Assignment #7

Due Monday, 14 November at the start of class

Please read sections 10.1, 10.2, 10.3, 11.1, and 11.2 in Nocedal & Wright. Do the following Exercises and Problems. (*This is a deliberately short assignment which does the minimum to help you read the material.*)

Exercise 10.1 (a). (*Hints*: If $m \ge n$ and $J \in \mathbb{R}^{m \times n}$ then J has full column rank if and only if Jv = 0 implies v = 0. Note that Jv is a linear combination of the columns of J. Also, $A \in \mathbb{R}^{n \times n}$ is nonsingular if and only if Av = 0 implies v = 0.)

Exercise 10.2. (*Hint*: One way to do this is to use the result of Exercise 2.7, which you have already done.)

Exercise 11.4. (*Hint*: The sum-of-squares merit function is (11.35).)

Problem P19. This problem does concrete, by-hand calculations for a Chapter 10 problem, i.e. nonlinear least squares, in a case where m = 4 and n = 2.

(a) Consider the data:

$t_1 = 0$	$y_1 = 3$
$t_2 = 1$	$y_2 = 1$
$t_3 = 2$	$y_3 = 2$
$t_A = 3$	$u_4 = 1$

Let $x=(x_1,x_2)\in\mathbb{R}^2$ be the parameters. Our model is the function

$$\phi(x;t) = x_1 e^{x_2 t}.$$

Compute the quantities $r_j(x)$, r(x), and J(x). They are all defined at the beginning of Chapter 10, namely in equations (10.8), (10.2), and (10.3). Please simplify these quantities as far as possible.

- **(b)** Show that J(x) in part **(a)** has full rank if and only if $x_1 \neq 0$.
- (c) Suppose $x^{(0)}=(2,0)$ is the initial iterate in the Gauss-Newton algorithm. Compute the next iterate $x^{(1)}$ assuming that the full step is used (i.e. $\alpha_k=1$ from the line search). Start by expressing the linear system (10.23) in form Ap=b where A,b are fully-simplified; please show A and b. Then use MATLAB to compute p and $x^{(1)}$.
- (d) Suppose we accept $x^{(1)}$ from (c) as an adequate solution to the problem. Plot the resulting curve on top of the data.

Problem P20. This problem does concrete, by-hand calculations for a Chapter 11 problem.

(a) Consider the system of equations

$$x^2 + y^2 = 1$$
$$y = \frac{1}{2}e^{2x}.$$

Put this system in the form (11.1), namely r(x) = 0. Compute the sum-of-squares merit function f(x) in (11.35). Also, give a sketch which illustrates that there are two solutions $x \in \mathbb{R}^2$, and shows roughly where these solutions are.

- **(b)** Show that the equations r(x) = 0 in part **(a)** are *not* of the form " $\nabla g(x) = 0$ " for any smooth scalar function g(x). (*Hint*. Symmetry of a matrix.)
- (c) Consider the line-search Newton method, Algorithm 11.4. Let $x_0 = (1, 1)$ be the first iterate. Compute p_0 . Then, given that the line search solves

$$\min_{\alpha>0} \phi(\alpha) = \min_{\alpha>0} f(x_k + \alpha p_k),$$

where f(x) is the merit function, use MATLAB to plot $\phi(\alpha)$ on an appropriate interval. This graph should show the location of the exact line search minimum.

(d) Does the full Newton step $\alpha_k = 1$ occur before or after the exact line search minimum? With $c_1 = 10^{-4}$ and $c_2 = 1/4$, does the full Newton step $\alpha_k = 1$ in part (c) satisfy the Wolfe conditions?