Bioinformatics 3

V 4 – Weak Indicators and Communities

Fri, Oct 28, 2011

Noisy Data — Clear Statements?

For **yeast**: ~ 6000 proteins => ~18 million potential interactions rough estimates: ≤ 100000 interactions occur

- => I true positive for 200 potential candidates = **0.5**%
 - => **decisive** experiment must have **accuracy** ≪ 0.5% false positives

Different experiments detect different interactions

For yeast: 80000 interactions known, 2400 found in > 1 experiment

Y2H: => many false positives (up to 50% errors)

Coexpression: => gives indications at best

Combined weak indicators = ???

Conditional Probabilities

Joint probability for "A and B":

$$P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$$

Solve for conditional probability for "A when B is true" => Bayes' Theorem:

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)} = \frac{P(B|A)}{P(B)} P(A)$$

P(A) = prior probability (marginal prob.) for "A" => no prior knowledge about A

P(B) = prior probability for "B" => normalizing constant

P(B | A) = conditional probability for "B when A"

 $P(A \mid B) = posterior probability for "A when B is taken into account"$

=> Use information about B to improve knowledge about A

What are the Odds?

Express Bayes theorem

ayes theorem
$$P(A|B) = \frac{P(B|A)\,P(A)}{P(B)} \,=\, \frac{P(B|A)}{P(B)}\,P(A)$$

in terms of odds:

- Consider that "A does not apply": $P(\bar{A}|B) = \frac{P(B|A)}{P(B)} \, P(\bar{A})$
- odds for A when we know about B:

$$O(A|B) \ = \ \frac{P(A|B)}{P(\bar{A}|B)} \ = \ \frac{P(B|A)}{P(B|\bar{A})} \, \frac{P(A)}{P(\bar{A})} \ = \ \Lambda(A|B) \ O(A)$$
 posterior odds for A likelyhood ratio prior odds for A

 $\Lambda(A \mid B) =$ improvement of our knowledge about A

Bayesian Networks

Encode conditional dependencies between evidences

= "A depends on B" with the conditional probability P(A | B)

Evidence nodes can have a variety of types: numbers, categories, ...

Naive Bayesien network

$$O(A|B,C) = \Lambda(A|B) \Lambda(A|C) O(A)$$

Fully connected Bayesien network => table of joint odds

	В	!B	
С	0.3	0.16	$\Leftrightarrow \Lambda(A B,C)$
!C	0.4	0.14	

Bayesian Analysis of Complexes

A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data

Ronald Jansen, 1* Haiyuan Yu, 1 Dov Greenbaum, 1 Yuval Kluger, 1 Nevan J. Krogan, 4 Sambath Chung, 1, 2 Andrew Emili, 4 Michael Snyder, 2 Jack F. Greenblatt, 4 Mark Gerstein 1, 3 †

We have developed an approach using Bayesian networks to predict protein-protein interactions genome-wide in yeast. Our method naturally weights and combines into reliable predictions genomic features only weakly associated with interaction (e.g., messenger RNA coexpression, coessentiality, and colocalization). In addition to de novo predictions, it can integrate often noisy, experimental interaction data sets. We observe that at given levels of sensitivity, our predictions are more accurate than the existing high-throughput experimental data sets. We validate our predictions with TAP (tandem affinity purification) tagging experiments. Our analysis, which gives a comprehensive view of yeast interactions, is available at genecensus.org/intint.

Improving the Odds

Is a given protein pair **AB** a **complex** (from all that we know)?

$$O_{post}(\text{Complex}|f_1, f_2, \dots) = \Lambda(\text{Complex}|f_1, f_2, \dots) O_{prior}(\text{Complex})$$

likelyhood ratio:

improvement of the odds when we know about features $f_1, f_2, ...$

Idea: determine from known complexes and use for prediction of new complexes

prior odds for a random pair AB to be a complex

estimate (somehow)

Features used by Jansen et al (2003):

- four experimental data sets of complexes
- mRNA coexpression profiles
- biological functions annotated to the proteins (GO, MIPS)
- essentiality for the cell

Gold Standard Sets

To determine
$$\Lambda(\operatorname{Complex}|f_1, f_2, \dots) = \frac{P(f_1, f_2, \dots | \operatorname{Complex})}{P(f_1, f_2, \dots | \operatorname{no Complex})}$$

=> use two data sets with **known** features f₁, f₂, ... for **training**

Requirements for training data:

- i) independent of the data serving as evidence
- ii) large enough for good statistics
- iii) free of systematic bias

Gold Positive Set (GP):

8250 complexes from the hand-curated MIPS (Munich Information Center for Protein Sequences) complex catalog

Gold Negative Set (GN):

2708746 (non-)complexes from proteins from different cellular compartments

Prior Odds

$$O_{prior}(\text{Complex}) = \frac{P(\text{Complex})}{P(\text{no Complex})} = \frac{P(\text{Complex})}{1 - P(\text{Complex})}$$

Jansen et al:

- estimate ≥30000 existing complexes
- 18 Mio. possible complexes

=>
$$P(Complex) \approx 1/600$$

$$=> O_{prior} = 1/600$$

- => The odds are 600: I against picking a complex at random
- => 50% good hits with $\Lambda \approx 600$

Note: mostly O_{prior} is an educated guess

Essentiality

Test whether both proteins are essential (E) for the cell or not (N)

=> EE or NN should occur more often

$$L(\text{Ess}) = \frac{P(\text{Ess} | \text{pos})}{P(\text{Ess} | \text{neg})}$$

Essentiality	pos	neg	P(Ess pos)	P(Ess neg)	L(Ess)
EE	1114	81924	5,18E-01	1,43E-01	3,6
NE	624	285487	2,90E-04	4,98E-01	0,6
NN	412	206313	1,92E-01	3,60E-01	0,5
sum	2150	573724	1,00	1,00	<u></u>

possible values overlap of gold standard of the feature sets with feature values

probabilities for each feature value

likelyhood ratios

$$\frac{1114}{2150} = 0.52$$

$$\frac{0.19}{0.36} = 0.5$$

mRNA Co-Expression

Publicly available expression data from

- the Rosetta compendium
- the yeast cell cycle

Correlation between the data sets

=> use principle component

			Gold standa	ard overlap						
	Expression correlation	# protein pairs	pos	neg	sum(pos)	sum(neg)	sum(pos)/ sum(neg)	P(exp pos)	P(exp neg)	L
	0.9	678	16	45	16	45	0.36	2.10E-03	1.68E-05	124.9
	0.8	4,827	137	563	153	608	0.25	1.80E-02	2.10E-04	85.5
	0.7	17,626	530	2,117	683	2,725	0.25	6.96E-02	7.91E-04	88.0
	0.6	42,815	1,073	5,597	1,756	8,322	0.21	1.41E-01	2.09E-03	67.4
	0.5	96,650	1,089	14,459	2,845	22,781	0.12	1.43E-01	5.40E-03	26.5
	0.4	225,712	993	35,350	3,838	58,131	0.07	1.30E-01	1.32E-02	9.9
	0.3	529,268	1,028	83,483	4,866	141,614	0.03	1.35E-01	3.12E-02	4.3
	0.2	1,200,331	870	183,356	5,736	324,970	0.02	1.14E-01	6.85E-02	1.7
Se	0.1	2,575,103	739	368,469	6,475	693,439	0.01	9.71E-02	1.38E-01	0.7
Values	0	9,363,627	894	1,244,477	7,369	1,937,916	0.00	1.17E-01	4.65E-01	0.3
>	-0.1	2,753,735	164	408,562	7,533	2,346,478	0.00	2.15E-02	1.53E-01	0.1
	-0.2	1,241,907	63	203,663	7,596	2,550,141	0.00	8.27E-03	7.61E-02	0.1
	-0.3	484,524	13	84,957	7,609	2,635,098	0.00	1.71E-03	3.18E-02	0.1
	-0.4	160,234	3	28,870	7,612	2,663,968	0.00	3.94E-04	1.08E-02	0.0
	-0.5	48,852	2	8,091	7,614	2,672,059	0.00	2.63E-04	3.02E-03	0.1
	-0.6	17,423	-	2,134	7,614	2,674,193	0.00	0.00E+00	7.98E-04	0.0
	-0.7	7,602	-	807	7,614	2,675,000	0.00	0.00E+00	3.02E-04	0.0
	-0.8	2,147	-	261	7,614	2,675,261	0.00	0.00E+00	9.76E-05	0.0
	-0.9	67	-	12	7,614	2,675,273	0.00	0.00E+00	4.49E-06	0.0
	Sum	18,773,128	7,614	2,675,273	-	-	_	1.00E+00	1.00E+00	1.0

Biological Function

Use MIPS function catalog and Gene Ontology function annotations

- determine functional class shared by the two proteins
- count how many of the 18 Mio potential pairs share this classification

			Gold stand	ard overlap						
	MIPS function similarity	# protein pairs	pos	neg	sum(pos)	sum(neg)	sum(pos)/ sum(neg)	P(MIPS pos)	P(MIPS neg)	L
	1 9	6,584	171	1,094	171	1,094	0.16	2.12E-02	8.33E-04	25.5
es S	10 99	25,823	584	4,229	755	5,323	0.14	7.25E-02	3.22E-03	22.5
alue	100 1000	88,548	688	13,011	1,443	18,334	0.08	8.55E-02	9.91E-03	8.6
Š	1000 10000	255,096	6,146	47,126	7,589	65,460	0.12	7.63E-01	3.59E-02	21.3
	10000 Inf	5,785,754	462	1,248,119	8,051	1,313,579	0.01	5.74E-02	9.50E-01	0.1
	Sum	6,161,805	8,051	1,313,579	-	-	-	1.00E+00	1.00E+00	1.0

				Gold stand	ard overlap						
(GO biological process similarity		# protein pairs	pos	neg	sum(pos)	sum(neg)	sum(pos)/ sum(neg)	P(GO pos)	P(GO neg)	L
		1 9	4,789	88	819	88	819	0.11	1.17E-02	1.27E-03	9.2
	es	10 99	20,467	555	3,315	643	4,134	0.16	7.38E-02	5.14E-03	14.4
	alne	100 1000	58,738	523	10,232	1,166	14,366	0.08	6.95E-02	1.59E-02	4.4
	$\stackrel{\circ}{>}$	1000 10000	152,850	1,003	28,225	2,169	42,591	0.05	1.33E-01	4.38E-02	3.0
		10000 Inf	2,909,442	5,351	602,434	7,520	645,025	0.01	7.12E-01	9.34E-01	0.8
	Sum		3,146,286	7,520	645,025	-	-	-	1.00E+00	1.00E+00	1.0

Experimental Data Sets

In vivo pull-down: Gavin et al, Nature 415 (2002) 141 31304 pairs

Ho et al, *Nature* **415** (2002) 180 25333 pairs

HT-Y2H: Uetz et al, *Nature* **403** (2000) 623 981 pairs

Ito et al, PNAS **98** (2001) 4569 4393 pairs

4 experiments $=> 2^4 = 16$ categories — fully connected Bayes network

Causin		1154-	14	#		Gold	d-standard ov	/erlap				
Gavin (g)	(h)	(u)	(i)	# protein pairs	pos	neg	sum(pos)	sum(neg)	sum(pos)/ sum(neg)	P(g,h,u,i pos)	P(g,h,u,i neg)	L
1	1	1	0	16	6	0	6	0	-	7.27E-04	0.00E+00	-
1	0	0	1	53	26	2	32	2	16.0	3.15E-03	7.38E-07	4268.3
1	1	1	1	11	9	1	41	3	13.7	1.09E-03	3.69E-07	2955.0
1	0	1	1	22	6	1	47	4	11.8	7.27E-04	3.69E-07	1970.0
1	1	0	1	27	16	3	63	7	9.0	1.94E-03	1.11E-06	1751.1
1	0	1	0	34	12	5	75	12	6.3	1.45E-03	1.85E-06	788.0
1	1	0	0	1920	337	209	412	221	1.9	4.08E-02	7.72E-05	529.4
0	1	1	0	29	5	5	418	227	1.8	6.06E-04	1.85E-06	328.3
0	1	1	1	16	1	1	413	222	1.9	1.21E-04	3.69E-07	328.3
0	1	0	1	39	3	4	421	231	1.8	3.64E-04	1.48E-06	246.2
0	0	1	1	123	6	23	427	254	1.7	7.27E-04	8.49E-06	85.7
1	0	0	0	29221	1331	6224	1758	6478	0.3	1.61E-01	2.30E-03	70.2
0	0	1	0	730	5	112	1763	6590	0.3	6.06E-04	4.13E-05	14.7
0	0	0	1	4102	11	644	1774	7234	0.2	1.33E-03	2.38E-04	5.6
0	1	0	0	23275	87	5563	1861	12797	0.1	1.05E-02	2.05E-03	5.1
0	0	0	0	2702284	6389	2695949	8250	2708746	0.0	7.74E-01	9.95E-01	0.8

Statistical Uncertainties

Covin	Ша	llo4=	140	# protoin		Gold	П			
Gavin (g)	(h)	(u)	(i)	# protein pairs	pos	neg	ı	<i>P(g,h,u,i</i> <i>pos)</i>	P(g,h,u,i neg)	L
1	1	1	0	16	6	0		7.27E-04	0.00E+00	-
1	0	0	1	53	26	2		3.15E-03	7.38E-07	4268.3
1	1	1	1	11	9	1	П	1.09E-03	3.69E-07	2955.0
1	0	1	1	22	6	1		7.27E-04	3.69E-07	1970.0
1	1	0	1	27	16	3	П	1.94E-03	1.11E-06	1751.1
1	0	1	0	34	12	5	П	1.45E-03	1.85E-06	788.0

1) L(1111) < L(1001)

statistical uncertainty:
$$\Delta N = \sqrt{N+1}$$

Overlap with all experiments is smaller => larger uncertainty

2) L(1110) = NAN?

Conservative lower bound => assume I overlap with GN => $\Lambda(1110) \ge 1970$

Overview

Data type	Dataset			# protein pairs	Used for
Eva e vim e a tel	In-vivo pull-	Gavin et al.		31,304	Integration of
Experimental interaction	down	Ho et al.			experimental
data	Yeast two-	Uetz et al.			interaction
uaia	hybrid	Ito et al.		4,393	data (PIE)
	mRNA	Rosetta compendium		19,334,806	
Other	Expression	Cell cycle		17,467,005	De novo
genomic	Biological	GO biological process		3,146,286	prediction
features	function	MIPS function		6,161,805	(PIP)
	Essentiality			8,130,528	
Gold	Positives	Proteins in the same MIPS complex		8,250	Training &
standards	Negatives	Proteins separated by localization		2,708,746	ITACTINA

Improvements

Re-classify Gold standard complexes:
Ratio of true positives to false positives
=> None of the evidences alone was enough

$$\frac{TP}{FP}(L_{cut}) = \frac{\sum_{L>L_{cut}} pos(L)}{\sum_{L>L_{cut}} neg(L)}$$

Experiments vs. Predictions

Sensitivity:

how many of the GP are recovered

measured:

Limitation of **experimental** confirmations:

- **time**: someone must have done the experiment
- selectivity: more sensitive to certain compartments, complex types, ...

Coverage

Predicted set covers 27% of the GP

Verification of Predicted Complexes

Compare predicted complexes with available experimental evidence and directed new TAP-tag experiments

=> use directed experiments to verify new predictions (more efficient)

Consider Connectivity

Only take proteins with ≥20 links

=> preserve links inside the complex, filter false-positive links to heterogenous groups outside the complex

Summary: Bayesian Analysis

Combine weak features for powerful predictions

- boost odds via Bayes' theorem
- Gold standard sets for training the likelyhood ratios

Bayes vs. other **machine learning** techniques: (voting, unions, SVM, neuronal networks, decision trees, ...)

- => arbitrary types of data can be combined
- => weigh data according to their **reliability**
- => include conditional relations between evidences
- => easily accomodates missing data (e.g., zero overlap with GN)
- => transparent procedure
- => predictions easy to **interpret**

Connected Regions

Observation: more interactions inside a complex than to the outside

- => identify highly connected regions in a network?
- I) Fully connected region: Clique

clique :=
$$G' = (V', E' = V'^{(2)})$$

Problems with cliques:

- finding cliques is **NP-hard** ("works" $O(N^2)$ for the sparsely connected biological networks)
- biological protein complexes are not allways fully connected

Communities

Community := subset of vertices, for which the **internal** connectivity is **denser** than to the outside

Aim: map network onto tree that reflects the community structure

Hierarchical Clustering

- I) Assing a weight W_{ij} to each pair of vertices i, j that measures how "closely related" these two vertices are.
- 2) Iteratively add edges between pairs of nodes with decreasing Wij

Measures for Wii:

1) Number of **vertex-independent paths** between vertices i and j (vertex-independent paths between i and j: no shared vertex except i and j)

Menger (1927): the number of vertex-independent paths equals the number of vertices that have to be removed to cut all paths between i and j => measure for network robustness

- 2) Number of edge-independent paths between i and j
- 3) **Total number of paths** L between i and j L = 0 or ∞ => assign weight α^L with $\alpha < 1$

Problem: vertices with a single link are separated from the communities

Vertex Betweenness

Freeman (1927): count, on how many shortest paths this vertex is visited

For a graph G = (V, E) with |V| = n

Betweenness for vertex V:

$$C_B(\nu) = \frac{\sum_{s \neq \nu \neq t \in V} \sigma_{st}(\nu)}{(n-1)(n-2)}$$

Alternatively: **edge betweenness**=> to how many shortest paths does
this edge belong

Girvan-Newman Algorithm

Girvan, Newman, PNAS 99 (2002) 7821:

For a graph G = (V, E) with |V| = n, |E| = m

- 1) Calculate **betweenness** for all m edges (takes O(mn) time)
- 2) **Remove** edge with highest betweenness
- 3) **Recalculate** betweenness for all affected nodes
- 4) **Repeat** from 2) until no more edge left (at most n iterations)
- 5) Build up **tree** from V by reinserting vertices in reverse order

Works well, but **slow**: $O(mn^2) \approx O(n^3)$ for SF networks (|E| = 2 |V|) => recalculate **global** property (expensive for larger networks)

Zachary's Karate Club

- observed relations of 34 members over two years
- correlate fractions at break-up with calculated communities

Girvan, Newman, PNAS 99 (2002) 7821

with edge betweenness:

with number of edge-independent paths:

Collaboration Network

The largest component of the Santa Fe Institute collaboration network, with the primary divisions detected by the GN algorithm indicated by different vertex shapes

Faster Communities

Radicchi et al, *PNAS* **101** (2004) 2658:

Determine edge weights via edge-clustering coefficient

- => local measure
 - => much faster, esp. for large networks

Modified edge-clustering coefficient:

=> fraction of potential triangles with edge betwen i and j

$$C_{i,j}^{(3)} = \frac{z_{i,j}^{(3)} + 1}{\min[(k_i - 1), (k_j - 1)]}$$

Note: "+ I" to remove degeneracy for $z_{i,j} = 0$

$$C^{(3)} = 2 / 3 = 0.66$$

Performance

Instead of triangles: **cycles** of higher order g => continuous transition to a global measure

$$C_{i,j}^{(g)} = \frac{z_{i,j}^{(g)} + 1}{s_{i,j}^{(g)}}$$

Radicchi etal-algorithm: $O(N^2)$ for large networks

Higher Order Cycles

GN, Radicchi with g = 3

Radicchi with g = 4

=> very similar communities

Strong Communities

"Community := subgraph with more interactions inside than to the outside"

A subgraph *V* is a **community** in a...

...**strong** sense when:

$$k_i^{in}(V) > k_i^{out}(V) \quad \forall i \in V$$

=> Check every node individually

...weak sense when:

$$\sum_{i \in V} k_i^{in}(V) > \sum_{i \in V} k_i^{out}(V)$$

=> allow for borderline nodes

Radicchi et al, PNAS 101 (2004) 2658

- $\sum k_{in} = 2$, $\sum k_{out} = 1$ $\{k_{in}, k_{out}\} = \{I, I\}, \{I, 0\}$ => community in a weak sense
- Σ $k_{in} = 10$, Σ $k_{out} = 2$ $\{k_{in}, k_{out}\} = \{2, 1\}, \{2, 0\}, \{3, 1\}, \{2, 1\}, \{1, 0\}$ => community in a strong and weak sense

Summary

What you learned **today**:

- how to combine a set of **noisy evidences** into a **powerful** prediction tool
 Bayes analysis
- how to find **communities** in a network efficiently
 - => betweenness, edge-cluster-coefficient

Next lecture: Fri, Nov 4, 2011

- Modular decomposition
- Robustness

Short Test #1: Tue, Nov. 8