Grafici e diagrammi in Chimica

Curva di Morse (indica l'energia di legame)

Grafico dell'energia di attivazione

Isoterme di un gas (piano di Clapeyron)

Grafico di comprimibilità di un gas

si utilizza questo grafico per controllare il comportamento di un gas da coercibile a incoercibile

Il fattore di comprimibilità è un modo per controllare se un gas si comporta idealmente.

Per una mole di gas ideale

$$\frac{PV}{RT} = 1$$
 sempre.

Per un gas reale, l'andamento è riportato in grafico.

Curva 1: gas incoercibile

Curva 2: gas coercibile che diventa incoercibile

Curve isoterme

Fig. 3 — Isoterme $P \, . \, V$ della carbonica.

Fig. 3 — Isoterme P, V della anidride carbonica.

Diagramma della isobaro della pressione di vapore di alcune sostanze(derivato da equazione di Clapeyron)

Diagramma isobaro riscaldamento ghiaccio

Fig. 2 — Diagramma isobaro di riscaldamento del ghiaccio con passaggi di stato solido → liquido → vapore.

Curva di raffredamento

Fig. 15 — Curva di raffreddamento isobaro di una soluzione acquosa, a partire dalla temperatura t_0 ($t_0 > 0$ °C).

Il Calore Molare di fusione (ΔHfus) è l'energia richiesta per fondere 1 mole di una sostanza solida al suo punto di congelamento

Diagramma di stato

Utile per capire ad una determinata temperatura e/o pressione in quale forma si presenta una sostanza

Diagramma di stato dell'acqua

Fig. 5 — Diagramma di stato dell'acqua.

Notare che allo stato solido l'acqua, caso più unico che raro, occupa un volume maggiore che allo stato liquido

Diagramma di stato CO2

Fig. 6 — Diagramma di stato dell'anidride carbonica.

Diagramma di stato dello zolfo e del ferro con piú di 3 fasi

zolfo

Diagramma di stato dell'elio

Diagramma di Andrews

Il **diagramma di Andrews** è la rappresentazione nel piano p-V (detto anche piano di Clapeyron) del comportamento del sistema gas-liquido di una sostanza.

Consideriamo un gas racchiuso in un cilindro chiuso con un pistone mobile. Se il gas è ideale, con una trasformazione isoterma (a temperatura costante), sul piano di Clapeyron p-V si ottengono delle iperboli equilatere, iperboli di equazione

pV=cost

Se invece consideriamo un gas reale, per temperature abbastanza alte e pressioni abbastanza basse le isoterme si avvicinano alle suddette iperboli.

Pressione di vapore soluzioni ideali (Legge di Raoult)

Fig. 7 — Pressione di vapore di soluzioni ideali di due liquidi (temperatura costante).

Diagramma di stato di 2 componenti completamente miscibili sia allo stato liquido che allo stato di vapore

Fig. 10 — Relazione fra composizione della soluzione A+B, temperatura di ebollizione e composizione del vapore (la pressione è costante).

Pressione di vapore soluzioni con deviazione positiva

Fig. 9 — Pressione di vapore di soluzioni che presentano deviazioni positive della legge di Raoult.

Diagramma rappresentante la Teb in funzione delle frazioni molari per una soluzione in cui deltaHsol>0 (composizione azeotropica)

Fig. 12 — Temperatura di ebollizione e composizione del vapore a questa temperatura, di miscele di due liquidi A e B che danno soluzione azeotropica con temperatura di ebollizione minima (la pressione è costante).

Pressione di vapore soluzioni con deviazione negativa

Fig. 8 — Pressione di vapore di soluzioni che presentano deviazioni negative della legge di Raoult.

Diagramma rappresentante la Teb in funzione delle frazioni molari per una soluzione in cui deltaHsol<0

Fig. 11 — Temperatura di ebollizione e composizione del vapore a questa temperatura di miscele di due liquidi A e B che danno soluzione azeotropica con temperatura di ebollizione massima (la pressione è costante).

Variazione della temperatura di ebollizione e di solidificazione

Diagrammi eutettici

Fig. 16 — Costruzione di un diagramma eutettico (isobaro) da curve di raffreddamento ($C_1 < C_2 < C_c < C_3 < C_4$)

Fig. 17 — Diagramma eutettico (isobaro) $H_2O/NaNO_3$

curva di raffredamento isobara

Diagrammi reazioni all'equilibrio

