Prove that if H is a consistent heuristic function, then H is admissible. Hint: try induction on the length of the optimal completion parth from state g. Suppose H is consistent. Show H(g) = H*(g) YgGQ, base case: Let gEF. Then H(g) = H*(g) = 0, so H(g) < H*(g).

inductive step: Assume $H(q) \leq H^*(q)$ for any state $q' \in Q$ with an optimal completion path of length at most k. Consider state q with optimal completion path $\langle \delta_1, ..., \delta_{k+1} \rangle$, where transition $\delta_i = (q, \sigma_i, q')$. Observe that $\langle \delta_2, ..., \delta_{k+1} \rangle$ is a completion path for state q', thus q' has an optimal completion path of length at most k.

By the inductive hypothesis: $H(q') \leq H^*(q')$

Moreover:

Thus $H(q) \leq H^*(q)$ for any state q with an optimal completion path of length k+1.

By induction, H(q) = H*(q) for all states q ∈ Q.