$\frac{1}{x} = \alpha$ V(x,t) = déplacement vertical (ou flèche) MODELE 1D de pameau en flexion circulaire: équations? Mêmes équations que pour une poutre en flexion: équilibre vertical: Ty + f, = ph 3252 (ms = ph, wasse surf. du panneon) équilibre rotation: OX + Ty = 0 si on reuplace, on obtient: $\frac{\partial^2 M_f}{\partial x^2} + ph \frac{\partial^2 v}{\partial t^2} = fy$ local Loi de comportement en flexion: panneau: $Mf = D \chi$ où $\chi' = courbevre en 2 = \frac{\partial w_2}{\partial x}$ où $D = \frac{E}{1-y^2} \frac{h^3}{12} = \frac{Eh^3}{12(1-y^2)}$ (module de rigidité à la flexion) Relation cinématique: $y = \frac{\partial \omega_2}{\partial x}$ et hp parmeau mince (h petit): $= \left| \mathcal{Y} = \frac{\partial^2 \mathcal{J}}{\partial x^2} \right|$

On injectant la relation cinématique et la l.d.c. dans l'éq. d'équilibre, on obtient: $\frac{\partial^2 v}{\partial x^4} + ph \frac{\partial^2 v}{\partial t^2} = f_y \quad \text{éq. de lique élastique}$ avec $fy = Faero = -\left(\frac{1}{2}\frac{\partial v}{\partial x} + \frac{1}{2}\frac{\partial v}{\partial t}\right)$ avec $x = \frac{1}{2}\frac{1}{2}\frac{\partial v}{\partial x} - 1$ Londitions limites: $\frac{\partial \mathcal{V}(x=0,t)=0}{\partial x}$ et $\beta = \frac{\rho \omega U \omega}{(M_{\infty}^2-1)^{3/2}}$ en $x = \alpha$: $\mathcal{V}(x=a,t)=0$; $\frac{\partial \mathcal{V}(x=a,t)=0}{\partial x}$ et les conditions initiales $v_o(z) = v(x, t=0)$ et $v_o(z) = \frac{\partial v(x, t=0)}{\partial t}$ ESPACE CINEMATIQUEMENT ADMISSIBLE? Uad = {w(x,t) | réguliez; w(o,t) =0; w(a,t) =0; w,x(a,t)=0; w,x(a, et $\hat{V}(x,t)$ régulier, $\hat{v}(0,t) = \hat{v}(\alpha,t) = 0$; $\hat{v}_{,x}(\alpha,t) = 0$ }

(expace des variations admissibles)

FORMULATION FAIBLE de l'EQUILIBRE:

(D 54) + phis - fy) î dx = 0, Vî e Vad

Du(4) vdx + phiridx = fyidx, Vie Wad $\int \frac{1}{D} \frac{1}{v^{(3)}} \frac{1}{v^{(3)}} \frac{1}{v^{(4)}} dx = - \left[\frac{D}{D} \frac{v^{(2)}}{v^{(4)}} \frac{1}{v^{(4)}} \right] \frac{1}{v^{(4)}} \frac{1}{v^{(4)}} dx$ FORMULATION FAIBLE du PB du PANNEAU: (P) Trouver $v \in \mathcal{U}_{ad}$ $\int_{0}^{\infty} D \frac{\partial^{2} v}{\partial x^{2}} \frac{\partial^{2} \hat{v}}{\partial x^{2}} dx + \int_{0}^{\infty} \rho h \, \dot{v} \, \hat{v} \, dx = \int_{0}^{\infty} f_{y} \, \hat{v} \, dx, \, \forall \hat{v} \in \mathcal{U}_{ad}$ forme liméaire mais ici, fy m'est pas une fat explicite RESOLUTION du PB par une APPROLHE de x et t, elle dépend de v(x,t) ELEMENTS FINIS:

ETUDE ELEMENT "COQUE 1D en flaxion" i (a)) $\frac{5}{7}$ 2 ddl aux noteuds: $\frac{3}{7}$, $\frac{3}{7}$ $\frac{3}{7$ { Ue} = [vi, wi, vj, w;] recteur des del élémentaires Interpolation /approximation de v dans l'élément: $V(x,t) = v^h(x,t) = N_1(\xi) v_i + N_2(\xi) w_i + N_3(\xi) v_j + N_4(\xi) w_j$ 4 fcts de forme: N1, N2, N3, N4 associées aux 4 ddl élém. Règles d'interpolation: $N_1(\xi=0)=1$; $N_2(\xi=0)=N_3(\xi=0)=N_4(\xi=0)=0$ sur le déplacement $N_1(\xi=1)=1$; $N_1(\xi=1)=N_2(\xi=1)=N_4(\xi=1)=0$ $N_3(\xi=1)=1$; $N_1(\xi=1)=N_2(\xi=1)=N_4(\xi=1)=0$ Mais aussi interpolation/approximation des rotations: $\omega(x, E) = \frac{\partial vh}{\partial x} = N_1 v_1 + N_2 w_1 + N_3 v_2 + N_4 w_3$ Règles d'interpolation: $\frac{dN_2}{dx}(\S=0)=1$, $\frac{d}{dx}(N_1,N_3,N_4)(\S=0)=0$ sur les rotations $\frac{dN_2}{dx}(\S=0)=1$, $\frac{d}{dx}(N_1,N_3,N_4)(\S=0)=0$ dN4 (\(\xi = 1) = 1; \dx (N1, N2, N3)(\xi = 1) = 0 4 conditions sur chaque fonction $N_k(\xi)$ (k = 1, 2, 3, 4)

Ces 4 comolitions permettent d'évrire des pôlynomes de degré 3 en ξ (cla permet de calculer rotation : $\frac{d}{dx}$, courbures et moments : $\frac{d^2}{dx^2}$; et effort tranchont : $\frac{d^3}{dx^3}$) dx Lien entre x et ξ : $\xi = \frac{x}{Le}$ pour un élément réel de d= 1 d et dx= leds

dx = Leds EXEMPLE calcul de N1(5): N1(5)= a+b5+c52+d53 On veut déternimer les coeff. a, b, c et d: $N_1(\S=0)=1 \implies \alpha=1$; $N_1(\S=1)=0 \implies \alpha+b+c+d=0$ puis conditions sur $\frac{dN_1}{dx} = \frac{1}{Le} \left(b + 2c\xi + 3d\xi^L\right)$ et on a $\frac{dN_1}{dx} \left(\xi = 0\right) = \frac{b}{Le} = 0$; $\frac{dN_1}{dx} \left(\xi = 1\right) = \frac{1}{Le} \left(b + 2c + 3d\right) = 0$ =) a=1;b=0;a+c+d=0;2c+3d=0 $=) N_1(\xi) = 1 - 3\xi^2 + 2\xi^3 \qquad (\hat{m} \text{ ohosse pour} N_2, N_3 \text{ et } N_4)$

Approximation des déplacements sous forme matricielle: $\mathcal{J}(x,t) \stackrel{\mathcal{L}}{=} \mathcal{J}^h(x,t) = [Ne] \{Ve\}$ où $[Ne] = [N_1,N_2,N_3,N_4] (1x4)$ et de la m' manière : $\mathcal{W}(x,t) \stackrel{\mathcal{L}}{=} [Ne'] \{Ve\}$ où : $[Ne'] = [N_1,x,N_2,x,N_3,x,N_4,x] (1x4)$

CALCULS ELEMENTAIRES