Print Slides 7/28/19, 1:24 PM

Example: Indicator and Metric Variable

Model of car price as a function of horsepower and a dummy for warranty

- Price = $\beta_0 + \beta_1 \text{ hp} + \beta_2 \text{ warranty} + \beta_3 \text{ hp} \times \text{warranty} + u$
- If we don't include interaction term, β_2 will act as intercept shift.
 - Two lines with same slope, but different intercepts to fit each group as closely as possible.
- Include interaction term.
 - Slope of price with respect to horsepower:
 - δ price / δ hp = $\beta_1 + \beta_3$ warranty
 - Takes on two values:
 - β_1 for cars with no warranty
 - $\beta_1 + \beta_3$ for cars with a warranty

about:blank Page 1 of 2

Print Slides 7/28/19, 1:24 PM

Different Slopes

- Interaction term allows both intercepts and slopes to vary independently.
- Interaction coefficient is the difference between the two slopes.
- OLS will fit the best line to warranty group and no warranty group independently.
- Hypothesis: Do the two groups have the same slope?
 - Null hypothesis: Groups have same slope, $\beta_3 = 0$.
 - Standard *t*-test for coefficient included with R regression output.

Testing for Equal Lines

- Do groups have same slopes and same intercepts?
 - Hypothesis: $\beta_2 = \beta_3 = 0$
- Run F-test between full model and restricted model.
- Full model (contains full set of interactions):
 - Price = $\beta_0 + \beta_1 \text{ hp} + \beta_2 \text{ warranty} + \beta_3 \text{ hp} \times \text{warranty} + u$
- Restricted model (same regression for both groups)
 - Price = $\beta_0 + \beta_1 hp + u$
- Compute F-statistic to see if saturated model yields statistically significant improvement in model fit.

about:blank Page 2 of 2