编译原理第五章(二)

李鹏辉

2018年11月26日

1.(5.3.1):下面是设计运算符+和整数或浮点运算分量的表达式的文法。区分浮点数的方法是看它有无小数点 $E \to E + T | T$

 $T \rightarrow num.num|num$

1)给出一个SDD来确定每个项T和表达式E的类型

产生式	规则
$E \to E_1 + T$	$E.t = (E_1.t == Float T.t == Float)?Float : Integer;$
$E \to T$	E.t = T.t
$T \rightarrow num.num$	T.t = Float
$T \to num$	T.t = Integer

2)扩展1)中得到的SDD,使它可以把表达式转换为后缀表达式。使用一个单目运算符intToFloat把一个整数转换为相等的浮点数。

产生式	规则
	$E.t = (E_1.t == Float T.t == Float)?Float : Integer;$
	$E = (E_1.t == Integer \&\&T.t == Float)?intToFloat(E_1.n) T.n '+':$
$E \to E_1 + T$	$(E_1.t == Float\&\&T.t == Integer)?E_1.n intToFloat(T.n) '+':$
	$E_1.n T.n '+';$
$E \to T$	E.t = T.t, E.n = T.n
$T \rightarrow num.num$	T.t = Float, T.n = num.num
$T \rightarrow num$	T.t = Integer, T.n = num

2.(5.4.2)改写下面SDT

 $A \rightarrow A\{a\}B|AB\{b\}|0$

 $B \to B\{c\}A|BA\{d\}|1$

使得基础文法变成非左递归的。其中a,b,c,d是语义动作,0和1是终结符号。

 $A \to 0 A'$

 $A' \to \{a\}BA'|B\{b\}A'|\varepsilon$

 $B \to 1 B'$

 $B' \to \{c\}AB'|A\{d\}B'|\varepsilon$

3.(5.4.6)修改图5-25中SDD,使它包含一个综合属性B.le,即一个Box的长度。两个Box并列后得到的Box长度是这两个Box长度和,然后将你的新规则加入到图5-26中合适的位置上。

PRODUCTION	SEMANTIC RULES
$S \to B$	B.ps = 10
$B o B_1 B_2$	$B_1.ps = B.ps$
	$B_2.ps = B.ps$
	$B.ht = max(B_1.ht, B_2.ht)$
	$B.dp = max(B_1.dp, B_2.dp)$
	$B.le = B_1.le + B_2.le$
	$B_1.ps = B.ps$
	$B_2.ps = 0.7 \times B.ps$
$B \to B_1 \ sub \ B_2$	$B.ht = max(B_1.ht, B_2.ht - 0.25 \times B.ps)$
	$B.dp = max(B_1.dp, B_2.dp + 0.25 \times B.ps)$
	$B.le = B1.e + 0.7 \times B_2.le$
$P \rightarrow (P)$	$B_1.ps = B.ps$
	$B.ht = B_1.ht$
$B o (B_1)$	$B.dp = B_1.dp$
	$B.le = B_1.le$
	B.ht = getHt(B.ps, text.lexval)
$B \to text$	B.dp = getDp(B.ps, text.lexval)
	B.le = getLe(B.ps, textlexval)