CTL

CTL Computation Tree Logic

CTL - sémantique

 $\mathbf{S} = (Q, Act, \rightarrow, q_{init}, AP, L)$ Exec(q) = ens. des exécutions infinies partant de q. $\rho \in Exec(q)$: $\rho = q_0 q_1 q_2 q_3 q_4 ... avec <math>q_0 = q$ et $q_i \rightarrow q_{i+1}$ Notation: $\rho(i) = q_i \quad \forall \ i \geq 0$ On interprète les formules de CTL sur des états de \mathbf{S} .

$$q \models P \text{ iff } P \in L(q)$$

 $q \models EX\phi \text{ iff } \exists q \rightarrow q' \text{ t.q. } q' \models \phi$
 $q \models AX \phi \text{ iff } \forall q \rightarrow q', \text{ on a: } q' \models \phi$
 $q \models E\phi U\psi \text{ iff } \exists \rho \in Exec(q) \text{ t.q. } \exists i \geq 0 \text{ t.q. } (\rho(i) \models \psi \text{ et } (\forall 0 \leq j < i: \rho(j) \models \phi)$
 $q \models A\phi U\psi \text{ iff } \forall \rho \in Exec(q), \exists i \geq 0 \text{ t.q. } (\rho(i) \models \psi \text{ et } (\forall 0 \leq j < i: \rho(j) \models \phi))$

Formules de CTL

$$\phi, \psi ::= P \mid \neg \phi \mid \phi \lor \psi \mid \mathbf{E} \mathbf{X} \phi \mid \mathbf{A} \mathbf{X} \phi \mid \mathbf{E} \phi \mathbf{U} \psi \mid \mathbf{A} \phi \mathbf{U} \psi$$
 avec $P \in \mathsf{AP}$

CTL

Définition alternative (équivalente!!):

Formules <u>d'état</u>:

$$\varphi,\psi := \mathsf{P} \mid \neg \varphi \mid \varphi \lor \psi \mid \mathsf{E} \varphi_{\mathsf{p}} \mid \mathsf{A} \varphi_{\mathsf{p}}$$

 $P \in AP$

Formules de chemin:

$$\varphi_{\mathsf{p}}, \psi_{\mathsf{p}} ::= \mathbf{X} \varphi \mid \varphi \mathbf{U} \psi$$

$$\mathbf{E}$$
 φ_p = « il existe un chemin vérifiant φ_p » \mathbf{A} φ_p = « tous les chemins vérifient φ_p »

94

CTL - sémantique

CTL - sémantique

Définition alternative (équivalente !!):

$$\begin{aligned} \mathbf{q} &\models \mathbf{P} & \text{ iff } \mathbf{P} \in \mathsf{L}(\mathbf{q}) \\ \mathbf{q} &\models \mathbf{E} \ \phi_p & \text{ iff } \ \exists \ \rho \in \mathsf{Exec}(\mathbf{q}) \ \mathsf{t.q.} \ \ \rho \vDash \phi_p \\ \mathbf{q} &\models \mathbf{A} \ \phi_p & \text{ iff } \ \forall \ \rho \in \mathsf{Exec}(\mathbf{q}), \ \ \rho \vDash \phi_p \\ \\ \rho &\models \mathbf{X} \ \phi & \text{ iff } \ \rho(\mathsf{1}) \vDash \phi \\ \rho &\models \phi \ \mathbf{U} \ \psi & \text{ iff } \ \exists \ i \geq 0 \ (\ \rho(\mathsf{i}) \vDash \psi \ \text{ et } (\forall \ 0 \leq \mathsf{j} < \mathsf{i} : \rho(\mathsf{j}) \vDash \phi \) \) \end{aligned}$$

$q \models E rouge U vert$

CTL - sémantique

CTL - sémantique

$q \models A \text{ rouge } U \text{ vert}$

CTL - sémantique

CTL - sémantique

 $q \models AF \text{ vert}$

CTL - sémantique

Exemples

 $q \models AG rouge$

AG (problème $\Rightarrow AF$ alarme)

AG (EX a)

 \mathbf{E} ($\mathbf{E}\mathbf{X}$ a) \mathbf{U} b = $\mathbf{E}\mathbf{U}$ ($\mathbf{E}\mathbf{X}$ a, b)

AG (EF a)

Tout ce qui est accessible depuis q est rouge.

Which logic should we choose?

Which is the best one? CTL*?LTL?CTL?...

There are several criteria:

- the expressiveness
- the complexity of decision procedures
- the existence of tools
- _ . . .

IUS

Expressiveness

3 different notions:

Distinguishing power

- ▶ \mathcal{L} is at least as distinguishing as \mathcal{L}' ($\mathcal{L} \ge \mathcal{L}'$) iff for any \mathbf{S} and \mathbf{S}' , $\mathbf{S} \equiv_{\mathcal{L}} \mathbf{S}' \Rightarrow \mathbf{S} \equiv_{\mathcal{L}'} \mathbf{S}'$
- with: $\mathbf{S} \equiv_{\mathcal{L}} \mathbf{S}'$ iff $(\forall \phi \in \mathcal{L}, \mathbf{S} \models \phi \iff \mathbf{S}' \models \phi)$

Expressive power

▶ \mathcal{L} is at least as expressive as \mathcal{L}' ($\mathcal{L} \ge \mathcal{L}'$) iff for $\forall \varphi' \in \mathcal{L}'$, $\exists \varphi \in \mathcal{L}$ s.t. $\varphi \equiv \varphi'$

- Succinctness

when 2 logics \mathcal{L} and \mathcal{L} are equally expressive, one can be more succinct (w.r.t. the size of the formula)...

Expressivité

1∩4

Distinguishing power

CTL and CTL* formulas are interpreted over state of KS, or equivalently over the nodes of its <u>execution tree</u>.

LTL formulas are interpreted over paths. With LTL, a system is viewed as a <u>set of executions</u>.

Convention:

for a KS **S** and $\phi \in LTL$, we write $\mathbf{S} \models \phi$ when $q_0 \models \mathbf{A} \phi$

→ Two Kripke structures satisfy the same LTL formulas iff they have the same set of executions (*ie* they are trace-equivalent).

105

donc LTL ne distingue pas autant que CTL!

۱07

Distinguishing power

→ Two (<u>finitely branching</u>) Kripke structures satisfy the same CTL (or CTL*) formulas iff they are bisimilar.

(Hennessy, 1980)

Autre exemple:

IΛΩ

(strong) bisimulation

Let $\mathbf{S}_1 = \langle Q_1, q^0_1, R_1, \boldsymbol{\ell}_1 \rangle$ and $\mathbf{S}_2 = \langle Q_2, q^0_2, R_2, \boldsymbol{\ell}_2 \rangle$ A relation $\boldsymbol{\mathcal{R}} \subseteq Q_1 \times Q_2$ is a bisimulation iff $\forall (q_1, q_2) \in \boldsymbol{\mathcal{R}}$ we have:

- $-\ell_1(q_1) = \ell_2(q_2)$
- \forall q₁→_{R1} q₁', \exists q₂→_{R2} q₂' such that (q₁',q₂') ∈ \Re
- \forall q₂→_{R2} q₂', \exists q₁→_{R1} q₁' such that (q₁',q₂') ∈ \Re

 \mathbf{S}_1 and \mathbf{S}_2 are bisimilar ($\mathbf{S}_1 \approx \mathbf{S}_2$) iff there exists a bisimulation $\boldsymbol{\mathcal{R}}$ such that $(q^0_1, q^0_2) \in \boldsymbol{\mathcal{R}}$.

Behavioral equivalences (Van Glabbeek, 1990)

Characteristic formulas

Given a finite Kripke structure \mathbf{S} , there exists a CTL formula $\phi_{\mathbf{S}}$ such that for any \mathbf{S}' , we have:

$$S' \models \varphi_S \text{ iff } S \approx S'$$

(Browne, 1988)

1) Describe the tree of depth n rooted in q:

$$\begin{array}{ll} \Psi^0(q) & \stackrel{\mathsf{def}}{=} & \bigwedge_{P \in I(q)} P \, \wedge \, \bigwedge_{P \not \in I(q)} \neg \, P \\ \\ \Psi^{n+1}(q) & \stackrel{\mathsf{def}}{=} & \Psi^0(q) \, \wedge \, \bigwedge_{q \to q'} \left(\mathsf{E} \, \mathsf{X} \, \, \Psi^n(q') \right) \, \wedge \, \mathsf{A} \, \mathsf{X} \, \left(\bigvee_{q \to q'} \Psi^n(q') \right) \end{array}$$

2) Find c for S such that:

$$\Phi_{\mathcal{S}} \stackrel{\mathsf{def}}{=} \Psi^{c}(q_{\mathsf{init}}) \wedge \bigwedge_{q \in Q} \mathbf{A} \mathbf{G} \left(\Psi^{c}(q) \Rightarrow \right.$$

$$\left. \bigwedge_{q \in Q} \mathbf{E} \mathbf{X} \ \Psi^{c}(q') \wedge \ \mathbf{A} \mathbf{X} \ \bigvee_{q \in Q} \Psi^{c}(q') \right)$$

Distinguishing power

LTL distinguishing power coincides with trace equivalence. CTL distinguinshing power coincides with strong bisimulation.

→ CTL (or CTL*) distinguish more than LTL CTL > LTL

117

Expressive power

- ▶ LTL is not as expressive as CTL.
 EX (EX P ∧ EX P') has no equivalent in LTL.
 or AG (EF init) ...
- ► CTL is not as expressive as LTL.
 ▲FG P has no equivalent in CTL.
 [= EF P']
 (Emerson, 1986)

LTL and CTL are uncomparable. CTL* is strictly more expressive than CTL or LTL.

114