	ML C+2	Rev. MLZ	18/02/2023
Agenga:			
1. PCA			
2. Clustering			
3. Model Selection	h		
a Regulanization			
5. Boosting			
P(A: - Unsuperul	. AG WT		
	problem of 'Carse	of Dimensionality)
- v v·hi	gh # fratures N	rabel - Overfits	
:- Go	for PGI -> Capteres	varionce in the	IV.
- Statistic	al transformation	n technique	
	cepts only huner	rical data & that t	sonly X
	1 ×2 ×3 ×4 ×5	9	
		PIA is applie	den X1 X2.
— alvoys	apply PA or	scaled data.	
Steps: 1. read t Sc	csu 2 X,y	3. Train Tist Sp	(H

fittransform (Xtrain) transform (Xtrst) S. PCA fit transform (x train) bransform (X_tost) (. Modeling 7. Evaluating 8. Deplyment DI. What is Curse of Dim? Oz. Describe pc. 03. (an PCA be used in Feature Delection? No. 5 is Feature Reduction Q4. Comment on PCI-US. Disadu. of Dinversionality reduction? (Original feature) r lost ! al. Do we scalo data by PCA. Qr. (an we use it on Large gatasets?

Clustering: (2,1) 1. Euclidean Distance $(x_2-x_1)^2 + (y_2-y_1)^2$ 2. Math behind 3. Stopping Contern - No change in centraid values

4. Diff blu kmens & KNN

Visupini sed Supini se

Only X

X81

5. Hierarchical (Justuring us KMeans (Justering c. What is Silhantle score? 7. Significance of Hopkins test. 8. Elbow method: was Choosing right value of k. Regularization: avoid Overfitting 4- 15+1.2x,+20x2 + 39x3 4=0.9 + 1.2xx+ 2m2+ 573

wby

1. Ridge Ry: Loss + > m/2 - vector of coefficient or 12 kg: (y-y)2 Kyperparameter Ototre 4=0.01 1= 2 -> Lase value of welf-Use fidge: when a encounter colinearity 2. Lassoreq: Lasso= Loss + > Im/ or FING. Pratty 4=15+1.2x+20x2+39xs I Lasso Rg. 4= 0,9 +07,+072 +573 Use: Feature Selection, more robust to Outhren

Hierarchical (1.: Agglomerative & Divisive:
Divisive: Top-Down App.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
σ σ
S Se 1
fyslomerative. Bottan up app.
6 clusted 5 clusted
Boosting: Combine individual models into a strong learner
- Sequential learning
_ Avoid Overfitting

1 Is XaBout faster than RF7. -> XGBoost is a better performe 2. Tick adviof XABOOSt? a. Lot of Hyperparameters b. Can handle missing value!
c. Distributed computing (Payallel) 3. Disadu of XGI! 2 Sensitive to Outliers 2. Manually create dumnier. 4. Inp. hyperparameters of Xaboust? https://www.analyticsvidhya.com/blog/2016/03/complete-guideparameter-tuning-xgboost-with-codes-python/ la Only point 1 &2 5. XG Boost Vs Light GBM. Slaver faster relatively loss poweful powerful 6 How XGB handles Miss values ablinear booster-> fill miss. val. with o.

7. XaBIA VS AdaBourt? learns from pravious sturps of lears from predictions errors in prediction in minimize cora. Model Selection: 1. Bias & Variance Procision vs Accuracy -> Overfitting 3. Biras Variance Tradeoff Cross Validation: KFold, leave one out https://www.javatpoint.com/cross-validation-in-machine-learning

https://www.analyticsvidhya.com/blog/2021/05/4-ways-to-evaluateyour-machine-learning-model-cross-validation-techniques-with-pythoncode/ ς. (δτα Ιαήλη

7. VIF $\begin{bmatrix} 0-5 \end{bmatrix}$ $VIF_i = \frac{1}{1-R_i^2}$

					wd, Step	P mg 1	RFE	
9-	Tree	bravi,v	9					
\ ₀ .	Grid	Search	CV	٧ ١	Randoni zid	Search(V		
					X —			