

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Mauro NAPOLETANO, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/EP03/12071

INTERNATIONAL FILING DATE: October 28, 2003

FOR: 9A-AZALIDES WITH ANTI-INFLAMMATORY ACTIVITY

REQUEST FOR PRIORITY UNDER 35 U.S.C. 119 AND THE INTERNATIONAL CONVENTION

Commissioner for Patents Alexandria, Virginia 22313

Sir:

'n

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

COUNTRY

APPLICATION NO

DAY/MONTH/YEAR

Italy MI2002A 002292 29 October 2002

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/EP03/12071. Receipt of the certified copy(s) by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

> Respectfully submitted, OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Customer Number

22850

(703) 413-3000 Fax No. (703) 413-2220 (OSMMN 08/03)

Norman F. Oblon Attorney of Record Registration No. 24,618 Surinder Sachar

Registration No. 34,423 Corwin P. Umbach, Ph.D.

Registration No. 40,211

Rec'd PST/PTO 15 APR 2005- PUS / 12U/ 1

REC'D 2 7 NOV 2003.

IPO PO

10/531462

Mod. C.E. - 1-4

Ministero delle Attività Produttive

Direzione Generale per lo Sviluppo Produttivo e la Competitività
Ufficio Italiano Brevetti e Marchi

Ufficio G2

Autenticazione di copia di documenti relativi alla domanda di brevetto per:

Invenzione Industriale

MI2002 A 002292

Si dichiara che l'unita copia è conforme ai documenti originali depositati con la gomanga di brevetto sopraspecificata, i cui dati risultano dall'accluso processo verbale di deposito.

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

IL DIRIGENTE

Dr.ssa Paola Giuliano

AL MINISTERO DELL'INDUSTRIA DE COMMERCIO E DELL'ARTIGIANATO UFFICIO ITALIANO BREVETTI E MARCHI - ROMA DOMANDA DI BREVETTO PER INVENZIONE INDUSTRIALE, DEPOSITO RISERVE, ANTICIPATA ACCESSIBILITÀ AL	MODULO A TOTAL PUBBLICO
A. RICHIEDENTE (I) ZAMBON GROUP S.p.A.	ISP
VICENZA (VI)	codics 100691950240
Residenza	
2) Denominazione	codice Lilling
Residenza	
B. BAPPRESENTANTE DEL RICHIEDENTE PRESSO L'ULB.M.	
	l fiscale
ZAMBON GROUP S.p.A.	IMI
via Lillo del Duca null littà (BRESSO	cap [2009] (prov) [M]
C. DOMICILIO ELETTIVO destinatario	<u> </u>
	cap L (prov) L
(explored (explored) 1CO7H grapho/sottographo LLL/LL	
ο. πιοιο casse proposa (saduras) (s	
ya-Azariur au avviviu amana	
ANTHORNE ACCESSIBILITÀ AL PHERLUCO: SI L. NO LE SE ISTANZA: DATA L.L./L	1/ L № PROTOCOŁLO LILILI
ANTICIPATA ACCESSIBILITA AL FUBBLICO: GI CO INO CO	comome name
NAPOLETIANO Mauro	ondo l
1) MEREU Andrea 4) ORNAGHI Ferr	nando
F. PRIORITÀ alleg	SCHOGLIMENTO RISERVE
nazione o organizzazione tipo di priorità numero di domanda data di deposito S/	R Data 14 Flotocomo
1) [
2)	·
9. CENTRO ABILITATO DI RACCOLTA COLTURE DI MICRORGANISMI, denominazione	
R. ANHOTAZIDNI SPECIALI TOTALINI SPECIALI TOTALINI SPECIALI TOTALINI SPECIALI TOTALINI SPECIALI	378WW 378WW 378WW
DOCUMENTAZIONE ALLEGATA	SCIOGLIMENTO RISERVE Data N° Protocollo
N. es. Doc. 1) PROV n. pag. 15.6 riassunto con disegno principale, descrizione e rivendicazioni fobbligatorio descrizione	السنسا/ليا/ليا/ليا
The second of complete	
500. 27	
Doc. 3) I RIS TERROR OTHER AREA FOR PROGRAS TITLE IN THE PROGRAS TO THE PROGRAS T	
Doc. 4) [1] Fils designazione inventore	
Doc. 5) Ris documenti di priorità con traduzione in italiano	
Doc. 6) Ris autorizzazione o atto di cessione	
Doc. 7)	obbfigatorlo
TIRMA DEL MICHEDENTE (I)	y account
Setano	Panossian
DEL PRESENTE ATTO SI BICHIEDE COPIA AUTENTICA SI/HO ISI	Albo 282 BM
DEL PRESENTE ATTO OF MONEYS OF AN AVE.	4.5
C.C.I.A.A. MILANO	codice 15
「明報度開始展集集 日本 MI2002A 002292 Ren A	
VERRALE DI DEPOSITO NUMERO DI DOMANDA	del mese di OTTOBRE
L'anno miniminarione DUEMTLADUE CANAL ARIA ENTINOVE	
l'anno mueneveceme i(i) richiedente(i) sopraindicato(i) ha(hanno) presentato a me sottoscritto la presente demanda, constitutation [1] togli ag	giunityi per la concessione del brevetto soprariportato.
5 5 2 2 2 3	
C 3	
IL DEPOSITANTE	CULPICIALE REMANTE
Ozenova Ozenova	MICORTONESI

innor a index.

	AGGIUMIA MUDULU A	
OGLIO AGGIUNTIVO n. [O.1] di totali [O.1] DOMANDA N. [MI 2002A 0022	292 REG. A	
RICHIEDENTE (I)	N.G.	
Denominazione		
Residenza	codice	
Denominazione .	لبا لــــــــــــا	
Bookdottio		
Denominazione		
Residenza	codice	
J Genominazions		
Residenza	codice	
	٠ ــــا اــــــــــــــــــــــــــــــ	
Residenza	codice	
Qenominazione	ليا	
Residenza	codice	
INVENTORI DESIGNATI		
coductions name . coductions name		
5 MORAZZONI Gabriele		
6 PELLACINI Franco		
	·	
. PRIORITÀ	SCIOGLIMENTO RISERVE	
nazione o organizzazione tipo di priorità · numero di domanda data di deposito	allegato Data № Protocollo	
FIRMA DEL (I) RICHIEDENTE (I)		
Stefano Panossian		
N. iscriz. Albo 282 BM	1	

RIASSUNTO INVENZIONE CON DISEGNO PROPERTIES LE RESCRIZIONE E RIVENDICAZIONE MI 2002A OU RESCRIZIONE E RIVENDICAZIONE NUMERO BREVETTO	DATA DI DEPOSITO DATA DI RILASCIO LI/LI/LIII
n. ππου 9a-Azalidi ad attività antiinfiammator	ria
L. BIASSUHTO	

Vengono descritti macrolidi ad attività antiinfiammatoria e più in particolare, 9a-azalidi privi del cladinosio in posizione 3 ad attività antiinfiammatoria, loro sali farmaceuti camente accettabili e composizioni farmaceutiche che li contengono in qualità di principio attivo.

M. DISEGNO

"9a-Azalidi ad attività antiinfiammatoria"

Descrizione

- 2 -

La presente invenzione riguarda macrolidi ad attività antiinfiammatoria e più in particolare, riguarda 9a-azalidi privi del cladinosio in posizione 3 ad attività antiinfiammatoria, loro sali farmaceuticamente accettabili e composizioni farmaceutiche che li contengono in qualità di principio attivo. MI 2002 A 0 0 2 2 9 È noto che numerosi antibiotici, in aggiunta alle loro proprietà antibiotiche, sono dotati di proprietà antiinfiammatorie [Clin. Immunother., 1996, 6, 454-464].

Azitromicina (The Merck Index, XIII edizione, n° 917, pag. 159) è il prototipo di una classe di macrolidi antibiotici definiti comunemente azalidi ampiamente utilizzati in terapia nel trattamento di infezioni delle alte e basse vie respiratorie, di infezioni odontostomatologiche, della cute, dei tessuti molli e nelle uretriti non gonococciche (da Chlamydia trachomatis).

Le azalidi possiedono rispetto ai macrolidi classici un esteso spettro d'azione, una migliore penetrazione tessutale ed una emivita che ne permette un'unica somministrazione giornaliera.

L'interesse della comunità scientifica si è recentemente rivolto verso le attività immunomodulatorie ed antiinfiammatorie degli antibiotici macrolidi [Journal of Antimicrobial Chemotherapy, 1998, 41, Suppl. B, 37-46].

Tali attività sono ben documentate sia da studi clinici sia da esperimenti in vivo ed in vitro.

I macrolidi si sono rivelati utili nella terapia di patologie infiammatorie quali le panbronchioliti [Thorax, 1997, 52, 915-918], l'asma bronchiale [Chest, (1991), 99, 670-673], la COPD (CHEST 2001, 120, 730-733) e Azitromicina, in

particolare, si è dimostrata efficace nel migliorare la funzionalità polmonare in pazienti affetti da fibrosi cistica [The Lancet, (1998), 351, 420].

- 3 -

L'attività in vitro dei macrolidi si è rivelata particolarmente efficace nella modulazione delle funzioni metaboliche di alcune cellule del sistema immunitario come neutrofili [The Journal of Immunology, 1997, 159, 3395-4005] e linfociti T [Life Science, 1992, 51, PL 231-236] e nella modulazione di mediatori dell'infiammazione quali la interleuchina 8 (IL8) [Am. J. Respir. Crit. Care Med., (1997), 156, 266-271] o l'interleuchina 5 (IL-5) (domande di brevetto EP 0775489 ed EP 0771564, a nome Taisho Pharmaceutical Co., Ltd).

I neutrofili, in particolare, costituiscono la prima linea cellulare reclutata nel sito di infezione o di lesione tessutale nelle primissime fasi di una risposta infiammatoria.

Un non fisiologico accumulo di neutrofili nel tessuto infiammato, la loro attivazione, il seguente rilascio di proteasi e l'incremento della produzione di metaboliti reattivi dell'ossigeno caratterizzano alcune forme di risposta infiammatoria che, il più delle volte, degenerano in condizioni patologiche.

Sebbene, quindi, i neutrofili siano essenziali nella difesa immunitaria e nel processo infiammatorio è noto che essi siano implicati nelle patologie derivanti dalla maggior parte delle condizioni infiammatorie croniche e dalle lesioni da riperfusione ischemica (Inflammation and fever; Viera 'Stvrtinovà, Jan Jakubovsky e Ivan Hùlin; Academic Electronic Press, 1995).

Nel medesimo testo sono riportate le patologie per cui è comprovata l'influenza di un'alterata funzionalità dei neutrofili nella loro genesi e/o nel loro sviluppo: tra queste sono citate l'aterosclerosi, i danni da riperfusione ischemica, l'artrite

reumatoide, vasculiti e glomerulonefriti di derivazione autoiimmune ed infiammazioni polmonari croniche come la ARDS (adult respiratory distress syndrome).

La COPD (chronic obstructive pulmonary disease) è una patologia cronica caratterizzata da infiammazione e progressiva distruzione del tessuto polmonare causata dalla massiccia presenza di neutrofili attivati con conseguente rilascio di metallo proteinasi ed aumento della produzione di radicali dell'ossigeno [Am. J. Respir. Crit Care Med., 1996, 153, 530-534][Chest, 2000, 117 (2 Suppl), 10S-14S].

La somministrazione di macrolidi a soggetti asmatici è accompagnata da una riduzione della ipersecrezione e della ipersensinsibilità bronchiale conseguente ad una loro interazione anti-ossidativa ed anti-infiammatoria con i fagociti ed in particolare con i neutrofili; questa interazione impedirebbe a molti lipidi bioattivi, implicati nella patogenesi dell'asma bronchiale, di esplicare la loro attività membrana-destabilizzante proinfiammatoria (Inflammation, Vol. 20, No. 6, 1996).

Nella descrizione della domanda di brevetto HR20010301 a nome Pliva è ben descritta l'attività antiinfiammatoria di Azitromicina, noto antibatterico.

In essa si conferma la capacità dell'azalide di indurre l'apoptosi nei neutrofili umani in vitro come già riportato in letteratura [J. Antimicrob. Chemother., 2000, 46, 19-26] e si evidenzia come la sua attività antiinfiammatoria sia in linea con quanto è stato descritto per i macrolidi classici (anelli lattonici a 14 termini); nel particolare si è provato che la somministrazione di Azitromicina promuove la degranulazione dei neutrofili umani, inibisce la produzione di specie reattive

dell'ossigeno nei neutrofili stimolati ed inibisce, inoltre, il rilascio di interleuchina 8 che è un potente fattore attivante e chemiotattico specifico per i neutrofili.

- 5 -

La peculiare efficacia terapeutica dei macrolidi in patologie in cui i tradizionali farmaci antiinfiammatori, quali ad esempio i corticosteroidi, si sono rivelati inefficaci [Thorax, (1997), 52, 915-918, già citato] giustifica il notevole interesse nei confronti di questa nuova potenziale classe di antiinfiammatori.

Tuttavia, il fatto che i macrolidi classici posseggano una potente attività antibatterica non ne consente l'uso allargato nel trattamento cronico di processi infiammatori non causati da microrganismi patogeni; questo, infatti, potrebbe causare la rapida insorgenza di ceppi resistenti.

Sarebbe quindi desiderabile disporre di nuove sostanze a struttura macrolidica che presentino attività antiinfiammatoria e che siano al tempo stesso prive di proprietà antibiotiche.

In letteratura sono descritte alcune classi di derivati macrolidici dotate di attività antiinfiammatoria.

Ad esempio nelle già citate domande di brevetto europeo a nome Taisho vengono rivendicati derivati di eritromicina modificati in posizione 3, 9, 11, e 12, come potenti inibitori della sintesi di IL-5.

Nella domanda di brevetto WO 00/42055 a nome Zambon Group sono descritti 3'-desdimetilammino-9-ossimmino macrolidi dotati di attività antiinfiammatoria e privi di attività antibiotica.

Derivati di Azitromicina, privi di cladinosio e desosamina di forma

$$H_3C$$
 H_3C
 H_3C

- 6 -

in cui

R₁ è un atomo di idrogeno, un alchile inferiore o un alcanoile inferiore; R₂, R₃ ed R₄, uguali o diversi tra loro, sono un atomo d'idrogeno o un alcanoile inferiore; vengono descritti come antiinfiammatori nel brevetto US 4,886,792 (Sour Pliva); nello stesso brevetto sono inoltre rivendicati degli intermedi nella sintesi dei composti sopra indicati in cui R2 è desosamina, R3 ed R4 sono un atomo d'idrogeno ed R₁ ha i significati già riportati.

L'uso di eritromicina come antiinfiammatorio che agisce riducendo il rilascio di interleuchina 1 attraverso l'inibizione della glicoproteina di mammifero mdr-P è rivendicato nella domanda di brevetto WO 92/16226 a nome Smith-Kline Beecham Corporation.

L'uso di Azitromicina per il trattamento di patologie infiammatorie non infettive è rivendicato nella già citata domanda di brevetto HR20010301 a nome Pliva.

Del resto, un trattamento diverso da quello acuto con sostanze che possiedono una comprovata attività antimicrobica è altamente sconsigliato in quanto, come abbiamo già ricordato, esso causerebbe la rapida insorgenza di ceppi resistenti e, di conseguenza, il vanificarsi di una valida terapia antibiotica.

Abbiamo ora sorprendentemente trovato che rimuovendo il cladinosio in posizione 3 da 9a-azalidi si ottengono dei composti dotati di potente attività antiinfiammatoria e sostanzialmente privi di proprietà antibiotiche.

Costituiscono pertanto oggetto della presente invenzione i composti di formula

in cui

Rè un atomo d'idrogeno o un metile

 R_1 è un atomo d'idrogeno, un gruppo N,N-di- (C_1-C_3) -alchilammino, un gruppo N,N-di- (C_1-C_3) -alchilammino-N-ossido, un gruppo N- (C_1-C_4) -acil-N- (C_1-C_3) -alchilammino oppure assieme a R_2 forma un legame tra gli atomi di carbonio in 3' e 4';

R₂ è un atomo d'idrogeno oppure assieme a R₁ forma un legame tra gli atomi di carbonio in 3' e 4';

R₃ è un alchile C₁-C₅ lineare o ramificato, un benzile eventualmente sostituito con uno o due sostituenti scelti tra nitro, ossidrile, carbossile, ammino, alchile C₁-C₅ lineare o ramificato, gruppi C₁-C₄ alcossi, gruppi C₁-C₄ alcossicarbonilici, gruppi amminocarbonilici o ciano oppure una catena di formula

$$-(CH_2)r-X-(CH_2)m-Y-(CH_2)n-A$$

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile a cinque o sei termini contenente da uno a tre atomi scelti tra azoto, ossigeno e zolfo;

X rappresenta O, S, SO, SO₂, NR₆ ed R₆ è un atomo d'idrogeno, un alchile C₁-C₃ lineare o ramificato, un gruppo C₁-C₃ alcossicarbonile, un gruppo benzilossicarbonile;

Y è un gruppo C₆H₄, un eteroarile a cinque o sei termini contenente da uno a tre atomi scelti tra azoto, ossigeno e zolfo oppure rappresenta O, S, SO, SO₂, NR₆ dove R₆ ha i significati sopra riportati;

r è un numero intero compreso tra 1 e 3;

m è un numero intero compreso tra 1 e 6;

n è un numero intero compreso tra 0 e 2;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata;

e loro sali farmaceuticamente accettabili;

infiammatorie.

alla condizione che, quando R è un atomo di idrogeno ed R_1 è un gruppo dimetilammino, R_3 è diverso da un gruppo (C_1 - C_5)-alchile.

I composti di formula I in cui R è un atomo di idrogeno, R₁ è un gruppo dimetilammino ed R₃ è un alchile inferiore sono descritti come intermedi di sintesi nel brevetto US 4,886,792 (colonna 3, composto di formula V) a nome Sour Pliva. I composti di formula I sono macrolidi antiinfiammatori privi di attività antibiotica e sono pertanto utili nel trattamento e nella profilassi di patologie

Con il termine alchile C1-C5 lineare o ramificato si intende un gruppo scelto tra

metile, etile, n-propile, isopropile, n-butile, isobutile, sec-butile, tert-butile, n-pentile ed isopentile.

Con il termine eteroarile a 5 o 6 termini contenente da 1 a 3 eteroatomi scelti tra azoto, osigeno e zolfo si intendono eterocicli quali pirrolo, tiofene, furano, imidazolo, pirazolo, tiazolo, isotiazolo, isossazolo, ossazolo, piridina, pirazina, pirimidina, piridazina, triazolo, tiadiazolo.

Appare chiaro al tecnico del ramo che la sostituzione con forme parzialmente o totalmente sature degli eteroarili così come la presenza di sostituenti sugli anelli aromatici (fenile od eteroarili) previsti nei significati di A ed Y danno origine a composti che non si discostano dallo spirito dell'invenzione.

Composti preferiti di formula I sono quelli in cui R, R_2 , ed R_3 hanno i significati già riportati ed R_1 è un atomo d'idrogeno, un gruppo N-metil-N- (C_1-C_3) -alchilammino, un gruppo N-metil-N- (C_1-C_3) -alchilammino-N-ossido, un gruppo N- (C_1-C_4) -acil-N-metilammino oppure R_1 assieme ad R_2 forma un legame tra gli atomi di carbonio in 3' e 4'.

Appartenenti a questo gruppo ed ancor più preferiti sono i composti di formula I in cui R_1 è un atomo d'idrogeno, un gruppo N,N-dimetilammino, un gruppo N,N-dimetilammino-N-ossido, un gruppo N-acetil-N-metilammino oppure R_1 assieme ad R_2 forma un legame tra gli atomi di carbonio in 3' e 4'.

Tra i composti di formula I in cui R, R₁, R₂ hanno i significati già riportati sono preferiti quelli in cui R₃ è un alchile (C₁-C₃) lineare o ramificato, un benzile eventualmente sostituito con uno o due sostituenti scelti tra nitro, ossidrile, carbossile, ammino, alchile (C₁-C₃) lineare o ramificato, gruppi C₁-C₄ alcossile ciano oppure una catena di formula

- 10 -

-(CH₂)r-X-(CH₂)m-Y-(CH₂)n-A

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile a cinque o sei termini contenente da uno a tre atomi scelti tra azoto, ossigeno e zolfo;

X è O oppure NR₆ ed R₆ è un atomo d'idrogeno, un alchile C₁-C₃ lineare o ramificato;

Y, quando n è 0, è un gruppo C₆H₄ o un eteroarile a cinque o sei termini contenente da uno a tre atomi scelti tra azoto, ossigeno e zolfo; oppure, quando n è diverso da 0, è O oppure NR₆ ed R₆ è un atomo d'idrogeno, un alchile C₁-C₃ lineare o ramificato;

r è un numero intero compreso tra 1 e 3;

m è un numero intero scelto tra 1 e 2;

n è un numero intero compreso tra 0 e 2;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata;

Nell'ambito di questo gruppo di composti di formula I sono preferiti quelli in cui R₃ è un metile, un benzile oppure una catena di formula

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile a cinque o sei termini scelto tra pirrolo, tiofene, furano, imidazolo, ossazolo, tiazolo, piridina, pirimidina, triazolo e tiadiazolo;

X è O oppure NR6 ed R6 è un atomo d'idrogeno;

Y, quando n è 0, è un gruppo C₆H₄ o un eteroarile a cinque o sei termini scelto tra

pirrolo, tiofene, furano, imidazolo, ossazolo, tiazolo, piridina, pirimidina, triazolo e tiadiazolo; oppure, quando n è 1, è NR_6 ed R_6 è un atomo d'idrogeno;

r è un numero intero compreso tra 1 e 3;

m è un numero intero scelto tra 1 e 2;

n è un numero intero scelto tra 0 e 1;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata;

Appartenenti a questo gruppo ed ancor più preferiti sono i composti di formula I in cui R₃ è un metile, un benzile oppure una catena di formula

$$-(CH2)r-X-(CH2)m-Y-(CH2)n-A$$

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile scelto tra tiofene, furano, imidazolo, tiazolo, piridina e triazolo;

X è NR₆ ed R₆ è un atomo d'idrogeno;

Y, quando n è 0, è un gruppo C₆H₄ o un eteroarile scelto tra tiofene, furano, imidazolo, tiazolo, piridina e triazolo; oppure, quando n è 1, è NR₆ ed R₆ è un atomo d'idrogeno;

r è 3;

m è un numero intero scelto tra 1 e 2;

n è un numero intero scelto tra 0 e 1;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata;

Sono inoltre preferiti i composti di formula I in cui R ed R_2 hanno i significati già riportati, R_1 è un atomo d'idrogeno, un gruppo N-metil-N- (C_1-C_3) -alchilammino,

un gruppo N-metil-N- (C_1-C_3) -alchilammino-N-ossido, un gruppo N- (C_1-C_4) -acil-N-metilammino oppure R_1 assieme ad R_2 forma un legame tra gli atomi di carbonio in 3' e 4';

contemporaneamente R₃ è un alchile (C₁-C₃) lineare o ramificato, un benzile eventualmente sostituito con uno o due sostituenti scelti tra nitro, ossidrile, carbossile, ammino, alchile (C₁-C₃) lineare o ramificato, gruppi C₁-C₄ alcossi e ciano oppure una catena di formula

$$-(CH_2)r-X-(CH_2)m-Y-(CH_2)n-A$$

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile a cinque o sei termini contenente da uno a tre atomi scelti tra azoto, ossigeno e zolfo;

X è O oppure NR₆ ed R₆ è un atomo d'idrogeno, un alchile C₁-C₃ lineare o ramificato;

Y, quando n è 0, è un gruppo C₆H₄ o un eteroarile a cinque o sei termini contenente da uno a tre atomi scelti tra azoto, ossigeno e zolfo; oppure, quando n è diverso da 0, è O oppure NR₆ ed R₆ è un atomo d'idrogeno, un alchile C₁-C₃ lineare o ramificato;

rè un numero intero compreso tra 1 e 3;

m è un numero intero scelto tra 1 e 2;

n è un numero intero compreso tra 0 e 2;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata;

Nell'ambito di questo gruppo di composti di formula I sono preferiti quelli in cui R₃ è un metile, un benzile oppure una catena di formula

- 13 -

-(CH₂)r-X-(CH₂)m-Y-(CH₂)n-A

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile a cinque o sei termini scelto tra pirrolo, tiofene, furano, imidazolo, ossazolo, tiazolo, piridina, pirimidina, triazolo e tiadiazolo;

X è O oppure NR₆ ed R₆ è un atomo d'idrogeno;

Y, quando n è 0, è un gruppo C₆H₄ o un eteroarile a cinque o sei termini scelto tra pirrolo, tiofene, furano, imidazolo, ossazolo, tiazolo, piridina, pirimidina, triazolo e tiadiazolo; oppure, quando n è 1, è NR₆ ed R₆ è un atomo d'idrogeno;

r è un numero intero compreso tra 1 e 3;

m è un numero intero scelto tra 1 e 2;

n è un numero intero scelto tra 0 e 1;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata;

Appartenenti a questo gruppo ed ancor più preferiti sono i composti di formula I in cui in cui R₃ è un metile, un benzile oppure una catena di formula

$$\hbox{-(CH$_2$)$r-X-(CH$_2$)$m-Y-(CH$_2$)$n-A}$$

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile scelto tra tiofene, furano, imidazolo, tiazolo, piridina e triazolo;

X è NR₆ ed R₆ è un atomo d'idrogeno;

Y, quando n è 0, è un gruppo C₆H₄ o un eteroarile scelto tra tiofene, furano, imidazolo, tiazolo, piridina e triazolo; oppure, quando n è 1, è NR₆ ed R₆ è un atomo d'idrogeno;

rè3;

m è un numero intero scelto tra 1 e 2;

n è un numero intero scelto tra 0 e 1;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata;

Appartenenti a quest'ultimo gruppo ed ancor più preferiti sono i composti di formula I in cui R₁ è un atomo d'idrogeno, un gruppo N,N-dimetilammino, un gruppo N,N-dimetilammino-N-ossido, un gruppo N-acetil-N-metilammino oppure R₁ assieme ad R₂ forma un legame tra gli atomi di carbonio in 3' e 4'.

Esempi di sali farmaceuticamente accettabili dei composti di formula I sono sali con acidi organici od inorganici quali acido cloridrico, bromidrico, iodidrico, nitrico, solforico, fosforico, acetico, tartarico, citrico, benzoico, succinico e glutarico.

Specifici esempi di composti, oggetto della presente invenzione, sono quelli in cui R ed R₂ hanno i significati riportati in formula I ed R₁ assieme ad R₂ forma un legame tra gli atomi di carbonio in 3' e 4' oppure R₁ è un atomo d'idrogeno, un gruppo N,N-dimetilammino, un gruppo N,N-dimetilammino-N-ossido o un gruppo N-acetil-N-metilammino e contemporaneamente R₃ è un metile, un benzile, un gruppo 3-[(tiazol-2-il-metil)-ammino]-propile, 3-[(tiofen-2-il-metil)-ammino]-propile, 3-[(furan-2-il-metil)-ammino]-propile, 3-[(tiazol-2-il-metil)-ammino]-propile, 3-[6-(benzilammino)-esilammino]-propile;

inoltre, l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata.

I composti di formula I, oggetto della presente invenzione, sono preparati seguendo uno schema sintetico che comprende la rimozione dell'L-cladinosio in posizione 3 dai composti di formula

in cui

R, R₁, R₂ ed R₃ hanno i significati riportati per i composti di formula I.

La rimozione del cladinosio viene preferibilmente effettuata attraverso una reazione di idrolisi acida catalizzata in presenza di un acido minerale quale, ad esempio, acido solforico od acido cloridrico e di un solvente organico protico quale, ad esempio, acqua, metanolo od etanolo.

I composti di formula II si ottengono da eritromicina A ossima per riarrangiamento di Beckmann, riduzione ad ammina e successiva funzionalizzazione della stessa; gli eventuali interventi sintetici a livello del gruppo dimetilammino in posizione 3' comprendono la N-ossidazione, la rimozione totale oppure la demetilazione e la successiva funzionalizzazione (alchilazione ed acilazione).

Per la sintesi dei composti di formula I in cui il sostituente R è metile lo schema

sintetico è analogo partendo però da 6-O-metileritromicina A ossima oppure, in alternativa, l'azalide di interesse viene metilato secondo tecniche note.

Appare chiaro all'esperto del ramo che, per evitare interferenze con gruppi funzionali eventualmente presenti nelle posizioni in cui si andranno ad apportare modifiche strutturali, sarà più o meno conveniente ed opportuno scegliere una determinata priorità negli interventi sintetici da effetttuare.

Così ad esempio l'eventuale intervento sul gruppo dimetilammino in posizione 3' può seguire o precedere la procedura di allargamento dell'anello macrolidico o può costituire il passaggio conclusivo della sintesi stessa.

Ad ulteriore esempio, prendendo in considerazione la rimozione del cladinosio, questa viene effettuata in seguito alle reazioni che comportano l'allargamento dell'anello macrolidico e può seguire o precedere le eventuali modifiche strutturali in posizione 3'.

Non vi sono, comunque, in linea di principio, interazioni che vietino la rimozione del cladinosio in un altro passaggio intermedio o al termine del processo sintetico. Queste scelte di procedura saranno dettate, di volta in volta, da esigenze tecniche aventi il fine di ottimizzare il processo sintetico del prodotto di interesse.

Le indicazioni per eseguire le suddette modificazioni strutturali sui macrolidi sono meglio descritte quì di seguito.

Le ossime di eritromicina A, con Z o E configurazione, sono composti noti, disponibili commercialmente e possono essere preparate con tecniche convenzionali quali, ad esempio, quelle citate nel brevetto US 3478014 a nome Pliva o quelle descritte in letterarura (J. C. Gasc e al: The Journal of Antibiotics; 44, 313-330, 1991).

La sintesi di 9-deoxo-9a-aza-9a-omoeritromicina A viene condotta seguendo tecniche convenzionali quali, ad esempio, il riarrangiamento di Beckmann e la successiva riduzione ad ammina di eritromicina A ossima (brevetto US 4,328,334 Pliva Pharm & Chem Works) (Djokic S. et al J. Chem. Soc. Perkin Trans., 1986, 1881) a dare i composti di formula

in cui

R ha i significati riportati in formula I.

La sostituzione dell'aza lattone così ottenuto viene effettuata attraverso una reazione di addizione su olefine attivate per ottenere i corrispondenti 9a-ammino-, idrossi- o mercapto-alchil derivati in seguito funzionalizzati all'eteroatomo seguendo le convenzionali tecniche sintetiche; oppure, per ottenere degli N-alchil derivati eventualmente sostituiti, si procede con una reazione di alchilazione riducente attraverso una reazione con aldeidi in presenza di un agente riducente.

Entrambi i metodi portano a composti di formula

in cui

R ed R₃ hanno i significati riportati in formula I.

La metilazione del gruppo 9a ammino secondo la reazione di Eschweiler-Clark con formaldeide in presenza di acido formico è descritta nel brevetto BE 892,357 (Pliva Pharm & Chem Works).

Il brevetto US 4,464,527 (Pfizer Inc.) descrive il processo per ottenere l'N-etil e l'N-(n-propil)-derivato di 9-deoxo-9a-aza-9a-omoeritromicina A.

La conversione nei corrispondenti N-ossidi avviene, secondo metodi noti, per trattamento con peracidi come, ad esempio, perossido di idrogeno o acido metacloroperbenzoico in presenza di un solvente organico (Brevetto US 3928387, Hoffmann-La Roche Inc., già citato) (J.Am.Chem.Soc.1954,76,3121).

La rimozione del gruppo dimetilammino viene effettuata, secondo metodi noti, per ossidazione, pirolisi ed eventuale riduzione dei 9a-derivati di azitromicina di formula IV.

Appare chiaro all'esperto del ramo che al fine di evitare interferenze con gruppi

funzionali eventualmente presenti nel sostituente R₃, la rimozione del gruppo dimetilammino verrà preferibilmente eseguita a partire da intermedi di formula

in cui

R ha i significati già riportati.

Per ossidazione si ottengono i composti N-ossidi di formula

in cui

R ha i significati già riportati;

essi per pirolisi, seguita eventualmente da riduzione, danno rispettivamente i composti di formula VIIa e VIIb

in cui

R ha i significati già riportati;

i quali vengono trasformati nei corrispondenti composti di formula II in cui R, R_2 ed R_3 hanno i significati già riportati ed R_1 è un atomo di idrogeno oppure assieme ad R_2 forma un legame tra gli atomi di carbonio in 3' e 4' per riarrangiamento di Beckmann e riduzione ad ammina dell'ossima in posizione 9 e successiva

funzionalizzazione della 9a-azalide così ottenuta come precedentemente descritto.

La mono-demetilazione del gruppo dimetilammino in posizione 3' è eseguita, con tecniche convenzionali, per trattamento con benzil cloroformiato in presenza di un eccesso di base, ad esempio idrogeno carbonato alcalino, e di un solvente inerte seguito dall'eliminazione del gruppo benzilossicarbonile in posizione 2' e 3' come descritto nel brevetto US 5,250,518 a nome Pliva; le successive reazioni di acilazione od alchilazione dell'ammina secondaria così ottenuta sono eseguite secondo convenzionali tecniche sintetiche.

Inoltre i composti di formula I in cui $R_1 = R_2 = H$ possono essere preparati per riduzione dei corrispondenti composti di formula I in cui R_1 ed R_2 assieme formano un legame.

Il processo sopra descritto, in una sua applicazione, prevede l'utilizzo come substrato del composto di formula II in cui R è metile, R₁ è un gruppo dimetilammino, R₂ è un atomo di idrogeno ed R₃ è metile (Azitromicina) e consiste nel procedere all'intervento sintetico sul gruppo dimetilammino in posizione 3' e con la rimozione dell'L-cladinosio seguendo le tecniche precedentemente descritte.

Come sopra detto i composti di formula I, oggetto della presente invenzione, sono dotati di attività antiinfiammatoria e sono privi di attività antibiotica.

L'attività farmacologica dei composti di formula I è stata valutata in modelli di infiammazione cutanea e polmonare in confronto a macrolidi noti, quali eritromicina ed azitromicina, dotati sia di attività antiinfiammatoria sia di attività antibiotica.

L'attività antiinfiammatoria è stata valutata in vivo sia come inibizione

dell'edema nell'orecchio di topo indotto da PMA (Phorbol Myristate Acetate) sia come riduzione dell'accumulo di neutrofili nel polmone di ratto indotto da LPS (*E .coli* lipopolisaccaride).

In tutti gli esperimenti i composti oggetto della presente invenzione sono risultati molto attivi come antiinfiammatori e l'attività antiinfiammatoria è risultata essere paragonabile o superiore a quella dei composti di confronto.

Inoltre i composti della presente invenzione non presentano attività antibiotica, come è dimostrato dai tests effettuati, e pertanto possono essere utilizzati in trattamenti cronici di processi infiammatori senza che insorgano indesiderati fenomeni di resistenza.

Risulta quindi evidente come i composti di formula I, dotati di attività antiinfiammatoria e privi di attività antibiotica, possano essere utili nel trattamento sia acuto che cronico e nella profilassi di patologie infiammatorie in particolar modo di quelle patologie correlate ad un alterata funzionalità cellulare dei neutrofili quali ad esempio l'artrite reumatoide, le vasculiti, le glomerulonefriti, i danni da riperfusione ischemica, l'aterosclerosi, lo shock septico, la ARDS, la COPD e l'asma.

I quantitativi terapeuticamente efficaci dipenderanno dall'età e dalle condizioni fisiologiche generali del paziente, dalla via di somministrazione e dalla formulazione farmaceutica utilizzata; le dosi terapeutiche saranno generalmente comprese tra circa 10 e 2000 mg/die e preferibilmente tra circa 30 e 1500 mg/die.

I composti della presente invenzione per l'impiego in terapia e/o nella profilassi delle patologie sopra indicate saranno preferibilmente utilizzati in una forma farmaceutica adatta alla somministrazione orale, rettale, sublinguale, parenterale, topica, transdermica e inalatoria.

Costituiscono inoltre un ulteriore oggetto della presente invenzione le formulazioni farmaceutiche contenenti un quantitativo terapeuticamente efficace di un composto di formula I o di un suo sale in miscela con un veicolo farmaceuticamente accettabile.

Le formulazioni farmaceutiche oggetto della presente invenzione potranno essere liquide adatte per la somministrazione orale e/o parenterale come, ad esempio, gocce, sciroppi, soluzioni, soluzioni iniettabili pronte all'uso o preparate attraverso la diluizione di un liofilizzato ma preferibilmente solide o semisolide come compresse, capsule, granulati, polveri, pellets, ovuli, suppositori, creme, pomate, geli, unguenti; oppure ancora soluzioni, sospensioni, emulsioni, o altre forme adatte alla somministrazioni per via inalatoria e transdermica.

A seconda del tipo di formulazione, oltre ad un quantitativo terapeuticamente efficace di uno o più composti di formula I, esse conterranno degli eccipienti solidi o liquidi o diluenti per uso farmaceutico ed eventualmente altri addittivi, normalmente utilizzati nella preparazione di formulazioni farmaceutiche, come addensanti, aggreganti, lubrificanti, disgreganti, agenti aromatizzanti e coloranti.

Le formulazioni farmaceutiche oggetto dell'invenzione possono essere prodotte in accordo con tecniche usuali.

Allo scopo di illustrare meglio la presente invenzione vengono ora forniti i seguenti esempi.

Nella tabella che li precede sono riportate le strutture chimiche e la caratterizzazione analitica degli intermedi di sintesi e dei composti di formula I.

intermedio 4	HO HO OH OH	CDCl ₃ : 5.04 (d, 1H, J=4.2, H ₁ "); 4.73-4.78 (m, 1H, H ₁₃); 4.35 (d, 1H, J=7.1, H ₁ '); 4.28 (m, 1H, H ₅); 3.64 (d, J=6.6, H ₁₁); 3.40 (s, 3H, H ₇ ").
intermedio 5	HO HO O O O O O O O O O O O O O O O O O	CDCl ₃ : 5.10 (d, 1H, J=4.3, H ₁ "); 4.67-4.72 (m,1H, H ₁₃); 4.36 (d, 1H, J=7.6, H ₁ '); 4.25 (m, 1H, H ₃); 4.12 (m, 1H, H ₅); 3.35 (s, 3H, H ₇ "); 2.35 (s, 3H, NCH ₃).
intermedio 14	HO HO HO HO	DMSO_d6: 5.0-5.1 (m, 1H, H ₁₃); 4.58 (d, 1H, J=7.4, H ₁ '); 0.77 (t, 3H, J=7.0, H ₁₅).
composto 6	HO, MAN HO MAN H	CDCl ₃ : 7.74 (m, 1H, Th); 7.28 (m, 1H, Th); 5.0-5.2 (m, 1H, H_{13}); 4.50 (d, 1H, J =7.3, H_1 '); 4.23 (m, 2H, Th-CH ₂); 2.34 (s, 6H, Me_2N); 0.89 (t, 3H, J =7.3, H_{15}).
composto 10	HO, NH HO, NHO HO, NHO HO H	CDCl ₃ : 7.72 (m, 1H, Th); 7.28 (m, 1H, Th); 5.01-5.06 (m, 1H, H ₁₃); 4.44 (d, 1H, J=7.3, H ₁ '); 4.18 (m, 2H, Th-CH ₂); 2.27 (s, 6H, Me ₂ N); 0.83 (t, 3H, J=7.3, H ₁₅).
composto 9	HO, HO, HO, OH	CDCl ₃ : 7.23, 7.03 and 6.97 (3m, 3H, Tiophenyl); 5.13 (m, 1H, H ₁₃); 4.46 (d, 1H, J=7.3, H ₁ '); 4.06 (m, 2H, T-CH ₂); 2.29 (s, 6H, Me ₂ N); 0.90 (t, 3H, J=7.4, H ₁₅).
composto 7	HO, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	CDCl ₃ : 7.36 (m, 1H, Furyl), 6.28-6.31 (2m, 2H, Furyl); 5.05-5.10 (m, 1H, H ₁₃); 4.45 (d, 1H, J=7.3, H ₁ '); 3.87 (m, 2H, F-CH ₂); 2.28 (s, 6H, Me ₂ N); 0.89 (t, 3H, J=7.4, H ₁₅).

		
composto 8	HO HO HO OH	CDCl ₃ : 7.58 (m, 1H, N=CH-N Imidazol), 6.97 (s, 1H, N-CH=C Imidazol); 5.10-5.16 (m, 1H, H ₁₃); 4.44 (d, 1H, J=7.4, H ₁ '); 2.28 (s, 6H, Me ₂ N); 0.91 (t, 3H, J=7.4, H ₁₅).
intermedio 1	HO HO HO HO ME	CDCl ₃ : 5.18 (d, J=4.6, 1H, H ₁ [*]); 4,69 (m, 1H, H ₁₃); 4.56 (d, 1H, J=7.0, H ₁ [*]); 4.28 (m, 1H, H ₃); 3.40 and 3.21 (2s, 6H, Me ₂ N[O}); 2.33 (s, 3H, NCH ₃).
composto 11	HO HO OH	D ₂ O: 7.38 (m, 5H, Ph); 4.9-5.0 (m, 1H, H ₁₃); 4.14 (s, 2H, CH ₂ Ph); 2.73 (s, 6H, Me ₂ N); 0.73 (t, 3H, J=7.1, H ₁₅).
composto 12	HN HO NH HO NHO HO OH	DMSO_d ₆ : 7.2-7.35 (m, 5H, Phenyl); 5.00-5.06 (m, 1H, H ₁₃); 4.46 (d, 1H, J=7.4, H ₁ '); 3.67 (m, 2H, Ph-CH ₂); 2.21 (s, 6H, Me ₂ N); 0.75 (t, 3H, J=7.0, H ₁₆).
intermedio 20	NC HO	CDCl ₃ : 4.92 (d, 1H, J=4.4, H ₁ "); 4.75-4.80 (m, 1H, H ₁₃); 4.39 (d, 1H, J=7.5, H ₁ '); 3.31 (s, 3H, H ₇ "); 0.93 (t, 3H, J=7.5, H ₁₅).
intermedio 21	NH, HO HO HO HO HO HO HO ME	CDCl ₃ : 5.09 (d, 1H, J=4.5, H ₁ "); 4.91-4.96 (m, 1H, H ₁₃); 4.38 (d, 1H, J=7.5, H ₁ '); 3.33 (s, 3H, H ₇ "); 0.88 (t, 3H, J=7.3, H ₁₅).
Intermedio 24	NH HO THO TO HO TO HO OME	CDCl ₃ : 7.74 (m, 1H, Th); 7.30 (m, 1H, Th); 5.10 (d, 1H, J=4.3, H ₁ "); 5.01 (m, 1H, H ₁₃); 4.40 (d, 1H, J=7.6, H ₁ '); 4.21 (m, 2H, Th-CH ₂); 3.69 (s, 1H, H ₁₁); 3.34 (s, 3H, H ₇ "); 0.90 (t, 3H, J=7.4, H ₁₅).

composto 14	HO ,	CDCl ₃ : 7.73 (m, 1H, Th); 7.28 (m, 1H, Th); 5.0-5.1 (m, 1H, H ₁₃); 4.37 (d, 1H, J=7.9, H ₁ '); 4.20 (m, 2H, Th CH ₂); 0.87 (t, 3H, J=7.5, H ₁₅).
intermedio 23	HO HO HO OH	CDCl ₃ : 7.71 (m, 1H, Th); 7.26 (m, 1H, Th); 5.08 (d, 1H, J=4.2, H ₁ "); 4.86-4.94 (m, 1H, H ₁₃); 4.39 (d, 1H, J=7.6, H ₁ '); 4.18 (m, 2H, Th-CH ₂); 3.32 (s, 3H, H ₇ "); 0.82 (t, 3H, J=7.3, H ₁₆).
composto 13	HO HO OH	CDCl ₃ : 7.73 (m, 1H, Th); 7.28 (m, 1H, Th); 4.96-5.03 (m, 1H, H ₁₃); 4.35 (d, 1H, J=7.6, H ₁ '); 4.20 (m, 2H, ThCH ₂); 0.83 (t, 3H, J=7.6, H ₁₅).
intermedio 6	но но о	DMSO_d6: 4.8 (m, 2H, H ₁₃ and H ₁ "); 4.43 (d, 1H, J=7.1, H ₁ '); 0.79 (t, 3H, J=7.3, H ₁₅).
composto 1	HO HO HO HO	CDCl₃: 4.75-4.69 (m, 1H, H₁₃); 4.61 (d, 1H, J=7.1, H₁'); 3.61 (s, 1H, H₁₁); 3.19 and 3.16 (2s, 6H, Me₂N[O]); 2.38 (s, 3H, CH₃N).
composto 2	но дон	CDCl ₃ : 5.38-5.43 (m, 1H, H ₁₃); 4.48 (d, 1H, J=7.0, H ₁ '); 3.30 and 3.16 (2s, 6H, Me ₂ N[O]); 2.93 (s, 3H, MeN[O]); 0.90 (t, 3H, J=6.5, H ₁₆).
intermedio 3	HO H	CDCl ₃ : 5.67 (m, 2H, CH ₃ '=CH ₄ '); 4.99 (d, 1H, J=4.4, H ₁ "); 4.66-4.70 (m, 1H, H ₁₃); 4.54 (d, 1H, J=6.5, H ₁ '); 3.30 (s, 3H, H ₇ "); 2.37 (s, 3H, CH ₃ N).

- 27 -

composto 3	HO HO HO OH	CDCl ₃ : 5.66 (m, 2H, CH ₃ '=CH ₄ '); 4.69-4.74 (m, 1H, H ₁₃); 4.60 (d, 1H, J=6.9, H ₁ '); 3.61 (s, 1H, H ₁₁); 2.66 (s, 3H, CH ₃ N).
composto 4	но по	CDCl ₃ : 4.67-4.75 (m, 1H, H ₁₃); 4.39 (d, 1H, J=7.6, H ₁ '); 3.61 (s, 1H, H ₁₁); 2.38 (s, 3H, CH ₃ N).
intermedio 7	HO NHO HO O O O O O O O O O O O O O O O	CDCl ₃ : 5.08 (m, 1H, H ₁ "); 4.6-4.8 (m, 1H, H ₁₃); 4.48-4.54 (m, 1H, H ₁ '); 4.22 (m, 1H,H ₃); 3.39 and 3.34 (2s, 3H, conformers H ₇ "); 2.93 and 2.86 (2s, 3H, conformers CH ₃ N[CO]; 2.35 (s, 3H, NCH ₃) 2.19 and 2.14 (2s, 3H, conformers N[CO]CH ₃).
composto 5	HO, MHO HO H	CDCl ₃ : 4.96-5.05 (m, 1H, H ₁₃); 4.62 (d, 1H, J=7.3, H ₁ '); 2.92, 2.85 and 2.83 (3s, 6H, CH ₃ N and conformers CH ₃ N[CO]; 2.19 and 2.12 (2s, 3H, conformers N[CO]CH ₃).
intermedio 11	HO HO HO MB	CDCl ₃ : 5.05 (m, 1H, H ₁ "); 4.70 (m, 1H, H ₁₃); 4.40 (m, 1H, H ₁ '); 3.32 (s, 3H, H ₇ "); 2.25 (s, 6H, NMe ₂); 0.85 (m, 3H, H ₁₅).
intermedio 12	HO	CDCl ₃ : 4.98 (m, 1H, H ₁ "); 4.63 (m, 1H, H ₁₃); 4.45 (m, 1H, H ₁ '); 3.30 (s, 3H, H ₇ "); 2.27 (s, 6H, NMe ₂); 0.89 (m, 3H, H ₁₆).
intermedio 13	H ₃ N HO ,, , , , , , , , , , , , , , , , , ,	CDCl ₃ : 5.03 (m, 1H, H ₁ "); 4.87 (m, 1H, H ₁₃); 4.45 (m, 1H, H ₁ '); 2.25 (s, 6H, NMe ₂); 0.81 (m, 3H, H ₁₅).

intermedio 17		CDCl ₃ : 7.3-7.4 (m, 5H, Ph); 5.05-5.10 (m, 3H, CH ₂ Ph + H ₁ "); 4.86 (m, 1H, H ₁₃); 4.45 (m, 1H, H ₁ '); 3.30 (s, 3H, H ₇ "); 2.27 (s, 6H, NMe ₂); 0.84 (m, 3H, H ₁₅).
intermedio 16	HO HO O O O	CDCl ₃ : 7.2-7.4 (m, 5H, Ph); 5.08 (m, 3H, $\rm H_1$ "); 4.98 (m, 1H, $\rm H_{13}$); 4.47 (m, 1H, $\rm H_1$ '); 3.30 (s, 3H, $\rm H_7$ "); 2.34 (s, 6H, NMe ₂); 0.88 (m, 3H, $\rm H_{16}$).
intermedio 18	HO HO HO OH	CDCl ₃ : 5.03 (m, 1H, H ₁ "); 4.84 (m, 1H, H ₁₃); 4.43 (m, 1H, H ₁ '); 3.28 (s, 3H, H ₇ "); 2.24 (s, 6H, NMe ₂); 0.86 (m, 3H, H ₁₆).
intermedio 19		CDCl ₃ : 7.2-7.3 (m, 5H, Ph); 5.05 (m, 3H, H ₁ "); 4.87 (m, 1H, H ₁₃); 4.45 (m, 1H, H ₁ '); 3.75 (m, 2H, CH ₂ Ph); 3.30 (s, 3H, H ₇ "); 2.27 (s, 6H, NMe ₂); 0.83 (m, 3H, H ₁₆).

- 28 -

Esempio 1

Preparazione dell'intermedio 1

Ad una soluzione di Azitromicina (3 g, 4 mmol) in cloroformio (30 ml) è stato aggiunto acido metacloroperbenzoico (0.90 g, 4.1 mmol) in piccole porzioni e la miscela è stata agitata a temperatura ambiente per 4 h. La fase organica è stata diluita con CH₂Cl₂, lavata con soluzioni acquose al 10% di K₂CO₃, al 5% di NaHCO₃ e al 20% di NaCl, anidrificata con sodio solfato, filtrata ed evaporata dal solvente sotto vuoto. Il materiale grezzo è stato purificato attraverso una cromatografia Biotage (Silica 40M cartridge, eluente CH₂Cl₂/MeOH/NH₃ 93/7/0.7) a dare l'intermedio 1 (2.4 g, 78% resa) come solido bianco e l'intermedio 2 come sottoprodotto (223 mg, 8% resa).

- 29 -

[M+1]⁺ 766

Esempio 2

Preparazione dell'intermedio 1 (seconda via sintetica)

Ad una soluzione di Azitromicina (35 g, 44.6 mmol) in metanolo (350 ml) sono stati aggiunti in sequenza sodio tungsteno (0.14 g, 0.44 mmol) sciolto in H₂O (0.5 ml) e per gocciolamento una soluzione di H₂O₂ (35%, 4.7 g, 49 mmol) in H₂O (4 ml). La miscela di reazione è stata agitata a temperatura ambiente per 16 h, diluita con acqua (350 ml) e il metanolo è stato evaporato sotto vuoto. La soluzione acquosa è stata diluita con acido citrico (5% soluzione acquosa) (0.5 L) lavata con CH₂Cl₂ (2 x 250 ml) e dopo aver aggiunto NH₃ conc. fino all'ottenimento di un pH = 9, estratta con CH₂Cl₂ (3 x 0.4 L). La fase organica è stata anidrificata con sodio solfato, filtrata ed evaporata sotto vuoto a dare l'intermedio 1 (28.1 g, 82% resa) come solido bianco.

[M+1]⁺ 766

Esempio 3

Preparazione del composto 1

Ad una soluzione dell'intermedio 1 (28 g, 36.6 mmol) in metanolo (800 ml) è stato aggiunto per gocciolamento HCl conc. (8 ml) e la miscela di reazione è stata agitata per 3 h. Dopo essere stata neutralizzata con NH₃ conc. la soluzione è stata evaporata dal solvente. Il grezzo è stato disciolto in HCl 1N e lavato con CH₂Cl₂ (3 x 100 ml) e la fase acquosa addizionata di K₂CO₃ fino all'ottenimento di un pH alcalino. L'estrazione con etil acetato (4 x 100 ml) ha dato una fase organica che, dopo essere stata anidrificata con sodio solfato e filtrata ha dato il composio (225 mg, 90% resa) come solido bianco.

10,33 Euro

- 30 -

 $[M+1]^+607$

Esempio 4

Preparazione dell'intermedio 2

L'intermedio 2 è stato ottenuto come sottoprodotto durante la sintesi dell'intermedio 1. La sua resa può essere massimizzata utilizzando un eccesso di ossidante.

 $[M+1]^{+}782$

HPLC-MS: colonna Zorbax SB-C18, 2.1 x 50 mm, 3.5 mm; temperatura colonna 45°C; fase mobile A 0.1% acido formico in H₂O, B 0.1% acido formico in acetonitrile; gradiente 0 min. 5% di B, 8 min. 95% di B; flow rate 1 ml/min.; volume di iniezione 2 μl; concentrazione del campione 0.5-1 mg/ml; rivelatore spettrometro di massa equipaggiato con sorgente di ionizzazione elettrospray, ionizzazione positiva; tempo di ritenzione 2.75 min.; tempo di corsa tot. 8 min. più 2 min. di riequilibrio.

Esempio 5

Preparazione del composto 2

Il composto 2 è stato preparato dall'intermedio 2 (220 mg, 0.28 mmol) seguendo la procedura descritta per la sintesi del composto 1. La purificazione attraverso la cromatografia Variant Mega Bond Elut (Silica 10 g cartridge, eluente da CH₂Cl₂ a CH₂Cl₂/MeOH/NH₃ 85/15/1.5) ha dato il composto 2 (106 mg, 60% resa).

[M+1]⁺ 623

Esempio 6

Preparazione dell'intermedio 3

Una soluzione eterogenea dell'intermedio 1 (2.5 g, 3.26 mmol) in DMF (35 ml) è

stata agitata a ricadere per 40 minuti in presenza di un flusso di azoto. La soluzione è stata raffreddata a temperatura ambiente, evaporata dalla DMF e, dopo diluizione con acqua ed etil acetato, la fase organica è stata estratta, la fase acquosa lavata con etil acetato. La soluzione organica riunita è stata lavata con una soluzione di NaCl al 20%, anidrificata con sodio solfato, filtrata ed evaporata dal solvente a temperatura ambiente. La purificazione attraverso una cromatografia Biotage (Silica 40M cartridge, eluente CH₂Cl₂/MeOH/NH₃ 90/3/0.3) ha dato l'intermedio 3 (1.1 g, 45% resa).

 $[M+1]^{+}$ 705

Esempio 7

Preparazione del composto 3

Il composto 3 è stato preparato dall'intermedio 3 (237 mg, 0.336 mmol) seguendo la procedura descritta per la sintesi del composto 1. La purificazione attraverso la cromatografia Variant Mega Bond Elut (Silica 20 g cartridge, eluente da CH₂Cl₂ a CH₂Cl₂/MeOH/NH₃ 95/5/0.5) ha dato il composto 3 (110 mg, 60% resa).

 $[M+1]^{+}$ 546

Esempio 8

Preparazione dell'intermedio 4

L'intermedio 4 è stato preparato da 3'-desdimetilammino-eritromicina A ossima (3 g, 4.25 mmol) ottenuta per ossidazione, pirolisi e riduzione di eritromicina A ossima secondo quanto descritto nella domanda di brevetto internazionale WO 00/42055 esempio 6 a nome Zambon Group, seguendo le procedure descritte in letteratura (Djokic S. et al J. Chem. Soc. Perkin Trans., 1986, 1881). L'intermedio 4 (2.8 g, 95% resa) è stato ottenuto come solido bianco.

 $[M+1]^+$ 692

HPLC-MS: colonna Zorbax SB-C18, 2.1 x 50 mm, 3.5 mm; temperatura colonna 45°C; fase mobile A 0.1% acido formico in H₂O, B 0.1% acido formico in acetonitrile; gradiente 0 min. 5% di B, 8 min. 95% di B; flow rate 1 ml/min.; volume di iniezione 2 μl; concentrazione del campione 0.5-1 mg/ml; rivelatore spettrometro di massa equipaggiato con sorgente di ionizzazione elettrospray, ionizzazione positiva; tempo di ritenzione 4.99 min.; tempo di corsa tot. 8 min. più 2 min. di riequilibrio.

Esempio 9

Preparazione dell'intermedio 5

Una soluzione dell'intermedio 4 (2 g, 2.89 mmol), acido formico (0.22 ml, 5.78 mmol) e formaldeide in cloroformio (25 ml) è stata messa a riflusso per 4 h. La soluzione fredda è stata diluita con una soluzione di NaCl al 20% e NH₃ conc., la fase organica estratta e la fase acquosa lavata con etil acetato. La soluzione organica riunita è stata anidrificata con sodio solfato, filtrata ed evaporata sotto vuoto a dare un solido (2.2 g). La purificazione attraverso una cromatografia Biotage (Silica 40M cartridge, eluente CH₂Cl₂/MeOH/NH₃ 98/2/0.2) ha dato l'intermedio 5 (1.57 g, 77% resa) come solido cristallino.

 $[M+1]^+$ 707

Esempio 10

Preparazione del composto 4

Il composto 4 è stato preparato dall'intermedio 5 (200 mg, 0.28 mmol) seguendo la procedura descritta per la sintesi del composto 1. La purificazione attraverso una cromatografia Biotage (Silica 12M cartridge, eluente CH₂Cl₂/MeOH/NH₃

- 33 -

98/2/0.2) ha dato il composto 4 (150 mg, 97% resa).

 $[M+1]^{+}$ 549

Esempio 11

Preparazione dell'intermedio 7

Ad una soluzione dell'intermedio 6 (0.5 g, 0.68 mmol), ottenuto da Azitromicina seguendo la procedura descritta nel brevetto US 5,250,518 a nome Pliva, e trietilammina (0.14 ml, 1 mmol) in CH₂Cl₂ (15 ml) e THF (15 ml) è stata addizionata per gocciolamento a 0 °C una soluzione di cloruro di acetile (0.052 ml, 0.68 mmol) in CH₂Cl₂ (1 ml) ed è stata agitata a temperatura ambiente per 16 h. La miscela di reazione è stata evaporata dal solvente, diluita con CH₂Cl₂ e lavata con una soluzione al 20% di NaCl a dare un solido grezzo. La purificazione attraverso una cromatografia Biotage (Silica 40S cartridge, eluente CH₂Cl₂/MeOH/NH₃ 97/3/0.3) ha dato l'intermedio 7 (460 mg, 87% resa). [M+1]⁺ 778

Esempio 12

Preparazione del composto 5

Il composto 5 è stato preparato dall'intermedio 7 (370 mg, 0.48 mmol) seguendo la procedura descritta per la sintesi del composto 1. La purificazione attraverso una cromatografia Biotage (Silica 12M cartridge, eluente CH₂Cl₂/MeOH/NH₃ 98/2/0.2) ha dato il composto 5 (260 mg, 85% resa).

[M+1]⁺ 620

Esempio 13

Preparazione del 2-(Tiazol-2-il-ammino)-etanolo (intermedio 8)

Ad una soluzione di 2-amminoetanolo (570 mg, 9.33 mmol) in etanolo (40 ml)

mantenuti in atmosfera di azoto sono stati aggiunti 3A setacci molecolari (1 g) e una soluzione di 2-tiazolcarbossialdeide (1 g, 8.84 mmol) in etanolo (30 ml). La miscela di reazione è stata agitata per 3 h, filtrata attraverso un setto di celite per rimuovere i setacci molecolari, addizionata con acido acetico (1 ml) e Pd/C 10% (0.7 g) e mantenuta sotto una p.s.i. di 30 per 2 h. La filtrazione attraverso un setto di celite e l'evaporazione sotto vuoto ha dato un grezzo solido che è stato purificato attraverso una cromatografia flash (silica, eluente CH₂Cl₂/MeOH/NH₃ 90/8/0.8) a dare l'intermedio 8 (1 g, 70% resa).

 $[M+1]^{+}159$

CDCl₃: 7.69 e 7.25 (2m, 2H, Th); 4.14 (s, 2H, CH₂Th); 3.66 (m, 2H, CH₂O; 2.85 (m, 2H, CH₂N); 2.3 (broad s, 2H, NH+OH).

Esempio 14

Preparazione del 9H-fluoren-9-il-metil-estere dell'acido (2-idrossi-etil)-tiazol-2-ilcarbammico (intermedio 9)

Ad una soluzione dell'intermedio 8 (900 mg, 5.7 mmol) in diossano (20 ml) sono stati aggiunti per gocciolamento e contemporaneamente una soluzione di NaHCO₃ (960 mg, 11.4 mmol) in H₂O (20 ml) e una soluzione di 9H-fluoren-9-il-metilossicarbonil cloroformiato (1.57 g, 6 mmol) in diossano (10 ml). La miscela di reazione è stata agitata per 2 h, diluita con acqua ed estratta con etil acetato. La fase organica riunita è stata lavata con acido citrico (5% soluzione acquosa), anidrificata con sodio solfato, filtrata ed evaporata sotto vuoto. La purificazione attraverso una cromatografia flash (Silica, eluente etil acetato/etere di petrolio 4/1) ha dato l'intermedio 9 (1.92 g, 88% resa).

[M+1]⁺.381

CDCl₃: 7.2-7.8 (m, 10H, Th+Fmoc); 4.95 e 5.17 (2m, 1H, CH); 4.68 (m, 2H, CH₂Th); 4.58 (m, 2H, CH₂-Fmoc); 3.4-3.8 (m, 5H, CH₂CH₂OH).

Esempio 15

Preparazione del 9H-fluoren-9-il-metil-estere dell'acido (2-osso-etil)-tiazol-2-ilcarbammico (intermedio 10)

Ad una soluzione dell'intermedio 9 (0.6 g, 1.57 mmol) in CH₂Cl₂ sono state aggiunte in sequenza, a 0 °C, TEMPO (3 mg, 0.019 mmol), una soluzione di KBr (19 mg, 0.157 mmol) in H₂O (1 ml) e per gocciolamento una soluzione di sodio ipoclorito (1.6 ml, 2.86 mmol) e NaHCO₃ (120 mg, 1.4 mmol) in H₂O (5 ml). La miscela di reazione è stata agitata per 2 h, diluita con etil acetato e NaCl sat., la fase acquosa separata e lavata con etil acetato (3 x 20 ml). La fase organica riunita è stata lavata con NaCl sat., anidrificata con sodio solfato, filtrata ed evaporata sotto vuoto a dare l'intermedio 10 (560 mg, 93% resa) come un olio.

[M+1]⁺ 379

CDC13: 9.2 e 9.6 (2s, 1H, CHO); 7.2-7.8 (m, 10H, Th+Fmoc); 4.0-4.9 (m, 7H, 3CH₂+CH).

Esempio 16

Preparazione dell'intermedio 12

Una miscela dell'intermedio 11 (16 g, 21.7 mmol), ottenuto da eritromicina A ossima secondo quanto descritto in letteratura (Djokic S. et al J. Chem. Soc. Perkin Trans., 1986, 1881, in acrilonitrile (160 ml) è stata messa a riflusso per 7 h ed evaporata sotto vuoto dall'acrilonitrile in eccesso a dare un grezzo solido. La purificazione attraverso una cromatografia flash (silica, eluente CH₂Cl₂/MeOH/NH₃ 90/5/0.5) ha dato l'intermedio 12 (6.9 g, 41% resa).

- 36 -

Esempio 17

Preparazione dell'intermedio 13

Ad una miscela dell'intermedio 12 (5 g, 6.3 mmol) e una soluzione di NH₃ in etanolo (1.5 M, 60 ml) è stato aggiunto Rh (5% su Al₂O₃, 1 g). Dopo tre cicli di idrogenazione la miscela di reazione è stata agitata per 6 h in una atmosfera di idrogeno di 35 p.s.i.. La filtrazione attraverso un setto di celite, l'evaporazione sotto vuoto e la purificazione attraverso una cromatografia flash (silica, eluente CH₂Cl₂/MeOH/NH₃ 85/15/1.5) hanno dato l'intermedio 13 (3.6 g, 57% resa).

Esempio 18

Preparazione dell'intermedio 14

L'intermedio 14 è stato preparato dall'intermedio 13 (2.15 g, 2.71 mmol) seguendo la procedura descritta per la sintesi del composto 1. La purificazione attraverso una cromatografia Biotage (Silica 40S cartridge, eluente CH₂Cl₂/MeOH/NH₃ 85/15/1.5) ha dato l'intermedio 14 (1.6 g, 92% resa).

 $[M+1]^{2+}/2$ 318

HPLC-MS: colonna Zorbax SB-C18, 2.1 x 50 mm, 3.5 mm; temperatura colonna 45°C; fase mobile A 0.1% acido formico in H₂O, B 0.1% acido formico in acetonitrile; gradiente 0 min. 5% di B, 8 min. 95% di B; flow rate 1 ml/min.; volume di iniezione 2 μl; concentrazione del campione 0.5-1 mg/ml; rivelatore spettrometro di massa equipaggiato con sorgente di ionizzazione elettrospray, ionizzazione positiva; tempo di ritenzione 0.21 min.; tempo di corsa tot. 8 min. più 2 min. di riequilibrio.

Esempio 19

- 37 -

Preparazione del composto 6

Ad una soluzione dell'intermedio 14 (350 mg, 0.552 mmol) in etanolo (1 ml) sono stati aggiunti in sequenza 3A setacci molecolari (1 g) e tiazol-2-carbossialdeide (65 mg, 0.552 mmol). La soluzione è stata agitata per 3 h, filtrata attraverso un setto di celite per rimuovere i setacci molecolari ed è stata addizionata di Pd/C 10% (35 mg). Dopo tre cicli di idrogenazione la miscela di reazione è stata agitata per 2 h in una atmosfera di idrogeno di 20 p.s.i.. La filtrazione attraverso un setto di celite e l'evaporazione sotto vuoto ha dato un solido grezzo che è stato purificato attraverso una cromatografia Biotage (silica 12M cartridge, eluente CH₂Cl₂/MeOH/NH₃ 90/6/0.6) a dare il composto 6 (54 mg, 13% resa). [M+1]⁺ 732

Esempio 20

Preparazione del composto 7

Ad una soluzione dell'intermedio 14 (0.4 g, 0.63 mmol) in etanolo (8 ml) sono stati aggiunti in sequenza 3A setacci molecolari (1 g) e tiazol-2-furaldeide (61 mg, 0.63 mmol). La miscela di reazione è stata agitata per 6 h, filtrata attraverso un setto di celite, addizionata di NaBH₄ (29 mg, 0.75 mmol) ed agitata per ulteriori 16 h. Dopo essere stata neutralizzata con l'aggiunta di acido acetico e agitando per 2 h, la soluzione è stata neutralizzata con NH₃ conc. ed evaporata. La miscela grezza è stata diluita con CH₂Cl₂, filtrata dai sali inorganici e purificata attraverso una cromatografia Biotage (silica 12M cartridge, eluente CH₂Cl₂/MeOH/NH₃ 95/5/0.5) a dare il composto 7 (24 mg, 6% resa).

[M+1]²⁺/2 358

Preparazione del composto 8

Il composto 8 è stato preparato dall'intermedio 14 (0.35 g, 0.552 mmol) seguendo la procedura descritta per il composto 7, sostituendo la 2-furaldeide con la imidazol-4-carbossialdeide (54 mg, 0.552 mmol). Il prodotto grezzo è stato purificato attraverso una cromatografia Biotage (silica 12M cartridge, eluente CH₂Cl₂/MeOH/NH₃ 90/7/0.7) a dare il composto 8 (24 mg, 7% resa).

 $[M+1]^{2+}/2$ 358

Esempio 22

Preparazione del composto 9

Il composto 9 è stato preparato dall'intermedio 14 (0.35 g, 0.552 mmol) seguendo la procedura descritta per il composto 7, sostituendo la 2-furaldeide con la 2-tiofen-carbossialdeide (64 mg, 0.552 mmol). Il prodotto grezzo è stato purificato attraverso una cromatografia Varian Mega Bond Eliot (silica 20 g cartridge, eluente da CH₂Cl₂ a CH₂Cl₂/MeOH/NH₃ 90/10/1) a dare il composto 9 (22 mg, 6% resa).

 $[M+1]^{2+}/2$ 366

Esempio 23

Preparazione dell'intermedio 15

Una soluzione dell'intermedio 14 (0.845 g, 1.33 mmol) in dicloroetano (20 ml) è stata mantenuta in atmosfera di argon ed addizionata in sequenza con 3A setacci molecolari (3 g), acido acetico (0.152 ml, 2.66 mmol), una soluzione dell'intermedio 10 (0.56 g, 1.4 mmol) in dicloroetano (10 ml) e tetrametil-ammonio-triacetossiboroidruro (0.596 g, 2.26 mmol. La miscela di reazione è stata agitata per 16 h, filtrata attraverso un setto di celite ed evaporata sotto vuoto.

La purificazione attraverso cromatografia Biotage (silica 40M cartridge, eluente CH₂Cl₂/MeOH/NH₃ 90/6/0.6) ha dato l'intermedio 15 (390 mg, 30% resa).

 $[M+1]^{2+}/2499$

HPLC-MS: colonna Zorbax SB-C18, 2.1 x 50 mm, 3.5 mm; temperatura colonna 45°C; fase mobile A 0.1% acido formico in H₂O, B 0.1% acido formico in acetonitrile; gradiente 0 min. 5% di B, 8 min. 95% di B; flow rate 1 ml/min.; volume di iniezione 2 μl; concentrazione del campione 0.5-1 mg/ml; rivelatore spettrometro di massa equipaggiato con sorgente di ionizzazione elettrospray, ionizzazione positiva; tempo di ritenzione 3.15 min.; tempo di corsa tot. 8 min. più 2 min. di riequilibrio.

Esempio 24

Preparazione del composto 10

Ad una soluzione dell'intermedio 15 (390 mg, 0.39 mmol) in DMF (5 ml) è stata aggiunta per gocciolamento piperidina (1 ml) e la miscela di reazione è stata agitata per 1. Dopo diluizione con NaCl sat., il composto è stato estratto con etil acetato e la corrispondente fase organica anidrificata con sodio solfato, filtrata ed evaporata. La purificazione attraverso una cromatografia Varian Mega Bond Eliot (silica 20 g cartridge, eluente da CH₂Cl₂ a CH₂Cl₂/MeOH/NH₃ 90/10/1) ha dato il composto 10 (249 mg, 82% resa).

[M+1]²⁺/2 388

Esempio 25

Preparazione dell'intermedio 16

L'intermedio 16 è stato preparato dall'intermedio 13 (0.6 g, 0.75 mmol) e benzaldeide (77 ml, 0.75 mmol) seguendo la procedura descritta per il composto

- 40 -

6. La purificazione attraverso una cromatografia flash (silica, eluente CH₂Cl₂/MeOH/NH₃ 90/10/1) ha dato l'intermedio 16 (0.27 g, 41% resa).

[M+1]⁺ 882

Esempio 26

Preparazione del composto 11

Il composto 11 è stato preparato dall'intermedio 16 (65 mg, 0.072 mmol) seguendo la procedura descritta per la sintesi del composto 1. La purificazione attraverso una cromatografia flash (Silica, eluente CH₂Cl₂/MeOH/NH₃ 90/10/1) ha dato il composto 11 (47 mg, 90% resa).

 $[M+1]^{+}725$

Esempio 27

Preparazione dell'intermedio 17

L'intermedio 17 è stato preparato dall'intermedio 13 (3.28 g, 4.15 mmol) e dall'estere benzilico dell'acido (6-osso-esil)-carbammico (1.03 g, 4.15 mmol) seguendo la procedura descritta per la sintesi del composto 6. La purificazione attraverso una cromatografia flash (Silica, eluente CH₂Cl₂/MeOH/NH₃ 90/10/1) ha dato l'intermedio 17 (320 mg, 60% resa).

[M+1]⁺ 1026

Esempio 28

Preparazione dell'intermedio 18

L'intermedio 18 è stato preparato dall'intermedio 17 (2.2 g, 2.15 mmol) seguendo la procedura descritta per la sintesi dell'intermedio 13 utilizzando Pd/C 10% (0.2 g) invece di Rh come catalizzatore. La purificazione attraverso una cromatografia flash (Silica, eluente CH₂Cl₂/MeOH/NH₃ 88/12/1.2) ha dato l'intermedio 18 (1.8

- 41 -

g, 91% resa).

[M+1]⁺ 892

Esempio 29

Preparazione dell'intermedio 19

L'intermedio 19 è stato preparato dall'intermedio 18 (400 g, 0.1 mmol) seguendo la procedura descritta per la sintesi del composto 6. La purificazione attraverso una cromatografia flash (Silica, eluente CH₂Cl₂/MeOH/NH₃ 88/12/1.2) ha dato l'intermedio 19 (320 mg, 73% resa).

 $[M+1]^{+}982$

Esempio 30

Preparazione del composto 12

Il composto 12 è stato preparato dall'intermedio 19 (97 mg, 0.099 mmol) seguendo la procedura descritta per la sintesi del composto 1. La purificazione attraverso una cromatografia flash (Silica, eluente CH₂Cl₂/MeOH/NH₃ 90/10/1) ha dato il composto 12 (43 mg, 80% resa).

[M+1]⁺ 824

Esempio 31

Preparazione dell'intermedio 20

L'intermedio 20 è stato preparato dall'intermedio 4 (2.7 g, 3.9 mmol) seguendo la procedura descritta per la sintesi dell'intermedio 12. La purificazione attraverso una cromatografia flash (Silica, eluente CH₂Cl₂/MeOH/NH₃ 95/5/0.5) ha dato l'intermedio 20 (2.5 g, 86% resa).

[M+1]⁺ 746

Esempio 32

Preparazione dell'intermedio 21

Ad una soluzione dell'intermedio 20 (2.4 g, 3.2 mmol) in metanolo (30 ml) sono stati aggiunti NH₃ in metanolo (30 ml, soluzione 1.7 M) e Rh (5% su Al₂O₃, 0.48 g) e la miscela di reazione è stata agitata per 3 h sotto un atmosfera di idrogeno di 35 p.s.i.. La filtrazione attraverso un setto di celite, l'evaporazione sotto vuoto e la purificazione attraverso una cromatografia flash (Silica, eluente CH₂Cl₂/MeOH/NH₃ 90/10/1) hanno dato l'intermedio 21 (1.8 g, 75% resa).

Esempio 33

Preparazione dell'intermedio 22

L'intermedio 22 è stato preparato dall'intermedio 21 (633 mg, 0.85 mmol) e dall'intermedio 10 (320 mg, 0.85 mmol) seguendo la procedura descritta per la sintesi dell'intermedio 15. La purificazione attraverso una cromatografia flash (Silica, eluente CH₂Cl₂/MeOH/NH₃ 95/5/0.5) ha dato l'intermedio 22 (200 mg, 22% resa).

 $[M+1]^{+}$ 1112

HPLC-MS: colonna Zorbax SB-C18, 2.1 x 50 mm, 3.5 mm; temperatura colonna 45°C; fase mobile A 0.1% acido formico in H₂O, B 0.1% acido formico in acetonitrile; gradiente 0 min. 5% di B, 8 min. 95% di B; flow rate 1 ml/min.; volume di iniezione 2 μl; concentrazione del campione 0.5-1 mg/ml; rivelatore spettrometro di massa equipaggiato con sorgente di ionizzazione elettrospray, ionizzazione positiva; tempo di ritenzione 4.18 min.; tempo di corsa tot. 8 min. più 2 min. di riequilibrio.

Preparazione dell'intermedio 23

L'intermedio 23 è stato preparato dall'intermedio 22 (190 mg, 0.17 mmol) seguendo la procedura descritta per la sintesi del composto 10. La purificazione attraverso una cromatografia per gravità (Silica, eluente CH₂Cl₂/MeOH/NH₃ 90/10/1) ha dato l'intermedio 23 (200 mg, 60% resa).

[M+1]⁺ 890

Esempio 35

Preparazione del composto 13

Il composto 13 è stato preparato dall'intermedio 23 (90 mg, 0.1 mmol) seguendo la procedura descritta per la sintesi del composto 1. La purificazione attraverso una cromatografia Biotage (Silica 12M cartridge, eluente CH₂Cl₂/MeOH/NH₃ 95/5/0.5) ha dato il composto 13 (45 mg, 61% resa).

 $[M+1]^{+}732$

Esempio 36

Preparazione dell'intermedio 24

L'intermedio 24 è stato preparato dall'intermedio 21 (0.5 g, 0.67 mmol) e 2-tiazolcarbossialdeide (76 mg, 0.67 mmol) seguendo la procedura descritta per la sintesi del composto 6. Il prodotto grezzo è stato purificato attraverso una cromatografia per gravità (Silica, eluente da CH₂Cl₂/MeOH/NH₃ 90/10/0 a CH₂Cl₂/MeOH/NH₃ 90/10/1) a dare l'intermedio 24 (250 mg, 44% resa).

[M+1]⁺ 848

Esempio 37

Preparazione del composto 14

It composto 14 è stato preparato dall'intermedio 24 (150 mg, 0.177 mmol)

- 44 -

seguendo la procedura descritta per la sintesi del composto 1. La purificazione attraverso una cromatografia flash (Silica, eluente CH₂Cl₂/MeOH/NH₃ 90/9/0.9) ha dato il composto 14 (100 mg, 48% resa).

[M+1]⁺ 689

Esempio 38

Attività farmacologica in vivo:

- A) Dermatite acuta da contatto.
- Animali

Sono stati utilizzati gruppi di 5-6 topi CD1 (18-24 g).

Somministrazione dei composti

Tutti i derivati macrolidici sono stati solubilizzati in Trans-phase Delivery System (TPDS), un veicolo contenente alcool benzilico 10%, acetone 40% e isopropanolo 50%.

15 microlitri dei composti (500 µg), disciolti in TPDS, sono stati applicati topicamente sulla superfice interna di una orecchia; 30 minuti dopo nella stessa area sono stati applicati 12 microlitri di una soluzione di acetato di tetradecanoil-forbolo (TPA) alla concentrazione di 0.01% disciolto in acetone.

Sei ore dopo gli animali sono stati sacrificati mediante inalazione di CO2.

• Valutazione dei risultati

Sono stati utilizzati due metodi per valutare l'edema auricolare:

- a) Peso di una porzione definita di pinna auricolare.
- b) Misurazione dello spessore auricolare mediante un calibro di precisione a molla.

"Il grado di edema è stato calcolato sottraendo il peso o lo spessore dell'orecchio

non trattato a quello dell'orecchio controlaterale trattato. Per determinare il grado di remissione dell'edema è stata quindi comparata la differenza (peso o spessore) dei gruppi trattati con TPA + macrolidi rispetto a quelli trattati con il solo TPA. L'attività dei macrolidi è stata misurata utilizzando il metodo modificato di Zunic et coll. (1998): MDL (Lysyl) GDP, a non-toxil muramyl dipeptide derivative inhibits, cytokine production by activated macrophages and protects mice from phorbol ester-and oxazolone-induced inflammation (J. Invest. Dermatol., 111(1), 77-82).

I dati relativi ad eritromicina ed azitromicina si riferiscono al trattamento in dose singola con 500 μg/orecchio.

I risultati ottenuti per alcuni composti di formula I, rappresentativi dell'intera classe, sono riportati nella seguente tabella.

Composto	Edema (inibizione %)	Metodo di misura dell'edema
Eritromicina	42	a
Azitromicina	40	a
1	56.7	a
2	25.3	a
3	34.4	a
4	16.5	a
5	40.5	a
8	29.7	a
. 12	39.5	b 00
13	44.7	a

Esempio 39

Somministrazione

I ratti hanno ricevuto endo-trachealmente, attraverso la via trans-orale, una singola dose di 0.4 mg/Kg di LPS (E.coli, sierotipo 026:6). La instillazione tracheale è stata condotta sotto anestesia con alotano e dopo 20 ore dalla somministrazione endo-tracheale di LPS/sol.salina gli animali sono stati sacrificati attraverso una overdose di uretano.

Lavaggio

I polmoni sono stati lavati con quattro aliquote di 5 ml ciascuna di sol. salina con eparina 10 UI ml -1. La sospensione cellulare è stata concentrata attraverso una centrifugazione a bassa velocità e il pellet cellulare è stato sospeso.

• Conta delle cellule e differenziazione

La conta totale delle cellule è stata effettuata in un emocitometro.

La conta differenziale è stata fatta da preparazioni cytospin colorate con May-Grunwald-Giemsa (Tamaoki J., Tagaya E., Yamawaki I., Sakai N., Nagai A., Konno K., 1995. Effect of erythromycin on endotoxin-induced microvascular leakage in the rat trachea and lungs. Am. J. Respir. Crit. Care Med., 151, 1582-8). I ratti hanno ricevuto i composti da testare oralmente in dose di 100, 40 e 10 μmol/Kg come singola dose somministrata per via orale un'ora prima dell'esposizione con LPS.

Il valore di ED/50 è la dose che ha indotto il 50% di riduzione della conta dei neutrofili nel lavaggio fluido bronchiale.

Il dato relativo ad eritromicina si riferisce ad un trattamento orale in dose singola con 130 µmol/Kg.

Il risultato ottenuto per il composto 1 è riportato nella seguente tabella.

Composto	ED/50 µmol/Kg		
eritromicina	non attiva		
1	10		

Risultati analoghi sono stati ottenuti con gli altri composti di formula I riportati negli esempi.

Esempio 40

Attività farmacologica in vitro:

Attività antibiotica

• Preparazione del test

Tutti i composti sono stati solubilizzati in DMSO come soluzione concentrata 100X ad una concentrazione di 12.8 mg/ml. La soluzione concentrata è stata diluita 1:100 nel medium di incubazione ad una concentrazione finale di 128 µg/ml (DMSO 1% concentrazione finale). Per valutare la MIC, successive diluizioni 1:2 della soluzione concentrata 100X saranno preparate in DMSO e diluite 1:100 nel medium di incubazione.

Metodo sperimentale

Per i composti sono state valutate le MIC (minimum inhibitory concentration) o la loro attività antibiotica a 128 μ g/ml.

Le MIC sono state determinate in terreno liquido secondo la metodica descritta nel "Manual of Clinical Microbiology, 7th edition (1999), American Society for Microbiology"

I ceppi batterici utilizzati sono:

Streptococcus pneumoniae ATCC 49619

Staphylococcus aureus ATCC 29213 o ATCC 6538

Enterococcus faecalis ATCC 29212

Streptococcus pyogenes ATCC 19615

• Valutazione dei dati

I risultati sono espressi come MIC (μg/ml), valutata come la concentrazione più bassa della sostanza saggiata che inibisce completamente la crescita visibile a occhio nudo.

Sono stati testati tutti i composti esemplificati ed i risultati ottenuti per alcuni di essi, rappresentativi dell'intera classe di composti di formula I, sono riportati nella seguente tabella.

Composti	Sta.Aureus ATCC 29213 MIC (µg/ml)	Str.Pneum ATTC 49619 MIC (µg/ml)	Enter.Faec alis ATCC 29212 MIC (µg/ml)	Sta.Aureus ATCC 6538 128 (µg/ml)	Str.Pyogen es ATTC 19615 128 (µg/ml)
Eritromicina	0.25	0.12	· 1	-	-
12	>128	64	>128	-	-
6	64	8	64	-	-
1	-	-	>128	non attivo	non attivo

I dati riportati nella tabella indicano chiaramente che i composti di formula I, oggetto della presente invenzione, sono sostanzialmente privi di attività antibiotica.

10,33 Euro

- 49 -

Rivendicazioni

1) Un composto di formula

in cui

Rè un atomo d'idrogeno o un metile

R₁ è un atomo d'idrogeno, un gruppo N,N-di-(C₁-C₃)-alchilammino, un gruppo N,N-di-(C₁-C₃)-alchilammino-N-ossido, un gruppo N-(C₁-C₄)-acil-N-(C₁-C₃)-alchilammino oppure assieme a R₂ forma un legame tra gli atomi di carbonio in 3' e 4';

R₂ è un atomo d'idrogeno oppure assieme a R₁ forma un legame tra gli atomi di carbonio in 3' e 4';

R₃ è un alchile C₁-C₅ lineare o ramificato, un benzile eventualmente sostituito con uno o due sostituenti scelti tra nitro, ossidrile, carbossile, ammino, alchile C₁-C₅ lineare o ramificato, gruppi C₁-C₄ alcossi, gruppi C₁-C₄ alcossicarbonilici, gruppi amminocarbonilici o ciano oppure una catena di formula

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile a cinque o sei termini

contenente da uno a tre atomi scelti tra azoto, ossigeno e zolfo;

X rappresenta O, S, SO, SO₂, NR₆ ed R₆ è un atomo d'idrogeno, un alchile C₁-C₃ lineare o ramificato, un gruppo C₁-C₃ alcossicarbonile, un gruppo benzilossicarbonile;

Y è un gruppo C₆H₄, un eteroarile a cinque o sei termini contenente da uno a tre atomi scelti tra azoto, ossigeno e zolfo oppure rappresenta O, S, SO, SO₂, NR₆ dove R₆ ha i significati sopra riportati;

r è un numero intero compreso tra 1 e 3;

m è un numero intero compreso tra 1 e 6;

n è un numero intero compreso tra 0 e 2;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma N-ossidata;

e loro sali farmaceuticamente accettabili;

alla condizione che, quando R è un atomo di idrogeno ed R_1 è un gruppo dimetilammino, R_3 è diverso da un gruppo (C_1 - C_5)-alchile.

- 2) Un composto secondo la rivendicazione 1 in cui R_1 è un atomo d'idrogeno un gruppo N-metil-N- (C_1-C_3) -alchilammino, un gruppo N-metil-N- (C_1-C_3) -alchilammino-N-ossido, un gruppo N- (C_1-C_4) -acil-N-metilammino oppure R_1 assieme a R_2 forma un legame tra gli atomi di carbonio in 3' e 4'.
- 3) Un composto secondo la rivendicazione 2 in cui R₁ è un atomo d'idrogeno, un gruppo N,N-dimetilammino, un gruppo N,N-dimetilammino-N-ossido, un gruppo N-acetil-N-metilammino oppure R₁ assieme ad R₂ forma un legame tra gli atomi di carbonio in 3' e 4'.
- 4) Un composto secondo la rivendicazione 1 in cui R₃ è un alchile (C₁-C₃) lineare

. - 51 -

o ramificato, un benzile eventualmente sostituito con uno o due sostituenti scelti tra nitro, ossidrile, carbossile, ammino, alchile (C₁-C₃) lineare o ramificato, gruppi C₁-C₄ alcossile ciano oppure una catena di formula

$$-(CH2)r-X-(CH2)m-Y-(CH2)n-A$$

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile a cinque o sei termini contenente da uno a tre atomi scelti tra azoto, ossigeno e zolfo;

X è O oppure NR₆ ed R₆ è un atomo d'idrogeno, un alchile C₁-C₃ lineare o ramificato;

Y, quando n è 0, è un gruppo C_6H_4 o un eteroarile a cinque o sei termini contenente da uno a tre atomi scelti tra azoto, ossigeno e zolfo; oppure, quando n è diverso da 0, è O oppure NR_6 ed R_6 è un atomo d'idrogeno, un alchile C_1 - C_3 lineare o ramificato;

r è un numero intero compreso tra 1 e 3;

m è un numero intero scelto tra 1 e 2;

n è un numero intero compreso tra 0 e 2;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata.

5) Un composto secondo la rivendicazione 4 in cui R₃ è un metile, un benzile oppure una catena di formula

$$-(CH2)r-X-(CH2)m-Y-(CH2)n-A$$

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile a cinque o sei termini scelto tra pirrolo, tiofene, furano, imidazolo, ossazolo, tiazolo, piridina,

pirimidina, triazolo e tiadiazolo;

X è O oppure NR6 ed R6 è un atomo d'idrogeno;

r è un numero intero compreso tra 1 e 3;

m è un numero intero scelto tra 1 e 2;

n è un numero intero scelto tra 0 e 1;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata.

6) Un composto secondo la rivendicazione 5 in cui R₃ è un metile, un benzile oppure una catena di formula

$$-(CH_2)r-X-(CH_2)m-Y-(CH_2)n-A$$

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile scelto tra tiofene, furano, imidazolo, tiazolo, piridina e triazolo;

X è NR₆ ed R₆ è un atomo d'idrogeno;

Y, quando n
eq 0, è un gruppo C_6H_4 o un eteroarile scelto tra tiofene, furano, imidazolo, tiazolo, piridina e triazolo; oppure, quando n
eq 1, è NR_6 ed R_6 è un atomo d'idrogeno;

rè3;

m è un numero intero scelto tra 1 e 2;

n è un numero intero scelto tra 0 e 1;

inoltre l'atomo di azoto a cui è legato R3 può essere presente nella forma N-

10,33 Euro

- 53 -

ossidata.

7) Un composto secondo la rivendicazione 1 in cui R₁ è un atomo d'idrogeno, un gruppo N-metil-N-(C₁-C₃)-alchilammino, un gruppo N-metil-N-(C₁-C₃)-alchilammino-N-ossido, un gruppo N-(C₁-C₄)-acil-N-metilammino oppure R₁ assieme ad R₂ forma un legame tra gli atomi di carbonio in 3' e 4'; contemporaneamente R₃ è un alchile (C₁-C₃) lineare o ramificato, un benzile eventualmente sostituito con uno o due sostituenti scelti tra nitro, ossidrile, carbossile, ammino, alchile (C₁-C₃) lineare o ramificato, gruppi C₁-C₄ alcossi e ciano oppure una catena di formula

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile a cinque o sei termini contenente da uno a tre atomi scelti tra azoto, ossigeno e zolfo;

X è O oppure NR₆ ed R₆ è un atomo d'idrogeno, un alchile C₁-C₃ lineare o ramificato;

Y, quando n è 0, è un gruppo C₆H₄ o un eteroarile a cinque o sei termini contenente da uno a tre atomi scelti tra azoto, ossigeno e zolfo; oppure, quando n è diverso da 0, è O oppure NR₆ ed R₆ è un atomo d'idrogeno, un alchile C₁-C₃ lineare o ramificato;

r è un numero intero compreso tra 1 e 3;

m è un numero intero scelto tra 1 e 2;

n è un numero intero compreso tra 0 e 2;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata.

$$-(CH2)r-X-(CH2)m-Y-(CH2)n-A$$

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile a cinque o sei termini scelto tra pirrolo, tiofene, furano, imidazolo, ossazolo, tiazolo, piridina, pirimidina, triazolo e tiadiazolo;

X è O oppure NR6 ed R6 è un atomo d'idrogeno;

Y, quando n è 0, è un gruppo C₆H₄ o un eteroarile a cinque o sei termini scelto tra pirrolo, tiofene, furano, imidazolo, ossazolo, tiazolo, piridina, pirimidina, triazolo e tiadiazolo; oppure, quando n è 1, è NR₆ ed R₆ è un atomo d'idrogeno;

r è un numero intero compreso tra 1 e 3;

m è un numero intero scelto tra 1 e 2;

n è un numero intero scelto tra 0 e 1;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata.

9) Un composto secondo la rivendicazione 8 in cui R₃ è un metile, un benzile oppure una catena di formula

$$-(CH_2)r-X-(CH_2)m-Y-(CH_2)n-A$$

in cui

A è un atomo d'idrogeno, un fenile oppure un eteroarile scelto tra tiofene, furano, imidazolo, tiazolo, piridina e triazolo;

X è NR₆ ed R₆ è un atomo d'idrogeno;

Y, quando n è 0, è un gruppo C6H4 o un eteroarile scelto tra tiofene, furano,

imidazolo, tiazolo, piridina e triazolo; oppure, quando n è 1, è NR₆ ed R₆ è un atomo d'idrogeno;

rè3;

m è un numero intero scelto tra 1 e 2;

n è un numero intero scelto tra 0 e 1;

inoltre l'atomo di azoto a cui è legato R₃ può essere presente nella forma Nossidata.

- 10) Un composto secondo la rivendicazione 9 in cui R_1 è un atomo d'idrogeno, un gruppo N,N-dimetilammino, un gruppo N,N-dimetilammino-N-ossido, un gruppo N-acetil-N-metilammino oppure R_1 assieme ad R_2 forma un legame tra gli atomi di carbonio in 3' e 4'.
- 11) Un processo per preparare un composto secondo la rivendicazione 1 che comprende la rimozione dell'L-cladinosio in posizione 3, attraverso una reazione di idrolisi, dai derivati di Azitromicina di formula

in cui

R, R₁, R₂ ed R₃ sono definiti come nella rivendicazione 1.

. 12) Un processo secondo la rivendicazione 11 in cui nella formula II il sostituente

R₃ è un metile.

- 13) Un processo secondo la rivendicazione 11 in cui la rimozione del cladinosio viene effettuata attraverso una reazione di idrolisi acida catalizzata in presenza di un acido minerale e di un solvente organico protico.
- 14) Una composizione farmaceutica contenente un quantitativo terapeuticamente efficace di un composto secondo la rivendicazione 1 in miscela con un veicolo farmaceuticamente accettabile.
- 15) Una composizione farmaceutica secondo la rivendicazione 14 utile per il trattamento di patologie infiammatorie.
- 16) Una composizione farmaceutica secondo la rivendicazione 14 utile per il trattamento di patologie respiratorie.

Stefano Panossian
N. iscriz. Albo 282 BM

