## Maestría en Computo Estadístico Álgebra Matricial Tarea 3

9 de septiembre de 2020 Enrique Santibáñez Cortés Repositorio de Git: Tarea 3, AM.

Todos los cálculos deben ser a mano.

1. Dada la matriz

$$\left(\begin{array}{cccc}
-4 & 5 & -6 & 7 \\
-1 & 1 & 1 & 3 \\
1 & 2 & -3 & -1
\end{array}\right)$$

encuentre su forma escalonada reducida por renglones. Escriba todas las matrices elementales correspondientes a las operaciones que usó para llevar la matriz a la forma que obtuvo.

2. Dada el sistema Ax = b, donde

$$A = \begin{pmatrix} 1 & 3 & -1 \\ a_1 & -1 & -3 \\ 1 & 2 & 2 \end{pmatrix} \quad \mathbf{y} \quad b = \begin{pmatrix} 0 \\ 1 \\ a_2 \end{pmatrix}$$

encuentre condiciones generales sobre  $a_1$  y  $a_2$  para que el sistema sea consistente. Si se quiere que la solución sea exactamente  $x = (3, -1, 2)^t$ , ¿qué valores deben tener  $a_1$  y  $a_2$ ?

3. Encuentre la solución general, escribiéndo<br/>la como combinación lineal de vectores, del sistema homogéne<br/>oAx=0donde

$$\left(\begin{array}{cccccccccc}
1 & -3 & 1 & -1 & 0 & 1 \\
-1 & 3 & 0 & 3 & 1 & 3 \\
2 & -6 & 3 & 0 & -1 & 2 \\
-1 & 3 & 1 & 5 & 1 & 6
\end{array}\right).$$

4. encuentra la inversa de

$$\left(\begin{array}{rrr} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{array}\right).$$

5. Sea

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{array}\right).$$

Demuestre que A es no singular y luego escriba A como producto de matrices elementales.

- 6. i) Encuentre dos matrices que sean invertibles pero que su suma no sea invertible. ii) Encuentre dos matrices singulares cuya suma sea invertible. Justifique todas sus aseveraciones.
- 7. Encuentre la descomposición LU de la matriz

$$\left(\begin{array}{cccc}
1 & 2 & -1 & 4 \\
0 & -1 & 5 & 8 \\
2 & 3 & 1 & 4 \\
1 & -1 & 6 & 4
\end{array}\right).$$

1

8. Encuentre la descomposición LU de la matriz

$$A = \left(\begin{array}{cccc} 2 & 3 & -1 & 6 \\ 4 & 7 & 2 & 1 \\ -2 & 5 & -2 & 0 \\ 0 & -4 & 5 & 2 \end{array}\right),$$

y luego úsela para encontrar la solución del sistema Ax = b, donde

$$b = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 4 \end{pmatrix}.$$

9. Encuentre la descomposición LU de la matriz

$$A = \begin{pmatrix} 1 & -2 & -2 & -3 \\ 3 & -9 & 0 & -9 \\ -1 & 2 & 4 & 7 \\ -3 & -6 & 26 & 2 \end{pmatrix},$$

Usando esta misma descomposición como ayuda, encuentre  $A^{-1}$ .

10. Encuentre la descomposición LU de la matriz por bandas

$$A = \begin{pmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0 \\ 0 & a_{32} & a_{33} & a_{34} \\ 0 & 0 & a_{43} & a_{44} \end{pmatrix},$$

(Para una interesante aplicación de matrices por bandas a problemas de flujo de calor en física y la importancia de obtener su descomposición LU, ver problemas 31 y 32 de Linear Algebra, D. Lay, 4th ed., p. 131 y las explicaciones que ahí se dan.)