Statistics and Probability

Discrete Random Variables

www.Stats-Lab.com

Twitter: @StatsLabDublin

Given:

Suppose X is a random variable with

- $E(X^2) = 3.6$
- ► P(X = 2) = 0.6
- ► P(X = 3) = 0.1

Questions:

- (a) The random variable takes just one other value besides 2 and 3. This value is greater than 0. What is this value?
- (b) What is the variance of X?

Part a

- Determine the missing value (let's call it k).
- First we determine the probability of that value.
- We know that $E(X^2) = 3.6$. Let use the approach for computing $E(X^2)$.

Xi	2	3	k
x_i^2	4	9	k^2
$p(x_i)$	0.6	0.1	

Part a

- Determine the missing value (let's call it k).
- First we determine the probability of that value.
- ▶ We know that $E(X^2) = 3.6$. Let use the approach for computing $E(X^2)$.

Xi	2	3	k
x_i^2	4	9	k ²
$p(x_i)$	0.6	0.1	0.3

Xi	2	3	k
x_i^2	4	9	k^2
$p(x_i)$	0.6	0.1	0.3

$$E(X^2) = \sum x_i^2 \cdot p(x_i) = 3.6$$

Xi	2	3	k
x_i^2	4	9	k^2
$p(x_i)$	0.6	0.1	0.3

$$E(X^2) = \sum x_i^2 \cdot p(x_i) = 3.6$$

$$(4 \times 0.6) + (9 \times 0.1) + (k^2 \times 0.3) = 3.6$$

X _i	2	3	k
x_i^2	4	9	k^2
$p(x_i)$	0.6	0.1	0.3

$$E(X^2) = \sum x_i^2 \cdot p(x_i) = 3.6$$

$$(4 \times 0.6) + (9 \times 0.1) + (k^2 \times 0.3) = 3.6$$

$$2.4 + 0.9 + (k^2 \times 0.3) = 3.6$$

$$(4 \times 0.6) + (9 \times 0.1) + (k^2 \times 0.3) = 3.6$$

 $2.4 + 0.9 + (k^2 \times 0.3) = 3.6$
 $3.3 + 0.3k^2 = 3.6$

$$(4 \times 0.6) + (9 \times 0.1) + (k^2 \times 0.3) = 3.6$$
$$2.4 + 0.9 + (k^2 \times 0.3) = 3.6$$
$$3.3 + 0.3k^2 = 3.6$$
$$0.3k^2 = 0.3$$

$$(4 \times 0.6) + (9 \times 0.1) + (k^2 \times 0.3) = 3.6$$

 $2.4 + 0.9 + (k^2 \times 0.3) = 3.6$
 $3.3 + 0.3k^2 = 3.6$

$$0.3k^2 = 0.3$$

$$k^2 = 1$$
 Therefore $k = 1$

Part b

Compute the variance of X

$$Var(x) = E(X^2) - \{E(X)\}^2$$

- We already know $E(X^2) = 3.6$
- ▶ Need to compute E(X).

Computing E(X)

Xi	2	3	1
$p(x_i)$	0.6	0.1	0.3

$$E(X) = \sum x_i \cdot p(x_i)$$

Computing E(X)

Xi	2	3	1
$p(x_i)$	0.6	0.1	0.3

$$E(X) = \sum x_i \cdot p(x_i)$$

$$E(X) = (2 \times 0.6) + (3 \times 0.1) + (1 \times 0.3) = 1.8$$

Part b

Compute the variance of X

$$Var(x) = E(X^2) - \{E(X)\}^2$$

$$Var(x) = 3.6 - \{1.8\}^2$$

Part b

Compute the variance of X

$$Var(x) = E(X^2) - \{E(X)\}^2$$

$$Var(x) = 3.6 - \{1.8\}^2$$

$$Var(x) = 3.6 - 3.24 = 0.36$$