

Minimization of a Functional on the Space of BV Functions and Nonconforming Discretization of the Problem

I. Theoretical Basics and Characterization of Minimizers

Enrico Bergmann Humboldt-Universität zu Berlin January 6, 2021

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem
 Equivalent Saddle Point Problem
 Characterization of Minimizers
- 4 Outlook

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem Equivalent Saddle Point Problem Characterization of Minimizers
- 4 Outlook

Sören Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47. Springer Series in Computational Mathematics. Springer International Publishing, 2015. ISBN: 978-3-319-13796-4. DOI: 10.1007/978-3-319-13797-1, Chapter 10, p. 297-319

Sören Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Vol. 47. Springer Series in Computational Mathematics. Springer International Publishing, 2015. ISBN: 978-3-319-13796-4. DOI: 10.1007/978-3-319-13797-1, Chapter 10, p. 297-319

Let $\Omega \subset \mathbb{R}^n$ be a bounded polyhedral Lipschitz domain.

For given $g \in L^2(\Omega)$ and $\alpha > 0$ minimize the functional

$$I(v) = |v|_{BV(\Omega)} + \frac{\alpha}{2} ||v - g||^2$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

Functions of Bounded Variation

A function $v \in L^1(\Omega)$ with distributional derivative $Dv: C_C^\infty(\Omega; \mathbb{R}^n) \to \mathbb{R}$ is said to be of bounded variation if there exists c>0 such that

$$\langle Dv, \phi \rangle := -\int_{\Omega} v \operatorname{div}(\phi) dx \leqslant c \|\phi\|_{L^{\infty}(\Omega)}$$

for all $\phi \in C^1_C(\Omega; \mathbb{R}^n)$.

Functions of Bounded Variation

A function $v \in L^1(\Omega)$ with distributional derivative $Dv: C_C^\infty(\Omega;\mathbb{R}^n) \to \mathbb{R}$ is said to be of bounded variation if there exists c>0 such that

$$\langle Dv, \phi \rangle := -\int_{\Omega} v \operatorname{div}(\phi) dx \leqslant c \|\phi\|_{L^{\infty}(\Omega)}$$

for all $\phi \in C_C^1(\Omega; \mathbb{R}^n)$.

The minimal constant $c \ge 0$ satisfying this property is called total variation of Dv and is given by

$$|v|_{\mathsf{BV}(\Omega)} = \sup_{\substack{\phi \in C_C^1(\Omega; \mathbb{R}^n) \\ \|\phi\|_{L^{\infty}(\Omega)} \leqslant 1}} - \int_{\Omega} v \, \mathsf{div}(\phi) \, \mathrm{d}x.$$

Functions of Bounded Variation

A function $v \in L^1(\Omega)$ with distributional derivative $Dv: C_C^\infty(\Omega; \mathbb{R}^n) \to \mathbb{R}$ is said to be of bounded variation if there exists c>0 such that

$$\langle Dv, \phi \rangle := -\int_{\Omega} v \operatorname{div}(\phi) dx \leqslant c \|\phi\|_{L^{\infty}(\Omega)}$$

for all $\phi \in C_C^1(\Omega; \mathbb{R}^n)$.

The minimal constant $c \ge 0$ satisfying this property is called total variation of Dv and is given by

$$|v|_{\mathsf{BV}(\Omega)} = \sup_{\substack{\phi \in C_C^1(\Omega; \mathbb{R}^n) \\ \|\phi\|_{L^{\infty}(\Omega)} \leq 1}} - \int_{\Omega} v \, \mathsf{div}(\phi) \, \mathrm{d}x.$$

The space of all such functions is denoted by $BV(\Omega)$.

Properties of $BV(\Omega)$

 $\mathsf{BV}(\Omega)$ is a nonseparable Banach space equipped with the norm $\|v\|_{\mathsf{BV}(\Omega)} := \|v\|_{L^1(\Omega)} + |v|_{\mathsf{BV}(\Omega)} \quad \text{for all } v \in \mathsf{BV}(\Omega).$

Properties of $BV(\Omega)$

 $\mathsf{BV}(\Omega)$ is a nonseparable Banach space equipped with the norm

$$\|v\|_{\mathsf{BV}(\Omega)} := \|v\|_{L^1(\Omega)} + |v|_{\mathsf{BV}(\Omega)} \quad \text{for all } v \in \mathsf{BV}(\Omega).$$

$$W^{1,1}(\Omega) \subset \mathsf{BV}(\Omega) \text{ with } \|v\|_{\mathsf{BV}(\Omega)} = \|v\|_{W^{1,1}(\Omega)} \text{ for all } v \in W^{1,1}(\Omega).$$

Notions of convergence on $\mathsf{BV}(\Omega)$

Let $(v_n)_{n\in\mathbb{N}}\subset \mathsf{BV}(\Omega)$ and $v\in \mathsf{BV}(\Omega)$ such that $v_n\to v$ in $L^1(\Omega)$ as $n\to\infty$.

(i) $(v_n)_{n\in\mathbb{N}}$ converges intermediately or strictly to v if $|v_n|_{\mathsf{BV}(\Omega)} \to |v|_{\mathsf{BV}(\Omega)}$ as $n \to \infty$.

Notions of convergence on $\mathsf{BV}(\Omega)$

Let $(v_n)_{n\in\mathbb{N}}\subset\mathsf{BV}(\Omega)$ and $v\in\mathsf{BV}(\Omega)$ such that $v_n\to v$ in $L^1(\Omega)$ as $n\to\infty$.

- (i) $(v_n)_{n\in\mathbb{N}}$ converges intermediately or strictly to v if $|v_n|_{\mathsf{BV}(\Omega)} \to |v|_{\mathsf{BV}(\Omega)}$ as $n \to \infty$.
- (ii) $(v_n)_{n\in\mathbb{N}}$ converges weakly to v if $\langle Dv_n, \phi \rangle \to \langle Dv, \phi \rangle$ for all $\phi \in C_0(\Omega; \mathbb{R}^n)$ as $n \to \infty$.

Further Properties of $BV(\Omega)$

 $C^{\infty}(\overline{\Omega})$ and $C^{\infty}(\Omega) \cap \mathsf{BV}(\Omega)$ are dense in $\mathsf{BV}(\Omega)$ with respect to intermediate convergence.

Further Properties of $BV(\Omega)$

 $C^{\infty}(\overline{\Omega})$ and $C^{\infty}(\Omega) \cap \mathsf{BV}(\Omega)$ are dense in $\mathsf{BV}(\Omega)$ with respect to intermediate convergence.

The embedding $\mathrm{BV}(\Omega) \to L^p(\Omega)$ is continuous for $1 \leqslant p \leqslant n/(n-1)$ and compact for $1 \leqslant p < n/(n-1)$

Further Properties of $BV(\Omega)$

 $C^{\infty}(\overline{\Omega})$ and $C^{\infty}(\Omega) \cap \mathsf{BV}(\Omega)$ are dense in $\mathsf{BV}(\Omega)$ with respect to intermediate convergence.

The embedding $\mathrm{BV}(\Omega) \to L^p(\Omega)$ is continuous for $1 \leqslant p \leqslant n/(n-1)$ and compact for $1 \leqslant p < n/(n-1)$

There exists a linear operator $T: \mathsf{BV}(\Omega) \to L^1(\partial\Omega)$ such that $T(v) = v|_{\partial\Omega}$ for all $v \in \mathsf{BV}(\Omega) \cap C(\overline{\Omega})$.

 ${\mathcal T}$ is continuous with respect to intermediate convergence in $\mathsf{BV}(\Omega)$ but not with respect to weak convergence in $\mathsf{BV}(\Omega)$.

- 1 Introduction
- 2 Continuous Problem

Existence of Minimizers Uniqueness and Stability

- 3 Discrete Problem Equivalent Saddle Point Problem Characterization of Minimizers
- 4 Outlook

For given $f \in L^2(\Omega)$ and $\alpha > 0$ minimize the functional

$$E(v) := \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f \, v \, \mathrm{d}x$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

For given $f \in L^2(\Omega)$ and $\alpha > 0$ minimize the functional

$$E(v) := \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f \, v \, \mathrm{d}x$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

For $f = \alpha g$ we have

$$I(v) = |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} ||v - g||^2 = E(v) - ||v||_{L^1(\partial\Omega)} + \frac{\alpha}{2} ||g||_{L^2(\Omega)}^2$$

for all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

For given $f \in L^2(\Omega)$ and $\alpha > 0$ minimize the functional

$$E(v) := \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} f \, v \, \mathrm{d}x$$

amongst all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

For $f = \alpha g$ we have

$$I(v) = |v|_{\mathsf{BV}(\Omega)} + \frac{\alpha}{2} ||v - g||^2 = E(v) - ||v||_{L^1(\partial\Omega)} + \frac{\alpha}{2} ||g||_{L^2(\Omega)}^2$$

for all $v \in \mathsf{BV}(\Omega) \cap L^2(\Omega)$.

I and E have the same minimizers in $\{v \in \mathsf{BV}(\Omega) \cap L^2(\Omega) \mid \|v\|_{L^1(\partial\Omega)} = 0\}.$

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem Equivalent Saddle Point Problem Characterization of Minimizers
- 4 Outlook

$$E(v) = \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} fv \, \mathrm{d}x$$

$$E(v) = \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} fv \, dx$$

$$\geq \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)}$$

$$E(v) = \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} fv \, dx$$

$$\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)}$$

$$\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} - \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2}$$

$$E(v) = \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} fv \, dx$$

$$\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)}$$

$$\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} - \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2}$$

$$\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2}$$

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} fv \, \mathrm{d}x \\ &\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)} \\ &\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} - \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4 |\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \end{split}$$

$$\begin{split} E(v) &= \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \int_{\Omega} \mathsf{f} v \, \mathrm{d} x \\ &\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \|f\|_{L^{2}(\Omega)} \|v\|_{L^{2}(\Omega)} \\ &\geqslant \frac{\alpha}{2} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} - \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant \frac{\alpha}{4 |\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{\mathsf{BV}(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2} \\ &\geqslant -\frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2}. \end{split}$$

$$E(v) \ge \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2}$$

$$\ge \frac{\alpha}{4|\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2}$$

$$\ge -\frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2}.$$

$$E(v) \geqslant \frac{\alpha}{4} \|v\|_{L^{2}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2}$$

$$\geqslant \frac{\alpha}{4|\Omega|} \|v\|_{L^{1}(\Omega)}^{2} + |v|_{BV(\Omega)} + \|v\|_{L^{1}(\partial\Omega)} - \frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2}$$

$$\geqslant -\frac{1}{\alpha} \|f\|_{L^{2}(\Omega)}^{2}.$$

- $\exists (u_n)_{n\in\mathbb{N}} \subset \mathsf{BV}(\Omega) \cap L^2(\Omega)$ infimizing sequence of E
- $\|u_n\|_{\mathsf{BV}(\Omega)} \to \infty$ as $n \to \infty \Rightarrow E(u_n) \to \infty$ as $n \to \infty$
- $(u_n)_{n\in\mathbb{N}}$ bounded

Lawrence C. Evans and Ronald F. Gariepy. **Measure Theory and Fine Properties of Functions**. CRC Press, 1992. ISBN: 0-8493-7157-0, p. 183, Theorem 1

Let $v \in \mathsf{BV}(\Omega)$. For all $x \in \mathbb{R}^n$ define

$$\tilde{v}(x) := \begin{cases} v(x) & \text{if } x \in \Omega, \\ 0 & \text{if } x \in \mathbb{R}^n \backslash \Omega. \end{cases}$$

Then $\tilde{v} \in \mathsf{BV}\left(\mathbb{R}^n\right)$ and $|\tilde{v}|_{\mathsf{BV}(\mathbb{R}^n)} = |v|_{\mathsf{BV}(\Omega)} + ||v||_{L^1(\partial\Omega)}$.

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem Equivalent Saddle Point Problem Characterization of Minimizers
- 4 Outlook

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem

 Equivalent Saddle Point Problem

 Characterization of Minimizers
- 4 Outlook

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem
 Equivalent Saddle Point Problem
 Characterization of Minimizers
- 4 Outlook

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem

 Equivalent Saddle Point Problem

 Characterization of Minimizers
- 4 Outlook

- 1 Introduction
- 2 Continuous Problem Existence of Minimizers Uniqueness and Stability
- 3 Discrete Problem Equivalent Saddle Point Problem Characterization of Minimizers
- 4 Outlook

