سوال ۱: تابع Jacobi_eig را به صورت زیر پیادهسازی می کنیم:

```
function [jV, jD] = Jacobi eig(A)
    tol = 0.0001;
    delta = tol*norm(A, 'fro');
    n = size(A, 1);
    jV = eye(n);
    jD = A;
    while (off(jD) > delta)
        for p=1:n-1
             for q=p+1:n
                 [c, s] = symSchur2(jD, p, q);
                 J = eye(n);
                 J([p, q], [p, q]) = [c, s; -s, c];
                 jV = jV*J;
                 jD = J'*jD*J;
             end
        end
    end
    jD = diag(jD);
    for i=1:n-1
        for j=1:n-i
             if jD(j) > jD(j+1)
                 temp = jD(j);
                 jD(j) = jD(j+1);
                 jD(j+1) = temp;
                 temp = jV(:, j);
                 jV(:, j) = jV(:, j+1);
                 jV(:, j+1) = temp;
             end
        end
    end
    jD = diag(jD);
end
                                 که در آن توابع off و symSchur2 به ترتیب به صورت زیر تعریف شده اند:
function s = off(A)
    s = norm(A, 'fro')^2;
    for i=1:min(size(A))
        s = s-A(i, i)^2;
    end
    s = sqrt(s);
function [c, s] = symSchur2(A, p, q)
    a = A([p, q], [p, q]);
    if (a(1, 2) == 0)
        c = 1;
        s = 0;
    else
        tau = (a(2, 2)-a(1, 1))/(2*a(1, 2));
        if (tau >= 0)
            t min = 1/(tau+sqrt(1+tau^2));
        else
            t min = 1/(tau-sqrt(1+tau^2));
        end
        c = 1/(sqrt(1+t_min^2));
        s = t_min*c;
    end
end
```

A =			
0.4456	0.4612	0.4142	0.6700
0.4612	0.6797	0.5767	0.1932
0.4142	0.5767	0.9597	0.5458
0.6700	0.1932	0.5458	0.2551
jv =			
0.6071	-0.3869	0.5152	0.4652
-0.2419	-0.6032	-0.5950	0.4729
0.2100	0.6931	-0.2912	0.6250
-0.7272	0.0778	0.5438	0.4115
jD =			
-0.3975	0	0	0
0	0.2879	0	0
0	0	0.3861	0
0	0	0	2.0637
Λ =			
-0.6071	0.3869	-0.5152	0.4652
0.2419	0.6032	0.5950	0.4729
-0.2100	-0.6931	0.2912	0.6250
0.7272	-0.0778	-0.5438	0.4115
D =			
-0.3975	0	0	0
0	0.2879	0	0
0	0	0.3861	0
0	0	0	2.0637

2.0637

A =							
0.5060	0.7699	0.7535	0.8582	0.7406	0.2249	0.2999	0.1678
0.7699	0.2543	0.6438	0.4986	0.5296	0.4393	0.1402	0.3469
0.7535	0.6438	0.3517	0.6056	0.5770	0.3577	0.5731	0.1962
0.8582	0.4986	0.6056	0.5678	0.2726	0.3280	0.7221	0.8705
0.7406	0.5296	0.5770	0.2726	0.0119	0.3000	0.1573	0.3995
0.2249	0.4393	0.3577	0.3280	0.3000	0.6541	0.7575	0.7615
0.2999	0.1402	0.5731	0.7221	0.1573	0.7575	0.5383	0.9067
0.1678	0.3469	0.1962	0.8705	0.3995	0.7615	0.9067	0.8687
j∇ =							
0 4077	-0.2421	0 5202	0.1704	0 0244	0 1155	0 4067	0 2642
-0.4977 0.1683	-0.4545	0.5302 -0.5906	0.2516	0.0244	-0.1155 0.2554	-0.4867 -0.3147	0.3643
-0.2751	0.4368	-0.4174	-0.3419	-0.4715	0.1040	-0.3147	0.3448
0.4043	0.3691	-0.4174	0.4253	-0.4713	-0.5863	-0.3006	0.3446
0.5433	0.0957	0.3486	-0.5646	0.2757	0.2071	-0.2609	0.4100
-0.0060	0.0937	0.2246	0.4075	-0.0509	0.6915	0.3372	0.3330
0.1936	-0.5650	0.0764	-0.1755	-0.5664	-0.0937	0.3372	0.3693
-0.3900	0.0359	-0.1336	-0.3069	0.5337	-0.1922	0.5012	0.4020
	0.0355	-0.1550	-0.3009	0.5557	-0.1922	0.5012	0.4020
jD =							
-0.8258	0	0	0	0	0	0	0
0	-0.5940	0	0	0	0	0	0
0	0	-0.3877	0	0	0	0	0
0	0	0	-0.2541	0	0	0	0
0	0	0	0	0.0678	0	0	0
0	0	0	0	0	0.3300	0	0
0	0	0	0	0	0	1.3299	0
0	0	0	0	0	0	0	4.0867
V =							
-0.4978	0.2421	-0.5302	0.1705	-0.0244	0.1155	-0.4867	0.3643
0.1683	0.4545	0.5906	0.2516	-0.3047	-0.2554	-0.3147	0.3098
-0.2751	-0.4368	0.4174	-0.3419	0.4715	-0.1040	-0.3006	0.3448
0.4043	-0.3691	0.0160	0.4253	0.0029	0.5863	-0.0133	0.4186
0.5433	-0.0957	-0.3486	-0.5646	-0.2757	-0.2071	-0.2609	0.2615
-0.0060	-0.2794	-0.2246	0.4075	0.0509	-0.6915	0.3372	0.3330
0.1936	0.5650	-0.0764	-0.1755	0.5664	0.0937	0.3750	0.3693
-0.3900	-0.0359	0.1336	-0.3069	-0.5337	0.1922	0.5012	0.4020
D =							
-0.8258	0	0	0	0	0	0	0
0	-0.5940	0	0	0	0	0	0
0	0	-0.3877	0	0	0	0	0
0	0	0	-0.2541	0	0	0	0
0	0	0	0	0.0678	0	0	0
0	0	0	0	0	0.3300	0	0
0	0	0	0	0	0	1.3299	0
0	0	0	0	0	0	0	4.0867

```
function [jU2, jS2, jV2] = Jacobi svd 2sided(A)
    tol = 0.0001;
    delta = tol*norm(A, 'fro');
    [m, n] = size(A);
    jU2 = eye(m);
    jS2 = A;
    jV2 = eye(n);
    while (off(jS2) > delta)
        for p=1:min(m, n)-1
            for q=p+1:min(m, n)
                 [c1, s1, c2, s2] = asymSchur2(jS2, p, q);
                J1 = eye(m);
                J1([p, q], [p, q]) = [c1, s1; -s1, c1];
                J2 = eye(n);
                J2([p, q], [p, q]) = [c2, s2; -s2, c2];
                jU2 = jU2*J1;
                jS2 = J1'*jS2*J2;
                jV2 = jV2*J2;
            end
        end
        if m < n
            for p=1:m
                for q=m+1:n
                     if jS2(p, p) == 0
                         c2 = 0;
                         s2 = 1;
                     else
                         t = -jS2(p, q)/jS2(p, p);
                         c2 = 1/sqrt(1+t^2);
                         s2 = t*c2;
                     end
                     [\sim, \sim, c2, s2] = asymSchur2(jS2, p, q);
                     J2 = eye(n);
                     J2([p, q], [p, q]) = [c2, s2; -s2, c2];
                     jS2 = jS2*J2;
                     jV2 = jV2*J2;
                end
            end
        elseif m > n
            for p=n+1:m
                for q=1:n
                     if jS2(q, q) == 0
                         c1 = 0;
                         s1 = 1;
                     else
                         t = -jS2(p, q)/jS2(q, q);
                         c1 = 1/sqrt(1+t^2);
                         s1 = t*c1;
                     end
                     J1 = eye(m);
                     J1([q, p], [q, p]) = [c1, s1; -s1, c1];
                     jU2 = jU2*J1;
                     jS2 = J1'*jS2;
                end
            end
        end
    end
    for i=1:min(m, n)
        if jS2(i, i) < 0
```

```
jS2(i, i) = -jS2(i, i);
             jU2(:, i) = -jU2(:, i);
        end
    end
    jS2 = diag(jS2);
    for i=1:min(m, n)-1
        for j=1:min(m, n)-i
             if jS2(j) < jS2(j+1)
                 temp = jU2(:, j);
                 jU2(:, j) = jU2(:, j+1);
                 jU2(:, j+1) = temp;
                 temp = jS2(j);
                 jS2(j) = jS2(j+1);
                 jS2(j+1) = temp;
                 temp = jV2(:, j);
                 jV2(:, j) = jV2(:, j+1);
                 jV2(:, j+1) = temp;
            end
        end
    end
    temp = jS2;
    jS2 = zeros(m, n);
    for i=1:min(m, n)
        jS2(i, i) = temp(i);
    end
end
                                          که در آن تابع asymSchur2 به صورت زیر تعریف شده است:
function [c1, s1, c2, s2] = asymSchur2(A, p, q)
    a = A([p, q], [p, q]);
    if (a(1, 2) == a(2, 1))
       c = 1;
        s = 0;
    else
        t = (a(2, 1)-a(1, 2))/(a(1, 1)+a(2, 2));
        c = 1/(sqrt(1+t^2));
        s = t*c;
    end
    temp = [c, s; -s, c]*a;
    [c2, s2] = symSchur2(temp, 1, 2);
    c1 = c * c2 + s * s2;
    s1 = c * s2 - s * c2;
end
```

B =

0.0844 0.4314 0.3998 0.9106 0.2599 0.1818 0.8001 0.2638

jU2 =

0.2987 -0.3694 0.7697 0.4265 0.7404 -0.4817 -0.4542 -0.1162 0.2371 0.1460 0.4487 -0.8492 0.5535 0.7811 -0.0000 0.2889

js2 =

1.2908 0 0 0.5713 0 0 0 0

jV2 =

0.6396 0.7687 0.7687 -0.6396

U =

S =

1.2908 0 0 0.5713 0 0 0 0

V =

-0.6396 0.7687 -0.7687 -0.6396

B =							
0.7447	0.3685	0.9294	0.4468	0.8176	0.8116	0.8759	0.2077
0.1890	0.6256	0.7757	0.3063	0.7948	0.5328	0.5502	0.3012
0.6868	0.7802	0.4868	0.5085	0.6443	0.3507	0.6225	0.4709
0.1835	0.0811	0.4359	0.5108	0.3786	0.9390	0.5870	0.2305
0.1000		J2 =	0.0100	0.0700	0.3030	0.00,0	0.2000
		0.6145	0.1752	-0.1577	-0.7529		
		0.4754	-0.1861	0.8433	0.1680		
		0.4921	-0.6267	-0.4869	0.3578		
		0.3929	0.7361	-0.1639	0.5262		
js2 =							
3.1632	0	0	0	0	0	0	0
0	0.7682	0	0	0	0	0	0
0	0	0.4528	0	0	0	0	0
0	0	0	0.3996	0	0	0	0
j∨2 =	Ŭ		0.000		· ·		
0.3027	-0.2604	-0.7124	-0.4672	0.0151	0.1737	-0.2870	0.0439
0.2970	-0.6264	0.1684	0.3741	-0.2661	0.3564	-0.0037	-0.3915
0.4270	0.0445		-0.4153	-0.5647	-0.2579	-0.1617	0.1957
		0.4398					
0.2754	0.1023	-0.3167	0.4149	-0.0628	-0.7174	-0.1753	-0.3033
0.4255	-0.1690	0.3656	-0.1310	0.7785	-0.1267	-0.1306	-0.0179
0.4089	0.6697	-0.0073	0.2454	0.0002	0.4956	-0.2694	-0.0763
0.4226	0.1212	-0.1623	-0.0888	0.0032	0.0008	0.8781	-0.0376
0.1875	-0.1889	-0.1011	0.4604	0.0008	0.0005	-0.0003	0.8408
	Ū	=					
		-0.6145	0.1752	-0.1577	-0.7529		
		-0.4754	-0.1861	0.8433	0.1680		
		-0.4921	-0.6267	-0.4869	0.3578		
		-0.3929	0.7361	-0.1639	0.5262		
S =							
3.1632	0	0	0	0	0	0	0
0	0.7682	0	0	0	0	0	0
0	0	0.4528	0	0	0	0	0
0	0	0	0.3996	0	0	0	0
V =							
0.0005	0.0001	0.7101	0.4670	0.0115	0 1071	0.0700	0 0005
-0.3027	-0.2604	-0.7124	-0.4672	-0.0116	0.1974	-0.2723	0.0386
-0.2970	-0.6264	0.1684	0.3741	-0.3458	0.2923	0.0192	-0.3817
-0.4270	0.0445	0.4398	-0.4153	-0.4796	-0.3658	-0.2238	0.1894
-0.2754	0.1023	-0.3167	0.4149	0.1076	-0.6890	-0.2247	-0.3232
-0.4255	-0.1690	0.3656	-0.1310	0.7916	0.0648	-0.0884	-0.0306
-0.4089	0.6697	-0.0073	0.2454	-0.1026	0.5065	-0.2269	-0.0740
-0.4226	0.1212	-0.1623	-0.0888	-0.0373	-0.0780	0.8746	-0.0106
-0.1875	-0.1889	-0.1011	0.4604	0.0123	-0.0129	-0.0269	0.8402

```
function [jU1, jS1, jV1] = Jacobi_svd_1sided(A)
    [m, n] = size(A);
    tol = 0.0001;
    if m \le n
        delta = tol * norm(A*A', 'fro');
        D = A';
        jV1 = eye(m);
        while (off(D'*D) > delta)
            for p=1:m-1
                for q=p+1:m
                     [c, s] = orthogonalization(D(:, p), D(:, q));
                    J = eye(m);
                    J([p, q], [p, q]) = [c, s; -s, c];
                    D = D*J;
                    jV1 = jV1*J;
                end
            end
        end
        jU1 = zeros(n, m);
        jS1 = zeros(n, m);
        for i = 1:m
            jU1(:, i) = D(:, i)/norm(D(:, i));
            jS1(i, i) = norm(D(:, i));
        end
        temp = jU1;
        jU1 = jV1;
        jS1 = jS1';
        jV1 = temp;
    else
        delta = tol * norm(A'*A, 'fro');
        D = A;
        jV1 = eye(n);
        while (off(D'*D) > delta)
            for p=1:n-1
                for q=p+1:n
                     [c, s] = orthogonalization(D(:, p), D(:, q));
                    J = eye(n);
                    J([p, q], [p, q]) = [c, s; -s, c];
                    D = D*J;
                    jV1 = jV1*J;
                end
            end
        end
        jU1 = zeros(m, n);
        jS1 = zeros(m, n);
        for i = 1:n
            jU1(:, i) = D(:, i)/norm(D(:, i));
            jS1(i, i) = norm(D(:, i));
        end
    end
        jS1 = diag(jS1);
    for i=1:min(m, n)-1
        for j=1:min(m, n)-i
            if jS1(j) < jS1(j+1)
                temp = jU1(:, j);
                jU1(:, j) = jU1(:, j+1);
                jU1(:, j+1) = temp;
                temp = jS1(j);
                jS1(j) = jS1(j+1);
```

```
jS1(j+1) = temp;
                 temp = jV1(:, j);
                 jV1(:, j) = jV1(:, j+1);
                 jV1(:, j+1) = temp;
             end
        end
    end
    temp = jS1;
    jS1 = zeros(m, n);
    for i=1:min(m, n)
        jS1(i, i) = temp(i);
    end
end
                                     که در آن تابع orthogonalization به صورت زیر تعریف شده است:
function [c, s] = orthogonalization(x, y)
    if (norm(x) == norm(y))
        c = 1/sqrt(2);
        s = 1/sqrt(2);
   else
        t = 2*x'*y/(norm(y)^2-norm(x)^2);
        c = sqrt((1+1/sqrt(1+t^2))/2);
        s = sqrt((1-1/sqrt(1+t^2))/2);
    end
end
```

B =

0.0844 0.4314 0.3998 0.9106 0.2599 0.1818 0.8001 0.2638

jU1 =

0.2987 -0.3695 0.7404 -0.4817 0.2371 0.1461 0.5536 0.7811

jS1 =

1.2908 0 0 0.5713

jV1 =

0.6397 0.7686 0.7686 -0.6397

U =

 -0.2987
 -0.3694
 -0.2745
 -0.8360

 -0.7404
 -0.4817
 0.0289
 0.4679

 -0.2371
 0.1460
 0.9183
 -0.2814

 -0.5535
 0.7811
 -0.2837
 -0.0542

S =

1.2908 0 0 0.5713 0 0 0 0

V =

-0.6396 0.7687 -0.7687 -0.6396

B =							
0.7447	0.3685	0.9294	0 4469	0.8176	0.8116	0.8759	0.2077
0.1890	0.6256	0.7757	0.3063		0.5328		0.3012
0.6868	0.7802			0.6443			
0.1835			0.5108				
0.1055	0.0011	0.4555	0.5100	0.5700	0.9390	0.3070	0.2303
	jt	J1 =					
		0 6144	0 1757	0 1577	0 7520		
			-0.1757				
		0.4754			-0.1678		
			0.6270				
		0.3929	-0.7358	0.1639	-0.5267		
	js	1 =					
		3.1632	0	0	0		
		0	0.7682	0	0		
		0	0	0.4528	0		
		0	0	0	0.3996		
		100					
	ΙĊ	71 =					
		0.3027	0.2603	0.7124	0.4677		
			0.6265		-0.3731		
		0.4270	-0.0447	-0.4398			
			-0.1021		-0.4149		
			0.1689		0.1314		
			-0.6696		-0.2461		
			-0.1212	0.1623			
			0.1891	0.1023			
	Ū	=					
		-0.6145	0.1752	-0.1577	-0.7529		
		-0.4754	-0.1861	0.8433	0.1680		
		-0.4921	-0.6267	-0.4869			
			0.7361		0.5262		
S =							
3.1632	0	0	0	0	0	0	0
0	0.7682	0	0	0	0	0	0
0	0	0.4528	0	0	0	0	0
0	0	0	0.3996	0	0	0	0
V =							
-0.3027	-0.2604	-0.7124	-0.4672	-0.0116	0.1974	-0.2723	0.0386
-0.2970	-0.6264	0.1684	0.3741		0.2923	0.0192	-0.3817
-0.4270		0.4398	-0.4153	-0.4796	-0.3658	-0.2238	0.1894
-0.2754	0.1023	-0.3167	0.4149	0.1076	-0.6890	-0.2247	-0.3232
-0.4255	-0.1690	0.3656	-0.1310		0.0648	-0.0884	-0.0306
-0.4089	0.6697	-0.0073	0.2454		0.5065	-0.2269	-0.0740
-0.4226	0.1212	-0.1623	-0.0888	-0.0373	-0.0780	0.8746	-0.0106
-0.1875	-0.1889	-0.1011	0.4604	0.0123	-0.0129	-0.0269	0.8402