

Model Development Phase Template

Date	15 July 2024
Team ID	739750
Project Title	Doctors Annual Salary Prediction
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

[]	<pre>#importing and building the DecisionTreeRegressor from sklearn.tree import DecisionTreeRegressor</pre>
[]	<pre>dtr = DecisionTreeRegressor(random_state=42)</pre>
[]	<pre>dtr.fit(x_train,y_train)</pre>
₹	▼ DecisionTreeRegressor DecisionTreeRegressor(random_state=42)
[]	<pre>y_train_pred = dtr.predict(x_train) y test pred = dtr.predict(x test)</pre>

Model Validation and Evaluation Report:

Model	Classification Report	Confusion Matrix
Linear Regression	[18] y_train_pred = reg.predict(x_train) y_test_pred = reg.predict(x_test) y_train_pred[:5] y_train_pred[:5]	<pre> array([[2089.92211589],</pre>

		⇒ array([[2791.96681967], [2868.54519316], [3677.51747297], [2891.19452805], [3267.38001545]])
Random Forest Regressor	[24] #mean square error for testing data mean_squared_error(y_test,y_test_pred)	371504.5452169281
Decision Tree Regressor	<pre> [37] y_train_pred[:5] [38] y_test_pred[:5]</pre>	<pre>→ array([2070., 3670., 3810., 3060., 2730.])</pre> → array([3750., 2150., 3550., 3060., 3550.])
XGB Regressor	<pre>mean_squared_error(y_train,y_train_pred)</pre>	3- 4.669938587485599e-87