PROJECT

2025년 01월 27일 월요일

영화 개봉 계절 예측기

스마트팩토리혁신을 위한 AI 솔루션 개발자 양성과정

목大

01 서론

주제 선정 및 배경, 목표

사용데이터 출처

일정 및 개발환경

02 데이터 전처리

활용데이터

자료 정제 및 병합

상관분석 및 그룹화, 시각화

O3 Deep Neural Network 분석

DNN

04 예측 시스템 구현

fastAPI

05 결론

연구의 결과 및 시사점

01 주제 선정 및 배경

영화 평점, 개봉월, 장르 데이터 분석하여 계절별, 관객수 예측

- 영화 산업은 관객의 선호와 트렌드 변화에 민감
- 계절과 영화 장르에 따른 관객수 간의 관계 증명
- 영화 제작 및 마케팅 전략 수립에 있어 데이터 필요

O1 吴丑

- 영화 평점, 개봉월, 장르 데이터 분석하여 계절별, 관객수 예측영화 평점, 개봉일, 장르 데이터를 분석하여 트렌드를 시각화
- 딥러닝 모델을 통해 계절별 인기 장르를 예측
- 분석 결과를 통해 영화 제작 및 마케팅 전략 수립에 필요한 인사이트 제공

01 프로젝트 진행과정 WORK FLOW

STEP 01

데이터 수집

STEP 02

데이터 전처리

STEP 03

DNN

STEP 04

모델 사용 및 🕨

STEP 05

웹 구현

1월 13일, 14일 데이터 수집 및 평점 웹 크롤링 15일 ~ 17일 데이터 전처리 및 그래프, 시각화 17일 ~ 22일 계절, 관객수 DNN학습

22일 ~ 23일 모델 예측, 사용 그래프 23일 ~ 24일 웹 구현

01 프로젝트 진행과정 WORK FLOW

01 데이터 사용출처

KOFIC 영화진흥위원회: https://www.kofic.or.kr/kofic/business/main/main.do

01 데이터 사용 출처

naver: https://www.naver.com (영화 평점)

웹 크롤링

```
def naver_crawling_grade(grade_non_list, file_path):
   dv = webdriver.Chrome()
   dv.get('http://www.naver.com')
   time.sleep(3)
   el = dv.find_element(By.CSS_SELECTOR, 'input#query')
   try
       movie = pd.read_csv(file_path)
   except
       movie = pd.DataFrame({'MOVIE_NM': movie_title})
   for title in grade_non_list :
       el.clear()
       el.send_keys('영화 {} 평점'.format(title))
       el.send_keys(Keys.ENTER)
       time.sleep(3)
       try
           grades = dv.find_element(By.CSS_SELECTOR, 'span.area_star_number')
           grade = grades.text
           grade = round(float(grade), 2)
       except :
           grade = np.nan
       movie.loc[movie['MOVIE_NM']==title, '네이버_평점'] = grade
       el = dv.find_element(By.CSS_SELECTOR, 'input#nx_query')
   dv.close()
   movie.to_csv(file_path, index=False, encoding='utf-8')
   print(f"네이버 평점 업데이트 완료! {file_path}에 저장되었습니다.")
```

01 데이터 사용 출처

cine21: http://www.cine21.com (영화 평점)

웹 크롤링

```
def cene21_crawling_grade(grade_non_list, file_path):
   dv = webdriver.Chrome()
   dv.get('http://www.cine21.com/')
   time.sleep(1.5)
   el = dv.find_element(By.CSS_SELECTOR, 'input.input_search')
   try
       movie = pd.read csv(file path)
   except :
       movie = pd.DataFrame({'MOVIE_NM': movie_title})
   for title in grade_non_list :
       el.clear()
       el.send_keys('{}',format(title))
       el.send_keys(Keys,ENTER)
       time.sleep(1.5)
       try:
           grades = dv.find_element(By.CSS_SELECTOR, 'span.num')
           grade = grades.text
           grade = round(float(grade), 2)
       except :
           grade = np.nan
       movie.loc[movie['MOVIE_NM']==title, '씨네21_평점'] = grade
       el = dv.find_element(By.CSS_SELECTOR, 'input.input_search')
   dv.close()
   movie.to_csv(file_path, index=False, encoding='utf-8')
   print(f"씨네21 평점 업데이트 완료! {file path}에 저장되었습니다.")
```

01 개발환경

OS

Windows 10 Pro

Language

Python 3.10.9

IDE

Anacomda jyputer notebook(데이터정제 및 병합, 그룹화, ML&DL 분석), PyCharm Community 2024.3.1(ML&이 분석 및 웹 구현)

Open Source

Tensorflow 2.10, Pandas 1.5.3, Numpy 1.24.4, Seaborn 0.12.2, Selenium 4.27.1, Sklearn 1.2.1, Matplotlib 3.7.0,

Framework

fastAPI 0.115.7, Jinja2 3.1.5, Python-multipart 0.0.20, uvicorn 0.34.0,

02 자료 정제 및 통합

<class 'pandas.core.frame.dataframe'=""></class>
RangeIndex: 6043 entries, 0 to 6042
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	NO NO	6043 non-null	int 64
1	MOVIE_NM	6043 non-null	object
2	DRCTR_NM	5173 non-null	object
3	MAKR_NM	2364 non-null	object
4	INCME_CMPNY_NM	3197 non-null	object
5	DISTB_CMPNY_NM	6043 non-null	object
6	OPN_DE	6041 non-null	object
7	MOVIE_TY_NM	6043 non-null	object
8	MOVIE_STLE_NM	6043 non-null	object
9	NLTY_NM	6043 non-null	object
10	TOT_SCRN_CO	5638 non-null	object
11	SALES_PRICE	2053 non-null	object
12	VIEWNG_NMPR_CO	4188 non-null	object
13	SEOUL_SALES_PRICE	2612 non-null	object
14	SEOUL_VIEWNG_NMPR_CO	4548 non-null	object
15	GENRE_NM	6029 non-null	object
16	GRAD_NM	6043 non-null	object
17	MOVIE_SDIV_NM	6043 non-null	object
dt yp	es: int64(1), object(1	7)	
memo	ry usage: 8/10 Q+ KB		

memory usage: 849.9+ KB

• 데이터 컬럼 삭제 및 컬럼명 변경

불필요한 컬럼 삭제

movies =

movie.drop(columns={'N0','DRCTR_NM','MAKR_NM','INCME_CMPNY_NM','MOVIE_TY_NM','MOVIE_STL E_NM','NLTY_NM','SALES_PRICE', 'SEOUL_SALES_PRICE', 'SEOUL_VIEWNG_NMPR_CO', 'MOVIE_SDIV_NM'})

컬럼명 변경

movies = movies.rename(columns=

{'MOVIE_NM':'영화제목', 'DISTB_CMPNY_NM':'유통회사명', 'OPN_DE':'개봉일',

'TOT_SCRN_CO':'총스크린수', 'VIEWNG_NMPR_CO':'관람객수',

'GENRE_NM':'장르', 'GRAD_NM':'등급', '네이버_평점':'네이버_평점',

'씨네21_평점':'씨네21_평점'})

데이터 전처리 전 6043 rows

02 자료 정제 및 통합

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6043 entries, 0 to 6042
Data columns (total 9 columns):
    Column Non-Null Count Dtype
    영화제목 6043 non-null object
    유통회사명
             6043 non-null object
              6041 non-null
                            object
    총스크린수 5638 non-null object
    관람객수 4188 non-null object
    장르
                           object
             6041 non-null
             6043 non-null
                           object
    네이버_평점 5479 non-null float64
    씨네21_평점 4731 non-null
                           float64
dtypes: float64(2), object(7)
memory usage: 425.0+ KB
```

- 데이터 결측치 처리
- 총스크린수 결측치 처리 (median)

movies['총스크린수'] = movies['총스크린수'].str.replace(',','').astype(np.float32) median_screen_count = movies['총스크린수'].median()

• 관람객수, 네이버_평점, 씨네21_평점 결측치 처리 (mean)

movies_visitors = movies.groupby(['장르', '개봉월'])['관람객수'].mean().unstack() naver_mean = movies.groupby(['장르', '개봉월'])['네이버_평점'].mean().unstack() cine_mean = movies.groupby(['장르', '개봉월'])['씨네21_평점'].mean().unstack()

• 네이버_평점, 씨네21_평점 기준 평균 평점 생성

movies_mean['평균평점'] = (movies_mean['네이버_평점']+movies_mean['씨네21_평점'])

02 자료 정제 및 통합

<class 'pandas.core.frame.DataFrame'> Int64Index: 5999 entries, 0 to 6042 Data columns (total 10 columns): Column Non-Null Count Dtype 영화제목 5999 non-null object 유통회사명 5999 non-null object 5999 non-null object 5999 non-null object 총스크린수 5999 non-null float64 관람객수 5999 non-null float64 장르 5999 non-null object 5999 non-null object 네이버_평점 5999 non-null float64 씨네21_평점 5999 non-null float64 dtypes: float64(4), object(6) memory usage: 515.5+ KB

	영화제목	유통회사명	개봉년 도	개봉 월	총스크린 수	관람객수	장르	등급	네이버_평 점	씨네21_평 점	평균평점
0	소울	월트디즈니컴퍼니코리아 유 한책임회사	2021	1	2018.0	875001.0	<mark>애니메이</mark> 션	전체관람가	9.320000	8.500000	8.910000
1	극장판 귀멸의 칼날: 무한열차편	워터홀컴퍼니(주)	2021	1	380.0	206309.0	애니메이 션	15세이상관 람가	8.392941	6.000000	7.196471
2	원더 우먼 1984	워너브러더스 코리아(주)	2020	12	2260.0	155562.0	액션	12세이상관 람가	7.540000	5.500000	6.520000
3	세자매	(주)리틀빅픽쳐스	2021	1	569.0	42290.0	드라마	15세이상관 람가	8.950000	5.000000	6.975000
4	명탐정 코난: 진홍의 수학여행	(주)씨제이이엔엠	2021	1	532.0	38131.0	애니메이 션	12세이상관 람가	8.020000	5.000000	6.510000
	100	1000	2555	222	775	1877	1777	8225	255	(22)	5705
5994	뉴클래식 프로젝트 미안하다, 사랑 한다	씨제이 씨지브이(CJ CGV) (주)	2024	11	7.0	676.0	멜로/로 맨스	15세이상관 람가	8.330000	5.606905	6.968452
5995	극장판 블루 록 -에피소드 나기-	씨제이 씨지브이(CJ CGV) (주)	2024	8	276.0	674.0	애니메이 션	12세이상관 람가	10.000000	5.751522	7.875761
5996	우리는 천국에 갈 순 없지만 사랑 은 할 수 있겠지	(주)메리크리스마스	2024	10	87.0	652.0	드라마	15세이상관 람가	8.060000	6.000000	7.030000
5997	딸에 대하여	찬란,스튜디오 에이드	2024	9	106.0	609.0	드라마	12세이상관 람가	7.060000	7.000000	7.030000
5998	퍼펙트 데이즈	(주)티캐스트	2024	7	137.0	582.0	드라마	12세이상관 람가	8.470000	6.860000	7.665000

5999 rows x 11 columns

Heatmap 을 사용하여 상관관계 분석

스크린 수와 관객 수의 상관계수는 0.4로, 스크린 수 증가가 관객 수 증가에 기여함.

드라마와 애니메이션이 개봉작 수 상위를 차지하며, 성인영화와 서양영화는 가장 적음.

사극 장르는 평균 관객 수가 가장 높아 관객의 관심이 집중 되는 장르임.

8월과11월에 개봉 영화가 집중되어 계절적 영향이 보이는듯 함.

씨네21은 네이버보다 평균 평점이 낮으며, 평점은 관객 수 증가에 일부 영향을 미침

● groupby(장르, 등급)[관람객]

mog = movies_mean .groupby(['장르', '등급']) ['관람객수'].sum().reset_index() sns.barplot (data=mog, x='장르', y='관람객수', hue=' 등급', palette='Set2')


```
# 모델준비 (분류분석)
model = Sequential([
    Input(shape=(4,)), # 일력데이터의 column 수
    Dense(64, activation='relu'),
    Dropout(0.2),
    Dense(256, activation='relu'),
    Dropout(0.3),
    Dense(128, activation='relu'),
    Dense(32, activation='relu'),
    Dense(32, activation='relu'),
    Dense(len(movies_mean['월_계절'].unique()), activation='softmax') # 계절의 개수만큼 출력층 생성
])
```

```
# 대이터 출강
smote = SMOTE(random_state=38, k_neighbors=2)
X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train)
```


계절 예측 DNN

X = [장르. 총스크린수. 관람객수, 등급] y =계절

초기 데이터로 학습 시 정확도 : 39.25%

SMOTE를 활용해 데이터 증폭 후 : 40.42%

관객수 등급 예측 DNN

Model: "sequential_11"

Layer (type)	Output	Shape	Param #
dense_55 (Dense)	(None,	128)	640
dropout_22 (Dropout)	(None,	128)	0
dense_56 (Dense)	(None,	256)	33024
dense_57 (Dense)	(None,	64)	16448
dropout_23 (Dropout)	(None,	64)	0
dense_58 (Dense)	(None,	64)	4160
dense_59 (Dense)	(None,	4)	260

Total params: 54,532 Trainable params: 54,532 Non-trainable params: 0

관객수 등급 예측 DNN

독립변수 = 장르. 총스크린수. 계절, 등급 종속변수 = 관객수_등급

전체 관객수 3등급으로 분할 학습 진행 전체 관객수 5등급으로 분할 학습 진행

관객수 3등급으로 분할 학습 결과

X = [장르. 총스크린수. 관람객수, 등급] Y =관객수_등급

3등급 데이터로 학습 시 정확도: 56.33%

f1 score 결과 값	f1 score: 0.5578330983980071
	col_0 1 2 3 row_0
분류분석 성능 지표	1 174 117 75
	2 97 204 124
	3 27 84 298

관객수 3등급으로 분할 학습 결과

X = [장르. 총스크린수. 관람객수, 등급] V =관객수_등급

3등급 데이터로 학습 시 정확도: 56.33%

관객수 5등급으로 분할 학습 결과

X = [장르. 총스크린수. 관람객수, 등급] V =관객수_등급

5등급 데이터로 학습 시 정확도: 41.50%

accuracy : 41.50 %

f1 score 결과 값	f1 score: 0.395770335885829
분류분석 성능 지표	col_0 1 2 3 4 5
	1 82 21 55 38 23
	2 56 33 52 56 31
	3 34 24 92 67 48
	4 13 11 46 129 52
	5 6 4 19 46 162

04 fastAPI

① 독립변수

장르 : select option으로 20개의 장르가 나열

오픈 스크린 수 : 영화 개봉전 스크린수 (예상)

예측 관람객 수 : 손익분기점 기준으로 (예상)

관람 등급: select option으로 4개의 등급이 나열

② 종속변수

예측된 계절: 독립변수 입력 기준으로 영화 개봉 계절 예측

05 결론

연구 결과

고개 스이 <u>사</u> 그리 스이 관계	스크린 수와 관객 수 사이의 상관계수 0.4 양의 상관관계
관객 수와 스크린 수의 관계	스크린 수가 증가할수록 관객 수가 증가
트저 자근 너서	드라마와 애니메이션은 개봉작 수가 가장 많아 대중적인 장르로 보임
특정 장르 분석	사극 장르는 개봉작 수는 적지만 평균 관객 수가 높음
	여름 (7~8월) 시즌에는 관객 수 증가 경향이 보임
개봉 시기 트렌드	11월과 연말에 개봉작이 집중

05 결론

시사점 및 개선방안

디IOICI 기바 거리: 스리	계절별 트렌드와 장르 선호도를 분석하여 맞춤형 영화 제작 및 마케팅 전략 마련
데이터 기반 전략 수립	관객 집중도가 높은 장르 (사극)와 시기(11월, 연말)를 활용한 배급 전략 최적화
디기니 경기 하유	딥러닝 예측 결과를 기반으로 개봉 시기와 장르 선정에 대한 의사 결정 강화
딥러닝 결과 활용	데이터 증폭을 통해 모델의 정확도와 신뢰도 개선
	데이터 양 확대 및 새로운 변수 생성으로 예측 정확도를 높이는 연구 필요
추가 연구 및 개선 방안	트렌드 영화 ,지역별 영화 관람 패턴 등 외부 데이터를 결합하여 보다 풍부한 인사이트 도출 가능

THANK YOU

감사합니다