External

Registers

ICV_AP1R<n>_EL1, Interrupt Controller Virtual Active Priorities Group 1 Registers, n = 0 - 3

The ICV_AP1R<n>_EL1 characteristics are:

Purpose

Provides information about virtual Group 1 active priorities.

Configuration

AArch64 System register ICV_AP1R<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register ICV AP1R<n>[31:0].

This register is present only when FEAT_GICv3 is implemented and EL2 is implemented. Otherwise, direct accesses to ICV_AP1R<n>_EL1 are undefined.

Attributes

ICV_AP1R<n>_EL1 is a 64-bit register.

Field descriptions

	63	62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41	40	39	38	37	36	35	34	33	32
ľ	IMI	RES0									
IMPLEMENTATION DEFINED											
_	31	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9	8	7	6	5	4	3	2	1	0

NMI, bit [63] When FEAT_GICv3_NMI is implemented and n == 0:

Indicates whether the running priority is from a NMI.

NMI	Meaning				
0b0	There is no active Group 1 NMI,				
	or all active Group 1 NMIs have				
	undergone priority-drop.				
0b1	There is an active Group 1 NMI.				

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Otherwise:

Reserved, res0.

Bits [62:32]

Reserved, res0.

IMPLEMENTATION DEFINED, bits [31:0]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

The contents of these registers are implementation defined with the one architectural requirement that the value 0×00000000 is consistent with no interrupts being active.

Accessing ICV_AP1R<n>_EL1

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 1 active priorities) might result in unpredictable behavior of the virtual interrupt prioritization system, causing:

- Interrupts that should preempt execution to not preempt execution.
- Interrupts that should not preempt execution to preempt execution.

ICV_AP1R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP1R2_EL1 and ICV_AP1R3_EL1 are only implemented in implementations that support 7 bits of priority. Unimplemented registers are undefined.

Writing to the active priority registers in any order other than the following order might result in unpredictable behavior of the interrupt prioritization system:

- <u>ICV_AP0R<n>_EL1</u>.
- ICV_AP1R<n>_EL1.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_AP1R<m $>_EL1$; Where m = 0-3

op0	op1	CRn	CRm	op2
0b11	0b000	0b1100	0b1001	0b0:m[1:0]

```
integer m = UInt(op2<1:0>);
if m == 1 && NUM GIC PRIORITY BITS < 6 then
    UNDEFINED;
elsif (m == 2 | m == 3) && NUM GIC PRIORITY BITS <
7 then
    UNDEFINED;
elsif PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.IRQ == '1' then
        UNDEFINED;
    elsif ICC_SRE_EL1.SRE == '0' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.IMO == '1' then
        X[t, 64] = ICV\_AP1R\_EL1[m];
    elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) then
        if SCR_EL3.NS == '0' then
            X[t, 64] = ICC\_AP1R\_EL1\_S[m];
        else
            X[t, 64] = ICC\_AP1R\_EL1\_NS[m];
    else
        X[t, 64] = ICC\_AP1R\_EL1[m];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.IRO == '1' then
        UNDEFINED;
    elsif ICC_SRE_EL2.SRE == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) then
        if SCR_EL3.NS == '0' then
            X[t, 64] = ICC\_AP1R\_EL1\_S[m];
        else
```

```
X[t, 64] = ICC_AP1R_EL1_NS[m];
else
    X[t, 64] = ICC_AP1R_EL1[m];
elsif PSTATE.EL == EL3 then
    if ICC_SRE_EL3.SRE == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
else
    if SCR_EL3.NS == '0' then
        X[t, 64] = ICC_AP1R_EL1_S[m];
else
    X[t, 64] = ICC_AP1R_EL1_NS[m];
```

MSR ICC_AP1R<m>_EL1, <Xt>; Where m = 0-3

op0	O op1 CRn (CRm	op2
0b11	0b000	0b1100	0b1001	0b0:m[1:0]

```
integer m = UInt(op2<1:0>);
if m == 1 && NUM_GIC_PRIORITY_BITS < 6 then
    UNDEFINED;
elsif (m == 2 | m == 3) && NUM_GIC_PRIORITY_BITS <
7 then
    UNDEFINED;
elsif PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.IRQ == '1' then
        UNDEFINED;
    elsif ICC_SRE_EL1.SRE == '0' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.IMO == '1' then
        ICV\_AP1R\_EL1[m] = X[t, 64];
    elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) then
        if SCR_EL3.NS == '0' then
            ICC\_AP1R\_EL1\_S[m] = X[t, 64];
        else
            ICC\_AP1R\_EL1\_NS[m] = X[t, 64];
    else
        ICC\_AP1R\_EL1[m] = X[t, 64];
elsif PSTATE.EL == EL2 then
```

```
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.IRQ == '1' then
        UNDEFINED;
    elsif ICC SRE EL2.SRE == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) then
        if SCR EL3.NS == '0' then
            ICC\_AP1R\_EL1\_S[m] = X[t, 64];
        else
            ICC\_AP1R\_EL1\_NS[m] = X[t, 64];
    else
        ICC\_AP1R\_EL1[m] = X[t, 64];
elsif PSTATE.EL == EL3 then
    if ICC_SRE_EL3.SRE == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
        if SCR EL3.NS == '0' then
            ICC\_AP1R\_EL1\_S[m] = X[t, 64];
        else
            ICC\_AP1R\_EL1\_NS[m] = X[t, 64];
```

AArch32 Registers

AArch64 Registers AArch32 Instructions AArch64
Instructions

Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.