Bayesian Networks:

- ➤ Definition: a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph (DAG).
- > Be familiar with the structure of Bayesian networks:
 - Nodes represent variables observable quantities, latent variables, unknown parameters or hypotheses.
 - Edges represent conditional dependencies.
 - Unconnected nodes represent variables that are conditionally independent of each other.
 - Directed acyclic graphs:
 - A finite directed graph with no directed cycles.
 - Consists of finitely many vertices and edges such that there is no way to start at any
 vertex v and follow a consistently-directed sequence of edges that eventually loops back
 to v again.
 - Semantics (see "factorization definition" section)
 - Factorization definition:
 - ◆ X is a Bayesian network with respect to G if its joint probability density function (with respected to a product measure) can be written as a product of the individual density functions, conditional on their parent variables.
 - p(x) = ITP(xv | Xpa(v))
 - vEV
 - where pa(v) is the set of parents of v (i.e. those vertices pointing directly to v via a single edge)

```
Factorization definition [edit] X is a Bayesian network with respect to G if its joint probability density function (with respect to a product measure) can be written as a product of the individual density functions, conditional on their parent variables p(x) = \prod_{v \in V} p\left(x_v \mid x_{pa(v)}\right) where pa(v) is the set of parents of v (i.e. those vertices pointing directly to v via a single edge). For any set of random variables, the probability of any member of a joint distribution can be calculated from conditional probabilities using the chain rule (given a topological ordering of X) as follows: P(X_1 = x_1, \dots, X_n = x_n) = \prod_{v=1}^n P\left(X_v = x_v \mid X_{v+1} = x_{v+1}, \dots, X_n = x_n\right)
Using the definition above, this can be written as: P(X_1 = x_1, \dots, X_n = x_n) = \prod_{v=1}^n P(X_v = x_v \mid X_j = x_j \text{ for each } X_j \text{ which is a parent of } X_v\right)
The difference between the two expressions is the conditional independence of the variables from any of their non-descendants, given the values of their parent variables.
```

> Compare and contrast the conditional probability tables in Bayes Networks with the full joint

probability distribution.

- E.g. see the rain-sprinkler example:
 - How many values must it store?
 - 14 values.
 - How many would the full joint have to store?

$2^n = 2^3 = 8$

		GRASS WET	
SPRINKLER	RAIN	Т	F
F	F	0.0	1.0
F	т	0.8	0.2
Т	F	0.9	0.1
Т	Т	0.99	0.01

- What benefit is there to using Bayesian networks as opposed to the probabilistic mechanism discussed in the previous unit?
 - Computationally far less expensive the more variables you have as the full joint requires ndimensions for n-variables, leading to 2ⁿ exponential run-time.
- ❖ Scikit Learn
 - > ^_^