Tugas PPT-7

Mata kuliah : Komputasi numerik

Kelas : B

Dosen : Victor Hariadi, S.Si., M.Kom.

Kelompok : B-17

Anggota kelompok:

William Hans Chandra
Yoseph Kevin Hendrata
Maulana Ikhsan
5025241138
5025241146
5025241163

Tugas

Diberikan persamaan $\frac{dy}{dx} = yx^2 - y$, $\{0 \le x \le 2, x \in R\}$

1. A. Metode euler dengan h=0,25

H = 0,25 Y0 = 1

n	xn	yn	f(xn, yn)	delta y	yn+1
0	0,00	1,000	-1,000	-0,250	0,750
1	0,25	0,750	-0,703	-0,176	0,574
2	0,50	0,574	-0,431	-0,108	0,467
3	0,75	0,467	-0,204	-0,051	0,416
4	1,00	0,416	0,000	0,000	0,416
5	1,25	0,416	0,234	0,058	0,474
6	1,50	0,474	0,592	0,148	0,622
7	1,75	0,622	1,283	0,321	0,943
8	2,00	0,943	2,828	0,707	1,650

B. Metode euler dengan h=0,5

H = 0,5

Y0 = 1

n	xn	yn	f(xn, yn)	delta y	yn+1
0	0,00	1,000	-1,000	-0,500	0,500
1	0,50	0,500	-0,375	-0,188	0,313
2	1,00	0,313	0,000	0,000	0,313
3	1,50	0,313	0,391	0,195	0,508
4	2,00	0,508	1,523	0,762	1,270

2. A. Metode heun dengan h=0,25

H = 0,25

Y0 = 1

n	xn	yn	f(xn, yn)	delta y	y*n+1	f(predict)	yn+1
0	0,00	1,000	-1,000	-0,250	0,750	-0,703	0,787
1	0,25	0,787	-0,738	-0,184	0,603	-0,452	0,638
2	0,50	0,638	-0,479	-0,120	0,519	-0,227	0,550
3	0,75	0,550	-0,241	-0,060	0,490	0,000	0,520
4	1,00	0,520	0,000	0,000	0,520	0,293	0,557
5	1,25	0,557	0,313	0,078	0,635	0,794	0,695
6	1,50	0,695	0,869	0,217	0,912	1,881	1,039
7	1,75	1,039	2,142	0,536	1,574	4,723	1,897
8	2,00	1,897	5,691	1,423	3,320	13,486	4,294

B. Metode heun dengan h=0,5

H = 0,5 Y0 = 1

n	xn	yn	f(xn, yn)	delta y	y*n+2	f(predict)	yn+2
0	0,00	1,000	-1,000	-0,500	0,500	-0,375	0,656
1	0,50	0,656	-0,492	-0,246	0,410	0,000	0,533
2	1,00	0,533	0,000	0,000	0,533	0,667	0,700
3	1,50	0,700	0,875	0,437	1,137	3,412	1,771
4	2,00	1,771	5,314	2,657	4,429	23,250	8,913
5	2,50						

3. A. Metode RK-2 Ralston dengan h=0,25

n	xn	yn	f(xn, yn)	k1	k2	yn+1
0	0,00	1,000	-1,000	-1,000	-0,784	0,786
1	0,25	0,786	-0,737	-0,737	-0,524	0,637
2	0,50	0,637	-0,478	-0,478	-0,289	0,549
3	0,75	0,549	-0,240	-0,240	-0,061	0,519
4	1,00	0,519	0,000	0,000	0,213	0,555
5	1,25	0,555	0,312	0,312	0,654	0,690
6	1,50	0,690	0,862	0,862	1,573	1,024
7	1,75	1,024	2,111	2,111	3,909	1,851
8	2,00	1,851	5,553	5,553	10,947	4,138

B. Metode RK-2 Ralston dengan h=0,5

n	xn	yn	f(xn, yn)	k3	k4	yn+2
0	0,00	1,000	-1,000	-1,000	-0,784	0,786
1	0,50	0,786	-0,590	-0,590	-0,356	0,678
2	1,00	0,678	0,000	0,000	0,278	0,724
3	1,50	0,724	0,905	0,905	1,651	1,074
4	2,00	1,074	3,223	3,223	6,354	2,402

4. A. Metode taylor dengan h=0,25

n	xn	yn	f(x,y)	f'	f''	yn+1
0	0	1,000	-1,000	1,000	2,000	0,786
1	0,25	0,786	-0,737	1,084	0,467	0,637
2	0,50	0,637	-0,478	0,996	-0,159	0,548
3	0,75	0,548	-0,240	0,928	0,017	0,518
4	1,00	0,518	0,000	1,035	1,035	0,553
5	1,25	0,553	0,311	1,556	3,436	0,688
6	1,50	0,688	0,860	3,138	9,114	1,025
7	1,75	1,025	2,113	7,944	24,237	1,864
8	2,00	1,864	5,593	24,235	70,841	4,204

B. Metode taylor dengan h=0,5

n	xn	yn	f(x,y)	f'	f''	yn+1
0	0	1,000	-1,000	1,000	2,000	0,667
1	0,50	0,667	-0,500	1,042	-0,167	0,543
2	1,00	0,543	0,000	1,087	1,087	0,702
3	1,50	0,702	0,877	3,202	9,300	1,735
4	2,00	1,735	5,204	22,550	65,916	8,529

