Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра ІПІ

Звіт

з лабораторної роботи № 4 з дисципліни «Основи програмування 2. Модульне програмування»

"Перевантаження операторів"

Виконав	111-15 Левченко Владислав В'ячеславович			
	(шифр, прізвище, ім'я, по батькові)			
Перевірила	Вечерковська Анастасія Сергіївна			
	(прізвище, ім'я, по батькові)			

Київ 2022

19. Визначити клас "Квадратна матриця 3×3". Реалізувати для нього декілька конструкторів, геттери, метод обчислення визначника матриці. Перевантажити оператори множення "*" матриць та інкрементації її елементів "++". Створити три матриці (М1, М2, М3), використовуючи різні конструктори. Визначити матрицю М3 як добуток матриць М1 та М2. Інкрементувати елементи отриманої матриці М3. Знайти визначник зміненої матриці М3.

Варіант 19 Код с++:

matrix.h

```
functions.h
                                                       c++ 4 lab final.cpp
                                        functions.cpp
🔄 c++ 4 lab final
            #pragma once
          ⊟#include <iostream>
           #include <iomanip>
           #include <ctime>
          ⊟class Matrix {
           private:
               Matrix(int);
                Matrix(const Matrix&);
                Matrix();
                void setHand();
                void setRand(std::string);
                void printM();
                float findDet();
                Matrix operator++(int);
                Matrix operator*(Matrix&);
```

matrix.cpp

```
matrix.h
                                functions.cpp
                                             c++ 4 lab final.
         matrix.cpp + X functions.h
🔁 c++ 4 lab final
          #include "matrix.h"
         m = new float* [size];
             for (int i = 0; i < size; i++) {
                m[i] = new float[size];
                 for (int j = 0; j < size; j++)
                    m[i][j] = 0;
         m = new float* [size];
              for (int i = 0; i < size; i++) {
                 m[i] = new float[size];
                 for (int j = 0; j < size; j++)
                    m[i][j] = 0;
         size = 3;
             m = new float* [size];
             for (int i = 0; i < size; i++) {
                 m[i] = new float[size];
                 for (int j = 0; j < size; j++) {
                    m[i][j] = p.m[i][j];
```

```
c++ 4 lab final.cpp
matrix.h
           matrix.cpp + X functions.h
                                       functions.cpp
🔄 c++ 4 lab final
                                                                    - → Matrix
           □void Matrix::setRand(std::string ans) {
                 float number;
                 for (int i = 0; i < size; i++)
          ₽
           ₽
                     for (int j = 0; j < size; j++)
                         number = ((float(rand()) / float((RAND_MAX))) * 20 - 10);
                         if(ans == "y" || ans == "Y")
                         number = round(number * 1) / 1;
                         else{ number = round(number * 10) / 10; }
                         m[i][j] = number;
           ⊡void Matrix::printM()
                 std::cin.ignore();
           |
|
|
                 for (int i = 0; i < size; i++)
                     for (int j = 0; j < size; j++)
                         std::cout << std::setw(9) << m[i][j];</pre>
                     std::cout << "\n";
                 std::cout << "\n";
```

```
c++ 4 lab final.cpp
matrix.h
          matrix.cpp 💠 🗙 functions.h
                                     functions.cpp
🔁 c++ 4 lab final
                                                                -||→|
          ⊡float Matrix::findDet()
               float det = 0;
               float a = m[0][0] * m[1][1] * m[2][2];
               float b = m[0][1] * m[1][2] * m[2][0];
               float c = m[0][2] * m[1][0] * m[2][1];
               float d = m[2][0] * m[1][1] * m[0][2];
               float e = m[2][1] * m[1][2] * m[0][0];
               float f = m[2][2] * m[1][0] * m[0][1];
               det = a + b + c - d - e - f;
               return det;
          std::cin.ignore();
               for (int i = 0; i < size; i++)
                   for (int j = 0; j < size; j++)
                       m[i][j]++;
               return *this;
```

```
Matrix Matrix::operator*(Matrix& M2)
             Matrix temp{};
             for (int i = 0; i < size; i++) {
                 for (int j = 0; j < size; j++) {
                     for (int k = 0; k < size; k++) {
                         temp.m[i][j] += (m[i][k] * M2.m[k][j]);
                         temp.m[i][j] = round(temp.m[i][j] * 10) / 10;
104
             return temp;
       □void Matrix::setHand() {
             float n;
             std::cout << "Enter the values of matrix: ";</pre>
110
111
            for (int row = 0; row < size; row++)</pre>
112
113
                 for (int col = 0; col < size; col++)</pre>
114
115
116
                     std::cin >> n;
117
                     m[row][col] = n;
118
119
120
```

functions.h

```
matrix.h matrix.cpp functions.h* + x functions.cpp

1 #pragma once
2 #include "matrix.h"
4 #include <string>
5 #include <time.h>
6
7 int chooseM(int);
8 bool isNumber(const std::string&);
9 Matrix GenerateMatrix(int, Matrix&);
10 void Info();
11 std::string onlyInt(int);
```

functions.cpp

```
matrix.cpp
matrix.h
                                       functions.cpp + X c++ 4 lab final.cpp
                          functions.h*
🔄 c++ 4 lab final
                                                                          (Глобальная область)
             #include "functions.h"
           □int chooseM(int it) {
                 std::string n;
                 std::cout << "\nEnter the mode for values of matrix #" << it << " (1 or 2): ";</pre>
                 std::cin >> n;
                 while (!isNumber(n) || stoi(n) != 1 && stoi(n) != 2) {
                     std::cout << "Enter correct number: ";</pre>
                     std::cin >> n;
                 return stoi(n);
           □Matrix GenerateMatrix(int i, Matrix& matrix) {
                 int mode = chooseM(i);
                 if (mode == 2) {
                     std::string ans = onlyInt(i);
                     matrix.setRand(ans);
                 else { matrix.setHand(); }
                 return matrix;
           □bool isNumber(const std::string& word) {
                for (char i : word) {
                     if (!isdigit(i)) return false;
                 return true;
            matrix.cpp
matrix.h
                          functions.h*
                                         functions.cpp - X c++ 4 lab final.cpp
🔄 c++ 4 lab final
                                                                          (Глобальная область)
           ⊡void Info() {
                 std::cout << "Modes of entering the values\n1 - self fill\n2 - random fill\n";</pre>
                 std::cout << "
            Į į
           ⊡std::string onlyInt(int it)
                 std::string ans;
                 std::cout << "Create only int values for matrix #" << it << " ? (y or n): ";</pre>
                 std::cin >> ans;
                 while (ans!= "y" && ans!="Y" && ans!= "N" && ans!="n") {
                     std::cout << "Enter correct answer: ";</pre>
                     std::cin >> ans;
                 return ans;
```

main.cpp

```
matrix.h
             matrix.cpp
                           functions.h*
                                           functions.cpp
                                                           c++ 4
🔁 c++ 4 lab final
             #include "functions.h"
           ⊡int main()
                  srand(time(NULL));
                  Info();
                 Matrix M1; GenerateMatrix(1, M1);
                 Matrix M2(3); GenerateMatrix(2, M2);
                 Matrix M3(M1);
     11
                  std::cout << "\n1)\n "; M1.printM();</pre>
                 std::cout << "2)"; M2.printM();</pre>
     13
                  std::cout << "3)"; M3.printM();</pre>
                  std::cout << "\nM3 = M1 * M2:\n";
                 M3 = M1 * M2;
                 M3.printM();
                  std::cout << "Increment M3:";</pre>
                 M3++;
                 M3.printM();
                  float det = M3.findDet();
                  std::cout << "Determinant M3 = "<<det;</pre>
                  std::cin.ignore(1);
```

Випробування:

```
Modes of entering the values
1 - self fill
2 - random fill
Enter the mode for values of matrix #1 (1 or 2): 2
Create only int values for matrix #1 ? (y or n): y
Enter the mode for values of matrix #2 (1 or 2): 2
Create only int values for matrix #2 ? (y or n): y
1)
                 -8
       -1
                         -0
                         -6
       -1
                -6
                         -0
                -8
       -1
                         -0
```

```
M3 = M1 * M2:
      76
                       60
     -40
              -36
                       -33
     -88
              -32
                       -72
Increment M3:
              57
                       61
      77
     -39
              -35
                       -32
     -87
              -31
                       -71
Determinant M3 = 3820
```


водити можна лише числа або дроби (-2.4, 5/7, ...). Більш детально читайте в правилах вводу чисел.

Розв'язок:

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} -4 & -8 & -4 \\ -1 & 6 & 2 \\ 8 & 8 & 0 \end{pmatrix} \cdot \begin{pmatrix} -4 & 0 & -3 \\ -7 & -4 & -6 \\ -1 & -6 & 0 \end{pmatrix} = \begin{pmatrix} 76 & 56 & 60 \\ -40 & -36 & -33 \\ -88 & -32 & -72 \end{pmatrix}$$

		A		
7	7	57	61	
-3	39	-35	-32	
-8	37	-31	-71	
Очистити		Розмір: 3 ∨ × [Помножити на		
Знайти визначник		Піднести до степеня		
Знайти ра	анг	Оберне	ена матриця	: A ⁻¹

Вводити можна лише числа або дроби (-2.4, 5/7, ...). Більш детально читайте в правилах вводу чисел.

Розв'язок:

Скористаємося формулою для обрахунку визначника матриці 3×3:

$$\det \mathbf{A} = \begin{vmatrix} 77 & 57 & 61 \\ -39 & -35 & -32 \\ -87 & -31 & -71 \end{vmatrix} = 77 \cdot (-35) \cdot (-71) + 57 \cdot (-32) \cdot (-87) + 61 \cdot (-39) \cdot (-31) - 61 \cdot (-35) \cdot (-87) - 77 \cdot (-32) \cdot (-31) - 61 \cdot (-35) \cdot (-31) - (-35) \cdot (-31) -$$

$$\cdot$$
(-31) - 57 \cdot (-39) \cdot (-71) = 191345 + 158688 + 73749 - 185745 - 76384 - 157833 = 3820
 Очистити

Висновки: під час виконання даної лабораторної роботи, я навчився механізмам створення класів та використання різних конструкторів з використанням перевантажених операторів. Я створив три різні об'єкти класу (різними конструкторами) М1, М2, М3. М3 я визначив як добуток матриць М1 та М2 (за допомогою перевантаженого оператора множення). Після цього інкрементував М3 (за допомогою перевантаженого оператора інкрементування) та знайшов визначник отриманої матриці.