Machine Learning I (DATS 6202) Data Preprocessing

Yuxiao Huang

Data Science, Columbian College of Arts & Sciences George Washington University yuxiaohuang@gwu.edu

August 27, 2018

Reference

Picture courtesy of the website of the book code repository and info resource

Reference

- This set of slices is an excerpt of the book by Raschka and Mirjalili, with some trivial changes by the creator of the slides
- Please find the reference to and website of the book below:
 - Raschka S. and Mirjalili V. (2017). Python Machine Learning. 2nd Edition.
 - https://sebastianraschka.com/books.html
- Please find the website of the book code repository and info resource below:
 - https://github.com/rasbt/ python-machine-learning-book-2nd-edition

Overview

- Dealing with missing data
- 2 Handling categorical data
- Partitioning training and testing data
- 4 Bringing feature onto the same scale

Dealing with missing data

- Missing data abound in reality, for many reasons
 - human error
 - equipment error
 - left blank intentionally (e.g., in a survey)
- Missing data could be shown as
 - blank space
 - placeholder NA or N/A (Not Applicable)
 - placeholder NaN or nan (Not A Number)
 - ? (as in UCI data)

Dealing with missing data

- Eliminating samples or features with missing values
 - Often infeasible. Why?
- Imputing missing values
 - mean
 - median
 - mode (useful for categorical features). Why?

Handling categorical data

- Most machine learning methods work (better) on numerical data
- However, real-world data usually have categorical features
 - size: XL, L, M, S
 - o color: red, blue, green

Handling categorical data

- Ordinal feature
 - categorical feature that can be sorted or ordered
 - size: XL > L > M > S
- Nominal feature
 - categorical feature that cannot be sorted or ordered
 - o color: red, blue, green
- We need to distinguish between nominal and ordinal features. Why?

Mapping ordinal features

- Converting the categorical string values into integers
- The features must be ordinal
- Must preserve the order
 - XL: 3 • L: 2
 - M : 1
 - S : 0

Encoding class labels

- Converting the categorical string values into integers
- The class can be ordinal or nominal
- No need to preserve the order
 - class 1 : 3
 - class 2 : 2
 - class 3 : 1

Mapping nominal features

Converting the categorical string values into integers

red : 0blue : 1green : 2

Mapping nominal features

Converting the categorical string values into integers

```
red : 0blue : 1green : 2
```

- This is one of the most common mistakes in dealing with nominal features!
 - Since we assume red < blue < green

One-hot encoding

- Transform the feature into feature-value pairs
 - $oldsymbol{\circ} color = red$
 - color = blue
 - color = green
- Each feature-value pair is binary (e.g., 0 or 1)
- For the original feature, only one feature-value is 1 at a time

Partitioning training and testing data

- On the one hand
 - the size of testing set ↑
 - ullet information withheld from the learning algorithm $\ \downarrow$
- On the other hand
 - the size of testing set ↓
 - estimation of the generalization error

Partitioning training and testing data

- We need to balance this trade-off
- The most commonly used splits are
 - 60:40
 - 70:30
 - 80:20

Bringing feature onto the same scale

- Majority of machine learning and optimization algorithms behave much better if features are on the same scale
- There are two common approaches to bringing different features onto the same scale
 - Normalization
 - Standardization

(min-max) Normalization

 To normalize our data, we can simply apply the min-max scaling to each feature column, where the new value $x_{norm}^{(i)}$ of a sample $x^{(i)}$:

$$x_{norm}^{(i)} = \frac{x^{(i)} - \mathbf{x}_{min}}{\mathbf{x}_{max} - \mathbf{x}_{min}}$$

- Here:

 - $\begin{array}{ll} \bullet \ x^{(i)} & \text{is one of the original values of feature } x \\ \bullet \ \mathbf{x}_{min} \ / \ \mathbf{x}_{max} & \text{is the min } / \ \text{max of all the original values} \\ \bullet \ x^{(i)}_{norm} & \text{is the value after normalization} \end{array}$

Standardization

 Standardization maintains useful information about outliers and makes the algorithm less sensitive to them in contrast to min-max scaling, which scales the data to a limited range of values:

$$x_{std}^{(i)} = \frac{x^{(i)} - \mu_x}{\sigma_x}$$

- Here:
 - $x^{(i)}$ is one of the original values of feature x
 - \bullet μ_x is the mean of feature x
 - σ_x is the standard deviation of feature x