

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Profesor: Mauricio Bustamante – Estudiante: Benjamín Mateluna

Topología Algebraica - MAT2850 Tarea 1 21 de agosto de 2025

Problema 1

Lema: Sean $f_0, f_1: X \to Y$ homotópicas y $g_0, g_1: Y \to Z$ homotópicas, entonces $g_0 \circ f_0$ es homotópica a $g_1 \circ f_1$.

Demostración. Consideramos la función

$$H: X \times [0,1] \to Z$$
 dada por $(x,t) \to H_q(H_f(x,t),t)$

donde H_g es una homotopía entre g_0 y g_1 , similarmente para H_f . Notemos que

$$H(x,0) = H_q(H_f(x,0),0) = g_0(f_0(x)) = g_0 \circ f_0(x)$$

análogamente, se tiene que $H(x,1) = g_1 \circ f_1(x)$. Veamos que H es continua, para ello tenemos el siguiente diagrama

$$X \times [0,1] \xrightarrow{id_X \times i} X \times [0,1]^2 \xrightarrow{H_f \times id_{[0,1]}} Y \times [0,1] \xrightarrow{H_g} Z$$

donde $i:[0,1] \to [0,1]^2$ esta dada por i(t)=(t,t), que es continua por la propiedad universal de la topología producto, de modo similar, el resto de funciones son continuas. Por lo tanto, H es continua, ya que corresponde a la composición de funciones continuas.

Debemos probar tres puntos, que son los siguientes,

- (1) Sea X espacio topológico, veamos que $X \sim X$. Consideramos el homeomorfismo $id_X : X \to X$, en particular, se tiene que $id_X \circ id_X = id_X$ es homotópica a id_X mediante la homotopía constante, luego $X \sim X$.
- (2) Debemos verificar que si $X \sim Y$ entonces $Y \sim X$. Como $X \sim Y$, existe $f: X \to Y$ equivalencia homotópica, sea $g: Y \to X$ su inversa homotópica. En particular, $g: Y \to X$ es continua y se cumple que $g \circ f \sim id_Y$ y $f \circ g \sim id_X$, es decir, g es equivalencia homotópica. Por lo tanto, $Y \sim X$.
- (3) Sea $f: X \to Y$ una equivalencia homotópica y sea f_h su inversa homotópica. Consideramos $g: Y \to Z$ equivalencia homotópica. Afirmamos que $g \circ f: X \to Z$ es equivalencia homotópica. En efecto, veamos que la función

$$f_h \circ g_h : Z \to X$$

es equivalencia homotópica. Notemos, por el lema previo, que

$$g \circ f \circ f_h \circ g_h \sim g \circ id_Y \circ g_h = g \circ g_h \sim id_Z$$

del mismo modo $f_h \circ g_h \circ g \circ f \sim id_X$. Concluimos que $X \sim Z$.

Problema 2

Para este problema diremos que $x \sim_p y$ si y solo si $[x]^p = [y]^p$, donde $[\cdot]^p$ es la componente conexa del punto. Esta relación resulta ser de equivalencia.

Lema: Sea $h: X \to X$ con $h \sim id_X$, entonces $x \sim_p h_x$ para todo $x \in X$.

Demostración. Sea $x \in X$. Como $h \sim id_X$, existe $H: X \times [0,1] \to X$ una homotopía entre h e id_X . Definimos la función $\gamma: [0,1] \to X$ dada por $\gamma(t) := H(x,t)$, que es continua por la propiedad universal de la topología de subespacio. Así, $h(x) \in [x]^p$, lo que implica que $x \sim_p h(x)$.

Sean $X \sim Y$, existe $f: X \to Y$ equivalencia homotópica y sea $g: Y \to X$ su inversa homotópica. Afirmamos que si $x \not\sim_p y$ entonces $f(x) \not\sim_p f(y)$. Supongamos que existen $x, y \in X$ tales que $x \not\sim_p y$ y $f(x) \sim_p f(y)$. Como g es continua, tenemos que $g(f(x)) \sim_p g(f(y))$. Por el lema, resulta que

$$x \sim_p g \circ f(x) \sim_p g \circ f(y) \sim_p y$$

lo cual es una contradicción.

Lo anterior prueba que hay una inyección de las componentes arcoconexas de X en las de Y. Por simetría, vemos que también hay una inyección de las componentes arcoconexas de Y en X, así, por cantor bernstein, ambos conjuntos estan en correspondencia uno a uno.

Notemos que D^1 es arcoconexo ya que es convexo, luego la cantidad de componentes componentes arcoconexas es uno. Por otro lado, veamos que $\{0,1\}$ no es conexo, pues la topología topología inducida es la discreta y por lo tanto hay dos componentes conexas. De este modo, no existe equivalencia homotópica entre D^1 y \mathbb{S}^0 .

Problema 3

Lema: Sea $A \subset \mathbb{R}^2$ un conjunto finito de puntos, entonces $X := \mathbb{R}^2 \setminus A$ es arcoconexo.

Demostración. Digamos que $A = \{x_1, \dots, x_n\}$. Como A es finit, existe $\varepsilon > 0$ tal que $B_{\varepsilon}(x_i) \cap A = x_i$ para todo $1 \le i \le n$. Sean $x, y \in X$, en \mathbb{R}^2 consideramos el segmento de recta $L_{xy} := \{(1-t)x + ty : t \in [0,1]\}$. Si $L_{xy} \cap A = \emptyset$ es vacío, no hay nada que probar, supongamos que existe i tal que $x_i \in L_{xy} \cap A$.

Sea $v \in (L_{xy} - x) \perp y$ definimos $L_{xy}^* := \{tv + x_i : t \in \mathbb{R}\}$. Existe $\delta > 0$ tal que $\overline{B_{\delta}(x_i)} \subseteq B_{\varepsilon}(x_i)$, sean $u, v \in L_{xy} \cap \partial B_{\delta(x_i)}$ y $w \in L_{xy}^* \cap \partial B_{\delta}(x_i)$ que existen pues $L_{xy} \cap L_{xy}^*$ contienen a x_i , además u, v, w no son colineales ya que $L_{xy} \cap L_{xy}^* = x_i$.

Sean $t_0 < t_1$ tales que $u = (1 - t_0)x + t_0y$ y $v = (1 - t_1)x + t_1y$. Consideramos

$$L = L_{xu} \cdot L_{uw} \cdot L_{wv} \cdot L_{vu}$$

donde · es la operación de concatenación. Como $t_0 < t_1$, vemos que $x_i \notin L_{xu} \cup L_{vy}$. Además, como $u \in L_{xy} \cap L_{uw}$ y $v \in L_{xy} \cap L_{wv}$, entonces $x_i \notin L_{uw} \cdot L_{wv}$ y por convexidad resulta que

$$L_{uw} \cdot L_{wv} \cap A = \emptyset$$

Si $(L_{xu} \cup L_{vy}) \cap \emptyset$ entonces L es el camino buscado, de lo contrario, repetimos el procedimiento para cada punto en la intersección, por finitud, concluimos.

En la figura se muestra la situación.

Sea $f \in \mathbb{C}[x_1, \dots, x_n]$, definimos $\mathbb{V} := \{x \in \mathbb{C}^n : f(x) = 0\}$. Notemos que

$$Conf_n(\mathbb{C}) = \mathbb{C}^n \setminus \bigcup_{i,j} \mathbb{V}(x_i - x_j)$$

Sean $x, y \in Conf_n(\mathbb{C})$, en \mathbb{C}^n consideramos la recta $L_{xy} := \{(x-y)z + y : z \in \mathbb{C}\}$, como $\mathbb{V}(x_i - x_j)$ es un hiperplano de dimensión n-1, se tiene que $L_{xy} \cap \mathbb{V}(x_i - x_j)$ es vacío, un punto o L_{xy} . Dado que $x, y \in Conf_n(\mathbb{C})$, vemos que $|L_{xy} \cap \mathbb{V}(x_i - x_j)| \le 1$, así

$$\left| L_{xy} \cap \bigcup_{i,j} \mathbb{V}(x_i - x_j) \right| \leq \sum_{i,j} |L_{xy} \cap \mathbb{V}(x_i - x_j)| \leq n^2$$

Notemos que $L_{xy} \cong \mathbb{C}$ con la identificación $w \to (x-y)w + y$, pero también $\mathbb{C} \cong \mathbb{R}^2$, entonces $L_{xy} \setminus \bigcup \mathbb{V}(x_i - x_j) \cong \mathbb{R}^2 \setminus A$ con A un subconjunto finito.

Problema 4

- (1) Sea $X = \mathbb{R}$ con la topología discreta. Supongamos, por contradicción, que existe (K, f) tales que $f : |K| \to \mathbb{R}$ es homeomorfismo. Como |K| es segundo contable, pues \mathbb{R}^{∞} es segundo contable, entonces X es segundo contable, lo cual es una contradicción. Claramente X es Hausdorff.
- (2) Probaremos un resultado previo.

Lema: Sea X un espacio separable. Entonces todo conjunto discreto es numerable.

Demostración. Sea $B \subseteq X$ un denso numerable. Sea $A \subseteq X$ un subconjunto discreto. Sea $x \in A$, como A es discreto, existe $U_x \subseteq X$ vecindad de x tal que $U_x \cap A = x$. Por densidad, existe $b_x \in U_x \cap B$. Definimos la función

$$f: A \to B$$
$$x \to b_x$$

Si $x \neq y$ entonces $U_x \cap U_y = \emptyset$, luego la función f es inyectiva.

Sea $X = \ell^{\infty}(\mathbb{N})$ con la topología inducida por la norma. Sea $S \subseteq \mathbb{N}$, definimos

$$x_S = (x_n)_n$$
 con $x_n := \begin{cases} 1 & \text{si } n \in S \\ 0 & \text{si no} \end{cases}$

Consideramos $A = \{x_S : S \subseteq \mathbb{N}\}$, notemos que A es no numerable y además si $S \neq T$ se tiene que

$$||x_S - x_T||_{\infty} = 1$$

es decir, A es discreto, por el lema llegamos a una contradicción, lo que concluye el resultado. Como $\ell^{\infty}(\mathbb{N})$ es espacio métrico es Hausdorff.

(3) Demostraremos un lema previo.

Lema: Sea K un complejo simplicial con finitos vértices. Entonces |K| es localmente arcoconexo.

Demostración. Sea $x \in |K|$, existe $\varepsilon_x > 0$, tal que

$$B_{\varepsilon_x}(x) \cap \sigma \neq \emptyset$$
 entonces $x \in \sigma$, a saber $\varepsilon_x := \frac{1}{2} \min_{x \notin \sigma} \{d(x, \sigma)\}$

que está bien definido pues K es finito. Sean $x \in \sigma$ y $0 < \varepsilon < \varepsilon_x$, como σ y $B_{\varepsilon}(x)$ son convexos, entonces $B_{\varepsilon} \cap \sigma$ es convexo, en particular, es arcoconexo. Luego,

$$B_{\varepsilon}(x) \cap K = \bigcup_{x \in \sigma} B_{\varepsilon} \cap \sigma$$

es arcoconexo por ser unión de arcoconexos con x un punto común. Consideramos

$$\mathcal{B} := \{ B_{\varepsilon}(x) : x \in |K| \ y \ 0 < \varepsilon < \varepsilon_x \}$$

Notemos que \mathcal{B} es base y por lo dicho anteriormente cada abierto es arcoconexo.

Consideremos el espacio

$$X := \overline{\left\{ \left(x, sen\left(\frac{1}{x}\right) \right) : x \in (0, 1] \right\}}$$

conocido como el seno del topologo. Sabemos que X es conexo, pero no es arcoconexo, y por tanto no es localmente arcoconexo. Sea (K, f) una triangulación de X tal que K es finito, entonces, por el lema, |K| es localmente arcoconexo, esto es una contradicción. Como X es subespacio de un espacio Hausdorff, entonces es Hausdorff.

Problema 5

Debemos triangular tres espacios, que son los siguientes

(1) En \mathbb{R}^2 consideremos los puntos y los simplices

$$v_0 = (1,1)$$
 $v_1 = (-1,1)$ $\sigma_0 = \langle v_0, v_1 \rangle$ $\sigma_1 = \langle v_1, v_2 \rangle$
 $v_2 = -(1,1)$ $v_3 = (1,-1)$ $\sigma_2 = \langle v_2, v_3 \rangle$ $\sigma_3 = \langle v_0, v_3 \rangle$

Como los puntos son distintos de a pares, los simplices están bien definidos, además es sencillo verificar que $K = \bigcup_{i \geq 0} \{\sigma_i, v_i\}$ es un complejo simplicial.

Afirmamos que $|K| \cong \mathbb{S}^1$. Denotaremos por $|\cdot|$ a la norma euclideana y $||\cdot||$ a la norma que corresponde a la norma del máximo. Consideramos la función $f: |K| \to \mathbb{S}^1$ dada por f(x) := x/|x| que resulta ser continua y esta bien definida ya que $|K| \subseteq \mathbb{R}^2 \setminus \{0\}$. Afirmamos que $g: \mathbb{S}^1 \to |K|$ dada por g(x) := x/|x| es la inversa de f y es continua.

Notemos que g esta bien definida puesto que $\{x \in \mathbb{R}^2 \setminus \{0\} : ||x|| = 1\} = |K|$. Como $||\cdot||$ y $|\cdot|$ son normas equivalentes, inducen la misma topología y por lo tanto g es continua pues $\mathbb{S}^1 \subseteq \mathbb{R}^2 \setminus \{0\}$. Luego,

$$(f \circ g)(x) = f\left(\frac{x}{\|x\|}\right) = \frac{\frac{x}{\|x\|}}{\left|\frac{x}{\|x\|}\right|} = x$$

es decir, $f \circ g = id_{\mathbb{S}^1}$. Del mismo modo, $g \circ f = id_{|K|}$. Lo que prueba que (K, f) es una triangulación de \mathbb{S}^1 . Así, la característica de Euler de la triangulación es V - E + F = 4 - 4 + 0 = 0.

(2) En \mathbb{R}^3 tomemos los puntos de la forma $(\pm 1, \pm 1, \pm 1)$ que en total son 8 y son vértices del cubo $[-1,1]^3$. Definimos el complejo simplicial K que tiene por poliedro al cubo y que esta representado en la siguiente figura

Los puntos v_i corresponden a los vértices del complejo, los segmentos a los 1-simplejos y también se consideran los 2-simplejos encerrados por tres segmentos, por ejemplo, el simplice $\sigma = \langle v_0, v_3, v_4 \rangle$. Afirmamos que $|K| \cong \mathbb{S}^2$. Del mismo modo que antes definimos la función continua $f: |K| \to \mathbb{S}^2$ dada por

$$f(x) = \frac{x}{|x|}$$

con inversa continua $g: \mathbb{S}^2 \to |K|$ dada por

$$g(x) := \frac{x}{\|x\|}$$

donde $|\cdot|$ y $|\cdot|$ son la norma euclideana y la norma del máximo respectivamente. Concluimos que (K, f) es una triangulación de \mathbb{S}^2 cuya característica de Euler es V - E + F = 8 - 18 + 12 = 2.

4

(3) -

Triangulamos $[0,1]^2$ del siguiente modo,

Donde cada vértice corresponde a un par ordenado con coordenadas en el conjunto $\{0, 1/3, 2/3, 1\}$, denotaremos por V_{\square} al conjunto de vértices. Definimos $f: V_{\square} \to V$ de modo que cada vértice en V_{\square} se mapea a |K| como en la siguiente figura,

Luego, f se extiende linealmente a una función continua continua de $[0,1]^2$ a |K|. Como f es sobreyectiva en vértices, se tiene que f es cociente. Así, la función realiza las siguientes acciones sobre $[0,1]^2$

Sea π la proyección a \mathbb{T}^2 . Veamos que f es constante en las fibras de π y viceversa. (...). Así, por propiedad universal de topología cociente, f induce una función continua $\rho: |K| \to \mathbb{T}^2$ y del mismo modo π induce una función $h: \mathbb{T}^2 \to |K|$ también continua. Tenemos el siguiente diagrama,

$$[0,1]^2$$

$$\downarrow^{\pi} \qquad f$$

$$\mathbb{T}^2 = -\frac{h}{\rho} \geq |K|$$

5

Veamos que h es la inversa de ρ . Sabemos que $\rho \circ f = \pi$ y $h \circ \pi = f$. Luego, sea $y \in |K|$, existe $x \in [0,1]^2$ tal que y = f(x), así $h \circ \rho(y) = h \circ \rho \circ f(x) = h \circ \pi(x) = f(x) = y$, por otro lado, $\rho \circ h([x]) = \rho \circ h \circ \pi(x) = \rho \circ f(x) = [x]$. Por lo tanto, (K, ρ) es una triangulación del toro. La característica de Euler es V - E + F = 9 -.