Final Examination

Date: June 7th, 2016

Duration: 120 minutes

SUBJECT:	Electronic Devices
Dean of School of Electrical Engineering	Lecturer: Tran Van Su, M.Eng.
Signature:	Signature:
Full name: Tran Van Su	Full name: Tran Van Su

INTRODUCTIONS:

- 1. One note (A4 size) and calculators are allowed during the examination. Books, e-books, laptops and communications devices are prohibited.
- 2. Answer all questions

Question 1 (25 Marks)

The components and supply voltage of the following circuit are described as follows: $V_{CC} = 12V$, $R_i = 500 \Omega$, $R_B = 3.3 \text{ K}\Omega$, $R_C = 5.6 \text{ K}\Omega$, $R_L = 2.2 \text{ K}\Omega$, and $\beta = 100$.

- a. Determine quiescent point of transistor Q. (5 Marks)
- b. Plot the small AC-signal equivalent circuit. (5 Marks)
- c. Determine input impedance R_{in} and output impedance R_o. (5 Marks)
- d. Determine the voltage gain $A_v = v_0/v_i$. (10 Marks)

Question 2 (25 Marks)

The circuit shown in Fig. 2 has V_{CC} = 12 V, R_b = 10 k Ω , R_S = 200 Ω , β = 100, and early voltage V_A = 50v.

- a. Sketch the small AC-signal equivalent circuit. (5 Marks)
- b. Determine the voltage gain $A_V = v_0/v_i$ if $R_L = 2.2 \text{ k}\Omega$. (5 Marks)
- c. Determine R_L to obtain $R_{in} > 100 \text{ k}\Omega$. (10 Marks)
- d. Determine R_b to obtain $V_{CEQ} = 13.1 \text{ V.}$ (5 Marks)

Question 3 (25 Marks)

$$V_{DD} = 15 \text{ V}, R_G = 560 \text{ K}\Omega, R_{Sig} = 2 \text{ K}\Omega, R_L = 2 \text{ K}\Omega, V_t = 1 \text{ V}, \text{ and } \mu_n C_{ox} \frac{W}{L} = 1.5 \text{ } mA/V^2.$$

- a. Compute V_{GS} and V_{S} . (5 Marks)
- b. Plot the small AC-signal equivalent circuit. (5 Marks)
- c. Find R_D to obtain $V_D = 10 \text{ V}$. (5 Marks)
- d. Determine $A_V = v_o/v_{sig}$ (5 Marks)
- e. What are the input and output impedances R_{in} and R_o. (5 Marks)

Question 4 (25 Marks)

Fig. 4

Let Q_1 , Q_2 , and Q_3 be identical NMOS transistors with threshold voltage $V_t = 2V$, $k'_n = 20\mu A/V^2$, L = $10\mu m$, W = $100\mu m$.

- a) Determine V_{GS} of Transistor
 Q₃ if the drain current of Q₃ is
 0.2 mA. (5 Marks)
- b) Determine R to establish the current of 0.2 mA in Q₃ (5 Marks)
- c) Plot the small ac-signal equivalent circuit. (5 Marks)
- d) Compute the voltage gain V_0/V_i . (10 Marks)