### BIS0005 - Bases Computacionais da Ciência

Aula 02 - Representação Gráfica de Funções

Saul Leite Centro de Matemática, Computação e Cognição Universidade Federal do ABC

### Motivação

- Em diferentes áreas da Ciência busca-se modelar fenômenos por meio de funções matemáticas a fim de reproduzir os comportamentos observados na natureza.
  - comportamento de gases;
  - escoamento de fluídos;
  - propagação de ondas;
  - etc...

 Dado um modelo matemático, muitas vezes, temos a necessidade de visualizar o comportamento do mesmo.

■ Gráficos de funções auxiliam o entendimento dos fenômenos.

### Motivação: Crescimento populacional

Modelo para o crescimento de uma faixa sócio-econômica da população.

Dados disponíveis (pontos cheios) são usados para montar a função matemática que descreve os dados. Curva tracejada é a extrapolação da função em datas futuras.



## Motivação: Exemplo Tilápia do Nilo

| idade | comprimento medio (cm) | peso medio (g) |
|-------|------------------------|----------------|
| 0     | 11.0                   | 26.0           |
| 1     | 15.0                   | 59.5           |
| 2     | 17.4                   | 105.4          |
| 3     | 20.6                   | 200.2          |
| 4     | 22.7                   | 239.5          |
| 5     | 25.3                   | 361.2          |
| 6     | 27.4                   | 419.8          |
| 7     | 28.2                   | 475.4          |
| 8     | 29.3                   | 488.2          |

(Retirado de Bassanezi, 2009)

## Motivação: Exemplo Tilápia do Nilo



## Motivação: Exemplo Tilápia do Nilo



## Motivação: Dinâmica populacional



Flutuação no tamanho da população de *Paramecium aurelia* que se alimenta de *Saccharomyces exiguus*. (Bassanezi, 2009)

## Motivação Dinâmica populacional



Lotka-Volterra  $\sim$ 1920, um dos primeiros modelos matemáticos para essa interação presa-predador.

Considere os dados da tabela que mostram o crescimento de uma população (em milhares) de bactérias.

Qual a equação que descreve esse crescimento populacional de bactérias?

| geracao | populacao |
|---------|-----------|
| 0       | 140.000   |
| 1       | 182.000   |
| 2       | 236.600   |
| 3       | 307.580   |
| 4       | 399.854   |
| 5       | 519.810   |
| 6       | 675.753   |
|         |           |

Populações, em geral, crescem muito rapidamente, pois a cada geração são mais indivíduos para se reproduzir.

Dividindo a população de cada geração pela da geração anterior, obtém-se:

$$\frac{p(1)}{p(0)} = \frac{182}{140} = 1.3$$

$$\frac{p(3)}{p(2)} = \frac{307.580}{236.6} = 1.3$$

$$\frac{p(2)}{p(1)} = \frac{236.6}{182} = 1.3$$

$$\frac{p(4)}{p(3)} = \frac{399.854}{307.580} = 1.3,$$

em que p(x) representa a população na geração x.

Desta forma, temos que

$$\frac{p(x)}{p(x-1)} = 1.3 \implies p(x) = p(x-1)1.3, \text{ para } x = 1, 2, 3, 4, \dots$$

Portanto,

$$p(1) = p(0)1.3$$
  

$$p(2) = p(1) 1.3 = (p(0) 1.3) 1.3 = p(0) (1.3)^{2}$$
  

$$p(3) = p(2) 1.3 = (p(0) (1.3)^{2}) 1.3 = p(0) (1.3)^{3}$$

Desta forma, temos que

$$\frac{p(x)}{p(x-1)} = 1.3 \implies p(x) = p(x-1)1.3, \text{ para } x = 1, 2, 3, 4, \dots$$

Portanto,

$$p(1) = p(0)1.3$$
  

$$p(2) = p(1) 1.3 = (p(0) 1.3) 1.3 = p(0) (1.3)^{2}$$
  

$$p(3) = p(2) 1.3 = (p(0) (1.3)^{2}) 1.3 = p(0) (1.3)^{3}$$

Podemos concluir que  $p(x) = p(0) (1.3)^x$ .

Desta forma, temos que

$$\frac{p(x)}{p(x-1)} = 1.3 \quad \Rightarrow \quad p(x) = p(x-1)1.3, \quad \text{para } x = 1, 2, 3, 4, \dots.$$

Portanto,

$$p(1) = p(0)1.3$$
  

$$p(2) = p(1) 1.3 = (p(0) 1.3) 1.3 = p(0) (1.3)^{2}$$
  

$$p(3) = p(2) 1.3 = (p(0) (1.3)^{2}) 1.3 = p(0) (1.3)^{3}$$

Podemos concluir que  $p(x) = p(0) (1.3)^x$ . Logo temos:

$$p(x) = 140 (1.3)^x$$
 para  $x = 1, 2, 3, ...$ 

Esta é uma função exponencial com base 1.3.

A base representa um fator de crescimento pelo qual a população muda a cada geração. Neste caso, considerando r a taxa percentual, diz-se que a taxa de crescimento é r=30%=0.3.

$$p(x) = 140 (1.3)^x$$



### Motivação

#### O estudo de funções decorre da necessidade de:

- Analisar fenômenos, visualizando o comportamento de um sistema.
- Interpretar interdependências, entendendo como uma variável comporta-se com relação à outra.
- Encontrar soluções de problemas.
- Descrever regularidades.
- Generalizar.

# PARTE PRÁTICA

## Ferramentas de Programação e Visualização

Existem diversas ferramentas para utilizadas em cálculos matemáticos avançados.

- Matlab
- Maple
- Mathematica
- Octave
- Scilab (livro)
- Python
- R

Geralmente contam com bibliotecas de funções matemáticas prontas e recursos avançados.

R é um conjunto integrado de recursos de software para manipulação de dados, cálculo e exibição gráfica.

Um dos pontos fortes do R é a facilidade de trabalhar com conjuntos de dados e gerar gráficos de qualidade.

R está disponível como Software Livre (na forma de código fonte). Ele roda em uma ampla variedade de plataformas (Linux, Windows, MacOS).

Link para download: http://vps.fmvz.usp.br/CRAN/

#### **RStudio**

O RStudio é um ambiente de desenvolvimento integrado (IDE) para R. Ele inclui:

- um console para executar comandos;
- editor de código com realce de sintaxe que suporta execução direta de código;
- ferramentas para plotagem
- histórico
- depuração
- gerenciamento de espaço de trabalho.

O RStudio está disponível em edições open source. E roda em diversas plataformas (Linux, Windows, MacOS).

Link para download:

https://www.rstudio.com/products/rstudio/download/

#### **RStudio**



A interação do usuário com o R pode ocorrer de duas formas distintas:

Na primeira forma, os comandos são digitados diretamente no prompt do R: ao ser pressionada a tecla Enter, os comandos digitados são interpretados e imediatamente executados.

Neste caso, o R funciona como uma sofisticada calculadora

Na segunda forma, um conjunto de comandos é digitado em um arquivo texto: Este arquivo, em seguida, é levado para o ambiente R e executado.

Neste modo, o R funciona como um ambiente de programação.

### R: Exemplo

Exemplo de código em R, executado na linha de comando:

```
x <- 2
y <- x + 5
y
```

```
## [1] 7
```

Neste exemplo, x, e y são variáveis.

### Executando pelo RStudio

Entre com os comandos na área marcada no RStudio.



## Executando pelo RStudio

Note que as variáveis criadas aparecem do lado superior direito, como ilustrado abaixo.



#### Variáveis

Em programas computacionais precisamos armazenar informações para utilizarmos durante a execução do programa.



#### Variáveis

As linguagens de programação permitem que os usuários atribuam nomes para as posições de memória da máquina.



#### Variáveis

Uma variável é um endereço da memória de acesso randômico (RAM), representada por um nome (rótulo), criado pelo usuário, cujo conteúdo pode se alterar no decorrer do programa.



Uma variável é composta por dois elementos:

- Identificador: nome dado pelo programador à variável
- Conteúdo: valor atual da variável

### Processamento pelo computador

O que acontece internamente no computador quando aplicamos o seguinte comando?



### Processamento pelo computador

Lembrando que a Unidade de Controle do processador (CPU) está sempre dando as ordens para os demais componentes

- "Memória RAM, quero o valor de x".
- "ULA, some o valor 2 com o valor 5".
- "Memória RAM, associe um novo endereço a variável denominada y e escreva nesse endereço o valor 7".

O R possui várias operações e funções matemáticas que podem ser facilmente utilizadas, como por exemplo:

| Operação Função                                                                                  | Descrição                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| +, -<br>/, *<br>^ ou **<br>sin(x)<br>cos(x)<br>tan(x)<br>log(x)<br>log10(x)<br>sqrt(x)<br>exp(x) | soma, subtração divisão, multiplicação potência seno em radianos cosseno em radianos tangente em radianos logaritmo base natural logaritmo base $10$ raíz quadrada $\sqrt{x}$ exponencial $e^x$ |

## R: Criando funções

Podemos criar nossas próprias funções no R. Abaixo, definimos a função  $f(x)=140\ (1.3)^x$ :

```
f <- function(x) 140 * (1.3)^x
```

Nesse exemplo, a variável f representa a nossa função. Podemos calcular a função para diferentes valores de x da seguinte forma:

```
f(1)

## [1] 182

f(2)

## [1] 236.6
```

#### **RStudio**

Note que as funções também aparecem no lado superior direito do RStudio:



## R: Criando funções

Outro exemplo de função em R: vamos definir  $g(x) = \sqrt{x} \cdot cos(x)$ 

g <- function(x) sqrt(x) \* cos(x)

Podemos calcular a função g(x) para diferentes valores de x:

g(pi)

## [1] -1.772454

## [1] 2.506628

g(2\*pi)

em que pi é uma variável pré-definida em R com o valor de  $\pi=3.141593$ .

### R: Gerando um gráfico

Sempre que desejamos produzir um gráfico de uma função, precisamos definir em quais pontos gostaríamos de visualizar a função, ou seja, para quais valores de  $\boldsymbol{x}$ .

Existem duas formas para se definir estes valores:

- Definindo diretamente os pontos x nos quais queremos plotar a função.
- $\blacksquare$  Definindo um intervalo de valores de x no qual queremos plotar a função

## R: Gerando um gráfico

Forma 1: definindo diretamente os pontos x. Podemos definir os pontos de interesse usando o comando  $\mathbf{c}()$ , onde listamos todos os valores que desejamos para a função.

$$x \leftarrow c(1, 2, 3, 4, 5, 6, 7, 8, 9)$$

Neste caso, x é um vetor (falaremos mais sobre eles mais para frente).

### R: Gerando um gráfico

Para gerar o gráfico, basta chamar a função **plot**, da seguinte forma:

```
f <- function(x) 140 * (1.3)^x
x <- c(1, 2, 3, 4, 5, 6, 7, 8, 9)
plot(x,f(x))
```



Podemos modificar o gráfico de diversas maneiras. Por exemplo,

- podemos ligar os pontos discretos com uma curva usando o parâmetro type = "l" no comando plot.
- podemos também dar um nome aos eixos x e y usando xlab e ylab.
- podemos dar um título para o gráfico usando main.
- podemos trocar a cor do gráfico com o argumento col.
- podemos aumentar a grossura da linha com o argumento lwd.

#### Gráfico resultante:



#### Outros parâmetros da função plot

| parâmetro | Descrição                                                                               |
|-----------|-----------------------------------------------------------------------------------------|
| lty       | especifica o tipo de linha (1=solida, 2=tracejada, 3=pontilhada)                        |
| ylim      | intervalo de valores para $y$ usado no gráfico                                          |
| xlim      | intervalo de valores para $\boldsymbol{x}$ usado no gráfico                             |
| type      | especifica o tipo de gráfico "p" = pontos, "l" = linhas, "b" = ambos, "h" = histograma. |
| sub       | define um subtítulo para o gráfico.                                                     |

Forma 2: definindo um intervalo de valores de x no qual queremos plotar a função. Podemos definir os pontos de interesse em um intervalo usando o comando seq(from,to,by), com os seguintes parâmetros:

- from: inicio do intervalo
- to: fim do intervalo
- by: incremento da sequencia

```
x \leftarrow seq(1,9,1)
```

O comando acima é equivalente ao que fizemos anteriormente.

Outro exemplo: um gráfico da função  $g(x) = \sqrt{x} \cdot cos(x)$  no intervalo  $[0,2\pi]$ :

```
g <- function(x) sqrt(x) * cos(x)
x <- seq(0,2*pi,0.01)
plot(x,g(x),type="l",col="blue",lwd=3)</pre>
```

Note que o x acima é um vetor, com valores:

$$x = (0, 0.01, 0.02, 0.03, 0.04, 0.05, \dots, 2\pi)$$

#### Gráfico resultante:



Podemos gerar um grid usando o comando **grid** do R. Considere o exemplo abaixo:

```
g <- function(x) sqrt(x) * cos(x)
x <- seq(0,2*pi,0.01)
plot(x,g(x),type="l",col="blue",lwd=3)
grid(lwd=3)</pre>
```



# R: Combinando gráficos de diversas funções.

É possível fazer o gráfico de diferentes funções na mesma figura. Para isso, basta fazer chamadas ao comando **lines** após a execusão do comando **plot**, como ilustrado abaixo:

```
g <- function(x) sqrt(x) * cos(x)
g1<- function(x) sqrt(x)
g2<- function(x) cos(x)

x <- seq(0,2*pi,0.01)
plot(x,g(x),type="l",col="blue",lwd=3)
lines(x,g1(x),col="red",lwd=3)
lines(x,g2(x),col="green",lwd=3)
grid(lwd=3)</pre>
```

# R: Combinando gráficos de diversas funções.

#### Gráfico resultante:



### R: Adicionando pontos no gráfico

Podemos também adicionar pontos nos gráficos usando o comando *points*:

```
points(pos_x, pos_y, pch)
```

que necessita dos seguintes parâmetros:

- pos\_x: coordenada x do ponto;
- pox\_y: coordenada y do ponto;
- pch: tipo do ponto para representação gráfica, ilustrado na figura abaixo.

## ATIVIDADES EM AULA

#### Exercício 1

A empresa COLKS é uma indústria automobilística em um pais, onde a moeda oficial é o dubila. O lucro mensal da COLKS é função do número de carros produzidos no mês.

Ela tem um custo fixo de 50 dubilas e um custo variável em função do número de carros produzidos no mês  $(N_c)$  dado por  $48(N_c)^{0.9}$ . Vamos dizer que ela venda cada carro por 50 dubilas.

Assim, o seu lucro  ${\cal L}$  mensal é dado por

$$L = 50N_c - 48(N_c)^{0.9} - 50$$

#### Exercício 1

- **1** Determine o lucro L da COLKS ao produzir  $N_c = 1$ ,  $N_c = 4$  e  $N_c = 10$  carros. Interprete os resultados que você obteve.
- 2 Agora faça um gráfico de L em função de  $N_c$  para  $0 \le N_c \le 20$ . A partir de quantos carros mensalmente vendidos a COLKS começa a ter lucro?
- 3 Analisando o gráfico, quantos carros a COLKS tem que produzir no mês para ter um lucro de cerca de 100 dubilas?

#### Exercício 2

A acidez A(x) de uma solução de hidróxido de magnésio em ácido clorídrico, sob certas condições experimentais, é dada pela equação

$$A(x) = x^3 + 3x^2 - 54,$$

na qual x é a concentração de íons hidrônio. Pede-se:

- **1** Use o R para gerar o gráfico de A(x) em função de x para  $0 \le x \le 8$ ;
- 2 A partir da analise do gráfico, determine a concentração  $\boldsymbol{x}$  do íon de hidrônio que resulta em solução saturada (i.e., com acidez nula). Acrescente uma instrução que gere um ponto vermelho no gráfico correspondente à saturação da solução.

### MATERIAL EXTRA

#### Fazendo gráficos tridimensionais

Vejamos agora como podemos fazer gráficos tridimensionais. Como exemplo, vamos fazer o gráfico da função:

$$f(x,y) = x^2 + y^2$$

Para fazer esse tipo de gráfico, iremos usar a biblioteca *plot3D* do R. Você pode instalar essa biblioteca no seu computador, chamado o seguinte comando na linha da comando do R:

Bibliotecas são usadas para estender as funcionalidades do R.

#### Fazendo gráficos tridimensionais

Vamos definir nossa função:

```
f \leftarrow function(x,y) x^2 + y^2
```

que agora depende de dois parâmetros. Com a biblioteca *plot3D* instalada, podemos gerar o gráfio.

Geramos o gráfico com a seguinte sequencia de comandos:

## Fazendo gráficos tridimensionais





# Fazendo gráficos tridimensionais (iterativos)

Para fazer gráficos iterativos, utilize a biblioteca *plot3Drgl* e siga os mesmos passos dos slides anteriores, chamando a seguinte função para gerar o gráfico:

#### Atividades para casa

Atividades para fazer até a próxima aula:

- Fazer a Lista de Exercícios 1 no Tidia (lista01.pdf).
- Ler o Capítulo 3 "Noções de Estatística, Correlação e Regressão" do livro "Bases Computacionais da Ciência."

#### Referências

- Aulas dos Profs. David Correa Martins Jr, Wagner Tanaka Botelho e Jesús P. Mena-Chalco.
- Livro Bases Computacionais da Ciência.