LDA Glass Classification

Липс Екатерина Константиновна гр. 5030102/10002

Постановка задачи

Цель - классификация типов стекла на основе различных характеристик

Должно быть выполнено:

- 1. Исследовательский анализ данных (EDA)
- 2. Предварительная обработка данных
- 3. LDA

```
RI,Na,Mg,Al,Si,K,Ca,Ba,Fe,Type
1.52101,13.64,4.49,1.1,71.78,0.06,8.75,0,0,1
1.51761,13.89,3.6,1.36,72.73,0.48,7.83,0,0,1
1.51618,13.53,3.55,1.54,72.99,0.39,7.78,0,0,1
1.51766,13.21,3.69,1.29,72.61,0.57,8.22,0,0,1
1.51742,13.27,3.62,1.24,73.08,0.55,8.07,0,0,1
1.51596,12.79,3.61,1.62,72.97,0.64,8.07,0,0.26,1
1.51743,13.3,3.6,1.14,73.09,0.58,8.17,0,0,1
1.51756,13.15,3.61,1.05,73.24,0.57,8.24,0,0,1
1.51918,14.04,3.58,1.37,72.08,0.56,8.3,0,0,1
1.51755,13,3.6,1.36,72.99,0.57,8.4,0,0.11,1
1.51571,12.72,3.46,1.56,73.2,0.67,8.09,0,0.24,1
1.51763,12.8,3.66,1.27,73.01,0.6,8.56,0,0,1
1.51589,12.88,3.43,1.4,73.28,0.69,8.05,0,0.24,1
```

data.csv

Линейный дискриминантный анализ (LDA)

Линейный дискриминантный анализ (LDA) — алгоритм классификации и понижения размерности, позволяющий производить разделение классов наилучшим образом. Основная идея LDA заключается в предположении о многомерном нормальном распределении признаков внутри классов и поиске их линейного преобразования, которое максимизирует межклассовую дисперсию и минимизирует внутриклассовую.

- 1) для всех классов рассчитываются априорные вероятности и средние значения признаков;
- 2) на основе полученных значений рассчитываются (ковариационные) матрицы разброса между классами и внутри классов;
- 3) находятся собственные вектора и значения для линейного дискриминанта Фишера, который определяется отношением матриц из шага 2;
- 4) собственные вектора сортируются в порядке убывания в соответствии с собственными значениями и называются дискриминантными векторами, с помощью которых рассчитываются веса модели;
- 5) на основе полученных весов и априорных вероятностей рассчитывается вектор смещения;
- 6) новое пространство признаков меньшей размерности представляет из себя линейную комбинацию исходных признаков и дискриминантных векторов и называется дискриминантным подпространством;
- 7) спрогнозированные классы являются максимальной оценкой линейной комбинации тестовой выборки и весов + смещение.

Описание алгоритма

1. Исследовательский анализ данных (EDA):

- Отображение основных статистик и пропущенных значений.
- Построение графиков распределения типов стекла и корреляции между признаками.

2. Предварительная обработка данных:

- Масштабирование признаков.
- Разделение данных на обучающую и тестовую выборки.

3. Построение и оценка модели:

- Создание модели LDA.
- Оценка модели с использованием отчета классификации, матрицы ошибок и точности.

Исследовательский анализ данных (EDA)

	Статистика данных:											
١		RI	Na	Mg		Ba	Fe	Туре				
	count	214.000000	214.000000	214.000000		214.000000	214.000000	214.000000				
	mean	1.518365	13.407850	2.684533		0.175047	0.057009	2.780374				
	std	0.003037	0.816604	1.442408		0.497219	0.097439	2.103739				
	min	1.511150	10.730000	0.000000		0.000000	0.000000	1.000000				
	25%	1.516522	12.907500	2.115000		0.000000	0.000000	1.000000				
	50%	1.517680	13.300000	3.480000		0.000000	0.000000	2.000000				
	75%	1.519157	13.825000	3.600000		0.000000	0.100000	3.000000				
	max	1.533930	17.380000	4.490000		3.150000	0.510000	7.000000				

Исследовательский анализ данных (EDA)

Исследовательский анализ данных (EDA)

Построение и оценка модели

Выводы:

- Типы стекла 1 и 2 классифицируются относительно хорошо, с высокой долей правильных предсказаний.
- Проблемы возникают с классификацией типов 3 и 5, где модель предсказывает мало или вообще не предсказывает эти классы правильно.
- Тип 7 классифицируется лучше всего (высокая точность и полнота).

Построение и оценка модели

	precision	recall	f1-score	support
1.	0.62	0.84	0.71	19
2	0.75	0.65		23
3	0.00	0.00	0.00	4
5	1.00	0.17	0.29	ć
ó	0.33	0.67	0.44	3
7	0.89	0.80	0.84	16
accuracy			0.65	65
macro avg	0.60	0.52	0.50	65
weighted avg	0.69	0.65	0.63	65

Выводы:

Precision и Recall для типов стекла сильно варьируются:

- Типы 1, 2, и 7 имеют сравнительно высокую precision и recall.
- Тип 3 вообще не классифицируется моделью, что указывает на серьезные проблемы с этим классом, возможно, из-за недостаточного количества данных.
- Тип 5 имеет высокую precision, но низкий recall, что говорит о том, что модель склонна игнорировать этот тип.

Возможные причины низкой производительности

• Дисбаланс классов:

Некоторые типы стекла (например, 3, 5, 6) имеют мало примеров в данных, что затрудняет их классификацию.

• Сложность данных:

Корреляция между признаками может быть сложной для модели LDA, которая предполагает линейную разделимость.

• Шум в данных:

Возможны проблемы с качеством данных, например, пересечение признаков между классами.

