Contrôle d'un agent par apprentissage par renforcement profond

Présentation de mon stage à THALES dans l'équipe AS&BSIM

Nizam Makdoud

29 août 2017

THALES

Objectifs et Défis technologiques

Apprentissage Profond

Architecture classique en apprentissage profond

Module de curiosité appliqué au contrôle

Objectifs et Défis technologiques

Objectifs du stage

Sujet du stage

Contrôler un agent dans un environnement simulé à partir de la vision de celui-ci.

Contraintes sur le contrôle

Contrôler un agent dans un environnement simulé à partir de la vision de celui-ci.

Contrainte sur notre contrôle

- Etre pertinant pour toutes entrées (images, graphes, ...) .
- Etre approprié pour tous buts.
- Gérer des environnements complexes et inconnues.

Technologies utilisées et contributions

Contraintes sur notre contrôle

- Etre pertinant pour toutes entrées (images, graphes, ...) .
- Etre approprié pour tous buts.
- Gérer des environnements complexes et inconnues.

Technologiee utilisées pour répondre à ce défi

- L'apprentissage profond pour la résilence fâce aux entrées.
- L'apprentissage par renforcement pour s'adapter aux buts.
- Module de curiosité pour explorer.

La contribution de ce stage

Conclusion sur notre contribution

Proposition d'un contrôle basé sur de l'apprentissage par renforcement profond utilisant un module de curiosité.

Apprentissage Profond

Théorie de l'apprentissage profond

Formalisme La théorie des processus décisionnels de Markov :

$$oldsymbol{\mathcal{M}} = \left\{ oldsymbol{\mathfrak{A}}, oldsymbol{\mathfrak{A}}, oldsymbol{\mathfrak{P}}, \gamma
ight\}$$

Théorie de l'apprentissage profond

Formalisme La théorie des processus décisionnels de Markov :

$$oldsymbol{\mathcal{M}} = \left\{ oldsymbol{\mathfrak{A}}, oldsymbol{\mathfrak{R}}, oldsymbol{\mathfrak{P}}, \gamma
ight\}$$

• Politique

$$\pi$$
, $a_t \sim \pi(\cdot, x_t)$

• Dynamique

$$x_{t+1} \sim P(\cdot, x_t, a_t)$$

• Fonction Etat-Action

$$Q^{\pi}(x,a) = \underset{P,\pi}{\mathbb{E}} \left[\sum_{t} \gamma^{t} r_{t}(x_{t},a_{t}) \mid x_{0}, a_{0} = x, a \right]$$

Architecture classique en

apprentissage profond

Architecture classique en apprentissage profond

Gestion des entrées

Acquisitions automatiques d'éléments pertinants à la prise de décisions

Prise de la décision par l'agent

Apprentissage du réseau

Résumé de la base utilisée pour le contrôle

Module de curiosité appliqué au

contrôle

Nécessité d'exploration d'un environnement

Nécessité d'exploration de l'environnement ?

• Dynamique de l'environnement

- \rightarrow Connue
- → Fonction d'état-action : Connue
- \rightarrow Politique : Connue

Nécessité d'exploration d'un environnement

Nécessité d'exploration de l'environnement ?

• Dynamique de l'environnement

- \rightarrow Inconnue
- → Fonction d'état-action : Inconnue
- → Politique : Inconnue

