Lab 11 Link Budget (yellow highlight / italics = giv							
	DOWN						
PARAMETER	UPLINK (Commands)	(Telemetry and Data)	UNITS	Cumbal			
Speed of Light	3.0E+08	,	UNITS m/s	Symbol $C=\lambda * f$			
Frequency	8.4	8.0	GHz	C=λ*1 f			
Wavelength	0.036			lambda			
Range	40000	40000	km	R			
Boltzman's Constant	1.380E-23	1.380E-23		k			
			,				
Data Parameters	Uplink	Downlink	Units	Symbol			
Bit Error Rate / Probablility of Bit Error	10-7	10-5	[-]	BER			
Data Coding Scheme	QPSK	QPSK		=			
Required Bit Energy to Noise Ratio	11.31	9.59	dB	Eb/No			
Data Rate	9600	2,097,152	bps (Hz)	R			
Degrating de Corrier to Noise Detic	57.40	75.00	4D 11-	C/N ₁			
Required Carrier to Noise Ratio Required Design Margin	57.13 6.00	75.80 3.00	dB-Hz <i>dB</i>	C/No			
Minimum C/No	51.13		dB-Hz				
William C/NO	31.13	72.00	ub-nz				
Noise (applies to receiving elements)	Uplink	Downlink	Units	Symbol			
Reference Temperature	290	290	K	То			
Receive Antenna Efficiency	0.44		[-]	η			
Receive Antenna Physical Temperature	200		K	Tphys			
External "scene" Noise Temperature	260	25	K	Text			
Antenna Noise Temperature	226.4	125.7	K	Tant			
Receiver Cable Loss	0.90	0.90	dB	Lc			
Receiver Cable Loss	0.81	0.81	Linear				
Receiver Noise Figure (based on receiver)	3.00	1.00	dB	NF			
Receiver Noise Factor	1.995	1.259	[-]	F			
Receiver Noise Temperature	288.6	75.1	K	Tr			
10001101 110100 Tomporaturo	200.0	70.1		''			
Desciver System Noise Terranerature	007.54	004.00	12	т-			
Receiver System Noise Temperature	627.54	284.86	K	Ts			
		00107	ID) A / / ·				
Receiver System Noise Power	-200.62	-204.05	dBW-Hz	No			
Receiver Parameters:	Uplink	Downlink	Units	Symbol			

Receive Antenna Diameter	0.18	6.8	m	D
Receive Antenna Area	0.025	36.317	m^2	Α
Receive Antenna Efficiency	0.44	0.62	[-]	η
Receive Antenna Effective Area	0.011	22.516	m^2	Ae
Receive Antenna Gain	20.43	53.04	dBi	Gr
Receive Antenna Beamwidth	12.83	0.36	degrees	qr
Receive Antenna Pointing Accuracy	6.0	0.35	degrees	er
rtocorror unconna r omanig riccaracy	0.0	0.110	aograda	0,
Receive Antenna Pointing Loss	-2.63	-2.12	dB	Lpr
Receiver Cable Loss (see noise)	-0.5	-0.5	dB	Lc
(000000)				
Receiver Figure of Merit	0.04	0.16	dB/K	FOM
Receiver Figure or Merit	0.04	0.16	UD/N	FOIVI
Propagation Parameters:	Uplink	Downlink	Units	Symbol
				•
Space Loss	-202.97	-202.54	dB	Ls
Atmospheric Attenuation (clear air)	0.0251	0.0251	dB	La
Polarization Loss	-0.20	-0.20	dB	Lp
Propagation Losses	-203.14	-202.72	dB	
Tropagation 20000	200.14	202.72	GD.	
Transmitter Parameters:	Uplink	Downlink	Units	Symbol
T	6.8	0.18	m	D
Transmit Antenna Diameter				Λ
Transmit Antenna Area	36.32	0.025	m^2	A
		0.025 0.44	m^2 [-]	h h
Transmit Antenna Area	36.32			
ransmit Antenna Area ransmit Antenna Efficiency	36.32 0.62	0.44	[-]	h

Transmit Antenna Beamwidth	0.34	13.47	degrees	qt
Transmit Antenna Pointing Accuracy	0.15	6.0	degrees	et
Transmit Antenna Pointing Loss	-2.34	-2.38	dB	Lpt
Transmit Line Loss	-0.5	-0.5	dB	Lt
Tramsmit Power, Linear	100	5	W	
Transmit Power	20.0	6.99	dBW	Pt
Effective Isotropic Radiated Power	72.96	26.49	dBW	EIRP
Link Budget:	Uplink	Downlink	Units	Symbol
Effective Isotropic Radiated Power (61)	, 72.96	26.49	dBW	ÉIRP
Pointing Losses	-4.97	-4.51	dB	
Propagation Losses (47)	-203.14	-202.72	dB	L
Receive Antenna Gain (36)	20.43	53.04	dB	Gr
Received Power	-114.72	-127.70	dBW	Pr
Receiver System Noise Power (30)	-200.62	-204.05	dBW-Hz	
Received Carrier to Noise Ratio	85.90	76.35	dB-Hz	C/No
Minimum C/No (17)	51.13	72.80	dB-Hz	C/No
Link Margin	34.77	3.55	dB	

The given data in the link budget suggest that you are designing a geostationary satellite, communicating in the X-band. The (command) has a low data rate, when compared to the downnlinked data/telemetry to Earth. The more critical uplink commichoices and list your equations. Use additional sheets to elaboarte on your design choices.

Reference

constant

Input: system choice, X-band mil.com.sat. Linked to row 1 C and row 2 f, $\lambda = C/f$

Input: Geostationary Satellite

constant

Reference

Input: design requirement

Input: chosen modulation (SMAD Tab.13-10)

Supplemental notes page 8, matlab ginv fucntion used, lines 37 - 40 in provided code

Input: based on mission / objective

Supplemental notes page 8, RDM = line 16, $\frac{C}{N_o} = \frac{E_b}{N_o} + 10\log(R) + RDM$ Input: design rule (Hoffmann chap. 9.4.4)

Reference

SMAD Eqn13-24

Input: typical value

Uplink: Receiver on the S/C looks at Earth which is 260K | Downlink: Receiver looks at Space which is 25K

Lecture Slides: Slide 38, rows 21, 22, 23 $T_{ant} = (\eta * T_{ext} + (1 - \eta) * T_{phys})$

SMAD Table 13-10

Related to row 25, RL_linear = 10^(RL_dB/10)

SMAD Table 13-10

Related to row 27: $F = 10^{(NF/10)}$

Lecture Slides: Slide 41, rows 20, 26, 28 $T_r = T_o * (F - 1)$

Lecture slides: slide 39 + 40 , related to rows 24,26 ,29 $T_{cable} = T_{Physical} * (1 - L_{C(linear)}), T_{sys(RX)} = L_{c(linear)} * T_{cable} + T_{r}$

Lecture Slides: slide 35, related to row 30, 14, 8 $N = K_b * T_s * R$

Reference

Input: given geometry from spacecraft

Assuming simple circular aperature, linked to row 34.

$$A = \frac{\pi * D^2}{4}$$

Linked to row 21

Lecture Slides: slide 14, linked to row 35, 36,

$$A_e = \eta * A$$

Lecutre Slides: slide 14, linked to rows 37, 36, 6

$$G_r = \frac{4 * \pi * A_e}{\lambda^2}$$

$$qr = \sqrt{\frac{\eta * 41253}{G_r}}$$

Lecutre Slides: slide 16, linked to rows 37, 36,

Input: pointing error e for chosen system

$$L_{pr} = -12 * \left(\frac{er}{ar}\right)^2$$

lecture slides: slide 30, linked to rows 39,40,

Input: typical value

Lecture Slides: slide 46, linked to rows 30, 38,

$$FOM = \frac{G_r}{T_S}$$

Reference

Lecture slides: slide 24, related to row 6, row 7,

Lecture slides: slide 27 Absorbition loss v Frequency Graph approximation

Input: typical value

Related to rows 46,47,48

$$L = L_s + L_a + L_p$$

Reference

reciprocity Tx is Rx and Rx is Tx: Linked to row 33 but swapped reciprocity Tx is Rx and Rx is Tx: Linked to row 34 but swapped reciprocity Tx is Rx and Rx is Tx: Linked to row 21 but swapped

Related to rows 52, 53, 54, $A_e = h * A$

 $G_t = \frac{4 * pi * A_e}{\lambda^2}$ Related to rows 56, 6,

Related to rows 56, 54, $qt = \sqrt{\frac{h * 41253}{G_t}}$

Reciprocity, linked to row 40 but swapped.

 $L_{pr} = -12 * \left(\frac{et}{qt}\right)^2$

lecture slides: slide 30, linked to rows 57,58, Input: based on chosen cable/geometry

Input: chosen transmitter

Conversion from linear to dB, linked to row 61, $P_{t(ldB)} = 10 * log10(P_{t(linear)})$

Lecture slides: slide 20, linked to rows 56,60,62 $EIRP = P_t * L_t * G_t$

Reference

linked to row 61

Sum of pointing loss for reciever and transmitter, linked to rows 41 and 59

linked to row 47

linked to row 36

pr = sum(rows 66->69)

linked to row 30

pr/no row70-row71

linked to row 17

row72-row73

e satellite features a small, high gain antenna, and communicates to/from a large, medium-gain gain antenna on Earth. Uplink to the satellite ands require a lower bit error rate than the large quantity downlink data. The satellite uses QPSK data coding. Carefully reference your design