Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16

Ασφάλεια Δεδομένων

http://www.ionio.gr/~mistral/tp/csintro/

Μ. Στεφανιδάκης

Οι απειλές

Εισαγωγή

Ένας κακόβουλος χρήστης

Καταγράφει μηνύματα που ανταλλάσσονται σε ένα "κανάλι" επικοινωνίας και εισάγει νέα μηνύματα Τροποποιεί ξένα δεδομένα

Και μπορεί

Να υποκλέψει κωδικούς πρόσβασης και δεδομένα Να προσποιηθεί ότι είναι κάποιος άλλος Να θέσει υπό έλεγχο επικοινωνία μεταξύ τρίτων Να αποκλείσει τρίτους από τις υπηρεσίες Διαδικτύου κλπ...

Αρχές ασφάλειας δεδομένων

Εισαγωγή

Απόρρητο (privacy)

Μέσω κρυπτογράφησης

Πιστοποίηση αυθεντικότητας

Ταυτότητα χρήστη authentication

Δικαιώματα χρήσης δεδομένων authorization

Ακεραιότητα δεδομένων (integrity)

Και μη απάρνηση από αποστολέα non-repudiation

Απόρρητο επικοινωνίας

Εισαγωγή Μυστικό κλειδί

Εξασφάλιση απορρήτου μέσω κρυπτογράφησης Αποστολέας-παραλήπτης

Άτομα αλλά και υπολογιστές (π.χ. εξυπηρετητές)

Αλγόριθμος κρυπτογράφησης

Παλαιότερα: κρυφός

Σήμερα: ευρέως γνωστός (πρότυπο!) – χρήση κλειδιών

Κρυπτογράφηση με μυστικό (συμμετρικό) κλειδί

Εισαγωγή Μυστικό κλειδί

```
Ίδιο κλειδί αποστολέα (Α) – παραλήπτη (Β)
```

Κλειδί Α = Κλειδί Β

Το κλειδί πρέπει να είναι μυστικό!

Και μόνο μεταξύ των Α και Β

Συμμετρικοί αλγόριθμοι κρυπτογράφησης και αποκρυπτογράφησης

Data Encryption Standard (DES)

56-bit κλειδί

Επαναληπτικά βήματα αντιμετάθεσης bits και πράξεων XOR

3DES, AES (128, 192 ή 256-bit κλειδιά)

Το πρόβλημα

η επιλογή και ανταλλαγή του μυστικού κλειδιού μεταξύ Α, Β

Με ποιον τρόπο θα υπάρξει ασφαλής επικοινωνία;

Πιστοποίηση ταυτότητας με μυστικό κλειδί

Απόδειξη της ταυτότητας του "συνομιλητή"

Μέσω κάποιου πρωτοκόλλου πιστοποίησης

Π.χ. με αποστολή μέσω δικτύου ενός password

Η χρήση του μυστικού κλειδιού

Κωδικοποίηση password

Ο κάτοχος του κλειδιού είναι αυτός που ισχυρίζεται

Με μεγάλη βεβαιότητα

Όχι απόλυτη όμως!

Κρυπτογράφηση με δημόσιο κλειδί

Εισαγωγή Μυστικό κλειδί Δημόσιο κλειδί

Ζεύγη κλειδιών παραλήπτη (Β)

Δημόσιο κλειδί: για κρυπτογράφηση (αποστολέας Α) Διαθέσιμο σε όλους

Ιδιωτικό κλειδί: για αποκρυπτογράφηση (παραλήπτης Β) Γνωστό μόνο στον κάτοχό του (Β)

Ό,τι κρυπτογραφείται με το ένα κλειδί, αποκρυπτογραφείται με το άλλο

και αντίστροφα

Κρυπτογράφηση με δημόσιο κλειδί

Εισαγωγή Μυστικό κλειδί Δημόσιο κλειδί

```
Αλγόριθμος Rivest-Shamir-Adleman (RSA)
```

Δημιουργία κλειδιών

Επιλογή μεγάλων πρώτων αριθμών p,q (n = pq ≥768 bits)

Υπολογισμός αριθμών e,d από pq, (p-1)(q-1)

Δημόσιο κλειδί: (n,e)

Ιδιωτικό κλειδί: (n,d)

Δεν υπάρχει γνωστός γρήγορος αλγόριθμος για εύρεση p,q από n

Εδώ στηρίζεται η ασφάλεια του RSA

Κρυπτογράφηση

Έστω "κείμενο" m

"κρυπτοκείμενο" c = me mod n (κρυπτογράφηση)

"κείμενο" $m = c^d \mod n$ (αποκρυπτογράφηση)

Η διαδικασία επιτυγχάνεται και με αντιστροφή κλειδιών!

Κρυπτογράφηση με δημόσιο κλειδί

Εισαγωγή Μυστικό κλειδί Δημόσιο κλειδί Χρονοβόρα διαδικασία κρυπτογράφησης — αποκρυπτογράφησης με δημόσιο κλειδί Με μυστικό (συμμετρικό) κλειδί: τουλάχιστον 100 φορές γρηγορότερα!

Συνήθως

Πρώτα ανταλλαγή μυστικού κλειδιού με RSA Στη συνέχεια επικοινωνία με (από)κρυπτογράφηση με το μυστικό κλειδί

Ποιος εγγυάται τη διανομή του δημόσιου κλειδιού;

Σε αντίθεση με το μυστικό κλειδί: εδώ ο καθένας μπορεί να ισχυριστεί ότι είναι ο οποιοσδήποτε! Και να στείλει το δημόσιο κλειδί του αντί του σωστού...!

Πιστοποίηση δημόσιου κλειδιού;

Ψηφιακή υπογραφή

Εισαγωγή Μυστικό κλειδί Δημόσιο κλειδί Ψηφιακή υπογραφή

Κρυπτογραφική τεχνική για εξασφάλιση:

Ακεραιότητας

Αποφυγή αλλοίωσης δεδομένων

Αυθεντικότητας

Ποιος είναι ο δημιουργός-αποστολέας;

Μη απάρνησης

Από την πλευρά του αποστολέα

Προσοχή: η ψηφιακή υπογραφή δεν εξασφαλίζει το απόρρητο!

Τεχνική ψηφιακής υπογραφής

Εισαγωγή Μυστικό κλειδί Δημόσιο κλειδί Ψηφιακή υπογραφή

Χρήση μεθόδου κρυπτογράφησης δημόσιου κλειδιού

Αντίστροφα με διαδικασία τήρησης απορρήτου:

- Ο αποστολέας κρυπτογραφεί το κείμενο με το ιδιωτικό του κλειδί
- Παραγωγή ψηφιακής υπογραφής, αποστολή μαζί με αρχικό κείμενο
- Ο παραλήπτης αποκρυπτογραφεί την ψηφιακή υπογραφή με το δημόσιο κλειδί του αποστολέα
- Μόνο με το κλειδί αυτό λαμβάνεται το αρχικό κείμενο

Και πιστοποιείται ο αποστολέας

Συνόψεις (digests)

Για την αποφυγή κρυπτογράφησης όλων των δεδομένων

Δημιουργία σύνοψης

Αλγόριθμοι κατακερματισμού

(Σχεδόν) αδύνατο διαφορετικό μήνυμα να δώσει την ίδια σύνοψη MD5 (128-bit), SHA-1 (160-bit)

Κρυπτογράφηση της σύνοψης μόνο με ιδιωτικό κλειδί αποστολέα

Υποδομή Δημόσιου Κλειδιού (Public Key Infrastructure – PKI)

Εισαγωγή
Μυστικό κλειδί
Δημόσιο κλειδί
Ψηφιακή
υπογραφή
Πιστοποίηση
δημόσιων
κλειδιών

Έμπιστοι ενδιάμεσοι: αρχές πιστοποίησης

Certification Authorities (CAs)

Πιστοποίηση ταυτότητας ενός "συνομιλητή"

Πιστοποίηση εταιριών ηλεκτρονικού εμπορίου

Σύνδεση ενός δημόσιου κλειδιού με μια "οντότητα"

π.χ. διεύθυνση ΙΡ, εταιρία...

Η αξιοπιστία της πιστοποίησης εξαρτάται από την αξιοπιστία της CA!

Υποδομή Δημόσιου Κλειδιού

Αλυσίδα CAs

Root CA

Πιστοποιητικά (Certificates)

Εισαγωγή Μυστικό κλειδί Δημόσιο κλειδί Ψηφιακή υπογραφή Πιστοποίηση δημόσιων κλειδιών

Πιστοποιητικά (certificates)

Περιέχουν πληροφορία για έναν χρήστη Και το δημόσιο κλειδί του για τα οποία εγγυάται κάποια CA υπογράφοντας ψηφιακά το πιστοποιητικό με το ιδιωτικό κλειδί της

H CA: XYZ

βεβαιώνει ότι ο: Α

έχει δημόσιο κλειδί: ΔΚ(Α)

<ψηφιακή υπογραφή από ΙΚ(CA)>

Αλυσίδα CA

Εισαγωγή Μυστικό κλειδί Δημόσιο κλειδί Ψηφιακή υπογραφή Πιστοποίηση δημόσιων κλειδιών H CA1: XYZ

βεβαιώνει ότι ο: ΧΥΖ

έχει δημόσιο κλειδί: ΔΚ(CA1)

<ψηφιακή υπογραφή από ΙΚ(CA1)>

root CA

H CA1: XYZ

βεβαιώνει ότι ο: ΜΝΟ

έχει δημόσιο κλειδί: ΔΚ(CA2)

<ψηφιακή υπογραφή από ΙΚ(CA1)>

H CA2: MNO

βεβαιώνει ότι ο: Α

έχει δημόσιο κλειδί: ΔΚ(Α)

<ψηφιακή υπογραφή από ΙΚ(CA2)>

Παράδειγμα χρήσης Certificates

Εισαγωγή
Μυστικό κλειδί
Δημόσιο κλειδί
Ψηφιακή
υπογραφή
Πιστοποίηση
δημόσιων
κλειδιών

https://www.amazon.com/gp/css/summary/edit.htm

This certificate has been verified for the following uses:

SSL Server Certificate

Issued To

Common Name (CN) www.amazon.com
Organization (O) Amazon.com Inc.

Organizational Unit (OU) < Not Part Of Certificate>

Serial Number 48:1B:72:10:BC:80:55:E4:76:EF:28:AB:7F:9B:24:B4

Issued By

Common Name (CN) VeriSign Class 3 Secure Server CA

Organization (O) VeriSign, Inc.

Organizational Unit (OU) VeriSign Trust Network

Validity

Issued On 09/18/2007 Expires On 09/18/2008

Fingerprints

SHA1 Fingerprint A6:3A:B8:E8:BA:74:CA:F9:34:66:E2:34:08:31:36:5A:AC:4E:1A:D6

MD5 Fingerprint CE:0C:D0:84:75:74:0C:0C:C1:06:98:A6:C5:3C:EB:40