

Winning Space Race with Data Science

Giovanni La Rosa October 2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies

- SpaceX Data Collection using SpaceX API
- SpaceX Data Collection with Web Scraping
- SpaceX Data Wrangling
- SpaceX Exploratory Data Analysis using SQL
- Space-X EDA DataViz Using Python Pandas and Matplotlib
- Space-X Launch Sites Analysis with Folium-Interactive Visual Analytics and PlotyDash
- SpaceX Machine Learning Landing Prediction

Summary of all results

- EDA results
- Interactive Visual Analytics and Dashboards
- Predictive Analysis(Classification)

Introduction

Project background and context

SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

Problems you want to find answers

In this capstone, we will predict if the Falcon 9 first stage will land successfully using data from Falcon 9 rocket launches advertised on its website.

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX rest API
 - Web Scraping from Wikipedia
- Perform data wrangling
 - Encoding data fields
 - Data cleaning
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - LR, KNN, SVM, DT models

Data Collection

- Describe how data sets were collected.
 - SpaceX launch data that is gathered from the SpaceX REST API
 - This API will give us data about launches, including info about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome
 - The SpaceX REST API endpoints, URL, starts with api.spacexdata.com/v4/.
 - Another popular data source for obtaining Falcon 9 Launch data is web scraping Wikipedia using BeautifulSoup

Data Collection - SpaceX API

- Data collected using SpaceX API (a RESTful API) by making a get request to the SpaceX API then requested and parsed the SpaceX launch data using the GET request and decoded the response content as a Jsonresult which was then converted into a Pandas data frame
- Here is the GitHub URL of the completed SpaceX API calls notebook (https://github.com/cgatama/SpaceX-Falcon-9-1st-stage-Success-Landing-Prediction/blob/main/1.%20Space-X%20Data%20Collection%20API.ipyn b)

Data Collection - Scraping

- Performed web scraping to collect
 Falcon 9 historical launch records from
 a Wikipedia using BeautifulSoupand
 request, to extract the Falcon 9 launch
 records from HTML table of the
 Wikipedia page, then created a data
 frame by parsing the launch HTML.
- (https://github.com/cgatama/SpaceX-Falcon-9-1st-stage-Success-Landing-Prediction/blob/main/2.%20Space-X%20Web%20scraping%20Falcon%209% 20and%20Falcon%20Heavy%20Launches %20Records%20from%20Wikipedia.ipynb)

Data Wrangling

- After obtaining and creating a Pandas DF from the collected data, data was filtered using the BoosterVersioncolumn to only keep the Falcon 9 launches, then dealt with the missing data values in the LandingPadand PayloadMasscolumns. For the PayloadMass, missing data values were replaced using mean value of column.
- Also performed some Exploratory Data Analysis (EDA) to find some patterns in the data and determine what would be the label for training supervised models
- Here is the GitHub URL https://github.com/cgatama/SpaceX-Falcon-9-1st-stage-Success-Landing-Prediction/blob/main/3.%20Space-X%20Data%20Wrangling%20spacex.ipynb

EDA with Data Visualization

EDA with SQL

SQL queries performed

- Displaying the names of the unique launch sites in the space mission
- Displying 5 records where launch sites begin with the string 'KSC'
- Displaying the total payload mass carried by boosters launched by NASA (CRS)
- Displaying average payload mass carried by booster version F9 v 1.1
- Listing the date where the successful landing outcome in drone ship was achieved
- Listing the names of the boosters which have success in ground pad and have payload mass greater than 4000 but less than 600
- Listing the total number of successful and failure mission outcomes
- Listing the names of the booster_version which have carried the maximum payload mass
- Listing the records which will display the month names, successful landing_outcomes in ground pad, booster version, launch_site for the months in year 2017
- Ranking the count of successful landing_outcomes between the date 2010 0604 and 2017 03 20 in descending order

Build an Interactive Map with Folium

Build a Dashboard with Plotly Dash

Predictive Analysis (Classification)

 The SVM, KNN, and Logistic Regression model achieved the highest accuracy at 83.3%, while the SVM performs the best in terms of Area

Under the Curve at 0.958.

Results

- The SVM, KNN, and Logistic Regression models are the best in terms of prediction accuracy for this dataset
- Low weighted payloads perform better than the heavier payloads
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches
- KSC LC 39A had the most successful launches from all the sites
- Orbit GEO, HEO, SSO, ES L1 has the best Success Rate

Flight Number vs. Launch Site

 Launches from the site of CCAFS SLC 40 are significantly higher than launches form other sites.

Payload vs. Launch Site

 The majority of IPay Loads with lower Mass have been launched from CCAFS SLC 40.

Success Rate vs. Orbit Type

 The orbit types of ES-L1, GEO, HEO, SSO are among the highest success rate.

Flight Number vs. Orbit Type

 A trend can be observed of shifting to VLEO launches in recent years.

Payload vs. Orbit Type

 There are strong correlation between ISS and Payload at the range around 2000, as well as between GTO and the range of 4000-8000.

Launch Success Yearly Trend

 Launch success rate has increased significantly since 2013 and has stablised since 2019, potentially due to advance in technology and lessons learned.

All Launch Site Names

%sql select distinct(LAUNCH_SITE) from SPACEXTBL

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Launch Site Names Begin with 'CCA'

%sql select * from SPACEXTBL where LAUNCH_SITE like 'CCA%' limit 5

DATE	time_utc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10- 08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

%sql select sum(PAYLOAD_MASS__KG_) from SPACEXTBL where CUSTOMER
= 'NASA (CRS)'

45596

Average Payload Mass by F9 v1.1

 %sql select avg(PAYLOAD_MASS__KG_) from SPACEXTBL where BOOSTER_VERSION = 'F9 v1.1'

2928.400000

First Successful Ground Landing Date

%sql select min(DATE) from SPACEXTBL where Landing_Outcome = 'Success' (ground pad)'

2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

%sql select BOOSTER_VERSION from SPACEXTBL where Landing__Outcome
= 'Success (drone ship)' and PAYLOAD_MASS__KG_ > 4000 and
PAYLOAD_MASS__KG_ < 6000

booster_version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

%sql select count(MISSION_OUTCOME) from SPACEXTBL where
MISSION_OUTCOME = 'Success' or MISSION_OUTCOME = 'Failure (in flight)'

100

Boosters Carried Maximum Payload

 %sql select BOOSTER_VERSION from SPACEXTBL where PAYLOAD_MASS__KG_ = (select max(PAYLOAD_MASS__KG_) from SPACEXTBL)

booster_version
F9 B5 B1048.4
F9 B5 B1049.4
F9 B5 B1051.3
F9 B5 B1056.4
F9 B5 B1048.5
F9 B5 B1051.4
F9 B5 B1049.5
F9 B5 B1060.2
F9 B5 B1058.3
F9 B5 B1051.6
F9 B5 B1060.3
F9 B5 B1049.7

2015 Launch Records

 %sql select * from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2015-01-01' and '2015-12-31') order by date desc

time_utc_	booster_version	launch_site	payload	payload_mass_kg_	orbit	customer	mission_outcome	landing_outcome
14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
17:54:00	F9 FT B1029.1	VAFB SLC-4E	Iridium NEXT 1	9600	Polar LEO	Iridium Communications	Success	Success (drone ship)
05:26:00	F9 FT B1026	CCAFS LC- 40	JCSAT-16	4600	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
04:45:00	F9 FT B1025.1	CCAFS LC- 40	SpaceX CRS-9	2257	(ISS)	NASA (CRS)	Success	Success (ground pad)
21:39:00	F9 FT B1023.1	CCAFS LC- 40	Thaicom 8	3100	GTO	Thaicom	Success	Success (drone ship)
05.04.00	FO FT 04000	CCAFS LC-	LCCAT AA	4000		SKY Perfect JSAT	-	

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 %sql select * from SPACEXTBL where Landing_Outcome like 'Success%' and (DATE between '2010-06-04' and '2017-03-20') order by date desc

						CCAFS LC-			2016-05-
Success (drone ship	Success	Thaicom	GTO	3100	Thaicom 8	40	F9 FT B1023.1	21:39:00	27
Success (drone ship	Success	SKY Perfect JSAT Group	GTO	4696	JCSAT-14	CCAFS LC- 40	F9 FT B1022	05:21:00	2016-05- 06
Success (drone ship	Success	NASA (CRS)	LEO (ISS)	3136	SpaceX CRS-8	CCAFS LC- 40	F9 FT B1021.1	20:43:00	016-04- 08
Success (groun	Success	Orbcomm	LEO	2034	OG2 Mission 2 11 Orbcomm-OG2 satellites	CCAFS LC- 40	F9 FT B1019	01:29:00	2015-12-

All launch sites marked on a map

Success/failed launches marked on the map

Distances between a launch site to its proximities

Total success launches by all sites

Success rate by site

Payload vs launch outcome

Classification Accuracy

Confusion Matrix

Conclusions

- The SVM, KNN and Logistic regression models are the best in terms of prediction accuracy for this dataset
- Low weighted payloads perform better than the heavier payloads
- The success rates for SpaceX launches is directly proportional time in years they will eventually perfect the launches
- KSC LC 39A had the most successful launches from all the sites
- Orbit GEO, HEO, SSO, ES L1 has the best Success Rate

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

