Naive Bayes on Amazon Food Reviews Dataset

Using Binary Bag of Words(BoW) and TFIDF Techniques

Data Source: https://www.kaggle.com/snap/amazon-fine-food-reviews)

The Amazon Fine Food Reviews dataset consists of reviews of fine foods from Amazon.

Number of reviews: 568,454 Number of users: 256,059 Number of products: 74,258 Timespan: Oct 1999 - Oct 2012 Number of Attributes/Columns in data: 10

Attribute Information:

- 1. index
- 2. Id
- 3. Productld unique identifier for the product
- 4. Userld unqiue identifier for the user
- 5. ProfileName
- 6. HelpfulnessNumerator number of users who found the review helpful
- 7. HelpfulnessDenominator number of users who indicated whether they found the review helpful or not
- 8. Score rating between 1 and 5
- 9. Time timestamp for the review
- 10. Summary brief summary of the review
- 11. Text text of the review
- 12. ProcessedText Cleaned & Preprocessed Text of the review

Objective: Given Amazon Food reviews, convert all the reviews into a vector using binary BoW and tfidf techniques and then apply forward chaining cross validation to determine the right value of alpha. Finally apply Naive Bayes on the top of it. Find top 10 important features. Also calculate followings performance metric scores: Accuracy, precision, recall, F1 Score and confusion metric.

[Q] How to determine if a review is positive or negative?

[Ans] We could use the Score/Rating. A rating of 4 or 5 could be cosnidered a positive review. A review of 1 or 2 could be considered negative. A review of 3 is nuetral and ignored. This is an approximate and proxy way of determining the polarity (positivity/negativity) of a review.

Loading the data

SQLite Database

In order to load the data, We have used the SQLITE dataset as it easier to query the data and visualise the data efficiently. Here as we only want to get the global sentiment of the recommendations (positive or negative), we will purposefully ignore all Scores equal to 3. If the score id above 3, then the recommendation will be set to "positive". Otherwise, it will be set to "negative".

```
In [1]: import sqlite3
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

from sklearn.naive_bayes import BernoulliNB, MultinomialNB

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix

from wordcloud import WordCloud
```

```
In [2]: connection = sqlite3.connect('FinalAmazonFoodReviewsDataset.sqlite')
```

```
In [3]: data = pd.read_sql_query("SELECT * FROM Reviews", connection)
```

In [4]:	data.head()
---------	-------------

Out[4]:		index	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time	Summary	
	0	0	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1	Positive	1303862400	Good Quality Dog Food	Sŧ
	1	1	2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	0	Negative	1346976000	Not as Advertised	lal F
	2	2	3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1	Positive	1219017600	"Delight" says it all	CC
	3	4	5	B006K2ZZ7K	A1UQRSCLF8GW1T	Michael D. Bigham "M. Wassir"	0	0	Positive	1350777600	Great taffy	1
	4	5	6	B006K2ZZ7K	ADT0SRK1MGOEU	Twoapennything	0	0	Positive	1342051200	Nice Taffy	
	4											•

In [5]: data.shape

Out[5]: (364171, 12)

```
In [6]: data["Score"].value counts()
Out[6]: Positive
                    307061
        Negative
                     57110
        Name: Score, dtype: int64
In [7]:
        def changingScores(score):
            if score == "Positive":
                return 1
            else:
                return 0
In [8]: # changing score
        # Positive = 1
        # Negative = 0
        actualScore = list(data["Score"])
        positiveNegative = list(map(changingScores, actualScore)) #map(function, list of numbers)
        data['Score'] = positiveNegative
```

In [9]: data.head() Out[9]: ProfileName HelpfulnessNumerator HelpfulnessDenominator Score index Id ProductId Userld **Time Summary** b Good sev€ B001E4KFG0 A3SGXH7AUHU8GW 1 1 1303862400 0 delmartian Quality Dog Food ν Ca Pr а Not as label 1 2 B00813GRG4 A1D87F6ZCVE5NK dll pa 0 0 0 1346976000 Advertised ξ Pea Th confe Natalia Corres "Delight" tha 2 3 B000LQOCH0 ABXLMWJIXXAIN 1 1 1219017600 1 "Natalia Corres" says it all aro taff Michael D. 3 B006K2ZZ7K A1UQRSCLF8GW1T Bigham "M. 0 0 1 1350777600 Great taffy Wassir" wil fo ADT0SRK1MG0EU Twoapennything 4 B006K2ZZ7K 0 0 1 1342051200 Nice Taffy or

In [10]: allPositiveReviews = data[(data["Score"] == 1)]

```
In [11]: allPositiveReviews.shape
Out[11]: (307061, 12)
In [12]: positiveReviews_30000 = allPositiveReviews[:30000]
In [13]: positiveReviews_30000.shape
Out[13]: (30000, 12)
```

In [14]: positiveReviews_30000.head()

Out[14]:		index	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time	Summary	
	0	0	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1	1	1303862400	Good Quality Dog Food	
	2	2	3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1	1	1219017600	"Delight" says it all	
	3	4	5	B006K2ZZ7K	A1UQRSCLF8GW1T	Michael D. Bigham "M. Wassir"	0	0	1	1350777600	Great taffy	
	4	5	6	B006K2ZZ7K	ADT0SRK1MGOEU	Twoapennything	0	0	1	1342051200	Nice Taffy	l wik for ord th
	5	6	7	B006K2ZZ7K	A1SP2KVKFXXRU1	David C. Sullivan	0	0	1	1340150400	Great! Just as good as the expensive brands!	saltı taff <u>ı</u> fla
	4											•

In [15]: | allNegativeReviews = data[(data["Score"] == 0)]

```
In [16]: allNegativeReviews.shape
Out[16]: (57110, 12)
In [17]: negativeReviews_30000 = allNegativeReviews[:30000]
In [18]: negativeReviews_30000.shape
Out[18]: (30000, 12)
```

In [19]: | negativeReviews_30000.head()

Out[19]:		index	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time	Summary	т
	1	1	2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	0	0	1346976000	Not as Advertised	Prod arriv labe Jun Sal Peanu
	11	12	13	B0009XLVG0	A327PCT23YH90	LT	1	1	0	1339545600	My Cats Are Not Fans of the New Food	My c hi bi hap eal Felic Pla
	15	16	17	B001GVISJM	A3KLWF6WQ5BNYO	Erica Neathery	0	0	0	1348099200	poor taste	I lo eat th and tl are go watc
	25	26	27	B001GVISJM	A3RXAU2N8KV45G	lady21	0	1	0	1332633600	Nasty No flavor	cand just re No fla . J pla
	45	47	51	B001EO5QW8	A108P30XVUFKXY	Roberto A	0	7	0	1203379200	Don't like it	oatm is good. mus so
	4											•

In [20]: frames_60000 = [positiveReviews_30000, negativeReviews_30000]

```
In [21]: FinalPositiveNegative = pd.concat(frames_60000)
In [22]: FinalPositiveNegative.shape
Out[22]: (60000, 12)
In [23]: #Sorting FinalDataframe by "Time"
   FinalSortedPositiveNegative_60000 = FinalPositiveNegative.sort_values('Time', axis=0, ascending=True, inplace=False)
In [24]: FinalSortedPositiveNegativeScore_60000 = FinalSortedPositiveNegative_60000["Score"]
In [25]: FinalSortedPositiveNegative_60000.shape
Out[25]: (60000, 12)
In [26]: FinalSortedPositiveNegativeScore_60000.shape
Out[26]: (60000,)
```

In [27]: FinalSortedPositiveNegative_60000.head()

Out[27]:

]: _		index	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time	Summa
	772	1146	1245	B00002Z754	A29Z5PI9BW2PU3	Robbie	7	7	1	961718400	Gre Produ
	771	1145	1244	B00002Z754	A3B8RCEI0FXFI6	B G Chase	10	10	1	962236800	WOW Mal your ov 'slickers
	19460	28087	30630	B00008RCMI	A284C7M23F0APC	A. Mendoza	0	0	1	1067040000	Bє sugarle gum evः
	19459	28086	30629	B00008RCMI	A19E94CF5O1LY7	Andrew Arnold	0	0	1	1067040000	l've chewo this gu many time but useo
	85400	121056	131233	B00004RAMX	A1PYZPS1QYR036	Kazantzakis "hinterlands"	5	8	0	1067385600	Woodstrea Gopher Tra 06
4											•

In [28]: Final_Data = FinalSortedPositiveNegative_60000

```
In [29]: Final_Data.shape
Out[29]: (60000, 12)
In [30]: Final_Data_Labels = FinalSortedPositiveNegativeScore_60000
In [31]: Final_Data_Labels.shape
Out[31]: (60000,)
```

Binary BoW

```
In [32]:
         positive reviews = Final Data[(Final Data["Score"] == 1)]
         negative reviews = Final Data[(Final Data["Score"] == 0)]
         positive reviews.shape, negative reviews.shape
In [33]:
Out[33]: ((30000, 12), (30000, 12))
         positive bow vect = CountVectorizer(stop words = "english")
In [34]:
         positive bow = positive bow vect.fit transform(positive reviews["ProcessedText"].values)
         positive bow.shape
In [35]:
Out[35]: (30000, 20285)
In [36]: features positive = positive bow vect.get feature names()
         len(features positive), type(features positive)
Out[36]: (20285, list)
In [37]:
         count = []
         for i in range(len(features positive)):
             total = positive bow.getcol(i).sum() # it will give sum of all the values in 'i'th column
             count.append(total)
```

```
In [38]: positive_dict = dict(zip(features_positive, count))
In [39]: sortedDict_Positive = sorted(positive_dict.items(), key = lambda positive_dict: positive_dict[1], reverse = True)
```

```
In [40]: for i in range(200):
              print(sortedDict Positive[i])
          ('like', 13895)
          ('tast', 12635)
          ('good', 11457)
          ('love', 10510)
          ('flavor', 10373)
          ('great', 10208)
          ('use', 9922)
          ('veri', 8959)
          ('tri', 8710)
          ('product', 8691)
          ('just', 8638)
          ('tea', 8437)
          ('coffe', 7759)
          ('make', 7602)
          ('food', 6632)
          ('time', 5416)
          ('eat', 5313)
          ('buy', 5269)
          ('realli', 5183)
          ('onli', 5119)
          ('dog', 5041)
          ('price', 4705)
          ('amazon', 4644)
          ('best', 4612)
          ('littl', 4501)
          ('chocol', 4492)
          ('dont', 4443)
         ('drink', 4361)
          ('order', 4336)
          ('becaus', 4037)
          ('ive', 3990)
          ('mix', 3987)
          ('treat', 3931)
          ('store', 3818)
          ('bag', 3785)
          ('better', 3560)
          ('recommend', 3489)
          ('ani', 3423)
```

```
('day', 3333)
('year', 3306)
('sugar', 3303)
('sweet', 3164)
('cup', 3163)
('high', 3098)
('want', 2943)
('box', 2922)
('look', 2889)
('water', 2876)
('enjoy', 2875)
('work', 2838)
('brand', 2808)
('delici', 2797)
('bar', 2674)
('nice', 2664)
('favorit', 2618)
('cat', 2617)
('bit', 2607)
('think', 2605)
('way', 2603)
('add', 2590)
('need', 2583)
('packag', 2571)
('purchas', 2560)
('sinc', 2468)
('perfect', 2429)
('thing', 2389)
('bought', 2381)
('pack', 2348)
('lot', 2325)
('free', 2310)
('snack', 2295)
('know', 2293)
('differ', 2291)
('say', 2289)
('mani', 2244)
('come', 2239)
('easi', 2202)
('milk', 2193)
('hot', 2182)
('organ', 2178)
```

```
('alway', 2078)
('everi', 2055)
('fresh', 2045)
('review', 1996)
('wonder', 1951)
('ship', 1931)
('got', 1925)
('calori', 1902)
('local', 1892)
('stuff', 1880)
('right', 1877)
('qualiti', 1870)
('doe', 1861)
('healthi', 1838)
('oil', 1837)
('regular', 1826)
('befor', 1799)
('natur', 1775)
('ingredi', 1771)
('small', 1752)
('definit', 1743)
('did', 1737)
('cooki', 1734)
('someth', 1717)
('size', 1710)
('sauc', 1705)
('ad', 1688)
('bread', 1680)
('cook', 1671)
('feel', 1637)
('hard', 1637)
('tasti', 1631)
('quick', 1624)
('excel', 1605)
('sure', 1586)
('dark', 1579)
('doesnt', 1578)
('butter', 1572)
('long', 1571)
('chicken', 1561)
('month', 1551)
('happi', 1548)
```

```
('help', 1529)
('serv', 1521)
('didnt', 1508)
('strong', 1497)
('actual', 1484)
('big', 1484)
('start', 1483)
('far', 1472)
('contain', 1471)
('quit', 1438)
('problem', 1437)
('howev', 1433)
('thank', 1433)
('rice', 1431)
('old', 1428)
('bake', 1409)
('dri', 1403)
('pretti', 1390)
('bottl', 1386)
('usual', 1375)
('diet', 1373)
('peanut', 1356)
('textur', 1355)
('low', 1352)
('fat', 1348)
('salt', 1347)
('candi', 1332)
('smell', 1331)
('bean', 1318)
('chip', 1291)
('peopl', 1286)
('open', 1244)
('friend', 1239)
('real', 1227)
('groceri', 1221)
('green', 1220)
('fruit', 1212)
('juic', 1212)
('famili', 1207)
('anoth', 1195)
('blend', 1191)
('ice', 1191)
```

```
('anyth', 1187)
('new', 1174)
('worth', 1169)
('chew', 1165)
('varieti', 1165)
('gluten', 1162)
('roast', 1161)
('protein', 1160)
('expens', 1158)
('meal', 1147)
('arriv', 1142)
('minut', 1142)
('nut', 1139)
('save', 1132)
('sever', 1132)
('thought', 1122)
('morn', 1121)
('ginger', 1109)
('item', 1102)
('light', 1101)
('kid', 1097)
('week', 1087)
('recip', 1081)
('expect', 1080)
('came', 1078)
('half', 1075)
('home', 1068)
('onc', 1056)
('prefer', 1049)
('reason', 1048)
('amaz', 1047)
('receiv', 1039)
('larg', 1028)
('theyr', 1028)
('cereal', 1025)
('absolut', 1023)
```

```
In [44]:
    def PlotWordCloud(frequency):
        worcloudPlot = WordCloud(background_color="white", width=1500, height=1000)
        worcloudPlot.generate_from_frequencies(frequencies=frequency)
        plt.figure(figsize=(15,10))
        plt.imshow(worcloudPlot, interpolation="bilinear")
        plt.axis("off")
        plt.show()
```

In [45]: PlotWordCloud(positive_dict)

This is a Word Cloud for all the positive reviews in the corpus.

This Word Cloud plot correponds to the most frequent words in all positive reviews.

How I have plotted this word cloud. Now BoW representation is based on the count of the word in a document. If a word Wi occurs in many document then the sum of its column will be high. Therefore, I have just calculated the sum of all the column and created the dictionary where keys are the features and values are the sum of that column. I feeded this dictionary to the wordcloud and plotted the same, the same procedure is followed for negative reviews as well

```
negative bow vect = CountVectorizer(stop words = "english")
In [46]:
         negative bow = negative bow vect.fit transform(negative reviews["ProcessedText"].values)
In [47]: negative bow.shape
Out[47]: (30000, 21669)
In [48]: features negative = negative bow vect.get feature names()
         len(features negative), type(features negative)
Out[48]: (21669, list)
In [49]:
         count = []
         for i in range(len(features negative)):
             total = negative bow.getcol(i).sum() # it will give sum of all the values in 'i'th column
             count.append(total)
         negative dict = dict(zip(features negative, count))
In [50]:
         sortedDict Negative = sorted(negative dict.items(), key = lambda negative dict: negative dict[1], reverse = True)
In [51]:
```

```
In [52]: for i in range(200):
              print(sortedDict Negative[i])
          ('tast', 18519)
          ('like', 17349)
          ('product', 14820)
          ('flavor', 10387)
          ('just', 9860)
          ('tri', 9551)
          ('veri', 8848)
          ('good', 8065)
          ('use', 8041)
          ('coffe', 7995)
          ('buy', 7165)
          ('food', 6949)
          ('order', 6571)
          ('dont', 6387)
          ('tea', 5895)
          ('box', 5586)
          ('becaus', 5462)
         ('amazon', 5284)
          ('onli', 5245)
          ('time', 5220)
          ('make', 5208)
          ('eat', 5192)
          ('bag', 5151)
          ('dog', 5103)
          ('realli', 5075)
          ('look', 4843)
          ('love', 4635)
          ('packag', 4621)
          ('review', 4408)
          ('purchas', 4207)
          ('did', 4153)
          ('bought', 4046)
          ('ani', 3995)
          ('bad', 3983)
          ('better', 3870)
         ('chocol', 3841)
          ('disappoint', 3812)
          ('want', 3798)
```

```
('drink', 3771)
('water', 3730)
('think', 3694)
('price', 3554)
('say', 3505)
('know', 3490)
('didnt', 3460)
('ingredi', 3370)
('smell', 3268)
('brand', 3202)
('sugar', 3175)
('great', 3141)
('way', 3139)
('thought', 3125)
('got', 3100)
('ive', 3089)
('littl', 3077)
('someth', 3011)
('store', 2877)
('thing', 2863)
('receiv', 2828)
('befor', 2762)
('money', 2755)
('differ', 2729)
('item', 2724)
('open', 2696)
('mix', 2691)
('cup', 2680)
('pack', 2659)
('day', 2626)
('sweet', 2536)
('doe', 2483)
('year', 2467)
('contain', 2374)
('cooki', 2348)
('stuff', 2335)
('howev', 2334)
('sinc', 2319)
('recommend', 2311)
('ship', 2309)
('away', 2307)
('work', 2276)
```

```
('compani', 2257)
('old', 2242)
('doesnt', 2219)
('dri', 2192)
('sure', 2161)
('cat', 2139)
('bottl', 2124)
('come', 2088)
('expect', 2076)
('actual', 2065)
('mani', 2064)
('hard', 2063)
('lot', 2042)
('bar', 2040)
('anoth', 1988)
('return', 1986)
('treat', 1985)
('hope', 1964)
('new', 1955)
('qualiti', 1954)
('read', 1932)
('natur', 1910)
('wast', 1904)
('need', 1903)
('problem', 1903)
('mayb', 1859)
('bit', 1827)
('small', 1827)
('star', 1818)
('peopl', 1764)
('whi', 1763)
('wont', 1755)
('noth', 1746)
('high', 1744)
('organ', 1738)
('list', 1702)
('anyth', 1686)
('textur', 1675)
('month', 1655)
('oil', 1652)
('candi', 1644)
('said', 1632)
```

```
('arriv', 1593)
('piec', 1567)
('hot', 1557)
('local', 1557)
('real', 1556)
('ill', 1554)
('free', 1544)
('milk', 1523)
('best', 1521)
('green', 1508)
('feel', 1506)
('enjoy', 1504)
('end', 1481)
('salt', 1467)
('label', 1465)
('ad', 1464)
('stick', 1451)
('coconut', 1433)
('right', 1432)
('case', 1426)
('chang', 1421)
('instead', 1418)
('sauc', 1418)
('bitter', 1403)
('strong', 1399)
('pretti', 1386)
('bean', 1372)
('came', 1370)
('sever', 1351)
('big', 1346)
('kind', 1344)
('chew', 1343)
('worth', 1342)
('regular', 1336)
('half', 1331)
('fresh', 1322)
('gave', 1318)
('start', 1314)
('week', 1308)
('far', 1307)
('everi', 1295)
('size', 1294)
```

```
('chip', 1289)
('color', 1286)
('wasnt', 1270)
('probabl', 1247)
('terribl', 1246)
('fruit', 1244)
('care', 1238)
('horribl', 1234)
('juic', 1231)
('chicken', 1224)
('date', 1222)
('peanut', 1216)
('unfortun', 1210)
('isnt', 1197)
('guess', 1188)
('cereal', 1187)
('aw', 1181)
('plastic', 1180)
('usual', 1177)
('butter', 1175)
('quit', 1175)
('calori', 1170)
('rice', 1170)
('second', 1164)
('corn', 1154)
('throw', 1153)
('notic', 1145)
('went', 1145)
('wouldnt', 1142)
('save', 1134)
('cost', 1130)
('long', 1127)
('mouth', 1126)
('leav', 1125)
('nice', 1125)
('custom', 1121)
```

In [53]: PlotWordCloud(negative_dict)

This is a Word Cloud for all the negative reviews in the corpus.

This Word Cloud plot correponds to the most frequent words in all negative reviews.

Converting Rows to binary BoW

Applying Forward chaining cross validation to find best value of alpha

```
In [36]: alphaValue = []
for i in range(1, 500, 2):
    alphaValue.append(i)
```

```
In [37]:
         # Applying forward chaining cross validation on 80% of data, means 48000 rows. Rest 12000 will be test data.
         end1 = 1000
         end2 = 2000
         FinalScoreOfScores = []
         for i in range(47):
             train = Final Data BoW[0:end1]
             train labels = Final Data Labels[0:end1]
             test = Final Data BoW[end1:end2]
             test labels = Final Data Labels[end1:end2]
             scoreOfScores = []
             for a in alphaValue:
                 clf = BernoulliNB(alpha=a, binarize=None, class prior=None, fit prior=True)
                 clf.fit(train, train labels)
                 score = clf.score(test, test labels)
                 scoreOfScores.append(score)
             FinalScoreOfScores.append(scoreOfScores)
             end1 += 1000
             end2 += 1000
```

```
In [42]: #finding best alpha using brute force
maximum = FinalScoreOfScores[0][0]

for i in range(len(FinalScoreOfScores)):
    Alpha = -1
    for j in range(len(FinalScoreOfScores[i])):
        Alpha += 2
        if maximum < FinalScoreOfScores[i][j]:
            maximum = FinalScoreOfScores[i][j]
        best_alpha = Alpha

print("Maximum Score = "+str(maximum))
print("Value of best alpha = "+str(best_alpha))</pre>
```

Maximum Score = 0.865 Value of best alpha = 1

```
In [43]:
    error = []
    maxAlpha = []
    splitNumber = []

for i in range(len(FinalScoreOfScores)):
    a = -1
    maximum = -10  #any small negative number can be given
    for j in range(len(FinalScoreOfScores[i])):
        a += 2
        if maximum < FinalScoreOfScores[i][j]:
            maximum = FinalScoreOfScores[i][j]
            max_alpha = a

    error.append(1- maximum)
    maxAlpha.append(max_alpha)
    splitNumber.append(i+1)</pre>
```



```
In [45]: for xy in zip(maxAlpha, np.round(error,2), splitNumber):
                  print(xy)
          (1, 0.36, 1)
          (1, 0.39, 2)
          (1, 0.31, 3)
          (1, 0.26, 4)
          (1, 0.26, 5)
          (1, 0.26, 6)
          (1, 0.24, 7)
          (1, 0.2, 8)
          (1, 0.23, 9)
          (1, 0.16, 10)
          (1, 0.21, 11)
          (1, 0.17, 12)
          (1, 0.19, 13)
          (1, 0.18, 14)
          (1, 0.18, 15)
          (1, 0.19, 16)
          (1, 0.19, 17)
          (1, 0.19, 18)
          (1, 0.18, 19)
         (1, 0.17, 20)
          (1, 0.19, 21)
          (1, 0.23, 22)
          (1, 0.18, 23)
          (1, 0.18, 24)
          (1, 0.18, 25)
          (1, 0.17, 26)
          (1, 0.15, 27)
          (1, 0.17, 28)
          (1, 0.17, 29)
         (1, 0.17, 30)
          (1, 0.15, 31)
          (1, 0.14, 32)
          (1, 0.16, 33)
          (1, 0.16, 34)
          (1, 0.15, 35)
          (1, 0.14, 36)
          (1, 0.15, 37)
          (1, 0.16, 38)
```

```
(1, 0.16, 39)
(1, 0.14, 40)
(1, 0.14, 41)
(1, 0.19, 42)
(1, 0.17, 43)
(1, 0.15, 44)
(1, 0.17, 45)
(3, 0.17, 46)
(1, 0.16, 47)
```

In forward chaining cross validation that has been applied above--in this dataset--contains 47 splits.

Splits are as follows:

train0: 0:1000 test0: 1000:2000

train1: 0:2000 test1: 2000:3000

train2: 0:3000 test2: 3000:4000

train3: 0:4000 test3: 4000:5000

٠.

٠.

. .

train46: 0:47000 test46: 47000:48000

Now from every split, maximum score is taken and corresponding "alpha" value is taken. So, we will have 47 maximum scores and 47 corresponding alpha values.

Finally, we have plotted them above.

We can also see above that error is decreasing from split1 towards split47

Applying Naive Bayes

```
In [46]: clf = BernoulliNB(alpha=best_alpha, binarize=None, class_prior=None, fit_prior=True)
    clf.fit(Final_Data_BoW[0:48000], Final_Data_Labels[0:48000])
    prediction = clf.predict(Final_Data_BoW[48000:60000])
    score = clf.score(Final_Data_BoW[48000:60000], Final_Data_Labels[48000:60000])
    print(score)
```

0.8388333333333333

Accuracy

Precision

```
In [48]: Precision = precision_score(Final_Data_Labels[48000:60000], prediction)
print("Precision Score = "+str(Precision))
```

Precision Score = 0.7919807538091419

Recall

```
In [49]: Recall = recall_score(Final_Data_Labels[48000:60000], prediction)
print("Recall Score = "+str(Recall))
```

Recall Score = 0.8857399103139013

F1 Score

```
In [50]: F1_Score = f1_score(Final_Data_Labels[48000:60000], prediction)
    print("F1 Score = "+str(F1_Score))
F1 Score = 0.8362404741744284
```

Confusion Matrix

```
In [51]: Confusion_Matrix = confusion_matrix(Final_Data_Labels[48000:60000], prediction)
    print("Confusion Matrix \n"+str(Confusion_Matrix))

Confusion Matrix
[[5128 1297]
    [637 4938]]

In [52]: tn, fp, fn, tp = confusion_matrix(Final_Data_Labels[48000:60000], prediction).ravel()
    tn, fp, fn, tp
Out[52]: (5128, 1297, 637, 4938)
```

Getting top 10 Best features

```
In [56]: featuresNames = count_vect.get_feature_names()
len(featuresNames)

Out[56]: 29748

In [58]: featuresProbabilities = clf.feature_log_prob_
    featuresProbabilities.shape

Out[58]: (2, 29748)

In [59]: featuresProbabilitiesTrans = featuresProbabilities.T
    featuresProbabilitiesTrans.shape
Out[59]: (29748, 2)
```

```
In [74]: features_prob_dataFrame = pd.DataFrame(featuresProbabilitiesTrans, index = None, columns = ["Class 0 Probability Scores",
    features_prob_dataFrame["Feature Names"] = featuresNames
In [77]: impFeatures_Class0 = features_prob_dataFrame.sort_values(by = 'Class 0 Probability Scores', axis = 0, ascending = False)
```

impFeatures_Class0 = features_prob_dataFrame.sort_values(by = 'Class 0 Probability Scores', axis = 0, ascending = False)
impFeatures_Class0.drop(["Class 1 Probability Scores"], axis = 1, inplace = True)
impFeatures_Class0.head(10)

Out[77]:		Class 0 Probability Scores	Feature Names
	26097	-0.130283	the
	963	-0.260555	and
	26231	-0.382136	this
	17661	-0.582558	not
	3558	-0.688957	but
	9798	-0.705567	for
	28562	-0.740971	was

-0.742930

-0.922865

-0.952217

that

have

tast

26085

11737

25768

Here, above we got all the probability scores of all the features given class label 0. They are nothing but "likelihood" probabilities of all the features given class label 0. Here, in above dataframe values corresponding to column "Class 0" has all the probability scores of features given class 0. The above dataFrame has been sorted according to the probability scores of Class 0. On Features column we got important feature names for points belong to class label 0.

Out[78

```
In [78]: impFeatures_Class1 = features_prob_dataFrame.sort_values(by = 'Class 1 Probability Scores', axis = 0, ascending = False)
impFeatures_Class1.drop(["Class 0 Probability Scores"], axis = 1, inplace = True)
impFeatures_Class1.head(10)
```

	Class 1 Probability Scores	Feature Names
26097	-0.196612	the
963	-0.202510	and
26231	-0.450536	this
9798	-0.607925	for
11737	-0.900229	have
29103	-0.910963	with
26085	-0.917089	that
3558	-0.936325	but
1297	-1.108279	are
29536	-1.108651	you

Here, above we got all the probability scores of all the features given class label 1. They are nothing but "likelihood" probabilities of all the features given class label 1. Here, in above dataframe values corresponding to column "Class 1" has all the probability scores of features given class 1. The above dataFrame has been sorted according to the probability scores of Class 1. On Features column we got important feature names for points belong to class label 1.

TFIDF

```
In [79]: positiveReviews_5000 = allPositiveReviews[:5000]
In [80]: positiveReviews_5000.shape
Out[80]: (5000, 12)
```

In [81]: positiveReviews_5000.head()

Out[81]:	inc	lex	ld	ProductId	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time	Summary	
	0	0	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1	1	1303862400	Good Quality Dog Food	l bo seve V ca
	2	2	3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1	1	1219017600	"Delight" says it all	Thi confe tha
	3	4	5	B006K2ZZ7K	A1UQRSCLF8GW1T	Michael D. Bigham "M. Wassir"	0	0	1	1350777600	Great taffy	taff:
	4	5	6	B006K2ZZ7K	ADT0SRK1MGOEU	Twoapennything	0	0	1	1342051200	Nice Taffy	l wild for ord th
	5	6	7	B006K2ZZ7K	A1SP2KVKFXXRU1	David C. Sullivan	0	0	1	1340150400	Great! Just as good as the expensive brands!	salte taffe fla and v
	1											•

In [82]: | negativeReviews_5000 = allNegativeReviews[:5000]

In [83]: negativeReviews_5000.shape

Out[83]: (5000, 12)

In [84]: | negativeReviews_5000.head()

Out[84]:		index	ld	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time	Summary	т
	1	1	2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	0	0	1346976000	Not as Advertised	Prod arriv labe Jun Sal Peanu
	11	12	13	B0009XLVG0	A327PCT23YH90	LT	1	1	0	1339545600	My Cats Are Not Fans of the New Food	My c habe hap eat Felic Pla
	15	16	17	B001GVISJM	A3KLWF6WQ5BNYO	Erica Neathery	0	0	0	1348099200	poor taste	I lo eat th and tl are go
	25	26	27	B001GVISJM	A3RXAU2N8KV45G	lady21	0	1	0	1332633600	Nasty No flavor	cand just re No fla . J pla
	45	47	51	B001EO5QW8	A108P30XVUFKXY	Roberto A	0	7	0	1203379200	Don't like it	oatm is good. mus so
	4											>

```
frames 10000 = [positiveReviews 5000, negativeReviews 5000]
In [85]:
In [86]:
         FinalPositiveNegative = pd.concat(frames 10000)
         FinalPositiveNegative.shape
In [87]:
Out[87]: (10000, 12)
In [88]:
         #Sorting FinalDataframe by "Time"
         FinalSortedPositiveNegative 10000 = FinalPositiveNegative.sort values('Time', axis=0, ascending=True, inplace=False)
         FinalSortedPositiveNegativeScore 10000 = FinalSortedPositiveNegative 10000["Score"]
In [89]:
         FinalSortedPositiveNegative 10000.shape
In [90]:
Out[90]: (10000, 12)
In [91]:
         FinalSortedPositiveNegativeScore 10000.shape
Out[91]: (10000,)
```

In [92]: FinalSortedPositiveNegative 10000.head() Out[92]: index ld **ProductId** UserId ProfileName HelpfulnessNumerator HelpfulnessDenominator Score Time **Summary** 7 1146 1245 B00002Z754 A29Z5PI9BW2PU3 Robbie 961718400 **Great Product WOW Make** 771 1145 1244 B00002Z754 A3B8RCEI0FXFI6 B G Chase 10 10 962236800 your own 'slickers' ! **BEST** 5822 7427 8111 B0000EIE2Z A3M174IC0VXOS2 Gail Cooke 3 3 1 1075420800 **BLUEBERRIES** Classic Robert 3481 3783 B00016UX0K AF1PV3DIC0XM7 1 2 1081555200 2418 Ashton Condiment amazon 6790 7432 B0001E1IME A2IKCTD1I73PLW 2 8 1083456000 5206 Adeba monopoly/ripoff In [93]: Final Data = FinalSortedPositiveNegative 10000 Final Data.shape In [94]: Out[94]: (10000, 12)Final Data Labels = FinalSortedPositiveNegativeScore 10000 In [95]:

```
In [96]:
         Final Data Labels.shape
Out[96]: (10000,)
         positive reviews = Final Data[(Final Data["Score"] == 1)]
In [72]:
         negative reviews = Final Data[(Final Data["Score"] == 0)]
         Positive tf idf vect = TfidfVectorizer(ngram range=(1,2), stop words = "english")
In [73]:
         Positive tf idf = Positive tf idf vect.fit transform(positive reviews["ProcessedText"].values)
         Positive tf idf.shape
In [74]:
Out[74]: (5000, 114651)
        features = Positive tf idf vect.get feature names()
In [75]:
In [76]: idfValues = Positive tf idf vect.idf
         d = dict(zip(features, 9 - idfValues))
In [78]:
         sortedDict = sorted(d.items(), key = lambda d: d[1], reverse = True)
```

```
In [80]: for i in range(200):
             print(sortedDict[i])
         ('like', 6.809072442421418)
         ('tast', 6.765368008186689)
         ('great', 6.763992492151379)
         ('good', 6.73466078043391)
         ('love', 6.689725684788852)
         ('flavor', 6.590032302691801)
         ('use', 6.568508292946707)
         ('just', 6.50636578331954)
         ('veri', 6.503690792870237)
         ('product', 6.470097075582087)
         ('tri', 6.467323148699362)
         ('make', 6.391361607896317)
         ('buy', 6.114608605976726)
         ('onli', 6.072907876777782)
         ('time', 6.060468186302143)
         ('realli', 6.049279258384337)
         ('best', 5.968767617525185)
         ('price', 5.95030555468545)
         ('littl', 5.909095286038787)
         ('dont', 5.886181026515912)
         ('order', 5.886181026515912)
         ('amazon', 5.849077276312534)
         ('store', 5.833492545295836)
         ('eat', 5.817661080079155)
         ('coffe', 5.8141086784747875)
         ('becaus', 5.806965790962407)
         ('recommend', 5.797964830103432)
         ('better', 5.790705270090627)
         ('mix', 5.726773729244833)
         ('ive', 5.650123319469437)
         ('ani', 5.631075124498743)
         ('high', 5.624644234168453)
         ('food', 5.594074168083775)
         ('bag', 5.591854411345462)
         ('drink', 5.580681110747337)
         ('year', 5.569381555493403)
         ('delici', 5.544063747509114)
         ('want', 5.529979007627374)
```

```
('work', 5.515693050379898)
('look', 5.501200043077331)
('favorit', 5.474071375689078)
('pack', 5.47156824547096)
('nice', 5.458957737879031)
('enjoy', 5.448753567704788)
('sweet', 5.441031521610878)
('day', 5.433249381168823)
('purchas', 5.428027437187671)
('sugar', 5.3879686766356665)
('say', 5.379760696217836)
('tea', 5.379760696217836)
('perfect', 5.377009662845947)
('snack', 5.377009662845947)
('brand', 5.371484786913977)
('bought', 5.3603426103607354)
('easi', 5.357537559433126)
('way', 5.349074885514393)
('sinc', 5.337678750783524)
('mani', 5.3290456036388205)
('thing', 5.3290456036388205)
('fresh', 5.302689758933458)
('need', 5.302689758933458)
('cup', 5.281699483041622)
('differ', 5.281699483041622)
('bit', 5.278664579346469)
('lot', 5.278664579346469)
('box', 5.269504209947804)
('think', 5.269504209947804)
('free', 5.254047951711112)
('packag', 5.247797931365941)
('add', 5.2094545761682935)
('come', 5.2094545761682935)
('regular', 5.2094545761682935)
('wonder', 5.1963396340904655)
('chip', 5.189717093329972)
('water', 5.189717093329972)
('alway', 5.166186595919777)
('local', 5.1627794375981635)
('everi', 5.155930095752589)
('got', 5.152487751561615)
('right', 5.135096008849747)
```

```
('know', 5.131581066742303)
('ship', 5.12451389951921)
('tasti', 5.120961497914842)
('calori', 5.113818610402461)
('review', 5.077318208182936)
('definit', 5.066103137362795)
('hard', 5.058555931727413)
('excel', 5.050951332342193)
('did', 5.039434890280634)
('befor', 5.031682913476317)
('qualiti', 5.027784273060659)
('healthi', 5.000059725045804)
('natur', 5.000059725045804)
('sure', 5.000059725045804)
('stuff', 4.975668271921645)
('famili', 4.971544554737783)
('high recommend', 4.967403762071751)
('someth', 4.963245751923088)
('ad', 4.954877502252571)
('doe', 4.954877502252571)
('chocol', 4.950666969716227)
('hot', 4.950666969716227)
('long', 4.933645282146797)
('happi', 4.929344200247407)
('small', 4.911952457535537)
('thank', 4.911952457535537)
('treat', 4.898707230785517)
('doesnt', 4.894252880436136)
('milk', 4.894252880436136)
('ingredi', 4.876234374933458)
('serv', 4.867101891370185)
('actual', 4.857885236265261)
('feel', 4.857885236265261)
('far', 4.853244856708759)
('howev', 4.843898994290521)
('month', 4.839193103253109)
('problem', 4.839193103253109)
('size', 4.839193103253109)
('didnt', 4.824941080545907)
('quick', 4.820144908282414)
('light', 4.800726822425313)
('usual', 4.800726822425313)
```

```
('pancak', 4.795812807622884)
('veri good', 4.795812807622884)
('help', 4.7859117366401716)
('groceri', 4.780924195129133)
('expens', 4.770873859275632)
('varieti', 4.770873859275632)
('start', 4.750464987644424)
('contain', 4.745297017485981)
('old', 4.745297017485981)
('pretti', 4.745297017485981)
('salt', 4.745297017485981)
('quit', 4.740102200608877)
('bake', 4.734880256627726)
('cook', 4.724353843640738)
('friend', 4.724353843640738)
('big', 4.719048791411046)
('gluten', 4.719048791411046)
('sauc', 4.7137154454356835)
('came', 4.7083535022942975)
('worth', 4.697542586190082)
('juic', 4.692092981422517)
('thought', 4.686613515657892)
('dog', 4.664390378873181)
('pleas', 4.664390378873181)
('recip', 4.664390378873181)
('peopl', 4.653090823619248)
('reason', 4.653090823619248)
('open', 4.64739280250461)
('arriv', 4.641662127795625)
('bean', 4.641662127795625)
('kid', 4.641662127795625)
('low', 4.641662127795625)
('abl', 4.635898423078875)
('anyth', 4.635898423078875)
('home', 4.635898423078875)
('case', 4.6301013053945494)
('new', 4.6301013053945494)
('altern', 4.618405265631358)
('groceri store', 4.618405265631358)
('strong', 4.606570807984355)
('expect', 4.600600640997851)
('diet', 4.5945946169376395)
```

```
('save', 4.588552302481677)
('tast like', 4.588552302481677)
('husband', 4.582473256405295)
('real', 4.582473256405295)
('anoth', 4.576357029387859)
('bad', 4.576357029387859)
('absolut', 4.57020316381348)
('organ', 4.57020316381348)
('tast great', 4.564011193565559)
('item', 4.551511030801327)
('especi', 4.538852633929404)
('smell', 4.532462835830634)
('textur', 4.532462835830634)
('chicken', 4.519559430994725)
('instead', 4.519559430994725)
('sever', 4.519559430994725)
('week', 4.513044749973531)
('oil', 4.506487349427372)
('amaz', 4.499886665396021)
('blend', 4.486553134526556)
('fruit', 4.486553134526556)
('theyr', 4.486553134526556)
('bottl', 4.479819102345211)
('butter', 4.479819102345211)
('kind', 4.479819102345211)
('onc', 4.479819102345211)
('orang', 4.479819102345211)
('wont', 4.459340571001671)
('cat', 4.445451458841004)
('fat', 4.445451458841004)
('prefer', 4.445451458841004)
('ago', 4.438433886182358)
('avail', 4.438433886182358)
('gluten free', 4.438433886182358)
('soda', 4.438433886182358)
('wish', 4.438433886182358)
```

In [82]: PlotWordCloud(d)

This is a Word Cloud for all the positive reviews in the corpus.

This Word Cloud plot correponds to the most frequent words in all positive reviews based on IDF values. More is the IDF Value for a word the less frequent is the word in the corpus.

How I have plotted this word cloud. Now formulae for IDF(D,Wi) = (ln(N+1 / ni+1) + 1) where 'N' is total number of documents in a corpus and 'ni' is the total number of documents where word 'Wi' occurs. Hence, I got all the idf values from idf_ attribute and I got corresponding features from get_features_names() function. Now since, the highest possible idf value can be 8.88, hence, I subtracted all the idf values from '9' which leads to the highest idf value of the most frequently occuring word. Now I created dictionary where features are the keys and modified idf value are the values and I feeded this to the word cloud and plot the same. The same is done for negative reviews as well.

```
In [83]: Negative_tf_idf_vect = TfidfVectorizer(ngram_range=(1,2), stop_words = "english")
    Negative_tf_idf = Negative_tf_idf_vect.fit_transform(negative_reviews["ProcessedText"].values)

In [84]: Negative_tf_idf.shape

Out[84]: (5000, 139161)

In [85]: features_neg = Negative_tf_idf_vect.get_feature_names()

In [86]: negIDF = Negative_tf_idf_vect.idf_

In [87]: NegD = dict(zip(features_neg, 9 - negIDF))

In [88]: sortedDictNeg = sorted(NegD.items(), key = lambda NegD: NegD[1], reverse = True)
```

```
for i in range(200):
In [89]:
             print(sortedDictNeg[i])
         ('tast', 7.0050070599682215)
         ('like', 7.004466080782725)
         ('product', 6.762615081465285)
         ('just', 6.6496447054933165)
         ('veri', 6.595748937288184)
         ('tri', 6.565994676206391)
         ('good', 6.44957396719508)
         ('flavor', 6.4170040385096545)
         ('use', 6.376263183183732)
         ('buy', 6.343270500029383)
         ('dont', 6.271578571573267)
         ('becaus', 6.170961542527858)
         ('onli', 6.1211746177476165)
         ('make', 6.113290214223468)
         ('time', 6.082477327793933)
         ('order', 6.054889371275104)
         ('realli', 6.047871798616457)
         ('look', 6.009101688151887)
         ('love', 5.951857145376868)
         ('food', 5.95030555468545)
         ('eat', 5.9314962227279535)
         ('bought', 5.923553369214017)
         ('disappoint', 5.889486814650411)
         ('ani', 5.862729365480861)
         ('packag', 5.861033012232683)
         ('better', 5.8473575854330075)
         ('review', 5.8473575854330075)
         ('did', 5.835236224900663)
         ('think', 5.828243189409692)
         ('purchas', 5.822966132308848)
         ('amazon', 5.810543612310291)
         ('box', 5.794341637734011)
         ('want', 5.783392623244341)
         ('bad', 5.781556075437039)
         ('say', 5.751703112287357)
         ('didnt', 5.742188292646019)
         ('know', 5.7287135940626595)
         ('thought', 5.720931453620604)
```

```
('bag', 5.713088276159578)
('drink', 5.674969318055968)
('great', 5.66881545248159)
('way', 5.645921632615737)
('price', 5.618171719662835)
('littl', 5.613833318064237)
('got', 5.609476012695281)
('ive', 5.5761765986262315)
('someth', 5.5761765986262315)
('coffe', 5.564825738957542)
('tast like', 5.557952859669781)
('thing', 5.555651362681502)
('water', 5.548714918684844)
('dog', 5.544063747509114)
('store', 5.520477748503234)
('mix', 5.513292088842359)
('money', 5.5036301779306225)
('befor', 5.484021706542246)
('receiv', 5.484021706542246)
('differ', 5.456416440450358)
('open', 5.443612168204369)
('smell', 5.443612168204369)
('away', 5.441031521610878)
('brand', 5.438444198045927)
('doe', 5.4358501628688805)
('ingredi', 5.430641817761742)
('recommend', 5.409532854551507)
('tea', 5.3879686766356665)
('item', 5.382504182163588)
('sugar', 5.382504182163588)
('howev', 5.365929217069375)
('sinc', 5.357537559433126)
('cup', 5.349074885514393)
('old', 5.337678750783524)
('sweet', 5.331931608527956)
('come', 5.314489305864614)
('doesnt', 5.314489305864614)
('year', 5.311552446191303)
('pack', 5.305652724064116)
('work', 5.302689758933458)
('day', 5.29074931856154)
('sure', 5.284725203958159)
```

```
('need', 5.266432010910833)
('chocol', 5.263350344373426)
('mani', 5.250927824374869)
('actual', 5.244658211361273)
('hope', 5.222399740760331)
('anoth', 5.219179126060288)
('expect', 5.2094545761682935)
('mayb', 5.193033845955966)
('hard', 5.189717093329972)
('lot', 5.183050401971783)
('ship', 5.166186595919777)
('stuff', 5.159360630849378)
('problem', 5.155930095752589)
('return', 5.152487751561615)
('compani', 5.149033516693528)
('contain', 5.145567308717043)
('wast', 5.135096008849747)
('enjoy', 5.131581066742303)
('anyth', 5.117396431750346)
('bit', 5.106624334768435)
('high', 5.0993779262476675)
('month', 5.095734934969167)
('peopl', 5.088408894877094)
('ill', 5.084725649460797)
('small', 5.077318208182936)
('wont', 5.073593809091953)
('hot', 5.069855486981346)
('noth', 5.069855486981346)
('new', 5.054760860758861)
('star', 5.050951332342193)
('ad', 5.04712723590379)
('read', 5.031682913476317)
('qualiti', 5.019941095599632)
('whi', 5.015996317308616)
('strong', 5.00805976771288)
('treat', 4.996035574746079)
('natur', 4.971544554737783)
('dri', 4.963245751923088)
('textur', 4.963245751923088)
('local', 4.946438633606706)
('right', 4.946438633606706)
('pretti', 4.9379279439387975)
```

```
('said', 4.933645282146797)
('kind', 4.929344200247407)
('big', 4.916328832135337)
('gave', 4.916328832135337)
('best', 4.903141827853382)
('real', 4.889778600041215)
('worth', 4.889778600041215)
('chew', 4.885284210453376)
('regular', 4.885284210453376)
('chang', 4.871678558397598)
('feel', 4.871678558397598)
('list', 4.867101891370185)
('half', 4.862504182121556)
('probabl', 4.862504182121556)
('end', 4.839193103253109)
('instead', 4.834464962057163)
('size', 4.834464962057163)
('far', 4.824941080545907)
('came', 4.810482997370677)
('guess', 4.810482997370677)
('arriv', 4.800726822425313)
('free', 4.795812807622884)
('veri disappoint', 4.795812807622884)
('wasnt', 4.795812807622884)
('piec', 4.790874525982302)
('unfortun', 4.780924195129133)
('bitter', 4.770873859275632)
('decid', 4.770873859275632)
('horribl', 4.770873859275632)
('care', 4.765810557319085)
('long', 4.765810557319085)
('everi', 4.7607214878116135)
('sever', 4.7607214878116135)
('start', 4.7607214878116135)
('went', 4.7607214878116135)
('fine', 4.745297017485981)
('usual', 4.740102200608877)
('isnt', 4.734880256627726)
('label', 4.729630900741583)
('case', 4.719048791411046)
('expens', 4.719048791411046)
('aw', 4.7137154454356835)
```

```
('notic', 4.7137154454356835)
('throw', 4.7137154454356835)
('bottl', 4.7083535022942975)
('mouth', 4.7083535022942975)
('save', 4.7083535022942975)
('terribl', 4.702962653659421)
('plastic', 4.697542586190082)
('week', 4.697542586190082)
('minut', 4.686613515657892)
('organ', 4.686613515657892)
('wouldnt', 4.686613515657892)
('left', 4.681103859846922)
('complet', 4.675563679471306)
('stick', 4.675563679471306)
('milk', 4.669992634421851)
('let', 4.664390378873181)
('juic', 4.653090823619248)
('second', 4.64739280250461)
('definit', 4.635898423078875)
('took', 4.6301013053945494)
('groceri', 4.61250554350417)
('wast money', 4.61250554350417)
('add', 4.600600640997851)
('low', 4.600600640997851)
('believ', 4.5945946169376395)
('quit', 4.5945946169376395)
('alway', 4.588552302481677)
('onc', 4.588552302481677)
('custom', 4.582473256405295)
('worst', 4.576357029387859)
('ginger', 4.557780643814923)
('nice', 4.557780643814923)
('fact', 4.551511030801327)
('fresh', 4.551511030801327)
('wrong', 4.545201861608064)
('wonder', 4.538852633929404)
```

In [90]: PlotWordCloud(NegD)

This is a Word Cloud for all the negative reviews in the corpus.

This Word Cloud plot correponds to the most frequent words in all negative reviews based on IDF values. More is the IDF Value for a word the less frequent is the word in the corpus.

Converting rows to tfidf

Applying Forward chaining cross validation to find best value of alpha

```
In [101]: alphaValue = []
for i in range(1, 500, 2):
    alphaValue.append(i)
```

```
In [102]:
          # Applying forward chaining cross validation on 80% of data, means 8000 rows. Rest 2000 will be test data.
           end1 = 1000
           end2 = 2000
          FinalScoreOfScores = []
          for i in range(7):
              train = Final Data tfidf[0:end1]
              train labels = Final Data Labels[0:end1]
              test = Final Data tfidf[end1:end2]
               test labels = Final Data Labels[end1:end2]
               scoreOfScores = []
              for a in alphaValue:
                   clf = MultinomialNB(alpha=a, fit prior=True, class prior=None)
                   clf.fit(train, train labels)
                   score = clf.score(test, test labels)
                   scoreOfScores.append(score)
               FinalScoreOfScores.append(scoreOfScores)
               end1 += 1000
               end2 += 1000
```

```
In [103]: #finding best alpha using brute force
maximum = FinalScoreOfScores[0][0]

for i in range(len(FinalScoreOfScores)):
    Alpha = -1
    for j in range(len(FinalScoreOfScores[i])):
        Alpha += 2
        if maximum < FinalScoreOfScores[i][j]:
            maximum = FinalScoreOfScores[i][j]
        best_alpha = Alpha

print("Maximum Score = "+str(maximum))
print("Value of best alpha = "+str(best_alpha))</pre>
```

http://localhost:8888/notebooks/Downloads/Sentiment Analysis Amazon Food Reviews/Naive%20Bayes%20on%20Amazon%20Food%20Reviews/NaiveBayes AmazonFoodReviews.ipynb

Maximum Score = 0.89 Value of best alpha = 1

```
In [104]:
    error = []
    maxAlpha = []
    splitNumber = []

for i in range(len(FinalScoreOfScores)):
    a = -1
    maximum = -10  #any small negative number can be given
    for j in range(len(FinalScoreOfScores[i])):
        a += 2
        if maximum < FinalScoreOfScores[i][j]:
            maximum = FinalScoreOfScores[i][j]
            max_alpha = a

    error.append(1- maximum)
    maxAlpha.append(max_alpha)
    splitNumber.append(i+1)</pre>
```


In forward chaining cross validation that has been applied above--in this dataset--contains 7 splits.

```
Splits are as follows:
```

train0: 0:1000 test0: 1000:2000

train1: 0:2000 test1: 2000:3000

train2: 0:3000 test2: 3000:4000

train3: 0:4000 test3: 4000:5000

.

. .

. .

train6: 0:7000 test6: 7000:8000

Now from every split, maximum score is taken and corresponding "alpha" value is taken. So, we will have 7 maximum scores and 7 corresponding alpha values.

Finally, we have plotted them above.

We can also see above that error becomes mimimum at split 7.

Applying Naive Bayes

```
In [107]: clf = MultinomialNB(alpha=best_alpha, fit_prior=True, class_prior=None)
    clf.fit(Final_Data_tfidf[0:8000], Final_Data_Labels[0:8000])

    prediction = clf.predict(Final_Data_tfidf[8000:10000])

    score = clf.score(Final_Data_tfidf[8000:10000], Final_Data_Labels[8000:10000])
    print(score)
```

0.889

Accuracy

```
In [108]: Accuracy = accuracy_score(Final_Data_Labels[8000:10000], prediction) * 100
print("Accuracy = "+str(Accuracy)+"%")
Accuracy = 88.9%
```

Precision

```
In [109]: Precision = precision_score(Final_Data_Labels[8000:10000], prediction)
print("Precision Score = "+str(Precision))
```

Precision Score = 0.8651564185544768

Recall

```
In [110]: Recall = recall_score(Final_Data_Labels[8000:10000], prediction)
print("Recall Score = "+str(Recall))
```

Recall Score = 0.8921023359288098

F1 Score

```
In [111]: F1_Score = f1_score(Final_Data_Labels[8000:10000], prediction)
print("F1 Score = "+str(F1_Score))
```

F1 Score = 0.8784227820372398

Confusion Matrix

```
In [112]: Confusion_Matrix = confusion_matrix(Final_Data_Labels[8000:10000], prediction)
    print("Confusion Matrix \n"+str(Confusion_Matrix))
```

```
Confusion Matrix
[[976 125]
[ 97 802]]
```

```
In [113]: tn, fp, fn, tp = confusion_matrix(Final_Data_Labels[8000:10000], prediction).ravel()
tn, fp, fn, tp

Out[113]: (976, 125, 97, 802)
```

Getting top 10 Best features

```
In [120]: impFeatures_Class0 = features_prob_dataFrame.sort_values(by = 'Class 0 Probability Scores', axis = 0, ascending = False)
impFeatures_Class0.drop(["Class 1 Probability Scores"], axis = 1, inplace = True)
impFeatures_Class0.head(10)
```

Out	[120]

_		Class 0 Probability Scores	Feature Names
_	197889	-7.130319	the
	8036	-7.672842	and
	206446	-7.873337	this
	133366	-7.986996	not
	222275	-8.018136	was
	196540	-8.174226	that
	76371	-8.212109	for
	30555	-8.226640	but
	192872	-8.238006	tast
	113416	-8.367527	like

Here, above we got all the probability scores of all the features given class label 0. They are nothing but "likelihood" probabilities of all the features given class label 0. Here, in above dataframe values corresponding to column "Class 0" has all the probability scores of features given class 0. The above dataFrame has been sorted according to the probability scores of Class 0. On Features column we got important feature names for points belong to class label 0.

```
In [121]: impFeatures_Class1 = features_prob_dataFrame.sort_values(by = 'Class 1 Probability Scores', axis = 0, ascending = False)
impFeatures_Class1.drop(["Class 0 Probability Scores"], axis = 1, inplace = True)
impFeatures_Class1.head(10)
```

Out	[121]:

	Class 1 Probability Scores	Feature Names
197889	-7.290579	the
8036	-7.456165	and
206446	-7.951256	this
76371	-8.020146	for
13193	-8.203751	are
235852	-8.263928	you
92550	-8.299243	have
87443	-8.314475	great
196540	-8.343133	that
230790	-8.345903	with

Here, above we got all the probability scores of all the features given class label 1. They are nothing but "likelihood" probabilities of all the features given class label 1. Here, in above dataframe values corresponding to column "Class 1" has all the probability scores of features given class 1. The above dataFrame has been sorted according to the probability scores of Class 1. On Features column we got important feature names for points belong to class label 1.