732A75 Advanced Data Mining TDDD41 Data Mining - Clustering and Association Analysis Lecture 8: Constrained Frequent Itemset Mining

Jose M. Peña IDA, Linköping University, Sweden

Outline

Content

- Monotone and antimonotone constraints
- Apriori algorithm + (anti) monotone constraints
- ▶ FP grow algorithm + (anti) monotone constraints
- Convertible (anti) monotone constraints
- Summary

Literature

- Course book. Second edition: 5.5. Third edition: 7.3.
- Pei, J. and Han, J. Can We Push More Constraints into Frequent Pattern Mining? In Proc. of the 2000 Int. Conf. on Knowledge Discovery and Data Mining, 2000.

Monotone and Antimonotone Constraints

- A constraint is a function that returns true or false for every itemset, meaning whether the itemset satisfies the constraint or not. For instance:
 - ▶ The itemset has support equal or greater than a given value.
 - ▶ The sum of the prices of the items in the itemset is greater than 5 units.
 - ▶ The most expensive item in the itemset costs less than 5 units.
 - ▶ The itemset contains the item "bread".
 - The itemset contains exactly three items.
- A constraint C is monotone when for every itemsets A and B such that $A \subseteq B$, if C(A) = true then C(B) = true. For instance:
 - ▶ The itemset contains the item "bread".
- A constraint C is antimonotone when for every itemsets A and B such that $B \subseteq A$, if C(A) = true then C(B) = true. For instance:
 - ▶ The support of the itemset is equal or greater than a given value.
- Alternatively, C is antimonotone when for every itemsets A and B such that $B \subseteq A$, if C(B) = false then C(A) = false.
- Note that the apriori property applies to every antimonotone constraint,
 i.e. no need to check the constraint for supersets of A if C(A) = false.

Monotone and Antimonotone Constraints

- Examples of monotone constrains:
 - $sum(S) \ge v$ where S is the set of prices of the items in the itemset, and v is a given value.
 - Really monotone? Only if the prices of all the items are non-negative.
 - $\rightarrow min(S) \leq v$
 - ▶ $range(S) \ge v$
- Examples of antimonotone constrains:
 - $sum(S) \le v$ when the prices of all the items are non-negative.
 - ▶ $max(S) \le v$
 - ▶ $range(S) \le v$

Monotone and Antimonotone Constraints

Constraint	Antimonotone	Monotone	
v ∈ S	no	yes	
S⊇V	no	yes	
S⊆V	yes	no	
min(\$) ≤ v	no	yes	
min(\$) ≥ v	yes	no	
max(S) ≤ v	yes	no	
max(S) ≥ v	no	yes	
count(S) ≤ v	yes	no	
count(S) ≥ v	no	yes	
$sum(S) \le v (a \in S, a \ge 0)$	yes	no	
$sum(S) \ge v (a \in S, a \ge 0)$	no	yes	
range(S) ≤ v	yes	no	
range(S) ≥ v	no yes		
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	No but convertible No but convertible		
support(S) ≥ ξ	yes	s no	
support(S) ≤ ξ	no	yes	

Apriori Algorithm + Antimonotone Constraint

```
Algorithm: apriori(D, minsup, C)
Input: A transactional database D, minsup, and an antimonotone constraint C.

Output: All the large itemsets in D that satisfy C.

1 L_1 = \{ \text{ large 1-itemsets that satisfy } C \}

2 for (k = 2; L_{k-1} \neq \emptyset; k + +) do

3 C_k = \text{apriori-gen}(L_{k-1}) // Generate candidate large k-itemsets

4 for all t \in D do

5 for all c \in C_k such that c \in t do

6 c.count + +

7 L_k = \{c \in C_k | c.count \ge minsup \text{ and } C(c) = true \}

8 return \bigcup_k L_k
```


Apriori Algorithm + Monotone Constraint

```
Algorithm: apriori(D, minsup, C)
Input: A transactional database D, minsup, and a monotone constraint C.

Output: All the large itemsets in D that satisfy C.

1 L_1 = \{ \text{ large 1-itemsets } \}

for (k = 2; L_{k-1} \neq \emptyset; k + +) do

3 C_k = \text{apriori-gen}(L_{k-1}) // Generate candidate large k-itemsets

4 for all t \in D do

5 for all c \in C_k such that c \in t do

6 c.count + +

L_k = \{ c \in C_k | c.count \ge minsup \}

8 return \{ c \in U_k | L_k | C(c) = true \text{ or } C(d) = true \text{ for some } d \subseteq c \}
```


FP Grow Algorithm + Monotone Constraint

Algorithm: FP-grow(*Tree*, α , *minsup*, \boldsymbol{C})

Input: A FP tree Tree , an itemset α , minsup , and a monotone constraint C . Output: All the itemsets in Tree that end with α , have minsup and satisfy C .

- 1 if $C(\alpha)$ = true then
- 2 replace C with C_{true} // C_{true} is a constraint that always returns true
- 3 for each item X in Tree do
- 4 output the itemset $\beta = X \cup \alpha$ with support=X.count if $C(\beta) = true$
- 5 build the β conditional database and the corresponding FP tree Tree_{β}
- 6 if Tree_{β} is not empty then call FP-grow($\mathit{Tree}_{\beta}, \, \beta, \, \mathit{minsup}, \, \textbf{\textit{C}}$)

Transaction id	Items bought		
1	F, C, A, M, P		
2	F, C, A, B, M		
3	F, B		
4	C, B, P		
5	F, C, A, M, P		

Item	Conditional database
F	-
C	F:3
Α	FC:3
В	FCA:1, F:1, C:1
M	FCA:2, FCAB:1
Р	FCAM:2, CB:1

FP Grow Algorithm + Antimonotone Constraint

1

3

6

Algorithm: FP-tree(D, minsup, C)
Input: A transactional database D, minsup, and an antimonotone constraint C.
Output: The FP tree for D, minsup and C.
Count support for each item in D
Remove the infrequent items from the transactions in D
Remove the items that do not satisfy C from the transactions in D
Sort the items in each transaction in D in support descending order
Create a FP tree with a single node T with T.name = NULL
for each transaction I ∈ D do
insert-tree(I, T)

FP Grow Algorithm + Antimonotone Constraint

```
Algorithm: FP-grow(Tree, α, minsup, C)
Input: A FP tree Tree, an itemset α, minsup, and an antimonotone constraint C.
Output: All the itemsets in Tree that end with α, have minsup and satisfy C.
1 let δ denote all the items in Tree
2 if C(α ∪ δ) = true then
3 replace C with C<sub>true</sub> // C<sub>true</sub> is a constraint that always returns true
4 for each item X in Tree do
5 if C(X ∪ α) = true then
6 output the itemset β = X ∪ α with support=X.count
7 build the β conditional database and the corresponding FP tree Treeβ
8 if Treeβ is not empty then call FP-grow(Treeβ, β, minsup, C)
```

Item	Conditional database
F	-
C	F:3
Α	FC:3
В	FCA:1, F:1, C:1
M	FCA:2, FCAB:1
Р	FCAM:2, CB:1

M-conditional databas			
Tid	Items bought		
1	F, C, A		
2	F, C, A		
3	F, C, A, B		

After sorting		
Tid Items bought		
1	F, C, A	
2	F, C, A	
3	F, C, A	

Output FM and re-start the process for the FM-conditional database?

Convertible Monotone and Antimonotone Constraint

- ▶ $avg(S) \le v$ and $avg(S) \ge v$ are neither monotone nor antimonotone.
- A constraint C is convertible monotone when there exists an item order R such that for every itemsets A and B respecting R and such that A is a suffix of B, if C(A) = true then C(B) = true. For instance:
 - ▶ $avg(S) \ge v$ with respect to decreasing price order.
- A constraint C is convertible antimonotone when there exists an item order R such that for every itemsets A and B respecting R and such that B is a suffix of A, if C(A) = true then C(B) = true. For instance:
 - ▶ $avg(S) \ge v$ with respect to increasing price order.
- Alternatively, C is convertible antimonotone when there exists an item order R such that for every itemsets A and B respecting R and such that B is a suffix of A, if C(B) = false then C(A) = false.
- A constraint that is both convertible monotone and antimonotone is called strongly convertible.

Convertible Monotone and Antimonotone Constraints

Constraint	Convertible antimonotone	Convertible monotone	Strongly convertible
$avg(S) \le , \ge v$	Yes	Yes	Yes
median(S) ≤ , ≥ v	Yes	Yes	Yes
$sum(S) \le v \text{ (items could be of any } \\ value, \ v \ge 0)$	Yes	No	No
$sum(S) \leq v \text{ (items could be of any} \\ value, \ v \leq 0)$	No	Yes	No
$sum(S) \ge v \text{ (items could be of any} \\ value, \ v \ge 0)$	No	Yes	No
$sum(S) \ge v$ (items could be of any value, $v \le 0$)	Yes	No	No

Summary

