一、第一类换元积分法

二、第二类换元积分法

$$(1) \int \mathbf{k} \mathrm{d}x = kx + C ,$$

(2) 
$$\int x^{\mu} dx = \frac{x^{\mu+1}}{\mu+1} + C \quad (\mu \neq -1),$$

$$(3) \int \frac{1}{x} dx = \ln|x| + C,$$

$$(4) \int \frac{1}{1+x^2} dx = \arctan x + C,$$

(5) 
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + C,$$

(6) 
$$\int \cos x dx = \sin x + C,$$

(7) 
$$\int \sin x dx = -\cos x + C,$$

(8) 
$$\int \sec^2 x dx = \tan x + C,$$

$$(9) \int \csc^2 x dx = -\cot x + C,$$

(10) 
$$\int \sec x \tan x dx = \sec x + C,$$

(11) 
$$\int \csc x \cot x dx = -\csc x + C,$$

$$(12) \int \mathbf{e}^x \mathrm{d}x = \mathbf{e}^x + C ,$$

(13) 
$$\int a^x dx = \frac{a^x}{\ln a} + C.$$

$$2\sin^2 x = 1 - \cos 2x$$

$$2\cos^2 x = 1 + \cos 2x$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \csc^2 x$$

$$\sin^2 x + \cos^2 x = 1$$

$$\sin \alpha \cos \beta = \frac{1}{2} \left[ \sin(\alpha + \beta) + \sin(\alpha - \beta) \right]$$

$$\cos \alpha \sin \beta = \frac{1}{2} \left[ \sin(\alpha + \beta) - \sin(\alpha - \beta) \right]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[ \cos(\alpha + \beta) + \cos(\alpha - \beta) \right]$$

$$\sin \alpha \sin \beta = -\frac{1}{2} \left[ \cos(\alpha + \beta) - \cos(\alpha - \beta) \right]$$

# 一、第一类换元积分法



$$\int \sin x \, dx = -\cos x + C$$

$$\int \sin 2x \, dx = P$$

$$\int \sin 3x \, dx = P$$

定理1 设函数 f(u) 具有原函数, $u = \varphi(u)$  ,则有换元公式

$$\int f[\varphi(x)]\varphi'(x)dx = \left(\int f(u)du\right)_{u=\varphi(x)}.$$

# 证明令

如何应用换元公式求  $\int g(x)dx$  呢?

- (1) 分解  $g(x) = f(\varphi(x))\varphi'(x)$ ,这一步最难
- (2) 凑微分  $\phi'(x)dx = d\phi(x) = du$ ,
- (3) 计算  $\int f(u) du$ . 要容易积出



已知
$$F'(x) = f(x)$$
,求  $g(x) dx$ .

分析 
$$\int g(x) \, dx$$

$$\mathbf{a}\varphi^{(x)} = \varphi'^{(x)} \, \mathbf{a}^{x}$$

$$\mathbf{观察} = \int f(\varphi(x)) \cdot \varphi'(x) \, dx$$

变形 = 
$$\int f(\varphi(x)) d\varphi(x)$$

**例1** 求  $\int \cos(2x+3) dx$ .

例2 求  $\int \frac{\mathrm{d}x}{a^2+x^2}$ .

例3 求  $\int \frac{\mathrm{d}x}{\sqrt{a^2-x^2}} (a>0).$ 

例4 求  $\int xe^{x^2} dx$ .

解令

例5 求  $\int \tan x dx$ .

解令

例6求  $\int \frac{\mathrm{d}x}{x^2 - a^2}.$ 

# 常用的几种配元形式:

1) 
$$\int f(ax+b) dx = \frac{1}{a} \int f(ax+b) \frac{d(ax+b)}{d(ax+b)}$$

$$2) \int f(x^n) x^{n-1} dx = \frac{1}{n} \int f(x^n) dx^n$$

4) 
$$\int f(\sin x) \cos x \, dx = \int f(\sin x) \frac{d\sin x}{d\sin x}$$

5) 
$$\int f(\cos x) \sin x \, dx = \int f(\cos x) \, \frac{d\cos x}{d\cos x}$$

能

6) 
$$\int f(\tan x) \sec^2 x dx = \int f(\tan x) \frac{d\tan x}{d\tan x}$$

7) 
$$\int f(e^x)e^x dx = \int f(e^x) de^x$$

8) 
$$\int f(\ln x) \frac{1}{x} dx = \int f(\ln x) \frac{d\ln x}{d\ln x}$$

例7 求  $\int \frac{\mathrm{d}x}{x(1+2\ln x)}.$ 

解令

例8 求  $\int \sec x dx$ .

解令

**例9** 求  $\int \sin^3 x \, dx$ .

解令

例10 求  $\int \sin^4 x dx$ .

解句

例11 求  $\int \sin^2 x \cos^5 x dx$ .

解句

例12 求  $\int \sin^2 x \cos^4 x dx.$ 

解令

例13 求  $\int \tan^5 x \sec^3 x dx$ .

例14 求  $\int \cos 3x \cos 2x dx$ .

例15 求 
$$\int \frac{x+1}{x(1+xe^x)} dx.$$

例16 求  $\int \frac{1}{x(x^{10}+1)} dx$ .

解令

# 二、第二类换元积分法

定理2 设 $x = \psi(t)$  是单调的、可导的函数,并且  $\psi'(t) \neq 0$  . 又设 $f[\psi(t)] \psi'(t)$  具有原函数,则有换元公式

$$\int f(x) dx = \left( \int f[\psi(t)] \psi'(t) dt \right)_{x=\psi^{-1}(t)}.$$

证明令

**例17** 求  $\int \sqrt{a^2 - x^2} dx$  (a > 0).

解令



**例18** 求  $\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} \ (a > 0).$ 

解令



返回

**例19** 求  $\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}}$  (a > 0).







# 第二换元积分法常用的4种代换

- (1)  $x = a \sin t$  用于被积函数中含有 $\sqrt{a^2 x^2}$ ,
- (2)  $x = a \tan t$  用于被积函数中含有 $\sqrt{x^2 + a^2}$ ,
- (3)  $x = a \sec t$  用于被积函数中含有 $\sqrt{x^2 a^2}$ ,
- (4)  $x = \frac{1}{t}$  用于将被积函数分母中的高次因子翻

到分子上去, 使分母的次数降低.

# 基本积分表的扩充

$$(14) \int \operatorname{sh} x \, \mathrm{d}x = \operatorname{ch} x + C \,,$$

$$(15) \int \operatorname{ch} x \, \mathrm{d}x = \operatorname{sh} x + C \,,$$

(16) 
$$\int \tan x \, dx = -\ln|\cos x| + C$$
,

$$(17) \int \cot x \, \mathrm{d}x = \ln|\sin x| + C,$$

(18) 
$$\int \sec x \, dx = \ln |\sec x + \tan x| + C,$$

(19) 
$$\int \csc x \, dx = \ln|\csc x - \cot x| + C,$$

(20) 
$$\int \frac{\mathrm{d}x}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C,$$

(21) 
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C,$$

(22) 
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C,$$

(23) 
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln\left(x + \sqrt{x^2 + a^2}\right) + C,$$

(24) 
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right| + C.$$

**例21** 求 
$$\int \frac{\mathrm{d}x}{x^2 + 2x + 3}$$
.

解令

例22 求 
$$\int \frac{\mathrm{d}x}{\sqrt{1+x-x^2}}.$$

解令

**例23** 求 
$$\int \frac{x^3 + 1}{(x^2 + 1)^2} dx.$$

解令



返回

```
课后作业
P 207
(第一换元积分):
1(2,4,6,8,10,12,14),
2(1,2,5,6,7,10,12,14,15,16,18,20,21,24,26,29,30)
```