# 14. Looping Pendulum

Kedar Krishnan

#### Interpretation of Task

Connect two loads, one heavy and one light, with a string over a horizontal rod and lift up the heavy load by pulling down the light one. Release the light load and it will sweep around the rod, keeping the heavy load from falling to the ground. Investigate this phenomenon.

Build a Explain the Investigate Looping ——→ phenomenon——→ relevant Pendulum parameters

#### Phenomenon

Connect two loads, one heavy and one light, with a string over a horizontal rod and lift up the heavy load by pulling down the light one. Release the light load and it will sweep around the rod, keeping the heavy load from falling to the ground. Investigate this phenomenon.



# The Theory

### **Basic Forces**







### **Frictional Forces**





- Angle of Contact (**0**)
- Coefficient of Kinetic Friction  $(\mu)$

### Theoretical Model

#### The Two Phases

- Heavier Weight moves downwards
- Lighter Weight increases angular velocity
- Radius of string attached to lighter weight decreasing parabolically



- Heavier Weight stops moving
- Lighter Weight continues to increase angular velocity
- Radius of String decreases
   linearly forming an Archimedes
   Spiral

#### First Phase

- Angular Velocity of the lighter weight increases
- Angle of Contact increases
- Tension of the heavy weight increases



## **Capstan Equation**

$$T_{H} = T_{L} * e^{\mu \theta}$$





Friction  $(\mu)$ 

- Angle of Contact  $(oldsymbol{ heta})$
- Coefficient of Kinetic

Derivation

#### **Theoretical Model**





### Theoretical Model (pt.2)





### Theoretical Model (completed)

$$\Delta d = 0.5(\frac{F_{g,H}-T_H}{m_H})(\Delta t)^2$$

$$F_{g,H} = e^{\mu\theta} ((\frac{(0.49)sin^2(\theta)}{r})(\Delta t)^2 - F_{g,L}cos(\theta))$$



# **Experimental Method**

#### **Materials Used**







Weights



Stand with Axel

#### **Experimental Setup**

Parameters Manipulated:

- Angle of Release
- Length of the string
- Ratio of Weights



$$0^{\circ} \rightarrow 90^{\circ}$$

# Angle of Release



Angular Velocity
$$F_{g,H} = e^{\mu \theta} \left( \left( \frac{(0.49)sin^2 \theta}{r} \right) (\Delta t)^2 - F_{g,L} cos(\theta) \right)$$

$$\Delta d = 0.5(\frac{F_{g,H} - T_H}{m_H})(\Delta t)^2$$

### Effect of Angle of Release on Heavy Weight Displacement



#### Effect of Angle of Release on Angular Displacement (Velocity)



10cm → 80cm

# Length of String



Angular Velocity 
$$F_{g,H} = e^{\mu\theta} \left( \left( \frac{(0.49)sin^2(\theta)}{r} \right) (\Delta t)^2 - F_{g,L}cos(\theta) \right)$$

$$\Delta d = 0.5(\frac{F_{g,H}-T_H}{m_H})(\Delta t)^2$$

### **Effect of String Length on Heavy Weight Displacement**



### **Effect of String Length on Angular Displacement (Velocity)**



Time (s)

# Ratio of Weights



Angular Velocity
$$F_{g,H} = e^{\mu\theta} \left( \left( \frac{(0.49)sin^2(\theta)}{r} \right) (\Delta t)^2 - F_{g,L}cos(\theta) \right)$$

$$\Delta d = 0.5(\frac{F_{g,H}-T_H}{m_H})(\Delta t)^2$$

\_\_\_

### Effect of Weight Ratios on Heavy Weight Displacement



### Effect of Weight Ratios on Angular Displacement (Velocity)



## Conclusion

#### **Conclusion**

- There are two phases of the motion:
  - Non-linear string length decrease
  - Linear string length decrease

 The distance the heavy load moves can be expressed using <u>time</u>, the <u>angle of release</u>, the <u>length of the string</u> and the <u>friction coefficient</u>, and the two <u>weights</u>

• The ideal values for stopping the heavier weights acceleration earlier are 90°, 1:6 ratio, and 30cm string length

### **Additional Resources**

### **Derivation of Capstan Equation**

$$F = T_L \sin(\phi)$$



$$F = T_L d\phi$$
  $\lim_{\phi \to 0} \sin(d\phi) = d\phi$   $T_H = T_L$ 

$$\mu F = \mu T_L d\phi$$

### **Derivation of Capstan Equation**

$$dT = \mu T_L d\phi$$

$$\frac{1}{T}dT = \mu d\phi$$

$$\int_{T_L}^{T_H} \frac{1}{T} dT = \int_{0}^{\phi} \mu d\phi$$

$$ln(T_H) - ln(T_L) = \mu \phi$$



$$ln(\frac{T_H}{T_I}) = \mu \Phi$$

$$T_H = T_L e^{\mu \phi}$$