Techniques in Probing Neural Circuits

Dayu Lin (Dayu.lin@nyumc.org)

Basic strategies in studying Neural circuits

Visualize cells

Monitor cell activity

Manipulate cell and gene activity

Visualize cells

- Any cells
- Cells with certain genetic features
- Cells with certain developmental lineage
- Connected cells

Visualize cells

- Any cells
- Cells with certain genetic features
- Cells with certain developmental lineage
- Connected cells

Methods to simply label cells

Golgi staining (Silver chromate, Ag₂CrO₄₎)

horseradish peroxidase (HRP)

Other tracers

subunit B of cholera toxin (CTB)

Phaseolus vulgaris leucoagglutinin (PHA-L)—a plant lectin

Biotinylated dextran amine (BDA)

Biocytin and neurobiotin (a small molecule)

Conventional methods for neuroanatomy-Fluorescent dyes

Lipophilic dyes

Fluorescent dextrans fluorescent microspheres (Lucifer Yellow, Texas Red, fluorescein)

Label cells reproducibly--Thy1-GFP mice

Feng et al, 2000, Neuron, Cite >1600

Label many cells but differently—Brainbow mice

Livet et al, Nature, 2007, Cite ~800 Jeff W. Lichtman and Joshua R. Sanes

Membrane bound GFP facilitated neuroanatomy— Brainbow mice

Electron microscope (EM)--Connectome

http://www.cgl.ucsf.edu/chimera/animations/ratbrain/ratbrain.html

Visualize cells

- Any cells
- Cells with certain genetic features
- Cells with certain developmental lineage
- Connected cells

Label genetically defined cell type

http://cre.jax.org/index.html

http://www.gensat.org/cre.jsp

http://connectivity.brain-map.org/transgenic

fly

http://flystocks.bio.indiana.edu/

Visualize cells

- Any cells
- Cells with certain genetic features
- Cells with certain developmental lineage
- Connected cells

MARCM

Mosaic Analysis with a Repressible Cell Marker – Label one or set of mutant cell with GFP

T Lee, Trends Neuroscience, 2001 Cite>500

MADM: Mosaic Analysis with Double Markers

Visualize cells

- Any cells
- Cells with certain genetic features
- Cells with certain developmental lineage
- Connected cells

Label cells transneuronally

WGA: wheat germ agglutinin (an antegrade and retrograde transneuronal tracer)

C.I. de Zeeuw et al. Brain Research, 447(1988)269

Transneuronal viral tracing

Anterograde: Herpes simplex virus (HSV)

TK: thymidine kinase Retrograde: Pseudorabies Virus (PRV)

GFP

α-NPY

α-NPY + GFP

DeFalco ... Jeffery Friedman. 2001, Science ~ 250 citation

G protein: essential for viral particle amplification EnvA: make virus only infect TVA expressing cells

Monosynaptic transneuronal tracing

Wickersham et al, 2007 Citation: ~390

GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses

Feinberg EH, et al. Neuron, 2008, citation ~230

Mammaliam GRASP

CA3: pre-mGRASP-mCerulean NLS-mCherry

CA1: post-mGRASP (recognized with GFP antibody) dTomato

Kim J, et al. 2011, Nature methods, cite ~70

Basic strategies in studying Neural circuits

Visualize cells

Monitor cell activity

Manipulate cell activity

Monitor Cell activity

Immediate early gene mapping

Electrophysiology

Functional Imaging

Immediate early gene response

Fos expression patterns after fighting and mating

PMv: premammillary nucleus MPN: Medial preoptic nucleus

VMH: Ventromedial hypothalamic nucleus

Immediate early gene (IMG) CatFISH —

cellular compartment analysis of temporal activity by fluorescence in situ hybridization

Guzowski JF et al. Nature Neuroscience1999. Cite ~550

Long term tagging activated cells

tTA: tetracycline transactivator

tetO: tTA binding sites

Reijmers et al, Science, 2007, cite ~240

TetTag mouse with long lasting GFP

TetTag system to label active cells with ChR2

Xu Liu... Susumu Tonegawa. Nature, 2012, cite ~330

Labeling of transiently activated neurons using TRAP

Electrophysiology

Methods:

Intracellular recording (Patch clamp or sharp electrode)

Cell attach recording

Extracellular recording (single or multiple electrodes)

Preparation:

In vitro (slice or cells)

In vivo (anaesthetized animals, head fixed awake animal, free moving animals)

Combining ChR2 and electrophysiology

Functional imaging --detecting the activity of neurons by optical imaging

What kind of changes will occur when a brain area (or cell) becomes active?

Membrane potential
Calcium concentration
Chloride concentration
Sodium concentration
Potassium concentration
PH level (synapse)
Oxygen level

How to convert non-optical changes to optical changes?

Voltage sensitive dye Calcium sensitive dye Synapto-pHluorin Camgaroo- ratiometric GECl

Functional imaging--Voltage sensitive dye

Functional Imaging –Calcium imaging

Head Fixed 2-photon calcium imaging

<u>Daniel A. Dombeck</u>... David Tank Nature Neuroscience, 2010, Cite 230

1-photon Calcium imaging in awake behaving animals

Yaniv Ziv ... Mark Schnitzer 2013, Nature Neuroscience, cite ~140

Population calcium imaging in awake behaving animals —fiber photometry

iGluSnFR as an glutamate sensor

Relative fluorescence change

Bacterial periplasmic binding proteins (PBPs)

Basic strategies in studying Neural circuits

Visualize cells

Monitor cell activity

Manipulate cell/gene activity

Manipulate cell/gene activity

Region

- Electrical Lesion
- 2. Pharmacological inactivation
- Electrical stimulation
- 4. Pharmacological activation

Cells

- 1. Inactivate
- 2. Activate
- 3. Killing

Genes

- 1. Traditional gene targeting
- 2. Transgenic
- 3. CRISPR/Cas9

Receptors

- 1. Antagonist
- 2. Agonist
- 3. Ligand uncaging

Manipulate cell/gene activity

Region

- Electrical Lesion
- 2. Pharmacological inactivation
- 3. Electrical stimulation
- 4. Pharmacological activation

Cells

- 1. Inactivate
- 2. Activate
- 3. Killing

Genes

- 1. Traditional gene targeting
- 2. Transgenic
- 3. CRISPR/Cas9

Receptors

- 1. Antagonist
- 2. Agonist
- 3. Ligand uncaging

Light mediated cell control -- optogenetics

Karl Deisseroth and Ed Boyden 2005 Nature ~2000 citations

Optogenetics

Karl Deisseroth and Ed Boyden 2005 Nature ~2000 citations

In vivo optogenetic control of cell activity

Ligand mediated cell control --phamacogenetics

DEARDD

PHARMACOGENETICS Designer Receptors Exclusively Activated by Designer Drugs DREADDs

Armbruster et al., 2007, PNAS

Adapted from Wess et al., 2013, Trends in Pharmacological Sciences

2007 PNAS Armbruster BN et al. Cite ~390

Magnetic field mediated cell control -- Meganogenetic

Magnetogenetics

Heng Huang et al. Nature Nanotechnology, 2010 Cite ~220

Diphtheria toxin receptor (DTR) mediated cell killing

One molecular of DT can kill a cell – Cell, 1978, Yamaizumi, M.

Michiko Saito et al. 2001, Nature Biotechnology Cite ~250

Caspase 3 mediated cell killing

Cindy F. Yang et al. Cell, 2013, ~60

Manipulate cell/gene activity

Region

- Electrical Lesion
- 2. Pharmacological inactivation
- 3. Electrical stimulation
- 4. Pharmacological activation

Cells

- 1. Inactivate
- 2. Activate
- 3. Killing

Genes

- 1. Traditional gene targeting
- 2. Transgenic
- 3. CRISPR/Cas9

Receptors

- 1. Antagonist
- 2. Agonist
- 3. Ligand uncaging

Traditional gene targeting Rely on rare homologous recombination in ER cells

Mario R. Capecchi,
Martin J. Evans and
Oliver Smithies
Nobel Prize 2007

Traditional gene targeting

Step 2. From gene targeted ES cells to gene targeted mice Mosaic inner 6. Injection of ES cells cell mass into blastocysts The targeted ES cells 7. Implantation of are injected into blastocysts ... where they mix and blastocysts ... The injected blastocysts are form a mosaic with the implanted into a surrogate Inner cell mass Injected cells of the inner cell mother where they develop ES cells mass from which the into chimeric embryos. embryo develops. Injection needle Blastocyst Newborn chimeric mouse Holding pipette 8. Birth and breeding of chimeric mice The chimeric mice mate with normal mice to produce gene targeted as well as normal offspring. Normal Chimeric o mouse Normal mice 9. Birth of gene targeted mice Gene targeted mice - called Egg ("knockout mice" when the targeted Sperm Sperm gene is inactivated in all cells.

Transgenic vs. gene targeting

Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 17th Edition: http://www.accessmedicine.com

CRISPR/Cas9:Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR Associated (Cas) system-- bacterial self-defense mechanism

Ishino, Y., et al. (1987) J. Bacteriol. 169, 5429–5433.

PAM: protospacer-associated motif crRNA: CRISPR targeting RNA Required for the Cas(to recognized the sequence 2-5 conserved bp

CRISPR/Cas9 mediated gene targeting -- a much more efficient method

Other variations of CRISPR/Cas9

CRISPR/Cas9 mediated gene targeting Time: 1-3 months

