第15-16周习题课题目

第 1 部分 课堂内容回顾

- 1. 函数列与函数项级数的收敛性
- (1) 函数列的收敛性:
 - (a) 点态收敛: 收敛点, 发散点, 收敛域, 极限函数.
 - (b) **一致收敛性:** 函数列 $\{v_n\}$ 在集合 J 上一致收敛到函数 v 当且仅当我们有

$$\lim_{n \to \infty} \sup_{x \in J} |v_n(x) - v(x)| = 0.$$

- (c) 极限函数的分析性质: 内闭一致收敛的连续函数列的极限函数连续.
- (2) 函数项级数的收敛性:
 - (a) 点态收敛: 收敛点, 发散点, 收敛域, 和函数.
 - (b) **一致收敛性:** 函数项级数 $\sum_{n=1}^{\infty} u_n$ 在集合 J 上一致收敛当且仅当我们有

$$\lim_{n \to \infty} \sup_{x \in J} \left| \sum_{k=n+1}^{\infty} u_k(x) \right| = 0,$$

此时函数列 $\{u_n\}$ 在集合 J 上一致趋于 0.

- (c) 函数项级数"和函数"的分析性质:
 - (i) **极限与级数求和可交换性:** 通项连续且内闭一致收敛的函数项级数的和函数 为连续函数.
 - (ii) **积分与级数求和可交换性:** 通项连续且内闭一致收敛的函数项级数, 求积分与求和可交换次序.
 - (iii) 求导与级数求和可交换性:若通项为连续可导的函数项级数在一点处收敛, 而对通项求导所得的函数项级数内闭一致收敛,则最初的那个函数项级数的 和函数连续可导,且对该函数级数求导与求和可交换次序.
- (3) 函数列、函数项级数、含参广义积分理论三者统一.
- (4) 判断函数项级数一致收敛性的方法:
 - (a) 定义, Cauchy 准则.
 - (b) Weierstrass 判别法: 若存在非负常数项收敛级数 $\sum_{n=1}^{\infty} M_n$ 使得 $\forall n \geq 1$ 以及 $\forall x \in J$,均有 $|u_n(x)| \leq M_n$,则函数项级数 $\sum_{n=1}^{\infty} u_n$ 在 J 上绝对收敛且一致收敛.
 - (c) **Dirichlet 判别准则:** 若函数项级数 $\sum_{n=1}^{\infty} u_n$ 的部分和一致有界, 而函数列 $\{v_n\}$ 单调且一致趋于 0, 则函数项级数 $\sum_{n=1}^{\infty} u_n v_n$ 一致收敛.
 - (d) **Abel 判别准则:** 若函数项级数 $\sum_{n=1}^{\infty} u_n$ 一致收敛, 而函数列 $\{v_n\}$ 单调并且一致有界, 则函数项级数 $\sum_{n=1}^{\infty} u_n v_n$ 一致收敛.

3. 幂级数

- (1) 幂级数的收敛性:
 - (a) 收敛半径的确定: 根值判别法, 比率判别法.
 - (b) Abel 定理: 幂级数在其收敛域的内部绝对收敛且内闭一致收敛.
 - (c) **Abel 第二定理:** 幂级数在其收敛域的任意闭子区间上一致收敛.
- (2) 幂级数的性质:
 - (a) 四则运算性质:线性性,乘法,除法.
 - (b) **分析运算性质:** 幂级数在其收敛域上连续; 在其收敛域内部无穷可导; 对之积分或求导均可与求和交换次序, 所得依然为幂级数且收敛半径不变.

4. 幂级数展开-Taylor 级数

- (1) 幂级数展开的条件:
 - (a) 必要条件: 函数在该点无穷可导.
 - (b) 唯一性: 若展式存在, 则唯一.
 - (c) 充要条件: 函数在该点的 Taylor 展式的余项趋于 0.
 - (d) 常用的充分条件:函数在该点某个邻域内的各阶导数一致有界.
- (2) 幂级数展开:
 - (a) 常用函数的 Taylor 级数展开.
 - (b) **将函数展成幂级数的典型方法:** 直接法 (定义), 间接法 (从已知幂级数展式出发,借助幂级数的四则运算与分析运算).

函数项级数:

$$\sum_{n=1}^{\infty} u_n(x) = u_1(x) + u_2(x) + u_3(x) + \cdots$$

- (1) 收敛域 设 $\sum_{n=1}^{\infty} u_n(x)$ 是定义在D上的一个函数项级数, $x_0 \in D$,若数项级数 $\sum_{n=1}^{\infty} u_n(x_0)$ 收敛,则称 x_0 是 $\sum_{n=1}^{\infty} u_n(x)$ 的一个收敛点. 所有收敛点构成的集合称为级数的收敛域.
- (2) "和函数"的概念 函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 的收敛域为I,则任给 $x \in I$,存在惟一的实数S(x),使得 $S(x) = \sum_{n=1}^{\infty} u_n(x)$ 成立. 定义在I上的函数S(x)称为级数 $\sum_{n=1}^{\infty} u_n(x)$ 的和函数.
- (3) 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数 $\sum_{n=0}^{\infty} a_n(x-x_0)^n$

- 若 $R \ge 0$ 满足: (1) 当|x| < R时, $\sum_{n=0}^{\infty} a_n x^n$ 绝对收敛; (2) 当|x| > R时, $\sum_{n=0}^{\infty} a_n x^n$ 发散,则称R为幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的**收敛半径**, 开区间(-R,R)称为 $\sum_{n=0}^{\infty} a_n x^n$ 的**收敛区间**.
- **收敛域**: 考虑 $x = \pm R$ 的两个端点的收敛性;
- 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的系数 a_n 满足 $a_n \neq 0$,若 $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$,则其收敛半径为 $R = \frac{1}{\rho}$.
- 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的系数 a_n 满足 $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \rho$, 则其收敛半径为 $R = \frac{1}{\rho}$.
- (4) 幂级数的和函数
- (5) 幂级数在其收敛区间内的基本性质
 - 两级数和的收敛半径: 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 R_1 , $\sum_{n=0}^{\infty} b_n x^n$ 的收敛半径为 R_2 , 一般情况下,幂级数 $\sum_{n=0}^{\infty} (a_n + b_n) x^n$ 的收敛半径为 $R \ge \min\{R_1, R_2\}$, 且

$$\sum_{n=0}^{\infty} (a_n + b_n) x^n = \sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} b_n x^n, \quad x \in (-R, R).$$

• 和函数的连续性: 幂级数 $\sum\limits_{n=0}^{\infty}a_nx^n$ 的和函数S(x)在其收敛域I上连续,即任给 $x_0\in I$,有

$$\lim_{x \to x_0} S(x) = \lim_{x \to x_0} \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} (\lim_{x \to x_0} a_n x^n) = S(x_0).$$

• 和函数的可积性与逐项积分性质 幂级数 $\sum\limits_{n=0}^{\infty}a_nx^n$ 的和函数S(x)在其收敛域I上可积,且可逐项积分,即任给 $x\in I$,有

$$\int_0^x S(t)dt = \int_0^x \sum_{n=0}^\infty a_n t^n dt = \sum_{n=0}^\infty (\int_0^x a_n t^n dt) = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1},$$

若记 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为R, $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ 的收敛半径为 R_1 , 可证明收敛半径相同,但收敛域可能改变.

• 和函数的可导性与逐项求导公式: 幂级数 $\sum\limits_{n=0}^{\infty}a_nx^n$ 的和函数S(x)在其收敛区间(-R,R)内可导,且可逐项求导,即任给 $x\in (-R,R)$,有

$$S'(x) = (\sum_{n=0}^{\infty} a_n x^n)' = \sum_{n=1}^{\infty} n a_n x^{n-1}.$$

(6) 初等幂级数展开式

● 直接展开法 直接展开法指的是:利用泰勒级数的定义及泰勒级数收敛的充要条件,将函数在某个区间上直接展开成指定点的泰勒级数的方法.

由直接展开法易知函数 e^x , $\cos x$, $\sin x$, $\ln(1+x)$, $(1+x)^\alpha$ 的麦克劳林级数展开式为:

$$e^x = \sum_{n=0}^\infty \frac{1}{n!} x^n = 1 + x + \frac{1}{2!} x^2 + \dots + \frac{1}{n!} x^n + \dots, \quad x \in \mathbb{R}$$

$$\cos x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{1}{2!} x^2 + \frac{1}{4!} x^4 - \dots + \frac{(-1)^n}{(2n)!} x^{2n} + \dots, \quad x \in \mathbb{R}$$

$$\sin x = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{1}{3!} x^3 + \frac{1}{5!} x^5 + \dots + \frac{(-1)^n}{(2n+1)!} x^{2n+1} + \dots, \quad x \in \mathbb{R}$$

$$\ln(1+x) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n} x^n = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \dots + \frac{(-1)^{n-1}}{n} x^n + \dots, \quad x \in (-1,1],$$

$$(1+x)^\alpha = 1 + \alpha x + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} x^n + \dots,$$
 其中, 当 $\alpha \le -1$ 时, $x \in (-1,1)$; 当 $-1 < \alpha < 0$ 时, $x \in (-1,1]$; 当 $\alpha > 0$ 时, $x \in [-1,1]$.

• 间接展开法 间接展开法指的是:通过一定运算将函数转化为其他函数,进而利用新函数的幂级数展开将原来函数展开为幂级数的方法. 所用的运算主要是加法运算,数乘运算,(逐项)积分运算和(逐项)求导运算.利用的幂级数展开公式主要是一些简单函数的麦克劳林展开公式,上述几个简单函数就是常用的几个.间接展开法是将函数展开成幂级数的主要方法.

(7) Fourier级数

• $\{1,\cos x,\sin x,\cos 2x,\sin 2x,\cdots,\cos nx,\sin nx,\cdots\}$ 是 $C[-\pi,\pi]$ 中的一个正交向量组: $\forall n,m\in\mathbb{N}^+,$

$$\int_{-\pi}^{\pi} 1 \cdot \cos nx = 0, \quad \int_{-\pi}^{\pi} 1 \cdot \sin nx = 0, \quad \int_{-\pi}^{\pi} \sin nx \cdot \cos mx dx = 0,$$

$$\int_{-\pi}^{\pi} \cos nx \cdot \cos mx dx = \begin{cases} \pi, & n = m, \\ 0, & n \neq m, \end{cases}$$

$$\int_{-\pi}^{\pi} \sin nx \cdot \sin mx dx = \begin{cases} \pi, & n = m, \\ 0, & n \neq m, \end{cases}$$

• 设 $f \in R[-\pi, \pi]$, 则f(x)的形式Fourier级数为:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{+\infty} [a_n \cos nx + b_n \sin nx],$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \quad n = 0, 1, 2, \cdots$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx, \quad n = 1, 2, \cdots$$

• 设f(x)以 2π 为周期,**奇函数**,则f(x)的形式正弦Fourier级数为:

$$f(x) \sim \sum_{n=1}^{+\infty} b_n \sin nx,$$

其中

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx, \quad n = 1, 2, \dots$$

• 设f(x)以 2π 为周期,偶函数,则f(x)的形式余弦Fourier级数为:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos nx,$$

其中

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \quad n = 0, 1, 2, \cdots$$

• 设f(x)以2l为周期,f在[-l,l]上可积,则f(x)的形式**Fourier级数**为:

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{+\infty} \left[a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x \right],$$

其中

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x dx, \quad n = 0, 1, 2, \cdots$$
$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x dx, \quad n = 1, 2, \cdots$$

• 设以 2π 为周期的函数f(x)在 $[-\pi,\pi]$ 上逐段可微,则 $\forall x_0 \in \mathbb{R}$, f的 形式Fourier级数在 x_0 点收敛于 $\frac{1}{2}[f(x_0+0)+f(x_0-0)]$. 特别地,若f在 x_0 点连续,则f的形式Fourier级数在 x_0 点收敛于 $f(x_0)$.

应用到具体函数,可得
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
.

第 2 部分 习题课题目

- 1. 假设 I 为非空集合并且 $\forall n \geq 1$, 函数 f_n 均在 I 上有界. 若函数列 $\{f_n\}$ 在 I 上一致收敛到函数 f, 则 f 在 I 上有界且函数列 $\{f_n\}$ 在 I 上一致有界.
- 2. 若 $\sum_{n=0}^{\infty} a_n$ 收敛, 函数项级数 $\sum_{n=0}^{\infty} a_n e^{-nx}$ 在 $[0,+\infty)$ 上是否为一致收敛?
- 3. 求证: 和函数 $S(x) = \sum_{n=1}^{\infty} \sqrt{n} x^2 e^{-nx}$ 在 $[0, +\infty)$ 上连续且有界.
- 4. 求证: $\sum_{n=0}^{\infty} x^{n-1}(x-1)^2$ 在 [0,1] 上一致收敛.
- - (1) $\forall a,b \in \mathbb{R}$ (b>a), 函数列 $\{g_n\}$ 在任意闭区间 [a,b] 上一致收敛到 f'.
 - (2) $\forall a, b \in \mathbb{R}$ (b > a), 均有 $\lim_{n \to \infty} \int_a^b g_n(x) \, \mathrm{d}x = f(b) f(a)$.
- **6.** 设 $a,b \in \mathbb{R}$ 使得 a < b. 若 $\forall n \geqslant 1$, 均有 $u_n \in \mathscr{C}[a,b]$ 且函数项级数 $\sum_{i=1}^{\infty} u_n$ 在 (a,b) 内一致收敛, 求证:

 - (1) 级数 $\sum_{n=1}^{\infty} u_n(a)$, $\sum_{n=1}^{\infty} u_n(b)$ 均收敛; (2) 函数项级数 $\sum_{n=1}^{\infty} u_n$ 在 [a,b] 上一致收敛.
- 7. 求证: 函数项级数 $\sum_{n=1}^{\infty} \frac{\log(1+nx)}{nx^n}$ 在 $(1,+\infty)$ 上不为一致收敛.
- 8. 请问函数项级数 $\sum_{n=1}^{\infty} ne^{-nx}$ 在 $(0,+\infty)$ 上是否一致收敛?
- **10.** 请问函数项级数 $\sum_{n=1}^{\infty} \frac{(-1)^n (x+n)^n}{n^{n+1}}$ 在 [0,1] 上是否一致收敛?
- 11. $\forall x > 1, \ \diamondsuit \ \zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}. \ \text{ \sharp iff } : \ \zeta \in \mathscr{C}^{(\infty)}(1, +\infty).$
- 12. 求函数项级数 $\sum_{n=1}^{\infty} \frac{e^{-nx}}{1+n^2}$ 的收敛域 D, 并证明该函数项级数的和函数 S在 D 上连续, 在 $\operatorname{Int} D$ 内 $(\mathbb{P} \ "D)$ 的内部") 连续可导
- 13. 考虑函数项级数 $S(x) = \sum_{n=0}^{\infty} \frac{x^n}{3^n} \cos(n\pi x^2)$. 求证: 当 0 < L < 3 时, 函数 项级数 $\sum_{n=0}^{\infty} \frac{x^n}{3^n} \cos(n\pi x^2)$ 在 (-L,L) 上一致收敛; 随后计算 $\lim_{x\to 1} S(x)$.

14. 讨论下述函数项级数的收敛域:

(1)
$$\sum_{n=1}^{\infty} \frac{2^n \sin^n x}{n^2}, \quad (2) \quad \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}, \qquad (3) \quad \sum_{n=1}^{\infty} \frac{n!}{n^{200}} x^n,$$
(4)
$$\sum_{n=1}^{\infty} n! e^{nx}, \quad (5) \quad \sum_{n=1}^{\infty} \frac{n}{2^n + (-3)^n} x^{2n}, \quad (6) \quad \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{x}{2x+1}\right)^n.$$

15. 若
$$\sum_{n=1}^{\infty} a_n x^n$$
 的收敛半径为 1, 而 $\sum_{n=1}^{\infty} (a_n+1) x^n$ 的收敛半径为 r , 则 []

(A)
$$r=1$$
, (B) $r\leqslant 1$, (C) $r\geqslant 1$, (D) 不能确定.

16. 已知
$$\sum_{n=1}^{\infty} a_n x^n$$
 的收敛域为 $[-8,8]$, 则 $\sum_{n=2}^{\infty} \frac{a_n x^n}{n(n-1)}$ 的收敛半径 R 为 $[\]$

(A)
$$R \ge 8$$
, (B) $R \le 8$, (C) $R = 8$, (D) 不能确定

17. 求下列级数之和:

(1)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$$
, (2) $\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$, (3) $\sum_{n=1}^{\infty} \frac{n}{a^n}$ $(a > 1)$.

18. 设
$$f(x) = \sum_{n=1}^{\infty} (-1)^{n-1} x^n$$
 而 $g(x) = \frac{xf(x)}{1+x}$, 求 g 的 Maclaurin 级数展开.

19. 求
$$f(x) = xe^x$$
 在点 $x = 1$ 处的幂级数展开, 并求收敛域.

20.
$$\forall n \geq 1$$
, 假设 $f_n \in \mathcal{C}^{(1)}(\mathbb{R})$ 使得 $\forall x \in \mathbb{R}$, 均有 $f'_n(x) = f_n(x) + x^{n-1}e^x$, $f_n(1) = \frac{e}{n}$. 求 $\sum_{n=1}^{\infty} f_n(x)$.

21. 设
$$R \in (0, +\infty)$$
 而幂级数 $S(x) = \sum_{n=0}^{\infty} a_n x^n$ 在开区间 $(-R, R)$ 上收敛. 若 $\sum_{n=0}^{\infty} \frac{a_n}{n+1} R^{n+1}$ 收敛, 求证: $\int_0^R S(x) \, \mathrm{d}x = \sum_{n=0}^{\infty} \frac{a_n}{n+1} R^{n+1}$.

22. 求
$$f(x) = \frac{12-5x}{6-5x-x^2}$$
 在原点的幂级数展开.

23. 将
$$f(x) = \int_0^x \frac{\sin t}{t} dt$$
 在点 $x_0 = 0$ 处展开成幂级数, 并求其收敛域.

24. 问函数项级数
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$
 在 $[-1,0]$ 是否为一致收敛?

25. 求幂级数
$$\sum_{n=1}^{\infty} \left(\left(\frac{x}{2} \right)^n + (4x)^n \right)$$
 的收敛半径与收敛域.

26. 计算
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n!}$$
.

27. 求
$$f(x) = \sum_{n=0}^{\infty} \frac{x^{4n+1}}{4n+1}$$
 的收敛域与和函数.

28. 考察下列函数项级数是否在指定区间上一致收敛, 并给出理由:

(1)
$$\sum_{n=2}^{\infty} \log(1 + \frac{x}{n \log^2 n}), \ x \in (-a, a), \ a \in (0, +\infty);$$

(2)
$$\sum_{n=2}^{\infty} \log(1 + \frac{x}{n \log^2 n}), x \in [1, +\infty);$$

(3)
$$\sum_{n=1}^{\infty} \frac{nx}{1+n^5x^2}, x \in (-\infty, +\infty);$$

(4)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n-\sin x}, x \in (-\infty, +\infty);$$

(5)
$$\sum_{n=1}^{\infty} 2^n \sin \frac{1}{3^n x}, \ x \in (0, +\infty);$$

(6)
$$\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}, x \in (-\infty, +\infty).$$

29. 求下列幂级数的收敛半径、收敛开区间、收敛域:

(1)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} (x-1)^{2n}, \quad (2) \quad \sum_{n=1}^{\infty} (\frac{a^n}{n} + \frac{b^n}{n^2}) x^n \ (a, b > 0),$$
(3)
$$\sum_{n=1}^{\infty} 2^{-n} x^{n^2}, \quad (4) \quad \sum_{n=1}^{\infty} (1 + \frac{1}{n})^{n^2} x^n.$$

(3)
$$\sum_{n=1}^{n-1} 2^{-n} x^{n^2}, \qquad (4) \sum_{n=1}^{n-1} (1 + \frac{1}{n})^{n^2} x^n$$

30. 若
$$\sum\limits_{n=0}^{\infty}a_nx^n$$
 的收敛半径为 $r\in(0,+\infty)$, 求 $\sum\limits_{n=0}^{\infty}rac{a_n}{n!}x^n$ 的收敛半径.

31. 求
$$f(x) = \log \frac{1}{2+2x+x^2}$$
 在点 $x = -1$ 处的幂级数展开.

32. 求
$$f(x) = \sin^3 x$$
 在点 $x = 0$ 处的幂级数展开.

33. 求幂级数
$$\sum_{n=1}^{\infty} \frac{n^2+2n}{3^n(n+1)} x^{2n+1}$$
 的收敛域与和函数.

34. 设 f 是以 2π 为周期的函数且在 $[-\pi,\pi]$ 上可积, $c \in \mathbb{R}$ 为常数. $\forall x \in \mathbb{R}$, 令 $F_c(x) = f(x+c)$. 请用 f 的 Fourier 系数表示 F_c 的 Fourier 系数.

35. 设 f 是以 2π 为周期的连续函数, 而 a_n, b_n 为其 Fourier 系数.

(1) 若
$$\forall x \in [-\pi, \pi], f(x + \pi) = f(x), 求证: \forall n \ge 1, 均有 $a_{2n-1} = b_{2n-1} = 0;$$$

(2) 若
$$\forall x \in [-\pi, \pi]$$
, $f(x + \pi) = -f(x)$, 求证: $\forall n \ge 1$, 均有 $a_{2n-2} = b_{2n} = 0$.

36. 求
$$f(x) = x \cos x$$
 在 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上的形式 Fourier 级数.

37. 求
$$f(x) = \frac{\pi - x}{2}$$
 在 $[0, \pi]$ 上的形式余弦级数和形式正弦级数.

38. 求
$$f(x) = \arcsin(\sin x)$$
 的形式 Fourier 级数.

39. 求
$$f(x) = x$$
, $g(x) = x^2$, $h(x) = x^3$ 在 $[-\pi, \pi]$ 上的形式 Fourier 级数.