Formal Semantics

Concepts of Programming Languages Lecture 14

Practice Problem

```
<s> ::= A <a> | A <b>
<a> ::= A B
<b> ::= B <b> | B <s>
```

Is the following sentence recognized by the above grammar?

A B B A A B

Outline

- » Discuss formal semantics in general
- » Look at small-step and big-step semantics with some examples

Introduction

```
x=3
function f () {
    x=2
}
fecho $x
```

```
x = 3
def f():
    x = 2
f()
print(x)
```

```
let x = 3
let f () =
  let x = 2 in
  ()
let _ = f ()
let _ = print_int x
```

Bash Python OCaml

Question. How do we know what will happen when a program executes?

```
x=3
function f () {
    x=2
}
fecho $x
Bash
```

```
x = 3
def f():
    x = 2
f()
print(x)
```

Python

Question. How do we know what will happen when a program executes?

Usually we build intuitions by writing programs and reading manuals

```
x=3
function f () {
    x=2
}
fecho $x
Bash
```

```
x = 3
def f():
    x = 2
f()
print(x)
```

Python

Question. How do we know what will happen when a program executes?

Usually we build intuitions by writing programs and reading manuals

But many decisions about what it means to execute a program are arbitrary (or based on concerns like efficiency)

Syntax is interested in the *form* of a program

Syntax is interested in the *form* of a program

Semantics is interested in the meaning of a program

5

Syntax is interested in the *form* of a program

Semantics is interested in the meaning of a program

What is the meaning of meaning?

Syntax is interested in the *form* of a program

Semantics is interested in the meaning of a program

What is the meaning of meaning?

Formal semantics is the mathematical study of meaning

Denotational semantics is interested in what a syntactic object "denotes" i.e. in interpreting programs as objects in a mathematical space

$$1 + 2 * 3 + 4 = 11$$

 $1 + 12 - 2 = 11$

Denotational semantics is interested in what a syntactic object "denotes" i.e. in interpreting programs as objects in a mathematical space

Operational semantics is interested in how a programming language "operates" i.e. how a program behaves during execution

$$1 + 2*3 + 4 = 11$$

 $1 + 12 - 2 = 11$

$$1 + 2 * 3 + 4 \longrightarrow 1 + 6 + 4$$

$$\longrightarrow 7 + 4$$

$$\longrightarrow 11$$

Denotational semantics is interested in what a syntactic object "denotes" i.e. in interpreting programs as objects in a mathematical space

$$1 + 2 * 3 + 4 = 11$$

 $1 + 12 - 2 = 11$

Operational semantics is interested in how a programming language "operates" i.e. how a program behaves during execution

$$1 + 2 * 3 + 4 \longrightarrow 1 + 6 + 4$$

$$\longrightarrow 7 + 4$$

$$\longrightarrow 11$$

This course

Small-step operational semantics is interested in program transformation, i.e., how a program transforms "one step at a time"

Small-step operational semantics is interested in program transformation, i.e., how a program transforms "one step at a time"

Big-step operational semantics is interested in *evaluation*, i.e., what is the value of the program once a program has finished evaluating

Small-step operational semantics is interested in program transformation, i.e., how a program transforms "one step at a time"

Mini-projects

2 ₩ 2

Big-step operational semantics is interested in *evaluation*, i.e., what is the value of the program once a program has finished evaluating

Static semantics
refers to the meaning
given to a program
hefore it is evaluated

```
% ocaml silly.ml

File "./silly.ml", line 1, characters 8-9:

1 | let x = 2 +. 3.

A

Error: This expression has type int but an expression was expected of type
float
Hint: Did you mean '2.'?
```

Static semantics

refers to the meaning given to a program before it is evaluated

Dynamic semantics

refers to the behavior of a program *during* evaluation

```
utop # let x = 2 + 3;;
val x : int = 5
```

Static semantics

refers to the meaning given to a program before it is evaluated

Type checking

Dynamic semantics

refers to the behavior of a program *during* evaluation

```
utop # let x = 2 + 3;;
val x : int = 5
```

Static semantics

refers to the meaning given to a program before it is evaluated

Type checking

```
% ocaml silly.ml

File "./silly.ml", line 1, characters 8-9:

1 | let x = 2 +. 3.

A

Error: This expression has type int but an expression was expected of type
float
Hint: Did you mean '2.'?
```

Evaluation

```
Dynamic semantics refers to the behavior of a program during evaluation
```

```
utop # let x = 2 + 3;;
val x : int = 5
```

Recall: The Picture

Recall: The Picture

dynamic semantics (this week + next week)

Recall: The Picture

dynamic semantics (this week + next week)

Operational Semantics

Recall: Inference Rules

Recall: Inference Rules

Then general form of a reduction rule has a collection of **premises** and a **conclusion**

Recall: Inference Rules

Then general form of a reduction rule has a collection of **premises** and a **conclusion**

There may be no premises, this is called an axiom

Example

```
 \begin{array}{c} e_1 \overset{\text{premise}}{\longrightarrow} e_1' \\ \hline (\text{add } e_1 \ e_2) & \longrightarrow (\text{add } e_1' \ e_2) \\ \hline \text{conclusion} \end{array}
```

```
Example Programs:
(add 2 3)
(add (add 2 3) 5)
(eq (add 2 3) (sub 7 2))
(add true 2)
```

Example

```
\begin{array}{c} e_1 \stackrel{\text{premise}}{\longrightarrow} e_1' \\ (\text{add } e_1 \ e_2) \stackrel{\text{add-left}}{\longrightarrow} (\text{add } e_1' \ e_2) \\ & \text{conclusion} \end{array}
```

```
Example Programs:
(add 2 3)
(add (add 2 3) 5)
(eq (add 2 3) (sub 7 2))
(add true 2)
```

If e_1 reduces to e_1' in one step, then add e_1 e_2 reduces to add e_1' e_2 in one step

Another Example

add 23 -> 5

is a number
$$n_2$$
 is a number n_2 add-ok (add n_1 n_2) \longrightarrow $n_1 + n_2$

If n_1 and n_2 are numbers then (add n_1 n_2) reduces in one step to the number $n_1 + n_2$

In this case, the premises are side-conditions

(We'll come back to these examples)

$$(S,p) \longrightarrow (S',p')$$

$$(S,p) \longrightarrow (S',p')$$

Small-step semantics formalizes a "step by step" computation which reduces a syntactic object until no reductions can be done

$$(S,p) \longrightarrow (S',p')$$

Small-step semantics formalizes a "step by step" computation which reduces a syntactic object until no reductions can be done

Notation. We write $e \longrightarrow e'$ to mean e reduces to e' in a single step

$$(S,p) \longrightarrow (S',p')$$

Small-step semantics formalizes a "step by step" computation which reduces a syntactic object until no reductions can be done

Notation. We write $e \longrightarrow e'$ to mean e reduces to e' in a single step

$$(S,p) \longrightarrow (S',p')$$

Small-step semantics formalizes a "step by step" computation which reduces a syntactic object until no reductions can be done

Notation. We write $e \longrightarrow e'$ to mean e reduces to e' in a single step

Small-step semantics formalizes a "step by step" computation which reduces a syntactic object until no reductions can be done

Notation. We write $e \longrightarrow e'$ to mean e reduces to e' in a single step

Small-step semantics formalizes a "step by step" computation which reduces a syntactic object until no reductions can be done

Notation. We write $e \longrightarrow e'$ to mean e reduces to e' in a single step

Small-step semantics formalizes a "step by step" computation which reduces a syntactic object until no reductions can be done

Notation. We write $e \longrightarrow e'$ to mean e reduces to e' in a single step

Example: Arithmetic Expressions

$$(\varnothing, 10 \times (2+3)) \longrightarrow (\varnothing, 10 \times 5) \longrightarrow (\varnothing, 50)$$

State: none

Program: arithmetic expression

Example: (Fragment of) OCaml

```
let x = 3 in if x > 10 then 4 else 5) \longrightarrow (\emptyset, if <math>3 > 10 then 4 else 5) \longrightarrow (\emptyset, if false then <math>4 else 5) \longrightarrow (\emptyset, 5)
```

State: none

Program: OCaml expression

For purely functional languages there is no state

Example: Unlimited Register Machines

Program: sequence of commands for updating registers
values and current instruction

Example: Stack-Oriented Language

```
state program push 2; push 3; add)

(2 :: \emptyset, push 3; add)

(3 :: 2 :: \emptyset, add)

(5 :: \emptyset, \epsilon)
```

State: stack (i.e., list) of values

Program: sequence of commands for manipulating the
stack

When we define the small-step semantics of PL, we need to define two things:

When we define the small-step semantics of PL, we need to define two things:

» What kind of state are we manipulating?

When we define the small-step semantics of PL, we need to define two things:

- » What kind of state are we manipulating?
- » What rules describe how to transform configurations?

$$\frac{e_1 \longrightarrow e_1'}{(\operatorname{add} e_1 e_2) \longrightarrow (\operatorname{add} e_1' e_2)} \xrightarrow{\operatorname{add-left}} \frac{e_2 \longrightarrow e_2'}{(\operatorname{add} e_1 e_2) \longrightarrow (\operatorname{add} e_1 e_2')} \xrightarrow{\operatorname{add-right}}$$

$$\frac{n_1 \text{ is a number}}{(\operatorname{add} n_1 n_2) \longrightarrow n_1 + n_2} \xrightarrow{\operatorname{add-ok}}$$

$$(\operatorname{add} (\operatorname{add} 12) (\operatorname{add} 23)) \longrightarrow \mathcal{C} \xrightarrow{\operatorname{add-right}}$$

$$(\operatorname{add} 12) (\operatorname{add} 23) (\operatorname{add} 23)$$

$$(\operatorname{add} 33) (\operatorname{add} 23) \longrightarrow \mathcal{C} \xrightarrow{\operatorname{add-right}}$$

 $\frac{(\text{add } 12) \rightarrow 3}{(\text{add } 12) 3) \rightarrow (\text{add } 33)}$

— sub-ok

$$\frac{e_1 \longrightarrow e_1'}{(\mathsf{add}\ e_1\ e_2) \longrightarrow (\mathsf{add}\ e_1'\ e_2)} \ \mathsf{add-left} \qquad \frac{e_2 \longrightarrow e_2'}{(\mathsf{add}\ e_1\ e_2) \longrightarrow (\mathsf{add}\ e_1\ e_2')} \ \mathsf{add-right}$$

$$\frac{n_1\ \mathsf{is}\ \mathsf{a}\ \mathsf{number} \qquad n_2\ \mathsf{is}\ \mathsf{a}\ \mathsf{number}}{(\mathsf{add}\ n_1\ n_2) \longrightarrow n_1 + n_2} \ \mathsf{add-ok}$$

$$\frac{e_1 \longrightarrow e_1'}{(\mathsf{sub}\ e_1\ e_2) \longrightarrow (\mathsf{sub}\ e_1'\ e_2)} \ \mathsf{sub-left} \qquad \frac{e_2 \longrightarrow e_2'}{(\mathsf{sub}\ e_1\ e_2) \longrightarrow (\mathsf{sub}\ e_1\ e_2')} \ \mathsf{sub-right}$$

 n_1 is a number n_2 is a number

 $(\operatorname{sub} n_1 n_2) \longrightarrow n_1 - n_2$

It's important to recognize that **reduction is a relation**This means there may be **multiple choices** of **reductions**When possible, we try do design our rules to avoid this

$$\frac{\text{add } 1\ 2 \longrightarrow 3}{(\text{add } (\text{add } 1\ 2)\ (\text{add } 2\ 3)) \longrightarrow (\text{add } 3\ (\text{add } 2\ 3))} \ ^{\text{add-left}}$$

$$\frac{\text{add } 2\ 3 \longrightarrow 5}{(\text{add } (\text{add } 1\ 2)\ (\text{add } 2\ 3)) \longrightarrow (\text{add } (\text{add } 1\ 2)\ 5)} \ ^{\text{add-right}}$$

$$\frac{\mathsf{add}\ 1\ 2 \longrightarrow 3}{(\mathsf{add}\ (\mathsf{add}\ 1\ 2)\ (\mathsf{add}\ 2\ 3)) \longrightarrow (\mathsf{add}\ 3\ (\mathsf{add}\ 2\ 3))} \ \ ^{\mathsf{add-left}}$$

$$\frac{\text{add } 2 \ 3 \longrightarrow 5}{(\text{add } (\text{add } 1 \ 2) \ (\text{add } 2 \ 3)) \longrightarrow (\text{add } (\text{add } 1 \ 2) \ 5)} \ ^{\text{add-right}}$$

There are two reductions from (add (add 1 2) (add 2 3)) in our current rule set

$$\frac{\mathsf{add}\ 1\ 2 \longrightarrow 3}{(\mathsf{add}\ (\mathsf{add}\ 1\ 2)\ (\mathsf{add}\ 2\ 3)) \longrightarrow (\mathsf{add}\ 3\ (\mathsf{add}\ 2\ 3))} \ \ ^{\mathsf{add-left}}$$

$$\frac{\text{add } 2 \ 3 \longrightarrow 5}{(\text{add } (\text{add } 1 \ 2) \ (\text{add } 2 \ 3)) \longrightarrow (\text{add } (\text{add } 1 \ 2) \ 5)} \text{ add-right}$$

There are two reductions from (add (add 1 2) (add 2 3)) in our current rule set

We can avoid this by breaking symmetry. We will enforce that the right argument can reduced only when the left argument is completely reduced

Example: Addition

$$\frac{e_1 \longrightarrow e_1'}{(\mathsf{add}\ e_1\ e_2) \longrightarrow (\mathsf{add}\ e_1'\ e_2)} \ \mathsf{add-left}$$

$$v$$
 is a number $e_2 \longrightarrow e_2'$ add-right $(\operatorname{add} v \ e_2) \longrightarrow (\operatorname{add} v \ e_2')$

$$\frac{n_1}{\sqrt{1+n_2}}$$
 is a number n_2 is a number n_2 add-ok

Enforcing an Evaluation Order

The new rule enforces that arguments of **add** are evaluated from left to right

```
\frac{e_1 \longrightarrow e_1'}{(\mathsf{add}\ e_1\ e_2) \longrightarrow (\mathsf{add}\ e_1'\ e_2)} \ \mathsf{add-left}
```

$$\frac{n \text{ is a number}}{(\mathsf{add} \ n \ e_2) \longrightarrow (\mathsf{add} \ n \ e_2')} \underset{\mathsf{add-right}}{\mathsf{add-right}}$$

$$\frac{n_1}{\sqrt{1+n_2}}$$
 is a number n_2 is a number n_2 add-ok

```
 \frac{e_1 \longrightarrow e_1'}{(\mathsf{add}\ e_1\ e_2) \longrightarrow (\mathsf{add}\ e_1'\ e_2)} \, \overset{\mathsf{add-left}}{=} \, \frac{n\ \mathsf{is}\ \mathsf{a}\ \mathsf{number}}{(\mathsf{add}\ n\ e_2) \longrightarrow (\mathsf{add}\ n\ e_2')} \, \overset{\mathsf{add-right}}{=} \, \frac{\mathsf{add-right}}{(\mathsf{add}\ n\ e_2) \longrightarrow (\mathsf{add}\ n\ e_2')}
```

$$\frac{n_1}{\text{sub-ok}}$$
 is a number n_2 is a number sub-ok n_1 n_2 n_1 n_2 n_1 n_2

Practice Problem

Write down the reduction rules for **eq** (to the best of your ability) so that the left argument is evaluated before the right argument

Answer

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

 \gg Show that $C \longrightarrow C'$

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

- » Show that $C \longrightarrow C'$ (and (and (and 13) 5) $\stackrel{?}{\rightarrow}$ (and $C \stackrel{?}{\rightarrow}$)
- » Given C, determine a configuration C' such that $C \longrightarrow C'$ (and show that it holds)

Two Questions

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

- \gg Show that $C \longrightarrow C'$
- » Given C, determine a configuration C' such that $C \longrightarrow C'$ (and show that it holds)

```
\frac{ (\mathsf{add} \ 1\ 2) \longrightarrow 3}{ (\mathsf{add} \ (\mathsf{add} \ 1\ 2) \ (\mathsf{add} \ 2\ 3)) \longrightarrow (\mathsf{add} \ 3 \ (\mathsf{add} \ 2\ 3))} \xrightarrow{\mathsf{add-left}} \frac{ (\mathsf{add} \ (\mathsf{add} \ 1\ 2) \ (\mathsf{add} \ 2\ 3))}{ \mathsf{sub} \ 10 \ (\mathsf{add} \ (\mathsf{add} \ 1\ 2) \ (\mathsf{add} \ 2\ 3))} \xrightarrow{\mathsf{sub-right}} \frac{ \mathsf{add-left}}{ \mathsf{sub-right}}
```

```
\frac{ (\mathsf{add} \ 1\ 2) \longrightarrow 3}{ (\mathsf{add} \ (\mathsf{add} \ 1\ 2) \ (\mathsf{add} \ 2\ 3)) \longrightarrow (\mathsf{add} \ 3 \ (\mathsf{add} \ 2\ 3))} {\mathsf{sub-right}}
```

A derivation is a tree of reductions, gotten by applying reduction rules. The leaves are trivial premises

```
\frac{ (\mathsf{add} \ 1\ 2) \longrightarrow 3}{ (\mathsf{add} \ (\mathsf{add} \ 1\ 2) \ (\mathsf{add} \ 2\ 3)) \longrightarrow (\mathsf{add} \ 3 \ (\mathsf{add} \ 2\ 3))} \xrightarrow{\mathsf{add-left}} 
\mathsf{sub} \ 10 \ (\mathsf{add} \ (\mathsf{add} \ 1\ 2) \ (\mathsf{add} \ 2\ 3)) \longrightarrow \mathsf{sub} \ 10 \ (\mathsf{add} \ 3 \ (\mathsf{add} \ 2\ 3))
```

A derivation is a tree of reductions, gotten by applying reduction rules. The leaves are trivial premises

A derivation is a proof that the reduction step is valid in the operational semantics

```
\frac{ (\mathsf{add} \ 1\ 2) \longrightarrow 3}{ (\mathsf{add} \ (\mathsf{add} \ 1\ 2) \ (\mathsf{add} \ 2\ 3)) \longrightarrow (\mathsf{add} \ 3 \ (\mathsf{add} \ 2\ 3))} \xrightarrow{\mathsf{add-left}} 
\mathsf{sub} \ 10 \ (\mathsf{add} \ (\mathsf{add} \ 1\ 2) \ (\mathsf{add} \ 2\ 3)) \longrightarrow \mathsf{sub} \ 10 \ (\mathsf{add} \ 3 \ (\mathsf{add} \ 2\ 3))
```

A derivation is a tree of reductions, gotten by applying reduction rules. The leaves are trivial premises

A derivation is a proof that the reduction step is valid in the operational semantics

We've done this!

sub 10 (add (add 1 2) (add 2 3)) — sub 10 (add 3 (add 2 3))

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3))

We can build derivations from the ground up, applying rules in reverse

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3))

We can build derivations from the ground up, applying rules in reverse

sub 10 (add (add 1 2) (add 2 3)) — sub 10 (add 3 (add 2 3))

We can build derivations from the ground up, applying rules in reverse

$$\frac{(\mathsf{add} \; (\mathsf{add} \; 1 \; 2) \; (\mathsf{add} \; 2 \; 3)) \longrightarrow (\mathsf{add} \; 3 \; (\mathsf{add} \; 2 \; 3))}{\mathsf{sub} \; 10 \; (\mathsf{add} \; (\mathsf{add} \; 1 \; 2) \; (\mathsf{add} \; 2 \; 3))} \longrightarrow \mathsf{sub} \; 10 \; (\mathsf{add} \; 3 \; (\mathsf{add} \; 2 \; 3))}$$

We can build derivations from the ground up, applying rules in reverse

$$(add (add 1 2) (add 2 3)) \longrightarrow (add 3 (add 2 3))$$
 sub-right sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3))

We can build derivations from the ground up, applying rules in reverse

We can build derivations from the ground up, applying rules in reverse

$$\frac{-\text{add }1\ 2)\longrightarrow 3}{(\text{add }(\text{add }1\ 2)\ (\text{add }2\ 3))\longrightarrow (\text{add }3\ (\text{add }2\ 3))} \xrightarrow{\text{add-left}}$$

$$\text{sub }10\ (\text{add }(\text{add }1\ 2)\ (\text{add }2\ 3))\longrightarrow \text{sub }10\ (\text{add }3\ (\text{add }2\ 3))$$

We can build derivations from the ground up, applying rules in reverse

Two Questions

Once we have a small-step semantics, there are two questions we can ask (as PL designers and on the final exam):

- \gg Show that $C \longrightarrow C'$
- » Given C, determine a configuration C' such that $C \longrightarrow C'$ (and show that it holds)

Single-Step Evaluation

(sub 10 (add (add 1 2) (add 2 3))) \longrightarrow ???

Single-Step Evaluation

 $(sub 10 (add (add 1 2) (add 2 3))) \longrightarrow ???$

The more "realistic" situation is to be given a program and then try to figure out what it evaluates to in a single step

Single-Step Evaluation

 $(sub 10 (add (add 1 2) (add 2 3))) \longrightarrow ???$

The more "realistic" situation is to be given a program and then try to figure out what it evaluates to in a single step

This is why we want to be careful about how we design our rules: we don't want to get too caught up on which rule to apply

$$\frac{e_1 \longrightarrow e_1'}{(\mathsf{add}\ e_1\ e_2) \longrightarrow (\mathsf{add}\ e_1'\ e_2)} \ \mathsf{add-left} \qquad \frac{n \ \mathsf{is}\ \mathsf{a}\ \mathsf{number} \qquad e_2 \longrightarrow e_2'}{(\mathsf{add}\ n\ e_2) \longrightarrow (\mathsf{add}\ n\ e_2')} \ \mathsf{add-right}$$

Example

$$\frac{n_1 \text{ is a number}}{(\mathsf{add}\ n_1\ n_2) \longrightarrow n_1 + n_2} \overset{\mathsf{nomber}}{\longrightarrow} \mathsf{add}\mathsf{-ok}$$

 $(sub\ 10\ (add\ (add\ 1\ 2)\ (add\ 2\ 3))) \longrightarrow ???$

Practice Problem

$$\begin{array}{c} e_1 \longrightarrow e_1' \\ \hline (\operatorname{add} e_1 \ e_2) \longrightarrow (\operatorname{add} e_1' \ e_2) \end{array} \xrightarrow{\operatorname{add-left}} \qquad \frac{e_2 \longrightarrow e_2'}{(\operatorname{add} e_1 \ e_2) \longrightarrow (\operatorname{add} e_1 \ e_2')} \operatorname{add-right} \\ \\ \frac{n_1 \ \operatorname{is} \ \operatorname{a} \ \operatorname{number} \quad n_2 \ \operatorname{is} \ \operatorname{a} \ \operatorname{number}}{(\operatorname{add} n_1 \ n_2) \longrightarrow n_1 + n_2} \\ \\ \frac{e_1 \longrightarrow e_1'}{(\operatorname{sub} \ e_1 \ e_2) \longrightarrow (\operatorname{sub} \ e_1' \ e_2)} \operatorname{sub-left} \qquad \frac{e_2 \longrightarrow e_2'}{(\operatorname{sub} \ e_1 \ e_2) \longrightarrow (\operatorname{sub} \ e_1 \ e_2')} \operatorname{sub-right} \\ \\ \frac{n_1 \ \operatorname{is} \ \operatorname{a} \ \operatorname{number} \quad n_2 \ \operatorname{is} \ \operatorname{a} \ \operatorname{number}}{(\operatorname{sub} \ n_1 \ n_2) \longrightarrow n_1 - n_2} \operatorname{sub-ok} \\ \\ \\ \frac{n_1 \ \operatorname{is} \ \operatorname{a} \ \operatorname{number} \quad n_2 \ \operatorname{is} \ \operatorname{a} \ \operatorname{number}}{(\operatorname{sub} \ n_1 \ n_2) \longrightarrow n_1 - n_2} \\ \end{array}$$

$$(sub 10 (add 3 (add 2 3))) \longrightarrow (sub 10 (add 3 5))$$

Give a derivation of the above reduction

Answer

Multi-Step Reduction Relation

$$\frac{C \longrightarrow^{\bigstar} C}{C \longrightarrow^{\bigstar} C} \text{ refl} \qquad \frac{C \longrightarrow^{\bigstar} C}{C \longrightarrow^{\bigstar} D} \text{ trans}$$

Given any single-step reduction relation, we can derive the multi-step reduction relation:

- » Every \longrightarrow^* reduction can be extended by a single step (transitivity)

Two Questions (Again)

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

- \gg Show that $C \longrightarrow^{\star} C'$
- » Given C, determine a configuration C' such that $C \longrightarrow^{\star} C'$ and C' cannot be reduced

Two Questions (Again)

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

- \Rightarrow Show that $C \longrightarrow^{\star} C'$
- » Given C, determine a configuration C' such that $C \longrightarrow^{\star} C'$ and C' cannot be reduced

sub 10 (add (add 1 2) (add 2 3))
$$\longrightarrow$$
 * 2

sub 10 (add (add 1 2) (add 2 3)) $\longrightarrow^* 2$ want to show

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) (we did this)

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow * 2 want to show

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow * 2 want to show

```
sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) (we did this) sub 10 (add 3 (add 2 3)) \longrightarrow sub 10 (add 3 5) (you did this) sub 10 (add 3 5) \longrightarrow sub 10 8 (exercise)
```

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow * 2 want to show

```
sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) (we did this) sub 10 (add 3 (add 2 3)) \longrightarrow sub 10 (add 3 5) (you did this) sub 10 (add 3 5) \longrightarrow sub 10 8 (exercise) sub 10 8 \longrightarrow 2
```

sub 10 (add (add 1 2) (add 2 3)) $\longrightarrow^* 2$

- » Derive all necessary single-step evaluations
- » Combine them with the transitivity rule

```
(we did this)
\vdots
s 10 (a (a 1 2) (a 2 3)) \longrightarrow s 10 (a 3 (a 2 3)) \qquad s 10 (a 3 (a 2 3)) \longrightarrow^{\star} 2
sub 10 (add (add 1 2) (add 2 3)) \longrightarrow^{\star} 2
```

- » Derive all necessary single-step evaluations
- » Combine them with the transitivity rule

- » Derive all necessary single-step evaluations
- » Combine them with the transitivity rule

```
(\text{you did this}) = \underbrace{\begin{array}{c} (\text{you did this}) \\ \vdots \\ \text{s } 10 \text{ (a } 3 \text{ 5)} \longrightarrow \text{s } 10 \text{ 8} \\ \vdots \\ \text{s } 10 \text{ (a } 3 \text{ 5)} \longrightarrow \text{s } 10 \text{ 8} \\ \text{s } 10 \text{ (a } 3 \text{ 5)} \longrightarrow \text{s } 10 \text{ (a } 3 \text{ 5)} \longrightarrow \text{trans} \end{array}}_{\text{trans}} \\ \underline{\text{s } 10 \text{ (a } (\text{a } 1 \text{ 2) (a } 2 \text{ 3))} \longrightarrow \text{s } 10 \text{ (a } 3 \text{ (a } 2 \text{ 3))} \longrightarrow \text{s } 10 \text{ (a } 3 \text{ (a } 2 \text{ 3))} \longrightarrow \text{trans}}}_{\text{trans}} \\ \underline{\text{s } 10 \text{ (a } (\text{a } 1 \text{ 2) (a } 2 \text{ 3))} \longrightarrow \text{s } 10 \text{ (a } 3 \text{ (a } 2 \text{ 3))} \longrightarrow \text{trans}}}_{\text{trans}}
```

- » Derive all necessary single-step evaluations
- » Combine them with the transitivity rule

```
 (\text{you did this}) = \underbrace{ (\text{you did this})_{\vdots} }_{\text{(we did this})} \underbrace{ (\text{you did this})_{\vdots} }_{\text{s} 10 \text{ (a 3 5)} \longrightarrow \text{s} 10 \text{ 8}} \underbrace{ \frac{\text{s} 10 \text{ 8} \longrightarrow 2 \text{ 2} \longrightarrow^{\star} 2}{\text{s} 10 \text{ 8} \longrightarrow^{\star} 2}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 5)} \longrightarrow \text{s} 10 \text{ (a 3 5)} \longrightarrow^{\star} 2}{\text{s} 10 \text{ (a 3 5)} \longrightarrow^{\star} 2}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{sub 10 (add (add 1 2) (add 2 3))}}_{\text{sub 10 (add (add 1 2) (add 2 3))}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 5)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 5)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 5)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}}_{\text{trans}} \underbrace{ \frac{\text{s} 10 \text{ (a 3 6)} \longrightarrow^{\star} 2}{\text{trans}}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{trans}}_{\text{tra
```

- » Derive all necessary single-step evaluations
- » Combine them with the transitivity rule

```
(you \ did \ this) = (you \
```

- » Derive all necessary single-step evaluations
- » Combine them with the transitivity rule

Two Questions (Again)

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

- \gg Show that $C \longrightarrow^{\star} C'$
- » Given C, determine a configuration C' such that $C \longrightarrow^* C'$ and C' cannot be further reduced

Two Questions (Again)

Once we have an operational semantics, there are two questions we can ask (as PL designers and on the final exam):

- \gg Show that $C \longrightarrow^{\star} C'$
- » Given C, determine a configuration C' such that $C \longrightarrow^* C'$ and C' cannot be further reduced

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow^* ??

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow ??

If our rules are well defined, then should be easy:

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow^* ??

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) sub 10 (add 3 (add 2 3)) \longrightarrow ??

If our rules are well defined, then should be easy:

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow^* ??

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) sub 10 (add 3 (add 2 3)) \longrightarrow sub 10 (add 3 5) \longrightarrow ??

If our rules are well defined, then should be easy:

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow^* ??

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) sub 10 (add 3 (add 2 3)) \longrightarrow sub 10 (add 3 5) sub 10 (add 3 5) \longrightarrow sub 10 8 \longrightarrow ??

If our rules are well defined, then should be easy:

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow * 2 want to show

sub 10 (add (add 1 2) (add 2 3)) \longrightarrow sub 10 (add 3 (add 2 3)) sub 10 (add 3 (add 2 3)) \longrightarrow sub 10 (add 3 5) sub 10 (add 3 5) \longrightarrow sub 10 8 \longrightarrow 2

If our rules are well defined, then should be easy:

When evaluating, there are three "end" cases:

When evaluating, there are three "end" cases:

» value: we reach the end of our computation and the value of our program

$$(fun x -> x) (2 + 3) \rightarrow^{*} 5$$

When evaluating, there are three "end" cases:

- » value: we reach the end of our computation and the value of our program
- » stuck: we reach an expression that cannot be reduced, but that is not a value

$$(fun x -> x) (2 + 3) \rightarrow^{\star} 5$$

y (fun
$$x \rightarrow x$$
) \rightarrow

When evaluating, there are **three** "end" cases:

» value: we reach the end of our computation and the value of our program

» stuck: we reach an expression that cannot be reduced, but that is not a value

» diverge: the computation never reaches a point where the expression is not reducible

```
(fun x -> x) (2 + 3) \rightarrow^{*} 5
```

y (fun x
$$\rightarrow$$
 x) \rightarrow

(fun
$$x \rightarrow x x$$
) (fun $x \rightarrow x x$) \rightarrow^*
(fun $x \rightarrow x x$) (fun $x \rightarrow x x$)

moving onto big-step...

(sub 10 (add (add 1 2) (add 2 3))) ↓ 2

(sub 10 (add (add 1 2) (add 2 3))) \ \psi 2

Big-step semantics deals only with a program and its value

(sub 10 (add (add 1 2) (add 2 3))) \ \psi 2

Big-step semantics deals only with a program and its value

Notation: We write $e \Downarrow v$ to mean that e evaluates to the value v

(sub 10 (add (add 1 2) (add 2 3))) \ \psi 2

Big-step semantics deals only with a program and its value

Notation: We write $e \Downarrow v$ to mean that e evaluates to the value v

This is what we've been doing in this course so far

Example

```
\frac{n \text{ is a number}}{n \Downarrow n} \text{ numEval} \frac{e_1 \Downarrow v_1 \qquad e_2 \Downarrow v_2 \qquad v_1 \text{ is a number} \qquad v_2 \text{ is a number}}{(\text{add } e_1 \ e_2) \Downarrow v_1 + v_2} \text{addEval} \frac{e_1 \Downarrow v_1 \qquad e_2 \Downarrow v_2 \qquad v_1 \text{ is a number} \qquad v_2 \text{ is a number}}{(\text{sub } e_1 \ e_2) \Downarrow v_1 - v_2} \text{subEval}
```

Example

```
\frac{n \text{ is a number}}{n \Downarrow n} \text{ numEval}
\frac{e_1 \Downarrow v_1}{e_2 \Downarrow v_2} \frac{e_2 \Downarrow v_2}{v_1 \text{ is a number}} \frac{v_2 \text{ is a number}}{v_2 \text{ is a number}} \text{ addEval}
\frac{e_1 \Downarrow v_1}{e_2 \Downarrow v_2} \frac{e_2 \Downarrow v_2}{v_1 \text{ is a number}} \frac{v_2 \text{ is a number}}{v_2 \text{ subEval}} \text{ subEval}
```

we'll remove these side conditions once we have type-checking

Practice Problem

Write the rule for eq

Answer

Relation to Small-Step

$$e \longrightarrow^{\star} v \approx e \Downarrow v$$

The big-step relation "cuts out the middle steps" of a small-step relation

This means fewer and clearer rules, but less fine-grain control of the evaluation sequence

Note: We can't always have both small-step and big-step!

Order of Evaluation

order of evaluation $\underbrace{e_1 \Downarrow v_1} \quad e_2 \Downarrow v_2 \quad v_1 \text{ is a number} \quad v_2 \text{ is a number} \\ \text{(add } e_1 e_2) \Downarrow v_1 + v_2$

With small-step semantics, we can choose the order of evaluations based on the rules

With big-step semantics, we can't because our relation only deals with the *final* value, nothing intermediate

We will take the order of operations to be from left to right

Summary

big-step

 $e \parallel v$

e evaluates to v single-step

 $e \longrightarrow e'$

e reduces to e' in a single step

multi-step

 $e \longrightarrow \star e'$

e reduces to e' in many steps