170S Week 6 Discussion Notes

Colin Ni

February 13, 2025

Bayesian effects that we have seen

As usual, let X be a random variable depending on a parameter θ , and let X_1, \ldots, X_n be a sample drawn from X.

Recall that the core idea of Bayesian statistics is to make a guess, called the prior, on the distribution of θ and not just rely solely on the sample X_1, \ldots, X_n . Thus we have two forces at play, our prior distribution and the sample, and Bayes' theorem gives us a posterior distribution on θ . We make our estimate by finding the conditional mean (or more generally by minimizing a chosen loss function) of this posterior.

On the following page, we tabulate the examples we have seen / will see on the homework. Let us discuss three common themes in these examples.

(1) Our prior and the example pull on our Bayes estimate in a predictable way. For example, in the binomial with beta-prior example, the Bayes estimate is a weighted average of the MLE y/m (which only involves the data) of the probability θ of success and the mean $\alpha/(\alpha + \beta)$ of our prior (which does not see the data):

$$\frac{\alpha+y}{m+\alpha+\beta} = \frac{m}{m+\alpha+\beta} \frac{y}{m} + \frac{\alpha+\beta}{m+\alpha+\beta} \frac{\alpha}{\alpha+\beta}.$$

You will see similar things on the homework.

- (2) As $n \to \infty$, the effect of the prior weakens, and the Bayes estimate becomes a purely-data estimate (e.g. the MLE). For example, in the binomial with beta-prior example, as $n \to \infty$ we recover the MLE y/m of the probability θ of success (e.g. see the weighted average above), and in the normal with normal-prior example, as $n \to \infty$ we recover the MLE \bar{X} of the mean μ .
- (3) We have control over the strength of the prior. For example, in the normal with normal-prior example, taking σ_0^2 to be very small is tantamount to the prior saying it is extremely confident the mean should be close to θ_0 , so the Bayes estimate is closer to the mean of the prior. For another example, in the binomial with beta-prior example, the bigger $\alpha + \beta$ is, the stronger our prior, because in our decomposition in (1) the first coefficient becomes 0 and the second coefficient becomes 1.

distr and parameter	prior	posterior	conditional mean of posterior
$Y \sim \text{Binom}(m, \theta)$	$\theta \sim \mathrm{Beta}(\alpha, \beta)$	$Beta(\alpha + y, m - y + \beta)$	$\frac{\alpha + y}{m + \alpha + \beta}$
$X_i \sim \text{Norm}(\theta, \sigma^2)$	$\theta \sim \text{Norm}(\theta_0, \sigma_0^2)$	$\theta \sim \text{Norm}\left(\frac{\bar{X}\sigma_0^2 + \theta_0\sigma^2/n}{\sigma_0^2 + \sigma^2/n}, \frac{(\sigma^2/n)\sigma_0^2}{\sigma_0^2 + \sigma^2/n}\right)$	$\frac{\bar{X}\sigma_0^2 + \theta_0\sigma^2/n}{\sigma_0^2 + \sigma^2/n}$
$Y_i \sim \operatorname{Pois}(\theta)$	$\theta \sim \text{Gamma}(\alpha, \beta)$	$\theta \sim \text{Gamma}\left(\alpha + n\bar{Y}, \frac{1}{n + \frac{1}{\beta}}\right)$	$\frac{\alpha\beta + n\beta\bar{Y}}{n\beta + 1}$
$X_i \sim \operatorname{Gamma}(\alpha, \theta)$	$\frac{1}{\theta} \sim \operatorname{Gamma}(\alpha_0, \theta_0)$	$\theta \sim \text{Gamma}\left(\alpha_0 + n\alpha, \frac{1}{\frac{1}{\theta_0} + n\bar{X}}\right)$	$\frac{\alpha_0\theta_0 + n\theta_0\alpha}{1 + n\theta_0\bar{X}}$
$f(x \mid \theta) = 3\theta x^2 e^{-\theta x^3}$	$\theta \sim \text{Gamma}\left(4, \frac{1}{4}\right)$	$\theta \sim \text{Gamma}\left(n+4, \frac{1}{4+\sum_{i} x_{i}^{3}}\right)$	$\frac{n+4}{4+\sum_{i}x_{i}^{3}}$

Confidence intervals for Norm(0, 1)

Confidence intervals for the distribution $Z \sim \text{Norm}(0,1)$ is the common underlying mechanic for confidence intervals for other statistics, such as means, differences of two means, and proportions. The key definition to remember is as follows; it gives the threshold z_{α} for which only a proportion α of sampled Z values is above z_{α} , namely $z_{\alpha} = F_Z^{-1}(1-\alpha)$.

Definition. For any probability $\alpha \in (0,1)$, the number $z_{\alpha} \in \mathbb{R}$ is defined to satisfy $F_Z(z_{\alpha}) = 1 - \alpha$.

Warmup. Carefully draw a big picture of the pdf of Z, and draw $\alpha = 0.16$ as the area under the curve over a right-tail region. Recall the 68–95–99.7 rule, and use this to label z_{α} .

Suppose now that we want intervals (a, b) such that $\mathbb{P}(a < Z < b) = \alpha$, or in other words confidence intervals for the values of Z. We can use the z_{α} values to do this in many ways, but here are the usual ones:

- The centered-at-zero interval $(-z_{\alpha/2}, z_{\alpha/2})$.
- The left-tail interval $(-\infty, z_{\alpha})$.
- The right-tail interval $(-z_{\alpha}, \infty)$.

Confidence intervals for other statistics

To find confidence intervals for some statistic, the strategy is often to reduce the statistic to $Z \sim \text{Norm}(0,1)$ and then use these z_{α} values.

Example. If $X \sim \text{Norm}(\mu, \sigma^2)$, then we can construct an α -confidence interval $[\mu - z, \mu + z]$ (that is centered at μ) for the values of X: since $X \stackrel{\text{d}}{=} \sigma Z + \mu$, we have

$$\mathbb{P}(\mu - z < X < \mu + z) = \mathbb{P}\left(-\frac{z}{\sigma} < Z < \frac{z}{\sigma}\right) = \alpha$$

if and only if $z = \sigma z_{\alpha/2}$.

Example. Let $X_1, ..., X_n$ be a sample from $\text{Norm}(\mu, \sigma^2)$, and consider the sample mean \bar{X} . Since the X_i are normal, \bar{X} is normal, and recalling (e.g. from the week 2 discussion notes) that $\mathbb{E}(\bar{X}) = \mu$ and $\text{Var}(\bar{X}) = \sigma^2/n$, it follows that

$$\bar{X} \sim \text{Norm}\left(\mu, \frac{\sigma^2}{n}\right).$$

Thus we can construct an α -confidence interval $[\mu - z, \mu + z]$ for the values of \bar{X} : since $\bar{X} \stackrel{\mathrm{d}}{=} \sigma Z/\sqrt{n} + \mu$, we have

$$\mathbb{P}(\mu - z < \bar{X} < \mu + z) = \mathbb{P}\left(-\frac{\sqrt{n}z}{\sigma} < Z < \frac{\sqrt{n}z}{\sigma}\right) = \alpha$$

if and only if $z = \sigma z_{\alpha/2} / \sqrt{n}$.

Example. Let X_1, \ldots, X_n be a large sample from a random variable X with mean μ and known variance σ^2 . By the central limit theorem

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \stackrel{\mathrm{d}}{\to} \mathrm{Norm}(0, 1)$$
 as $n \to \infty$.

Thus since our sample is large, we can approximate

$$\bar{X} \sim \text{Norm}\left(\mu, \frac{\sigma^2}{n}\right),$$

which is our previous example.

Example. Let X_1, \ldots, X_{n_X} be a sample from $\operatorname{Norm}(\mu_X, \sigma_X^2)$, and let Y_1, \ldots, Y_{n_Y} be a sample from $\operatorname{Norm}(\mu_Y, \sigma_Y^2)$, where we assume σ_X^2, σ_Y^2 are known. Then

$$\bar{X} - \bar{Y} \sim \text{Norm}(\mu_X - \mu_Y, \sigma_X^2 / n_X + \sigma_Y^2 / n_Y).$$

Thus we can construct an α -confidence interval $[\mu_X - \mu_Y - z, \mu_X - \mu_Y + z]$ for the values of $\bar{X} - \bar{Y}$: since

$$\bar{X} - \bar{Y} \stackrel{\mathrm{d}}{=} \left(\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y} \right) Z + (\mu_X - \mu_Y),$$

we have

$$\mathbb{P}((\mu_X - \mu_Y) - z < \bar{X} - \bar{Y} < (\mu_X - \mu_Y) + z) = \mathbb{P}\left(\frac{-z}{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}} < Z < \frac{z}{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}\right) = \alpha$$

if and only if $z = (\sigma_X^2/n_X + \sigma_Y^2/n_Y)z_{\alpha/2}$.