العام الدراسي: 2022 - 2023 الثلاثاء 24 كانون ثانى 2023 إمتحان نصف السنة الموحّد امتحانات الشهادة الثانوية العامة فرع: علوم الحياة

الأنروا - برنامج التربية و التعليم / لبنان مركز التطوير التربوي وحدة التقييم

الإسم: -----

مسابقة في مادة الرياضيات المدة: ساعتان

عدد المسائل: اربِ العلامة: 20

ملاحظة: - يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات.

- يستطيع التلميذ الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الواردة في المسابقة).

I- (4 points)

In the table below, only one among the proposed answers to each question is correct.

Write the number of each question and give, with justification, the answer that corresponds to it.

Nº	Questions	Proposed Answers		
		a	b	c
1	If $f(x) = \frac{1}{\ln x}$, then $f'(e^2) =$	$\frac{-1}{4e^2}$	$-4e^2$	$\frac{1}{2}$
2	The domain of definition of the function h defined by: $h(x) = \frac{x^2-4}{\ln(x-1)}$ is]0; +∞[]1;2[∪]2;+∞[]1; +∞[
3	$\lim_{x \to -\infty} \frac{\ln(e^x + 1)}{e^x}$ is equal to	1	+∞	0
4	For any real number x; $ln(e^{-x} + 1) + x$ is equal to	0	$ln(e^x + 1)$	2x

II- (4 points)

The questions 1), 2), 3) and 4) are independent.

1) (C) is the representative curve of the function f defined on \mathbb{R} as $f(x) = \frac{2e^x}{e^x + 1} - x$.

Prove that the point W(0; 1) is the center of symmetry of (C).

- 2) Solve the following inequality: $(\ln x)^2 2 \ln x < 0$.
- 3) Consider the function g defined on \mathbb{R} as $g(x) = -2x + 3 + e^{-2x+1}$. Determine the image of the interval $[0; +\infty[$ by g.
- 4) Does the system of equations $\begin{cases} e^{x+1} \cdot e^{y-2} = 2 \\ \ln x + \ln y = \ln(x-1) + \ln(y-1) \end{cases}$ have a solution? Justify.

III- (3 points)

In the adjacent orthonormal system (0; i; j),
(C) represents the curve of f which is defined over]0; +∞[as: f(x) = a(ln x)² + b ln x.
(a and b are two integers)

-3

- (C) admits at point A a tangent parallel to the axis of abscissas.
- 1) Find graphically: $\lim_{x\to 0^+} f(x)$ and f'(e).
- 2) **a-** Calculate f'(x) in terms of a and b. **b-** Show that a = 1 and b = -2.
- 3) Consider the function g defined over]0; $+\infty$ [as $g(x) = e^{f(X)}$ and (G) be its representative curve in an orthonormal system.

Find the equation of the tangent (T) to (G) at point B of abscissa 1.

IV- (9 points)

Part A

Let g be the function defined on \mathbb{R} as $g(x) = xe^x - 1$.

- 1) Verify that $\lim_{x \to -\infty} g(x) = -1$ and determine $\lim_{x \to +\infty} g(x)$.
- 2) Copy and complete the adjacent table of variations of g.
- 3) a- Show that the equation g(x) = 0 has, on \mathbb{R} , a unique solution α , then verify that $0.56 < \alpha < 0.58$.
 - **b-** Determine, according to the values of x, the sign of g(x).

ж	-∞		1		$+\infty$
g'(x)		-	0	+	
g(x)					

Part B

Consider the function f defined on \mathbb{R} as $f(x) = (x - 1)(e^x - 1)$.

Designate by (C) the representative curve of f in an orthonormal system (0; \vec{i} ; \vec{j}).

- 1) a- Determine $\lim_{x\to -\infty} f(x)$ and show that the straight line (d) with equation y=-x+1 is an asymptote to (C).
 - **b-** Study, according to the values of x, the relative position of (C) and (d).
- 2) Determine $\lim_{x\to +\infty} f(x)$, then calculate f(2).
- 3) Show that $f(\alpha) = 2 \alpha \frac{1}{\alpha}$.
- 4) Verify that f'(x) = g(x) and set up the table of variations of the function f.
- 5) Prove that the curve (C) has a point of inflection M whose coordinates to be determined.
- 6) Calculate the coordinates of the points of intersection between (C) and the abscissa axis.
- 7) Suppose that $\alpha = 0.57$. Draw (d) and (C).