1

Random Numbers

Rahul Ramachandran

CONTENTS

1	Uniform Random Numbers	1
2	Central Limit Theorem	2
3	From Uniform to Other	4

Abstract—This manual provides a simple introduction to the generation of random numbers

Triangular Distributions

1 Uniform Random Numbers

Let U be a uniform random variable between 0 and 1.

1.1 Generate 10^6 samples of U using a C program and save into a file called uni.dat .

Solution: Download the following files and execute the C program.

wget https://github.com/gadepall/probability/ raw/master/manual/codes/exrand.c wget https://github.com/gadepall/probability/ raw/master/manual/codes/coeffs.h gcc exrand.c ./a.out

1.2 Load the uni.dat file into python and plot the empirical CDF of *U* using the samples in uni.dat. The CDF is defined as

$$F_U(x) = \Pr\left(U \le x\right) \tag{1.1}$$

Solution:

4

wget https://github.com/gadepall/probability/ raw/master/manual/codes/cdf_plot.py python3 cdf_plot.py

The following code plots Fig. 1.2

Fig. 1.2: The CDF of U

1.3 Find a theoretical expression for $F_U(x)$.

Solution: *U* is given by

$$U(x) = \begin{cases} 0, & x \in (-\infty, 0) \\ 1, & x \in (0, 1) \\ 0, & x \in (1, \infty) \end{cases}$$
 (1.2)

Therefore, we have:

$$F_U(x) = \int_0^x U(x)dx \tag{1.3}$$

Computing the integral, we get:

$$F_U(x) = \begin{cases} 0, & x \in (-\infty, 0) \\ x, & x \in (0, 1) \\ 1, & x \in (1, \infty) \end{cases}$$
 (1.4)

1.4 The mean of U is defined as

$$E[U] = \frac{1}{N} \sum_{i=1}^{N} U_i$$
 (1.5)

and its variance as

$$var[U] = E[U - E[U]]^2$$
 (1.6)

Write a C program to find the mean and

variance of U.

Solution: Add the following function to coeffs.h

```
double variance(char *str)
int i=0,c;
FILE *fp;
double x, temp=0.0;
fp = fopen(str,"r");
//get numbers from file
while(fscanf(fp,"%lf",&x)!=EOF)
//Count numbers in file
i=i+1;
//Add all numbers in file
temp = temp + x * x;
double mn = mean(str);
fclose(fp);
temp = temp/(i-1);
return temp - mn*mn;
}
```

Following the steps mentioned below gives the required result:

```
gcc exrand.c
./a.out
mean = 0.500031
variance = 0.083247
```

1.5 Verify your result theoretically given that

$$E\left[U^{k}\right] = \int_{-\infty}^{\infty} x^{k} dF_{U}(x) \tag{1.7}$$

Solution: Since

$$dF_U(x) = p_U(x)dx (1.8)$$

we have:

$$E[U^k] = \int_{-\infty}^{\infty} x^k p_U(x) dx \tag{1.9}$$

Also,

$$p_U(x) = \begin{cases} 0, & x \in (-\infty, 0) \\ 1, & x \in (0, 1) \\ 0, & x \in (1, \infty) \end{cases}$$
 (1.10)

Therefore, from Equations 1.9 and 1.10, we have:

$$E[U^2] = \int_{-\infty}^{\infty} x^2 p_U(x) dx \qquad (1.11)$$

$$= \int_0^1 x^2 dx$$
 (1.12)

$$=\frac{1}{3}$$
 (1.13)

Similarly,

$$E[U] = \int_{-\infty}^{\infty} x p_U(x) dx$$
 (1.14)

$$= \int_0^1 x dx \tag{1.15}$$

$$=\frac{1}{2}$$
 (1.16)

Therefore, the mean is $\frac{1}{2}$, and the variance equals:

$$E[U^2] - E[U]^2 = \frac{1}{3} - \left(\frac{1}{2}\right)^2$$
 (1.17)

$$=\frac{1}{12}$$
 (1.18)

2 Central Limit Theorem

2.1 Generate 10⁶ samples of the random variable

$$X = \sum_{i=1}^{12} U_i - 6 \tag{2.1}$$

using a C program, where U_i , i = 1, 2, ..., 12 are a set of independent uniform random variables between 0 and 1 and save in a file called gau.dat

Solution: Add the following line to **exrand.c** and execute the code:

```
gaussian("gau.dat", 1000000);
gcc exrand.c
./a.out
```

2.2 Load gau.dat in python and plot the empirical CDF of *X* using the samples in gau.dat. What properties does a CDF have?

Solution:

The CDF of X is plotted in Fig. 2.2

2.3 Load gau.dat in python and plot the empirical PDF of *X* using the samples in gau.dat. The PDF of *X* is defined as

$$p_X(x) = \frac{d}{dx} F_X(x) \tag{2.2}$$

Fig. 2.2: The CDF of X

Fig. 2.3: The PDF of X

What properties does the PDF have?

Solution: The PDF of X is plotted in Fig. 2.3 using the code below

wget https://github.com/gadepall/probability/ raw/master/manual/codes/pdf_plot.py python3 pdf_plot.py

To find the CDF theoretically, consider

2.4 Find the mean and variance of *X* by writing a C program.

Solution: Use the main and variance functions in **coeffs.h**, and execute the code below

gcc exrand.c ./a.out

We get

mean =
$$0.000685$$

variance = 1.000025

2.5 Given that

$$p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), -\infty < x < \infty, \quad (2.3)$$

repeat the above exercise theoretically.

Solution: We have:

$$E[X] = \int_{-\infty}^{\infty} \frac{x}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$
 (2.4)

$$= -\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \Big|_{-\infty}^{\infty}$$
 (2.5)

$$=0 (2.6)$$

Also,

$$E[X^{2}] = \int_{-\infty}^{\infty} \frac{x^{2}}{\sqrt{2\pi}} \exp\left(-\frac{x^{2}}{2}\right)$$

$$= -\frac{x}{\sqrt{2\pi}} e^{\left(-\frac{x^{2}}{2}\right)} \Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{\left(-\frac{x^{2}}{2}\right)}$$
(2.8)

$$=0+\frac{1}{\sqrt{2\pi}}\times\sqrt{2\pi}\tag{2.9}$$

$$= 1 \tag{2.10}$$

Hence,

$$var(X) = E[X^2] - E[X]^2$$
 (2.11)

$$= 1 \tag{2.12}$$

Therefore, the mean is 0 and the variance is 1. Running the empirical code in **./codes/exrancd.c**, we get mean = 0.000685 and variance = 1.000025, which closely matches the theoretical values.

2.6 Find the theoretical CDF of X

Solution: To find the theoretical CDF, consider:

$$Q_X(x) = \int_x^{\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx$$
 (2.13)

$$= \frac{\operatorname{erfc}(\frac{x}{\sqrt{2}})}{2} \tag{2.14}$$

The CDF is then:

$$F_X(x) = 1 - Q_X(x)$$

$$\operatorname{erfc}(\frac{x}{c})$$
(2.15)

$$=1-\frac{\operatorname{erfc}(\frac{x}{\sqrt{2}})}{2} \tag{2.16}$$

3 From Uniform to Other

3.1 Generate samples of

$$V = -2\ln(1 - U) \tag{3.1}$$

and plot its CDF. **Solution:** Add the following function to **coeffs.h**:

```
void logarithmic(char *str){
  int i=0,c;
FILE *fp, *fp2;
  double x, temp=0.0;

fp = fopen("uni.dat","r");
  fp2 = fopen(str, "w");
//get numbers from file
while(fscanf(fp,"%lf",&x)!=EOF)
{
    temp = -2*log(1-x);
    fprintf(fp2,"%lf\n",temp);
}

fclose(fp);
fclose(fp2);
return;
}
```

Using this function in **exrand.c** prints the numbers in **log.dat**

3.2 Find a theoretical expression for $F_V(x)$.

 $F_V(x) = \Pr(V \le x)$

Solution: We have:

$$= \Pr\left(-2\ln(1-U) \le x\right) \tag{3.3}$$

$$= \Pr\left(1-U \ge \exp\left(-\frac{x}{2}\right)\right) \tag{3.4}$$

$$= \Pr\left(U \le 1 - \exp\left(-\frac{x}{2}\right)\right) \tag{3.5}$$

$$= F_U \left(1 - \exp\left(-\frac{x}{2}\right) \right) \tag{3.6}$$

Fig. 3.2: The CDF of V

Therefore,

$$F_{V}(x) = \begin{cases} 0, & 1 - \exp\left(-\frac{x}{2}\right) \in (-\infty, 0) \\ 1 - \exp\left(-\frac{x}{2}\right), & 1 - \exp\left(-\frac{x}{2}\right) \in (0, 1) \\ 1, & 1 - \exp\left(-\frac{x}{2}\right) \in (1, \infty) \end{cases}$$

$$(3.7)$$

From this we get:

$$F_V(x) = \begin{cases} 0, & x \in (-\infty, 0) \\ 1 - \exp(-\frac{x}{2}), & x \in (0, \infty) \end{cases}$$
 (3.8)

The CDF of V is plotted in Fig. 3.2

4 Triangular Distributions

4.1 Generate

(3.2)

$$T = U_1 + U_2 \tag{4.1}$$

Solution: Use the function 'triangular' in **exrand.c** and execute the following code:

wget https://github.com/Rahuboy/AI1110/blob /main/RandomNumbers/codes/coeffs.h wget https://github.com/Rahuboy/AI1110/blob /main/RandomNumbers/codes/exrand.c gcc exrand.c ./a.out

4.2 Find the CDF of T.

Solution:

Fig. 4.2: The CDF of T

Fig. 4.3: The PDF of T

wget https://github.com/Rahuboy/AI1110/blob/main/RandomNumbers/codes/cdf_plot.py
python3 cdf_plot.py

The above code plots Fig. 4.2

4.3 Find the PDF of T.

wget https://github.com/Rahuboy/AI1110/blob/main/RandomNumbers/codes/pdf_plot.py
python3 pdf_plot.py

The above code plots Fig. 4.3

4.4 Find the theoretical expressions for the PDF and CDF of *T*.

Solution: When

$$Z = X + Y \tag{4.2}$$

where X, Y and Z are random variables, we have:

$$p_Z(t) = (p_X * p_Y)(t)$$
 (4.3)

$$= \int_{-\infty}^{\infty} p_X(\tau) p_Y(t-\tau) d\tau \tag{4.4}$$

Here, $p_X(t) = p_Y(t) = p_U(t)$. Therefore:

$$p_T(t) = \int_{-\infty}^{\infty} p_U(\tau) p_U(t - \tau) d\tau$$
 (4.5)

$$= \int_0^1 p_U(t-\tau)d\tau \tag{4.6}$$

When t < 0 and t > 2, the integral evaluates to 0. When 0 < t < 1:

$$p_T(t) = \int_0^1 p_U(t - \tau) d\tau$$
 (4.7)

$$= \int_0^t p_U(t-\tau)d\tau \tag{4.8}$$

$$= \int_0^t 1d\tau \tag{4.9}$$

$$=t (4.10)$$

when 1 < t < 2:

$$p_T(t) = \int_0^1 p_U(t - \tau) d\tau$$
 (4.11)

$$= \int_{t-1}^{1} p_U(t-\tau)d\tau$$
 (4.12)

$$= \int_{t-1}^{1} 1d\tau \tag{4.13}$$

$$=2-t \tag{4.14}$$

Therefore, we have:

$$p_T(x) = \begin{cases} 0, & x \in (-\infty, 0) \\ x, & x \in (0, 1) \\ 2 - x, & x \in (1, 2) \\ 0, & x \in (2, \infty) \end{cases}$$
(4.15)

To find the CDF, we use:

$$F_T(x) = \int_{-\infty}^{x} p_T(t)dt \tag{4.16}$$

Fig. 4.5: The PDF of T

We get:

$$F_T(x) = \begin{cases} 0, & x \in (-\infty, 0) \\ \frac{x^2}{2}, & x \in (0, 1) \\ -\frac{x^2}{2} + 2x - 1, & x \in (1, 2) \\ 1, & x \in (2, \infty) \end{cases}$$
(4.17)

4.5 Verify your result for the PDF through a plot. **Solution:** Execute the following code:

The theoretical PDF is plotted in Fig. 4.5

4.6 Verify your result for the CDF through a plot. **Solution:** Execute the following code:

The theoretical CDF is plotted in Fig. 4.6

Fig. 4.6: The CDF of T