# FIRST SEMESTER 2022-2023 COURSE HANDOUT

Date: 25.08.2022

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : EEE G512

Course Title : Embedded System Design

Instructor-in-Charge : Meetha V Shenoy Instructor (Hyderabad) : Ershad Ahmed

Lab Instructors(Pilani) : Sumitra, Anukaran Khanna

Lab Instructors(Hyderabad): Jisy N K

**1. Course Description:** Introduction to embedded systems; embedded architectures: Architectures and programming of microcontrollers, DSPs. Embedded applications and technologies; power issues in system design; introduction to software and hardware co-design.

# 2. Scope and Objective of the Course:

The course intends to cover the design issues involved in embedded systems and system-on-chip technologies. The course also deals with programming techniques, processor architectures, on-chip & off-chip protocols, performance analysis, and optimization techniques used in embedded system development. This course introduces the students to standard Embedded System Development tools and gives hands-on experience in developing various embedded applications.

| No | Course Objective                                                                                                                         |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1  | Understanding of Hardware and Software Components of a typical Embedded System                                                           |  |  |
| 2  | Understanding the challenges in "System Level Design" and developing system design skills                                                |  |  |
| 3  | Develop programming skills and practical expertise in designing, debugging, and developing small-scale and medium-scale Embedded systems |  |  |
| 4  | Introduction to advanced topics of research in the field of Embedded Systems                                                             |  |  |

#### 3. Text Books:

T1. Wolf, Wayne, Computers as Components – Principles of Embedded Computing System Design, Second Edition, Morgan-Kaufmann, 2008.

### 4. Reference Books:

- R1. Vahid, F, and Givargis, T, Embedded System Design A Unified Hardware/Software Introduction, John Wiley, 2002.
- R2. Joseph Yiu, The Definitive Guide to ARM Cortex M3/M4 Processors-Third Edition
- R3. James.K.Peckol, Embedded System Design A Contemporary Design Tool, Wiley Student Edition, 2010
- R4. Steve Furber, ARM System-on-chip Architecture, Second Edition, Pearson, 2007
- R5. 8051 Reference Manual
- R6. Atmel ATMega 128 Reference Manual

- R7. ARMv4 Reference Manual
- R8. ARMv7 Reference Manual
- R9. LPC 23xx Reference Manual
- R10. STMF407 Reference Manual
- R11. TI DSP 64xx Manual

### 5. Course Plan:

- 1. Introduction to Embedded System
  - 1.1. Introduction
    - 1.1.1. Characteristics and Embodiments of Embedded System
    - 1.1.2. Classification of Embedded Systems
    - 1.1.3. Introduction to Hardware and Software Components of an Embedded System
  - 1.2. Hardware Components of Embedded System
    - 1.2.1. Introduction to Processor Architectures
    - 1.2.2. Memory Types Organization, Cache
    - 1.2.3. Interrupts
    - 1.2.4. Basic peripherals like Timers, ADC/DAC
  - 1.3. Software components of Embedded System
    - 1.3.1. RTOS & Tasks
    - 1.3.2. Introduction to SOC design, Embedded System Design Process/Flow

# 2. Small Scale Embedded System Design

- 2.1. Problem Specification
  - 2.1.1. User and System Design Requirements
  - 2.1.2. System Block Diagram Development
  - 2.1.3. Selection of Hardware and Software Considerations
  - 2.1.4. Hardware/Software Design & Testing Considerations
  - 2.1.5. Final System Design

### 3. Embedded Architecture 1 – RISC ARM Architecture

- 3.1. Introduction to ARM CPU Architecture
- 3.2. Programmers Model of ARM CPU
  - 3.2.1. Register Organization
  - 3.2.2. Operating Modes
  - 3.2.3. Pipelining
  - 3.2.4. ARM Exception Handling
- 3.3. ARM Instruction Set

### 4. Embedded Architecture 2 –ARM-Based Microcontrollers

- 4.1. Introduction to ARMv7-Based Microcontrollers
  - 4.1.1. AMBA Bus Architecture
  - 4.1.2. GPIO, Timer, Watchdog
  - 4.1.3. Interrupt Handling -VIC, ADC/DAC
  - 4.1.4. DMAC
- 4.2. Communication Peripherals- Synchronous & Asynchronous
  - 4.2.1. SPI, I2C, I2S, UART
  - 4.2.2. CAN
  - 4.2.3. USB
  - 4.2.4. Board Design System Booting related Concepts

### 5. Embedded Architecture 3 –DSP Processors

- 5.1. Introduction to VLIW & DSP architectures
  - 5.1.1. Fixed and Floating point Datapath
  - 5.1.2. DSP Architectures Characteristics

# 6. Distributed and Multiprocessor Based System Design

- 6.1.1. Introduction to Multiprocessor, Distributed and Networked Embedded Systems
- 6.1.2. Case Studies Distributed and Multiprocessor Systems

### 7. Embedded Software Design

- 7.1. System Modeling
  - 7.1.1. Hardware-software partitioning
- 7.2. Compilers, Assemblers, and Debuggers for Embedded Sytems
- 7.3. Embedded C Programming
  - 7.3.1. Memory Management, Shared Memory
  - 7.3.2. System Initialization

### 8. Embedded Software

- 8.1. Tasks & Task management, Context Switching
- 8.2. RTS Task Scheduling Concepts, Semaphore, Mutex, Deadlocks
- 8.3. Multitasking using ARM Cortex M Architectures Introduction to RTOS Design/ Study on RTOS

# 9. Advanced Embedded System Concepts

- 9.1. Performance Analysis and Optimization
- 9.2. Accelerated Embedded System
- 9.3. Fault Tolerance and Reliability

# 5.1 Lecture Plan

| Lecture No | Topic                                                                                                                                                                                                                  | Reference                                 | Learning outcomes                                                                                                                                       |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1          | Introduction to Embedded Systems, Characteristics of Embedded System, Course Overview                                                                                                                                  | T1-Chapter 1 + Class Notes                | Motivation , Understanding the challenges in "System Level Design", Develop                                                                             |  |  |
| 2-3        | Performance Metrics, Challenges in<br>Embedded System Design, Embedded<br>System Design Process. Introduction to<br>Hardware and software components of<br>Embedded systems.                                           | T1- Chapter 2<br>,3, 4 &7                 | system design skills                                                                                                                                    |  |  |
| 4-5        | Introduction to Processor Architectures in Embedded Systems- Instruction level, Data Level & Thread-level parallel Architectures (Scalar/Superscalar/VLIW etc) Structural units in a processor and Processor Selection | R2 - Chapter 3<br>and 4.<br>T1- Chapter 4 | Understanding of Hardware and Software Components of a typical Embedded System- How to select components of an embedded system for a given application. |  |  |
| 6-7        | Memory Devices and Selection,<br>Interfacing Processor Memory + I/O<br>Devices, Introduction to Cache<br>organization                                                                                                  | T1,R2,R4                                  |                                                                                                                                                         |  |  |



| 8-13  | Introduction to ARM (RISC) architecture, Programmers Model, Operating Modes, Exception Handling, and Instruction Set( ARMv4 and ARMv7). Introduction to CISC architecture                                                                                                                           | R2,R4                          | Detailed understanding of<br>Embedded Architectures,<br>impact on system<br>development, design of the<br>embedded system |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 14-15 | AMBA Bus Architectures                                                                                                                                                                                                                                                                              | R4,<br>Programmers<br>Manual   | Understanding the Impact of the on-chip bus on system design, How to select an embedded architecture for an application.  |
| 16-17 | Embedded System Clocking, Low Power Modes                                                                                                                                                                                                                                                           | Lecture Slides+<br>DataSheets  | System Design,<br>Optimization                                                                                            |
| 18-22 | I/O Devices- Interrupt Servicing- Timing and Counting devices, GPIO, ADC, DAC, DMA Interrupt Servicing, Interrupt Servicing Mechanism, Context and Periods of Context Switching, Latency.( Study will be based on a microcontroller based on ARM Cortex M4 architecture as an example architecture) | Lecture Slides+<br>Data Sheets | Understanding of on-chip & off-chip peripherals, bus standards, and Interfacing external components.                      |
| 23-25 | Bus Standards & Architectures - I2C,<br>Microwire, CAN, I2S, UART, SPI, SSP                                                                                                                                                                                                                         |                                |                                                                                                                           |
| 26    | Case Studies Example-Small/Medium<br>Scale Embedded System Design                                                                                                                                                                                                                                   | Lecture Slides                 | System Design concept<br>through on-paper design                                                                          |
| 27-28 | Memory Management, Virtual Memory                                                                                                                                                                                                                                                                   | T1,R4                          | Impact of Memory System on overall system performance                                                                     |
| 29-31 | Introduction to RTOS for Embedded Systems - Tasks & Task Management, Context Switching.IPC, Resource Sharing - Semaphores, Deadlock ,Locks, Mutexes. RTS & RTOS - Basic Scheduling Strategies. RTOS support features in ARM-Cortex M4. RTX RTOS- Case Studies                                       | R3                             | Introduction to Real Time<br>Systems & Real Time<br>Operating Systems-<br>Designing Embedded<br>Systems with RTOS         |
| 32-33 | Embedded System modeling, Hardware<br>Software Partitioning, Compiler,<br>Assemblers, Debuggers for Embedded<br>Systems.                                                                                                                                                                            | R3                             | Advanced Embedded C concepts                                                                                              |
| 34-35 | Introduction Multiprocessor, Distributed,                                                                                                                                                                                                                                                           | Supplementary                  | Case Studies                                                                                                              |

|                                   | and Networked Embedded System           | Notes will be    |                           |
|-----------------------------------|-----------------------------------------|------------------|---------------------------|
|                                   | (Including IoT Systems)                 | provided         |                           |
| 36                                | Introduction to Advance Architectures,  | Lecture Slides+  | Introduction to DSP       |
|                                   | VLIW & DSP Architectures –Processors    | Data Sheets      |                           |
|                                   | Data Path                               |                  |                           |
| 37                                | Power Issues- CPU Power Consumption     | Supplementary    | System Design,            |
|                                   | and optimization(Covered through other  | Notes            | Optimization              |
|                                   | lectures as well)                       |                  |                           |
| 38                                | Embedded System Booting                 | R3               | System Start-up           |
|                                   |                                         |                  | considerations, System    |
|                                   |                                         |                  | Design                    |
|                                   |                                         |                  |                           |
| 39-40                             | Reliability, Fault-tolerant, and Safety | Supplementary    | Introduction to advanced  |
|                                   | Critical Embedded System Design.        | Notes, Published | areas of study & research |
| Accelerated Embedded System. [The |                                         | Papers           | in Embedded Systems       |
|                                   | topic might change depending on the     |                  |                           |
|                                   | student's interest].                    |                  |                           |

### **6. Evaluation Scheme:**

| Component                    | Duration       | weightage (%) | Date & Time              | Nature of component<br>(Close Book/ Open Book) |
|------------------------------|----------------|---------------|--------------------------|------------------------------------------------|
| Mid-semester Exam            | 90 mins        | 25            | As per time Table        | СВ                                             |
| Lab Tasks, Design<br>Project | TBA            | 30            | Continuous<br>Evaluation | OB/OL                                          |
| Study on Advanced Topics *   | For 6<br>weeks | 10            | To be Announced          | OB/OL                                          |
| Comprehensive<br>Examination | 3 hours        | 35            | As per time Table        | Part A- CB + Part B – OB/OL                    |

• Students in groups will have to refer to published papers in their chosen area and deliver two seminars and submit abstract/term paper (Details will be provided \*\*). Marks are also reserved for interaction and participation in seminars. It is mandatory to attend the presentation of all student groups.

Lab Tasks, Design Project- Will be announced separately for Pilani & Hyderabad Campus.

- **7.** Chamber Consultation Hour: Students can meet me after requesting an appointment via email: meetha.shenoy@pilani.bits-pilani.ac.in
- **8. Notices:** All notices regarding the course will be put up on the course website.

- **9. Make-up Policy:** In general, Make-up will not be granted without prior permission. If the student is unable to appear for the Mid-Semester Test/ Comprehensive Examination due to genuine exigencies, the student must refer to the procedure for applying for Make-up.
- **10. Note (if any):** It shall be the responsibility of the individual student to be regular in attending lectures and the lab sessions as per the schedule announced in time table.

Instructor-in-charge: Dr. Meetha V Shenoy Course No. EEE G512