Math 720: Homework.

Do, but don't turn in optional problems. Keep in mind that there is a firm 'no late homework' policy.

Assignment 1: Assigned Wed 09/05. Due Wed 09/12

Following the notation of Cohn, I use λ to denote the Lebesgue measure.

- 1. For each of the following sets, compute the Lebesgue outer measure.
 - (a) Any countable set. (b) The Cantor set. (c) $\{x \in [0,1] \mid x \notin \mathbb{Q}\}.$
- 2. (a) If $V \subseteq \mathbb{R}^d$ is a subspace with $\dim(V) < d$, then show that $\lambda(V) = 0$.
 - (b) If $P \subseteq \mathbb{R}^2$ is a polygon show that area $(P) = \lambda(P)$.
- 3. (a) Say μ is a translation invariant measure on $(\mathbb{R}^d, \mathcal{L})$ (i.e. $\mu(x+A) = \mu(A)$ for all $A \in \mathcal{L}$, $x \in \mathbb{R}^d$). Show that $\exists c \geq 0$ such that $\mu(A) = c\lambda(A)$.
 - (b) Let $T: \mathbb{R}^d \to \mathbb{R}^d$ be an orthogonal linear transformation, and $A \in \mathcal{L}$. Show that $T(A) \in \mathcal{L}$ and $\lambda(T(A)) = \lambda(A)$. [Hint: Express T in terms of elementary transformations.]
- 4. (a) Let $\mathcal{E} \subseteq \mathcal{P}(X)$, and $\rho : \mathcal{E} \to [0, \infty]$ be such that $\emptyset \in \mathcal{E}$, $X \in \mathcal{E}$ and $\rho(\emptyset) = 0$. For any $A \subseteq X$ define

$$\mu^*(A) = \inf \left\{ \sum_{1=1}^{\infty} \rho(E_i) \mid E_i \in \mathcal{E}, \text{ and } A \subseteq \bigcup_{1=1}^{\infty} E_j \right\}.$$

Show that μ^* is an outer measure.

- (b) Let (X, d) be any metric space, $\delta > 0$ and define $\mathcal{E}_{\delta} = \{B(x, r) \mid x \in X, r \in (0, \delta)\}$. Given $\alpha > 0$ define $\rho(B(x, r)) = c_{\alpha}r^{\alpha}$, where $c_{\alpha} = \pi^{\alpha/2}/\Gamma(1 + \alpha/2)$ is a normalization constant. Let $H_{\alpha, \delta}^*$ be the outer measure obtained with this choice of ρ and the collection of sets \mathcal{E}_{δ} . Define $H_{\alpha}^* = \lim_{\delta \to 0} H_{\alpha, \delta}^*$. Show H_{α}^* is an outer measure and restricts to a measure H_{α} on a σ -algebra that contains all Borel sets. The measure H_{α} is called the Hausdorff measure of dimension α . [Don't reprove Caratheodory.]
- (c) If $X = \mathbb{R}^d$, and $\alpha = d$ show that H_d is the Lebesgue measure.
- (d) Let $S \in \mathcal{B}(X)$. Show that there exists (a unique) $d \in [0, \infty]$ such that $H_{\alpha}(S) = \infty$ for all $\alpha \in (0, d)$, and $H_{\alpha}(S) = 0$ for all $\alpha \in (d, \infty)$. This number is called the *Hausdorff dimension* of the set S.
- (e) Compute the Hausdorff dimension of the Cantor set.

Details in class I left for you to check. (Do it, but don't turn it in.)

- * We saw in class $\ell(I) = I$ for closed cells. Show it for arbitrary cells.
- * Show that $m^*(a+E) = m^*(E)$ for all $a \in \mathbb{R}^d$, $E \subseteq \mathbb{R}^d$.
- * Show that the arbitrary intersection of σ -algebras on X is also a σ -algebra.
- $\ast\,$ Verify that the counting measures and delta measures are measures.
- * When proving Caratheodory, we proved in class Σ is a σ -algebra, and that $\mu^*|_{\Sigma}$ is finitely additive. Show that $\mu^*|_{\Sigma}$ is countably additive.