HIGHER CATEGORY THEORY: EXERCISE SHEET 3

ÁLVARO JIMÉNEZ

Exercise 1. Recall that a groupoid is a category in which all morphisms are invertible. A (2,1)-category is a 2-category \mathcal{C} such that, for all $x, y \in \mathcal{C}$, the category $\mathcal{C}(x, y)$ is a groupoid.

1. Given a groupoid \mathcal{G} , let

$$\pi_0(\mathcal{G}) := \mathrm{Obj}(\mathcal{G}) / \sim$$

be the set of equivalence classes of objects under the relation $x \sim y$ if there exists $g \colon x \to y$ in \mathcal{G} Show that the assignment

$$\pi_0 \colon \mathbf{Grpd} \to \mathbf{Set}; \quad \mathcal{G} \mapsto \pi_0(\mathcal{G})$$

on objects defines a functor.

- 2. Show that, given a (2,1)-category \mathcal{C} , there is a 1-category $h\mathcal{C}$ such that:
 - Obj(hC) = Obj(C).
 - for all $x, y \in \mathcal{C}$, $h\mathcal{C}(x, y) = \pi_0 (\mathcal{C}(x, y))$.

Solution.

1. To check that π_0 is a functor, first we need to define how it acts on morphisms. Let

$$f:\mathcal{G}\to\mathcal{H}$$

be a morphisms of groupoids. Since \mathcal{G} and \mathcal{H} are actually categories, f is a functor $f \in \mathbf{Fun}(\mathcal{G}, \mathcal{H})$. Define $\pi_0(f)$ to be the map

$$f^* \colon \pi_0(\mathcal{G}) \to \pi_0(\mathcal{H})$$

 $[x] \mapsto [f(x)]$

where [x] denotes the equivalence class of $x \in \text{Obj}(\mathcal{G})$ in $\pi_0(\mathcal{G})$. This is a well-defined map between sets. Indeed, take $x, y \in \text{Obj}(\mathcal{G})$ such that [x] = [y], that is, $x \sim y$. Then, by construction, there is a morphism $g \colon x \to y$ in \mathcal{G} . Consider the morphism

$$h: f(x) \to f(y)$$

in \mathcal{H} given by h = f(g). Then $f(x) \sim f(y)$ and therefore [f(x)] = [f(y)] and so the map is well-defined.

Also, given a groupoid \mathcal{G} , we have the identity morphism $\mathrm{id}_{\mathcal{G}}\colon G\to G$. Then clearly

$$id_{\mathcal{G}}^{*}([x]) = [id_{\mathcal{G}}(g)] = [g] = id_{\pi_{0}(\mathcal{G})}([g]).$$

Finally, given two morphisms of groupoids $f: \mathcal{H} \to \mathcal{K}, g: \mathcal{K} \to \mathcal{G}$, the morphism

$$(g \circ f)^* \colon \pi_0(\mathcal{H}) \to \pi_0(\mathcal{K})$$

satisfies

$$(g \circ f)^*([x]) = [(g \circ f)(x)]$$

$$= [g(f(x))]$$

$$= g^* ([f(x)])$$

$$= g^* (f^*([x]))$$

$$= (g^* \circ f^*)([x])$$

Therefore, $\pi_0 \colon \mathbf{Grpd} \to \mathbf{Set}$ is a functor.

2. The exercise asks to check that hC is a category. First of all, it has a set of objects equal to Obj(C). Secondly, given any two elements $x, y \in Obj(C)$, there is a set (by construction), $\pi_0(C(x, y))$. On the other hand, given $x, y \in Obj(hC) = Obj(C)$,

$$hC(x,y) = \pi_0 (C(x,y)) = \text{Obj}(C(x,y)) / \sim$$
.

Therefore, each morphism $f \in h\mathcal{C}(x,y)$ is represented by an equivalence class f = [a] for some $a \in \text{Obj}(\mathcal{C}(x,y))$. Now, since \mathcal{C} is a (2,1)-category, it comes equipped with a functor

$$\mu \colon \mathcal{C}(x,y) \times \mathcal{C}(y,z) \to \mathcal{C}(x,z)$$

for every $x, y, z \in \text{Obj}(\mathcal{C})$. In particular maps a pair of objects (a, b), $a \in \text{Obj}(\mathcal{C}(x, y))$, $b \in \text{Obj}(\mathcal{C}(y, z))$, to an object $\mu(a, b) \in \text{Obj}(\mathcal{C}(x, z))$. Therefore, for every $x, y, z \in \text{Obj}(\mathcal{C})$ and morphisms $f \in h\mathcal{C}(x, y)$, $g \in h\mathcal{C}(y, z)$ represented by [a] and [b] for $a \in \text{Obj}(\mathcal{C}(x, y))$, $b \in \text{Obj}(\mathcal{C}(y, z))$, we define

$$g \circ f \colon h\mathcal{C}(x,y) \times h\mathcal{C}(y,z) \to h\mathcal{C}(x,z)$$

$$([a],[b]) \mapsto [\mu(a,b)]$$

This map is well-defined. Given ([a], [a']) = ([b], [b']), then [a] = [b] and [a'] = [b'], so there are morphisms

$$g: a \to b$$

and

$$q' \colon a' \to b'$$
.

But then,

$$\mu(g,g) \colon \mu(a,a') \to \mu(b,b')$$

and therefore $[\mu(a, a')] = [\mu(b, b')]$. Also, unitality and associativity follow again by the fact that μ is a functor. We need to check as well that this is well defined and that it satisfies Unitality and Associativity.

Exercise 2. Let $f: H \to G$ be an arbitrary homomorphism between small groups and $\phi: BH \to BG$ the corresponding functor of grupoids. For a small field K and a representation $F: BH \to \mathbf{Vect}_K$, describe the right Kan extension ϕ_*F .

Solution. The category $[BH, \mathbf{Vect}_K] = \mathbf{Vect}_K^{BH}$ is the category whose objects are functors $F \colon BH \to \mathbf{Vect}_K$, and this can be seen as representations of the group $H, \rho \colon H \to \mathrm{GL}(V)$ for $V \in \mathrm{Obj}(\mathbf{Vect}_K)$. Given a particular representation

$$F \colon BH \to \mathbf{Vect}_K$$

a right extension of $\phi \colon BH \to BG_K$ along F consists of

- a representation $\overline{F} \colon BG \to \mathbf{Vect}_K$;
- a natural transformation $\eta: \phi^*: [BG, \mathbf{Vect}_K] \to [BH, \mathbf{Vect}_K].$

Therefore, given a representation of H, we are asked to define a representation \overline{F} of G. When H is a subgroup of G, there is this construction called the <u>induced representation</u> that does it. However, I don't know how to do it for arbitrary groups and arbitrary homomorphisms. The construction for H a subgroup of G defines, for $\rho: H \to \operatorname{GL}(V)$,

$$\operatorname{Ind}_H^G \rho = K[G] \otimes_{K[H]} V.$$

I believe that we might do something similar for arbitrary homomorphisms $f \colon H \to G$. Now, the natural transformations are already given by equivariant maps and also the universal property follows from the one of tensor products and free groups, therefore making it a right Kan extension.