Searching for Universal Truths Measure-theoretic Treatment of Statistics

Sunghee Yun

sunghee.yun@gmail.com

Navigating Mathematical and Statistical Territories

- Notations & definitions & conventions
 - notations 2
 - some definitions 6
 - some conventions 7
- Measure-theoretic treatment of probabilities 8
 - probability measure 9
 - random variables 22
 - convergence of random variables 42
- Proof & references & indices
 - selected proofs 57
 - references 59
 - index 61

Notations

- sets of numbers
 - N set of natural numbers
 - Z set of integers
 - **Z**₊ set of nonnegative integers
 - **Q** set of rational numbers
 - R set of real numbers
 - R_+ set of nonnegative real numbers
 - R_{++} set of positive real numbers
 - C set of complex numbers
- sequences $\langle x_i \rangle$ and the like
 - finite $\langle x_i \rangle_{i=1}^n$, infinite $\langle x_i \rangle_{i=1}^\infty$ use $\langle x_i \rangle$ whenever unambiguously understood
 - similarly for other operations, e.g., $\sum x_i$, $\prod x_i$, $\cup A_i$, $\cap A_i$, $\times A_i$
 - similarly for integrals, e.g., $\int f$ for $\int_{-\infty}^{\infty} f$
- sets
 - \tilde{A} complement of A

- $A \sim B$ $A \cap \tilde{B}$
- $-A\Delta B (A\cap \tilde{B}) \cup (\tilde{A}\cap B)$
- $\mathcal{P}(A)$ set of all subsets of A
- sets in metric vector spaces
 - $-\overline{A}$ closure of set A
 - $-A^{\circ}$ interior of set A
 - relint A relative interior of set A
 - $\operatorname{bd} A$ boundary of set A
- set algebra
 - $-\sigma(\mathcal{A})$ σ -algebra generated by \mathcal{A} , *i.e.*, smallest σ -algebra containing \mathcal{A}
- norms in \mathbb{R}^n
 - $||x||_p \ (p \ge 1)$ p-norm of $x \in \mathbf{R}^n$, i.e., $(|x_1|^p + \cdots + |x_n|^p)^{1/p}$
 - e.g., $||x||_2$ Euclidean norm
- matrices and vectors
 - a_i i-th entry of vector a
 - A_{ij} entry of matrix A at position (i,j), i.e., entry in i-th row and j-th column
 - $\mathbf{Tr}(A)$ trace of $A \in \mathbf{R}^{n \times n}$, i.e., $A_{1,1} + \cdots + A_{n,n}$

symmetric, positive definite, and positive semi-definite matrices

- $\mathbf{S}^n \subset \mathbf{R}^{n \times n}$ set of symmetric matrices
- $\mathbf{S}^n_+ \subset \mathbf{S}^n$ set of positive semi-definite matrices; $A \succeq 0 \Leftrightarrow A \in \mathbf{S}^n_+$
- $\mathbf{S}_{++}^n \subset \mathbf{S}^n$ set of positive definite matrices; $A \succ 0 \Leftrightarrow A \in \mathbf{S}_{++}^n$
- sometimes, use Python script-like notations (with serious abuse of mathematical notations)
 - use $f: \mathbf{R} \to \mathbf{R}$ as if it were $f: \mathbf{R}^n \to \mathbf{R}^n$, e.g.,

$$\exp(x) = (\exp(x_1), \dots, \exp(x_n))$$
 for $x \in \mathbf{R}^n$

and

$$\log(x) = (\log(x_1), \dots, \log(x_n))$$
 for $x \in \mathbf{R}_{++}^n$

which corresponds to Python code numpy.exp(x) or numpy.log(x) where x is instance of numpy.ndarray, i.e., numpy array

- use $\sum x$ to mean $\mathbf{1}^T x$ for $x \in \mathbf{R}^n$, *i.e.*

$$\sum x = x_1 + \dots + x_n$$

which corresponds to Python code x.sum() where x is numpy array

- use x/y for $x, y \in \mathbf{R}^n$ to mean

$$\begin{bmatrix} x_1/y_1 & \cdots & x_n/y_n \end{bmatrix}^T$$

which corresponds to Python code x / y where x and y are 1-d numpy arrays – use X/Y for $X,Y\in \mathbf{R}^{m\times n}$ to mean

$$\begin{bmatrix} X_{1,1}/Y_{1,1} & X_{1,2}/Y_{1,2} & \cdots & X_{1,n}/Y_{1,n} \\ X_{2,1}/Y_{2,1} & X_{2,2}/Y_{2,2} & \cdots & X_{2,n}/Y_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{m,1}/Y_{m,1} & X_{m,2}/Y_{m,2} & \cdots & X_{m,n}/Y_{m,n} \end{bmatrix}$$

which corresponds to Python code $X \ / \ Y$ where X and Y are 2-d numpy arrays

Some definitions

Definition 1. [infinitely often - i.o.] statement P_n , said to happen infinitely often or i.o. if

$$(\forall N \in \mathbf{N}) (\exists n > N) (P_n)$$

Definition 2. [almost everywhere - a.e.] statement P(x), said to happen almost everywhere or a.e. or almost surely or a.s. (depending on context) associated with measure space (X, \mathcal{B}, μ) if

$$\mu\{x|P(x)\} = 1$$

or equivalently

$$\mu\{x| \sim P(x)\} = 0$$

Some conventions

• (for some subjects) use following conventions

$$-0\cdot\infty=\infty\cdot0=0$$

$$- (\forall x \in \mathbf{R}_{++})(x \cdot \infty = \infty \cdot x = \infty)$$

$$-\infty\cdot\infty=\infty$$

Measure-theoretic Treatment of Probabilities

Measurable functions

- denote n-dimensional Borel sets by \mathcal{R}^n
- for two measurable spaces, (Ω, \mathscr{F}) and (Ω', \mathscr{F}') , function, $f: \Omega \to \Omega'$ with

$$(\forall A' \in \mathscr{F}') \left(f^{-1}(A') \in \mathscr{F} \right)$$

said to be *measurable with respect to* \mathscr{F}/\mathscr{F}' (thus, measurable functions defined on page ?? and page ?? can be said to be measurable with respect to \mathcal{B}/\mathscr{R})

- when $\Omega = \mathbf{R}^n$ in (Ω, \mathscr{F}) , \mathscr{F} is assumed to be \mathscr{R}^n , and sometimes drop \mathscr{R}^n thus, e.g., we say $f: \Omega \to \mathbf{R}^n$ is measurable with respect to \mathscr{F} (instead of $\mathscr{F}/\mathscr{R}^n$)
- measurable function, $f: \mathbf{R}^n \to \mathbf{R}^m$ (i.e., measurable with respect to $\mathscr{R}^n/\mathscr{R}^m$), called Borel functions
- $f: \Omega \to \mathbf{R}^n$ is measurable with respect to $\mathscr{F}/\mathscr{R}^n$ if and only if every component, $f_i: \Omega \to \mathbf{R}$, is measurable with respect to \mathscr{F}/\mathscr{R}

Probability (measure) spaces

• set function, $P: \mathscr{F} \to [0,1]$, defined on algebra, \mathscr{F} , of set Ω , satisfying following properties, called *probability measure* (refer to page **??** for resumblance with measurable spaces)

- $(\forall A \in \mathscr{F})(0 \le P(A) \le 1)$
- $-P(\emptyset) = 0, P(\Omega) = 1$
- $(\forall \text{ disjoint } \langle A_n \rangle \subset \mathscr{F})(P(\bigcup A_n) = \sum P(A_n))$
- for σ -algebra, \mathscr{F} , (Ω, \mathscr{F}, P) , called *probability measure space* or *probability space*
- set $A \in \mathscr{F}$ with P(A) = 1, called a support of P

Dynkin's π - λ theorem

• class, \mathcal{P} , of subsets of Ω closed under finite intersection, called π -system, i.e.,

$$- (\forall A, B \in \mathcal{P})(A \cap B \in \mathcal{P})$$

- class, \mathcal{L} , of subsets of Ω containing Ω closed under complements and countable disjoint unions called λ -system
 - $-\Omega \in \mathcal{L}$
 - $(\forall A \in \mathcal{L})(\tilde{A} \in \mathcal{L})$
 - $(\forall \text{ disjoint } \langle A_n \rangle)(\bigcup A_n \in \mathcal{L})$
- class that is both π -system and λ -system is σ -algebra
- Dynkin's π - λ theorem for π -system, \mathcal{P} , and λ -system, \mathcal{L} , with $\mathcal{P} \subset \mathcal{L}$,

$$\sigma(\mathcal{P}) \subset \mathcal{L}$$

• for π -system, \mathscr{P} , two probability measures, P_1 and P_2 , on $\sigma(\mathscr{P})$, agreeing \mathscr{P} , agree on $\sigma(\mathscr{P})$

Limits of Events

Theorem 1. [convergence-of-events] no for sequence of subsets, $\langle A_n \rangle$,

$$P(\liminf A_n) \le \liminf P(A_n) \le \limsup P(A_n) \le P(\limsup A_n)$$

- for $\langle A_n \rangle$ converging to A

$$\lim P(A_n) = P(A)$$

Theorem 2. [independence-of-smallest-sig-alg] no for sequence of π -systems, $\langle \mathscr{A}_n \rangle$, $\langle \sigma(\mathscr{A}_n) \rangle$ is independent

Probabilistic independence

- given probability space, (Ω, \mathscr{F}, P)
- $A, B \in \mathscr{F}$ with

$$P(A \cap B) = P(A)P(B)$$

said to be independent

• indexed collection, $\langle A_{\lambda} \rangle$, with

$$(\forall n \in \mathbf{N}, \text{ distinct } \lambda_1, \dots, \lambda_n \in \Lambda) \left(P\left(\bigcap_{i=1}^n A_{\lambda_i}\right) = \prod_{i=1}^n P(A_{\lambda_i}) \right)$$

said to be independent

Independence of classes of events

• indexed collection, $\langle A_{\lambda} \rangle$, of classes of events (*i.e.*, subsets) with

$$(\forall A_{\lambda} \in \mathcal{A}_{\lambda}) (\langle A_{\lambda} \rangle \text{ are independent})$$

said to be independent

- for independent indexed collection, $\langle A_{\lambda} \rangle$, with every A_{λ} being π -sytem, $\langle \sigma(A_{\lambda}) \rangle$ are independent
- for independent (countable) collection of events, $\langle\langle A_{ni}\rangle_{i=1}^{\infty}\rangle_{n=1}^{\infty}$, $\langle\mathscr{F}_{n}\rangle_{n=1}^{\infty}$ with $\mathscr{F}_{n}=\sigma(\langle A_{ni}\rangle_{i=1}^{\infty})$ are independent

Borel-Cantelli lemmas

• Lemma 1. [first Borel-Cantelli] for sequence of events, $\langle A_n \rangle$, with $\sum P(A_n)$ converging

$$P(\limsup A_n) = 0$$

• Lemma 2. [second Borel-Cantelli] for independent sequence of events, $\langle A_n \rangle$, with $\sum P(A_n)$ diverging

$$P(\limsup A_n) = 1$$

Tail events and Kolmogorov's zero-one law

ullet for sequence of events, $\langle A_n \rangle$

$$\mathscr{T} = \bigcap_{n=1}^{\infty} \sigma\left(\langle A_i \rangle_{i=n}^{\infty}\right)$$

called tail σ -algebra associated with $\langle A_n \rangle$; its lements are called tail events

• Kolmogorov's zero-one law - for independent sequence of events, $\langle A_n \rangle$ every event in tail σ -algebra has probability measure either 0 or 1

Product probability spaces

ullet for two measure spaces, (X, \mathscr{X}, μ) and (Y, \mathscr{Y}, ν) , want to find product measure, π , such that

$$(\forall A \in \mathcal{X}, B \in \mathcal{Y}) (\pi(A \times B) = \mu(A)\nu(B))$$

- e.g., if both μ and ν are Lebesgue measure on **R**, π will be Lebesgue measure on **R**²
- ullet $A \times B$ for $A \in \mathscr{X}$ and $B \in \mathscr{Y}$ is measurable rectangle
- \bullet σ -algebra generated by measurable rectangles denoted by

$$\mathcal{X} \times \mathcal{Y}$$

- thus, not Cartesian product in usual sense
- generally *much larger* than class of measurable rectangles

Sections of measurable subsets and functions

for two measure spaces, (X,\mathscr{X},μ) and (Y,\mathscr{Y},ν)

- sections of measurable subsets
 - $\{y \in Y | (x,y) \in E\}$ is section of E determined by x
 - $\{x \in X | (x,y) \in E\}$ is section of E determined by y
- ullet sections of measurable functions for measurable function, f, with respect to $\mathscr{X} imes \mathscr{Y}$
 - $f(x,\cdot)$ is section of f determined by x
 - $f(\cdot, y)$ is section of f determined by y
- sections of measurable subsets are measurable
 - $(\forall x \in X, E \in \mathcal{X} \times \mathcal{Y}) (\{y \in Y | (x, y) \in E\} \in \mathcal{Y})$
 - $(\forall y \in Y, E \in \mathcal{X} \times \mathcal{Y}) (\{x \in X | (x, y) \in E\} \in \mathcal{X})$
- sections of measurable functions are measurable
 - $-f(x,\cdot)$ is measurable with respect to $\mathscr Y$ for every $x\in X$
 - $f(\cdot,y)$ is measurable with respect to $\mathscr X$ for every $y\in Y$

Product measure

for two σ -finite measure spaces, (X, \mathscr{X}, μ) and (Y, \mathscr{Y}, ν)

• two functions defined below for every $E \in \mathscr{X} \times \mathscr{Y}$ are σ -finite measures

$$- \pi'(E) = \int_X \nu\{y \in Y | (x, y) \in E\} d\mu$$

$$-\pi''(E) = \int_{Y} \mu\{x \in X | (x, y) \in E\} d\nu$$

ullet for every measurable rectangle, $A \times B$, with $A \in \mathscr{X}$ and $B \in \mathscr{Y}$

$$\pi'(A \times B) = \pi''(A \times B) = \mu(A)\nu(B)$$

(use conventions in page 7 for extended real values)

- indeed, $\pi'(E) = \pi''(E)$ for every $E \in \mathscr{X} \times \mathscr{Y}$; let $\pi = \pi' = \pi''$
- \bullet π is
 - called *product measure* and denoted by $\mu \times \nu$
 - $-\sigma$ -finite measure
 - only measure such that $\pi(A \times B) = \mu(A)\nu(B)$ for every measurable rectangle

Fubini's theorem

ullet suppose two σ -finite measure spaces, (X,\mathscr{X},μ) and (Y,\mathscr{Y},ν) - define

$$-X_0 = \{x \in X | \int_V |f(x,y)| d\nu < \infty\} \subset X$$

$$-Y_0 = \{ y \in Y | \int_X |f(x,y)| d\nu < \infty \} \subset Y$$

ullet Fubini's theorem - for nonnegative measurable function, f, following are measurable with respect to $\mathscr X$ and $\mathscr Y$ respectively

$$g(x) = \int_{Y} f(x, y) d\nu, \quad h(y) = \int_{X} f(x, y) d\mu$$

and following holds

$$\int_{X\times Y} f(x,y) d\pi = \int_X \left(\int_Y f(x,y) d\nu \right) d\mu = \int_Y \left(\int_X f(x,y) d\mu \right) d\nu$$

- for f, (not necessarily nonnegative) integrable function with respect to π
 - $-\mu(X \sim X_0) = 0, \ \nu(Y \sim Y_0) = 0$
 - g and h are finite measurable on X_0 and Y_0 respectively
 - (above) equalities of double integral holds

Random variables

- for probability space, (Ω, \mathcal{F}, P) ,
- measurable function (with respect to \mathscr{F}/\mathscr{R}), $X:\Omega\to \mathbb{R}$, called random variable
- measurable function (with respect to $\mathscr{F}/\mathscr{R}^n$), $X:\Omega\to \mathbf{R}^n$, called random vector
 - when expressing $X(\omega)=(X_1(\omega),\ldots,X_n(\omega))$, X is measurable if and only if every X_i is measurable
 - thus, n-dimensional random vaector is simply n-tuple of random variables
- ullet smallest σ -algebra with respect to which X is measurable, called σ -algebra generated by X and denoted by $\sigma(X)$
 - $\sigma(X)$ consists exactly of sets, $\{\omega \in \Omega | X(\omega) \in H\}$, for $H \in \mathcal{R}^n$
 - random variable, Y, is measurable with respect to $\sigma(X)$ if and only if exists measurable function, $f: \mathbf{R}^n \to \mathbf{R}$ such that $Y(\omega) = f(X(\omega))$ for all ω , i.e., $Y = f \circ X$

Probability distributions for random variables

• probability measure on **R**, $\mu = PX^{-1}$, *i.e.*,

$$\mu(A) = P(X \in A) \text{ for } A \in \mathcal{R}$$

called *distribution* or *law* of random variable, X

ullet function, $F: \mathbf{R} \to [0,1]$, defined by

$$F(x) = \mu(-\infty, x] = P(X \le x)$$

called distribution function or cumulative distribution function (CDF) of X

- Borel set, S, with P(S) = 1, called *support*
- random variable, its distribution, its distribution function, said to be discrete when has countable support

Probability distribution of mappings of random variables

• for measurable $g: \mathbf{R} \to \mathbf{R}$,

$$(\forall A \in \mathscr{R}) \left(\mathbf{Prob} \left(g(X) \in A \right) = \mathbf{Prob} \left(X \in g^{-1}(A) \right) = \mu(g^{-1}(A)) \right)$$

hence, g(X) has distribution of μg^{-1}

Probability density for random variables

ullet Borel function, $f: \mathbf{R} \to \mathbf{R}_+$, satisfying

$$(\forall A \in \mathcal{R}) \left(\mu(A) = P(X \in A) = \int_A f(x) dx \right)$$

called *density* or *probability density function (PDF)* of random variable

above is equivalent to

$$(\forall a < b \in \mathbf{R}) \left(\int_a^b f(x) dx = P(a < X \le b) = F(b) - F(a) \right)$$

(refer to statement on page 12)

- note, though, ${\cal F}$ does not need to differentiate to f everywhere; only f required to integrate properly
- if F does differentiate to f and f is continuous, fundamental theorem of calculus implies f indeed is density for F

Probability distribution for random vectors

ullet (similarly to random variables) probability measure on ${f R}^n$, $\mu=PX^{-1}$, i.e.,

$$\mu(A) = P(X \in A) \text{ for } A \in \mathscr{B}^k$$

called *distribution* or *law* of random vector, X

• function, $F: \mathbf{R}^k \to [0,1]$, defined by

$$F(x) = \mu S_x = P(X \leq x)$$

where

$$S_x = \{\omega \in \Omega | X(\omega) \leq x\} = \{\omega \in \Omega | X_i(\omega) \leq x_i\}$$

called distribution function or cumulative distribution function (CDF) of X

• (similarly to random variables) random vector, its distribution, its distribution function, said to be *discrete* when has *countable* support

Marginal distribution for random vectors

• (similarly to random variables) for measurable $g: \mathbf{R}^n \to \mathbf{R}^m$

$$(\forall A \in \mathscr{R}^m) \left(\mathbf{Prob} \left(g(X) \in A \right) = \mathbf{Prob} \left(X \in g^{-1}(A) \right) = \mu(g^{-1}(A)) \right)$$

hence, g(X) has distribution of μg^{-1}

• for $g_i: \mathbf{R}^n \to \mathbf{R}$ with $g_i(x) = x_i$

$$(\forall A \in \mathcal{R}) (\mathbf{Prob} (g(X) \in A) = \mathbf{Prob} (X_i \in A))$$

- measure, μ_i , defined by $\mu_i(A) = \operatorname{Prob}(X_i \in A)$, called *(i-th) marginal distribution* of X
- ullet for μ having density function, $f: {f R}^n o {f R}_+$, density function of marginal distribution is

$$f_i(x) = \int_{\Re^{n-1}} f(x_{-i}) d\mu_{-i}$$

where $x_{-i}=(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)$ and similarly for $d\mu_{-i}$

Independence of random variables

• random variables, X_1, \ldots, X_n , with independent σ -algebras generated by them, said to be *independent*

(refer to page 15 for independence of collections of subsets)

- because $\sigma(X_i) = X_i^{-1}(\mathscr{R}) = \{X_i^{-1}(H) | H \in \mathscr{R}\}$, independent if and only if

$$(\forall H_1,\ldots,H_n\in\mathscr{R})\left(P\left(X_1\in H_1,\ldots,X_n\in H_n\right)=\prod P\left(X_i\in H_i\right)\right)$$

i.e.,

$$(\forall H_1, \dots, H_n \in \mathcal{R}) \left(P \left(\bigcap X_i^{-1}(H_i) \right) = \prod P \left(X_i^{-1}(H_i) \right) \right)$$

Equivalent statements of independence of random variables

• for random variables, X_1, \ldots, X_n , having μ and $F: \mathbf{R}^n \to [0,1]$ as their distribution and CDF, with each X_i having μ_i and $F_i: \mathbf{R} \to [0,1]$ as its distribution and CDF, following statements are equivalent

```
- X_1, \ldots, X_n are independent
```

$$- (\forall H_1, \dots, H_n \in \mathcal{R}) \left(P \left(\bigcap X_i^{-1}(H_i) \right) = \prod P \left(X_i^{-1}(H_i) \right) \right)$$

$$- (\forall H_1, \dots, H_n \in \mathcal{R}) (P(X_1 \in H_1, \dots, X_n \in H_n)) = \prod P(X_i \in H_i)$$

$$- (\forall x \in \mathbf{R}^n) (P(X_1 \le x_1, \dots, X_n \le x_n) = \prod P(X_i \le x_i))$$

$$- (\forall x \in \mathbf{R}^n) (F(x) = \prod F_i(x_i))$$

$$-\mu = \mu_1 \times \cdots \times \mu_n$$

$$- (\forall x \in \mathbf{R}^n) (f(x) = \prod f_i(x_i))$$

Independence of random variables with separate σ -algebra

- given probability space, (Ω, \mathcal{F}, P)
- random variables, X_1, \ldots, X_n , each of which is measurable with respect to each of n independent σ -algebras, $\mathscr{G}_1 \subset \mathscr{F}$, ..., $\mathscr{G}_n \subset \mathscr{F}$ respectively, are independent

Independence of random vectors

• for random vectors, $X_1:\Omega\to \mathbf{R}^{d_1},\ldots,X_n:\Omega\to \mathbf{R}^{d_n}$, having μ and $F:\mathbf{R}^{d_1}\times\cdots\times\mathbf{R}^{d_n}\to[0,1]$ as their distribution and CDF, with each X_i having μ_i and $F_i:\mathbf{R}^{d_i}\to[0,1]$ as its distribution and CDF, following statements are equivalent

-
$$X_1, \ldots, X_n$$
 are independent

$$- \left(\forall H_1 \in \mathcal{R}^{d_1}, \dots, H_n \in \mathcal{R}^{d_n} \right) \left(P \left(\bigcap X_i^{-1}(H_i) \right) = \prod P \left(X_i^{-1}(H_i) \right) \right)$$

$$- (\forall H_1 \in \mathcal{R}^{d_1}, \dots, H_n \in \mathcal{R}^{d_n}) (P(X_1 \in H_1, \dots, X_n \in H_n)) = \prod P(X_i \in H_i))$$

$$-\left(\forall x_1 \in \mathbf{R}^{d_1}, \dots, x_n \in \mathbf{R}^{d_n}\right) \left(P(X_1 \leq x_1, \dots, X_n \leq x_n) = \prod P(X_i \leq x_i)\right)$$

$$-\left(\forall x_1 \in \mathbf{R}^{d_1}, \dots, x_n \in \mathbf{R}^{d_n}\right) (F(x_1, \dots, x_n) = \prod F_i(x_i))$$

$$-\mu = \mu_1 \times \cdots \times \mu_n$$

$$-\left(\forall x_1 \in \mathbf{R}^{d_1}, \dots, x_n \in \mathbf{R}^{d_n}\right) \left(f(x_1, \dots, x_n) = \prod f_i(x_i)\right)$$

Independence of infinite collection of random vectors

• infinite collection of random vectors for which every finite subcollection is independent, said to be *independent*

• for independent (countable) collection of random vectors, $\langle\langle X_{ni}\rangle_{i=1}^{\infty}\rangle_{n=1}^{\infty}$, $\langle\mathscr{F}_{n}\rangle_{n=1}^{\infty}$ with $\mathscr{F}_{n}=\sigma(\langle X_{ni}\rangle_{i=1}^{\infty})$ are independent

Probability evaluation for two independent random vectors

Theorem 3. [Probability evaluation for two independent random vectors] for independent random vectors, X and Y, with distributions, μ and ν , in \mathbb{R}^n and \mathbb{R}^m respectively

$$\left(\forall B \in \mathscr{R}^{n+m}\right)\left(\mathbf{Prob}\left((X,Y) \in B\right) = \int_{\mathbf{R}^n} \mathbf{Prob}\left((x,Y) \in B\right) d\mu_X\right)$$

and

$$\left(\forall A\in\mathscr{R}^n, B\in\mathscr{R}^{n+m}\right)\left(\mathbf{Prob}\left(X\in A, (X,Y)\in B\right) = \int_A \mathbf{Prob}\left((x,Y)\in B\right) d\mu_X\right)$$

Sequence of random variables

Theorem 4. [squence of random variables] for sequence of probability measures on \mathscr{R} , $\langle \mu_n \rangle$, exists probability space, (X, Ω, P) , and sequence of independent random variables in \mathbf{R} , $\langle X_n \rangle$, such that each X_n has μ_n as distribution

Expected values

Definition 3. [expected values] for random variable, X, on (Ω, \mathcal{F}, P) , integral of X with respect to measure, P

$$\mathbf{E} X = \int X dP = \int_{\Omega} X(\omega) dP$$

called expected value of X

- \bullet E X is
 - always defined for nonnegative X
 - for general case
 - defined, or
 - X has an expected value if either ${\bf E}\,X^+<\infty$ or ${\bf E}\,X^-<\infty$ or both, in which case, ${\bf E}\,X={\bf E}\,X^+-{\bf E}\,X^-$
- ullet X is integrable if and only if $\mathbf{E}|X|<\infty$
- limits
 - if $\langle X_n \rangle$ is dominated by integral random variable or they are uniformly integrable, $\mathbf{E} X_n$ converges to $\mathbf{E} X$ if X_n converges to X in probability

Markov and Chebyshev's inequalities

Inequality 1. [Markov inequality] for random variable, X, on (Ω, \mathcal{F}, P) ,

$$\mathbf{Prob}\left(X \geq \alpha\right) \leq \frac{1}{\alpha} \int_{X > \alpha} X dP \leq \frac{1}{\alpha} \, \mathbf{E} \, X$$

for nonnegative X, hence

$$\mathbf{Prob}\left(|X| \geq \alpha\right) \leq \frac{1}{\alpha^n} \int_{|X| > \alpha} |X|^n dP \leq \frac{1}{\alpha^n} \mathbf{E} \left|X\right|^n$$

for general X

Inequality 2. [Chebyshev's inequality] as special case of Markov inequality,

$$\mathbf{Prob}\left(|X - \mathbf{E}\,X| \geq \alpha\right) \leq \frac{1}{\alpha^2} \int_{|X - \mathbf{E}\,X| > \alpha} (X - \mathbf{E}\,X)^2 dP \leq \frac{1}{\alpha^2} \, \mathbf{Var}\,X$$

for general X

Jensen's, Hölder's, and Lyapunov's inequalities

Inequality 3. [Jensen's inequality] for random variable, X, on (Ω, \mathcal{F}, P) , and convex function, φ

$$\varphi\left(\mathbf{E}\,X\right)\mathbf{Prob}\left(X\geq\alpha\right)\leq\frac{1}{\alpha}\int_{X\geq\alpha}XdP\leq\frac{1}{\alpha}\,\mathbf{E}\,X$$

Inequality 4. [Holder's inequality] for two random variables, X and Y, on (Ω, \mathcal{F}, P) , and $p, q \in (1, \infty)$ with 1/p + 1/q = 1

$$\mathbf{E}\left|XY\right| \le \left(\mathbf{E}\left|X\right|^{p}\right)^{1/p} \left(\mathbf{E}\left|X\right|^{q}\right)^{1/q}$$

Inequality 5. [Lyapunov's inequality] for random variable, X, on (Ω, \mathscr{F}, P) , and $0 < \alpha < \beta$

$$\left(\mathbf{E}\left|X\right|^{\alpha}\right)^{1/\alpha} \le \left(\mathbf{E}\left|X\right|^{\beta}\right)^{1/\beta}$$

note Hölder's inequality implies Lyapunov's inequality

Maximal inequalities

Theorem 5. [Kolmogorov's zero-one law] if $A \in \mathscr{F} = \bigcap_{n=1}^{\infty} \sigma(X_n, X_{n+1}, \ldots)$ for independent $\langle X_n \rangle$,

$$\mathbf{Prob}(A) = 0 \vee \mathbf{Prob}(A) = 1$$

– define $S_n = \sum X_i$

Inequality 6. [Kolmogorov's maximal inequality] for independent $\langle X_i \rangle_{i=1}^n$ with $\mathbf{E} X_i = 0$ and $\mathbf{Var} X_i < \infty$ and $\alpha > 0$

$$\operatorname{Prob}\left(\max S_i \geq \alpha\right) \leq \frac{1}{\alpha} \operatorname{Var} S_n$$

Inequality 7. [Etemadi's maximal inequality] for independent $\langle X_i \rangle_{i=1}^n$ and $\alpha > 0$

$$\operatorname{Prob}\left(\max|S_i|\geq 3\alpha\right)\leq 3\max\operatorname{Prob}\left(|S_i|\geq \alpha\right)$$

Moments

Definition 4. [moments and absolute moments] for random variable, X, on (Ω, \mathcal{F}, P) , integral of X with respect to measure, P

$$\mathbf{E} X^n = \int x^k d\mu = \int x^k dF(x)$$

called k-th moment of X or μ or F, and

$$\mathbf{E} |X|^n = \int |x|^k d\mu = \int |x|^k dF(x)$$

called k-th absolute moment of X or μ or F

- if $\mathbf{E} |X|^n < \infty$, $\mathbf{E} |X|^k < \infty$ for k < n
- $\mathbf{E} X^n$ defined only when $\mathbf{E} |X|^n < \infty$

Moment generating functions

Definition 5. [moment generating function] for random variable, X, on (Ω, \mathcal{F}, P) , $M: \mathbf{C} \to \mathbf{C}$ defined by

$$M(s) = \mathbf{E}\left(e^{sX}\right) = \int e^{sx} d\mu = \int e^{sx} dF(x)$$

called moment generating function of X

- n-th derivative of M with respect to s is $M^{(n)}(s)=\frac{d^n}{ds^n}F(s)=\mathbf{E}\left(X^ne^{sX}\right)=\int xe^{sx}d\mu$
- ullet thus, n-th derivative of M with respect to s at s=0 is n-th moment of X

$$M^{(n)}(0) = \mathbf{E} X^n$$

ullet for independent random variables, $\langle X_i \rangle_{i=1}^n$, moment generating function of $\sum X_i$

$$\prod M_i(s)$$

Convergence of Random Variables

Convergences of random variables

Definition 6. [convergence with probability 1] random variables, $\langle X_n \rangle$, with

Prob (
$$\lim X_n = X$$
) = $P(\{\omega \in \Omega | \lim X_n(\omega) = X(\omega)\}) = 1$

said to converge to X with probability 1 and denoted by $X_n \to X$ a.s.

Definition 7. [convergence in probability] random variables, $\langle X_n \rangle$, with

$$(\forall \epsilon > 0) (\lim \mathbf{Prob} (|X_n - X| > \epsilon) = 0)$$

said to converge to X in probability

Definition 8. [weak convergence] distribution functions, $\langle F_n \rangle$, with

$$(\forall x \text{ in domain of } F) (\lim F_n(x) = F(x))$$

said to converge weakly to distribution function, F, and denoted by $F_n \Rightarrow F$

Definition 9. [converge in distribution] When $F_n \Rightarrow F$, associated random variables, $\langle X_n \rangle$, said to converge in distribution to X, associated with F, and denoted by $X_n \Rightarrow X$

Definition 10. [weak convergence of measures] for measures on $(\mathbf{R}, \mathcal{R})$, $\langle \mu_n \rangle$, associated with distribution functions, $\langle F_n \rangle$, respectively, and measure on $(\mathbf{R}, \mathcal{R})$, μ , associated with distribution function, F, we denote

$$\mu_n \Rightarrow \mu$$

if

$$(\forall A = (-\infty, x] \text{ with } x \in \mathbf{R}) (\lim \mu_n(A) = \mu(A))$$

ullet indeed, if above equation holds for $A=(-\infty,x)$, it holds for many other subsets

Relations of different types of convergences of random variables

Proposition 1. [relations of convergence of random variables] convergence with probability 1 implies convergence in probability, which implies $X_n \Rightarrow X$, i.e.

 $X_n \to X$ a.s., i.e., X_n converge to X with probability 1

 \Rightarrow X_n converge to X in probability

 $\Rightarrow X_n \Rightarrow X$, i.e., X_n converge to X in distribution,

Necessary and sufficient conditions for convergence of probability

 X_n converge in probability

if and only if

$$(\forall \epsilon > 0) (\mathbf{Prob} (|X_n - X| > \epsilon \text{ i.o}) = \mathbf{Prob} (\limsup |X_n - X| > \epsilon) = 0)$$

if and only if

$$\left(\forall \text{ subsequence } \left\langle X_{n_k} \right\rangle\right) \left(\exists \text{ its subsequence } \left\langle X_{n_{k_l}} \right\rangle \text{ converging to } f \text{ with probability } 1\right)$$

Necessary and sufficient conditions for convergence in distribution

$$X_n \Rightarrow X$$
, *i.e.*, X_n converge in distribution

if and only if

$$F_n \Rightarrow F, i.e., F_n$$
 converge weakly

if and only if

$$(\forall A = (-\infty, x] \text{ with } x \in \mathbf{R}) (\lim \mu_n(A) = \mu(A))$$

if and only if

$$(\forall x \text{ with } \mathbf{Prob} (X = x) = 0) (\lim \mathbf{Prob} (X_n \leq x) = \mathbf{Prob} (X \leq x))$$

Strong law of large numbers

- define
$$S_n = \sum_{i=1}^n X_i$$

Theorem 6. [strong law of large numbers] for sequence of independent and identically distributed (i.i.d.) random variables with finite mean, $\langle X_n \rangle$

$$\frac{1}{n}S_n \to \mathbf{E}\,X_1$$

with probability 1

• strong law of large numbers also called Kolmogorov's law

Corollary 1. [strong law of large numbers] for sequence of independent and identically distributed (i.i.d.) random variables with $\mathbf{E} X_1^- < \infty$ and $\mathbf{E} X_1^+ = \infty$ (hence, $\mathbf{E} X = \infty$)

$$\frac{1}{n}S_n \to \infty$$

with probability 1

Weak law of large numbers

- define
$$S_n = \sum_{i=1}^n X_i$$

Theorem 7. [weak law of large numbers] for sequence of independent and identically distributed (i.i.d.) random variables with finite mean, $\langle X_n \rangle$

$$\frac{1}{n}S_n \to \mathbf{E}\,X_1$$

in probability

• because convergence with probability 1 implies convergence in probability (Proposition 1), strong law of large numbers implies weak law of large numbers

Normal distributions

– assume probability space, (Ω, \mathcal{F}, P)

Definition 11. [normal distributions] Random variable, $X: \Omega \to \mathbb{R}$, with

$$(A \in \mathcal{R}) \left(\mathbf{Prob} \left(X \in A \right) = \frac{1}{\sqrt{2\pi}\sigma} \int_{A} e^{-(x-c)^{2}/2} d\mu \right)$$

where $\mu = PX^{-1}$ for some $\sigma > 0$ and $c \in \mathbb{R}$, called normal distribution and denoted by $X \sim \mathcal{N}(c, \sigma^2)$

- note $\mathbf{E} X = c$ and $\mathbf{Var} X = \sigma^2$
- called standard normal distribution when c=0 and $\sigma=1$

Multivariate normal distributions

– assume probability space, (Ω, \mathscr{F}, P)

Definition 12. [multivariate normal distributions] Random variable, $X : \Omega \to \mathbb{R}^n$, with

$$(A \in \mathcal{R}^n) \left(\mathbf{Prob} \left(X \in A \right) = \frac{1}{\sqrt{(2\pi)^n} \sqrt{\det \Sigma}} \int_A e^{-(x-c)^T \Sigma^{-1} (x-c)/2} d\mu \right)$$

where $\mu = PX^{-1}$ for some $\Sigma \succ 0 \in \mathbf{S}^n_{++}$ and $c \in \mathbf{R}^n$, called (n-dimensional) normal distribution, and denoted by $X \sim \mathcal{N}(c, \Sigma)$

- note that $\mathbf{E} X = c$ and covariance matrix is Σ

Lindeberg-Lévy theorem

- define
$$S_n = \sum^n X_i$$

Theorem 8. [Lindeberg-Levy theorem] for independent random variables, $\langle X_n \rangle$, having same distribution with expected value, c, and same variance, $\sigma^2 < \infty$, $(S_n - nc)/\sigma\sqrt{n}$ converges to standard normal distribution in distribution, i.e.,

$$\frac{S_n - nc}{\sigma \sqrt{n}} \Rightarrow N$$

where N is standard normal distribution

Theorem 8 implies

$$S_n/n \Rightarrow c$$

Limit theorems in R^n

Theorem 9. [equivalent statements to weak convergence] each of following statements are equivalent to weak convergence of measures, $\langle \mu_n \rangle$, to μ , on measurable space, $(\mathbf{R}^k, \mathscr{R}^k)$

- ullet $\lim \int f d\mu_n = \int f d\mu$ for every bounded continuous f
- $\limsup \mu_n(C) \leq \mu(C)$ for every closed C
- $\liminf \mu_n(G) \ge \mu(G)$ for every open G
- $\lim \mu_n(A) = \mu(A)$ for every μ -continuity A

Theorem 10. [convergence in distribution of random vector] for random vectors, $\langle X_n \rangle$, and random vector, Y, of k-dimension, $X_n \Rightarrow Y$, i.e., X_n converge to Y in distribution if and only if

$$\left(orall z \in \mathbf{R}^k
ight) \left(z^T X_n \Rightarrow z^T Y
ight)$$

Central limit theorem

– assume probability space, (Ω, \mathscr{F}, P) and define $\sum^n X_i = S_n$

Theorem 11. [central limit theorem] for random variables, $\langle X_n \rangle$, having same distributions with $\mathbf{E} X_n = c \in \mathbf{R}^k$ and positive definite covariance matrix, $\Sigma \succ 0 \in \mathcal{S}_k$, i.e., $\mathbf{E}(X_n-c)(X_n-c)^T = \Sigma$, where $\Sigma_{ii} < \infty$ (hence $\Sigma \prec MI_n$ for some $M \in \mathbf{R}_{++}$ due to Cauchy-Schwarz inequality),

$$(S_n - nc)/\sqrt{n}$$
 converges in distribution to Y

where $Y \sim \mathcal{N}(0, \Sigma)$

(proof can be found in Proof 1)

Convergence of random series

- for independent $\langle X_n \rangle$, probability of $\sum X_n$ converging is either 0 or 1
- ullet below characterize two cases in terms of distributions of individual X_n XXX: diagram

Theorem 12. [convergence with probability 1 for random series] for independent $\langle X_n \rangle$ with $\mathbf{E} X_n = 0$ and $\mathbf{Var} X_n < \infty$

$$\sum X_n$$
 converges with probability 1

Theorem 13. [convergence conditions for random series] for independent $\langle X_n \rangle$, $\sum X_n$ converges with probability 1 if and only if they converges in probability

- define trucated version of X_n by $X_n^{(c)}$, i.e., $X_nI_{|X_n|\leq c}$

Theorem 14. [convergence conditions for truncated random series] for independent $\langle X_n \rangle$,

 $\sum X_n$ converge with probability 1

if all of $\sum \mathbf{Prob}\left(|X_n|>c\right), \sum \mathbf{E}(X_n^{(c)}), \sum \mathbf{Var}(X_n^{(c)})$ converge for some c>0

Selected Proofs

Selected proofs

• **Proof 1.** (Proof for "central limit theorem" on page 54) Let $Z_n(t) = t^T(X_n - c)$ for $t \in \mathbf{R}^k$ and $Z(t) = t^TY$. Then $\langle Z_n(t) \rangle$ are independent random variables having same distribution with $\mathbf{E} Z_n(t) = t^T(\mathbf{E} X_n - c) = 0$ and

$$\operatorname{Var} Z_n(t) = \operatorname{E} Z_n(t)^2 = t^T \operatorname{E} (X_n - c)(X_n - c)^T t = t^T \Sigma t$$

Then by Theorem 8 $\sum^n Z_i(t)/\sqrt{nt^T\Sigma t}$ converges in distribution to standard normal random variable. Because $\mathbf{E}\,Z(t)=0$ and $\mathbf{Var}\,Z(t)=t^T\,\mathbf{E}\,YY^Tz=t^T\Sigma t$, for $t\neq 0$, $Z(t)/\sqrt{t^T\Sigma t}$ is standard normal random variable. Therefore $\sum^n Z_i(t)/\sqrt{nt^T\Sigma t}$ converges in distribution to $Z/\sqrt{t^T\Sigma t}$ for every $t\neq 0$, thus, $\sum^n Z_i(t)/\sqrt{n}=t^T(\sum^n X_i-nc)/\sqrt{n}$ converges in distribution to $Z(t)=t^TY$ for every $t\in\mathbf{R}$. Then Theorem 10 implies $(S_n-nc)/\sqrt{n}$ converges in distribution to Y.

References

References

[Bil95] Patrick Billingsley. *Probability and Measure*. A Wiley-Interscience Publication, 605 Third Avenue, New York, NY 10158-0012, USA, 3rd edition, 1995.

Index

Sunghee Yun July 12, 2025 λ -system, 12 almost everywhere - a.e., 6 almost surely, 6 π - λ theorem, 12 Dynkin, Eugene Borisovich, 12 Borel functions, 10 π -system, 12 Borel sets multi-dimensional, 10 σ -algebra generated by random variables, 23 Borel, Félix Édouard Justin Émile Borel-Cantelli lemmas, 16 a.e. functions, 10 almost everywhere, 6 Borel-Cantelli lemmas, 16 a.s. first, 16 almost surely, 6 second, 16 absolute moments boundary set, 3 random variables, 40 Cantelli, Francesco Paolo almost everywhere, 6

Sunghee Yun July 12, 2025 Borel-Cantelli lemmas. 16 converge in distribution, 44 CDF, 24, 27 convergence in distribution, 44 central limit theorem, 54 in probability, 43 Chebyshev's inequality, 37 conditions necessary and sufficient for convergence in distribution, 47 random variables, 37 sufficient conditions and for necessary Chebyshev, Pafnuty convergence in probability, 46 Chebyshev's inequality of distributions, 43 of random series, 55 random variables, 37 of random variables, 43-47 closure relations of, 45 set, 3 weak convergence of distributions, 43 complement weak convergence of measures, 44 set, 2 with probability 1, 43 complex number, 2 convergence conditions for random series, 55

Sunghee Yun July 12, 2025 convergence conditions for truncated random series, convergence in probability, 43 56 convergence with probability 1, 43expected values, 36 convergence in distribution of random vector, 53 infinitely often - i.o., 6 convergence in probability, 43 moment generating function, 41 convergence with probability 1, 43 moments and absolute moments, 40 multivariate normal distributions, 51 convergence with probability 1 for random series, 55 normal distributions, 50 weak convergence, 43 convergence-of-events, 13 weak convergence of measures, 44 corollaries density, 26 strong law of large numbers, 48 difference cumulative distribution function (CDF), 24, 27 set, 3 definitions distribution almost everywhere - a.e., 6 converge in distribution, 44 probability, 24, 27

Sunghee Yun July 12, 2025 distribution functions first Borel-Cantelli, 16 probability, 24, 27 Fubini's theorem Dynkin's π - λ theorem, 12 product probability spaces, 21 Dynkin, Eugene Borisovich Fubini, Guido Fubini's theorem π - λ theorem, 12 product probability spaces, 21 equivalent statements to weak convergence, 53 generated by Etemadi's maximal inequality, 39 σ -algebra random variables, 39 by random variables, 23 Etemadi, Nasrollah product probability spaces Etemadi's maximal inequality, 39 σ -algebra by measurable rectangles, 18 expected values, 36 Hölder's inequality, 38 random variables, 36 random variables, 38 finite sequence, 2 Hölder, Ludwig Otto

Sunghee Yun	July 12, 2025
Hölder's inequality, 38	Holder's inequality, 38
random variables, 38	Jensen's inequality, 38
Holder's inequality, 38	Kolmogorov's maximal inequality, 39 Lyapunov's inequality, 38
.0.	Markov inequality, 37
infinitely often, 6	infinite sequence, 2
ndependence	infinitely often, 6
probability spaces, 14, 15	
random variables, 29-31	infinitely often - i.o., 6
infinitely many, 33	integer, 2
random vectors, 32	
infinitely many, 33	interior
ndependence-of-smallest-sig-alg, 13	set, 3
noqualities	Jensen's inequality, 38
nequalities Chebyshev's inequality, 37	for random variables, 38
Etemadi's maximal inequality, 39	Jensen, Johan Ludwig William Valdemar

Sunghee Yun July 12, 2025 Jensen's inequality lemmas first Borel-Cantelli, 16 for random variables, 38 second Borel-Cantelli, 16 Kolmogorov's law limit theorems random variables, 48 random variables, 53 Kolmogorov's maximal inequality, 39 limits random variables, 39 events, 13 Kolmogorov's zero-one law, 17, 39 Lindeberg, Jarl Waldemar random variables, 39 Lindeberg-Lévy theorem, 52 Kolmogorov, Andrey Nikolaevich Lindeberg-Lévy theorem, 52 Kolmogorov's law, 48 Lindeberg-Levy theorem, 52 Kolmogorov's maximal inequality, 39 Kolmogorov's zero-one law, 17, 39 Lyapunov's inequality, 38 random variables, 38 Lévy, Paul Lindeberg-Lévy theorem, 52 Lyapunov, Aleksandr

Sunghee Yun July 12, 2025 Lyapunov's inequality measurable functions random variables, 38 abstract measurable spaces, 10 moment generating function, 41 marginal distribution random vectors, 28 moment generating functions random variables, 41 Markov inequality, 37 random variables, 37 moments Markov, Andrey Andreyevich random variables, 40 Markov inequality moments and absolute moments, 40 random variables, 37 multivariate normal distributions, 51 matrix positive definite, 4 natural number, 2 positive semi-definite, 4 symmetric, 4 norm vector, 3 trace, 3 maximal inequalities, 39 normal distributions, 50

Sunghee Yun	July 12, 2025
random variables, 50	probability density function (PDF), 26
number	probability distribution, 27
complex number, 2	probability distribution functions, 24, 27
integer, 2	
natural number, 2	Probability evaluation for two independent random vectors, 34
rational number, 2	
real number, 2	probability spaces, 11
PDF, 26	independence, 14, 15
	of collection of classes of events, 15
positive definite matrix, 4	of collection of events, 14
positive semi-definite matrix, 4	of two events, 14
	Kolmogorov's zero-one law, 17
probability	limits
Kolmogorov's zero-one law, 17	events, 13
probability (measure) spaces, 11	probability measure, 11
probability (measure) spaces, 11	product spaces, 18

Sunghee Yun	July 12, 2025
support, 11	σ -algebra generated by, 23
tail σ -algebra, 17	absolute moments, 40
tail events, 17	CDF, 24
product measure	central limit theorem, 54
product probability spaces, 20	Chebyshev's inequality, 37
	convergence, 43
product probability spaces, 18	convergence in distribution, 44
σ -algebra generated by measurable rectangles, 18	convergence in probability, 43
Fubini's theorem, 21	convergence with probability $1, 43$
measurable rectangles, 18	cumulative distribution function (CDF), 24
product measure, 20	density, 26
sections of measurable functions, 19	discrete, 24
sections of measurable subsets, 19	distribution, 24
	distribution functions, 24
relations of convergence of random variables, 45	mappings, 25
	expected values, 36
random variables, 23	Hölder's inequality, 38

Sunghee Yun July 12, 2025 independence, 29-31 PDF, 26 equivalent statements, 30 probability density function (PDF), 26 infinitely many, 33 random vectors, 23 Jensen's inequality, 38 relations of convergences, 45 Kolmogorov's law, 48 standard normal distribution, 50 strong law of large numbers, 48 law, 24 limit theorems, 53 support, 24 Lindeberg-Lévy theorem, 52 weak convergence of distributions, 43 Lyapunov's inequality, 38 weak convergence of measures, 44 Markov inequality, 37 weak law of large numbers, 49 moment generating functions, 41 random vectors, 23

CDF, 27

discrete, 27

distribution, 27

central limit theorem, 54

distribution functions, 27

cumulative distribution function (CDF), 27

normal distributions, 50

and

multivariate normal distributions, 51

convergences in distribution, 47

convergences in probability, 46

sufficient

sufficient

conditions

conditions

for

for

moments, 40

necessary

necessary

- CANCELED < 2024 0421 python script extracting important list, 0
- CANCELED 2025 0414 2 diagram for convergence of random series, 55
- DONE 2024 0324 change tocpageref and funpageref to hyperlink, 0
- DONE 2024 0324 python script extracting figure list \rightarrow using "list of figures" functionality on doc, 0
- DONE 2024 0324 python script extracting theorem-like list \rightarrow using "list of theorem" functionality on doc, 0
- DONE 2024 0324 python script for converting slides to doc, 0
- DONE 2025 0414 1 change mathematicians' names, 0