1332

Code: 15ME32T

[Turn over

	Register Number	
	III Semester Diploma Examination, April/May-2018	
	MECHANICS OF MACHINES	
Ti	Time: 3 Hours] [Max. Marks:	100
No	Note: (i) Answer any six from Part – A and seven from Part – B. (ii) Assume any missing data suitably. BETA CONSOL	E
1.	PART – A 1. Define kinematic link. Briefly explain its types. Define kinematic link. Briefly explain its types.	l Branche
2.	2. Explain with a neat sketch scotch yoke mechanism.	5
3.	B. Define the following terms: (i) Pitch circle (ii) Adendum (iii) Dedendum (iv) Circular pitch (v) Module	Papers [201
4.	Calculate the power transmitted by a belt running over a pulley of 600 mm diameter at 200 rpm. The co-efficient of friction between the belt and the pulley is 0.25, angle of lap is 160° and maximum tension in the belt is 2500 N.	5
5.	. State the laws of solid friction.	5
.	. Construct the displacement and velocity diagram for uniform velocity motion of the follower.	5
•	Define forced vibrations and damped vibrations.	5
•	Identify the causes and effects of vibrations.	5
•	Classify different types of followers.	5

15MF	32T		2 of 2	}		1	1332
	(a) (b)	Explain with a neat sketc Differentiate between sel	PART – h completely f closed pair	constrained mot	ion. pair.		6
11.	(a) (b)	Explain coupling rod of l Define Inversion of mech		ith a neat sketch.			7 3
12.	pulle diam	engine running at 150 rps ey is 750 mm diameter and teter pulley on the line shat. Calculate the speed of the There is no slip, and There is a slip of 2% at e	i the pulley of the drives a 15 actions in the dynamo sh	on the line shaft b 50 mm diameter	eing 450 mm	. A 900 mm	.
13.	and max	alley is driven by a flat bel 6 mm thick and density 1 imum stress in the belt i ch the belt can transmit an	000 kg/m ³ . It is not to exc	f the co-efficient eed 2 MPa, cale	t of friction is culate the gre	0.3 and the	
14.	mm cont Dete	ngle plate clutch, with be and 200 mm respectively act surface is not to exc ermine the power transmit	The maxim seed 0.1 N/n ted by a clute	um intensity of p nm ² . If the co-each that a speed of 2	ressure at any fficient of fri	point in the	h Papers [20 10
15.		lain with a neat sketch Into			3+		10
16.	mas 40 n are 6	r mases A, B, C and D are ses are 16 kg, 14 kg, 22 k nm, 50 mm, 60 mm and 3 60°, 135° and 270° from t incing mass at a radius of 2	g and 20 kg 0 mm. The a he mass A. C	respectively and ngular position	their radii of of the masses	rotations are B, C, and D	e)
17.	Con (i) (ii) (iii) (iv)		cam rotation of cam rotation of the cam of the cam of the catter of the	rotation; and m rotation. The e cam is 50 mm and return stro	stroke of the The follower kes with unifo	e follower i r moves with orm velocity	s h ⁄.
18.	Exp	lain the method of Balanc	ing of differe	ent masses revolv	ing in the san	ne plane.	10
19.	revo mot The The	nstruct a cam profile to olution, keep if fully raise tion in 1/6 revolution. The diameter of the roller is a diameter of the camshafts of the cam shaft.	d through 1/1 e valve remai 20 mm and	ins closed during the minimum rad	to lower it we the rest of the dius of the ca	ne revolution m is 25 mm	i.