Sample answers

Session 7 Q1&Q2

Proposition 4.4 Let X and Y be discrete random variables. Then X and Y are independent if and only if, for any values a_i and b_j of X and Y respectively, we have

$$P(X = a_i \mid Y = b_j) = P(X = a_i).$$
 Note that Proposition 4.4 holds only if for any b_i the probability $P(Y = b_i) > 0$

Q1. How to proof?

" => " giving X and Y are independent, we would prove Vai, by having P(X=a; | Y=b;)=P(X=a;) Z and Y independent => Vai, bj, we have P(X=a:, Y=bi) = P(X=a:).P(X=bi)

=> $P(X=a;|Y=b_j)P(Y=b_j) = P(X=a;).P(X=b_j)$ (Boyesiam) => $P(X=a;|Y=b_j) = P(X=a;)$ ('! $P(X=b_j) > 0$) "=" giving Vai, b; P(X=a: | Y=b;)=P(X=a:), we would prove & and & are independent Yai, b; P(X=A; | Y=b;) = P(X=ai) $\Rightarrow P(X=a:|Y=b_j).P(Y=b_j)=P(X=a:).P(Y=b_j)$ $\Rightarrow P(X=a_i, Y=b_j) = P(X=a_i) \cdot P(Y=b_j)$ (Bayeriam) => & and Y are independent (by definition)

Q2 An urn has 2 red, 5 white, and 3 green balls. Select 3 balls at random without replacement and let X be the number of red balls and Y the number of white balls. Determine (a) joint p. m. f. of (X, Y),

(b) marginal p. m. f.'s, (c) $P(X \ge Y)$, and (d) $P(X = 2|X \ge Y)$.

The joint p. m. f. is given by P(X = x, Y = y) for all possible x and y. In our case, x can be 0, 1, or 2 and y can be 0, 1, 2, or 3. The values can be given by the formula

$$P(X = x, Y = y) = \frac{\binom{2}{x} \binom{5}{y} \binom{3}{3-x-y}}{\binom{10}{3}},$$

where we use the convention that $\binom{a}{b} = 0$ if b > a, or in the table:

$y \backslash x$	0	1	2	P(Y=y)
0	1/120	$2 \cdot 3/120$	3/120	10/120
1	$5 \cdot 3/120$	$2 \cdot 5 \cdot 3/120$	5/120	50/120
2	$10 \cdot 3/120$	$10 \cdot 2/120$	0	50/120
3	10/120	0	0	10/120
P(X=x)	56/120	56/120	8/120	1

The last row and column entries are the respective column and row sums and, therefore, determine the marginal p. m. f.'s. To answer (c) we merely add the relevant probabilities,

$$P(X \ge Y) = \frac{1+6+3+30+5}{120} = \frac{3}{8},$$

and, to answer (d), we compute

$$\frac{P(X=2, X \ge Y)}{P(X \ge Y)} = \frac{\frac{8}{120}}{\frac{3}{8}} = \frac{8}{45}.$$