

Córdoba, 14 de noviembre de 2016

Métodos Numéricos en Computadoras - Segundo Parcial

Massahara			
Nombre:			

Problema nº 1: Considere la siguiente función definida para x en el intervalo [0,1]

$$f(x) = \cos(x) \ln(1+x^2)$$

- a) Generar una tabla que muestre los valores de x y f (x) en el intervalo dado, con espaciado de h = 0.1
- b) A partir de la tabla del inciso a), calcule $\frac{df}{dx}$ usando aproximaciones por diferencias finitas centradas en los puntos interiores, y operadores hacia adelante o hacia atrás en los extremos, según corresponda. Escriba los valores obtenidos en una tabla.
- c) Calcular $\int_{-1}^{1} \left(\frac{df}{dx}\right) dx$ usando el método del trapecio a partir de los valores obtenidos en b). Escriba el valor obtenido para la integral, y calcule el error absoluto exacto.

Problema nº 2: Dados los datos de la siguiente tabla,

x	1.0	1.3	1.4	1.45	1.6	1.72	1.8	1.93	2.0
f(x)	5.381	8.672	9.592	9.988	10.853	11.146	11.134	10.780	10.435

- a) Genere una tabla de valores equiespaciados empleando el método de spline cubicas, con h = 0.1.
- b) Calcule la integral en el intervalo [1,2] mediante el método de Simpson 1/3, utilizando los valores obtenidos.

Problema nº 3: El metodo de Euler implicito para resolver ecuaciones diferenciales ordinaras de la forma $\frac{dy}{dx} = f(x, y)$, consiste en modificar el metodo de Euler tradicional de manera que

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$
 (#)

Notar que en la ecuación de arriba, se debe despejar y_{n+1} para obtener cada nuevo paso. Resuelva la siguiente ecuación usando este metodo

$$\frac{dy}{dx} = x^2 + y$$
 $x \in [0,1], y(0) = 1$

Para ello siga los siguientes pasos

- a) Escriba la ecuación (#) para este caso particular, escribiendo explicitamente $f(x_{n+1}, y_{n+1})$.
- b) Despeje y_{n+1} de la ecuacion obtenida en a).

INSTITUTO UNIVERSITARIO AERONAUTICO

- c) Desarrolle un algoritmo que resuelva la ecuacion diferencial usando lo obtenido en b) con h = 0.01 (escriba pseudo-código y desarrolle el programa correspondiente). Escriba en una tabla los valores de (x_i, y_i) , con pasos para x_i de 0.1
- d) Repita el inciso c) usando Euler estandar, y escriba los valores obtenidos en la misma tabla del punto c).