Guía Nº 1: Acondicionamiento Acústico 2011

Prof. Andrés Barrera A.

- 1) Calcular la pérdida de transmisión compuesta de una pared externa de 8 × 3 m en la cual hay una puerta de 0,8 × 2 m y una ventana de 1,8 × 1,5 m si la pérdida de transmisión de la pared es 47 dB, la de la puerta 28 dB y la de la ventana cerrada es de 24 dB. Repetir en el caso en que la ventana esté abierta. Si el ambiente cerrado por dicha pared tiene una profundidad de 6,5 m y su tiempo de reverberación con la ventana cerrada es 1,3 segundos, calcular el nivel de presión sonora causado por un ruido exterior de 74 dB.
- 2) Una sala de ensayo genera un nivel de presión sonora interior igual a 85 dB en todo el espectro de frecuencias. Utilice la tabla dada a continuación para determinar el nivel de presión sonora ponderación A al exterior de la sala, sobre una casa vecina que se encuentra a 4,5 m del estudio. Considere que el muro esta compuesto por concreto sólido, que posee un TL igual a 45 dB en 500Hz, con una pendiente de + 6dB/oct (Ayuda: aumentar una octava, de 500Hz a 1000Hz, aumenta el TL de 45 dB a 51dB).

Frecuencia [Hz]	125	250	500	1000	2000	4000
Nivel interior sala de ensayo [dB]	85	85	85	85	85	85
Tiempo de reverberación del	1,0	1,0	1,0	1,0	1,0	1,0
estudio [seg]						
Ponderación A [dB]	-16	-8,6	-3,2	0	1,2	1,0
Área del muro [m²]	10					
Volumen de la sala de ensayo [m³]	45					

3) Un estudio está cercano una calle ruidosa, que corre paralela a la fachada. Utilice la tabla dada a continuación para determinar el nivel de presión sonora ponderación A en el estudio. Evalúe si el nivel de ruido cumple con el criterio NC-15 para estudios de grabación.

Frecuencia [Hz]	125	250	500	1000	2000	4000
Nivel de ruido de tráfico a 1m de la	79	81	83	80	76	70
fachada [dB]						
TL de la fachada [dB]	30	32	35	40	45	53
Tiempo de reverberación del	0.5	0.4	0.3	0.3	0.2	0.1
estudio [seg]						
Ponderación A [dB]	-16	-8,6	-3,2	0	1,2	1,0
Area de la fachada [m²]	30					
Volumen del estudio [m³]	120					

4) Una sala de ensayo tiene dimensiones 3 m (ancho) x 4 m (largo) x 3 m (altura). Una de las paredes largas separa esta sala de ensayo con un dormitorio (de 2,5 m (ancho) x 4 m (largo) x 3 m (altura) y tiempo de reverberación de 0,7 segundos) de la casa vecina. El muro divisorio tiene las siguientes características:

Guía Nº 1: Acondicionamiento Acústico 2011 Prof. Andrés Barrera A.

- Puerta de madera maciza, pérdida por transmisión sonora field de 35 dB a 500Hz
- Muro de ladrillo, pérdida por transmisión sonora field de 55 dB a 500Hz

Responda:

- a) Si en la sala de ensayo practica una banda que genera un Lp = 105dB en 500Hz, ¿Cuál es el nivel de presión sonora que se escucha en el dormitorio vecino?
- b) ¿Qué ocurre con el Lp si se clausura la puerta (colocando en su lugar pared de ladrillo)?
- c) ¿Cuál es el TL field mínimo del divisorio para asegurar 35 dB de Lp en la casa vecina?
- d) ¿Es factible tratar únicamente el muro y mantener la puerta actual para conseguir Lp = 35dB en la casa vecina? Si es factible, entregue el valor de TL del muro que usted recomienda.
- 5) Evalúe las siguientes salas de acuerdo al criterio de ruido de fondo NC (Noise Criteria). Mencione, cuando corresponda, en qué bandas de frecuencia y en cuántos dB se sobrepasa el criterio.

Ruido de Fondo en bandas de octava para distintas salas	63Hz	125Hz	250Hz	500Hz	1000Hz	2000Hz	4000Hz	8000Hz	Criterio NC aceptable
	50	47	44	40	36	33	32	30	30 – 35
Cine									
	36	35	30	29	26	16	15	15	15 – 20
Estudio de grabación									
	66	63	54	47	40	38	35	34	35 – 45
Cafetería									

Guía Nº 1: Acondicionamiento Acústico 2011

Prof. Andrés Barrera A.

<u>INDICACION</u>: Utilice la siguiente tabla de materiales para resolver los siguientes ejercicios de la guía.

Material	Densidad volumétrica ρ [Kg/m³]	Módulo de Young E [N/m²]	Factor de amortiguamiento η
Acero, Fierro	7700	1,95 x 10 ⁺¹¹	0,0001
Aluminio	2700	7,1 x 10 ⁺¹⁰	0,001
Concreto	2600	2,5 x 10 ⁺¹⁰	0,01
Ladrillo	2100	2,5 x 10 ⁺¹⁰	0,01
Madera aglomerada	600	1,27 x 10 ⁺⁰⁹	0,01
Volcanita	875	2,23 x 10 ⁺⁰⁹	0,063
Plomo	11300	1,7 x 10 ⁺¹⁰	0,0005
Vidrio	2400	8,7 x 10 ⁺¹⁰	0,0006

- 6) Para cada una de las siguientes paredes simples:
 - Placa de aluminio de 1 mm
 - Placa de acero de 0,5 mm
 - Placa de plomo de 0,5 mm
 - Panel de madera aglomerada de ½"
 - Panel de volcanita de 2"
 - Cristal de vidrio de 2 mm
 - Pared de ladrillo de 12cm

Determine el valor TL_{FIELD} para las frecuencias de 125Hz, 250Hz, 500Hz, 1kHz, 2kHz y 4000Hz. Utilice el modelo de Sharp para placas simples. CALCULE EN FORMA ANALÍTICA Y TAMBIÉN MEDIANTE MÉTODO GRÁFICO. Utilice el gráfico semilog adjunto a la guía.

7) ANEXO: CURVAS DE VALORIZACIÓN DE RUIDO NC (NOISE CRITERIA)

Guía Nº 1: Acondicionamiento Acústico 2011 Prof. Andrés Barrera A.

