PushDown Automata

PDA-Part II

Properties of Context-free Languages

Dr. Mohammad Ahmad

Pushdown Automata - Definition

```
• A PDA P := (Q, \sum, \Gamma, \delta, q_0, Z_0, F):
   – Q:
               states of the \varepsilon-NFA
   -\sum:
               input alphabet
   -\Gamma: stack symbols
   - δ:
               transition function
   -q_0:
                start state
   -\mathbf{Z}_0:
               Initial stack top symbol
                Final/accepting states
   — F:
```

δ: The Transition Function

$$\delta : \mathbb{Q} \times \mathbb{Z} \cup \{\epsilon\} \times \Gamma \cup \{\epsilon\} => \mathbb{Q} \times \Gamma$$

old state

WOUNDS THE WOOD OF THE PARTY OF

input symb.

Stack tot

new state(s

new Stack top(s)

$$\delta(q,a,X) = \{(p,Y), ...\}$$

/I・ つ state transition from q to p

a is the next input symbol

X is the current stack top symbol

Y is the replacement for X; it is in Γ^* (a string of stack symbols)

- i. Set $Y = \varepsilon$ for: Pop(X)
- ii. If Y=X: stack top is unchanged
- iii. If $Y=Z_1Z_2...Z_k$: X is popped and is replaced by Y in reverse order (i.e., Z_1 will be the new stack top)

	Y = ?	Action
i)	Υ=ε	Pop(X)
ii)	Y=X	Pop(X) Push(X)
iii)	$Y=Z_1Z_2Z_k$	Pop(X) Push(Z_k) Push(Z_{k-1}) Push(Z_2) Push(Z_1)

PDA as a state diagram

$$\delta(q_i, a, X) = \{(q_j, Y)\}$$

Example I

$$L = \{ w \# w^{\mathbb{R}} : w \in \{0, 1\}^* \}$$

$$\Sigma = \{0, 1, \#\}$$
 $\Gamma = \{0, 1\}$

#, 0#0, $01#10 \in L$ ϵ , 01#1, $0##0 \notin L$

write w on staed w^R from stack

Example-1'

```
Let L_{wwr} = \{ww^R \mid w \text{ is in } (0+1)^*\}

• CFG for L_{wwr}: S==> 0S0 | ISI | \epsilon

• PDA for L_{wwr}:

• P := (Q, \sum, \Gamma, \delta, q_0, Z_0, F)

= (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\})
```

7

Initial state of the PDA:

PDA for Lww

1.
$$\delta(q_0,0, Z_0) = \{(q_0,0Z_0)\}$$

2.
$$\delta(q_0, I, Z_0) = \{(q_0, IZ_0)\}$$

3.
$$\delta(q_0, 0, 0) = \{(q_0, 0, 0)\}$$

4.
$$\delta(q_0, 0, 1) = \{(q_0, 01)\}$$

5.
$$\delta(q_0, 1, 0) = \{(q_0, 10)\}$$

6.
$$\delta(q_0, | 1) = \{(q_0, | 1)\}$$

7.
$$\delta(q_0, \epsilon, 0) = \{(q_1, 0)\}$$

8.
$$\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$$

9.
$$\delta(q_0, \epsilon, Z_0) = \{(q_1, Z_0)\}$$

10.
$$\delta(q_1, 0, 0) = \{(q_1, \epsilon)\}$$

11.
$$\delta(q_1, l, l) = \{(q_1, \epsilon)\}$$

12.
$$\delta(\mathbf{q}_1, \, \varepsilon, \, Z_0) = \{(\mathbf{q}_2, \, Z_0)\}$$

First symbol push on stack

Grow the stack by pushing new symbols on top of old (w-part)

Switch to popping mode, nondeterministically (boundary between w and w^R)

Shrink the stack by popping matching symbols (w^R-part)

Enter acceptance state

PDA for L_{wwr}: Transition Diagram

Another Design

$$L = \{ ww^{\mathbb{R}} : w \in \Sigma^* \}$$

$$\Sigma = \{0, 1\}$$

$$\epsilon$$
, 00, 0110 $\in L$ 1, 011, 010 $\notin L$

guess middle of string

Example 2: language of balanced paranthesis

To allow adjacent blocks of nested paranthesis

Example 2: language of balanced parenthesis (another design)

$$\sum = \{ (,) \}$$

 $\Gamma = \{Z_0, (\}$
 $Q = \{q_0, q_1\}$

$$L = \{w: w = w^{R}, w \in \Sigma^*\}$$

$$\Sigma = \{0, 1\}$$

$$\epsilon$$
, 1, 00, 010, 0110 $\in L$
011 $\notin L$

$$\underbrace{01101}_{\mathcal{X}}\underbrace{10110}_{\mathcal{X}^{R}} \text{ or } \underbrace{01101}_{\mathcal{X}}\underbrace{0110}_{\mathcal{X}^{R}}$$

middle symbol can be ε , 0, or 1

$$L = \{0^n 1^m 0^m 1^n \mid n \ge 0, m \ge 0\}$$

$$\Sigma = \{0, 1\}$$

$$L = \{w: w \text{ has same number 0s and 1s}\}$$
 $\Sigma = \{0, 1\}$

$$\Sigma = \{0, 1\}$$

Stack keeps track of excess of 0s or 1s Strategy: If at the end, stack is empty, number is equal

$$L = \{w: w \text{ has same number 0s and 1s}\}$$
 $\Sigma = \{0, 1\}$

$$\Sigma = \{0, 1\}$$

Invariant: In every execution of the PDA:

#1 - #0 on stack = #1 - #0 in input so far

If w is not in L, it must be rejected

$$L = \{w: w \text{ has same number 0s and 1s}\}$$
 $\Sigma = \{0, 1\}$

$$\Sigma = \{0, 1\}$$

Property: In some execution of the PDA:

stack consists only of 0s or only of 1s (or ε)

If w is in L, some execution will accept

 $L = \{w: w \text{ has same number 0s and 1s}\}$

$$\Sigma = \{0, 1\}$$

 $L = \{w: w \text{ has two } 0\text{-blocks with same number of } 0\text{s} \}$

01011, 001011001, 10010101001 allowed

01001000, 01111 not allowed

Strategy: Detect start of first 0-block

Push 0s on stack

Detect start of second 0-block

Pop 0s from stack

1 Detect start of first 0-block

3 Detect start of second 0-block

2 Push 0s on stack

4 Pop 0s from stack

 $L = \{w: w \text{ has two } 0\text{-blocks with same number of } 0s\}$

CFG → PDA conversions

CFGs and PDAs

A language L is context-free if and only if it is accepted by some pushdown automaton.

context-free grammar

pushdown automaton

CFL Closure Properties

2

Closure Property Results

- CFLs are closed under:
 - Union
 - Concatenation
 - Kleene closure operator
 - reversal

- CFLs are not closed under:
 - Intersection
 - Difference
 - Complementation

Note: Reg languages are closed under these

operators

CFLs are closed under union

Let L₁ and L₂ be CFLs

To show: L₂ U L₂ is also a CFL

- Let S_1 and S_2 be the starting variables of the grammars for L_1 and L_2
 - Then, **S**_{new} => **S**₁ | **S**₂

CFLs are closed under concatenation

• Let L₁ and L₂ be CFLs

```
for L_1 L_2,
S_{new} => S1.S2
```

7 CFLs are closed under Kleene Closure

• Let L be a CFL

```
- Then for, L*,

s_{new} = s_{old} \cdot s_{new}
```

CFLs are closed under Reversal

- Let L be a CFL, with grammar G=(V,T,P,S)
- For L^R , construct $G^R = (V, T, P^R, S)$ s.t.,
 - If $A==> \alpha$ is in P, then:
 - $A==> \alpha^R$ is in P^R
 - (that is, reverse every production)