Traduzido do Inglês para o Português - www.onlinedoctranslator.com

Engenharia de software

João Caldeira

Professor convidado

E-mail. <u>joaocarlos.caldeira@my.istec.pt</u>

Mob. +351 917769544

27 de outubro de 2022

Sobre mim

João Caldeira

- Licenciatura FCT/UNL (1997)
- Mestrado FCT/UNL (2009)
- Doutoramento ISCTE-IUL (2021)
 - Professor Assistente (Convidado desde 2019)

Univ. Europeia / IPAM / UA Professor Convidado

- Mineração de dados
- PG em Ciência de Dados para Negócios
- Previsão e Análise de Séries Temporais
- PG em Tecnologias Blockchain (Coordenador)

Kiion –www.kiion.com

- Fundador
- Consultor de Ciência de Processos/Dados

Kiion Technologies

<u>joao.caldeira@kiion.com</u> + 351 91 7769544

Planejamento

1° semestre

Engenharia de software					
Classe	Encontro	Semana	Resumo	Tarefas/Ferramentas/ B bibliografia	
1	26/out	1	Introdução Engenharia de software	Engenharia de Software 10ª Edição, Corpo de Conhecimento de Engenharia de Software de Ian Sommerville (SWEBOK)	
2	2/Novembro	2	Processo de Engenharia de Software		
3	9/Novembro	3	Processo de Engenharia de Software		
4	16/Nov	4	Engenharia de Requisitos		
5	23/11	5	Engenharia de Requisitos		
6	30/Nov	6	Design de software		
7	7/dez	7	Design de software 1ruaTarefa de Avaliação		
8	14/dez	8	Construção de software		
9	4/jan	9	Construção de software		
10	11/jan	10	Teste e validação		
11	18/jan	11	Teste e validação		
12	25/jan	12	2 _{nd} Tarefa de Avaliação		
13	1/fev	13	A ser definida		
14	8/fev	14	A ser definida		
15	15/fev	15	A ser definida		

Alguma História

- década de 1960
 - Esforçando-se, pois era difícil acompanhar o hardware que causava muitos problemas para os engenheiros de software
 - O software estava acima do orçamento, excedeu os prazos, exigiu depuração e manutenção extensas e atendeu sem sucesso às necessidades dos consumidores ou nunca foi concluído
 - Crise de software: máquinas poderosas/métodos de programação inadequados
- · 1968
 - OTANrealizou o primeiro Engenharia de software conferência onde foram abordados assuntos relacionados a software
 - Diretrizes e boas práticas para o desenvolvimento de software foram estabelecidas

Alguma História

1984

- Instituto de Engenharia de Software (SEI) foi estabelecida com sede no campus da Carnegie Mellon University em Pittsburgh, Pensilvânia, Estados Unidos
- **Watts Humphrey**fundou o Programa de Processo de Software SEI, com o objetivo de entender e gerenciar o processo de engenharia de software
- Os Níveis de Maturidade do Processo introduzidos se tornariam os**Integração do Modelo de Maturidade de Capacidade para Desenvolvimento**(CMMI-DEV), que definiu como o**Governo dos Estados Unidos** avalia as habilidades de uma equipe de desenvolvimento de software.

Últimas décadas

- As melhores práticas geralmente aceitas para engenharia de software foram coletadas pelo subcomitê ISO/IEC JTC 1/SC 7 e publicadas
 - Corpo de Conhecimento de Engenharia de Software (SWEBOK)
 - A engenharia de software é considerada uma das principais disciplinas de computação

Alguns outros nomes importantes

- Charles Bachman (1924-2017)é particularmente conhecido por seu trabalho na área de bancos de dados
- László Bélády (1928–2021) o editor-chefe do IEEE Transactions on Soft. Eng. (1980)
- Fred Brooks (nascido em 1931)mais conhecido por gerenciar o desenvolvimento do OS/360
- Peter Chen (nascido em 1947) conhecido pelo desenvolvimento de modelagem entidade-relacionamento
- Edsger W. Dijkstra (1930–2002)desenvolveu a estrutura para uma forma de programação estruturada
- David Parnas (nascido em 1941) desenvolveu o conceito de ocultação de informações na programação modular
- Michael A. Jackson (nascido em 1936) metodologista de engenharia de software responsável pelo método JSP(com John Cameron); Abordagem de quadros de problemas para analisar/estruturar problemas de desenvolvimento de software
- Richard Stallman, criou os utilitários do sistema GNU e defendeu o software livre

Fonte:Wikipédia

Uma definição

• O que é engenharia de software?

- O Vocabulário de Engenharia de Sistemas e Software ISO/IEC/IEEE (SEVOCAB) define engenharia de software como "a aplicação de uma abordagem sistemática, disciplinada e quantificável para o desenvolvimento, operação e manutenção de software
- Em resumo, é o**aplicação da engenharia ao software**

Visão geral da evolução

• "A aplicação da engenharia ao software"

• É a gestão de um<u>Processo</u> (Mudança / Evolução)

9

Sobre processos

"...Todas as coisas -do menor vírus à maior galáxia- são, na realidade, não coisas, mas processos..."
-- Alvin Toffler (1928-2016)

- A Engenharia de Software é um "Processo". Por quê?
 - É um conjunto estruturado de atividades para gerenciar a criação de um novo produto de software ou manter um existente, incluindo:
 - Coleta de requisitos, análise, projeto, codificação, teste e manutenção
- O que é um processo?
 - Uma série de [atividades | passos | ações]tomadas sequencialmente ou em paralelo, a fim de alcançar um determinado [fim | resultado | resultado]*

Sobre o desenvolvimento de software

- Os sistemas de software são abstratos e intangíveis
- Não são limitados pelas propriedades dos materiais, nem são regidos por leis físicas
- O software pode rapidamente se tornar extremamente complexo, difícil de entender e caro para mudar
- Não há notações, métodos ou técnicas universais para engenharia de software
- Diferentes tipos de software requerem abordagens diferentes
 - Sistema de informação organizacional ou data warehouse
 - Um controlador para um instrumento científico
 - Jogo de computador com muitos gráficos

Projetos de software geralmente falham

Aumentando a complexidade do sistema

- Os sistemas precisam ser construídos e entregues mais rapidamente
- São necessários sistemas maiores e ainda mais complexos
- Os sistemas precisam ter novos recursos que antes eram considerados impossíveis

• Falha ao usar métodos de engenharia de software

- É fácil escrever programas sem usar métodos e técnicas de engenharia de software
- Este software é muitas vezes mais caro e menos confiável do que deveria ser
- Requer melhor educação e treinamento em engenharia de software

Desenvolvimento de software profissional

Produtos genéricos

- Sistemas autônomos produzidos por uma organização de desenvolvimento
- Vendido no mercado livre
 - Aplicativos para dispositivos móveis, software para PCs como bancos de dados, processadores de texto, pacotes de desenho e ferramentas de gerenciamento de projetos
- Inclui aplicativos "verticais" projetados para um mercado específico (SAP, Feedzai, Talkdesk, etc)

Software personalizado

- Encomendado e desenvolvido para um cliente específico
- Um contratante de software projeta e implementa o software especialmente para esse cliente

Diversidade de software

- Aplicativos autônomos
- Aplicativos interativos baseados em transações
- Sistemas de controle embutidos
- Sistemas de processamento em lote
- Sistemas de entretenimento
- Sistemas para modelagem e simulação
- Sistemas de coleta e análise de dados
- Sistemas de Sistemas

Engenharia de Software para Internet

- 1. A reutilização de software tornou-se a abordagem dominante para sistemas baseados na web
- 2. É impraticável especificar antecipadamente todos os requisitos para tais sistemas
 - Os sistemas baseados na Web são sempre desenvolvidos e entregues de forma incremental
- 3. O software pode ser implementado usando engenharia de software orientada a serviços
 - Os componentes de software são serviços da Web independentes
- 4. Tecnologia de desenvolvimento de interface como AJAX e HTML5 foram adotadas
 - Apoiar a criação de interfaces ricas em um navegador da Web (lado do cliente)

Tendências da última década

- Indústria de aplicativos móveis
- Integração Contínua/Implantação Contínua (CI/CD)
- DevOps
- Arquitetura Orientada a Serviços (SOA)
- Paradigmas de baixo código/sem código
- Desenvolvimento Global de Software (GSD)

Um bom produto de software

Característica					
Aceitabilidade	O software deve ser aceitável para o tipo de usuário para o qual foi projetado. Isso significa que deve ser compreensível, utilizável e compatível com outros sistemas que eles usam				
Confiabilidade e segurança	A confiabilidade do software inclui uma série de características, incluindo confiabilidade, segurança e proteção. O software confiável não deve causar danos físicos ou econômicos em caso de falha do sistema. O software deve ser seguro para que usuários mal-intencionados não possam acessar ou danificar o sistema				
Eficiência	O software não deve desperdiçar recursos do sistema, como memória e ciclos de processador. A eficiência, portanto, inclui capacidade de resposta, tempo de processamento, utilização de recursos, etc.				
Manutenibilidade	O software deve ser escrito de forma que possa evoluir para atender às necessidades em constante mudança dos clientes. Este é um atributo crítico porque a mudança de software é um requisito inevitável de um ambiente de negócios em mudança				

Ética em Engenharia de Software

Confidencialidade

Competência

• Direito de propriedade intelectual

• Uso indevido do computador

18

Software Engenhairag Processos

Conjunto de atividades

Requisitos

Necessidades de negócios do usuário final/cliente

Especificação

• A funcionalidade do software e as restrições ao seu funcionamento devem ser definidas

Projeto e Implementação

• A funcionalidade do software e as restrições ao seu funcionamento devem ser definidas

Validação de verificação

• O software deve ser validado para garantir que faça o que o usuário final / cliente deseja

Evolução

• O software deve evoluir para atender às necessidades do cliente em constante mudança

Modelos Genéricos de Processo de Software

O modelo cascata

 As atividades fundamentais do processo de especificação, desenvolvimento, validação e evolução são representadas como fases de processo separadas, como especificação de requisitos, projeto de software, implementação, teste, etc.

Desenvolvimento incremental

- Essa abordagem intercala as atividades de especificação, desenvolvimento e validação
- O sistema é desenvolvido como uma série de versões (incrementos), com cada versão adicionando funcionalidade à versão anterior

• Engenharia de software orientada a reutilização

- Esta abordagem baseia-se na existência de um número significativo de componentes reutilizáveis
- Concentra-se na integração de componentes em um sistema, em vez de desenvolver do zero

Produto vs. Processo

Processo de Renoir

de Pollock produtos

de Pollock Processo

Produto da Renoir

Metodologias de Desenvolvimento de Software - Ágil

• É tudo uma questão de agilidade

Implementação rápida

Ter sucesso/fracasso rapidamente

Avalie os resultados e comece de novo

Produto vs. Processo

Visão geral rápida					
	produtos	Processo			
Conceito	O produto é o resultado final de um ciclo de desenvolvimento	O processo é uma sequência ou conjunto de etapas que devem ser seguidas para criar um produto			
Foco	O foco do desenvolvimento do produto está no resultado final	O processo se concentra em cada etapa a ser seguida durante o desenvolvimento do produto de software			
Vida	O ciclo de vida de um produto tende a ser de curto prazo	Um ciclo de vida do processo é geralmente de longo prazo			
Meta	O objetivo do desenvolvimento do produto é terminar o trabalho e entregar o produto com sucesso	O principal objetivo de um processo é fazer produtos de boa qualidade			

João Caldeira

Professor convidado

E-mail. <u>joaocarlos.caldeira@my.istec.pt</u>

Mob. +351 917769544

27 de outubro de 2022

