Merala Motes

SYLLABUS | STUDY MATERIALS | TEXTBOOK
PDF | SOLVED QUESTION PAPERS

www.keralanotes.com

KTU STUDY MATERIALS

COMPREHENSIVE COURSE WORK

Related Link:

- KTU S6 NOTES
 2019 SCHEME
- KTU S6 SYLLABUS COMPUTER SCIENCE KTU PREVIOUS
- QUESTION BANK S6 SOLVED

- KTU TEXTBOOKS S6
 B.TECH PDF DOWNLOAD
- KTU S6 NOTES | SYLLABUS | QBANK | TEXTBOOKS DOWNLOAD

www.keralanotes.com

Reg	No.:			Name:				
SE		APJ ABDUL K EMESTER B.TEC						
				Course Co	de: CS			
Max	. Marks		. IIuI				,	Duration: 1 Hour
Instr	uctions:	which only ONE is	uestio to be a s corre option	ns: 50 inswered. Each que ect. is chosen, it will n	estion w	ill be followed by 4 poss	sible ar	nswers of
1.	The ra	dius of convergence	e of t					
	a)	1	b)	2	c)	3	d)	0
2.	Soluti	on of $y''' - y' = 0$	is					
	a)	$c_1 + (c_2 + c_3 x)e^x$	b)	$c_1e^x + c_2e^{-x}$	(c)	$c_1 + c_2 e^x + c_3 e^{-x}$	d)	$c_1 + (c_2 + c_3 x)e^{-x}$
3.		ss m is attached to tw degree of freedom			naving	spring constant k. N	atural	frequency of the
	a)	$\sqrt{2k/m}$	b)	$\sqrt{3k/m}$	c)	$\sqrt{4k/m}$	d)	$\sqrt{k/m}$
4.		of weight 100N is ton in the cord is	tied to	o a smooth wall	by a co	ord making an angle	of 30	degree to the wall
	a)	86.6	b)	50	c)	75.5	d)	0
5.		esired features or ch ility for a given task		eristics of the de	esign th	at determine its ulti	mate	effectiveness or
	a)	Design Function	b)	Constraints	c)	Design analysis	d)	Design Functions
6.	In 'Ho	ouse of Quality' the	roof	represents:				
	a)	Relationship between customer and manufacturer	b)	Inter— relationship between technical requirements	c)	Relation between customer and technical requirements	d)	Customer requirements
7.	Lowes	st atmospheric temp	eratu	re is observed in	1			
	a)	Troposphere	b)	Stratosphere	c)	Thermosphere	d)	Mesosphere
8.	Indust	rial Symbiosis aims	at					

	a)	zero waste generation	b)	energy efficiency	c)	Ū	employment eration	d)	industrial mechanisation
9.	A 5 cı	m long line is paral	lel to	VP and inclined a	t 30°	to HP	P. What is its len	ngth	in the front view?
	a)	4.33 cm	b)	2.5 cm	c)	5 cm	1	d)	2.88 cm
10.		inder is placed on Futting the solid the			on pl	ane is	inclined to V.F	and	perpendicular to
	a)	parabola	b)	circle	c)	recta	ingle	d)	ellipse
				PART B- CO	ORE	COU	RSES		
11.	Wh	nich of the followin	g are	tautologies?					
		1. p V ~p	2. 1	p ∧ ~p	3. p	v (q	V ~q)	4	4. p∨(q∧~q)
	a)	1 and 3	b)	3 and 4	C	2)	and 4	d)	1 and 2
12.	G= her	{0,1,2,3,4,5} is a ge?	roup ι	under multiplication	on mo	odulo	6. Which are th	е сус	clic generators
	a)	1, 3, and 5	b)	1 and 5	C	e) 1	, 2, and 3	d)	1, 2, 3, 4. and 5
13.	If A	$A = {\alpha, \mu}$ and $B = {1,$	2,3},v	what is n(AXB)?					
	a)	4	b)	6		2) 5		d)	3
14.		every team has to plyed?	ay 19	games in a round	robir	ı leag	ue, totally how	man	y matches are to be
	a)	250	b)	300	C	2)	00	d)	190
15.	Fin	d the complement of	of 2 in	the lattice (S_{60} , Γ) wh	ere D	is Divisor		
	a)	2	b)	15	C	e) 6		d)	None of these
16.	Co	nverse of $P \rightarrow Q$ is							
	a)	$1P \rightarrow 1Q$	b)	$Q \rightarrow P$	C	e) 10	$Q \rightarrow 1P$	d)	$P \rightarrow Q$
17.	Eve	ery chain is a	la	ttice					
	a)	distributive	b)	complemented	C	c) c	omplete	d)	bounded
18.	Wh	nich of the followin	g is no	ot efficiently supp	orted	by a	singly linked lis	st?	
	a)	Accessing an element in the current position	b)	Insertion after current position	C	,	nsertion before urrent position	d)	Traversing to the position immediately after the current position
19.		e inorder and preord pectively. What is t						d [a (•
	a)	b f e c g d a	b)	edbgfca	C	e) e	d b f g c a	d)	defgbca
20.	Co	nsider the following	g loop	1					
	for	i = 1 to n							

W

for j = i + 1 to n print "Hi"

		•						
	The	e asymptotic time co	omple	exity of above loop is				
	a)	$O(n^3)$	b)	$O(n \log n)$	c)	$O(n^2)$	d)	O(n)
21.	Tin	ne complexity of ins	sertin	g a new node at the r	niddl	e of a single linked	list is	
	a)	$O(\log n)$	b)	O(1)	c)	$O(n \log n)$	d)	O(n)
22.		th only enqueue and k using queue?	l deqı	ueue operations, how	man	y queues will you n	eed to	implement a
	a)	4	(b)	3	c)	2	(d)	1
23.	Inse	ert the keys 37,38,7 ation of 11?	2,48,	f(key) = key mod 7, 98 and 11 into the tab	ole in	dexed from 0 to 6.	What	will be the
2.4	a)	3	(b)		c)	4	(d)	6
24.	The	e following sequenc	e of c	operations are perform	ned o	on a stack:		
				, PUSH(10), PUSH(2	20), F	POP, POP, POP, PU	JSH(2	20), POP
	The	e sequence of values	s pop	ped out is:				
	a)	20,10,20,10,20	` ´	20,20,10,10,20	c)	10,20,20,10,20	(d)	20,20,10,20,10
25.		nsider the given gra	mma					
	s→	AB						
	A)	▶ BB/a						
	ВЭ	AB/b						
	Cho	oose incorrect stater	nent.					
	a)	aaab can be derived from above grammar.	(b)	bbab can be derived from above grammar.	(c)	abba can be derived from above grammar.	(d)	abbab can be derived from above grammar.
26.	Let	N be an NFA and v	w be a	a string. We say that	N acc	cepts w. if		
	a)	All computation paths of N on w reach an accept state.	(b)	Exactly one computation path of N on w reaches an accept state.	c)	No computation paths of N on w reach an accept state.	(d)	At least computation paths of N on w reach an accept state.

Consider the following language, $L=\{w \in \{0,1\} \mid w \text{ is a palindrome }\}$, Which of the 27. following grammar generates the above language?

 $S \rightarrow 0S0 \mid 1S1 \mid (d) \quad S \rightarrow 0S0 \mid 1S1$ $S \to 0S0 \mid 1S1 \mid (b) \quad S \to 0S0S \mid 1S1S$ c) **|** 0 **|** 1 **|** € € 0 | 1 €

28.	ΑТ	Curing machine that	is ab	le to simulate other T	Γuring	g machines					
	a)	Nested Turing machines	(b)	Universal Turing machine	c)	Counter machine	(d)	Multi-tape Turing Machine			
29.			_	nma over a regular la	angua	age, we consider a s	tring	w that belongs			
	to I	and fragment it in	to	parts.							
	a)	2	(b)	5	c)	3	(d)	6			
30.		w many states will over the alphabet		ere for the minimum b}?	state	DFA that accepts st	trings	which ends with			
	a)	1	(b)	2	c)	3	(d)	4			
31.	Wh	ich of the followin	g ope	rators is not present	in an	y regular expression	n?				
	a)	union	(b)	concatenation	c)	Kleene closure	(d)	division			
32.	The	e page table contain	S								
	a)	base address of each page in physical memory	(b)	page offset	c)	page size	(d)	none of the mentioned			
33.	Wh	ich of the followin	g state	ements are true?							
	I. S	I. Shortest remaining time first scheduling may cause starvation									
	II. I	II. Preemptive scheduling may cause starvation									
	III.	Round robin is bet	ter tha	an FCFS in terms of	respo	nse time					
	a)	I only	(b)	I and III only	c)	II and III only	(d)	I, II and III			
34.				itially at 32, find the requests are 98, 37,			equir	ed with FCFS if			
	a)	319	(b)	326	c)	338	(d)	360			
35.	A c	ounting semaphore	is ini	tialized to 4. Then 8	P(wa	it) and 3 V (signal)	opera	ations are			
	per	formed on the sema	phore	e. The final value of	the se	emaphore is					
	a)	1	(b)	-1	c)	2	(d)	-2			
36.	Sin	plest way of deadl	ock re	ecovery is							
	a)	Roll back	(b)	Pre-empt resource	c)	Lock one of the process	(d)	Kill the one of the process			
37.	_	ppose that a process appleted, it goes to the		"Blocked" state wait	ting fo	or some I/O service	. Who	en the service is			
	a)	Running state	, ,	Ready state	c)	Suspended state	(d)	Terminated state			
38.	In f	ixed size partition,	the de	egree of multiprogram	mmin	g is bounded by					
	a)	the number of partitions	(b)	the CPU utilization	c)	the memory size	(d)	all of the mentioned			

39.		ich of the following cution?	regis	ster automatically inc	reme	nts its contents duri	ing th	e instruction
	a)	Instruction Register(IR)	(b)	Program Counter(PC)	c)	General Purpose register	(d)	Link Register
40.		at is the range of ac abers?	tual e	exponent in the IEEE	singl	e precision standard	d for	floating point
	a)	-126 to 127	(b)	-127 to 127	c)	-128 to 128	(d)	-126 to 126
41.	The calle	•	ng the	main memory as soc	on as	a word is removed	from	the Cache is
	a)	write-through	(b)	write-back	c)	protected write	(d)	cache-write
42.	Inst	ruction decoder of a	a CPU	J				
43.	a)	Decodes the instruction and carries out the arithmetic and logical operations	(b)	Decodes the instruction and generates the corresponding control signals.	c)	Decodes and stores the instruction currently being decoded.	(d)	None of the above
15.		00001111		11110000	c)	00010000		01110000
44.	A co	omputer uses 32-bit acity of 32KB. Each	byte cach	addressing. The comne block contains 16 lds of a main memor	putei bytes	r uses a 2-way asso . Calculate the num	ciativ	e cache with a
45.	a) Con	TAG=18, SET=10, OFFSET=4 asider the join of a r	0	TAG=16, SET=12, OFFSET=4 on R with a relation S	c) . If R	TAG=20, SET=10, OFFSET=2 has m tuples and S	(d)	TAG=16, SET=8, OFFSET=8 n tuples then the
	max	timum and minimum	m size	es of the join respecti	vely	are		
	a)	m + n and 0	b)	mn and 0	c)	m + n and m – n	d)	mn and m + n
46.	depe			e R = (E, F, G, H, I, J) e R = (E, F, G, H, I, J)				
	a)	{E,F}	b)	{E,F,H}	c)	$\{E,F,H,K,L\}$	d)	{E}
47.		very non-prime attri tion will be in	ibute	is fully functionally o	lepen	ident on the primary	y key	, then the
	a)	BCNF	(b)	2NF	c)	1NF	(d)	3NF
48.	= 10	024 bytes. File reco	rds ar	Hered file with $r = 30$, we of fixed size and are and the number of blocks.	e uns	spanned, with recor	d leng	

a) 10 and 3000 (b) 3000 and 10 c) 10 and 300 (d) 8 and 3000 49. What does the following query do?

UPDATE student

SET marks = marks*1.10;

- a) It increases the (b) marks of all the students by 10%
-) It decreases the marks of all the students by 90%
- c) It increases the marks of all the students by 110%
- (d) It is syntactically wrong
- 50. Amongst the ACID properties of a transaction, the 'Durability' property requires. that the changes made to the database by a successful transaction persist

c)

- a) Except in case of an operating system crash
- (b) Except in case of a disk crash
- Except in case of a power failure
- (d) Always, even if there is a failure of any kind

Scheme of Valuation/Answer Key

(Scheme of evaluation (marks in brackets) and answers of problems/key)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIX	TH SEMI	ESTER B	3.TECH DEGREE CO	OMREHENSIVE EXAMINATION, MAY 2019					
			Course	Code: CS352					
		C	ourse name: COMP	REHENSIVE EXAM (CS)					
Max	x. Marks: 5	0		Duration: 1 Hour					
Insti	ructions:	(2) Total i (3) All que which (4) If more	number of questions: 50 estions are to be answered. only ONE is correct.	No negative marks for wrong answers Each question will be followed by 4 possible answers of t, it will not be considered for valuation.					
1.	a.)1	~							
2.	$c.) c_1 + c$	$\frac{e^x + c_3\epsilon}{c_3}$							
3.	d.) $\sqrt{k/m}$								
4.	error								
5.	a) or d.) D		·						
6.	b.) Inter–r	elationshi	ip between technical rec	quirements					
7.	d.) Mesosphere								
8.	a.) zero waste generation								
9.	c.) 5 cm								
10.	c.) rectang	gle							
11.	(a)								
12.	error								
13.	(b)								
14.	(d)	_							
15.	(d)								
16.	(b)								
17.	(a)								
18.	(c)								
19.	error								
20.	(c)								
21.	(d)								
22.	(c)								
23.	(b)								

24.	(b)
25.	(c)
26.	(d)
27.	(c) or (d)
28.	(b)
29.	(c)
30.	(c)
31.	(d)
32.	(a)
33.	(d)
34.	(b)
35.	(b)
36.	(d)
37.	(b)
38.	(a)
39.	(b)
40.	(a)
41.	
42.	
43.	
44.	
45.	
46.	
47.	
48.	
49.	
50.	(d)
