Learning of a shallow ANN

Feature ×		Label y	
0.5	-0.5	0.9	0.1
-0.5	0.5	0.1	0.9

Input layer

Hidden layer

Output layer

Learning rate r = 0.6

Momentum $\alpha = 0.4$

Learning of a shallow ANN

$$L = (\hat{y}_1 - y_1)^2 + (\hat{y}_2 - y_2)^2$$

$$\widehat{y}_1 = \sigma_1 \left(h_{10} + h_{11} z_1 + h_{12} z_2 \right)$$

$$\widehat{y}_2 = \sigma_2 \left(h_{20} + h_{21} z_1 + h_{22} z_2 \right)$$

$$\frac{\partial L}{\partial h_{10}} = 2\left(\widehat{y}_1 - y_1\right) \frac{\partial \widehat{y}_1}{\partial h_{10}} + 2\left(\widehat{y}_2 - y_2\right) \frac{\partial \widehat{y}_2}{\partial h_{10}}$$

$$\frac{\partial L}{\partial h_{10}} = e_1 \sigma_1' \qquad \frac{\partial L}{\partial h_{11}} = e_1 \sigma_1' z_1 \qquad \frac{\partial L}{\partial h_{12}} = e_1 \sigma_1' z_2$$

Similarly

$$\frac{\partial L}{\partial h_{20}} = e_2 \sigma_2' \quad \frac{\partial L}{\partial h_{21}} = e_2 \sigma_2' z_1 \quad \frac{\partial L}{\partial h_{22}} = e_2 \sigma_2' z_2$$

$$\varphi(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$e_1 = 2\left(\widehat{y}_1 - y_1\right)$$

$$e_2 = 2\left(\widehat{y}_2 - y_2\right)$$

$$L = (\widehat{y}_1 - y_1)^2 + (\widehat{y}_2 - y_2)^2$$

$$\frac{\partial L}{\partial w_{10}} = 2 (\hat{y}_1 - y_1) \, \sigma'_1 h_{11} \varphi'_1
+ 2 (\hat{y}_2 - y_2) \, \sigma'_2 h_{21} \varphi'_1
= (e_1 \sigma'_1 h_{11} + e_2 \sigma'_2 h_{21}) \, \varphi'_1$$

$$\frac{\partial L}{\partial w_{11}} = \left(e_1 \sigma_1' h_{11} + e_2 \sigma_2' h_{21}\right) \varphi_1' x_1$$

$$\frac{\partial L}{\partial w_{12}} = (e_1 \sigma_1' h_{11} + e_2 \sigma_2' h_{21}) \varphi_1' x_2$$

Similarly

$$\frac{\partial L}{\partial w_{20}} = \left(e_1 \sigma_1' h_{12} + e_2 \sigma_2' h_{22}\right) \varphi_2'$$

$$\frac{\partial L}{\partial w_{21}} = \left(e_1 \sigma_1' h_{12} + e_2 \sigma_2' h_{22}\right) \varphi_2' x_1$$

$$\varphi(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$e_1 = 2(\hat{y}_1 - y_1)$$
 $e_2 = 2(\hat{y}_2 - y_2)$

$$\frac{\partial L}{\partial w_{22}} = (e_1 \sigma_1' h_{12} + e_2 \sigma_2' h_{22}) \varphi_2' x_2$$

1	
x	$\begin{bmatrix} 1 & 0.5 & -0.5 \end{bmatrix}^T$
$u_1 = \\ w_{10} + w_{11}x_1 + w_{12}x_2$	0.16
$u_2 = w_{20} + w_{21}x_1 + w_{22}x_2$	-0.145
$z_1 = \varphi_1\left(u_1\right)$	0.54
$z_2 = \varphi_1\left(u_2\right)$	0.4638
$v_1 = h_{10} + h_{11}z_1 + h_{12}z_2$	0.9272
$v_2 = h_{20} + h_{21}z_1 + h_{22}z_2$	0.09556
$\widehat{y}_1 = \sigma_1 \left(v_1 \right)$	0.7165
$\widehat{y}_2 = \sigma_2\left(v_2\right)$	0.52387

$$e_{1} = 2 (\hat{y}_{1} - y_{1}) \qquad -0.366986$$

$$e_{2} = 2 (\hat{y}_{2} - y_{2}) \qquad 0.847744$$

$$\sigma'_{1} = \hat{y}_{1} (1 - \hat{y}_{1}) \qquad 0.2031$$

$$\sigma'_{2} = \hat{y}_{2} (1 - \hat{y}_{2}) \qquad 0.2494$$

$$\varphi'_{1} = z_{1} (1 - z_{1}) \qquad 0.2484$$

$$\varphi'_{2} = z_{2} (1 - z_{2}) \qquad 0.24869$$

$$\delta_{h1} = -re_{1}\sigma'_{1} \qquad 0.044726$$

$$\delta_{h2} = -re_{2}\sigma'_{2} \qquad -0.126872$$

$$\delta_{w1} = -r (e_{1}\sigma'_{1}h_{11} + e_{2}\sigma'_{2}h_{21}) \varphi'_{1} \qquad 0.0110443$$

$$\delta_{w2} = -r (e_{1}\sigma'_{1}h_{12} + e_{2}\sigma'_{2}h_{22}) \varphi'_{2} \qquad 0.0137969$$

$\Delta h_{10} = \delta_{h1}$	0.044726
$\Delta h_{11} = \delta_{h1} z_1$	0.0241484
$\Delta h_{12} = \delta_{h1} z_2$	0.0207447
$\Delta h_{20} = \delta_{h2}$	-0.126872
$\Delta h_{21} = \delta_{h2} z_1$	-0.0685
$\Delta h_{22} = \delta_{h2} z_2$	-0.058845
$\Delta w_{10} = \delta_{w1}$	0.011044
$\Delta w_{11} = \delta_{w1} x_1$	0.00552215
$\Delta w_{12} = \delta_{w1} x_2$	-0.00552215
$\Delta w_{20} = \delta_{w2}$	0.0137969
$\Delta w_{21} = \delta_{w2} x_1$	0.00689847
$\Delta w_{22} = \delta_{w2} x_2$	-0.00689847

$h_{10}^{(1)} = h_{10}^{(0)} + \Delta h_{10}$	0.3547	
$h_{11}^{(1)} = h_{11}^{(0)} + \Delta h_{11}$	0.3941	
$h_{12}^{(1)} = h_{12}^{(0)} + \Delta h_{12}$	0.9207	
$h_{20}^{(1)} = h_{20}^{(0)} + \Delta h_{20}$	0.1431	
$h_{21}^{(1)} = h_{21}^{(0)} + \Delta h_{21}$	-0.2885	
$h_{22}^{(1)} = h_{22}^{(0)} + \Delta h_{22}$	-0.1788	
$w_{10}^{(1)} = w_{10}^{(0)} + \Delta w_{10}$	0.0210	
$w_{11}^{(1)} = w_{11}^{(0)} + \Delta w_{11}$	0.1055	
$w_{12}^{(1)} = w_{12}^{(0)} + \Delta w_{12}$	-0.2055	
$w_{20}^{(1)} = w_{20}^{(0)} + \Delta w_{20}$	-0.0062	
$w_{21}^{(1)} = w_{21}^{(0)} + \Delta w_{21}$	0.3068	Iteration 1
$w_{22}^{(1)} = w_{22}^{(0)} + \Delta w_{22}$	0.5431	completed

Weight initialization

Practical ANNs may require long computing time; good initial guess of weights accelerates convergence

for input $\mathbf{x} = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$

$$z_1 = \varphi(w_{11}x_1 + w_{12}x_2) = \varphi_1(0) = 0.5$$

$$z_2 = \varphi(w_{21}x_1 + w_{22}x_2) = \varphi_2(0) = 0.5$$

$$\hat{y} = \sigma (h_{11}z_1 + h_{12}z_2) = \sigma (0) = 0.5$$

$$\sigma' = 0.25$$
 $\varphi'_1 = \varphi'_2 = 0.25$

Leads
$$h_{11} = h_{12}$$
 $w_{11} = w_{21}$ to $w_{12} = w_{22}$ always

Initial guess: all zeroes

$$\frac{\partial L}{\partial h_{11}} = e\sigma' z_1 = 0.125e \quad \frac{\partial L}{\partial h_{12}} = e\sigma' z_2 = 0.125e$$

$$\frac{\partial L}{\partial w_{11}} = e\sigma' h_{11} \varphi_1' x_1 = 0 \quad \frac{\partial L}{\partial w_{21}} = e\sigma' h_{12} \varphi_2' x_1 = 0$$

$$\frac{\partial L}{\partial w_{12}} = e\sigma' h_{11} \varphi_1' x_2 = 0 \quad \frac{\partial L}{\partial w_{22}} = e\sigma' h_{12} \varphi_2' x_1 = 0$$

Such a symmetry is unphysical

Weight initialization in ANN

Initial guess of all equal (zero or nonzero) weights lead to artificial symmetry

Remedy: randomization

Common approaches:

Gaussian or Uniform random number with zero mean, standard deviation = 1

Uniform random number in the interval $\left[-\frac{1}{\sqrt{m+n}}, -\frac{1}{\sqrt{m+n}}\right]$ (Xavier initialization)

Where m, n: No. of incoming and outgoing connectors to a node

Many more approaches are available; weight initialization is an active area of ML research

1. Mean Squared Error (MSE)
$$E = \frac{1}{n} \sum_{i=1}^{n} L_i$$

$$E = \frac{1}{n} \sum_{i=1}^{n} L_i$$

$$L_i = (\widehat{y}_i - y_i)^2$$

Some variations of MSE

$$E = \frac{1}{2n} \sum_{i=1}^{n} L_i$$

$$E = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} L_i}$$
 RMSE: Root Mean Squared Error

2. Mean Absolute Error (MAE)

$$E = \frac{1}{n} \sum_{i=1}^{n} |L_i|$$

MSE is heavily influenced by outliers, MAE avoids outliers

3. Huber Loss
$$L_i = \begin{cases} z_i^2 \;\; \text{for} \;\; |z_i| \leq \delta & z_i = \widehat{y_i} - y_i \\ 2\delta |z_i| - \delta^2 \;\; \text{otherwise} \end{cases}$$

$$\text{At} \quad z_i = \delta \quad z_i^2 = 2\delta |z_i| - \delta^2 \quad \text{ and } \quad \frac{d}{dz_i} \left(z_i^2 \right) = \frac{d}{dz_i} \left(2\delta |z_i| - \delta^2 \right)$$

Thus Huber loss matches MSE and MAE smoothly at $z_i = \delta$

user-defined (hyperparameter)

4. Binary cross-entropy Loss

$$E = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \ln \widehat{y}_i + (1 - y_i) \ln (1 - \widehat{y}_i) \right]$$
 predicted probability of being in class 0 predicted probability of being in class 1

3. Multiclass cross-entropy Loss

$$E = -\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \left(y_{ij} \ln \widehat{y}_{ij} \right)$$

Classes $j = 1, 2, \cdots, m$

Softmax activation if often used with cross-entropy loss

$$\widehat{y}_j = \sigma\left(z_j\right) = \frac{e^{z_j}}{\sum_{k=1}^m e^{z_k}}$$
 brings all outputs between $0 \le \widehat{y}_j \le 1$ and enforces $\sum_{j=1}^m \widehat{y}_j = 1$

Learning rate variation

True learning rate may be obtained by solving a 1-D optimization problem

True learning rate, in most cases, diminishes as we move toward the optimum

Constant learning rate is, therefore, unphysical

We reduce learning rate via a constant factor after every k epochs

learning rate = k * learning rate

ANN as universal approximator

Consider a continuous function of one independent variable

$$y = f\left(x\right)$$

Theory suggests that a properly designed shallow (1 hidden layer) ANN should be able to approximate the above function

Output from *i*-th hidden node $z_i = \varphi_i (w_{i0} + w_{i1}x)$

ANN output
$$y = \sigma \left[h_0 + \sum_{i=1}^n h_i \varphi_i \left(w_{i0} + w_{i1} x \right) \right]$$

approximates y = f(x) subject to proper choice of $n, w, h, \varphi_i, \sigma$

Example

Binary classification

Cross entropy cost

$$E = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \ln \hat{y}_i + (1 - y_i) \ln (1 - \hat{y}_i) \right]$$

$$x_2$$

Offline learning: using all data together

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} w_{11} & w_{21} & \cdots & w_{m1} \\ w_{12} & w_{22} & \cdots & w_{m2} \end{bmatrix}$$

$$\mathbf{b}_1 = \begin{bmatrix} b_{11} & b_{21} & \dots & b_{m1} \end{bmatrix}$$

$$\mathbf{U} = \mathbf{X}\mathbf{W} + \mathbf{b}_1 \quad \mathbf{Z} = \varphi(\mathbf{U})$$

$$V = \mathbf{Z}\mathbf{h} + \mathbf{b}_2 \qquad \widehat{\mathbf{y}} = \sigma\left(\mathbf{v}\right)$$

$$\mathbf{Z} = \begin{bmatrix} z_{11} & z_{12} & \dots & z_{1m} \\ z_{21} & z_{22} & \dots & z_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ z_{n1} & z_{n2} & \dots & z_{nm} \end{bmatrix}$$

Cross entropy cost

$$E = -\frac{1}{n} \sum_{i=1}^{n} \left[y_i \ln \hat{y}_i + (1 - y_i) \ln (1 - \hat{y}_i) \right]$$

$$\frac{\partial E}{\partial h_j} = \sum_{i=1}^n \left(e_i \frac{\partial \widehat{y}_i}{\partial h_j} \right) \qquad e_i = \frac{\widehat{y}_i - y_i}{\widehat{y}_i \left(1 - \widehat{y}_i \right)}$$

$$\frac{\partial E}{\partial w_{jk}} = \sum_{i=1}^{n} \left(e_i \frac{\partial \widehat{y}_i}{\partial w_{jk}} \right)$$

$$\frac{\partial \widehat{y}_i}{\partial w_{jk}} = \frac{\partial \widehat{y}_i}{\partial v} \frac{\partial v}{\partial z_j} \frac{\partial z_j}{\partial u_j} \frac{\partial u_j}{\partial w_{jk}} = \sigma' h_j \varphi_j' x_k$$

$$\frac{\partial \widehat{y}_i}{\partial b_{i1}} = \sigma' h_j \varphi_j'$$

