Instructor: Jay Taylor

Final Exam - Study Guide

Rings, Subrings, and Ideals

Question 1

Assume R and S are rings and let Fun(R, S) be the set of all functions $f : R \to S$. Show that Fun(R, S) is a ring with the addition and multiplication defined by

$$(f+g)(r) = f(r) + g(r)$$
 $(fg)(r) = f(r)g(r)$

for all $f, g \in Fun(R, S)$ and $r \in R$.

Question 2

Let R be a ring. The *center* of R is defined to be $Z(R) = \{r \in R \mid r\alpha = \alpha r \text{ for all } \alpha \in R\}$. Show that Z(R) is a subring of R.

Question 3

Recall that an element $e \in R$ in a ring R is called an *idempotent* if $e^2 = e$. Determine all the idempotents in $\mathbb{Z}^n = \mathbb{Z} \oplus \cdots \oplus \mathbb{Z}$ (n copies of \mathbb{Z}).

Question 4

Assume I, J \subseteq R are ideals of a ring R. Show that I + J = {x + y | x ∈ I, y ∈ J} \subseteq R is an ideal.

Question 5

Assume $I, J \subseteq R$ are ideals of a ring R. Show that $IJ = \bigcup_{n \in \mathbb{N}_0} (IJ)_n$ is an ideal where $(IJ)_n = \{a_1b_1 + \cdots + a_nb_n \mid a_i \in I \text{ and } b_i \in J\}.$

Let R be a ring and $A \subseteq R$ a *subset*. Show that

$$\langle A \rangle = \bigcap_{A \subseteq I \subseteq R} I$$

is an ideal of R where the intersection is taken over all ideals $I \subseteq R$ containing A.

Question 7

Let $A = \{a_1, ..., a_n\} \subseteq R$ be a finite subset of a unital ring R. Show that $\langle A \rangle = \{r_1a_1s_1 + ... + r_na_ns_n \mid r_i, s_i \in R\}$.

Ouestion 8

Let R be an integral domain and n>0 an integer. Denote by $I\subseteq R[X]$ the set of polynomials $f=\sum_{i\in \mathbb{N}_0} \alpha_i X^i$ where either f=0 or $deg(f)\geqslant n$. Show that I is a principal ideal of R[X].

Question 9

let R be a commutative ring and $I \subseteq R$ an ideal. Show that the annihilator of I

$$Ann(I) = \{ r \in R \mid r\alpha = 0 \text{ for all } \alpha \in I \}$$

is also an ideal of R.

Question 10

let R be a commutative ring and $I \subseteq R$ an ideal. Show that the nil radical of I

$$NilRad(I) = \{r \in R \mid r^n \in I \text{ for some integer } n > 0 \text{ depending on } r\}$$

is also an ideal of R.

Question 11

Prove that the set of all polynomials whose coefficients are all even is a prime ideal of $\mathbb{Z}[X]$.

Homomorphisms

Question 12

Assume $\phi: R \to S$ is a homomorphism of rings. Show that the following hold:

- (i) If $I \subseteq R$ is an ideal of R then $\phi(I) \subseteq S$ is an ideal of S.
- (ii) If $K \subseteq S$ is an ideal of S then $\varphi^{-1}(K) = \{r \in R \mid \varphi(r) \in K\} \subseteq R$ is an ideal of R.

Question 13

Assume $\phi: R \to S$ is a homomorphism of rings. Show that if $I \subseteq S$ is a prime ideal of S then $\phi^{-1}(I) = \{r \in R \mid \phi(r) \in I\} \subseteq R$ is a prime ideal of R.

Question 14

Assume R is a unital ring. Show that R contains a subring $S \subseteq R$, with $1_R \in S$, such that S is isomorphic to either \mathbb{Z} or $\mathbb{Z}/n\mathbb{Z}$ for some integer n > 0.

Question 15

Let $n \ge 0$ be an integer with decimal representation $a_k a_{k-1} \cdots a_1 a_0$. For example, if n = 2513 then k = 3 and $(a_3, a_2, a_1, a_0) = (2, 5, 1, 3)$. Prove that n is divisible by 11 if and only if $a_0 - a_1 + a_2 - \cdots - (-1)^k a_k$ is divisible by 11.

Question 16

Let $\phi: R \to S$ be a ring homomorphism. Show that ϕ is an isomorphism if and only if ϕ is surjective and $Ker(\phi) = \{0\}$.

Question 17

Prove that $\mathbb{Q}[X]/\langle X^2-2\rangle$ is isomorphic to $\mathbb{Q}[\sqrt{2}]=\{\mathfrak{a}+\sqrt{2}\mathfrak{b}\mid \mathfrak{a},\mathfrak{b}\in\mathbb{Q}\}.$

Question 18

Show that if $u \in U(R)$ is a unit in a unital commutative ring R then u is not a zero divisor. Moreover, show that every element in \mathbb{Z}_n , with n > 0 an integer, is either a unit or a zero divisor.

Question 19

Assume $\phi: R \to S$ is a ring homomorphism and $I \subseteq R$ is an ideal with $I \subseteq Ker(\phi)$. Show that the function $\bar{\phi}: R/I \to S$, defined by $\bar{\phi}(r+I) = \phi(r)$, is a well-defined ring homomorphism.

Question 20

Assume k, m, n > 0 are integers such that $kn \in m\mathbb{Z}$ and $k^2 - k \in m\mathbb{Z}$. Show that $\psi_k : \mathbb{Z}_n \to \mathbb{Z}_m$, defined by $\psi_k(x + n\mathbb{Z}) = kx + m\mathbb{Z}$, is a ring homomorphism.

Question 21

Determine all the ring homomorphisms $\mathbb{Z}_{15} \to \mathbb{Z}_{12}$. Are any of these homomorphisms surjective?

Question 22

Determine all the ring homomorphisms $\mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$.

Question 23

Let R be a commutative ring of prime characteristic p > 0 and let $F : R \to R$ be the Frobenius endomorphism defined by $F(x) = x^p$. Show that the following hold:

- (i) F is a ring homomorphism,
- (ii) if R is finite then F is a bijection.

Question 24

Assume R is a ring, $S \subseteq R$ is a subring, and $I \subseteq R$ is an ideal. Show that we have an isomorphism $S/(S \cap I) \cong (S+I)/I$.

Polynomial Rings

Question 25

Assume \mathbb{F} is a field and $\alpha \in \mathbb{F}$. Show that $X - \alpha$ divides $f \in \mathbb{F}[X]$ if and only if $f(\alpha) = 0$.

Question 26

Assume R and S are rings and $\phi: R \to S$ is a ring homomorphism. Show that this extends to a ring homomorphism $\bar{\phi}: R[X] \to S[X]$ defined by

$$\bar{\varphi}\left(\sum_{i\in\mathbb{N}_0}\alpha_iX^i\right)=\sum_{i\in\mathbb{N}_0}\varphi(\alpha_i)X^i.$$

Let R be a ring and $I \subseteq R$ an ideal. Show that $I[X] \subseteq R[X]$ is an ideal of R[X] and we have an isomorphism $R[X]/I[X] \cong (R/I)[X]$.

Question 28

Let $f = 5X^4 + 3X^3 + 1 \in \mathbb{F}_7[X]$ and $g = 3X^2 + 2X + 1 \in \mathbb{F}_7[X]$. Determine the quotient and remainder upon diving f by g.

Question 29

Let R be a ring and f, $g \in R[X]$ non-zero polynomials. Show that if R is an integral domain then deg(fg) = deg(f) + deg(g). Give an example of a ring R and non-zero polynomials f, $g \in R[X]$ such that deg(fg) < deg(f) + deg(g).

Question 30

Let \mathbb{F} be a field and $p \in \mathbb{F}[X]$ a non-zero polynomial of degree $n \ge 0$. Show that

$$\{X^0 + \langle p \rangle, X^1 + \langle p \rangle, \dots, X^{n-1} + \langle p \rangle\}$$

is a basis of the \mathbb{F} -vector space $\mathbb{F}[X]/\langle p \rangle$.

Question 31

Assume \mathbb{F} is a finite field of characteristic p > 0. Show that there exists an element $\alpha \in \mathbb{F}$ such that the polynomial $X^p - X - \alpha \in \mathbb{F}[X]$ has no zeros in \mathbb{F} .

Question 32

Assume R is a UFD and let \mathbb{F} be the field of fractions of R. Show that if $f \in R[X]$ is primitive and irreducible over \mathbb{F} then f is irreducible.

Question 33

Assume R is a UFD.

- (i) Define what it means for a polynomial $f \in R[X]$ to be primitive.
- (ii) Show that if $f, g \in R[X]$ are primitive then $fg \in R[X]$ is primitive.

Question 34

Find all monic irreducible polynomials of degree 2 over \mathbb{F}_3 .

Show that if an integer n > 0 can be written in the form t^2m then tmX + 1 is a unit in $\mathbb{Z}_n[X]$.

Question 36

For any integer m>0 let $\Phi_m\in\mathbb{Z}[X]$ denote the \mathfrak{m}^{th} cyclotomic polynomial. Assume that $\mathfrak{n}=2\mathfrak{p}$ with $\mathfrak{p}>0$ an odd prime. Show that $\Phi_{2\mathfrak{p}}(X)=\Phi_{\mathfrak{p}}(-X)$.

Question 37

Compute the cyclotomic polynomial Φ_{12} .

Question 38

Show that the polynomial $X^4 + X + 1 \in \mathbb{Z}[X]$ is irreducible over \mathbb{Z} .

Question 39

Let \mathbb{F} be a field and $f \in \mathbb{F}[X]$ a non-zero polynomial. Denote by $\partial_X(f) \in \mathbb{F}[X]$ is the derivative of f. Show that f has a multiple zero if and only if $\gcd(f, \partial_X(f)) \neq 1$.

EDs, PIDs, and UFDs

Question 40

Prove that $\mathbb{Z}[X]$ is not a PID.

Question 41

Assume \mathbb{F} is a field. Show that $\mathbb{F}[X]$ is a PID. Is $\mathbb{F}[X]$ a UFD?

Question 42

Assume R is a PID. Show that $f \in R$ is irreducible if and only if $\langle f \rangle \subseteq R$ is a maximal ideal.

Question 43

Show that the homomorphic image of a PID is a PID.

Ouestion 44

Let $f = X^2 + 1 \in \mathbb{Z}[X]$. Prove that the ideal $\langle f \rangle \subseteq \mathbb{Z}[X]$ is prime but not maximal.

In $\mathbb{Z}[\sqrt{-5}]$ prove that $1+3\sqrt{-5}$ is irreducible but not prime. Is $\mathbb{Z}[\sqrt{-5}]$ a PID?

Question 46

In $\mathbb{Z}[\sqrt{5}]$ prove that both 2 and $1 + \sqrt{5}$ are irreducible but not prime.

Question 47

Let $R = \mathbb{Z}[\sqrt{-7}]$ and let $N : R \to \mathbb{N}_0$ be the function defined by $N(a + b\sqrt{-7}) = a^2 + 7b^2$. Show that $N(6 + 2\sqrt{-7}) = N(1 + 3\sqrt{-7})$ but $6 + 2\sqrt{-7}$ and $1 + 3\sqrt{-7}$ are not associates.

Question 48

In the Gaussian integers $\mathbb{Z}[i]$ show that 3 is irreducible but 2 and 5 are not.

Question 49

Let $R = \mathbb{Z}[i]$ and let $d : R \to \mathbb{N}_0$ be the function defined by $d(a + bi) = a^2 + b^2$. Find elements $q, r \in R$ such that 3 - 4i = (2 + 5i)q + r and d(r) < d(2 + 5i).

Question 50

Let $R = \mathbb{Z}[\sqrt{2}]$ and let $d : R \to \mathbb{N}_0$ be the function defined by $d(a + b\sqrt{2}) = |a^2 - 2b^2|$. Find $q, r \in \mathbb{Z}[\sqrt{2}]$ such that $2 + 7\sqrt{2} = (1 - \sqrt{2})q + r$ and $d(r) < d(1 - \sqrt{2})$.

Question 51

Assume (R, d) is a Euclidean domain and $I \subseteq R$ is a non-zero ideal. Show that for $0 \neq g \in I$ the following are equivalent:

- (i) $d(g) \leq d(h)$ for all $h \in I$,
- (ii) $I = \langle g \rangle$.

Conclude that R is a PID.

Fields

Question 52

Prove that if \mathbb{F} is a finite field with $|\mathbb{F}| = q$ then \mathbb{F} is a splitting field for $X^q - X$.

Construct a finite field of size $729 = 9^3$.

Question 54

Let \mathbb{F} be the field of fractions of the Gaussian integers $\mathbb{Z}[i]$. Prove that we have an isomorphism $\mathbb{F} \cong \mathbb{Q}(i)$.

Question 55

Find the minimal polynomial $p \in \mathbb{Q}[X]$ of $\sqrt{1+\sqrt{5}} \in \mathbb{R}$ over \mathbb{Q} . What's the degree $[\mathbb{Q}(\sqrt{1+\sqrt{5}}):\mathbb{Q}]$?

Question 56

Find the minimal polynomial of $\sqrt[3]{2} + \sqrt[3]{4}$ over \mathbb{Q} .

Question 57

Show that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) = \mathbb{Q}(\sqrt[6]{2})$.

Question 58

Show that for any $a, b \in \mathbb{Q}$ we have $\mathbb{Q}(\sqrt{a}, \sqrt{b}) = \mathbb{Q}(\sqrt{a} + \sqrt{b})$.

Question 59

Suppose $\mathbb{Q} \subseteq F \subseteq \mathbb{C}$ is a field extension with $[F:\mathbb{Q}]=2$. Show that there exists a $d\in\mathbb{Z}$ such that $F=\mathbb{Q}(\sqrt{d})$.

Question 60

Let F be a field and $f \in F[X]$ a non-zero polynomial with deg(f) = 2. Assume $F \subseteq E$ is a field extension containing a zero $\alpha \in E$ of f. Show that $F(\alpha) \subseteq E$ is a splitting field of f.

8

Question 61

Let $K = \mathbb{Q}(\sqrt{7}, i)$. Show that the following hold:

- (i) K is a splitting field over \mathbb{Q} for $X^4 6X^2 7 \in \mathbb{Q}[X]$.
- (ii) $[K : \mathbb{Q}] = 4$.

Question 62 Let $\alpha\in\mathbb{C}$ be a zero of $X^2+X+1\in \mathbb{Q}[X].$ Prove that $\mathbb{Q}(\sqrt{\alpha})=\mathbb{Q}(\alpha).$