Computing Low-Weight Discrete Logarithms

Bailey Kacsmar University of Waterloo Sarah Plosker Brandon University Ryan Henry Indiana University

Selected Areas in Cryptography (SAC) 2017

Discrete Logarithm Problem (DLP)

Given $(g,h) \in \mathbb{G} \times \mathbb{G}$, find $x \in \mathbb{Z}_q^*$ such that:

$$h=g^{X}$$

(Here \mathbb{G} is a multiplicative group of prime order q)

Consider the radix-b representation of x in

$$h=g^{X}$$

x = 1010001001

Weight: number of non-zero digits, t

Hamming-weight: weight t, in radix-b, b = 2

Consider the radix-b representation of x in

$$h=g^X$$

x = 1010001001

Weight: number of non-zero digits, t

Hamming-weight: weight t, in radix-b, b = 2

Consider the radix-b representation of x in

$$h=g^X$$

x = 1010001001

Weight: number of non-zero digits, t

Hamming-weight: weight t, in radix-b, $\mathbf{b} = \mathbf{2}$

Consider the radix-b representation of x in

$$h=g^X$$

x = 1010001001

Weight: number of non-zero digits, t

Hamming-weight: weight t, in radix-b, b = 2

Solving the Low-Weight Discrete Logarithm Problem

Find $x \in \mathbb{Z}_q^*$ such that:

$$h = g^X \mod q$$

Classically, go from, solving in say,

$$q \rightarrow \sqrt{q}$$

For us, go from solving in say,

$$\binom{m}{t}$$
 \rightarrow $\binom{m/2}{t/2}$

Outline

- Baby-Step, Giant-Step Algorithms
- Optimizations
- Generalizing to arbitrary bases (b > 1)
- Cryptanalytic Application

Assume,
$$t = 4$$
, and $m = 10$, (i.e. $\binom{10}{4}$ possible x 's)

Let
$$x=1010001001$$
 Y_1 Y_2
 $val(Y_1) = 20.2^5$ and $val(Y_2) = 9.2^0$
 $x = val(Y_1) + val(Y_2)$

Assume,
$$t = 4$$
, and $m = 10$, (i.e. $\binom{10}{4}$) possible x 's)

Let $x = 1010001001$
 $Y_1 Y_2$
 $val(Y_1) = 20 \cdot 2^5$ and $val(Y_2) = 9 \cdot 2^0$
 $x = val(Y_1) + val(Y_2)$

Assume,
$$t=4$$
, and $m=10$, (i.e. $\binom{10}{4}$) possible x 's)

Let $x=1010001001$
 Y_1 Y_2
 $val(Y_1)=20\cdot 2^5$ and $val(Y_2)=9\cdot 2^0$

$$x=val(Y_1)+val(Y_2)$$

Recall,
$$x = 1010001001$$

 Y_1 Y_2

From,
$$g^x = h$$
,

$$g^{\operatorname{val}(\mathbf{Y_1})+\operatorname{val}(\mathbf{Y_2})}=h$$

$$h \cdot (g^{-1})^{val(\frac{\mathbf{Y_2}}{2})} = g^{val(\frac{\mathbf{Y_1}}{2})}$$

$$\log_g h = val(Y_1) + val(Y_2) \bmod q$$

So, search for Y_1 and Y_2 with weight t/2

Recall,
$$x = 1010001001$$

 Y_1 Y_2

From,
$$g^x = h$$
,

$$g^{\operatorname{val}(\mathbf{Y_1})+\operatorname{val}(\mathbf{Y_2})}=h$$

$$h \cdot (g^{-1})^{\operatorname{val}(\frac{\mathbf{Y_2}}{2})} = g^{\operatorname{val}(\frac{\mathbf{Y_1}}{2})}$$

$$\log_g h = val(Y_1) + val(Y_2) \bmod q$$

So, search for Y_1 and Y_2 with weight t/2

Recall,
$$x = 1010001001$$

 Y_1 Y_2

From,
$$g^x = h$$
,

$$g^{\operatorname{val}(\mathbf{Y_1})+\operatorname{val}(\mathbf{Y_2})}=h$$

$$h \cdot (g^{-1})^{\operatorname{val}(\frac{\mathsf{Y}_2}{2})} = g^{\operatorname{val}(\frac{\mathsf{Y}_1}{2})}$$

$$\log_g h = val(Y_1) + val(Y_2) \bmod q$$

So, search for Y_1 and Y_2 with weight t/2

Low-Hamming Weight - Basic Algorithm ¹

Assume t = 4 and m = 5

Giant-Step

$$egin{array}{ccccc} oldsymbol{Y_1} & g^{val(Y_1)} \ 00011 & g^{val(00011)} \ 00110 & g^{val(00110)} \ 00101 & g^{val(00101)} \ dots & dots \ 10010 & g^{val(10010)} \ 10001 & g^{val(10001)} \ \end{array}$$

Baby-Step

Y_2	$h \cdot g^{- extstyle{val}(rac{f Y_2}{2})}$
00011	$h \cdot g^{-val(00011)}$
00110	$h \cdot g^{-val(10010)}$
00101	$h \cdot g^{-val(00101)}$
÷	:
10010	$h \cdot g^{-val(10010)}$
10001	$h \cdot g^{-val(10001)}$

$$x = val(Y_1) + val(Y_2) \quad \Theta(\binom{m}{t/2})$$

$$\Theta\left(\binom{m}{t/2}\right)$$

¹Due to Heiman (1992) and Odlyzko (1992)

Low-Hamming Weight - Basic Algorithm 1

Assume t = 4 and m = 5

¹Due to Heiman (1992) and Odlyzko (1992)

Low-Hamming Weight - Basic Algorithm ¹

Assume t = 4 and m = 5

Giant-Step		E	Baby-Step	
Y ₁	g ^{val(Y₁)} ←	?	Y_2	$h \cdot g^{-val(\frac{Y_2}{2})}$
00011	$g^{val(00011)}$		00011	$h\cdot g^{- extit{val}(00011)}$
00110	$g^{val(00110)}$		00110	$h\cdot g^{- extit{val}(10010)}$
00101	$g^{val(00101)}$		00101	$h\cdot g^{- extit{val}(00101)}$
:	:	?	÷	÷
10010	$g^{val(10010)}$		10010	$h\cdot g^{-val(10010)}$
10001	$g^{val(10001)}$		10001	$h\cdot g^{- extit{val}(10001)}$
$x = val(Y_1) + val(Y_2) \qquad \Theta\left(\binom{m}{t/2}\right)$				

¹Due to Heiman (1992) and Odlyzko (1992)

Assume
$$x \in \mathbb{Z}_{31}^*$$
, $t = 4$, $m = 5$, $g = 3$ and $h = 11$

Giant-Step

$$egin{array}{ccccc} oldsymbol{Y_1} & g^{val(oldsymbol{Y_1})} \\ 00011 & g^{val(00011)} \\ 00110 & g^{val(00110)} \\ 00101 & g^{val(00101)} \\ & \vdots & & \vdots \\ 10010 & g^{val(10010)} \\ 10001 & g^{val(00101)} \\ \end{array}$$

Baby-Step

$$Y_2$$
 $h \cdot g^{-val(Y_2)}$
00011 $h \cdot g^{-val(00011)}$
00110 $h \cdot g^{-val(00010)}$
00101 $h \cdot g^{-val(00101)}$
 \vdots \vdots
10010 $h \cdot g^{-val(10010)}$
10001 $h \cdot g^{-val(10001)}$

$$x = val(Y_1) + val(Y_2) = 17 + 6 = 23$$

Assume
$$x \in \mathbb{Z}_{31}^*$$
, $t = 4$, $m = 5$, $g = 3$ and $h = 11$

Giant-Step

Y ₁	$g^{val(rac{f Y_1}{2})}$
00011	27
00110	16
00101	26
:	:
10010	4
10001	22

Baby-Step

$$Y_2$$
 $h \cdot g^{-val(Y_2)}$
00011 $h \cdot g^{-val(00011)}$
00110 $h \cdot g^{-val(00110)}$
00101 $h \cdot g^{-val(00101)}$
 \vdots \vdots
10010 $h \cdot g^{-val(10010)}$
10001 $h \cdot g^{-val(10001)}$

$$x = val(Y_1) + val(Y_2) = 17 + 6 = 23$$

Assume
$$x \in \mathbb{Z}_{31}^*$$
, $t = 4$, $m = 5$, $g = 3$ and $h = 11$

Assume
$$x \in \mathbb{Z}_{31}^*$$
, $t = 4$, $m = 5$, $g = 3$ and $h = 11$

$$x = val(Y_1) + val(Y_2) = 17 + 6 = 23$$

Assume
$$t = 4$$
, $m = 5$,

Y ₁	$g^{ extsf{val}({f Y_1})}$
00011	$g^{val(00011)}$
00110	$g^{val(00110)}$
00101	$g^{val(00101)}$
:	:
10010	$g^{val(10010)}$
10001	$g^{val(10001)}$

$$Y_2$$
 $h \cdot g^{-val(Y_2)}$
10001 $h \cdot g^{-val(10001)}$
10010 $h \cdot g^{-val(10010)}$
10100 $h \cdot g^{-val(10100)}$
 \vdots \vdots
00110 $h \cdot g^{-val(00110)}$
00011 $h \cdot g^{-val(00011)}$

$$x = val(Y_1) + val(Y_2) = 6 + 17 = 23$$

Assume
$$x \in \mathbb{Z}_{31}^*$$
, $t = 4$, $m = 5$, $g = 3$, and $h = 11$

Y ₁	$g^{ extsf{val}({f Y_1})}$
00011	$g^{val(00011)}$
00110	$g^{ extit{val}(00110)}$
00101	$g^{val(00101)}$
:	:
10010	$g^{ extit{val}(10010)}$
10001	$g^{val(10001)}$

$$egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} egin{array}{lll} h\cdot g^{-val(10001)} \ 10100 & h\cdot g^{-val(10100)} \ & \vdots & & \vdots \ 00110 & h\cdot g^{-val(00110)} \ 00011 & h\cdot g^{-val(00011)} \ \end{array}$$

$$x = val(Y_1) + val(Y_2) = 6 + 17 = 23$$

Assume
$$x \in \mathbb{Z}_{31}^*$$
, $t = 4$, $m = 5$, $g = 3$, and $h = 11$

$$x = val(Y_1) + val(Y_2) = 6 + 17 = 23$$

Assume
$$x \in \mathbb{Z}_{31}^*$$
, $t = 4$, $m = 5$, $g = 3$, and $h = 11$

$$x = val(Y_1) + val(Y_2) = 6 + 17 = 23$$

Assume
$$x \in \mathbb{Z}_{31}^*$$
, $t = 4$, $m = 5$, $g = 3$, and $h = 11$

$$x = val(Y_1) + val(Y_2) = 6 + 17 = 23$$

Interleaved Low-Hamming Weight Algorithm

In the worst case, a collision is found in

$$\binom{m}{t/2} \longrightarrow \binom{m-t/2}{t/2}$$

Heuristically, we can expect a collision after around

$${m/2 \choose t/2}$$

Recall Example: Low Hamming Weight

Giant-Step

Y1 g^{val(Y1)} 00011 27 00110 16 00101 26

Baby-Step

Y_2	$h \cdot g^{-val(\frac{Y_2}{2})}$
00011	5
00110	22
00101	4
•	÷
10010	26
10001	16

$$x = val(Y_1) + val(Y_2)$$

More then one pair of valid values Y_1 , Y_2

Weight t = 10 and length m = 22

x = 1100101011101100000010Baby-Step Giant-Step

 Y_1 : 5 ones, 6 zeroes and Y_2 : 5 ones, 6 zeroes

If no collision is found, shift the set cyclically by one

$$m\tbinom{m/2}{t/2}$$

Weight t = 10 and length m = 22

x = 11001010111101100000010Baby-Step Giant-Step

 Y_1 : 5 ones, 6 zeroes and Y_2 : 5 ones, 6 zeroes

If no collision is found, shift the set cyclically by one

$$m\binom{m/2}{t/2}$$

Weight t = 10 and length m = 22

x = 1100101011101100000010Baby-Step Giant-Step

 Y_1 : 5 ones, 6 zeroes and Y_2 : 5 ones, 6 zeroes

If no collision is found, shift the set cyclically by one

$$m\tbinom{m/2}{t/2}$$

Weight t = 10 and length m = 22

x = 1100101011101100000010Baby-Step Giant-Step

 Y_1 : 5 ones, 6 zeroes and Y_2 : 5 ones, 6 zeroes

If no collision is found, shift the set cyclically by one

$$m\tbinom{m/2}{t/2}$$

Weight t = 10 and length m = 22

x = 11001010111101100000010Baby-Step Giant-Step

 Y_1 : 5 ones, 6 zeroes and Y_2 : 5 ones, 6 zeroes

If no collision is found, shift the set cyclically by one

$$m\tbinom{m/2}{t/2}$$

Weight
$$t = 10$$
 and length $m = 22$

$$x = 11001010111101100000010$$

Baby-Step Giant-Step

 Y_1 : 5 ones, 6 zeroes and Y_2 : 5 ones, 6 zeroes

If no collision is found, shift the set cyclically by one

$$m\binom{m/2}{t/2}$$

Optimization - Pascal's Lemma

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Which means that,

$$\binom{m/2}{t/2} = \binom{m/2-1}{t/2-1} + \binom{m/2-1}{t/2}$$

Implications of Pascal's Lemma

Reduce all but the first iteration of the loop by using

$$\binom{m/2}{t/2} = \binom{m/2-1}{t/2-1} + \binom{m/2-1}{t/2}$$

Resulting in an improvement from

$$m\binom{m/2}{t/2} \longrightarrow t\binom{m/2}{t/2}$$

Assume, t = 6, m = 8, b = 4

Search for Y_1 , X_1 and Y_2 , X_2 with weight t/2For each Y_1 , such as 1011

consider possible $X_2 = 1011$

Assume, t = 6, m = 8, b = 4

Search for Y_1 , X_1 and Y_2 , X_2 with weight t/2

For each Y_1 , such as 1011

consider possible $X_2 = 2011$

Assume, t = 6, m = 8, b = 4

Search for Y_1 , X_1 and Y_2 , X_2 with weight t/2

For each Y_1 , such as 1011

consider possible $X_2 = 2011$

Assume, t = 6, m = 8, b = 4

Search for Y_1 , X_1 and Y_2 , X_2 with weight t/2

For each Y_1 , such as 1011

consider possible $X_2 = 2012$

Assume, t = 6, m = 8, b = 4

Search for Y_1 , X_1 and Y_2 , X_2 with weight t/2For each Y_1 , such as 1011

consider possible $X_2 = 2013$

Impact of Generalization

Requires an inner loop over each $X_i \in [b-1]^{t/2}$

Adds an additional factor of $(b-1)^{t/2}$

Basic Hamming Weight to Basic Low-Weight

$$\binom{m}{t/2}$$
 \rightarrow $(b-1)^{t/2}\binom{m}{t/2}$

Algorithmic Complexity Highlights

Best Deterministic Radix-2 Algorithm ²

- Evaluates $(t + o(1))\binom{m/2}{t/2}$
- Stores $2\binom{m/2}{t/2}$

Best Deterministic Radix-b Algorithm (See B.3)

- Evaluates $(t + o(1)) \binom{m/2}{t/2} (b-1)^{t/2}$
- Stores $2\binom{m/2}{t/2}(b-1)^{t/2}$

²Improves best known (due to Stinson, 2001) by a factor $c\sqrt{t} \lg m$

Application to VPAKE Protocol

Originally: Keifer and Manulis, ESORICS 2014

Password Authenticated Key Exchange

- Interactive protocol between a client and a server
- Authenticates client and establishes shared secret key
- Security requires that the interaction reveals at most negligible information

Verifier Based Password Authenticated Key Exchange

- The VPAKE protocol is used to register a password with the server, which will store a 'verifier'
- Does not reveal the password, and
- Enforces a given password policy

VPAKE Protocol

User maps her password *pw* to an integer using the mapping

$$\pi = exttt{PWDtoINT}(s; pw) \coloneqq \sum_{i=1}^{|pw|} s^i pw_i$$

where, $pw_i \in [0..93]$ and $s \ge 94$

User computes a fingerprint of *pw*Produces a pedersen-like commitment such that:

Difficulty for recovering *pw* is equivalent to solving DLP

Attack from Best Deterministic Low-Weight Algorithm

For any password of up to m = 12 characters

Consider brute force

$$\sum\nolimits_{m = 0}^{12} {94^m} \approx {2^{78.7}}$$

guesses, as compared with

$$\sum\nolimits_{t = 0}^{12} {t\binom {m/2} {t/2} } 93^{t/2} \approx 2^{38.2}$$

group operations

Summary

- Minimized hidden constants in low-Hamming weight algorithms, improving best known complexity
- Generalization of optimized algorithms for Low-Hamming weight to Low-Weight for b > 1
- Demonstrated cryptanlaytic applications against several VPAKE protocols

Arbitrary values t and m

Thus far assumed that t is even so that t/2 is an integer, but this is not a necessary condition

Results still hold if for example,

$$(X_1,Y_1)\in [b-1]^{\lfloor t/2
floor} imes (^{[m]}_{\lfloor t/2
floor})$$
 , and

$$(X_2, Y_2) \in [b-1]^{\lceil t/2 \rceil} \times \binom{[m]}{\lceil t/2 \rceil}$$

For further analysis, see Stinson (2002)

The Question of Change

Theorem 15. Fix a radix b > 1 and an exponent x with radix-b density d. There exists a constant $k_0 \in \mathbb{R}$ (with $k_0 > 1$) such that, for all $k > k_0$, if the radix- b^k density of x is less than or equal to d, then a radix- b^k algorithm has lower cost than the corresponding radix-b algorithm.

Radix-4: 11012013 has density 0.75

Radix-8: 50607 has density 0.6

Order q Unknown

Two notes on adapting for unknown q:

- Set m to be any upper bound on $\lceil \lg q \rceil$
- Omit modular reduction in the algorithm (see paper)