Estacionariedad débil en registros polisomnográficos

Como marcador de posible deterioro cognitivo en adultos mayores

Julio Cesar Enciso Alva Enero de 2018

Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo

Introducción

Antecedentes

- Encuesta Intercensal 2015 (INEGI): 12,500,000 adultos mayores, 10.4 % de la población¹
- Posible relación trastornos del sueño y DC en la vejez²
- Epidemiología del DC en Hidalgo: eficiencia del sueño³
- Se buscan marcadores clínicos para el diagnóstico de DC

¹INEGI, Encuesta Intercensal 2015.

 $^{^2}$ Seiko Miyata y col. "Poor sleep quality impairs cognitive performance in older adults". En: Journal of Sleep Research 22.5 (2013), págs. 535-541.

³G. R. Vázquez-Tagle Gallegos y col. *Correlación inter-hemisférica durante el sueño MOR del Adulto Mayor con Deterioro Cognitivo*. Congreso Nacional, Sociedad Mexicana de Ciencias Fisiológicas. Campeche, México. 2016.

Pregunta de investigación

¿Las caracterización de registros de PSG como series de tiempo débilmente estacionarias, puede ser usada como marcador diagnóstico del deterioro cognitivo en adultos mayores?

Definición (Estacionariedad débil)

Un proceso estocástico es débilmente estacionario si y sólo si para cualesquiera tiempos admisibles t, s se tiene que

- $E[X(t)] = \mu_X$
- $Var(X(t)) = \sigma_X^2$
- $Cov(X(t), X(s)) = \rho_X(s t)$

Con μ_X , σ_X^2 constantes, $\rho_X(\tau)$ únicamente depende de τ

4

Definición (Función de densidad espectral, FDE)

Sea $\{X(t)\}$ un proceso estocástico a tiempo continuo, débilmente estacionario

$$h(\omega) = \lim_{T \to \infty} E\left[\frac{|G_T(\omega)|^2}{2T}\right]$$

Donde
$$G_T(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-T}^T X(t) e^{-i\omega t} dt$$

FDE vs Autocorrelación

Teorema (Wiener-Khinchin)

Una condición suficiente y necesaria para que ρ sea función de autocorrelación para algún proceso a tiempo continuo débilmente estacionario y estocásticamente continuo, $\{X(t)\}$, es que exista una función F tal que

- Es monótonamente creciente
- $F(-\infty) = 0$
- $F(+\infty) = 1$
- Para todo $\tau \in \mathbb{R}$ se cumple que

$$\rho(\tau) = \int_{-\infty}^{\infty} e^{i\omega\tau} dF(\omega)$$

Representación de Wold-Cramér

Teorema

Sea $\{X(t)\}$ un proceso a tiempo continuo, débilmente estacionario, estocásticamente continuo, de media 0 y varianza finita. Entonces, existe un proceso ortogonal $\{Z(\omega)\}$ tal que

$$X(t) = \int_{-\infty}^{\infty} e^{it\omega} dZ(\omega)$$

El proceso $\{Z(t)\}$ cumple para todo ω

- $E[dZ(\omega)] = 0$
- $E\left[\left|dZ(\omega)\right|^2\right] = dH(\omega)$
- $Cov(dZ(\omega), dZ(\lambda)) = 0 \Leftrightarrow \omega \neq \lambda$

Con H la SDF integrada de $\{X(t)\}$

Espectro evolutivo

Se consideran procesos no-estacionarios, estocásticamente continuos, de media cero y varianza finita, y que admitan una representación de la forma

$$X(t) = \int_{-\pi}^{\pi} A(t, \omega) e^{it\omega} dZ(\omega)$$

tal que

- $Cov(dZ(\omega), dZ(\lambda)) = 0 \Leftrightarrow \omega \neq \lambda$
- $E\left[\left|dZ(\omega)\right|^2\right] = \mu(\omega)$

El **espectro evolutivo** fue definido por Priestley⁴ como

$$f(t, \omega) = |A(t, \omega)|^2$$

⁴Maurice B Priestley. "Evolutionary Spectra and Non-stationary Processes". En: Journal of the Royal Statistical Society. Series B (Methodological) 27.2 (1965), págs. 204-237.

Definición (Estimador de doble ventana)

Se define a \hat{f} , estimador para la f, como

$$\widehat{f}(t,\omega) = \int_{t-T}^{t} w_{T'}(u) |U(t-u,\omega)|^2 du$$

- $U(t, \omega) = \int_{t-T}^{t} g(u)X(t-u)e^{i\omega(t-u)}du$
- $2\pi \int_{-\infty}^{\infty} |g(u)|^2 du = \int_{-\infty}^{\infty} |\Gamma(\omega)|^2 d\omega = 1$
- $w_{\tau}(t) \geqslant 0$ para cualesquiera t, τ
- $w_{\tau}(t) \rightarrow 0$ cuando $|t| \rightarrow \infty$, para todo τ
- $\int_{-\infty}^{\infty} w_{\tau}(t) dt = 1$ para todo τ
- $\int_{-\infty}^{\infty} (w_{\tau}(t))^2 dt < \infty$ para todo τ
- $\exists C \text{ tal que } \lim_{\tau \to \infty} \tau \int_{-\infty}^{t} |W_{\tau}(\lambda)|^2 d\lambda = C$

Proposición

El estimador $Y(t,\omega) = log\left(\widehat{f}(t,\omega)\right)$ satisface que

• $E[Y(t, \omega)] \approx log(f(t, \omega))$ item $Var(Y(T, \omega)) \approx \frac{C}{\tau} \int_{-\infty}^{\infty} |\Gamma(\theta)|^4 d\theta$

Más aún, puede escribirse

$$Y(t, \omega) = \log (f(t, \omega)) + \epsilon(t, \omega)$$

donde las variables $\varepsilon(t,\omega)$ satisfacen que

- $E[\varepsilon(t,\omega)] = 0$
- $\operatorname{Var}(\varepsilon(t,\omega)) \approx \frac{C}{\tau} \int_{-\infty}^{\infty} |\Gamma(\theta)|^4 d\theta$

Metodología

Sujetos

Criterios de inclusión:

- Firma del consentimiento informado
- Edad entre 60 y 85 años
- Diestros (mano derecha dominante)
- Sin ansiedad, depresión o síndromes focales
- No usar medicamentos o sustancias para dormir
- Voluntario para el registro de PSG

10 participantes: 5 CTL, 5 PDC

Participantes

	Sexo	Edad	Escol.	Neuropsi	MMSE	SATS	KATZ	GDS
Grupo CTL								
VCR	F	59	12	107	29	21	0	3
MJH	F	72	9	113	30	18	0	0
JAE	F	78	5	102	28	19	0	5
GHA	M	65	9	107.5	30	23	0	7
MFGR	F	67	11	115	30	18	0	
$\widehat{\mu}$		68.2	9.2	108.9	29.4	19.8	0.0	3.0
σ		7.2	2.7	5.2	0.9	2.2	0.0	3.0
Grupo PDC								
CLO	F	68	5	81	28	22	1	6
RLO	F	63	9	90	29	20	0	3
RRU	M	69	9	85	27	10	0	3
JGZ	M	65	11	87	25	20	0	1
AEFP	M	73	8	96	29		0	2
$\widehat{\mu}$		67.6	8.4	87.8	27.4	18.0	0.2	3.0
σ		3.4	2.2	5.6	1.8	5.4	0.4	1.9

Sueño Proceso vital cíclico complejo y activo

- **S. MOR** Fase más profunda, alta actividad cerebral, se producen ensoñaciones, *sueño paradójico*
 - Movimientos oculares rápidos
 - Atonía muscular
 - Actividad cerebral desincronizada

Polisomnograma: EEG

Polisomnograma: EOG + EMG

Registro de PSG

Registro de PSG

	Frecuencia de	Tot	tal		MOR*		
	muestreo [Hz]	Puntos	Tiempo	Puntos	Tiempo	%	
Grupo CTL							
VCR	200	5166000	7:10:30	438000	0:36:30	8.48	
MJH	512	15851520	8:36:00	1950720	1:03:30	12.31	
JAE	512	13931520	7:33:30	2626560	1:25:30	18.85	
GHA	200	6558000	9:06:30	330000	0:27:30	5.03	
MFGR	200	4932000	6:51:00	570000	0:47:30	11.56	
$\widehat{\mu}$			7:51:30		0:52:06	11.25	
σ̂			0:57:36		0:23:00	5.13	
Grupo PDC							
CLO	512	14499840	7:52:00	2027520	1:06:00	13.98	
RLO	512	12994560	7:03:00	1520640	0:49:30	11.70	
RRU	200	2484000	3:27:00	228000	0:19:00	9.18	
JGZ	512	18539520	10:03:30	506880	0:16:30	2.73	
AEFP	512	14699520	7:58:30	629760	0:20:30	4.28	
$\widehat{\mu}$			7:16:48		0:34:18	8.38	
$\hat{\sigma}$			2:24:43		0:22:14	4.79	

Análisis de estacionariedad

- Cada época fue clasificada **estacionaria en el sentido de PSR** no se rechaza la hipótesis de estacionariedad $(\alpha < 0.05)$
- Debido a la variabilidad entre sujetos, se consideró la proporción de épocas estacionarias
- El énfasis de las comparaciones es entre MOR y NMOR

Patrones visuales

Patrones visuales

Diferentes tamaños de ventana

MOR vs NMOR, individual

MOR vs NMOR, grupal

Gpo. Control vs Gpo. PDC

Estacionariedad local⁵

 $^{^5}Bernard$ Allan Cohen y Anthony Sances. "Stationarity of the human electroencephalogram". En: Medical and Biological Engineering and Computing 15.5 (1977), pags. 513-518.

Conclusiones

- Presencia proporcional de estacionariedad débil, significativamente diferente en MOR vs NMOR en grupo Control
- Análisis para un AM con parálisis facial, detectó este padecimiento
- Consistente con trabajos anteriores
- Patrones visuales, predicen parcialmente sueño MOR en el grupo Control
- Registros de PSG en adultos mayores, localmente estacionarias

Trabajo a futuro

- Porcentaje estacionariedad, patrones visuales: marcadores de no-DC
- Marcador conocido del DC: 'enlentecimiento' de actividad cerebral⁶
- Prueba de Priestley-Subba Rao: estimadores locales para SDF
 - Los estimadores usados ¿pueden detectar enlentecimiento?
- Patrones visuales, auxiliares para detección de MOR en de PSG
 - Identificabilidad de MOR a través de patrones, ¿marcador clínico?

 $^{^6}$ Judith Becerra y col. "Neurofeedback in healthy elderly human subjects with electroencephalographic risk for cognitive disorder". En: *Journal of Alzheimer's Disease* 28.2 (2012), págs. 357-367.

Gracias por su atención