自伴算子和正规算子

张朝龙

目录

1	伴随	1
2	自伴算子	5
3	正规算子	7
4	总结	8

1 伴随

定义 1.1 设 $T\in\mathcal{L}(V,W)$, T 的伴随是满足如下条件的函数 $T^*:W\to V, \forall v\in V, \forall w\in W, \langle Tv,w\rangle=\langle v,T^*w\rangle$

为了检验上述定义的意义,我们假设 $\mathcal{L}(V,W)$,并取定 $w\in W$,考虑 V 上将 $v\in V$ 映射成 $\langle Tv,w\rangle$ 的线性泛函,这个线性泛函依赖于 T 和 w。由里斯表示定理,存在 V 中唯一一个向量使得该线性泛函是通过与该向量做内积得到的。我们将这个唯一的向量记为 T^*w ,也就是说, T^*w 是 V 中唯一一个满足下面条件的向量:对每个 $v\in V$ 均有 $\langle Tv,w\rangle=\langle v,T^*w\rangle$

例 1.1

定义 $T: \mathbf{R}^3 \to \mathbf{R}^2$ 为 $T(x_1, x_2, x_3) = (x_2 + 3x_3, 2x_1)$ 求 T^* 根据定义 T^* 是 \mathbf{R}^2 到 \mathbf{R}^3 的函数。要计算 T^* ,取定一个点 $(y_1, y_2) \in \mathbf{R}^2$,那么对于每个 $(x_1, x_2, x_3) \in \mathbf{R}^3$ 有:

$$\langle (x_1, x_2, x_3), T^*(y_1, y_2) \rangle = \langle T(x_1, x_2, x_3), (y_1, y_2) \rangle$$
 (1.1)

$$= \langle (x_2 + 3x_3, 2x_1, (y_1, y_2)) \rangle \tag{1.2}$$

$$= x_2 y_1 + 3x_3 y_1 + 2x_1 y_2 \tag{1.3}$$

$$= \langle (x_1, x_2, x_3), (2y_2, y_1, 3y_1) \rangle \tag{1.4}$$

于是, $T^*(y_1, y_2) = (2y_2, y_1, 3y_1)$

例 1.2

取定 $u\in V$ 和 $x\in W$, 定义 $T\in \mathcal{L}(V,W)$ 如下: 对每个 $v\in V$ 有 $Tv=\langle v,u\rangle x$, 求 T^*

根据定义:

$$\langle Tv, w \rangle = \langle \langle v, u \rangle x, w \rangle \tag{1.5}$$

$$= \langle v, u \rangle \langle x, w \rangle \tag{1.6}$$

$$= \langle v, \langle w, x \rangle u \rangle \tag{1.7}$$

所以, $T^*w = \langle w, x \rangle u$

注意, 在上面两个例子中 T* 不只是函数而且还是线性映射。

定理 1.1

若 $T \in \mathcal{L}(V, W)$, 则 $T^* \in \mathcal{L}(W, V)$

证明 1.1

设 $T \in \mathcal{L}(V, W)$, 取定 $w_1, w_2 \in W$, 若 $v \in V$, 则:

$$\langle v, T^*(w_1 + w_2) \rangle = \langle Tv, w_1 + w_2 \rangle \tag{1.8}$$

$$= \langle Tv, w_1 \rangle + \langle Tv, w_2 \rangle \tag{1.9}$$

$$= \langle v, T^*(w_1) \rangle + \langle v, T^*W_2 \rangle \tag{1.10}$$

$$= \langle v, T^* w_1 + T^* w_2 \rangle \tag{1.11}$$

另一方面,若 $\lambda \in \mathbf{F}, w \in W$,则:

$$\langle v, T^*(\lambda w) \rangle = \langle Tv, \lambda w \rangle$$
 (1.12)

$$= \bar{\lambda} \langle Tv, w \rangle \tag{1.13}$$

$$= \bar{\lambda}\langle v, T^*w\rangle \tag{1.14}$$

$$= \langle v, \lambda T^* w \rangle \tag{1.15}$$

即, $T^*(\lambda w) = \lambda T^* w$. 因此 T^* 是线性映射。

伴随的性质:

定理 1.2

- 1. 对所有 $S, T \in \mathcal{L}(V, W)$ 均有 $(S + T)^* = S^* + T^*$
- 2. 对所有 $T \in \mathcal{L}(V, W), \lambda \in \mathbf{F}$ 均有 $(\lambda T)^* = \bar{\lambda} T^*$
- 3. 对所有 $T \in \mathcal{L}(V, W)$, 均有 $(T^*)^* = T$
- 4. $I^* = I$, 这里 $I \in V$ 上的恒等算子
- 5. 对所有 $T \in \mathcal{L}(V, W)$ 和 $S \in \mathcal{L}(V, W)$ 均有 $(ST)^* = T^*S^*$

证 对于 a 有:

$$\langle v, (S+T)^* w \rangle = \langle (S+T)v, w \rangle \tag{1.16}$$

$$= \langle Sv, w \rangle + \langle Tv, w \rangle \tag{1.17}$$

$$= \langle v, S^*w \rangle + \langle v, T^*w \rangle \tag{1.18}$$

$$= \langle v, S^*w + T^*w \rangle \tag{1.19}$$

即有: $(S+T)^*w = S^*w + T^*w$

对于 b 有:

$$\langle v, (\lambda T)^* w \rangle = \langle \lambda T v, w \rangle$$
 (1.20)

$$= \lambda \langle Tv, w \rangle \tag{1.21}$$

$$= \lambda \langle v, T^* w \rangle \tag{1.22}$$

$$= \langle v, \bar{\lambda} T^* w \rangle \tag{1.23}$$

即有: $(\lambda T)^* = \bar{\lambda} T^*$

对于c有:

$$\langle w, (T^*)^* v \rangle = \langle T^* w, v \rangle = \langle v, \bar{T}^* w \rangle = \langle Tv, w \rangle = \langle w, Tv \rangle \tag{1.24}$$

(1.25)

所以, $(T^*)^*v = Tv$

对于 d 有:

$$\langle v, I^* u \rangle = \langle Iv, u \rangle = \langle v, u \rangle = \langle v, Iu \rangle$$
 (1.26)

对于 e 有:

$$\langle v, (ST)^* u \rangle = \langle STv, u \rangle = \langle Tv, S^* u \rangle = \langle v, T^*(S^*u) \rangle \tag{1.27}$$

即有:
$$(ST)^*u = T^*S^*u$$

接下来,我们阐述线性映射及其伴随的零空间和值域之间的关系。

定理 1.3

设 $T \in \mathcal{L}(V, W)$, 则:

- 1. $\operatorname{null} T^* = (\operatorname{range} T)^{\perp}$
- 2. range $T^* = (\text{null } T)^{\perp}$
- 3. $\operatorname{null} T = (\operatorname{range} T^*)^{\perp}$
- 4. range $T = (\text{null}T^*)^{\perp}$

证明 1.2

 $\forall w \in W, w \in \text{null}T^*$, **则**:

$$w \in \text{null}T^* \Leftrightarrow T^*w = 0 \tag{1.28}$$

$$\Leftrightarrow \langle v, T^*w \rangle \qquad \forall v \in V \tag{1.29}$$

$$\Leftrightarrow \langle Tv, w \rangle = 0 \qquad \forall v \in V \tag{1.30}$$

$$\Leftrightarrow w \in \text{range} T^{\perp} \tag{1.31}$$

于是, $\text{null}T^* = (\text{range}T)^{\perp}$

定义 1.2 $m \times n$ 矩阵的共轭转置是先互换行和列,然后再对每个元素取 共轭得到的 $n \times m$ 矩阵。

定理 1.4

设 $T\in\mathcal{L}(V,W)$,假设 e_1,\ldots,e_n 是 V 的规范正交基, f_1,\ldots,f_m 是 W 的规范正交基。则 $\mathcal{M}(T^*,(f_1,\ldots,f_m),(e_1,\ldots,e_n))$ 是 \mathcal{M}

证明 1.3

把 Te_k 写成 f_j 的线性组合可以得到 $\mathcal{M}(T)$ 的第 k 列,在这个线性组合中用到的标量系数构成了 $\mathcal{M}(T)$ 的第 k 列,因为 f_1,\ldots,f_m 是 W 的规范正交基,所以:

$$Te_k = \langle Te_k, f_1 \rangle f_1 + \ldots + \langle Te_k, f_m \rangle f_m$$
 (1.32)

于是 $\mathcal{M}(T)$ 的第 k 列第 j 行的元素是 $\langle Te_k, f_j \rangle$ 把 T 替换为 T^* ,再互 换 e 和 f,可以得到, $\mathcal{M}^*(T)$ 的第 j 行第 k 列元素为: $\langle T^*f_k, e_j \rangle$,其等 于 $\langle f_k, Te_j \rangle = \langle Te_j^-, f_k \rangle$,这又是 $\mathcal{M}(T)$ 的对应元素的复共轭。也就是说 $\mathcal{M}(T)$ 和 $\mathcal{M}(T^*)$ 之间是共轭转置的关系。

2 自伴算子

现在我们关注一下内积空间上的算子。

定义 2.1 算子 $T\in\mathcal{L}(V)$ 称为自伴的,如果 $T=T^*$. 也就是说, $T\in\mathcal{L}(V)$ 是自伴的当且仅当 $\langle Tv,w\rangle=\langle v,Tw\rangle, \forall v,w\in V$

自伴意味着: $\mathcal{M}(T) = \mathcal{M}(T^*)$,伴随在 $\mathcal{L}(V)$ 上起的作用犹如复共轭在 \mathcal{C} 上起的作用。复数 z 是实的当且仅当 $z = \bar{z}$,因此自伴算子可以与实数类比。自伴意味着实对称矩阵。接下来我们证明实对称矩阵的特征值都是实数。

定理 2.1

自伴算子的每个特征值都是实数。

证明 2.1

设 $T \in V$ 上的自伴算子, $\lambda \in T$ 的本征值, $v \in V$ 中的非零向量使得 $Tv = \lambda v$, \mathbb{N} :

$$\lambda |v|^2 = \langle \lambda v, v \rangle \tag{2.1}$$

$$= \langle Tv, v \rangle \tag{2.2}$$

$$= \langle v, Tv \rangle \tag{2.3}$$

$$= \langle v, \lambda v \rangle \tag{2.4}$$

$$= \bar{\lambda}\langle v, v \rangle \tag{2.5}$$

$$= \bar{\lambda}|v|^2 \tag{2.6}$$

于是, $\lambda = \bar{\lambda}$, 即 λ 是实的。

定理 2.2

在 \mathbb{C} 上, 只有 \mathbb{O} 算子才能使 Tv 总正交于 v。设 V 是复内积空间, $T \in \mathcal{L}(V)$ 。 假设对所有 $v \in V$ 均有 $\langle Tv, v \rangle = 0$, 则 T = 0

定理 2.3

在 C 上,仅自伴算子才能使 $\langle Tv,v \rangle$ 都是实数。设 V 是复内积空间, $T \in$ $\mathcal{L}(V)$ 。则 T 是自伴的当且仅当对每个 $v \in V$ 均有 $\langle Tv, v \rangle \in \mathbf{R}$

证 设 $v \in V$,则:

$$\langle Tv, v \rangle - \langle T\bar{v}, v \rangle = \langle Tv, v \rangle - \langle v, Tv \rangle = \langle Tv, v \rangle - \langle T^*v, v \rangle = \langle (T - T^*)v, v \rangle \quad (2.7)$$

若对每个 $v \in V$ 均有 $\langle Tv, v \rangle \in \mathbf{R}$, 则必有 $T - T^* \neq \mathbf{0}$ 算子。反之,若 T 是自伴 的,则上式右端等于 0。所以 $\forall v \in V$,均有 $\langle Tv, v \rangle = \langle Tv, v \rangle$,即 $\langle Tv, v \rangle \in \mathbf{R}$ 口

定理 2.4

若 T 是 V 上的自伴算子使得对于所有 $v \in V$ 均有 $\langle Tv, v \rangle = 0$, 则 T = 0

假设 V 是实内积空间, 若 $u, w \in V$, 则:

$$\langle Tu, w \rangle = \frac{\langle T(u+w), u+w \rangle - \langle T(u-w), (u-w) \rangle}{4}$$
 (2.8)

因为 $\langle T(u+w), (u+w) \rangle$ 和 $\langle T(u-w), (u-w) \rangle$ 都是 $\langle Tv, v \rangle$ 的形式, 所以 $\langle Tu, w \rangle = 0$, 又由于 u, w 的任意性, 则 T = 0

3 正规算子

定义 3.1 内积空间上的算子称为正规的, 如果它和它的伴随是交换的。也 就是说, $T \in \mathcal{L}(V)$ 是正规的, 如果 $T^*T = TT^*$

注意一个算子如果是自伴的,那么 $T = T^*$;如果是正规的,那么 $T^*T = TT^*$ 。 所以一个算子可以是正规的但不是自伴的。但是一个算子是自伴的肯定是正规 的。

定理 3.1

算子 $T \in \mathcal{L}(V)$ 是正规的当且仅当对所有 $v \in V$ 均有 $||Tv|| = ||T^*v||$

设 $T \in \mathcal{L}(V)$: 证

$$TT^* - T^*T = 0 \Leftrightarrow \langle (TT^* - T^*T)v, v \rangle = 0 \tag{3.1}$$

$$\Leftrightarrow \langle TT^*v, v \rangle = \langle T^*Tv, v \rangle \tag{3.2}$$

$$\Leftrightarrow \langle T^*v, T^*v \rangle = \langle Tv, Tv \rangle \tag{3.3}$$

定理 3.2

设 $T \in \mathcal{L}(V)$ 是正规的, 且 $v \in V$ 是 T 的相应于本征值 λ 的特征向量, 则 v 也是 T^* 相应于 $\bar{\lambda}$ 的本征向量

因为 T 是正规的, 所以 $T - \lambda I$ 也是正规的。所以: 证

$$0 = \|(T - \lambda I)v\| = \|(T - \lambda I)^*v\| = \|(T^* - \bar{\lambda}I^*)v\|$$
(3.4)

定理 3.3

设 $T \in \mathcal{L}(V)$ 是正规的,则 T 的相应于不同本征值的本征向量是正交的。 👶

证 设 α, β 是 T 的不同本征值, u, v 分别是相应的本征向量, 于是 $Tu = \alpha u$ 且 $Tv = \beta v$ 。因此:

$$(\alpha - \beta)\langle u, v \rangle = \langle au, v \rangle - \langle u, \bar{\beta}v \rangle \tag{3.5}$$

$$= \langle Tu, v \rangle - \langle u, T^*v \rangle \tag{3.6}$$

$$=0 (3.7)$$

因为 $\alpha \neq \beta$, 上面的等式表明 $\langle u,v \rangle = 0$ 。因此 u 和 v 是正交的。

4 总结

自伴和正规都是针对内积空间上的算子而言,算子是自身到自身的线性映射。自伴算子对应的矩阵是实对称的。起对应的特征向量是实数。正规的算子, 其伴随是可交换的,但是正规算子不一定是自伴的。