

Learning Shared Subgraphs in Ising Model Pairs

Burak Varıcı, Saurabh Sihag, and Ali Tajer

Rensselaer Polytechnic Institute

Multiple Information Networks

- Graphical model: describe complex dependency structures.
- Information layer → distinct data distribution → distinct representation.

Green vertices and edges between : $\mathcal{G}_s \triangleq (V_s, E_s)$

- Shared subgraphs joint information
- Multiple brain imaging techniques → how to utilize together?
- Finding similar molecular structures for drug discovery.

Structure Learning

- Graph samples: $\mathbf{X}_1 \triangleq [X_1^1,\ldots,X_1^p]$, $\mathbf{X}_1 \sim f_1$ $\mathbf{X}_2 \triangleq [X_2^1,\ldots,X_2^p]$, $\mathbf{X}_2 \sim f_2$
- Objective: Observe $\mathbf{X}_1, \mathbf{X}_2 \to \mathrm{estimate} \ \mathcal{G}_s = (V_s, E_s)$ Estimate $E_1, E_2 \to E_s = E_1 \cap E_2$: vastly inefficient
- Introduce joint learning of only \mathcal{G}_s
- Ising Model: $f(\mathbf{X}) = \frac{1}{Z} \exp\left(\sum_{(u,v)\in E} \lambda X^u X^v\right)$

Problem Formulation

• Exact recovery: Perfectly learn \mathcal{G}_s

$$\mathsf{P}_{\mathsf{L}}(\mathcal{I}_p^{\mathsf{s}}) \triangleq \max_{\mathcal{G}_1, \mathcal{G}_2 \in \mathcal{I}_p} \mathbb{P}(|E_s \Delta \hat{E}_s| \neq 0)$$

• Vertex sample complexity: $N(n_T) = \sum_{k=1}^{n_T} |\hat{V}_s(k)|$

 \downarrow \downarrow number of samples adaptive V_s estimation

Pruning

• Form coarse estimates $\hat{V}_s(k), \hat{E}_s(k)$ at each iteration k with the rule:

$$\min_{i \in \{1,2\}} \bar{\mathbb{E}}_k[X_i^u X_i^v] > \tanh \lambda - \sqrt{\alpha \log p / 2k}$$

- Importance: Narrow down sampling to **only** V_s adaptively, results in significant savings in sampling.
- At any iteration k, $\mathbb{P}(V_s \subseteq \hat{V}_s(k)) \ge 1 2p^{2-\alpha}$
- Sample complexity: $k = O\left(\frac{\alpha \log p}{\lambda^2}\right)$ in correlation decay regime ensures

$$\mathbb{P}(\hat{V}_s(k) = V_s) \ge 1 - 2p^{2-\alpha}$$

Joint Learning

Joint multiplicative updates at every iteration

$$w_i^{uv}(k+1) = w_i^{uv}(k) \cdot \exp\left(\frac{\beta}{2}(\ell_1^{uv}(k) + \ell_2^{uv}(k))\right), \quad u, v \in \hat{V}_s(k)$$

- Importance: Joint updates improve learning of E_s , and samples from only $\hat{V}_s(k)$ suffice.
- Sample complexity: When \mathcal{G}_s is isolated, and pruning localizes V_s , for ensuring $\mathsf{P}_\mathsf{L}(\mathcal{I}_p^\mathsf{s}) \leq (1-\frac{2}{\rho})$,

Joint (ours):
$$O\left(\frac{1}{\lambda^2}\exp(\lambda d)\log\frac{\rho q}{\lambda}\right)$$
 where $q=|V_s|< p$

Independent: $O\left(\frac{1}{\lambda^2}\exp(\lambda d)\log\frac{\rho p}{\lambda}\right)$ (Klivans and Meka, FOCS 2017)

Simulations

- Generate Erdös-Renyi random graphs with p=200 vertices.
- Baseline: Learn E_1, E_2 separately and form $E_s = E_1 \cap E_2$.
- Comparison with sparse logistic regression (Wu et al. NeurIPS'19).

• Comparison with correlation thresholding (Anandkumar et al. 2010).

Algorithm can handle various subgraph sizes q.

Conclusions

- Novel problem of learning the shared structure of two graphs.
- An algorithmic framework and its evaluation in different regimes.
- Sample complexity analysis for specific settings.