Assignment -02

Task 01: Conduct multiple Protein-Ligand Docking and provide the

	Ligands	Binding Affinity	Rmsd/ub	Rmsd/ib
01	7di7minimizedenergy_101281364_uff_E=2207.71	-8.3	0	0
02	7di7minimizedenergy_25090669_uff_E=2156.77	-8.3	0	0
03	7di7minimizedenergy_21679023_uff_E=771.19	-8.2	0	0
04	7di7minimizedenergy_265237_uff_E=2170.87	-8.1	0	0
05	7di7minimizedenergy_101281365_uff_E=770.69	-7.8	0	0
06	7di7minimizedenergy_23266146_uff_E=724.36	-7.8	0	0
07	7di7minimizedenergy_44567123_uff_E=836.12	-7.6	0	0
08	7di7minimizedenergy_108065_uff_E=551.24	-7.5	0	0
09	7di7minimizedenergy_9823926_uff_E=599.99	-7.5	0	0
10	7di7minimizedenergy_101289844_uff_E=1112.05	-7.4	0	0

Task 02: ADME analysis on the 10 compounds obtained from the Protein-Ligand Docking and provide the results in the table below. ADME Analysis Pha Drug Me rma likeness dici cok nal inet Che mist ics ry Name CID ID Canonical Molec Nu Nu Lipop Water GI **BBB** Lipinski PAI **SMILES** hilicit Solubilit perme NS ular m. m. abs H-b Hweight y (Log S y orpt ant (iLO (g/mol (SILICO ion ond bo acc nd GP) S-IT)) do epto rs nor S Witha 470.60 2 3.69 Yes; 0 101281364 O=C1O[C(a)-3.55 Hig No 0 nolide H]([C@H](C violation h aler R (=C1C)C)O)C@H]([C@ H]1CC[C@ @H]2[C@]1 (C)CC[C@H]]1[C@H]2[C @@H]2O[C @@H]2[C@ @]2([C@]1(C)C(=O)C=CC2)O)C Witha 25090669 468.58 2 3.72 -4.21 Yes: 0 CC1=C(C)C(Hig 0 nolide =O)O[C@H] violation h No aler M (C1)[C@@]([C@@]1(O) C[C@H]2[C $(a_0(a_0)]3([C(a_0)]$ 1(C)CC[C@ H]1[C@H]3 CC=C3[C(a)]1(C)C(=O)C=CC3)O2)(O)C

2

3 74

-4 50

Hig

h

No

Yes: 0

violation

0

aler

Witha

nolide

G

21679023

CC1=C(C)C(

=O)O[C@H]

(C1)[C@@]([C@H]1CC[C@@]2([C @]1(C)CC[C 454.60

Witha	265237	@H]1[C@H] 2CC=C2[C@]1(C)C(=O)C =CC2)O)(O) C OCC1=C(C)	470.60	6	2	3.24	-3.79	Hig	No	Yes; 0	0
ferin A	203237	C[C@@H](OC1=O)[C@ H]([C@H]1 CC[C@@H] 2[C@]1(C)C C[C@H]1[C @H]2C[C@ @H]2C[C@ @H]2[C@]3 ([C@]1(C)C(=O)C=C[C@ @H]3O)O2) C	170.00	Ü		5.4	3.77	h	110	violation	aler t
Witha nolide Q	101281365	OCC1=C(C)[C@@H]([C @@H](OC1 =O)[C@H]([C@@]1(O)C C[C@@H]2[C@]1(C)CC[C@H]1[C@ H]2CC=C2[C@]1(C)C(= O)C=CC2)C) O	470.60	6	3	3.36	-3.70	Hig h	No	Yes; 0 violation	0 aler t
Kulac tone	101289844	CC(=CCC[C @H]1C(=O) O[C@@H]2[C@@H]1[C @]1(C)CC[C @H]3C(=CC [C@@H]4[C @]3(C)CCC(=O)C4(C)C)[C@]1(C2)C) C	452.67	3	0	4.47	-6.70	Lo w	No	Yes; 1 violation : MLOGP >4.15	0 aler t
Witha nolide O	23266146	OCC1=C(C) C[C@@H](OC1=O)[C@ H]([C@H]1 CC[C@@H] 2[C@]1(C)C C[C@H]1[C @H]2C[C@ @H]2[C@]3 ([C@]1(C)C(470.60	6	2	3.24	-3.79	Hig h	No	Yes; 0 violation	0 aler t

		=O)C=C[C@ @H]3O)O2) C									
Methy l kulon ate	44567123	COC(=O)[C @@H]([C@ @H]1[C@@ H](O)C[C@] 2([C@@]1(C)CC[C@H] 1C2=CC[C@ @H]2[C@]1 (C)CCC(=O) C2(C)C)C	484.71	4	1	4.58	-6.27	Hig h	No	Yes; 1 violation : MLOGP >4.15	0 aler t
Proan thocya nidin	108065	COc1c(O)cc(cc1O)C1Oc2 c(C[C@H]1 O)c(O)cc(c2[C@@H]1[C @@H](O)[C @H](Oc2c1c (O)cc(c2)O)c 1ccc(cc1)O) O	592.55	12	9	2.17	-4.60	Lo w	No	No; 3 violation s: MW>50 0, NorO>1 0, NHorO H>5	0 aler t
6beta- Hydro xystig mast- 4-en-3 -one	9823926	CC[C@@H] (C(C)C)CC[C@H]([C@ H]1CC[C@ @H]2[C@]1 (C)CC[C@H]1[C@H]2C[C@H](C2=C C(=O)CC[C @]12C)O)C	428.69	2	1	4.68	-6.06	Lo W	No	Yes; 1 violation : MLOGP >4.15	0 aler t

Task 03: Performing Toxicity Prediction on the 10 compounds obtained from the Protein-Ligand Docking and provide the results in the table below.

Toxicity Prediction

Name	CID ID	Canonical SMILES	Hepat otoxici ty	Carcino genicity	Immuno toxicity	Mutageni city	Cytotox icity
Withanolide R	101 281 364	O=C1O[C@H]([C@H](C(=C1 C)C)O)[C@H]([C@H]1CC[C @@H]2[C@]1(C)CC[C@H]1 [C@H]2[C@@H]2O[C@@H] 2[C@@]2([C@]1(C)C(=O)C= CC2)O)C	0.85	0.54	0.99	0.75	0.94
Withanolide M	250 906 69	CC1=C(C)C(=O)O[C@H](C1) [C@@]([C@@]1(O)C[C@H] 2[C@@]3([C@]1(C)CC[C@H]1[C@H]3CC=C3[C@]1(C)C(=O)C=CC3)O2)(O)C	0.85	0.53	0.85	0.74	0.59
Withanolide G	216 790 23	CC1=C(C)C(=O)O[C@H](C1) [C@@]([C@H]1CC[C@@]2([C@]1(C)CC[C@H]1[C@H]2 CC=C2[C@]1(C)C(=O)C=CC 2)O)(O)C	0.83	0.52	0.82	0.90	0.80
Withaferin A	265 237	OCC1=C(C)C[C@@H](OC1= O)[C@H]([C@H]1CC[C@@ H]2[C@]1(C)CC[C@H]1[C@ H]2C[C@@H]2[C@]3([C@]1 (C)C(=O)C=C[C@@H]3O)O2)C	0.93	0.55	0.99	0.79	0.87
Withanolide Q	101 281 365	OCC1=C(C)[C@@H]([C@@ H](OC1=O)[C@H]([C@@]1(O)CC[C@@H]2[C@]1(C)CC[C@H]1[C@H]2CC=C2[C@]1 (C)C(=O)C=CC2)C)O	0.96	0.66	0.98	0.84	0.67
Kulactone	101 289 844	CC(=CCC[C@H]1C(=O)O[C @@H]2[C@@H]1[C@]1(C)C C[C@H]3C(=CC[C@@H]4[C @]3(C)CCC(=O)C4(C)C)[C@]1(C2)C)C	0.83	0.59	0.91	0.95	0.82
Withanolide O	232 661 46	OCC1=C(C)C[C@@H](OC1= O)[C@H]([C@H]1CC[C@@ H]2[C@]1(C)CC[C@H]1[C@ H]2C[C@@H]2[C@]3([C@]1 (C)C(=O)C=C[C@@H]3O)O2)C	0.93	0.55	0.99	0.79	0.87
Methyl kulonate	445 671 23	COC(=O)[C@@H]([C@@H] 1[C@@H](O)C[C@]2([C@@]1(C)CC[C@H]1C2=CC[C@	0.83	0.50	0.92	0.93	0.72

		@H]2[C@]1(C)CCC(=O)C2(C)C)C)CCC=C(C)C					
Proanthocyanid	108	COc1c(O)cc(cc1O)C1Oc2c(C[0.73	0.70	0.98	0.73	0.81
in	065	C@H]1O)c(O)cc(c2[C@@H]1					
		[C@@H](O)[C@H](Oc2c1c(
		O)cc(c2)O)c1ccc(cc1)O)O					
6beta-Hydroxys	982	CC[C@@H](C(C)C)CC[C@H]	0.79	0.53	0.99	0.91	0.88
tigmast-4-en-3-o	392]([C@H]1CC[C@@H]2[C@]					
ne	6	1(C)CC[C@H]1[C@H]2C[C					
		@H](C2=CC(=O)CC[C@]12C					
)O)C					

Task 04: Identifying the highest-ranking Protein – ligand complex and input the corresponding figures into the table below.

Figure Name	Sample Figure	Input your Docking Figure
Figure 01		
Figure 02		A15425

Task 05: Identify the highest-ranking Protein – ligand complex and input the Interaction details into the table below.

Name	Distance	Category	Types
A: HIS425:NE2 - A: ACT1201: OXT	5.59194	Electrostatic	Attractive Charge
A: SER506: HG - A: ACT1201: OXT	2.55319	Hydrogen Bond	Conventional Hydrogen Bond
A: SER429: HA - A: ACT1201:O	3.05025	Hydrogen Bond	Carbon Hydrogen Bond
A: SER429:HB2 - A: ACT1201:O	2.94711	Hydrogen Bond	Carbon Hydrogen Bond

Ву

Rayhan Shake

Department-ENT

Student ID-2022-11-6145

Email-rayhanag6145@gmail.com