

DGNN

Skeleton-Based Action Recognition with Directed Graph Neural Networks

MOON SUNGWON 2020.02.11

[0, 0]

Feature [1, 2]

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 0 & 0 \\ -99 & -80 \\ 40 & 50 \end{bmatrix}$$

Feature Embedding

 (4×64)

Aggregated Embedding

 (4×128)

Normalization

$$\psi(\tilde{A},X) = \sigma(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}XW)$$
 Activation Graph Convolution

Linear + ReLU
$$[4 \times 2] \rightarrow [4 \times 64] \rightarrow [4 \times 128] \rightarrow ... \rightarrow READ \ OUT \rightarrow [1 \times 512]$$
Aggregation
$$(모든 Feature 의 평균)$$

= 4개의 2차원 Node를 1개의 512차원 Feature로 표현!

Intro 25 11 Convolution Linear + ReLU $OUT \rightarrow [1 \times 512]$ $[4\times2]\rightarrow[4]$ re의 평균) 표혜

→ 25개의 Human Keypoint를 1개의 512차원 Feature로 표현!

Idea

Human Graph에 Direction을 부여해보자!

Method (Updating Function)

Skeleton Data

- = [Time x Joint x Feature]
- = [TxNxC]

```
Edge Shape = [TxN_exC]

Vertex Shape = [TxN_vxC]

Incidence Shape = [N_vxN_e]

(Outgoing / Incoming)
```

Calculate Vertex

- 1) [CxTxN_v] (Reshape Vertex)
- 2) [CxTxN_e] (Reshape Edge)
- \rightarrow [CXTXN_v] (Matmul with Outgoing^T)
- 3) $[CxTxN_e]$ (Reshape Edge)
- \rightarrow [CXTXN_v] (Matmul with Incoming^T)

$$f_{v}' = Linear(Concat([1), 2), 3)])$$

(a) Original graph

(b) Vertex updating

2)
$$\bar{\mathbf{e}}_{i}^{+} = g^{\mathbf{e}^{+}}(\mathcal{E}_{i}^{+})$$

Aggregation: Average Pooling

(c) Edge updating

3)
$$\mathbf{v}_i' = h^{\mathbf{v}}([\mathbf{v}_i, \bar{\mathbf{e}}_j^-, \bar{\mathbf{e}}_j^+])$$

4)
$$\mathbf{e}'_j = h^{\mathbf{e}}([\mathbf{e}_j, \mathbf{v}_j^{s'}, \mathbf{v}_j^{t'}])$$

1)
$$\bar{\mathbf{e}}_{i}^{-} = g^{\mathbf{e}^{-}}(\mathcal{E}_{i}^{-})$$

2)
$$\bar{\mathbf{e}}_{i}^{+} = g^{\mathbf{e}^{+}}(\mathcal{E}_{i}^{+})$$

3)
$$\mathbf{v}_i' = h^{\mathbf{v}}([\mathbf{v}_i, \bar{\mathbf{e}}_j^-, \bar{\mathbf{e}}_j^+])$$

4)
$$\mathbf{e}'_j = h^{\mathbf{e}}([\mathbf{e}_j, \mathbf{v}^{s'}_j, \mathbf{v}^{t'}_j])$$

1)
$$\bar{\mathbf{e}}_i^- = g^{\mathbf{e}^-}(\mathcal{E}_i^-)$$

2) $\bar{\mathbf{e}}_i^+ = g^{\mathbf{e}^+}(\mathcal{E}_i^+)$

2)
$$\bar{\mathbf{e}}_{i}^{+} = g^{\mathbf{e}^{+}}(\mathcal{E}_{i}^{+})$$

3)
$$\mathbf{v}_i' = h^{\mathbf{v}}([\mathbf{v}_i, \bar{\mathbf{e}}_j^-, \bar{\mathbf{e}}_j^+])$$

4)
$$\mathbf{e}'_j = h^{\mathbf{e}}([\mathbf{e}_j, \mathbf{v}_j^{s'}, \mathbf{v}_j^{t'}])$$

1)
$$\bar{\mathbf{e}}_{i}^{-} = g^{\mathbf{e}^{-}}(\mathcal{E}_{i}^{-})$$

1)
$$\bar{\mathbf{e}}_i^- = g^{\mathbf{e}^-}(\mathcal{E}_i^-)$$

2) $\bar{\mathbf{e}}_i^+ = g^{\mathbf{e}^+}(\mathcal{E}_i^+)$

3)
$$\mathbf{v}_i' = h^{\mathbf{v}}([\mathbf{v}_i, \bar{\mathbf{e}}_j^-, \bar{\mathbf{e}}_j^+])$$

4)
$$\mathbf{e}'_j = h^{\mathbf{e}}([\mathbf{e}_j, \mathbf{v}^{s}_j', \mathbf{v}^{t}_j'])$$

1)
$$\bar{\mathbf{e}}_i^- = g^{\mathbf{e}^-}(\mathcal{E}_i^-)$$

2)
$$\bar{\mathbf{e}}_{i}^{+} = g^{\mathbf{e}^{+}}(\mathcal{E}_{i}^{+})$$

3)
$$\mathbf{v}_i' = h^{\mathbf{v}}([\mathbf{v}_i, \bar{\mathbf{e}}_j^-, \bar{\mathbf{e}}_j^+])$$

4)
$$\mathbf{e}_{j}' = h^{\mathbf{e}}([\mathbf{e}_{j}, \mathbf{v}_{j}^{s}', \mathbf{v}_{j}^{t}'])$$

1)
$$\bar{\mathbf{e}}_{i}^{-} = g^{\mathbf{e}^{-}}(\mathcal{E}_{i}^{-})$$

1)
$$\bar{\mathbf{e}}_i^- = g^{\mathbf{e}^-}(\mathcal{E}_i^-)$$

2) $\bar{\mathbf{e}}_i^+ = g^{\mathbf{e}^+}(\mathcal{E}_i^+)$

3)
$$\mathbf{v}_i' = h^{\mathbf{v}}([\mathbf{v}_i, \bar{\mathbf{e}}_j^-, \bar{\mathbf{e}}_j^+])$$

4) $\mathbf{e}_j' = h^{\mathbf{e}}([\mathbf{e}_j, \mathbf{v}_j^{s\prime}, \mathbf{v}_j^{t\prime}])$

4)
$$\mathbf{e}_j' = h^{\mathbf{e}}([\mathbf{e}_j, \mathbf{v}_j^{s\prime}, \mathbf{v}_j^{t\prime}])$$

1)
$$\bar{\mathbf{e}}_{i}^{-} = g^{\mathbf{e}^{-}}(\mathcal{E}_{i}^{-})$$

2)
$$\bar{\mathbf{e}}_{i}^{+} = g^{\mathbf{e}^{+}}(\mathcal{E}_{i}^{+})$$

3)
$$\mathbf{v}_i' = h^{\mathbf{v}}([\mathbf{v}_i, \bar{\mathbf{e}}_j^-, \bar{\mathbf{e}}_j^+])$$

3)
$$\mathbf{v}_i' = h^{\mathbf{v}}([\mathbf{v}_i, \bar{\mathbf{e}}_j^-, \bar{\mathbf{e}}_j^+])$$

4) $\mathbf{e}_j' = h^{\mathbf{e}}([\mathbf{e}_j, \mathbf{v}_j^{s\prime}, \mathbf{v}_j^{t\prime}])$

Method Summary

Moreover...

Graph Construct(Connection / Adjacent) 의 유연성을 위해

두 행렬을 활용, 새로운 Connection을 구축

Method	A	PA	P + A	P_0	P_{10}
Accuracy	94.4	95.0	95.3	95.2	95.5

A

(Trainable Parameters)

Moreover...

시간적 정보를 추가적으로 활용하기 위해

Skeleton Data

- = [Time x Joint x Feature]
- = [TxNxC]
- → [CxTxN] (Reshape) 에 C@(9,1) Convolution 2D 진행
 - = Time축을 Window Size 9로 집약시키는 효과

Moreover...

동적 정보를 활용하기 위해

Joint(Vertex)와 Bone(Edge)에 대해 Motion 정보생성

$$\mathbf{m}_{\mathbf{v}_t} = \mathbf{v}_{t+1} - \mathbf{v}_t$$
 $\mathbf{m}_{\mathbf{e}_t} = \mathbf{e}_{t+1} - \mathbf{e}_t$

Method	NTU(cv)	NTU(cs)	SK(t1)	SK(t5)
Spatial	95.5	89.2	36.1	58.7
Motion	93.8	86.8	31.8	54.8
Fusion	96.1	89.9	36.9	59.6

두 데이터(정확하는 넷)에 대해 학습 후 앙상블!

Result

NTU-RGBD

Method	CS	CV
Lie Group [30]	50.1	82.8
HBRNN [7]	59.1	64.0
Deep LSTM [25]	60.7	67.3
ST-LSTM [20]	69.2	77.7
STA-LSTM [28]	73.4	81.2
VA-LSTM [37]	79.2	87.7
ARRN-LSTM [18]	80.7	88.8
TCN [14]	74.3	83.1
Clips+CNN+MTLN [13]	79.6	84.8
Synthesized CNN [21]	80.0	87.2
3scale ResNet152 [16]	85.0	92.3
ST-GCN [34]	81.5	88.3
DPRL+GCNN [29]	83.5	89.8
DGNN (ours)	89.9	96.1

