24

Pseudo-Random Function (PRF)

A function $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ such that:

- 1. $\forall k \in \mathcal{K}, x \in \mathcal{X}$, \exists a PPT algorithm that (efficiently) computes $F_k(x)$ (efficiency)
- 2. \forall algorithm PPT \mathcal{D} , $\exists \varepsilon(n)$ negligible such that

$$\mathsf{Adv}^{\mathsf{PRF}}_{\mathcal{D},F}(n) = |\Pr[\mathcal{D}(f) = 1] - \Pr[\mathcal{D}(F_k(.)) = 1]| \le \varepsilon(n)$$

where $f \leftarrow^{R} \text{Func}(\mathcal{X}, \mathcal{Y})$ and $k \leftarrow^{R} \mathcal{K}(pseudo-randomness)$

Pseudo-Random Permutation (PRP)

A bijection $F: \mathcal{X} \times \mathcal{K} \rightarrow \mathcal{X}$, with F PRF

(Y = X)

 \mathcal{D} : distinguisher $\mathcal{D}()$ output: 0 = not random, 1 = randomPPT: Probabilistic Polynomial in Time Func(X, Y): the set of all functions from X to Y, \mathcal{K} ={0,1} n f \leftarrow Func(X, Y): f is random function in Func(X, Y) k is random key

Indistinguishability
from random
functions /
permutations

F is PRF if $\forall \mathcal{A}$ PPT, $\exists \varepsilon(n)$ negligible such that: $\Pr[\mathsf{Dist}^{\mathsf{PRF}}_{\mathcal{A},F}(n)=1] \leq \frac{1}{2} + \varepsilon(n)$