لة	العلاه			* .t.	· * الموضوع الأو	عناص الادارا				
مجموع	مجزأة			<u> </u>	التوسوح ادو		/h.m. 0.4	N 6 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	0.25			8				التمرين الأول : (1- تفاعل بطي 2-		
	$3H_2C_2O_4(aq) + Cr_2O_7^{2-}(aq) + 8H^+(aq) = 2Cr^{3+}(aq) + 6CO_2(aq)$						6CO ₂ (aq)	+ $7H_2O(\ell)$		
	240.05				ے mmol	عدد المولان				
	3×0.25	t ₀	3,0	0,8	بوفرة	0	0	بوفرة		
		t	3,0-3x	0,8 - x	بوفرة	2x	6x	بوفرة		
	2×0.25	$t_{\rm f}$	0,6	0	بوفرة	1,6	4,8	بوفرة		
	240.23			e santana e		متفاعل محد				
	0.25	. ق	ب قيمته الأعظمي	عل مساويا نصف	يصبح تقدم التفا			200		
	0.25	من البيان نجد : $t_{1/2} = 4 \mathrm{s}$. $t_{1/2} = 4 \mathrm{s}$. $-1 \mathrm{lm}$ السرعة الحجمية: هي مقدار تغير تقدم التفاعل بالنسبة للزمن في 1 لتر من الوسط التفاعلي.								
04	0.25	فاعلي.	ز من الوسط الت	ة للزمن في 1 لذ			الحجمية: هي	4- ۱- السرعة		
$v = \frac{1}{V} \frac{dx}{dt}$										
	0.23									
	2×0.25	$n(Cr^{3+}) = [Cr^{3+}] \cdot V = 2x \implies x = \frac{1}{2} \cdot V \cdot [Cr^{3+}]$								
	0.25		$v = \frac{1}{V} \frac{dx}{dt} = \frac{1}{2} \frac{d[Cr^{3+}]}{dt}$							
			$v=rac{1}{2}rac{\Delta\left[Cr^{3+} ight]}{\Delta t}$: ب- من البيان							
	2×0.25	$v = \frac{1}{2} \frac{6-3}{8-0} = 0.187 \text{ mmol.s}^{-1}. L^{-1}, \ v_0 = \frac{1}{2} \frac{8}{6} = 0.667 \text{ mmol.s}^{-1}. L^{-1}$								
	 التفسير: تناقص تركيز المتفاعلات يقود إلى تناقص التصادمات الفعالة و بالتآلي تناقص 						23			
	1 1000 1000 100	سرعة التفاعل.					سرعة التفاء			
							100	التمرين الثاتي: (4		
	0.50	$^{137}_{55}Cs \rightarrow ^{137}_{56}Ba + ^{0}_{-1}e + \gamma - 1$						3 000		
	eta^- انبعاث إلكترونات. eta^- انبعاث إلكترونات.									
	0.25	الإشعاع γ: انبعاث موجة كهرومغناطيسية من النواة المشعة.								
	0.50		$N_0 = \frac{m_0}{M} N_A = 2,2 \times 10^{20}$ noyaux -2							
04	0.50		$\lambda = \frac{\ln 2}{t_{1/2}} = 7,28 \times 10^{-10} s^{-1} -3$							
	3×0.25					$A_0 = \lambda \times$				
	3×0.25		$A = A_0 \times e^{-\lambda t} \implies \ln \frac{A}{A \cdot 0} = -\lambda \times t \implies t = -\frac{\ln \frac{A}{A_0}}{\lambda}$ -5							
	0.25		t == 0	91401818 s						
			ι — 5	1401010 S		.2009/05/10				
	0.25						C	· · · · · · · · · · · · · · · · · · ·		
1	Contract Line									

ā	العلام	
مجموع	مجزاة	عناصر الإجابة
	0.25 0.25	(4) التمرين الثالث: $(C_6H_5COOH + H_2O = C_6H_5COO^- + H_3O^+ - 1)$
	0.50	$K_{a} = \frac{\left[H_{3}O^{+}\right]_{f}\left[C_{6}H_{5}COO^{-}\right]_{f}}{\left[C_{6}H_{5}COOH\right]_{f}} - 2$ $C_{6}H_{5}COOH(aq) + HO^{-}(aq) = C_{6}H_{5}COO^{-}(aq) + H_{2}O(\ell) - \frac{1}{3}$
04	0.50 0.50 2×0.25	$E(V_{bE} = 10 mL, pH = 8)$ $E'(V_{bE'} = 5 mL, pH = 4, 2)$
	0.25	المدلول: E : نقطة التكافؤ ، E' : نقطة نصف التكافؤ c_dV_a $=$ c_bV_{bE} \Rightarrow c_a $=$ $0.1 mol \cdot l^{-1}$ عند نقطة التكافؤ: m
	2×0.25 2×0.25	$c_a = \frac{m_0}{MV} \Rightarrow m_0 = 6.1 g$ - $K_a = 6.3 \times 10^{-5}$: ومنه $pk_a = pH = 4.2$: لكن $K_a = 10^{-pK_o}$
	0.25	$C_6H_5COO^-$ النوع الغالب هو صفة الأساس $pH=6>pK_a$
	0.25 0.25	التمرین الرابع : (04 نقاط) $0 \le t \le 9s$: $0 \le 10$: $0 \le t \le 9s$: $0 \le 10$
	0.50 0.50	$v_{t}=19,6m \cdot s^{-1}$: ب- السرعة الحدية $a_{0}=\frac{dv}{dt}=9,8m \cdot s^{-2}$ فإن $t=0$
	0.50	a_0 نستنتج أن دافعة أرخميدس مهملة $a_0 = g$
04	0.50	$v = C^{te} \Leftrightarrow a = \frac{dv}{dt} = 0$: د- في النظام الدائم
	0.75	$E_C = \frac{1}{2}mv^2 = \frac{1}{2}30 \times 10^{-3} \times (14,6)^2$ هه $E_C = 3,2J$ ومنه:
	0.75	v (m/s) عادر 2- سقوط حر
		0 $t(s)$

á	العلام	5.4-20 4:-
مجموع	مجزأة	عناصر الإجابة
	0.50	التمرين التجريبي: (04 نقاط) -1-1 R -1-1 R -1-1
04	0.50	u_R ب $u_R = R imes i$ و منه تغیرات $u_R = R imes i$ و منه تغیرات $u_R = R imes i$
****	0.25	$u_R + u_R = E \implies L \times \frac{di}{dt} + (R + r) = E -1 - 2$
	0.25	$rac{di}{dt} + rac{(R+r)}{L}i(t) = rac{E}{L}$: ومنه $-$ بعوض الحل في المعادلة $-$
	0.25	$A \times e^{-\frac{t}{\tau}} \left(\frac{L}{\tau} - (R+r) \right) + (R+r)A = E \Rightarrow (R+r)A = E \qquad \mathcal{L} - (R+r) = 0$
	0.25	$A=I_0$ و منه : $A=rac{E}{R+r}$ و يمثل الشدة العظمى للتيار
	0.25	$ au=rac{R+r}{R+r}$ و يمثل ثابت الزمن المميز للدارة. $ au=-1-3$
s	3×0.25	$I_{02}=I_{03}$ التعليل $I_{02}=I_{03}$ لأن: $ au_2< au_3$ و $ au_3=I_{03}$ $ au_3=I_{03}$ $ au_3=I_{01}< au_{02}=I_{03}$ $ au_3=I_{03}$ $ au_3=I_{01}< au_{02}=I_{03}$
	2×0.25	$ au_3 = 0,20 \; ext{ms}$: $ au_3 = \frac{L}{R+r}$ علما أن: $ au_3 = \frac{L}{R+r}$ علما أن:
ė.	2×0.25	$r=rac{L}{ au_3}-R$. $r=10\Omega$:

بكالوريا دورة: جوان 2012	الشعبة: علوم تجريبية	مادة: العلوم الفيزيائية	التنقيط	نابع الإجابة النموذجية وسلم	j
--------------------------	----------------------	-------------------------	---------	-----------------------------	---

عابه اللمودجية واللم التعويد المدور العروب السباء حرم الريابي العلامة				
مجموع	مجزاة	عناصر الإجابة * الموضوع الثاني *		
	0.25	التمرين الأول: (04 نقاط)		
	2×0.25	$CH_3COOH + H_2O = CH_3COO^- + H_3O^+ 1$		
		ب- جدول تقدم التفاعل.		
	2×0.25	$[H_3O^+]$ < c_1 : نلاحظ أن $[H_3O^+] = 10^{-pH} = 3,98 \times 10^{-4} \ mol \cdot L^{-1}$ جــ أن		
		ومنه: حمض الايثانويك لا يتفاعل كليا مع الماء		
		$(\tau_{V} = \frac{[H_3O_+]_f}{c} = 3.98 \times 10^{-2} \implies \tau_{V} < 1 :)$		
	0.25	$K_1 = \frac{\left[H_3O^+\right]_f \left[CH_3COO^-\right]_f}{\left[CH_3COOH\right]_c}$ د- ثابت التوازن:		
		19		
	2×0.25	$ [H_3O^+]_f = [CH_3COO^-]_f, [CH_3COOH]_f = c_1 - [H_3O^+]_f $		
04	0.25	$K_I = c_I rac{ au_{If}^2}{I - au_{If}}$ ومنه: $\left[H_3 O^+ ight]_f = c_1 \cdot au_{1f}$		
4		$K_1 = 1,6 \times 10^{-5}$		
	0.25	$pH < pK_{a1}$:نلاحظ أن $pK_{a1} = 4,78$ • $K_1 = 1,6 \times 10^{-5}$		
	0.25	ومنه: صفة النوع الغالب: CH ₃ COOH		
J	0.25	$ \left[CH_3COO^{-} \right]_f = \left[H_3O^{+} \right]_f = \frac{\sigma}{\lambda_{H_3O^{+}} + \lambda_{CH_3COO^{-}}} = 1,25 \times 10^{-3} \text{mol} \cdot L^{-1} $		
	0.25	$\tau_{2f} = \frac{\left[H_3O^+\right]_f}{c_2} = 1,25 \times 10^{-2}$		
	0.25	$K_2 = c_2 \frac{\tau_{2f}^2}{1 - \tau_{2f}} = 1.6 \times 10^{-5}$		
	0.25	3-أ- النسبة النهائية لتقدم التفاعل تتعلق بالحالة الابتدائية للجملة.		
	0.25	ب- ثابت التوازن لا يتعلق بالتركيب الابتدائي للجملة.		
		التمرين الثاني: (04 نقاط)		
	2×0.25	$N = 78$, $Z = 53$ $^{131}_{53}I - 1$		
	0.50	$E_t = \left[Zm_p + (A - Z)m_n - m(\frac{131}{53}I) \right] c^2 = 1009 \text{MeV}$ -2		
	0.50	$_{53}^{131}I \rightarrow _{54}^{131}Xe + _{-1}^{0}e$ -3		
04	0.50	$N(t) = N_0 \cdot e^{-\lambda t} \qquad -1 -4$		
04	0.50	$\ln N = at + b$ \rightarrow		
	0.50	$\ln N = -\lambda t + \ln N_0$		
	0.50	$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = 8 \text{ jours} \text{g} \lambda = -a = 8,7 \times 10^{-2} \text{ jours}^{-1}$		
	0.50	$m = m_0 \left(1 - e^{-\lambda t} \right) \qquad \longrightarrow$		

	العلاه	عناصر الإجابة
مجموع	مجزأة	
	2×0.25	التمرين الثالث: (04 نقاط) $u_R = R \cdot i$ لأن: $u_R = R \cdot i$ لأن: $u_R = R \cdot i$
	2×0.25	$u_{\overline{z}}E$ المدخل Y_2 يوافق المنحنى (1) لأن: المدخل Y_2
di .	0.25	$Y_{1} \qquad Y_{2} \qquad u_{b} + u_{R} = E \qquad di(t) \qquad (R+r) \qquad E$
	0.25	$\frac{di(t)}{dt} + \frac{(R+r)}{L}i(t) = \frac{E}{L}$
04	0.25	$= \underbrace{E}_{E} = 12 V - 1-2$
	0.25	$I_0 = \frac{U_{R \max}}{R} = 0,1$ الشكل $I_0 = \frac{U_{R \max}}{R} = 0$
	2×0.25	$I_0 = \frac{E}{R+r} \Rightarrow r = 20 \ \Omega \overrightarrow{-}$
	0.25	$t = \tau = 10 ms$ توافق $u_R = 0,63 U_{R \text{max}} = 6,3 V$ -1-3
	0.25	$ au = \frac{L}{R+r} \Rightarrow [\tau] = \frac{[U][T][I]^{-1}}{[U][I]^{-1}} = [T] \equiv s$
	2×0.25	$L = \tau(R+r) = 1,2H$
	2×0.25	$E(L) = \frac{1}{2}L \cdot I_0^2 = 6,0 \times 10^{-3} J \implies$
		التمرين الرابع: (04 نقاط)
	7×0.25	$Z = -\frac{1}{2}g \times t^2 + v_0 \sin \alpha \times t + h_A g x = v_0 \cos \alpha \times t -1$
	0.50	$Z = -\frac{g}{2v_0^2 \times \cos^2 \alpha} x^2 + \tan \alpha \times x + h_A$
04	0.25	$Z_c=0$ و $x_c=d$: عند النقطة (C) لدينا -2
U4	0.25	$0 = -\frac{g}{2v_0^2 \times \cos^2 \alpha} d^2 + \tan \alpha \times d + h_A$: نعوض في معادلة المسار
	2×0.25	$d \boxed{g}$
	2×0.25	$v_0 = \frac{d}{\cos \alpha} \sqrt{\frac{g}{2(\tan \alpha d + h_A)}} = 13,89m \cdot s^{-1} : $
	0.25	$x_{c} = d = v_{0} \cos \alpha \times t \Rightarrow t = \frac{d}{v_{0} \cos \alpha} - 3$
		$t \simeq 2, 2s$

0.50 0.25 0.50 0.25 0.50 0.25 0.50 0.25 0.50 0.26 0.50 0.26 0.50 0.27 0.50 0.27 0.50 0.28 0.50 0.29	التمرين التجريبي: (1- أ- يحته ع، الد					
0.50 0.25 0.25 0.50 0.25 0.50 0.25 0.50 0.20 mL 0.25 0.50 0.25 0.50 0.25 0.50 0.25 0.50 0.25 0.2	6 (8) (8) (8) (8)					
0.000 0.25 0.50 0.20 0.25 0.50 $0.$	1 – أ – بحته عبر الر					
0.25 0.50 $I_2(aq) + 2S_2O_8^{2-}(aq) = 2I^-(aq) + S_A$ $I_2(aq) + 2S_2O_8^{2-}(aq) = 2I^-(aq) + S_A$ 0.25 $I_2(aq) + 2S_2O_8^{2-}(aq) = 2I^-(aq) + S_A$ $I_2(aq) + 2S_2O_8^{2-}(aq) = 2I^-(aq) + S_A$ $I_2(aq) + 2S_2O_8^{2-}(aq) = 2I^-(aq) + S_A$ $I_2(aq) + 2I^-(aq) + 2I^-(aq) = 2I_2O(\ell) + I_2(aq)$ $I_2(aq) + 2I^-(aq) + 2I^+(aq) = 2I_2O(\ell) + I_2(aq)$ $I_2(aq) + 2I^-(aq) + 2I^-(aq) + 2I^-(aq) = 2I_2O(\ell) + I_2(aq)$ $I_2(aq) + 2I^-(aq) + 2I^-(aq) + 2I^-(aq) = 2I_2O(\ell) + I_2(aq)$ $I_2(aq) + 2I^-(aq) + 2I^-(aq) + 2I^-(aq) = 2I_2O(\ell) + I_2(aq)$ $I_2(aq) + 2I^-(aq) + 2I^-(aq) + 2I^-(aq) + 2I_2(aq)$ $I_2(aq) + 2I_2(aq) + 2I_2(aq)$ $I_2(aq) + 2I_2(aq) + 2I_2(aq)$ $I_2(aq) + 2I_2(aq$	٠٠٠ پيسوي بر					
$I_2(aq) + 2S_2O_8^{2-}(aq) = 2I^-(aq) + S_A$ $I_2(aq) + 2S_2O_8^{2-}(aq) = 2I^-(aq) + S_A$ $I_2(aq) + 2S_2O_8^{2-}(aq) = 2I^-(aq) + S_A$ $I_2(aq) + 2I_2(aq) = \frac{I_2}{I} = \frac{C_3 \times V_E}{2} \implies [I_2]$ $I_2(aq) = \frac{I_2}{I} = \frac{C_3 \times V_E}{2} \implies [I_2]$ $I_2(aq) = \frac{I_2(aq) + 2I^-(aq) + 2I^+(aq) = 2I_2O(\ell) + I_2(aq)}{I_2(aq)} = \frac{I_2(aq) + 2I^-(aq) + 2I^-(aq) + 2I^-(aq) = 2I_2O(\ell) + I_2(aq)}{I_2(aq)} = \frac{I_2(aq) + 2I^-(aq) + 2I^-(aq) + 2I^-(aq) = 2I_2O(\ell) + I_2(aq)}{I_2(aq) + I_2(aq) = 2I_2O(\ell) + I_2(aq)} = \frac{I_2(aq) + 2I^-(aq) + 2I^-(aq) + 2I_2O(\ell) + I_2(aq)}{I_2(aq) + 2I^-(aq) + 2I^-(aq) + 2I_2(aq) = 2I_2O(\ell) + I_2(aq)} = \frac{I_2(aq) + 2I_2O(\ell) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + 2I_2O(\ell) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + 2I_2O(\ell) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + 2I_2O(\ell) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + 2I_2O(\ell) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}{I_2(aq) + I_2(aq)} = \frac{I_2(aq) + I_2(aq) + I_2(aq)}$	ب- الوسيلة هي : ماصة معيرة بحجم 20 mL .					
0.25 $\frac{[I_2]V}{1} = \frac{C_3 \times V_E}{2} \implies [I_2]$ 0.25 $\frac{[I_2]V}{1} = \frac{C_3 \times V_E}{2} \implies [I_2]$ 0.26 $\frac{[I_2]V}{1} = \frac{C_3 \times V_E}{2} \implies [I_2]$ 0.27 $\frac{[I_2]V}{1} = \frac{C_3 \times V_E}{2} \implies [I_2]$ 0.28 $\frac{H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) = 2H_2O(\ell) + I_2(aq)}{2}$ 0.29 $\frac{t_0}{t_0} = \frac{3,2}{3,2} = \frac{18,4}{2} \implies \frac{0}{3,2} = \frac{0}{3,2} = \frac{0}{3,2}$ 0.25 $\frac{t_0}{t_0} = \frac{18,4}{2} = \frac{0}{2} $	CONTRACTOR OF THE STATE OF THE					
$\begin{bmatrix} I_2]V \\ 1 \end{bmatrix} = \frac{C_3 \times V_E}{2} \implies [I_2]$ 04 $\begin{bmatrix} H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) = 2H_2O(\ell) + I_2(aq) \\ & \text{mmol} & \text{close} \end{bmatrix}$ $\begin{bmatrix} t_0 & 3,2 & 18,4 & i_0 $	0 (1)					
$\begin{bmatrix} I_2]V \\ 1 \end{bmatrix} = \frac{C_3 \times V_E}{2} \implies [I_2]$ 0.25 $\begin{bmatrix} H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) = 2H_2O(\ell) + I_2(aq) \\ & \text{mmol} & \text{close} \end{bmatrix}$ 0.25 $\begin{bmatrix} t_0 \\ 3,2 \\ 18,4 \\ 0 \end{bmatrix} = \frac{18,4}{2} \implies 0$ 1.20 0.25 0.25 0.25 $v = \frac{d[I_2]}{dt} = \frac{\Delta[I_2]}{\Delta t} = 2 \times 10^{-2} mmol \cdot L^{-1} \cdot s^{-1} :$	2- التكافة هو الذ					
$H_2O_2(aq) + 2I^-(aq) + 2H^+(aq) = 2H_2O(\ell) + I_2(aq)$ $\frac{1}{2}$						
104 3×0.25 10 10 10 10 10 10 10 10	$=\frac{C_3 \times r_E}{2V}$					
104 3×0.25 10 10 10 10 10 10 10 10	-4					
104 3×0.25 10 10 10 10 10 10 10 10	¬ `1					
10×0.25 $10 $	-					
t 3,2 -x $18,4$ - 2x بوفرة بوفرة بوفرة t_f 0 $12,0$ بوفرة بوفرة بوفرة بوفرة $3,2$ بوفرة بوفرة بوفرة بوفرة بوفرة بوفرة بوفرة بوفرة يوفرة 0.25 هي مقدار تغير تقدم التفاعل بالنسبة للزمن في 1 لتر من الوسط التفاعلي . $v = \frac{d \left[I_2\right]}{dt} = \frac{\Delta \left[I_2\right]}{\Delta t} = 2 \times 10^{-2} mmol \cdot L^{-1} \cdot s^{-1}$:						
$t_{\rm f}$ 0 12,0 بوفرة بوفرة بوفرة بوفرة 12,0 مقدار تغير تقدم التفاعل بالنسبة للزمن في 1 لتر من الوسط التفاعلي مقدار تغير تقدم التفاعل بالنسبة للزمن في $v = \frac{d \left[I_2 \right]}{dt} = \frac{\Delta \left[I_2 \right]}{\Delta t} = 2 \times 10^{-2} mmol \cdot L^{-1} \cdot s^{-1}$:						
0.25						
$v = \frac{d[I_2]}{dt} = \frac{\Delta[I_2]}{\Delta t} = 2 \times 10^{-2} mmol \cdot L^{-1} \cdot s^{-1} :$						
$v = \frac{d[I_2]}{dt} = \frac{\Delta[I_2]}{\Delta t} = 2 \times 10^{-2} mmol \cdot L^{-1} \cdot s^{-1} :$	ا 4- السرعة الحجمية:					
$v = \frac{d[I_2]}{dt} = \frac{\Delta[I_2]}{\Delta t} = 2 \times 10^{-2} mmol \cdot L^{-1} \cdot s^{-1} :$						
$\alpha \iota \Delta \iota$	$v = \frac{1}{V} \frac{dx}{dt}$					
$ai \Delta t$.1: 4 - 100 - 11					
$t_{\frac{1}{2}} \simeq 50s$	الما t=100s فإن					
	5- من البيان نجد:					
in the state of th						
i i i	× ×					
	2.					