SAYISAL ANALIZ

Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ

DENKLEM ÇÖZÜMLERİ

İÇİNDEKİLER

Doğrusal Olmayan Denklem Çözümleri

- ☐ Grafik Yöntemleri
- **□** Kapalı Yöntemler
 - İkiye Bölme (Bisection) Yöntemi
 - Adım Küçülterek Köke Yaklaşma Yöntemi
 - Yer Değiştirme Yöntemi
- ☐ Açık Yöntemler
 - Basit Sabit Noktalı İterasyon
 - Newton-Raphson Yöntemi
 - Kiriş (Secant) Yöntemi

Denklem Çözümleri

- Denklemler fizik kanunlarına ve fiziksel parametrelere dayanır.
- Problemlerin çözümünde ve sistemlere ait bağımlı değişkenlerin tahmin edilmesinde kullanılırlar.
- Denklemler mühendislikte tasarımda kullanılır.
- Sayısal analizdeki matematiksel modelleme aşaması denklemler ve denklem çözümlerinden oluşur.
- Ornek: Bir paraşütçünün düşme hızının hesabı (Newton 2. yasası)

$$v = \frac{g m}{c} \left(1 - e^{-(c/m)t} \right)$$

Denklem Çözümleri

Denklemler ikiye ayrılır

- **1** Doğrusal (Lineer) Denklemler
 - Bilinmeyen bir başlangıç değeri içerir,açık veya gizli olabilir.
 - Bilinmeyen parametrelerdeki doğrusal değişiklikler yine bilinmeyen parametreli fonksiyona işaret eder.
- 2 Doğrusal Olmayan (Non-Lineer) Denklemler
 - Üssü birden farklı bir değere sahip olan ve/veya doğrusal olmayan fonksiyonlar içeren denklemlerdir.

Denklem Çözümleri

Örnek: Bir paraşütçünün düşme hızının hesabı (Newton 2. yasası)

$$v = \frac{g m}{c} \left(1 - e^{-(c/m)t} \right)$$

v: hız (diğer zorlayıcı kuvvetlere, parametrelere ve bağımsız değişkenlere bağlı olarak değişen bir bağımlı değişkendir.

- t: zaman (bağımsız değişken)
- g: yer çekimi sabiti (zorlayıcı kuvvet)
- c: havanın direnç katsayısı (sistemin fiziksel özelliği)
- m: kütle (sistemin fiziksel özelliği)
- □ Diğer parametreler bilinirse, paraşütçünün hızını, zamana bağlı olarak hesaplamak (v=f(t)) kolaydır.
- c bilinmediğinden analitik çözümü yok!
- ☐ Çözüm sayısal analiz yöntemi kullanmak (f(c)=0)

$$f(c) = \frac{g m}{c} \left(1 - e^{-(c/m)t} \right) - v$$

- Fonksiyonu sıfır yapan değer (kök), c'ye tekrar tekrar değerler verilerek, grafik veya diğer sayısal yöntemlerle bulunur.
- Denklemlerin sayısal olarak çözümleri de diğer problem çözümleri gibi çoğunlukla yinelemeli (iteratif) yöntemlerle yapılır.

Sayısal Analizde Denklem Köklerini Bulmada İzlenecek Yol

- Denklem köklerini aramaya belirli bir başlangıç değeri ya da değer aralığından başlanır.
 - Kökü aramaya doğru bir noktadan başlamak çözüme ulaşmayı hızlandıracaktır.
- Ponksiyonun girişine değerler vererek, fonksiyonun çıkışı gözlemlenir.
 - ☐ Fonksiyonun çıkışını gözlemlemenin kolay yolu, fonksiyonun grafiğini çizdirmektir.
 - ☐ Grafik, köke yakın aralığı hızlı ve kolay tespit etmeye sağlar.
 - ☐ Kökü aramaya uygun yerden başlamayı sağlar.

Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analiz

Grafik Yöntemleri

- Sayısal analiz ile denklem köklerini hızlı ve kolay bulmayı sağlayan bir yöntemdir.
- Karmaşık denklem/problemlerin yaklaşık (kabaca) çözümlenmesini sağlar.
- Grafiksel yöntemlerin dezavantajları

- Hassas çözüm elde edilemez
- Bilgisayar kullanmadan grafik çizmek uzun zaman alır
- 6 Çoğunlukla 3 ya da daha düşük bilinmeyenli denklem çözümü için uygundur.

Grafik Yöntemleri

Örnek: $f(x) = xe^{-x} + x^3 + 1$ fonksiyonunun kökünü, grafik yöntemi ile yaklaşık olarak bulunuz?

X	f(x)			
-2	-21,7781122			
-1,5	-9,097533606			
-1	-2,718281828			
-0,5	0,050639365			
0	1			
0,5	1,42826533			
1	2,367879441			
1,5	4,70969524			
2	9,270670566			

Grafik Yöntemleri

Örnek: $f(x) = x^3 + 2x + 1$ fonksiyonunun kökünü, matlab programında çizdireceğiniz grafik üzerinden kabaca bulunuz?

Denklem Çözümünde Kapalı Yöntemler

- Fonksiyonlar kök civarında işaret değiştirdikleri için, kökü sağından ve solundan kıskaca alarak bu aralığı gittikçe daraltıp köke ulaşmak mümkündür. Bunun için iki tane başlangıç değeri belirlemek gerekir.
- Kökün, bu iki değerin arasındaki kapalı bölgede olduğu bu yöntemlere kapalı yöntemler adı verilir.

Serhat Yılmaz'ın Sunusundan Alınmıştır.

Doç.Dr. Cüneyt BAYILMIŞ Sayısal Analiz

Denklem Çözümünde Kapalı Yöntemler

Doğru kökü hızlı ve sağlıklı olarak bulmak için, arada başka bir kök olmaması için aralık mümkün olduğunca dar seçilmelidir.

- Denklem çözümünde kapalı yöntemlerin bir türü olan *Bisection*, ikiye bölme ya da yarılama olarak ta adlandırılmaktadır.
- Bisection, sürekli bir fonksiyonun bir sıfırının (kökünün) bulunması için kullanılan sistematik bir tarama tekniğidir.
- ☐ Tekrarlama (tarama) yöntemlerinin en basit ve en anlaşılırıdır.
- Kökün bulunduğu aralığı yarılayarak (ikiye bölerek) daraltma prensibine dayanır.
 - ☐ Bu yöntem, içerisinde bir sıfır bulunan bir aralığın öncelikle tespitine dayanır.
 - □ Aralık sonunda fonksiyon zıt işarete sahiptir.
 - □ Sonra aralık iki eşit alt aralığa bölünür ve hangi aralığın bir sıfır değeri içerdiğine bakılır.
 - ☐ Sıfır içeren alt aralıklarda hesaplamalara devam edilir.
- Dezavantajı, yavaş yakınsaması ve bazen tam olarak çalışmaması.

- Bir f(x) fonksiyonu, [x_a,x_ü] aralığında bir sıfır noktasına (köke) sahip olduğunu varsayalım.
 - İlk olarak, f(x) fonksiyonunun belirtilen aralıkta kökü olup olmadığı [$f(x_a)^*$ $f(x_{\ddot{u}}) < 0$] kontrol edilir. Şart sağlıyorsa kök vardır. Çünkü fonksiyonlar zıt işaretlidir.
 - [$f(x_a)^* f(x_{\ddot{u}}) > 0$] ise <u>kök yoktur</u>.
 - [$f(x_a)^* f(x_{\ddot{u}}) = 0$] ise kök x_a ya da $x_{\ddot{u}}$
 - 2 İlk iterasyonda, belirtilen fonksiyon aralığının orta noktası tespit edilir.

$$x_o = \frac{x_a + x_{ii}}{2}$$

- Sıfır noktası [x_a, x_o] ya da [x_o, x_{ii}] aralığından birisinde olmalıdır
 - $f(x_a)^* f(x_o) < 0$ ise kök [x_a, x_o] aralığında
 - $f(x_0)^* f(x_{ij}) < 0$ ise kök [x_0, x_{ij}] aralığında
- 4 Bir sonraki iterasyonda kök yeni aralıkta aranır ve 2. adımdan itibaren işlemler tekrarlanır.
 - Tekrarlama işlemi $\frac{|x_a x_{ii}|}{2} < \varepsilon_s$ şartı sağlanana kadar devam eder.

Güncellenecek sınır

• $f(x_a).f(x_o) > 0x_{a ile} x_o$ aynı bölgelerde

Kök, x_a, x_oarasında

Kök, x_o , $x_{\ddot{u}}$ arasında

xa(yeni)=xo

Örnek: $f(x) = x.e^{-x} + x^3 + 1$ fonksiyonunun kökünü $\varepsilon_s = 1*10^{-6}$ duyarlılıkla bulalım,

Not: Grafik yönteminde, [-1,0] aralığı için kabaca sonuç x=-0.515438

n	X _a	Xü	X_{O}	$f(x_a).f(x_o)$	= :
1	-1.000000	0.000000	-0.500000	-	0.500000
2	-1.000000	-0.500000	-0.750000	+	0.250000
3	-0.750000	-0.500000	-0.625000	+	0.125000
4	-0.625000	-0.500000	-0.562500	+	0.062500
5	-0.562500	-0.500000	-0.531250	+	0.031250
6	-0.531250	-0.500000	-0.515625	+	0.015625
7	-0.515625	-0.500000	-0.507813	1	0.007813
	•	•	•	•	•
	•	•	•	•	•
19	-0.515449	-0.515442	-0.515446	+	0.000004
20	-0.515446	-0.515442	-0.515444	-	0.000002

Serhat Yılmaz'ın Sunusundan Alınmıştır.

Bisection YÖNTEMİ MATLAB UYGULAMASI

```
xa=-1;xu=0;epsilon=1e-6;Nmax=100;n=0;
fxa=xa*exp(-xa)+xa^3+1;
fxu=xu*exp(-xu)+xu^3+1;
while n<Nmax
  if fxa*fxu > 0
    disp('Verilen aralıkta kök yoktur!!!')
    n=Nmax;
  elseif fxa*fxu == 0
    if fxa==0
      kok=xa;
    else
      kok=xu;
    end
  else
    xo=(xa+xu)/2;
    fxa=xa*exp(-xa)+xa^3+1;
    fxo=xo*exp(-xo)+xo^3+1;
```

```
if fxa*fxo<0
      xu=xo;
    else
      xa=xo;
    end
  end
  if abs(xu-xa)/2<epsilon
    kok=xo;
    disp('Kok=')
    disp(kok)
    disp('Tekrar sayısı=')
    disp(n)
    n=Nmax;
  else
    n=n+1;
  end
end
```


❖ Örnek: f(x) = x² - 17 denkleminin [4, 5] aralığında kökü olup olmadığını kontrol ederek, eğer var ise kök değerini ikiye bölme (bisection) metodunu kullanarak köke 2 adım yaklaşınız? Her adımda oluşan hatayı da hesaplayınız.

Not: Tüm değerler virgülden sonra 4 basamak alınacak.

☐ Belirtilen aralıkta kök olup olmadığını kontrol edelim.

$$f(x_a).f(x_b) < 0 \implies f(4).f(5) < 0 \implies (-1).(8) < 0 \quad k\ddot{o}k \text{ var}$$

• İterasyon

$$x_0 = \frac{x_a + x_{ii}}{2} = \frac{4+5}{2} = 4.5$$

$$\varepsilon = \frac{|x_a - x_{ii}|}{2} = \frac{|4 - 5|}{2} = 0.5$$

Kök hangi yarıda?

$$f(x_a).f(x_o) < 0 \implies f(4).f(4.5) < 0 \implies x_{ii} = 4.5$$

2 İterasyon

$$x_0 = \frac{x_a + x_{ii}}{2} = \frac{4 + 4.5}{2} = 4.25$$

$$\varepsilon = \frac{\left| x_a - x_{ii} \right|}{2} = \frac{\left| 4 - 4.5 \right|}{2} = 0.25$$

Kök hangi yarıda?

$$f(x_a).f(x_o) < 0 \implies f(4).f(4.25) < 0 \implies x_{ii} = 4.25$$

❖ Örnek: f(x) = e^x - 4x denkleminin [0, 1] aralığında kökü olup olmadığını kontrol ederek, eğer var ise kök değerini yarılama (bisection) metodunu kullanarak köke 3 adım yaklaşınız?

Not: Tüm değerler virgülden sonra 4 basamak alınacak.

Adım Küçülterek Köke Yaklaşma Yöntemi

- Ardışıl yaklaşım yöntemi olarak ta bilinir.
- Bir başlangıç değerinden başlanarak, adım adım (h, sabit mesafeler) köke yaklaşılır.
 - ☐ Önce büyük adımlar ile başlanır.
- \Box [f(x_a)* f(x_ü) > 0] \Rightarrow [f(x)* f(x+h) > 0] şartı sağlandığı sürece
 - □ Bir adım daha ilerlenir.
 - ☐ Adım büyüklüğünde (h) değişiklik yapılmaz.
- \Box [f(x)* f(x+h) < 0] ise kök geçilmiştir.
 - ☐ En son kalınan başlangıç değerinden, adım küçülterek tekrar ilerlemeye devam edilir.
- Hata sınırlaması sağlanana kadar köke yaklaşmaya devam edilir.
 - \Box h < ε_s

Adım Küçülterek Köke Yaklaşma Yöntemi

$$f(x).f(x+h) > 0 \longrightarrow x(yeni)=x+h$$

 $f(x).f(x+h) < 0 \longrightarrow h(yeni)=h/10$

Serhat Yılmaz'ın Sunusundan Alınmıştır.

Adım Küçülterek Köke Yaklaşma Yöntemi

❖ Örnek: f(x) = x² - 17 denkleminin kökünü 4 değerinden ve 0.1 adım büyüklüğü ile başlayarak köke 5 adım (ya da hata sınırı 0.01 oluncaya kadar) yaklaşınız? Kökü geçtiğiniz her noktadan sonra adım büyüklüğünü 1/10 oranında küçültünüz.

Not: Tüm değerler virgülden sonra 2 basamak alınacak.

- **1** Iterasyon : Belirtilen aralıkta kök olup olmadığını kontrol edelim. h=0.1 yeni $x_{\ddot{u}} = 4 + 0.1 = 4.1$ $f(x_a).f(x_{\ddot{u}}) > 0 \implies f(4).f(4.1) > 0 \implies (-1).(-0.81) > 0$ $k\ddot{o}k$ yok
- **1** iterasyon : Yeni aralıkta kök olup olmadığını kontrol edelim. h=0.1 yeni $\mathbf{x}_{\ddot{\mathbf{u}}} = 4.1 + 0.1 = 4.2$ $f(x_a).f(x_{\ddot{u}}) < 0 \implies f(4.1).f(4.2) < 0 \implies (-0.81).(0.64) < 0$ $k\ddot{o}k$ var
- 4.1 ile 4.2 aralığında (işaret değişikliği sebebiyle) kök olduğu tespit edildiğinden kökü aramaya bir önceki kök değerinden (4.1) tekrar başlanacak ancak adım büyüklüğü h=0.1, 1/10 oranında küçültülecektir (h=0.01)
- iterasyon : 4.1 değerinden 0.01 adım büyüklükleri ile kökü ara $f(x_a).f(x_{ii}) > 0 \quad \Rightarrow \quad f(4.1).f(4.11) > 0 \quad \Rightarrow \quad (-0.81).(-0.11) > 0 \quad kök \ yok$
- **4** İterasyon : Yeni aralıkta kök olup olmadığını kontrol edelim. h=0.01 yeni $x_{\ddot{u}}$ = 4.11 + 0.01=4.12 $f(x_a).f(x_{\ddot{u}}) > 0 \implies f(4.11).f(4.12) > 0 \implies (-0.11).(-0.03) > 0$ $k\ddot{o}k$ yok
- **6** İterasyon : Yeni aralıkta kök olup olmadığını kontrol edelim. h=0.01 yeni $x_{\ddot{u}} = 4.12 + 0.01 = 4.13$ $f(x_a).f(x_{\ddot{u}}) < 0 \implies f(4.12).f(4.13) < 0 \implies (-0.03).(0.05) < 0 \quad k\ddot{o}k \text{ var} \quad k\ddot{o}k \Rightarrow x = 4.12$

- En eski kök bulma yöntemlerinden birisidir.
- Eğrinin bir doğruyla yer değiştirmesi sonucunda, kökün konumunun yanlış belirlenmesi nedeniyle, latince "yanlış nokta" anlamında olan Regula Falsi olarak adlandırılır.
- ☐ Regula Falsi yönteminde köke yakınsama yavaş olmasına rağmen, <u>mutlaka</u> <u>yakınsama vardır.</u>
 - ☐ Bisection'dan hızlı, kiriş yönteminden yavaş
- f(x) fonksiyonunun [a, b] aralığında kökü hesaplanmak istensin
 - ☐ [a, f(a)] ve [b, f(b)] noktaları arasına bir kiriş (doğru) çizilir.
 - □ Doğrunun x eksenini kestiği noktanın (a₁) alt ve üst kısmında iki benzer üçgen oluşur.
 - ☐ İki üçgenin benzerliğinden x eksenini kestiği nokta (a₁) hesaplanır.
 - istenilen hassasiyet (hata sınırı) sağlanmadıysa yukarıdaki işlemler $[a_1, f(a_1)]$ ve [b, f(b)] noktaları için tekrar ettirilir.

$$\frac{f(x_{ii})}{f(x_{ii}) + (-f(x_a))} = \frac{x_{ii} - x_r}{x_{ii} - x_a}$$

 $x_r = x_{ii} - \frac{f(x_{ii})(x_a - x_{ii})}{f(x_a) - f(x_{ii})}$

• $f(x_a).f(x_r) < 0$ $x_{a ile} x_r$ farklı bölgelerde $x\ddot{u}(yeni) = xr$

• $f(x_a).f(x_r) > 0 x_{a ile} x_r$ aynı bölgelerde

xa(yeni)=xr

Güncellenecek sınır

Kök, x_a, x_r arasında

Kök, x_r, x_ü arasında

• Ornek: Kütlesi m=68.1kg olan bir paraşütçünün, t=10 s serbest düştükten sonra 40m/s hıza sahip olabilmesi için gerekli direnç katsayısını yer değiştirme yöntemiyle iki iterasyon adımı için belirleyin. $(x_a=12, x_{ii}=16)$

$$f(c) = \frac{g m}{c} \left(1 - e^{-(c/m)t} \right) - v$$

Çözüm: Burada kök x=c direncidir,

■ 1. iterasyon:

$$x_a=12 \longrightarrow f(x_a)=6.0699$$

 $x_{\ddot{u}}=16 \longrightarrow f(x_{\ddot{u}})=-2.2688$

$$x_a=12$$
 $f(x_a)=6.0699$ $f(x_u)=-2.2688$ $f(x_r)=-0.25413$ $f(x_r)=-0.25413$

□ 2. iterasyon:

$$f(x_a)*f(x_r) = -1.5426 < 0$$

x, x; ile aynı bölgede olduğu için bir sonraki iterasyonun üst sınırı olacaktır.

$$x_{\ddot{u}}=14.9\overline{113} \longrightarrow f(x_{\ddot{u}})=-0.2543$$
 $x_{r}=14.9113-\frac{-0.2543(12-14.9113)}{6.0669-(-0.2543)}=14.7942$ $x_{a}=12 \longrightarrow f(x_{a})=6.0699$

Serhat Yılmaz'ın Sunusundan Alınmıştır.

Yer Değiştirme (Regula Falsi) Yöntemi

♦ Örnek: $f(x) = x^2 - 49$ denkleminin gerçek kökünün 7 olduğu bilindiğine göre [5, 9] aralığındaki kök değerini yer değiştirme (regula falsi) metodunu kullanarak mutlak hata yüzdesi % ε_s =0.5 in altına ininceye kadar yaklaşık olarak bulunuz?

Not: Tüm değerler virgülden sonra 4 basamak alınacak.

 $x_{r} = x_{ii} - \frac{f(x_{ii})(x_{a} - x_{ii})}{f(x_{a}) - f(x_{ii})}$

• İterasyon

$$x_r = 9 - \frac{32(5-9)}{-24-32} = 9 - \frac{-128}{-56} = 9 - 2,2857 = 6,7143$$
 $\% \varepsilon = |gercek - yaklasik| *100 = |7 - 6.7143| *100 = \% 28.57$

Kök hangi kısımda?

$$f(x_r).f(x_{ii}) < 0 \implies x_a = x_r$$

2 İterasyon

$$x_r = 9 - \frac{32(6.7143 - 9)}{-3.9182 - 32} = 9 - \frac{-73.1424}{-35.9182} = 9 - 2,0363 = 6,9637$$

$$\% \varepsilon = |7 - 6.9637| = \% 3.63$$

Kök hangi kısımda?

$$f(x_r).f(x_u) < 0 \implies x_a = x_r$$

8 Iterasyon

$$x_r = 9 - \frac{32(6.9637 - 9)}{-0.5069 - 32} = 9 - \frac{-65.1616}{-32.5069} = 9 - 2,0045 = 6,9955$$

$$\% \varepsilon = |7 - 6.9955| = \% 0.45$$

Regula Falsi Yöntemi

Algoritması

29

Yer Değiştirme (Regula Falsi) Yöntemi

❖ Örnek: $f(x) = e^x - 2\cos(x)$ denkleminin $\left[0, \frac{\pi}{2}\right]$ aralığında köküne Regula Falsi yöntemi ile 2 iterasyon yaklaşınız?

Not: Vaktinde teslim edilmeyen ödevler alınmayacaktır.

 $f(x) = 3x + \sin(x) - e^{-x}$ fonksiyonunun [0, 0.5] aralığında kökünün olup olmadığını kontrol edip, eğer var ise kök değerini **yarılama** (bisection) **metodunu** kullanarak $\varepsilon_s = 0.05$ in altına ininceye kadar yaklaşık olarak bulunuz?

Not: Tüm değerler virgülden sonra 4 basamak alınacak.

Ödev Hakkında Bilgilendirme:

Ödev el yazınız şeklinde teslim edilecektir.

KAYNAKLAR

- Serhat YILMAZ, "Bilgisayar İle Sayısal Çözümleme", Kocaeli Üniv. Yayınları, No:168, Kocaeli, 2005.
- Steven C. Chapra, Raymond P. Canale (Çev. H. Heperkan ve U. Kesgin), "Yazılım ve Programlama Uygulamalarıyla Mühendisler İçin Sayısal Yöntemler", Literatür Yayıncılık.
- İlyas ÇANKAYA, Devrim AKGÜN, Sezgin KAÇAR "Mühendislik Uygulamaları İçin MATLAB", Seçkin Yayıncılık
- Yüksel YURTAY, Sayısal Analiz Ders Notları, Sakarya Üniversitesi
- Prof.Dr. Asaf Varol, Sayısal Analiz Ders Notları, Fırat Üniversitesi

