7. Integrazione Numerica: Formule Composte - Pseudocodifica

Regola di Simpson Composta:

INPUT: estremi a, b; intero n (NB numero pari); espressione f(x)

(controlli sui dati)

- 1) h = (b-a)/n
- 2) F0 = f(a); FN = f(b); SFP = 0.0; SFD = 0.0
- 3) NSTOP = N 1

- 4) x = a + i * h;
- 5) per i pari: SFP = SFP+ f(x); per i dispari: SFD = SFD + f(x); end for
- 6) SIMPC = h * [F0 + 2*SFP + 4*SFD + FN]/3
- 7) OUTPUT

NB per determinare se i è pari o dispari, utile funzione di MATLAB: rem(x,y) [if rem(i,2)==0 => i pari]

8. Integrazione Numerica: Formule Composte - Esercizio

Valutare l'integrale definito $\int_{1}^{2} x \cdot \ln x \, dx$ usando le Regole Composte di Simpson e del Trapezio, per diversi valori di n. Commentare riguardo l'errore di approssimazione commesso.

9. Integrazione Numerica: Formule Composte - Grado di approssimazione

Determinare i valori di h (e n) che garantiscono un errore di approssimazione minore di 0.00002 nel calcolo dell'integrale definito $\int\limits_0^\pi \sin x \, dx$ usando (a) la Regola del Trapezio Composta e (b) la Regola di Simpson Composta.

10. Integrazione Numerica: Quadratura di Gauss

Valutare gli integrali a)
$$\int_{1}^{1} e^{x} \cos(x) dx$$
 e b) $\int_{1}^{3} (x^{6} - x^{2} \cdot \sin 2x) dx$

usando la Regola di Quadratura di Gauss a 2 e a 3 punti. Confrontare il valore ottenuto con i risultati delle Regole del Trapezio Base e Composto con n=2, e la Regola di Simpson Base. Quantificare in ogni caso l'errore assoluto, sapendo che il valore esatto degli integrali, calcolato analiticamente, è rispettivamente pari a 1.9334214 (caso a)) e 317.3442466 (caso b)).

	(\mathbf{x}_{i})	/15/3 · (C)
1	Roots $r_{n,i}$	Coefficients $c_{n,i}$
2	0.5773502692	1.0000000000
	-0.5773502692	1.00000000000
3	0.7745966692	0.555555556
	0.0000000000	0.888888889
	-0.7745966692	0.555555556
4	0.8611363116	0.3478548451
	0.3399810436	0.6521451549
	-0.3399810436	0.6521451549
	-0.8611363116	0.3478548451
5	0.9061798459	0.2369268850
	0.5384693101	0.4786286705
	0.0000000000	0.5688888889
	-0.5384693101	0.4786286705
	-0.9061798459	0.2369268850