

 $= \lim_{h \to 0} \frac{1(x^{+}, h) - J(x^{+})}{h}$

objectuation: in one dimension ($x \in \mathbb{R}$)
the value of the derivative tells us the direction" where f increases. Specifically if df(x) > 0 then moving in the

direction in that aligns (of (a). h). D) with the gradient the function values increases. Ex: at x* we know that df(x*) > 0

thus if h >0 (meaning we move in the positive direction) the function increases

- Now at $x = \overline{x}$ re have $df(\overline{x}) \in O$
- i.e. h < 0, then the function relue increases

Introduction to Ophiraization

one dimensional case: x ∈ IR

het f: IR - S IR: is twice different sable

. Def: · u say that x is a minimum/minimizer

of j if there exists a 5>0:

 $f(n) > f(x^*)$, $\forall x \in (x^*-5, x^*-6)$

If no in a (local) ninimum, what can we say about its denivatives

Thm: (Necessary worditions)

Let: 4: 12 -> 1R, trice diff. If x*

in a (local) minimizer, then

 $\frac{df(x^*)}{dx} = 0$

2) $\frac{d^2}{dx^2}(x^*) \geq 0$

Proof: _ use contradiction

 da^2

(I) n- dimensional problem: $\hat{x} \in \mathbb{R}^n$: let j: IR -> IR, twice differentiable. Dref: (ball I neighborhood) in IR? Br (50*): Let hall of redino of centered at 2. = 3 2: 12-211(8) $\left(\frac{2}{2}(x_i-x_i)^2\right)^{4/2}$ (of course when $n = L \rightarrow ||x - x^*|| = |x \rightarrow x^*|$ ther: $|x-x^*| \in S \implies x \in (x^*,S,x^*+S)$ Dey: 2 is a (local) minimizer of f there exists SSO: such that $f(\vec{x}) \geqslant f(\vec{\chi}^*) + \vec{x} \in \mathcal{D}_{q}(x^*)$

Thin: (Necessary Conds)

- If a fains its (bocal) minimum at 2+,
Then

1)
$$\nabla^2 f(\vec{x}^*) = \vec{0}$$

2) $\nabla^2 f(\vec{x}^*) = H(\vec{x}^*) > 0$

where

1)
$$\nabla f(\vec{x}) = \begin{bmatrix} \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} + \frac{1}{2} \end{bmatrix}$$

2) $\nabla^2 f(\vec{x}) = \begin{bmatrix} \vec{x} \\ \vec{y} \\ \vec{x} \end{bmatrix}$

$$= \begin{bmatrix} \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} \vec{x} \\ \vec{y} \end{bmatrix} \begin{bmatrix} \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} + \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac$$

taking
$$\vec{p}$$
: $\|\vec{p}\| \le 1$

odeks $\vec{x}^{+} + \epsilon \vec{p} \in B_{S}(\vec{x}^{2})$
 $f(\vec{x}^{+} + \epsilon \vec{p}) > f(\vec{x}^{+}) + odel < \delta$
 $f(\epsilon) := f(\vec{x}^{+} + \epsilon \vec{p})$
 $f(\epsilon) := f(\epsilon) := f(\vec{x}^{+} + \epsilon \vec{p})$
 $f(\epsilon) > f(\epsilon) > f(\epsilon) + odel < \delta$

I by any

o is a minimum of $f(\epsilon)$

I recessory

 $df(0) = 0$
 $def(0) = f(\vec{x}^{+} + \epsilon \vec{p})$
 $df(\vec{x}^{+} + \epsilon \vec{p}) = 0$

wit $df(\vec{x}^{+} + \epsilon \vec{p}) = 0$

 $\frac{d}{d\epsilon} = \frac{\partial f}{\partial x_{1}} + \frac{\partial f}{\partial x_{1}} +$

Thus

$$\frac{df(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{d\epsilon} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+} + \epsilon \vec{p}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{\partial f(\vec{x}^{+}) \cdot \vec{p}}{\partial f(\vec{x}^{+}) \cdot \vec{p}} = 0$$

$$\frac{1}{2}\left(\frac{2J}{2\lambda_{i}}\right)^{2} = 0$$

$$\frac{2J}{2\lambda_{i}} = 0 \Rightarrow \overline{V}_{J}(\overline{\lambda_{i}}) = 0$$