Rolle's Theorem and Mean Value Theorem

Rolle's Theorem

Suppose that a function

- i. f(x) is continuous on the closed interval [a,b]
- ii. f(x) differentiable on the open interval (a,b).
- iii. if f(a)=f(b),
- then there exists at least one point c in the open interval (a,b) for which f'(c)=0

Geometric interpretation

There is a point c on the interval (a,b) where the tangent to the graph of the function is horizontal.

Mean Value Theorem

If f is a function that is continuous on [a, b] and differentiable on (a, b), then there is a number $c \in [a, b]$ such that:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

which can be rearranged to

$$f(b) - f(a) = f'(c)(b - a)$$

- 1. Find c in [0,1] determined by the Mean Value Theorem for $f(x) = e^x$.
- 2. Find c in [-2,2] determined by Rolle's Theorem for $f(x) = x^4 4x^2$.
- 3. Find c for Rolle's Theorem for $f(x)=x^3-12x$ when $0 \le x \le 2\sqrt{3}$.
- 4. Find c for Mean Value Theorem for $f(x) = \frac{x-2}{x}$ on [2,4].
- 5. Find c for Rolle's Theorem for $f(x) = x^3 9x$ on [-3,3].
- 6. Find c for Rolle's Theorem for $f(x) = 5x^2 15x$ on [0,3].
- 7. Find c for the Mean Value Theorem for $f(x) = x^3 + 1$ on [-2,4].
- 8. Fine c for Rolle's Theorem for $f(x) = x^3 4x$ on [-2,2].
- 9. Find c for the Mean Value Theorem for $f(x) = \frac{x-1}{x}$ on [1,3].

Answers:

$1. c = \ln(e-1)$	$2. c = 0; c = \pm \sqrt{2}$	3.c = 2	$4. c = 2\sqrt{2}$
$5. c = \pm \sqrt{3}$	6. $c = \frac{3}{2}$	7. c = 2	$8. c = \frac{\pm 2}{\sqrt{3}}$
$9. \ c = \sqrt{3}$	10. f(x) is not defined on the open interval (-2, 2).	11. $f(x)$ is discontinuous at $x = 2$.	12. f(x) is not defined on [-2, -1)

EXERCISE SET 4.8

1-4 Verify that the hypotheses of Rolle's Theorem are satisfied on the given interval, and find all values of c in that interval that satisfy the conclusion of the theorem. ■

1.
$$f(x) = x^2 - 8x + 15$$
; [3, 5]

2.
$$f(x) = \frac{1}{2}x - \sqrt{x}$$
; [0, 4]

3.
$$f(x) = \cos x$$
; $[\pi/2, 3\pi/2]$

4.
$$f(x) = \ln(4 + 2x - x^2)$$
; [-1, 3]

5–8 Verify that the hypotheses of the Mean-Value Theorem are satisfied on the given interval, and find all values of c in that interval that satisfy the conclusion of the theorem.

5.
$$f(x) = x^2 - x$$
; [-3, 5]

6.
$$f(x) = x^3 + x - 4$$
; [-1, 2]

7.
$$f(x) = \sqrt{25 - x^2}$$
; [-5, 3]

8.
$$f(x) = x - \frac{1}{x}$$
; [3, 4]

Example 1 Find the two x-intercepts of the function $f(x) = x^2 - 5x + 4$ and confirm that f'(c) = 0 at some point c between those intercepts.

$$x^2 - 5x + 4 = (x - 1)(x - 4)$$

so the x-intercepts are x = 1 and x = 4.

$$f'(x) = 2x - 5$$

Solving the equation f'(x) = 0 yields $x = \frac{5}{2}$, so $c = \frac{5}{2}$ is a point in the interval (1, 4)

$$y = x^2 - 5x + 4$$