Uživatelská dokumentace

Tato dokumentace obsahuje návod jak spustit ukázku nové implementace indexu HNSW, která je součástí bakalářské práce na téma "Aproximace KNN problému".

Všechny cesty uvedené v tomto souboru jsou relativní k cestě složky, která obsahuje tuto dokumentaci.

Potřebné programy

- Docker
- Překladač C++17
- Python 3.9

Ukázka

- 1. Ujistěte se, že služba Docker je zapnutá.
- 2. Spust'te skript RUNME.py pomocí interpretu Python verze 3.9. Na Windows například takto:

```
1 py -3.9 RUNME.py
```

Tento skript provede následující.

- Vytvoří virtuální prostředí interpretu Python ve složce .venv.
- Vytvoří nativní C++ řešení ve složce src/cmakeBuild.
- Spustí porovnání původní a nové implementace indexu HNSW nad malými kolekcemi se 100 000 prvky.
- Otevře stránku s výsledky v jedné kartě internetového prohlížeče.
- Otevře stránku s dokumentací indexu ve druhé kartě.

Výsledky srovnání

Výsledky jsou zaznačeny do grafů, které zobrazuje webová stránka. Ta je generována ve složce src/website. Původní implementace je v grafech označována slovem original, nová implementace slovem new.

Virtuální prostředí

Pokud není uvedeno jinak, skripty uvnitř složky src/scripts vždy spouštějte pomocí vygenerovaného virtuální prostředí. Prostředí aktivujete pomocí aktivačního skriptu ve složce .venv/scripts. Výběr skriptu závisí na použitém OS a interpretu.

os	INTERPRET	CESTA K AKTIVAČNÍMU SKRIPTU
Linux		./.venv/Scripts/activate
Windows	Batch	.\.venv\Scripts\activate.bat
Windows	Powershell	.\.venv\Scripts\Activate.ps1

Seznam skriptů

Následuje seznam skriptů ve složce src/scripts, které umožňují uživateli provést více operací než úvodní skript.

NÁZEV SKRIPTU	STRUČNÝ POPIS SKRIPTU
buildProject	Vytvoří virtuální prostředí, nativní C++ řešení a jeho Python rozhraní.
clean	Odstraní vygenerované soubory a vrátí projekt do původního stavu.
datasetGenerator	Vygeneruje datové soubory pro debugování.
datasetToText	Převede datový soubor do textového formátu.
format CMake Templates	Vygeneruje CMakeLists.txt.
generateTables	Vygeneruje LaTeX tabulky podobné těm, které jsou v bakalářské práci.
latexTable	Vygeneruje LaTeX tabulku na základě výsledků srovnání.
runBenchmarks	Spustí srovnání, vygeneruje a otevře webovou stránku s výsledky.
runRecallTable	Postaví nový index a zobrazí tabulku závislosti přesnosti na parametru vyhledávání ef _{search} .
SIMDCapability	Zobrazí SIMD rozšíření instrukční sady procesoru, která jsou k dispozici.

Podrobný popis skriptů

U každého skriptu je uveden jeho účel, parametry a příklad spuštění. Pokud skript obsahuje alespoň jeden parametr, pak použitím parametru --help nebo -h zobrazíte nápovědu v anglickém jazyce.

buildProject

Tento skript lze spustit bez virtuálního prostředí.

Vytvoří virtuální prostředí interpretu Python, stáhne potřebné softwarové balíčky, vygeneruje nativní C++ řešení pro knihovnu nového indexu, vytvoří rozhraní v jazyce Python pro nový index a otestuje funkčnost tohoto indexu spuštěním skriptu runRecallTable.

PARAMETR, ZKRATKA	VÝZNAM
clean, -c	Vrátí projekt do původního stavu před jeho opětovným sestavením.
cleanResults, -r	Pokud jeclean nastaven, odstraní naměřené výsledky.
ignorePythonVersion, -i	Umožňuje spustit skript s libovolnou verzí interpretu Python. Skript poté nemusí fungovat správně.

Příklad spuštění:

```
1 py -3.9 buildProject.py --clean --cleanResults
```

clean

Tento skript lze spustit bez virtuálního prostředí.

Odstraní datové soubory pro debugování, C++ nativní řešení a Python rozhraní. Pokud je spuštěn mimo virtuální prostředí, pak odstraní toto prostředí. Naměřené výsledky odstraněny nebudou, pokud o to uživatel nepožádá.

PARAMETR, ZKRATKA	VÝZNAM
results, -r	Odstraní naměřené výsledky srovnání, vygenerované grafy a tabulky.

Příklad spuštění:

datasetGenerator

Vygeneruje datové soubory pro debugování uvedené v konfiguračním souboru src/config/debugDatasets.json. O konfiguraci tohoto skriptu se více dočtete v kapitole Datové soubory níže v této dokumentaci.

Příklad spuštění:

py datasetGenerator.py

datasetToText

Převede vybraný datový soubor ze složky src/data do textového formátu.

PARAMETR, ZKRATKA	VÝZNAM
name, -n	Název datového souboru bez přípony. Pokud není uveden, výchozím souborem je angular-small.

Příklad spuštění:

1 py datasetToText --name euclidean-medium

formatCMakeTemplates

Vygeneruje soubor src/index/CMakeLists.txt a doplní do něj správnou definici maker tak, aby došlo pouze ke kompilaci těch funkcí, pro které je k dispozici vhodné SIMD rozšíření instrukční sady procesoru.

Příklad spuštění:

py formatCMakeTemplates.py

generateTables

Vygeneruje LaTeX tabulky podobné těm, které jsou v bakalářské práci, ale pouze v případě, že jsou pro ně dostupné naměřené výsledky. Tyto výsledky lze získat spuštěním následujících příkazů. Avšak tato měření mohou trvat více než 12 hodin.

```
py runBenchmarks.py -a ..\config\heuristic.yaml
    ..\config\naive.yaml -d lastfm-64-dot -r 5

py runBenchmarks.py -a ..\config\heuristic.yaml
    ..\config\prefetch.yaml -d glove-50-angular -r 5

py runBenchmarks.py -a ..\config\original.yaml
    ..\config\prefetch.yaml -d sift-128-euclidean -r 5

py generateTables.py
```

Vygenerované tabulky jsou dostupné ve složce src/figures.

latexTable

Vygeneruje jednu LaTeX tabulku na základě výsledků srovnání implementací.

PARAMETR, ZKRATKA	VÝZNAM
algorithms, -a	Vyžadován. Seznam implementací oddělený mezerami.
dataset, -d	Vyžadován. Název datového souboru.
label, -la	Identifikátor tabulky.
legend, -le	Názvy implementací v tabulce. Pokud není uveden, budou použity původní názvy.
output, -o	Vyžadován. Cesta k výstupnímu souboru.
percent, -p	Přidá do tabulky sloupec s procentuálním rozdílem časů stavby.
recompute, -r	Znovu vypočítá výkonnostní metriky z naměřených výsledků. Tato operace může trvat více než 10 minut.

Příklad spuštění:

```
py latexTable.py -a new-prefetch original -d sift-128-euclidean -
le "Nová impl." "Původní impl." -o ..\figures\table.tex -p
```

runBenchmarks

Před spuštěním se ujistěte, že je služba Docker zapnutá.

Spustí srovnání implementací v jednom nebo více Docker kontejnerech, vypočítá výkonnostní metrika, vygeneruje webovou stránku s výsledky a otevře ji v nové kartě internetového prohlížeče. Kód vygenerované stránky lze poté najít ve složce src/website a můžete ji opětovně zobrazit otevřením souboru index.html.

PARAMETR, ZKRATKA	VÝZNAM
algoDefPaths, -a	Vyžadován. Seznam cest ke konfiguračním souborům oddělených mezerami. O konfiguraci se více dočtete v kapitole Konfigurace srovnání.
datasets, -d	Vyžadován*. Seznam datových souborů oddělených mezerami.
datasetsPath, -p	Vyžadován*. Cesta k textovému souboru se seznamem datových souborů.
force, -f	Spustí již provedená měření znovu
runs, -r	Počet opakování měření. Výchozí hodnota je 1.
workers, -w	Počet paralelně spuštěných Docker kontejnerů. Výchozí hodnota je 1.

Datové soubory využité ke srovnání nejsou ty samé, které jsou využívány k debugování. Jejich seznam najdete v kapitole Testované datové soubory.

Příklad spuštění:

```
py runBenchmarks.py -a ..\config\noBit.yaml -f -p
..\config\datasets.txt -r 5 -w 2
```

runRecallTable

Postaví index nové implementace a vyhledá v něm nejbližší sousedy s různými hodnotami parametru vyhledávání ef_{search}. Poté vypíše tabulku závislosti přesnosti vyhledávání na tomto parametru. Konfigurace tohoto skriptu se nachází v souboru src/config/recallTable.json a více se o ní dočtete v kapitole Konfigurace recallTable.

Příklad spuštění:

^{*} Pouze jeden z parametrů označených hvězdičkou by měl být uveden.

SIMDCapability

Zobrazí SIMD rozšíření instrukční sady procesoru, která jsou k dispozici. Využívána ostatními skripty pro vygenerování správných maker v jazyce C++.

Příklad spuštění:

1 py SIMDCapability.py