导2002-0040594

(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) Int. CI.³ HD4B 7/155 (11) 공개번호 특2002-0040594

(43) 공개일자 2002년05월30일

(21) 출원번호 (22) 출원일자	10-2001-0072724 2001년 [1월2]일
(30) 우선권주장 (71) 출원인	JP-P-2000-00356711 2000년11월22일 일본(JP) 가부시키가이샤 엔.티.티.도코모 다치카와 게미지
(72) 발명자	일본 도쿄도 지요다쿠 나가타쵸 2쵸메 11반 1고 사토히진
	일본기나가와234-0054요코하마시고난쿠고난다이1-36-4
	우메다나루미
	일본가나가와236-0052요코하마시가나자와쿠도미오카니시6-40-14
	아마오아수시
	일본기나가와239-0822요코수카시우라가쵸6-92-38
(74) 대리인	특허법인 신성
公从君子: 있음	

(54) 멀티-네트워크 접속형 통신 시스템에서 사용되는 가지국및 그 접속 방법

RS

사업자 네트워크 및 프라이버트 네트워크에 동시에 접속 가능한 멀티-네트워크 접속형 통신 시스템의 기지국이 기재되어 있다. 상기 기지국은 단말이 사업자 네트워크에 접속될 것인지 또는 프라이버트 네트워크에 접속될 것인지를 판정하기 위한 섹션, 및 상기 판정 결과에 따라 상기 단말을 상기 사업자 네트워크 또는 상기 프라이버트 네트워크에 접속시키기 위한 섹션을 포함한다.

DAG

£1

412101

통신 시스템, 이동 통신 시스템, 기지국, 사업자 네트워크, 프라이비트 네트워크

HAKE

도면의 간단관 설명

도1은 본 발명에 따른 멀티-네트워크 접속형 통신 시스템의 구현 구조를 도시한 도면.

도2는 본 발명에 따른 멀티-네트워크 접속형 통신 시스템의 다른 구현 구조를 도시한 도면.

도3은 본 발명에 따른 멀티-네트워크 접속형 통신 시스템의 또 다른 구현 구조를 도시한 도면.

도4는 도1 내지 도3에서의 기지국(100)을 도시한 기능 블록도.

도5는 본 발명에 따른 멀티-네트워크 접속형 통신 시스템의 기지국의 동작을 도시한 흐름도.

도6은 본 발명에 따른 멀티-네트워크 접속형 통신 시스템에서 프라이비트 네트워크에 접속되는 이동국 등을 등록하는 동작을 도시한 호름도.

도7은 본 발명에 따른 멀티-네트워크 접속형 통신 시스템에서 프라이비트 네트워크에 접속되는 이동국 등의 등록을 삭제하는 동작을 도시한 흐름도.

도8은 본 발명과 관련된 개인 기지국(100)의 기능을 구조적으로 도시한 기능 블록도.

도양는 본 발명에 따른 멀티-네트워크 접속형 통신 시스템의 기지국의 동작을 도시한 흐름도.

도10은 본 발명에 [따른 멀티-네트워크 접속형 통신 시스템에서 기지국의 소유자가 최대 제공률 및 우선도

를 등록할 때의 동작을 도시한 호흡도.

도11은 본 발명에 따른 멀티-네트워크 접속형 통신 시스템에서 소유자 및 사용자를 등록하는 평작을 도시한 흐름도.

도12는 본 발명에 [다른 멀티-네트워크 접숙형 평신 시스템에서 패스워드 등의 설정을 변경하는 동작을 도시한 흐름도.

★도면의 주요부분에 대한 부호의 설명

100 : 기지국102 : 수신부

104 : 사용자 등록 관리부106 : 서비스 영역 판정부 108 : 네트워크 인터페이스110 : 무선 자원 관리부

112 : 채널 제머부114 : 승신부

116 : 트래픽 감시부118 : 기지국 서비스 제어부

발명의 상세력 설명

보염의 목적

발명이 속하는 기술분야 왜 그 분야의 중래기술

본 발명은 멀티-네트워크 접속형 통신 시스템에서 사용되는 기지국 및 그 접속 방법에 관한 것으로, 특히, 사업자 네트워크 및 프라이비트 네트워크 양쪽에 접속 가능한 멀티-네트워크 접속형 통신 시스템의 기지국 및 그 접속 방법에 관한 것이다.

종래, 이동 통신 사업자(NTT DoCoMo Inc.등의)는 기지국을 설치하여 사업자 네트워크에 접속을 수행한다. 한편, 프라이네트 네트워크는 무선 LAN 기술 등을 이용하여 독립적으로 구성된다.

그러나, 사업자 네트워크 기지국은 프라이비트 네트워크 기지국으로 사용될 수 없기 때문에, 사업자 및 개인이 중복 투자를 해야하는 문제가 있었다.

世界的 的导고자 하는 기술적 承재

전술한 문제를 고려하여, 본 발명의 목적은 사업자 네트워크와 프라이비트 네트워크 양쪽에 동시에 접속 가능한 멀티-네트워크 접속형 통신 시스템의 기자국 및 그 접속 방법을 제공하는 것이다.

이러한 목적을 달성하기 위하며, 본 발명의 제1 양태에서는, 단말이 사업자 네트워크에 접속될 것인지 또는 프라이비트 네트워크에 접속될 것인지를 판정하기 위한 수단; 및 상기 판정 결과에 따라 상기 단말을 상기 사업자 네트워크 또는 상기 프라이비트 네트워크에 접속시키기 위한 수단을 포함하는, 멀티-네트워 크 접속형 통신 시스템에서 사용되는 기지국이 제공된다.

여기서, 상기 기지국은 소정의 설정 정보에 따라 상기 단말의 통신에 대해 자원을 할당하기 위한 수단을 더 포함할 수 있다.

또한, 상기 프라이비트 네트워크의 소유자에게 부과되는 상기 사업자 네트워크에 대한 요금은 상기 소정의 설정 정보에 따라 할인될 수 있다.

여기서, 상기 소정의 설정 정보는 상기 사업자 네트워크의 사용자에 대한 최대 제공률(maximum providing ratio) 및/또는 우선도(priority)일 수 있다.

여기서, 상기 기지국은 상기 사업자 네트워크를 제공하는 사업자에 의해 소유될 수 있다.

또한, 상기 기지국은 상기 프라이비트 네트워크의 소유자에 의해 소유될 수 있다.

본 발명의 제2 양태에서는, 단말이 사업자 네트워크에 접속될 것인지 또는 프라이비트 네트워크에 접속될 것인지를 판정하는 단계; 및 상기 판정 결과에 따라 상기 단말을 상기 사업자 네트워크 또는 상기 프라이 비트 네트워크에 접속시키는 단계를 포함하는, 멀티-네트워크 접속형 통신 시스템의 기지국에서 사용되는 접속 방법이 제공된다.

여기서, 상기 접속 방법은 소정의 설정 정보에 따라 상기 단말의 통신에 대해 자원을 할당하는 단계를 더 포함함 수 있다.

또한, 상기 프라이비트 네트워크의 소유자에게 부과되는 상기 사업자 네트워크에 대한 요금은 상기 소정의 설정 정보에 따라 할인될 수 있다.

여기서, 상기 소정의 설정 정보는 상기 사업자 네트워크의 사용자에 대한 최대 제공를 및/또는 우선도일 수 있다.

여기서, 상기 기지국은 상기 사업자 네트워크를 제공하는 사업자에 의해 소유될 수 있다.

또한, 상기 기지국은 상기 프라이비트 네트워크의 소유자에 의해 소유될 수 있다.

상술한 구성은 사업자 네트워크와 서설 네트워크 양쪽에 동시에 접속 가능한 멀티-네트워크 접속형 통신 시스템의 기지국 및 그 접속 방법을 제공할 수 있다.

본 발명의 상기 및 그 밖의 목적, 효과, 특징 및 장점은 첨부된 도면과 함께 설명되는 다음의 실시예의 상세한 설명으로부터 보다 명백해질 것이다.

설명의 구성 및 작용

이제, 첨부한 도면을 참조하여 본 발명에 따른 실시예를이 설명될 것이다.

도1은 본 발명에 따른 멀티-네트워크 접속형 통신 시스템의 구현 구조를 보여주는 도면으로서, 여기서는 본 발명과 관련된 부분만을 도시하고 있다.

본 발명에 따른 멀티-네트워크 접속형 통신 시스템은 적어도 하나의 기지국, 이동국 및 네트워크를 포함 한다. 상기 네트워크는 IMT2000 시스템, GSN 시스템 및 PDC/PDC-P 시스템 등의 이동 교환 네트워크/이동 패킷 네트워크와, 무선 페이징 네트워크, Bluetooth 등의 로컬 무선 네트워크, PMS 네트워크, 인터넷, 인 트라넷, LAN(유선 및 무선 네트워크를 모두 포함한), VAN, 공중 전화 네트워크(마날로그 및 디지털 네트 워크를 모두 포함한), 프라이버트 네트워크(마날로그 및 디지털 네트워크를 모두 포함한), CATV 네트워크 및 위성 통신 네트워크 등의 사업자에 의해 제공되는 사업자 네트워크이다.

도1에 도시된 예에서, 기지국(1)의 서비스 영역내의 이동국(A)은 사업자 네트워크를 통해 기지국(2)의 서비스 영역내의 이동국(C)과 통산한다. 이동국(A)은 또한 기지국(I)을 통해 프라이비트 네트워크를 거쳐이동국(B)과 접속된다.

도2는 본 발명에 따른 멀티-네트워크 접속형 통신 시스템의 다른 구현 구조를 보여주는 도면으로서, 여기 서는 본 발명과 관련된 부분만을 도시하고 있다.

도2에 도시된 예에서, 기지국(1)의 서비스 영역내의 이동국(A)은 사업자 네트워크를 통해 기지국(2)의 서비스 영역내의 이동국(C)과 통산한다. 이동국(A)은 또한 기지국(1) 및 기지국(3)을 통해 프라이비트 네트워크를 거쳐 이동국(B)과 접속된다.

도3은 본 발명에 따른 멀티-네트워크 접속형 통신 시스템의 또 다른 구현 구조를 보여주는 도면으로서, 여기서는 본 발명과 관련된 부분만을 도시하고 있다.

도3에 도시된 예에서, 기지국(1)의 서비스 영역내의 이동국(A) 및 이동국(B)은 부스터(booster)를 통해 프라이비트 네트워크(및 사업자 네트워크)를 거쳐 접속된다.

따라서, 도1 내지 도3에 연관되어 설명된 멀티-네트워크 접속형 통신 시스템은 각각 프라이비트 네트워크 와 사업자 네트워크 양쪽에 동시에 접속 가능한 기지국을 포함한다. 사업자 기지국을 개인 LAN 기지국으 로 이용하는 것은 개인 설비내의 LAN의 필요성을 없앨 수 있고, 낮은 이용률을 가진 기지국을 효율적으로 이용할 수 있게 할 수 있다.

도4는 도1 내지 도3의 기지국(100)의 일례를 도시한 기능 블록도로서, 여기서는 본 발명과 관련된 기지국(100)의 기능 부분만을 도시하고 있다.

기지국(100)은 이동국 또는 사업자 네트워크로부터 신호를 수신하기 위한 수신부(102), 기지국을 프라이 네트 네트워크로 사용하는 이동국의 등록을 관리하기 위한 사용자 등록 관리부(104), 서비스 영역을 판정 하기 위한 서비스 영역 판정부(106), 사업자 네트워크와의 인터페이스를 수립하기 위한 네트워크 인터페 이스(108), 이동국과의 무선 통신에 사용되는 무선 자원을 관리하기 위한 무선 자원 관리부(110), 이동국 과의 무선 통신에 사용되는 채널을 제어하기 위한 채널 제어부(112), 이동국 또는 사업자 네트워크로 선 호를 송신하기 위한 송신부(114), 및 과금 등을 위해 트래픽을 감시하기 위한 트래픽 감시부(116)를 포함 한다.

다음으로, 멀티-네트워크 접속형 통신 시스템의 본 실시예의 동작이 도5 내지 도7을 참조하며 설명될 것이다.

도5는 본 발명에 따른 멀티-네트워크 접속형 통신 시스템의 기지국의 동작을 도시한 순서도이다.

먼저, 기지국(100)의 수신부(102)는 이동국 또는 사업자 네트워크로부터 패킷을 수신한다(S502).

이어서, 기지국(100)의 사용자 등록 관리부(104)는 착신 어드레스가 등록되어 있는지의 여부를 판정한다 (\$504). 상기 착신 어드레스가 아직 등록되지 않은 경우, 기지국(100)은 네트워크로 패킷을 송신하고 (\$514), 그후, 상기 패킷은 교환 시스템 등을 통해 다른 기지국으로 송신된다.

한편, 상기 착신 어드레스가 등록되어 있는 경우(S504), 기지국(100)의 서비스 영역 판정부(106)는 수신된 패킷의 착신 어드레스를 판정한다(S506). 착신 어드레스가 기지국(100)의 영역내에 존재하지 않는 미동국의 것인 경우, 그 패킷은 네트워크로 송신되어(S514), 교환 시스템 등을 통해 다른 기지국으로 전송된다.

한편, 상기 착신 어드레스가 기지국(100)의 영역내에 현재 존재하는 이동국의 것인 경우, 기지국(100)의 무선 자원 관리부(110) 및 채널 제어부(112)는 후술되어질 기지국에서의 우선도에 따라 자원 및 채널을 활당하고(8508), 그들에 관한 정보를 이동국으로 전송하고(8510), 패킷을 그 이동국으로 송신한다(8512).

상기의 처리 과정은 패킷 단위로 수행되었지만, 본 발명은 이로 제한되지 않는다. 다수의 패킷을 하나의 단위로 미용하며 수행될 수도 있다. 여기서, 단계(S508 및 S510)에서의 기지국에 의한 무선 채널의 합당 및 우선도의 판정이 설명될 것이다.

먼저, 프라이비트 네트워크에서의 접속, 즉 기지국내의 접속에 대하여, 다른 공중 서비스에 비하여 최저 우선도가 활당될 수 있다. 따라서, 공중 서비스의 폭주시에는, 본 서비스의 트래픽 처리량이 감소될 것이 다. 본 서비스 트래픽의 폭주시에는, 단말에 대해 무선 자원이 균등하게 활당된다. 서비스가 다수의 기지 국까지 뻗치는 경우, 그들은 미것이 LAN 패킷이라는 것을 LIEH내는 식별자를 활당하여, 기지국이 접속된 사업자 네트워크로 핸드오버윌 수 있다. 이 경우에, 사업자 네트워크의 교환 시스템은 라우팅 기능 등을 가져야 한다.

기지국의 증류(프라이비트 네트워크 서비스의 가부(可否) 및 등록 가부와 같은)의 구별을 브로드캐스트하기 위해, 기지국은 퍼치 채널을 이용하여 모든 단말이 수신할 수 있는 것에 관한 정보를 승신한다. 여기서, 퍼치 채널은 이동국이 셀 선택을 수행하기 위한 캐리어 센스 물리 채널(carrier sense physical channel)이고, 이동국이 국간 비동기 시스템에서도 쉽게 동기를 획득하기 위해 특별한 확산 처리가 적용된다. LAN 서비스를 제공하는 기지국은 앞의 신호와 동일한 방식으로 현재 상태가 등록 가능한 상태인지의 여부에 관한 정보를 제공하기 위한 신호를 승신할 수 있다. 이에 따라, 단답들은 기지국을 검색하여, 서비스를 수신하기를 원하는 경우에 등록 등의 처리를 수행할 수 있다.

본 발명에 따른 멀티-네트워크 접숙형 통신 시스템에서의 과금 시스템의 일레가 설명될 것이다. 예를 들 어, 부가 서비스에 따라, 비과금 시스템, 월단위의 정액 시스템, 월단위의 선사용 효과금 시스템, 및 트 래픽량에 따른 월단위 과금 시스템 등의 프라이비트 네트워크 접속을 위한 과금 시스템이 있다. 과금은 기지국(100)의 트래픽 감시부(116)로부터 사업자 네트워크로 트래픽 정보를 송신하여, 현재 과금 센터가 사용자에게 청구서를 발행함으로써 수행된다.

도6은 본 발명에 따른 멀티-네트워크 접속형 통신 시스템에서 프라이비트 네트워크에 접속되는 이동국 등의 등록 동작을 도시한 호름도이다.

먼저, 단말은 기지국으로 등록 요구를 전송한다(S602).

그리고, 기지국은 M-SCP와 같은 사업자 네트워크내의 서비스 지원 지점으로 단말에 대한 민중허가 요구를 전송한다(S604).

그후, 서비스 지원 지점은, 가입자 정보를 참조하여 가입자를 확인하고, 과금 리스트에 가입자를 등록한 다(S606).

이어서, 서비스 지원 지점은 기지국으로 인증허가를 송신한다(\$608).

그리고 LM, 기지국은 등록처리를 수행하고(S610), 등록된 통지를 단말로 송신한다(S612).

도7은 본 발명에 따른 멀티-네트워크 접속형 통신 시스템에서 프라이비트'네트워크에 접속되는 이동국 등의 등록을 삭제하는 동작을 도시한 흐름도이다.

먼저, 단말은 기지국으로 등록 삭제 요구를 전승한다(\$702).

그리고, 기지국은 M-SCP와 같은 사업자 네트워크내의 서비스 지원 지점으로 등록 삭제 확인 요구를 전송한다(S704).

그후, 서비스 지원 지점은 가입자 정보 등을 참조하여 기입자를 확인하고, 과금 리스트로부터 그것을 삭제한다(\$706).

이머서, 서비스 지원 지점은 기지국으로 등록 삭제 인증허가를 송신한다(\$708).

그리고 나서, 기지국은 등록 삭제를 수행하고(S710), 등록된 통지를 단말에 송신한다(S712).

(개인이 기지국을 소유하는 경우의 실시예)

이제, 전술한 실시예에서 사업자가 아닌 개인에게 속한 기지국을 포함하는 실시예가 설명될 것이다.

'개인'(private entity)이 프라이비트 네트워크와 사업자 네트워크 양쪽에 동시에 접속 가능한 기지국을 소유하고 있다. 이에 따라, 프라이비트 가지국을 이용하여 사업자의 공중 서비스를 제공하면, 공중이 프 라이비트 네트워크의 자원을 효율적으로 이용할 수 있게 된다. 그 보상으로서, 사업자 네트워크에 대한 통신 비용의 할인을 받을 수 있다. 개인이 톰구장, 역 및 레스토랑 동의 시설내에 기지국을 소유하고 있 는 경우, 사업자가 기지국을 설치하기 머려운 위치라도 공중 서비스가 가능하게 되어, 서비스 영역이 중 가된다. 또한, 이것은 보다 개선된 끊김없는 통신 환경을 제공할 수 있게 할 수 있다.

도8은 프라미비트 기지국(100)의 일례를 보여주는 기능 블록도로서, 여기서는 본 발명과 관련된 기지국(100)의 기능 부분만을 도시하고 있다.

기지국(100)은 적어도 이동국 또는 사업자 네트워크로부터 신호를 수신하기 위한 수신부(102), 기지국의 전체 서비스를 제어하고 인증허가 등의 처리를 수행하기 위한 기지국 서비스 제어부(118), 기지국을 프라이비트 네트워크로 사용하는 이동국의 등록을 관리하기 위한 사용자 등록 관리부(104), 서비스 영역을 판정하기 위한 서비스 영역 판정부(106), 사업자 네트워크와 인터페이스를 수립하기 위한 네트워크 인터페이스(108), 이동국과의 무선 통신에 사용되는 무선 자원을 관리하기 위한 무선 자원 관리부(110), 이동국과의 무선 통신에 사용되는 무선 자원을 관리하기 위한 무선 자원 관리부(110), 이동국과의 무선 통신에 사용되는 채널을 제어하기 위한 채널 제어부(112), 이동국 또는 사업자 네트워크로 신호를 승신하기 위한 승신부(114), 및 과금 등을 위해 트래픽을 감시하기 위한 트래픽 감시부(116)를 포함하다.

다음으로, 멀티-네트워크 접속형 통신 시스템에서의 본 실시예의 동작이 도9 내지 도12를 참조하며 설명 될 것이다. 도9는 본 발명에 [다른 얼티-네트워크 접속형 톱신 시스템의 기지국의 동작을 도시한 순서도이다.

먼저, 기지국(100)의 수신부(102)는 이동국 또는 사업자 네트워크로부터 패킷을 수신한다(S902)

이어서, 기지국(100)의 사용자 등록 관리부(104)는 발신 어드레스 및 착신 어드레스가 등록되어 있는지의 여부를 판정한다(3904). 상기 어드레스들이 아직 등록되지 않은 경우, 기지국(100)은 네트워크로 패킷을 승신하고(S914), 그후, 상기 패킷은 교환 시스템 등을 통해 다른 기지국으로 승신된다.

한편, 상기 발신 머드레스 및 착신 머드레스가 등록되어 있는 경우(\$904), 기지국(100)의 서비스 영역 판 정부(106)는 수신된 패킷의 착신 머드레스를 판정한다(\$906). 착신 머드레스가 기지국(100)의 영역내에 존재하지 않는 미동국의 것인 경우, 그 패킷은 네트워크로 승신되어(\$914), 교환 시스템 등을 통해 다른 기지국으로 진송된다.

한편, 상기 착신 어드레스가 기지국(100)의 영역내에 현재 존재하는 이동국의 것인 경우, 기지국(100)의 무선 자원 관리부(110) 및 채널 제어부(112)는 효술되머질 기지국에서의 우선도에 따라 자원 및 채널을 활당하고(\$908), 그룹에 관한 정보를 이동국으로 전승하고(\$910), 패킷을 그 이동국으로 승신한다(\$912).

상기의 처리 과정은 패킷 단위로 수행되었지만, 본 발명은 이에 제한되지 않고, 다수의 패킷을 해나의 단 위로 이용하여 수행될 수도 있다.

다음으로, 본 발명에 따른 멀티-네트워크 접숙형 통신 시스템의 동작의 개요가 설명될 것이다.

먼저, 후술되는 바와 같이, 사업자 네트워크의 최대 제공률(사업자 네트워크에 활당된 자원에서의 최대 비율), 우선도, 소유자 및 사용자를 설정한다. 여기서, 소유자 라는 용어는 프라이비트 네트워크에 대한 감시 모드를 설정할 수 있는 프라이비트 네트워크 소유자를 말한다. '사용자'라는 용어는 프라이비트 네 트워크 접속을 수행하는 사람을 말한다. 다수의 사용자들을 '사용자'로 설정할 수 있고, 그 사용자들 간 의 프라이비트 네트워크로 상기 네트워크를 사용할 수 있다.

이어서, 네트워크 접속시에, 최대 제공률 및 우선도 값의 설정이 먼저 보고된다. 갱신시에도 동일한 동작이 수행된다. 그리고 나서, 기지국은 브라우저를 적재하며, 그 브라우저가 보고된 설정값을 확인할 수 있게 한다.

그후, 사용자는 단말을 통해 개인용 컴퓨터에 설정값을 설정한다.

그리고, 기지국은 상기 설정값에 따라 채널 제어를 수행한다. 예를 들면, 공중 서비스에 대해 40%의 우선도, 개인 사용을 위해 60%의 우선도를 설정할 수 있다. 우선도를 고려하여, 먼저 개인에 대해 활당되고, 그 다음에 공중에 대해 활당되거나, 그 반대로 활당될 수 있다. 대안적으로, 우선도를 활당하는 것이 필요하지 않을 수 있다. 기지국은 최대 제공률 또는 우선도의 설정값에 따라 무선 채널 활당을 수행할 수 있다.

이제, 본 발명에 따른 멀티-네트워크 접속형 통신 시스템의 과금 시스템의 일레가 설명될 것이다. 예를 들면, 기지국의 소유자에 대하여, 기본 요금 또는 통신 요금은 최대 제공률 및/또는 우선도에 따라 감소 될 수 있다.

도10은 본 발명에 따른 멀티-네트워크 접속형 통신 시스템에서 기지국의 사용자가 최대 제공를 및 우선도 를 등록할 때의 동작을 도시한 흐름도이다.

먼저, 단말은 기지국으로 최대 제공률 및 우선도의 설정 요구를 전승한다(S1002).

이어서, 기지국은 최대 제공률 및 무선도의 설정 처리를 수행하고(S1004), 설정 완료 응답을 단말에 송신한다(S1006).

도11은 본 발명에 따른 멀티-네트워크 접속 통신 시스템에서의 소유자 및 사용자의 등록 동작을 도시한 흐름도이다.

먼저, 단말은 기지국으로 소유자 및 사용자의 등록 요구를 전송한다(\$1102).

이어서, 기지국은 단말로 인증허가 요구를 전송한다(S1104).

그리고 나서, 단말은 기자국으로 인증허가 응답을 전승한다(S1106).

그후, 기지국은 소유자 및 사용자를 등록하고(SI108), 등록된 통지를 단말에 승신한다(SI110).

도 12는 본 발명에 따른 멀티-네트워크 접속형 통신 시스템에서의 패스워드 등의 설정을 변경하는 동작을 도시한 흐름도이다.

먼저, 단말이 기지국으로 설정 변경을 요구한다(S1202).

이어서, 기지국이 설정 변경 처리를 수행하고(\$1204), 설정 변경 완료 응답을 단말에 승신한다(\$1205).

(그 밖의 실시예)

전술한 실시에는 그들이 독립적으로 구현되는 것으로 가정하여 설명되었지만, 본 발명은 이로 제한되지 않는다. 이 기술분야의 통상의 지식을 가진 자에게는 다른 실시예를 구현하기 위해 이들을 다양한 방법으 로 조합함 수 있다는 것이 명백할 것이다.

또한, 전술한 실시예는 이동 전화 네트워크/이동 패킷 네트워크로 IMT2000 시스템 또는 NTT DoCoMo Inc. 의 PDC/PDC-P 시스템을 적용하는 예로 설명되었지만, 본 발명은 이에 제한되지 않는다. 예를 들면, 다른 실시예를 구현하기 위해 상이한 무선 시스템을 갖는 다른 이동 전화 네트워크/이동 패킷 네트워크에 적용 될 수 있다.

또한, 전술한 실시예는 NTI DoCoMo Inc.의 서비스 및 시스템의 예로 설명되었지만, 본 발명은 미에 제한

되지 않는다. 예를 들면, 다른 실시예를 구현하기 위해 유사한 기능을 갖는 다른 회사의 다른 서비스 및 시스템에 적용될 수 있다.

그리고, 전술한 실시예 미외에 많은 변경 및 수정예가 구현될 수 있다. 그 변형들이 본 발명의 청구범위에 기재된 기술적인 개념에 기반하는 한, 그들은 본 발명의 범위에 속한다.

57

전술된 바와 같이, 본 밤명은, 프라이비트 네트워크와 사업자 네트워크 양쪽에 동시에 접속 가능한 기지국을 섭치하고, 사업자 기지국을 프라이비트 LAN에 대한 기지국으로 사용함으로써, 프라이비트 네트워크 내의 LAN 설비의 필요성을 없애고, 낮은 이용률을 가진 기지국의 효율성을 증가시킬 수 있는, 멀티-네트 워크 접속형 통신 시스템의 기지국 및 그 접속 방법을 제공한다.

또한, 본 발명에 따르면, 프라이비트 기지국을 이용하여 사업자의 공중 서비스를 제공하여, 개인은, 공중 이 프라이비트 네트워크의 자원을 효과적으로 이용할 수 있게 한다. 그 보상으로서, 사업자 네트워크에 대한 통신 요금의 할인을 받을 수 있다. 개인이 흡구장, 역 및 레스토랑과 같은 시설내에 기지국을 소유 하는 경우, 사업자가 기지국을 설치하기 어려운 위치에서도 공중 서비스가 이용 가능하게 되어, 서비스 영역이 증가하게 된다.

또한, 본 발명은 보다 개선된 끊김없는 통신 환경을 제공할 수 있다.

본 발명이 바람직한 실시예를 참조하며 설명되었다. 그러나, 이 기술 분야에서 통상의 지식을 가진 자에 게는, 첨부된 청구항에서 기술되는 바와 같이, 본 발명의 보다 넓은 사상 및 범위에서 벗어나지 않는 한, 다양한 수정 및 변경이 가능하다는 것이 명백할 것이다. [따라서, 본 명세서 및 도면은 제한적 관점이라기 보다는 하나의 예시로서 간주되어야 한다. 이에 따라, 본 발명의 범위는 첨부한 청구행에 의해서만 제한 되어야 한다.

(57) 광구의 범위

청구항 1

멀티-네트워크 접속형 통신 시스템에서 사용되는 기지국에 있어서,

단말이 사업자 네트워크에 접속될 것인지 또는 프라이비트 네트워크에 접속될 것인지를 판정하기 위한 수단; 및

상기 판정 결과에 따라 상기 단말을 상기 사업자 네트워크 또는 상기 프라이비트 네트워크에 접속시키기 위한 수단

을 포함하는 기지국.

청구항 2

제1항에 있어서,

소정의 설정 정보에 따라 상기 단말의 통신에 대해 자원을 활당하기 위한 수단을 더 포함하는 기지국.

청구항 3

제1항에 있어서,

상기 프라이비트 네트워크의 소유자에게 부과되는 상기 사업자 네트워크에 대한 요금은 상기 소정의 설정 정보에 따라 할인되는

기지국.

청구항 4

제2항 또는 제3항 중 머느 한 항에 있머서,

상기 소정의 설정 정보는 상기 사업자 네트워크의 사용자에 대한 최대 제공률(maximum providing ratio) 및/또는 우선도(priority)인

기지국.

청구함 5

제1항에 있머서,

상기 기지국은 상기 사업자 네트워크를 제공하는 사업자에 의해 소유되는

기지국.

청구항 6

제항에 있어서,

상기 기지국은 상기 프라이비트 네트워크의 소유자에 의해 소유되는 기지국.

청구항 ?

멀티-네트워크 접속형 통신 시스템의 기지국에서 사용되는 접속 방법에 있어서,

단말이 사업자 네트워크에 접속될 것인지 또는 프라이비트 네트워크에 접속될 것인지를 판정하는 단계; 및

상기 판정 결과에 따라 상기 단말을 상기 사업자 네트워크 또는 상기 프라이비트 네트워크에 접속시키는 단계

를 포함하는 접속 방법.

청구항 8

제항에 있어서,

소정의 설정 정보에 따라 상기 단말의 통신에 대해 자원을 할당하는 단계 를 더 포함하는 접속 방법

청구항 9

제7항에 있머서,

상기 프라이비트 네트워크의 소유자에게 부과되는 상기 사업자 네트워크에 대한 요금은 상기 소정의 설정 정보에 따라 할인되는

접속 방법.

청구항 10

제8항 또는 제9항 중 머느 한 항에 있어서,

상기 소정의 설정 정보는 상기 사업자 네트워크의 사용자에 대한 최대 제공률 및/또는 우선도인 접속 방법.

청구함 11

제7항에 있어서,

상기 기지국은 상기 사업자 네트워크를 제공하는 사업자에 의해 소유되는 접속 방법.

청구항 12

제7항에 있어서,

상기 기지국은 상기 프라이비트 네트워크의 소유자에 의해 소유되는 접속 방법.

SP

SUI

<u>502</u>

<u> Seis</u>

<u>594</u>

< 기지국으로의 등록 >

<毎ペ 44日>

ድଞ୍ଚ

*도胜1*0

SB11

5B12

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

~ • • • • • • • • • • • • • • • • • • •
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.