Úloha č. 1

Mějme formuli φ v KNF. Nechť a je libovolná proměnná vyskytující se v zápisu φ . Nejprve z φ vytvoříme formuli ψ předpokladem, že a je ohodnoceno 1 (tj. odstraníme z φ všechny klauzule obsahující term a a ze zbývajících klauzulí odebereme všechny výskyty termu $\neg a$). Obdobně vytvoříme formuli ρ předpokladem, že a je ohodnoceno 0.

Následně zjistíme hodnotu sat (ψ). Pokud je ψ splnitelná, existuje ohodnocení φ , ve kterém je a ohodnoceno 1. V opačném případě zjistíme hodnotu sat (ρ). Pokud je ρ splnitelná, existuje ohodnocení φ , ve kterém je a ohodnoceno 0. Pokud ψ ani ρ nejsou splnitelné, φ nemá žádné splňující ohodnocení.

Pokud je alespoň jedna z dvojice (ρ,ψ) splnitelná, použijeme ji jako výchozí formuli a proces opakujeme. V následujících iteracích už přitom víme, že jedna z dvojice nových formulí bude vždy splnitelná, protože opak by znamenal nesplnitelnost výchozí formule, ovšem v takovém případě by algoritmus skončil již v předchozí iteraci.

Postupným iterováním se tak musíme dostat do stavu, kdy výchozí formulí je prázdná konjunkce (každá iterace ostře snižuje počet proměnných). V takovém případě jsme schopni určit splňující ohodnocení φ induktivně podle toho, kterou z dvojice upravených formulí jsme v každé iteraci algoritmu zvolili. Proměnné ve φ , přes které jsme při dosažení prázdné konjunkce dosud neiterovali, přitom mohou být ohodnoceny libovolně.

Protože počet iterací je menší nebo roven počtu proměnných ve φ (který je polynomiální) a každá iterace trvá lineární čas vzhledem k velikosti formule (která je také polynomiální), operuje tento algoritmus v polynomiálním čase.

Úloha č. 2

Převodní algoritmus

Nejprve převedeme danou instanci 3-SAT na instanci φ problému NAE-SAT pomocí postupu ze cvičení. Pro instanci Dělení množiny zvolíme množinu $S=L\cup\{x,\neg x,y\}$, kde L je množina všech literálů vyskytujících se ve φ a x,y jsou libovolné proměnné nevyskytující se ve φ . Jako kolekci podmnožin S zvolíme $\mathcal{C}=\mathcal{C}_1\cup\mathcal{C}_2\cup\{x,\neg x,y\}$, přičemž

$$C_1 = \{ \{a, b, c\} \mid (a \lor b \lor c) \text{ je klauzule ve } \varphi \}$$

$$C_2 = \{ \{a, \neg a, x\}, \{a, \neg a, \neg x\}, \{a, \neg a, y\} \mid a \in L \land \neg a \in L \}.$$

Důkaz správnosti

Nejprve si uvědomme, že takto vytvořená instance problému Dělení množiny je korektně definovaná. S je dobře definovaná množina, protože φ obsahuje pouze konečné množství literálů. Z definic \mathcal{C}_1 a \mathcal{C}_2 vidíme, že jsou to soubory podmnožin S, tudíž je souborem podmnožin S i \mathcal{C} . Zbývá nám tedy dokázat ekvisplnitelnost obou instancí.

Budeme-li předpokládat, že existuje splňující NAE ohodnocení φ , nalezneme dělení S tak, že S_1 budou tvořit x a y spolu s pravdivě ohodnocenými literály a S_2 budou tvořit nepravdivé literály a $\neg x$. Že S_1 a S_2 tvoří disjunktní rozklad S je zřejmé. Neprázdný průnik s množinami

z \mathcal{C}_1 je dán tím, že se jedná o NAE ohodnocení, a neprázdný průnik s množinami z \mathcal{C}_2 plyne z faktu, že a = a - a musí být ohodnoceny různě. Každá množina z C tak má neprázdný průnik s těmito S_1 i S_2 , tudíž instance Dělení množiny má řešení.

Nyní předpokládejme, že existuje splňující rozklad S na S_1 a S_2 . Ukážeme, že když literály obsažené v S_1 ohodnotíme jako pravdivé a literály obsažené v S_2 jako nepravdivé, dostaneme splňující NAE ohodnocení φ . To vyplývá přímo z toho, že S_1 i S_2 mají neprázdný průnik se všemi množinami z \mathcal{C}_1 , tudíž každá klauzule φ obsahuje kladně i záporně ohodnocený literál. Potřebujeme ještě ověřit, že se jedná o dobře definované ohodnocení.

Aby takto vytvořené ohodnocení nebylo dobře definované, musely by se pro nějakou proměnnou $a z \varphi v$ jedné z množin rozkladu nacházet jak a, tak $\neg a$. To však není možné. Budeme-li bez újmy na obecnosti předpokládat, že $\{a, \neg a\} \subseteq S_1$, musí platit $\{x, \neg x, y\} \subseteq S_2$, aby množiny z C_2 měly s S_2 neprázdný průnik. Toto je však spor s $\{x, \neg x, y\} \cap S_1 \neq \emptyset$, tudíž $\{S_1, S_2\}$ není splňujícím rozkladem S.

Důkaz NP-úplnosti

Máme-li rozklad množiny S na S_1 a S_2 a kolekci jejích podmnožin, dokážeme postupným projitím této kolekce snadno polynomiálně zjistit, zda mají tyto podmnožiny neprázdný průnik s S_1 i S_2 . Problém Dělení množiny tedy náleží NP.

Zároveň jsme provedli převod z 3-SAT na Dělení množiny. Protože je počet literálů ve φ a tudíž i počet klauzulí ve φ polynomiální, jsme schopni tento převod vykonat v polynomiálním čase. Protože 3-SAT je NP-těžký, je i DěLENÍ MNOŽINY NP-těžké, a z předchozího tedy i NP-úplné.

Úloha č. 3

Je snadno vidět, že Poloviční klika ∈ NP. Dostaneme-li ke grafu množinu vrcholů, dokážeme v kvadratickém čase ověřit, že tyto vrcholy tvoří kliku (a triviálně ověříme, zda velikost množiny je alespoň n/2), což nám stačí jako polynomiální verifikátor problému.

NP-úplnost ukážeme převodem Klika ightarrow Poloviční klika. Pro instanci problému Klika

(G=(V,E),k) uvažme $n=\left\lceil \frac{|V|}{2} \right\rceil$. Můžeme rozlišit tři případy. Pokud k=n, oba problémy jsou ekvivalentní a graf není potřeba modifikovat. Jako důkaz si stačí uvědomit, že graf G obsahuje kliku velikosti alespoň $\frac{|V|}{2}$ právě tehdy, když obsahuje kliku velikosti alespoň n.

Pokud k > n, přidáme do grafu 2(k-n) izolovaných vrcholů. Izolované vrcholy nemohou změnit velikost maximální kliky a jejich přidáním jsme problém převedli na předchozí případ. Takto upravený graf totiž obsahuje |V|+2(k-n) vrcholů, tudíž instance bude hledat kliku velikosti alespoň $\left\lceil \frac{|V|}{2} \right\rceil + k - n = n + k - n = k$. Pokud k < n, vytvoříme graf G' = (V', E') tak, že přidáme do G kliku K velikosti 2(n-k)

a všechny vrcholy této kliky propojíme se všemi vrcholy původního grafu. Velikost V^\prime je rovna |V| + 2(n-k). Instance problému Poloviční klika nad G' tedy bude hledat kliku velikosti alespo
ň $\frac{|V|}{2} + n - k$, což je z předchozího ekvivalentní hledání kliky velikosti alespoň n' = n + n - k = 2n - k.

Každá maximální klika vG' musí obsahovat všechny vrcholy zK. Kdyby existovala maximální klika, která by některý z těchto vrcholů neobsahovala, mohli bychom ji o tento vrchol rozšířit (vrcholy K jsou propojeny s celým grafem), což by byl spor s její maximalitou.

V G' tedy existuje maximální klika M' velikosti $m \geq n'$ právě tehdy, když v G existuje maximální klika M velikosti $m-2(n-k) \geq n'-2(n-k) = 2n-k-2(n-k) = k$, kde převod mezi M a M' zajistíme přidáním, respektive odebráním vrcholů K.