Classification, Halfspaces, the Perceptron algorithm

Chris Cornwell

Feb 25, 2025

Outline

Classification tasks

Half-space model

Perceptron algorithm

Outline

Classification tasks

Half-space mode

Perceptron algorithm

Example of Classification

Use some model to determine a digit that was (hand)written in an image

0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

Example of Classification

Use some model to determine a digit that was (hand)written in an image

- ► Convert image to a vector (in some way) \rightarrow x.
- Your model's output: $\hat{y}(x)$ is the (predicted) digit.

Provided with your data, an "observation" $y \in \{0, 1, ..., 9\}$ of the digit being written.

Example of Classification

Use some model to determine a digit that was (hand)written in an image

- ► Convert image to a vector (in some way) \rightarrow x.
- ► Your model's output: $\hat{y}(x)$ is the (predicted) digit.

Provided with your data, an "observation" $\mathbf{y} \in \{0, 1, \dots, 9\}$ of the digit being written.

y and \hat{y} are numbers on number line; but, use them like <u>labels</u> (or, separate buckets) to group points x. When y=5, predicting $\hat{y}=4$ is not any better than $\hat{y}=0$.

In linear regression, on indpt. variables $x_0, x_1, \ldots, x_{d-1}$, had (affine) linear function $\hat{y} = p_0 x_0 + p_1 x_1 + \ldots + p_{d-1} x_{d-1} + p_d$; values of function \leftrightarrow prediction \hat{y} ; error term ε , so that $y = \hat{y} + \varepsilon$.

¹Should consider the output y here to be a random variable, with distribution that depends on x. In simple linear regression, ε is a random variable and $y=p_0x_0+p_1+\varepsilon$.

In linear regression, on indpt. variables $x_0, x_1, \ldots, x_{d-1}$, had (affine) linear function $\hat{y} = p_0 x_0 + p_1 x_1 + \ldots + p_{d-1} x_{d-1} + p_d$; values of function \leftrightarrow prediction \hat{y} ; error term ε , so that $y = \hat{y} + \varepsilon$. An observation y for each data point $\mathbf{x} = (x_0, x_1, \ldots, x_{d-1}) \in \mathbb{R}^d$. The **linear model** $\mathbf{x} \mapsto \hat{y}$ approximates $\mathbf{x} \mapsto y$.

¹Should consider the output y here to be a random variable, with distribution that depends on x. In simple linear regression, ε is a random variable and $y=p_0x_0+p_1+\varepsilon$.

In linear regression, on indpt. variables $x_0, x_1, \ldots, x_{d-1}$, had (affine) linear function $\hat{y} = p_0 x_0 + p_1 x_1 + \ldots + p_{d-1} x_{d-1} + p_d$; values of function \leftrightarrow prediction \hat{y} ; error term ε , so that $y = \hat{y} + \varepsilon$. An observation y for each data point $\mathbf{x} = (x_0, x_1, \ldots, x_{d-1}) \in \mathbb{R}^d$. The **linear model** $\mathbf{x} \mapsto \hat{y}$ approximates $\mathbf{x} \mapsto y$.\frac{1}{2} We expect that $|y - \hat{y}|$ is almost never exactly 0; a good model: one where $|y - \hat{y}|$ is small on average (but, still positive).

"Regression"

¹Should consider the output y here to be a random variable, with distribution that depends on x. In simple linear regression, ε is a random variable and $y=p_0x_0+p_1+\varepsilon$.

In linear regression, on indpt. variables $x_0, x_1, \ldots, x_{d-1}$, had (affine) linear function $\hat{y} = p_0 x_0 + p_1 x_1 + \ldots + p_{d-1} x_{d-1} + p_d$; values of function \leftrightarrow prediction \hat{y} ; error term ε , so that $y = \hat{y} + \varepsilon$. An observation y for each data point $\mathbf{x} = (x_0, x_1, \ldots, x_{d-1}) \in \mathbb{R}^d$. The **linear model** $\mathbf{x} \mapsto \hat{y}$ approximates $\mathbf{x} \mapsto y$.\frac{1}{2} We expect that $|y - \hat{y}|$ is almost never exactly 0; a good model: one where $|y - \hat{y}|$ is small on average (but, still positive).

"Regression"

"Classification" tasks: the value y is a <u>label</u> and might not even be a number. The prediction \hat{y} is simply wrong, or not; close doesn't count. Good model: when $\hat{y}=y$ as often as possible.

¹Should consider the output y here to be a random variable, with distribution that depends on x. In simple linear regression, ε is a random variable and $y=p_0x_0+p_1+\varepsilon$.

Outline

Classification tasks

Half-space model

Perceptron algorithm

Assume data is from \mathbb{R}^d for some d>0 and we only have two labels, $\{1,-1\}.$

Assume data is from \mathbb{R}^d for some d>0 and we only have two labels, $\{1,-1\}$.

A <u>hyperplane</u> in \mathbb{R}^d is an (affine) linear subspace that separates \mathbb{R}^d in two.

Assume data is from \mathbb{R}^d for some d>0 and we only have two labels, $\{1,-1\}$.

A <u>hyperplane</u> in \mathbb{R}^d is an (affine) linear subspace that separates \mathbb{R}^d in two. Using coordinates (x_1, x_2, \ldots, x_d) in \mathbb{R}^d , a hyperplane H may be determined from d+1 numbers w_1, w_2, \ldots, w_d , and b. It consists of solutions to

$$\mathbf{w}_1\mathbf{x}_1+\mathbf{w}_2\mathbf{x}_2\ldots+\mathbf{w}_d\mathbf{x}_d+\mathbf{b}=0.$$

Assume data is from \mathbb{R}^d for some d>0 and we only have two labels, $\{1,-1\}.$

A <u>hyperplane</u> in \mathbb{R}^d is an (affine) linear subspace that separates \mathbb{R}^d in two. Using coordinates (x_1, x_2, \ldots, x_d) in \mathbb{R}^d , a hyperplane H may be determined from d+1 numbers w_1, w_2, \ldots, w_d , and b. It consists of solutions to

$$\mathbf{w}_1\mathbf{x}_1+\mathbf{w}_2\mathbf{x}_2\ldots+\mathbf{w}_d\mathbf{x}_d+\mathbf{b}=0.$$

Figure: A few hyperplanes in \mathbb{R}^2 .

Assume data is from \mathbb{R}^d for some d>0 and we only have two labels, $\{1,-1\}$.

A <u>hyperplane</u> in \mathbb{R}^d is an (affine) linear subspace that separates \mathbb{R}^d in two. Using coordinates (x_1, x_2, \ldots, x_d) in \mathbb{R}^d , a hyperplane H may be determined from d+1 numbers w_1, w_2, \ldots, w_d , and b. It consists of solutions to

$$\mathsf{w}_1\mathsf{x}_1+\mathsf{w}_2\mathsf{x}_2\ldots+\mathsf{w}_\mathsf{d}\mathsf{x}_\mathsf{d}+\mathsf{b}=0.$$

▶ Rewriting in vector form: $\mathbf{w} = (w_1, w_2, \dots, w_d)$, look for solutions $\mathbf{x} \in \mathbb{R}^d$ to the equation $\mathbf{w} \cdot \mathbf{x} + b = 0$.

Assume data is from \mathbb{R}^d for some d > 0 and we only have two labels, $\{1, -1\}$.

A <u>hyperplane</u> in \mathbb{R}^d is an (affine) linear subspace that separates \mathbb{R}^d in two. Using coordinates (x_1, x_2, \ldots, x_d) in \mathbb{R}^d , a hyperplane H may be determined from d+1 numbers w_1, w_2, \ldots, w_d , and b. It consists of solutions to

$$w_1x_1 + w_2x_2 \dots + w_dx_d + b = 0.$$

- ▶ Rewriting in vector form: $\mathbf{w} = (w_1, w_2, \dots, w_d)$, look for solutions $\mathbf{x} \in \mathbb{R}^d$ to the equation $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 0$.
- w is a vector that is orthogonal to a (d-1)-dimensional subspace of \mathbb{R}^d ; |b| corresponds to a translation away from the origin.

Using the notation from last slide: a half-space model in \mathbb{R}^d is determined by d+1 parameters w_1, w_2, \ldots, w_d , b; the first d parameters grouped into a vector: $\mathbf{w} = (w_1, w_2, \ldots, w_d)$.

Using the notation from last slide:

a half-space model in \mathbb{R}^d is determined by d+1 parameters

 w_1, w_2, \ldots, w_d, b ; the first d parameters grouped into a vector:

 $\mathbf{w} = (\mathsf{w}_1, \mathsf{w}_2, \dots, \mathsf{w}_d).$

Given $\mathbf{x} \in \mathbb{R}^d$, the side of the hyperplane H it is on is determined by the sign of $\mathbf{w} \cdot \mathbf{x} + b$. Our half-space model: $h : \mathbb{R}^d \setminus H \to \{1, -1\}$.

Using the notation from last slide:

a half-space model in \mathbb{R}^d is determined by d+1 parameters

 w_1, w_2, \ldots, w_d, b ; the first d parameters grouped into a vector:

$$\mathbf{w} = (\mathsf{w}_1, \mathsf{w}_2, \dots, \mathsf{w}_d).$$

Given $\mathbf{x} \in \mathbb{R}^d$, the side of the hyperplane H it is on is determined by the sign of $\mathbf{w} \cdot \mathbf{x} + b$. Our half-space model: $h : \mathbb{R}^d \setminus H \to \{1, -1\}$.

- ▶ (Positive side) Say that $h(\mathbf{x}) = 1$ if $\mathbf{w} \cdot \mathbf{x} + b > 0$.
- ► (Negative side) Say that $h(\mathbf{x}) = -1$ if $\mathbf{x} \cdot \mathbf{x} + \mathbf{b} < 0$.

Using the notation from last slide:

a half-space model in \mathbb{R}^d is determined by d+1 parameters

 w_1, w_2, \ldots, w_d, b ; the first d parameters grouped into a vector:

$$\mathbf{w} = (\mathsf{w}_1, \mathsf{w}_2, \dots, \mathsf{w}_d).$$

Given $\mathbf{x} \in \mathbb{R}^d$, the side of the hyperplane H it is on is determined by the sign of $\mathbf{w} \cdot \mathbf{x} + b$. Our half-space model: $h : \mathbb{R}^d \setminus H \to \{1, -1\}$.

- ▶ (Positive side) Say that $h(\mathbf{x}) = 1$ if $\mathbf{w} \cdot \mathbf{x} + b > 0$.
- ► (Negative side) Say that $h(\mathbf{x}) = -1$ if $\mathbf{x} \cdot \mathbf{x} + \mathbf{b} < 0$.

If there exists a hyperplane, given by some w, b, so that x has one of the labels if and only if it is on the positive side, the labeled data are called **linearly separable**.

Linearly separable

Figure: The hyperplane $H = \{(x, y) \in \mathbb{R}^2 : x + y + 1 = 0\}$, corresponding positive and negative regions, $\mathbf{w} = (1, 1), b = 1$

Not linearly separable

Figure: A data set in \mathbb{R}^2 that is not linearly separable.

Not linearly separable

Figure: A data set in \mathbb{R}^2 that is not linearly separable.

A criterion (checkable, in theory) that is equivalent to "not linearly separable"?

Outline

Classification tasks

Half-space mode

Perceptron algorithm

Setup for Perceptron algorithm

Assuming that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ is linearly separable, the Perceptron algorithm is a procedure that is guaranteed to find a hyperplane that separates the data.

Setup for Perceptron algorithm

Assuming that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ is linearly separable, the Perceptron algorithm is a procedure that is guaranteed to find a hyperplane that separates the data.

To describe it: for each x_i , use X_i to denote the (d+1)-vector consisting of x_i with 1 appended at the end;

Additionally, use W to denote the vector ${\bf w}$ with b appended at the end.

Setup for Perceptron algorithm

Assuming that $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ is linearly separable, the Perceptron algorithm is a procedure that is guaranteed to find a hyperplane that separates the data.

To describe it: for each x_i , use X_i to denote the (d+1)-vector consisting of x_i with 1 appended at the end;

Additionally, use W to denote the vector w with b appended at the end. Note that $W \cdot X_i = \mathbf{w} \cdot \mathbf{x}_i + b$.

For linearly separable data, our goal is to find $W \in \mathbb{R}^{d+1}$ so that, for all $1 \le i \le n$, $W \cdot X_i$ and y_i have the same sign (are both positive or both negative).

► Equivalently, we need $y_iW \cdot X_i > 0$ for all $1 \le i \le n$.

Perceptron algorithm

Suppose the data is linearly separable. Also, x is an $n \times d$ array of points, with i^{th} row equal to x_i , and y is array of the labels. The Perceptron algorithm finds W iteratively as follows.

Example

A simple example in \mathbb{R}^2 , with n=4 points.

x:
$$\begin{bmatrix} -1 & 3 \\ -1 & -1 \\ 3 & -1 \\ 0 & 1.5 \end{bmatrix}$$
 y: $\begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$

Example, continued

A simple example in \mathbb{R}^2 , with n=4 points.

$$\mathbf{x}: \begin{bmatrix} -1 & 3 \\ -1 & -1 \\ 3 & -1 \\ 0 & 1.5 \end{bmatrix} \qquad \qquad \mathbf{y}: \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$

Beginning with $\mathbf{W}^{(1)}=(0,0,0)$, next step:

$$W^{(2)} = \vec{0} + y_1 X_1 = -1 * (-1, 3, 1) = (1, -3, -1).$$

Next: since $y_1 W^{(2)} \cdot X_1 > 0$, check

$$y_2 W^{(2)} \cdot X_2 = -1 * (-1 + 3 - 1) = -1$$
. So,

$$W^{(3)} = W^{(2)} + y_2 X_2 = (2, -2, -2).$$

Continue in this way – on each step check dot products (in order) with $y_1X_1, y_2X_2, y_3X_3, y_4X_4$. Eventually you return the vector $W^{(10)} = (4, -0.5, 1)$. i.e., $H = \{(x_1, x_2) \in \mathbb{R}^2 : 4x_1 - 0.5x_2 + 1 = 0\}$ separates the points.

Under our assumptions for Perceptron algorithm, a guarantee on eventually stopping.

Theorem

Define $R = \max_i |X_i|$ and $B = \min_i \{|V| : \forall i, y_i V \cdot X_i \ge 1\}$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations and, when it stops with output W, then $y_i W \cdot X_i > 0$ for all $1 \le i \le n$.

Under our assumptions for Perceptron algorithm, a guarantee on eventually stopping.

Theorem

Define $R = \max_i |X_i|$ and $B = \min_i \{|V| : \forall i, y_i V \cdot X_i \ge 1\}$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations and, when it stops with output W, then $y_i W \cdot X_i > 0$ for all $1 \le i \le n$.

Idea of proof: Write W^* for vector that realizes the minimum B. Also, write $W^{(t)}$ for the vector W on the t^{th} step, with $W^{(1)}=(0,0,\ldots,0)$.

Under our assumptions for Perceptron algorithm, a guarantee on eventually stopping.

Theorem

Define $R = \max_i |X_i|$ and $B = \min_i \{|V| : \forall i, y_i V \cdot X_i \ge 1\}$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations and, when it stops with output W, then $y_i W \cdot X_i > 0$ for all $1 \le i \le n$.

Idea of proof: Write W^* for vector that realizes the minimum B. Also, write $W^{(t)}$ for the vector W on the t^{th} step, with $W^{(1)}=(0,0,\dots,0)$. Using how $W^{(t+1)}$ is obtained from $W^{(t)}$, can show that $W^*\cdot W^{(T+1)}\geq T$ after T+1 iterations. Also, using the condition on $W^{(T)}$ that necessitates an update, can show that $|W^{(T+1)}|\leq \sqrt{T}R$. (Both statements, use induction.)

Under our assumptions for Perceptron algorithm, a guarantee on eventually stopping.

Theorem

Define $R = \max_i |X_i|$ and $B = \min_i \{|V| : \forall i, y_i V \cdot X_i \geq 1\}$. Then, the Perceptron algorithm stops after at most $(RB)^2$ iterations and, when it stops with output W, then $y_i W \cdot X_i > 0$ for all $1 \leq i \leq n$.

Idea of proof: Write W^* for vector that realizes the minimum B. Also, write $W^{(t)}$ for the vector W on the t^{th} step, with $W^{(1)}=(0,0,\ldots,0)$. Using how $W^{(t+1)}$ is obtained from $W^{(t)}$, can show that $W^*\cdot W^{(T+1)}\geq T$ after T+1 iterations. Also, using the condition on $W^{(T)}$ that necessitates an update, can show that $|W^{(T+1)}|\leq \sqrt{T}R$. (Both statements, use induction.)

Now, by Cauchy-Schwarz inequality, $T \leq BR\sqrt{T}$, which we can rearrange to $T \leq (BR)^2$.

Another example, the Iris data set

First discussed by R.A. Fisher in a 1936 paper, Iris data set commonly used in explanations. It contains 150 points in \mathbb{R}^4 , each for an individual iris flower from one of 3 species: Iris setosa, Iris virginica, and Iris versicolor.

The 4 coordinates are measurements of sepal length, sepal width, petal length, and petal width (in cm).

Iris setosa points are linearly separable from the other two.

Labels: Iris setosa ← 1; Other species ← -1.

Begin by opening the notebook

'perceptron-iris-notebook.ipynb' ...After completing the algorithm, should get $\mathbf{w}=(1.3,4.1,-5.2,-2.2)$ and b=1.

Figure: Images by G. Robertson, E. Hunt, Radomil ©CC BY-SA 3.0