	第一章: 绪论					
研究背景	研究背景及意义					
	康复辅助机器人研究现1. 移动辅助机器人2. 功能性辅助机器人3. 关节运动辅助机器	人-机器人交互感 知系统研究现状		研究发展动态分析	凝练 研究 目标	
研	第二章:人-机器人交互研究理论基础					
究方法基础	闭环人机交互过程的不确定性分析: 1. 机器人行为建模 2. 闭环人机交互过程		人机共享自主		运动技能模仿学习	明确技术方法
应用研究	局部运动交互动作 ■ 原地运动交互动作 ■ 移动运动交互动作					
	移动辅助机器人	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	的能性辅助机器人	关节运动辅助机器人		
	第三章:柔性可穿 戴体-机交互接口 的自适应解码方法	第四章:基于模型匹配的机器人辅助人体坐立运动时间自适应			第五章:主动膝关节 娇形器交互式自适应 运动参考轨迹生成	应用 场景 设计
	基于可穿戴柔性传 感器感知肌肉运动 的交互方法	基于光学运动捕捉系 统感知关节运动的交 互方法			基于可穿戴惯性传感 器感知关节运动的交 互方法	交互 动作 捕捉
	线性高斯随机模型 表征的人体肩部运 动不确定性	概率化离散动态运动 基元表征的人体坐立 运动速度不确定性		Ž	多维高斯模型与节律 动态运动基元表征的 膝关节运动不确定性	不确 定性 表征
	基于历史交互数据 与局部加权线性回 归模型表示的用户 交互先验信息	基于三种速度下坐立 运动示教数据与离散 动态运动基元表示的 坐立先验信息		1	基于健康人群膝关节 步态运动示教轨迹与 节律动态运动基元表 示的步态先验信息	先验 信息 获取
	基于先验模型的交 互意图推理自适应 介入解码方法	配的	先验运动模板匹 交互意图推理与 应轨迹优化框架		基于步态先验技能库 的实时输入验证与自 适应步态轨迹生成	共享 自主 实现
	搭建实验平台, 开展实验验证					
第六章: 总结与展望						