DATA ANALYTICS AND MACHINE LEARNING WITH R

CONFIRMATORY DATA ANALYSIS

LUIS GUSTAVO NARDIN

INTERNET TECHNOLOGY

BRANDENBURG UNIVERSITY OF TECHNOLOGY

Confirmatory Data Analysis refers to an approach which, subsequent to data acquisition, proceeds with the imposition of a prior model and analysis, estimation, and testing model parameters using traditional statistical tools such as significance, inference, and confidence.

STATISTICAL INFERENCE

- Branch of statistics that allows to arrive at conclusions about a population through a sample of the population
- Measure the effect that some input parameters of the process generating the population have on features, or output metrics, of the process

EXPLORATORY DATA ANALYSIS

GRAPHIC REPRESENTATION

SUMMARY STATISTICS

	carat	depth	table	price
Mean	0.79	61.75	57.46	3,933.00
Median	0.70	61.80	57.00	2,401.00
Standard Deviation	0.47	1.43	2.23	3,989.44
Minimum	0.2	43	43	326.00
Maximum	5.01	79	95	18,823.00

- Hypothesis Testing
- Regression
- Analysis of Variance

- Hypothesis testing is intended to confirm or validate some conjectures about the dataset under analysis
- These conjectures, or hypotheses, are related to the parameters of the probability distribution of the data

H 0 : $\mu = \mu 0$ H 1 : $\mu \neq \mu 0$

where H 0 is the *null hypothesis* and H 1 is the *Alternative hypothesis*

- Hypothesis testing tries to find evidence about the refutability of the null hypothesis using probability theory
- The null hypothesis is rejected if the data do not support it with "enough evidence," which is expressed in terms of significance level α
- 5% significance level (α = 0.05) is a widely accepted value in most cases

Test	Description	
shapiro.test	Normality test	
var.test	Compare two variances	
cor.test	Correlation between two samples	
t.test	Compare the means with normal errors	
wilcox.test	Compare the means with non-normal errors	
prop.test	Compare two proportions	
chisq.test	Goodness-of-fit tests	
poisson.test	Poisson distribution test	
binom.test	Binomial distribution test	

NORMALITY TEST

The **Shapiro-Wilk test** (shapiro.test) checks if a random sample comes from a normal distribution.

p-value lower than a threshold (e.g., 0.05) rejects the null hypothesis indicating that the values come from a normal distribution.


```
> qqnorm(diamonds$price)
> qqline(diamonds$price)
```

VARIANCE TEST

The **Fisher's F test** (var.test) compares the variances of two samples and checks whether they are significantly different.

```
> var(dE$price)
[1] 11183397
> var(dJ$price)
[1] 19697506
> var.test(dE$price, dJ$price)

F test to compare two variances

data: dE$price and dJ$price
F = 0.56776, num df = 9796, denom df = 2807, p-value < 2.2e-16
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
    0.5347761 0.6021755
sample estimates:
ratio of variances
    0.567757</pre>
```

CORRELATION TEST

The correlation test (cor.test) determine the significance of the correlation between the samples of two variables.

- Samples with normal error should use the Pearson's product moment correlation (method="p")
- Samples with non-normal error should use the Pearson's product moment correlation (method="k" or method="s")

Normal Error

```
> cor.test(diamonds$price, diamonds$carat)

Pearson's product-moment correlation

data: diamonds$price and diamonds$carat

t = 551.41, df = 53938, p-value < 2.2e-16

alternative hypothesis: true correlation is

not equal to 0

95 percent confidence interval:
0.9203098 0.9228530

sample estimates:

cor
0.9215913
```

Non-normal Error

MEANS TEST

For example, are the mean price of the diamonds of color E and J different?

MEANS TESTS

Usually it is necessary to perform some initial checking to identify whether the data complies with the assumptions of the statistical analysis to be performed.

For example, non-normality, outliers and serial correlation may invalidate inferences made by standard parametric tests.

MEANS TEST

Normal Error

t.test

Non-normal Error

wilcox.test

```
> wilcox.test(dE$price, dJ$price)

Wilcoxon rank sum test with
   continuity correction

data: dE$price and dJ$price
W = 9232700, p-value < 2.2e-16
alternative hypothesis: true location shift is
   not equal to 0</pre>
```

MEANS TEST

A means hypothesis test can be used to verify if the mean price of diamonds of color E is greater than or less than the mean price of diamonds of color J.

```
> wilcox.test(dE$price, dJ$price,
   alternative = "greater")

Wilcoxon rank sum test with
   continuity correction

data: dE$price and dJ$price
W = 9232700, p-value = 1
alternative hypothesis: true location shift
   is greater than 0
```

 $H 0 : \mu \leq \mu 0$

H 1 : $\mu > \mu 0$

 $H 0 : \mu \ge \mu 0$

H 1 : $\mu < \mu 0$

REGRESSION

ANALYSIS OF VARIANCE