Grandeurs physiques liées aux quantités de matière

1. Détermination de la quantité de matière d'une espèce chimique solide ou liquide

1.1. Définition de la quantité de matière :

- La quantité de matière, notée n, est la grandeur utilisée pour spécifier un nombre d'entités microscopiques (atomes, molécules, ions, etc.). Son unité est la mole (mol).
- Une mole est la quantité de matière d'un système contenant NA, entités élémentaires (atomes, molécules, ions ...)

 $N_A = 6,02.1023$ est appelé : le nombre d'Avogadro.

• La quantité de matière **n** d'un échantillon est le rapport du nombre d'élément **N** qu'il contient sur le nombre d'Avogadro *N*_A.

$$n = \frac{N(X)}{N_A}$$

1.2. Relation entre la masse et la quantité de matière :

• La quantité de matière contenue dans un échantillon de masse m est donnée par la relation suivante:

$$n(X) = \frac{m(X)}{M(X)}$$

- Cette relation s'applique pour les **solides** les **liquides** (et même pour les gaz) mais il est plus commode de caractériser un gaz par son volume que par sa masse.
- M(X) est la masse molaire de l'espèce chimique X en g.mol⁻¹.

Application 1:

Déterminer la quantité de matière contenue dans 9.8q d'acide sulfurique H_2SO_4 .

On donne : M(H)=1g/mol , M(O)=16g/mol , M(S)=32g/mol.

Corrigé:

On a $M(H2SD4) = 2M(H)+M(S)+4M(D)=2+32+4\times16=98g/mol$

Donc
$$n = \frac{m}{M} = \frac{9,8}{98} = 0,1 \text{mol}$$

1.3. le volume et la quantité de matière :

1.3.1. La masse volumique et la densité

• La masse volumique ρ d'une espèce chimique est égale au rapport de sa masse m par son volume V.

$$\boldsymbol{\rho}(X) = \frac{m(X)}{V(X)}$$

Son unité dans S.I est kg/m³

- La densité d est le rapport entre la masse d'un volumique ρ du corps considéré et la masse volumique d'un corps de référence ρ_0 (l'eau pour les liquides et les solides).
- Pour un liquide ou solide : $\rho = \frac{m}{m_{eau}} = \frac{\rho}{\rho_{eau}}$

Remarque 1: À 25°C, la masse volumique de l'eau est égale à $\rho_{eau} = 1,00 \text{ kg.L-1} = 1,00 \text{ g.m.L-1}$ Remarque 2: La densité est un nombre qui s'exprime sans unité.

1.3.2. Relation entre le volume et la quantité de matière

 Connaissant le volume V d'un échantillon d'une espèce chimique et la masse volumique ρ de cette espèce, on en déduit la masse de l'échantillon :

$$m(X) = \rho(X).V(X)$$

On a aussi:

$$n(X) = \frac{m(X)}{M(X)}$$

• On en déduit donc la relation entre la quantité de matière et le volume de l'échantillon :

$$n(X) = \frac{\rho(X).V(X)}{M(X)}$$

Ainsi, la masse volumique ρ d'un corps et sa densité d par rapport à l'eau sont liées par la relation :

$$\rho(X) = d \times \rho_{eau}$$

On écrit donc :

$$n(X) = \frac{d. \rho_{eau}. V(X)}{M(X)}$$

Application 2:

Calculer la quantité de matière contenue dans un volume **V=10mL** de linalol $C_{10}H_{18}D$ de densité d=0,9.

Corrigé :

On a $M(C_{10}H_{18}O) = 10M(C)+18M(H)+M(O)=10\times12+18+16=154g/mol$

Donc
$$n = \frac{\rho.V}{M} = \frac{d.\rho_{eau}.V}{M} = \frac{0.9 \times 1 \times 10}{154} = 5.8 \times 10^{-2} \text{ mol}$$

- 2. Détermination de la quantité de matière de matière d'un gaz
 - 2.1. La détermination de la quantité de matière à partir du volume molaire

2.1.1. Le volume molaire

• <u>Définition</u>: Le volume molaire d'un gaz (V_m) est le volume occupé par une mole de ce gaz dans des conditions données (dépend de la **pression** P et de la **température** T).

Remarque 1: Pour des conditions usuelles ($\theta=20^{\circ}$ C et P=1 bar), le volume molaire est 24 L.mol-1.

Pour des conditions normales (θ=0°C et P=1 bar), le volume molaire vaut 22,4L.mol⁻¹.

Remarque 2 : Le volume molaire d'un gaz est donc indépendant de la nature de ce gaz et ne dépend que de la pression P et de la température T de ce gaz.

2.1.2. La quantité de matière d'un gaz

• Connaissant le volume V d'un échantillon de gaz, à température et pression connues, on peut calculer la quantité de matière n contenue dans cet échantillon à partir du volume molaire V_m des gaz dans les mêmes conditions de température et de pression :

$$n(X) = \frac{V(X)}{V_m}$$

n : la quantité de matière en mol.

V : le volume de ce gaz en L.

 V_m : le volume molaire de ce gaz en L.mol⁻¹ avec $V_m = 22.4$ L.mol⁻¹ à 0° C ou $V_m = 24$ L.mol⁻¹ à 20° C.

2.2. La loi de Boyle-Mariotte

2.2.1. Expérience :

• On comprime un gaz, en faisant varier le volume V, dans une seringue, et on mesure la pression P du gaz correspondant.

2.2.2. Résultat :

$V(m^3)$	1,5.10 ⁻⁵	2,0.10 ⁻⁵	2,5.10 ⁻⁵	3,5.10 ⁻⁵
P(Pa)	9985	7490	5990	4280
P.V(Pa.m ³)	0,1498	0,1498	0,1498	0,1498

- 1- Remplir le tableau ci-dessous.
- 2- A partir du tableau de mesures, indiquer comment évolue la pression de l'air
- 3- Tracer la courbe de variation de P en fonction de 1/V.
- 4- A température constante **T** et pour une quantité de matière **n** d'un gaz donnée, quelle relation remarquable lie les grandeurs **P** (pression) et **V** (volume).

Corrigé:

- 1- Voir le tableau ci-dessus.
- 2- À température constante, nous observons, lorsque le volume d'un échantillon de gaz augmente, sa pression diminue, et vice versa.

3-

4- On constate que la courbe passe par l'origine du repère :

$$P = constante \cdot \frac{1}{V}$$
D'où **P.V** = **constante**

2.2.3. Conclusion

• <u>La loi de Boyle Mariotte</u> définit une relation entre le volume, la température et la pression. Elle explique que la pression varie en fonction du volume, à température constante.

$$P.V = C^{te}$$

2.3. Echelle absolue de la température

• Le graphe suivant illustre la variation la pression d'une quantité de gaz à volume constant en fonction de la température.

• En prolongeant la courbe jusqu'à ce qu'elle se coupe avec l'axe de la température centésimale, on constate que la pression s'annule (théoriquement) lorsque la température est -273°C.

- La température -273°C correspond à l'origine de l'échelle de température absolue c'est-à-dire zéro kelvin.
- La relation entre la température absolue et la température

$$T(K) = \theta(^{\circ}C) + 273$$

2.4. Relation des gaz parfaits

• L'équation d'état des gaz parfaits est une relation entre la pression P, le volume V, et la température T d'un gaz pour une quantité de matière n :

$$P \times V = n \times R \times T$$

P est la pression en pascal Pa

V le volume du gaz en m³

n la quantité de matière en mol

T la température en kelvin K

 \mathbf{R} la constante des gaz parfait, sa valeur est : $\mathbf{R} = 8,314 \text{ SI}$

• Connaissant la température, la pression et le volume d'un gaz, on peut donc à l'aide de cette équation déterminer la quantité de matière correspondante :

$$n(X) = \frac{P.V}{R.T}$$