ELT330 – Sistemas de Controle I Prof. Tarcísio Pizziolo

Aula 6 - Álgebra dos Diagramas de Blocos

1. Álgebra de Diagramas de Blocos

A simplificação do diagrama de blocos por meio de rearranjos e substituições reduz consideravelmente o trabalho necessário à análise matemática subsequente e a determinação de sua função de transferência.

Deve-se notar, no entanto, que à medida que o diagrama de blocos é simplificado, as funções de transferência nos novos blocos tornam-se mais complexas porque novos polos e novos zeros são gerados.

Um diagrama de blocos complicado, envolvendo muitas malhas de retroação, pode ser simplificado através de um procedimento passo a passo, usando as regras da álgebra para diagramas de bloco. Elas são obtidas escrevendo-se a mesma equação de uma maneira diferente.

2. Blocos em Cascata

A associação de qualquer número de blocos em cascata, representando componentes individuais que não apresentam efeito de carregamento uns sobre os outros, pode ser substituída por um único bloco equivalente, cuja função de transferência é simplesmente o produto das funções de transferência individuais. Assim,

3. Deslocamento de Bloco Somador

3.1 Deslocamento de bloco somador da entrada para a saída de um bloco funcional.

3.2 Deslocamento de bloco somador da saída para a entrada de um bloco funcional.

3.3 Deslocamento de ponto de derivação da entrada para a saída de um bloco funcional.

3.4 Deslocamento de ponto de derivação da saída para a entrada de um bloco funcional.

$$X_1(s)$$
 $G(s)$ $X_2(s)$ X_2

4. Redução de uma Malha Fechada

Para simplificar uma malha fechada pode-se utilizar variáveis auxiliares e obter-se a função de transferência de um bloco funcional reduzido.

Seja o diagrama de blocos em malha fechada com **retroação negativa** a seguir.

$$\begin{array}{c} X_2(s) = E(s)G(s); \ E(s) = X_1(s) \pm B(s); \ B(s) = H(s)X_2(s); \\ X_2(s) = E(s)G(s) = [X_1(s) - B(s)]G(s) = [X_1(s) - H(s)X_2(s)]G(s) => \\ => X_2(s) = X_1(s)G(s) - G(s)H(s)X_2(s) => X_2(s)[1 + G(s)H(s)] = X_1(s)G(s) => \\ => F(s) = \frac{X_2(s)}{X_1(s)} = \frac{G(s)}{1 + G(s)H(s)} \\ \end{array}$$

Seja o diagrama de blocos em malha fechada com **retoação positiva** a seguir.

$$\begin{array}{l} X_2(s) = E(s)G(s) = [X_1(s) + B(s)]G(s) = [X_1(s) + H(s)X_2(s)]G(s) => \\ => X_2(s) = X_1(s)G(s) + G(s)H(s)X_2(s) => X_2(s)[1 - G(s)H(s)] = X_1(s)G(s) => \\ => F(s) = \frac{X_2(s)}{X_1(s)} = \frac{G(s)}{1 - G(s)H(s)} \\ \end{array}$$

5. Tabela de Álgebra de Redução de Diagrama de Blocos
Para simplificar e agilizar as reduções dos diagramas de blocos existe
uma tabela onde constam as principais reduções a serem utilizadas.

	Diagrama de Blocos Originais	Diagramas de Blocos Equivalentes
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A - B + C C B
2	A - B + C	$ \begin{array}{c c} C \\ A - B + C \end{array} $ $ \begin{array}{c c} B \\ \end{array} $
3	$\xrightarrow{A} G_1 \xrightarrow{AG_1G_2} G_2 \xrightarrow{AG_1G_2}$	$\xrightarrow{A} G_2 \xrightarrow{AG_1G_2} G_1 \xrightarrow{AG_1G_2}$
4	$\xrightarrow{A} G_1 \xrightarrow{AG_1G_2} G_2 \xrightarrow{AG_1G_2}$	$\xrightarrow{A} \qquad \xrightarrow{AG_1G_2} \qquad $
5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\xrightarrow{A} G_1 + G_2 \xrightarrow{AG_1} + AG_2$
6	$ \begin{array}{c} AG \\ AG \\ B \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Exemplo 1: Seja o diagrama de blocos de um sistema de controle.

- a) Simplificar o diagrama de blocos reduzindo-o a somente um bloco funcional.
- b) Determinar a função de transferência deste sistema de controle.
- a) Deslocando o bloco somador da saída de $G_1(s)$ para sua entrada.

Resulta;

Deslocando o ponto de derivação da entrada de G₄(s) para sua saída.

Ajustando os pontos de derivação na saída resulta;

Reduzindo a malha fechada composta por $G_3(s)G_4(s)$ e $H_1(s)$.

Resulta;

Reduzindo os blocos do caminho direto resulta.

Reduzindo a malha fechada superior resulta.

Simplificando as funções no bloco de caminho direto;

Finalmente reduzindo a malha fechada final resulta.

b) A função de transferência deste sistema de controle é dada por:

$$\frac{C(s)}{R(s)} = \frac{G_1(s)G_2(s)G_3(s)G_4(s)}{1 + G_1(s)G_2(s)G_3(s)G_4(s)H_3(s) + G_2(s)G_3(s)H_2(s) - G_3(s)G_4(s)H_1(s)}$$

Exercício: Seja o diagrama de blocos de um sistema de controle.

- a) Simplificar o diagrama de blocos reduzindo-o a somente um bloco funcional.
- b) Determinar a função de transferência deste sistema de controle.

$$\frac{\mathsf{R.:}}{\mathsf{R}(\mathsf{s})} = \frac{\mathsf{G_1}(\mathsf{s})\mathsf{G_2}(\mathsf{s}) + \mathsf{G_3}(\mathsf{s})}{1 + \mathsf{G_1}(\mathsf{s})\mathsf{G_2}(\mathsf{s}) \, \mathsf{H_2}(\mathsf{s}) + \mathsf{G_3}(\mathsf{s})\mathsf{H_2}(\mathsf{s}) + \mathsf{G_2}(\mathsf{s})\mathsf{H_1}(\mathsf{s})}$$