数学

試験時間:50分

平成 28 年度筑波大附属高校

大問は 1 から 5 まであります 解答は解答用紙に記入して下さい

- $(1) \ x = \sqrt{3} + \sqrt{2}, \ y = \frac{\sqrt{3} \sqrt{2}}{2}$ のとき, $(x+y)^2 y(2x+5y)$ の値は ① である.

(2) 4 個の数字 1,~,2,~3,~4 が、はじめこの順に並んでいる.1 回の操作で、でたらめに 2 つの数字の位置を入れかえる.この操作を 2 回続けて行ったとき、1 が左端にある確率は 2 である.

(3) 下の図 1 において、5 点 A, B, C, D, E は円周上の点であり、 $\angle CAD = 42^\circ$ 、 $\widehat{AB} = \widehat{BC}$ 、 $\widehat{AE} = \widehat{ED}$ である。 2 直線 BC, ED の交点を F とするとき、 $\angle CFD = \boxed{3}$ 度である。

(4) 下の図 2 のように、すべての辺の長さが $3\mathrm{cm}$ の正四角すい O-ABCD がある。辺 OB, OD の中点をそれぞれ P, Q とし、3 点 A, P, Q を含む平面と OC との交点を R とするとき、線分 AR の長さは $\boxed{4}$ cm である。

2 40 人の生徒に 100 点満点の数学の試験を実施した。下の度数分布表はその結果をまとめたものであるが、? となっている欄の人数はわからなくなっている。 40 人の得点はすべての整数値であり、中央値は 59.5 点で、満点の生徒はいなかった。

このとき、次の⑤の にあてはまる数を求め、⑥の解答欄には求め方と人数を書きなさい.

階 級	階級値 (点)	度数 (人)
0 点以上~10 点未満	5	0
10 ~ 20	15	0
20 ~ 30	25	1
30 ~ 40	35	4
40 ~ 50	45	7
50 ~ 60	55	?
60 ~ 70	65	7
70 ~ 80	75	?
80 ~ 90	85	?
90 ~ 100	95	7
合計		40

(1) 50 点以上 60 点未満の生徒の人数は, ⑤ 人である.

(2) この度数分布表を利用して 40 人の得点の平均値を求めた結果, 平均値は整数値であった. このとき, 70 点以上 80 点未満の生徒の人数は何人であるか. ⑥ の解答欄に求め方と人数を書きなさい.

(ア)	3 ある自動車の燃料タンクに (ア) ~ (ウ) のことが分かっている	ガソリンを最大限入れ,燃料がなくなるまで走らせる. るとき,次の⑦ ~ ⑨の にあてはまる数または式を求めなさい.
	(イ) 速度の増加に応	らせると, 走行時間は 11 時間である. ぶじて, 走行時間は一定の割合で減少する. らせる場合と, 時速 100km で走らせる場合の走行距離は等しい.
(1)	(1) 時速 x km で走らせたところ、	走行時間は y 時間であった. y を x の式で表すと, $y=igcap o$ である.
(2)	(2) 時速 <i>a</i> km で走らせたところ。	走行距離は $490\mathrm{km}$ であった.このとき, $a= igcap 8$ である.
(-)		
(3)	(3) 時速 $70\mathrm{km}$ で b 時間走らせた	後, 時速 $98\mathrm{km}$ で c 時間走らせたところ, 走行距離は $462\mathrm{km}$ であった. 走行時

間の合計 (b+c) は、 $\boxed{\ \ \ \ \ \ \ \ \ \ }$ 時間である.

 $oxed{4}$ AD//BC, AD= $4\mathrm{cm}$, \angle A が鋭角である台形 ABCD の辺上を動く 2 点 P , Q がある.

点 P は A を出発し、一定の速さで辺 AD 上を D まで動き、点 Q は P と同時に A を出発し、一定の速さで辺 AB、辺 BC 上を C まで動 く

P が D に到達すると同時に, Q は C に到達した.

台形 ABCD を線分 PQ で 2 つの図形にわけるとき、A を含む図形を F とする、2 点 P、Q が A を出発してから x 秒後の図形 F の面積を y cm^2 とすると、x と y の関係を表すグラフは右図のようになった.

このとき、次の⑩ ~ ⑫ の のあてはまる数を求めなさい.

(1) 辺 BC の長さは 🔟 cm である.

(2) 辺 CD の長さは <u></u> ① cm である.

 5 下図のように、AB=8cm、BC=16cm、CA=12cm の \triangle ABC において、辺 BC を四等分する点を D、E、F とする.

(1) 線分 AD の長さは, ①3 cm である.

(2) 線分 PQ の長さは, 14 cm である.

(3) 線分 PQ, QR, RS の長さの比をもっとも簡単な整数の比で表すと, PQ:QR:RS= である.