Package 'tealeaves'

October 14, 2022

Version 1.0.6 **Date** 2022-07-19

Title Solve for Leaf Temperature Using Energy Balance

Depends R (>= 3.5.0), units (>= 0.6.0)

Imports checkmate (>= 2.0.0), crayon (>= 1.3.0), dplyr (>= 1.0.0), furrr (>= 0.1.0), future (>= 1.10.0), glue (>= 1.3.0), magrittr (>= 1.5.0), methods (>= 3.5.0), purrr (>= 0.3.0), rlang (>= 0.4.0), stringr (>= 1.4.0)

Suggests covr, ggplot2, knitr, rmarkdown, testthat, tidyr

Description

Implements models of leaf temperature using energy balance. It uses units to ensure that parameters are properly specified and transformed before calculations. It allows separate lower and upper surface conductances to heat and water vapour, so sensible and latent heat loss are calculated for each surface separately as in Foster and Smith (1986) <doi:10.1111/j.1365-3040.1986.tb02108.x>. It's straightforward to model leaf temperature over environmental gradients such as light, air temperature, humidity, and wind. It can also model leaf temperature over trait gradients such as leaf size or stomatal conductance. Other references are Monteith and Unsworth (2013, ISBN:9780123869104), Nobel (2009, ISBN:9780123741431), and Okajima et al. (2012) <doi:10.1007/s11284-011-0905-5>.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

VignetteBuilder knitr

NeedsCompilation no

Author Chris Muir [aut, cre] (https://orcid.org/0000-0003-2555-3878)

Maintainer Chris Muir < cdmuir@hawaii.edu>

Repository CRAN

Date/Publication 2022-07-20 14:30:02 UTC

.get_dwv

R topics documented:

Index		33
	tl_example1	32
	tleaves	30
	tealeaves	
	parameter_names	29
	make_parameters	27
	leaf_par	27
	enviro_par	26
	energy_balance	25
	E	24
	convert_conductance	23
	constants	23
	Ar	22
	.get_Tv	20
	.get_Sr	19
	.get_sh	18
	.get_re	17
	.get_Rabs	16
	.get_ps	15
	.get_Pa	14
	.get_nu	13
	.get_L	12
	.get_hvap	11
	.get_H	10
	.get_gtw	8
	.get_gr	7
	.get_gh	6
	.get_gbw	5
	.get_Dx	4
	.get_dwv	2

Description

d_wv: water vapour gradient (mol / m $^{\land}$ 3)

Usage

```
.get_dwv(T_leaf, pars, unitless)
```

.get_dwv

Arguments

T_leaf	Leaf temperature in Kelvin
pars	Concatenated parameters (leaf_par, enviro_par, and constants)
unitless	Logical. Should function use parameters with units? The function is faster when FALSE, but input must be in correct units or else results will be incorrect without any warning.

Details

Water vapour gradient: The water vapour pressure differential from inside to outside of the leaf is the saturation water vapor pressure inside the leaf (p_leaf) minus the water vapor pressure of the air (p_air):

$$d_{\rm wv} = p_{\rm leaf}/(RT_{\rm leaf}) - RHp_{\rm air}/(RT_{\rm air})$$

Note that water vapor pressure is converted from kPa to mol / m³ using ideal gas law.

Symbol	R	Description	Units	Default
$p_{\rm air}$	p_air	saturation water vapour pressure of air	kPa	calculated
p_{leaf}	p_leaf	saturation water vapour pressure inside the leaf	kPa	calculated
R	R	ideal gas constant	J / (mol K)	8.3144598
RH	RH	relative humidity	%	0.50
$T_{\rm air}$	T_air	air temperature	K	298.15
T_{leaf}	T_leaf	leaf temperature	K	input

Value

Value in mol / m^3 of class units

```
# Water vapour gradient:
leaf_par <- make_leafpar()
enviro_par <- make_enviropar()
constants <- make_constants()
pars <- c(leaf_par, enviro_par, constants)
T_leaf <- set_units(300, K)
T_air <- set_units(298.15, K)
p_leaf <- set_units(35.31683, kPa)
p_air <- set_units(31.65367, kPa)

d_wv <- p_leaf / (pars$R * T_leaf) - pars$RH * p_air / (pars$R * T_air)</pre>
```

.get_Dx

D_x : Calculate diffusion coefficient for a given temperature and pressure	.get_Dx
--	---------

Description

D_x: Calculate diffusion coefficient for a given temperature and pressure

Usage

```
.get_Dx(D_0, Temp, eT, P, unitless)
```

Arguments

D_0	Diffusion coefficient at 273.15 K (0 °C) and 101.3246 kPa
Temp	Temperature in Kelvin
еТ	Exponent for temperature dependence of diffusion
P	Atmospheric pressure in kPa
	Logical. Should function use parameters with units? The function is faster when FALSE, but input must be in correct units or else results will be incorrect without any warning.

Details

$$D = D_0 (T/273.15)^{eT} (101.3246/P)$$

According to Montieth & Unger (2013), eT is generally between 1.5 and 2. Their data in Appendix 3 indicate eT=1.75 is reasonable for environmental physics.

Value

Value in m²/s of class units

References

Monteith JL, Unsworth MH. 2013. Principles of Environmental Physics. 4th edition. Academic Press, London.

```
tealeaves:::.get_Dx(
  D_0 = set_units(2.12e-05, m^2/s),
  Temp = set_units(298.15, K),
  eT = set_units(1.75),
  P = set_units(101.3246, kPa),
```

.get_gbw 5

```
unitless = FALSE
)
```

.get_gbw

g_bw: Boundary layer conductance to water vapour (m/s)

Description

g_bw: Boundary layer conductance to water vapour (m / s)

Usage

```
.get_gbw(T_leaf, surface, pars, unitless)
```

Arguments

T_leaf Leaf temperature in Kelvinsurface Leaf surface (lower or upper)

pars Concatenated parameters (leaf_par, enviro_par, and constants)

unitless Logical. Should function use parameters with units? The function is faster

when FALSE, but input must be in correct units or else results will be incorrect

without any warning.

Details

$$g_{\rm bw} = D_{\rm w} Sh/d$$

Symbol	R	Description	Units	Default
d	leafsize	Leaf characteristic dimension in meters	m	0.1
D_{w}	D_w	diffusion coefficient for water vapour	m^2 / s	calculated
Sh	Sh	Sherwood number	none	calculated

Value

Value in m / s of class units

```
library(tealeaves)

cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()</pre>
```

.get_gh

```
T_leaf <- set_units(298.15, K)
tealeaves:::.get_gbw(T_leaf, "lower", c(cs, ep, lp), FALSE)</pre>
```

.get_gh

g_h: boundary layer conductance to heat (*m* / *s*)

Description

g_h: boundary layer conductance to heat (m / s)

Usage

```
. \verb"get_gh"(T_leaf, surface, pars, unitless")
```

Arguments

T_leaf Leaf temperature in Kelvin surface Leaf surface (lower or upper)

pars Concatenated parameters (leaf_par, enviro_par, and constants)

unitless Logical. Should function use parameters with units? The function is faster

when FALSE, but input must be in correct units or else results will be incorrect

without any warning.

Details

$$g_{\rm h} = D_{\rm h} N u / d$$

Symbol	R	Description	Units	Default
d	leafsize	Leaf characteristic dimension in meters	m	0.1
$D_{ m h}$	D_h	diffusion coefficient for heat in air	m^2 / s	calculated
Nu	Nu	Nusselt number	none	calculated

Value

Value in m/s of class units

Examples

library(tealeaves)

cs <- make_constants()</pre>

ep <- make_enviropar()</pre>

lp <- make_leafpar()</pre>

.get_gr 7

```
T_leaf <- set_units(298.15, K)
tealeaves:::.get_gh(T_leaf, "lower", c(cs, ep, lp), FALSE)</pre>
```

.get_gr

Gr: Grashof number

Description

Gr: Grashof number

Usage

```
.get_gr(T_leaf, pars, unitless)
```

Arguments

T_leaf	Leaf temperature in Kelvin
pars	Concatenated parameters (leaf_par, enviro_par, and constants)
unitless	Logical. Should function use parameters with units? The function is faster when FALSE, but input must be in correct units or else results will be incorrect without any warning.

Details

$$Gr = t_{\rm air}Gd^3|T_{\rm v,leaf} - T_{\rm v,air}|/D_{\rm m}^2$$

Symbol	R	Description	Units	Default
d	leafsize	Leaf characteristic dimension in meters	m	0.1
$D_{ m m}$	D_m	diffusion coefficient of momentum in air	m^2 / s	calculated
G	G	gravitational acceleration	m / s^2	9.8
$t_{ m air}$	t_air	coefficient of thermal expansion of air	1 / K	1 / Temp
$T_{ m v,air}$	Tv_air	virtual air temperature	K	calculated
$T_{\rm v,leaf}$	Tv_leaf	virtual leaf temperature	K	calculated

Value

A unitless number of class units

Examples

library(tealeaves)

.get_gtw

```
cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()

T_leaf <- set_units(298.15, K)

tealeaves:::.get_gr(T_leaf, c(cs, ep, lp), FALSE)</pre>
```

.get_gtw

g_tw: total conductance to water vapour (m/s)

Description

g_tw: total conductance to water vapour (m/s)

Usage

Arguments

T_leaf Leaf temperature in Kelvin

pars Concatenated parameters (leaf_par, enviro_par, and constants)

unitless Logical. Should function use parameters with units? The function is faster

when FALSE, but input must be in correct units or else results will be incorrect

without any warning.

Details

Total conductance to water vapor: The total conductance to water vapor (g_{tw}) is the sum of the parallel lower (abaxial) and upper (adaxial) conductances:

$$g_{\rm tw} = g_{\rm w,lower} + g_{\rm w,upper}$$

The conductance to water vapor on each surface is a function of parallel stomatal $(g_{\rm sw})$ and cuticular $(g_{\rm uw})$ conductances in series with the boundary layer conductance $(g_{\rm bw})$. The stomatal, cuticular, and boundary layer conductance on the lower surface are:

$$g_{\text{sw,lower}} = g_{\text{sw}}(1 - sr)R(T_{\text{leaf}} + T_{\text{air}})/2$$

 $g_{\text{uw,lower}} = g_{\text{uw}}/2R(T_{\text{leaf}} + T_{\text{air}})/2$

See .get_gbw for details on calculating boundary layer conductance. The equations for the upper surface are:

$$g_{\rm sw,upper} = g_{\rm sw} srR(T_{\rm leaf} + T_{\rm air})/2$$

.get_gtw

$$g_{\text{uw,upper}} = g_{\text{uw}}/2R(T_{\text{leaf}} + T_{\text{air}})/2$$

Note that the stomatal and cuticular conductances are given in units of $(\mu \text{mol H2O})$ / $(\text{m}^2 \text{ s Pa})$ (see make_leafpar) and converted to m/s using the ideal gas law. The total leaf stomatal (g_{sw}) and cuticular (g_{uw}) conductances are partitioned across lower and upper surfaces. The stomatal conductance on each surface depends on stomatal ratio (sr); the cuticular conductance is assumed identical on both surfaces.

Symbol	R	Description	Units	Default
$g_{ m sw}$	g_sw	stomatal conductance to H2O	$(\mu \text{mol H2O}) / (\text{m}^2 \text{ s Pa})$	5
g_{uw}	g_uw	cuticular conductance to H2O	$(\mu \text{mol H2O}) / (\text{m}^2 \text{ s Pa})$	0.1
R	R	ideal gas constant	J / (mol K)	8.3144598
logit(sr)	logit_sr	stomatal ratio (logit transformed)	none	0 = logit(0.5)
$T_{ m air}$	T_air	air temperature	K	298.15
$T_{ m leaf}$	T_leaf	leaf temperature	K	input

Value

Value in m/s of class units

```
# Total conductance to water vapor
## Hypostomatous leaf; default parameters
leaf_par <- make_leafpar(replace = list(logit_sr = set_units(-Inf)))</pre>
enviro_par <- make_enviropar()</pre>
constants <- make_constants()</pre>
pars <- c(leaf_par, enviro_par, constants)</pre>
T_leaf <- set_units(300, K)
## Fixing boundary layer conductance rather than calculating
gbw_lower <- set_units(0.1, m / s)</pre>
gbw_upper <- set_units(0.1, m / s)</pre>
# Lower surface ----
## Note that pars$logit_sr is logit-transformed! Use stats::plogis() to convert to proportion.
gsw_lower <- set_units(pars$g_sw * (set_units(1) - stats::plogis(pars$logit_sr)) * pars$R *
                          ((T_leaf + pars$T_air) / 2), "m / s")
guw_lower <- set_units(pars$g_uw * 0.5 * pars$R * ((T_leaf + pars$T_air) / 2), m / s)
gtw_lower <- 1 / (1 / (gsw_lower + guw_lower) + 1 / gbw_lower)</pre>
# Upper surface ----
gsw_upper <- set_units(pars$g_sw * stats::plogis(pars$logit_sr) * pars$R *
                          ((T_leaf + pars$T_air) / 2), m / s)
guw_upper <- set_units(pars$g_uw * 0.5 * pars$R * ((T_leaf + pars$T_air) / 2), m / s)</pre>
gtw_upper <- 1 / (1 / (gsw_upper + guw_upper) + 1 / gbw_upper)</pre>
## Lower and upper surface are in parallel
g_tw <- gtw_lower + gtw_upper</pre>
```

.get_H

~~+ U	
дец_п	

H: sensible heat flux density (W/m^2)

Description

H: sensible heat flux density (W / m^2)

Usage

```
.get_H(T_leaf, pars, unitless)
```

Arguments

T_leaf	Leaf temperature in Kelvin
pars	Concatenated parameters (leaf_par, enviro_par, and constants)
unitless	Logical. Should function use parameters with units? The function is faster when FALSE, but input must be in correct units or else results will be incorrect without any warning.

Details

$$H = P_{\rm a} c_p g_{\rm h} (T_{\rm leaf} - T_{\rm air})$$

Symbol	R	Description	Units	Default
c_p	c_p	heat capacity of air	J/(gK)	1.01
$g_{ m h}$	g_h	boundary layer conductance to heat	m/s	calculated
$P_{\rm a}$	P_a	density of dry air	g / m^3	calculated
$T_{ m air}$	T_air	air temperature	K	298.15
T_{leaf}	T_leaf	leaf temperature	K	input

Value

Value in W / m^2 of class units

See Also

```
library(tealeaves)
cs <- make_constants()</pre>
```

.get_hvap

```
ep <- make_enviropar()
lp <- make_leafpar()

T_leaf <- set_units(298.15, K)

tealeaves:::.get_H(T_leaf, c(cs, ep, lp), FALSE)</pre>
```

.get_hvap

 h_{vap} : heat of vaporization (J / mol)

Description

h_vap: heat of vaporization (J / mol)

Usage

```
.get_hvap(T_leaf, unitless)
```

Arguments

T_leaf Leaf temperature in Kelvin

unitless Logical. Should function use parameters with units? The function is faster

when FALSE, but input must be in correct units or else results will be incorrect

without any warning.

Details

Heat of vaporization: The heat of vaporization ($h_{\rm vap}$) is a function of temperature. I used data from on temperature and $h_{\rm vap}$ from Nobel (2009, Appendix 1) to estimate a linear regression. See Examples.

Value

Value in J/mol of class units

References

Nobel PS. 2009. Physicochemical and Environmental Plant Physiology. 4th Edition. Academic Press.

```
# Heat of vaporization and temperature ## data from Nobel (2009) T_{K} \leftarrow 273.15 + c(0, 10, 20, 25, 30, 40, 50, 60) \\ h_{vap} \leftarrow 1e3 * c(45.06, 44.63, 44.21, 44.00, 44.00)
```

 $.get_L$

.get_L

L: Latent heat flux density (W / m^2)

Description

L: Latent heat flux density (W / m^2)

Usage

```
.get_L(T_leaf, pars, unitless)
```

Arguments

T_leaf Leaf temperature in Kelvin

pars Concatenated parameters (leaf_par, enviro_par, and constants)

unitless Logical. Should function use parameters with units? The function is faster

when FALSE, but input must be in correct units or else results will be incorrect

without any warning.

Details

$$L = h_{\rm vap} g_{\rm tw} d_{\rm wv}$$

Symbol	R	Description	Units	Default
d_{wv}	d_wv	water vapour gradient	mol/m^3	calculated
h_{vap}	h_vap	latent heat of vaporization	J / mol	calculated
q_{tw}	g tw	total conductance to H2O	$(\mu \text{mol H2O}) / (\text{m}^2 \text{ s Pa})$	calculated

.get_nu 13

Value

Value in W / m^2 of class units

Examples

```
library(tealeaves)

cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()

T_leaf <- set_units(298.15, K)

tealeaves:::.get_L(T_leaf, c(cs, ep, lp), FALSE)</pre>
```

.get_nu

Nu: Nusselt number

Description

Nu: Nusselt number

Usage

```
.get_nu(T_leaf, surface, pars, unitless)
```

Arguments

T_leaf Leaf temperature in Kelvin surface Leaf surface (lower or upper)

pars Concatenated parameters (leaf_par, enviro_par, and constants)

unitless Logical. Should function use parameters with units? The function is faster

when FALSE, but input must be in correct units or else results will be incorrect

without any warning.

Details

The Nusselt number depends on a combination how much free or forced convection predominates. For mixed convection:

$$Nu = (aRe^b)^{3.5} + (cGr^d)^{3.5})^{1/3.5}$$

.get_Pa

Symbol	R	Description	Units	Default
a, b, c, d	a, b, c, d	empirical coefficients	none	calculated
Gr	Gr	Grashof number	none	calculated
Re	Re	Reynolds number	none	calculated

Value

A unitless number of class units

Examples

```
library(tealeaves)

cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()

T_leaf <- set_units(298.15, K)

tealeaves:::.get_nu(T_leaf, "lower", c(cs, ep, lp), FALSE)</pre>
```

.get_Pa

 P_a : density of dry air (g/m^3)

Description

```
P_a: density of dry air (g / m^3)
```

Usage

```
.get_Pa(T_leaf, pars, unitless)
```

Arguments

T_leaf Leaf temperature in Kelvin

pars Concatenated parameters (leaf_par, enviro_par, and constants)

unitless Logical. Should function use parameters with units? The function is faster

when FALSE, but input must be in correct units or else results will be incorrect

without any warning.

Details

$$P_{\rm a} = P/(R_{\rm air}(T_{\rm leaf} - T_{\rm air})/2)$$

.get_ps 15

Symbol	R	Description	Units	Default
P	Р	atmospheric pressure	kPa	101.3246
$R_{\rm air}$	R_air	specific gas constant for dry air	J / (kg K)	287.058
$T_{ m air}$	T_air	air temperature	K	298.15
$T_{\rm leaf}$	T_leaf	leaf temperature	K	input

Value

Value in g / m³ of class units

Examples

```
library(tealeaves)

cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()

T_leaf <- set_units(298.15, K)

tealeaves:::.get_Pa(T_leaf, c(cs, ep, lp), FALSE)</pre>
```

.get_ps

Saturation water vapour pressure (kPa)

Description

Saturation water vapour pressure (kPa)

Usage

```
.get_ps(Temp, P, unitless)
```

Arguments

Temp	Temperature in Kelvin
P	Atmospheric pressure in kPa
unitless	Logical. Should function use parameters with un

Logical. Should function use parameters with units? The function is faster when FALSE, but input must be in correct units or else results will be incorrect units or else results will be incorrect units or else results will be incorrect units.

without any warning.

Details

Goff-Gratch equation (see http://cires1.colorado.edu/~voemel/vp.html)

This equation assumes P = 1 atm = 101.3246 kPa, otherwise boiling temperature needs to change

.get_Rabs

Value

Value in kPa of class units

References

```
http://cires1.colorado.edu/~voemel/vp.html
```

Examples

```
T_leaf <- set_units(298.15, K)
P <- set_units(101.3246, kPa)
tealeaves:::.get_ps(T_leaf, P, FALSE)</pre>
```

.get_Rabs

 $R_abs: total absorbed radiation (W/m^2)$

Description

R_abs: total absorbed radiation (W / m^2)

Usage

```
.get_Rabs(pars, unitless)
```

Arguments

pars Concatenated parameters (leaf_par, enviro_par, and constants)

unitless Logical. Should function use parameters with units? The function is faster

when FALSE, but input must be in correct units or else results will be incorrect

without any warning.

Details

The following treatment follows Okajima et al. (2012):

$$R_{\rm abs} = \alpha_{\rm s}(1+r)S_{\rm sw} + \alpha_{\rm l}\sigma(T_{\rm skv}^4 + T_{\rm air}^4)$$

The incident longwave (aka thermal infrared) radiation is modeled from sky and air temperature $\sigma(T_{\rm sky}^4 + T_{\rm air}^4)$ where $T_{\rm sky}$ is function of the air temperature and incoming solar shortwave radiation:

$$T_{\rm skv} = T_{\rm air} - 20S_{\rm sw}/1000$$

Symbol	R	Description	Units	Default
$\alpha_{\mathbf{s}}$	abs_s	absorbtivity of shortwave radiation (0.3 - 4 μ m)	none	0.80

.get_re 17

$lpha_{ m l}$	abs_l	absorbtivity of longwave radiation (4 - 80 μ m)	none	0.97
r	r	reflectance for shortwave irradiance (albedo)	none	0.2
σ	S	Stefan-Boltzmann constant	$W / (m^2 K^4)$	5.67e-08
$S_{ m sw}$	S_sw	incident short-wave (solar) radiation flux density	$ m W$ / $ m m^2$	1000
$S_{ m lw}$	S_1w	incident long-wave radiation flux density	$ m W/m^2$	calculated
$T_{ m air}$	T_air	air temperature	K	298.15
$T_{ m skv}$	T_sky	sky temperature	K	calculated

Value

Value in W / m² of class units

References

Okajima Y, H Taneda, K Noguchi, I Terashima. 2012. Optimum leaf size predicted by a novel leaf energy balance model incorporating dependencies of photosynthesis on light and temperature. Ecological Research 27: 333-46.

Examples

```
library(tealeaves)

cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()
ep$T_sky <- ep$T_sky(ep)

tealeaves:::.get_Rabs(c(cs, ep, lp), FALSE)</pre>
```

.get_re Re: Reynolds number

Description

Re: Reynolds number

Usage

```
.get_re(T_leaf, pars, unitless)
```

Arguments

T_leaf	Leaf temperature in Kelvin
pars	Concatenated parameters (leaf_par, enviro_par, and constants)
unitless	Logical. Should function use parameters with units? The function is faster when FALSE, but input must be in correct units or else results will be incorrect without any warning.

.get_sh

Details

$$Re = ud/D_{\rm m}$$

Symbol	R	Description	Units	Default
d	leafsize	Leaf characteristic dimension in meters	m	0.1
$D_{ m m}$	D_m	diffusion coefficient of momentum in air	m^2 / s	calculated
u	wind	windspeed	m/s	2

Value

A unitless number of class units

Examples

```
library(tealeaves)

cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()

T_leaf <- set_units(298.15, K)

tealeaves:::.get_re(T_leaf, c(cs, ep, lp), FALSE)</pre>
```

.get_sh Sh: Sherwood number

Description

Sh: Sherwood number

Usage

```
.get_sh(T_leaf, surface, pars, unitless)
```

Arguments

T_leaf	Leaf temperature in Kelvin
surface	Leaf surface (lower or upper)
pars	Concatenated parameters (leaf_par, enviro_par, and constants)
unitless	Logical. Should function use parameters with units? The function is faster when FALSE, but input must be in correct units or else results will be incorrect without any warning.

.get_Sr 19

Details

The Sherwood number depends on a combination how much free or forced convection predominates. For mixed convection:

$$Sh = (aRe^b)^{3.5} + (cGr^d)^{3.5})^{1/3.5}$$

Symbol	R	Description	Units	Default
a, b, c, d	a, b, c, d	empirical coefficients	none	calculated
Gr	Gr	Grashof number	none	calculated
Re	Re	Reynolds number	none	calculated

Value

A unitless number of class units

Examples

```
library(tealeaves)

cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()

T_leaf <- set_units(298.15, K)

tealeaves:::.get_sh(T_leaf, "lower", c(cs, ep, lp), FALSE)</pre>
```

.get_Sr

 S_r : longwave re-radiation (W/m^2)

Description

```
S_r: longwave re-radiation (W / m^2)
```

Usage

```
.get_Sr(T_leaf, pars)
```

Arguments

T_leaf Leaf temperature in Kelvin

pars Concatenated parameters (leaf_par, enviro_par, and constants)

.get_Tv

Details

$$S_{\rm r} = 2\sigma\alpha_{\rm l}T_{\rm air}^4$$

The factor of 2 accounts for re-radiation from both leaf surfaces (Foster and Smith 1986).

Symbol	R	Description	Units	Default
$\alpha_{ m l}$	abs_l	absorbtivity of longwave radiation (4 - 80 μ m)	none	0.97
$T_{\rm air}$	T_air	air temperature	K	298.15
σ	S	Stefan-Boltzmann constant	$W / (m^2 K^4)$	5.67e-08

Note that leaf absorbtivity is the same value as leaf emissivity

Value

Value in W / m² of class units

References

Foster JR, Smith WK. 1986. Influence of stomatal distribution on transpiration in low-wind environments. Plant, Cell & Environment 9: 751-9.

Examples

```
library(tealeaves)

cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()

T_leaf <- set_units(298.15, K)

tealeaves:::.get_Sr(T_leaf, c(cs, ep, lp))</pre>
```

 $.get_Tv$

Calculate virtual temperature

Description

Calculate virtual temperature

Usage

```
.get_Tv(Temp, p, P, epsilon, unitless)
```

.get_Tv 21

Arguments

Temp	Temperature in Kelvin
р	water vapour pressure in kPa
Р	Atmospheric pressure in kPa
epsilon	ratio of water to air molar masses (unitless)
unitless	Logical. Should function use parameters with units? The function is faster when FALSE, but input must be in correct units or else results will be incorrect without any warning.

Details

$$T_{\rm v} = T/[1 - (1 - \epsilon)(p/P)]$$

Eq. 2.35 in Monteith & Unsworth (2013)

Symbol	R	Description	Units	Default
ϵ	epsilon	ratio of water to air molar masses	unitless	0.622
p	p	water vapour pressure	kPa	calculated
P	Р	atmospheric pressure	kPa	101.3246

Value

Value in K of class units

References

Monteith JL, Unsworth MH. 2013. Principles of Environmental Physics. 4th edition. Academic Press, London.

```
library(tealeaves)

cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()

T_leaf <- set_units(298.15, K)
p <- ep$RH * tealeaves:::.get_ps(T_leaf, ep$P, FALSE)
tealeaves:::.get_Tv(T_leaf, p, ep$P, cs$epsilon, FALSE)</pre>
```

22 Ar

Ar

Ar: Archimedes number

Description

Ar: Archimedes number

Usage

```
Ar(T_leaf, pars, unitless = FALSE)
```

Arguments

T_leaf Leaf temperature in Kelvin

pars Concatenated parameters (leaf_par, enviro_par, and constants)

unitless Logical. Should function use parameters with units? The function is faster

when FALSE, but input must be in correct units or else results will be incorrect

without any warning.

Details

The Archimedes number is a dimensionless number that describes when free or forced convection dominates.

$$Ar = Gr/Re^2$$

Symbol	R	Description	Units	Default
Gr	Gr	Grashof number	none	calculated
Re	Re	Reynolds number	none	calculated

Value

unitless = TRUE: A unitless number of class numeric unitless = FALSE: A unitless number of class units Also returns Reynolds and Grashof numbers

```
cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()
pars <- c(cs, lp, ep)
T_leaf <- set_units(298.15, "K")
Ar(T_leaf, pars)</pre>
```

constants 23

constants

S3 class constants

Description

Constructor function for constants class. This function ensures that physical constant inputs are properly formatted.

Usage

```
constants(.x)
```

Arguments

. X

A list to be constructed into **constants**. If units are not provided, they will be set without conversion. If units are provided, they will be checked and converted to units that tealeaves uses.

convert_conductance

Convert conductance units

Description

Convert conductance units

Usage

```
convert_conductance(.g, Temp = NULL, P = NULL)
```

Arguments

Temp

.g Conductance in class units. Units must convertible to one of "m/s", "umol/m^2/s/Pa", or "mol/m^2/s"

A temperature value of class units

P A pressure value of class units that is convertible to kPa

Value

A list of three values of clas units with units "m/s", "umol/m^2/s/Pa", and "mol/m^2/s".

24 E

Examples

Ε

Evaporation $(mol/(m^2 s))$

Description

Evaporation (mol / (m^2 s))

Usage

```
E(T_leaf, pars, unitless)
```

Arguments

T_leaf Leaf temperature in Kelvin

pars Concatenated parameters (leaf_par, enviro_par, and constants)

unitless Logical. Should function use parameters with units? The function is faster

when FALSE, but input must be in correct units or else results will be incorrect

without any warning.

Details

The leaf evaporation rate is the product of the total conductance to water vapour (m / s) and the water vapour gradient (mol / m^3) :

$$E = g_{\rm tw} D_{\rm wv}$$

If unitless = TRUE, T_leaf is assumed in degrees K without checking.

energy_balance 25

Value

unitless = TRUE: A value in units of mol / (m^2/s) number of class numeric unitless = FALSE: A value in units of mol / (m^2/s) of class units

Examples

```
library(tealeaves)

cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()

T_leaf <- set_units(298.15, K)

E(T_leaf, c(cs, ep, lp), FALSE)</pre>
```

energy_balance

Calculate leaf energy balance

Description

Calculate leaf energy balance

Usage

```
energy_balance(
   tleaf,
   leaf_par,
   enviro_par,
   constants,
   quiet = FALSE,
   components = FALSE,
   set_units = FALSE
)
```

Arguments

tleaf	Leaf temperature in Kelvin. If input is numeric, it will be automatically converted to units.
leaf_par	A list of leaf parameters. This can be generated using the make_leafpar function.
enviro_par	A list of environmental parameters. This can be generated using the make_enviropar function.
constants	A list of physical constants. This can be generated using the make_constants function.

26 enviro_par

quiet	Logical. Should a message appear about conversion from numeric to units? Useful for finding leaf temperature that balances heat transfer using uniroot.
components	Logical. Should leaf energy components be returned? Transpiration (in mol / $(m^2 s))$ also returned.
set_units	Logical. Should units be set? The function is faster when FALSE, but input must be in correct units or else results will be incorrect without any warning.

Value

A numeric value in W / m^2 . Optionally, a named list of energy balance components in W / m^2 and transpiration in mol / $(m^2 s)$.

Examples

```
library(tealeaves)

cs <- make_constants()
ep <- make_enviropar()
lp <- make_leafpar()
ep$T_sky <- ep$T_sky(ep)

T_leaf <- set_units(298.15, K)
energy_balance(T_leaf, lp, ep, cs, FALSE, TRUE, TRUE)</pre>
```

enviro_par

S3 class enviro_par

Description

Constructor function for enviro_par class. This function ensures that environmental parameter inputs are properly formatted.

Usage

```
enviro_par(.x)
```

Arguments

. x

A list to be constructed into **enviro_par**. If units are not provided, they will be set without conversion. If units are provided, they will be checked and converted to units that tealeaves uses.

leaf_par 27

leaf_par

S3 class leaf_par

Description

Constructor function for leaf_par class. This function ensures that leaf parameter inputs are properly formatted.

Usage

```
leaf_par(.x)
```

Arguments

. X

A list to be constructed into **leaf_par**. If units are not provided, they will be set without conversion. If units are provided, they will be checked and converted to units that tealeaves uses.

make_parameters

Make lists of parameters of leaf, environmental, or constant parameters

Description

```
Make lists of parameters of leaf, environmental, or constant parameters make_leafpar make_enviropar make_constants
```

Usage

```
make_leafpar(replace = NULL)
make_enviropar(replace = NULL)
make_constants(replace = NULL)
```

Arguments

replace

A named list of parameters to replace defaults. If NULL, defaults will be used.

Details

Leaf parameters:

28 make_parameters

Symbol	R	Description	Units	Default
d	leafsize	Leaf characteristic dimension	m	0.1
$lpha_{ m l}$	abs_l	absorbtivity of longwave radiation (4 - 80 μ m)	none	0.97
$\alpha_{ m s}$	abs_s	absorbtivity of shortwave radiation (0.3 - 4 μ m)	none	0.50
$g_{ m sw}$	g_sw	stomatal conductance to H2O	$(\mu \text{mol H2O}) / (\text{m}^2 \text{ s Pa})$	5
g_{uw}	g_uw	cuticular conductance to H2O	$(\mu \text{mol H2O}) / (\text{m}^2 \text{ s Pa})$	0.1
logit(sr)	logit_sr	stomatal ratio (logit transformed)	none	0 = logit(0.5)

Environment parameters:

Symbol	R	Description	Units	Default
P	Р	atmospheric pressure	kPa	101.3246
r	r	reflectance for shortwave irradiance (albedo)	none	0.2
RH	RH	relative humidity	none	0.50
$S_{ m sw}$	S_sw	incident short-wave (solar) radiation flux density	$ m W$ / $ m m^2$	1000
$S_{ m lw}$	S_lw	incident long-wave radiation flux density	$ m W$ / $ m m^2$	calculated
$T_{\rm air}$	T_air	air temperature	K	298.15
u	wind	windspeed	m/s	2

Constants:

Symbol	R	Description	Units	Default
c_p	c_p	heat capacity of air	J/(gK)	1.01
$\hat{D}_{h,0}$	D_h0	diffusion coefficient for heat in air at 0 °C	m^2 / s	19.0e-06
$D_{m,0}$	D_m0	diffusion coefficient for momentum in air at 0 °C	m^2 / s	13.3e-06
$D_{w,0}$	D_w0	diffusion coefficient for water vapour in air at 0 C	m^2 / s	21.2e-06
ϵ	epsilon	ratio of water to air molar masses	none	0.622
eT	eT	exponent for temperature dependence of diffusion	none	1.75
G	G	gravitational acceleration	m / s^2	9.8
Nu	Nu	Nusselt number	none	calculated
R	R	ideal gas constant	J / (mol K)	8.3144598
$R_{\rm air}$	R_air	specific gas constant for dry air	J / (kg K)	287.058
σ	S	Stefan-Boltzmann constant	$W / (m^2 K^4)$	5.67e-08
Sh	Sh	Sherwood number	none	calculated

Value

make_leafpar: An object inheriting from class leaf_par
make_enviropar: An object inheriting from class enviro_par
make_constants: An object inheriting from class constants

Examples

library(tealeaves)

Use defaults
cs <- make_constants()
ep <- make_enviropar()</pre>

parameter_names 29

```
lp <- make_leafpar()

# Replace defaults

ep <- make_enviropar(
    replace = list(
        T_air = set_units(300, K)
    )

lp <- make_leafpar(
    replace = list(
        leafsize = set_units(c(0.1, 0.2), m)
    )
)</pre>
```

parameter_names

Get vector of parameter names

Description

Get vector of parameter names

Usage

```
parameter_names(which)
```

Arguments

which

A character string indicating which parameter names to retrieve, "constants", "enviro", or "leaf". Partial matching allowed.

Examples

```
parameter_names("leaf")
```

tealeaves

tealeaves package

Description

Solve for Leaf Temperature Using Energy Balance

Details

See the README on GitHub

30 tleaves

tleaves

tleaves: find leaf temperatures for multiple parameter sets

Description

tleaves: find leaf temperatures for multiple parameter sets tleaf: find leaf temperatures for a single parameter set

Usage

```
tleaves(
  leaf_par,
  enviro_par,
  constants,
  progress = TRUE,
  quiet = FALSE,
  set_units = TRUE,
  parallel = FALSE
)

tleaf(leaf_par, enviro_par, constants, quiet = FALSE, set_units = TRUE)
```

Arguments

leaf_par	A list of leaf parameters. This can be generated using the make_leafpar function.
enviro_par	A list of environmental parameters. This can be generated using the ${\tt make_enviropar}$ function.
constants	A list of physical constants. This can be generated using the make_constants function.
progress	Logical. Should a progress bar be displayed?
quiet	Logical. Should messages be displayed?
set_units	Logical. Should units be set? The function is faster when FALSE, but input must be in correct units or else results will be incorrect without any warning.
parallel	Logical. Should parallel processing be used via future_map?

Value

tleaves:

A tibble with the following units columns

Input:

 abs_1

Absorbtivity of longwave radiation (unitless)

tleaves 31

```
Absorbtivity of shortwave radiation (unitless)
abs_s
                                         Stomatal conductance to H2O (\mumol H2O / (m^2 s Pa))
g_sw
                                         Cuticular conductance to H2O (\mumol H2O / (m^2 s Pa))
g_uw
leafsize Leaf characteristic dimension
logit_sr
                                         Stomatal ratio (logit transformed; unitless)
                                         Atmospheric pressure (kPa)
RH
                                         Relative humidity (unitless)
S_1w
                                         incident long-wave radiation flux density (W / m^2)
S sw
                                         incident short-wave (solar) radiation flux density (W / m^2)
T_air
                                         Air temperature (K)
wind
                                         Wind speed (m / s)
Output:
T_leaf
                                         Equilibrium leaf tempearture (K)
value
                                         Leaf energy balance (W / m^2) at tleaf
                                         Convergence code (0 = converged)
convergence
R_abs
                                         Total absorbed radiation (W / m^2; see .get_Rabs)
S_r
                                         Thermal infrared radiation loss (W / m^2; see .get_Sr)
                                         Sensible heat flux density (W / m^2; see .get_H)
Н
                                         Latent heat flux density (W / m^2; see .get_L)
L
                                         Evapotranspiration (mol H2O/ (m^2 s))
Ε
```

tleaf:

A data.frame with the following numeric columns:

T leaf

	-1
value	Leaf energy balance (W / m^2) at tleaf
convergence	Convergence code $(0 = converged)$
R_abs	Total absorbed radiation (W / m^2; see .get_Rabs)
S_r	Longwave re-radiation (W / m^2; see .get_Sr)
Н	Sensible heat flux density (W / m^2; see .get_H)
L	Latent heat flux density (W / m^2; see .get_L)
E	Evapotranspiration (mol H2O/ (m^2 s))

Equilibrium leaf temperature (K)

```
# tleaf for single parameter set:
leaf_par <- make_leafpar()
enviro_par <- make_enviropar()
constants <- make_constants()
tleaf(leaf_par, enviro_par, constants)
# tleaves for multiple parameter set:
enviro_par <- make_enviropar(
  replace = list(
    T_air = set_units(c(293.15, 298.15), K)</pre>
```

32 tl_example1

```
)
)
tleaves(leaf_par, enviro_par, constants)
```

 $tl_example1$

 $teal eaves\ example\ output\ 1$

Description

An example output from the tealeaves function.

Usage

 $tl_example1$

Format

A data frame with 150 rows and 20 variables:

Index

```
* datasets
                                                   parameter_names, 29
    tl_example1, 32
                                                   tealeaves, 29, 32
.get_Dx,4
                                                   tl_example1, 32
.get_H, 10, 31
                                                   tleaf (tleaves), 30
.get_L, 12, 31
                                                   tleaves, 30
.get_Pa, 10, 14
.get_Rabs, 16, 31
                                                   uniroot, 26
.get_Sr, 19, 31
.get_Tv, 20
.get_dwv, 2
.get\_gbw, 5, 8
.get_gh, 6, 10
.get_gr, 7
.get_gtw, 8
.get_hvap, 11
.get_nu, 13
.get_ps, 15
.get_re, 17
. \mathtt{get\_sh}, 18
Ar, 22
calculated, 3, 5-7, 10, 12, 14, 18, 19, 21, 22,
         28
constants, 23, 28
convert_conductance, 23
E, 24
energy_balance, 25
enviro_par, 26, 28
future_map, 30
leaf_par, 27, 28
make_constants (make_parameters), 27
make_enviropar (make_parameters), 27
make_leafpar, 9
make_leafpar (make_parameters), 27
make_parameters, 27
```