Örnekler

İÇERİK:

- * Karnaugh Haritaları
- **❖** Önemsiz (Don't Care) Durumlar
- * Tablo Yöntemiyle İndirgeme
- **❖** Devreleri Sadece NAND ya da NOR Kapılarıyla Gerçekleme
- **❖** Decoder'ler
- **❖** Multiplexer'lar

B'D'+	3'0	+ A	0,
			_

 $F(A,B,C,D) = \sum (0,2,3,4,6,8,10,11)$ fonksiyonunu Karnaugh haritası yardımıyla indirgeyelim.

CD AB	00	01	11	10
00	1		1	1
01	1			1
11	·			
10	1		1	1

$$F(A,B,C,D) = A'D' + B'D' + B'C$$

Aşağıda verilen Karnaugh haritası için 2 farklı indirgeme yapılabilmektedir. Bu

indirgemeleri bulalım.

CDE AB	000	001	011	010	110	111	101	100
00								
01	1)		1	$\sqrt{1}$	1	- 1		(1
11		1	1			1	1	
10	1,		1			1	1	

Minimum sayıda grup, maksimum sayıda minterm kuralına göre yandaki gruplar oluşturulabilir.

7											
CDE AB	000	001	011	010	110	111	101	100			
00											
01	1		1	1	1	1		1			
11		1	1	_		1	1				
10	1	(1)	1			1	1				
	BDE										

Bir alarm sistemi ile ilgili olarak kombinasyonel devre tasarımı yapılması isteniyor. Sistemin 3 girişi vardır. Bunlar sensörlerden gelen kapı kilitli (C), kapı açık (B) ve pencere açık (A) sinyalleridir. Kapı kilitli olmadığı müddetçe pencere ve kapı açılabilmektedir. Alarm sisteminin pencere veya kapı açıksa alarm sinyali (S) üretmesi istenmektedir.

C: Kapı kilitli ise 1 olmaktadır.

A: Pencere açıksa 1 olmaktadır.

B: Kapı açıksa 1 olmaktadır.

Kapı kilitliyse pencere veya kapı açılamayacağı kısıtı olduğundan önemsiz durumlar vardır.

C AB	00	01	11	10
0	0	1	1	1
1	0	х	х	х

AB C	00	01	11	10
0	0	1	1	1
1	0	(x		Х

$$S = A + B$$

$$f(a,b,c,d) = \sum (1,4,6,7,8,9,10,11,15)$$

f fonksiyonunun Quine-McCluskey yöntemi (tablo yöntemi) kullanılarak, asal ve asıl asal bileşenlerinin bulunması isteniyor.

Asal bileşenlerin bulunması;

	a	b	С	d		а	b	С	d			а	b c	d d
1	0	0	0	1	 1-9	-	0	0	1		8-9-10-11	1	0	
4	0	1	0	0	 4-6	0	1	1	0					
8	1	0	0	0	 8-9	1	0	0	-	$\sqrt{}$				
6	0	1	1	0	 8-10	1	0	1	0	$\sqrt{}$				
9	1	0	0	1	 6-7	0	1	1	-					
10	1	0	1	0	 9-11	1	0	1	1	$\sqrt{}$				
7	0	1	1	1	 10-11	1	0	1	-	$\sqrt{}$				
11	1	0	1	1	 7-15	ı	1	1	1					
15	1	1	1	1	 11-15	1	-	1	1					

Örnek: (devamı)

Asıl asal bileşenlerin bulunması;

Mintermler/	1	9	4	6	7	15	11	8	10	
Asal içerikler										
b'c'd m(1,9)	X	X								
a'bd' m(4,6)			X	X						
a'bc m(6,7)				X	X					
bcd m(7,15)					X	X				
acd m(11,15)						X	X			
ab' m(8,9,10,11)		X					X	X	X	

$$f(a,b,c,d) = b'c'd + a'bd' + ab' + bcd$$

$$f = (3 + c')' + (b' + c')' + (3 + b')'$$

f(a,b,c) = a'c + bc + a'b fonksiyonunu sadece NOR kapıları kullanarak gerçekleyelim.

f fonksiyonu yapı itibariyle çarpımlar toplamı biçimindedir. NAND kapıları kullanılarak gerçeklenmesi istenseydi ifadenin tamamının 2 kere değilini almak yeterli olacaktı. Fakat NOR kapıları ile gerçeklenmesi istendiği için her bir çarpım teriminin 2 kere değilini almak gerekir.

$$f(a,b,c) = [(a'c)']' + [(bc)']' + [(a'b)']' = (a+c')' + (b'+c')' + (a+b')'$$

f fonksiyonunun içerdiği her terim NOR formundadır. Ancak f fonksiyonunu da NOR formuna getirebilmek için ifadenin tamamının 2 kere değilinin alınması gerekir.

$$f(a,b,c) = \overline{(a+c')' + (b'+c')' + (a+b')'}$$

Örnek: (devamı)

$$f(a,b,c) = \overline{(a+c')' + (b'+c')' + (a+b')'}$$

$$\mathcal{E} = 20b \oplus (i) = (2'b+2b') \oplus c_i$$

= $(2+b') \cdot (2'+b) \cdot c_i + 2'b+2b' \cdot c_i'$

Tam toplayıcıyı, decoder ve VEYA kapıları kullanarak gerçekleyelim.

Tam toplayıcının doğruluk tablosu;

Gi	rişle	er	Çıkışlar				
A	В	ci	Toplam	СО			
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	1	0			
1	0	1	0	1			
1	1	0	0	1			
1	1	1	1	1			

Toplam =
$$\sum (1,2,4,7)$$

co = $\sum (3,5,6,7)$

f(A,B,C,D) fonksiyonu aşağıdaki Karnaugh haritasında verilmiştir. Bu fonksiyonu 4×1 MUX ve diğer kapı elemanlarını kullanarak gerçekleyelim.

(Not: MUX'un seçim uçlarını $S_1 S_0 = A B$ alınız.)

$$f(A,B,C,D) = A'B'C' + AB'C + A'C'D' + B'D'$$

$$= A'B'C' + AB'C + A'(B+B')C'D' + (A+A')B'D'$$

$$= A'B'C' + AB'C + A'BC'D' + A'B'C'D' + AB'D' + A'B'D'$$

$$= A'B'(C' + C'D' + D') + AB'(C+D') + A'BC'D'$$

$$= A'B'(C' + D') + AB'(C+D') + A'BC'D'$$

4×1 MUX'un tanım bağıntısı;

A'B'I₀+ A'BI₁+ AB'I₂+ ABI₃ olduğundan

$$I_0 = (C' + D') = (C.D)'$$

$$I_1 = C'D' = (C+D)'$$

$$I_2 = C + D'$$

$$I_3 = 0$$

Aşağıdaki devrenin çıkışı olan f fonksiyonunu mintermler cinsinden bulalım.

MUX'un tanım bağıntısından;

$$f = z't'.a+z't.b+zt'.c+zt.d$$

Decoder'in tanım bağıntısından;

$$a = x'y'$$
 $b = x'y$ $c = xy'$ $d = xy$

Bu ifadeler MUX'un tanım bağıntısında yerine yazılırsa;

$$f = z't'. x'y' + z't. x'y + zt'. xy' + zt. xy$$

f fonksiyonu düzenlenirse;

$$f(x,y,z,t) = x'y'z't' + x'yz't + xy'zt' + xyzt = \sum (0,5,10,15)$$
 olur.

Sadece 4×1 ve 2×1 MUX'lar kullanarak 8×1 MUX elde edelim.

(Not: Seçim uçlarını $S_2S_1S_0$ alınız. MUX'lar Enable ucuna sahip değiller.)

 $f(a,b,c,d) = \sum (1,2,4,7,8,11,13,14)$

f(a,b,c,d) fonksiyonunu 8×1 MUX ile sistematik olarak gerçekleyelim.

(Not: Seçim uçlarını a b c seçiniz.)

d \ abc	000	001	010	011	100	101	110	111
0	m_0	m_2	m_4	m_6	m_8	m_{10}	m_{12}	m_{14}
1	m_1	m_3	m_5	m_7	m_9	m ₁₁	m_{13}	m ₁₅
Girişler	I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7
Bağlantılar	d	d'	d'	d	d'	d	d	d'