Complete Single-Cycle Datapath

Main Control Unit

Instr. OP	RegDst	ALUSrc	MemToReg	RegWr	MemRd	MemWr	Branch	ALUOp	Jump
R-type 000000	1	0	0	1	0	0	0	10	0
lw 100011	0	1	1	1	1	0	0	00	0
SW 101011	X	1	X	0	0	1	0	00	0
beq 000100	X	0	X	0	0	0	1	01	0
j 000010	X	X	X	0	0	0	X	XX	1
addi 001000	0	1	0	1	0	0	0	00	0

Setting of the MemRd signal (for R-type, sw, beq, j) depends on the memory design (could have to be 0 or could be a X (don't care))

Control Unit Logic

From the truth table can design the Main Control logic

