VARIABLE NAMES & EXPLANATIONS FOR MIDUS REFRESHER PROJECT 5

Character 1: MIDUS Sample

R = MIDUS Refresher

Character 2: MIDUS Wave

A = Wave 1

Character 3: Project #

5 = Project #5

Character 4: Measure

S = Self-reports

B = Startle Eyeblink

C = Corrugator EMG

L = Zygomaticus EMG

K = Heart Rate Variability

R = Response Times

A = Response Accuracy

N = CANTAB Cognitive measures

D = Cube & Paper Test

F = Free Recall

T = Picture Ratings

P = Participant Characteristics

H = Handedness

O = Hearing Test

I = Filter for completed MRI

E = Extracted Structural Brain Measurements

W = Extracted Diffusion Tensor Imaging Measurements

Remaining characters differ for each measure (i.e., are nested within preceding character 3)

For Ch4 = S (i.e., for Self-reports):

Characters 5 & 6: Scale

DP = Dispositional Positive Affect Scale (DPES)

PG = General Form of the Positive & Negative Affect Schedule (PANAS)

P1 = Now Form of the PANAS, Time 1 (prior to psychophysiology emotion response task)

P2 = Now Form of the PANAS, Time 2 (after psychophysiology emotion response task)

P3 = Now Form of the PANAS, Time 3 (prior to MRI emotion response task)

P4 = Now Form of the PANAS, Time 4 (after MRI emotion response task)

IR = Interpersonal Reactivity Index (IRI)

S1 = Spielberger State Anxiety Scale (STAI-X1), Time 1 (prior to psychophysiology emotion response task)

S2 = Spielberger State Anxiety Scale (STAI-X1), Time 2 (after psychophysiology emotion response task)

S3 = Spielberger State Anxiety Scale (STAI-X1), Time 3 (prior to MRI emotion response task)

S4 = Spielberger State Anxiety Scale (STAI-X1), Time 4 (after MRI emotion response task)

ST = Spielberger Trait Anxiety Scale (STAI-X2)

ER= Emotion Regulation Questionnaire, Reappraisal

ES = Emotion Regulation Questionnaire, Suppression

For Ch5 & 6 = DP:

Character 7: Subscale

C = Contentment

J = Jov

H = Hope

L = Love/Attachment

D = Desire

O = Compassion

P = Pride

G = Gratitude

A = Amusement

W = Awe

I = Interest

Characters 8 & 9: Measure

None = Summary Measures

Numbers = Individual Questions

For Ch5 & 6 = PG, P1, P2, P3, or P4:

Character 7: Subscale

P = Positive Affect

N = Negative Affect

Characters 8 & 9: Measure

None = Summary Measures

Numbers = Individual Questions

For Ch5 & 6 = IR:

Character 7: Subscale

PT = Perspective-Taking Scale

FS = Fantasy Scale

EC = Empathic Concern Scale

PD = Personal Distress Scale

Characters 8 & 9: Measure

None = Summary Measures

Numbers = Individual Questions

For Ch5 & 6 = S1, S2, S3, S4, or ST:

Characters 7 & 8: Measure

None = Summary Measures

Numbers = Individual Questions numbers.

For Ch5 & 6 = ER or ES:

Characters 7 & 8: Measure

None = Summary Measures

Numbers = Individual Questions numbers.

For Ch4 = B (i.e., for Eyeblink Startle):

RA5B = number of valid eyeblink startle responses measured over entire paradigm.

Character 5: Picture Valence

N = Negative

O = Neutral

P = Positive

Character 6: Probe Time

E = Early (2900 ms after picture onset)

M = Mid (4400 ms after picture onset)

L = Late (5900 ms after picture onset)

Character 7: Metric

A = Amplitude (includes only responses, so assesses height of response)

M = Magnitude (includes no responses as a zero, so averaging will be affected by no responses)

For Ch4 = C or L (i.e., for Corrugator and Zygomaticus EMG):

RA5C = filter for good corrugator data (bad corrugator data might exhibit high levels of noise and/or artifact)

RA5L = filter for good zygomaticus data (bad corrugator data might exhibit high levels of noise and/or artifact)

Character 5: Picture Valence

N = Negative

O = Neutral

P = Positive

Character 6: Time

E = early (1-4 seconds following picture onset)

M = middle (5-8 seconds following picture onset)

L = late (9-12 seconds following picture onset)

For Ch4 = K (i.e. for EKG data)

Character 5: Session Type

1 = Psychophysiology (baseline recording)

2 = Scan (resting state recording)

Characters 6 & 7: Heart rate variability metric

LF = low frequency band

HF = high frequency band

FF = ratio low frequency over high frequency

HR = heart rate

NI = Number of interbeat intervals

MI = Mean interbeat interval

MH = Mean heart rate

SN = Standard deviation of RR beats (SDNN)

RM = Root means squared successive differences between RR intervals (RMSSD)

MS = Mean of successive differences between RR intervals (MSD)

PN = "Percentage of successive normal to normal intervals that differ by more than 50 milliseconds" (PNN50) (Shaffer, McCraty & Zerr, 2014)

CV = Cardiac vagal index (CVI)

CS = Cardiac sympathetic index (CSI)

TL = ToichiL (length of longitudinal axis in Lorenz plot of interbeat intervals (Toichi, Sugiura, Murai, & Sengoku, 1997))

TT = ToichiT (length of transverse axis in Lorenz plot of interbeat intervals (Toichi, Sugiura, Murai, & Sengoku, 1997))

LH = logHRV (log of time variance in unfiltered interbeat interval series)

LR = logRSA (log of respiratory sinus arrhythmia)

AT = CMetX artifact threshold (in milliseconds) (Allen, Chambers, & Towers, 2007); filter variable

For Ch4 = R or A (i.e., for reaction time and accuracy measures):

Character 5: Picture Valence

N = Negative

O = Neutral

P = Positive

For Ch4 = N (i.e., for CANTAB cognitive assessments):

Character 5: Test type

M = Motor Screening Task

I = Intra-Extra Dimensional Set Shift

A = Affective Go/No-Go

S = Information Sampling Task

T = Attention Switching Task

E = Emotion Recognition Task

G = Cambridge Gambling Task

For Ch5 = M:

Character 6: Measure

E = Mean Error

L = Mean Latency

For Ch5 = I:

Character(s) 6 (& 7): Measure type

Numbers = Stage-related measures. See concordance table for list of measures

T = Totals

C = Calculated Measures

For Ch6 = T or C:

Characters 7 & 8: Measure

Numbers = Total measures. See concordance table for list of measures

For Ch5 = A:

Character 6: Measure

R = Affective Response Bias (Mean)

L = Mean Correct Latency

T = Total Commissions/Omissions

For Ch6 = L:

Characters 7 & 8: Trial Type

```
Numbers = Condition (Positive/Negative/Neutral, Shift/Non-shift)
```

For Ch6 = T:

Character 7: Responses/Non-responses

M = Total Commissions

O = Total Omissions

Character 8: Trial Type

None = Total

Number = Condition (Positive/Negative/Neutral, Shift/Non-shift)

For Ch5 = S:

Characters 6 & 7: Measure

Numbers = See Concordance Table for list of measures

For Ch5 = T:

Character 6: Measure Type

T = Totals

P = Percentages

L = Latency-Related Measures

C = Cost-Related Measures

For Ch6 = T, P, or L:

Characters 7 & 8: Measure

Numbers = See Concordance Table for list of measures

For Ch6 = C:

Character 7: Measure/Trial Type

C = Mean Congruency Cost

S = Mean Switch Cost

For Ch7 = C or S:

Character 8: Response Type

C = Correct

I = Incorrect

None = All Responses (Correct & Incorrect)

For Ch5 = E:

Character 6: Measure Type

P = Percentages

T = Totals

L = Latency-Related Measures

For Ch6 = P or T:

Character 7: Response Type

C = Correct

I = Incorrect

Character 8: Stimulus Type

Number = See Concordance Table for list of measures

None = Total Correct (All Stimulus Types)

For Ch6 = L:

Characters 7 & 8: Stimulus/Response Type

Numbers = See Concordance Table for list of measures None = Mean Overall Response Latency

For Ch5 = G:

Character 6: Measure Type

A = Delay Aversion

D = Deliberation Time

P = Overall Proportion Bet

Q = Quality of Decision-Making

J = Risk Adjustment

R = Risk Taking

Character 7: Trial Type

A = Ascending Trials

D = Descending Trials

None = All Trials

For Ch4 = D:

RA5D = Cube & Paper Total Correct

For Ch4 = F:

Character 5: Measure

R = Total Recalled

S = Total Recalled (Social)

X = Total Recalled (Non-Social)

P = Total Recalled (Positive)

N = Total Recalled (Negative)

O = Total Recalled (Neutral)

For Ch4 = T:

Character 5: Rating Scale

V = Valence

A = Arousal

Character 6: Picture Valence

P = Positive

N = Negative

O = Neutral

Character 7: Session

1 = Psychophysiology

2 = MRI

For Ch4 = P:

Character 5: Participant Characteristic

G = Gender

H = Height

W = Weight

B = BMI

A = Age

S = Sample (i.e., Main or Milwaukee)

For Ch5 = H:

Character 6: Units of Measurement

M = Metric (Centimeters)

C = Feet/Inches

For Ch4 = 0:

Character 5: Side of hearing test

L =Left Ear

R = Right Ear

Character 6: Frequency of tone

1 = 250 Hz

2 = 500 Hz

3 = 1000 Hz

For Ch4 = E:

Character 5: Measurement Type

A = Cortical Area

C = Cortical Curvature

T = Cortical Thickness

V = Cortical Volume

S = Subcortical Volume

B = Brain-Predicted Age

Character 6: Brain Hemisphere

L = Left Hemisphere

R = Right Hemisphere

N = N/A: Measure is bilateral

Character 7: Freesurfer Brain Atlas or Module

D = Destrieux

K = Desikan-Killiany

A = Aseg Subcortical Atlas or Hippocampal Subfield/Amygdala Nuclei Module

Characters 8-9: Numbers = See Concordance Table for list of measures

For Ch4 = W:

Character 5: Measurement Type

F = Fractional Anistropy (FA)

M = Mean Diffusivity (MD)

R = Radial Diffusivity (RD)

A = Axial Diffusivity (AD)

Character 6: Brain Hemisphere

G = Global Measure

L = Left Hemisphere

R = Right Hemisphere

N = N/A: Measure is bilateral

Character 7: Method Used

I = IIT Atlas

J = JHU Atlas

T = Manual Tractography

Characters 8-9: Numbers = See Concordance Table for list of measures

References:

Corrugator and zygomatic electromyography

- Cacioppo, J. T., Petty, R. E., Losch, M. E., & Kim, H. S. (1986). Electromyographic activity over facial muscle regions can differentiate the valence and intensity of affective reactions. *Journal of Personality and Social Psychology*, 50(2), 260–268. http://doi.org/10.1037/0022-3514.50.2.260
- Larsen, J. T., Norris, C. J., & Cacioppo, J. T. (2003). Effects of positive and negative affect on electromyographic activity over zygomaticus major and corrugator supercilii. *Psychophysiology*, *40*(5), 776–785. http://doi.org/10.1111/1469-8986.00078

Cube & Paper

Gilbertson, M.W., Williston S.K., Paulus, L.A., Lasko, N.B., Gurvits, T.V, Shenton, M.E., Pitman, R.K., Orr, S.P. (2007). Configural cue performance in identical twins discordant for porttraumatic stress disorder: Theoretical implications for the role of hippocampal function. *Biol Psychiatry*, *62*(*5*), 513-520.

<u>Diffusion Tensor Imaging atlases</u>

- Mori S, Oishi K, Jiang H, et al. (2008) Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. *Neuroimage*, *40*(2), 570–582. doi:10.1016/j.neuroimage.2007.12.035
- Zhang S, Arfanakis K. (2018) Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template characteristics, spatial normalization accuracy, and detection of small inter-group FA differences. *Neuroimage*, 172, 40-50.

Freesurfer-Based Structural MRI atlases and Modules

Desikan-Killiany Brain Atlas

Desikan R.S., Ségonne F., Fischl B., Quinn B.T., Dickerson B.C., Blacker D., Buckner R.L., Dale A.M., Maguire R.P., Hyman B.T., Albert M.S., & Killiany R.J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. *Neuroimage*, *31*(*3*), 968-980.

Destrieux Brain Atlas

Fischl B., van der Kouwe A., Destrieux C., Halgren E., Ségonne F., Salat D.H., Busa E., Seidman L.J., Goldstein J., Kennedy D., Caviness V., Makris N., Rosen B., & Dale A.M. (2004). Automatically parcellating the human cerebral cortex. *Cereb Cortex*, *14*(1), 11-22.

Aseq Subcortical Brain Atlas

Fischl B., Salat D.H., Busa E., Albert M., Dieterich M., Haselgrove C., van der Kouwe A., Killiany R., Kennedy D., Klaveness S., Montillo A., Makris N., Rosen B., & Anders M. Dale A.M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. *Neuron*, *33*, 341-355.

Hippocampal Subfields

Iglesias, J.E., Augustinack, J.C., Nguyen, K., Player, C.M., Player, A., Wright, M., Roy, N., Frosch, M.P., Mc Kee, A.C., Wald, L.L., Fischl, B., and Van Leemput, K.(2015). A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI. *Neuroimage*, *115*, 117-137

Amygdala Nuclei

Saygin ZM & Kliemann D (joint 1st authors), Iglesias JE, van der Kouwe AJW, Boyd E, Reuter M, Stevens A, Van Leemput K, Mc Kee A, Frosch MP, Fischl B, Augustinack JC. (2017). High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas. *Neuroimage*, *155*, 370-382.

Brain-Predicted Age

- Cole JH, Leech R, Sharp DJ, for the Alzheimer's Disease Neuroimaging Initiative (2015). Prediction of brain age suggests accelerated atrophy after traumatic brain injury. *Ann Neurol* 77(4): 571-581.
- Cole, J. H., & Franke, K. (2017). Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. *Trends in Neurosciences*, *40*(12), 681–690. http://doi.org/10.1016/j.tins.2017.10.001
- Cole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, Spector TD et al. (2017). Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. *NeuroImage*, *163C*: 115-124.
- Cole JH, Ritchie SJ, Bastin ME, Valdes Hernandez MC, Munoz Maniega S, Royle N et al. (2018). Brain age predicts mortality. *Molecular psychiatry*, 23: 1385-1392.

EKG

- Allen, J.J.B., Chambers, A.S., & Towers, D.N. (2007). The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. *Biological Psychology*, 74, 243-262.
- Shaffer, F., McCraty, R., & Zerr, C. L. (2014). A healthy heart is not a metronome: an integrative review of the heart's anatomy and heart rate variability. *Frontiers in psychology*, *5*, 1040. doi:10.3389/fpsyg.2014.01040
- Toichi, Sugiura, Murai, & Sengoku. (1997). A new method of assessing cardiac autonomic function and its comparison with spectral analysis and coefficient of variation of R–R interval. *Journal of the Autonomic Nervous System, 62*(1), 79-84.

DPES

Shiota, M. N., Keltner, D., & John O. P. (2006). Positive emotion dispositions differentially associated with Big Five personality and attachment style. *Journal of Positive Psychology*, *1*, 61-71.

ERQ

Gross, J.J., & John, O.P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. *Journal of Personality and Social Psychology*, *85*, 348-362.

IRI

Davis, M. H. (1980). A multidimensional approach to individual differences in empathy. JSAS Catalog of Selected Documents in Psychology, 10, 85.

PANAS

Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. *Journal of Personality and Social Psychology*, *54*, 1063-1070.

STAI-X

Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). *Manual for the State Trait Anxiety Inventory.* Palo Alto, CA: Consulting Psychologists Press.