

Universidade de Aveiro

Departamento de Electrónica, Telecomunicações e Informática

Linguagens Formais e Autómatos

Exame (Ano Lectivo de 2008/9) 18 de Junho de 2009

Sobre o alfabeto $T_1 = \{m \ t \ , = e \ ; \ id\}$ considere a gramática G_1 dada a seguir e seja L_1 a linguagem por ela descrita.

$$S
ightarrow \lambda \mid D$$
 ; S $D
ightarrow$ t $L \mid$ m t L $L
ightarrow$ id $X \mid Z$

$$X \to \lambda \mid$$
 = e $Z \to \lambda \mid$, L

- 1. Relativamente à gramática G_1 :
- [1,2] (a) Usando uma derivação à esquerda, mostre que "t id , id = e ;" $\in L_1$.
- [1,2] (b) Para além da regra " $S \to D$; S" a gramática G_1 tem outro ponto de recursividade à direita. Diga qual, justificando porquê.
- [1,2] (c) Mostre que todos os símbolos não terminais são produtivos.
- [1,2] (d) Mostre que $\{\lambda, \} \subseteq \text{first}(XZ)$.
- [1,2] (e) Mostre que; \in follow(X).
- [2,0] 2. Determine uma gramática equivalente a G_1 que não possua recursividade à direita.
- [2,5] 3. Construa a tabela de parsing para um reconhecedor (parser) descendente com lookahead de 1 da linguagem L_1 . Sabe-se que, relativamente à gramática G_1 , follow $(X) = \{$, ; $\}$, follow $(Z) = \{$; $\}$ e follow $(S) = \{$ \$ $\}$,

Considere o autómato de pilha da figura abaixo, definido sobre o alfabeto $T_2 = \{abc\}$, tendo como critério de aceitação o terminar no estado 2, qualquer que seja o conteúdo da pilha. Seja L_2 a linguagem reconhecida pelo autómato M_2 .

[1,5] 4. Mostre, usando uma sequência de configurações, que a palavra cabaca pertence a L_2 . Relembro que uma configuração é um triplo $(q_i, \gamma_i, u_i) \in Q \times Z^* \times T^*$, onde Q é o conjunto de estados, Z o alfabeto da pilha e T o alfabeto de entrada, que representa o estado global do autómato num dado momento no processo de reconhecimento. O processo de reconhecimento corresponde a fazer avançar o autómato de configuração em configuração desde a inicial até uma final.

- $[\ 3,0\]$ 5. Construa uma gramática independente do contexto que represente a linguagem L_2 . Sabe-se que:
 - O autómato M_2 representa o conjunto das palavras, definidas sobre o alfabeto T_2 , com um número de símbolos **a** superior ao número de símbolos **b**.
 - É possível dividir-se qualquer palavra pertencente a L_2 em duas sub-palavras tal que:
 - a sub-palavra da esquerda tem igual número de símbolos a e b;
 - a sub-palavra da direita corresponde à concatenação de uma ou mais subpalavras, cada uma delas com um número de símbolos a igual ao número de símbolos b mais um.

Sobre o alfabeto $T_3 = \{m \ t \ , = ; id\}$ considere a gramática G_3 dada a seguir e seja L_3 a linguagem por ela descrita.

$$\begin{array}{l} S' \to S \\ S \to \lambda \mid D \text{ ; } S \\ D \to \text{t} \ L \mid \text{mt} \ L \\ L \to V \mid V \text{ , } L \\ V \to \text{id} \mid \text{id} = \text{e} \end{array}$$

- [1,5] 6. A palavra "t id; m t id, id = e; pertence a L_3 . Trace a sua árvore de derivação.
- [2,0] 7. A construção de um reconhecedor (parser) ascendente para uma gramática baseia-se na colecção (canónica) de conjuntos de itens. O elemento inicial dessa colecção para a gramática G_3 está parcialmente descrito a seguir.

$$I_0 = \{S' \to S' \cup \cdots$$

Complete-o.

- [2,5] 8. A gramática G_3 representa uma abstracção simplificada de uma declaração de variáveis em C. O terminal t representa o tipo (int, double, ...) e o terminal m um modificador (por exemplo o static). Sabendo que:
 - O símbolo terminal t tem um atributo t que representa o tipo que lhe está associado.
 - O símbolo terminal id tem um atributo v que representa o identificador que lhe está associado.
 - se dispõe de uma função de manipulação de uma tabela de identificadores, com a assinatura addsym(x, y, z), que permite adicionar um elemento à tabela, onde:
 - x representa o identificador (valor do atributo v de um id);
 - y representa o tipo (valor do atributo t do terminal t que se aplica ao id;
 - z é um valor booleano que indica se o id é afectado ou não por um m

construa uma gramática de atributos que permita invocar a função addsym de forma adequada por cada id declarado.