Computer Graphics Lecture 03: Mathematics for Computer Graphics

DR. ELVIS S. LIU
SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
SPRING 2018

Mathematics for Computer Graphics (a revision)

- Mathematics is very important in a traditional Computer Graphics course
 - In the old times, almost half of this course is about math
 - The heaviest math course after Discrete Math and Numerical Analysis for Computer Science students
- Mainly in Linear Algebra
- Calculus (Well may be.....)

Different Objects

Points

Represent locations

Vectors

 Represent movement, force, displacement from A to B

Normals

Represent orientation, unit length

Coordinates

 Numerical Representation of the above objects in a given coordinate system

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Points and Vectors

LECTURE 03: MATHEMATICS FOR COMPUTER GRAPHICS

Points

- Much of Computer Graphics involves discussion of points in 2D or 3D
- •Usually we write such points as Cartesian Coordinates, e.g.
 - e.g. p = (x,y) or q = (x,y,z)
- Points are scalar quantity

Vectors

- •In computer graphics we usually represent coordinates by vector
- •Is represented by bold italic serif
 - e.g. *a AB*
- non-bold italic serif accented by a right arrow
 - e.g.

Difference between Points and Vectors

- Vector represents direction
- The 0 vector has a fundamental meaning
 - No movement
 - No force
- It is meaningful to add vectors, not points
 - e.g. London location + New York location = ?
- Moving car
 - Points describe location of car elements
 - Vector describe velocity, distance between pairs of points
 - If a moving car is translated to a different road
 - The points (location) change
 - The Vectors (speed, distance between points) do not

Vector Notations

In the Computer Vision community, column vectors are often used

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_m \end{bmatrix}$$

 On the other hand, in the Computer Graphics community, row vectors are often used

$$\left[\,x_1\;x_2\;\ldots\;x_m\,
ight]^{
m T}$$

 The transpose (indicated by T) of a row vector is a column vector, and vice versa

Basic Vector Algebra

 Just as we can perform basic operation such as addition, multiplication etc. on scalar vales, so we can generalise such operations to vectors

Vector Addition

- When we add two vectors, we simply sum their elements at corresponding positions
- •For a pair of 2D vectors $\vec{u} = \begin{bmatrix} a \\ b \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} c \\ d \end{bmatrix}$, we have $\vec{u} + \vec{v} = \begin{bmatrix} a+c \\ b+d \end{bmatrix}$

Vector Subtraction

 Vector subtraction is identical to the addition operation with a sign change, since when we negate a vector we simply flip the sign on its elements

$$\bullet - \vec{v} = \begin{bmatrix} -c \\ -d \end{bmatrix}$$

$$\cdot \vec{u} - \vec{v} = \vec{u} + (-\vec{v}) = \begin{bmatrix} a - c \\ b - d \end{bmatrix}$$

Vector Scaling

•If we wish to increase or reduce a vector quantity by a scale factor λ then we multiply each element in the vector by λ

$$\cdot \lambda \vec{u} = \begin{bmatrix} \lambda a \\ \lambda b \end{bmatrix}$$

Vector Magnitude

- •We write the length of magnitude of a vector \vec{v} as |v|
- •We use Pythagoras' theorem to compute the magnitude

$$\circ |v| = \sqrt{x^2 + y^2}$$

Vector Normalisation

 We can normalise a vector a by scaling it by the reciprocal of its magnitude

$$\hat{v} = \frac{\vec{v}}{|v|}$$

- •This produces a normalised vector pointing in the same direction as the original (un-normalised) vector, but with unit length (i.e. length of 1)
- We use the superscript 'hat' notation to indicate that a vector is normalized

Dot Product

- •we can use the dot product to compute the angle θ between two vectors (if we normalise them first)
- $\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\theta$
- •This relationship can be used to define the concept of an angle between vectors in n-dimensional spaces
- It is also fundamental to most lighting calculations in Graphics,
 - e.g. to determine the angle of a surface (normal) to a light source

Cross Product

- Taking the cross product (or "vector product") of two vectors returns us a vector orthogonal to those two vectors
- Give two vectors

$$\vec{u} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix} \text{ and } \vec{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

•The cross product of $\overrightarrow{u} \times \overrightarrow{v}$ is defined as

$$\vec{u} \times \vec{v} = \begin{bmatrix} u_x - v_x \\ u_y - v_y \\ u_z - v_z \end{bmatrix}$$

Cross Product (cont.)

- In this course we only consider the definition of the cross product in 3D
- An important Computer Graphics application of the cross product is to determine a vector that is orthogonal to its two inputs
- •This vector is said to be normal to those inputs, and is written \overrightarrow{w} in the figure
- •The cross product of $\vec{u} \times \vec{v}$ can also be defined as
 - $\vec{u} \times \vec{v} = |u||v| \sin \theta \vec{w}$

Reference Frames

LECTURE 03: MATHEMATICS FOR COMPUTER GRAPHICS

Cartesian Reference Frame

- When we write down a vector in Cartesian coordinates, for example $\vec{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, we interpret that notation as "the point p is 3 units from the origin travelling in the positive direction of the x axis, and 2 units from the origin travelling in the positive direction of the y axis"
- We can write this more generally and succinctly as:

$$\vec{v} = x\hat{\imath} + y\hat{\jmath}$$

• where
$$\hat{\imath} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\hat{\jmath} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

• We call the \hat{i} and \hat{j} the basis vectors of the Cartesian space, and together they form the basis set of that space

Cartesian Reference Frames (cont.)

- Sometimes we use the term reference frame to refer to the coordinate space, and we say that the basis set (\hat{i},\hat{j}) therefore defines the reference frame
- Commonly when working with 2D Cartesian coordinates we work in the reference frame defined by $\hat{\imath}=\begin{bmatrix}1\\0\end{bmatrix}$ and $\hat{\jmath}=\begin{bmatrix}0\\1\end{bmatrix}$
- However other choices of basis vector are equally valid, so long as the basis vectors are neither parallel nor anti-parallel (do not point in the same direction)
- We refer our standard reference frame as the root reference frame

Radial-Polar Reference Frame

- We have so far recapped on Cartesian coordinate systems. These describe vectors in terms of distance along each of the principal axes (e.g. x,y) of the space
- This Cartesian form is by far the most common way to represent vector quantities, like the location of points in space
- Sometimes it is preferable to define vectors in terms of length, and their orientation. This is called radial-polar form (often simply abbreviated to 'polar form')

Radial-Polar Reference Frame (cont.)

- In the case of 2D point locations, we describe the point in terms of:
 - (a) its distance from the origin (r), and
 - \circ (b) the angle (θ) between a vertical line (pointing in the positive direction of the y axis), and
 - the line subtended from the point to the origin
- To convert from Cartesian form $\begin{bmatrix} x \\ y \end{bmatrix}$ to polar form (r, θ) we consider a right-angled triangle of side x and y
- We can use Pythagoras' theorem to determine the length of hypotenuse r, and some basic trigonometry to reveal that $\theta = \tan(y/x)$ and so
- $r = \sqrt{x^2 + y^2}$
- $\theta = \tan^{-1} \frac{y}{x}$

Matrix Algebra

LECTURE 03: MATHEMATICS FOR COMPUTER GRAPHICS

Matrix

- A matrix is a rectangular array of numbers
- Both vectors and scalars are degenerate forms of matrices
- By convention we say that an $(n \times m)$ matrix has n rows and m columns
- For example a 2 x 2 matrices A and B are

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

Matrix Addition

- Matrices can be added, if they are of the same size
- This is achieved by summing the elements in one matrix with corresponding elements in the other matrix

•
$$A + B = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$

This is identical to vector addition

Matrix Scaling

- Matrices can also be scaled by multiplying each element in the matrix by a scale factor
- Again, this is identical to vector scaling

•
$$sA = \begin{bmatrix} sa_{11} & sa_{12} \\ sa_{21} & sa_{22} \end{bmatrix}$$

Matrix Multiplication

 Matrix multiplication is a cornerstone of many useful geometric transformations in Computer Graphics

•
$$AB = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

$$\bullet = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{21} + a_{22}b_{22} \end{bmatrix}$$

- In general each element c_{ij} of the matrix C = AB, where A is of size (n \times P) and B is of size (P \times m) has the form
- $c_{ij} = \sum_{k=1}^{P} a_{ik} b_{kj}$

Matrix Multiplication (cont.)

- Not all matrices are compatible for multiplication. In the previous example, A must have as many columns as B has rows
- matrix multiplication is non-commutative, which means that
 - BA ≠ AB, in general
- Finally, matrix multiplication is associative i.e.:
 - \circ ABC = (AB)C = A(BC)
- If the matrices being multiplied are of different (but compatible) sizes, then the complexity of evaluating such an expression varies according to the order of multiplication

Identity Matrix

- The identity matrix I is a special matrix that behaves like the number
 1 when multiplying scalars
 - i.e. it has no numerical effect
 - \circ IA = A
- The identity matrix has zeroes everywhere except the leading diagonal which is set to 1
- For example, the (2 x 2) identity matrix is
 - $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Matrix Inverse

- The identity matrix leads us to a definition of the inverse of a matrix, which we write
 - A⁻¹
- The inverse of a matrix, when pre- or post-multiplied by its original matrix, gives the identity:
 - $AA^{-1} = A^{-1}A = I$

Determinant

- To calculate the matrix inverse, we must learn about how to calculate the determinant
- Determinants are mathematical objects that are very useful in the analysis and solution of systems of linear equations
- Determinant of matrix A is commonly denoted det (A) or |A|
- A 2 x 2 determinant is defined to be

• Det
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

Matrix Inverse (cont.)

The matrix inverse of a 2 x 2 matrix A can be calculated as

$$A^{-1} = \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
$$= \frac{1}{a d - b c} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

- What about a 3 x 3 matrix?
 - It is a bit complicated......

Matrix Transposition

- Matrix transposition, just like vector transposition, is simply a matter of swapping the rows and columns of a matrix
- As such, every matrix has a transpose
- The transpose of A is written A^T

$$A^T = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$$

- For some matrices (the orthonormal matrices), the transpose actually gives us the inverse of the matrix
- We decide if a matrix is orthonormal by inspecting the vectors that make up the matrix's columns
 - \circ e.g. $\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$ and $\begin{bmatrix} a_{21} \\ a_{22} \end{bmatrix}$, these are sometimes called column vectors of the matrix