Linear and Quadratic Regression

Probabilistic Approach

林哲緯

February 2, 2025

監督式學習中的群組分析,有別於輸入與輸出之間存在確定性關係,輸出是由模型參數完全決定的 (Deterministic),這次從群組界線的後驗機率相等的角度切入,建立群組界線以劃分資料空間。此方法假設輸入與輸出之間存在隨機性,以機率分佈的形式表達,即是機率性方式 (Probabilistic Approach),包括線性判別分析 (Linear Discriminant Analysis, LDA)、二次判別分析 (Quadratic Discriminant Analysis, QDA) 與 K-鄰近法 (K Nearest Neighbors, KNN)。

1 線性判別分析 (LDA)

假設 X 代表多變量資料樣本變數,G 代表群組的類別變數,則後驗機率表示為 $P(G \mid X)$,也就是說當資料在給定 X = x 的條件下,該資料屬於群組 G = k 的機 率。分別計算資料屬於不同群組的機率後,得到最大機率的群組,以此方式來推斷 資料應該屬於哪個群組。因此需要計算最大後驗機率來作為群組判別的依據,如式 (1),也稱之為判別式分析 (Discriminant Analysis)。

$$G(\mathbf{x}) = \arg\max_{k} \log Pr(G = k \mid \mathbf{X} = \mathbf{x})$$
 (1)

由於後驗機率 $P(G \mid \mathbf{X})$ 較難計算,因此須透過貝氏定理的幫助,可以得出

$$P(G = k \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid G = k)P(G = k)}{\sum_{l} P(\mathbf{X} \mid G = l)P(G = l)}$$
(2)

其中 $P(X \mid G = k)$ 表示第 k 組資料發生的機率密度函數,而 P(G = k) 代表群組 k 發生的機率。

本文假設群組的機率密度函數 $P(X \mid G = k) = f_k(\mathbf{X})$ 服從多變量常態分配,寫成

$$f_k(\mathbf{X}) = \frac{1}{(2\pi)^{p/2} |\sum_k|^{1/2}} e^{-\frac{1}{2}(\mathbf{X} - \boldsymbol{\mu}_k)^T \sum_k^{-1} (\mathbf{X} - \boldsymbol{\mu}_k)}$$
(3)

其中資料變數 $\mathbf{X} \in \mathbb{R}^p$, μ_k 代表 \sum_k 分別代表第 k 群資料常態假設的均值與共變異矩陣。為了簡化問題,假設所有群組的共變異矩陣都相等,即 $\sum_k = \sum_i \forall k$ 。加入貝氏定理與資料的常態假設後,可以將式 (1) 改寫成

$$\begin{split} G(\mathbf{x}) &= \arg\max_{k} \log Pr\left(G = k | \mathbf{X} = \mathbf{x}\right) \\ &= \arg\max_{k} \log \left(Pr\left(\mathbf{X} = \mathbf{x} | G = k\right) Pr\left(G = k\right)\right) \\ &= \arg\max_{k} \ \mathbf{x}^{T} \Sigma^{-1} \boldsymbol{\mu}_{k} - \frac{1}{2} \boldsymbol{\mu}_{k}^{T} \Sigma^{-1} \boldsymbol{\mu}_{k} + \log Pr(G = k) \end{split}$$

第一行為一筆新資料 $\mathbf{X} = \mathbf{x}$ 來自哪一個群組的機率為最高,經過貝氏定理 (2) 的轉換並去除與組別 k 無關的分母,即為算式第二行。再將式 (3) 假設的常態函數代入 (共變異矩陣相同),同樣去除與組別 k 無關的項目,即為算式第三行,其中的目標函數又稱為線性判別式函數 (Linear Discriminant Function),即

$$\delta_k(\mathbf{x}) = \mathbf{x}^T \Sigma^{-1} \boldsymbol{\mu}_k - \frac{1}{2} \boldsymbol{\mu}_k^T \Sigma^{-1} \boldsymbol{\mu}_k + \log Pr(G = k)$$
 (4)

在式 (4) 中,除了資料 x 外,其餘皆為未知,但我們仍可利用已知的資料估計這些值。

$$\hat{\mu}_k = \Sigma_{G \in k} \frac{(x)_i}{N_k} \tag{5}$$

 μ_k 的估計為在第 k 個群組中,觀測到樣本資料的樣本平均。其中, N_k 為第 k 個群組的資料總數。

$$\hat{\Sigma}_k = \sum_{k=1}^K \sum_{G \in k} \frac{(\mathbf{x}_i - \hat{\mu}_k) (\mathbf{x}_i - \hat{\mu}_k)^T}{N - K}$$
(6)

 Σ_k 的估計為各組資料算出來的樣本共變異矩陣的加權平均。其中,N 代表所有群組的資料總數,K 代表群組的個數。

$$Pr(G=k) \approx \hat{\pi}_k = \frac{N_k}{N}$$
 (7)

Pr(G = k) 的估計為第 k 個群組的資料總數佔所有群組資料總數的比例。

監督式學習的群組分析,其幾何意義為在資料所在的 \mathbb{R}^p 空間切割出 K 個領域 (K 是群組數),切割的依據當然是給定的 N 筆已知資料及其群組別。而判別新資料的群組別時,則是依據資料集落在哪一個群組類別。

在繪製分界線時,必須先找出兩群組間的共同條件。因此,利用機率相等的概念,來建立這條分界線,以 $k \times j$ 兩群體為例,若我們觀測到的新資料落在分界線上,則它屬於k 群體的機率會等於它屬於j 群體的機率,也就是說,我們無法明確的判定到底該筆資料是屬於哪個群體。數學式的表達如式(8)。

$$Pr(G = k|X = \mathbf{x}) = Pr(G = j|X = \mathbf{x})$$
(8)

在後驗機率相等的群組分界原則下,結合由貝式定理(2)及資料的常態分配假設(3),分界線的函數可以從以下的轉換得到:

$$\log \frac{Pr(G=k|X=\mathbf{x})}{Pr(G=j|X=\mathbf{x})} = \log \frac{f_k(\mathbf{x})}{f_j(\mathbf{x})} + \log \frac{Pr(G=k)}{Pr(G=j)}$$

$$= \log \frac{Pr(G=k)}{Pr(G=j)} - \frac{1}{2} (\mu_k + \mu_j)^T \Sigma^{-1} (\mu_k - \mu_j) + \mathbf{x}^T \Sigma^{-1} (\mu_k - \mu_j)$$

$$= 0$$

$$(9)$$

從資料的後驗機率相等,得到式(9)的線性方程式,變可以用來判斷資料的群組劃分。

2 資料分群

本節將自行生成兩個至三個群組的資料,其中,群組的資料皆服從於二元常態分配。依據不同的資料特性,例如:距離遠近、共變異矩陣以及樣本數大小,分別利用 LDA、QDA 進行群組的判別。並且,將原始資料分成訓練資料及測試資料,觀察它們的誤判率,步驟如下:

- I. 隨機選取原始資料的80%為訓練資料,20%為測試資料。
- II. 以訓練資料進行參數的估計,並將測試資料代入,觀察預測的誤判率。
- III. 重複 100 次步驟 I 及步驟 II, 並取平均。

3 兩個群組

以下將針對兩個群組的資料,利用不同的方法,對其進行檢視及群組的判別,共有 七種不同型態的資料。其中,令 Group A=0、Group B=1。

DATA 1.

Group A:

Group B:

$$n_1 = 200$$
, $\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $n_2 = 200$, $\mu_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\Sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

此資料的型態為 Group A 及 Group B 的樣本數及共變異矩陣相同,但兩組間的距離較遠。並且, Group A 及 Group B 中的樣本皆互相獨立。由圖 1可以看出兩群組的部分資料點有些許的重疊,分界較明顯,且兩群資料皆無明顯的趨勢。

LDA & QDA

圖 1 為原始資料利用 LDA、QDA 所繪製的分界線。觀察圖 1, LDA 及 QDA 的分界線僅有些微差距。利用訓練資料及測試資料的誤判率來比較,LDA 訓練資料的誤判率為 6.29 %,測試資料的誤判率為 6.70 %; QDA 訓練資料的誤判率為 4.73 %,測試資料的誤判率為 5.36 %。從誤判率可以發現,不論是在訓練資料,亦或是測試資料,雖然只有些微的差距,但 QDA 的誤判率都些微低於 LDA。因此,推測在這種資料形態下,QDA 的判別能力是比 LDA 好的。

Figure 1: 原始資料的群組分界線 [DATA 1]

DATA 2.

Group A:

Group B:

$$n_1 = 200$$
, $\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\Sigma_1 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ $n_2 = 200$, $\mu_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $\Sigma_2 = \begin{bmatrix} 1 & 0.7 \\ 0.7 & 1 \end{bmatrix}$

此資料的型態為 Group A 及 Group B 的樣本數相同,但兩組間的距離較遠且共變異數矩陣不同。並且,Group A 的兩變數皆互相獨立,Group B 的樣本則為相依。由圖 2 可以看出兩群組的資料點只有些許的重疊,分界較明顯,並且 Group B 有明顯的趨勢。

LDA & QDA

圖 2 為原始資料利用 LDA、QDA 所繪製的分界線。觀察圖 2 ,可以看到 LDA 及 QDA 的分界線有明顯的差別。利用訓練資料及測試資料的誤判率來比較,LDA 訓練資料的誤判率為 9.38 %,測試資料的誤判率為 9.57 %;QDA 訓練資料的誤判率為 5.68 %,測試資料的誤判率為 5.91 %。從誤判率可以發現,不論是在訓練資料,亦或是測試資料,LDA 的誤判率都比 QDA 還高出許多。因此,推測在這種資料形態下,QDA 的判別能力是比 LDA 好的。

Figure 2: 原始資料的群組分界線 [DATA 2]

DATA 3.

Group A:

Group B:

$$n_1 = 200$$
, $\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $n_2 = 200$, $\mu_2 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$, $\Sigma_2 = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$

此資料的型態為 Group A 及 Group B 的樣本數相同,但兩組間的距離較遠且共變異數矩陣不同。並且,Group A 及 Group B 中的變數皆互相獨立,只是 Group B 變異較大,且資料點較分散。由圖 3 可以看出兩群組的資料點只有些許的重疊,分界較明顯,並且 Group B 較 Group A 分散許多。

LDA & QDA

圖 3 為原始資料利用 LDA、QDA 所繪製的分界線。觀察圖 3 ,可以看到 QDA 的分界線是一個圓圈,與 LDA 的分界線有明顯的差別。利用訓練資料及測試資料的誤判率來比較,LDA 訓練資料的誤判率為 9.85 %,測試資料的誤判率為 9.81 %;QDA 訓練資料的誤判率為 8.73 %,測試資料的誤判率為 7.71 %。從誤判率可以發現,不論是在訓練資料,亦或是測試資料,LDA 的誤判率都些微高出 QDA。因此,推測在這種資料形態下,QDA 的判別能力是比 LDA 好的。

Figure 3: 原始資料的群組分界線 [DATA 3]

DATA 4.

Group A:

$$n_1 = 200$$
, $\mu_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\Sigma_1 = \begin{bmatrix} 1 & -0.7 \\ -0.7 & 1 \end{bmatrix}$ $n_2 = 200$, $\mu_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$, $\Sigma_2 = \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix}$

此資料的型態為 Group A 及 Group B 的樣本數相同、距離較近,且兩組間的共變異數矩陣不同。並且,Group A 及 Group B 中的樣本皆為相依,Group B 資料點較集中,兩群都有明顯的趨勢。由圖 4可以看出兩群組中間部分的資料點是重疊在一起的,呈現一個交叉的形狀。

LDA & QDA

圖 4 為原始資料利用 LDA、QDA 所繪製的分界線。觀察圖 4,可以看到 QDA 與 LDA 的分界線有明顯的差別。利用訓練資料及測試資料的誤判率來比較,LDA 訓練資料的誤判率為 43.14 %,測試資料的誤判率為 45.66 %; QDA 訓練資料的誤判率為 18.68 %,測試資料的誤判率為 18.58 %。從誤判率可以發現,不論是在訓練資料,亦或是測試資料,LDA 的誤判率都明顯比 QDA 高出許多。因此,推測在這種資料形態下,QDA 的判別能力是比 LDA 好的。

Figure 4: 原始資料的群組分界線 [DATA 4]

DATA 5.

Group A:

Group B:

$$n_1 = 200$$
, $\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $n_2 = 200$, $\mu_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\Sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

此資料的型態為 Group A 及 Group B 的樣本數及共變異數矩陣皆相同,且兩群資料點分散程度相近。兩組資料皆為相互獨立。由圖 5 可以看出兩群組的資料點幾乎是完全重疊在一起的。

LDA & QDA

圖 5 為原始資料利用 LDA、QDA 所繪製的分界線。觀察圖 5,可以看到 QDA 與 LDA 的分界線有些微的差別。利用訓練資料及測試資料的誤判率來比較,LDA 訓練資料的誤判率為 24.67 %,測試資料的誤判率為 25.45 %; QDA 訓練資料的誤判率為 25.02 %,測試資料的誤判率為 26.23 %。從誤判率可以發現,不論是在訓練資料,亦或是測試資料,QDA 的誤判率都比 LDA 些微高出一點點。因此,推測在這種資料形態下,兩種判別方法可能表現皆差不多。

Figure 5: 原始資料的群組分界線 [DATA 5]

DATA 6.

Group A:

Group B:

$$n_1 = 500$$
, $\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\Sigma_1 = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$ $n_2 = 150$, $\mu_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\Sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

此資料的型態為 Group A 及 Group B 的樣本數及共變異矩陣不相同。兩組資料皆為相互獨立,其中 Group A 的變異較大,資料較分散。由圖 6可以看出兩群組的資料點是完全重疊在一起的,並且, Group B 是位於 Group A 之中的。

LDA & QDA

圖 6 為原始資料利用 LDA、QDA 所繪製的分界線。觀察圖 6,可以看到 QDA 的分界線是一個橢圓,與 LDA 的分界線有明顯的差別。利用訓練資料及測試資料的誤判率來比較,LDA 訓練資料的誤判率為 35.56 %,測試資料的誤判率為 36.76 %; QDA 訓練資料的誤判率為 20.62 %,測試資料的誤判率為 21.59 %。從誤判率可以發現,不論是在訓練資料,亦或是測試資料,LDA 的誤判率都比 QDA 高。因此,推測在這種資料形態下,QDA 的判別能力可能是比 LDA 好的。

Figure 6: 原始資料的群組分界線 [DATA 6]

DATA 7.

Group A:

$$n_1 = 200$$
, $\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\Sigma_1 = \begin{bmatrix} 3 & 0.7 \\ 0.7 & 3 \end{bmatrix}$ $n_2 = 200$, $\mu_2 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$, $\Sigma_2 = \begin{bmatrix} 3 & 0.7 \\ 0.7 & 3 \end{bmatrix}$

此資料的型態為 Group A 及 Group B 的樣本數及共變異矩陣皆相同,距離較遠,且兩組資料皆為相依。由圖 7 可以看出兩群組的資料點是有明顯的分界,重疊的資料點較少,並且兩組資料的趨勢皆相同。

LDA & QDA

圖 7 為原始資料利用 LDA、QDA 所繪製的分界線。觀察圖 7,可以看到 QDA 與 LDA 的分界線有明顯的差別。利用訓練資料及測試資料的誤判率來比較,LDA 訓練資料的誤判率為 10.74 %,測試資料的誤判率為 10.84 %;QDA 訓練資料的誤判率為 9.65 %,測試資料的誤判率為 10.04 %。從誤判率可以發現,不論是在訓練資料,亦或是測試資料,QDA 的誤判率都比 LDA 低。因此,推測在這種資料形態下,QDA 的判別能力可能稍微比 LDA 好。

Figure 7: 原始資料的群組分界線 [DATA 7]

3.1 三個群組

以下將針對三個群組的資料,利用不同的方法,對其進行檢視及群組的判別,共有兩種不同型態的資料。其中,令 Group A=0、Group B=1、Group C=2。

DATA 8.

Group A:

$$n_1 = 300$$
, $\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\Sigma_1 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

Group B:

$$n_2 = 200$$
, $\mu_2 = \begin{bmatrix} -4 \\ -2 \end{bmatrix}$, $\Sigma_2 = \begin{bmatrix} 2 & -0.7 \\ -0.7 & 1 \end{bmatrix}$

Group C:

$$n_3=100$$
 , $\mu_3=\left[egin{array}{c} -4 \ 2 \end{array}
ight]$, $\Sigma_3=\left[egin{array}{c} 1 & 0 \ 0 & 1 \end{array}
ight]$

LDA & QDA

由圖 8 可以看出這三群組的資料點之間是有明顯的分界,重疊的資料點較少。觀察圖 8,可以看到 QDA 與 LDA 的分界線在 Group C 與 Group A 或 Group B 之間有明顯的差別。利用訓練資料及測試資料的誤判率來比較,LDA 訓練資料的誤判率為5.35%,測試資料的誤判率為5.49%; QDA 訓練資料的誤判率為5.33%,測試資料的誤判率為5.83%。LDA 的誤判率和 QDA 誤判率皆差不多。因此,推測在這種資料形態下,兩者表現相當。

Figure 8: 原始資料的群組分界線 [DATA 8]

DATA 9.

Group A:

$$n_1 = 500$$
 , $\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\Sigma_1 = \begin{bmatrix} 5 & 0.5 \\ 0.5 & 5 \end{bmatrix}$

Group B:

$$n_2 = 300$$
, $\mu_2 = \begin{bmatrix} -5 \\ 0 \end{bmatrix}$, $\Sigma_2 = \begin{bmatrix} 3 & -0.2 \\ -0.2 & 3 \end{bmatrix}$

Group C:

$$n_3 = 250$$
, $\mu_3 = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$, $\Sigma_3 = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$

由圖 9 可以看出這三群組的資料點之間是有明顯的分界,重疊的資料點雖比 DATA 8 多,但重疊的情況仍算少。

LDA & QDA

圖 9 為原始資料利用 LDA、QDA 所繪製的分界線。觀察圖 9,可以看到 QDA 與 LDA 的分界線在 Group A 與 Group B 之間有明顯的差別,Group A 與 Group C 之間 的差異則比較不明顯。LDA 訓練資料的誤判率為 16.67 %,測試資料的誤判率為 17.21 %;QDA 訓練資料的誤判率為 15.89 %,測試資料的誤判率為 16.41 %。從誤 判率可以發現,不論是在訓練資料,亦或是測試資料,LDA 的誤判率都比 Q 稍微 高一些。因此,推測在這種資料形態下,QDA 的判別能力可能是比 LDA 好的。

Figure 9: 原始資料的群組分界線 [DATA 9]

DATA 10.

Group A:

$$n_1 = 500$$
, $\mu_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\Sigma_1 = \begin{bmatrix} 3 & -0.7 \\ -0.7 & 3 \end{bmatrix}$

Group B:

$$n_2 = 300$$
, $\mu_2 = \begin{bmatrix} -5 \\ 0 \end{bmatrix}$, $\Sigma_2 = \begin{bmatrix} 3 & -0.7 \\ -0.7 & 3 \end{bmatrix}$

Group C:

$$n_3 = 250$$
, $\mu_3 = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$, $\Sigma_3 = \begin{bmatrix} 3 & -0.7 \\ -0.7 & 3 \end{bmatrix}$

此資料的型態為 Group A、Group B 及 Group C 的共變異矩陣皆相同,距離較遠,且三組資料皆為相依。由圖 10 可以看出這三群組的資料點之間是有明顯的分界,重疊的資料點較少。

LDA & QDA

圖 10 為原始資料利用 LDA、QDA 所繪製的分界線。觀察圖 10,可以看到 QDA 在 Group A 與 Group B 及 Group A 與 Group C 之間的分界線較 LDA 彎曲一些。利用訓練資料及測試資料的誤判率來比較,LDA 訓練資料的誤判率為 8.90 %,測試資料的誤判率為 8.97 %;QDA 訓練資料的誤判率為 9.44 %,測試資料的誤判率為 9.80 %。從誤判率可以發現,不論是在訓練資料,亦或是測試資料,QDA 的誤判率都比 LDA 高一些。因此,推測在這種資料形態下,LDA 的判別能力可能是比 QDA 好的。

Figure 10: 原始資料的群組分界線 [DATA 10]

4 方法比較

本節將整理以上兩種機率性方法,在不同資料下的誤判率,並推測出針對不同資料,較適用於何種方法來進行判別預測。

Table 1: 兩群資料的機率性方法的誤判率比較

訓練資料誤判率(%)	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7
線性判別分析 (LDA)	6.29	9.38	9.85	43.14	24.67	35.56	10.74
二次判別分析 (QDA)	4.73	5.68	8.73	18.68	25.02	20.62	9.65
測試資料誤判率(%)	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7
測試資料誤判率(%) 線性判別分析(LDA)	DATA 1 6.70	DATA 2 9.57	DATA 3 9.81	DATA 4 45.66	DATA 5 25.45	DATA 6 36.76	DATA 7 10.84

Table 2: 兩個群組的資料型態

Gro	oup	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7
Α	樣本數	200	200	200	200	200	500	200
	變異數	1	2	1	1	1	5	3
	變數間的關係	獨立	獨立	獨立	相依	獨立	獨立	相依
В	樣本數	200	200	200	200	200	150	200
	變異數	1	1	5	1	1	1	3
	變數間的關係	獨立	相依	獨立	相依	獨立	獨立	相依
	兩母體的距離	較遠	較遠	較遠	較近	較近	較近	較遠
	共變異矩陣	相同	不同	不同	不同	相同	不同	相同