

离散数学

大连理工大学软件学院

陈志奎 博士、教授

办公室: 综合楼405, Tel: 62274392 实验室: 综合楼一楼, 教学楼A502/C109,

Mobile: 13478461921

Email: zkchen@dlut.edu.cn

zkchen00@hotmail.com

QQ: 1062258606

离散数学

第一章 命题逻辑

回顾

- 命题变元
- 合式公式
- 重言式—永真式
- 矛盾式—永假式
- 永真蕴含式
- 代入规则
- 替换规则
- 常用逻辑恒等式(30)
- 常用永真蕴含式(16)

1.5对偶原理

• 定义:

设有公式A,其中仅含有逻辑联结词¬, \land , \lor 和逻辑常值 T和F。在A中将 \land , \lor ,T,F分别换以 \lor , \land ,F,T,得公式 A^* ,则称 A^* 为A的对偶式。

- 注意:求对偶式并不要求将"非"变原,而且对偶式是相互的。
- 举例:
 - -求 $\neg P \lor (Q \lor R)$ 的对偶式

$$\neg P \land (Q \land R)$$

-求 $P \vee F$ 的对偶式 $P \wedge T$

• 定理1.5-1:

设A和A*互为对偶式, P_1, P_2, \dots, P_n 是出现于A和A*中的所有命题变元,于是有:

$$\neg A(P_1, P_2, \dots, P_n) \Leftrightarrow A^*(\neg P_1, \neg P_2, \dots, \neg P_n)$$
 (1)

$$A(\neg P_1, \neg P_2, \cdots, \neg P_n) \Leftrightarrow \neg A^*(P_1, P_2, \cdots, P_n)$$
 (2)

证明:

- 由德•摩根律

$$P \land Q \Leftrightarrow \neg(\neg P \lor \neg Q)$$

$$P \lor Q \Leftrightarrow \neg(\neg P \land \neg Q)$$

- 可知,对公式A求否定,直到¬深入到命题变元之前位置,在这个过程中,所有的\变 Λ , Λ 变 V, T变F, F变T。得证(1)。

• 定理1.5-2:

- 证明:
 - $A \Leftrightarrow B$ 意味着 $A(P_1, P_2, \dots, P_n) \leftrightarrow B(P_1, P_2, \dots, P_n)$ 永真
 - 于是有 $\neg A(P_1, P_2, \dots, P_n) \leftrightarrow \neg B(P_1, P_2, \dots, P_n)$ 永真
 - 由定理1.5-1知,下式也永真

$$A^*(\neg P_1, \neg P_2, \cdots, \neg P_n) \longleftrightarrow B^*(\neg P_1, \neg P_2, \cdots, \neg P_n)$$

- 利用带入规则,以 $\neg P_i(i=1,2\cdots,n)$ 取代 P_i ,得 永真 $A^*(P_1,P_2,\cdots,P_n) \leftrightarrow B^*(P_1,P_2,\cdots,P_n)$

$$A^* \Leftrightarrow B^*$$

例: 若
$$(P \land Q) \lor (\neg P \lor (\neg P \lor Q)) \Leftrightarrow \neg P \lor Q$$
,试证明 $(P \lor Q) \land (\neg P \land (\neg P \land Q)) \Leftrightarrow \neg P \land Q$

证明: 设
$$A = (P \land Q) \lor (\neg P \lor (\neg P \lor Q))$$

 $B = \neg P \lor Q$

由于, $A \Leftrightarrow B$

因此, $A^* \Leftrightarrow B^*$

• 试证明: $(1)(P \leftrightarrow Q) \rightarrow (\neg P \lor Q) \Leftrightarrow T$ $(2)(P \leftrightarrow Q) \land (\neg P \land Q) \Leftrightarrow F$

证明:
$$(P \leftrightarrow Q) \rightarrow (\neg P \lor Q)$$

 $\Leftrightarrow \neg (P \leftrightarrow Q) \lor (\neg P \lor Q)$ E_{27}
 $\Leftrightarrow \neg ((P \land Q) \lor (\neg P \land \neg Q)) \lor (\neg P \lor Q)$ E_{26}
 $\Leftrightarrow ((\neg P \lor \neg Q) \land (P \lor Q)) \lor (\neg P \lor Q)$ E_{11}, E_{12}
 $\Leftrightarrow ((\neg P \lor \neg Q) \lor (\neg P \lor Q)) \land ((P \lor Q) \lor (\neg P \lor Q))$ E_{8}
 $\Leftrightarrow (\neg P \lor \neg Q \lor \neg P \lor Q) \land (P \lor Q \lor \neg P \lor Q)$
 $\Leftrightarrow (\neg P \lor T) \land (Q \lor T)$ E_{17}, E_{19}
 $\Leftrightarrow T \land T$ E_{17}, E_{19}
 $\Leftrightarrow T$

• 试证明: $(1)(P \leftrightarrow Q) \rightarrow (\neg P \lor Q) \Leftrightarrow T$ $(2)(P \leftrightarrow Q) \land (\neg P \land Q) \Leftrightarrow F$

证明:
$$(P \leftrightarrow Q) \land (\neg P \land Q)$$

 $\Leftrightarrow ((P \land Q) \lor (\neg P \land \neg Q)) \land (\neg P \land Q)$ E_{26}
 $\to ((P \leftrightarrow Q) \rightarrow (\neg P \lor Q))$
 $\Leftrightarrow ((\neg P \lor \neg Q) \land (P \lor Q)) \lor (\neg P \lor Q)$ E_{11}, E_{12}
 $\to (P \leftrightarrow Q) \land (\neg P \land Q) \land (P \leftrightarrow Q) \rightarrow (\neg P \lor Q)$ 互为对偶式
由于 T 的对偶式是 F ,因此由定理 $1.5-1$ 知
 $(P \leftrightarrow Q) \land (\neg P \land Q) \Leftrightarrow F$

• 定理1.5-3:

- 证明:
 - $A \Rightarrow B$ 意味着 $A(P_1, P_2, \dots, P_n) \rightarrow B(P_1, P_2, \dots, P_n)$ 永真
 - 由逆反律得 ¬ $B(P_1, P_2, \dots, P_n)$ →¬ $A(P_1, P_2, \dots, P_n)$ 永真
 - 根据定理1.5-1
 - $B^*(\neg P_1, \neg P_2, \dots, \neg P_n) \rightarrow A^*(\neg P_1, \neg P_2, \dots, \neg P_n)$ $\mathring{\mathcal{X}}$ $\mathring{\mathcal{A}}$
 - 利用带入规则,以 $\neg P_i(i=1,2\cdots,n)$ 取代 P_i ,得

 - $\exists \Box$ $B^* \Rightarrow A^*$

1.6范式和判定问题

公式的标准形式——范式 用来在有限步内判定公式永真、永假、可 满足的

- 定义:
 - 若一个命题公式是一些命题变元及其否定的积,则称之为基本积;若这个命题公式是一些变元及其否定之和,称为基本和。

基本积: $P,Q,\neg P,\neg Q,\neg P \land Q,P \land Q,\neg P \land P,\neg Q \land P \land Q$ 基本和: $P,\neg P,Q,\neg Q,P \lor \neg Q,P \lor Q,\neg P \lor P$

- 一个由<u>基本积的和</u>组成的公式,如果与给定的公式*A*等价,则称它是*A*的析取范式。

析取范式: $P,Q,\neg P,\neg Q,\neg P \land Q,(P \land Q) \lor (\neg P \land Q)$

- 一个由基本和的积组成的公式,如果与给定的命题公式A等价,则称它是A的合取范式。

合取范式: $P, \neg P, Q, \neg Q, P \lor \neg Q, (P \lor Q) \land (\neg P \lor P)$

- 定理**1.6-1**: 一个基本积是永假式,当且仅当它含有 $P, \neg P$ 形式的两个因子。
- 证明:
 - (充分性) 由于 $P \land \neg P$ 是永假式,而 $Q \land F \Leftrightarrow F$
 - ,所以含有 P 和 $\neg P$ 形式的两个因子时基本积是 永假式。
 - (必要性)用反证法。设基本积为假但不含P和 $\neg P$ 形式的因子,于是给这个基本积中的命题变元指派 真值 T,给带有否定的命题变元指派真值 F,得基本积的真值是 T,与假设矛盾。证毕。

• 定理**1.6-2**: 一个基本和是永真式,当且仅 当它含有 $P, \neg P$ 形式的两个因子。

例: 求命题公式 $P \land (Q \rightarrow R)$ 的析取范式

解: $P \wedge (Q \rightarrow R) \Leftrightarrow P \wedge (\neg Q \vee R)$

/*这是一个合取范式*/

 \Leftrightarrow (P \wedge \neg Q) \vee (P \wedge R)

/*使用与对或的分配律, 化成析取范式*/

析取范式与合取范式

例: 求命题公式($\neg P \land Q$) $\leftrightarrow (P \rightarrow Q)$ 的合取范式

解: $(\neg P \land Q) \leftrightarrow (P \rightarrow Q)$

$$\Leftrightarrow ((\neg P \land Q) \land (P \rightarrow Q)) \lor (\neg (\neg P \land Q) \land \neg (P \rightarrow Q))$$

$$/* \not | \leftrightarrow */$$

⇔((¬P∧Q)∧(¬P ∨ Q))∨((P ∨¬Q) ∧(P ∧¬Q)) /*消→ 并且否定深入到单个变元前*/

⇔ (¬P ∧Q) ∨ (P ∧¬Q) /*析取范式*/

 $\Leftrightarrow ((\neg P \land Q) \lor P) \land ((\neg P \land Q) \lor \neg Q)$

 \Leftrightarrow (P \vee Q) \wedge (\neg P \vee \neg Q)

/*使用或对与的分配律及补余律,现在是合取范式的形式*/

例: 求 $\neg (P \lor Q) \leftrightarrow (P \land Q)$ 的析取范式。

解:
$$\neg (P \lor Q) \leftrightarrow (P \land Q)$$

 $\Leftrightarrow \neg (P \lor Q) \land (P \land Q) \lor \neg (\neg (P \lor Q)) \land \neg (P \land Q)$
 $\Leftrightarrow (\neg P \land \neg Q \land P \land Q) \lor ((P \lor Q) \land (\neg P \lor \neg Q))$
 $\Leftrightarrow F \lor (P \lor Q) \land (\neg P \lor \neg Q)$
 $\Leftrightarrow (P \lor Q) \land (\neg P \lor \neg Q)$
 $\Leftrightarrow ((P \lor Q) \land \neg P) \lor ((P \lor Q) \land \neg Q)$
 $\Leftrightarrow P \land \neg P \lor \neg P \land Q \lor P \land \neg Q \lor Q \land \neg Q$
 $\Leftrightarrow F \lor \neg P \land Q \lor P \land \neg Q \lor F$
 $\Leftrightarrow (\neg P \land Q) \lor (P \land \neg Q)$

例: 求 $\neg (P \lor Q) \leftrightarrow (P \land Q)$ 的合取范式。

解:
$$\Diamond A \Leftrightarrow \neg (P \lor Q) \leftrightarrow (P \land Q)$$
,那么
$$\neg A \Leftrightarrow \neg (\neg (P \lor Q) \leftrightarrow (P \lor Q))$$
$$\Leftrightarrow \neg (\neg (P \lor Q) \land (P \land Q)) \lor (\neg (\neg (P \lor Q) \land \neg (P \land Q)))$$
$$\Leftrightarrow \neg ((\neg P \land \neg Q \land P \land Q) \lor ((P \lor Q) \land (\neg P \lor \neg Q)))$$
$$\Leftrightarrow \neg P \land \neg Q \lor P \land Q$$
$$由于A \Leftrightarrow \neg \neg A = \neg (\neg P \land \neg Q \lor P \land Q)$$
$$所以A \Leftrightarrow (P \lor Q) \land (\neg P \lor \neg Q)$$

- 定义**1.6-4**: 在含*n*个变元的基本积中,若每个变元与其否定不同时存在,而二者之一必出现且仅出现一次,则称这种基本积为极小项。
- 例:
 - 两个命题变元P、Q的极小项为 $P \land Q, P \land \neg Q, \neg P \land Q, \neg P \land \neg Q$

*n*个变元,极小项个数*2ⁿ*

• 假定有P、Q、R三个变元

$\neg P \land \neg Q \land \neg R$	-000	0	m_0
$\neg P \land \neg Q \land R$	— 001	1	m_1
$\neg P \land Q \land \neg R$	 010	2	m_2
$\neg P \land Q \land R$	— 011	3	m_3
$P \land \neg Q \land \neg R$	 100	4	m_4
$P \wedge \neg Q \wedge R$	 101	5	m_5
$P \wedge Q \wedge \neg R$	 110	6	m_6
$P \wedge Q \wedge R$	— 111	7	m_7

- ➤每个极小项只有一个真值指派使其为T
- ▶任何两个极小项的合取必为假(因为在2ⁿ 种真值指派中,只有一个极小项取值为真)
- > 所有极小项的析取必为真

• 定义**1.6-5**: 一个由极小项的和组成的公式,如果与命题公式*A*等价,则称它是公式*A*的主析取范式。

• 对任何命题公式(永假式除外)都可求得与 其等价的主析取范式,而且主析取范式的 形式唯一。

- 求主析取范式的方法:
 - 先化成与其等价的析取范式;
 - 若析取范式的基本积中同一命题变元出现多次,则将其化成只出现一次;
 - 去掉析取范式中所有为永假式的基本积,即去掉基本积中含有形如*P*N¬P的子公式的那些基本积;
 - 若析取范式中缺少某一命题变元如P,则可用公式 $(P \lor \neg P) \land Q \Leftrightarrow Q$ 将命题变元P补充进去,并利用分配律展开,然后合并相同的基本积

$$A \Leftrightarrow P \land Q \lor R$$

$$\Leftrightarrow (P \land Q) \land (R \lor \neg R) \lor (P \lor \neg P) \land R$$

$$\Leftrightarrow (P \land Q \land R) \lor (P \land Q \land \neg R) \lor (P \land R) \lor (\neg P \land R)$$

$$\Leftrightarrow (P \land Q \land R) \lor (P \land Q \land \neg R) \lor P \land R \land (Q \lor \neg Q)$$
$$\lor (\neg P \land R) \land (Q \lor \neg Q)$$

$$\Leftrightarrow (P \land Q \land R) \lor (P \land Q \land \neg R) \lor (P \land Q \land R)$$
$$\lor (P \land \neg Q \land R) \lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R)$$

$$\Leftrightarrow (P \land Q \land R) \lor (P \land Q \land \neg R) \lor (P \land \neg Q \land R)$$
$$\lor (\neg P \land Q \land R) \lor (\neg P \land \neg Q \land R)$$

$$\Leftrightarrow m_7 \vee m_6 \vee m_5 \vee m_3 \vee m_1$$

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

- 主析取范式和真值 表的关系:
- 右图为 $A = P \land Q \lor R$ 对应的真值表:

P	Q	R	极小项	$P \wedge Q \vee R$
0	0	0	$\neg P \land \neg Q \land \neg R$	0
0	0	1	$\neg P \land \neg Q \land R$	1
0	1	0	$\neg P \land Q \land \neg R$	0
0	1	1	$\neg P \land Q \land R$	1
1	0	0	$P \wedge \neg Q \wedge \neg R$	0
1	0	1	$P \wedge \neg Q \wedge R$	1
1	1	0	$P \wedge Q \wedge \neg R$	1
1	1	1	$P \wedge Q \wedge R$	1

- 定义**1.6-6**: 在含*n*个变元的基本和中,若每个变元与其否定不同时存在,而二者之一必出现且仅出现一次,则称这种基本和为极大项。
- 例:
 - 两个命题变元P、Q的极大项为 $P \lor Q, P \lor \neg Q, \neg P \lor Q, \neg P \lor \neg Q$

• *n*个变元,极大项个数*2*ⁿ

• 假定有P、Q、R三个变元

$P \lor Q \lor R$	-000	0	M_{0}
$P \lor Q \lor \neg R$	 001	1	\boldsymbol{M}_1
$P \vee \neg Q \vee R$	 010	2	M_2
$P \vee \neg Q \vee \neg R$	— 011	3	M_3
$\neg P \lor Q \lor R$	 100	4	$M_{_4}$
$\neg P \lor Q \lor \neg R$	-101	5	M_{5}
$\neg P \lor \neg Q \lor R$	 110	6	M_6
$\neg P \lor \neg Q \lor \neg R$	—111	7	M_{7}

- ➤每个极大项只有一组真值指派使其为F
- ▶任何两个极大项的析取必为真(因为在2ⁿ 种真值指派中,只有一个极大项取值为假)
- 户所有极大项的合取必为假。

• 定义**1.6-7**: 一个由极大项的积组成的公式,如果与命题公式*A*等价,则称它是公式*A*的主合取范式。

• 对任何命题公式(永真式除外)都可求得与 其等价的主合取范式,而且主合取范式的 形式唯一。

$$A \Leftrightarrow P \land Q \lor R$$

$$\Leftrightarrow (P \vee R) \wedge (Q \vee R)$$

$$\Leftrightarrow ((P \lor R) \lor (Q \land \neg Q)) \land ((Q \lor R) \lor (P \land \neg P))$$

$$\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor Q \lor R)$$

$$\wedge (\neg P \vee Q \vee R)$$

$$\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$$

$$\Leftrightarrow M_0 \wedge M_2 \wedge M_4$$

$$\Leftrightarrow \prod (0,2,4)$$

- 主合取范式和真值 表的关系:
- 右图为 $A = P \land Q \lor R$ 对应的真值表:

P	Q	R	极大项	$P \wedge Q \vee R$
0	0	0	$P \lor Q \lor R$	0
0	0	1	$P \lor Q \lor \neg R$	1
0	1	0	$P \lor \neg Q \lor R$	0
0	1	1	$P \lor \neg Q \lor \neg R$	1
1	0	0	$\neg P \lor Q \lor R$	0
1	0	1	$\neg P \lor Q \lor \neg R$	1
1	1	0	$\neg P \lor \neg Q \lor R$	1
1	1	1	$\neg P \lor \neg Q \lor \neg R$	1

极小项和极大项的关系

• 极小项mi和极大项 有下列的关系:

$$M_i \Leftrightarrow \neg m_i$$

$$m_i \Leftrightarrow \neg M_i$$

由合取(析取)范式求主析取(合取)范式

- 二者可以互相转化
- 已知公式A的主合取范式为:

$$(P \lor Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)$$

- 求主析取范式。
- 解:
 - *A*的主合取范式为 M_1 M_3 ,可知*A*的主析取范式为 $\sum (0,2,4,5,6,7)$
 - 于是可直接写出A的主析取范式

$$(\neg P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R) \lor (P \land \neg Q \land \neg R)$$
$$\lor (P \land \neg Q \land R) \lor (P \land Q \land \neg R) \lor (P \land Q \land R)$$

主析取范式和主合取范式

- 一个命题公式是永真式,它的命题变元的 所有极小项均出现在其主析取范式中,不 存在与其等价的主合取范式;
- 一个命题公式是水假式,它的命题变元的 所有极大项均出现在其主合取范式中,不 存在与其等价的主析取范式;
- 一个命题公式是可满足的,它既有与其等价的主析取范式,也有与其等价的主合取范式.

主析取范式和主合取范式

例:求下列公式的主范式:

$$(P \rightarrow \neg Q) \rightarrow \neg R$$

解**:**
$$(P \rightarrow \neg Q) \rightarrow \neg R$$

$$\Leftrightarrow \neg (\neg P \lor \neg Q) \lor \neg R$$

$$\Leftrightarrow (P \land Q) \lor \neg R$$

$$\Leftrightarrow$$
 (P $\vee \neg$ R) \wedge (Q $\vee \neg$ R)

$$\Leftrightarrow (P \lor \neg R \lor (Q \land \neg Q)) \land (Q \lor \neg R \lor (P \land \neg P))$$

$$\Leftrightarrow (P \lor Q \lor \neg R) \land (P \lor \neg Q \lor \neg R)) \land (P \lor Q \lor \neg R) \land (\neg P \lor Q \lor \neg R)$$

⇔ $\sum m_{0,2,4,6,7}$ /*即该公式是可满足的,应存在与其等价的主析取范式*/

34/36

主析取范式和主合取范式

例: 求下列命题公式的主范式: $(P \land \neg Q \land R) \lor (\neg P \land Q \land \neg S)$ 解: $(P \land \neg Q \land R) \lor (\neg P \land Q \land \neg S)$ $\Leftrightarrow (P_{\wedge} - Q_{\wedge} R_{\wedge} S) \vee (P_{\wedge} - Q_{\wedge} R_{\wedge} - S)$ $\vee (\neg P \land Q \land R \land \neg S) \lor (\neg P \land Q \land \neg R \land \neg S)$ $\Leftrightarrow \Sigma m_{11}, 10, 6, 4/*$ 这里 Σ 代表析取*/

⇔ ПМ_{0, 1, 2, 3, 5, 7, 8, 9, 10, 12, 13, 14, 15} 从上面的解题过程中我们可以看出,如果与一个命题公式等价的一种主范式一经求出,另一种形式立刻可以得出,除非是永真(或永假)式。

作业

P28

- 16、17(1)(3)、18(2)(4)