PRINTABLE VERSION

Quiz 11

You scored 90 out of 100

Question 1

Your answer is CORRECT.

The congruence equation " $-60 \equiv -185 \mod 25$ " means

- a) \odot When -60 (-185) is divided by 25 the remainder is 0.
- **b)** \bigcirc When 25 (-185) is divided by -60 the remainder is 0.
- c) \bigcirc When 25 is divided by -60 (-185) the remainder is 0.
- d) \bigcirc When 25 (-185) is divided by -60 the remainder is 0.

Question 2

Your answer is CORRECT.

The integers -56 and 3 are congruent mod n for which value of n?

- a) 0 = 60
- **b)** \odot n = 59
- c) \bigcirc There are no values of n for which these two integers are congruent (except n=1).
- **d)** 0 = 3
- e) 0 = -56

Question 3

Your answer is CORRECT.

Consider the following proposition:

Proposition. If $a \equiv b \mod n$, then $a^2 \equiv b^2 \mod n$.

If you were writing a direct proof of this proposition, which of the following equations would be *most* helpful in your proof? (Hint: try to write a proof first!)

$$\mathbf{a)} \odot \mathbf{a}(\mathbf{a} - \mathbf{b}) = \mathbf{a}^2 - \mathbf{a}\mathbf{b}$$

b)
$$a^2 - b^2 = (a - b)(a + b)$$

$$c) \odot ab = ba$$

d)
$$\bigcirc a^2 - b^2 \ge a^2$$

e)
$$a^2 - b^2 = (a - b)^2$$

Question 4

Your answer is CORRECT.

Is the following statement true or false?

 $\exists x, y, a, b \in Z, n \in N^*, (x \equiv a \mod n \land y \equiv b \mod n) \land ((x + y) \not\equiv (a + b) \mod n).$ (Note: for this problem N^* refers to the positive natural numbers $N^* = N - \{0\} = \{1, 2, 3, ...\}$.)

- a) This statement is false.
- **b)** This statement is true.

Question 5

Your answer is INCORRECT.

A (direct) proof for a Proposition is presented below. Read through the proof and then determine which Proposition was proven.

Proposition.

Proof (Direct).

- (1) Let $x \in Z$ satisfy $x \equiv 0 \mod 3$.
- (2) By The Division Algorithm, there are only two cases to consider.
- (3) When x is divided by 3 either it has a remainder of 1 or of 2.

Case 1. $x \equiv 1 \mod 3$

(4) It follows that $x^2 \equiv 1^2 \mod 3 \equiv 1 \mod 3$.

Case 2. $x \equiv 2 \mod 3$

- (5) It follows that $x^2 \equiv 2^2 \mod 3 \equiv 4 \mod 3 \equiv 1 \mod 3$.
- (6) Therefore, in all cases $x^2 \equiv 1 \mod 3$.

a)
$$\bigcirc \forall x \in Z, x \equiv 0 \mod 3 \implies x^2 \not\equiv 1 \mod 3.$$

- $b \in \mathbb{Z}, x \not\equiv 0 \mod 3 \implies x^2 \equiv 0 \mod 3.$
- \mathbf{c}) $\bigcirc \forall x \in \mathbb{Z}, x \not\equiv 0 \mod 3 \Rightarrow x^2 \equiv 1 \mod 3.$
- **d)** Technically no proposition was proven true since there is a mistake in Line (2); The Division Algorithm does *not* leave only two cases to consider.

Question 6

Your answer is CORRECT.

Use the Euclidean Algorithm to find the inverse of $-13 \mod 28$ (if it exists).

- a) \bigcirc 28 is an inverse.
- **b)** 15 is an inverse.
- c) -1/13 is an inverse.
- d) -28/13 is an inverse.
- e) -13 does not have an inverse mod 28 because $gcd(-13, 28) \neq 1$.

Ouestion 7

Your answer is CORRECT.

Of the options provided below, determine the one that best completes this sentence: "The modular equation $14x \equiv 27 \mod 22$ "

- a) has multiple solutions.
- b) has no solutions.
- c) has exactly one solution.

Question 8

Your answer is CORRECT.

Which steps should one take when solving a congruence equation $ax \equiv b \mod n$? A helpful summary is presented below, only one step is missing:

Steps for solving $ax \equiv b \mod n$.

Step 1. Use the Euclidean Algorithm to compute gcd(a, n).

Step 2.

Step 3. Use work from Step 1 to calculate one solution $x_0 \in Z$.

Step 4. Add $\frac{n}{\gcd(a, n)}$ to x_0 to create other solutions.

Of the following options, which could be used for the missing Step 2?

- a) \bigcirc Step 2. If $gcd(a, n) \mid n$, then proceed to step 3, otherwise there are no solutions.
- b) \bigcirc Step 2. If b| gcd(a, n), then proceed to step 3, otherwise there are no solutions.
- c) Step 2. If b|a, then proceed to step 3, otherwise there are no solutions.
- d) \odot Step 2. If gcd(a, n) | b, then proceed to step 3, otherwise there are no solutions.
- e) \bigcirc Step 2. If $gcd(a, n) \mid a$, then proceed to step 3, otherwise there are no solutions.

Question 9

Your answer is CORRECT.

Find a solution to the congruence equation $23x \equiv 18 \mod 17$.

- a) $\bigcirc x = 17/23$ is a solution.
- b) $\bigcirc x = 55$ is a solution.
- c) x = 17 is a solution.
- d) x = 54 is a solution.
- e) x = 18/23 is a solution.

Ouestion 10

Your answer is CORRECT.

Find a solution to the congruence equation $12x \equiv 25 \mod 8$.

- a) $\bigcirc x = 5$ is a solution.
- **b)** \bigcirc x = 2 is a solution.
- c) $\bigcirc x = 0$ is a solution.

- d) $\bigcirc x = 6$ is a solution.
- e) There are no solutions.