

Politécnico de Coimbra

Departamento de Engenharia Informática e de Sistemas

Trabalho Prático nº 2 Problema de Otimização Coin Change Problem

Trabalho de Projeto para a Unidade Curricular de Introdução à Inteligência Artificial

Dario José Ferreira Santos LEI 2021110772

José Manuel Bastos Correia LEI 2021127160

Coimbra, dezembro 2024

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

Instituto Superior de Engenharia de Coimbra

T	abelas		
		odução	
		figuração	
	2.1	Modelos	
	2.2	Modelos Base	5
	2.2.1	Pesquisa Local	5
	2.2.2		6
	2.2.3	Híbrido	6
	2.3	Configurações	7
	2.3.1	População	7
	2.3.2		8
	2.4	Otimização	9
3	Con	clusão	10

TABELAS

Table 1 Pesquisa Local Iterações	5
Table 2 Evolutivo - Iterações	6
Table 3 Híbrido Base	6
Table 4 Evolutivo -População	7
Table 5 Mutação e Crossover	8
Table 6 Híbrido - Iterações	9
Table 7 Híbrido Otimizado	10

1 INTRODUÇÃO

Neste relatório vamos abordar a resolução do *Coin Change Problem*, um clássico problema de otimização.

O objetivo é determinar a combinação de moedas que permita alcançar um valor V com o menor número possível de moedas. Para tal, foram implementados e analisados três métodos de otimização: pesquisa local, algoritmo evolutivo e duas abordagens híbridas que combinam os dois métodos anteriores. A análise foca-se em estratégias para lidar com soluções inválidas, bem como na exploração de diferentes parâmetros e operadores de cada algoritmo.

As instâncias testadas apresentam diferentes níveis de complexidade, o que ajuda a avaliar a eficiência das soluções propostas. O trabalho visa comparar resultados, tentando destacar as melhores abordagens para cada método.

2 CONFIGURAÇÃO

Para cumprir com a devida análise de resultados são inicialmente configurados os parâmetros das funções.

```
Solution local_search(CoinChangeProblem *problem, int max_iterations);
Solution evolutionary_algorithm(CoinChangeProblem *problem, int
population_size, int generations);
Solution hybrid_algorithm(CoinChangeProblem *problem, int max_iterations,
int population_size, int generations);
```

- Max_iterations;
- Population_size;
- Generations;

Após execução é feita a avaliação com critério d *output* em cada execução, para cada variação o processo é executado 10 vezes, ao concluir o processo são impressos os resultados individualmente, juntamente com o cálculo da média e o melhor resultado encontrado (total de moedas).

Local Search Solutions:

Run: 1 // Executado 10 vezes;

Coin Value 0.05: 0

Coin Value 0.20: 0

Coin Value 0.50: 2

Total Coins: 2

Total Value: 1.00

// Após 10 execuções;

Local Search Best Total Coins: 2

Local Search Average Total Coins: 5.30

O mesmo processo é executado para o evolutivo e híbrido

2.1 Modelos

Configurações:

• Runs: 10;

• Ficheiros: "file1.txt", "file2.txt", "file3.txt", "file4.txt", "file5.txt";

• Iterações: 100, 1000, 5000, 10000;

• População: 50, 100, 250, 500;

• Gerações: 100;

Mutações: Incremental, Troca;Crossover: Single Point, Uniform;

2.2 Modelos Base

2.2.1 Pesquisa Local

Pesquisa Local		100it	1000	5000	10000
Filo1 tvt	Best	2	2	3	2
File1.txt	AVG	4,4	5,6	7,4	5,9
File2.txt	Best	37	35	38	39
	AVG	50,8	50,2	46,9	50
File3.txt	Best	164	183	177	179
riles.txt	AVG	188,2	190,6	187,6	194,5
File 4 tvt	Best	256	363	356	356
File4.txt	AVG	269,3	384,5	395,9	386
FileE tyt	Best	4	6	4	4
File5.txt	AVG	11	9,9	6,9	5,6

Table 1 Pesquisa Local Iterações

A Pesquisa Local aparenta ser eficiente apenas em problemas simples, apresentando limitações na apresentação de soluções com maior qualidade em problemas complexos.

2.2.2 Evolutivo

Evolutive)	100it	1000	5000	10000
File1.txt	Best	2	2	2	2
File1.txt	AVG	3,5	4,4	4,1	3,8
File2.txt	Best	42	43	43	45
	AVG	47	47,3	48	48,2
File3.txt	Best	103	194	97	101
	AVG	105,2	106,6	107,3	108,2
File 4 tyt	Best	140	147	140	144
File4.txt	AVG	157,3	161	162,3	162,6
File5.txt	Best	4	4	4	4
	AVG	6,5	6,9	6,3	6,3

Table 2 Evolutivo - Iterações

O algoritmo Evolutivo parece ser o mais robusto em termos de estabilidade e qualidade geral das soluções.

2.2.3 Híbrido

Híbrido		100it	1000	5000	10000
File1.txt	Best	2	2	2	2
rite1.txt	AVG	6,2	5,3	4,1	3,8
File2.txt	Best	41	35	38	39
	AVG	52,7	51,2	50,4	49,6
File3.txt	Best	178	173	166	183
	AVG	185,8	185,1	186,9	188,6
File4.txt	Best	347	373	362	363
	AVG	382,8	401,8	387,7	394,3
File F to t	Best	5	4	4	4
File5.txt	AVG	4,9	7,3	6,9	6,7

Table 3 Híbrido Base

O Método Híbrido é competitivo em instâncias simples, mas não apresenta melhorias significativas em problemas mais complexos.

2.3 Configurações

2.3.1 População

Para otimizar o algorítmo híbrido fomos descobrir a melhor quantidade de população para aplicar na melhoria dos próximos métodos no algorítmo Evolutivo.

Assim sendo, foi executado o algoritmo evolutivo com:

• Iterações: 10000;

• Gerações 100;

Table 4 Evolutivo -População

Evolut	ivo	50 pop	100	250	500
File1.txt	Best	2	2	2	2
rile1.txt	AVG	4,1	3,2	2,9	2,9
File2.txt	Best	46	46	45	44
	AVG	47,7	47,6	47,4	46,6
File3.txt	Best	106	106	113	121
	AVG	108,6	116,1	121,6	125,8
File4.txt	Best	141	163	176	174
	AVG	158	174,9	189,7	190,1
File5.txt	Best	4	4	4	4
	AVG	6,3	5,7	5	4,9

Com a tabela acima podemos concluir que o algorítmo evolutivo com baixa população tem bastante eficácia quando trata de problemas complexos.

Já quando a popução é mais elevada os problemas menos complexos tendem a melhorar ligeiramente.

2.3.2 Mutação e Crossover

Para melhorar o algorítmo híbrido ainda foram estudadas duas variações de mutação e crossover.

Para este estudo estabilizamos os parametros de:

• Iterações: 10000;

• Gerações:100;

• População: 500;

Esta análise serve para perceber o impacto de cada variação de mutação e crossover.

A mutação foi isolada para apenas fazer mutação incremental ou por troca e o crossover para apenas fazer ponto único ou uniforme.

Inicialmente estavam os dois ambos com um probabilidade de 50% de executar, assim pode-mos focar probabilidade de execução para obter melhores resultados.

Mutação		Crossov	er
Incremental	Swap	Single Point	Uniform
2	5	2	2
4,1	5	2,3	2,9
33	40	45	47
34,6	40	46,5	47,1
132	155	187	122
138,1	160	194,1	127,1
158	330	167	177
169	388,2	189	198,9
5	4	4	4
8,6	4	5,7	4,6

Table 5 Mutação e Crossover

Para otimizar podemos colocar uma chance de Mutação Incremental de 80% e 20% de Troca.

Para otimizar podemos colocar uma chance de Crossover Ponto Único de 60% e 40% de Uniforme.

2.4 Otimização

Realizá-mos então o estudo do híbrido para descobrir como podemos filtrar os melhores resultados através da configuração das iterações, mantendo o população no máximo para cada ficheiro avaliado, assim como os dois tipos de mutação e os dois tipos de crossover com uma probabilidade de 50% cada.

Híbrido		100it	1000	5000	10000
Filo1 tyt	Best	2	2	2	2
File1.txt	AVG	6,2	5,3	4,1	3,8
File2.txt	Best	41	35	38	39
	AVG	52,7	51,2	50,4	49,6
File3.txt	Best	178	173	166	183
	AVG	185,8	185,1	186,9	188,6
File4.txt	Best	347	373	362	363
	AVG	382,8	401,8	387,7	394,3
File F to t	Best	5	4	4	4
File5.txt	AVG	4,9	7,3	6,9	6,7

Table 6 Híbrido - Iterações

A tabela apresentada confirma que o algoritmo híbrido melhora consistentemente na obtenção da melhor solução à medida que mais iterações são executadas.

Para aprimorar ainda mais a eficiência do método híbrido, ajustamos as probabilidades associadas a cada tipo de mutação e crossover, utilizando os valores mais eficazes observados em testes preliminares.

O objetivo desta abordagem foi demonstrar que o algoritmo híbrido pode ser otimizado para diferentes conjuntos de dados ao diversificar as probabilidades de execução de cada operador de mutação e crossover. Para este experimento, foram aplicadas as seguintes probabilidades:Foram aplicadas então as seguintes probabilidades de execução:

- Mutação: Incremental (80%) e Troca (20%);
- Crossover: Ponto único (60%), Uniforme (40%);

3 CONCLUSÃO

Híbrido Otimizado		Híbrido Mut/Cross 50/50	Híbrido 1 Mut/Cross 80/20; 60/40
File1.txt	Best	2	2
FILE I.LXL	AVG	4,1	3,8
File2.txt	Best	44	48
	AVG	50	54
File3.txt	Best	188	169
THEO.IXI	AVG	192,6	186,7
File4.txt	Best	370	362
rile4.txt	AVG	394,3	388,1
File5.txt	Best	4	4
	AVG	7,3	6,6

Table 7 Híbrido Otimizado

De forma geral, o Híbrido (Mut/Cross 80/20; 60/40) revelou-se mais eficiente e consistente do que o Híbrido (Mut/Cross 50/50), apresentando melhores valores médios e soluções mais robustas em grande parte dos casos.

Embora em alguns ficheiros os melhores valores tenham sido semelhantes ou ligeiramente superiores no Híbrido (50/50), a diversificação das probabilidades de mutação e crossover no Híbrido (80/20; 60/40) permitiu alcançar um desempenho global mais estável e otimizado.

