سلسلة 9: الإشتقاق

التمرين 1

أدرس قابلية اشتقاق الدالة f في a في كل من الحالات التالية:

التمرين 2

$$f(x) = -\frac{1}{2}x^2 + 5$$
 $x \le 2$ الدالة العددية المعرفة بما يلي: $f(x) = \frac{x+1}{x-1}$ $x > 2$

- f'(1) بين أن الدالة f قابلة للإشتقاق في 1 و حدد f'(1) .1
 - (ب) حدد φ الدالة التآلفية المماسة للدالة f في 1.
- f(1,0002) و f(0,9999) و العددين (ج) و استنتح قيمة مقربة لكل من العددين
 - f على اليمين و على اليسار في f 1.
 - (\mathbf{u}) استنتج أن f قابلية للإشتقاق في 2 ثم أول مبيانيا النتيجة.
- (7) أعط معادلة ديكارتية للمماس (T) لمنحنى الدالة f في النقطة ذات الأفصول (7)

التمرين 3

أدرس قابلية اشتقاق الدالة f في a في كل من الحالات التالية:

$$a = 1 \quad \begin{cases} f(x) = 3x^2 - 4x & x < 1 \\ f(x) = -5x^3 + 2x^2 & x \ge 1 \end{cases}$$

$$a = 0 \quad \begin{cases} f(x) = \frac{x^2 \sin(x)}{1 - \cos(x)} & x \in] - \pi; \pi[\setminus \{ 0 \} \\ f(0) = 0 \end{cases}$$

$$a = 0 \quad \begin{cases} f(x) = x^2 \sin\left(\frac{1}{x}\right) & x \ne 0 \\ f(0) = 0 \end{cases}$$

$$a = 0 \quad \begin{cases} f(x) = x^2 \sin\left(\frac{1}{x}\right) & x \ne 0 \\ f(0) = 0 \end{cases}$$

التمرين 4

- $\left\{ egin{array}{ll} f(x)=x^2+1 & x\geq 1 \\ f(x)=rac{2}{x} & x<1 \end{array}
 ight.$ لتكن f الدالة العددية المعرفة بما يلي:
- (ا) أدرس قابلية اشتقاق الدالة f على اليمين في 1 ثُمُّ أُولُ مبيانيا النتيجة.
- (- أدرس قابلية اشتقاق الدالة f على اليسار في 1 ثم أول مبيانيا النتيجة.

التمرين 5

نعتبر الدالة العددية f المعرفة بما يلي: $x \geq 1 \atop f(x) = ax^2 + bx$ عدين حقيقيين.

- 1. أدرس قابلية اشتقاق الدالة f على اليمن في 1
- 1. حدد قيمة العددين a و b لكى تكون \bar{f} قابلة للإشتقاق في a

التمرين 6

حدد الدالة المشتقة للدالة f في الحالات التالية:

$$f(x) = \frac{-3x+1}{2x+1} () \qquad \qquad f(x) = x + (x-1)^3 \quad ()$$

$$f(x) = (x+1)^3(2x-1)^2 \quad () \qquad \qquad f(x) = 3x^4 - 5x^2 - 2x - 3 \quad ()$$

$$f(x) = (x^2 + x - 1)(2x - 1) \quad () \qquad \qquad f(x) = \frac{x^2 + x - 1}{x^2 + 1} \quad ()$$

$$f(x) = \frac{x}{1 + x^4} \quad () \qquad \qquad f(x) = (\frac{1 - x}{x^2 + 1})^4 \quad ()$$

$$f(x) = \sqrt{1 - x} \quad ()$$

$$f(x) = \sin(x) \cos(2x) () \qquad \qquad f(x) = \sin(3x) + 3\cos(x) \quad ()$$

$$f(x) = \frac{x^3}{\sqrt{3}} \quad () \qquad \qquad f(x) = 3x + \tan(x) - \sqrt{2} \quad ()$$

التمرين 7

- $f(x)=rac{x}{x-2\sqrt{x}+2}$:بعتبر الدالة العددية f المعرفة بما يلي
 - (ا) حدد D_f مجموعة تعريف الدآلة f
 - $\lim_{x \to +\infty} f(x)$ أحسب أ
- (+) أدرس قابلية اشتقاق الدالة f على اليمن في 0 ثم أول مبيانيا النتيجة.
 - $D_f \setminus \{0\}$ على الدالة المشتقة للدالة f على الدالة المشتقة الدالة f
 - (ه) استنتج جدول تغیرات الداله f

- $g(x)=rac{x+1}{\sqrt{2x^2+2}}$:يلي: المعرفة بما يلي الدالة العددية المعرفة بما يلي.
 - ا) حدد D_g مجموعة تعريف الدالة g
 - $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to -\infty} g(x)$ أحسب (ب)
 - $\cdot D_g$ بين أن الدالة g قابلة للإشتقاق على الج
 - $\bullet \forall x \in D_g: g'(x) = \frac{1-x}{\sqrt{2(1+x^2)^3}}$ فين أن (ع)
 - (ه) استنتج جدول تغیرات الدالة g.

التمرين 8

- $f(x) = \frac{x+1}{x^2+x+1}$:لي: الدالة المعرفة بما يلي الدالة المعرفة المعرفة بما الدالة المعرفة المعر
 - f الدالة مجموعة تعريّف الدالة f
 - $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ أحسب $\int_{x \to -\infty} f(x)$
 - f أحسب الدالة المشتقة للدالة f
 - (x) استنتج جدول تغیرات الدالة
- (ه) حدد معادلة ديكارتية للمماس لمنحنى الدالة f في النقطة ذات الأفصول 1.
 - $g(x) = \frac{x+1}{x^2+2x+2}$ يلي: 12. لتكن g الدالة المعرفة بما يلي: 2
 - وا) حدد D_g مجموعة تعريّف الدالة g
 - $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to -\infty} g(x)$ أحسب $\lim_{x \to -\infty} g(x)$
 - (+, 0) أحسب الدالة المشتقة للدالة (+, 0)
 - (c) استنتج جدول تغيرات الدالة g.
- (ه) حدد معادلة ديكارتية للمماس لمنحنى الدالة g في النقطة ذات الأفصول -1
 - $\forall x \in D_g: g''(x) = \frac{2(x+1)(x^2+2x-2)}{(x^2+2x+2)^3}$ فين أن (و)