

Trabajo Práctico de Laboratorio N°3

Aplicación de AO: Filtros activos con celdas de 1er y 2do orden

Consideraciones generales

- Se utilizará la letra N para denotar al número de grupo.
- Suponer amplificadores operacionales ideales para el diseño, y amplificadores operacionales reales para el análisis.
- Para cada filtro, incluir en forma analítica:
 - o La función transferencia
 - o Las impedancias de entrada/salida
 - o Un cuadro de sensibilidades: [G, Q, ωο, ωz, si] [R, C, Avol] (Las expresiones deben ser función de los parámetros mientras la complejidad lo permita.)
 - Un estudio del rango dinámico
- Para cada filtro, incluir en forma gráfica:
 - La función transferencia teórica, simulada y experimental
 - o Las impedancias de entrada/salida teóricas, experimentales
 - Una representación de los efectos de las sensibilidades
 - o Un estudio del rango dinámico teórico y experimental
- Para cada filtro, incluir en el análisis los siguientes aspectos cómo mínimo:
 - o Método de ajuste más conveniente y sus implicaciones
 - o Grado en que las sensibilidades afectan al diseño
 - o Restricciones debido a las impedancias de entrada/salida, a los valores de ganancia posibles, a los valores de Q realizables
 - Casos de uso de las celdas estudiadas
 - Comparaciones con otros casos y otras celdas.
- Para las expresiones analíticas: los <u>resultados relevantes</u> y las expresiones de las cuales se pueden extraer conclusiones se deben incluir en el <u>cuerpo</u> principal del informe, mientras que los desarrollos algebráicos se deben incluir en un apéndice del informe.
- Se espera coherencia en las <u>cifras significativas</u> en el diseño y en el análisis, tanto en escala lineal como logarítmica.
- Se espera coherencia en la <u>presentación</u> de las ecuaciones analíticas y de los gráficos, a lo largo del informe.
- Hacer buen uso del ciclo de diseño y análisis mediante las herramientas a disposición: MATLAB/Mathematica, PSpice, Altium, LyX/Word.

Consideraciones de diseño

- Sólo se aceptan filtros armados en PCB.
- Sólo se aceptan valores nominales de capacitores/resistencias en el diseño, para la función transferencia y las sensibilidades.
- Se acepta un máximo de 2 capacitores/resistencias en serie/paralelo.
- Se acepta un máximo de 1 preset por celda de segundo orden.
- Sólo se aceptan tolerancias de 1% y 5%.
- Se acepta el uso de buffers de entrada/salida.
- Se acepta el uso de una etapa de corrección de ganancia.
- El uso de presets, tolerancias de 1%, buffers y etapa de corrección de ganancia, debe ser correctamente justificado y sólo se acepta en caso de ser necesario.

Pautas para la evaluación del informe (en orden de importancia):

- Contenido y capacidad de síntesis
 - Se penalizarán contenidos irrelevantes.
 - Se valorará la presentación clara, concisa, específica y sin redundancias.
- Conclusiones relevantes
 - Dentro del desarrollo de cada tema y en general.
- Organización grupal del trabajo
 - Se espera el mayor grado de cohesión y homogeneidad en la resolución de los distintos enunciados. Definir y respetar un estándar y objetivos comunes
- Originalidad e Inventiva
- Presentación, redacción y ortografía
 - Hacer uso del potencial del procesador de texto.
- Aportes no obligatorios
- Adecuado manejo y presentación de magnitudes numéricas

Entrega:

Viernes 25 de Octubre de 2013 hasta las 17 hs, en versión impresa y digital.

Enunciado general

En base a los filtro a desarrollar a lo largo de este trabajo, completar la siguiente tabla. La misma debe reflejar un <u>análisis cualitativo y cuantitativo y en</u> profundidad sobre el funcionamiento y parámetros de cada celda, así como comparaciones relevantes entre las mismas.

Filtro	Tipos de filtros, (aproximaciones)	Ventajas (usos)	Desventajas (limitaciones)	Condiciones de diseño	Sensibilidades (Q,G,w)
Sallen-Key					
Rauch					
Universal					

Ejercicio N° 1 – Celda Sallen-Key

Order	3	-	-
fp	.9+0.5N	KHz	-
Ар	2	dB	-
G	1	\vee/\vee	-
Zin	>= 47	ΚΩ	-
Aproximación I	Bessel	LP	Alta señal
Aproximación II	Legendre	LP	Baja señal

Ejercicio N° 2 - Celda Rauch

Pendiente	-40	dB/dec	-
f_0	8.5 – 1N	KHz	-
В	1/11	-	-
G	2	V/V	-
Zin	>= 47	ΚΩ	-
Ар	2	dB	-
Aproximación I	Cheby I	BP	Alta señal

Teoría de Circuitos 2013

Ejercicio N° 3 – Sedra-Ghorab-Martin

fp	10-1 .5N	KHz	-
fa	$f_p/2.25$	-	-
Ap	2	dB	-
Aa	40	dB	-
G	0.5	V/V	-
Zin	>= 47	ΚΩ	-
Aproximación I	Cauer	HP	Baja señal

Investigar <u>detalladamente</u> contenido del paper "Optimum Configurations for Single-Amplifier Biquadratic Filters", provisto por la cátedra.

Ejercicio N° 4 - Celda universal

Pendiente	-40	dB/dec
f∞	7 - 2N	KHz
Qτ	9	-
G	[-3:3]	dB
Aproximación I	Cheby II	BR

Investigar detalladamente las configuraciones posibles para celdas universales, elegir más У la adecuada.

Ejercicios opcionales

No obligatorios, con influencia positiva (máximo 1 punto) sobre la calificación en los casos en que se presente una resolución coherente con los puntos obligatorios y en el contexto de una buena ejecución general. La resolución de estos puntos no es obligatoria pero es necesario conocer el contenido para las evaluaciones.

Ejercicio 01

Para las celdas Sallen-Key y Rauch de los ejercicios N°1 y N°2, calcular la ganancia real teniendo en cuenta Aol y wp. Sacar conclusiones.

Ejercicio O3

Representar gráficamente la respuesta en frecuencia en forma analítica y simulada, incluyendo cálculos, de las siguientes celdas, para los diseños que se aplican:

- HP/BP Sallen-Key varios modelos
- LP/HP/BR Rauch.
- LP-Notch Doble T/Doble T modificada
- Notch FDNR
- LP/HP/BP GIC
- Todos Universal varios modelos
- LP/HP Friend

Usar los datos de diseño apropiados usados en los filtros del TP. Comparar con los diseños previos.