

For spherical triangle

$$\frac{\cos(\alpha) = \cos(A)\sin(\beta)\sin(\gamma) + \cos(\beta)\cos(\gamma)}{\sin(A)} = \frac{\sin(\beta)}{\sin(B)} = \frac{\sin(\gamma)}{\sin(C)}$$

- N is North Pole
- O is observer at latitude λ
- R₁ is position of sun at sunrise OR₁=90
- R₂ is position of sun at sunrise OR₂=90
- T₁ is longitude of sun at sunrise
- T₂ is longitude of sun at sunset
- $NR_1 = \cos(90 + \epsilon) = -\cos(\alpha)\cos(\lambda) = -\sin(\epsilon)$
- So, $\cos(\alpha) = \frac{\sin(\epsilon)}{\cos(\lambda)}$ (equation 1)
- $CT_1 = \beta$
- $\sin(\beta) = \frac{\sin(\alpha)}{\cos(\epsilon)}$ (equation 2)
- 1. Solve for α in equation 1
- 2. Solve for $CT_1 = \beta$ in equation 2
- 3. Length of day is $\frac{2CT_1}{180} \cdot 12$ hours
- Note $\epsilon(t) = 23.5 \cdot cos(t)$, t is number of days since December 22 divided by 365.25 times 2π