

- · Part 1. Spectral Analysis
 - · take fft azimuthally
 - · use half of θ data to avoid aliasing
 - find correlation in \$ t'\$ described in Smits2017.below.eq.2.4.

$$R(km;t,t') = \int_{r} u(k;m;r,t)u^{*}(k;m;r,t') r dr$$
 (1)

- take fft in x of th above correlation to get k modes.
- · Part 2. Snapshot POD
 - \cdot the crossspectra for the kernal of the pod

$$\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \mathbf{R}\left(k; m; t, t'\right) \alpha^{(n)}\left(k; m; t'\right) dt' = \lambda^{(n)}(k; m) \alpha^{(n)}(k; m; t)$$
(2)

• Find the (sorted) eigenvalues $\alpha^{(n)}$ found in (2) to solve for $\Phi^{(n)}$,

$$\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \mathbf{u}_{\mathrm{T}}(k; m; r, t) \alpha^{(n)*}(k; m; t) \mathrm{d}t = \Phi_{\mathrm{T}}^{(n)}(k; m; r) \lambda^{(n)}(k; m)$$

Figure 1: Shows snapshot POD for differen k modes.

- Example correlation coefficient matrix R.
 - \cdot The maximum values should occur along the diagonal since this is 0 lag occurs (but do not have that)
 - This matrix is symmetric. For timestep =5, here is an example matrix given by,

which is indeed symmetic. This is matlabcorrMatSmits(1).dat.

1