Convolutional Neural Networks Project: Street View Housing Number Digit Recognition

Objective

To build a CNN model that can recognize the digits in the images.

Dataset

Here, I will use a subset of the original data to save some computation time. The dataset is provided as a .h5 file. The basic preprocessing steps have been applied on the dataset.

Mount the drive

I started by mounting the Google drive.

In [26]:

from google.colab import drive

drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

Importing the necessary libraries

In [27]:

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

 ${\bf from} \ {\bf sklearn.model_selection} \ {\bf import} \ {\bf train_test_split}$

from sklearn.preprocessing import MinMaxScaler

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, BatchNormalization, Dropout, Flatten, LeakyReLU

 $\textbf{from} \ tensorflow. keras. losses \ \textbf{import} \ categorical_crossentropy$

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.utils import to_categorical

Let us check the version of tensorflow.

In [28]:

print(tf.__version__)

2.8.0

Load the dataset

- load the dataset that is available as a .h5 file.
- Split the data into the train and the test dataset.

In [30]:

import h5py

Open the file as read only

can make changes in the path as required

h5f = h5py.File('/content/SVHN_single_grey1.h5', 'r')

```
X_{train} = h5f['X_{train'}][:]
y_train = h5f['y_train'][:]
X_{\text{test}} = h5f['X_{\text{test}}'][:]
y_test = h5f['y_test'][:]
 # Close this file
h5f.close()
check the number of images in the training and the testing dataset.
len(X_train), len(X_test)
                                                                                                                                                                Out[31]:
(42000, 18000)
Observation:
  • There are 42,000 images in the training data and 18,000 images in the testing data.
Visualizing images
  • Use X_train to visualize the first 10 images.

    Use Y_train to print the first 10 labels.

visualizing the first 10 images in the dataset
 # Visualizing the first 10 images in the dataset and printing their labels
 %matplotlib inline
 import matplotlib.pyplot as plt
 plt.figure(figsize = (10, 1))
for i in range(10):
   plt.subplot(1, 10, i+1)
   plt.imshow(X_train[i], cmap = "gray") # Write the function to visualize images
   plt.axis('off')
 plt.show()
 print('label for each of the above image: %s' % (y_train[0:10]))
```


label for each of the above image: [2 6 7 4 4 0 3 0 7 3]

For Data preparation

Load the the train and the test dataset

- Print the shape and the array of pixels for the first image in the training dataset.
- Reshape the train and the test dataset because we always have to give a 4D array as input to CNNs.
- Normalize the train and the test dataset by dividing by 255.
- · Print the new shapes of the train and the test dataset.
- · One-hot encode the target variable.

In [33]:

In [31]:

In [32]:

```
# Shape and the array of pixels for the first image
print("Shape:", X_train[0].shape)
print()
print("First image:\n", X_train[0])
```

```
Shape: (32, 32)
First image:
[[\ 33.0704\ 30.2601\ 26.852\ ...\ 71.4471\ 58.2204\ 42.9939]
[25.2283 25.5533 29.9765 ... 113.0209 103.3639 84.2949]
[26.2775 22.6137 40.4763 ... 113.3028 121.775 115.4228]
[28.5502 36.212 45.0801 ... 24.1359 25.0927 26.0603]
[38.4352 26.4733 23.2717 ... 28.1094 29.4683 30.0661]
[50.2984 26.0773 24.0389 ... 49.6682 50.853 53.0377]]
                                                                                                                                                         In [34]:
 # Reshaping the dataset to be able to pass them to CNNs. Remember that we always have to give a 4D array as input to CNNs
 X_train = X_train.reshape(X_train.shape[0], 32, 32, 1)
X_{\text{test}} = X_{\text{test.reshape}}(X_{\text{test.shape}}[0], 32, 32, 1)
                                                                                                                                                         In [35]:
 # Normalize inputs from 0-255 to 0-1
X_{train} = X_{train} / 255.0
X_test = X_test / 255.0
                                                                                                                                                         In [36]:
 # New shape
 print('Training set:', X train.shape, y train.shape)
 print('Test set:', X_test.shape, y_test.shape)
Training set: (42000, 32, 32, 1) (42000,)
Test set: (18000, 32, 32, 1) (18000,)
encode the labels in the target variable y_train and y_test
                                                                                                                                                         In [37]:
 # Write the function and appropriate variable name to one-hot encode the output
y_train = tf.keras.utils.to_categorical(y_train)
y_test = tf.keras.utils.to_categorical(y_test)
 # test labels
y_test
                                                                                                                                                        Out[37]:
array([[0., 1., 0., ..., 0., 0., 0.],
    [0., 0., 0., ..., 1., 0., 0.],
    [0., 0., 1., ..., 0., 0., 0.],
    [0., 0., 0., ..., 1., 0., 0.],
    [0., 0., 0., ..., 0., 0., 1.],
    [0., 0., 1., ..., 0., 0., 0.]], dtype=float32)
Observation:
  • Notice that each entry of the target variable is a one-hot encoded vector instead of a single label.
Model Building
Now that I have done data preprocessing, let's build a CNN model.
                                                                                                                                                         In [38]:
 # Fixing the seed for random number generators
 np.random.seed(42)
 import random
 random.seed(42)
tf.random.set_seed(42)
```

Model Architecture

- function that returns a sequential model with the following architecture:
 - First Convolutional layer with 16 filters and the kernel size of 3x3. Use the 'same' padding and provide the input shape = (32, 32, 1)
 - Add a LeakyRelu layer with the slope equal to 0.1
 - Second Convolutional layer with 32 filters and the kernel size of 3x3 with 'same' padding
 - Another LeakyRelu with the slope equal to 0.1
 - A max-pooling layer with a pool size of 2x2
 - Flatten the output from the previous layer
 - Add a dense layer with 32 nodes
 - Add a LeakyRelu layer with the slope equal to 0.1
 - Add the final output layer with nodes equal to the number of classes, i.e., 10 and 'softmax' as the activation function
 - Compile the model with the loss equal to categorical_crossentropy, optimizer equal to Adam(learning_rate = 0.001), and metric equal to 'accuracy'. Do not fit the model here, just return the compiled model.
- Call the function cnn_model_1 and store the output in a new variable.
- · Print the summary of the model.
- Fit the model on the training data with a validation split of 0.2, batch size = 32, verbose = 1, and epochs = 20. Store the model building history to use later for visualization.

Build and train a CNN model as per the above mentioned architecture

```
In [41]:
# Define the model
def cnn_model_1():
  model = Sequential()
  # Add layers as per the architecture mentioned above in the same sequence
  model.add(Conv2D(filters=16, kernel size=(3, 3), padding="same", input shape=(32, 32, 1)))
  model.add(LeakyReLU(0.1))
  model.add(Conv2D(filters=32, kernel_size=(3, 3), padding="same"))
  model.add(LeakyReLU(0.1))
  model.add(MaxPool2D(pool_size=(2, 2)))
  model.add(Flatten())
  model.add(Dense(32))
  model.add(LeakyReLU(0.1))
  model.add(Dense(10, activation='softmax'))
  # Compile the model
  model.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(learning_rate = 0.001), metrics=['accuracy'])
  return model
                                                                                                                                               In [42]:
# Build the model
model_1 = cnn_model_1()
                                                                                                                                               In [43]:
# Print the model summary
model_1.summary()
```

```
Layer (type)
          Output Shape
                     Param #
                        _____
conv2d 2 (Conv2D)
             (None, 32, 32, 16)
                        160
leaky_re_lu_3 (LeakyReLU) (None, 32, 32, 16)
                         0
conv2d_3 (Conv2D)
             (None, 32, 32, 32)
                        4640
leaky_re_lu_4 (LeakyReLU) (None, 32, 32, 32)
                         0
max_pooling2d_1 (MaxPooling (None, 16, 16, 32)
2D)
flatten_1 (Flatten)
           (None, 8192)
dense_2 (Dense)
                      262176
            (None, 32)
leaky_re_lu_5 (LeakyReLU) (None, 32)
                        0
                      330
dense_3 (Dense)
            (None, 10)
______
Total params: 267,306
Trainable params: 267,306
Non-trainable params: 0
# Fit the model
history_model_1 = model_1.fit(
    X_train, y_train,
    epochs=20,
    validation_split=0.2,
    batch size = 32,
    verbose=1)
Epoch 1/20
1050/1050 [
                    :=====] - 62s 58ms/step - loss: 1.1710 - accuracy: 0.6114 - val loss: 0.6506 - val accuracy: 0.8094
Epoch 2/20
Epoch 3/20
Epoch 4/20
1050/1050 [=
       ================================] - 61s 58ms/step - loss: 0.3886 - accuracy: 0.8863 - val_loss: 0.4423 - val_accuracy: 0.8768
Epoch 5/20
1050/1050 [=
                   =======] - 61s 58ms/step - loss: 0.3420 - accuracy: 0.8984 - val loss: 0.4656 - val accuracy: 0.8717
Epoch 6/20
1050/1050 [
                       ==] - 61s 58ms/step - loss: 0.3060 - accuracy: 0.9083 - val_loss: 0.4702 - val_accuracy: 0.8720
Epoch 7/20
1050/1050 [
                       ==] - 61s 58ms/step - loss: 0.2751 - accuracy: 0.9176 - val_loss: 0.4600 - val_accuracy: 0.8736
Fnoch 8/20
Epoch 9/20
Epoch 10/20
Epoch 11/20
          1050/1050 [===
Epoch 12/20
Epoch 13/20
Epoch 14/20
Epoch 15/20
1050/1050 [=
                     :====] - 61s 58ms/step - loss: 0.1228 - accuracy: 0.9618 - val loss: 0.6122 - val accuracy: 0.8669
Epoch 16/20
1050/1050 [=:
                    =====] - 61s 58ms/step - loss: 0.1092 - accuracy: 0.9654 - val loss: 0.6472 - val accuracy: 0.8685
Epoch 17/20
Epoch 18/20
Epoch 19/20
1050/1050 [======
             Epoch 20/20
```

:===========] - 62s 59ms/step - loss: 0.0829 - accuracy: 0.9731 - val_loss: 0.7561 - val_accuracy: 0.8699

In [44]:

1050/1050 [=

Model: "sequential_1"

```
# Plotting the accuracies

dict_hist = history_model_1.history

list_ep = [i for i in range(1, 21)]

plt.figure(figsize = (8, 8))

plt.plot(list_ep, dict_hist['accuracy'], ls = '--', label = 'accuracy')

plt.plot(list_ep, dict_hist['val_accuracy'], ls = '--', label = 'val_accuracy')

plt.ylabel('Accuracy')

plt.xlabel('Epochs')

plt.legend()

plt.show()
```


Observations:__

- --The model did poorly on the validation data; the model looks overfitting on the training data.
- --The validation accuracy didn't really change after 2.5 epochs.
- --The increasing rate of accuracy is lower after 2.5 epochs.

build another model and see if we can get a better model with generalized performance.

First, we need to clear the previous model's history from the Keras backend. Also, let's fix the seed again after clearing the backend.

Clearing backend

from tensorflow.keras import backend

backend.clear_session()

In [47]:

In [46]:

Fixing the seed for random number generators

np.random.seed(42)

import random

random.seed(42)

tf.random.set_seed(42)

Second Model Architecture

- function that returns a sequential model with the following architecture:
 - First Convolutional layer with 16 filters and the kernel size of 3x3. Use the 'same' padding and provide the input shape = (32, 32, 1)
 - Add a LeakyRelu layer with the slope equal to 0.1
 - Second Convolutional layer with 32 filters and the kernel size of 3x3 with 'same' padding
 - Add LeakyRelu with the slope equal to 0.1
 - Add a max-pooling layer with a pool size of 2x2
 - Add a BatchNormalization layer
 - Third Convolutional layer with 32 filters and the kernel size of 3x3 with 'same' padding
 - Add a LeakyRelu layer with the slope equal to 0.1
 - Fourth Convolutional layer 64 filters and the kernel size of 3x3 with 'same' padding
 - Add a LeakyRelu layer with the slope equal to 0.1
 - Add a max-pooling layer with a pool size of 2x2
 - Add a BatchNormalization layer
 - Flatten the output from the previous layer
 - Add a dense layer with 32 nodes
 - Add a LeakyRelu layer with the slope equal to 0.1
 - Add a dropout layer with the rate equal to 0.5
 - Add the final output layer with nodes equal to the number of classes, i.e., 10 and 'softmax' as the activation function
 - Compile the model with the categorical_crossentropy loss, adam optimizers (learning_rate = 0.001), and metric equal to 'accuracy'. Do not fit the model here, just return the compiled model.
- Call the function cnn_model_2 and store the model in a new variable.
- · Print the summary of the model.

Define the model

• Fit the model on the train data with a validation split of 0.2, batch size = 128, verbose = 1, and epochs = 30. Store the model building history to use later for visualization.

Build and train the second CNN model as per the above mentioned architecture

In [52]:

```
def cnn model 2():
  model = Sequential()
  # Add layers as per the architecture mentioned above in the same sequence
  model.add(Conv2D(filters=16, kernel_size=(3, 3), padding="same", input_shape=(32, 32, 1)))
  model.add(LeakyReLU(0.1))
  model.add(Conv2D(filters=32, kernel_size=(3, 3), padding="same"))
  model.add(LeakyReLU(0.1))
  model.add(MaxPool2D(pool_size=(2, 2)))
  model.add(BatchNormalization())
  model.add(Conv2D(filters=32, kernel_size=(3, 3), padding="same"))
  model.add(LeakyReLU(0.1))
  model.add(Conv2D(filters=64, kernel_size=(3, 3), padding="same"))
  model.add(LeakyReLU(0.1))
  model.add(MaxPool2D(pool_size=(2, 2)))
  model.add(BatchNormalization())
  model.add(Flatten())
  model.add(Dense(32))
  model.add(LeakyReLU(0.1))
  model.add(Dropout(0.5))
  model.add(Dense(10, activation='softmax'))
  # Compile the model
  model.compile(
    loss='categorical_crossentropy',
    optimizer=tf.keras.optimizers.Adam(learning_rate = 0.001),
    metrics=['accuracy'])
```

In [53]:

```
# Build the model
```

model_2 = cnn_model_2()

In [54]:

Print the summary

model_2.summary()

Model: "sequential_2"

Layer (type) Output Shape Param #
conv2d_8 (Conv2D) (None, 32, 32, 16) 160
leaky_re_lu_10 (LeakyReLU) (None, 32, 32, 16) 0
conv2d_9 (Conv2D) (None, 32, 32, 32) 4640
leaky_re_lu_11 (LeakyReLU) (None, 32, 32, 32) 0
max_pooling2d_4 (MaxPooling (None, 16, 16, 32) 0 2D)
batch_normalization_4 (Batc (None, 16, 16, 32) 128 hNormalization)
conv2d_10 (Conv2D) (None, 16, 16, 32) 9248
leaky_re_lu_12 (LeakyReLU) (None, 16, 16, 32) 0
conv2d_11 (Conv2D) (None, 16, 16, 64) 18496
leaky_re_lu_13 (LeakyReLU) (None, 16, 16, 64) 0
max_pooling2d_5 (MaxPooling (None, 8, 8, 64) 0 2D)
batch_normalization_5 (Batc (None, 8, 8, 64) 256 hNormalization)
flatten_2 (Flatten) (None, 4096) 0
dense_2 (Dense) (None, 32) 131104
leaky_re_lu_14 (LeakyReLU) (None, 32) 0
dropout (Dropout) (None, 32) 0
dense_3 (Dense) (None, 10) 330

Fit the model

Total params: 164,362 Trainable params: 164,170 Non-trainable params: 192

```
history_model_2 = model_2.fit(
    X_train, y_train,
    epochs=30,
    validation_split=0.2,
    batch_size = 128,
    verbose=1)
```

In [56]:

```
Epoch 1/30
Epoch 2/30
Epoch 3/30
Epoch 4/30
263/263 [===
    ========] - 99s 378ms/step - loss: 0.4801 - accuracy: 0.8541 - val loss: 0.4162 - val accuracy: 0.8855
Epoch 5/30
Epoch 6/30
Epoch 7/30
Epoch 8/30
Epoch 9/30
Epoch 10/30
  263/263 [=====
Fnoch 11/30
Epoch 12/30
Epoch 13/30
Epoch 14/30
Epoch 15/30
Epoch 16/30
Epoch 17/30
Epoch 18/30
263/263 [=====
  Epoch 19/30
263/263 [======
    =======] - 101s 383ms/step - loss: 0.2074 - accuracy: 0.9322 - val loss: 0.3811 - val accuracy: 0.9024
Epoch 20/30
Epoch 21/30
Epoch 22/30
Epoch 23/30
Epoch 24/30
Epoch 25/30
Epoch 26/30
Epoch 27/30
Epoch 28/30
Epoch 29/30
Epoch 30/30
```

Plotting the validation and training accuracies

Write your observations on the below plot

```
# Plotting the accuracies

dict_hist = history_model_2.history

list_ep = [i for i in range(1, 31)]

plt.figure(figsize = (8, 8))

plt.plot(list_ep, dict_hist['accuracy'], ls = '--', label = 'accuracy')

plt.plot(list_ep, dict_hist['val_accuracy'], ls = '--', label = 'val_accuracy')

plt.ylabel('Accuracy')

plt.xlabel('Epochs')
```

In [58]:

plt.legend()

plt.show()

Observations:__

- --This model has reduced the overfitting as compared to the previous model but still the validation data accuracy is a bit lower than train accuracy.
- --There is a rapid increase up to around 5 epochs and then seems to have very lower increase after that.
- --The validation accuracy is fluctuating but generally it is also increasing with the increase in epochs.
- --The test model is giving close to 90% accuracy at 30 epochs while accuracy for training model for 30 epochs, is about 95%.
- --Accuracy of this model is better than the 1st model.

Predictions on the test data

- Make predictions on the test set using the second model.
- Print the obtained results using the classification report and the confusion matrix.
- · Final observations on the obtained results.

Make predictions on the test data using the second model

In [59]:

Make prediction on the test data using model_2

test_pred = model_2.predict(X_test)

test_pred = np.argmax(test_pred, axis = -1)

Note: Earlier, we noticed that each entry of the target variable is a one-hot encoded vector, but to print the classification report and confusion matrix, we must convert each entry of y_test to a single label.

In [60]:

Converting each entry to single label from one-hot encoded vector

y_test = np.argmax(y_test, axis = -1)

Write your final observations on the performance of the model on the test data.

In [61]:

Importing required functions

from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix

Printing the classification report

```
print(classification_report(y_test, test_pred))
# Plotting the heatmap using confusion matrix
cm = confusion_matrix(y_test, test_pred)
plt.figure(figsize = (8, 5))
sns.heatmap(cm, annot = True, fmt = '.0f')
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.show()
```

	precision		recall f1-score		re su	support	
0	0	.92	0.95	0.93	3 18	14	
1	0	.90	0.91	0.91 0.91		1828	
2	0	0.94		0.93	3 18	1803	
3	0	.91	0.88	0.89	9 17	1719	
4	. 0	.93	0.93	0.93	3 18	1812	
5	0	.92	0.91	0.92	2 17	68	
6	0	.91	0.90	0.90) 18	32	
7	0	.94	0.92	0.93	3 18	08	
8	0	.89	0.90	0.89	9 18	12	
9	0	.89	0.92	0.90) 18	1804	
accuracy		0.91		180	18000		
macro avg 0.		0.9	91 (0.91	0.91	18000	
weighted avg		0.	.91	0.91	0.91	18000	

Final Observations:_

- --The model gives about 90% accuracy on the test data which is comparable to the accuracy of the validation data.
- --This implies that the model is giving a generalized performance.
- --The recall has a very high range (82-95)% which implies that the model is good at identifying most of the objects. Model is able to identify about 95% of image 0 but can only identify only ~82% of image 3.
- --Generally the model could distiguish individual digits well.
- -- CNN works better than ANN when identifying images.