

Lastenheft zum Laborprojekt C - Zwei-Gelenk-Roboter:

Zur Modellbildung und Simulation eines Zwei-Gelenk-Roboters wird der Roboter als Doppelpendel betrachtet.

Hinweis:

- Aufgrund des hohen Rechenaufwands wird in diesem Laborprojekt keine Linearisierung oder Eigenwertberechnung vorgenommen.
- Verwenden Sie den Simulink-Solver <code>ode23tb</code> in der Standardkonfiguration und ändern den Parameter Relative Tolerance von auto auf 10^{-6} . Dieser Solver ist für die steife, chaotische Dynamik des Systems geeignet. Andere Simulink-Solver lösen die Modellgleichungen nicht korrekt.

Modellannahmen

- Die Roboterarme sind masselos.
- Die Massen konzentrieren sich in den Antriebsmotoren und am Greifer.
- Die Robotergelenke sind reibungslos.
- Der Roboter wird angetrieben durch zwei Elektromotoren jeweils in der Schulter und im Ellenbogen, die die Drehmomente u_1 und u_2 erzeugen.

Dynamisches Modell

Die Bewegungsgleichungen sind gegeben als:

Leiten Sie diese Bewegungsgleichungen mit Hilfe der Lagrange-Gleichungen 2. Art her (siehe Vorlesung Modellbildung). Vgl. Abschnitt 5.3.8 in (Woernle, 2011) für eine Herleitung der Bewegungsgleichungen eines Doppelpendels ohne Antrieb. Bestimmen Sie die stationäre Gleichungen der Ruhelage für \bar{u}_1 und \bar{u}_2 .

Hinweis zur Herleitung des Zustandsraummodells:

• Es ist eine analytische, symbolische Invertierung der Massenmatrix $M(\varphi, \dot{\varphi})$ notwendig. **Systemvariablen im Zustandsraummodell** Das System hat folgende Eingangssignale:

$$\begin{split} \underbrace{\begin{pmatrix} (m_1+m_2)l_1^2 & m_2l_1l_2\cos\left(\varphi_1-\varphi_2\right) \\ m_2l_1l_2\cos\left(\varphi_1-\varphi_2\right) & m_2l_2^2 \end{pmatrix}}_{\mathbf{M}(\varphi,\varphi)} \cdot \begin{pmatrix} \ddot{\varphi_1} \\ \ddot{\varphi_2} \end{pmatrix} + \underbrace{\begin{pmatrix} m_2l_1l_2\sin(\varphi_1-\varphi_2)\,\dot{\varphi}_2^2 \\ -m_2l_1l_2\sin(\varphi_1-\varphi_2)\,\dot{\varphi}_1^2 \end{pmatrix}}_{\mathbf{D}(\varphi,\varphi)} \\ + \underbrace{\begin{pmatrix} (m_1+m_2)gl_1\sin\varphi_1 \\ m_2gl_2\sin\varphi_2 \end{pmatrix}}_{\mathbf{K}(\varphi)} = \underbrace{\begin{pmatrix} u_1-u_2 \\ u_2 \end{pmatrix}}_{\mathbf{F}(u)} ; t > 0 \\ \varphi_1(0) = \pi \,, \varphi_2(0) = \frac{\pi}{2}, \dot{\varphi}_1(0) = \dot{\varphi}_2(0) = 0 \end{split}$$

Eingangssignal	Symbol	Simulink	Einheit
Drehmoment durch Schulter-Antrieb	u_1	u1	Nm
Drehmoment durch Ellbogen-Antrieb	u_2	u2	Nm

Verwenden Sie folgenden Zustandsvektor in der Zustandsraumdarstellung des Modells:

Zustandsvariable	Symbol	Simulink	Einheit	Anfangswert
Winkel des Oberarms	$x_1 = \varphi_1$	x(1)	rad	π
Winkel des Unterarms	$x_2 = \varphi_2$	x(2)	rad	$\frac{\pi}{2}$
Winkelgeschwindigkeit des Oberarms	$x_3 = \dot{\varphi}_1$	x(3)	$\frac{rad}{s}$	$0\frac{rad}{s}$
Winkelgeschwindigkeit des Unterarms	$x_4 = \dot{\varphi}_2$	x (4)	$\frac{rad}{s}$	$0\frac{rad}{s}$

Der Ausgangsvektor y entspricht dem Zustandsvektor x.

Aufgabe zur Vorabgabe

- Für eine erfolgreiche Modellierung in Simulink muss die Massenmatrix invertierbar sein. Zeigen Sie, dass die Massenmatrix unabhängig von den Zustandsgrößen oder der Parameter Festlegung invertierbar ist.
- Bestimmen Sie allgemein die stationären Gleichungen des Systems.
- Zur späteren Regelung und Bahnplanung des Roboterarms wird folgende stationäre Gleichung $\bar{\varphi}_1=f_s(\bar{\varphi}_2)$ mit der Vorgabe $\bar{u}_2=\beta\bar{u}_1$ benötigt. Bestimmen Sie diese aus den stationären Gleichungen.

Modellierung in Simulink

Folgende Parameter werden für das Modell benötigt:

Lastenheft Laborprojekt C: Zwei-Gelenk-Roboter


```
%% Robot
P_m1 = 10; % elbow motor mass [ kg ]
P_m2 = 10; % robot load mass [ kg ]
P_l1 = 0.8; % upper arm length [ m ];
P_l2 = 0.7; % lower arm length [ m ];
P_g = 9.81;% gravity [ m/s^2 ]
```

Computervisualisierung (Animation)

Der Roboter soll während der laufenden Simulink-Simulation grafisch in einem MATLAB-Figure animiert werden. Die Animation soll folgende Objekte grafisch darstellen:

- Oberarm des Roboters
- Unterarm der Roboters

Verwenden Sie den Simulink-Block Real-Time-Pacer zur Simulation und Animation in Realzeit, siehe Kap. 2 Allgemeine Aufgabenstellung.