# Temat: Modele danych.

- 1. **Model danych z**integrowany zbiór zasad opisujących dane, relacje i powiązania pomiędzy danymi, dozwolone operacje i ograniczenia nakładane na dane i operacje, zbiór ogólnych zasad posługiwania się danymi
- 2. Model danych komponenty
  - Część strukturalna reguły określające budowę bazy danych
  - Część manipulacyjna reguły określające, które operacje (transakcje) aktualizacji, pobierania i zmiany struktury można wykonywać na danych
  - Część zawierająca reguły integralności gwarantująca stabilność systemu

### 3. Podział baz danych ze względu na model danych

- jednorodne (kartotekowe)
- hierarchiczne
- sieciowe
- relacyjne
- obiektowe
- relacyjno-obiektowe (postrelacyjne)

## 4. Model jednorodny

- Model, w którym wszystkie dane są umieszczone w jednej tabeli, jednym arkuszu (kostce analitycznej). Przykładem takiego modelu jest książka telefoniczna. Cechuje go łatwość i szybkość odczytywania danych. Jego wadą jest duża liczba duplikatów.
- W modelu tym:
  - istnieje tylko jeden typ rekordów
  - powtarzające się dane są fizycznie wpisywane do każdego rekordu (cechuje je duża <u>redundancja</u>
     nadmiarowość w stosunku do tego, co konieczne)
  - bazy tego typu nieekonomicznie zarządzają zasobami i są trudne do reorganizacji
- W bazach kartotekowych (prostych) każda tablica danych jest samodzielnym dokumentem i nie może współpracować z innymi tablicami. Z baz tego typu korzystają np. programy typu książka telefoniczna, książka kucharska. Wspólną cechą tych baz jest ich zastosowanie w jednym wybranym celu.

| Janowski Michał Poznań 3-go Maja 31 333444555 |
|-----------------------------------------------|
| Żak Karol Warszawa Szeroka 2 111222555        |
| Giziński Konrad Gdańsk Szeroka 1 444666888    |
| Markowski Marek Poznań Grodzka 5 555222333    |

#### 5. Model hierarchiczny

Opiera się na dwóch strukturach, którymi są rekordy i związki między rekordami. Model ten jest rzadko używany, bazy są trudne do zarządzania. Każdy rekord (z wyjątkiem głównego, który jest na szczycie) powiązany jest z jednym rekordem nadrzędnym. Model ten różni się od relacyjnego, ponieważ w modelu relacyjnym powiązania zachodzą przez klucze obce, a w hierarchicznym przez związek nadrzędny-podrzędny. W hierarchicznym modelu danych nie można wstawić rekordu podrzędnego, dopóki nie zostanie powiązany z nadrzędnym. Usunięcie rekordu nadrzędnego powoduje automatycznie usunięcie wszystkich rekordów podrzędnych. Przykładem takiego modelu może być struktura katalogów na dysku twardym komputera.



#### 6. Model sieciowy

 Sieciowy model przyjmuje, podobnie jak hierarchiczny, strukturę przypominającą odwrócone drzewo z tą różnicą, że gałęzie drzewa mogą się łączyć i tworzyć kratownicę



#### 7. Model relacyjny

- Relacyjny model danych opracował w latach 60-tych i 70-tych XX w. **Edgar Frank Codd.**
- Relacja (tabela) jest jedyną strukturą danych wykorzystywaną w tym modelu. Relacja jest zbiorem krotek (wierszy), które z kolei są zbiorem atrybutów (kolumn). Każda krotka danej relacji ma dokładnie taką samą strukturę (schemat) i różne wartości. Każda krotka posiada przynajmniej jeden atrybut. W przypadku brakujących wartości w kolumnie bez względu na typ danych stosuje się uniwersalną wartość NULL.
- Każda relacja w bazie danych musi mieć jednoznaczną nazwę i musi zawierać klucz główny. Klucz główny to kolumna lub grupa kolumn (atrybutów), które jednoznacznie identyfikują każdy wiersz tabeli.





#### 8. Model obiektowy

- Bazy opierające się na modelu obiektowym łączą cechy programów komputerowych tworzonych za pomocą nowoczesnych języków programowania obiektowego z cechami aplikacji bazodanowych. Obiektowe bazy danych nie są określone żadnym oficjalnym standardem, nie ma żadnych teorii, czy nawet ogólnie przyjętego zbioru zasad dotyczących konstruowania obiektowych systemów zarządzania bazami danych.
- Cechą ODBMS jest to, że pozwala na przechowywanie danych o dowolnej strukturze, zdefiniowanej przez projektanta, co powoduje że taka baza sprawdza się wszędzie tam, gdzie relacyjna baza danych napotyka trudności, przede wszystkim chodzi tutaj o dynamicznie rozwijający się Internet i WWW

#### 9. Model relacyjno – obiektowy

Jest mieszanym modelem bazodanowym, a jego zastosowanie jest bardziej powszechne niż w przypadku modelu obiektowego. Dzieje się tak ze względu na trudną implementację i niezadowalającą wydajność (w niektórych zastosowaniach) typowego modelu obiektowego. Model ten pozwala w relacyjnych tabelach tworzyć kolumny, w których przechowywane są dane typu obiektowego, pozwala na definiowanie zmiennych oraz metod, które będą wykonywane na danych wprowadzanych do obiektu.

## 10. Lokalizacja systemów

■ Scentralizowana baza danych - baza danych znajduje się na jednym serwerze baz danych



## Rozproszona baza danych

- Baza danych istniejąca fizycznie na dwóch lub większej liczbie komputerów, traktowana jednak jak
  jedna logiczna całość, dzięki czemu zmiany w zawartości bazy w jednym komputerze są
  uwzględniane również w innych maszynach. Rozproszone bazy danych są stosowane ze względu
  na zwiększoną wydajność przetwarzania na wielu komputerach jednocześnie.
- Rozproszone bazy danych można określić jako zespół baz danych znajdujących się na różnych komputerach połączonych ze sobą w taki sposób, że użytkownik nie wie, iż dane, z którymi pracuje, pochodzą z różnych baz i komputerów. W ramach takiej rozproszonej bazy danych mogą współpracować bazodanowe serwery, należące nawet do kilku różnych firm.

