Generalization Bounds for Federated Learning: Fast Rates, Unparticipating Clients and Unbounded Losses

彭博睿

中国人民大学统计学院

2024年4月18日

汇报大纲

- 1. 引入
 - 1.1 PAC 理论
 - 1.2 联邦学及其相关研究
 - 1.3 本文相关研究
- 2. 研究假设: 双层分布框架
- 3. 更快的学习率: 在双层分布框架下
 - 3.1 对于参与客户
 - 3.2 对于未参与客户
- 4. 次韦伯分布损失函数: 学习率
 - 4.1 小球条件下参与客户的学习率
 - 4.2 小球条件下未参与客户的学习率
- 5. 相关工作
- 6. 总结

1.1 引入: PAC 理论

定义 (假设空间)

$$\mathcal{H}: \mathcal{X} \to \mathcal{Y}$$

其中 \mathcal{X} 是输入空间, \mathcal{Y} 是输出空间。 \mathcal{H} 是假设空间,包含所有可能的假设函数。

定义 (泛化误差)

对于假设 $h \in \mathcal{H}$,真实的函数关系 y = c(x),真实的数据分布 \mathcal{D} ,h 的 **泛化误差**:

$$R(h) = \mathbb{E}_{x \sim \mathcal{D}}[1_{h(x) \neq c(x)}]$$

1.1 引入: PAC 理论

PAC 理论中重要的概念: 过度误差 (excess error) 是假设函数 $h \in \mathcal{H}$ 的误差 R(h) 和最优误差 R^* (也叫贝叶斯误差) 之间的差值,常常被这样分解(本篇论文也用了类似技巧):

$$R(h) - R^* = (R(h) - \inf_{h \in \mathcal{H}} R(h)) + (\inf_{h \in \mathcal{H}} R(h) - R^*)$$

前者成为估计误差 (estimation error),后者成为逼近误差 (approximation error)。

1.1 引入: PAC 理论

理论机器学习采用了 PAC(Probilistically Approximately Correct) 框架,所谓"概率近似正确"。常常得到的结论是:以概率 $1-\delta$,误差小于 ϵ 。比如著名的霍夫丁不等式 (Hoeffding's inequality) 就可以用 PAC 的逻辑去理解:

霍夫丁不等式

令 X_1 ... X_n 为独立的随机变量,且 $X_i \in [a, b]$ i = 1 ... n。这些随机变量的经验均值可表示为: $\bar{X} = \frac{X_1 + \cdots + X_n}{n}$ 霍夫丁不等式叙述如下:

$$\forall t > 0 \quad P(\bar{X} - E[\bar{X}] \ge t) \le exp(-\frac{2n^2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2})$$

联邦学习本质上是一种保证数据 隐私的分布式机器学习技术。

图片来源: https://www.ai4opt.org/sites/default/files/slides/kale.pdf 选择模型、本地训练、上传参数、聚合参数、更新模型。

联邦学习本质上是一种保证数据隐私的分布式机器学习技术。

图片来源: https://www.ai4opt.org/sites/default/files/slides/kale.pdf 选择模型、本地训练、上传参数、聚合参数、更新模型。

联邦学习遇到的困难

▶ 客户的真实数据分布收到本 地环境影响(Non-IID), 文 中用了"Heterogeneous" 来表示这种异质性。

联邦学习本质上是一种保证数据 隐私的分布式机器学习技术。

图片来源: https://www.ai4opt.org/sites/default/files/slides/kale.pdf 选择模型、本地训练、上传参数、聚合参数、更新模型。

联邦学习遇到的困难

- ▶ 客户的真实数据分布收到本 地环境影响(Non-IID), 文 中用了"Heterogeneous" 来表示这种异质性。
- ▶ 异质性学习导致泛化误差很 难估计

联邦学习本质上是一种保证数据 隐私的分布式机器学习技术。

图片来源: https://www.ai4opt.org/sites/default/files/slides/kale.pdf 选择模型、本地训练、上传参数、聚合参数、更新模型。

联邦学习遇到的困难

- ▶ 客户的真实数据分布收到本 地环境影响(Non-IID),文 中用了"Heterogeneous" 来表示这种异质性。
- ▶ 异质性学习导致泛化误差很 难估计
- ▶ 许多客户端可能不参与训 练(Unparticipating Clients)

联邦学习本质上是一种保证数据隐私的分布式机器学习技术。

图片来源: https://www.ai4opt.org/sites/default/files/slides/kale.pdf 选择模型、本地训练、上传参数、聚合参数、更新模型。

联邦学习遇到的困难

- ▶ 客户的真实数据分布收到本 地环境影响(Non-IID), 文 中用了"Heterogeneous" 来表示这种异质性。
- ▶ 异质性学习导致泛化误差很 难估计
- ▶ 许多客户端可能不参与训 练(Unparticipating Clients)
- ► 未参与客户能否从联邦学习 中获益?

1.3 引入: 本文相关研究

已有研究成果

- ▶ 最优化: 训练误差
- ▶ 参与客户
- ▶ 同质性数据: IID
- ▶ 有界损失函数

本文成果

- ▶ 泛化误差: 测试误差
- ▶ 未参与客户
- ▶ 异质性数据: Non-IID
- ▶ 无界损失函数

以下是一些符号的定义:

- ▶ $\mathcal{X} \subseteq \mathbb{R}^k, \mathcal{Y} \subseteq \mathbb{R}, Z = (X, Y) \in \mathcal{X} \times \mathcal{Y}$: 输入输出空间, 随机变量 Z
- **▶** *D*: Z 的真实分布; *P*: 分布 *D* 的元分布。
- ▶ 总客户数量 M,参与客户数量 m,而且 $m \ll M$
- ▶ D_i 是客户 i 的分布。 $\{D_1, ..., D_m\}$ 是根据 P 从 D 独立同分布采样得到的。数据样本 $S_i = \{Z_i^j\}_{j=1}^n$ 是从 D_i 中独立同分布采样得到的。
- ▶ $h \in \mathcal{H}$: 假设函数,也就是模型
- ▶ $l(h, Z_i)$: 客户端 i 的损失函数

问题:未参与用户能不能从联邦学习中获益?

定义 (总体风险)

$$\mathcal{L}_{P}(h) = \mathbb{E}_{D_{i} \sim P}[\mathbb{E}_{Z \sim D_{i}}[l(h(X), Y)]]$$

对应的最优总体风险函数是:

$$h^* = \arg\min_{h \in \mathcal{H}} \mathcal{L}_P(h)$$

然而,元分布 P 是未知的、客户的真实分布 D 也是未知的,以上的式子仅用于理论分析。我们要用经验风险来估计总体风险,而不是直接计算。

整篇文章都是围绕该问题展开。为了进一步分析,我们在该框架下定义:

定义 (经验风险)

$$\mathcal{L}_{S}(h) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{n} \sum_{j=1}^{n} l(h(X_{i}^{j}), Y_{i}^{j})$$

其中 (X_i^j, Y_i^j) 表示客户 i 的第 j 个样本, $S = \bigcup_{i=1}^m S_i$ 对应的最优经验风险函数是:

$$\hat{h} = \arg\min_{h \in \mathcal{H}} \mathcal{L}_S(h)$$

经验风险就是训练误差,可以直接计算。特别地, \hat{h} 就是联邦学习学到的模型。

为了在双层分布框架下分析**泛化误差**,我们定义了<mark>半经验风</mark>险(semi-empirical risk)。

定义 (半经验风险)

首先定义**半经验分布** $D = \frac{1}{m} \sum_{i=1}^{m} D_i$

$$\mathcal{L}_D(h) = \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{Z \sim D_i}[l(h(X), Y)]$$

对应的最优半经验风险函数是:

$$\hat{h}^* = \arg\min_{h \in \mathcal{H}} \mathcal{L}_D(h)$$

用一张图来表现它们的关系:

过度误差和半过度误差

- ▶ 半过度误差 $\mathcal{L}_D(\hat{h}) \mathcal{L}_D(\hat{h}^*)$: 反映了已经学到的模型 \hat{h} 在 半经验分布 D 上的、未出现数据上的表现。
- ▶ 过度误差 $\mathcal{L}_P(\hat{h}) \mathcal{L}_P(h^*)$: 反映了已经学到的模型 \hat{h} 在未参与客户上的表现。

在此框架下,我们再借助两个概念,来得到第一个结论。这里是 VC 维 (PAC 理论的奠基概念之一):

定义 (Vapnik-Chervonenkis 维度)

Definition 1 (VC dimension). Let $(\mathcal{X}, \mathcal{H})$ be a set system that consists of a set and a class \mathcal{H} of subsets of \mathcal{X} . A set system $(\mathcal{X}, \mathcal{H})$ shatters a set \mathcal{A} if each subset of \mathcal{A} can be expressed as $\mathcal{A} \cap \mathcal{h}$ for some \mathcal{h} in \mathcal{H} . The VC-dimension of \mathcal{H} is the size of the largest set shattered by \mathcal{H} .

Definition 2 (VC subgraph of real valued function). The subgraph of a function $h(\in \mathcal{H}): \mathcal{X} \to \mathbb{R}$ is the subset of $\mathcal{X} \times \mathbb{R}$ given by $\{(x,t): t < h(x)\}$. Then the VC-dimension of the function class \mathcal{F} is defined as the VC-dimension of the set of subgraphs of functions in \mathcal{H} .

VC 维是衡量假设空间的复杂度的一个重要指标。(建议看https://tangshusen.me/2018/12/09/vc-dimension/) def1 依赖数据集,def2 不需要(打散的最大数据集)! 直线 VC 维是 p+1。

Theorem 1 (Generalization error for unparticipating clients). Let \mathcal{F} be a family of functions related to hypothesis space $\mathcal{H}: \mathcal{F} = \{z \mapsto \ell(h,z) : h \in \mathcal{H}\}$. For the VC subgraph class \mathcal{F} with VC dimension d. If the loss function ℓ is bounded by b, it follows that with probability at least $1-2\delta$,

$$\mathcal{L}_{P}(\hat{h}) - \mathcal{L}_{P}(h^{*}) \le c_{1}b\sqrt{\frac{d}{mn}} + b\sqrt{\frac{\ln(1/\delta)}{2mn}} + c_{2}b\sqrt{\frac{d}{m}} + b\sqrt{\frac{\ln(1/\delta)}{2m}},$$

where c_1 and c_2 are constants.

Theorem 1 (Generalization error for unparticipating clients). Let \mathcal{F} be a family of functions related to hypothesis space $\mathcal{H}: \mathcal{F} = \{z \mapsto \ell(h,z) : h \in \mathcal{H}\}$. For the VC subgraph class \mathcal{F} with VC dimension d. If the loss function ℓ is bounded by b, it follows that with probability at least $1-2\delta$,

$$\mathcal{L}_{P}(\widehat{h}) - \mathcal{L}_{P}(h^{*}) \le c_{1}b\sqrt{\frac{d}{mn}} + b\sqrt{\frac{\ln(1/\delta)}{2mn}} + c_{2}b\sqrt{\frac{d}{m}} + b\sqrt{\frac{\ln(1/\delta)}{2m}},$$

where c_1 and c_2 are constants.

Remark

- ▶ 注意,这里不是一个普通的不等式,而是"概率近似正确"。
- ▶ 左边 $\mathcal{L}_P(\hat{h}) \mathcal{L}_P(h^*)$ 是"过度误差",也就是模型在 M 个用户中的表现。 \hat{h} 是训练模型,是在 m 个参与用户中训练得到的。通俗来讲,定理 1 告诉我们参与训练的 m 越大,过度风险越小。
- ▶ 我们可以积极地回答刚开始提出的问题:从平均表现上来说,未参与用户也能从联邦学习中获益。

结论的缺陷

在假设条件下过度风险 $\mathcal{L}_P(\hat{h}) - \mathcal{L}_P(h^*)$ 可以被 $O(\sqrt{\frac{1}{mn}} + \sqrt{\frac{1}{m}})$ 控制。但是当参与客户异质性很高时, $\mathcal{L}_P(h^*)$ 可能会非常大(难以兼顾所有客户)。这导致未参与客户的泛化误差 $\mathcal{L}_P(\hat{h})$ 也会很大。即,异质性高时,不能指望一个通用的模型能总是表现良好。

实验结果 (虽然证明有 VC 维,实验用的是神经网络)。

Figure 2: Generalization error versus the number of participating clients.

结论的缺陷

在假设条件下过度风险 $\mathcal{L}_P(\hat{h}) - \mathcal{L}_P(h^*)$ 可以被 $O(\sqrt{\frac{1}{mn}} + \sqrt{\frac{1}{m}})$ 控制。但是当参与客户异质性很高时, $\mathcal{L}_P(h^*)$ 可能会非常大(难以兼顾所有客户)。这导致未参与客户的泛化误差 $\mathcal{L}_P(\hat{h})$ 也会很大。即,异质性高时,不能指望一个通用的模型能总是表现良好。

我的复现结果:(没给源码,自己模拟的)

回忆一下:

回忆一下:

- \triangleright \hat{h} 是训练模型,经验风险最小化得到的
- ▶ h* 是最优模型,总体风险最小化得到的

回忆一下:

- $ightharpoonup \hat{h}$ 是训练模型,经验风险最小化得到的
- ▶ h* 是最优模型,总体风险最小化得到的
- ▶ 半过度风险 $\mathcal{L}_D(\hat{h}) \mathcal{L}_D(\hat{h^*})$ 反映了**参与客户**的学习率。
- ▶ 过度风险 $\mathcal{L}_P(\hat{h}) \mathcal{L}_P(h^*)$ 反映了未参与客户的学习率。

为了获得更快的学习率,我们对损失函数 l、假设空间 \mathcal{H} 、半经验分布 D、元分布 P 进行了一些合理的假设。

假设 1: 李普希茨条件

Assumption 1. Loss function ℓ is L-Lipschitz in its first argument: $|\ell(y_1,y) - \ell(y_2,y)| \le L|y_1 - y_2|$.

假设 1: 李普希茨条件

Assumption 1. Loss function ℓ is L-Lipschitz in its first argument: $|\ell(y_1,y) - \ell(y_2,y)| \le L|y_1 - y_2|$.

假设 2: 伯恩斯坦条件

Definition 3 (Bernstein condition). Let μ be a distribution supported on $\mathcal{X} \times \mathcal{Y}$ and let ℓ be a loss function with domain $\mathcal{Y} \times \mathcal{Y}$. The tuple $(\mu, \ell, \mathcal{H}, h^*)$ satisfies the (β, B) -Bernstein condition with parameter B > 0 if the following holds for any $h \in \mathcal{H}$:

$$\mathbb{E}\left(h(X) - h^*(X)\right)^2 \le B\mathbb{E}\left[\ell(h(X), Y) - \ell(h^*(X), Y)\right]^{\beta}.$$

Assumption 2. Theoretical analyses in our two-level distribution framework involve different types of Bernstein conditions:

- (a) The tuple $(D, \ell, \mathcal{H}, \widehat{h}^*)$ satisfies the Bernstein condition with parameter $B' \geq 1, 0 < \beta' \leq 1$. That is, for any $h \in \mathcal{H}$, $\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}[h(X_i^1) \widehat{h}^*(X_i^1)]^2 \leq B' (\mathcal{L}_D(h) \mathcal{L}_D(\widehat{h}^*))^{\beta'}$.
- (b) The tuple $(P, \ell, \mathcal{H}, h^*)$ satisfies the Bernstein condition with parameter $B'' \geq 1, 0 < \beta'' \leq 1$. That is, for any $h \in \mathcal{H}$, $\mathbb{E}_{D_i \sim P}[\mathbb{E}_{X \sim D_i}[h(X) h^*(X)]^2] \leq B''(\mathcal{L}_P(h) \mathcal{L}_P(h^*))^{\beta''}$.

以下是作者的解释:

- ▶ 为了得到更快的学习率,大家都会给很多假设,而伯恩斯坦 条件常常在理论机器学习中使用。
- ▶ 该条件并不苛刻。比如:
 - ▶ 任何有界的概率分布函数;
 - ▶ 回归问题中严格凸的损失函数;
 - ▶ 强凸且李普希茨连续的损失函数。
 - ▶ 均方误差且假设函数集合为凸。

以下是作者的解释:

- ▶ 为了得到更快的学习率,大家都会给很多假设,而伯恩斯坦 条件常常在理论机器学习中使用。
- ▶ 该条件并不苛刻。比如:
 - ▶ 任何有界的概率分布函数;
 - ▶ 回归问题中严格凸的损失函数;
 - ▶ 强凸且李普希茨连续的损失函数。
 - ▶ 均方误差且假设函数集合为凸。

以下是我对上面两个假设的理解:

- 根据数学分析的知识,李普希茨条件意味着损失函数一致连续。这个要求比连续性更强,要求连续并且不震荡变化,比如 y = sin(x²) 就不满足。我认为该假设很合理,因为常用的损失函数都满足该条件。
- ▶ **伯恩斯坦条件**: 对半经验分布 D 和元分布 P 进行限制,为了得到更紧的界(后面还会再理解一次)。

假设 3: 一致熵条件 (Uniform Entropy Condition)

Definition 7 (Convering number). Let (\mathcal{G}, ρ) be a metric space and $\mathcal{F} \subseteq \mathcal{G}$. For any $\epsilon \geq 0$, \mathcal{F}_{ϵ} is an ϵ -cover of \mathcal{F} with respect of ρ if for all $f \in \mathcal{F}$, we can find $f' \in \mathcal{F}_{\epsilon}$ such that $\rho(f, f') \leq \epsilon$. The covering number $\mathcal{N}(\epsilon, \mathcal{F}, \rho)$ is defined as the minimum size of an ϵ -cover:

$$\mathcal{N}(\epsilon, \mathcal{F}, \rho) := \min\{|\mathcal{F}_{\epsilon}| : \mathcal{F}_{\epsilon} \text{ is an } \epsilon\text{-cover of } \mathcal{F} \text{ w.r.t } \rho\}.$$

Definition 8 (Uniform entropy number). The entropy number is defined as the logarithm of the covering number. Let (\mathcal{G}, ρ) be a normed space with $\rho(f, f') = \|f - f'\|$. Let F be an envelope function of F such that $|f(Z)| \leq F(Z)$, for all Z and f. We further define uniform entropy number of F as: $\log \mathcal{N}(\epsilon, \mathcal{F}, \|\cdot\|_2) = \sup_Q \log \mathcal{N}(\epsilon, \mathcal{F}, \|\cdot\|_{L_2(Q)})$, where Q is taken over all probability measures with $0 < QF^2 < \infty$.

Definition 9. A function $\varphi(r):[0,\infty)\mapsto [0,\infty)$ is sub-root function if it is nondecreasing and $r\mapsto \varphi(r)/\sqrt{r}$ is nonincreasing for r>0.

假设 3: 一致熵条件 (Uniform Entropy Condition)

Definition 7 (Convering number). Let (\mathcal{G}, ρ) be a metric space and $\mathcal{F} \subseteq \mathcal{G}$. For any $\epsilon \geq 0$, \mathcal{F}_{ϵ} is an ϵ -cover of \mathcal{F} with respect of ρ if for all $f \in \mathcal{F}$, we can find $f' \in \mathcal{F}_{\epsilon}$ such that $\rho(f, f') \leq \epsilon$. The covering number $\mathcal{N}(\epsilon, \mathcal{F}, \rho)$ is defined as the minimum size of an ϵ -cover:

$$\mathcal{N}(\epsilon, \mathcal{F}, \rho) := \min\{|\mathcal{F}_{\epsilon}| : \mathcal{F}_{\epsilon} \text{ is an } \epsilon\text{-cover of } \mathcal{F} \text{ w.r.t } \rho\}.$$

Definition 8 (Uniform entropy number). The entropy number is defined as the logarithm of the covering number. Let (\mathcal{G}, ρ) be a normed space with $\rho(f, f') = \|f - f'\|$. Let F be an envelope function of F such that $|f(Z)| \leq F(Z)$, for all Z and f. We further define uniform entropy number of F as: $\log \mathcal{N}(\epsilon, \mathcal{F}, \|\cdot\|_2) = \sup_Q \log \mathcal{N}(\epsilon, \mathcal{F}, \|\cdot\|_{L_2(Q)})$, where Q is taken over all probability measures with $0 < OF^2 < \infty$.

Definition 9. A function $\varphi(r):[0,\infty)\mapsto [0,\infty)$ is sub-root function if it is nondecreasing and $r\mapsto \varphi(r)/\sqrt{r}$ is nonincreasing for r>0.

Assumption 3 (Uniform entropy number . Let \mathcal{H} be a family of bounded functions with uniformly entropy number $\log \mathcal{N}(\epsilon, \mathcal{H}, \|\cdot\|_2)$. Assume that there exist positive numbers γ, d and p such that $\log \mathcal{N}(\epsilon, \mathcal{H}, \|\cdot\|_2) \le d \log^p(\gamma/\epsilon)$ for any $0 < \epsilon \le \gamma$.

作者提到,假设3是一个很轻微的假设。下面是一些常见的满足假设3的函数:

- ▶ 函数集合有界;
- ▶ *H* 的 VC 维是有限的;
- ▶ 如果令 $\epsilon \in (0,1)$,那么所有的欧几里得单位球 $\mathcal{B} \subseteq \mathbb{R}^d$ 都满足。
- ▶ 如果 ℋ 是以 k 为核函数的希尔伯特再生核空间,且 k 的秩 为 d, 那么满足假设。

3.1 更快的学习率:对于参与客户

▶ 回忆: 半过度风险 $\mathcal{L}_D(\hat{h}) - \mathcal{L}_D(\hat{h}^*)$ 反映了参与客户的学习率。

3.1 更快的学习率:对于参与客户

▶ 回忆: 半过度风险 $\mathcal{L}_D(\hat{h}) - \mathcal{L}_D(\hat{h^*})$ 反映了参与客户的学习率。

在之前的假设下,推导出了以下结论:

Theorem 2 (Semi-excess risk for participating clients). Let \mathcal{F} be a family of functions bounded by b. Under assumptions $\boxed{2}$ and (a) of Assumption $\boxed{2}$ when $mn \geq cd \log^p(mn)$, it follows that with probability at least $1 - \delta$,

$$\mathcal{L}_D(\widehat{h}) - \mathcal{L}_D(\widehat{h}^*) \le c_1 \left(\frac{\log^p(mn)}{mn} \right)^{\frac{1}{2-\beta'}} + c_2 \left(\frac{\log(1/\delta)}{mn} \right)^{\frac{1}{2-\beta'}},$$

where c_1 and c_2 are constants depending on γ, p, L, β' and B_1, b, β' respectively.

3.1 更快的学习率:对于参与客户

Theorem 2 (Semi-excess risk for participating clients). *Let* \mathcal{F} *be a family of functions bounded by b. Under assumptions* $\boxed{2}$ *when* $mn \ge cd \log^p(mn)$, *it follows that with probability at least* $1 - \delta$.

$$\mathcal{L}_D(\widehat{h}) - \mathcal{L}_D(\widehat{h}^*) \le c_1 \left(\frac{\log^p(mn)}{mn}\right)^{\frac{1}{2-\beta'}} + c_2 \left(\frac{\log(1/\delta)}{mn}\right)^{\frac{1}{2-\beta'}},$$

where c_1 and c_2 are constants depending on γ, p, L, β' and B_1, b, β' respectively.

- ▶ 收敛速率(以概率)在 $O(\frac{1}{\sqrt{mn}})$ 到 $O(\frac{1}{mn})$ 之间,对应 β' 取 0 和 1。(来自伯恩斯坦条件的假设)
- ► 在伯恩斯坦条件下,当增加参与客户数量 m 和本地数据数 量 n 时,半经验风险收敛更快。
- ▶ 该结论是 PAC 形式。而之前的研究都是期望形式。

3.2 更快的学习率:对于未参与客户

▶ 回忆: 过度风险 $\mathcal{L}_P(\hat{h}) - \mathcal{L}_P(h^*)$ 反映了未参与客户的学习率。

3.2 更快的学习率:对于未参与客户

▶ 回忆: 过度风险 $\mathcal{L}_P(\hat{h}) - \mathcal{L}_P(h^*)$ 反映了未参与客户的学习率。

下面的结论是已有研究中最紧的界!

Theorem 3. Let \mathcal{F} be a family of functions bounded by b. Under assumptions [I] 3 and (b) of Assumption 2 when $m \geq cd \log^p(m)$, for any $\delta > 0$, it follows that with probability at least $1 - \delta$,

$$\mathcal{L}_{P}(\widehat{h}) - \mathcal{L}_{P}(h^{*}) \leq c_{0} \left(\mathcal{L}_{D}(\widehat{h}) - \mathcal{L}_{D}(\widehat{h}^{*}) \right) + c_{1} \left(\frac{\log^{p} m}{m} \right)^{\frac{1}{2-\beta''}} + c_{2} \left(\frac{\log(1/\delta)}{m} \right)^{\frac{1}{2-\beta''}},$$

where $c_0 = \frac{K}{K - \beta''}$, c_1 and c_2 are constants depending on γ, p, L, β'' and B_2, b, β'' respectively.

3.2 更快的学习率:对于未参与客户

Theorem 3. Let \mathcal{F} be a family of functions bounded by b. Under assumptions $[\!]$ and (b) of Assumption $[\!]$ when $m \geq cd \log^p(m)$, for any $\delta > 0$, it follows that with probability at least $1 - \delta$,

$$\mathcal{L}_P(\widehat{h}) - \mathcal{L}_P(h^*) \le c_0 \left(\mathcal{L}_D(\widehat{h}) - \mathcal{L}_D(\widehat{h}^*) \right) + c_1 \left(\frac{\log^p m}{m} \right)^{\frac{1}{2 - \beta''}} + c_2 \left(\frac{\log(1/\delta)}{m} \right)^{\frac{1}{2 - \beta''}},$$

where $c_0 = \frac{K}{K - \beta''}$, c_1 and c_2 are constants depending on γ, p, L, β'' and B_2, b, β'' respectively.

- ▶ 右边的 $\mathcal{L}_D(\hat{h}) \mathcal{L}_D(\hat{h^*})$ 已经被定理 2 控制住了。

在这一节,作者给出了双层分布框架下,以次韦伯分布为损失函数的泛化误差的界(学习率)。

定义 (次韦伯分布)

Definition 4 (Sub-Weibull random variables). A random variable X is said to be sub-Weibull if there is constant $\|X\|_{\psi_{\alpha}} < \infty$, such that

$$\mathbb{P}(|X| \ge t) \le 2 \exp(-t^{\alpha}/\|X\|_{\psi_{\alpha}}^{\alpha}), \text{ for all } t \ge 0.$$

Sub-Gaussian and sub-exponential random variables are two special cases of Sub-Weibull random variables, which correspond to $\alpha=2$ and $\alpha=1$, respectively.

在这一节,作者给出了双层分布框架下,以次韦伯分布为损失函数的泛化误差的界(学习率)。

定义 (次韦伯分布)

Definition 4 (Sub-Weibull random variables). A random variable X is said to be sub-Weibull if there is constant $\|X\|_{\psi_{\alpha}} < \infty$, such that

$$\mathbb{P}(|X| \ge t) \le 2 \exp(-t^{\alpha}/\|X\|_{\psi_{\alpha}}^{\alpha}), \text{ for all } t \ge 0.$$

Sub-Gaussian and sub-exponential random variables are two special cases of Sub-Weibull random variables, which correspond to $\alpha=2$ and $\alpha=1$, respectively.

次韦伯分布是一种厚尾分布 (heavy-tail)。

图片来源: https://adamwierman.com/wp-content/uploads/2021/05/book-05-11.pdf

厚尾分布的例子:

图片来源: https://adamwierman.com/wp-content/uploads/2021/05/book-05-11.pdf

α 越小,分布的尾部越厚。

图片来源: https://adamwierman.com/wp-content/uploads/2021/05/book-05-11.pdf

- \triangleright α 越小,分布的尾部越厚。
- ▶ 极端事件的概率更高。损失 函数在更多数据点上取值更 大。(数据不好/模型差/选 取 loss 原因)

图片来源: https://adamwierman.com/wp-content/uploads/2021/05/book-05-11.pdf

- \triangleright α 越小,分布的尾部越厚。
- ▶ 极端事件的概率更高。损失 函数在更多数据点上取值更 大。(数据不好/模型差/选 取 loss 原因)
- ► 条件更加苛刻(甚至超过了 指数分布的尾巴),推导也 更困难。

图片来源: https://adamwierman.com/wp-content/uploads/2021/05/book-05-11.pdf

- \triangleright α 越小,分布的尾部越厚。
- ▶ 极端事件的概率更高。损失 函数在更多数据点上取值更 大。(数据不好/模型差/选 取 loss 原因)
- ▶ 条件更加苛刻(甚至超过了 指数分布的尾巴),推导也 更困难。
- ► 和之前<mark>伯恩斯坦条件</mark>不同! 伯恩斯坦条件能推出次高 斯的 bound。

补充: 伯恩斯坦条件推出次高斯

https://www.stat.cmu.edu/~arinaldo/Teaching/36709/ S19/Scribed_Lectures/Feb5_Aleksandr.pdf

Definition 5.3 (Bernstein condition) Let X be a random variable with mean μ and variance σ^2 . Assume that $\exists k > 0$:

$$at : b > 0$$
:
 $\mathbb{E}|X - \mu|^k \le \frac{1}{2}k!\sigma^2b^{k-2}, k = 3, 4, ...$

Then one says that X satisfies Bernstein condition.

 ${\bf Lemma~5.4~} \textit{ If random variable X satisfies Bernstein condition with parameter b, then:}$

$$\mathbb{E}e^{\lambda(X-\mu)} \le e^{\frac{\lambda^2\sigma^2}{2}\frac{1}{1-\lambda(\lambda)}}, \forall |\lambda| < \frac{1}{b}$$

Additionally, from the bound on the moment generating function one can obtain the following tail bound (also known as Bernstein inequality):

$$\mathbb{P}\left(|X-\mu| \geq t\right) \leq 2\exp\left(-\frac{t^2}{2(\sigma^2+bt)}\right), \forall t>0$$

Proof: Pick $\lambda: |\lambda| < \frac{1}{k}$ (allowing interchanging summation and taking expectation) and expand the MGF in a Taylor series:

$$\mathbb{E} e^{\lambda(X-\mu)} = 1 + \frac{\lambda^2\sigma^2}{2} + \sum_{k=1}^{\infty} \frac{\mathbb{E}|X-\mu|^k}{k!} \lambda^k \leq 1 + \frac{\lambda^2\sigma^2}{2} + \frac{\lambda^2\sigma^2}{2} \sum_{k=0}^{\infty} (|\lambda|b)^{k-2} =$$

Lecture 5: February 5

$$=1+\frac{\lambda^2\sigma^2}{2}\frac{1}{1-k(\lambda)} \le e^{\frac{\lambda^2\sigma^2}{2}\frac{1}{1-k(\lambda)}}$$

where we used $1 + x \le e^x$. To show the final bound, take $\lambda : |\lambda| < \frac{1}{2b}$. Then the bound becomes: $e^{\frac{2^2 e^2}{1-b}\ln x} e^{-\lambda^2 e^2} = e^{\frac{2^2 (2e^2)}{1-b}}$

implying that $X \in SE(2\sigma^2, 2b)$. The concentration result then follow by taking $\lambda = \frac{t}{M+\sigma^2}$

对于厚尾分布,许多**集中不等式**(比如之前提的霍夫丁)<mark>不能</mark>使用,自然需要新的方法。下面是一些定义:

- ▶ $||h||_{L_2(\mu)}$ 表示 Banach 空间 $L_2(\mathcal{X},\mu)$ 。(完备赋范向量空间)
- ▶ D 是半经验分布, P 是元分布。
- $\|h\|_{L_2(D)} = (\frac{1}{m} \sum_{i=1}^m \mathbb{E}_{X \sim D_i} [h(X)]^2)^{1/2}$
- $||h||_{L_2(P)} = (\mathbb{E}_{D_i \sim P} \mathbb{E}_{X \sim D_i} [h(X)]^2)^{1/2}$

假设: 小球条件

Assumption 4 (Small-ball condition). Let $\mathcal{H} \subset L_2(D)$ be a closed and convex class of functions and $\mathcal{H} - \mathcal{H} := \{h - h' : h, h' \in \mathcal{H}\}.$

- (a) Let $Q_{mn}(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}(|h(X_i^1)| \ge \tau ||h||_{L_2(D)})$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \ge 0$ for which $Q_{mn}(\tau) > 0$.
- (b) Let $Q_m(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}\left(|\mathbb{E}[h(X_i^1)]| \geq \tau ||h||_{L_2(P)}\right)$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_m(\tau, P) > 0$.

Remark

▶ 小球条件是对独立同分布的数据产生过程的假设。

假设: 小球条件

Assumption 4 (Small-ball condition). Let $\mathcal{H} \subset L_2(D)$ be a closed and convex class of functions and $\mathcal{H} - \mathcal{H} := \{h - h' : h, h' \in \mathcal{H}\}.$

- (a) Let $Q_{mn}(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}(|h(X_i^1)| \geq \tau ||h||_{L_2(D)})$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_{mn}(\tau) > 0$.
- (b) Let $Q_m(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}\left(|\mathbb{E}[h(X_i^1)]| \geq \tau ||h||_{L_2(P)}\right)$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_m(\tau, P) > 0$.

- ▶ 小球条件是对独立同分布的数据产生过程的假设。
- ▶ 在高等概率论中,泛化误差常常要用集中不等式。直观上, 只有当损失函数的各阶矩很好时,经验风险会以高概率集中 在总体风险附近。

假设: 小球条件

Assumption 4 (Small-ball condition). Let $\mathcal{H} \subset L_2(D)$ be a closed and convex class of functions and $\mathcal{H} - \mathcal{H} := \{h - h' : h, h' \in \mathcal{H}\}.$

- (a) Let $Q_{mn}(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}(|h(X_i^1)| \geq \tau ||h||_{L_2(D)})$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_{mn}(\tau) > 0$.
- (b) Let $Q_m(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}\left(|\mathbb{E}[h(X_i^1)]| \geq \tau ||h||_{L_2(P)}\right)$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_m(\tau, P) > 0$.

- ▶ 小球条件是对独立同分布的数据产生过程的假设。
- ▶ 在高等概率论中,泛化误差常常要用集中不等式。直观上, 只有当损失函数的各阶矩很好时,经验风险会以高概率集中 在总体风险附近。
- ▶ 但对于厚尾分布不适用!(另一定义: 矩母函数发散)

假设: 小球条件

Assumption 4 (Small-ball condition). Let $\mathcal{H} \subset L_2(D)$ be a closed and convex class of functions and $\mathcal{H} - \mathcal{H} := \{h - h' : h, h' \in \mathcal{H}\}.$

- (a) Let $Q_{mn}(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}(|h(X_i^1)| \geq \tau ||h||_{L_2(D)})$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_{mn}(\tau) > 0$.
- (b) Let $Q_m(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}\left(|\mathbb{E}[h(X_i^1)]| \geq \tau ||h||_{L_2(P)}\right)$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_m(\tau, P) > 0$.

Remark

▶ 于是小球条件被提出。

假设: 小球条件

Assumption 4 (Small-ball condition). *Let* $\mathcal{H} \subset L_2(D)$ *be a closed and convex class of functions and* $\mathcal{H} - \mathcal{H} := \{h - h' : h, h' \in \mathcal{H}\}.$

- (a) Let $Q_{mn}(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}(|h(X_1^1)| \geq \tau ||h||_{L_2(D)})$, where X_1^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_{mn}(\tau) > 0$.
- (b) Let $Q_m(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}\left(|\mathbb{E}[h(X_i^1)]| \geq \tau ||h||_{L_2(P)}\right)$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_m(\tau, P) > 0$.

- ▶ 于是小球条件被提出。
- ▶ 弱条件 $||h||_{L_p(P)} \le c||h||_{L_2(P)}$ 就能推出。

假设: 小球条件

Assumption 4 (Small-ball condition). *Let* $\mathcal{H} \subset L_2(D)$ *be a closed and convex class of functions and* $\mathcal{H} - \mathcal{H} := \{h - h' : h, h' \in \mathcal{H}\}.$

- (a) Let $Q_{mn}(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}(|h(X_1^1)| \geq \tau ||h||_{L_2(D)})$, where X_1^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_{mn}(\tau) > 0$.
- (b) Let $Q_m(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}\left(|\mathbb{E}[h(X_i^1)]| \geq \tau ||h||_{L_2(P)}\right)$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_m(\tau, P) > 0$.

- ▶ 于是小球条件被提出。
- ▶ 弱条件 $||h||_{L_p(P)} \le c||h||_{L_2(P)}$ 就能推出。
- ▶ 假设 (b) 是把 D_i 看成从 P 产生的随机变量

假设: 小球条件

Assumption 4 (Small-ball condition). *Let* $\mathcal{H} \subset L_2(D)$ *be a closed and convex class of functions and* $\mathcal{H} - \mathcal{H} := \{h - h' : h, h' \in \mathcal{H}\}.$

- (a) Let $Q_{mn}(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}(|h(X_1^1)| \geq \tau ||h||_{L_2(D)})$, where X_1^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_{mn}(\tau) > 0$.
- (b) Let $Q_m(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}\left(|\mathbb{E}[h(X_i^1)]| \geq \tau ||h||_{L_2(P)}\right)$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_m(\tau, P) > 0$.

Remark

▶ 假设 (a) 仅需要 $\mathcal{H} \subset L_2(D)$ 以高概率成立。(后面我会解释 $\mathcal{H} - \mathcal{H}$ 的原因)

假设: 小球条件

Assumption 4 (Small-ball condition). *Let* $\mathcal{H} \subset L_2(D)$ *be a closed and convex class of functions and* $\mathcal{H} - \mathcal{H} := \{h - h' : h, h' \in \mathcal{H}\}.$

- (a) Let $Q_{mn}(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}(|h(X_1^1)| \geq \tau ||h||_{L_2(D)})$, where X_1^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_{mn}(\tau) > 0$.
- (b) Let $Q_m(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}\left(|\mathbb{E}[h(X_i^1)]| \geq \tau ||h||_{L_2(P)}\right)$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_m(\tau, P) > 0$.

- ▶ 假设 (a) 仅需要 $\mathcal{H} \subset L_2(D)$ 以高概率成立。(后面我会解释 $\mathcal{H} \mathcal{H}$ 的原因)
- ▶ 该条件并不严苛,因为 D 是从 P 中独立同分布抽样得到的。

假设: 小球条件

Assumption 4 (Small-ball condition). *Let* $\mathcal{H} \subset L_2(D)$ *be a closed and convex class of functions and* $\mathcal{H} - \mathcal{H} := \{h - h' : h, h' \in \mathcal{H}\}.$

- (a) Let $Q_{mn}(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}(|h(X_i^1)| \geq \tau ||h||_{L_2(D)})$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_{mn}(\tau) > 0$.
- (b) Let $Q_m(\tau) = \inf_{h \in \mathcal{H} \mathcal{H}} \mathbb{P}\left(|\mathbb{E}[h(X_i^1)]| \geq \tau ||h||_{L_2(P)}\right)$, where X_i^1 represent the random sample at i-th participating client. There is a $\tau \geq 0$ for which $Q_m(\tau, P) > 0$.

- ▶ 假设 (a) 仅需要 $\mathcal{H} \subset L_2(D)$ 以高概率成立。(后面我会解释 $\mathcal{H} \mathcal{H}$ 的原因)
- ▶ 该条件并不严苛,因为 D 是从 P 中独立同分布抽样得到的。
- ▶ 小球条件首次用于异质性数据产生过程。

回忆: $\hat{h}^* = \arg\min_{h \in \mathcal{H}} \mathcal{L}_D(h)$ 。本节聚焦于度量 $\|h - \hat{h}^*\|_{L_2(D)}^2$,即 $h 与 \hat{h}^*$ 在半经验分布下的 L_2 距离(对应平方损失函数)。

回忆: $\hat{h}^* = \arg\min_{h \in \mathcal{H}} \mathcal{L}_D(h)$ 。本节聚焦于度量 $\|h - \hat{h}^*\|_{L_2(D)}^2$,即 $h 与 \hat{h}^*$ 在半经验分布下的 L_2 距离(对应平方损失函数)。对于 $\forall h \in \mathcal{H}$,有:

$$\mathcal{L}_{S}(h) - \mathcal{L}_{S}(\widehat{h}^{*}) = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[(h(X_{i}^{j}) - Y_{i}^{j})^{2} - (\widehat{h}^{*}(X_{i}^{j}) - Y_{i}^{j})^{2} \right]$$

$$(1)$$

$$= \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (h - \hat{h}^*)^2 (X_i^j) + \frac{2}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \xi_i^j (h - \hat{h}^*) (X_i^j), \tag{2}$$

其中
$$\xi_i^j = \hat{h}^*(X_i^j) - Y_i^j$$
。

回忆: $\hat{h}^* = \arg\min_{h \in \mathcal{H}} \mathcal{L}_D(h)$ 。本节聚焦于度量 $\|h - \hat{h}^*\|_{L_2(D)}^2$,即 $h 与 \hat{h}^*$ 在半经验分布下的 L_2 距离(对应平方损失函数)。对于 $\forall h \in \mathcal{H}$,有:

$$\mathcal{L}_{S}(h) - \mathcal{L}_{S}(\widehat{h}^{*}) = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[(h(X_{i}^{j}) - Y_{i}^{j})^{2} - (\widehat{h}^{*}(X_{i}^{j}) - Y_{i}^{j})^{2} \right]$$
(1)

$$= \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (h - \hat{h}^*)^2 (X_i^j) + \frac{2}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \xi_i^j (h - \hat{h}^*) (X_i^j), \tag{2}$$

其中 $\xi_i^j = \hat{h}^*(X_i^j) - Y_i^j$ 。由于 $\hat{h} = \arg\min_{h \in \mathcal{H}} \mathcal{L}_S(h)$,所以 $\mathcal{L}_S(\hat{h}) - \mathcal{L}_S(\hat{h}^*) \leq 0$ 。如果 $\|h - \hat{h}^*\|_{L_2(D)}^2$ 很大,那么上式也有很大的概率大于 0。因为 $\mathcal{L}_S(\hat{h}) - \mathcal{L}_S(\hat{h}^*) \leq 0$,所以大概率上 $\|\hat{h} - \hat{h}^*\|_{L_2(D)}^2$ 很小。

前面的假设之所以用 $\mathcal{H} - \mathcal{H}$ 在这里就能看得很清楚了。(是一种泛函)

回忆: $\hat{h}^* = \arg\min_{h \in \mathcal{H}} \mathcal{L}_D(h)$ 。本节聚焦于度量 $\|h - \hat{h}^*\|_{L_2(D)}^2$,即 $h 与 \hat{h}^*$ 在半经验分布下的 L_2 距离(对应平方损失函数)。对于 $\forall h \in \mathcal{H}$,有:

$$\mathcal{L}_{S}(h) - \mathcal{L}_{S}(\widehat{h}^{*}) = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left[(h(X_{i}^{j}) - Y_{i}^{j})^{2} - (\widehat{h}^{*}(X_{i}^{j}) - Y_{i}^{j})^{2} \right]$$
(1)

$$= \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} (h - \hat{h}^*)^2 (X_i^j) + \frac{2}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \xi_i^j (h - \hat{h}^*) (X_i^j), \tag{2}$$

其中 $\xi_i^j = \hat{h}^*(X_i^j) - Y_i^j$ 。由于 $\hat{h} = \arg\min_{h \in \mathcal{H}} \mathcal{L}_S(h)$,所以 $\mathcal{L}_S(\hat{h}) - \mathcal{L}_S(\hat{h}^*) \leq 0$ 。如果 $\|h - \hat{h}^*\|_{L_2(D)}^2$ 很大,那么上式也有很大的概率大于 0。因为 $\mathcal{L}_S(\hat{h}) - \mathcal{L}_S(\hat{h}^*) \leq 0$,所以大概率上 $\|\hat{h} - \hat{h}^*\|_{L_2(D)}^2$ 很小。

前面的假设之所以用 $\mathcal{H} - \mathcal{H}$ 在这里就能看得很清楚了。(是一种泛函)

为了度量第一项,我们引入拉德马赫复杂度。

定义 (拉德马赫复杂度)

Definition 5. We define $\mathcal{H} - \mathcal{H} = \{h - h' : h, h' \in \mathcal{H}\}$ and denote by B_2^m the $L_2(D)$ unit ball entered at \widehat{h}^* , that is $B_2^m = \{h \in \mathcal{H} : \|h - \widehat{h}^*\|_{L_2(D)} \le 1\}$. For every $\eta > 0$, define

$$\omega_{mn}(\eta) := \inf \left\{ s > 0 : \mathbb{E} \left[\sup_{h \in (\mathcal{H} - \mathcal{H}) \cap sB_2^m} \left| \frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \sigma_i^j h(X_i^j) \right| \right] \le \eta s \right\},$$

where σ_i^j are Rademacher random variables.

定义 (拉德马赫复杂度)

Definition 5. We define $\mathcal{H} - \mathcal{H} = \{h - h' : h, h' \in \mathcal{H}\}$ and denote by B_2^m the $L_2(D)$ unit ball entered at \widehat{h}^* , that is $B_2^m = \{h \in \mathcal{H} : \|h - \widehat{h}^*\|_{L_2(D)} \le 1\}$. For every $\eta > 0$, define

$$\omega_{mn}(\eta) := \inf \left\{ s > 0 : \mathbb{E} \left[\sup_{h \in (\mathcal{H} - \mathcal{H}) \cap sB_2^m} \left| \frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \sigma_i^j h(X_i^j) \right| \right] \le \eta s \right\},$$

where σ_i^j are Rademacher random variables.

标量 $\omega_{mn}(\eta)$ 度量了用户本地函数集合 $\{\mathcal{H} - \mathcal{H} \cap sB_2^m\}$ 。注意, $\omega_{mn}(\eta)$ 仅仅跟假设集 \mathcal{H} 和半经验分布 D 抽出的样本有关。

Theorem 4. Fix $\tau > 0$ for which $Q_m(2\tau) > 0$ and set $\eta < \tau^2 Q_{mn}(2\tau)/32$. If every random variable $V_i^j = \xi_i^j h(X_i^j) - \mathbb{E}[\xi_i^j h(X_i^j)]$ for all $h \in \mathcal{H} - \hat{h}^*$ is Sub-Weibull. For sufficiently large mn, with probability at least $1 - \delta_{mn} - \exp(-mnQ_{mn}^2(2\tau)/2)$ one has

$$\begin{split} \|\widehat{h} - \widehat{h}^*\|_{L_2(D)} &\leq 2 \max \left\{ \omega_{mn}(\tau Q_{mn}(2\tau)/16), (mn)^{-\frac{1}{4} + \iota} \right\}, \\ where \ 0 &< \iota < \frac{1}{4} \ and \ \delta_{mn} = \exp \{ - (\frac{c_1 \eta^2 (mn)^{4\iota}}{\frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \left\| V_i^j \right\|_{\psi_\alpha}^2} \wedge \frac{c_2 \eta^\alpha (mn)^{\alpha(1/2 + 2\iota)}}{\max_{(1,1) \leq (i,j) \leq (m,n)} \left\| V_i^j \right\|_{\psi_\alpha}^\alpha}) \}. \end{split}$$

Theorem 4. Fix $\tau > 0$ for which $Q_m(2\tau) > 0$ and set $\eta < \tau^2 Q_{mn}(2\tau)/32$. If every random variable $V_i^j = \xi_j^j h(X_i^j) - \mathbb{E}[\xi_j^j h(X_i^j)]$ for all $h \in \mathcal{H} - \hat{h}^*$ is Sub-Weibull. For sufficiently large mn, with probability at least $1 - \delta_{mn} - \exp\left(-mnQ_{mn}^2(2\tau)/2\right)$ one has

$$\begin{split} \|\widehat{h} - \widehat{h}^*\|_{L_2(D)} &\leq 2 \max \left\{ \omega_{mn} (\tau Q_{mn}(2\tau)/16), (mn)^{-\frac{1}{4} + \iota} \right\}, \\ where \ 0 &< \iota < \frac{1}{4} \ \text{and} \ \delta_{mn} = \exp \{ - (\frac{c_1 \eta^2 (mn)^{4\iota}}{\frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \left\| V_i^j \right\|_{\psi_\alpha}^2} \wedge \frac{c_2 \eta^\alpha (mn)^{\alpha(1/2 + 2\iota)}}{\max_{(1,1) \leq (i,j) \leq (m,n)} \left\| V_i^j \right\|_{\psi_\alpha}^\alpha}) \right\}. \end{split}$$

Remark

▶ 异质性联邦学习的、厚尾分布的首个泛化误差结果。

Theorem 4. Fix $\tau > 0$ for which $Q_m(2\tau) > 0$ and set $\eta < \tau^2 Q_{mn}(2\tau)/32$. If every random variable $V_i^j = \xi_j^j h(X_i^j) - \mathbb{E}[\xi_j^j h(X_i^j)]$ for all $h \in \mathcal{H} - \hat{h}^*$ is Sub-Weibull. For sufficiently large mn, with probability at least $1 - \delta_{mn} - \exp\left(-mnQ_{mn}^2(2\tau)/2\right)$ one has

$$\begin{split} \|\widehat{h} - \widehat{h}^*\|_{L_2(D)} &\leq 2 \max \left\{ \omega_{mn} (\tau Q_{mn}(2\tau)/16), (mn)^{-\frac{1}{4} + \iota} \right\}, \\ \text{where } 0 < \iota < \frac{1}{4} \text{ and } \delta_{mn} &= \exp\{ -(\frac{c_1 \eta^2 (mn)^{4\iota}}{\frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \left\| V_i^j \right\|_{\psi_\alpha}^2} \wedge \frac{c_2 \eta^\alpha (mn)^{\alpha(1/2 + 2\iota)}}{\max_{(1,1) \leq (i,j) \leq (m,n)} \left\| V_i^j \right\|_{\psi_\alpha}^\alpha}) \right\}. \end{split}$$

- ▶ 异质性联邦学习的、厚尾分布的首个泛化误差结果。
- ► 假设空间的"大小"(复杂度)和噪声的"大小"(厚尾分布)在异质性联邦学习的泛化误差中十分重要。

Theorem 4. Fix $\tau > 0$ for which $Q_m(2\tau) > 0$ and set $\eta < \tau^2 Q_{mn}(2\tau)/32$. If every random variable $V_i^j = \xi_i^j h(X_i^j) - \mathbb{E}[\xi_i^j h(X_i^j)]$ for all $h \in \mathcal{H} - \hat{h}^*$ is Sub-Weibull. For sufficiently large mn, with probability at least $1 - \delta_{mn} - \exp\left(-mnQ_{mn}^2(2\tau)/2\right)$ one has

$$\begin{split} \|\widehat{h} - \widehat{h}^*\|_{L_2(D)} &\leq 2 \max \left\{ \omega_{mn} (\tau Q_{mn}(2\tau)/16), (mn)^{-\frac{1}{4} + \iota} \right\}, \\ \text{where } 0 < \iota < \frac{1}{4} \text{ and } \delta_{mn} &= \exp\{ -(\frac{c_1 \eta^2 (mn)^{4\iota}}{\frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \left\| V_i^j \right\|_{\psi_\alpha}^2} \wedge \frac{c_2 \eta^\alpha (mn)^{\alpha(1/2 + 2\iota)}}{\max_{(1,1) \leq (i,j) \leq (m,n)} \left\| V_i^j \right\|_{\psi_\alpha}^\alpha}) \right\}. \end{split}$$

- ▶ 异质性联邦学习的、厚尾分布的首个泛化误差结果。
- ► 假设空间的"大小"(复杂度)和噪声的"大小"(厚尾分布)在异质性联邦学习的泛化误差中十分重要。
- ▶ V_i^j 的尾部越厚, δ_{mn} 越大。

Theorem 4. Fix $\tau > 0$ for which $Q_m(2\tau) > 0$ and set $\eta < \tau^2 Q_{mn}(2\tau)/32$. If every random variable $V_i^j = \xi_i^j h(X_i^j) - \mathbb{E}[\xi_i^j h(X_i^j)]$ for all $h \in \mathcal{H} - \hat{h}^*$ is Sub-Weibull. For sufficiently large mn, with probability at least $1 - \delta_{mn} - \exp(-mnQ_{mn}^2(2\tau)/2)$ one has

$$\begin{split} \|\widehat{h} - \widehat{h}^*\|_{L_2(D)} &\leq 2 \max \left\{ \omega_{mn}(\tau Q_{mn}(2\tau)/16), (mn)^{-\frac{1}{4} + \iota} \right\}, \\ where \ 0 &< \iota < \frac{1}{4} \ and \ \delta_{mn} = \exp \{ - (\frac{c_1 \eta^2 (mn)^{4\iota}}{\frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \left\| V_i^j \right\|_{\psi_\alpha}^2} \wedge \frac{c_2 \eta^\alpha (mn)^{\alpha(1/2 + 2\iota)}}{\max_{(1,1) \leq (i,j) \leq (m,n)} \left\| V_i^j \right\|_{\psi_\alpha}^\alpha}) \}. \end{split}$$

Theorem 4. Fix $\tau > 0$ for which $Q_m(2\tau) > 0$ and set $\eta < \tau^2 Q_{mn}(2\tau)/32$. If every random variable $V_i^j = \xi_j^j h(X_i^j) - \mathbb{E}[\xi_j^j h(X_i^j)]$ for all $h \in \mathcal{H} - \hat{h}^*$ is Sub-Weibull. For sufficiently large mn, with probability at least $1 - \delta_{mn} - \exp\left(-mnQ_{mn}^2(2\tau)/2\right)$ one has

$$\begin{split} \|\widehat{h} - \widehat{h}^*\|_{L_2(D)} &\leq 2 \max \left\{ \omega_{mn}(\tau Q_{mn}(2\tau)/16), (mn)^{-\frac{1}{4} + \iota} \right\}, \\ where \ 0 &< \iota < \frac{1}{4} \ \text{and} \ \delta_{mn} = \exp \{ -(\frac{1}{\frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \left\| V_i^j \right\|_{\psi_\alpha}^2}{\sum_{i=1}^m \sum_{j=1}^n \left\| V_i^j \right\|_{\psi_\alpha}^2} \wedge \frac{c_2 \eta^\alpha (mn)^{\alpha(1/2 + 2\iota)}}{\max_{(1,1) \leq (i,j) \leq (m,n)} \left\| V_i^j \right\|_{\psi_\alpha}^\alpha}) \}. \end{split}$$

Remark

▶ 当然, δ_{mn} 随 mn 和 ι (与厚尾正相关) 的增大而减小。

Theorem 4. Fix $\tau > 0$ for which $Q_m(2\tau) > 0$ and set $\eta < \tau^2 Q_{mn}(2\tau)/32$. If every random variable $V_i^j = \xi_j^j h(X_i^j) - \mathbb{E}[\xi_j^j h(X_i^j)]$ for all $h \in \mathcal{H} - \hat{h}^*$ is Sub-Weibull. For sufficiently large mn, with probability at least $1 - \delta_{mn} - \exp\left(-mnQ_{mn}^2(2\tau)/2\right)$ one has

$$\begin{split} \|\widehat{h} - \widehat{h}^*\|_{L_2(D)} &\leq 2 \max \left\{ \omega_{mn} (\tau Q_{mn}(2\tau)/16), (mn)^{-\frac{1}{4} + \iota} \right\}, \\ where \ 0 &< \iota < \frac{1}{4} \ \text{and} \ \delta_{mn} = \exp \{ - (\frac{c_1 \eta^2 (mn)^{4\iota}}{\frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \left\| V_i^j \right\|_{\psi_\alpha}^2} \wedge \frac{c_2 \eta^\alpha (mn)^{\alpha(1/2 + 2\iota)}}{\max_{(1,1) \leq (i,j) \leq (m,n)} \left\| V_i^j \right\|_{\psi_\alpha}^\alpha}) \right\}. \end{split}$$

- ▶ 当然, δ_{mn} 随 mn 和 ι (与厚尾正相关) 的增大而减小。
- ▶ 为了让不等式成立的概率更高, δ_{mn} 要小。

Theorem 4. Fix $\tau > 0$ for which $Q_m(2\tau) > 0$ and set $\eta < \tau^2 Q_{mn}(2\tau)/32$. If every random variable $V_i^j = \xi_j^j h(X_i^j) - \mathbb{E}[\xi_j^j h(X_i^j)]$ for all $h \in \mathcal{H} - \hat{h}^*$ is Sub-Weibull. For sufficiently large mn, with probability at least $1 - \delta_{mn} - \exp\left(-mnQ_{mn}^2(2\tau)/2\right)$ one has

$$\begin{split} \|\widehat{h} - \widehat{h}^*\|_{L_2(D)} &\leq 2 \max \left\{ \omega_{mn} (\tau Q_{mn}(2\tau)/16), (mn)^{-\frac{1}{4} + \iota} \right\}, \\ where \ 0 &< \iota < \frac{1}{4} \ \text{and} \ \delta_{mn} = \exp \{ - (\frac{c_1 \eta^2 (mn)^{4\iota}}{\frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \left\| V_i^j \right\|_{\psi_\alpha}^2} \wedge \frac{c_2 \eta^\alpha (mn)^{\alpha(1/2 + 2\iota)}}{\max_{(1,1) \leq (i,j) \leq (m,n)} \left\| V_i^j \right\|_{\psi_\alpha}^\alpha}) \right\}. \end{split}$$

- ▶ 当然, δ_{mn} 随 mn 和 ι (与厚尾正相关) 的增大而减小。
- ▶ 为了让不等式成立的概率更高, δ_{mn} 要小。
- ▶ 即,固定 mn, V_i^j 的尾部越厚, δ_{mn} 越大, $\|h \hat{h}^*\|_{L_2(D)}^2$ 收敛越慢。

Corollary 1. Under the same conditions of Theorem \P for convex function class $\mathcal H$ and sufficiently large mn, with probability at least $1-\delta_{mn}-\exp\left(-mnQ_{mn}^2(2\tau)/2\right)$ one has

$$\mathcal{L}_D(\widehat{h}) - \mathcal{L}_D(\widehat{h}^*) \leq (2 + \frac{\tau^2}{4}Q_{mn}(2\tau)) \max{(\omega_{mn}^2(\tau Q_{mn}(2\tau)/16), (mn)^{-\frac{1}{2}+\iota})},$$
 where $0 < \iota < \frac{1}{2}$.

Remark

推论 1 给出了半经验风险在次韦伯分布下的界。收敛速率是 $O(\frac{1}{mn^{\frac{1}{2}-\iota}})$,相比于定理 2 的 $O(\frac{1}{\sqrt{mn}})$,收敛速率更慢。

Corollary 1. Under the same conditions of Theorem \P for convex function class $\mathcal H$ and sufficiently large mn, with probability at least $1-\delta_{mn}-\exp\left(-mnQ_{mn}^2(2\tau)/2\right)$ one has

$$\mathcal{L}_{D}(\widehat{h}) - \mathcal{L}_{D}(\widehat{h}^{*}) \leq (2 + \frac{\tau^{2}}{4}Q_{mn}(2\tau)) \max{(\omega_{mn}^{2}(\tau Q_{mn}(2\tau)/16), (mn)^{-\frac{1}{2}+\iota})},$$
 where $0 < \iota < \frac{1}{2}$.

Remark

推论 1 给出了半经验风险在次韦伯分布下的界。收敛速率是 $O(\frac{1}{mn^{\frac{1}{2}-\iota}})$,相比于定理 2 的 $O(\frac{1}{\sqrt{mn}})$,收敛速率更慢。

回顾定理 2:

Theorem 2 (Semi-excess risk for participating clients). Let \mathcal{F} be a family of functions bounded by b. Under assumption $\boxed{2}$ when $mn \geq cd \log^p(mn)$, it follows that with probability at least $1 - \delta$,

$$\mathcal{L}_D(\widehat{h}) - \mathcal{L}_D(\widehat{h}^*) \le c_1 \left(\frac{\log^p(mn)}{mn}\right)^{\frac{1}{2-\beta'}} + c_2 \left(\frac{\log(1/\delta)}{mn}\right)^{\frac{1}{2-\beta'}},$$

where c_1 and c_2 are constants depending on γ, p, L, β' and B_1, b, β' respectively.

为了分析未参与客户的学习率,我们聚焦于 $\|h-h^*\|_{L_2(P)}^2$ 。这里集合从半经验分布 D 到元分布 P,所以拉德马赫复杂度的定义也要改变。

Definition 6. We define $\mathcal{H} - \mathcal{H} = \{h - h' : h, h' \in \mathcal{H}\}$ and denote by B_2 the $L_2(P)$ unit ball entered at h^* . For every $\eta > 0$, define

$$\omega_m(\eta) := \inf \left\{ s > 0 : \mathbb{E} \left[\sup_{h \in (\mathcal{H} - \mathcal{H}) \cap sB_2} \left| \frac{1}{m} \sum_{i=1}^m \sigma_i h(X_i) \right| \right] \le \eta s, \right\}$$

where σ_i are Rademacher random variables.

为了分析未参与客户的学习率,我们聚焦于 $\|h - h^*\|_{L_2(P)}^2$ 。这里集合从半经验分布 D 到元分布 P,所以拉德马赫复杂度的定义也要改变。

Definition 6. We define $\mathcal{H} - \mathcal{H} = \{h - h' : h, h' \in \mathcal{H}\}$ and denote by B_2 the $L_2(P)$ unit ball entered at h^* . For every $\eta > 0$, define

$$\omega_m(\eta) := \inf \left\{ s > 0 : \mathbb{E} \left[\sup_{h \in (\mathcal{H} - \mathcal{H}) \cap sB_2} \left| \frac{1}{m} \sum_{i=1}^m \sigma_i h(X_i) \right| \right] \le \eta s, \right\}$$

where σ_i are Rademacher random variables.

标量 $\omega_m(\eta)$ 度量了 $\{\mathcal{H} - \mathcal{H} \cap sB_2\}$ 的复杂度。

Theorem 5. Fix $\tau > 0$ for which $Q_m(2\tau) > 0$ and set $\eta < \tau^2 Q_m(2\tau)/32$. If for all $h \in \mathcal{H} - h^*$ the random variable $V_i = \mathbb{E}[\xi_i^1 h(X_i^1)] - \mathbb{E}[\xi_i h(X_i)]$ is Sub-Weibull. For sufficiently large m, with probability at least $1 - \delta_m - \exp\left(-mQ_m^2(2\tau)/2\right)$ one has

$$\|\hat{h}^* - h^*\|_{L_2(P)} \le 2 \max \left\{ \omega_m(\tau Q_m(2\tau)/16), m^{-\frac{1}{4}+\iota} \right\},$$

where
$$0 < \iota < \frac{1}{4}$$
 and $\delta_m = \exp\{-(\frac{c_1\eta^2 m^{4\iota}}{\frac{1}{m}\sum_{i=1}^m ||V_i||_{\psi_\alpha}^2} \wedge \frac{c_2\eta^\alpha m^{\alpha(1/2+2\iota)}}{\max_{1 \le i \le m} ||V_i||_{\psi_\alpha}^\alpha})\}$.

Remark 7. Theorem provides the first result on the generalization error of unparticipating clients in heterogeneous federated learning with heavy-tailed losses.

Theorem 5. Fix $\tau > 0$ for which $Q_m(2\tau) > 0$ and set $\eta < \tau^2 Q_m(2\tau)/32$. If for all $h \in \mathcal{H} - h^*$ the random variable $V_i = \mathbb{E}[\xi_i^1 h(X_i^1)] - \mathbb{E}[\xi_i h(X_i)]$ is Sub-Weibull. For sufficiently large m, with probability at least $1 - \delta_m - \exp\left(-mQ_m^2(2\tau)/2\right)$ one has

$$\|\widehat{h}^* - h^*\|_{L_2(P)} \le 2 \max \left\{ \omega_m(\tau Q_m(2\tau)/16), m^{-\frac{1}{4}+\iota} \right\},$$

where
$$0 < \iota < \frac{1}{4}$$
 and $\delta_m = \exp\{-(\frac{c_1\eta^2 m^{4\iota}}{\frac{1}{m}\sum_{i=1}^m ||V_i||_{\psi_\alpha}^2} \wedge \frac{c_2\eta^\alpha m^{\alpha(1/2+2\iota)}}{\max_{1 \le i \le m} ||V_i||_{\psi_\alpha}^\alpha})\}$.

Remark 7. Theorem provides the first result on the generalization error of unparticipating clients in heterogeneous federated learning with heavy-tailed losses.

定理 5 首次给出了异质性联邦学习的、厚尾分布损失函数的、未参与客户的泛化误差界。

Corollary 2. Assume for all $h \in \mathcal{H} - \widehat{h}^*$ the random variable $V_i' = \mathbb{E}[h^2(X_i^j)] - \mathbb{E}[h^2(X_i)]$ is Sub-Weibull and the noise $h^*(X_i) - Y_i$ is independent of X_i . Under the same conditions of Theorem \mathfrak{g} for $0 < \eta < 1$ and sufficiently large mn, with probability at least $1 - \delta' - \exp\left(-mnQ_{mn}^2(2\tau)/2\right) - \exp\left(-mQ_m^2(2\tau)/2\right)$ one has

$$\mathcal{L}_{P}(\widehat{h}) - \mathcal{L}_{P}(h^{*}) \leq c_{0} \max(\omega_{mn}^{2}(\frac{\tau Q_{mn}(2\tau)}{16}), (mn)^{-\frac{1}{2}+\iota}) + 2 \max\left\{\omega_{m}^{2}(\frac{\tau Q_{m}(2\tau)}{16}), m^{-\frac{1}{2}+\iota}\right\}$$

where
$$c_0 = \frac{2}{1-\eta}, 0 < \iota < \frac{1}{2}$$
 and $\delta' = \delta_{mn} + \delta_m + \exp\{-(\frac{c_1\eta^2 m^{4\iota}}{\frac{1}{m}\sum_{i=1}^m \left\|V_i'\right\|_{\psi_{\alpha}}^2} \wedge \frac{c_2\eta^{\alpha} m^{\alpha(1/2+2\iota)}}{\max_{1 \le i \le m} \left\|V_i'\right\|_{\psi_{\alpha}}^2})\}.$

Corollary 2. Assume for all $h \in \mathcal{H} - \hat{h}^*$ the random variable $V_i' = \mathbb{E}[h^2(X_i^j)] - \mathbb{E}[h^2(X_i)]$ is Sub-Weibull and the noise $h^*(X_i) - Y_i$ is independent of X_i . Under the same conditions of Theorem of X_i for $0 < \eta < 1$ and sufficiently large x_i with probability at least $1 - \delta' - \exp\left(-mnQ_{mn}^2(2\tau)/2\right) - \exp\left(-mQ_{mn}^2(2\tau)/2\right)$ one has

$$\mathcal{L}_{P}(\hat{h}) - \mathcal{L}_{P}(h^{*}) \leq c_{0} \max \left(\omega_{mn}^{2}(\frac{\tau Q_{mn}(2\tau)}{16}), (mn)^{-\frac{1}{2}+\iota}\right) + 2 \max \left\{\omega_{m}^{2}(\frac{\tau Q_{m}(2\tau)}{16}), m^{-\frac{1}{2}+\iota}\right\}$$
where $c_{0} = \frac{2}{1-\eta}, 0 < \iota < \frac{1}{2}$ and $\delta' = \delta_{mn} + \delta_{m} + \exp\{-(\frac{c_{1}\eta^{2}m^{4\iota}}{\frac{1}{m}\sum_{i=1}^{m} \left\|V_{i}'\right\|_{\psi_{o}}^{2}} \wedge \frac{c_{2}\eta^{\alpha}m^{\alpha(1/2+2\iota)}}{\max_{1\leq i \leq m} \left\|V_{i}'\right\|_{\psi_{o}}^{\alpha}})\}.$

Remark

▶ 推论 2 给出了总体风险在次韦伯分布下的界, $O(\frac{1}{mn^{\frac{1}{2}-\eta}} + \frac{1}{m^{\frac{1}{2}-\eta}})$ 。

Corollary 2. Assume for all $h \in \mathcal{H} - \hat{h}^*$ the random variable $V_i' = \mathbb{E}[h^2(X_i^j)] - \mathbb{E}[h^2(X_i)]$ is Sub-Weibull and the noise $h^*(X_i) - Y_i$ is independent of X_i . Under the same conditions of Theorem of X_i for $0 < \eta < 1$ and sufficiently large x_i with probability at least $1 - \delta' - \exp\left(-mnQ_{mn}^2(2\tau)/2\right) - \exp\left(-mQ_{mn}^2(2\tau)/2\right)$ one has

$$\mathcal{L}_{P}(\hat{h}) - \mathcal{L}_{P}(h^{*}) \leq c_{0} \max \left(\omega_{mn}^{2}(\frac{\tau Q_{mn}(2\tau)}{16}), (mn)^{-\frac{1}{2}+\iota}\right) + 2 \max \left\{\omega_{m}^{2}(\frac{\tau Q_{m}(2\tau)}{16}), m^{-\frac{1}{2}+\iota}\right\}$$
where $c_{0} = \frac{2}{1-\eta}, 0 < \iota < \frac{1}{2}$ and $\delta' = \delta_{mn} + \delta_{m} + \exp\{-(\frac{c_{1}\eta^{2}m^{4\iota}}{\frac{1}{m}\sum_{i=1}^{m} \|V_{i}^{i}\|_{\psi_{o}}^{2}} \wedge \frac{c_{2}\eta^{\alpha}m^{\alpha(1/2+2\iota)}}{\max_{1 \leq \iota \leq m} \|V_{i}^{i}\|_{\psi_{o}}^{2}})\}.$

Remark

- ▶ 推论 2 给出了总体风险在次韦伯分布下的界, $O(\frac{1}{mn^{\frac{1}{2}-\eta}} + \frac{1}{m^{\frac{1}{2}-\eta}})$ 。
- ▶ 相比于定理 3 的 $O(\frac{1}{mn} + \frac{1}{m})$,收敛速率更慢了。

Corollary 2. Assume for all $h \in \mathcal{H} - \hat{h}^*$ the random variable $V_i' = \mathbb{E}[h^2(X_j^i)] - \mathbb{E}[h^2(X_i)]$ is Sub-Weibull and the noise $h^*(X_i) - Y_i$ is independent of X_i . Under the same conditions of Theorem of for $0 < \eta < 1$ and sufficiently large mn, with probability at least $1 - \delta' - \exp\left(-mnQ_{mn}^2(2\tau)/2\right) - \exp\left(-mQ_{m}^2(2\tau)/2\right)$ one has

$$\mathcal{L}_{P}(\hat{h}) - \mathcal{L}_{P}(h^{*}) \leq c_{0} \max \left(\omega_{mn}^{2}(\frac{\tau Q_{mn}(2\tau)}{16}), (mn)^{-\frac{1}{2}+\iota}\right) + 2 \max \left\{\omega_{m}^{2}(\frac{\tau Q_{m}(2\tau)}{16}), m^{-\frac{1}{2}+\iota}\right\}$$
where $c_{0} = \frac{2}{1-\eta}, 0 < \iota < \frac{1}{2}$ and $\delta' = \delta_{mn} + \delta_{m} + \exp\{-(\frac{c_{1}\eta^{2}m^{4\iota}}{\frac{1}{m}\sum_{m=1}^{m}||V_{i}'||_{L^{2}}^{2}} \wedge \frac{c_{2}\eta^{\alpha}m^{\alpha(1/2+2\iota)}}{\max_{1 \leq i \leq m}|V_{i}'||_{L^{2}}^{2}})\}.$

Remark

- ▶ 推论 2 给出了总体风险在次韦伯分布下的界, $O(\frac{1}{mn^{\frac{1}{2}-\eta}} + \frac{1}{m^{\frac{1}{2}-\eta}})$ 。
- ▶ 相比于定理 3 的 $O(\frac{1}{mn} + \frac{1}{m})$,收敛速率更慢了。
- ▶ 概率取决于 η , m, $n(\eta \in (0, 1/2))$.

5 相关工作

Table 1: **Generalization Bounds for Heterogeneous Federated Learning.** SC, Pro, and Exp denote Strong convexity, In probability, and In expectation. Sub-expon denotes sub-exponential.

Reference	Loss	Assumption	Part	Unpart	Туре
Mohri et al. (2019)	Bounded	Bi-Classifier	$\mathcal{O}(\frac{1}{\sqrt{mn}})$	/	Pro
Chen et al. (2021)	Bounded	Smooth, SC	$\mathcal{O}(\frac{1}{mn})$	/	Exp
Fallah et al. (2021)	Bounded	Smooth, SC	$\mathcal{O}(\frac{1}{mn})$	/	Exp
Our Results	Sub-expon	Lipschitz	$\mathcal{O}(\frac{1}{\sqrt{mn}})$	$\mathcal{O}(\frac{1}{\sqrt{mn}} + \frac{1}{\sqrt{m}})$	Pro
Our Results	Bounded	Bernstein Con	$\mathcal{O}(\frac{1}{mn})$	$\mathcal{O}(\frac{1}{mn} + \frac{1}{m})$	Pro
Our Results	Sub-Weibull	Small-ball	$\mathcal{O}\left((mn)^{\frac{2\iota-1}{2}}\right)$	$\mathcal{O}((mn)^{\frac{2\iota-1}{2}}+m^{\frac{2\iota-1}{2}})$	Pro

6总结

双层分布框架

双层分布框架

泛化误差界——更快的速率

■ Learning Rates for unparticipating Client ——Bounded Losses

$$\mathcal{L}_P(\widehat{h}\,) - \min_{h \in \mathcal{H}} \mathcal{L}_P(h) \leq \mathcal{O}igg(\sqrt{rac{1}{mn}} + \sqrt{rac{1}{m}}igg) \qquad \widehat{h} = rgmin_{h \in \mathcal{H}} \mathcal{L}_S(h)$$

- Bernstein Condition: $\mathbf{E}[\ell(h,Z) \ell(h^*,Z)]^2 \le B\mathbf{E}[\ell(h,Z) \ell(h^*,Z)]$
- Learning Rates for unparticipating Client—Bernstein Condition

$$\mathcal{L}_P(\widehat{h}\,) - \min_{h \,\in\, \mathcal{H}} \mathcal{L}_P(h\,) \,{\leq}\, \mathcal{O}\!\left(\!rac{1}{mn} + rac{1}{m}\!
ight)$$

Unparticipating clients would benefit from the model trained by participating clients!

6

泛化误差界——厚尾分布

■ Heavy-tail Distribution

Figure: Illustration of heavy tails[2]

■ Learning Rates for unparticipating Client—Heavy-tail Data

$$egin{aligned} \mathcal{L}_P(\widehat{h}) &= \min_{h \in \mathcal{H}} \mathcal{L}_P(h) \ &\leq \mathcal{O}igg(rac{1}{mn^{rac{1}{2}-\eta}} + rac{1}{m^{rac{1}{2}-\eta}}igg) \end{aligned}$$

The probability depends on η, m, n

7 附录

- ▶ 原文链接: https://openreview.net/pdf?id=-EHqoysUYLx
- ▶ 主要参考了The Elements of Statistical Learning以及Foundations of Machine Learning(Second Edition)(点击访问)
- ▶ 本展示是 LATEX 制作的 beamer, tex 源码已上传到github
- ▶ 实验源码同上链接。

谢谢!