Intro to Python

EECS 592 10 January 2018

Programming in EECS 592

- We will support C/C++ and Python
 - Reviewing Python basics today
 - C++ review document available on Canvas
 - Other languages are not permitted
- First assignment is a programming review
 - o Posted on Canvas due Thursday, January 18th
 - Covers logic, sorting, and graph construction
- Some coding on most assignments
- Do not copy or share code!!!

Facts About Python

- Interpreted programming language
- Features
 - Lots of useful libraries (also called modules)
 - Standard libraries found here: https://docs.python.org/3/library/index.html
 - Other useful modules: https://wiki.python.org/moin/UsefulModules
 - Dynamic typing
 - Strongly typed
 - Supports object oriented programming
 - Automatic memory management
- Whitespace matters!!
 - Affects flow of control
 - Tab == 4 spaces

Built-In Data Types

- Primitives dynamically typed
 - Numbers: integers, floating point, complex
 - Booleans (true/false)
- Data Structures
 - Strings: 'and " are both acceptable
 - Lists (also called arrays) frequently useful
 - Dictionaries (dict) useful for graph representation!
 - Tuples convenient for passing multiple objects back from a function
 - Sets

- Option 1: command line
- Option 2: IDLE Python development environment
 - Download appropriate installer from Python website: https://www.python.org/downloads/
 - Program name is IDLE
 - This is a nice tutorial on installing
 Python and some useful modules for
 Windows

Selection Sort and Binary Search

- Selection sort
 - Not especially efficient: O(n²)
- Binary search: checks if an element is present in an array
 - Quite efficient: O(log n)
 - Can return index of element
 - Precondition: list array must be sorted

Linked Lists

- Elements are not in contiguous memory, but have pointers to each other
- Constant time insertion/removal (just resetting a couple of pointers)
- Linear element access (for arbitrary access)
- In practice, doubly linked lists are more common

Stacks and Queues

Often internally represented as a linked list (lots of pushing and popping elements)

Final Note on Style/Documentation

- Use # and """ to provide *useful* comments in Python for the graders
- Pythonic Code not strictly a requirement, but good practice
 - Clear and concise
 - Don't reinvent the wheel (unless required for the class)
 - Use the language's idioms

```
mylist = [1,4,2]

# this is not pythonic
for i in range(len(mylist)):
    print(mylist[i])

print('---')

# this is pythonic
for element in mylist:
    print(element)
```


Additional Resources

- List of modules
- Built-in data structures
- Graphs use this link as a starting guide for the homework

