ST451 - Lent term Bayesian Machine Learning

Kostas Kalogeropoulos

Gaussian Processes for Regression and Classification

Outline

Introduction

Gaussian Processes

GP regression

Outline

1 Introduction

② Gaussian Processes

GP regression

Bayesian Non-parametrics

There are two main areas in Bayesian Non-parametrics:

- Unknown distributions: Do not assume a specific distribution, instead use a mixture with potentially infinite components -Dirichlet process prior, we have seen finite mixture in week 7.
- Unknown functions in supervised learning: Do not assume a specific function between y and X instead perform Bayesian inference on the function - Gaussian process prior, today's topic.

Non-parametric regression / supervised learning

Non-parametric regression / supervised learning

Let \mathcal{X} be a set and \mathcal{F} be a set of functions over \mathcal{X} (e.g., smooth functions). We observe $(x_1, y_i), \ldots, (x_n, y_n)$ $(x_i \in \mathcal{X}, y_i \in \mathbb{R})$ satisfying

$$y_i = f(x_i) + \varepsilon_i$$

where $f \in \mathcal{F}$, and $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ independent of $x = (x_1, \dots, x_n)$.

We want to fit a smooth curve or surface through the data:

Putting a prior on the regression function

Non-parametric regression model:

$$y_i = f(x_i) + \varepsilon_i$$

Assume errors ε have density $\pi(\varepsilon)$, usually $N(0, \sigma^2 I_n)$. Then

$$y = (y_1, \ldots, y_n)|f, x, \sigma^2 \sim N(f, \sigma^2 I_n)$$

Bayes regression: assign prior $\pi(f)$ to f, and compute posterior

$$\pi(f|\mathbf{y}) = \frac{\pi(f)g(\varepsilon|f)}{\int_{\mathcal{F}} \pi(f)g(\varepsilon|f)df}$$

- f can be estimated by its posterior mean
- Credibility intervals for each f(x) can be computed

Regression with a functional covariate

Figure: Sample of spectrometric curves

- n = 215 pieces of finely chopped meat. y_i is fat content
- $x_i = x_i(\cdot)$ is spectrometric curve ('functional' covariate)

Regression model

Prior: a Gaussian process needed over the curves x_i

Effect of treatment on cow growth

Figure: Sample of eight growth curves of cows

- 60 cows (30 get treatment A, 30 treatment B).
- How does treatment affect growth?
- y_{it}: weight of cow i at time t

Handwritten digit recognition

USPS data. Training/test sample: 7291/2007 handwritten digits

Multidimensional response:

$$y_{ij} = \begin{cases} 1 & \text{picture } i \text{ represents digit } j \\ 0 & \text{otherwise} \end{cases}$$

Covariate x_i is a picture.

Regression model:

$$y_{ij} = f(j, x_i) + \varepsilon_{ij}$$
 $f \in \mathcal{F}$

Here, the digit j acts like a nominal level covariate, and x_i is a 'picture type' covariate.

Outline

Introduction

Question Processes

3 GP regression

Gaussian processes

Definition

Let \mathcal{X} be a set. A random function $f: \mathcal{X} \to \mathbb{R}$ is called a *Gaussian process* if for any $x_1, \ldots, x_n \in \mathcal{X}$, $[f(x_1), \ldots, f(x_n)]$ has a multivariate normal distribution.

Gaussian processes are characterized by

- Mean $f_0(\cdot)$.
- Covariance kernel $K(\cdot, \cdot)$.

If f is a Gaussian process with mean f_0 and covariance kernel K, then

$$[f(x_1),\ldots,f(x_n)]^{\top}\sim N(f_0,K)$$

where $f_0 = [f_0(x_1), \dots, f_0(x_n)]$, and K is the $n \times n$ matrix with elements $K(x_i, x_j)$.

Covariance kernels

A covariance kernel is a positive definite function $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, i.e.,

$$\sum_{i=1}^n \sum_{j=1}^n K(x_i, x_j) \alpha_i \alpha_j \ge 0$$

for all $x_1, \ldots, x_n \in \mathcal{X}$ and all scalars $\alpha_1, \ldots, \alpha_n$.

Examples:

- The *linear* kernel $K(x, x') = \langle x, x' \rangle$
- The squared exponential kernel

$$K(x,x')=e^{-\frac{\|x-x'\|^2}{2\sigma^2}}$$

• The fractional Brownian motion kernel (FBM) with Hurst coefficient α (0 < α < 1): $K(x, x') = \frac{1}{2} \left(\|x\|^{2\alpha} + \|x'\|^{2\alpha} - \|x - x'\|^{2\alpha} \right)$

What do sample paths look like?

Let's look at one fractional Brownian motion (FBM) and exponential process paths, with different values of the hyper-parameters.

Higher dimensions are also important, but cannot be visualised easily.

Sample paths 1-dim exponential kernel

Covariance kernel: $K(x, x') = e^{-\frac{||x-x'||^{2\alpha}}{2\sigma^2}}$

Sample paths FBM: 1-dim

Covariance kernel:
$$K(x, x') = \frac{1}{2} \left(\|x\|^{2\alpha} + \|x'\|^{2\alpha} - \|x - x'\|^{2\alpha} \right)$$

Outline

Introduction

② Gaussian Processes

GP regression

Gaussian process (GP) regression

Assume

$$y_i = f(x_i) + \varepsilon_i$$
 $i = 1, ..., n$ (1)

where

$$egin{aligned} arepsilon_i &\sim_{\mathsf{iid}} \mathit{N}(0,\sigma_{arepsilon}^2) \ \pi(f) &= \mathsf{GP}(0,\mathit{K}) \ f \ \mathsf{and} \ (arepsilon_1,\ldots,arepsilon_n) \ \mathsf{are} \ \mathsf{independent} \end{aligned}$$

Marginal distribution of y

The marginal distribution of y is multivariate normal with means

$$E(y_i) = E(f(x_i) + \varepsilon_i) = E(f(x_i)) + E(\varepsilon_i) = 0$$

and covariances

$$cov(y_i, y_j) = cov(f(x_i) + \varepsilon_i, f(x_j) + \varepsilon_j)$$

$$= cov(f(x_i), f(x_j)) + cov(\varepsilon_i, \varepsilon_j)$$

$$= K(x_i, x_j) + \sigma_{\varepsilon}^2 I(i = j)$$

In matrix notation, denoting with K_n the $n \times n$ matrix containing all the (x_i, x_j) pairs, we get

$$y \sim N(0, K_n + \sigma_{\varepsilon}^2 I_n)$$

Joint distribution of the y and f

For each $x_i \in \mathcal{X}$ and y_j

$$cov(f(x_i), y_j) = Ef(x_i)y_j - Ef(x_i)Ey_j$$

$$= Ef(x_i)(f(x_j) + \epsilon_j) - Ef(x_i) \times 0$$

$$= Ef(x_i)f(x_j) + Ef(x_i)E\epsilon_j = K(x_i, x_j)$$

Hence, the joint distribution of f and y is

$$\begin{pmatrix} f \\ y \end{pmatrix} \sim N \begin{bmatrix} \begin{pmatrix} 0_n \\ 0_n \end{pmatrix}, \begin{pmatrix} K_n & K_n \\ K_n & K_n + \sigma_{\varepsilon}^2 I_n \end{pmatrix} \end{bmatrix}$$

where $f = [f(x_1), \dots, f(x_n)]^{\top}$ and 0_n an $n \times 1$ vector of zeroes.

Conditional distribution of multivariate normals

A standard result is that if

$$\begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \sim \textit{N} \begin{bmatrix} 0, \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \end{bmatrix}$$

then

$$\left(z_{1}|z_{2}\right) \sim N\left[\Sigma_{12}\Sigma_{22}^{-1}z_{2}, \Sigma_{11}-\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\right]$$

Since the posterior of f is f|y, and since (f, y) have a joint Gaussian distribution, this formula can be used to obtain the posterior of f.

With $z_1 = f$ and $z_2 = y$, the above result gives the posterior distribution of f, given next.

Posterior distribution of f

Consider the model (1) with $\varepsilon_i \sim_{\text{iid}} N(0, \sigma_{\varepsilon}^2)$ and prior $\pi(f)$ a Gaussian process with mean 0 and covariance kernel K.

Under the above assumptions, the distribution of f|y is a Gaussian process with mean M_f and covariance kernel V_f , which are given by

$$M_{f} = K_{n} \left[K_{n} + \sigma_{\varepsilon}^{2} I_{n} \right]^{-1} y$$

$$V_{f} = K_{n} - K_{n} \left[K_{n} + \sigma_{\varepsilon}^{2} I_{n} \right]^{-1} K_{n}$$

Prediction a new point

Consider a new point y_{n+1} that we want to forecast based on x_{n+1} .

To find the joint distribution of the y and y_{n+1} (given x and x_{n+1}) note that $cov(y_i, y_{n+1}) = K(x_i, x_{n+1})$ for i = 1, ..., n.

Denoting $k_{n+1} = [K(x_1, x_{n+1}), \dots, K(x_n, x_{n+1})]^\top$, we get as before

$$\begin{pmatrix} y_{n+1} \\ y \end{pmatrix} \sim N \begin{bmatrix} \begin{pmatrix} 0_n \\ 0_n \end{pmatrix}, \begin{pmatrix} K(x_{n+1}, x_{n+1}) + \sigma_{\epsilon}^2 & k_{n+1}^\top \\ k_{n+1} & K_n + \sigma_{\epsilon}^2 I_n \end{pmatrix} \end{bmatrix}$$

Then $y_{n+1}|y$ is a Normal with mean M_{n+1} and variance V_{n+1} :

$$M_{n+1} = k_{n+1}^{\top} \left[K_n + \sigma_{\varepsilon}^2 I_n \right]^{-1} y$$

$$V_{n+1} = K(x_{n+1}, x_{n+1}) + \sigma_{\varepsilon}^2 - k_{n+1}^{\top} \left[K_n + \sigma_{\varepsilon}^2 I_n \right]^{-1} k_{n+1}$$

Estimating σ_{ε} and the K hyper-parameters

The posterior distribution of f still depends on unknown parameters θ consisting of σ_{ε} and any hyper-parameters of K, e.g. σ for squared exponential and α for FBM.

The marginal likelihood $\pi(y|\theta)$, multivariate normal density with mean 0_n and covariance matrix $V_y = K_n + \sigma_{\varepsilon}^2 I_n$, can be of help.

Two methods can be used to estimate θ :

- Maximum (marginal) likelihood, i.e., maximize $\pi(y|\theta)$. Aka empirical Bayes
- Put a prior on the hyper-parameters, and estimate them by their posterior means. Aka hierarchical Bayes

Fitting a Gaussian process - Regerssion

Outline

Introduction

② Gaussian Processes

GP regression

Binary classification with Gaussian processes

Let's consider the classification problem with a binary target variable y. In <u>llogistic regression</u> we assume that

$$y \sim \prod_{i=1}^{n} Bernoulli(\pi(x_i, \beta)),$$
 $\pi(x_i, \beta) = \sigma(x_i \beta) = \frac{1}{1 + \exp(-x_i \beta)}$

In logistic regression with Gaussian processes we assume that

$$y \sim \prod_{i=1}^{n} Bernoulli(\pi(f_i)), f = (f_1, \dots, f_n)^{\top}$$

$$\pi(f_i) = \sigma(f_i) = \frac{1}{1 + \exp(-f_i)}$$
 $f = N(0_n, K_n)$

Gaussian process classification

Left: A simulated path f(x) from a Gaussian Process Right: The path f(x) transformed to [0, 1] scale reflecting $\pi(y_i = 1)$

Gaussian process classification in 2 dimensions

Left: Simulated points with green line being optimal boundary and black line being the GP boundary

Right: Prediction probabilities from Gaussian process classifier

Implementation

Let θ denote the Kernel hyper-parameters of f. The augmented likelihood can be written as

$$\pi(y, f|\theta) = \pi(f|\theta)\pi(y|f, \theta) = \pi(f|\theta)\prod_{i} Bernoulli((\pi(f_i)))$$

The posterior $\pi(f|y,\theta)$ is intractable.

The Laplace approximation can be used $N(f_M, H(f_m)^{-1})$ where f_M is the mode of f and $H(\cdot)$ is the Hessian.

We can use Newton-Raphson as in the logistic regression with

$$\nabla_f \log \pi(y, f | \theta) = \nabla_f \log \pi(y | f, \theta) + K_n^{-1} f$$

$$H(f) = -\nabla_f \nabla_f \log \pi(y, f | \theta) + K_n^{-1}$$

Implementation

MCMC on *f* provides a more accurate but also computationally expensive option.

Variational Bayes is also feasible.

The predictive distribution for a future y_{n+1} can be written as

$$\pi(y_{n+1}|y) \approx \int \mathsf{Bernoulli}ig(\sigma(f_{n+1})ig) N\left(f_{n+1}|f_M,H(f)^{-1}\right) df$$

One can sample from the above or just evaluate at f_M to classify y_{n+1}

 θ can also be included in the Laplace/Variational approximation or MCMC together with f.

Gaussian process classification vs other classifiers

Summary

- Gaussian processes provide flexible tools in supervised learning settings.
- Fitting and prediction is carried out using Bayesian inference on that paths of the function f conditionally or jointly on hyper-parameters θ .
- The choice of kernel and θ is very important.
- Overall they perform very well but training is not always easy and also computationally expensive. Approximate and sparse versions are currently explored.

Today's lecture - Reading

Murphy: 15.2 15.3

Bishop: 6.4.1-6.4.3 6.4.5 6.4.6

Today's lecture - Reading

THANKS FOR YOUR ATTENTION!