Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

1. A través de un análisis similar al desarrollado en la página 53 del Cengel Cimbala, determine cuál es la presión dentro de una burbuja "cilíndrica" que tiene la geometría observada en la figura 1 (cilindro con casquetes esféricos en sus extremos). A partir del resultado, responda las siguientes preguntas: ¿Es este estado estable?, es decir, ¿es un caso de estática? ¿Cómo evoluciona el sistema? En caso de que no sea estable, ¿cuál sería la geometría final de la gota? Las variables relevantes del problema serían las siguientes:

Figure 1: Gota cilíndrica

2. Un camión cisterna transporta en Brasil una mezcla de etanol-gasolina con proporciones en volumen 50-50 %. En principio ambas sustancias se encuentran perfectamente mezcladas, pero luego de un tiempo de estar estacionada, la mezcla se separa, como se muestra en la figura 2. El tanque se encuentra totalmente lleno, cerrado y presurizado de forma tal que la presión mínima (punto b) es siempre 1 bar.

Escriba las expresiones de la fuerza sobre la tapa trasera del tanque para el caso de fases mezcladas y separadas para el caso estático y para el caso en el que el camión acelera con aceleración a_c . Calcule también el torque producido por la fuerza de hidrostática respecto del punto **a**.

Una vez planteada la solución para un tanque prismático rectangular, modifíquela para aplicarla a una cisterna cilíndrica de sección circular (más realista). ¿Pueden generalizarse estos resultados par cualquier proporción etanol-gasolina?

Figure 2: Camión cisterna con detalle de separación de fases (no está a escala)

Ingeniería Mecánica: Mecánica de los Fluidos

Apellido, Nombre (Legajo):

Fecha:

3. Determine la carga vertical por unidad de área, ejercida sobre el vehículo, debida al efecto suelo (producida por el flujo de aire alrededor del mismo). Para ello considere el volumen de control graficado en líneas de trazo y punto, y suponga un ancho del vehículo constante. Además suponga que la presión en la superficie libre superior del vehículo, coincide con la presión a la entrada del volumen de control. Considere los perfiles de velocidades como uniformes.

$$A_{ent} = A_{sal} \qquad A_{sup} = c_{sup} A_{ent} \qquad A_{inf} = c_{inf} A_{ent}$$

$$c_{sup} = 0, 5 \qquad c_{inf} = 0, 25$$

$$V_{ent} = 80 \text{km/h} \qquad V_{sup} = 85 \text{km/h} \qquad P_{ent} = P_{sal} = P_{atm} = 1000000 \text{Pa}$$

$$V_{\text{libre}} \qquad V_{\text{libre}} \qquad P_{\text{ent}} \qquad P_{\text{sal}} \qquad P_{\text$$

Figure 3: flujo alrededor de vehículo