MTH 311 Lab 7

Brandyn Tucknott

15 November 2024

1	Theorem	3 2 14	on	nage	92	states	the	following	-
т.	THEOLEIN	0.4.14	on	page	34	States	UHC	TOHOWING	٠.

- (i) The union of a finite collection of closed sets in closed.
- (ii) The intersection of an arbitrary selection of closed sets is closed.
- (a) Prove that the union of a finite collection of compact sets is compact.

Proof. By the characterization of compactness in \mathbb{R} , a set K is compact if and only if it is closed and bounded. We can equivalently show that the union of a finite collection of closed and bounded sets is also closed and bounded. By Theorem 3.2.14, we have that the union of a finite collection of closed sets is closed, and trivially we have that the union of a finite collection of bounded sets is bounded. We conclude then, that the union of a finite collection of compact sets is also compact. \square

(b) Use an example to show that the union of an arbitrary selection of compact sets is not necessarily compact.

Proof. Consider $S_n = [\frac{1}{n}, 1]$ for all $n \in \mathbb{N}$. Then $S = \bigcup_{n \in \mathbb{N}} S_n = (0, 1]$. Although S is bounded, it is not closed since the limit point 0 is not contained in S. Although each individual S_n is compact, since S is not both bounded and closed, S is not compact.

2. (a) Find a real number M such that $\left|x^2-1\right|\leq M\left|x-1\right|$ for all $x\in[0,2]$ Solution.

Since $|a \cdot b| = |a| \cdot |b|$ for $a, b \in \mathbb{R}$, we can solve for M.

$$|x^2 - 1| \le M |x - 1| \longrightarrow |x - 1| \cdot |x + 1| \le M |x - 1| \longrightarrow |x + 1| \le M \longrightarrow$$

$$M \ge x + 1$$
 since $x \in [0, 2]$

To maximize this value, we choose x = 2 which yields M = 3.

(b) Use the corresponding $\epsilon - \delta$ definition to prove that $\lim_{x\to 1} x^2 = 1$. In this example, for a given $\epsilon > 0$, the corresponding $\delta > 0$ is the minimum of two quantities.

Proof. Given $\epsilon > 0$, choose $\delta = \min(1, \frac{\epsilon}{3})$. Suppose $0 < |x - 1| < \delta$. Then we know that |x - 1| < 1, and we observe that

$$|x+1| = |x-1+2| \le |x-1| + |2| = |x-1| + 2 < 1 + 2 = 3$$

From here, we check that $|x^2 - 1| < \epsilon$.

$$|x^2 - 1| = |x + 1| |x - 1| < 3 \cdot \frac{\epsilon}{3} = \epsilon$$

Since for any given $\epsilon > 0$ there exists $\delta > 0$ such that if $0 < |x-1| < \delta$ then $|x^2 - 1| < \epsilon$, we conclude that $\lim_{x \to 1} x^2 = 1$.