Práctico 9: Desarrollo de Taylor.

Ejercicio de repaso

Calcular el límite cuando $x \rightarrow 0$:

(a)
$$\frac{1 - \cos(1 - \cos x)}{x^4}$$
(c)
$$\frac{\sqrt{1 + \cos(1 - \cos x)} - \sqrt{2}}{x^4}$$

(b)
$$\frac{x^2 e^{\sin(x)} - \log(1 + x^2)}{\tan x - \arctan x}$$

Taylor en varias variables

- 1. *a*) Sea $f: U \subset \mathbb{R}^2 \to \mathbb{R}$, definido por f(x,y) = g(x)h(y) donde g,h son funciones C^{∞} . Calcular el polinomio de taylor de f en función de los de g y h.
 - b) Sean $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ y $g: V \subset \mathbb{R} \to \mathbb{R}$ funciones C^{∞} , donde U y V son abiertos y $f(0,0) = 0 \in V$. Calcular el polinomio de taylor de $g \circ f$ en (0,0) en función de los de f y g.
- 2. Calcular los siguientes límites:

a)
$$\lim_{(x,y)\to(0,0)} \frac{xy - \sin(x)\sin(y)}{x^2 + y^2}$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{e^{x^2+y(y+1)}-(1+y+\frac{y^2}{2})}{x^2+y^2}$$

3. Hallar el polinomio de Taylor de grado 3 en (0,0) de las siguientes funciones:

(a)
$$f(x,y) = \arctan\left(\frac{y}{x^2 + 1}\right)$$
 (b) $f(x,y) = e^x \cos y$ (c) $f(x,y) = \log(xy + 1)$

- 4. Calcular el polinomio de Taylor de grado 3 de la función $f(x,y,z) = \frac{yz}{x}$ en el punto (1,0,0).
- 5. Desarrollar xyz^2 en potencias de x, y-1 y z+1.
- 6. Calcular el polinomio de Taylor de grado n de las siguientes funciones:
 - a) $f(x,y,z) = e^{x+y+z}$, en el origen.
 - b) $f(x,y) = \sin(y)\cos(x)$, en el origen.
 - c) $f(x,y) = \frac{1}{xy}$, en el punto (1,1).
 - *d*) $f(x,y) = \frac{x}{y}$, en el punto (1,1)
- 7. Estimar el error de reemplazar $\frac{\cos(x)}{\cos(y)}$ por $1-\frac{1}{2}(x^2-y^2)$ para $|x|,|y|\leq \frac{\pi}{6}$

Ejercicios opcionales

- 1. *a*) Calcular con un error menor que 3.2×10^{-5} el valor de arctan(0,8).
 - b) Calcular con un error menor que 10^{-4} el valor de $\sqrt{5}$.
- 2. ¿Cuál es el menor número de términos que hay que tomar en el desarrollo de Taylor de e^x en x = 0, para obtener un polinomio que aproxime, con un error menor que 10^{-4} , a e^x en el intervalo [-1,1]?

- 3. El polinomio de Taylor de grado 3 de $f(x,y) = \sin(x+y^2) + e^{x^2}$ en un entorno de (0,0) es:
 - a) $1 + x + x^2 + y^2 + x^3$.
 - b) $x + x^2 + y^2 + x^3$.
 - c) $1 + x + x^2 + y^2 + x^3/3$.
 - d) $1 + x + x^2 + y^2 x^3/6$.
 - e) $x + x^2 + y^2 x^3/3$.
- 4. El polinomio de Taylor de grado 3 de $f(x,y) = \log(1+x+3y)$ en un entorno de (0,0) es:
 - a) $x + 3y (1/2)(x + 3y)^2 + (1/3)(x + 3y)^3$.
 - b) $x + 3y + (1/2)(x + 3y)^2 + (1/3)(x + 3y)^3$.
 - c) $x + 3y + (1/2)(x + 3y)^2 + (1/6)(x + 3y)^3$.
 - d) $x + 3y (1/2)(x + 3y)^2 + (1/6)(x + 3y)^3$.
 - e) $1 + x + 3y + (1/2)(x + 3y)^2 + (1/3)(x + 3y)^3$.