Topic 02 Digital Representation

RECAP SUMMARY

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	Н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	T
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	/	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	\	124	7C	
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	_	127	7F	[DEL]

ASCII Table

Stores only 128 Characters

Most are words in English

Unicode to replace ASCII code

- So that European, Cyrillic, Chinese Mandarin can be stored
- Allows computers to used by people of different languages

Decimal (Base 10)

Radix	10	10	10	10
Position In	3	2	1	0
Calculate	10 ³	10 ²	10 ¹	10 ⁰
Positional Value	1000	100	10	1

People use the **denary** (or decimal) number system in their day-to-day lives. This system has 10 digits that we can use: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.

1234

	Thousands	Hundreds	Tens	Ones
Positional Value	1000	100	10	1
Decimal Number	1	2	3	4
Calculate	1×1000	2x100	3x10	4x1
Add them	1000	+200	+30	+4
Result		1234		

4321

	Thousands	Hundreds	Tens	Ones
Positional Value	1000	100	10	1
Decimal Number	4	3	2	1
Calculate	4x1000	3x100	2x10	1x1
Add them	4000	+300	+20	+1
Result		4321	•	

Binary (Base 2)

Simply a string of 0's and 1's

- For example, 4-bit binary code could look like 0001
- Each digit in the code links to a set value determined
- Starting from right and moving to the left, taking the number 1 and then doubling as you move along to the next slot (1, 2, 4, 8, 16, and so on)

Decimal Digit Value	256	128	64	32	16	8	4	2	1
Binary Digit Value	1	o	1	1	o	0	1	0	1

By adding together ALL the decimal number values from right to left at the positions that are represented by a "1" gives

us: $(256) + (64) + (32) + (4) + (1) = 357_{10}$ or three hundred and fifty seven as a decimal number.

Convert decimal numbers to binary

Converting the number 19 to binary

• The procedure is to keep dividing the number by 2, and keeping track of the remainder until we get 0 as a result of the division. Then read the remainder values in reverse order

Division	Quotient	Remainder	Value	
19 / 2	9	1	2 ⁰	LSB
9/2	4	1	2 ¹	
4/2	2	0	2 ²	
2/2	1	0	2 ³	
1/2	0	1	24	→ MSB

Answer: <u>19 is 10011 binary</u>

Convert decimal numbers to binary

Converting the number 19 to binary

• The procedure is to keep dividing the number by 2, and keeping track of the remainder until we get 0 as a result of the division. Then read the remainder values in reverse order

Division	Quotient	Remainder	Value	
19 / 2	9	1	2 ⁰	LSB
9/2	4	1	2 ¹	
4/2	2	0	2 ²	
2/2	1	0	2 ³	
1/2	0	1	24	→ MSB

Answer: <u>19 is 10011 binary</u>

Number Representation - Unsigned

Unsigned numbers used for Memory address, cluster number (file system) and process identifier (PID).

If there are N bits in the binary number, the range of the number is: 2^N-

- 1. Assume 4 bits: $2^4 1 = 16 1 = 15$
 - Range for 8 bits: 28 1 = 256 1 = 255

Number Representation (Hexadecimal to Decimal)

Hexadecimal (Base 16):

 $H = h_3 h_2 h_1 h_0$ (h = hexadecimal ranging from 0 to 9, A to F)

If $h_i = 1$, then 16^i is added into the sum that determines the value of H. For values > 9, we use A,B,C,D,E,F to represent digits up to 15.

Let's assume that H = A 2 F 7

Binary	Hex	Decimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	A	10
1011	В	11
1100	С	12
1101	D	13
1110	E	14
1111	F	15

Notation for binary, hexadecimal and decimal (summary)

Binary (base 2)

- 10101111₂
- 10101111

Hexadecimal (base 16)

- ° AF₁₆
- OxAF

Decimal (base 10)

175

Number Representation -Signed

There are three ways to represent signed integers:

Sign and magnitude

1's complement

2's complement

В	,	Values represented	
$b_3 b_2 b_1 b_0$	Sign and magnitude	1's complement	2's complement
0 1 1 1	+ 7	+ 7	+ 7
0 1 1 0	+ 6	+6	+ 6
0 1 0 1	+ 5	+ 5	+ 5
0 1 0 0	+ 4	+ 4	+ 4
0 0 1 1	+ 3	+ 3	+ 3
0 0 1 0	+ 2	+ 2	+ 2
0 0 0 1	+ 1	+ 1	+ 1
0 0 0 0	+ 0	+ 0	+ 0
1 0 0 0	-0	-7	- 8
1 0 0 1	– 1	-6	-7
1 0 1 0	-2	-5	-6
1 0 1 1	-3	-4	-5
1 1 0 0	-4	-3	-4
1 1 0 1	-5	-2	- 3
1 1 1 0	-6	– 1	-2
1 1 1 1	-7	-0	– 1

Number Representation - Signed

Notation for binary, hexadecimal and decimal (summary)

Positive values have identical representations in all systems.

Negative numbers have different representations

- **Sign-and-magnitude**: negative values are represented by changing the most significant bit (b3).
- 1's-complement: negative values are obtained by complementing each bit of the corresponding positive number.
- **2's-complement**: obtain by forming bit complement of that number, then add 1.

2's-complement integers

2's-complement representation is used in current computers

Consider a four-bit signed integer example, where the value +5 is represented as:

0101

To form the value -5, complement all bits of

0101 to obtain

1010 (1's-complement)

and then add 1 to obtain

1 0 1 1 (2's-complement)

2's-Complement

2's-complement system is the most efficient way to carry out addition and subtraction operations.

It is the most often used in modern computers

Using 1's complement	Using 2's co	mplement
1100 (-3)	1101	(-3)
+ 1101 (-2)	+ 1110	(-2)
1001 (-6)	1011	(-5)

Overflow check needed Ignore overflow

Addition

There are four rules that need to be followed when adding two binary numbers.

$$0 + 0 = 0$$

$$01 + 0 = 1$$

$$\circ$$
 1 + 1 + 1 = 11 (binary for 3)

Two examples of adding four-bit numbers:

0001	+1	0100	+4	
+ 0101	+5	+ 1010	-6	
0110	+6	1110	-2	

Subtraction

Form the 2's-complement of the subtrahend (the bottom value) and then perform normal addition

This operation is done in exactly the same manner for both positive and negative numbers

Overflow

Overflow occurs when the answer does not fit in the number range

$$0110 +6$$
 $1110 -2$
 $+ {}^{1}0101 +5$ $+ {}^{1}1001 -7$
 $1011 +11 0111 -9$

The answers are incorrect!

- For signed integers, the leftmost bit is used to indicate the sign:
 - 0 for positive
 - 1 for negative
- Range: -2^{n-1} to $+2^{n-1}-1$
 - 4 bits: -8 to 7 (-2 3 to 2 3 -1) , 8 bits: -128 to 127 (-2 7 to 2 7 -1)

Sign extension

Replicate the sign bit to extend 4-bit signed integers to 8-bit signed integers

