First-Order Logic: More Semantics

Yuting Wang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Nov 28, 2022

What is the equivalent definition of "tautological implication" in first-order logic?

Logical Implication

Definition

Let Γ be a set of wffs and φ a wff. Γ logically implies φ , written as

$$\Gamma \vDash \varphi$$

if for every structure ${\mathfrak A}$ and every assignment $s:V\to |{\mathfrak A}|$,

if $\mathfrak A$ satisfies Γ with s, then $\mathfrak A$ satisfies φ with s.

Logical Implication

Definition

Let Γ be a set of wffs and φ a wff. Γ logically implies φ , written as

$$\Gamma \vDash \varphi$$

if for every structure ${\mathfrak A}$ and every assignment $s:V o |{\mathfrak A}|$,

if $\mathfrak A$ satisfies Γ with s, then $\mathfrak A$ satisfies φ with s.

Remark

 $\Gamma \vDash \varphi$ is also read as:

- $ightharpoonup \varphi$ is a logical consequence of Γ, or
- ightharpoonup Γ semantically implies φ , or
- \triangleright φ is a semantic consequence of Γ .

Logical Implication for Sentences

Theorem

For a set of sentences Σ and a sentence σ , $\Sigma \vDash \sigma$ iff for every model $\mathfrak A$ of Σ , $\mathfrak A$ is a model of σ .

Question

Assume the following premises:

- All men are mortal.
- Socrates is a man.

We can derive the conclusion:

Socrates is mortal.

How do we express this reasoning using logical implication?

Question

Assume the following premises:

- All men are mortal.
- Socrates is a man.

We can derive the conclusion:

Socrates is mortal.

How do we express this reasoning using logical implication?

Answer

Let $\mathbb L$ be the first-order language with 1-ary predicate symbols:

Question

Assume the following premises:

- All men are mortal.
- Socrates is a man.

We can derive the conclusion:

Socrates is mortal.

How do we express this reasoning using logical implication?

Answer

Let \mathbb{L} be the first-order language with 1-ary predicate symbols:

 \triangleright P for asserting a being is a man;

Question

Assume the following premises:

- All men are mortal.
- Socrates is a man.

We can derive the conclusion:

Socrates is mortal.

How do we express this reasoning using logical implication?

Answer

Let \mathbb{L} be the first-order language with 1-ary predicate symbols:

- \triangleright P for asserting a being is a man;
- $\triangleright \dot{Q}$ for asserting a being is mortal;

Question

Assume the following premises:

- All men are mortal.
- Socrates is a man.

We can derive the conclusion:

Socrates is mortal.

How do we express this reasoning using logical implication?

Answer

Let \mathbb{L} be the first-order language with 1-ary predicate symbols:

- $\triangleright \dot{P}$ for asserting a being is a man;
- Q for asserting a being is mortal;

and a constant symbol \dot{c} denoting Socrates.

Question

Assume the following premises:

- All men are mortal.
- Socrates is a man.

We can derive the conclusion:

Socrates is mortal.

How do we express this reasoning using logical implication?

Answer

Let $\mathbb L$ be the first-order language with 1-ary predicate symbols:

- $\triangleright \dot{P}$ for asserting a being is a man;
- \dot{Q} for asserting a being is mortal; and a constant symbol \dot{c} denoting Socrates.

Let
$$\Sigma = \{ \forall x (\dot{P}x \rightarrow \dot{Q}x), \dot{P}\dot{c} \}$$
. Then

$$\Sigma \models \dot{Q}\dot{c}$$
.

Logical Equivalence

As before, we write $\alpha \vDash \beta$ for $\{\alpha\} \vDash \beta$.

Definition

 α and β are logically equivalent, written as $\alpha \vDash \beta$, if $\alpha \vDash \beta$ and $\beta \vDash \alpha$.

Logical Equivalence

As before, we write $\alpha \vDash \beta$ for $\{\alpha\} \vDash \beta$.

Definition

 α and β are logically equivalent, written as $\alpha \vDash \exists \beta$, if $\alpha \vDash \beta$ and $\beta \vDash \alpha$.

Example

$$\forall x \forall y (\dot{P}x \to \neg \dot{Q}y) \vDash \exists \forall x \forall y (\neg (\dot{P}x \land \dot{Q}y))$$

Valid Wffs

Some wffs are satisfied in every structure under every assignment s.

Definition

Let φ be a wff in the language \mathbb{L} . φ is valid if $\emptyset \vDash \varphi$, written as $\vDash \varphi$.

Valid Wffs

Some wffs are satisfied in every structure under every assignment s.

Definition

Let φ be a wff in the language \mathbb{L} . φ is valid if $\emptyset \vDash \varphi$, written as $\vDash \varphi$.

Lemma

 φ is valid iff $\vDash_{\mathfrak{A}} \varphi[s]$ for every structure \mathfrak{A} for \mathbb{L} and every assignment function s for \mathfrak{A} .

Valid Wffs

Some wffs are satisfied in every structure under every assignment s.

Definition

Let φ be a wff in the language \mathbb{L} . φ is valid if $\emptyset \vDash \varphi$, written as $\vDash \varphi$.

Lemma

 φ is valid iff $\vDash_{\mathfrak{A}} \varphi[s]$ for every structure \mathfrak{A} for \mathbb{L} and every assignment function s for \mathfrak{A} .

Corollary

A sentence σ is valid iff it is true in every structure.

Which of the following are valid?

▶ *x* **=** *x*

Which of the following are valid?

► x = x YES

- ► x = x YES
- $ightharpoonup \exists x \ x = x$

- ► x = x YES
- $ightharpoonup \exists x \ x = x$ YES

- ► x = x YES
- ▶ $\exists x \ x = x$ YES
- $ightharpoonup \forall x \exists y \ x \neq y$

- ► x = x YES
- ▶ $\exists x \ x = x$ YES
- $\triangleright \ \forall x \exists y \ x \neq y$ NO

- ► x = x YES
- ▶ $\exists x \ x = x$ YES
- $ightharpoonup \forall x \exists y \ x \neq y$ NO
- $ightharpoonup \dot{P}_X \lor \neg \dot{P}_X$

- ► x = x YES
- ▶ $\exists x \ x = x$ YES
- $\triangleright \ \forall x \exists y \ x \neq y$ NO
- $ightharpoonup \dot{P}_X \vee \neg \dot{P}_X$ YES

- ► x = x YES
- ▶ $\exists x \ x = x$ YES
- $\triangleright \forall x \exists y \ x \neq y$ NO
- $ightharpoonup \dot{P}x \lor \neg \dot{P}x$ YES
- $ightharpoonup \neg \exists x \ x \neq x$

- ► x = x YES
- ▶ $\exists x \ x = x$ YES
- $\triangleright \forall x \exists y \ x \neq y$ NO
- $ightharpoonup \dot{P}x \lor \neg \dot{P}x$ YES
- ▶ $\neg \exists x \ x \neq x$ YES

$$\blacktriangleright \ \forall x (\dot{P}x \to \exists y \dot{P}y)$$

$$\blacktriangleright \ \forall x (\dot{P}x \to \exists y \dot{P}y) \qquad \textbf{YES}$$

- $\blacktriangleright \ \forall x (\dot{P}x \to \exists y \dot{P}y) \qquad \textbf{YES}$
- $ightharpoonup \dot{P}x
 ightharpoonup \exists x \dot{P}x$

- $ightharpoonup \forall x(\dot{P}x \to \exists y\dot{P}y)$ YES
- $ightharpoonup \dot{P}x
 ightharpoonup \exists x\dot{P}x$ YES

- $ightharpoonup \forall x(\dot{P}x \to \exists y\dot{P}y)$ YES
- $ightharpoonup \dot{P}x
 ightharpoonup \exists x\dot{P}x$ YES
- $\dot{P}x \rightarrow \forall x \dot{P}x$

- $\blacktriangleright \ \forall x (\dot{P}x \to \exists y \dot{P}y) \qquad \textbf{YES}$
- $ightharpoonup \dot{P}x
 ightharpoonup \exists x \dot{P}x$ YES
- $\dot{P}x \rightarrow \forall x \dot{P}x$ NO

$$ightharpoonup \forall x(\dot{P}x \to \exists y\dot{P}y)$$
 YES

$$ightharpoonup \dot{P}x
ightharpoonup \exists x \dot{P}x$$
 YES

$$\dot{P}x \rightarrow \forall x \dot{P}x$$
 NO

$$ightharpoonup \exists x \dot{P}x \rightarrow \forall x \dot{P}x$$

$$\blacktriangleright \ \forall x (\dot{P}x \to \exists y \dot{P}y) \qquad \textbf{YES}$$

$$ightharpoonup \dot{P}x
ightharpoonup \exists x\dot{P}x$$
 YES

$$\dot{P}x \rightarrow \forall x \dot{P}x$$
 NO

$$ightharpoonup \exists x \dot{P}x \to \forall x \dot{P}x$$
 NO

More Examples

Which of the following are valid?

$$ightharpoonup \forall x(\dot{P}x \to \exists y\dot{P}y)$$
 YES

$$ightharpoonup \dot{P}x
ightharpoonup \exists x\dot{P}x$$
 YES

$$\dot{P}x \rightarrow \forall x \dot{P}x$$
 NO

$$ightharpoonup \exists x \dot{P}x \to \forall x \dot{P}x$$
 NO

$$\exists x (\dot{P}x \to \forall x \dot{P}x)$$

More Examples

Which of the following are valid?

$$ightharpoonup \forall x(\dot{P}x \to \exists y\dot{P}y)$$
 YES

$$ightharpoonup \dot{P}x
ightharpoonup \exists x\dot{P}x$$
 YES

$$\dot{P}x \rightarrow \forall x \dot{P}x$$
 NO

$$ightharpoonup \exists x \dot{P}x \to \forall x \dot{P}x$$
 NO

▶
$$\exists x (\dot{P}x \rightarrow \forall x \dot{P}x)$$
 YES

An Algorithm for Determining Validity?

Question

Is there an algorithm for determining validity?

An Algorithm for Determining Validity?

Question

Is there an algorithm for determining validity?

In other words, is there an algorithm that on input a wff φ will give an output of "yes" if φ is valid and output "no", otherwise?

Definition

The wff φ is satisfiable if there is some structure $\mathfrak A$ and some assignment $s:V\to |\mathfrak A|$ such that $\models_{\mathfrak A} \varphi[s]$.

Definition

- The wff φ is satisfiable if there is some structure $\mathfrak A$ and some assignment $s:V\to |\mathfrak A|$ such that $\models_{\mathfrak A} \varphi[s]$.
- ► The set Γ of wffs is satisfiable if there is some structure $\mathfrak A$ and some assignment $s:V\to |\mathfrak A|$ such that $\models_{\mathfrak A} \varphi[s]$ for every φ in Γ.

Definition

- The wff φ is satisfiable if there is some structure $\mathfrak A$ and some assignment $s:V\to |\mathfrak A|$ such that $\vDash_{\mathfrak A} \varphi[s]$.
- ▶ The set Γ of wffs is satisfiable if there is some structure $\mathfrak A$ and some assignment $s:V\to |\mathfrak A|$ such that $\vDash_{\mathfrak A} \varphi[s]$ for every φ in Γ.

Theorem

 φ is not satisfiable iff $\neg \varphi$ is

Definition

- The wff φ is satisfiable if there is some structure $\mathfrak A$ and some assignment $s:V\to |\mathfrak A|$ such that $\vDash_{\mathfrak A} \varphi[s]$.
- ▶ The set Γ of wffs is satisfiable if there is some structure $\mathfrak A$ and some assignment $s:V\to |\mathfrak A|$ such that $\vDash_{\mathfrak A} \varphi[s]$ for every φ in Γ.

Theorem

 φ is not satisfiable iff $\neg \varphi$ is valid.

Is There a Compactness Theorem for First-Order Logic?

Question

Is the following statement true?

For every first-order language \mathbb{L} , and every set Γ of wffs of \mathbb{L} , if every finite subset of Γ is satisfiable then Γ is satisfiable.

Is There a Compactness Theorem for First-Order Logic?

Question

Is the following statement true?

For every first-order language \mathbb{L} , and every set Γ of wffs of \mathbb{L} , if every finite subset of Γ is satisfiable then Γ is satisfiable.

Answer

Yes! But we have to wait for a while to see the answer.

How can we characterize relations in *structures* by looking at wffs in first-order logic?

Relations Defined by Wffs

Definition

Let

- ▶ 🎗 be a structure, and
- $ightharpoonup \varphi$ be a wff and n be such that the variables occurring free in φ are included among v_1, \ldots, v_n .

The *n*-ary relation defined by φ in $\mathfrak A$ is

$$\{(a_1,\ldots,a_n)\mid \vDash_{\mathfrak{A}} \varphi \llbracket a_1,\ldots,a_n \rrbracket\}$$

Example

Example

Let $\mathfrak{R}=(\mathbb{R},<,+,\times,0,1)$. The 1-ary relation $\{a\in\mathbb{R}\mid 0\leq a\}$ is defined by

$$\exists v_2, v_1 \doteq v_2 \times v_2$$

in \mathfrak{R} ;

Example

Let $\mathfrak{R}=(\mathbb{R},<,+,\times,0,1)$. The 1-ary relation $\{a\in\mathbb{R}\mid 0\leq a\}$ is defined by

$$\exists v_2, v_1 \doteq v_2 \times v_2$$

in \mathfrak{R} ;

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$. The 2-ary relation $\{(a, b) \mid a < b\}$ is defined by

$$\exists v_3(v_1 \dot{+} (\dot{1} \dot{+} v_3) \dot{=} v_2)$$

in \mathfrak{N} .

Definable Relations

Definition

The relation R is definable in the structure $\mathfrak A$ if there is some wff φ that defines it in $\mathfrak A$.

Definable Relations

Definition

- ▶ The relation R is definable in the structure $\mathfrak A$ if there is some wff φ that defines it in $\mathfrak A$.
- Let f be a n-ary function f whose domain is a subset of $|\mathfrak{A}| \times \ldots \times |\mathfrak{A}|$ and whose range is a subset of $|\mathfrak{A}|$. f is

definable in $\mathfrak A$ if the (n+1)-ary relation

$$\{(a_1,\ldots,a_n,b)\mid f(a_1,\ldots,a_n)=b\}$$

is definable in A.

Example

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$.

Example

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$.

 $v_1 + v_2 = v_3$ defines $\{(a, b, c) \mid a + b = c\}$, which is the same as the function f, where f(a, b) = a + b.

Example

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$.

- $v_1 + v_2 = v_3$ defines $\{(a, b, c) \mid a + b = c\}$, which is the same as the function f, where f(a, b) = a + b.
- $v_1 + v_3 = v_2$ defines $\{(a, b, c) \mid a + c = b\}$, which is the same as the function f, where

Example

Let $\mathfrak{N} = (\mathbb{N}, <, +, \times, 0, 1)$.

- $v_1 + v_2 = v_3$ defines $\{(a, b, c) \mid a + b = c\}$, which is the same as the function f, where f(a, b) = a + b.
- $v_1 + v_3 = v_2$ defines $\{(a, b, c) \mid a + c = b\}$, which is the same as the function f, where

$$f(a,b) = \begin{cases} b-a & \text{if } a \leq b \\ \text{Undefined} & \text{Otherwise} \end{cases}$$

Proposition Let \mathfrak{A} be a structure for \mathbb{L} .

Proposition

Let $\mathfrak A$ be a structure for $\mathbb L$.

 $ightharpoonup |\mathfrak{A}|$ is definable

Proposition

Let $\mathfrak A$ be a structure for $\mathbb L$.

 $\blacktriangleright |\mathfrak{A}|$ is definable (by $v_1 = v_1$, if = is in \mathbb{L});

Proposition

- $\blacktriangleright |\mathfrak{A}|$ is definable (by $v_1 = v_1$, if = is in \mathbb{L});
- ▶ ∅ is definable

Proposition

- \blacktriangleright $|\mathfrak{A}|$ is definable (by $v_1 \doteq v_1$, if \doteq is in \mathbb{L});
- \blacktriangleright \emptyset is definable (by $v_1 \neq v_1$, if \doteq is in \mathbb{L});

Proposition

- \blacktriangleright $|\mathfrak{A}|$ is definable (by $v_1 = v_1$, if = is in \mathbb{L});
- \blacktriangleright \emptyset is definable (by $v_1 \neq v_1$, if \doteq is in \mathbb{L});
- ► = is definable

Proposition

- \blacktriangleright $|\mathfrak{A}|$ is definable (by $v_1 \doteq v_1$, if \doteq is in \mathbb{L});
- \blacktriangleright \emptyset is definable (by $v_1 \neq v_1$, if \doteq is in \mathbb{L});
- ightharpoonup = is definable (by $v_1 \doteq v_2$, if \doteq is in \mathbb{L});

Proposition

- \triangleright $|\mathfrak{A}|$ is definable (by $v_1 \doteq v_1$, if \doteq is in \mathbb{L});
- \blacktriangleright \emptyset is definable (by $v_1 \neq v_1$, if \doteq is in \mathbb{L});
- ightharpoonup = is definable (by $v_1 \doteq v_2$, if \doteq is in \mathbb{L});
- for every *n*-ary predicate symbol \dot{P} , $\dot{P}^{\mathfrak{A}}$ is definable

Proposition

- \triangleright $|\mathfrak{A}|$ is definable (by $v_1 \doteq v_1$, if \doteq is in \mathbb{L});
- \blacktriangleright \emptyset is definable (by $v_1 \neq v_1$, if \doteq is in \mathbb{L});
- ightharpoonup = is definable (by $v_1 \doteq v_2$, if \doteq is in \mathbb{L});
- for every *n*-ary predicate symbol \dot{P} , $\dot{P}^{\mathfrak{A}}$ is definable (by $\dot{P}v_1 \dots v_n$);

Proposition

- \triangleright $|\mathfrak{A}|$ is definable (by $v_1 = v_1$, if = is in \mathbb{L});
- \blacktriangleright \emptyset is definable (by $v_1 \neq v_1$, if \doteq is in \mathbb{L});
- ightharpoonup = is definable (by $v_1 = v_2$, if = is in \mathbb{L});
- for every *n*-ary predicate symbol \dot{P} , $\dot{P}^{\mathfrak{A}}$ is definable (by $\dot{P}v_1 \dots v_n$);
- for every *n*-ary function symbol f, $f^{\mathfrak{A}}$ is definable

Proposition

- \triangleright $|\mathfrak{A}|$ is definable (by $v_1 \doteq v_1$, if \doteq is in \mathbb{L});
- \blacktriangleright \emptyset is definable (by $v_1 \neq v_1$, if \doteq is in \mathbb{L});
- ightharpoonup = is definable (by $v_1 = v_2$, if = is in \mathbb{L});
- for every *n*-ary predicate symbol \dot{P} , $\dot{P}^{\mathfrak{A}}$ is definable (by $\dot{P}v_1 \dots v_n$);
- for every *n*-ary function symbol f, $f^{\mathfrak{A}}$ is definable (by $fv_1 \ldots v_n = v_{n+1}$);

Proposition

- \triangleright $|\mathfrak{A}|$ is definable (by $v_1 \doteq v_1$, if \doteq is in \mathbb{L});
- \blacktriangleright \emptyset is definable (by $v_1 \neq v_1$, if \doteq is in \mathbb{L});
- ightharpoonup = is definable (by $v_1 \doteq v_2$, if \doteq is in \mathbb{L});
- for every *n*-ary predicate symbol \dot{P} , $\dot{P}^{\mathfrak{A}}$ is definable (by $\dot{P}v_1 \dots v_n$);
- for every *n*-ary function symbol f, $f^{\mathfrak{A}}$ is definable (by $fv_1 \ldots v_n = v_{n+1}$);
- fore every constant symbol c, the singleton $\{c^{\mathfrak{A}}\}$ is definable

Proposition

- \triangleright $|\mathfrak{A}|$ is definable (by $v_1 \doteq v_1$, if \doteq is in \mathbb{L});
- \blacktriangleright \emptyset is definable (by $v_1 \neq v_1$, if \doteq is in \mathbb{L});
- ightharpoonup = is definable (by $v_1 \doteq v_2$, if \doteq is in \mathbb{L});
- for every *n*-ary predicate symbol \dot{P} , $\dot{P}^{\mathfrak{A}}$ is definable (by $\dot{P}v_1 \dots v_n$);
- for every *n*-ary function symbol f, $f^{\mathfrak{A}}$ is definable (by $fv_1 \ldots v_n = v_{n+1}$);
- fore every constant symbol c, the singleton $\{c^{\mathfrak{A}}\}$ is definable (by $v_1 = c$).

Proposition

Let $\mathfrak A$ be a structure for $\mathbb L$.

- \triangleright $|\mathfrak{A}|$ is definable (by $v_1 \doteq v_1$, if \doteq is in \mathbb{L});
- \blacktriangleright \emptyset is definable (by $v_1 \neq v_1$, if \doteq is in \mathbb{L});
- ightharpoonup = is definable (by $v_1 \doteq v_2$, if \doteq is in \mathbb{L});
- for every *n*-ary predicate symbol \dot{P} , $\dot{P}^{\mathfrak{A}}$ is definable (by $\dot{P}v_1 \dots v_n$);
- for every *n*-ary function symbol f, $f^{\mathfrak{A}}$ is definable (by $fv_1 \ldots v_n = v_{n+1}$);
- fore every constant symbol c, the singleton $\{c^{\mathfrak{A}}\}$ is definable (by $v_1 \doteq c$).

What happens if \doteq is not in \mathbb{L} ?

Relations Definable in a Structure

Proposition

▶ If P and and Q are n-ary relations that are definable in \mathfrak{A} , then so are: the complement of P, $P \cup Q$, $P \cap Q$, $P \setminus Q$.

Relations Definable in a Structure

Proposition

- ▶ If P and and Q are n-ary relations that are definable in \mathfrak{A} , then so are: the complement of P, $P \cup Q$, $P \cap Q$, $P \setminus Q$.
- If the n+1-ary relation R is definable in $\mathfrak A$ then so are the n-ary relations

```
\{(a_1,\ldots,a_n)\mid \text{there exists }b\in|\mathfrak{A}|,(a_1,\ldots,a_n,b)\in R\}\{(a_1,\ldots,a_n)\mid \text{there exists }b\in|\mathfrak{A}|,(b,a_1,\ldots,a_n)\in R\}
```

Relations Definable in a Structure

Proposition

- ▶ If P and and Q are n-ary relations that are definable in \mathfrak{A} , then so are: the complement of P, $P \cup Q$, $P \cap Q$, $P \setminus Q$.
- If the n+1-ary relation R is definable in $\mathfrak A$ then so are the n-ary relations

$$\{(a_1,\ldots,a_n)\mid \text{there exists }b\in |\mathfrak{A}|,(a_1,\ldots,a_n,b)\in R\}$$

 $\{(a_1,\ldots,a_n)\mid \text{there exists }b\in |\mathfrak{A}|,(b,a_1,\ldots,a_n)\in R\}$

In particular, if R is a binary relation that is definable in $\mathfrak A$ then dom(R) and rng(R) is definable.

Which of the following subsets of \mathbb{N} are definable in $\mathfrak{N} = (\mathbb{N}, <)$?

▶ Ø.

Which of the following subsets of \mathbb{N} are definable in $\mathfrak{N} = (\mathbb{N}, <)$?

► Ø. YES

- ► Ø. YES
- $ightharpoonup \mathbb{N}$.

- ▶ Ø. YES
- ► N. YES

- ► Ø. YES
- ► N. YES
- **▶** {0}.

- ► Ø. YES
- ► N. YES
- ▶ $\{0\}$. YES. Let $\varphi = \forall v_2(v_1 \dot{<} v_2 \lor v_1 \dot{=} v_2)$

- ► Ø. YES
- ► N. YES
- ▶ {0}. YES. Let $\varphi = \forall v_2(v_1 \dot{<} v_2 \lor v_1 \dot{=} v_2)$
- **▶** {1}.

- ► Ø. YES
- ► N. YES
- ▶ {0}. YES. Let $\varphi = \forall v_2(v_1 \dot{<} v_2 \lor v_1 \dot{=} v_2)$
- ▶ {1}. YES.

- **▶** ∅. YES
- ▶ N. YES
- ▶ {0}. YES. Let $\varphi = \forall v_2(v_1 \dot{<} v_2 \lor v_1 \dot{=} v_2)$
- ▶ {1}. YES.
 - Let $\varphi(x)$ be the result of replacing v_1 in φ with x;

- ▶ Ø. YES
- ▶ N. YES
- ▶ {0}. YES. Let $\varphi = \forall v_2(v_1 \dot{<} v_2 \lor v_1 \dot{=} v_2)$
- ▶ {1}. YES.
 - Let $\varphi(x)$ be the result of replacing v_1 in φ with x;
 - ► We obtain the defining wff as follows:

- ► Ø. YES
- ▶ N. YES
- ▶ {0}. YES. Let $\varphi = \forall v_2(v_1 \dot{<} v_2 \lor v_1 \dot{=} v_2)$
- ▶ {1}. YES.
 - Let $\varphi(x)$ be the result of replacing v_1 in φ with x;
 - We obtain the defining wff as follows:

$$a = 1 \Longleftrightarrow a \neq 0$$
 and $\forall b \in \mathbb{N}, (b < a \Longrightarrow b = 0)$

- ► Ø. YES
- ▶ N. YES
- ▶ {0}. YES. Let $\varphi = \forall v_2(v_1 \dot{<} v_2 \lor v_1 \dot{=} v_2)$
- ► {1}. YES.
 - Let $\varphi(x)$ be the result of replacing v_1 in φ with x;
 - We obtain the defining wff as follows:

$$egin{aligned} a = 1 &\iff a
eq 0 \text{ and } \forall b \in \mathbb{N}, (b < a \Longrightarrow b = 0) \ &\iff \vdash_{\mathfrak{A}} \neg \varphi \llbracket a \rrbracket \text{ and } \vdash_{\mathfrak{A}} \forall v_3 (v_3 \dot{<} v_1 \rightarrow \varphi(v_3)) \llbracket a \rrbracket \end{aligned}$$

- ▶ Ø. YES
- ▶ N. YES
- ▶ {0}. YES. Let $\varphi = \forall v_2(v_1 \dot{<} v_2 \lor v_1 \dot{=} v_2)$
- ▶ {1}. YES.
 - Let $\varphi(x)$ be the result of replacing v_1 in φ with x;
 - We obtain the defining wff as follows:

$$\begin{split} a &= 1 \Longleftrightarrow a \neq 0 \text{ and } \forall b \in \mathbb{N}, (b < a \Longrightarrow b = 0) \\ &\iff \vdash_{\mathfrak{A}} \neg \varphi \llbracket a \rrbracket \text{ and } \vdash_{\mathfrak{A}} \forall v_3 (v_3 \dot{<} v_1 \to \varphi(v_3)) \llbracket a \rrbracket \\ &\iff \vdash_{\mathfrak{A}} \neg \varphi \land \forall v_3 (v_3 \dot{<} v_1 \to \varphi(v_3)) \llbracket a \rrbracket \end{split}$$

Which of the following subsets of \mathbb{N} are definable in $\mathfrak{N} = (\mathbb{N}, <)$?

- ► Ø. YES
- ▶ N. YES
- ▶ {0}. YES. Let $\varphi = \forall v_2(v_1 \dot{<} v_2 \lor v_1 \dot{=} v_2)$
- ► {1}. YES.
 - Let $\varphi(x)$ be the result of replacing v_1 in φ with x;
 - We obtain the defining wff as follows:

$$egin{aligned} a &= 1 \Longleftrightarrow a
eq 0 \ ext{and} \ orall b \in \mathbb{N}, (b < a \Longrightarrow b = 0) \ &\iff dash_\mathfrak{A} \neg \varphi \llbracket a
rbracket \ ext{and} \ dash_\mathfrak{A} \ orall v_3 (v_3 \dot{<} v_1
ightarrow \varphi(v_3)) \llbracket a
rbracket \ ext{and} \ &\iff dash_\mathfrak{A} \neg \varphi \wedge orall v_3 (v_3 \dot{<} v_1
ightarrow \varphi(v_3)) \llbracket a
rbracket \ ext{and} \end{aligned}$$

So the formula $\neg \varphi \land \forall v_3(v_3 \dot{<} v_1 \rightarrow \varphi(v_3))$ defines $\{1\}$.

More Definable Subset of $\mathfrak A$

▶ $\{n\}$ for each $n \in \mathbb{N}$.

More Definable Subset of $\mathfrak A$

▶ $\{n\}$ for each $n \in \mathbb{N}$. YES

- ▶ $\{n\}$ for each $n \in \mathbb{N}$. YES
- ightharpoonup Every finite subset of \mathbb{N} .

- ▶ $\{n\}$ for each $n \in \mathbb{N}$. YES
- ightharpoonup Every finite subset of \mathbb{N} . YES

- ▶ $\{n\}$ for each $n \in \mathbb{N}$. YES
- ightharpoonup Every finite subset of \mathbb{N} . YES
- ightharpoonup Every cofinite subset of \mathbb{N} .

- ▶ $\{n\}$ for each $n \in \mathbb{N}$. YES
- ightharpoonup Every finite subset of \mathbb{N} .
- ightharpoonup Every cofinite subset of \mathbb{N} . YES

- ▶ $\{n\}$ for each $n \in \mathbb{N}$. YES
- ightharpoonup Every finite subset of \mathbb{N} . YES
- ightharpoonup Every cofinite subset of \mathbb{N} . YES
- ightharpoonup Every subset of \mathbb{N} .

- ▶ $\{n\}$ for each $n \in \mathbb{N}$. YES
- ightharpoonup Every finite subset of \mathbb{N} . YES
- ightharpoonup Every cofinite subset of \mathbb{N} . YES
- ightharpoonup Every subset of \mathbb{N} . NO.

How Many Relations are Definable?

Lemma

- (1) Given a structure \mathfrak{A} , the set of definable relations is *enumerable*;
- (2) Not every subset of \mathbb{N} is definable.

How Many Relations are Definable?

Lemma

- (1) Given a structure \mathfrak{A} , the set of definable relations is *enumerable*;
- (2) Not every subset of \mathbb{N} is definable.

Proof.

For (1), note that the set of wffs is enumerable, and every wff may define only one relation.

How Many Relations are Definable?

Lemma

- (1) Given a structure \mathfrak{A} , the set of definable relations is *enumerable*;
- (2) Not every subset of \mathbb{N} is definable.

Proof.

For (1), note that the set of wffs is enumerable, and every wff may define only one relation.

For (2), note that the set of all subsets of $\mathbb N$ is uncountable. Therefore, some subset may not match a wff.

Which of the following subsets of $\mathbb R$ are definable in $\mathfrak R=(\mathbb R,<)$?

▶ ∅.

Which of the following subsets of \mathbb{R} are definable in $\mathfrak{R} = (\mathbb{R}, <)$?

▶ Ø. YES

- ▶ Ø. YES
- ightharpoons ightharpoons.

- ▶ Ø. YES
- ▶ ℝ. YES

- ▶ Ø. YES
- ► R. YES
- ► Anything else?

Which of the following subsets of \mathbb{R} are definable in $\mathfrak{R} = (\mathbb{R}, <)$?

- ▶ Ø. YES
- ▶ ℝ. YES
- ► Anything else?

Question

More generally, given a first-order language $\mathbb L$ and a structure $\mathfrak A$ for $\mathbb L$, how do we figure out which relations in $\mathfrak A$ are definable?

Given any wff φ , how do we relate its satisfactions in different structures?

Definition

Let $\mathfrak A$ and $\mathfrak B$ be structures for $\mathbb L$. A homomorphism from $\mathfrak A$ to $\mathfrak B$ is a function $h: |\mathfrak A| \to |\mathfrak B|$ such that:

Definition

Let $\mathfrak A$ and $\mathfrak B$ be structures for $\mathbb L$. A homomorphism from $\mathfrak A$ to $\mathfrak B$ is a function $h: |\mathfrak A| \to |\mathfrak B|$ such that:

▶ for every *n*-ary predicate symbol R, other than $\dot{=}$, and $a_1, \ldots, a_n \in |\mathfrak{A}|$,

$$(a_1,\ldots,a_n)\in R^{\mathfrak{A}}\Longleftrightarrow (h(a_1),\ldots,h(a_n))\in R^{\mathfrak{B}};$$

Definition

Let $\mathfrak A$ and $\mathfrak B$ be structures for $\mathbb L$. A homomorphism from $\mathfrak A$ to $\mathfrak B$ is a function $h: |\mathfrak A| \to |\mathfrak B|$ such that:

▶ for every *n*-ary predicate symbol R, other than $\stackrel{.}{=}$, and $a_1, \ldots, a_n \in |\mathfrak{A}|$,

$$(a_1,\ldots,a_n)\in R^{\mathfrak{A}}\Longleftrightarrow (h(a_1),\ldots,h(a_n))\in R^{\mathfrak{B}};$$

▶ for every *n*-ary function symbol f and $a_1, \ldots, a_n \in |\mathfrak{A}|$,

$$h(f^{\mathfrak{A}}(a_1,\ldots,a_n))=f^{\mathfrak{B}}(h(a_1),\ldots,h(a_n));$$

Definition

Let $\mathfrak A$ and $\mathfrak B$ be structures for $\mathbb L$. A homomorphism from $\mathfrak A$ to $\mathfrak B$ is a function $h: |\mathfrak A| \to |\mathfrak B|$ such that:

▶ for every *n*-ary predicate symbol R, other than $\stackrel{.}{=}$, and $a_1, \ldots, a_n \in |\mathfrak{A}|$,

$$(a_1,\ldots,a_n)\in R^{\mathfrak{A}}\Longleftrightarrow (h(a_1),\ldots,h(a_n))\in R^{\mathfrak{B}};$$

▶ for every *n*-ary function symbol f and $a_1, \ldots, a_n \in |\mathfrak{A}|$,

$$h(f^{\mathfrak{A}}(a_1,\ldots,a_n))=f^{\mathfrak{B}}(h(a_1),\ldots,h(a_n));$$

for every constant symbol c,

$$h(c^{\mathfrak{A}})=c^{\mathfrak{B}}.$$

Definition

▶ h is a homomorphism of $\mathfrak A$ onto $\mathfrak B$ if h is a homomorphism from $\mathfrak A$ to $\mathfrak B$ and h maps $\mathfrak A$ onto $\mathfrak B$;

Definition

- ▶ h is a homomorphism of $\mathfrak A$ onto $\mathfrak B$ if h is a homomorphism from $\mathfrak A$ to $\mathfrak B$ and h maps $\mathfrak A$ onto $\mathfrak B$;
- A homomorphism h from $\mathfrak A$ into $\mathfrak B$ is an isomorphism if h is one-to-one;

Definition

- ▶ h is a homomorphism of $\mathfrak A$ onto $\mathfrak B$ if h is a homomorphism from $\mathfrak A$ to $\mathfrak B$ and h maps $\mathfrak A$ onto $\mathfrak B$;
- A homomorphism h from $\mathfrak A$ into $\mathfrak B$ is an isomorphism if h is one-to-one;
- ▶ The structures $\mathfrak A$ and $\mathfrak B$ are isomorphic, written $\mathfrak A \cong \mathfrak B$, if there is some isomorphism of $\mathfrak A$ onto $\mathfrak B$;

Definition

- ▶ h is a homomorphism of $\mathfrak A$ onto $\mathfrak B$ if h is a homomorphism from $\mathfrak A$ to $\mathfrak B$ and h maps $\mathfrak A$ onto $\mathfrak B$;
- A homomorphism h from $\mathfrak A$ into $\mathfrak B$ is an isomorphism if h is one-to-one;
- ▶ The structures $\mathfrak A$ and $\mathfrak B$ are isomorphic, written $\mathfrak A \cong \mathfrak B$, if there is some isomorphism of $\mathfrak A$ onto $\mathfrak B$;
- ightharpoonup An automorphism of $\mathfrak A$ is an isomorphism of $\mathfrak A$ onto $\mathfrak A$.

Example

Let $\mathfrak{A} = (\mathbb{N}, <^{\mathbb{N}}, +^{\mathbb{N}})$ and $\mathfrak{B} = (\mathbb{E}, <^{\mathbb{E}}, +^{\mathbb{E}})$.

Here $\mathbb E$ is the set of even non-negative integers, $<^{\mathbb E}$ is the "less than" relation on $\mathbb E$, etc.

Then h is an isomorphism of $\mathfrak A$ onto $\mathfrak B$, where for all $n \in \mathbb N$,

$$h(n) =$$

Example

Let $\mathfrak{A} = (\mathbb{N}, <^{\mathbb{N}}, +^{\mathbb{N}})$ and $\mathfrak{B} = (\mathbb{E}, <^{\mathbb{E}}, +^{\mathbb{E}})$.

Here $\mathbb E$ is the set of even non-negative integers, $<^{\mathbb E}$ is the "less than" relation on $\mathbb E$, etc.

Then h is an isomorphism of $\mathfrak A$ onto $\mathfrak B$, where for all $n \in \mathbb N$,

$$h(n) = 2n$$
.

Example

Let $\mathfrak{A}=(\mathbb{N},<^{\mathbb{N}},+^{\mathbb{N}})$ and $\mathfrak{B}=(\mathbb{O},<^{\mathbb{O}},+^{\mathbb{O}})$. Here \mathbb{O} is the set of odd non-negative integers, $<^{\mathbb{O}}$ is the "less than" relation on \mathbb{O} , etc.

▶ Then an isomorphism of $\mathfrak A$ onto $\mathfrak B$ is:

Example

Let $\mathfrak{A}=(\mathbb{N},<^{\mathbb{N}},+^{\mathbb{N}})$ and $\mathfrak{B}=(\mathbb{O},<^{\mathbb{O}},+^{\mathbb{O}})$. Here \mathbb{O} is the set of odd non-negative integers, $<^{\mathbb{O}}$ is the "less than" relation on \mathbb{O} , etc.

▶ Then an isomorphism of $\mathfrak A$ onto $\mathfrak B$ is: There is NONE!

Example

Let $\mathfrak{A}=(\mathbb{N},<^{\mathbb{N}},+^{\mathbb{N}})$ and $\mathfrak{B}=(\mathbb{O},<^{\mathbb{O}},+^{\mathbb{O}})$. Here \mathbb{O} is the set of odd non-negative integers, $<^{\mathbb{O}}$ is the "less than" relation on \mathbb{O} , etc.

- ▶ Then an isomorphism of $\mathfrak A$ onto $\mathfrak B$ is: There is NONE!
- ► In fact, 𝔞 is not even a structure, because

Example

Let $\mathfrak{A}=(\mathbb{N},<^{\mathbb{N}},+^{\mathbb{N}})$ and $\mathfrak{B}=(\mathbb{O},<^{\mathbb{O}},+^{\mathbb{O}})$. Here \mathbb{O} is the set of odd non-negative integers, $<^{\mathbb{O}}$ is the "less than" relation on \mathbb{O} , etc.

- ▶ Then an isomorphism of $\mathfrak A$ onto $\mathfrak B$ is: There is NONE!
- ▶ In fact, $\mathfrak B$ is not even a structure, because $\mathbb O$ is not closed under addition.

Let $\mathfrak{R} = (R, <)$. Which of the following functions h are automorphisms of \mathfrak{R} ?

► The identity function.

Let $\mathfrak{R} = (R, <)$. Which of the following functions h are automorphisms of \mathfrak{R} ?

► The identity function. YES

- ► The identity function. YES
- h(a) = a + 3

- ► The identity function. YES
- ► h(a) = a + 3 YES

- ► The identity function. YES
- ► h(a) = a + 3 YES
- ▶ h(a) = a 3

- ► The identity function. YES
- ▶ h(a) = a + 3 YES
- ► h(a) = a 3 YES

- ► The identity function. YES
- ► h(a) = a + 3 YES
- ► h(a) = a 3 YES
- h(a) = 2a

- ► The identity function. YES
- ► h(a) = a + 3 YES
- ► h(a) = a 3 YES
- h(a) = 2a YES

- ► The identity function. YES
- ► h(a) = a + 3 YES
- ► h(a) = a 3 YES
- h(a) = 2a YES
- ▶ h(a) = -a

- ► The identity function. YES
- ▶ h(a) = a + 3 YES
- ► h(a) = a 3 YES
- h(a) = 2a YES
- h(a) = -a NO

- ► The identity function. YES
- ▶ h(a) = a + 3 YES
- ► h(a) = a 3 YES
- h(a) = 2a YES
- \blacktriangleright h(a) = -a NO
- \blacktriangleright $h(a) = k \times a + l$

- ► The identity function. YES
- ► h(a) = a + 3 YES
- ► h(a) = a 3 YES
- h(a) = 2a YES
- h(a) = -a NO
- ▶ $h(a) = k \times a + l$ YES provided k > 0

- ► The identity function. YES
- ► h(a) = a + 3 YES
- ► h(a) = a 3 YES
- h(a) = 2a YES
- \blacktriangleright h(a) = -a NO
- ▶ $h(a) = k \times a + l$ YES provided k > 0
- $h(a) = a^3$

- ► The identity function. YES
- ► h(a) = a + 3 YES
- ► h(a) = a 3 YES
- h(a) = 2a YES
- h(a) = -a NO
- ▶ $h(a) = k \times a + l$ YES provided k > 0
- $h(a) = a^3$ YES

- ► The identity function. YES
- ► h(a) = a + 3 YES
- ► h(a) = a 3 YES
- h(a) = 2a YES
- h(a) = -a NO
- ▶ $h(a) = k \times a + l$ YES provided k > 0
- $h(a) = a^3$ YES
- $h(a) = a^2$

- ► The identity function. YES
- ► h(a) = a + 3 YES
- ► h(a) = a 3 YES
- h(a) = 2a YES
- h(a) = -a NO
- ▶ $h(a) = k \times a + l$ YES provided k > 0
- $h(a) = a^3$ YES
- $h(a) = a^2$ NO

Let
$$\mathfrak{N} = (\mathbb{N}, <)$$
.

Let
$$\mathfrak{N} = (\mathbb{N}, <)$$
.

▶ The identity function is an automorphism of \mathfrak{A} ;

Let
$$\mathfrak{N} = (\mathbb{N}, <)$$
.

▶ The identity function is an automorphism of \mathfrak{A} ; what about others?

Let
$$\mathfrak{N} = (\mathbb{N}, <)$$
.

- ▶ The identity function is an automorphism of \mathfrak{A} ; what about others?
- ▶ Suppose *h* is an automorphism of \mathfrak{N} , h(0) =

Let
$$\mathfrak{N} = (\mathbb{N}, <)$$
.

- \blacktriangleright The identity function is an automorphism of \mathfrak{A} ; what about others?
- ▶ Suppose *h* is an automorphism of \mathfrak{N} , h(0) = 0

Let $\mathfrak{N} = (\mathbb{N}, <)$.

- \blacktriangleright The identity function is an automorphism of \mathfrak{A} ; what about others?
- ▶ Suppose *h* is an automorphism of \mathfrak{N} , h(0) = 0
- ▶ Suppose *h* is an automorphism of \mathfrak{N} , h(1) =

Let $\mathfrak{N} = (\mathbb{N}, <)$.

- \blacktriangleright The identity function is an automorphism of \mathfrak{A} ; what about others?
- ▶ Suppose *h* is an automorphism of \mathfrak{N} , h(0) = 0
- ▶ Suppose h is an automorphism of \mathfrak{N} , h(1) = 1

Let
$$\mathfrak{N} = (\mathbb{N}, <)$$
.

- ▶ The identity function is an automorphism of \mathfrak{A} ; what about others?
- ▶ Suppose *h* is an automorphism of \mathfrak{N} , h(0) = 0
- ▶ Suppose *h* is an automorphism of \mathfrak{N} , h(1) = 1
- ▶ In general, if h is an automorphism of \mathfrak{N} , h(n) =

Let
$$\mathfrak{N} = (\mathbb{N}, <)$$
.

- ▶ The identity function is an automorphism of \mathfrak{A} ; what about others?
- ▶ Suppose *h* is an automorphism of \mathfrak{N} , h(0) = 0
- ▶ Suppose *h* is an automorphism of \mathfrak{N} , h(1) = 1
- ▶ In general, if h is an automorphism of \mathfrak{N} , h(n) = n

Let
$$\mathfrak{N} = (\mathbb{N}, <)$$
.

- \blacktriangleright The identity function is an automorphism of \mathfrak{A} ; what about others?
- ▶ Suppose *h* is an automorphism of \mathfrak{N} , h(0) = 0
- Suppose h is an automorphism of \mathfrak{N} , h(1) = 1
- ▶ In general, if h is an automorphism of \mathfrak{N} , h(n) = n
- \triangleright Therefore, the identity function is the only automorphism of \mathfrak{N} .

A special kind of isomorphisms:

Definition

Let $\mathfrak{A}=(A,\ldots)$ and $\mathfrak{B}=(B,\ldots)$ be structures for $\mathbb{L}.$ \mathfrak{A} is a substructure of \mathfrak{B} (written $\mathfrak{A}\subseteq\mathfrak{B}$) if:

A special kind of isomorphisms:

Definition

Let $\mathfrak{A}=(A,\ldots)$ and $\mathfrak{B}=(B,\ldots)$ be structures for $\mathbb{L}.$ \mathfrak{A} is a substructure of \mathfrak{B} (written $\mathfrak{A}\subseteq\mathfrak{B}$) if:

▶ *A* ⊆ *B*;

A special kind of isomorphisms:

Definition

Let $\mathfrak{A}=(A,\ldots)$ and $\mathfrak{B}=(B,\ldots)$ be structures for $\mathbb{L}.$ \mathfrak{A} is a substructure of \mathfrak{B} (written $\mathfrak{A}\subseteq\mathfrak{B}$) if:

- $ightharpoonup A \subseteq B$;
- ▶ for every *k*-ary predicate symbol *P*:

$$P^{\mathfrak{A}}=P^{\mathfrak{B}}\cap A^k$$

(Note this is not the same as saying $P^{\mathfrak{A}} \subseteq P^{\mathfrak{B}}$);

A special kind of isomorphisms:

Definition

Let $\mathfrak{A}=(A,\ldots)$ and $\mathfrak{B}=(B,\ldots)$ be structures for $\mathbb{L}.$ \mathfrak{A} is a substructure of \mathfrak{B} (written $\mathfrak{A}\subseteq\mathfrak{B}$) if:

- $ightharpoonup A \subseteq B$;
- ▶ for every k-ary predicate symbol P:

$$P^{\mathfrak{A}}=P^{\mathfrak{B}}\cap A^k$$

(Note this is not the same as saying $P^{\mathfrak{A}} \subseteq P^{\mathfrak{B}}$);

▶ for every k-ary function symbol f and every k-tuple (a_1, \ldots, a_k) of elements of A:

$$f^{\mathfrak{A}}(a_1,\ldots,a_k)=f^{\mathfrak{B}}(a_1,\ldots,a_k);$$

A special kind of isomorphisms:

Definition

Let $\mathfrak{A}=(A,\ldots)$ and $\mathfrak{B}=(B,\ldots)$ be structures for $\mathbb{L}.$ \mathfrak{A} is a substructure of \mathfrak{B} (written $\mathfrak{A}\subseteq\mathfrak{B}$) if:

- $ightharpoonup A \subseteq B$;
- ▶ for every *k*-ary predicate symbol *P*:

$$P^{\mathfrak{A}}=P^{\mathfrak{B}}\cap A^k$$

(Note this is not the same as saying $P^{\mathfrak{A}} \subseteq P^{\mathfrak{B}}$);

▶ for every k-ary function symbol f and every k-tuple (a_1, \ldots, a_k) of elements of A:

$$f^{\mathfrak{A}}(a_1,\ldots,a_k)=f^{\mathfrak{B}}(a_1,\ldots,a_k);$$

• for every constant symbol c, $c^{\mathfrak{A}} = c^{\mathfrak{B}}$.

Examples

Example

Let

$$ightharpoonup \mathfrak{E} = (\mathbb{E}, <^{\mathbb{E}}, +^{\mathbb{E}}, \times^{\mathbb{E}}).$$

Then \mathfrak{E} is a substructure of \mathfrak{N} .

Examples

Example

Let

- $ightharpoonup \mathfrak{N} = (\mathbb{N}, <^{\mathbb{N}}, +^{\mathbb{N}}, \times^{\mathbb{N}})$
- $\mathbf{\mathfrak{E}} = (\mathbb{E}, <^{\mathbb{E}}, +^{\mathbb{E}}, \times^{\mathbb{E}}).$

Then \mathfrak{E} is a substructure of \mathfrak{N} .

Question

Let

- $\mathfrak{A} = (\{0,1,2,3\}, P^{\mathfrak{A}}), \text{ where } P^{\mathfrak{A}} = \{0,1,2\};$
- $\mathfrak{B} = (\{0,1\}, P^{\mathfrak{B}}), \text{ where } P^{\mathfrak{B}} = \{0\}.$

Is \mathfrak{B} is a substructure of \mathfrak{A} ?

Examples

Example

Let

$$\mathbb{N} = (\mathbb{N}, <^{\mathbb{N}}, +^{\mathbb{N}}, \times^{\mathbb{N}})$$

$$\mathbf{\mathfrak{E}} = (\mathbb{E}, <^{\mathbb{E}}, +^{\mathbb{E}}, \times^{\mathbb{E}}).$$

Then \mathfrak{E} is a substructure of \mathfrak{N} .

Question

Let

•
$$\mathfrak{A} = (\{0,1,2,3\}, P^{\mathfrak{A}}), \text{ where } P^{\mathfrak{A}} = \{0,1,2\};$$

•
$$\mathfrak{B} = (\{0,1\}, P^{\mathfrak{B}}), \text{ where } P^{\mathfrak{B}} = \{0\}.$$

Is \mathfrak{B} is a substructure of \mathfrak{A} ?

Answer

No. Because
$$P^{\mathfrak{A}} \cap \{0,1\} = \{0,1\} \neq \{0\} = P^{\mathfrak{B}}$$
.

Notation: Function Composition

Definition

If f and g are functions, then $f \circ g$ is the composition of f and g. That is,

$$f\circ g(a)=f(g(a)).$$

Notation: Function Composition

Definition

If f and g are functions, then $f \circ g$ is the composition of f and g. That is,

$$f\circ g(a)=f(g(a)).$$

Example

Suppose $s:V\to |\mathfrak{A}|$ is an assignment function for \mathfrak{A} , and h is a homomorphism from \mathfrak{A} to \mathfrak{B} . Then $h\circ s$ is an assignment function for \mathfrak{B} .

The Value of Terms Under a Homomorphism

Lemma

Let $\mathfrak A$ and $\mathfrak B$ be structures for the language $\mathbb L$. Let h be a homomorphism from $\mathfrak A$ to $\mathfrak B$, and $s:V\to |\mathfrak A|$ be an assignment for $\mathfrak A$. Then for every term t of $\mathbb L$,

$$h(\overline{s}(t)) = \overline{h \circ s}(t).$$

The Value of Terms Under a Homomorphism

Lemma

Let $\mathfrak A$ and $\mathfrak B$ be structures for the language $\mathbb L$. Let h be a homomorphism from $\mathfrak A$ to $\mathfrak B$, and $s:V\to |\mathfrak A|$ be an assignment for $\mathfrak A$. Then for every term t of $\mathbb L$,

$$h(\overline{s}(t)) = \overline{h \circ s}(t).$$

Proof.

By induction on t.

Theorem (The Homomorphism Theorem)

$$\vDash_{\mathfrak{A}} \varphi[s] \Longleftrightarrow \vDash_{\mathfrak{B}} \varphi[h \circ s]$$

Theorem (The Homomorphism Theorem)

Let h be a homomorphism from $\mathfrak A$ to $\mathfrak B$ and s be an assignment function for $\mathfrak A$. The statement

$$\vDash_{\mathfrak{A}} \varphi[s] \Longleftrightarrow \vDash_{\mathfrak{B}} \varphi[h \circ s]$$

(a) is true for every quantifier-free wff φ not containing $\dot{=}$;

Theorem (The Homomorphism Theorem)

$$\models_{\mathfrak{A}} \varphi[s] \iff \models_{\mathfrak{B}} \varphi[h \circ s]$$

- (a) is true for every quantifier-free wff φ not containing $\dot{=}$;
- (b) is true for every quantifier-free wff φ if h is one-to-one;

Theorem (The Homomorphism Theorem)

$$\models_{\mathfrak{A}} \varphi[s] \iff \models_{\mathfrak{B}} \varphi[h \circ s]$$

- (a) is true for every quantifier-free wff φ not containing \doteq ;
- (b) is true for every quantifier-free wff φ if h is one-to-one;
- (c) is true for every wff φ not containing \doteq if h is onto;

Theorem (The Homomorphism Theorem)

$$\models_{\mathfrak{A}} \varphi[s] \iff \models_{\mathfrak{B}} \varphi[h \circ s]$$

- (a) is true for every quantifier-free wff φ not containing \doteq ;
- (b) is true for every quantifier-free wff φ if h is one-to-one;
- (c) is true for every wff φ not containing \doteq if h is onto;
- (d) is true for every wff φ if h is an isomorphism of $\mathfrak A$ onto $\mathfrak B$ (i.e., $\mathfrak A\cong \mathfrak B.$

Theorem (The Homomorphism Theorem)

Let h be a homomorphism from $\mathfrak A$ to $\mathfrak B$ and s be an assignment function for $\mathfrak A$. The statement

$$\vDash_{\mathfrak{A}} \varphi[s] \Longleftrightarrow \vDash_{\mathfrak{B}} \varphi[h \circ s]$$

- (a) is true for every quantifier-free wff φ not containing \doteq ;
- (b) is true for every quantifier-free wff φ if h is one-to-one;
- (c) is true for every wff φ not containing \doteq if h is onto;
- (d) is true for every wff φ if h is an isomorphism of $\mathfrak A$ onto $\mathfrak B$ (i.e., $\mathfrak A\cong \mathfrak B.$

Proof.

By induction on φ .

Corollary

If $\mathfrak{A} \cong \mathfrak{B}$, then $\mathfrak{A} \equiv \mathfrak{B}$.

Corollary

If $\mathfrak{A} \cong \mathfrak{B}$, then $\mathfrak{A} \equiv \mathfrak{B}$.

Question

Do you think the converse is true?

Corollary

If $\mathfrak{A} \cong \mathfrak{B}$, then $\mathfrak{A} \equiv \mathfrak{B}$.

Question

Do you think the converse is true?

Answer

No.

Corollary

If $\mathfrak{A} \cong \mathfrak{B}$, then $\mathfrak{A} \equiv \mathfrak{B}$.

Question

Do you think the converse is true?

Answer

No. Take $\mathfrak{R}=(\mathbb{R},<)$ and $\mathfrak{Q}=(\mathbb{Q},<)$ as an counter example.

Corollary (Automorphism Theorem)

Let h be an automorphism of \mathfrak{A} . Let R be an n-rary relation on $|\mathfrak{A}|$ that is definable in \mathfrak{A} . For every n-tuple (a_1, \ldots, a_n) of elements of \mathfrak{A} :

$$(a_1,\ldots,a_n)\in R\Longleftrightarrow (h(a_1),\ldots,h(a_n))\in R.$$

Corollary (Automorphism Theorem)

Let h be an automorphism of \mathfrak{A} . Let R be an n-rary relation on $|\mathfrak{A}|$ that is definable in \mathfrak{A} . For every n-tuple (a_1, \ldots, a_n) of elements of \mathfrak{A} :

$$(a_1,\ldots,a_n)\in R\Longleftrightarrow (h(a_1),\ldots,h(a_n))\in R.$$

We often use this lemma to show certain relations are not definable:

Corollary (Automorphism Theorem)

Let h be an automorphism of \mathfrak{A} . Let R be an n-rary relation on $|\mathfrak{A}|$ that is definable in \mathfrak{A} . For every n-tuple (a_1, \ldots, a_n) of elements of \mathfrak{A} :

$$(a_1,\ldots,a_n)\in R\Longleftrightarrow (h(a_1),\ldots,h(a_n))\in R.$$

We often use this lemma to show certain relations are not definable:

Example

Let $\mathfrak{R}=(\mathbb{R},<)$. Its subset $\mathbb N$ is not definable in \mathfrak{R}

Corollary (Automorphism Theorem)

Let h be an automorphism of \mathfrak{A} . Let R be an n-rary relation on $|\mathfrak{A}|$ that is definable in \mathfrak{A} . For every n-tuple (a_1,\ldots,a_n) of elements of \mathfrak{A} :

$$(a_1,\ldots,a_n)\in R\Longleftrightarrow (h(a_1),\ldots,h(a_n))\in R.$$

We often use this lemma to show certain relations are not definable:

Example

Let $\mathfrak{R}=(\mathbb{R},<)$. Its subset \mathbb{N} is not definable in \mathfrak{R} because $h(a)=a^3$ is an automorphism of \mathfrak{R} .