Modelo de Ising

Física Computacional

Grado de Física Universidad de Zaragoza

 $\bullet \bullet \bullet$

Manuel Álvarez Andrés Bea Ander Gabarrús Hernán Gracia

Índice

- Termalización.
- Evolución de energía y magnetización intensivas frente a β .
- Curvas de calor específico y susceptibilidad magnética frente a β .
- Aproximación de β_c experimental a su valor teórico.
- Comprobación de la simulación: histogramas.

Termalización

• Evolución de e y m intensivas frente a β

• Curvas de C_v y χ intensivas frente a β

• β_c experimental

C_v			
L	β_c	ε_r (%)	
4	0,36	18,31	
8	0,40	9,23	
16	0,42	4,69	
32	0,43	2,42	
64	0,44	0,15	
128	0,44	0,15	

χ		
L	eta_c	ε_r (%)
4	0,33	25,12
8	0,38	13,77
16	0,41	6,96
32	0,43	2,42
64	0,43	2,42
128	0,43	2,42

$$\beta_c^{te\'orica} \approx 0,44068679$$

$$\beta_c^{C_v} = 0.44 \pm 0.005$$
 $\beta_c^{\chi} = 0.43 \pm 0.005$

• Histogramas en $\beta \sim 0$

• Histogramas en $\beta \sim \beta_c$, $\beta = 0.4407$

• Histogramas en $\beta \sim \infty$

Conclusiones

- Análisis del proceso de termalización.
- Comprobación del comportamiento de las magnitudes del sistema.
- β_c para retículos cada vez mayores, tendencia hacia el límite termodinámico.
- Validación de la simulación con los histogramas esperados.
- Mejora de errores: termalización, iteraciones y método de bloques.