Input

Domain Division

vertices coordinates

vertices indices in each domain

Mesh generation (p.3)

— (Plastic) Right Cauchy-Green Tensor Field —

$\left[C^{p}_{ij}\right]$
[1 0.8] [0.8 1.8]

Output

— A vtk file containing various fields —

Ref. config. colored with $C_{12}^p(\mathbf{x})$

Deformed config. colored with shear stress σ_{12}

☐ Enter the 'ver6' folder, type 'cmd' in the navigation bar and press 'Enter.'

☐ After pressing 'Enter,' type 'pip install –r requirements.txt' on the command line that pops up to complete the installation of the required libraries.

Input of parameters

Start

□ Open 'Input.xlsx' and enter various parameters required to solve stress equilibrium equations.

Vertical displacement at the upper boundary

Vertices coordinates

Domain division

Plastic right Cachy-Green tensor C^p in each domain

Shear modulus [GPa]		Pa] I	Poisson's ratio			
		21			0.	26
>	Elasticity	sound_Cond	dition	•••	+	:

Vertical Loading Displacement [um]		Οι	ıtpı	ıt File N	ame	
	-0.2 Output_2					
	0 Output_3					
>	Elasticity Bound_Condition	Verti •	+	÷	1	Þ

x_1 [um	1] x_2 [um]	MeshSize [um]
	0 5	1
	3 2	0.2
2 1	1 226	0.2
> •••	Vertices_Coord	ds Domain_\ ···· + :

	vertex index of P0 at domain bound	. vertex index of P1 at	domain bound.	vertex ir
domain0)	1	
domain1	4	ļ	5	
domain2	1	3	9	
domain3	12	2	13	
> ••• \	/ertices_Coords Domain_VertID Doma	in_Cp + :	4-	Þ

	Cp_11	Cp_12	Cp_22	
domain0	1.78	0.18	0.58	
domain1	1.78	0.18	0.58	
domain?	1 70	<u> </u>	በ 58	
> ••• \	ertices_Coord	S Domair	n_Cp Dom	nain_VertID

☐ Again, enter the 'ver6' folder, type 'cmd' in the navigation bar and press 'Enter.'

☐ After pressing 'Enter,' type 'python GenerateOutputs.py' on the command line that pops up to start to solve the stress equilibrium equations.

□ Outputs (With names defined in 'Bound_condition' in 'input.xlsx.' Each file corresponds to one bound. condition.):

Output_2.vtk

Output_3.vtk