Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/12

Paper 1 Pure Mathematics 1

October/November 2021

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages.

Solve the equation $2\cos\theta = 7 - \frac{3}{\cos\theta}$ for $-90^{\circ} < \theta < 90^{\circ}$.	[4
	•••••

Describe fully the two single transformations that have been combined to give the transformation.	e resulting
	•••••
	•••••
point $P(5, 6)$ lies on the transformed curve $y = f(2x) - 3$. State the coordinates of the corresponding point on the original curve $y = f(x)$.	[2]
State the coordinates of the corresponding point on the original curve $y = f(x)$.	
State the coordinates of the corresponding point on the original curve $y = f(x)$.	
State the coordinates of the corresponding point on the original curve $y = f(x)$.	
State the coordinates of the corresponding point on the original curve $y = f(x)$.	
State the coordinates of the corresponding point on the original curve $y = f(x)$.	
State the coordinates of the corresponding point on the original curve $y = f(x)$.	
State the coordinates of the corresponding point on the original curve $y = f(x)$.	

3	The function	fic	dofinad	as follows:

$$f(x) = \frac{x+3}{x-1} \text{ for } x > 1.$$

(a)	Find the value of $ff(5)$.	[2]
(b)	Find an expression for $f^{-1}(x)$.	[3]

Find 4	the sauce	ation of	tha	irvo										
rina (the equa	ation of	the Ct	irve.										
													•••••	
••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	,	• • •
														•••
•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••		• • • •
														•••
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	•••••	•••••	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••		•••
										•••••				•••
••••••	••••••	••••••	•••••	•	••••••	•••••	••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••		•••
											•••••			•••
	•••••	•••••			•••••		•			•••••				•••
	•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •					•••••	• • • • • • • • • • • • • • • • • • • •			•••
•••••		•••••	•••••		••••••		•••••			•••••				•••
•••••	•••••	•••••	•••••		••••••				•••••	•••••	• • • • • • • • • • • • • • • • • • • •			•••
•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		• • • •
													• • • • • • • • • • • • • • • • • • • •	
•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••		•••
•••••	•••••	•••••	•••••		•••••	•••••	•••••	••••••	•••••	••••••	••••••	••••••	, 	•••
			•••••								• • • • • • • • • • • • • • • • • • • •			

The first, third and fifth terms of an arithmetic progression are $2\cos x$, $-6\sqrt{3}\sin x$ and $10\cos x$

	Find the exact value of x .	[3]
)	Hence find the exact sum of the first 25 terms of the progression.	[3]
)	Hence find the exact sum of the first 25 terms of the progression.	[3]
)	Hence find the exact sum of the first 25 terms of the progression.	[3]
))	Hence find the exact sum of the first 25 terms of the progression.	[3]
))		
))		
))		
)		
b)		

The common ratio is greater than $\frac{1}{2}$.	
Find the tenth term, giving your answer in exact form.	[5

(a)

In the diagram the lengths of AB and AC are both 15 cm. The point P is the foot of the perpendicular from C to AB. The length CP = 9 cm. An arc of a circle with centre B passes through C and meets AB at Q.

Show that angle $ABC = 1.25$ radians, correct to 3 significant figures.	[2]
	•••••
	•••••

PQ.					
	 			 	•••••
	 	••••••		 •••••	•••••
•••••	 	•••••	••••••	 	•••••
•••••	 	•••••	••••••	 	•••••
••••••	 	••••••	•••••	 	
	 		••••••	 	••••••
	 		••••••	 	••••••
	 		••••••	 	•••••
	 	•••••		 	•••••
	 			 	•••••
	 	•••••		 ••••••	
	 			 	•••••
	 	•••••		 	•••••
	 ••••••	•••••		 	•••••
•••••	 			 	•••••
	 	•••••		 	•••••
	 	•••••		 	
	 			 	•••••
	 			 	•••••
	 			 	•••••
	 			 	•••••
	 	•••••		 	•••••

8 (a	It is given that in the expansion of $(4 + 2x)(2 - ax)^5$, the coefficient of x^2 is -15.
	Find the possible values of a . [4]

F	Find the values of k and a .	
•		
•		
•		
•		
•		
		,
•		
•		
•		

(a)	Find the rate at which the radius of the mound is increasing at the instant when the radius is

											9	r	r second. [3	3]
•••••				••••••			•••••	•••••		•••••	•••••	•••••	•••••	· • •
•••••				•••••		•••••	•••••	•••••		•••••	•••••	•••••		· • •
•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	· • •
•••••		••••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	.
•••••		•••••	•••••		•••••					••••••	•••••	••••••		•••
•••••														
•••••													•••••	
•••••														
•••••	••••••													
•••••	••••••													
•••••		••••••												
•••••	•	••••••	•••••	••••••	••••••		•	••••••	••••••	••••••	••••••	••••••		•••
														•••

10	The function f is defined by $f(x) = x^2 + \frac{1}{2}$	$-\frac{k}{x} + 2 \text{ for } x > 0$
----	---	---------------------------------------

••••	
	_
••••	
••••	••
• • • •	••
	• •
• • • •	•
	• •
••••	• •
••••	 • •
••••	 • •
••••	•
• • • •	
	•
••••	• •
••••	• •
	• •
• • • •	••

	Determine the nature of the stationary point.	
		•••••••
		•••••
		••••••
		••••••
•	Given that this is the only stationary point of the curve, find the range of f.	
•	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
•	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
•	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	
	Given that this is the only stationary point of the curve, find the range of f.	

(a)

The diagram shows the line $x = \frac{5}{2}$, part of the curve $y = \frac{1}{2}x + \frac{7}{10} - \frac{1}{(x-2)^{\frac{1}{3}}}$ and the normal to the curve at the point $A\left(3, \frac{6}{5}\right)$.

Find the <i>x</i> -coordinate of the point where the normal to the curve meets the <i>x</i> -axis.	[5]

)	Find the area of the shaded region, giving your answer correct to 2 decimal places. [6]

The diagram shows the circle with equation $x^2 + y^2 - 6x + 4y - 27 = 0$ and the tangent to the circle at the point P(5, 4).

(a) The tangent to the circle at P meets the x-axis at A and the y-axis at B.

Find the area of triangle OAB , where O is the origin.	[5]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

					••••••						
					•••••	••••••	••••••	•••••			• • • • • • • • • • • • • • • • • • • •
			•••••								
					• • • • • • • • • • • • • • • • • • • •						
	•••••										
•••••		••••••	•••••	•••••	•••••	•••••	•••••	••••••			••••••
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••			
•••••			•••••	•••••			•••••				
••••••	•••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•	••••••
			•••••	•••••							
•••••	•••••			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

Additional Page

must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.