

ARM Cortex[™]-M0 32-BIT MICROCONTROLLER

NuMicro[™] Family NUC122 Product Brief

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

Publication Release Date: June 21, 2011

Revision V1.08

Contents

1	GEN	ERAL DESCRIPTION	5
2	FEAT	TURES	6
	2.1	NuMicro [™] NUC122 Features	6
3	PAR	TS INFORMATION LIST AND PIN CONFIGURATION	g
	3.1	NuMicro [™] NUC122 Products Selection Guide	g
	3.2	NuMicro [™] NUC122 Pin Diagram	10
		3.2.1 NuMicro [™] NUC122 LQFP 64-pin	10
		3.2.2 NuMicro [™] NUC122 LQFP 48-pin	11
		3.2.3 NuMicro [™] NUC122 QFN 33-pin	12
4	ELEC	CTRICAL CHARACTERISTICS	13
	4.1	Absolute Maximum Ratings	13
	4.2	DC Electrical Characteristics	14
		4.2.1 NuMicro [™] NUC122 DC Electrical Characteristics	14
	4.3	AC Electrical Characteristics	18
		4.3.1 External 4~24 MHz High Speed Crystal AC Electrical Characteristics	18
		4.3.2 External 4~24 MHz High Speed Crystal	18
		4.3.3 External 32.768 KHz Low Speed Crystal	18
		4.3.4 Internal 22.1184 MHz High Speed Oscillator	19
		4.3.5 Internal 10 KHz Low Speed Oscillator	19
	4.4	Analog Characteristics	20
		4.4.1 Specification of LDO & Power management	20
		4.4.2 Specification of Low Voltage Reset	21
		4.4.3 Specification of Brownout Detector	21
		4.4.4 Specification of Power-On Reset (5 V)	21
		4.4.5 Specification of USB PHY	22
	4.5	SPI Dynamic Characteristics	23
		4.5.1 Dynamic Characteristics of Data Input and Output Pin	23
5	PAC	KAGE DIMENSIONS	25
	5.1	64L LQFP (7x7x1.4mm footprint 2.0 mm)	25
	5.2	48L LQFP (7x7x1.4mm footprint 2.0mm)	26
	5.3	33L QFN (5x5x0.8mm)	27
6	DE\/I	SIONI HISTORY	20

NuMicro™ NUC122 Product Brief

nuvoTon

Figures

Figure 7-1 Typical Crystal Application Circuit	18
Figure 7-2 SPI Master Mode Timing	24
Figure 7-3 SPI Slave Mode Timing	24

NuMicro™ NUC122 Product Brief

nuvoTon

Table	25
-------	----

Table 1-1 Connectivity Supported Table
--

1 GENERAL DESCRIPTION

The NuMicro™ NUC122 series are 32-bit microcontrollers with Cortex™-M0 core runs up to 60 MHz, up to 32K/64K-byte embedded flash, 4K/8K-byte embedded SRAM, and 4K-byte loader ROM for the In System Program (ISP) function. It also integrates Timers, Watchdog Timer, RTC, UART, SPI, I²C, PWM Timer, GPIO, USB 2.0 Full Speed Device, Low Voltage Reset Controller and Brownout Detector.

Table 1-1 Connectivity Supported Table

Product Line	UART	SPI	I ² C	USB	PS/2
NUC122	Y	Y	Y	Y	Y

Revision V1.08

2 FEATURES

2.1 NuMicro™ NUC122 Features

- Core
 - ARM[®] Cortex[™]-M0 core runs up to 60 MHz
 - One 24-bit system timer
 - Support low power sleep mode
 - Single-cycle 32-bit hardware multiplier
 - NVIC for the 32 interrupt inputs, each with 4-levels of priority
 - Serial Wire Debug supports with 2 watchpoints/4 breakpoints
- Wide operating voltage ranges from 2.5 V to 5.5 V
- Flash Memory
 - 32K/64K bytes Flash for program code
 - 4KB Flash for ISP loader
 - Support In System Program (ISP) function to update Application code
 - 512 bytes page erase for Flash
 - 4KB Data Flash
 - Support 2 wire In Circuit Program (ICP) function to update code through SWD/ICE interface
 - Support fast parallel programming mode by external programmer
- SRAM Memory
 - 4K/8K bytes embedded SRAM
- Clock Control
 - Flexible selection from different clock sources
 - Built-in 22.1184 MHz high speed OSC for system operation
 - Trimmed to \pm 1 % at +25 $^{\circ}$ C and V_{DD} = 3.3 V
 - Trimmed to \pm 5 % at -40 $^{\circ}$ C \sim +85 $^{\circ}$ C and V_{DD} = 2.5 V \sim 5.5 V
 - Built-in 10 KHz low speed OSC for Watchdog Timer and Wake-up operation
 - Support one PLL, up to 60 MHz, for high performance system operation
 - External 4~24 MHz high speed crystal input for USB and precise timing operation
 - External 32.768 KHz low speed crystal input for RTC function and low power system operation
- GPIO
 - Four I/O modes:
 - Quasi bi-direction
 - Push-Pull output
 - Open-Drain output
 - Input only with high impendence
 - TTL/Schmitt trigger input selectable
 - I/O pin can be configured as interrupt source with edge/level setting
 - High driver and high sink IO mode support
- Timers
 - 4 sets of 32-bit timers with 24-bit counters and one 8-bit prescaler
 - Counter auto reload

Publication Release Date: June 21, 2011 Revision V1.08

NuMicro[™] NUC122 Product Brief

Watchdog Timer

- Multiple clock sources
- 8 selectable time-out period from 1.6 ms ~ 26.0 sec (depends on clock source)
- WDT can wake-up from power down or idle mode
- Interrupt or reset selectable while Watchdog Timer time-out

RTC

- Support software compensation by setting frequency compensate register (FCR)
- Support RTC counter (second, minute, hour) and calendar counter (day, month, year)
- Support Alarm registers (second, minute, hour, day, month, year)
- 12-hour or 24-hour mode
- Automatic leap year recognition
- Support time tick interrupt
- Support wake-up function

PWM/Capture

- Built-in up to two 16-bit PWM generators provide four PWM outputs or two complementary paired PWM outputs
- Each PWM generator equipped with one clock source selector, one clock divider, one 8-bit prescaler and one Dead-Zone generator for complementary paired PWM
- Up to four 16-bit digital Capture timers (shared with PWM timers) provide four rising/falling capture inputs
- Support Capture interrupt

UART

- Two UART controllers
- UART ports with flow control (TXD, RXD, CTS and RTS)
- UART ports with 16-byte FIFO for standard device
- Support IrDA (SIR) function
- Support RS-485 9-bit mode and direction control
- Programmable baud-rate generator up to 1/16 system clock

SPI

- Up to two sets of SPI device
- Master up to 25 MHz, and Slave up to 12 MHz (chip is working @ 5 V)
- Support SPI master/slave mode
- Full duplex synchronous serial data transfer
- Variable length of transfer data from 1 to 32 bits
- MSB or LSB first data transfer
- 2 slave/device select lines when it is as the master, and 1 slave/device select line when it is as the slave
- Byte suspend mode in 32-bit transmission

Publication Release Date: June 21, 2011

Revision V1.08

NuMicro™ NUC122 Product Brief

nuvoTon

I²C

- One set of I²C device
- Master/Slave mode
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer
- Programmable clocks allow versatile rate control
- I²C-bus controller supports multiple address recognition (four slave address with mask option)

• USB 2.0 Full-Speed Device

- One set of USB 2.0 FS Device 12Mbps
- On-chip USB Transceiver
- Provide 1 interrupt source with 4 interrupt events
- Support Control, Bulk In/Out, Interrupt and Isochronous transfers
- Auto suspend function when no bus signaling for 3 ms
- Provide 6 programmable endpoints
- Include 512 bytes internal SRAM as USB buffer
- Provide remote wake-up capability

Brownout Detector

- With 4 levels: 4.5 V/3.8 V/2.7 V/2.2 V
- Support Brownout Interrupt and Reset options
- One built-in LDO
- Low Voltage Reset
- Operating Temperature: -40 $^{\circ}$ C ~ 85 $^{\circ}$ C
- · Packages:
 - All Green package (RoHS)
 - LQFP 64-pin (7mmX7mm)
 - LQFP 48-pin
 - QFN 33-pin

- 8 -

NuMicro[™] **NUC122 Product Brief**

3 PARTS INFORMATION LIST AND PIN CONFIGURATION

3.1 NuMicro[™] NUC122 Products Selection Guide

Part number	Flash	ISP ROM	SRAM	1/0	Timer		С	onne	ctivity			I ² S	Comp.	PWM	ADC	RTC	ISP	Package
	(KB)	(KB)	(KB)		1111101	UART	SPI	I ² C	USB	LIN	PS/2		oop.		7.50	0	ICP	. uonago
NUC122ZD2AN	64 KB	4KB	8 KB	up to 18	4x32-bit	1	2	1	1	-	-	-	-	-	-	-	٧	QFN33
NUC122ZC1AN	32 KB	4KB	4 KB	up to 18	4x32-bit	1	2	1	1	-	-	-	-	-	-	-	٧	QFN33
NUC122LD2AN	64 KB	4KB	8 KB	up to 30	4x32-bit	2	2	1	1	-	1	-	-	4	-	٧	٧	LQFP48
NUC122LC1AN	32 KB	4KB	4 KB	up to 30	4x32-bit	2	2	1	1	-	1	-	-	4	-	٧	٧	LQFP48
NUC122SD2AN	64 KB	4KB	8 KB	up to 41	4x32-bit	2	2	1	1	-	1	-	-	4	-	٧	٧	LQFP64
NUC122SC1AN	32 KB	4KB	4 KB	up to 41	4x32-bit	2	2	1	1	1	1	-	-	4	-	٧	٧	LQFP64

3.2 NuMicro[™] NUC122 Pin Diagram

3.2.1 NuMicro[™] NUC122 LQFP 64-pin

Figure 3-1 NuMicro[™] NUC122 LQFP 64-pin Pin Diagram

3.2.2 NuMicro™ NUC122 LQFP 48-pin

Figure 3-2 NuMicro[™] NUC122 LQFP 48-pin Pin Diagram

3.2.3 NuMicro[™] NUC122 QFN 33-pin

Figure 3-3 NuMicro[™] NUC122 QFN 33-pin Pin Diagram

4 ELECTRICAL CHARACTERISTICS

4.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
DC Power Supply	VDD-VSS	-0.3	+7.0	V
Input Voltage	VIN	VSS-0.3	VDD+0.3	V
Oscillator Frequency	1/t _{CLCL}	4	24	MHz
Operating Temperature	TA	-40	+85	°C
Storage Temperature	TST	-55	+150	°C
Maximum Current into VDD		-	120	mA
Maximum Current out of VSS			120	mA
Maximum Current sunk by a I/O pin			35	mA
Maximum Current sourced by a I/O pin			35	mA
Maximum Current sunk by total I/O pins			100	mA
Maximum Current sourced by total I/O pins			100	mA

Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability of the device.

Revision V1.08

4.2 DC Electrical Characteristics

4.2.1 NuMicro[™] NUC122 DC Electrical Characteristics

(V_{DD} - V_{SS} =3.3 V, TA = 25 °C, FOSC = 60 MHz unless otherwise specified.)

DADAMETED	CVM	5	PECIFI	CATION		TEST CONDITIONS			
PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	TEST COMDITIONS			
Operation voltage	V_{DD}	2.5		5.5	V	V _{DD} =2.5 V ~ 5.5 V up to 60 MHz			
LDO Output Voltage	V _{LDO}	1.6	1.8	2.1	V	$V_{DD} \ge 2.5 \text{ V}$			
Analog Operating Voltage	AV _{DD}	0		V _{DD}	V				
	I _{DD1}		26		mA	V _{DD} = 5.5 V @ 60 MHz, enable all IP and PLL, XTAL=12 MHz			
Operating Current Normal Run Mode	I _{DD2}		21		mA	V _{DD} = 5.5 V @ 60 MHz, disable all IP and enable PLL, XTAL=12 MHz			
@ 60 MHz	I _{DD3}		24		mA	V _{DD} = 3.3 V @ 60 MHz, enable all IP and PLL, XTAL=12 MHz			
	I _{DD4}		19		mA	V _{DD} = 3.3 V @ 60 MHz, disable all IP and enable PLL, XTAL=12 MHz			
	I _{DD5}		6.5		mA	V _{DD} = 5.5 V @ 12MHz, enable all IP and disable PLL, XTAL=12 MHz			
Operating Current Normal Run Mode	I _{DD6}		5		mA	V_{DD} = 5.5 V @ 12 MHz, disable all IP and PLL, XTAL=12 MHz			
@ 12 MHz	I _{DD7}		4.5		mA	V _{DD} = 3.3 V @ 12 MHz, enable all IP and disable PLL, XTAL=12 MHz			
	I _{DD8}		3.5		mA	V_{DD} = 3.3 V @ 12 MHz, disable all IP and PLL, XTAL=12 MHz			
Operating Current Normal Run Mode	I _{DD9}		3.5		mA	V _{DD} = 5.5 V @ 4 MHz, enable all IP and disable PLL, XTAL=4 MHz			

DADAMETED	CVM	5	PECIFI	CATION		TEST CONDITIONS			
PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS			
@ 4 MHz	I _{DD10}		3		mA	V _{DD} = 5.5 V @ 4 MHz, disable all IP and PLL, XTAL=4 MHz			
	I _{DD11}		3		mA	V _{DD} = 3.3 V @ 4 MHz, enable all IP and disable PLL, XTAL=4 MHz			
	I _{DD12}		2		mA	V _{DD} = 3.3 V @ 4 MHz, disable all IP and PLL, XTAL=4 MHz			
	I _{IDLE1}		17		mA	V _{DD} = 5.5 V @ 60 MHz, enable all IP and PLL, XTAL=12 MHz			
Operating Current Idle Mode	I _{IDLE2}		12		mA	V _{DD} = 5.5 V @ 60 MHz, disable all IP and enable PLL, XTAL=12 MHz			
@ 60 MHz	I _{IDLE3}		15		mA	V _{DD} = 3.3 V @ 60 MHz, enable all IP and PLL, XTAL=12 MHz			
	I _{IDLE4}		11		mA	V _{DD} = 3.3 V @ 60 MHz, disable all IP and enable PLL, XTAL=12 MHz			
	I _{IDLE5}		4.5		mA	V _{DD} = 5.5 V @ 12 MHz, enable all IP and disable PLL, XTAL=12 MHz			
Operating Current Idle Mode	I _{IDLE6}		3.5		mA	V_{DD} = 5.5 V @ 12 MHz, disable all IP and PLL, XTAL=12 MHz			
@ 12 MHz	I _{IDLE7}		3		mA	V _{DD} = 3.3 V @ 12 MHz, enable all IP and disable PLL, XTAL=12 MHz			
	I _{IDLE8}		2		mA	V _{DD} = 3.3 V @ 12 MHz, disable all IP and PLL, XTAL=12 MHz			
Operating Current Idle Mode @ 4 MHz	I _{IDLE9}		3		mA	V _{DD} = 5.5 V @ 4 MHz, enable all IP and disable PLL, XTAL=4 MHz			
	I _{IDLE10}		2.5		mA	V _{DD} = 5.5 V @ 4 MHz, disable all IP and PLL, XTAL=4 MHz			
	I _{IDLE11}		2		mA	V _{DD} = 3.3 V @ 4 MHz, enable all IP and disable PLL, XTAL=4 MHz			

PARAMETER	SYM.	S	PECIFIC	CATION	TEST CONDITIONS				
PARAMETER	STIVI.	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS			
	I _{IDLE12}		1		mA	V_{DD} = 3.3 V @ 4 MHz, disable all IP and PLL, XTAL=4 MHz			
	I _{PWD1}		13		μА	V _{DD} = 5.5 V, RTC OFF, No load @ Disable BOV function			
Standby Current Power Down Mode	I _{PWD2}		12		μА	V _{DD} = 3.3 V, RTC OFF, No load @ Disable BOV function			
	I _{PWD3}		15		μА	V _{DD} = 5.5 V, RTC run , No load @ Disable BOV function			
	I _{PWD4}		13		μА	V _{DD} = 3.3 V, RTC run , No load @ Disable BOV function			
Input Current PA, PB, PC, PD (Quasi-bidirectional mode)	I _{IN1}	-60	-	+15	μА	$V_{DD} = 5.5 \text{ V}, V_{IN} = 0 \text{ V or } V_{IN} = V_{DD}$			
Input Current at /RESET ^[1]	I _{IN2}	-55	-45	-30	μА	V _{DD} = 3.3 V, V _{IN} = 0.45 V			
Input Leakage Current PA, PB, PC, PD	I _{LK}	-2	-	+2	μА	V _{DD} = 5.5 V, 0 <v<sub>IN<v<sub>DD</v<sub></v<sub>			
Logic 1 to 0 Transition Current PA~PD (Quasi-bidirectional mode)	I _{TL} ^[3]	-650	-	-200	μА	V _{DD} = 5.5 V, V _{IN} <2.0 V			
Input Low Voltage PA, PB, PC,	1/	-0.3	-	0.8	V	V _{DD} = 4.5 V			
PD (TTL input)	V _{IL1}	-0.3	-	0.6	V	V _{DD} = 2.5 V			
Input High Voltage PA, PB, PC,	V _{IH1}	2.0	-	V _{DD} +0.2	V	V _{DD} = 5.5 V			
PD(TTL input)	VIIII	1.5	-	V _{DD} +0.2	ľ	V _{DD} = 3.0 V			
Input Low Voltage PA, PB, PC, PD (Schmitt input)	V _{IL2}	-0.5		0.4 V _{DD}	V				
Input High Voltage PA, PB, PC, PD(Schmitt input)	V _{IH2}	0.6 V _{DD}		V _{DD} +0.	٧				
Hysteresis voltage of PA~PD (Schmitt input)	V_{HY}		0.2 V _{DD}		٧				
Negative going threshold (Schmitt input), /RESET	V _{ILS}	-0.5	-	0.3 V _{DD}	٧				
Positive going threshold (Schmitt input), /RESET	V _{IHS}	0.7 V _{DD}	-	V _{DD} +0.	٧				
	I _{SR11}	-300	-370	-450	μА	V _{DD} = 4.5 V, V _S = 2.4 V			
Source Current PA, PB, PC, PD (Quasi-bidirectional Mode)	I _{SR12}	-50	-70	-90	μА	V _{DD} = 2.7 V, V _S = 2.2 V			
,	I _{SR12}	-40	-60	-80	μА	$V_{DD} = 2.5 \text{ V}, V_{S} = 2.0 \text{ V}$			
Source Current PA, PB, PC,	I _{SR21}	-22	-28	-32	mA	V _{DD} = 4.5 V, V _S = 2.4 V			

Publication Release Date: June 21, 2011 Revision V1.08

PARAMETER	SYM.	s	PECIFI	CATION	TEST CONDITIONS	
TANAMETER	31141.	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
PD (Push-pull Mode)	I _{SR22}	-4	-6	-8	mA	V _{DD} = 2.7 V, V _S = 2.2 V
	I _{SR22}	-3	-5	-7	mA	$V_{DD} = 2.5 \text{ V}, V_{S} = 2.0 \text{ V}$
Sink Current PA, PB, PC,	I _{SK1}	10	17	20	mA	$V_{DD} = 4.5 \text{ V}, V_{S} = 0.45 \text{ V}$
PD(Quasi-bidirectional and Push-pull Mode)	I _{SK1}	7	10	13	mA	$V_{DD} = 2.7 \text{ V}, V_{S} = 0.45 \text{ V}$
asir pair wode)	I _{SK1}	6	9	12	mA	$V_{DD} = 2.5 \text{ V}, V_{S} = 0.45 \text{ V}$
Brownout voltage with BOV_VL [1:0] =00b	V _{BO2.2}	2.1	2.2	2.3	٧	
Brownout voltage with BOV_VL [1:0] =01b	V _{BO2.7}	2.6	2.7	2.8	٧	
Brownout voltage with BOV_VL [1:0] =10b	V _{BO3.8}	3.6	3.75	3.9	٧	
Brownout voltage with BOV_VL [1:0] =11b	V _{BO4.5}	4.2	4.4	4.6	V	
Hysteresis range of BOD voltage	V _{BH}	30	-	150	mV	V _{DD} = 2.5 V ~ 5.5 V

Note:

- 1. /RESET pin is a Schmitt trigger input.
- 2. Crystal Input is a CMOS input.
- 3. Pins of PA, PB, PC and PD can source a transition current when they are being externally driven from 1 to 0. In the condition of V_{DD} =5.5 V, the transition current reaches its maximum value when V_{IN} approximates to 2 V.

4.3 AC Electrical Characteristics

4.3.1 External 4~24 MHz High Speed Crystal AC Electrical Characteristics

Note: Duty cycle is 50 %.

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
t _{CHCX}	Clock High Time		20	-	-	nS
t _{CLCX}	Clock Low Time		20	-	-	nS
t _{CLCH}	Clock Rise Time		-	-	10	nS
t _{CHCL}	Clock Fall Time		-	-	10	nS

4.3.2 External 4~24 MHz High Speed Crystal

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Input clock frequency	External crystal	4	12	24	MHz
Temperature	-	-40	-	85	$^{\circ}\!\mathbb{C}$

4.3.2.1 Typical Crystal Application Circuits

CRYSTAL	C1	C2	R
4 MHz ~ 24 MHz	without	without	without

Error! Objects cannot be created from editing field codes.

Figure 4-1 Typical Crystal Application Circuit

4.3.3 External 32.768 KHz Low Speed Crystal

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Input clock frequency	External crystal	-	32.768	-	KHz
Temperature	-	-40	-	85	$^{\circ}\!\mathbb{C}$

Publication Release Date: June 21, 2011 Revision V1.08

4.3.4 Internal 22.1184 MHz High Speed Oscillator

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Center Frequency	-	-	22.1184	-	MHz
	+25 °C; V _{DD} = 3.3 V	-1	-	+1	%
Calibrated Internal Oscillator Frequency	-40 °C ~ +85 °C; V _{DD} = 2.5 V ~ 5.5 V	-5	-	+5	%

4.3.5 Internal 10 KHz Low Speed Oscillator

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Center Frequency	-	-	10	-	KHz
	+25°C; V _{DD} = 5 V	-30	-	+30	%
Calibrated Internal Oscillator Frequency	-40 °C ~ +85 °C; V _{DD} = 2.5 V ~ 5.5 V	-50	-	+50	%

4.4 Analog Characteristics

4.4.1 Specification of LDO & Power management

PARAMETER	MIN.	TYP.	MAX.	UNIT	NOTE
Input Voltage	2.5	5	5.5	V	V _{DD} input voltage
Output Voltage	1.6	1.8	2.1	>	$V_{DD} \ge 2.5 \text{ V}$
Temperature	-40	25	85	$^{\circ}$ C	
Quiescent Current (PD=0)	-	100	-	μА	
Quiescent Current (PD=1)	-	5	-	μΑ	
Iload (PD=0)	-	-	100	mA	
Iload (PD=1)	-	-	100	μА	
Cbp	-	4.7	-	μF	Resr=1 ohm

Note

^{1.} It is recommended that a 10 μ F or higher capacitor and a 100 nF bypass capacitor are connected between VDD and the closest VSS pin of the device.

^{2.} For ensuring power stability, a 4.7 μ F or higher capacitor must be connected between LDO pin and the closest VSS pin of the device

4.4.2 Specification of Low Voltage Reset

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Quiescent current	V _{DD} =5.5 V	-	-	5	μА
Temperature	-	-40	25	85	$^{\circ}\!\mathbb{C}$
Threshold voltage	Temperature=25 ℃	1.7	2.0	2.3	V
	Temperature=-40 ℃	-		-	V
	Temperature=85 ℃	-		-	V
Hysteresis	-	0	0	0	V

4.4.3 Specification of Brownout Detector

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Quiescent current	AV _{DD} =5.5 V	-	-	140	μA
Temperature	-	-40	25	85	$^{\circ}\!\mathbb{C}$
	BOV_VL[1:0]=11	4.2	4.4	4.6	V
Brownout voltage	BOV_VL [1:0]=10	3.6	3.75	3.9	V
Brownout voltage	BOV_VL [1:0]=01	2.6	2.7	2.8	V
	BOV_VL [1:0]=00	2.1	2.2	2.3	V
Hysteresis	-	30	-	150	mV

4.4.4 Specification of Power-On Reset (5 V)

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Temperature	-	-40	25	85	$^{\circ}\!\mathbb{C}$
Reset voltage	V+	-	2	-	V
Quiescent current	Vin>reset voltage	-	1	-	nA

4.4.5 Specification of USB PHY

4.4.5.1 USB DC Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{IH}	Input high (driven)		2.0			V
V _{IL}	Input low				0.8	V
V _{DI}	Differential input sensitivity	PADP-PADM	0.2			V
V _{CM}	Differential common-mode range	Includes V _{DI} range	0.8		2.5	V
V _{SE}	Single-ended receiver threshold		0.8		2.0	V
	Receiver hysteresis			200		mV
V _{OL}	Output low (driven)		0		0.3	V
V _{OH}	Output high (driven)		2.8		3.6	V
V _{CRS}	Output signal cross voltage		1.3		2.0	V
R _{PU}	Pull-up resistor		1.425		1.575	kΩ
R _{PD}	Pull-down resistor		14.25		15.75	kΩ
V_{TRM}	Termination Voltage for upstream port pull up (RPU)		3.0		3.6	V
Z _{DRV}	Driver output resistance	Steady state drive*		10		Ω
C _{IN}	Transceiver capacitance	Pin to GND			20	pF

^{*}Driver output resistance doesn't include series resistor resistance.

4.4.5.2 USB Full-Speed Driver Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
T _{FR}	Rise Time	C _L =50p	4		20	ns
T _{FF}	Fall Time	C _L =50p	4		20	ns
T _{FRFF}	Rise and fall time matching	T _{FRFF} =T _{FR} /T _{FF}	90		111.11	%

4.4.5.3 USB Power Dissipation

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	Standby		50		μА	
(V _{DDD} and V _{DDREG} Supply Current (Steady State)	Input mode				μА
Speed)		Output mode				μА

4.5 SPI Dynamic Characteristics

4.5.1 Dynamic Characteristics of Data Input and Output Pin

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT			
SPI Master Mo	SPI Master Mode (VDD = 4.5 V ~ 5.5 V, 30 pF loading Capacitor)							
t _{DS}	Data setup time	16	10	-	ns			
t _{DH}	Data hold time	0	-	-	ns			
t _V	Data output valid time	-	5	8	ns			
SPI Master Mode (VDD = 3.0 V ~ 3.6 V, 30 pF loading Capacitor)								
t _{DS}	Data setup time 20 13		13	-	ns			
t _{DH}	Data hold time	0	-	-	ns			
t _V	Data output valid time	-	7	14	ns			
SPI Slave Mode (VDD = 4.5 V ~ 5.5 V, 30 pF loading Capacitor)								
t _{DS}	Data setup time 0 -		-	-	ns			
t _{DH}	Data hold time	2*PCLK+4			ns			
t _V	Data output valid time - 2*PCLK+11 2*PCLK+20		2*PCLK+20	ns				
SPI Slave Mode (VDD = 3.0 V ~ 3.6 V, 30 pF loading Capacitor)								
t _{DS}	Data setup time	0	-	-	ns			
t _{DH}	Data hold time	2*PCLK+8	-	-	ns			
t _V	Data output valid time	-	- 2*PCLK+20 2*PCLK+32 ns		ns			

Figure 4-3 SPI Slave Mode Timing

5 PACKAGE DIMENSIONS

5.1 64L LQFP (7x7x1.4mm footprint 2.0 mm)

nuvoTon

5.2 48L LQFP (7x7x1.4mm footprint 2.0mm)

5.3 33L QFN (5x5x0.8mm)

6 REVISION HISTORY

0 ILVIOIOIVIIIOTOIVI							
VERSION	DATE	PAGE/ CHAP.	DESCRIPTION				
V1.00	Nov. 15, 2010	-	Preliminary version initial issued				
V1.01	Dec. 7, 2010	Chap. 3	Corrected the Selection Guide Table for QFN33.				
V1.02	Jan. 13, 2011	Chap. 5	Corrected the Watchdog Timer Clock Source Selection				
		Chap. 7	2. Corrected the Electrical Characteristics.				
V1.03	March 14, 2011	Chap. 3 Chap. 7	1. Added the LQFP 64-pin part number for 7x7x1.4mm package. (NUC122SD2AN, NUC122SC1AN)				
			2. Corrected the LQFP 64-pin Pin Diagram.				
		Chap. 8	3. Updated DC and AC Electrical Characteristics and added the SPI Dynamic Characteristics.				
			4. Updated LQFN 48-pin package dimensions.				
V1.04	March 31, 2011	Chap. 2 Chap. 3	Removed the LQFP 64-pin part number for 10x10x1.4mm package.				
		Chap. 4 Chap. 5 Chap. 8	 Replaced "12 MHz" with "4~24 MHz" in some contents and bloc diagrams. 				
V1.05	Apr.29 , 2011	Спар. о	Updated the table of specification of LDO and Power Management.				
		Chap. 1 Chap. 2 Chap. 3 Chap. 5 Chap. 7	2. Removed the LIN function from UART controller. 3. Corrected the "PWM_CRLx/PWM_CFLx(x=0~3)" to "CRLRx/CFLRx(x=0~3)" in the Overview of PWM Generator and Capture Timer chapter.				
			4. Corrected the "1xx" to "111" in System Clock and SysTick Clock Control Block Diagram.				
			5. Added the Clock Generator Global View Diagram.6. Corrected the "RX0/1" and "TX0/1" to "RXD0/1" and "TXD0/1" in Pin Configuration and Pin Description.				
V1.06	May 30, 2011	All	Corrected the typo of Year on the Footer.				
V1.07	June 8, 2011	Chap. 2 Chap. 4	 Corrected the trimmed condition for the internal 22.1184 MHz high speed oscillator in the "Clock Control" item of Feature list. Corrected the specification of the "Internal 22.1184 MHz High Speed Oscillator". 				
V1.08	June 21, 2011	Chap. 2	Added the condition and corrected the speed of SPI in Master/Slave mode in the "SPI" item of Feature list.				

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Publication Release Date: June 21, 2011 Revision V1.08

- 29 -