CSDS 452 Causality and Machine Learning

Lecture 20: Causal Computer Vision

Instructor: Jing Ma

Fall 2024, CDS@CWRU

Computer Vision

 "Vision is the act of knowing what is where by looking." --Aristotle

General tasks in CV

- Image classification
- Object detection
- Pose estimation
- Image segmentation
- •

Challenges

- Biased data distribution
- Limited annotation

•

Outline

- Momentum Causal Effect
- Interventional few-shot learning

Long-Tailed Classification by Keeping the Good and Removing the Bad Momentum Causal Effect

Kaihua Tang¹, Jianqiang Huang^{1,2}, Hanwang Zhang¹ NeurIPS 2020

> ¹Nanyang Technological University ²Damo Academy, Alibaba Group

Github: https://github.com/KaihuaTang/Long-Tailed-Recognition.pytorch

Contents

- Long-Tailed Classification
- Related Work
- The Proposed Causal Graph
- De-confound TDE
- Advantages
- Experiments

Example: Zipf's law

Word frequency and rank in Romeo & Juliet.

Long-Tailed Distribution

What is long-tailed distribution?

Categories Ranking by Frequency

Long-Tailed Distribution

Why we never heard about long tail problem in ML before?

It's because the dataset we saw has already been balanced by the <u>pre-processing</u> in the data collection stage.

Limitations of Balanced Datasets

Question 1: What's the problem of balancing all the dataset?

Problems of Long-Tailed Datasets

Question 2: Why not directly use the long-tailed dataset?

Long-Tailed Classification

The Problem of Long-Tailed Datasets

Long-Tailed Classification

The Target of Long-Tailed Classification

Contents

- Long-Tailed Classification
- Related Work
- The Proposed Causal Graph
- De-confound TDE
- Advantages
- Experiments

Re-balancing (Re-sampling/Re-weighting)

- The most common solutions:
 - Re-sampling
 - Re-weighting

Re-balancing (Re-sampling/Re-weighting)

- The most common solutions:
 - Re-sampling
 - Re-weighting

Two-Stage Re-balancing

- Drawbacks of conventional re-balancing:
 - Foreknowledge towards the data: knowing the future data distribution before learning
 - Under-fitting to the head
 - Over-fitting to the tail

Two-Stage Re-balancing

- The two-stage solutions for the above drawbacks:
 - Smoothly adapted bilateral-branch training [3]
 - Decoupled two-stage training [4]

^[4] Decoupling Representation and Classifier for Long-Tailed Recognition, ICLR 2020

What's the problem of existing two-stage solutions?

They fail to explain the whys and wherefores of their solutions:

- why is the re-balanced classifier good but the re-balanced feature learning bad?
- why does the two-stage training significantly outperform the end-to-end one in long-tailed classification?

Contents

- Long-Tailed Classification
- Related Work
- The Proposed Causal Graph
- De-confound TDE
- Advantages
- Experiments

We should not blame the dataset

- We, human beings, also live in a long-tailed world.
- The problem must reside in the learning framework.

Gradient descent

Accumulative Momentum Effect

 The PyTorch implementation of SGD with momentum [1]:

- Modern SGD variants (e.g., Adam, SGD-M, etc.) often involve momentum (or acceleration), which accumulates historical gradients to speed up convergence, akin to a heavy ball rolling down the loss function landscape.
- The moving average momentum will encode the data distribution, that creates a <u>shortcut</u> towards the <u>head</u>.

Accumulative Momentum Effect

SGD Momentum in **Balanced** Dataset

SGD Momentum in *Long-Tailed* Dataset

- **O** Global Optima for All Categories
- Cocal Optima for Head Categories
- --> Momentum Direction in Balanced Data
- **-->** Momentum Direction in Long-Tailed Data

Causal Effect of Momentum

The Proposed Causal Graph

X: Feature

Y: Prediction

M: Momentum

D: Projection on Head

Two Undesired Causal Effects of Momentum

Two Undesired Causal Effects of Momentum:

- 1. Backdoor shortcut
- 2. Indirect Mediator Effect

Confounder and backdoor shortcut

Backdoor shortcut:

1.
$$A \uparrow \Rightarrow E \uparrow$$

2.
$$A \uparrow \Rightarrow C \uparrow$$

3.
$$E \uparrow \Rightarrow ? C \uparrow$$

A: age E: exercise C: cancer

backdoor Adjustment

Backdoor Adjustment

Intervention on E:

$$P(C|do(E)) = \sum_{a} P(C|E, A = a)P(A = a)$$

A: age E: exercise C: cancer

Two Undesired Causal Effects of Momentum

Two Undesired Causal Effects of Momentum:

- 1. Backdoor shortcut
- 2. Indirect Mediator Effect

Contents

- Long-Tailed Classification
- Related Work
- The Proposed Causal Graph
- De-confound TDE
- Advantages
- Experiments

De-confound TDE Classifier

The definition of Total Direct Effect (TDE):

$$argmax_{i \in C} TDE(Y_i) = [Y_d = i | do(X = x)] - [Y_d = i | do(X = x_0)]$$

The proposed classifier = De-confounded Training + TDE Inference

Contents

- Long-Tailed Classification
- Related Work
- The Proposed Causal Graph
- De-confound TDE
- Advantages
- Experiments

Advantages

The proposed de-confound TDE **simple**, **adaptive**, and **agnostic** to the prior statistics of the class distribution:

- 1. It doesn't introduce any additional stages or modules.
- 2. It can be applied to a variety of tasks, including but not limited to image classification, object detection, instance segmentation.
- 3. It doesn't rely on the accessibility of data distribution.

Contents

- Long-Tailed Classification
- Related Work
- The Proposed Causal Graph
- De-confound TDE
- Advantages
- Experiments

Image Classification: ImageNet-LT

Experiments on ImageNet-LT

Methods	Many-shot	Medium-shot	Few-shot	Overall	
Focal Loss† [24]	64.3	37.1	8.2	43.7	
OLTR [†] [8]	51.0	40.8	20.8	41.9	
Decouple-OLTR [†] [8] 10]	59.9	45.8	27.6	48.7	
Decouple-Joint [10]	65.9	37.5	7.7	44.4	
Decouple-NCM [10]	56.6	45.3	28.1	47.3	
Decouple-cRT [10]	61.8	46.2	27.4	49.6	
Decouple- τ -norm [10]	59.1	46.9	30.7	49.4	
Decouple-LWS [10]	60.2	47.2	30.3	49.9	
Baseline	66.1	38.4	8.9	45.0	
Cosine [†] [38, 39]	67.3	41.3	14.0	47.6	
Capsule [†] [8, 42]	67.1	40.0	11.2	46.5	
(Ours) De-confound	67.9	42.7	14.7	48.6	
(Ours) Cosine-TDE	61.8	47.1	30.4	50.5	
(Ours) Capsule-TDE	62.3	46.9	30.6	50.6	
(Ours) De-confound-TDE	62.7	48.8	31.6	51.8	

Image Classification: ImageNet-LT

 Will the improvement be consistent across different backbones?

Methods	Backbone	Many-shot	Medium-shot	Few-shot	Overall
Baseline	ResNeXt-50	66.1	38.4	8.9	45.0
De-confound	ResNeXt-50	67.9	42.7	14.7	48.6
De-confound-TDE	ResNeXt-50	62.7	48.8	31.6	51.8
Baseline	ResNeXt-101	68.7	42.5	11.8	48.4
De-confound	ResNeXt-101	68.9	44.3	16.5	50.0
De-confound-TDE	ResNeXt-101	64.7	50.0	33.0	53.3

Grad-cam Visualization on ImageNet-LT

What does our model see from images?

Interventional Few-Shot Learning

Yue, Zhongqi, et al

NeurIPS 2020

Few-shot Learning

• Few-shot learning is usually studied using *N-way-K-shot classification*.

N-way-K-shot classification

- N classes with K samples of each.
- E.g., classify N = 10 classes with only K = 5 samples from each to train from.

Meta-learning

• "learn to learn": learn a meta-model that quickly adapts to different few-shot datasets.

Pre-training

Pre-training is the crux of Few-Shot Learning (FSL)

Pre-training confounds FSL

An example of $\mathcal{S} \neq \mathcal{Q}$

Feature representation of samples

Intervention removes bias from confounding

Use Backdoor Adjustment to achieve P(Y|do(X))

$$P(Y|do(X = x)) = \sum_{i=1}^{n} P(Y|X = x, D = d_i, C = g(x, d_i)) P(D = d_i)$$

Feature-wise

Class-wise

Many-shot, Few-shot, and interventional few-shot

(a) MSL, where $p(y \mid \boldsymbol{x}) \approx p(y \mid (b))$ FSL, where $p(y \mid \boldsymbol{x}) \not\approx p(y \mid (c))$ IFSL, where $p(y \mid \boldsymbol{x})$ $do(\boldsymbol{x})$ $do(\boldsymbol{x})$

 $do(\boldsymbol{x})$) through backdoor adjustment.

Consistent Improvement after Intervention

				ResNet-10			WRN-28-10			
	Method		miniImageNet		tieredImageNet		miniImageNet		tieredImageNet	
			5-shot	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot
Fine-Tuning	Linear		76.38	56.26	81.01	61.39	79.79	60.69	85.37	67.27
		+IFSL+2.19	77.97+1.59	60.13+3.87	82.08+1.07	64.29+2.9	80.97+1.18	64.12+3.43	86.19+0.82	69.96+2.69
	Casina		76.68	56.40	81.13	62.08	79.72	60.83	85.41	67.30
	Cosine	+IFSL+1.77	77.63+0.95	59.84+3.44	81.75+0.62	64.47+2.39	80.74+1.02	63.76+2.93	86.13+0.72	69.36+2.06
	k-NN		76.63	55.92	80.85	61.16	79.60	60.34	84.67	67.25
		+IFSL+3.13	78.42+1.79	62.31+6.36	81.98+1.13	65.71+4.55	81.08+1.48	64.98+4.64	86.06+1.39	70.94+3.69
Meta-Learning	MAML [18]		70.85	56.59	74.02	59.17	73.92	58.02	77.20	61.40
		+IFSL+5.55	76.37+5.52	59.36+2.77	81.04+7.02	63.88+4.71	79.25+5.33	62.84+4.82	85.10+7.90	67.70+6.30
	LEO [53]		74.49	58.48	80.25	65.25	75.86	59.77	82.15	68.90
		+IFSL+1.94	76.91+2.42	61.09+2.61	81.43+1.18	66.03+0.78	77.72+1.86	62.19+2.42	85.04+2.89	70.28+1.38
	MTL [56]		75.65	58.49	81.14	64.29	77.30	62.99	83.23	70.08
		+IFSL+2.02	78.03+2.38	61.17+2.68	82.35+1.21	65.72+1.43	80.20+2.9	64.40+1.41	86.02+2.79	71.45+1.37
	MN [61]		75.21	61.05	79.92	66.01	77.15	63.45	82.43	70.38
		+IFSL+1.34	76.73+1.52	62.64+1.59	80.79+0.87	67.30+1.29	78.55+1.40	64.89+1.44	84.03+1.60	71.41+1.03
	SIB [29]		78.88	67.10	85.09	77.64	81.73	71.31	88.19	81.97
	(transductive)	+IFSL+1.15	80.32+1.44	68.85+1.75	85.43+0.34	78.03+0.39	83.21+1.48	73.51+2.20	88.69+0.50	83.07+1.10
	SIB [29]		75.64	57.20	81.69	65.51	78.17	60.12	84.96	69.20
	(inductive)	+IFSL+2.05	77.68+2.04	60.33+3.13	82.75+1.06	67.34+1.83	80.05+1.88	63.14+3.02	86.14+1.18	71.45+2.25

Visualization

- IFSL achieves similar or better results in all settings.
 - Focus more on objects

References & Reading Lists

- Tang, Kaihua, Jianqiang Huang, and Hanwang Zhang. "Long-tailed classification by keeping the good and removing the bad momentum causal effect." NeurIPS 2020.
- Yue, Zhongqi, et al. "Interventional few-shot learning." *NeurIPS* 2020.
- Awesome Causality in Computer Vision
 https://github.com/Wangt-CN/Awesome-Causality-in-CV

Thank you! Questions?