Bulls and Cows Game with Entropy and Mutual Information

Venkata Jyothi Priya Mulaka UFID: 68006084

Introduction

Title: Bulls and Cows Game: Using Entropy and Mutual Information for Optimal Strategy

Objective:

- To explain the Bulls and Cows game and how theoretical concepts like entropy and mutual information can be applied to enhance the game's guessing strategy.
- Demonstrate how these concepts can improve the speed and accuracy of guessing the secret code.

Overview of the Bulls and Cows Game

Game Description:

- Bulls and Cows is a simple guessing game where the objective is to guess a 4-digit secret code.
- The secret code contains 4 unique digits, and the player has to guess what those digits are.
- The system gives feedback in the form of Bulls and Cows:
 - Bulls: The number of correct digits in the correct position.
 - Cows: The number of correct digits, but in the wrong position.

Example:

- Secret Code: 1592Player Guess: 1235
- Feedback: 1 Bull, 2 Cows (The number 1 is in the correct position, and 2 and 5 are correct digits but in the wrong places).

Generating the Secret Code

- Function Used: generate secret code()
 - This function randomly generates a secret code.
 - How it works:
 - A list of numbers (0-9) is created.
 - The numbers are shuffled randomly.
 - The first 4 digits are selected to form the code.
 - This ensures that the code has unique digits.

Why This is Important:

 The uniqueness of the digits makes the game challenging, as players have to guess not just the digits but also their correct positions.

	A	В	С	D
1	Secret Number	5249		
2	7		Cows	Bulls
3	Guess1	1234	2	1
4	Guess2	5678	1	1
5	Guess3	1256	2	1
6	Guess4	1278	1	1
7	Guess5	5249	4	4
8	Guess6		0	0
9	Guess7		0	0
10	Guess8	- 6	0	0
11	Guess9	1	0	0
12	Guess10	li li	0	0
13				

Bulls and Cows Calculation

Function Used: calculate_bulls_and_cows(secret, guess)

- This function calculates the number of bulls and cows for each guess.
- Bulls are the number of digits in the correct position.
- Cows are the number of correct digits but in the wrong position.

Example:

Secret Code: 1592

Guess: 1235

• Bulls: 1 (The digit 1 is in the correct position).

• Cows: 2 (The digits 2 and 5 are correct but not in the correct positions).

Why this is Important:

• These values guide the player to adjust their next guess based on which digits are correct and where they should be placed.

Theoretical Background: Entropy

- What is Entropy?
 - Entropy is a concept from information theory that measures the uncertainty or randomness in a system.
 - In this game, entropy measures how uncertain we are about the secret code after each guess.
- Entropy Formula:
 - $H(Y) = -\sum_{x \in X} P(x) \log_2(p(x))$
 - higher entropy means more uncertainty (more possible codes left).
 - A lower entropy means less uncertainty (fewer codes left).
- Why is Entropy Important?
 - It helps the system understand how many possible secret codes remain after each guess.
 - It enables efficient decision-making, narrowing down the options faster.

Entropy in Action

- Example of Entropy Calculation:
 - After several guesses, we may have 100 possible codes remaining.
 - The entropy is calculated as:
 - $H(Y) = \log 2(100) \approx 6.64$ bits
 - This means there is 6.64 bits of uncertainty in the game.

Filtering Possible Codes

- Function Used: filter possible codes (possible codes, guess, bulls, cows)
 - After each guess, the system checks which codes still fit the bulls and cows feedback.
 - Codes that don't match the feedback are filtered out, leaving only the codes that are still possible.
- Why This is Useful:
 - This filtering reduces the number of possible secret codes, helping the player narrow down their guesses.
 - As the game progresses, the number of possible codes shrinks, and the game becomes easier.
- Example:
 - If a guess of "1234" results in 1 bull and 2 cows, all codes that don't give the same feedback are eliminated from the list of possible codes.

Theoretical Background: Mutual Information

• What is Mutual Information?

- Mutual Information (MI) measures how much knowledge about one variable reduces uncertainty about another.
- In the game, MI measures how much knowing the outcome (bulls and cows) of a guess helps us learn about the secret code.
- Formula:
- $\bullet I(X;Y)=H(Y)-H(Y|X)$
 - H(Y): The entropy of possible outcomes (bulls and cows).
 - H(Y|X): The conditional entropy (uncertainty about outcomes after a guess).
- Why is Mutual Information Important?
 - It helps us choose guesses that give the most information about the secret code.
 - By maximizing mutual information, we can make guesses that eliminate the largest number of possible codes.

Mutual Information in Practice

• How Mutual Information Improves Guessing:

- By calculating the mutual information for each possible guess, we can choose the guess that reduces uncertainty the most.
- This results in fewer guesses and faster game completion.

Example:

• For a given set of possible codes and guesses, calculating the MI helps us understand which guess maximizes the reduction in the number of remaining possible codes.

Practical Application: How Entropy and Mutual Information Help in the Game

Game Strategy Using Entropy:

- After each guess, entropy is calculated to assess how many codes are still possible.
- The lower the entropy, the more certain we are about the secret code.

Game Strategy Using Mutual Information:

 Mutual information guides us to choose the next guess that gives us the most information, reducing the possible codes quickly.

Example:

- After a guess with feedback of 2 bulls and 1 cow, entropy helps us filter down to fewer possible codes.
- Mutual information helps us select the next guess that will maximize our learning about the code.

Game Flow and Interaction

- 1. **Start the Game:** The system generates a secret 4-digit code.
- 2. Player Makes a Guess: Player inputs a guess.
- 3. Calculate Bulls and Cows: The system provides feedback based on the guess.
- 4. Filter Possible Codes: Filter out invalid codes based on feedback.
- 5. **Calculate Entropy:** Evaluate how uncertain we are about the remaining codes.
- 6. **Calculate Mutual Information:** Evaluate which next guess provides the most useful information.
- 7. **Repeat:** Continue until the player guesses the code.

Practical Results from Applying Entropy and Mutual Information

- Efficiency: The game solving process is faster because we use entropy and mutual information to guide our guesses.
- Accuracy: The concepts help us eliminate incorrect guesses and narrow down the possibilities quicker.

Visual Aid:

1. Entropy Graph:

- Starts with a high value at the beginning of the game (indicating maximum uncertainty).
- The line decreases over time as guesses help eliminate possible codes.
- The graph becomes flatter towards the end as fewer possible solutions exist.

2. Mutual Information Graph:

- Starts with a low value (since the guesses give little information initially).
- The line increases as guesses narrow down the possibilities, each providing more information.
- The graph becomes steeper towards the end as each guess helps significantly reduce the remaining possibilities.

Conclusion

Summary:

- Bulls and Cows is a fun and challenging game that benefits from applying information theory concepts.
- By using entropy, we reduce uncertainty about the secret code.
- Mutual information helps us choose the most informative guesses, speeding up the game-solving process.

Key Takeaways:

 Entropy and mutual information are powerful tools in games and real-world scenarios, such as data compression, cryptography, and machine learning.