Clark University – JNR risk mapping meeting – September 16th 2022

Computing the annual deforestation rate

Ghislain VIEILLEDENT¹ Pierrick RAMBAUD² Rémi d'ANNUNZIO² [1] Cirad UMR AMAP, [2] FAO REDD+ NFM

- Introduction
 - Context
 - Objectives
- Formulas
 - Notations
 - Formulas

- Formula comparison
 - FAO formula
 - Cirad formula
 - Clark U. formula
 - Puyravaud formula
- 4 Conclusion
 - Recommendation
 - Demonstration of the formula

- Introduction
 - Context
 - Objectives
- Formulas
 - Notations
 - Formulas

- Formula comparison
 - FAO formula
 - Cirad formula
 - Clark U. formula
 - Puyravaud formula
- Conclusion
 - Recommendation
 - Demonstration of the formula

Observations of deforestation

- Historical deforestation maps are often derived from the analysis of satellite images (eg. Landsat).
- \bullet Deforestation is a rare event (< 1%/yr) and is very variable from one year to another.
- Deforestation is often observed and estimated for a period of time T
 of several years (eg. 5 or 10 years).

Figure – Deforestation 2000–2010–2020 in Guadeloupe.

Annual deforestation rate

Introduction

- To be able to compare deforestation intensity between regions (eg. countries) and time periods of different lengths (eg. 5 or 10 years), we need to compute a mean annual deforestation rate d in %/yr(also denoted $\%.vr^{-1}$).
- Several formulas have been proposed to compute d from the observed deforestation rate d' on a given period of time T.
- $d' = (A_0 A_T)/A_0$, with A_0 : initial forest cover at time t = 0, and A_T : forest cover at time t = T with T > 1.

Objectives

Introduction 0000

- Compare the different formulas used to compute the mean annual deforestation rate d in %/yr.
- Propose an appropriate formula for the JNR risk mapping tool.

- Introduction
 - Context
 - Objectives
- Pormulas
 - Notations
 - Formulas

- Formula comparison
 - FAO formula
 - Cirad formula
 - Clark U. formula
 - Puyravaud formula
- Conclusion
 - Recommendation
 - Demonstration of the formula

Notations

Areas and time

- A_t : forest area (in ha or km²) at time t with t = 0, ..., T.
- $A_0 > A_1 > A_2 > \ldots > A_T$.
- T: time-interval (in yr), T > 1.

Deforestation rates

- d': observed deforestation rate for period of time T. $d' = (A_0 A_T)/A_0$, in %.
- d: mean annual deforestation rate over the period of time T. e.g. $d = (A_0 A_1)/A_0$, in %/yr.
- d must be constant over the period of time T. $d = (A_0 A_1)/A_0 = (A_1 A_2)/A_1 = \dots$

Formulas

How to compute d from A_0 , A_T and T (or from d' and T as $d' = (A_0 - A_T)/A_0$)?

Proposed formulas

- FAO formula $r = (A_T/A_0)^{(1/T)} 1$
- Clark U. formula (inverted ratio) $\delta = (A_0/A_T)^{(1/T)} 1$
- Puyravaud formula $\rho = (1/T) \ln(A_T/A_0)$
- Cirad formula (after correction) $d = 1 (1 d')^{1/T}$

- Introduction
 - Context
 - Objectives
- Pormulas
 - Notations
 - Formulas

- Formula comparison
 - FAO formula
 - Cirad formula
 - Clark U. formula
 - Puyravaud formula
- Conclusion
 - Recommendation
 - Demonstration of the formula

FAO formula

$$r = (A_T/A_0)^{(1/T)} - 1$$

- Following FAO definition, r is a mean annual rate of change, not a mean annual rate of deforestation.
- This rate is zero if $A_T=A_0$ (no change), positive if $A_T>A_0$ (increase in forest cover), and negative if $A_T<=A_0$ (deforestation). This equation is perfectly OK when correctly interpreted.
- In the Verra document about JNR mapping risk methodology, there is a misinterpretation of r described as the deforestation or forest degradation rate (see p. 8 of the document).
- To obtain a deforestation rate (which is assumed positive), we need the opposite :

$$d = 1 - (A_T/A_0)^{1/T}$$

Cirad formula

$$d = 1 - (1 - d')^{1/T}, \text{ with } d' = (A_0 - A_T)/A_0$$

$$d = 1 - (1 - (A_0 - A_T)/A_0)^{1/T} = 1 - (A_T/A_0)^{1/T}$$

- This formula is just the opposite of the FAO rate cited by Verra : d = 1 r, with $r = (A_T/A_0)^{(1/T)} 1$.
- Can be easily demonstrated mathematically.
- Note that $d = 1 (1 d')^{1/T} \Leftrightarrow d' = 1 (1 d)^T$
- This explains the error in the riskmapjnr Python package (there
 was a confusion between d and d', now corrected).

Clark U. formula

$$\delta = (A_0/A_T)^{(1/T)} - 1$$

- Inverse ratio A_0/A_T in place of A_T/A_0 .
- Seems to provide reasonable estimates.

Problems with Clark U. formula

$$\delta = (A_0/A_T)^{(1/T)} - 1$$

- Not defined when $A_T = 0$
- $A_T = 0$ is frequent (small window size or T is large).
- Difficult to interpret.
- Overestimation of the mean annual deforestation rate.

Problems with Clark U. formula

$$\delta = (A_0/A_T)^{(1/T)} - 1$$

• Overestimation of the mean annual deforestation rate.

Puyravaud formula

$$\rho = (1/T) \ln(A_T/A_0)$$

- Derived from the instantaneous rate of change.
- Not defined when $A_T = 0$.
- Again, $A_T = 0$ is frequent (small window size or T is large).
- Overestimation of the mean annual deforestation rate.

- Introduction
 - Context
 - Objectives
- Formulas
 - Notations
 - Formulas

- Formula comparison
 - FAO formula
 - Cirad formula
 - Clark U. formula
 - Puyravaud formula
- 4 Conclusion
 - Recommendation
 - Demonstration of the formula

Recommendation

We recommend the use of the following formula to estimate the mean annual deforestation rate :

$$d = 1 - (1 - d')^{1/T}$$
 equivalent to $d = 1 - (A_T/A_0)^{1/T}$

Demonstration

We demonstrate that $d = 1 - (1 - d')^{1/T}$:

We have :
$$A_0 > A_1 > A_2 > ... > A_T$$

Then, $A_1 = A_0 - d \times A_0 = A_0(1 - d)$
 $A_2 = A_1 - d \times A_1 = A_1(1 - d) = A_0(1 - d)(1 - d) = A_0(1 - d)^2$

. . .

$$A_T = A_0(1-d)^T \Leftrightarrow A_T/A_0 = (1-d)^T$$
 (1)

By definition, $d'=(A_0-A_T)/A_0$ (2)

(1) and (2)
$$\Rightarrow d' = 1 - (1 - d)^T$$
 (3)
 $(1 - d)^T = 1 - d'$
 $1 - d = (1 - d')^{1/T}$
 $d = 1 - (1 - d')^{1/T}$ (4)

