

Problem Statement

- Given a set of data on Ames housing features and sale prices, how accurate of a model can we build to predict future sale prices?
- Success will be measured by R2 score achieved

Models

Model #1

- For my first model, I picked 10 variables at my discretion.
- The resulting model was better than baseline, but not by much.

Model 1

Train R2	0.766
Test R2	0.752
Baseline Score	49334.66
Kaggle Score	45739.82

Model #2

- For my second model, I wanted to be more accurate by looking at the correlation of my numeric variables.
- I also ran ANOVA tests on my categorical variables.
- Removed other non matching variables from first model.

Model 2

Train R2	0.842
Test R2	0.844
Previous Model	45739.82
Kaggle Score	31138.39

- Included the top 10
 correlated numeric variables
- The 5 highly correlated categorical variables

Model #3

- Tried using different kinds of regression
- Tried removing columns with multicollinearity
- Ended up getting best score by combining all features of first two models

Model 3

Train R2	0.852
Test R2	0.860
Previous Model	31138.39
Kaggle Score	29814.28

Only a slight improvement over the previous model, but still an improvement!

Side by Side

Model 1

Model 2

Model 3

Works Cited

Kaggle Competition

https://www.kaggle.com/competitions/dsb-521-ames-h

ousing-challenge

ANOVA Tests

https://www.scribbr.com/statistics/one-way-anova/

GA Lessons 301-306, 401, 403

Questions?

