1.4 Свойства вычислений

Основной теоремой, из которой следуют многие важные свойства нашей вычислительной системы служит теорема Чёрча-Россера.

Теорема 1 (Чёрча-Россера). Если $M \longrightarrow_{\beta} N$, $M \longrightarrow_{\beta} K$, то существует L, такой что $N \longrightarrow_{\beta} L$ и $K \longrightarrow_{\beta} L$.

Доказательство будет дано ниже.

Можно изобразить это свойство в виде диаграммы:

На таких диаграммах обычно подразумевают, что то, что дано в условии, изображено сплошными линиями, а то, что требуется доказать, прерывистыми. Иногда подобное свойство называют свойством ромба. Также используют термин конфлюентность.

Следующие факты являются следствиями теоремы Чёрча-Россера.

Теорема 2 (о существовании общего редукта). *Если* $M =_{\beta} N$, то существует L, такой что, $M \twoheadrightarrow_{\beta} L u N \twoheadrightarrow_{\beta} L$.

Доказательство (индукция по генерации $=_{\beta}$):

Случай $M =_{\beta} N$, поскольку $M \twoheadrightarrow_{\beta} N$. Возьмем L = N.

Случай $M=_{\beta}N$, поскольку $N=_{\beta}M$. По гипотезе индукции имеется общий β -редукт L_1 для N, M. Возьмем $L=L_1$.

Случай $M =_{\beta} N$, поскольку $M =_{\beta} N'$, $N' =_{\beta} N$. Тогда

Здесь (IH) указывает на применение гипотезы индукции, а (CR) — теоремы Черча-Россера. \blacksquare

Теорема 3 (о редуцируемости к NF). Если М имеет N в качестве β -NF, то M $\twoheadrightarrow_{\beta}$ N.

Доказательство (упражнение).

Теперь мы можем доказать отсутствие нормальной формы у Ω . Действительно, если бы у Ω была β -NF, скажем N, то выполнялось бы $\Omega \to_{\beta} N$. Но комбинатор Ω редуцируется лишь сам к себе и не является β -NF.

Теорема 4 (о единственности β -NF). λ -терм имеет не более одной β -NF.

Доказательство (упражнение).

Единственность β-NF дает нам простой алгоритм проверки β-эквивалентности двух термов, имеющих β-нормальные формы. Достаточно провести редукцию до нормальной формы для каждого из этих термов и сравнить результаты⁸. Напомним, что в общем случае проверка β-эквивалентности термов неразрешима.

1.5 Доказательство теоремы Чёрча-Россера

Мы следуем идеям доказательства из [3]. Доказательство во многом базируется на том соображении, что при редукциях редекс не может «развалиться». Иными словами, если работать в синтаксисе с обязательными скобками и покрасить некоторый редекс следующим образом

$$\dots ((\lambda x. M)(N))\dots$$

то при вычислениях этот покрашенный редекс может полностью пропасть (либо его сокращением, либо под действием внешних факторов), размножится (пар цветных скобок станет несколько), М и N могут видоизменится произвольным (в общем случае) образом. Но пока пара цветных скобок цела, они всегда неотрывно будет следовать друг за другом. В доказательстве мы будем использовать более экономную раскраску редексов.

Технически доказательство устроено так: сначала доказываем Лемму полоски, а

 $^{^{8}{}m C}$ точностью до α -эквивалентности.

затем из полосок составляем «ромб».

Термы $nod \kappa pa menhoro$ лямбда-исчисления, множество которых мы будем обозначать Λ , определяются индуктивно:

$$x \in V \qquad \Rightarrow \qquad x \in \Lambda,$$

$$M, N \in \Lambda \qquad \Rightarrow \qquad (M N) \in \Lambda,$$

$$M \in \Lambda, x \in V \qquad \Rightarrow \qquad (\lambda x. M) \in \Lambda,$$

$$M, N \in \Lambda, x \in V \qquad \Rightarrow \qquad (\lambda x. M) N \in \Lambda.$$

$$(13)$$

То есть в редексах (и только в них) некоторые лямбды могут быть покрашены.

Подкрашенные редукции (одношаговые и многошаговые) определяются стандартным образом на базе правил сокращения:

$$(\lambda x. M) N \longrightarrow_{\beta} [x \mapsto N] M, (\lambda x. M) N \longrightarrow_{\beta} [x \mapsto N] M.$$
(14)

То есть вычисления игнорируют раскраску.

Вводится операция *стирания подкраски*. Если $M \in \Lambda$, то $|M| \in \Lambda$ получается заменой в M всего красного на черное.

Задается операция $\phi: \Lambda \to \Lambda$, заключающаяся в сокращении всех подкрашенных редексов изнутри наружу:

$$\varphi(x) = x,
\varphi(MN) = \varphi(M) \varphi(N),
\varphi(\lambda x. M) = \lambda x. \varphi(M),
\varphi((\lambda x. M) N) = [x \mapsto \varphi(N)] \varphi(M).$$
(15)

Лемма 2.

$$\begin{array}{c}
M' & \xrightarrow{\beta} & N' \\
\downarrow \downarrow \downarrow \\
M & \xrightarrow{\beta} & N
\end{array}$$

Лемма 3.

Лемма 4.

$$\phi([x\mapsto N]\,M)=[x\mapsto \phi(N)]\,\phi(M).$$

Лемма 5.

Лемма 6.

Лемма 7 (полоски).

Доказательство. Берем в M редекс, сокращаемый для получения N_1 , и подкра-

шиваем его. Смысл верхнего левого треугольника при этом очевиден.

 Γ рани призмы, содержащие красные вершины, представляют собой предыдущие лемы, а оставшаяся грань представляет собой лемму полоски. \blacksquare