Aluna: Helena Cristo Martins

Matrícula: 90128 Data: 10/10/2020

ELT 432- Relatório 4

Questão 1

Questão 2

Questão 3

Tipos:	3 fios	6 fios	12 fios
Nível de tensão de entrada:	Alimentação é através de apenas um nível, por exemplo 220V.	Alimentação é através de dois níveis distintos, por exemplo 220/380V.	Alimentação é através de quatro níveis distintos, por exemplo 220/380/440/760V.
Possibilidade de ligação em estrela ou triângulo:	É possível ligar apenas em triângulo.	É possível ligar em triângulo e em estrela.	É possível ligar em triângulo, estrela, duplo triângulo e dupla estrela.
Inversão de rotação do motor:	Pode ocorrer, bastando apenas trocar duas fases.	Pode ocorrer, bastando apenas trocar duas fases.	Pode ocorrer, bastando apenas trocar duas fases.

O processo de inversão do sentido de rotação em um motor trifásico consiste em inverter suas bobinas, isto é, trocar as fases -as três da rede- nos terminais de ligação no momento de alimentação do motor. Portanto, basta programar uma chave reversora de acordo com a demanda de inversão. Essa inversão pode ocorrer na caixa do motor elétrico, na saída do relé térmico, no contator ou, ainda, no disjuntor.

Já para o caso do motor monofásico, suas bobinas são separadas em duas partes. Logo, cada parte pode ser conectada em série ou em paralelo, de acordo com a tensão obtida na rede elétrica.

Em ambos os modelos de motores, a inversão do sentido da corrente pode ser fixa ou variável, ou seja, sua aplicação exige que o motor rotacione em qualquer sentido, independente ou não do período, bastando para isso a inserção no controle de seu motor, de uma chave de partida de reversão, pois ao acioná-la, uma comutação na alimentação e no fechamento ocorrerá, causando assim uma inversão na rotação do motor.

Questão 4

Questão 5

Questão 6

a)

Questão 7

	Α	В	С	D
Contatos	CWB9-11-	CWB12-11-	CWB9-11-	CWB9-11-
	30D23	30D23	30D23	30D23
Relé de	AZ RW17-1D2-	AZ RW17-1D2-	AZ RW17-1D2-	AZ RW17-1D2-
Sobrecarga	U008	D063	U008	U004
Fusíveis de	Fusível gL/Gg	Fusível gL/Gg	Fusível gL/Gg	Fusível gL/Gg
força	tipo FDW-16S	tipo FDW-6S	tipo FDW-16S	tipo FDW-6S

Memorial de cálculo:

OBS: Para a escolha dos componentes, foram utilizados catálogos da WEG.

a)

Dimensionamento do contator:

$$1 \ CV = 735,5 \ W$$

 $2 \ CV = 1471 \ W$
 $P = i. \ U => In = \frac{P}{U} = \frac{1471}{220} = 6,686A$
 $Ie \ge In$
 $Ie \ge 6,686$

O contator CWB9-11-30D23 tem uma corrente de emprego de 9A (≥6,686) e pode ser aplicado para potências nominais de até 3CV.

Dimensionamento do Relé de Sobrecarga:

AZ RW17-1D2-U008 possui a faixa de corrente de 5,6-8, logo 6,686 está dentro.

Dimensionamento do fusível de força:

$$\frac{Ip}{In}$$
 = 7,5 => Ip = 50,145 A

$$Tp = 2s$$

Para encontrar o modelo, analisamos a curva Ip x Tp na Apostila "Automação Fusíveis aR e gL/gG Tipo NH Contato Faca, NH Flush End e Diametra" da WEG.

b)

Dimensionamento do contator:

$$1 CV = 735,5 W$$

 $3 CV = 2206,5 W$

$$P = i. U = In = \frac{P}{U} = \frac{2206,5}{220} = 10,03 A$$

$$Ie(K1, K2) \ge 0.58 \times In$$

$$Ie(K1, K2) \ge 5,82 A$$

$$Ie(K3) \ge 0.33 \times In$$

$$Ie(K3) \ge 3,31 A$$

O contator CWB12-11-30D23 tem uma corrente de emprego de 12A (\geq 5,82 \geq 3,31) e pode ser aplicado para potências nominais de até 4CV.

Dimensionamento do Relé de Sobrecarga:

Faixa de ajuste próximo a: $0.58 \times In$ $0.58 \times In = 5.82$

AZ RW17-1D2-D063 possui a faixa de corrente de 4-6,3, logo 5,82 está dentro.

Dimensionamento do fusível de força:

$$Ip, real = \frac{Ip}{In} \times In \times 0.33 = 23.17A$$

$$Tp = 5s$$

Para encontrar o modelo, analisamos a curva Ip x Tp na Apostila "Automação Fusíveis aR e gL/gG Tipo NH Contato Faca, NH Flush End e Diametra" da WEG.

c)

Dimensionamento do contator:

$$1 \ CV = 735,5 \ W$$

 $2 \ CV = 1471 \ W$
 $P = i. \ U => In = \frac{P}{U} = \frac{1471}{220} = 6,686A$
 $Ie(K1, K2) \ge In$
 $Ie(K1, K2) \ge 6,686$

O contator CWB9-11-30D23 tem uma corrente de emprego de 9A (≥6,686) e pode ser aplicado para potências nominais de até 3CV.

Dimensionamento do Relé de Sobrecarga:

AZ RW17-1D2-U008 possui a faixa de corrente de 5,6-8, logo 6,686 está dentro.

Dimensionamento do fusível de força:

$$\frac{Ip}{In}$$
 = 7,5 => Ip = 50,145 A

$$Tp = 3s$$

Para encontrar o modelo, analisamos a curva Ip x Tp na Apostila "Automação Fusíveis aR e gL/gG Tipo NH Contato Faca, NH Flush End e Diametra" da WEG.

d)

Dimensionamento do contator:

$$1 CV = 735,5 W$$

$$2 CV = 1471 W$$

$$P = i.U = In = \frac{P}{U} = \frac{1471}{220} = 6,686 A$$

$$Ie(K1, K2) \ge 0.58 \times In$$

$$Ie(K1, K2) \ge 3,88 A$$

$$Ie(K3) \ge 0.33 \times In$$

$$Ie(K3) \ge 2,21 A$$

O contator CWB9-11-30D23 tem uma corrente de emprego de 9A (≥6,686) e pode ser aplicado para potências nominais de até 3CV.

Dimensionamento do Relé de Sobrecarga:

Faixa de ajuste próximo a: $0.58 \times In$

 $0.58 \times In = 3.88$

AZ RW17-1D2-U004 possui a faixa de corrente de 2,8-4, logo 3,88 está dentro.

Dimensionamento do fusível de força:

$$Ip, real = \frac{Ip}{In} \times In \times 0.33 = 16.55A$$

$$Tp = 3s$$

Para encontrar o modelo, analisamos a curva Ip x Tp na Apostila "Automação Fusíveis aR e gL/gG Tipo NH Contato Faca, NH Flush End e Diametra" da WEG.

