Package 'mistr'

February 4, 2020

Type Package
Title Mixture and Composite Distributions
Version 0.0.3
Depends R (>= $3.0.1$)
Maintainer Lukas Sablica <lsablica@wu.ac.at></lsablica@wu.ac.at>
Description A flexible computational framework for mixture distributions with the focus on the composite models.
License GPL-3
Imports bbmle, stats, graphics, grDevices
Suggests ggplot2, grid, knitr, rmarkdown, pinp
LazyData true
Encoding UTF-8
RoxygenNote 6.1.1
VignetteBuilder knitr
NeedsCompilation no
Author Lukas Sablica [aut, cre] (https://orcid.org/0000-0001-9166-4563), Kurt Hornik [aut] (https://orcid.org/0000-0003-4198-9911)
Repository CRAN
Date/Publication 2020-02-04 10:40:02 UTC
R topics documented:
mistr-package 3 autoplot.comp_fit 4 autoplot.dist 4
betadist
binomdist
breakpoints 7 Burr 8
burrdist

auchydist	10
chisqdist	10
compdist	11
l.compdist	13
listribution	14
Distribution_autoplot	15
Distribution_summary	18
Distribution_transformation	19
expdist	22
dist	23
Frechet	24
rechetdist	25
gammadist	26
geomdist	26
tet_opt	27
GNG_fit	28
GPD	29
GPDdist	30
Gumbel	31
gumbeldist	32
nyperdist	33
s.composite	34
s.contin	34
s.discrete	34
s.dist	35
s.mixture	35
s.standard	35
s.transformed	36
umps	36
ast_history	37
normdist	38
nistr_d_p_q_r	39
nistr_theme	40
nixdist	40
nonot	41
nultinomdist	42
abinomdist	43
new_dist	43
normdist	45
o.compdist	45
parameters	47
Pareto	48
paretodist	49
olim.compdist	50
	51
olot.comp_fit	52
PNP fit	55
. .	55 57
ooisdist	31

mistr-package	2
mistr_nackade	3
mism-package	3

	q.compdist	57
	q.default	59
	q.mixdist	60
	qlim.compdist	61
	qlim.discrmixdist	62
	QQplot	63
	QQplotgg	65
	q_approxfun	66
	r.compdist	67
	risk	68
	set_opt	70
	stocks	70
	sudo_support	71
	summary.comp_fit	72
	tdist	73
	trafo	73
	unifdist	75
	untrafo	76
	weibulldist	76
	wilcoxdist	
Index		79

mistr-package

mistr: A Computational Framework for Univariate Mixture and Composite Distributions

Description

A system offering object oriented handling of univariate distributions with focus on composite models.

Author(s)

Lukas Sablica, <lsablica@wu.ac.at>

Kurt Hornik, <Kurt.Hornik@wu.ac.at>

Maintainer: Lukas Sablica, <lsablica@wu.ac.at>

4 autoplot.dist

autoplot.comp_fit

Autoplot of Fitted Distributions Using ggplot2

Description

The functions plot the CDF, PDF and QQ-plot of a fitted distribution object together with the empirical values.

Usage

Arguments

X	distribution object.
which	whether to plot only CDF, PDF, qq or all three, default: 'all'.
layout	layout of plots, default: $matrix(c(1, 2, 1, 3), nrow = 2)$.
empir_color	color of empirical data, default: '#F9D607'.
empir_alpha	alpha of empirical data, default: 0.4.
	further arguments to be passed.

Value

ggplot object if which = "cdf" or which = "pdf" or which = "qq". If all are plotted, the plots are merged using multiplot() function and a list with all plots is invisibly returned.

See Also

plotgg

autoplot.dist

Autoplot of Distributions Using ggplot2

Description

The function autoplot plots the CDF and PDF of a given distribution object.

Usage

```
autoplot.dist(x, which = "all", ncols = 2, ...)
```

betadist 5

Arguments

```
x distribution object.
which whether to plot only CDF, PDF or both, default: 'all'.
ncols in how many columns should the plots be merged, default: 2.
... further arguments to be passed.
```

Details

The function is a wrapper of the internal plotting function plotgg. For more details see plotgg.

Value

ggplot object if which = "cdf" or which = "pdf". If both are plotted, the plots are merged using multiplot() function and a list with both plots is invisibly returned.

See Also

```
plotgg
```

Examples

```
## Not run:
N <- normdist()
autoplot(N)

# manipulating cdf plot
B <- binomdist(12, 0.5)
autoplot(-3*B, which = "cdf", xlim1 = c(-30, -10))
# manipulating pdf plot
autoplot(-3*B, which = "pdf", xlim2 = c(-30, -10))
## End(Not run)</pre>
```

betadist

Creates an Object Representing Beta Distribution

Description

The function creates an object which represents the beta distribution.

Usage

```
betadist(shape1 = 2, shape2 = 2)
```

Arguments

```
shape1 shape parameter, default: 2.
shape2 shape parameter, default: 2.
```

6 binomdist

Details

See Beta.

Value

Object of class betadist.

See Also

Beta

Examples

```
B <- betadist(2, 2)
d(B, c(2, 3, 4, NA))
r(B, 5)</pre>
```

binomdist

Creates an Object Representing Binomial Distribution.

Description

The function creates an object which represents the binomial distribution.

Usage

```
binomdist(size = 10, prob = 0.5)
```

Arguments

size size parameter, default: 10.
prob probability parameter, default: 0.5.

Details

See Binomial.

Value

Object of class binomdist.

See Also

Binomial

```
B <- binomdist(10, 0.4)
d(B, c(2, 3, 4, NA))
r(B, 5)
```

breakpoints 7

breakpoints

Extract Model Breakpoints

Description

breakpoints is a generic function which extracts breakpoints from mistr composite distribution objects.

Usage

```
breakpoints(0)
## S3 method for class 'compdist'
breakpoints(0)
## S3 method for class 'trans_compdist'
breakpoints(0)
## S3 method for class 'comp_fit'
breakpoints(0)
```

Arguments

0

an object for which the extraction of model breakpoints is meaningful.

Value

Vector of extracted breakpoints form object.

See Also

```
parameters, weights
```

```
N <- normdist(1, 3)
C <- cauchydist()

CC <- compdist(N, C, weights = c(0.5, 0.5), breakpoints = 1)
breakpoints(CC)</pre>
```

8 Burr

Burr

The Burr Distribution

Description

Density, distribution function, quantile function and random generation for the Burr distribution with parameters shape1 and shape2.

Usage

```
dburr(x, shape1, shape2, log = FALSE)
pburr(q, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
qburr(p, shape1, shape2, lower.tail = TRUE, log.p = FALSE)
rburr(n, shape1, shape2)
```

Arguments

x, q	vector of quantiles.
shape1	shape parameter.
shape2	shape parameter.
log, log.p	logical; if TRUE, probabilities p are given as $log(p)$, default: FALSE.
lower.tail	logical; if TRUE, probabilities are $P[X \leq x]$ otherwise, $P[X > x]$, default: TRUE.
p	vector of probabilities.
n	number of observations.

Details

The Burr distribution function with shape1 parameter c and shape2 parameter k has density given by

$$f(x) = ckx^{(c-1)}/(1+x^{c})^{(k+1)}$$

for x > 0. The cumulative distribution function is

$$F(x) = 1 - (1 + x^c)^{-}k$$

on x > 0.

See https://en.wikipedia.org/wiki/Burr_distribution for more details.

Value

dburr gives the density, pburr gives the distribution function, qburr gives the quantile function, and rburr generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

burrdist 9

See Also

burrdist

Examples

```
dburr(seq(1, 5), 2, 2)
qburr(pburr(seq(1, 5), 2, 2), 2 ,2)
rburr(5, 2, 2)
```

burrdist

Creates an Object Representing Burr Distribution

Description

The function creates an object which represents the Burr distribution.

Usage

```
burrdist(shape1 = 2, shape2 = 2)
```

Arguments

shape1 shape parameter, default: 2. shape2 shape parameter, default: 2.

Details

See Burr.

Value

Object of class burrdist.

See Also

Burr

```
B <- burrdist(2, 2)
d(B, c(2, 3, 4, NA))
r(B, 5)
```

10 chisqdist

cauchydist

Creates an Object Representing Cauchy Distribution.

Description

The function creates an object which represents the Cauchy distribution.

Usage

```
cauchydist(location = 0, scale = 1)
```

Arguments

location location parameter, default: 0. scale scale parameter, default: 1.

Details

See Cauchy.

Value

Object of class cauchydist.

See Also

Cauchy

Examples

```
C <- cauchydist(0, 1)
d(C, c(2, 3, 4, NA))
r(C, 5)</pre>
```

chisqdist

Creates an Object Representing Chi-Squared Distribution

Description

The function creates an object which represents the chi-squared distribution.

Usage

```
chisqdist(df = 2)
```

compdist 11

Arguments

df

degrees of freedom parameter, default: 2.

Details

See Chisquare.

Value

Object of class chisqdist.

See Also

Chisquare

Examples

```
C <- chisqdist(2)
d(C, c(2, 3, 4, NA))
r(C, 5)</pre>
```

compdist

Creates an Object Representing Composite Distribution

Description

compdist creates an object which represents the composite distribution.

Usage

```
compdist(..., weights, breakpoints, break.spec, all.left = FALSE)
## S3 method for class 'dist'
compdist(..., weights, breakpoints, break.spec,
    all.left = FALSE)
## Default S3 method:
compdist(dist, params, weights, breakpoints, break.spec,
    all.left = FALSE, ...)
```

Arguments

.. distribution objects.

weights vector of weights for the components.

breakpoints vector of breakpoints for the composite models, first and last breakpoints $(-\infty,$

 ∞) are assumed to be given, and should not be specified.

12 compdist

break.spec vector of breakpoints specifications with values "L" or "R", breakpoints specifications corresponding to $-\infty$ and ∞ should not be specified. all.left if TRUE, all break.spec are set to "L", default: FALSE. vector of distribution names. list of parameters.

Details

A CDF of a composite distribution function is

$$F(A) = \sum w_i F_i(A|B_i)$$

, where w_i is the weight of the i-th component, $F_i()$ is the CDF of the i-th component and B_i is the interval specified by the breakpoints. Clearly, the composite models are a specific case of the mixture models, where the corresponding probability distribution functions are truncated to some disjoint support.

The objects can be specified in two ways, either the user may enter objects representing distributions or a vector of names and list of parameters. See the examples below.

The argument break.spec defines if the breakpoint should be included to the distribution to the right ("R") or to the left ("L") of the breakpoint. This feature is of course useful only in the case where at least one of the adjacent components is discrete. By default the intervals are left-closed (all break.spec values are "R").

The function permits to use the same breakpoint twice. This possibility allows to define a partition on a singleton, and hence to create a mass of probability. If this feature is used, the break.spec needs to be specified with "R" and "L", for the first and the second identical breakpoints, respectively, or not set at all.

Value

Object of class compdist.

See Also

mixdist

d.compdist 13

d.compdist

Density Function

Description

d is a generic function that evaluates the density function of a distribution object at given values.

Usage

```
## S3 method for class 'compdist'
d(0, x, log = FALSE)

## S3 method for class 'trans_compdist'
d(0, x, log = FALSE)

## S3 method for class 'mixdist'
d(0, x, log = FALSE)

## S3 method for class 'trans_mixdist'
d(0, x, log = FALSE)

d(0, x, log = FALSE)

## S3 method for class 'standist'
d(0, x, log = FALSE)

## S3 method for class 'trans_contdist'
d(0, x, log = FALSE)

## S3 method for class 'trans_contdist'
d(0, x, log = FALSE)

## S3 method for class 'trans_discrdist'
d(0, x, log = FALSE)
```

Arguments

0 distribution object.

x vector of quantiles.

logical; if TRUE, probabilities p are given as log(p), default: FALSE.

14 distribution

Details

Methods of d function evaluates any offered distribution from the package mistr. The function makes use of the d[sufix] functions as dnorm or dbeta and thus, if a new distribution is added, these functions must be reachable through the search path.

Value

Vector of computed results.

Examples

```
N <- normdist(1, 3)
d(N, c(NA, 1, 3, 5))

C <- cauchydist()
M <- mixdist(N, C, weights = c(0.5, 0.5))
d(M, c(NA, 1, 3, 5))

CC <- compdist(N, C, weights = c(0.5, 0.5), breakpoints = 1)
CCC <- 2*C+5
d(CCC, c(NA, 1, 3, 5))</pre>
```

distribution

Extract Distribution of Fitted Model

Description

distribution is a generic function which extracts the distribution with fitted parameters from fitted objects.

Usage

```
distribution(0)
## S3 method for class 'comp_fit'
distribution(0)
```

Arguments

0

an object for which the extraction of distribution is meaningful.

Value

Object representing the distribution.

Distribution_autoplot 15

Distribution_autoplot Autoplot of Distributions

Description

The functions plot the CDF and PDF of a given distribution object.

Usage

```
## S3 method for class 'compdist'
plot(x, which = "all", only_mix = FALSE, pp1 = 1000, pp2 = 1000, col = "#122e94",
        xlim1 = q(x, c(0.01, 0.99)), ylim1 = NULL, xlim2 = xlim1, ylim2 = NULL,
        xlab1 = "x", ylab1 = "P(X \u2264 x)", xlab2 = "x", ylab2 = "P(X = x)",
        main1 = "CDF", main2 = "PDF", type1 = "1", type2 = "1",
       lty1 = 1, lty2 = 1, lwd1 = 2, lwd2 = 2, lty_abline = 3, mtext_cex = 1, ...)
## S3 method for class 'trans_compdist'
plot(x, which = "all", only_mix = FALSE, pp1 = 1000, pp2 = 1000, col = "#122e94",
        x \lim_{x \to \infty} = q(x, c(0.01, 0.99)), y \lim_{x \to \infty} = NULL, x \lim_{x \to \infty} = x \lim_{x \to \infty} y \lim_{x \to \infty} = NULL,
        xlab1 = "x", ylab1 = "P(X \u2264 x)", xlab2 = "x", ylab2 = "P(X = x)",
        main1 = "CDF", main2 = "PDF", type1 = "1", type2 = "1",
       lty1 = 1, lty2 = 1, lwd1 = 2, lwd2 = 2, lty_abline = 3, mtext_cex = 1, ...)
## S3 method for class 'contdist'
plot(x, which = "all", pp1 = 1000, pp2 = 1000, col = "#122e94",
        xlim1 = q(x, c(0.01, 0.99)), ylim1 = NULL, xlim2 = xlim1, ylim2 = NULL,
        xlab1 = "x", ylab1 = "P(X \u2264 x)", xlab2 = "x", ylab2 = "P(X = x)",
        main1 = "CDF", main2 = "PDF", type1 = "1", type2 = "1",
        lty1 = NULL, lty2 = NULL, lwd1 = NULL, lwd2 = NULL, ...)
## S3 method for class 'trans_contdist'
plot(x, which = "all", pp1 = 1000, pp2 = 1000, col = "#122e94",
        x \lim 1 = q(x, c(0.01, 0.99)), y \lim 1 = NULL, x \lim 2 = x \lim 1, y \lim 2 = NULL,
        xlab1 = "x", ylab1 = "P(X \u2264 x)", xlab2 = "x", ylab2 = "P(X = x)",
        main1 = "CDF", main2 = "PDF", type1 = "l", type2 = "l",
        lty1 = NULL, lty2 = NULL, lwd1 = NULL, lwd2 = NULL, ...)
## S3 method for class 'discrdist'
plot(x, which = "all", col = "#122e94",
        x\lim = q(x,c(0.01, 0.99)), y\lim = NULL, x\lim = x\lim, y\lim = NULL,
        xlab1 = "x", ylab1 = "P(X \u2264 x)", xlab2 = "x", ylab2 = "P(X = x)",
        main1 = "CDF", main2 = "PMF", type1 = NULL, type2 = NULL,
        lty1 = NULL, lty2 = NULL, lwd1 = NULL, lwd2 = NULL, ...)
## S3 method for class 'trans_discrdist'
plot(x, which = "all", col = "#122e94",
        x \lim_{x \to \infty} = q(x, c(0.01, 0.99)), y \lim_{x \to \infty} = NULL, x \lim_{x \to \infty} = x \lim_{x \to \infty} y \lim_{x \to \infty} = NULL,
```

```
xlab1 = "x", ylab1 = "P(X \setminus u2264 x)", xlab2 = "x", ylab2 = "P(X = x)",
        main1 = "CDF", main2 = "PMF", type1 = "p", type2 = "p",
        lty1 = NULL, lty2 = NULL, lwd1 = NULL, lwd2 = NULL, ...)
## S3 method for class 'contmixdist'
plot(x, which = "all", only_mix = FALSE, pp1 = 1000, pp2 = 1000, col = "#122e94",
        x \lim_{x \to \infty} = q(x, c(0.01, 0.99)), y \lim_{x \to \infty} = NULL, x \lim_{x \to \infty} = x \lim_{x \to \infty} y \lim_{x \to \infty} = NULL,
        xlab1 = "x", ylab1 = "P(X \u2264 x)", xlab2 = "x", ylab2 = "P(X = x)",
        main1 = "CDF", main2 = "PDF", type1 = "1", type2 = "1",
        lty1 = 3, lty2 = 3, lwd1 = 2, lwd2 = 2, ...)
## S3 method for class 'trans_contmixdist'
plot(x, which = "all", only_mix = FALSE, pp1 = 1000, pp2 = 1000, col = "#122e94",
        x \lim 1 = q(x, c(0.01, 0.99)), y \lim 1 = NULL, x \lim 2 = x \lim 1, y \lim 2 = NULL,
        xlab1 = "x", ylab1 = "P(X \u2264 x)", xlab2 = "x", ylab2 = "P(X = x)",
        main1 = "CDF", main2 = "PDF", type1 = "1", type2 = "1",
        1ty1 = 3, 1ty2 = 3, 1wd1 = 2, 1wd2 = 2, ...)
## S3 method for class 'discrmixdist'
plot(x, which = "all", only_mix = FALSE,
        pp1 = 1000, pp2 = 2 * (diff(xlim2)), col = "#122e94",
        x \lim_{x \to \infty} = q(x,c(0.01, 0.99)), y \lim_{x \to \infty} = c(0, 1), x \lim_{x \to \infty} = x \lim_{x \to \infty} y \lim_{x \to \infty} = NULL,
        xlab1 = "x", ylab1 = "P(X \u2264 x)", xlab2 = "x", ylab2 = "P(X = x)",
        main1 = "CDF", main2 = "PMF", type1 = "l", type2 = "l",
        lty1 = 3, lty2 = 3, lwd1 = 3, lwd2 = 3, ...)
## S3 method for class 'trans_discrmixdist'
plot(x, which = "all", only_mix = FALSE,
        pp1 = 1000, pp2 = 2 * (diff(xlim2)), col = "#122e94",
        xlim1 = q(x,c(0.01, 0.99)), ylim1 = c(0, 1), xlim2 = xlim1, ylim2 = NULL,
        xlab1 = "x", ylab1 = "P(X \setminus u2264 x)", xlab2 = "x", ylab2 = "P(X = x)",
        main1 = "CDF", main2 = "PMF", type1 = "1", type2 = "1",
        1ty1 = 3, 1ty2 = 3, 1wd1 = 3, 1wd2 = 3, ...)
## S3 method for class 'contdiscrmixdist'
plot(x, which = "all", only_mix = FALSE, pp1 = 1000, pp2 = 1000, col = "#122e94",
       x \lim 1 = q(x, c(0.01, 0.99)), y \lim 1 = c(0, 1), x \lim 2 = x \lim 1, y \lim 2 = NULL,
        xlab1 = "x", ylab1 = "P(X \u2264 x)", xlab2 = "x", ylab2 = "P(X = x)",
        main1 = "CDF", main2 = "PDF", type1 = "1", type2 = "1",
        1ty1 = 3, 1ty2 = 3, 1wd1 = 2, 1wd2 = 2, ...)
## S3 method for class 'trans_contdiscrmixdist'
plot(x, which = "all", only_mix = FALSE, pp1 = 1000, pp2 = 1000, col = "#122e94",
       x \lim 1 = q(x, c(0.01, 0.99)), y \lim 1 = c(0, 1), x \lim 2 = x \lim 1, y \lim 2 = NULL,
        xlab1 = "x", ylab1 = "P(X \u2264 x)", xlab2 = "x", ylab2 = "P(X = x)",
        main1 = "CDF", main2 = "PDF", type1 = "1", type2 = "1",
        1ty1 = 3, 1ty2 = 3, 1wd1 = 2, 1wd2 = 2, ...)
```

Distribution_autoplot 17

Arguments

х	distribution object.
which	whether to plot only CDF, PDF or both, default: 'all'.
only_mix	whether to plot only mixture/composite model and not also the components, default: FALSE.
pp1	number of points at which CDF is evaluated, default: 1000.
pp2	number of points at which PDF is evaluated, default: 1000.
col	color used in plot, default: '#122e94'.
xlim1	xlim of CDF plot, default: $q(x, c(0.01, 0.99))$.
ylim1	ylim of CDF plot, default: NULL.
xlim2	xlim of PDF plot, default: xlim1.
ylim2	ylim of PDF plot, default: NULL.
xlab1	xlab of CDF plot, default: 'x'.
ylab1	ylab of CDF plot, default: $P(X < U+2264 > x)$.
xlab2	xlab of PDF plot, default: 'x'.
ylab2	ylab of PDF plot, default: $P(X = x)$.
main1	title of CDF plot, default: 'CDF'.
main2	title of PDF plot, default: 'PDF'/'PMF'.
type1	type of CDF plot.
type2	type of PDF plot.
lty1	lty used in CDF plot.
lty2	lty used in PDF plot.
lwd1	lwd used in CDF plot.
lwd2	lwd used in PDF plot.
lty_abline	lty of abline if ablines are part of plot (composite and discrete distributions).
mtext_cex	cex parameter for mtexts used in the plots of composite distributions, default: 1.
	further arguments to be passed.

```
N <- normdist()
plot(N)

# manipulating cdf plot
B <- binomdist(12, 0.5)
plot(-3*B, which = "cdf", xlim1 = c(-30, -10))
# manipulating pdf plot
plot(-3*B, which = "pdf", xlim1 = c(-30, -10))</pre>
```

Description

Displays a useful description of a distribution object from mistr.

Usage

```
## S3 method for class 'standist'
summary(object, level = 1, space = 2,
  additional_list, truncation, ...)
## S3 method for class 'trans_standist'
summary(object, level = 1, space = 2,
  additional_list, truncation, ...)
## S3 method for class 'mixdist'
summary(object, level = 1, space = 2,
  additional_list, truncation, ...)
## S3 method for class 'trans_mixdist'
summary(object, level = 1, space = 2,
  additional_list, truncation, ...)
## S3 method for class 'compdist'
summary(object, level = 1, space = 2,
  additional_list, truncation, ...)
## S3 method for class 'trans_compdist'
summary(object, level = 1, space = 2,
  additional_list, truncation, ...)
```

Arguments

```
object distribution object to summarize.

level adds 3*(level-1) spaces before the print, default: 1.

space number of blank lines between outputs, default: 2.

additional_list, truncation, ...

additional information that may be passed to summary.
```

Details

summary prints useful description of a distribution object. This feature might be useful when working with a more complicated distribution that contains mixture and composite distributions as components and the print function does not offer enough information.

Arguments level, additional_list and truncation are present for recursive usage that is done for more complicated models automatically by the function.

Distribution_transformation

Transformation of a Distribution Object

Description

The methods for arithmetic operators $+,-,*,/,^{\circ},\log,\exp,sqrt$, which perform a transformation of a given random variable.

Usage

```
## S3 method for class 'univdist'
e1 + e2 = NULL
## S3 method for class 'trans_univdist'
e1 + e2 = NULL
## S3 method for class 'univdist'
e1 * e2
## S3 method for class 'trans_univdist'
e1 * e2
## S3 method for class 'dist'
e1 / e2
## S3 method for class 'dist'
e1 - e2 = NULL
## S3 method for class 'dist'
sqrt(x)
## S3 method for class 'univdist'
log(x, base = exp(1))
## S3 method for class 'trans_univdist'
log(x, base = exp(1))
## S3 method for class 'univdist'
exp(x)
## S3 method for class 'trans_univdist'
exp(x)
```

```
## S3 method for class 'univdist'
e1 ^ e2
## S3 method for class 'trans_univdist'
e1 ^ e2
## S3 method for class 'normdist'
e1 + e2
## S3 method for class 'normdist'
e1 * e2
## S3 method for class 'normdist'
exp(x)
## S3 method for class 'expdist'
e1 * e2
## S3 method for class 'expdist'
e1 ^ e2
## S3 method for class 'unifdist'
e1 + e2
## S3 method for class 'unifdist'
e1 * e2
## S3 method for class 'tdist'
e1 ^ e2
## S3 method for class 'fdist'
## S3 method for class 'betadist'
e1 - e2 = NULL
## S3 method for class 'binomdist'
e1 - e2 = NULL
## S3 method for class 'gammadist'
e1 * e2
## S3 method for class 'cauchydist'
e1 + e2
## S3 method for class 'cauchydist'
e1 * e2
```

```
## S3 method for class 'cauchydist'
e1 ^ e2
## S3 method for class 'lnormdist'
e1 * e2
## S3 method for class 'lnormdist'
log(x, base = exp(1))
## S3 method for class 'lnormdist'
e1 ^ e2
## S3 method for class 'weibulldist'
e1 * e2
## S3 method for class 'gumbeldist'
e1 + e2
## S3 method for class 'gumbeldist'
e1 * e2
## S3 method for class 'frechetdist'
e1 + e2
## S3 method for class 'frechetdist'
e1 * e2
## S3 method for class 'paretodist'
e1 * e2
## S3 method for class 'GPDdist'
## S3 method for class 'GPDdist'
e1 * e2
```

Arguments

e1	distribution object or numeric of length one.
e2	distribution object or numeric of length one.
x	distribution object.
base	a positive number: the base with respect to which logarithms are computed.

Details

The offered arithmetic operators $+,-,*,/,^{,\log,\exp,sqrt}$ create an object that represents transformed random variable.

22 expdist

The functions, using the expressions manipulation, prepare expressions for transformation, inverse transformation, derivative of the inverse transformation and print. These expressions are then used later when the distribution is evaluated.

The transformation framework also keeps track on history of the transformations and so is able to recognize some inverse transformations of previous transformations or update the last transformation. Additionally, the methods are able to recognize some invariant and direct transformations, and so rather change the parameters or distribution family than to loose this information.

Value

Object representing a transformed random variable.

Examples

```
# transformation
B <- binomdist(10, 0.3)
B2 < - - 3*log(B)
B2
# invariant transformation
N < -normdist(1, 3)
N2 <- - 3*N + 5
N2
# direct transformation
N3 \leftarrow exp(N2)
Ν3
# recognize inverse
B3 <- exp(B2/-3)
B3
# update
B4 <- B + 5
B4 + 3
```

expdist

Creates an Object Representing Exponential Distribution

Description

The function creates an object which represents the exponential distribution.

Usage

```
expdist(rate = 1)
```

Arguments

rate

rate parameter, default: 1.

fdist 23

Details

See Exponential.

Value

Object of class expdist.

See Also

Exponential

Examples

```
E <- expdist(1)
d(E, c(2, 3, 4, NA))
r(E, 5)
```

fdist

Creates an Object Representing F Distribution

Description

The function creates an object which represents the F distribution.

Usage

```
fdist(df1 = 2, df2 = 2)
```

Arguments

```
df1 degrees of freedom parameter, default: 2. df2 degrees of freedom parameter, default: 2.
```

Details

See FDist.

Value

Object of class fdist.

See Also

FDist

```
f <- fdist(2, 2)
d(f, c(2, 3, 4, NA))
r(f, 5)</pre>
```

24 Frechet

Frechet

The Frechet Distribution

Description

Density, distribution function, quantile function and random generation for the Frechet distribution with location, scale and shape parameters.

Usage

```
dfrechet(x, loc = 0, scale = 1, shape = 1, log = FALSE)

pfrechet(q, loc = 0, scale = 1, shape = 1, lower.tail = TRUE,
    log.p = FALSE)

qfrechet(p, loc = 0, scale = 1, shape = 1, lower.tail = TRUE,
    log.p = FALSE)

rfrechet(n, loc = 0, scale = 1, shape = 1)
```

Arguments

x, q	vector of quantiles.
loc	location parameter.
scale	scale parameter.
shape	shape parameter.
log, log.p	logical; if TRUE, probabilities p are given as $log(p)$, default: FALSE.
lower.tail	logical; if TRUE, probabilities are $P[X \leq x]$ otherwise, $P[X > x],$ default: TRUE.
р	vector of probabilities.
n	number of observations.

Details

The Frechet distribution function with location parameter m, scale parameter s and shape parameter α has density given by

$$f(x) = \alpha/sz^{(} - \alpha - 1)e^{-}z^{-}\alpha$$

for x > m, where z = (x - m)/s. The cumulative distribution function is

$$F(x) = e^- z^- \alpha$$

for x > m, with z as stated above.

See https://en.wikipedia.org/wiki/Frechet_distribution for more details.

frechetdist 25

Value

dfrechet gives the density, pfrechet gives the distribution function, qfrechet gives the quantile function, and rfrechet generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

See Also

frechetdist

Examples

```
dfrechet(seq(1, 5), 0, 1, 1)
qfrechet(pfrechet(seq(1, 5), 0, 1, 1), 0, 1, 1)
rfrechet(5, 0, 1, 1)
```

frechetdist

Creates an Object Representing Frechet Distribution

Description

The function creates an object which represents the Frechet distribution.

Usage

```
frechetdist(loc = 0, scale = 1, shape = 1)
```

Arguments

loc location parameter, default: 0. scale scale parameter, default: 1. shape shape parameter, default: 1.

Details

See Frechet.

Value

Object of class frechetdist.

See Also

Frechet

```
Fr <- frechetdist(0, 1, 2)
d(Fr, c(2, 3, 4, NA))
r(Fr, 5)</pre>
```

26 geomdist

gammadist

Creates an Object Representing Gamma Distribution

Description

The function creates an object which represents the gamma distribution.

Usage

```
gammadist(shape = 2, rate, scale)
```

Arguments

shape shape parameter, default: 2.

rate rate parameter, an alternative way to specify the scale.

scale scale parameter.

Details

See GammaDist.

Value

Object of class gammadist.

See Also

GammaDist

Examples

```
G <- gammadist(shape = 2, scale = 3)
d(G, c(2, 3, 4, NA))
r(G, 5)</pre>
```

geomdist

Creates an Object Representing Geometric Distribution

Description

The function creates an object which represents the geometric distribution.

Usage

```
geomdist(prob = 0.5)
```

get_opt 27

Arguments

prob

probability parameter, default: 0.5.

Details

See Geometric.

Value

Object of class geomdist.

See Also

Geometric

Examples

```
G \leftarrow geomdist(0.5)
d(G, c(2, 3, 4, NA))
r(G, 5)
```

get_opt

Get Parameters

Description

Function can be used to extract the parameters used in mistr.

Usage

```
get_opt(...)
```

Arguments

... characteristic strings of desired parameters. Possible values "sub", "add", "tol".

Value

named vector with values.

See Also

```
set_opt
```

```
get_opt("sub", "tol")
```

28 GNG_fit

GNG	fi	t

Fitting a GPD-Normal-GPD Model

Description

GNG_fit is used to fit three components composite models with components GPD, normal and GPD.

Usage

```
GNG_fit(data, start = c(break1 = -0.02, break2 = 0.02, mean = 0, sd = 0.0115, shape1 = 0.15, shape2 = 0.15), break_fix = FALSE, midd = mean(data), ...)
```

Arguments

data	vector of values to which the density is optimized.
start	named vector (break1, break2, mean, sd, shape1, shape2) of values that are used to start the optimization, default: $c(break1 = -0.02, break2 = 0.02, mean = 0, sd = 0.0115$, $shape1 = 0.15$, $shape2 = 0.15$).
break_fix	logical, fix the breakpoints at the values from start?, default: FALSE.
midd	split reals into two subintervals, the first breakpoint is then optimized on the left of midd and the second on the right, default: mean(data).
	further arguments to be passed to the optimizer.

Details

The GNG model is the GPD-Normal-GPD model. This means that a -X transformation of a GPD random variable will be used for the left tail, normal distribution for the center and again GPD for the right tail.

The code uses the maximum likelihood estimation technique to estimate the six parameters from the start vector (break1, break2, mean, sd, shape1, shape2). The other parameters (location and scale parameters of the GPD) are computed in each step such that the function is continuous. Weights are estimated in every step as a proportion of points that correspond to each of the truncated region. If the breakpoints are fixed (i.e. break_fix = TRUE), the weights are computed before the optimization procedure.

Optimization is handled by the mle2 function.

Value

A list of class comp_fit.

See Also

mle2

GPD 29

Examples

GPD

The Generalized Pareto Distribution

Description

Density, distribution function, quantile function and random generation for the generalized Pareto distribution with location, scale and shape parameters.

Usage

```
dGPD(x, loc = 0, scale = 1, shape = 0, log = FALSE)
pGPD(q, loc = 0, scale = 1, shape = 0, lower.tail = TRUE,
    log.p = FALSE)

qGPD(p, loc = 0, scale = 1, shape = 0, lower.tail = TRUE,
    log.p = FALSE)

rGPD(n, loc = 0, scale = 1, shape = 0)
```

Arguments

x, q	vector of quantiles.
loc	location parameter.
scale	scale parameter.
shape	shape parameter.
log, log.p	logical; if TRUE, probabilities p are given as $log(p)$, default: FALSE.
lower.tail	logical; if TRUE, probabilities are $P[X \leq x]$ otherwise, $P[X > x],$ default: TRUE.
р	vector of probabilities.
n	number of observations.

30 GPDdist

Details

The generalized Pareto distribution function with location parameter μ , scale parameter σ and shape parameter ξ has density given by

$$f(x) = 1/\sigma(1+\xi z)^{-}(1/\xi+1)$$

for $x \ge \mu$ and $\xi > 0$, or $\mu - \sigma/\xi \ge x \ge \mu$ and $\xi < 0$, where $z = (x - \mu)/\sigma$. In the case where $\xi = 0$, the density is equal to $f(x) = 1/\sigma e^- z$ for $x \ge \mu$. The cumulative distribution function is

$$F(x) = 1 - (1 + \xi z)^{(1/\xi)}$$

for $x \ge \mu$ and $\xi > 0$, or $\mu - \sigma/\xi \ge x \ge \mu$ and $\xi < 0$, with z as stated above. If $\xi = 0$ the CDF has form $F(x) = 1 - e^- z$.

See https://en.wikipedia.org/wiki/Generalized_Pareto_distribution for more details.

Value

dGPD gives the density, pGPD gives the distribution function, qGPD gives the quantile function, and rGPD generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

See Also

GPDdist

Examples

```
dGPD(seq(1, 5), 0, 1, 1)
qGPD(pGPD(seq(1, 5), 0, 1, 1), 0, 1 ,1)
rGPD(5, 0, 1, 1)
```

GPDdist

Creates an Object Representing Generalized Pareto Distribution

Description

The function creates an object which represents the generalized Pareto distribution.

Usage

```
GPDdist(loc = 0, scale = 1, shape = 0)
```

Arguments

loc location parameter, default: 0.
scale scale parameter, default: 1.
shape shape parameter, default: 0.

Gumbel 31

Details

See GPD.

Value

Object of class GPDdist.

See Also

GPD

Examples

```
G <- GPDdist(0, 1, 0)
d(G, c(2, 3, 4, NA))
r(G, 5)</pre>
```

Gumbel

The Gumbel Distribution

Description

Density, distribution function, quantile function and random generation for the Gumbel distribution with location and scale parameters.

Usage

```
dgumbel(x, loc, scale, log = FALSE)
pgumbel(q, loc, scale, lower.tail = TRUE, log.p = FALSE)
qgumbel(p, loc, scale, lower.tail = TRUE, log.p = FALSE)
rgumbel(n, loc, scale)
```

Arguments

x, q	vector of quantiles.
loc	location parameter.
scale	scale parameter.
log, log.p	logical; if TRUE, probabilities p are given as $log(p)$, default: FALSE.
lower.tail	logical; if TRUE, probabilities are $P[X \leq x]$ otherwise, $P[X > x],$ default: TRUE.
р	vector of probabilities.
n	number of observations.

32 gumbeldist

Details

The Gumbel distribution function with location parameter μ and scale parameter β has density given by

$$f(x) = 1/\beta e^{-}(z + e^{-}z)$$

, where $z = (x - \mu)/\beta$. The cumulative distribution function is

$$F(x) = e^{(-e^z)}$$

with z as stated above.

See https://en.wikipedia.org/wiki/Gumbel_distribution for more details.

Value

dgumbel gives the density, pgumbel gives the distribution function, qgumbel gives the quantile function, and rgumbel generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

See Also

```
gumbeldist
```

Examples

```
dgumbel(seq(1, 5), 0, 1)
qgumbel(pgumbel(seq(1, 5), 0, 1), 0 ,1)
rgumbel(5, 0, 1)
```

gumbeldist

Creates an Object Representing Gumbel Distribution

Description

The function creates an object which represents the Burr distribution.

Usage

```
gumbeldist(loc = 0, scale = 1)
```

Arguments

loc location parameter, default: 0. scale scale parameter, default: 1.

Details

See Gumbel.

hyperdist 33

Value

Object of class gumbeldist.

See Also

Gumbel

Examples

```
G <- gumbeldist(1, 2)
d(G, c(2, 3, 4, NA))
r(G, 5)</pre>
```

 ${\it hyperdist}$

Creates an Object Representing Hypergeometric Distribution

Description

The function creates an object which represents the hypergeometric distribution.

Usage

```
hyperdist(m = 10, n = 10, k = 5)
```

Arguments

```
m the number of white balls in the urn, default: 10.
n the number of black balls in the urn, default: 10.
k the number of balls drawn from the urn, default: 5.
```

Details

See Hypergeometric.

Value

Object of class hyperdist.

See Also

Hypergeometric

```
H <- hyperdist(0.5)
d(H, c(2, 3, 4, NA))
r(H, 5)</pre>
```

34 is.discrete

is.composite

Reports whether O is a Composite Distribution Object

Description

Reports whether O is a composite distribution object.

Usage

```
is.composite(0)
```

Arguments

0

an object to test.

is.contin

Reports whether O is a Continuous Distribution Object

Description

Reports whether O is a continuous distribution object.

Usage

```
is.contin(0)
```

Arguments

0

an object to test.

is.discrete

Reports whether O is a Discrete Distribution Object

Description

Reports whether O is a discrete distribution object.

Usage

```
is.discrete(0)
```

Arguments

0

an object to test.

is.dist 35

is.dist

Reports whether O is a Distribution Object

Description

Reports whether O is a distribution object.

Usage

```
is.dist(0)
```

Arguments

0

an object to test.

is.mixture

Reports whether O is a Mixture Distribution Object

Description

Reports whether O is a mixture distribution object.

Usage

```
is.mixture(0)
```

Arguments

0

an object to test.

is.standard

Reports whether O is a Standard Distribution Object

Description

Reports whether O is a standard distribution object.

Usage

```
is.standard(0)
```

Arguments

0

an object to test.

jumps

is.transformed

Reports whether O is a Transformed Distribution Object

Description

Reports whether O is a transformed distribution object.

Usage

```
is.transformed(0)
```

Arguments

0

an object to test.

jumps

Probability mass points

Description

Function returns a vector of points where a mass of probability is present. These points are then used in plot and plotgg calls.

Usage

```
jumps(0, interval)

## S3 method for class 'discrdist'
jumps(0, interval)

## S3 method for class 'trans_discrdist'
jumps(0, interval)

## S3 method for class 'contdist'
jumps(0, interval)

## S3 method for class 'trans_contdist'
jumps(0, interval)

## S3 method for class 'mixdist'
jumps(0, interval)

## S3 method for class 'trans_mixdist'
jumps(0, interval)
```

last_history 37

```
## $3 method for class 'compdist'
jumps(0, interval)
## $3 method for class 'trans_compdist'
jumps(0, interval)
```

Arguments

0 distribution object.

interval in which the support of discrete elements should be found.

Value

Vector of values.

Note

The function is designed in a way that it rather returns more than less. Thus it might return a value that is close to the interval but not in. This is for use of the package not a problem as jumps is internally used only in plots and quantile function of a mixture distribution where an additional value can not influence the output.

Examples

```
B <- binomdist(12, 0.4)
P <- poisdist(2)

I <- c(-7, 16.8)
jumps(B, I)
jumps(P, I)</pre>
```

last_history

Returns the Last Element from History List

Description

Function returns the last element from history list.

Usage

```
last_history(0, t)
```

Arguments

0 transformed distribution object.

t which characterization should be extracted.

38 Inormdist

Value

Expression if t is set to "expre", "iexpre", "oldprint" and "oldderiv". Numeric and string if t is equal to "value" and "operation", respectively.

Examples

```
B <- binomdist(10, 0.3)
B2 <- -3*log(B)
last_history(B2, "value")
last_history(B2, "operation")</pre>
```

Inormdist

Creates an Object Representing Log Normal Distribution.

Description

The function creates an object which represents the log normal distribution.

Usage

```
lnormdist(meanlog = 0, sdlog = 1)
```

Arguments

meanlog mean parameter, default: 0.
sdlog standard deviation parameter, default: 1.

Details

See Lognormal.

Value

Object of class lnormdist.

See Also

Lognormal

```
L <- lnormdist(0, 1)
d(L, c(2, 3, 4, NA))
r(L, 5)
```

 $mistr_d_p_q_r$ 39

_d_p_q_r

Mistr d/p/q/r Wrappers

Description

The functions mistr_d, mistr_p, mistr_q, mistr_r are wrappers for d, p, q and r, respectively.

Usage

```
mistr_d(0, x, log = FALSE)
mistr_p(0, q, lower.tail = TRUE, log.p = FALSE)
mistr_q(0, p, lower.tail = TRUE, log.p = FALSE, ...)
mistr_r(0, n)
```

Arguments

0	distribution object.
x, q	vector of quantiles.
log, log.p	logical; if TRUE, probabilities p are given as $log(p)$, default: FALSE.
lower.tail	logical; if TRUE, probabilities are $P[X \leq x]$ otherwise, $P[X > x],$ default: TRUE.
р	vector of probabilities.
	further arguments to be passed.
n	number of observations.

Details

Wrappers are offered as a consequence of R-Studio in Windows OS where the q() calls in the console are caught and terminate the R session.

Value

Vector of computed results.

40 mixdist

mistr_theme

Mistr Theme for Ggplot

Description

Theme for plots that use ggplot2.

Usage

```
mistr_theme(grey = FALSE, blue = FALSE, legend.position = "right",
    ...)
```

Arguments

```
grey logical, if TRUE grey palette is used, default: FALSE.

blue logical, if TRUE blue palette is used, default: FALSE.

legend.position position of legend, default: "right".

... further arguments to be passed.
```

Value

ggplot theme.

See Also

theme

mixdist

Creates an Object Representing Mixture Distribution

Description

mixdist creates an object which represents the mixture distribution.

Usage

```
mixdist(..., weights)
## S3 method for class 'dist'
mixdist(..., weights)
## Default S3 method:
mixdist(dist, params, weights, ...)
```

monot 41

Arguments

... distribution objects.

weights vector of weights for the components.

dist vector of distribution names.

params list of parameters for each component.

Details

A CDF of a mixture distribution function is

$$F(A) = \sum w_i F_i(A)$$

, where w_i is the weight of the i-th component and $F_i()$ is the CDF of the i-th component.

The objects can be specified in two ways, either the user may enter distribution objects or a vector of names and list of parameters. See the examples below.

Value

Object of class mixdist.

See Also

compdist

Examples

monot

Monotonicity of Transformation

Description

Function checks whether the transformation is increasing or decreasing.

Usage

```
monot(0)
## S3 method for class 'trans_univdist'
monot(0)
```

42 multinomdist

Arguments

0 transforms distribution object.

Value

1 for increasing and -1 for decreasing.

multinomdist

Creates an Object Representing Multinomial Distribution

Description

The function creates an object which represents the multinomial distribution.

Usage

```
multinomdist(size = 10, prob = c(0.5, 0.5))
```

Arguments

size size parameter, default: 10.

prob probability parameter vector, default: c(0.5, 0.5).

Details

See Multinomial.

Value

Object of class multinomdist.

See Also

Multinomial

```
M <- multinomdist(10, c(0.5, 0.5))
d(M, c(7, 3))
r(M, 5)</pre>
```

nbinomdist 43

nbinomdist

Creates an Object Representing Negative Binomial Distribution

Description

The function creates an object which represents the negative binomial distribution.

Usage

```
nbinomdist(size = 10, prob, mu)
```

Arguments

size size parameter, default: 10.
prob probability parameter.

mu alternative parametrization via mean, see NegBinomial.

Details

See NegBinomial.

Value

Object of class nbinomdist.

See Also

NegBinomial

Examples

```
N <- nbinomdist(10, 0.5)
d(N, c(2, 3, 4, NA))
r(N, 5)</pre>
```

new_dist

Creates New Distribution Object

Description

The function creates distribution objects that satisfy the naming convention used in package mistr.

44 new_dist

Usage

```
new_dist(name, from, to, by = NULL,
  parameters = mget(names(eval(quote(match.call()), parent)[-1]),
  parent), class = deparse(sys.calls()[[sys.nframe() - 1]][[1]]),
  parent = parent.frame())
```

Arguments

name string containing the name of the distribution. from numeric representing where the support of distribution starts. numeric representing where the support of distribution ends. to numeric representing the deterministic step between support values. If NULL: by continuous distribution is assumed. If the value is specified: discrete distribution with specified step is assumed, default: NULL. named list of parameters of the distribution, default: mget(names(eval(quote(match.call()),parent)[parameters 1]),parent). class class of the distribution, this should be set in [name]dist convention (e.g. normdist, tdist), default: deparse(sys.calls()[[sys.nframe() - 1]][[1]]). parent parent environment, default: parent.frame().

Details

The function can be used in two ways. Either it can be called from the creator functions as for example normdist or unifdist, or directly from any function or environment. In the former, only arguments "name", "from" and "to" must be set. Other arguments will be filled according to the parent calls. If this function is called directly, the arguments "parameters" and "class" have to be specified also.

Value

distribution object.

normdist 45

normdist

Creates an Object Representing Normal Distribution

Description

The function creates an object which represents the normal distribution.

Usage

```
normdist(mean = 0, sd = 1)
```

Arguments

mean parameter, default: 0.

sd standard deviation parameter, default: 1.

Details

See Normal.

Value

Object of class normdist.

See Also

Normal

Examples

```
N \leftarrow normdist(1, 5)
d(N, c(2, 3, 4, NA))
r(N, 5)
```

p.compdist

Distribution Function

Description

p is a generic function that evaluates the distribution function of a distribution object at given values.

p.compdist

Usage

```
## S3 method for class 'compdist'
p(0, q, lower.tail = TRUE, log.p = FALSE)
## S3 method for class 'mixdist'
p(0, q, lower.tail = TRUE, log.p = FALSE)
p(0, q, lower.tail = TRUE, log.p = FALSE)
## S3 method for class 'standist'
p(0, q, lower.tail = TRUE, log.p = FALSE)
## S3 method for class 'trans_univdist'
p(0, q, lower.tail = TRUE, log.p = FALSE)
```

Arguments

0	distribution object.
q	vector of quantiles.
lower.tail	logical; if TRUE, probabilities are $P[X \leq x]$ otherwise, $P[X > x]$, default: TRUE.
log.p	logical; if TRUE, probabilities p are given as $log(p)$, default: FALSE.

Details

Methods of p function evaluates any offered distribution from the package mistr. The function makes use of the p[sufix] functions as pnorm or pbeta and thus, if a new distribution is added, these functions must be reachable through the search path.

Value

Vector of computed results.

```
N <- normdist(1,3)
p(N, c(NA,1,3,5))

C <- cauchydist()
M <- mixdist(N, C, weights = c(0.5, 0.5))
p(M, c(NA,1,3,5))

CC <- compdist(N, C, weights = c(0.5, 0.5), breakpoints = 1)
CCC <- 2*C+5
p(CCC, c(NA,1,3,5))</pre>
```

parameters 47

parameters

Extract Model Parameters

Description

parameters is a generic function which extracts parameters from mistr distribution objects.

Usage

```
parameters(0)
## S3 method for class 'standist'
parameters(0)
## S3 method for class 'trans_standist'
parameters(0)
## S3 method for class 'mixdist'
parameters(0)
## S3 method for class 'trans_mixdist'
parameters(0)
## S3 method for class 'compdist'
parameters(0)
## S3 method for class 'trans_compdist'
parameters(0)
## S3 method for class 'comp_fit'
parameters(0)
```

Arguments

0

an object for which the extraction of model parameters is meaningful.

Value

Vector (for standard distributions) or list (in the case of mixture/composite distribution) of parameters extracted from the object.

For a fitted object of class comp_fit returns vector of fitted parameters.

See Also

```
weights, breakpoints
```

48 Pareto

Examples

```
N <- normdist(1, 3)
parameters(N)

C <- cauchydist()
M <- mixdist(N, C, weights = c(0.5, 0.5))
parameters(M)</pre>
```

Pareto

The Pareto Distribution

Description

Density, distribution function, quantile function and random generation for the Pareto distribution with scale and shape parameters.

Usage

```
dpareto(x, scale = 1, shape = 1, log = FALSE)

ppareto(q, scale = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)

qpareto(p, scale = 1, shape = 1, lower.tail = TRUE, log.p = FALSE)

rpareto(n, scale = 1, shape = 1)
```

Arguments

x, q	vector of quantiles.
scale	scale parameter.
shape	shape parameter.
log, log.p	logical; if TRUE, probabilities p are given as $log(p)$, default: FALSE.
lower.tail	logical; if TRUE, probabilities are $P[X \leq x]$ otherwise, $P[X > x]$, default: TRUE.
p	vector of probabilities.
n	number of observations.

Details

The Pareto distribution function with scale parameter s and shape parameter α has density given by

$$f(x) = \alpha s^{\alpha} / x^{(\alpha + 1)}$$

for $x \geq s$. The cumulative distribution function is

$$F(x) = 1 - (s/x)^{\alpha}$$

for $x \ge s$. See https://en.wikipedia.org/wiki/Pareto_distribution for more details.

paretodist 49

Value

dpareto gives the density, ppareto gives the distribution function, qpareto gives the quantile function, and rpareto generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

See Also

```
paretodist
```

Examples

```
dpareto(seq(1, 5), 1, 1)
qpareto(ppareto(seq(1, 5), 1, 1), 1 ,1)
rpareto(5, 1, 1)
```

paretodist

Creates an Object Representing Pareto Distribution

Description

The function creates an object which represents the Pareto distribution.

Usage

```
paretodist(scale = 1, shape = 1)
```

Arguments

```
scale scale parameter, default: 1.
shape shape parameter, default: 1.
```

Details

See Pareto.

Value

Object of class paretodist.

See Also

Pareto

```
P <- paretodist(1, 1)
d(P, c(2, 3, 4, NA))
r(P, 5)</pre>
```

50 plim.compdist

plim.compdist

Left-Hand Limit of Distribution Function

Description

plim is a generic function that evaluates the left-hand limit of distribution function for a distribution object at given values.

Usage

```
## S3 method for class 'compdist'
plim(0, q, lower.tail = TRUE, log.p = FALSE)

## S3 method for class 'mixdist'
plim(0, q, lower.tail = TRUE, log.p = FALSE)

plim(0, q, lower.tail = TRUE, log.p = FALSE)

## S3 method for class 'discrdist'
plim(0, q, lower.tail = TRUE, log.p = FALSE)

## S3 method for class 'contdist'
plim(0, q, lower.tail = TRUE, log.p = FALSE)

## S3 method for class 'trans_univdist'
plim(0, q, lower.tail = TRUE, log.p = FALSE)
```

Arguments

0	distribution object.
q	vector of quantiles.
lower.tail	logical; if TRUE, probabilities are $P[X < x]$ otherwise, $P[X \geq x],$ default: TRUE.
log.p	logical; if TRUE, probabilities p are given as $log(p)$, default: FALSE.

Details

Methods of plim function evaluates the left-hand limit of any offered distribution from the package mistr. The left-hand limit is defined as F(x-) = P(X < x). The function makes use of the p[sufix] and q[sufix] functions as pnorm or qbeta and thus, if a new distribution is added, these functions must be reachable through the search path.

Value

Vector of computed results.

plot.comp_fit 51

Examples

```
B <- binomdist(10, 0.3)
plim(B, c(NA, 1, 3, 5))

P <- poisdist()
M <- mixdist(B, P, weights = c(0.5, 0.5))
plim(M, c(NA, 1, 3, 5))

CC <- compdist(B, P, weights = c(0.5, 0.5), breakpoints = 1)
CCC <- 2*CC+5
plim(CCC, c(NA, 1, 3, 5))</pre>
```

plot.comp_fit

Autoplot of Fitted Distributions

Description

The function plots the CDF, PDF and QQ-plot of a fitted distribution object together with the empirical values.

Usage

Arguments

```
x distribution object.
which whether to plot only CDF, PDF, qq or all three, default: 'all'.
layout layout of plots, default: matrix(c(1, 2, 1, 3), nrow = 2).
empir_color color of empirical data, default: '#122e94'.
mtext_cex cex parameter for mtexts used in the plots.
... further arguments to be passed.
```

See Also

Distribution_autoplot

52 plotgg

plotgg

Autoplot of Distributions Using ggplot2

Description

The function plotgg plots the CDF and PDF of a given distribution object.

Usage

```
plotgg(x, which = "all", ...)
## S3 method for class 'contdist'
plotgg(x, which = "all", pp1 = 1000, pp2 = 1000,
  col = "#F9D607", xlim1 = q(x, c(0.01, 0.99)), ylim1 = NULL,
  xlim2 = xlim1, ylim2 = NULL, xlab1 = NULL, ylab1 = NULL,
  xlab2 = NULL, ylab2 = NULL, main1 = "CDF", main2 = "PDF",
  size1 = 1, size2 = 1, alpha1 = 0.7, alpha2 = 0.7, ...)
## S3 method for class 'trans_contdist'
plotgg(x, which = "all", pp1 = 1000,
  pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, 0.99)),
  ylim1 = NULL, xlim2 = xlim1, ylim2 = NULL, xlab1 = NULL,
  ylab1 = NULL, xlab2 = NULL, ylab2 = NULL, main1 = "CDF",
  main2 = "PDF", size1 = 1, size2 = 1, alpha1 = 0.7,
  alpha2 = 0.7, ...)
## S3 method for class 'discrdist'
plotgg(x, which = "all", col = "#F9D607",
  xlim1 = q(x, c(0.01, 0.99)), ylim1 = NULL, xlim2 = xlim1,
  ylim2 = NULL, xlab1 = NULL, ylab1 = NULL, xlab2 = NULL,
  ylab2 = NULL, main1 = "CDF", main2 = "PMF", size1 = 3.3,
  size2 = 3.3, alpha1 = 0.9, alpha2 = 0.9, col_segment = "#b05e0b",
  ...)
## S3 method for class 'trans_discrdist'
plotgg(x, which = "all", col = "#F9D607",
  x\lim_{x\to 0} = q(x, c(0.01, 0.99)), y\lim_{x\to 0} = NULL, x\lim_{x\to 0} = x\lim_{x\to 0},
  ylim2 = NULL, xlab1 = NULL, ylab1 = NULL, xlab2 = NULL,
  ylab2 = NULL, main1 = "CDF", main2 = "PMF", size1 = 3.3,
  size2 = 3.3, alpha1 = 0.9, alpha2 = 0.9, col_segment = "#b05e0b",
  ...)
## S3 method for class 'contmixdist'
plotgg(x, which = "all", only_mix = FALSE,
  pp1 = 1000, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, y))
  0.99)), ylim1 = NULL, xlim2 = xlim1, ylim2 = NULL, xlab1 = NULL,
  ylab1 = NULL, xlab2 = NULL, ylab2 = NULL, main1 = "CDF",
```

plotgg 53

```
main2 = "PDF", size1 = 1, size2 = 1, alpha1 = 0.4,
  alpha2 = 0.4, legend.position1 = "none", legend.position2 = "none",
  ...)
## S3 method for class 'trans_contmixdist'
plotgg(x, which = "all", only_mix = FALSE,
 pp1 = 1000, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, yr))
 0.99)), ylim1 = NULL, xlim2 = xlim1, ylim2 = NULL, xlab1 = NULL,
 ylab1 = NULL, xlab2 = NULL, ylab2 = NULL, main1 = "CDF",
 main2 = "PDF", size1 = 1, size2 = 1, alpha1 = 0.4,
  alpha2 = 0.4, legend.position1 = "none", legend.position2 = "none",
  ...)
## S3 method for class 'discrmixdist'
plotgg(x, which = "all", only_mix = FALSE,
  pp1 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, 0.99)),
 ylim1 = NULL, xlim2 = xlim1, ylim2 = NULL, xlab1 = NULL,
 ylab1 = NULL, xlab2 = NULL, ylab2 = NULL, main1 = "CDF",
 main2 = "PMF", size1 = 1.6, size2 = 1.6, alpha1 = 0.4,
  alpha2 = 0.9, legend.position1 = "none", legend.position2 = "none",
 width = 0.25, ...)
## S3 method for class 'trans_discrmixdist'
plotgg(x, which = "all", only_mix = FALSE,
 pp1 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, 0.99)),
 ylim1 = NULL, xlim2 = xlim1, ylim2 = NULL, xlab1 = NULL,
 ylab1 = NULL, xlab2 = NULL, ylab2 = NULL, main1 = "CDF",
 main2 = "PMF", size1 = 1.6, size2 = 1.6, alpha1 = 0.4,
  alpha2 = 0.9, legend.position1 = "none", legend.position2 = "none",
 width = 0.25, ...)
## S3 method for class 'contdiscrmixdist'
plotgg(x, which = "all", only_mix = FALSE,
  pp1 = 1000, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01,
  0.99)), ylim1 = NULL, xlim2 = xlim1, ylim2 = NULL, xlab1 = NULL,
 ylab1 = NULL, xlab2 = NULL, ylab2 = NULL, main1 = "CDF",
 main2 = "PDF", size1 = 1.6, size2 = 1.6, alpha1 = 0.4,
 alpha2 = 0.4, legend.position1 = "none", legend.position2 = "none",
## S3 method for class 'trans_contdiscrmixdist'
plotgg(x, which = "all")
  only_mix = FALSE, pp1 = 1000, pp2 = 1000, col = "#F9D607",
 x\lim_{x\to 0} = q(x, c(0.01, 0.99)), y\lim_{x\to 0} = NULL, x\lim_{x\to 0} = x\lim_{x\to 0}
 ylim2 = NULL, xlab1 = NULL, ylab1 = NULL, xlab2 = NULL,
 ylab2 = NULL, main1 = "CDF", main2 = "PDF", size1 = 1.6,
  size2 = 1.6, alpha1 = 0.4, alpha2 = 0.4,
  legend.position1 = "none", legend.position2 = "none", ...)
```

54 plotgg

```
## S3 method for class 'compdist'
plotgg(x, which = "all", only_mix = FALSE,
      pp1 = 1000, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01,
      0.99)), ylim1 = NULL, xlim2 = xlim1, ylim2 = NULL, xlab1 = NULL,
     ylab1 = NULL, xlab2 = NULL, ylab2 = NULL, main1 = "CDF",
     main2 = "PDF", size1 = 1.6, size2 = 1.6, alpha1 = 0.4,
     alpha2 = 0.4, legend.position1 = "none", legend.position2 = "none",
      text_ylim = -0.01, col_segment = "white", lty_segment = 3,
      lwd_segment = 1.8, ...)
## S3 method for class 'trans_compdist'
plotgg(x, which = "all", only_mix = FALSE,
      pp1 = 1000, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = 1000, col = "#F9D607", xlim1 = q(x, c(0.01, pp2 = 1000, col = 10
      0.99)), ylim1 = NULL, xlim2 = xlim1, ylim2 = NULL, xlab1 = NULL,
     ylab1 = NULL, xlab2 = NULL, ylab2 = NULL, main1 = "CDF",
     main2 = "PDF", size1 = 1.6, size2 = 1.6, alpha1 = 0.4,
      alpha2 = 0.4, legend.position1 = "none", legend.position2 = "none",
      text_ylim = -0.01, col_segment = "white", lty_segment = 3,
      lwd_segment = 1.8, ...)
```

Arguments

x	distribution object.
which	whether to plot only CDF, PDF or both, default: 'all'.
	further arguments to be passed.
pp1	number of points at which CDF is evaluated, default: 1000.
pp2	number of points at which PDF is evaluated, default: 1000.
col	color used in plot, default: '#122e94'.
xlim1	xlim of CDF plot, default: $q(x, c(0.01, 0.99))$.
ylim1	ylim of CDF plot, default: NULL.
xlim2	xlim of PDF plot, default: xlim1.
ylim2	ylim of PDF plot, default: NULL.
xlab1	xlab of CDF plot, default: NULL.
ylab1	ylab of CDF plot, default: NULL.
xlab2	xlab of PDF plot, default: NULL.
ylab2	ylab of PDF plot, default: NULL.
main1	title of CDF plot, default: 'CDF'.
main2	title of PDF plot, default: 'PDF'/'PMF'.
size1	size used in CDF plot.
size2	size used in PDF plot.
alpha1	alpha used in CDF plot.
alpha2	alpha used in PDF plot.

PNP_fit 55

col_segment col of additional segment if contained in the plot (composite and discrete distri-

butions).

only_mix whether to plot only mixture/composite model and not also the components,

default: FALSE.

legend.position1

legend.position used in CDF plot.

legend.position2

legend.position used in PDF plot.

width width of the bars that are used to plot discrete mixtures, default: 0.25.

text_ylim y coordinate for text annotation, default: -0.01.

1ty_segment lty of additional segment if contained in the plot (composite and discrete distri-

butions).

lwd_segment lwd of additional segment if contained in the plot (composite and discrete dis-

tributions).

Value

ggplot object if which = "cdf" or which = "pdf". If both are plotted, the plots are merged using multiplot() function and a list with both plots is invisibly returned.

Examples

```
## Not run:
N <- normdist()
autoplot(N)

# manipulating cdf plot
B <- binomdist(12, 0.5)
autoplot(-3*B, which = "cdf", xlim1 = c(-30, -10))
# manipulating pdf plot
autoplot(-3*B, which = "pdf", xlim2 = c(-30, -10))
## End(Not run)</pre>
```

PNP_fit

Fitting a Pareto-Normal-Pareto Model

Description

GNG_fit is used to fit three components composite models with components Pareto, normal and Pareto.

Usage

```
PNP_fit(data, start = c(break1 = -0.02, break2 = 0.02, mean = 0, sd = 0.012), ...)
```

56 PNP_fit

Arguments

data	vector of values to which the density is optimized.
start	named vector (break1, break2, mean, sd) of values that are used to start the optimization, default: $c(break1 = -0.02, break2 = 0.02, mean = 0, sd = 0.012)$.
	further arguments to be passed to optimizer.

Details

The PNP model is the Pareto-Normal-Pareto model. This means that a -X transformation of a Pareto random variable will be used for the left tail, normal distribution for the center and again Pareto for the right tail.

The code uses the maximum likelihood estimation technique to estimate the four parameters from the start vector (break1, break2, mean, sd). The other parameters (shape parameters of Pareto distribution) are computed in each step such that the function is continuous. Weights are estimated in every step as a proportion of points that correspond to each of the truncated region.

Optimization is handled by the mle2 function.

Value

A list of class comp_fit.

See Also

mle2

```
## Not run:
PNP_fit(stocks$SAP)

PNP_fit(stocks$MSFT)

autoplot(PNP_fit(stocks$ADS))

PNP_fit(stocks$GSPC, method = "BFGS")

PNP_fit(stocks$DJI, start = c(-0.01,0.01,0,0.008))

## End(Not run)
```

poisdist 57

poisdist

Creates an Object Representing Poisson Distribution

Description

The function creates an object which represents the Poisson distribution.

Usage

```
poisdist(lambda = 1)
```

Arguments

lambda

mean parameter, default: 1.

Details

See Poisson.

Value

Object of class poisdist.

See Also

Poisson

Examples

```
P <- poisdist(1)
d(P, c(2, 3, 4, NA))
r(P, 5)
```

 ${\tt q.compdist}$

Quantile Function

Description

q is a generic function that evaluates the quantile function of a distribution object at given values.

58 q.compdist

Usage

```
## S3 method for class 'compdist'
q(0, p, lower.tail = TRUE, log.p = FALSE, ...)

q(0, p, lower.tail = TRUE, log.p = FALSE, ...)

## S3 method for class 'standist'
q(0, p, lower.tail = TRUE, log.p = FALSE, ...)

## S3 method for class 'trans_univdist'
q(0, p, lower.tail = TRUE, log.p = FALSE, ...)
```

Arguments

Details

Methods of q function evaluates any offered distribution from package mistr. The function makes use of the q[sufix] functions as qnorm or qbeta and thus, if a new distribution is added, these functions must be reachable through the search path.

The mixture method q.mixdist and the default method q.default have its own help page.

Value

Vector of computed results.

```
N <- normdist(1, 3)
q(N, c(NA, 1, 3, 5))

C <- cauchydist()
CC <- compdist(N, C, weights = c(0.5, 0.5), breakpoints = 1)
CCC <- 2*C+5
q(CCC, c(NA, 1, 3, 5))</pre>
```

q.default 59

Description

The default method q.default terminates the current R session.

Usage

```
## Default S3 method:
q(0 = save, p = status, lower.tail = runLast,
  log.p = FALSE, save = "default", status = 0, runLast = TRUE, ...)
```

Arguments

0	place holder for generic, by default set to save, default: save.
р	place holder for generic, by default set to status, default: status.
lower.tail	place holder for generic, by default set to runLast, default: runLast.
log.p	place holder for generic, default: FALSE.
save	a character string indicating whether the environment (workspace) should be saved, one of "no", "yes", "ask" or "default", default: 'default'.
status	the (numerical) error status to be returned to the operating system, where relevant. Conventionally 0 indicates successful completion, default: 0.
runLast	should .Last() be executed?, default: TRUE.
	further arguments to be passed.

Details

This method is designed to quit R if the q() without a distribution is called. The reason for such an implementation is R-Studio in Linux and Mac systems, where the software calls q() (rather than base::q()) once the R-Studio window is closed. Such implementation solves the issued with the overwriting of q().

See Also

q

q.mixdist

α	тi	vd	i	ct

Quantile Function of a Mixture Model

Description

q.mixdist is a method that evaluates the quantile function of a mixture distribution object at given values.

Usage

```
## S3 method for class 'mixdist'
q(0, p, lower.tail = TRUE, log.p = FALSE, ...)
```

Arguments

Details

Methods of q function evaluates any offered distribution from the package mistr. The function makes use of the p[sufix] and q[sufix] functions as pnorm or qbeta and thus, if a new distribution is added, these functions must be reachable through the search path.

The values are numerically found using the uniroot function, while the starting intervals are found automatically. The option parameter tol specifies the tolerance for the uniroot. Options parameter sub is used to test whether the CDF at computed values minus sub is not the same and thus the given value is not an infimum. In such case, the root is found one more time for the value p -sub.

Other methods q and the default method q.default have its own help page.

Value

Vector of computed results.

See Also

```
set_opt
```

qlim.compdist 61

Examples

qlim.compdist

Right-Hand Limit of Quantile Function

Description

qlim is a generic function that evaluates the right-hand limit of quantile function for a distribution object at given values.

Usage

```
## S3 method for class 'compdist'
qlim(0, p, lower.tail = TRUE, log.p = FALSE)

qlim(0, p, lower.tail = TRUE, log.p = FALSE)

## S3 method for class 'discrdist'
qlim(0, p, lower.tail = TRUE, log.p = FALSE)

## S3 method for class 'contdist'
qlim(0, p, lower.tail = TRUE, log.p = FALSE)

## S3 method for class 'trans_univdist'
qlim(0, p, lower.tail = TRUE, log.p = FALSE)
```

Arguments

0	distribution object.
p	vector of probabilities.
lower.tail	logical; if TRUE, probabilities are $P[X \leq x]$ otherwise, $P[X > x]$, default: TRUE.
log.p	logical; if TRUE, probabilities p are given as $log(p)$, default: FALSE.

Details

Methods of qlim function evaluates the right-hand limit of any offered distribution object from the package mistr. The right-hand limit of a quantile function is defined as

$$Q(x+) = infx : p < P(X \le x).$$

The function makes use of the p[sufix] and q[sufix] functions as pnorm, pbeta, qnorm, qbeta, and thus, if a new distribution is added, these functions must be reachable through the search path.

Methods for mixtures have its own help page.

62 qlim.discrmixdist

Value

Vector of computed results.

Examples

```
B <- binomdist(10, 0.3)
qlim(B, plim(B, c(NA, 1, 3, 5)))

P <- poisdist()
M <- mixdist(B, P, weights = c(0.5, 0.5))
qlim(M, plim(M, c(NA, 1, 3, 5)))

CC <- compdist(B, P, weights = c(0.5, 0.5), breakpoints = 1)
CCC <- 2*CC+5
qlim(CCC, plim(CCC, c(NA, 1, 3, 5)))</pre>
```

qlim.discrmixdist

Right-Hand Limit of Mixture Quantile Function

Description

qlim.mixdist is a method that evaluates the right-hand limit of quantile function for a mixture distribution object at given values.

Usage

```
## S3 method for class 'discrmixdist'
qlim(0, p, lower.tail = TRUE, log.p = FALSE)
## S3 method for class 'contdiscrmixdist'
qlim(0, p, lower.tail = TRUE, log.p = FALSE)
## S3 method for class 'contmixdist'
qlim(0, p, lower.tail = TRUE, log.p = FALSE)
```

Arguments

QQplot 63

Details

Methods of qlim function evaluates the right-hand limit of a quantile function for any offered distribution object from the package mistr. The right-hand limit of a quantile function is defined as

$$Q(x+) = infx : p < P(X \le x).$$

The function makes use of the p[sufix] and q[sufix] functions as pnorm, pbeta, qnorm, qbeta, and thus, if a new distribution will be added, these functions must be reachable through the search path.

The values are numerically found using the uniroot function, while the starting intervals are found automatically. The option parameter tol specifies the tolerance for the uniroot. Options parameter sub is used to test whether the CDF at computed value minus sub is not the same and thus the given value is not an infimum. In such case, the root is found one more time for the value p -sub.

Other methods qlim have its own help page.

Value

Vector of computed results.

See Also

```
set_opt
```

Examples

```
# q() of a negative transformed random variable uses qlim() DM <- mixdist(3*binomdist(12,0.4), -2*poisdist(2)+12, weights=c(0.5, 0.5)) y <- c(0.05, 0.4, p(-DM, c(-5, -10, -15, -18)), 0.95) x <- q(-DM, y) plot(-DM, which = "cdf", only_mix=TRUE, xlim1 = c(-37, 0)) points(x, y)
```

QQplot

Quantile-Quantile Plot

Description

QQplot is a generic function that produces QQ plot of two datasets, distribution and dataset or two distributions.

Usage

```
QQplot(d1, d2, line = TRUE, col = "#122e94", line_col = "#f28df9",
    xlab = deparse(substitute(d1)), ylab, main = "Q-Q plot", lwd = 2,
    ...)
## Default S3 method:
QQplot(d1, d2, line = TRUE, col = "#122e94",
```

QQplot

```
line_col = "#f28df9", xlab = deparse(substitute(d1)),
ylab = deparse(substitute(d2)), main = "Q-Q plot", lwd = 2, ...)

## S3 method for class 'dist'
QQplot(d1, d2, line = TRUE, col = "#122e94",
    line_col = "#f28df9", xlab = deparse(substitute(d1)), ylab = ylabe,
    main = "Q-Q plot", lwd = 2, CI = re, conf = 0.95, n = 100,
    CI_col = "grey80", ...)

QQnorm(d2, xlab = "Standard Normal", ylab = deparse(substitute(d2)),
    ...)
```

Arguments

d1	distribution object or dataset.
d2	distribution object or dataset.
line	if qqline should be included, default: TRUE.
col	color of points, default: '#122e94'.
line_col	color of qqline, default: '#f28df9'.
xlab	xlab, default: deparse(substitute(d1)).
ylab	ylab, default: deparse(substitute(d2)).
main	title, default: 'Q-Q plot'.
lwd	lwd of qqline, default: 2.
• • •	further arguments to be passed.
CI	if confidence bound should be included.
conf	confidence level for confidence bound, default: 0.95.
n	number of points at which quantile functions are evaluated if two distributions are compared, default: 100.
CI_col	color of confidence bound, default: 'grey80'.

Details

QQplot is able to compare any combination of dataset and distributions.

QQnorm is a wrapper around QQplot, where d1 is set to normdist().

If quantiles of a continuous distribution are compared with a sample, a confidence bound for data is offered. This confidence "envelope" is based on the asymptotic results of the order statistics. For more details see https://en.wikipedia.org/wiki/Order_statistic.

```
# sample vs sample
QQplot(r(normdist(), 10000), r(tdist(df = 4), 10000))
# distribution vs sample
QQplot(normdist(), r(tdist(df = 4), 10000))
```

QQplotgg 65

```
# distribution vs distribution
QQplot(normdist(), tdist(df = 4))
```

QQplotgg

Implementation of Quantile-Quantile Plot with ggplot2

Description

QQplotgg is a generic function that produces QQ plot of two datasets, distribution and dataset or two distributions.

Usage

```
QQplotgg(d1, d2, line = TRUE, col = "#F9D607", line_col = "#f28df9",
    xlab = deparse(substitute(d1)), ylab, main = "Q-Q plot", alpha,
    lwd = 1, ...)

## Default S3 method:
QQplotgg(d1, d2, line = TRUE, col = "#F9D607",
    line_col = "#f28df9", xlab = deparse(substitute(d1)),
    ylab = deparse(substitute(d2)), main = "Q-Q plot", alpha = 0.5,
    lwd = 1, ...)

## S3 method for class 'dist'
QQplotgg(d1, d2, line = TRUE, col = "#F9D607",
    line_col = "#f28df9", xlab = deparse(substitute(d1)), ylab = ylabe,
    main = "Q-Q plot", alpha = 0.7, lwd = 1, CI = re,
    CI_alpha = 0.4, CI_col = line_col, conf = 0.95, n = 100, ...)

QQnormgg(d2, xlab = "Standard Normal", ylab = deparse(substitute(d2)),
    ...)
```

Arguments

d1	distribution object or dataset.
d2	distribution object or dataset.
line	if qqline should be included, default: TRUE.
col	color of points, default: '#F9D607'.
line_col	color of qqline, default: '#f28df9'.
xlab	xlab, default: deparse(substitute(d1)).
ylab	ylab. default: deparse(substitute(d2)).
main	title, default: 'Q-Q plot'.
alpha	alpha of points, default: 0.7.
lwd	lwd of qqline, default: 1.

q_approxfun

... further arguments to be passed.

CI if confidence bound should be included.
CI_alpha alpha of confidence bound, default: 0.4.
CI_col color of confidence bound , default: line_col.

conf confidence level for confidence bound, default: 0.95.

n number of points at which quantile functions are evaluated if two distributions

are compared, default: 100.

Details

QQplotgg is able to compare any combination of dataset and distributions.

QQnormgg is a wrapper around QQplotgg, where d1 is set to normdist().

If quantiles of a continuous distribution are compared with a sample, a confidence bound for data is offered. This confidence "envelope" is based on the asymptotic results of the order statistics. For more details see https://en.wikipedia.org/wiki/Order_statistic.

Value

ggplot object.

Examples

```
# sample vs sample
QQplotgg(r(normdist(), 10000), r(tdist(df = 4), 10000))
# distribution vs sample
QQplotgg(normdist(), r(tdist(df = 4), 10000))
# distribution vs distribution
QQplotgg(normdist(), tdist(df = 4))
```

q_approxfun

Quantile Function Approximation

Description

q_approxfun is a generic function that for a given object generates function to approximate the quantile function.

Usage

```
q_approxfun(0, range = q(0, c(0.005, 0.995)), n = 1000) 
## S3 method for class 'dist' 
q_approxfun(0, range = q(0, c(0.005, 0.995)), n = 1000)
```

r.compdist 67

Arguments

0	distribution object.
range	interval on which the grid is defined, $q(O, c(0.005, 0.995))$.
n	number of points within the grid, default: 1000.

Details

Function q_approxfun generates a grid of values on which the CDF of the object is evaluated. The function returns a quantile function that uses approx and the values of the grid to approximate the quantiles. This function is designed mostly for the mixture distributions where the standard q method may be slow and thus allows to trade the accuracy for the speed.

The returned function takes the arguments p, lower.tail and log.p, see q.

Value

Function.

Examples

```
N <- normdist(1, 3)
N2 <- normdist(8, 3)

M <- mixdist(N, N2, weights = c(0.5, 0.5))
q_app <- q_approxfun(M)

q_app(c(.2, .5, .7))
q_app(c(.2, .5, .7), lower.tail = FALSE)</pre>
```

r.compdist

Random Generation

Description

r is a generic function that generates random deviates of a distribution object.

Usage

```
## S3 method for class 'compdist'
r(0, n)

## S3 method for class 'mixdist'
r(0, n)

r(0, n)

## S3 method for class 'standist'
r(0, n)
```

68 risk

```
## S3 method for class 'hyperdist'
r(0, n)
## S3 method for class 'wilcoxdist'
r(0, n)
## S3 method for class 'trans_univdist'
r(0, n)
```

Arguments

0 distribution object.

n number of observations.

Details

Methods of r function generates random deviates of offered distribution from the package mistr. The function makes use of the r[sufix] functions as rnorm or rbeta and thus, if a new distribution is added, these functions must be reachable through the search path.

For more complicated composite distributions, where one of the components is a mixture distribution, the function performs a rejection sampling of mixture random numbers to improve the speed.

Value

Vector of computed results.

Examples

```
N <- normdist(1, 3)
r(N, 5)

C <- cauchydist()
M <- mixdist(N, C, weights = c(0.5, 0.5))
r(M, 5)

CC <- compdist(N, C, weights = c(0.5, 0.5), breakpoints = 1)
CCC <- 2*C+5
r(CCC, 5)</pre>
```

risk

Risk Measures of Fitted Objects

Description

risk computes the VaR, ES and expectiles at a given level for fitted distribution.

risk 69

Usage

```
risk(model, alpha, expectile = TRUE, plot = FALSE, ggplot = FALSE,
  text_ylim = -0.15, size = 1)

## S3 method for class 'PNP'
risk(model, alpha = 0.05, expectile = TRUE,
  plot = FALSE, ggplot = FALSE, text_ylim = -0.15, size = 1)

## S3 method for class 'GNG'
risk(model, alpha = 0.05, expectile = TRUE,
  plot = FALSE, ggplot = FALSE, text_ylim = -0.15, size = 1)
```

Arguments

model output object of GNG_fit() or PNP_fit().

alpha levels of risk measures.

expectile logical, if also expectiles should be computed, default: TRUE.

plot plot the results?, default: FALSE.

ggplot plot the results with ggplot2?, default: FALSE.

text_ylim y coordinate for annotation in ggplot2, default: -0.15.

size size of the text indicating the risk measures in the plot, default: 1.

Details

VaR are computed using the q() call of the fitted distribution.

ES is computed directly (i.e. the integrals are precomputed, not numerically) as an integral of the quantile function.

Expectiles can be obtained as a unit-root solution of the identity between quantiles and expectiles. These are equivalent for corresponding τ and α if

$$\tau = (\alpha q(\alpha) - G(\alpha))/(\mu - 2G(\alpha) - (1 - 2\alpha)q(\alpha))$$

where μ is mean, q() is the quantile function and $G(\alpha)=\int_{-\infty}^{q(\alpha)}ydF(y).$

Value

List of class risk_measures.

```
## Not run:
GNG <- GNG_fit(stocks$SAP)
PNP <- PNP_fit(stocks$MSFT)

risk(PNP, alpha = c(0.01,0.05,0.08,0.1))
risk(GNG, alpha = c(0.01,0.05,0.08,0.1), plot = TRUE)
## End(Not run)</pre>
```

70 stocks

set_opt

Set Parameters

Description

Function can be used to set the parameters used in mistr.

Usage

```
set_opt(...)
```

Arguments

. . . arguments in tag = value form, or a list of tagged values.

Details

The function can set the values for:

sub parameter: small value that is used in mixture quantile function to test if the computed value is infimum, default: 1e-10.

add parameter: small value that is added to values that are in the image of CDF in qlim function, default: 1e-08.

tol parameter: tolerance for uniroot used in mixture quantile function, default: .Machine\$double.eps^0.5.

Value

When parameters are set, their previous values are returned in an invisible named list.

Examples

```
a <- set_opt(sub = 1e-5, tol = 1e-10)
get_opt("sub", "tol")
set_opt(a)</pre>
```

stocks

Log-returns of Five Stocks

Description

A dataset containing the log-returns of adjusted closing prices from 04.01.2007 to 30.10.2017. The dataset contains data of Microsoft, SAP, Adidas, S&P 500 (index) and Dow Jones Industrial Average (index).

Usage

stocks

sudo_support 71

Format

```
A data frame with 2726 rows and 5 variables:
```

MSFT Microsoft Corporation

SAP Systems, Applications & Products in Data Processing

ADS Adidas

GSPC S&P 500

DJI Dow Jones Industrial Average

Source

quantmod

sudo_support

Support Interval of Distribution Object

Description

sudo_support is a generic function that returns the two boundary values of object's support.

Usage

```
sudo_support(0)
## S3 method for class 'discrdist'
sudo_support(0)
## S3 method for class 'contdist'
sudo_support(0)
## S3 method for class 'mixdist'
sudo_support(0)
## S3 method for class 'compdist'
sudo_support(0)
## S3 method for class 'trans_univdist'
sudo_support(0)
```

Arguments

0

distribution object.

Details

Methods of sudo_support function calculate the support's boundary values for any distribution in the package mistr. This technique is particularly useful when dealing with a transformed distribution.

72 summary.comp_fit

Value

Named vector containing two values.

Examples

```
B <- binomdist(10, 0.3)
sudo_support(B)

B2 <- -3*log(B)
sudo_support(B2)

sudo_support( mixdist(B2, normdist(), weights = c(0.5, 0.5)))</pre>
```

 $summary.comp_fit$

Displays a Useful Description of a Fitted Object

Description

Displays a useful description of a fitted object.

Usage

```
## S3 method for class 'comp_fit'
summary(object, ...)
```

Arguments

```
object distribution object to summarize.
... additional arguments.
```

Value

Function returns summary of the fit, offered by bbmle package for class mle2-class.

See Also

```
mle2-class
```

tdist 73

tdist

Creates an Object Representing Student-t Distribution

Description

The function creates an object which represents the Student-t distribution.

Usage

```
tdist(df = 2)
```

Arguments

df

degrees of freedom parameter, default: 2.

Details

See TDist.

Value

Object of class tdist.

See Also

TDist

Examples

```
t <- tdist(2)
d(t, c(2, 3, 4, NA))
r(t, 5)
```

trafo

Modifications of Transformations

Description

The function modifies the given object and adds the transformation expressions.

Usage

```
trafo(0, type = "new", trans, invtrans, print, deriv, operation,
  value = 0)
```

74 trafo

Arguments

0	distribution object.
type	type of modification to be performed, default: 'new'.
trans	transformation expression.
invtrans	inverse transformation expression.
print	print expression.
deriv	derivative expression.
operation	string indicating which operation is performed.
value	numeric value used in operation, default: 0.

Details

trafo is the main function used in the transformation framework. The function offers four types of possible modifications. Note, that all expressions must use X to indicate the object in the transformation

type = "init": Initializes the needed lists for transformations and adds the first expressions. This type should be used only with yet untransformed distributions as the first modification. All arguments must be set.

type = "new": Adds a new transformation to the current ones. This must be used only on already transformed distributions. All arguments must be set.

type = "update": Updates previous expression. This is useful when same transformation is used twice in a row. All arguments except operation must be set.

type = "go_back": Uses to history to reverse the previous transformation. Useful if inverse of previous transformation is evaluated. Only object and type must be specified.

Value

Transformed distribution object.

unifdist 75

unifdist

Creates an Object Representing Uniform Distribution

Description

The function creates an object which represents the uniform distribution.

Usage

```
unifdist(min = 0, max = 1)
```

Arguments

min minimum parameter, default: 0.
max maximum parameter, default: 1.

Details

See Uniform.

Value

Object of class unifdist.

See Also

Uniform

```
U <- unifdist(1, 5)
d(U, c(2, 3, 4, NA))
r(U, 5)
```

76 weibulldist

untrafo

Untransformation of a Distribution Object

Description

untrafo is a generic function that returns the untransformed random variable, if a transformed object is given.

Usage

```
untrafo(0)
## S3 method for class 'trans_standist'
untrafo(0)
## S3 method for class 'trans_mixdist'
untrafo(0)
## S3 method for class 'trans_compdist'
untrafo(0)
```

Arguments

0

transformed distribution object.

Value

Untransformed distribution object.

Examples

```
B <- binomdist(10, 0.3)
B2 <- -3*log(B)
B2
untrafo(B2)</pre>
```

weibulldist

Creates an Object Representing Weibull Distribution

Description

The function creates an object which represents the Weibull distribution.

Usage

```
weibulldist(shape = 1, scale = 1)
```

wilcoxdist 77

Arguments

```
shape shape parameter, default: 1. scale scale parameter, default: 1.
```

Details

See Weibull.

Value

Object of class weibulldist.

See Also

Weibull

Examples

```
W <- weibulldist(1, 1)
d(W, c(2, 3, 4, NA))
r(W, 5)</pre>
```

wilcoxdist

Creates an Object Representing Wilcoxon Distribution

Description

The function creates an object which represents the Wilcoxon distribution.

Usage

```
wilcoxdist(m, n)
```

Arguments

m number of observations in the first sample.n number of observations in the second sample.

Details

See Wilcoxon.

Value

Object of class wilcoxdist.

78 wilcoxdist

See Also

Wilcoxon

```
W <- wilcoxdist(20, 15)
d(W, c(2, 3, 4, NA))
r(W, 5)</pre>
```

Index

```
*Topic datasets
                                                       (Distribution_transformation),
    stocks, 70
                                               +.GPDdist
*.GPDdist
                                                       (Distribution_transformation),
        (Distribution_transformation),
        19
                                                       19
                                               +.cauchydist
*.cauchydist
                                                       (Distribution_transformation),
        (Distribution_transformation),
                                                       19
        19
                                               +.frechetdist
*.expdist
        (Distribution_transformation),
                                                       (Distribution_transformation),
        19
                                               +.gumbeldist
*.frechetdist
        (Distribution_transformation),
                                                       (Distribution_transformation),
        19
*.gammadist
                                               +.normdist
                                                       (Distribution_transformation),
        (Distribution_transformation),
        19
                                               +.trans univdist
*.gumbeldist
                                                       (Distribution_transformation),
        (Distribution_transformation),
*.lnormdist
                                               +.unifdist
                                                       (Distribution_transformation),
        (Distribution_transformation),
                                               +.univdist
*.normdist
                                                       (Distribution_transformation),
        (Distribution_transformation),
                                               -.betadist
*.paretodist
                                                       ({\tt Distribution\_transformation}),
        (Distribution_transformation),
                                                       19
                                               -.binomdist
*.trans_univdist
                                                       (Distribution_transformation),
        (Distribution_transformation),
*.unifdist
                                               -.dist(Distribution_transformation), 19
        (Distribution_transformation),
                                               /.dist(Distribution_transformation), 19
                                               ^.cauchydist
*.univdist
                                                       (Distribution_transformation),
        (Distribution_transformation),
                                                       19
                                               ^.expdist
*.weibulldist
                                                       (Distribution_transformation),
```

80 INDEX

19	exp.trans_univdist
^.fdist(Distribution_transformation),	(Distribution_transformation),
19	19
^.lnormdist	exp.univdist
(Distribution_transformation),	(Distribution_transformation),
19	19
<pre>^.tdist(Distribution_transformation),</pre>	expdist, 22
19	Exponential, 23
^.trans_univdist	
(Distribution_transformation),	FDist, 23
19	fdist, 23
^.univdist	Frechet, 24, 25
(Distribution_transformation),	frechetdist, 25, 25
19	CommoDiat 26
	GammaDist, 26
approx, 67	gammadist, 26
<pre>autoplot.comp_fit, 4</pre>	geomdist, 26
autoplot.dist,4	Geometric, 27
	get_opt, 27
Beta, <i>6</i>	GNG_fit, 28
betadist, 5	GPD, 29, 31
binomdist, 6	GPDdist, 30, 30
Binomial, 6	Gumbel, 31, 32, 33
breakpoints, 7, 47	gumbeldist, <i>32</i> , 32
Burr, 8, 9	hyperdist, 33
burrdist, 9, 9	Hypergeometric, 33
Cauchy, <i>10</i>	is.composite, 34
cauchydist, 10	is.contin, 34
chisqdist, 10	is.discrete, 34
Chisquare, 11	is.dist, 35
compdist, 11, <i>41</i>	is.mixture, 35
	is.standard, 35
d, <i>39</i>	is.transformed, 36
d (d.compdist), 13	
d.compdist, 13	jumps, 36
dburr (Burr), 8	
dfrechet (Frechet), 24	last_history, 37
dGPD (GPD), 29	lnormdist, 38
dgumbel (Gumbel), 31	log.lnormdist
distribution, 14	$({\sf Distribution_transformation}),$
Distribution_autoplot, 15, 51	19
Distribution_summary, 18	log.trans_univdist
Distribution_transformation, 19	$({\tt Distribution_transformation}),$
dpareto (Pareto), 48	19
	log.univdist
exp.normdist	(Distribution_transformation),
(Distribution_transformation),	19
19	Lognormal, 38

INDEX 81

mistr, 7, 14, 18, 27, 46, 47, 50, 58, 60, 61, 63,	plot.trans_compdist
68, 70, 71	(Distribution_autoplot), 15
mistr(mistr-package),3	plot.trans_contdiscrmixdist
mistr-package,3	(Distribution_autoplot), 15
mistr_d(mistr_d_p_q_r), 39	plot.trans_contdist
mistr_d_p_q_r,39	(Distribution_autoplot), 15
mistr_p(mistr_d_p_q_r), 39	plot.trans_contmixdist
$mistr_q (mistr_d_p_q_r), 39$	(Distribution_autoplot), 15
mistr_r(mistr_d_p_q_r), 39	plot.trans_discrdist
mistr_theme, 40	(Distribution_autoplot), 15
mixdist, <i>12</i> , 40	plot.trans_discrmixdist
mixtures, 61	(Distribution_autoplot), 15
mle2, 28, 56	plotgg, 4, 5, 36, 52
monot, 41	PNP_fit, 55
multinomdist, 42	poisdist, 57
Multinomial,42	Poisson, 57
	ppareto (Pareto), 48
nbinomdist, 43	
NegBinomial, 43	q, 39, 59, 60, 67
new_dist, 43	q(q.compdist), 57
Normal, <i>45</i>	q.compdist, 57
normdist, <i>44</i> , 45	q.default, 58, 59, 60
20	q.mixdist, 58, 60
p, 39	q_approxfun, 66
p (p.compdist), 45	qburr (Burr), 8
p.compdist, 45	qfrechet (Frechet), 24
parameters, 7, 47	qGPD (GPD), 29
Pareto, 48, 49	qgumbel (Gumbel), 31
paretodist, 49, 49	qlim, 63, 70
pburr (Burr), 8	qlim(qlim.compdist), 61
pfrechet (Frechet), 24	qlim.compdist, 61
pGPD (GPD), 29	qlim.contdiscrmixdist
pgumbel (Gumbel), 31	(qlim.discrmixdist), 62
plim (plim.compdist), 50	qlim.contmixdist(qlim.discrmixdist), 62
plim.compdist, 50	qlim.discrmixdist,62
plot, 36	qpareto (Pareto), 48
plot.comp_fit, 51	QQnorm(QQplot), 63
plot.compdist(Distribution_autoplot),	QQnormgg (QQplotgg), 65
15	QQplot, 63
plot.contdiscrmixdist	QQplotgg, 65
(Distribution_autoplot), 15	quantmod, 71
plot.contdist(Distribution_autoplot),	
15	r, 39
plot.contmixdist	r(r.compdist),67
(Distribution_autoplot), 15	r.compdist,67
plot.discrdist(Distribution_autoplot),	rburr (Burr), 8
15	rfrechet (Frechet), 24
plot.discrmixdist	rGPD (GPD), 29
(Distribution_autoplot), 15	rgumbel (Gumbel), 31

82 INDEX

```
risk, 68
rpareto (Pareto), 48
set_opt, 27, 60, 63, 70
sqrt.dist
        (Distribution_transformation),
        19
stocks, 70
sudo_support, 71
summary.comp_fit, 72
summary.compdist
        (Distribution_summary), 18
summary.mixdist (Distribution_summary),
        18
summary.standist
        (Distribution_summary), 18
summary.trans_compdist
        (Distribution_summary), 18
summary.trans_mixdist
        (Distribution_summary), 18
summary.trans_standist
        (Distribution_summary), 18
TDist, 73
tdist, 73
theme, 40
trafo, 73
unifdist, 44, 75
Uniform, 75
uniroot, 60, 63
untrafo, 76
Weibull, 77
weibulldist, 76
weights, 7, 47
wilcoxdist, 77
Wilcoxon, 77, 78
```