Lecture 6-1: Data Representation 3

数据的机器级表示 3

海明校验码

- ◆ 由Richard Hamming于1950年提出,目前还被广泛使用。
- ◆ 主要用于存储器中数据存取校验。
- ◆ 基本思想: 奇偶校验码对整个数据编码生成一位校验位。因此这种校验码检错能力差,并且没有纠错能力。如果将整个数据按某种规律分成若干组,对每组进行相应的奇偶检测,就能提供多位检错信息,从而对错误位置进行定位,并将其纠正。
 - 海明校验码实质上就是一种多重奇偶校验码。

◆ 处理过程:

- 最终比较时按位进行异或,以确定是否有差错。
- 这种异或操作所得到的结果称为故障字(syndrome word)。 显然,校验码和故障字的位数是相同。

每一组一个校验位,校验码位数等于组数! 每一组内采用一位奇偶校验!

校验码位数的确定

◆ 假定数据位数为n,校验码为k位,则故障字位数也为k位。k位故障 字所能表示的状态最多是2^K,每种状态可用来说明一种出错情况。

1+n+k种情况

- ◆ 若只有一位错,则结果可能是:
 - 数据中某一位错 (n种可能)
 - 校验码中有一位错 (k种可能)
 - 无错 (1 种可能)

假定最多有一位错,则n和k必须满足下列关系:

- 有效数据位数和校验码位数间的关系
- 从表中可看出, 当数据有8位时, 校验码和故障字都应有4位。

说明: 4位故障字最多可表示16种状态,而单个位出错情况最多只有12种可能(8个数据位和4个校验位),再加上无错的情况,一共有13种。所以,用16种状态表示13种情况应是足够了。

有效数据位数和校验码位数间的关系

	单组	纠错	单纠错。	/双检错
数据位数	校验位数	增加率	校验位数	增加率
8	4	50	5	62.5
16	5	31.25	6	37.5
32	6	18.75	7	21.875
64	7	10.94	8	12.5
128	8	6.25	9	7.03
256	9	3.52	10	3.91

海明码的分组

◆ 基本思想: 数据位和校验位按某种方式排列为一个(n+k) 位的码字,将该字中每个出错位的位置与故障字的数值建立 关系,通过故障字的值确定该码字中哪一位发生了错误,并 将其取反来纠正。

根据上述基本思想, 按以下规则来解释各故障字的值。

规则1: 若故障字每位全部是0,则表示没有发生错误。

规则2: 若故障字中有且仅有一位为1,则表示校验位中有一位出错,因而不需纠正。

规则3: 若故障字中多位为1,则表示有一个数据位出错, 其在码字中的出错位置由故障字的数值来确定。纠正时只 要将出错位取反即可。

海明码的分组

以8位数据进行单个位检错和纠错为例说明。

假定8位数据 $M=M_8M_7M_6M_5M_4M_3M_2M_1$, 4位校验位 $P=P_4P_3P_2P_1$ 。根据规则将M和P按一定的规律排到一个12位码字中。

据规则1,故障字为0000时,表示无错。

据规则2,故障字中有且仅有一位为1时,表示校验位中有一位出错。此时,故障字只可能是0001、0010、0100、1000,将这四种状态分别代表校验位中第 P_1 、 P_2 、 P_3 、 P_4 位发生错误,因此,它们分别位于码字的第1、2、4、8位。

据规则3,将其他多位为1的故障字依次表示数据位 $M_1 \sim M_8$ 发生错误的情况。因此,数据位 $M_1 \sim M_8$ 分别位于码字的第0011(3)、0101(5)、0110(6)、0111(7)、1001(9)、1010(10)、1011(11)、是逻辑顺序,物理上M列为: $M_8M_7M_6M_5P_4M_4M_3M_2P_3M_1P_2P_1$ 和P是分开的!

这样,得到故障字 $S=S_4S_3S_2S_1$ 的各个<u>状态和出错情况的对应关系表</u>,可根据这种对应关系对整个数据进行分组。

海明校验码分组情况

码字: $M_8M_7M_6M_5P_4M_4M_3M_2P_3M_1P_2P_1$

故障字S4S3S2S₁每一位的值 反映所在组的奇偶性

序号	31	2	3000	4	.080	6	7	8	9	10	200 100 200	12		正	出错位
\含义 分组 \	P_1	\mathbb{P}_2	M	P ₃	M_2	M_3	M ₄	P,	M_5	M_6	M,	M_8	故障字	确	1 2 3 4 5 6 7 8 9101112
第4组				33		2-3 2-3		1	7	Ų	J	Į	S_4	Ö	000000011111
第3组		8-8) ()	Ą		×	Ŋ	9 1	8 3		8 8	Ą	533	0	000111100001
第2组		Ą	4							Ą	ų.		S_2	0	011001100110
第1组	7	83 8	W	-8	A.	2 E	7		Ą		4		Sı	Ũ	101010101010

数据位或校验位出错一定会影响所在组的奇偶性。

例:若M1出错,则故障字为0011,因而会改变 S_2 和 S_1 所在分组的奇偶性。故M1同时被分到第2(S_2)组和第1(S_1)组。

问题:若P₁出错,则如何?若M₈出错,则如何?

P₁~0001,分在第1组;M₈~1100,分在第4组和第3组

校验位的生成和检错、纠错

- ◆ 分组完成后,就可对每组采用相应的奇(偶)校验,以 得到相应的一个校验位。
- ◆ 假定采用偶校验(取校验位Pi, 使对应组中有偶数个1) , 则得到校验位与数据位之间存在如下关系:

$$P_{1} = M_{1} \oplus M_{2} \oplus M_{4} \oplus M_{5} \oplus M_{7}$$

$$P_{2} = M_{1} \oplus M_{3} \oplus M_{4} \oplus M_{6} \oplus M_{7}$$

$$P_{3} = M_{2} \oplus M_{3} \oplus M_{4} \oplus M_{8}$$

$$P_{4} = M_{5} \oplus M_{6} \oplus M_{7} \oplus M_{8}$$

海明校验过程

- ◆根据公式求出每一组对应的校验位Pi (i=1,2,3,4)
- ◆数据M和校验位P一起被存储,根据读出数据M'得新校验位P'
- ◆读出校验位P"与新校验位P'按位进行异或操作,得故障字 $S = S_4S_3S_2S_1$
- ◆根据S的值确定:无错、仅校验位错、某个数据位错

海明码举例

假定一个8位数据M为: $M_8M_7M_6M_5M_4M_3M_2M_1$ = 01101010, 根据上述公式求出相应的校验位为:

$$P_1 = M_1 \oplus M_2 \oplus M_4 \oplus M_5 \oplus M_7 = 0 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

$$P_2 = M_1 \oplus M_3 \oplus M_4 \oplus M_6 \oplus M_7 = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$P_3 = M_2 \oplus M_3 \oplus M_4 \oplus M_8 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

$$P_4 = M_5 \oplus M_6 \oplus M_7 \oplus M_8 = 0 \oplus 1 \oplus 1 \oplus 0 = 0$$

假定12位码字 $(M_8M_7M_6M_5P_4M_4M_3M_9P_3M_4P_9P_4)$ 读出后为:

- (1) 数据位M'=M=01101010, 校验位P''=P=0011
- (2) 数据位M'= 01111010,校验位P''=P=0011
- (3) 数据位M'=M=01101010, 校验位P''= 1011

要求分别考察每种情况的故障字。

(1) 数据位M'=M=01101010, 校验位P''=P=0011, 即无错。

因为M'=M, 所以P'= P, 因此 S = P"⊕P'=P⊕P=0000。

海明码举例

(2) 数据位M'= 01111010, 校验位P''=P=0011, 即M₅错。

对M'生成新的校验位P'为:

$$P_1' = M_1' \oplus M_2' \oplus M_4' \oplus M_5' \oplus M_7' = 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 0$$

$$P_2' = M_1' \oplus M_3' \oplus M_4' \oplus M_6' \oplus M_7' = 0 \oplus 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$P_3' = M_2' \oplus M_3' \oplus M_4' \oplus M_8' = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

$$P_4' = M_5' \oplus M_6' \oplus M_7' \oplus M_8' = 1 \oplus 1 \oplus 1 \oplus 0 = 1$$

故障字S为:

$$S_1 = P_1' \oplus P_1'' = 0 \oplus 1 = 1$$

$$S_3 = P_3' \oplus P_3'' = 0 \oplus 0 = 0$$

$$S_a = P_a ' \oplus P_a '' = 1 \oplus 0 = 1$$

因此,错误位是第9位,排列的是数据位 M_5 ,所以检错正确,纠错时,只要将码字的第9位(M_5)取反即可。

海明码举例

(3) 数据位M'=M=01101010, 校验位P''= 1011,

即:校验码第4位(P₄)错。

因为M'=M, 所以P'=P, 因此故障位S为:

$$S_1 = P_1' \oplus P_1'' = 1 \oplus 1 = 0$$

$$S_2 = P_2' \oplus P_2'' = 1 \oplus 1 = 0$$

$$S_3 = P_3' \oplus P_3'' = 0 \oplus 0 = 0$$

$$S_{a} = P_{a}' \oplus P_{a}'' = 0 \oplus 1 = 1$$

错误位是第1000位(即第8位),这位上排列的是校验位P₄, 所以检错时发现数据正确,不需纠错。

单纠错和双检错码

- ◆ 单纠错码(SEC)
 - 问题: 上述(n=8/k=4)海明码的码距是几?
 - 码距d=3。因为,若有一位出错,则因该位至少要参与两组校验位的生成,因而至少引起两个校验位的不同。两个校验位加一个数据位等于3。
 - 例如,若 M_1 出错,则故障字为0011,即 P_2 和 P_1 两个校验位发生改变,12位码字中有三位(M_1 、 P_2 和 P_1)不同。
 - 根据码距与检错、纠错能力的关系,知:这种码制能发现两位错,或对单个位出错进行定位和纠错。这种码称为单纠错码(SEC)。

单纠错和双检错码

- ◆ 单纠错和双检错码(SEC-DED)
 - 具有发现两位错和纠正一位错的能力,则称为单纠错和双检错码(SEC-DED)。
 - 若要成为SEC-DED,则码距需扩大到d=4。为此,还需增加一位校验位P₅,将P₅排列在码字的最前面,即: P₅M₈M₇M₆M₅P₄M₄M₃M₂P₃M₁P₂P₁,并使得数据中的每一位都参与三个校验位的生成。从表中可看出除了M₄和M₇外,其余位都只参与了两个校验位的生成。因此P₅按下式求值:

 $P_5 = M_1 \oplus M_2 \oplus M_3 \oplus M_5 \oplus M_6 \oplus M_8$

当任意一个数据位发生错误时,必将引起三个校验位发生变化,所以码距为**4**。

循环冗余码

循环冗余校验码(Cyclic Redundancy Check),简称CRC码

- 具很强的检错、纠错能力。
- 用于大批量数据存储和传送(如:外存和通信)中的数据校验。为什么大批量数据不用奇偶校验?

在每个字符后增加一位校验位会增加大量的额外开销;尤其 在网络通信中,对传输的二进制比特流没有必要再分解成一 个个字符,因而无法采用奇偶校验码。

通过某种数学运算来建立数据和校验位之间的约定关系。
 奇偶校验码和海明校验码都是以奇偶检测为手段的。

网络或通信课程中会学到。

CRC码的检错方法

基本思想:

- 数据信息M(x)为一个n位的二进制数据,将M(x)左移k位后,用一个约定的"生成多项式"G(x)相除,G(x)是一个k+1位的二进制数,相除后得到的k位余数就是校验位。校验位拼接到M(x)后,形成一个n+k位的代码,称该代码为循环冗余校验(CRC)码,也称(n+k,n)码。
- 一个CRC码一定能被生成多项式整除,当数据和校验位一起送到接受端后,只要将接受到的数据和校验位用同样的生成多项式相除,如果正好除尽,表明没有发生错误;若除不尽,则表明某些数据位发生了错误。通常要求重传一次。

循环冗余码举例

校验位的生成:用一个例子来说明校验位的生成过程。

- 假设要传送的数据信息为: 100011, 即报文多项式为:
 M(x)= x⁵ + x + 1。数据信息位数n=6。
- 若约定的生成多项式为: $G(x)=x^3+1$,则生成多项式位数为4位,所以校验位位数k=3,除数为1001。
- 生成校验位时,用x^{3.}M(x)去除以G(x),即: 100011000÷1001。
- 相除时采用"模2运算"的多项式除法。

循环冗余码举例

$$X^{3}\cdot M(x) \div G(x) = (x^{8} + x^{4} + x^{3}) \div (x^{3} + 1)$$

	100111
1001	100011000 1001
/	1001
-	0011
	0000
-	0111
	0000
•	1110
	1001
	1110
	1001
	1110
	1001
	111

(模2运算不考虑加法进位和减法借位,上商的原则是当部分余数首位是1时商取1,反之商取0。然后按模2相减原则求得最高位后面几位的余数。这样当被除数逐步除完时,最后的余数位数比除数少一位。这样得到的余数就是校验位,此例中最终的余数有3位。)

校验位为111, CRC码为100011 111。如果要校验CRC码,可将CRC码用同一个多项式相除,若余数为0,则说明无错;否则说明有错。例如,若在接收方的CRC码也为100011 111时,用同一个多项式相除后余数为0。若接收方CRC码不为100011 111时,余数则不为0。

小结

◆非数值数据的表示

- 逻辑数据用来表示真/假或N位位串,按位运算
- 西文字符:用ASCII码表示
- 汉字: 汉字输入码、汉字内码、汉字字模码
- ◆数据的宽度
 - 位、字节、字(不一定等于字长), k/K/M/G/...有不同的含义
- ◆数据的存储排列
 - 大端方式: 用MSB存放的地址表示数据的地址
 - 小端方式:用LSB存放的地址表示数据的地址
 - 按边界对齐可减少访存次数
- ◆数据的纠错和检错
 - 奇偶校验: 适应于一字节长数据的校验, 如内存
 - 海明校验: 各组内用奇偶校验, 用于内存储器数据的校验
 - 循环冗余校验: 用在通信和外存中, 适合于大批量数据校验

附录: Decimal/Binary(十/二进制数)

◆ The decimal number 5836.47 in powers of 10:

$$5 \times 10^{3} + 8 \times 10^{2} + 3 \times 10^{1} + 6 \times 10^{0} + 4 \times 10^{-1} + 7 \times 10^{-2}$$

◆ The binary number 11001 in powers of 2 :

$$1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 16 + 8 + 0 + 0 + 1 = 25$$

◆ 用一个下标表示数的基 (radix / base)

$$11001_2 = 25_{10}$$

附录: Octal / Hexadecimal (八 / 十六进制数)

2	11	210	2 ⁹	2 ⁸	27	26	2 ⁵	24	2 ³	2 ²	21	2 ⁰	
()	1	1	1	1	1	0	1	0	0	0	0	= 2000 ₁₀

$$v = \sum_{i=0}^{n-1} 2^i b_i$$

2^3	8=8
03	720

$$2^4=16$$

000 - 0	0000 - 0	1000 - 8
001 - 1	0001 - 1	1001 - 9
010 - 2	0010 - 2	1010 - a
011 - 3	0011 - 3	1011 - b
100 - 4	0100 - 4	1100 - c
101 - 5	0101 - 5	1101 - d
110 - 6	0110 - 6	1110 - е
111 - 7	0111 - 7	1111 - f
(TVT)(T) (U) (V)		

计算机用二进制表示所有信息! 为什么要引入 8 / 16进制?

8/16进制是二进制的简便表示。便于阅读和书写!

它们之间对应简单,转换容易。

在机器内部用二进制,在屏幕或其他 外部设备上表示时,转换为8/16进制 数,可缩短长度

附录: Conversions of numbers

(1) R进制数 => 十进制数

按"权"展开 (a power of R)

例1: $(10101.01)_2$ =1x2⁴+1x 2²+1x2⁰+1x2⁻²=(21.25)₁₀

例2: $(307.6)_8 = 3x8^2 + 7x8^0 + 6x8^{-1} = (199.75)_{10}$

例1: (3A. 1)₁₆= $3x16^{1}+10x16^{0}+1x16^{-1}=(58.0625)_{10}$

(2)十进制数 => R进制数

整数部分和小数部分分别转换

- ① 整数(integral part)----"除基取余,上右下左"
- ② 小数(fractional part)----"乘基取整,上左下右"

附录: Decimal to Binary Conversions

例1:(835.6785)₁₀=(1101000011.1011)₂

整数----"除基取余,上右下左"

低位 余数 2 835 417 208 104 0 52 Û. 13 150 高位

小数----"乘基取整,上左下右"

附录: Decimal to Binary Conversions

例2:(835.63)₁₀=(1503.50243...)₈

整数----"除基取余,上右下左"

小数----"乘基取整,上左下右" 有可能乘积的小数部分总得不

到0,此时得到一个近似值。

0.63×8=5.04	整数部分=5	(高位)
0.04×8=0.32	整数部分=0	
0.32×8=2.56	整数部分=2	
0.56×8=4.48	整数部分=4	
0.48×8=3.84	整数部分=3	(低位)

附录: Conversions of numbers

- (3) 二/八/十六进制数的相互转换
- ① 八进制数转换成二进制数

$$(13.724)_8$$
= $(001\ 011\ .\ 111\ 010\ 100\)_2$ = $(1011.1110101)_2$

②十六进制数转换成二进制数

$$(2B.5E)_{16} = (00101011 \cdot 01011110)_2 = (101011.0101111)_2$$

③ 二进制数转换成八进制数

$$(0.10101)_2 = (000.101010)_2 = (0.52)_8$$

④ 二进制数转换成十六进制数

作业一

习题1 课本 page 23 问题 6

9月27号交本子

习题2 课本 page 68

问题 7: (R1)=0000 017AH, (R2)=FFFF F895H

问题 13: 变量的值为6144

问题 18:采用偶校验,接收方收到的校验位为1010

问题 20: 需传送数据和接受到的数据分别是 110010、110011