

猫狗图像识别

Cats VS. Dogs

CONTENTS

赛题介绍 与 数据预处理

多层感知器

卷积神经网络

模型预测 与 模型集成

赛题介绍 与 数据预处理

为了维护网站服务的安全,许多网站选择使用提问方式来识别访问者的身份,这一类问题对于人类来讲很简单、但对机器很难作答。例如网站的验证码或者人类交互模式证明(HIP for Human Interactive Proof),都是为了维护网站安全而设置的。

其中,ASIRRA(Animal Species Image Recognition for Restricting Access)就是一种人类交互模式证明,其工作原理就是**向人们提供描和的的图片**,以完成图片识别的速度准确率**区分人类和机器**。

本次比赛的数据由与ASIRRA合作的世界最大的为**宠物安家网站Pelfinder提** 供,所提供的图片分为训练集和测试集,训练集提供了每张图片猫或狗的类标识,测试集没有。参赛者需要以训练集图片训练模型,用已训练好的模型对测试集图片进行判别分类,并提交测试集分类结果。

数据预处理——数据读入

将训练集和测试集压缩包解压,使用python中os包读取训练集文件夹中每个图片的文件名,将其对应路径与对应的类一同存于列表中。

题目数据集中共有25000个有类标的图片, 12500个没有类标的图片。

	Image	Category
0	dog.8011.jpg	dog
1	cat.5077.jpg	cat
2	dog.7322.jpg	dog
3	cat.2718.jpg	cat
4	cat.10151.jpg	cat
5	cat.3406.jpg	cat
6	dog.1753.jpg	dog
7	cat.4369.jpg	cat
8	cat.7660.jpg	cat
9	dog.5535.jpg	dog

1 数据预处理——数据归一化

数据集中提供的图片为**RGB色彩模式**图片,每个像素的颜色由R、G、B三个通道对应的数值决定,每个通道的数值**取值范**3为0-225。

而对于神经网络的计算来讲,255数值过大,可能在误差反向传递的时候造成**梯度爆炸问题**,同时过大的梯度使**学习率的选择**变得困难,所以需要对图片进行**Min-Max归一化**处理,将像素值映射到[0,1]范围内,具体转换如下公式所示:

$$newpixel = \frac{pixel}{255}$$

1 数据预处理——训练集、验证集划分

以8:2的比例将有类标的25000%图片随机划分成训练集和验证集,

得到包含20000%图片的训练集和包含5000%图片的验证集。

- ✓ 输入数据的尺寸: **I50** × **I50** × **3**, 输出的尺寸: **I** × **I**
- ✔ 网络共有 10层,包括全联接层5个,批标准化层5个
- ✔ 虽然在数据预处理部分,我们已经将数据归一化,但在网络拟合过程中,权 重的更新会导致数据的分布发生改变,仍然存在发生梯度消失或梯度爆炸问 题的可能,所以在多层感知器的每两个全联接层中间加入批标准化层,让 数据在计算过程中仍保持分布
- ✓前4个全联接层激活函数为RelU函数,最后一个全联接层激活函数为 Sigmoid逐變
- ✓ 可训练待估参数共 I 40.6 I 7.049个

2 多层感知器——模型构建

MODEL1 多层感知器结构

序号	层	输入尺寸	输出尺寸	激活函数	待估参数个数
1	flatten层	150*150*3	1*67500	ReLU	0
2	批标准化层	1*67500	1*67500	-	270000
3	全联接层	1*67500	1*2048	ReLU	138242048
4	批标准化层	1*2048	1*2048	_	8192
5	全联接层	1*2048	1*1024	ReLU	2098176
6	批标准化层	1*1024	1*1024	_	4096
7	全联接层	1*1024	1*128	ReLU	131200
8	批标准化层	1*128	1*128	_	512
9	全联接层	1*128	1*32	ReLU	4128
10	批标准化层	1*32	1*32	_	128
11	全联接层	1*32	1*1	Sigmiod	33

可训练待估参数合计: 140,617,049

多层感知器——模型结果

模型在**第5次迭代**之后, 验证集的准确率下降,损失 上升,模型出现过拟合现象。 选择最优模型,即迭代次数 为5的模型作为最终模型进行 保存。

径向基网络

模型编号	激活函数	批数据量	Dropout 层	批标准化 层	最佳迭代 次数	总用时 (秒)	验证集准确率
1	ReLU	64		使用	5	3986	65.82%

注:模型总用时为截止到过拟合前最后一个epoch所用时间,后文出现总用时含义均于此处相同。

- ✓ 多层感知器理论上可以做图像识别,但会存在诸多问题:
- ✔ 第一,图像识别的输入数据常为矩阵形式,但多层感知器需要将输入数据降 维,在降维的过程中,数据结构遭到破坏,原本紧连的像素点被拆开,可 能导致一些数据特征被忽略;
- ✔ 第二,图像识别中的一张图片所包含的输入数据量很大,导致全联接层中的 待估参数非常多,不仅计算速度慢,而且需要很大的数据集来防止模型 过拟合。

卷积神经网络

LeNet5——模型构建

✓ 按照经典卷积神经 网络LeNet-5的结 构构建网络。

MODEL2 LeNet-5

序号	层	卷积核	输入尺寸	输出尺寸	激活函数	待估参数个数
1	卷积层	5*5*6	32*32*3	28*28*6	tanh	456
2	最大池化层	-	28*28*6	14*14*6	_	0
3	卷积层	5*5*16	14*14*6	10*10*16	tanh	2416
4	最大池化层	_	10*10*16	5*5*16	_	0
5	flatten层	-	5*5*16	1*400	_	0
6	全联接层	-	1*400	1*120	tanh	48120
7	全联接层	-	1*120	1*84	tanh	10164
8	全联接层	-	1*84	1*1	sigmoid	85

可训练待估参数合计: 61,241

- ✓ 原LeNet-5网络中激活函数为tanh逐数和/igmoid逐数
- ✓尝试将tanh函数换成收敛速度快、不存在梯度消失问题、具有稀疏性 的ReU函数
- ✓ 由于猫狗分类为二分类问题,选择保留原网络中输出响应变量的sigmoid函 数

LeNet-5 修改后模型对比

模型编号	模型	最佳迭代次数	总用时 (秒)	验证集准 确率
1	LeNet-5	8	576	72.44%
2	激活函数为ReLU的LeNet-5	6	474	74. 42%

- ✓ 从上表可以看出,以ReLU函数作为模型的激活函数,无论从收敛速度还是 验证集准确率方面评价,都要优于tanh函数
- ✓最终选择RelUppp作为模型的激活函数

3 LeNet5——调整批数据量

✓ 批数据量 (batch size) 是指一次训练所取的样本数

✔ 所以,理论上存在一个比较合适的批数据量,使得训练能够收敛的相对较快快且收敛效果较好。

选择尝试训练批数据量为 【和64】,两种LeNet5网络进行拟合:

LeNet-5 修改后模型对比

编号 模型	₩ #i	最佳迭代	总用时	验证集
	快 空	次数	(秒)	准确率
2	LeNet-5	5	576	74. 42%
3	LeNet-5批数据量为1	6	317	74.04%
4	LeNet-5批数据量为64	7	521	73. 20%

批数据量沒有使模型准确率提高, 难以此时就选择最优批数据量,将两种不 同批数据量继续应用于后续模型,由后续模型准确率对模型批数据量进行选择。 LeNet5网络的体量不大,但也有6 124 1 个待估参数,训练数据偏少,有可能会引起过20合。

为了防止过拟合问题,提高网络的泛化能力,在LeNet5中的两个池化层后边各添加一个Dropout层,Dropout层随机使20%的检测器停止工作。

LeNet-5 %	添加Dropout.	层前后模型对比
-----------	------------	---------

模型编号	模型	最佳迭代次 数	总用时 (秒)	验证集准确 率
2	LeNet-5	5	576	74. 42%
5	LeNet-5添加Dropout 层,批数据量为1	21	1562	75. 48%
6	LeNet-5添加Dropout 层,批数据量为64	13	916	75.84%

- ✓ 添加Dropout层之后模型在过拟合前的**迭代次数明显上升**,模型5的迭代次数是模型2的**4倍以上**,模型6的迭代次数也是模型2的**2.5倍以上**。
- ✓ 批数据量过小的**不稳定性**在此处有所体现,批数据量为1的模型经过**2 上次**迭代才趋于稳定,是模型2的**4倍**以上。
- ✓ 加入Dropout层后,两个模型验证集准确率分别提高了 **1.44%**和 **2.64%**,模型6的准确率较之前最优模型(模型2)提高了 **1.42%**。

- ✓ 在数据预处理中,为防止梯度爆炸问题,我们已经对图像像素数据进行了**Min**-MaxJ3一化处理,使输入数据分布在[0,1]区间上。
- ✓ 但当网络开始训练之后,参数就会发生变化,高层的输入分布变化会非常剧 烈(Internal Covariate Shift)
- ✓ 为使网络中数据分布更加稳定,以保证机器学习原假设训练集分布和测试 集分布相同,添加标准化层。

- ✓ Keras中提供了两种标准化,层标准化和批标准化,
- ✔ 两种方法所选取用来计算均值和方差的总体是不同的,层标准化是对所有维 度同时进行标准化,若各个维度表示的特征量级不一致(比如R、G、B层的 量纲),那么会导致模型的表达能力下降,所以此处选择为模型加入批标 准化层。
- ✓ 在使用Dropout层的LeNet-5中,第二个卷积层前和第一个全联接层前,分别 加入一个批标准化层。
- ✓ 批标准化层将输入数据的分布改为标准正态分布,为防止过多数据落入 Relu 函数的饱和区域,导致dead Relu问题,将模型激活函数换为elu 进行拟合。

LeNet5——批标准化层

LeNet-5 添加Batch_normalization层前后模型对比

模型编号	模型	最佳迭代 次数	总用时 (秒)	验证集 准确率
7	LeNet-5添加Dropout层, 批数据量为64	13	916	75. 84%
8	LeNet-5添加 Batch_normalization层, 批数据量为64	12	802	75. 98%
9	LeNet-5添加 Batch_normalization层, 批数据量为1	11	790s	75. 18%
10	LeNet-5添加 Batch_normalization层, 批数据量为64,激活函数 为elu	15	1216s	75. 56%

✓ 可看出模型的验证集准确 率并**没有太大改观**。

✓可能由于LeNet-5的模型 层数比较浅,隐藏层中数 据分布的变动不大,不需 要标准化也可以很好的拟 合。

模型 编号	激活函数	批数据量	Dropout层	批标准化层	最佳迭代 次数	总用时 (秒)	验证集准确率
2	tanh	_	_	_	6	576	72.22%
3	ReLU	_	_	_	5	474	74.42%
4	ReLU	1	_	_	6	317	74.04%
5	ReLU	64	_	_	7	521	73.20%
6	ReLU	1	使用	_	21	1562	75.48%
7	ReLU	64	使用	_	13	916	75.84%
8	ReLU	64	使用	使用	12	802	75.98%
9	ReLU	1	使用	使用	11	790	75.18%
10	elu	64	使用	使用	15	1216	75.56%

- ✔ 经过多次模型调整后,模型验证集的准确率提高了3.76%
- ✓验证集准确率最高的模型为模型8,激活函数为ReLU、批数据量为64、使用 Dropout层、使用批标准化层的LeNet5模型,其验证集准确率为75.98%
- ✔ 此模型的拟合效果并不十分理想,但由于模型仅有61241个待估参数,也有网 络体量小,拟合速度快等优点。

✓ 即使经过了多次模型调整,LeNet5模型拟合的准确率依然不算精确,可能因为网络结构过于简单,网络层数较少,导致拟合效果不理想。想要进一步优化模型的图像识别准确率,则要考虑加深卷积神经网络的深度。

- ✓ 添加一个卷积层,共3个卷积层
- ✓ 考虑时间成本问题,去掉一个全联接层,共**2个全联接层**

3 三个卷积层的神经网络——模型构建

MODEL3 三个卷积层的卷积神经网络

序号	层	卷积核	输入尺寸	输出尺寸	激活函数	待估参数个数
1	卷积层	3*3*32	150*150*3	148*148*32	relu	896
2	最大池化层	-	148*148*32	74*74*32	-	0
3	卷积层	3*3*64	74*74*32	72*172*64	relu	18496
4	最大池化层	_	72*172*64	36*36*64	-	0
5	卷积层	3*3*128	36*36*64	34*34*128	relu	73856
6	最大池化层		34*34*128	17*17*128		0
7	flatten层	_	17*17*128	1*36922	-	0
8	全联接层	_	1*36922	1*512	relu	18940416
9	全联接层	_	1*512	1*1	sigmoid	513

可训练待估参数合计: 19,034,177

3个卷积层的卷积神经网络

编号	最佳迭代次数	总用时(秒)	验证集准确率
11	5	2344s	82.90%

- ✓ 此模型验证集准确率为82.90%,对比之前拟合的LeNet5模型中最优的模型 验证集准确率为75.98%,可以看出模型准确率有很大提升。
- ✔ 但同时,此模型共有19,034,177个**待估参数**,是经典LeNet5的**310倍**之多, 由于模型结构更加复杂,模型拟合时间也变为原来的5倍以上。

3 三个卷积层的神经网络——模型调参

✓ 对3个卷积层的卷积神经网络的调参主要选择从**批数据量、dropout层、批** 标准化三个方面对模型进行优化

3个卷积层的卷积神经网络模型汇总

模型编 号	激活函数	批数据量	Dropout层	批标准化层	最佳迭代 次数	总用时 (秒)	验证集准确率
11	ReLU	_	_	_	5	2344	82.90%
12	ReLU	1		_	4	1827	81.50%
13	ReLU	64	_	_	3	1598	82.84%
14	ReLU	64	使用	_	4	2050	80.80%
15	ReLU	64	使用	使用	8	5001	79.92%
16	elu	64	使用	使用	6	3316	79.50%

✔ 经过优化调参尝试,模型准确率始终没有超过原模型。

模型编号	模型种类	激活函数	批数据量	Dropout 层	批标准化 层	最佳迭代 次数	总用时 (秒)	验证集准确率
1	多层感知器	ReLU	64	_	使用	5	3986	65.82%
2		tanh	_	_	_	6	576	72.22%
3		ReLU	_	_	_	5	474	74.42%
4		ReLU	1	_	_	6	317	74.04%
5		ReLU	64	_	_	7	521	73.20%
6	LeNet5	ReLU	1	使用	_	21	1562	75.48%
7		ReLU	64	使用	_	13	916	75.84%
8		ReLU	64	使用	使用	12	802	75.98%
9		ReLU	1	使用	使用	11	790	75.18%
10		elu	64	使用	使用	15	1216	75.56%
11	3个卷积层 的卷积神经 网络	ReLU	_	_	_	5	2344	82.90%
12		ReLU	1	_	_	4	1827	81.50%
13		ReLU	64	_	_	3	1598	82.84%
14		ReLU	64	使用	_	4	2050	80.80%
15	l1 ≥Π	ReLU	64	使用	使用	8	5001	79.92%
16		elu	64	使用	使用	6	3316	79.50%

✓ 模型11, 三个卷积层的神经网络, 验证集准确率82.90%

Accuracy = 0.8306

Misclassification = 0.1694

Precision = 0.8576

Recall = 0.8173

F-Measure = 0.8371

模型预测 与 模型集成

✔ 为了提高其准确率、稳定性,降低结果的方差,避免过拟合,选择验证集准 确率最高的5个模型(模型11、模型12、模型13、模型14、模型15),用 Bagging方法对其进行模型集成。

$$Score = \frac{1}{5} \sum_{i=1}^{5} score_{i}$$

✔ 分别用模型11、模型12、模型13、模型14、模型15对测试集图片类别进行预 测,将每个图片的预测结果进行平均,将平均后值大于0.5的判断为猫,将小 于等于0.5的判断为狗。

模型预测结果

序号	图片	模型11	模型12	模型13	模型14	模型15	平均值	分类
0	9733.jpg	0.9064	0.0097	1.0000	0.0000	0.9989	0.5830	1
1	6400.jpg	0.9947	0.0236	0.0000	0.0001	1.0000	0.4037	0
2	823.jpg	0.9929	0.9994	0.0720	0.4379	0.9882	0.6981	1
3	4217.jpg	0.0157	0.0000	0.6740	0.9997	0.9842	0.5347	1
4	2666.jpg	0.9843	0.0000	0.0006	0.8068	0.9648	0.5513	1

9733.Jpg/预测类别: 猫

6400.Jpg/预测类别: 狗

823.Jpg/预测类别: 猫

4217.Jpg / 预测类别: 猫

6400.Jpg/预测类别: 猫

4 模型局限性思考

- ✓ 模型训练集仅有20000张图片,数据较少,可考虑用随机剪裁、镜像处理、图片着色调整等方法进行图像加强。
- ✓ 由于个别模型训练所需时间过长,模型EarlyStopping的patience参数设置为 3, patience参数设置较小,模型可能欠拟合。

