Term-Indexing for the Beagle Theorem Prover

Timothy Clarence Richard Cosgrove

A subthesis submitted in partial fulfillment of the degree of Bachelor of Science (Honours) at The Department of Computer Science Australian National University

© Timothy Clarence Richard Cosgrove

Typeset in Palatino by $T_E X$ and $L\!\!\!/ T_E X \, 2_{\mathcal{E}}.$

Acknowledgements

Thank you to my Supervisor and all...

Abstract

This should be the abstract to your thesis...

Contents

A	cknowled	gements	vii
Al	bstract		ix
1		duction to My Thesis Basis for this Work	
2	Backgro	und	3
	2.1 Firs	t-Order Logic Terms and Notation	. 3
	2.1.	1 FOL basics	. 3
	2.1.	1	
	2.1.	3 The Superposition Calculus	
	2.2 Aut	comated Reasoning and Theorem Proving	
		m Indexing	
		gerprint Indexing	
		Beagle Theorem Prover	
	2.5.	r	
	2.5.	8	
	2.6 Sca	la	4
3	Impleme	enting Fingerprint Indexing	7
	3.1 Init	ial Implementation	. 7
	3.1.	0 1	
	3.1.	2 Initial Problems	
	3.2 Tail	oring to Beagle	. 7
4	Results		9
	4.1 Wh	y I Did It	
		at I Did	
5	Conclus	ion	11
3		y this is a Very Clever Thesis	
A	Some Of	show Streff	10
A		rner Stuff y I Did It	13 13
	A.1 VVII	y 1 Dia it	13
В	More St	uff	15

xii	Contents	
Bibliography		17

An Introduction to My Thesis

- 1.1 The Basis for this Work
- 1.1.1 A Theoretical Framework

Background

2.1 First-Order Logic Terms and Notation

This thesis focuses around the extension of *beagle*, a *first-order logic* (FOL) theorem prover. In order to understand beagle's purpose and functions a basic understanding of the FOL logical system is required. This section provides a rudimentary overview of FOL syntax and uses; but also includes an explanation of any specialised terms and notation used throughout the paper.

2.1.1 FOL basics

2.1.2 Calculi and FOL problems

2.1.3 The Superposition Calculus

Should contain

- Variables
- Symbols
- Predicates
- Quantifiers
- Notion of soundness and completeness
- Description of a 'calculus'
- Positions

2.2 Automated Reasoning and Theorem Proving

Automated Reasoning is a rapidly growing field of research where computer programs are used to solve problems stated in first order logic statments or other formal logics.

Some existing theorem provers include:

SPASS

[Weidenbach et al. 1999]

Vampire

[Riazanov and Voronkov 1999]

E

[Schulz 2002] Should contain

Theorem prover examples

2.3 Term Indexing

Term indexing is a technique used to better locate logical terms which match rules in a prover's calculus.

Top Symbol Hashing

Discriminant Trees

2.4 Fingerprint Indexing

Fingerprint Indexing is a recent technique developed by Schulz [2012], the creator of the E prover.

2.5 The Beagle Theorem Prover

The core implementation of Beagle was developed by Peter Baumgartner et al. of NICTA. Its purpose was to demonstrate the capabilities of the *Weak Abstraction with Heirachic Superposition Calculus*; which allows the incorporation of prior knowledge via a 'background reasoning' modules.

2.5.1 The Weak Abstraction with Heirachic Superposition Calculus

2.5.2 Beagle's Shortcomings

2.6 Scala

As mentioned above *beagle* is written in *Scala*, the Scalable Language. Scala is a functional language and may be confusing to those who are not familiar with the functional programming paradigm. This thesis will contain occasional snippets of

Scala code; but note that any snippets used will be accompanied by an explanation and in general an understanding of Scala/funcitonal programming is not required.

Implementing Fingerprint Indexing

3.1 Initial Implementation

Listing 1: Scala implementation of the Fingerprint unification table. [Schulz 2012, p6]

- 3.1.1 Refactoring Current Implementation
- 3.1.2 Initial Problems
- 3.2 Tailoring to Beagle

Results

- 4.1 Why I Did It
- 4.2 What I Did

Results

Conclusion

5.1 Why this is a Very Clever Thesis

12 Conclusion

Some Other Stuff

A.1 Why I Did It

More Stuff

Bibliography

- RIAZANOV, A. AND VORONKOV, A. 1999. Vampire. In Automated Deduction CADE-16, Volume 1632 of Lecture Notes in Computer Science, pp. 292–296. Springer Berlin Heidelberg. (p.4)
- SCHULZ, S. 2002. E A Brainiac Theorem Prover. *Journal of AI Communications* 15, 2/3, 111–126. (p. 4)
- Schulz, S. 2012. Fingerprint indexing for paramodulation and rewriting. In B. Gramlich, D. Miller, and U. Sattler Eds., *Automated Reasoning*, Volume 7364 of *Lecture Notes in Computer Science*, pp. 477–483. Springer Berlin Heidelberg. (pp. 4, 7)
- Weidenbach, C., Afshordel, B., Brahm, U., Cohrs, C., Engel, T., Keen, E., Theobalt, C., and Topić, D. 1999. System description: Spass version 1.0.0. In *Automated Deduction CADE-16*, Volume 1632 of *Lecture Notes in Computer Science*, pp. 378–382. Springer Berlin Heidelberg. (p. 4)