

Spatial filtering

Semester 2, 2021 Kris Ehinger

https://www12.lunapic.com/editor/?action=sketch

Outline

- Introduction to convolution
- Commonly-used linear filters
- Filters in practice

Learning outcomes

- Explain the convolution and cross-correlation operations
- Identify commonly-used filters and their expected outputs
- Explain practical considerations in implementing filters (efficiency, border handling)

Introduction to convolution

Pixel operator

 Pixel operator: computes an output value at each pixel location, based on the input pixel value

$$g(i,j) = h(f(i,j))$$

Output image g Input image f

• Example: g(i,j) = 0.5(f(i,j))

Gamma correction

Local operator

- Local operator: computes an output value at each pixel location, based on a neighbourhood of pixels around the input pixel
- Example: sharpening filter

Linear filtering

 Output pixel's value is a weighted sum of a neighbourhood around the input pixel

$$g(i,j) = h(u,v) \otimes f(i,j)$$
 Output image g Kernel h Input image f

Cross-correlation convolution

$$g(i,j) = \sum_{u,v} f(i+u,j+v)h(u,v)$$

Linear filtering

 Output pixel's value is a weighted sum of a neighbourhood around the input pixel

$$g(i,j) = h(u,v) * f(i,j)$$
 Output image g Kernel h Input image f Convolution operator

$$g(i,j) = \sum_{u,v} f(i-u,j-v)h(u,v)$$

Consider a 3x4 image and 2x2 kernel

Convolution output

Image

Convolution 1:

1x1	5x0
1x0	2x1

Consider a 3x4 image and 2x2 kernel

Convolution output

Image

Convolution 2:

5x1	1x0
2x0	8x1

Consider a 3x4 image and 2x2 kernel

Convolution output

Image

Convolution 3:

1x1	1x0
8x0	2x1

Consider a 3x4 image and 2x2 kernel

3	13	3
1		

Convolution output

Consider a 3x4 image and 2x2 kernel

3	13	3
1	3	

Convolution output

Consider a 3x4 image and 2x2 kernel

3	13	3
1	3	16

Convolution output

Convolution in colour

Consider a 3x4x3 image and 2x2x3 kernel

Convolution output?

Cross-correlation vs. convolution

$$F[x,y] \otimes H[u,v]$$

Cross-correlation: overlay filter on image

Cross-correlation vs. convolution

$$F[x,y] * H[u,v]$$

Convolution: flip filter horizontally and vertically

Summary

- Pixel operator: transform pixel based on its value
- Local operator: transform pixel based on its neighbours
- Convolution (and cross-correlation): operations that apply a linear filter to an image

Common filters

Original

0	0	0
0	1	0
0	0	0

Original

0	0	0
0	1	0
0	0	0

Filtered (no change)

Original

0	0	0
0	0	1
0	0	0

Original

0	0	0
0	0	1
0	0	0

Shifted left By 1 pixel

Original

(Note that filter sums to 1)

0	0	0
0	2	0
0	0	0

Original

Sharpening filter

- Accentuates differences with local average

Common filters: Gaussian

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Gaussian kernel Kernel size: $5 \times 5 \text{ px}$ $\sigma = 1$

Blur filters

Common filters: Sobel

Common filters: Sobel

Designing filters

How could you detect diagonal edges?

Designing filters

How could you simulate (linear) motion blur?

Common filters

- Average/blur filters: average pixel values, blur the image
- Sharpening filters: subtract pixel from surround, increase fine detail
- Edge filters: compute difference between pixels, detect oriented edges in image

Filters in practice

Properties of linear filters

- Commutative: f * h = h * f
 - Theoretically, no difference between kernel and image
 - But most implementations do care about order
- Associative: (f * h1) * h2 = f * (h1 * h2)
 - Usually one option is faster than the other allows for more efficient implementations
- Distributive over addition
 - f * (h1 + h2) = (f * h1) + (f * h2)
- Multiplication cancels out
 - kf * h = f * kh = k(f * h)

Efficient filtering

• Multiple filters: generally more efficient to combine 2D filters (h1*h2*h3...) and filter image just once

* 🔲 =

Gaussian
blur filter

* • = = Horizontal derivative filter

* **E** = Derivative-of-Gaussian filter

Efficient filtering

- Separable filters: generally more efficient to filter with two 1D filters than one 2D filter
- For example, the 2D Gaussian can be expressed as a product of two 1D Guassians (in x and y)

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

Separable filters

2D convolution (center location only)

 1
 2
 1

 2
 4
 2

 1
 2
 1

 4
 4

 4
 6

The filter factors into a product of 1D filters:

Perform convolution along rows:

Followed by convolution along the remaining column:

1		11				
2	*	18	=		65	
1		18		9		

Convolution output size

- Valid convolution: the output image is smaller than the input image
- Why?

57	85	85	85	57
85	113	85	85	57
85	85	0	57	57
85	113	85	85	57
57	85	85	85	57

• Pad with constant value

Filter: Gaussian blur

Wrap image

Filter: Gaussian blur

Clamp / replicate the border value

Filter: Gaussian blur

Reflect image

Filter: Gaussian blur

Practical considerations

- Think about how to implement filters efficiently
 - Images are big, so efficient filtering can save a lot of time!
- Think about how to handle borders
 - No one-size-fits-all solution
 - Wrap is ideal for tiling textures (but not photos)
 - Clamp/replicate tends to work well for photos

Summary

- Linear filters: first step of almost all computer vision systems
- Linear filters are just a first step you can't build complex feature detectors from just linear filters