

Mixed Integer Programming

A mixed-integer program (MIP) is an optimization problem of the form

minimize
$$\sum_{j=1}^{n} c_j x_j$$
 subject to
$$\sum_{j=1}^{n} A_{ij} x_j = b_i, \quad i = 1, \dots, m,$$

$$\ell_j \leq x_j \leq u_j, \quad j = 1, \dots, n,$$
 some or all x_j integer

MIP solution framework:

LP based Branch-and-Bound

Solving a MIP Model

- Solve continuous relaxations
 - Ignoring integrality
 - Gives a bound on the optimal integral objective
- Branching variable selection
 - Crucial for limiting search tree size
- Cutting planes
 - Cut off relaxation solutions
- Primal heuristics
 - Find integer feasible solutions
- Presolve
 - Tighten formulation and reduce problem size

Branch and bound

- Parallel branch-and-cut
 - Explore the MIP search tree using multiple processors
 - Deterministic parallel behavior

Building A Better MIP Solver

Improving a MIP Solver

Improvements can be plotted on two axes:

New Ideas

Improvements Near the Axes

- Improvements near the axes are quite important as well
- Consider MIP cutting planes
 - General 'cutting plane' label clearly in the top-right
 - Considering cutting planes individually...

Cutting Planes

Presolve

- MIP presolve reduction types
 - Reduce the problem size (similar to LP)
 - Aggregation
 - Remove redundant constraints
 - Tighten formulation
 - Coefficient reduction

$$7x + y + z \le 8$$
, x, y and z are binary

...can be reduced to...

$$x + y + z \le 2$$

Probing

$$b = 0 -> x = 0, b = 1 -> x = 0 \Rightarrow x = 0$$

- General vs. individual reductions (similar to cuts)
 - General 'presolve' label clearly in the top-right
 - Individual reductions ...

Presolve Reductions

Near the Axes – An Example

Disjoint Subtrees

- Basic principle of branching:
 - Feasible regions for child nodes after a branch should be disjoint
- Not always the case
- Simple example integer complementarity:
 - $x \le 10 b$
 - $y \le 10 (1-b)$
 - x, y non-negative ints, $x \le 10$, $y \le 10$, b binary
 - Branch on b: x=y=0 feasible in both children

Recognizing Subtree Overlap

- Recognizes domain overlap
- Adjusts variable bounds in subtrees to remove it
- Huge win on a few models
 - neos859080 time drops from 10000+ seconds to 0.1s
- Not very general
 - Affects less than 1 in 10 models
 - Performance impact is small on most models

Parallel MIP

Need Deterministic Behavior

- Non-deterministic parallel behavior:
 - Multiple runs with the same inputs can give different results
 - Big difference in run-time
 - Different optimal solutions
- "Insanity: doing the same thing over and over again and expecting different results"
 - Albert Finstein
- Conclusion:
 - Non-deterministic parallel behavior will drive you insane!

Building Blocks

Building Blocks

Parallel MIP is parallel branch-and-bound:

Available for simultaneous processing

Deterministic Parallel MIP

One subtree per processor:

Subtree Partitioning

- Problem: hard to predict subtree difficulty
 - Subtree may quickly prove to be uninteresting
 - Poor relaxation objectives
 - May want to abandon it
 - Pruned quickly
 - Leaves processor idle
 - Majority of work may be in one subtree

More Global Partitioning

Node coloring: assign a color to every node

- Processor can only process nodes of the appropriate color
- New child node same color as parent node
- Perform periodic re-coloring

More Dynamic Node Processing

- Allows much more flexibility
 - Processor can choose from among many nodes of the appropriate color
- Deterministic priority queue data structure required to support node coloring
 - Single global view of active nodes
 - Support notion of node color
 - Processor only receives node of the appropriate color
 - Efficient, frequent node reallocation

Branch Variable Selection

Pseudo-Costs

- Given a relaxation solution x*
 - Branching candidates:
 - Integer variables x_i that take fractional values
 - xj=0.5 produces two child nodes (x=0 or x=1)
 - Need to pick a variable to branch on
 - Choice is crucial in determining the size of the overall search tree

Pseudo-Costs

- What's a good branching variable?
 - Superb: fractional variable infeasible in both branch directions
 - Great: infeasible in one direction
 - Good: both directions move the objective
- Expensive to predict which branches lead to infeasibility or big objective moves
 - Strong branching
 - Truncated LP solve for every possible branch at every node
 - Rarely cost-effective
 - Need a quick estimate

Pseudo-Costs

- Use historical data to predict impact of a branch:
 - Record $cost_x = \Delta_{obj} / \Delta_x$ for each branch
 - Need a scheme for infeasible branches too
 - Store results in a pseudo-cost table
 - Two entries per integer variable
 - Average (or max) down cost
 - Average (or max) up cost
 - Use table to predict cost of a future branch

Pseudo-Cost Initialization

- What do you do when there is no history?
 - E.g., at the root node
- Initialize pseudo-costs [Linderoth & Savelsbergh, 1999]
 - Always compute up/down cost (using strong branching) for new fractional variables
 - Initialize pseudo-costs for every fractional variable at root
- Reliability branching [Achterberg, Koch, & Martin, 2002]
 - Don't rely on historical data until pseudo-cost for a variable has been recomputed r times

Pseudo-Cost Adjustment

- Gurobi MIP solver adjusts pseudo-costs in several ways
 - Implied pseudo-cost bounds
 - Ancestor adjustment

Implied Pseudo-Cost Bounds

Consider constraint:

$$\circ \sum x_i = 1$$

Computed objective bounds:

$$x_1 = 1 - obj \ge 100$$

•
$$x_2 = 0 -> obj \ge 110$$

Stronger bound for $x_1 = 1$:

$$x_1=1 -> x_2=0 -> obj \ge 110$$

In general:

• If
$$x=a \rightarrow y=b$$
, then $obj_{x=a} \ge obj_{y=b}$

- Often violated:
 - Strong branching uses an iteration limit

Implied Pseudo-Cost Bounds

- Consider $\sum x_i = 1$ again
- Computed objective bounds:
 - $x_1 = 0 obj \ge 100$
 - $x_j=1 \rightarrow obj \ge 110$ for all j != 1
- Stronger bound for $x_1 = 0$:
 - $x_1=0 -> x_j=1$ for some $j != 1 -> obj \ge 110$
- In general:
 - If $x_i=a \rightarrow x_j=b$ for some j != i
 - Then $obj_{xi=a} \ge min(obj_{xj=b})$

Ancestor Adjustment

- Objective move isn't entirely the result of most recent branch variable
 - Depends on ancestors as well
 - Particularly true for infeasible nodes
- Adjust pseudo-costs for ancestor branches

Ancestor Adjustment

Need an adjustment strategy

 Empirically, adjustment should decrease as you move up the tree

- Our approach:
 - Exponential backoff
 - ½ for parent, ¼ for grandparent, etc.

Thank You