CS258: Information Theory

Fan Cheng

Spring, 2018. chengfan@sjtu.edu.cn

Recap: Huffman Coding

- Symbol code
- Unique decodeablity and suffix code
- Kraft inequality and its proof
- Huffman coding

Lecture 6: Noisy Channel Coding

- Noisy channel
- Useful model channels
- Channel coding theorem

• Entropy and mutual information

- Entropy and mutual information
- Noisy world

- Entropy and mutual information
- Noisy world
- Lossy source coding

- Entropy and mutual information
- Noisy world
- Lossy source coding
- Channel capacity of BSC

- Entropy and mutual information
- Noisy world
- Lossy source coding
- Channel capacity of BSC

system model

A simple example

The joint distribution of X and Y is

P(x,y)			P(y)			
		1	2	3	4	
	1	1/8	1/16	1/32	1/32	1/4
y	2	1/16	1/8	1/32	1/32	$1/_{4}$
	3	1/16	1/16	1/16	1/16	$1/_{4}$
	4	$1/_{4}$	0	0	0	$1/_{4}$
\overline{P}	(x)	$1/_{2}$	$1/_{4}$	1/8	1/8	

A simple example

The joint distribution of X and Y is

P(x,y)			P(y)			
		1	2	3	4	
	1	1/8	1/ ₁₆ 1/ ₈ 1/ ₁₆	1/32	1/32	1/4
y	2	1/16	1/8	1/32	1/32	$1/_{4}$
	3	1/16	1/16	1/16	1/16	$1/_{4}$
	4	$1/_{4}$	0	0	0	$1/_{4}$
P(x)		$1/_{2}$	$1/_{4}$	1/8	1/8	

The conditional entropy of X given each y

$P(x \mid y)$		x				H(X y)/bits
		1	2	3	4	
	1	$1/_{2}$	$1/_{4}$	1/8	1/8	7/4
y	2	$1/_{4}$	$\frac{1}{4}$ $\frac{1}{2}$	$\frac{1}{8}$ $\frac{1}{8}$	1/8	7/4
	3	$1/_{4}$	$1/_{4}$	$1/_{4}$	$1/_{4}$	2
	4	1	0	0	0	0

A simple example

The joint distribution of X and Y is

P(x, y)			P(y)			
		1	2	3	4	
	1	1/8	1/16	1/32	1/32	1/4
y	2	1/16	1/8	1/32	1/32	$1/_{4}$
	3	1/16	1/16	1/16	1/16	$1/_{4}$
	4	$1/_{4}$	0	0	0	$1/_{4}$
P(x)		$1/_{2}$	$1/_{4}$	1/8	1/8	

The conditional entropy of X given each y

P(x y)		x				H(X y)/bits
		1	2	3	4	
	1	$1/_{2}$	$1/_{4}$	1/8 1/8 1/4	1/8	7/4
y	2	$1/_{4}$	1/2	$1/_{8}$	1/8	7/4
	3	$1/_{4}$	$1/_{4}$	$1/_{4}$	$1/_{4}$	2
	4	1	0	0	0	0

Channel: fixed P(Y|X)

Noisy channels

DMC

A discrete memoryless channel Q is characterized by an input alphabet \mathcal{A}_X , an output alphabet \mathcal{A}_Y , and a set of conditional probability distributions P(y|x), one for each $x \in \mathcal{A}_X$. These transition probabilities may be written in a matrix

$$Q_{j|i} = P(y = b_j|x = a_i).$$

Noisy channels

DMC

A discrete memoryless channel Q is characterized by an input alphabet \mathcal{A}_X , an output alphabet \mathcal{A}_Y , and a set of conditional probability distributions P(y|x), one for each $x \in \mathcal{A}_X$. These transition probabilities may be written in a matrix

$$Q_{j|i} = P(y = b_j|x = a_i).$$

Channel may have memory, like tapes

Useful model channels

Binary symmetric channel. $A_x = \{0, 1\}$. $A_Y = \{0, 1\}$.

Useful model channels

Binary symmetric channel. $A_x = \{0, 1\}$. $A_Y = \{0, 1\}$.

Binary erasure channel. $A_x = \{0, 1\}$. $A_Y = \{0, ?, 1\}$.

Useful model channels

Binary symmetric channel. $A_x = \{0, 1\}$. $A_Y = \{0, 1\}$.

Binary erasure channel. $A_x = \{0, 1\}$. $A_Y = \{0, ?, 1\}$.

Z channel. $\mathcal{A}_x = \{0,1\}$. $\mathcal{A}_Y = \{0,1\}$.

Noisy typewriter. $\mathcal{A}_X = \mathcal{A}_Y =$ the 27 letters $\{$ A, B, . . . , Z, - $\}$. The letters are arranged in a circle, and when the typist attempts to type B, what comes out is either A, B or C, with probability 1/3 each; when the input is C, the output is B, C or D; and so forth, with the final letter '-' adjacent to the first letter A.

Noisy typewriter. $A_X = A_Y = \text{the 27 letters } \{A, B, \ldots, Z, -\}$. The letters are arranged in a circle, and when the typist attempts to type B, what comes out is either A, B or C, with probability 1/3 each; when the input is C, the output is B, C or D; and so forth, with the final letter '-' adjacent to the first letter A.

$$\begin{array}{cccc} & \vdots & & \vdots \\ P(y = \mathsf{F} \,|\, x = \mathsf{G}) & = & 1/3; \\ P(y = \mathsf{G} \,|\, x = \mathsf{G}) & = & 1/3; \\ P(y = \mathsf{H} \,|\, x = \mathsf{G}) & = & 1/3; \\ \vdots & & \vdots & & \vdots \end{array}$$

Channel Coding Theorem

The capacity of a channel Q is:

$$C(Q) = \max_{\mathcal{P}_X} I(X; Y).$$

The distribution \mathcal{P}_X that achieves the maximum is called the optimal input distribution, denoted by \mathcal{P}_X^* . [There may be multiple optimal input distributions achieving the same value of I(X;Y).]

Real channels and Gaussian Channel

Consider a physical (electrical, say) channel with inputs and outputs that are continuous in time. We put in x(t), and out comes y(t) = x(t) + n(t). Our transmission has a power cost. The average power of a transmission of length T may be constrained thus

$$\int_0^1 [x(t)]^2 / T dt \le P.$$

Real channels and Gaussian Channel

Consider a physical (electrical, say) channel with inputs and outputs that are continuous in time. We put in x(t), and out comes y(t) = x(t) + n(t). Our transmission has a power cost. The average power of a transmission of length T may be constrained thus

$$\int_0^T [x(t)]^2 / T dt \le P.$$

Gaussian Channel

The Gaussian channel has a real input x and a real output y. The conditional distribution of y given x is a Gaussian distribution:

$$P(y|x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-(y-x)^2/2\sigma^2)$$

This channel is sometimes called the additive white Gaussian noise (AWGN) channel.

Capacity of Gaussian Channels

For a Gaussian channel with power constraint v and variance of noise σ^2 , its channel capacity is

$$C = \max_{X: \operatorname{Var}(X) \le v} I(X; X + Z) = \frac{1}{2} \log(1 + \frac{v}{\sigma^2})$$

signal to noise ration: $\frac{v}{\sigma^2}$.

Capacity of Gaussian Channels

For a Gaussian channel with power constraint v and variance of noise σ^2 , its channel capacity is

$$C = \max_{X: \operatorname{Var}(X) \le \nu} I(X; X + Z) = \frac{1}{2} \log(1 + \frac{\nu}{\sigma^2})$$

signal to noise ration: $\frac{v}{\sigma^2}$.

If we fixed v, C(Z) is minimized iff Z is gaussian.

Capacity of Gaussian Channels

For a Gaussian channel with power constraint v and variance of noise σ^2 , its channel capacity is

$$C = \max_{X: \operatorname{Var}(X) \le \nu} I(X; X + Z) = \frac{1}{2} \log(1 + \frac{\nu}{\sigma^2})$$

signal to noise ration: $\frac{v}{\sigma^2}$.

If we fixed v, C(Z) is minimized iff Z is gaussian.

Entropy Power inequality (Shannon 1948) For any independent random variables X and Y

$$e^{2h(X+Y)} \ge e^{2h(X)} + e^{2h(Y)}$$

Equality holds iff X, Y are gaussian.

Reading and Exercise

Reading: Ch. 8, Ch. 9, Ch. 10, Ch. 11 (David MacKay)

Exercise

8.5, 8.7, 9.2, 9.4, 9.15, 9.17, 10.8, 10.9, 10.12