

Exercise 12.2

And Cloth required to 5 green pieces = $5 \times 200\sqrt{6}$ = $1000\sqrt{6}cm^2$

Q7. A kite is in the shape of a square with a diagonal 32 cm and an isosceles triangle of base 8 cm and sides 6 cm each is to be made of three different shades as shown in figure.

How much paper of each side has been used in it?

Ans. Let ABCD is a square of side a cm and diagonals AC = BD = 32 cm

In right triangle ABC, $AB^2 + BC^2 = AC^2$ [Using Pythagoras theorem]

$$\Rightarrow a^2 + a^2 = (32)^2$$

$$\Rightarrow 2a^2 = 32 \times 32$$

$$\Rightarrow a^2 = \frac{32 \times 32}{2} = 512$$

⇒ Area of square = 512 cm² [Area of square = side×side]

Diagonal BD divides the square in two equal triangular parts I and II.

... Area of shaded part I = Area of shaded part II

$$=\frac{1}{2}\times512 = 256 \text{ cm}^2$$

Now, semi-perimeter of shaded part III

$$(s) = \frac{6+6+8}{2} = 10 \text{ cm}$$

Area of shaded part III = $\sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{10(10-6)(10-6)(10-8)}$$

$$= \sqrt{10 \times 4 \times 4 \times 2} = 8\sqrt{5}$$

$$= 8 \times 2.236 = 17.88 \text{ cm}^2$$

Q8. A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangle being 9 cm, 28 cm and 35 cm (see figure). Find the cost of polishing the tiles at the rate of 50 paise per cm².

Ans. Here, Sides of a triangular shaped tile area 9 cm, 28 cm and 35 cm.

Semi-perimeter of tile
$$(s) = \frac{9+28+35}{2} = 36 \text{ cm}$$

Area of triangular shaped tile =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

$$=\sqrt{36(36-9)(36-28)(36-35)}$$

$$=\sqrt{36\times27\times8\times1} = 36\sqrt{6}$$

$$= 36 \times 2.45 = 88.2 cm^2$$
 (approx.)

- \therefore Area of 16 such tiles = $16 \times 88.2 = 1411.2 \text{ cm}^2$ (Approx.)
- \therefore Cost of polishing $1 cm^2$ of tile = Rs. 0.50
- \therefore Cost of polishing $1411.2 cm^2$ of tile = $Rs. 0.50 \times 1411.2 = Rs. 705.60$ (Approx.)
- **Q9.** A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The non-parallel sides are 14 m and 13 m. Find the area of the field.

Ans. Let ABCD be a field in the shape of trapezium and parallel side AB = 10 m & CD = 25 m

And Non-parallel sides AD = 13 m and BC = 14 m

Draw BM \perp DC and BE \parallel AD so that ABED is a parallelogram.

$$\therefore$$
 BE = AD = 13 m and DE = AB = 10 m

Now in \triangle BEC, Semi-perimeter $(s) = \frac{13+14+15}{2}$

 $= 21 \, \text{m}$

Area of
$$\triangle$$
 BEC = $\sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{21(21-13)(21-14)(21-15)}$$

$$=\sqrt{21\times8\times7\times6}=84 m^2$$

And Area of \triangle BEC = 84 m^2

$$\Rightarrow \frac{1}{2} \times EC \times BM = 84$$

$$\Rightarrow \frac{1}{2} \times 15 \times BM = 84$$

$$\Rightarrow$$
 BM = $\frac{84 \times 2}{15}$ = 11.2 m

Now area of trapezium ABCD =

$$\frac{1}{2}(AB + CD) \times BM$$

$$= \frac{1}{2}(10 + 25) \times 11.2$$

$$= 196 m^2$$

********** END *******