

Emil Lenc (and Arin)

University of Sydney / CAASTRO

www.caastro.org

CSIRO; Swinburne

Error Recognition

Some errors are easy to recognise

Some are hard to fix

Some are easy to fix

Where do errors occur?

- \rightarrow Most errors and defects occur in the (u,v) plane
 - Measurement errors (imperfect calibration see Calibration talk).
 - Approximations made in the (*u*,*v*) plane.
 - Approximations made in the transform to the image plane.
- Some are due to manipulations in the image plane.
 - Deconvolution (see Deconvolution talk).
- What we usually care about are effects in the image plane (not always e.g. spectral line).
- The relative contribution of certain errors will vary depending on the nature of the observation.

Image or uv plane?

- > We need to work between the *uv* plane and the image plane.
 - Different types of errors may be more obvious in one plane than the other.
 - A good understanding of the relationship between both planes.
- Errors obey Fourier transform relations.
 - Narrow features transform to wide features and vice versa.
 - Symmetries important real/imaginary, odd/even, point/line/ring.
 - The transform of a serious error may not be serious!
 - Some effects are diluted by the number of other samples.

General form of errors

- Additive errors (out-of-field sources, RFI, cross-talk, baseline-based errors, noise)
 - $V + \varepsilon \rightarrow I + F[\varepsilon]$
- Multiplicative errors (uv-coverage effects, gain errors, atmospheric effects)
 - $\vee \bullet \epsilon \rightarrow \mathsf{I} \star \mathsf{F}[\epsilon]$
- Convolutional errors (primary beam effect, convolutional gridding)
 - $\vee \star \epsilon \rightarrow I \bullet F[\epsilon]$
- Other errors
 - Bandwidth and time average smearing.
 - Non-coplanar effects (see Wide Field Imaging talk by Tim Cornwell)
 - Deconvolutional errors (see Deconvolution talk by Mark Wieringa)
 - Software!!! (see everyone!)

Error Diagnosis

- > If ε is pure real, then the form of the error in the (u,v) plane is a real and even function i.e. F[ε] will be symmetric.
 - Such errors are often due to amplitude calibration errors.
- If ε has an imaginary component, then the form of the error in the uv plane is complex and odd i.e. F[ε] will be asymmetric.
 - Such errors are often due to phase calibration errors.
- Short duration errors
 - Localized in (u,v) plane but distributed in image plane.
 - Narrow features in (u,v) are extended in orthogonal direction in image.
- Long timescale errors
 - Ridge in (u,v) plane causes corrugations in image plane
 - Ring in (u,v) plane causes concentric "Bessel" rings in image plane

Gain Errors

10 deg phase error

anti-symmetric ridges

20% amp error

symmetric ridges

Additive Errors: RFI

Observation of 1 Jy source

Finding RFI

Observation of 1 Jy source See Mark's talk for more on removing RFI.

Primary Beam FWHM

The Sun was "near" the calibrator during one of the observing days.

Primary Beam FWHM

Multiplicative Errors

Primary Beam Error Common in widefield imaging/instruments

Peeling applicable to transient and variable sources too.

Point Deconvolution Errors

Pixel centred

Pixel not centred

Point Deconvolution Errors

Cell size = beam/3

Cell size = beam/6

Cell size = beam/12

Effect of CLEAN performed on a single 1 Jy source that is not pixel-centred using different cell sizes.

Point Deconvolution Errors

CLEAN: Cell size = beam/12

Single uv-delta model component

Deconvolution Errors (Large-scale Structure)

True sky

Standard CLEAN

Standard CLEAN does not handle large-scale structure well – results in negative bowls. More modern algorithms such as Multi-scale CLEAN are necessary to minimise deconvolution errors.

Deconvolution Errors (Large-scale Structure)

True sky

Standard CLEAN

Standard CLEAN does not handle large-scale structure well – results in negative bowls. More modern algorithms such as Multi-scale CLEAN are necessary to minimise deconvolution errors.

Deconvolved Image

Standard CLEAN

Deconvolved Image

Multi-frequency CLEAN

Missing short baselines

Paul Rayner 2001

Can only be fixed with additional data. See Shari's talk on observing strategies.

Smearing Errors

Bandwidth average smearing Average 512x1MHz band

Time-average smearing Averaging 1000s

Reality check

Reality check

- Avoid sausage factory processing (at least initially)
 - Try to understand each processing step.
 - Look closely at the data after each step, check and image calibrators.
 - Does the data look plausible.
- Take a different perspective
 - Look at your data in different domains (time, (u,v), image, frequency).
 - Plot different combinations of variables in different spaces.
 - Look at residuals, FT your dirty image, FT your beam.
- > Process your data in different ways
 - Try different software, algorithms.
 - Partition and process your data in different ways
 - Try split in time chunks, split up frequency band
 - Different weighting, different uv tapers.

Error reduction ...

What's happening?

What's happening?

What's happening?

What's happening

- Amplitude calibration errors.
- Hot spot near edge of 4.5 GHz beam (outside 6.5 GHz beam)
 - Causes steepening of source spectra.
 - Causes position dependent effects.
 - Will need to consider peeling techniques.
- Spectral variation throughout the image (flat and steep)
 - Must use multi-frequency deconvolution.
- > Structures on many different scales.
 - Must use appropriate deconvolution algorithms.
- North-west hot spot is bright and slightly extended.
 - Difficult to deconvolve accurately.
 - Small cell size or uv-subtract component.

What's happening?

38,000:1 dynamic range

- A. Heat haze
- B. Antenna deformation
- C. Ionosphere
- D. Compression artifacts

- A. Heat haze
- B. Antenna deformation
- C. Ionosphere
- D. Compression artifacts

- A. Heat haze
- B. Antenna deformation
- ✓ C. Ionosphere
 - D. Compression artifacts

- A. Heat haze
- B. Antenna deformation
- ✓ C. Ionosphere
 - D. Compression artifacts

2. Be daring in your search What's happening?

- A. Primary Beam error
- B. RFI
- C. Venetian blinds left open
- D. Deconvolution error

2. Be daring in your search What's happening?

- A. Primary Beam error
- B. RFI
 - C. Venetian blinds left open
 - D. Deconvolution error

3. Can you work this out? What's happening?

- A. Amplitude errors
- B. Cosmic ray
- C. Bandwidth smearing
- D. RFI

3. Can you work this out? What's happening?

- A. Amplitude errors
- B. Cosmic ray
- ✓ C. Bandwidth smearing
 - D. RFI

4. Dare to solve this! What's happening?

- A. Amplitude errors
- B. Phase of moon incorrect
- C. Position-dependent errors
- D. Source outside imaged field

4. Dare to solve this! What's happening?

- A. Amplitude errors
- B. Phase of moon incorrect
- C. Position-dependent errors
- D. Source outside imaged field

5. Don't give up! What's happening?

- A. RFI
- B. Bandwidth smearing
- C. Daylight savings not set
- D. Position-dependent errors

5. Don't give up! What's happening?

- A. RFI
- B. Bandwidth smearing
- C. Daylight savings not set
- ✓D. Position-dependent errors

6. Are you able to solve this? What's happening?

- A. Amplitude errors
- B. Tartan from wrong clan
- C. Data stored in HEX
- D. Phase errors

6. Are you able to solve this? What's happening?

- ✓A. Amplitude errors
 - B. Tartan from wrong clan
 - C. Data stored in HEX
 - D. Phase errors

7. Can this be real? What's happening?

- A. Ionospheric effects
- B. Faraday rotation
- C. Polarisation leakage
- D. Galactic circular polarisation

7. Can this be real? What's happening?

- A. Ionospheric effects
- B. Faraday rotation
- ✓ C. Polarisation leakage
 - D. Galactic circular polarisation

8. A tricky problem What's happening?

- A. Missing short baselines
- B. Missing long baselines
- C. Missing astronomer
- D. Alien Resurrection

8. A tricky problem What's happening?

- ✓A. Missing short baselines
 - B. Missing long baselines
 - C. Missing astronomer
 - D. Alien Resurrection

9. End of game question What's happening?

- A. Amplitude errors
- B. Phase errors
- C. Deconvolution errors
- D. Position-dep. errors
- E. Almost everything

9. End of game question What's happening?

- A. Amplitude errors
- B. Phase errors
- C. Deconvolution errors
- D. Position-dep. errors
- E. Almost everything

Acknowledgements

- This talk is based on talks by:
 - Steven Tingay
 - Ron Ekers
 - ASP Conference Series Vol. 180, p.321 available online
- Special thanks to Arin Lenc for running the pop quiz.