Program Verification in Elixir

Master's Degree in Formal Methods and Computer Engineering

Adrián Enríquez Ballester Supervisor: Manuel Montenegro Montes July 3, 2022

Complutense University of Madrid

Table of Contents

Introduction

SMT Solver Integration in Elixir

Verification Intermediate Representation

Elixir Code Verification

Conclusions

Introduction

• Light-weight program verification systems:

- Light-weight program verification systems:
 - Allow specifying and verifying code

- Light-weight program verification systems:
 - Allow specifying and verifying code
 - Reduce the required human intervention

- Light-weight program verification systems:
 - Allow specifying and verifying code
 - Reduce the required human intervention
- Dafny:

- Light-weight program verification systems:
 - Allow specifying and verifying code
 - Reduce the required human intervention
- Dafny:
 - Specify code with pre/post conditions

- Light-weight program verification systems:
 - Allow specifying and verifying code
 - Reduce the required human intervention
- Dafny:
 - Specify code with pre/post conditions
 - Compiled to Boogie, a verification IR

- Light-weight program verification systems:
 - Allow specifying and verifying code
 - Reduce the required human intervention
- Dafny:
 - Specify code with pre/post conditions
 - Compiled to Boogie, a verification IR
 - Verification conditions discharged by the Z3 theorem prover

- Light-weight program verification systems:
 - Allow specifying and verifying code
 - Reduce the required human intervention
- Dafny:
 - Specify code with pre/post conditions
 - Compiled to Boogie, a verification IR
 - Verification conditions discharged by the Z3 theorem prover
 - Compiled also to other programming languages to be executed

 A functional programming language that runs on the Erlang Virtual Machine

- A functional programming language that runs on the Erlang Virtual Machine
- Dynamically typed

- A functional programming language that runs on the Erlang Virtual Machine
- Dynamically typed
- Suitable for developing DSLs through macros

- A functional programming language that runs on the Erlang Virtual Machine
- Dynamically typed
- Suitable for developing DSLs through macros
- Main current verification approaches:

- A functional programming language that runs on the Erlang Virtual Machine
- Dynamically typed
- Suitable for developing DSLs through macros
- Main current verification approaches:
 - Dialyzer (static)

- A functional programming language that runs on the Erlang Virtual Machine
- Dynamically typed
- Suitable for developing DSLs through macros
- Main current verification approaches:
 - Dialyzer (static)
 - Property-based testing (dynamic)

- A functional programming language that runs on the Erlang Virtual Machine
- Dynamically typed
- Suitable for developing DSLs through macros
- Main current verification approaches:
 - Dialyzer (static)
 - Property-based testing (dynamic)
 - Both of them show the presence of errors rather than their absence

Our aim

Provide a system similar to that of Dafny but specialized for Elixir and implemented in Elixir itself

Our aim

Provide a system similar to that of Dafny but specialized for Elixir and implemented in Elixir itself

https://github.com/adrianen-ucm/verixir-project

Our aim

Provide a system similar to that of Dafny but specialized for Elixir and implemented in Elixir itself

https://github.com/adrianen-ucm/verixir-project

Scope: only a subset of sequential Elixir for the moment, and partial verification (i.e. not verifying termination)

1. SMT solver integration in Elixir

- 1. SMT solver integration in Elixir
- 2. L0, a low level language close to the SMT solver

- 1. SMT solver integration in Elixir
- 2. L0, a low level language close to the SMT solver
- 3. L1, a verification IR for dynamically typed Elixir expressions

- 1. SMT solver integration in Elixir
- 2. L0, a low level language close to the SMT solver
- 3. L1, a verification IR for dynamically typed Elixir expressions
- 4. L2, a high level language that models Elixir + verification code

SMT Solver Integration in Elixir

We have developed an SMT-LIB binding for Elixir with the following features:

We have developed an SMT-LIB binding for Elixir with the following features:

• An SMT-LIB (subset) DSL

We have developed an SMT-LIB binding for Elixir with the following features:

- An SMT-LIB (subset) DSL
- Different SMT solvers can be easily integrated

We have developed an SMT-LIB binding for Elixir with the following features:

- An SMT-LIB (subset) DSL
- Different SMT solvers can be easily integrated
- Out-of-the-box support for Z3

Elixir SMT-LIB binding example

```
import SmtLib
with_local_conn do
  declare_const x: Int,
                 y: Int
  assert !(
      (:x + 3 \le :y + 3) \sim (:x \le :y)
  check_sat
end
```

The L0 language

The L0 language

• The lowest level language of our verification stack

- The lowest level language of our verification stack
- Close to the SMT solver

- The lowest level language of our verification stack
- Close to the SMT solver
- Restricted SMT-LIB + control flow + failure

L0 expressions syntax

L0 expressions syntax

where $x \in V$ is a variable name and $\varphi \in \mathbb{F}$ is a formula with many-sorted terms $t \in \mathbb{T}$

Notation:

• $X \subseteq V$ set of variable names

- $X \subseteq V$ set of variable names
- $\bullet \ \Phi \subseteq \mathbb{F}$ set of formulas

- $X \subseteq V$ set of variable names
- $\Phi \subseteq \mathbb{F}$ set of formulas
- $\mathbb{F}(X)$ subset of \mathbb{F} with free variables in X

- $X \subseteq V$ set of variable names
- $\Phi \subseteq \mathbb{F}$ set of formulas
- $\mathbb{F}(X)$ subset of \mathbb{F} with free variables in X
- (X, Φ) SMT solver state

- $X \subseteq V$ set of variable names
- $\Phi \subseteq \mathbb{F}$ set of formulas
- $\mathbb{F}(X)$ subset of \mathbb{F} with free variables in X
- (X, Φ) SMT solver state
- $\langle \epsilon, X, \Phi \rangle \Downarrow (X', \Phi')$ judgement

 $\langle \mathsf{skip}, \ X, \ \Phi \rangle \Downarrow (X, \Phi)$

$$\langle \mathsf{skip}, \ X, \ \Phi \rangle \Downarrow (X, \Phi)$$

$$\frac{\varphi \in \mathbb{F}(X)}{\langle \mathsf{add} \ \varphi, \ X, \ \Phi \rangle \Downarrow (X, \Phi \cup \{\varphi\})}$$

$$\langle \mathsf{skip}, \ X, \ \Phi \rangle \Downarrow (X, \Phi)$$

$$\frac{\varphi \in \mathbb{F}(X)}{\langle \mathsf{add} \ \varphi, \ X, \ \Phi \rangle \Downarrow (X, \Phi \cup \{\varphi\})}$$

$$\frac{x \notin X}{\langle \mathbf{declare} \ x, \ X, \ \Phi \rangle \Downarrow (X \cup \{x\}, \Phi)}$$

$$\langle \mathsf{skip}, \ X, \ \Phi \rangle \Downarrow (X, \Phi)$$

$$\varphi \in \mathbb{F}(X)$$

$$\langle \mathbf{add} \ \varphi, \ X, \ \Phi \rangle \Downarrow (X, \Phi \cup \{\varphi\})$$

$$\frac{x \notin X}{\langle \mathbf{declare} \ x, \ X, \ \Phi \rangle \Downarrow (X \cup \{x\}, \Phi)}$$

$$\frac{\langle \epsilon_1, X, \Phi \rangle \Downarrow (X', \Phi') \qquad \langle \epsilon_2, X', \Phi' \rangle \Downarrow (X'', \Phi'')}{\langle \epsilon_1; \epsilon_2, X, \Phi \rangle \Downarrow (X'', \Phi'')}$$

$$\frac{\langle \epsilon, \ X, \ \Phi \rangle \Downarrow (X', \Phi')}{\langle \mathbf{local} \ \epsilon, \ X, \ \Phi \rangle \Downarrow (X, \Phi)}$$

$$\frac{\langle \epsilon, X, \Phi \rangle \Downarrow (X', \Phi')}{\langle \mathbf{local} \ \epsilon, \ X, \ \Phi \rangle \Downarrow (X, \Phi)}$$

$$\frac{\langle \epsilon_1, \ X, \ \Phi \rangle \Downarrow (X', \Phi') \quad \textit{unsat}(\Phi') \quad \langle \epsilon_2, \ X, \ \Phi \rangle \Downarrow (X'', \Phi'')}{\langle \textbf{when-unsat} \ \epsilon_1 \ \textbf{do} \ \epsilon_2 \ \textbf{else} \ \epsilon_3, \ X, \ \Phi \rangle \Downarrow (X'', \Phi'')}$$

$$\frac{\langle \epsilon, X, \Phi \rangle \Downarrow (X', \Phi')}{\langle \mathbf{local} \ \epsilon, \ X, \ \Phi \rangle \Downarrow (X, \Phi)}$$

$$\frac{\langle \epsilon_1, \ X, \ \Phi \rangle \Downarrow (X', \Phi') \quad unsat(\Phi') \quad \langle \epsilon_2, \ X, \ \Phi \rangle \Downarrow (X'', \Phi'')}{\langle \mathbf{when-unsat} \ \epsilon_1 \ \mathbf{do} \ \epsilon_2 \ \mathbf{else} \ \epsilon_3, \ X, \ \Phi \rangle \Downarrow (X'', \Phi'')}$$

$$\frac{\langle \epsilon_1, \ X, \ \Phi \rangle \Downarrow (X', \Phi') \quad \neg unsat(\Phi') \quad \langle \epsilon_3, \ X, \ \Phi \rangle \Downarrow (X'', \Phi'')}{\langle \textbf{when-unsat} \ \epsilon_1 \ \textbf{do} \ \epsilon_2 \ \textbf{else} \ \epsilon_3, \ X, \ \Phi \rangle \Downarrow (X'', \Phi'')}$$

L0 Elixir implementation

A simple implementation in Elixir is straightforward by using our SMT-LIB binding

L0 Elixir implementation

A simple implementation in Elixir is straightforward by using our SMT-LIB binding

```
defmacro eval(conn, {:local, _, [e]}) do
  quote do
    conn = unquote(conn)
    :ok = push conn
    eval conn, unquote(e)
    :ok = pop conn
  end
end
```

L0 Elixir example

```
eval conn do
  declare_const :x

when_unsat add :x != :x do
    skip # Does not reach fail
  else
    fail
  end
end
```

L0 Elixir example

```
eval conn do
  declare_const :x

when_unsat add :x == :x do
    skip
  else
    fail # Reaches fail
  end
end
```

Verification Intermediate

Representation

• Verification IR

- Verification IR
- It models Elixir expressions dynamically typed

- Verification IR
- It models Elixir expressions dynamically typed
- Statements for writing verification code

L1 expressions syntax

L1 expressions syntax

where c is a constant literal of a simple type, currently integer or boolean, and $f \in \Sigma^1$ a function name

L1 statements syntax

Built-in SMT-LIB declarations

Foundation to represent L1 expressions in the underlying many-sorted logic

Built-in SMT-LIB declarations

Foundation to represent L1 expressions in the underlying many-sorted logic

```
(declare-sort Term 0)
(declare-sort Type 0)
. . .
(declare-const int Type)
(declare-const bool Type)
(assert (distinct int bool))
. . .
(declare-fun type (Term) Type)
(define-fun is_integer ((x Term)) Bool
  (= (type x) int)
```

Built-in L1 specifications

Built-in **sets** of pair/postconditions for functions to model their behavior in Elixir

Built-in L1 specifications

Built-in **sets** of pair/postconditions for functions to model their behavior in Elixir

```
 \{ \textit{is-integer}(x) \land \textit{is-integer}(y) \} \\ x + y \\ \{ \\ \textit{is-integer}(\widehat{+}(x,y)) \land \\ \textit{integer-value}(\widehat{+}(x,y)) = \textit{integer-value}(x) + \textit{integer-value}(y) \}
```

Built-in L1 specifications

Built-in **sets** of pair/postconditions for functions to model their behavior in Elixir

```
 \{ \textit{is-integer}(x) \land \textit{is-integer}(y) \} \\ x + y \\ \{ \\ \textit{is-integer}(\widehat{+}(x,y)) \land \\ \textit{integer-value}(\widehat{+}(x,y)) = \textit{integer-value}(x) + \textit{integer-value}(y) \}
```

There could be more for other types (e.g. float)

Translation from L1 into L0

```
\begin{array}{ll} \textit{trExp} \ \_ \ \llbracket \_ \rrbracket : & \textbf{Exp}^0 \times \textbf{Exp}^1 \to \textbf{Exp}^0 \times \mathbb{T} \\ \textit{trStm} \ \llbracket \_ \rrbracket : & \textbf{Stm} \to \textbf{Exp}^0 \end{array}
```

Translation from L1 into L0

$$\begin{array}{ll} \textit{trExp} \ _ \ \llbracket _ \rrbracket : & \mathsf{Exp}^0 \times \mathsf{Exp}^1 \to \mathsf{Exp}^0 \times \mathbb{T} \\ \textit{trStm} \ \llbracket _ \rrbracket : & \mathsf{Stm} \to \mathsf{Exp}^0 \end{array}$$

 $\textit{trExp} \ \gamma \ \llbracket e \rrbracket \ \text{returns a tuple} \ (\epsilon, t) \ \text{where}$

$$trExp_{-}[\![-]\!]: Exp^{0} \times Exp^{1} \rightarrow Exp^{0} \times \mathbb{T}$$

 $trStm[\![-]\!]: Stm \rightarrow Exp^{0}$

 $\textit{trExp} \ \gamma \ \llbracket e \rrbracket \ \text{returns a tuple} \ (\epsilon, t) \ \text{where}$

ullet is an L0 expression that models the semantics of e

$$trExp_{-}[\![-]\!]: Exp^{0} \times Exp^{1} \rightarrow Exp^{0} \times \mathbb{T}$$

 $trStm[\![-]\!]: Stm \rightarrow Exp^{0}$

 $trExp \ \gamma \ \llbracket e \rrbracket \ \text{returns a tuple} \ (\epsilon,t) \ \text{where}$

- ullet is an L0 expression that models the semantics of e
- ullet t is a term in the underlying logic to refer to the result of e

$$\begin{array}{ll} \textit{trExp} \ _ \ \llbracket _ \rrbracket : & \mathsf{Exp}^0 \times \mathsf{Exp}^1 \to \mathsf{Exp}^0 \times \mathbb{T} \\ \textit{trStm} \ \llbracket _ \rrbracket : & \mathsf{Stm} \to \mathsf{Exp}^0 \end{array}$$

 $trExp \ \gamma \ \llbracket e \rrbracket \ \text{returns a tuple} \ (\epsilon,t) \ \text{where}$

- \bullet is an L0 expression that models the semantics of e
- t is a term in the underlying logic to refer to the result of e
- ullet γ models known facts by the time e is evaluated

Translation of L1 lists

```
 \begin{split} \mathit{trExp} & \ \_ \ \llbracket [ \rrbracket \rrbracket \rrbracket \equiv (\mathbf{skip}, \mathit{nil}) \\ \mathit{trExp} & \ \gamma \ \llbracket [e_1 \mid e_2] \rrbracket \equiv (\epsilon_1; \epsilon_2; \epsilon, t) \\ \mathbf{where} & \ (\epsilon_1, t_1) = \mathit{trExp} \ \gamma \ \llbracket e_1 \rrbracket \\ & \ (\epsilon_2, t_2) = \mathit{trExp} \ \gamma \ \llbracket e_2 \rrbracket \\ & \ t = \mathit{cons}(t_1, t_2) \\ & \ \epsilon = \begin{bmatrix} \mathbf{add} \ \mathit{is-nonempty-list}(t); \\ \mathbf{add} \ \mathit{hd}(t) = t_1; \\ \mathbf{add} \ \mathit{tl}(t) = t_2 \end{bmatrix} \end{split}
```

Translation of L1 lists example

```
trExp \ \gamma \ \llbracket [2,x] \rrbracket \equiv (\epsilon, cons(2, cons(\hat{x}, nil)))
                                         add is-integer(integer-lit(2));
add integer-value(integer-lit(2)) = 2;
                                         add is-nonempty-list(cons(\hat{x}, nil));
                                      add hd(cons(\hat{x}, nil)) = \hat{x};
add tl(cons(\hat{x}, nil)) = nil;
                                         add is-nonempty-list(cons(2, cons(\hat{x}, nil)));
add hd(cons(2, cons(\hat{x}, nil))) = 2;
add tl(cons(2, cons(\hat{x}, nil))) = cons(\hat{x}, nil);
```

L1 Elixir implementation

Our implementation is quite direct from the formalization

L1 Elixir implementation

Our implementation is quite direct from the formalization

```
def tr_exp(_, [{:|, _, [h, t]}]) do
  \{h, h\_sem\} = tr\_exp(\_, h)
  {y, t_sem} = tr_exp(_, t)
  t. =
    quote(do: :cons.(unquote(h), unquote(t)))
  { t, quote do
    unquote(h_sem)
    unquote(t_sem)
    add :is_nonempty_list.(unquote(t))
    add :hd.(unquote(t)) == unquote(h)
    add :tl.(unquote(t)) == unquote(t)
  end }
end
```

L1 Elixir example

```
import Boogiex
with_local_env do
  assert (false or 2) === 2
  assert elem(\{1, 2, 3\}, 0) === 1
  assert true or true + true
  havoc x
  assert x === x
  assert not (x ! == x)
end
```

Elixir Code Verification

The L2 language

The L2 language

• The highest level language of our verification stack

The L2 language

- The highest level language of our verification stack
- ullet Elixir (subset) + ghost verification code

L2 expressions syntax

```
\operatorname{Exp}^2 \ni E ::= e
               P = E
                   empty
                   E_1; E_2
                  case E do
                      P_1 when f_1 \rightarrow E_1
                      P_n when f_n \to E_n
                   end
                   ghost do S end
```

L2 expressions syntax

$$\begin{array}{lll} \mathbf{Exp}^2 \ni E & ::= & e \\ & \mid & P = E \\ & \mid & \mathbf{empty} \\ & \mid & E_1; E_2 \\ & \mid & \mathbf{case} \ E \ \mathbf{do} \\ & & P_1 \ \mathbf{when} \ f_1 \to E_1 \\ & & \vdots \\ & & P_n \ \mathbf{when} \ f_n \to E_n \\ & & \mathbf{end} \\ & \mid & \mathbf{ghost} \ \mathbf{do} \ S \ \mathbf{end} \end{array}$$

where $P, P_1, \dots P_n$ are patterns:

Pat
$$\ni$$
 $P ::= c \mid x \mid [] \mid [P_1 \mid P_2] \mid \{P_1, \dots, P_n\}$

```
 \begin{array}{l} \textit{trEXP} ~ \llbracket \_ \rrbracket : \mathsf{Exp}^2 \to [\mathsf{Stm} \times \mathsf{Exp}^1] \\ \textit{trMatch} ~ \llbracket \_ \rrbracket ~ \llbracket \_ \rrbracket : \mathsf{Exp}^1 \times \mathsf{Pat} \to \mathsf{Exp}^1 \end{array}
```

$$\begin{array}{l} \textit{trEXP} ~ \llbracket _ \rrbracket : \mathsf{Exp}^2 \to [\mathsf{Stm} \times \mathsf{Exp}^1] \\ \textit{trMatch} ~ \llbracket _ \rrbracket ~ \llbracket _ \rrbracket : \mathsf{Exp}^1 \times \mathsf{Pat} \to \mathsf{Exp}^1 \end{array}$$

trEXP $\llbracket E \rrbracket$ generates a sequence of pairs (S,e) where

$$trEXP \ [\![_ \!]\!] : Exp^2 \rightarrow [Stm \times Exp^1]$$

 $trMatch \ [\![_ \!]\!] : Exp^1 \times Pat \rightarrow Exp^1$

trEXP $\llbracket E \rrbracket$ generates a sequence of pairs (S, e) where

• S is an L1 statement that models the semantics of E

$$trEXP \ [\![_ \!]\!] : Exp^2 \rightarrow [Stm \times Exp^1]$$

 $trMatch \ [\![_ \!]\!] : Exp^1 \times Pat \rightarrow Exp^1$

trEXP $\llbracket E
rbracket$ generates a sequence of pairs (S,e) where

- S is an L1 statement that models the semantics of E
- e is an L1 expression that represents the result to which E is evaluated

$$trEXP \ [\![_ \!]\!] : Exp^2 \rightarrow [Stm \times Exp^1]$$

 $trMatch \ [\![_ \!]\!] : Exp^1 \times Pat \rightarrow Exp^1$

trEXP $\llbracket E
rbracket$ generates a sequence of pairs (S,e) where

- S is an L1 statement that models the semantics of E
- e is an L1 expression that represents the result to which E is evaluated
- Each pair corresponds to an execution path

Translation of L2 lists pattern matching

 $trMatch \ [\![e]\!] \ [\![P]\!]$ returns an L1 expression that is a boolean term and is evaluated to true if and only if e matches P

Translation of L2 lists pattern matching

 $trMatch \ [\![e]\!] \ [\![P]\!]$ returns an L1 expression that is a boolean term and is evaluated to true if and only if e matches P

```
trMatch \llbracket e \rrbracket \llbracket \llbracket P_1 \mid P_2 \rrbracket \rrbracket =
is-nelist(e) \text{ and}
trMatch \llbracket hd(e) \rrbracket \llbracket P_1 \rrbracket \text{ and}
trMatch \llbracket tl(e) \rrbracket \llbracket P_2 \rrbracket
```

Translation of L2 pattern matching expressions

$$trEXP \ \llbracket P = E \rrbracket = \llbracket (S_1; S_1', e_1), \dots, (S_n; S_n', e_n) \rrbracket$$

$$where \ \ \llbracket (S_1, e_1), \dots, (S_n, e_n) \rrbracket = trEXP \ \llbracket E \rrbracket$$

$$\{y_1, \dots, y_m\} = vars(P)$$

$$assert \ trMatch \ \llbracket e_i \rrbracket \ \llbracket P \rrbracket;$$

$$havoc \ y_1;$$

$$\vdots$$

$$havoc \ y_m;$$

$$assume \ e_i === P$$

A single clause of a function with arity n:

$$def \equiv (\{p\} \quad (P_1, \dots, P_n) \ B \quad \{q\})$$

A single clause of a function with arity n:

$$def \equiv (\{p\} (P_1, \dots, P_n) B \{q\})$$

where $p \in \mathbf{Exp^1}$ and $q \in \mathbf{Exp^1}$ denote a specified precondition and a postcondition, P_1, \dots, P_n are the parameter patterns and $B \in \mathbf{Exp^2}$ is its defined body

A single clause of a function with arity n:

$$def \equiv (\{p\} (P_1, \dots, P_n) B \{q\})$$

where $p \in \mathbf{Exp^1}$ and $q \in \mathbf{Exp^1}$ denote a specified precondition and a postcondition, P_1, \dots, P_n are the parameter patterns and $B \in \mathbf{Exp^2}$ is its defined body

Clauses of a function f with arity n:

$$Defs(f/n) = (def_1, \ldots, def_k)$$

 Transform the function definition clauses into an L2 case expression with the parameter variables free and a trivial branch

- Transform the function definition clauses into an L2 case expression with the parameter variables free and a trivial branch
- 2. Apply Static Single-Assignment to allow rebinding variables

- Transform the function definition clauses into an L2 case expression with the parameter variables free and a trivial branch
- 2. Apply Static Single-Assignment to allow rebinding variables
- 3. Translate it into the corresponding execution paths in our IR

- Transform the function definition clauses into an L2 case expression with the parameter variables free and a trivial branch
- 2. Apply Static Single-Assignment to allow rebinding variables
- 3. Translate it into the corresponding execution paths in our IR
- 4. Translate each path into an L0 statement

- Transform the function definition clauses into an L2 case expression with the parameter variables free and a trivial branch
- 2. Apply Static Single-Assignment to allow rebinding variables
- 3. Translate it into the corresponding execution paths in our IR
- 4. Translate each path into an L0 statement
- 5. Verify them independently of each other

- Transform the function definition clauses into an L2 case expression with the parameter variables free and a trivial branch
- 2. Apply Static Single-Assignment to allow rebinding variables
- 3. Translate it into the corresponding execution paths in our IR
- 4. Translate each path into an L0 statement
- 5. Verify them independently of each other

Note: our formalization does not address currently the verification of user-defined function invocations (i.e. their specifications and body unfolding), but our implementation does it by automatically generating ghost code.

L2 Elixir implementation

Again, our implementation is quite direct from the formalization

L2 Elixir implementation

Again, our implementation is quite direct from the formalization

```
def tr_match({:|, _, [p1, p2]}, e) do
  tr 1 =
    tr_match(p1, quote(do: hd(unquote(e))))
  tr_2 =
    tr_match(p2, quote(do: tl(unquote(e))))
  quote (do:
    is_list(unquote(e)) and
    unquote(e) !== [] and
    unquote(tr_1) and unquote(tr_2)
end
```

L2 Elixir example

Live demo

 We have developed a framework for Elixir code verification across several areas (i.e. SMT solver integration, verification IR and code verification)

- We have developed a framework for Elixir code verification across several areas (i.e. SMT solver integration, verification IR and code verification)
- Future work may address concurrent code and total verification

- We have developed a framework for Elixir code verification across several areas (i.e. SMT solver integration, verification IR and code verification)
- Future work may address concurrent code and total verification
- Also, we have left several improvements on the way:

- We have developed a framework for Elixir code verification across several areas (i.e. SMT solver integration, verification IR and code verification)
- Future work may address concurrent code and total verification
- Also, we have left several improvements on the way:
 - More of the SMT-LIB standard and SMT solvers support

- We have developed a framework for Elixir code verification across several areas (i.e. SMT solver integration, verification IR and code verification)
- Future work may address concurrent code and total verification
- Also, we have left several improvements on the way:
 - More of the SMT-LIB standard and SMT solvers support
 - Extend our IR to model more Elixir value types and built-in functions

- We have developed a framework for Elixir code verification across several areas (i.e. SMT solver integration, verification IR and code verification)
- Future work may address concurrent code and total verification
- Also, we have left several improvements on the way:
 - More of the SMT-LIB standard and SMT solvers support
 - Extend our IR to model more Elixir value types and built-in functions
 - Extend the Elixir subset to verify (e.g. pin operator and higher-order)

- We have developed a framework for Elixir code verification across several areas (i.e. SMT solver integration, verification IR and code verification)
- Future work may address concurrent code and total verification
- Also, we have left several improvements on the way:
 - More of the SMT-LIB standard and SMT solvers support
 - Extend our IR to model more Elixir value types and built-in functions
 - Extend the Elixir subset to verify (e.g. pin operator and higher-order)
 - The current implementation is in an early proof of concept stage

Program Verification in Elixir

Master's Degree in Formal Methods and Computer Engineering

Adrián Enríquez Ballester Supervisor: Manuel Montenegro Montes July 3, 2022

Complutense University of Madrid

