MS2860/MS5860: Computational Methods in Materials Science

Engineering Applications: Power Reactor

Engineering Applications: Power Reactor

Computational Materials Science

Multiscale Modeling of Doping in Semiconductors

Modeling Technique	Visualization	Structure Size	Times Simulated	CPU Time
Ab initio		~10² atoms	~10 ⁻² ns	Slowest
Classical molecular dynamics		~10 ⁵ atoms	~1 ns	
Lattice kinetic Monte Carlo		Part of device	Part of process	
Kinetic Monte Carlo		Complete device	Complete process	
Continuum		Complete device	Complete process	Fastest

Materials Science in Semiconductor Processing 62 (2017) 49-61

MATBOX: Microstructure Analysis Toolbox

Length and Time Scale Problem

Every phenomenon in nature can, in principle, be described using laws of physics which are usually formulated as partial differential equations

Engineering/Device Simulation sec Macroscale ms Deformation Eq: $F_{ij} = \frac{\partial x_i}{\partial X_i}$ Microscale Crystal Plasticity hs Cahn-Hillard Eq: Kinetic Monte Carlo $\frac{\partial c_i}{\partial t} = \nabla \cdot M_i \nabla \frac{\delta F}{\delta c_i}$ Phase Field Modeling Molecular Dynamics $m_i \; \frac{d^2 \mathbf{r}_i}{dt^2} = \mathbf{F}_i(t,\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3,\ldots,\frac{dr_1}{dt},\frac{dr_2}{dt},\frac{dr_3}{dt},\ldots); \;\; i=1,\ldots,N$ ns DFT

pm nm µm mm m

bs

Syllabus

Computational Linear algebra (Numerical Methods)

Linear System of Equations (Gauss Elimination, LU Decomposition, etc.) Finding roots/Non-linear Equations (Bisection, Newton-Raphson, Secant Method, etc.)

Numerical methods for solving partial differential equations (PDE)

Conservation Equations (Mass Transfer, Heat Transfer, etc.)
Numerical Differentiation/Finite difference methods
Boundary conditions

Fourier Methods

Periodic functions and Fourier Transform Concept of Reciprocal space

Computational Methods: Time and length scales

Solving Schrodinger Equation
Solving Newton equation of motion
Monte Carlo Method

Textbooks

Evaluations

Class Presence & Discussion = 10%

Originality & Ethics = 15%

Assignments & Quizzes = 75%

Office hours: Tuesdays (1:30 – 2:30 pm)

Growing Computational Packages and Companies ...

About the journal

SoftwareX aims to acknowledge the impact of software an today's research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact.

To this end, SoftwareX aims to ...

View full aims & scope