MOBILES AND SMART WATECHES ARE BANNED RAMAIAH INSTITUT E OF TECHNOLGY, BANGALRORE - 560054 DEPARTMENT OF CHEMISTRY SUB: ENGG. CHEMISTRY COURSE: I SEM B.E. CODE: CYM12/CYE12 TERM: 30-11-2022 to 10-03-2023 MAX. MARKS: 30, CIE TEST - 1 TIME: 60 MIN. Credits: 3:0:0 Instructions: answer any two full questions. Each carries 15 marks Marks Course Ouestion Q. outcomes NO 2+1+2 CO1 a) Give reasons: (i) In a concentration cell, no electricity flow when the concentration of metal ion is same in both the half cell. (ii) A salt bridge is used in the construction of a Galvanic cell. (iii) There is no self discharge in reserve batteries. b) What is single electrode potential? A cell is constructed by coupling Zn-electrode dipped in | 5 CO1 0.42 M ZnSO₄ and Ni-electrode dipped in 0.045 M NiSO₄. Write the cell representation, over all cell reaction and calculate EMF of the cell at 298 K. Given: standard reduction potentials of Zn and Ni are

c) Explain the mechanism of wet corrosion of an iron rod by electrochemical theory.

-0.76 and -0.25 V respectively.

(PTO)

CO2

a) Derive the Nernst equation for the following electrode reaction: Ag⁺ + e⁻ ↔ Ag	5	C01
b) Calculate the potential of Ag-Cu cell at 25 °C, if the concentration of Ag ⁺ and Cu ²⁺ are 0.01 M and 0.008 M respectively. Standard reduction potential of Cu and silver electrodes are +0.34 and +0.8 volts respectively. Calculate the change in free energy ΔG for reduction of 1 mcle of Ag ⁺ ions. 1 Faraday = 96.5 KJV ⁻¹ mole ⁻¹ .	3+2	C01
c) Discuss the following factors which influence the rate of corrosion: (i) Nature and surface state of metal (ii) Temperature	3+2	CO2
a) (i) How cathodic inhibitors reduce rate of corrosion? Name any 2 corrosion inhibitors used to inhibit the evolution of hydrogen gas at cathode. (ii) Justify: The corrosion product formed on aluminium is Al ₂ O ₃ ; it is passive, whereas corrosion		C02
product formed on iron is Fe ₂ O ₃ ; it is active.	5	C01
b) Explain the construction and discharge reactions of Ni-MH ₂ battery. c) Write the details of construction and electrode reactions of calomel electrode with neat figure.	5	C01
