A Model Tripos Question on Propositional Logic

Thomas Forster

October 11, 2012

A type in a propositional language \mathcal{L} is a set of formulæ (a countably infinite set unless otherwise specified).

For T an \mathcal{L} -theory a T-valuation is an \mathcal{L} -valuation that satisfies T. A valuation v realises a type Σ if $v(\sigma) = \mathsf{true}$ for every $\sigma \in \Sigma$. Otherwise v omits Σ . We say a theory T locally omits a type Σ if, whenever ϕ is a formula such that T proves $\phi \to \sigma$ for every $\sigma \in \Sigma$, then $T \vdash \neg \phi$.

Now prove the following:

- (i) Let T be a propositional theory, and $\Sigma \subseteq \mathcal{L}(T)$ a type. If T locally omits Σ then there is a T-valuation omitting Σ .
- (ii) Let T be a propositional theory and, for each $i \in \mathbb{N}$, let $\Sigma_i \subseteq \mathcal{L}(T)$ be a type. If T locally omits every Σ_i then there is a T-valuation omitting all of the Σ_i .

[Hint: Show that, if n is such that you can find a family $\langle \phi_i : i \leq n \rangle$, with ϕ_i in Σ_i for every i < n s.t. $T \cup \{ \bigwedge_{i \leq n} \neg \phi_i \}$ is consistent, then you can extend this family to one of length n+1.]

For further reading have a look at yabloomittingtypes.pdf linked from my home page.