普通高等教育"十一五"国家级规划教材

随机数学

(B)

标准化作业

吉林大学公共数学中心 2017.08

第一次作业

院(系)_______ 班级______ 学号_____ 姓名_____

一、填空题

	1. 袋中装有2红4白共6只乒乓球,从中任时	仅2只,则取得1只红球1只白球的概率
为	2. 将一枚硬币重复投 5 次,则正、反面都至约	少出现 2 次的概率
	3. 已知事件 A 和 B 满足 $P(AB) = P(\overline{AB})$,且	
	4. $\exists \exists P(A) = \frac{1}{4}, P(B A) = \frac{1}{3}, P(A B) = \frac{1}{2},$	则 $P(A \cup B) = $
	5. 在区间(0,1)中随机地取两个数,	则事件"两数之和小于 $\frac{6}{5}$ "的概率
为		
	6. 两个相互独立的事件 A 和 B 都不发生的概题	率是 $\frac{1}{9}$,且 A 发生 B 不发生和 A 不发生 B
发	生的概率相等,则 <i>P</i> (<i>A</i>) =	
	7. 在4重伯努利试验中,已知事件 4至少出	见一次的概率为0.5,则在一次试验中A
出现	的概率为	
	二、选择题	
	1. 下列等式不成立的是()	
	(A) $A = AB \cup A\overline{B}$.	(B) $A - B = A\overline{B}$.
	(C) $(AB)(A\overline{B}) = \Phi$.	(D) $(A-B) \cup B = A$.
	2. 设 A,B,C 是同一个实验的三个事件,则事	件 $(A \cup B)(A \cup \overline{B})(\overline{A} \cup B)$ 可化简为()
	(A) $A \cup B$. (B) $A - B$.	(C) AB . (D) Φ .
	3. 设事件 $A 与 B$ 相互独立, $0 < P(A) < 1$, $0 < R$	P(B) < 1,则下列结论不正确的是()
	(A) <i>A</i> 与 <i>A</i> ∪ <i>B</i> 一定不独立.	(B) <i>A</i> 与 <i>A</i> - <i>B</i> 一定不独立.
	(C) A与B-A一定不独立.	(D) A和AB一定不独立.
	4. 在10件产品中有2件次品,依次取出2件产	品,每次取一件,取后不放回,则第二次取
到次	品的概率为()	

(A) $\frac{1}{45}$.	(B) $\frac{8}{45}$.	(C) $\frac{1}{5}$.	(D) $\frac{16}{45}$.
45	45	5	45

- 5. 设有 4 张卡片分别标以数字 1, 2, 3, 4, 今任取一张; 设事件 A 为取到 1 或 2, 事 件 B 为取到 1 或 3,则事件 A 与 B 是 ()
 - (A) 互不相容. (B) 互为对立. (C) 相互独立. (D) 互相包含.

- 6. 设每次试验成功的概率为p(0 ,则重复进行试验直到第<math>n次才取得成功的概 率为()
 - (A) $p(1-p)^{n-1}$. (B) $np(1-p)^{n-1}$. (C) $(n-1)p(1-p)^{n-1}$. (D) $(1-p)^{n-1}$.
 - 7. 独立地投了 3 次篮球,每次投中的概率为 0.3,则最可能投中的次数为()) (A) 0.(B) 1. (C) 2. (D) 3.

三、计算题

1. 从 $0, 1, 2, \dots, 9$ 等十个数字中任意选出三个不同的数字,求下列事件的概率: A = $\{ \Xi$ 个数字中不含 0 和 5 $\}; A_2 = \{ \Xi$ 个数字中不含 0 或 5 $\}; A_3 = \{ \Xi$ 个数字中含 0 但不含 5}.

2. 三个人独立地去破译一份密码,已知每个人能译出的概率分别为 $\frac{1}{5}, \frac{1}{3}, \frac{1}{4}$,问三人 中至少有一人能将此密码译出的概率是多少?

3. 随机地向半圆 $0 < y < \sqrt{2ax - x^2} (a > 0)$ 内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点与该点的连线与x轴夹角小于 $\frac{\pi}{4}$ 的概率.

4. 仪器中有三个元件,它们损坏的概率都是 0. 2,并且损坏与否相互独立. 当一个元件损坏时,仪器发生故障的概率为 0. 25,当两个元件损坏时,仪器发生故障的概率为 0. 6,当三个元件损坏时,仪器发生故障的概率为 0. 95,当三个元件都不损坏时,仪器不发生故障. 求:(1)仪器发生故障的概率;(2)仪器发生故障时恰有二个元件损坏的概率.

5	. 在 100 件产品中有	10 件次品;	现在进行:	5次放回抽样检查,	每次随机地抽取一	一件
产品,	求下列事件的概率:	(1) 抽到2	件次品; (2) 至少抽到1件次	品.	

四、证明题

1. 设 $0 < P(A) < 1, 0 < P(B) < 1, P(A|B) + P(\overline{A}|\overline{B}) = 1$, 证明事件 A 与 B 相互独立.

2. 设事件 A 的概率 P(A) = 0, 证明 A 与任意事件都相互独立.

第二次作业

院(系)______ 班级_____ 学号_____ 姓名_____

一、填空题

- 1. 一实习生用一台机器接连独立地制造 3 个同种零件,第 i 个零件是不合格产品的概率为 $p_i = \frac{1}{i+1}$ (i=1,2,3), X 表示 3 个零件中合格的个数,则 $P\{X=2\} = \underline{\hspace{1cm}}$.
 - 2. 设随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < -1, \\ 0.4, -1 \le x < 1, \\ 0.8, 1 \le x < 3, \\ 1, & x \ge 3. \end{cases}$$

则 *X* 的分布律为_____

- 3. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{其它,} \end{cases}$ 用 Y 表示对 X 的 3 次独立重复观察中事件 $\left\{X \leq \frac{1}{2}\right\}$ 出现的次数,则 $P\{Y = 2\} = \underline{\hspace{1cm}}$.
 - 4. 设随机变量 X,Y 服从同一分布, X 的概率密度函数为

$$f(x) = \begin{cases} \frac{3}{8}x^2, & 0 < x < 2, \\ 0, & \text{其它,} \end{cases}$$

设 $A = \{X > a\}$ 与 $B = \{Y > a\}$ 相互独立,且 $P\{A \cup B\} = \frac{3}{4}$,则 $a = \underline{\hspace{1cm}}$.

- - 6. 设随机变量 X 服从 $N(2,\sigma^2)$,且 $P\{2 < X < 4\} = 0.3$,则 $P\{X < 0\} =$ ______.

二、选择题

对于任意实数 a,有(

(A) $F(-a) = 1 - \int_0^a f(x) dx.$

(C) F(-a) = F(a).

$2. \ \ \ \mathop{ \forall } f(x) = \sin x ,$	要使 $f(x) = \sin x$ 能	为某随机变量 X 的概率密	度,则 X 的可能取值
的区间是()			
(A) $[\pi, \frac{3}{2}\pi]$.	(B) $\left[\frac{3}{2}\pi, 2\pi\right]$.	(C) $[0,\pi]$. (D) [$0,\frac{1}{2}\pi$].
3. 设 $F_1(x)$ 和 $F_2(x)$	分别为随机变量 X_1	和 X_2 的分布函数,为使 F ($f(x) = aF_1(x) - bF_2(x) \not\equiv$
某一随机变量的分布函	数,在下列给定的各	组数值中应取()	
(A) $a = \frac{3}{5}, b = -\frac{2}{5}$		(B) $a = \frac{2}{3}, b = -\frac{2}{3}$	<u>.</u>
(C) $a = \frac{1}{2}, b = \frac{2}{3}$.		(D) $a = \frac{1}{2}, b = -\frac{3}{2}$	$\frac{3}{2}$.
4. 已知连续型随机	L变量 X 的分布函数	为	
	$F(x) = \begin{cases} 0, \\ kx \\ 1, \end{cases}$	$x < 0,$ $+ b, 0 \le x < \pi,$ $x \ge \pi,$	
则参数 k和b分别为()		
(A) $k = 0, b = \frac{1}{\pi}$.		(B) $k = \frac{1}{\pi}, b = 0$.	
(C) $k = \frac{1}{2\pi}, b = 0$		(D) $k = 0, b = \frac{1}{2\pi}$	
5. 设随机变量 X 的	的概率密度函数为		
	$f(x) = \begin{cases} 4x \\ 0, \end{cases}$	x³, 0 <x<1, 其它,</x<1, 	
则使 $P{X>a}=P{X<$	a } 成立的常数 $a = ($)	
(A) $\sqrt[4]{2}$.	(B) $\frac{1}{2}$.	(C) $1-\frac{1}{\sqrt[4]{2}}$.	(D) $\frac{1}{\sqrt[4]{2}}$.

1. 设随机变量 X 的概率密度为 f(x), 且有 f(-x) = f(x), F(x)为 X 的分布函数,则

(B) $F(-a) = \frac{1}{2} - \int_0^a f(x) dx$.

(D) F(-a) = 2F(a) - 1..

6. 设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$,且 $P\{X \ge 1\} = \frac{1}{2}$, f(1) = 1 ,则()

(A)
$$\mu = 1, \sigma^2 = 1$$
.

(B)
$$\mu = 1, \sigma^2 = \frac{1}{\sqrt{2\pi}}$$
.

(C)
$$\mu = 1, \sigma^2 = \frac{1}{2\pi}$$
.

(D)
$$\mu = 0, \sigma^2 = 1$$
.

7. 设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$,则随着 σ^2 的增大,概率 $P\{|X - \mu| < \sigma\}$ (

(A) 单调增大.

(B) 单调减少.

(C) 保持不变.

(D) 增减性不定.

三、计算题

1. 一批产品由 9 个正品和 3 个次品组成,从这批产品中每次任取一个,取后不放回,直到取得正品为止. 用 *X* 表示取到的次品个数,写出 *X* 的分布律和分布函数.

2. 设随机变量 X 的概率分布为

X	-2	-1	0	1	2	3
P	0.10	0.20	0.25	0.20	0.15	0.10

(1) 求Y = -2X 的概率分布: (2) 求 $Z = X^2$ 的概率分布.

3. 设连续型随机变量 X 的概率密度为

$$f(x) = \begin{cases} x, & 0 \le x < 1, \\ k(2-x), & 1 \le x < 2, \\ 0, & \sharp : \Xi, \end{cases}$$

求: (1) k的值; (2) X的分布函数.

4. 设在一电路中,电阻两端的电压(V) 服从N(120,4),今独立测量了 5 次,试确定有 2 次测定值落在区间[118,122]之外的概率.

5. 设连续型随机变量 X 的分布函数为

$$\mathcal{E}$$
量 X 的分布函数为
$$F(x) = \begin{cases} 0, & x \le -a, \\ A + B \arcsin \frac{x}{a}, & -a < x < a, (a > 0) \\ 1, & x \ge a, \end{cases}$$

求: (1) 常数 A 、 B . (2) 随机变量 X 落在 $\left(-\frac{a}{2},\frac{a}{2}\right)$ 内的概率. (3) X 的概率密度函数.

6. 已知随机变量 X 的概率密度为

$$f(x) = \begin{cases} ax + b, & 0 < x < 1, \\ 0, & \text{ if } \mathbb{H}, \end{cases}$$

且 $P\left\{X > \frac{1}{2}\right\} = \frac{5}{8}$, 求(1)常数 a,b 的值;(2) $P\left\{\frac{1}{4} < X \le \frac{1}{2}\right\}$.

7. 已知随机变量 X 的概率密度为 $f_X(x) = \frac{1}{2} e^{-|x|}, -\infty < x < +\infty, 又设 <math>Y = \begin{cases} 1, X > 0, \\ -1, X \le 0, \end{cases}$ 求: (1) Y的分布律; (2) 计算 $P \Big\{ Y > \frac{1}{2} \Big\}$.

8. 已知随机变量 X 的概率密度为 $f(x) = \begin{cases} e^{-x}, x > 0, \\ 0, x \le 0, \end{cases}$ 求: 随机变量 $Y = X^2$ 的概率密度函数.

四、证明题

1. 设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$,证明: Y = aX + b $(a \neq 0)$ 仍然服从正态分布,并指出参数.

2. 设随机变量 X 服从参数为 $\lambda=2$ 的指数分布,证明: $Y=1-e^{-2X}$ 服从 [0,1] 上的均匀分布.

第三次作业

院(系)	班级	学 号	姓夕
PUL 2N I	<i>5</i> 1.50	サフ	XI-77

一、填空题

1. 设随机变量 X 与 Y 相互独立, 具有相同的分布律,

X	0	1
P	0.4	0.6

则 max{X, Y} 的分布律为_____

2. 设随机变量 (X.Y) 的联合分布律为

$$P\{X = m, Y = n\} = \begin{cases} \frac{1}{2^{m+1}}, m \ge n, \\ 0, m < n, \end{cases}$$

则关于X的边缘分布律为 $P\{X=m\}=$,关于Y的边缘分布律为 $P\{Y=n\}=$.

- 3. 设有二维连续型随机变量 (X,Y), 则 $P(X=Y) = ______$
- 4. 设随机变量 X 和 Y 相互独立, X 在区间 (0,2) 上服从均匀分布, Y 服从参数为 $\lambda=1$ 的指数分布,则概率 $P{X+Y>1}=$.
- 5. 若二维随机变量(X,Y)在区域 $\{(x,v)|x^2+v^2 \le R^2\}$ 上服从均匀分布,则(X,Y)的 概率密度函数为
 - 6. 设随机变量 $(X,Y) \sim N(0,1,2,3,0)$, 则 $\mu_1 + \sigma_2^2 = \underline{\hspace{1cm}}$
- 7. 设随机变量 X 和 Y 相互独立,且 $X \sim N(1,2)$, $Y \sim N(0,1)$,则随机变量 Z = 2X Y的概率密度为 .

二、选择题

- 1. 关于随机事件 ${X \le a, Y \le b}$ 与 ${X > a, Y > b}$ 下列结论正确的是(
 - (A) 为对立事件.
- (B) 为互斥事件.
- (C) 为相互独立事件. (D) $P\{X \le a, Y \le b\} > P\{X > a, Y > b\}$.
- 2. 设二维随机变量(X,Y)在平面区域G上服从均匀分布,其中G是由x轴,y轴以及

直线 y = 2x + 1 所围成的三角形域,则 (X, Y) 的关于 X 的边缘概率密度为(

(A).
$$f_x(x) = \begin{cases} 8x + 2, & -\frac{1}{2} < x < 0, \\ 0, & \cancel{1} \ge 1. \end{cases}$$

(B).
$$f_X(x) = \begin{cases} 8x + 4, & -\frac{1}{2} < x < 0, \\ 0, & 其它. \end{cases}$$

(C)
$$f_X(x) = \begin{cases} 4x + 2, & -\frac{1}{2} < x < 0, \\ 0, & \text{其它.} \end{cases}$$

(D)
$$f_x(x) = \begin{cases} 4x + 4, & -\frac{1}{2} < x < 0, \\ 0, & \sharp \stackrel{\sim}{\Sigma}. \end{cases}$$

3. 设平面区域 G 是由 x 轴, y 轴以及直线 $x + \frac{y}{2} = 1$ 所围成的三角形域,二维随机变量 (X,Y)在G上服从均匀分布,则 $f_{X|Y}(x|y)=$ ((0 < v < 2)

(A)
$$f_{X|Y}(x|y) = \begin{cases} \frac{2}{2-y}, & 0 < x < 1 - \frac{y}{2}, \\ 0, & \text{ $\sharp \dot{\Gamma}$.} \end{cases}$$

(B)
$$f_{X|Y}(x|y) = \begin{cases} \frac{2}{1-y}, & 0 < x < 1 - \frac{y}{2}, \\ 0, & \text{其它.} \end{cases}$$

(A)
$$f_{X|Y}(x|y) = \begin{cases} \frac{2}{2-y}, & 0 < x < 1 - \frac{y}{2}, \\ 0, & \text{ 其它.} \end{cases}$$
 (B) $f_{X|Y}(x|y) = \begin{cases} \frac{2}{1-y}, & 0 < x < 1 - \frac{y}{2}, \\ 0, & \text{ 其它.} \end{cases}$ (C) $f_{X|Y}(x|y) = \begin{cases} \frac{1}{2-y}, & 0 < x < 1 - \frac{y}{2}, \\ 0, & \text{ 其它.} \end{cases}$ (D) $f_{X|Y}(x|y) = \begin{cases} \frac{1}{1-y}, & 0 < x < 1 - \frac{y}{2}, \\ 0, & \text{ 其它.} \end{cases}$

(D)
$$f_{X|Y}(x|y) = \begin{cases} \frac{1}{1-y}, & 0 < x < 1 - \frac{y}{2}, \\ 0, & \text{其它.} \end{cases}$$

4. 设二维随机变量(X,Y)的分布函数为

$$F(x, y) = A\left(\frac{\pi}{2} + \arctan x\right) \left(B + \arctan \frac{y}{2}\right)$$

则常数A和B的值依次为(

$$(A) \pi^2 \pi \frac{2}{\pi}$$

(B)
$$\frac{1}{\pi}$$
 $\pi \frac{\pi}{4}$

(C)
$$\frac{1}{\pi^2}$$
 $\pi \frac{\pi}{2}$

(A)
$$\pi^2 \pi \frac{2}{\pi}$$
. (B) $\frac{1}{\pi} \pi \frac{\pi}{4}$. (C) $\frac{1}{\pi^2} \pi \frac{\pi}{2}$. (D) $\frac{1}{\pi} \pi \frac{\pi}{2}$.

5. 设随机变量 X , Y 独立同分布, 且 X 的分布函数为 F(x) , 则 $Z = \min\{X,Y\}$ 的分布 函数是(

(A)
$$F^2(x)$$
.

(B)
$$F(x) F(y)$$
.

(C)
$$1-[1-F(x)]^2$$
.

(D)
$$[1-F(x)][1-F(y)]$$
.

6. 如果(X,Y)是连续型随机变量,下列条件中不是X与Y相互独立的充分必要条件的 是 (),其中x,y为任意实数.

(A)
$$P\{X \ge x, Y \ge y\} = P\{X \ge x\}P\{Y \ge y\}$$
. (B) $F(x, y) = F_X(x)F_Y(y)$.

(B)
$$F(x, y) = F_X(x)F_Y(y)$$
.

(C)
$$f(x, y) = f_X(x)f_Y(y)$$
.

(D)
$$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$$
.

- 7. 设随机变量 X,Y 相互独立, X 服从 N(0,1), Y 服从 N(1,1), 则()
 - (A) $P(X+Y \le 0) = 0.5$. (B) $P(X+Y \le 1) = 0.5$.
- (C) $P(X-Y \le 0) = 0.5$. (D) $P(X-Y \le 1) = 0.5$.

三、计算题

1. 设随机变量 X 在 1, 2, 3, 4 四个数字中等可能取值,随机变量 Y 在 $1 \sim X$ 中等可能 地取一整数值,求(X,Y)的概率分布,并判断X和Y是否独立.

2. 设随机事件 $A \setminus B$ 满足 $P(A) = \frac{1}{4}, P(B|A) = P(A|B) = \frac{1}{2},$ 令

$$X = \begin{cases} 1, & A & 发生, \\ 0, & A$$
不发生, $Y = \begin{cases} 1, & B & 发生, \\ 0, & B$ 不发生,

求 (1) (X,Y) 的概率分布; (2) Z = X + Y 的概率分布.

3. 已知二维随机变量(X,Y)的概率密度为

$$f(x, y) = \begin{cases} ke^{-(2x+y)}, & x > 0, y > 0, \\ 0, & \text{ 其它}. \end{cases}$$

(1) 求系数 k ; (2) 条件概率密度 $f_{X|Y}(x|y)$; (3) 判断 X 和 Y 是否相互独立 ; (4) 计算概率 $P\{X<2|Y<1\}$; (5) 求 $Z=\min\{X,Y\}$ 的密度函数 $f_{Z}(z)$.

4. 设随机变量U在区间[-2,2]上服从均匀分布,令

$$X = \begin{cases} -1 & \ddot{\Xi}U \leq -1, \\ 1 & \ddot{\Xi}U > -1, \end{cases} \quad Y = \begin{cases} -1 & \ddot{\Xi}U \leq 1, \\ 1 & \ddot{\Xi}U > 1, \end{cases}$$

求(X,Y)的联合分布律.

5. 设(X,Y)的概率密度

$$f(x,y) = \begin{cases} 1, 0 < x < 1, 0 < y < 2x, \\ 0, & \not\exists \ : \end{cases}$$

求 Z = 2X - Y 的概率密度.

6. 在区间[0,1]上随机地投掷两点,求这两点距离的概率密度。

第四次作业

院(系)	班级	学号	姓名
170(741)	-7-47/	, <u>, , </u>	<u> </u>

一、填空题

1. 设随机变量 X 的分布律为

X	-2	0	2
P	0.4	0.3	0.3

- 2. 设随机变量 X 和 Y 相互独立,且 $D(X) = \sigma_1^2$ 和 $D(Y) = \sigma_2^2$ 都存在,则 $D(2X-3Y) = \underline{\hspace{1cm}}.$
 - 3. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{2}\cos\frac{x}{2}, & 0 \le x \le \pi, \\ 0, & 其它. \end{cases}$$

对 X 独立重复地观察 4 次,用 Y 表示观察值大于 $\frac{\pi}{3}$ 的次数,则 $E(Y^2) =$ ______.

- 4. 设随机变量 $X \sim N(0,1), Y \sim \pi(4)$, 并且 X 与 Y 的相关系数为 0.5,则有 D(3X-2Y)=_______.
- 5. 对一批圆木的直径进行测量,设其服从[a,b]上的均匀分布,则圆木截面面积的数学期望为______.
 - 6. 设随机变量 X 在[-1,2]上服从均匀分布,设随机变量

$$Y = \begin{cases} 1, & X > 0, \\ 0, & X = 0, \\ -1, & X < 0, \end{cases}$$

则 *D*(*Y*) = _____.

二、选择题

X)和 $E(X^2)$ 合适的值为(
(B) 3, -8.
(D) 3, -10.
$E(X) = \mu, D(X) = \sigma^2 \ (\mu, \sigma > 0 \ \text{为常数})$,则对于任意常数
$E(X - C^2)$. (B) $E[(X - C)^2] = E[(X - \mu)^2]$.
μ) ²]. (D) $E[(X-C)^2] \ge E[(X-\mu)^2]$.
2)= ()
(B) 18.
(D) 8.
在的任意两个随机变量 X 和 Y , 如果 $E(XY) = E(X)E(Y)$
(B) $D(X+Y) = D(X) + D(Y)$.
(D) X和Y不相互独立.
0,则为使 $E(a+bX)=0,D(a+bX)=1$,则 a 和 b 分别是
(B) $a = -\frac{\mu}{\sigma}, b = \frac{\mu}{\sigma}$.
(D) $a = \mu, b = \frac{1}{\sigma}$.
$=1-\frac{X}{2}$, 且 $D(X)=2$, 则 $Cov(X,Y)=$ ()
2. (C) -1. (D) -2.
$\sim N(1,4)$,且相关系数 $ ho_{XY}=1$,则()
(B) $P{Y=2X-1}=1$.
(D) $P{Y = -2X + 1} = 1$.

三、计算题

1. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} ax, & 0 < x < 2, \\ cx + b, & 2 \le x < 4, \\ 0, & \cancel{\sharp} \, ^{2} : \end{cases}$$

已知 E(X) = 2, $P\{1 < X < 3\} = \frac{3}{4}$, 求 a, b, c 的值.

2. 设二维随机变量(X,Y) 的概率密度为

$$f(x, y) = \begin{cases} \frac{1}{8}(x+y), & 0 \le x \le 2, 0 \le y \le 2, \\ 0, & \not \exists, \end{cases}$$

求 E(X), E(Y), cov(X,Y), ρ_{XY} 和 D(X+Y).

3. 设二维离散型随机变量(X,Y)的联合概率分布为

XY	-1	0	1
-1	а	0	0.2
0	0.1	b	0.2
1	0	0.1	С

其中 a,b,c 为常数,且 $E(X)=-0.2,P\{Y\leq 0|X\leq 0\}=0.5$,记 Z=X+Y,求:(1) a,b,c 的值;(2) Z 的概率分布;(3) $P\{X=Z\}$.

4. 在数轴上的区间[0,a]内任意独立地选取两点M与N,求线段MN长度的数学期望.

5. 一民航送客车载有 20 名乘客自机场开出,旅客有 10 个车站可以下车,如到达一个车站没有旅客下车就不停车,假设每位旅客在各个车站下车的可能性相同,且各个旅客是否下车相互独立,求停车次数 *X* 的数学期望.

6. 假设由自动流水线加工的某种零件的内径 X (毫米) 服从正态分布 $N(\mu,1)$,内径 小于 10 或大于 12 为不合格品,其余为合格品;销售合格品获利,销售不合格品亏损,已 知销售一个零件的利润 T (元) 与零件内径 X 的关系为

$$T = \begin{cases} -1, & X < 10, \\ 20, & 10 \le X \le 12, \\ -5, & X > 12, \end{cases}$$

问平均内径 μ 取何值时,销售一个零件的平均利润最大.

第五次作业

院(系)	班级	学号	姓名

一、填空题

- 1. 设随机变量 X 和 Y 的数学期望都是 2, 方差分别为 1 和 4, 而相关系数为 0.5, 则根 据切比雪夫不等式,有 $P\{|X-Y| \ge 6\} \le$.
- 2. 在每次试验中,事件A发生的可能性是0.5,则1000次独立试验中,事件A发生的 次数在 400 次到 600 次之间的概率≥ .
- 3. 将一枚骰子重复抛掷n次,所掷出点数的算术平均值为 \bar{X}_n ,如果对于任意给定 $\varepsilon > 0$, 有 $\lim P\{|\bar{X}_n - a| < \varepsilon\} = 1$,则常数 $a = \underline{\hspace{1cm}}$.

二、选择题

1. 一射击运动员在一次射击中的环数 X 的概率分布如下:

X	10	9	8	7	6
P	0.5	0.3	0.1	0.05	0.05

则在 100 次独立射击所得总环数介于 900 环与 930 环之间的概率是(

- (A) 0.8233.
- (B) 0.8230.
- (C) 0.8228. (D) 0.8234.
- 2. 设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立,则根据列维一林德伯格中心极限定理,当n充分大时, $X_1 + X_2 + \cdots + X_n$ 近似服从正态分布,只要 X_i ($i = 1, 2, \cdots$)满足条件()
 - (A) 具有相同的数学期望和方差. (B) 服从同一离散型分布.
 - (C) 服从同一连续型分布.
- (D) 服从同一指数分布.

三、计算题

1. 某保险公司多年的统计资料表明,在索赔客户中被盗索赔占20%,以 X 表示在随机 抽查的 100 个索赔客户中因被盗向保险公司索赔的户数.(1) 写出 X 的概率分布:(2) 利 用德莫佛一拉普拉斯定理, 求被盗索赔客户不少 14 户且不多于 30 户的概率的近似值.

2. 设某种元件使用寿命(单位:小时)服从参数为 λ 的指数分布,其平均使用寿命为 40 小时,在使用中当一个元件损坏后立即更换另一个新的元件,如此继续下去. 已知每个元件的进价为 a 元,试求在年计划中应为购买此种元件作多少预算,才可以有 95%的把握保证一年够用(假定一年按照 2000 个工作小时计算).

3. 一条生产线的产品成箱包装,每箱的重量时随机的. 假设平均重 50 千克,标准差为 5 千克. 如果用最大载重量为 5 吨的汽车承运,试利用中心极限定理说明每量车最多可以装 多少箱,才能保证不超载的概率大于 0.977,(Φ(2) = 0.977.)

第六次作业

院(系)_______ 班级_____ 学号_____ 姓名_____

一、填空题

- 1. 已知从总体 X 中抽取一组样本容量为 n (n > 2) 的样本,在样本观测值 x_1, x_2, \cdots, x_n 中可能有一些相同的数值,为了计算方便,把所得的观测值加以整理,设在所得的观测值中有 k 个不相同的数值,分别记为 $x_{(1)}, x_{(2)}, \cdots, x_{(k)}$,它们的频数分别为 n_1, n_2, \cdots, n_k ,则样本均值 $x_1 = x_2 = x_3 = x_4 = x_4 = x_4 = x_5 = x_5$
- 2. 设 X_1, X_2, X_3, X_4 是来自正态总体 $N(0,2^2)$ 的简单随机样本,记随机变量 $X = a(X_1 2X_2)^2 + b(3X_3 4X_4)^2$,则当 $a = _____$, $b = _____$ 时,统计量 X 服从 χ^2 分布,其自由度为______.
- 3. 设总体 $X \sim B(m, p), X_1, X_2, \cdots, X_n$ 是来自总体 X 的样本,样本均值为 \overline{X} ,则 $E(\overline{X}) = \underline{\hspace{1cm}}$, $D(\overline{X}) = \underline{\hspace{1cm}}$.
 - 4. 设 $X_i \sim N(\mu, \sigma^2), i = 1, 2, \dots, n+1$, 是相互独立的, 记

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \quad S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2,$$

$$\text{If } Y = \sqrt{\frac{n}{n+1}} \frac{X_{n+1} - \overline{X_n}}{S_n} \sim \underline{\hspace{1cm}}.$$

5. 设总体 X 的概率密度为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

 X_1, X_2, \dots, X_n 是来自总体 X 的样本,则 X_1, X_2, \dots, X_n 的联合概率密度

$$f(x_1, x_2, \dots, x_n) = \underline{\hspace{1cm}}.$$

二、选择题

1. 设总体 $X \sim N(\mu, \sigma^2), X_1, X_2, \dots, X_n$ 是总体 X 的样本, \overline{X} 为样本均值,记

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2, \quad S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2,$$

$$S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2, \quad S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2,$$

则下列随机变量中服从自由度为n-1的t分布的是(

(A)
$$\frac{\overline{X} - \mu}{S_1/\sqrt{n-1}}$$
. (B) $\frac{\overline{X} - \mu}{S_2/\sqrt{n-1}}$. (C) $\frac{\overline{X} - \mu}{S_3/\sqrt{n-1}}$. (D) $\frac{\overline{X} - \mu}{S_4/\sqrt{n-1}}$.

2 . 设总体 $X \sim N(\mu, \sigma^2), X_1, X_2 \cdots, X_n$ 是来自总体 X 的简单随机样本,则

$$P\left\{\frac{|\overline{X} - \mu|}{\sigma/\sqrt{n}} < u_{0.025}\right\} = ()$$

- (A) 0.025.
 - (B) 0.975.
- (C) 0.95.
- (D) 0.05.

3. 设随机变量 $X \sim t(n)$ $(n > 1), Y = \frac{1}{X^2}$,则(

- (A) $Y \sim \chi^2(n)$. (B) $Y \sim \chi^2(n-1)$. (C) $Y \sim F(1, n)$. (D) $Y \sim F(n, 1)$.

4. 设 (X_1, X_2, \cdots, X_n) 为总体 $N(1, 2^2)$ 的一个样本, \overline{X} 为样本均值,则下列结论中正确的 是 (

(A)
$$\frac{\overline{X}-1}{2/\sqrt{n}} \sim t(n)$$
.

(B)
$$\frac{1}{4} \sum_{i=1}^{n} (X_i - 1)^2 \sim F(n, 1)$$
.

(C)
$$\frac{\overline{X}-1}{\sqrt{2}/\sqrt{n}} \sim N(0,1)$$
.

(D)
$$\frac{1}{4} \sum_{i=1}^{n} (X_i - 1)^2 \sim \chi^2(n)$$
.

5. 设 $X \sim t(10)$, 若 $P\{t(10) > 1.8125\} = 0.05$, 则 $t_{0.95}(10) = ($

- (A) -1.8125. (B) 1.8125.
- (C) 0.95.
- (D) -0.95.

三、计算题

1. 设 $X \sim N\left(0,\sigma^2\right)$, X_1,X_2,\cdots,X_9 是来自总体 X 的简单随机样本,样本均值为 \bar{X} , 试 确定 σ 的值,使得 $P\{1<\bar{X}<3\}$ 最大.

2. 从正态总体 N(20,3) 中分别抽取容量为 10 和 15 的两个相互独立样本,求样本均值之差的绝对值大于 0.3 的概率.

3. 设 X_1, X_2, \dots, X_8 是来自正态总体 N(0, 0.2) 的样本,试求 k,使 $P\left\{\sum_{i=1}^8 X_i^2 < k\right\} = 0.95$.

4. 设 X_1, X_2, \cdots, X_n 是取自正态总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,样本均值为 \overline{X} ,样本方差为 S^2 , $E(\overline{X}), D(\overline{X}), E(S^2), D(S^2)$.

5. 设总体 X 的概率密度为

$$f(x) = \begin{cases} 2\cos 2x, & 0 < x < \frac{\pi}{4}, \\ 0, & \text{ \sharp '\delta'}, \end{cases}$$

 X_1, X_2, \cdots, X_n 为总体 X 的样本,求样本容量 n,使 $P\{\min(X_1, X_2, \cdots, X_n) < \frac{\pi}{12}\} \ge \frac{15}{16}$.

6. 已知二维随机变量 (X,Y) 服从二维正态分布 $N(0,1,2^2,3^2,0)$, 判断 $F=\frac{9X^2}{4(Y-1)^2}$ 服从的概率分布.

第七次作业

院(系) 班级 学号 姓名	系)		学号	姓名
---------------	----	--	----	----

一、填空题

- 1. 设总体 X 服从参数为 λ 的泊松分布,其中 $\lambda > 0$ 为未知, X_1, X_2, \cdots, X_n 为来自总体 X 的样本,则 λ 的矩体计量为 $\hat{\lambda} =$ ______.
- 2. 设总体 X 在区间 $[\theta,2]$ 上服从均匀分布, $\theta<2$ 为未知参数;从总体 X 中抽取样本 X_1,X_2,\cdots,X_n ,则参数 θ 的矩估计量为 $\hat{\theta}=$ ______.
- 3. 设总体 $X \sim \pi(\lambda), X_1, X_2, \cdots, X_n$ 是来自总体 X 的样本,则未知参数 λ 的最大似然估计量为 $\hat{\lambda}$
- 4. 该总体 $X \sim N(\mu, 1)$,一组样本值为-2,1,3,-2,则参数 μ 的置信水平为 0.95 的置信区间为______.
- 5. 设总体 $X \sim N(\mu, 3^2)$,要使未知参数 μ 的置信水平为 0.95 的置信间的长度 $L \leq 2$,样本容量 n 至少为_____.

二、选择题

1. 设总体 X 在区间 [0,2a] 上服从均匀分布,其中 a>0 未知,则 a 的无偏估计量为

(A)
$$\widehat{\mu}_1 = \frac{1}{2}X_1 + \frac{1}{3}X_2$$
.

(B)
$$\widehat{\mu_2} = \frac{1}{2}X_1 + \frac{1}{6}X_2 + \frac{1}{3}X_3$$
.

(C)
$$\widehat{\mu}_3 = \frac{1}{4}X_1 + \frac{1}{2}X_2 + \frac{1}{3}X_3$$
.

(D)
$$\widehat{\mu_4} = \frac{1}{3}X_1 + \frac{2}{3}X_2 + \frac{1}{3}X_4$$

2. 设 X_1, X_2, \cdots, X_n 为来自总体 X 的简单随机样本, \overline{X} 为样本均值,则总体方差的无偏估计量为()

(A)
$$\frac{1}{n} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2.$$

(B)
$$\frac{1}{n} \sum_{i=1}^{n} [X_i - E(X)]^2$$
 ($E(X)$ 未知).

(C)
$$\frac{1}{n-1}\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2}.$$

(D)
$$\frac{1}{n-1} \sum_{i=1}^{n} [X_i - E(X)]^2$$
 ($E(X)$ 未知).

3. 设 x_1, x_2, \dots, x_n 为总体 $X \sim N(\mu, \sigma^2)$ 的样本观察值,则 σ^2 的最大似然似计值为 $\widehat{\sigma^2}$ = ()

(A)
$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\mu)^2$$
.

(B)
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^k, k = 1, 2, \dots$$

(C)
$$\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2$$
.

(D)
$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
.

4. 设总体 $X \sim N(\mu, \sigma^2)$, μ 与 σ^2 均未知, X_1, X_2, \cdots, X_n 为总体 X 的样本, 则参数 μ 的 置信水平为 $1-\alpha$ 的置信区间为(

(A)
$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}, \ \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}\right).$$

(A)
$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} u_{\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} u_{\alpha/2}\right)$$
. (B) $\left(\overline{X} - \frac{\sigma}{\sqrt{n}} t_{\alpha/2}(n), \overline{X} + \frac{\sigma}{\sqrt{n}} t_{\alpha/2}(n)\right)$.

(C)
$$\left(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1), \ \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n-1)\right)$$
. (D

$$\left(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2}(n), \ \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}(n)\right).$$

- 5. 设总体 $X \sim N(\mu, o^2)$, 其中 o^2 已知,则总体均值 μ 的置信区间长度 L 与置信度 $1-\alpha$ 的关系是(
 - (A) 当 $1-\alpha$ 缩小时, L缩短.

(B) 当 $1-\alpha$ 缩小时, L增大.

(C) 当 $1-\alpha$ 缩小时, L 不变.

(D) 以上说法都不对.

三、计算题

1. 设总体 X 具有概率分布

X	1	2	3
P	$oldsymbol{ heta}^2$	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $\theta(0<\theta<1)$ 是未知参数,已知来自总体X的样本值为1,2,1.求 θ 的矩估计值和最大 似然估计值.

2. 设某种元件的使用寿命 X 的概率密度为

$$f(x;\theta) = \begin{cases} 2e^{-2(x-\theta)}, & x \ge \theta, \\ 0, & x < \theta. \end{cases}$$

其中 $\theta>0$ 为未知参数,又设 x_1,x_2,\cdots,x_n 是X的一组样本观测值,求参数 θ 的最大似然估计值.

3. 设总体 X 的分布函数为

$$F(x; \beta) = \begin{cases} 1 - (\frac{1}{x})^{\beta}, x > 1, \\ 0, & x \le 1. \end{cases}$$

其中参数 $\beta > 1$ 是未知参数,又 X_1, X_2, \cdots, X_n 为来自总体 X 的随机样本,(1)求 X 的概率密度函数 $f(x;\beta)$;(2)求参数 β 的矩估计量;(3)求参数 β 的最大似然估计量.

四、证明题

1. 设总体 X 的均值 $\mu = E(X)$ 及方差 $\sigma^2 = D(X) > 0$ 都存在, μ 与 σ^2 均未知, X_1, X_2, \cdots, X_n 是 X 的样本, 试证明不论总体 X 服从什么分布,样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2$ 都是总体方差 $\sigma^2 = D(X)$ 的无偏估计.

2. 设 X_1, X_2, X_3 是总体 X 的样本, $E(X) = \mu$, $D(X) = \sigma^2$ 存在,证明估计量 $\widehat{\mu_1} = \frac{2}{3} X_1 + \frac{1}{6} X_2 + \frac{1}{6} X_3 , \quad \widehat{\mu_2} = \frac{1}{4} X_1 + \frac{1}{2} X_2 + \frac{1}{4} X_3 , \quad \widehat{\mu_3} = \frac{3}{5} X_1 + \frac{1}{5} X_2 + \frac{1}{5} X_3$ 都是总体 X 的均值 E(X) 的无偏估计量;并判断哪一个估计量更有效.

3. 设 X_1, X_2, \dots, X_n 为来自正态总体 $N(\mu, \sigma^2)$ 的一组简单随机样本,记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$,统计量 $T = \overline{X}^2 - \frac{1}{n} S^2$,证明 $T \neq \mu^2$ 的无偏估计量.

第八次作业

院(系)	_ 班级	坐 县	姓夕
Pu(2N)	_ グル3X	_ す っ	

一、填空题

1. 设总体 $X \sim N(\mu, \sigma^2), X_1, X_2, \cdots, X_n$ 是来自 X 的样本,记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, Q^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2,$$

 $\mu \pi \sigma^2$ 未知时,则检验假设 $H_0: \mu = \mu_0$ 所使用统计量是 .

- 2. 在假设检验中,对于给定的显著性水平 α ,则犯第一类错误的概率为 .
- 3. 设总体 $X \sim N(\mu, \sigma^2)$, μ 已知,给定显著性水平 α ,假设 $H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 \geq \sigma_0^2$ 的 拒绝域为
- 4. 设 $X_i(i=1,2,\cdots,n)$ 是来自总体 $X \sim N(\mu,\sigma^2)$ 的容量为n 的简单随机样本,方差 σ^2 已 知, 检验假设 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$, 检验统计量为 $u = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$, 在显著性水平 α 下, 拒绝域为

二、选择题

- 1. 在假设检验中,原假设 H_0 ,备择假设 H_1 ,则()为犯第二类错误
- (A) *H*₀为真,接受*H*₁.
- (B) *H*₀ 不真,接受 *H*₀.
- (C) *H*₀为真, 拒绝 *H*₁.
- (D). *H*₀不真, 拒绝 *H*₀.
- 2. 设总体 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$, 检验假设 $H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2, \alpha = 0.10$, 从 X 中抽取容量 n_1 = 12 的样本, 从 Y 中抽取容量 n_2 = 10 的样本, 算得 S_1^2 = 118.4, S_2^2 = 31.93, 正确的检验方法与结论是(
 - (A) 用t 检验法,临界值 $t_{0.05}(17) = 2.11$,拒绝 H_0 .
 - (B) 用 F 检验法, 临界值 $F_{0.05}(11,9) = 3.10$, $F_{0.05}(11,9) = 0.34$, 拒绝 H_0 .
 - (C) 用 F 检验法, 临界值 $F_{0.95}(11,9) = 0.34$, $F_{0.05}(11,9) = 3.10$, 接受 H_0 .
 - (D) 用 F 检验法, 临界值 $F_{001}(11,9) = 5.18$, $F_{009}(11,9) = 0.21$, 接受 H_0 .
- 3. 设总体 $X \sim N(\mu, \sigma^2)$, σ^2 未知, 假设 $H_0: \mu = \mu_0$ 的拒绝域为 $\mu \leq -\mu_\alpha$, 则备择假 设*H*₁为(
 - (A) $\mu \neq \mu_0$. (B) $\mu > \mu_0$. (C) $\mu < \mu_0$. (D) $\mu \leq \mu_0$.

4.设总体 $X \sim N(\mu, \sigma^2)$, σ^2 未知, 假设检验 $H_0: \mu \le 1; \mu > 1(\alpha = 0.05)$, 则拒绝域为 ().

(A)
$$|\bar{X} - 1| > u_{0.05}$$
. (B) $\bar{X} > 1 + t_{0.05} (n-1) \frac{S}{\sqrt{n}}$.

(C)
$$|\bar{X} - 1| > t_{0.05} (n-1) \frac{S}{\sqrt{n}}$$
. (D) $\bar{X} < 1 - t_{0.05} (n-1) \frac{S}{\sqrt{n}}$.

三、计算题

1. 某车间用一台包装机包装葡萄糖,包得的袋装葡萄糖的净重 X (单位 kg)是一个随机变量,它服从正态分布 $N(\mu,\sigma^2)$,当机器工作正常时,其均值为 0.5kg,根据经验知标准差为 0.015 kg(保持不变),某日开工后,为检验包装机的工作是否正常,从包装出的葡萄糖中随机地抽取 9 袋,称得净重为

0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512 试在显著性水平 $\alpha=0.05$ 下检验机器工作是否正常.

2. 设某次考试的考生成绩服从正态分布,从中随机抽取 36 位考生的成绩,算得平均成绩为 66.5 分,标准差为 15 分,问在显著性水平 $\alpha = 0.05$ 下,是否可以认为这次考试全体考生的平均成绩为 70 分?并给出检验过程.

3. 设有甲,乙两种零件,彼此可以代用,但乙种零件比甲种零件制造简单,造价低,经过试验获得抗压强度(单位: kg/cm²)为

甲种零件: 88, 87, 92, 90, 91,

乙种零件: 89, 89, 90, 84, 88.

假设甲乙两种零件的抗压强度均服从正态分布,且方差相等,试问两种零件的抗压强度有无显著差异(取 $\alpha = 0.05$)?

4. 某无线电厂生产的一种高频管,其中一项指标服从正态分布 $N(\mu, \sigma^2)$,从一批产品中抽取 8 只,测得该指标数据如下:

66, 43, 70, 65, 55, 56, 60, 72,

- (1) 总体均值 $\mu = 60$, 检验 $\sigma^2 = 8^2$ (取 $\alpha = 0.05$);
- (2) 总体均值 μ 未知时,检验 $\sigma^2 = 8^2$ (取 $\alpha = 0.05$).

综合练习一

一、填空题

1. 设 A,B 是 同 一 个 试 验 中 的 两 个 事 件,且 P(A) = 0.61, P(A - B) = 0.22,则 $P(\overline{AB}) = \underline{\hspace{1cm}}$ 。

2. 抛掷两颗均匀的骰子,已知两颗骰子点数之和为7点,则其中一颗为1点的概率为

3. 设连续型随机变量 X 的分布函数在某区间的表达式为 $\frac{1}{x^2+1}$,其余部分为常数,写出此分布函数的完整表达式_____。

4. 设二维随机变量(X, Y)在区域D上服从均匀分布,D由曲线

 $y = \frac{1}{x}$, y = 0, x = 1, $x = e^2$ 所围成,则(X,Y) 关于 X 的边缘概率密度在 x = e 点的值为

$$\diamondsuit \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i , \quad \bigcup D(\overline{X}) = \underline{\hspace{1cm}}.$$

二、选择题

1. 设 A、B、C 三个事件两两相互独立,则 A、B、C 相互独立的充分必要条件是 ()。

(A) A与BC独立 (B) AB与A $\bigcup C$ 独立 (C) AB与AC独立 (D) A $\bigcup B$ 与A $\bigcup C$ 独立 2. 设F(x)为随机变量X的分布函数,在下列概率中可表示为F(a)-F(a-0)的是

().

(A)
$$P\{X \le a\}$$
 (B) $P\{X > a\}$ (C) $P\{X = a\}$

3. 设两个相互独立的随机变量 X与Y分别服从正态分布 N(0,1)和N(1,1),则(

(A)
$$P\{X+Y \le 0\} = \frac{1}{2}$$
 (B) $P\{X+Y \le 1\} = \frac{1}{2}$

(B)
$$P\{X+Y \le 1\} = \frac{1}{2}$$

(C)
$$P\{X-Y \le 0\} = \frac{1}{2}$$
 (D) $P\{X-Y \le 1\} = \frac{1}{2}$

(D)
$$P\{X - Y \le 1\} = \frac{1}{2}$$

- 4. 在假设检验中,原假设 H_0 ,备择假设 H_1 ,则()称为第二类错误。

 - (A) H_0 为真,接受 H_1 (B) H_0 不真,接受 H_0

 - (C) H_0 为真, 拒绝 H_1 (D) H_0 不真, 拒绝 H_0
- 5. 设随机变量 X 的数学期望 E(X) = 100, 方差 D(Y) = 10, 则由切比雪夫不等式 $P\{80 < X < 120\} \ge ($
 - (A) 0.025

- (B) 0.5 (C) 0.96 (D) 0.975
- 6. 设 X_1, X_2, X_3 是来自总体 $N(\mu, \sigma^2)$ 的一个样本,其中 μ 为已知, σ^2 为未知,则 下列各式中不是统计量的为()。

(A)
$$X_2 - 2\mu$$
 (B) $\mu X_1 + X_3 e^{X_2}$ (C) $\max(X_1, X_2, X_3)$ (D) $\frac{1}{\sigma^2}(X_1 + X_2 + X_3)$

三、按照要求解答下列各题

1. 在电报通讯中,发送端发出的是由"•"和"-"两种信号组成的序列。由于受到随 机干扰,接收端收到的是"•"和"-"及"不清"三种信号组成的序列。假设发送"•" 和 "-"的概率分别为 0.7 和 0.3; 在已知发送 "•"时,接收到 "•"、"-"和 "不清"的 概率分别为 0.8、0.1 和 0.1; 在已知发送 "-" 时,接收到 "•"、"-" 和"不清"的概率 分别为 0.2、0.7 和 0.1。

- 求 (1) 接收到信号 "•"、"-"和"不清"的概率;
 - (2) 在接收到信号"不清"的条件下,发送信号为"-"的概率。

2. 设连续型随机变量 X 的分布函数为 $F(x) = A + B \arctan x$, $-\infty < x < +\infty$, 求(1)常数 $A \times B$;(2)随机变量 X 落在(-1,1) 内的概率;(3) X 的概率密度函数。

3. 已知随机变量X和Y的概率分布分别为

X	-1	0	1
р	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Y	0	1
р	$\frac{1}{2}$	$\frac{1}{2}$

并且 $P\{XY=0\}=1$ 。

(1) 求二维随机变量(X,Y)的概率分布(只写出计算结果表格); (2) 判别 X 和 Y 是 否相互独立。

4. 已知随机变量 X、Y分别服从 $N(1,3^2)$ 、 $N(0,4^2)$, $\rho_{XY}=-\frac{1}{2}$,设 $Z=\frac{X}{3}+\frac{Y}{2}$ 。 求(1)Z的数学期望与方差; (2)X与Z的相关系数;(3)X与Z是否相互独立?为什么?

5. 设总体
$$X$$
 的概率密度为 $f(x) = \begin{cases} \sqrt{\theta}x^{\sqrt{\theta}-1}, & 0 \le x \le 1, \\ 0, & 其他, \end{cases}$ $\theta > 0$ 为未知参数,

 X_1, X_2, \cdots, X_n 是来自总体 X 的样本,求 θ 的矩估计量和最大似然估计量。

四、按照要求解答下列各题已知随机变量 X 的概率密度为

$$f(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

求随机变量 $Y = X^2$ 的概率密度。

2. 设总体 X 在 $\left(0, \theta\right)$ 内服从均匀分布, $X_1, X_2, \cdots, X_n \ (n \geq 2)$ 是取自总体 X 的样本,已知 θ 的两个无偏估计量为 $\hat{\theta}_1 = 2\overline{X}, \ \hat{\theta}_2 = \frac{n+1}{n} \max(X_1, X_2, \cdots, X_n)$,判别 $\hat{\theta}_1$ 与 $\hat{\theta}_2$ 哪个更有效?

综合练习二

一、填空题

- 1. 设事件 A 与事件 B 相互独立,且 P(A) = 0.3,P(B) = 0.4,则 $P(A \cup B) = _____$.
- 2. 设随机变量 $X \sim B(2, 0.1)$,则 $P\{X = 1\} =$ _____.
- 3. 设随机变量 X 的概率密度函数为 $f_X(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & 其他. \end{cases}$ 则随机变量

Y = 2X + 1的概率密度函数为 .

- 4. 设 $X \sim N(\mu, \sigma^2)$,则由切比雪夫不等式可知 $P\{|X \mu| \ge 3\sigma\} \le$
- 5. 设总体 $X \sim N(\mu,1)$, X_1,X_2,\cdots,X_{16} 是来自总体的样本,其样本均值 $\overline{x}=5.2$,则 未知参数 μ 的置信水平为 0.95 的置信区间为_____. ($u_{0.025}$ = 1.96)
- 6. 设总体 $X\sim N(\mu,\sigma^2)$, $X_1,X_2,\cdots X_n$ 是来自总体 X的样本, \overline{X} 为样本均值,若 σ^2 已知,检验假设为 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$,则应取检验统计量为_______.

二、单项选择题

- 1. 设 A, B 为对立事件,0 < P(B) < 1,则下列概率值为 1 的是 (
 - (A) $P(\overline{A} | \overline{B})$ (B) $P(\overline{A} | B)$ (C) P(B | A) (D) P(AB)

- 2. 设随机变量 $X \sim N(0,1), Y = 2X + 1$, 则 Y 服从().

- (A) N(0,1) (B) N(1,1) (C) N(1,4) (D) N(0,2)
- 3. 已知二维随机变量(X,Y)服从二维正态分布,则X和Y的相关系数 $\rho_{XY}=0$ 是X和 Y相互独立的().

 - (A) 充分必要条件 (B) 必要非充分条件

 - (C) 充分非必要条件 (D) 既不是充分条件也不是必要条件
- 4. 设随机变量 X 和 Y 的方差存在且都不等于零,则 D(X+Y) = D(X) + D(Y) 是 X 和 *Y* ().
 - (A) 不相关的充分非必要条件 (B) 不相关的必要非充分条件

- (C) 不相关的充分必要条件 (D) X 和 Y 相互独立的充分必要条件
- 5. 设 $X_1,X_2,\cdots X_n$ 是来自总体 $X^{\sim}N\left(\mu,\sigma^2\right)$ 的样本,其中 μ 已知, σ 未知,则下列不 是统计量的是().

 - (A) $\max_{1 \le k \le n} X_k$ (B) $\frac{1}{n} \sum_{k=1}^n X_k \mu$ (C) $\min_{1 \le k \le n} X_k$ (D) $\sum_{k=1}^n \frac{X_k}{\sigma}$
- 6. 设 X_1, X_2, \cdots, X_n 是取自总体X的一个样本, \overline{X} 为样本均值,则下列样本函数中不 是总体X期望 μ 的无偏估计量是().

- (A) \overline{X} (B) $X_1 + X_2 X_3$ (C) $0.2X_1 + 0.3X_2 + 0.5X_3$ (D) $\sum_{i=1}^{n} X_i$

- 三、按照要求解答下列各题
- 1. 已知甲、乙两箱中装有同种产品,其中甲箱中装有2件合格品和2件次品,乙箱中 仅装有2件合格品,现从甲箱中随机地取出2件放入乙箱,求:(1)乙箱中次品数 X的概 率分布: (2) 从乙箱中仟取一件是次品的概率.

2. 设随机变量 *X* 的概率密度为 $f(x) = \frac{1}{2}e^{-|x|} (-\infty < x < \infty)$. 求: (1) *X* 的分布函数; (2) D(X).

3. 某箱装有 100 件产品,其中一、二和三等品分别为 80、10 和 10 件,现从中随机抽取一件,记

$$X_i = \begin{cases} 1, & 抽到i 等品, \\ 0, & 其他, \end{cases}$$
 $i=1, 2, 3,$

求: (1) 随机变量 (X_1, X_2) 的概率分布(只写出分布表); (2) $Cov(X_1, X_2)$.

4. 某厂检验保温瓶的保温性能,在保温瓶中灌满沸水,24 小时后测定其保温温度为 T, $T \sim N(62,5^2)$, 若独立进行两次抽样测试,各次分别抽取 20 只和 12 只,样本均值分别

为
$$\overline{T}_1$$
, \overline{T}_2 ,求样本均值 \overline{T}_1 与 \overline{T}_2 的差的绝对值大于 1^0C 的概率. ($\Phi(\sqrt{\frac{3}{10}})=0.7088$)

5. 设总体 $X\sim N(1,2^2)$, X_1,X_2,\cdots,X_9 是从总体取的样本. \overline{X},S^2 分别为样本均值和样本方差,求 $E(S^2)$ 、 $D(S^2)$ 及 $E[(\overline{X}S^2)^2]$.

四、解答下列各题

- 1. 设随机变量 (X,Y) 的概率密度 $f(x,y) = \begin{cases} Cx, & 0 < x < 1, & 0 < y < 2, \\ 0, & 其他 \end{cases}$
- (1) 求常数 C; (2) 求 $P\{X+Y>1\}$; (3) 求 X与 Y的边缘概率密度,并判断 X与 Y是否相互独立.

2. 设总体
$$X$$
 的概率密度为 $f(x) = \begin{cases} \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, & 0 < x < 1 \\ 0, & 其他, \end{cases}$, 其中 θ ($\theta > 0$) 是未知参数,

又 X_1, X_2, \cdots, X_n 为取自总体X的样本,求 θ 的矩估计量和最大似然估计量.