

ECON 412 FINAL PROJECT

HUMAN ACTIVITY CLASSIFICATION USING MACHINE LEARNING ALGORITHMS

Roya Latifi Yiping Liu Yiran Sun

OUTLINE

Introduction and Objective

- Human Activity Recognition Data set
- Big Data: 10,299 observations and 564 variables
- Multi-class: Six classifications of predictable variables

- The Human Activity Recognition database was built from the recordings of **30 participants** performing activities of daily living (ADL) while carrying a waist-mounted smartphone with embedded inertial sensors.
- Our objective is to classify activities into one of the six activities performed
- The variables are further calculated from **3-axial linear acceleration and 3 -axial angular velocity**. They are captured by embedded accelerometer and gyroscope at a constant rate of 50Hz in the experiment.

Data Processing

Data Visualization

Data Checking and Processing :

- i. No missing data in the database
- ii. Independent variables distributed evenly
- iii. splitting training and validation data randomly
- Follow experiment steps in grouping variables;

 Visualize correlation in each group

Model Results Summary

	Models	All Features Accuracy (Training Sample)	All Features Accuracy (Testing Sample)	PCA Features Accuracy	
	Logistic Dograssion	(L1 Penalty) 96.24%	95.97%	95.39%	
	Logistic Regression	(L2 Penalty) 98.19%	97.43%	95.58%	
	LDA	97.91%	98.20%	93.46%	
	Random Forest	100%	97.86%	94.32%	
	Naive Bayes	77.63%	76.70%	85.34%	
	KNN	96.46%	96.02%	95.97%	PCA Best Model
ing	SVM	99.47%	98.50%	95.73%	
	Neural Networks	99.30%	97.04%	94.51%	6

Best Performin Model

Logistic Regression

LDA

Data Set	Accuracy
Training	97.91%
Testing	98.20%

- → High Accuracy in training and testing data set
- → The accuracy drops in cross validation and also the PCA regularization in the next step
- → Meet Collinearity Problem

❖ 5-Fold Cross Validation

SVM

Multiclass Classification:

Confusion Matrix:

- CV Accuracy: 98.33 %
- Training Sample Accuracy: 99.47 %
- Testing Sample Accuracy: 98.50 %

Random Forest

Random Forest

- Resampling: Cross-Validated (5 fold)
- Number of trees: 500, mtry = 33

Confusion Matrix:

- CV Accuracy: 97.59 %
- Training Sample Accuracy: 100 %
- Testing Sample Accuracy: 97.86 %

KNN

Cross Validation Results (5 Fold):

- Accuracy was used to select the optimal model using the largest value.
- 5-fold cross-validation was used to find the best k for our dataset that gives the highest accuracy.
- The optimal value k for the model was 15.

Confusion Matrix:

- CV Accuracy: 83.47 %
- Training Sample Accuracy: 96.46 %
- Testing Sample Accuracy: 96.02 %

Neural Networks

297

Best Neural Network Model: (1 hidden layer, 6 neurons)

- Training Sample Accuracy: 99.30 %
- Testing Sample Accuracy: 97.03 %

Naive Bayes

Reference

		• •				
Prediction	LAYING	SITTING	STANDING	WALKING	WALKING_DOWNSTAIRS	WALKING_UPSTAIRS
LAYING	(361	41	10	0	0	0
SITTING	1	(287)	191	0	0	0
STANDING	1	47	(201)	0	0	0
WALKING	0	0	0	(252)	10	10
WALKING_DOWNSTAIRS	0	0	0	40	(214)	32
WALKING_UPSTAIRS	2	1	3	42	49	(265)

Training Acc: 77.63 % Testing Acc: 76.70 %

Dimension Reduction ——PCA

Dimension Reduction Application

Models	All Features Accuracy	PCA Features Accuracy
Logistic	(L1 Penalty) 0.9597	0.9539
Logistic	(L2 Penalty) 0.9743	0.9558
LDA	0.9820	0.9364
Random Forest	0.9786	0.9432
Naive Bayes	0.7670	0.8534
KNN	0.9602	0.9597
SVM	0.9850	0.9573
Neural Network	0.9704	0.9451

Why PCA impaired some models' performance?

Loss of Information.
Unsupervised algorithm!

Conclusion and Future Work

Conclusion

- Almost all models perform very well on this feature-engineered dataset
- Before regularization, **SVM** would be our choice.
- After PCA regularization, **KNN** outperforms others.
- The PCA regularization doesn't bring expected positive influence.

Future Work

- Selecting Variables wisely
- Further deep work on **Neural Network**:
 - Hyperparameter Tuning
 - Variations: Recurrent Neural Networks,
 Long Short-Term Memory, Convolutional
 Neural Networks
- More Algorithms: Gradient Boosting Machine (Adaboost) etc.

Reference

- **Dataset:** https://www.kaggle.com/uciml/human-activity-recognition-with-smartphones
- https://en.wikipedia.org/wiki/Support_vector_machine

Thank You

Random Forest

Statistics by Class:

	Class: LAYING	Class: SITTING	Class: STANDING	Class: WALKING	Class: WALKING_DOWNSTAIRS	Class: WALKING_UPSTAIRS
Sensitivity	1.0000	0.9548	0.9753	0.9760	0.9780	0.9902
Specificity	1.0000	0.9941	0.9897	1.0000	0.9944	0.9960
Pos Pred Value	1.0000	0.9729	0.9587	1.0000	0.9639	0.9775
Neg Pred Value	1.0000	0.9899	0.9939	0.9954	0.9966	0.9983
Precision	1.0000	0.9729	0.9587	1.0000	0.9639	0.9775
Recall	1.0000	0.9548	0.9753	0.9760	0.9780	0.9902
F1	1.0000	0.9638	0.9670	0.9879	0.9709	0.9838
Prevalence	0.1772	0.1825	0.1966	0.1621	0.1325	0.1490
Detection Rate	0.1772	0.1743	0.1917	0.1583	0.1296	0.1476
Detection Prevalence	0.1772	0.1791	0.2000	0.1583	0.1345	0.1510
Balanced Accuracy	1.0000	0.9744	0.9825	0.9880	0.9862	0.9931

Cross Validation Results (5 Fold):

Random Forest

Random Forest Cross Validation

SVM

	Class: LAYING	Class: SITTING	Class: STANDING	Class: WALKING	Class: WALKING_DOWNSTAIRS	Class: WALKING_UPSTAIRS
Sensitivity	1.0000	0.9654	0.9556	1.0000	1.0000	1.000
Specificity	1.0000	0.9893	0.9921	1.0000	1.0000	1.000
Pos Pred Value	1.0000	0.9528	0.9675	1.0000	1.0000	1.000
Neg Pred Value	1.0000	0.9923	0.9892	1.0000	1.0000	1.000
Precision	1.0000	0.9528	0.9675	1.0000	1.0000	1.000
Recall	1.0000	0.9654	0.9556	1.0000	1.0000	1.000
F1	1.0000	0.9590	0.9615	1.0000	1.0000	1.000
Prevalence	0.1772	0.1825	0.1966	0.1621	0.1325	0.149
Detection Rate	0.1772	0.1762	0.1879	0.1621	0.1325	0.149
Detection Prevalence	0.1772	0.1850	0.1942	0.1621	0.1325	0.149
Balanced Accuracy	1.0000	0.9774	0.9739	1.0000	1.0000	1.000

Cross Validation Results (5 Fold):

cost	Accuracy	Карра
0.25	0.9832522	0.9798545
0.50	0.9833736	0.9800006
1.00	0.9814318	0.9776648

Accuracy was used to select the optimal model using the largest value. The final value used for the model was cost = 0.5.

KNN

	Class: LAYING Cl	ass: SITTING Class:	STANDING	Class: WALKING C	lass: WALKING_DOWNSTAIRS Class	: WALKING_UPSTAIRS
Sensitivity	0.9973	0.8537	0.9556	1.0000	0.9744	0.9967
Specificity	0.9994	0.9887	0.9674	0.9959	1.0000	0.9994
Pos Pred Value	0.9973	0.9441	0.8776	0.9795	1.0000	0.9967
Neg Pred Value	0.9994	0.9680	0.9889	1.0000	0.9961	0.9994
Precision	0.9973	0.9441	0.8776	0.9795	1.0000	0.9967
Recall	0.9973	0.8537	0.9556	1.0000	0.9744	0.9967
F1	0.9973	0.8966	0.9149	0.9896	0.9870	0.9967
Prevalence	0.1772	0.1825	0.1966	0.1621	0.1325	0.1490
Detection Rate	0.1767	0.1558	0.1879	0.1621	0.1291	0.1485
Detection Prevalence	0.1772	0.1650	0.2141	0.1655	0.1291	0.1490
Balanced Accuracy	0.9983	0.9212	0.9615	0.9980	0.9872	0.9981

Cross Validation Results (5 Fold):

k	Accuracy	Карра
2	0.8100933	0.7713316
5	0.8309390	0.7963753
10	0.8319244	0.7975212
15	0.8347804	0.8009513
20	0.8290731	0.7940577

Neural Networks

INPUT

HIDDEN

OUTPUT

Accuracy : 0.9704

95% CI: (0.9621, 0.9773)

No Information Rate : 0.1966 P-Value [Acc > NIR] : < 2.2e-16

Kappa : 0.9644

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: 0	Class: 1	Class: 2	Class: 3	Class: 4	Class: 5
Sensitivity	1.0000	0.9548	0.9358	0.9940	0.9780	0.9674
Specificity	1.0000	0.9852	0.9897	0.9954	0.9961	0.9977
Pos Pred Value	1.0000	0.9349	0.9571	0.9765	0.9745	0.9867
Neg Pred Value	1.0000	0.9899	0.9844	0.9988	0.9966	0.9943
Prevalence	0.1772	0.1825	0.1966	0.1621	0.1325	0.1490
Detection Rate	0.1772	0.1743	0.1840	0.1612	0.1296	0.1442
Detection Prevalence	0.1772	0.1864	0.1922	0.1650	0.1330	0.1461
Balanced Accuracy	1.0000	0.9700	0.9628	0.9947	0.9871	0.9826