Passo 1) Individuare gli assi dei giunti: questi assi sono proprio gli assi $z_0, z_1, ..., z_{n-1}$.

Passo 2) Definire il sistema di riferimento \mathcal{R}_0 : la sua origine deve cadere sull'asse z_0 che è stato già definito al Passo 1), mentre gli assi x_0 e y_0 posso essere definiti a piacere, con l'unico vincolo di costituire un sistema di riferimento destro.

Passo 3) Porre i = 1.

Passo 4) Se gli assi z_i e z_{i-1} sono paralleli, definire l'origine del sistema di riferimento i-esimo proprio in corrispondenza del giunto i-esimo. Se gli assi z_i e z_{i-1} non sono paralleli, e l'asse z_i interseca l'asse z_{i-1} , definire l'origine del sistema di riferimento i-esimo proprio in corrispondenza del punto di intersezione. In tutti gli altri casi, identificare quell'unica retta che è ortogonale sia a z_i sia a z_{i-1} ; definire l'origine del sistema di riferimento i-esimo in corrispondenza del punto di intersezione di tale retta con l'asse z_i .

Passo 5) Se l'asse z_i interseca l'asse z_{i-1} , definire l'asse x_i passante per l'origine del sistema di riferimento *i*-esimo e perpendicolare al piano formato da z_{i-1} e z_i (ossia, tenendo conto dell'arbitrarietà del verso, porre $x_i = \pm (z_{i-1} \times z_i)/\|z_{i-1} \times z_i\|$). In tutti gli altri casi, definire l'asse x_i passante per l'origine del sistema di riferimento *i*-esimo e normale sia a z_i sia a z_{i-1} .

Passo 6) Definire l'asse y_i in modo da completare la terna destra, ossia $y_i = (z_i \times x_i)/\|z_i \times x_i\|$.

Passo 7) Porre i = i + 1. Se i < n, and are al Passo 4), altrimenti and are al Passo 8).

Passo 8) Definire l'ultimo sistema di riferimento \mathcal{R}_n . Si assuma che l'ultimo giunto sia rotoidale. Definire z_n parallelo a z_{n-1} , definire l'origine sull'asse z_n (possibilmente localizzata al centro della pinza), e definire gli altri due assi a completamento della terna destra.

Passo 9) Per i = 1, 2, ..., n, identificare i parametri di Denavit-Hartenberg nel modo seguente:

- d_i = distanza **lungo l'asse** z_{i-1} dall'origine o_{i-1} fino al punto d'intersezione degli assi x_i e z_{i-1} .
- a_i = distanza **lungo l'asse** x_i dal punto d'intersezione degli assi x_i e z_{i-1} fino all'origine o_i .
- θ_i = l'angolo in senso antiorario dall'asse x_{i-1} all'asse x_i , misurato intorno all'asse z_{i-1} .
- α_i = l'angolo in senso antiorario dall'asse z_{i-1} all'asse z_i , misurato intorno all'asse x_i .

Passo 10) Calcolare le matrici di trasformazione omogenea $\mathbf{Q}_{i-1,i}$.

Tabella 5.1: Procedura per definire i sistemi di riferimento in accordo alla convenzione di Denavit-Hartenberg.