

Hybrid Batch Attacks: Finding Black-box Adversarial Examples with Limited Queries

Fnu Suya, Jianfeng Chi, David Evans, Yuan Tian USENIX Security Symposium 2020

Goal: Estimate the cost for a black-box adversary to find adversarial examples.

Combining Transfer and Gradient Attacks

Process of Transfer Attack

Search Space of Gradient Attack

Search Space of Transfer Attack

Process of Gradient Attack

Search Space of Hybrid Attack

Does it help gradient attacks to start from failed transfer candidates?

Model	Success Rate (%)		Queries/AE		Fraction
	Base	Ours	Base	Ours	Better (%)
MNIST Normal (Targeted)	90.9	98.8	1,645	298	99.8
CIFAR10 Normal (Targeted)	92.2	98.1	1,227	277	98.7
ImageNet Normal (Targeted)	93.6	97.2	42,417	24,104	91.8
CIFAR10 Robust (Untargeted)	64.4	65.2	2,640	2,529	74.4

AutoZOOM [AAAI 2018] gradient attack, local models: normal models

Impact of local models:

Using Byproducts to Tune Local Models

To attack MNIST models, tuning the local models helps to improve the attack performance. However, for CIFAR10 models, we observe degradation of attack performance by tuning the local models.

Batch Attack

Can we do better when total query is limited?

Hybrid Batch Attack

Goal: prioritize low-cost-to-attack seeds **Two Phase Strategy:**

First phase: find direct transfers by sorting images based on local PGD-Steps

Second phase: find easy images by sorting based on target model attack loss

Evaluating Hybrid Batch Attack

Number of queries to obtain 10% of 1000 seeds: **Optimal**: 100; **Two-Phase**: 824; **Random**: 251,682

