Precourse SoM+SoED

Lecture notes by Rangi Siebert

October 8, 2023

Contents

1	Stat	sements And Sets	1
	1.1	Logical Connectives:	1
		1.1.1 Negation	1
		1.1.2 And	1
		1.1.3 Or	1
		1.1.4 Implication	2
		1.1.5 Equivalance	2
	1.2	Quantifiers	2
	1.3	Sets	2
	1.4	Basic Set-Operations and Relations	3
		1.4.1 Disjoint Sets	4
		1.4.2 Calculus Rules for set operations:	4

1 Statements And Sets

Main Porpose of Mathematics: Formulation of Statements and assessing weather certain statements are true (t,1) or false (f,0)

Definition (informal): A "statement" is an expression that is either true or false.

Examples:

- 1. "It is raining" is a statement
- 2. "x = 5" is a statement
- 3. "The Navier-Stokes eq. have a unique solution in three dimensions." is a statement.

1.1 Logical Connectives:

Lofical connectives combine / modify simple statements to createnew ones. Main examples: Negation, And, Or, Implication, Equivalence

1.1.1 Negation

If A is a statement, the $\neg A$ is the negation of A. It holds:

- 1. $\neg A$ is true if A is false
- 2. $\neg A$ is false if A is true

Example: $\neg(x=5)$ means $x \neq 5$

1.1.2 And

If A and B are statements, then " $A \wedge B$ " means "A and B"

- 1. $A \wedge B$ is true if both A and B are true.
- 2. $A \wedge B$ is false if at least one of the statements A and B is false.

Example: If A is the statement " $x \leq 3$ " and B the statement "x is a natural number", then $A \wedge B$ is "x is 1, 2, or 3".

1.1.3 Or

If A and B are statements, then " $A \lor B$ " means "A or B".

It holds:

1. $A \lor B$ is true if at least one of the statements A and B is true

2. $A \vee B$ is false if both the statements A and B Note: are false

Note: The "or" is not exclusive.

Example: If A is the statement "x is a natural number smaller than 4" and B is the statement "x is a natural number greater than 2", then $A \vee B$ is "x is a natural number".

1.1.4 Implication

" $A \Rightarrow B$ " means "If A is true, then B is true."

- 1. " $A \Rightarrow B$ " means "if both A and B are true of if A is false"
- 2. " $A \Rightarrow B$ " is false, if A is true and B is false.

Example:

 $(m, n \in \mathbb{N} \land m \text{ is even}) \Rightarrow m * n \text{ is even}.$

Proof: Assume m, n are natural numbers. Then m is even

$$\Rightarrow m = 2 * m' \text{ for some } m' \in \mathbb{N}$$

$$\Rightarrow m * n = 2 * m' * n \text{ with } m' \in \mathbb{N}$$

 $\Rightarrow m * n \text{ is even}$

Note:

$$(A \Rightarrow B) \not\Rightarrow (B \rightarrow B).$$

1.1.5 Equivalence

" $A \Leftrightarrow B$ " means "A is true if and only if B is true". It holds:

- 1. " $A \Leftrightarrow B$ " is true if both A and B are true or if both A and B is false.
- 2. " $A \Leftrightarrow B$ " is false if A is false and B is true or vice versa

1.
$$((A \Leftrightarrow B) \Leftrightarrow \{(A \Rightarrow B) \land (B \Rightarrow A)\}$$

2.
$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Example: For m, n natural numbers:

$$m * n$$
 is even \Leftrightarrow $(m \text{ is even} \lor n \text{ is even}).$

Proof: Show: " $B \Rightarrow B$ " and " $A \Rightarrow B$ "

- 1. " $B \Rightarrow A$ " is already proven; see above
- 2. " $A \Rightarrow B$ ":

We show the equivalent " $\neg B \Rightarrow \neg A$ " Suppose m is odd and n is odd, i.e., $m = 2m' + 1, n = 2n' + 1, m', n' \in \mathbb{N}_0$

- $\Rightarrow m*n = 4m'n' + 2(m'+n') + 1 = 2*k + 1;$ with $k := 2m' * n' + (m' + n') \in \mathbb{N}_0$
- $\Rightarrow m * n \text{ is odd}$

1.2Quantifiers

Quantifiers describe quantitative properties:

- 1. \forall : for all
- $2. \exists : exists$
- 3. $\exists_1, \exists!$: there exists precisely one
- 4. $\not\exists$: there does not exist (i.e., $\neg\exists$)

Example:

$$\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x.$$

means:

"For all real numbers x, there exists a natural number n such that n is bigger than x"

Note: The order matters

1.3 Sets

Definition (informal): A collection of welldefined distinct objects is called a set. Teh objects contained in a set are called elements.

Examples:

- 1. The set of all countries on earth
- 2. The set of all colors

Description of Sets:

1. Explicit definition(write all elements down)

$$A = \{a, b, c, d\}.$$

2. Characterization by property

 $A = \{\text{countries} \mid \text{contains the letter a}\}.$

$$\mathbb{O} := \{ x \in \mathbb{R} \mid \exists q \in \mathbb{N} : q * x \in \mathbb{Z} \}.$$

Examples of Sets:

- $\rightarrow \mathbb{N}$: natural numbers
- $\rightarrow \mathbb{N}_0$: natural numbers and zero
- $\rightarrow \mathbb{Z}$: integers
- $\rightarrow \mathbb{Z}$: rational numbers
- $\rightarrow \mathbb{R}$: real numbers
- $\rightarrow \mathbb{P}$: set of all prime numbers
- $\rightarrow \mathbb{C}$: complex nubers

Def.: Intervals: Let $a, b \in \mathbb{R}$. We define:

$$\rightarrow [a,b] := \{s \in \mathbb{R} \mid a \le s \le b\}$$

$$\rightarrow (a, b] :=]a, b]. = \{ s \in \mathbb{R} \mid a < s \le b \}$$

$$\rightarrow \mathbb{R}_{>0} := [0, \inf)$$

1.4 Basic Set-Operations and Relations

- $\rightarrow a \in A : a \text{ is an element of } A$
- $\rightarrow \ a \not \in A$: a is not an element of A
- $\rightarrow A \subset B : A \text{ is a subset of } B, \text{ i.e., } a \in A \Rightarrow a \in B$
- \rightarrow $A \not\subset B$: A is not a subset of B, $\exists a \in A : a \not\in B$
- $\rightarrow A \subsetneq B : A \text{ is equal to } B, \text{ i.e.},$

$$(A \subset B) \land (\exists b \in B : b \notin A).$$

- $\rightarrow A = B : A \text{ is equal to } B, \text{ i.e., } (A \subset B) \land (B \subset A)$
- $\rightarrow A \cup B := \{x \mid x \in A \lor x \in B\} \text{ (union)}$
- $\rightarrow A \cap B := \{x \mid x \in A \land x \in B\} \text{ (intersection)}$
- $\rightarrow A \backslash B = \{x \in A \mid x \notin B\} \ (A \text{ without } B)$
- $\rightarrow C_A(B) := A \backslash B$ in the situation $B \subset A$
- \rightarrow | A | : the cardinality of A, i.e., number of elements
- $\rightarrow A \times B := \{(a,b) \mid a \in A, b \in B\}$ Cartesian product of A and B.
- $\rightarrow \emptyset$: empty set

Example:

$$\emptyset < \mathbb{P} < \mathbb{N} < \mathbb{N}_0 < \mathbb{Z} < \mathbb{R} < \mathbb{C}$$
.

Note: The operation \cup , \cap , \times can be iterated.

$$\bigcup_{i=1}^{n} A_i := A_1 \cup A_2 \cup \dots \cup A_n, \ n \in \mathbb{N}.$$

$$\bigcap_{i=1}^{n} A_i := A_1 \cap A_2 \cap \dots \cap A_n, \ n \in \mathbb{N}.$$

$$\prod_{i=1}^{n} A_1 := A_1 \times A_2 \times \dots \times A_n.$$

Example:

$$A := \{1, 2, 5, 7\}, B := \{n \in \mathbb{N} \mid n \text{ is odd}\},\$$

$$C := \{2, \sqrt{2}, B\}, D := \{1, 5, 7\}$$

$$\begin{array}{l} D \subsetneq B, \, D \subsetneq A, \, C \not\subset B, \, B \in C, \, B \not\subset C, \, \{B\} \subset C, \\ B \backslash A = \{3\} \cup \{n \in \mathbb{N} \mid n \text{ is odd and } n \geq 9\}, \end{array}$$

$$\begin{split} C \times D &= \{(2,1), (2,5), (2,7), \\ &(\sqrt{2},1), (\sqrt{2},5), (\sqrt{2},7), \\ &(B,1), (B,5), (B,7)\} \\ &\mid C \times D \mid = 9 = \mid C \mid * \mid D \mid . \end{split}$$

1.4.1 Disjoint Sets

Two sets A and B are called disjoint if $A \cap B = \emptyset$

1.4.2 Calculus Rules for set operations:

If A, B, C are sets, then it holds:

1.
$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$ (commutativity)

2.
$$A \cup (B \cup C) = (A \cup B) \cup C$$
)
 $A \cap \dots$ (associativity)

3.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

 $A \cap \dots$ (distributivity)

4.
$$C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B)$$

 $C \setminus (A \cup \dots \text{ (De Morgan)})$

5.
$$|A \times B| = |A| * |B|$$

6.
$$|A \cup B| = |A| + |B| - |A \cap B|$$

7.
$$|A \setminus B| = |A| - |A \cap |A|$$

$$(5.-7. \text{ for } |A|, |B| < \inf)$$