COMBINATORIAL TOOLS IN EQUIVARIANT ALGEBRAIC TOPOLOGY

Part I

THE CONJECTURES

Can every smooth *n*-manifold become a sphere via surgery?

SURGERY

Replace a submanifold by another with the same boundary

Can every smooth *n*-manifold become a sphere via surgery?

(1963–1984) counterexamples with n = 2, 6, 14, 30, 62(1969) Browder: counterexamples must have $n = 2^k - 2$

Can every smooth *n*-manifold become a sphere via surgery?

(1963–1984) counterexamples with n = 2, 6, 14, 30, 62 (1969) Browder: counterexamples must have $n = 2^k - 2$

THEOREM (Hill-Hopkins-Ravenel, 2016)

The only counterexamples have n = 2, 6, 14, 30, 62, or maybe 126

Key ingredient: equivariant homotopy theory

Can every smooth *n*-manifold become a sphere via surgery?

(1963–1984) counterexamples with n = 2, 6, 14, 30, 62 (1969) Browder: counterexamples must have $n = 2^k - 2$

THEOREM (Hill-Hopkins-Ravenel, 2016)

The only counterexamples have n = 2, 6, 14, 30, 62, or maybe 126

Key ingredient: equivariant homotopy theory

THEOREM (Lin-Wang-Xu, December 2024)

There exist counterexample 126-manifolds (nonconstructive)

Two ways of computing $\pi_k S^n$ are the same

THEOREM (Burklund-Hahn-Levy-Schlank, 2023)

The Telescope Conjecture is false!

A key ingredient: equivariant homotopy theory

Two ways of computing $\pi_k S^n$ are the same

THEOREM (Burklund-Hahn-Levy-Schlank, 2023)

The Telescope Conjecture is false!

A key ingredient: equivariant homotopy theory

Will equivariant homotopy theory solve all our problems?

Two ways of computing $\pi_k S^n$ are the same

THEOREM (Burklund-Hahn-Levy-Schlank, 2023)

The Telescope Conjecture is false!

A key ingredient: equivariant homotopy theory

Will equivariant homotopy theory solve all our problems?

Not yet.

- Group actions are rigid; homotopy theory is floppy
- Computations are tough, even for small finite groups
- Needs new algebraic tools: Mackey/Tambara functors

Two ways of computing $\pi_k S^n$ are the same

THEOREM (Burklund–Hahn–Levy–Schlank, 2023)

The Telescope Conjecture is false!

A key ingredient: equivariant homotopy theory

Will equivariant homotopy theory solve all our problems?

Not yet.

- Group actions are rigid; homotopy theory is floppy
- Computations are tough, even for small finite groups
- Needs new algebraic tools: Mackey/Tambara functors

The better we understand these tools, the more we can do!

EQUIVARIANT

PART II

ALGEBRAIC TOPOLOGY

Let *G* be a finite group.

DEFINITION

A *G*-space is a topological space *X* with a *G*-action $G \times X \to X$:

$$1 \cdot x = x$$
$$g \cdot (h \cdot x) = (gh) \cdot x$$

such that $x \mapsto g \cdot x$ is continuous for all $g \in G$.

Let *G* be a finite group.

DEFINITION

A *G*-space is a topological space *X* with a *G*-action $G \times X \to X$:

$$1 \cdot x = x$$
$$g \cdot (h \cdot x) = (gh) \cdot x$$

such that $x \mapsto g \cdot x$ is continuous for all $g \in G$.

DEFINITION

A *G*-equivariant map $f: X \to Y$ is a continuous map such that

$$f(g \cdot x) = g \cdot f(x)$$

for all $g \in G$ and all $x \in X$.

 $PbCr_3S_4$ crystals Dihedral Group D_6

DEFINITION

An invariant is data F(X) built from a space X such that

$$X \simeq Y \implies F(X) \cong F(Y)$$

DEFINITION

An invariant is data F(X) built from a space X such that

$$X \simeq Y \implies F(X) \cong F(Y)$$

We mostly use the contrapositive: $F(X) \not\cong F(Y) \implies X \not\simeq Y$

DEFINITION

An invariant is data F(X) built from a space X such that

$$X \simeq Y \implies F(X) \cong F(Y)$$

We mostly use the contrapositive: $F(X) \not\cong F(Y) \implies X \not\simeq Y$

EXAMPLE

The fundamental group $\pi_1(X)$ is the group of homotopy classes of based loops in X.

DEFINITION

An invariant is data F(X) built from a space X such that

$$X \simeq Y \implies F(X) \cong F(Y)$$

We mostly use the contrapositive: $F(X) \not\cong F(Y) \implies X \not\simeq Y$

EXAMPLE

The fundamental group $\pi_1(X)$ is the group of homotopy classes of based loops in X.

DEFINITION

An invariant is data F(X) built from a space X such that

$$X \simeq Y \implies F(X) \cong F(Y)$$

We mostly use the contrapositive: $F(X) \not\cong F(Y) \implies X \not\simeq Y$

EXAMPLE

The fundamental group $\pi_1(X)$ is the group of homotopy classes of based loops in X.

QUESTION

How do you see group actions on spaces using invariants?

QUESTION

How do you see group actions on spaces using invariants?

ANSWER

Consider the fixed point subspaces X^G as well!

$$X^G := \left\{ x \in X \mid g \cdot x = x \text{ for all } g \in G \right\} \subseteq X$$

 $G \bigcirc X$

G-space

THEOREM (Elmendorf, Piacenza, 1991)

For the purposes of homotopy theory, we may replace a G-space X by its collection of fixed point subspaces $\{X^H\}_{H\subseteq G}$

THEOREM (Elmendorf, Piacenza, 1991)

For the purposes of homotopy theory, we may replace a G-space X by its collection of fixed point subspaces $\{X^H\}_{H\subseteq G}$

THEOREM (Elmendorf, Piacenza, 1991)

For the purposes of homotopy theory, we may replace a G-space X by its collection of fixed point subspaces $\{X^H\}_{H\subseteq G}$

DEFINITION (Dress, 1971) A Mackey Functor for *G* is the data:

A Mackey Functor for G is the • an abelian group $M(H)$ for subgroup $H \subseteq G$		M(G)	
	M(H)		
		M(K)	$M(gKg^{-1})$

M(1)

DEFINITION (Dress, 1971)

DEFINITION (Dress, 1971)

A Mackey Functor for *G* is the data:

- an abelian group M(H) for each subgroup $H \subseteq G$
- restriction homomorphisms

 $\operatorname{res}_K^H \colon M(H) \to M(K)$

DEFINITION (Dress, 1971)

A Mackey Functor for *G* is the data:

- an abelian group M(H) for each subgroup $H \subseteq G$
- restriction homomorphisms

$$\operatorname{res}_K^H\colon M(H)\to M(K)$$

• transfer homomorphisms

$$\operatorname{tr}_K^H \colon M(K) \to M(H)$$

DEFINITION (Dress, 1971)

A Mackey Functor for *G* is the data:

- an abelian group M(H) for each subgroup $H \subseteq G$
- restriction homomorphisms

$$\operatorname{res}_K^H \colon M(H) \to M(K)$$

• transfer homomorphisms

$$\operatorname{tr}_K^H \colon M(K) \to M(H)$$

• conjugation isomorphisms

$$c_g: M(K) \cong M(gKg^{-1})$$

with a "double coset formula" for res o tr, and other conditions

SMALL GROUPS

A Mackey functor for G = 1 is just an abelian group

SMALL GROUPS

A Mackey functor for G = 1 is just an abelian group

A Mackey functor M for $G = C_p$ (cyclic, order p) is the data:

SMALL GROUPS

A Mackey functor for G = 1 is just an abelian group

A Mackey functor M for $G = C_p$ (cyclic, order p) is the data:

$$M(C_p)$$
 $\operatorname{tr}_1^{C_p} \bigvee_{\operatorname{res}_1^{C_p}} M(1)$
 C_p

$$\operatorname{res}_1^{C_p} \circ \operatorname{tr}_1^{C_p}(m) = \sum_{g \in C_p} g \cdot m$$

Where do the transfers come from?

Where do the transfers come from?

Let E/F be a Galois extension with (finite) Galois group Gal(E/F)

There is a Gal(E/F)-Mackey functor M with $M(H)=(E^H,+)$

Where do the transfers come from?

Let E/F be a Galois extension with (finite) Galois group Gal(E/F)

There is a Gal(E/F)-Mackey functor M with $M(H) = (E^H, +)$

Restrictions are inclusions:

$$\operatorname{res}_K^H \colon E^H \, \hookrightarrow \, \to \, E^K$$

Where do the transfers come from?

Let E/F be a Galois extension with (finite) Galois group Gal(E/F)

There is a Gal(E/F)-Mackey functor M with $M(H) = (E^H, +)$

Restrictions are inclusions:

$$\operatorname{res}_K^H \colon E^H \hookrightarrow \longrightarrow E^K$$

Transfers are sums over orbits (field-theoretic traces):

$$\operatorname{tr}_{K}^{H} \colon E^{K} \longrightarrow E^{H}$$

$$a \longmapsto \sum_{gK \in H/K} g \cdot a$$

Where do the transfers come from?

Let E/F be a Galois extension with (finite) Galois group Gal(E/F)

There is a Gal(E/F)-Mackey functor M with $M(H) = (E^H, +)$

Restrictions are inclusions:

$$\operatorname{res}_K^H \colon E^H \longrightarrow E^K$$

Transfers are sums over orbits (field-theoretic traces):

$$\operatorname{tr}_{K}^{H} \colon E^{K} \longrightarrow E^{H}$$

$$a \longmapsto \sum_{gK \in H/K} g \cdot a$$

SLOGAN

Mackey Functors $\pi_1^{st}(X^H)$ encode a "Galois theory" of *G*-spaces

EQUIVARIANT ALGEBRA

PART III

- abelian
- symmetric monoidal
- generated by finitely many projectives

- abelian \Longrightarrow algebra!
- symmetric monoidal
- generated by finitely many projectives

- abelian \Longrightarrow algebra!
- symmetric monoidal \implies commutative algebra!
- generated by finitely many projectives

- abelian \Rightarrow algebra!
- symmetric monoidal \implies commutative algebra!
- generated by finitely many projectives
 ⇒ homological algebra!

- abelian \Rightarrow algebra!
- symmetric monoidal \implies commutative algebra!
- generated by finitely many projectives
 ⇒ homological algebra!

EXAMPLE

When $G = \mathbb{1}$, this is just abelian groups and commutative rings

What is a commutative ring for *G*-Mackey functors?

What is a commutative ring for *G*-Mackey functors?

Let E/F be a Galois extension with (finite) Galois group $\operatorname{Gal}(E/F)$

There is a Gal(E/F)-Mackey functor M with $M(H) = E^H$

What is a commutative ring for G-Mackey functors?

Let E/F be a Galois extension with (finite) Galois group Gal(E/F)

There is a Gal(E/F)-Mackey functor M with $M(H) = E^H$

Restrictions are inclusions:

$$\operatorname{res}_K^H \colon E^H \hookrightarrow \longrightarrow E^K$$

Transfers are sums over orbits (field-theoretic traces):

$$\operatorname{tr}_{K}^{H} \colon E^{K} \longrightarrow E^{H}$$

$$a \longmapsto \sum_{\sigma \in \operatorname{Gal}(E^{K}/E^{H})} \sigma(a)$$

OUESTION

What is a commutative ring for *G*-Mackey functors?

Let E/F be a Galois extension with (finite) Galois group Gal(E/F)

There is a Gal(E/F)-Mackey functor M with $M(H) = E^H$

Restrictions are inclusions:

$$\operatorname{res}_K^H \colon E^H \hookrightarrow \longrightarrow E^K$$

Transfers are sums over orbits (field-theoretic traces):

$$\operatorname{tr}_{K}^{H} \colon E^{K} \longrightarrow E^{H}$$

$$a \longmapsto \sum_{\sigma \in \operatorname{Gal}(E^{K}/E^{H})} \sigma(a)$$

Also have field-theoretic norms:

$$a \longmapsto \prod_{\sigma \in \operatorname{Gal}(E^K/E^H)} \sigma(a)$$

DEFINITION (Tambara, 1993) A Tambara Functor for *G* is the data:

A Tambara Functor for *G* is the data:

- a commutative ring T(H) for each subgroup $H \subseteq G$
 - T(H)

T(K

T(G)

T(1)

A Tambara Functor for *G* is the data:

- a commutative ring T(H) for each subgroup $H \subseteq G$
- restriction (ring) homomorphisms

$$\operatorname{res}_K^H \colon T(H) \to T(K)$$

A Tambara Functor for *G* is the data:

- a commutative ring T(H) for each subgroup $H \subseteq G$
- restriction (ring) homomorphisms

$$\operatorname{res}_K^H \colon T(H) \to T(K)$$

• transfer homomorphisms (for +)

$$\operatorname{tr}_K^H \colon T(K) \to T(H)$$

A Tambara Functor for *G* is the data:

- a commutative ring T(H) for each subgroup $H \subseteq G$
- restriction (ring) homomorphisms

$$\operatorname{res}_K^H \colon T(H) \to T(K)$$

• transfer homomorphisms (for +)

$$\operatorname{tr}_K^H \colon T(K) \to T(H)$$

• norm homomorphisms (for ×)

$$\operatorname{nm}_K^H \colon T(K) \to T(H)$$

A Tambara Functor for *G* is the data:

- a commutative ring T(H) for each subgroup $H \subseteq G$
- restriction (ring) homomorphisms

$$\operatorname{res}_K^H \colon T(H) \to T(K)$$

• transfer homomorphisms (for +)

$$\operatorname{tr}_K^H \colon T(K) \to T(H)$$

• norm homomorphisms (for ×)

$$\operatorname{nm}_K^H \colon T(K) \to T(H)$$

• conjugation isomorphisms with "double coset formulas" for res o tr and res o nm, and ...

TAMBARA FUNCTORS FOR SMALL GROUPS

A Tambara functor for G = 1 is a commutative ring

TAMBARA FUNCTORS FOR SMALL GROUPS

A Tambara functor for G = 1 is a commutative ring

A Tambara functor T for $G = C_p$ is the data:

TAMBARA FUNCTORS FOR SMALL GROUPS

A Tambara functor for G = 1 is a commutative ring

A Tambara functor T for $G = C_p$ is the data:

$$T(C_p)$$
 $tr \left(\begin{array}{c} T(C_p) \\ \downarrow \\ T(1) \\ \downarrow \\ C_p \end{array} \right)$

$$\operatorname{nm}(0) = 0$$

$$\operatorname{res} \circ \operatorname{tr}(x) = \sum_{g \in C_p} g \cdot x$$

$$\operatorname{res} \circ \operatorname{nm}(x) = \prod_{g \in C_p} g \cdot x$$
(and other conditions)

EXAMPLE: BURNSIDE FUNCTOR A

For each G, there is a Burnside functor \mathbb{A} with origin in topology. Each $\mathbb{A}(H)$ is built from finite G-sets.

EXAMPLE: BURNSIDE FUNCTOR A

For each G, there is a Burnside functor \mathbb{A} with origin in topology. Each $\mathbb{A}(H)$ is built from finite G-sets.

EXAMPLE: BURNSIDE FUNCTOR A

For each G, there is a Burnside functor \mathbb{A} with origin in topology. Each $\mathbb{A}(H)$ is built from finite G-sets.

This Tambara functor \mathbb{A} plays the role of \mathbb{Z} .

- Every Mackey functor is an A-module
- A is the initial Tambara functor
- A is the unit for the tensor product

REPRESENTATION THEORY

DEFINITION

Let *X* be a *G*-space. The space X^n has actions of both G^n and S_n , which combine to an action of the wreath product $G \wr S_n$.

REPRESENTATION THEORY

DEFINITION

Let *X* be a *G*-space. The space X^n has actions of both G^n and S_n , which combine to an action of the wreath product $G \wr S_n$.

THEOREM (Cornelius–Dominguez–Modi–Mehrle–Rose–Stapleton, 2024)

Connect $\mathbb{A}(G \wr S_n)$ to the representation theory of S_n ; use this to find computationally effective formulas for nm in \mathbb{A} .

REPRESENTATION THEORY

DEFINITION

Let *X* be a *G*-space. The space X^n has actions of both G^n and S_n , which combine to an action of the wreath product $G \wr S_n$.

THEOREM (Cornelius-Dominguez-Modi-Mehrle-Rose-Stapleton, 2024)

Connect $\mathbb{A}(G \wr S_n)$ to the representation theory of S_n ; use this to find computationally effective formulas for nm in \mathbb{A} .

WORK-IN-PROGRESS (Calle-Chan-Mehrle-Quigley-Spitz-Van Niel)

Every Tambara functor T has a character theory: a Tambara functor $\Gamma(T)$ with $T \hookrightarrow \Gamma(T)$, where $\Gamma(T)$ is easier to study.

COMMUTATIVE ALGEBRA

THEOREM (Nakaoka, 2014)

There is a robust theory of prime ideals for Tambara functors.

COMMUTATIVE ALGEBRA

THEOREM (Nakaoka, 2014)

There is a robust theory of prime ideals for Tambara functors.

THEOREM (Chan-Mehrle-Quigley-Spitz-Van Niel, 2024)

Use $\Gamma(\mathbb{A})$ for $G = C_p$ to describe the Tambara affine line, and relate affine Tambara algebraic geometry to invariant theory.

LONG-TERM GOAL

Algebraic geometry and invariant theory of Tambara functors

HOMOTOPICAL COMBINATORICS

PART IV

A Non-Example

 $\mathbb{Z}/2$ acts on S^2 by reflection in equator

A Non-Example

 $\mathbb{Z}/2$ acts on S^2 by reflection in equator

A Non-Example

A Non-Example

 $\mathbb{Z}/2$ acts on S^2 by reflection in equator

Contradiction! No map nm can exist

in the ring 0

in \mathbb{Z}

 $\mathbb{Z}/2$ acts on S^2 by reflection in equator

Want to allow Tambara functors with a subset of the norms

Contradiction! No map nm can exist

QUESTION

Which combinations of norms are allowable?

DEFINITION (Rubin, 2020)

A *G*-transfer system is a partial order \rightarrow on subgroups of *G*:

- (refinement) if $K \to H$, then $K \subseteq H$
- (conjugation) if $K \to H$, then $gKg^{-1} \to gHg^{-1}$ for all $g \in G$
- (restriction) if $K \to H$ and $L \subseteq H$, then $K \cap L \to L$

QUESTION

Which combinations of norms are allowable?

DEFINITION (Rubin, 2020)

A *G*-transfer system is a partial order \rightarrow on subgroups of *G*:

- (refinement) if $K \to H$, then $K \subseteq H$
- (conjugation) if $K \to H$, then $gKg^{-1} \to gHg^{-1}$ for all $g \in G$
- (restriction) if $K \to H$ and $L \subseteq H$, then $K \cap L \to L$

Transfer systems for $G = C_p$:

$$C_p$$

1

QUESTION

Which combinations of norms are allowable?

DEFINITION (Rubin, 2020)

A *G*-transfer system is a partial order \rightarrow on subgroups of *G*:

- (refinement) if $K \to H$, then $K \subseteq H$
- (conjugation) if $K \to H$, then $gKg^{-1} \to gHg^{-1}$ for all $g \in G$
- (restriction) if $K \to H$ and $L \subseteq H$, then $K \cap L \to L$

Transfer systems for $G = C_n$:

Transfer systems for $G = C_{p^2}$:

Transfer systems for $G = C_{p^2}$:

Transfer systems for $G = C_{p^2}$:

THEOREM (Balchin-Barnes-Roitzheim, 2021)

There are $Cat(n+1) = \frac{1}{n+2} {2n+2 \choose n+1}$ transfer systems for C_{p^n} .

INCOMPLETE TAMBARA FUNCTORS

DEFINITION

Let τ be a transfer system for G. A τ -Tambara functor is a Tambara functor with only those norms parameterized by τ .

INCOMPLETE TAMBARA FUNCTORS

DEFINITION

Let τ be a transfer system for G. A τ -Tambara functor is a Tambara functor with only those norms parameterized by τ .

 $\mathbb{Z}[x]$ is a free algebra with one generator

 $\mathbb{Z}[x]$ is a free algebra with one generator

- ullet a transfer system au
- a subgroup $H \subseteq G$

 $\mathbb{Z}[x]$ is a free algebra with one generator

- ullet a transfer system au
- a subgroup $H \subseteq G$

 $\mathbb{Z}[x]$ is a free algebra with one generator

- a transfer system τ
- a subgroup $H \subseteq G$

 $\mathbb{Z}[x]$ is a free algebra with one generator

- ullet a transfer system au
- a subgroup $H \subseteq G$

 $\mathbb{Z}[x]$ is a free algebra with one generator

- a transfer system τ
- a subgroup $H \subseteq G$

 $\mathbb{Z}[x]$ is a free algebra with one generator

- ullet a transfer system au
- a subgroup $H \subseteq G$

 $\mathbb{Z}[x]$ is a free \mathbb{Z} -algebra with one generator

 $\mathbb{Z}[x]$ is a free \mathbb{Z} -module with basis $\{1, x, x^2, x^3, \ldots\}$

 $\mathbb{Z}[x]$ is a free \mathbb{Z} -algebra with one generator

 $\mathbb{Z}[x]$ is a free \mathbb{Z} -module with basis $\{1, x, x^2, x^3, \ldots\}$

QUESTION

Is the free τ -Tambara functor $\mathbb{A}[\tau, H]$ free as a Mackey functor?

 $\mathbb{Z}[x]$ is a free \mathbb{Z} -algebra with one generator

 $\mathbb{Z}[x]$ is a free \mathbb{Z} -module with basis $\{1, x, x^2, x^3, \ldots\}$

QUESTION

Is the free au-Tambara functor $\mathbb{A}[au,H]$ free as a Mackey functor?

THEOREM (Hill-Mehrle-Quigley, 2023)

Let G be solvable. Then $\mathbb{A}[\tau,H]$ is free as a Mackey functor iff:

- (a) $H \rightarrow G$ in τ ,
- (b) τ has no arrows below H.

Let *G* be solvable. Then $\mathbb{A}[\tau, H]$ is free as a Mackey functor iff:

- (a) $H \rightarrow G$ in τ ,
- (b) τ has no arrows below H.

COMBINATORIAL QUESTION

How many $\mathbb{A}[\tau, H]$ are free?

Group	#subgroups H
	2

 C_{p^2}

 C_{p^3} C_{p^4}

transfer systems
$$au$$

pairs
$$(\tau, H)$$

3

5

14

42

210

free

23

% free

50

 ≈ 27

 ≈ 16

 ≈ 11

COMBINATORIAL QUESTION

How many $\mathbb{A}[\tau, H]$ are free?

Group	#subgroups H	# transfer systems $ au$	# pairs (τ, H)	# free	% free
C_p	2	2	4	2	50
C_{p^2}	3	5	15	4	≈ 27
C_{p^3}	4	14	56	9	≈ 16
C_{p^4}	5	42	210	23	≈ 11
	÷	÷	:	:	:
C_{p^n}	n+1	Cat(n+1)	P(n)	F(n)	$\frac{F(n)}{P(n)}$

$$P(n) = (n+1)\operatorname{Cat}(n+1)$$

$$F(n) = \sum_{i=0}^{n} \operatorname{Cat}(i)$$

COMBINATORIAL QUESTION

How many $A[\tau, H]$ are free?

Group	#subgroups H	# transfer systems $ au$	# pairs (τ, H)	# free	% free
C_p	2	2	4	2	50
C_{p^2}	3	5	15	4	≈ 27
C_{p^3}	4	14	56	9	≈ 16
C_{p^4}	5	42	210	23	≈ 11
	:	÷	:	:	:
C_{p^n}	n+1	Cat(n+1)	P(n)	F(n)	$\frac{F(n)}{P(n)}$

 $F(n) = \sum_{i=0}^{n} \operatorname{Cat}(i)$

$$P(n) = (n+1)\operatorname{Cat}(n+1)$$

$$\lim_{n \to \infty} \frac{\sum_{i=0}^{n} F(i)}{\sum_{i=0}^{n} P(i)} = 0$$

Fix a bijection $\mathbb{G} \colon \mathbb{N} \to \{\text{isomorphism classes of finite groups}\}.$

Let F(G) be the number of pairs (τ, H) such that $\mathbb{A}[\tau, H]$ is free.

Let P(G) be the total number of pairs (τ, H) for G.

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n F(\mathbb{G}(i))}{\sum_{i=1}^n P(\mathbb{G}(i))}=0$$

Fix a bijection $\mathbb{G} \colon \mathbb{N} \to \{\text{isomorphism classes of finite groups}\}.$

Let F(G) be the number of pairs (τ, H) such that $\mathbb{A}[\tau, H]$ is free.

Let P(G) be the total number of pairs (τ, H) for G.

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n F(\mathbb{G}(i))}{\sum_{i=1}^n P(\mathbb{G}(i))}=0$$

SLOGAN

"Free incomplete Tambara functors are almost never free."

Fix a bijection $\mathbb{G} \colon \mathbb{N} \to \{\text{isomorphism classes of finite groups}\}.$

Let F(G) be the number of pairs (τ, H) such that $\mathbb{A}[\tau, H]$ is free.

Let P(G) be the total number of pairs (τ, H) for G.

$$\lim_{n\to\infty}\frac{\sum_{i=1}^n F(\mathbb{G}(i))}{\sum_{i=1}^n P(\mathbb{G}(i))}=0$$

SLOGAN

"Free incomplete Tambara functors are almost never free."

 $Work-IN-PROGRESS \ (\hbox{\tt Bingham-Franchere-Jones-Mehrle-Shoults-Yousef})$

Computer code and recursive formulas to enumerate free transfer systems for C_{p^n} , C_{pq^n} , $C_{p^2q^n}$, . . .

THEOREM (Mehrle-Quigley-Stahlhauer, 2024)

Let *G* be a cyclic *p*-group for an odd prime *p*. If $\mathbb{A}[\tau, H]$ is free, we construct well-behaved Koszul resolutions.

THEOREM (Mehrle-Quigley-Stahlhauer, 2024)

Let *G* be a cyclic *p*-group, any prime *p*. If $\mathbb{A}[\tau, H]$ is *not* free, then it is infinite dimensional: there is a module with no finite resolution.

GOAL

A theory of minimal resolutions for Tambara functors

TAKEAWAYS

Will equivariant algebraic topology solve all our problems?

Not yet.

TAKEAWAYS

Will equivariant algebraic topology solve all our problems?

Not yet. But sooner rather than later!

- Renewed interest in the field
- We understand the tools much better than 10 years ago
- New computational aids, e.g. homotopical combinatorics

TAKEAWAYS

Will equivariant algebraic topology solve all our problems?

Not yet. But sooner rather than later!

- · Renewed interest in the field
- We understand the tools much better than 10 years ago
- New computational aids, e.g. homotopical combinatorics

WORK-IN-PROGRESS (Guillou-Keyes-Mehrle)

Apply what we've learned about Tambara functors to make new calculations in equivariant homotopy theory.

BONUS: MACKEY FUNCTORS

 Fin^G = category of finite *G*-sets and *G*-equivariant functions

 $\operatorname{Span}(\operatorname{\mathcal{F}in}^G)$ = category of finite *G*-sets and spans of finite *G*-sets

DEFINITION

A Mackey functor is a product-preserving functor

$$M \colon \operatorname{Span}(\operatorname{\mathcal{F}in}^G) \to \operatorname{\mathcal{A}b}$$

$$M(H) := M(G/H)$$

$$\operatorname{res}_{K}^{H} := M\left(G/H \overset{\operatorname{id}}{\longleftarrow} G/K \xrightarrow{\operatorname{id}} G/K\right)$$

$$\operatorname{tr}_{K}^{H} := M\left(G/K \overset{\operatorname{id}}{\longleftarrow} G/K \xrightarrow{\operatorname{id}} G/H\right)$$

BONUS: TAMBARA FUNCTORS

 $\mathbb{B}ispan(\mathfrak{F}in^G)$ = category of finite *G*-sets & bispans of finite *G*-sets

DEFINITION

A Tambara functor is a product-preserving functor

$$T: \operatorname{Bispan}(\operatorname{\mathcal{F}in}^G) \to \operatorname{Set}$$

such that each T(U) is a commutative ring

$$\operatorname{res}_{K}^{H} := T\left(G/H \overset{\operatorname{id}}{\longleftarrow} G/K \xrightarrow{\operatorname{id}} G/K \xrightarrow{\operatorname{id}} G/K\right)$$

$$\operatorname{tr}_{K}^{H} := T\left(G/K \overset{\operatorname{id}}{\longleftarrow} G/K \xrightarrow{\operatorname{id}} G/K \xrightarrow{\operatorname{id}} G/K \xrightarrow{\operatorname{id}} G/H\right)$$

$$\operatorname{nm}_{K}^{H} := T\left(G/K \overset{\operatorname{id}}{\longleftarrow} G/K \xrightarrow{\operatorname{id}} G/H \xrightarrow{\operatorname{id}} G/H\right)$$