GAL - Domande d'Esame

Fabio Ferrario @fefabo

2023/2024

Indice

1	Domande Aperte													3											
2	Domande Chiuse														4										
	2.1	l Algebra Lineare														4									
		2.1.1	Ι	Diago	onaliz	zzabil	lità	di	Ma	atr	ici														10

Capitolo 1

Domande Aperte

SOTTOSPAZI VETTORIALI

- 1. Determinare la dimensione e trovare una base del sottospazio: $R=\{(x,y,z)\in\mathbb{R}^3:y-x=2z\}$
- 2. Completare la base del punto precedente ad una base di \mathbb{R}^3 con un vettore v ortogonale a T.

Risposta:

<u>1</u>

1. Prendiamo l'equazione che ci da: y-x=2z. è chiaramente l'equazione di un piano (quindi con dimensione =2). In ogni caso, la parametrizziamo:

Capitolo 2

Domande Chiuse

2.1 Algebra Lineare

- - (a) Creo una matrice con v_i come vettori riga che abbia determinante non nullo
 - (b) Creo una matrice con v_i come vettori riga e cerco una sottomatrice quadrata di ordine n Invertibile
- (c) Cerco una combinazione lineare dei vettori v_i che mi dia il vettore nullo
- (d) Creo una matrice con v_i come vettori colonna e verifico che il rango di questa matrice sia m

Risposta: b, perchè se ho una sottomatrice di ordine n invertibile allora il suo determinante è zero. Per il teorema dei minimi, significa che il rango della matrice è almeno n, quindi è massimo e tutti i suoi vettori sono linearmente indipendenti.

<u>ROUCHÈ-CAPELLI</u>

Sia Ax = b un sistema di equazioni lineari con più incognite che equazioni. Allora:

- (a) Agendo con operazioni elementari su righe e colonne della matrice completa A|b ottengo una matrice compoleta il cui sistema associato possiede le stesse soluzioni di quello di partenza
- (b) Scegliendo b opportunamente, il sistema ha un'unica soluzione
- (c) Dato un b qualsiasi, mi posso scegliere A in modo che il sistema abbia soluzioni e eche la somma di due di esse sia ancora una soluzione
- (d) Se il rango di A è massimo, allora il sistema ha soluzione

Risposta: d, Abbiamo che n > m, di conseguenza il rango di A è al massimo m. Aggiungendo la colonna b, il rango massimo di (A|b) è ancora m. Quindi se il rango di $A \in m$, ovvero è massimo, allora il sistema ammette soluzioni (per R-C).

inoltre per il teorema di Rouchè-Capelli, sappiamo che se il numero delle incognite > rango(A), allora il sistema ammette $\infty^{m-rank(A)}$ soluzioni.

ROUCHÈ-CAPELLI <u>3</u>

Sia Ax = b un sistema che non ammette soluzione. Scegliendo un vettore c è possibile ottenere che Ax = b + c abbia infinite soluzioni?

- (a) Si, ma solo se A non è di rango (c) No, mai massimo
- (b) Si, per un qualsiasi A
- (d) Si, ma solo se A è quadrata e di determinante non nullo.

Risposta: a (da capire). Se Ax = b non ammette soluzioni, allora $rg(A) \neq rg(A|b)$. Per ottenere un sistema con infinite soluzioni, dobbiamo avere rg(A) = rg(A|b) < n con n numero di incognite.

Se la somma di tre numeri positivi è 120, qual'è il massimo valore possibile tra il loro prodotto?

- (a) $30^2 \cdot 80$
- **(b)** $240^2 \cdot 30$

- (c) 30⁴ (d) 1600 · 40

Risposta: La somma dei tre numeri positivi è 120, e supponiamo che i tre numeri siano x, y, e z. L'equazione della somma è espressa come:

$$x + y + z = 120$$

Per massimizzare il prodotto, distribuiremo i numeri in modo che siano il più possibile vicini, il che si verifica quando sono tutti uguali. Quindi, possiamo assegnare a ciascun numero il valore di $\frac{120}{3} = 40$. Il prodotto massimo sarà quindi:

$$P = x \cdot y \cdot z = 40 \cdot 40 \cdot 40 = 64000$$

Pertanto, il massimo valore possibile del prodotto è 64000, ovvero la risposta d.

DETERMINANTE 5

Sia A una matrice quadrata e v, w due suoi vettori colonna. Se b è la matrice ottenuta da A rimpiazzando il vettore v con il vettore $v + \alpha \cdot w$ per un numero reale α , che informazione abbiamo sul determinante di B?

(a)
$$Det(B) = -Det(A)$$

(c)
$$Det(B) = \alpha \cdot Det(A)$$

(d) $Det(B) = 0$

(b)
$$Det(B) = Det(A)$$

(d)
$$Det(B) = 0$$

Risposta: b. Nelle trasfomazioni elementari, rimpiazzare una riga/colonna r_i con $r_i + \alpha r_j$ non cambia il determinante.

6 **RANGO**

Sia Ax = b un sistema di equazioni lineari con pi'u equazioni che incognite. Allora (si scelga l'affermazione corretta):

- (a) Se ha soluzione, il rango della matrice completa A—b non pu'o essere massimo
- (b) La soluzione, se esiste, necessariamente non 'e unic
- (c) Se possiede soluzione, e non 'e unica, allora la somma di due soluzioni (PROSEGUE)
- (d) Non ha soluzione

Risposta: Se Ax = b ha più equazioni m che incognite n, allora il massimo rg(A) = n > m. Supponendo di aggiungere una colonna b, adesso il massimo rg(A|b) = n+1, ma se rg(A|b) = n+1 il sistema non ammette soluzioni perchè è il rango di A è minore. Quindi, sicuramente se esiste soluzione il rango di (A|b) non può essere massimo.

7 RANGO

Sia A una matrice $n \times m$ di rango r > 0. Quali delle seguenti affermazioni è CORRETTA:

- (a) r può essere strettamente maggiore di m
- (b) Non esistono r-1 vettori riga di A linearmente indipendenti.
- (c) il determinante di A è uguale a
- (d) Esiste una sottomatrice quadrata B di A di ordine r-1 con determinante non nullo (se $r \geq 2$)

Risposta: Andando per esclusione:

- a No, perchè il rango non può essere maggiore del numero di righe o del numero di colonne.
- b No, perchè il rango è il massimo numero di vettori riga/colonna linearmente indipendenti.
- c No, Il rango non da informazioni sul valore del determinante.
- d Dal criterio dei minori sappiamo che il determinante di A è il massimo ordine dei minori non nulli di essa, quindi se il rango è r sicuramente \exists sottomatrice B di ordine r (e quindi r-1) con determinante non nullo.

<u>BETERMINANTE</u>

Sia A una matrice quadrata e v, w due suoi vettori colonna diversi. Se B è la matrice ottenuta da A rimpiazzando il vettore v con il vettore $\alpha \cdot v + \beta \cdot w$ per $\alpha, \beta \in \mathbb{R}$, che informazioni abbiamo sul determinante di B?

Risposta: Possiamo considerare questa operazione come due trasformazioni elementari: Prima moltiplichiamo la colonna v per α , quindi anche il determinante viene moltiplicato per α , poi sostituiamo vcon $v + \beta w$, lasciando il determinante invariato. Quindi la risposta è $c: det(B) = \alpha \cdot det(A)$.

9

Sia A(t) una famiglia di matrici quadrate dipendenti da un parametro $t \in \mathbb{R}$. Supponiamo che Det(A(1)) = 5 e Det(A(-1)) = -5. Quali delle seguenti affermazioni è possibile concludere?

- (a) Tutti i vettori riga A(1) sono in- | (c) det(A(0)) = 0dipendenti e il rango di A(1) è massimo.
- **(b)** rg(A(1)) = 5

- (d) Il rango di A(1) è massimo, e det(A(1) + A(-1)) = 0

Risposta: a

In generale, sappiamo che $det(A) \neq 0 \Leftrightarrow rg(A) = n$, quindi il rango è massimo. Se il rango è massimo, tutti i vettori riga (e colonna, essendo quadrata) sono linearmente indipendenti.

Inoltre escludiamo la risposta d perchè in generale non possiamo determinare det(A+B) partendo dai determinanti di A e B.

10

Sia A una matrice quadrata $n \times n$ tale che la somma delle righe è uguale ad una colonna c di A. Cosa posso concludere su A?

- (a) rg(A) < n
- **(b)** $det(A) \neq 0$

- (c) Esiste un minore di A di ordine n=1 invertibile se $c\neq 0$
- (d) Se la colonna c è uguale ad una riga di A non è invertibile.

Risposta: a, da capire

<u>11</u> <u>MINORI - RANGO</u>

Supponiamo che una matrice A di dimensioni 4×6 (cioè 4 righe) abbia i determinanti di tutti i minori di ordine 3. Quale delle seguenti affermazioni è falsa?

- (a) Non esistono 4 colonne linearmente indipendenti in A
- (b) Il rango massimo che potrebbe avere $A \ge 4$
- (c) Potrebbe esistere una sottomatrice 2×2 di A invertibile.
- (d) Le righe di A sono linermente indipendenti.

Risposta: Dal teorema dei minori sappiamo che, avendo i determinanti di almeno un minore di ordine 3 diverso da 0 (almeno così pare dal testo), sicuramente il Rango di $A \geq 3$.

Quindi non possiamo dire che tutte le righe di A sono linearmente indipendenti, ma che almeno 3 lo sono.

<u>CRAMER</u>

Sia Ax = b un sistema di equazioni lineari con un numero di equazioni uguale al numero di incognite. Allora(si scelga l'affermazione corretta):

- (a) Se ha soluzione, il rango è massimo
- (b) Se Ax = 0 ha più di una soluzione, Ax = b potrebbe avere una soluzione
- (c) Se non ha soluzione, A non è invertibile
- (d) Se A|b ha rango massimo, allora il sistema ha un'unica soluzione

Risposta: c

Se non ha soluzione, per il teorema di Cramer det(A) = 0, una matrie è invertibile sse il suo determinante è non nullo. Quindi se il sistema non ha soluzione $\implies det(A) = 0 \implies A$ non è invertibile.

 $\frac{13}{C}$

Siano A, B due matrici 5×5 tali che rank(A) = 3 e rank(B) = 2. Allora

In questa domanda ci sono j punti, riporto qui quelle vere: Da capire

- 1. Non sono invertibili perchè non hanno rango massimo, quindi det =
- 2. Il rango indica il massimo numero di vettori riga/colonna linearmente indipendenti.
- 3. Esistono due minori di ordine 2, A' in A e B' in B tali che $A' \cdot B'$ è una matrice invertibile.

14

Calcolare il rango di una matrice 3×4 al variare di un parametro a

15

Nel sistema composto dalle equazioni 3x - 2y + z = 0, $\alpha x + y + z = 0$ e $x + \alpha y - z = 0$, per quali valori di α posso avere soluzioni non banali¹?

2.1.1Diagonalizzabilità di Matrici

38 DIAGONALIZZABILITÀ

Sia k reale. Si consideri la matrice

$$A_k: \begin{pmatrix} 3 & 0 & -7 \\ k & 3 & 4 \\ 0 & 0 & 2 \end{pmatrix}$$

Quale delle seguenti affermazioni è corretta?

- scelta di $k \neq 0$
- (b) A_k è diagonalizzabile se e solo se k = 0
- (a) A_k è diagonalizzabile per ogni | (c) A_k è diagonalizzabile se e solo se k è intero non negativo
 - (d) Per qualunque scelta di k, A_k non è diagonalizzabile

Risposta: B Ricordiamo le condizioni di diagonalizzabilità:

¹La soluzione banale è (0,0,0)