K-Means

Daniel Ledda and Shanshan Bai

Vertiefung der Grundlagen der Computerlinguistik WiSe 2019/20

Overview: Clustering

- Clustering algorithms group data units in a dataset into clusters
 - The objects in one cluster are ideally more similar to each that to objects in other clusters -> similar inside, dissimilar outside
 - These are represented as mathematical partitions of the dataset

- Clustering may be supervised or unsupervised
 - Supervised learning starts with hypotheses and creates groups that new data is assigned to
 - Unsupervised learning "uncovers" them in the data that is already present

Purpose and Application

- Clustering algorithms help provide insight into data
 - Marketing: Who are my customers?
 - Downsampling pictures (-> "downsampling" text?)
 - Clustering of gene expression data
 - Web: who uses what? What's out there?
 - NLP:
 - What document categories exist?
 - What kind of person wrote this text?
 - What sentiment is expressed by this text?
 - etc.
- Sometimes datasets need to be clustered for preprocessing
 - Moving from unsupervised to supervised learning

Clustering Approaches

- Partitioning algorithms create a mathematical partition between sets of data in order to classify new data
 - K-Means is one such algorithm
 - Seek to minimise an objective function during execution to find the best partition of the data
- Others;
 - EM: Expectation Maximisation
 - Hierarchical Methods
 - Machine learning
 - etc.

Basic Idea

- Choose $\mathbf{k} \in \mathbb{N}$ representatives (e.g. randomly) of the \mathbf{k} different clusters.
 - These are "fake" datapoints -> not real data
- Assign data to nearest cluster C_i
- We need to **improve** these representative points **C** to reduce the value of our objective function
- Reassign the data to the updated points C
- Is our objective function small enough?
 - Yes -> Stop
 - No -> Keep modifying our cluster representatives

K-Means Implementation

- The objective function for K-Means is defined as follows:

$$SSE(C_j) = \sum_{p \in C_j} ||p - \mu_{C_j}||_2^2$$

- With C_j = one cluster group and μ the representative datapoint ("mean" of the cluster)
- Once all points have been reassigned, the means are recalculated.
- Points are then reassigned to the new nearest mean C_i

Toy Example

How do I know if my clustering is any good?

- One technique involves determining how well each data point as been assigned:
 - Sillhouette Coefficient
- The average of the lines in b(o) is ideally much larger than the average of the green ones, a(o)

- The difference is then normalised by the larger of the two

$$s(o) = \begin{cases} 0 & \text{if } a(o) = 0\\ \frac{b(o) - a(o)}{max(a(o), b(o))} & \text{else} \end{cases}$$

Image from Tan, Steinbach, Kumar: Introduction to Data Mining (Pearson, 2006)

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $x^{(i)} \in \mathbb{R}^n$

```
- K (number of clusters)
- Training set \{x^{(1)}, x^{(2)}, \dots, x^{(m)}\} x^{(i)} \in \mathbb{R}^n
```

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n
Repeat { for i = 1 to m c^{(i)} := index (from 1 to K) of cluster centroid closest to x^{(i)} for k = 1 to K \mu_k := average (mean) of points assigned to cluster k
```

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $x^{(i)} \in \mathbb{R}^n$

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $x^{(i)} \in \mathbb{R}^n$

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n Repeat { cluster assignmen t step move centroid \mu_i cluster to \mu_i cluster centroid closest to \mu_i cluster centroid closest to \mu_i closest to \mu_i cluster centroid closest closest to \mu_i cluster centroid closest closes
```

Optimization objective:

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||^2$$

$$\min_{c^{(1)},\ldots,c^{(m)}} J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$$
 The square distance between each example $x^{(i)}$ and the location of the cluster centroid to which $x^{(i)}$ has been assigned.

and the location of the cluster centroid to which $x^{(i)}$ has been assigned

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $x^{(i)} \in \mathbb{R}^n$

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n Repeat { cluster assignmen t step move centroid \mu_i cluster to \mu_i cluster centroid closest to \mu_i cluster centroid closest to \mu_i closest to \mu_i cluster centroid closest closest to \mu_i cluster centroid closest closes
```

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $x^{(i)} \in \mathbb{R}^n$

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n Repeat { cluster assignmen t c(i) := index (from 1 to K) of cluster centroid closest to x^{(i)} for k=1 to K prove to k in the step k centroid k in the step k cluster centroid k for k=1 to k prove the step k in the step k cluster centroid k cluster centroid k in the step k cluster centroid k cluster ce
```

Input:

step

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ $x^{(i)} \in \mathbb{R}^n$

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n Repeat { cluster assignmen t step move centroid c^{(i)} := \operatorname{index} (\operatorname{from} 1 \operatorname{to} K) \operatorname{of} \operatorname{cluster} \operatorname{centroid} (\operatorname{cosest} \operatorname{to} x^{(i)}) \operatorname{closest} \operatorname{to} x^{(i)} \operatorname{closest} \operatorname{to} x^{(i)} \operatorname{closest} \operatorname{to} x^{(i)} \operatorname{minimizing} \operatorname{J}(\cdots) \operatorname{w.r.t} c^{(1)}, c^{(2)}, \dots c^{(m)} \operatorname{w.r.t} \mu_1, \mu_2, \dots \mu_k \operatorname{centroid} \operatorname{d} \operatorname{minimizing} \operatorname{J}(\cdots) \operatorname{w.r.t} \mu_1, \mu_2, \dots \mu_k
```

Debug

Debug

It is not possible for the cost function to sometimes increase. There must be a bug in the code.


```
For i = 1 to 100 {  \text{Randomly initialize K-means.} \\ \text{Run K-means. Get } c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K. \\ \text{Compute cost function (distortion)} \\ J(c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K) \\ \}
```

```
For i = 1 to 100 {  \text{Randomly initialize K-means.} \\ \text{Run K-means. Get } c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K. \\ \text{Compute cost function (distortion)} \\ J(c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K) \\ \}
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Choosing K

What is the right calculation of K???

Choosing K

Elbow method:

Choosing K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

K-Means for non-convex set

K-Means for non-convex set

Recap

Strength

- Relatively efficient
- Easy implementation

Weakness

- Need to specify k in advance
- Sensitive to noisy data and outliers
- Clusters are forced to convex space partitions
- Result and runtime strongly depend on the initial partition; often terminates at a local optimum – however: methods for a good initialization exist

References

Introduction to K-Means, Standford NLP: https://nlp.stanford.edu/IR-book/html/htmledition/k-means-1.html

Knowledge Discovery in Databases (WiSe 2019/20): https://www.dbs.ifi.lmu.de/Lehre/KDD/WS1920/lecture_notes/KDD1_IV.pdf

Machine Learning — Andrew Ng, Stanford University:

https://www.youtube.com/playlist?list=PLLssT5z DsK-h9vYZkQkYNWcItqhlRJLN

Visualizing K-Means Clustering:

https://www.naftaliharris.com > blog > visualizing-k-means-clustering