Representation Theory of Finite Groups

Alex Rutar* University of Waterloo

Fall 2019[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: September 18, 2019

Contents

Chapter	Introduction	
1	ensor Products	4
2	haracter Theory	4

I. Introduction

Let G be a finite group of order n, and write $G = \{g_1, ..., g_n\}$. Fix $g \in G$; then $gg_i = gg_j$ if and only if i = j. Thus there exists some $\sigma_g \in S_i$ such that $gg_i = g_{\sigma_g(i)}$ for all $i \in \{1, 2, ..., n\}$. In particular, $\phi : G \to S_n$ by $\phi(g) = \sigma_g$ is an embedding (injective group homomorphism). This observation is usually referred to as Cayley's Theorem.

Now let V be an n-dimensional complex vector space. We then denote GL(V) as the group of invertible linear operators $T: V \to V$. Now define $\psi: S_n \to GL_n(V)$ by $\psi(\sigma) = T_\sigma$ where if $\{b_1, \ldots, b_n\}$ is a basis for V and $T_\sigma(b_i) = b_{\sigma(i)}$. This is an injective group homomorphism, so $\psi \circ \phi: G \to GL(V)$ is an embedding of G into GL(V).

Definition. Let G be a finite group, and V a finite dimensional \mathbb{C} -vector space. A **representation** of G is a group homomorphism $\rho: G \to \mathrm{GL}(V)$. We call $\dim(V)$ the **degree** of the representation.

In particular, if *V* is *n*-dimensional, then $GL(V) \cong GL_n(\mathbb{C})$.

Example. 1. Consider $\rho: G \to GL(\mathbb{C}) \cong \mathbb{C}^{\times}$ given by $\rho(g) = 1$ for all $g \in G$. This is called the *trivial representation*.

- 2. Consider $\rho: S_n \to \mathbb{C}^{\times}$ given by $\rho(\sigma) = \operatorname{sgn}(\sigma)$, which is called the *sign representation*.
- 3. The representation fo *G* afforded by Cayley's theorem is called the *regular representation* of *G*. The next example is a good way to understand the regular rep of *G*.
- 4. Consider G, $X = \{x_1, ..., x_n\}$, and V = Free(X). Suppose G acts on X. Then $\rho : G \to GL(V)$ given by $\rho(g)(x_i) = gx_i$. In particular, if we take X = G, then this is the regular representation of G
- 5. Consider the 4–gon, with vertices labelled a,b,c,d. Take $X = \{a,b,c,d\}$ and the regular representation $\rho: D_4 \to \operatorname{GL}(V)$. This action has a geometric notion.
- 6. Let C_n be a cyclic group of order n; let us define some $\rho : C_n \to GL(V)$. Say $\rho(x) = T$ where $t \in GL(V)$; then this is a representation if and only if $T^n = I$.

Definition. We say that two representations $\rho: G \to GL(V)$ and $\tau: G \to GL(W)$ are **isomorphic** if there exists an isomorphism $T: V \to W$ such that for all $g \in G$,

$$T \circ \rho(g) = \tau(g) \circ T$$

Suppose $\rho: G \to \operatorname{GL}(V)$ and $T: V \to W$ is an isomorphism. Then we can define $\tau: G \to \operatorname{GL}(W)$ by $\tau(G) = T \circ \rho(g) \circ T^{-1}$; this $\rho \cong \tau$. In other words, the representation is unique up to isomorphism under change of basis.

Example. Consider $G = \{g_1, ..., g_n\} = \{h_1, ..., h_n\}$, and fix $g \in G$. Let $gg_i = g_{\alpha(i)}$ and $gh_i = h_{\beta(i)}$ where $\alpha, \beta \in S_n$. Fix an n-dimensional vector space V with basis $\{b_1, ..., b_n\}$. Then two regular representations are given by

$$\rho_1: G \to \operatorname{GL}(V), \rho(g)(b_i) = b_{\alpha(i)}$$

$$\rho_2: G \to \operatorname{GL}(V), \rho(g)(b_i) = b_{\beta(i)}$$

Let $\gamma \in S_n$ be such that $h_{\gamma(i)} = g_i$, and define $T: V \to V$ by $T(v_i) = b_{\gamma(i)}$. Then

$$gg_i = g_{\alpha(i)} = gh_{\gamma(i)} = h_{\beta\gamma(i)} = g_{\gamma^{-1}\beta\gamma(i)}$$

so that $\alpha = \gamma^{-1}\beta\gamma$. Thus for each b_i ,

$$T \circ \rho_{1}(g) \circ T^{-1}(b_{i}) = T \circ \rho_{1}(g)(b_{\gamma^{-1}(i)})$$

$$= T(b_{\alpha\gamma^{-1}(i)})b_{\gamma\alpha\gamma^{-1}(i)}$$

$$= b_{\beta(i)} = \rho_{2}(g)(b_{i})$$

so that $T \circ \rho_1(g) \circ T^{-1} = \rho_2(g)$.

Note: conjugate elements have the same cycle type.

Subrepresentations

What should a subrepresentation of $\rho : G \to GL(V)$ mean?

We would like a subspace $W \le V$ such that $\tau : G \to GL(W)$ is a representation given by $\tau(g)(w) = \rho(g)(w)$ for all $w \in W$. Moreover, to make this well-defined, we need W to b4 $\rho(g)$ -invariant for every $g \in G$ $(\rho(g)(W) \subseteq W)$.

Suppose $T: V \to V$ is a linear operator, and $W \le V$ is a T-invariant subspace; i.e. $T(W) \subseteq W$. In particular, the restriction operator $T_W: W \to W$ is well-defined.

Definition. Let $\rho: G \to \operatorname{GL}(V)$ be a representation. A subspace $W \subseteq V$ is said to be G-stable if W is $\rho(g)$ -invariant for all $g \in G$. A **subrepresentation** of ρ is a representation $\rho_W: G \to \operatorname{GL}(W)$ where for all $g \in G$ and $w \in W$, $\rho_W(g)(w) = \rho(g)(w)$ where W is a G-stable subspace of V.

Example. Suppose $\rho: G \to \operatorname{GL}(V)$ be the regular representation. Take $W = \operatorname{span}\{\sum_{g \in G} v_g\}$, which is clearly G-stable, and $\rho_W: G \to \operatorname{GL}(W)$ is isomorphic to the trivial representation.

Similarly, let $\rho: S_n \to \operatorname{GL}(V)$ be the regular representation, $W = \operatorname{span}\{\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) v_\sigma\}$; this is isomorphic to the sign representation.

0.1 Theorem. Let $\rho: G \to GL(V)$ be a representation, $W \le V$ G-stable. Then there exists a G-stable subspace W' such that $V = W \oplus W'$.

PROOF Take any inner product $\langle x, y \rangle$ on V. Then for any $x, y \in V$, define

$$\langle x, y \rangle^* = \sum_{g \in G} \langle \rho(g)(x), \rho(g)(y) \rangle$$

This is also an inner product. Let $x, y \in V$ and let $h \in G$. Then

$$\begin{split} \langle \rho(h)(x), \rho(h)(y) \rangle^* &= \sum_{g \in G} \langle \rho(g)\rho(h)(x), \rho(g)\rho(h)(y) \rangle \\ &= \sum_{g \in G} \langle \rho(gh)(x), \rho(gh)(y) \rangle \\ &= \sum_{g \in G} \langle \rho(g)(x), \rho(g)(y) \rangle \end{split}$$

Thus every $\rho(h)$ is unitary with respect to $\langle \cdot, \cdot \rangle^*$. Let $W \leq V$ be G-stable, and take $W' = W^{\perp}$ with respect to $\langle \cdot, \cdot \rangle^*$. Then $V = W \oplus W'$. Let's see that W^{\perp} is G-stable. Let $x \in W^{\perp}$, $w \in W$,

and $g \in G$, so that

$$\langle \rho(g)(x), w \rangle^* = \langle x, \rho(g)^*(w)^* \rangle = \langle x, \rho(g)^{-1}(w) \rangle^*$$
$$= \langle x, \underbrace{\rho(g^{-1})(w)}_{\in W} \rangle^*$$
$$= 0$$

and $\rho(g)(W^{\perp}) \subseteq W^{\perp}$ as required.

Definition. Let $\rho: G \to GL(V)$ be a representation, and $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$ where each W_i is G-stable. For each i, let $\rho_i = \rho_{w_i}$. For each $v = \sum w_i \in V$, we have $\rho(g)(v) = \sum \rho(g)(w_i) = \rho_i(g)(w_i)$. In this case, we write

$$\rho = \rho_1 \oplus \rho_2 \oplus \cdots \oplus \rho_k$$

and call ρ a direct sum of the ρ_i 's.

The previous definition is written as an internal direct sum of V. Externally, given vector spaces W_1, \ldots, W_k and representations $\rho_i : G \to GL(W_i)$, we can define

$$(\rho_1 \oplus \cdots \oplus \rho_k) : G \to GL(W_1 \oplus \cdots \oplus W_k)$$

by $(\rho_1 \oplus \cdots \oplus \rho_k)(g)(w_1, \ldots, w_k) = (\rho_1(g)(w_1), \ldots, \rho_k(g)(w_k))$. If $\rho_i : G \to GL(W_i)$ is a subrepresentation fo $\rho : G \to GL(V)$, we often say " W_i is a subrepresentation of V".

Definition. Let $\rho: G \to GL(V)$ be a representation. We say ρ is **irreducible** if $V \neq \{0\}$ and the only G-stable subspaces of V are $\{0\}$ and V.

0.2 Theorem. Every representation $\rho: G \to GL(V)$ can be written as a direct sum of irreducible sub-representations.

Example. Let $\rho: S_3 \to GL(\mathbb{C}^3)$ be the permutation representation with respect to the standard basis $\{e_1, e_2, e_3\}$. Consider $W_1 = \text{span}\{e_1 + e_2 + e_3\}$ and $W_2 = \text{span}\{e_1 - e_2, e_2 - e_3\}$. Is W_2 irreducible?

More generally, if $V = W_1 \oplus \cdots \oplus W_k$ and dim $W_i = 1$ and deg $(\rho_i) = 1$,

$$\rho(gh)(\sum w_i) = \sum \rho_i(gh)(w_i) = \sum \rho_i(g)\rho_i(h)(w_i) = \sum \rho_i(h)\rho_i(g)(w_i)$$

so that $\rho(gh) = \rho(hg)$. In the our example, this does not happen, since $\rho(g) \neq I$ when $g \neq 1$ and S_3 is not abelian.

Example. Let $\rho: S_3 \to \operatorname{GL}(V)$ be the regular representation. Let $W_1 = \operatorname{span}\{\sum_{\sigma \in S_3} v_{\sigma}\}$ and $W_2 = \operatorname{span}\{\sum_{\sigma \in S_3} \operatorname{sgn}(\sigma) v_{\sigma}\}$, and

$$W_{3} = \sum \alpha_{\sigma} v_{\sigma} | \alpha \begin{vmatrix} +\alpha_{(123)} + \alpha_{(1,3,2)} \\ = 0 \\ \alpha_{(12)} + \alpha_{(13)} + \alpha_{(23)} \\ = 0 \end{vmatrix} \epsilon$$

Now let's focus on W_3 . A basis for W_3 is given by

$$e_1 = v_{\epsilon} - v_{(123)}$$
 $e_2 = v_{\epsilon} - v_{(123)}$ $e_3 = v_{(12)} - v_{(13)}$ $e_4 = v_{(12)} - v_{(23)}$

Recall that $S_3 = \langle (12), (123) \rangle$; suffices to show stability with respect to generators.

$$\rho(12): e_1 \mapsto e_4, e_2 \mapsto e_3, e_3 \mapsto e_2, e_4 \mapsto e_1$$

 $\rho(123): e_1 \mapsto e_2 - e_1, e_2 \mapsto -e_1, e_3 \mapsto e_4 - e_3, e_4 \mapsto -e_3$

Let $U_1 = \text{span}\{e_1 - e_4, e_2 + e_3 - e_1\}$

1 Tensor Products

Let $\rho: G \to GL(V)$ and $\tau: G \to GL(W)$ be representations. We define the representation $\rho \otimes \tau: G \to GL(V \otimes W)$

$$(\rho \otimes \tau)(g)(v \otimes w) = \rho(g)(v) \otimes \tau(g)(w)$$

2 Character Theory

We define the character of ρ by ρ : $G \to \mathbb{C}$ as $\chi(G) = (\rho(g))$.

Remark. If we choose a basis β for V, then define $A(g) = [\rho(g)]_{\beta}$ and $\chi(G)$ is given by the sum of the diagonal entries of A(g). Furthermore, if $A, B \in M_n(\mathbb{C})$, then (AB) = (BA).

The remark implies a number of facts:

- (i) $\rho \cong \tau$, then $(\rho(g)) = (\tau(g))$.
- (ii) (T) is the sum of eigenvalues of T
- (iii) $\chi(1) = \dim(V)$.
 - **2.1 Proposition.** For every $g \in G$ the eigenvalues of $\rho(g)$ have modulus 1. In particular, $\chi(g^{-1}) = \overline{\chi(g)}$.

PROOF Set n = |G|; then $\rho(g)^n = \rho(g^n) = I$ so that $\lambda^n - 1 = 0$ for any eigenvalue λ , so $|\lambda| = 1$. Furthermore,

$$\overline{\chi(g)} = \overline{\sum \lambda_i} = \sum \overline{\lambda_i} = \sum \lambda_i^{-1} = \chi(g^{-1})$$

proving the second component.

2.2 Proposition. Let $\rho: G \to GL(V)$ and $\tau: G \to GL(W)$. Then $\chi_{\rho \oplus \tau} = \chi_{\rho} + \chi_{\tau}$ and $\chi_{\rho \otimes \tau} = \chi_{\rho} \cdot \chi_{\tau}$.

PROOF Let $\beta_1 = \{v_1, \dots, v_n\}$ be a basis for V and $\beta_2 = \{w_1, \dots, w_m\}$ a basis for W.

Then a basis for $V \oplus W$ is given by $\beta = \{(v_1, 0), \dots, (v_n, 0), (0, w_1), \dots, (0, w_m)\}$. In particular,

$$[(\rho \oplus \tau)(g)]_{\beta} = \begin{pmatrix} [\rho(g)]_{\beta_1} & \\ & [\tau(g)]_{\beta_2} \end{pmatrix}$$

and the trace result follows.

A basis for $V \otimes W$ is given by $\gamma = \{v_i \otimes w_j : 1 \le i \le n, 1 \le j \le m\}$ in lexicographic order. Fix $g \in G$, and set $A = [\rho(g)]_{\beta_1}$, $B = [\rho(g)]_{\beta_2}$. Fix $v_i \otimes w_j \in \gamma$. Then

$$(\rho \otimes \tau)(g)(v_i \otimes w_j) = \rho(g)(v_i) \otimes \tau(g)(w_j)$$

$$= (a_{1i}v_1 + \dots + a_{ni}v_n) \otimes (b_{1j}w_1 + \dots + b_{mj}v_m)$$

$$= \dots + a_{ii}b_{jj} \cdot (v_i \otimes w_j) + \dots$$

$$= ([\rho \otimes \tau)(g)]_{\delta}) = \sum_{i,j} a_{ii}b_{jj} = (A)() = \chi_{\rho}(g) \cdot \chi_{\tau}(g)$$

Example. Suppose $\rho: S_n \to \operatorname{GL}(\mathbb{C}^n)$ is the permutation representation with respect to $\{e_1, \dots, e_n\}$. Then $\chi(\sigma) = |\{e_i : \rho(\sigma)(e_i) = e_i\}| = |\operatorname{Fix}(\sigma)|$, which is the number of indices i fixed by σ . Since S_n acts transitively on $\{1, \dots, n\}$, there is exactly 1 orbit, so by Burnside's lemma,

$$n! = |S_n| = \sum_{\sigma \in S_n} \chi(\sigma)$$

Example. Let $\rho: G \to \operatorname{GL}(V)$ be the regular representation. Note that if $g \ne 1$, then for all $h \in G$, $gh \ne h$. In particular, this means that $\chi(g) = 0$ if $g \ne 1$, and $\chi(1) = |G|$ (the dimension of V).

Example. Let $\rho: S_3 \to \operatorname{GL}(V)$ be the regular representation. Recall that $V = W_1 \oplus W_2 \oplus U_1 \oplus U_2$ where W_1 is the trivial representation, W_2 is the sign representation, and U_1, U_2 are isomorphic. Let $S_3 = \langle (12), (123) \rangle$; then we have

$$\begin{array}{c|cccc} x_1 & 1 & 1 \\ \hline x_2 & -1 & 1 \\ x_3 & a & b \\ x_4 & a & b \\ \end{array}$$

In particular, $\chi(12) = 1 - 1 + 2a = 0$ and $\chi(123) = 1 + 1 + 2b = 0$, so b = -1.

Example. Let $\rho: G \to GL(V)$ be a representation. In particular, $\rho(ghg^{-1}) = \rho(g)\rho(h)\rho(g)$ so that $\rho(ghg^{-1}) = \rho(h)$ so $\chi(ghg^{-1}) = (h)$; in other words, that characters are constant on conjugacy classes.

2.3 Lemma. (Schur) Let $\rho: G \to \operatorname{GL}(V)$ and $\tau: G \to \operatorname{GL}(W)$ be irreducible representations, and suppose $T: V \to W$ is linear such that for all $g \in G$, $\tau(g) \circ T = T \circ \rho(g)$. Then either T = 0 or T is an isomorphism and $\rho \cong \tau$. Moreover, if V = W and $\rho = \tau$, then T is a scalar multiple of the identity.

Proof Assume $T \neq 0$.

Let's first see that T is injective, and let $v \in \ker(T)$. Then for any $g \in G$, $T(\rho(g)(v)) = \tau(g)(T(v)) = 0$, so $\rho(g)(v) \in \ker(T)$. Thus $\ker(T)$ is G-stable (with respect to ρ). Since ρ is irreducible and $T \neq 0$, $\ker(T) = \{0\}$.

We also have that T is surjective. Let $v \in \text{Im}(T)$ and say v = T(X) with $x \in V$. Then for $g \in G$, $\tau(g)(v) = \tau(g)(T(x)) = T(\rho(g)(x)) \in \text{Im}(T)$ so Im(T) is G-stable, and again by irreducibility of τ , Im(T) = W. Thus T is an isomorphism.

Now let $\lambda \in \mathbb{C}$ be an eigenvalue of T and consider $T' = T - \lambda I$. Now, note that for $g \in G$, $\rho(g)T' = T'\rho(g)$, but T' has non-trivial kernel, so in fact T' = 0.

2.4 Corollary. Let $\rho: G \to GL(V)$ and $\tau: G \to GL(W)$ be irreducible, and $T: V \to W$ linear. Consider

$$T' = \frac{1}{|G|} = \sum_{g \in G} \tau(g)^{-1} T \rho(g)$$

Then

- (i) If $T' \neq 0$, then $\rho \cong \tau$ via T'.
- (ii) If V = W, $\rho = \tau$, then $T' = (T)/\dim(V) \cdot I$.

PROOF Clearly $T': V \to W$ is linear, and for any $h \in G$,

$$\tau(h)T' = \tau(h)\frac{1}{|H|} \sum_{g \in G} \tau(g^{-1})T\rho(g)$$

$$= \frac{1}{|G|} \sum_{g \in G} \tau(hg^{-1})T\rho(g)$$

$$= \frac{1}{|G|} \sum_{g \in G} \tau(g^{-1})T(\rho(gh))$$

$$= \frac{1}{|G|} \sum_{g \in G} \tau(g^{-1})T\rho(g)\rho(h)$$

$$= T'\rho(h)$$

If
$$V = W$$
 and $\rho = T$, then $(T') = \frac{1}{|G|}(T) \cdot |G| = (T) = \alpha \dim(V)$, so $\alpha = (T)/\dim(V)$.

Let $\rho: G \to \operatorname{GL}(V)$ and $\tau: G \to \operatorname{GL}(W)$ be irreducible representations, and $T: V \to W$ linear. Let β be a basis for V and γ a basis for W. Then for $g \in G$, let $[\rho(g)]_{\beta} = (a_{ij}(g))$, $[\tau(g)]_{\gamma} = (b_{kl}(g))$, $[T]_{\beta}^{\gamma} = (X_{ki})$, and $[T']_{\beta}^{\gamma} = (x'_{ki})$.

By matrix multiplication, $x'_{ki} = \frac{1}{|G|} \sum_{g} \sum_{j,l} b_{kl}(g^{-1}) x_{lj} a_{ji}$. If $\rho \not\equiv \tau$, then T' = 0, so by viewing the RHS as a polynomial in the x_{ij} , we have

$$\frac{1}{|G|} \sum_{g} b_{kl}(g^{-1}) a_{ji}(g) = 0$$