

LEARNING PROGRESS REVIEW

Week 10

Entropy Team

DAFTAR ISI

1.

Advanced Data Visualization

Visualisasi data menggunakan Seaborn

2.

Introduction to Machine Learning

Pengenalan tentang Machine Learning

3.

Data **Preprocessing**

Pengenalan tentang data preprocessing

ADVANCED DATA VISUALIZATION

Visualisasi data menggunakan Seaborn

Seaborn

Seaborn adalah *library* visualisasi data yang dibangun berdasarkan *library* Matplotlib untuk membuat grafik statistik yang menarik dan informatif

Figure Style

- Seaborn memiliki 5 buah tema, yaitu:
 - darkgrid
 - whitegrid
 - dark
 - white
 - ticks

```
syntax sns.set_style("whitegrid")
# or
sns.set_theme(style="whitegrid")
```


Line Plot

- Digunakan untuk melihat perubahan atau trend
- Digunakan untuk membandingkan perubahan seiring waktu

```
syntax sns.lineplot(x, y)

# x = the horizontal (X-axis) coordinates of the data points
# y = the vertical (Y-axis) coordinates of the data points
```


Regression Plot

 Digunakan untuk melihat sebaran data dan model regresi linier

```
syntax sns.regplot(x, y)

# x = the horizontal (X-axis) coordinates of the data points
# y = the vertical (Y-axis) coordinates of the data points
```


Scatter Plot

- Digunakan untuk melihat sebaran data
- Digunakan untuk melihat korelasi antarvariabel

```
syntax sns.scatterplot(x, y, hue)

# x = the horizontal (X-axis) coordinates of the data points

# y = the vertical (Y-axis) coordinates of the data points

# hue = Grouping variable that will produce points with different colors
```


Bubble Chart

- Digunakan untuk melihat sebaran data
- Digunakan untuk melihat korelasi antarvariabel

```
syntax sns.scatterplot(x, y, size)

# x = the horizontal (X-axis) coordinates of the data points
# y = the vertical (Y-axis) coordinates of the data points
# size = grouping variable that will produce points with different size
```


Vertical Bar Plot

- Digunakan untuk melihat
 perbandingan dari beberapa kategori
- Digunakan untuk melihat ranking

```
syntax sns.barplot(x, y)

# x = the horizontal (X-axis) coordinates of the data points
# y = the height of the bars (Y-axis)
```


Horizontal Bar Plot

- Digunakan untuk melihat perbandingan dari beberapa kategori
- Digunakan untuk melihat ranking

```
syntax sns.barplot(x, y)

# x = the width of the bars (X-axis)

# y = the vertical (Y-axis) coordinates of the data points
```


Categorical Plot

- Digunakan untuk melihat sebaran data
- Digunakan untuk melihat hubungan antara variabel numerik dan variabel kategoris

```
syntax sns.catplot(x, y, kind)

# x = the width of the bars (X-axis)

# y = the vertical (Y-axis) coordinates of the data points

# kind = the kind of plot to draw
```


Histogram

- Digunakan untuk melihat sebaran data
- Digunakan untuk melihat apakah data terdistribusi secara normal atau tidak

```
syntax sns.histplot(x, bins)

# x = the input data
# bins = the number of bins or the bin edges
```


Density Plot

- Digunakan untuk melihat sebaran data menggunakan kernel density estimation (KDE)
- Digunakan untuk melihat apakah data terdistribusi secara normal atau tidak

```
syntax sns.kdeplot(x)
# x = the input data
```


Boxplot

- Digunakan untuk melihat sebaran data
- Digunakan untuk melihat apakah ada outlier pada data

```
syntax sns.boxplot(x, y)

# x = the input data
# y = the input data
```


Heatmap

- Digunakan untuk membuat data tabular memiliki warna yang bervariasi sesuai nilainya
- Sering digunakan untuk melihat korelasi antarvariabel

```
syntax sns.heatmap(data, annot)

# data = 2D dataset that can be coerced into a ndarray
# annot = if True, write the data value in each cell
```


Pair Plot

- Digunakan untuk melihat sebaran data
- Digunakan untuk melihat hubungan antarvariabel

```
syntax sns.pairplot(data, kind, diag_kind)

# data = the input data

# kind = kind of plot to make

# diag_kind = kind of plot for the diagonal subplots
```


Joint Plot

 Digunakan untuk membuat grafik bivariat dan univariat dari 2 variabel

```
syntax sns.jointplot(x, y)

# x = the horizontal (X-axis) coordinates of the data points
# y = the vertical (Y-axis) coordinates of the data points
```


Beberapa Library Lain

- FoliumVisualisasi peta
- Wordcloud
 Visualisasi kemunculan kata-kata
- Plotly
 Visualisasi yang lebih interaktif
- Bokeh
 Visualisasi yang lebih interaktif

INTRODUCTION TO MACHINE LEARNING

Pengenalan tentang Machine Learning

Machine Learning

- Machine learning (ML) merupakan cabang dari artificial intelligence (AI)
- ML adalah studi tentang algoritma di mana suatu sistem dapat belajar dari data, mengidentifikasi pola, dan membuat keputusan dengan intervensi manusia yang minimal

ML vs Traditional Programming

Traditional Programming

Aturan-aturan dalam sistem dibuat secara manual oleh manusia

Machine Learning

Aturan-aturan dalam sistem dibuat secara otomatis oleh algoritma ML

Jenis Machine Learning

Supervised Learning

Sistem belajar berdasarkan dataset yang **memiliki label**

Unsupervised Learning

Sistem belajar berdasarkan dataset yang **tidak memiliki label**

Semi-supervised Learning

Sistem belajar berdasarkan dataset yang **sebagian tidak memiliki label**

Reinforcement Learning

Sistem belajar berdasarkan **reward** dan **punishment** dari pengalaman

Regression

- Regression merupakan salah satu jenis supervised ML di mana target berupa nilai kontinu
- Linear regression merupakan salah satu jenis algoritma regression yang digunakan untuk membuat garis lurus berdasarkan hubungan antara variabel dependen dengan variabel independen

Classification

- Classification merupakan salah satu jenis supervised ML di mana target berupa nilai diskrit
- Logistic regression merupakan salah satu jenis algoritma classification yang digunakan untuk memisahkan 2 kelas berdasarkan nilai probabilitas yang dihitung dengan logistic/sigmoid function

Alur Pembuatan ML

Dataset Understanding

Memahami dataset

Exploratory Data Analysis

Investigasi dataset

Data Preprocessing

Membersihkan dataset

Model Development

Pembuatan model

Model Evaluation

Penilaian performa model

Model Deployment

Implementasi model

Alur tidak harus selalu maju, ada kalanya kita kembali ke tahap awal

Bias dan Variance

- Bias merupakan ukuran seberapa jauh hasil prediksi model dengan nilai yang sebenarnya
- Variance merupakan ukuran seberapa menyebar hasil prediksi model

Model Complexity

- Semakin kompleks suatu model, maka bias akan semakin berkurang
- Semakin kompleks suatu model, maka variance akan semakin bertambah

Undefitting & Overfitting

Underfitting

- Model yang dibuat terlalu sederhana
- Bias-nya tinggi

Overfitting

- Model yang dibuat terlalu kompleks
- Variance-nya tinggi

DATA PREPROCESSING

Pengenalan tentang data preprocessing

Data Preprocessing

- Data tidak selalu "sempurna" dan "bersih"
- Data tersebut perlu "dibersihkan" agar menjadi lebih berkualitas
- Data yang berkualitas secara umum dapat menghasilkan output yang lebih baik

Data Preprocessing

Beberapa hal yang dilakukan dalam data preprocessing:

- Data cleansing
- Data integration
- Data dimension reduction
- Data transformation

Contoh Data Kotor

ID	Name	Gender	Age	Occupation	Salary
001	Entropy	Male	300	Data Analyst	750000
002	Team	Female	24	Data Engineer	800000
003	Digital	Woman	29	Data Scientist	850000
004		Male	40	Web Developer	850000
002	Team	Female	24	Data Engineer	800000

Warna	Keterangan		
	Outlier		
	Data tidak konsisten		
	Data kosong		
	Data duplikat		

Data Cleansing

Beberapa hal yang dilakukan dalam data cleansing:

- Penanganan data kosong
 - Numerik: diisi dengan rata-rata atau median
 - Kategoris: diisi dengan modus
- Penanganan data kotor (salah atau adanya outliers)
 - Binning, regression, clustering, inspeksi manual
- Penanganan data tidak konsisten
- Penanganan data yang sama (duplikat)

Data Transformation

Beberapa hal yang dilakukan dalam data transformation:

- Feature encoding, yaitu mengubah data kategoris menjadi numerik
 - Label encoding : hanya untuk label (target)
 - Ordinal encoding : untuk feature yang bersifat ordinal
 - One hot encoding : untuk feature yang bersifat nominal

Normalization

Mengubah nilai feature menjadi skala tertentu (umumnya 0-1)

Standarization

- Mengubah nilai feature agar memiliki rata-rata 0 dan standar deviasi 1
- Gunakan standarisasi jika distribusi datanya normal (gaussian)

THANKS

Entropy Team

CREDITS: This presentation template was originally created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**