Regression Models Course Project

YE

may, 15th 2016

Executive Summary

The goal of this project is to explore the relationship between a set of variables and Miles per Galon (MPG) in the MTCARS dataset.

The dataset

Format

A data frame with 32 observations on 11 variables.

Source

Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37, 391–411.

```
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
```

ANALYSIS

1. Is an automatic or manual transmission better for MPG?

EXPLORATORY DATA ANALYSIS

```
data(mtcars)
  require(ggplot2)

## Loading required package: ggplot2
```

1 sur 5

```
g = ggplot(data=mtcars,aes(y=mpg,x=factor(am), colour=factor(am)))
g = g+ geom_point()
g = g + geom_smooth(method='lm', colour="black", aes(group=0))
g = g + xlab("Auto(0) - manual(1) transmission") + ylab("Miles/Galon")
g
```



```
aggregate(mpg~am, data = mtcars, mean)

## am mpg
## 1 0 17.14737
## 2 1 24.39231
```

The Manual MPG is higher than the Auto MPG, we are going to investigate if this difference is important and find if the others variables have an impact.

By fitting a linear regression, we have the following:

```
data(mtcars)
fit <- lm(formula= mpg~as.factor(am),data=mtcars)
summary(fit)</pre>
```

2 sur 5 15/05/2016 21:48

Conclusion:

- P-value = 0.000285, we reject the null hypothesis that is, we declare a relationship to exist between MPG and AM (transmission).
- The manual transmission (AM=1) spends 17.147+7.245 = 24.392 Galon each mile. The automatic Transmission spends 17.147 Galons every mile. We can say that Manual transmission is better for MPG.

2. Quantify the MPG difference between automatic and manual transmissions

A look to the R-Squared above, 0.3598 (= 36%), shows that, this regression has explained only 36% of the variability of the MPG. We need to fit a multiple linear model to explain the difference (7.245) between automatic and manual transmission.

Multiple linear regression

```
data(mtcars)
summary(lm(formula= mpg~.,data=mtcars))
```

3 sur 5 15/05/2016 21:48

```
##
## Call:
## lm(formula = mpg ~ ., data = mtcars)
##
## Residuals:
    Min 1Q Median 3Q
                               Max
## -3.4506 -1.6044 -0.1196 1.2193 4.6271
##
## Coefficients:
##
           Estimate Std. Error t value Pr(>|t|)
-0.11144 1.04502 -0.107 0.9161
## cyl
           0.01334 0.01786 0.747 0.4635
## disp
## hp
           0.78711 1.63537 0.481 0.6353
## drat
           -3.71530 1.89441 -1.961 0.0633 .
## wt
           0.82104 0.73084 1.123 0.2739
## qsec
           0.31776 2.10451 0.151 0.8814
## vs
           2.52023 2.05665 1.225 0.2340
## am
           0.65541 1.49326 0.439 0.6652
## gear
         -0.19942 0.82875 -0.241 0.8122
## carb
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared: 0.869, Adjusted R-squared: 0.8066
## F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
```

Through this regression we can seen that: * wt (p-value=0.0633), qsec (p-value=0.2739) and am(p-value=0.2340) have the most fewest p-values, so we can fit another model with that only 3 variables:

- ### Final Multiple linear regression

```
data(mtcars)
summary(lm(formula= mpg~as.factor(am)+qsec+wt,data=mtcars))
```

4 sur 5 15/05/2016 21:48

```
##
## Call:
## lm(formula = mpg ~ as.factor(am) + qsec + wt, data = mtcars)
## Residuals:
     Min 1Q Median 3Q
##
                                          Max
## -3.4811 -1.5555 -0.7257 1.4110 4.6610
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.6178 6.9596 1.382 0.177915
## as.factor(am)1 2.9358 1.4109 2.081 0.046716 *
## qsec 1.2259 0.2887 4.247 0.000216 ***
## wt -3.9165 0.7112 -5.507 6.95e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
```

Conclusion:

*According to this final model, we have R-Squared = 0.8497, so 85% of the variability of MPG is explained through this regression.

*The difference between Automatic and Manual transmission is 2.9358 when we include qsec and wt varaiables.

5 sur 5