

© International Baccalaureate Organization 2023

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2023

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2023

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Environmental systems and societies Standard level Paper 2

8 May 2023

Zone A morning | Zone B afternoon | Zone C morning

Candidate session number								
						_		

2 hours

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.

Instructions to candidates

- · Section B: answer two questions.
- Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- The maximum mark for this examination paper is [65 marks].

245004

-2- 2223-9239

Section A

Answer all questions. Answers must be written within the answer boxes provided.

1.

Figure 1(a): Extinction risk levels of species in global biodiversity by category

(a)	State the category with the highest percentage of vulnerable species in Figure 1(a).	[1]

(This question continues on the following page)

(b)	Outline two reasons why Amphibians have the highest percentage of critically endangered species in Figure 1(a) .	[2]
(c)	Using Figure 1(a) , state the approximate percentage of threatened crustaceans.	[1]
(d)	Describe one reason for the lack of available data for crustaceans.	[1]

(This question continues on page 5)

Turn over

-4- 2223-9239

Please do not write on this page.

Answers written on this page will not be marked.

(Question 1 continued)

Figure 1(b): Changing species extinction risk by category 1980–2015

	in Figure 1(b) .	
(f)	Figures 1(a) and 1(b) are based on records for species diversity. Identify one other	
	factor that may be measured to assess the diversity of life on Earth.	

Outline three reasons why the trend for corals is different to the other categories shown

2.

Figure 2: Observed and projected changes in global stratospheric ozone

Key:

- Annually averaged data
 - Average of atmospheric model projections

(a)	Describe the overall trend shown in the recorded annually averaged data in Figure 2.	[2]
(b)	State one chemical responsible for the trend in the recorded annually averaged data between 1980 and 1990 shown in Figure 2 .	[1]

(c) Outline one impact of low concentrations of stratospheric ozone on humans.			

(This question continues on the following page)

(Question	2 cont	inued)
-----------	--------	--------

(d)	Identify the year that stratospheric ozone is predicted to return to 1980 levels in Figure 2 .	[1]
(e)	Describe two reasons for the projected change in ozone levels after 2020 in Figure 2 .	[2]
(f)	Outline one factor that may affect the reliability of the model projections in Figure 2 .	[1]

3.

Figure 3: Impact of deforestation on the water cycle

Before deforestation After deforestation Rainfall Evapotranspiration Evapotranspiration Rainfall Recycled rainfall Surface Surface runoff runoff State one storage of fresh water not shown in Figure 3. [1] (a) (b) State one input of water into the atmosphere not shown in Figure 3. [1]

(This question continues on the following page)

(Question 3 continued)

(c)	Describe the positive feedback mechanism by which deforestation may decrease the availability of water in certain regions.	[2]
(d)	Evaluate the role of reforestation in the mitigation of climate change.	[4]

-10-

Section B

Answer two questions. Answers must be written within the answer boxes provided.

4. (a) Outline the transfers and transformations of matter as it enters and flows through the first trophic level of a food chain. [4] (b) Describe how the emissions from the combustion of fossil fuels may impact the productivity of terrestrial ecosystems. [7] With reference to named societies, to what extent do the environmental impacts of (c) energy resources influence their choice of energy? [9] 5. (a) With reference to four named agricultural strategies, outline how they improve the sustainable use of soils. [4] (b) Explain how the process of succession leads to changes in productivity. [7] With reference to named examples, compare and contrast wild fisheries and (c) aquaculture systems in terms of their efficiency and environmental impacts. [9] 6. A new parasite is introduced into an ecosystem and manages to infect a host species. (a) Outline how the host and parasite species may reach an equilibrium over time. [4] (b) Explain how tectonic plate activity may lead to the formation of new species. [7] (c) Justify the role of different environmental value systems (EVSs) in deciding between species based and habitat based conservation strategies. [9] 7. (a) Outline how the ecological footprint (EF) of a human population is likely to change through the stages of the demographic transition model (DTM). [4] A wild population of fish may provide a sustainable resource for human consumption. Describe practical procedures for estimating the maximum sustainable yield from such a resource. [7] To what extent do different strategies for the management of solid domestic waste (c) (SDW) influence the sustainability of human populations? [9]

 •
 •
 •
 •
 •
 •
 •

 •
 •
 •
 •
 •
 •
 •

– 20 –

-23 - 2223-9239

Disclaimer:

Content used in IB assessments is taken from authentic, third-party sources. The views expressed within them belong to their individual authors and/or publishers and do not necessarily reflect the views of the IB.

References:

Figure 1(a) IPBES (2019): Global assessment report on biodiversity and ecosystem services of the

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. E. S. Brondizio,

J. Settele, S. Díaz, and H. T. Ngo (editors). IPBES secretariat, Bonn, Germany. 1148 pages. https://doi.org/10.5281/zenodo.3831673. Creative Commons 4.0 Attribution 4.0 International

(CC BY 4.0) https://creativecommons.org/licenses/by/4.0/. (source adapted - Image A Pg. XX redrawn).

Figure 1(b) IPBES (2019): Global assessment report on biodiversity and ecosystem services of the

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. E. S. Brondizio, J. Settele, S. Díaz, and H. T. Ngo (editors). IPBES secretariat, Bonn, Germany. 1148 pages. https://doi.org/10.5281/zenodo.3831673. Creative Commons 4.0 Attribution 4.0 International (CC BY 4.0) https://

creativecommons.org/licenses/by/4.0/. (source adapted – Image C Pg. XX redrawn).

Figure 2 Ross J. Salawitch (Lead Author), David W. Fahey, Michaela I. Hegglin, Laura A. McBride, Walter

R. Tribett, Sarah J. Doherty, Twenty Questions and Answers About the Ozone Layer: 2018 Update, Scientific Assessment of Ozone Depletion: 2018, 84 pp., World Meteorological Organization, Geneva,

Switzerland, 2019.

All other texts, graphics and illustrations © International Baccalaureate Organization 2023

