Technical Report HL-96-9 August 1996

Geoacoustic Study of Delaware Main Channel

by Richard G. McGee

DTIC QUALITY INSPECTED &

Approved For Public Release; Distribution Is Unlimited

19961113 146

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

Geoacoustic Study of Delaware Main Channel

by Richard G. McGee

U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

Waterways Experiment Station Cataloging-in-Publication Data

McGee, Richard G.

Geoacoustic study of Delaware Main Channel / by Richard G. McGee; prepared for U.S. Army Engineer District, Philadelphia.

351 p.: ill.; 28 cm. — (Technical report; HL-96-9)

Includes bibliographical references.

1. Acoustic impedance. 2. Marine sediments — Delaware River. 3. Channels (Hydraulic engineering) — Delaware River. I. United States. Army. Corps of Engineers. Philadelphia District. II. U.S. Army Engineer Waterways Experiment Station. III. Hydraulics Laboratory (U.S. Army Engineer Waterways Experiment Station) IV. Title. V. Series: Technical report (U.S. Army Engineer Waterways Experiment Station); HL-96-9. TA7 W34 no.HL-96-9

Contents

Background Overview of Site Geology Objective 2—Geophysical Approach 3—Survey and Equipment Survey Equipment Survey vessel Navigation and bathymetry Geophysical equipment 4—Data Processing and Mapping Acoustic Reflection Data Records Bathymetry 5—Geoacoustic Modelling Equipment Calibration: Sources and Receivers Sonar equations Directivity index Source level (SL) calibration Receiving hydrophone sensitivity calibration 22 Determination of Bottom Loss and Surface Reflection Coefficient 23	Preface	1
Background Overview of Site Geology Objective 2—Geophysical Approach 3—Survey and Equipment Survey Equipment Survey vessel Navigation and bathymetry Geophysical equipment 4—Data Processing and Mapping Acoustic Reflection Data Records Bathymetry 5—Geoacoustic Modelling Equipment Calibration: Sources and Receivers Sonar equations Directivity index Source level (SL) calibration Receiving hydrophone sensitivity calibration 22 Determination of Bottom Loss and Surface Reflection Coefficient 23	Conversion Factors, Non-SI to SI Units of Measurement	V
Overview of Site Geology Objective 2—Geophysical Approach 3—Survey and Equipment Survey Equipment Survey vessel Navigation and bathymetry Geophysical equipment 4—Data Processing and Mapping Acoustic Reflection Data Records Bathymetry 5—Geoacoustic Modelling Equipment Calibration: Sources and Receivers Sonar equations Directivity index Source level (SL) calibration Receiving hydrophone sensitivity calibration 22 Determination of Bottom Loss and Surface Reflection Coefficient 23	1—Introduction	1
Survey	Overview of Site Geology	1 1 3
Survey Equipment Survey vessel Navigation and bathymetry Geophysical equipment 4—Data Processing and Mapping Acoustic Reflection Data Records Bathymetry 5—Geoacoustic Modelling Equipment Calibration: Sources and Receivers Sonar equations Directivity index Source level (SL) calibration Receiving hydrophone sensitivity calibration Determination of Bottom Loss and Surface Reflection Coefficient 23 Survey vessel 6 6 7 7 7 7 7 7 7 7 7 7 7	2—Geophysical Approach	5
Equipment Survey vessel Navigation and bathymetry Geophysical equipment 4—Data Processing and Mapping Acoustic Reflection Data Records Bathymetry 5—Geoacoustic Modelling 15 Equipment Calibration: Sources and Receivers Sonar equations Directivity index Source level (SL) calibration Receiving hydrophone sensitivity calibration Determination of Bottom Loss and Surface Reflection Coefficient 23	3—Survey and Equipment	9
Acoustic Reflection Data Records 15 Bathymetry 15 Geoacoustic Modelling 16 Equipment Calibration: Sources and Receivers 16 Sonar equations 16 Directivity index 19 Source level (SL) calibration 21 Receiving hydrophone sensitivity calibration 22 Determination of Bottom Loss and Surface Reflection Coefficient 23	Equipment	9
Bathymetry	—Data Processing and Mapping	5
Equipment Calibration: Sources and Receivers 16 Sonar equations 16 Directivity index 19 Source level (SL) calibration 21 Receiving hydrophone sensitivity calibration 22 Determination of Bottom Loss and Surface Reflection Coefficient 23	Acoustic Reflection Data Records	5
Sonar equations	—Geoacoustic Modelling	į
Dhysical Caliman A 1	Sonar equations	
Physical Sediment Analysis	Geoacoustic Relationships	,
Impedance versus soil properties	Absorption model	

Limitations
6—Discussion of Results
Sediment Profiles42Sediment Description43Brandywine Range43Miah Maull Range44Cross Ledge Range44Liston Range53Baker Range and Reedy Island Range65New Castle and Bulkhead Bar Ranges66Deepwater Point Range66Cherry Island and Bellevue Ranges66Marcus Hook, Chester, and Eddystone Ranges71Tinicum, Billingsport, and Mifflin Ranges71Horseshoe and Fisher Point Ranges72
7—Summary
Geoacoustic Modelling75Geoacoustic relationships75Nonstandard marine sediments76Organic sediments76Sediment Characterization76Brandywine through Cross Ledge Ranges76Liston through Deepwater Point Range76Cherry Island through Eddystone Range77Tinicum through Fisher Point Range77
References
Bibliography
Appendix A: Delaware Main Channel Sediment Data A1
Appendix B: Delaware Main Channel Acoustic Core Density Plots B1
SF 298

Preface

A geoacoustic study of the Delaware River Main Channel from Philadelphia, PA, to the east end of Delaware Bay near Cape Henlopen, Delaware, and Cape May, New Jersey, was conducted by personnel of the Hydraulics (HL) and Geotechnical (GL) Laboratories, U.S. Army Engineer Waterways Experiment Station (WES). The field work was performed during August 1993. The investigation was performed under sponsorship of the U.S. Army Engineer District, Philadelphia (CENAP). The CENAP Project Engineer was Mr. Tony DePasquale.

The overall test program was conducted under the general supervision of Messrs. Frank A. Herrmann, Jr, Director, HL; Richard A. Sager, Assistant Director, HL; and Glenn A. Pickering, Chief, Hydraulic Structures Division (HSD), HL. Mr. Richard G. McGee, Hydraulic Analysis Branch, HSD, was the Principal Investigator. This project is a cooperative effort with GL under the supervision of Drs. William F. Marcuson III, Director, GL; and Arley G. Franklin, Chief, Earthquake Engineering and Geosciences Division (EEGD), GL. This report was prepared by Mr. McGee under the supervision of Dr. Bobby J. Brown, Chief, Hydraulic Analysis Branch. Instrumentation support was provided by Mr. Tom S. Harmon, Jr., EEGD. Data collection and analysis assistance during this study were provided by Mr. Rodney L. Leist, EEGD, and, Ms. Janie M. Vaughan and Mr. Brian Williams, HSD. Technical assistance was also provided by Mr. David Caulfield, Caulfield Engineering, Oyama, BC, Canada.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.

Conversion Factors, Non-SI to SI Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units as follows:

Multipy	Ву	To Obtain
feet	0.3048	meters
miles (U.S. statute)	1.609344	kilometers
miles (nautical)	1.853	kilometers

1 Introduction

Background

The U.S. Army Engineer District, Philadelphia, is currently preparing a Design Memorandum for the Delaware River Main Channel Preconstruction and Engineering Design Study. The study is focused on deepening of the Delaware River Main Channel from 40 to 45 ft. The study area (Figure 1) encompasses the main shipping channel from approximately station 13+769 at the Ben Franklin Bridge in Philadelphia, PA, to the east end of Delaware Bay at station 511+696. A comprehensive subsurface exploration program has been initiated by the Philadelphia District to thoroughly characterize the bottom sediments to be dredged. Twenty-nine vibracores were collected within this 90-mile section of the main shipping channel in July 1991. To better characterize the vertical and lateral extent of all sediment units within areas to be dredged, an acoustic subbottom profile was requested to complement the existing core data.

The U.S. Army Engineer Waterways Experiment Station (WES) has developed a high-resolution seismic reflection technique to quantitatively assess the characteristics of bottom and subbottom marine sediments (McGee, Ballard, and Caulfield 1995). The technique describes marine sediments in terms of engineering properties, i.e., density, mean grain size, soil classification, and provides a contiguous picture of the horizontal and vertical extents of those properties. The Philadelphia District requested application of this technique in support of the Delaware River Main Channel design study.

Overview of Site Geology

The Delaware River Main Channel follows the Delaware River Channel from near Trenton, NJ, through Delaware Bay to its entrance to the Atlantic Ocean between Cape May, New Jersey, and Cape Henlopen, Delaware.

¹ A table of factors for converting non-SI units of measurement to SI units is found on page vi.

Figure 1. Delaware River Main Channel and vicinity

Navigation improvements to provide widening and deepening of the channel began following the River and Harbors Act of 1885. The present 40-ft channel was authorized in 1938 as far north as the Philadelphia Navy Yard (approximately station 50+000), with a 37-ft channel up to station 13+769 at the Ben Franklin Bridge. The 40-ft channel was extended to within 6 miles of Trenton beginning in 1959.

As reported by Weil (1977), the Delaware Estuary between Trenton and New Castle, DE, parallels the Fall Line with early Paleozoic metamorphic rocks of the Piedmont on the west and unconsolidated Coastal Plain sediments on the east as illustrated in Figure 2. Both materials are found in this portion of the navigation channel. South of New Castle, the lower tidal river and Delaware Bay are underlain by the sediments of the Atlantic Coastal Plain.

The bulk of sediment deposition in the estuary occurs in the dredged navigation channel and anchorage areas between the head of Delaware Bay and Philadelphia. Organic-rich silty clays and clayey silts characterize existing sediments deposited in this zone of rapid deposition.

The bay portion of the navigation channel is fairly straight and is bounded by numerous linear sand shoals. Sediments within the channel are predominantly fine to coarse sands. The channel depths are basically natural, requiring no dredging to maintain the authorized channel depth of 40 ft. South of Brown Shoal the river channel is no longer confined by sand shoals and becomes bathymetrically indistinct from the natural bay bottom.

Objective

The objective of this study was to quantify the bottom and subbottom sediments in terms of in situ density and soil type to a depth of about 20 ft, where possible, below the bottom of the existing ship channel (Figure 1). Only a single profile line was requested to be surveyed down the center line of the channel. Where applicable, data from the 29 vibracores already collected were correlated with the continuous acoustic reflection data to develop a geo-acoustic model of the study area, providing a thorough characterization of the bottom and subbottom sediments, with emphasis on the top 5 ft of sediment. The results will also facilitate the accurate positioning and optimal placement of additional borings as may be required should anomalous or unexpected sediment units be encountered. Since the cores were retrieved prior to conducting the acoustic reflection survey, and since many of the cores are located a considerable distance off the center line, correlation of all existing core data with the acoustic data proved difficult.

Figure 2. Pre-Pleistocene geology of Delaware, New Jersey, and Pennsylvania (Weil 1977)

2 Geophysical Approach

The technique used to quantitatively assess the characteristics of the sediments along the Delaware Ship Channel is a modified seismic reflection technique that relates the engineering properties of sediments to acoustic impedance by precisely determining the reflection coefficient at each sediment horizon. This Acoustic Impedance (AI) method is discussed in detail by McGee, Ballard, and Caulfield (1995) and in publications listed in the Bibliography. However, it is necessary to briefly describe the method as it applies to the Delaware Ship Channel project. Acoustic theory is discussed only in sufficient detail to enable the reader to understand basic concepts. Specific processing and analysis details will be discussed in Chapter 5.

The AI method is an extension of the techniques developed by Caulfield and Yim (1983) and Caulfield, Caulfield, and Yim (1985) for the identification of subbottom marine sediments. Modelled after Hamilton's approach to geoacoustic modelling of the seafloor (Hamilton 1980), this empirical technique compensates for absorption in each layer as a function of the center frequency of a band-limited seismic trace, corrects for spherical spreading, and uses classical multilayer reflective mathematics to compute reflection coefficients at the sediment horizons. The reflection coefficients are converted to impedances and classified according to established relationships between the acoustic impedance and the geotechnical properties of marine sediments, thereby classifying the lithostratigraphy. Figure 3 illustrates the general processing steps required by the method in practice.

As energy generated from an acoustic source, in the form of a plane wave, arrives at a boundary between two layers of differing material properties, part of the energy will be reflected back toward the surface and part will be transmitted as presented in Figure 4. A portion of the transmitted energy will undergo absorption or attenuation in the layer while the remainder propagates through to the next stratigraphic boundary. According to Snell's law for the case of normal-incidence compressional (P-wave) propagation across the boundary of a horizontally oriented system and for continuity of displacement and stress, the relationship between the incident (A_i) , reflected (A_c) , and

Figure 3. Acoustic Impedance processing flowchart

transmitted (A₁) waves can be expressed as

$$A_i - A_c = \frac{E_2/v_2}{E_1/v_1} A_t \tag{1}$$

Figure 4. Acoustic wave propagation at a boundary between two interfaces; Snell's law

where E_1 and E_2 are the elastic moduli of media 1 and 2, respectively. For a perfectly elastic medium, $E = \rho v^2$, where ρ is the mass density and v the elastic P-wave velocity. The quantity ρv is called the *acoustic impedance*, Z, of the medium and thus represents the influence of the medium's characteristics on the reflected and transmitted waves. The reflection coefficient, R, is defined as the percentage of the wave's reflected energy. The acoustic impedance and the reflection coefficient are related through the Zoeppritz equation (Zoeppritz 1919) as

$$Z_2 = Z_1 \frac{(1+R)}{(1-R)} \tag{2}$$

where Z_1 and Z_2 are the acoustic impedances of the first and second mediums, respectively. This relationship provides a straightforward method for determining acoustic impedance. By knowing the first Z and the succeeding R's, one can then calculate all the acoustic impedances. In this case, the first layer is always seawater, which has a known typical impedance value of 1,550 10^2 g/cm² sec. By calculating the remaining R's, the problem is solved.

The relationship between acoustic impedance and specific soil properties has been empirically derived from world averages of measured impedance

versus sediment characteristics (Hamilton, 1970a, b; 1972a, b; 1980; Hamilton and Bachman 1982). Further development of statistical models and algorithms (Caulfield and Yim 1983) establishes relationships between acoustic impedance and soil properties (porosity, bulk density, mean grain size, etc.) for sediments within various natural marine environments and allows the identification and characterization of the subbottom layers from acoustically derived seismic reflection data.

Processing of the seismic data involves determining the precise reflection coefficient at each detectable reflection horizon. This requires that the major losses associated with acoustic wave propagation in a layered sediment environment be properly accounted. These losses include (a) transmission loss due to spherical spreading, (b) transmission through reflectors, and (c) intrinsic absorption within a particular sediment unit. Each of these losses is assessed using processing and analysis tools developed specifically for the AI method. These tools include the Acoustic Core System (Caulfield 1992), the Digital Spectral Analysis System (Caulfield 1991b), the Digital Shallow Seismic Processing and Correlation System (Caulfield 1991a), and in-house WES programs for equipment calibrations and bottom surface analysis using the sonar equations. These programs will be discussed in more detail as they were used in the Delaware Ship Channel study.

Seismic reflection signatures are not universally unique; i.e., several combinations of geologic conditions could conceivably yield similar signal characteristics resulting in similar impedance values. But in a given geologic setting, such as the Delaware Bay, a particular sediment usually has a characteristic, relatively narrow range of impedance values. Therefore, project-specific calibrations are used to relate specific acoustic signatures to respective reflectors. Using calibration procedures incorporating local core data, the acoustic reflection data are processed to yield accurate acoustic impedance values at sediment horizons for the geologic region of interest. The geoacoustic calibrations for the Delaware Ship Channel project are discussed in Chapter 5.

3 Survey and Equipment

Survey

The Delaware Main Channel survey consisted of a single profile line along the center line of the channel beginning at approximately station 530+00 near the mouth of Delaware Bay, as shown in Plate 1, proceeding along a north-westerly course through the bay and up the Delaware River to Philadelphia. The survey ended at the Ben Franklin Bridge at approximately station 13+760. Due to the near 90 miles of survey, the profiles are divided into tangential segments to enhance the data presentation. Specific line numbers, beginning and ending station numbers, and range identifiers are presented in Table 1 and displayed in Plate 1. The sediment profiles are presented according to these line designations. All geographic coordinates are presented in Delaware State Plane, North American Datum of 1983.

Equipment

Survey vessel

The survey was conducted aboard the WES Research Vessel (R/V) Water-ways Explorer, shown in Figure 5. The following sections describe each piece of equipment.

Navigation and bathymetry

Navigation and horizontal positioning data were obtained using a differential global positioning system (DGPS), specifically a Trimble 4000 SE Mobile GPS receiver. The differential corrections were obtained from the U.S. Coast Guard differential beacon transmitting from the Cape Henlopen Lighthouse at Lewes, DE. The navigation system is rated at providing horizontal accuracy of ± 1 to 3 m root mean square (RMS) (68 percent of the time).

Bathymetry was provided by a single 200-kHz high-frequency transducer. The fathometer was attached to the port-side transducer deployment arm as

Table 1 Acoustic Reflec	ction Survey Line Su	mmary				
	Station A	long Center Line				
Survey Line Designation	Begin	End	Range Identification			
DP50	511+695.80	448+120.28	Brandywine			
DP51	447+559.80	404+934.21	Miah Maull			
DP52	401 + 173.01	384+219.02	Cross Ledge			
SC04A	384+059.27	343+289.27	Liston			
SC04B	343+289.27	302+041.81	Liston			
SC04C	302+041.81	274.789.71	Liston			
SC05	274 + 556.00	232+219.53	Baker, Reedy Island			
SC06A	233+319.51	212.474.76	New Castle, Bulkhead Bar			
SC06B	212.474.76	185+919.56	Deepwater Point			
SC06C	185+919.56	143+022.66	Cherry Island, Bellevue			
SC06D	143+022.66	97+410.64	Marcus Hook, Chester, Eddystone			
SC06E	97+432.04	54+864.10	Tinicum, Billingsport, Mifflin			
SC06F	54 + 864.10	41 + 448.32	Horseshoe, Fisher Point			
SC06G	41 + 448.32	30+101.07	Fisher Point			
SC06H	30+101.07	14+685.04	Fisher Point			

shown by the schematic in Figure 6. The fathometer was calibrated at the start of each day by the standard bar check method. Water column sound velocity profiles were obtained each day and used in the fathometer calibration. Tide data were obtained by the Philadelphia District from tide gages at Lewes, DE, for the Delaware Bay reach of the survey (lines DP50, DP51, DP52, and SC04), and at Philadelphia for the Delaware River reach (lines SC05 and SC06). All depth data were post-processed with the tide data to arrive at depth elevations referenced to mean lower low water (mllw).

The high-frequency fathometer was inoperable during the surveys of lines SC04, SC05, and SC06. Rigorous calibrations were made during the other surveys to correlate the higher resolution fathometer depth measurements with the low-frequency subbottom profiler depth measurements. The resulting adjustments were applied to the profiler data to obtain bottom depth data.

The navigation, bathymetric, and geophysical equipment were interfaced with the SEATRAC Navigation and Positioning System to record and provide

Figure 5. WES Research Vessel Waterways Explorer

Figure 6. Port-side transducer deployment arm with subbottom profiling receiving array and 200-kHz fathometer

real-time navigation information. This interfacing included outputting the position coordinates and high-frequency bathymetric data directly to the digital seismic data acquisition system providing real-time position logging with the subbottom profile data.

Geophysical equipment

The acoustic subbottom reflection records were generated using a 3.5-kHz high-resolution "pinger" system and a low-frequency 600-Hz "bubble pulse" system. The specific systems used were as follows:

3.5- to 7.0-kHz pinger system. A Datasonics SBP-5000 subbottom profiling system was used during the entirety of the survey. The transmitters were mounted in a towfish rigidly attached to a telescoping arm and deployed through the front deck of the boat as shown in Figure 7. This system allows the transmission of variable-length acoustic pulses (0.2 - 3 msec) of 3.5-, 5.0-, 7.0-, and 12.0-kHz frequencies. Power levels can be varied from 1 to 12 kW. For the Delaware Ship Channel survey, the operating parameters that provided the optimum signal-to-noise (S/N) ratio, resolution, and depth of penetration are shown in the following tabulation:

Power setting, kW	5	
Frequency, kHz	3.5	
Pulse length, msec	0.2-0.5	
Ping rate, sec	0.25	

Figure 7. SBP-5000 subbottom profiling towfish. Transducers used as seismic source only

These systems were originally designed to operate in water depths greater than about 50 ft, resulting in configurations employing integrated transmit/receive (T/R) networks to use the same transducers as transmitters as well as receivers. The resulting transducer ringing and coupling create coherent noise keyed to the transmitter timing. In shallow water, less than 30 ft, significant S/N problems arise due to the coherent noise from the transmitter interfering with the first return.

To solve this problem, a receiving array was deployed independently of the transmitter as shown in Figure 6. By decoupling the receiving array from the transmitter and physically separating the transducer, all of the near-field transmitter ringing was eliminated from the bottom reflection, regardless of water depth. This is the standard pinger deployment configuration for the AI method.

Bubble pulse system. The bubble pulser generates a low- to midrange-frequency wavelet, with a frequency content between 400 and 2,000 Hz, with most of the energy between 600 and 900 Hz. Because of the source's low-frequency content, penetration depth in competent materials, such as sands, is significantly greater than the 3.5-kHz system. However, the increased depth of penetration comes at the cost of resolution.

Side-scan sonar. A dual-frequency side-scan sonar (SSS) was operated throughout the survey to provide increased areal bottom coverage. The SSS was operated at 100 kHz and was towed off the starboard side of the bow.

4 Data Processing and Mapping

Acoustic Reflection Data Records

Continuous subbottom profiles of the acoustic reflection amplitudes obtained using the 3.5-kHz pinger system and the bubble pulse system for surveys performed along the Delaware River Main Channel were delivered to the Philadelphia District Project Engineer. The digital data are archived at WES. The records are annotated with digital file numbers, relative depth scales, and all core locations. Figure 8 is a typical color subbottom amplitude record. The color code represents relative reflection amplitudes as displayed by the legend on the figure. The vertical lines along the top portion of the record are the beginning of individual digital data files, recorded continuously during the survey. Files are sorted into six subfiles (0-5) with each subfile containing bins of forty consecutive soundings. These file numbers are used on the final sediment profiles to correlate the calculations with the raw data. Note the top of the graph is not necessarily the water surface, but an assigned water column offset. This offset allows full vertical expansion of the subbottom display, which in this case extends into the subbottom more than 50 ft. Changes in stratigraphy are readily apparent.

Bathymetry

The acoustic reflection data were combined with the position data and the high-frequency bathymetric data, providing accurate determination of both the horizontal and vertical datums. Bottom depths for the subbottom profiles were adjusted to the tide-corrected fathometer depth measurements where possible, since the data provide nearly a 5:1 improvement in resolution over any of the subbottom equipment.

5 Geoacoustic Modelling

Using calibration procedures for data with high S/N ratios, seismic reflection data are processed to provide estimates of the density, mean grain size, and soil type of bottom and subbottom sediments. Calibrations are performed by correlating acoustic impedance values calculated from the seismic reflection data at a sample location with the measured information (density, mean grain size, etc.) at that location. Experience to date has shown that calibrations made at a few locations within a geologic region provide the necessary shallow seismic parameters to accurately calibrate and describe the entire region. Calibration of the acoustic reflection data for the Delaware River Main Channel survey is briefly described in the following paragraphs.

Equipment Calibration: Sources and Receivers

Sonar equations

The geoacoustic parameter calibration procedure begins by determining the total acoustic energy incident at the bottom surface. This basically involves determining the precise reflection coefficient for the first reflector (bottom surface) and its associated acoustic bottom loss for a given sediment. Since the sound velocity of water and its density can be readily measured, the absolute impedance of the water can be calculated. Knowledge of the reflection coefficient, which is completely independent of frequency, from the water-bottom interface allows direct computation of the absolute impedance of the first layer of the bottom. The total energy produced by the source, or source wavelet, must be known absolutely. This is accomplished through use of a calibration hydrophone allowing determination of source level (SL) and the transmission losses associated with underwater acoustic wave propagation through the sonar equations. The sonar equations, discussed thoroughly by Urick (1983), describe the quantitative effects on sonar equipment created by the many phenomena peculiar to underwater sound production. These

¹ R. G. McGee. (1991). "Subbottom hydro-acoustic survey of Gulfport Ship Channel," Memorandum for Record, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Figure 8. Typical color subbottom amplitude record

equations are both design and prediction tools for underwater sound applications and relate the effects of the medium, the target, and the equipment. The general sonar equation is given as follows:

$$S_R = SL - N_w - N_{hvd} + N_A + DI + BL$$
 (3)

where

 S_R = bottom reflection energy at receiver, db

SL = total energy of source, db

 N_w = transmission loss due to spherical spreading along the path of propagation, db = $20 \times \log_{10}$ (range, meters)

 N_{bvd} = receiver sensitivity, db

 N_A = amplifier gain, db

DI = directivity index of receiving array, db (function of transducer beam pattern)

 $BL = bottom loss, db = 20 log_{10}(R)$

The effect of temperature on sound speed is considered neglible for the frequencies of interest (<20 kHz) and the relatively short propagation paths (<200 ft) of the acoustic wave fronts and is therefore ignored in the sonar equation.

Figure 9 is a detailed depiction of the physical elements in a normal calibration and bottom reflection sonar equation solution case. The N_A value includes all preamplifiers and amplifiers and is obtained from the electrical calibration of the receiving equipment. The calibration hydrophone receiver sensitivity N_{hydc} is available from manufacturers of the hydrophone and should be traced to the American National Standards Institute (ANSI) Standard (Acoustical Society of America 1988). The receiving array sensitivity N_{hydr} may also be available from the manufacturer or can be easily calibrated in the field using the calibration hydrophone and an alternate form of the sonar equation. This procedure will be discussed in detail a little later in the report.

Directivity index

The DI is a function of the beam pattern of the transducer array and is an indication of the amount of the total signal the hydrophone is permitted by its sensitivity pattern. The higher the DI, the more discriminating the hydrophone is against signals arriving from directions other than along the acoustic

Figure 9. Elements in acoustic calibration and bottom reflection sonar equation solution

axis. Figure 10a presents the directional pattern of the MASSA Model TR75-A transducer receiving array used with the pinger system. Because the transmitter and receivers are horizontally offset, as explained in Chapter 3, the DI can possibly become a significant parameter due to the reflection angles along the path of propagation. Figure 10b presents the equipment geometry for the R/V Waterways Explorer and its effect on directivity. Figure 10c, the DI correction versus water depth for application in the sonar equation, shows that for water depths greater than 40 ft, the DI due to the path of propagation is zero and therefore not a factor. This is the case for the entire Main Channel survey. However, directivity in the form of reflected waves travelling either directly at or away from the receiving array will drastically affect the reflectivity analysis. Such would be the case when sounding in areas with irregular bottom topography, i.e., sand waves, side slopes of channels, trenches, etc. Acoustic analysis is limited in these areas.

Figure 10. Computation of DI versus water depth and transducer separation

Source level (SL) calibration

The first step in the calibration process is to determine the absolute source level. This information is available from the manufacturers of some sonars. Unfortunately, many seismic systems do not have this information readily available; and even if they did, the field operating conditions vary to such an extent that the published levels are not sufficient for precise reflection computations.

The direct wave calibration of the sonar source level is accomplished by writing the sonar equation for the measurement of the direct wave via the calibration hydrophone as follows:

$$S_D = SL - N_{wdir} - N_{hydc} + N_A \tag{4}$$

where

 S_D = direct wave signal level, db

 N_{wdir} = transmission loss between source and cal phone, db

All the terms in Equation 4, except SL, are either absolutely known or directly measured. Therefore, solving for SL determines the absolute source level. Figure 11 presents a typical seismic system calibration data plot. This single data record contains all the field data required to completely calibrate all aspects of the equipment operations and provide calibration data for the surface sediment impedance. The SL calibration is performed using the data between file number 0002 and 0004 where variations in amplifier gain and hydrophone range are occurring.

An example SL calculation using the sonar equations is shown by Figures 12 and 13. Figure 12 is the calibration data record for this example (data format similar to Figure 11). Figure 13 presents the sonar equation computations and statistical evaluation of forty consecutive soundings from a digital subfile of the calibration data. This analysis has been accomplished at many sites throughout the country for the sound source used during this survey. The following tabulation summarizes the calibrated source characteristics for the pinger system as operated during the survey:

Pulse Length, msec	Output Power, kW	SL, db¹ (Peak Detect)	SL, db (RMS Energy)	Receive Sensitivity db
0.2	5.0	106	100	-70
0.5	5.0	112	106	-70

Receiving hydrophone sensitivity calibration

As with the source level, the array sensitivity of the receiving hydrophones N_{hydc} must be absolutely known. The field calibration is performed by comparing the signal levels of the receiving array with the calibration hydrophone over the same bottom condition. The calibration hydrophone is placed in the immediate vicinity of the receiving array at the same depth. The sonar

Figure 11. Typical acoustic calibration record

equation is designed to solve for N_{hydr} as follows:

$$N_{hydr} = N_{hydc} + S_{Rr} - S_{Rc} - N_{Ar} + N_{Ac}$$
 (5)

where S_{Rr} , N_{Ar} , and S_{Rc} , N_{Ac} are the receive signals and amplifier gains for the receiving array and calibration hydrophone, respectively. The N_{hydr} for the array used for the Delaware Main Channel survey has been calculated to be -70 db relative to 1 dyne/cm² as shown in the preceding tabulation.

Determination of Bottom Loss and Surface Reflection Coefficient

The bottom surface characteristics are evaluated through the sonar equation

Figure 12. Calibration record: bottom loss, source level, and directivity determination

Figure 13. SL calibration data

by rearranging Equation 3 to solve for BL as follows:

$$BL = S_R + N_{hvd} - SL + N_w - N_A - DI$$
 (6)

Since all terms on the right side of the equation are now known, BL, and therefore the surface reflection coefficient ($BL = 20 \log_{10} R$) and acoustic impedance (Equation 2), can be readily determined. If the desired result is an assessment of the bottom surface characteristics, the acoustic solution is complete. All that remains is the correlation of the acoustic parameters with the physical sediment properties. Correlations of BL and specific soil properties are presented in the "Geoacoustic Relationships" section of this chapter.

Physical Sediment Analysis

The vibracore drilling logs and sediment gradation curves from the 1991 exploration program are provided in Appendix A. The geotechnical testing results provided to WES of selected sections of each 1991 core (DRV-1 through -29) included seive analysis down to the No. 200 seive and sediment classification according to the Unified Soil Classification System (USCS). Further processing of the data was conducted to characterize the sediments in a manner suitable for correlation with acoustic data. This included conversion of grain sizes in millimeters to the ϕ -scale and computation of grain size parameters and grain distributions. Mean grain size was computed as the average of the D_{84} , D_{50} , and D_{16} sizes, and the sediment distributions were grouped as percentages of gravels, sands, and fines. Table 2 presents an overview of specific engineering properties of each sediment sample collected.

In addition to the most recent cores, core logs from much earlier sampling programs were used, particularly for the study area north of the Liston Range. These logs proved quite useful in defining zones of organic-rich sediments not sufficiently sampled in the 1991 program.

Geoacoustic Relationships

The Delaware River Main Channel sediment characterization used to relate density, mean grain size, and soil type is summarized in Table 3. In general, the categories established delineate the predominantly clay, silt, and sand sediment types. However, sediment mixtures such as clayey sands and silty sands can exhibit uncharacteristically high or low density values. Also, the mean grain size parameter may not always completely describe actual sediment conditions. Factors such as sorting and grain size variability are not necessarily reflected in the mean grain size parameter. The present state of geoacoustic technology really does not allow for the microdelineation of all

Table 2 **Geoacoustic Survey Core Analysis** Grain Size, mm Distribution, % Core Sample Laboratory Core Elevation Depth, Classification, ID No. ft NGVD ft D₈₄ D₅₀ D₁₆ Mean Gravel USCS Sand DRV-1 47.5 0-1 1.02 0.425 0.3 0.645 93.5 2.5 SP 2 1-4.3 40 5 21 22 84 16 0 GW 3 6.3-10 1.1 0.607 0.325 0.698 0 98.6 SP 1.4 4 10-14.7 0.7 0.425 0.265 0.463 11 93.5 5.5 SP 5 14-18 1.1 0.401 0.295 0.597 91.5 3.5 SP DRV-2 48.7 1-2.3 0.925 0.285 0 0.403 0.05 71.5 28.5 SM-SC 2 2.3-4.4 0.7 0.425 0.315 0.48 3.5 95.5 SP 3 4.4-8.2 10.1 2.805 0.301 4.402 35 59 6 SM-SC 4 8.8-10 10.205 0.509 0.301 3.672 22 74 4 SP 5 12.4-16 0.109 0 0.036 0 46 54 ML DRV-3 49 0.4-5 11.05 4.905 0.309 5.421 50 49 GP 2 7.9-9.1 1.605 0.609 0.325 0.846 10.05 87.5 2 SP 3 11-15 11.8 6.905 6.568 60 39.5 0.5 GW 4 15-19.5 6.08 1.2 0.601 2.627 29 68 3 SP DRV-4 46 .7-2.6 0.207 0.115 0.107 0.5 60.95 39 SM-SC DRV-5 49.3 0-1.7 0.795 0.405 0.202 0.467 95.5 0.5 SP DRV-6 51 0-5 1.405 0.705 0.0702 0.727 0 88 12 SM-SC 2 7.1-10 0.308 0.206 0.171 0 60.5 39.5 SM-SC 3 11.7-15 10.805 3 0.2805 4.695 45 51.5 3.5 SP 11.6-19 11.205 2.07 0.302 4.526 10.05 86.95 SP DRV-7 49.8 1.3-3.7 0.395 0.195 0 0.197 69 31 SM-SC DRV-8 48.5 5-10 0.825 0.105 0 0.31 0 51.5 48.5 SM-SC 2 10-15 0.4 0 0 0.133 0 36 64 CL 3 15-19 10.08 3 0 4.36 41 33 26 GM-GC DRV-9 48 0-5 0.9 0.106 0 0.335 0 51 49 SM-SC 2 5.5-11 0.6 0 0 0.2 0 43 57 ML 3 12.3-16 1.105 0.203 lo 0.436 60.5 38.5 SM-SC (Continued)

27

(Sheet 1 of 4)

				Grain Size, mm				Distribution, %			
Core ID	No.	Core Elevation ft NGVD	Sample Depth, ft	D ₈₄	D ₅₀	D ₁₆	Mean	Gravel	Sand	Fines	Laboratory Classification USCS
DRV-10	1	48.7	0-5	1.01	0.225	o	0.412	0	59	41	SM-SC
	2		5-10	0.808	0.201	0	0.336	0	68.5	31.5	SM-SC
	3		13.3-15	0.695	0.195	o	0.297	0	79.5	20.5	SM-SC
DRV-11	1	50	0-5	1.02	0.101	o	0.374	0	78	22	SM-SC
	2		5-10	1.205	0.307	0	0.504	o	70	30	SM-SC
DRV-11	3		10-15	1.101	0.108	0	0.403	0	59	41	SM-SC
	4		15-19	0.9	0.2	0	0.367	0	75.5	24.5	SM-SC
DRV-12	1	44.5	0-5	1.01	0.107	0	0.372	0	58.5	41.5	SM-SC
	2		8.9-10	1.03	0.425	0	0.485	5	66	29	SM-SC
	3		10-15	1.02	0.225	0	0.415	0	61	34	SM-SC
	4		15-17	0.808	0	0	0.269	0	45.1	54.9	ML
DRV-13	1	53.0	0-5	1.02	0.407	0	0.476	0	79	21	SM-SC
	2		5-9.25	0	0	o	0	0	14	86	СН
	3		10-12.4	0.7	0.206	0.107	0.338	2	93	5	SP
	4		12.4-15	10.205	4.0	0.5	4.902	47.5	51.5	1	SP
	5		17.1-20	0.4	0.203	0.1	0.234	0	87	13	SM-SC
DRV-14	1	45.5	0-5	1.01	0.207	0	0.407	0	64	36	SM-SC
	2		7.4-10	0	0	o	0	0	14	86	МН
	3		12.2-15	0.201	0	0	0.067	0	25	75	CL
	4		15-20	0.5	0.1	0	0.2	0	53	47	SM-SC
DRV-15	1	46.8	0-3.4	1	0.408	0.301	0.570	1	97	2	SP
	2		3.4-5	10	1.08	0.402	3.827	31	68	1	SP
	3		7.5-9.2	0.308	0.225	0.102	0.212	1.05	88.95	10	SP
	4		10.8-14	2.01	0.908	0.5	1.39	7	90	3	SP
DRV-16	1	39.2	0-5	0.225	0.101	o	0.109	0	68	32	SM-SC
	2		5-10	0.207	o	0	0.069	0	37	63	ML
	3		10-15	0.7	0.103	0	0.268	0	64	36	SM-SC
	4		15-19	0.2	0	0	0.067	2	31	67	ML

Core ID	No.	Core Elevation ft NGVD	Sample Depth, ft	Grain Size, mm				Dis	tribution		
				D ₈₄	D ₅₀	D ₁₆	Mean	Gravel	Sand	Fines	Laboratory Classificatio USCS
DRV-17	1	46.0	0-1.2	11	2	0.301	4.434	38	60	2	SP
	2		1.1-2.4	0.4	0.101	O	0.167	0	58.5	41.2	SM-SC
	3		2.4-3.7	0.302	0.201	0.09	0.198	0	87	13	SM-SC
	4		3.7-10	0.425	0.208	o	0.211	0	71	29	SM-SC
DRV-18	1	46.0	0-4.1	0.5	0.301	0.125	0.309	0.05	96.95	3	SP
	2		5.1-9.1	10.09	7	0.502	5.864	52	46	2	GP
	3		9.1-10	0.402	0.325	0.102	0.276	1	87	12	sw
	4		10.7- 11.7	2	0.425	0	0.808	21	60	19	MC-SC
DRV-19	1	49.0	0-2.1	0.308	0.201	0.09	0.108	2	78	19	SM-SC
	2		2.1-5	0.825	0.101	0	0.309	0	52	48	SM-SC
	3		5-10	0.705	0.306	0	0.337	2	81	17	SM-SC
	4		11-15	0.501	0.207	0	0.236	3	63	34	SM-SC
	5		15.7- 16.7	12.07	0.401	0.2	4.224	26	68	6	SP
DRV-20	1	48.5	1.1-5	0.608	0.325	0.202	0.378	3	93	7	SP
	2		8.1-10	0.306	0.225	0.101	0.211	0	86	14	SM-SC
	3		13.4-15	0.5	0.202	0	0.234	0	78	22	SM-SC
-	4		15.9-20	0.602	0.3	0.2	0.367	0	94.5	5.5	SP
DRV-21	1	48.0	0-5	8	0.6	0.301	2.967	18	80	2	SP
	2		4.3-5.7	0.8	0.406	0.207	0.471	1	97	2	SP
	3		5.7-10	0.5	0.201	0	0.234	0	81	19	SM-SC
	4		10-14	0.401	0.202	0	0.201	0	71	29	SM-SC
RV-22	1	48.0	0-1	10.02	4.02	0.825	4.955	40	59.5	0.5	SP
	2		1.6-5.3	0.9	0	0	0.3	0	37	63	ML ·
	3		7-9.2	0.2	0	0	0.067	0	24	76	СН
	1	51.0	0-3.7	0.6	0.301	0.108	0.336	0.5	93.5	6	SP
	2		3.7-5	10.06	7	0.502	5.854	57	41	2	GP
	3		8.3-9.2	0.102	0	0	0.034	0	22	78	CL
	4		9.2-13	0.302	0.101	0	0.134	0	61.5	38.5	SM-SC

	No.	Core Elevation ft NGVD	Sample Depth, ft	Grain Size, mm				Dist	ribution,		
Core ID				D ₈₄	D ₅₀	D ₁₆	Mean	Gravel	Sand	Fines	Laboratory Classification, USCS
DRV-24	1	50.5	0-3	0.6	0.301	0.225	0.375	1	97	2	SP
	2		5-10	1.01	0.5	0.206	0.572	2	97	1	SP
	3		11.6- 13.6	0.7	0.401	0.207	0.436	0	98	2	SP
	4		13.6- 15.6	9.03	1	0.307	3.446	23	74	3	SP
DRV-25	1	47.0	0-5	1.01	0.509	0.301	0.607	1	96	3	SP
	2		5-7.8	0.8	0.401	0.207	0.469	1	94	5	SP
	3		7.8-10	0.407	0.302	0.202	0.304	0	96	4	SP
	4		10-15	0.7	0.401	0.207	0.436	0	92	8	SP
	5		16.7- 17.5	11.25	1.07	0.407	4.242	38	61	1	SP
	6		17.5-20	0.09	0	0	0.03	0	16.5	83.5	ML
DRV-26	1	49.5	0-5	0.4	0.201	0.102	0.234	1	94.5	5.5	SP
	2		8.3-10	0.7	0.301	0.107	0.396	3	94	5	SP
	3		12-14.6	0.225	0	0	0.075	0	41	56	ML
	4		14.6-16	0.3	0.103	0	0.134	0	74.5	25.5	SM-SC
DRV-27	1	50.0	0-8	0.501	0.207	0.2	0.303	0	97	3	SP
	2		1.8-5	0.202	0.103	0.101	0.135	0	92	8	SP
	3		7.2-10	0.6	0.201	0	0.267	0	71	29	SM-SC
	4		11.3-15	0.408	0.301	0.125	0.278	0	95	5	SP
	5		15-16.5	0.4	0.3	0.125	0.275	0	96	4	SP
	6		16.4-18	0.402	0.309	0.125	0.279	0	93	7	SP
DRV-28	1	47.0	1-5	0.525	0.107	0.115	0.249	2	97	1	SP
	2		5-10	0.103	0.2	0.09	0.1	0	86	14	SM-SC
	3		10-16.5	0.201	0.09	0	0.097	0	56	44	SM-SC
ORV-29	1	47.0	0-1.8	0.206	0.104	0.101	0.137	0	92	8	SP
	2		1.9-5	0.203	0.103	0.101	0.137	1	90	9	SP
	3		7.7-10	0.225	0.106	0.115	0.142	0	93.5	6.5	SP
	4		10.4-15	0.201	0.104	0.115	0.14	0	96	4	SP
	5		15-20	0.301	0.106	0.115	0.174	1	92	7	ŞP

Table 3 Sediment Description							
Density g/cm ³	Mean Grain Size	Basic Sediment Description					
1.0 - 1.4	Outside model boundary	Soft muds, clays					
1.4 - 1.6	> 4	Clays, silts, sandy silts					
1.6 - 1.8	4 - 2.2	Clayey sands, silty sands					
1.8 - 2.0	2.2 - 1.2	Silty sands, fine sands					
2.0 - 2.2	1.2 - 0	Medium sands					
2.2 - 2.4	> 0	Coarse sands and gravels					
> 2.4	N/A	Stiff clays, rock					

grain size parameters. It does, as will be shown, provide good characterization of the general nature of the insonified sediment structure.

Impedance versus soil properties

No laboratory measurements of density were performed on the core samples, which, as stated in Chapter 1, were collected 3 years prior to this study. Therefore, the geoacoustic model relating impedance to density was taken from a previously established database by Hamilton and Bachman (1982) (Figure 14). This model has been successfully used in lieu of site-specific in situ density/acoustic correlations as shown by Figure 15 and discussed by McGee, Ballard, and Caulfield (1995). It has been shown (McGee, Ballard, and Caulfield 1995) that for the case of naturally occurring sediments, i.e., in a marine environment and with similar sedimentological conditions, density estimates based on acoustic impedance can be estimated within ± 10 percent. Had density measurements been available from reasonably undisturbed sediment samples, the accuracy of the density estimates could be improved to about ± 5 percent; however, the stated ± 10 percent should be sufficient to meet the stated objectives of this study, i.e., characterization of sediments pertaining to removal by dredging.

Impedance versus mean grain size is modelled according to the geoacoustic relationship developed for the Delaware Coast AI study (McGee 1995). Figure 16 presents the Delaware Coast grain size model with data points from core sites along the Delaware Main Channel and from the New Jersey coast.

Table 4 summarizes acoustic response characteristics of surface sediment data collected at various core sites along the ship channel. Listed are the

Figure 14. Density versus impedance (continental terrace, shelf, and slope) (from Hamilton and Bachman 1982)

Figure 15. Density versus impedance: Gulfport/Mississippi Sound (McGee)

Figure 16. Mean grain size versus impedance: Delaware coast, New Jersey coast, Delaware Main Channel

measured and estimated core properties along with the acoustic and associated sediment descriptions. The acoustic values presented in Table 4 are arithmetic means of the acoustic computations for all soundings collected in the vicinity of the cores. Only sites known to consist of naturally occurring sediments are used for the calibration verification. Environments containing overconsolidated sediments, contaminated sediments, and in particular sediments containing organics have not been modelled with the AI method and are not used in the calibration procedure. The presence of organics was a major consideration during processing and analysis of these data. A discussion of organics is presented in the "Limitations" section.

Absorption model

One of the primary energy losses encountered during acoustic wave propagation through differing media is that due to absorption. This loss involves a process of conversion of acoustic energy into heat and thereby represents a true loss of acoustic energy to the medium in which propagation is taking place. Energy loss due to absorption has been researched extensively for marine sediments through which reasonable approximations of loss are provided. Hamilton (1972a) presents convincing experimental evidence to

Table 4 **Acoustic Versus Sediment Properties**

	Core Data (DRV only)				Acoustic Measurements						
ID	#	Type ¹	ϕ_{mm}	Number of Files	Z 10 ² g/cm ² sec	R	<i>BL</i> , db²	φ _{mc}	ρ g/cm³		
27	1	SP	1.72	36	2703	0.288	10.8	1.63	1.89		
26	1	SP	2.10	36	2972	0.331	9.6	0.98	2.01		
25	1	SP	0.72	18	2594	0.269	11.4	1.32	1.94		
24	1	SP	1.42	6	2768	0.299	10.5	0.92	2.00		
23	1	SP	1.57	18	3139	0.355	9.0	0.66	2.06		
22	1	SP	-2.32	36	3365	0.385	8.3	0.32	2.15		
21	1	SP	-1.57	36	3588	0.412	7.7	-1.37	2.37		
20	1	SP	1.40	34	3264	0.372	8.6	-0.27	2.29		
19	1	SM-SC	3.21	.36	3318	0.379	8.43	0.68	2.09		
17	1	SP	-2.15	40	3310	0.378	8.44	0.40	2.11		
15	1	SP	0.81	24	3182	0.361	8.86	0.40	2.13		
3	1	GP	-2.44	28	2939	0.326	9.75	0.92	2.06		

Note: Files consist of 40 consecutive soundings.

 ϕ_{mm} = laboratory measured mean grain size.

Z and R computed from mean BL (shown in table) from all files in subset.

 ϕ_{mc} and ρ shown are arithmetic means of individually computed ϕ and ρ of each data file in subset.

 $\phi_{\rm mc}$ = acoustically derived mean grain size. ¹ Unified Soil Classification. Refer also to core logs in Appendix A.

 $^{2}BL = 20 \log_{10}(R)$

absorption's relationship to the first power of frequency and presents the following important observations:

- a. Absorption is dependent on the first power of frequency.
- b. Velocity dispersion is not important.
- c. Intergrain friction appears to be, by far, the dominant cause of waveenergy dampening in marine sediments.

Specifically, absorption varies as a function of frequency according to the empirical equation

 $\alpha = kf^n \tag{7}$

where

 α = absorption, db/m

k = attenuation coefficient, db/m/kHz

f = frequency, kHz

n = exponent of frequency

The constant n has been experimentally determined to be essentially unity for the frequencies of interest leaving k in Equation 7 as the only variable. This constant varies with sediment type and is related to porosity and mean grain size as shown in Figure 17. A modification of this model as described by Caulfield and Yim (1983) and Caulfield, Caulfield, and Yim (1985) is used in the AI method to estimate the engineering properties of marine sediments. A reasonable measure of absorption, in keeping with Equation 7, is provided assuming an exponential correction as a function of frequency by

$$\alpha = 10 \log_{10} e^{\frac{\rho(2\pi f)}{kc} \times X}$$
 (8)

where

 $\rho = \text{density of layer, gm/cc}$

k = attenuation coefficient (similar to Hamilton's)

c =sound velocity of layer, m/sec

X = precision absorption correction factor

The coefficient k is either experimentally derived or estimated from Hamilton's regression equation (refer to Figure 17), and the correction factor X is included to compensate for localized variations in the absorption properties of sediments in a given geologic setting. This value, termed the "absorption factor," normally remains unity and is altered only when detailed core data are available, providing regional absorption data. The value is increased or decreased so that the deeper impedance estimates match the deeper core properties.

Figure 17. Attenuation versus mean grain size and porosity (from Hamilton 1972a)

For the Delaware River Main Channel project the absorption factor X remained unchanged (X=12) from the Delaware coast AI study. This is based on the similarities between the Delaware Bay and Delaware coast physical environments; that is, in the vicinity of Delaware Bay, Pleistocene sediments form the substrate upon which the sediments of the Holocene marine transgression have been deposited (Weil 1977), which is basically the same transgressive sequence as the coast. Direct physical verification was not possible due to the lack of precise core positioning relative to the surveyed positions. In many instances, cores were more than 400 ft off the survey line. Absorption verification is provided via the acoustic core plots provided with the sediment profiles (Chapter 6) and is shown to correlate adequately with existing sample data. Individual acoustic core plots are presented in Appendix B.

Polarity of reflection coefficient

The nature of the impedance change (higher or lower) at a sediment horizon will produce either a positive or negative reflection coefficient. A negative reflection coefficient results from the phase change of the reflected signal occurring when the wave reflects off a softer layer. This phenomenon is described mathematically by rearranging Equation 2 to solve for R resulting in

$$R = \frac{Z_2 - Z_1}{Z_1 + Z_2} \tag{9}$$

It is readily apparent that whenever the impedance of the upper layer, Z_1 , is greater than Z_2 , R becomes a negative number.

Techniques have been developed to assess the reflection sign, each dependent upon the type of acoustic signal used to insonify the sediments. For wide-band frequency-modulated pulses, such as "Chirp" systems, the polarity of R is assessed using match-filter correlation techniques to correlate the source wavelet with the reflected wave. Since no wide-band sonars were used for this study, a new approach was devised to exploit the pulse characteristics of band-limited acoustic pulses that relied heavily on statistical analysis rather than the aforementioned deterministic approach.

By shaping the transmit pulse into a Gaussian distribution, a peak amplitude can be detected as shown by Figure 18. After the peak amplitude of the first bottom signal is detected, a determination is then made of its polarity. Except for the case of organics, the surface material reflectivity is

¹ Correlation technique is described in Caulfield (1991a) and McGee (1995).

Figure 18. Shaped transmit pulse for Delaware Main Channel survey

always assumed positive since sediment structures usually have a higher impedance than seawater. Having determined this, the entire signal is scanned in the energy domain, on data above the minimum S/N ratio, and the peak at each reflecting horizon is located. Once the peak is found, data are then returned to the time domain to determine if the peak signal is positive or negative. The method uses integration constants to handle noise; however, in the presence of noise, the technique is not guaranteed to produce perfect results. It has been found, though, that by averaging results over many sequential traces, fairly reasonable results can be obtained, again showing the importance of high S/N data. This technique was used in the analysis procedure for the Delaware Main Channel study.

Limitations

As with any remote sensing technique, limitations exist. The limitations must be understood to use the method appropriately. Probably the most common fault encountered in geophysical studies is the improper application of a given technique for a given study objective. The following limitations exist for the present AI technique.

a. Nonstandard marine sediments. The AI model used to predict sediment density is based on natural marine sediments. Acoustically derived densities above 2.4 g/cc are extrapolations from empirical data derived

from mainly marine sediment environments. Without core confirmation, wet density estimates based on acoustic impedance values above 4,500 10² g/cm² sec are unverified. Sediment impedances greater than 4,500 10² g/cm² sec have been measured by Caulfield (1992) in sediments described as compacted sands, carbonate sands or coral, and very coarse sands and fine gravels. During AI surveys along the southern Atlantic coast in Charleston Harbor, South Carolina, and the Savannah Ship Channel, Georgia, a calcareous silty fine to medium sand, referred to locally as "Cooper Marl," exhibited uncharacteristically high impedance values. Whereas these sediment types are not associated with the Delaware River region, they are presented to show that certain sediment structures, herein classified as nonstandard sediments, do possess high acoustic impedance responses. Also, rock typically has impedance values greater than 4,500 10² g/cm² sec. Unfortunately, sufficient physical sediment data were not available during analysis to develop all site-specific geoacoustic parameters to comprehensively model all sediment environments of the Delaware River Main Channel. The core information available during project planning did not reveal every sediment condition encountered. No further physical exploration has been conducted.

- b. Organic sediments. Applying algorithms for natural marine sediments to gassy sediments can lead to overestimation of impedance values. Organic layers may contain entrained gas bubbles. Because this gas, or air, has a markedly different density and compressibility than seawater, a high percentage of the incident sound wave will be reflected, resulting in limited acoustic penetration. A portion of this energy may also be scattered in all directions, resulting in a lack of coherency between soundings. Another characteristic of organic sediments at or near the water/sediment interface is the phase change that occurs during reflection. The bottom surface reflectivity of organic sediments will have a negative polarity response due to reflections from a water over gas- or air-bubble interface compared to what should be a positive reflection coefficient in a water over sediment configuration. In summary, the presence of organics in the sediments along the Delaware Ship Channel is assessed by a combination of core information and reflected signal characteristics, i.e., ping-ping coherency, phase reversal, high signal attenuation, and higher than normal reflectivity. Areas of suspected organics are identified on the sediment profiles; however, no acoustic impedance analysis is performed.
- c. Signal-to-noise ratio. The ability to assess any environment accurately is strictly a function of the quality of the data obtained. Low S/N data will produce poor quality results or possibly no results at all. The AI method limits its processing to data with a S/N ratio greater than 5 db. One must always be suspicious of impedance predictions in areas of poor S/N. Therefore, no analysis is performed on data of poor S/N, defined as less than 5 db. The sediment profiles are annotated to identify poor S/N data.

- d. Layer identification. Unique sediment units can be identified only when an impedance change exists. Gradual vertical changes in soil type may not result in an impedance differential large enough to produce a reflection.
- e. Resolution. Vertical resolution and the ultimate depth of penetration are dependent primarily on the frequency of the sound wave. Higher operating frequencies permit greater resolution of the marine sediments but shallower depths of energy penetration depending on the characteristics of the subbottom materials. Also, in high-attenuation sediments, the higher frequencies are attenuated at a higher rate than the low frequencies, resulting in degradation of resolution and errors in absorption estimates for very deep layers. For this study, pulse lengths of 0.2 and 0.5 msec were selected. Vertical resolution was limited to approximately 1 ft. Vertical sediment changes occurring more rapidly than every foot are not always detected. As stated earlier, depths were adjusted to match the high-accuracy fathometer depths, providing 5:1 improvement in the depth resolution.
- f. Beam pattern or directivity. Experience has shown that beam pattern and transducer directivity contribute significantly to signal degradation. Sloping bottoms and rapidly dipping reflection horizons cause inconsistent reflection data through focusing and defocusing of the incident energy. Rough, irregular bottoms with numerous scatterers will specularly disperse energy away from the receiving array. Sufficient notation is provided on the sediment profiles to indicate when the acoustic analysis is possibly affected by directivity problems.
- g. Core locations. As stated in Chapter 1, the AI survey was conducted approximately 3 years after the most recent vibracore sampling program was accomplished. Consequently, many of the cores were retrieved at offsets from the main channel center line, many of which are located along the side slopes or even far outside the channel limits. It is quite possible that sediment conditions at the cores, particularly near the surface, are different from those insonified along the channel center line. Also, since the cores were not positioned based on results of the subbottom profile data, not all unique sediment environments may be sampled. All core data used in the sediment characterization are shown on the sediment profiles and in Appendix B.
- h. Relatively shallow cores. Cores were collected to maximum depths of 20 ft below the mudline. Since the objective of the study was to identify sediments in the uppermost 20 ft of the subsurface, the core depths would seem to be sufficient. In general, they are; however, in some areas of the study, significant subsurface anomalies and nonconformities were detected below the 20-ft depth, preventing absolute verification of the acoustically derived sediment properties at these depths.

The AI method attempts to estimate the engineering properties of bottom and subbottom marine sediments in a quantitative fashion. Whenever an assumption is made based on something other than mathematical processing, that assumption is stated. Also, whenever the data are not sufficiently high in S/N, no attempt at interpretation is made, except as verified by core data. Totally subjective interpretations are avoided.

6 Discussion of Results

Sediment Profiles

The distributions of computed sediment densities and sediment descriptions within the project area are presented in Plates 2-16 as two-dimensional profiles illustrating the primary bottom and subbottom interfaces and differing zones of sediment material. For presentation purposes, the survey area is divided into segments subdividing the winding main channel into tangential profile sections. The profiles in Plates 2-16 correspond to the segments listed in Table 1 and identified in Plate 1.

The profiles illustrate the depth to a particular interface (in feet mllw), representative sediment properties, and corresponding location along the survey line. The labelled black dots at the top of each profile denote the survey track-line and direction. Each dot also represents the beginning of every seismic data file recorded to give an indication of the data coverage along each line and assist in correlating the raw data and interpreted results. The associated label represents the data file number and correlates with the data file number on the color subbottom reflection records (Figure 8). When the data file is referenced through the remainder of this report, the first three digits will indicate the data file number and the last digit will indicate the subfile number (i.e., file 0513 is data file 51, subfile 3). Philadelphia District project station numbers are included on each sediment profile. The sediment profiles have been completely adjusted for horizontal position (effects of boat speed) and survey heading. All profiles are presented heading in a northerly direction, allowing consistency in the data interpretation. Actual boat heading is in the direction of increasing data file numbers on the profiles.

All cores used during the study are identified. Since the cores were retrieved prior to the survey and are unfortunately not always located directly along the survey lines, the actual distance each core is offset from the survey is shown alongside the core position. Also, locations where precision acoustic analysis was performed, or "acoustic cores," are presented. These sites are identified by the prefix AC followed by the line number and individual file number for that line, i.e., AC-DP50-12/1. All "Acoustic Core" density plots are presented in Appendix B in ascending order along the survey track.

Sediment Description

Brandywine Range

Survey line DP50 encompasses the Brandywine Range of the main channel, beginning at approximately station 511+696 and continuing northward to the end of the range at station 448+120. The sediment profile for line DP50 is presented as Plate 2. The sediments above elevation (el) -50 between files 0000 and 0820 are characterized as predominantly fine to medium poorly graded sands with densities ranging between 1.8 and 2.0 g/cc. The surface sediments along the southern end of this line are dominated by 2- to 3-ft sandwaves from file 0040 through 0140, then becoming 1-2 ft in height to file 0230. Surface sandwaves cause random reflection diffractions away from the receiving array, inhibiting precise acoustic reflectivity analysis. Therefore, only limited acoustic analysis was performed on sediments in these areas.

A layer of silty or clayey sands is detected at about el -50 with thicknesses ranging between 5 and 10 ft. Core DRV-26 shows a silt layer 12 ft below the bottom. AC-DP50-25/1 computed a negative impedance change that correlates precisely with the sediment thicknesses shown in the core.

Core DRV-25, near files DP500560 through DP500580 (Figure 19), revealed fine to medium poorly graded sand in the upper 16 ft, followed by a 1-ft-thick layer of gravel overlying inorganic silt from el -17.5 to the bottom of the core. The acoustic data show faint horizons at approximately these depths, indicative of only slight changes in the sediment structure. The reflectivity analysis (AC-DP50-56/4 and -57/1) shows an increasing impedance sequence, comparing nicely with the lithology presented in Core DRV-24 near file 0720 where 13 ft of fine to medium poorly graded sand overlays gravelly sand.

At file 0760 a reflecting horizon at about el -80 appears (Plate 2). This horizon continues at this depth until file 0920 where it seems to slope upward, nearing the surface at file 0950. The acoustic analysis describes a material with densities typically greater than 2.2 g/cc. No core data are available for verification.

Between file 0820 and 1030 at the end of line DP50 the acoustic data show a considerable amount of lateral sediment variability. The surface sediments range between 1.6 and 2.2 g/cc. Several 1- to 2-ft-thick pockets of clays and silts (1.4-1.6 g/cc) were detected along the channel bottom between files 0960 and 1030. Three paleochannels, each penetrating the substrate to below el -60, were detected in this area. Acoustically derived densities are in the 1.6- to 1.8-g/cc range for the sediments filling the channels. Cores DRV-23 and DRV-22 confirm this analysis, showing silts and clays near the surface.

Miah Maull Range

The Miah Maull Range was surveyed as line DP51 between stations 447+560 and 404+934. The computed sediment profile is presented in Plate 3.

Surface sediments along line DP51 consist primarily of fine to coarse sands with densities ranging between 1.8 and 2.4 g/cc. Between files 0000 and 0220 the subbottom data were highly attenuated, indicative of a basically uniform stratification. Above file 0220, a rather complex geologic environment exists. A large paleovalley begins at file 0220 continuing to about file 0520 with the base of the formation reaching depths of 35 ft, from el -45 to el -80.

The surface sediments in the southern portion of the Miah Maull Range are primarily medium to coarse sands possibly containing some gravel-size materials, the coarsest of the sediments lying between files 0120 and 0220. The surface samples from cores DRV-21 and DRV-22 describe poorly graded medium sands with scattered gravels. Densities are between 2.00 and 2.3 g/cc. A couple of small clay pockets were detected at the surface at files 0090 and 0103. There are basically no subbottom data in this region.

The surface horizon in the southern portion of the range seems to form the floor of the paleovalley beginning at file 0220 as shown by Figure 20. AC-DP51-23/1 predicts a density of 2.4 g/cc at the valley floor, the same as estimated at the surface at file 0165 (AC-DP51-16/5). The uppermost sediments (top 5 ft) consist primarily of fine to medium sands ranging in density between 1.8 and 2.2 g/cc. The valley fill sediments between files 0280 and 0360 contain isolated and discontinuous reflectors, giving the sediments a weakly layered appearance. A portion of this section is shown in Figure 21. Sediment densities in the 1.6- to 1.8-g/cc range were calculated in isolated pockets throughout.

The sediment structure north of file 0350 has a uniformly layered appearance as shown by Figure 22. Core DRV-19 describes silty and clayey sands (SM-SC) in the upper 15 ft overlaying a competent gravelly sand layer. A layer of sand/silt/clay in the 1.6- to 1.8-g/cc range was detected 5-10 ft below the channel bottom between files 0350 and 0513. AC-DP51-40/2 (refer to Figure 22) presents a typical acoustic analysis for this area. This layer seems to pinch out at about file 0513. The subsurface reflectivity between files 0490 and 0550, which is the end of the Miah Maull Range, has a highly variable characteristic indicative of heterogenous sediments, possibly indicating the continued presence of these sand/silt/clay sediments in the subsurface.

Cross Ledge Range

Survey line DP52 is the Cross Ledge Range and extends between

3.5-kHz seismic profile data along Brandywine Range; digital files DP500560-DP500580 Figure 19.

3.5-kHz seismic profile data along Miah Maull Range; digital files DP510210-DP510253

Figure 21. 3.5-kHz seismic profile data along Miah Maull Range; digital files DP510290-DP510321

3.5-kHz seismic profile data along Miah Maull Range; digital files DP510400-DP510431 Figure 22.

stations 401+173 and 384+219. Plate 4 presents the sediment descriptions for this range. In general, the sediments through the Cross Ledge Range are consistently more competent than the previous ranges with all computed densities between 1.8 and 2.4 g/cc. Three- to four-foot sandwaves at wavelengths between 100 and 150 ft dominate the bottom topography between files 0010 and 0060. Surface densities are estimated at 1.8-2.0 g/cc, or a mostly fine to medium sand. The surface data from the end of the sandwaves to the northern end of the range at file 0215 show reaches of contrasting surface reflectivity, and therefore contrasting sediment density as shown by Plate 4.

A prominent reflector is present between el -55 and -65 for nearly the entire length of the range. Figure 23 shows the reflection data for a portion of this segment between file 0150 and 0190. This horizon is assessed in AC-DP52-12/0 with a surface density characteristic of sand to fine gravels ($\rho \approx 2.6$ g/cc) overlying a layer of medium sand before hitting the sand-fine gravel layer ($\rho \approx 2.5$ g/cc) at el -55. Moving north, the upper sediments become less competent ($\rho \approx 1.8$ -2.0 g/cc), shown by a distinct contrast in acoustic signature in the subbottom data. Between files 0150 and 0180 the upper 5-10 ft may contain quantities of silts and clays, approximately 10 percent or less, and could be classified as either silty or clayey sand as shown by Core DRV-17.

Liston Range

The Liston Range encompasses the transition from the Delaware Bay to the Delaware River and is presented in Plates 5-7 as survey lines SC04A, SC04B, and SC04C, respectively (refer also to Table 1). Line SC04A begins at station 384+059 at file 0000 and ends at station 343+289 at file 0420 as shown by Plate 5. Line SC04B continues northward from the end point of SC04A to file 0850 at station 302+042. The northern third of the Liston Range is presented as survey line SC04C beginning at file 0850 and ending at file 1143 near station 274+790.

SCO4A. This segment (Plate 5) is characterized by frequent changes in sediment type proceeding upriver. The surface sediment densities range from very competent ($\rho > 2.2$ g/cc) to soft ($\rho < 1.6$ g/cc). A significant paleochannel depicted between files 0110 and 0230 is filled with sediments of 1.6-to 1.9-g/cc density. The upper sediment unit exhibits characteristics of lateral discontinuity and reflection amplitude variability as shown by Figure 24. Sediments are probably mixed sands, silts, and clays of varying consistency.

Between files 0250 and 0330 the surface sediments become quite competent with computed densities greater than 2.2 g/cc. The nearest core, DRV-15, which is nearly 500 ft off line, describes sediments of coarse sands and gravels, which is consistent with the acoustic results in this area. Also, numerous well-defined small pockets of silts or clays were detected along the surface, becoming more prevalent heading north. Little to no subbottom penetration was achieved.

SC04B. Beginning at file 0342 of line SC04A (Plate 5) and continuing to file 0650 of SC04B (Plate 6), a 2- to 4-ft-thick layer of heterogenous soft sediments ($\rho < 1.6$ g/cc) transitioning from 1.8 g/cc to 1.4 g/cc between files 0350 and 0410 overlays a seemingly more competent sediment surface with considerable lateral variability. Figure 25 is a section of the reflection profile data typical of this sediment zone. Core DRV-14 (667 ft off line) contains sand-silt-clays over firm silts and clays with interbedded organic layers in the subbottom sediments. Organic layers may contain entrained gas bubbles. Because this gas, or air, has a markedly different density and compressibility from seawater, a high percentage of the incident sound wave will be reflected, resulting in limited acoustic penetration. Since gas bubbles within sediments are strong acoustic reflectors, the use of standard algorithms for nongassy sediments can lead to overestimation of predicted impedance values. A portion of this energy may also be scattered in all directions resulting in a lack of coherency between soundings. Due to the possibility that unquantified percentages of organics may be present in these sediments, additional cores are recommended in this area for verification of the effects of organics on the acoustic technique applied.

An intriguing feature of much of the raw reflection data along lines SC04 and SC05 is an 800-Hz reverberation containing relatively high amplitude levels. An example is presented in Figure 26. This acoustic artifact is produced by the bubble pulser sound source towed approximately 50 ft behind the vessel. At this low frequency, it is believed that the bubble pulser signal is in resonance with gas bubbles entrained in organic sediments, resulting in reflection detections with the pinger receiving array located near the bow of the vessel. These are not pinger reflections; however, they are believed to be good indications of the presence of organics in the sediments since this crosstalk was not present in areas known to be free of organics. Beginning at line SC06, the bubble pulser was eliminated as a seismic source.

At file 0651 the reflection characteristics change significantly. The surface between files 0651 and 0720 consists of 3- to 4-ft sandwaves interpreted to be fine to medium sands. A major reflecting horizon was detected at about el -59 as shown in Figure 27. The high intensity of the reflection data indicates a significant and distinct contrast in sediment structure above and below this interface. Acoustically derived density estimates showed densities below this interface greater than 2.4 g/cc. An accurate acoustic assessment was difficult to perform due to the surface sandwaves, probably skewing the results low. It is therefore possible that this interface might actually be a stiff, dense clay, or as discussed previously, an organic layer. There is no core evidence suggesting this to be rock. Core information should be obtained for verification. This surface gradually slopes upward, nearing the channel bottom at file 0720.

SC04C. The data between file 0720 of line SC04B (Plate 6) and file 1060 of line SC04C (Plate 7) are basically the same throughout. A thin layer of clay/silt material (1.4-1.6 g/cc) overlays a highly reflective sediment unit through which there is no acoustic penetration. The acoustic response

3.5-kHz seismic profile data along Cross Ledge Range; digital files DP520150-DP520185

3.5-kHz seismic profile data along Liston Range; digital files SC040160-SC040201

Figure 25. 3.5-kHz seismic profile data along Liston Range; digital files SC040410-SC040441

3.5-kHz seismic profile data along Liston Range; digital files SC040434-SC040465 Figure 26.

Figure 27. 3.5-kHz seismic profile data along Liston Range; digital files SC040670-SC040701

characteristics are very similar to that described between files 0350 and 0650 of line SC04B (Plate 6). Acoustically derived density estimates are all above 2.2 g/cc, reaching as high as an unrealistic 2.8 g/cc above file 1000. The cores throughout reach SC04 (DRV-14 in Plate 6 and DRV-13 and DRV-12 in Plate 8) all consist of sediments described as predominantly clays and silts with some sand faces. Organics are present in all cores. Due to the high reflectivity potential of gassy sediments (organics), impedance calculations in this area are suspected to be high relative to the actual sediments encountered. Therefore, acoustically derived density estimates for sediments below the soft surface layer are most likely not applicable and are subsequently not presented. Additional cores are needed for identification of these sediments.

One- to two-foot surface sandwaves are present in the northernmost reach of the Liston Range between files 1060 and 1110. Then beginning at file 1110, a 3- to 5-ft thick layer of silts and clays overlays a competent subbottom horizon through which no acoustic penetration was achieved. This layer is presented as a material with a density of 2.2-2.4 g/cc; however, it does exhibit considerable lateral reflection amplitude variability. The reflection data between files 1110 and 1130 resemble the data between files 0420 and 0650 of line SC04B (Plate 6) described as organic. Since no core evidence exists to indicate otherwise, there is no reason to believe that sediments here are not also organic.

Baker Range and Reedy Island Range

Acoustic files SC050000 - 0120 include the Baker Range followed immediately by the Reedy Island Range between files 0120 and 0450. The sediment profile for these ranges is presented in Plate 8.

The same sediment environment described for the northern end of the Liston Range continues northward to about file SC050090 of the Baker Range. An upper layer of predominantly fine material ($\rho < 1.6$ g/cc) is shown in Figure 28 overlaying an acoustically impenetrable layer. The upper layer becomes more competent upriver until it pinches out completely at file 0093, likely due to increasing percentages of sands in the sediments. Core DRV-13, nearly 250 ft off line, describes a silt-clay sediment overlaying sands with gravels. This correlates precisely with the acoustic estimates from AC-SC05-3/3 and AC-SC05-4/1 where sediment densities of 1.5-1.6 g/cc and 1.9-2.2 g/cc were predicted for the upper and lower sediment units, respectively. Even though Core DRV-13 correlates with the acoustic data at the beginning of line SC05, there is still some concern about the possible presence of organics in the sediments.

Beginning at file 0100, surface densities based on reflectivity analysis range between 1.8 and 2.5 g/cc, indicative of predominantly sands and gravels. There is essentially no acoustic penetration into the subbottom through file 0270. At this point a weak, yet distinctive reflector is detected at

about el -60, rising to within 2 ft of channel bottom at file 0344. Analysis of the surface data reveals a highly competent overburden sediment ($\rho \approx 2.0$ -2.2 g/cc). Beginning at file 0350, a 1- to 2-ft thick layer of silt-clay sediment (1.4-1.6 g/cc) overlays a highly reflective sediment unit until it surfaces at file 0500. Acoustic cores AC-SC05-37/4, -46/0, and -51/0 estimated sediment densities around 2.4 g/cc; however, this density estimate is questionable due to the potential organic matter in these sediments. Cores 463, 461, and 459 (refer to Appendix A, Table A1) present highly variable sediment conditions, ranging from organic silts and clays to coarse sands and gravels. Core DRV-12, nearly 450 ft off line, at the end of line SC05 shows organic silty clay near the surface. There is no acoustic penetration through this sediment unit.

New Castle and Bulkhead Bar Ranges

Acoustic files SC060120 through SC060520 include the New Castle and Bulkhead Bar Ranges and the beginning of the Deepwater Point Range. The sediment profile for these ranges is presented in Plate 9. The sediments between files 0120 and 0240 consist primarily of organic silts and clays as described in Core DRV-12 and cores DSP-1, DSP-2, DSP-3, and DSP-4. At file 0240 the sediment environment becomes fine to medium sand. Figure 29 shows the seismic data as it progresses out of organic sediments into primarily fine to medium sands. Core DSP-5 shows sand and gravel, correlating with acoustic cores AC-SC06-40/0, -41/2, and -42/0. The sediment structure remains similar progressing upriver with sediment densities increasing to greater than 2.2 g/cc near file 0413. Cores DFP-43 through DFP-45 and DSP-5 are representative of the sediments insonified along the Bulkhead Range and describe coarse sands and gravels with occasional cobble sizes through file 0650 (Plate 10).

Deepwater Point Range

The Deepwater Point Range, files SC060590-1015 in Plate 10, consists of primarily organic clays and silts along the survey line. The data show an acoustically impenetrable and highly reflective sediment horizon indicative of the response common to gassy, organic sediments. All cores from this area (refer to Plate 10 and Appendix B) describe organic silty clays.

Cherry Island and Bellevue Ranges

As with the Deepwater Point Range, much of the acoustic data for the Cherry Island and Bellevue Ranges is characterized by high surface reflectivity values associated with limited acoustic penetration as shown in Plate 11. However, the core data available for this region of the main channel vary from organic silts and clays (DRV-10, DSP-9, 435, and 436) to stiff clays with cobbles (431) to sandy gravels and cobbles (437, 438). Two sections are presented in this area as not organic: files 1110-1240 and 1510-1610 in

3.5-kHz seismic profile data along Baker Range; digital files SC050025-SC050060 Figure 28.

3.5-kHz seismic profile data along New Castle and Bulkhead Bar Ranges; digital files SC060233-SC060264 Figure 29.

Plate 11. The former area has high reflectivity variability in both the bottom and subbottom data with surface densities varying between 1.4 and 2.2 g/cc. The subbottom is characterized as firm silt and sand mixtures with quantities of organics. The latter section, near the end of the Bellevue Range, seems to consist of sandy gravels and cobbles with densities typically greater than 2.2 g/cc. Highly competent surfaces are shown in this area, possibly rock, but as shown by core 438, could be sandy gravel with cobbles and boulders.

Marcus Hook, Chester, and Eddystone Ranges

Plate 12 presents the sediment profiles for the Marcus Hook through Eddystone Ranges. The sediments are primarily coarse sands and gravels except for an area of organic silts (refer to core 282) between files 1780 and 1860. Several rock pinnacles and buried rock surfaces were detected as shown by Figure 30 and noted in Plate 12. Rock (weathered schist) was detected in cores DRV-7, DRV-5, and DRV-4 at approximately el -49.

A review of older epoch cores outside the main channel beginning with the Cherry Island Range and extending through Eddystone revealed that along the eastern side of the center line primarily organic sediments (silts and clays) were present and on the western side mostly sands, gravels, and rocks. This correlates with geologic conditions reported by Weil (1977) that the navigation channel parallels to the fall line with early Paleozoic metamorphic rocks on the west and unconsolidated Coastal Plain sediments on the east. Due to the highly reflective nature of all these sediment structures, it is very difficult to absolutely determine the sediment types using strictly impedance computations.

Tinicum, Billingsport, and Mifflin Ranges

The southern half of the Tinicum Range between files 2040 and 2140 has areas of 3- to 4-ft sandwaves along the channel bottom (Plate 13). A possible rock surface is detected about el -50 in this area. This possible rock surface is detected through the Mifflin Range ending at about file 2420. Acoustically derived density values are possibly low here due to directivity problems related to the sandwaves. Core DRV-3 near file 2130 contains primarily gravels. Acoustic densities exceed 2.2 g/cc.

Except for a section of organic sediments between files 2270 and 2340, the Billingsport and Mifflin Ranges consist of fine to medium sands with densities between 1.8 and 2.2 g/cc. As shown in Plate 13, areas of soft surface sediments exist, especially between files 2340 and 2410 where the acoustic data are characterized by discontinuous reflectors, indicative of a heterogeneous sediment distribution and numerous pockets of soft sediment.

Horseshoe and Fisher Point Ranges

As shown in Plate 14, a more complex geologic environment exists through the Horseshoe and Fisher Point Ranges. Two paleochannels filled with silts, clays, and fine sands overlay a coarse sand and gravel horizon detected as deep as el -80. This layer is at the channel bottom surface at files 2440 and 2480. Numerous subbottom reflectors are shown in the fill sediments of the paleochannels. These are described as discontinuous with low reflectivity characteristics indicative of only subtle changes in sediment structure. This sediment environment continues upriver in the Fisher Range to file 2580 as shown in Plate 15. A mostly silt-sand sediment environment exists through file 2650 where another highly reflective and acoustically impenetrable surface material typical of organic sediments is encountered and continued to file 2690 in Plate 16. At this point to the end of survey at the Ben Franklin Bridge the sediments are characterized as medium sands with densities between 2.0 and 2.2 g/cc. Significant sandwaves are seen along the channel bottom, limiting acoustic analysis. There is limited acoustic penetration through this reach.

Figure 30. 3.5-kHz seismic profile data along Marcus Hook, Chester, and Eddystone Ranges; digital files SC061964-SC061995

7 Summary

Comprehensive analysis of 800- and 3500-Hz seismic reflection data in conjunction with vibracore sampling data collected along the Delaware Main Shipping Channel, Delaware, has been accomplished. The seismic data were correlated with the laboratory analysis of the sample data through acoustic impedance analysis. Results are in the form of sediment profiles (Plates 2-16) presenting the major reflection faces with descriptions of the engineering properties of the insonified sediments, i.e., wet density, mean grain size, and associated soil types, and acoustically derived density versus depth plots herein referred to as Acoustic Cores (Appendix B). The study objective to quantify the bottom and subbottom sediments in terms of density and soil type below the existing ship channel center line for the purpose of assessing their removal through dredging was met.

Geoacoustic Modelling

Geoacoustic relationships

The Delaware River Main Channel sediment characterization developed to relate density, mean grain size, and soil type is provided in Table 3 delineating the predominantly clay, silt, and sand sediment types. No laboratory measurements of density were available for any of the cores used for this study. Therefore, the geoacoustic model relating impedance to density was taken from previously established databases. It has been shown that with data of high S/N and for naturally occurring sediments, density estimates based on acoustic impedance can be estimated within ± 10 percent. Had density measurements been available, the accuracy of the results could have been improved to within about ± 5 percent. However, the ± 10 percent should be sufficient to meet the study objectives. Impedance versus grain size is modelled according to the geoacoustic relationship developed for an AI study off the Delaware Coast. This is due to the lack of comprehensive grain size analysis (i.e., no grain size measurement of fines below No. 200 seive) from the previously acquired cores used for this study.

Nonstandard marine sediments

The AI model used to predict sediment density is based on natural marine sediments. Acoustically derived densities above 2.4 g/cc are extrapolations from empirical data derived from mainly marine sediment environments. Without core confirmation, wet density estimates based on acoustic impedance values above 4,500 10² g/cm² sec are unverified. Rock typically has impedance values greater than 4,500 10² g/cm² sec. More physical sediment data are required to absolutely verify insonified areas of the main channel where materials such as rock and organic-rich silts and clays are present.

Organic sediments

Using algorithms for natural marine sediments containing gasses, such as organics, can lead to overestimation of impedance values. The presence of organics in many areas along the main channel created considerable difficulties in properly characterizing the sediments in these areas. Further verification through physical sampling would be beneficial. All areas suspected of possessing organics are identified on the sediment profiles. Most of the organic-rich sediments in the main channel have been identified through sampling as unconsolidated silts and clays.

Sediment Characterization

Brandywine through Cross Ledge Ranges

These ranges (Plates 2-4) basically encompass the Delaware Bay portion of the main channel. The sediments along these ranges consist primarily of fine to coarse sands with much of the bottom topography consisting of sandwaves. Several paleochannels and a major paleovalley were detected in the Brandywine and Miah Maull Ranges with fill sediments described as silty and clayey sands. The sediments through the Cross Ledge Range were consistently more competent with computed densities between 1.8 and 2.4 g/cc.

Liston through Deepwater Point Range

The Liston range (Plates 5-7) encompasses the transition from the Delaware Bay to the Delaware River proper. Frequent changes in sediment type are noted proceeding upriver. Many of the sediment units exhibit characteristics of lateral discontinuity and reflection amplitude variability. Sands, silts, and clays are present. In many areas little or no acoustic penetration was achieved. Most of the impenetrable areas are organic-rich silts and clays and continue through the Deepwater Point Range (refer to Plates 8-10).

Cherry Island through Eddystone Range

These ranges, presented in Plates 11 and 12, parallel much of the Fall Line of early Paleozoic metamorphic rock where it meets basically unconsolidated Coastal Plain sediments to the east. Consequently, the sediment descriptions through these ranges are highly variable from organic silts and clays to stiff clays with cobbles as well as sandy gravels, cobbles, and rocks. Several areas within these reaches are identified as possibly rock. In general, based mainly on core data, organic-rich unconsolidated sediments are located on the eastern side of the channel center line and sands, gravels, and rocks on the western side.

Tinicum through Fisher Point Range

A possible rock surface was detected at about el -50 from the Tinicum through the Mifflin Range (Plates 13 and 14) underlying primarily fine to medium sands. Numerous pockets of soft sediments (silts and clays) were detected along the channel bottom. The Horseshoe and Fisher Point Ranges present a fairly complex geologic environment with sand/silt/clay-filled paleo-channels overlying coarse sands and gravels. Except for a short segment of possible organic sediments in these ranges, the sediments through the end of survey at the Ben Franklin Bridge are characterized as mainly medium sands.

References

- Acoustical Society of America. (1988). "American National Standard procedures for calibration of underwater electroacoustic transducers," ANSI S1.20-1988 (ASA 75-1988) (Revision of ANSI S1.20-1972), New York.
- Caulfield, D. D. (1991a). "DPC10, Digital Shallow Seismic Processing and Correlation System," (computer program and manual, IBM-PC), Caulfield Engineering, Oyama, BC, Canada.
- Caulfield, D. D. (1991b). "DSA10, Digital Spectral Analysis System, Version 10.00" (computer program and manual, IBM-PC), Caulfield Engineering, Oyama, BC, Canada.
- Caulfield, D. D. (1992). "AC50-4, Acoustic Core System" (computer program and manual, IBM-PC), Caulfield Engineering, Oyama, BC, Canada.
- Caulfield, D. D., and Yim, Y. C. (1983). "Prediction of shallow subbottom sediment acoustic impedance while estimating absorption and other losses," *Journal of the Canadian Society of Exploration Geophysicists* 19 (1), 44-50.
- Caulfield, D. C., Caulfield, D. D., and Yim, Y. C. (1985). "Shallow subbottom impedance structures using an iterative algorithm and empirical constraints," *Journal of the Canadian Society of Exploration Geophysicists* 21(1), 7-14.
- Hamilton, E. L. (1970a). "Reflection coefficients and bottom losses at normal incidence computed from Pacific sediment properties," *Geophysics* 35, 995-1004.
- Hamilton, E. L. (1970b). "Sound velocity and related properties of marine sediments, North Pacific," *Journal of Geophysical Research* 75(23), 4423-4446.
- Hamilton, E. L. (1972a). "Compressional-wave attenuation in marine sediments," *Geophysics* 37(4), 620-646.

- Hamilton, E. L. (1972b). "Elastic properties of marine sediments," *Journal of Geophysics Research* 76, 579-604.
- Hamilton, E. L. (1980). "Geoacoustic Modeling of the Sea Floor," Journal of the Acoustical Society of America 68(5), 1313-1340.
- Hamilton, E. L., and Bachman, R. T. (1982). "Sound velocity and related properties of marine sediments," *Journal of Acoustics Society of America* 72(6), 1891-1904.
- McGee, R. G. (1995). "Geoacoustic study of Delaware Atlantic Coast from Cape Henlopen to Fenwick Island," Technical Report HL-95-15, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- McGee, R. G., Ballard, R. F., and Caulfield, D. D. (1995). "A technique to assess the characteristics of bottom and subbottom marine sediments," Technical Report DRP-3-95, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Urick, R. J. (1983). Principles of underwater sound. 3rd ed., McGraw-Hill, New York.
- Weil, C. B. (1977). "Sediments, structural framework, and evolution of Delaware Bay, a transgressive estuarine delta," Report No. DEL-SG-4-77, The Delaware Sea Grant College Program, College of Marine Studies, University of Delaware, Newark, DE.
- Zoeppritz, K. (1919). "Uber Reflexion and Durchgang Seismicher Wallen durch Unstetigkelsfaschen," Berlin, Uber Erdbebenwellen VII B, Nachrichten der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, Math-Phy. K1. 57-84.

Bibliography

- Ballard, R. F., Jr., and McGee, R. G. (1991). "Subbottom site characterization by acoustic impedance." Proceedings of the U.S. Army Corps of Engineers Surveying Conference, 15-17 July 1991, Louisville, KY. U. S. Army Engineer Topographic Laboratories, Fort Belvoir, VA, 1C-1 through 1C-10.
- Ballard, R. F., Jr., McGee, R. G., and Whalin, R. W. (1992). "A high-resolution subbottom imaging system," *Proceedings of the Eighteenth US/Japan Marine Facilities Panel of US/Japan Marine Facilities Panel (UJNR)*, 25 October-11 November 1992, Washington, D.C.
- Ballard, R. F., Jr., Sjostrom, K. J., McGee, R. G., and Leist, R. L. (July 1993). "A rapid technique for subbottom imaging," Dredging Research Technical Note DRP-2-07, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- McGee, R. G., and Ballard, R. F. (1992). "An acoustic impedance method for subbottom material characterization." *Proceedings of Hydraulic Engineering; saving a threatened resource, in search of solutions*; Water Forum '92, August 3-5, 1992, Baltimore, MD. Marshall Jennings and Nani G. Bhowmik, ed., ASCE, New York, 1030-1035.
- McGee, R. G., and Caulfield, D. D. (1991). "Practical implementation of the acoustic core density estimating system." Canadian Society of Exploration Geophysicists 1991 National Convention, Calgary, Alberta, Canada, 14-16 May 1991, 34-35.
- Sjostrom, K. J., Ballard, R. F., and McGee, R. G. (1991). "Subbottom site characterization using acoustic impedance technology," WES Video File No. 92001, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- Sjostrom, K. J., Ballard, R. F., and McGee, R. G. (1992). "A waterborne geophysical technique for assisting proposed dredging projects." Proceedings of Symposium on the Applications of Geophysics to Engineering and Environmental Problems (SAGEEP), April 27-29, 1992,

- Oakbrook, IL. Society of Engineering and Mineral Exploration Geophysicists, Golden, CO, 173-184.
- Sjostrom, K. J., McGee, R. G., and Ballard, R. F. (1992). "A waterborne geophysical technique for improved planning and monitoring of dredging projects." *Proceedings of the Twenty-Fifth Annual Dredging Seminar and Western Dredging Association (WEDA) XIII Annual Meeting*, May 26-28, 1992, Mobile, AL. John B. Herbich, W. H. Bauer, Comp., Texas A&M University, College Station, TX, 122-129.

DELAWAR	E SHIP CH
Hatch Pattern	Density gm/cc
	1.0 - 1.4
	1,4 - 1.6
	1.6 - 1.8
	1.8 - 2.0
	2.0 - 2.2
$\overline{\cdot \cdot \cdot \cdot}$	> 2.2
	> 2.4

DELAWARE SHIP CHANNEL SEDIMENT DESCRIPTION											
Hotch Pattern	Density gm/cc	Mean Grain Size, ф m	Basic Soil Description								
	1,0 - 1,4	Outside Model Boundary	Soft Muds, Clays								
	1.4 - 1.6	> 4	Clays, Silts Sandy Silt								
	1.6 - 1.8	4 - 2.2	Clayey Sands Silty Sands								
	1.8 - 2.0	2.2 - 1.2	Silty Sands Fine Sands								
	2.0 - 2.2	1.2 - 0	Medium Sonds								
$[\vdots]$	> 2.2	> 0	Coarse Sands & Gravels Clayey Sands w/ Gravels								
	> 2.4	N/A	Rock, Consolidated Clays								

Description

Soft Muds, Cloys

Cloys, Silts
Sandy Silt

Clayey Sands
Silty Sands
Fine Sands

Medium Sands

Coarse Sands & Cravels
Clayey Sands w/ Gravels
Clayey Sands w/ Gravels
Clayey Sands w/ Gravels
Clayey Coarse

Rock, Cansolidated Clays

DIMENT DESCRIPTION

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

> DELAWARE MAIN CHANNEL SEDIMENT PROFILE LINE DP50

FILE NAME: DP50.DWG

SCALE: 1"=4500" DATE: NOVEMBER 3, 1995 PLATE 2

- AC-DP51-23/0 & - AC-DP51-23/1 \$ - AC-DP51-24/2 \$ 447+559.8 440+000 - AC-DP51-12/0 - AC-DP51-16/5 - AC-0P51-20/0 - AC-0P51-2/0 - AC-DP51-3/0 - AC-0P51-4/0 - AC-0P51-8/5 • 0010 0030 9 •000 0000 8 0110 0120 0130 0220 0230 900 • 0070 9 2 2 2 8 6 8 900 2 8 9 92 42 -30 -40 ELEVATION, FT MILIN Limited -90 -100 refi Sedin ir

and the state of t

			4	40+0	000											430-	+000	,										420	+00	0											410	+000			
			\$	- [.	•	%				Ş	}		\$	2		25%		24/2	. 100	,	000		0/9	<u>}</u>	32/0	8	4/2		. . .	%			6/2	•	ţ	3	*	<u> </u>		2,0		6/2	\$?	
			<u>7</u>	22	<u>6</u>	<u></u>								<u> </u>				51-2	DRV20		31-2		1 1	ĺ	51-3	5-12	<u> </u>	2	-121.28	S-12			1	:		Ī	1	<u> </u>		1		Ĭ		í	
			8			Š				2	•		8	į		AC-0951-		Ä			Š		200		Š	Š	Š	. 2		Š			ă.		Ş	Š	3	•		Ş		Ş	۶	Š	
			₹	8	010	Ş 				٦	! 		•	ŧ I		¥ ¥		¥	5/50		₽		Ý Ý	} 	8	3	Ş	8	38	9			Ş	!	Ş	1	\$	ł I		8		8	1	ŧ I	
g	۰ .	_	Ċ	_ `							•			·	0 (0	,	٥			ò		ο,							٥	0								0		
•0020	0000 0700	8	8	8	010	25	2 2		8 8 5 8	5	5 5	5	5	3	9270	8	8	Ş	88	0220	0580	88	8	8	8230	8	8	8	18 8	83	8	8	8	\$	8	3	3	20	3	\$	\$	3	8	8 29	
	•	-		╼┼	-			,	, ,	_	•			•	•		┝					•	•	•	•	•			┢	. •	•	_			•	•	٠	-		_	•	•	•		
				4													L												╀-						Har		a a		T POLIT	rioce		ļ			
																																			ref hete	Necti Mode	vity neg	indlo	ubour cotive edime	of inte	_				
					रेडा रेडा	715	10.7		40 A					1.	<i>(</i> 2)	_					011	16		-		_		RHE		(800)	1000	1888			_	_									
7			-			18:40	- 6.7)		V	(()	.)/ •		Lin	-	1.5				. 7.		gar B						1			1111				Hate			ю.	<u> </u>				20.			
infloo	000U	etic	mippo	ttom	data			-								1		\$ - S	11.2	在 改,		i.					- 1		\mathbf{r}		Q.	sarati6	Bten		lina.	neetii	allin			Bin	Billia	***		V	
				$\overline{+}$								_					7 I		-75	· (Ŧ.	20. 1			Hrt.	минос	i Ital	*	4	7																
				\perp													11				L	24			Ш	λ		65	辶														**10	1111	,
						ا	Sigi Indica Int. cr	nt de tive	of g	rodi.	n eu Iol d Tar	rrac icre to	o ref See i	n rei tic (ody.	plots.	H				┨	•					X.	7																	
																	T				1						汉	- Poc	Hel	orog	enec fine	sedir	nent	ent into	unit. ensp	ereed	,								
			-														Ч—	٧	ollar i	73 a		ente	cont	oin i	holot	d o	nd d				- 300	···							_						

Valley fill sediments contain isolated and discontinuous reflectors, giving the sediments a weaklyslayered appearance. Sediment densities in the range 1.6—1.8 g/cm³ were calculate in isolated pookets throughout (refer to AC-DP51-33/0.)

DELAWAR	DELAWARE SHIP CHANNEL SEDIMENT DESCRIPTION											
Hotch Pottern	Density gm/cc	Mean Grain Size, ? m	Basic Soil Description									
	1.0 - 1.4	Outside Model Boundary	Soft Mude, Claye									
	1.4 - 1.6	> 4	Clays, Sitte Sandy Sitt									
	1.6 - 1.8	4 - 22	Clayey Sands Silty Sands									
	1.8 - 2.0	22 - 12	Silty Sanda Fine Sanda									
********	20 - 22	1.2 - 0	Medium Sando									
	> 2.2	> 0	Coarse Sando & Gravelo Clayey Sando W/ Gravelo									
	> 2.4	N/A	Rock, Consolidated Claye									

el sed	IMENT DESCRIPTION
on Groin De, ? m	Boole Soil Description
ido Model cundary	Soft Mude, Claye
> 4	Claye, Sills Sandy Silt
- 22	Clayey Sands Silly Sands
- 1.2	Silly Sanda Fine Sande
2 - 0	Medium Sonda
> 0	Course Sands & Gravels Clayey Sands w/ Gravels
N/A	Rock, Covenitosisal Clays

= 100

(A)

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

DELAWARE MAIN CHANNEL SEDIMENT PROFILE LINE DP51

FILE NAME: DP51.DWG

SCALE: 1"=4500" DATE: NOVEMBER 3, 1995 PLATE 3

DELAWARE SHIP CHANNEL SEDIMENT DESCRIPTION											
Hatch Pattern	Density gm/cc	Mean Grain Size, ф т	Basic Soil Description								
	1.0 - 1.4	Outside Model Boundary	Soft Muds, Clays								
	1.4 - 1.6	> 4	Clays, Silts Sandy Silt								
	1.6 - 1.8	4 - 2.2	Clayey Sands Silty Sands								
	1.8 - 2.0	2.2 - 1.2	Silty Sands Fine Sands								
	2.0 - 2.2	1.2 - 0	Medium Sands								
\vdots	> 2.2	> 0	Coarse Sands & Gravels Clayey Sands w/ Gravels								
	> 2.4	N/A	Rock, Consolidated Clays								

V.E. = 100

NOTE: Reflectivity of surface sediments addicates variable units of fine—coarse sonds and gravels

NOTE: Reflectivity of surface sediments addicates variable units of fine—coarse sonds and gravels

NOTE: Reflectivity of surface sediments addicates variable units of fine—coarse sonds and gravels

NOTE: Reflectivity of surface sediments addicates variable units of fine—coarse sonds and gravels

NOTE: Reflectivity of surface sediments addicates variable units of fine—coarse sonds and gravels

Change of acoustic signature indicative of change in sediment.

SED	SEDIMENT DESCRIPTION									
rain m	Basic Soil Description									
fodel iry	Soil Muds, Clays									
	Clays, Silts Sandy Silt									
2	Cloyey Sands Silty Sands									
2	Silty Sands Fine Sands									
0	Medium Sands									
	Coorse Sands & Gravels Clayey Sands w/ Gravels									
	Rock, Consolidated Clays									

100

(2)

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

> DELAWARE MAIN CHANNEL SEDIMENT PROFILE LINE DP52

FILE NAME: DP50.DWG

SCALE: 1"=4500" DATE: NOVEMBER 3, 1995 PLATE 4

- AC-SC04-14/0 - AC-SC04-15/00+ - AC-5C04-5/3 000+08E 384+059.27 -- AC-SC04-9/5 -- AC-SC04-10/2 -- AC-SC04-18/3 -- AC-SC04-13/0 -- AC-SC04-11/2 -- AC-SC04-12/0 -- AC--SCO4-0/1 -- AC-SC04-0/5 --AC-SC04--8/3 85 0140 910 0120 0180 0180 0200 55 0170 908 0600 0160 0030 00.00 900 0070 LINE SCO4 ELEV. FT, MLLW Silty sands Densities vary between 1.6 - 1.9 c/cm³.

Upper sediment unit exhibits characteristics of lateral discontinuity and reflection amplitude variability. Sediments mixed sands, silts, and clays of varying consistency Very faint in sedir -90

DELAWARE SHIP CHANNEL SEDIMEN												
Hatch Pattern	Density gm/cc	Mean Grain Size, Ф m										
	1.0 - 1.4	Outside Model Boundary	Soft 1									
	1,4 - 1.6	> 4	Clays, Sandy									
	1.6 - 1.8	4 - 2.2	Clayer Silty									
	1.8 - 2.0	2.2 - 1.2	Silty !									
	2.0 - 2.2	1.2 - 0	Mediu									
· · · ·	> 2.2	> 0	Coors Claye									
	> 2.4	N/A	Rock,									

,ī	AC-SC04-0/5 2			380+	AC-SC04-5/3 8			AC-SC04-8/3	AC-SC04-9/5	AC-5C04-11/2	AC-SC04-12/0	- AC-SC04-13/0	AC-SC04-14/0	+0/51-4005-04-	000			- AC-SCU4-18/3					36	0+0	00		AC-SC04-28/0		Core DRV-15	v			,	- AC-SC04-35/05	- AC-SC04-36/1 - AC-SC04-38/3			
20	0010	0050	• 0030	0040	0020	0070	0800	0600	0100	0110	• 0120	• 0130	0140	0150	• 0160	• 0170	• 0180	• 0190	• 0200	• 0210	• 0220	• 0230	• 0240	0550	• 0260	• 0270	• 0280	• 0230	• 0300	0310	• 0320	• 0330	• 0340	0350	0360	• 0370	• 0380	ر در د اه
30 40														_										+										_				_
50	. بمبر	ب . . ;			•	~	W		-6	777											ma	## <u>=</u>	= <u>=</u>]/	* '	<u> </u>			7		<u></u>		1-3	△	<u></u>		2	71111	- Z
70						Silty		Densit	ies voi	y be	tween	1.6	1.9	9/9	m3.	*## 			F	Ē	- ' -			+					<u></u>		errone	Possible out of	e orga	onics c imp	in sedi	nent calcu	unit c	- :0 8
90								of ame	loterol ditude silts, c	disci	ontinu bility.	uity an Sedir	nd ref	mixe	n			-		Very in	faint sedir	reflec	tors -	.atl	e cha	nge												_

DELAWARE SHIP CHANNEL SEDIMENT DESCRIPTION											
Hatch Pottern	Density gm/cc	Mean Grain Size, ¢ m	Basic Soil Description								
	1.0 - 1.4	Outside Model Boundary	Soft Muds, Clays								
	1.4 - 1.6	> 4	Clays, Silts Sandy Silt								
	1.6 - 1.8	4 - 2.2	Clayey Sands Silty Sands								
	1.8 - 2.0	2.2 - 1.2	Silty Sands Fine Sands								
	2.0 - 2.2	1.2 - 0	Medium Sands								
\vdots :	> 2.2	> 0	Coarse Sands & Gravels Clayey Sands w/ Gravels								
	> 2.4	N/A	Rock, Consolidated Clays								

DIMENT DESCRIPTION
Basic Sail Description
Soft Muds, Clays
Clays, Silts Sandy Silt
Clayey Sands Silty Sands
Silty Sands Fine Sands
Medium Sands
Coarse Sands & Gravels Clayey Sands w/ Gravels
Rock, Consolidated Clays

(3)

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

DELAWARE MAIN CHANNEL SEDIMENT PROFILE LINE SCO4A FILES 0/0 - 42/0

FILE NAME: SCO4A.DWG

SCALE: 1"=4500" DATE: NOVEMBER 3, 1995 PLATE 5

- AC-SC04-50/2 343+289.27 340+000 330+000 0460 0480 0200 0510 0520 0530 0540 0560 0570 -20 -30 Interpreted conditions: prevented due to dire associated with surfe -40 FIEV. FT. MILEW - 20 - 40 - 60 - 70 - 70 Possible organics in sediment unit causing erroneous occustic impedance calculations. Therefore sediment characteristics based on impedance pre (Refer to Core DRV-14) Organics unquantified. --80 -90

to appeal to the

DELAWAR	E SHIP C
Hatch Pottern	Density gm/cc
	1.0 - 1.4
	1.4 - 1.6
	1.6 - 1.8
	1.8 - 2.0
	2.0 - 2.2
:::	> 2.2
	> 2.4

DELAWAR	E SHIP CH	ANNEL SED	IMENT DESCRIPTION								
Hatch Pattern	Density gm/cc	Mean Grain Size, ф m	Basic Sail Description								
	1.0 - 1.4	Outside Model Boundary	Soft Muds, Clays								
	1,4 = 1.6	> 4	Cloys, Silts Sandy Silt								
	1.6 - 1.8	4 - 2.2	Clayey Sands Silty Sands								
	1.8 - 2.0	2.2 - 1.2	Silty Sands Fine Sands								
	2.0 - 2.2	1.2 - 0	Medium Sands								
· · ·	> 2.2	> 0	Coarse Sands & Gravels Clayey Sands w/ Gravels								
	> 2.4	N/A	Rock, Consolidated Clays								

V.E. = 100

NT DESCRIPTION

Basic Sail
Description

Muds, Clays

As, Silts

yey Sands
y Sands
y Sands
s Sands
ium Sands

res Sands & Cravels
yey Sands # Gravets

k, Consolidated Clays

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

DELAWARE MAIN CHANNEL SEDIMENT PROFILE LINE SCO4B FILES 042/0 - 085/0

(3)

FILE NAME: SCO4B.DWG

SCALE: 1"=4500" DATE: NOVEMBER 3, 1995 PLATE 6

DELAWAR	E SHIP CH	ANNEL SED	IMENT DESCRIPTION
Hotch Pattern	Density gm/cc	Mean Grain Size, ¢ m	Basic Soil Description
	1.0 - 1.4	Outside Model Boundary	Soft Muds, Clays
	1,4 - 1,6	> 4	Cloys, Silts Sandy Silt
	1.6 - 1.8	4 - 2.2	Clayey Sands Silty Sands
	1.8 - 2.0	2.2 - 1.2	Silty Sonds Fine Sonds
	2.0 - 2.2	1.2 - 0	Medium Sands
$\overline{\ldots}$	> 2.2	> 0	Coarse Sands & Gravels Clayey Sands w/ Gravels
	> 2.4	N/A	Rock, Consolidated Clays

SED	IMENT DESCRIPTION
cain m	Basic Soil Description
Model ory	Soft Muds, Cloys
	Clays, Silts Sandy Silt
.2	Clayey Sands Sity Sands
1.2	Silty Sonds Fine Sonds
0	Medium Sands
	Coorse Sands & Gravels Clayey Sands w/ Gravels
	Rock, Consolidated Clays

(g)

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

DELAWARE MAIN CHANNEL
SEDIMENT PROFILE
LINE SC04C FILES 085/0 - 114/3

FILE NAME: SCO4C.DWG 7

SCALE: 1"-4500" DATE: NOVEMBER 8, 1995 PLATE 7

-- AC-SC05-18/0 - AC-SC05-13/0 -- AC-SC05-14/2 -- AC-SC05-10/0 - AC-SC05-8/2 0170 0180 0190 0200 • 0140 ●0120 • 0130 0250 0020 0030 0040 0050 0600 • 0100 0110 000 274+556.00 260+000 270+000 -20 -30 Predominantly fine material with increasing percentages of sands. LINE SCOS
ELEVATION, FT MLW Possible organics in sediment unit causing erroneous acoustic impedance calculations. Therefore pediment characteristics based on impedance presented.

(Refer to core DRV-13.) Limited acoustic penetration.

DELAWAR	E SHIP CH	ANNEL
Hatch Pattern	Density gm/cc	Mean Size,
	1.0 - 1.4	Outside Boun
	1.4 - 1.6	>
	1.6 - 1.6	4 -
	1.8 - 2.0	2.2 -
	2.0 - 2.2	1.2
· · · ·	> 2.2	>
	> 2.4	N,
	> 2.4	_ '

DELAWAR	E SHIP CH	ANNEL SED	IMENT DESCRIPTION
Hatch Pattern	Density gm/cc	Mean Grain Size, ¢ m	Bosic Soil Description
	1.0 - 1.4	Outside Model Boundary	Soft Muds, Clays
	1.4 - 1.6	> 4	Cloys, Silts Sandy Silt
	1.6 - 1.8	4 - 2.2	Clayey Sands Silty Sonds
	1.8 - 2.0	2.2 - 1.2	Silty Sands Fine Sands
	2.0 - 2.2	1.2 - 0	Medium Sands
$\cdot \cdot \cdot \cdot$	> 2.2	> 0	Coarse Sands & Gravels Clayey Sands w/ Gravels
	> 2.4	N/A	Rock, Consolidated Clays

SED	IMENT DESCRIPTION
Grain Ф m	Basic Soil Description
Model dory	Soft Muds, Clays
	Clays, Silts Sandy Silt
2.2	Clayey Sands Silty Sands
1.2	Silty Sands Fine Sands
0	Medium Sands
)	Coarse Sands & Gravets Clayey Sands w/ Gravets
١.	Rock, Consolidated Clays

100

(3)

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

> DELAWARE MAIN CHANNEL SEDIMENT PROFILE LINE SC05

FILE NAME: SC05.DWG

SCALE: 1"=4500" DATE: NOVEMBER 8, 1995 PLATE 8

DELAWAR	E SHIP CH	ANNEL SED	IMENT DESCRIPTION						
Hatch Pattern	Density gm/cc								
	1.0 - 1.4	Outside Model Boundary	Soft Muds, Clays						
	1.4 - 1.6	> 4	Clays, Silts Sandy Silt						
	1.6 - 1.8	4 - 2.2	Clayey Sands Silty Sands						
	1.8 - 2.0	2.2 - 1.2	Silty Sands Fine Sands						
	2.0 - 2,2	1.2 - 0	Medium Sands						
· : :	> 2.2	> 0	Coarse Sands & Gravels Clayey Sands w/ Gravels						
	> 2.4	N/A	Rock, Consolidated Clays						

V.E. = 100

0	IMENT DESCRIPTION
C E	Basic Sail Description
7	Soft Muds, Clays
	Clays, Silts Sandy Silt
	Clayey Sands Silty Sands
	Silty Sands Fine Sands
	Medium Sands
	Coarse Sands & Gravels Clayey Sands w/ Gravels
	Rock, Consolidated Clays

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

DELAWARE MAIN CHANNEL SEDIMENT PROFILE LINE SC06, FILES 0/0-52/0

FILE NAME: SCOBALDWG

SCALE: 1"=4500" DATE: NOVEMBER 6, 1995 PLATE 9

DELAWAR	E SHIP CH	ANNEL SED	IMENT DESCRIPTION
Hatch Pattern	Density gm/cc	Mean Grain Size, ϕ m	Basic Soil Description
	1.0 - 1.4	Outside Model Boundary	Soft Muds, Clays
	1.4 - 1.6	> 4	Clays, Silts Sondy Silt
	1.6 - 1.8	4 - 2.2	Clayey Sands Silty Sands
	1.8 - 2.0	2.2 - 1.2	Silty Sands Fine Sands
	2.0 - 2.2	1.2 - 0	Medium Sands
:::	> 2.2	> 0	Coarse Sands & Gravels Clayey Sands #/ Gravets
	> 2.4	N/A	Rock, Consolidated Clays

EL SED	IMENT DESCRIPTION
an Grain ze, Ф m	Basic Sail Description
iide Model oundary	Saft Muds, Clays
> 4	Clays, Silts Sondy Silt
- 2.2	Clayey Sonds Silty Sands
2 - 1.2	Silty Sands Fine Sands
2 - 0	Medium Sands
> 0	Coorse Sands & Gravels Clayey Sands w/ Gravels
N/A	Rock, Consolidated Clays

= 100

(2)

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

DELAWARE MAIN CHANNEL SEDIMENT PROFILE LINE SCO6, FILES 52/0-102/0

FILE NAME: SCO6B.DWG

SCALE: 1"=4500" DATE: NOVEMBER 6, 1994 PLATE 10

Note: No core verification of top of rock surfaces.

DELAWARI	SHIP CH	ANNEL SE
Hatch Pattern	Density gm/cc	Mean Grain Size, & m
	1.0 - 1.4	Outside Modi Boundary
	1.4 - 1.6	> 4
	1,6 - 1.8	4 - 2.2
	1.8 - 2.0	2.2 - 1.2
	2.0 - 2.2	1.2 - 0
···	> 2.2	> 0
	> 2.4	N/A

9.56		AC-SC06-106/0	AC-SC06-107/4			18	0+00	00	AC-SC06-115/0	\\(\frac{1}{1} - \text{ROOF} \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							ŧ	#	2 2 2 2 2 2	AC-SC06-126/0		170								- AC-SC06-135/0				Core D					240' W.C	.							0/ 031 - 3000 - 04	ł	4 315 4	240' WE	- AC-SC06-153/1 ; C	RV8 + + + 450°	153/4 - 280.15' 8		- AC-SC06-155/0		
1030	1050	1060	1070	080	100	0 :	1130	140	1150	1160	1170	1180	1190	1200	1210	1220	1230	1240	1250	1260	1270	1280	1200		3	1310	1320	1330	1340	1350	1450	3	1370	1380	1390	•1400	410	\$420	0.44			• 1450	1460	1470	1480	9		8	1510	1520	1530			1540	1550	1560	П
		-																								•		•	•	•	•	•	•	•	•	•						•	•	•	•		,										
																	•	•	•	•	•	•	•	' '	,																							•	•	•	•						
	_	_			. •	•	•	•	•	•	•	•	•																																										_	•	_
	•						1																																																		_
																																																				\perp					_
	_	_					H	ь	Surfe varia	oce ble	re!	den	ivity sitie 2.2	hii g	ghly vary /cm	- د			_	_	~				_	_	_	_			Δ.	ᄼ				_				_	_		_	_	_	۵.		<u> </u>		_	000A		<i></i>	,,,,			=
			E	S	**	par.	VV	AVV.	ממס	222	-A	200	4~	۸.,	~//	A.	A.	•											<u> </u>	_			`			<i>-</i>													· ·		-::				ڋ	/	-
							Π.	٠			Ø	: '		??	v.	,	-,															n	e: 0 80	ron	Pos: eoui rent	sible ac cho	org oust ract	onic ic eris	mpe tics	n se dan bas	rdim ce (ent calc on	unil ulati impi	co ons.	ine The	g erefe pres	ore sente	ıd.	L						\perp	<u> </u>	ļ
							#	Sub	bolt y so	om nds	dol	gro	nigh velt	ly v	ro	ble cks	_	╀					1													(Ref	er t	o c	ores	DR	V-E	a de	DR	/-9.	.)				-						<u> </u>		
							+			JU81	-1016	<u> </u>	Aun					•					1			,																	SL	bbo ly s	ttom	de	ata I	high veis	y .v	rock				reli	sible sctivi pot	roc rity lo ssible	1
							+																1																						.,												_
												_							_						_													1		_																	-

te: No core verification of top of rack surfaces.

DELAWARE SHIP CHANNEL SEDIMENT DESCRIPTION					
Hatch Pattern	Density gm/cc	Mean Grain Size, ¢ m	Basic Soil Description		
	1.0 - 1.4	Outside Model Boundary	Soft Muds, Clays		
	1.4 - 1.6	> 4	Clays, Silts Sandy Silt		
	1.6 ~ 1.8	4 - 2.2	Clayey Sands Sity Sands		
	1.8 - 2.0	2.2 - 1.2	Silty Sonds Fine Sonds		
	2.0 - 2.2	1.2 - 0	Medium Sands		
$[\vdots]$	> 2.2	> 0	Coarse Sands & Gravels Clayey Sands w/ Gravels		
	> 2.4	N/A	Rock, Consolidated Clays		

V.E. = 100

SEDIMENT DESCRIPTION					
Grain Ф m	Basic Soil Description				
Model ndary	Soft Muds, Clays				
4	Clays, Silts Sandy Silt				
2.2	Clayey Sands Sity Sands				
1.2	Silty Sonds Fine Sonds				
- 0	Medium Sonds				
ō	Coarse Sands & Graveis Clayey Sands w/ Graveis				
'A	Rock, Consolidated Clays				

100

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

DELAWARE MAIN CHANNEL
SEDIMENT PROFILE
LINE SCO6, FILES 102/0-161/0

FILE NAME: SCOSC.DWG

SCALE: 1"=4500" DATE: NOVEMBER 6, 1995 PLATE 11

(3)

NOTE: Rock detected in cores Df at approximately elevation
NOTE: East side of center line a West side of center line a

DELAWARE SHIP CHANN					
Hatch Pattern	Density gm/cc	Mei Siz			
	1.0 - 1.4	Outs Sk			
	1.4 - 1.6				
	1.6 - 1.8	4			
	1.8 - 2.0	2.2			
	2.0 - 2.2	1.1			
· · · ·	> 2.2				
	> 2.4				

NOTE: Rock detected in cores DRV-7, DRV-5, and DRV-4 at approximately elevation -49.

NOTE: East side of center line contains organics.

West side of center line contains sands, gravels, and rocks.

DELAWARE SHIP CHANNEL SEDIMENT DESCRIPTION					
Hatch Pottern	Density gm/cc	Mean Grain Size, ф m	Basic Soil Description		
	1.0 - 1.4	Outside Model Boundary	Soft Muds, Clays		
	1.4 - 1.6	> 4	Clays, Silts Sandy Silt		
	1.6 - 1.8	4 - 2.2	Clayey Sands Silty Sands		
	1.8 - 2.0	2.2 - 1.2	Silty Sands Fine Sands		
	2.0 - 2.2	1.2 - 0	Medium Sands		
· · ·	> 2.2	> 0	Coarse Sands & Gravels Clayey Sands w/ Gravels		
	> 2.4	N/A	Rock, Consolidated Clays		

Core DRV5 Core DRV5 185/5 = 85.12, AC-SC06-185/5 100+000 97+410.64 110+000 Core DRV4 192/0 - 111.85* 2040 2020 2030 • 1950 •1960 1970 830 -20 ∠30 Possible rock pinnacles ~40 -50 -60 Variations in acoustically derived density values possibly due to directivity problems associated with varying bottom topography -70 -80 -90 - 100

RV-5, and DRV-4

organics. sands, gravels, and rocks.

D	IMENT DESCRIPTION
1	Bosic Soil Description
H	Soft Muds, Clays
	Clays, Silts Sandy Silt
	Clayey Sands Silty Sands
	Silty Sands Fine Sands
	Medium Sands
	Coarse Sands & Gravels Clayey Sands w/ Gravels
	Rock, Consolidated Clays

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

DELAWARE MAIN CHANNEL
SEDIMENT PROFILE
LINE SCO6, FILES 161/0-204/0

FILE NAME: SCOOD.DWG

SCALE: 1"=4500" DATE: NOVEMBER 6, 1994 PLATE 12

(3)

Core DRV3 - AC-SC06-212/5 -- AC-SC06-219/2 DSP-16 -- AC-SC06-220/0 -- 500' WE 80+000 97+432.26 90+000 - AC-SC06-217/5 - AC-SC06-210/0 - AC-SC06-204/3 2130 2180 2100 2110 2140 2150 2160 2170 2190 2200 2210 2090 2120 2060 2070 2080 •2050 Surface densities estimated from surrounding sediment analysis. Acoustic analysis not possible due to directivity problems -20 Pockets of oft sedimer at surface -30 1-2' sand--40 LINE SCOS ELEVATION, FT MLLW -50 -60 Possible rock surface. Acoustic analysis affected by directivity problems. -70 Limited subbotton -80 -90 -100

DELAWAR	E SHIP CH	ANNEL SE
Hatch Pattern	Density gm/cc	Mean Grai Size, ф г
	1.0 - 14	Outside Mod Boundary
	1.4 - 1.6	> 4
	1.6 - 1.8	4 - 2.2
	1.8 - 2.0	2.2 - 1.2
	2.0 - 2.2	1.2 - 0
$\cdot \cdot \cdot$	> 2.2	> 0
	> 2.4	N/A

V.E. = 1

					90+00	o		5-5006-212/5						80+	000	- 500' ₩€								70+0	00								6	50+0	ю0		
					AC-SC06-210/0			212/5 - 50.88' AC						- AC-SC06-217/5	C/ 01C 3033 JV	AC-SC06-220/0		- AG-8688-334/2				- AC-SC06-225/5			DSP-17 290' E.C	ı			3/ 186 3000	-3005-					AC-SC06-239/1		
2050	200	2070	2080	2090	2100	2110	2120	2130	2140		2150	2160	2170	2180	2190	2200	2210	2220	2230	2240	2250	2260	2270	2280	2290	2300	2310	2320	2330	2340	2350	2360	2370	2380	2390	2400	•2410
	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		sedime	nt an	ialysis. Jue to	Acous directi	tic an	clysis roblem	not po	issible \						Pocke								-			Organ	ic			Dise	contin	uous	reflec	tora	indica	live	
-	- 3	4' sand	wove		1			3-	4' san waves	d- -	1-2	Makes , sou	ď-	-	oft se at su								<u>'</u>						<u></u>	iumi	eroge erous	pocke	ts of	soft	indico distri sedir	nents	
ملهر	anat	Possib lysis of	te roo	k suri	oce.	Acoust ty pro	•••		// _e /^ _y ,	<u> </u>	, 		<u> </u>		1	J.		ossible						<u>-</u>			_			7	, ·	<u> </u>	, are	2 /	Possil	ole ro	<u></u>
															Limite	ed Sul	000000	m pene	tration	throu	ignau1																

DELAWAR	E SHIP CH	ANNEL SEC	IMENT DESCRIPTION
Hatch Pattern	Density gm/cc	Mean Grain Size, ф m	Basic Sail Description
	1.0 - 1.4	Outside Model Boundary	Soft Muds, Clays
	1.4 - 1.6	> 4	Clays, Silts Sandy Silt
	1.6 - 1.8	4 - 2.2	Clayey Sands Silty Sands
	1.8 - 2.0	2.2 - 1.2	Silty Sands Fine Sands
	2.0 - 2.2	1.2 - 0	Medium Sands
\vdots	> 2.2	> 0	Coarse Sands & Gravets Clayey Sands w/ Gravets
	> 2.4	N/A	Rock, Consolidated Clays

V.E. = 100

54+842.41 60+000 70+000 -- AC-SC06-243/0 DSP-17 - 290' E.E 2310 2270 2240 2300 2320 2250 ~20 -Organic Discontinuous reflectors indicative of heterogeneous sediment distribution Numerous pockets of soft sediments - 30 -40 -50 -60 Possible rock surface. -70 netration throughout. -80 -90

Basic Soil
Description

of Muds, Clays

oys, Silts
andy Silt

oyey Sands
ty Sands
ty Sands

edium Sonds

edium Sonds

orase Sands & Gravets
oyey Sonds w/ Gravets

ick, Consolidated Clays

ENT DESCRIPTION

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

DELAWARE MAIN CHANNEL SEDIMENT PROFILE LINE SCO6, FILES 204/0-243/0

FILE NAME: SCOSE.DWG

SCALE: 1"=4500" DATE: NOVEMBER 6, 1995 PLATE 13

(3)

DELAWAR	E SHIP CH	ANNEL SED	MENT DESCRIPTION
Hatch Pattern			Basic Soil Description
	1.0 - 1.4	Outside Model Boundary	Soft Muds, Clays
	1.4 - 1.6	> 4	Cloys, Silts Sondy Silt
	1.6 - 1.8	4 - 2.2	Clayey Sands Silty Sands
	1.8 - 2.0	2.2 - 1.2	Silty Sands Fine Sands
	2.0 - 2.2	1.2 ~ 0	Medium Sands
$\cdot \cdot $	> 2.2	> 0	Coarse Sands & Gravels Clayey Sands w/ Gravels
	> 2.4	N/A	Rock, Consolidated Clays

V.E. = 100

WA

FILE NAME SCALE: 1" | Subbottom reflectors discontinuous | Note: | Many harizons have low reflectivity values indicative of only subtle changes in sediment structure.

SED	IMENT DESCRIPTION
Grain Ф м	Basic Soil Description
Model dary	Soft Muds, Clays
4	Clays, Silts Sandy Silt
2.2	Clayey Sands Silty Sands
1.2	Silty Sands Fine Sands
- 0	Medium Sands
0	Coarse Sands & Gravels Clayey Sands w/ Gravels
Α	Rock, Consolidated Clays

100

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

DELAWARE MAIN CHANNEL SEDIMENT PROFILE LINE SCO6, FILES 243/0-255/0

FILE NAME: SCOOF.DWG

SCALE: 1"=4500' DATE: NOVEMBER 6, 1995 PLATE 14

DELAWAR	E SHIP CH	annel set	MENT DESCRIPTION
Hatch Pattern	Density gm/cc	Mean Grain Size, ? m	Basic Soil Description
	1.0 - 1.4	Outside Model Brandery	Soft Made, Claye
	1.4 - 1.6	> 4	Claye, Silke Sandy Silk
	1.6 - 1.8	4 - 22	Clayey Sends Sity Sends
	1.8 - 2.0	22 - 12	Silly Sanda Fine Sanda
	20 - 22	1.2 - 0	Modern Sando
	> 22	> 0	Course Sando & Gravela Clayey Sando s/ Gravela
	> 2.4	N/A	Rock, Consolidated Clays

귱	annel sed	HMENT DESCRIPTION
<u>ي</u> جر	Mean Grain Size, ? m	Boxic Soil Description
*	Outside Model Doundary	Soft Meds, Claye
.4	> 4	Chays, Silte Sandy Silt
	4 - 2.2	Clayey Sands Silly Sands
9	22 - 12	Silly Sondo Fine Sondo
2.2	1.2 - 0	Modum Sanda
	> 0	Coorse Sando & Grovals Clayey Sands v/ Grovals
	N/A	Rock, Consolidated Claye

V.E. = 100

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

DELAWARE MAIN CHANNEL SEDIMENT PROFILE LINE SCO6, FILES 255/0-267/0

FILE NAME: SCOOGLOWG

SCALE: 1"-4500" DATE: NOVEMBER 7, 1995 PLATE 15

DELAWAR	E SHIP CH	ANNEL SED	HMENT DESCRIPTION
Hotch Pottern	Density gm/cc	Misan Grain Size, ? m	Basic Soll Description
	1.0 - 1.4	Outside Model Boundary	Soft Made, Claye
	1.4 - 1.6	> 4	Clays, SSNs Sandy SSR
	1.6 - 1.8	4 - 22	Clayey Sanda Silly Sanda
	1.8 - 2.0	22 - 1.2	Silty Sands Fine Sands
*********	20 - 22	1.2 – 0	ikin beti
	> 22	> 0	Coarse Sands & Gravels Clayey Sands v/ Gravels
	> 2.4	N/A	Rock, Commission Clays

V.E. = 100

DESCRIPTION
Basic Soil
Description
Auto, Cloye
Site
Sit
Sende
ande
ande
ande
ande
Sande

WATERWAYS EXPERIMENT STATION CORPS OF ENGINEERS VICKSBURG, MS 39180

DELAWARE MAIN CHANNEL SEDIMENT PROFILE LINE SCO6, FILES 267/0-281/3

FILE NAME: SCOGHLDWG

SCALE: 1"-4500" DATE: NOVEMBER 7, 1995 PLATE 16

Appendix A Delaware Main Channel Sediment Data

This appendix presents the physical sample data used during analysis of the geoacoustic data from the Delaware Main Channel. The data include the drilling logs and sediment gradation analysis where available. Table A1 lists all cores and their respective locations and dates retrieved. The core data are ordered in this appendix according to Table A1.

Table A1
Geoacoustic Study Core Locations

		l	ocation	
Core Name	Easting	Northing	Station	Date Collected
DRV-1	724698	685339	50+266 / 336' S of CL	7/25/91
DRV-2	711610	679945	65 + 000 / 854' N of CL	7/25/91
DRV-3	691593	673346	86+680 / 40' N of CL	7/26/91
DRV-4	668788	666020	111+830 / ON CL	7/26/91
DRV-5	663348	662042	118+557 / ON CL	7/27/91
DRV-6	657422	658240	125+623 / ON CL	7/19/91
DRV-7	646335	651122	138+797 / ON CL	7/27/91
DRV-8	639336	642260	150+210 / 359' E of CL	7/27/91
DRV-9	632570	632025	162+638 / 120' W of CL	7/19/91
DRV-10	629870	622669	172+363 / ON CL	7/28/91
DRV-11	619694	602545	195+448 / ON CL	7/28/91
DRV-12	618719	571387	232+018 / ON CL	7/28/91
DRV-13	615096	535014	265 + 712 / 86' E of CL	7/19/91
DRV-14	652333	490616	326+356 / 666' E of CL	7/29/91
DRV-15	668932	470366	355+000 / 287' W of CL	7/29/91
DRV-16	679775	455794	373+062 / 1959' W of CL	7/19/91
DRV-17	690876	443441	390+000 / 233' W of CL	7/19/91
DRV-18	705861	428534	411+020 / 6200' E of CL	7/18/91
DRV-19	705882	417615	418 + 792 / 527' E of CL	7/18/91
DRV-20	712588	407641	426+679 / 190' W of CL	7/18/91
DRV-21	717559	401405	437+692 / 189' W of CL	7/18/91
DRV-22	722198	394780	445+900 / 100' W of CL	7/18/91
DRV-23	726670	383605	457+500 / 115' W of CL	7/17/91
DRV-24	730608	374423	467+011 / 128' W of CL	7/17/91
DRV-25	734713	365347	476+524 / 142' W of CL	7/17/91
DRV-26	742668	346964	500+000 / 309' E of CL	7/16/91
DRV-27	746062	337592	509+532 / 188' W of CL	6/14/91
DRV-28	752679	329679	520+000 / 2700' E of CL	7/15/91
DRV-29	756852	314942	535+000 / 760' E of CL	6/14/91
463	N/A	N/A	243+640 / 790' W of CL	1/16/63
				(Continued)

Table A1	(Conclude	ed)		
			Location	
Core Name	Easting	Northing	Station	Date Collected
461	N/A	N/A	241 + 680 / 640' W of CL	1/22/63
459	N/A	N/A	239 + 700 / 700' W of CL	1/17/63
DSP-1	N/A	N/A	233+680 / 480' W of CL	3/22/65
DSP-2	N/A	N/A	231 + 900 / 530' W of CL	3/22/65
DSP-3	N/A	N/A	229 + 840 / 460' W of CL	3/22/65
DSP-4	N/A	N/A	228+960 / 520' W of CL	3/23/65
DSP-5	N/A	N/A	219+800 / 610' W of CL	3-23-65
DFP-44	N/A	N/A	219+000 / 200' W of CL	12/13/86
DFP-45	N/A	N/A	219+000 / 200' E of CL	12/13/86
DFP-43	N/A	N/A	217+000 / 200' W of CL	12/13/86
DFP-36	N/A	N/A	212+000 / 400' E of CL	12/13/86
DFP-35	N/A	N/A	210+500 / 400' E of CL	12/11/86
DFP-32	N/A	N/A	209+000 / 450' E of CL	12/10/86
DFP-31	N/A	N/A	205 + 000 / 200' E of CL	12/9/86
DFP-26	N/A	N/A	200+000 / 200' E of CL	12/6/86
DSP-7	N/A	N/A	197+480 / 500' W of CL	3/24/65
DFP-25	N/A	N/A	195+000 / 200' E of CL	12/6/86
DFP-24	N/A	N/A	190+000 / 200' E of CL	12/6/86
DSP-9	N/A	N/A	172+030 / 270' W of CL	3/29/65
431	N/A	N/A	159+700 / 240' W of CL	1/17/62
435	N/A	N/A	151 + 920 / 455' E of CL	1/19/62
437	N/A	N/A	149+950 / 450' W of CL	1/19/62
436	N/A	N/A	150+000 / 450' E of CL	1/19/62
438	N/A	N/A	146+000 / 450' W of CL	1/22/62
DRP-12	N/A	N/A	130+930 / 165' E of CL	6/9/65
282	N/A	N/A	119+420 / ON CL	9/6/61
DSP-16	N/A	N/A	76+210 / 500' W of CL	4/1/65
DSP-17	N/A	N/A	68 + 880 / 290' E of CL	4/2/65
DSP-19	N/A	N/A	50+230 / 310' W of CL	4/2/65
DSP-20	N/A	N/A	41 + 890 / 290' E of CL	4/3/65

DRIL	LINE LOG	10	VISION	INSTAL		iole No. DRV-1	SHEET		
PROJECT							OF .	i	SHEET
		Compreh-	neive Study		E AND TYP		Vibracore		
			* Station)			EVATION SHOWN (TOM		
39" 52'		75 10	22.26*	12. NAM	UFACTURER	'S DESIGNATION	OF DRILL		
			iorn, Inc.	13. TOTA	IL NO. OF	OVER- : DI	STURBED	: UMDISTU	P LED
. NOLE NO	. (As sho	wn on dr	owing title DRV-1	BURE	DEN SAMPLI	ES TAKEN :		:	
				_			KA .		
. NAME OF	ORILLER	Ocea	n Survey, Inc.	16. DATE			ARTED		
- DIRECTION	ON OF HOL		DEG. FROM VERT.			: 1	07/25/91	07/25	/91
. THICKNES			UA DEG. PROM VERT.	17. ELEV	ATION TOP	OF NOLE	7 ft. MGVD		
. DEPTH D	RILLED IN	TO ROCK	M.			COVERY FOR BOR	ING 18 f	t.	
. TOTAL DE	EPTH OF IK	X.E	20 ft.	19. SIGN	ATURE OF	INSPECTOR	•		
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	X CORE	BOX OR	J	REMARKS		
	ь	c	d	RECOV- ERY	SAMPLE NO.	(Dritting t	ime, water 0, etc., i:	ioss, depth significan	of
	- =		Grey medium to fine sand with scattered fine gravel	<u> </u>	<u> </u>	One letty 1			
	1, =					semple 0'- 1	ft.		
			Grey sandy coarse to fine Stavel. Fredominately quartz with medium sand			Sample 1 - 4,	3 ft.		
	2 -		construct softs						
				ļ	- 1				
İ	3 —								
	. =								
- 1	.3			{					
	5 -]	Grey medium to fine send			-	₹.		
	=		scattered fine gravei			• • • • • • •	• • • • •	• • • • • •	• • •
	•								
1	.3		Grey grayatly medium to fine			Sample 6.3 - 10	0.45		
	7		Grey gravelly medium to fine and with medium to fine gravel	.			v 7t.		
	. =								
- 1		- 1				•			
	, _		1						ł
	10	• • • •	LOSS gravei						
	=	- 1	Grey medium to fine send		- 1	Bemple 10 - 14,	7 ft.		
	11								
- 1	12	- 1							
	=		1						
	13		1						
			Brown medium to fine sand						
	14-								
	10-7-					•			
		1	with brown medium to line sand sand ienses		8	emple 14.7 - 18	ft.		
	16-								Ę
1									Ε
	17				1				=
Į	_ =								Ξ
	1	_			a	ottom of recove	רץ		E
	19		1						E
- 1			}		1				Ξ
	_=								E
		PRI	Delaware River Comprehensive	Rright			1 100	LE NO]-

A6

Appendix A Delaware Main Channel Sediment Data

A8

Appendix A Delaware Main Channel Sediment Data

Note No. DRY-2 DIVISION DRILLING LOG INSTALLATION SHEET SHEETS PROJECT 10. SIZE AND TYPE OF BIT Vibracore Delaware River Comprehensive Study 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) 2. LOCATION (Coordinates or Station) 39 51 59.70 75 13 10.29 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY Buchart-Norn, Inc. 13. TOTAL NO. OF OVER- NA; DISTURSED BURDEN SAMPLES TAKEN : : UNDISTURSED 4. NOLE NO. (As shown on drawing title and file number) DRV-2 14. TOTAL NUMBER CORE BOXES 15. ELEVATION GROUND MATER 5. MANE OF DRILLER Ocean Survey, Inc. 16. DATE HOLE : STARTED : 07/25/91 : DOMPLETED : 07/25/91 6. DIRECTION OF MOLE YERTICAL INCLINED 17. ELEVATION TOP OF HOLE -47.9 ft. MGVD DEG. FROM VERT. 7. THICKNESS OF OVERBURDEN MA 18. TOTAL CORE RECOVERY FOR MORING 16 ft. 8. DEPTH DRILLED INTO ROCK MA 19. SIGNATURE OF INSPECTOR 9. TOTAL DEPTH OF HOLE 20 ft. (Assumed) ELEVATION | DEPTH | LEGEND CLASSIFICATION OF MATERIALS (Description) % CORE RECOV-ERY BOX OR SAMPLE NO. REMARKS
(Orilling time, water loss, depth of weathering, etc., if significant 9 Grey silt Brown medium to fine sand 1 .9 Grey sitt sandy tayers >.01 Sample 1 - 2.3 ft. Sample Includes sandy Layers ... Grey fine to medium sand Sample 2.3 - 4.4 ft. Black sandy gravelly sitt .3 erry clay with early gravel at to 6.8; 7.4 to 1.5 yer at 4.6 Sample 4.4 - 8.2 ft. .2-Sandy gravel, coarse to fine Sample 8.8 to 10. 8 ft. Silty sand grading to silt with sandy tomes, layer of sand at 15.4 to 15.5, clay to 16 ft. \$000): 13.4; 16 ft. Bottom of recovery PROJECT Delemere River Comprehensive Study HOLE NO.

Appendix A Delaware Main Channel Sediment Data

A12

ENG . MAY 63 2087

Hole No. DEV-3

						-	ole No. DRV-3				
DRILL	ING LOG	DIA	1810M		INSTAL	LATION		SHEET	1		
. PROJECT					10. 312	10. SIZE AND TYPE OF BIT VIbracore					
Delaware River Comprehensive Study					11. DATIM FOR ELEVATION SHOLM (TEM or MSL)						
					٦						
2. LOCATION (Coordinates or Station) 39° 50' 54.85" 75° 17' 27.10" 3. DRILLING AGENCY						12. MANUFACTURER'S DESIGNATION OF DRILL NA					
Buchart-Horn, Inc.						L 10. OF	OVER- : DI	STURBED .	: UNDISTURBED		
HOLE NO. (As shown on drawing title pay-3						EN SAMPLE		•	:		
and file number) . DRV-3								NA NA			
. NAME OF	DRILLER	Ocean	n Survey, Inc	c.	16. DATE			ARTED	: COMPLETED		
DIRECTION VERT	N OF MOLI	ICL I NED	0	EG. FROM VERT.	-		OF NOLE	07/26/91	07/26/91		
. THICKNESS OF OVERBURDEN MA						1 0005 05	COVERY FOR BOIL	2 ft. NGVD			
. DEPTH DR			MA		 		INSPECTOR	17.3			
. TOTAL DE			19.5 ft.								
ELEVATION	DEPTH	LEGEND	CLASSIFIC (Dee	CATION OF NATERIALS (Cription)	% CORE RECOV- ERY	BOX OR SAMPLE MO.	(Drilling weatheri		oss, depth of significant		
	-		Black send	y med. to fine grave	1 SP-	-	1	9			
	.4-			y coarse to fine th coarse to fine	31						
	1-		Send G								
	. =		١	•	1						
i	2 —						12.5 ft., 11	- 20 ft P	enetration		
	3 =				1						
	=		1								
	4=		1	•							
	=			•							
	5						• • • • • •	• • • • • •			
]	=										
	6-										
					1						
ſ	7		Light brow	coerse fine gravel,	1		٧				
l				GM							
ŀ	•=		Brown mediu	m to fine sand			Sample 7.9 -	9.1 ft.			
	. =			5P		1					
- 1	7.1-		Brown coers	e to fine gravel							
ļ	10-		with send,	some amail combine							
					1				• • • • • • •		
[11—	. [GL	7.							
ı		- 1					•				
ł	12						Sample 11 - 15	ft.			
	=					-					
. 1	13—				1 1						
1	=										
.	14										
	,					1	•				
	<u>. = </u>					· • • • • • • • • • • • • • • • • • • •		,	• • • • • •		
·	10.8		Brown sand	coarse to fine			Sample 15.8 -	10 5 4-			
İ	=	- 1	gravel with	coerse to fine				17.3 TC.			
l	17	1	SP								
•	18					1					
	=			Ì		1					
	19										
							19.5 ft. bott	om of recover	γ		
			ROJECT			- 1					

A18

		-,				ole No. DRV-4					
DRILL	ING LOG	DIV	ISION .	INSTAL	LATION		SHEET	1	SHEETS		
. PROJECT				10. SIZE AND TYPE OF SIT VIbracore							
			sive Study	11. DATE	DI FOR EL	EVATION SHOWN (TIM or HSL)			
LOCATIO		75 22'	19.54"	12. MAN	FACTURER	'S DESIGNATION	OF DRILL				
5. DRILLING AGENCY Buchart-Norm, Inc.					IIA						
. NOLE NO. (As shown on drawing title					MURDEN SAMPLES TAKEN						
	-		DRV-4	_	14. TOTAL NUMBER CORE BOXES NA 15. ELEVATION GROUND MATER NA 16. DATE NOLE : STARTED : COMPLETED						
NAME OF	DRILLER	Ocean	n Survey, Inc.								
OIRECTIC	M OF HOL	E NCLINED	DEG. FROM VERY.			2	07/26/91	: COMPLETI	/91		
THECKNES			MA	17. ELEV	ATION TO	OF HOLE -45.	ft. MGVD				
DEPTH DR	ILLED IN	TO ROCK	MA			COVERY FOR BOR	NG 6.7:	ft.			
TOTAL DE			8 ft.	19. \$1GH	ATURE OF	INSPECTOR					
LEVATION	DEPTN	LEGEND	CLASSIFICATION OF MATERIALS (Description)	X CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling t	REMARKS ime, weter u, etc., i	loss, depth f significan	of		
			Cobbles with coarse to fine			8 ft. penetra	tion				
	1 -7-		Brown silty fine send	+		Sample .7 to	2.6 ft				
			EM-SC								
	2										
	.6 <u>-</u>		Smelt cobbles with coarse to								
	Ξ		GP	.							
	4-	, ,									
	.5-										
	5 —	• • • •	Saprolite of Chlorite-Albite		• • • •	• • • • • • •	• • • • •	• • • • • •			
	6		Bedrock								
	.75		DEGLOCK			Bassan of account					
	7					Bottom of reco	real y				
[. =			1 1		1			1		
					ľ						
İ	9				- 1						
	=				İ						
	10				-						
	11-										
ŀ	Ξ.										
	12—	l	•						Ė		
	,,_										
	14		•		- 1						
	. =										
	"=										
-	16				1						
					- 1						
	17								E		
	18								=		
	=			1					=		
	19								E		
	=								E		
		P	ROJECT Delawere River Comprehens					HOLE NO.	=		

lole No. DRY-5

							le lio. DRY-5					
DRILLI	NG FOG	DIVI	\$10H		INSTALL	ATION		SHEET .	1	SHEETS		
* PROJECT					10. SIZE AND TYPE OF SIT Vibracore							
Delemere River Comprehensive Study 2. LOCATION (Coordinates or Station) 39 49.39: 3.37= 75 23: 29.28=						11. DATUM FOR ELEVATION SHOWN (TBM or MSL)						
LOCATION	(Coordin	etes 8r	Station) 3' 29.28"		12. KAKU	FACTURER*	S DESIGNATION	OF DRILL	· · · · · · · · · · · · · · · · · · ·			
3. DRILLING AGENCY Buchart-Horn, Inc.						13. TOTAL NO. OF OVER- : DISTURBED . : UNDISTURBED BURDEN SAMPLES TAKEN : :						
4. HOLE NO. (As shown on drawing title i						BURDEN SAMPLES TAKEN : :						
						15. ELEVATION GROUND WATER NA						
			Survey, Inc	•	16. DATE HOLE : STARTED : COMPLETED : 07/27/91 : 07/27/91							
6. DIRECTION OF NOLE <u>YERTICAL</u> INCLINED DEG. FROM WERT.						17. ELEVATION TOP OF HOLE						
7. THICKNESS OF OVERBURGEN MA						-49.0 ft. NGVO -18. TOTAL CORE RECOVERY FOR BORING 4.3 ft.						
. TOTAL DE			MA 40				INSPECTOR					
ELEVATION	DEPTH	LEGENO	40 ft.	ATION OF MATERIALS	% CORE	BOY OF	t	REMARKS				
•	ь	c	(Des	cription)	RECOV- ERY	BOX OR SAMPLE NO.	(Drilling weather)	time, water ng, etc., i	loss, depti f significar	of it		
	Ξ		Hedium to	fine derk grey sand			Sample 0.0 -	1.7 ft.				
	اتے ا			SP								
	.7-											
	2 -		Grey silt	SM								
			Medium to becoming	fine dark grey sand coarser with depth								
	3 —			SP								
	4.8		Cobbles	GW	· .		Sotton of re					
			6	neiss			SOLUME OF THE	outer p				
	5 —		Bed n	•								
	• =				·							
	7 =											
	8 —											
	7 =											
	10			•	.							
	目											
	11											
	12											
	12—						,					
	13					-						
]												
	14	,										
l	15											
	16											
	_ =											
	17	-										
·	18		_									
	=											
	19											
			PROJECT	swere River Comprehen					HOLE NO.	Ш.		

Hole No. DRY-6 DRILLING LOG DIVISION INSTALLATION SHEET PROJECT SHEETS 10. SIZE AND TYPE OF BIT Vibracore Delaware River Comprehensive Study 11. DATUM FOR ELEVATION SHOUM (TBM or MSL) LOCATION (Coordinates or Station) 39 48: 25.88= 73 24: 45.22= 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY Buchart-Norm, Inc. 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN : DISTURBED : UNDISTURBED HOLE NO. (As shown on drawing title and file number) DRV-6 14. TOTAL MUNBER CORE BOXES 15. ELEVATION GROUND WATER 5. NAME OF DRILLER Ocean Survey, Inc. 16. DATE HOLE : STARTED : 07/19/91 6. DIRECTION OF MOLE VERTICAL INCLINED DEG. FROM VERT. 17. ELEVATION TOP OF NOLE 7. THICKNESS OF OVERBURDEN -48.1 ft. NGVD MA 8. DEPTH DRILLED INTO ROCK 18. TOTAL CORE RECOVERY FOR BORING NA 9. TOTAL DEPTH OF HOLE 19. SIGNATURE OF INSPECTOR 19 ft. ELEVATION | DEPTH | LEGEND CLASSIFICATION OF MATERIALS (Description) % CORE RECOV-ERY BOX OR SAMPLE NO. REMARKS (Orilling time, water loss, depth of weathering, etc., if significant Grey clayey silt, trace of fine send Brown clay silt streaks SV-SC Sample 0 - 5 ft. Grey clay Sample 7.1 - 10 ft. SM. SC 11-Red brown fine to medium sandy grayet with fine to medium 12-SP Sample 11.6 - 15.0 ft. 13 Coerse send SP Grey fine to mediumsandy gravel Sample 11.6 - 9.5 ft. SP Bottom of recovery Delawers River Comprehensive Study HOLE NO.

ENG , FORM, 2087

ENG , MAY 63 2087

Note No. DRY-7 DIVISION DRILLING LOG INSTALLATION SHEET SHEETS . PROJECT 10. SIZE AND TYPE OF SIT Vibracore Delevare River Comprehensive Study 11. DATLM FOR ELEVATION SHOWN (TOM OF MSL) 2. LOCATION (Coordinates or Station) 39 -47 15.44 75 27 07.24 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY Buchert-Horn, Inc. : DISTURBED 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN : UNDISTURBED HOLE NO. (As shown on drawing title and file number) DRV-7 14. TOTAL MANSER CORE BOXES MA 15. ELEVATION GROUND MATER S. NAME OF DRILLER Ocean Survey, Inc. 16. DATE HOLE : COMPLETED : 07/27/91 6. DIRECTION OF HOLE
VERTICAL INCLINED DEG. FROM VERT. 17. ELEVATION TOP OF HOLE -47.1 ft. NGVD 7. THICKNESS OF OVERBURDEN NA 18. TOTAL CORE RECOVERY FOR BORING 3.25 ft. 8. DEPTH DRILLED INTO ROCK NA 19. SIGNATURE OF INSPECTOR 9. TOTAL DEPTH OF HOLE 3.25 ft. ELEVATION | DEPTH | LEGEND CLASSIFICATION OF MATERIALS (Description) % CORE RECOV-ERY BOX OR SAMPLE NO. (Drilling time, water loss, depth of weathering, etc., if significant 8 c Coarse to medium gravelly sand, one cobble SP 1 .8 ... Sandy coarse to fine gravel SP Veathered schist, red 2.3 to 2.4 siron), serein 2.8 to 3.1 to 3.5, red 3.5 to 3.7 to 3.5, red 3.5 to 3.7 Sample 1.3 - 2.7 ft. Seprolite of Chlorite schist Zedrock Bottom of recovery 3.25 ft.

PROJECT Delaware River Comprehensive Study

HOLE NO

ENG , MAY 43 2087

					No.	le No. DRV-8			
DRILLI	NG LOG	DIA	1\$108 -	INSTALL	MOLTA		SHEET	1 SHEE	:75
PROJECT				10. SIZE AND TYPE OF SIT Vibracore					
Delawere	River Com	preheni	sive Study	11. DATU	M FOR ELE	VATION SHOWN (TOM or MSL))	
LOCATION	(Coordina 47.83° 7	tgs or	Station)	12 845	74071 0 F41	a accountion	05 00111		
DRILLING		> 20.	30.52"	12. MANU	FACTURER'	S DESIGNATION	DF DRILL		
	Buc		orn, Inc.		L NO. OF		STURBED	: UNDISTURBED	
and file	(As shown number)	on dra	ming title DRV-8	14. TOTA	L MINGER	CORE BOXES	NA.		
NAME OF	DRILLER	Ocean	Survey, Inc.	15. ELEV	ATION GRO	UND WATER	KA		
				16. DATE	HOLE	: \$7	ARTED 07/27/91	: COMPLETED : 07/27/91	
DIRECTION YERT	I OF HOLE	LIMED_	DEG. FROM VERT.	17. ELEV	ATION TOP	OF NOLE	2 ft. NGVD	*	
	of OVERB		MA	18. TOTAL	CORE RE	COVERY FOR BOR		7.	
	ILLED INTO		NA .			INSPECTOR	- 17 1	•	_
	PTN OF HOL		20 ft.						
LEVATION	DEPTN	LEGEND	CLASSIFICATION OF MATERIALS (Description)	X CORE RECOV- ERY	BOX OR SAMPLE NO. f	(Drilling weather)	REMARKS time, water ng, etc., i	loss, depth of f significant	
	-		Gray silty clay						_
			5M-EC						
	1 =								
	_		ĺ	.					
	2 —						4.		
	=				i	Sample 0 - 5 Sand lenses	n sample		•
	3 —								
	. =								
	1								
	=								
	5	• • •			• • • • •				•
	_=								
	=		Fine send tenses at & ft.						
	7_=		EM-SC	1 1					
1	=					Sample 5 - 10 Sand lenses 1	ft.		
	8					Sand Lenses 1	n sample		
	Ξ								
	9]]					
ł	=				ļ				
- 1	10	• • •	Fine to medium sand lenges <0.5		• • • •		• • • • •		•
	Ξ		inches in at 11.4 to 11.4					•	
	11								
	. =		. ,						
	12-		,		J	******* ** **			
Į	∄				1	Sample 10 - 1	77.		
	13-								
i	, =								
	-=			•					
	15			l l					_
	=		Coerse to fine sandy at 15.6 ft				•		-
- 1	16		GM-GC						
	=					Sample 15 - 15	21 i.u		
	17						-,,		
	=								
	18	ı							
l	=								
	19					Bottom of rec	very		
	Ξ				1				
			PROJECT						

Appendix A Delaware Main Channel Sediment Data

ENG , FORM, 2087

ENG , FORM 2087

Determination of the property						No	ole No. DRV-9		
DOLLAR PRIVATE Comprehensive Study 10. SIZE AND TIPE OF BIT Vibracines 11. DATUM FOR ELEVATION SAME (THE OF PSI) 12. MANUFOR ELEVATION SAME (THE OF PSI) 13. TOTAL MO. OF OVER 1 DISTURBED 14. TOTAL MO. OF OVER 1 DISTURBED 15. ELEVATION EXCAS MA 15. ELEVATION EXCAS MA 16. AND THE DESCRIPTION OF SMILL 16. AND THE DESCRIPTION OF SMILL 17. ELEVATION EXCAS MA 18. TOTAL MO. OF OVER 1 DISTURBED 18. TOTAL MO. OF OVER 1 DISTURBED 18. TOTAL MO. OF OVER 1 DISTURBED 18. TOTAL MO. OF OVER 1 DISTURBED 18. TOTAL MO. OF OVER 1 DISTURBED 18. TOTAL MO. OF OVER 1 DISTURBED 18. TOTAL MO. OF OVER 1 DISTURBED 18. TOTAL MORE OF BOX MA 19. ELEVATION EXCAS MA 19. ELEVATION EXCAS MA 19. ELEVATION EXCAS MA 10. ELEVATION EXCAS MA 10. SIZE AND TIPE OF BIT VIbracines 10. DISTURBED	DRILLI	NG FOE	DIA	ESTON	INSTALL	ATION			
DESTINATION DEPTH LEGAD CLASSIFICATION OF MATERIALS Sample 0 - 5 ft.	PROJECT			10. \$1ZE	AND TYPE	OF 817		- encil	
DRILLING AGENCY MACH NO. (As about on drowing title MACE OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER MACH OF DRILLER DOCUMENT OF MACH MACH OF MACH OR MACH OF MACH OR MACH OF MACH OR MACH OF MACH OR MACH OF MACH OR MACH OF MACH OR MACH OR MACH OF MACH OR	Delaware	River Co	omprehens	sive Study	11. DATU	M FOR ELE	EVATION SHOWN (TIM or MSL)	
DRILLING AGENCY MACH NO. (As about on drowing title MACE OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER MACH OF DRILLER DOCUMENT OF MACH MACH OF DRILLER MACH OF DRILLER DOCUMENT OF MACH MACH OF MACH OR MACH OF MACH OR MACH OF MACH OR MACH OF MACH OR MACH OF MACH OR MACH OF MACH OR MACH OR MACH OF MACH OR	LOCATION	(Coordin	nates or	Station)	12 848	EACTI MES	E BESICHATION	OF DOTE	
MANE OF DETILEE Coen Survey, Inc. 15. ELEVATION GROUND MATER AN INCREMENT STREET STRE		AGENCY						NA ·	
NAME OF DELLEE Cosen Survey, Inc. DIRECTION OF NOLE STATUTE DEC. POR STATUTE OF NOLE 1 STATUTE OF				·	13. TOTA	L NO. OF EN SAMPLE	OVER- : DI	STURBED	
DIRECTION OF NOLE SITION DEC. FROM WERT. TRICINESS OF OVERBRORDS MA TRICINESS OF OVERBRORDS MA TOTAL SEPTR OF NOLE 2 TO FIX SCHOOL TOTAL SEPTR OF NOLE 2 TO FIX SCHOOL TOTAL SEPTR OF NOLE 3 TO FIX SCHOOL TOTAL SEPTR OF NOLE 5 TO FIX SCHOOL TOTAL SEPTR OF NOLE 5 TO FIX SCHOOL TO FI	and file	(VE ayor	en on dri	DRY-9	14. TOTA	L NUMBER	CORE BOXES	KA'	
DIRECTION OF NOTE INCLUDED DEG. FROM WEST. THICKNESS OF VORRENDERS MA DEPTH DRILLED INTO BOCK A DEPTH DRILLED INTO BOCK BA TOTAL SEPTH OF NOTE ECONOMY FOR BOCKING 20 ft. TOTAL SEPTH OF NOTE ECONOMY FOR BOCKING 20 ft. TOTAL SEPTH OF NOTE ECONOMY FOR BOCKING 20 ft. TOTAL SEPTH OF NOTE ECONOMY FOR BOCKING 20 ft. TOTAL SEPTH OF NOTE ECONOMY FOR BOCKING 20 ft. TOTAL SEPTH OF NOTE ECONOMY FOR BOCKING 20 ft. TOTAL SEPTH OF NOTE ECONOMY FOR BOCKING 20 ft. TOTAL SEPTH OF NOTE ECONOMY FOR BOCKING 20 ft. TOTAL COME RECOVER FOR BOCKING 20 ft. TOTAL COME RECOVER FOR BOCKING 20 ft. TOTAL COME RECOVER FOR BOCKING 20 ft. TOTAL COME RECOVER FOR BOCKING 20 ft. TOTAL COME RECOVER FOR BOCKING 20 ft. TOTAL COME RECOVER FOR BOCKING 20 ft. TOTAL COME RECOVER FOR BOCKING 20 ft. TOTAL COME RECOVER FOR BOCKING 20 ft. TOTAL COME RECOVER FOR BOCKING 20 ft. TOTAL COME RECOVER FOR BOCKING 20 ft. TOTAL COME RECOVER FOR BOCKING 20 ft. TOTAL COME RECOVER FOR	. NAME OF	DESTER	Ocean	Survey Inc	15. ELEV	ATION GRO	UND WATER	NA T	
DEEL PROM VERT. TRICKESS OF OVERANDES AN TRICKESS OF OVERANDES AN TRICKESS OF OVERANDES AN TRICKESS OF OVERANDES AN TOTAL DEPTH OF DEEL CASSIFICATION OF MATERIALS B					16. DATE	HOLE			: DOPLETED : 07/19/91
TRICORES OF OPERALINES MA TOTAL DEPTH OLLEGAD DEPTH OLLEGAD CLASSIFICATION OF MATERIALS CONSTRUCTION OF MATERIALS C	DIRECTION YEST	OF MOLE	CL I NED	DEG. FROM VERT.	17. ELEV	ATION TOP	OF HOLE		0.7.77
SEPHIN ROLE 20 ft. TOTAL REPTIN OF INCE 20 ft. TOTAL REPTIN OF INCE 20 ft. Constitution of MATERIALS Constitution of Materials Constitution of Materi	. THICKNES	S OF OVER	REURDEN	W .	-				
TOTAL DEPTH OF ICLE 20 ft. CLASSIFICATION OF MATERIALS C DEPTH OF ICLESTED CLASSIFICATION OF MATERIALS COMPANY COM	. DEPTH DR	ILLED INT	O ROCK	NA				ING 20 ft	
B C Consentation EECON- SUMPLE Continue time, mater loss, depth of weathering, etc., if significant	. TOTAL DE			20 ft.	17. SIGN	ATORE OF	INSPECTOR		
B	ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF MATERIALS (Description)	RECOV-	SAMPLE	(Drilling	REMARKS time, water	loss, depth of
SAM-SC Sample 0 - 5 ft. Sample 0 - 5 ft. Sample 5.5 - 11 ft. SAM-SC Sample 12.3 - 16 ft.		ь	c	d		NG.	weatheri	ng, etc., if	significant
Sample 0 - 5 ft. Sample 0 - 5 ft. Sample 0 - 5 ft.		Ξ							
2 .3 Coarse sand layer Sample 5.5 · 11 ft. Sample 5.5 · 11 ft.		, =		SM-CC					
2 .3 Coarse sand layer Sample 5.5 · 11 ft. Sample 5.5 · 11 ft.		· =					Sample 0 - 5	ft.	
Semple 5.5 - 11 ft. Semple 5.5 - 11 ft. Semple 5.5 - 11 ft. Semple 5.5 - 11 ft. Semple 5.5 - 11 ft. Semple 5.5 - 11 ft. 10-11-11-11-11-11-11-11-11-11-11-11-11-1		, =							
5 - 5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 12.3 - 16 ft. 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16		.3_		Coarse sand tayer					
5 - 5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 12.3 - 16 ft. 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16		3 =							
Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft.		=							
Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft.	ı	4					}		
Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft. Sample 5.5 - 11 ft.		Ξ			1 1		İ		
Sample 5.3 - 11 ft. 8		5 —							•
8 -	ļ	.5	• • • •	• • • • • • • • • • • • • • • • • • • •			-		
8 - 10 - 10 - 11 - 12 - 13 - 16 ft. SM-SC Sample 12.3 - 16 ft. 16 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19		6-		ML			**************************************	11 16.	
8 - 10 - 10 - 11 - 12 - 13 - 16 ft. SM-SC Sample 12.3 - 16 ft. 16 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19		=							
10— 11— 13— SM-SC Sample 12.3 - 16 ft. 16— 16— 18— 19— 19— 19— 19— 19— 19— 19— 19— 10— 10— 10— 10— 10— 10— 10— 10— 10— 10		7							
10— 11— 13— SM-SC Sample 12.3 - 16 ft. 16— 16— 18— 19— 19— 19— 19— 19— 19— 19— 19— 10— 10— 10— 10— 10— 10— 10— 10— 10— 10		-							
10— 11— 12— 13— 14— 15— 16— 16— 16— 18— 19— 19— 19— 19— 19— 10— 11— 11— 12— 13— 14— 15— 16— 16— 16— 16— 16— 16— 16— 16— 16— 16	* 1	8 —							
10— 11— 12— 13— 14— 15— 16— 16— 16— 18— 19— 19— 19— 19— 19— 10— 11— 11— 12— 13— 14— 15— 16— 16— 16— 16— 16— 16— 16— 16— 16— 16		=					•		
13 SM-SC Sample 12.3 · 16 ft. 14 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19		9 —			1				
13 SM-SC Sample 12.3 · 16 ft. 14 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19		=							
13— 15— 16— 16— 18— 18— 19— 19— 19— 19— 19— 19— 19— 19— 19— 10— 11— 11— 12— 13— 14— 15— 16.4 Bottom of recovery		10-				ĺ			
13— 15— 16— 16— 18— 18— 19— 19— 19— 19— 19— 19— 19— 19— 19— 10— 11— 11— 12— 13— 14— 15— 16.4 Bottom of recovery	Ì	=							
13— 14— 15— 16— 17— 18— 19— 19— 19— 19— 19— 19— 19— 19— 10— 11— 11— 12— 13— 14— 15— 16— 16— 16— 16— 16— 16— 16— 16— 16— 16		"=	• • • •			• • • •		• • • • • •	
13— 14— 15— 16— 17— 18— 19— 19— 19— 19— 19— 19— 19— 19— 10— 11— 11— 12— 13— 14— 15— 16— 16— 16— 16— 16— 16— 16— 16— 16— 16	1	12_=							
16.4 Bottom of recovery									
16.4 Bottom of recovery		13_=		_					
16.4 Bottom of recovery		-		SM-SC			Sample 12.3 -	16 ft.	
17		14					-		
17	ļ	=							
17		15							
17	ĺ								
17		16-							
18		= -				[16.4 Bottom o	frecovery	
PROJECT Delaware River Comprehensive Study MOLE NO BRY-9	ł	17							
PROJECT Delaware River Comprehensive Study MOLE NO BRY-9		=							
PROJECT Delaware River Comprehensive Study PROJECT Delaware River Comprehensive Study HOLE NO. BRV-9	į	18	,						
PROJECT Delaware River Comprehensive Study PROJECT Delaware River Comprehensive Study HOLE NO. BRV-6		. =							
PROJECT Delaware River Comprehensive Study HOLE NO BRY-9	İ	19		·		ļ			
PROJECT Delaware River Comprehensive Study HOLE NO. BRY-9		=							
				PROJECT Delaware River Comprehens	sive Study				HOLE NO.

Appendix A Delaware Main Channel Sediment Data

A38

ENG , MAY .3 2087

Hole No. DRV-10 DIVISION INSTALLATION DRILLING LOG SHEET SHEETS PROJECT 10. SIZE AND TYPE OF BIT Vibracore 11. DATUM FOR ELEVATION SHOWN (TEN or MEL) Delawere River Comprehensive Study 2. LOCATION (Coordinates or Station) 39 42 34.12 75 30 37.77* 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY Buchart-Horn, Inc. : DISTURSED : UNDISTURSED 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN HOLE NO. (As shown on drawing title and file number) DRV-10 14. TOTAL MANGER CORE BOXES 15. ELEVATION GROUND WATER 5. HAME OF DRILLER Ocean Survey, Inc. 16. DATE NOLE : \$TARTED : 07/28/91 6. DIRECTION OF NOLE VERTICAL INCLINED 17. ELEVATION TOP OF HOLE -48.2 ft. NGVD DEG. FROM VERT. 7. THICKNESS OF OVERBURDEN MA 18. TOTAL CORE RECOVERY FOR BORING 20 ft. 8. DEPTH DRILLED INTO ROCK MA 19. SIGNATURE OF INSPECTOR 9. TOTAL DEPTH OF HOLE REMARKS (Drilling time, water loss, depth of weathering, etc., if significant CLASSIFICATION OF MATERIALS (Description) ELEVATION | DEPTH | LEGEND % CORE RECOV-ERY BOX OR SAMPLE MO. c Grey silty clay Sample 0 - 5 ft. CM-SC 2 . .1-Sample 5 - 10 ft. Fine sand pocket at 9,2 to 9.3 Medium to 11.4, 12.4 to 12.55 SM.SC Interbedded fine sand and silty clay 105 sand 1.5 silty openics in lighers at 14.5, 14.75 and 14. Sample 13.3 - 15 ft. SMISC Silty clay with gand surface organics at 16.28 .5 Medium to fine send SP 17:9 Gray all clay with and large 18.65, 19.35, 19.4 SM-SC Black organic at 19.7 to 19.9

PROJECT Delawere River Comprehensive Study

HOLE NO 10

Į

ENG , FORM, 2087

ENG . MAY 43 2087

						No	le No. DRV-11		
DRILLI	IG LOG	DIVI	\$100	-	INSTALL	TION		SHEET	1 SHEETS
PROJECT					10. SIZE	AND TYPE	OF BIT	Vibracore	
	River Com	prehene	ive Study		11. DATU	FOR ELE	VATION SHOWN (TBM or MSL)	
	(Coordina)				12 MANE	Armee	S DESIGNATION	NE DRILL	
DRILLING		34.	47.00-					KA .	
Buchart-Horn, Inc.						NO. OF	OVER- : DI: S TAKEN :	STURBED NA	: UNDISTURBED
HOLE NO. and file	(As shown number)	on dra	wing title	DRY-11	14. TOTAL	NUMBER (CORE BOXES	KA.	
NAME OF I		0	france In		15. ELEV	TION GRO	UND WATER	NA .	
. HARE UP I	MILLER	OCCUR	Survey, In	•	16. DATE	HOLE		ARTED 07/28/91	: COMPLETED : 07/28/91
BIRECTIO	CAL INC	LIMED	Di	EG. FROM VEKT.	17. ELEV	TION TOP	OF NOLE		
	of OVERB		NA.		1			2 ft. NGVD ING 19 ft.	
DEPTH DR	LLED INTO	ROCK	MA				COVERY FOR BOR	1976.	
. TOTAL DE	TH OF HOLI		20 ft.						
ELEVATION	DEPTH	EGEND	CLASSIF1(CATION OF MATERIALS scription)	X CORE RECOV-	BOX OR SAMPLE	(Orilling	REMARKS time, water (oss, depth of significant
		c		d	ERY	MO.	weatheri	ng, etc., if	significant
		•	Grey clays	y silty send					
	3		CM.	اجر ا					
	1 =								
	, =						Sample 0 - 5	4.	
	2 -						3000 ta 0 - 3	•••	
	3 =		1		.				•
	=			. •					
	4 =		l						
	=								
	5					• • • •			
	Ξ								
	6 -		€.41	٠ (Sample 5 - 10) ft.	
	7_=		J						
	-								
	. =				l i				
	9								
	.3_		Send Lener	m at 9.3 ft. (.01)					
	10	• • •		• • • • • • • • •		• • • •		• • • • • •	
	.4		Light cole	r streek - 25° dip					
	11		1	1-56					
	12.7-			14.7, 12.3, 13.4, dip faces at 25° dip			Sample 10 - 1	5 ft. ,	
	"=		few sandy	faces at 25° dip					
	13								
	14-								
			Marie 10	fine send layer at 16:07, 76:28 to 16:50					
	15	•	16.97 10	17.0, 18.23 to 18.26,				• • • • • •	
	., ∃		18.31 10	10.29					
	16			1.50			Sample 15 - 1	9 ft.	
	17		E.	K- 50					
	=								
	18								
	=						*		
	19	·	}				19 ft. Botta	of recovery	
			L		I .		1		

ENG 2087

A46

Appendix A Delaware Main Channel Sediment Data

Hole No. DRY-12 DIVISION DRILLING LOG INSTALLATION SHEET SHEETS PROJECT 10. SIZE AND TYPE OF BIT Vibracore Delaware River Comprehensive Study 11. DATUM FOR ELEVATION SHOWN (TEM OF HISL) 2. LOCATION (Coordinates or Station) 39 34 07.17= 75 32 59.47= 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY Buchart-Norm, Inc. : DISTURBED : UNDISTURBED 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN 4. HOLE NO. (As shown on drawing title and file number) DRV-12 14. TOTAL NUMBER CORE BOXES NA 15. ELEVATION GROUND WATER 5. MANE OF DRILLER Ocean Survey, Inc. 16. DATE NOLE : STARTED : 07/28/91 6. DIRECTION OF NOLE YERTICAL INCLINED DEG. FROM VERT. 17. ELEVATION TOP OF HOLE -44.5 ft. MGVD 7. THICKNESS OF OVERBURDEN NA 18. TOTAL CORE RECOVERY FOR BORING 17.7 ft. 8. DEPTH DRILLED INTO ROCK NA 19. SIGNATURE OF INSPECTOR 9. TOTAL DEPTH OF HOLE 20 ft. ELEVATION | DEPTH | LEGEND CLASSIFICATION OF MATERIALS (Description) REMARKS
(Drilling time, mater loss, depth of weathering, etc., if significant BOX OR SAMPLE NO. d c Sample 0 - 5 ft. Sand lenses in sample Grey clay to sitt clay or 2,5 clay to 6.0, 6.96 to 7.8 CM-SC 3M-5C Grey silt firm Sample 10 - 15 ft. Sandy lenses in sample 5M-5C Sand James at 13:05 Sample 15 - 17 ft. ML 17.7 ft. Bottom of recovery PROJECT Delaware River Comprehensive Study HOLE NO

A50

ENG , LAV 4, 2087

Appendix A Delaware Main Channel Sediment Data

Hole No. DRV-13 DIAIRIO INSTALLATION SHEET DRILLING LOG SHEETS PROJECT 10. SIZE AND TYPE OF BIT Vibracore Delawere River Comprehensive Study 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) 2. LOCATION (Coordinates or Station) 39 28 7.65 75 33 44.96 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY Buchart-Horn, Inc. 13. TOTAL NO. OF OVER-BUNDEN SAMPLES TAKEN : DISTURBED UNDISTURBED 4. HOLE NO. (As shown on drawing title and file number) DRV-13 14. TOTAL NUMBER CORE BOXES 15. ELEVATION GROUND WATER WA 5. NAME OF DRILLER Ocean Survey, Inc. 16. DATE HOLE : STARTED : 07/19/91 6. DIRECTION OF HOLE VERTICAL INCLINED DEG. FROM VERT. 17. ELEVATION TOP OF NOLE -50.7 ft. NGVD 7. THICKNESS OF OVERBURDEN MA 18. TOTAL CORE RECOVERY FOR BORING 20 ft. 8. DEPTH DRILLED INTO ROCK 19. SIGNATURE OF INSPECTOR 9. TOTAL DEPTH OF HOLE 20 ft. REMARKS
(Drilling time, water loss, depth of weathering, etc., if significant g ELEVATION | DEPTH | LEGEND CLASSIFICATION OF MATERIALS (Description) E CORE RECOV-ERY BOX OR SAMPLE NO. e Grey clay to silt clay, sand faces intermittantly Organics in clay at 1.92, 2.74 and 3.3 to 3.0 Sample 0 - 5 ft. 1 -CU-50 . Organics bits random Sample 5 - 9 1/4 ft. Ç ... Sample 9 1/4 - 10 ft. 5 Sand, very wet Dryer toward bottom SP Sample 10 - 12.4 ft. Grey gravelly sand grading down to sency gravel Medulm to fine sand medium to fine gravel SM-SC Sample 12.4 - 15 ft. Grey gravelly coarse to fine sand with medium to fine gravel Sample 17.1 - 20 ft. - M. ..

PROJECT Delaware River Comprehensive Study

HOLE NO

Appendix A Delaware Main Channel Sediment Data

ENG , MAY 63 2087

ENG , MAY 43 2087

A58

Note No. DRY-14 DIVISION DRILLING LOG INSTALLATION SHEET SHEETS 1. PROJECT 10. SIZE AND TYPE OF BIT Vibracore Delaware River Comprehensive Study 11. DATUM FOR ELEVATION SHOWN (TEM OF MSL) 2. LOCATION (Coordinates or Station) 39 20 49.15 75 25 50.09 12. MAMUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY Buchart-Horn, Inc. : DISTURBED 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN : UMDISTURBED 4. HOLE NO. (As shown on drawing title and file number) DRV-14 14. TOTAL MUNBER CORE BOXES 15. ELEVATION GROUND WATER 5. HAME OF DRILLER Ocean Survey, Inc. 16. DATE HOLE 6. DIRECTION OF NOLE YERTICAL INCLINED DEG. FROM VERT. 17. ELEVATION TOP OF NOLE -42.7 ft. MGVD 7. THICKNESS OF OVERBURDEN NA 18. TOTAL CORE RECOVERY FOR BORING 20 ft. 8. DEPTH DRILLED INTO ROCK 19. SIGNATURE OF INSPECTOR 9. TOTAL DEPTH OF HOLE 20 ft. ELEVATION | DEPTH | LEGEND | REMARKS
(Drilling time, water loss, depth of weathering, etc., if significant g CLASSIFICATION OF MATERIALS (Description) % CORE RECOV-ERY BOX OR SAMPLE NO. Sample 0 - 5 ft. Grey firm silt Semple 7.4 - 10 ft. Cray eitty clay, shell layer interpreded organic layers 12.05 to 12.83 12-2firm clay, scattered shells Sample 12.2 - 15.0 ft. Sample 15 - 20 ft. Sand lenses in sample 19.7 to 19.8 fine sand pockets PROJECT Delaware River Comprehensive Study HOLE NO

Appendix A Delaware Main Channel Sediment Data

A62

Appendix A Delaware Main Channel Sediment Data

ENG , MAY 63 2087

Note No. DRV-15

					No	le No. DRV-15				
DRILLIN	ig LOG	DIVI	SICM	INSTALL	ATION	-	SHEET	1 SHEETS		
. PROJECT .				10. SIZE	AND TYPE	OF BIT	Vibracore			
		uprehens	ive Study	11. DATU	N FOR ELE	VATION SHOWN (TOM or HSL)			
LOCATION	(Coordin	etge or	Station) 18.93**	12. NAMI	FACTURER	S DESIGNATION	OF DRILL			
. DRILLING	AGENCY	chert-lio		13. TOTA	L NO. OF	OVER- : DI	NA STURBED	: UNDISTURBED		
. HOLE NO.				BURD	EN SAMPLE	S TAKEN :	WA	:		
	11,200,017		0.0 13				WA.			
. NAME OF D	RILLER	Ocean	Survey, Inc.	16. DATE HOLE : STARTED : COMPLETED : 07/29/91 : 07/29/91						
DIRECTION YERLI		CL I NED_	DEG. FROM VERT.							
. THICKNESS	OF OVER	DURDEN	NA .	10 7074	CODE DE	COVERY FOR BOR	1 ft. NGVO	ft.		
. DEPTH DRI	LLED INT	O ROCK	NA .	-		INSPECTOR	10.3	16.		
. TOTAL DEP	TH OF NO	LE	20 ft.	17. 01.00						
8 ELEVATION	DEPTH	LEGEND	(Description)		SAMPLE NO.	REMARKS (Orilling time, water loss, depth of weathering, etc., if significant				
	=		Coarse to fine sand							
	_ =		5.9							
-	1=					Sample 0 - 3.	.4 ft.			
	2									
l	=									
ļ	3 =									
	.4		Brown files to madic account	 						
	4=		Brown fine to madium gravel gravelly coarse to fine brown sand aand							
	· =	,	Black silt with gravel			Sample 3.4 -	5.0 ft.			
•	5									
	=				j '					
-	6.15-									
	7		Coarse to fine gravel with scattered cobbles -rounders brown send at pottom							
			5.5							
j	8 -5		Very dense brown, orange Interbedded send							
	=		54			Sample 7.5 -	9.2 ft.			
1	9 -2-									
	Ξ		White and dark brown merbled sit sand							
	10									
1	= =		White sendy silt SM-SC							
	11		Orange sand silt with dark brown pode					•		
•	∃		SP			Sample 10.8	· 14 ft.			
	12									
	13		Miss sites sand with deal							
1			White sitty sand with derk							
	14 =									
ļ	=									
ļ	15					ļ				
	-		Orange sandy silt							
ļ	16			 	<u> </u>	Bottom of rea	covery			
	-						-			
	17									
	=									
	18			1						
						1				
	19									
	=			1						
			PROJECT			J		HOLE NO.		

ENG , LAY 43 2087

Appendix A Delaware Main Channel Sediment Data

Hole No. DRY-16 DRILLING LOG DIVISION INSTALLATION SHEET SHEETS PROJECT 10. SIZE AND TYPE OF BIT Vibracore Delawere River Comprehensive Study 11. BATUM FOR ELEVATION SHOWN (TBM or MSL) 2. LOCATION (Coordinates or Station) 39 15: 5= 75 20: 1.19* 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY Buchart-Norm, Inc. : DISTURBED : UNDISTURBED 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN HOLE NO. (As shown on drawing title and file number) DRV-16 14. TOTAL MUNGER CORE BOXES 15. ELEVATION GROUND WATER 5. NAME OF DRILLER Ocean Survey, Inc. 16. DATE HOLE : STARTED : 07/19/91 : COMPLETED : 07/19/91 6. DIRECTION OF NOLE
YERTICAL INCLINED 17. ELEVATION TOP OF HOLE DEG. FROM VERT, -35.5 ft. NGVD 4 7. THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING 19 ft. 8. DEPTH DRILLED INTO ROCK 19. SIGNATURE OF INSPECTOR 9. TOTAL DEPTH OF HOLE 20 ft. ELEVATION | DEPTH | LEGEND CLASSIFICATION OF MATERIALS (Description) X CORE RECOV-ERY BOX OR SAMPLE NO. REMARKS
(Dritting time, water loss, depth of weathering, etc., if significant • Grey (dark) sandy silt grading finer downward Sand at 5.3, 6.0, 7.05, 8.0 to Sample 5 - 10 ft. Send shell layer at 11.6 to Sandy silt 12.2 Sample 10 - 15 ft. Sandy #11: 13:78 Sample 15 - 19 ft. Sandy silt 17.05 to 17.3 PROJECT Delaware River Comprehensive Study HOLE NO.

Appendix A Delaware Main Channel Sediment Data

Appendix A Delaware Main Channel Sediment Data

A74

Coordin 02.67* GENCY Bu	chart-lio	ive Study Station) 75 17' 40.30"	11. DATU	AND TYPE	VATION SHOWN (SHEET OF /(bracore TBM or HSL)	SHEETS						
Coordine 02.67* GENCY But As show Lumber) ILLER OF NOLE AL IN	chart-lio	itation) 75 17' 40.30" rn, inc.	11. DATU	FOR ELEV	VATION SHOWN (
Coordine 02.67* GENCY But As show Lumber) ILLER OF NOLE AL IN	chart-lio	itation) 75 17' 40.30" rn, inc.	12. NAMUI			IM or MSL)							
GENCY But As show umber) ILLER OF NOLE AL IN	chert-Hoi n on drai	rn, Inc.	13. TOTAL	ACTURER	DESIGNATION .								
As show umber) ILLER OF NOLE AL IN	n on drai		13. TOTAL		, sesional full	OF DRILL	12. NAMUFACTURER'S DESIGNATION OF DRILL NA						
ILLER OF NOLE AL IN		ring title	13. TOTAL NO. OF OVER- : DISTURBED : UNDISTURBED BURDEN SAMPLES TAKEN : :										
OF NOLE	Ocean	DRV-17				KA .							
OF NOLE		Survey, Inc.	15. ELEVATION GROUND MATER NA 16. DATE NOLE : STARTED : COMPLETED										
AL IN			ARTED 07/19/91	: COMPLETED : 07/19/91									
of over	CT I MED	DEG. FROM VERT.	17. ELEV	ATION TOP	OF NOLE	5 ft. NGVO	•						
		MA .	18. TOTAL	CORE RE	COVERY FOR SOR	ING 10 ft							
		······································	19. SIGN	TURE OF	INSPECTOR								
DEPTH	LEGENO	CLASSIFICATION OF MATERIALS	X CORE	BOX OR	1	REMARKS							
	e	(Description) d	RECOV- ERY	MO.	(Drilling : weatheri	time, water ng, etc., if Ø	loss, depth of significant						
=		Brown medium to fine sand SP	·		20 ft. penet 10 ft. recov Oyster shel	ration try, rest of is destroyed	sample fell out.						
1 .2-					Sample 0 - 1	.z ft.							
2 =	<i>:</i>	Grey silt CM-5C											
=1		Grey fine sand, some shells				J. 11.	•						
Ξ	1												
4 .7-	·	Grey clay or wilt with sand and and and shell tayer at 4.5 to 5.5, 5.5, 6 10.0.5, 6.5,											
5		6.3 6.3											
=		en-ec			i								
•					Sand in sample	10 ft.							
_ =					·								
· =													
8													
"=													
10													
= -		Part of semia fall and		10.5	Sottom of rea	OVERY							
11-		nest or sample rett out.											
=													
13			1										
14													
15													
=													
16													
., =1													
"-													
18			1	1									
Ξ					1								
19—			1										
Ξ													
	ED INTO NO NO NO NO NO NO NO NO NO NO NO NO NO	DEPTH LEGENO b c 1 -2	THE INTO ROCK NA I OF NOLE DEPTH LEGEND CLASSIFICATION OF NATERIALS (Description) B c	LED INTO ROCK MA H OF HOLE 20 ft. SEPTH LEGEND CLASSIFICATION OF NATERIALS (Description) B c	LED INTO ROCK MA 10 OF NOLE 20 ft. SEPTH LEGEND CLASSIFICATION OF NATERIALS (Description) 1	INTERPRETATION OF MATERIALS 10 F NOLE 20 ft. 10 F NOLE 20 ft. 10 F NOLE 20 ft. 10 F NOLE 20 ft. 10 F NOLE 20 ft. 11	ED INTO NOCK MA 1 OF MOLE 20 ft. SEPTH LEGEND CLASSIFICATION OF NATERIALS C C CLASSIFICATION C C CLASSIFICATION C C CLASSIFICATION C C CLASSIFICATION C C CLASSIFICATION C C CLASSIFICATION C C CLASSIFICATION C C CLASSIFICATION C C CLASSIFICATION C C CLASSIFICATION C C CLASSIFICATION C C C CLASSIFICATION C C C CLASSIFICATION C C C C C C C C C C C C C C C C C C C						

A76

Appendix A Delaware Main Channel Sediment Data

A78

Appendix A Delaware Main Channel Sediment Data

Note No. DRV-18 BIVISION INSTALLATION DRILLING LOG SHEET SHEETS . PROJECT 10. SIZE AND TYPE OF BIT Vibrecore Delaware River Comprehensive Study 11. DATLE FOR ELEVATION SHOLE (TIM or MSL) 2. LOCATION (Coordinates or Station) 39 10 35.08 75 16 0.16 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY Buchart-Norm, Inc. 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN : DISTURBED : UNDISTURBED HOLE NO. (As shown on drawing title and file number) DEV-18 14. TOTAL MANGER CORE BOXES 15. ELEVATION GROUND WATER NA 5. NAME OF DRILLER Ocean Survey, Inc. 16. DATE HOLE : STARTED : 07/18/91 6. DIRECTION OF HOLE VERTICAL INCLINED DEG. FROM VERT. 17. ELEVATION TOP OF HOLE -43.2 ft. MGVD 7. THICKNESS OF OVERBURDEN HA 18. TOTAL CORE RECOVERY FOR BORING 12 ft. 8. DEPTH DRILLED INTO ROCK NA 19. SIGNATURE OF INSPECTOR 9. TOTAL DEPTH OF HOLE 14.5 ft. ELEVATION | DEPTH | LEGEND | CLASSIFICATION OF MATERIALS (Description) X CORE RECOV-ERY e REMARKS
(Drilling time, water loss, depth of weathering, etc., if significant g BOX OR SAMPLE NO. Fine send grey 1 Sample 0 - 4.1 ft. Brown fine sand Black fine sand .2-Sandy gravel Sample 5.2 - 9.1 ft. .1-Grey fine silty sand Sample 9.1 - 10 ft. Gray coarse to fine sand 11-7-Grey silty fine sand with scattered gravel Sample 10.7 - 11.7 ft. 12.7-Silty gravel Sottom of recovery PROJECT Delaware River Comprehensive Study HOLE NO 18

ENG , LAV. 3, 2087

A83

Hole No. DRY-19

						le No. DRV-19						
DRILLI	NG LOG	DIVI	SION	INSTALL	ATION		SHEET OF	1 SHEETS				
PROJECT				10. SIZE AND TYPE OF SIT Vibracore								
			ive Study	11. DATU	FOR ELE	VATION SHOUN (ISM or MSL)					
LOCATION	(Coordin 67.16*	ates of	Station) 14' 30.27"	12. MANUFACTURER'S DESIGNATION OF DRILL								
. DRILLING	Bk	chart-No		13. TOTAL	L NO. OF C	OVER- : DI	STURBED	: UNDISTURBED				
. HOLE NO. and file	(As shown (As shown)	in on dra	wing title DRV-19				и.					
. NAME OF	DRILLER	Ocean	Survey, Inc.	15. ELEVATION GROUND WATER NA								
. DIRECTIO	DIRECTION OF MOLE VERTICAL INCLINED DEG. FROM VERT					16. DATE WOLE : STARTED : COMPLETED : 07/18/91 : 07/18/91						
YERT THICKNES			DEG. FROM VERT.	17. ELEV	ATION TOP	of NOLE	5 ft. NGVD					
. DEPTH DR			NA NA			COVERY FOR SOR	ING 20 ft					
. TOTAL DE	PTH OF M	XE	20 ft.	19. SIGN	ATURE OF	INSPECTOR						
ELEVATION	DEPTH	LEGENO	CLASSIFICATION OF MATERIALS (Description)	X CORE RECOV-	BOX OR SAMPLE	(Drilling	REMARKS time, water	loss, depth of significant				
٠	b	c	d	ERY	MO.		•	Significant				
	-		EN. EC			Sample 0 - 2	0 of 20 ft.					
	1 =		Grey silty sand with shell fregments					ļ				
	=		1769-00188									
	2 -1-					Sample 2.1 -	5.0 ft.					
	-		Grey clay with scattered shells sadd lenses at 3.7, 2.0, 4.5, 5.7, 2.0,0.5 to 5.5, to 6.5, 7.5, 6.6 and 9.5 shelts in fine grey sandy layers	1								
	3 —		7.5; 8.8 and 9.5 shells in fine grey sandy layers	٠.				:				
	. =		Sh-20									
			,			Sand Lenses	in semie					
	5 -											
			Ch 10	1	ľ	Sample 5 - 1	0.0 ft.					
	-				1		•••					
	7_											
	'=											
	8 —											
	Ξ											
	9 —											
	10											
	=											
	11-5											
	11.5		Gray clayer sand with shell street to 14.2; and 14.4 to 14.2;									
	12-		19-1 to 19-2, and 14-4 to 14-6									
	=		5M-SC			Sample 11 -	15 60					
	13											
	14			1								
	=											
	15	• • • •										
	.7-		Clayey coerse to fine gravel	+	 	Sample 15.7	- 16.7 ft.					
	.7-											
	17		Grey clay, sendy gravel-13.2 to 13.3	T								
	=		CM SC	1		Sample 5 - 1	O ft.					
	18											
	19.9	-		1			44.5.					
1	19		Fine sandy coarse to fine gravel			Sample 15.7	- 16.7 ft.					
	=											
			PROJECT Delaware River Comprehe	nsive Stu	dy			HOLE NO				
							-					

ENG , FORM, 2087

Appendix A Delaware Main Channel Sediment Data

						100	ole No. DRV-20				
DRILLI	NG LOG	DIV	ESTON		INSTALL	ATION		SHEET	1	SHEETS	
PROJECT					10. SIZE AND TYPE OF SIT Vibracore						
			live Study		11. DATU	At FOR ELI	EVATION SHOWN (TIM or HSL)			
LOCATION 39 7' 8		75 13'	Station) 5.44	· · · · · · · · · · · · · · · · · · ·	12. NAMU	FACTURER	S DESIGNATION	OF DRILL			
DRILLING AGENCY Suchart-Norn, Inc. HOLE NO. (As shown on decume state)						13. TOTAL NO. OF OVER- : DISTURBED : UNDISTURBED BURDEN SAMPLES TAKEN :					
NOLE NO. (As shown on drawing title and file number) NAME OF DRILLER Ocean Survey, Inc.					14. TOTA	L MUNGER	CORE BOXES	IA.			
					15. ELEVATION GROUND MATER NA						
DIRECTIO					16. DATE			ATED 07/18/91	: COMPLETE : 07/18/		
THICKNESS	ICL INED_		G. FROM VERT	17. ELEV	ATION TOP	OF NOLE -44.1	ft. HGVD				
DEPTH DRI			MA.		18. TOTA	L CORE RE	COVERY FOR BOR	ING 20 f	t.		
TOTAL DEP			20 ft.		19. SICH	ATURE OF	INSPECTOR				
EVATION	DEPTH	LEGENO		ATION OF MATERIALS	% CORE	I BOX OR	1	REMARKS			
	ь	e	(Des	d	RECOV- ERY	SAMPLE MO.	(Drilling t	REMARKS (ime, water 18, etc., i:	loss, depth f significan	of t	
	=		Black sand	y gravel-medium to							
	1 ,		Light grey	silt clay			1				
	3		Yellow fin	e sand with scattered ed clay pod at 2.25 rey clay packets (1")			1				
	2 -		throughou	f			Sample 1.1 -	5.0 ft.			
	3 —										
					[·.						
	4-										
	=		No gravel (below 4.2 ft.							
	5 —	• • • •		• • • • • • • • •		• • • •					
	=										
	6-										
	7										
	1=						•				
	. =										
	Ξ		Grey silty	send grading finer							
	9	.					Sample 8.1 - 1	lO ft.			
	10	• • • •	• • • • • •	• • • • • • • • •			• • • • • • •		• • • • • •		
	=										
- 1	11-2-		Red sendy s	ile							
	12	i		•	1						
	=								•		
	13										
	Ξ		Brown claye	y sand, fining micaceous			Sample 13.4 -	15.0 ft.			
	14	į									
	15				-						
				• • • • • • • • •	• • • •	• • • •	• • • • • • •		• • • • • •	• • •	
	16.9		Fine clayer	r sand					٠		
	Ξ		0.0/4/							i	
	17						Sample 15.9 -	20 ft.			
							. ::::				
	18			•							
	. =	ļ				1					
- 1	19										
1											

A92

A94

ENG , LAV ., 2087

•					No	le No. DRV-21				
DRILLI	IG LOG	DIAL	SION	INSTALL	ATION		SHEET	SHEETS		
PROJECT				10. SIZE AND TYPE OF BIT Vibracore						
Delawere	River Co	aprehens	ive Study	11. DATU	FOR ELE	VATION SHOWN (TOM or MSL)			
LOCATION		75 12'	Station) 2.56*	12. NAMUFACTURER'S DESIGNATION OF DRILL						
. HOLE NO.	Bu	chart-No		13. TOTAL	NO. OF	OVER- : DI	STURBED	: UNDISTURBED		
and file	number)	ri ori ora	DRV-21				NA .			
. NAME OF (RILLER	Ocean	Survey, Inc.	15. ELEVATION GROUND MATER NA 16. DATE NOLE : STARTED : COMPLETED : 07/18/91 : 07/18/91						
. DIRECTION YERT	OF HOLE	CL I NED_	DEG. FROM VERT.	17. ELEV	ATION TOP	OF NOLE	7 ft. NGVD	: 07/18/91		
. THICKNESS	OF OVER	NURSEIL	KA	18. TOTAL CORE RECOVERY FOR BORING 14 ft.						
. DEPTH DRI			NA An	19. \$1CM	ATURE OF	INSPECTOR				
ELEVATION			10 ft.	X CORE	SOX OR		REMARKS			
	ь	CEUCAD	(Description)	RECOV- ERY	SAMPLE NO.	(Orilling weatheri	time, water ng, etc., i	ioss, depth of f significant		
	=									
-	1=	•	Light red brown medulm to fine sand with scattered gravel			Sample 0 - 5	ft.			
	. =		CP				•	•		
	2 —									
	3_									
	.6									
	4 —		Light red brown sendy gravel 습은							
	.3=		Light red brown medium to fine sand		-					
.	5-	•, • • •	SP			Sample 4.3 -	5.7 ft.			
	6 -7-		Dark grey silty sand							
-	.6-		ć.V.			Sample 5.7 ·	10 ft.			
	7 .1-		Dark grey silty sand							
•			Dark grey clayey sand							
	*=									
	, _		·							
	=									
l	10-	• • • •								
	=									
	"-		SK.SC			Sample 10 - 1	14 ft.			
	12									
	=									
	13									
	75=		Grey sandy silt							
	14					Bottom of rec	covery			
	15									
	Ξ									
1	16-									
	_ =									
	17				,					
	18									
	Ξ									
	19									
	=									
			PROJECT Delaware River Comprehen	<u> </u>	L	J		HOLE NO.		

Appendix A Delaware Main Channel Sediment Data

A98

A99

ENG 2087

Hole No. DRY-22 DRILLING LOG DIVISION INSTALLATION SHEET SHEETS . PROJECT 10. SIZE AND TYPE OF BIT Vibracore Delaware River Comprehensive Study 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) 2. LOCATION (Coordinates or Station) 39 05 01.5" 75 11 03.94" 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY Suchart-Horn, Inc. : UNDISTURBED 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN : DISTURBED HOLE NO. (As shown on drawing title and file number) DRV-22 14. TOTAL NUMBER CORE BOXES 15. ELEVATION GROUND WATER 5. NAME OF DRILLER Ocean Survey, Inc. 16. DATE NOLE 6. DIRECTION OF HOLE

<u>YERTICAL</u> INCLINED DEG. FROM VERT. 17. ELEVATION TOP OF NOLE -48.9 ft. NGVD 7. THICKNESS OF OVERBURDEN MA. 18. TOTAL CORE RECOVERY FOR BORING 10.5 ft. 8. DEPTH DRILLED INTO ROCK MA 19. SIGNATURE OF INSPECTOR 9. TOTAL DEPTH OF HOLE 20 ft. ELEVATION | DEPTH | LEGEND CLASSIFICATION OF MATERIALS (Description) REMARKS (Dritting time, water loss, depth of seathering, etc., if significant Coarse to meduim gravel some Sample 0 - 1.0 ft. CP Black coarse to fine sandy gravel some cobble <0 Two jet retrys Dark grey clay, piece of wood at 3 feet ML Sample 1.6 to 5.3 ft. Pockets of dark medium brown 7.0 CH Sample 7.0 - 9.2 ft. Two retries with jetting, unable to penetrate gravel Bottom of recovery Delaware River Comprehensive Study HOLE NO

ENG , "AN", 2087

						Hol	e No. DRV-23					
DRILLIN	ig LOG	DIVI	BTOM		INSTALL	TION		SHEET	1 SHEETS			
PROJECT					10. SIZE AND TYPE OF SIT Vibracore							
			ive Study		11. DATU	FOR ELE	VATION SHOUN (IBM or MSL) ·			
2. LOCATION 39 03' 1		75 10'	Station) 7.61*		12. MANUFACTURER'S DESIGNATION OF DRILL MA							
3. DRILLING	B.	chart-No			13. TOTAL	NO. OF I	OVER- : DIS S TAKEN :	STURBED '	: UNDISTURBED			
and file	(As shown number)	en on dra	wing title	0RV-23				KA .				
5. NAME OF E	RILLER	Ocean	Survey, Inc	£.	15. ELEV		: \$7.	ARTED	COMPLETED			
6. DIRECTION YERT	OF HOLE	ICLIMED_	Di	EG. FROM VERT.	17. ELEV	ATION, TOP	OF NOLE	67/17/91 B ft. NGV0	: 07/17/91			
7. THICKNES	of OVE	RBURDEN	NA .		18. TOTAL	L CORE RE	COVERY FOR BOR		8 ft.			
B. DEPTH DR	ILLED IN	ro rock	KA				INSPECTOR					
9. TOTAL DE			15.5 ft.	0.000m or MATTER T	X CORE	l not on	1	REMARKS				
ELEVATION	DEPTH	LEGEND .		CATION OF MATERIALS scription)	RECOV- ERY	SAMPLE MO.	(Drilling weatheri	time, wate ng, etc., g	r loss, depth of if significant			
	=		Grey and	grey brown mixed fine								
	,_=	· .		SP .	1		Sample 0 - 3	.7 ft.				
	'=								•			
	2 -		Light gre	y fine sand	-		-					
	=						l					
	3 —							•				
	.7-				· ·	<u> </u>			•			
	\ \ =		100 EE	vel-brown, coerse to								
	5_		Varying t	o gravelly coerse			Sample 3.7	5.0 ft.				
	=		to fine	eend								
	4-							•				
	7	1				'	1					
									•			
	.1-	-I		me to medium sand SP			Sample 8.3 -	9.2 ft.				
	, -	4	Red brown	clay CL				49.45				
	.2-	•1	Grey silt	y sand SM-SC			Sample 9.2 -	13 ft.				
	10	:										
	1,1											
	"		Becoming	finer with depth		1						
	12_						ŀ					
					<u></u>		- Bottom of re	coverv				
1	13:0						1					
	1 :											
	"-:						-					
	15		1									
	16											
1		=	1									
	17-	=				1						
	18	=	1									
		=	1									
1	19	=	-									
		=										
			PROJECT	elaware River Compreh	and the Pri				HOLE NO DRV-23			

A106

Appendix A Delaware Main Channel Sediment Data

ENG . MAY 43 2087

ENG , FORM, 2087

						No	le No. DRV-24					
. DRILLIN	ie Loc	DIVI	SICH		INSTALL	MOLTA		SHEET	1	SHEETS		
. PROJECT					10. \$12E	AND TYPE	OF BIT	/ibracore				
Delawere	River Ca	prehens	ive Study		11. DATU	H FOR ELE	VATION SHOLM (1	IM or HSL)			
2. LOCATION 39 01' 4		atgs or 75 09	Station) 18.02*		12. MANUFACTURER'S DESIGNATION OF DRILL							
3. DRILLING	Bu	chart-llo	•		13. TOTAL NO. OF OVER- : DISTURBED : UNDISTURBED BURDEN SAMPLES TAKEN : :							
. HOLE NO. and file	(As show	n on dra	wing title	DRV-24	14. TOTA	L MUMBER	CORE BOXES I	и				
. KAME OF D	RILLER	Ocean	Survey, Inc		15. ELEV		UND WATER 1	LA LA TED	: COMP	LETED		
6. DIRECTION	OF NOLE	CL 1 MED	DE	G. FRON VERT.		ATION TOP	OF NOLE	7/17/91	: 07	/17/91		
7. THICKNESS			MA .				-47.1	ft. NGVD				
. DEPTH DRI	LLED INT	O ROCK	MA		-		COVERY FOR BOR!	ING 15.4	ft.			
. TOTAL DEP	TH OF HO	LE	19 ft.		17. 310	ATORE OF	INSPECTOR .					
ELEVATION	DEPTH	LEGENO	CLASSIFIC (Dec	ATION OF MATERIALS (cription)	X CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling t	REMARKS ime, water w, etc., i	loss, d f signif	epth of icant		
•	-	-		d	•	<u> </u>						
							· · · · ·					
	1		Hedium to	fine dark grey sand with some			Sample 0 - 3	ft.	,	,		
	=		anerts :	P	1		l					
	<u>-</u>											
	3 =											
	Ξ.		Light grey micacous.	medium to fine sand						į		
	4-			_ f								
	=											
	5 —	• • • •	with lo	cally coerse to fine	• • • •			• • • • •				
	, =		directs se	nd zones								
	•=											
	7											
İ	=								,			
	• -			SP			Sample 5 - 10	ft.				
, I	=			21"								
,	9 -											
	. 3											
·	10			• • • • • • • • • •								
1	11											
	.6	•										
- 1	12			m to fine send			Sample 11.6 -	13.6 ft.		Ì		
l]	,								
l	13—											
	16-	-	Grey brown	(tan?) to light grey			Sample 13.6 -	15.6 ft.		1		
Ī	14		sand, one	(tan?) to light grey se to fine gravelly cobble SP						İ		
	15		Light gra	medium to fine sand								
1	. :		Gravelly s									
	16						Bottom of rec	overy				
	17											
1	"=											
	18-											
	Ξ											
	19			•						İ		
			ļ									
			PROJECT			L	J		HOLE HO	J		

ENG , LAY 6, 2087

A114.

					IK .	ole No. DRY-25				
DRILLI	HE LOG	DIV	ISION	INSTALL	MOLTA		SHEET	1 SHEET		
PROJECT				10. SIZE AID TYPE OF BIT Vibracore						
Delawere	River Ca	aprehene	live Study	11. DATUM FOR ELEVATION SHOWN (YBM or MSL)						
LOCATION	(Coordin	etesoor	Station)	<u> </u>						
DRILLING	AGENCY			12. MANUFACTURER'S DESIGNATION OF DRILL						
NOLE NO			orn, Inc.	13. TOTA	L MO. OF EN SAMPLE	OVER- : DIS ES TAKEN :	TURBED	: UNDISTURBED		
and file	umper)	n on ora	wing title DRY-25	14. TOTA	L NUMBER	CORE BOXES 1	IA .			
NAME OF	DRILLER	Ocean	Survey, Inc.			XIND WATER I	А			
21000000				16. DATE	NOLE	: \$1/	RTED 17/17/91	: COMPLETED : 07/17/91		
DIRECTION YERT	ICAL IN	CL I WED_	DEG. FROM VERT.	17. ELEV	ATION TOP		ft. MGVD			
THICKNES			NA	18. TOTAL	CORF RE	COVERY FOR BORE		40		
DEPTH DR			M			INSPECTOR				
TOTAL BEI	DEPTH I	LEGEND	20 ft.	2 2225	l say as					
•	b	c	CLASSIFICATION OF MATERIALS (Description)	X CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling t	REWARKS ime, water g, etc., i	loss, depth of fightings		
	=									
	, =		Brown sand with some sile			Sample 0 - 5	40	,		
	- =		From sand with some silt coerse to fine sand, micacoous				16.			
	2 -		51	-		ł				
	3			1.						
	, =									
	.2-		Grey sitt clay SM-5C.							
	5		Brown send < 0							
	Ξ.		coerse to fine micaceous			Semple 5 - 7.	s ft.			
	6 :5-		Hedium to fine brown sand							
	_ =		· 5P							
- 1	7									
	8 .8-		Coerse to fine grey sand, quertz Gray fine sand, micaceous			Sample 7.8 - 1	In 4+			
	Ξ		5P			-				
;	9									
	=		Some 0.5 ft. clay lenses							
	10	• • •	Medium to fine erey send.		• • • •	Sample 10 - 15	ft.			
	11_		micaceous grey quartz thin tayers of fine sand					·		
	=		SP							
ļ	12-									
1										
	13									
	14_=									
	15		• • • • • • • • • • • • • • • • • • • •							
	.3. 8.		Coerse sand with gravel SP							
1	16		Medium to fine grey sand, quartz							
	17.7-		Grey coarse sand with gravel			Sample 16.5 -	17.5 ft.			
	.5		SP SP			2-mlo 47 5	20.45			
	18-		Silt, micaceous, dark grey			Sample 17.5 -	eu II.			
	=		ML							
ļ	19									
ł	=									

ENG , "AN", 2087

Appendix A Delaware Main Channel Sediment Data

Appendix A Delaware Main Channel Sediment Data

ENG , FORM; 2087

A121

Hale No. DRY-26

							e No. DRY-26	1			
DRILLIM	E LOG	BIAIS	ION		INSTALLA	T104		SHEET	SHE	ET\$	
PROJECT					10. SIZE			Vibracore			
Delaware !					11. DATUM	FOR ELEV	ATION SHOWN (TBM or MSL)			
LOCATION 38 57' 7	CATION (Coordinates of Station) 2 57: 7.9s							**			
	Bu				13. TOTAL NO. OF OVER- : DISTURBED : UNDISTURBED BURDEN SAMPLES TAKEN : : 14. TOTAL NUMBER CORE BOXES NA						
and file	(As show number)	n on draw	ving title	DRV-26				KA .	· ·	_	
			•	e.	15. ELEVA			ARTED	COMPLETED	_	
. DIRECTION	OF NOLE				16. DATE	TION TOP	OF HOLE	07/16/91	07/16/91	-	
YERTI	CAL IN	CL I NED_		EG. PROM VERT.			*40.	3 ft. MGVD	10		
						TURE OF 1	OVERY FOR BOI	(186. 10 1		_	
					19. \$160	TURE OF I	Har Et Ion				
ELEVATION	DEPTH	LEGENO	CLASSIFI (De	scription)	% CORE RECOV- ERY	SOX OR SAMPLE NO.	(Dritting weather	REMARKS time, water ing, etc., i	loss, depth of	•	
•	b	e	Scen and		•						
	=		"", ""								
			Gray sand	with scattered shells			Sample 0 -	5.0 ft.			
	. =		Sittler 4	5P							
	2 —										
	3 _										
	=			•	1						
	4-		1				1				
			1								
•	5 —							•			
	ا ، ا		Grey sen	d							
	• =		5			1					
	7 -1										
	''3		Red brow	n send, interbedded							
				3		·					
	.3		Red brow	n sand			1				
	" =			9							
	10							40.45			
1	"			· SP·····			Sample 8.3	- 10 ft.			
	11-			•	1						
•	12-	-	Grey sil	It ML							
_	13	=	1				1				
-	.3	<u> </u>	Red sil	E MI.	+	+	- Sample 12	- 14.6 ft.			
	14-	=		14.00 j			1				
	.6	<u> </u>	Red bro	un silty sand	-	+	Sample 14.	6 - 16 ft.			
	15		1	5M.EC			1				
	14	=			-	-	- Bottom of	recovery			
		=									
1	17-	=							•		
1		=					1				
-	18-	=									
1		=	- [1				•	
	19-	=									
1	- 1	-	- 1		1	i	1				

Appendix A Delaware Main Channel Sediment Data

A124

Note No. DRV-27

					MO	No. DRV-27					
DRILLIN	G LOG	DIVI	STON	INSTALL	ATION	1	SHEETS				
PROJECT				-	AND TYPE		Ibrecore				
Delawore				11. DATUM FOR ELEVATION SHOUM (TIM or MSL)							
2. LOCATION 38 55 3		75 06°	Etation) 03.83"	12. MANUFACTURER'S DESIGNATION OF DRILL							
. DRILLING	8u	chart-lio		13. TOTAL	13. TOTAL NO. OF OVER- : DISTURBED : UNDISTURBED BURDEN SAMPLES TAKEN : :						
and file	(As show number)	n on dra	uing title DRY-27			CORE BOXES N					
. NAME OF D	RILLER	Ocean	Survey, Inc.		15. ELEVATION GROUND WATER NA 16. DATE NOLE : STARTED : COMPLETED						
6. DIRECTION VERTI		ICL I NED	DEG. FROM VERT.	17. ELEV	ATION TOP	OF HOLE	6/14/91	: 06/14			
7. THICKNESS		BURDEN	NA .	18 7074	CORS PE	-46.3 COVERY FOR BORE	ft. NGVD	7/3.9 ft.			
B. DEPTH DRI	LLED INT	O ROCK	NA .			INSPECTOR	12.1	7017 161			
. TOTAL DEP	TH OF HO	XE	15 ft.								
ELEVATION	DEPTH	FÉCEND	CLASSIFICATION OF MATERIALS (Description)	X CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling t	g, etc., i	loss, depi	th of		
•	b	c	cp	•	-	One jet retry					
	=		Brown medium to fine sand			Sample 08					
. 1	1 :==		Interbedded brown sand with								
. 1	.7-		Grey sendy with some shells		-	Sample 1.8 -	5.0 ft.				
	2 —		SP		-						
	3_		3								
	-		· ·	· .							
	ه ـ										
	Ē										
	5 —								· · · ·		
	Ξ		,								
	6 —										
	-		1		1						
	7 —		Grey sandy silt with shells		}	Sample 7.2 -	10 ft.				
	. =		SM-SC						,		
1	8 —										
	9 .8-		Grey clay silt to silty clay		 	80° dips					
	-		Grey clay silt to silty clay firm with shells					•			
	10										
	.6-										
	11-		Interbedded above and below								
	.3-	<u> </u>	Brown silty send	+-		Sample 11.3 -	15 ft.				
1	12-		SP								
	. :										
	13										
	14		'								
	=										
	15						2 2 2				
	=		White sand fine, loose			Sample 15 - 1	16.5 ft.				
	16		_								
	.5		Walley have designed dis-		ļ	Sample 16.4	. 18 60				
	17—		Yellow brown fine sand firm some interbedded white			3.5mp.te 10.4	io ft.				
			SP								
	18-				 	- Bottom of red	COVERY				
		:									
	19-										

Appendix A Delaware Main Channel Sediment Data

A129

A130

ENG , MAY 63 2087

A132

						Hole No. DRY-28							
DRILLI	NG LOG	PIVI	EIDE			INSTALL	ATION		SHEET	1	SHEETS		
PROJECT						10. SIZE AND TYPE OF SIT Vibracore							
Delaware	River Con	prehens	ive Study			15. DATUM FOR ELEVATION SHOUM (TEM or MSL)							
LOGATION	(Coording	tge or	Station)										
. DRILLING		, w.				12. NAMUFACTURER'S DESIGNATION OF DRILL VIDENCORE							
	Buc		rn, Inc.		٠	13. TOTAL	L NO. OF EN SAMPLE	OVER- DI	BTURSED	: UNDISTL	RBED		
and file	(At shown number)	on dra	wing title	DRV-28		14. TOTA	MUNER	CORE BOXES	KA.				
MANE OF	RILLER	Ocean	Survey, Inc			15. ELEV	ATION GRO	UND WATER	LA.				
						16. DATE	NOLE		URTED /15/91	: COMPLET	ED 1		
. DIRECTIO	OF HOLE	LINED_	DE:	G. FROM VERT.		17. ELEV	ATION TOP	OF HOLE					
THICKNES	of OVERB	URDEN	NA			18 7074	MAE OF	COVERY FOR SOR	ft. NGVD				
DEPTH DR			KA					INSPECTOR	10.5	11.	· ·		
TOTAL DE			18 ft.										
LEVATION	DEPTN	LEGEND	CLASSIFICA (Desc	ATION OF MATER cription)	IALS	X CORE RECOV- ERY	BOX OR SAMPLE NO.	(Drilling) weatherin	REMARKS time, water 19, etc., it	toss, dept f significa	h of nt		
	-		Grey silt (-	•		•		-		
	. 3												
	'=												
	2 =		,					Sample 1.0 to	S.Q fe.				
	=		}		.								
	3 —	İ											
	=												
	4												
	5 = .												
	=						••••	• • • • • •			• • • •		
	ه ـ=				į			Sample 5 - 10	f.t				
Ì	=							•					
	7 -												
	. =				1								
	-												
	9												
	=						İ						
	10	• • •		• • • • • •	• • •	• • • •	• • • •			• • • • •			
	,,=						1						
	"=				-	1	ļ	Sample 10 - 10	o.5 ft.				
}	12							•					
	=						}						
	13												
	. =						İ						
	-												
ĺ	15	ļ											
	=	ļ											
	16												
1	<u>, i</u> -				-			Bottom of rec	overy				
	17—				- 1								
	18					- 1	ŀ						
.	=												
	19					1							
ı	=												
			PROJECT	ware River Con	1					HOLE NO.28			

A135

Appendix A Delaware Main Channel Sediment Data

						le No. DRV-29			
DRILLIN	IG LOG	DIVI	ETON .	INSTAL	ATION		SHEET	1 51	EETS
PROJECT		-1			AND TYPE	J. 551	/ibracore		
Delawere				11. DAT	IN FOR ELE	VATION SHOWN (TIM or MSL)		
LOGATION 38 51'		75°03	Station) 48.42*	· · · · · · · · · · · · · · · · · · ·			KA.		
	Bu	chart-No		13. TOT	AL NO. OF O		STURBED	: UNDISTURB	
. NOLE NO. and file	(As show number)	n on dra	uing title DRV-2				KA		
. NAME OF E	RILLER	Ocean	Survey, Inc.		VATION GRO		ARTED	: COMPLETED	
. DIRECTIO	OF HOLE	er 1 1 1 C C	DEG. FROM VE	16. DAT	VATION TOP	OF NOLE	06/14/91	: 06/14/9	
THICKNES	CAL IN		MA DEG. FROM TE			-49.	D ft. NGVD	40	
. DEPTH DR			MA .		AL CORE RE	COVERY FOR BOR	ING 19.6	11.	
. TOTAL DE	TH OF HO	LE .	20 ft	17. 810	MIGHE OF				
ELEVATION	DEPTH	LEGEND	CLASSIFICATION OF M (Description)	ATERIALS % CORE RECOV- ERY	BOX OR SAMPLE NO.	(Dritting weatheri	REWARKS time, water ng, etc., i	ioss, depth (f significant	of
	-		Interbedded brown or silty sand with fee	d block		Sample 0 - 1	.8 ft.	-0	
			SILTY SAID WITH THE	Shects	1				
	' =								
	2 .8-		Black sand with shel	ile	+	Sample 1.9 -	5.0 ft.		
	=								
	3 —								
	=					1			
	4 =								
	5 =				. c'				
	7 -	- 1	Trace of clay - blac shells	ck send with	1				
	6-		1						
			1						
	7 -		1.						
	.7-		Rome carely all to ville	th fee	-	Sample 7.7 -	10 ft.		
	•=		Brown sandy silt wi shells						
	, =			1		1			
	Ξ								
	10			• • • • • • • • • • • • • • • • • • • •					• •
	.4					1			
	11-		Black silty, sand wi	sh	,	Sample 10.4	- 15 ft/		
	12		Black silty sand yi concentrations of 10.5, 12.7, 14.0	snett at					
	13—			1		1			
	. =								
	14-								
	15				.				
	=		Slack sand with she concentrations at	15.8 through					
	16						20.40		
		1	Scattered shells be	elow 16.2		Sample 15 -	eu it.		
	17-			1					
	=			1					
l	18-								
ſ	19	:		1					
	=	1		Í					
L		1	PROJECT	ver Comprehensive \$1				HOLE NO	

ENG , FORM, 2087

ENG , FORM, 2087

A141

ENG , MAY 43 2087

RELEVINGE R REEDY POINT ANCHORAGE RECOY ISLAND RANGE STATE ST							BORING/TEST PIT LOG	,
SOTION OF PIT, -59.7	ROJECT DELAN	VARE	Æ	2	RE	EDY A	POINT ANCHORAGE NO. 43	41
BORING TOWN 463 LOCATION Star 293+640 790'W & DATE MADE 1/16/63 BY. KOSTURKO PLANT USED DECRICK BOAT 37 MATERIALS DESCRIPTION Soy Soy Soy Soy Soy Soy Soy So		R	EED	y I	75/1	AND I	RANGE U. KOSTURKO DATI	116/6
BOTTOM SOUNDING -50.7 Light grey, soft silt and brown, coarse, sand & greyish med. fine gravel (-50.7 to -54.7) BOTTOM OF PIT, -54.7		Drilling/Excevating Time	Type penetration	Semple Ne.	Blows/ft, on sampler -	Gere berrel run ne. and percent care recevery.	LOCATION Sta. 243 +640 790'W &	
	50. <u>7</u> 54.7	21.13	ell bucket				BOTTOM SOUNDING -50.7 Light grey, soft silt and brown, coarse, sand & greyish med. fine gravel (-50.7 to-54.7) BOTTOM OF PIT, -54.7	

 $P(\chi^{(k)}, \frac{\partial f}{\partial x})_{k} = \frac{1}{4 \pi^2 \delta^2 \sum_{k=1}^{k} f} \, .$

	G
PROJECT DELAWARE R REEDY PT. ANCHORAGE	No. 43 PASE 49
REEDY ISIAND PANGE	J. KOSTURES DATE /22/ 43
LOCATION 570. 2414 680	STUREO
Water Bottom 5 Sp. Coorse gra Sp. Coorse gra Dark gray, ma yery fine san (49.4 to .52.5 Bottom 5 Dank gray, fin Saune layers matter. (6	ounding - 49.0 velon river bed d. firm silt with d.
ADP FORM OQ (3-19)	· · /

happost, as he

DEL AW						ED	Y PT. ANCHOLAGE NO. 43	01 45 T1 /n/63
<i>o</i> _	Drilling/Exceveting Time	Type penetration	Semple No.	Blows/ft, on sampler -	Core berrei run ne.	Grephic legend	LOCATION STA. 239 4 70 0 700'W 4 DATE MADE LITTLE BY	
40.6 41.1	7 mins.	Classhell bucket	1			2	BOTTOM SOUNDING - 40.6 Dark gray layered 51H With some Coarse Sand.	
48.4		C/400	2			GM.	(-40.6 to 48.4) BOTTOM OF PIT, -48.4 Dark grey layered silt and gray coarse sand & gravel. (Below - 48.4)	
							93430 E -397,020 N	
		L						

1

1. 1.80.

						E	ORING/TEST PIT LOG				
PROJECT	D	ela	ەس	re	Ri	۷۵۲	, Phila to Sea	FIELD BOOK	/3	PAGE	1
Aq	vif	er	51	hud	ie	S –	New Cattle Lange	R.GL		DATE 4-	5-65
	Drilling/Exceveting Time	Type penetreties	Semple No.	Blows/ft, on semply:	Core berrel run ne.	Graphic legand	LOCATION Sto: 233+680 48 DATE MADE 3-22-65 PLANT USED Derrick boat #34 MATERIALS DESCRIPTION	O'Wof &			
-40 -						~	Water -41	.5' .			
-45 -			2			SM and OL	Sitty finetomed Storg. clayey SILT, so (-41.5 to - 45.2) Predominantly of youthin layers of gr	ome org.	matte	er, sof	17y +
-50 -	budet						Getting firmer u	y vifine : Idepth	· SAND.		
-55 -	15 Minutes	cy clamshell									
-60-		3	3				Bottomof TP	- 60.8'			
							412120 N 92190 E				
DP FORM 1 I DE										ł	

Appendix A Delaware Main Channel Sediment Data

 $_{\mathrm{GSC}_{k+1}} \to \mathbb{S}_{k_{k}}(\mathbb{S}_{k})$

JECT De	lau	iara	: R	ive	r -	_	hila to Sea PIELD BOOK 73 PAGE /
	_	_	_	_	_	_	New Cartle Range BY R.L. DATE 4-5-65
	Drilling/Excevating Time	Type penetration	Sample No.	Blows/ft, on sampler den	Cere berrel run no.	Graphic legand	BORING TEST PIT NO. DSP2 LOCATION Sta. 231+ 900 530 Wof & DATE MADE 3-22-65 SY Cof E PLANT USED DB *37 MATERIALS DESCRIPTION
35 —						~	Water -37.2
40 —			1		ľ	SM and DL	Silty finetomed SAND stratified */v.soft clk-gry organic silt. (37.2 - 47.5)
	Minut	14ty clomshell bucket	2		. 0)L	Interlayered gry vifine silty sand & dk-gry org. silty CLAY, slightly firm & plastic Sandy layers vithin. Getting firmer "Idepth. (-47.6. 60.2)
60 —		3	3				Bo Hom of TP-60.21 403.945 11 71.20 E

5-102-36888889 C

	\mathcal{D}_{ϵ}							hila to Sea	FIELD BOOK 73	PAGE 2
LOCATION LOCATION DATE MADE 3.22-65 V COFE PLANT USED DB # 3 ^M Water -39.6 Interbedded org. clayey SILT, dk-gry incolor and "I fine sand, so me org. matter V. soft. (39.6-44.9') Dk-gry silty org. CLAY, fairly firm interbedded "I v. thin layers of gry v. fine sand (44.9'-60.1) Bottom of TP-60.1' -35,589 M		A9.	vi f	er.	510	di	es	-New Zaille	BY R.L	DATE 4-5-65
Interbedded org. clayey SILT, dk-gry in color and "fine sand, so me org. matter V. soft. OL (39.6'- 44.9') Dk-gry silty org. CLAY, fairly firm interbedded "/ v. thin layers of gry v. fine sand (44.9'- 60.1) Bottom of TP-60.1' Bottom of TP-60.1'		Drilling/Exceveling Time	Type penetration	Sample No.	Slove/ft, on sampler -	Care berrei run na.	Graphic legend	LOCATION Sta. 229+840 46 DATE MADE 3-22-65 BY Coff	0'Wof€	
	40 -		7/4 cy clamshell	1			and OL	Interbedded org. c. Wfine sand, Some (39.6- 44.) Dk-gry silty org. (interbedded Writhin (44.9'- 6) Bottom of TP-6	org. matter g') ELAV, fairly layers of gr	Visoft.

Appendix A Delaware Main Channel Sediment Data

						1	BORING/TEST PIT LOG
PROJECT	ele	ıwa	rc	Ri	vei		- Philo to Sea FIELD BOOK 73 PAGE 2
1	len	Z C	ast	le	L	Naja	
		Type penetration	Sample No.	Blows/ft, en sampler	Care barrel run na.	Graphic logand	LOCATION Sta. 228+960 520'E & DATE MADE 3-23-65 Cof E PLANT USED DB # 37 MATERIALS DESCRIPTION
37						~	Water - 37.6'
40		" bucket	1			SP.	Brn med to coarse SAND (veneer) underlain by org silty CLAY "Ithin layers of rfine gry sand.
45 -	55 Minutes	cy clainshell				DL	
<i>5</i> 0 -	3		2		9	P	Same Wocc sand layers
							21638. 1 38
F FORM 1104	(3-	19)					

		•				E	ORING/TEST PIT LOG			
POJECT D	elau	var	e 7	Pive	er	T	hila to Sea	PIELD BOO	× 73	PAGE 3
A	gui	fer	. s	tu	dice	5		EY R.L		DATE 4-5-65
	Drilling/Exceveting Time	Type penetreties	Sample No.	Blows/ft, se sempler	Core berrel run ne,	Graphic legend	LOCATION Sta. 219+800 610 DATE MADE 3-23-65 Coff PLANT USED DB # 37 MATERIALS DESCRIPTION	o'woft	Wate	r 44°F
37 –	2		1			~	Water -37.2			
40 -	35Min.		2			3P	Sand & GRAVEL ,	Sub rou	nded	upto
							org. dk-gry silt Bottom of TP-40		cs . S	om e
							4 458° M 56 73 5			
8M 110of										

45-1247-1246-1446-1

PROJECT WILMINGTON HARBOR South FIELD BOOK PAGE 1 OF 1 Pelaware River (Phila to Sea BY DLT/SAK DATE 12-15-16	FIELD BOOK PAGE	BORING/TEST PIT LOG														
DATE	ny hare															
	DATE)el	I					
BORING STEST PIT NO.44 WAS STORY OF THE STEED OF STEED O	ORING TEST PIT NO.444 DFP ION 1, 219+000 200'W of C MADE BY 13-86 COE USED TITAN	legend	rum nd. mt cofe fecovery.	meser w/ in.dep		W - 1 5 8										
MATERIALS DESCRIPTION Semple No. Anthropic Record Care burned or the posterior of the pos	Water	~~					minutes			CAT	COE OF.	AC HOO				
-45.6 -46.4 -46.4 -47.4 -49.7 -50.7 Brn, Silty, Sondy GRAVELW/Occ Cibble (45.6546.4) ML Gry brn Clayey SILT. Stiff. Difficult digging (-46.46-47.4) Brn. C-F sandy GRAVEL. Predominately Ccar W/sore Cobbles (-47.4650.7) Bottom of Test P:t-50.7	cn Clayey SILT. Stiff. Difficult digging (-46,46-47.4) C-F sandy GKHVEL. Predominately Coarse me Cobbles (-47.4650.7)	ML	1		3	Clowshell Byc Ket	44	6.4 19.7	4	- 4						

						E	ORING/TEST PIT LOG
PROJECT W/	LM	IN	6	To	N	HI	ARBOK SOUTH FIELD BOOK PAGE 10F1
DELAWA							(Phila to Sea) BY DLT/SAK 12-15-86
DELAWARE R. ATUM (FT)	Drilling/Excovating Time	Type penetration	Sample No.	Blows/ft, on sampler -	Core berrel run no.	Graphic legend	BORING ETEST PIT NO.45 DFP LOCATION Sta. 2/9+000 200 Ecf & DATE MADE /2-13-86 COE PLANT USED TITAN MATERIALS DESCRIPTION
COE DELHY BATUM 9	minutes						Water
- 46.6- -52.0-		Claushell Bucket	2			- 1	Brn. C-F GRAVEL, predominately Ecorse w/some sand ± Tr: Sitt. DIC Cobble to 1/2 Becomes sankier widepith and increase in Cobbles; 'silt decoming modely brown (46.6452.0) Brn 711-F SAND w/some gravel and few cobbles and Boulder, (52.0655.1) Bettom of Test P.t-55.1

			·B	BORING/TEST PIT LOG		
PROJECT	1/MIX	14To	ON HI	4BOR SOUTH	FIELD BOOK	PAGE OF 1
Delawa	re R	iver	(PI	ila to Sea)	DLT/SAK	DATE/2-15-8
E CELHWART R. CATUM (FT)	Drilling/Excavating Time Type penetration	Somple No.	Core borrel run no. and percent core recovery. Grephic legend	LOCATION Sta. 2171000 2 DATE MADE /Z-/3-86 CC PLANT USED T/1 MATERIALS DESCRIPT	OO'W of &	
-44.8- -50.4-	Clomshell Bkt.	2		Brn. C-F GRAVEL some Cobbles Becomes sandier wy moted (-44.8 to 49.4) Vellow brn. clayey Silt micraceous slayey Silt Bottom of Test Note: Difficult Diggin	W/some sand /clopth and occ. (i) LT w/pkts of (-49.46-56	mod gry 0,4)

	-					В	ORING/TEST PIT LOG
PROJECT Wil	mi.	119	to	1 t.	lhr	. '	South FIELD BOOK PAGE
Delawa	arc	4	2:	icc	(1	mig Lo Sea) BY SAK/DLT DATE 12-13-86
COE DELAWARE K. DATUM (FT)	Driffing/Excavating Time	Type penetration	Sample Ne.	Blows/ft, on sampler - 1b.hammer w/ in.drap	Core barrel run na.	Graphic legend	BORING TEST PIT NO.36 LOCATION STA: 2/2+000 400 E6f DATE MADE /2-1/-86 COE PLANT USED TITAN MATERIALS DESCRIPTION
- 45.5 - 48.7 - 5.5 - 55.0 - 56.5	55 15 25 minuted	Clamsnell bucket 1		2 3 4	-	>> SP 子 3P	Water - SAND = Gravel c-f., several cobbles (-45.5 ±0 45.5) Peat, silty, clayer (46.5 ±0 -4317, SAND.c-f, med.gry, "I some cobbles (-48.7'+0-50.1) SAND, silty, c-f, ra cobbles & boulder (50.1+0-51.5) SAND, silty m-f. yel. brn "I are proved
NADP FORM LIG	4 /	3-10			=		

PROJECT	nin	g d	วท	НИ	ır	<u> </u>	outh. FIELD BOOK PAGE 10F1
Delaujo	ire	1) iv	er		(P	hila to sea SY SAK/OLT DATE 12-15-86
COE DELAWARE R. DATUM (FT)	Orilling/Excavating Time	T	Sample Ne.	on sempler -	Cere berrei run ne.	pu	LOCATION Sta: 2/0+500 400 E of & DATE MADE /2-11-86 BY CDE PLANT USED Titan MATERIALS DESCRIPTION
0.0 45.3	minutes					~	Water -
		Buckets	1			GP	silly, sandy GRAVEL, c.f., dh-gray (-45.3 to -50.0)
-5 3 .0 -	43	Clarishell 1	2	,		SP	5AND, c-f, gravelly, med. gray (-50.0 to - 55.7)
							Bottom of Teat Pit -55.7

NADP FORM 1104 (3-19)

		Е	BORING/TEST PIT LOG		
PROJECT WIL	MINGTO	N HA	KBOR (South)	FIELD BOOK	PAGE OF
Delawa	ie Riv	er (P	Phila to Sea)	SAK-/DLT	DATE 12-15-86
COE DE! AWAPT R. DATOM (FT)	Drilling/Excavating Time Type penetration Sample No.	Blows/ft on sampler - This man w/ in dray Core burse from no. and percent care recovery. Graphic legend	LOCATION Sta 209+060 C DATE MADE /2-/c-86 BY PLANT USED TIT. MATERIALS DESCRIPTI	HSO'ECHO E	
,			Water	~	
	Clanshel Bucket	GP GM	Bra Sandy (TANE Cobble (-45.6 +0-1) Rote: Becomes sand (-50.5 to-5)	50.5) dierw/depth	
- 55.7	2 0 0	SP	Red gry granzily Bottom of D	C-5 SAND	5.7
P FORM 1104					

							1	BORING/TEST PIT LOG
PROJE		/1 l n	~11	~ ~	to,	~ l	ta.	and bon South FIELD BOOK PAGE
Dela	nax	e	RI	101		Phi	la	adelphia to Sea DLT/SAK 12-16-86
COE LELAWARE E		Γ	ing Time	56	Blows/ft. on compler -	n nd.		BORING TEST PIT NO. 3/DFP LOCATION STA 205+000/200 E DATE MADE
			# 145					
	- 44,	30	Bucket	1		C		Soft, grey blown, organic SILT w/ sand partings & some black organics. (-44.4 to-51.1)
	- 51.1 - 57.5	1 hrand 3	Clamshell [3		G	P	C-f SAND & C-f GRAVEL w/th. black silt (-51.1 to-57.5) Note: Becomes sandier w/dep+h C-f SAND, tr silt, scattered pieces of gr.
	- 2 (.)							Bottom of Trest Pit-57.5
FORM P 60	1104	12	10)					

				BORING/TEST PIT LOG	7
ROJECT W.	lmin	gtor	n Han	bon South FIELD BOOK PAGE OF 1	1
klaware	River	4- P	hilade	phia to Sea BY DLT/SAK DATE 12-16-86	1
COE LE. AVARE R. LATHM (FT)	Drilling/Excovating Time		Core barrel two no.	LOCATION STA 200+000/200 E DATE MADE 12- G-8G TEST PIT NO.2G DFP COCATION C	
	mimu tea			Wat-2,1-	·
- 42.8	27 1 Bucket	1	ML	Ox grey, soft, clayer SILT (-42.8 +0-55.4)	्रे स ्टेडन्ड.
- 55.4	Clam shell	2	mL.	Dkgney, sott, clayey SILT. Bottom of Test Pit-55.4	
·					

						В	ORING/TEST PIT LOG		
PROJECT Dela	swe	are	R	ve	_	- P	hila to Sea	D 800K 73	PAGE 4
De						- :	5Y 7	R.L	DATE 4-5-65
	Drilling/Excevating Time	Type penetration		Blows/ft, on semplor (b.hommer w/ in.drop	Core barrel run na.	Graphic legend	LOCATION Sta: 194480 DATE MADE 3-24-65 PLANT USED DB #34 MATERIALS DESCRIPTION	E .	- 46°F
38 -				·		بد	Water - 37.9'		
40 _			-	·			·		
45 <u>-</u> 50 -	30 Minutes	3/4 cy clomshell bucket.	2			OL	Dk-gry org SILT very black layers of silt i cla (37.9 - 42.5) Dk-gry silty clay "/v. v fine sand (42.5'- 60.9')	thin layers	Trof sand
							Bottom of TP-60.9"	: o	<i>V</i>

							1	ORING/TEST PIT LOG
PROJECT	Wi	1~		~ /·	- +		_	FIELD BOOK PAGE
bland	منه	2 F	311	1.2.	<u>ረ -</u>	PL	. 1	delphia to Sea BY DLT/SAK DATE 12-16-86
COE DELAWARE K. DATIIM (FT)		Drilling/Excavating Time	i		lor in dram			BORING TEST PIT NO.25 DFP LOCATION STA 195+000/200'E DATE MADE 12-G-86 COE PLANT USED TITAN MATERIALS DESCRIPTION
	0.0	٥	-	- 3	-	0	9	MA. BRIACO DESCRIPTION
								Nater
-4	4.5	·						
·			Bucket	.1.			CL	DK grey 211ty CLAY, med 2tiff. (-44.5 to-55.2)
		σ	Clamshell B					
— 55 -	2.4							Bottom of Test Pit-55.2

				E	BORING/TEST PIT LOG
PROJECT W. I.	mIn	~g t	ion	Ho	in bon South FIELD BOOK FAGE 1 OF 1
					delphia to Sea BY DLT/SAK PATE
DE GRUMARKE R. UA RIIA (FT)	Jeiling/Excevaring : ime	41100	Blows/ff, an sampler - lb.hemmer w/ in.drep Core berrel run no.	/ecovery,	LOCATION STA 190+000/200E DATE MADE BY COS
- 46.5 - 56.6	Clamskell Bucket	1		ML	DK gney silty CLAY n/occ fine sand layers up to 2" +hk (-46.5 to-56.6) Bottom of Test Pit-56.6
AND FORM					

entago quinte.

						I	BORING/TEST PIT LOG			
							Phila to Sea	FIELD 800	73	PAGE 4
Ag	rvifa	r	51	vdi	C 5		·	FY R.L		DATE 4-5-65
	Drilling/Exceveting Time	Type penetration	Semple No.	Blews/ft, en sempler -	Care berrel run na.	Grephic legend	LOCATION STO: 172+030 270' DATE MADE 3/29/65 BY COPE PLANT USED DB # 37 MATERIALS DESCRIPTI	W of &	Wate	r 45°F
· 35 -						~ ~	Water - 35.21			
40 -							Dk-gry org. Elaye Gelling firmer @	y SILT 40.0'	v. 30f	+ .
45 -		10 L	2			OL.	Some but firmer	u/ Hoin	laver	P. D.
50 -	1.	mshell bucke					Sand		rager	· or rine
55-	. 1 1	010								
60-	1	3	1							
							Bottom - 60.8	20 y 20 y		

AND SOUTH STORY

ROJECT						ORING/TEST PIT LOG	I mint a norm	ኢ
ROJECT Sea		_		_			PIELD BOOK TP 20	PAGE
Sta. 1.	19	- 9	50		450'	W. E Bellevue	Rearder.	DATE 1/19/62
0 -	Drilling/Excevating Time	Type penetration	Semple No.	Blows/ft, an accept m. ton	Core berrel run ne. and percent core recevery. Graphic legand	DATE MADE BY Hird	1431 o'w. &	
39.4- 39.8-	Mins.	Clamshell bucket	7			River bottom, -3 Reddish sandy G Some indurated piece gravel rounded; so cobbles and occas small boulder. (38 Bottom of hole, -	RAVEL; ome siona/ 0.4-44.7)	
						112240 E 175900 N		
						7/37()() /V -		
		1		ı	\perp			✓

ECT Je,	5			. 2	÷	Ĵ.	7	PIELD BOOK	PAGE	7
Sta.					_			BY Deprisi	DATE / /22/62] .
	Drilling/Excavating Time	Type penetration	Semple No.	Blews/ft, on sompler -	Core berrel run ns. and percent core recevery.	20	Sto. 146+000 45	37		
39.3 - 40:8 -	Hr. OS Mins.	clamshell bucket	,				Water River bottom,- Gray SAND & GRAVEL Sandy GRAVEL with and small boulde	L. (39.3-40.8)		
45.0-		0/4	2)	and small boulde reddish silt and c ctay seam @ 42.6 (40.8 - 45.0 Bottom of hole,	ers; some clay. Small ()		· · · · · · · · · · · · · · · · · · ·
e de la constante de la consta							·			
							114527 E 47-607 N			·
ļ							•			

Delaware Pres	PIELD BOOK 73 PAGE 25
	BY P.G.L. DATE 6-12-65
E .E Tocariou	TEST MT NO. DRP-12 Coft 34
Wate	r-41.2°
5 1 Sandy grav	rel W/boulders 12 x 2 x 3" " and some cobbles.
No fresh bro	tak noticed on boulders
11876= E 47270= 1/	

NADP FORM 1 SEP 60

1104 (3-19)

TP 282

JECT D							ORING/TEST PIT LOG			
De		_				- F	Phila 10 Sea	FIELD BOO	73	PAGE 8
Ag	vife	۲ ۹	S+\) cl i	es			BY R.L	-	DATE 4-5-6
	Drilling/Excevating Time	Type penetration	Sample No.	Slews/ft, an sampler Ib.hammer w/ in.desp	Care barrel run no.	Graphic legand	LOCATION STA: 76+2/0 500 DATE MADE 4-1-65 PLANT USED DB#34 MATERIALS DESCRIPTION	wofe.	Wat	er 46°F
41 _						~	Water -47.8			
50 —		buchet	1			SM OL	Brn i dk. gry silty Dk. gry silty org CL Within layers of fine s	SAND, S Ay, plas	omesn hc, n	nail gravel ter beciden
55 -	30 Minutes	14 . y. clam x	2				Same hat mace can			
~ 7	1	7	1			1	Bottom of TP- 60		<u>5</u>	
							30 4 65 6 N	,		
DRM 1104	(3-1						·			,

A171

						E	BORING/TEST PIT LOG			
OJECT \mathcal{D}_{e}	slad	val	e i	Piv	-	- 7	Phila to Sea	FIELD BOOK	73.	PAGE 8
								BY R.L		DATE 4-3-65
	Drilling/Excavating Time		Somple Ne.	Blows/ft, an sampler -	Core berrei run no.		LOCATION Sta: 68+880 2902 BATE HADE 4-2-65 COPE PLANT USED DB#37 MATERIALS DESCRIPTION	EORE	Wate	r 46°F
40_						\ \	Water - 41.6	,		
45 -	ž	*	-			OL SM	Gry siit; fine SAND, org. clayey SILT (41.6'-		d läye	ers of
50 <u>-</u>	\$	clumshell broke	2			ウレ	Gry silty org CLAS ded Wilt gry v. fine Ind layers of CLA	y, fairly SAND (2)	stiff	', interbed-
55 ~	45 Minutes	3/4 cy clam	3		<u> </u>	SP	Ind layers of cla Sand, fine to coa (51.4-5	" 1/2 " this rse, tro 3.0")	of gra	1480-51.4 avel
60			4			41: 2+	Brn sandy SILT Wsome	e peat in	otten w	v oou, soft
							·	Burney C		
FORM LION			<u>_</u>							

A172

BORING/TEST PIT LOG								
lau	vari	9	Riv	er		Phila to Sea	FIELD BOOK 73	PAGE 9
		_		_	_		BY R.L.	DATE 4-5-65
Drilling/Exceveling Time	Type penetration	Sample Ne.	Blows/ft, on sampler in. deep	Core barrel run no. and percent core recevery.	Grephic legend	LOCATION Sta: 50+230 3/0 DATE MADE 4-2-65 COPI PLANT USED DB*37	WOFE W	nler 46°F
					\	Water -47.8	3 <i>'</i>	
Minutes		2			OL GP	Gry org. silty CLAY bedded "I gry fine s (47.8'- 4 Gravel, sandy up subrounded, 100se	plastic, this and fairly 9.3') to the "suba	nly inter- firm ingular to +
30		3				Sand fine to v. coors Bottom of TP- 5	4.8'	`
	Time	OMitutes Dilling/Exceveling Time Type penetration	Drilling/Exceveling Time IS Type penetralien Sample Ne.	15 Type penetration 15 Typ	SO Minutes Type penetration Type penetration Type penetration Sample No. Blows/ft, an eampler of the control of the contr	Core berreit run ne.	Aguifer Studies BORING TEST P LOCATION Sta: 50+230 310 DATE MADE 4-2-65 COPE PLANT USED DB*371 MATERIALS DESCRIPTI OL Gry org. silty CLAY ibedded "Igry fine s (47.8'-4 GP Gravel, Sandy up subrounded, 1005e SP Sand fine to v. coars Bottom of TP-5 Bottom of TP-5	Aguifer Studies BORING TEST PIT NO. 15/1/9 LOCATION Sta: 50+230 310'Work DATE MADE BY RIVER WAS ALLED BORING STA: 50+230 310'Work Water -47.8' OL Gry org. silty CLAY, plashic, this bedded w/gry fine sand. Fairly (17.8'-49.3') GP Gravel, sandy up to the subscriber of subrounded, 1005e (49.3'-5).

DSP 19

 $(1,0) \in \mathcal{C}(G_{1}, \mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}$

	BORING/TEST PIT LOG										
PROJECT	\mathcal{D}	eld	we	re	Ri	ver	-	Phila to Sec	FIELD BOOK 73		
		_		_	vci				BY R.L	DATE 4-6-6	5
	0=	Drilling/Excavating Time	Type penetration	Sample Ne.	Blows/ft, on sampler -	Core barrel run no.	Graphic legand	BORING TEST P LOCATION Sta 41+890 25 DATE MADE 4-3-65 Coff PLANT USED Derrick boat MATERIALS DESCRIPTION	10'Eaf & V	Nater 46°F	
	40-						~	Water -43.5			
	45-		her	1			S - S	Very thin leneer of brunderlain by interberorg. 61LT & v. fine s (lazers same thickness) (43.5-51.6	elded ara ci	AND avey	
	50 -	65	lamshell buck	2				Silty vifine SAUD, Wisome di-gry oro.		derbedded	·
	55 -	60 Minut	34 cy clas				SM	Silty SAND) (51.6- 60		tominantiy	
•	60-			3							Ì
								Bottom of TP - 60.1 5173 200			
ADP FORM	1104	(1-10	1				·	······································	nsP2	20

A174

Appendix B Delaware Main Channel Acoustic Core Density Plots

This appendix presents density versus depth plots for selected acoustic data files. These plots are referenced on the sediment profile plots (Plates 2-15) with the prefix AC followed by the line number and individual file number. These "Acoustic Core" density plots are presented in ascending order along each survey profile.

A typical density plot in this appendix consists of three normally color-coded vertical profile columns as shown on the left of each figure. The plots are presented in black and white to conserve printing costs, negating the benefits of color-coding the results and therefore making the amplitude and impedance versus depth portions of the plots difficult to distinguish. The first column is the acoustic amplitude segment for the data subfile, consisting of 40 consecutive soundings. The second column is coded impedance segment calculations while the third column depicts an average of the previous impedance calculations. The final calculation, density as a function of depth, is then plotted. It is important to note that the S/N degrades with depth causing erroneous impedance calculations. This is indicated on the plot by a black color code on the impedance segment that is probably indistinguishable on the black and white copies provided here. For the plots presented, the bottom 5-10 ft of the density profile is basically unusable information due to the S/N.

Table B1 cross-references the plots in this appendix with the plates in the main text.

Table B1 Acoustic Core Density Plots							
Survey Line	Plate in Main Text						
DP50	2						
DP51	3						
DP52	4						
SC04A	5						
SC04B	6						
SC04C	7						
SC05	8						
SC06A	9						
SC06B	10						
SC06C	. 11						
SC06D	12						
SC06E	13						
SC06F	14						
SC06G	15						
SC96H	16						
SC06H	16						

Appendix B Delaware Main Channel Acoustic Core Density Plots

Appendix B Delaware Main Channel Acoustic Core Density Plots

Appendix B Delaware Main Channel Acoustic Core Density Plots

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing Instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 2053.

Davis Highway, suite 1204, Arrington, VA 22202-4302,				
1. AGENCY USE ONLY (Leave blank)	August 1996 3. REPORT TYPE AND DATES COVERED Final report			S COVERED
4. TITLE AND SUBTITLE		Tillal Teport	S FIIN	IDING NUMBERS
Geoacoustic Study of Delaware M	ain Channel		J. 701	DING RUMBERS
6. AUTHOR(S)				
Richard G. McGee	3.			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PER	FORMING ORGANIZATION
U.S. Army Engineer Waterways Experiment Station 3909 Halls Ferry Road			REP	ORT NUMBER
Vicksburg, MS 39180-6199				
				hnical Report -96-9
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDRESS(ES)		10. SPO	NSORING / MONITORING
U.S. Army Engineer District, Phila	delnhia	l	AGE	NCY REPORT NUMBER
Wannamaker Building, 100 Penn S	Souare East	1		
Philadelphia, PA 19107-3390	4			
11. SUPPLEMENTARY NOTES	- 0			
Available from National Technical	Information Service, 528	35 Port Royal Road, S	pringf	ield, VA 22161.
12a. DISTRIBUTION / AVAILABILITY STATE	MENT		125 DIG	TOIDUTION CODE
		1	120. DIS	TRIBUTION CODE
Approved for public release; distrib	ution is unlimited			
13. ABSTRACT (Maximum 200 words)	and is diffinited.			
An acoustic subbottom pro Main Channel from the Ben Frankli east end of Delaware Bay for the properties of the William Engineer District, Philadelphi Study. The study is focused on dee objective was to quantify the bottom depth of about 20 ft, where possible was requested to be surveyed down correlated with 800- and 3,500-Hz at model of the study area. Results and descriptions of the engineering propherein referred to as "Acoustic Core	in Bridge in Philadelphia urpose of identifying sed S. Army Engineer Water ia's Delaware River Mair epening of the Delaware in and subbottom sediments, below the bottom of the the center line of the chacoustic reflection data use in the form of sediments are ties of the sediments a	, PA, to the entrance iment units within are ways Experiment State of Channel Preconstruct River Main Channel fats in terms of in situle existing ship channel annel. Data from 29 sing acoustic impedant profiles presenting ti	of the as scholon in tion are from 4 density el. On vibraco ce to che maj	ship channel near the eduled for dredging. support of the U.S. and Engineering Design 0 to 45 ft. The specific y and soil type to a ally a single profile line ores collected were develop a geoacoustic or reflection faces with
4. SUBJECT TERMS				15. NUMBER OF PAGES
	sical methods			351
Delaware Main Channel Marine	sediments			16. PRICE CODE

UNCLASSIFIED
NSN 7540-01-280-5500

17. SECURITY CLASSIFICATION OF REPORT

18. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

20. LIMITATION OF ABSTRACT

19. SECURITY CLASSIFICATION OF ABSTRACT