Mohn Medical Imaging and Visualization Centre

Postdoctoral Research Fellow in Radiology and Imaging-related Medical AI at Haukeland University Hospital

Marek Kociński

Bergen, 22nd April 2025

Education

2009 - PhD in Computer Science

2003 - Master's Degree in Electronics

and Telecommunication

Scientific interests (Biomedical engineering)

 Algorithms and software for quantitative analysis and visualization of 2D/3D medical images and signals (eg. voxel time series)

Skills

Programming: Python, C++, Matlab, R

Scripting & OS: Bash, Linux.

Tools: OpenGL, Insight Toolkit (ITK), The Visualization Toolkit (VTK), Qt,

Data: Pandas, Matplotlib, Seaborn.

Medical Imaging: DICOM, NIfTI, ITK-SNAP, Paraview. **ML & DL**: scikit-learn, PyTorch, FastAl, Monai.

Other: Git, LaTeX

Interests: Electronics (embedded systems, sensors)

Team Leadership: Strong communication in multidisciplinary projects, across diverse teams

Learning: Eager to learn and master new technologies

Professional Experience

2009 – 2023 – Assistant Professor,

Institute of Electronics, Technical University of Lodz, Poland

2019 - 2022 - Postdoctoral Fellow, Department of Biomedicine, University of Bergen, Norway

Teaching: Undergraduate and graduate-level courses

(Medical Imaging, Image Processing, Computer Graphics, Digital Signal Processing, Algorithms and Data Structures, Fundamentals of Programming, Microprocessors Systems, Electronic Circuits, Digital Systems, Graphical User Interface Design...).

Supervision: Supervised more than 40 bachelor's and master's theses and Erasmus final projects, co-supervised a doctoral thesis.

(Guiding students: artificial intelligence, data science, machine learning, deep learning, computer vision, biomedical image processing and analysis, 3D computer graphics, robotics, and medical imaging).

Publications: Co-author of approximately 60 scientific publications.

Projects related to:

Brain vasculature, skull removal, Alzheimer's disease, endometrial carcinoma, prostate cancer, kidney, maxillofacial surgery, brain perfusion 3

"Computational medical imaging and machine learning - methods, infrastructure and applications", Bergen 2019

Thank you!

PhD thesis (in the field of computer science)

Vascular tree growth computer simulation.

(Vector model)

Quantitative analysis of vascular trees represented by digital images

5

Convertion model to 3D raster image

2D & 3D texture features

Marie Curie Fellowship

Department of Biomedicine, UiB

Assessment of Renal Function from 3D Dynamic Contrast Enhanced MR Images using Independent Component Analysis

Frank G. Zöllner^{1,2}, Marek Kocinski³, Arvid Lundervold², Jarle Rørvik¹

Modeling capillary exchange and leakage of contrast agent in perfusion imaging

Modeling of blood vessels

Det medisinske fakultet Universitetet i Bergen

ToF (Arteries)

QSM (Veins)

SWI (Veins)

3D model of arteries (red, ToF) and veins (blue, QSM), grey matter (grey, T1).

3D Image Texture Analysis

Quantitative analysis and modeling of DCE images for tissue characterization (kidney, prostate, endometrial carcinoma)

MRI-DCE

- 1 an artery
- 2 weak enhancement
- 3 endometrium

Pharmacokinetic parameter maps

SIGNAL PROCESSING

LGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS

SPA 2016

September 21-23rd, 2016, Poznań, POLAND

Texture analysis of 2D spatial distribution of blood pharmacokinetic model parameters for endometrial carcinoma classification

Marek Kociński, Andrzej Materka Institute of Electronics Lodz University of Technology Łodz, Poland marek.kocinski@p.lodz.pl Arvid Lundervold^{1,2}, Helga Salvesen², Sigmund Ytre-Hauge³, Ingfrid Haldorsen³

Department of Biomedicine

Department of Clinical Science

Department of Radiology

University of Bergen

Bergen, Norway

An empirical, continuous, 6-parameter mathematical model of actual DCE-MRI signal at each ROI voxel

To find an early predictor(s) of AD

Functional activity level reported by an informant is an early predictor of Alzheimer's disease

Alexandra Vik¹, Marek Kociński^{1,2}, Ingrid Rye³, Astri J. Lundervold³ and Alexander S. Lundervold^{1,4*}

Predicting conversion to Alzheimer's Disease in individuals with Mild Cognitive Impairment using clinically transferable features

Ingrid Rye^{1,+}, Alexandra Vik²⁺, Marek Kocinski^{2,3,4+}, Alexander S. Lundervold^{2,5}, Astri J. Lundervold¹, and for the Alzheimer's Disease Neuroimaging Initiative**

Personalized prognosis & treatment using Ledley-Jaynes machines:
An example study on conversion from Mild Cognitive Impairment to Alzheimer's Disease

P.G.L. Porta Mana 1,2,* , I. Rye 3 , A. Vik 2 , M. Kociński 2,4 , A. Lundervold 2,4 , A. J. Lundervold 5 , A. S. Lundervold 1,2

2D and 3D U-Nets for skull stripping in a large and heterogeneous set of head MRI using fastai

Satheshkumar Kaliyugarasan^{1,2,*}, Marek Kociński^{1,3,4,*}, Arvid Lundervold^{1,3,*}, Alexander Selvikvåg Lundervold^{1,2,*}, for the Alzheimer's Disease Neuroimaging Initiative^{**}, and for the Australian Imaging Biomarkers and Lifestyle flagship study of ageing^{***}

Data sets:

ADNI
AIBL
IXI
PPMI
SLIM
CalgaryCampinas
SALD

Training test: 2791 3D images Test sets: 934 + 561 3D images

Dice = 0.978 | laccard = 0.957

Violin plot of the Dice scores obtained by our models on the test dataset

Thank you!

Erasmus students from TUL in BBB, May 2015