Autovalores e Autovetores

6.1 — Autovetor e Autovalor de um Operador Linear

Definição

Seja $T:V\to V$ um operador linear. Um vetor $v\in V$, $v\neq 0$, é dito um autovetor de T se existe um número real λ tal que

$$T(v) = \lambda v$$
.

O número real λ acima é denominado *autovalor* de T associado ao autovetor v.

6.1 — Autovetor e Autovalor de um Operador Linear

Exemplo 1

$$T: \mathbb{R}^2 \to \mathbb{R}^2, \ T(x,y) = (4x + 5y, 2x + y).$$

$$T(5,2) = (30,12) = 6 \cdot (5,2).$$

 \therefore 6 é um autovalor associado ao autovetor (5,2) do operador T.

3 / 15

6.1 — Autovetor e Autovalor de um Operador Linear

Exemplo 1

$$T: \mathbb{R}^2 \to \mathbb{R}^2, \ T(x,y) = (4x + 5y, 2x + y).$$

 $T(5,2) = (30,12) = 6 \cdot (5,2).$

 \therefore 6 é um autovalor associado ao autovetor (5,2) do operador T.

Exemplo 2

$$T: \mathbb{R}^3 \to \mathbb{R}^3, \ T(x, y, z) = (x, y, 0).$$

$$T(x,y,0)=1\cdot(x,y,0).$$

 \therefore qualquer vetor (x, y, 0) é um autovetor de T e seu autovalor associado é 1.

Determinação dos Autovalores

• Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x, y) = (ax + by, cx + dy).

Determinação dos Autovalores

- Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x, y) = (ax + by, cx + dy).
- Queremos encontrar $\lambda \in \mathbb{R}$ tal que exista $(x,y) \neq (0,0)$ com

$$T(x,y) = \lambda \cdot (x,y).$$

Determinação dos Autovalores

- Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x, y) = (ax + by, cx + dy).
- Queremos encontrar $\lambda \in \mathbb{R}$ tal que exista $(x,y) \neq (0,0)$ com

$$T(x,y) = \lambda \cdot (x,y).$$

• Isto é o mesmo que encontrar $(x, y) \neq (0, 0)$ tal que

$$\begin{cases} ax + by = \lambda x \\ cx + dy = \lambda y \end{cases} \Leftrightarrow \begin{cases} (a - \lambda)x + by = 0 \\ cx + (d - \lambda)y = 0 \end{cases}.$$

Determinação dos Autovalores

- Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x, y) = (ax + by, cx + dy).
- Queremos encontrar $\lambda \in \mathbb{R}$ tal que exista $(x,y) \neq (0,0)$ com

$$T(x, y) = \lambda \cdot (x, y).$$

• Isto é o mesmo que encontrar $(x, y) \neq (0, 0)$ tal que

$$\begin{cases} ax + by = \lambda x \\ cx + dy = \lambda y \end{cases} \Leftrightarrow \begin{cases} (a - \lambda)x + by = 0 \\ cx + (d - \lambda)y = 0 \end{cases}.$$

• O sistema linear homogêno acima possui solução não-nula se, e só se,

$$\det \left[\begin{array}{cc} (a-\lambda) & b \\ c & (d-\lambda) \end{array} \right] = 0.$$

Autovalores e Autovetores

Determinação dos Autovalores

- Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x, y) = (ax + by, cx + dy).
- Queremos encontrar $\lambda \in \mathbb{R}$ tal que exista $(x,y) \neq (0,0)$ com

$$T(x,y) = \lambda \cdot (x,y).$$

• Isto é o mesmo que encontrar $(x, y) \neq (0, 0)$ tal que

$$\begin{cases} ax + by = \lambda x \\ cx + dy = \lambda y \end{cases} \Leftrightarrow \begin{cases} (a - \lambda)x + by = 0 \\ cx + (d - \lambda)y = 0 \end{cases}.$$

• O sistema linear homogêno acima possui solução não-nula se, e só se,

$$\det \left[\begin{array}{cc} (a-\lambda) & b \\ c & (d-\lambda) \end{array} \right] = 0.$$

Os autovalores de T são as soluções da equação acima, se existirem.

() Autovalores e Autovetores 4 / 15

Determinação dos Autovetores

• Queremos agora encontrar os autovetores de T associados a um determinado autovalor λ .

5 / 15

Determinação dos Autovetores

- Queremos agora encontrar os autovetores de T associados a um determinado autovalor λ .
- Isto é, queremos encontrar $(x,y) \neq (0,0)$ tal que $T(x,y) = \lambda \cdot (x,y)$.

Determinação dos Autovetores

- Queremos agora encontrar os autovetores de T associados a um determinado autovalor λ .
- Isto é, queremos encontrar $(x,y) \neq (0,0)$ tal que $T(x,y) = \lambda \cdot (x,y)$.
- Isto é o mesmo que encontrar $(x,y) \neq (0,0)$ tal que

$$\begin{cases} ax + by = \lambda x \\ cx + dy = \lambda y \end{cases} \Leftrightarrow \begin{cases} (a - \lambda)x + by = 0 \\ cx + (d - \lambda)y = 0 \end{cases}.$$

Determinação dos Autovetores

- Queremos agora encontrar os autovetores de T associados a um determinado autovalor λ .
- Isto é, queremos encontrar $(x,y) \neq (0,0)$ tal que $T(x,y) = \lambda \cdot (x,y)$.
- Isto é o mesmo que encontrar $(x, y) \neq (0, 0)$ tal que

$$\begin{cases} ax + by = \lambda x \\ cx + dy = \lambda y \end{cases} \Leftrightarrow \begin{cases} (a - \lambda)x + by = 0 \\ cx + (d - \lambda)y = 0 \end{cases}.$$

• Os autovetores de T associados a λ são as soluções não-nulas do sistema linear homogêneo acima.

Obs.: Obrigatoriamente há tais soluções pois o λ foi calculado para que isto aconteça.

() Autovalores e Autovetores 5 / 15

Determinação dos Autovalores e Autovetores — Resumo

1 Dada $T: \mathbb{R}^n \to \mathbb{R}^n$ determine a matriz canônica A = [T].

- **1** Dada $T: \mathbb{R}^n \to \mathbb{R}^n$ determine a matriz canônica A = [T].
- ② Calcule a matriz $A \lambda I$, onde I é a matriz identidade $n \times n$.

- **1** Dada $T: \mathbb{R}^n \to \mathbb{R}^n$ determine a matriz canônica A = [T].
- 2 Calcule a matriz $A \lambda I$, onde I é a matriz identidade $n \times n$.
- **3** Calcule $p(\lambda) = \det(A \lambda I)$. **Obs.:** $p(\lambda)$ é denominado *polinômio característico* de T.

- **1** Dada $T: \mathbb{R}^n \to \mathbb{R}^n$ determine a matriz canônica A = [T].
- 2 Calcule a matriz $A \lambda I$, onde I é a matriz identidade $n \times n$.
- **3** Calcule $p(\lambda) = \det(A \lambda I)$. **Obs.:** $p(\lambda)$ é denominado *polinômio característico* de T.
- **3** Resolva a equação $p(\lambda) = 0$. As raízes desta equação são os autovalores de T.
 - **Obs.:** A equação $p(\lambda) = 0$ é denominada *equação característica* de T.

- **1** Dada $T: \mathbb{R}^n \to \mathbb{R}^n$ determine a matriz canônica A = [T].
- 2 Calcule a matriz $A \lambda I$, onde I é a matriz identidade $n \times n$.
- **3** Calcule $p(\lambda) = \det(A \lambda I)$. **Obs.:** $p(\lambda)$ é denominado *polinômio característico* de T.
- **3** Resolva a equação $p(\lambda) = 0$. As raízes desta equação são os autovalores de T.
 - **Obs.:** A equação $p(\lambda) = 0$ é denominada *equação característica* de T.
- **5** Para cada autovalor λ encontrado, resolva o sistema linear homogêneo cuja matriz dos coeficientes é $A \lambda I$.

Exemplo 1

Determine os autovetores e os autovalores de $T: \mathbb{R}^2 \to \mathbb{R}^2$ dado por T(x,y) = (x+2y,-x+4y).

7 / 15

Exemplo 1

Determine os autovetores e os autovalores de $T: \mathbb{R}^2 \to \mathbb{R}^2$ dado por T(x,y) = (x+2y,-x+4y).

Exemplo 2

Determine os autovetores e os autovalores de $T: \mathbb{R}^2 \to \mathbb{R}^2$ dado por T(x,y) = (-y,x).

Exemplo 1

Determine os autovetores e os autovalores de $T: \mathbb{R}^2 \to \mathbb{R}^2$ dado por T(x,y) = (x+2y,-x+4y).

Exemplo 2

Determine os autovetores e os autovalores de $T : \mathbb{R}^2 \to \mathbb{R}^2$ dado por T(x,y) = (-y,x).

Exemplo 3

Determine os autovetores e os autovalores de $T: \mathbb{R}^3 \to \mathbb{R}^3$ dado por T(x, y, z) = (4x + 2y, -x + y, y + 2z).

Teorema

Seja λ um autovalor do operador $T:V\to V$. O conjunto

$$S_{\lambda} = \{ v \in V ; T(v) = \lambda v \}$$

 $(S_{\lambda} \text{ \'e o conjunto dos autovetores de } T \text{ associados a } \lambda \text{ e o vetor nulo}) \text{ \'e}$ um subespaço vetorial de V denominado autoespaço associado a λ .

8 / 15

Teorema

Seja λ um autovalor do operador $T:V\to V$. O conjunto

$$S_{\lambda} = \{ v \in V ; T(v) = \lambda v \}$$

 $(S_{\lambda} \text{ \'e o conjunto dos autovetores de } T \text{ associados a } \lambda \text{ e o vetor nulo}) \text{ \'e}$ um subespaço vetorial de V denominado *autoespaço* associado a λ .

•
$$T(0) = 0 = \lambda 0$$
. Logo, $0 \in S_{\lambda}$ e $S_{\lambda} \neq \emptyset$.

Teorema

Seja λ um autovalor do operador $T:V \to V$. O conjunto

$$S_{\lambda} = \{ v \in V ; T(v) = \lambda v \}$$

 $(S_{\lambda} \text{ \'e o conjunto dos autovetores de } T \text{ associados a } \lambda \text{ e o vetor nulo}) \text{ \'e}$ um subespaço vetorial de V denominado *autoespaço* associado a λ .

- $T(0) = 0 = \lambda 0$. Logo, $0 \in S_{\lambda}$ e $S_{\lambda} \neq \emptyset$.
- $u, v \in S_{\lambda} \Rightarrow T(u+v) = T(u) + T(v) = \lambda u + \lambda v = \lambda(u+v)$. Logo, $u+v \in S_{\lambda}$.

Teorema

Seja λ um autovalor do operador $T:V \to V$. O conjunto

$$S_{\lambda} = \{ v \in V ; T(v) = \lambda v \}$$

 $(S_{\lambda} \text{ \'e o conjunto dos autovetores de } T \text{ associados a } \lambda \text{ e o vetor nulo}) \text{ \'e}$ um subespaço vetorial de V denominado *autoespaço* associado a λ .

- $T(0) = 0 = \lambda 0$. Logo, $0 \in S_{\lambda}$ e $S_{\lambda} \neq \emptyset$.
- $u, v \in S_{\lambda} \Rightarrow T(u+v) = T(u) + T(v) = \lambda u + \lambda v = \lambda(u+v)$. Logo, $u+v \in S_{\lambda}$.
- $u \in S_{\lambda}, \alpha \in \mathbb{R} \Rightarrow T(\alpha u) = \alpha(T(u)) = \alpha(\lambda u) = \lambda(\alpha u)$. Logo, $\alpha u \in S_{\lambda}$.

Teorema

Seja λ um autovalor do operador $T:V\to V$. O conjunto

$$S_{\lambda} = \{ v \in V ; T(v) = \lambda v \}$$

 $(S_{\lambda} \text{ \'e o conjunto dos autovetores de } T \text{ associados a } \lambda \text{ e o vetor nulo}) \text{ \'e}$ um subespaço vetorial de V denominado autoespaço associado a λ .

- $T(0) = 0 = \lambda 0$. Logo, $0 \in S_{\lambda}$ e $S_{\lambda} \neq \emptyset$.
- $u, v \in S_{\lambda} \Rightarrow T(u+v) = T(u) + T(v) = \lambda u + \lambda v = \lambda(u+v)$. Logo, $u+v \in S_{\lambda}$.
- $u \in S_{\lambda}$, $\alpha \in \mathbb{R} \Rightarrow T(\alpha u) = \alpha(T(u)) = \alpha(\lambda u) = \lambda(\alpha u)$. Logo, $\alpha u \in S_{\lambda}$.
- Pelo visto acima, S_{λ} é um subespaço vetorial de V.

Teorema

Autovetores associados a autovalores distintos de um operador linear $T:V\to V$ são linearmente independentes.

9 / 15

Teorema

Autovetores associados a autovalores distintos de um operador linear $T:V\to V$ são linearmente independentes.

Prova

• Faremos a demonstração para o caso de λ_1 , λ_2 e λ_3 distintos.

Teorema

Autovetores associados a autovalores distintos de um operador linear $T:V\to V$ são linearmente independentes.

- Faremos a demonstração para o caso de λ_1 , λ_2 e λ_3 distintos.
- Suponha $v_i \neq 0$ tal que $T(v_i) = \lambda_i v_i$, para i = 1, 2, 3.

Teorema

Autovetores associados a autovalores distintos de um operador linear $T:V\to V$ são linearmente independentes.

- Faremos a demonstração para o caso de λ_1 , λ_2 e λ_3 distintos.
- Suponha $v_i \neq 0$ tal que $T(v_i) = \lambda_i v_i$, para i = 1, 2, 3.
- Tomemos a_i tais que

$$a_1v_1 + a_2v_2 + a_3v_3 = 0. (1)$$

Teorema

Autovetores associados a autovalores distintos de um operador linear $T:V\to V$ são linearmente independentes.

Prova

- Faremos a demonstração para o caso de λ_1 , λ_2 e λ_3 distintos.
- Suponha $v_i \neq 0$ tal que $T(v_i) = \lambda_i v_i$, para i = 1, 2, 3.
- Tomemos a_i tais que

$$a_1v_1 + a_2v_2 + a_3v_3 = 0. (1)$$

 Aplicando T em ambos os lados da equação acima, obtemos, pela linearidade de T, e pela definição de autovetores

$$a_1 T(v_1) + a_2 T(v_2) + a_3 T(v_3) = 0$$

$$a_1 \lambda_1 v_1 + a_2 \lambda_2 v_2 + a_3 \lambda_3 v_3 = 0.$$
 (2)

Prova — continuação

• Multiplicando ambos os membros da equação (1) por λ_1 , obtemos

$$a_1\lambda_1v_1 + a_2\lambda_1v_2 + a_3\lambda_1v_3 = 0.$$
 (3)

Prova — continuação

• Multiplicando ambos os membros da equação (1) por λ_1 , obtemos

$$a_1\lambda_1v_1 + a_2\lambda_1v_2 + a_3\lambda_1v_3 = 0. (3)$$

• Subtraindo (3) de (2):

$$a_2(\lambda_2 - \lambda_1)v_2 + a_3(\lambda_3 - \lambda_1)v_3 = 0.$$
 (4)

Prova — continuação

• Multiplicando ambos os membros da equação (1) por λ_1 , obtemos

$$a_1\lambda_1 v_1 + a_2\lambda_1 v_2 + a_3\lambda_1 v_3 = 0. (3)$$

• Subtraindo (3) de (2):

$$a_2(\lambda_2 - \lambda_1)v_2 + a_3(\lambda_3 - \lambda_1)v_3 = 0.$$
 (4)

Aplicando T em (4), obtemos

$$a_2\lambda_2(\lambda_2-\lambda_1)\nu_2+a_3\lambda_3(\lambda_3-\lambda_1)\nu_3=0.$$
 (5)

Prova — continuação

• Multiplicando ambos os membros da equação (1) por λ_1 , obtemos

$$a_1\lambda_1 v_1 + a_2\lambda_1 v_2 + a_3\lambda_1 v_3 = 0. (3)$$

• Subtraindo (3) de (2):

$$a_2(\lambda_2 - \lambda_1)v_2 + a_3(\lambda_3 - \lambda_1)v_3 = 0.$$
 (4)

Aplicando T em (4), obtemos

$$a_2\lambda_2(\lambda_2-\lambda_1)v_2+a_3\lambda_3(\lambda_3-\lambda_1)v_3=0.$$
 (5)

• Multiplicando ambos os membros de (4) por λ_2 , vem:

$$a_2\lambda_2(\lambda_2-\lambda_1)v_2+a_3\lambda_2(\lambda_3-\lambda_1)v_3=0.$$
 (6)

Prova — continuação

• Subtraindo (6) de (5):

$$a_3(\lambda_3 - \lambda_2)(\lambda_3 - \lambda_1)v_3 = 0. (7)$$

Prova — continuação

• Subtraindo (6) de (5):

$$a_3(\lambda_3 - \lambda_2)(\lambda_3 - \lambda_1)v_3 = 0. (7)$$

• Como $\lambda_3 - \lambda_2 \neq 0$, $\lambda_3 - \lambda_1 \neq 0$ e $v_3 \neq 0$, segue que

$$a_3 = 0$$
.

Prova — continuação

• Subtraindo (6) de (5):

$$a_3(\lambda_3 - \lambda_2)(\lambda_3 - \lambda_1)v_3 = 0. (7)$$

• Como $\lambda_3 - \lambda_2 \neq 0$, $\lambda_3 - \lambda_1 \neq 0$ e $v_3 \neq 0$, segue que

$$a_3 = 0$$
.

• Substituindo $a_3 = 0$ em (4), obtemos

$$a_2 = 0$$
.

Prova — continuação

• Subtraindo (6) de (5):

$$a_3(\lambda_3 - \lambda_2)(\lambda_3 - \lambda_1)v_3 = 0. (7)$$

• Como $\lambda_3 - \lambda_2 \neq 0$, $\lambda_3 - \lambda_1 \neq 0$ e $v_3 \neq 0$, segue que

$$a_3 = 0.$$

• Substituindo $a_3 = 0$ em (4), obtemos

$$a_2 = 0$$
.

• Substituindo $a_2 = a_3 = 0$ em (1) vem

$$a_1 = 0$$
.

Prova — continuação

• Subtraindo (6) de (5):

$$a_3(\lambda_3 - \lambda_2)(\lambda_3 - \lambda_1)v_3 = 0. (7)$$

• Como $\lambda_3 - \lambda_2 \neq 0$, $\lambda_3 - \lambda_1 \neq 0$ e $v_3 \neq 0$, segue que

$$a_3 = 0$$
.

• Substituindo $a_3 = 0$ em (4), obtemos

$$a_2 = 0$$
.

• Substituindo $a_2 = a_3 = 0$ em (1) vem

$$a_1 = 0.$$

• Logo, *v*₁, *v*₂, *v*₃ são Ll.

Corolário

Se $\lambda_1, \lambda_2, \dots, \lambda_n$ são autovalores distintos e $v_i \in S_{\lambda_i}$ para todo $i = 1, \dots, n$, então $v_1 + v_2 + \dots + v_n = 0$ se, e só se, $v_i = 0$ para todo i.

Corolário

Se $\lambda_1, \lambda_2, \dots, \lambda_n$ são autovalores distintos e $v_i \in S_{\lambda_i}$ para todo $i = 1, \dots, n$, então $v_1 + v_2 + \dots + v_n = 0$ se, e só se, $v_i = 0$ para todo i.

Prova

Se fosse possível ter $v_1 + \ldots + v_n = 0$ sem que todos fossem nulos, seria uma contradição com o Teorema anterior.

Corolário

Seja $T:V\to V$ um operador linear. Se $\mathcal{B}_1,\mathcal{B}_2,\ldots,\mathcal{B}_n$ são bases dos autoespaços associados ao autovalores distintos $\lambda_1,\ldots,\lambda_n$ de T, então, $\mathcal{B}=\mathcal{B}_1\cup\ldots\cup\mathcal{B}_n$ é um conjunto LI.

Corolário

Seja $T:V\to V$ um operador linear. Se $\mathcal{B}_1,\mathcal{B}_2,\ldots,\mathcal{B}_n$ são bases dos autoespaços associados ao autovalores distintos $\lambda_1,\ldots,\lambda_n$ de T, então, $\mathcal{B}=\mathcal{B}_1\cup\ldots\cup\mathcal{B}_n$ é um conjunto LI.

- Faremos a demonstração para dois autovalores distintos λ_1 e λ_2 com bases de seus respectivos autoespaços $\mathcal{B}_1 = \{v_1, v_2\}$ e $\mathcal{B}_2 = \{w\}$.
- Tomemos $a_1v_1 + a_2v_2 + bw = 0$.

Corolário

Seja $T:V\to V$ um operador linear. Se $\mathcal{B}_1,\mathcal{B}_2,\ldots,\mathcal{B}_n$ são bases dos autoespaços associados ao autovalores distintos $\lambda_1,\ldots,\lambda_n$ de T, então, $\mathcal{B}=\mathcal{B}_1\cup\ldots\cup\mathcal{B}_n$ é um conjunto LI.

- Faremos a demonstração para dois autovalores distintos λ_1 e λ_2 com bases de seus respectivos autoespaços $\mathcal{B}_1 = \{v_1, v_2\}$ e $\mathcal{B}_2 = \{w\}$.
- Tomemos $a_1v_1 + a_2v_2 + bw = 0$.
- Como cada S_{λ_i} é um subespaço, $a_1v_1+a_2v_2\in S_{\lambda_1}$ e $bw\in S_{\lambda_2}$.

Corolário

Seja $T:V\to V$ um operador linear. Se $\mathcal{B}_1,\mathcal{B}_2,\ldots,\mathcal{B}_n$ são bases dos autoespaços associados ao autovalores distintos $\lambda_1,\ldots,\lambda_n$ de T, então, $\mathcal{B}=\mathcal{B}_1\cup\ldots\cup\mathcal{B}_n$ é um conjunto LI.

- Faremos a demonstração para dois autovalores distintos λ_1 e λ_2 com bases de seus respectivos autoespaços $\mathcal{B}_1 = \{v_1, v_2\}$ e $\mathcal{B}_2 = \{w\}$.
- Tomemos $a_1v_1 + a_2v_2 + bw = 0$.
- Como cada S_{λ_i} é um subespaço, $a_1v_1+a_2v_2\in S_{\lambda_1}$ e $bw\in S_{\lambda_2}$.
- Pelo Corolário anterior $a_1v_1 + a_2v_2 = 0$ e bw = 0.

Corolário

Seja $T:V\to V$ um operador linear. Se $\mathcal{B}_1,\mathcal{B}_2,\ldots,\mathcal{B}_n$ são bases dos autoespaços associados ao autovalores distintos $\lambda_1,\ldots,\lambda_n$ de T, então, $\mathcal{B}=\mathcal{B}_1\cup\ldots\cup\mathcal{B}_n$ é um conjunto LI.

- Faremos a demonstração para dois autovalores distintos λ_1 e λ_2 com bases de seus respectivos autoespaços $\mathcal{B}_1 = \{v_1, v_2\}$ e $\mathcal{B}_2 = \{w\}$.
- Tomemos $a_1v_1 + a_2v_2 + bw = 0$.
- Como cada S_{λ_i} é um subespaço, $a_1v_1 + a_2v_2 \in S_{\lambda_1}$ e $bw \in S_{\lambda_2}$.
- Pelo Corolário anterior $a_1v_1 + a_2v_2 = 0$ e bw = 0.
- Como cada \mathcal{B}_i é LI segue, $a_1 = a_2 = 0$ e b = 0.

Teorema

Seja $T: V \to V$ um operador linear, com dim V = n. Se $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_n$ são bases dos autoespaços associados ao autovalores distintos $\lambda_1, \ldots, \lambda_n$ de T, e $\mathcal{B} = \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_n$ possui n vetores, então \mathcal{B} é uma base de V.

Definição

Se $T:V\to V$ possui uma base formada por autovetores de T, dizemos que T é um operador $diagonaliz\'{a}vel$.

Definição

Se $T:V\to V$ possui uma base formada por autovetores de T, dizemos que T é um operador $diagonaliz\'{a}vel$.

Definição

Sejam $T: \mathbb{R}^n \to \mathbb{R}^n$ um operador diagonalizável e \mathcal{B} uma base de \mathbb{R}^n formada por autovetores de T. Então,

- (i) $D = [T]_{\mathcal{B}}$ é uma matriz diagonal.
- (ii) A matriz $P = [I]_{\mathcal{C}}^{\mathcal{B}}$ de mudança de base de \mathcal{B} para a base canônica, satisfaz $D = P^{-1}[T]P$. Dizemos que a matrix P diagonaliza [T].

Exemplo 1

Seja $T: \mathbb{R}^2 \to R^2$ dada por T(x, y) = (-5x + 2y, 2x - 2y).

- a) Determine os autovalores e os autoespaços de T.
- b) Determine se T é diagonalizável. Em caso, afirmativo, determine uma base de \mathbb{R}^2 formada por autovetores de T e determine a matriz de T com relação a esta base.
- c) Se T for diagonalizável determine a matriz diagonalizadora P de T.

Exemplo 2

Seja $T: \mathbb{R}^3 \to R^3$ dada por

$$T(x,y) = (-2x + 2y - 3z, 2x + y - 6z, -x - 2y).$$

- a) Determine os autovalores e os autoespaços de T.
- b) Determine se T é diagonalizável. Em caso, afirmativo, determine uma base de \mathbb{R}^3 formada por autovetores de T e determine a matriz de T com relação a esta base.
- c) Se T for diagonalizavel determine a matriz diagonalizadora P de T.

Exemplo 3

Seja $T: \mathbb{R}^3 \to R^3$ dada por T(x, y) = (4x + 2y, -x + y, y + 2z).

- a) Determine os autovalores e os autoespaços de T.
- b) Determine se T é diagonalizável. Em caso, afirmativo, determine uma base de \mathbb{R}^3 formada por autovetores de T e determine a matriz de T com relação a esta base.
- c) Se T for diagonalizável determine a matriz diagonalizadora P de T.