Grundbegriffe der Informatik

Thomas Worsch

Karlsruher Institut für Technologie, Fakultät für Informatik

Wintersemester 2009/2010

Äquivalenzrelationen

Definition

Äquivalenzrelationen von Nerode

Äquivalenzklassen und Faktormengen

Kongruenzrelationen

Verträglichkeit von Relationen mit Operationen Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen

"Extreme" Elemente

Vollständige Halbordnungen

Stetige Abbildungen auf vollständigen Halbordnungen

Ordnungen

Überblick 2/75

Äquivalenzrelationen

Definition

Äquivalenzrelationen von Nerode Äquivalenzklassen und Faktormengen

Kongruenzrelationen

Verträglichkeit von Relationen mit Operationen Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen

Vollständige Halbordnungen

Stetige Abbildungen auf vollständigen Halbordnunger

Ordnunger

Äquivalenzrelationen

Definition

Äquivalenzrelationen von Nerode Äquivalenzklassen und Faktormenger

Kongruenzrelationen

Verträglichkeit von Relationen mit Operationen Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen "Extreme" Elemente Vollständige Halbordnungen Stetige Abbildungen auf vollständigen

Ordnunger

Definition

- ▶ Eine \ddot{A} quivalenzrelation ist eine Relation $R \subseteq M \times M$ auf einer Menge M, die
 - reflexiv,
 - symmetrisch und
 - transitiv

ist.

- typischerweise
 - ▶ Notation \equiv , \sim , \approx , oder ähnlich
 - Infixschreibweise
- also
 - $\forall x \in M : x \equiv x$
 - $\forall x \in M : \forall y \in M : x \equiv y \Longrightarrow y \equiv x$
 - $\forall x \in M : \forall y \in M : \forall z \in M : x \equiv y \land y \equiv z \Longrightarrow x \equiv z$

Einfachstes Beispiel: Identität

 $\mathbf{I} = \{(x,x) \mid x \in M\}$ ist Äquivalenzrelation (für jede Menge M), denn

- $\forall x \in M : x = x$
- $\forall x \in M : \forall y \in M : x = y \Longrightarrow y = x$
- $\forall x \in M : \forall y \in M : \forall z \in M : x = y \land y = z \Longrightarrow x = z$

Wichtiges Beispiel: Kongruenz modulo n

- ▶ Es sei $n \in \mathbb{N}_+$.
- ▶ $x, y \in \mathbb{Z}$ heißen *kongruent modulo n*, wenn
 - ▶ die Differenz x y durch n teilbar,
 - also ein ganzzahliges Vielfaches von n, ist.
- ▶ Schreibweise $x \equiv y \pmod{n}$
- Das sind Äquivalenzrelationen, denn
 - ▶ Reflexivität: x x = 0 ist Vielfaches von n
 - Symmetrie: mit x y ist auch y x = -(x y) Vielfaches von n
 - ► Transitivität:
 - ▶ Wenn $x y = k_1 n$ und $y z = k_2 n$ (mit $k_1, k_2 \in \mathbb{Z}$),
 - ▶ dann auch $x z = (x y) + (y z) = (k_1 + k_2)n$ ganzzahliges Vielfaches von n

Äquivalenzrelationen

Definition

Äquivalenzrelationen von Nerode

Äquivalenzklassen und Faktormengen

Kongruenzrelationen

Verträglichkeit von Relationen mit Operationen Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen "Extreme" Elemente Vollständige Halbordnungen Stetige Abbildungen auf vollständ

Ordnunger

Definition

- ▶ $L \subseteq A^*$ beliebige formale Sprache
- ▶ Äquivalenzrelation von Nerode \equiv_L auf der Menge A^* aller Wörter so definiert: für alle $w_1, w_2 \in A^*$ ist

$$w_1 \equiv_L w_2 \iff (\forall w \in A^* : w_1 w \in L \iff w_2 w \in L)$$

- das muss man erfahrungsgemäß mehrfach lesen
- w_1 und w_2 genau dann äquivalent, wenn gilt: Gleich, welches Wort $w \in A^*$ man die beiden anhängt, immer sind entweder beide, w_1w und w_2w , in L, oder keines. Aber ist eines in L und das andere nicht.
- Anders gesagt: w₁ und w₂ genau dann nicht ≡L-äquivalent, wenn es ein Wort w ∈ A* gibt, so dass genau eines der Wörter w₁w und w₂w in L liegt, aber das andere nicht.

Diskussion

- **b**etrachte das leere Wort $w = \varepsilon$
- wenn $w_1 \equiv_L w_2$
- ▶ dann beide Wörter w₁w und w₂w in L oder beide nicht in L
- ightharpoonup also beide Wörter w_1 und w_2 in L oder beide nicht in L

- $A = \{a,b\}$
- ▶ $L = \langle a*b* \rangle \subset A^*$ alle Wörter, in denen nirgends das Teilwort ba vorkommt
- ► Beispiele:
 - 1. $w_1 = aaa und w_2 = a$
 - ▶ Hängt man an beide Wörter ein $w \in \langle a* \rangle$ an, dann sind sowohl w_1w als auch w_2w in L.
 - ► Hängt man ein w ∈ (a*bb*) an, dann sind sowohl w₁w als auch w₂w in L.
 - ► Hängt man ein w an, das ba enthält, dann sind also beide nicht in L.
 - Andere Möglichkeiten für w gibt es nicht, also sind die beiden Wörter ≡_L-äquivalent.
 - 2. $w_1 = aaab \text{ und } w_2 = abb$
 - 3. $w_1 = aa \text{ und } w_2 = abb$
 - 4. $w_1 = aba und w_2 = babb$
 - 5. $w_1 = ab \text{ und } w_2 = ba$

- $A = \{a, b\}$
- ▶ $L = \langle a*b* \rangle \subset A^*$ alle Wörter, in denen nirgends das Teilwort ba vorkommt
- ► Beispiele:
 - 1. $w_1 = aaa und w_2 = a$: äquivalent
 - 2. $w_1 = aaab \text{ und } w_2 = abb$
 - ▶ Hängt man ein $w \in \langle b* \rangle$ an, dann sind sowohl w_1w als auch w_2w in L.
 - ► Hängt man ein w an, das ein a enthält, dann sind also beide nicht in L.
 - Andere Möglichkeiten gibt es nicht, also sind die beiden Wörter ≡_L-äquivalent.
 - 3. $w_1 = aa und w_2 = abb$
 - 4. $w_1 = aba und w_2 = babb$
 - 5. $w_1 = ab \text{ und } w_2 = ba$

- $A = \{a,b\}$
- ▶ $L = \langle a*b* \rangle \subset A^*$ alle Wörter, in denen nirgends das Teilwort ba vorkommt
- ► Beispiele:
 - 1. $w_1 = aaa und w_2 = a$: äquivalent
 - 2. $w_1 = aaab \text{ und } w_2 = abb$: äquivalent
 - 3. $w_1 = aa \text{ und } w_2 = abb$
 - ▶ Hängt man w = a an, dann ist zwar $w_1w = aaa \in L$, aber $w_2w = abba \notin L$.
 - ► Also sind die beiden Wörter nicht ≡_L-äquivalent.
 - 4. $w_1 = aba und w_2 = babb$
 - 5. $w_1 = ab \text{ und } w_2 = ba$

- $A = \{a,b\}$
- ▶ $L = \langle a*b* \rangle \subset A^*$ alle Wörter, in denen nirgends das Teilwort ba vorkommt
- ► Beispiele:
 - 1. $w_1 = aaa und w_2 = a$: äquivalent
 - 2. $w_1 = aaab \text{ und } w_2 = abb$: äquivalent
 - 3. $w_1 = aa$ und $w_2 = abb$: nicht äquivalent
 - 4. $w_1 = aba und w_2 = babb$
 - Beide ba. Egal was man anhängt,es bleibt so, d. h. immer sind w₁w ∉ L und w₂w ∉ L.
 - ▶ Also sind die beiden Wörter \equiv_L -äquivalent.
 - 5. $w_1 = ab \text{ und } w_2 = ba$

- $A = \{a, b\}$
- ▶ $L = \langle a*b* \rangle \subset A^*$ alle Wörter, in denen nirgends das Teilwort ba vorkommt
- ► Beispiele:
 - 1. $w_1 = aaa und w_2 = a$: äquivalent
 - 2. $w_1 = aaab \text{ und } w_2 = abb$: äquivalent
 - 3. $w_1 = aa$ und $w_2 = abb$: nicht äquivalent
 - 4. $w_1 = aba und w_2 = babb$: äquivalent
 - 5. $w_1 = ab \text{ und } w_2 = ba$
 - ▶ Da $w_1 \in L$, aber $w_2 \notin L$, zeigt $w = \varepsilon$, dass die beiden nicht \equiv_L -äquivalent sind.

- $A = \{a, b\}$
- ▶ $L = \langle a*b* \rangle \subset A^*$ alle Wörter, in denen nirgends das Teilwort ba vorkommt
- ► Beispiele:

1.
$$w_1 = aaa$$
 und $w_2 = a$: äquivalent
2. $w_1 = aaab$ und $w_2 = abb$: äquivalent

3.
$$w_1 = aa$$
 und $w_2 = abb$: nicht äquivalent

4.
$$w_1 = aba und w_2 = babb$$
: äquivalent

5.
$$w_1 = ab$$
 und $w_2 = ba$: nicht äquivalent

Die Nerode-Relation ist immer eine Äquivalenzrelation

Lemma

Für jede formale Sprache L ist \equiv_L eine Äquivalenzrelation.

Beweis

prüfe alle drei Eigenschaften:

- ▶ Reflexivität: Ist $w_1 \in A^*$, dann gilt für jedes $w \in A^*$ offensichtlich: $w_1 w \in L \iff w_1 w \in L$.
- ▶ Symmetrie: Für $w_1, w_2 \in A^*$ und alle $w \in A^*$ gelte: $w_1w \in L \iff w_2w \in L$. Dann gilt offensichtlich auch immer $w_2w \in L \iff w_1w \in L$.
- ▶ Transitivität: Es seien $w_1, w_2, w_3 \in A^*$ und es möge gelten

$$\forall w \in A^* : w_1 w \in L \iff w_2 w \in L \tag{1}$$

$$\forall w \in A^* : w_2 w \in L \iff w_3 w \in L \tag{2}$$

Zeige: $\forall w \in A^* : w_1 w \in L \iff w_3 w \in L \dots$

Äquivalenzrelationen

Definition

Äquivalenzrelationen von Nerode

Äquivalenzklassen und Faktormengen

Kongruenzrelationen

Verträglichkeit von Relationen mit Operationen Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen

"Extreme" Elemente

Vollständige Halbordnungen

Stetige Abbildungen auf vollständigen Halbordnungen

Ordnunger

Definitionen

- ▶ Äquivalenzklasse von $x \in M$ ist $\{y \in M \mid x \equiv y\}$
- ▶ Schreibweise $[x]_{\equiv}$ oder einfach [x], falls \equiv klar ist
- ► Faktormenge (oder Faserung) von M nach ≡ ist die Menge aller Äquivalenzklassen.
- ▶ Schreibweise $M_{/\equiv} = \{[x]_{\equiv} \mid x \in M\}$

Anzahl der Äquivalenzklassen

- manchmal
- ▶ Beispiel: \equiv_L für $L = \langle a*b* \rangle$
- genauere Betrachtung der Argumentation von vorhin zeigt:
 - ightharpoonup jedes Wort zu genau einem der Wörter ε , b und ba äquivalent
 - ▶ Also: $A_{/\equiv_L}^*$ besteht aus drei Äquivalenzklassen:
 - $\blacktriangleright \ [\varepsilon] = \langle \mathtt{a} * \rangle$
 - [b] = ⟨a*bb*⟩
- ► Wahl der Repräsentanten willkürlich; hätten auch schreiben können:
 - ▶ [aaaaa] = ⟨a*⟩
 - ▶ $[aabbbbb] = \langle a*bb* \rangle$
 - $\qquad \qquad [aabbaabbba] = \langle a*bb*a(a|b)* \rangle$

Anzahl Äquivalenzklassen bei Nerode-Äquivalenz

- durch L induzierte Nerode-Äquivalenz kann auch unendlich viele Äquivalenzklassen haben
- Beispiel betrachte man

$$L = \{\mathtt{a}^k\mathtt{b}^k \mid k \in \mathbb{N}_0\}$$
 .

- ▶ Ist $k \neq m$, dann sind $w_1 = a^k$ und $w_2 = a^m$ nicht äquivalent
- wie man durch Anhängen von $w = b^k$ sieht:
 - $w_1 w = a^k b^k \in L$, aber
 - $\mathbf{w}_2 \mathbf{w} = \mathbf{a}^m \mathbf{b}^k \notin L.$
- ▶ Also zumindest jedes Wort \mathbf{a}^k , $k \in \mathbb{N}_0$ in einer anderen Äquivalenzklasse.
- ► Jede dieser Äquivalenzklassen ist aber übrigens unendlich groß, denn

$$[a^k]_{=_t} = \{a^x b^y \mid x, y \in \mathbb{N}_0 \land x - y = k\}$$

Eine Ahnung ...

- Für die reguläre Sprache $L_1 = \langle a*b* \rangle$ hat \equiv_L endlich viele Äquivalenzklassen.
- Für die nicht reguläre Sprache $L_2 = \{a^k b^k \mid k \in \mathbb{N}_0\}$ hat \equiv_L unendlich viele Äquivalenzklassen.
- ▶ Für *L*₁ gibt es einen endlichen Akzeptor,
- ▶ für *L*₂ gibt es keinen.

Was ist wichtig

Das sollten Sie mitnehmen:

- Äquivalenzrelationen
- ► Beispiel Nerode-Äquivalenzen

Das sollten Sie üben:

- definierenden Eigenschaften überprüfen
- Anzahl Äquivalenzklassen bestimmen

Äquivalenzrelationer

Definition

Äquivalenzrelationen von Nerode Äquivalenzklassen und Faktormenger

Kongruenzrelationen

Verträglichkeit von Relationen mit Operationen Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen "Extreme" Elemente Vollständige Halbordnungen Stetige Abbildungen auf vollständ

Ordnungen

Äquivalenzrelationen auf Mengen mit "Struktur"

- lacktriangleright Beispiel: Kongruenz modulo n auf additiver Gruppe $\mathbb Z$ (oder Ring $\mathbb Z$
- Frage: Wie ändern sich Funktionswerte, wenn man Argumente durch äquivalente ersetzt?

Äquivalenzrelationer

Definition

Äquivalenzrelationen von Nerode Äquivalenzklassen und Faktormenge

Kongruenzrelationen

Verträglichkeit von Relationen mit Operationen

Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen

"Extreme" Elemente

Vollständige Halbordnungen

Stetige Abbildungen auf vollständigen Halbordnungen

Ordnunger

Verträglichkeit mit einstelligen Funktionen und binären Operationen

- ▶ Sei \equiv Äquivalenzrelation auf M und $f: M \rightarrow M$ eine Abbildung.
- ▶ \equiv ist mit f verträglich, wenn für alle $x_1, x_2 \in M$ gilt:

$$x_1 \equiv x_2 \Longrightarrow f(x_1) \equiv f(x_2)$$
.

- Sei \equiv Äquivalenzrelation auf M und \square eine binäre Operation Menge M.
- ▶ ≡ ist mit □ *verträglich*, wenn für alle $x_1, x_2 \in M$ und alle $y_1, y_2 \in M$ gilt:

$$x_1 \equiv x_2 \land y_1 \equiv y_2 \Longrightarrow x_1 \square y_1 \equiv x_2 \square y_2$$
.

Veträglichkeit: Beispiel modulo

- Äquivalenz "modulo n".
- Diese Relationen sind mit Addition, Subtraktion und Multiplikation verträglich.
- ► Beispiel: ist

$$x_1 \equiv x_2 \pmod n$$
 also $x_1 - x_2 = kn$
und $y_1 \equiv y_2 \pmod n$ also $y_1 - y_2 = mn$

dann auch

$$(x_1 + y_1) - (x_2 + y_2) = (x_1 - x_2) + (y_1 - y_2) = (k + m)n$$
.

mit anderen Worten

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n}.$$

Veträglichkeit: Beispiel Nerode-Äquivalenzen

- ▶ Sei $w' \in A^*$ beliebig.
- ▶ Sei $f_{w'}: A^* \to A^*$ die Abbildung, die w' anhängt, also $f_{w'}(v) = vw'$.
- ▶ Behauptung: \equiv_L ist mit $f_{w'}$ verträglich ist, d. h.:

$$\forall w_1, w_2 \in A^* : w_1 \equiv_L w_2 \Longrightarrow w_1 w' \equiv_L w_2 w'$$

- ▶ Zeige: Wenn $w_1 \equiv_L w_2$ ist, dann ist auch $w_1 w' \equiv_L w_2 w'$.
- ▶ Also: für alle $w \in A^*$ gielte $w_1w \in L \iff w_2w \in L$.
- ▶ Zeige: für alle $v \in A^*$ gilt: $(w_1w')v \in L \iff (w_2w')v \in L$. für beliebiges $v \in A^*$ gilt:

$$(w_1w')v \in L \iff w_1(w'v) \in L$$

 $\iff w_2(w'v) \in L \quad \text{weil } w_1 \equiv_L w_2$
 $\iff (w_2w')v \in L$.

Kongruenzrelationen

Eine Äquivalenzrelation, die mit allen gerade interessierenden Funktionen oder/und Operationen verträglich ist, nennt man auch eine *Kongruenzrelation*.

Äquivalenzrelationer

Definition

Äquivalenzrelationen von Nerode Äquivalenzklassen und Faktormenger

Kongruenzrelationen

Verträglichkeit von Relationen mit Operationen

Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen

"Extreme" Elemente

Vollständige Halbordnungen

Stetige Abbildungen auf vollständigen Halbordnungen

Ordnunger

Eine Abbildung für Nerode-Äquivalenzklassen (1)

- ▶ *L* eine beliebige formale Sprache $L \subseteq A^*$.
- ▶ für jedes $x \in A$ ist die Abbildung $f_x : A^* \to A^* : w \mapsto wx$ mit \equiv_L verträglich.
- Wir schreiben nun einmal hin:

$$f'_{\mathsf{x}}:A^*_{/\equiv_{\mathsf{L}}}\to A^*_{/\equiv_{\mathsf{L}}}:[w]\mapsto [w\mathsf{x}]$$

- Ist das in Ordnung?
- ► Huch? Wo kann ein Problem sein?

Eine Abbildung für Nerode-Äquivalenzklassen (1)

- ▶ *L* eine beliebige formale Sprache $L \subseteq A^*$.
- ▶ für jedes $x \in A$ ist die Abbildung $f_x : A^* \to A^* : w \mapsto wx$ mit \equiv_L verträglich.
- Wir schreiben nun einmal hin:

$$f'_{\mathsf{x}}:A^*_{/\equiv_{\mathsf{L}}}\to A^*_{/\equiv_{\mathsf{L}}}:[w]\mapsto [w\mathsf{x}]$$

- Ist das in Ordnung?
- ► Huch? Wo kann ein Problem sein?

Eine Abbildung für Nerode-Äquivalenzklassen (2)

- Versuch Abbildung zu definieren, die Äquivalenzklasse auf Äquivalenzklasse abbildet.
- ▶ Aber [w] enthält ja im allgemeinen nicht nur w, sondern noch viele andere Wörter.
- Zum Beispiel hatten wir uns weiter vorne überlegt, dass im Fall L = (a*b*) die Wörter ε, a, a², a³, usw. alle in einer Äquivalenzklasse liegen.
- also $[\varepsilon] = [a] = [a^2] = \cdots$.
- ▶ damit [w] → [wx] wirklich eine Definition ist, die für jedes Argument eindeutig einen Funktionswert festlegt,
- ▶ sollte bitte auch $[\varepsilon x] = [ax] = [a^2x] = \cdots$ sein.
- Aha: Das sichert gerade die Verträglichkeitsbedingung zu!

$$w_1 \equiv_L w_2 \Longrightarrow w_1 x \equiv_L w_2 x$$
also
$$w_1 \equiv_L w_2 \Longrightarrow f_x(w_1) \equiv_L f_x(w_2)$$
also
$$[w_1] = [w_2] \Longrightarrow [f_x(w_1)] = [f_x(w_2)]$$

Induzierte Abbildungen für Äquivalenzklassen

Allgemein gilt: Wenn \equiv mit $f:M\to M$ verträglich ist, dann ist

$$f': M_{/\equiv} \to M_{/\equiv}: f'([x]) = [f(x)]$$

wohldefiniert.

Ein letzter Blick auf die Nerode-Äquivalenzen (1)

- sei L eine formale Sprache, für die \equiv_L nur endlich viele Äquivalenzklassen hat.
- schreibe abkürzend $Z=A^*_{/\equiv_L}$
- definiere

$$f: Z \times A \rightarrow Z: f([w], x) = [wx]$$

- ▶ Diese Abbildung ist wohldefiniert.
- ▶ Die Erinnerung an endliche Akzeptoren ist kein Zufall.
- ▶ Legt man nämlich noch fest
 - $ightharpoonup z_0 = [\varepsilon] \text{ und}$
 - ▶ $F = \{[w] \mid w \in L\}$
- dann hat man einen endlichen Akzeptor, der genau L erkennt.
- ▶ Überlegen Sie sich das!

Ein letzter Blick auf die Nerode-Äquivalenzen (2)

Ohne Beweis nehme man bitte noch zu Kenntnis:

- Für jede reguläre Sprache hat \equiv_L nur endlich viele Äquivalenzklassen.
- Der gerade konstruierte Akzeptor ist unter allen, die L erkennen, einer mit minimaler Zustandszahl.
- Dieser endliche Akzeptor ist bis auf Isomorphie (also Umbenenung von Zuständen) sogar eindeutig.

Was ist wichtig

Das sollten Sie mitnehmen:

- Kongruenzrelationen: Verträglichkeit
- ▶ induzierte Abbildungen/Operationen für Äquivalenzklassen
- ► Nerode-Äquivalenzen liefern minimale Akzeptoren

Das sollten Sie üben:

mit Äquivalenzklassen rechnen

Überblick

Äquivalenzrelationer

Definition

Äquivalenzrelationen von Nerode

Kongruenzrelationen

Verträglichkeit von Relationen mit Operationen Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen "Extreme" Elemente Vollständige Halbordnungen Stetige Abbildungen auf vollständigen Halbordnungen

Ordnungen

Halbordnungen 33/75

Überblick

Äquivalenzrelationer

Definition

Äquivalenzrelationen von Nerode Äquivalenzklassen und Faktormenger

Kongruenzrelationer

Verträglichkeit von Relationen mit Operationen Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen

Vollständige Halbordnungen

Stetige Abbildungen auf vollständigen Halbordnungen

Ordnunger

Definition antisymmetrischer Relationen

▶ Relation $R \subseteq M \times M$ heißt *antisymmetrisch*, wenn für alle $x, y \in M$ gilt:

$$xRy \wedge yRx \Longrightarrow x = y$$

- Beispiel Mengeninklusion:
 - ▶ zum Beispiel $M = 2^{M'}$ Potenzmenge einer Menge M'
 - Relation

$$R = \{ (A, B) \mid A \subseteq M' \land B \subseteq M' \land A \subseteq B \}$$

= \{ (A, B) \| A \in M \land B \in M \land A \subseteq B \}
\(\sum M \times M

▶ *R* ist antisymmetrisch:

$$A \subseteq B \land B \subseteq A \Longrightarrow A = B$$

Definition Halbordnung

- ▶ Relation $R \subseteq M \times M$ heißt *Halbordnung*, wenn sie
 - reflexiv,
 - antisymmetrisch und
 - transitiv

ist.

- ▶ Wenn R Halbordnung auf Menge M ist, nennt man auch M eine halbgeordnete Menge.
- Beispiel Mengeninklusion:
 - $ightharpoonup A \subset A$
 - $A \subseteq B \land B \subseteq A \Longrightarrow A = B$
 - $\triangleright A \subseteq B \land B \subseteq C \Longrightarrow A \subseteq C$
- ▶ Beachte: es gibt im allgemeinen unvergleichbare Elemente
 - ▶ z. B. $\{1, 2, 3\} \not\subseteq \{3, 4, 5\}$ und $\{3, 4, 5\} \not\subseteq \{1, 2, 3\}$

Definition Halbordnung

- ▶ Relation $R \subseteq M \times M$ heißt *Halbordnung*, wenn sie
 - reflexiv,
 - antisymmetrisch und
 - transitiv

ist.

- Wenn R Halbordnung auf Menge M ist, nennt man auch M eine halbgeordnete Menge.
- Beispiel Mengeninklusion:
 - ▶ A ⊂ A
 - $A \subseteq B \land B \subseteq A \Longrightarrow A = B$
 - $A \subseteq B \land B \subseteq C \Longrightarrow A \subseteq C$
- ▶ Beachte: es gibt im allgemeinen unvergleichbare Elemente
 - ▶ z. B. $\{1, 2, 3\} \not\subseteq \{3, 4, 5\}$ und $\{3, 4, 5\} \not\subseteq \{1, 2, 3\}$

Definition Halbordnung

- ▶ Relation $R \subseteq M \times M$ heißt *Halbordnung*, wenn sie
 - reflexiv,
 - antisymmetrisch und
 - transitiv

ist.

- ► Wenn R Halbordnung auf Menge M ist, nennt man auch M eine halbgeordnete Menge.
- Beispiel Mengeninklusion:
 - $ightharpoonup A \subset A$
 - $A \subseteq B \land B \subseteq A \Longrightarrow A = B$
 - $A \subseteq B \land B \subseteq C \Longrightarrow A \subseteq C$
- Beachte: es gibt im allgemeinen unvergleichbare Elemente
 - ▶ z. B. $\{1, 2, 3\} \not\subseteq \{3, 4, 5\}$ und $\{3, 4, 5\} \not\subseteq \{1, 2, 3\}$

Beispiel: Halbordnung auf Wörtern

- ► *M* = *A**
- ▶ Relation \sqsubseteq_p auf A^* :

$$w_1 \sqsubseteq_p w_2 \iff \exists u \in A^* : w_1 u = w_2$$

- zum Beispiel im Duden:
 - "Klaus" kommt vor "Klausur"
- ▶ aber: \sqsubseteq_p ist echte *Halb*ordnung
 - keine Beziehung zwischen Klausur und Übung

Darstellung von Halbordnungen (1): Graph der gesamten Relation

Darstellung von Halbordnungen (2): Hassediagramm

Überblick

Äquivalenzrelationer

Definition

Äquivalenzrelationen von Nerode

Kongruenzrelationen

Verträglichkeit von Relationen mit Operationen Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen

"Extreme" Elemente

Vollständige Halbordnungen

Stetige Abbildungen auf vollständigen Halbordnungen

Ordnunger

Minimale und maximale Elemente

- ▶ $x \in T$ heißt *minimales Element von T*, wenn es kein $y \in T$ gibt mit $y \sqsubseteq x$ und $y \neq x$.
- ▶ $x \in T$ heißt maximales Element von T, wenn es kein $y \in T$ gibt mit $x \sqsubseteq y$ und $x \neq y$.

Minimale und maximale Elemente: Beispiele

▶ Teilmenge von $(2^{\{a,b,c\}},\subseteq)$:

- zwei maximale Elemente: ab und bc
- ein minimales Element: {}

Kleinste und größte Elemente

- ▶ $x \in T$ heißt *kleinstes Element von T*, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.
- ▶ $x \in T$ heißt größtes Element von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.

Kleinte und größte Elemente: Beispiele

▶ Teilmenge von $(2^{\{a,b,c\}},\subseteq)$:

- ▶ kein größtes Element
- kleinstes Element: {}
- ► Achtung: Eine unendliche Teilmenge kann z. B. genau ein minimales Element haben und trotzdem kein kleinstes!

Kleinte und größte Elemente: Beispiele

▶ Teilmenge von $(2^{\{a,b,c\}},\subseteq)$:

- ▶ kein größtes Element
- kleinstes Element: {}
- ► Achtung: Eine unendliche Teilmenge kann z. B. genau ein minimales Element haben und trotzdem kein kleinstes!

Kleinste und größte Elemente

- ► T kann nicht zwei verschiedene kleinste (bzw. größte) Elemente haben.
- Beweis für Eindeutigkeit des kleinsten Elements
 - seien x₁ und x₂ kleinste Elemente,
 - ▶ dann ist $x_1 \sqsubseteq x_2$, weil x_1 kleinstes Element,
 - ▶ und es ist $x_2 \sqsubseteq x_1$, weil x_2 kleinstes Element,
 - ▶ also wegen Antisymmetrie: $x_1 = x_2$
- Beweis für Eindeutigkeit des größten Elements analog

Untere und obere Schranken

- ▶ $x \in M$ heißt obere Schranke von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.
- ▶ $x \in M$ heißt untere Schranke von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.
- ▶ Beachte: untere und obere Schranken von *T* dürfen außerhalb von *T* liegen.

Untere und obere Schranken

- ▶ $x \in M$ heißt obere Schranke von T, wenn für alle $y \in T$ gilt: $y \sqsubseteq x$.
- ▶ $x \in M$ heißt untere Schranke von T, wenn für alle $y \in T$ gilt: $x \sqsubseteq y$.
- ▶ Beachte: untere und obere Schranken von *T* dürfen außerhalb von *T* liegen.

Untere und obere Schranken: Beispiele

- Standardbeispiel:
- ▶ $T = \{\{\}, \{a\}, \{b\}\}$: obere Schranken $\{a, b\}$ und $\{a, b, c\}$.
- $ightharpoonup T = \{\{\}, \{a\}, \{b\}, \{a, b\}\}$: die gleichen oberen Schranken.

Untere und obere Schranken: Beispiele

- Standardbeispiel:
- ► $T = \{\{\}, \{a\}, \{b\}\}\}$: obere Schranken $\{a, b\}$ und $\{a, b, c\}$.
- $ightharpoonup T = \{\{\}, \{a\}, \{b\}, \{a, b\}\}:$ die gleichen oberen Schranken.

Untere und obere Schranken: Beispiele

- Standardbeispiel:
- ▶ $T = \{\{\}, \{a\}, \{b\}\}$: obere Schranken $\{a, b\}$ und $\{a, b, c\}$.
- $ightharpoonup T = \{\{\}, \{a\}, \{b\}, \{a, b\}\}$: die gleichen oberen Schranken.

Untere und obere Schranken müssen nicht existieren

- ► Teilmenge muss keine obere Schranke besitzen
- ▶ In besitzt z. B. die Gesamtmenge keine obere Schranke.
- ▶ In (\mathbb{N}_0, \leq) besitzt die die Gesamtmenge keine obere Schranke.

Untere und obere Schranken müssen nicht existieren

- ► Teilmenge muss keine obere Schranke besitzen
- ▶ In besitzt z. B. die Gesamtmenge keine obere Schranke.
- ▶ In (\mathbb{N}_0, \leq) besitzt die die Gesamtmenge keine obere Schranke.

Supremum und Infimum

- ▶ Besitzt die Menge aller oberen Schranken einer Teilmenge *T* ein kleinstes Element, so heißt dies das *Supremum von T*
 - ► Schreibweisen ∐ *T* oder sup(*T*)
- ▶ Besitzt die Menge aller unteren Schranken einer Teilmenge *T* ein größtes Element, so heißt dies das *Infimum von T*.
 - brauchen wir hier nicht
- Supremum (bzw. Infimum) einer Teilmenge müssen nicht existieren
 - weil gar keine oberen Schranken vorhanden oder
 - weil von den oberen Schranken keine die kleinste ist

Supremum und Infimum

- ▶ Besitzt die Menge aller oberen Schranken einer Teilmenge T ein kleinstes Element, so heißt dies das Supremum von T
 - ► Schreibweisen ☐ *T* oder sup(*T*)
- ▶ Besitzt die Menge aller unteren Schranken einer Teilmenge *T* ein größtes Element, so heißt dies das *Infimum von T*.
 - brauchen wir hier nicht
- Supremum (bzw. Infimum) einer Teilmenge müssen nicht existieren
 - weil gar keine oberen Schranken vorhanden oder
 - weil von den oberen Schranken keine die kleinste ist

Supremum und Infimum: Beispiele

- ▶ Bei Halbordnungen $(2^{M'}, \subseteq)$ existieren Suprema immer:
 - ▶ Supremum von $T \subseteq 2^{M'}$ ist die Vereinigung aller Teilmengen von M, die in T liegen
- ► Beispiel für das Beispiel:
 - $M' = \{a, b\}^*$
 - ▶ also ist $M = 2^{M'}$ die Menge aller formalen Sprachen $L \subseteq M'$
 - für $i \in \mathbb{N}_0$ sei $L_i = \{a^j b^j \mid j \leq i\}$
 - $L_0 = \{\varepsilon\}$
 - $L_1 = \{\varepsilon, ab\}$
 - $L_2 = \{\varepsilon, ab, aabb\}$
 - ▶ sei $T = \{L_i \mid i \in \mathbb{N}_0\}$
 - dann ist $\coprod T = \bigcup_{i=0}^{\infty} L_i = \{a^j b^j \mid j \in \mathbb{N}_0\}$

Überblick

Äquivalenzrelationer

Definition

Äquivalenzrelationen von Nerode Äquivalenzklassen und Faktormenge

Kongruenzrelationen

Verträglichkeit von Relationen mit Operationen Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen "Extreme" Elemente

Vollständige Halbordnungen

Stetige Abbildungen auf vollständigen Halbordnungen

Ordnunger

Aufsteigende Ketten

- aufsteigende Kette
 - ▶ abzählbar unendliche Folge $(x_0, x_1, x_2,...)$ von Elementen
 - ▶ mit der Eigenschaft: $\forall i \in \mathbb{N}_0 : x_i \sqsubseteq x_{i+1}$.
 - kurz

$$x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \cdots$$

▶ Beispiel: $(2^{\{a,b\}^*}, \subseteq)$

$$\{\varepsilon\}\subseteq\{\varepsilon,\mathtt{ab}\}\subseteq\{\varepsilon,\mathtt{ab},\mathtt{aabb}\}\subseteq\{\varepsilon,\mathtt{ab},\mathtt{aaabb},\mathtt{aaabbb}\}\dots$$

Aufsteigende Ketten

- aufsteigende Kette
 - ▶ abzählbar unendliche Folge $(x_0, x_1, x_2,...)$ von Elementen
 - ▶ mit der Eigenschaft: $\forall i \in \mathbb{N}_0 : x_i \sqsubseteq x_{i+1}$.
 - kurz

$$x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \cdots$$

▶ Beispiel: $(2^{\{a,b\}^*}, \subseteq)$

$$\{\varepsilon\}\subseteq\{\varepsilon,\mathtt{ab}\}\subseteq\{\varepsilon,\mathtt{ab},\mathtt{aabb}\}\subseteq\{\varepsilon,\mathtt{ab},\mathtt{aabb},\mathtt{aaabbb}\}\dots$$

Vollständige Halbordnungen

- ► Eine Halbordnung heißt *vollständig*, wenn
 - ▶ sie ein kleinstes Element ⊥ hat und
 - ▶ jede aufsteigende Kette $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots$ ein Supremum $\bigsqcup_i x_i$ besitzt.
- ▶ Beispiele: $(2^{M'}, \subseteq)$
 - ▶ kleinstes Element {}
 - ▶ Supremum von $T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots$ ist $\bigcup T_i$.

Vollständige Halbordnungen

- ► Eine Halbordnung heißt *vollständig*, wenn
 - ▶ sie ein kleinstes Element ⊥ hat und
 - ▶ jede aufsteigende Kette $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots$ ein Supremum $\bigsqcup_i x_i$ besitzt.
- ▶ Beispiele: $(2^{M'}, \subseteq)$
 - ▶ kleinstes Element {}
 - ▶ Supremum von $T_0 \subseteq T_1 \subseteq T_2 \subseteq \cdots$ ist $\bigcup T_i$.

Vollständige Halbordnungen: weitere (Nicht-)Beispiele

- ▶ (\mathbb{N}_0, \leq) ist *keine* vollständige Halbordung
 - ▶ unbeschränkt wachsende aufsteigende Ketten wie z. B. $0 \le 1 \le 2 \le \cdots$ besitzen kein Supremum in \mathbb{N}_0 .
- ▶ Ergänze weiteres Element *u* "über" allen Zahlen:
 - ▶ $N = \mathbb{N}_0 \cup \{u\}$ und
 - $x \sqsubseteq y \iff (x, y \in \mathbb{N}_0 \land x \leq y) \lor (y = u)$
 - also sozusagen

$$0 \sqsubseteq 1 \sqsubseteq 2 \sqsubseteq 3 \sqsubseteq \cdots \sqsubseteq u$$

- später noch nützlich
 - $ightharpoonup N' = \mathbb{N}_0 \cup \{u_1, u_2\}$ und
 - $x \sqsubseteq y \iff (x, y \in \mathbb{N}_0 \land x \leq y)$

$$\vee (x \in \mathbb{N}_0 \cup \{u_1\} \wedge y = u_1) \vee y = u_2$$

also sozusagen

$$0 \sqsubseteq 1 \sqsubseteq 2 \sqsubseteq 3 \sqsubseteq \cdots \sqsubseteq u_1 \sqsubseteq u_2$$

Überblick

Äquivalenzrelatione

Definition

Äquivalenzrelationen von Nerode Äquivalenzklassen und Faktormengel

Kongruenzrelationer

Verträglichkeit von Relationen mit Operationen Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen "Extreme" Elemente Vollständige Halbordnunger

Stetige Abbildungen auf vollständigen Halbordnungen

Ordnunger

Monotone Abbildungen

- ightharpoonup eine Halbordnung auf einer Menge M.
- ▶ Abbildung $f: M \to M$ monoton, wenn für alle $x, y \in M$ gilt:

$$x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$$

- ▶ Beispiel: (\mathbb{N}_0, \leq) mit Abbildung f(x) = x + 1▶ $x < y \Longrightarrow x + 1 < y + 1$
- ▶ Nichtbeispiel: (\mathbb{N}_0, \leq) mit Abbildung $f(x) = x \mod 5$
 - ▶ $3 \le 10$, aber $f(3) = 3 \not\le 0 = f(10)$.

Monotone Abbildungen

- ightharpoonup eine Halbordnung auf einer Menge M.
- ▶ Abbildung $f: M \rightarrow M$ monoton, wenn für alle $x, y \in M$ gilt:

$$x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$$

- ▶ Beispiel: (\mathbb{N}_0, \leq) mit Abbildung f(x) = x + 1
 - \triangleright $x \le y \Longrightarrow x + 1 \le y + 1$
- ▶ Nichtbeispiel: (\mathbb{N}_0 , ≤) mit Abbildung $f(x) = x \mod 5$
 - ▶ $3 \le 10$, aber $f(3) = 3 \not\le 0 = f(10)$.

Stetige Abbildungen

- $ightharpoonup (D,\sqsubseteq)$ sei vollständige Halbordnung
- ▶ Abbildung $f: D \to D$ heißt *stetig*, wenn für jede aufsteigende Kette $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots$ gilt:

$$f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i)$$

- ▶ $N' = \mathbb{N}_0 \cup \{u_1, u_2\}$ mit \sqsubseteq wie eben
- ▶ Abbildung $f: N' \rightarrow N'$ mit

$$f(x) = egin{cases} x+1 & ext{ falls } x \in \mathbb{N}_0 \ u_1 & ext{ falls } x = u_1 \ u_2 & ext{ falls } x = u_2 \end{cases}$$

ist stetig.

warum?

$$f(x) = egin{cases} x+1 & ext{ falls } x \in \mathbb{N}_0 \ u_j & ext{ falls } x=u_j & ext{ (für } j=1,2) \end{cases}$$

Zwei Fälle für aufsteigende Kette $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots$:

1. Die Kette wird konstant.

- ightharpoonup also $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots \sqsubseteq x_i = x_{i+1} = x_{i+2} = \cdots = n'$.
- ▶ also jedenfalls $| \cdot |_i x_i = n'$; zwei Unterfälle:
 - Wenn $n' = u_j$ ist, dann ist wegen $f(u_j) = u_j$ ist auch $\bigsqcup_i f(x_i) = u_j$, also ist $f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i)$.
 - Wenn $n' \in \mathbb{N}_0$ ist, dann ist $f(\bigsqcup_i x_i) = f(n') = n' + 1$. Andererseits ist die Kette der Funktionswerte $f(x_0) \sqsubseteq f(x_1) \sqsubseteq f(x_2) \sqsubseteq \cdots \sqsubseteq f(x_i) = f(x_{i+1}) = f(x_{i+2}) = \cdots = f(n') = n' + 1$. Also ist $f(|\cdot|, x_i) = |\cdot|, f(x_i)$.

2. Die Kette wird nicht konstant

- ▶ dann alle $x_i \in \mathbb{N}_0$ und die Kette wächst unbeschränkt
- gleiches gilt für Kette der Funktionswerte.
- Also haben beide Ketten Supremum u_1 und wegen $f(u_1) = u_1$ ist $f(|\cdot|_i x_i) = |\cdot|_i f(x_i)$.

$$f(x) = egin{cases} x+1 & ext{ falls } x \in \mathbb{N}_0 \ u_j & ext{ falls } x=u_j & ext{ (für } j=1,2) \end{cases}$$

- 1. Die Kette wird konstant.
 - ▶ also $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots \sqsubseteq x_i = x_{i+1} = x_{i+2} = \cdots = n'$.
 - ▶ also jedenfalls $\bigsqcup_i x_i = n'$; zwei Unterfälle:
 - ▶ Wenn $n' = u_j$ ist, dann ist wegen $f(u_j) = u_j$ ist auch $\bigsqcup_i f(x_i) = u_j$, also ist $f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i)$.
 - Wenn $n' \in \mathbb{N}_0$ ist, dann ist $f(\bigsqcup_i x_i) = f(n') = n' + 1$. Andererseits ist die Kette der Funktionswerte $f(x_0) \sqsubseteq f(x_1) \sqsubseteq f(x_2) \sqsubseteq \cdots \sqsubseteq f(x_i) = f(x_{i+1}) = f(x_{i+2}) = \cdots = f(n') = n' + 1$. Also ist $f(|\cdot|_i x_i) = |\cdot|_i f(x_i)$.
- 2. Die Kette wird nicht konstant
 - ▶ dann alle $x_i \in \mathbb{N}_0$ und die Kette wächst unbeschränkt
 - gleiches gilt für Kette der Funktionswerte.
 - Also haben beide Ketten Supremum u_1 und wegen $f(u_1) = u_1$ ist $f(\lfloor l_i x_i) = \lfloor l_i f(x_i)$.

$$f(x) = egin{cases} x+1 & ext{ falls } x \in \mathbb{N}_0 \ u_j & ext{ falls } x=u_j & ext{ (für } j=1,2) \end{cases}$$

- 1. Die Kette wird konstant.
 - ▶ also $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots \sqsubseteq x_i = x_{i+1} = x_{i+2} = \cdots = n'$.
 - ▶ also jedenfalls $| \cdot |_i x_i = n'$; zwei Unterfälle:
 - ▶ Wenn $n' = u_j$ ist, dann ist wegen $f(u_j) = u_j$ ist auch $\bigsqcup_i f(x_i) = u_j$, also ist $f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i)$.
 - Wenn $n' \in \mathbb{N}_0$ ist, dann ist $f(\bigsqcup_i x_i) = f(n') = n' + 1$. Andererseits ist die Kette der Funktionswerte $f(x_0) \sqsubseteq f(x_1) \sqsubseteq f(x_2) \sqsubseteq \cdots \sqsubseteq f(x_i) = f(x_{i+1}) = f(x_{i+2}) = \cdots = f(n') = n' + 1$. Also ist $f(|\cdot|, x_i) = |\cdot|, f(x_i)$.
- 2. Die Kette wird nicht konstant
 - ▶ dann alle $x_i \in \mathbb{N}_0$ und die Kette wächst unbeschränkt
 - gleiches gilt für Kette der Funktionswerte.
 - Also haben beide Ketten Supremum u_1 und wegen $f(u_1) = u_1$ ist $f(\lfloor l_i x_i) = \lfloor l_i f(x_i)$.

$$f(x) = egin{cases} x+1 & ext{ falls } x \in \mathbb{N}_0 \ u_j & ext{ falls } x=u_j & ext{ (für } j=1,2) \end{cases}$$

- 1. Die Kette wird konstant.
 - ▶ also $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots \sqsubseteq x_i = x_{i+1} = x_{i+2} = \cdots = n'$.
 - ▶ also jedenfalls $\bigsqcup_i x_i = n'$; zwei Unterfälle:
 - ▶ Wenn $n' = u_j$ ist, dann ist wegen $f(u_j) = u_j$ ist auch $\bigsqcup_i f(x_i) = u_j$, also ist $f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i)$.
 - ▶ Wenn $n' \in \mathbb{N}_0$ ist, dann ist $f(\bigsqcup_i x_i) = f(n') = n' + 1$. Andererseits ist die Kette der Funktionswerte $f(x_0) \sqsubseteq f(x_1) \sqsubseteq f(x_2) \sqsubseteq \cdots \sqsubseteq f(x_i) = f(x_{i+1}) = f(x_{i+2}) = \cdots = f(n') = n' + 1$. Also ist $f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i)$.
- 2. Die Kette wird nicht konstant
 - ▶ dann alle $x_i \in \mathbb{N}_0$ und die Kette wächst unbeschränkt
 - gleiches gilt für Kette der Funktionswerte.
 - Also haben beide Ketten Supremum u_1 und wegen $f(u_1) = u_1$ ist $f(\lfloor l_i x_i) = \lfloor l_i f(x_i)$.

$$f(x) = egin{cases} x+1 & ext{ falls } x \in \mathbb{N}_0 \ u_j & ext{ falls } x=u_j & ext{ (für } j=1,2) \end{cases}$$

- 1. Die Kette wird konstant.
 - ▶ also $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots \sqsubseteq x_i = x_{i+1} = x_{i+2} = \cdots = n'$.
 - ▶ also jedenfalls $\bigsqcup_i x_i = n'$; zwei Unterfälle:
 - ▶ Wenn $n' = u_j$ ist, dann ist wegen $f(u_j) = u_j$ ist auch $\bigsqcup_i f(x_i) = u_j$, also ist $f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i)$.
 - Wenn $n' \in \mathbb{N}_0$ ist, dann ist $f(\bigsqcup_i x_i) = f(n') = n' + 1$. Andererseits ist die Kette der Funktionswerte $f(x_0) \sqsubseteq f(x_1) \sqsubseteq f(x_2) \sqsubseteq \cdots \sqsubseteq f(x_i) = f(x_{i+1}) = f(x_{i+2}) = \cdots = f(n') = n' + 1$. Also ist $f(|\cdot|_i x_i) = |\cdot|_i f(x_i)$.
- 2. Die Kette wird nicht konstant
 - ▶ dann alle $x_i \in \mathbb{N}_0$ und die Kette wächst unbeschränkt
 - gleiches gilt für Kette der Funktionswerte.
 - Also haben beide Ketten Supremum u_1 und wegen $f(u_1) = u_1$ ist $f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i)$.

$$f(x) = egin{cases} x+1 & ext{ falls } x \in \mathbb{N}_0 \ u_j & ext{ falls } x=u_j & ext{ (für } j=1,2) \end{cases}$$

- 1. Die Kette wird konstant.
 - ▶ also $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots \sqsubseteq x_i = x_{i+1} = x_{i+2} = \cdots = n'$.
 - ▶ also jedenfalls $\bigsqcup_i x_i = n'$; zwei Unterfälle:
 - ▶ Wenn $n' = u_j$ ist, dann ist wegen $f(u_j) = u_j$ ist auch $\bigsqcup_i f(x_i) = u_j$, also ist $f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i)$.
 - Wenn $n' \in \mathbb{N}_0$ ist, dann ist $f(\bigsqcup_i x_i) = f(n') = n' + 1$. Andererseits ist die Kette der Funktionswerte $f(x_0) \sqsubseteq f(x_1) \sqsubseteq f(x_2) \sqsubseteq \cdots \sqsubseteq f(x_i) = f(x_{i+1}) = f(x_{i+2}) = \cdots = f(n') = n' + 1$. Also ist $f(|\cdot|_i x_i) = |\cdot|_i f(x_i)$.
- Die Kette wird nicht konstant.
 - ▶ dann alle $x_i \in \mathbb{N}_0$ und die Kette wächst unbeschränkt
 - gleiches gilt für Kette der Funktionswerte.
 - Also haben beide Ketten Supremum u_1 und wegen $f(u_1) = u_1$ ist $f(|\cdot|_i x_i) = |\cdot|_i f(x_i)$.

- ▶ $N' = \mathbb{N}_0 \cup \{u_1, u_2\}$ mit \sqsubseteq wie eben
- ▶ Abbildung $g: N' \rightarrow N'$ mit

$$g(x) = egin{cases} x+1 & ext{falls } x \in \mathbb{N}_0 \ u_1 & ext{falls } x = u_2 \ u_2 & ext{falls } x = u_2 \end{cases}$$

ist nicht stetig

- ▶ Unterschied zu $f: g(u_1) = u_2$
- ▶ unbeschränkt wachsende Kette $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots$ natürlicher Zahlen hat Supremem u_1
- ▶ also $g(\bigsqcup_i x_i) = u_2$,
- ▶ aber Kette der Funktionswerte $g(x_0) \sqsubseteq g(x_1) \sqsubseteq g(x_2) \sqsubseteq \cdots$ hat Supremem $\bigsqcup_i g(x_i) = u_1 \neq g(\bigsqcup_i x_i)$.

- ▶ $N' = \mathbb{N}_0 \cup \{u_1, u_2\}$ mit \sqsubseteq wie eben
- ▶ Abbildung $g: N' \rightarrow N'$ mit

$$g(x) = egin{cases} x+1 & \text{falls } x \in \mathbb{N}_0 \ u_1 & \text{falls } x = u_2 \ u_2 & \text{falls } x = u_2 \end{cases}$$

ist nicht stetig

- ▶ Unterschied zu $f: g(u_1) = u_2$
- ▶ unbeschränkt wachsende Kette $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots$ natürlicher Zahlen hat Supremem u_1
- ▶ also $g(\bigsqcup_i x_i) = u_2$,
- ▶ aber Kette der Funktionswerte $g(x_0) \sqsubseteq g(x_1) \sqsubseteq g(x_2) \sqsubseteq \cdots$ hat Supremem $\bigsqcup_i g(x_i) = u_1 \neq g(\bigsqcup_i x_i)$.

Fixpunktsatz

Satz

- ▶ Es sei $f: D \to D$ eine monotone und stetige Abbildung auf einer vollständigen Halbordnung (D, \sqsubseteq) mit kleinstem Element \bot .
- ▶ Elemente $x_i \in D$ seien wie folgt definiert:

$$x_0 = \bot$$
$$\forall i \in \mathbb{N}_0 : x_{i+1} = f(x_i)$$

- ▶ Dann gilt:
 - 1. Die x_i bilden eine Kette: $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \cdots$.
 - 2. Das Supremum $x_f = \bigsqcup_i x_i$ dieser Kette ist Fixpunkt von f, also $f(x_f) = x_f$.
 - 3. x_f ist der kleinste Fixpunkt von f: Wenn $f(y_f) = y_f$ ist, dann ist $x_f \sqsubseteq y_f$.

Fixpunktsatz: Beweis

- 1. Behauptung: $\forall i \in \mathbb{N}_0$ gilt $x_i \sqsubseteq x_{i+1}$ vollständige Induktion:
 - ▶ $x_0 \sqsubseteq x_1$, weil $x_0 = \bot$ das kleinste Element
 - ▶ wenn $x_i \sqsubseteq x_{i+1}$, dann wegen Monotonie von f auch $f(x_i) \sqsubseteq f(x_{i+1})$, also $x_{i+1} \sqsubseteq x_{i+2}$.
- 2. Behauptung: $x_f = \bigsqcup_i x_i$ ist Fixpunkt, also $f(x_f) = x_f$
 - ► Wegen Stetigkeit von f ist

$$f(x_f) = f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i) = \bigsqcup_i x_{i+1}.$$

- ▶ Folge der x_{i+1} unterscheidet sich von Folge der x_i nur durch fehlendes erstes Element \bot .
- ▶ Also haben beide Folgen das gleiche Supremum x_f (klar?) also $\bigsqcup_i x_{i+1} = \bigsqcup_i x_i = x_f$
- ▶ also ist $f(x_f) = x_f$
- 3. Behauptung: x_f ist kleinster Fixpunkt. Sei $f(y_f) = y_f$.
 - ▶ Induktion lehrt: $\forall i \in \mathbb{N}_0 : x_i \sqsubseteq y_f$.
 - ▶ also ist y_f eine obere Schranke der Kette
 - ▶ also ist gilt für die kleinste obere Schranke: $x_f = \bigsqcup_i x_i \sqsubseteq y_f$.

Fixpunktsatz: Beweis

- 1. Behauptung: $\forall i \in \mathbb{N}_0$ gilt $x_i \sqsubseteq x_{i+1}$ vollständige Induktion:
 - ▶ $x_0 \sqsubseteq x_1$, weil $x_0 = \bot$ das kleinste Element
 - ▶ wenn $x_i \sqsubseteq x_{i+1}$, dann wegen Monotonie von f auch $f(x_i) \sqsubseteq f(x_{i+1})$, also $x_{i+1} \sqsubseteq x_{i+2}$.
- 2. Behauptung: $x_f = \bigsqcup_i x_i$ ist Fixpunkt, also $f(x_f) = x_f$
 - ▶ Wegen Stetigkeit von f ist $f(x_f) = f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i) = \bigsqcup_i x_{i+1}$.
 - ▶ Folge der x_{i+1} unterscheidet sich von Folge der x_i nur durch fehlendes erstes Element \bot .
 - ▶ Also haben beide Folgen das gleiche Supremum x_f (klar?) also $\bigsqcup_i x_{i+1} = \bigsqcup_i x_i = x_f$
 - ▶ also ist $f(x_f) = x_f$
- 3. Behauptung: x_f ist kleinster Fixpunkt. Sei $f(y_f) = y_f$.
 - ▶ Induktion lehrt: $\forall i \in \mathbb{N}_0 : x_i \sqsubseteq y_f$.
 - ightharpoonup also ist y_f eine obere Schranke der Kette
 - ▶ also ist gilt für die kleinste obere Schranke: $x_f = \bigsqcup_i x_i \sqsubseteq y_f$.

Fixpunktsatz: Beweis

- 1. Behauptung: $\forall i \in \mathbb{N}_0$ gilt $x_i \sqsubseteq x_{i+1}$ vollständige Induktion:
 - ▶ $x_0 \sqsubseteq x_1$, weil $x_0 = \bot$ das kleinste Element
 - ▶ wenn $x_i \sqsubseteq x_{i+1}$, dann wegen Monotonie von f auch $f(x_i) \sqsubseteq f(x_{i+1})$, also $x_{i+1} \sqsubseteq x_{i+2}$.
- 2. Behauptung: $x_f = \bigsqcup_i x_i$ ist Fixpunkt, also $f(x_f) = x_f$
 - ▶ Wegen Stetigkeit von f ist $f(x_f) = f(\bigsqcup_i x_i) = \bigsqcup_i f(x_i) = \bigsqcup_i x_{i+1}$.
 - ▶ Folge der x_{i+1} unterscheidet sich von Folge der x_i nur durch fehlendes erstes Element \bot .
 - ▶ Also haben beide Folgen das gleiche Supremum x_f (klar?) also $\bigsqcup_i x_{i+1} = \bigsqcup_i x_i = x_f$
 - ▶ also ist $f(x_f) = x_f$
- 3. Behauptung: x_f ist kleinster Fixpunkt. Sei $f(y_f) = y_f$.
 - ▶ Induktion lehrt: $\forall i \in \mathbb{N}_0 : x_i \sqsubseteq y_f$.
 - ▶ also ist *y_f* eine obere Schranke der Kette,
 - ▶ also ist gilt für die kleinste obere Schranke: $x_f = \bigsqcup_i x_i \sqsubseteq y_f$.

Fixpunktsatz: Andeutung eines Anwendungsbeispiels (1)

- ightharpoonup Terminalzeichenalphabet $T = \{a, b\}$
- ▶ kontextfreie Grammatik $G = ({X}, T, X, P)$
- ▶ Produktionenmenge $P = \{X \rightarrow aXb \mid \varepsilon\}$.
- ▶ Halbordnung $D = 2^{T^*}$ der formalen Sprachen mit \subseteq
- ► Kleinstes Element der Halbordnung ist ∅.
- Die Halbordnung ist vollständig.
- ▶ $f: D \to D$ die Abbildung mit $f(L) = \{a\}L\{b\} \cup \{\varepsilon\}$.
- ▶ ohne (den leichten) Beweis: f ist stetig.
- ► Fixpunktsatz: Das Supremum der Kette

$$\{\} \subseteq f(\{\}) \subseteq f(f(\{\})) \subseteq f(f(\{\}))) \subseteq \cdots$$

ist der kleinste Fixpunkt von f

Fixpunktsatz: Andeutung eines Anwendungsbeispiels (1)

- ightharpoonup Terminalzeichenalphabet $T=\{\mathtt{a},\mathtt{b}\}$
- ▶ kontextfreie Grammatik $G = ({X}, T, X, P)$
- ▶ Produktionenmenge $P = \{X \rightarrow aXb \mid \varepsilon\}$.
- ▶ Halbordnung $D = 2^{T^*}$ der formalen Sprachen mit \subseteq
- ► Kleinstes Element der Halbordnung ist Ø.
- Die Halbordnung ist vollständig.
- ▶ $f: D \to D$ die Abbildung mit $f(L) = \{a\}L\{b\} \cup \{\varepsilon\}$.
- ▶ ohne (den leichten) Beweis: f ist stetig.
- ► Fixpunktsatz: Das Supremum der Kette

$$\{\} \subseteq f(\{\}) \subseteq f(f(\{\})) \subseteq f(f(\{\}))) \subseteq \cdots$$

ist der kleinste Fixpunkt von f

Fixpunktsatz: Andeutung eines Anwendungsbeispiels (1)

- ightharpoonup Terminalzeichenalphabet $T=\{\mathtt{a},\mathtt{b}\}$
- ▶ kontextfreie Grammatik $G = ({X}, T, X, P)$
- ▶ Produktionenmenge $P = \{X \rightarrow aXb \mid \varepsilon\}$.
- ▶ Halbordnung $D = 2^{T^*}$ der formalen Sprachen mit \subseteq
- ► Kleinstes Element der Halbordnung ist Ø.
- Die Halbordnung ist vollständig.
- ▶ $f: D \to D$ die Abbildung mit $f(L) = \{a\}L\{b\} \cup \{\varepsilon\}.$
- ohne (den leichten) Beweis: f ist stetig.
- ▶ Fixpunktsatz: Das Supremum der Kette

$$\{\} \subseteq f(\{\}) \subseteq f(f(\{\})) \subseteq f(f(f(\{\}))) \subseteq \cdots$$

ist der kleinste Fixpunkt von f

Fixpunktsatz: Andeutung eines Anwendungsbeispiels (2)

- ▶ $f: D \to D$ die Abbildung mit $f(L) = \{a\}L\{b\} \cup \{\epsilon\}.$
- ▶ $L_0 = \{\}$ $L_1 = f(L_0) = \{a\}L_0\{b\} \cup \{\epsilon\} = \{\epsilon\}$ $L_2 = f(L_1) = \{a\}L_1\{b\} \cup \{\epsilon\} = \{ab, \epsilon\}$ $L_3 = f(L_2) = \{a\}L_2\{b\} \cup \{\epsilon\} = \{aabb, ab, \epsilon\}$ ⋮
- ▶ Supremum ist $\bigcup_i L_i = \{a^k b^k \mid k \in \mathbb{N}_0\}$
- Das ist auch genau die Sprache, die die Grammatik erzeugt.
- ▶ *L* ist Fixpunkt von *f* , also

$$L = \{a\}L\{b\} \cup \{\varepsilon\}$$

- ▶ *L* ist die kleinste Lösung der Gleichung $X = \{a\}X\{b\} \cup \{\varepsilon\}$.
- Zusammenhang mit Produktionen: klar, oder?

Was ist wichtig

Das sollten Sie mitnehmen:

- Halbordnungen sind
 - reflexiv,
 - antisymmetrisch und
 - transitiv
- vollständige Halbordnungen: jede aufsteigende Kette hat Supremum
- ▶ stetige Abbildungen: $f(\bigsqcup x_i) = \bigsqcup f(x_i)$
- Fixpunktsatz

Das sollten Sie üben:

- Nachweis der Eigenschaften von (vollständigen)
 Halbordnungen
- Beweise einfacher Aussagen
- an ungewohnte Eigenschaften von Halbordnungen gewöhnen (Unendlichkeit lässt grüßen) (siehe auch gleich)

Überblick

Äquivalenzrelationer

Definition

Äquivalenzrelationen von Nerode

Kongruenzrelationen

Verträglichkeit von Relationen mit Operationen Wohldefiniertheit von Operationen mit Äquivalenzklassen

Halbordnungen

Grundlegende Definitionen "Extreme" Elemente Vollständige Halbordnunge

Stetige Abbildungen auf vollständigen Halbordnungen

Ordnungen

Ordnungen 68/75

Totale Ordnungen: Definition

- ▶ Relation $R \subseteq M \times M$ ist eine *Ordnung* oder genauer *totale Ordnung*, wenn
 - R Halbordnung ist
 - und gilt:

$$\forall x, y \in M : xRy \lor yRx$$

- Es gibt keine unvergleichbaren Elemente.
- Beispiele:
 - \triangleright (\mathbb{N}_0, \leq)
 - $(\mathbb{Z} \times \mathbb{Z}, \sqsubseteq) \text{ mit}$ $(x_1, x_2) \sqsubseteq (y_1, y_2) \Longleftrightarrow x_1 \le x_2 \lor (x_1 = x_2 \land y_1 \le y_2)$
 - $lackbox{(a,b)*,}\sqsubseteq_1$) mit \sqsubseteq_1 "wie im Wörterbuch"

Ordnungen 69/75

Totale Ordnungen: Definition

- ▶ Relation $R \subseteq M \times M$ ist eine *Ordnung* oder genauer *totale Ordnung*, wenn
 - R Halbordnung ist
 - und gilt:

$$\forall x, y \in M : xRy \lor yRx$$

- Es gibt keine unvergleichbaren Elemente.
- ► Beispiele:
 - (\mathbb{N}_0, \leq)
 - $(\mathbb{Z} \times \mathbb{Z}, \sqsubseteq) \text{ mit}$ $(x_1, x_2) \sqsubseteq (y_1, y_2) \Longleftrightarrow x_1 \le x_2 \lor (x_1 = x_2 \land y_1 \le y_2)$
 - ▶ $({a,b}^*, \sqsubseteq_1)$ mit \sqsubseteq_1 "wie im Wörterbuch"

Ordnungen 69/75

Totale Ordnungen auf A^*

▶ Relation \sqsubseteq_p auf $\{a,b\}^*$:

$$w_1 \sqsubseteq_p w_2 \Longleftrightarrow \exists u \in A^* : w_1 u = w_2$$

ist keine totale Ordnung

- z. B. sind a und b unvergleichbar
- ▶ Wie kann man aus \sqsubseteq_p eine totale Ordnung machen?
- ▶ jedenfalls totale Ordnung \sqsubseteq_A auf A nötig, z. B. a \sqsubseteq_A b
- ▶ und dann?
- ▶ mehrere Möglichkeiten, z. B. wie im Wörterbuch, oder . . .

Totale Ordnungen auf A^*

▶ Relation \sqsubseteq_p auf $\{a,b\}^*$:

$$w_1 \sqsubseteq_p w_2 \Longleftrightarrow \exists u \in A^* : w_1 u = w_2$$

ist keine totale Ordnung

- z. B. sind a und b unvergleichbar
- ▶ Wie kann man aus \sqsubseteq_p eine totale Ordnung machen?
- ▶ jedenfalls totale Ordnung \sqsubseteq_A auf A nötig, z. B. a \sqsubseteq_A b
- ▶ und dann?
- ▶ mehrere Möglichkeiten, z. B. wie im Wörterbuch, oder . . .

Totale Ordnungen auf A^*

▶ Relation \sqsubseteq_p auf $\{a, b\}^*$:

$$w_1 \sqsubseteq_p w_2 \iff \exists u \in A^* : w_1 u = w_2$$

ist keine totale Ordnung

- z. B. sind a und b unvergleichbar
- ▶ Wie kann man aus \sqsubseteq_p eine totale Ordnung machen?
- ▶ jedenfalls totale Ordnung \sqsubseteq_A auf A nötig, z. B. a \sqsubseteq_A b
- und dann?
- ▶ mehrere Möglichkeiten, z.B. wie im Wörterbuch, oder ...

- ▶ Seien $w_1, w_2 \in A^*$
- Sei $v \in A^*$ das maximal lange Präfix, so dass es $u_1, u_2 \in A^*$ gibt mit $w_1 = v \ u_1$ und $w_2 = v \ u_2$.
 - v ist immer eindeutig bestimmt.
- ► Fallunterscheidung:
 - 1. Falls $v = w_1$ ist, gilt $w_1 \sqsubseteq_1 w_2$
 - 2. Falls $v = w_2$ ist, gilt $w_2 \sqsubseteq_1 w_1$
 - 3. Falls $w_1 \neq v \neq w_2$, gibt es $x, y \in A$ und $u'_1, u'_2 \in A^*$ mit
 - Dann gilt w. F. w. (2007)
 - Dann gilt $w_1 \sqsubseteq_1 w_2 \iff x \sqsubseteq_A y$.
- Beispiele
 - "Klaus" kommt vor "Klausur"
 - "Klausur" kommt vor "Übung" (im Duden, aber nicht im Studium!

- ▶ Seien $w_1, w_2 \in A^*$
- ▶ Sei $v \in A^*$ das maximal lange Präfix, so dass es $u_1, u_2 \in A^*$ gibt mit $w_1 = v \ u_1$ und $w_2 = v \ u_2$.
 - v ist immer eindeutig bestimmt.
- ► Fallunterscheidung:
 - 1. Falls $v = w_1$ ist, gilt $w_1 \sqsubseteq_1 w_2$
 - 2. Falls $v = w_2$ ist, gilt $w_2 \sqsubseteq_1 w_1$
 - 3. Falls $w_1 \neq v \neq w_2$, gibt es $x, y \in A$ und $u_1', u_2' \in A^*$ mit
 - Dann gilt $w_1 \sqsubseteq_1 w_2 \Longleftrightarrow x \sqsubseteq_A y$.
- Beispiele
 - "Klaus" kommt vor "Klausur"
 - "Klausur" kommt vor "Übung" (im Duden, aber nicht im Studium!)

- ▶ Seien $w_1, w_2 \in A^*$
- ▶ Sei $v \in A^*$ das maximal lange Präfix, so dass es $u_1, u_2 \in A^*$ gibt mit $w_1 = v \ u_1$ und $w_2 = v \ u_2$.
 - v ist immer eindeutig bestimmt.
- ► Fallunterscheidung:
 - 1. Falls $v=w_1$ ist, gilt $w_1\sqsubseteq_1 w_2$
 - 2. Falls $v = w_2$ ist, gilt $w_2 \sqsubseteq_1 w_1$
 - 3. Falls $w_1 \neq v \neq w_2$, gibt es $x, y \in A$ und $u_1', u_2' \in A^*$ mit
 - Dann gilt $w_1 \sqsubseteq_1 w_2 \iff x \sqsubseteq_A y$.
- Beispiele
 - "Klaus" kommt vor "Klausur"
 - "Klausur" kommt vor "Ubung" (im Duden, aber nicht im Studium!]

- ▶ Seien $w_1, w_2 \in A^*$
- ▶ Sei $v \in A^*$ das maximal lange Präfix, so dass es $u_1, u_2 \in A^*$ gibt mit $w_1 = v \ u_1$ und $w_2 = v \ u_2$.
 - v ist immer eindeutig bestimmt.
- ► Fallunterscheidung:
 - 1. Falls $v = w_1$ ist, gilt $w_1 \sqsubseteq_1 w_2$
 - 2. Falls $v = w_2$ ist, gilt $w_2 \sqsubseteq_1 w_1$
 - 3. Falls $w_1 \neq v \neq w_2$, gibt es $x, y \in A$ und $u'_1, u'_2 \in A^*$ mit $x \neq y$ und
 - Dann gilt was Earway A
- Dann gilt $w_1 \sqsubseteq_1 w_2 \iff x \sqsubseteq_A y$.
- Beispiele
 - "Klaus" kommt vor "Klausur"
 - "Klausur" kommt vor "Übung" (im Duden, aber nicht im Studium!)

- ▶ Seien $w_1, w_2 \in A^*$
- ▶ Sei $v \in A^*$ das maximal lange Präfix, so dass es $u_1, u_2 \in A^*$ gibt mit $w_1 = v \ u_1$ und $w_2 = v \ u_2$.
 - v ist immer eindeutig bestimmt.
- ► Fallunterscheidung:
 - 1. Falls $v = w_1$ ist, gilt $w_1 \sqsubseteq_1 w_2$
 - 2. Falls $v = w_2$ ist, gilt $w_2 \sqsubseteq_1 w_1$
 - 3. Falls $w_1 \neq v \neq w_2$, gibt es $x, y \in A$ und $u_1', u_2' \in A^*$ mit $x \neq y$ und
 - Dann gilt wa Ea wa A V Ea V
 - Dann gilt $w_1 \sqsubseteq_1 w_2 \iff x \sqsubseteq_A y$.
- Beispiele
 - "Klaus" kommt vor "Klausur"
 - "Klausur" kommt vor "Übung" (im Duden, aber nicht im Studium!)

- ▶ Seien $w_1, w_2 \in A^*$
- ▶ Sei $v \in A^*$ das maximal lange Präfix, so dass es $u_1, u_2 \in A^*$ gibt mit $w_1 = v \ u_1$ und $w_2 = v \ u_2$.
 - v ist immer eindeutig bestimmt.
- ► Fallunterscheidung:
 - 1. Falls $v = w_1$ ist, gilt $w_1 \sqsubseteq_1 w_2$
 - 2. Falls $v = w_2$ ist, gilt $w_2 \sqsubseteq_1 w_1$
 - 3. Falls $w_1 \neq v \neq w_2$, gibt es $x, y \in A$ und $u'_1, u'_2 \in A^*$ mit $x \neq y$ und
 - Dann gilt $w_1 \sqsubseteq_1 w_2 \iff x \sqsubseteq_A v$
 - Dann gilt $w_1 \sqsubseteq_1 w_2 \iff x \sqsubseteq_A y$.
- Beispiele
 - "Klaus" kommt vor "Klausur"
 - "Klausur" kommt vor "Übung" (im Duden, aber nicht im Studium!)

- ▶ Seien $w_1, w_2 \in A^*$
- ▶ Sei $v \in A^*$ das maximal lange Präfix, so dass es $u_1, u_2 \in A^*$ gibt mit $w_1 = v \ u_1$ und $w_2 = v \ u_2$.
 - v ist immer eindeutig bestimmt.
- ► Fallunterscheidung:
 - 1. Falls $v = w_1$ ist, gilt $w_1 \sqsubseteq_1 w_2$
 - 2. Falls $v = w_2$ ist, gilt $w_2 \sqsubseteq_1 w_1$
 - 3. Falls $w_1 \neq v \neq w_2$, gibt es $x, y \in A$ und $u'_1, u'_2 \in A^*$ mit
 - $x \neq y$ und $w_1 = v \times u'_1$ und $w_2 = v y u'_2$

Dann gilt $w_1 \sqsubseteq_1 w_2 \iff x \sqsubseteq_A y$.

- Beispiele
 - "Klaus" kommt vor "Klausur"
 - "Klausur" kommt vor "Übung" (im Duden, aber nicht im Studium!)

- ▶ Seien $w_1, w_2 \in A^*$
- ▶ Sei $v \in A^*$ das maximal lange Präfix, so dass es $u_1, u_2 \in A^*$ gibt mit $w_1 = v \ u_1$ und $w_2 = v \ u_2$.
 - v ist immer eindeutig bestimmt.
- Fallunterscheidung:
 - 1. Falls $v = w_1$ ist, gilt $w_1 \sqsubseteq_1 w_2$
 - 2. Falls $v = w_2$ ist, gilt $w_2 \sqsubseteq_1 w_1$
 - 3. Falls $w_1 \neq v \neq w_2$, gibt es $x, y \in A$ und $u'_1, u'_2 \in A^*$ mit
 - $x \neq y$ und $w_1 = v \times u'_1$ und $w_2 = v y u'_2$

Dann gilt $w_1 \sqsubseteq_1 w_2 \iff x \sqsubseteq_A y$.

- Beispiele
 - "Klaus" kommt vor "Klausur"
 - "Klausur" kommt vor "Übung" (im Duden, aber nicht im Studium!)

- ▶ Seien $w_1, w_2 \in A^*$
- ▶ Sei $v \in A^*$ das maximal lange Präfix, so dass es $u_1, u_2 \in A^*$ gibt mit $w_1 = v \ u_1$ und $w_2 = v \ u_2$.
 - v ist immer eindeutig bestimmt.
- ► Fallunterscheidung:
 - 1. Falls $v = w_1$ ist, gilt $w_1 \sqsubseteq_1 w_2$
 - 2. Falls $v = w_2$ ist, gilt $w_2 \sqsubseteq_1 w_1$
 - 3. Falls $w_1 \neq v \neq w_2$, gibt es $x, y \in A$ und $u'_1, u'_2 \in A^*$ mit
 - $x \neq y$ und
 - $w_1 = v \times u'_1$ und $w_2 = v y u'_2$

Dann gilt $w_1 \sqsubseteq_1 w_2 \iff x \sqsubseteq_A y$.

- Beispiele
 - "Klaus" kommt vor "Klausur"
 - "Klausur" kommt vor "Übung" (im Duden, aber nicht im Studium!)

- ▶ Seien $w_1, w_2 \in A^*$
- Sei $v \in A^*$ das maximal lange Präfix, so dass es $u_1, u_2 \in A^*$ gibt mit $w_1 = v \ u_1$ und $w_2 = v \ u_2$.
 - v ist immer eindeutig bestimmt.
- ► Fallunterscheidung:
 - 1. Falls $v = w_1$ ist, gilt $w_1 \sqsubseteq_1 w_2$
 - 2. Falls $v = w_2$ ist, gilt $w_2 \sqsubseteq_1 w_1$
 - 3. Falls $w_1 \neq v \neq w_2$, gibt es $x, y \in A$ und $u'_1, u'_2 \in A^*$ mit
 - $x \neq y$ und
 - $w_1 = v \times u'_1$ und $w_2 = v y u'_2$

Dann gilt $w_1 \sqsubseteq_1 w_2 \iff x \sqsubseteq_A y$.

- Beispiele
 - ▶ "Klaus" kommt vor "Klausur"
 - "Klausur" kommt vor "Übung" (im Duden, aber nicht im Studium!)

- ▶ Seien $w_1, w_2 \in A^*$
- ▶ Sei $v \in A^*$ das maximal lange Präfix, so dass es $u_1, u_2 \in A^*$ gibt mit $w_1 = v \ u_1$ und $w_2 = v \ u_2$.
 - v ist immer eindeutig bestimmt.
- ► Fallunterscheidung:
 - 1. Falls $v = w_1$ ist, gilt $w_1 \sqsubseteq_1 w_2$
 - 2. Falls $v = w_2$ ist, gilt $w_2 \sqsubseteq_1 w_1$
 - 3. Falls $w_1 \neq v \neq w_2$, gibt es $x, y \in A$ und $u'_1, u'_2 \in A^*$ mit
 - $x \neq y$ und
 - $w_1 = v \times u'_1$ und $w_2 = v y u'_2$

Dann gilt $w_1 \sqsubseteq_1 w_2 \iff x \sqsubseteq_A y$.

- Beispiele
 - "Klaus" kommt vor "Klausur"
 - "Klausur" kommt vor "Übung" (im Duden, aber nicht im Studium!)

- ▶ Seien $w_1, w_2 \in A^*$
- ▶ Sei $v \in A^*$ das maximal lange Präfix, so dass es $u_1, u_2 \in A^*$ gibt mit $w_1 = v \ u_1$ und $w_2 = v \ u_2$.
 - v ist immer eindeutig bestimmt.
- ► Fallunterscheidung:
 - 1. Falls $v = w_1$ ist, gilt $w_1 \sqsubseteq_1 w_2$
 - 2. Falls $v = w_2$ ist, gilt $w_2 \sqsubseteq_1 w_1$
 - 3. Falls $w_1 \neq v \neq w_2$, gibt es $x, y \in A$ und $u'_1, u'_2 \in A^*$ mit
 - $x \neq v$ und
 - $w_1 = v \times u'_1$ und $w_2 = v y u'_2$

Dann gilt $w_1 \sqsubseteq_1 w_2 \iff x \sqsubseteq_A y$.

- ▶ Beispiele
 - "Klaus" kommt vor "Klausur"
 - "Klausur" kommt vor "Übung" (im Duden, aber nicht im Studium!)

Lexikographische Ordnung \sqsubseteq_1 (2)

Wenn man nur endlich viele Wörter ordnen muss (Wörterbuch), dann "harmlos"; Beispiel:

```
a \sqsubseteq_1 aa \sqsubseteq_1 aaa \sqsubseteq_1 aaaa \sqsubseteq_1 abbb \sqsubseteq_1 b \sqsubseteq_1 baaaaaa \sqsubseteq_1 baab \sqsubseteq_1 bbbbb
```

- ▶ wenn man A* ordnet, nicht ganz so harmlos; unvollständig
 - \triangleright $\varepsilon \sqsubseteq_1$ a \sqsubseteq_1 aa \sqsubseteq_1 aaa \sqsubseteq_1 aaaa \sqsubseteq_1 ··· besitzt kein Supremum,
 - ► denn
 - ▶ jedes Wort, das mindestens ein b enthält, ist obere Schranke,
 - zu jeder oberen Schranke w ist a^{|w|}b ist eine echt kleine obere Schranke (weil w ein b enthält)
 - ▶ b \supseteq_1 ab \supseteq_1 aab \supseteq_1 aaab \supseteq_1 aaaab \supseteq_1 ... hat kein Infimum

Lexikographische Ordnung \sqsubseteq_1 (2)

Wenn man nur endlich viele Wörter ordnen muss (Wörterbuch), dann "harmlos"; Beispiel:

```
a \sqsubseteq_1 aa \sqsubseteq_1 aaa \sqsubseteq_1 aaaa \sqsubseteq_1 abbb \sqsubseteq_1 b \sqsubseteq_1 baaaaaa \sqsubseteq_1 baab \sqsubseteq_1 bbbbb
```

- ightharpoonup wenn man A^* ordnet, nicht ganz so harmlos; unvollständig
 - \triangleright $\varepsilon \sqsubseteq_1$ a \sqsubseteq_1 aa \sqsubseteq_1 aaa \sqsubseteq_1 aaaa $\sqsubseteq_1 \cdots$ besitzt kein Supremum,
 - denn
 - ▶ jedes Wort, das mindestens ein b enthält, ist obere Schranke,
 - zu jeder oberen Schranke w ist a^{|w|}b ist eine echt kleine obere Schranke (weil w ein b enthält)
 - ▶ b \supseteq_1 ab \supseteq_1 aab \supseteq_1 aaab \supseteq_1 aaaab \supseteq_1 ... hat kein Infimum

Lexikographische Ordnung \sqsubseteq_2

- ▶ andere lexikographische Ordnung ⊆₂ auf A*: w₁ ⊆₂ w₂ gilt genau dann, wenn
 - entweder $|w_1| < |w_2|$
 - ▶ oder $|w_1| = |w_2|$ und $w_1 \sqsubseteq_1 w_2$ gilt.
- Diese Ordnung beginnt also z. B. im Fall A = {a, b} bei naheliegender Ordnung ⊑_A so:

$$\begin{array}{c} \varepsilon \sqsubseteq_2 \mathtt{a} \sqsubseteq_2 \mathtt{b} \\ & \sqsubseteq_2 \mathtt{aa} \sqsubseteq_2 \mathtt{ab} \sqsubseteq_2 \mathtt{ba} \sqsubseteq_2 \mathtt{bb} \\ & \sqsubseteq_2 \mathtt{aaa} \sqsubseteq_2 \cdots \sqsubseteq_2 \mathtt{bbb} \\ & \sqsubseteq_2 \mathtt{aaaa} \sqsubseteq_2 \cdots \sqsubseteq_2 \mathtt{bbbb} \\ & \ldots \end{array}$$

\sqsubseteq_1 und \sqsubseteq_2 sind totale Ordnungen

- ▶ \sqsubseteq_1 auf Menge A^n aller Wörter fester Länge n ist totale Ordnung
 - Halbordnung: nachprüfen . . .
 - für verschiedene Wörter gleicher Länge niemals $w_1 = v$ oder $w_2 = v$.
 - ▶ da \sqsubseteq_A als total vorausgesetzt wird, ist bei $w_1 = v \times u_1'$ und $w_2 = v y u_2'$ stets $x \sqsubseteq_A y$ oder $y \sqsubseteq_A x$
 - ▶ also stets $w_1 \sqsubseteq_1 w_2$ oder $w_2 \sqsubseteq_1 w_1$.
- ▶ also \sqsubseteq_2 auf A^* totale Ordnung
- ightharpoonup für verschieden lange Wörter: nachprüfen . . .

Was ist wichtig

Das sollten Sie mitnehmen:

- totale Ordnungen sind
 - Halbordnungen
 - ohne unvergleichbare Elemente
- ► Anwendung an diversen Stellen in der Informatik (z. B. Semantik, Testmuster, . . .)

Das sollten Sie üben:

- Nachweis der Eigenschaften von totalen Ordnungen
- Beweise einfacher Aussagen
- an ungewohnte Eigenschaften von Ordnungen gewöhnen (Unendlichkeit lässt grüßen)