Uni.lu HPC School 2018

PS7: Multi-Physics workflows: test cases on CFD / MD / Chemistry applications

Uni.lu High Performance Computing (HPC) Team V. Plugaru

University of Luxembourg (UL), Luxembourg http://hpc.uni.lu

Latest versions available on Github:

UL HPC tutorials:

https://github.com/ULHPC/tutorials

UL HPC School:

http://hpc.uni.lu/hpc-school/

PS7 tutorial sources:

ulhpc-tutorials.rtfd.io/en/latest/multiphysics/

2018

Practical Session Objectives

Summary

Practical Session Objectives

2 Materials science HPC software environment

Session Objectives

Practice utilization of parallel codes on UL HPC clusters

- Computational Fluid Dynamics
- Molecular Dynamics
- Chemistry software

Application	Description
NAMD	Parallel molecular dynamics code designed for high-performance simulation
Quantum Espresso	of large biomolecular systems Integrated suite of tools for electronic-structure calculations and materials modeling at the nanoscale
ABINIT ASE	Materials science package implementing DFT, DFPT, MBPT and TDDFT Atomistic Simulation Environment (Python-based) with the aim of setting up, steering, and analyzing atomistic simulations
NWChem	Computational chemistry tools scalable both in their ability to treat large scientific computational chemistry problems efficiently, and in their use of available parallel computing resources
OpenFOAM	CFD package for solving complex fluid flows involving chemical reactions, turbulence and heat transfer

4 / 8

Materials science HPC software environment

Summary

Practical Session Objectives

2 Materials science HPC software environment

Material Science HPC software env.

Software on UL HPC	In 2017 software set	In 2018 software set
ABINIT	8.2.3	8.6.3
ASE	3.13.0	3.16.0
CRYSTAL	17.v1.0.1	17.v1.0.1
ESPResSo	3.3.1	3.3.1
GROMACS	2016.3	2016.5
Meep	1.3	1.4.3
NAMD	2.12	2.12
NWChem	6.6.rev27746	6.8
OpenFOAM	4.1 (Gaia cluster)	v1712
QuantumESPRESSO	6.1	6.2.1
VASP	5.4.4.18Apr17	5.4.4.18Apr17
Yambo	4.1.4	4.2.1

Not exhaustive! A more complete list at https://hpc.uni.lu/users/software/

Quick Q&A

- What particular software are you using?
- 2 Do you use it from the HPC global software sets?
- Oo you compile/install it yourself?
- Would you like to have something added to the global set?
- What computational patterns does it exhibit?
- **6** Is it scalable? What's the largest test that you've done?
- Can we help you optimize your executions?

Questions?

http://hpc.uni.lu

High Performance Computing @ uni.lu

Prof. Pascal Bouvry Dr. Sebastien Varrette Valentin Plugaru Sarah Peter Hyacinthe Cartiaux Clement Parisot

University of Luxembourg, Belval Campus Maison du Nombre, 4th floor 2, avenue de l'Université L-4365 Esch-sur-Alzette mail: hpc@uni.lu

Practical Session Objectives

