Bessel functions and Legendre polynomials

Bessel's equation of order p

$$x^2y'' + xy' + (x^2 - p^2)y = 0$$

Solution: $y(x) = aJ_p(x) + bY_p(x)$ If p is not an integer, $Y_p(x) = J_{-p}(x)$.

Behavior at zero: $J_0(0)=1,\ J_p(0)=0$ for $p=1,2,3,\ldots,Y_p(0)=-\infty$ for all p

Behavior at infinity: $J_p(x) \to 0$ and $Y_p(x) \to 0$ as $x \to \infty$

Zeros $J_p(\sigma_{pm})=0$ for all p and $m=1,2,3,\ldots$ (Each $J_p,\ Y_p$ has infinite number of zeros labeled σ_{pm} .)

Derivatives

- $\bullet \ \frac{d}{dx}[x^p J_p(x)] = x^p J_{p-1}(x),$
- $\frac{d}{dx}[x^{-p}J_p(x)] = -x^{-p}J_{p+1}(x)$
- $\bullet \ \frac{d}{dx}[x^pY_p(x)] = x^pY_{p-1}(x),$
- $\frac{d}{dx}[x^{-p}Y_p(x)] = -x^{-p}Y_{p+1}(x)$

Orthogonality

0

0

$$\begin{split} \int_{o}^{\ell} x J_{p}(\sigma_{pm}x/\ell) J_{p}(\sigma_{pn}x/\ell) \, dx \\ &= \begin{cases} 0 & n \neq m \\ \frac{\ell^{2}}{2} J_{p+1}^{2}(\sigma_{pm}) & n = m \end{cases} \end{split}$$

Idea: Bessel functions are like sine and cosine.

Modified Bessel's equation of order p

$$x^2y'' + xy' - (x^2 + p^2)y = 0$$

Solution: $y(x) = aI_p(x) + bK_p(x)$ If p is not an integer, $K_p(x) = I_{-p}(x)$.

Behavior at zero: $I_0(0) = 1$, $I_p(0) = 0$, p = 1, 2, 3, ... $K_p(0) = \infty$ for all p

2

Behavior at infinity: $I_p(x) \to \infty, K_p(x) \to 0$ as $x \to \infty$

Derivatives

•
$$\frac{d}{dx}[x^p I_p(x)] = x^p I_{p-1}(x),$$

$$\bullet \ \frac{d}{dx}[x^{-p}I_p(x)] = x^{-p}I_{p+1}(x)$$

$$\bullet \ \frac{d}{dx}[x^p K_p(x)] = -x^p K_{p-1}(x),$$

•
$$\frac{d}{dx}[x^{-p}K_p(x)] = -x^{-p}K_{p+1}(x)$$

Idea: Modified Bessel functions are like e^{px} and e^{-px} .

Legendre's equation:

$$(1 - x^2)y'' - 2xy' + n(n+1)y = 0,$$

where n is an integer.

Solution:
$$y(x) = aP_n(x) + bQ_n(x)$$

•
$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$

•
$$P_0 = 1$$
, $P_1 = x$, $P_2 = \frac{1}{2}(3x^2 - 1)$, ...

•
$$Q_n(x) = \frac{1}{2}P_n(x)\ln\left(\frac{1+x}{1-x}\right) - \sum_{m=1}^n \frac{1}{n}P_{m-1}P_{n-m}$$

for $n = 1, 2, 3, \dots$

•
$$Q_0(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

Note: $Q_n(x)$ only finite on -1 < x < 1

Properties on -1 < x < 1

•
$$n \text{ even: } P_n(-1) = 1, P_n(1) = 1$$

•
$$n \text{ odd}$$
: $P_n(-1) = -1, P_n(1) = 1$

•
$$Q_n(-1) = \pm \infty$$
, $Q_n(1) = \pm \infty$

Zeros:

- $P_n(x)$ has n zeros.
- $P_n(0) = 0$ if n odd.
- $Q_n(x)$ has n+1 zeros.

Orthogonality:

$$\int_{-1}^{1} P_n(x) P_m(x) dx = \begin{cases} 0 & n \neq m \\ \frac{2}{2n+1} & n = m \end{cases}$$

$$\int_0^{\pi} P_n(\cos \phi) P_m(\cos \phi) \sin \phi \, d\phi$$

$$= \begin{cases} 0 & n \neq m \\ \frac{2}{2n+1} & n = m \end{cases}$$

Idea: $P_n(x)$ is a specific polynomial in x of order n. $Q_n(x)$ is a polynomial times a log.