FONCTIONS sin, cos ET tan

- 1) Que vaut $\frac{\pi}{3} \frac{\pi}{4}$? En déduire $\cos \frac{\pi}{12}$, $\sin \frac{\pi}{12}$ et
 - 2) Calculer $\tan \frac{\pi}{8}$, $\cos \frac{\pi}{8}$ et $\sin \frac{\pi}{8}$.
- (2) Résoudre graphiquement les inéquations suivantes d'inconnue $x \in \mathbb{R}$: 1) $\cos x \ge \frac{1}{\sqrt{2}}$
 - $\sin x > -\frac{\sqrt{3}}{2}$. 3) $|\tan x| \le 1$.
- Montrer que pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R}$: 3 $|\sin(nx)| \le n |\sin x|.$
- (1) Résoudre les équations suivantes d'inconnue $x \in \mathbb{R}$:
 - $\sin x + \sin(2x) = 0.$ **2)** tan(2x) = 3tan x. 1)
 - 4) $3 \tan x = 2 \cos x$. 3) $2\sin x + \sin(3x) = 0.$
 - $\cos x = 1 + \sqrt{3}\sin x.$
 - $\sin x + \cos x = 1 + \tan x.$
 - $\sin x + 2\cos(4x) = \sqrt{3}\cos x.$
- P Simplifier: $\sum_{k=1}^{n} \sin \frac{\pi}{2^k} \sin \frac{3\pi}{2^k}$ pour tout $n \in \mathbb{N}^*$.
- \bigcirc \bigcirc Montrer que pour tout $n \ge 2$:

 $2\cos\frac{\pi}{2^n} = \sqrt{2 + \sqrt{2 + \ldots + \sqrt{2}}} \qquad (n-1 \text{ symboles } \sqrt{\cdot}).$

- 7 © © Déterminer l'ensemble de définition de la fonction $x \mapsto \ln\left(\tan\frac{x\pi}{2}\right)$.
- Étudier chacune des fonctions suivantes : 1) $\bigcirc x \mapsto \frac{\tan(2x)}{\tan x}$. 2) *** $\bigcirc \bigcirc x \mapsto \sin(3x) + 3\sin x$. 8

- *** On pourra utiliser la relation : $\cos p + \cos q = 2 \cos \frac{p+q}{2} \cos \frac{p-q}{2}$ vraie pour tous $p, q \in \mathbb{R}$ et sur laquelle nous reviendrons au chapitr « Nombres complexes ».
- 1) Montrer que pour tout $x \in \left]0, \frac{\pi}{2}\right[: \tan x > x.$ **2)** Montrer que la fonction $x \mapsto \frac{x}{\sin x}$ est bijective

de $\left[0, \frac{\pi}{2}\right]$ sur son image que l'on précisera.

On veut montrer que pour tout $x \in [0, \pi]$: 10

$$\sin x \geqslant x - \frac{x^2}{\pi}.$$

- 1) Montrer le résultat sur $\left[0, \frac{\pi}{2}\right]$.
- 2) En déduire sans nouvelle étude de fonction que le résultat vaut sur $[0, \pi]$.

9 9 Soient $s, c \in \mathscr{D}(\mathbb{R}, \mathbb{R})$. On fait quatre hypothèses : 11

$$s' = c$$
, $c' = -s$, $s(0) = 0$ et $c(0) = 1$.

1) On fixe $x, y \in \mathbb{R}$. Grâce à la fonction :

$$t \longmapsto s(t+x)c(t+y)-c(t+x)s(t+y),$$

montrer que : s(x-y) = s(x)c(y) - c(x)s(y).

- **2)** En déduire que *s* est impaire et *c* paire.
- 3) En déduire que pour tous $x, y \in \mathbb{R}$:

$$c(x + y) = c(x)c(y) - s(x)s(y).$$

4) En déduire que pour tout $x \in \mathbb{R}$:

$$s(x)^2 + c(x)^2 = 1.$$

- $\bigcirc \bigcirc \bigcirc \bigcirc$ Soit $f : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction deux fois dérivable. On suppose que : $f'' + f \ge 0$. Montrer, grâce à la fonction $t \mapsto f'(t)\sin(t-x)-f(t)\cos(t-x)$, que pour tout $x \in \mathbb{R}$: $f(x) + f(x + \pi) \ge 0$.
- 000 13 1) Étudier la fonction $x \mapsto \cos^3 x + \sin^3 x$.
 - **2)** Résoudre l'équation : $\cos^3 x + \sin^3 x = 1$ connue $x \in \mathbb{R}$.

(P) (P) (P) 14 1) a) Montrer que pour tous $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ et $n \in \mathbb{N}^*$:

$$\prod_{k=1}^n \cos \frac{x}{2^k} = \frac{\sin x}{2^n \sin \frac{x}{2^n}}.$$

- **b)** Que vaut : $\lim_{x\to 0} \frac{\sin x}{x}$? **c)** En déduire que pour tout $x\in \mathbb{R}\setminus 2\pi\mathbb{Z}$:

$$\lim_{n \to +\infty} \prod_{k=1}^{n} \cos \frac{x}{2^k} = \frac{\sin x}{x},$$

limite qu'on note aussi : $\prod_{k=1}^{+\infty} \cos \frac{x}{2^k} = \frac{\sin x}{x}.$

2) On repart de **1)a)** : $\prod_{k=1}^{n} \cos \frac{x}{2^k} = \frac{\sin x}{2^n \sin \frac{x}{2^n}}$

pour tous $x \in \left[0, \frac{\pi}{2}\right]$ et $n \in \mathbb{N}^*$.

a) Composer par le logarithme, puis dériver.

b) En déduire que pour tout $x \in \left[0, \frac{\pi}{2}\right]$:

$$\sum_{k=1}^{+\infty} \frac{1}{2^k} \tan \frac{x}{2^k} = \frac{1}{x} - \frac{1}{\tan x}.$$

3) $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Montrer que pour tout $x \in \left] -\frac{\pi}{4}, \frac{\pi}{4} \right[$:

$$\prod_{k=1}^{+\infty} \left(1 - \tan^2 \frac{x}{2^k} \right) = \frac{x}{\tan x}.$$

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Si on note C_2 la fonction $x \longmapsto 2x^2 - 1$ et S_2 la fonction $x \mapsto 2x$, alors pour tout $\theta \in \mathbb{R}$:

$$\cos(2\theta) = 2\cos^2\theta - 1 = C_2(\cos\theta)$$

et
$$\sin(2\theta) = 2\cos\theta\sin\theta = S_2(\cos\theta)\sin\theta$$
.

Plus généralement, montrer que, pour tout $n \in \mathbb{N}$, il existe deux fonctions polynomiales C_n et S_n telles que pour tout $\theta \in \mathbb{R}$: $\cos(n\theta) = C_n(\cos\theta)$

et
$$\sin(n\theta) = S_n(\cos\theta)\sin\theta$$
.

- 000 16
 - 1) Etudier les variations de la fonction $x \mapsto 2^{-x}x$
 - 2) En déduire les variations de $x \mapsto 2^{\sin x} + 2^{\cos x}$ $\operatorname{sur}\left[0,\frac{\pi}{4}\right]$
 - 3) En déduire que pour tout $x \in \mathbb{R}$:

$$3 \le 2^{|\sin x|} + 2^{|\cos x|} \le 2^{1 + \frac{1}{\sqrt{2}}}$$

17

$$P_n(x) = \prod_{k=0}^n \sin(2^k x).$$

- 1) Montrer, après avoir exprimé $P_1(x)$ en fonction de $\cos x$, que pour tout $x \in \mathbb{R}$: $|P_1(x)| \le \frac{4}{3\sqrt{2}}$.
- **2)** Montrer que pour tout $x \in \mathbb{R}$:

$$\left|\sin^2 x \sin(2x)\right| \leqslant \frac{3\sqrt{3}}{8}.$$

3) a) Montrer que pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R}$:

$$P_{n+1}(x)^2 = \sin^2 x \sin(2x) P_{n-1}(4x) P_n(2x).$$

b) En déduire que pour tous $n \in \mathbb{N}$ et $x \in \mathbb{R}$:

$$\left|P_n(x)\right| \leqslant \left(\frac{\sqrt{3}}{2}\right)^n.$$

FONCTIONS Arcsin, Arccos ET Arctan

- Déterminer l'ensemble de définition de la fonction $x \mapsto \frac{\sqrt{1-\tan x}}{\operatorname{Arccin}(4x)}$.
- Simplifier: 1) Arccos $\cos \frac{6\pi}{3}$ 19
 - 2) Arcsin $\sin \frac{17\pi}{6}$. 3) Arctan $\tan \left(-\frac{11\pi}{4}\right)$. 4) Arcsin $\cos \frac{7\pi}{4}$. 5) Arccos $\sin \frac{17\pi}{5}$.
- Tracer le graphe des fonctions : 20 $x \longmapsto \operatorname{Arctan} \tan x$. 2) $x \mapsto \operatorname{Arccos} \cos x$. $x \longmapsto \operatorname{Arcsin} \sin x$.
- Montrer que pour tout $x \ge 0$: Arctan $x \ge \frac{x}{x^2 + 1}$. 21
- Soit $\alpha \in \mathbb{R}$. On pose pour tout $x \in]-1,1[$: **22** $f(x) = \cos(\alpha \operatorname{Arccos} x).$

Simplifier: $(1-x^2)f''(x) - xf'(x) + \alpha^2 f(x)$ pour tout $x \in]-1,1[$.

- $\bigcirc \bigcirc \bigcirc$ Étudier chacune des fonctions suivantes : 1) $x \longmapsto x \operatorname{Arctan} \frac{1}{x}$. 2) $x \longmapsto x \operatorname{Arctan} \frac{1}{x-1}$.
 - 1) Montrer que pour tout $x \in \mathbb{R}$: $\cos \operatorname{Arctan} x = \frac{1}{\sqrt{1+x^2}}$ et $\sin \operatorname{Arctan} x = \frac{x}{\sqrt{1+x^2}}$

cos Arctali
$$x = \frac{1}{\sqrt{1+x^2}}$$
 et sin Arctali $x = \frac{1}{\sqrt{1+x^2}}$

2) Simplifier de même les expression suivantes —

- où x est un réel:
 - $\sin(2\operatorname{Arccos} x)$. b) $\sin(2 \operatorname{Arctan} x)$. tan(Arccos x). d) $\cos(3 \operatorname{Arccos} x)$.
- **3)** Résoudre l'équation : Arctan(2x) = Arcsin xd'inconnue $x \in [-1, 1]$.
- Simplifier les expressions suivantes où x est

 - Arccos(-x)+Arccos x. 2) Arctan $\frac{1+x}{1-x}$.

 Arctan $\frac{x}{\sqrt{1-x^2}}$. 4) Arctan $\sqrt{\frac{1-x}{1+x}}$.

 - Arctan $(\sqrt{x^2+1}-x)$
 - 7) Arctan $\frac{1}{2x^2}$ + Arctan $\frac{x-1}{x}$ Arctan $\frac{x}{x+1}$.

24

26

1) Montrer que : $\frac{\pi}{4} = Arctan \frac{1}{2} + Arctan \frac{1}{3}$

2) Montrer l'égalité : 2 Arccos $\frac{3}{4}$ = Arccos $\frac{1}{8}$

- 3) Calculer: Arctan $\frac{1}{2}$ + Arctan $\frac{1}{5}$ + Arctan $\frac{1}{8}$
- 4) (9(9(9)
 - a) Exprimer $\tan(4x)$ en fonction de $\tan x$ pour tout $x \in \left] -\frac{\pi}{8}, \frac{\pi}{8} \right[+\frac{\pi}{4} \mathbb{Z}.$ b) En déduire la *formule de Machin*:

$$\frac{\pi}{4} = 4 \operatorname{Arctan} \frac{1}{5} - \operatorname{Arctan} \frac{1}{239}$$

La formule de Machin, découverte par John Machin en 1706, a longtemps servi à calculer les premières décimales de π — on sait en effet calculer assez facilement les arctangentes comme nous le verrons plus tard. Le résultat de la question 1) est appelé quant à lui une formule du type de Machin. Il en existe beaucoup d'autres,

par exemple : $\frac{\pi}{4} = 2 \operatorname{Arctan} \frac{1}{3} + \operatorname{Arctan} \frac{1}{7}$.

27

(P) (P)

- 1) Simplifier: Arctan sh x + Arccos th x
- 2) Résoudre l'équation : th $x = \frac{5}{12}$ d'inconnue $x \in \mathbb{R}$.
- 3) En déduire l'égalité:

$$Arctan \frac{5}{12} + Arccos \frac{5}{13} = \frac{\pi}{2}.$$

 \bigcirc \bigcirc Résoudre les équations suivantes d'inconnue xdans un domaine à préciser :

- 1) Arcsin(2x) = Arccos x.
- 2) Arcsin $\tan x = x$.
- $Arctan x + Arctan(2x) = \frac{\pi}{4}$
- $Arctan \frac{x-1}{x-2} + Arctan \frac{x+1}{x+2} = \frac{\pi}{4}.$
- 5) $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \triangle$ Arcsin(x+1) Arcsin $x = \frac{\pi}{6}$

29

- 1) Simplifier: Arctan(k+1) - Arctan ktout $k \in \mathbb{N}$.
- 2) En déduire : $\lim_{n \to +\infty} \sum_{k=0}^{n} \operatorname{Arctan} \frac{1}{k^2 + k + 1}$.

P On appelle suite de Fibonacci la suite $(F_n)_{n\in\mathbb{N}}$

définie par
$$F_0=0,\,F_1=1$$
 et pour tout $n\in\mathbb{N}$:

$$F_{n+2} = F_n + F_{n+1}.$$

1) Montrer que pour tout $n \in \mathbb{N}$:

$$F_{n+1}^2 - F_n F_{n+2} = (-1)^n \quad (identit\'e \ de \ Cassini).$$

2) En déduire que pour tout $n \in \mathbb{N}^*$:

$$Arctan \frac{1}{F_{2n}} = Arctan \frac{1}{F_{2n+1}} + Arctan \frac{1}{F_{2n+2}}.$$

3) En déduire l'existence et la valeur de :

$$\lim_{n\to +\infty} \sum_{k=0}^n \operatorname{Arctan} \, \frac{1}{F_{2k+1}}.$$