Motion correction for accurate interpretation of parametric images

I. Buvat, F. Frouin

Laboratory of Functional Imaging, U678 INSERM, Paris, France buvat@imed.jussieu.fr
http://www.imed.jussieu.fr

Outline

- 1. Motion correction: few thoughts
- 2. Dealing with motion in parametric imaging
 - Detecting and rejecting motion-corrupted images
 - ASL imaging of the thigh
 - Contrast ultrasound in mice
 - Motion correction
 - Cardiac MR
 - Echocardiography

Motion correction (and registration): 3 key choices

- 1. Type of deformation between the datasets:
 - rigid, affine, elastic (deformation field) depends on the expected deformation
- 2. Reference to register frames with
 - all registration methods are not symmetrical highly depends on the context
- 3. Criterion to measure the quality of registration
 - mutual information, correlation, ratio of variance, absolute difference, squared difference, aso depends on the type of similarity between images
- 4. Software that does the job: AIR, Pixies, aso

Motion correction (and registration) in a specific context

The best strategy for correction or registration highly depends on the context

A strategy developed in a context will almost never be appropriate without any change in a different context

The best one should probably aim at:

- better understanding the concepts
- knowing who knows how to do what
- knowing the available tools
- sharing experience and possibly tools

Dealing with motion in parametric imaging

Two approaches:

Detecting and rejecting the images corrupted by motion
 Loss of sensitivity, but can be appropriate when sensitivity is
 not a problem (trade-off between kinetic blur and sensitivity)

Compensating for motion

Detecting and rejecting images corrupted by motion

Arterial Spin Labeling of the thigh for studying muscular perfusion

Contrast ultrasound in mice and human studies

Detecting and rejecting images corrupted by motion: example in ASL

Characterization of the muscle perfusion in the thigh using ASL

Impact of rejecting spurious images on parametric images

Using all images of the time series

High Medium Low

After rejection of spurious images

Parametric images

Perfusion maps

Method for detecting motion

Detection of the variation in signal intensity between pairs of images in a well chosen region

Very simple but great impact on parametric images

Detecting and rejecting images corrupted by motion: example in CU

CPS sequence

25 Hz over 20s

Subset of frames corresponding to minima of the respiratory cycle

Renault et al., Phys Med Biol, 2005

Impact on parametric images

Planes corresponding to maxima

No gating

Planes corresponding to minima

Method for detecting motion

- Independent Component Analysis of the image sequence S(p,t)
 (p: pixel, t: time)
- Selection of the component with oscillations close to a respiratory component: a posteriori gating

liver patient' study

Compensating for motion

Cardiac MR for studying myocardial perfusion

Echocardiography

Parametric imaging in cardiac perfusion MR

FLASH sequence (TR=6.5 ms, TE = 3 ms, TI = 300 ms, flip angle : 11°) with Gd-DTPA-BMA

Impact of motion on myocardial images

Normal volunteer holding breath

Patient holding breath

Normal volunteer with normal breathing

Patient with normal breathing

Impact of registration

Patient holding breath

Patient with normal breathing

After motion correction

Other examples

no correction corrected Almost no motion artefact rest stress max

Great motion artefacts

Delzescaux et al., JMRI, 2003

How was motion compensated for?

 Definition of 7 shape-based models: RV, LV, pericardium, RV+LV, RV+pericardium, LV+pericardium, LV+RV+pericardium

- For each image of the series, selection of the optimal model using a superimposition score between the transformed image and each possible model
- Geometric transformation: 2D x and y translations
- Registration criterion: based on a potential map of the image being registered

Parametric imaging in echocardiography

Standard echocardiography protocol in harmonic mode

Contraction-relaxation in red Constant in green Relaxation-contraction in blue

diffuse severe hypokinesia

apical dyskinesia

Diebold et al., Ultrasound Med Biol, in press

Impact of motion on parametric images

Without registration

With registration

How was motion compensated for?

- 2D registration using a rigid transformation (x and y translations)
- Maximization of the cross correlation between each frame and a reference frame
- Reference frame = mid-systolic (25% of the cycle)

Impact of the reference frame

Conclusions

- Motion might result in qualitative and quantitative misinterpretation of parametric images
- Just rejecting motion-corrupted frames can be a first useful step towards better interpretation
- Designing a motion correction scheme is extremely dependent on the application
- Many tools do exist and can be helpful after specific tuning for a specific problem