

Robot de peinture

1 - Présentation

(voir dessin d'ensemble)
Le mécanisme étudié est un système
qui vient se fixer au bout d'un bras
d'un robot de peinture. On accroche
un pistolet de peinture sur l'axe (12)
et un moteur électrique fait tourner
celui-ci.

Le système transforme le mouvement de rotation continu du moteur électrique en mouvement oscillant (rotation alternative). Il est possible de régler l'angle d'oscillation du pistolet en déplaçant l'ensemble (32+33).

2- Lecture de plan, modélisation des liaisons

- . le système est soumis au couple moteur Cm. \vec{z} en O
- . On considère que le système de réglage de l'angle d'oscillation de l'axe de sortie est fixé

2-1 Classes d'équivalence

1) Définir les 6 classes d'équivalence suivantes :

.Bâti : $C_0 = \{ 1, \}$

. Arbre d'entrée : $C_1 = \{ 34,$

. Bielle: C₂ = { 30, . Bielle: C₃ = { 23, . Bielle: C₄ = { 21,

.Arbre de sortie : $C_5 = \{ 12,$

2-2 Schéma cinématique à partir des mobilité apparentes

- 2)Déterminer la ou les "mobilité(s) apparente(s)entre les classes d'équivalence
- **3)** Définir une liaison cinématique normalisée (dénomination, centre et/ou axe de la liaison) pour chacune des interfaces entre les classes d'équivalence.
- **4)** Tracer le graphe des liaisons du système en indiquant le nom des liaisons ainsi que leur centre et leur axe principal
- 5) Compléter un premier schéma cinématique du système ci-dessous basé sur les mobilités apparentes

6) En déduire le degré d'hyperstatisme du mécanisme dans cette première modélisation Quelles sont les conséquences de ce degré d'hyperstatisme ?

2-3 Schéma cinématique à partir des mobilité réelles

- **7)**Déterminer la ou les "mobilité(s) réelle(s)entre les classes d'équivalence tenant compte de la géométrie réelle des pièces (longueurs de guidage ...)
- **8)** Définir une liaison cinématique normalisée (dénomination, centre et/ou axe de la liaison) pour chacune des interfaces entre les classes d'équivalence.
- (On étudiera particulièrement la géométrie des surfaces de liaison en B et en E)
- 9) Tracer le graphe des liaisons du système en indiquant le nom des liaisons ainsi que leur centre et leur axe principal
- 10) Compléter le second schéma cinématique du système ci-dessous basé sur les mobilités apparent

11) En déduire le degré d'hyperstatisme du mécanisme dans cette deuxième modélisation. Conclusions

On donne les caractéristiques :

- . Vitesse de rotation de l'arbre 34 : N = 60tr/min
- . Moteur : P = 250W
- . Dimensions principales :
- . $\overrightarrow{OA} = e.\overrightarrow{x_1}$ avec e=15 mm; $\overrightarrow{AB} = b.\overrightarrow{x_2}$ avec b=60 mm; $\overrightarrow{BC} = d_1.\overrightarrow{x}$ avec $d_1=65$ mm; $\overrightarrow{CD} = d_2.\overrightarrow{x}$ avec $d_2=60$ mm
- . Caractéristiques des coussinets en C : Voir document

3 - Détermination de la vitesse maximale dans la liaison pivot glissant (en C)

Le schéma cinématique partiel est donné ci-dessous. Pour les calculs d'efforts on pourra se placer dans la position où l'angle θ = 90° et l'angle β = 15°

- 12) Ecrire la fermeture géométrique du système.
- **13)** En déduire la valeur de $L(\theta)$ en fonction de θ , β , e, b.
- **14)** Si on admet que β est petit, montrer que $L(\theta) = b + e. \cos(\theta)$

3-1 Vitesse de la bielle (23)

15) En déduire la vitesse maximale de la bielle (BD) (23). *Application numérique*

4 - Vérification du dimensionnement de la liaison en C

On se place à angles constants : $\theta = 90^{\circ}$ et $\beta \approx 15^{\circ}$

Le torseur des efforts du guidage sur la bielle (BD) (23) en C vaut :

$$\left\{ \mathcal{T}_{(5\to23)} \right\} = \begin{cases} \vec{F}_{c(5\to23)} = F_{cz} \cdot \vec{z} \\ \vec{M}_{c(5\to23)} = \vec{0} \end{cases}$$

Le torseur des efforts de la bielle (21) sur la bielle (BD) (23) en D vaut :

$$\left\{ \mathcal{T}_{(21\to 23)} \right\} \; = \; \begin{cases} \vec{F}_{D(21\to 23)} \; = \; F_{Dx} \, . \, \overrightarrow{x} \; + \; F_{Dz} \, . \, \overrightarrow{z} \\ \vec{M}_{B(21\to 23)} \; = \; \vec{0} \end{cases}$$

4 -1 Calcul des actions mécaniques dans le système

- 16) Déterminer le couple moteur à P=250 W ainsi que l'effort correspondant en A
- 17) Isoler le système {bielle(AB)+bielle(BD)}, et faire le bilan des actions extérieures.
- 18) En déduire les efforts en C et D.

4-2 vérification des coussinets en C

Les coussinets sont de type autolubrifiant composite (voir document). Leurs dimensions sont : 12-14-20 La norme de l'effort transmis dans la liaison en C vaut F_{Cz} = 2224 N.

La vitesse en translation maxi dans la liaison en C est : v = 0,1 m/s

- 19) Calculer la norme de l'effort sur les coussinets. Application numérique.
- 20) En déduire la pression de contact dans les coussinets. Application numérique.
- 21) Vérifier le dimensionnement du coussinet. Est-il correct ?

5 - Dimensionnement des roulements(35)

On admettra dans la suite que la liaison en O_2 (roulement à billes) de 34/38 est linéaire annulaire d'axe \vec{y} et en O_1 (roulement à billes), une rotule.

Le torseur des efforts extérieurs du récepteur sur l'arbre moteur (34) vaut :

$$\left\{ \mathcal{T}_{(30 \to 34)} \right\} \; = \; \begin{cases} \vec{F}_{(30 \to 34)} \; = \; - \overrightarrow{F_{Ax}} \; . \; \vec{x} \; + \; \overrightarrow{F_{Ay}} \; . \; \vec{y} \; - \; \overrightarrow{F_{Az}} \; . \; \vec{z} \\ \vec{M}_{A(30 \to 34)} \; = \; \vec{0} \end{cases} \; \; \text{et} \left\{ \mathcal{T}_{(moteur \to 34)} \right\} \; = \; \begin{cases} \vec{F}_{(moteur \to 34)} \; = \; \vec{0} \\ \vec{M}_{O_3(moteur \to 34)} \; = \; C_m. \; \vec{y} \end{cases} \; \;$$

avec F_{Ax} = 2650 N , F_{Ay} = 0 N ; F_{Az} = 711 N ; C_m = 40 N.m ,

 $O_1O_2 = 30 \text{ mm et } O_1O_3 = 25 \text{ mm}$

22) Calculer les composantes des actions mécaniques transmises dans les roulements en O_1 et en O_2 . (On précisera l'ensemble isolé et on fera le bilan des actions mécaniques extérieures)

Pour la suite on prendra:

$$X_{O1} = 1767 \text{ N}; Y_{O1} = 0 \text{ N}; Z_{O1} = -474 \text{ N}; X_{O2} = 4417 \text{ N}; Y_{O2} = 0 \text{ N}; Z_{O2} = 1185 \text{ N};$$

- 23) En déduire les efforts radiaux et axiaux (F_{RO1}, F_{AO1}, F_{RO2}, F_{AO2}) au niveau des 2 roulements .
- 24) Calculer les charges équivalentes au centre des deux roulements.

Pour le roulement à billes (35) on a : C = 6900 N et $C_0 = 3100 \text{ N}$

Détermination de la charge équivalente P

	Valeurs des coefficients X et Y								
	Roulements à billes à contact radial								
$\operatorname{Si} \frac{F_A}{F_R} \le \operatorname{e} \operatorname{alors} P = F_R$ $\operatorname{Si} \frac{F_A}{F_R} \ge \operatorname{e} \operatorname{alors} P = 0.56.F_R + Y.F_A$									
	Les coefficients e et Y ci-dessus dépendent du rapport $\frac{F_A}{C_0}$ (voir ci-dessous)								
$\frac{F_A}{C_0}$	0.014	0.028	0.056	0.084	0.11	0.170	0.280	0.420	0.560
е	0.19	0.22	0.26	0.28	0.30	0.34	0.38	0.42	0.44
Υ	2.30	1.99	1.71	1.55	1.45	1.31	1.15	1.04	1.00

25) Quelle est alors la durée de vie des roulements ?

Nomenclature:

39	3	Vis		
38	1	Boîtier pour roulement	EN AW-2017	
37	1	Plaque	S235	
36	1	Serrure		
35	1	Roulement		
34	1	Arbre moteur	100Cr6	
33	1	Excentrique	C22	
32	1	Vis de réglage et blocage		
31	1	Bague autolubrifiante	CuSn12P	
30	1	Bielle	C45	
29	1	Bague autolubrifiante	CuSn12P	
28	1	Anneau élastique		
27	1	Axe	100Cr6	
26	1	Fourche	C45	
25	1	Goupille		
24	3	Vis		
23	1	Arbre intermédiaire		
22	1	Ecrou		
21	1	Arbre récepteur	C45	
20	1	Goupille		
19	1	Embout d'arbre	C45	
18	1	Bague autolubrifiante		Non représentée
17	3	Vis d'assemblage boîtier secondaire/Embout		Non représentées
16	1	Axe		
15	1	Plateau à excentrique		
14	1	Anneau élastique extérieur		
13	1	Anneau élastique intérieur		
12	1	Axe de sortie	100Cr6	
11	2	Bague autolubrifiante à collerette	CuSn12P	
10	1	Boîtier pour bagues	C45	
9	1	Ecrou		
8	1	Boîtier secondaire		
7	1	Embout arrière	EN AW-2017	(AU4G)
6	1	Tube	P A6-6	
5	2	Bague autolubrifiante	CuSn12P	
4	1	Embout avant	EN AW-2017	(AU4G)
3	1	Palier	EN AW-2017	(AU4G)
2	1	Boîtier principal	AS13	
1	1	Couvercle	AS13	
Rep	Nbre	Désignation	Matière	Observation

ROBOT DE PEINTURE

63.2 Coussinets autolubrifiants composites

NF E 22-511 - ISO 3547

d	D	L	f	d	D	L	f
3	4,5	3-5-6	W	20	22	10-15-20-25-30	
4	5,5	4-6-10		22	25	15-20-25-30	6,3
5	7	5-8-10		25	28	15-20-25-30	0,8 ± 0
6	8	6-8-10		28	32	20-25-30	8,0
8	10	6-8-10-12	6,3	30	34	15-20-25-30-40	
10	12	8-10-12-15-20	0,8 ± 0	32	36	20-30-40	
12	14	8-10-12-15-20-25	9,0	35	39	20-30-40-50	
14	16	10-12-15-20-25		40	44	20-30-40-50	0,4
15	17	10-12-15-20-25		45	50	20-30-40-50	1,2 ± 0,4
16	18	10-12-15-20-25		50	55	20-30-40-60	
18	20	15-20-25		55	60	30-40-60	

	1	20° ± 5°	R 1 ± 0,5
+		$rac{1}{2}$	<u> </u>
+		- p d -	7
D alésage (H7)		e	D alésage (H7)
alésa			alésae
ы	PTFE'		Acier

	Coussinets a collerette PIFE								
d	D	D ₁	е	L	d	D	D ₁	e	1
6	8	12	1	4-8	16	18	24	1	12-17
8	10	15	1	5,5-7,5-9,5	18	20	26	1	12-17-22
10	12	18	1	7-9-12-17	20	23	30	1,5	11,5-15-16,5-21,5
12	14	20	1	7-9-12-15-17	25	28	35	1,5	11,5-16,5-21,5
14	16	22	1	12-17	30	34	42	2	16-26
15	17	23	1	9-12-17	35	39	47	2	16-26

 Dureté
 HB ≥ 300

 Arbre
 Tolérance
 f7

 État de surface
 Ra ≤ 0,4

Ces coussinets sont constitués d'un support en tôle d'acier roulée revêtue de cuivre sur laquelle est frittée une couche poreuse de bronze et dans laquelle s'incruste la couche frottante en polytétrafluoréthylène (PTFE). Ces coussinets se fabriquent également en acier inoxydable.

Facteur de frottement $\mu=0.03$ à 0,25. Lubrification non nécessaire. Température d'emploi de -200 °C à +250 °C. Vitesse maximale de glissement ; 2 m/s.

EXEMPLE DE DÉSIGNATION:

Coussinet cylindrique composite PTFE, d × D × L ISO:

Détermination d'un coussinet

La détermination s'effectue à l'aide de l'abaque ci-contre. Le principe de calcul est analogue à celui des coussinets frittés (§ 63.11)

63.3 Coussinets en polyamide PTFE

d	D	L	f	d	D	L	f
8	10	8-10		16	18	15-20	
10	12	10-12-15	2	20	23	15-20	0,8 ± 0,3
12	14	10-12-15	0,8 ± 0	25	28	15-20	80
14	16	15-20	8,0	30	34	20-30	
15	17	15-20		-	12	2	100

	Coussinets à collerette PTFE									
d	D	D ₁	е	7-12 9-12 12-17 12-17	d	D	D ₁	е	L	
10	12	18	1	7-12	16	18	24	1	17	
12	14	20	1	9-12	20	23	30	1,5	11,5-21,5	
14	16	22	1	12-17	25	28	35	1,5	11,5-21,5	
15	17	23	1	12-17	1-1	-	-	-	-	

Charge dynamique à V < 0,01 m/s : 40 MPa. Vitesse de glissement admissible : 1 m/s.

Les coussinets en PTFE massif sont relativement économiques. La lubrification n'est pas nécessaire. Ils présentent une très bonne isolation électrique.

	Dureté	HB ≥ 100
Arbre	Tolérance	h8
	État de surface	Ra ≤ 0,8

EXEMPLE DE DÉSIGNATION :

Coussinet cylindrique polyamide PTFE, d x D x L

