

Digital Communication

2018. 2학기

아주대학교 국방디지털융합학과

Digital Communication

데이터통신의 개요

목 차

- 1. 정 의
- 2. 인터넷의 진화과정
- 3. 구성요소
- 4. 프로토콜
- 5. 표준기구/표준안

데이터 통신

● 학습목표:

- ➡ 데이터통신의 개념과 목표를 이해한다.
- ➡ 데이터통신의 구성요소와 프로토콜을 이해한다.

➡ 데이터통신을 위한 국제기구에 대해 이해한다.

1. 정의 (1/11)

- □ 데이터 통신의 정의
 - ▶ 데이터(data)
 - ▶ 임의의 형태로 형식화된 사실이나 개념, 의사, 명령 등을 사람이나 기계에 의한 처리가 적합하도록 숫자, 문자, 기호 등으로 나타낸 것
 - ▶ 0과 1로 이루어진 디지털 2진형태의 정보 단위 ; 컴퓨터 시스템 관점
 - ▶ 정보(information)
 - 데이터를 처리 가공한 결과로써 사용자에게 의사결정을 도와주는 의미 있는 데이터
 - > 통신(communication)
 - ▶ 정보 공여자(source)와 정보 수여자(sink)간의 정보 이동

1. 정의 (2/11)

분류관점	통신의 종류	
전송 매체	유선통신, 무선통신	
송수신자의 이동여부	이동통신	
신호 형태	아날로그통신, 디지털통신	
신호의 종류	전기통신, 광통신	
이용 대상	공중(public)통신, 전용(private)통신	
정보의 표현 형태	음성통신, 데이터통신, 화상통신, 영상통신, 멀티미디어통신	

✓ 데이터통신?

- ▶ 문자, 숫자, 기호 등으로 표현된 정보를 정보 공여자와 수여자 사이에 교환하는 과정
- ▶ 컴퓨터통신(같은 개념으로 사용)
 - ▶ 통신을 행하는 주체/매개체가 컴퓨터
 - 데이터 전송뿐만 아니라 데이터의 처리까지 포함

1. 정의 (3/11)

- □ 전송로 상에는 2진 숫자열에 대한 신호가 전송
- □ 2진 숫자열은 각각 문자, 숫자, 기호 등(ASCII, EBCDIC 등의 코드)을 나타냄.
- □ 코드의 종류 (Code는 대응시킨다는 의미)

1. 정의 (4/11)

문자 코드(Character Code) : 문자(character)를 0,1(digit)로 변환하는 것

Digit	Character
1 2 3 4 5 6 7 8 9 10 11 12	ABUDEFGH JKL

모든 글자 동일한 자리수로 대응시켜야

1. 정의 (5/11)

◆ 바코드(Bar Code)

◆ QR 코드(Quick Response Code)

기존의 바코드: 가로배열 최대 20여 자의 숫자정보만 가능한 1차원적 구성 QR 코드: 가로, 세로를 활용하여 2차원적 구성

숫자 7,089자, 문자 4,296자, 한자1,817자 기록 가능

1. 정의 (6/11)

관광지도 다운받기

구인 광고

Wine 설명서

Ticket

오디오 비디오 컨텐츠

1. 정의 (7/11)

- □ 코드의 종류
 - ✓ ASCII(American Standard Code for Information Interchange)
 - 한 문자를 표현하는데 8비트(7비트 정보비트+ 1비트 패리티비트) 사용하여총 128개 문자 표현
 - ✓ EBCDIC(Extended Binary Coded Decimal Interchange Code)
 - ▶ IBM 대형 컴퓨터에 사용하기 위해 개발된 코드로써 총 256개 코드를 표현
 - ✓ Unicode
 - > 8비트 문자코드를 16비트로 확장하여 전세계의 모든 문자를 표현하는 표준 코드

1. 정의 (8/11)

데이터 통신의 목표

- ✓ 데이터 전송의 정확성
 - 데이터의 전송 중 신호 감쇄, 잡음 등에 의한 형태의 변경→ 잘못된 정보 전송
 - ▶ 정확성을 위한 기술 : 채널 코딩(channel coding)/에러 제어 코딩(error control coding), 동기 기술, 스위칭 기술, 어드레싱 기술, 흐름제어 기술
- ✓ 데이터 전송의 효율성
 - ▶ 획득 정보의 가치가 데이터 전송 장비의 가치보다 작으면 비효율적
 - 효율성을 위한 기술 : 소스 코딩(source coding (e.g., Huffman code)),
 다중화(multiplexing) 기술
- ✓ 데이터 전송의 안전성
 - ▶ 데이터의 내용이 제 3자에게 누출되거나 변형되면 안됨
 - ▶ 안전성을 위한 기술 : 보안 코딩(secrecy coding)

1. 정의 (9/11)

- ✓ 채널코딩(Channel coding)
 - 전송 데이터에 잉여정보를 추가함으로써 비트 오류율 성능을 개선시키기 위한 과정
 - > Hamming Code, CRC, Convolutional Code 등
- ✓ 소스코딩(Source coding)
 - 디지털 형식으로 변환, 압축하는 과정, 소스의 효율성을 높이 기 위해 평균 코드 길이가 최소화되도록 한다.
 - > JPEG, MPEG, Huffman code 등
- ✓ 보안코딩(Secrecy coding)
 - 전송 데이터 내용에 안전성을 제공하기 위한 과정
 - ▶ 대칭키 및 비대칭키 암호 알고리즘 등

1. 정의 (10/11)

□ 데이터 통신의 분류(정보의 표현 형태 기준)

✓ 음성통신

- 일반적으로 전화망을 이용한 통신, 인터넷을 이용한 음성통신 서비스 상용화
- ▶ 음성 우편(voice mail), 3자 통화 등

✓ 데이터통신

- 음성을 제외한 모든 형태의 정보 전송(이미지통신, 영상통신 포함)
- ▶ PC를 통한 파일 전송, 전자우편(E-mail) 등

1. 정의 (11/11)

- □ 데이터 통신의 분류(정보의 표현 형태 기준)
 - ✓ 화상(이미지)통신
 - ▶ 그림, 도표, 차트, 그래픽 등의 정보전송
 - 다른 형태의 정보보다 이해가 쉬워 이용이 증가하는 추세
 - ▶ 디지털 팩시밀리, web
 - ✓ 영상통신
 - ▶ 단방향 전송방식인 TV방송
 - ▶ 비디오텍스, 영상회의(video conferencing), 영상응답시스템(VRS: Video Response System) 등
 - ✓ 멀티미디어통신
 - ▶ 음성과 데이터 및 화상정보의 통합
 - ▶ 원격회의(teleconferencing), 원격교육 등

2. 인터넷의 진화과정(1/2)

□ 인터네트워킹(internetworking) 기술

✓ 서로 다른 종류의 네트워크를 연결시키고 하나의 데이터통신 기준을 둠으로써 다양한 하드웨어 기술의 결합을 가능하게 해주는 기술

□ 인터넷의 발전

- ✓ 미 국방성 산하의 ARPA에서 연구원, 군납업체, 관련기관 간에 정보를 공유하기 위해 1969년에 구현된 네트워크인 ARPANET 등장
- ✓ TCP/IP를 사용하는 인터넷이 등장 여러 산업체와 각 기관으로 널리 확산
- ✓ 미국 국립과학재단(NSF)의 NSFNET 의 등장 기존 ARPANET 사용자를 흡수하였고, NSFNET을 중심으로 미국 내 통신 네트워크들을 통합
- ✓ 1990년대 들어 인터넷의 정보 사용에 대해서 부분적인 상용화가 허용
- ✓ 월드와이드웹(WWW)의 발달과 더불어 기업 이미지 광고, 제품 소개, 전자상 거래 등에 인터넷을 도입
- ✓ 인터넷은 무선인터넷을 포함하여 전 세계적으로 기하급수적으로 성장
- ✓ 불과 30여 년 전 1000여 개의 기기가 인터넷에 연결되어 사용되었으나, 그 수가 곧 100억 개 이상으로 늘어날 것임

16

2. 인터넷의 진화과정(2/2)

□ 인터넷과 네트워크 기술 발전 및 진화과정

3. 구성요소 (1/4)

- □ 데이터 통신 네트워크(또는 컴퓨터 네트워크)
 - 원격지의 데이터 처리 및 통신장치(컴퓨터 등)들 간에 통신미디어(전송매체)를 통하여 통신 규칙(protocol)에 따라 메시지의 전송, 수신 과정을 포함하는 시스템
 - 전송설비, 교환기기, 회선종단장치, 데이터 단말장치 등과 같은 요소 포함
- 데이터 통신 네트워크의 요소
 - ✔ 송신자 : 메시지의 생성 및 송신을 담당하는 장치
 - ✓ 수신자 : 전송매체를 통해 전송된 메시지를 수신하는 장치
 - ✓ 전송매체 : 메시지가 송신자로부터 수신자에게 전달되는 물리적 경로
 - ✓ 프로토콜 : 데이터통신을 제어하는 약속 또는 규칙들의 집합
 - ✔ 메시지 : 통신의 목적이 되는 정보

3. 구성요소 (2/4)

3. 구성요소 (3/4)

🗅 데이터 통신 네트워크의 구성

- ✓ 데이터 단말장비(DTE: Data Terminal Equipment)
 - ▶ 데이터 수신 장치, 송신 장치 혹은 송수신 장치로 동작
 - 데이터통신 제어 기능을 갖고 있는 단말장치나 주컴퓨터
- ✓ 데이터 통신장비(DCE: Data Circuit-terminating Equipment)
 - DTE와 데이터 전송로 사이에서 접속을 설정-유지-해제하며, 부호 변환과 신호 변환을 위한 기능 제공
 - 사용자 DTE와의 상호 접속을 위한 물리적 인터페이스 제공

3. 구성요소 (4/4)

- 변복조기(MODEM: MOdulation DEModulation)
 - 컴퓨터나 단말 등을 전화 회선과 같은 아날로그 통신 회선과 접속하기 위한 장치

- ▶ 디지털 서비스 유니트(DSU: Digital Service Unit)
 - 디지털 회선용의 회선 종단 장치로서 주 컴퓨터나 각종 DTE를 고속 디지털 전송로 에 접속하여 데이터통신을 하는 데 필요한 장치
- > 채널 서비스 유니트(CSU: Channel Service Unit)
 - T3 다중화기에 접속할 수 있도록 T1/E1 프레임으로 생성 가능
 - 회선 조절 기능, 회선 유지 보수 기능 등

4. 프로토콜 (1/8)

- □ 이종의 시스템 간에도 통신이 가능하게 하기 위해 만든 일련의 표준, 협약
- □ 외교에서 의례 또는 의정서에서 유래
- 언어의 차이를 극복하기 위하여 국제 공용어가 필요하듯이 네트워크에도 프 로토콜이 필요함

4. 프로토콜 (2/8)

□ 프로토콜?

- 정보의 송수신측 또는 네트워크에서 정보를 정확(신뢰성)하고, 효율적이며 안전하게 주고받기 위해 사전에 약속된 규약, 규범
- 전달되는 정보의 형태, 오류 제어, 동기방식 등의 약속

□ 주요 요소

- ✓ 구문(Syntax)
 - 데이터의 형식(Format), 부호화(Coding), 신호 레벨(Signal Levels) 정의
 - 데이터 구조와 순서에 대한 표현
 - 예) 어떤 프로토콜에서 데이터의 처음 8비트는 송신지의 주소를 나타내고, 다음 8비트는 수신지의 주소를 나타낸다.

4. 프로토콜 (3/8)

- ✓ 의미(Semantics)
 - 해당 패턴에 대한 해석과, 그 해석에 따른 전송제어, 오류수정 등에 관한 제어정보를 규정
 - 예) 주소부분 데이터는 메시지가 전달될 경로 혹은 최종 목적지를 나타낸다.
- ✓ 타이밍(Timing)
 - 두 객체간의 통신 속도 조정
 - ▶ 메시지의 전송 시간 및 순서 등에 대한 특성
 - 예) 송신자가 데이터를 10Mbps의 속도로 전송하고 수신자가 1Mbps의 속도로 처리를 하는 경우 타이밍이 맞지 않아 데이터 유실이 발생할 수 있다.

4. 프로토콜 (4/8)

- □ 프로토콜의 기능(어떤 약속을 하는가?)
 - ✓ 단편화와 재결합(Fragmentation and Reassembly)
 - 단편화 : 응용 계층의 메시지(message)를 하위 계층에서는 작은 블록으로 나눔
 - 메시지 →세그먼트(segment)) → 패킷(packet) → 프레임(frame) → 비트 단위로 전송
 - 재결합 : 단편화 된 데이터를 받아 다시 하나로 합치는 기능
 - ✓ 연결 제어(Connection control)
 - 비연결형 데이터 전송(connectionless data transfer): 데이터를 송수신하는 개체간에 논리적인 연결 없이 데이터를 전송
 예) 데이터 그램(datagram) → 인터넷의 IP 데이터 그램.
 - ▶ 연결형 데이터 전송(connection-oriented data transfer) : 데이터를 송수 신하는 개체간에 논리적 연결을 맺은 후 데이터를 전송 예) 가상 회선(virtual circuit)

4. 프로토콜 (5/8)

- ✓ 흐름 제어(Flow control)
 - > 송신측 개체간의 데이터 양이나 속도를 조절하는 기능
 - 송신측과 수신측의 속도차이나 네트워크 내부 문제 등으로 인한 정보 유실 방지
 - ▶ 정지-대기(stop-and-wait) 흐름 제어
 - 수신측의 확인 신호(ACK)를 받기 전에 데이터를 전송하지 않음
 - 슬라이딩 윈도우(sliding window) 기법
 - 확인 신호를 수신하기 전에 데이터의 양을 미래 정해주는 기법
- ✓ 에러 제어(Error control)
 - 정보 전송시 채널이나 네트워크 요소의 불완전성으로 데이터나 제어 정보가 파손되는 경우에 대비하는 기법
 - 프레임의 순서를 검사하여 오류를 찾고, 프로토콜 데이터 단위를 재전송

4. 프로토콜 (6/8)

- ▶ 패리티 검사 코드 방식(Parity Bit Check)
 - ▶ 패리티 비트의 이상 유무를 검출
- ▶ 순환 잉여도 검사(Cyclic Redundancy Check)
 - 다항식 코드를 이용하여 오류 검출
- ✓ 동기화(Synchronization)
 - 두 개체 사이에 정보를 송수신할 때 초기화 상태, 종료 상태 등의 동기를 맞추는 것
 - 예) 송수신 간에 서로 한 비트의 시간 길이가 다르면 전송된 신호를 유효한 정보로 변환할 수 없다.
- ✓ 순서화(Sequencing)
 - 데이터를 단편화하여 전송할 때 데이터를 올바른 순서로 전송하기 위하여 필요한 기능
 - 연결 중심의 데이터 전송에서 사용, 비 연결에서는 순서 틀리면 제거

4. 프로토콜 (7/8)

- □ 계층화된 모델(하나의 프로토콜이 모든 기능 수행?)
 - 프로토콜의 계층화 : 상위계층과 하위계층으로 분리된 계층상에서 인접 계층간의 서비스의 이동
 - 계층적 독립성 : 한 계층의 내부적인 변화가 다른 계층의 변화에
 영향을 주지 않음
 - 상위 계층(Higher Layer)은 사용자가 통신을 쉽게 이용할 수 있도 록 도와주는 역할
 - 하위 계층(Lower Layer)은 실제 통신의 효율적이고 정확한 전송을 담당하는 역할

4. 프로토콜 (8/8)

- □ 계층화된 모델의 종류
 - ✓ OSI(Open Systems Interconnection)
 - ▶ 국제 표준화 기구(ISO)에서 제정한 국제적 표준화 망 구조
 - > 7계층의 기본 참조 모델을 제정
 - ✓ SNA(System Network Architecture)
 - ▶ IBM사가 개발, 발표한 컴퓨터 통신망 구조와 체계
 - > 7개 계층으로 구성
 - ▶ OSI 기본 참조 모델과 호환성은 없음
 - DPA(DoD Protocol Architecture)
 - ▶ 미 국방부에서 개발한 TCP/IP 프로토콜의 구조
 - ▶ TCP와 IP를 조합, 4계층으로 구성한 것으로 현 인터넷에서 사용

OSI 모델과 TCP/IP의 관계도

5. 표준기구/표준안 (1/10)

❖ 표준(standard)

- 사회이익의 증진을 목적으로 과학 기술 및 경험의 종합적 결론이나 이해 관계자의 협력과 모든 의견, 대다수의 승인에 의해서 작성된 기술 사양서(technical specification) 또는 그 외의 문서
- 국가, 지역 또는 국제 레벨에서 인정된 단체에 의해 승인된 것

□ 국제표준기구(ISO)

- International Organization for Standards
- 1947년 2월에 창설, 각 국가의 표준기구들의 연합체
- 현재 140개국 이상 국가의 표준단체로 참여
- 상품과 서비스의 국제교류 및 과학/기술 발전 위한 국제표준을 개발 하는 비 정부 기구.

5. 표준기구/표준안 (2/10)

- ✓ OSI(Open Systems Interconnection)
 - 다른 기종간의 상호접속을 가능케 하는 표준 개방형 통신망에 대한 제반 사항을 규정
 - 네트워크를 위한 7계층의 참조 모델을 정의
- □ 국제전기통신 표준화 부문(ITU-T)
 - International Telecommunication Union Telecommunication
 - 1956년에 창설된 유엔산하 기구인 CCITT의 후신
 - 189개의 회원국이 있으며, 우리나라는 1952년 가입
 - 전기 통신에 관련된 국제 협약, 표준 제정을 목적
 - 전화전송, 전화교환, 신호방법, 잡음 등에 관한 여러 표준 제정

5. 표준기구/표준안 (3/10)

- 4년마다 총회를 개최, 권고집 발간

년 도	회의장소	권고집 표지색
1956	제네바	연두색
1960	제네바	붉은색
1964	제네바	파란색
1968	마르델플라타(아르헨티나)	흰색
1972	제네바	녹색
1976	제네바	주황색
1980	제네바	노란색
1984	제네바	붉은색
1988	멜버른(호주)	파란색
1992	제네바	흰색
1996	제네바	녹색
2000	몬트리얼(캐나다)	주황색

- ✓ ITU-T 권고안(Recommendations)
 - ▶ A, B, C, X, Z등의 권고 번호를 붙여서 발표
 - ▶ V시리즈 : 전화선, 전신선 등을 통한 데이터 전송에 대한 권고안

5. 표준기구/표준안 (4/10)

▶ X시리즈 : 교환기가 있는 공중 통신망(Public Data Network)을 통한 데이터 전송에 대한 권고안

ITU-T 권고안	내용		
А	CCITT의 업무 분장 구조에 관한 사항		
В	표현에 관련된 여러 가지 방법		
С	일반 통신의 통계에 관련된 사항		
D	전용회선의 요금 구조에 관계된 사항		
E	전화의 운영과 서비스의 질과 요금에 관한 사항		
F	전신의 운영과 요금에 관한 사항		
G, H, J	선로 전송		
	ISDN에 관한 사항		
M, N	선로 유지 보수와 측정		
0	측정기기의 사양		
P	전화 전송 품질과 전화기에 관한 사항		
Q	전화 교환과 신호에 관한 사항		
R1, R2	신호 시스템에 관한 사항		
R, S, T, U	전신기술에 관한 사항		
V	전화망을 통한 데이터 전송에 관한 사항		
K, L	보호에 관한 사항		
X	공중 데이터 통신망에 관한 사항		
Z	축적 프로그램 제어식 교환의 프로그램 언어에 관한 사항		

5. 표준기구/표준안 (5/10)

□ 전기전자공학자협회(IEEE)

- Institute of Electrical and Electronics Engineers
- 1963년에 미국 전기 학회(AIEE)와 무선 학회(IRE)의 합병
- 세계 최대의 전기, 전자, 통신, 컴퓨터 분야의 전문가 단체
- 기술 논문의 발표와 토의를 위한 회의 개최, 기관지와 논문지 발간, 표준화 추진, 정보 서비스 제공 등의 활동
- ✓ IEEE의 802 표준안
 - ▶ 현재 널리 사용되고 있는 LAN/MAN관련 권고 표준안
 - IEEE 표준은 국제 표준으로 채택되거나 바탕이 되기도 함

5. 표준기구/표준안 (6/10)

구 분	내용		
IEEE 802.1	Higher Layer LAN Protocols		
IEEE 802.2	LLC(Logical Link Control)		
IEEE 802.3	CSMA/CD(Carrier Sense Multiple Access/Collision Detection)		
IEEE 802.4	Token Bus		
IEEE 802.5	Token Ring		
IEEE 802.6	MAN(Metropolitan Area Networks)		
IEEE 802.7	Broadband TAG		
IEEE 802.8	Fiber Optic TAG		
IEEE 802.9	Isochronous LAN		
IEEE 802.10	Security		
IEEE 802.11	Wireless LAN		
IEEE 802.12	Demand Priority		
IEEE 802.13	Not Used		
IEEE 802.14	Cable Modem		
IEEE 802.15	WPAN(Wireless Personal Area Network)		
IEEE 802.16	Broadband Wireless Access		
IEEE 802.17	Resilient Packet Ring		

5. 표준기구/표준안 (7/10)

IETF

- Internet Engineering Task Force
- 1986년에 설립된 IAB(Internet Architecture Board) 산하의 조사위 원회
- 인터넷의 운영, 관리 및 기술적 쟁점 등에 대한 해결을 목적
- 주제별로 나누어진 8개의 Area, 120여개의 Working Group으로 구성
- RFC(Request For Comments)의 출판을 담당

5. 표준기구/표준안 (8/10)

- ✓ RFC(Request For Comments)
 - IETF에서 발표하는 인터넷 기술과 관련된 공식 기술 문서
 - 인터넷 표준, 사양, 프로토콜, 단체들의 통보, 개인적 의견에 관한 정보 제공
 - > RFC문서로 등록시 규약에 따라 번호가 붙여짐(RFC 3203 등)
 - Proposed Standard, Draft Standard, Standard의 세 단계를 거 치면서 표준화 과정 진행
 - RFC문서 상태정보(Status)
 - Proposed Standard : 프로토콜 제안
 - Draft Standard : 공식 표준 프로토콜의 전 단계
 - Standard : 공식 표준 프로토콜
 - Experimental : 운영 목적으로는 사용되지 않는 연구 프로젝트
 - Historic : 다른 프로토콜로 대체된 프로토콜

1.5 표준기구/표준안 (9/10)

구 분	내 용	
RFC 822	전자우편을 위한 메시지 형식 관한 규정	
RFC 854	Telnet Protocol에 관한 규정	
RFC 959	FTP에 관한 규정	
RFC 1521, 1522	멀티미디어 전자우편 규정(MIME)	
RFC 1557	인터넷 메시지를 위한 한글 문자 인코딩 규정	
RFC 1630	URI(Uniform Resource Identifier) 구문 규칙에 관한 규정	

KS/KICS 표준

- 한국 산업표준 : KS(Korean Standards)
- 한국 정보통신표준 : KICS(Korean Information and Communication Standards)
- ✓ KS 표준안
 - ▶ '97년 3월 정보기술 분야의 표준 개편
 - KS C 시리즈 → KS X 시리즈(정보산업)

5. 표준기구/표준안 (10/10)

규격번호	규격명	제정일자	국제표준 관련규격
KSX3001	전송회선 상의 문자 구성과 수평패리티 용법	1978/12/22	ISO-1155, 1177
KSX3102	데이터 전송에서 DCE와 DTE 사이의 37/9핀 인터페이스	1982/06/17	ISO-2110, 4902
KSX3103	데이터 전송에서 DCE와 DTE 사이의 15핀 인터페이스	1982/06/17	ISO-2110, 4902, 4903
KSX3301	기본형 데이터 전송 제어 순서	1977/12/30	ISO-1745, 2111, 2628, 2629
KSX3311	HDLC 절차	1998/12/31	ISO-13239
KSX4302-3	근거리통신망(LAN)-CSMA/CD 액세스 방식 및 물리층 시방	1993/12/20	ISO-8802, 8803
KSX4319-3	전기 통신 및 시스템 간 정보교환 - 근거리통신망 - 공통 규격 - 제3부 : 매체접근제어(MAC) 브리지	2001/04/17	IEEE-802
KSX4650-1	이진부호분할다중접속(Binary CDMA) - 고속 Binary CDMA MAC 및 물리층	2007/9/27	
KSX9314-1	정보처리시스템 -광 섬유 분산 데이터 인터페 이스(FDDI) – 물리적 계층 프로토콜	2007/11/30	ISO 9314-1
KSX6913	RFID/USN 기반의 공용자전거 관제시스템 간 통신프로토콜 및 메시지 형식	2011/12/30	

감사합니다.

Q & A