

Farrington and Noufaily

Kasper Schou Telkamp

Section for Dynamical Systems

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

- Data exploration
 - VTEC / STEC
 - Prepare the data for modelling with surveillance
- Farrington
 - Implementation
 - Results
- Noufaily
 - Implementation
 - Results

Data exploration VTEC / STEC

Date	ageGroup	у	n
2008-01-01	<1 year	2	64137
2008-01-01	1-4 years	2	259910
2008-01-01	5-14 years	2	680529
2008-01-01	15-24 years	1	631724
2022-12-01	55-64 years	2	773073
2022-12-01	65-74 years	5	621965
2022-12-01	75-84 years	4	449423
2022-12-01	85+ years	3	132181

Data exploration

DTU

VTEC / STEC

Prepare the data for modelling with surveillance

```
# Import libraries
library(readr)
library(dplyr)
library(tidyr)
library(surveillance)
# Import the data
dat <- read rds(file = "../../data/processed/dat.rds")</pre>
# Only consider some of the data
v <- dat %>%
  filter(caseDef == "Shiga- og veratoxin producerende E. coli.") %>%
  group by (Date, ageGroup) %>%
 reframe(v = sum(cases), n = sum(n))
# Widen observations into a matrix format
observed <- v %>%
  select(-n) %>%
  pivot_wider(
   names_from = c(ageGroup),
   names_sep = ".",
    values_from = v) %>%
  arrange(Date)
# Widen population sizes into a matrix format
population <- v %>%
  select(-y) %>%
  pivot_wider(
    names_from = c(ageGroup),
   names sep = ".".
 values_from = n) %>%
arrange(pape)te
                                                                                  Automated and Early Detection of Disease Outbreaks
                                                                                                                                    2023-03-02
```



```
# Specify the controls for the Farrington method
con.farrington <- list(
    range = NULL, b = 5, w = 3,
    reweight = TRUE, weightsThreshold = 1,
    verbose = TRUE, glmWarnings = TRUE,
    alpha = 0.05, trend = TRUE, pThresholdTrend = 0.05,
    limit54 = c(5,4), powertrans = "2/3",
    fitFun = "algo.farrington.fitGLM.flexible",
    populationOffset = TRUE,
    noPeriods = 1, pastWooksNotIncluded = NULL,
    thersholdMethod = "delta"
)

# Execute the Farrington method
STEC_farrington <- farringtonFlexible(sts = STEC, con.farrington)</pre>
```

Farrington

DTU

Results

Shiga- og veratoxin producerende E. coli.

Implementation


```
# Specify the controls for the Noufaily method
con.noufaily <- list(
    range = NULL, b = 5, w = 3,
    reweight = TRUE, weightsThreshold = 2.58,
    verbose = TRUE, glmWarnings = TRUE,
    alpha = 0.05, trend = TRUE, pThresholdTrend = 0.05,
    limit54 = c(5,4), powertrans = "2/3",
    fitFun = "algo.farrington.fitGLM.flexible",
    populationOffset = TRUE,
    noPeriods = 1, pastWooksNotIncluded = NULL,
    thersholdMethod = "delta"
)

# Execute the Noufaily method
STEC_noufaily <- farringtonFlexible(sts = STEC, con.noufaily)</pre>
```

Noufaily

DTU

Results

Shiga- og veratoxin producerende E. coli.

