Self-Supervised Learning of Pretext-Invariant Representations

School of Industrial and Management Engineering, Korea University

Jong Kook, Heo

Contents

* Research Purpose

Overview

* Experiments

Conclusion

Research Purpose

- ❖ PIRL: Self-Supervised Learning of Pretext-Invariant Representations
 - Facebook Al Resarch 에서 연구, 2022년 5월 20일 기준 약 619회 인용
 - PIRL 이전 Pretext-task 기반의 SSL 방법들이 이미지 변환에 공변(Covariant)한다는 문제 지적
 - Semantic Representation 은 Pretext task 의 이미지 변환에 Invariant 한 Representation 이어야함

Figure 1: Pretext-Invariant Representation Learning (PIRL). Many pretext tasks for self-supervised learning [18, 46, 76] involve transforming an image \mathbf{I} , computing a representation of the transformed image, and predicting properties of transformation t from that representation. As a result, the representation must *covary* with the transformation t and may not contain much semantic information. By contrast, PIRL learns representations that are *invariant* to the transformation t and retain semantic information.

Figure 3: Overview of PIRL. Pretext-Invariant Representation Learning (PIRL) aims to construct image representations that are invariant to the image transformations $t \in \mathcal{T}$. PIRL encourages the representations of the image, \mathbf{I} , and its transformed counterpart, \mathbf{I}^t , to be similar. It achieves this by minimizing a contrastive loss (see Section 2.1). Following [72], PIRL uses a memory bank, \mathcal{M} , of negative samples to be used in the contrastive learning. The memory bank contains a moving average of representations, $\mathbf{m}_{\mathbf{I}} \in \mathcal{M}$, for all images in the dataset (see Section 2.2).

Research Purpose

- ❖ PIRL: Self-Supervised Learning of Pretext-Invariant Representations
 - Facebook AI Resarch 에서 연구, 2022년 5월 20일 기준 약 619회 인용
 - PIRL 이전 Pretext-task 기반의 SSL 방법들이 이미지 변환에 공변(Covariant)한다는 문제 지적
 - Semantic Representation 은 Pretext task 의 이미지 변환에 Invariant 한 Representation 이어야함

Research Purpose

- ❖ PIRL: Self-Supervised Learning of Pretext-Invariant Representations
 - Facebook AI Resarch 에서 연구, 2022년 5월 20일 기준 약 619회 인용
 - PIRL 이전 Pretext-task 기반의 SSL 방법들이 이미지 변환에 공변(Covariant)한다는 문제 지적
 - · Semantic Representation 은 Pretext task 의 이미지 변환에 Invariant 한 Representation 이어야함

- Loss Function : Noise Contrastive Estimator
 - Positive Pair : 원본 이미지(I)와 변환된 이미지(I^t)
 - Negative Pairs : 변환된 이미지(I^t)와 N개의 다른 원본 이미지(I')
 - Similarity Function : Cosine Similarity
 - NCE 는 Binary Event (I, I^t) 가 발생할 확률을 아래와 같이 모사(Softmax Function)

$$h(\mathbf{v_I}, \mathbf{v_{I^t}}) = \frac{\exp\left(\frac{s(\mathbf{v_I}, \mathbf{v_{I^t}})}{\tau}\right)}{\exp\left(\frac{s(\mathbf{v_I}, \mathbf{v_{I^t}})}{\tau}\right) + \sum_{\mathbf{I'} \in \mathcal{D}_N} \exp\left(\frac{s(\mathbf{v_{I^t}, \mathbf{v_{I'}}})}{\tau}\right)}.$$

- Convolution Feature v 로부터 직접 유사도를 계산하지 않고 projection head 를 거친 후에 유사도 계산
- 원본 이미지에는 f , 변환된 이미지에는 g 라는 서로 다른 projection head 사용

Loss Function : Modification 1

- Convolution Feature ${f v}$ 로부터 직접 유사도를 계산하지 않고 projection head 를 거친 후에 유사도 계산
- 원본 이미지에는 f, 변환된 이미지에는 g 라는 서로 다른 projection head 사용
- NCE Loss 는 아래와 같이 변형됨

$$L_{\text{NCE}}\left(\mathbf{I}, \mathbf{I}^{t}\right) = -\log\left[h\left(f(\mathbf{v}_{\mathbf{I}}), g(\mathbf{v}_{\mathbf{I}^{t}})\right)\right] - \sum_{\mathbf{I}' \in \mathcal{D}_{N}} \log\left[1 - h\left(g(\mathbf{v}_{\mathbf{I}}^{t}), f(\mathbf{v}_{\mathbf{I}'})\right)\right].$$
(4)

- Loss Function: Modification2
 - Memory Bank : 각기 다른 **원본 이미지에 대한 representation vector** 를 Memory Bank 에 저장하여 Negative Sample 을 랜덤 샘플링(NPID와 동일)
 - *변환된 이미지에 대한 Representation Vector 는 저장하지 않음!
 - Memory bank 에 저장되는 원본 이미지(I)에 대한 Representation $\mathbf{m_I}$ 는 이전 epoch 들의 $f(\mathbf{v_I})$ 의 지수이동 평균

- 8 -

- Loss Function : Modification3
 - 이전 장의 Loss Function 은 서로 다른 원본 이미지 간의 비교는 진행하지 않았음
 - 따라서 아래 두 Loss Function 의 Convex Optimization 을 통해 최종적인 Loss Function 을 제안

$$L\left(\mathbf{I}, \mathbf{I}^{t}\right) = \lambda L_{\text{NCE}}(\mathbf{m}_{\mathbf{I}}, g(\mathbf{v}_{\mathbf{I}^{t}})) + (1 - \lambda) L_{\text{NCE}}(\mathbf{m}_{\mathbf{I}}, f(\mathbf{v}_{\mathbf{I}})).$$
 (5)

• 이때 $\lambda = 0$ 이면 NPID 와 동일

Experiment

Experiment Overview

- Parameter Freezing: Feature Extractor 로써 인코더를 활용
- Transfer Learning : Parameter Initialization 으로써 인코더를 활용

Object Detection

- Pre-Training : Faster RCNN 의 backbone 인 ResNet 50을 ImageNet Train 데이터 중 1.28M개를 통해 사전 학습
- Fine-Tuning: VOC07+12 Train 을 통해 전이 학습(지도 학습 수행)
- 평가지표 : AP-all, AP-50, AP-75
- ImageNet Supervised Pre-Training 보다 근소한 차이를 보이거나 우수한 성능을 보여줌

Method	Network	$\mathbf{AP}^{\mathbf{all}}$	$\mathbf{AP^{50}}$	$\mathbf{AP^{75}}$	$\Delta \rm AP^{75}$
Supervised	R-50	52.6	81.1	57.4	=0.0
Jigsaw [19]	R-50	48.9	75.1	52.9	-4.5
Rotation [19]	R-50	46.3	72.5	49.3	-8.1
NPID++ [72]	R-50	52.3	79.1	56.9	-0.5
PIRL (ours)	R-50	54.0	80.7	59.7	+2.3
CPC-Big [26]	R-101	_	70.6*	_	
CPC-Huge [26]	R-170	_	72.1*	_	
MoCo [24]	R-50	55.2*†	81.4*†	61.2*†	

Table 1: Object detection on VOC07+12 using Faster R-CNN. De-

Experiment

- Experiment Overview
 - Parameter Freezing : Feature Extractor 로써 인코더를 활용
 - Transfer Learning: Parameter Initialization 으로써 인코더를 활용
- Image Classification with Linear Models
 - Pre-Training : Faster RCNN 의 backbone 인 ResNet 50을 ImageNet Train 데이터 중 1.28M개를 통해 사전학습, 인코더의 파라미터 고정
 - Fine-Tuning : ImageNet,VOC07, Places205, iNaturalist 2018 4개에 데이터에 대해 Linear Classifier 학습

Method	Parameters	Transfer Dataset				
		ImageNet	VOC07	Places205	iNat.	
ResNet	-50 using eva	luation set	up of [1	9]		
Supervised	25.6M	75.9	87.5	51.5	45.4	
Colorization [19]	25.6M	39.6	55.6	37.5	-	
Rotation [18]	25.6M	48.9	63.9	41.4	23.0	
NPID++ [72]	25.6M	59.0	76.6	46.4	32.4	
MoCo [24]	25.6M	60.6	_	_	_	
Jigsaw [19]	25.6M	45.7	64.5	41.2	21.3	
PIRL (ours)	25.6M	63.6	81.1	49.8	34.1	
Differe	nt architectur	e or evalua	tion setu	ıp		
NPID [72]	25.6M	54.0	_	45.5	_	
BigBiGAN [12]	25.6M	56.6	_	_	_	
AET [76]	61M	40.6	_	37.1	_	
DeepCluster [6]	61M	39.8	_	37.5	_	
Rot. [33]	61M	54.0	_	45.5	_	
LA [80]	25.6M	60.2 [†]	_	50.2^{\dagger}	_	
CMC [64]	51M	64.1	_	_	_	
CPC [51]	44.5M	48.7	_	-	_	
CPC-Huge [26]	305M	61.0	_	-	-	
BigBiGAN-Big [12]	86M	61.3	_	_	_	
AMDIM [4]	670M	68.1	_	55.1	_	

Table 2: Image classification with linear models. Image-classification

Conclusion

- ❖ Pretext Task 에 사용되는 이미지 변환 기법에 상관없이 적용할 수 있는 대조 학습을 제안
- ❖ 당시 제안되었던 Pretext-task 나 MoCo, CPC 등 다른 대조학습 기법보다도 우수한 성 능을 보임
- ❖ Jigsaw Puzzle 로 학습한 것보다 Jigsaw Augmentation 을 통해 PIRL 을 학습하였을 경 우 성능이 8%~18% 증가(PIRL 이 Transform Covariant 하지 않는 Semantic Representation 을 잘 추출하는 것을 입증)