MCAC 201: Design and Analysis of Algorithms

Neelima Gupta

ngupta@cs.du.ac.in

January 5, 2025

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$. Examples:

Let $f(n) = 3n^2$ and $g(n) = n^2 - 2n$.

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.

Let
$$f(n) = 3n^2$$
 and $g(n) = n^2 - 2n$.
 $3n^2 \le 3n^2 + n^2 - 8n$ for all $n \ge 8$,

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.

Let
$$f(n) = 3n^2$$
 and $g(n) = n^2 - 2n$.
 $3n^2 \le 3n^2 + n^2 - 8n$ for all $n \ge 8$,
 $= 4(n^2 - 2n)$

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.

Let
$$f(n) = 3n^2$$
 and $g(n) = n^2 - 2n$.
 $3n^2 \le 3n^2 + n^2 - 8n$ for all $n \ge 8$,
 $= 4(n^2 - 2n)$
Thus, $c = 4$ and $n_0 = 8$.

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.

Let
$$f(n) = n + 3\frac{n}{\log n}$$
, $g(n) = n$
 $n + 3\frac{n}{\log n} \le 4n$ for all $n \ge 2$
Thus, $c = 4$, $n_0 = 2$.

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.

Examples:

Let
$$f(n) = n + 3\frac{n}{\log n}$$
, $g(n) = n$
 $n + 3\frac{n}{\log n} \le 4n$ for all $n \ge 2$
Thus, $c = 4$, $n_0 = 2$.

Equivalent Definition: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.

Examples:

Let
$$f(n) = n + 3\frac{n}{\log n}$$
, $g(n) = n$
 $n + 3\frac{n}{\log n} \le 4n$ for all $n \ge 2$
Thus, $c = 4$, $n_0 = 2$.

Equivalent Definition: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

c is a non negative finite constant. c cannot be ∞ .

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

- ▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

c is a non negative finite constant. c cannot be ∞ .

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

- ▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

c is a non negative finite constant. c cannot be ∞ .

► More Examples:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{7n^2 - 2n - 5}{5n^2 + 3n + 10} = \lim_{n\to\infty} \frac{7 - \frac{2}{n} - \frac{5}{n^2}}{5 + \frac{3}{n} + \frac{10}{n^2}} = \frac{7}{5}.$$

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

- ▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

c is a non negative finite constant. c cannot be ∞ .

► More Examples:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{7n^2 - 2n - 5}{5n^2 + 3n + 10} = \lim_{n\to\infty} \frac{7 - \frac{2}{n} - \frac{5}{n^2}}{5 + \frac{3}{n} + \frac{10}{n^2}} = \frac{7}{5}.$$
Computing c and n_0 : $7n^2 - 2n - 5 \le \frac{7}{5}(5n^2 + 3n + 10)$ for all $n > 1$.

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

- ▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

c is a non negative finite constant. c cannot be ∞ .

More Examples: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n+10}{n^2-100} = 0.$

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{l}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

- ▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

c is a non negative finite constant. c cannot be ∞ .

► More Examples: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n+10}{n^2-100} = 0.$ Computing c and n_0 : $2(n^2-100) = n^2 + n^2 - 200 \ge n+10$ for $n \ge \sqrt{210}$. $\ge n+10$ for $n \ge 1$. c=2, $n_0 = \max\{1, \sqrt{210}\}$

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

- ▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

c is a non negative finite constant. c cannot be ∞ .

▶ Notation: $f(n) \leq_{\infty} g(n)$ asymptotically.

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

- ▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

c is a non negative finite constant. c cannot be ∞ .

Notation: $f(n) \leq_{\infty} g(n)$ asymptotically. By asymptotically we mean within constant multiplicative factor and for large n

Consider a set \mathcal{F} of non-negative, monotonically non-decreasing functions $f: \mathbf{I}^+ \to \mathbf{R}$. Let $f, g \in \mathcal{F}$.

- ▶ f(n) = O(g(n)) iff \exists constants $c > 0, n_o > 0 : f(n) \le cg(n)$ for all $n \ge n_o$.
- **Equivalent Definition**: f(n) = O(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0\leq c<\infty$$

c is a non negative finite constant. c cannot be ∞ .

Notation: $f(n) \leq_{\infty} g(n)$ asymptotically. By asymptotically we mean within constant multiplicative factor and for large nWe say that f(n) grows at most as fast as g(n) with n asymptotically.

▶ $f(n) = \Omega(g(n))$ iff \exists constants $c > 0, n_o > 0 : f(n) \ge cg(n)$ for all $n \ge n_o$.

▶ $f(n) = \Omega(g(n))$ iff \exists constants $c > 0, n_o > 0 : f(n) \ge cg(n)$ for all $n \ge n_o$.

▶ $f(n) = \Omega(g(n))$ iff \exists constants $c > 0, n_o > 0 : f(n) \ge cg(n)$ for all $n \ge n_o$.

 $f(n) = \Omega(g(n))$ iff \exists constants $c > 0, n_o > 0 : f(n) \ge cg(n)$ for all $n \geq n_o$. Examples:

Let
$$f(n) = n^2 - 2n$$
 and $g(n) = 3n^2$.
 $4(n^2 - 2n) = 3n^2 + n^2 - 8n$ for all $n \ge 8$,

► $f(n) = \Omega(g(n))$ iff \exists constants c > 0, $n_o > 0$: $f(n) \ge cg(n)$ for all $n \ge n_o$. Examples: Let $f(n) = n^2 - 2n$ and $g(n) = 3n^2$. $4(n^2 - 2n) = 3n^2 + n^2 - 8n$ for all $n \ge 8$, $> 3n^2$

Thus, c = 1/4 and $n_0 = 8$.

► $f(n) = \Omega(g(n))$ iff \exists constants c > 0, $n_o > 0$: $f(n) \ge cg(n)$ for all $n \ge n_o$. Examples: Let $f(n) = n^2 - 2n$ and $g(n) = 3n^2$. $4(n^2 - 2n) = 3n^2 + n^2 - 8n$ for all $n \ge 8$, $> 3n^2$

Thus, c = 1/4 and $n_0 = 8$.

► $f(n) = \Omega(g(n))$ iff \exists constants c > 0, $n_o > 0$: $f(n) \ge cg(n)$ for all $n \ge n_o$. Examples: Let $f(n) = n^2 - 2n$ and $g(n) = 3n^2$. $4(n^2 - 2n) = 3n^2 + n^2 - 8n$ for all $n \ge 8$, $> 3n^2$

► $f(n) = \Omega(g(n))$ iff \exists constants $c > 0, n_o > 0 : f(n) \ge cg(n)$ for all $n \ge n_o$.

Examples:

Let
$$f(n) = 3\frac{n^2}{\log n} + n$$
, $g(n) = n$
 $3\frac{n^2}{\log n} + n \ge 4n$ for all $n \ge 1$
Thus, $c = 4$, $n_0 = 1$.

Equivalent Definition: $f(n) = \Omega(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

► $f(n) = \Omega(g(n))$ iff \exists constants $c > 0, n_o > 0 : f(n) \ge cg(n)$ for all $n \ge n_o$.

Examples:

Let
$$f(n) = 3\frac{n^2}{\log n} + n$$
, $g(n) = n$
 $3\frac{n^2}{\log n} + n \ge 4n$ for all $n \ge 1$
Thus, $c = 4$, $n_0 = 1$.

Equivalent Definition: $f(n) = \Omega(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

► $f(n) = \Omega(g(n))$ iff \exists constants $c > 0, n_o > 0 : f(n) \ge cg(n)$ for all $n \ge n_o$.

Examples:

Let
$$f(n) = 3\frac{n^2}{\log n} + n$$
, $g(n) = n$
 $3\frac{n^2}{\log n} + n \ge 4n$ for all $n \ge 1$
Thus, $c = 4$, $n_0 = 1$.

Equivalent Definition: $f(n) = \Omega(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

- ► $f(n) = \Omega(g(n))$ iff \exists constants $c > 0, n_o > 0 : f(n) \ge cg(n)$ for all $n \ge n_o$.
- **Equivalent Definition**: $f(n) = \Omega(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

- ► $f(n) = \Omega(g(n))$ iff \exists constants c > 0, $n_o > 0$: $f(n) \ge cg(n)$ for all $n \ge n_o$.
- ▶ Equivalent Definition: $f(n) = \Omega(g(n))$ iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=c, 0< c\leq \infty$$

c is a (non zero) positive constant. It can be ∞ but not 0.

► More Examples:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{5n^2 + 3n + 10}{7n^2 - 2n - 5} = \lim_{n\to\infty} \frac{5 + \frac{3}{n} + \frac{10}{n^2}}{7 - \frac{5}{n} - \frac{5}{n^2}} = \frac{5}{7}.$$

- ► $f(n) = \Omega(g(n))$ iff \exists constants $c > 0, n_o > 0 : f(n) \ge cg(n)$ for all $n \ge n_o$.
- **Equivalent Definition**: $f(n) = \Omega(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

c is a (non zero) positive constant. It can be ∞ but not 0.

► More Examples:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\lim_{n\to\infty}\frac{5n^2+3n+10}{7n^2-2n-5}=\lim_{n\to\infty}\frac{5+\frac{3}{n}+\frac{10}{n^2}}{7-\frac{2}{n}-\frac{5}{n^2}}=\frac{5}{7}.$$
 Computing c and n_0 : $(5n^2+3n+10)\leq \frac{5}{7}(7n^2-2n-5)$ for all $n>1$.

- ► $f(n) = \Omega(g(n))$ iff \exists constants $c > 0, n_o > 0 : f(n) \ge cg(n)$ for all $n \ge n_o$.
- **Equivalent Definition**: $f(n) = \Omega(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

c is a (non zero) positive constant. It can be ∞ but not 0.

More Examples: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n^2-100}{n+10} = \infty.$

- ► $f(n) = \Omega(g(n))$ iff \exists constants $c > 0, n_o > 0 : f(n) \ge cg(n)$ for all $n \ge n_o$.
- ▶ Equivalent Definition: $f(n) = \Omega(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

c is a (non zero) positive constant. It can be ∞ but not 0.

More Examples: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n^2-100}{n+10} = \infty$. Computing c and n_0 : $2(n^2-100) = (n^2+10) + n^2 - 210 \ge n^2 + 10$ for $n \ge \sqrt{210}$. $\ge n+10$ for $n \ge 1$. c = 1/2, $n_0 = \max\{1, \sqrt{210}\}$

- ► $f(n) = \Omega(g(n))$ iff \exists constants $c > 0, n_o > 0 : f(n) \ge cg(n)$ for all $n \ge n_o$.
- ▶ Equivalent Definition: $f(n) = \Omega(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c \le \infty$$

c is a (non zero) positive constant. It can be ∞ but not 0.

Notation: $f(n) \ge_{\infty} g(n)$ asymptotically. We say that f(n) grows at least as fast as g(n) with n asymptotically.

Asymptotic Notations 3: theta

► $f(n) = \theta(g(n))$ iff \exists constants $c_1, c_2 > 0, n_o > 0$: $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_o$.

► $f(n) = \theta(g(n))$ iff \exists constants $c_1, c_2 > 0, n_o > 0$: $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_o$.

► $f(n) = \theta(g(n))$ iff \exists constants $c_1, c_2 > 0, n_o > 0$: $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_o$.

$$f(n) = heta(g(n))$$

▶ $f(n) = \theta(g(n))$ iff \exists constants $c_1, c_2 > 0, n_o > 0$: $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_o$. Examples:

Let $f(n) = n^2 - 2n$ and $g(n) = 3n^2$. $\frac{1}{6}3n^2 \le (n^2 - 2n) \le 3n^2$ for all $n \ge 8$,

▶ $f(n) = \theta(g(n))$ iff \exists constants $c_1, c_2 > 0, n_o > 0$: $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_o$. Examples:

Let
$$f(n) = n^2 - 2n$$
 and $g(n) = 3n^2$.
 $\frac{1}{4}3n^2 \le (n^2 - 2n) \le 3n^2$ for all $n \ge 8$,
i.e., Thus, $(1/4)g(n) \le f(n) \le g(n)$ for all $n \ge 8$.

► $f(n) = \theta(g(n))$ iff \exists constants $c_1, c_2 > 0, n_o > 0$: $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_o$. Examples:

Let
$$f(n) = n^2 - 2n$$
 and $g(n) = 3n^2$. $\frac{1}{4}3n^2 \le (n^2 - 2n) \le 3n^2$ for all $n \ge 8$, i.e., Thus, $(1/4)g(n) \le f(n) \le g(n)$ for all $n \ge 8$. Thus, $c_1 = 1/4$, $c_2 = 1$ and $n_0 = 8$.

► $f(n) = \theta(g(n))$ iff \exists constants $c_1, c_2 > 0, n_o > 0$: $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_o$. Examples:

Let
$$f(n) = n^2 - 2n$$
 and $g(n) = 3n^2$. $\frac{1}{4}3n^2 \le (n^2 - 2n) \le 3n^2$ for all $n \ge 8$, i.e., Thus, $(1/4)g(n) \le f(n) \le g(n)$ for all $n \ge 8$. Thus, $c_1 = 1/4$, $c_2 = 1$ and $n_0 = 8$.

► $f(n) = \theta(g(n))$ iff \exists constants $c_1, c_2 > 0, n_o > 0$: $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_o$. Examples:

Examples:
Let
$$f(n) = \log_2 n$$
, $g(n) = \log_3 n$
 $\log_2 n = \log_3 2 \log_3 n$ for all n .
Thus, $c_1 = c_2 = \log_3 2$, $n_0 = 1$.

▶ Equivalent Definition: $f(n) = \theta(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c < \infty$$

c is a (non-zero) positive finite constant. c is neither 0 nor ∞ .

► $f(n) = \theta(g(n))$ iff \exists constants $c_1, c_2 > 0, n_o > 0$: $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_o$. Examples:

Let $f(n) = \log_2 n$, $g(n) = \log_3 n$ $\log_2 n = \log_3 2 \log_3 n$ for all n. Thus, $c_1 = c_2 = \log_3 2$, $n_0 = 1$.

▶ Equivalent Definition: $f(n) = \theta(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c < \infty$$

c is a (non-zero) positive finite constant. c is neither 0 nor ∞ .

Example:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{7n^2 - 2n - 5}{5n^2 + 3n + 10} = \lim_{n\to\infty} \frac{7 - \frac{2}{n} - \frac{5}{n^2}}{5 + \frac{3}{n} + \frac{10}{n^2}} = \frac{7}{5}.$$

► $f(n) = \theta(g(n))$ iff \exists constants $c_1, c_2 > 0, n_o > 0$: $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_o$. Examples:

Let $f(n) = \log_2 n, g(n) = \log_3 n$

 $\log_2 n = \log_3 2 \log_3 n$ for all n. Thus, $c_1 = c_2 = \log_3 2$, $n_0 = 1$.

Equivalent Definition: $f(n) = \theta(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c < \infty$$

c is a (non-zero) positive finite constant. c is neither 0 nor ∞ .

Example:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{7n^2 - 2n - 5}{5n^2 + 3n + 10} = \lim_{n\to\infty} \frac{7 - \frac{2}{n} - \frac{5}{n^2}}{5 + \frac{3}{n} + \frac{10}{n^2}} = \frac{7}{5}.$$

Notation: $f(n) =_{\infty} g(n)$ asymptotically.

- ► $f(n) = \theta(g(n))$ iff \exists constants $c_1, c_2 > 0, n_o > 0$: $c_1g(n) \le f(n) \le c_2g(n)$ for all $n \ge n_o$.
- **Equivalent Definition**: $f(n) = \theta(g(n))$ iff

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = c, 0 < c < \infty$$

c is a (non-zero) positive finite constant. c is neither 0 nor ∞ .

Example:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{7n^2 - 2n - 5}{5n^2 + 3n + 10} = \lim_{n\to\infty} \frac{7 - \frac{2}{n} - \frac{5}{n^2}}{5 + \frac{3}{n} + \frac{10}{n^2}} = \frac{7}{5}.$$

Notation: $f(n) =_{\infty} g(n)$ asymptotically. We say that f(n) grows at the same rate as g(n) with n, asymptotically.

▶ f(n) = o(g(n)) iff for every constant $c > 0 \exists n_c > 0$: f(n) < cg(n) for all $n \ge n_c$.

- ▶ f(n) = o(g(n)) iff for every constant $c > 0 \exists n_c > 0$: f(n) < cg(n) for all $n \ge n_c$.
- **Equivalent Definition**: f(n) = o(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

- ▶ f(n) = o(g(n)) iff for every constant $c > 0 \exists n_c > 0$: f(n) < cg(n) for all $n \ge n_c$.
- **Equivalent Definition**: f(n) = o(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Example: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n+10}{n^2-100} = 0.$

- ▶ f(n) = o(g(n)) iff for every constant $c > 0 \exists n_c > 0$: f(n) < cg(n) for all $n \ge n_c$.
- ▶ Equivalent Definition: f(n) = o(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

Example: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{\log^2 n}{\sqrt{n}} = 0.$

- ▶ f(n) = o(g(n)) iff for every constant $c > 0 \exists n_c > 0$: f(n) < cg(n) for all $n \ge n_c$.
- **Equivalent Definition**: f(n) = o(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

- Example: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n^{10}}{2^n} = 0.$
- Notation: $f(n) <_{\infty} g(n)$ asymptotically. We say that f(n) grows strictly slower than g(n) with n, asymptotically.

- ▶ f(n) = o(g(n)) iff for every constant $c > 0 \exists n_c > 0$: f(n) < cg(n) for all $n \ge n_c$.
- **Equivalent Definition**: f(n) = o(g(n)) iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

- **Example:** $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{2^n}{3^n} = 0.$
- Notation: $f(n) <_{\infty} g(n)$ asymptotically. We say that f(n) grows strictly slower than g(n) with n, asymptotically.

► $f(n) = \omega(g(n))$ iff for every constant $c > 0 \exists n_c > 0$: f(n) > cg(n) for all $n \ge n_c$

- ► $f(n) = \omega(g(n))$ iff for every constant $c > 0 \exists n_c > 0$: f(n) > cg(n) for all $n \ge n_c$
- **Equivalent Definition**: $f(n) = \omega(g(n))$ iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

- ► $f(n) = \omega(g(n))$ iff for every constant $c > 0 \exists n_c > 0$: f(n) > cg(n) for all $n \ge n_c$
- **Equivalent Definition**: $f(n) = \omega(g(n))$ iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

Example: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n^2-100}{n+10} = \infty$.

- ► $f(n) = \omega(g(n))$ iff for every constant $c > 0 \exists n_c > 0$: f(n) > cg(n) for all $n \ge n_c$
- **Equivalent Definition:** $f(n) = \omega(g(n))$ iff

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

- **Example:** $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{n^2-100}{n+10} = \infty.$
- Notation: $f(n) >_{\infty} g(n)$ asymptotically. We say that f(n) grows strictly faster than g(n) with n, asymptotically.

Some easy to prove Observations

1. $f(n) \le g(n)$ iff either f(n) < g(n) or f(n) = g(n) is true.

Some easy to prove Observations

- 1. $f(n) \le g(n)$ iff either f(n) < g(n) or f(n) = g(n) is true.
- 2. $f(n) \leq g(n)$ iff $g(n) \geq f(n)$.

Some easy to prove Observations

- 1. $f(n) \le g(n)$ iff either f(n) < g(n) or f(n) = g(n) is true.
- 2. $f(n) \leq g(n)$ iff $g(n) \geq f(n)$.
- 3. f(n) = g(n) iff $f(n) \le g(n)$ and $f(n) \ge g(n)$.

1. $f(n) = \log n, g(n) = n$

1.
$$f(n) = \log n, g(n) = n$$

$$\lim_{n\to\infty}\frac{\log n}{n}=\lim_{n\to\infty}\frac{1}{n\cdot\ln 2}=0$$

1. $f(n) = \log n, g(n) = n$

$$\lim_{n\to\infty} \frac{\log n}{n} = \lim_{n\to\infty} \frac{1}{n \cdot \ln 2} = 0$$

2.
$$f(n) = n^4$$
, $g(n) = 2^n$

1.
$$f(n) = \log n, g(n) = n$$

$$\lim_{n\to\infty}\frac{\log n}{n}=\lim_{n\to\infty}\frac{1}{n\cdot\ln 2}=0$$

2.
$$f(n) = n^4$$
, $g(n) = 2^n$

$$\lim_{n \to \infty} \frac{n^4}{2^n} = \lim_{n \to \infty} \frac{4n^3}{2^n} = \lim_{n \to \infty} \frac{12n^2}{2^n} = \lim_{n \to \infty} \frac{24n}{2^n} = \lim_{n \to \infty} \frac{24}{2^n} = 0$$

1.
$$f(n) = \log n$$
, $g(n) = n$

$$\lim_{n\to\infty}\frac{\log n}{n}=\lim_{n\to\infty}\frac{1}{n\cdot\ln 2}=0$$

2.
$$f(n) = n^4$$
, $g(n) = 2^n$

$$\lim_{n \to \infty} \frac{n^4}{2^n} = \lim_{n \to \infty} \frac{4n^3}{2^n} = \lim_{n \to \infty} \frac{12n^2}{2^n} = \lim_{n \to \infty} \frac{24n}{2^n} = \lim_{n \to \infty} \frac{24}{2^n} = 0$$

3.
$$f(n) = \log^2 n, g(n) = \sqrt{n}$$

1. $f(n) = \log n, g(n) = n$

$$\lim_{n\to\infty}\frac{\log n}{n}=\lim_{n\to\infty}\frac{1}{n\cdot\ln 2}=0$$

2. $f(n) = n^4$, $g(n) = 2^n$

$$\lim_{n \to \infty} \frac{n^4}{2^n} = \lim_{n \to \infty} \frac{4n^3}{2^n} = \lim_{n \to \infty} \frac{12n^2}{2^n} = \lim_{n \to \infty} \frac{24n}{2^n} = \lim_{n \to \infty} \frac{24}{2^n} = 0$$

3. $f(n) = \log^2 n$, $g(n) = \sqrt{n}$

$$\lim_{n \to \infty} \frac{\log^2 n}{\sqrt{n}} = \lim_{n \to \infty} \frac{2 \log n}{n} \cdot 2\sqrt{n} = \lim_{n \to \infty} \frac{4 \log n}{\sqrt{n}} = \lim_{n \to \infty} \frac{4}{n} \cdot 2\sqrt{n} = 0$$

1.
$$f(n) = \log n$$
, $g(n) = n$

$$\lim_{n\to\infty}\frac{\log n}{n}=\lim_{n\to\infty}\frac{1}{n\cdot\ln 2}=0$$

2.
$$f(n) = n^4$$
, $g(n) = 2^n$

$$\lim_{n \to \infty} \frac{n^4}{2^n} = \lim_{n \to \infty} \frac{4n^3}{2^n} = \lim_{n \to \infty} \frac{12n^2}{2^n} = \lim_{n \to \infty} \frac{24n}{2^n} = \lim_{n \to \infty} \frac{24}{2^n} = 0$$

3.
$$f(n) = \log^2 n$$
, $g(n) = \sqrt{n}$

$$\lim_{n\to\infty} \frac{\log^2 n}{\sqrt{n}} = \lim_{n\to\infty} \frac{2\log n}{n} \cdot 2\sqrt{n} = \lim_{n\to\infty} \frac{4\log n}{\sqrt{n}} = \lim_{n\to\infty} \frac{4}{n} \cdot 2\sqrt{n} = 0$$

4.
$$f(n) = 2^n$$
, $g(n) = 3^n$

$$\lim_{n \to \infty} \frac{2^n}{3^n} = \lim_{n \to \infty} (\frac{2}{3})^n = 0$$

1.
$$f(n) = \log n$$
, $g(n) = n$

$$\lim_{n\to\infty}\frac{\log n}{n}=\lim_{n\to\infty}\frac{1}{n\cdot\ln 2}=0$$

2.
$$f(n) = n^4$$
, $g(n) = 2^n$

$$\lim_{n \to \infty} \frac{n^4}{2^n} = \lim_{n \to \infty} \frac{4n^3}{2^n} = \lim_{n \to \infty} \frac{12n^2}{2^n} = \lim_{n \to \infty} \frac{24n}{2^n} = \lim_{n \to \infty} \frac{24}{2^n} = 0$$

3.
$$f(n) = \log^2 n$$
, $g(n) = \sqrt{n}$

$$\lim_{n\to\infty} \frac{\log^2 n}{\sqrt{n}} = \lim_{n\to\infty} \frac{2\log n}{n} \cdot 2\sqrt{n} = \lim_{n\to\infty} \frac{4\log n}{\sqrt{n}} = \lim_{n\to\infty} \frac{4}{n} \cdot 2\sqrt{n} = 0$$

4.
$$f(n) = 2^n$$
, $g(n) = 3^n$

$$\lim_{n \to \infty} \frac{2^n}{3^n} = \lim_{n \to \infty} (\frac{2}{3})^n = 0$$

Practice Questions

Use the equivalent definitions (limits) to prove the following:

- 1. Show that a polynomial of degree d, with positive leading coefficient is $\Theta(n^d)$.
- 2. For g(n) = f(n) + o(f(n)), show that $g(n) = \Theta(f(n))$.
- 3. Show that
 - a. $\log n = o(n)$.
 - b. $\log^M n = o(n^{\epsilon})$ where M and ϵ are positive constants.
- 4. $a^n = o(b^n)$ for all a < b.
- 5. $\log_a n = \theta(\log_b n)$.