עבודת בית 1: תכנון אלגוריתמים 2020

תאריך הגשה: 10.11.2019, 12:00 בצהריים ,תאים מספר 95,96 בקומת כניסה של בניין 37. כמו כן, יש להגיש עותק של העבודה במערכת ההגשה.

מתרגל אחראי: תומר סידי.

הוראות כלליות:

- כל עוד לא נאמר אחרת, כאשר הנכם מתבקשים לתאר אלגוריתם יש לספק את הבאות:
 - 1. תיאור מילולי של האלגוריתם.
 - 2. הוכחת נכונות.
 - 3. ניתוח זמן ריצה (לא כולל זמן הריצה של הקופסה השחורה).
 - אלגוריתם עם זמן ריצה אקספוננציאלי לא נחשב יעיל ולכן בדרך כלל לא יתקבל.
 - פתרון יש לכתוב רק בדף התשובות הנלווה לעבודה.

תזכורת:

רדוקציה הינה פתרון בעיה אחת בעזרת בעיה אחרת. באופן פורמלי (מהתרגול):

הגדרה פורמאלית ל- "רדוקציה":

יכך איז פונקציות פונקביה A היא מ- A לבעיה בעיות נתונות. רדוקציה בעיות היינה אוג פונקציות מ- A

- B בעיה A למופע של בעיה המרת הקלט, המעבירה מופע של בעיה A
- A בעיה של לפתרון של בעיה B היא פונקצית המרת הפלט, המעבירה פתרון של בעיה בעיה
- עבור מופע a לבעיה a אם B(f(a)) הוא פתרון עבור המופע a לבעיה a אזי עבור מופע a לבעיה a אחת בעיה a תחת בעיה a למופע a הוא פתרון למופע a תחת בעיה a

A בעיה את פותר הבא הבאלגוריתם שהאלגורית יש הרדוקציה, הדוקציה את כונות להוכיח

- f(a) את חשב A לבעיה a לבעיה 1.
- b את הפיתרון B לבעיה f(a) עבור המופע .2
 - A להיות הפתרון של g(b) את משב את.

כאשר f הינה תרגום הקלט, g הינה תרגום הפלט והאלגוריתם לבעיה B הינו ה"קופסא השחורה". לטובת העבודה, כשאנו מבקשים רדוקציה מבעיה A לבעיה B, יש לתת פתרון לבעיה A באמצעות קופסא שחורה של בעיה B.

 $oldsymbol{a}$ ביתן להניח כי ממיר הפלט מכיר גם את הקלט המקורי

<u>שאלה 1 (25 נקודות)</u>

תיאור מילולי של האלגוריתם:

.V השייכים ל (s, u_1 , u_2 ,t) גרף מכוון ולא ממושקל וסדרה של קודקודים שונים (G=(V,E) גרף מכוון ולא

שלב תרגום הקלט: נבנה את הגרף (G'=(V',E') באופן הבא:

.V' לכל v^{2} ניצור 3 קודקודים v^{1},v^{2},v^{3} השייכים ל 'V, למעט u_{1} עבורם ניצור אך ורק v^{2},v^{3} השייכים ל 'v

 $(x^1,y^1),(x^2,y^2),(x^3,y^3)\in E'$ ניצור $x,y\neq u_2$ ניצור $x,y\neq u_1$ גרט ($x,y\neq u_1$ לכל (x,y

 $.(v^1,u_1^1)\in E'$ אחת קשת אחת ניצור קש
 $(v,u_1)\in E$ ש כך ע $u_2\neq v\in V$ לכל לכל

לכל $(u_1,u_2)\in E$ אם $(u_1,v_1)\in E$ אז ניצור את $(u_1,v_1)\in E$ אם $(u_1,v_1)\in E$ לכל $(u_1,v_2)\in E$ אז ניצור את $(u_1,v_2)\in E$ הקשת $(u_1,v_2)\in E$

 $(v^2,u_2^2)\in E'$ ניצור קשת אחת $(v,u_2)\in E$ כך ש $u_1
eq v\in V$ לכל

 $(u_2^2,v^2),(u_2^2,v^3)\in E'$ ניצור 2 קשתות ($u_2,v)\in E$ לכל $u_1
eq v\in V$

 $.s^1,t^3\in V'$ ואת G'=(V',E') שלב הפעלת הקופסה השחורה: נשלח לבעיית המסלול הקצר את המופע

שלב תרגום הפלט: נחזיר את הפלט שקיבלנו בשלב הקודם.

<u>הוכחת הנכונות:</u>

 u_1 u_2 טענה ראשית: אורך המסלול הקצר ביותר בG- מקודקוד s לקודקוד t^3 העובר לפי הסדר בקודקודים t^3 ב t^3- פעם אחת בדיוק בכל אחד מהם, שווה לאורך במסלול הקצר ביותר מקודקוד s לקודקוד t^3 ב t^3- פעם טענת עזר: קיים ב t^3- מסלול באורך t^3- מקודקוד s לקודקוד t^3- לקודקוד t^3- לקודקוד t^3- לקודקוד t^3- אחת בדיוק בכל אחד מהם אמ"ם קיים ב t^3- מסלול באורך t^3- מקודקוד t^3-

העובר לפי הסדר G מקודקוד S לקודקוד t העובר לפי הסדר t הוכחת הטענה הראשית: א. יהי t אורך המסלול הקצר ביותר בt מקודקוד t מקודקוד t מקודקוד t מקודקוד t מקודקוד t מקודקוד t לקודקוד t לקודקוד t לקודקוד t מקודקוד t לקודקוד t מקודקוד t מקודקוד t מקודקוד t מקודקוד t באורך t באורך t בסתירה להנחה.

ב. לא קיים מסלול בG מקודקוד S לקודקוד S העובר לפי הסדר בקודקודים u_1 פעם אחת בדיוק בכל u_2 אז ע"פ u_3 אז ע"פ u_4 מסלול ב u_4 מסלול ב u_5 מקודקוד u_5 לקודקוד u_5 לקודקוד u_5 באורך u_5 כך ש u_5 אז ע"פ u_5 טענת העזר קיים מסלול ב u_5 מקודקוד u_5 לקודקוד u_5 העובר לפי הסדר בקודקודים u_5 , פעם אחת בדיוק בכל אחד מהם באורך u_5 כך ש u_5 בסתירה להנחה.

 $P=(v_1=s,v_2,...,v_{k-1},v_k=u_1,v_{k+1},...,v_{n-1},v_n=u_2,v_{n+1},...,v_{d-1},v_d=t)$ יהי \Leftarrow יהי יבול ביהי \Leftrightarrow מאורך \Rightarrow מקודקוד \Rightarrow מקודקוד \Rightarrow מהם. נתבונן בסדרת הקודקודים \Rightarrow \Rightarrow מקודקוד \Rightarrow מקודקוד \Rightarrow מקודקוד \Rightarrow מקודקוד \Rightarrow מקודקוד \Rightarrow מקודקוד \Rightarrow מחלול מאורך \Rightarrow מקודקוד \Rightarrow מחלול באורך \Rightarrow מח

${ m t}^3$ לקודקוד ${ m s}^1$ לקודקוד
מאורך d מאורך G' מאורך $P'=(v_1^1=s^1,v_2^1,,v_k^1,v_{k+1}^2,,v_n^2,v_{n+1}^3,,v_{d-1}^3,v_d^3=t^3)$ יהי
$P=(v_1=s,v_2,,v_k,v_{k+1},,v_n,v_{n+1},,v_{d-1},v_d=t)$ לקודקוד t^3 לקודקוד s^1
.t מקודקוד s מקודקוד G – ב G מקודקוד s מינו מסלול מאורך B ב ר G מקודקוד s ניתן לראות כי G הינו מסלול מאורך מי
עובר לכל הפחות פעם אחת ב \mathbf{u}_1 ולאחר ומכאן ש $\mathbf{v}_n^2 = \mathbf{u}_2$ וגם $\mathbf{v}_n^2 = \mathbf{u}_2$ ומכאן ש
אז , \mathbf{u}_1 - עובר יותר מפעם אחת ב וניח בשלילה כי P נניח בשלילה כי \mathbf{u}_2 . נניח בשלילה כי
וניתן לראות כי $P = \left(v_1 = s, v_2,, v_{l-1}, v_l = u_1,, v_j = u_1, v_{j+1}, v_{d-1}, v_d = t\right)$
d-d-d מאורך הקצר מ $G'-d-d-d-d-d-d-d-d$
אז קיים .u $_2$ - אודקוד s 1 לקודקוד, t 3 בסתירה להנחה. באופן דומה נראה כי P מקודקוד גאווירה להנחה להנחה.
מסלול מאורך d מקודקוד s לקודקוד t מעובר לפי הסדר בקודקודים ש $u_1 u_2$, פעם בדיוק בכל אחד G - ב
מהם.
<u>ניתוח זמן ריצה:</u>
<u>שלב תרגום הקלט:</u> פונקציית תרגום הקלט עושה מספר קבוע של פעולות על קודקודי וקשתות הגרף G,
ומכאן שזמן הריצה שלה הוא (O(V + E .
<u>שלב תרגום הפלט:</u> (0(1).
בסך הכל קיבלנו כי זמן הריצה הכולל של פונקציית תרגום הקלט ופונקציית תרגום הפלט, משמע זמן הריצה
הכולל של האלגוריתם מבלי להתחשב בזמן הריצה של הקופסה השחורה הינו (V + E)0.

שאלה 2 (25 נקודות)

<u>תיאור מילולי של האלגוריתם:</u>

 $U\cup M=V$ גרף לא מכוון ו $U\cap M=\emptyset$ קבוצות קודקודים $U\cap M=\emptyset$ כך ש \emptyset

או אם (y \in U או $x \in$ M) אם $\{x,y\} \in$ E אם G'=(V,E') שלב תרגום הקלט: ניצור גרף חדש

 $\{x,y\} \in E'$ אז $\{y \in M \mid x \in U\}$

שלב הפעלת הקופסה השחורה: נשלח לבעיית VC את המופע ('C'=(V,E')

<u>שלב תרגום הפלט:</u> נחזיר את הפלט שקיבלנו בשלב הקודם.

הוכחת הנכונות:

הינה L \subset V הינה קבוצת כיסוי קודקודים של הגרף G'=(V,E') אינה L \subset U הינה L ראשית: אם L \subset V טענה ראשית:

.U, M \subset V– ו G=(V,E) קבוצת חלוקה בגודל מינימאלי עבור

אמ"ם $L \subset V$ אמ"ם G'=(V,E') אינה קבוצת סיסוי קודקודים של הגרף טענת עזר: $L \subset V$ הינה קבוצת טענת עזר:

.U, M ⊂ V- I G=(V,E)

הוכחת טענה ראשית: תהי $L \subset V$ קבוצת כיסוי קודקודים של הגרף G'=(V,E') בגודל מינימאלי. ע"פ טענת $L \subset V$ אינה קבוצת חלוקה עבור $L \subset V$ ו $M \subset V - L$ נניח בשלילה כי $L \subset V$ אינה קבוצת חלוקה עבור $L \subset V$ אינה קבוצת חלוקה $L \subset V$ שהינה קבוצת חלוקה מינימלית עבור $L \subset V$ אז קיימת $L \subset V$ שהינה קבוצת חלוקה מינימלית עבור $L \subset V$ שהינה קבוצת כיסוי קודקודים של הגרף $L \subset V$ בסתירה למינימאליות $L \subset V$.

אינה $L \subset V$ אינה $L \subset V$ קבוצת כיסוי קודקודים של הגרף G'=(V,E'). נניח בשלילה כי $L \subset V$ אינה $L \subset V$ אינה $L \subset V$ תהי $L \subset V$ קבוצת כיסוי קודקודים של הגרף $L \in V$ וגם $L \in V$ אינה $L \in V$ אינה $L \in V$ בסתירה לכך ש $L \subset V$ אז קיימת קשת $L \subset V$ בי $L \in V$ אונם $L \in V$ בי וגם $L \in V$ ביטוי $L \in V$ אז קיימת קשת $L \in V$ בי $L \in V$ אונם $L \in V$ ביטוי $L \in V$ אונם $L \in V$ ביטוי $L \in V$

עניח בשלילה כי L אינה קבוצת כיסוי G=(V,E) הינה קבוצת חלוקה עבור G=(V,E) ו G=(V,E). נניח בשלילה כי L אינה קבוצת כיסוי G'=(V,E') קודקודים של הגרף G'=(V,E'). לכן קיימת קשת G'=(V,E') כך שG=(V,E') וגם G=(V,E') וגם G=(V,E') הינה קבוצת חלוקה עבור G=(V,E) ו G=(V,E)

<u>ניתוח זמן ריצה:</u>

<u>שלב תרגום הקלט:</u> פונקציית תרגום הקלט עושה מספר קבוע של פעולות על קודקודי וקשתות הגרף G, ומכאן שזמן הריצה שלה הוא (|V|+|E|.

שלב תרגום הפלט: (1)O.

בסך הכל קיבלנו כי זמן הריצה הכולל של פונקציית תרגום הקלט ופונקציית תרגום הפלט, משמע זמן הריצה הכולל של האלגוריתם מבלי להתחשב בזמן הריצה של הקופסה השחורה הינו (O(|V|+|E|).

שאלה 3 (25 נקודות)

<u>תיאור מילולי של האלגוריתם:</u>

יהיו $\mathbf{x}_1,\dots,\mathbf{x}_n$ שונים זה מזה. n יהיו

 y_1, \dots, y_n ונסמנם x_1, \dots, x_n נמיין את שלב תרגום הקלט:

נבנה את הגרף המכוון G=(V,E) באופן הבא:

עבור $v_i \in V$ עבור קודקוד נוסיף ניצור קודקוד , v_i ניצור קודקוד ובנוסף ניצור קודקוד , v_i ניצור קודקוד y_i

 $i < j \le n + 1$ לכל, $(v_i, v_j) \in E$

באופן הבא: $w:V\times V\to\mathbb{R}$ באופן הבא

 $y_i, ..., y_{j-1}$ של אבור $v_i, w_j > 0$ שבור $v_i, w_j > 0$ של אבור $v_i, v_j > 0$ של אבור $v_i, v_j > 0$

שלב הפעלת הקופסה השחורה: נשלח עבור בעיית המסלול הקל ביותר באורך k את המופע (G=(V,E),

 $.v_1,v_{n+1}$ וזוג הקודקודים $w:V imes V o \mathbb{R}$

. את הפלט שקיבלנו מהקופסה השחורה. $p=\mathrm{v}_{\mathrm{l}_1},\mathrm{v}_{\mathrm{l}_2},...\,,\mathrm{v}_{\mathrm{l}_k},\mathrm{v}_{\mathrm{l}_{k+1}}$ נסמן נסמן שלב תרגום הפלט שקיבלנו מהקופסה השחורה.

.** $\#c_1, ..., \#c_k$ נחזיר את

*עבור מספר של מספרים רציונליים שונים הממוינים נחשב את החציון באופן הבא: אם מדובר במספר אי זוגי של מספרים החציון הינו המספר האמצעי, אם מדובר במספר זוגי של מספרים אז החציון הינו הממוצע בין שני המספרים האמצעיים.

 $1 \leq \mathrm{j} < \mathrm{t}$ עבור את c_j עבור את בגרף עבור $v_{\mathrm{l}_1}, v_{\mathrm{l}_2}, \ldots, v_{\mathrm{l}_t}$ עבור אדים אייעבור סדרת קודק

 $y_{l_i}, y_{l_i+1}, \dots, y_{l_{i+1}-2}, y_{l_{i+1}-1}$ כחציון של

<u>הוכחת הנכונות:</u>

 \mathbf{v}_{n+1} אמ"ם \mathbf{k} מקודקוד \mathbf{v}_1 לקודקוד $p = \mathbf{v}_{\mathbf{l}_1}, \mathbf{v}_{\mathbf{l}_2}, ..., \mathbf{v}_{\mathbf{l}_k}, \mathbf{v}_{\mathbf{l}_{k+1}}$ אמ"ם \mathbf{k} הינה קבוצת \mathbf{k} מרכזים בעלת עלות מינימלית. \mathbf{k}

 $\mathsf{W}(\mathsf{p}) = \mathsf{cost}(\mathsf{M})$ מתקיים כי $M = \{\#c_1, ..., \#c_k\}$ ו - $p = \mathsf{v}_{l_1}, \mathsf{v}_{l_2}, ..., \mathsf{v}_{l_k}, \mathsf{v}_{l_{k+1}}$ מתקיים כי

סכום משקל כל הקשתות במסלול p ע"פ פונקציית w). (p א"פ פונקציית w).

 \mathbf{v}_{n+1} אם M הינה קבוצת k מרכזים אז קיים מסלול p אורך מאורך מרכזים k הינה קבוצת M אינה עזר 2:

 $W(p) \le cost(M) -$ כך ש

 \mathbf{v}_1 מקודקוד \mathbf{k} מקודקוד אורך ביותר מאורך ביותר $p=\mathbf{v}_{\mathbf{l}_1},\mathbf{v}_{\mathbf{l}_2},\dots,\mathbf{v}_{\mathbf{l}_k},\mathbf{v}_{\mathbf{l}_{k+1}}$ מספרים רציונליים ולכן $M=\{\#c_1,\dots,\#c_k\}$ - ו \mathbf{v}_{n+1} ולקודקוד ו

k קבוצת א מרכזים. ע"פ טענת עזר 1 נקבל כי (W(p)=cost(M). נניח בשלילה כי קיימת M' קבוצת M הינה קבוצת k

ע"פ טענת עזר 2 קיים מסלול 'p' מאורך בדיוק ע"פ מענת עזר 2 קיים מסלול (cost(M')<cost(M) מרכזים כך ש

בסתירה $W(p') \leq cost(M') < cost(M) = W(p)$ אז קיבלנו כי $W(p') \leq cost(M') - v_{n+1}$

למינימליות משקל *p*.

 $p = \mathbf{v_{l_1}}, \mathbf{v_{l_2}}, \dots, \mathbf{v_{l_k}}, \mathbf{v_{l_{k+1}}}$ - יהיו $M = \{\#c_1, \dots, \#c_k\}$ קבוצת א מרכזים בעלת עלות מינימלית ו ע"פ טענת עזר 1 נקבל כי . \mathbf{v}_{n+1} לקודקוד להבחין כי p הינו מסלול באורך בדיוק א מקודקוד מקודקוד בייוק אינו מסלול באורך בדיוק -ש כך \mathbf{v}_{n+1} לקודקוד \mathbf{v}_1 לקודקוד א מאורך בדיוק א מאורך מאלול 'p' כל ש-.cost(M')=W(p') א המקיימת (p')<W(p')<W(p) ע"פ טענת עזר 1 נקבל בנוסף כי קיימת קבוצת א M' מרכזים. בסה"כ קיבלנו כי Cost(M')=W(p')<W(p)=cost(M) בסתירה למינימליות עלותה של M. \mathbf{v}_{n+1} אז: \mathbf{v}_{n+1} לקודקוד \mathbf{v}_1 לקודקוד גיהי בדיוק א מסלול באורך מסלול $p = \mathbf{v}_{\mathbf{l}_1}, \mathbf{v}_{\mathbf{l}_2}, \dots, \mathbf{v}_{\mathbf{l}_k}, \mathbf{v}_{\mathbf{l}_{k+1}}$ אז:

$$W(p) = w(\langle v_{l_1}, v_{l_2} \rangle) + w(\langle v_{l_2} v_{l_3} \rangle) + \dots + w(\langle v_{l_k}, v_{l_{k+1}} \rangle) =$$

$$W(p) = w(\langle v_{l_1}, v_{l_2} \rangle) + w(\langle v_{l_2}, v_{l_3} \rangle) + \dots + w(\langle v_{l_k}, v_{l_{k+1}} \rangle) =$$

$$= \sum_{t=l_1}^{l_2-1} |c_{l_1} - y_t| + \sum_{t=l_2}^{l_3-1} |c_{l_2} - y_t| + \dots + \sum_{t=l_k}^{l_{k+1}-1} |c_{l_k} - y_t| =$$

$$\min_{d \in R} \sum_{t=l_1}^{l_2-1} |d - y_t| + \min_{d \in R} \sum_{t=l_2}^{l_3-1} |d - y_t| + \dots + \min_{d \in R} \sum_{t=l_k}^{l_{k+1}-1} |d - y_t| = cost(M)$$

$$\min_{d \in R} \sum_{t=1_1}^{l_2-1} |d - y_t| + \min_{d \in R} \sum_{t=l_2}^{l_3-1} |d - y_t| + \dots + \min_{d \in R} \sum_{t=l_k}^{l_{k+1}-1} |d - y_t| = cost(M)$$

הינו מרכז שעלותו נמדדת לפי m $_{
m i}\in {
m M}$ מרכזים. אם א קבוצת $M=\{m_1,...,m_{
m k}\}$ הינו מרכז שעלותו מדדת לפי מרחקו מהמספרים לרצף נקודות שלם) $y_p, y_{p+1}, ..., y_{p+q}$ מרחקו מהמספרים מרחקו (נבחין נבחין כי עלותו מדדת בהכרח ביחס לרצף נקודות שלם) על הקשת (v_p, v_{p+q+1}) , וע"פ קשתות אלה נבנה את מסלול (v_p, v_{p+q+1})

$$cost(M) = \sum_{j=1}^{k} cost(\{m_j\}) \ge \sum_{j=1}^{k} \min_{d \in R} \sum_{t=p}^{p+q} |d - y_t| = \sum_{j=1}^{k} \sum_{t=p}^{p+q} |c_p - y_t| = \sum_{j=1}^{k} w(\langle v_p, v_{p+q+1} \rangle) = W(p)$$

ניתוח זמן ריצה:

שלב תרגום הקלט: נמיין את n מרכז הקלט בזמן ריצה של (O(nlogn).

(סדרה חשבונית). נבנה את קשתות גרף G בזמן ריצה של $0(\mathrm{n}^2)$

הפעלת פונקציית המשקל עבור כל קשת תהיה בזמן ריצה של O(n), ישנן $O(n^2)$ קשתות ועל כן זמן הריצה $.0(n^3)$ של מישקול הגרף הינו

שלב תרגום הפלט: עבור כל אחד מ – k קודקודי p נבצע פעולה בזמן של O(n) ולכן זמן הריצה הכולל הינו .O(kn)

$0(\mathrm{n}^3)$ ה"כ קיבלנו כי זמן הריצה הכולל של האלגוריתם הינו	בכ
---	----

<u>שאלה 4 (25 נקודות)</u>
סעיף א
יבער אין די
$i \leq i \leq n$ - נסמן $(v_1,,v_n)$ קודקודי הגרף G. לכל י v_i כך ש $1 \leq i \leq n$ נסמן v_i
$\{v_i,v_j\}\in E$ אם $1\leq j\leq n, j\neq i$ נבצע את הבדיקה הבאה (אחרת נמשיך):
:(אחרת נמשיך) נבצע את הבדיקה הבאה אם $\{\mathbf{v}_j,\mathbf{v}_k\}\in \mathbf{E}$ אם $1\leq \mathbf{k}\leq \mathbf{n},\mathbf{k}\neq \mathbf{i},\mathbf{j}$ כך ש
.(אחרת נמשיך) (אחרת $\{ \mathbf{v}_k, \mathbf{v}_i \} \in \mathbf{E}$ אם
נחזיר "לא".
ניתן לראות כי עבור כל קודקוד אנו עושים בדיקה על שאר n-1 הקודקודים, ועל כל אחד מהם בדיקה
$O(V ^3)$ אל שאר n-2 הקודקודים ולכן זמו הריצה של האלגוריתם הינו n

סעיף ב

$v_i, v_j \in V$ יהיו
ער אז קיים $k \neq i$, נניח כי יש מסלול באורך 2 בדיוק בין v_i ל v_j ל v_j ב V_j אז קיים אז קיים \in
G_c - ב v_j - ל v_i ב אז קיימת קשת בין $C_{i,j}=1$ כך ש $A_{i,k}\wedge A_{k,j}$ אז לפי ההגדרה שניתנה לכפל מטריצה C
- ער אז קיים k בי $\mathrm{C}_{i,j}=1$. אז לפי ההגדרה שניתנה לכפל מטריצה C $_{i,j}=1$. אז קיים א כך ש \Rightarrow
$.G_{ m A}$ - כך ש $v_{ m j}$ - ל $v_{ m i}$ אז יש מסלול באורך 2 בדיוק בין איט $k eq { m i}$, אז יש $A_{ m i,k} \wedge A_{ m k,j}$

סעיף ג

מועוב מולולו של בעלנובותם:
<u>תיאור מילולי של האלגוריתם:</u>
יהי (G=(V,E) גרף פשוט ולא מכוון בעל n קודקודים.
אם (אם i, j \leq n אבור הגרף הבא: לכל מטריצת שכנויות A אם מסדר חצור הגרף הבא: אופן הבא אופן הבא אבנה מטריצת שכנויות א
$A_{i,j}=A_{j,i}=0$, אחרת. $A_{i,j}=A_{j,i}=1$ אז $\left\{ v_{i},v_{j} ight\} \in \mathbb{E}$
<u>שלב הפעלת הקופסה השחורה:</u> נשלח לבעיית כפל מטריצות את המופע: A,A (שתי מטריצות בוליאניות
מסדר nXn).
: נבצע את הבדיקה הבאה 1 \leq i, j \leq n שלב תרגום הפלט: עבור כל
.(אחרת נמשיך). אם $\mathcal{C}_{i,j}=1$ וגם $A_{i,j}=1$ נחזיר "כן" (אחרת נמשיך).
אחרת, נחזיר "לא".

<u>הוכחת נכונות:</u>
$G-$ טענה ראשית: אם קיימים (i $ eq j$) כך ש $1-$ - כך ש $C_{i,j}=1$ וגם אז קיים משולש בגרף.
וגם $A_{i,j}=1$. אז לפי הטענה שהוכחנו (i $ eq j$ i,j בך ש $C_{i,j}=1$ וגם (i $ eq j$) אז לפי הטענה שהוכחנו
.G – בייוק 2 בין v_{i} ל י v_{j} ב-Q.
.G – אז קיימת קשת בין v_{i} ל v_{i} ב $A_{i,j}=1$
אז יש מסלול באורך בדיוק 2 בין v_i ל - v_j ב v_j וגם קיימת קשת בין v_i ל - v_j ב v_j , אז קיים משולש בגרף
.G —
<u> </u>
<u>ניתוח זמן ריצה:</u>
$0(\mathrm{n}^2)$ שלב תרגום הקלט: עבור כל קודקוד אנו מבצעים בדיקה על כל שאר הקודקודים ולכן זמן הריצה הוא
שלב הפעלת הקופסה השחורה: $0(\mathrm{n}^\omega)$.
התאים של C לכל היותר ולכן זמן n^2 - שלב תרגום הפלט: אנו מבצעים בדיקה בזמן קבוע על כל אחד מ n^2
$.0(\mathrm{n}^2)$ הריצה הוא
$0(\mathrm{n}^2+\mathrm{n}^\omega)$ בסך הכל קיבלנו כי זמן הריצה של האלגוריתם כולו הינו

בהצלחה!