11.15

EE23BTECH11029 - Kanishk

Question:

A SONAR system fixed in a submarine operates at a frequency 40.0 kHz. An enemy submarine moves towards the SONAR with a speed of 360 km/hr. What is the frequency of sound reflected by the submarine? Take the speed of sound in water to be 1450 m/s.

Solution:

Parameter	Description	Value
V	Speed of sound in water	1450m/s
V_e	Speed of enemy submarine	100m/s
Vrel	Relative velocity between both submarine	1550m/s
f	Frequency of SONAR wave	40kHz
y(x,t)	Equation of SONAR wave	$A\sin\left(2\pi ft - \frac{2\pi}{\lambda}x + \phi\right)$
λ	Wavelength of SONAR wave	3.625cm
f'	Frequency observed by enemy submarine	42.76kHz
λ_2	Wavelength of reflected wave	3.157cm
$T = \frac{1}{f'}$	Time period of reflected wave	23.38s
$y_2(x,t)$	Equation of reflected wave as observed from submarine	$A\sin\left(2\pi f''t - \frac{2\pi}{\lambda_2}x + \phi\right)$

Let us assume that the wave is reflected completely from enemy submarine.

$$Vrel = V + V_e \tag{1}$$

$$f' = Vrel/\lambda \tag{2}$$

$$=\left(\frac{V+Ve}{V}\right)f\tag{3}$$

$$= \left(\frac{V + Ve}{V}\right) f \tag{3}$$

$$= \left(\frac{1450 + 100}{1450}\right) 40 \tag{4}$$

$$=42.76kHz\tag{5}$$

$$\lambda_2 = T \left(V - V_e \right) \tag{6}$$

$$\begin{aligned}
\lambda_2 &= I \left(V - V_e \right) \\
&= \left(\frac{V - V_e}{f'} \right) \\
f'' &= V / \lambda_2 \\
&= \left(\frac{V}{V - V_e} \right) f'
\end{aligned} \tag{8}$$

$$f'' = V/\lambda_2 \tag{8}$$

$$=\left(\frac{V}{V-V_{e}}\right)f'\tag{9}$$

Parameter	Description	Value
$f'' = \left(\frac{V}{V - V_e}\right) f'$	Frequency of reflected wave	45.93kHz

Let us assume that amplitude of both waves is 1, So graph of waves are given as:

