Knn & Recommender Systems

Praphul Chandra

K-Nearest Neighbor

- Statistical Decision Theory
 - The best prediction of Y at an point X=x is the conditional mean. (L2 loss) $f(x) = \mathbb{E}[Y|X=x]$
 - knn: At each point x, approximate y by averaging all y_i with input x_i near x $\hat{f}(x) = Ave(y_i|x_i \in N_k(x))$
- Two approximations
 - Expectation is approximated by averaging over sample data.
 - Conditioning at a point x is relaxed to conditioning on some region "close" to x
- Note
 - Model Free (No assumption on form of f)
 - Computational Complexity (Time, Space)
 - Locally constant
- Behavior
 - Large k : Smoother boundaries
 - Large N: Large storage req. (space complexity)
 - Large p : lower accuracy (curse of dimensionality)
 - Choice of distance metric (Euclidean, Manhattan, Gower)

Knn: Choosing k

- Larger k
 - Smoother boundaries
 - Higher error (Train or test?)
- Optimal k?
 - Hyper-parameter optimization: Heuristic or Cross Validation

Knn: Dealing with the curse of dimensionality

- The more features we use, the more sparse the data becomes
 - Sparseness is not uniformly distributed over the space.
 - The amount of training data needed grows exponentially with the number of dimensions.
- If we want our training data to cover 20% of this range,
 - In 1D: then the amount of training data needed is 20% of the complete population of cats and dogs.
 - In 2D, to cover 20% of the 2D feature range, we now need to obtain 45% of the complete population of cats and dogs in each dimension $(0.45^2 = 0.2)$.

• In 3D: to cover 20% of the 3D feature range, we need to obtain 58% of the population in each

dimension $(0.58^3 = 0.2)$.

On the flip side: The boon of dimensionality

More feature → More space between classes → Separability

Linear separability in high dimensions → Non-linear separability in fewer dimensions (kernel trick)

Guard against overfitting?

Feature 1

Knn: Dealing with Large n

- Computational complexity
 - Critically depends on n
- Do we really need all the n points?
 - Can we drop some of the points?
 - Yet achieve the same accuracy?
 - a.k.a. Data reduction
- Each point / element / row / tuple is
 - Either a prototype
 - Needed for correct classification
 - Or an absorbed point
 - Not needed for correct classification given the prototypes
 - Or an outlier
 - Must be removed to improve generalization (smoother boundaries)

Original data

Condensed data

Knn: Dealing with Large n (cont'd): Condensed knn / cnn / Hart's alg.

- Key Idea
 - Data reduction followed
 - Prototype selection
- Prototype Set (U)
 - Select subset U of X s.t. 1nn performs equally well on U and X

Condensed data

- Algorithm
 - Initialize U randomly with one element
 - Scan X, looking for an element x whose nearest prototype from U has a different label than x.
 - Remove x from X and add it to U
 - Iterate till no more prototypes are added to U.
- Efficiency
 - Scan the training examples in order of decreasing border ratio $a(x) = \frac{||x'-y||}{||x-y||}$
 - Denominator: Distance of x to the closest example y having a different color than x,
 - Numerator : Distance from y to its closest example x' with the same label as x

Improving (Smoothing) knn | Avoid overfitting

- Wilson editing: Remove points that do not agree with the majority of their k nearest neighbours (Class outliers)
- Edited NN

Original data

Wilson editing with k=7

Original data

Wilson editing with k=7

knn: Summary

- The best prediction of Y at an point X=x is the conditional mean. (L2 loss)
- At each point x, approximate y by averaging all y_i with input x_i near x
- Lazy | Model Free (No assumption on form of f)
- Computational Complexity (Time, Space)
- Distance based algorithm
 - Scaling attributes is important
 - Attributes with larger range can dominate e.g., Age versus Salary
 - May not be suitable for high dimensional data
- Categorical variables and Ordinal variables need to be appropriately measured
- Can be used for both regression and classification

Recommender Systems

Praphul Chandra

Association Rules

- What?
 - Are statements about relations among features (attributes): across elements (tuples)
 - People who buy diapers are likely to beer
- How?
 - Use a transaction-itemset data model
- Why?
 - Used to make recommendations
 - Can we do better?

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Tuple {

Attribute

Relation

Personalized Recommendations

- Recommender Systems
 - Recommend items (content) based on user ratings of item
 - "Ratings" may be
 - Explicit, e.g. buying or rating an item
 - Implicit, e.g. browsing time, no. of mouse clicks

				SUPERMAN		
CRITIC	TITANIC	BATMAN	INCEPTION	RETURNS	SPIDERMAN	MATRIX
MICHEL	2.5	3.5	3	3.5	2.5	3
SATYA	3	3.5	1.5	5	3	3.5
PARANAV	2.5	3	N/A	3.5	N/A	4
SURESH	N/A	3.5	3	4	2.5	4.5
том	3	4	2	3	2	3
LEO	3	4	N/A	5	3.5	3
CHAN	N/A	4.5	N/A	4	1	N/A

- Collaborative filtering
 - Input
 - User-Rating Matrix (Incomplete : Sparse)
 - Output
 - For a particular user, complete the row
 - If user-u likes item-j, recommend item-j' that was liked by other users like him: User-Based
 - If user-u likes item-j, recommend item-j' that is similar to item-j: Item-Based
- Others
 - Matrix Factorization
 - Content based (e.g. Text)
 - Hybrid (Formulate as a Supervised Learning)

User Based Collaborative Filtering

- Input
 - User-Rating Matrix (Incomplete : Sparse)
- Output
 - For a particular user, complete the row
- Key Idea
 - If u likes j,
 - recommend j' that was liked by other users like him
 - Quantify user-user similarity
 - Use user-user similarity to 'impute' missing values

				SUPERMAN		
CRITIC	TITANIC	BATMAN	INCEPTION	RETURNS	SPIDERMAN	MATRIX
MICHEL	2.5	3.5	3	3.5	2.5	3
SATYA	3	3.5	1.5	5	3	3.5
PARANAV	2.5	3	N/A	3.5	N/A	4
SURESH	N/A	3.5	3	4	2.5	4.5
том	3	4	2	3	2	3
LEO	3	4	N/A	5	3.5	3
CHAN	N/A	4.5	N/A	4	1	N/A

User_sim for CHAN		TITANIC	INCEPTION	MATRIX		TITANIC	INCEPTION	MATRIX
0.7125006		2.5	3	3		1.7812515	2.1375	2.1375
0.760215	*	3	1.5	3.5	==>	2.280645	1.1403	2.66075
0.6831639		2.5	N/A	4		1.7079098	N/A	2.73266
0.7028414		N/A	3	4.5		N/A	2.1085	3.16279
0.7341787		3	2	3		2.2025361	1.4684	2.20254
0.80555		3	N/A	3		2.41665	N/A	2.41665
1		N/A	N/A	N/A		N/A	N/A	N/A

UBCF: Dis(similarity)

	_					
				SUPERMAN		
CRITIC	TITANIC	BATMAN	INCEPTION	RETURNS	SPIDERMAN	MATRIX
MICHEL	2.5	3.5	3	3.5	2.5	3
SATYA	3	3.5	1.5	5	3	3.5
PARANAV	2.5	3	N/A	3.5	N/A	4
SURESH	N/A	3.5	3	4	2.5	4.5
том	3	4	2	3	2	3
LEO	3	4	N/A	5	3.5	3
CHAN	N/A	4.5	N/A	4	1	N/A

- Pearson correlation
 - Ignore items that one user has rated but the other has not.
 - Jusers with few rated items in common will have very high similarities

 $r_{u,j}$: rating of user-i to item-j

- What if each user has rated many items but have rated only two overlapping items?
- Cosine similarity (mean reduced) $\bar{r}_u = \frac{1}{|X_u|} \sum_{i \in X_u} r_{u,i}$
 - Sum over Intersection = Ignore items that one user has rated but the other has not = Pearson
 - Sum over Union : no rating = 0 rating :: $(r_{u,j} \bar{r}_u)$ = 0

 $\hat{r}_{u,j} = \bar{r}_u + \kappa \sum_{i=1}^n w_{u,i} (r_{i,j} - \bar{r}_i)$

• Significance weighting: Numerator does not increase for unshared items but denominator increases

$$w_{u,i} = \frac{cov(r_u, r_i)}{\sigma_{r_u}\sigma_{r_i}} = \frac{\sum\limits_{j \in (X_u \cap X_i)} (r_{u,j} - \bar{r}_u)(r_{i,j} - \bar{r}_i)}{\sqrt{\sum\limits_{j \in (X_u \cap X_i)} (r_{u,j} - \bar{r}_u)^2} \sqrt{\sum\limits_{j \in (X_u \cap X_i)} (r_{i,j} - \bar{r}_i)^2}}$$

$$w_{u,i} = cos(r_u - \bar{r}_u, r_i - \bar{r}_i) = \frac{(r_u - \bar{r}_u)(r_i - \bar{r}_i)}{||r_u - \bar{r}_u||||r_i - \bar{r}_i||} = \frac{\sum\limits_{j} (r_{u,j} - \bar{r}_u)(r_{i,j} - \bar{r}_i)}{\sqrt{\sum\limits_{j} (r_{u,j} - \bar{r}_u)^2} \sqrt{\sum\limits_{j} (r_{i,j} - \bar{r}_i)^2}}$$

Item Based Collaborative Filtering

- UBCF
 - For a particular **user**, complete the <u>row</u>
- IBCF
 - For a particular **item**, complete the <u>column</u>

Matrix Factorization

- Key Idea
 - Both Users and Items lie in some underlying space: Related by "taste"
 - Can we uncover this underlying dimension space in which users and items lie?
 - Can we create new dimensions (latent factors) in which users and items lie?
 - Recall: PCA & SVD

	RedMeat	WhiteMeat	Eggs	Milk	Fish	Cereals	Starch	Nuts	FruitVeg
Albania	10.1	1.4	0.5	8.9	0.2	42.3	0.6	5.5	1.7
Austria	8.9	14	4.3	19.9	2.1	28	3.6	1.3	4.3
Belgium	13.5	9.3	4.1	17.5	4.5	26.6	5.7	2.1	4
Bulgaria	7.8	6	1.6	8.3	1.2	56.7	1.1	3.7	4.2
Czechos1.	9.7	11.4	2.8	12.5	2	34.3	5	1.1	4
Denmark	10.6	10.8	3.7	25	9.9	21.9	4.8	0.7	2.4
EGermany	8.4	11.6	3.7	11.1	5.4	24.6	6.5	0.8	3.6
Finland	9.5	4.9	2.7	33.7	5.8	26.3	5.1	1	1.4
France	18	9.9	3.3	19.5	5.7	28.1	4.8	2.4	6.5
Greece	10.2	3	2.8	17.6	5.9	41.7	2.2	7.8	6.5
Hungary	5.3	12.4	2.9	9.7	0.3	40.1	4	5.4	4.2
Ireland	13.9	10	4.7	25.8	2.2	24	6.2	1.6	2.9
Italy	9	5.1	2.9	13.7	3.4	36.8	2.1	4.3	6.7
Netherl.	9.5	13.6	3.6	23.4	2.5	22.4	4.2	1.8	3.7
Norway	9.4	4.7	2.7	23.3	9.7	23	4.6	1.6	2.7
Poland	6.9	10.2	2.7	19.3	3	36.1	5.9	2	6.6
Portugal	6.2	3.7	1.1	4.9	14.2	27	5.9	4.7	7.9
Romania	6.2	6.3	1.5	11.1	1	49.6	3.1	5.3	2.8
Spain	7.1	3.4	3.1	8.6	7	29.2	5.7	5.9	7.2
Sweden	9.9	7.8	3.5	24.7	7.5	19.5	3.7	1.4	2
Switzerl.	13.1	10.1	3.1	23.8	2.3	25.6	2.8	2.4	4.9
UK	17.4	5.7	4.7	20.6	4.3	24.3	4.7	3.4	3.3
USSR	9.3	4.6	2.1	16.6	3	43.6	6.4	3.4	2.9
WGermany	11.4	12.5	4.1	18.8	3.4	18.6	5.2	1.5	3.8
Yugosl.	4.4	5	1.2	9.5	0.6	55.9	3	5.7	3.2

Matrix Factorization : Example

- Input
 - User-Rating Matrix (Incomplete : Sparse)
- Output
 - A set of new dimensions where both users & items can be represented

PCA Dimensionality Reduction using Singular Value Decomposition

PCA

- U contains the principal **components** : directions aligned with variance
- S contains a measure of how much <u>variance</u> is explained by each of the new components
- V contains the linear combinations of these new components (<u>loadings</u>) to recover data in original basis

$$X = USV^{T}$$

$$= u_{1}s_{1}v_{1}^{T} + u_{2}s_{2}v_{2}^{T} + \dots + u_{p}s_{p}v_{p}^{T}$$

$$\approx u_{1}s_{1}v_{1}^{T} + \dots + u_{k}s_{k}v_{k}^{T}$$

SVD obtains the best low-rank approximation of X

•
$$k < p$$
: Which k to keep?

$$\min_{rank_{A_k} \le k} ||A - A_k||_F^2$$

$$||X||_2 = \left(\sum_{i=1}^n \sum_{j=1}^p |x_{ij}|^2\right)^{\frac{1}{2}} = ||X||_F$$

Machine Learning Framework

Praphul Chandra

