Scientific Diary

Scaevola

November 26, 2021

Chapter 1

Probability

Theorem 1.0.1 (Kolmogorov). Пусть $\nu_{t_1t_2t_3...t_k}$ для $\forall t_1, t_2, t_3...t_k \in T$, $k \in \mathbb{N}$ являются вероятностными мерами на \mathbb{R}^{kn} такими, что:

$$\nu_{t_{\sigma(1)}}, \cdots, t_{\sigma(k)} \left(F_1 \times \cdots \times F_k \right) = \nu_{t_1, \cdots, t_k} \left(F_{\sigma^{-1}(1)} \times \cdots \times F_{\sigma^{-1}(k)} \right) \tag{1.1}$$

для всех перестановок $\sigma \in S_k$

$$\nu_{t_1,\dots,t_k} (F_1 \times \dots \times \dots \times F_k)$$

$$= \nu_{t_1,\dots,t_k,t_{k+1},\dots,t_{k+m}} (F_1 \times \dots \times F_k \times \mathbf{R}^n \times \dots \times \mathbf{R}^n)$$
(1.2)

Тогда $\exists (\Omega, \mathcal{F}, \mathrm{P})$ и случайный процесс $\{X_t\}$ на $\Omega, \, X_t : \Omega \to \mathrm{R}^n$

$$\nu_{t_1,\dots,t_k}\left(F_1\times\dots\times F_k\right) = P\left[X_{t_1}\in F_1,\dots,X_{t_k}\in F_k\right] \tag{1.3}$$

Exercise 1.0.1 (Irwin-Hall distribution). Try to derive Irwin-Hall distribution formula for pdf convolution formula.

Chapter 2

Monte-Carlo Methods

Code Base

Heuristic 2.0.1. There is one useful thing that i found while making Monte-Carlo simulations. Sometimes it is computationally costly to generate random variable from normal distribution and very good approximation for it appeared to be Irwin-Hall distribution.

$$X_n = \sum_{i=0}^n U_k$$
 where U_k are independent random variables drawn from uniform distribution $U(0,1)$ (2.1)

The density function is given by:

$$f_X(x;n) = \frac{1}{2(n-1)!} \sum_{k=0}^{n} (-1)^k \binom{n}{k} (x-k)^{n-1} \operatorname{sgn}(x-k)$$
 (2.2)

This pdf is basically piecewise polynomial function with $\mu=\frac{n}{2}$ and $\sigma=\frac{n}{12}$. For n=12 it gives good approximation for normal distribution pdf.

$$\phi(x) \approx \sqrt{\frac{12}{n}} (f_X(x;n) - \frac{n}{2}) - 6$$
 (2.3)

$$\phi(x) \approx f_X(x;n) - 6 = \sum_{i=0}^{12} U_k \tag{2.4}$$

2.1 Financial Instrument Pricing

2.1.1 Black-Scholes Model

Figure 2.1:

Figure 2.2: