# Maximal Falsifiability: Definitions, Algorithms, and Applications

Alexey Ignatiev<sup>1</sup>, Antonio Morgado<sup>1</sup>, Jordi Planes<sup>3</sup>, and Joao Marques-Silva<sup>1,2</sup>

<sup>1</sup> INESC-ID/IST, Lisbon, Portugal <sup>2</sup> CASL/CSI, University College Dublin, Ireland <sup>3</sup> Universitat de Lleida, Spain

21st RCRA International Workshop on Experimental Evaluation of Algorithms for solving problems with combinatorial explosion

Vienna, Austria July 17, 2014

# Motivation



### Motivation



**MinSAT**: compute the *smallest* number of simultaneously *satisfied* clauses in  $\mathcal{F}$ . **MaxFalse**: compute the *largest* number of simultaneously *falsified* clauses in  $\mathcal{F}$ .

**MinSAT**: compute the *smallest* number of simultaneously *satisfied* clauses in  $\mathfrak{F}$ . **MaxFalse**: compute the *largest* number of simultaneously *falsified* clauses in  $\mathfrak{F}$ .



Given  $\mathcal{F}$ ,  $\mathcal{M} \subseteq \mathcal{F}$  is a MaxFalse solution  $\Leftrightarrow \mathcal{F} \setminus \mathcal{M}$  is a MinSAT solution.

**MinSAT**: compute the *smallest* number of simultaneously *satisfied* clauses in  $\mathfrak{F}$ . **MaxFalse**: compute the *largest* number of simultaneously *falsified* clauses in  $\mathfrak{F}$ .



Given  $\mathfrak{F}$ ,  $\mathfrak{M} \subseteq \mathfrak{F}$  is a MaxFalse solution  $\Leftrightarrow \mathfrak{F} \setminus \mathfrak{M}$  is a MinSAT solution.

#### Definition (All-Falsifiable)

A set of clauses  $\mathcal U$  is *all-falsifiable* if there exists a truth assignment  $\mathcal A$  such that  $\mathcal A$  falsifies all clauses in  $\mathcal U$ .

**MinSAT**: compute the *smallest* number of simultaneously *satisfied* clauses in  $\mathcal{F}$ . **MaxFalse**: compute the *largest* number of simultaneously *falsified* clauses in  $\mathcal{F}$ .

1

Given  $\mathcal{F}$ ,  $\mathcal{M} \subseteq \mathcal{F}$  is a MaxFalse solution  $\Leftrightarrow \mathcal{F} \setminus \mathcal{M}$  is a MinSAT solution.

#### Definition (All-Falsifiable)

A set of clauses  $\mathcal U$  is *all-falsifiable* if there exists a truth assignment  $\mathcal A$  such that  $\mathcal A$  falsifies all clauses in  $\mathcal U$ .

 $\mathcal U$  is all-falsifiable  $\Leftrightarrow$  all the literals of  $\mathcal U$  are pure.

$$\mathcal{F} = \{ x_1 \vee x_2, \neg x_1 \vee x_3, x_2 \vee \neg x_3 \}$$

**MinSAT**: compute the *smallest* number of simultaneously *satisfied* clauses in  $\mathcal{F}$ . **MaxFalse**: compute the *largest* number of simultaneously *falsified* clauses in  $\mathcal{F}$ .

1

Given  $\mathcal{F}$ ,  $\mathcal{M} \subseteq \mathcal{F}$  is a MaxFalse solution  $\Leftrightarrow \mathcal{F} \setminus \mathcal{M}$  is a MinSAT solution.

#### Definition (All-Falsifiable)

A set of clauses  $\mathcal U$  is *all-falsifiable* if there exists a truth assignment  $\mathcal A$  such that  $\mathcal A$  falsifies all clauses in  $\mathcal U$ .

 $\mathcal U$  is all-falsifiable  $\Leftrightarrow$  all the literals of  $\mathcal U$  are pure.

$$\mathcal{F} = \{ \mathbf{x_1} \lor \mathbf{x_2}, \ \neg \mathbf{x_1} \lor \mathbf{x_3}, \ \mathbf{x_2} \lor \neg \mathbf{x_3} \}$$
 — all-falsifiable

**MinSAT**: compute the *smallest* number of simultaneously *satisfied* clauses in  $\mathcal{F}$ . **MaxFalse**: compute the *largest* number of simultaneously *falsified* clauses in  $\mathcal{F}$ .



Given  $\mathcal{F}$ ,  $\mathcal{M} \subseteq \mathcal{F}$  is a MaxFalse solution  $\Leftrightarrow \mathcal{F} \setminus \mathcal{M}$  is a MinSAT solution.

#### Definition (All-Falsifiable)

A set of clauses  $\mathcal U$  is *all-falsifiable* if there exists a truth assignment  $\mathcal A$  such that  $\mathcal A$  falsifies all clauses in  $\mathcal U$ .

 $\mathcal U$  is all-falsifiable  $\Leftrightarrow$  all the literals of  $\mathcal U$  are pure.

$$\mathcal{F} = \{ x_1 \lor x_2, \neg x_1 \lor x_3, x_2 \lor \neg x_3 \}$$
 — not all-falsifiable

Let  $\mathcal{F}$  be a CNF formula.

Let  $\mathcal{F}$  be a CNF formula.

Subset  $\mathfrak{M} \subseteq \mathfrak{F}$  is called a **Maximal Falsifiable Subset** (MFS) if:

- $oldsymbol{0}$   $\mathcal M$  is all-falsifiable
- $\mathfrak{D} \mathcal{M}'$  is not all-falsifiable  $\forall \mathcal{M}': \mathcal{M} \subsetneq \mathcal{M}' \subseteq \mathcal{F}$

Let  $\mathcal{F}$  be a CNF formula.

Subset  $\mathfrak{M} \subseteq \mathfrak{F}$  is called a **Maximal Falsifiable Subset** (MFS) if:

- lacktriangledown is all-falsifiable

Subset  $\mathfrak{C}=\mathfrak{F}\setminus\mathfrak{M}$  is called a **Minimal Correction** (for Falsifiability) **Subset** (MCFS).

Let  $\mathcal{F}$  be a CNF formula.

Subset  $\mathcal{M} \subseteq \mathcal{F}$  is called a **Maximal Falsifiable Subset** (MFS) if:

- M is all-falsifiable
- $\mathfrak{D} \mathcal{M}'$  is not all-falsifiable  $\forall \mathcal{M}': \mathcal{M} \subsetneq \mathcal{M}' \subseteq \mathcal{F}$

Subset  $\mathcal{C} = \mathcal{F} \setminus \mathcal{M}$  is called a **Minimal Correction** (for Falsifiability) **Subset** (MCFS).

Subset  $\mathcal{N} \subseteq \mathcal{F}$  is called a **Minimal Non-Falsifiable Subset** (MNFS) if:

- $\bullet$  N is not all-falsifiable

Let  $\mathcal{F}$  be a CNF formula.

Subset  $\mathfrak{M} \subseteq \mathfrak{F}$  is called a **Maximal Falsifiable Subset** (MFS) if:

- M is all-falsifiable
- $② \ \mathcal{M}' \text{ is } \textit{not } \textit{all-falsifiable} \ \forall \mathcal{M}': \ \mathcal{M} \subsetneq \mathcal{M}' \subseteq \mathcal{F}$

Subset  $\mathcal{C}=\mathcal{F}\setminus\mathcal{M}$  is called a **Minimal Correction** (for Falsifiability) **Subset** (MCFS).

Subset  $\mathcal{N} \subseteq \mathcal{F}$  is called a **Minimal Non-Falsifiable Subset** (MNFS) if:

- $\bullet$  N is not all-falsifiable

$$\mathcal{F} = \{ x_1 \lor x_2, \neg x_1 \lor x_3, x_2 \lor \neg x_3 \}$$

Let  $\mathcal{F}$  be a CNF formula.

Subset  $\mathfrak{M} \subseteq \mathfrak{F}$  is called a **Maximal Falsifiable Subset** (MFS) if:

- M is all-falsifiable
- $② \ \mathcal{M}' \text{ is } \textit{not } \textit{all-falsifiable} \ \forall \mathcal{M}': \ \mathcal{M} \subsetneq \mathcal{M}' \subseteq \mathcal{F}$

Subset  $\mathcal{C} = \mathcal{F} \setminus \mathcal{M}$  is called a **Minimal Correction** (for Falsifiability) **Subset** (MCFS).

Subset  $\mathcal{N} \subseteq \mathcal{F}$  is called a **Minimal Non-Falsifiable Subset** (MNFS) if:

- $\bullet$  N is not all-falsifiable

$$\mathcal{F} = \{ x_1 \lor x_2, \neg x_1 \lor x_3, x_2 \lor \neg x_3 \} - MFS$$

Let  $\mathcal{F}$  be a CNF formula.

Subset  $\mathcal{M} \subseteq \mathcal{F}$  is called a **Maximal Falsifiable Subset** (MFS) if:

- M is all-falsifiable
- $② \ \, \mathfrak{M}' \text{ is } \textit{not } \text{all-falsifiable } \forall \mathfrak{M}': \ \, \mathfrak{M} \subsetneq \mathfrak{M}' \subseteq \mathfrak{F}$

Subset  $\mathcal{C} = \mathcal{F} \setminus \mathcal{M}$  is called a **Minimal Correction** (for Falsifiability) **Subset** (MCFS).

Subset  $\mathcal{N} \subseteq \mathcal{F}$  is called a **Minimal Non-Falsifiable Subset** (MNFS) if:

- $\bullet$  N is not all-falsifiable

$$\mathcal{F} = \{ x_1 \lor x_2, \neg x_1 \lor x_3, x_2 \lor \neg x_3 \} - MCFS$$

Let  $\mathcal{F}$  be a CNF formula.

Subset  $\mathfrak{M} \subseteq \mathfrak{F}$  is called a **Maximal Falsifiable Subset** (MFS) if:

- M is all-falsifiable
- $② \ \, \mathfrak{M}' \text{ is } \textit{not } \text{all-falsifiable } \forall \mathfrak{M}': \ \, \mathfrak{M} \subsetneq \mathfrak{M}' \subseteq \mathfrak{F}$

Subset  $\mathcal{C} = \mathcal{F} \setminus \mathcal{M}$  is called a **Minimal Correction** (for Falsifiability) **Subset** (MCFS).

Subset  $\mathcal{N} \subseteq \mathcal{F}$  is called a **Minimal Non-Falsifiable Subset** (MNFS) if:

- $\bullet$  N is not all-falsifiable

$$\mathcal{F} = \{ \chi_1 \vee \chi_2, \neg \chi_1 \vee \chi_3, \chi_2 \vee \neg \chi_3 \} - MNFS$$

Let  $\mathcal{F}$  be a set of clauses.

Let  $\mathcal{F}$  be a set of clauses.

 $\bullet$  Each MNFS of  ${\mathcal F}$  consists of exactly two clauses.

Let  $\mathcal{F}$  be a set of clauses.

- Each MNFS of  ${\mathfrak F}$  consists of exactly two clauses.
- The number of MNFSes of  $\mathcal{F}$  is  $\mathcal{O}(\mathfrak{m}^2)$ , where  $\mathfrak{m}=|\mathcal{F}|$ .

Let  $\mathcal{F}$  be a set of clauses.

- Each MNFS of  $\mathcal F$  consists of exactly two clauses.
- The number of MNFSes of  $\mathcal{F}$  is  $\mathcal{O}(\mathfrak{m}^2)$ , where  $\mathfrak{m}=|\mathcal{F}|$ .

This does not hold for the partial case, i. e. when

$$\mathcal{F} = \mathcal{H} \cup \mathcal{R}$$
,

where  $\mathcal{H}$  — hard clauses, and  $\mathcal{R}$  — soft (relaxable) clauses.

Let  $\mathcal{F}$  be a set of clauses.

- Each MNFS of  $\mathcal F$  consists of exactly two clauses.
- The number of MNFSes of  $\mathcal{F}$  is  $\mathcal{O}(\mathfrak{m}^2)$ , where  $\mathfrak{m}=|\mathcal{F}|$ .

This does not hold for the partial case, i. e. when

$$\mathcal{F} = \mathcal{H} \cup \mathcal{R}$$
,

where  $\mathcal{H}$  — hard clauses, and  $\mathcal{R}$  — soft (relaxable) clauses.

#### Example

$$\mathcal{F} = \mathcal{H} \cup \mathcal{R}$$

$$\mathcal{H} = \{ x \lor y \lor z \}$$

$$\mathcal{R} = \{ x, y, z \}$$

Only one MNFS  $\mathcal{N} = \mathcal{R}$ ,  $|\mathcal{N}| = 3$ .





| Graph $9$ | Formula ${\mathcal F}$ |
|-----------|------------------------|
| edge      | MNFS                   |



| Graph 9    | Formula ${\mathcal F}$ |
|------------|------------------------|
| edge       | MNFS                   |
| maximal IS | MFS                    |



| Graph $\mathfrak G$ | Formula ${\mathcal F}$ |
|---------------------|------------------------|
| edge                | MNFS                   |
| maximal IS          | MFS                    |
| minimal VC          | MCFS                   |

Let  $\mathbb{N}(\mathfrak{F})$  and  $\mathbb{C}(\mathfrak{F})$  be complete sets of MNFSes and MCFSes of  $\mathfrak{F}$ , respectively.

Let  $\mathbb{N}(\mathfrak{F})$  and  $\mathbb{C}(\mathfrak{F})$  be complete sets of MNFSes and MCFSes of  $\mathfrak{F}$ , respectively.

#### **Theorem**

Subformula  $\mathcal{C} \subset \mathcal{F}$  is an MCFS of  $\mathcal{F} \Leftrightarrow \mathcal{C}$  is a minimal hitting set of  $\mathbb{N}(\mathcal{F})$ . Subformula  $\mathcal{N} \subseteq \mathcal{F}$  is an MNFS of  $\mathcal{F} \Leftrightarrow \mathcal{N}$  is a minimal hitting set of  $\mathbb{C}(\mathcal{F})$ .

Let  $\mathbb{N}(\mathfrak{F})$  and  $\mathbb{C}(\mathfrak{F})$  be complete sets of MNFSes and MCFSes of  $\mathfrak{F}$ , respectively.

#### **Theorem**

Subformula  $\mathcal{C} \subset \mathcal{F}$  is an MCFS of  $\mathcal{F} \Leftrightarrow \mathcal{C}$  is a minimal hitting set of  $\mathbb{N}(\mathcal{F})$ . Subformula  $\mathcal{N} \subseteq \mathcal{F}$  is an MNFS of  $\mathcal{F} \Leftrightarrow \mathcal{N}$  is a minimal hitting set of  $\mathbb{C}(\mathcal{F})$ .



Enumeration of MNFSes can be done for computing a lower bound on the size of any MCFS

Let  $\mathbb{N}(\mathfrak{F})$  and  $\mathbb{C}(\mathfrak{F})$  be complete sets of MNFSes and MCFSes of  $\mathfrak{F}$ , respectively.

#### **Theorem**

Subformula  $\mathcal{C} \subset \mathcal{F}$  is an MCFS of  $\mathcal{F} \Leftrightarrow \mathcal{C}$  is a minimal hitting set of  $\mathbb{N}(\mathcal{F})$ . Subformula  $\mathcal{N} \subseteq \mathcal{F}$  is an MNFS of  $\mathcal{F} \Leftrightarrow \mathcal{N}$  is a minimal hitting set of  $\mathbb{C}(\mathcal{F})$ .



Enumeration of MNFSes can be done for computing a lower bound on the size of any MCFS  $\Rightarrow$  an upper bound for MaxFalse.

• plain formulas (without  $\mathcal{H}$ ) — polynomial

 $\bullet \;$  plain formulas (without  $\mathcal{H})$  — polynomial

$$_{1}\ \mathcal{M}\leftarrow\emptyset$$

- ullet plain formulas (without  ${\mathcal H}$ ) polynomial
- $_{1}$   $\mathcal{M}\leftarrow\emptyset$
- $_{\scriptscriptstyle 2}$  foreach  $c\in\mathfrak{F}$ :

- ullet plain formulas (without  ${\mathcal H}$ ) polynomial
- $_{1}$   $\mathcal{M}\leftarrow\emptyset$
- $_{\scriptscriptstyle 2}$  foreach  $c\in\mathfrak{F}$ :
- if  $\mathfrak{M} \cap \neg c$  is  $\emptyset$ :

ullet plain formulas (without  ${\mathcal H}$ ) — polynomial

```
\begin{array}{ccc} _{1} & \mathcal{M} \leftarrow \emptyset \\ _{2} & \text{for each } c \in \mathcal{F}\text{:} \\ _{3} & \text{if } \mathcal{M} \cap \neg c \text{ is } \emptyset\text{:} \\ _{4} & \mathcal{M} \leftarrow \mathcal{M} \cup \{c\} \end{array}
```

• plain formulas (without  $\mathcal{H}$ ) — polynomial

```
\begin{array}{ccc} _{1} & \mathcal{M} \leftarrow \emptyset \\ _{2} & \text{for each } c \in \mathfrak{F:} \\ _{3} & \text{if } \mathcal{M} \cap \neg c \text{ is } \emptyset\text{:} \\ _{4} & \mathcal{M} \leftarrow \mathcal{M} \cup \{c\} \end{array}
```

 $\bullet$  partial formulas:  $\mathcal{F}=\mathcal{H}\cup\mathcal{R}$ 

• plain formulas (without  $\mathcal{H}$ ) — polynomial

```
\begin{array}{ccc} _{1} & \mathcal{M} \leftarrow \emptyset \\ _{2} & \text{for each } c \in \mathfrak{F:} \\ _{3} & \text{if } \mathcal{M} \cap \neg c \text{ is } \emptyset\text{:} \\ _{4} & \mathcal{M} \leftarrow \mathcal{M} \cup \{c\} \end{array}
```

- partial formulas:  $\mathcal{F} = \mathcal{H} \cup \mathcal{R}$ 
  - basic idea:

similar to computing MSS, MCS, or MUS (in MaxSAT)

 $_{1} \mathcal{M} \leftarrow \emptyset$ 

• plain formulas (without  $\mathcal{H}$ ) — polynomial

```
foreach c \in \mathcal{F}:

if \mathcal{M} \cap \neg c is \emptyset:

\mathcal{M} \leftarrow \mathcal{M} \cup \{c\}
```

- partial formulas:  $\mathcal{F} = \mathcal{H} \cup \mathcal{R}$ 
  - basic idea:

similar to computing MSS, MCS, or MUS (in MaxSAT)

1 foreach  $c \in \mathcal{R}$ :

• plain formulas (without  $\mathcal{H}$ ) — polynomial

```
\begin{array}{ll}
1 & \mathcal{M} \leftarrow \emptyset \\
2 & \text{for each } c \in \mathcal{F}: \\
3 & \text{if } \mathcal{M} \cap \neg c \text{ is } \emptyset: \\
4 & \mathcal{M} \leftarrow \mathcal{M} \cup \{c\}
\end{array}
```

- partial formulas:  $\mathcal{F} = \mathcal{H} \cup \mathcal{R}$ 
  - basic idea:

similar to computing MSS, MCS, or MUS (in MaxSAT)

- 1 foreach  $c \in \mathbb{R}$ :
- **if**  $\mathcal{H} \cup \{\neg c\}$  is satisfiable:

# ask a SAT oracle

• plain formulas (without  $\mathcal{H}$ ) — polynomial

```
\begin{array}{ccc} _{1} & \mathcal{M} \leftarrow \emptyset \\ _{2} & \textbf{foreach } c \in \mathcal{F}\text{:} \\ _{3} & \textbf{if } \mathcal{M} \cap \neg c \textbf{ is } \emptyset\text{:} \\ _{4} & \mathcal{M} \leftarrow \mathcal{M} \cup \{c\} \end{array}
```

- partial formulas:  $\mathcal{F} = \mathcal{H} \cup \mathcal{R}$ 
  - basic idea:

similar to computing MSS, MCS, or MUS (in MaxSAT)

```
foreach c \in \mathcal{R}:

if \mathcal{H} \cup \{\neg c\} is satisfiable:

\mathcal{H} \leftarrow \mathcal{H} \cup \{\neg c\}
```

# ask a SAT oracle

• plain formulas (without  $\mathcal{H}$ ) — polynomial

```
\begin{array}{ccc} _{1} & \mathcal{M} \leftarrow \emptyset \\ _{2} & \text{for each } c \in \mathcal{F}\text{:} \\ _{3} & \text{if } \mathcal{M} \cap \neg c \text{ is } \emptyset\text{:} \\ _{4} & \mathcal{M} \leftarrow \mathcal{M} \cup \{c\} \end{array}
```

- partial formulas:  $\mathcal{F} = \mathcal{H} \cup \mathcal{R}$ 
  - basic idea:

similar to computing MSS, MCS, or MUS (in MaxSAT)

foreach  $c \in \mathcal{R}$ :

if  $\mathcal{H} \cup \{\neg c\}$  is satisfiable:  $\mathcal{H} \leftarrow \mathcal{H} \cup \{\neg c\}$ 

# ask a SAT oracle

heuristics to reduce the number of SAT calls

similar to iterative MaxSAT

- similar to iterative MaxSAT
- SAT solver is used as an oracle

- similar to iterative MaxSAT
- SAT solver is used as an oracle
- $\bullet \ \ \text{consider formula} \ \mathcal{F} = \mathcal{H} \cup \mathcal{R}$

- similar to iterative MaxSAT
- SAT solver is used as an oracle
- consider formula  $\mathcal{F} = \mathcal{H} \cup \mathcal{R}$
- $\forall c_i \in \mathcal{R} \text{ modify } \mathcal{H} \text{ and } \mathcal{R}$ :
  - $\bullet \ \mathcal{H} \leftarrow \mathcal{H} \cup \{ \neg l_{i_j} \lor r_i \} \ \forall l_{i_j} \in c_i$
  - $\Re \leftarrow \Re \setminus \{c_i\}$

- similar to iterative MaxSAT
- SAT solver is used as an oracle
- consider formula  $\mathcal{F} = \mathcal{H} \cup \mathcal{R}$
- $\forall c_i \in \mathcal{R} \text{ modify } \mathcal{H} \text{ and } \mathcal{R}$ :
  - $\bullet \ \mathcal{H} \leftarrow \mathcal{H} \cup \{ \neg l_{i_j} \lor r_i \} \ \forall l_{i_j} \in c_i$
  - $\bullet \ \mathcal{R} \leftarrow \mathcal{R} \setminus \{c_i\}$
- $\bullet$  relaxation constraints  $\sum_{r_i} r_i \leqslant k$

- similar to iterative MaxSAT
- SAT solver is used as an oracle
- consider formula  $\mathcal{F} = \mathcal{H} \cup \mathcal{R}$
- $\forall c_i \in \mathcal{R} \text{ modify } \mathcal{H} \text{ and } \mathcal{R}$ :
  - $\bullet \ \mathcal{H} \leftarrow \mathcal{H} \cup \{ \neg l_{i_i} \lor r_i \} \ \forall l_{i_i} \in c_i$
  - $\mathcal{R} \leftarrow \mathcal{R} \setminus \{c_i\}$
- $\bullet$  relaxation constraints  $\sum_{r_i} r_i \leqslant k$
- varying k using 3 algorithms:



- similar to iterative MaxSAT
- SAT solver is used as an oracle
- consider formula  $\mathcal{F} = \mathcal{H} \cup \mathcal{R}$
- $\forall c_i \in \mathcal{R} \text{ modify } \mathcal{H} \text{ and } \mathcal{R}$ :
  - $\mathcal{H} \leftarrow \mathcal{H} \cup \{ \neg l_{i_i} \lor r_i \} \ \forall l_{i_i} \in c_i$
  - $\mathcal{R} \leftarrow \mathcal{R} \setminus \{c_i\}$
- $\bullet$  relaxation constraints  $\sum_{r_{\mathfrak{i}}} r_{\mathfrak{i}} \leqslant k$
- varying k using 3 algorithms:



- similar to iterative MaxSAT
- SAT solver is used as an oracle
- consider formula  $\mathcal{F} = \mathcal{H} \cup \mathcal{R}$
- $\forall c_i \in \mathcal{R} \text{ modify } \mathcal{H} \text{ and } \mathcal{R}$ :
  - $\mathcal{H} \leftarrow \mathcal{H} \cup \{ \neg l_{i_i} \lor r_i \} \ \forall l_{i_i} \in c_i$
  - $\mathcal{R} \leftarrow \mathcal{R} \setminus \{c_i\}$
- $\bullet$  relaxation constraints  $\sum_{r_i} r_i \leqslant k$
- varying k using 3 algorithms:



- similar to iterative MaxSAT
- SAT solver is used as an oracle
- consider formula  $\mathcal{F} = \mathcal{H} \cup \mathcal{R}$
- $\forall c_i \in \mathcal{R} \text{ modify } \mathcal{H} \text{ and } \mathcal{R}$ :
  - $\mathcal{H} \leftarrow \mathcal{H} \cup \{ \neg l_{i_j} \lor r_i \} \ \forall l_{i_j} \in c_i$
  - $\Re \leftarrow \Re \setminus \{c_i\}$
- relaxation constraints  $\sum_{r_i} r_i \leqslant k$
- varying k using 3 algorithms:



# Performance comparison: MaxFalse for MaxSAT instances



Maximal and maximum falsifiability

- Maximal and maximum falsifiability
- New concepts of
  - maximal falsifiable subset (MFS)
  - minimal correction for falsifiability subset (MCFS)
  - minimal non-falsifiable subset (MNFS)

- Maximal and maximum falsifiability
- New concepts of
  - maximal falsifiable subset (MFS)
  - minimal correction for falsifiability subset (MCFS)
  - minimal non-falsifiable subset (MNFS)
- Connection to maximal/maximum independent set

- Maximal and maximum falsifiability
- New concepts of
  - maximal falsifiable subset (MFS)
  - minimal correction for falsifiability subset (MCFS)
  - minimal non-falsifiable subset (MNFS)
- Connection to maximal/maximum independent set
- Minimal hitting set duality between MNFSes and MCFSes

- Maximal and maximum falsifiability
- New concepts of
  - maximal falsifiable subset (MFS)
  - minimal correction for falsifiability subset (MCFS)
  - minimal non-falsifiable subset (MNFS)
- Connection to maximal/maximum independent set
- Minimal hitting set duality between MNFSes and MCFSes
- Native algorithms for computing
  - one MFS
  - MaxFalse solution

• Other "properties" of maximal/maximum falsifiability

- Other "properties" of maximal/maximum falsifiability
- Other algorithms for
  - computing MFSes
  - computing MaxFalse solutions

- Other "properties" of maximal/maximum falsifiability
- Other algorithms for
  - computing MFSes
  - computing MaxFalse solutions
- MaxFalse in portfolios of MaxSAT algorithms

- Other "properties" of maximal/maximum falsifiability
- Other algorithms for
  - computing MFSes
  - computing MaxFalse solutions
- MaxFalse in portfolios of MaxSAT algorithms
- More practical applications

Thank you for your attention!