OVIR-3D: Open-Vocabulary 3D Instance Retrieval Without Training on 3D Data

Shiyang Lu¹, Haonan Chang¹, Eric Jing¹, Yu Wu², Abdeslam Boularias¹, Kostas Bekris¹ ¹Rutgers University ²Wuhan University

To appear at CoRL'23 and ICCV-W'23

Introduction

Recent progress on open-vocabulary (language-driven, without a predefined set of categories) 3D segmentation addresses the problem mainly at the semantic level. Nevertheless, robotic applications, such as manipulation and navigation, often require 3D object geometries at the instance level. This work provides a solution for openvocabulary 3D instance retrieval, which returns a ranked set of 3D instance segments given a 3D point cloud reconstructed from an RGB-D video and a language query.

a) Original scan

c) Top 3 instances retrieved given the query: "lamp"

Overall Pipeline

Pre-trained 2D Open-Vocabulary Instance Segmentation Method, i.e., Detic (Frozen)

a) Text-aligned 2D Region **Proposal Generation**

2D region proposals with text-aligned features

b) 2D-to-3D Instance Fusion

Post-processing

Text Feature Ranking

Memory Bank

Top 1 is shown in blue.

3D Projection

Instance Fusion

Region

Proposals

t = 0

21k categories as

text queries

Memory Bank of Queryable 3D Instances

Periodic filtering and merging of instances in the memory bank

Key Takeaways

Directly training an open-vocabulary 3D segmentation model is hard due to the lack of annotated 3D data with enough category varieties. Instead, this work views this problem as a 3D fusion problem from languageguided 2D region proposals, which could be trained with extensive 2D datasets, and provides a straightforward yet effective method to project and fused 2D instance information in the 3D space for fast retrieval.

Quantitative Results

The proposed method outperforms existing methods on both ScanNet200 (200 classes) and YCB-Video (21 classes) using mAP metric.

ScanNet200 [25]		YCB-Video [29]	
mAP_{50}	mAP	mAP_{50}	mAP
0.190	0.089	0.333	0.116
0.253	0.094	0.464	0.120
0.370	0.150	0.803	0.393
0.443	0.211	0.848	0.465
	mAP_{50} 0.190 0.253 0.370	mAP_{50} mAP 0.190 0.089 0.253 0.094 0.370 0.150	mAP_{50} mAP mAP_{50} 0.190 0.089 0.333 0.253 0.094 0.464 0.370 0.150 0.803

Table 1: Results on ScanNet200 [25] and YCB-Video [29]

Ablation Studies

	COCO	ScanNet200	LVIS	ImageNet21k		
mAP_{50}	0.228	0.419	0.429	0.443		
	ImageNet21k - ScanNet200					
mAP_{50}	0.410					

Table 2: Results on ScanNet200 [25] with different input queries to the region proposal network.

	Average	KMeans(16)	KMeans(64)		
mAP_{50}	0.428	0.429	0.443		
	Feature from largest 2D detection				
mAP_{50}	0.380				

Table 3: Results on ScanNet200 [25] with different feature ensemble strategies