Nr identyfikacyjny
spCH –- 2019/2020
(numer porządkowy z kodowania)

Nr identyfikacyjny - wyjaśnienie

sp – szkoła podstawowa, symbol przedmiotu (np. CH - chemia), numer porządkowy wynika z numeru stolika wylosowanego przez ucznia

WOJEWÓDZKI KONKURS PRZEDMIOTOWY z CHEMII dla uczniów szkół podstawowych 2019/2020

TEST ELIMINACJE REJONOWE

•	Arkusz liczy 8 stron i zawiera 10 zadań oraz brudnopis.	Czas
•	Przed rozpoczęciem pracy sprawdź, czy Twój arkusz jest kompletny. Jeżeli zauważysz usterki, zgłoś je	CZus
	Komisji Konkursowej.	pracy:
•	Zadania czytaj uważnie i ze zrozumieniem.	
•	Odpowiedzi wpisuj długopisem bądź piórem, kolorem czarnym lub niebieskim.	
•	Dbaj o czytelność pisma i precyzję odpowiedzi.	90 min.
•	W zadaniach zamkniętych prawidłową odpowiedź zaznacz stawiając znak X na odpowiedniej literze.	
•	Jeżeli się pomylisz, błędne zaznaczenie otocz kółkiem i zaznacz znakiem X inną odpowiedź.	
•	Oceniane będą tylko te odpowiedzi, które umieścisz w miejscu do tego przeznaczonym.	
•	Obok każdego numeru zadania podana jest maksymalna liczba punktów możliwa do uzyskania za	
	prawidłową odpowiedź.	
•	Pracuj samodzielnie. Postaraj się udzielić odpowiedzi na wszystkie pytania.	
•	Nie używaj korektora. Jeśli się pomylisz, przekreśl błędną odpowiedź i wpisz poprawną.	
•	Nie używaj pomocy (np. kalkulator), jeżeli nie pozwala na to regulamin konkursu.	
	Powodzenia!	

Wypełnia Komisja Konkursowa po zakończeniu sprawdzenia prac

Imię i nazwisko ucznia	

Zadanie	1	2	3	4	5	6	7	8	9	10	Razem
Punkty możliwe do uzyskania	10	5	5	6	2	2	7	3	6	4	50 pkt
Punkty uzyskane											pkt

Poc	inisv	z człon	ków	komisi	i sprawo	tzatacy	/ch	prace:

)(

_		
つ	(imie i nazwisko)	(nodnis)
/	CHILLE I HAZWISKOT	(1)()(1)18

Przeczytaj uważnie treści zadań. Zadanie 1 składa się z 10 zadań testowych, w których tylko jedna odpowiedź jest poprawna. Odpowiedź w zadaniach rachunkowych powinna być poprzedzona odpowiednimi obliczeniami.

Zadanie 1 (10 pkt)

1.	Atom potasu różni się od kat	ionu potasu:										
	 A. Liczbą elektronów B. Właściwościami fizycznymi i chemicznymi C. Wielkością promienia D. Wszystkie różnice są prawdziwe 											
2.	Podczas działania wodoru na tlenek miedzi(II) powstaje:											
	A. Czysta miedźB. Miedź i woda		edź i tlen edź i wodór									
3.	Woda królewska używana d	o rozpuszczan	nia złota, to:									
	A. Mieszanina HCl i HNO ₃ B. Mieszanina HCl i H ₂ SO ₄		C. Roztwór AuCl ₃ w HCl D. Roztwór H ₂ SO ₄ nasycony SO ₃									
4.	Po wprowadzeniu do wody pewnej substancji pH roztworu zmalało. Wprowadzoną substancją był:											
	A. EtanolB. Tlenek magnezu		C. Tlenek azotu (V) D. Tlenek węgla (II)									
5.	Masa cząsteczkowa tlenku pe przypada na tlen. Cząsteczka											
	A. Azot B. Węg	giel	C. Siarka	D. Krzem								
6.	Cząsteczka, którego z podany	ych związków	jest niepolarna	:								
	A. CH ₄ B. NH ₃	1	C. H ₂ O	D. HCl								
7.	Próbka promieniotwórczego 6 godzin. Jaka część początko	•										
	A. 1/2 B. 1/64		C. 1/6	D. 1/32								
8.	Głównym składnikiem zapragips palony o wzorze 2CaSO	<i>y</i> • <i>y</i>	•									
	A. Przyłączaniu tlenku węglB. Przyłączaniu tlenku węgl	• •	C. OdłączaniuD. Przyłączani	<u> </u>								
9.	Który zestaw wzorów zawier	a wzory związ	zków odbarwia	jących wodę bromową?								
	A. C_2H_2 , C_4H_8 , C_6H_6		C. C_3H_6 , C_4H_8 ,	$C_{12}H_{22}$								
	B. CH ₄ , C ₃ H ₈ , C ₅ H ₁₂		D. C ₂ H ₄ , C ₃ H ₄ ,	C_4H_{10}								

- 10. Który z wymienionych niżej procesów może być opisany za pomocą podanego równania $CaCO_3 + H_2O + CO_2 \rightarrow Ca^{2+} + 2 HCO_3^{-}$
 - A. Pochłanianie CO₂ przez świeżą zaprawę murarską
 - B. Wietrzenie skały wapiennej pod wpływem powietrza
 - C. Twardnienie zaprawy gipsowej
 - D. Tworzenie stalagmitów i stalaktytów w jaskiniach

Zadanie 2 (5 pkt.)
Podane są niemetale : H, C, N, P, O, Cl, Ne, Ar, S, F, I
Zakwalifikuj je do następujących grup pierwiastków – wpisz symbole wybranych pierwiastków
1/ W warunkach normalnych są gazami
2/ W warunkach normalnych mają stały stan skupienia
3/ Tworzą wodorki o charakterze kwasowym
4/ Należą do gazów szlachetnych
5/ Tworzą więcej niż trzy kwasy tlenowe
Zadanie 3 (5 pkt)
Mając do dyspozycji: magnez, siarkę, tlen i wodę , podaj pięć sposobów otrzymywania MgSO ₃ . Ułóż równania odpowiednich reakcji w formie cząsteczkowej, w tyn równania reakcji otrzymywania związków chemicznych potrzebnych do otrzymania soli.

Zadanie 4 (6 pkt)

W trzech niepodpisanych kolbach są bezbarwne roztwory: **Ba(NO₃)₂, Na₂SO₄ i ZnCl₂** Korzystając z tablicy rozpuszczalności, zaprojektuj doświadczenie, którego przebieg pozwoli odróżnić wymienione roztwory.

a/ Wybierz odczy: KNO ₃	nniki sposrod ro K 2 SO 4	NaCl	tępujących substan NaOH	cji: HCl	
I Etap:					
- przewidywane o	bserwacje:				
- wzór zidentyfiko	owanej soli:		z wybranym odcz		
II Etap: - wzór wybranego - przewidywane o	odczynnika: bserwacje:				
- wzór zidentyfiko - równanie reakcji	owanej soli:i w formie jono	wej skróconej	z wybranym odcz		
Zadanie 5 (2 pkt) Oblicz, ile cząstek Hg – 200.		uje atom ołow	iu Pb – 208, przen	tieniając się w atom rt	ęci

Zadanie 6 (2 pkt)

W tabeli podane są informacje o węglowodorach A, B, C, D. Podaj nazwę szeregu homologicznego, do którego należy dany węglowodór.

	Informacja o własności węglowodoru	Nazwa szeregu homologicznego
1.	Produkt węglowodoru A z wodorem może być związkiem	
	nienasyconym.	
2.	Jeden z produktów reakcji węglowodoru B z chlorem rozpuszcza	
	się w wodzie tworząc roztwór o odczynie kwasowym.	
3.	W reakcji 1 cząsteczki węglowodoru C z 1 cząsteczką H ₂ powstaje	
	związek, który nie odbarwia wody bromowej.	

794	lanie	7	(7	nkt)
Lau	ame	,	(/	pro.

O węglowodorach X, Y i Z wiadomo, że:

- 1/ Y można otrzymać ze związku Z, a X ze związku Y
- 2/ X nie odbarwia wody bromowej
- 3/ Y i Z reaguje z bromem, a X reaguje z bromem w obecności światła
- 4/ Y jest substratem reakcji, w której otrzymuje się szeroko stosowane tworzywo sztuczne
- 5/ Z można otrzymać z węgliku wapnia.

Po zidentyfikowaniu węglowodorów X, Y i Z do każdej z podanych wyżej informacji zapisz równania reakcji. Stosuj wzory półstrukturalne związków organicznych.

1/	/					 			••••			• • • • •		 	• • • • •	 ••••		
3/	/					 							• • • • •	 		 		
						 								 		 		•
	•••••			••••	••••	 ••••	••••	• • • • • •	••••	• • • • • •	••••	• • • • •	• • • • • •	 ••••	• • • • •	 ••••	••••	
4/	/	••••	••••	••••	• • • • •	 ••••					••••			 ••••		 • • • • •		
5/	/					 								 		 	. .	

Zadanie 8 (3 pkt)

W tabeli przedstawiona jest rozpuszczalność NaNO₃ w wodzie w zależności od temperatury.

Temperatura [°C]	0	20	40	60	80	100
Rozpuszczalność: [g/100g H ₂ O]	73	87	104	124	147,5	176

Do 150 g wody o temperaturze 20°C wprowadzono 186 g azotanu (V) sodu. a/ Ile gramów soli uległo rozpuszczeniu?
b/ Ile gramów wody o temperaturze 20°C należy dodać, aby cała sól rozpuściła się, a roztwór był nasycony ?
c/ Do jakiej temperatury należy ogrzać roztwór, aby cała substancja rozpuściła się, a roztwór był nasycony?

Zadanie 9 (6 pkt) Kwas etanowy otrzymujemy w procesie utlenienia alkoholu etylowego. a/ Napisz równanie reakcji otrzymywania kwasu etanowego tą metodą: b/ Napisz równanie reakcji całkowitego spalania kwasu etanowego: c/ Oblicz masę czystego etanolu konieczną do otrzymania tą metodą 300 g roztworu kwasu etanowego o stężeniu 10%. d/ Jaka objętość 40% alkoholu o gęstości 0,94 g/cm³ zawiera obliczoną masę alkoholu?

Zadanie 10 (4 pkt)

Dwa nasycone związki organiczne, z których jeden jest alkoholem, a drugi kwasem karboksylowym, mają masy cząsteczkowe równe sobie i wynoszą 74 u.

a/ Podaj ich wzory sumaryczne i nazwy systematyczne.

Obliczenia
Alkohol:
Kwas:
b/ Zapisz posługując się wzorami półstrukturalnymi równanie reakcji estryfikacji tego kwasu i alkoholu. Podaj nazwę powstałego estru.
Równanie reakcji:
Nazwa estru:
Nazwa tshu

BRUDNOPIS