3.4.1.1 Payback period example

Q: Project A & B compute & choose

		Project A		Project B	
	Revenues	Outlays	Revenues	Outlays	
Year 0		\$500,000		\$500,000	
Year 1	\$ 50,000		\$ 75,000		
Year 2	150,000		100,000 .		
Year 3	350,000		150,000		
Year 4	600,000		150,000		
Year 5	500,000		900,000		
b av	back Pe	rin从=	Inves	st meat	
pay	val le	(Annual	Cash	
, ,		r	Inves Annual S	aving	

7 Project B

Year	Cash Flow	Cam Cash Flow
0	(\$500,000)	(\$500,000)
ſ	\$71,000	(\$425,000)
2	\$ [00,000	(\$325,000)
3	\$ [50,000	(4175,000)
4	\$ 150,000	C\$ 251000)
5	\$900,000	275,000

 $5 - \frac{875,000}{900,000} = 4.028 \frac{1/11}{25,000} \frac{1}{25,000}$

3 choose Project A

Due to A Payback Period is smaller than B