CSE574 Introduction to Machine Learning

Jue Guo

Notation

CSE574 Introduction to Machine Learning

Machine Learning: Notation and Definitions

Jue Guo

University at Buffalo

January 23, 2024

Outline

CSE574 Introduction to Machine Learning

Jue Guo

Notat

Data Structure

Notation
Data Structure

Notation

CSE574 Introduction to Machine Learning

Jue Guo

Notation

Data Structure

Let's breifly revisit the mathematical notation we all learned at school.

A **scalar** is a simple numerical value, like 15 or -3.25. Variables or constants that take scalar values are denoted by an italic letter, like x or a.

A **vector** is an ordered list of scalar values, called attributes. We denote a vector as a bold character, for example, \mathbf{x} or \mathbf{w} .

Vectors can be visualized as arrows that point to some directions as well as points in a multi-dimensional space.

Illustrations of three two-dimensional vectors,

$$\mathbf{a} = [2, 3], \mathbf{b} = [-2, 5], \text{ and } \mathbf{c} = [1, 0] \text{ are given in the figure.}$$

Figure: Three vectors visualized as directions and as points.

We denote an attribute of a vector as an italic value with an index, like this: $w^{(j)}$ or $x^{(j)}$. The index j denotes a specific **dimension** of the vector, the position of an attribute in the list. For instance, in the vector a shown in red in the figure, $a^{(1)} = 2$ and $a^{(2)} = 3$.

Figure: Three vectors visualized as directions and as points.

The notation $x^{(j)}$ should not be confused with the power operator, such as the 2 in x^2 (squared) or 3 in x^3 (cubed). If we want to apply a power operator, say square, to an indexed attribute of a vector, we write like this: $(x^{(j)})^2$.

A variable can have two or more indices, like this: $x_{i,j}^{(j)}$ or like this $x_{i,j}^{(k)}$. For example, in neural networks, we denote as $x_{l,u}^{(j)}$ the input feature j of unit u in layer l.

CSE574 Introduction to Machine Learning

Jue Guo

Data Structure

$$\left[\begin{array}{ccc} 2 & 4 & -3 \\ 21 & -6 & -1 \end{array}\right]$$

Matrices are denoted with bold capital letters, such as **A** or **W**.

A **set** is an unordered collection of unique elements.

ightharpoonup We denote a set as a calligraphic capital character, for example, S.

A set of numbers can be finite (include a fixed amount of values).

In this case, it is denoted using accolades, for example, $\{1, 3, 18, 23, 235\}$ or $\{x_1, x_2, x_3, x_4, \dots, x_n\}$.

A set can be infinite and include all values in some interval.

- ▶ If a set includes all values between *a* and *b*, including *a* and *b*, it is denoted using brackets as [*a*, *b*]. If the set doesn't include the values *a* and *b*, such a set is denoted using parentheses like this: (*a*, *b*).
- For example, the set [0,1] includes such values as 0,0.0001,0.25,0.784,0.9995, and 1.0. A special set denoted \mathbb{R} includes all numbers from minus infinity to plus infinity.

CSE574 Introduction to Machine Learning

Jue Guo

Data Structure