This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

1 Numéro de publication:

0 584 315 B1

(12)

FASCICULE DE BREVET EUROPEEN

- Date de publication du fascicule du brevet: 20.09.95 (51) Int. CI.6: A61K 7/00, A61K 9/127
- 21 Numéro de dépôt: 93904163.8
- 2 Date de dépôt: 08.02.93
- Numéro de dépôt internationale : PCT/FR93/00128
- Numéro de publication internationale :
 WO 93/15708 (19.08.93 93/20)
- © COMPOSITION COSMETIQUE ET/OU PHARMACEUTIQUE CONTENANT UNE DISPERSION DE VESICULES LIPIDIQUES, PROCEDE DE PREPARATION DE LADITE DISPERSION ET DISPERSION DE VESICULES LIPIDIQUES.
- Priorité: 18.02.92 FR 9201821
- 43 Date de publication de la demande: 02.03.94 Bulletin 94/09
- 45 Mention de la délivrance du brevet: 20.09.95 Bulletin 95/38
- Etats contractants désignés:
 AT BE CH DE DK ES FR GB GR IE IT LI NL PT
 SE
- 56 Documents cités:

EP-A- 0 154 977 EP-A- 0 287 876 EP-A- 0 343 444 EP-A- 0 422 978 EP-A- 0 423 011 EP-A- 0 444 983 WO-A-87/06460 DE-A- 1 149 700 GB-A- 2 189 457

- 73 Titulaire: L'OREAL 14, rue Royale F-75008 Paris (FR)
- Inventeur: MORANCAIS, Jean-Luc
 11, rue Georges-Brassens
 F-77330 Ozoir-la-Ferrière (FR)
 Inventeur: LETY, Alain
 9, rue de Metz
 F-77400 Lagny-sur-Marne (FR)
 Inventeur: VANLERBERGHE, Guy
 40, rue du Général-de-Gaulle,
 Montjay la Tour
 F-77410 Villevaude (FR)
- Mandataire: Peuscet, Jacques SCP Cabinet Peuscet et Autres, 68, rue d'Hauteville F-75010 Paris (FR)

ш

Il est rappelé qu : Dans un délai de neuf mois à compter de la dat de publication de la mention de la délivrance du brevet européen, tout personne peut faire opposition au brev t européen délivré, auprès de l'Offic européen d s brevets. L'opposition doit êtr formé par écrit t motivé. Elle n'est réputée formé qu'après paiement de la taxe d'opposition (art. 99(1) Convention sur le brevet européen).

BIOCHEM. BIOPHYS. ACTA, LIPIDS AND LIPID METABOLISM v I. 1047, n . 1, 1990, pag s 1 - 10 YUE, YUNSHI ET AL. 'DEUTERIUM NMR STUDY OF THE INTERACTION OF PHYTANIC ACID AND PHYTOL WITH THE HEAD GROUP REGION OF A PHOSPHOLIPID BILAYER. EVIDENCE OF MAGNETIC ORIENTATION.'

CAN. J. CHEM. vol. 55, no. 2, 1977, pages 220 - 226 CUSHLEY ET AL. 'STRUCTURE AND STABILITY OF VITAMIN E - LECITHIN AND PHYTANIC ACID - LECITHIN BILAYERS STUDIED BY 13C AND 31P NUCLEAR MAGNETIC RESONANCE" cité dans la demande

D scription

La présente invention concerne une composition cosmétique et/ou pharmaceutique cont nant une dispersion de vésicules de lipides amphiphiles ioniques et/ou non-ioniques transparente, un procédé d préparation de ladite dispersion t une dispersion utilisée dans ladite composition.

On sait qu'il est possible de préparer des vésicules à partir de certains lipides amphiphiles, c'est-à-dire de molécules constituées d'une partie lipophile et d'une partie hydrophile. Les vésicules obtenues sont délimitées par une membrane de phase lipidique formée d'un feuillet ou de plusieurs feuillets concentriques, ladite membrane définissant un volume interne fermé où est encapsulée une phase, dite phase encapsulée. Les vésicules sont généralement préparées sous forme de dispersion dans une phas aqueuse, dite phase de dispersion. Les lipides amphiphiles peuvent être des lipides ioniques tels que les lécithines naturelles (lécithine d'oeuf, de soja) ou synthétiques (dipalmitoylécithine, lécithine d'oeuf hydrogéné). Les lipides amphiphiles peuvent également être des lipides non-ioniques tels que des dérivés de polyglycérol linéaires ou ramifiés, des éthers de polyglycérol linéaires ou ramifiés, des alcools gras polyoxyéthylénés, des stérols polyoxyléthylénés, des éthers de polyols, des esters de polyols oxyéthylénés ou non, des glycolipides, certains hydroxyamides et autres.

La phase lipidique peut contenir un ou plusieurs lipides amphiphiles ioniques, un ou plusieurs lipides amphiphiles non-ioniques ou, à la fois au moins un lipide amphiphile ionique et au moins un lipid amphiphile non-ionique.

Il est connu d'introduire dans la phase lipidique au moins un principe cosmétiquement et/ou pharmaceutiquement actif lipophile, la nature et la quantité des réactifs introduits étant choisies de façon à ne pas détériorer la stabilité des vésicules. On peut également, de façon connue, introduire des actifs hydrophiles dans la phase aqueuse encapsulée et/ou dans la phase aqueuse de dispersion.

Pour des raisons de présentation, on cherche à préparer des dispersions de vésicules qui soient sensiblement transparentes, car les compositions cosmétiques préparées à partir de dispersions transparentes ont un aspect plus agréable et plus attractif pour l'utilisateur.

La transparence (ou à l'inverse, l'opacité) d'une dispersion, vis-à-vis de la lumière naturelle, est essentiellement fonction de l'indice de réfraction du milieu de dispersion et de celui des particules dispersées, de la concentration, de la taille moyenne et de l'homogénéité en taille de ces particules. Il est notamment possible d'augmenter la transparence d'une dispersion en diminuant la différence entre l'indice de réfraction des particules dispersées et celui du milieu de dispersion et/ou en diminuant la concentration et/ou la dimension des particules dispersées. On peut, bien entendu, améliorer la transparence d'une dispersion de vésicules lipidiques en diluant cette dispersion mais on diminuerait ainsi la concentration en principes actifs de la dispersion, ce qui doit généralement être évité. On a également essayé de réduire la dimension moyenne des vésicules, mais il est alors nécessaire d'utiliser pendant un temps trop important, lors de la préparation des vésicules, des moyens mécaniques puissants tels que des homogénéisateurs sous pression ou des sondes à ultrasons, ce qui conduit à une élévation du prix de revient. On a également songé à diminuer la polydispersité en utilisant des méthodes de classification telles que filtration sous pression ou fractionnement par taille à l'aide de colonnes de chromatographie : mais ces méthodes sont contraignantes et coûteuses.

Selon la présente invention, on a trouvé que l'on améliore considérablement la transparence d dispersions de vésicules dont la phase lipidique contient au moins un lipide amphiphile ionique et/ou au moins un lipide amphiphile non-ionique en introduisant dans ladite phase lipidique au moins un polyol ou un acide isoprénoïque à chaîne phytyle, sans qu'il soit nécessaire de modifier le mode de préparation des vésicules. On a constaté que même des dispersions ayant une forte concentration en lipides, par exempl une concentration supérieure à 5 % en poids, sont alors sensiblement transparentes.

La présente invention a donc pour premier objet une composition cosmétique et/ou pharmaceutique contenant au moins une dispersion, dans une phase aqueuse de dispersion, de vésicules délimitées par une membrane de phase lipidique contenant au moins un lipide amphiphile ionique et/ou au moins un lipid amphiphile non-ionique, lesdites vésicules contenant une phase encapsulée, caractérisée par le fait qu , dans au moins une dispersion, la phase lipidique contient au moins un composé de formule

45

20 -

formule (I) dans laquelle :

10

15

20

25

30

35

50

- ou bien W représente -CH₂OH, -COOM ou -(CH₂)₂-COOM, où M représente H, un métal alcalin ou un métal alcalinoterreux, auquel cas X, Y, Z, V, identiques ou différents, représentent un atome d'hydrogène ou un radical hydroxyle, avec la condition que, lorsque W représente le groupement -CH₂OH, au moins un des radicaux X, Y, Z ou V représente un radical hydroxyle;
- ou bien W représente le groupement -CH₃, auquel cas X, Y, Z et V représentent H ou -OH combinés comme indiqué dans chaque ligne du tableau ci-dessous :

Х	Υ	Z	V	
ОН	ОН	ОН	ОН	
ОН	Н	ОН	ОН	
ОН	ОН	ОН	Н	
Н	ОН	ОН	ОН	
Н	ОН	ОН	Н	
Н	H	ОН	ОН	
ОН	Н	ОН	Н	

Les composés de formule (I), que l'on préfère, sont le phytanetriol ou 3,7,11,15-tétraméthyl 1,2,3-trihydroxy hexadécane, l'acide 5,9,13,17 -tétraméthyl octadécanoïque, et les tétrols tels que le 3,7,11,15 -tétraméthyl 1,2,3,4-tétrahydroxy hexadécane ou le 3-hydroxyméthyl 7,11,15-triméthyl 1,2,4-trihydroxy hexadécane obtenus comme sous-produits de la synthèse du phytanetriol par oxydation du phytol à l'eau oxygénée.

Comme expliqué ci-dessus, le premier avantage des dispersions de la composition selon l'invention est que ces dispersions sont transparentes même pour de fortes concentrations en lipides.

On a constaté, par ailleurs, que, dans le cas de la préparation de certaines vésicules, l'introduction d'au moins un composé de formule (I) dans la phase lipidique permettait de diminuer ou de supprimer le cholestérol, qui est couramment utilisé comme lipide constitutif de la paroi des vésicules, dans le but de stabiliser les vésicules. Le remplacement du cholestérol par un (des) composé(s) de formule (I) présente un intérêt sensible car les composés de formule (I) sont très difficilement oxydables, alors que le cholestérol s'oxyde relativement facilement en donnant des produits d'oxydation indésirables. En outre, les dispersions utilisées selon l'invention sont généralement obtenues directement avec un faible indice de polydispersité sans qu'il soit nécessaire, au cours de leur préparation, de recourir à un fractionnement onéreux. Enfin, on a constaté que l'application topique de certaines des dispersions permet de diminuer le module d'élasticité du stratum corneum ce qui présente un intérêt tout particulier en cosmétique.

Les composés de formule (I) sont des composés connus (voir par exemple "Progress in the chemistry of fats and other lipids" Volume XIV, Part 1, pages 5 à 44, Ak Lough, Editeur Ralph T Holman, Pergamon Press). Il est connu par un article de YUE et coll. (Biochimica et Biophysica Acta, Vol. 1047 n° 1 pages 1-102) de préparer une dispersion de vésicules à partir d'une phase lipidique contenant des phospholipides, en particulier la dipalmitoyl phosphatidylcholine et de l'acide phytanique, pour étudier l'influence de l'acide phytanique sur la couch d phospholipid , par résonance magnétique nucléaire. C tt étud montr que la prés nc d'acide phytanique dans la membrane vésiculair provoque une réori ntation d s couches de phospholipide dans le champ magnétique. Selon un article de R. J. CUSHLEY et coll. (Can. J. of Chemistry Vol. 55 1977 pages 220-226), l'introduction d'acide phytanique dans la phase lipidique d vésicules d lécithine destabiliserait fortement la structure de la membran vésiculaire. On a aussi proposé d'utiliser l

phytanetriol en cosmétique (voir CH-A 399 655, JP-A 63/5050 et JP-A 86/236 737).

Mais, jusqu'à ce jour, l'utilisation d'une dispersion vésiculaire cont nant des composés de formul I dans des compositions cosmétiques et/ou pharmaceutiques n'a jamais été proposé et rien ne pouvait suggérer à l'homme de métier I s avantages particuliers d'une telle utilisation, en particuli r que I s dispersions obtenues seraient transparentes.

Dans la phase lipidique constituant la membrane des vésicules, les composés de formul (I) représentent en poids de 5 à 90 % et, de préférence, de 10 à 60 % de la phase lipidique. Pour des quantités inférieures à 5 %, il n'y a pas d'amélioration notable de la transparence. Pour des quantités supérieures à 90 %, les vésicules obtenues ne sont plus assez stables.

La phase lipidique constitutive des membranes des vésicules de la dispersion selon l'invention peut comprendre, de façon connue, au moins un lipide choisi dans le groupe formé par :

A) les lipides non-ioniques ci-après définis :

(1) les dérivés du glycérol, linéaires ou ramifiés, de formule

$$R_0 O - \left[C_3 H_5 (OH) O \right]_{\overline{h}} H$$
 (II)

formule (II) dans laquelle :

10

15

20

25

30

35

40

45

50

55

 -C₃H₅ (OH)Oest représenté par les structures suivantes prises en mélange ou séparément : -CH₂CHOHCH₂O-,

 n est une valeur statistique moyenne comprise entre 1 et 6 ou bien n = 1 ou 2 et alors -C₃H₅-(OH)O- est représenté par la structure -CH₂CHOH-CH₂O-;

• Ro représente :

- (a) une chaîne aliphatique, linéaire ou ramifiée saturée ou insaturée, contenant de 12 à 30 atomes de carbone; ou des radicaux hydrocarbonés des alcools de lanoline; ou les restes d'alpha-diols à longue chaîne;
- (b) un reste R₁CO, où R₁ est un radical aliphatique, linéaire ou ramifié, en C₁₁-C₂₉;
- (c) un reste

$$R_2 - \left\{ OC_2H_3(R_3) \right\}$$

où:

- R₂ peut prendre la signification (a) ou (b) donnée pour R₀;
- -OC₂H₃(R₃)- est représenté par les structures suivantes, prises en mélange ou séparément :

où R₃ prend la signification (a) donnée pour R₀;

(2) les éthers de polyglycérol, linéaires ou ramifiés, comportant deux chaînes grasses ;

(3) les diols à chaîne grasse;

5

10

15

20

25

30

35

40

45

50

55

- (4) les alcools gras oxyéthylénés ou non, les stérols tels par exemple le cholestérol et les phytostérols, oxyéthylénés ou non;
- (5) les éthers et esters de polyols, oxyéthylénés ou non, l'enchaînement des oxydes d'éthylène pouvant être linéaire ou cyclique ;
- (6) I s glycolipides d'origine naturelle ou synthétique, les éthers et esters de mono ou polysaccharides et notamment les éthers et les esters de glucose ;
- (7) les hydroxyamides décrits dans le brevet français n° 2 588 256 et représentés par la formule :

 R_4 — CHOH— CH— COA (III) R_5 — CONH

formule (III) dans laquelle:

- R4 désigne un radical alkyle ou alcényle en C7-C21;
- R₅ désigne un radical hydrocarboné, saturé ou insaturé, en C₇-C₃₁;
- COA désigne un groupement choisi parmi les deux groupements suivants :
 - un reste

CON—B

où:

- B est un radical alcoyle dérivé d'amines primaires ou secondaires, mono- ou polyhydroxylées : et
- R₅ désigne un atome d'hydrogène ou un radical méthyle, éthyle ou hydroxyéthyle ; et
- un reste -COOZ, où Z représente le reste d'un polyol en C₃-C₇.
- (8) les céramides naturels ou de synthèse ;
- (9) les dihydroxyalkylamines, les amines grasses oxyéthylénées ;
- (10) les dérivés du glycérol décrits dans la demande de brevet PCT n°91/00889 déposée le 13 Novembre 1991 et répondant à la formule :

 $CH_{2}-CH-CH_{2}-0-\left\{CH_{2}-CH-0\right\}-H$ OH OH R_{7}

formule (IV) dans laquelle R_7 représente un radical alkyle linéaire en C_{14} à C_{18} ou un groupement -CH₂A dans lequel A est -OR₁₄, R₁₄ représentant un radical alkyle linéaire en C₁₀-C₁₈ et, de préférence, en C₁₆, et n représente une valeur statistique moyenne supérieure à 1 et au plus égale à 3 et, en outre, lorsque R_7 = -CH₂A, n peut également représenter une valeur réelle (non statistique) égale à 2.

- B) les lipides amphiphiles ioniques ci-après définis :
 - (1) les lipides amphiphiles anioniques tels que :
 - les phospholipides naturels, notamment la lécithine d'oeuf ou de soja, ou la sphingomyéline, les phospholipides modifiés par voie chimique ou enzymatique, notamment la lécithine hydrogénée,

et les phospholipides de synthèse, notamment la dipalmitoylphosphatidylcholine ;

 des composés anioniques, tels que ceux décrits dans le brevet français n° 2 588 256 et représentés par la formul

formule (V) dans laquelle :

• R₈ représente un radical alkyle ou alcényle en C₇-C₂₁,

- R₃ représente un radical hydrocarboné, saturé ou insaturé en C₇-C₃₁, et
- M₁ représente H, Na, K, NH₄ ou un ion ammonium substitué dérivé d'une amine,
- (2) des composés anioniques, tels que les esters phosphoriques d'alcools gras, par exemple le dicétylphosphate et le dimyristylphosphate sous forme d'acides ou de sels alcalins; l'acide heptylno-nylbenzène sulfonique; le sulfate de cholestérol acide et ses sels alcalins et le phosphate de cholestérol acide et ses sels alcalins; les lysolécithines; les alkylsulfates, par exemple le cétyl sulfate de sodium; les gangliosides;
- (3) les lipides amphiphiles cationiques, tels que :
 - les composés cationiques dérivés ammonium quaternaire répondant à la formule :

30

35

10

15

20

25

avec R_{10} et R_{11} , identiques ou différents, représentant des radicaux alkyle en C_{12} - C_{20} et R_{12} et R_{13} , identiques ou différents, des radicaux alkyle en C_1 - C_4 ;

- les amines à longue chaîne et leurs dérivés ammonium quaternaire, les esters d'aminoalcools à longue chaîne et leurs sels et dérivés ammonium quaternaire;
- des lipides polymérisables, comme ceux décrits par Ringsdorf et autres dans "Angewandte Chemie" vol 27, n°1, Janvier 1988, pages 129 et 137.

Les lipides amphiphiles utilisés représentent ensemble, de préférence de 10 à 95 %, plus particulièrement de 40 à 90 %, du poids total de la phase lipidique vésiculaire.

On peut ajouter à la phase lipidique constituant la paroi des vésicules, des additifs non-lipidiques tels que certains polymères comme par exemple les polypeptides et les protéines.

La phase aqueuse de dispersion selon l'invention peut être constituée par de l'eau, ou un mélange d'eau et d'au moins un solvant miscible à l'eau tels que les alcools en C₁-C₇ et les polyols d'alkyle en C₁-C₅. La phase aqueuse de dispersion peut également contenir des composés en solution, tels que des sucres, des sels organiques ou minéraux ou des polymères dans la mesure où ils ne modifient pas ou peu la transparence de la dispersion.

La concentration en phase lipidique totale dans la dispersion est comprise entre 0,01 % et 50 % en poids, de préférence entre 1 % et 20 % en poids par rapport au poids total de la dispersion. Les vésicules dispersées ont des dimensions comprises entre 20 et 3000 nm, de préférence entre 20 et 500 nm.

Les compositions selon l'invention peuvent être utilisées même en l'absence de tout actif, comme produits cosmétiques pour le traitement de la peau. On a constaté notamment que, lorsque le composé de formule (I) est le phytanetriol, l'application topique de la composition permet de diminuer le module d'élasticité du stratum corneum.

Mais les compositions selon l'invention peuvent aussi contenir au moins un actif à action cosmétiqu et/ou pharmaceutique.

De façon connue, on peut introduire dans la phase lipidique des vésicules de la dispersion au moins un composé liposoluble cosmétiquement et/ou pharmaceutiquement actif. Selon l'invention, on peut utiliser tout actif liposoluble dans la mesure où il est compatible avec les composés de formule (I) utilisé(s) et où il ne modifi pas de façon gênante la transparence des compositions. Parmi ce ux-ci, on peut citer à titre non

EP 0 584 315 B1

limitatif: l'acide rétinoïque, les lipoprotides et les stéroïdes.

La phase encapsulée dans les vésicules est généralement une phase aqueuse. De façon connue, on peut introduire dans la phase encapsulée et/ou dans la phase de dispersion des actifs hydrosolubles. De très nombreux composés de c type ont été cités dans la littérature. Parmi ceux-ci, on peut citer à titre non limitatif : la glycérine, le sorbitol, l'érythrulose et les antibiotiques.

Des actifs amphiphiles peuvent aussi s répartir entre la phase aqueuse encapsulée et/ou de dispersion et la phase lipidique des vésicules.

Une liste des actifs utilisables dans les compositions selon l'invention est donnée dans le tableau I ciaprès :

TABLEAU I

	FONCTION	ACTIFS UTILISABLES
5		
	Anti-oxydant ou	Les extraits des plantes suivantes :
	anti-radicaux libres.	- Aubépine.
		- Ginkgo biloba.
	·	- Thé vert.
10	-	- Vigne.
		- Romarin
	·	Les enzymes :
		- Commercialisées sous la dénomination SB 12 par SEDERMA et
		constituées par un mélange de lactoferrine et de lactoperoxydase,
15		de glucose oxydase et de thiocyanate de potassium.
		- Superoxyde dismutase.
•		- Glutathion peroxydase.
		La superphycodismutase extraite d'algues.
20		Les coenzymes Q, en particulier la coenzyme Q10.
20		Les séquestrants, en particulier des dérivés d'acides
		polyphosphoniques.
	•	Les tanins.
		Le sélénium et ses dérivés, en particulier la séléniométhionine.
25		Les peptides, par exemple un mélange d'extraits de rate et de
		thymus,
		Thiolim et sérum albumine bovine non stabilisée.
		Les protéines, par exemple l'hémocyanine qui est une protéine
		cuivrée extraite de l'escargot marin et l'apohémocyanine qui est
30		une protéine analogue sans cuivre.
		Les flavonoïdes, notamment la catéchine, les proanthocyanidines,
]	les flavanols, les flavones, les isoflavones, les flavanénols,
		les flavanones, les flavanes et les chalcones.
	· •	Les caroténoldes, notamment le 6-carotène et le rocou.
35	~	L'acide sorbohydroxyamique.
	1	Les tocophérols, notamment l'alpha-tocophérol et l'acétate
		d'alpha-tocophérol.
		Le palmitate d'ascorbyle.
	1	Le gallate de propyle.
40	1	L'acide caféique et ses dérivés.
	1	L'acide ascorbique.
		L'acide homogentisique.
	- [L'acide érythorbique.
<i>1</i> E		L'acide nordihydroguaïacétique.
. 45		Le laurylméthionate de lysine.
		Le butylhydroxyanisole.
		Le butylhydroxytoluène.
		Les substances "SOD like".
50	L	1

TABLEAU I (suite 1)

	FONCTION	ACTIFS UTILISABLES
5		
	Hydratant ou	Une reconstitution de sueur ("Normal moisturizing factors"-NMF).
	humectant	Le pyroglutamate de sodium.
		L'acide hyaluronique.
10		Les dérivés de chitosane (carboxyméthylchitine).
		Le B-glycérophosphate.
		Le lactamide.
		L'acétamide.
	'	Le lactate d'éthyle, de sodium et de triéthanolamine.
15		Le pyrrolidone carboxylate de métaux en particulier de Mg, Zn,
		Fe, Ca ou Na.
		La thiamorpholinone.
		L'acide orotique.
20		Les acides carboxyliques alpha-hydroxylés en C ₃ à C ₂₀ ,
20		notamment l'acide alpha-hydroxy propionique.
		Les polyols, notamment l'inositol, le glycérol, la diglycérine, le
		sorbitol.
		Les polyolosides, notamment alginate et guar.
25		Les protéines, notamment le collagène soluble et la gélatine.
		Les lipoprotides choisis parmi les dérivés mono ou polyacylés
		d'acides aminés ou de polypeptides dans lesquels le reste acide
		RCO comporte une chaîne hydrocarbonée en C ₁₃ -C ₁₉ ,
30		notamment l'acide palmitoylcaseinique, l'acide palmitoyl
. 55		collagénique, le dérivé dipalmitoyl-O-N de l'hydroxyproline, le
		stéaroyl glutamate de sodium, le stéaroyl tripeptide de collagène,
	·	l'oléyltétra et pentapeptide de collagène, le linoléate
		d'hydroxyproline.
35		L'urée et ses dérivés, notamment la méthylurée.
		L'extrait de tissu cutané, notamment celui commercialisé sous la dénomination "OSMODYN" par les Laboratoires Serobiologiques
		de Nancy (LSN) et contenant des peptides, des acides aminés,
		des saccharides et 17% de mannitol.
40	•	Plus particulièrement une association de glycérol, d'urée et d'acide
		palmitoylcaseinique.
		pamoj.com.qo.
	Mélanorégulateur :	Les huiles de bergamote et de citrus.
45	1) accélérateur de	L'alpha-MSH et ses homologues synthétiques.
	bronzage	La caféine.
		Les dérivés de tyrosine, notamment le tyrosinate de glucose et la
		N-malyltyrosine.
50		

TABLEAU I (suite 2)

	FONCTION	ACTIFS UTILISABLES
5	2) Dépigmentant	L'acide ascorbique ou vitamine C et ses dérivés, notamment
10		l'ascorbyle phosphate de Mg. Les hydroxyacides, notamment l'acide glycolique. L'acide kojique. L'arbutine et ses dérivés. L'hémocyanine (protéine cuivrée de l'escargot marin) et l'apohémocyanine (protéine analogue à la précédente sans cuivre).
15		L'hydroquinone et ses dérivés, notamment le monoalkyl éther et le benzyléther.
20	Coloration de la peau (brunissage artificiel)	L'ortho diacétylbenzène. Les indoles. La dihydroxyacétone.
25		L'érythrulose. Le glycéraldéhyde. Les gamma-dialdéhydes, notamment l'aldéhyde tartrique.
30	Liporégulateurs (amincissant et anti- acné, anti-séborrhée)	Les complexes de vitamines et d'oligo-éléments, notamment le complexe vitamine B ₆ /zinc. L'orizanol. L'acide azélaïque.
35	·	Les xanthines et alkylxanthines, notamment l'extrait de cola, la caféine et la théophylline. L'adénosine monophosphate cyclique et non cyclique. L'adénosine triphosphate. L'extrait de lierre.
40		L'extrait de marron d'Inde. Les extraits d'algues, notamment l'extrait d'algues rouges (fucus serratus) et le cytofiltrat. L'extrait de ginseng.
4 5		L'extrait de Centella Asiatica (asiaticoside) contenant de la génine et de l'acide asiatique. La thioxolone (HBT). La S-carboxyméthylcystéine. La S-benzylcystéamine.

55

50

, ; · [

TABLEAU I (suite 3)

5	FONCTION	ACTIFS UTILISABLES
	Antivieillissement et	Les insaponifiables par exemple de soja et d'avocats.
	anti-rides	Les acides gras insaturés, notamment l'acide linoléique et l'acide linolénique.
10		Les hydroxyacides, notamment l'acide glycolique.
		Les facteurs de croissance. Les complexes oligoéléments - vitamines, notamment B ₆ -Zn.
		L'acide n-octanoyle-5 salicylique.
15		L'adénosine.
•		Le rétinol et ses dérivés, notamment l'acétate de rétinol et le palmitate de rétinol.
		Les rétinoïdes, notamment les acides rétinoïques cis ou trans et
20		ceux décrits dans les brevets FR-A-2 570 377; EP-A-199636; et EP-A- 325540 et la demande de brevet européen 90-402072.
20		L'association de rétinoïdes et de xanthines.
		L'hydroxyproline.
		Les acides sialiques. L'extrait de rate, de thymus, Thiolim et sérum albumine bovine
25	·	non stabilisé vendu sous la dénomination commerciale "SILAB" par la Société "SILAB".
	·	Un extrait animal placentaire, notamment l'extrait embryonnaire placentaire de bovidés dans l'eau à 5,5 % stabilisé par 0,2 %
30		d'exyl K100a (matrix). Les protéoglycannes, en particulier le protéoglycanne de cartilage
		de trachée de bovidés à 5 % stabilisé (protéodermin).
		Le colostrum. Les facteurs d'oxygénation cellulaire, notamment l'octacosamol.
35		200 instead of Oxygenizion Contains, notainment i Contactionion.
	Anti-UV	Les filtres UV, notamment le paraméthoxycinnamate d'éthyl-2 hexyle;
40		la benzophénone,
70		le benzylidène-camphre et leurs dérivés, en particulier, la tétrahydroxy-2,2', 4,4'-benzophénone et
		l'acide hydroxy-2 méthoxy-4 benzophénone-5 sulfonique;
		l'acide paraaminobenzoïque, le salicylate de dipropylèneglycol,
45		l'octyl salicylate,
		les dérivés de dibenzoylméthane vendus sous les marques EUSOLEX 8020 ou PARSOL 1789 et
		les produits vendus sous les marques EUSOLEX 232,
50		UNIVUL T 150, UNIVUL N 539, ESCALOL 507.
		<u> </u>

TABLEAU I (suite 4)

FONCTION	ACTIFS UTILISABLES
Kératolytique	L'acide salicylique et ses dérivés, tels que les acides alkylsalicyliques, notamment l'acide n-octanoyl-5 salicylique et le n-dodécanoyl-5, salicylate de N-hexadécyl pyridinium. L'acide rétinolque. Les enzymes protéolytiques, notamment la trypsine, l'alphachymotrypsine, la papaïne, la bromelaine et la pepsine. Le peroxyde de benzoyle. L'urée. Les alpha-hydroxyacides.
Emollient	Esters tels que l'adipate d'isopropyle.
Anti-inflammatoire	Les corticoldes tels que le 17-acétate de \(\beta\)-méthasone, l'indométhacine, le ketoprofène, l'acide flufenamique, l'ibuprofène, le dic lofenac, le diffunisal, le fenclofenac, le naproxene, le piroxidam, et le sulindac. Le monostéaryl éther de glycérol (alcool batylique) et le mono cétyléther de glycérol (alcool chimylique). L'acide glycyrrhétinique et ses sels, notamment d'ammonium. L'alpha-bisabolol (extrait de camomille). La shikonine. Des extraits de plantes, tels qu'eau de bleuet, arnica, aloès. Des extraits de tissu méristématique, notamment l'extrait de racine de chêne. Le plancton.
Rafraichissant	Le menthol. Le lactate de menthyle.
Cicatrisant	L'arbre de peau, extrait de mimosa tenui flora. L'extrait de Centella Asiatica. L'acide 8-glycyrrhétinique. L'hydroxyproline. L'arginine. Un extrait placentaire. Un extrait de levure. Le fagaramide. La N-acétyl hydroxyproline. L'acide acexamique et ses dérivés.

TABLEAU I (suite 5)

5	FONCTION	ACTIFS UTILISABLES
10	Protecteur vasculaire	Les flavonoïdes, notamment les dérivés de rutine, tels que l'étoxazorutine et le rutine propylsulfonate de sodium. Les extraits végétaux, notamment l'extrait huileux de Ginkgo biloba, l'extrait de marron d'Inde (escine), de lierre (saponines) et de petit houx. Le nicotinate d'alpha-tocophérol.
15	Anti-bactérien, antifongique	Le bromure de triméthylcétylammonium. L'acide sorbique.
20		Le peroxyde de benzoyle. Le chlorure de cétylpyridinium. Le chlorure de benzalkonium. L'acide parahydroxybenzoīque et ses sels. Le bromo-2 nitro-2 propanediol-1,3.
25		Le trichlore-3,4,4'-carbanilide. Le trichlore-2,4,4'-hydroxy-2 diphényléther. L'acide déhydroacétique. Un extrait de pamplemousse dans la glycérine et le propylène glycol.
30		La chlorhexidine. L'hexetidine. L'hexamidine.
35	Agent insectifuge	Le diméthyltoluamide.
40	Antiperspirant	Le chlorhydrate d'aluminium. Le chlorure d'aluminium. Le complexe lactate de sodium/aluminium chlorhydroxy. Le chlorhydrate de zirconyle.

TABLEAU I (suite 6)

Le produit vendu sous la marque "IRGASAN DP 300". L'octopyrox. Les omadines. Le goudron de houille. L'hydroxy-1 méthyl-4 triméthyle-2,4,4 pentyl-6 pyridin Le sulfure de sélénium.	
L'éthyl-2 hexanediol-1,3. L'hexachlorophène. Le produit vendu sous la marque "IRGASAN DP 300". Anti-pelliculaire L'octopyrox. Les omadines. Le goudron de houille. L'hydroxy-1 méthyl-4 triméthyle-2,4,4 pentyl-6 pyridir Le sulfure de sélénium.	
L'hexachlorophène. Le produit vendu sous la marque "IRGASAN DP 300". Les omadines. Le goudron de houille. L'hydroxy-1 méthyl-4 triméthyle-2,4,4 pentyl-6 pyridin Le sulfure de sélénium.	
Anti-pelliculaire L'octopyrox. Les omadines. Le goudron de houille. L'hydroxy-1 méthyl-4 triméthyle-2,4,4 pentyl-6 pyridin Le sulfure de sélénium.	
Anti-pelliculaire L'octopyrox. Les omadines. Le goudron de houille. L'hydroxy-1 méthyl-4 triméthyle-2,4,4 pentyl-6 pyridir Le sulfure de sélénium.	
Les omadines. Le goudron de houille. L'hydroxy-1 méthyl-4 triméthyle-2,4,4 pentyl-6 pyridir Le sulfure de sélénium.	none-2.
Les omadines. Le goudron de houille. L'hydroxy-1 méthyl-4 triméthyle-2,4,4 pentyl-6 pyridir Le sulfure de sélénium.	none-2.
L'hydroxy-1 méthyl-4 triméthyle-2,4,4 pentyl-6 pyridir Le sulfure de sélénium.	none-2.
Le sulfure de sélénium.	none-2.
20	
Anti-chute des cheveux Les inhibiteurs de glucuronidases.	
Les muccopolysaccharides.	
Le nicotinate de méthyle ou d'hexyle.	
La forskaline.	
Le minoxidil. Les xanthines.	
Les rétinoïdes.	
30	
Colorant capillaire Les bases et coupleurs d'oxydation.	
Les colorants directs.	
Les colorants auto-oxydables.	
Agent décolorant pour	
cheveux Le peroxyde d'hydrogène.	
Réducteur pour L'acide thioglycolique.	
permanentes La cystéine.	
La cystéamine.	
La N-acétyl cystéine.	
La N-acétyl cystéamine.	
Le thioglycolate de glycérol.	
Agent conditionneur	
pour peau et cheveux Polymères cationiques, cations.	
50	

Les dispersions contenues dans les compositions selon l'invention peuvent être préparées par tout mode de préparation connu pour la préparation des vésicules de lipide amphiphile. Divers modes de préparation sont, par exemple décrits dans "Les liposomes en biologie cellulair et pharmacologie" Editions INSERM/John Libbey Emotext, 1987 pages 6 à 18.

Les dispersions de vésicules selon l'invention sont préparées, d préférence, par le procédé décrit ciaprès :

- dans un premier stade, on prépare la phase lipidique devant former la membrane des vésicules par dissolution dans un solvant du (des) lipide(s) amphiphile(s), des composés de formule (l) et, éventuellement un (ou plusieurs) composé(s) cosmétiquement et/ou pharmaceutique-ment actif(s) liposoluble(s) et on évapore le solvant sous pression réduite;
- dans un second stade, on ajoute la phase aqueuse d dispersion et on homogénéise le mélange par un moyen mécanique du type secouage et/ou ultrasons, pour obtenir la dispersion de vésicules.

L'homogénéisation est effectuée à une température comprise entre 10 °C et 120 °C, de préférence entre 30 et 80 °C.

Les compositions selon l'invention peuvent se présenter sous la forme de gels, de lotions ou de sérums en ajoutant, de façon connue, dans la phase aqueuse de dispersion des additifs de formulation n'ayant ni activité cosmétique, ni activité dermopharmaceutique propre. Parmi ces additifs, on peut citer les gélifiants, les polymères, les conservateurs, les colorants et les parfums.

La présente invention a également pour objet certaines dispersions de vésicules utilisées dans les compositions, selon l'invention. La présente invention a, par conséquent, pour objet les dispersions, dans une phase aqueuse de dispersion, de vésicules délimitées par une membrane de phase lipidique contenant au moins un lipide amphiphile ionique et/ou au moins un lipide amphiphile non-ionique, lesdites vésicules contenant une phase encapsulée, caractérisée par le fait que la phase lipidique contient au moins un composé de formule :

formule (I) dans laquelle:

5

10

15

30

35

40

45

50

55

- ou bien W représente -CH₂OH, -COOM ou -(CH₂)₂-COOM, où M représente H, un métal alcalin ou un métal alcalinoterreux, auquel cas X, Y, Z et V, identiques ou différents, représentent un atome d'hydrogène ou un radical hydroxyle, avec la condition que, lorsque W représente -CH₂OH, ou COOM, au moins un des radicaux X, Y, Z ou V représente un radical hydroxyle;
- ou bien W représente un groupement -CH₃, auquel cas X, Y, Z et V représentent H ou -OH combinés comme indiqué dans chaque ligne du tableau ci-dessous :

X	Υ	Z	٧	
ОН	ОН	ОН	ОН	
ОН	Н	ОН	ОН	
ОН	ОН	ОН	Η	
Н	ОН	ОН	ОН	
Н	ОН	ОН	н	
Н	H	ОН	ОН	
ОН	Н	ОН	Н	

Une description plus détaillée de ces dispersions transparentes qui sont utilisées pour la fabrication de compositions cosmétiques et/ou pharmaceutiques a été donnée ci-dessus.

Pour mieux faire comprendr l'obj t de l'invention, on va décrire maintenant, à titre d'exemples purement illustratifs et non limitatifs, plusieurs modes de mise en oeuvre.

Dans les exemples donnés ci-après, les dispersions ont été préparées de la façon suivante : On introduit 1,5 g de phase lipidique ayant la composition donnée dans le tableau II ci-après dans un ballon

EP 0 584 315 B1

de 100 ml et on solubilise dans le solvant indiqué dans ledit tableau. L solvant est ensuite évaporé à 40 ° C par paliers successifs depuis la pression ambiante jusqu'à environ 500 Pa à l'aide d'un évaporateur rotatif. Au film de phase lipidique obtenu, on ajoute 28,5 g d solution d'azoture de sodium (NaN₃) à 0,02 % en poids dans l'eau, pendant le temps et à la température donnés dans le tableau II ci-après.

Le mélange obtenu st agité à l'aide de la secoueus à bras oscillants comm reialisé par la société "PROLABO" sous la dénomination "OSCILL 12".

La dispersion obtenu , portée à la températur d 30 °C est ensuite traité pendant 2 mn à l'aide d'un homogénéisateur à ultrasons commercialisé par la société "BRANSON SONIC POWER Co" sous la dénomination "SONIFIER B 30" avec le réglage suivant :

- cycle de travail : 50 %
- réglage de puissance : position 5. Sur la dispersion obtenue, on a mesuré :
- la granulométrie, avec l'appareil commercialisé par la société "COULTER ELECTRONICS" sous la dénomination "COULTER N4", qui fonctionne sur le principe de la diffusion quasi-élastique de la lumière. La granulométrie des vésicules est caractérisée par un diamètre moyen (d) en nanomètres et un facteur de polydispersité en taille (Q). Ces deux paramètres sont calculés par la méthode des cumulants. Les mesures sont effectuées sur des dilutions contenant environ 0,3 % en poids de dispersion de vésicules.
- la densité optique des dispersions, à l'aide d'un spectrophotomètre UV-visible commercialisé par la société "BECKMAN" sous la dénomination "U.V. 5230", la mesure étant effectuée après dilution au quart de la dispersion à l'aide d'une solution d'azoture de sodium à 0,02 % en poids dans l'eau dans une cuve de 0,2 cm d'épaisseur, à 450 nm. Plus la densité optique DO₄₅₀ obtenue est faible, plus la dispersion est transparente.

Des essais comparatifs ont été effectués en l'absence de composé de formule (I) dans la phase lipidique et en présence d'hexadécanediol,1-2 qui est un polyol non ramifié ayant la même longueur de chaîne que les composés de formule (I).

30

10

15

20

25

35

--

45

50

L s résultats sont donnés dans le tableau II ci-après :

50	45	40	35	30	25	15	10	. 5	
				TABLEAU II	U II				,
				Conditions de préparation	préparation		c		
xemple N°		Composition de la phase lipidique	e lipidique	Solvant utilise dans préparation phase lipidique	Agitation du mélange	d (nm)	polydispersité	DO450	
2	lipide 1 cholestérol DCP	0,825 g 0,600 g 0,075 g	0,825 g 0,600 g 0,075 g	6,7 ml de dichloroiné-thane et 1,7 ml de méthanol	2 heures à 45°C	174	0,21	0,70	
7	lipide 1 cholestérol phytanetriol DCP	0,825 g 0,300 g 0,300 g 0,300 g	0,825 g 0,300 g 0,300 g 0,075 g	8,4 ml de dichloromé-thane et 1,7 ml de méthanol	2 heures à 45°C	168	0,15	0,24	
3	lipide 1cholestérolhexadecanediol 1.	0,825 g 0,300 g 11-2 0,300 g	25 20 20 20 20 20 20 20 20 20 20 20 20 20	6,7 ml de dichloromé-thane et 1,7 ml de méthanol	2 heures à 45°C	155	0,22	0,40	

* ne fait pas partie de l'invention

, ·	•						
5 .			DO450	19'0	0,38	69'0	
10 .		0	polydispersité	0,35	0,21	0,25	
15		:	d (nm)	178	188	11	
20	suite 1)	préparation	Agitation du mélange	2 heures à 70°C	2 heures à 70°C	2 heures à 70°C	
25	TABLEAU II (suite 1)	Conditions de préparation	Solvant utilise dans préparation phase lipidique	6,7 ml de chloroforme et 1,7 ml de méthanol	6,7ml de chloroforme et 0,8 ml de méthanol	6,7 ml de chloroforme et 1,7 ml de méthanol	
30	T						
35			Composition de la phase lipidique	0,825 g 0,600 g 0,075 g	0,825 g 0,300 g 0,300 g 0,300 g	0,825 g 0,300 g 1-2 0,300 g	
40 45			Composition de l	2 itérol	2 utérol netriol	2 stérol lecanediol	• ne fait pas partie de l'invention
50			Exemple N°	lipide 4* choles DCP	lipide 5 choles phyta DCP	lipide 6* chole hexad	• ne fait pas pa

					·	<u> </u>
5		·	DO450	0,10	0,05	0,10
10		O	polydispersité	0,26	0,28	0,25
15		(wu) p		129	91	115
20	suite 2)	préparation	Agitation du mélange	2 heures à 70°C	2 heures à 70°C	2 heures à 70°C
25	TABLEAU II (suite 2)	Conditions de préparation	Solvant utilisé dans préparation phase lipidique	6,7 ml de dichloromé- thane et 1,7 ml de méthanol	6,7 ml de dichloromé- thane et 1,7 ml de méthanol	6,7 ml de dichloromé- thane et 1,7 ml de méthanol
30	TA		dne			
35			: la phase lipidi	9,825 g 9,000 g 0,075 g	0,825 g 0,300 g 0,300 g 0,005 g	0,825 g 0,300 g 1-2 0,300 g 0,075 g
40		-	Composition de la phase lipidique	lipide 3 cholestérol DCP	lipide 3	lipide 3 cholestérol hexadecanediol 1-2 DCP
45			Exemple N°	1ipi 7* Cho DC	8 Cho	ipi chc hea DC

* ne fait pas partie de l'invention

•			<u> </u>		•
5		DO450	89'0	0,17	0,65
10	0	polydispersité	0,31	0,16	0,15
15	·	d (nm)	165	140	181
suite 3)	préparation	Agitation du mélange	2 heures à 70°C	2 heures à 70°C	2 heures à 70°C
S S TABLEAU II (suite 3)	Conditions de préparation	Solvant utiliaé dans préparation phase lipidique	6,7 ml de dichloromé- thane	6,7 ml de dichloromé- thane et 1,7 ml de méthanol	6,7 ml de dichloromé-thane et 1,7 ml de méthanol
30 T		que			şî Şî
35		la phase lipidi	0,713 g 0,712 g 0,075 g	0,713 g 0,277 g 0,435 g 0,075 g	0,713 g 0,277 g diol 1-2 0,435 g 0,075 g
40 `		Composition de la phase lipidique		lipide 4	rol anediol 1-2
45			lipide 4cholestérol	lipide 4 cholestérol phytanetriol DCP	lipide 4
50		Exemple N°	10•	11	12•

* ne fait pas partie de l'invention

55

					T	1
5		DO450	0,14	66'0	0,10	
. 10	0	polydispersité	0,21	0,22	0,21	
15		(mu) p	133	137	118	
ouite 4)	préparation	Agitation du mélange	2 heures à 70°C	2 heures à 45° C	2 heures à 45° C	
TABLEAU II (suite 4)	Conditions de préparation	Solvant utilise dans préparation phase lipidique	5 ml de dichloromé- thane et 1,7 ml de méthanol	10 ml de dichloromé- thane et 2ml de méthanol	10 ml de dichloromé- thane et 2ml de méthanol	
30 T		dne				
35		iase lipidi	0,713 g 0,277g 0,435 g 0,075 g	1,050 g 0,375 g 0,075 g	1,050 g 0,375 g 0,075 g	
		Composition de la phase lipidique		1,050 g 0,375 g 0,075 g	1,050 g 8,375 g 0,375 g	ention
40	Compositi		4 stérol ge (phyt	stérol	lipide 1 phytanetriol DCP	• ne fait pas partie de l'invention
45	-	es .	lipide choles mélan phyta DCP		ig fg O	pas p
		Exemple N°	13	14*	15	* ne fait
50 L						•

Dans ce tableau, les différents constituants sont les suivants :

Lipide 1 : lécithine commercialisée par la société "LUCAS MEYER"sous la dénomination "EPIKU-

RON 200"

55

Cholestérol: commercialisé par la société "PROLABO"

DCP: dicétylphosphate de sodium

Lipide 2 : lécithine hydrogénée commercialisée par la société "QUEST INTERNATIONAL" sous la

dénomination "LECINOL S 10"

Lipide 3: lipide amphiphile non-ionique : alcool hexadécylique polyoxyéthyléné contenant en

moyenne 20 motifs d'oxyde d'éthylène, commercialisé par la société "ICI ATLAS" sous

la dénomination "BRU 58"

Lipide 4 : lipide amphiphile non-ionique de formule :

$$C_{16}H_{33}O - \left\{C_{3}H_{5}(OH)O\right\}_{\overline{n}}H$$

où -C₃H₅(OH)O- est représenté par les structures suivantes prises en mélange ou séparément :

et n est une valeur statistique moyenne égale à 3

Mélange (phytanetriol + phytanetétrol) : mélange d'environ 1/1 en poids de phytanetriol et d'un tétrol

constitué par les isomères suivants pris en mélange ou

séparément :

Revendications

40

45

50

55

5

10

15

1. Composition cosmétique et/ou pharmaceutique contenant au moins une dispersion, dans une phase aqueuse de dispersion, de vésicules délimitées par une membrane de phase lipidique contenant au moins un lipide amphiphile ionique et/ou au moins un lipide amphiphile non-ionique, lesdites vésicules contenant une phase encapsulée, caractérisée par le fait que la phase lipidique d'au moins un dispersion contient au moins un composé de formule :

formule (I) dans laquelle :

5

10

15

20

25

30

35

40

45

50

55

- ou bi n W représente -CH₂OH, -COOM ou -(CH₂)₂-COOM, où M représent H, un métal alcalin ou un métal alcalinoterreux, auquel cas X, Y, Z et V, identiques ou différents, r présentent un atom d'hydrogène ou un radical hydroxyl, avec la condition que, lorsqu W représ nt -CH₂OH, au moins un d s radicaux X, Y, Z ou V représente un radical hydroxyle;
- ou bien W représente un groupement -CH₃, auquel cas X, Y, Z et V représent nt H ou -OH combinés comme indiqué dans chaque ligne du tableau ci-dessous :

Х	Υ	Z	٧
ОН	ОН	ОН	ОН
ОН	Н	ОН	ОН
ОН	ОН	ОН	Η
Н	ОН	ОН	ОН
Н	ОН	ОН	H
Н	H	ОН	ОН
ОН	Н	ОН	Н

- 2. Composition selon la revendication 1, caractérisée par le fait que le(s) composé(s) de formule (I) est (ou sont) choisi(s) dans le groupe formé par le phytanetriol, l'acide 5,9,13,17-tétraméthyl octadécanoïque, le 3,7,11,15-tétraméthyl 1,2,3,4-tétrahydroxy hexadécane et le 3-hydroxyméthyl 7,11,15-triméthyl 1,2,4-trihydroxy hexadécane.
- 3. Composition selon l'une des revendications 1 ou 2, caractérisée par le fait que le(s) composé(s) de formule (I) représente(nt) 5 % à 90 % en poids de la phase lipidique de la dispersion.
 - 4. Composition selon l'une des revendications 1 à 3, caractérisée par le fait que la phase lipidique constitutive des membranes des vésicules comprend au moins un lipide choisi dans le groupe formé par :
 - A) les lipides non-ioniques ci-après définis :
 - (1) les dérivés du glycérol, linéaires ou ramifiés, de formule

$$R_0 O - \left\{ C_3 H_5 (OH) O \right\}_{\overline{D}} H$$

formule (II) dans laquelle:

-C₃ H₅ (OH)O-est représenté par les structures suivantes prises en mélange ou séparément :
 -CH₂ CHOHCH₂ O-,

- n est une valeur statistique moyenne comprise entre 1 et 6 ou bien n = 1 ou 2 et alors
 -C₃H₅ (OH)O- est représenté par la structure -CH₂CHOH-CH₂O-;
- R_o représent :

 (a) une chaîne aliphatique, linéaire ou ramifié saturé ou insaturée, contenant d 12 à 30 atomes de carbone ; ou des radicaux hydrocarbonés d s alcools de lanolin ; ou les restes d'alpha-diols à longu chaîn ;

- (b) un reste R₁CO, où R₁ est un radical aliphatique, linéaire ou ramifié, en C₁₁-C₂₉;
- (c) un r ste

 $R_2 - \left[OC_2H_3(R_3) \right]$

où :

- R₂ peut prendre la signification (a) ou (b) donnée pour R_o;
- -OC₂H₃(R₃)- est représenté par les structures suivantes, prises en mélange ou séparément :

20

25

5

10

15

où R₃ prend la signification (a) donnée pour R_o;

- (2) les éthers de polyglycérol, linéaires ou ramifiés, comportant deux chaînes grasses ;
- (3) les diols à chaîne grasse;
- (4) les alcools gras oxyéthylénés ou non, les stérols et les phytostérols, oxyéthylénés ou non ;
- (5) les éthers et esters de polyols, oxyéthylénés ou non, l'enchaînement des oxydes d'éthylène pouvant être linéaire ou cyclique ;
- (6) les glycolipides d'origine naturelle ou synthétique, les éthers et esters de mono ou polysaccharides et notamment les éthers et les esters de glucose ;
- (7) les hydroxyamides représentés par la formule :

30

35

formule (III) dans laquelle :

- R₄ désigne un radical alkyle ou alcényle en C₇-C₂₁;
- R₅ désigne un radical hydrocarboné, saturé ou insaturé, en C₇-C₃₁;
- COA désigne un groupement choisi parmi les deux groupements suivants :
 - un reste

50

55

45

où:

- B est un radical alcoyle dérivé d'amines primaires ou secondaires, mono- ou polyhydroxylées; et
- R₅ désigne un atome d'hydrogène ou un radical méthyle, éthyle ou hydroxyéthyle ; et
- un r ste -COOZ, où Z r présente le reste d'un polyol en C₃-C₇;
- (8) les céramides naturels ou d synthès ;
- (9) les dihydroxyalkylamines, les amines grass s oxyéthylénées ;

(10) les dérivés du glycérol répondant à la formule :

5

10

15

20

25

30

35

40

45

50

$$CH_2 - CH - CH_2 - 0 - CH_2 - CH_2 - 0 - H$$
OH OH
 R_7
(IV)

formule (IV) dans laquelle R_7 représente un radical alkyle linéaire en C_{14} à C_{18} ou un groupement -CH₂A dans lequel A est -OR₁₄, R₁₄ représentant un radical alkyle linéaire en C₁₀-C₁₈ et, de préférence, en C₁₆, et n représente une valeur statistique moyenne supérieure à 1 et au plus égale à 3 et, en outre, lorsque R_7 = -CH₂A, n peut également représenter une valeur réelle (non statistique) égale à 2.

- B) les lipides amphiphiles ioniques ci-après définis :
 - (1) les lipides amphiphiles anioniques suivants :
 - les phospholipides naturels, modifiés par voie chimique ou enzymatique, et les phospholipides de synthèse;
 - des composés anioniques, tels que ceux décrits dans le brevet français n° 2 588 256 et représentés par la formule

formule (V) dans laquelle :

- R₈ représente un radical alkyle ou alcényle en C₇-C₂₁,
- R₉ représente un radical hydrocarboné, saturé ou insaturé en C₇-C₃₁, et
- M₁ représente H, Na, K, NH₄ ou un ion ammonium substitué dérivé d'une amine,
- (2) des composés anioniques, constituant le groupe formé par les esters phosphoriques d'alcools gras, l'acide heptylnonylbenzène sulfonique, le sulfate de cholestérol acide et ses sels alcalins, le phosphate de cholestérol acide et ses sels alcalins, les lysolécithines, les alkylsulfates et les gangliosides ;
- (3) les lipides amphiphiles cationiques, suivants :
 - les composés cationiques dérivés ammonium quaternaire répondant à la formule :

avec R_{10} et R_{11} , identiques ou différents, représentant des radicaux alkyle en C_{12} - C_{20} et R_{12} et R_{13} , identiques ou différents, des radicaux alkyle en C_{1} - C_{4} ;

- les amines à longue chaîne et leurs dérivés ammonium quaternaire, les esters d'aminoalcools à longue chaîne et leurs sels et dérivés ammonium quaternaire ;
- des lipides polymérisables.
- 55 5. Composition s lon l'un des revendications 1 à 4, caractérisée par le fait qu la phase aqueus de dispersion st choisi dans le groupe formé par l'eau et les mélang s d'eau avec au moins un alcool en C₁-C₇ t/ou un polyol d'alkyle en C₁-C₅.

- 6. Composition selon l'une des revendications 1 à 5, caractérisée par le fait que la phase lipidique totale de la dispersion représente entre 0,01 % et 50 % en poids par rapport au poids total de la dispersion.
- 7. Composition selon l'une des revendications 1 à 6, caractérisée par le fait que le(s) lipide(s) amphiphile-(s) représente(nt) entre 10 et 95 % en poids par rapport au poids total de la phase lipidique.
 - 8. Composition selon la revendication 7, caractérisée par le fait que le(s) lipide(s) amphiphile(s) représente(nt) de 40 à 90 % du poids total de la phase lipidique.
- 10 9. Composition selon l'une des revendications 1 à 8, caractérisée par le fait que les vésicules ont des dimensions comprises entre 20 et 3 000 nm.
 - 10. Composition selon la revendication 9, caractérisée par le fait que les vésicules ont des dimensions comprises entre 20 et 500 nm.
 - 11. Composition selon l'une des revendications 1 à 10, caractérisée par le fait qu'elle contient au moins un actif à action cosmétique et/ou pharmaceutique.
- 12. Composition selon l'une des revendications 1 à 11, caractérisée par le fait que la phase lipidique des vésicules de la dispersion contient au moins un composé liposoluble cosmétiquement et/ou pharmaceutiquement actif.
 - 13. Composition selon l'une des revendications 11 ou 12, caractérisée par le fait que la phase aqueuse encapsulée contient au moins un composé hydrosoluble cosmétiquement et/ou pharmaceutiquement actif.
 - 14. Composition selon l'une des revendications 11 à 13, caractérisée par le fait que la phase aqueuse de dispersion contient au moins un composé hydrosoluble cosmétiquement et/ou pharmaceutiquement actif.
 - 15. Composition selon l'une des revendications 11 à 14, caractérisée par le fait qu'elle comprend au moins un additif de formulation assurant sa présentation sous forme de gel, de lotion ou de sérum.
- 16. Procédé de préparation d'une dispersion contenue dans la composition selon l'une des revendications
 1 à 15, caractérisé par le fait que :
 - on prépare la phase lipidique par dissolution dans un solvant des différents constituants de ladite phase lipidique et on évapore le solvant sous pression réduite ;
 - on ajoute la phase aqueuse de dispersion et on homogénéise le mélange par un moyen mécanique et/ou à l'aide d'ultrasons, pour obtenir la dispersion de vésicules.
 - 17. Procédé selon la revendication 16, caractérisé par le fait que l'homogénéisation est effectuée à une température comprise entre 10 et 120 ° C.
- 18. Dispersion, dans une phase aqueuse de dispersion, de vésicules délimitées par une membrane d phase lipidique contenant au moins un lipide amphiphile ionique et/ou au moins un lipide amphiphile non-ionique, lesdites vésicules contenant une phase encapsulée, caractérisée par le fait que la phase lipidique d'au moins une dispersion contient au moins un composé de formule :

formule (I) dans laquelle :

5

15

25

30

- ou bien W représente -CH₂OH, -COOM ou -(CH₂)₂-COOM, où M représ nte H, un métal alcalin ou un métal alcalinoterreux, auquel cas X, Y, Z et V, identiques ou différents, r présentent un atome d'hydrogène ou un radical hydroxyle, avec la condition qu , lorsqu W représ nt -CH₂OH ou COOM, au moins un des radicaux X, Y, Z ou V représent un radical hydroxyl ;
- ou bien W r présente un groupement -CH₃, auquel cas X, Y, Z et V représentent H ou -OH combinés comm indiqué dans chaque ligne du tableau ci-d ssous :

Х	Υ	Z	>
ОН	ОН	ОН	ОН
ОН	Н	ОН	ОН
ОН	ОН	ОН	н
Н	ОН	ОН	ОН
Н	ОН	ОН	Н
Н	Н	ОН	ОН
ОН	Н	ОН	Н

Claims

5

10

15

20

25

30

35

45

50

55

1. Cosmetic and/or pharmaceutical composition containing at least one dispersion, in an aqueous dispersion phase, of vesicles delimited by a lipid phase membrane containing at least one ionic amphiphilic lipid and/or at least one nonionic amphiphilic lipid, the said vesicles containing an encapsulated phase, characterized in that the lipid phase of at least one dispersion contains at least one compound of formula:

in which formula (I):

- either W represents -CH₂OH, -COOM or -(CH₂)₂-COOM, where M represents H, an alkali metal or an alkaline-earth metal, in which case X, Y, Z and V, which are identical or different, represent a hydrogen atom or a hydroxyl radical, with the condition that, when W represents the -CH₂OH group, at least one of the radicals X, Y, Z or V represents a hydroxyl radical;
- or else W represents a -CH₃ group, in which case X, Y, Z and V represent H or -OH combined as shown in each line of the table below:

х	Υ	Z	٧
ОН	ОН	ОН	ОН
ОН	Н	ОН	ОН
ОН	ОН	ОН	Н
Н	ОН	ОН	ОН
Н	ОН	ОН	Н
Н	Н	ОН	ОН
ОН	Н	ОН	Н

- 2. Composition according to claim 1, characterized in that the compound(s) of formula (I) is (or are) chosen from the group formed by phytanetriol, 5,9,13,17-tetramethyloctadecanoic acid, 3,7,11,15-tetramethyl-1,2,3,4-tetrahydroxyhexadecane and 3-hydroxymethyl-7,11,15-trimethyl-1,2,4-trihydroxyhexadecane.
- 3. Composition according to one of Claims 1 or 2, characterized in that the compound(s) of formula (I) represent(s) 5% to 90% by weight of the lipid phase of the dispersion.
 - 4. Composition according to one of Claims 1 to 3, characterized in that the constituent lipid phase of the membranes of the vesicles comprises at least one lipid chosen from the group formed by:
 - A) the nonionic lipids defined below:
 - (1) the linear or branched glycerol derivatives of formula

$$R_0O - \left\{C_3H_5(OH)O\right\}_{\overline{h}} H$$
 (II)

in which formula (II):

10

25

30

35

40

45

50

55

 \bullet -C3 H5 (OH)O-is represented by the following structures taken as mixtures or separately : -CH2 CHOHCH2 O- ,

- n is a mean statistical value between 1 and 6 or else n = 1 or 2 and then -C₃H₅(OH)O- is represented by the structure -CH₂CHOH-CH₂O-;
- R_o represents
 - (a) a saturated or unsaturated, linear or branched, aliphatic chain containing from 12 to 30 carbon atoms; or hydrocarbon radicals from lanolin alcohols; or the residues of long-chain alpha-diols:
 - (b) a residue R₁CO, where R₁ is a linear or branched, C₁₁-C₂₉ aliphatic radical;
 - (c) a residue

$$R_2 - \left\{ 0C_2H_3(R_3) \right\}$$

where:

- R₂ can tak the meaning (a) or (b) given for R₀;
- -OC₂H₃(R₃)- is represented by the following structures, taken as a mixture or separately:

-OCH -- CH2- and -O-CH2-CH-

where R₃ takes the meaning (a) given for R₀;

- (2) the linear or branched polyglycerol ethers containing two fatty chains;
- (3) the diols containing a fatty chain;
- (4) the oxyethylenated or nonoxyethylenated fatty alcohols, or the oxyethylenated or nonoxyethylenated phytosterols or sterols,
- (5) the oxyethylenated or nonoxyethylenated ethers and esters of polyols, it being possible for the ethylene oxide chain to be linear or cyclic;
- (6) the glycolipids of natural or synthetic origin, the ethers and esters of mono- or polysaccharides and especially the ethers and the esters of glucose;
- (7) the hydroxyamides represented by the formula:

30

35

40

5

10

15

20

25

in which formula (III):

- R₄ denotes a C₇-C₂₁ alkyl or alkenyl radical;
- R₅ denotes a saturated or unsaturated C₇-C₃₁ hydrocarbon radical;
- COA denotes a group chosen from the two following groups:
 - a residue

45

where:

- B is an alkyl radical derived from mono- or polyhydroxylated, primary or secondary amines; and
- R₆ denotes a hydrogen atom or a methyl, ethyl or hydroxyethyl radical; and
- a residue -COOZ, where Z represents the residue of a C₃-C₇ polyol.
- (8) the natural or synthetic ceramides;
- (9) the oxyethylenated fatty ones or dihydroxyalkylamines;

55

(10) the glycerol derivatives corresponding to the formula:

$$CH_2 - CH - CH_2 - O - \left[CH_2 - CH - O \right] - H$$

OH OH

 R_7
 O

in which formula (IV) R_7 represents a linear C_{14} to c_{18} alkyl radical or a group -CH₂A in which A is -OR₁₄, R₁₄ representing a linear C_{10} -C₁₈ alkyl radical and, preferably, a linear C₁₆ alkyl radical, and n represents a mean statistical value greater than 1 and at most equal to 3 and, additionally, when R_7 = -CH₂A, n can also represent a true value (non-statistical) equal to 2.

- B) the ionic amphiphilic lipids defined below:
 - (1) the following anionic amphiphilic lipids:
 - the natural phospholipids, modified chemically or enzymatically, and the synthetic phospholipids;
 - anionic compounds, such as those described in French Patent No. 2,588,256 and represented by the formula

in which formula (V):

5

10

15

20

25

30

35

40

45

50

- R₈ represents a C₇-C₂₁ alkyl or alkenyl radical,
- R₉ represents a saturated or unsaturated C₇-C₃₁ hydrocarbon radical, and
- M₁ represents H, Na, K, NH₄ or a substituted ammonium ion derived from an amine,
- (2) anionic compounds, constituting in the group formed by the phosphoric esters of fatty alcohols, heptylnonylbenzenesulphonic acid, cholesterol acid sulphate and its alkaline salts, cholesterol acid phosphate and its alkaline salts, the lysolecithins, the alkyl sulphates and gangliosides;
- (3) the following cationic amphiphilic lipids:
 - the quaternary ammonium derived cationic compounds corresponding to the formula:

with R_{10} and R_{11} , which are identical or different, representing C_{12} - C_{20} alkyl radicals and R_{12} and R_{13} , which are identical or different, C_1 - C_4 alkyl radicals;

- the long-chain amines and their quaternary ammonium derivatives, and the long-chain amino alcohol esters and their salts and quaternary ammonium derivatives;
- polymerizable lipids.
- 55 5. Composition according to one of Claims 1 to 4, characterized in that the aqueous dispersion phas is chos n from th group formed by water and mixtures of wat r with at least on C₁-C₇ alcohol and/or one C₁-C₅ alkyl polyol.

- 6. Composition according to one of Claims 1 to 5, characterized in that the total lipid phase of the dispersion represents between 0.01% and 50% by weight with respect to the total weight of the dispersion.
- 5 . 7. Composition according to one of Claims 1 to 6, characterized in that the amphiphilic lipid(s) r present-(s) between 10 and 95% by weight with respect to the total weight of the lipid phase.
 - 8. Composition according to Claim 7, characterized in that the amphiphilic lipid(s) represent(s) from 40 to 90% of the total weight of the lipid phase.
 - 9. Composition according to one of Claims 1 to 8, characterized in that the vesicles have sizes between 20 and 3000 nm.
- 10. Composition according to Claim 9, characterized in that the vesicles have sizes between 20 and 500 nm.
 - 11. Composition according to one of Claims 1 to 10, characterized in that it contains at least one active principle having cosmetic and/or pharmaceutical action.
- 20 12. Composition according to one of Claims 1 to 11, characterized in that the lipid phase of the vesicles of the dispersion contains at least one cosmetically and/or pharmaceutically active liposoluble compound.
 - 13. Composition according to one of Claims 11 or 12, characterized in that the encapsulated aqueous phase contains at least one cosmetically and/or pharmaceutically active water-soluble compound.
 - 14. Composition according to one of Claims 11 to 13, characterized in that the aqueous dispersion phase contains at least one cosmetically and/or pharmaceutically active water-soluble compound.
- 15. Composition according to one of Claims 11 to 14, characterized in that it comprises at least one formulation additive providing for its presentation in the gel, lotion or serum form.
 - 16. Process for the preparation of a dispersion contained in the composition according to one of Claims 1 to 15, characterized in that:
 - the lipid phase is prepared by dissolving various constituents of the said lipid phase in a solvent and the solvent is evaporated under reduced pressure;
 - the aqueous dispersion phase is added and the mixture is homogenized by a mechanical means and/or using ultrasound, to produce the vesicle dispersion.
- 17. Process according to Claim 16, characterized in that homogenization is carried out at a temperature between 10 and 120 °C.
 - 18. Dispersion, in an aqueous dispersion phase, of vesicles delimited by a lipid phase membrane containing at least one ionic amphiphilic lipid and/or at least one nonionic amphiphilic lipid, the said vesicles containing an encapsulated phase, characterized in that the lipid phase of at least one dispersion contains at least one compound of formula:

in which formula (I):

10

25

35

45

50

55

• eith r W represents -CH₂OH, -COOM or -(CH₂)₂-COOM, where M r presents H, an alkali metal or an alkaline-earth metal, in which case X, Y, Z and V, which are identical or different, represent a

EP 0 584 315 B1

hydrogen atom or a hydroxyl radical, with the condition that, when W represents -CH₂OH or COOM, at least one of the radicals X, Y, Z or V represents a hydroxyl radical;

 or else W represents a -CH₃ group, in which case X, Y, Z and V represent H or -OH combin d as shown in each line of the table below:

Х	Υ	Z	٧
ОН	ОН	ОН	ОН
ОН	H	ОН	ОН
ОН	ОН	ОН	Н
Н	ОН	ОН	ОН
Ĥ	ОН	ОН	Н
Н	Н	ОН	ОН
ОН	Н	ОН	Н

Patentansprüche

5

10

15

20

25

30

35

40

45

50

55

1. Kosmetische und/oder pharmazeutische Zusammensetzung, enthaltend in einer wäßrigen Dispersionsphase wenigstens eine Dispersion von Vesikeln, die durch eine Membran aus einer Lipidphase begrenzt sind, welche wenigstens ein ionisches amphiphiles Lipid und/oder wenigstens ein nichtionisches amphiphiles Lipid enthält, wobei die Vesikel eine Phase eingekapselt enthalten, dadurch gekennzeichnet, daß die Lipidphase der wenigstens einen Dispersion wenigstens eine Verbindung der Formel enthält:

worin:

- W für -CH₂OH, -COOM oder -(CH₂)₂-COOM steht, worin M für H, ein Alkalimetall oder ein Erdalkalimetall steht, wobei in diesem Fall X, Y, Z und V, die gleich oder verschieden sind, ein Wasserstoffatom oder eine Hydroxygruppe bedeuten, unter der Bedingung, daß, wenn W für -CH₂OH steht, wenigstens einer der Reste X, Y, Z oder V eine Hydroxygruppe bedeutet;
- oder W für die Gruppe -CH₃ steht, wobei in diesem Fall X, Y, Z und V für H oder -OH stehen, die wie in jeder Zeile der nachfolgenden Tabelle angegeben kombiniert sind:

х	Υ	Z	·V
ОН	ОН	ОН	ОН
ОН	Н	ОН	ОH
ОН	ОН	ОН	Н
Н	ОН	ОН	ОН
Н	ОН	он -	Н
Н	Н	ОН	ОН
ОН	Н	ОН	Н

- Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß die Verbindung (die Verbindungen) der Formel (I) ausgewählt ist (sind) unter Phytantriol, 5,9,13,17-Tetramethyloctadecansäure, 3,7,11,15-Tetramethyl-1,2,3,4-tetrahydroxyhexadecan und 3-Hydroxymethyl-7,11,15-trimethyl-1,2,4-trihydroxyhexadecan.
- Zusammensetzung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichet, daß die Verbindung (die Verbindungen) der Formel (I) 5 bis 90 Gew.-% der Lipidphase der Dispersion ausmacht (ausmachen).
- 4. Zusammensetzung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die die Membranen der Vesikel bildende Lipidphase wenigstens ein Lipid umfaßt, das ausgewählt ist unter:
 - A) den nachfolgend definierten nicht-ionischen Lipiden:
 - (1) geradkettige oder verzweigte Glycerinderivate der Formel

$$R_0O - \left\{C_3H_5(OH)O\right\}_{\overline{h}} H$$
 (11)

worin:

10

30

35

40

45

50

55

 -C₃H₅(OH)Ofür die folgenden Strukturen in Kombination oder einzeln steht:
 -CH₂CHOHCH₂O-,

- n einen statistischen Mittelwert im Bereich von 1 bis 6 bedeutet oder n = 1 oder 2 und
 -C₃H₅(OH)O- für die Struktur -CH₂CHOH-CH₂O- steht;
- Ro bedeutet:
 - (a) eine gesättigte oder ungesättigte, lineare oder verzweigte aliphatische Kette mit 12 bis 30 Kohlenstoffatomen; Kohlenwasserstoffreste von Lanolinalkoholen; oder Reste von langkettigen alpha-Diolen;
 - (b) einen R st R_1 CO, worin R_1 in n linearen oder verzweigt n aliphatisch n C_{11} - C_{29} -Rest bedeutet;

(c) einen Rest

 $R_2 - [0C_2H_3(R_3)] -$

worin:

5

10

15

20

25

30

35

40

45

- R₂ die für R₀ angegebene Bedeutung (a) oder (b) annehmen kann;
- OC₂H₃(R₃)- für die folgenden Strukturen in Kombination oder einzeln steht:

worin R₃ die für R₀ angegebene Bedeutung (a) hat;

- (2) lineare oder verzweigte Polyglycerinether mit zwei Fettketten;
- (3) Diole mit einer Fettkette;
- (4) ethoxylierte oder nicht-ethoxylierte Fettalkohole, Sterole und Phytosterole, die ethoxyliert oder nicht-ethoxyliert sind;
- (5) Ether und Ester von ethoxylierten oder nicht-ethoxylierten Polyolen, wobei die Ethylenoxidkette linear oder cyclisch sein kann;
- (6) Glycolipide natürlicher oder synthetischer Herkunft, Ether und Ester von Mono- oder Polysacchariden und insbesondere Glucoseether und -ester.
- (7) Hydroxyamide der Formel:

worin:

- R₄ einen C₇-C₂₁-Alkyl- oder -Alkenylrest bedeutet;
- R₅ einen gesättigten oder ungesättigten C₇-C₃₁-Kohlenwasserstoffrest bedeutet;
- COA für eine Gruppe steht, die ausgewählt ist unter den folgenden Gruppen:
 - einem Rest

50

55

worin:

- B für einen von mono- oder polyhydroxylierten, primären oder sekundären Aminen abgeleiteten Alkylrest steht; und
- R₆ ein Wasserstoffatom oder einen Methyl-, Ethyl- oder Hydroxyethylrest bedeutet; und
- einem Rest -COOZ, worin Z d n Rest eines C₃-C₇-Polyols bedeutet;
- (8) natürliche oder synthetische Ceramide;
- (9) Dihydroxyalkylamine, Fettamine, die ethoxyliert sind;

(10) Glycerinderivate der Formel:

$$CH_{2}-CH_{2}-O-CH_{2}-CH_{2}-O-H$$
OH OH R_{7}

10

15

20

5

worin R₇ einen linearen C₁₄-C₁₈-Alkylrest oder eine Gruppe -CH₂A bedeutet, worin A für -OR₁₄ steht, wobei R14 einen linearen C10-C18- und vorzugsweise C16-Alkylrest bedeutet und n einen statistischen Mittelwert größer als 1 und höchstens gleich 3 bedeutet und, wenn R₇ = -CH₂A, n außerdem auch einen reellen nicht-statistischen Wert von 2 bedeuten kann;

B) den nachfolgend definierten ionischen amphiphilen Lipiden:

- (1) folgende anionische amphiphile Lipide:
 - natürliche, auf chemischem oder enzymatischem Weg modifizierte Phospholipide und synthetische Phospholipide;
 - anionische Verbindungen, wie diejenigen, die im Französischen Patent Nr. 2 588 256 beschrieben sind und die Formel

30

35

40

25

besitzen, worin:

- R₈ einen C₇-C₂₁-Alkyl- oder -Alkenylrest bedeutet,
- R₉ für einen gesättigten oder ungesättigten C₇-C₃₁-Kohlenwasserstoffrest steht, und
- M₁ für H, Na, K, NH₄ oder ein von einem Amin abgeleitetes substituiertes Ammoniumion steht,

(2) anionische Verbindungen der Gruppe, die gebildet wird aus Phosphorsäureestern von Fettalkoholen, Heptylnonylbenzolsulfonsäure, saurem Cholesterinsulfat und seinen Alkalimetallsalzen, saurem Cholesterinphospat und seinen Alkalisalzen, Lysolecithinen, Alkylsulfaten und Gangliosi-

- (3) folgende kationische amphiphile Lipide:
 - kationische quaternäre Ammoniumderivate der Formel:

45

50

wobei R₁₀ und R₁₁, die gleich oder verschieden sind, C₁₂-C₂₀-Alkylreste bedeuten und R₁₂ und R₁₃, die gleich oder verschieden sind, C₁-C₄-Alkylreste bedeuten;

- langkettige Amine und ihre quaternären Ammoniumderivate, Ester von Aminoalkoholen mit langer Kette und ihre Salze und quaternären Ammoniumderivate;
- polymerisierbare Lipide:

55

Zusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die wäßrige Phase der Dispersion ausgewählt ist unter Wasser und Gemischen von Wasser mit wenigstens einem C₁-C₇-Alkohol und/oder C₁-C₅-Alkylpolyol.

EP 0 584 315 B1

- 6. Zusammensetzung nach einem der Ansprüch 1 bis 5, dadurch gekennzeichnet, daß di gesamte Lipidphas der Dispersion 0,01 bis 50 Gew.-%, bezogen auf das Gesamtgewicht d r Dispersion, ausmacht.
- 7. Zusammensetzung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das amphiphile Lipid (die amphiphilen Lipide) 10 bis 95 Gew.-%, bezogen auf das Gesamtgewicht der Lipidphase, ausmacht (ausmachen).
- 8. Zusammensetzung nach Anspruch 7, dadurch gekennzeichnet, daß das amphiphile Lipid (die amphiphile len Lipide) 40 bis 90% des Gesamtgewichtes der Lipidphase ausmacht (ausmachen).
 - Zusammensetzung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Vesikel Abmessungen im Bereich von 20 bis 3000 nm aufweisen.
- 15 10. Zusammensetzung nach Anspruch 9, dadurch gekennzeichnet, daß die Vesikel Abmessungen im Bereich von 20 bis 500 nm aufweisen.
 - 11. Zusammensetzung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sie wenigstens einen Wirkstoff mit kosmetischer und/oder pharmazeutischer Wirkung enthält.
 - 12. Zusammensetzung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Lipidphas der Vesikel der Dispersion wenigstens eine fettlösliche, kosmetisch und/oder pharmazeutisch aktive Verbindung enthält.
- 25 13. Zusammensetzung nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, daß die eingekapselte wäßrige Phase wenigstens eine wasserlösliche, kosmetisch und/oder pharmazeutisch aktive Verbindung enthält.
- 14. Zusammensetzung nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß die wäßrige Phase der Dispersion wenigstens eine wasserlösliche kosmetisch und/oder pharmazeutisch aktive Verbindung enthält.
- 15. Zusammensetzung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß sie wenigstens ein Formulierungsadditiv enthält, das die Darbietung in Form eines Gels, einer Lotion oder eines Serums ermöglicht.
 - 16. Verfahren zur Herstellung einer in einer Zusammensetzung nach einem der Ansprüche 1 bis 15 enthaltenen Dispersion, dadurch gekennzeichnet, daß man:
 - die Lipidphase herstellt durch Auflösen der unterschiedlichen Bestandteile der Lipidphase in einem Lösungsmittel und das Lösungsmittel unter verringertem Druck verdampft;
 - die wäßrige Phase der Dispersion zugibt und das Gemisch mechanisch und/oder mit Hilfe von Ultraschall homogenisiert, um die Vesikeldispersion zu erhalten.
- 17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß das Homogenisieren bei einer Temperatur im Bereich von 10 bis 120 °C erfolgt.
 - 18. Dispersion von Vesikeln in einer wäßrigen Dispersionsphase, die durch eine Membran aus ein r Lipidphase begrenzt sind, welche wenigstens ein ionisches amphiphiles Lipid und/oder wenigstens ein nicht-ionisches amphiphiles Lipid enthält, wobei die Vesikel eine wäßrige Phase eingekapselt enthalten, dadurch gekennzeichnet, daß die Lipidphase der wenigstens einen Dispersion wenigstens eine Verbindung der Formel enthält:

50

40

worin:

- W für -CH₂OH, -COOM oder -(CH₂)₂-COOM steht, worin M für H, ein Alkalimetall oder ein Erdalkalimetall steht, wobei in diesem Fall X, Y, Z und V, die gleich oder verschieden sind, ein Wasserstoffatom oder eine Hydroxygruppe bedeuten, unter der Bedingung, daß, wenn W für -CH₂OH oder COOM steht, wenigstens einer der Reste X, Y, Z oder V eine Hydroxygruppe bedeutet;
- oder W für die Gruppe -CH₃ steht, wobei in diesem Fall X, Y, Z und V für H oder -OH stehen, die wie in jeder Zeile der nachfolgenden Tabelle angegeben kombiniert sind:

Х	Υ	Z	>
ОН	ОН	ОН	ОН
ОН	Н	ОН	ОН
ОН	ОН	ОН	Н
Н	ОН	ОН	ОН
H	ОН	ОН	н
H	Н	ОН	ОН
ОН	Н	ОН	Н

10

15

25

30

35

40

45

50