Grupo n°8

ENSAMBLE SECUENCIAL DE MODELOS

(GRADIENT BOOSTING)

Hecho por: Ignacio Gutiérrez Serrera Emilio Manuel Vázquez Cruz

ÍNDICE

- 1. Introducción
- 2. Metodología
- 3. Estructura y decisiones de diseño
- 4. Experimentos y resultados
- 5. Conclusión

INTRODUCCIÓN

Parallel

Sequential

METODOLOGÍA

TRABAJO EN PAREJA

Mayormente se trabajó en pareja para asegurar un conocimiento global del trabajo y agilizar el trabajo.

USO DE GITHUB

Sistema de control de versiones distribuido utilizado para registrar los cambios y compartirlo entre ambos miembros.

DOCUMENTACIÓN

Lectura de documentación, tanto de la propuesta, el temario de la asignatura y sobre las librerías utilizadas.

ESTRUCTURA Y DECISIONES DE DISEÑO

Uso de semillas para garantizar reproducibilidad

CSV almacenados en DataFrames

Tareas de Regresión y clasificación

Normalización

Entrenamiento con datos aleatorios y uso de R2

Heredamos de BaseEstimator y RegressorMixin

Se inicializa la predicción actual como la media de la variable objetivo

Uso de umbral épsilon para la parada temprana

Procedimiento Ensamble secuencial (GradientBoosting) Entrada:

- Array numpy de datos
- Array numpy de variable objetivo
- Algoritmo base de entrenamiento
- Número de estimadores
- Tasa de aprendizaje (lr)
- Tamaño de la muestra (sample size)
- Paciencia (para la parada temprana)
- Épsilon (para la parada temprana)
- Tipo de la tarea (regresión o clasificación)

Salidas:

Predicción sobre los datos de prueba del ensamble de modelos entrenado con los datos de entrenamiento.

Algoritmo:

Entrenamiento:

- 1. Inicializar la primera predicción con pred0
- 2. pred actual = pred0
- 3. Por cada i en n estimators:
 - 1. $residuo_i = y pred$ actual
 - 2. entrenar estimadori con un subconjunto aleatorio de los datos marcado por sample_size y usando residuoi como variable objetivo.
 - 3. obtener las predicciones, predi, de estimadori
 - 4. pred actual = pred actual + predi*lr
 - 5. Calcular el R² de la predicción del meta-modelo hasta la iteración actual y comprobar si la diferencia con el R² de la predicción anterior es menor que épsilon:
 - 1. Si no: no hacer nada
 - 2. Si: decrementar en 1 la paciencia
 - 6. si paciencia = 0 entonces finalizar el bucle de cálculo de estimadores.
- 4. Devolver el conjunto de modelos entrenados

Predicción:

Inicializar la primera predicción como la media de la variable objetivo.

- 6. pred_actual = media(array variable objetivo)
- 7. Por cada modelo_j en modelos entrenados:
 - 1. pred_actual += lr*modelo.predict(datos)
- Devolver el conjunto con la predicción para cada elemento.

EXPERIMENTOS Y RESULTADOS GridSearchCV Sub-Tree Leaf Node Leaf Node Decision Node Leaf Node DecisionTreeRegressor KNeighborsRegressor

CONCLUSIÓN

GRACIAS POR SU ATENCIÓN

