Edge and Corner Detection

Basics

- Edge pixels are those at which image intensity changes abruptly.
- Edge segments or edges are sets of connected edge pixels.

Digital derivatives: first versus second

- Along a ramp (i.e. intensity change with constant slope), first derivative is a non-zero constant.
- Second derivative is zero along the ramp, except at the start and end!
- Second derivative is preferable for image sharpening! Many edges in images are ramp-like, in which case first derivative will give thick edges (undesirable), whereas second derivative gives thin edges two pixels wide (desirable).
- Second derivative changes sign midway at a step edge (zero crossing property).

Digital derivatives: first versus second

- At roof edges, second derivative gives stronger response than first derivative (i.e. has larger magnitude) – except if both parts of the roof were at 45 degrees, where both will have equal response.
- At isolated points, second derivative gives stronger response than first derivative
- A rotationally invariant second-derivative operator is used for edge detection: the Laplacian, in fact zero-crossings of a Laplacian.

Laplacian of an image

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$
Rotationally symmetric operator (in the continuous domain)
$$= f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$+ f(x,y+1) + f(x,y-1) - 2f(x,y)$$

$$= f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
Laplacian operators: second operator is obtained by adding second derivatives along both the diagonals, to the first operator

Edge detection under noise

First and second derivatives are very sensitive to noise!

Left to right in each row: original image, first derivative, second derivative
In any column: increase in noise level

FIGURE 10.11 First column: Images and intensity profiles of a ramp edge corrupted by random Gaussian noise of zero mean and standard deviations of 0.0, 0.1, 1.0, and 10.0 intensity levels, respectively. Second column: First-derivative images and intensity profiles. Third column: Second-derivative images and intensity profiles.

Steps in robust edge detection

- Image smoothing to reduce noise: because first and second derivatives are noisy
- Actual detection of edge points (may produce thick or disconnected edges)
- Pruning or linking of the edge points

Edge detection: image gradient

An image gradient is defined as follows:

$$\nabla f = \begin{pmatrix} \partial f / \partial x \\ \partial f / \partial y \end{pmatrix} = \begin{pmatrix} f_x \\ f_y \end{pmatrix}$$

Gradient magnitude = $\|\nabla f\|_2 = \sqrt{f_x^2 + f_y^2}$

Gradient direction = $\theta = \tan^{-1}(f_v / f_x)$

Gradient operator:

$$f_x(x, y) = f(x+1, y) - f(x, y)$$

$$f_{y}(x, y) = f(x, y+1) - f(x, y)$$

Robust edge operators

These operators: Prewitt and Sobel perform some smoothing prior to difference computation, and hence are more robust than the simple finite differences from the previous slide.

$$f_y = \frac{\partial f}{\partial y} = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)$$

$$f_x = \frac{\partial f}{\partial x} = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$$

$$f_y = \frac{\partial f}{\partial y} = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$$

$$f_x = \frac{\partial f}{\partial x} = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$$

z_1	z_2	<i>z</i> ₃
Z4	z ₅	z_6
Z7	z_8	<i>Z</i> 9

-1	0	0	-1
0	1	1	0

Roberts

-1	-1	-1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

Prewitt

		2.14	1100		
-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel

2	ı
b	С
d	е
f	Ø

FIGURE 10.14

A 3×3 region of an image (the z's are intensity values) and various masks used to compute the gradient at the point labeled z_5 .

Prewitt and Sobel

-1	-1	-1
0	0	0
1	1	1

-1	0	1
-1	0	1
-1	0	1

- •Apply the differencing mask $[-1 \ o \ 1]^T$ and then apply the smoothing mask $[1 \ 1 \ 1]$ on the result. This is equivalent to applying the first Prewitt mask (i.e. for f_v).
- •For the Prewitt operator for f_x , apply [-1 o 1] and then $[1\ 1\ 1]^T$.

Prewitt

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

Sobel

- •Apply the differencing mask $[-1 \ o \ 1]^T$ and then apply the smoothing mask $[1 \ 2 \ 1]$ on the result. This is equivalent to applying the first Sobel mask (i.e. for f_{y}).
- •For the Sobel operator for f_{x} , apply [-1 o 1] and then [1 2 1]^T.

Edges with Sobel Mask

Original image

Derivative s in y direction: f_y

Derivative s in x direction: f_x

 $|f_x| + |f_y|$

Edges with 5 x 5 averaging followed by Sobel Mask

Original image

Derivative s in y direction: f

Derivative s in x direction: f_x

 $|f_x| + |f_y|$

Notice: finer details removed

a b

FIGURE 10.20 (a) Thresholded version of the image in Fig. 10.16(d), with the threshold selected as 33% of the highest value in the image; this threshold was just high enough to eliminate most of the brick edges in the gradient image. (b) Thresholded version of the image in Fig. 10.18(d), obtained using a threshold equal to 33% of the highest value in that image.

Edge map after Thresholding the earlier map.

Marr-Hildreth edge detector

- Principled approach to combined edge detection and image smoothing
- An edge operator should satisfy two criteria:
- (1) Notion of **scale** in edge detection (operators of different sizes)
- (2) Differential operator to compute first or second derivatives of the intensity
 - Uses the Laplacian of Gaussian operator on an image satisfies both criteria

Laplacian of Gaussian (LoG or Mexican hat)

$$\nabla^{2}G(x,y) = \frac{\partial^{2}G(x,y)}{\partial x^{2}} + \frac{\partial^{2}G(x,y)}{\partial y^{2}}$$

$$\frac{\partial^{2}G(x,y)}{\partial x^{2}} = \frac{\partial^{2}}{\partial x^{2}} \left[e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}} \right] = \frac{\partial}{\partial x} \left[-\frac{x}{\sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}} \right]$$

$$= \left(\frac{x^{2}}{\sigma^{4}} - \frac{1}{\sigma^{2}} \right) e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$\nabla^{2}G(x,y) = \left(\frac{y^{2}}{\sigma^{4}} - \frac{1}{\sigma^{2}} \right) e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$\nabla^{2}G(x,y) = \left(\frac{x^{2}}{\sigma^{4}} + \frac{y^{2}}{\sigma^{4}} - \frac{2}{\sigma^{2}} \right) e^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$
Zero crossing

© 1992-2008 R. C. Gonzalez & R. E. Woods

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

a b c d

FIGURE 10.21

(a) Threedimensional plot of the negative of the LoG. (b) Negative of the LoG displayed as an image. (c) Cross section of (a) showing zero crossings. (d) 5×5 mask approximation to the shape in (a). The negative of this mask would be used in practice.

Why LoG for edge detection?

- Remember: we are interested in zero-crossings of the second derivative!
- We want the second derivative operator to be rotationally invariant. The Laplacian is the simplest (though not the only) such operator.
- The Gaussian is a low-pass filter, which blurs structures with intensity difference smaller than σ .
- Gaussian is smooth in spatial and frequency domains.

Using LoG for edge detection

(1) Convolve the image with the LoG operator, i.e.:

$$g(x,y) = [\nabla^2 G(x,y)] * f(x,y) = \nabla^2 [G(x,y) * f(x,y)]$$

 (2) Find the zero-crossings in the resultant image.

Implementing the convolution

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

Use an n x n mask, created by sampling the formula for LoG on a discrete Cartesian crid of size n x n.

How to choose n? Depends on σ : n should be >= 6σ , because more than 99% of the volume underneath a 2D Gaussian lies between μ - 3σ and μ + 3σ .

Finding zero-crossings

- Look at a 3 x 3 window around a pixel.
- There exists a zero-crossing at that pixel if the signs of at least one pair of opposing neighbors (top & bottom, left & right, top-left & right-bottom, top-right & left-bottom) differ and the difference in their values must exceed a threshold p.

 $\sigma = 4$, n = 25

Zero-crossings

Zero-crossings + thresholding

Convolution with LoG

Some properties of the Marr-Hildreth Edge Detector

- Detected edges are 1-pixel in thickness
- Can be used for different sigma values, keeping only those edge points that are common to multiple scales

Canny Edge Detector: using 1st derivatives

- Three aims/objectives:
- (a) Low error (no spurious responses due to noise)
- (b) Well-localized edge points
- (c) Single pixel wide edges

Canny's detector was formulated by analyzing step edges in 1D under zero-mean i.i.d. Gaussian noise, and expressing the preceding three criteria mathematically and deriving an (approximate) operator that obeys all criteria.

Canny's Edge Detector

- In 1D, the approximate operator was the first derivative of the Gaussian: $\frac{d}{dx}e^{-\frac{x^2}{2\sigma^2}} = \frac{-x}{\sigma^2}e^{-\frac{x^2}{2\sigma^2}}$
- In 2D, the approximate operator was the first derivative of the Gaussian in the direction of the local image gradient (i.e. perpendicular to the edge).
- But the true gradient is not known, so we first smooth the image with a 2D Gaussian and then use its gradient magnitude and direction.

Canny's Edge Detector

Gradient magnitude and direction:

$$g(x,y) = G(x,y) * f(x,y)$$

$$M(x,y) = |\nabla g(x,y)| = \sqrt{g_x^2(x,y) + g_y^2(x,y)}$$

$$\theta(x,y) = \tan^{-1} \left(\frac{g_y(x,y)}{g_x(x,y)}\right)$$

- M(x,y) contains wide ridges along the true edges of the image.
- Though the maximum values are along the edge, those values don't immediately fall off to o on either side of the edge.
- Recall ramp edges.

Canny edge detector

This requires us to perform a thinning operation – called as non-maximal suppression (i.e. we set to zero those values of M(x,y) which are likely to NOT be local maxima).

Canny edge detector

- Consider the four quantized directions shown on the previous slide. Pick the direction d_k , which is closest to $\Theta(x,y)$.
- If M(x,y) is less than either of its two neighbors along the direction d_k, then set it to o (i.e. suppress the non-maximum), otherwise we leave it as is.
- After this processing, M(x,y) is the non-maximal suppressed image.

Canny Edge Detector

- The (thinned) edge map so far may still contain some false positives. This is taken care of (to some extent) by hysteresis thresholding.
- This uses a low-threshold TL and a high threshold TH.
- We keep only those pixels for which
- -M(x,y) > TH, OR

-M(x,y) > TL AND(x,y) is a neighbor of at least one pixel

with M(x,y) > TH.

The 8 neighbors of pixel (x,y)

Summary: Canny Edge detector

- (1) Convolve the image with a Gaussian Filter. Compute the gradient magnitudes and orientations.
 - (2) Perform non-maximal suppression.
 - (3) Perform hysteresis thresholding.

© 1992-2008 R. C. Gonzalez & R. E. Woods

a b c d

FIGURE 10.25

- (a) Original image of size 834 × 1114 pixels, with intensity values scaled to the range [0, 1].
- (b) Thresholded gradient of smoothed image.
- (c) Image obtained using the Marr-Hildreth algorithm.
- (d) Image obtained using the Canny algorithm. Note the significant improvement of the Canny image compared to the other two.

a b c d

FIGURE 10.26

(a) Original head CT image of size 512×512 pixels, with intensity values scaled to the range [0,1]. (b) Thresholded gradient of smoothed image. (c) Image obtained using the Marr-Hildreth algorithm. (d) Image obtained using the Canny algorithm. (Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)

Gaussian filtered $(sigma = 1.4, 5 \times 5)$ mask)

Intensity gradients superimposed

https://en.wikipedia.org/wiki/Canny edge detector

Non-maximum suppression

Double thresholding (TL = 0.1, TH = 0.3)

After edge-linking (hysteresis)

Corner Detection

Importance of corners

- Corners are considered salient feature points.
- Useful in many tasks in computer vision and image processing
- Example: corresponding control points for image alignment

Importance of corners

- In some applications, we need to find matching patches.
- But some patch matches are easier to find than others.
- Each patch is assumed to be centered at a certain point (say (x,y))
- The patch encodes information about the local geometry of the image intensities about that point.
- See next slide for examples.

http://www.cse.psu.edu/~rtc12/CSE486/lectureo6.pdf

Importance of corners

- Good patches should contain corners large intensity variations in all directions.
- Shifting the window in any direction yields
 large appearance change.
 http://www.cse.psu.edu/~rtc12/CSE486/lectureo6.pdf

Ambiguity in point matching in flat intensity regions or along edges

Principle behind Harris corner detector

- Consider two patches one each centered at (x,y) and (x+u,y+v) in two images (patch domain: Ω, typically rectangular, like say 7 x7 or 5 x 5) with u,v being small.
- The image have same intensity at physically corresponding locations.
- The sum of squared difference (SSD) between their intensities is given as:

$$SSD = \sum_{(x,y)\in\Omega} (I(x,y) - I(x+u,y+v))^2$$

By first order Taylor series,

$$I(x+u,y+v) \approx I(x,y) + uI_x(x,y) + vI_y(x,y)$$

$$SSD = \sum_{(x,y)\in\Omega} (I(x,y) - I(x+u,y+v))^{2}$$

By first order Taylor series,

$$I(x+u, y+v) \approx I(x, y) + uI_x(x, y) + vI_y(x, y)$$

$$\therefore SSD = \sum_{(x,y)\in\Omega} (uI_x(x,y) + vI_y(x,y))^2$$

$$= \begin{pmatrix} u & v \end{pmatrix} \left(\sum_{\substack{x,y \in \Omega \\ x,y \in \Omega}} I_x^2(x,y) & \sum_{\substack{x,y \in \Omega \\ x,y \in \Omega}} I_x(x,y) I_y(x,y) & \sum_{\substack{x,y \in \Omega \\ x,y \in \Omega}} I_y^2(x,y) & v \end{pmatrix} \right) \begin{pmatrix} u \\ v \end{pmatrix}$$

$$= (u \quad v)A \begin{pmatrix} u \\ v \end{pmatrix}$$
 Structure tensor matrix (size 2 x 2)

Principle behind Harris corner detector

- The local A matrix on the previous slide is called the structure tensor.
- A carries information about local image geometry.

$$A = \lambda_1 u_1 u_1^t + \lambda_2 u_2 u_2^t$$
; eigenvals: λ_1, λ_2 ; eigenvecs: u_1, u_2

- It is always positive semi-definite, i.e. its two eigenvalues are always non-negative.
- In locally flat regions, A will be close to a zero matrix and hence both its eigenvalues will be close to o.

Proof that the structure tensor matrix is positive semi-definite: Method 1

$$A = \begin{pmatrix} \sum_{(x,y)\in\Omega} I_{x}^{2}(x,y) & \sum_{(x,y)\in\Omega} I_{x}(x,y)I_{y}(x,y) \\ \sum_{(x,y)\in\Omega} I_{x}^{2}(x,y)I_{y}(x,y) & \sum_{(x,y)\in\Omega} I_{y}^{2}(x,y) \end{pmatrix}$$

$$= \begin{pmatrix} I_{x}(x_{1},y_{1}) & I_{x}(x_{2},y_{2}) & \dots & I_{x}(x_{N},y_{N}) \\ I_{y}(x_{1},y_{1}) & I_{y}(x_{2},y_{2}) & \dots & I_{y}(x_{N},y_{N}) \end{pmatrix} \begin{pmatrix} I_{x}(x_{1},y_{1}) & I_{y}(x_{1},y_{1}) \\ I_{x}(x_{2},y_{2}) & I_{y}(x_{2},y_{2}) \\ \dots & \dots & \dots \\ I_{x}(x_{N},y_{N}) & I_{y}(x_{N},y_{N}) \end{pmatrix}$$

$$= ZZ^{T}$$

Any matrix that can be written in the form $A = ZZ^T$ is always positive semi-definite (quoting a result from linear algebra)

Proof that the structure tensor matrix is positive semi-definite: Method 2

$$A = \begin{pmatrix} \sum_{(x,y)\in\Omega} I_x^2(x,y) & \sum_{(x,y)\in\Omega} I_x(x,y)I_y(x,y) \\ \sum_{(x,y)\in\Omega} I_x(x,y)I_y(x,y) & \sum_{(x,y)\in\Omega} I_y^2(x,y) \end{pmatrix}$$

$$trace(A) = \lambda_1 + \lambda_2 = \sum_{(x,y)\in\Omega} I_x^2(x,y) + \sum_{(x,y)\in\Omega} I_y^2(x,y)$$

trace(A) is clearly non -negative as I_x^2 and I_y^2 are both non -negative

$$|A| = \sum_{(x,y)\in\Omega} I_x^2(x,y) \sum_{(x,y)\in\Omega} I_y^2(x,y) - \left(\sum_{(x,y)\in\Omega} I_x(x,y)I_y(x,y)\right)^2$$

 $|A| \ge 0$ by Cauchy - Schwarz inequality (the first term is $||a||^2 ||b||^2$, and the second term is $(a \bullet b)^2$ for N element ve ctors a and b, respective ly containing the I_x and I_y values)

Principle behind Harris corner detector

- At a point lying on an edge, only one of the eigenvalues is large (corresponding to the eigenvector that points across the edge) and the other is close to o (corresponding to the eigenvector that points along the edge)
- At a corner point, both eigenvalues will be large.
- We would like the SSD to be large for all non-zero shifts (u,v) so that we can allow for maximum discriminability and easier point matching.

http://www.cse.psu.edu/~rtc12/CSE486/lectureo6.pdf

http://www.cse.psu.edu/~rtc12/CSE486/lectureo6.pdf

http://www.cse.psu.edu/~rtc12/CSE486/lectureo6.pdf

"Corner"-ness measure

- We would like both eigenvalues of this matrix to be large.
- Corner response or "corner" ness measure: $R_H = det(A) - k (trace(A))^2$, k between 0.04 to 0.06
- Does not require explicit eigenvalue/eigenvector computation:

$$|A| = \lambda_1 \lambda_2 = A_{11} A_{22} - A_{12} A_{21};$$

 $trace(A) = \lambda_1 + \lambda_2 = A_{11} + A_{22}$

Figure 5: Harris measure. If both eigenvalues are large, then R is large and positive, providing a clue to detect a corner. If both eigenvalues are small, then R is also small and positive, which means that the point is probably part of a homogeneous region. Finally, if one of the eigenvalues is much larger than the other, R becomes negative, and the point belongs to an edge.

http://www.ipol.im/pub/art/2018/229/article lr.pdf

Harris R score.

Ix, Iy computed using Sobel operator Windowing function w = Gaussian, sigma=1

Computing corners

- Smooth image I to compute various derivatives
- Choose a window size (say 7 x 7) and compute the structure tensor at each pixel, given this window size
- Compute the corner-ness measure for each pixel
- Perform thresholding or non-maximal suppression to create a corners map.

Invariance

- The detected corners are invariant under affine intensity change, i.e. image J replaced by aJ + b for scalars a,b.
- The corners are also invariant to rotation and translation.

Other measures of corner-ness

- Based on just the minimum eigenvalue declared a corner if the minimum eigenvalue exceeds a threshold
- Harmonic mean of eigenvalues

$$R_{HM} = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} = \frac{\det(M)}{trace(M)}$$