- 1. For the following sequences, evaluate the limit, or determine the sequence diverges.
 - a) $\left\{\frac{2n}{5n-1}\right\}$
 - b) $a_n = \sqrt[n]{n}$
 - c) $\{0, 1, 0, 1, ...\}$
 - d) $\{-3, 2, -\frac{4}{3}, \frac{8}{9}, -\frac{16}{27}, \ldots\}$
 - e) $\{\frac{(n-1)!}{n!}\}$
 - f) $a_n = \frac{(\ln n)^2}{n}$
 - g) $a_n = \frac{1}{2}a_{n-1}$, $a_0 = 100$
- 2. For each series, write the first four terms of the sum. Then evaluate the series.
 - a)

 $\sum_{n=1}^{\infty} \frac{(-1)^n}{4^n}$

b)

 $\sum_{n=0}^{\infty} \left(\frac{2^{n+1}}{5^n} \right)$

c)

 $\sum_{n=2}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$

d)

 $e^{-1} + e^{-2} + e^{-3} + \dots$

3. Do the following series converge or diverge? Why or why not?

a)

$$\sum_{n=1}^{\infty} \left(\ln(n) - \ln(n+1) \right)$$

b)

$$\sum_{n=1}^{\infty} \frac{2^n}{3^n}$$

c)

$$\sum_{n=1}^{\infty} \frac{5^n}{4^n + 3}$$

d)

$$\sum_{n=2}^{\infty} \frac{1}{3+2^{-n}}$$

e)

$$\sum_{n=1}^{\infty} (\sqrt{2})^n$$

f) A series whose n^{th} partial sum is $s_n = \frac{\ln(2n)}{\ln(n)}$

g)

$$\sum_{n=1}^{\infty} \left(1 - \frac{2}{n}\right)^n$$

- 4. Express the following decimals as a ratio of integers
 - a) $0.\overline{5} = 0.555..$
 - b) $0.\overline{31} = 0.313131...$
 - c) $0.\overline{9} = 0.999...$ (ask your LA to make sure this is right!)