Sequências Numéricas – Teoremas

Luis Alberto D'Afonseca

Integração e Séries

17 de agosto de 2025

Teorema do Confronto

Teorema da Função Contínua

Sequência Definida por Função

Sequência Limitadas

Teorema do Confronto

Sejam
$$(a_k)$$
, (b_k) e (c_k) tais que

$$a_k \leq b_k \leq c_k \qquad \forall k > N$$

Se
$$a_k \to L$$
 e $c_k \to L$ então $b_k \to L$

Teorema do Confronto

Teorema da Função Contínua

É verdade que
$$\lim_{k\to\infty} f(a_k) = f\left(\lim_{k\to\infty} a_k\right)$$
 ?

Se a_k é uma sequência numérica real convergente, $a_k \to L$, e $f\colon D\subset \mathbb{R} \to \mathbb{R} \text{ é uma função real contínua em } D, \text{ com } L\in D \text{ então}$ $\lim f(a_k) = f(L)$

Teorema do Confronto

Teorema da Função Contínua

Sequência Definida por Função

Sequência Limitadas

Teorema da Função Contínua

Calcular
$$\lim \left[\cos\left(\alpha^k\right)\right] \cos 0 < \alpha < 1$$

Considerando a sequência $a_k = \alpha^k$

Sabemos que $\lim a_k = 0$

A função cosseno é contínua em zero

Portanto

$$\lim \cos(\alpha^k) = \lim \cos(a_k) = \cos(\lim a_k) = \cos(0) = 1$$

Teorema do Confronto

Teorema da Função Contínua

Sequência Definida por Função

Sequência Limitadas

Limite de sequência definida por função

Se f é uma função real e $a_k = f(k)$ então

$$\lim_{x\to\infty} f(x) = L \quad \Rightarrow \quad \lim_{k\to\infty} a_k = L$$

Esse resultado nos permite usar a regra de l'Hôpital (em *x*)

Mostre que
$$\lim \frac{5k^4}{k^4 + 8k^3} = 5$$

A função

$$f(x) = \frac{5x^4}{x^4 + 8x^3} \qquad x \in \mathbb{R}$$

está definida para todo x>0 e a sequência

$$a_k = f(k) = \frac{5k^4}{k^4 + 8k^3} \qquad k \in \mathbb{N}$$

Podemos aplicar a regra de L'Hôpital em x, pois temos uma indeterminação ∞/∞

$$\lim_{k \to \infty} \frac{5k^4}{k^4 + 8k^3} = \lim_{x \to \infty} \frac{5x^4}{x^4 + 8x^3} = \lim_{x \to \infty} \frac{20x^3}{4x^3 + 24x^2}$$

$$= \lim_{x \to \infty} \frac{60x^2}{12x^2 + 48x}$$

$$= \lim_{x \to \infty} \frac{120x}{24x + 48}$$

$$= \lim_{x \to \infty} \frac{120}{24}$$

$$= 5$$

Método mais apropriado

$$\lim_{k \to \infty} \frac{5k^4}{k^4 + 8k^3} = \lim_{k \to \infty} \frac{\frac{5k^4}{k^4}}{\frac{k^4 + 8k^3}{k^4}}$$

$$= \lim_{k \to \infty} \frac{5}{1 + \frac{8}{k}}$$

$$= \frac{5}{1 + 8 \lim_{k \to \infty} \frac{1}{k}}$$

Teorema do Confronto

Teorema da Função Contínua

Sequência Definida por Função

Sequência Limitadas

Sequências Limitadas

Uma sequência (a_k) é

Limitada inferiormente

se existe $m \in \mathbb{R}$ tal que $m \leq a_k$ para todo $k \in \mathbb{N}$

Limitada superiormente

se existe $M \in \mathbb{R}$ tal que $M \geq a_k$ para todo $k \in \mathbb{N}$

Limitada

se é limitada superiormente e inferiormente

Sequências Limitadas

Sequências Crescentes e Decrescentes

Uma sequência (a_k) é

Crescente se $a_k \leq a_{k+1}$ para todo $k \in \mathbb{N}$

Decrescente se $a_k \ge a_{k+1}$ para todo $k \in \mathbb{N}$

Monótona se é crescente ou decrescente

Sequências Crescentes e Decrescentes

Convergência de sequência monótona

Se uma sequência (a_k) é limitada e monotônica, então ela é convergente

Importante porque permite decidir a convergência sem calcular o limite

Teorema do Confronto

Teorema da Função Contínua

Sequência Definida por Função

Sequência Limitadas

Lista Mínima

Estudar as Seções 5.3 , 5.4 e 5.5 da Apostila

Exercícios:

Seção 5.3: 2a-c

Seção 5.4: 1, 2, 3

Seção 5.5: 1, 2

Atenção: A prova é baseada no livro, não nas apresentações