

FCC Test Report

FCC ID : XU8TEW821DAP

Equipment : AC1200 Dual Band PoE Access Point

Model No. : TEW-821DAP

Brand Name : TRENDnet

Applicant : TRENDnet, Inc.

Address : 20675 Manhattan Place, Torrance, CA 90501,

USA

Standard : 47 CFR FCC Part 15.407

Received Date : Jan. 26, 2015

Tested Date : Jan. 27 ~ May 06, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Iac-MRA

Report No.: FR512802AN Report Version: Rev. 01 Page: 1 of 81

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	10
1.5	Testing Applied Standards	11
1.6	Measurement Uncertainty	11
2	TEST CONFIGURATION	12
2.1	Testing Condition	12
2.2	The Worst Test Modes and Channel Details	
3	TRANSMITTER TEST RESULTS	14
3.1	Conducted Emissions	14
3.2	Emission Bandwidth	23
3.3	RF Output Power	26
3.4	Peak Power Spectral Density	28
3.5	Transmitter Radiated and Band Edge Emissions	32
3.6	Frequency Stability	
4	TEST LABORATORY INFORMATION	81

Release Record

Report No.	Version	Description	Issued Date
FR512802AN	Rev. 01	Initial issue	Jul. 30, 2015

Report No.: FR512802AN Page: 3 of 81

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.266MHz 46.10 (Margin -5.15dB) - AV	Pass
15.407(b) 15.209	Radiated Emissions	[dBuV/m at 3m]: 5150.00MHz 52.99 (Margin -1.01dB) - AV	Pass
15.407(a)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(e)	6dB bandwidth	Meet the requirement of limit	Pass
15.407(a)	RF Output Power	Max Power [dBm]: 5150-5250MHz: 27.48 5725-5850MHz: 26.81	Pass
15.407(a)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR512802AN Page: 4 of 81

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS
5150-5250	а	5180-5240	36-48 [4]	2	6-54 Mbps
5150-5250	n (HT20)	5180-5240	36-48 [4]	2	MCS 0-15
5150-5250	n (HT40)	5190-5230	38-46 [2]	2	MCS 0-15
5150-5250	ac (VHT20)	5180-5240	36-48 [4]	2	MCS 0-9
5150-5250	ac (VHT40)	5190-5230	38-46 [2]	2	MCS 0-9
5150-5250	ac (VHT80)	5210	42 [1]	2	MCS 0-9

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n/ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.

RF General Information					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊤x})	Data Rate / MCS
5725-5850	а	5745-5825	149-165 [5]	2	6-54 Mbps
5725-5850	n (HT20)	5745-5825	149-165 [5]	2	MCS 0-15
5725-5850	n (HT40)	5755-5795	151-159 [2]	2	MCS 0-15
5725-5850	ac (VHT20)	5745-5825	149-165 [5]	2	MCS 0-9
5725-5850	ac (VHT40)	5755-5795	151-159 [2]	2	MCS 0-9
5725-5850	ac (VHT80)	5775	155 [1]	2	MCS 0-9

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n/ac uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.

1.1.2 Antenna Details

Ant. No.	Type	Connector	Operating Frequ	quencies (MHz) / Antenna Gain (dBi)		
AIII. NO.	туре	Connector	2400~2483.5	5150~5250	5725~5850	
1	PIFA	N/A	4	4	4	

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	12Vdc from adapter 48-57Vdc from POE (for support unit only)
-------------------	---

Report No.: FR512802AN Page: 5 of 81

1.1.4 Accessories

	Accessories					
No.	Equipment	Description				
1	AC adapter 1	Brand Name: CWT Model Name: 2AAJ012F US Power Rating: I/P: 100-240Vac, 50-60Hz, 0.35A O/P: 12.0Vdc, 1.0A DC 1.23m non-shielded cable without core				
2	AC adapter 2	Brand Name: AMIGO Model Name: AMS9-1201000FU2 Power Rating: I/P: 100-240Vac, 50-60Hz, 0.5A O/P: 12.0Vdc, 1.0A DC 1.25m non-shielded cable without core				
3	AC adapter 3	Brand Name: AMIGO Model Name: AMS135-1201000FU Power Rating: I/P: 100-240Vac, 50-60Hz, 0.5A O/P: 12.0Vdc, 1.0A DC 1.22m non-shielded cable without core				

1.1.5 Channel List

For Frequency band 5150-5250 MHz				
802.11 a / H	T20 / VHT20	HT40 /	VHT40	
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
36	5180	38	5190	
40	5200	46	5230	
44	5220	VHT 80		
48	5240	42	5210	

For Frequency band 5725~5850 MHz				
802.11 a / HT20 / VHT20		HT40 /	VHT40	
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
149	5745	151	5755	
153	5765	159	5795	
157	5785	VH	T80	
161	5805	155	5775	
165	5825			

Report No.: FR512802AN Page: 6 of 81

1.1.6 Test Tool and Duty Cycle

Test Tool	ART2-GUI. Version: 2.3				
	Mode	Duty cycle (%)	Duty factor (dB)		
	11a	98.24%	0.08		
Duty Cycle and Duty Factor	VHT20	98.12%	0.08		
	VHT40	93.63%	0.29		
	VHT80	87.22%	0.59		

1.1.7 Power Setting

F	For Frequency band 5150-5250 MHz				
Modulation Mode	Test Frequency (MHz)	Power Set			
11a	5180	24			
11a	5200	26			
11a	5240	26			
HT20	5180	23			
HT20	5200	26			
HT20	5240	26			
HT40	5190	17			
HT40	5230	26			
VHT20	5180	23			
VHT20	5200	26			
VHT20	5240	26			
VHT40	5190	17			
VHT40	5230	26			
VHT80	5210	15			

Report No.: FR512802AN Page: 7 of 81

	For Frequency band 5725~5850 MHz					
Modulation Mode	Test Frequency (MHz)	Power Set				
11a	5745	23.5				
11a	5785	26				
11a	5825	26				
HT20	5745	23.5				
HT20	5785	26				
HT20	5825	26				
HT40	5755	19.0				
HT40	5795	26.0				
VHT20	5745	23.5				
VHT20	5785	26				
VHT20	5825	26				
VHT40	5755	19.0				
VHT40	5795	26.0				
VHT80	5775	16.5				

1.2 Local Support Equipment List

Support Equipment List							
No. Equipment Brand Model FCC ID Signal cable / Length (n							
1	Notebook	DELL	Latitude E6430	DoC	RJ45, 10m non-shielded cable w/o core.		
2	POE	Allied Telesis	AT-GS950/10PS		RJ45, 1m non-shielded cable w/o core.		

Note: No.2 was provided by applicant.

Report No.: FR512802AN Page: 8 of 81

1.3 Test Setup Chart

Report No.: FR512802AN Page: 9 of 81

1.4 The Equipment List

Test Item	Conducted Emission	Conducted Emission							
Test Site	Conduction room 1 / ((CO01-WS)							
Test Date	Feb. 09 ~ May 06, 20	15							
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration Date Calibration Until							
EMC Receiver	R&S	ESCS 30	100169	Oct. 17, 2014	Oct. 16, 2015				
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 17, 2014	Nov. 16, 2015				
RF Cable-CON	Woken CFD200-NL CFD200-NL-001 Dec. 31, 2014 Dec. 30, 2015								
Measurement Software	"" I ALIDIX I E3 I 6.120210k I NA I NA I								
	Software AUDIA es 6.120210k NA								

Test Item	Radiated Emission							
Test Site	966 chamber 3 / (030	CH03-WS)						
Tested Date	Jan. 27 ~ Jan. 28, 2015							
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration Date Calibration Until						
Spectrum Analyzer	Agilent	N9010A	MY53400091	Sep. 16, 2014	Sep. 15, 2015			
Receiver	Agilent	N9038A	MY53290044	Oct. 21, 2014	Oct. 20, 2015			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-562	Jan. 19, 2015	Jan. 18, 2016			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 20, 2014	Feb. 19, 2015			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 10, 2014	Nov. 09, 2015			
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 10, 2014	Nov. 09, 2015			
Preamplifier	EMC	EMC02325	980187	Sep. 26, 2014	Sep. 25, 2015			
Preamplifier	Agilent	83017A	MY53270014	Sep. 17, 2014	Sep. 16, 2015			
Preamplifier	EMC	EMC184045B	980192	Aug. 26, 2014	Aug. 25, 2015			
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Feb. 19, 2014	Feb. 18, 2015			
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY22601/4	Feb. 19, 2014	Feb. 18, 2015			
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Feb. 19, 2014	Feb. 18, 2015			
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800-001	Feb. 17, 2014	Feb. 16, 2015			
LF cable-3M	EMC	EMC8D-NM-NM-3000	131103	Feb. 17, 2014	Feb. 16, 2015			
LF cable-13M	EMC	EMC8D-NM-NM-13000	131104	Feb. 17, 2014	Feb. 16, 2015			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Note: Calibration Int	erval of instruments lis	sted above is one year.						

Report No.: FR512802AN Page: 10 of 81

Test Item	RF Conducted								
Test Site	(TH01-WS)	(TH01-WS)							
Tested Date	Feb. 06, 2015								
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until				
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016				
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Dec. 03, 2014	Dec. 02, 2015				
Power Meter	Anritsu	ML2495A	1241002	Sep. 29, 2014	Sep. 28, 2015				
Power Sensor	Anritsu	MA2411B	1207366	Sep. 29, 2014	Sep. 28, 2015				
Measurement Software	Sporton Sporton_1 1.3.30 NA NA								
Note: Calibration Inter	rval of instruments liste	d above is one year.							

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407

ANSI C63.10-2009

FCC 789033 D02 General UNII Test Procedures New Rules v01

FCC KDB 644545 D03 Guidance for IEEE 802 11ac New Rules v01

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

FCC KDB 412172 D01 Determining ERP and EIRP v01

Note: FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 02, 2014.

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Parameters	Uncertainty				
Bandwidth	±34.134 Hz				
Conducted power	±0.808 dB				
Frequency error	±34.134 Hz				
Power density	±0.463 dB				
Conducted emission	±2.670 dB				
AC conducted emission	±2.92 dB				
Radiated emission ≤ 1GHz	±3.99 dB				
Radiated emission > 1GHz	±5.52 dB				
Time	±0.1%				
Temperature	±0.6 °C				

Report No.: FR512802AN Page: 11 of 81

2 Test Configuration

2.1 Testing Condition

Test Item	Test Item Test Site		Tested By
AC Conduction	CO01-WS	15-20°C / 62-68%	Peter Lin
Radiated Emissions	03CH03-WS	20-22°C / 63-64%	Anderson Hung
RF Conducted	TH01-WS	20°C / 65%	Brad Wu

➤ FCC site registration No.: 390588➤ IC site registration No.: 10807C-1

2.2 The Worst Test Modes and Channel Details

For Frequency band 5150-5250 MHz							
Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration				
11a	5200	6 Mbps	1, 2				
11a	5200	6 Mbps	1, 2				
11a	5180 / 5200 / 5240	6 Mbps					
HT20	5180 / 5200 / 5240	MCS 0					
HT40	5190 / 5230	MCS 0	1				
VHT20	5180 / 5200 / 5240	MCS 0					
VHT40	5190 / 5230	MCS 0					
VHT80	5210	MCS 0					
11a	5180 / 5200 / 5240	6 Mbps					
VHT20	5180 / 5200 / 5240	MCS 0					
VHT40	5190 / 5230	MCS 0	1				
VHT80	5210	MCS 0					
Un-modulation	5200						
	Modulation Mode 11a 11a 11a 11a HT20 HT40 VHT20 VHT40 VHT80 11a VHT20 VHT80 VHT80	Modulation Mode Test Frequency (MHz) 11a 5200 11a 5200 11a 5180 / 5200 / 5240 HT20 5180 / 5200 / 5240 HT40 5190 / 5230 VHT20 5180 / 5200 / 5240 VHT40 5190 / 5230 VHT80 5210 11a 5180 / 5200 / 5240 VHT40 5190 / 5230 VHT40 5190 / 5230 VHT40 5190 / 5230 VHT80 5210	Modulation Mode Test Frequency (MHz) Data Rate (Mbps) / MCS 11a 5200 6 Mbps 11a 5200 6 Mbps 11a 5180 / 5200 / 5240 6 Mbps HT20 5180 / 5200 / 5240 MCS 0 HT40 5190 / 5230 MCS 0 VHT20 5180 / 5200 / 5240 MCS 0 VHT40 5190 / 5230 MCS 0 VHT80 5210 MCS 0 VHT20 5180 / 5200 / 5240 MCS 0 VHT20 5180 / 5200 / 5240 MCS 0 VHT40 5190 / 5230 MCS 0 VHT40 5190 / 5230 MCS 0 VHT80 5210 MCS 0				

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.
- Adapter 1, Adapter 2 and Adapter 3 had been pretested and found that Adapter 3 was the worst case and was selected for final testing. (Adapter 1: 2AAJ012F US; Adapter 2: AMS9-1201000FU2; Adapter 3: AMS135-1201000FU).
- 3. Test configurations are listed as below:
 - 1) Configuration 1: Adapter mode.
 - 2) Configuration 2: POE mode.

Report No.: FR512802AN Page: 12 of 81

For Frequency band 5725-5850 MHz							
Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration			
Conducted Emissions	11a	5785	6 Mbps	1, 2			
Radiated Emissions ≤1GHz	11a	5785	6 Mbps	1, 2			
	11a	5745 / 5785 / 5825	6 Mbps				
	HT20	5745 / 5785 / 5825	MCS 0				
RF Output Power	HT40	5755 / 5795	MCS 0	1			
The Guiput's ower	VHT20	5745 / 5785 / 5825	MCS 0	1			
	VHT40	5755 / 5795	MCS 0				
	VHT80	5775	MCS 0				
Radiated Emissions >1GHz	11a	5745 / 5785 / 5825	6 Mbps				
Emission Bandwidth	VHT20	5745 / 5785 / 5825	MCS 0	4			
6dB bandwidth	VHT40	5755 / 5795	MCS 0	1			
Peak Power Spectral Density	VHT80	5785	MCS 0				
Frequency Stability	Un-modulation	5785					

NOTE:

- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.
- Adapter 1, Adapter 2 and Adapter 3 had been pretested and found that Adapter 3 was the worst case and was selected for final testing. (Adapter 1: 2AAJ012F US; Adapter 2: AMS9-1201000FU2; Adapter 3: AMS135-1201000FU).
- 3. Test configurations are listed as below:
 - 1) Configuration 1: Adapter mode.
 - 2) Configuration 2: POE mode.

Report No.: FR512802AN Page: 13 of 81

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30	60	50				
Note 1: * Decreases with the logarithm of the frequency.						

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR512802AN Page: 14 of 81

3.1.4 Test Result of Conducted Emissions

Report No.: FR512802AN Page: 15 of 81

Report No.: FR512802AN Page: 16 of 81

Modulation	11a	Test Freq. (MHz)	5200
Power Phase	Line	Test Configuration	2

			Line	Limit	Level	factor	loss	Remark
	MHz	dBu∀	dBuV	dB	dBuV	dB	dB	
1	0.150	32.38	56.00	-23.62	31.38	0.92	0.08	Average
2	0.150	38.48	66.00	-27.52	37.48	0.92	0.08	QP
3	0.220	24.97	52.81	-27.84	24.64	0.24	0.09	Average
4	0.220	30.60	62.81	-32.21	30.27	0.24	0.09	QP
5	0.380	29.64	48.27	-18.63	29.35	0.18	0.11	Average
6	0.380	37.78	58.27	-20.49	37.49	0.18	0.11	QP
7	4.696	31.25	46.00	-14.75	30.61	0.33	0.31	Average
8	4.696	42.72	56.00	-13.28	42.08	0.33	0.31	QP
9	5.362	31.92	50.00	-18.08	31.22	0.39	0.31	Average
10	5.362	37.69	60.00	-22.31	36.99	0.39	0.31	QP
11*	28.445	40.43	50.00	-9.57	39.26	1.07	0.10	Average
12	28.445	41.07	60.00	-18.93	39.90	1.07	0.10	QP

Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB). 2: Over Limit (dB) = Level (dBuV) – Limit Line (dBuV).

Report No.: FR512802AN Page: 17 of 81

Report No.: FR512802AN Page: 18 of 81

Power Phase Line Test Configuration 1	
Trequency (MHz) Freq Level Limit Over Read LISN cable Level factor loss Remark MHz dBuV dBu dBuV dB dBuV dB dB 1 0.222 36.69 52.74 -16.05 36.36 0.24 0.09 Average 2 0.222 38.40 62.74 -24.34 38.07 0.24 0.09 QP 3* 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 Average 4 0.266 46.12 61.25 -15.13 45.80 0.22 0.10 QP 5 0.431 26.94 47.24 -20.30 26.66 0.17 0.11 Average 6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QP 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.86 34.87 0.14 0.13 QP 9 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
Trequency (MHz) Freq Level Limit Over Read LISN cable Level factor loss Remark MHz dBuV dBu dBuV dB dBuV dB dB 1 0.222 36.69 52.74 -16.05 36.36 0.24 0.09 Average 2 0.222 38.40 62.74 -24.34 38.07 0.24 0.09 QP 3* 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 Average 4 0.266 46.12 61.25 -15.13 45.80 0.22 0.10 QP 5 0.431 26.94 47.24 -20.30 26.66 0.17 0.11 Average 6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QP 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.86 34.87 0.14 0.13 QP 9 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
Trequency (MHz) Freq Level Limit Over Read LISN cable Level factor loss Remark MHz dBuV dBu dBuV dB dBuV dB dB 1 0.222 36.69 52.74 -16.05 36.36 0.24 0.09 Average 2 0.222 38.40 62.74 -24.34 38.07 0.24 0.09 QP 3* 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 Average 4 0.266 46.12 61.25 -15.13 45.80 0.22 0.10 QP 5 0.431 26.94 47.24 -20.30 26.66 0.17 0.11 Average 6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QP 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.86 34.87 0.14 0.13 QP 9 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
CISPR/CNS/V 10 20 10 20 10 20 Frequency (MHz) Freq Level Limit Over Read LISN cable Level factor loss Remark MHz dBuv dBuv dB dB 1 0.222 36.69 52.74 -16.05 36.36 0.24 0.09 QP 2 0.222 38.40 62.74 -24.34 38.07 0.24 0.09 QP 3* 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 Average 4 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 Average 4 0.266 46.12 61.25 -15.13 45.80 0.22 0.10 QP 5 0.431 26.94 47.24 -20.30 26.66 0.17 0.11 Average 6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QP 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
CISPR/CNS/V 10 20 10 10 20 10 10 20 10 10	
Treq Level Limit Over Read LISN cable Line Limit Level factor loss Remark dBuV dB	S/VCCI-B
10 0.150.2 0.5 1 2 5 10 Frequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dBuV dB dBuV dB dB dBuV dB dB 1 0.222 36.69 52.74 -16.05 36.36 0.24 0.09 Average 2 0.222 38.40 62.74 -24.34 38.07 0.24 0.09 QP 3* 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 Average 4 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 QP 5 0.431 26.94 47.24 -20.30 26.66 0.17 0.11 QP 5 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QP 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
30 Trequency (MHz) Trequency (MHz) Trequency (MHz)	CCI-B AV
30 Trequency (MHz) Trequency (MHz) Trequency (MHz)	
20 10 0.150.2 0.5 1 2 Frequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dBuV dB dBuV dB dB 1 0.222 36.69 52.74 -16.05 36.36 0.24 0.09 Average 2 0.222 38.40 62.74 -24.34 38.07 0.24 0.09 QP 3* 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 Average 4 0.266 46.12 61.25 -15.13 45.80 0.22 0.10 QP 5 0.431 26.94 47.24 -20.30 26.66 0.17 0.11 Average 6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QP 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
1 0.222 36.69 52.74 -16.05 36.36 0.24 0.09 Average 2 0.222 38.40 62.74 -24.34 38.07 0.24 0.09 QF 3* 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 Average 4 0.266 46.12 61.25 -15.13 45.80 0.22 0.10 Average 6 0.431 31.86 57.24 -20.30 26.66 0.17 0.11 Average 6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QF 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
20 10 10 10 10 10 10 10 10 10 10 10 10 10	mapped from the same of the sa
O.150.2 O.5 1 Prequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark dBuV dB dBW dBW	<u> </u>
0.150.2 0.5 1 2 5 10 Frequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dBuV dB dBuV dB dB 1 0.222 36.69 52.74 -16.05 36.36 0.24 0.09 Average 2 0.222 38.40 62.74 -24.34 38.07 0.24 0.09 QP 3* 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 Average 4 0.266 46.12 61.25 -15.13 45.80 0.22 0.10 Average 4 0.266 46.12 61.25 -15.13 45.80 0.22 0.10 QP 5 0.431 26.94 47.24 -20.30 26.66 0.17 0.11 Average 6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QP 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
Frequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dBuV dB dBuV dB dB	
Frequency (MHz) Freq Level Limit Over Read LISN cable Line Limit Level factor loss Remark MHz dBuV dBuV dB dBuV dB dB	20 30
Line Limit Level factor loss Remark MHz dBuV dBuV dB dBuV dB dB 1 0.222 36.69 52.74 -16.05 36.36 0.24 0.09 Average 2 0.222 38.40 62.74 -24.34 38.07 0.24 0.09 QP 3* 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 Average 4 0.266 46.12 61.25 -15.13 45.80 0.22 0.10 QP 5 0.431 26.94 47.24 -20.30 26.66 0.17 0.11 Average 6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QP 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
MHz dBuV dBuV dB dBuV dB dB dBuV dB dB dBuV all dB dB dBuV	
1 0.222 36.69 52.74 -16.05 36.36 0.24 0.09 Average 2 0.222 38.40 62.74 -24.34 38.07 0.24 0.09 QP 3* 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 Average 4 0.266 46.12 61.25 -15.13 45.80 0.22 0.10 QP 5 0.431 26.94 47.24 -20.30 26.66 0.17 0.11 Average 6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QP 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
2 0.222 38.40 62.74 -24.34 38.07 0.24 0.09 QF 3* 0.266 44.31 51.25 -6.94 43.99 0.22 0.10 Average 4 0.266 46.12 61.25 -15.13 45.80 0.22 0.10 QF 5 0.431 26.94 47.24 -20.30 26.66 0.17 0.11 Average 6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QF 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QF 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
4 0.266 46.12 61.25 -15.13 45.80 0.22 0.10 QF 5 0.431 26.94 47.24 -20.30 26.66 0.17 0.11 Average 6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QP 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
5 0.431 26.94 47.24 -20.30 26.66 0.17 0.11 Average 6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QP 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
6 0.431 31.86 57.24 -25.38 31.58 0.17 0.11 QP 7 0.621 29.62 46.00 -16.38 29.35 0.14 0.13 Average 8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
8 0.621 35.14 56.00 -20.86 34.87 0.14 0.13 QP 9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
9 0.928 30.19 46.00 -15.81 29.93 0.10 0.16 Average 10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
10 0.928 35.51 56.00 -20.49 35.25 0.10 0.16 QP 11 1.781 26.80 46.00 -19.20 26.03 0.54 0.23 Average	
Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB).	
2: Over Limit (dB) = Level (dBuV) - Limit Line (dBuV).	

Report No.: FR512802AN Page : 19 of 81

Report No.: FR512802AN Page: 20 of 81

Report No.: FR512802AN Page: 21 of 81

Report No.: FR512802AN Page: 22 of 81

3.2 Emission Bandwidth

3.2.1 Limit of Emission bandwidth

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.2.2 Test Procedures

26dB Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Occupied Bandwidth

- 1. Set RBW = 1 % to 5 % of the OBW
- 2. Set VBW ≥ 3 RBW
- 3. Sample detection and single sweep mode shall be used
- 4. Use the 99 % power bandwidth function of the instrument

6dB Bandwidth

- 1. Set RBW = 100kHz, VBW = 300kHz
- 2. Detector = Peak, Trace mode = max hold.
- 3. Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

3.2.3 Test Setup

Report No.: FR512802AN Page: 23 of 81

3.2.4 Test Result of Emission Bandwidth

	For Frequency band 5150-5250 MHz													
	Emission Bandwidth													
Mode	l N	Freq.	2	26dB Band	width (MHz)	l.	99% Bandv	vidth (MHz)	1				
wode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3				
11a	2	5180	23.36	22.55			16.79	16.65						
11a	2	5200	24.12	26.14			16.89	16.76						
11a	2	5240	24.00	26.03			16.87	16.80						
VHT20	2	5180	23.13	23.59			17.83	17.88						
VHT20	2	5200	26.72	26.49			17.98	17.88						
VHT20	2	5240	24.29	25.68			18.03	17.94						
VHT40	2	5190	45.80	46.38			36.86	36.76						
VHT40	2	5230	47.65	47.30			37.02	36.78						
VHT80	2	5210	86.96	86.49			76.56	76.60						

Report No.: FR512802AN Page: 24 of 81

	For Frequency band 5725-5850 MHz														
	Emission Bandwidth														
			0	BW Band	width (MH	z)		6dB B	andwidth	(MHz)					
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	6dB BW Limit (MHz)				
11a	2	5745	16.80	16.68			16.35	16.35			0.5				
11a	2	5785	16.94	16.76			16.41	16.35			0.5				
11a	2	5825	16.81	16.74			16.35	16.35			0.5				
VHT20	2	5745	17.89	17.85			17.57	17.57			0.5				
VHT20	2	5785	17.94	17.93			17.16	17.62			0.5				
VHT20	2	5825	18.12	17.91			16.99	17.57			0.5				
VHT40	2	5755	36.70	36.64			36.41	36.41			0.5				
VHT40	2	5795	36.76	36.72			35.83	36.17			0.5				
VHT80	2	5775	76.52	76.28			75.36	75.83			0.5				

Report No.: FR512802AN Page: 25 of 81

3.3 RF Output Power

3.3.1 Limit of RF Output Power

	Frequency band 5150-5250 MHz							
Ope	erating Mode	Limit						
	Outdoor access point	Conducted Power: 1 W The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)						
\boxtimes	Indoor access point	Conducted Power: 1 W						
	Fixed point-to-point access points	Conducted Power: 1 W						
	Mobile and portable client devices	Conducted Power: 250 mW						

Fred	quency Band (MHz)	Limit				
	5250 ~ 5350	250mW or 11dBm+10 log B				
	5470 ~ 5725	250mW or 11dBm+10 log B				
Note	Note: "B" is the 26dB emission bandwidth in MHz.					

3.3.2 Test Procedures

Method PM-G (Measurement using a gated RF average power meter)

Measurements may is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.3.3 Test Setup

Report No.: FR512802AN Page: 26 of 81

3.3.4 Test Result of Maximum Conducted Output Power

	For Frequency band 5150-5250 MHz												
		F (8411.)	С	Conducted Power (dBm)				Total	Limit				
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)				
11a	2	5180	22.74	22.78			377.602	25.77	30.00				
11a	2	5200	24.28	24.66			560.332	27.48	30.00				
11a	2	5240	24.2	24.67			556.116	27.45	30.00				
HT20	2	5180	21.42	21.76			288.644	24.60	30.00				
HT20	2	5200	24.05	24.51			536.585	27.30	30.00				
HT20	2	5240	24.02	24.54			536.794	27.30	30.00				
HT40	2	5190	14.62	15.25			62.470	17.96	30.00				
HT40	2	5230	23.45	24.21			484.943	26.86	30.00				
VHT20	2	5180	21.58	21.92			299.476	24.76	30.00				
VHT20	2	5200	24.2	24.62			552.761	27.43	30.00				
VHT20	2	5240	24.18	24.61			550.886	27.41	30.00				
VHT40	2	5190	14.79	15.38			64.644	18.11	30.00				
VHT40	2	5230	23.59	24.36			501.458	27.00	30.00				
VHT80	2	5210	12.82	13.05			39.326	15.95	30.00				

	For Frequency band 5725-5850 MHz											
			С	Conducted Power (dBm)				Total	Limit			
Mode	N _{TX}	Freq. (MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)			
11a	2	5745	22.28	22.45			344.836	25.38	30.00			
11a	2	5785	24.01	23.58			479.802	26.81	30.00			
11a	2	5825	23.5	23.62			454.016	26.57	30.00			
HT20	2	5745	22.14	22.26			331.949	25.21	30.00			
HT20	2	5785	23.81	23.42			460.222	26.63	30.00			
HT20	2	5825	23.31	23.45			435.599	26.39	30.00			
HT40	2	5755	17.26	17.75			112.777	20.52	30.00			
HT40	2	5795	23.45	23.12			426.426	26.30	30.00			
VHT20	2	5745	22.25	22.38			340.862	25.33	30.00			
VHT20	2	5785	23.94	23.54			473.686	26.75	30.00			
VHT20	2	5825	23.45	23.58			449.344	26.53	30.00			
VHT40	2	5755	17.35	17.86			115.419	20.62	30.00			
VHT40	2	5795	23.65	23.28			444.553	26.48	30.00			
VHT80	2	5775	14.92	14.96			62.378	17.95	30.00			

Report No.: FR512802AN Page: 27 of 81

3.4 Peak Power Spectral Density

3.4.1 Limit of Peak Power Spectral Density

	Frequency band 5150-5250 MHz							
Ope	Operating Mode Limit							
	Outdoor access point	17 dBm / MHz						
\boxtimes	Indoor access point	17 dBm / MHz						
	Fixed point-to-point access points	17 dBm / MHz						
	Mobile and portable client devices	11 dBm / MHz						

Free	quency Band (MHz)	Limit
	5250 ~ 5350	11 dBm / MHz
	5470 ~ 5725	11 dBm / MHz
\boxtimes	5725 ~ 5850	30 dBm / 500 kHz

Report No.: FR512802AN Page: 28 of 81

3.4.2 Test Procedures

For 5150 ~ 5250 MHz

- Method SA-1 (for 11a, VHT20)
 - 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2 Alternative (for VHT40, VHT80)
 - 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
 - 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add 10 log(1/x), where x is the duty cycle.

For 5725 ~ 5850 MHz

- Method SA-1 (for 11a, VHT20)
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- Method SA-2 Alternative (for VHT40, VHT80)
 - 1. Set RBW = 500 kHz, VBW = 2 MHz, Detector = RMS.
 - 2. Set sweep time ≥ 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add 10 log(1/x), where x is the duty cycle.

3.4.3 Test Setup

Report No.: FR512802AN Page: 29 of 81

3.4.4 Test Result of Peak Power Spectral Density

	For Frequency band 5150-5250 MHz										
Co	ndition	1		Peak Power Spec	ctral Density (dBm)						
Modulation Mode	N _{TX}	Freq. (MHz)	PPSD w/o D.F (dBm)	Duty Factor (dB)	PPSD with D.F (dBm)	PPSD Limit (dBm)					
11a	2	5180	12.13	0.00	12.13	15.99					
11a	2	5200	14.25	0.00	14.25	15.99					
11a	2	5240	14.06	0.00	14.06	15.99					
VHT20	2	5180	10.83	0.00	10.83	15.99					
VHT20	2	5200	14.07	0.00	14.07	15.99					
VHT20	2	5240	14.03	0.00	14.03	15.99					
VHT40	2	5190	0.59	0.29	0.88	15.99					
VHT40	2	5230	9.51	0.29	9.80	15.99					
VHT80	2	5210	-4.78	0.59	-4.19	15.99					

Note:

- 1. D.F is duty factor.
- 2. Test result is bin-by-bin summing measured value of each TX port.
- Directional gain = 4+10* log(2/1) = 7.01 dBi > 6 dBi.
 Limit shall be reduced to 17 dBm (7.01 dBi 6 dBi) = 15.99 dBm.

Report No.: FR512802AN Page: 30 of 81

	For Frequency band 5725-5850 MHz										
Co	ndition			Peak Power Spectral Density (dBm)							
Modulation Mode	N _{TV}		PPSD w/o D.F (dBm)	Duty Factor (dB)	PPSD with D.F (dBm)	PPSD Limit (dBm)					
11a	2	5745	10.90	0.00	10.90	28.99					
11a	2	5785	12.04	0.00	12.04	28.99					
11a	2	5825	11.79	0.00	11.79	28.99					
VHT20	2	5745	9.97	0.00	9.97	28.99					
VHT20	2	5785	11.19	0.00	11.19	28.99					
VHT20	2	5825	11.07	0.00	11.07	28.99					
VHT40	2	5755	1.99	0.29	2.28	28.99					
VHT40	2	5795	7.79	0.29	8.08	28.99					
VHT80	2	5775	-4.16	0.59	-3.57	28.99					

Note:

- 1. D.F is duty factor.
- 2. Test result is bin-by-bin summing measured value of each TX port.
- 3. Directional gain = $4+10* \log(2/1) = 7.01 \text{ dBi} > 6 \text{ dBi}$. Limit shall be reduced to 30 dBm - (7.01 dBi - 6 dBi) = 28.99 dBm.

Report No.: FR512802AN Page: 31 of 81

3.5 Transmitter Radiated and Band Edge Emissions

3.5.1 Limit of Transmitter Radiated and Band Edge Emissions

Restricted Band Emissions Limit										
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)							
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300							
0.490~1.705	24000/F(kHz)	33.8 - 23	30							
1.705~30.0	30	29	30							
30~88	100	40	3							
88~216	150	43.5	3							
216~960	200	46	3							
Above 960	500	54	3							

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2**:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

Un-restricted band emissions above 1GHz Limit						
Operating Band	Limit					
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]					
5.725 - 5.825 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.85 5.86 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]					

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Report No.: FR512802AN Page: 32 of 81

3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR512802AN Page: 33 of 81

3.5.3 Test Setup

Report No.: FR512802AN Page: 34 of 81

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR512802AN Page: 35 of 81

Modulation	11a	Test Freq. (MHz)	5200
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	47.46	36.87	40.00	-3.13	49.70	-12.83	Peak		
2	125.06	35.81	43.50	-7.69	50.76	-14.95	Peak		
3	202.66	32.88	43.50	-10.62	49.28	-16.40	Peak		
4	375.32	35.57	46.00	-10.43	46.32	-10.75	Peak		
5	500.45	32.15	46.00	-13.85	39.86	-7.71	Peak		
6	740.04	38.52	46.00	-7.48	41.89	-3.37	Peak		

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR512802AN Page: 36 of 81

Modulation	11a	Test Freq. (MHz)	5200
Polarization	Horizontal	Test Configuration	2

	Freq. MHz	Emission level dBuV/m	Limit dBuV/m	Ü	SA reading dBuV		Remark	ANT High cm	Turn Table deg
1	105.66	33.11	43.50	-10.39	50.39	-17.28	Peak		
2	126.03	29.93	43.50	-13.57	44.79	-14.86	Peak		
3	375.32	32.71	46.00	-13.29	43.46	-10.75	Peak		
4	500.45	33.81	46.00	-12.19	41.52	-7.71	Peak		
5	649.83	35.93	46.00	-10.07	40.70	-4.77	Peak		
6	749.74	32.94	46.00	-13.06	36.10	-3.16	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR512802AN Page: 37 of 81

Modulation	11a	Test Freq. (MHz)	5200
Polarization	Vertical	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	35 82	35.89	40.00	-4 11	49 36	-13.47	Peak		
2		33.51				-16.35	Peak		
3	375.32	30.17	46.00	-15.83	40.92	-10.75	Peak		
4	500.45	30.80	46.00	-15.20	38.51	-7.71	Peak		
5	562.53	30.87	46.00	-15.13	37.59	-6.72	Peak		
6	770.11	31.72	46.00	-14.28	34.61	-2.89	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR512802AN Page: 38 of 81

Modulation			11a				Test Fre	q. (MHz)		5785		
Polarization			Horiz	zontal			Test Cor	nfiguratio	on	1		
	Lov	ol (dDu	W/m)									
	90	/el (dBu	Villij									1
	80											
	70											
	60											
										FCC	CLASS-B	J
	50											
	40				4		-	6				
	30-	1	2 3				5					
	20											
	10											
	030	100.	20	0. 30	0. 4		00. 60 ency (MHz)	0. 700.	. 800.	900). 100)))
		F	req. E	mission	Limit	Margir	s SA	Factor	Remark	AN	IT Tu	ırn
				level			reading	-		Hi	_	ble
		ı	MHz	dBuV/m	dBuV/	m dB	dBuV	dB		cn	ı de	g
1	l		94.99	30.17	43.50	-13.33	48.96	-18.79	Peak			
	2					-11.54		-13.45	Peak	-		
	3					-11.01		-16.40	Peak	-		
	4	3	75.32	35.69	46.00	-10.31	46.44	-10.75	Peak	-		

-6.72

-5.22

Peak

Peak

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

562.53 34.02 46.00 -11.98 40.74

624.61 38.62 46.00 -7.38 43.84

Report No.: FR512802AN Page: 39 of 81

Report Version: Rev. 01

5

Modulation	11a	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	1

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
4	46 40	36.50	40.00	2.50	40.24	12.01	DI-		
1	46.49	36.50	40.00	-3.50	49.31	-12.81	Peak		
2	125.06	33.59	43.50	-9.91	48.54	-14.95	Peak		
3	202.66	31.29	43.50	-12.21	47.69	-16.40	Peak		
4	324.88	30.76	46.00	-15.24	42.74	-11.98	Peak		
5	375.32	33.72	46.00	-12.28	44.47	-10.75	Peak		
6	500.45	31.76	46.00	-14.24	39.47	-7.71	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR512802AN Page: 40 of 81

Modulation	11a	Test Freq. (MHz)	5785
Polarization	Horizontal	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	105.56	33.40	43.50	-10.10	50.70	-17.30	Peak		
2	126.14	30.11	43.50	-13.39	44.96	-14.85	Peak		
3	375.35	33.09	46.00	-12.91	43.84	-10.75	Peak		
4	500.45	33.56	46.00	-12.44	41.27	-7.71	Peak		
5	649.86	36.14	46.00	-9.86	40.91	-4.77	Peak		
6	749.77	33.15	46.00	-12.85	36.31	-3.16	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR512802AN Page: 41 of 81

Modulation	11a	Test Freq. (MHz)	5785
Polarization	Vertical	Test Configuration	2

	Freq.	Emission level	Limit	Margin	SA reading		Remark	ANT High	Turn Table
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	35.93	36.14	40.00	-3.86	49.59	-13.45	Peak		
2	111.52	33.84	43.50	-9.66	50.19	-16.35	Peak		
3	375.26	30.34	46.00	-15.66	41.09	-10.75	Peak		
4	500.22	30.71	46.00	-15.29	38.42	-7.71	Peak		
5	562.53	30.54	46.00	-15.46	37.26	-6.72	Peak		
6	770.20	31.95	46.00	-14.05	34.84	-2.89	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR512802AN Page: 42 of 81

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR512802AN Page: 43 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 44 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 45 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 46 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 47 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 48 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 49 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 50 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 51 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 52 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 53 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 54 of 81

3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR512802AN Page: 55 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 56 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 57 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 58 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 59 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 60 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 61 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 62 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 63 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 64 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 65 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 66 of 81

3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) - Limit (dBuV/m).

Report No.: FR512802AN Page: 67 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 68 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 69 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 70 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 71 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 72 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 73 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 74 of 81

3.5.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for VHT80

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 75 of 81

^{*}Factor includes antenna factor, cable loss and amplifier gain

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 76 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 77 of 81

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR512802AN Page: 78 of 81

3.6 Frequency Stability

3.6.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.6.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.6.3 Test Setup

Report No.: FR512802AN Page: 79 of 81

3.6.4 Test Result of Frequency Stability

Frequency: 5200 MHz		Frequency	Drift (ppm)			
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes		
T20°CVmax	0.34	0.66	-0.10	0.07		
T20°CVmin	4.31	4.16	5.03	4.39		
T50°CVnom	4.04	4.31	3.84	3.99		
T40°CVnom	4.42	4.29	3.59	4.14		
T30°CVnom	3.33	3.43	4.21	3.60		
T20°CVnom	1.83	2.18	2.84	2.44		
T10°CVnom	2.88	1.91	2.64	2.62		
T0°CVnom	-0.03	-0.17	-0.24	0.13		
T-10°CVnom	-0.25	-0.53	0.55	-0.39		
T-20°CVnom	-0.81	-0.10	0.00	-0.57		
T-30°CVnom	-0.44	-0.73	-0.84	-0.64		
Vnom [Vac]: 120	V	max [Vac]: 138	Vmin [Vac]: 1	Vmin [Vac]: 102		
Tnom [°C]: 20	Т	Tmin [°C]: -30)			

Frequency: 5785 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes	10 minutes	
T20°CVmax	0.11	0.42	0.24	0.69	
T20°CVmin	4.22	4.26	4.67	4.60	
T50°CVnom	4.03	4.10	3.90	4.33	
T40°CVnom	4.05	4.01	4.26	3.89	
T30°CVnom	3.26	3.13	3.58	3.00	
T20°CVnom	1.60	1.94	1.95	2.40	
T10°CVnom	2.91	3.39	3.35	3.60	
T0°CVnom	-0.10	0.38	0.13	0.36	
T-10°CVnom	0.62	0.71	0.56	0.86	
T-20°CVnom	0.16	-0.78	0.29	-0.01	
T-30°CVnom	-0.18	-0.14	-0.12	0.37	
Vnom [Vac]: 120		nax [Vac]: 138	Vmin [V	Vmin [Vac]: 102	
Tnom [°C]: 20 Tm		nax [°C]: 50	Tmin [°C	Tmin [°C]: -30	

Report No.: FR512802AN Page: 80 of 81

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan,

R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan

Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR512802AN Page: 81 of 81