AI3001: Advanced Topics in Machine Learning Classroom Quiz 2 September 27, 2022

Instructions:

- All the problems are compulsory.
- Total duration of the quiz is 30 minutes.

Problem 1 (1+2+2= 5 marks). Compute the Bregman Divergence of

1.
$$R(x) = \frac{1}{2}||x||_2^2$$
 for $x \in \mathbb{R}^d$

2.
$$R(x) = -2\sum_{i=1}^{d} \sqrt{x_i} \text{ for } x \in (0, +\infty)^d$$

3.
$$R(x) = \sum_{i=1}^{d} x_i (\log(x_i) - 1)$$
 for $x \in \Delta_d$. Use $0 \log(0) = 0$.

Problem 2 (1+1+1+2 marks). Prove or disprove the following statements.

- 1. Bregman divergence $B_R(x||y)$ is convex in x even if R is not convex.
- 2. If f is α -strongly convex and g is convex then f+g is α -strongly convex.
- 3. Dual norm of 1-norm is ∞ -norm and vice-versa. Here $||x||_1=\sum_{i=1}^d|x_i|$ and $||x||_\infty=\max\{|x_1|,|x_2|,\cdots,|x_d|\}$
- 4. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function. Then f is strongly convex (with respect to norm ||.||) if and only if g defined as $g(x) = f(x) \frac{1}{2}||x||^2$ is convex.

Solution to Problem 1.

1.

$$B_R(x||y) = \frac{1}{2}||x||_2^2 - \frac{1}{2}||y||_2^2 - \langle y, x - y \rangle$$

= $\frac{1}{2}||x||_2^2 + \frac{1}{2}||y||_2^2 - \langle y, x \rangle = \frac{1}{2}||x - y||_2^2$

2.

$$B_R(x||y) = -2\sum_{i=1}^d \sqrt{x_i} + 2\sum_{i=1}^d \sqrt{y_i} + \sum_{i=1}^d \frac{x_i - y_i}{\sqrt{y_i}}$$
$$= \sum_{i=1}^d \frac{x_i + y_i - 2\sqrt{x_i y_i}}{\sqrt{y_i}} = \sum_{i=1}^d \frac{(\sqrt{x_i} - \sqrt{y_i})^2}{\sqrt{y_i}}$$

3.

$$B_R(x||y) = \sum_{i=1}^d x_i \log(x_i) - \sum_{i=1}^d x_i - y_i \log(y_i) + \sum_{i=1}^d y_i - \sum_{i=1}^d \log(y_i)(x_i - y_i)$$
$$= \sum_{i=1}^d x_i \log(x_i) - \sum_{i=1}^d x_i \log(y_i) = \sum_{i=1}^d x_i \log(\frac{x_i}{y_i}) = KL(x||y).$$

Solution of Question 2.

- 1. Take $R(x) = \log(x)$ for x > 0. We have $B_R(x||y) = \log(x) \log(y) \langle 1/y, x y \rangle$. Clearly $B_R(x||y)$ is not convex since we have $\nabla_x^2 B_R(x||y) = -1/x^2 < 0$.
- 2. NOte that $\nabla (f+g)(x) = \nabla f(x) + \nabla f(x)$. We have from strong convexity of f and convexity of g that

(1)
$$(\nabla f(y) - \nabla f(x))^T (y - x) \ge \alpha$$

$$(\nabla g(y) - \nabla g(x))^T (y - x) \ge 0$$

adding (1) and (2),

$$\langle \nabla (f+g)(y) - \nabla (f+g)(x), y-x \rangle \ge \alpha$$

.

3. Dual norm is given by $||y||^* = \sup_{||x|| \le 1} \langle x, y \rangle$. Let $i^* = \arg \max_i y_i$. If $y_{i^*} \ge 0$ we take $x'_{i^*} = 1$ and $x'_i = 0$ for $i \ne i^*$. We now show that x' is the supremum. For contradiction let $x \ne x'$ be any other vector such that $x_i \ge 0$, $\sum_i x_i \le 1$ and $\sum_{i=1}^n x_i y_i > y_{i^*}$. We have

$$\sum_{i \neq i^*} x_i y_i > (1 - x_{i^*}) y_{i^*}.$$

However, since $\sum_i x_i \le 1$ we have $(1 - x_{i^*}) \ge \sum_{i \ne i^*} x_i$. We get

$$\sum_{i \neq i^*} x_i y_i > (1 - x_{i^*}) y_{i^*} \ge \sum_{i \neq i^*} x_i y_{i^*} \ge \sum_{i \neq i^*} x_i y_i$$

- . A contradiction. The last inequality follows from the fact that y_{i^*} is the maximal element. On the other hand if $y_{i^*} < 0$ multiply all y_i and corresponding x_i 's by -1 and we land in the previous case. (Essentially, in this case we take $x'_{i^*} = -1$ and $x_i = 0$ for all $i \neq i^*$).
- 4. Not true in general. Let $f(x)=\frac{1}{\eta}\sum_{i=1}^d x_i\log(x_i)$ for some $\eta>0$. We have that f is $1/\eta$ -strongly convex. However for function $g(x)=f(x)-1/2||x||^2$ we have $\nabla^2 g(x)=\begin{pmatrix} 1/\eta x_1-1 & 0 & \cdots 0 \\ 0 & 1/\eta x_2-1\cdots 0 \\ 0 & 0 & \cdots 1/\eta x_d-1 \end{pmatrix}$ is convex only when $x_i\leq 1/\eta$ for all i. For instance, take $\eta\geq d+1$ and $x\in\Delta_d$ we have $1=\sum_i x_i\leq d/\eta\leq d/(d+1)<1$ a contradiction. However, it is true for 1-strongly convex functions as given in the lecture notes. The other side implication also does not hold. Let g be twice differentiable convex function on \mathbb{R} . We have $g''(x)=f''(x)-1\geq 0$. This implies $f''(x)\geq 1$. HOwever, this does not imply strong convexity for $\alpha<1$.