Edith Cowan University CSP2348 Data Structures Assignment 2

Martin Ponce Student 10371381

Tutor: Jitian Xiao

May 2, 2015

Contents

1	Introduction Arrays			$\frac{3}{4}$
2				
	2.1	•	g	4
		2.1.1	Merge sort algorithm	4
		2.1.2		5
		2.1.3	Merge sort analysis	6
		2.1.4		7
	2.2	Search		
		2.2.1	Binary search algorithm	
		2.2.2	v	9
		2.2.3	Binary search analysis	
		2.2.4	Binary search console output	
		2.2.5	"Merge search" algorithm	
		2.2.6	"Merge search" Java method	
		2.2.7	"Merge search" analysis	
		2.2.8	"Merge search" console output	
		2.2.9	Binary search vs. "merge search" comparison	
		2.2.0	Emary sourch vs. morgo sourch comparison vivivivi	_
3	Linked lists			5
	3.1	Deleti	ng	5
		3.1.1	Delete target node algorithm	5
		3.1.2	Delete target node Java method	
\mathbf{R}_{i}	efere	nces	1	7

1 Introduction

This report examines array, singly-linked-list and binary tree data structures and algorithms to interact with them. Implementation of these data structures and algorithms in Java will be outlined in the report, along with analysis of algorithms used.

Throughout this report, it is assumed that the selection of algorithms is based on time efficiency rather than space efficiency. In other words, an algorithm with higher time efficiency but lower space efficiency will be selected over an algorithm with a lower time efficiency and higher space efficiency.

The array data structure will be demonstrated through the implementation of a simple lotto game. The lotto game allows up to 1000 players, with each player picking six unique integers, between 1 and 45. Each player and their respective lotto tickets are represented inside a two-dimensional array, while the winning numbers are represented inside a one-dimensional array. Merge sort is used to sort player tickets and winning numbers arrays, while binary search and an adaptation of an array merge algorithm is used to determine if a player's ticket contains the winning numbers.

2 Arrays

The array data structure is demonstrated through the implementation of a simple lotto game. The lotto game allows up to 1000 players, with each player picking six unique integers, between 1 and 45, which makes up their lotto ticket. Each player and their respective lotto tickets are represented inside a two-dimensional array, while the winning numbers are represented inside a one-dimensional array.

The following classes have been created to represent the lotto game:

- Main: The executable class, contains main() method
- PlayerTickets: Generates a two-dimensional array which represents each player, and their picks for the lotto ticket
- WinningNumbers: Generates a one-dimensional array which represents the winning numbers for the lotto game
- WinningPlayers: Contains logic to determine who the winning players are, which of their numbers match the winning numbers, and their winner class category
- Sorter: Helper class to sort PlayerTickets and WinningNumbers arrays
- Randomizer: Helper class to generate random numbers for each player pick and winning number

2.1 Sorting

In order to use more efficient search algorithms such as binary search, the arrays must be sorted first. The merge sort algorithm has been selected due to its time efficiency of $O(n \log n)$. This algorithm is implemented as a static method of the Sorter class, as shown in Java code 2.1 and 2.2.

2.1.1 Merge sort algorithm

To sort a[left...right] into ascending order:

- 1. If left \leq right:
 - 1.1. Let m be an integer about midway between left and right
 - 1.2. Sort a[left...m] into ascending order
 - 1.3. Sort a[m+1...right] into ascending order
 - 1.4. Merge a[left...m] and a[m + 1...right] into auxiliary array b
 - 1.5. Copy all components of b into a [left...right]
- 2. Terminate

(Watt & Brown, 2001, p. 54)

2.1.2 Merge sort Java method

```
private static void mergeSort(int low, int high) {
 1
 2
 3
          if(low < high) {</pre>
 4
 5
              // 1.1 Let m (mid) be an integer about midway between left and right int mid = low + (high - low) / 2;
 6
 7
 8
 9
10
               mergeSort(low, mid);
11
12
               mergeSort(mid + 1, high);
13
14
15
16
               merge(low, mid, high);
17
18
```

Java code 2.1: Merge sort method

At line 17, the mergeSort() method calls supporting method merge(), as shown in Java code 2.2, in order to perform step 1.4 of the merge sort algorithm.

```
private static void merge(int low, int mid, int high) {
 2
 3
           for(int i = low; i <= high; i++) {
 4
 5
 6
                mergeTempArray[i] = mergeArrayToSort[i];
 7
 8
 9
10
11
           int j = mid + 1;
int k = low;
12
13
14
           // 2.0 While i <= mid AND j <= high, repeat: while(i <= mid && j <= high) {
15
16
17
                 // 2.1 If mergeTempArray[i] <= mergeTempArray[j],
if(mergeTempArray[i] <= mergeTempArray[j]) {</pre>
18
19
20
                     // 2.1.1 Copy mergeTempArray[i] into mergeArrayToSort[k], then increment i and k mergeArrayToSort[k] = mergeTempArray[i];
21
22
23
24
25
26
27
28
                     mergeArrayToSort[k] = mergeTempArray[j];
29
30
31
32
33
34
35
36
37
38
                mergeArrayToSort[k] = mergeTempArray[i];
39
40
41
42
```

Java code 2.2: Merge method

2.1.3 Merge sort analysis

As Watt and Brown (2001, p. 54 - 55) explain, analysis of the merge sort algorithm's time complexity involves counting the number of comparisons made during the operation. Let n = right - left + 1 be the length of the array, and let C(n) be the total number of comparisons required to sort n values.

Step 1.1 involves dividing the array into two subarrays, n/2. The left subarray takes around C(n/2) comparisons to sort, and similarly, the right subarray takes around C(n/2) comparisons to sort.

Step 1.4 involves the merging of each subarray into a sorted array and takes about n-1 comparisons to complete. Therefore:

$$C(n) \approx \begin{cases} 2C(n/2) + n - 1 & \text{if } n > 1\\ 0 & \text{if } n \le 1 \end{cases}$$
 (2.1)

Simplifying equation 2.1:

$$C(n) \approx n \times \log_2 n \tag{2.2}$$

Therefore the time complexity is $O(n \log n)$.

Space complexity is O(n), since step 1.4 requires an auxiliary array of length n to temporarily store the sorted array.

2.1.4 Merge sort console output

The following console outputs demonstrate that the merge sort algorithm is functioning correctly, and sorts player lotto picks and winning numbers in ascending order as desired. Note that the examples shown truncate actual results down to ten results from a thousand.

```
**************************

*** UNSORTED ARRAYS ***

***************************

Player 0001 picks: [16] [14] [37] [31] [07] [42]

Player 0002 picks: [20] [12] [26] [23] [44] [16]

Player 0003 picks: [10] [32] [20] [35] [02] [24]

Player 0004 picks: [06] [23] [19] [35] [42] [25]

Player 0005 picks: [07] [17] [28] [41] [29] [38]

Player 0006 picks: [16] [05] [36] [31] [04] [23]

Player 0007 picks: [20] [01] [34] [37] [07] [18]

Player 0008 picks: [30] [29] [10] [27] [34] [05]

Player 0009 picks: [03] [27] [13] [38] [28] [32]

Player 0010 picks: [08] [24] [45] [14] [02] [07]

Winning Numbers: [21] [22] [10] [03] [04] [13]
```

2.2 Searching

In order to determine the winners of the lotto game, the program must be able to search each number from the winning numbers array within each array of player tickets. Total number of winners within each winner class category must be calculated and displayed, as well as the result for an individual player, which simulates a player requesting their ticket to be checked for winning numbers.

For both functions to be implemented, two search algorithms have been selected, binary search and an adaptation of the merge array algorithm to sequentially compare components of two sorted arrays. Both of these algorithms may be implemented since the arrays have been sorted in ascending order. These algorithms are implemented as instance methods within the WinningPlayers class, as shown in Java code 2.3 and 2.4.

2.2.1 Binary search algorithm

To find which (if any) component of the sorted (sub)array a[left...right] equals target:

- 1. Set l = left, r = right
- 2. While $l \leq r$, repeat:
 - 2.1. Let m be an integer about halfway between l and r
 - 2.2. If target equals a[m], terminate with answer m
 - 2.3. If target is less than a[m], set r = m 1
 - 2.4. If target is greater than a[m], set l = m + 1
- 3. Terminate with answer none

(Watt & Brown, 2001, p. 43)

2.2.2 Binary search Java method

```
private int binarySearch(int[] array, int target) {
 1
 2
 3
 4
           int low = 0;
           int high = array.length - 1;
 5
 6
 7
           while(low <= high) {</pre>
 8
 9
                // 2.1 Let m (mid) be an integer about midway between 1 and r int mid = low + (high - low) / 2;
10
11
12
                // 2.2 If target equals a[m], terminate with answer m
if(target == array[mid]) {
13
14
                    return mid;
15
16
17
                } else if(target < array[mid]) {</pre>
18
                    high = mid - 1;
19
20
21
22
                    low = mid + 1;
23
^{24}
25
26
27
28
29
```

Java code 2.3: Binary search method

2.2.3 Binary search analysis

Analysis of the binary search algorithm's time complexity involves counting the number of comparisons made during the operation. Let n = right - left + 1 be the length of the array, and assume that steps 2.2 to 2.4 are implemented as a single comparison. At most, these steps are iterated as many times as n can be halved until it reaches 0. Therefore the number of comparisons is floor($\log_2 n$) + 1 (Watt & Brown, 2001). The time complexity for binary search is $O(\log n)$.

2.2.4 Binary search console output

The console output below displays the total number of winners in each winner class. To be considered a winner in this lotto game, a player must match at least 3 picks in their ticket to the winning numbers.

Each winner class is categorised by the number of matches a player may have between the picks in their ticket, and the winning numbers:

- 1st class: 6 picks match winning numbers
- 2nd class: 5 picks match winning numbers
- 3rd class: 4 picks match winning numbers
- 4th class: 3 picks match winning numbers

The console output below displays results for individual players.

```
** BINARY TICKET CHECKING **

Player 0005 did not win. Thanks for playing lotto.
Better luck next time!

Player 0500 is a 4th class winner!
Your winning numbers are: [11][33][45]

Player 0564 did not win. Thanks for playing lotto.
Better luck next time!

Player 0897 did not win. Thanks for playing lotto.
Better luck next time!
```

The console output below displays the result after a user inputs their player number.

2.2.5 "Merge search" algorithm

The following algorithm is an adaptation of the arrays merging algorithm. Rather than merge two sorted arrays into one sorted array, the algorithm is used to sequentially compare components from two sorted arrays to find a match between player lotto tickets and winning numbers.

To find which (if any) component from a1[l1...r1] equals any component from a2[l2...r2]:

- 1. Set i = l1, set j = l2, let matchTally be the number of matches found, let playerMatchString record the matching components
- 2. While $i \leq r1$ and $j \leq r2$, repeat:
 - 2.1. If a1[i] < a2[j]:
 - 2.1.1. Increment i
 - 2.2. If a1[i] > a2[j]:
 - 2.2.1. Increment j
 - 2.3. If a1[i] == a2[j]:
 - 2.3.1. Increment matchTally
 - 2.3.2. Add matching component to playerMatchString
- 3. Terminate with answer matchTally

Adaptation of merging algorithm by Watt and Brown (2001, p. 46).

2.2.6 "Merge search" Java method

```
private int mergeSearch(int[] playerTicket, int[] winningNumbers) {
 1
 2
 3
 4
 5
          int i = 0;
 6
 7
 8
 9
          int matchTally = 0;
10
11
         // 2.0 While i <= r1 AND j <= r2, repeat: while(i < playerTicket.length && j < winningNumbers.length) {
12
13
14
15
              if(playerTicket[i] < winningNumbers[j]) {</pre>
16
17
18
19
20
21
              } else if(playerTicket[i] > winningNumbers[j]) {
22
23
^{24}
25
26
27
28
29
30
                   matchTally++;
31
32
33
34
35
                   playerMatchString += "[";
36
37
38
                   if(winningNumbers[i] < 10)</pre>
39
                        playerMatchString += "0";
40
41
42
43
                   playerMatchString += playerTicket[i] + "]";
44
45
^{46}
47
48
49
50
51
52
          return matchTally;
53
```

Java code 2.4: "Merge search" method

2.2.7 "Merge search" analysis

Analysis of the "merge search" algorithm's time complexity involves counting the number of comparisons made during the operation. Let $n_1 = \text{right1} - \text{left1} + 1$ be the length of a1[left1...right1], and let $n_2 = \text{right2} - \text{left2} + 1$ be the length of a2[left2...right2]. Let $n = n_1 + n_2$ be the total number of compared components (Watt & Brown, 2001, p. 48).

Assuming that step 2 is implemented as a single comparison, the loop is repeated at most, n-1 times (Watt & Brown, 2001, p. 48 - 49). Therefore the time complexity is O(n). Space complexity is of O(1) since no copies are made during the operation.

2.2.8 "Merge search" console output

The console output below displays the total number of winners in each winner class.

The console output below displays results for individual players.

```
** MERGE TICKET CHECKING **

Player 0005 did not win. Thanks for playing lotto.
Better luck next time!

Player 0500 is a 4th class winner!
Your winning numbers are: [11] [33] [45]

Player 0564 did not win. Thanks for playing lotto.
Better luck next time!

Player 0897 did not win. Thanks for playing lotto.
Better luck next time!
```

The console output below displays the result after a user inputs their player number.

2.2.9 Binary search vs. "merge search" comparison

- Binary search
 - Time complexity: $O(\log n)$
 - Space complexity: O(1)
- "Merge search"
 - Time complexity: O(n)
 - Space complexity: O(1)

3 Linked lists

The linked list data structure (singly linked list) is demonstrated through a list of students which stores their marks for a particular unit. Each node in the singly linked list represents a student. A student's ID number is used as the identifier, while storing results for Assignment 1, Assignment 2 and Exam Result. The list includes functions to insert new students into the list (while maintaining an ascending order based on a student's id number) and can determine which student has the highest overall mark within the list.

Additional functions have been added to the list, allowing a specific student to be removed from the list, and print the list in reverse, descending order based on student ID numbers. These additional methods have been implemented twice, in two separate packages.

com.martinponce.csp2348.a2.linkedlistprogramming maintains the original self-contained and executable class with additional methods delete_unit_result() and reverse_print_unit_result() appended.

com.martinponce.csp2348.a2.linkedlistprogramming.alternative contains a rewrite of the original UnitList class attempting to resolve issues with deleting a first node in the original UnitList class.

The following classes are created within com.martinponce.csp2348.a2.linkedlistprogramming.alternative:

- Main: The executable class, contains main() method
- UnitList: Defines the singly linked list header
- UnitListNode: Defines the singly linked list node

3.1 Deleting

In order to delete a specific node from the linked list, the program must be able to search for a key, which in this case is a student ID number. If the key is found within the list, the program will delete that specific node from the list.

For the function to be implemented, the singly linked list deletion algorithm has been selected.

3.1.1 Delete target node algorithm

To delete node *del* in the nonempty SLL headed by *first*:

- 1. Let *succ* be node *del*'s successor
- 2. If del = first:
 - 2.1. Set first to succ
- 3. Otherwise (if $del \neq first$):
 - 3.1. Let *pred* be node *del*'s predecessor
 - 3.2. Set node *pred*'s successor to *succ*

4. Terminate

(Watt & Brown, 2001, p. 83)

3.1.2 Delete target node Java method

```
private static void delete_unit_result(UnitList u_list, int ID) {
2
3
         if(u_list == null) {
            System.out.println("\nError: List is empty!");
4
5
6
            System.out.println("\nError: Student number "
7
                     + ID + " is outside valid range!");
9
10
11
12
        UnitList current = u_list;
13
         UnitList previous = null;
14
15
16
         while(current.student_ID != ID) {
17
18
19
             if(current.next == null) {
20
21
22
                 System.out.println("\nError: Student "
23
24
                         + ID + " not deleted. Student does not exist!");
25
26
27
28
                previous = current;
29
30
                 current = current.next;
31
32
33
34
35
         if(previous == null) {
36
37
38
39
40
41
             System.out.println("\nDeleted first student: " + current.student_ID);
42
43
             u_list = current.next;
44
45
46
47
48
             System.out.println("\nDeleted student: " + current.student_ID);
^{49}
50
51
             previous.next = current.next;
52
             current.next = null;
53
54
55
56
         print_unit_result(u_list);
```

Java code 3.1: Delete target node method

References

Watt, D. A., & Brown, D. F. (2001). Java Collections - An Introduction to Abstract Data Types, Data Structures and Algorithms (1st ed.). New York: John Wiley & Sons.