WHAT IS CLAIMED IS:

1	1. A system for modifying digital images, the system comprising means for
2	maintaining an association between an image portion and a list of operations used to create
3	the image portion.
1	2. A method for processing an image in an application program, wherein
2	the application program executes in a digital system, wherein the digital system includes a
3	user input device, the method comprising
4	accepting signals from the user input device to cause one or more operations
5	to modify the image to create a modified image;
6	creating a list of at least one of the operations used to create the modified
7	image; and
8	storing the list in association with the modified image.
9	
1	3. The method of claim 2, further comprising
2	retrieving the modified image;
3	retrieving the list; and
4	associating the list with the modified image.
1	4. A method for modifying a digram of connected nodes displayed on a
2	display device in a digital system, wherein the nodes are connected with elongated
3	connectors, wherein the digital system includes a user input device and a processor, the
4	method comprising
5	accepting first signals from the user input device to remove an end of a
6	connector from a first node;
7	accepting second signals from the user input device to move the end of the
8	connector in proximity to a second node;
9	using the processor to indicate that the second node has been automatically
10	selected;
11	accepting third signals from a user input device to indicate that the end of the
12	connector should be connected to the second node; and
13	using the processor to automatically connect the end of the connector to the
14	second node.
1	5. A method for joining nodes in a diagram, wherein the diagram include
2	a first node and a second node, the method comprising, the method comprising

3	accepting first signals from the user input device to move the first node into
4	visible contact with the second node; and
5	in response to the moving of the first node into visible contact with the second
6	node, performing the step of using the processor to create a connection between the first and
7	second nodes.
1	6. The method of claim 5, wherein the connection is created at the
2	approximate points of contact of the first and second nodes.
1	7. The method of claim 5, wherein a visual indicator indicates that
2	contact has occurred.
1	8. The method of claim 5, wherein an audible indicator indicates that
2	contact has occurred.
1	9. The method of claim 5, further comprising
2	moving the first node into proximity with the second node to within a
3	predetermined threshold distance; and
4	in response to the step of moving the first node into proximity, performing the
5	step of using the processor to create a connection between the first and second nodes.
1	10. A method for modifying a diagram of nodes in a digital processing
2	system, wherein the diagram includes nodes coupled by connectors, wherein a node
3	represents an operation performed on an image portion, wherein a complex node represents
4	an operation that includes sub-operations, the method comprising
5	accepting signals from a user input device to expand a complex node; and
6	in response to the step of accepting signals to expand a complex node,
7	performing the step of replacing the complex node in the diagram with one or more nodes
8	corresponding to sub-operations of the operation represented by the complex node.
1	11. The method of claim 10, wherein the operations are image processing
2	operations.
,1	12. A method for modifying parameter values, the method executing in a
2	digital system, the digital system including a user input device, the method comprising
3	accepting signals from the user input device to define a freehand line drawing;
4	and
5	using the freehand line drawing to modify at least one parameter value.
1	13. The method of claim 12, wherein the freehand line drawing is used to
2	modify the at least one parameter value as a function of time.

1	14. The method of claim 12, wherein the freehand line drawing is used to
2	modify the at least one parameter value as a function of space.
1	15. A method for displaying image information on a display device
2	coupled to a processor and user input device, the method comprising
3	using the processor to display a main image on the display device;
4	generating modified images;
5	accepting signals from the user input device to select a plurality of modified
6	images; and
7	in response to the step of accepting signals, performing the step of displaying
8	the plurality of selected images on the display device adjacent to the main image.
1	16. A method for displaying information about an image in a image
2	processing system, the image processing system including a processor coupled to a display
3	device and to a user input device, the method comprising
4	using the processor to display an image;
5	accepting signals from the user input device to select a portion of the image;
6	and
7	using the processor to display a list of operations that contributed to the
8	generation of the selected portion of the image.
1	17. The method of claim 16, wherein the image portion is a single pixel.
1 .	18. The method of claim 16, further comprising
2	accepting signals from the user input device to identify an operation in the list
3	using the processor to regenerate the image using operations in the list other
4	than the identified operation; and
5	displaying the regenerated image on the display device.
1	19. A method for saving a setting in a computer user interface, the method
2	executing in a digital processing system including a processor coupled to at least one user
3	input device and to a display device, the processor executing a user interface including
4	controls for changing parameter values, the method comprising
5	accepting signals from a user input device to provide a new parameter value
6	by using a first control;
7	accepting signals from a user input device to define a first label;
8	associating the label with the new parameter value and with the first control;
9	storing the label in a list of labels associated with the first control;
10	using the processor to display the list of labels;

11	accepting second signals from a user input device to select the first label; and
12	in response to the step of accepting second signals, performing the step of
13	using the new parameter value.
1	20. A method for using a three-dimensional look-up table in a digital storage
2	device to obtain a result, the method comprising
3	selecting a first resolution;
4	using the first resolution to define subcubes in a mapping space,
5	wherein the subcubes have dimensions based on the first resolution;
6	assigning a single output value to each subcube;
7	generating a look-up table in accordance with the subcubes;
8	receiving a first set of three values;
9	using the mapping space to map the first set of three values to a point
1 0	in the mapping space, wherein if the point is within a given subcube then the result is the
11	assigned output value of the given subcube; and
12	regenerating the look-up table at a different resolution.
10 11 12 1 1 2	21. The method of claim 20, wherein the mapping space is multi-dimensional
2	with a number of dimensions greater than 3.
.#i 1	22. The method of claim 20, wherein the mapping space is non-rectangular.
	23. The method of claim 20, wherein multiple subcube resolutions are used
2	for a single mapping space.