

PreOM 2023 - 14.03.2023 Dzień 2

PreOM 2023 - Dzień 2

Zadanie 1. Niech $n \ge 2$. Na szachownicy $n \times n$ zaznaczono 2n pól. Udowodnij, że istnieje takie k > 1, że można wybrać 2k różnych zaznaczonych pól a_1, a_2, \ldots, a_{2k} , w taki sposób, że dla każdego i pola a_i, a_{i+1} są albo w tej samej kolumnie albo w tym samym wierszu oraz jeśli a_i, a_{i+1} są w tym samym wierszu, to następna para a_{i+1}, a_{i+2} jest w tej samej kolumnie i na odwrót, jeśli a_i, a_{i+1} są w tej samej kolumnie, to a_{i+1}, a_{i+2} są w tym samym rzędzie. (Oczywiście $a_{2k+1} = a_1, a_{2k+2} = a_2$)

Zadanie 2. Niech $a_1, a_2, \ldots, a_{2n+1}$ będzie multizbiorem liczb całkowitych o takiej własności, że jeśli usuniemy dowolny jego element pozostałe 2n elementów można podzielić na dwa multizbiory po n elementów każdy, w taki sposób, że sumy tych multizbiorów są równe. Udowodnij, że $a_1 = a_2 = \ldots = a_{2n+1}$.

Zadanie 3. Niech ABCD będzie czworokątem wypukłym. Przypuśćmy, że proste AB i CD przecinają się w punkcie E, a punkt B leży między A i E. Przypuśćmy, że proste AD i BC przecinają się w punkcie F, a punkt D leży między A i F. Załóżmy, że okręgi opisane na trójkątach BEC i CFD przecinają się w punkcie C oraz P. Udowodnij, że $\triangleleft BAP = \triangleleft CAD$ wtedy i tylko wtedy, gdy $BD \parallel EF$.

Zadanie 4. Niech p będzie liczbą pierwszą, a a_1, \ldots, a_p będą liczbami całkowitymi. Pokaż, że istnieje liczba całkowita k taka, że liczby $a_1 + k, a_2 + 2k, \ldots, a_p + pk$ dają co najmniej $\frac{p}{2}$ różnych reszt modulo p.

Rozwiązania należy wysłać na adres solvy012@gmail.com, najpóźniej dnia: 19.03.2023.

Prace powinny być opatrzone numerami zadania oraz kontestu w tytule maila.

Przypominamy o wysyłaniu zadań w osobnych mailach (1 zadanie = 1 mail)