

Escola de Artes, Ciências e Humanidades

2ª Lista de exercícios de Matrizes, Vetores e Geometria Analítica Sistemas de Informação **EACH - USP**

1ª Questão. Sejam u = (4,1,2,3), v = (0,3,8,-2) e w = (3,1,2,2) e calcule:

a)
$$u \cdot (2v - 3w)$$

d)
$$||u|| + || - 2u||$$

b)
$$||u + v||$$

e)
$$\frac{w}{||w||}$$

c)
$$||u|| + ||v||$$

2ª Questão. Mostre que:

a)
$$u \cdot v = \frac{1}{4} ||u + v||^2 - \frac{1}{4} ||u - v||^2$$

a)
$$u \cdot v = \frac{1}{4} ||u + v||^2 - \frac{1}{4} ||u - v||^2$$
.
b) Se $u, v \in \mathbb{R}^n$ são ortogonais, então $||u + v||^2 = ||u||^2 + ||v||^2$.

3ª Questão. Para quais valores de μ o conjunto de vetores $\{(3,1,0), (\mu^2+2,2,0)\}$ é linearmente dependente?

 4^{a} Questão. Encontre os valores de μ para os quais o sistema homogêneo $(A - \mu I)X = 0$ tem solução não trivial e para estes valores de μ , encontre uma base para o espaço solução do sistema.

a)
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} -1 & 2 & 2 & 0 \\ -1 & 2 & 1 & 0 \\ -1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 5^{a} Questão. Suponha que $\{v_1, v_2, v_3\}$ é um conjunto linearmente independente de vetores do \mathbb{R}^n . Verifique se $\{w_1, w_2, w_3\}$ é linearmente dependente ou independente nos seguintes casos: a) $w_1 = v_1 + v_2, w_2 = v_1 + v_3,$ b) $w_1 = v_1, w_2 = v_1 + v_2,$ $w_3 = v_2 + v_3$ $w_3 = v_1 + v_2 + v_3$

a)
$$w_1 = v_1 + v_2, w_2 = v_1 + v_3,$$

 $w_2 = v_2 + v_2$

b)
$$w_1 = v_1, w_2 = v_1 + v_2$$

 $w_3 = v_1 + v_2 + v_3$

6ª Questão. Encontre um conjunto de geradores para o espaço solução do sistema homogêneo

a)
$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 3 & 1 \\ 2 & 1 & 3 & 1 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 1 & 1 & 2 - 1 \\ 2 & 3 & 6 - 2 \\ -2 & 1 & 2 & 2 \end{pmatrix}$$

7^a Questão. Determine uma base para a reta interseção dos planos x - 7y + 5z = 0 e 3x - y + z = 0.

8ª Questão. Dados $v_1 = (2,1,3)$ e $v_2 = (2,6,4)$:

- a) Os vetores v_1 e v_2 geram \mathbb{R}^3 ? Justifique.
- b) Quais as condições sobre um terceiro vetor v_3 do \mathbb{R}^3 para que $\{v_1, v_2, v_3\}$ seja uma base de
- c) Encontre um vetor v_3 para que $\{v_1, v_2, v_3\}$ seja uma base de \mathbb{R}^3 .

9^a **Questão.** Dados $v_1 = (-3,5,2,1)$ e $v_2 = (1,-2,-1,2)$:

a) Os vetores v_1 e v_2 geram \mathbb{R}^4 ? Justifique.

Escola de Artes, Ciências e Humanidades

b) Encontre vetores $v_3 = v_4 = \mathbb{R}^4$ para os quais $\{v_1, v_2, v_3, v_4\}$ seja uma base de \mathbb{R}^4 .

10ª Questão. Seja $\mathcal{M} = \{(3a+4b-4c, 2a-4b-6c, -2a-4b+2c) \mid a, b, c \in \mathbb{R} \}$ um subespaço de \mathbb{R}^3 .

- a) Determine um conjunto de geradores para \mathcal{M} .
- b) Determine uma base para \mathcal{M} .

11ª Questão. Para que valores de a e b o conjunto $\{\left(\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right),\left(a,\frac{1}{\sqrt{2}},b\right)\}$ é ortonormal?

12ª Questão. Encontre uma base ortonormal para o conjunto solução do sistema linear homogêneo $\begin{cases} x+y-z=0\\ 2x+y+2z=0 \end{cases}$

$$\begin{cases} x + y - z = 0 \\ 2x + y + 2z = 0 \end{cases}$$

13ª Questão. Use o processo de ortogonalização de Gram-Schmidt para encontrar uma base ortonormal para W = [(1,1,-1,0),(0,2,0,1),(-1,0,0,1)].

14ª Questão. Encontre uma base ortonormal para o conjunto solução do sistema linear homogêneo x - y - 2z + w = 0.

15ª Questão. Encontre as coordenadas do ponto P com relação ao sistema de coordenadas S:

a.
$$S = \{(1/\sqrt{2}, -1/\sqrt{2}), (1/\sqrt{2}, 1/\sqrt{2})\} e P = (1,3)$$

b.
$$S = \{(1/\sqrt{2}, -1/\sqrt{2}, 0), (0,0,1), (1/\sqrt{2}, 1/\sqrt{2}, 0)\} e P = (2, -1,2)$$

16ª Questão.

Mostre que a área de um triângulo ABC formado pelos pontos $A = (x_1, y_1), B = (x_2, y_2)$ e i. $C = (x_3, y_3)$ pode ser calculada por

$$\text{\'area ABC} = \det \begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix} .$$

- Use o resultado anterior para encontrar a área do triângulo de vértices (3,3), (4,0), (-2,-1).
- 17° Questão. Mostre que $R_{\theta}R_{\varphi} = R_{\theta+\varphi}$ em que $R_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$.

Algumas respostas:

Argumas resposas.

3)
$$\mu = \pm 24$$
 a) $\mu = 1$, $\{(1,-2,1)\}$ b) $\mu = 1$, $\{(0,0,0,1),(1,0,1,0),(1,1,0,0)\}$ 6) a) $\{(-1,-1,1,0)\}$ b) $\{(1,0,0,1),(0,-2,1,0)\}$
7) $\{(-1,7,10)\}$ 8) c) $(0,0,1)$ 9) b) $(0,0,1,0)$ e $(0,0,0,1)$ 10) a) $\mathcal{M} = [(3,2,-2),(4,-4,-4),(0,-6,2)]$ b) $\{(1,0,-2),(0,1,\frac{1}{2})\}$ 11) $a = \frac{1}{2}, b = -1/2$ 14) $\{(-\frac{1}{2}\sqrt{2},0,0,\frac{1}{2}\sqrt{2}),(\frac{1}{2}\sqrt{3},0,\frac{1}{2}\sqrt{3},\frac{1}{2}\sqrt{3}),(\frac{1}{42}\sqrt{42},\frac{1}{2}\sqrt{42},-\frac{1}{21}\sqrt{42},\frac{1}{42}\sqrt{42})\}$ 15) a) $[P]_s = (-\sqrt{2},2\sqrt{2})$ b) $[P]_s = (3\sqrt{2}/2,2,\sqrt{2}/2)$