Logic Review & Exercises

Outline

- Logical Entailment
- Soundness and Completeness (Theory only)
- PL exercises with truth tables
- FOL exercises with quantifiers

Logical Entailment

• KB $\models \alpha$ only if in every model where KB is True, α is also True

•
$$KB \models \alpha$$
 iff $M(KB) \subseteq M(\alpha)$

$$x = 0 = xy = 0$$

- All cats are pink \models My cat is pink
- $P \models (P \lor Q)$

•
$$(P \land Q) \vDash (P \lor Q)$$

P	Q	$P \wedge Q$	$P \vee Q$
T	T	T	T
Т	F	F	Т
F	T	F	T
F	F	F	F

- The truth of sentence(s) in KB guarantee the truth of the sentence α and the falsity of α guarantees the falsity of KB
- Exercise: Use truth tables to show that

$$((Q \Longrightarrow P) \lor R) \nvDash (Q \Longrightarrow P)$$

Entailment (Negation) Test

- A set of sentences KB entails α (KB $\models \alpha$) iff there is <u>NO truth</u> assignment that makes the sentences in KB True AND α False
 - 1. Assume KB $\models \alpha$
 - 2. Negate α , i.e. $\neg \alpha$
 - 3. Join KB and $\neg \alpha$, i.e KB $\land \neg \alpha$
 - 4. If the result is a contradiction, then $KB \models \alpha$ otherwise $KB \not\models \alpha$
- Examples:
 - "All cats are pink" ⊨ "My cat is pink" because the sentence "All cats are pink and my cat is not pink" doesn't make sense
 - ► "All cats are pink" ⊭ "My cat likes to nap" because the sentence "All cats are pink and my cat does not like to nap" is fine

Entailment Relations (Natural Language)

• Mutual entailment (KB $\models \alpha$) \land ($\alpha \models$ KB)

KB	Mary loves John	All cats are pink	Mary is a woman
α	John is loved by Mary	There is no cat that is not pink	Mary is an adult female

Contradiction KB ⊭ α

KB	Mary loves John	All cats are pink	Mary is a woman
α	Mary does not love John	My cat is black	Mary is an adult male

• Inclusion $KB \models \alpha$

KB	Mary loves John	All cats are pink	Mary is a woman
α	Mary is fond of John	My cat is coloured	Mary is human

Soundness and Completeness of a Logical System (Theory)

- Soundness: Everything that is provable in the system is actually true
 - If $KB \vdash \alpha$ then $KB \models \alpha$
 - If something is derivable, then it is valid
 - The inference procedure/proofs don't include anything that's wrong
- Completeness: Everything that is true in the system is provable
 - ► If $\overline{KB} \models \alpha$ then $\overline{KB} \vdash \alpha$
 - If something is valid, then it is derivable
 - The inference procedure/proofs don't exclude anything that's correct
- Propositional Logic is sound and complete

Sentences in Propositional Logic

- Conjunction (∧) is normally translated to "and", also "but", "moreover", "however", "although", "while" and "even though"
- Sentences/Statements
 - S The store is open today
 - M Mary is going to the store today
 - J John is going to the store today
- Define propositional sentences using the variables above and logical connectives (¬, ∧, ∨,) for the following:
- "Either John or Mary (or both) are going to the store today" $J \vee M$
- "John is going to the store today, **but** Mary isn't" $J \wedge \neg M$
- "The store is open today, **however**, **neither** John nor Mary is going" $S \wedge (\neg J \wedge \neg M)$ apply De Morgan's law $S \wedge \neg (J \vee M)$

Propositional Logic Truth Table Exercises

- Show if these formulae are valid, satisfiable (contingent) or unsatisfiable (invalid) using truth tables
 - $(P \vee \neg P)$
 - $P \Longrightarrow Q) \lor (Q \Longrightarrow P)$
- Compute truth tables for the following formula
 - $P \vee Q) \wedge (\neg Q \wedge \neg P)$
 - $(\neg P \Rightarrow Q) \lor ((P \land \neg R) \Leftrightarrow Q)$
- Check for logical equivalence using truth tables (equal truth assignments)
 - $P \vee (\neg P \Longrightarrow Q) \equiv P \vee Q ?$

Drawing Truth Tables

- 1. How many variables are there? Draw t.t. with 2^n rows, e.g. 2 variables will have 4 rows and 3 variables will have 8 rows
- Write out all combinations of Ts and Fs for all variables, can use 1 for T and 0 for F as well in ascending order
- Ensure that anything in brackets is calculated independently
- 4. Compute the result of the formula in the last column

Truth Table Example

$$(\neg P \Longrightarrow Q) \lor ((P \land \neg R) \Longleftrightarrow Q)$$

3 variables, so $2^3 = 8$ rows

A

В

 C

P	Q	R	¬Р	$\neg P \Rightarrow Q$	¬R	$P \wedge \neg R$	$B \Leftrightarrow Q$	$A \lor C$
F	F	F						
F	F	T						
F	T	F						
F	T	T						
T	F	F						
T	F	T						
T	T	F						
T	T	T						

FOL – Nested Quantifiers

Quantification	When True	When False
$\forall x \forall y \ P(x,y)$	<i>P(x,y)</i> is true for every pair <i>x,y</i>	There is a pair <i>x, y</i> for which <i>P(x,y)</i> is false
$\forall x \exists y \ P(x,y)$	For every <i>x</i> there is a <i>y</i> for which <i>P(x,y)</i> is true	There is an <i>x</i> such that <i>P(x,y)</i> is false for every <i>y</i>
$\exists x \forall y \ P(x,y)$	There is an <i>x</i> for which <i>P(x,y)</i> is true for every <i>y</i>	For every <i>x</i> there is a <i>y</i> for which <i>P(x,y)</i> is false
$\exists x \exists y \ P(x,y)$	There is a pair x, y for which <i>P(x,y)</i> is true	<i>P(x,y)</i> is false for every pair <i>x, y</i>

FOL Nested Quantifiers Ex1

- Translate the following statement into English
- $\bullet \quad \forall x \forall y (x + y = y + x)$
- Domain: real numbers

FOL Nested Quantifiers Ex2

- Translate the following statement into English
- $\bullet \quad \forall x \exists y (x = -y)$
- Domain: real numbers

FOL Nested Quantifiers Ex3

- Translate the following statement into English
- $\forall x \forall y \ ((x > 0) \land (y < 0) \rightarrow xy < 0))$
- Domain: real numbers

Quantifiers in Human Domain 1

- Let our universe of discourse be human beings, and let Likes(x, y) mean x likes y.
 - $\forall x \exists y \text{ Likes}(x, y)$
 - $\exists y \forall x \text{ Likes}(x, y)$
 - \bullet $\forall y \exists x \text{ Likes}(x, y)$
 - $\exists x \forall y \text{ Likes}(x, y)$

Quantifiers in Human Domain 2

- "Men and women are welcome to attend."
 - $\forall x \text{ Man}(x) \land \text{Woman}(x) \rightarrow \text{CanAttend}(x)$
 - $\forall x \text{ Man}(x) \lor \text{Woman}(x) \rightarrow \text{CanAttend}(x)$
- Disjunction (v) means at least one true
- If you don't want both to be true (exclusive OR), then the sentence should be $(p \lor q) \land \neg (p \land q)$

Key Points

- Entailment (using truth tables)
- Represent English sentences in Propositional Logic and vice versa
- Truth Tables for validity, satisfiability, unsatisfiability, logical equivalence
- Represent English sentences in First Order Logic and vice versa
- Nested quantifiers in FOL

Tips

 Order truth table values in ascending or descending order (use 0/1 if more comfortable than F/T)

P	Q	R	
F	F	F	
F	F	Т	
F	Т	F	
F	Т	Т	
Т	F	F	
T	F	Т	
Т	Т	F	
Т	Т	Т	

P	Q	R	
T	T	T	
T	T	F	
T	F	Т	
T	F	F	
F	Т	T	
F	T	F	
F	F	T	
F	F	F	

P	Q	R	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

P	Q	R	
1	1	1	
1	1	0	
1	0	1	
1	0	0	
0	1	1	
0	1	0	
0	0	1	
0	0	0	

FOL to English

- Give only ONE translation in English
- If you give more than one sentence with different meanings, then only your FIRST sentence will be accepted
- Avoid using variable names such as x or y in English (except for some cases involving real numbers)

English to FOL

- Should NOT use a predicate inside another predicate
 - ► Big(Car(x)) Incorrect
 - ► Big(x) Λ Car(x) Correct
- Use the same variable to refer to the same thing
 - ► $\forall x \text{ Big(x)} \rightarrow \exists y \text{ Car(y)}$
 - This means x and y are most likely different things
 - ► \forall x Big(x) \rightarrow Car(x)