TD12: Représentations des groupes finis II

Exercices * : à préparer à la maison avant le TD, seront corrigés en début de TD.

Exercices ** : seront traités en classe en priorité.

Exercices $\star \star \star$: plus difficiles.

Exercice 1: *

Soit G un groupe fini, soit H un sous-groupe de G et soit π une représentation de G de caractère χ .

- a) Montrer que la restriction de π à H a pour caractère la restriction $\chi|_{H}$.
- b) Si π est irréductible, est-ce que $\chi|_H$ est un caractère irréductible?

Exercice $2: \star$

Soit G un groupe fini, soit H un sous-groupe de G et soit (π, V) une représentation de H. On pose

$$W := \operatorname{Ind}_{H}^{G}(\pi) := \{ f : G \to V \mid \forall x \in G \ \forall h \in H \quad f(hx) = \pi(h)f(x) \},$$

avec action de G donnée par $g(f): x \mapsto f(xg)$.

- a) Montrer que $\operatorname{Ind}_H^G(\pi)$ est une représentation de G. Quelle est sa dimension?
- b) Si π est irréductible, est-ce que $\operatorname{Ind}_H^G(\pi)$ est une représentation irréductible de G?

Exercice 3:

Soit G un groupe fini; notons triv la représentation triviale du sous-groupe $\{e_G\}$ de G. Déterminer la représentation $\operatorname{Ind}_{\{e_G\}}^G(\operatorname{triv})$.

Exercice 4: **

Soit G un groupe fini et soit H un sous-groupe de G. On va définir une application entre espaces de fonctions centrales

$$\begin{array}{ccc} \mathcal{C}(H) & \longrightarrow & \mathcal{C}(G) \\ f & \mapsto & f^G. \end{array}$$

D'abord on définit $f^0: G \to \mathbb{C}$ par

$$f^{0}(x) = \begin{cases} f(x) & \text{si } x \in H, \\ 0 & \text{sinon.} \end{cases}$$

Ensuite on pose $f^G(g) = \frac{1}{|H|} \sum_{x \in G} f^0(xgx^{-1})$.

- a) Montrer que $f^G \in \mathcal{C}(G)$.
- b) Supposons que f est un caractère irréductible. Est-ce que f^G est irréductible ?
- c) Soit (π, V) une représentation de H et soit χ son caractère. Montrer que χ^G est le caractère de $\operatorname{Ind}_H^G(\pi)$.

Exercice 5 : (Réciprocité de Frobenius, point de vue des représentations) **

Soient G un groupe fini, H un sous-groupe de G, π une représentation de H et ρ une représentation de G.

a) Montrer:

$$\operatorname{Hom}_G(\rho,\operatorname{Ind}_H^G(\pi))=\operatorname{Hom}_H(\rho_{|_H},\pi)\,.$$

b) En déduire que, si ρ et π sont irréductibles, la multiplicité de ρ dans $\operatorname{Ind}_H^G(\pi)$ est égale à la multiplicité de π dans $\rho_{|_H}$.

Exercice 6 : (Réciprocité de Frobenius, point de vue des caractères)

Soient G un groupe fini, H un sous-groupe de G, ϕ une fonction centrale sur G et ψ une fonction centrale sur H. Montrer

$$\langle \phi, \psi^G \rangle = \langle \phi |_H, \psi \rangle.$$

Exercice 7 : (Théorème de Frobenius)

Soit $n \geq 1$ un entier et soit G un groupe fini. Soit X un ensemble à n éléments muni d'une action transitive de G, soit $x_0 \in X$ et notons H le stabilisateur de x_0 . On suppose que tout élément de G autre que l'identité fixe au plus un élément de X.

On note G_1 l'ensemble des éléments de G qui agissent sur X sans point fixe; on pose $G_0 := G_1 \cup \{1\}$.

- a) Déterminer le cardinal de G_0 .
- b) Soit χ_{σ} le caractère de la \mathbb{C} -représentation de permutation donnée par l'action de G sur X et soit χ_1 le caractère de la représentation triviale. On pose $\chi = \chi_{\sigma} \chi_1$. Montrer que χ est un caractère.
- c) Soient ψ un caractère irréductible de H et ψ_G le caractère de l'induite de H à G. On pose $\phi = \psi_G \psi(1)\chi$. Montrer que ϕ est un caractère irréductible de G. En déduire que G_0 est un sous-groupe distingué de G.
- d) Montrer que G est le produit semi-direct de H par G_0 .

Exercice 8 : (Critère de Mackey)

Soit G un groupe fini et soit k un corps algébriquement clos de caractéristique première à |G|. Soient H et K des sous-groupes de G et soit (ρ, W) une représentation de H sur k. On pose $V := \operatorname{Ind}_H^G W$. Soit S un système de représentants de $K \setminus G/H$ contenant 1. Pour $s \in S$, on pose $H_s = sHs^{-1} \cap K$ et on note W_s la représentation de H_s correspondant au morphisme $\rho^s : H_s \to \operatorname{GL}(W)$ on $\rho(s^{-1}xs)$.

- a) Montrer que V est isomorphe à $\bigoplus_{s \in S} \operatorname{Ind}_{H_s}^K W_s$ en tant que représentation de K.
- b) Montrer que V est irréductible si et seulement si les conditions suivantes sont satisfaites :
 - (i) W est irréductible;
 - (ii) pour tout $s \in S \setminus \{1\}$, $\text{Hom}(W_s, W|_{H_s}) = 0$ (on dit alors que W_s , et $W|_{H_s}$ ne s'entrelacent pas).

Exercice 9: **

Soit G un groupe fini et (V, ρ) une représentation complexe de G, de caractère χ . Montrer les deux équivalences suivantes :

- a) le caractère χ est à valeurs dans $\mathbb R$ si et seulement si V admet une forme bilinéaire non dégénérée invariante par G.
- b) la représentation ρ provient d'une représentation réelle par extension des scalaires si et seulement si V admet une forme bilinèaire symétrique non dégénérée invariante par G.

Exercice 10 : (Représentations complexes de \mathfrak{S}_n) $\star \star \star$

Soit $n \geq 1$ un entier et soit λ une partition de n, c'est-à-dire une suite $(\lambda_k)_{k\geq 1}$ d'entiers naturels vérifiant $n = \sum_k \lambda_k$ avec $\lambda_k \geq \lambda_{k+1}$ pour tout k. À cette partition λ , on associe un tableau de Young T_{λ} , qui est un tableau de n cases alignées à gauche dans lequel la i-ème ligne a λ_i colonnes.

Le groupe symétrique \mathfrak{S}_n s'identifie au groupe de permutations des cases de T_{λ} . On définit alors le sous-groupe P_{λ} (resp. Q_{λ}) comme étant respectivement le stabilisateur des lignes (resp. des colonnes) de T_{λ} . On appelle projecteurs de Young les éléments de $\mathbb{C}[\mathfrak{S}_n]$ suivants

$$a_{\lambda} = \frac{1}{|P_{\lambda}|} \sum_{P_{\lambda}} g, \quad b_{\lambda} = \frac{1}{|Q_{\lambda}|} \sum_{Q_{\lambda}} \varepsilon(g) g,$$

où $\varepsilon(g)$ désigne la signature de la permutation g. On pose $c_{\lambda} = a_{\lambda}b_{\lambda}$.

- a) Supposons $g \in \mathfrak{S}_n \setminus P_\lambda Q_\lambda$. Montrer qu'il existe une transposition $t \in P_\lambda$ vérifiant $g^{-1}tg \in Q_\lambda$.
- b) En déduire l'existence d'une application linéaire $l_{\lambda}: \mathbb{C}[\mathfrak{S}_n] \to \mathbb{C}$ telle que l'on ait $a_{\lambda}gb_{\lambda} = l_{\lambda}(g)c_{\lambda}$ pour tout $g \in \mathbb{C}[\mathfrak{S}_n]$.
- c) Soit μ une partition de n. On introduit l'ordre lexicographique sur les partitions de n: on a $\lambda > \mu$ s'il existe $j \ge 1$ tel que $\lambda_j > \mu_j$ et $\lambda_i = \mu_i$ pour tout i < j. Supposons $\lambda > \mu$. Montrer que l'on a $a_{\lambda}\mathbb{C}[\mathfrak{S}_n]b_{\mu} = 0$.
- d) Soit A une algèbre. Un élément $e \in A$ est dit idempotent s'il vérifie $e^2 = e$. Montrer que pour tout A-module à gauche M, on a $\operatorname{Hom}_A(Ae, M) \simeq eM$. Montrer que c_{λ} est proportionnel à un idempotent de $\mathbb{C}[\mathfrak{S}_n]$.
- e) Soit V_{λ} la représentation de \mathfrak{S}_n donnée par multiplication à gauche sur l'espace $\mathbb{C}[\mathfrak{S}_n]c_{\lambda}$. Montrer que l'application $\lambda \mapsto V_{\lambda}$ induit une bijection entre l'ensemble des partitions de n et l'ensemble des classes d'isomorphisme de représentations irréductibles de \mathfrak{S}_n sur \mathbb{C} .

Exercice 11: $\star \star \star$

On garde les notations de l'exercice précédent. Soit U_{λ} la représentation $\operatorname{Ind}_{P_{\lambda}}^{\mathfrak{S}_n}\mathbb{C}$.

- a) Montrer que la représentation obtenue par multiplication à gauche sur $\mathbb{C}[\mathfrak{S}_n]a_{\lambda}$ est isomorphe à U_{λ} .
- b) Montrer la décomposition $U_{\lambda} = \bigoplus_{\mu \geq \lambda} K_{\mu\lambda} V_{\mu}$, où les $K_{\mu\lambda}$ sont des entiers naturels avec $K_{\lambda\lambda} = 1$. Les entiers $K_{\mu\lambda}$ sont appelés nombres de Kostka.

On définit les ensembles suivants, qui correspondent à ajouter ou enlever une case sur le tableau de Young T_{λ} :

$$A(\lambda) = \{ \nu \text{ partition de } n+1 \mid \exists j, \forall i, \nu_i = \lambda_i + \delta_{ij} \},$$

$$R(\lambda) = \{ \nu \text{ partition de } n-1 \mid \exists j, \forall i, \nu_i = \lambda_i - \delta_{ij} \}.$$

- c) Montrer que V_{λ} est isomorphe à $\bigoplus_{\nu \in R(\lambda)} V_{\nu}$ en tant que \mathfrak{S}_{n-1} -représentation.
- d) Montrer que $\operatorname{Ind}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} V_{\nu} \simeq \bigoplus_{\lambda \in A(\nu)} V_{\lambda}$ est un isomorphisme de \mathfrak{S}_n -représentations.

Exercice 12 : (Théorème de Burnside) $\star \star \star$

Soient p,q deux nombres premiers, $\alpha,\beta\in\mathbb{N}$. Soit G groupe fini tel que $|G|=p^{\alpha}q^{\beta}$. L'objectif de l'exercice est de montrer que G est résoluble.

- a) Soient $\zeta_1, \ldots, \zeta_n \in \mathbb{C}$ des racines de l'unité. Montrer que $\frac{\zeta_1 + \cdots + \zeta_n}{n}$ est un entier algébrique si et seulement si $\zeta_1 + \cdots + \zeta_n = 0$ ou $\zeta_i = \zeta_1$ pour tout i.
- b) Soit H un groupe fini, ρ une représentation irréductible de H sur \mathbb{C} , de caractère χ .
 - i) Montrer que pour tout $h \in H$, si c(h) désigne le cardinal de la classe de conjugaison de h dans H, alors $c(h)\frac{\chi(h)}{\chi(1)}$ est un entier algébrique.
 - ii) Montrer que pour tout $h \in H$, si c(h) est premier avec $\chi(1)$, alors $\frac{\chi(h)}{\chi(1)}$ est un entier algébrique.
 - iii) Sous les hypothèses de la question b)ii), montrer que si $\chi(h) \neq 0$, alors $\rho(h)$ est une homothétie.
- c) Soit $h \in H$ tel que c(h) soit une puissance d'un nombre premier. En considérant la représentation régulière de H, montrer que G contient un sous-groupe strict distingué N tel que l'image de h dans H/N soit centrale dans H/N.
- d) Montrer par récurrence que G est résoluble.