

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

FIG. 1A

1
met ala gln trp glu met leu gln
ATG GCG CAG TGG GAA ATG CTG CAG

10 20
asn leu asp ser pro phe gln asp gln leu his gln leu tyr ser
AAT CTT GAC AGC CCC TTT CAG GAT CAG CTG CAC CAG CTT TAC TCG

30
his ser leu leu pro val asp ile arg gln tyr leu ala val trp
CAC AGC CTC CTG CCT GTG GAC ATT CGA CAG TAC TTG GCT GTC TGG

40 50
ile glu asp gln asn trp gln glu ala ala leu gly ser asp asp
ATT GAA GAC CAG AAC TGG CAG GAA GCT GCA CTT GGG AGT GAT GAT

60
ser lys ala thr met leu phe phe his phe leu asp gln leu asn.
TCC AAG GCT ACC ATG CTA TTC CAC TTC TTG GAT CAG CTG AAC

70 80
tyr glu cys gly arg cys ser gln asp pro glu ser leu leu leu
TAT GAG TGT GGC CGT TGC AGC CAG GAC CCA GAG TCC TTG TTG CTG

90
gln his asn leu arg lys phe cys arg asp ile gln pro phe ser
CAG CAC AAT TTG CGG AAA TTC TGC CGG GAC ATT CAG CCC TTT TCC

100 110
gln asp pro thr gln leu ala glu met ile phe asn leu leu leu
CAG GAT CCT ACC CAG TTG GCT GAG ATG ATC TTT AAC CTC CTT CTG

120
glu glu lys arg ile leu ile gln ala gln arg ala gln leu glu
GAA GAA AAA AGA ATT TTG ATC CAG GCT CAG AGG GCC CAA TTG GAA

130 140
gln gly glu pro val leu glu thr pro val glu ser gln gln his
CAA GGA GAG CCA GTT CTC GAA ACA CCT GTG GAG AGC CAG CAA CAT

150
glu ile glu ser arg ile leu asp leu arg ala met met glu lys
GAG ATT GAA TCC CGG ATC CTG GAT TTA AGG GCT ATG ATG GAG AAG

160 170
leu val lys ser ile ser gln leu lys asp gln gln asp val phe
CTG GTA AAA TCC ATC AGC CAA CTG AAA GAC CAG CAG GAT GTC TTC

Session Name: rb

FIG. 1B

cys phe arg tyr lys ile gln ala lys gly lys thr pro ser leu
TGC TTC CGA TAT AAG ATC CAG GCC AAA GGG AAG ACA CCC TCT CTG

190 200
asp pro his gln thr lys glu gln lys ile leu gln glu thr leu
GAC CCC CAT CAG ACC AAA GAG CAG AAG ATT CTG CAG GAA ACT CTC

210
asn glu leu asp lys arg arg lys glu val leu asp ala ser lys
AAT GAA CTG GAC AAA AGG AAG GAG GTG CTG GAT GCC TCC AAA

220 230
ala leu leu gly arg leu thr thr leu ile glu leu leu leu pro
GCA CTG CTA GGC CGA TTA ACT ACC CTA ATC GAG CTA CTG CTG CCA

240
lys leu glu glu trp lys ala gln gln lys ala cys ile arg
AAG TTG GAG GAG TGG AAG GCC CAG CAA AAA GCC TGC ATC AGA

250 260
ala pro ile asp his gly leu glu gln leu glu thr trp phe thr
GCT CCC ATT GAC CAC GGG TTG GAA CAG CTG GAG ACA TGG TTC ACA

270
ala gly ala lys leu leu phe his leu arg gln leu leu lys glu
GCT GGA GCA AAG CTG TTG TTT CAC CTG AGG CAG CTG CTG AAG GAG

280 290
leu lys gly leu ser cys leu val ser tyr gln asp asp pro leu
CTG AAG GGA CTG AGT TGC CTG GTT AGC TAT CAG GAT GAC CCT CTG

300
thr lys gly val asp leu arg asn ala gln val thr glu leu leu
ACC AAA GGG GTG GAC CTA CGC AAC GCC CAG GTC ACA GAG TTG CTA

310 320
gln arg leu leu his arg ala phe val val glu thr gln pro cys
CAG CGT CTG CTC CAC AGA GCC TTT GTG GTA GAA ACC CAG CCC TGC

330
met pro gln thr pro his arg pro leu ile leu lys thr gly ser
ATG CCC CAA ACT CCC CAT CGA CCC CTC ATC CTC AAG ACT GGC AGC

340 350
lys phe thr val arg thr arg leu leu val arg leu gln glu gly
AAG TTC ACC GTC CGA ACA AGG CTG CTG GTG AGA CTC CAG GAA GGC

360
asn glu ser leu thr val glu val ser ile asp arg asn pro pro
AAT GAG TCA CTG ACT GTG GAA GTC TCC ATT GAC AGG AAT CCT CCT

370 380
gln leu gln gly phe arg lys phe asn ile leu thr ser asn gln
CAA TTA CAA GGC TTC CGG AAG TTC AAC ATT CTG ACT TCA AAC CAG

390
lys thr leu thr pro glu lys gly gln ser gln gly leu ile trp

FIG. 1C

Session Name: rb

AAA ACT TTG ACC CCC GAG AAG GGG CAG AGT CAG GGT TTG ATT TGG
400 410
asp phe gly tyr leu thr leu val glu gln arg ser gly gly ser
GAC TTT GGT TAC CTG ACT CTG GTG GAG CAA CGT TCA GGT GGT TCA

420
gly lys gly ser asn lys gly pro leu gly val thr glu glu leu
GGA AAG GGC AGC AAT AAG GGG CCA CTA GGT GTG ACA GAG GAA CTG

430 440
his ile ile ser phe thr val lys tyr thr tyr gln gly leu lys
CAC ATC ATC AGC TTC ACG GTC AAA TAT ACC TAC CAG GGT CTG AAG

450
gln glu leu lys thr asp thr leu pro val val ile ile ser asn
CAG GAG CTG AAA ACG GAC ACC CTC CCT GTG GTG ATT ATT TCC AAC

460 470
met asn gln leu ser ile ala trp ala ser val leu trp phe asn
ATG AAC CAG CTC TCA ATT GCC TGG GCT TCA GTT CTC TGG TTC AAT

480
leu leu ser pro asn leu gln asn gln gln phe phe ser asn pro
TTG CTC AGC CCA AAC CTT CAG AAC CAG CAG TTC TTC TCC AAC CCC

490 500
pro lys ala pro trp ser leu leu gly pro ala leu ser trp gln
CCC AAG GCC CCC TGG AGC TTG CTG GGC CCT GCT CTC AGT TGG CAG

510
phe ser ser tyr val gly arg gly leu asn ser asp gln leu ser
TTC TCC TCC TAT GTT GGC CGA GGC CTC AAC TCA GAC CAG CTG AGC

520 530
met leu arg asn lys leu phe gly gln asn cys arg thr glu asp
ATG CTG AGA AAC AAG CTG TTC GGG CAG AAC TGT AGG ACT GAG GAT

540
pro leu leu ser trp ala asp phe thr lys arg glu ser pro pro
CCA TTA TTG TCC TGG GCT GAC TTC ACT AAG CGA GAG AGC CCT CCT

550 560
gly lys leu pro phe trp thr trp leu asp lys ile leu glu leu
GGC AAG TTA CCA TTC TGG ACA TGG CTG GAC AAA ATT CTG GAG TTG

570
val his asp his leu lys asp leu trp asn asp gly arg ile met
GTA CAT GAC CAC CTG AAG GAT CTC TGG AAT GAT GGA CGC ATC ATG

580 590
gly phe val ser arg ser gln glu arg arg leu leu lys lys thr
GGC TTT GTG AGT CGG AGC CAG GAG CGC CGG CTG CTG AAG AAG ACC

600
met ser gly thr phe leu leu arg phe ser glu ser ser glu gly
ATG TCT GGC ACC TTT CTA CTG CGC TTC AGT GAA TCG TCA GAA GGG

Session Name: rb

FIG. 1D

610 620
 gly ile thr cys ser trp val glu his gln asp asp asp lys val
 GGC ATT ACC TGC TCC TGG GTG GAG CAC CAG GAT GAT GAC AAG GTG
 630
 leu ile tyr ser val gln pro tyr thr lys glu val leu gln ser
 CTC ATC TAC TCT GTG CAA CCG TAC ACG AAG GAG GTG CTG CAG TCA
 640 650
 leu pro leu thr glu ile ile arg his tyr gln leu leu thr glu
 CTC CCG CTG ACT GAA ATC ATC CGC CAT TAC CAG TTG CTC ACT GAG
 660
 glu asn ile pro glu asn pro leu arg phe leu tyr pro arg ile
 GAG AAT ATA CCT GAA AAC CCA CTG CGC TTC CTC TAT CCC CGA ATC
 670 680
 pro arg asp glu ala phe gly cys tyr tyr gln glu lys val asn
 CCC CGG GAT GAA GCT TTT GGG TGC TAC TAC CAG GAG AAA GTT AAT
 690
 leu gln glu arg arg lys tyr leu lys his arg leu ile val val
 CTC CAG GAA CGG AGG AAA TAC CTG AAA CAC AGG CTC ATT GTG GTC
 700 710
 ser asn arg gln val asp glu leu gln gln pro leu glu leu lys
 TCT AAT AGA CAG GTG GAT GAA CTG CAA CAA CCG CTG GAG CTT AAG
 720
 pro glu pro glu leu glu ser leu glu leu glu leu gly leu val
 CCA GAG CCA GAG CTG GAG TCA TTA GAG CTG GAA CTA GGG CTG GTG
 730 740
 pro glu pro glu leu ser leu asp leu glu pro leu leu lys ala
 CCA GAG CCA GAG CTC AGC CTG GAC TTA GAG CCA CTG CTG AAG GCA
 750
 gly leu asp leu gly pro glu leu glu ser val leu glu ser thr
 GGG CTG GAT CTG GGG CCA GAG CTA GAG TCT GTG CTG GAG TCC ACT
 760 770
 leu glu pro val ile glu pro thr leu cys met val ser gln thr
 CTG GAG CCT GTG ATA GAG CCC ACA CTA TGC ATG GTA TCA CAA ACA
 780
 val pro glu pro asp gln gly pro val ser gln pro val pro glu
 GTG CCA GAG CCA GAC CAA GGA CCT GTA TCA CAG CCA GTG CCA GAG
 790 800
 pro asp leu pro cys asp leu arg his leu asn thr glu pro met
 CCA GAT TTG CCC TGT GAT CTG AGA CAT TTG AAC ACT GAG CCA ATG
 810
 glu ile phe arg asn cys val lys ile glu glu ile met pro asn
 GAA ATC TTC AGA AAC TGT GTA AAG ATT GAA GAA ATC ATG CCG AAT

FIG. 1E

Session Name: rb

820
gly asp pro leu leu ala gly gln asn thr val asp glu val tyr
GGT GAC CCA CTG TTG GCT GGC CAG AAC ACC GTG GAT GAG GTT TAC

840
val ser arg pro ser his phe tyr thr asp gly pro leu met pro
GTC TCC CGC CCC AGC CAC TTC TAC ACT GAT GGA CCC TTG ATG CCT

850 851
ser asp phe AM
TCT GAC TTC TAG GAACCACATTCCCTCTGTTCTTCATATCTCTTGCCTTCATA
CTCCTCATAGCATGATATTGTTCTCCAAGGATGGGAATCAGGCATGTGTCCCTTCCAAGC
TGTGTTAACTGTTCAAACACTCAGGCCCTGTGTGACTCCATTGGGTGAGAGGTGAAAGCATA
ACATGGGTACAGAGGGGACAACAATGAATCAGAACAGATGCTGAGCCATAGGTCTAAATA
GGATCCTGGAGGCTGCCTGCTGTGCTGGAGGTATAGGGTCCTGGGGCAGGCCAGGGC
AGTTGACAGGTACTGGAGGGCTCAGGCCAGTGGCTTCTTCCAGTATGGAAGGATTCA
ACATTTAATAGTTGGTTAGGCTAAACTGGTGCATACTGGCATTGGCCTGGTGGGAGC
ACAGACACAGGATAGGACTCCATTCTTCTTCCATTCCATGTCTAGGATAACTG
TTCTTCTTCTTACTCCTGGCTCAAGCCCTGAATTCTTCTTCTGCAGGGTTG
AGAGCTTCTGCCTAGCCTACCATGTGAAACTCTACCCCTGAAGAAAGGATGGATAGGA
AGTAGACCTCTTTCTTACCACTCCTCCCTACTCTGCCCTAAGCTGGCTGTACC
TGTTCCCTCCCCATAAAATGATCCTGCCAATCTAAAAAAAAAA

FIG. 2A

ATTAAACCTCTGCCGAGCCCTCCGCAGACTCTGCCGGAAAGTTCATTTGCTGTATGCCA

TCCTCGAGAGCTGTCTAGGTTAACGTTCGCACTCTGTGTATATAACCTCGACAGTCTGGCACCC

TAACGTGCTGTGCGTAGCTGCTCCTTGGTTGAATCCCCAGGCCCTGTTGGGGACAAGGTGG

Met Ser Gln Trp Tyr Glu Leu Gln Gln Leu Asp Ser Lys Phe Leu
CAGG ATG TCT CAG TGG TAC GAA CTT CAG CAG CTT GAC TCA AAA TTC CTG

Glu Gln Val His Gln Leu Tyr Asp Asp Ser Phe Pro Met Glu Ile Arg
GAG CAG GTT CAC CAG CTT TAT GAT GAC AGT TTT CCC ATG GAA ATC AGA

Gln Tyr Leu Ala Gln Trp Leu Glu Lys Gln Asp Trp Glu His Ala Ala
CAG TAC CTG GCA CAG TGG TTA GAA AAG CAA GAC TGG GAG CAC GCT GCC

Asn Asp Val Ser Phe Ala Thr Ile Arg Phe His Asp Leu Leu Ser Gln
AAT GAT GTT TCA TTT GCC ACC ATC CGT TTT CAT GAC CTC CTG TCA CAG

Leu Asp Asp Gln Tyr Ser Arg Phe Ser Leu Glu Asn Asn Phe Leu Leu
CTG GAT GAT CAA TAT AGT CGC TTT TCT TTG GAG AAT AAC TTC TTG CTA

Gln His Asn Ile Arg Lys Ser Lys Arg Asn Leu Gln Asp Asn Phe Gln
CAG CAT AAC ATA AGG AAA AGC AAG CGT AAT CTT CAG GAT AAT TTT CAG

Glu Asp Pro Ile Gln Met Ser Met Ile Ile Tyr Ser Cys Leu Lys Glu
GAA GAC CCA ATC CAG ATG TCT ATG ATC ATT TAC AGC TGT CTG AAG GAA

Glu Arg Lys Ile Leu Glu Asn Ala Gln Arg Phe Asn Gln Ala Gln Ser
GAA AGG AAA ATT CTG GAA AAC GCC CAG AGA TTT AAT CAG GCT CAG TCG

Gly Asn Ile Gln Ser Thr Val Met Leu Asp Lys Gln Lys Glu Leu Asp
GGG AAT ATT CAG AGC ACA GTG ATG TTA GAC AAA CAG AAA GAG CTT GAC

Ser Lys Val Arg Asn Val Lys Asp Lys Val Met Cys Ile Glu His Glu
AGT AAA GTC AGA AAT GTG AAG GAC AAG GTT ATG TGT ATA GAG CAT GAA

Ile Lys Ser Leu Glu Asp Leu Gln Asp Glu Tyr Asp Phe Lys Cys Lys
ATC AAG AGC CTG GAA GAT TTA CAA GAT GAA TAT GAC TTC AAA TGC AAA

Thr Leu Gln Asn Arg Glu His Glu Thr Asn Gly Val Ala Lys Ser Asp
ACC TTG CAG AAC AGA GAA CAC GAG ACC AAT GGT GTG GCA AAG AGT GAT

Gln Lys Gln Glu Gln Leu Leu Leu Lys Lys Met Tyr L u Met Leu Asp
CAG AAA CAA GAA CAG CTG TTA CTC AAG AAG ATG TAT TTA ATG CTT GAC

Asn Lys Arg Lys Glu Val Val His Lys Ile Ile Glu Leu Leu Asn Val
AAT AAG AGA AAG GAA GTA GTT CAC AAA ATA GAG TTG CTG AAT GTC

FIG. 2B

Thr Glu Leu Thr Gln Asn Ala Leu Ile Asn Asp Glu Leu Val Glu Trp
ACT GAA CTT ACC CAG AAT GCC CTG ATT AAT GAT GAA CTA GTG GAG TGG

Lys Arg Arg Gln Gln Ser Ala Cys Ile Gly Gly Pro Pro Asn Ala Cys
AAG CGG AGA CAG CAG AGC GCC TGT ATT GGG GGG CCG CCC AAT GCT TGC

Leu Asp Gln Leu Gln Asn Trp Phe Thr Ile Val Ala Glu Ser Leu Gln
TTG GAT CAG CTG CAG AAC TGG TTC ACT ATA GTT GCG GAG AGT CTG CAG

Gln Val Arg Gln Gln Leu Lys Lys Leu Glu Glu Leu Glu Gln Lys Tyr
CAA GTT CGG CAG CAG CTT AAA AAG TTG GAG GAA TTG GAA CAG AAA TAC

Thr Tyr Glu His Asp Pro Ile Thr Lys Asn Lys Gln Val Leu Trp Asp
ACC TAC GAA CAT GAC CCT ATC ACA AAA AAC AAA CAA GTG TTA TGG GAC

Arg Thr Phe Ser Leu Phe Gln Gln Leu Ile Gln Ser Ser Phe Val Val
CGC ACC TTC AGT CTT TTC CAG CAG CTC ATT CAG AGC TCG TTT GTG GTG

Glu Arg Gln Pro Cys Met Pro Thr His Pro Gln Arg Pro Leu Val Leu
GAA AGA CAG CCC TGC ATG CCA ACG CAC CCT CAG AGG CCG CTG GTC TTG

Lys Thr Gly Val Gln Phe Thr Val Lys Leu Arg Leu Leu Val Lys Leu
AAG ACA GGG GTC CAG TTC ACT GTG AAG TTG AGA CTG TTG GTG AAA TTG

Gln Glu Leu Asn Tyr Asn Leu Lys Val Lys Val Leu Phe Asp Lys Asp
CAA GAG CTG AAT TAT TTG AAA GTC AAA GTC TTA TTT GAT AAA GAT

Val Asn Glu Arg Asn Thr Val Lys Gly Phe Arg Lys Phe Asn Ile Leu
GTG AAT GAG AGA AAT ACA GTA AAA GGA TTT AGG AAG TTC AAC ATT TTG

Gly Thr His Thr Lys Val Met Asn Met Glu Glu Ser Thr Asn Gly Ser
GGC ACG CAC ACA AAA GTG ATG AAC ATG GAG GAG TCC ACC AAT GGC AGT

Leu Ala Ala Glu Phe Arg His Leu Gln Leu Lys Glu Gln Lys Asn Ala
CTG GCG GCT GAA TTT CGG CAC CTG CAA TTG AAA GAA CAG AAA AAT GCT

Gly Thr Arg Thr Asn Glu Gly Pro Leu Ile Val Thr Glu Glu Leu His
GGC ACC AGA ACG AAT GAG GGT CCT CTC ATC GTT ACT GAA GAG CTT CAC

Ser Leu Ser Phe Glu Thr Gln Leu Cys Gln Pro Gly Leu Val Ile Asp
TCC CTT AGT TTT GAA ACC CAA TTG TGC CAG CCT GGT TTG GTA ATT GAC

Leu Glu Thr Thr Ser Leu Pro Val Val Val Ile Ser Asn Val Ser Gln
CTC GAG ACG ACC TCT CTG CCC GTT GTG GTG ATC TCC AAC GTC AGC CAG

Leu Pro Ser Gly Trp Ala Ser Ile Leu Trp Tyr Asn Met Leu Val Ala
CTC CCG AGC GGT TGG GCC TCC ATC CTT TGG TAC AAC ATG CTG GTG GCG

Glu Pro Arg Asn Leu Ser Phe Phe Leu Thr Pro Pro Cys Ala Arg Trp
GAA CCC AGG AAT CTG TCC TTC CTG ACT CCA CCA TGT GCA CGA TGG

FIG. 2C

Ala Gln Leu Ser Glu Val Leu Ser Trp Gln Phe Ser Ser Val Thr Lys
GCT CAG CTT TCA GAA GTG CTG AGT TGG CAG TTT TCT TCT GTC ACC AAA

Arg Gly Leu Asn Val Asp Gln Leu Asn Met Leu Gly Glu Lys Leu Leu
AGA GGT CTC AAT GTG GAC CAG CTG AAC ATG TTG GGA GAG AAG CTT CTT

Gly Pro Asn Ala Ser Pro Asp Gly Leu Ile Pro Trp Thr Arg Phe Cys
GGT CCT AAC GCC AGC CCC GAT GGT CTC ATT CCG TGG ACG AGG TTT TGT

Lys Glu Asn Ile Asn Asp Lys Asn Phe Pro Phe Trp Leu Trp Ile Glu
AAG GAA AAT ATA AAT GAT AAA AAT TTT CCC TTC TGG CTT TGG ATT GAA

Ser Ile Leu Glu Leu Ile Lys Lys His Leu Leu Pro Leu Trp Asn Asp
AGC ATC CTA GAA CTC ATT AAA AAA CAC CTG CTC CCT CTC TGG AAT GAT

Gly Cys Ile Met Gly Phe Ile Ser Lys Glu Arg Glu Arg Ala Leu Leu
GGG TGC ATC ATG GGC TTC ATC AGC AAG GAG CGA GAG CGT GCC CTG TTG

Lys Asp Gln Gln Pro Gly Thr Phe Leu Leu Arg Phe Ser Glu Ser Ser
AAG GAC CAG CAG CCG GGG ACC TTC CTG CTG CGG TTC AGT GAG AGC TCC

Arg Glu Gly Ala Ile Thr Phe Thr Trp Val Glu Arg Ser Gln Asn Gly
CGG GAA GGG GCC ATC ACA TTC ACA TGG GTG GAG CGG TCC CAG AAC GGA

Gly Glu Pro Asp Phe His Ala Val Glu Pro Tyr Thr Lys Glu Leu
GGC GAA CCT GAC TTC CAT GCG GTT GAA CCC TAC ACG AAG AAA GAA CTT

Ser Ala Val Thr Phe Pro Asp Ile Ile Arg Asn Tyr Lys Val Met Ala
TCT GCT GTT ACT TTC CCT GAC ATC ATT CGC AAT TAC AAA GTC ATG GCT

Ala Glu Asn Ile Pro Glu Asn Pro Leu Lys Tyr Leu Tyr Pro Asn Ile
GCT GAG AAT ATT CCT GAG AAT CCC CTG AAG TAT CTG TAT CCA AAT ATT

Asp Lys Asp His Ala Phe Gly Lys Tyr Tyr Ser Arg Pro Lys Glu Ala
GAC AAA GAC CAT GCC TTT GGA AAG TAT TAC TCC AGG CCA AAG GAA GCA

Pro Glu Pro Met Glu Leu Asp Gly Pro Lys Gly Thr Gly Tyr Ile Lys
CCA GAG CCA ATG GAA CTT GAT GGC CCT AAA GGA ACT GGA TAT ATC AAG

Thr Glu Leu Ile Ser Val Ser Glu Val His Pro Ser Arg Leu Gln Thr
ACT GAG TTG ATT TCT GTG TCT GAA GTT CAC CCT TCT AGA CTT CAG ACC

Thr Asp Asn Leu Leu Pro Met Ser Pro Glu Glu Phe Asp Glu Val Ser
ACA GAC AAC CTG CTC CCC ATG TCT CCT GAG GAG TTT GAC GAG GTG TCT

Arg Ile Val Gly Ser Val Glu Phe Asp Ser Met Met Asn Thr Val
CGG ATA GTG GGC TCT GTA GAA TTC GAC AGT ATG ATG AAC ACA GTA TAG

AGCATGAATTTTTCATCTTCTCTGGCGACAGTTTCCTCTCATCTGTGATTCCCTCCTGCT

FIG. 2D

ACTCTGTTCTTCACATCCTGTGTTCTAGGGAAATGAAAGAAAGGCCAGCAAATTGCGTGCA
ACCTGTTGATAGCAAGTGAATTTCTCTAACTCAGAACATCAGTTACTCTGAAGGGCATCA
TGCATCTTACTGAAGGTAAAATTGAAAGGCATTCTCTGAAGAGTGGGTTACAAGTAAAAAA
CATCCAGATACACCCAAAGTATCAGGACGAGAATGAGGGCCTTGGAAAGGAGAAGTTAAG
CAACATCTAGCAAATGTTATGCATAAAGTCAGTGCCAACTGTTAGGTTGGATAAACATC
AGTGGTTATTTAGGAACTGCTTGACGTAGGAACGGTAAATTCTGTGGAGAATTCTTACAT
GTTTCTTGCTTAAGTGTAACTGGCAGTTCCATTGGTTACCTGTGAAATAGTTCAAAG
CCAAGTTTATATAAACTATATCAGTCCTCTTCAAAGGTAGCCATCATGGATCTGGTAGGGG
GAAAATGTGTATTTATTACATCTTCACATTGGCTATTTAAAGACAAAGACAAATTCTGTT
CTTGAGAAGAGAAATTCCAAATTACAAGTTGTGTTGATATCCAAAGCTGAATACATTCTG
CTTCATCTGGTCACATACAATTATTTACAGTTCTCCAAAGGGAGTTAGGCTATTCAA
CCACTCATTCAAAAGTTGAAATTAAACCATAAGATGTAGATAAACTCAGAAATTAAATTCA
TCTTAAATGGGCTACTTGTCTTTGTTATTAGGGTGGTATTTAGTCTATTAGCCACAAAA
TTGGGAAAGGAGTAGAAAAGCAGTAACTGACAACCTGAATAATACACCAGAGATAATGAG
AATCAGATCATTCAAAACTCATTCCTATGTAACTGCATTGAGAACTGCATATGTTGCTG
ATATATGTGTTTCACATTGCGAATGGTCCATTCTCTCCTGTACTTTCCAGACACT
TTTTGAGTGGATGATTTCGTGAAGTATACTGTATTTACCTTTCTTCTTACT
GACACAAAAAGTAGATTAAGAGATGGGTTGACAAGGTTCTCCCTTACATACTGCTGTCT
ATGTGGCTGTATCTGTTCCACTACTGCTACCACAACTATATTATGCAAATGCTGTA
TTCTTCTTGGGAGATAAGATTCTTGAGTTGTTAAAATTAAAGCTAAAGTATCTG
TATTGCATTAAATATAATATCGACACAGTGCTTCCGTGGCACTGCATAACATCTGAGGCCTC
CTCTCTCAGTTTATATAGATGGCGAGAACCTAAGTTCAGTTGATTTACAATTGAAATGA
CTAAAAAAACAAAGAACATTAACATTAACATATTGTTCTA

FIG. 3A

ATTAAACCTCTGCCGAGCCCTCCGCAGACTCTGCGCCGGAAAGTTCATTTGCTGTATGCC
ATCCTCGAGAGCTGTCTAGGTTAACGTTCGCACTCTGTGTATATAACCTCGACAGTCTGGCA
CCTAACGTGCTGTGCGTAGCTGCTCCTTGGTTGAATCCCCAGGCCCTGTTGGGGCACAAAGG

Met Ser Gln Trp Tyr Glu Leu Gln Leu Asp Ser Lys Phe
TGGCAGG ATG TCT CAG TGG TAC GAA CTT CAG CAG CTT GAC TCA AAA TTC

Leu Glu Gln Val His Gln Leu Tyr Asp Asp Ser Phe Pro Met Glu Ile
CTG GAG CAG GTT CAC CAG CTT TAT GAT GAC AGT TTT CCC ATG GAA ATC

Arg Gln Tyr Leu Ala Gln Trp Leu Glu Lys Gln Asp Trp Glu His Ala
AGA CAG TAC CTG GCA CAG TGG TTA GAA AAG CAA GAC TGG GAG CAC GCT

Ala Asn Asp Val Ser Phe Ala Thr Ile Arg Phe His Asp Leu Leu Ser
GCC AAT GAT GTT TCA TTT GCC ACC ATC CGT TTT CAT GAC CTC CTG TCA

Gln Leu Asp Asp Gln Tyr Ser Arg Phe Ser Leu Glu Asn Asn Phe Leu
CAG CTG GAT CAA TAT AGT CGC TTT TCT TTG GAG AAT AAC TTC TTG

Leu Gln His Asn Ile Arg Lys Ser Lys Arg Asn Leu Gln Asp Asn Phe
CTA CAG CAT AAC ATA AGG AAA AGC AAG CGT AAT CTT CAG GAT AAT TTT

Gln Glu Asp Pro Ile Gln Met Ser Met Ile Ile Tyr Ser Cys Leu Lys
CAG GAA GAC CCA ATC CAG ATG TCT ATG ATC ATT TAC AGC TGT CTG AAG

Glu Glu Arg Lys Ile Leu Glu Asn Ala Gln Arg Phe Asn Gln Ala Gln
GAA GAA AGG AAA ATT CTG GAA AAC GCC CAG AGA TTT AAT CAG GCT CAG

Ser Gly Asn Ile Gln Ser Thr Val Met Leu Asp Lys Gln Lys Glu Leu
TCG GGG AAT ATT CAG AGC ACA GTG ATG TTA GAC AAA CAG AAA GAG CTT

Asp Ser Lys Val Arg Asn Val Lys Asp Lys Val Met Cys Ile Glu His
GAC AGT AAA GTC AGA AAT GTG AAG GAC AAG GTT ATG TGT ATA GAG CAT

Glu Ile Lys Ser Leu Glu Asp Leu Gln Asp Glu Tyr Asp Phe Lys Cys
GAA ATC AAG AGC CTG GAA GAT TTA CAA GAT GAA TAT GAC TTC AAA TGC

Lys Thr Leu Gln Asn Arg Glu His Glu Thr Asn Gly Val Ala Lys Ser
AAA ACC TTG CAG AAC AGA GAA CAC GAG ACC AAT GGT GTG GCA AAG AGT

Asp Gln Lys Gln Glu Gln Leu Leu Leu Lys Lys Met Tyr Leu Met Leu
GAT CAG AAA CAA GAA CAG CTG TTA CTC AAG AAG ATG TAT TTA ATG CTT

Asp Asn Lys Arg Lys Glu Val Val His Lys Ile Ile Glu Leu Leu Asn
GAC AAT AAG AGA AAG GAA GTA GTT CAC AAA ATA ATA GAG TTG CTG AAT

Val Thr Glu Leu Thr Gln Asn Ala Leu Ile Asn Asp Glu Leu Val Glu
GTC ACT GAA CTT ACC CAG AAT GCC CTG ATT AAT GAT GAA CTA GTG GAG

FIG. 3B

Trp Lys Arg Arg Gln Gln Ser Ala Cys Ile Gly Gly Pro Pro Asn Ala
TGG AAG CGG AGA CAG CAG AGC GCC TGT ATT GGG GGG CCG CCC AAT GCT

Cys Leu Asp Gln Leu Gln Asn Trp Phe Thr Ile Val Ala Glu Ser Leu
TGC TTG GAT CAG CTG CAG AAC TGG TTC ACT ATA GTT GCG GAG AGT CTG

Gln Gln Val Arg Gln Gln Leu Lys Lys Leu Glu Glu Leu Glu Gln Lys
CAG CAA GTT CGG CAG CAG CTT AAA AAG TTG GAG GAA TTG GAA CAG AAA

Tyr Thr Tyr Glu His Asp Pro Ile Thr Lys Asn Lys Gln Val Leu Trp
TAC ACC TAC GAA CAT GAC CCT ATC ACA AAA AAC AAA CAA GTG TTA TGG

Asp Arg Thr Phe Ser Leu Phe Gln Gln Leu Ile Gln Ser Ser Phe Val
GAC CGC ACC TTC AGT CTT TTC CAG CAG CTC ATT CAG AGC TCG TTT GTG

Val Glu Arg Gln Pro Cys Met Pro Thr His Pro Gln Arg Pro Leu Val
GTG GAA AGA CAG CCC TGC ATG CCA ACG CAC CCT CAG AGG CCG CTG GTC

Leu Lys Thr Gly Val Gln Phe Thr Val Lys Leu Arg Leu Leu Val Lys
TTG AAG ACA GGG GTC CAG TTC ACT GTG AAG TTG AGA CTG TTG GTG AAA

Leu Gln Glu Leu Asn Tyr Asn Leu Lys Val Lys Val Leu Phe Asp Lys
TTG CAA GAG CTG AAT TAT AAT TTG AAA GTC AAA GTC TTA TTT GAT AAA

Asp Val Asn Glu Arg Asn Thr Val Lys Gly Phe Arg Lys Phe Asn Ile
GAT GTG AAT GAG AGA AAT ACA GTA AAA GGA TTT AGG AAG TTC AAC ATT

Leu Gly Thr His Thr Lys Val Met Asn Met Glu Glu Ser Thr Asn Gly
TTG GGC ACG CAC ACA AAA GTG ATG AAC ATG GAG GAG TCC ACC AAT GGC

Ser Leu Ala Ala Glu Phe Arg His Leu Gln Leu Lys Glu Gln Lys Asn
AGT CTG GCG GCT GAA TTT CGG CAC CTG CAA TTG AAA GAA CAG AAA AAT

Ala Gly Thr Arg Thr Asn Glu Gly Pro Leu Ile Val Thr Glu Glu Leu
GCT GGC ACC AGA ACG AAT GAG GGT CCT CTC ATC GTT ACT GAA GAG CTT

His Ser Leu Ser Phe Glu Thr Gln Leu Cys Gln Pro Gly Leu Val Ile
CAC TCC CTT AGT TTT GAA ACC CAA TTG TGC CAG CCT GGT TTG GTA ATT

Asp Leu Glu Thr Thr Ser Leu Pro Val Val Val Ile Ser Asn Val Ser
GAC CTC GAG ACG ACC TCT CTG CCC GTT GTG GTG ATC TCC AAC GTC AGC

Gln Leu Pro Ser Gly Trp Ala Ser Ile Leu Trp Tyr Asn Met Leu Val
CAG CTC CCG AGC GGT TGG GCC TCC ATC CTT TGG TAC AAC ATG CTG GTG

Ala Glu Pro Arg Asn Leu Ser Phe Phe Leu Thr Pro Pro Cys Ala Arg
GCG GAA CCC AGG AAT CTG TCC TTC CTG ACT CCA CCA TGT GCA CGA

Trp Ala Gln Leu Ser Glu Val Leu Ser Trp Gln Phe Ser Ser Val Thr
TGG GCT CAG CTT TCA GAA GTG CTG AGT TGG CAG TTT TCT TCT GTC ACC

FIG. 3C

Lys Arg Gly Leu Asn Val Asp Gln Leu Asn Met Leu Gly Glu Lys Leu
AAA AGA GGT CTC AAT GTG GAC CAG CTG AAC ATG TTG GGA GAG AAG CTT

Leu Gly Pro Asn Ala Ser Pro Asp Gly Leu Ile Pro Trp Thr Arg Phe
CTT GGT CCT AAC GCC AGC CCC GAT GGT CTC ATT CCG TGG ACG AGG TTT

Cys Lys Glu Asn Ile Asn Asp Lys Asn Phe Pro Phe Trp Leu Trp Il
TGT AAG GAA AAT ATA AAT GAT AAA AAT TTT CCC TTC TGG CTT TGG ATT

Glu Ser Ile Leu Glu Leu Ile Lys Lys His Leu Leu Pro Leu Trp Asn
GAA AGC ATC CTA GAA CTC ATT AAA AAA CAC CTG CTC CCT CTC TGG AAT

Asp Gly Cys Ile Met Gly Phe Ile Ser Lys Glu Arg Glu Arg Ala Leu
GAT GGG TGC ATC ATG GGC TTC ATC AGC AAG GAG CGA GAG CGT GCC CTG

Leu Lys Asp Gln Gln Pro Gly Thr Phe Leu Leu Arg Phe Ser Glu Ser
TTG AAG GAC CAG CCG GGG ACC TTC CTG CTG CGG TTC AGT GAG AGC

Ser Arg Glu Gly Ala Ile Thr Phe Thr Trp Val Glu Arg Ser Gln Asn
TCC CGG GAA GGG GCC ATC ACA TTC ACA TGG GTG GAG CGG TCC CAG AAC

Gly Gly Glu Pro Asp Phe His Ala Val Glu Pro Tyr Thr Lys Lys Glu
GGA GGC GAA CCT GAC TTC CAT GCG GTT GAA CCC TAC ACG AAG AAA GAA

Leu Ser Ala Val Thr Phe Pro Asp Ile Ile Arg Asn Tyr Lys Val Met
CTT TCT GCT ACT TTC CCT GAC ATC ATT CGC AAT TAC AAA GTC ATG

Ala Ala Glu Asn Ile Pro Glu Asn Pro Leu Lys Tyr Leu Tyr Pro Asn
GCT GCT GAG AAT ATT CCT GAG AAT CCC CTG AAG TAT CTG TAT CCA AAT

Ile Asp Lys Asp His Ala Phe Gly Lys Tyr Tyr Ser Arg Pro Lys Glu
ATT GAC AAA GAC CAT GCC TTT GGA AAG TAT TAC TCC AGG CCA AAG GAA

Ala Pro Glu Pro Met Glu Leu Asp Gly Pro Lys Gly Thr Gly Tyr Ile
GCA CCA GAG CCA ATG GAA CTT GAT GGC CCT AAA GGA ACT GGA TAT ATC

Lys Thr Glu Leu Ile Ser Val Ser Glu Val

AAG ACT GAG TTG ATT TCT GTG TCT GAA GTG TAAGTGAACACAGAAGAGTGACA

TGTTTACAAACCTCAAGCCAGCCTTGCTCCTGGCTGGGGCTGTTGAAGATGCTTGTATTTA

CTTTTCCATTGTAATTGCTATGCCCATCACAGCTGAACCTGTTGAGATCCCCGTGTTACTGCC

TATCAGCATTACTACTTTAAAAAAAAAGCCAAAACCAAATTGTATTTAAGGT

ATATAAATTTCACAAACTGATAACCCTTGAAAAAGTATAAAATGAGCAAAAGTTGAA

FIG. 4

BEST AVAILABLE COPY

FIG. 5A

FIG. 5B

BEST AVAILABLE COPY

FIG. 6

1 MSQWYELQQLDSKFLEQVHQLYDDSFPMEIFQYLAQWLEKQDWEHAANDV
51 SFATIRFHDLSQLDDQYSRFSLENNFLQHNIRKSKRNLQDNFQEDPIQ
101 MSMIIYSLKEERKILENAQRFNQAQSGNIQSTVMLDKQKELDSKVRNVK
151 DKVMCIEHEIKSLEDLQDEYDFKCKTLQNREHETNGVAKSDQKQEQLLK
201 KMYLMLDNKRKEVVHKIIELLNVTELTQNALINDELVEWKRRQQSACIGG
251 PPNACLDQLQQVRQQQLKKLEELEQKYTYEHDPITKNKQVLWDRTFSLFQQ
301 LIQSSFVVERQPCMPTHQQRPLVLKTGVQFTVKLRLLVKLQELNYNLKVK
351 VLFDKDVNERNVTKGFRKFNILGTHEKVMNMEESTNGSLAAEFRHLQLKE
401 QKNAGTRTNEGPLIVTEELHSLSFETQLCQPGVIDLETTSPVVVISNV
451 SQLPSGWASILWYNMLVAEPRNLSFFLTPPCARWAQLSEVLSWQFSSVTK
127
501 RGLNVDOLNMLGEKLLGPNASPDGLIPWTRFCKENINDKNFPFWLWIESI
119
551 LELIKKHLLPLWNDGCIMGFISKERERALLKDQQPGTFLRFSESSREGA
601 ITFTWVERSQNGEPDFHAVEPYTKKELSAVTFPDIIRNYKVMAAENIPE
113a
651 NPLKYLYPNIDKDHAFGKYYSRPKAEPMELDGPKGTYIKTELISVSE
113b
701 VHPSRLQTTDNLLPMSPEEPDEVSRIVGSVEFDSSMMNTV
↑
last amino acid of 84 kd

FIG. 7A

ā55 ā42 ā57 1 2 3

ā55 ā42 ā57

FIG. 7B

BEST AVAILABLE COPY

FIG. 8A

1 : MAQWEMLQNLDSPPQDQLHOLYSHSLLPVDIRQYLAVVIEDQNWQEAAALGSDDSKATMLF

61 : FHFLDQLNYECGRCSQDPESLLQHNLRKFCRDIQPFQDPTQLAEMIFNLLEEKRIL

121 : QAQRQAQLEQGEPEVPLETPVESQQHEIESRILDLRAMMEKLVKSISQLKDQQDVFCFRYKIQ
A

181 : AKGKTPSLDOPHQTKEQKILQETLNELDKRRKEVLDASKALLGRLTTLIELLLLPKLEEWA
B
Helix 1

241 : **QQQKACIRAPIDHGLEQLETWETAGAKLLEFHRLRQLKELKGLSCLVSYQDDPLTKGVDLR**
C
Helix 2
Helix 3

301 : NAQVTELLQRLLHRAFVVE^TQPCMPQTPHRPLILKTGSKFTVRTRLLVRLQEGNESLTVE

361 : VSIDRNPPQQLQGFRKFNILTSNQKTLTPEKGQSQGLIWIWDFGYLTIVQRSGGSGKGSNKG

421 : PLGVTEELHIISFTVKYTYYQGLKQELKTDLTVIIISNNMNLSPNLLQ

481 : NQQFFSNNPKAPWSLLGPALSWQFSSYYVGRGLNSDQLSMLRNKLFQNCRTEDPLLSWAD
C

541 : FTKRESPPGKLPLFWTWLDKILELVHDHLKDLDWNDRIMGFVSRSQERRILKKTMSGTFL

601 : RFSESSSEGGITCSWVERHQDDDKVLIYSVQPYTKEVLQSLPLTEIIRHYOLITEENIPENB
D

661 : LRFLYPRIPRDEAFGCYYQEKVNLQERRKYLKHLIVVSNRQVDELQQPPELEKPEPELES

721 : **L****E****L****G****L****V****P****E****P****E****L****S****D****L****E****P****L****L****A****G****L****D****G****P****E****L****S****V****L****E****S****T****L****E****P****V****I****E****P****T****L****C****M****V****S****Q****T****V****P****E****P****D****Q****G**
E

781 : **P****V****S****Q****P****V****P****E****P****D****L****P****C****D****L****R****H****I****N****T****E****P****M****E****I****F****R****N****C****V****I****E****I****M****P****N****G****D****P****L****L****A****G****Q****N****T****V****D****E****V****V****S****R****P****S****H****F**
F

841 : YTDGPLMPSDF

FIG. 8B

113 kDa	MAQWEMLQLNLDSPFQDOLIHO Y SHSLIPVDI Q MLAVWIE D QN W EAALGSDDSKATMLF
91/84 kDa	MSOWYE L QQLDSKELEQVHOLMDDS-FPMEI R OMIAQ W E H A--NDVS F ATIRF
61	FHFLDQINYE C GRCISQDPES S LLQHNLRKF C RD I QP-FS Q DT T LAEMIFNL L E E KRIL
57	HDLLSQ L DDQYSRF S LE-NNFLQHNIRKSKRN I ODNFQEDPIQMSMIYSC L KEERKIL
120	IQAQRAQLE G EPV V LET P VESQ O HEIE S RILD L RAMMEKL V K S IS Q IKD Q ODVFC F RYK-
117	ENAQRFNQAO G SGNIQS T VMLDK K ELDSKVRNVKD K VMCIE E H I K S LED I Q D EY F E K C K
179	IQAKGKTPS--LDPHOTKE K ILQETLNEL D K R R K E V LDASKA I LLGRITTE I E--LLL P K
177	ONREHETNGVAKSD O KQ E Q L LLKKM Y LM D NKR K E V VHK I I E LL-NV I E T Q N ALINDE
235	I E E WKAQ Q QKAC I R A B IDH G LE Q IETWFTAGAKLLF H L R Q U L K E L K G L S CLVSY Q DD P LT
236	I VE W KRR Q Q S AC I GGPPNA C LD Q Q-----QV R Q U L K K L E E Q K Y T YEH H DE I
295	KGVDLRNAQVTE I LQ R ILHRAFVVET T QPCMPQT P HRPL I LKTGSKFTV R T R LLV R LQEGN
285	K NKQVLWDRTFS I LFQ U LIQS F VVERQ P CMP T H P Q R PL V L K TGVQFTV K LRLLV K Q E LN
355	ES I T V E V S I DRNPPQ---LQ G FRKFNI L TS N Q K T L T P E K G Q S Q GL I W D F G Y I T L V E Q R SG
345	YN L K V K V LF D KDVNERNTVK G FRKFNI L G T H T K V M N MEESTNGSLAAE F R H Q L K E OK N A
412	G SGKG S N K G P L G VTEEL H I I SE T V K Y T Y Q GL K QE I K T D T L P V V I I S N M N Q I S I A W S V L W
405	GT--RTNEG P L I VTEEL H S I SE T Q L C O P G I V IDE T T S L P V V V I S N V S Q L P S G W A S I W
472	F N L L S P N L Q N Q OFF S N P K A P W S L L G P A L S W Q F S S Y V G R G L N S D Q L S M I R N K I F G O N C RT
463	YN M L V A E P R N L S F EL T PP C AR M A Q I S E V L S W Q F S S V T K R G L N V D Q L N M I G E K LL G P N A S P
532	EDP L L S W A D F T K R E S P P G K I P F W T W L D K I I L E L V H D H L K D L W N D G R I M G F V S R S Q E R R L K
523	DG-LI P W T R E C K E N I D K N F P W I W I E S I L E L I K K H L P L W N D G C I M G F I S K E R E R A L K
592	KTMS G T F L L R F SE S S-EGGI T C S W V E H -Q Q DD D K V L I Y S V Q P Y T K E V I I Q S L P L T E I I R H Y Q
582	DQ Q P G T F L L R F SE S S-REGAI T F T W V E R S Q NG G E P D F H A V E P Y T K E I LSA V T F P D I I R N X X
650	LLTEENI P E N P I R F L Y P R I P R D E A F G C Y -----Q E K V N I Q E R R --K Y L K H R L I V V S N R
642	VMAAE N I P E N P I K Y L Y P N I D K D H A F G K Y Y S R P K E A P E P M E L D G P K G T G Y M I K T E L I S V E V
702	QVDELQ Q P L E L K P
702	HPSRLQ L T D N L L P

FIG. 9A

BMV
Marker
Sizes

FIG. 9B

BEST AVAILABLE COPY

FIG. 10A

FIG. 10B

	-	-	0.1	1	1	(μ l)
113 kD anti-serum	-	-	1	-	-	+
Pre-immune	-	1	-	-	-	+
ISRE competition	-	-	-	-	-	+

BEST AVAILABLE COPY

FIG. 11

1 2 3 4 5 6 7

FIG. 12

BEST AVAILABLE COPY

FIG. 13A

Mouse 91kD (protein)

Amino acid sequence (deduced)

1 MSQWFELQQQL DSKFLEQVHQ LYDDSFPMEMI RQYLAQWLEK QDWEHAAAYDV

51 SFATIRFHDL LSQLDDQYSR FSLENNFLAQ MNIRKSKRNL QDNFQEDPVQ

101 MSMIIYNCLK EERKILENAQ RFNQAQEGNI QNTVMLDKQK ELDSKVRNVK

151 DQVMCIEQEI KTLEEELQDEY DFKCKTSQRN EGEANGVAKS DQKQEQLLH

201 KMFLMLDNKR KEIHKIREL LNSIELTQNT LINDELVEWK RRQQSACIGG

251 PPNACLDQLQ TWFTIVAEQL QQIRQQLKKL EELEQKFTYE PDPITKNKQV

301 LSDRTFLLFQ QLIQSSFVVE RQPCMPTHPQ RPLVLKTGVQ FTVKSRLLVK

351 LQESNLLTKV KCHFDKDVE KNTVKGFRKF NILGTHTKVM NMEESTNGSL

401 AAELRHLQLK EQKNAGNRTN EGPLIVTEEL HSLSFETQLC QPGLVIDLET

451 TSLPVVVVISN VSQLPSGWAS ILWYNMLVTE PRNLSFFLNP PCAWWSQLSE

501 VLSWQFSSVT KRGLNADQLS MLGEKLLGPN AGPDGLIPWT RFCKENINDK

551 NFSFWPWIDT ILELIKNDLL CLWNDGCIMG FISKERERAL LKDQQPGTFL

601 LRFSESSREG AITFTWVERS QNGGEPDFIA VEPTYKKELS AVTFPDIIRN

651 YKVMALENIP ENPLKYLYPN IDKDHAFGKY YSRPKEAPEP MELDDPKRTG

701 YIKTELISVS EVHPSRLQTT DNLLPMSPEE FDEMSRIVGP EFDSMMSTV

FIG. 13B

Mouse 91kD (protein) DNA sequence

1 caggatgtca cagtggttcg agcttcagca gctggactcc aagttcctgg
51 agcaggtcca ccagctgtac gatgacagtt tccccatgga aatcagacag
101 tacctggccc agtggctgga aaagcaagac tgggagcaeg ctgccttatga
151 tgtctcgttt gcgaccatcc gcttccatga cctcctctca cagctggacg
201 accagtacag ccgcgtttct ctggagaata atttcttgtt gcagcacaac
251 atacggaaaa gcaagcgtaa tctccaggat aacttccaag aagatcccgt
301 acagatgtcc atgatcatct acaactgtct gaaggaagaa aggaagattt
351 tggaaaatgc ccaaagattt aatcaggccc aggagggaaa tattcagaac
401 actgtgatgt tagataaaca gaaggagctg gacagtaaag tcagaaatgt
451 gaaggatcaa gtcatgtgca tagagcagga aatcaagacc ctagaagaat
501 tacaagatga atatgacttt aaatgcaaaa cctctcagaa cagagaaggt
551 gaagccaatg gtgtggcgaa gagcgaccaa aaacaggaac agctgctgct
601 ccacaagatg ttttaatgc ttgacaataa gagaaaggag ataattcaca

FIG. 13C

651 aaatcagaga gttgctgaat tccatcgagc tcactcagaa cactctgatt
701 aatgacgagc tcgtggagtg gaagcgaagg cagcagagcg cctgcacatcg
751 gggaccgccc aacgcctgcc tggatcagct gcaaacgtgg ttcaccattg
801 ttgcagagac cctgcagcag atccgtcagc agcttaaaaa gctggaggag
851 ttggaacaga aattcaccta tgagccccac cctattacaa aaaacaagca
901 ggtgttgtca gatcgaacct tccctctt ccagcagctc attcagagct
951 ccttcgtggt agaacgacag ccgtgcacgc ccactcaccc gcagaggccc
1001 ctggtcttga agactgggt acagttcaact gtcaagtcga gactgttggt
1051 gaaattgcaa gagtcgaatc tattaacgaa agtgaardt cactttgaca
1101 aagatgtgaa cgagaaaaac acagttaaag gatttcggaa gttcaacatc
1151 ttgggtacgc acacaaaagt gatgaacatg gaagaatcca ccaacggaag
1201 tctggcagct gagctccgac acctgeaact gaaggaacag aaaaacgctg
1251 ggaacagaac taatgagggg cctctcattg tcaccgaaga acttcactct
1301 ctttagctttg aaaccagtt gtgccagcca ggcttggtga ttgacacctgga
1351 gaccacctct cttcctgtcg tggtgatctc caacgtcagc cagctccccca

FIG. 13D

1401 gtggctggc gtctatcctg tggtacaaca tgctggtgac agagcccagg
1451 aatctctcct tcttcctgaa ccccccgtgc gcgtggtggt cccagctctc
1501 agaggtgtt gatggcagt ttcatcagt caccaagaga ggtctgaacg
1551 cagaccagct gagcatgctg ggagagaagc tgctggccc taatgctggc
1601 cctgatggtc ttattccatg gacaaggttt tgtaaggaaa atattaatga
1651 taaaaatttc tccttctggc cttggattga caccatccta gagctcatTA
1701 agaacgacct gctgtgcctc tggaatgatg ggtgcattat gggcttcata
1751 agcaaggagc gagaacgcgc totgctcaag gaccagcagc cagggacgtt
1801 cctgcttaga ttcaagtgaga gctcccgga agggccatc acattcacat
1851 gggtgttgaacg gtcccagaac ggaggtgaac ctgacttcca tgccgtggag
1901 ccctacacga aaaaagaact ttcaagtgtt actttcccag atattattcg
1951 caactacaaa gtcatggctg ccgagaacat accagagaat cccctgaagt
2001 atctgtaccc caatattgac aaagaccacg cctttggaa gtattattcc
2051 agaccaaagg aagcaccaga accgatggag cttgacgacc ctaagcgaac
2101 tggatacatc aagactgagt tgatttctgt gtctgaagtc cacccttcta
2151 gacttcagac cacagacaac ctgottccca tgtctccaga ggagtttgat
2201 gagatgtccc ggatagtggg ccccgaaattt gacagtatga tgagcacagt
2251 ataaacacga atttctctct ggcgaca

FIG. 14A

13sf1 (protein)

Amino acid sequence of 13sf1

1 MSQWNQVQQL EIKFLEQVDQ FYDDNFPMEI RHLLAQWIET QDWEVASNNE

51 TMATILLQNL LIQLDEQLGR VSKEKNLLI HNLKRIRKVL QGKFHGNPMII

101 VAVVISNCLR EERRILAAAN MPIQGPLEKS LQSSSVSERQ RNVEHKVSAI

151 KNSVQMTEQD TKYLEDLQDE FDYRYKTIQT MDQGDKNSIL VNQEVLTLLQ

201 EMLNSLDFKR KEALSKMTQI VNETDLMNS MLLEELQDWK KRHRRIACIGG

251 PLHNGLDQLQ NCFTLLAESL FQLRQQLEKL QEQSTKMTYE GDPIPAQRRAH

301 LLERATFLIY NLFKNSEVVE RHACMPTHPQ RPMVLKTLIQ FTVKLRLLIK

351 LPELNYQVKV KASIDKNVST LSNRRFVLCG THVKAMSSEE SSNGSLSVEL

401 DIATQGDEVQ YWSKGNEGCH MVTEELHSIT FETQICLYGL TINLETSSLP

451 VVMISNVSQL PNAWASIIWY NVSTNDSQNL VFFNNPPSVT LGQLLEVMSW

501 QFSSYVGRGL NSEQLNMLAE KLTVQSNYND GHLTWAKFCK EHILPGKTFTF

551 WTWLEAILDL IKKHILPLWI DGYIMGFVSK EKERLLLKDK MPGTFLLRFS

601 ESHLGGITFT WVDQSENGEV RFHSVEPYNK GRLSALAFAD ILRDYKVIMA

651 ENIPENPLKY LYPDIPKDKA FGKIIYSSQPC EVSRPTERGD KGYVPSVFIP

701 ISTIRSDSTE PQSPSDLMPM SPSAYAVLRE NLSPTTIETA MNSPYSAE

FIG. 14B

13sf1 (DNA)

DNA sequence of 13sf1

1 tgccactacc tggacggaga gagagagagc agcatgtctc agtggaatca
51 agtccaacaa ttagaaatca agtttttgg a gcaagttagat cagttctatg
101 atgacaacctt tccttatggaa atccggcattc tgcttagctca gtggatttag
151 actcaagact ggaaagttagc ttcttaacaat gaaactatgg caacaattct
201 gcttc当地aaac ttactaatac aattggatga acagttgggg cgggtttcca
251 aagaaaaaaaaa tctgctattt attcacaatc taaagagaat tagaaaagtt
301 cttcagggca agtttcatgg aaatccaatg catgttagctg tggtaatttc
351 aaatttgctt a g g g a a g a g a g a g a a t t g g c a g c c a
401 tccagggacc tctggagaaaa tccttacaga gttcttcagt ttctgaaaga
451 caaaggaatg t g g a a c a c a a a g t g t c t g c c a t t a a a a c a
501 gacagaacaa gataccaaat acttagaaga cctgcaagat gagtttgact
551 acaggtataa aacaattcag acaatggatc agggtgacaa aaacagtatc
601 ctggtaacc aggaagtttt gacactgctg caagaaatgc ttaatagtct
651 ggacttcaag agaaaggaag cactcagtaa gatgacgcag atagtgaacg
701 agacagaccc gctcatgaac agcatgcttc tagaagagct gcaggactgg
751 aaaaagcgcc acaggattgc ctgcatttgtt ggccccctcc acaatgggct
801 ggaccagctt cagaactgct ttaccctact ggcagagagt cttttccaac
851 tcagacagca actggagaaa ctacaggagc aatctactaa aatgacccat

FIG. 14C

13sf1 (DNA)

901 gaaggggatc ccatccctgc tcaaagagca cacctcctgg aaagagctac
951 ctccctgatc tacaaccttt tcaagaactc atttgtggtc gagcgacacg
1001 catgcatgcc aacgcacccct cagaggccga tggtacttaa aaccctcatt
1051 cagttcactg taaaactgag attactaata aaattgccgg aactaaacta
1101 tcaggtgaaa gtaaaggcgt ccattgacaa gaatgtttca actctaagca
1151 atagaagatt tgtgcttgtt ggaactcacg tcaaagctat gtccagttag
1201 gaatcttcca atgggagcct ctcagtgtag tttagacattt caacccaagg
1251 agatgaagtg cagtactgga gtaaaggaaa cgagggtgc cacatggta
1301 cagaggagtt gcattccata acctttgaga cccagatctg cctctatggc
1351 ctcaccatta accttagagac cagctcatta cctgtcgtag tgattttctaa
1401 tgtcagccaa ctacctaattt catgggcattt catcattttt tacaatgttat
1451 caactaacga ctcccagaac ttggttttct ttaataaccc tccatctgtc
1501 actttgggcc aactcctgga agtgatgagc tggcaattttt catcctatgt
1551 cggtcgtggc ctttaattttagt agcagactcaa catgctggca gagaagctca
1601 cagttcagtc taactacaat gatggtcacc tcacccggc caagttctgc
1651 aaggaacatt tgcctggcaa aacatttacc ttctggactt ggcttgaagc
1701 aatattggac ctaattaaaa aacatattct tccccctctgg attgtatgggt
1751 acatcatggg atttgttagt aaagagaagg aacggcttct gctcaaagat
1801 aaaatgcctg ggacattttt gttaagatcc agtgagagcc atcttggagg

FIG. 14D

13sf1 (DNA)

1851 gataaaccttc acctgggtgg accaatctga aaatggagaa gtgagattcc
1901 actctgtaga accctacaac aaaggagac tgcggctct ggccttcgct
1951 gacatcctgc gagactacaa gtttatcatg gctgaaaaca tccctgaaaa
2001 ccctctgaag tacctctacc ctgacattcc caaagacaaa gccttggca
2051 aacactacag ctcccagccg tgcgaagtct caagaccaac cgaacgggaa
2101 gacaagggtt acgtcccctc tgttttatc cccatttcaa caatccgaag
2151 cgattccacg gagccacaat ctccttcaga cttctcccc atgtctccaa
2201 gtgcatatgc tgtgctgaga gaaaacctga gcccaacgac aattgaaact
2251 gcaatgaatt ccccatattc tgctgaatga cggtgcaaac ggacactta
2301 aagaaggaag cagatgaaac tggagagtgt tctttaccat agatcacaat
2351 ttatttcttc ggctttgtaa atacc

FIG. 15A

19sf6 (DNA)

Amino acid sequence of 19sf6

1 MAQWNQLQQL DTRYLKQLHQ LYSDTFPMEL RQFLAPWIES QDWAYAASKE
51 SHATLVFHNL LGEIDQQYSR FLQESNVLYQ HNLRRIKQFL QSRYLEKPME
101 IARIVARCLW EESRLLQTAA TAAQQGGQAN HPTAAVVTEK QQMLEQHLQD
151 VRKRVQDLEQ KMVKVENLQD DEDFNYKTLK SQGDMQDLNG NNQSVTRQKM
201 QQLEQMLTAL DQMRRSIVSE LAGLLSAMEY VQKTLTDEEL ADWKRRPEIA
251 CIGGPPNICL DRLENWITSI AESQLQTRQQ IKKLEELQQK VSYKGDPIVQ
301 HRPMLEERIV ELFRNLMKSA FVVERQPCMP MHPDRPLVIK TGVQFTTKVR
351 LLVKFPELNY QLKIKVCIDK DSGDVAAALRG SRKFNILGTN TKVMNMEESN
401 NGSLSAEFKH LTLREQRCGN GGRANCDASL IVTEELHLIT FETEVYHQGL
451 KIDLETHSLP VVVISNICQM PNAWASILWY NMLTNNPKNV NFFTKPPIGT
501 WDQVAEVLSW QFSSTTKRGL SIEQLTTLAE KLLGPGVNYS GCQITWAKFC
551 KENMAGKGFS FWVWLDNIID LVKKYILALW NEGYIMGFIS KERERAILST
601 KPPGTFLRF SESSKEGGVT FTWVEKDISH KTQIQSVEPY TKQQLNNMSF
651 AEIIMGYKIM DATNILVSPL VYLYPDIPKE EAEGKYCRPE SQEIIPEADPG
701 SAAPYLKTF ICVTPTTCSN TIDLPMSPRT LDSLMQFGNN GEGAEP SAGG
751 QFESLTFDMD LTSECATSPM

FIG. 15B
19sf6 (DNA)

Amino acid sequence of 19sf6

1 gcccgcacca gccaggccgg ccagtcgggc tcagccccga gacagtcgag
51 acccctgact gcagcaggat ggctcagtgg aaccagctgc agcagctgga
101 cacacgctac ctgaagcagc tgcaccagct gtacagcgac acgttccccca
151 tggagctgcg gcagttcctg gcaccttgga ttgagagtca agactggcca
201 tatgcagcca gcaaagagtc acatgccacg ttttgttttc ataatctttt
251 gggtaaaatt gaccagcaat atagccgatt cctgcaagag tccaatgtcc
301 tctatcagca caaccttcga agaatcaagc agtttctgca gagcaggtat
351 cttgagaagc caatggaaat tgcccgatc gtggcccgat gcctgtggaa
401 agagtctcgc ctccctccaga cggcagccac ggcagcccag caagggggcc
451 aggccaacca cccaacagcc gccgtagtga cagagaagca gcagatgttg
501 gagcagcatc ttcaaggatgt ccggaagcga gtgcaggatc tagaacagaa
551 aatgaaggtg gtggagaacc tccaggacga ctttgcatttc aactacaaaaa
601 ccctcaagag ccaaggagac atgcaggatc tgaatggaaa caaccagtct
651 gtgaccagac agaagatgca gcagctggaa cagatgctca cagccctggaa
701 ccagatgcgg agaagcattt tgagttagt ggcggggctc ttgtcagcaa
751 tggagttacgt gcagaagaca ctgactgtt aagagctggc tgactggaaag
801 aggcggccag agatcgctgt catcgagggc cttcccaaca tctgcctggaa
851 ccgtctggaa aactggataa cttcatttgc agaatctcaa cttcagaccc

FIG. 15C

19sf6 (DNA)

901 gccaacaaat taagaaaactg gagggagctgc agcagaaaagt gtcctacaag
951 ggcgacccta tcgtgcagca ccggcccatg ctggaggaga ggatcggtgga
1001 gctgttcaga aacttaatga agagtgcctt cgtggtgag cggcagccct
1051 gcatgcccatt gcacccggac cggcccttag tcatcaagac tggtgtccag
1101 ttaccacga aagtcaaggtt gctggtcaaa tttcctgagt tgaattatca
1151 gctaaaaatt aaagtgtgca ttgataaaga ctctggggat gttgctgcc
1201 tcagagggtc tcggaaattt aacattctgg gcacgaacac aaaagtgtatg
1251 aacatggagg agtctaacaa cggcagcctg tctgcagagt tcaagcacct
1301 gacccttagg gagcagagat gtggaaatgg aggccgtgcc aattgttgtatg
1351 ctcctttagt cgtgactgag gagctgcacc tgcacccatt cgagactgag
1401 gtgtaccacc aaggcctcaa gattgaccta gagaccact cttgccagt
1451 tgtggtgatc tccaaacatct gtcagatgcc aaatgtttgg gcatcaatcc
1501 tgtggtataa catgttgacc aataacccca agaacgtgaa cttcttcact
1551 aagccgc当地 ttggAACCTG ggaccaagtg gccgagggtgc tcagctggca
1601 gttctcgcc accaccaagc gagggctgag catcgagcag ctgacaacgc
1651 tggctgagaa gtccttaggg cttgggtgtga actactcagg gtgtcagatc
1701 acatggccta aattctgcaa agaaaacatg gtcggcaagg gcttctccctt
1751 ctgggtctgg ctagacaata tcatcgacct tttggaaaaag tataatcttgg
1801 ccctttggaa tgaagggtac atcatgggtt tcatcagcaa ggagcgggag

FIG. 15D

19sf6 (DNA)

1851 cggccatcc taagcacaaa gccccgggc accttcctac tgcgcttcag
1901 cgagagcagc aaagaaggag gggtaacttt cacttgggtg gaaaaggaca
1951 tcagtggcaa gaccaggatc cagtctgtag agccatacac caagcagcag
2001 ctgaacaaca tgtcatttgc taaaaatcatc atgggctata agatcatgga
2051 tgcgaccaac atcctggtgt ctccacttgt ctacctctac cccgacattc
2101 ccaaggagga ggcatttggaa aagtactgtaa ggcccggagag ccaggagcac
2151 cccgaagccg acccaggtag tgctgccccg tacctgaaga ccaagttcat
2201 ctgtgtgaca ccaacgacct gcagcaatac catggacctg ccgatgtccc
2251 cccgcactt agattcatttgc atgcagtttg gaaataacgg tgaaggtgct
2301 gagccctcag caggagggca gtttgagtcg ctcacgttttgc acatggatct
2351 gacctcgagg tgtgctacct ccccatgtg aggagctgaa accagaagct
2401 gcagagacgt gacttggagac acctgccccg tgctccaccc ctaaggagcc
2451 gaacccata tcgtctgaaa ctcctaactt tgtggttcca gatttttttt
2501 tttaatttcc tacttctgct atctttgggc aatctggca ctttttaaaa
2551 gagagaaaatg agtgagtggtg ggtgataaac tgttatgtaa agaggagaga
2601 cctctgagtc tggggatggg gctgagagca gaagggaggc aaaggggAAC
2651 acctcctgtc ctggccgcct gccctcctt ttcagcagct cgggggttgg
2701 ttgttagaca agtgccctcct ggtgccatg gctacctgtt gccccactct
2751 gtgagctgat accccattct ggaaactcct ggctctgcac tttcaacctt

FIG. 15E

19sf6 (DNA)

2801 gctaataatcc acatagaagc taggactaag cccaggaggt tcctctttaa

2851 attaaaaaaaa aaaaaaaaa

FIG. 16A

FIG. 16B

BEST AVAILABLE COPY

FIG. 16C

FIG. 16D

FIG. 17A

FIG. 17B

BEST AVAILABLE COPY

FIG. 17C

FIG. 18A

C84 Cmx C91L

FIG. 18B

BEST AVAILABLE COPY

FIG. 19

FIG. 20

BEST AVAILABLE COPY

FIG. 21

BEST AVAILABLE COPY

FIG. 22A

BEST AVAILABLE COPY

FIG. 22B

	GST	GST- 91SH2	GST- 91mSH2	GST- 91SH3	GST- SrcSH2	GST- 91SH2
	█	█	█	█	█	█

FP	-	△	△	△	△	△
C91L	+	+	+	+	+	-
C84	+	+	+	+	+	-

FIG. 23A

stat91	(569) LLPL WND GRCLMGFI SKERERALLK DQQP	G TFLLRFS ESSRE G ALTFAYER	(619)
src	(145) AEE WYF GKI	TRRESERLL NPENPRG TFLVRES ETTK G AYCLSVSD	(188)
lck	(127) WFF KNL	SRKDAEROLL APGNTHG SFLRIES ESTA G SFSLSVRD	(168)
abl	(141) EXHS WYH GPV	SRNAAEYLIS SCIN G SFLVRES DRPP G QRSTISLY	(184)
p85qN	(330) QDAE WYH GDI	SREEVNNEKLR DTAD G TFLVRDA STKMH G DYTLLRK	(374)

SCR'S	[--]	xxx	xxxxxx	xxxxx	xxx	xxxxx
Name	NA	βA	AA	αA	AB	βB

stat91 (620) S Q N GGEPDFHAVEPYTKKELSAVTFP TIRNRYV MAA ENIPEVPL (664)
 D
 src (189) F FD NAK GL
 lck (169) D FD QNQ GE
 ab1 (185) E E G
 p85an (375) GG

SCR'S
Name _____
CD _____
BD _____ DE _____
X [---] [-] [---]
xx [---] x [---] x

FIG. 23B

αβγ
|

stat91	(665)	KYLY	P	NID	K	KDHAFGKYYSRP	PK EA PEP M	ELD GPKGTGYIKT	(704)
src	(211)	GFYI	TSR	TQF	S	SLQQLVAYYSKH	AD GL CH	RLT NVC PTS	(248)
lck	(190)	GFYI	SPR	ITF	P	GLHDLVRHYTNA	SD GL CT	RLS RPC QTQ	(227)
abl	(201)	XLYV	SSE	SRF	N	TLAELVHHHSTV	AD GL IT	TLX YPA PKR	(238)
p85aN	(389)	KYGF	SDP	LTF	N	SVVELINHYRHE	S LA QYN PKLDVKL LYP	(427)	

SCR'S XXX XXXXXXXX

Name	βE	EF	βF	αB	BG	βC	βΩ
	[--]	[--]	[--]	[-----]	[-----]	[--]	[--]