Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт информационных технологий и анализа данных

наименование института

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 4 по дисциплине:

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ

«Транспортная задача линейного программирования по критерию стоимости»

Выполнил	АСУб-20-2		Арбакова А.В.
	шифр группы	подпись	Фамилия И.О.
Проверил			
			Китаева О.И.
	должность	подпись	Фамилия И.О.

1. Постановка задачи.

Цель работы: Получение навыков реализации моделей линейного программирования.

Задание: Построить математическую модель для задачи индивидуального варианта, составить компьютерную программу нахождения опорного решения, решить задачи и дать экономическую интерпретацию полученных результатов.

Задача (вариант 2):

Некоторый однородный продукт, сосредоточенный у m поставщиков Ai, в количестве i а (i=1,2,...m) единиц, необходимо доставить n потребителям Bj в количестве j b (j=1,2,...,n) единиц. Известна стоимость ij с перевозки единицы груза от i- го поставщика к j- му потребителю. Необходимо составить план перевозок, позволяющий вывести все грузы, полностью удовлетворить потребности и имеющий при этом минимальную стоимость. Исходные данные задачи представлены в таблице, соответствующей варианту задания.

Задание 2

	B ₁ =60	B ₂ =40	B ₃ =36	B ₄ =14
A ₁ =92	5	1	2	4
A ₂ =45	2	5	10	3
A ₃ =63	10	2	2	5

2. Математическая модель задачи.

Обозначим переменные:

- x_{11} количество товара от 1-го поставщика к 1-ому магазину
- x_{12} количество товара от 1-го поставщика к 2-ому магазину
- x_{13} количество товара от 1-го поставщика к 3-ему магазину
- x_{14} количество товара от 1-го поставщика к 4-ому магазину
- x_{21} количество товара от 2-го поставщика к 1-ому магазину
- x_{22} количество товара от 2-го поставщика к 2-ому магазину
- x_{23} количество товара от 2-го поставщика к 3-ему магазину
- x_{24} количество товара от 2-го поставщика к 4-ому магазину
- x_{31} количество товара от 3-го поставщика к 1-ому магазину
- х₃₂ количество товара от 3-го поставщика к 2-ому магазину
- x_{33} количество товара от 3-го поставщика к 3-ему магазину
- x_{34} количество товара от 3-го поставщика к 4-ому магазину.

Целевая функция имеет вид:

$$F = 5x_{11} + 1x_{12} + 2x_{13} + 4x_{14} + \\ + 2x_{21} + 5x_{22} + 10x_{23} + 3x_{24} + \\ + 10x_{31} + 2x_{32} + 2x_{22} + 5x_{34} \rightarrow min$$

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} = 92 \\ x_{21} + x_{22} + x_{23} + x_{24} = 45 \\ x_{31} + x_{32} + x_{33} + x_{34} = 63 \\ x_{11} + x_{21} + x_{31} = 60 \\ x_{12} + x_{22} + x_{32} = 40 \\ x_{13} + x_{23} + x_{33} = 36 \\ x_{14} + x_{24} + x_{34} = 14 \\ x_{ij} \ge 0, i \in (1, m); j \in (1, n) \end{cases}$$

3. Нахождение опорного плана.

	B1 = 60	B2 = 40	B3 = 36	B4 = 14
A1 = 92	5	1	2	4
A2 = 45	2	5	10	3
A3 = 63	10	2	2	5

Проверим необходимое и достаточное условие разрешимости задачи.

$$\sum_{i=1}^{m} a_i > \sum_{j=1}^{n} b_j$$

$$\sum_{j=1}^{n} a_j > \sum_{j=1}^{n} b_j$$

$$\sum_{j=1}^{n} b_j = 92 + 45 + 63 = 200$$

$$\sum_{j=1}^{n} b_j = 92 + 45 + 63 = 200$$

$$\sum_{j=1}^{n} b_j = 92 + 45 + 63 = 200$$

$$\sum_{j=1}^{n} b_j = 92 + 45 + 63 = 200$$

$$\sum_{j=1}^{n} b_j = 92 + 45 + 63 = 200$$

$$\sum_{j=1}^{n} b_j = 92 + 45 + 63 = 200$$

$$\sum_{j=1}^{n} b_j = 92 + 45 + 63 = 200$$

$$\sum_{j=1}^{n} b_j = 92 + 45 + 63 = 200$$

$$\sum_{j=1}^{n} b_j = 92 + 45 + 63 = 200$$

$$\sum_{j=1}^{n} b_j = 92 + 45 + 63 = 200$$

$$\sum_{j=1}^{n} b_j = 92 + 45 + 63 = 200$$

Модель исходной транспортной задачи является открытой. Чтобы получить закрытую модель, введем дополнительную (фиктивную) потребность, равной 50 (200-150). Тарифы перевозки единицы груза к этому полагаем нулю. Занесем исходные магазину равны данные распределительную таблицу.

	B1 = 60	B2 = 40	B3 = 36	B4 = 14	B5=50
A1 = 92	5	1	2	4	0
A2 = 45	2	5	10	3	0
A3 = 63	10	2	2	5	0

Используем метод Фогеля:

Поставщик	Потреб	итель	Запасы	Разности по строкам							
	B1	B2	B3	B4	B5	-					
A1	5[15]	1[40]	2	4[14]	0[23]	92	1	1	1	2	0
A2	2[45]	5	10	3	0	45	1	-	-	-	-
A3	10	2	3[36]	5	0[27]	63	0	0	0	3	0
Потребность	460	40	36	14	50						
Разности по столбцам	3	1	0	1	0						
отолоцам	5	1	0	2	0						
	-	1	0	2	0	-					
	-	-	0	1	0						
	-	-	-	1	0						

В результате получен первый опорный план, который является допустимым, так как все товара от поставщиков вывезены, потребность потребителей удовлетворена, а план соответствует системе ограничений транспортной задачи.

Подсчитаем число занятых клеток таблицы, их 7, m+n-1=7, следовательно, опорный план является невырожденным. Значение целевой функции для этого опорного плана равно:

$$F = 5 \times 15 + 40 + 4 \times 14 + 0 \times 23 + 2 \times 45 + 2 \times 36 + 0 \times 27 = 333$$

4. Результаты решения задачи методом потенциалов.

Введем предварительные потенциалы иі, уј.

Проверим оптимальность опорного плана. Найдем предварительные потенциалы u_i , v_i . по занятым клеткам таблицы, полагая, что $u_1 = 0$.

	B1	B2	В3	B4	B5	ui
A1	5[15]	1[40]	2	4[14]	0[23]	0
A2	2[45]	5	10	3	0	-3
A3	10	2	3[36]	5	0[27]	0
vj	5	1	2	4	0	

Составим оценочную матрицу:

$$C = \begin{matrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 11 & 2 & 3 \\ 5 & 1 & 1 & 1 & 0 \end{matrix}$$

Опорный план является оптимальным, так как в оценочной матрице нет отрицательных элементов.

Минимальные затраты составят:

$$F = 5 \times 15 + 40 + 4 \times 14 + 0 \times 23 + 2 \times 45 + 2 \times 36 + 0 \times 27 = 333$$

5. Результаты решения задачи с помощью Excel-таблиц.

1	.5 40	23	14	0	92	92	ЦФ
4	5 0	0	0	0	45	45	333
	0 0	13	0	50	63	63	
6	0 40	36	14	50			
6	0 40	36	14	50			
5	1	2	4	0			
2	5	10	3	0			
10	2	2	5	0			

6. Экономическая интерпретация.

Решение задачи показало, что:

- из 1-го склада необходимо груз направить в 1-й магазин 15 ед., во 2-й магазин 40 ед., в 3-й магазин 23 ед., в 4-й магазин 14 ед.
- из 2-го склада необходимо весь груз направить в 1-й магазин 45 ед.
- из 3-го склада необходимо груз направить в 3-й магазин 13 ед. и в 5-й магазин 50 ед.

Целевая функция равна 333 у.е.