Objectif du cours

La frontière en optimisation se trouve entre le convexe et le non-convexe. Les problèmes d'optimisation convexe s'étudie de manière plus poussés.

Ensemble et fonctions convexes

24 septembre 2024

Ensemble convexe

Définition:

soit $\mathcal X$ un sous-ensemble de $\mathbb R^d$ ie $\mathcal X\subset\mathbb R^d$, on dit que $\mathcal X$ est convexe si $\forall \mathbf x,\mathbf y\in\mathcal X$

$$\forall \lambda \in [0,1]$$
 $\lambda \mathbf{x} + (1-\lambda)\mathbf{y} \in \mathcal{X}$

Illustration

le segment reliant ${\bf x}$ à ${\bf y}$ se trouve à l'intérieur de l'ensemble ${\cal X}$

le premier ensemble est convexe, les deux autres ne le sont pas.

Méthodologie

Comment prouver la convexité de ${\mathcal X}$

► appliquer la définition

$$\mathbf{x}, \mathbf{y} \in \mathcal{X}, \quad \lambda \in [0, 1] \Rightarrow \text{ calculer } \lambda \mathbf{x} + (1 - \lambda) \mathbf{y}$$

▶ simplier le résultat/utiliser les propriétés de \mathcal{X} pour montrer que $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in \mathcal{X}$

Applications aux ensembles : \mathbb{R}^d , \mathbb{R}^d_+ , hyperplan

Exemples

Ensembles

- $ightharpoonup \mathbb{R}^d$
- ightharpoonup Orthant non-negatif de $\mathbb{R}^d:\mathbb{R}^d_+$.
- $\blacktriangleright \text{ hyperplan } : \{ \mathbf{x} \in \mathbb{R}^d : \mathbf{a}^\top \mathbf{x} = b \}$
- lacktriangle demi-espace : : $\{\mathbf{x} \in \mathbb{R}^d : \mathbf{a}^{\top}\mathbf{x} \leq b\}$

Illustrations

Opérations préservant la convexité

Intersection

si \mathcal{X}_k , pour tout k sont des ensembles convexes alors leus intersections $\cap_{k=1}^K \mathcal{X}_k$ est convexe

Illustration

Intersection de disques

Intersection de demi-espaces

Opérations préservant la convexité

Produit cartésien

si $\mathcal{X}_k \subset \mathbb{R}^{n_k}$, pour tout $k=1,\cdots,M$ sont des ensembles convexes alors

$$\mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \times \mathcal{X}_M = \{(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_M) : \mathbf{x}_k \in \mathcal{X}_k\}$$

est convexe.

Transformation affine

si $\mathcal{X} \subset \mathbb{R}^d$ est convexe et $\mathcal{A}(\mathbf{x}) \mapsto \mathbf{A}\mathbf{x} + \mathbf{b}$ une transformation affine definie par une matrice $\mathbf{A} \in \mathbb{R}^{p \times d}$ et un vecteur \mathbf{b} alors

$$\mathcal{A}(\mathcal{X}) = \{\mathcal{A}(\mathbf{x}) : \mathbf{x} \in \mathcal{X}\}$$

est convexe. Ces transformations incluent par exemples les translations, les rotations,

Fonctions convexes

Définition

Une fonction $f:\mathbb{R}^d\mapsto\mathbb{R}$ est convexe si son domaine de définition est convexe et pour tout $\mathbf{x},\mathbf{y}\in\mathsf{dom}f$ et tout $\lambda\in[0,1]$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

autres définitions

- ightharpoonup f est convexe si -f est convexe
- ▶ f est strictement convexe si $f(\lambda \mathbf{x} + (1 \lambda)\mathbf{y}) < \lambda f(\mathbf{x}) + (1 \lambda)f(\mathbf{y})$ pour $0 < \lambda < 1$.

Fonction convexe : caractérisation premier-ordre

Soit la fonction $f: \mathbb{R}^d \mapsto \mathbb{R}$ telle que f soit différentiable ie, le gradient de f

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \cdots, \frac{\partial f}{\partial x_d}\right)$$

existe pour tout ${\bf x}$ dans l'ensemble de définition de f, on dit alors que f est convexe si son ensemble de définition est convexe et si et seulement si

$$\forall \mathbf{y} \in \mathsf{dom} f, \quad f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

Fonction convexe : caractérisation second-ordre

Soit la fonction $f: \mathbb{R}^d \mapsto \mathbb{R}$ telle que f soit deux fois différentiable ie, la Hessienne de f

$$\nabla^2 f(\mathbf{x})_{i,j} = \frac{\partial^2 f}{\partial x_i x_j},$$

existe pour tout ${\bf x}$ dans l'ensemble de définition de f, on dit alors que f est convexe si son ensemble de définition est convexe et si et seulement si $\nabla^2 f({\bf x})$ est définie positive pour tout ${\bf x} \in {\rm dom} f$

▶ si $\nabla^2 f(\mathbf{x})$ est strictement définie positive alors f est strictement convexe.

Fonctions de \mathbb{R}

Exemples de fonctions convexes

- ▶ fonctions affines : $x \mapsto ax + b$ pour tout $a, b \in \mathbb{R}$.
- ▶ fonctions exponentielles : $x \mapsto e^{ax}$ pour tout $a \in \mathbb{R}$.
- **p** puissance de la valeur absolue : $x \mapsto |x|^p$, pour tout $p \ge 1$.
- ▶ neg-entropie : $x \mapsto x \log x$ pour x > 0

Exemples de fonctions concave

- ▶ fonctions affines : $x \mapsto ax + b$ pour tout $a, b \in \mathbb{R}$.
- **p** puissance : $x \mapsto x^p$, pour x > 0 et pour tout $0 \le p \le 1$.
- ▶ logarithme : $x \mapsto \log x$ pour x > 0

Exemples de fonctions convexes de \mathbb{R}^d

Exemples dans \mathbb{R}^d

- ightharpoonup une fonction affine $f(\mathbf{x}) = \mathbf{a}^{\top}\mathbf{x} + b$
- ▶ norme : $\|\mathbf{x}\|_p = (\sum_{i=1}^d |x_i|^p)^{1p}$; $\|\mathbf{x}\|_{\infty} = \max_i |x_i|$

Exemple de fonctions convexes sur les matrices $m \times n$ ($\mathbf{X} \in \mathbb{R}^{m \times n}$)

▶ fonction affine

$$f(\mathbf{X}) = \mathbf{tr}(\mathbf{A}^{\top}\mathbf{X}) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{i,j} X_{i,j} + b$$

▶ norme spectrale d'une matrice (plus grande valeur singulière)

$$f(\mathbf{X}) = \|\mathbf{X}\|_2 = \sigma_{max}(\mathbf{X}) = \lambda_{max}(\mathbf{X}^{\top}\mathbf{X})$$

Exemples de caractérisation

Premier ordre

▶ fonction de \mathbb{R} quadratique $f(x) = x^2$

$$y^2 \ge x^2 + 2x(y - x)$$

second ordre

• fonction quadratique : $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}\mathbf{P}\mathbf{x} + \mathbf{q}^{\top}\mathbf{x} + r$

$$\nabla f(\mathbf{x}) = \mathbf{P}\mathbf{x} + q \qquad \nabla^2 f(\mathbf{x}) = P$$

est convexe si $\mathbf{P} \succeq 0$

lackbox Fonction objective d'une regression lineaire : $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} + \mathbf{b}\|_2^2$

$$\nabla f(\mathbf{x}) = 2\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} + b) \qquad \nabla^2 f(\mathbf{x}) = 2\mathbf{A}^{\top}\mathbf{A}$$

convexe pour tout A.

• d'autres fonctions $f(x,y) = \frac{x^2}{y}$, log-sum-exp $f(\mathbf{x}) = \log \sum_{i=1}^d e^{x_i}$, ...

Opération préservant la convexité des fonctions

Somme positive

▶ soit $\lambda_1, \lambda_2 \ge 0$ et f_1 , f_2 deux fonctions convexes, alors $\lambda_1 f_1 + \lambda_2 f_2$ est convexe.

Composition avec une fonction affine

▶ soit $\mathbf{A} \in \mathbb{R}^{p \times d}$ et $b \in \mathbb{R}^p$ et $f : \mathbb{R}^p \mapsto \mathbb{R}$ une fonction convexe alors $f(\mathbf{A}\mathbf{x} + b)$ est convexe

Exemple

- ▶ log barrière : $f(\mathbf{x}) = -\sum_{i=1}^m \log(b_i \mathbf{a}_i^\top \mathbf{x})$ avec $\mathsf{dom} f = \{\mathbf{x} : \mathbf{a}_i^\top \mathbf{x} \leq b_i\}$
- ▶ norme de fonction affine : $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} + b\|$

Opération préservant la convexité des fonctions

Composition

▶ soit $g: \mathbb{R}^d \mapsto \mathbb{R}$ une fonction convexe et $h: \mathbb{R} \mapsto \mathbb{R}$ une fonction convexe et croissante, alors

$$f(\mathbf{x}) = h(g(\mathbf{x}))$$

est convexe.

Maximum

ightharpoonup si f_1, \dots, f_m sont des fonctions convexes alors

$$f(\mathbf{x}) = \max_{i} \{f_1(\mathbf{x}), \cdots, f_m(\mathbf{x})\}\$$

est convexe

Exemple

▶ fonction continue par morceau $f(\mathbf{x}) = \max_{i=1,\dots,m} (\mathbf{a}_i^\top \mathbf{x} + b)$

Il existe plusieurs autres opérations conservant la convexité.