Ordini di infinito delle funzioni $\log x$, x^{α} , a^{x} : esercizio guidato

11 novembre 2011

Esercizio. Dando per noti i seguenti fatti:

a)
$$\lim_{n \to +\infty} \frac{e^n}{n} = +\infty;$$

b) la funzione $x \mapsto \frac{e^x}{x}$ è strettamente crescente per $x \ge 1$,

verificare che

1.
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty;$$

2.
$$\lim_{x \to +\infty} \frac{a^x}{x} = +\infty$$
 per ogni $a > 1$;

3.
$$\lim_{x \to +\infty} \frac{\log x}{x^{\alpha}} = 0$$
 per ogni $\alpha > 0$;

4.
$$\lim_{x \to +\infty} \frac{a^x}{x^{\alpha}} = +\infty$$
 per ogni $a > 1$ e per ogni $\alpha \in \mathbb{R}$.

Osservazione. La validità del limite a) è stata dimostrata quando sono state trattate le successioni. L'ipotesi b) sarà di facile verifica una volta trattato l'argomento derivate.

Soluzione.

1. Sia M un numero positivo arbitrariamente scelto. Per l'ipotesi a), esiste un indice $v \in \mathbb{N}$ tale che

$$\frac{\mathrm{e}^n}{n} > M$$
 per ogni $n \ge v$.

Per l'ipotesi b), risulta

$$\frac{e^x}{x} > \frac{e^v}{v} > M$$
 per ogni $x > v$,

cioè
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$$

2. Basta osservare che $a^x = e^{x \log a}$ e $\log a > 0$. Con il cambio di variabile $y = x \log a$, risulta

$$\lim_{x \to +\infty} \frac{a^x}{x} = \lim_{x \to +\infty} \frac{e^{x \log a}}{x} = \lim_{y \to +\infty} \frac{e^y}{y} \log a = +\infty.$$

3. Con il cambio di variabili $y = \log x$ e $z = \alpha y$ si ha

$$\lim_{x \to +\infty} \frac{\log x}{x^{\alpha}} = \lim_{y \to +\infty} \frac{y}{e^{\alpha y}} = \lim_{y \to +\infty} \frac{1}{\alpha} \cdot \frac{\alpha y}{e^{\alpha y}} = \lim_{z \to +\infty} \frac{1}{\alpha} \cdot \frac{z}{e^{z}} = 0.$$

4. Sarà sufficiente dimostrare che

$$\lim_{x \to +\infty} \log \left(\frac{a^x}{x^{\alpha}} \right) = +\infty.$$

Sfruttando le proprietà dei logaritmi si ha che tale limite è uguale a

$$\lim_{x \to +\infty} (x \log a - \alpha \log x) = \lim_{x \to +\infty} x \left(\log a - \alpha \frac{\log x}{x} \right) = +\infty.$$