Exercice 1

a) Soient p := 1 < 0, q := 2 < 3 et r := 2 < 1. Nous pouvons voir que l'expression

$$(p \land q) \implies r$$

est vraie parce que $p \land q$ est fausse, étant une conjonction contenant une affirmation fausse, donc par définition, l'implication est vraie. D'autre part, l'expression

$$(p \implies r) \land (q \implies r)$$

est fausse parce que q est vraie mais r fausse et l'expression est une conjonction. Or, parce qu'elles diffèrent en valeurs de vérité pour les mêmes variables, ce ne sont pas des expressions équivalentes.

b) Soient les expressions

$$A := (p \implies (q \land r)) \implies ((p \implies q) \land (p \implies r))$$

et

$$B := (p \implies (q \land r)) \iff ((p \implies q) \land (p \implies r))$$

Voici un tableau de vérité pour montrer que l'expression est vraie.

p	q	r	$p \implies (q \wedge r)$	$q \wedge r$	A	$p \implies q$	$(p \implies q) \land (p \implies r)$	$p \implies r$	B
V	V	V	V	V	V	V	V	V	V
V	V	F	\mathbf{F}	F	V	V	F	F	V
V	F	V	\mathbf{F}	F	V	F	F	V	V
F	V	V	V	V	V	V	V	V	V
V	F	F	\mathbf{F}	F	V	F	F	F	V
F	F	V	V	F	V	V	V	V	V
F	V	F	V	F	V	V	V	V	V
F	F	F	V	F	V	V	V	V	V

$A \wedge B$	$(p \implies (q \land r)) \iff ((p \implies q) \land (p \implies r))$
V	V
V	V
V	V
V	V
V	V
V	V
V	V
V	V

par la définition de l'opérateur si et seulement si.