ДЗ 13 ()

Владимир Латыпов

donrumata03@gmail.com

Содержание

6 Ромбик за один шаг не замыкается!	. 3
7 7	. 3
8 Наличие типа подвыражений	. 3
9 Необитаемый остров невезения	. 3

6 Ромбик за один шаг не замыкается!

 $(\lambda x. T)\Omega$

$$\cdot \to_{\beta} T$$

$$\lambda \rightarrow_{\beta} (\lambda x. T) \Omega$$

Однако T — уже в нормальной форме — не β -редуцируется ни во что, т.ч.

$$\not\exists S.\, T \to_\beta S \land (\lambda x.\, T)\Omega \to_\beta S$$

7 7...

8 Наличие типа подвыражений

Рассмотрим дерево доказательства, что A имеет тип α . И докажем для подвыражений индукцией по дереву разбора A, каждый раз ссылаясь на детей и делая это конечное количество раз.

- \cdot Если D переменная, доказано: постулировали, что она имеет тип δ
- Если $D \equiv \lambda x.\,E$ и оно было получено как абстракция, то для подвыражения x есть тип в контексте Γ , а для E доказательство в дереве выше.

$$\frac{\frac{\underset{\Gamma, x: \varphi \vdash E: \psi}{\text{proof}}}{\Gamma, x: \varphi \vdash E: \psi}}{\Gamma \vdash \lambda x. E: \varphi \to \psi}$$

• Если D было получено как MP (аппликация BС), то в левой ветке есть доказательство, что $\Gamma \vdash C : \varphi$, а в правой — что $\Gamma \vdash B : \varphi \to \delta$.

$$\frac{\frac{\operatorname{proof}_1}{\Gamma \vdash C : \varphi} \quad \frac{\operatorname{proof}_2}{\Gamma \vdash B : \varphi \to \psi}}{\Gamma \vdash D : \psi}$$

9 Необитаемый остров невезения

Утверждается, что вот же он: $((\alpha \to \beta) \to \beta) \to \alpha.$

Пусть у нас есть λ -выражение, имеющее этот тип и дерево доказательство, что оно этот тип имеет. Тогда