City University, City campus

2015 (Fall) Practice Contest For NCPC

You will get 3 hours, 8 problems and 6 pages

<u>Judging Director:</u> Safaet Hossain (Head, Dept. of CSE, City University)

<u>Problem setter:</u> Rayhan Uddin Mahmud Shihab (37th batch, CSE)

Special thanks to: Reduan Ur Rahman Rafi (29th batch, CSE)

Md. Ataullah Bhuiyan (Lecturer, Dept. of CSE)

Md. Shahin (29th batch, CSE)

and all the teachers.

Good Luck!

N.B:

- Storage devices and printed materials are allowed.
- Browsing internet is *prohibited*.
- Unfortunately you cannot *print* any code to debug.
- You can't talk to any contestant during contest.
- Breaking any rule may *penalize* you.
- Any decision made by the judging director is final.

A A simple Dhara Time:	
------------------------	--

2+4+6+8+10+12+... It's an arithmetic progression (AP) or arithmetic sequence. You know from your childhood (:p) Here, we can use the following formula to find out the sum of the numbers of this series. n = number of terms, $a_1 = 1^{st} term$, $a_n = n^{th} term$.

$$\frac{n(a_1+a_n)}{2}$$

Input: Each line of input contain 2 integers ($-10^8 <= A$, $B <= 10^8$) and will be terminated by EOF.

Output: Sum = x. Here "x" is the summation all integers from A to B.

Sample:

2 5	Sum = 14
1 10	Sum = 55

В	Excellent age of Rafi's wife	Time:
---	------------------------------	-------

Rafi is going to marry and he is searching for a cute and pious wife. But as a programmer, he has some demands in choosing a perfect wife. He knows you're a good programmer, so of course you can help him in this matter.

He will give you an age-list of a few girls (a_1 , a_2 , a_3) and the age when he will marry (N) and you have to find an <u>excellent age</u> considering the following formula:

Sum of all ages of girls - ($gcd(min_{ai}, max_{ai}) * N$).

Input:

Test case (T < 100), for a single test case, first input number of girls (G < 10000000), then "The age when Rafi will marry" (N < 100). And then take ages of all girls (G_i < 45).

Output:

Exactly like: "Case T: X" without quotes. T is the case number. X is the desired excellent age. See samples for clarification.

Note: Be careful with TLE verdict :p . Handle duplicate ages carefully. You've to print the absolute value of X.

Sample:

4 28 16 18 18 26 5 67	Case 1: 22 Case 2: 24
18 20 30 40 50	

C Kodu and his friends' income Time:	
--------------------------------------	--

Mr. Kodu is a great man. He has a great friend circle. They don't tease girls. They are gentlemen. Be like them :)

Anyway, each of them does some works and earn decent amount of money. You will be given a list of their earnings. You have to print who earns the most and who earns the least.

Input:

First line contains 1 integer (T < 100, T is the number of his friends). Then T lines follow. Each line contains a string (name) and an integer (income).

Output:

Print who earns the most and who earns the least. See samples for clarification. It's guaranteed that 2 different friends doesn't earn equal amount of money. Besides, <u>any person's name can be repeated</u>, thus you have to add that too.

Sample:

5 Kodu 85000 Jodu 3000 Modhu 7000 Tisha 300 Bipasha 6520	Kodu earns most. Tisha earns least.
---	--

D Sometimes a half string may help Time:	
--	--

You will be given a string (S) the name of your **Valentine** (:p). You've to determine whether it's a palindrome or not.

Input:

First an integer T (Test case), then a string (S) for each case.

Output:

Print **Ulta o shoman** if it's palindromic, then if it's not palindromic print **Na re shoman na** and if it contains more than 2 vowels, print **Jak kichhu ekta achhe**.

Sample:

2	Ulta o shoman
meem	Na re shoman na
moyna	

E Shihab and his girlfriend's nice name	Time:
---	-------

Possibly you know a little bit about Shihab. He is a very busy man.

Therefore, he doesn't have time for any girl and he doesn't have any girlfriend. But there is a condition, if you can help him fulfilling that, he may get engaged (:p). Help him out. :p

There will be 2 names of two girls for 1 test case. Besides you will be given an integer J.

You've to cut off last J characters of 1st string, then cut off first J characters of last string.

Then concatenate these 2 strings that you just have cut off.

i.e: 3 alia priyanka

Here J = 3, After the 1st cut from string 1, we get **lia**, after the 2nd cut from string 2 we get **pri**. So after adding these 2 strings we get, lia+pri = **liapri**. This is the new name, that Shihab wants. :)

Now, if the **new name** and anyone of the original strings are **anagram**, print **A girl for Shihab is found** if not print **404! girl not found**.

N.B:

12345 and 52314 are anagram, but 12345 and 1234567 are not.

So if 2 numbers have equal number of digits and every digit presents equal time in both numbers, are called Anagram numbers.

Input:

The 1st line of input line contains T (Test case), then T lines follow.

J , name1 and then name2.

Output: Print as stated above.

Sample:

3 alia priyanka	Case 1: 404 ! girl not found Case 2: A girl for Shihab is found
z meem meemee	

<u>Test case 2 explanation:</u> meem ->(cut last 2)= **em**, meemee->(cut 1st 2)= **me.** So, em+me = **emme**, it's an anagram of **meem**, 2 e, 2 m, right?

F Our beloved CUPC Time:	
--------------------------	--

You will be given a string, you have to determine whether the word CUPC can be formed after removing any characters from anywhere of that string.

i.e: AbdsCiiUP12C.

We can get the form of CUPC, after removing A, b, d, s, i, i, 1, 2.

Input:

Each test case contains a single string without any space. Input will be terminated by EOF.

Output:

Print **YES** if it's possible otherwise **NO**.

Sample:

AbdsCiiUP12C	YES
PCdssdCU	NO

G	Nested primes	Time:
---	---------------	-------

You will be given a range (a, b), first you have to find all the primes from a to be, including a and b. If the sum of last 3 digits of a prime is a prime itself, you need to print that. So simple, right? Of course you can do it.

Constraints: (100 <= a, b <= 1000000)

Input:

1st line contains an integer T (Test case) then T lines follow. Each line contains 2 integers, a and b.

Output:

Print the required number as stated above.

Sample:

1	2 5
100 130	

Sample 1: Primes from 100 to 130 are: 101 103 107 109 113 127.

Among them, from 101, we get 1+0+1=2, it's a prime. Similarly, 113 gives us 1+1+3=5, it's also a prime.

H Kuchi Kuchi Koira Kaitta Fala	Time:
---------------------------------	-------

Steven and Felix halim wrote in their book, **KISS**, **keep it short and simple.** So, from now then I will keep problems short and simple :p.

You'll be given 2 integers M, N.

Just print the number of prime factors of M that are equal to or greater than N.

Input: M and N. Input will be terminated by EOF.

Output: Print as stated above.

Sample:

3	36 2	2	
3	36 2 39 1 36 1	2	
6	66 1	3	

Happy CODING !!!!

<u>Don't believe everything of these problem set.</u> <u>Everything is created by media. All are rumors, Gujob.</u>