

LM124 LM224 - LM324

LOW POWER QUAD OPERATIONAL AMPLIFIERS

■ WIDE GAIN BANDWIDTH: 1.3MHz

■ INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND

■ LARGE VOLTAGE GAIN: 100dB

■ VERY LOW SUPPLY CURRENT/AMPLI: 375µA

■ LOW INPUT BIAS CURRENT: 20nA

■ LOW INPUT OFFSET VOLTAGE: 5mV max. (for more accurate applications, use the equivalent parts LM124A-LM224A-LM324A which feature 3mV max.)

■ LOW INPUT OFFSET CURRENT: 2nA

■ WIDE POWER SUPPLY RANGE: SINGLE SUPPLY: +3V TO +30V DUAL SUPPLIES: ±1.5V TO ±15V

DESCRIPTION

These circuits consist of four independent, high gain, internally frequency compensated operational amplifiers. They operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

ORDER CODE

Part	Temperature	Package				
Number	Range	N	D	Р		
LM124	-55°C, +125°C	•	•	•		
LM224	-40°C, +105°C	•	•	•		
LM324	_M324 0°C, +70°C		•	•		
Example: LM224N						

N = Dual in Line Package (DIP)

D = Small Outline Package (SO) - also available in Tape & Reel (DT)

P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape &Reel (PT)

PIN CONNECTIONS (top view)

December 2001 1/13

SCHEMATIC DIAGRAM (1/4 LM124)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	LM124	LM224	LM324	Unit	
V _{CC}	Supply voltage		±16 or 32			
Vi	Input Voltage		-0.3 to +32			
V _{id}	V _{id} Differential Input Voltage ¹⁾				V	
P _{tot}	Power Dissipation N Suffix D Suffix	500	500 400	500 400	mW mW	
	Output Short-circuit Duration 2)		Infinite			
l _{in}	Input Current 3)	50	50	50	mA	
T _{oper}	Opearting Free-air Temperature Range	-55 to +125	-40 to +105	0 to +70	°C	
T _{stg}	Storage Temperature Range	-65 to +150		°C		

^{1.}

Either or both input voltages must not exceed the magnitude of V_{CC}⁺ or V_{CC}⁻.

Short-circuits from the output to VCC can cause excessive heating if V_{CC} > 15V. The maximum output current is approximately 40mA independent of the magnitude of V_{CC}. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. 2.

This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip, this transistor action can cause the output voltages of the Op-amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V.

ELECTRICAL CHARACTERISTICS

 V_{CC}^+ = +5V, V_{CC}^- = Ground, V_o = 1.4V, T_{amb} = +25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage - note $^{1)}$ T_{amb} = +25°C $LM324$ $T_{min} \le T_{amb} \le T_{max}$ $LM324$		2	5 7 7 9	mV
I _{io}	Input Offset Current $T_{amb} = +25 ^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		2	30 100	nA
l _{ib}	Input Bias Current - note $^{2)}$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		20	150 300	nA
A _{vd}	Large Signal Voltage Gain $\begin{aligned} &V_{CC}^{+}=+15V,R_L=2k\Omega,V_o=1.4V\text{ to }11.4V\\ &T_{amb}=+25^{\circ}C\\ &T_{min}\leq T_{amb}\leq T_{max} \end{aligned}$	50 25	100		V/mV
SVR	Supply Voltage Rejection Ratio ($R_s \le 10 k\Omega$) $V_{CC}^+ = 5V$ to $30V$ $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	65 65	110		dB
I _{cc}	Supply Current, all Amp, no load $T_{amb} = +25 ^{\circ}C \qquad \qquad V_{CC} = +5 V \\ V_{CC} = +30 V \\ T_{min} \leq T_{amb} \leq T_{max} \qquad V_{CC} = +5 V \\ V_{CC} = +30 V$		0.7 1.5 0.8 1.5	1.2 3 1.2 3	mA
V _{icm}	Input Common Mode Voltage Range $V_{CC} = +30V - note^{3)}$ $T_{amb} = +25^{\circ}C$ $T_{min} \leq T_{amb} \leq T_{max}$	0		V _{CC} -1.5 V _{CC} -2	V
CMR	Common Mode Rejection Ratio ($R_s \le 10 k\Omega$) $T_{amb} = +25 ^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$	70 60	80		dB
I _{source}	Output Current Source ($V_{id} = +1V$) $V_{CC} = +15V$, $V_o = +2V$	20	40	70	mA
I _{sink}	Output Sink Current ($V_{id} = -1V$) $V_{CC} = +15V$, $V_o = +2V$ $V_{CC} = +15V$, $V_o = +0.2V$	10 12	20 50		mA μA
V _{OH}	$\begin{array}{l} \text{High Level Output Voltage} \\ V_{CC} = +30V \\ T_{amb} = +25^{\circ}C \\ T_{min} \leq T_{amb} \leq T_{max} \\ T_{amb} = +25^{\circ}C \\ T_{min} \leq T_{amb} \leq T_{max} \\ V_{CC} = +5V, R_L = 2k\Omega \\ T_{amb} = +25^{\circ}C \\ T_{min} \leq T_{amb} \leq T_{max} \\ \end{array}$	26 26 27 27 3.5 3	27 28		V

LM124-LM224-LM324

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{OL}	Low Level Output Voltage ($R_L = 10k\Omega$) $T_{amb} = +25^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		5	20 20	mV
SR	Slew Rate V_{CC} = 15V, V_i = 0.5 to 3V, R_L = 2k Ω , C_L = 100pF, unity Gain		0.4		V/μs
GBP	Gain Bandwidth Product V_{CC} = 30V, f =100kHz, V_{in} = 10mV, R_L = 2k Ω , C_L = 100pF		1.3		MHz
THD	Total Harmonic Distortion f = 1kHz, A_v = 20dB, R_L = 2k Ω , V_o = 2 V_{pp} , C_L = 100pF, V_{CC} = 30 V		0.015		%
e _n	Equivalent Input Noise Voltage $f = 1 \text{kHz}, R_s = 100\Omega, V_{CC} = 30 \text{V}$		40		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
DV _{io}	Input Offset Voltage Drift		7	30	μV/°C
DI _{lio}	Input Offset Current Drift		10	200	pA/°C
V ₀₁ /V ₀₂	Channel Separation - note $^{4)}$ 1kHz \leq f \leq 20kHZ		120		dB

 $V_0 = 1.4V$, $R_s = 0\Omega$, $5V < V_{CC}^+ < 30V$, $0 < V_{ic} < V_{CC}^+ - 1.5V$ The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. 2.

The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is V_{CC}^+ - 1.5V, but either or both inputs can go to +32V without damage.

Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences.

TYPICAL SINGLE - SUPPLY APPLICATIONS

AC COUPLED INVERTING AMPLIFIER

AC COUPLED NON INVERTING AMPLIFIER

TYPICAL SINGLE - SUPPLY APPLICATIONS

NON-INVERTING DC GAIN

HIGH INPUT Z ADJUSTABLE GAIN DC INSTRUMENTATION AMPLIFIER

DC SUMMING AMPLIFIER

LOW DRIFT PEAK DETECTOR

TYPICAL SINGLE - SUPPLY APPLICATIONS

ACTIVER BANDPASS FILTER

R1 100k C1 330pF R5 470k R5 470k R5 470k R5 470k R6 470k R7 100k Vcc T00k Vcc T00k R8 100k R7 100k Vcc T00k R8 100k R8 100k R7 100k Vcc T00k R8 100k R8 100

HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER

USING SYMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT (GENERAL CONCEPT)

LM124-LM224-LM324

MACROMODEL

** Standard Linear Ics Macromodels, 1993.

** CONNECTIONS:

* 1 INVERTING INPUT

* 2 NON-INVERTING INPUT

* 3 OUTPUT

* 4 POSITIVE POWER SUPPLY

* 5 NEGATIVE POWER SUPPLY

.SUBCKT LM124 1 3 2 4 5 (analog)

.....

.MODEL MDTH D IS=1E-8 KF=3.104131E-15

CJO=10F

* INPUT STAGE

CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12

EIP 10 5 2 5 1

EIN 16 5 1 5 1

RIP 10 11 2.600000E+01

RIN 15 16 2.600000E+01

RIS 11 15 2.003862E+02

DIP 11 12 MDTH 400E-12

DIN 15 14 MDTH 400E-12

VOFP 12 13 DC 0

VOFN 13 14 DC 0

IPOL 13 5 1.000000E-05

CPS 11 15 3.783376E-09

DINN 17 13 MDTH 400E-12

VIN 17 5 0.000000e+00

DINR 15 18 MDTH 400E-12

VIP 4 18 2.000000E+00

FCP 4 5 VOFP 3.400000E+01

FCN 5 4 VOFN 3.400000E+01

FIBP 2 5 VOFN 2.000000E-03

FIBN 5 1 VOFP 2.000000E-03

* AMPLIFYING STAGE

FIP 5 19 VOFP 3.600000E+02

FIN 5 19 VOFN 3.600000E+02

RG1 19 5 3.652997E+06

RG2 19 4 3.652997E+06

CC 19 5 6.000000E-09

DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12

HOPM 22 28 VOUT 7.500000E+03

VIPM 28 4 1.500000E+02

HONM 21 27 VOUT 7.500000E+03

VINM 5 27 1.500000E+02

EOUT 26 23 19 5 1

VOUT 23 5 0

ROUT 26 3 20

COUT 3 5 1.000000E-12

DOP 19 25 MDTH 400E-12

VOP 4 25 2.242230E+00

DON 24 19 MDTH 400E-12

VON 24 5 7.922301E-01

.ENDS

ELECTRICAL CHARACTERISTICS

 V_{cc}^+ = +15V, V_{cc}^- = 0V, T_{amb} = 25°C (unless otherwise specified)

Symbol	Conditions	Value	Unit
V _{io}		0	mV
A _{vd}	$R_L = 2k\Omega$	100	V/mV
I _{cc}	No load, per amplifier	350	μΑ
V _{icm}		-15 to +13.5	V
V _{OH}	$R_{L} = 2k\Omega \left(V_{CC}^{+} = 15V \right)$	+13.5	V
V _{OL}	$R_L = 10k\Omega$	5	mV
I _{os}	$V_0 = +2V, V_{CC} = +15V$	+40	mA
GBP	$R_L = 2k\Omega$, $C_L = 100pF$	1.3	MHz
SR	$R_L = 2k\Omega$, $C_L = 100pF$	0.4	V/µs

PACKAGE MECHANICAL DATA

14 PINS - PLASTIC DIP

Dimensions		Millimeters	ers Inche			
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
Е		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
i			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

PACKAGE MECHANICAL DATA

14 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions	Millimeters			Inches			
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.75			0.069	
a1	0.1		0.2	0.004		0.008	
a2			1.6			0.063	
b	0.35		0.46	0.014		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.020		
c1			45°	(typ.)			
D (1)	8.55		8.75	0.336		0.344	
E	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		7.62			0.300		
F (1)	3.8		4.0	0.150		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.020		0.050	
М			0.68			0.027	
S	8° (max.)						

Note: (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK.

PACKAGE MECHANICAL DATA

14 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)

Dimensions		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α			1.20			0.05		
A1	0.05		0.15	0.01		0.006		
A2	0.80	1.00	1.05	0.031	0.039	0.041		
b	0.19		0.30	0.007		0.15		
С	0.09		0.20	0.003		0.012		
D	4.90	5.00	5.10	0.192	0.196	0.20		
Е		6.40			0.252			
E1	4.30	4.40	4.50	0.169	0.173	0.177		
е		0.65			0.025			
k	0°		8°	0°		8°		
L	0.450	0.600	0.750	0.018	0.024	0.030		
L1		1.00			0.039			
aaa			0.100			0.004		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

