Pauta Test N°1 Cálculo III (521227)

1. Encontrar el interior, el conjunto de los puntos de acumulación y la frontera para $A = \{(x, y, 1) \in \mathbb{R}^3 : x^2 - y^2 \ge 9, -5 \le x \le 5\}$. Además, indicar si A es abierto, cerrado o compacto.

Solución:

$$int(A) = \phi$$
 (5 puntos),

$$A' = \{(x, y, 1) \in \mathbb{R}^3 : x^2 - y^2 \ge 9, -5 \le x \le 5\}$$
 (5 puntos),

$$Fr(A) = A$$
 (5 puntos),

A no es abierto pues $int(A) \neq A$ (5 puntos), A es cerrado pues $A = \bar{A}$ (5 puntos)

Dado que $A \subseteq B((0,0,0),100)$, se tiene que A es un conjunto acotado; luego, como A es cerrado entonces él es un conjunto compacto. (5 puntos).

2. Calcular, si es posible, los siguientes límites:

a)
$$\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2 + y^2 + |y|}$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2+y^2+y}$$

Solución:

- a) Para $(x,y) \neq (0,0)$ se tiene que $\frac{y^2}{x^2 + y^2 + |y|} \leq |y|$ (5 puntos) y como $\lim_{(x,y)\to(0,0)} |y| = 0$ (5 puntos), entonces por Teorema del sandwich, se tiene que $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2 + y^2 + |y|} = 0$. (5 puntos)
- b) Si y = 0, entonces $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2 + y^2 + y} = 0$ (5 puntos); en cambio, si $y = -x^2$ entonces $\lim_{(x,y)\to(0,0)} \frac{y^2}{x^2 + y^2 + y} = 1$. (5 puntos)

De lo anterior,
$$\lim_{(x,y)\to(0.0)} \frac{y^2}{x^2+y^2+y}$$
 no existe. (5 puntos)

EGG/JRC/CFS/JOF/HPV/egg 23 de Marzo de 2017