Diferenciación e integración numéricas

Diferenciación numérica

Fórmula de diferencias

De la definición de derivada

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

es obvio que para obtener una aproximación a $f'(x_0)$ basta simplemente evaluar

$$\frac{f(x_0+h)-f(x_0)}{h}$$

para valores pequeños de h.

Nomenclatura: Esta aproximación se conoce como fórmula de diferencias hacia adelante si h > 0 y como fórmula de diferencias hacia atrás si h < 0.

Observación: Según el teorema Taylor, el error de aproximación de esta fórmula está acotado por M|h|/2, donde M es una cota de |f''(x)| para los valores de x entre x_0 y $x_0 + h$.

Ejemplo: Aproximar la derivada de $\ln x$ en $x_0 = 1.8$ para h = 0.1, h = 0.05 y h = 0.01, y determinar las cotas del error.

• Fórmulas de n+1 puntos

Sean $x_0 < x_1 < \cdots < x_n$, entonces

$$f(x) \approx \sum_{j=0}^{n} f(x_j) L_j(x)$$

donde L_j son los polinomios de Lagrange. Entonces, en los puntos x_0, x_1, \ldots, x_n ,

$$f'(x_k) \approx \sum_{j=0}^{n} f(x_j) L'_j(x_k),$$

con un margen de error de

$$\frac{M}{(n+1)!} \prod_{\substack{j=0\\j\neq k}}^{n} (x_k - x_j)$$

donde M es una cota de $|f^{(n+1)}(x)|$ para los valores de x entre x_0 y x_n .

Fórmulas de 3 puntos

Sean x_0 , $x_1 = x_0 + h_1$ y $x_2 = x_0 + h_2$, entonces

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{x^2 - (x_1 + x_2)x + x_1x_2}{h_1h_2}$$

con lo cual

$$L_0'(x) = \frac{2x - (x_1 + x_2)}{h_1 h_2} = \frac{2x - 2x_0 - (h_1 + h_2)}{h_1 h_2}$$

y análogamente

$$L_1'(x) = \frac{2x - 2x_0 - h_2}{h_1(h_1 - h_2)} \quad \text{y} \quad L_2'(x) = \frac{2x - 2x_0 - h_1}{h_2(h_2 - h_1)},$$

por lo tanto

$$f'(x_0) = -\frac{f(x_0)(h_1 + h_2)}{h_1 h_2} - \frac{f(x_0 + h_1)h_2}{h_1(h_1 - h_2)} - \frac{f(x_0 + h_2)h_1}{h_2(h_2 - h_1)},$$

con un margen de error de $\frac{M|h_1h_2|}{6}$ donde M es una cota de |f'''(x)| para los valores de x entre los tres puntos (observe que h_1 o h_2 pueden ser negativos).

Fórmula del punto medio de 3 puntos

Si $h_1 = -h$ y $h_2 = h$ (x_0 es el punto central):

$$f'(x_0) \approx \frac{f(x_0 + h) - f(x_0 - h)}{2h},$$

con un error de $\frac{Mh^2}{6}$.

Fórmulas de los puntos extremos de 3 puntos

Si $h_1 = h$ y $h_2 = 2h$ (x_0 es el punto extremo izquierdo):

$$f'(x_0) \approx \frac{-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)}{2h}$$

y si $h_1 = -h$ y $h_2 = -2h$ (x_0 es punto extremo derecho):

$$f'(x_0) \approx \frac{3f(x_0) - 4f(x_0 - h) + f(x_0 - 2h)}{2h}$$

ambas con un error de $\frac{Mh^2}{3}$.

Ejemplo: Supongamos que se tienen los valores de la tabla para una función f(x). Aproximar f'(2).

$$\begin{array}{c|cccc} x & f(x) \\ \hline 1.8 & 10.889365 \\ 1.9 & 12.703199 \\ 2 & 14.778112 \\ 2.1 & 17.148957 \\ 2.2 & 19.855030 \\ \hline \end{array}$$

Observación: En el ejemplo anterior $f(x) = xe^x$. ¿Qué tan buenas fueron las aproximaciones?

Existen fórmulas populares para derivadas con 5 puntos. A mayor número de puntos se espera mayor precisión, pero la creciente cantidad de operaciones puede acarrear un mayor error de redondeo.

Aproximación de la segunda derivada

De la definición de derivada

$$f''(x_0) \approx \frac{f'(x_0 + h) - f'(x_0)}{h}$$

y si se sustituyen

$$f'(x_0+h)pprox rac{f(x_0+h)-f(x_0)}{h}$$
 y $f'(x_0)pprox rac{f(x_0)-f(x_0-h)}{h}$

se obtiene que

$$f''(x_0) \approx \frac{f(x_0+h) - 2f(x_0) + f(x_0-h)}{h^2}$$

el cual tiene un margen de error de $\frac{Mh^2}{12}$ donde M es una cota de $|f^{(4)}(x)|$ para los valores de x entre x_0-h y x_0+h .

Ejemplo: En el ejercicio anterior aproximar f''(2) y estimar su error.

Con la misma idea es posible aproximar derivadas de orden superior, el cálculo será menos preciso.

Integración numérica

Sea f una función integrable en un intervalo [a,b] y sean $a \leq x_0 < x_1 < \cdots < x_n \leq b$, con lo cual

$$f(x) \approx \sum_{j=0}^{n} f(x_j) L_j(x)$$

donde L_j son los polinomios de Lagrange. Entonces

$$\int_a^b f(x)\,dx \approx \int_a^b \left[\sum_{j=0}^n f(x_j) L_j(x)\right]\,dx = \sum_{j=0}^n \left[f(x_j) \int_a^b L_j(x)\,dx\right].$$

Los métodos siguientes se basan en esta idea, tomando los puntos x_j equidistantes. Se denominan *fórmulas* cerradas de n+1 puntos de Newton-Cotes.

Regla del punto medio

Si aplicamos la idea anterior con n=0 y $x_0=\frac{a+b}{2}$ (aproximamos f mediante su valor en el punto medio de a y b), se obtiene:

$$\int_a^b f(x)\,dx \approx (b-a)f\left(\frac{a+b}{2}\right),$$

lo cual tiene un error acotado por $\frac{(b-a)^3}{24}M$, donde M es una cota a |f''(x)| para los valores de $x \in [a,b]$.

Regla del trapecio

Aplicando la idea principal con n=1, $x_0=a$ y $x_1=b$ (aproximamos la función mediante una recta) se obtiene:

$$\int_a^b f(x) dx \approx (b-a) \frac{f(a) + f(b)}{2},$$

lo cual tiene un error acotado por $\frac{(b-a)^3}{12}M$, donde M es una cota a |f''(x)| para $x \in [a,b]$.

Regla de Simpson

Aplicando la idea principal con n=2, $x_0=a$, $x_1=\frac{a+b}{2}$ y $x_2=b$ (aproximamos la función mediante una parábola), con lo cual se obtiene:

$$\int_{a}^{b} f(x) dx \approx (b-a) \frac{f(a) + 4f\left(\frac{a+b}{2}\right) + f(b)}{6},$$

lo cual tiene un error acotado por $\frac{(b-a)^5}{2880}M$, donde M es una cota a $|f^{(4)}(x)|$ para $x\in [a,b].$

Observación: Dado que la fórmula de error involucra la cuarta derivada, la regla de Simpson proporciona el valor exacto para polinomios de grado tres o inferior.

Ejercicio: Aproximar la integral de alguna de las siguientes y verificar su error teórico:

1.
$$f(x) = x^3 - 3x + 2$$
 en $[-1, 3]$

2.
$$f(x) = \cos x$$
 en $[0, \frac{2\pi}{3}]$

3.
$$f(x) = e^x$$
 en $[0, 2]$

4.
$$f(x) = \frac{1}{x+1}$$
 en $[0,2]$

Reglas compuestas

Las fórmulas de error involucran el término (b-a), así qua la precisión es menor en intervalos grandes.

Pero sabemos que

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{m} f(x) \, dx + \int_{m}^{b} f(x) \, dx$$

y más generalmente

$$\int_{a}^{b} f(x) \, dx = \int_{a=x_{0}}^{x_{1}} f(x) \, dx + \int_{x_{1}}^{x_{2}} f(x) \, dx + \dots + \int_{x_{n-1}}^{b=x_{n}} f(x) \, dx$$

por lo que una buena idea consiste en dividir el intervalo de integración en subintervalos más pequeños.

Ejercicio: Aproximar la integral elegida en el ejercicio anterior mediante una regla compuesta.

Observación: El error para una regla compuesta se calcula mediante la suma de los errores de cada subintervalo.

El siguiente algoritmo corresponde a la **regla de Simpson compuesta**:

Algoritmo: Regla de Simpson compuesta

Entrada: Valores a, b, entero positivo n, función f(x) o valores $f(x_i)$ correspondientes.

Salida: Valor I que aproxima a $\int_a^b f(x)dx$.

Paso 1: Hacer $h \leftarrow \frac{b-a}{2n}$;

$$I_1 \leftarrow 0$$
;

$$I_2 \leftarrow 0$$
;

$$x \leftarrow a + h$$
.

Paso 2: Mientras x < b hacer

$$I_1 \leftarrow I_1 + f(x);$$

$$I_2 \leftarrow I_2 + f(x+h);$$

 $x \leftarrow x + 2h.$

Paso 3: Hacer $I \leftarrow h[f(a) + 4I_1 + 2I_2 - f(b)]/3$.

Paso 4: Devolver I y terminar.

Tarea 3: Diferenciación e integración numéricas.