Measurable sets and functions

Definition 1 (σ -algebras) Let Ω be a set and $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ be a collection of subsets of Ω :

1. \mathcal{A} is an algebra if $\varnothing \in \mathcal{A}$ and for $A, B \in \mathcal{A}$, $\mathcal{A}^c = \Omega \setminus A \in \mathcal{A}$ and $A \cup B \in \mathcal{A}$. 2. \mathcal{A} is a σ -algebra if $\varnothing \in \mathcal{A}$, for $A \in \mathcal{A}$, $A^c \in \mathcal{A}$, and for (A_n) a sequence of sets in \mathcal{A} , $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

A collection of sets is an algebra subject to being closed under finite applications of the basic operators. The σ -algebra concept extends this slightly to infinite ones. Consider where this distinction is relevant?

Note that if we have $\{\mathcal{F}_i : i \in I\}$ are σ -algebras, then

$$\mathcal{F} = \bigcap_{i \in I} \mathcal{F}_i$$

is a σ -algebra. This allows us to consider the notion of a smallest σ -algebra containing a set (the σ -algebra 'generated' by a set). We write the σ -algebra generated by a collection of collections of sets \mathfrak{A} as $\sigma(\mathfrak{A})$.

Definition 2 (Borel σ -algebra) Let (E, \mathcal{T}) be a topological space. The σ -algebra generated by the open sets in E is called the Borel σ -algebra on E and is denoted $\mathcal{B}(E) = \sigma(\mathcal{T})$.

Definition 3 Suppose $(\Omega_i, \mathcal{F}_i)_{i \in I}$ are measurable spaces. With $\Omega = \prod_{i \in I} \Omega_i$, \mathcal{F} the σ -algebra generated by $A = \prod_{i \in I} A_i$ where $A_i \in \mathcal{F}_i$ for all $i \in I$ and for all but finitely many $i \in I$, $A_i = \Omega_i$: (Ω, \mathcal{F}) is the product space.

This space is measurable, and \mathcal{F} is a σ -algebra.

Definition 4 (π and λ -systems) A collection of sets \mathcal{A} is called a π -system if it is closed under intersections.

A collection of sets \mathcal{M} is called a λ -system if $\Omega \in \mathcal{M}$, if $A, B \in \mathcal{M}$, $A \subseteq B$, then $B \setminus A \in \mathcal{M}$, and if $(A_n) \subseteq \mathcal{M}$ with $A_n \subseteq A_{n+1}$ increasing then $\bigcup_{n \geq 1} A_n \in \mathcal{M}$.

A collection of sets is a σ -algebra if and only if it is both a π -system and a λ -system.

Lemma 1 (π - λ systems lemma) Let \mathcal{A} be a π -system and \mathcal{M} a λ -system. Then if $\mathcal{A} \subseteq \mathcal{M}$ then $\sigma(\mathcal{A}) \subseteq \mathcal{M}$.

We can use this with a convenient π -system to show that our λ -system contains more than is immediately obvious.

Let $\lambda(\mathcal{A})$ be the smallest λ -system containing \mathcal{A} . This is a subset of \mathcal{M} and $\sigma(\mathcal{A})$, so we just need to show that $\lambda(\mathcal{A})$ is a σ -algebra (for which we just have to show that it is a π -system).

Definition 5 (Random variables) With measurable spaces (Ω, \mathcal{F}) , (E, \mathcal{E}) , a function $f: \Omega \to E$ is said to be an E-valued random variable (or a measurable function) if for all $A \in \mathcal{E}$, $f^{-1}(A) \in \mathcal{F}$.

We get immediately that random variables can be composed as one would expect. We can also use random variables to define new σ -algebras. Note that $(\Omega, \{f^{-1}(A) : A \in \mathcal{E}\})$ is a σ -algebra.

Definition 6 With $\{f_i : i \in I\}$ a family of functions $\Omega \to E$, $\sigma(f_i : i \in I)$ is the smallest σ -algebra on Ω for which all f_i are measurable.

This is initially a slightly intimidating definition, but the intuition is just that we need our $\sigma(f_i: i \in I) = \sigma(f_i^{-1}(A): A \in \mathcal{E}, i \in I)$.

Theorem 2 (Monotone Class Theorem) Let \mathcal{H} be a class of bounded functions from $\Omega \to \mathbb{R}$ such that

- \mathcal{H} is a vector space over \mathbb{R} ,
- The constant function $1 \in \mathcal{H}$,
- If $(f_n) \subseteq \mathcal{H}$, $f_n \to f$ monotonically increasing, then $f \in \mathcal{H}$,

then if $C \subseteq \mathcal{H}$, and C is closed under multiplication, then all $\sigma(C)$ -bounded functions are in \mathcal{H} .