	History							
Type	Author	Citation	Literature Cutoff Date					
Full Evaluation	J. K. Tuli, E. Browne	NDS 157, 260 (2019)	1-Mar-2019					

 $Q(\beta^-)=-95.2\ 11$; $S(n)=9276.21\ 97$; $S(p)=12349.6\ 27$; $Q(\alpha)=-8156.8\ 36$ 2017Wa10 Reference 2018Az05 compiled in XUNDL by B. Singh (McMaster), June 17, 2018. Other reactions:

Se(n,n),(n,n'): 1976La12, E=6 MeV to 10 MeV. Natural and enriched targets. Measured $\sigma(\theta)$ for elastic and inelastic scattering. No individual levels were observed for inelastic scattering. 2000Za09 (1999Za09,1999Za07 same authors): Calculated s and p wave n-strength functions, s-wave scattering length 1976La12,1981Br23: Coupled-channels calculations 1990Go13: Coupled-channel analysis of $\sigma(\theta)$ for (n,n) and (n,n') with excitation of the 2⁺ state at E=1.5, 2.0, 2.5, 3.0, 5.0, 6.0 MeV. Others: 1984Ko09 (E=1 MeV), 1980Ko17 (slow n's).

Theoretical calculations: 1982Ah06 (transition strengths); 1988Pe04 (Boson expansion theory).

Some (beyond 1994) Calculations for 0ν , 2ν 2β - decay $T_{1/2}$, Matrix elements, theory, study of various models: 2001St24, 2001St13, 2001Si33, 2001Ka15, 2001Fa10, 2000Ve05, 2000Su06, 2000Ra13, 2000Pa47, 2000Pa25, 2000Ki24, 2000Fa14, 2000Cl02, 2000Bo05, 2000Ba68, 2000Ba54, 1999Si18, 1999Ca62, 1999Ba38, 1998Ba05, 1998Su22, 1998Su19, 1998Sc11, 1998Ru08, 1998Kl25, 1998Kl18, 1998Kl10, 1998Fa19, 1998Fa17, 1998Be49, 1998Ba76, 1998Ba55, 1998Au04, 1997To05, 1997Ra09, 1997Kr01, 1997Ej01, 1997Ba19, 1996Si29, 1996Sc09, 1996Ru21, 1996Ru04, 1996Pa02, 1996Mo23, 1996Hi06, 1996Hi04, 1996Ej02, 1996Ca35, 1996Ca35, 1996Au07, 1995Ru18, 1995Ba17.

See 1981MuZQ for neutron resonances.

⁸²Se Levels

Q value for $2\beta^{-}$ decay=2997.9 keV 5 (2017Wa10).

Cross Reference (XREF) Flags

```
82Se IT decay (6.6 ns)
        ^{82}As \beta^{-} decay (13.6 s)
                                                         ^{82}Se(p,p'\gamma)
        ^{82}As \beta^{-} decay (19.1 s)
                                                         Coulomb excitation
                                                                                                   (HI,xn\gamma)
        <sup>80</sup>Se(t,p)
C
                                                         82Se(d,d')
                                                G
        ^{82}Se(p,p'),(pol p,p')
                                                         ^{82}Se(n,n'\gamma)
                                                                                              Comments
              ABCDEFGHIJ
                                       \%2\beta^{-}=100
                                       T<sub>1/2</sub>: From 2012Si23 for T<sub>1/2</sub>(2\nu2\beta-)(^{82}Se 0<sup>+</sup> to 0<sup>+</sup>) other values: 0.83\times10^{20} y +9-7 (1999Pi08,1999Sa02), 10.8\times10^{20} y +26-6 from 1992El07 (see also 1987El11, 1987El10, 1986El01), 1.2\times10^{20} y I from geochemical
                                           measurements (1988Li11); 1.0×10<sup>20</sup> y 4 (1985Ma57), 2.8×10<sup>20</sup> y 9
                                           (1973Sr05), 1.4×10<sup>20</sup> y 3 (1970Ki21), all from isotopic anomaly of <sup>82</sup>Kr in
                                      geological samples, 0.9 \times 10^{20} y I (2002Ba52).

T_{1/2}: T_{1/2}(0v2\beta-)(^{82}Se\ 0^+\ to\ 0^+) > 3.2 \times 10^{23} y (90% confidence level); (2012Si23);>2.4 \times 10^{21} y (1999Sa02,2000Ar16, 2001Va34) other:>2.7 \times 10^{22} y (1002Ma24). Colombia T_{1/2} (2002Size) in 2002Size)
                                           (1993Mo36). Calculated T_{1/2} (2002Su13,2002Si12).
                                       T_{1/2}: >2.4E24 y lower limit for 0\nu\beta\beta decay mode (2018Az05); measured at
                                           90% credible interval, from a maximum likelihood analysis of events in the
                                           2800-3200 keV region. This half-life can be compared with T_{1/2}>3.6\times10^{23} y,
                                           obtained using NEMO detector with a larger 82 Se exposure of ≈3.5 kg y
                                           (2011Ba55).
                                       From the half-life limit, deduced effective Majorana neutrino mass of
                                           <(376-770) meV, depending on the nuclear matrix element calculations
                                           (2018Az05).
```

⁸²Se(pol d,d): 19887Nu03 E=12 MeV; measured d σ /d Ω and vector-analyzing power.

⁸²Se Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF		Comments
654.71 [#] 16	2+	12.8 ps 7	ABCDEFGHIJ		μ =+0.99 6(1978Br38,2014StZZ); Q=-0.22 7 (1977Le11,2016St14) J ^{π} : from angular distribution and vector-analyzing power in (pol p,p') (1984De01).
1410.22 <i>17</i>	0+	30 ps	BCDEF H		$T_{1/2}$: from 2016Pr01,deduced from B(E2). J^{π} : L(t,p)=0.
1731.51 10	2+	0.94 ps <i>11</i>	AB DEF	FgH J	$T_{1/2}$: from B(E2) deduced from Coulomb excitation. J^{π} : L(t,p)=2+4, L(p,p')=2+4 for the unresolved 1731+1735 doublet. $log ft$ =7.0 from (1 ⁺) and γ to 0 ⁺ indicate that this is the 2 ⁺ member of 1731+1735 doublet. $T_{1/2}$: from B(E2) deduced from Coulomb excitation.
1735.10 [#] 24	4+	0.96 ps <i>15</i>	ABCDEF	FgHIJ	μ =2.3 15 (1998Sp03,2014StZZ) J ^{π} : see 1731.51 level. T _{1/2} : from B(E2) in Coul ex, other: 0.95 ps 25 in (n,n' γ).
2550.28 <i>16</i> 2624.1 <i>4</i>	(4^+) (0^+)	1.7 [@] ps <i>3</i> 0.04 ps <i>1</i>	A CDEF	F H J H	J^{π} : γ to 2^+ ; γ from $(4^-,5^-)$. J^{π} suggested in (HI,xn γ), Coul. Ex. J^{π} : from level feeding calculations in $(n,n'\gamma)$ (1998Ko52).
2893.66 <i>18</i> 3009.14 <i>19</i>	5 ⁻ 3 ⁻	>131.7 [@] ps 0.020 ps 5	A CD BCDE	H J H	J^{π} : L(p,p')=5. J^{π} : from angular distribution and vector-analyzing power in (pol p,p').
3103.3 4	(4 ⁺)		CD	Н	J^{π} : L(p,p')=4; in conflict to this L(t,p)=(5). (n,n' γ) supports adopted J^{π} .
3144.8 [#] 5 3238.78 21	6 ⁺ (4 ⁺)	0.39 [@] ps +13-9 0.30 ps +12-8	D	IJ H	J^{π} : assumed stretched E2 cascade. XREF: D(3293). J^{π} : L(p,p')=4. E(level): 1998Ko52 did not find a level at 3293, but saw a level at
3378.44 <i>24</i>	(3-)	0.12 ps 4	D	Н	3238 with similar J^{π} . XREF: D(3384).
3445.9 <i>4</i>	0+		С	Н	J^{π} : L(p,p')=3. XREF: C(3449). J^{π} : L(t,p)=0+(5). See also 3454 level.
3454.15 20	(5 ⁻)		A	Н	J^{π} : log $ft=5.5$ from (5 ⁻). γ to (3,4 ⁺). L(t,p)=0+(5) at 3449 keV. Note, however, that the angular momentum of the L=5 admixture is more speculated than established.
3517.8# 5	8+	6.6 ns <i>4</i>		IJ	%IT=100 J^{π} : From (HI,xn γ) assumed stretched E2 cascade. Expected Configuration= $(\nu g_{9/2})^{-2}$. Systematics of 8^+ isomers In N=48 nuclides (1999Ma21,2002Is03).
3591.67 20	2+	0.28 ps +12-8	CD	Н	$T_{1/2}$: from IT decay (1999Ma21). XREF: C(3586).
3631.26 <i>21</i>	(0^{+})		D	Н	J^{π} : L(t,p)=2. XREF: D(3624). J^{π} : from level feeding calculations In (n,n' γ) (1998Ko52).
3664.0 <i>4</i>	2+		С	Н	J^{π} : L(t,p)=2.
3667.5 <i>3</i> 3688.9 <i>6</i>	$(1,2^+)$ (4^+)		B D	Н	J^{π} : log ft =6.2 from (2 ⁻) and γ to 0 ⁺ . XREF: D(3677).
3757.0 5	2+		CD	Н	J^{π} : L(p,p')=4. XREF: D(3750). J^{π} : L(t,p)=2.
3794.9 <i>5</i> 3798? <i>4</i>	(7 ⁻) (4 ⁺)		D	J	J^{π} : L(p,p')=4.
3831.0 <i>6</i> 3865.06 <i>25</i> 3917.9 <i>6</i> 4034.5 <i>4</i>	0 ⁺ (3 ⁻) 2 ⁺ 2 ⁺	0.17 ps +10-5	C D CD CD	Н Н Н	E(level): level not seen in $(n,n'\gamma)$ and other studies. J^{π} : $L(t,p)=0$. J^{π} : $L(p,p')=3$. J^{π} : $L(t,p)=2$. XREF: D(4026).

⁸²Se Levels (continued)

E(level) [†]	J^π	$T_{1/2}^{\ddagger}$	XR	EF	Comments
4088.0 <i>4</i> 4094.3 <i>3</i> 4134 <i>6</i> 4231.8 <i>9</i>	(4 ⁻ ,5 ⁻) (5 ⁻) 2 ⁺		A C	н	J^{π} : L(t,p)=2. J^{π} : log ft =5.5 from (5 $^{-}$). γ to (3,4 $^{+}$). J^{π} : J=5 from (n,n' γ) calculations (1998Ko52). J^{π} : L(t,p)=2.
4244.98 20	(1^{-})		В		J^{π} : log $ft=5.4$ from (2^{-}) , γ to 0^{+} , 2^{+} .
4391.3 <i>4</i>	2+	0.13 ps <i>3</i>	C	H	J^{π} : L(t,p)=2.
4466 <i>4</i>	(4^{+})		C		J^{π} : L(t,p)=(4).
4535 7	(4^{+})		CD		XREF: C(4518).
4.50.4.4					$J^{\pi}: L(t,p)=(4).$
4584 <i>4</i>	(4^{+})		CD		$J^{\pi}: L(t,p)=(4).$
4809 <i>13</i>	(1^{-})		С		$J_{\underline{-}}^{\pi}$: L(t,p)=(1).
4881 <i>13</i>	(4^{+})		C		J^{π} : L(t,p)=(4).
4969 <i>11</i>			C		
4983.3 8	(9^+)			J	J^{π} : from (HI,xn γ).
5029 12	(1^{-})		C		J^{π} : L(t,p)=(1).
5046.3 12				J	
5192.0 <i>10</i>				J	
5457.0 [#] 8	(10^+)	<1.04 [@] ps		J	J^{π} : from (HI,xn γ).
5687.0 9	(11)	1		j	J^{π} : from (HI,xn γ).
6128.9 10	(12)			j	J^{π} : from (HI,xn γ).

 $[\]dagger$ Levels connected by γ' s to the g.s. are calculated from the adopted gammas using least-squares fit. Others are from (p,p'), (t,p), or weighted averages of both.

γ (82Se)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult.	α [@]	Comments
654.71	2+	654.7 5	100	0 0+	[E2]	1.25×10^{-3}	$\alpha(K)$ =0.001111 <i>16</i> ; $\alpha(L)$ =0.0001181 <i>17</i> ; $\alpha(M)$ =1.84×10 ⁻⁵
							α (N)=1.553×10 ⁻⁶ 22 B(E2)(W.u.)=17.3 10
1410.22	0+	755.6 <i>1</i>	100	654.71 2+	[E2]	8.46×10^{-4}	$\alpha(K)=0.000753 \ 11; \ \alpha(L)=7.96\times10^{-5} \ 12; \ \alpha(M)=1.238\times10^{-5} \ 18$
							$\alpha(N)=1.050\times10^{-6}$ 15 B(E2)(W.u.)=3.62
1731.51	2+	1076.4 <i>4</i>	26 5	654.71 2+	[E2]	3.55×10^{-4}	$\alpha(K)=0.000316 5$; $\alpha(L)=3.30\times10^{-5} 5$; $\alpha(M)=5.14\times10^{-6} 8$ $\alpha(N)=4.38\times10^{-7} 7$
							B(E2)(W.u.)=4.1 10 E_{γ} : from β^- decay.
		1731.5 <i>1</i>	100 5	0 0+	[E2]	3.15×10^{-4}	$\alpha(K)=0.0001172\ 17;\ \alpha(L)=1.211\times10^{-5}\ 17;$ $\alpha(M)=1.88\times10^{-6}\ 3$
							α (N)=1.613×10 ⁻⁷ 23; α (IPF)=0.000184 3 B(E2)(W.u.)=1.45 21
1735.10	4+	1079.8 5	100	654.71 2 ⁺	[E2]	3.52×10^{-4}	B(E2)(W.u.)=19 3 α (K)=0.000314 5; α (L)=3.28×10 ⁻⁵ 5; α (M)=5.10×10 ⁻⁶ 8
							$\alpha(N)=4.35\times10^{-7}$ 7

[†] From DSA in $(n,n'\gamma)$, unless indicated otherwise. # Band(A): Yrast sequence (2009Po04). © From 2018Li20, recoil-distance DSA.

γ (82Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α @	Comments
2550.28	(4+)	815.1 2 818.6 2	52 <i>13</i> 91 <i>13</i>	1735.10 4 ⁺ 1731.51 2 ⁺	[E2]	6.87×10 ⁻⁴	$\alpha(K)=0.000612 \ 9; \ \alpha(L)=6.45\times10^{-5} \ 9;$ $\alpha(M)=1.003\times10^{-5} \ 14$ $\alpha(N)=8.52\times10^{-7} \ 12$
		1895.5 <i>I</i>	100 9	654.71 2+	[E2]	3.70×10 ⁻⁴	B(E2)(W.u.)=16 4 α (K)=9.88×10 ⁻⁵ 14; α (L)=1.019×10 ⁻⁵ 15; α (M)=1.586×10 ⁻⁶ 23 α (N)=1.358×10 ⁻⁷ 19; α (IPF)=0.000259 4 B(E2)(W.u.)=0.26 6
2624.1	(0+)	1969.4 <i>3</i>	100	654.71 2+	[E2]	3.98×10 ⁻⁴	$\alpha(K)=9.21\times10^{-5}\ 13;\ \alpha(L)=9.49\times10^{-6}\ 14;$ $\alpha(M)=1.476\times10^{-6}\ 21$ $\alpha(N)=1.265\times10^{-7}\ 18;\ \alpha(IPF)=0.000295\ 5$ $B(E2)(W.u.)=23\ 6$
2893.66	5-	343.3 [‡] <i>1</i> 1158.3 [‡] 8	100 [‡] 17 10 [‡] 3	2550.28 (4 ⁺) 1735.10 4 ⁺			_(=)() == :
3009.14	3-	2354.4 1	100	654.71 2+	[E1]	9.10×10 ⁻⁴	$\alpha(K)=3.94\times10^{-5} 6$; $\alpha(L)=4.03\times10^{-6} 6$; $\alpha(M)=6.27\times10^{-7} 9$ $\alpha(N)=5.38\times10^{-8} 8$; $\alpha(IPF)=0.000865 13$
3103.3	(4 ⁺)	1368.2 2	100	1735.10 4+			B(E1)(W.u.)=0.0014 4
3144.8	6+	1409.7‡ 4	‡	1735.10 4+	[E2]	2.53×10 ⁻⁴	$\alpha(K)=0.0001763 \ 25; \ \alpha(L)=1.83\times10^{-5} \ 3;$ $\alpha(M)=2.85\times10^{-6} \ 4$ $\alpha(N)=2.43\times10^{-7} \ 4; \ \alpha(IPF)=5.55\times10^{-5} \ 8$
3238.78	(4 ⁺)	1507.3 3	75 19	1731.51 2 ⁺	[E2]	2.61×10^{-4}	B(E2)(W.u.)=12 +3-5 α (K)=0.0001539 22; α (L)=1.594×10 ⁻⁵ 23; α (M)=2.48×10 ⁻⁶ 4
							α (N)=2.12×10 ⁻⁷ 3; α (IPF)=8.82×10 ⁻⁵ 13 B(E2)(W.u.)=4.9 +19-24
		2584.0 2	100 10	654.71 2 ⁺	[E2]	6.55×10^{-4}	$\alpha(K)=5.69\times10^{-5} 8$; $\alpha(L)=5.85\times10^{-6} 9$; $\alpha(M)=9.10\times10^{-7} 13$
							α (N)=7.80×10 ⁻⁸ 11; α (IPF)=0.000591 9 B(E2)(W.u.)=0.44 +14-19
3378.44	(3-)	1646.9 <i>3</i>	96 20	1731.51 2+	[E1]	4.44×10^{-4}	$\alpha(K)=6.77\times10^{-5}\ 10;\ \alpha(L)=6.94\times10^{-6}\ 10;$ $\alpha(M)=1.079\times10^{-6}\ 16$
							α (N)=9.25×10 ⁻⁸ 13; α (IPF)=0.000368 6 B(E1)(W.u.)=0.00033 14
		2723.7 3	100 10	654.71 2 ⁺	[E1]	1.12×10^{-3}	$\alpha(K)=3.21\times10^{-5} 5$; $\alpha(L)=3.28\times10^{-6} 5$; $\alpha(M)=5.10\times10^{-7} 8$
							α (N)=4.38×10 ⁻⁸ 7; α (IPF)=0.001086 16 B(E1)(W.u.)=8.E-5 3
3445.9	0^+	1714.4 <i>3</i>	100	1731.51 2 ⁺			B(E1)(W.u.)=0.E 3 3
3454.15	(5^{-})	560.5 1	100 20	2893.66 5 ⁻ 2550.28 (4 ⁺)			
3517.8	8+	903.7 <i>3</i> 373.0 2	20 <i>4</i> 100	3144.8 6 ⁺	[E2]	0.00706	$\alpha(K)$ =0.00626 9; $\alpha(L)$ =0.000687 10; $\alpha(M)$ =0.0001067 15
							α(N)=8.88×10 ⁻⁶ 13 B(E2)(W.u.)=0.56 4
3591.67	2+	1859.9 2	100 17	1731.51 2 ⁺	[E2]	3.57×10^{-4}	$\alpha(K)=0.0001024 \ 15; \ \alpha(L)=1.056\times10^{-5} \ 15;$ $\alpha(M)=1.643\times10^{-6} \ 23$
		2102.0.3	165.15	1410.00 04	FE 23	4.04. 10=1	$\alpha(N)=1.407\times10^{-7} \ 20; \ \alpha(IPF)=0.000242 \ 4$ B(E2)(W.u.)=3.3 +12-16
		2182.0 3	16.7 <i>17</i>	1410.22 0+	[E2]	4.84×10^{-4}	$\alpha(K)=7.65\times10^{-5} II; \alpha(L)=7.87\times10^{-6} II;$ $\alpha(M)=1.224\times10^{-6} I8$

γ (82Se) (continued)

E_i (level)	\mathbf{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_f	J_f^π	Mult.	α@	Comments
3591.67	2+	3591 <i>I</i>	12 5	0	0+	[E2]	1.05×10 ⁻³	$\alpha(N)=1.049\times10^{-7}$ 15; $\alpha(IPF)=0.000398$ 6 B(E2)(W.u.)=0.25 +9-12 $\alpha(K)=3.33\times10^{-5}$ 5; $\alpha(L)=3.41\times10^{-6}$ 5;
						. ,		$\alpha(M)=5.30\times10^{-7} 8$ $\alpha(N)=4.55\times10^{-8} 7$; $\alpha(IPF)=0.001017 15$ B(E2)(W.u.)=0.015 +8-10
3631.26	(0+)	1899.7 <i>3</i> 2976.5 2	67 <i>14</i> 100 <i>20</i>	1731.51 654.71				2(22)() 0.010 .0 10
3664.0	2+	1113.7 <i>3</i> 3009 <i>I</i>	100 <i>17</i> 33 <i>9</i>	2550.28 654.71	(4^{+})			
3667.5	$(1,2^+)$	3667.4 [#] <i>3</i>	100 [#]	0	0+			
3688.9 3757.0	(4 ⁺) 2 ⁺	3034.1 <i>5</i> 2346 <i>1</i>	100 32 <i>11</i>	654.71 1410.22				
		3102.4 5	100 11	654.71	2+			
3794.9 3831.0	(7 ⁻)	901.2 [‡] <i>4</i> 3176.2 <i>5</i>	100 [‡] 100	2893.66 654.71				
3865.06	(3-)	970.4 <i>3</i>	100 17	2893.66	5-			
3917.9	2+	2134.5 <i>3</i> 3263.1 <i>5</i>	83 <i>9</i> 100	1731.51 654.71				
4034.5	2 2 ⁺	1410.4 2	100	2624.1	(0^+)	[E2]	2.53×10 ⁻⁴	$\alpha(K)=0.0001761 \ 25; \ \alpha(L)=1.83\times10^{-5} \ 3;$ $\alpha(M)=2.84\times10^{-6} \ 4$
								$\alpha(N)=2.43\times10^{-7} \ 4; \ \alpha(IPF)=5.57\times10^{-5} \ 8$ B(E2)(W.u.)=28 +9-17
4088.0 4094.3	(4 ⁻ ,5 ⁻) (5 ⁻)	1539.6 <i>3</i> 1544.0 2	100 100	2550.28 2550.28				
4231.8		1087.0‡ 7	100‡	3144.8	6+			
4244.98	(1-)	2513.3 [‡] 2	87 [‡] 5	1731.51				
4391.3	2+	2835.0 [‡] <i>3</i> 2981.0 <i>3</i>	100 [‡] 6 100	1410.22 1410.22		[E2]	8.21×10^{-4}	$\alpha(K)=4.48\times10^{-5} \ 7; \ \alpha(L)=4.60\times10^{-6} \ 7;$
4371.3	2	2901.0 3	100	1410.22	U	[E2]	0.21×10	$\alpha(M) = 7.15 \times 10^{-7} \ I0$
								$\alpha(N)=6.14\times10^{-8} 9$; $\alpha(IPF)=0.000771 11$ B(E2)(W.u.)=0.87 21
4983.3	(9^{+})	1465.4 8	100‡	3517.8	8+			
5046.3		1252‡& 1	‡	3794.9	(7^{-})			
5192.0	(10+)	960.2 [‡] 5	100‡	4231.8	(O+)			
5457.0	(10^{+})	473.7 [‡] 5 1939.3 [‡] 8	100 [‡] 7 [‡] 3	4983.3 3517.8	(9 ⁺) 8 ⁺	EE 21	3.86×10^{-4}	$\alpha(K)=9.47\times10^{-5} \ 14; \ \alpha(L)=9.77\times10^{-6} \ 14;$
		1939.3* 8	7* 3	3317.8	8.	[E2]	3.80×10	$\alpha(K) = 9.47 \times 10^{-5} 14; \ \alpha(L) = 9.77 \times 10^{-5} 14; \ \alpha(M) = 1.519 \times 10^{-6} 22$ $\alpha(N) = 1.301 \times 10^{-7} 19; \ \alpha(IPF) = 0.000280 4$ $\alpha(M) = 0.000280 4$ $\alpha(M) = 0.000280 4$
5687.0	(11)	230.0 [‡] 3	100 [‡]	5457.0	(10^{+})			V V
6128.9	(12)	441.9 [‡] 5	100‡	5687.0	(11)			

 $^{^{\}dagger}$ From $(n,n'\gamma)$, unless given otherwise. ‡ From $(HI,xn\gamma)$. $^{\#}$ From 82 As β^- Decay (19.1 s). $^{@}$ Additional information 1. $^{\&}$ Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{82}_{34}\mathrm{Se}_{48}$ -6

 $^{82}_{34}\mathrm{Se}_{48}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(A): Yrast sequence (2009Po04)

