

												_			0												
-									-			Ex	era	ce	2				4								
								_	_	_																	
												6															
												/															
												p	0	0	10	ou Q	10		1	10		10	P	1	2 1	0	10
				-					+			1	Q V	-	1		14	ou K	1	(1 de			our	4	_ou		
		at .										V	V	V		V		/	-		V						
												V	V	F		V		V			V					V	/
												V	F	V		V		V			V						/
													F			V		/				/					/
													V			V		V			\	-					,
									t																		
													V			V		F			F						F
												F	F	V		F		V			1	+		-			F
												F	=	F		F		F				F					F
												le:		240	cess	ions	((P	on G	2)	t (P	ou R	1) (e (P	(Qe	eR)	cont
										1	ivelentes.	1	U	4	0_	dist	اما	· · 0		0	1 2		_ `		1	1	
									1	equ	warmes.	le	O	u	est	ousi	J. M	0	Su	C te	er		-				
		4					-		_										-				-				
												c)															
																							- i				
												P	Q	R	P	=> Q	Q	=>1	R	P=	(Q	=> (2)	(P:	->Q)	= 5	R
									1				V			\vee		V			V					/	
													V			V		F			+					Ł	
									Ť																		
								-					F			F		V			V					V	
													F			F		V			V					V	
												F	V	V		V		V			V					V	
												F	V	F		V		F			V				17	D	
													F			V		V			V					V	
													F			V		V			V					*	
												- I		1		V		٧			V	1					
									-			1	11							0							
						7.0						=)		ກ່	est	pos	Q	soci	inte	8						-	
												Il	e	aist	e	un t	riple	t	de	vale	uss	lo	ziqu	es	pour	(P	QR)
												me	ntra	t	W P	le	COAM	ecto.	ex	=>	0	led	Q	S	csace	elip	
												1.1.0										-63	4-1			9	

Montrons que si nº est pair orlors n'est pair Rousannons par contrapsée Montrons que si n impair alors nº impaire Soit n= 2k+1 avec k E Z n2 = (2k+1)2 = 9k2+6k+1 = 2(8k2+2k)+1 ovec 2k2+EZ dan n' impair si n'est impair Conclusion: Soit n EZ n pair (=) n pair $Q \Rightarrow P = (TP = 1Q)$ Exercise 4 courrés des deux côtés est égal au carré de l'hypoténice et l'hypoténice et la somme des legal à la somme des l'hypoténice et la la somme des carrés des deux cotés, alors ce triangle est rectangle b) MN= 82 = 64 NP2 HP2 = 62 +57 = 36+25 = 64 HN2 + NP2 + HP2 Donc le triangle HNP n'est pas rectangle Soit P: HN2 = NP2 + HP2 et Q: HNP est rectangle Si P alors Q SiTP alors TQ (contraposee) Si MN2 + NP2 + MP2 alors MNP n'est pes rectangle

(P=) Q) se lit: (Si Palors Q) * Cas oit l'on vent montrer un théorème de la jorne (P=)Q) 2 types de vaisonnements: @- soit on suppose que P est vrais il suffit de montra O soit on suppose que Q est fausse que Q est vocie; P est donc candition necessione sufficiente (CS) Os il suffit de montrer que Pest fausse : Pest condition sufficiente (CS) Q est condition necessaire" (CN) * Cas du l'on utilise une implication qu'on suit è voice Supposons P soit rraie On sait que (P=) Q) vrais Donc Q est vraie ou encore On déduit que Q est vraie Exercice 2.1 (1) Si aucun veuf n'est cassé alors il n'y a pas d'amelette P.CS QCN S'il existe une omelette, alors, il existe au moins 1 oeus cossis 7Q => 1P les propositions (P=>Q) et (Q=>7P) sont équivalentes cela signifie qu'elles ont la m table de vérité

i-e: Past Jausse et Q est vraie

_ id est

i'est-à-dive

2 cas: [Pest Janex et (Q) est vouic] on [Pest vouic et (Q est Jousse)

i-e (Pest Jausse et (TQ) est viair) ou [Pot Q sont uraie]

> Per (7a) Q

· Implication (connecteur binaire) Soient P Q définies chacine seur lour domaine

Pet (70) | P => Q

Chap 1 : Eléments de logique

1. Voc

Ex11

P. (x = x)

Pa un sens sur le domaine de def : R*

Pest vraie sur le domaine. R*

Dans ce cos, le domaine de validité est conforde avec le som de déf

Q: (x2=x

a est définie seur R

Q est vraie sur {0,1}

Ici le domaine de validité est strict : inclus dans

le dom dés

(=) x(x-1)=0 (=) x=0 on x=1

R. (Je >2)

Rest définie R. Rest vraie sur J4, +00[

Ia: 14, +0[CR,

Pre: Ja)2 (=> se)4 cort +> t2 crout strict sur R,

6> = E]4, +001