Fundamentals of deep learning

Crash course in using PyTorch to train models

Terence Parr
MSDS program
University of San Francisco

Deep learning regressors

What's a neural network?

- Ignore the neural network metaphor, but know the terminology
- A combination of linear and nonlinear transformations
 - Linear: $z^{[layer]} = W^{[layer]}x^T + b^{[layer]}$
 - Nonlinear: $a^{[layer]} = \sigma(z^{[layer]})$; called activation function
- Networks have multiple layers; layer is a stack of neurons

• Transform raw x vector into better and better features, final linear layer can then make excellent prediction

DL Building blocks

$$oxed{wx+b}$$
 Inear sigmoid ReLU (rectified linear unit)

- $\hat{y} = w_1 x_1 + w_2 x_2 + ... + w_m x_m + b = w x^T + b$ for $n \times m \dim X$
- Linear/logistic regression equivalents (one *x* instance):

Assume we magically know w and b

(For simplicity, I'm using proper wx^T in math but omitting transpose in diagrams)

Underfitting a bit here (need more of a quadratic)

Try adding layers to get more power

But, sequence of linear models is just a linear model

$$\hat{y} = w'(\mathbf{w}\mathbf{x}^T + b) + b' = w'\mathbf{w}\mathbf{x}^T + w'b + b' = \mathbf{w}''\mathbf{x}^T + b''$$

(w' is scalar since $wx^T + b$ is scalar)

PyTorch code

```
model = nn.Sequential(
    nn.Linear(m, 1), # m features
    nn.Linear(1, 1)
)
```


Must introduce nonlinearity

Weight (Standardized)

10

-1

ReLU idea here: Draw two lines then clip at intersection

model = nn.Sequential(

Stack linear models (neurons) for more power

- Stack gives layer: W matrix and b
- $a^{[1]} = relu(W^{[1]}x^T + b^{[1]})$
- $\hat{y} = a^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$

All those w and b are different

 $W^{[1]}$ means W for layer 1

Math for dataset 1D: weight→MPG

(leaving out b's) = F.relu(W1 2 2 = F.relu(W2 @ α 2 2 (courtesy of TensorSensor)

https://explained.ai/tensor-sensor/index.html

UNIVERSITY OF SAN FRANCISCO

Too much strength can lead to overfitting

Models with too many parameters will overfit easily,

if we train a long time

We'll look at regularization later

```
model = nn.Sequential(
nn.Linear(1, 1000),
nn.ReLU(),
nn.Linear(1000, 1)
```


Classifiers

Binary classifiers

- Add sigmoid to regressor and we get a two-class classifier
- Prediction \hat{y} is probability of class 1
- One-layer (hidden) network with sigmoid activation function is just a logistic regression model
- Provides hyper-plane decision surfaces

```
# 2 input vars: proline, alcohol
model = nn.Sequential(
    nn.Linear(2, 1),
    nn.Sigmoid(),
)
```


Stack neurons, add layer

We get a nonlinear decision surface

All those w and b are different

More neurons: more complex decision surface

Likely overfit

Not only more complex than hyperplane but non-contiguous regions!

Even ReLUs can get "curvy" surfaces

```
model = nn.Sequential(
    nn.Linear(2, 10),
    nn.ReLU(),
    nn.Linear(10, 10),
    nn.ReLU(),
    nn.Linear(10, 1),
    nn.Sigmoid()
)
```

(Last activation function still must be sigmoid)

k-class classifiers

 2-class problems: final 1 neuron linear layer + sigmoid layer $\mathbf{x} \xrightarrow{\mathbf{w} \mathbf{x} + b} \xrightarrow{\mathbf{w} \mathbf{x} + b} \xrightarrow{\mathbf{w} \mathbf{x} + b} \mathbf{w} \mathbf{x} + b$

 k-class problems: final k-neuron linear layer + softmax

k-class classifiers

- Instead of one neuron in last layer, we use k for k classes
- Last layer has vector output: $\mathbf{z}^{[layer]} = W^{[layer]} \mathbf{x}^T + \mathbf{b}^{[layer]}$
- Instead of sigmoid, we use softmax function
- Vector of k probabilities as activation: $\hat{y} = softmax(\mathbf{z}^{[layer]})$
- Normalized probabilities of k classes

$$softmax(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}}$$

Sample softmax computation

• For layer output vector
$$\mathbf{z}$$
: $softmax(\mathbf{z})_i = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}}$

```
z = np.array([0.1, 1, 5])
np.exp(z)
array([ 1.10517092, 2.71828183, 148.4131591 ])
np.exp(z) / np.sum(np.exp(z))
array([0.00725956, 0.01785564, 0.9748848])
```

Training deep learning networks

Refresher: What does training mean?

- Making a prediction means running a feature vector through the network
 - i.e., computing a value using the model parameters; e.g., $\hat{y} = 3x + 2$ is a different model than $\hat{y} = .5x + 10$
- Training: find optimal (or good enough) model parameters as measured by a loss (cost) function
- Loss function measures the difference between model predictions and known targets
- We have huge search space (of parameters) and it is challenging to find parameters giving low loss

Refresher: Loss functions

- Regression: typically mean squared error (MSE); should have smooth derivative, though mean absolute error works despite discontinuity (it's derivative is a V shape)
- Classification: log loss (also called cross entropy)
 - Penalizes very confident misclassifications strongly
 - Function of actual y and estimated probabilities, not predicted class
 - Perfect score is 0 log loss, imperfection gives unbounded scores
 - PyTorch log loss: loss = cross_entropy(y_softmax, y_true)
 - Predictions: y_pred = argmax(y_softmax)

Log loss

- Let p be predicted probability that y=1
- loss = penalty(p) if y=1 else penalty(1-p)
- Let penalty(p) = -log(p)

Two-class log loss:

$$loss = -\frac{1}{n} \sum_{i=1}^{n} y_i \log(p) + (1 - y_i) \log(1 - p_i)$$

So log loss is average penalty where penalty is very high for confidence in wrong answer

penalty

Minimize loss with Gradient descent

- We use information about the loss function in the neighborhood of current parameters (here called β_i) to decide which direction shifts towards smaller loss
- Tweak parameters in that direction, amplified by a learning rate
- Go in opposite dir of slope

while $not_converged$: $\beta = \beta$ - rate * gradient(β)

WUNIVERSITY OF SAN FRANCISCO

If learning rate is too high?

- We oscillate across valleys
- It can even diverge, exploding
- If too small, we don't make progress to min

Training process

- 1. Prepare data
 - normalize numeric variables
 - dummy vars for categoricals
 - conjure up values for missing values
- 2. Split out at least a validation set from training set
- 3. Choose network architecture, appropriate loss function
- 4. Choose hyper-parameters, such as dropout rate
- 5. Choose a learning rate, number of epochs (passes through data)
- 6. Run training loop (until validation error goes up or num iterations)
- 7. Goto 3, 4, or 5 to tweak; iterate until good enough

Training loop

Classification

```
for epoch in range(nepochs):
    y_train_pred = model(X_train) # assume softmax final layer
    loss = cross_entropy(y_train_pred, y_train)
    update model parameters in direction of lower loss
```


Common train vs validation loss behavior

- DL networks have so many parameters, we can often get training error down to zero!
- But, we care about generalization
- Unfortunately, validation error often tracks away from training error as the number of epochs increases
- This model is clearly overfitting
- Need to use regularization to improve validation loss

Regularization techniques

- Get more training data; can try augmentation techniques (more data is likely to represent population distribution better)
- Reduce number of model parameters (i.e., simplify it) (reduce power/ability to fit the noise)
- Add drop out layers (randomly kill some neurons)
- Weight decay (L2 regularization on model parameters, restrict model parameter search space)
- Early stopping, when validation error starts to go up (generally we choose model that yields the best validation error)
- Batch normalization has some small regularization effect (Force layer activation distributions to be 0-mean, variance 1)
- Stochastic gradient descent tends to land on better generalizations

Aside: What is vectorization?

- Use vectors not loops
- For torch/numpy arrays, we can use vector math instead of a loop:

$$c = a + b$$

 Gives an opportunity to execute vector addition in parallel

Vectorization in training loop

- Running one instance through network is how we think about it
- In practice, we send a subset or all X instances through the network in one go and compare all \hat{y} predictions to all y
- Instead of looping through instances, we pass *X* through to use matrix-matrix multiplies instead of matrix-vector multiplies

for epoch in range(nepochs):
 for i in range(n):
 x = X[i]
 y[i] = model(x)
 ...

$$\frac{x}{3} = \frac{x}{3} [i] \qquad \underbrace{y[i]}_{-1} = \underbrace{W}_{3} @ \underbrace{x.T}_{-1}$$

for epoch in range(nepochs): Y = model(X)... $Y = \underbrace{W}_{100} \underbrace{0}_{x} \underbrace{X.T}_{100}$ Get 100
answers

UNIVERSITY OF SAN FRANCISCO

Assume n=100, m=3, n_neurons=1 in 1x3 weight matrix W

Summary

- Vanilla deep learning models are layers of linear regression models glued together with nonlinear functions such as sigmoid/ReLUs
- Regressor: final layer transforms previous layer to single output
- Classifier: add sigmoid to last regressor layer (2-class) or add softmax to last layer of k neurons (k-class)
- Training a model means finding optimal (or good enough) model parameters as measured by a *loss* (cost or error) function; hyper parameters describe architecture and learning rate, amount of regularization, etc.
- We train using (stochastic) gradient descent; tuning model and hyper parameters is more or less trial and error \otimes but experience helps a lot