ROB 501 Exam-I Solutions

29 October 2019

Problem 1:

- (a) False. n = -1 is a counterexample.
- (b) False. The negation is "there is at least one garden that does not have flowers".
- (c) True. First note that $\frac{\epsilon}{2} \leq \delta \leq \epsilon$ is an AND condition as it states that $\delta \geq \frac{\epsilon}{2}$ AND $\delta \leq \epsilon$. Its negation is therefore an OR condition: EITHER $\neg(\delta \geq \frac{\epsilon}{2})$ OR $\neg(\delta \leq \epsilon)$. Once you have this the rest of the problem is straightforward: replacing $\neg \exists$ with \forall and $\neg \forall$ with \exists to obtain the final result

 $\neg(\forall \ \epsilon>0, \exists \delta>0 \text{ such that } \frac{\epsilon}{2} \leq \delta \leq \epsilon) \iff (\exists \ \epsilon>0 \text{ such that } \forall \ \delta>0, \text{it is true that either } \delta>\epsilon \text{ or } \delta<\frac{\epsilon}{2})$

(d) True. Recall that the truth table for $A \implies B$ is

A	В	$A \implies B$
1	1	1
1	0	0
0	1	1
0	0	1

Setting A = p and $B = \neg q$ gives the result; indeed

p	q	$\neg q$	$p \implies \neg q$
1	1	0	0
1	0	1	1
0	1	0	1
0	0	1	1

Problem 2:

- (a) True. By definition, an eigenvector $v^i \in \mathcal{N}(A \lambda_i I)$, i.e., $(A \lambda_i I)v^i = 0$. Moreover, we saw a theorem in lecture stating $\mathcal{R}(B)^{\perp} = \mathcal{N}(B^T)$ for a real matrix B.
- (b) True. From $v = \bar{v}$ we aim to show $\lambda = \bar{\lambda}$. $\overline{Av} = \overline{\lambda v} \implies \bar{A}v = \bar{\lambda}v \implies Av = \lambda v = \bar{\lambda}v :: \bar{\lambda} = \lambda$.
- (c) True. This is a symmetric matrix, so its eigenvectors are orthogonal. Moreover, this matrix has real eigenvectors so the matrix V is real.
- (d) False. The eigenvectors could be complex, so the span would include complex vectors.

Problem 3:

(a) False. If $x \in \mathcal{N}(A)$, x is orthogonal to the rows of A, not the columns of A.

- (b) False, dim $\mathcal{X} \leq 3$. If $\mathcal{X} = \mathbb{R}$, then we could write $\mathcal{X} = \text{span}\{1,2,3\}$ but dim $\mathbb{R} = 1$ (vectors $\{1,2,3\}$ are linearly dependent).
- (c) False. S is not necessarily a subspace, so the direct sum will be missing linear combinations of the elements of S. The correct statement would be $S^{\perp} \oplus \text{span}\{S\} = \mathcal{X}$.
- (d) False. $\mathcal{R}(A)$ is a subspace of \mathbb{R}^m but not \mathbb{R}^n . (On the other hand, $\mathcal{N}(A)$ is a subspace of \mathbb{R}^n .)

Problem 4:

- (a) True. If A is orthogonal, then $1 = \det(I) = \det(A \cdot A^T) = \det(A) \cdot \det(A^T) = \det(A)^2 \Rightarrow \det(A) = \pm 1$. This was posted to Canvas.
- (b) False. The zero matrix $0_{n\times n}$ qualifies as positive semi-definite because $x^T 0_{n\times n} x = 0 \ge 0 \ \forall x \in \mathbb{R}^n$, and $\operatorname{tr}(0_{n\times n})=0.$
- (c) False. This symmetric matrix has a negative diagonal element, and therefore it cannot be positive definite (as discussed in class). The quadratic form $x^T M x$ with $x = \begin{bmatrix} 0 \\ y \\ 0 \end{bmatrix}$, $y \neq 0$ arbitrary, is not always positive.
- (d) True. First, note this is not a symmetric matrix and thus you cannot immediately use the Schur Complement Theorem. This is, however, a block upper-triangular matrix, and thus its eigenvalues are those of $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and $\begin{bmatrix} 10 & -2 \\ -2 & 10 \end{bmatrix}$, as discussed in class. Because these blocks *are* symmetric, you can use the Schur Complement Theorem to easily check that 2 > 0 and 2 - 1(1/2)1 > 0, and 10 > 0 and 10 - (-2)(1/10)(-2) > 0.

Problem 5:

- (a) True. One could check all three axioms: 1. $[u,v]=< u, Pv>= u^TPv=(u^TPv)^T=v^TPu=< v, Pu>=[v,u].$
- 2. Linearity in the left argument follows trivially.
- 3. $[x,x] = x^T P x \ge 0$ for any $x \in \mathbb{R}^n$, and $[x,x] = x^T P x = 0$ if f. f if f is f because f if f if f if f is f is f if f is f if f is f is f if f is f if f is f if f is f if f is f is f if f if f is f if f is f if f if f is f if f is f if f is f if f is f if f if f is f if f is f if f if f is f if f if f is f if f is f if f if f if f is f if f if
- (b) False. Consider n=2 with $u=\begin{bmatrix}1\\0\end{bmatrix},\,v=\begin{bmatrix}0\\1\end{bmatrix},\,$ and $P=\begin{bmatrix}2&1\\1&2\end{bmatrix}>0.$ Clearly $u^Tv=0$ but $u^TPv=1\neq 0,$ and thus $||u+v||_P^2=6$ is not equal to $||u||_P^2+||v||_P^2=4.$ (It would be true for u,v such that $u^TPv=0.$)
- (c) True, stated in lecture. If the vectors $\{v^1, \dots, v^k\}$ are orthonormal, using the normal equations, G = I, so $\alpha = \beta = \left[\langle x, v^1 \rangle \quad \dots \quad \langle x, v^k \rangle \right]^{\top}$ and $P(x) = \alpha_1 v^1 + \dots + \alpha_k v^k = \sum_{i=1}^k \langle x, v^i \rangle v^i$.
- (d) False. M is a subspace if and only if $\alpha_0 = 0$. Scalar multiplication and vector addition do not hold if $\alpha_0 \neq 0$: if $x \in M$ and $a \in \mathbb{R}$, ax is not in M since $[3 \quad 5 \quad -2](ax) = a([3 \quad 5 \quad -2]x) = a\alpha_0 \neq \alpha_0$. It is similarly straight-forward to show vector addition does not hold.

Problem 6:

(a) Let A^i denote the *i*th column of A, then $A^i = [\mathcal{L}(e^i)]_V$.

$$\mathcal{L}(e^2) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} = -1 \cdot v^1 - 1 \cdot v^2 + 0 \cdot v^3 \implies A^2 = [\mathcal{L}(e^2)]_V = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}.$$

$$\mathcal{L}(e^4) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} = 0 \cdot v^1 + 1 \cdot v^2 - 1 \cdot v^3 \implies A^4 = [\mathcal{L}(e^4)]_V = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}.$$

(b) The change of basis matrix from V to \tilde{V} is P. Let P^i denote the ith column of P, then $P^i = [v^i]_{\tilde{V}}$.

$$\begin{split} P^1 &= [v^1]_{\tilde{V}} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \ P^2 = [v^2]_{\tilde{V}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ P^3 = [v^3]_{\tilde{V}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}. \end{split}$$
 Thus, $P = [P^1 \ P^2 \ P^3] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}.$

Solving for matrix P is sufficient, but you could alternatively take the slightly harder route and solve for

$$\bar{P} = P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
, where $\bar{P}^i = [\tilde{v}^i]_V$.

Problem 7:

(a) Noting that y^1, y^2 are linearly independent, we can use the Gram-Schmidt Process to find an orthogonal basis $\{v^1, v^2\}$ for M. This can be normalized to be orthonormal at each step of the process (as we do below), or all at the end.

First define the unit vector $v^1 = y^1/\sqrt{\langle y^1, y^1 \rangle} = y^1/\sqrt{4} = \begin{bmatrix} 1/2 & 0 \\ 0 & -1/2 \end{bmatrix}$.

Then define the unnormalized vector $\hat{v}^2 = y^2 - \frac{\langle y^2, v^1 \rangle}{\langle v^1, v^1 \rangle} v^1 = y^2 - \frac{-3/2}{1} v^1 = \begin{bmatrix} 3/4 & 1 \\ 1 & 1/4 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 3 & 4 \\ 4 & 1 \end{bmatrix}$.

Finally, normalize this vector to obtain $v^2 = \hat{v}^2/\sqrt{\langle \hat{v}^2, \hat{v}^2 \rangle} = \hat{v}^2/\sqrt{11/4} = \frac{1}{2\sqrt{11}}\begin{bmatrix} 3 & 4 \\ 4 & 1 \end{bmatrix}$.

(b) There are two straight-forward ways to solve this problem: 1) use the orthonormal basis from (a) to define the orthogonal projection operator from \mathcal{X} to M (noting that \hat{x} is the orthogonal projection of x onto M), or 2) use the Normal Equations to solve the optimization problem.

Solution 1: The orthogonal projection operator $P(x) := \langle x, v^1 \rangle v^1 + \langle x, v^2 \rangle v^2$, where $\langle x, v^1 \rangle = 0$ and $\langle x, v^2 \rangle = 4/\sqrt{11}$. Hence, $\hat{x} = P(x) = \frac{4}{11} \begin{bmatrix} 3/2 & 2 \\ 2 & 1/2 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 6 & 8 \\ 8 & 2 \end{bmatrix}$.

Solution 2: To use the normal equations, we define $G_{11} = \langle y^1, y^1 \rangle = 4$, $G_{12} = G_{21} = \langle y^1, y^2 \rangle = -3$, $G_{22} = \langle y^2, y^2 \rangle = 5$, $\beta_1 = \langle x, y^1 \rangle = 0$, $\beta_2 = \langle x, y^2 \rangle = 2$. Then $\alpha = G^{-1}\beta = \frac{1}{\det(G)}\begin{bmatrix} 5 & 3 \\ 3 & 4 \end{bmatrix}\begin{bmatrix} 0 \\ 2 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 6 \\ 8 \end{bmatrix}$.

Then
$$\alpha = G^{-1}\beta = \frac{1}{\det(G)} \begin{bmatrix} 5 & 3 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 6 \\ 8 \end{bmatrix}$$
.

Hence,
$$\hat{x} = \alpha_1 y^1 + \alpha_2 y^2 = \frac{1}{11} \begin{bmatrix} 6 & 0 \\ 0 & -6 \end{bmatrix} + \frac{1}{11} \begin{bmatrix} 0 & 8 \\ 8 & 8 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 6 & 8 \\ 8 & 2 \end{bmatrix}.$$

You could also define the normal equations using the orthonormal basis vectors and you would get the same answer.

Problem 8:

(a) Let's recall the definition of a real inner product:

- i) For all $x \in \mathcal{X}$, $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0 \iff x = 0$
- ii) For $x, y \in \mathcal{X}, \langle x, y \rangle = \langle y, x \rangle$
- iii) For all $\alpha, \beta \in \mathbb{R}$ and $x, y, z \in \mathcal{X}, \langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$

All we need is to show a counterexample to one of these properties to show that $\langle f, g \rangle_{\eta} := \int_{-2}^{2} f(t) \eta(t) g(t) dt$ is not a valid inner product on $(\mathcal{X}, \mathbb{R})$. For example, define

$$f(t) := \begin{cases} 0 & -2 \le t < 1\\ (t-1) & 1 \le t \le 2 \end{cases}.$$

Then, $f \in \mathcal{X}$ is a continuous function, f is not the zero function, but

$$< f, f>_{\eta} = \int_{-2}^{2} f(t)\eta(t)f(t) dt = \int_{-2}^{1} f(t)\eta(t)f(t) dt + \int_{1}^{2} f(t)\eta(t)f(t) dt = 0,$$

because the integrand of each integral is identically zero, by the definitions of f and η , respectively. Hence, we have the inner product of a non-zero function with itself being zero, which is not allowed by i) of the definition, giving us a counterexample.

Grading Notes:

- For this proposed inner product, all of the properties hold except $f \neq 0 \iff < f, f > > 0$
- If you got this correct, but your function was not continuous, meaning it was not in the given vector space, you earned 4.5 points.
- If you clearly understood that the property $f \neq 0 \iff \langle f, f \rangle > 0$ fails BUT either you did not provide a specific counterexample or your example was incorrect, then you earned 3.5 points.
- If you understood that a counterexample to one of the properties was needed, but you were working toward a counterexample to one of the other properties, you earned between 2 and 2.5 points, depending on the clarity of your work.
- A common error was to propose a function as a counterexample and then do the integral from -2 to +1 instead of -1 to +1 and arrive at a wrong conclusion.
- Another common error was to say that f = 0, |t| < 1 and f = |t|, |t| > 1 is a continuous function. There is, however, a jump from zero to 1 at $t = \pm 1$. But hey, in the chaos of an exam, as errors go, it's not a big one!

(b) We use standard induction and define for $n \ge 1$, P(n) to be the statement $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$.

Base Case: We check that P(1) is true: $\sum_{k=1}^{1} \frac{1}{k(k+1)} = \frac{1}{1(1+1)} = \frac{1}{1+1}$. Hence, the base case holds.

Induction Step: We show that if P(n) is true for some $n \ge 1$, then it is also true for n + 1. By the associative property of addition of real numbers, the left-hand side of P(n + 1) can be written

$$\sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \left(\sum_{k=1}^{n} \frac{1}{k(k+1)}\right) + \left(\frac{1}{(n+1)(n+1+1)}\right)$$

$$= \left(\frac{n}{n+1}\right) + \left(\frac{1}{(n+1)(n+1+1)}\right) \text{ where we used } P(n) \text{ is true}$$

$$= \left(\frac{n}{n+1}\right) \left(\frac{n+1+1}{n+1+1}\right) + \left(\frac{1}{(n+1)(n+1+1)}\right)$$

$$= \left(\frac{n^2 + 2n}{(n+1)(n+1+1)}\right) + \left(\frac{1}{(n+1)(n+1+1)}\right)$$

$$= \left(\frac{n^2 + 2n + 1}{(n+1)(n+1+1)}\right)$$

$$= \frac{(n+1)(n+1)}{(n+1)(n+1+1)}$$

$$= \frac{(n+1)}{(n+1) + 1} \text{ which equals the right-hand side of } P(n+1)$$

and therefore, P(n+1) holds. Hence, by the Principle of Induction, we deduce that P(n) is true for all $n \ge 1$.

Grading Notes:

- The absolute key to the problem is to clearly define the property being proved, to establish a base case, and then the induction step.
- A few of you said the base case was n=2 instead of n=1. If the remainder of the proof was rock solid, you earned 9 points.
- If you clearly and correctly delineated the base case and the induction step, but did not complete the algebra, such as not simplifying $\frac{1+n(n+2)}{(n+1)(n+2)} = \frac{n+1}{n+2}$, or not showing why $\frac{n}{n+1} + \frac{1}{(n+1)(n+2)} = \frac{n+1}{n+2}$, which is what you are trying to show once you substitute in from the induction step, then you earned between 7 and 8 points, depending on the clarity of your work.
- A clever proof that does not require induction: observe that for $k \geq 1$,

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

and hence we have a telescoping sum:

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= 1 - \frac{1}{n+1} = \frac{n}{n+1}$$