(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 2 February 2006 (02.02.2006)

(10) International Publication Number WO 2006/010949 A1

- (51) International Patent Classification': F04F 5/46, 5/24
- (21) International Application Number:

PCT/GB2005/002999

- (22) International Filing Date: 29 July 2005 (29.07.2005)
- (25) Filing Language: English
- (26) Publication Language: English

(30) Priority Data:

0416914.0	29 July 2004 (29.07.2004)	GB
0416915.7	29 July 2004 (29.07.2004)	GB
0417961.0	12 August 2004 (12.08.2004)	GB
0428343.8	24 December 2004 (24.12.2004)	GB

- (71) Applicant (for all designated States except US): PUR-SUIT DYNAMICS PLC [GB/GB]; Unit 1, Anglian Business Park, Orchard Road, Royston, Hertfordshire SG8 5TW (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): FENTON, Marcus, Brian, Mayhall [GB/GB]; 2 Bushmead Road, Eaton Socon, St Neots, Cambridgeshire PE19 8BP (GB). WALLIS, Alexander, Guy [GB/GB]; 11 Elm Tree Cottages, Water End Road, Potten End, Berkhamstead HP4 2SH (GB).

- (74) Agent: MURGITROYD & COMPANY; Scotland House, 165-169 Scotland Street, Glasgow G5 8PL (GB).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI. GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: JET PUMP

(57) Abstract: A fluid mover (1) includes a hollow body (2) provided with a straight-through passage (3) of substantially constant cross section with an inlet end (4) an outlet end (5) for the entry and discharge respectively of a working fluid. A nozzle (16) substantially circumscribes and opens into the passage (3) intermediate the inlet (4) and outlet (5) ends. An inlet (10) communicates with the nozzle (16) for the introduction of a transport fluid and a mixing chamber (3A) is formed within the passage (3) downstream of the nozzle (16). The nozzle internal geometry and the bore profile immediately upstream of the nozzle exit are disposed and configured to optimise the energy transfer between the transport fluid and working fluid. In use, through the introduction of transport fluid, the working fluid or fluids are atomised to form a dispersed vapour/droplet flow regime with locally supersonic flow conditions within a pseudo-vena contracta, resulting in the creation of a supersonic condensation shock wave (17) within the downstream mixing chamber (3A) by the condensation of the transport fluid. Methods of moving and processing fluids using the fluid mover are also disclosed.

JET PUMP

1	This invention relates to a method and apparatus for
2	moving a fluid.
3	
4	The present invention has reference to improvements
5	to a fluid mover having a number of practical
6	applications of diverse nature ranging from marine
7	propulsion systems to pumping applications for
8	moving and/or mixing fluids and/or solids of the
9	same or different characteristics. The present
10	invention also has relevance in the fields inter
11	alia of heating, cooking, cleaning, aeration, gas
12	fluidisation, and agitation of fluids and
13	fluids/solids mixtures, particle separation,
14	classification, disintegration, mixing,
15	emulsification, homogenisation, dispersion,
16	maceration, hydration, atomisation, droplet
17	production, viscosity reduction, dilution, shear
18	thinning, transport of thixotropic fluids and
19	pasteurisation.

1	
2	More particularly the invention is concerned with
3	the provision of an improved fluid mover having
4	essentially no moving parts.
5	
6	Ejectors are well known in the art for moving
7	working or process fluids by the use of either a
8	central or an annular jet which emits steam into a
9	duct in order to move the fluids through or out of
10	appropriate ducting or into or through another body
11	of fluid. The ejector principally operates on the
12	basis of inducing flow by creating negative
13	pressure, generally by the use of the venturi
14	principle. The majority of these systems utilise a
15	central steam nozzle where the induced fluid
16	generally enters the duct orthogonally to the axis
17	of the jet, although there are exceptions where the
18	reverse arrangement is provided. The steam jet is
19	accelerated through an expansion nozzle into a
20	mixing chamber where it impinges on and is mixed
21	with working fluid. The mixture of working fluid
22	and steam is accelerated to higher velocities within
23	a downstream convergent section prior to a divergent
24	section, e.g. a venturi. The pressure gradient
25	generated in the venturi induces new working fluid
26	to enter the mixing chamber. The energy transfer
27	mechanism in most steam ejector systems is a
28	combination of momentum, heat and mass transfer but
29	by varying proportions. Many of these systems
30	employ the momentum transfer associated with a
31	converging flow, while others involve the generation
32	of a shock wave in the divergent section. One of

1	the major limitations of the conventional
2	convergent/divergent systems is that their
3	performance is very sensitive to the position of the
4	shock wave which tends to be unstable, easily moving
5	away from its optimum position. It is known that if
6	the shock wave develops in the wrong place within
7	the convergent/divergent sections, the relevant unit
8	may well stall. Such systems can also only achieve
9	a shock wave across a restricted section.
10	
11	Furthermore, for systems which employ a central
12	steam nozzle, the throat dimension restriction and
13	the sharp change of direction affecting the working
14	fluid presents a serious limitation on the size of
15	any particulate throughput and certainly any rogue
16	material that might enter the system could cause
17	blockage.
18	
19	An improved fluid mover is described in our
20	International Patent Application No
21	PCT/GB2003/004400 in which the interaction of a
22	working fluid or fluids and a transport fluid
23	projected from a nozzle arrangement provides
24	pumping, entrainment, mixing, heating,
25	emulsification, and homogenization etc. of the
26	working fluid or fluids. The fluid mover introduces
27	an annular supersonic jet of transport fluid,
28	typically steam, into a relatively large diameter
29	straight through hollow passage. Through a
30	combination of momentum transfer, high shear, and
31	the generation of a condensation shock wave, the
32	high velocity steam induces and acts upon the

1	working fluid passing through the centre of the
2	hollow body.
3	
4	PCT/GB2003/004400 describes that the transport fluid
5	is preferably a condensable fluid and may be a gas
6	or vapour, for example steam, which may be
7	introduced in either a continuous or discontinuous
8	manner. At or near the point of introduction of the
9	transport fluid, for example immediately downstream
10	thereof, a pseudo-vena contracta or pseudo
11	convergent/divergent section is generated, akin to
12	the convergent/divergent section of conventional
13	steam ejectors but without the physical constraints
14	associated therewith since the relevant section is
15	formed by the effect of the steam impacting upon the
16	working or process fluid. Accordingly the fluid
17	mover is more versatile than conventional ejectors
18	by virtue of a flexible fluidic internal boundary
19	described by the pseudo-vena contracta. The
20	flexible boundary lies between the working fluid at
21	the centre and the solid wall of the unit, and
22	allows disturbances or pressure fluctuations in the
23	multi phase flow to be accommodated better than for
24	a solid wall. This advantageously reduces the
25	supersonic velocity within the multi phase flow,
26	resulting in better droplet dispersion, increasing
27	the momentum transfer zone length, thus producing a
28	more intense condensation shock wave.
29	
30	PCT/GB2003/004400 further discloses that the
31	positioning and intensity of the shock wave is
32	variable and controllable depending upon the

1	specific requirements of the system in which the
2	fluid mover is disposed. The mechanism relies on a
3	combination of effects in order to achieve its high
4	versatility and performance, notably heat, momentum
5	and mass transfer which gives rise to the generation
6	of the shock wave and also provides for shearing of
7	the working fluid flow on a continuous basis by
8	shear dispersion and/or dissociation. Preferably
9	the nozzle is located as close as possible to the
LO	projected surface of the working fluid in practice
11	and in this respect a knife edge separation between
L2	the transport fluid or steam and the working fluid
L3	stream is of advantage in order to achieve the
L 4	requisite degree of interaction. The angular
L5	orientation of the nozzle with respect to the
16	working fluid stream is of importance and may be
L 7	shallow.
L 8	
19	Further, PCT/GB2003/004400 discloses that the or
20	each transport fluid nozzle may be of a convergent-
21	divergent geometry internally thereof, and in
22	practice the nozzle is configured to give the
23	supersonic flow of transport fluid within the
24	passage. For a given steam condition, i.e. dryness,
25	pressure and temperature, the nozzle is preferably
26	configured to provide the highest velocity steam
27	jet, the lowest total pressure drop and the highest
28	static enthalpy between the steam chamber and the
29	nozzle exit. The nozzle is preferably configured to
30	avoid any shock in the nozzle itself. For example
31	only, and not by way of limitation, an optimum area
32	ratio for the nozzle, namely exit area: throat area,

1	lies in the range 1.75 and 7.5, with an included
2	angle of less than 9°.
3	
4	The or each nozzle is conveniently angled towards
5	the working fluid flow and also faces generally
6	towards the outlet of the fluid mover. This helps
7	penetration of the working fluid by the transport
8	fluid, which may help shear or thermal dispersion of
9	the working fluid. This may also prevent both
10	kinetic energy dissipation on the wall of the
11	passage and premature condensation of the steam at
12	the wall of the passage, where an adverse
13	temperature differential prevails. The angular
14	orientation of the nozzles is selected for optimum
15	performance which is dependent inter alia on the
16	nozzle orientation and the internal geometry of the
17	mixing chamber. Further the angular orientation of
18	the or each nozzle is selected to control the
19	pseudo-convergent/divergent profile, the pressure
20	profile within the mixing chamber, the enthalpy
21	addition and the condensation shock wave intensity
22	or position in accordance with the pressure and flow
23	rates required from the fluid mover. Moreover, the
24	creation of turbulence, governed inter alia by the
25	angular orientation of the nozzle, is important to
26	achieve optimum performance by dispersal of the
27	working fluid to a vapour-droplet phase in order to
28	increase acceleration by momentum transfer. This
29	aspect is of particular importance when the fluid
30	mover is employed as a pump. For example, and not
31	by way of limitation, in the present invention it
32	has been found that an angular orientation for the

1	or each nozzle may lie in the range 0 to 30° with
2	respect to the flow direction of the working fluid.
3	
4	A series of nozzles with respective mixing chamber
5	sections associated therewith may be provided
6	longitudinally of the passage and in this instance
7	the nozzles may have different angular orientations,
8	for example decreasing from the first nozzle in a
9	downstream direction. Each nozzle may have a
10	different function from the other or others, for
11	example pumping, mixing, disintegrating, and may be
12	selectively brought into operation in practice.
13	Each nozzle may be configured to give the desired
14	effects upon the working fluid. Further, in a
15	multi-nozzle system by the introduction of the
16	transport fluid, for example steam, phased heating
17	may be achieved. This approach may be desirable to
18	provide a gradual heating of the working fluid.
19	
20	An object of the present invention is to improve the
21	performance of the fluid mover by enhancing the
22	energy transfer mechanism between the high velocity
23	transport fluid and the working fluid. This
24	improves the performance of the fluid mover having
25	essentially no moving parts having an improved
26	performance than fluid movers currently available in
27	the absence of any constriction such as is
28	exemplified in the prior art recited in the
29	aforementioned patent.
30	
31	According to a first aspect of the present invention
32	a fluid mover includes a hollow body provided with a

1	straight-through passage of substantially constant
2	cross section with an inlet at one end of the
3	passage and an outlet at the other end of the
4	passage for the entry and discharge respectively or
5	a working fluid, a nozzle substantially
6	circumscribing and opening into said passage
7	intermediate the inlet and outlet ends thereof, an
8	inlet communicating with the nozzle for the
9	introduction of a transport fluid, a mixing chamber
10	being formed within the passage downstream of the
11	nozzle, the nozzle internal geometry and the bore
12	profile immediately upstream of the nozzle exit
13	being so disposed and configured to optimise the
14	energy transfer between the transport fluid and
15	working fluid that in use through the introduction
16	of transport fluid the working fluid or fluids are
17	atomised to form a dispersed vapour/droplet flow
18	regime with locally supersonic flow conditions
19	within a pseudo-vena contracta, resulting in the
20	creation of a supersonic condensation shock wave
21	within the downstream mixing chamber by the
22	condensation of the transport fluid.
23	
24	The transport fluid is preferably a condensable
25	fluid and may be a gas or vapour, for example steam,
26	which may be introduced in either a continuous or
27	discontinuous manner.
28	
29	According to a second aspect of the present
30	invention a fluid mover of the kind described in our
31	aforementioned patent application, includes a hollow
32	body provided with a straight-through passage of

1	substantially constant cross section with an inlet
2	at one end of the passage and an outlet at the other
3	end of the passage for the entry and discharge
4	respectively of a working fluid, a nozzle
5	substantially circumscribing and opening into said
6	passage intermediate the inlet and outlet ends
7	thereof, an inlet communicating with the nozzle for
8	the introduction of steam, a mixing chamber being
9	formed within the passage downstream of the nozzle,
10	the nozzle internal geometry and the bore profile
11	immediately upstream of the nozzle exit being so
12	disposed and configured to optimise the energy
13	transfer between the steam and working fluid that in
14	use through the introduction of steam the working
15	fluid or fluids are atomised to form a dispersed
16	vapour/droplet flow regime with locally supersonic
17	flow conditions within a pseudo-vena contracta,
18	resulting in the creation of a supersonic
19	condensation shock wave within the downstream mixing
20	chamber by the condensation of the steam.
21	
22	The nozzle may be of a form to correspond with the
23	shape of the passage and thus for example a circular
24	passage would advantageously be provided with an
25	annular nozzle circumscribing it. The term
26	'annular' as used herein is deemed to embrace any
27	configuration of nozzle or nozzles that
28	circumscribes the passage of the fluid mover, and
29	encompasses circular, irregular, polygonal and
30	rectilinear shapes of nozzle. The term
31	"circumscribing" or "circumscribes" as used herein
32	is deemed to embrace not only a continuous nozzle

1	surrounding the passage, but also a discontinuous
2	nozzle having two or more nozzle outlets partially
3	or entirely surrounding the passage.
4	
5	The or each nozzle may be of a convergent-divergent
6	geometry internally thereof, and in practice the
7	nozzle is configured to give the supersonic flow of
8	transport fluid within the passage. For a given
9	steam condition, i.e. dryness, pressure and
10	temperature, the nozzle is preferably configured to
11	provide the highest velocity steam jet, the lowest
12	total pressure drop and the highest enthalpy between
13	the steam chamber and nozzle exit.
14	
15	The condensation profile in the mixing chamber
16	determines the expansion ratio profile across the
17	nozzle. With relatively low working fluid
18	temperatures condensation is dominant, and the exit
19	pressure of the transport fluid nozzle is low. The
20	exit pressure of the transport fluid nozzle is
21	higher when the bulk temperature of the working
22	fluid is higher.
23	
24	According to a third aspect of the present invention
25	a method of moving a working fluid includes
26	presenting a fluid mover to the working fluid,
27	the mover having a straight-through passage of
28	substantially constant cross section,
29	applying a substantially circumscribing stream
30	of a transport fluid to the passage through an
31	annular nozzle,

1	atomising the working fluid to form a dispersed
2	vapour and droplet flow regime with locally
3	supersonic flow conditions,
4	generating a supersonic condensation shock wave
5	within the passage downstream of the nozzle by
6	condensation of the transport fluid,
7	inducing flow of the working fluid through the
8	passage from an inlet to an outlet thereof, and
9	modulating the condensation shock wave to vary
10	the working fluid discharge from the outlet.
11	
12	Preferably the modulating step includes modulating
13	the intensity of the condensation shock wave
14	Alternatively or additionally the modulating step
15	includes modulating the position of the condensation
16	shock wave.
17	
18	The bore profile immediately upstream of the nozzle
19	is preferably configured to encourage working fluid
20	atomisation. Preferably an instability in working
21	fluid flow is introduced immediately upstream of the
22	nozzle.
23	
24	The or each nozzle is preferably optimally
25	configured to operate with a particular working
26	fluid, upstream wall contour profile and mixing
27	chamber geometry. The nozzles, upstream wall
28	contour profile and mixing chamber combination are
29	configured to encourage working fluid atomisation
30	creating a vapour/droplet mixed flow with local
31	supersonic flow conditions. This encourages the
32	formation of the downstream condensation shock wave,

by enhancing local turbulence, pressure gradient and
the momentum and heat transfer rate between the

3 transport and working fluids by maximising surface

4 contact between the fluids.

5

6 The or each nozzle is preferably configured to operate with a particular working fluid, upstream 7 wall contour profile and mixing chamber to provide 8 an optimum nozzle exit pressure. Initial pressure 9 10 recovery due to transport fluid deceleration, coupled with the downstream pressure drop due to 11 condensation, is used to ensure the nozzle expansion 12 ratio is adjusted to enhance atomisation of the 13

working fluid and momentum transfer.

15

The exit velocity from the or each nozzle may be 16 controlled by varying the transport fluid supply 17 pressure, the expansion ratio of the nozzle and the 18 condensation profile in the immediate region of the 19 mixing chamber. The nozzle exit velocities may be 20 controlled to enhance Momentum Flux Ratios M in the 21 immediate region of the mixing chamber, where M is 22 23 defined by the equation

$$M \equiv \frac{\left(\rho_s \times U_s^2\right)}{\left(\rho_f \times U_f^2\right)}$$

26 where ρ = Fluid density

U = Fluid velocity

Subscript s represents transport fluid
Subscript f represents working fluid

1	In the present invention it has been found that an
2	optimum Momentum Flux Ratio ${\it M}$ for the or each nozzle
3	lies in the range $2 \le M \le 70$. For example, when using
4	steam as the transport fluid, with a working fluid
5	with a high water content, $\it M$ for the or each nozzle
6	lies in the range $5 \le M \le 40$.
7	
8	The or each nozzle is configured to provide the
9	desired combination of axial, radial and tangential
10	velocity components. It is a combination of axial,
11	radial and tangential components which influence the
12	primary turbulent break-up (atomisation) of the
13	working fluid flow and the pressure gradient.
14	
15	The interaction between the transport fluid and the
16	working fluid, leading to the atomisation of the
17	working fluid, is enhanced by flow instability.
18	Instability enhances the droplet stripping from the
19	contact surface of the core flow of the working
20	fluid. A turbulent dissipation layer between the
21	transport and working fluids is both fluidically and
22	mechanically (geometry) encouraged ensuring rapid
23	fluid core dissipation. The pseudo-vena contracta
24	is a resultant aspect of this droplet atomisation
25	region.
26	
27	The internal walls of the flow passage upstream of
28	the or each nozzle may be contoured to provide a
29	combination of axial, radial and tangential velocity
30	components of the outer surface of the working fluid
31	core when it comes into contact with the transport
32	fluid. It is a combination of these velocity

1	components which inter alia influence the primary
2	turbulent break-up (atomisation) of the working
3	fluid and the pressure gradient when it comes into
4	contact with the transport fluid.
5	
6	Under optimum operating conditions the
7	disintegration or atomisation of the working fluid
8	core is extremely rapid. The disintegration across
9	the whole bore will typically take place in the
10	mixing chamber within, but not limited to, a
11	distance approximately equivalent to 0.66D
12	downstream of the nozzle exit. Under different non-
13	optimised operating conditions disintegration across
14	the whole bore of the mixing chamber, may still
15	occur within, but not limited to, a distance
16	equivalent to 1.5D downstream of the nozzle exit,
17	where D is the nominal diameter of the bore through
18	the centre of the fluid mover.
TO	the centre of the fluid mover.
19	the centre of the fluid mover.
	Recirculation occurs in the flow. The
19	
19 20	Recirculation occurs in the flow. The
19 20 21	Recirculation occurs in the flow. The recirculation is particularly dominant where
19 20 21 22	Recirculation occurs in the flow. The recirculation is particularly dominant where tangential velocity components of the transport
19 20 21 22 23	Recirculation occurs in the flow. The recirculation is particularly dominant where tangential velocity components of the transport fluid are present. The radial pressure gradients
19 20 21 22 23 24	Recirculation occurs in the flow. The recirculation is particularly dominant where tangential velocity components of the transport fluid are present. The radial pressure gradients created within the mixing chamber are responsible
19 20 21 22 23 24 25	Recirculation occurs in the flow. The recirculation is particularly dominant where tangential velocity components of the transport fluid are present. The radial pressure gradients created within the mixing chamber are responsible for this flow phenomenon which encourages complete
19 20 21 22 23 24 25 26	Recirculation occurs in the flow. The recirculation is particularly dominant where tangential velocity components of the transport fluid are present. The radial pressure gradients created within the mixing chamber are responsible for this flow phenomenon which encourages complete and rapid flow dispersion characteristics across the
19 20 21 22 23 24 25 26	Recirculation occurs in the flow. The recirculation is particularly dominant where tangential velocity components of the transport fluid are present. The radial pressure gradients created within the mixing chamber are responsible for this flow phenomenon which encourages complete and rapid flow dispersion characteristics across the
19 20 21 22 23 24 25 26 27	Recirculation occurs in the flow. The recirculation is particularly dominant where tangential velocity components of the transport fluid are present. The radial pressure gradients created within the mixing chamber are responsible for this flow phenomenon which encourages complete and rapid flow dispersion characteristics across the bore.
19 20 21 22 23 24 25 26 27 28	Recirculation occurs in the flow. The recirculation is particularly dominant where tangential velocity components of the transport fluid are present. The radial pressure gradients created within the mixing chamber are responsible for this flow phenomenon which encourages complete and rapid flow dispersion characteristics across the bore. This effect is also created when the pseudo-vena

1	flow outwards, causing a region downstream of the
2	transport fluid nozzle exit, typically between 1
3	diameter and 2 diameters downstream, where the axial
4	flow component of the working fluid stagnates and
5	may even reverse briefly on the centre-line, i.e.
6	the centre of the flow region.
7	
8	Recirculation has particular benefits in some
9	applications such as emulsification.
10	
11	A series of nozzles with respective mixing chamber
12	sections associated therewith may be provided
13	longitudinally of the passage and in this instance
14	the nozzles may have different angular orientations,
15	for example decreasing from the first nozzle in a
16	downstream direction. Each nozzle may have a
17	different function from the other or others, for
18	example pumping, mixing, disintegrating or
19	emulsifying, and may be selectively brought into
20	operation in practice. Each nozzle may be
21	configured to give the desired effects upon the
22	working fluid. Further, in a multi-nozzle system by
23	the introduction of the transport fluid, for example
24	steam, phased heating may be achieved. This
25	approach may be desirable to provide a gradual
26	heating of the working fluid, enhanced atomisation,
27	pressure gradient profiling or a combinatory effect,
28	such as enhanced emulsification.
29	
30	In addition the internal walls of the flow passage
31	immediately upstream of the or each nozzle exit may
32	be contoured to provide different degrees of

1	turbulence to the working fluid prior to its
2	interaction with the transport fluid issuing from
3	the or each nozzle.
4	
5	The mixing chamber geometry is determined by the
6	desired and projected output performance and to
7	match the designed transport fluid conditions and
8	nozzle geometry. In this respect it will be
9	appreciated that there is a combinatory effect as
10	between the various geometric features and their
11	effect on performance, namely there is interaction
12	between the various design and performance
13	parameters having due regard to the defined function
14	of the fluid mover.
15	
16	According to a fourth aspect of the present
17	invention a method of processing a working fluid
18	includes
19	presenting a fluid mover to the working fluid,
20	the fluid mover having a straight-through passage of
21	substantially constant cross section,
22	applying a substantially circumscribing stream
23	of a transport fluid to the passage through an
24	annular nozzle,
25	atomising the working fluid to form a dispersed
26	vapour and droplet flow regime with locally
27	supersonic flow conditions,
28	generating a supersonic condensation shock wave
29	within the passage downstream of the nozzle by
30	condensation of the transport fluid, the position of
31	the condensation shock wave remaining substantially
32	constant under equilibrium flow,

1	inducing flow of the working fluid through the
2	passage from an inlet to an outlet thereof, and
3	changing the position of the condensation shock
4	wave to vary the working fluid discharge from the
5	outlet.
6	
7	Changing the position of the condensation shock wave
8	is preferably achieved by varying at least one of a
9	group of parameters, the group of parameters
1.0	including the inlet temperature of the working
11	fluid, the flow rate of the working fluid, the inlet
12	pressure of the working fluid, the outlet pressure
13	of the working fluid, the flow rate of a fluid
14	additive added to the working fluid, the inlet
15	pressure of a fluid additive added to the working
16	fluid, the outlet pressure of a fluid additive added
17	to the working fluid, the temperature of a fluid
18	additive added to the working fluid, the angle of
19	entry of the transport fluid to the passage, the
20	inlet temperature of the transport fluid, the flow
21	rate of the transport fluid, the inlet pressure of
22	the transport fluid, the internal dimensions of the
23	passage downstream of the nozzle, and the internal
24	dimensions of the passage upstream of the nozzle.
25	
26	The term straight-through when used to describe a
27	passage encompasses any passage having a clear flow
28	path therethrough, including curved passages.
29	
30	The fluid additive may be gaseous or liquid. The
31	fluid additive is not an essential element of the
32	invention, but in certain circumstances may be

1	beneficial. The fluid additive may comprise a
2	powder in dry form or suspended in a fluid.
3	
4	The parameter varying step may include switching
5	between a plurality of transport fluids or between a
6	plurality of fluid additives.
7	
8	The improvements of the present invention may be
9	employed to the fluid mover of the aforementioned
10	patent, and enhance its use in a variety of
11	applications as disclosed in the aforementioned
12	patent. These applications range from use as a
13	fluid processor, including pumping, mixing, heating,
14	homogenising etc, to marine propulsion, where the
15	mover is submersed within a body of fluid, namely
16	the sea or lake or other body of water. In its
17	application to fluid processing a variety of working
18	fluids may be processed and may include liquids,
19	liquids with solids in suspension, slurries, sludges
20	and the like. It is an advantage of the straight-
21	through passage of the mover that it can accommodate
22	material that might find its way into the passage.
23	
24	The fluid mover of the present invention may also be
25	used for enhanced mixing, dispersion or hydration
26	and again the combination of the shearing mechanism,
27	droplet formation and presence of the condensation
28	shock wave provides the mechanism for achieving the
29	desired result. In this connection the fluid mover
30	may be used for mixing one or more fluids, one or
31	more fluids and solids in particulate form, for
32	example powders. The fluids may be in liquid or

1	gaseous form. It has been found that the use of the
2	present invention when mixing liquid with a powder
3	of particulate form results in a homogeneous
4	mixture, even when the powder is of material which
5	is difficult to wet, for example Gum Tragacanth
6	which is a thickening agent.
7	
8	The treatment of the working fluid, for example
9	heating, dosing, mixing, dispersing, emulsifying etc
10	may occur in batch mode using at least one fluid
11	mover or by way in an in-line or continuous
12	configuration using one or more fluid movers as
13	required.
14	
15	A further use to which the present invention may be
16	put is that of emulsification which is the formation
17	of a suspension by mixing two or more liquids which
18	are not soluble in each other, namely small droplets
19	of one liquid (inner phase) are suspended in the
20	other liquid(s) (outer phase). Emulsification may
21	be achieved in the absence of surfactant blends,
22	although they may be used if so desired. In
23	addition, due to the straight through nature of the
24	invention, there is no limitation on the particle
25	size that can be handled, allowing particle sizes up
26	to the bore size of the unit to pass through whilst
27	emulsification is taking place.
28	
29	The fluid mover may also be employed for
30	disintegration, for example in the paper industry
31	for disintegration of paper pulp. A typical example
32	would be in paper recycling, where waste paper or

1	broken pieces are mixed with water and passed
2	through the fluid mover. A combination of the heat
3	addition, the high intensity shearing mechanism, the
4	low pressure region in the vapour-droplet flow and
5	the condensation shock wave both rapidly hydrates
6	the paper fibres, and macerates and disintegrates
7	the paper pieces into smaller sizes. Disintegration
8	down to individual fibres has been achieved in
9	tests. Similarly, the fluid mover could be used in
10	de-inking processes, where the heating and shearing
11	assist in the removal of ink from paper pulp as it
12	passes through the fluid mover.
13	
14	The straight through aspect of the invention has the
15	additional benefit of offering very little flow
16	restriction and therefore a negligible pressure
17	drop, when a fluid is moved through it. This is of
18	particular importance in applications where the
19	fluid mover is located in a process pipe work and
20	fluid is pumped through it, such as the case, for
21	example, when the fluid mover of the present
22	invention is turned 'off' by the reduction or
23	stopping of the supply of transport fluid. In
24	addition, the straight through passage and clear
25	bore offers no impedance to cleaning 'pigs' or other
26	similar devices which may be employed to clean the
27	pipe work.
28	
29	A detailed description of the energy transfer
30	mechanism, focussing on the momentum transfer
31	between the transport fluid and working fluid by an
32	enhanced shearing mechanism is best described with

1	reference to the accompanying drawings. By way of
2	example, eight embodiments of geometrical features
3	that may be employed to enhance this energy transfer
4	mechanism in accordance with the present invention
5	are described below with reference to the
6	accompanying drawings in which:
7	
8	Figure 1 is a cross sectional elevation of a fluid
9	mover according to the present invention;
10	Figure 2 is a magnified view of the shearing
11	mechanism shown in Figure 1;
12	Figure 3 is a cross sectional elevation of a first
13	embodiment;
14	Figure 4 is a cross sectional elevation of a second
15	embodiment;
16	Figure 5 is a cross sectional elevation of a third
17	embodiment;
18	Figure 6 is a cross sectional elevation of a fourth
19	embodiment;
20	Figure 7 is a cross sectional elevation of a fifth
21	embodiment;
22	Figure 8 is a cross sectional elevation of a sixth
23	embodiment;
24	Figure 9 is a cross sectional elevation of a seventh
25	embodiment;
26	Figure 10 is a schematic section through the fluid
27	regime of the fluid mover of the present invention;
28	Figure 11 is a schematic drawing of the fluid mover
29	of the present invention in use;
30	Figure 12 is a schematic drawing showing pressure in
31	the fluid mover of the present invention under three
32	different operating conditions;

1	Figure 13 is a schematic drawing showing a section
2	through the fluid mover of the present invention and
3	the pressure distribution in the fluid mover under
4	two different condensation shock wave positions; and
5	Figures 14a and 14b are partial cross sectional
6	views through an eighth embodiment of the fluid
7	mover of the present invention.
8	
9	Like numerals of reference have been used for like
10	parts throughout the specification.
11	
12	Referring to Figure 1 there is shown a fluid mover
13	1, comprising a housing 2 defining a passage 3
14	providing an inlet 4 and an outlet 5, the passage 3
15	being of substantially constant circular cross
16	section.
17	
18	The housing 2 contains a plenum 8 for the
19	introduction of a transport fluid, the plenum 8
20	being provided with an inlet 10. The distal end of
21	the plenum is tapered on and defines an annular
22	nozzle 16. The nozzle 16 being in flow communication
23	with the plenum 8. The nozzle 16 is so shaped as in
24	use to give supersonic flow.
25	
26	In operation the inlet 4 is connected to a source of
27	a process or working fluid. Introduction of the
28	steam into the fluid mover 1 through the inlet 10
29	and plenum 8 causes a jet of steam to issue forth
30	through the nozzle 16. Steam issuing from the
31	nozzle 16 interacts with the working fluid in a
32	section of the passage operating as a mixing chamber

1	(3A). In operation the condensation shock wave 17
2	is created in the mixing chamber (3A).
3	
4	In operation the steam jet issuing from the nozzle
5	occasions induction of the working fluid through the
6	passage 3 which because of its straight through
7	axial path and lack of any constrictions provides a
8	substantially constant dimension bore which presents
9	no obstacle to the flow. At some point determined
10	by the steam and geometric conditions, and the rate
11	of heat and mass transfer, the steam condenses
12	causing a reduction in pressure. The steam
13	condensation begins shortly before the condensation
14	shock wave and increases exponentially, ultimately
15	forming the condensation shock wave 17 itself.
16	
17	The low pressure created shortly before and within
18	the initial phase of the condensation shock wave
19	results in a strong fluid induction through the
20	passage 3. The pressure rises rapidly within and
21	after the condensation shock wave. The condensation
22	shock wave therefore represents a distinct pressure
23	boundary/gradient.
24	
25	The parametric characteristics of the steam coupled
26	with the geometric features of the nozzle, upstream
27	wall profile and mixing chamber are selected for
28	optimum energy transfer from the steam to the
29	working fluid. The first energy transfer mechanism
30	is momentum and mass transfer which results in
31	atomisation of the working fluid. This energy
32	transfer mechanism is enhanced through turbulence.

Τ	rigure I shows diagrammatically the break-up, or
2	atomisation sequence 18 of the working fluid core.
3	
4	Figure 2 shows a magnified and exaggerated schematic
5	of the shearing and atomisation mechanism 18 of the
6	working fluid by the transport fluid. It is
7	believed that this mechanism can be broken down into
8	three distinct regions, each governed by established
9	turbulence mechanisms. The first region 20
10	experiences the first interaction between the
11	transport and working fluid. It is in this region
12	that Kelvin-Helmholtz instabilities in the surface
13	contact layer of the working fluid may start to
14	develop. These instabilities grow due to the shear
15	conditions, pressure gradients and velocity
16	fluctuations, leading to Rayleigh-Taylor ligament
17	break-up 24. Second order eddies within the fluid
18	surface waves may reduce in size to the scale of
19	Kolmogorov eddies 22. It is believed that the
20	formation of these eddies, in association with the
21	Rayleigh-Taylor ligament break-up, result in the
22	formation of small droplets 28 of the working fluid.
23	
24	The droplet formation phases may also result in a
25	localised recirculation zone 26 immediately
26	following the ligament break-up region. This
27	recirculation zone may enhance the fluid atomisation
28	further by re-circulating the larger droplets back
29	into the high shear region. This recirculation, a
30	feature of the localised pressure gradient, is
31	controllable via the transport fluid's axial,
32	tangential and radial velocity and pressure

1	components. It is believed that this mechanism
2	enhances inter alia the mixing, emulsifying and
3	pumping capabilities of the fluid mover.
4	
5	The primary break-up mechanism of the working fluid
6	core may therefore be enhanced by creating initial
7	instabilities in the working fluid flow.
8	Deliberately created instabilities in the transport
9	fluid/working fluid interaction layer encourage
10	fluid surface turbulent dissipation resulting in the
11	working fluid core dispersing into a liquid-ligament
12	region, followed by a ligament-droplet region where
13	the ligaments and droplets are still subject to
14	disintegration due to aerodynamic characteristics.
15	
16	Referring now to Figure 3 the fluid mover of Figure
17	1 and 2 is provided with a contoured internal wall
18	in the region 19 immediately upstream of the exit of
19	the steam nozzle 16. The internal wall of the flow
20	passage 3 immediately upstream of the nozzle 16 is
21	provided with a tapering wall 30 to provide a
22	diverging profile leading up to the exit of the
23	steam nozzle 16. The diverging wall geometry
24	provides a deceleration of the localised flow,
25	providing disruption to the boundary layer flow, in
26	addition to an adverse pressure gradient, which in
27	turn leads to the generation and propagation of
28	turbulence in this part of the working fluid flow.
29	As this turbulence is created immediately prior to
30	the interaction between the working fluid and the
31	transport fluid, the instabilities initiated in
32	these regions enhance the Kelvin-Helmholtz

1	instabilities and hence ligament and droplet
2	formation as foreshadowed in the foregoing
3	description occurs more rapidly.
4	
5	An alternative embodiment is shown in Figure 4.
6	Again, the fluid mover of Figure 1 and 2 is provided
7	with a contoured internal wall 19 of the flow
8	passage 3 immediately upstream of the nozzle 16.
9	The contoured surface in this embodiment is provided
LO	by a diverging wall 30 on the bore surface leading
L 1	up to the exit of the steam nozzle 16, but the taper
L2	is preceded with a step 32. In use, the step
L3	results in a sudden increase in the bore diameter
L 4	prior to the tapered section. The step 'trips' the
L5	flow, leading to eddies and turbulent flow in the
L 6	working fluid within the diverging section,
L7	immediately prior to its interaction with the steam
L 8	issuing from the steam nozzle 16. These eddies
L 9	enhance the initial wave instabilities which lead to
20	ligament formation and rapid fluid cone dispersion.
21	
22	The tapered diverging section 30 could be tapered
23	over a range of angles and may be parallel with the
24	walls of the bore. It is even envisaged that the
25	tapered section 30 may be tapered to provide a
26	converging geometry, with the taper reducing to a
27	diameter at its intersection with the steam nozzle
28	16 which is preferably not less than the bore
29	diameter.
30	
31	The embodiment shown in Figure 4 is illustrated with
32	the initial step 32 angled at 90° to the axis of the

3NSDOCID: <WO 2006010949A1 + >

27

1	bore 3. As an alternative to this configuration,
2	the angle of the step 32 may display a shallower or
3	greater angle suitable to provide a 'trip' to the
4	flow. Again, the diverging section 30 could be
5	tapered at different angles and may even be parallel
6	to the walls of the bore 3. Alternatively, the
7	tapered section 30 may be tapered to provide a
8	converging geometry, with the taper reducing to a
9	diameter at its intersection with the steam nozzle
10	16 which is preferably not less than the bore
11	diameter.
12	
13	Figures 5 to 8 illustrate examples of alternative
14	contoured profiles. All of these are intended to
15	create turbulence in the working fluid flow
16	immediately prior to the interaction with the
17	transport fluid issuing from the nozzle 16.
18	
19	The embodiments illustrated in Figures 5 and 6
20	incorporate single or multiple triangular cross
21	section grooves 34, 36 immediately prior to a
22	tapered or parallel section 30, which is in turn
23	immediately prior to the exit of the steam nozzle
24	16.
25	
26	The embodiments illustrated in Figures 7 and 8
27	incorporate single or multiple triangular 38 and/or
28	square 40 cross section grooves a short distance
29	upstream of the exit of the steam nozzle 16. These
30	embodiments are illustrated without a tapering
31	diverging section after the grooves.
32	

3NSDOCID: <WO 2006010949A1 + >

1 Although Figures 1 to 8 illustrate several

2	combinations of grooves and tapering sections, it is
3	envisaged that any combination of these features, or
4	any other groove cross-sectional shape may be
5	employed.
6	
7	The tapered section 30 and/or the step 32 and/or the
8	grooves 34, 36, 38, 40 may be continuous or
9	discontinuous in nature around the bore. For
10	example, a series of tapers and/or grooves and/or
11	steps may be arranged around the circumference of
12	the bore in a segmented or 'saw tooth' arrangement.
13	
14	The nature of the flow regime in the fluid mover of
15	the present invention is described in more detail
16	below, with reference to Figure 10.
17	
18	The transport fluid, usually steam 80, enters
19	through nozzle 16 at supersonic velocity. Wherever
20	the term steam is used, it is to be understood that
21	the term can also be applied to other transport
22	fluids. The working fluid, usually liquid 82, flows
23	at a subsonic velocity into the inlet 4. At the
24	nozzle 16 there is a subsonic liquid core 84 which
25	is bounded by a generally rough or turbulent conical
26	interface with the steam 80 and the region of
27	dispersion 88. As the steam 80 exits the nozzle 16
28	it exhibits local shock and expansion waves 86 and
29	forms a pseudo vena contracta 90. The accelerated
30	region of dispersion 88 (or dissociation) of the
31	liquid core flows at a locally supersonic velocity
32	into the vapour-droplet region 92, in which the

1	vapour is steam and the droplets are the working
2	fluid. Condensation takes place in the supersonic
3	condensation zone 94 and the subsonic condensation
4	zone 96. The condensation shock wave 17 is produced
5	when the condensation, which initiates in the
6	locally supersonic low density region 94, reaches an
7	exponential rate. The zone 96 immediately after the
8	condensation shock wave 17 has a considerably higher
9	density and is hence subsonic. The condensation
10	shock wave 17 thus defines the interface between
11	these two densities.
12	
13	In the liquid phase 98 beyond the condensation zone
14	96 there are small vapour bubbles. The position of
15	the condensation shock wave is controllable over a
16	distance L by adjustment of one of the plurality of
17	parameters described herein.
18	
19	The break-up and dispersion of the primary liquid
20	core produces a droplet vapour region. Any liquid
21	instabilities on the primary liquid cone surface 18
22	are amplified to form 'waves'. These waves are
23	further elongated to form ligaments that undergo
24	Rayleigh-Taylor break-up, resulting in the formation
25	of small droplets 28, separated ligaments 24 and
26	larger droplets.
27	
28	The secondary region 24 is thus characterised by the
29	rapid increase in the effective fluid surface area.
30	These droplets 28, of varying size, are then subject
31	to several aerodynamic and thermal effects which
32	ultimately result in their break up to sizes

characteristic with the turbulence levels in this 1 region. This results in the vapour-droplet region 2 which defines the flow regime within the fluid 3 mover. 4 5 The thickness of the viscous sub layer, comprising 6 the high speed vapour/gas and the locally entrained 7 liquid in droplet or ligament form, increases 8 downstream to ultimately extend across the entire 9 The turbulence within this region arises from 10 shear (velocity gradient) and eddies (large scale to 11 Kolmogorov scale), as the flow is essentially of a 12 vapour-droplet consistency. High levels of shear 13 exist in the gas/liquid interface. 14 15 A large amount of energy is transferred in this 16 secondary region 24 as a result of further particle 17 break-up. Mass transfer takes place as the shear 18 forces and thermal discontinuities result in the 19 droplets becoming ever smaller. The pressure 20 reduces and droplets are evaporated in order to 21 maintain equilibrium in the flow. Heat transfer 22 23 takes place as equilibrium conditions are reached, ensuring that liquid vapour phase transitions and 24 the inverse transitions all occur within the mixing 25 section of the passage 3. In the secondary region 26 there is a very rapid increase in the void fraction 27 $\alpha = \frac{A_g}{A_{Tot}}$ 28 29 where $\alpha = \text{void fraction}$ 30 A_{α} = area of gas phase (dispersion cone) 31 $A_{Tot} = total$ area of pump flow 32

31

1	
2	Thus the rapid increase in specific volume as the
3	liquid droplets/ligaments are further dispersed,
4	will obviously result in a larger void fraction.
5	Subsequently as the flow conditions begin to
6	approach a state of equilibrium, and due to the
7	geometry within the mixing chamber, the vapour flow
8	is encouraged to follow a condensation profile
9	towards an aerodynamic and condensation shock wave,
10	which is a region of non-equilibrium and entropy
11	production.
12	
13	The condensation shock wave arises from the rapid
14	change from a two-phase fluid mixture to a
15	substantially single phase fluid with complete
16	condensation of the vapour phase. Since there is no
17	unique sonic speed in vapour droplet mixtures, non-
18	equilibrium and equilibrium exchanges of momentum,
19	mass and energy can occur. In order to achieve a
20	normal condensation shock wave, the velocity of the
21	vapour mixture within the mixing chamber has to be
22	maintained above a certain value defined as the
23	equilibrium sonic speed. For conditions where the
24	vapour velocity is greater than the frozen sonic
25	speed, or where the velocity of the vapour mixture
26	is between the equilibrium and frozen sonic speed,
27	this results in a dispersed or partially dispersed

condensation shock wave. These two asymptotic sonic

2930

28

speeds are:

32

ae = equilibrium shock speed. This is the speed at 1 which every fluid is in its correct equilibrium 2 condition, i.e. vapour is vapour, liquid is liquid 3 4 a_f = frozen shock speed. This occurs primarily due 5 to a 'lag' effect, so that some fluids are not in 6 their correct phase, for example the local 7 temperature and pressure dictate that a vapour 8 should be turning to liquid, but the phase change 9 10 has not happened. 11 af and ae are defined as: 12 13 $a_f = \sqrt{\gamma \cdot R_v \cdot T_s}$ 14 15 $a_e = \sqrt{\frac{\chi \cdot \gamma \cdot R_v \cdot T_s}{\gamma \left[1 - \frac{R_v \cdot T_s}{h} \left(2 - \frac{c \cdot T_s}{h}\right)\right]}}$ 16 17 18 where 19 $c = Cp_{\nu} + \frac{\left(\frac{1-\varepsilon}{\varepsilon}\right)}{C}$ 20 γ = Ratio of specific heats (the vapour and the 21 22 fluid) $R_v = Gas$ constant for vapour phase (steam) 23 $T_s = Saturation$ temperature of mixture (vapour and 24 25 fluid) Cp = Specific heat 26 H_{fs} = Latent heat of vapourisation 27 x = Initial vapour quality 28 $\varepsilon = Vapour fraction (gas/liquid)$ 29

i	Subscript v, represents vapour (steam)
2	Subscript f, represents fluid (e.g. liquid)
3	
4	Frozen flow arises when the interface transport of
5	mass, momentum and energy between the vapour phase
6	and liquid droplets is frozen completely, i.e. the
7	liquid droplets do not take part in the fluid
8	mechanical processes.
9	
10	Equilibrium flow arises when the velocity and
11	temperature of the vapour and liquid are in
12	equilibrium, and the partial pressure due to the
13	vapour is equal to the saturation pressure
14	corresponding to the temperature of the flow.
15	
16	The secondary flow regime can better be understood
17	by further subdivision into three sub-regions.
18	
19	The first sub-region of the secondary flow regime is
20	the droplet break-up sub-region. Just as in the
21	primary zone, where the liquid core is stripped to
22	form the droplet-vapour zone, with the stripping of
23	the ligaments and droplets on the surface, so in the
2 4	secondary region there is further break-up or
25	dispersion of these separated ligaments, and also
26	the break-up of droplets whose characteristics are
27	unstable in the turbulent flow regime. The dominant
28	mechanism responsible for the break-up in the
29	secondary region is the acceleration of droplets or
30	momentum transfer due to the slip velocity between
31	vapour and liquid. The injection velocity of the
32	vapour in the present invention is important to this

1 functional aspect of the flow regime. If required, 2 multiple nozzles staggered downstream may be used to encourage this aspect. Other parameters such as 3 nozzle angle and mixing chamber geometry can be 4 selected to establish favourable flow conditions. 5 6 7 Typical break-up mechanisms in this region are dependant on the local velocity slip conditions and 8 9 the respective working fluid properties. These are gathered into a dimensionless number referred to as 10 the aerodynamic Weber number defined as: 11 12 $We = \frac{\rho_v \cdot \left(U_f - U_v\right)^2 \cdot D_f}{\sigma_c}$ 13 14 15 where ρ_v = Density of vapour 16 17 U = Velocity D_f = Hydraulic diameter of fluid 18 19 σ_f = Surface tension of fluid 20 21 Typical break-up mechanisms found in the fluid mover 22 of the present invention are vibrational break-up, which can be found with ligaments and droplets whose 23 characteristic length is greater than the stable 24 length; catastrophic break-up, which is especially 25 dominant in the liquid-vapour shear layer where We 26 27 ≥350; wave crest stripping, which occurs where 28 droplets, due to their size, experience large aerodynamic forces causing ellipsoidal shapes, 29 typically where We ≥300; and short stripping, which 30 31 is the dominant break-up mechanism where daughter

35

and sattelite droplets have been formed following 1 the ligament stripping and dispersion, typically 2 3 where We≥100. 4 The turbulent motion of the surrounding gas, 5 especially where the Reynold numbers are large (Re > 6 104), as is usually the case in the present 7 invention, results in large amounts in local energy 8 dissipation and accompanying droplet break-up. 9 fluctuating dynamic pressures resulting from these 10 turbulent fluctuations are dominant in droplet 11 12 break-up but very importantly it is this energy that 13 ensures extremely effective dispersion and mixing of the fluids in the flow. 14 15 Turbulent pressure fluctuations result in shear 16 17 forces capable of rupturing fibres or filaments and dissipating powder lumps or similar solid or semi-18 19 solid matter. In the primary region energy, mass and momentum transfer takes place through a more 20 distinct boundary, associated with the liquid cone 21 In the secondary break-up region this dispersion. 22 transfer is directly related to the turbulence 23 intensity, closely associated with the turbulent 24 dissipation region in the flow. 25 26 The thermal boundary layer, although similar in 27 characteristic to the turbulent dissipation 28 sublayer, represents the effective boundary where 29 evaporation/condensation and energy transfer occur 30 in either an equilibrium state or 'frozen' state. 31 32

1	interfacial transport, which begins within the
2	primary cone dissipation, continues into the
3	secondary vapour-droplet region and is characterised
4	by distinct mechanisms enhanced within the fluid
5	mover of the invention through vapour introduction
6	conditions, dependent on pressure and velocity, the
7	physical geometry of the steam nozzles and the
8	mixing chamber geometry. This results in a
9	continuous surface renewal process, which together
LO	with the turbulence results in a series of renewed
L1	eddies of various scales. These eddies create
L2	bursts arising from the interface of the liquid
L3	vapour and the waves formed on ligaments and
L 4	droplets which are undergoing further break-up.
15	These bursts have a period which is a function of
16	the interfacial shear velocity. These bursts
L7	greatly encourage mixing, heat transport and
L8	emulsification (droplet size reduction).
L9	
20	The second sub-region of the secondary flow regime
21	is the subcooled vapour-droplet region. As the
22	vapour mixture flows through the fluid mover of the
23	invention its velocity profile is adjusted through
2.4	fluidic interaction as well as the static pressure
25	gradient which gradually rises due to general
26	deceleration of the flow. This controlled diffusion
27	of the supersonic flow, balance of natural fluidic
28	and thermodynamic interactions coupled with discrete
29	geometry results in a vapour-droplet state where
30	sub-cooled droplets exist within a vapour dominant
31	phase. The sub-cooled state of this frozen mixture
32	increases until droplet nucleation, and hence

1	condensation, begins to occur very rapidly. The
2	point of maximum sub-cooling (Wilson point)
3	determines the point at which the nucleation rate,
4	which is closely dependent on sub-cooling because of
5	the available surface area for condensation, begins
6	to occur very rapidly, and reaches near exponential
7	rates. The vapour-droplet region within the fluid
8	mover of the invention thus is able to attain near
9	thermodynamic equilibrium within a very short zone.
10	
11	The fluid mover of the invention makes special use
12	of geometric conditions created through both
13	geometry and pseudo geometric conditions to ensure
14	the flow conditions upstream of the critical
15	subcooled state deviate from the thermodynamic
16	equilibrium. This ensures maintenance of the
17	desired vapour-droplet region with its desirable
18	droplet break-up, particle dispersion and heat
19	transfer effects.
20	
21	The rapid acceleration of the fluid from the primary
22	fluid cone into the vapour region results in an
23	expansion wave, which similarly represents a
24	thermodynamic discontinuity and allows the vapour
25	droplet region to deviate markedly from equilibrium
26	and enter a 'frozen' flow condition.
27	
28	Figure 9 shows an embodiment of the fluid mover of
29	the invention in which the geometry of the passage 3
30	has a mixing chamber 3A with a divergent region 50,
31	a constant diameter region 52 and a re-convergence
32	profile region 54. The constant through bore is

38

1	maintained, but the embodiment of Fig 9 promotes
2	this expansion and non-equilibrium. This offers
3	excellent particle dispersion, and good flow,
4	pressure head and suction conditions.
5	
6	The third sub-region of the secondary flow regime is
7	the condensation shock region. As a result of the
8	sub-cooled vapour-droplet flow regime within the
9	fluid mover, the point at which exponential
10	condensation begins to occur defines the
11	condensation shock wave boundary. The mixture
12	conditions upstream of the condensation shock wave
13	determine the nature of the pressure and temperature
14	recovery experienced within the fluid mover.
15	
16	The phase change across the condensation shock wave
17	obviously results in heat removal from the vapour
18	phase, although there will be an entropy increase
19	across the condensation shock wave. The ideal
20	operating conditions in the fluid mover of the
21	invention coincide with the formation of a normal
22	condensation shock wave, referred to as being
23	discrete, due to its relatively rapid and hence
24	negligible size measured along the X-axis.
25	
26	The nature of the fluid flow in the fluid mover of
27	the present invention may better be understood by
28	reference to Figure 12, which shows the distribution
29	of pressure p in the fluid mover over length ${\bf x}$ along
30	the axis. Reference is made to the two shock
31	speeds, a _e and a _f , defined earlier.
32	

3NSDOCID: <WO 2006010949A1 1 >

39

Fig. 12a shows condition A and represents the 1 situation where $U_{mixture} > a_e$, where $U_{mixture}$ is the 2 velocity of the vapour/droplet mixture. 3 4 This results in a normal condensation shock wave, 5 with a fairly rapid rise in pressure across the 6 condensation shock wave. The resulting exit 7 pressure is higher than the local pressure at the 8 steam inlet into the bore of the fluid mover. 9 10 Fig. 12b shows condition B and represents the 11 situation where $a_f > U_{mixture} > a_e$. In this case the 12 mixture velocity is higher than the equilibrium 13 shock speed but less than the frozen shock speed. 14 In this condition the condensation shock wave is 15 fully dispersed resulting in a much more gradual 16 pressure rise across the condensation shock wave. 17 18 Fig. 12c shows condition C and represents the 19 situation where $U_{\text{mixture}} > a_{\text{f}}$. In this condition an 20 'unstable' condition arises, with the steam not 21 fully condensing. This is referred to as a 22 23 partially dispersed condensation shock wave. results in the start of the formation of a 24 condensation shock wave (with a reasonably steep 25 pressure gradient), the condensation shock wave 26 formation 'stalling', and then restarting again. 27 However, it has been found that the final resulting 28 exit pressure is often higher than for either 29 Condition A or Condition B. 30 31

BNSDOCID: <WO 2006010949A1 1, >

1	There are several mechanisms for determining the
2	state of the flow regime in the fluid mover, and
3	using this information in a control system to
4	provide the flow regime that best meets the demands
5	of the application. For example one can measure the
6	temperature at a particular point along the length
7	of the mixing chamber, to determine the existence of
8	a vapour-droplet region. Such a method is non-
9	intrusive since the mixer wall can be of thin
LO	section allowing a rapid response to the change in
L1	conditions. Multiple temperature probes spaced
L2	downstream of one another can be used to monitor the
L3	position of the condensation shock wave, as well as
L 4	to determine the state of the condensation shock
L5	wave profile.
L6	
L7	As a further example the use of pressure sensors
L8	allows the condensation shock wave position to be
L 9	determined.
20	
21	With reference to Figures 13 and 14 there is shown a
22	method of using a series of pressure sensors to
23	detect the position of the condensation shock wave
2.4	in the mixing chamber. When the condensation shock
25	wave 17 is in the position 17A indicated by Case 1,
26	i.e. in the convergent profile portion 3C of the
27	passage 3, the pressure profile is shown with the
28	reference numeral 101. When the condensation shock
29	wave 17 is in the position 17B indicated by Case 2,
30	i.e. in the uniform profile portion 3B of the
31	passage 3, the pressure profile is shown with the
32	reference numeral 102. Pressure sensors P1, P2 and

1	P3 in the passage 3 can be used to measure the
2	pressure at three points 103, 104, 105 along the
3	passage. The pressure measurements at these points
4	can be used to determine the position of the
5	condensation shock wave 17. Depending on the flow
6	profile required, one or more parameters, as
7	described hereinbefore, can be changed to alter the
8	flow profile and the position of the condensation
9	shock wave 17.
10	
11	Figure 14a shows a typical pressure sensor, although
12	it is to be understood that this is not limiting,
13	and any suitable pressure sensor or measuring device
14	may be used. This method of measuring pressures in
15	the mixing chamber is especially suited for
16	condensation shock wave detection, since the
17	measurement technique only needs to measure a change
18	in pressure rather than being calibrated to measure
19	accurate values.
20	
21	The mixing chamber 3A is sleeved with a thin walled
22	inner sleeve 107 of suitable material, such as
23	stainless steel. A thin layer of oil 108 fills the
24	gap between the sleeve 107 and the inner wall 106 of
25	the mixing chamber 3A. The pressure sensor P1 is
26	located through the wall 106 of the mixing chamber
27	and is in contact with the oil 108. When the
28	pressure inside the mixing chamber 3A changes, the
29	sleeve 107 expands or contracts a small amount,
30	thereby increasing or decreasing the pressure in the
31	oil 108, which is then detected by the pressure
32	sensor P1.

1	
2	In the embodiment of Figure 14b the sleeve 107 is
3	segmented so that the oil is separated by walls 109
4	fixed to the sleeve. This results in separate
5	individual chambers of oil 108A, 108B, each with
6	their own pressure sensor P1, P2. A number of
7	separate chambers and pressure sensors may be
8	arranged along the wall 106 of the mixing chamber
9	3A.
10	
11	The advantage of this instrumentation method is that
12	the sleeve 107 provides a clean inner bore, free of
13	any crevices or other features in which working
1.4	fluid or other transported material can become
1.5	trapped. This is of particular relevance for use in
16	the food industry. In addition, the pressure sensor
L7	P1 is free from contamination, suffers no wear or
L8	abrasion, and does not become blocked.
L9	
20	A further possible way of monitoring the
21	condensation shock wave is by the use of acoustic
22	signatures. Due to the density variation in the
23	mixer, even during powder addition, it is possible
2.4	to determine the 'state' of flow which is an
25	indication of vapour flow, and hence the condition
26	of having a condensation shock wave. The mechanisms
27	for determining the state of the flow regime in the
28	fluid mover may of course be combined.
29	
30	Figure 11 shows an embodiment of the fluid mover 1
31	with various control means for controlling the
32	parameters of the flow. The inlet 4 is in fluid

1	communication with a working fluid valve 66 which
2	can be used to control the flow rate and/or inlet
3	pressure of the working fluid. A heating means or
4	cooling means (not shown) may be provided upstream
5	or downstream of the valve 66 to control the inlet
6	temperature of the working fluid. The outlet 5 is
7	in fluid communication with an optional working
8	fluid outlet valve 68 which can be used to control
9	the outlet pressure of the working fluid.
10	
11	A transport fluid source 62, such as a steam
12	generator, is controllable to provide transport
13	fluid through the transport passage 64 to the plenum
14	8. The source 62 can be used to control the inlet
15	temperature and/or the flow rate and/or the inlet
16	pressure of the transport fluid.
17	
18	The nozzle or nozzles 16 may be mounted for
19	adjustable movement such that a nozzle angle control
20	means (not shown) can be used to control the angle
21	of entry of the transport fluid to the passage.
22	
23	The internal dimensions of the passage downstream of
24	the nozzle 16 can be adjusted by means of moveable
25	wall sections 60, which can alter the mixing chamber
26	wall profile between convergent, parallel and
27	divergent at a plurality of sections along the
28	mixing chamber 3A.
29	
30	An additive fluid source 70 may be provided to add
31	one or more fluids to the working fluid. An
32	additive fluid valve 72 can be used to control the

1	flow rate of the additive fluid, including to switch
2	the flow on or off as appropriate. Separate heating
3	means may be provided for the additive fluid, which
4	may be a heated liquid, a gas such as steam or a
5	mixture. The additive may be a powder, and may be
6	introduced through a valve means from a secondary
7	hopper.
8	
9	Control means such as a microprocessor may be
10	provided to control some or all of the parameters
11	described above as appropriate. The control means
12	can be linked to the condensation monitoring
13	devices, such as the pressure sensors P1, P2, P3
14	which monitor the condensation shock wave, or any
15	other sensor means eg temperature or acoustic
16	sensors.
17	
18	The versatility of the fluid mover of the present
19	invention allows it to be applied in many different
20	applications over a wide range of operating
21	conditions. Two of these applications will now be
22	described, by way of example, to illustrate the
23	industrial applicability of the fluid mover of the
24	present invention.
25	
26	The first of the applications is a method of
27	activating starch. The nature of the energy
28	transfer between the transport fluid and the working
29	fluid affords significant advantages for use in
30	starch activation. Due to the intimate mixing
31	between the hot transport fluid and the working
32	fluid, very high heat transfer rates between the

1	fluids are achieved resulting in rapid heating of
2	the working fluid. In addition, the high energy
3	intensity within the unit, especially the high
4	momentum transfer rates between the steam and
5	working fluid result in high shear forces on the
6	working fluid. It is therefore this combination of
7	heat and shear that result in enhanced starch
8	activation.
9	
10	The fluid mover may be incorporated in either a
11	batch or a single pass fluid processing
12	configuration. One or more fluid movers may be used,
13	possibly mounted in series in a single pipeline
14	configuration. A single fluid mover may pump, heat,
15	mix, and activate the starch, or a separate pump may
16	be used to pass the working fluid through the fluid
17	mover. Alternatively, two or more fluid movers may
18	be used in series, each fluid mover may be
19	configured and optimized to carry out different
20	roles. For example, one fluid mover may be
21	configured to pump and mix (and do some initial
22	heating) and a second fluid mover mounted in series
23	down stream of the first, optimized to heat.
24	
25	The energy intensity within the fluid mover is
26	controllable. By controlling the flow rates of the
27	steam and/or the working fluid, the intensity can be
28·	reduced to allow slow heating of the working fluid,
29	and provide a much lower shear intensity. This could
30	be used, for example, to provide gentle heating of
31	the working fluid to maintain a batch of working

46

7 fluid at a constant temperature without causing any 2 shear thinning. 3 4 This method may also be employed for entraining, 5 mixing in, dispersing and dissolving other hard-to-6 wet powders commonly employed in the food industry, 7 such as pectins. Pectins are typically used to thicken foods or form gells, and are activated by 8 9 heat. Some pectins form thermoreversible gels in the presence of calcium ions whereas others rapidly form 10 11 thermally irreversible gels in the presence of sufficient sugars. The intense mixing, agitation, 12 shear and heating afforded by the Fluid Mover 13 enhances these gelling processes. 14 15 16 By way of example only, a fluid mover has been used to pump, mix, homogenise, heat (cook) and activate 17 the starch in the manufacture of a 65kg batch of 18 19 tomato based sauce. Conventional processing required 20 the sauce to be heated to 85°C to activate the 21 starch. It was found, using the fluid mover to mix, 22 heat and process the sauce, that the starch was 23 activated at the much lower batch temperature of 24 70°C. Combining this saving in heating requirement with the highly efficient mixing and heating 25 26 afforded by the fluid mover, the overall process time was reduced by up to 95% over the conventional 27 28 tank heating and stirring method. 29 30 It has also been found that the Fluid Mover activates a higher percentage of the starch present 31 in the mix than conventional methods. It is not 32

1	uncommon with food mixes containing nighty modified
2	starches for a large percentage (greater than 50%)
3	of the starch to sometimes remain inactivated.
4	Activating a higher percentage of the starch
5	provides an obvious commercial advantage of reducing
6	the amount of starch that has to be added to a mix
7	to achieve a target viscosity. A similar effect has
8	been observed with the (relatively) expensive
9	pectin. Reducing the amount of pectin that has to be
LO	added to a mix provides a significant cost saving to
L1	the process.
L2	
L3	This method may alternatively be employed in the
L 4	brewing industry. The brewing process requires the
15	rapid mixing, heating and hydration of ground malt,
16	known as grist, and activation of the starch. It has
17	been found that this can be achieved using the
18	method described in this invention, with the
19	additional advantages of maintaining the integrity
20	of both the enzymes and the husks of the grist.
21	Maintaining integrity of the enzymes in the mix is
22	important as they are required to convert the starch
23	to sugar in a later process, and similarly, the
24	husks are required to be of a particular size to
25	form an effective filter cake in a later Lauter
26	filtration process.
27	
28	The second application offered by way of example is
29	a method of enhancing bioethanol (biofuel)
30	production using the fluid mover of the present
31	invention. The nature of the energy transfer
32	between the steam and the working fluid affords

1	significant advantages for use in bioethanol
2	production. Due to the intimate mixing between the
3	hot transport fluid (steam) and the working fluid,
4	very high heat transfer rates between the fluids are
5	achieved resulting in rapid heating of the working
6	fluid. In addition, the high energy intensity within
7	the unit, especially the high momentum transfer
8	rates between the steam and working fluid result in
9	high shear forces on the working fluid.
10	
11	Two or more fluid movers may be used in series, each
12	fluid mover may be configured and optimized to carry
13	out different roles. For example, one fluid mover
14	may be configured to pump and mix (and do some
15	initial heating) and a second fluid mover mounted in
16	series down stream of the first, optimized to heat
17	and macerate.
18	
19	Utilising the method described in this invention,
20	the process of mixing, heating, hydrating and
21	macerating the carbohydrate polymers in the biomass
22	can be achieved more rapidly and efficiently than
23	conventional methods. Utilising the high shear and
24	the presence of shockwave allows the active chemical
25	or biological components to be intimately mixed with
26	the carbohydrate polymers more efficiently,
27	enhancing the contact through pulping of the plant
28	matter as it begins to breakdown. Although the
29	method described in this invention utilizes high
30	temperature and high shear, it is still suitable for
31	use in an Enzymatic Hydrolysis process without
32	damage to the enzymes.

1	
2	The shape of the fluid mover of the present
3	invention may be of any convenient form suitable for
4	the particular application. Thus the fluid mover of
5	the present invention may be circular, curvilinear
6	or rectilinear, to facilitate matching of the fluid
7	mover to the specific application or size scaling.
8	The enhancements of the present invention may be
9	applied to the fluid mover in any of these forms.
LO	
11	The fluid mover of the present invention thus has
12	wide applicability in industries of diverse
13	character ranging from the food industry at one end
14	of the chain to waste disposal at the other end.
15	
16	The present invention when applied to the fluid
17	mover of the aforementioned patent affords
18	particularly enhanced emulsification and
19	homogenisation capability. Emulsification is also
20	possible with the deployment of the fluid mover of
21	the present invention on a once-through basis thus
22	obviating the need for multi-stage processing. In
23	this context also the mixing of different liquids
24	and/or solids is enhanced by virtue of the improved
25	shearing mechanism which affects the necessary
26	intimacy between the components being brought
27	together as exemplified heretofore.
28	
29	The localised turbulence within the working fluid
30	dispersion region provides rapid mixing, dispersion
31	and homogenisation of a range of different fluids
32	and materials, for example powders and oils.

1	
2	The heating of fluids and/or solids can be effected
3	by the use of the present invention with the fluid
4	mover by virtue of the use of steam as the transport
5	fluid and of course in this respect the invention
6	has multi-capability in terms of being able to pump,
7	heat, mix and disintegrate etc.
8	
9	The fluid mover of the present invention may be
10	utilised, for example, in the essence extraction
11	process such as decaffeination. In this example the
12	fluid mover may be utilised to pump, heat, entrain,
13	hydrate and intimately mix a wide range of aromatic
14	materials with a liquid, usually water.
15	
16	The vapour-droplet flow region of the present
17	invention provides a particular advantage for the
18	hydration of powders. Even extremely hard-to-wet
19	hydrophilic powders, for example Guar gum, may be
20	entrained and dispersed into a fluid medium within
21	this vapour-droplet region.
22	
23	As has been disclosed above, the fluid mover of the
24	present invention possesses a number of advantages
25	in its operational mode and in the various
26	applications to which it is relevant. For example
27	the 'straight-through' nature of the fluid mover
28	having a substantially constant cross section, with
29	the bore diameter never reducing to less than the
30	bore inlet, means that not only will fluids
31	containing solids be easily handled but also any
32	rogue material will be swept through the mover

1	without impedance. The fluid mover of the present
2	invention is tolerant of a wide range of particulate
3	sizes and is thus not limited as are conventional
4	ejectors by the restrictive nature of their physical
5	convergent sections.
6	
7	Modifications and improvements may be incorporated
8	without departing from the scope of the invention as
9	defined in the appended claims.

CLAIMS:

1	1. A fluid mover comprising:
2	a hollow body provided with a straight-through
3	passage of substantially constant cross section with
4	an inlet at one end of the passage and an outlet at
5	the other end of the passage for the entry and
6	discharge respectively of a working fluid;
7	a nozzle substantially circumscribing and
8	opening into said passage intermediate the inlet and
9	outlet ends thereof;
10	an inlet communicating with the nozzle for the
11	introduction of a transport fluid; and
12	a mixing chamber being formed within the
13	passage downstream of the nozzle;
14	wherein the nozzle internal geometry and the
15	bore profile of the passage immediately upstream of
16	the nozzle exit are so disposed and configured to
17	optimise the energy transfer between the transport
18	fluid and working fluid that in use through the
19	introduction of transport fluid the working fluid or
20	fluids are atomised to form a dispersed
21	vapour/droplet flow regime with locally supersonic
22	flow conditions within a pseudo-vena contracta,
23	resulting in the creation of a supersonic
24	condensation shock wave within the downstream mixing
25	chamber by the condensation of the transport fluid.
26	
27	2. The fluid mover according to Claim 1, wherein
28	the passage is a substantially circular passage and
29	the nozzle is an annular nozzle substantially
30	circumscribing the passage.

T	
2	3. The fluid mover according to either preceding
3	claim, wherein the nozzle is of a convergent-
4	divergent geometry internally thereof.
5	
6	4. The fluid mover according to Claim 4, wherein
7	the nozzle is configured to give the supersonic flow
8	of transport fluid within the passage.
9	
10	5. The fluid mover according to any preceding
11	claim, wherein the bore profile of the passage
12	immediately upstream of the nozzle is configured to
13	encourage working fluid atomisation.
14	
15	6. The fluid mover according to any preceding
16	claim and comprising:
17	a plurality of nozzles substantially
18	circumscribing and opening into said passage
19	intermediate the inlet and outlet ends thereof;
20	a plurality of inlets, each inlet communicating
21	with a respective nozzle for the introduction of a
22	transport fluid; and
23	a plurality of mixing chambers, each mixing
24	chamber being formed within the passage downstream
25	of a respective nozzle.
26	
27	7. A method of moving a working fluid, the method
28	comprising the steps of:
29	presenting a fluid mover to the working fluid,
30	the mover having a straight-through passage of
31	substantially constant cross section;

1	applying a substantially circumscribing stream						
2	of a transport fluid to the passage through an						
3	annular nozzle;						
4	atomising the working fluid to form a dispersed						
5	vapour and droplet flow regime with locally						
6	supersonic flow conditions;						
7	generating a supersonic condensation shock wave						
8	within the passage downstream of the nozzle by						
9	condensation of the transport fluid;						
10	inducing flow of the working fluid through the						
11	passage from an inlet to an outlet thereof; and						
12	modulating the condensation shock wave to vary						
13	the working fluid discharge from the outlet.						
14							
15	8. The method of Claim 7, wherein the modulating						
16	step includes modulating the intensity of the						
17	condensation shock wave.						
18							
19	9. The method of either Claim 7 or Claim 8,						
20	wherein the modulating step includes modulating the						
21	position of the condensation shock wave.						
22							
23	10. The method of any of Claims 7 to 9, further						
24	comprising the step of introducing an instability in						
25	working fluid flow immediately upstream of the						
26	nozzle.						
27							
28	11. A method of processing a working fluid, the						
29	method comprising the steps of:						
30	presenting a fluid mover to the working fluid,						
31	the fluid mover having a straight-through passage of						

substantially constant cross section;

1	applying a substantially circumscribing stream
2	of a transport fluid to the passage through an
3	annular nozzle;
4	atomising the working fluid to form a dispersed
5	vapour and droplet flow regime with locally
6	supersonic flow conditions;
7	generating a supersonic condensation shock wave
8	within the passage downstream of the nozzle by
9	condensation of the transport fluid, the position of
10	the condensation shock wave remaining substantially
11	constant under equilibrium flow;
12	inducing flow of the working fluid through the
13	passage from an inlet to an outlet thereof; and
14	changing the position of the condensation shock
15	wave to vary the working fluid discharge from the
16	outlet.
17	
18	12. The method according to any of Claims 7 to 11,
19	wherein the transport fluid is steam.

Fig. 7

Fig. 8

7/9

INTERNATIONAL SEARCH REPORT

Inte Conal Application No PCT/GB2005/002999

PCT/GB2005/002999 a. classification of subject matter IPC 7 F04F5/46 F04F F04F5/24 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 F04F Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, PAJ, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category 1 - 12WO 2004/033920 A (PURSUIT DYNAMICS PLC; Χ FENTON, MARCUS, BRIAN, MAYHALL; KITCHEN, PHILIP,) 22 April 2004 (2004-04-22) cited in the application the whole document figures 1,5,6 GB 2 313 410 A (IAN * STEPHENSON; DONOVAN Χ GRAHAM * ELLAM) 26 November 1997 (1997-11-26) 7,11,12 abstract page 7, line 18 - page 10, line 31 figures 1-5 -/---Patent family members are listed in annex. Further documents are listed in the continuation of box C. X Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" earlier document but published on or after the international document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the cat "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search

Form PCT/ISA/210 (second s

31 October 2005

Fax: (+31-70) 340-3016

European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31--70) 340--2040, Tx. 31 651 epo nl,

Name and mailing address of the ISA

10/11/2005

Kolby, L

Authorized officer

INTERNATIONAL SEARCH REPORT

Inte pplication No
PCT/GB2005/002999

		PCT/GB2005/002999
ategory °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
y		
X	US 3 664 768 A (WILLIAM T. MAYS ET AL) 23 May 1972 (1972-05-23)	1,2,5
4	abstract column 3, line 23 - column 6, line 26 figures 	7,11
A	US 3 456 871 A (ROLF GOSLING) 22 July 1969 (1969-07-22)	1,3,4, 7-9,11, 12
;	the whole document figures	
A	PATENT ABSTRACTS OF JAPAN vol. 2002, no. 04, 4 August 2002 (2002-08-04) -& JP 2001 354319 A (OGAWA JIDOSHA:KK), 25 December 2001 (2001-12-25) abstract; figure 7	1-3,7, 10,11
A	GB 1 227 444 A (CONDENSEURS DELAIS) 7 April 1971 (1971-04-07)	1,3,4, 7-9,11, 12
	page 1, line 64 – page 3, line 4 figures	12

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inter ial Application No PCT/GB2005/002999

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 2004033920	A	22-04-2004	AU BR CA EP	2003274315 0315204 2501816 1549856	A A1	04-05-2004 16-08-2005 22-04-2004 06-07-2005
GB 2313410	Α	26-11-1997	NONE			
US 3664768	Α	23-05-1972	NONE			
US 3456871	Α	22-07-1969	NONE			
JP 2001354319	Α	25-12-2001	WO	0196747	A1	20-12-2001
GB 1227444	Α	07-04-1971	BE ES FR NL	715821 354477 1535517 6807672	A1 A	16-10-1968 01-11-1969 09-08-1968 02-12-1968