Digital Pyrometers, Manometer Manifold Valves

Schematic Diagram of Temperature Measurement System FIGURE 14.

Entrance Nozzle Calibration Curve (Table II) FIGURE 15.

Air Metering Box End Plate and Mixing Stack Collar FIGURE 16.

FIGURE 17. Dimensional Diagram of Primary Flow Nozzles

		$A_{m}/A_{p} = 2.5$	$A_{m}/A_{p} = 3.0$
	А	10.000	10.000
	В	45°	45°
	R_1	1.126	1.029
•	R ₂	1.251	1.154
·	R ₃	2.070	2.070
	R ₄	4.509	4.509
	R ₅	3.729	3.729
1	R ₆ .	4.108	4.108
	All dimensions in inches		
. 1			

FIGURE 18. Dimension Diagram of Primary Flow Nozzle Plate

FIGURE 19. Primary Flow Nozzle Plate (Back View)

FIGURE 20. Primary Flow Nozzle Plate (Front View)

FIGURE 21. Illustrative Plot of the Experimental Data Correlation in Equation (14).

FIGURE 22. Primary Flow Nozzle Temperature Profiles (Table III)

Uptake Stack Temperature Profile (Table IV) FIGURE 23.

FIGURE 31. Performance Plot, L/D = 3.0, TUPT = 750°F (Table V)

FIGURE 33. Performance Plot, L/D = 2.5, Cold Flow (Table VI)

L/D = 2.5 (Table VI) Mixing Stack Wall Temperature Distribution, FIGURE 41.

Cooling Tower Switches and Cooling Water Valve FIGURE 46.

Carrier Air Compressor, Butterfly Suction Damper, and Cooling Water Valve FIGURE 47.

FIGURE 48. Auxiliary Oil Pump and Switch

FIGURE 49. Main Air Supply Globe Valve

IX. TABLES

MAXIMUM MIXING STACK EXIT PLANE TEMP. (TUPT = 850°F)	501°F	596°F
MAXIMIM MIXING STACK WALL TEMP. (TUPT = 850°F)	368℃	428°F
PUMPING COEFFICIENT	.72	• 56
GEOMETRIC PARAMETERS	$L/D = 3.0$ $A_{m}/A_{p} = 3.0$ $S/D = .5$	$L/D = 2.5$ $A_{m}/A_{p} = 2.5$ $S/D = .5$

TABLE I. Summary of Results

PNH + B	Δ PN	√(PNH+8) • △PN	ma
(in. Hg)	(in. H ₂ O)	((in.Hg) · in.H ₂ O)	(lmb/sec)
(in. Hg) 55.46 56.30 55.40 54.35 53.55 52.25 51.11 51.05 50.05 48.15 46.76 46.05 44.90 43.66 43.26 43.26 34.26	13.05 13.05 12.85 12.60 12.55 12.45 12.15 12.00 11.90 11.65 11.15 11.00 10.65 10.40 9.80 10.20 9.45 9.50 8.60 8.00 7.58 7.00 6.60 6.00 5.05 4.05 3.30 3.00 2.05 1.05	26.902 27.105 26.681 26.168 25.853 25.820 25.195 24.765 24.647 24.147 23.170 22.679 22.145 21.609 20.684 21.005 19.481 19.127 17.816 16.902 16.290 15.486 14.982 14.126 12.813 11.377 10.205 9.707 7.707 5.655	1.915 1.933 1.899 1.862 1.850 1.835 1.789 1.786 1.740 1.703 1.636 1.5566 1.524 1.496 1.511 1.394 1.342 1.288 1.218 1.179 1.112 1.115 1.030 0.933 0.834 0.753 0.725 0.584 0.424
30.29	0.60	4.263	0.330

TABLE II. Entrance Transition Nozzle Calibration Data

Diametral Position (inch)	T (°F)	TUPT (°)	F)
0 .25 .50 .75 1.00 1.25 1.50 1.75 2.00	800 808 816 818 820 820 814 810	852 852 854 853 855 853 853 854 855	Nozzle A
0 .25 .50 .75 1.00 1.25 1.50 1.75 2.00	804 810 817 820 818 820 818 816 809	854 854 855 855 855 856 855	Nozzle B
0 .25 .50 .75 1.00 1.25 1.50 1.75 2.00	806 815 823 826 826 818 810 806 792	856 856 857 858 860 858 858	Nozzle C
0 .25 .50 .75 1.00 1.25 1.50 1.75 2.00	801 810 815 820 822 822 812 808 798	855 855 856 856 856 855 854 854	Nozzle D

TABLE III. Primary Nozzle Temperature Profile Data

Diameral Position (inch)	TUPT	(°F)	TREF (°F)
0	773		851
. 25	816		851
.50	826		853
1.00	840		855
1.50	849		857
2.00	852		856
2.50	856		856
3.00	860		863
3.50	848		852
4.00	850		850
4.50	854		854
5.00	855		858
5.50	852		858
6.00	849		859
6.50	842		857
7.00	832		848
7.25	835		852
7.50	819		848

TABLE IV. UPtake Stack Temperature Profile Data

* HOT RIG PERFORMANCE * CATA TAKEN CN 16 AUGUST BY 0. R. WELCH

					14 P F	LBM/SEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	UPT MACH		996.0	3.066	0.066	0.067	0.067	790.0	190.0	0.067	790.0				
			1	بر ت	WFA	181	1.6055	I.6055	1.6066	1.6078	1.6063	1.6101	1.6113.	1.6113	1.6113	du un	F1/5EC	75.26	EC.08	€ C • 3 6	80.12	80.64	£1.33	81.63	81.11	82.04				
7.51 INCHES	2.99		20 02 TMC466 116	משטאו כסיס	Y AREA	INCHES	0.0	6.283	11.152	14.726	27.253	35.855	52.425	64.952	* * *	Λ'n	FT/SEC	88.25	108.48	115.28	125.46	138.04	144.78	147.82	145.77	***				
METER: 7.	AREA RATIC, AM/AF: 2.99		FCCHDE		SECCINCARY AREA	SCUARE INCHES	0	9	11	14	27	38	52	64.	***	9.0	FT/SEC	264.19	266.60	267.52	268.72	265.11	270.76	271.66	272.01	273.13				
UPTAKE CIAMETER:	AREA RATIC		AMPTENT DOCKSHOE	and the same	PA-PS	INCHES OF WATER	5.25	3.54	2.65	2.18	1.16	69.0	0.44	0.31	0.01	٠, در	LBM/SEC	0.0	0.404	C.623	C.143	1.003	1.132	1.189	1.227	****				
	,			•	PU-PA	INCHES	8.10	51.5	10.60	11.10	12.C5	12.52	12.60	12.50	13.20	7	LBM/SEC	1.665	1.605	1.667	1.666	1.666	1.610	1.611	1.611	1.611	4			
					TAPE	e Un	66.5	66.5	66.5	66.5	66.5	66.5	66.5	68.5	66.5	P+1++ - 44		0.0	0.2370	0.3642	0.4334	0.5840	0.6562	3.6677	0.7053	*****	A NOILLION A	2.5	-0.430	
	ES				TUPT	CEGREES	138.0	146.0	149.0	152.0	155.0	158.0	160.0	161.0	164.0	P+/T+		0.3779	0.2536	0.1894	0.1552	0.0824	0.0489	0.0311	0.0215	9000.0		2°C	-0.570	
4	2.0¢ INCHES	: 21.37 INCHES			FFZ	1.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	*		0.6637	0.6720	0.6677	0.8635	0.6593	0.6551	0.6523	0.8510	0.6469	CISTRIBUTION FOR RUN:	1.5	-0.650	
N NEZZLES					OELFN	IN.H2C	14.80	14.60	14.80	14.80	14.75	14.80	14.89	14.80	14.80	*		0.3339	C.2211	0.1644	0.1340	C. C 708	0.0418	3.0265	0.0183	3.0005		1.0	-1.200	
NLPEER OF PRIMARY NOZZLES:	PRINCH ACZZLE CIAMETER:	MIXING STACK LENGTH	PIXING STACK L/Cz		FNF	IN. P.G	3 . 8 5	2 · 8 £	3.50	3.95	4.00	4.05	4.10	4.10	4.10	*		0.0	C.2517	6.3677	0.4623	C.6243	C.7030	C.7378	C.7615	******	PIXING STACK PRESSURE	0.5	-1.520	
NLPEER	PRIPER	FIXING	NIXING		z	RLN	1	14	nı	4	uı	ę	7	w	υ	۷	RUA	1	13	m	4	u1	9	7	ಜ	* 5	PIXING S	:)/(:	FPS(IN. PZC):	

Performance Data L/D = 3.0TABLE V.

108.C 0.524

-0.026

-0.034 106.0 0.528

-0.039

102.0 9.923

\$1.0 -0.071

80.0

TP 5 # 1

-1.520 060.0-

FPS#:

THIX (CEG.F):

* *

UPTAKE CIAMETER: 7.51 INCHES	AREA RATIC, AMIAP: 2.59			AMBIENT PRESSURE: 30.03 INCHES HG
NLPEER OF FRIMARY NC22LES: 4	PRIMARY NOZZLE CIAMETER: 2.04 INCHES	PIXING STACK LENGTH: 21.37 INCHES	PIXING STACK DIAMETER: 7.12 INCHES	MIXING STACK L/D: 3.00

	7. G	SEC	3.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	0.0093	UPT MACH		3.066	99000	9.066	0.065	0.065	0.065	0.065	0.065	0.065
Н6	h FA	L BM/SEC	1.2090	1.2108	1.2116	1.2050	1.2098	1.2197	1.2107	1.2071	1.2071	CU UPT	FT/SEC	103.58 0.	163.70 0.	07.631	103.10 0.	103.03	103.20 0.	102.55 0.	102.52 0.	107.85 0.
30.03 INCHES HG	AREA	NCHES	0	6.283	11.192	14.726	27.293	35.859	52.425	64.952	***	'n	FT/SEC	115.24	134.11	145.30	148.48	159.68	164.67	167.61	168.93	***
	SECCNCARY AREA	SCLARE INCHES	0.0	.9	11.	14.	27.	35.	52.	.49	***	LP	FT/SEC	244.83	345.21	345.24	243.23	342.01	342.56	342.73	242.62	342.40
AMBIENT PRESSURE:	PA-FS	INCHES OF MATER	5.C0	3.30	2.65	1.55	1.01	0.58	0.38	92.0	00.0	V)	LEMISEC	0.0	055.3	0.622	C.702	0.536	1.036	1.103	1.131	**
•	PU-PA	INCHES	7.55	S . H	10.20	10. 80	11.80	12.20	12.35	12.50	12.65	ď	LBM/SEC	1.218	1.220	1.221	1.218	1.215	1.220	1.220	1.216	1.216
	TAME	Ŧ.	10.0	16.0	70.0	70.0	0.05	70.0	10.0	30.0	70.0	74. 44. T*M		0.0	0.2361	0.3756	0.4298	0.5726	0.6327	0.6741	0.6524	* * * * * * * * * * * * * * * * * * * *
	TUPT	DEGREES	665.0	573.0	574.0	572.0	573.0	575.0	573.0	576.0	576.0	P*/T*		0.3636	6.2404	0.1932	0.1435	0.0745	0.0427	0.0281	0.0193	0.0004
	FFZ	1.1	55.0	55.0	55.0	\$2.0	52.0	55.0	52.0	52.0	65.0	*		0.5149	0.5129	0.5124	0.5134	0.5129	0.5119	0.5129	0.5114	0.5114
3.00	DELFN	IA.F20	P - 25	8 .35	8 - 35	6.30	8.30	6.30	8.30	8.25	6.25	# C.		0.1672	0.1233	0650.0	0.0737	0.0382	0.0219	0.0144	0.009¢	C. CCC2
MIXING STACK L/D: 3.00	FNH	IN.FG	3.60	3.70	3.75	3.60		3.50	3.50	3.50	9.50	*		0.0	C.3194	C.5C94	C.5763	C.7681	6.8454	C.5043	0066.0	* * * * * * * * * * * * * * * * * * * *
NIXI	2	RLA	1	2	e1	4	S	ę	7	60	2	2	RUN	7	2	n,	4	20	Ŷ	7	89	5

)

PIXING STACK FRESSLAE CISTALBUTION FOR PUN: 9 POSITION A X/C: 0.5 1.0 1.5 2.0 2.5 FMS(IN. F2C): -1.180 -C.900 -0.360 -C.290 -0.180

TABLE V. (Continued)

276.0

254.0

261.0

239.0

200.0

TMIX (CEG.F):

TPS# :

-0.007

-0.011

-0.014

-6.034

-0.045

FPS#

0.712

0.731

FIGH 1 2.00 INCHES FIRE A 2.00 INCHES REA PAILS. ANY APE 1.559 ARE A PAILS. ANY APE 1.559 ARE A PAILS. ANY APE 1.559 ARE IEAL A PAFE 1.00 INCHES HG FA 5.00 INCHES HG FA 6.00 C61.0 TC.0 E.C.5 G.283 INCHES HG FA 6.00 C62.0 TC.0 INCHES 1.150 FA 6.00 TC.0 INCHES 1.150 FA 6.00 C62.0 TC.0 INCHES 1.50 INCHES INCHES HG FA 6.00 C62.0 TC.0 INCHES 1.50 INCHES INCHES INCHES HG FA 6.00 C62.0 TC.0 INCHES 1.50 INCHES INCHES INCHES INCHES HG FA 7.12 INCHES 1.150 FA 6.00 C62.0 TC.0 INCHES 1.50 INCHES INCHES HG FA 19 C62.0 TC.0 INCHES 1.50 INCHES INCHES INCHES HG FA 19 C62.0 TC.0 INCHES 1.50 INCHES INCHES INCHES HG FA 19 C62.0 TC.0 INCHES 1.50 INCHES INCHES INCHES INCHES HG FA 19 C62.0 TC.0 INCHES 1.50 INCHES INCHES INCHES INCHES HG FA 19 C62.0 TC.0 INCHES 1.50 INCHES 1.150 INCHES HG FA 19 C62.0 TC.0 INCHES 1.50 INCHES 1.150 INCHES HG FA 19 C62.0 TC.0 INCHES 1.50 INCHES 1.150 INCHES HG FA 19 C62.0 TC.0 INCHES 1.150 INCHES 1.150 INCHES INCHES 1.150 INCHES IN						h P F	L BM/SEC	0.0098	0.0099	9.0098	9.0000	5600.0	0.0099	9.0095	6600.0	5600.0	UPT MACH		0.066	3.966	990.0	0.065	0.065	3.065	0.065	0.065	3.065		
No. 10 N					. hc	# F.A	L.B.M.	1.1597	1.1577	1.1585	1.1585	1.1565	1.1565	1.1565	1,1565	1.1568		FT/SEC											
No. 10 N	51 INCHES	2.59			0.03 INCHES	Y AREA	INCHES	0.	.283	.192	.726	.253	.859	.425	. 552	***	Ų	FT/SEC	120.50	138.62	147.85	152.60	163.26	167.85	170.64	172.06	****		
R: 2.0¢ INCHES 1.37 INCHES 1.34 INCHES	ETER: 7.					SECCNEAR	SCUARE	0	9	11	14	27.	38	52	64	* * * * *	L F	FT/SEC	360.58	359.12	358.23	356.88	256.42	354.49	354.95	355.17	355.37		
R: 2.0¢ INCHES 1.37 INCHES 1.34 INCHES	PTAKE CLAN	REA RATIC			MEIENT PRE	PA-FS	F WATER	4.55	3.25	2.35	1.50	25.0	15.0	0.37	0.25	00.0	SK	L BM / SEC	0.0	0.387	0.586	659.0	0.518	1.027	1.081	1.109	*****		
FF 2.0¢ INCHES 1.37 INCHES 7.12 INCHES 00 FF 2 0¢GREES 58.0 ¢63.0 59.0 ¢63.0 59.0 ¢62.0 59.0 ¢62.0 59.0 ¢62.0 59.0 ¢62.0 59.0 ¢62.0 59.0 ¢62.0 59.0 ¢62.0 59.0 ¢62.0 59.0 ¢62.0 59.0 ¢62.0 59.0 c62.0		•			4	PU-FA	INCHES C	8.05	9.65	10.45	10.65	11.70	12.10	12.20	12.40	12.60	Œ.	L BM / SEC	1.165	1.168	1.168	1.168	1.166	1.166	1.166	1.166	1.167	<	
FF 2.0¢ INCHES 1.37 INCHES 7.12 INCHES 00 FF 2 661.0 58.0 662.0 58.0 662.0 59.0 662.0 59.0 662.0 59.0 662.0 59.0 662.0 59.0 662.0 59.0 662.0 59.0 653.0 59.0 652						TAME	•	76.0	70.0	76.0	70.0	70.0	16.0	70.0	76.9	10.0	55°**L*!		0.0	0.2380	0.3604	0.4265	0.5655	0.6344	0.6671	0.6842	*****	PCSITION	2.5
CF PRIMARY NCIZLES: 4 NCIZLE CIAMETER: 2.0¢ INCHES STACK LENGTH: 21.37 INCHES STACK LIC: 3.00 STACK LIC: 3.00 FNh DELFN FF2 IN.+G IN.+CO F9.0 3.65 7.65 58.0 3.65 7.65 58.0 3.60 7.65 58.0 3.60 7.65 58.0 3.70 7.60 59.0 3.70 7.60 59.0 3.70 7.60 59.0 3.72 7.60 59.0 3.72 7.60 59.0 6.3212 0.1122 0.4726 C.5013 0.C64 0.4735 C.5013 0.C64 0.4735 C.5013 0.C030 0.4735 C.5011 0.C088 ACK PRESSURE CISTARBUTION FCR		2				TUPT	OFGREES	661.0	663.0	662.0	655.0	662.0	657.0	0.659	0.099	661.0			0.3587	0.2378	0.1727	0.1403	0.0720	0.0426	0. C272	0.0187		RUN: 9	2.0
CF FRIMARY NCZZLES:	4	2.0¢ INCHE	INCHES	12 INCHES		FFZ	1.7	0.82	0.65	88.0	88.0	0.65	0.65	0.65	0.65	6.55	*		0.4726	0.4718	0.4722	0.4735	0.4722	0.4743	0.4735	0.4731	0.4726	BUTION FOR	1.5
CF PRIMAR NC22LE C STACK LEN STACK L/C ENN 10.05 3.65 3.65 3.65 3.65 3.70 3.70 3.72 3.70 0.05 0.05 0.5931 C.7867 C.9270 C.9270 C.511 ***********************************	Y ACZZLES	IAMETERS	CTF: 21.37			DELFN	1 N. + 20	7.70	7.65	7.65	7.65	7.60	7.60	7.60	7.60	7.60	£.		3.1655	0.1122	0.0815	3.0664	0.0340	0.0202	0.0129	0.0388	3.0002	LRE CISTRI	1.0
* * * * * * * * * * * * * * * * * * *	PER CF PRIMAR	PERY NCILLE C	ING STACK LEN	ING STACK OIA	PIXING STACK L/C:	FNP	IN. PG	3.45	u) 0 0	3.60	3.63	3.70	2.70	2.70	3.70	3.72	* 3		0.0	C-3312	C.5013	0.5931	C.7867	6.8808	C.9270	C-5511	*****	G STACK PRES	3.7C: C.5
7	A C P	1 4 4	F1X	FIX.	¥1×	Z	RLA	1	(V)	rı s	7	KN.	9	7	œ.	6	z	RLA	т	2	m	7	u)	•	7	8	σ	FIXIA	•

(Continued) TABLE V.

-0.0C6 311.0 0.687

332.0 -0.250

-0.320 -0.011 320.0

-0.900

-1.190

FMS(IN. F2C):

0.708

969.0

273.0

-0.042 230.0 C.615

TMIX (CEC.F):

THS#1

-0.170

PEIPARY	ALPEER OF PRIMARY NOZZLES PRIPARY NOZZLE CIAMETER:		2.06 INCHES	S			UPTAKE CIAMETERS AREA PATIO. AM/AP	- 00	7.51 INCHES		
FIXING TXING	STACK LENGTH		21.37 INCHES								
		3.00	210012				AMBIENT PRESSURE:		30.04 INCHES HG	9 H S	
4	FNH	GELFA	FF2	TUPT	TAME	PU-PA	PA-PS	SECCNCARY AREA	Y AREA	N F A	H P F
RUA	IN.FG	IN. 120	1.7	DEGREES	F.	INCHES	CF WATER	SCUARE INCHES	INCHES		L BM/SEC
1	4.85	6.15	118.0	159.0	0.59	5.55	5.10	•	0.0	1.1097	7 0.011
2	4.55	6.15	118.0	762.0	65.0	11.30	3.30	9	6.283	1.1113	
(I)	4.55	6.75	118.0	770.0	0.59	12.10	2.40	11	11.192	1.1113	3 0.011
4	5.00	6.70	118.0	773.0	0.59	12.60	1.52	14	14.726	1.1080	
w	5.33	6.70	113.0	766.0	65.0	13.20	0.56	27	27.293	1.1080	
ę	5.00	01.9	113.0	764.0	0.50	13.70	0.55	36	35.859	1.1080	0 0.011
7	5.20	6.70	113.0	764.0	65.0	13.65	0.35	52	52.425	1.1111	
89	5.40	6.70	112.0	768.0	65.0	13.50	0.24	99	64.952	1.1142	2 0.011
5	6.40	01.9	110.0	164.0	0.23	14.00	0.01	****	***	1.1142	2 0.010
z	* 3	**	*	P*/T*	65. **T*N	d.	84	ع	Ş	20	UPT MACH
PLN						LBM/SEC	L BY/SEC	FT/SEC	FT/SEC	FT/SEC	
1	0.0	1551.0	0.4305	9696.0	0.0	1.121	0.0	375.58	125.65	112.54	990-0
2	0.3487	0.1030	0.4295	0.2399	C.24C4	1.123	0.352	375.75	144.23	112.67	9.000
en	C.5287	0.0743	0.4267	0.1741	0.3642	1.123	0.555	377.37	154.45	113.36	3.066
4	0.6252	9653.0	0.4256	0.1401	0.4253	1.120	001.0	376.76	155.26	113.17	0.066
2	0.8175	0.0202	0.4281	0.0705	0.5628	1.115	0.915	373.58	168.44	112.22	0.065
ų	(.5061	0.0175	0.4288	0.0407	0.6242	1.119	1.014	372.60	172.83	111.52	0.065
7	C.9481	0.0111	0.4288	0.0258	0.6532	1.122	1.064	373.44	175.45	112.17	0.065
89	1012.0	0.0075	0.4274	0.0176	0.6676	1.125	1.092	375.55	177.54	112.61	990.0
*	*****	0.003	0.4268	100000	******	1.125	****	374.06	*****	112.36	0.066
PIXING ST	PIXING STACK PRESSURE	LRE CISTRI	CISTRIBUTION FCR RUN:	R RUN: 9	POS1110N	4					
x/C:	6.5	1.0	1.5	2.0	2.5						
PPS(IN. F2C):	-C.550	-6.610	-0.180	-0.200	-0.160						
F 15 4 5	-C.030	-0.019	900.0-	900*0~	-0.005						
TMIX (CEG.F):	246.0	277.0	321.0	334.0	325.0						
THS#1	0.579	0.603	0.635	0.644	0.640						

				*PF	SEC	0.0113	0.0113	0.0113	0.0113	0.0112	0.0113	0.0113	0.0112	0.0113	UPT MACH		9.066	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065						
			91	\$ FA	L BM/ SEC	1.0671	1.0645	1.0652	1.0660	1.0624	1.0626	1.0626	1.0633	1.0626	רר האב	FT/SEC	116.83	116.64 0	115.86 0	115.51	115.44 0	115.55 0	115.58 0	115.68 0	114.67 0						
7.51 INCEES	2.59		30.04 INCHES HG	AREA	NCHES	o.	6.283	11.192	14.726	27.253	35.859	52.425	64.952	**	Š	FT/SEC	129.97	147.2C	156.06	161.10	176.75	175.57	177.86	16.21	***						
	AHIAPE 2			SECCHDARY AREA	SCUARE INCHES	0.0	6.	11.	14.	27.	36	52.	64.	***	dn	FT/SEC	388.93	386.30	385.72	385.88	384.33	384.67	384.78	385.77	382.41			,,			
UPTAKE FLAMETER:	AREA RATIC, AM/AP:		AMBIENT FRESSURE:	PA-FS	F WATER	485	3.10	2.20	1.78	05.3	0.52	0.33	C-23	0.01	SM	LBM/SEC	0.0	6.379	695.0	679.0	0.887	0.985	1.032	1.068	****						
-			4	PU-PA	INCHES OF WATER	6.10	10.10	11.50	11.50	12.70	13.10	13.25	13.25	13.45	d M	L BM / SEC	1.078	1.076	1.076	1.077	1.074	1.074	1.074	1.074	1.074	⋖					
				TAME	ů.	64.9	6.93	96.0	0.99	0.99	66.0	0.99	66.0	66.0	55° ##1#E		0.0	0.2357	0.3535	5115.0	0.5522	0.6124	0.6415	0.6625	****	PCSITION	2.5	-0.15C	-0.005	357.0	0.621
	S			TLPT	DEGREES	852.0	852.3	852.0	853.0	855.0	657.0	858.0	861.0	851.0	P*/T*		0.3534	0.2290	0.1630	0.1319	0.0673	9.0389	0.0247	0.0172	C. COCB	R RUN: 9	2.0	-0.170	-0.005	368.0	0.631
4	2.0¢ INCHES	7.12 INCHES		FFZ	7.4	114.0	114.0	114.0	114.0	113.0	115.0	115.0	113.9	114.0	*		C.4008	0.4008	0.4008	C. 4005	0.3998	0.3992	0.3989	0.2980	0.4011	PIXING STACK PRESSURE DISTRIBUTION FOR RUN:	1.5	-0.180	-0.005	356.0	0.622
Y NC221 ES :	, m	PETER: 7.	3.00	OELPN	IA. F20	6.30	6.25	6.25	6.25	6.20	6.20	6.20	6.20	6.20	, E		0.1416	0.0518	0.0653	0.0528	3.0269	3.6155	0.0398	9900°C	6000.0	LRE DISTRI	1.0	009-3-	-C.018	310.0	0.587
NIPPER CF PRIMARY NC221	FFIRETY NOZZLE CIAMETER: PINING STACK LENGTH: 21.3"		STACK L/C:	IN	IN.FG	4.45	4.55	4.60	4 • 65	4.65	4.70	4.70	4.75	4.70	*		0.0	C.3525	0.5285	1659.0	C.8266	6.9173	(.5611	C.5542	******	TACK PRESS	0.5	-0.950	-0.029	276.0	0.561
AL PPER	754176 751767 717176	PIXING	FIXING	L	RUR	1	14	m	4	u,	•	7	æ	σ	z	RLA	r4	2	m	3	ľ	9	7	80	* 05	PIXING S	376:	FPSCIA. F2C):	FPS	THIX (CEC.F):	1454

CATA TAKEN CR 18 AUGUST 8Y C. R. WELCH ... HOT RIG FERFORMANCE ***

PERFORMANCE
P. C. O. W.
COLD
:
WELCH S/C=.5
3Y D. R.
-
CN 31 AUGUST

* *

	# PF	SEC	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	UPT MACH		0.064	0.064	0.064	7.064	0.064	9.064	0.064	3.064	3.064	
UPTAKE CIAMETER: 7.51 INCHES AREA RATIC, AM/AP: 2.50	SSURE: 29.97 INCHES HG SECCNDARY AREA WPA	LBM/SEC	1.5469	1.5453	1.5475	1.5475	1.5482	1.5487	1.5458	1.5498	1.5498	TAU UU	FT/SEC	77.25 0.	77.26 . 0.	0 91.77	77.55	77.85 0.	78.67	76.23 0.	78.34 0.	76.44 0.	
		INCHES	0.0	6.283	11.192	14.726	27.293	39.859	52.425	64.952	***	ž	FT/59C	86.01	101.73	110.22	114.76	123.51	127.88	125.85	130.93	*****	
		SCUARE INCHES	0	4)	11	14	27,	39	52	49	****	ď	F1/SEC	215.06	214.82	216.18	216.71	216.45	217.07	217.50	217.61	218.07	
UPTAKE CIAMETER: AREA RATIC, AH/AP: AMBIENT PRESSURE:	PA-FS	F WATER	3.75	2.37	1.69	1 • 36	69.0	0.40	0.25	0.17	0.00	WS	L BM / SEC	0.0	0.331	0.458	0.588	0.174	0.861	0.858	6.518	*****	
∋	PU-FA	INCHES OF MATER	4.15	01.9	6.70	7.02	7.68	7.56	8.10	E . 20	8 . 25	8. P	L8M/SEC	1.547	1.545	1.548	1.548	1.548	1.545	1.550	1.550	1.550	⋖
	TAFE	f	6.5.0	65.0	65.0	6.53	65.0	65.0	0.59	65.0	0.50	P+		0.0	0.2011	0.3007	0.3545	9995.0	9.5175	0.5358	0.5514	******	POSITION A
V 2	TLPT	CEGREES	146.0	148.0	152.0	154.0	154.0	156.0	157.0	158.0	159.0	P*/T* h		0.4136	0.2629	0.1858	0.1497	0.0756	0.9437	0.0274	0.0186	0.0035 *	RUN: 9
CIZLES: 4 ETER: 2.25 INCHES : 17.81 INCHES ER: 7.12 INCHES 2.50	FFZ	7.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	*		0.8663	C. 8634	0.8578	C. 8550	0.8550	0.6522	C. E508	0.6494	0.6481	CISTRIBUTION FOR RUN:
Y NCZZLES: CIAPETER: CTF: 17.81	0E1	14.F20	13.55	13.50	13.50	13.50	13.50	13.50	13.50	13.50	13.50	ž		0.3583	0.2270	0.1593	0.1280	9.0646	0.0372	0.0234	9.0158	5000.0	
ALPEER CF FRIMARY NCZZLES: FFIMARY NOZZLE CIAMETER: PIXING STACK LENGTH: 17.81 PIXING STACK OLEMETER: 7.	FNH	IN.FG	3.35	3-40	3.50	13 - 150	м в м	2.55	2.60	3.60	3.60	* 3		0.0	C.2145	C.3217	C-3803	6664.0	0.5557	C-5756	0.5925	*****	MIXING STACK PRESSURE
TITE TO THE TENT T	Z	RUN	~	2	m	4	เก	9	7	89	5	z	RLA	-	2	C1	4	S	9	7	υĐ	٧	PIXING

1

TABLE VI. Performance Data L/D = 2.5

-0.260 -0.024 110.0 0.528

-0.320

069.3-

-0.870

PPS(IA. P2():

3/C:

-0.081

PHS#

1C8.0 C.528

-0.064

85.0

THIX (CEC.F);

(.523

905.3

18541

-0.030

:
FOT RIG FERFCHMANCE

ELCH S/C=.
S et D. R. WELCH
EN Ch. 11 SEPT
TAKEN CI

					FPF	EC	0.0	0.0	0.0	0.0	0.0	0.0	ACH		0.064	0.064	0.064	0.064	7.064	0.064	
1 INCHES					LBM/SEC	504	519	535	519	530	530	UPT MACH		0.0	0.0	0.0	0.0	0.0	0.0		
			9 H G	MFA		1.5504	1.5519	1,5535	1.5519	1.5530	1.5530	וו	FT/SEC	75.58	26.15	76.45	76.46	76.72	77.20		
	2.50			AMBIENT PRESSURE: 29.57 INCHES HG	Y AREA	INCHES	0.0	6.283	14.726	39.859	64.952	* * * *	Ş	FT/SEC	84.48	100.45	112.65	125.42	129.09	****	
HETER: 7.	AM/AP:			SSURE: 2	SECCNEARY AREA	SQUARE INCHES	0	•9	14	39	49	***	ÜF	FT/SEC	211.23	211.82	212.56	212.57	213.31	214.64	
UPTAKE CLAMETER: 7.51 INCHES	AREA RATIO, AM/AP: 2.50			MBIENT PRE	PA-PS	F WATER	3.65	2.35	1.32	6.39	0.17	00.0	57.4	LBM/SEC	0.0	C-330	C.580	C.848	615.0	*****	
NUPEER OF PRIMARY NOZZLES: 4	4			4	PU-FA	INCHES OF WATER	4.50	6.20	7.10	6.05	e.25	8 . 42	Q.M.	L8M/SEC	1.550	1.552	1.553	1.552	1.553	1.553	4
					TAMB	F.	64.0	64.0	64.0	64.0	0.49	64.0	22. **T**		0.0	0.2010	0.3519	0.5142	0.5555	******	6 POSITION A
	S				TUPT	DEGREES	134.0	137.0	140.0	142.0	144.0	148.0	P*/T*		0.4091	0.2632	0.1476	0.0432	0.010	0.0000	
	2.25 INCHE	: 17.81 INCHES	12 INCHES		FFZ	1.7	0.0	0.0	0.0	0.0	0.0	0.0	*		0.6821	0.6777	0.8733	0.8704	0.8675	0.8618	CISTRIBUTION FOR RUN:
	IAMETERS	CTF: 17.8	INSTERS 7.	2.50	DELFN	1N. F. 20	13.45	13.45	13,45	13.40	13.40	13.40	*		0.2608	0165.0	0.1289	0.0376	3.0165	90000	
	FFIMARY NOZZLE CIAMETER: 2.25 INCHES	PIXING STACK LENGTH	MIXING STACK DIAMETER: 7.12 INCHES	PIXING STACK L/C:	PNF	IN. F.G	4.75	4 • 8 2	4.85	4.95	20°4	5.00	*		C•0	0.2129	C.3736	C.5466	6.5518	****	PIXING STACK PRESSUPE
NUFE	F F 3 P	F IXI	IXII	FIXI	2	RUN	1	2	",	4	us	ę	4	AU P	1	2	e1	4	S	9	PIXING

TABLE VI. (Continued)

108.0

166.0

-C.071 1C0.0 C.528

> 50.C C.526

> > 14541

TMIX (DEG.F1:

0.543

-0.293

-0.300

1.0

0.5 -C.500 -0.086

×/[:

PMS(IN. F2C):

284.0

-0.004

-0.004 252.0 0.735

-0.019

-C.030 250.0 0.693

FP 0.4:

TMIX (CEG.F):

THOM I

282.0

				H.P.F.	SEC	0.0074	5.0073	0.0073	0.0073	0.3074	5.0073	0.0073	0.0073	0.0075	UPT MACH		3.066	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065				
	9	Эн	HFB	L8M/SEC	1.2129	1.2106	1,2113	1.2118	1.2123	1.2127	1.2127	1.2050	1.2128	TAU UU	F1/SEC	103.19	102.53 0.	102.32 0.	102.39 0.	102.48 0.	102.34 0.	102.c1 0.	161.65 0.	102.69 0.					
51 INCPES 2.50 2.90 INCHES	29.97 INCHES HG	AREA	INCHES	0.0	6.283	11.152	14.726	27.253	35.859	52.425	64.952	***	N,	FT/SEC	114.74	129.07	136.19	140.17	147.54	151.24	152.53	153.12	****						
ETER: 7.5			SECCNCARY AREA	SCUARE INCHES		• 9	11.	14.	27.	35.	52•	.49	****	LF	FT/SEC	286.89	285.05	284.48	284.66	284.53	284.53	283.62	282.73	286.05					
UPTAKE CIAMETER: 7.51 INCFES AREA RATIC, AH/AP: 2.50		AMBIENT PRESSURE:	PA:FS	F NATER	3.58	2.15	1.50	1.20	0.58	0.33	0.21	0.14	00.0	S	L BY / SEC	0.0	0.316	0.470	0.552	0.712	C.785	0.819	0.839	****					
2	4		<	PU-PA	INCHES OF WATER	6.(5	7.40	8 · C0	8.30	8.65	5.10	6.20	9.25	5.45	d.	L 8M/SEC	1.220	1.218	1.215	1.219	1.220	1.220	1.220	1.216	1.220	4			
	LES: 4 R: 2.25 INCHES 7.81 INCHES 7.12 INCHES 50		TAMB	•	6.59	65.3	65.0	6.59	0.59	65.0	65.0	65.0	65.0	55° ++1+4		0.0	0.1532	0.2674	0.3372	0.4348	0.4751	0.5005	0.5146	****	POSITION A				
			TLPT	DEGREES	565.0	564.0	563.0	564.0	566.0	565.0	562.0	562.0	571.0	P*/T*		0.3754	0.2281	0.1597	0.1272	0.0617	0.0352	0.0223	0.0153	0.0005	RUN: 9	2.0	-0.080		
4			FHZ	H.2	71.0	70.0	0.07	70.0	71.0	0.07	70.0	70.0	72.0	*		0.5120	0.5125	0.5130	0.5125	0.5115	0.5120	0.5135	0.5135	0.5091	STRIBUTION FOR RUN:	1.5	-0.080		
CF PRIMARY NCZZLES NOZZLE CIAPETER: STACK LENCTF: 17-8 STACK DIAPETER: 7	1 2.50	ũ	IN. F20	8.20	8.15	8.15	8.15	8.15	8.15	8.15	8.10	8.15	¢.		0.1522	0.1165	0.0619	0.0652	0.0216	0.0180	0.0114	0.0079	0.000.0		1.0	-6.350			
	STACK LEN	STACK DIAN	STACK L/D:	FNH	IN.FG	4 - 50	84.0	4.62	4.65	4.68	4.70	4.70	4.70	4.71	# 33		0.0	C.2552	0.3854	0.4525	6.5839	0.6431	C.6716	C.6855	****	PIXING STACK PRESSURE CI	0.5	-0.550	
	FRATIRE	MINING	PIXING	۷	RUN	1	73	C1	4	5	9	7	3	σ.	z	RUN	1	2	m	7	ĸ	ę	2	æ	6	PIXING ST	17/C	FMS(IN. F2C):	

CATA TAKEN CN 21 AUGUST BY C. R. MELCH *** HCT RIG FERFORMANCE *** 4 NOZZIES APJAP-2.5 L/C=2.5 S/C=.5 TUPT=550 CEG F

:
HOT RIG PERFCEMANCE
Y 0.R. WELCH ***
CATA TAKEN CN 11 SEPT BY 0.8. WELCH
ATA TAKEN

		MPF	L BM/SEC	0.0086	0.0085	0.0086	0.0035	0.0085	3.0085	LPT MACH		0.063	0.063	0.063	0.063	0.063	0.063	
	ЭН	MFA	LEM	1.1741	1.1708	1.1718	1.1725	1.1730	1.1737	רו ראו	F1/SEC	57.75	57.44	0 05.12	57.43 0	57.62 0	97.84 0	
51 INCFES	AMBIENT PRESSURE: 29.57 INCHES HG	Y AREA	INCHES	0.0	6.283	14.726	35.859	64.992	***	ņ	FT/55C	108.65	123.51	134.77	146.03	149.67	****	
UPTAKE CIAMETER: 7.51 INCHES AREA RATIO, AM/AP: 2.50	ESSURE: 29	SECCNDARY AREA	SCUARE INCHES	o	ξ.	14.	35.	64.	**	UP	F1/5EC	271.77	276.92	276.80	276.89	271.46	272.02	
UPTAKE CIA	AMBIENT PR	PA-FS	INCHES OF NATER	3.50	2.18	1.21	C - 34	0.15	00.0	SH	LBMISEC	0.0	C.318	0.556	0.751	0.863	****	
		PU-FA	INCHES	4.50	22.3	1.68	7.50	£ . IC	8 . 28	33 Q.	LBM/SEC	1.163	1.175	1.180	1.181	1.161	1.182	4
		TAME	ů.	64.0	64.0	64.0	0.49	0.49	64.0	55° **I*N		0.0	0.2026	0.3532	0.5023	0.5474	*****	6 POSITION A
, ,		TUPT	DEGREES	545.0	545.0	546.0	548.0	550.0	552.0	*1/*d		0.3598	0.2513	0.1358	0.6387	0.0173	9000 0	
LLES: 4 ER: 2.25 INCHES 17.81 INCHES : 7.12 INCHES		F+2	F.2	65.0	64.0	65.0	64.0	63.0	£4.0	*		0.5228	0.5212	0.5207	0.5197	0.5187	0.5176	IBUTICN FO
PY NCZZLES CIAMETER: NGTF: 17.8 AMETER: 7	C: 2.50	OELPN	IA. +20	7.90	7.85	7.85	7.85	7.85	7.85	ь ф		0.200	0.1210	0.0728	6.0201	0600.0	0.0003	SLRE CISTR
NLPEER CF PRIMAPY NCZZLES: PRIPARY NOZZLE CIAMETER: 2 PIXING STACK LENGTF: 17.81 PIXING STACK CIAMETER: 7.3	PIXING STACK L/C:	FNH	IN.hG	0 41	2 . 52	60	2.62	3.65	59.61	* 2.		0.0	C.2658	0.4707	C-6700	C.73C7	*****	MIXING STACK PRESSLRE CISTRIBUTION FOR RUN:
PHILL	FIXIA	z	RUA	1	2	e,	4	'n	9	z	RUA	7	2	3	4	5	9	MIXING

TABLE VI. (Continued)

2.0 -0.120 -0.007 291.0 0.745

1.5 -0.130 -0.008 253.0 C.748

1.0 -0.490 -0.029 270.0 0.726

C.5 -0.730 -0.044 228.0 C.687

PRS#

1 × 2 × 1

TMIX (DEG.F):

X/C: FPS(IN. F2C):

			HPF	SEC	0.0083	0.0083	0.0083	0.0082	0.0085	0.0084	0.0084	0.0064	0.0082	UPT MACH		0.065	0.065	0.065	0.064	3.065	0.065	0.065	0.065	0.064
		НС	FFA	LEMISEC	1.1412	1.1425	1.1428	1.1428	1.1440	1.1443	1.1444	1.1444	1.1444	UU	FT/SEC	106.55 0.	106.14 0.	105.51 0.	105.73 0.	106.64 0.	106.42 0.	106.21 0.	106.76 0.	105.55 0.
51 INCHES	2.50	29.97 INCHES HG	/ AREA	INCHES	0.0	6.283	11.152	14.726	27.293	35.859	52.425	64.952	***	ż	FT/SEC	118.52	132.98	135.55	143.50	151.98	155.77	156.91	159.18	***
LPTAKE CIAMETER: 7.51 INCHES			SECCNDARY AREA	SCUARE INCHES	o	9	11.	14.	27.	35	52.	. 49	美食 医食物质食物物质	d O	FT/SEC	296.34	295.11	54.45	293.94	296.49	295.86	255.29	256.82	254.57
PTAKE CIA	AREA RATIC, AM/APS	AMBIENT PRESSURE:	PA-FS	INCHES OF MATER	2 . 55	2.12	1.47	1.16	0.56	0.33	0.21	0.15	00.00	S	L EM / S EC	J • J	0.213	0.465	6.543	0.700	C.7E5	C.813	C.848	****
	*	*	PU-PA	INCHES	u1 0. 41	7.30	7.85	8.15	8.75	03.5	6.10	5.15	57.5	d.	LBM/SEC	1.145	1.151	1.151	1.151	1.152	1.153	1.153	1.153	1.153
			TAM8	ъ.	0.59	65.0	0.59	0.59	65.0	65.0	65.0	65.0	65.0	7+T++ 444		0.0	0.1550	0.2853	0.3383	0.4334	0.4861	0.5643	0.5245	******
	S		TUPT	OEGREES	664.3	662.0	661.0	660.3	6.079	668.0	0.999	672.0	0.499	P*/T*		0.3826	0.2300	0.1600	0.1266	0.0606	0.0358	0.0223	0. C157	0.0035
4	7.12 INCHES 7.12 INCHES		FHZ	2.4	61.0	61.0	61.0	60.0	83.0	82.0	£2.0	£2.0	60.0	*		6995.0	0.4678	0.4682	0.4686	0.4644	0.4653	3.4661	0.4636	6995.0
RY NCZZLES:	LIAMETER: NGTH: 17.8	2.50	DELFN	IN. +20	7.30	7.30	7.30	7.30	7.30	7.30	7.30	7.30	7.30	*		0.1786	0.1076	571300	0.0593	0.0282	0.0167	9.0104	0.0073	0.0003
NUPBER CF PRIMARY NCZZL	PRIMARY NOZZLE CIAMETER: 2.25 IN PIXING STACK LENGTH: 17.81 INCHES PIXING STACK OIAMETER: 7.12 INCH	MIXING STACK L/E: 2.50	7 2	IN.FG	4.20	4.28	4.30	4.30	4.37	4.39	4.49	4.40	4.40	* 4		0.0	0.2724	5634-3	0.4722	C. 6C73	C.6EC7	C-7055	C.7356	****
NUPBE	PRIFA FIXIN FIXIN	FIXIN	z	40	1	2	er.	4	5	9	7	89	5	4	۲۷	1	2	m	4	us	ę	7	89	5

PIXING STACK FRESSURE CISTRIBUTION FOR RUN: 9 POSITION A

X/E: PPS(IN. P2C):	C.5 -0.550	1.0	1.5	2°C -0°080
F P C + 2	-0.028	-C.017	-0.004	-0.004
(CEG.F):	267.0	310.0	326.0	318.0
	149.0	6.686	0.701	0.695

:
HOT RIG PERFCRMANCE
LCH 8/C=.5
Ŧ,
L/C.2.5
Ē
AP / AP = 2.5
ũ,
CATA TAKEN Ch 11 SEPT EY D.R. WELCH

					₽.P.F	L BM/SEC	0.0095	0.0094	0.0095	0.0094	7600.0	0.0095	UPT MACH		0.064	0.063	0.063	0.063	0.063	0.063						
				HG	b F A	Lem	1.1295	1.1273	1.1281	1.1284	1.1289	1.1289	Of OP	FT/SEC	104.09	102.44	103.27	103.18	102,18	103.25	,					
51 INCHES	2.50			AMBIENT PRESSURE: 29.97 INCHES MG	Y AREA	INCHES	0.0	6.283	14.726	35.859	64.952	***	MO	FT/SEC	115.74	129.90	140.63	150.99	153.75	* * * * * * * * * * * * * * * * * * * *						
UPTAKE CIAMETER: 7.51 INCHES	AREA RATIC, AM/AP: 2.50			ESSURE: 2	SECCNEARY AREA	SCLARE INCHES	0	ý	14	38	64	***	9.3	F1/SEC	289.40	287.60	287.40	286.88	286.88	287.07						
JPTAKE CIA	AREA RATIC			WBIENT PR	PA-PS	INCHES OF WATER	3.45	2.10	1.14	0.31	0.14	00.00	SH	LBM/SEC	0.0	0.312	0.539	0.761	0.819	* * * * * *						
_	1			•	PU-PA	INCHES	5.50	6.65	7.10	8 . 48	8.65	8 . 80	G.	LBM/SEC	1.125	1.137	1.128	1.138	1.138	1.128	A					
					TAME	u.°	64.0	64.0	64.0	0.49	0.49	0.49	P* 1 * * 4 4		0.0	0.1577	5346.0	0.4611	0.5174	******	N0111304 9					
	ES				TUPT	DEGREES	648.0	0.149	648.0	0.849	648.3	649.0	*1/*d		0.3843	0.2367	0.1288	0.0351	0.0153	9000.0		2.0	060.0-	-0.005	327.0	0.710
4	ER: 2.25 INCHES	17.81 INCHES	12 INCHES		FFZ	7.4	0.55	0.45	65.0	64.0	0.45	85.0	*		0.4728	0.4732	0.4728	0.4728	0.4728	0.4723	IBUTICN FO	1.5	060.0-	-0 .005	336.0	0.718
Y NC22LES	IAMETER:		PETER: 7.	: 2.50	DELPN	IA.+20	7.20	7.15	7.15	7.15	7.15	7.15	g.		0.1817	0.1120	6093.0	0.0166	0.0072	0.000	URE CISTRI	1.0	-C.360	-0.019	320.0	6.705
ALPER CF PRIMARY NCZZLES:	PFINARY NCZZLE CIAMET	PIXING STACK LENGTH:	PIXING STACK DIFFETER: 7.12 INCHES	PIXING STACK L/D:	PNH	IA.FG	3.55	4.05	4.10	4.12	4.15	4.15	* 5		0.0	C.2747	0,4740	5899°3	6.7155	******	MIXING STACK PRESSURE CISTRIBUTION FOR RUN:	0.5	-C.580	-0.031	287.0	0.674
ALPER	PEINAR	PIXING	PIXING	PIXING	z	RUN	1	2	е	7	u1	Ą	z	RLA	p=0	2	e)	4	S	•	PIXING S	3/C:	FPS(IN. F2C):	#57dd	TMIX (CEG.F):	* * * * * * * * * * * * * * * * * * * *

TABLE VI. (Continued)

					# P.F	L BM/SEC	9 0.0092	7 0.0092	7600*0 0	0 0.0093	s 0 •0093	6 0.0093	9600*0	8 0.0093	0 0.0092	UPT MACH		0.065	2.064	0.064	0.064	596°C	9.064	0.064	990.0	0.064						
				SH S	h F A	_	1.0998	1.0517	1.0890	1.0850	1.0893	1.3856	1.0858	1.0858	1.0860	CO.	FT/SEC	110.23	110.04	105.58	169.85	.105.76	105.15	105.23	105.12	106.51						
	-51 INCHES	2.50		29.57 INCHES HG	AY AREA	SCLARE INCHES	0.0	6.283	11.192	14.726	27.293	35.859	52.425	64.952	****	Ş	FT/SEC	122.57	137.06	144.17	147.64	155.14	157.66	159.60	160.38	****						
	HETER: 7	AM/AP:			SECENDARY AREA	SCLARE	Ĭ	•	=	17	5	ĕ	5.	9	***	LP	FT/SEC	306.48	305.93	305.76	205.51	305.16	303.46	303.65	303.37	302.79						
:	UPTAKE CIAMETER: 7.51 INCHES	AREA RATIC, AM/AP:		APPIENT PRESSURE:	PA-PS	OF WATER	3.45	2.05	1.43	1.14	0.55	0.31	02.0	0.14	00.0	SA	L BM/SEC	0.0	C • 2 08	0.459	0.538	C-654	0.760	C.EC3	C.818	*****						
					PU-PA	INCHES	5.50	7.25	7.85	8.10	8.60	8.85	8.00	03.5	5.15	d.	LBM/SEC	1.100	1.101	1.058	1.058	1.055	1.055	1.055	1.055	1.055	A					
HOT RIG PERFORMANCE					TAME	ъ. •	0.59	0.59	65.0	0.50	65.0	0.53	65.0	65.0	65.0	M+T++ .44		J.0	0.1535	0.2661	0.3377	0.4256	3525.0	0.5063	0.5155	*****	POSITION					
*** HOT		v)			TUPT	DEGREES	755.0	756.0	760.3	760.0	760.0	758.0	759.0	758.0	156.0	P*/T* 1		0.3758	0.2243	0.1571	0.1249	0.0637	0.0345	0.0223	0.0150	0.0006	RUN: 9	2.0	-0.080	+00-0-	354.0	199.0
R. WELCH	4	2.25 INCHES	.81 INCHES 7.12 INCHES		F+2	17	51.0	51.0	53.0	55.0	55.0	65.0	63.0	65.0	61.0	*		0.4319	0.4316	0.4302	0.4302	0.4302	6064-0	0.4305	0.4309	0.4316	PIXING STACK FRESSLAE CISTRIBUTION FCR RUN:	1.5	-0.083	-0.004	366.0	0.677
BY C. R. L/C=2.5	NUPEER CF FRIMARY NC22LES:	FRIMARY NOZZLE CIAMETER:	~	2.5	DELFN	1A.F20	6.70	01.9	9.65	6.65	69.9	6.60	6.60	6.60	63.6	.		0.1623	8950.0	3.3676	0.0527	0.0261	0.0149	9600°C	0.0065	C. CC02	SLRE CISTR	1.0	-0.340	-C.C16	152.0	C.668
31 AUGUST	CF FRIMAR	Y NOZZLE C			FNH	IN.FG	3.56	4.02	4.10	4.10	4.12	4.14	4.15	4.15	4.16	* 3		0.0	C.2890	9.4175	6.4855	0.6313	C.6545	C.7336	.0.1472	******	TACK FRES	0.5	-0.550	-0.027	3€5.€	C.630
CATA TAKEN CN 31 AUGUST BY C. 4 NJ 221ES AN 7 AP = 2.5 L/C=2	NUPEER	FRIPAF	F IX I NG	FIXING	z	RUN	1	2	m •	4	S	9	7	60	Un.	4	PLA		2	ε,	4	2	çç	7	89	4	PIXINGS	x/C:	FMS(IN. F2C):	FES#2	TMIX (CEG.F):	TPS+1

AMETER:
13
UPTAKE

			LL,		0.0104	0.0104	0.0104	0.0104	0.0104	0.0103	T							
			APF	LEM/SEC	3						UPT MACH		990.0	9.064	0.064	3.064	0.064	9.064
		S FG	4.6.4		1.0804	1.0819	1.0819	1.0927	1.0835	1.0835	nn	FT/SEC .	108.50	108.54	106.57	108.61	106.73	108.77
51 INCHES	7.50	29.97 INCHES P.C	Y AREA	INCHES	0.0	6.283	14.726	35.859	64.952	* * *	å	FT/SEC	120.65	135.39	146.24	156.73	159.92	****
METER: 7.			SECCNCARY AREA	SGLARE INCHES	0	•	14	38	64	***	L.R.	F1/SEC	301.67	301.78	301.84	301.97	302 •31	302.41
UPTAKE CIAMETER: 7.51 INCHES	AKEA KAILU, AP/AP: 2.50	AMBIENT PRESSUPE:	29-49	INCHES OF WATER	3.45	2.05	1.13	0.31	0.14	00.00	S	LEMISEC	0.0	0.309	0.536	0.755	0.819	*****
			PU-PA	INCPES	01.0	6.65	7.70	8.50	8.65	8.80	Q.	LBM/SEC	1.051	1.052	1.052	1.053	1.054	1.054
			TAMB	۳.	64.0	0.49	64.0	64.0	0.49	64.0	55° **1 *M		0.0	0.1555	0.2351	0.4771	0.5171	******
·	2		TUPT	DEGREES	746.3	149.0	752.0	754.0	755.0	156.0	P#/T*		0.3850	0.2252	0.1260	0.0342	0.0151	900000
44 44 44 44 44 44 44 44 44 44 44 44 44	17.81 INCHES		FFZ	1.1	105.0	104.0	164.0	105.0	105.0	103.0	*		0.4343	0.4333	0.4322	0.4315	0.4311	0.4308
AY ACZZLES		3: 2.50	CELPN	IA.H20	6.60	6.60	09.9	69.9	6.60	09.9	7		0.1672	6553.0	0.0545	0.0148	0.0065	0.0002
NUMBER OF PRIMARY ACZZLES:	PINING STACK LENGTH: 17.81 INCHES PINING STACK LENGTH: 17.81 INCHES	PIXING STACK L/D:	FNH	1 N . HG	3.80	3.50	05°€	3.55	4.00	4.00	* 3		0.0	0.2825	C-4505	1059-0	C.7487	******
ALPEE	XIX	NI XI A	4	RLh		2	C)	4	ш	9	z	RLN	-	2	m	4	ις.	ę

PIXING STACK PRESSURE CISTRIBUTION FOR RUN: 6 POSITION A -0.C70 -0.003 -0.070 -6.345 -0.575 x/C: FPS(IN. F2C):

370.0

380.0 669.0

363.0 -9.017

549.0

14541

TMIX (CEG.F):

-0.028 323.0

FMS#

TABLE VI. (Continued)

	* P f	SEC	3.0104	0.0104	0.0104	3.0134	0.0103	0.0102	0.0103	0.0103	0.0103	UPT MACH		0.064	0.064	0.064	0.064	0.063	0.063	0.963	0.063	5,063						
<u>.</u> م	WFA	LBM/SEC	1.0342	1.0357	1.0361	1.0364	1.0371	1.0330	1.0330	1.0330	1.0330	UP.	FT/SEC	113.19 0	113.13 0	113.01	113.05 0	112.67 0	112.44 0	112.42	112.40 0	112.54 0						
2.50 2.50 29.57 INCHES PG	AREA	INCHES	0.0	6.283	11.152	14.726	27.253	35.859	52.455	64.552	***	¥,	FT/SEC	125.85	146.23	147.16	150.96	157.69	160.42	162.37	163.15	****						
AP/AF:	SECCNEARY AREA	SCLARE INCHES	0	ý	11	14	27,	38	5.5	64	***	dΩ	F1/SEC	314.68	314.52	314.20	314.31	313.82	312.60	312.55	312.50	312.88				٠,		
UPTAKE DIAMETER: 7.51 INCHES AREA RATIC. AF/AF: 2.50 AMBIENT PRESSURE: 29.57 INCH	PA-FS	F WATER	3.38	1.58	1.38	1.10	0.52	0.30	0.19	0.13	00.0	VI 4	LBMISEC	0.0	0.303	C.451	0.529	6.674	C.742	C.783	0.000	****				٠		
D 4 4	PU-PA	INCLES OF WATER	5.60	7.10	7.70	8.00	8.50	8.70	8.80	8.50	6.57	34	L8M/SEC	1.045	1.046	1.046	1.047	1.047	1.043	1.042	1.042	1.043	4					
	TAPE	ř.	65.3	0.50	65.0	0.59	6.53	65.0	65.0	65.0	65.0	h+1++ .44		0.0	0.1530	0.2873	0.3373	0.4257	0.4744	0.5007	0.5115	******	PCSITION					
S	TUPT	DEGRZES	854.0	656.0	856.0	857.0	856.0	857.0	857.0	857.0	859.0	P*/T* h		0.3771	0.2212	0.1549	0.1235	0.0585	0.0335	0.0216	0.0146	* 9000*0	RUN: 9	2.0	-0.050	-0.002	394.0	0.648
NLPEER CF FRIMAFY NC22LES: 4 PRIPARY NC22LE CIAMETER: 2.25 INCFES MIXING STACK LENGTH: 17.81 INCMES MIXING STACK DIAPETER: 7.12 INCMES MIXING STACK LLC: 2.50	FFZ	7.4	164.0	104.0	104.0	164.0	103.0	162.0	163.0	103.0	103.0	*		9662*0	0.2588	0.3588	0.2985	0.3988	0.3985	0. 3985	0.3985	0.3979	MIXING STACK PRESSURE DISTRIBUTION FOR RUN:	1.5	-0 •0 50	-0.002	467.0	0.659
CF FRIMARY NC22LES: 4 NC22LE CIAMETER: 2.25 IN STACK LENGTH: 17.81 INCHES STACK OIAMETER: 7.12 INCH	DELPN	IA. F20	6.05	6.05	6.05	6.05	6.05	00.9	00°3	6.00	6.93	*		0.1506	0.0882	3.0618	0.6492	0.0233	0.0133	9803.0	0.0058	C.CC02	LRE CISTRI	1.0	-C.325	-0.015	369.0	C.645
NLPER CF FRIMARY NC22L PRIPARY NC22LE CIAMETER MIXING STACK LENGTH: 17 MIXING STACK DIAPETER: MIXING STACK L/C: 2.5	Ž.	IN.HG	3.70	3 . €0	3.83	3.85	3.50	3.90	3.90	3.90	3.50	* 3		0.0	(.2893	C.4305	C.5056	6.6439	C.7111	0.7506	6.7667	******	ACK PRESSI	0.5	-0.540	-0.024	236.0	909.0
T T T P F E I X X I X X X X X X X X X X X X X X X	z	RLA	₽ 4	2	ęs.	4	ıΩ	9	7	au	v.	4	RLA	1	2	m	4	v	ę	1	ස	5	PIXING ST	: 3/x	FMS(IN. P2C):	F P S # 2	TMIX (CEG.F):	TFS#1

CATA TAKEN CH 31 AUGUST BY C. P. WELCH *** HOT RIG PERFORMANCE ***

:
HCT RIG FERFCRMANCE
LCH ***
A LA 11 SEPT BY 0.R. NELCH
Ch 11 SEPT
CATA TAKEN

			23			AREA RATIC, AM/AP: 2.50	MA/MA .	2.50		
01	MIXING STACK LERGTH: 17.8: PIXING STACK OLAMETER: 7.	17.81 INCHES								
PIXING STACK L/C:	C: 2.50					AMBIENT PRESSURE:		29.97 INCHES HG	S HG	
FNH	DELPN	F+Z	TUPT	TAMB	PU-PA	PA-PS	SECCHDARY AREA	Y AREA	MFA	NPF
IN.HG	IN.H20	2+	DEGREES	'n.	INCHES	INCHES OF WATER	SCUARE INCHES	INCHES		LBM/SEC
3.55	00.9	111.0	854.0	64.0	u1 *	3 - 25	0	0.0	1.0278	9.0110
3.65	00.9	111.0	654.0	64.0	6.70	1.57	9	6.283	1.0293	
2.70	00.9	112.0	854.0	64.0	7.55	1.09	14	14.726	1.0300	
3.72	9.00	111.0	855.0	64.0	8 . 3 C	C - 30	38	35.859	1.0303	
3 - 75	6.00	111.0	856.0	64.0	8.45	0.13	49	64.992	1.0308	9 3.0110
3.75	00.9	111.0	859.0	64.0	6.58	00.0	***	***	1. 0308	0.0110
* 3	#.	*-	P#/T*	55° ++1+M	A.	84	٦	Š	nn	UPT MACH
					LBM/SEC	LEPISEC	FT/SEC	FT/SEC	FT/SEC	
0.0	C-1509	0.3986	0.3785	0.0	1.025	0.0	312.53	125.15	112.55	0.063
0.2508	3.0891	9852.0	0.2235	0.1540	1.040	0.302	212,31	135.31	112.33	0.063
C.5065	0.0454	0.2586	0.1240	9756.0	1.041	0.527	311.88	149.85	112.18	0.063
C.7131	J.C134	0.3983	0.0336	0.4756	1.041	C-743	311.57	155.98	112.07	0.063
6,7565	0.0057	0.2580	0.0142	9.5044	1.042	0.788	311.81	162.25	112.15	5.063
******	0.0002	1755.0	C* 0006	******	1.042	*****	312.43	****	112.38	0.063

TABLE VI. (Continued)

-0.070

-0.070 -c.003 428.0

1.0

-C.550 -0.025 374.0

FMS(IN. F2C):

FKS#S

TP IX (CEG.F):

TMS#1

x/E:

-0.003 417.0 0.667

413.0

-0.015

DIAMETRAL POSITION	TEXIT	TUPT
(INCH)	(°F)	(°F)
0	393	845
. 25	397	845
.50	400	847
.75	416	846
1.00	420	, 846
1.25	432	847
1.50	441	847
1.75	449	849
2.00	452	850
2.25	463	850
2.50	468	849
2.75	475	849
3.00	482	851
3.25	496	852
3.50	497	853
3.75	497	851
4.00	501	851
4.25	501	851
4.50	500	853
4.75	498	853
5.00	494	850
5.25	492	852
5.50	484	854
5.75	480	855
6.00	471	856
6.25	462	85 5
6.50	458	856
7.00	452	856
7.25	440	856
7.50	418	858

TABLE VII. Mixing Stack Exit Plane Temperature Profile L/D = 3.0

771//		
DIAMETRAL POSITION	TEXIT	TUPT
(INCH)	(°F)	(°F)
0	385	848
. 25	395	848
. 50	403	852
.75	412	852
1.00	419	851
1.25	426	851
1.50	437	851
1.75	443	852
2.00	450	853
2.25	455	853
2.50	460	855
2.75	464	855
3.00	471	855
3.25	480	857
3.50	483	855
3.75	491	852
4.00	498	851
4.25	500	851
4.50	491	852
4.75	486	852
5.00	480	851
5.25	476	851
5.50	472	851
5.75	468	853
6.00	458	852
6.25	452	852
6.50	446	853
6.75	440	851
7.00	435	853

TABLE VII. (Continued)

DIAMETRAL		
POSITION (INCH)	TEXIT (°F)	TUPT
0	416	856
. 25	512	856
.50	523	857
.75	530	858
1.00	540	859
1.25	548	. 858
1.50	555	857
1.75	564	858
2.00	572	857
2.25	579	858
2.50	585	858
2.75	594	860
3.00	594	859
3.25	596	863
3.50	594	862
3.75	590	862
4.00	582	859
4.25	571	856
4.50	560	855
4.75	546	855
5.00	532	857
5.25	516	858
5.50	502	856
5.75	490	857
6.00	480	859
6.25	460	862
6.50	452	862
6.75	436	862
7.00	429	863

TABLE VIII. Mixing Stack Exit Plane Temperature Profile Data L/D = 2.5

DIAMETRAL		
POSITION (INCH)	TEXIT (°F)	TUPT
0	476	857
. 25	483	857
.50	497	858
.75	506	857
1.00	519	858
1.25	532	859
1.50	548	859
1.75	561	859
2.00	569	859
2.25	577	860
2.50	581	860
2.75	588	859
3.00	592	860
3.25	593	861
3.50	593	861
3.75	588	861
4.00	580	861
4.25	570	861
4.50	558	861
4.75	551	861
5.00	537	860
5.25	523	860
5.50	509	860
5.75	500	862
6.00	494	862
6.25	480	863
6.50	468	862
6.75	456	862
7.00	446	862

TABLE VIII. (Continued)

Variable	Value	Uncertainty
T _s	525°R	± 1°R
Tp	1316°R	± l°R
B, Pa	30.04 in Hg	± .01 in Hg
ΔΡΝ	6.05 in H ₂ O	± .05 in H ₂ O
PEH	8.50 in H ₂ O	± .05 in H ₂ O
ΔPS	.52 in H ₂ O	± .005 in H ₂ O
FHZ	103 Hz	± 1 Hz
PNH	3.90 in Hg	± .02 in Hg
r	1.126 in	± .005

Values in this table are from L/D = 2.5, $A_m/A_p = 2.5$, TUPT = 850°F (Table VI)

TABLE IX. Uncertainties in Measured Values from Table VI

APPENDIX A

OPERATION OF THE COMBUSTION GAS GENERATOR

A. COMPRESSOR LIGHT OFF

The primary air flow is supplied by the Carrier Model 18P350 centrifugal air compressor located in Building 248. This compressor's cooling system is piped into the cooling tower system located behind the building. Figure 45 gives a schematic of the compressor layout.

In preparation for compressor light off ensure that the cooling water valve to the Sullivan compressor is closed, then start the cooling tower pump and fan by pushing both start buttons located on the south wall of Building 248 (see Figure 46). The compressor can then be started by completing the following steps.

- Ensure that the compressor butterfly suction damper in the airstream between the filter (on the roof) and the compressor is closed (Figure 47).
- Open the inlet water valve to the oil cooler (Figure 47) wide enough to obtain an adequate flow of cooling water.
- 3) Start the auxiliary oil pump by positioning the on-off automatic switch (Figure 48) in the "hand" position, thereby by-passing the auxiliary oil pump out-in control.
- 4) When the oil pressure rises to at least 16 PSIG, adequate pressure exists in the bearings and the

compressor may be started by pressing the start pushbutton. The compressor will then come up to speed, at which time the auxiliary oil pump switch is turned to the "automatic" position.

5) Open the compressor butterfly suction damper.

Precautions:

- 1) During the period in which the compressor is coming up to speed, the operator should check for:
 - (a) oil pressure in the range 20 to 22 PSIG
 - (b) any undue noise in the motor, gear, or compressor.
- During operation, check the bearing thermometers periodically to ensure the bearing temperatures do not exceed 185°F.

B. GAS GENERATOR LIGHT OFF

After the supply air compressor is in operation, the following is a recommended starting sequence.

- Energize the main power panel and the thermocouple and mass flowmeter readouts.
- 2) Calculate the required mass flow rate to achieve the desired uptake Mach number, M_u. The formula for this calculation (derived in Reference [4]) follows:

$$M_{u} = \frac{.0502 (\dot{m}_{a} + \dot{m}_{f}) TUPT^{0.5}}{(\frac{PU}{13.57}) + B}$$

where

TUPT = uptake temperature (DEG. R)

PU = uptake pressure (in. H₂0) (PU can be assumed to be 0.0 for the first iteration)

B = atmospheric pressure (in. Hg)

m = mass flow rate of air (lbm/sec)

mf = mass flow rate of fuel (lbm/sec)
 (mf can be assumed to be .01 lbm/sec
 for this calculation)

3) Figure 15 gives the primary air mass flow rate versus the pressure product. The pressure product comes from the transition nozzle calibration and is defined as:

 $((PNH + B) * \Delta PN).5$

where:

PNH = nozzle high pressure (IN. Hg)

B = atmospheric pressure (IN. Hg)

 Δ PN = pressure drop across nozzle (IN. H_2^0)

From Figure 15 find the pressure product corresponding to the required mass flow rate found in Step 2 above.

4) With the burner air valve 100% open and the bypass air valve (see Figure 3) 50% closed, open the main air supply globe valve (Figure 49) until the desired pressure product is reached.

- 5) Adjust the bypass air valve until the U-bend pressure difference (ΔPu) is one inch of water.
- 6) Turn on the fuel supply pump and the high pressure fuel pump.
- on the high pressure fuel gage (see Figure 5).

 (Note: It is desired to obtain about 115 Hz on the fuel flow meter, but this reading is not available until the fuel shutoff valve is opened. The fuel pressure is therefore used as an initial approximation of fuel flow rate.)
- 8) Energize the igniter plug and glow coil by depressing the igniter switch. Hold this switch down for a few seconds before opening the fuel shutoff.
- 9) Open the fuel shutoff valve by putting the emergency shutoff switch in the "on" position. Watch
 the fuel flowmeter; the reading should quickly
 come to the 110-120 Hz range. Ignition should be
 noted within 3-4 seconds. If ignition does not
 occur quickly, turn off the emergency shutoff switch.
- 10) If ignition does not occur and the fuel flowmeter indicated a flow <u>outside</u> the 110-120 Hz range, adjust the fuel control valve to achieve a reading in this range and repeat the procedure starting at Step 7.
- 11) If ignition does not occur and the fuel flowmeter indicated a flow in the 110-120 Hz range,

- a) Check to ensure the U-bend pressure differential (ΔPu) is one inch of water. If not, adjust the cooling air valve to achieve this.
- b) If the U-bend pressure differential is one inch of water, check the igniter. The igniter can be checked by activating the igniter switch with no fuel flow and watching for a 3-5 degree increase in burner temperature.

12) When ignition does occur:

- a) Deactivate the igniter.
- b) Begin closing the bypass air valve immediately while monitoring burner temperature (T_B) . Continue closing the bypass air valve until T_B stabilizes. (Do not allow burner temperature to exceed 1500°F.)

C. TEMPERATURE ADJUSTMENT

The temperature adjustment is an iterative process consisting of the following steps.

- 1) Adjust the fuel control valve to achieve approximately the desired uptake temperature (while monitoring the burner temperature).
- 2) Check the pressure product. Re-adjust the main air supply globe valve to obtain the correct value.
- 3) Adjust the fuel control valve and/or the bypass air valve (see Figure 3) to achieve the desired temperature. Rough temperature control can be

- achieved with the bypass air valve and fine control with the fuel control valve.
- 4) Go to Step 2 and continue until the pressure product and temperatures are satisfactory.

D. SYSTEM SHUT DOWN

- 1) Close the fuel shutoff valve.
- 2) Turn off the fuel supply pump and the high pressure fuel pump.
- 3) Allow the system to cool for 5-10 minutes.
- 4) Close the compressor butterfly suction damper.
- 5) Turn off the compressor. Immediately after turning off the compressor turn the auxiliary oil pump switch to the "hand" position.
- 6) Allow the bearing temperatures to reach 80°F before turning off the oil pump and the cooling tower pump and fan.

APPENDIX B

DETERMINATION OF THE EXPONENT IN THE NONDIMENSIONAL PUMPING COEFFICIENT

The method used to determine the value of the exponent n in equation (13) is outlined below.

- (1) Select a given geometry, assume reasonable values for K_p , K_m and f, and calculate C_1 , C_2 and C_3 for use in equation (11b).
- (2) Set $T^* = 1.0$, $\Delta P^* = 0$, and solve for W^* max. Equation (11b) plots as indicated in Figure 20; for $\Delta P^* = 0$ and $T^* = 1.0$, the intersection of the curve with the W^*T^* axis yields the value of W^* max. Note that for each value of $T^* < 1.0$ ($T^* = T_s/T_p$ and $T_s < T_p$ therefore $T^* < 1.0$) a different curve will result.
- (3) For the same geometric configuration and other values assumed and calculated in step (1), calculate $\Delta P^*/T^*$ using equation (11b) with W^*T^* for different values of T^* in each case varying W^* from 0 to W^* max in equal increments of W^* max. For each new value of T^* tried, vary n until the resulting plots of $\Delta P^*/T^*$ vs W^*T^* for T^* < 1.0 come close enough to the initial plot obtained in step (2) where T^* = 1.0 that, for all practical purposes, all such plots can be represented by a single curve.
- (4) The value of n which most effectively collapses all performance curves onto the $T^* = 1.0$ case is n = 0.44.

APPENDIX C

UNCERTAINTY ANALYSIS

The experimentally determined pressure coefficient and pumping coefficient are used in determining eductor operating points which in turn provide the basis for comparison and evaluation of eductor system performance. A determination of the uncertainties in these coefficients was made using the method described by Kline and McClintock [10]. Data for the eductor configuration described in Table VI is considered a representative case and is used to calculate representative uncertainties in the pumping and pressure coefficients.

For a single sample measurement the value of a specific variable should be given in the format:

$$x = \overline{x} \pm \delta x$$

where

 \bar{x} = mean value of the variable x

 δx = estimated uncertainty in x.

Variations for the variables in the defining equations for the two coefficients are listed in Table IX. Having described the uncertainties in the basic variables of a

relationship, it is now necessary to determine how these uncertainties propagate into the result. Consider the relation where the result R is the product of a sequence of terms.

$$R = x_1^a x_2^b x_3^c$$
 (a)

A reasonable prediction of the uncertainty in the result R is obtained by using the Second Order Equation suggested by Kline and McClintock [10].

$$\delta R = \left[\left(\frac{\partial R}{\partial x_1} \delta x_1 \right)^2 + \left(\frac{\partial R}{\partial x_2} \delta x_2 \right)^2 + \left(\frac{\partial R}{\partial x_2} \delta x_3 \right)^3 \right]^{1/2}$$
(b)

Evaluating the partial derivatives appearing in equation (b), and normalizing by dividing through by result R yields the simplified form of equation (b) which will be used in this analysis.

$$\frac{\delta R}{R} = \left[\left(\frac{a \, \delta x_1}{x_1} \right)^2 + \left(\frac{b \, \delta x_2}{x_2} \right)^2 + \left(\frac{c \, \delta x_3}{x_3} \right)^2 \right]^{1/2}$$
 (c)

Determination of the uncertainty in the pressure coefficient is facilitated by writing it as the product of a series of terms,

$$\frac{\Delta P^*}{T^*} = (\rho_S)^{-1} (\Delta P) (U_p)^{-2} (T^*)^{-1}$$
 (d)

where P represents the pressure difference $(P_a - P_0)$. Constants such as 2 g_c in the equation for the pressure coefficient will be cancelled out when used in equation (c) and are therefore not included in this analysis. Applying equation (c) to the pumping coefficient in equation (d) yields the following expression for its uncertainty:

$$\frac{\delta \frac{\Delta P^{*}}{T^{*}}}{\frac{\Delta P^{*}}{T^{*}}} = \left[\left(\frac{(-1) \delta \rho_{S}}{\rho_{S}} \right)^{2} + \left(\frac{(1) \delta (\Delta P)}{\Delta P} \right)^{2} + \left(\frac{(-2) \delta U_{p}}{U_{p}} \right)^{2} + \left(\frac{(-1) \delta T^{*}}{T^{*}} \right)^{2} \right]^{1/2}$$
(e)

Taking into account the respective equations defining the individual variables, the terms of equation (e) are expanded as follows:

$$\rho_{\mathbf{S}} = \frac{P_{\mathbf{a}}}{R T_{\mathbf{S}}}, \quad \left[\frac{\delta \rho_{\mathbf{S}}}{\rho_{\mathbf{S}}}\right]^{2} = \left[\frac{\delta P_{\mathbf{a}}}{P_{\mathbf{a}}}\right]^{2} + \left[\frac{\delta T_{\mathbf{S}}}{T_{\mathbf{S}}}\right]^{2}$$

$$\rho_{\mathbf{p}} = \frac{PEH}{R T_{\mathbf{p}}}, \quad \left[\frac{\delta \rho_{\mathbf{p}}}{\rho_{\mathbf{p}}}\right]^{2} = \left[\frac{\delta PEH}{PEH}\right]^{2} + \left[\frac{\delta T_{\mathbf{p}}}{T_{\mathbf{p}}}\right]^{2}$$

$$U_{\mathbf{p}} = \frac{W_{\mathbf{p}}}{\rho_{\mathbf{p}} A_{\mathbf{p}}}, \quad \left[\frac{\delta U_{\mathbf{p}}}{U_{\mathbf{p}}}\right]^{2} = \left[\left(\frac{\delta W_{\mathbf{p}}}{W_{\mathbf{p}}}\right)^{2} + \left(\frac{\delta \rho_{\mathbf{p}}}{\rho_{\mathbf{p}}}\right)^{2} + \left(\frac{\delta A_{\mathbf{p}}}{A_{\mathbf{p}}}\right)^{2}\right]$$

$$A_{p} = 4\pi r^{2}$$
, $\left[\frac{\sigma A_{p}}{A_{p}}\right]^{2} = \left(\frac{2 \delta r}{r}\right)^{2}$

$$W_p = .0310 + .0704((PNH+B) \cdot \Delta PN)^{.5} + .00009GHz,$$

$$\left[\frac{\delta W_{p}}{W_{p}}\right]^{2} = \left[\left(\frac{C_{1} \delta PNH}{W_{p}}\right)^{2} + \left(\frac{C_{2} \delta B}{W_{p}}\right)^{2} + \left(\frac{C_{2} \delta \Delta PN}{W_{p}}\right) + \left(\frac{C_{3} \delta FHz}{W_{p}}\right)^{2}\right]$$

$$c_1 = .0310$$

$$C_2 = .0704$$

$$C_3 = .00009$$

$$T^* = \frac{T_s}{T_p}, \qquad \left[\frac{\delta T^*}{T^*}\right]^2 = \left[\frac{\delta T_s}{T_s}\right]^2 + \left[\frac{\delta T_p}{T_p}\right]^2$$

Using the values of the variable and their respective uncertainties listed in Table IX, the uncertainty in the pressure coefficient is estimated to be

$$\frac{\delta \left(\frac{\Delta P^*}{T^*}\right)}{\frac{\Delta P^*}{T^*}} = .0187 = \pm 1.9\%$$

By a similar process, the uncertainty in the pumping coefficient is estimated to be

$$\frac{\delta (W^*T^{*.44})}{W^*T^{*.44}} = .0213 = \pm 2.1\%.$$

BIBLIOGRAPHY

- 1. Ellin, C. R., Model Tests of Multiple Nozzle Exhaust Eductor Systems For Gas Turbine Powered Ships, Engineers Thesis, Naval Postgraduate School, June 1977.
- 2. Moss, C. M., Effects of Several Geometric Parameters on the Performance of a Multiple Nozzle Eductor System, MS Thesis, Naval Postgraduate School, September, 1977.
- 3. Harrell, J. P., Experimentally Determined Effects of Eductor Geometry on the Performance of Exhaust Gas Eductors for Gas Turbine Powered Ships, Engineers Thesis, Naval Postgraduate School, September, 1977.
- 4. Ross, P. D., <u>Combustion Gas Generator for Gas Turbine</u>
 <u>Exhaust Systems Modeling</u>, MS Thesis, Naval Postgraduate
 <u>School</u>, <u>December 1977</u>.
- 5. Staehli, C. P., and Lemke R. J., <u>Performance of Multiple Nozzle Eductor Systems with Several Geometric Configurations</u>, MS Thesis, Naval Postgraduate School, September, 1978.
- 6. Keenan, J. H. and Kaye, J., Gas Tables, John Wiley and Sons, Inc., 1963.
- 7. Pucci, P. F., Simple Ejector Design Parameters, Ph.D. Thesis, Stanford University, September 1954.
- 8. Boeing Airplane Company, Boeing Model 502-2E Gas Turbine Engine, February, 1953.
- 9. Carrier Corporation, Operating Instructions for Carrier Model 18P352 Air Compressor, October, 1955.
- 10. Kline, S. J. and McClintock, F. A., "Describing Uncertainties in Single Sample Experiments," Mechanical Engineering, p. 3-8, January, 1953.

INITIAL DISTRIBUTION LIST

	•	No.	Copies
1.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940		2
3.	Department Chairman, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93940		2
4.	Professor Paul F. Pucci (Code 69Pc) Department of Mechanical Engineering Naval Postgraduate School Monterey, CAlifornia 93940	:	10
5.	LT Charles R. Ellin 13512 Westwind Drive Silver Spring, Maryland 20904		1
6.	Mr. Charles Miller NAVSEA Code 0331 Naval Ship Systems Command Washington, D. C. 20362		1
7.	Mr. Olin M. Pearcy NSRDC Code 2833 Naval Ship Research and Development Center Annapolis, Maryland 21402		1
8.	Mr. Mark Goldberg NSRDC Code 2833 Naval Ship Research and Development Center Annapolis, Maryland 21402		1
9.	Mr. Eugene P. Wienert Head, Combined Power and Gas Turbine Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112		1
10.	Mr. Donald N. McCallum NAVSEC Code 6136 Naval Ship Engineering Center Washington, D. C. 20362		1

		No.	Copies
11.	Lt. J. P. Harrell, JR., USN 2004 Cloverleaf Place Ardmore, Oklahoma 73401		1
12.	Lt. C. M. Moss 625 Midway Road Powder Springs, Georgia 30073		1
13.	LCDR P. D. Ross, JR., USN 673 Chestnut St. Waynesboro, Va. 22980		1
14.	Lt. D. R. Welch 1036 Brestwick Commons Virginia Beach, Virginia 23512		2
15.	Lt. R. J. Lemke 2902 No. Cheyenne Tacoma, Washington 98407		1
16.	Lt. Chris P. Staehli Route 2 Box 648 Burton Washington 98013		1
17.	Professor R. Nunn, Code 69Nn Department of Mechanical Engineering Naval Postgraduate School Monterey, Calif. 93940		1

thesW3885
Hot flow testing of multiple nozzle exha

3 2768 001 95199 9
DUDLEY KNOX LIBRARY