Forest Kobayashi Topology HW 4 Comments 03/03/2019

Announcements:

- Send errata to me
- When2Meet for writing style tutoring stuff

1 Writing Style Comments

A1. TL;DR — Don't be afraid to introduce new notation if you feel it's helpful. But if you choose to do so, you should *define it explicitly* at the beginning of your proof.

Here's an example. In a problem like 4.31, you might consider using angled brackets to distinguish points from intervals. E.g., you could use $\langle a,b\rangle$ to denote a point in \mathbb{R}^2 , and (a,b) to denote the interval $(a,b)\subset\mathbb{R}$ (In \mathbb{E}^2 EX, $\langle a,b\rangle$ can be generated with α,b and α,b rangle.

If you choose this approach, you should begin your proof with something like "to avoid confusion, we will denote points of \mathbb{R}^2 with angled brackets (e.g. $\langle a, b \rangle$), and intervals in \mathbb{R} with the usual (a, b), [a, b], etc."

If you choose not to create new notation, you should be sure to explicitly draw attention to when you're treating (a, b) as a point vs. as an interval. There are a few things you can do to make this natural:

- (1) When you declare (a, b), you should make the domain explicit by saying "let $(a, b) \in \mathbb{R}^2$ " or "let $(a, b) \subset \mathbb{R}$." In fact, you should *always* do this with your variables, it's just particularly relevant here.
- (2) Use variable symbols consistently. If you previously used (a,b) to refer to a point in \mathbb{R}^2 , you should not overwrite that declaration later by saying "let $(a,b) \subset \mathbb{R}$." Instead, you should choose different symbols. Usually (a,b) is used for intervals, and (x,y) for points consider employing this scheme.
- (3) Consider using vector notation. E.g.,

Let $(X_{\text{sq}}, \mathcal{T}_{\text{sq}})$ denote the lexicographically ordered square, and let \mathcal{B}_{sq} be the canonical basis for \mathcal{T}_{sq} . Denote elements of \mathcal{B}_{sq} by (\mathbf{u}, \mathbf{v}) , where $\mathbf{u}, \mathbf{v} \in X_{\text{sq}}$ (using square brackets as appropriate if $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{1}$).

A2. Elegance, and combining similar casework

A3. "Consider" and "take"

A4. How to identify when to give a WTS. Also, justification comes before assertions. Assertions \neq WTSs.

2 Correctness

2.1 Exercise 4.41

B2. Don't label \mathbb{R}_{α} ! This is only for when the sets in our product are distinct

2.2 Exercise 5.5

B1. It's a bit hazardous to try and make an argument based on the *form* of arbitrary open sets in \mathbb{R}_{LL} .

3 Comments on TeX / Notation