Quality and Index Swapping Analysis

Adrian Bubie 9/11/17

Goals: Determine if index swapping occurred in our Hiseq4000 class sequencing samples.

De-multiplex samples to create 48 FASTQ files that contain acceptable index pairs (read1 and read2) and two files of undetermined files that contain unacceptable index pairs, low quality, or undetermined (read1 and read2).

1. (Please see the associated python script, "Qual_Mean_Calc.py" for reference on how the files used to plot here were created).

Quality plots per basepair position and distribution of average quality score per read, for each of our 4 input files (read1, read2, index1, index2):

Mean Quality Score by Base Pair Pos. (Read 1)

Mean Quality Score by Base Pair Pos. (Read 2)

Mean Quality Score by Base Pair Pos. (Index 1)

Mean Quality Score by Base Pair Pos. (Index 2)

Distribution of Reads by Average QS for R1

From these distributions, we can most likely set a quality cutoff of 35 for the index pairs and quality cutoff of 37 for our paired reads, and retain about 3/4 (about 250 million) of our reads, while improving the quality of our reads overall.

We also know that the illumina system will sometimes record bases as 'N' for 'any' when it is not certain what base to call for a particular read. We can count the number of indexes that contain an 'N' in the sequence using the following UNIX command:

```
>$ for FILE in /projects/bgmp/2017_sequencing/*.fastq; do counts=$(awk 'NR%4==2' $FILE | grep "N" | wc
/projects/bgmp/2017_sequencing/1294_S1_L008_R1_001.fastq 2602560
/projects/bgmp/2017_sequencing/1294_S1_L008_R2_001.fastq 3976613
/projects/bgmp/2017_sequencing/1294_S1_L008_R3_001.fastq 3328051
/projects/bgmp/2017_sequencing/1294_S1_L008_R4_001.fastq 3591851
```

Our Indexes are contained in the 'R2' and 'R3' files; so we have 3976613 and 3328051 reads with 'N's for our index 1 and index 2, respectively (a total of 7304664 reads across both indexes)

Overall, the read distributions show that most of our data clustered pretty high on the quality scale. Illumina defines Phred 30 as 99.9% accuracy for the basecall, and <90% of our reads have an average score of 30 or above. However, there is significant disparity between our Index read scores and our insert read qualities. Index scores appear to be overall of lower quality on average than our insert reads' qscore; additionally, we see in the graph of quality by basepair that the bases at the beginning of each index/read almost always have a average quality score lower than those of the bases further into the read. This indicates that the bases read at the beginning of the sequence (near the oligo linkage on the flowcell) are more difficult for the sequencer to resolve properly. Notice also that vast majority of the Indexes that contain an 'N' base (for unresolved or 'any' base) have that 'N' at the starting position of the index. This provides further evidence that the sequencer's resolution for bases starts poor but gets much better as synthesis continues into the insert.

2. (Please see the associated python script, "Qual_Index_Swp.py" for reference and indication of how reads were binned by index pairs). Based on analysis of the index reads above, the reads were filtered by an index average quality cut-off Phred score of 35. This means that reads that had an *both* indexes with an average quality score of 35 or above were retained and all other reads were removed.

a. There are a total of 363246735 reads in the original Sequencing output. After filtering by index quality, a total of 245598505 reads were retained, representing a retention rate of just over 67.6%. The read counts can be broken down by index pairs (libraries), as seen below:

##		Index1	Index2	Read_Count
##	1	TACCGGAT	TACCGGAT	51581889
##	2	TCTTCGAC	TCTTCGAC	31203016
##	3	CTCTGGAT	CTCTGGAT	25933763
##	4	CTAGCTCA	CTAGCTCA	13661286
##	5	TGTTCCGT	TGTTCCGT	12247310
##	6	AGAGTCCA	AGAGTCCA	8234276
##	7	TAGCCATG	TAGCCATG	7951357
##	8	TATGGCAC	TATGGCAC	7880872
##	9	TCGAGAGT	TCGAGAGT	7791551
##	10	ATCATGCG	ATCATGCG	7448228
##	11	GTCCTAAG	${\tt GTCCTAAG}$	6658709
##	12	AACAGCGA	AACAGCGA	6606498
##	13	AGGATAGC	AGGATAGC	6571536
##	14	ACGATCAG	ACGATCAG	6234505
##	15	GTAGCGTA	GTAGCGTA	6033486
##	16	ATCGTGGT	ATCGTGGT	5031584
##	17	GATCAAGG	GATCAAGG	4900440
##	18	GCTACTCT	GCTACTCT	4720342
##	19	CGATCGAT	CGATCGAT	4398491
##	20	TCGGATTC	TCGGATTC	3149983
##	21	CGGTAATC	CGGTAATC	3097661
##	22	GATCTTGC	GATCTTGC	2861868
##	23	TCGACAAG	TCGACAAG	2786134
##	24	CACTTCAC	CACTTCAC	2765861
##	25	TATGGCAC	TGTTCCGT	63153
##	26	TGTTCCGT	TATGGCAC	61181
##	27	CTAGCTCA	TCGACAAG	9926
##	28	GATCAAGG	TCTTCGAC	9552
##	29	TCGACAAG	ATCATGCG	5896
##	30	CTCTGGAT	TACCGGAT	5821
##	31	TACCGGAT	CTCTGGAT	5796
##	32	TACCGGAT	TCTTCGAC	5626
##	33	GTCCTAAG	TATGGCAC	4869
##	34	TCTTCGAC	TACCGGAT	4550
##	35	CGGTAATC	TACCGGAT	3861
##	36	TCTTCGAC	ATCGTGGT	3083
##	37	CTCTGGAT	TCTTCGAC	2776
##	38	TCTTCGAC	CTCTGGAT TGTTCCGT	2747
##	39	TACCGGAT CACTTCAC	TAGCCATG	2339
##	40			2198
##	41	TATGGCAC	TACCGGAT	2105
## ##	42 43	TGTTCCGT CTAGCTCA	TACCGGAT CTCTGGAT	2021 2004
##	43	TACCGGAT	CTAGCTCA	1975
##	45	TATGGCAC	TCTTCGAC	1885
##	46	CTAGCTCA	TACCGGAT	1846
##	47	TACCGGAT	TAGCCATG	1826
##	48	TACCGGAT	TATGGCAC	1813
##	49	TACCGGAT	TCGAGAGT	1632
пπ	10	INCOUGHI	LOGHUNUI	1002

##	50	TACCGGAT	CGGTAATC	1622
##	51	CTCTGGAT	GCTACTCT	1471
##	52	TCTTCGAC	TGTTCCGT	1413
##	53	TCGAGAGT	TACCGGAT	1410
##	54	CTCTGGAT	CTAGCTCA	1381
##	55	TGTTCCGT	TCTTCGAC	1260
##	56	TCTTCGAC	TATGGCAC	1250
##	57	TCTTCGAC	TCGAGAGT	1170
##	58	TCTTCGAC	CTAGCTCA	1144
##	59	CTCTGGAT	TCGAGAGT	1134
##	60	TACCGGAT	AGAGTCCA	1123
##	61	CTCTGGAT	TGTTCCGT	1116
##	62	CTAGCTCA	ATCATGCG	1103
##	63	TCTTCGAC	GATCAAGG	1079
##	64	TACCGGAT	AGGATAGC	1063
##	65	TACCGGAT	ACGATCAG	1041
##	66	CTAGCTCA	TCTTCGAC	1014
##	67	AACAGCGA	TACCGGAT	1011
##	68	CTAGCTCA	GCTACTCT	1010
##	69	TAGCCATG	TACCGGAT	1002
##	70	AACAGCGA	TCTTCGAC	998
##	71	TACCGGAT	GTCCTAAG	992
##	72	TACCGGAT	ATCATGCG	982
##	73	TACCGGAT	ATCGTGGT	973
##	74	CGATCGAT	TACCGGAT	972
##	75	CTCTGGAT	AGAGTCCA	969
##	76	GTAGCGTA	GCTACTCT	953
##	77	AGAGTCCA	TACCGGAT	949
##	78	ATCATGCG	TACCGGAT	932
##	79	TACCGGAT	CGATCGAT	920
##	80	CTCTGGAT	CGATCGAT	913
##	81	GTCCTAAG	TACCGGAT	898
##	82	ACGATCAG	TACCGGAT	888
##	83	TACCGGAT	AACAGCGA	878
##	84	TCTTCGAC	AGGATAGC	873
##	85	TGTTCCGT	CTCTGGAT	871
##	86	TACCGGAT	GTAGCGTA	857
##	87	TACCGGAT	GATCAAGG	826
##	88	ATCGTGGT	TACCGGAT	814
##	89	TCGAGAGT	CTCTGGAT	796
##	90	GTAGCGTA	TACCGGAT	791
##	91	CTCTGGAT	TATGGCAC	760
##	92	TACCGGAT	GCTACTCT	741
##	93	ATCATGCG	TCTTCGAC	736
##	94	TCGAGAGT	TCTTCGAC	724
##	95	TCTTCGAC	ACGATCAG	722
##	96	TATGGCAC	CTCTGGAT	720
##	97	GCTACTCT	TACCGGAT	712
##	98	TCTTCGAC	TAGCCATG	712
##	99	TACCGGAT	TCGGATTC	677
##	100	ATCGTGGT	TCTTCGAC	662
##	100	AGAGTCCA	GTAGCGTA	660
##	101	TCTTCGAC	TCGGATTC	651
##	102	AGGATAGC	TACCGGATTC	645
##	103	JUNIAUUN	IACCGGAI	045

##	104	TCTTCGAC	AGAGTCCA	623
##	105	TCTTCGAC	ATCATGCG	617
##	106	AGGATAGC	TCTTCGAC	615
##	107	CTAGCTCA	GTAGCGTA	608
##	108	TACCGGAT	CACTTCAC	590
##	109	TATGGCAC	TCGGATTC	585
##	110	TCGGATTC	AACAGCGA	584
##	111	ATCATGCG	CTCTGGAT	582
##	112	TCTTCGAC	CGATCGAT	573
##	113	TCTTCGAC	GTCCTAAG	573
##	114	CGATCGAT	CTCTGGAT	567
##	115	GATCAAGG	TACCGGAT	567
##	116	CTCTGGAT	ACGATCAG	566
##	117	CTAGCTCA	TCGAGAGT	564
##	118	CTCTGGAT	TAGCCATG	563
##	119	CTCTGGAT	GTCCTAAG	553
##	120	TCTTCGAC	GTAGCGTA	551
##	121	AGAGTCCA	TCTTCGAC	548
##	122	CTCTGGAT	ATCATGCG	547
##	123	CGATCGAT	TCTTCGAC	537
##	124	ATCGTGGT	CTCTGGAT	534
##	125	TGTTCCGT	TCGGATTC	533
##	126	CTCTGGAT	GTAGCGTA	529
##	127	AGAGTCCA	TCGAGAGT	527
##	128	TCTTCGAC	CGGTAATC	525
##	129	TCTTCGAC	GCTACTCT	525
##	130	TACCGGAT	GATCTTGC	519
##	131	GTCCTAAG	TCTTCGAC	516
##	132	GCTACTCT	CTCTGGAT	514
##	133	AACAGCGA	CTCTGGAT	511
##	134	TAGCCATG	TCTTCGAC	507
##	135	TCTTCGAC	GATCTTGC	499
##	136	AGGATAGC	GTAGCGTA	495
##	137	GTCCTAAG	TGTTCCGT	493
##	138	TACCGGAT	TCGACAAG	493
##	139	CTCTGGAT	AGGATAGC	490
##	140	ACGATCAG	TCTTCGAC	483
##	141	CTAGCTCA	AGAGTCCA	481
##	142	GTAGCGTA	TCTTCGAC	481
##	143	TATGGCAC	TCGAGAGT	471
##	144	AGAGTCCA	CTAGCTCA	456
##	145	GTAGCGTA	ACGATCAG	456
##	146	CTCTGGAT	AACAGCGA	453
##	147	GTCCTAAG	CTCTGGAT	451
##	148	CTCTGGAT	ATCGTGGT	445
##	149	TGTTCCGT	AACAGCGA	439
##	150	CACTTCAC	TACCGGAT	435
##	151	CGGTAATC	TCTTCGAC	435
##	152	ATCATGCG	TATGGCAC	428
##	153	TAGCCATG	CTCTGGAT	428
##	154	GCTACTCT	TCTTCGAC	418
##	155	TGTTCCGT	TCGAGAGT	418
##	156	ACGATCAG	CTCTGGAT	415
##	157	CACTTCAC	TCTTCGAC	410

##	158	CTCTGGAT	CGGTAATC	410
##	159	AGAGTCCA	CTCTGGAT	409
##	160	TCGGATTC	TACCGGAT	404
##	161	${\tt CTAGCTCA}$	${\tt TGTTCCGT}$	401
##	162	${\tt TCTTCGAC}$	AACAGCGA	400
##	163	${\tt TCTTCGAC}$	TCGACAAG	398
##	164	${\tt TATGGCAC}$	GTCCTAAG	395
##	165	${\tt TCGAGAGT}$	${\tt TGTTCCGT}$	394
##	166	$\mathtt{CTCTGGAT}$	${\tt TCGGATTC}$	391
##	167	${\tt GTAGCGTA}$	TCGAGAGT	391
##	168	${\tt TCTTCGAC}$	CACTTCAC	389
##	169	${\tt TGTTCCGT}$	${\tt CTAGCTCA}$	388
##	170	${\tt TCGGATTC}$	${\tt TCTTCGAC}$	386
##	171	${\tt ATCATGCG}$	TAGCCATG	384
##	172	${\tt TGTTCCGT}$	AGAGTCCA	383
##	173	${\tt ATCGTGGT}$	GATCAAGG	380
##	174	${\tt GCTACTCT}$	${\tt GTAGCGTA}$	377
##	175	AACAGCGA	GATCTTGC	373
##	176	${\tt GTAGCGTA}$	$\mathtt{CTCTGGAT}$	373
##	177	ATCATGCG	ACGATCAG	370
##	178	${\tt GTAGCGTA}$	CTAGCTCA	363
##	179	${\tt CTAGCTCA}$	TAGCCATG	356
##	180	$\mathtt{CTCTGGAT}$	GATCAAGG	350
##	181	${\tt TATGGCAC}$	CTAGCTCA	346
##	182	${\tt CTAGCTCA}$	TATGGCAC	345
##	183	CTAGCTCA	ACGATCAG	338
##	184	${\tt TATGGCAC}$	AACAGCGA	335
##	185	${\tt TCGAGAGT}$	${\tt CTAGCTCA}$	330
##	186	${\tt GATCTTGC}$	TACCGGAT	329
##	187	GATCTTGC	TCTTCGAC	320
##	188	TCGACAAG	TACCGGAT	320
##	189	TGTTCCGT	ATCATGCG	317
##	190	AGGATAGC	CTCTGGAT	310
##	191	CACTTCAC	CTCTGGAT	300
##	192	ATCATGCG	TGTTCCGT	298
##		CTCTGGAT		297
		ATCATGCG		294
##		TCGAGAGT		294
##	196	AGAGTCCA	TGTTCCGT	293
##		ATCATGCG		292
##	198	CTCTGGAT	GATCTTGC	285
##	199	GCTACTCT	CTAGCTCA	283
##	200	CTAGCTCA	GTCCTAAG	281
##	201	TCGAGAGT	GCTACTCT	276
##	202	TCGGATTC	CTCTGGAT	275
##	203	TATGGCAC	AGGATAGC	273
##		GATCAAGG		270
##		AGAGTCCA		268
##		AACAGCGA		260
##		AGGATAGC		259
##		ATCATGCG		259
		TGTTCCGT		259
		TGTTCCGT		257
##	211	AACAGCGA	ATCATGCG	256

##	212	CTCTGGAT	TCGACAAG	256
##	213	GCTACTCT	TGTTCCGT	256
##	214	CTAGCTCA	AACAGCGA	254
##	215	CGGTAATC	CTCTGGAT	246
##	216	TGTTCCGT	GTAGCGTA	246
##	217	CGATCGAT	TGTTCCGT	245
##	218	CTAGCTCA	AGGATAGC	244
##	219	ACGATCAG	TCGAGAGT	239
##	220	GTAGCGTA	AGAGTCCA	238
##	221	TAGCCATG	CTAGCTCA	234
##	222	TATGGCAC	TAGCCATG	234
##	223	TCGACAAG	TCTTCGAC	234
##	224	ACGATCAG	TGTTCCGT	233
##	225	ATCATGCG		233
##	226	CTAGCTCA		232
##	227	AACAGCGA		231
##	228	CTAGCTCA		230
##	229	TATGGCAC		230
##	230	TGTTCCGT	ACGATCAG	230
##	231	AACAGCGA	AGGATAGC	229
##	232	AACAGCGA	TGTTCCGT	229
##	233	AGGATAGC	ACGATCAG	228
##	234	GTAGCGTA	TGTTCCGT	227
##	235	ACGATCAG	CTAGCTCA	225
##	236	TAGCCATG	TGTTCCGT	225
##	237	TCGAGAGT	AGGATAGC	225
##	238	AACAGCGA	AGAGTCCA	223
##	239	GTCCTAAG	AACAGCGA	223
##	240	ACGATCAG	ATCATGCG	220
##	241	GATCAAGG	ACGATCAG	220
##	242	ACGATCAG	TAGCCATG	219
##	243	ATCATGCG	AACAGCGA	219
##	244	ATCATGCG	GATCAAGG	219
##	245	TGTTCCGT	AGGATAGC	217
##	246	AGAGTCCA	AACAGCGA	216
##	247	AGGATAGC	ATCATGCG	213
##	248	GATCAAGG	ATCGTGGT	213
##	249	GCTACTCT	AGAGTCCA	212
##	250	CTAGCTCA	GATCAAGG	212
##	251	ACGATCAG	GTCCTAAG	209
##	252	TATGGCAC	ATCATGCG	209
##	253	AACAGCGA	TATGGCAC	207
##	254	ACGATCAG	AGAGTCCA	207
##	255	AACAGCGA	GTAGCGTA	207
##	256	TATGGCAC	CACTTCAC	204
##	257	GTCCTAAG	CTAGCTCA	202
##	258	TGTTCCGT	ATCGTGGT	202
##	259	AACAGCGA	TCGGATTC	202
##	260	ATCGTGGT	TCGAGAGT	201
	261		GTCCTAAG	
##		TAGCCATACC	TATGGCAC	200
##	262	AGGATAGC		198
##	263	TCGAGAGT	ACCATACC	198
##	264	GATCTTGC	AGGATAGC	197
##	265	ACGATCAG	CGATCGAT	196

##	266	AGGATAGC	AGAGTCCA	196
##	267	AGGATAGC	TGTTCCGT	195
##	268	ATCATGCG	ATCGTGGT	195
##	269	${\tt GCTACTCT}$	TCGAGAGT	194
##	270	${\tt TAGCCATG}$	TATGGCAC	193
##	271	${\tt AGAGTCCA}$	TATGGCAC	192
##	272	${\tt CTAGCTCA}$	TCGGATTC	192
##	273	${\tt TCGACAAG}$	CTCTGGAT	191
##	274	${\tt AGGATAGC}$	CTAGCTCA	190
##	275	CGATCGAT	CTAGCTCA	189
##	276	ATCATGCG	TCGAGAGT	188
##	277	TGTTCCGT	GCTACTCT	188
##	278	AGAGTCCA	AGGATAGC	187
##	279	TATGGCAC	AGAGTCCA	186
##	280	${\tt TCGAGAGT}$	TATGGCAC	184
##	281	ACGATCAG	AGGATAGC	183
##	282	${\tt GATCTTGC}$	CTCTGGAT	183
##	283	AACAGCGA	ATCGTGGT	182
##	284	CACTTCAC	ACGATCAG	182
##	285	TGTTCCGT	GATCTTGC	182
##	286	ATCGTGGT	CTAGCTCA	179
##	287	GTCCTAAG	TAGCCATG	179
##	288	TAGCCATG	ACGATCAG	177
##	289	TCGAGAGT	TCGGATTC	177
##	290	ACGATCAG	TATGGCAC	176
##	291	AGAGTCCA	ATCATGCG	176
##	292	GTCCTAAG	GATCAAGG	174
##	293	TCGAGAGT	AGAGTCCA	173
##	294	TGTTCCGT		172
##	295	AGGATAGC	GCTACTCT	171
##	296	TATGGCAC	GATCTTGC	170
##	297	GTAGCGTA		169
##	298	GTCCTAAG	ATCATGCG	169
##	299	AACAGCGA		168
##	300	AGGATAGC		167
	301			166
##				166
		CGGTAATC		166
##		TAGCCATG		165
##		CTAGCTCA		163
##		TCGAGAGT		163
##		GTCCTAAG		162
##		TAGCCATG TAGCCATG		161
## ##				161 160
		CACTTCAC		160
##				160
##		TCGGATTC AACAGCGA		159 158
##				158 158
## ##				158 158
##				158
##		GTCCTAAG		157
		TCGAGAGT		156
##				156
##	219	TOGGATIC	GRICIIGO	130

##	320	TCGAGAGT	ATCATGCG	154
##	321	CTAGCTCA	GATCTTGC	152
##	322	TAGCCATG	GATCAAGG	152
##	323	TATGGCAC	GATCAAGG	152
##	324	TATGGCAC	GTAGCGTA	152
##	325	ATCATGCG	TCGACAAG	151
##	326	TCGAGAGT	CGATCGAT	151
##	327	AGAGTCCA	TAGCCATG	149
##	328	GTAGCGTA	TATGGCAC	148
##	329	TCGAGAGT	GTCCTAAG	148
##	330	AACAGCGA	GATCAAGG	147
##	331	GTCCTAAG	GTAGCGTA	147
##	332	TGTTCCGT	GATCAAGG	147
##	333	AACAGCGA	TAGCCATG	146
##	334	CGGTAATC	TAGCCATG	146
##	335	ATCGTGGT	ACGATCAG	144
##	336	TATGGCAC	CGGTAATC	143
##	337	GTAGCGTA	AACAGCGA	142
##	338	TATGGCAC	ATCGTGGT	142
##	339	TCGACAAG	TCGAGAGT	142
##	340	AACAGCGA	GTCCTAAG	140
##	341	AGGATAGC	AACAGCGA	140
##	342	ATCGTGGT	ATCATGCG	140
##	343	GTAGCGTA	ATCATGCG	140
##	344	ATCGTGGT	TATGGCAC	139
##	345	TCGGATTC	CTAGCTCA	139
##	346	ATCATGCG	GCTACTCT	138
##	347	GATCAAGG	TGTTCCGT	138
##	348	AGAGTCCA	ATCGTGGT	137
##	349	CGATCGAT	TCGAGAGT	137
##	350	TCGAGAGT	AACAGCGA	137
##	351	ACGATCAG	GCTACTCT	136
##	352	ATCGTGGT	AGAGTCCA	135
##	353	CACTTCAC	CTAGCTCA	135
##	354	GATCAAGG	TAGCCATG	135
##	355	GTCCTAAG	AGAGTCCA	135
##	356	AGGATAGC	CACTTCAC	134
##	357	ATCATGCG	GTAGCGTA	134
##	358	TAGCCATG	AGGATAGC	134
##	359	GTAGCGTA	AGGATAGC	133
##	360	AGAGTCCA	GCTACTCT	131
##	361	CGATCGAT	ACGATCAG	131
##	362	TCGAGAGT	TCGACAAG	131
##	363	TCGGATTC	CGATCGAT	130
##	364	ACGATCAG	GTAGCGTA	129
##	365	ATCGTGGT	AGGATAGC	128
##	366	GTAGCGTA	ATCGTGGT	127
##	367	ACGATCAG	GATCAAGG	126
##	368	GCTACTCT	TATGGCAC	125
##	369	GTCCTAAG	CGATCGAT	125
##	370	AGGATAGC	CGATCGAT	124
##	371	AGAGTCCA	GTCCTAAG	123
##	372	GATCTTGC	TATGGCAC	121
##	373	TCGACAAG	TAGCCATG	121

##	374	AGAGTCCA	CGATCGAT	120
##	375	CACTTCAC	TGTTCCGT	120
##	376	GTCCTAAG	AGGATAGC	120
##	377	${\tt TAGCCATG}$	GTAGCGTA	120
##	378	${\tt TATGGCAC}$	GCTACTCT	119
##	379	${\tt TGTTCCGT}$	CACTTCAC	118
##	380	${\tt ACGATCAG}$	ATCGTGGT	117
##	381	${\tt CGATCGAT}$	AGAGTCCA	117
##	382	${\tt CGATCGAT}$	TAGCCATG	117
##	383	${\tt CTAGCTCA}$	CACTTCAC	117
##	384	GATCAAGG	CTAGCTCA	117
##	385	GCTACTCT	GTCCTAAG	117
##	386	TCGACAAG	ACGATCAG	117
##	387	ACGATCAG	AACAGCGA	116
##	388	${\tt AGGATAGC}$	TAGCCATG	116
##	389	TAGCCATG	CACTTCAC	115
##	390	${\tt CGGTAATC}$	CTAGCTCA	114
##	391	GTCCTAAG	GCTACTCT	114
##	392	AGGATAGC	TCGGATTC	113
##	393	GCTACTCT	ATCATGCG	113
##	394	TATGGCAC	CGATCGAT	113
##	395	ATCGTGGT	GTAGCGTA	112
##	396	${\tt GATCTTGC}$	CGATCGAT	112
##	397	TCGACAAG	GTCCTAAG	112
##	398	TCGAGAGT	CGGTAATC	112
##	399	GTAGCGTA	TAGCCATG	111
##	400	TGTTCCGT	TCGACAAG	111
##	401	ATCATGCG		110
##	402	CACTTCAC		109
##	403	GATCAAGG	GTAGCGTA	109
##	404	TCGAGAGT		109
##	405	GATCAAGG		108
##	406	ATCATGCG		107
##	407			107
##		TATGGCAC		107
	409			107
	410			106
		TGTTCCGT		104
		CGGTAATC		103
		GCTACTCT		103
		TCGGATTC		103
		AGGATAGC		101
		ATCGTGGT		101
		TCGACAAG		101
	418	GCTACTCT		100
	419			99
	420		CTAGCTCA	99
	421			99
	422			98
	423			98
		TAGCCATG		98
	425			97
		ACGATCAG		96
##	427	ATCGTGGT	TAGCCATG	96

##	428	CGATCGAT	TATGGCAC	96
##	429	CGGTAATC	TGTTCCGT	96
##	430	GATCAAGG	AGGATAGC	95
##	431	GATCAAGG	TATGGCAC	95
##	432	${\tt GATCTTGC}$	ATCATGCG	95
##	433	GTCCTAAG	ATCGTGGT	95
##	434	GTCCTAAG	GATCTTGC	95
##	435	CGATCGAT	ATCATGCG	93
##	436	CGATCGAT	GCTACTCT	92
##	437	GTCCTAAG	TCGACAAG	92
##	438	AGGATAGC	ATCGTGGT	91
##	439	CGATCGAT	GTAGCGTA	91
##	440	CGATCGAT	GTCCTAAG	91
##	441	AGAGTCCA	TCGGATTC	89
##	442	ATCGTGGT	GCTACTCT	89
##	443	GCTACTCT	CGATCGAT	89
##	444	GTAGCGTA	CGATCGAT	89
##	445	TCGGATTC	TCGAGAGT	89
##	446	GATCAAGG	GATCTTGC	87
##	447	AGAGTCCA	GATCAAGG	86
##	448	AGGATAGC	GTCCTAAG	85
##	449	GATCAAGG	AGAGTCCA	85
##	450	GCTACTCT	ATCGTGGT	85
##	451	CACTTCAC	CGATCGAT	84
##	452	GCTACTCT	GATCAAGG	84
##	453	ATCGTGGT	AACAGCGA	83
##	454	CGGTAATC	TATGGCAC	83
##	455	TAGCCATG	ATCGTGGT	83
##	456	GATCTTGC	AACAGCGA	82
##	457	GATCTTGC	AGAGTCCA	82
##	458	CGGTAATC	CGATCGAT	81
##	459	GCTACTCT	GATCTTGC	81
##	460	TCGACAAG	TGTTCCGT	81
##	461	GATCAAGG	CGATCGAT	80
##	462	ATCATGCG	CACTTCAC	79
##	463	ATCATGCG	CGGTAATC	79
##	464	${\tt GATCTTGC}$	GTCCTAAG	79
##	465	${\tt GATCTTGC}$	TGTTCCGT	78
##	466	TCGAGAGT	GATCTTGC	78
##	467	TCGGATTC	ACGATCAG	78
##	468	ACGATCAG	CACTTCAC	77
##	469	ATCATGCG	TCGGATTC	77
##	470	ATCGTGGT	CGGTAATC	77
##	471	AGAGTCCA	CGGTAATC	76
##	472	GATCAAGG	GCTACTCT	76
##	473	${\tt GATCTTGC}$	GTAGCGTA	76
##	474	TAGCCATG	TCGGATTC	76
##	475	TCGGATTC	AGAGTCCA	76
##	476	ATCGTGGT	GTCCTAAG	75
##	477	CACTTCAC	TCGGATTC	75
##	478	CGATCGAT	ATCGTGGT	75
##	479	TCGACAAG	AGGATAGC	75
##	480	GATCAAGG	AACAGCGA	74
##	481	CGGTAATC	TCGAGAGT	73

##	482	GATCTTGC	GATCAAGG	72
##	483	AGAGTCCA	GATCTTGC	71
##	484	CACTTCAC	AGAGTCCA	71
##	485	${\tt CGGTAATC}$	CACTTCAC	70
##	486	GTCCTAAG	CGGTAATC	70
##	487	TAGCCATG	GATCTTGC	70
##	488	${\tt AGGATAGC}$	GATCAAGG	69
##	489	AACAGCGA	CGGTAATC	68
##	490	CGATCGAT	GATCAAGG	68
##	491	${\tt GATCTTGC}$	TCGAGAGT	68
##	492	${\tt CGATCGAT}$	AACAGCGA	67
##	493	ACGATCAG	GATCTTGC	66
##	494	${\tt GATCTTGC}$	ACGATCAG	66
##	495	${\tt GTAGCGTA}$	GATCTTGC	66
##	496	TCGGATTC	GTCCTAAG	66
##	497	CACTTCAC	ATCATGCG	65
##	498	${\tt GTAGCGTA}$	CGGTAATC	65
##	499	${\tt GTAGCGTA}$	TCGGATTC	65
##	500	TCGGATTC	ATCATGCG	65
##	501	ACGATCAG	TCGGATTC	64
##	502	ATCGTGGT	TCGGATTC	64
##	503	CGGTAATC	TCGGATTC	64
##	504	TAGCCATG	CGATCGAT	64
##	505	AGAGTCCA	CACTTCAC	63
##	506	CGATCGAT	TCGGATTC	63
##	507	AACAGCGA	CACTTCAC	62
##	508	CACTTCAC	TCGAGAGT	62
##	509	CGATCGAT	GATCTTGC	62
##	510	GCTACTCT	TCGGATTC	62
##	511	TAGCCATG	GCTACTCT	62
##	512	TCGGATTC	CGGTAATC	62
##	513	AACAGCGA	TCGACAAG	61
##	514	CGGTAATC	GATCAAGG	61
##	515	GATCTTGC	GCTACTCT	61
##	516	TCGACAAG	TATGGCAC	61
##	517	CGGTAATC	GTAGCGTA	59
##	518	TAGCCATG	CGGTAATC	59
##	519	ATCGTGGT	GATCTTGC	57
##	520	CACTTCAC	GTAGCGTA	57
##	521	GATCAAGG	TCGACAAG	57
##	522	CGATCGAT	CACTTCAC	56
##	523	CGGTAATC	ATCATGCG	56
##	524	GATCTTGC	TAGCCATG	56
##	525	GCTACTCT	CGGTAATC	56
##	526	AGAGTCCA	TCGACAAG	55
##	527	CGATCGAT	TCGACAAG	55
##	528	TCGACAAG	AGAGTCCA	55
##		TCGGATTC		54
	530	ATCGTGGT	TCGACAAG	53
		CGGTAATC		53
		GATCTTGC		53
		AGGATAGC		52
		TCGACAAG		52
		CGGTAATC		50
				55

```
## 536 TCGAGAGT CACTTCAC
                                  49
## 537 CACTTCAC ATCGTGGT
                                  48
## 538 CACTTCAC GATCAAGG
                                  48
## 539 CGGTAATC AGAGTCCA
                                  48
## 540 TCGGATTC GATCAAGG
                                  48
## 541 GTCCTAAG CACTTCAC
                                  47
## 542 TCGACAAG CGATCGAT
                                  47
## 543 TCGACAAG GTAGCGTA
                                  47
## 544 TCGGATTC ATCGTGGT
                                  47
## 545 CACTTCAC GTCCTAAG
                                  46
## 546 CGGTAATC GTCCTAAG
                                  46
## 547 GATCAAGG CGGTAATC
                                  46
## 548 GTAGCGTA CACTTCAC
                                  46
## 549 CACTTCAC AACAGCGA
                                  45
## 550 GATCTTGC CACTTCAC
                                  45
## 551 TCGACAAG TCGGATTC
                                  45
  552 TCGGATTC CACTTCAC
                                  45
## 553 GTAGCGTA TCGACAAG
                                  44
## 554 TCGACAAG ATCGTGGT
                                  44
## 555 TCGACAAG GCTACTCT
                                  44
  556 TCGGATTC GTAGCGTA
                                  43
## 557 CACTTCAC GATCTTGC
                                  41
## 558 CGGTAATC AACAGCGA
                                  41
## 559 TCGACAAG AACAGCGA
                                  41
## 560 TCGGATTC GCTACTCT
                                  40
  561 CACTTCAC GCTACTCT
                                  38
## 562 CGGTAATC GCTACTCT
                                  37
   563 GATCAAGG TCGGATTC
                                  37
## 564 GCTACTCT CACTTCAC
                                  37
## 565 GATCTTGC TCGGATTC
                                  36
## 566 GATCTTGC ATCGTGGT
                                  33
  567 GCTACTCT TCGACAAG
                                  33
## 568 ATCGTGGT CACTTCAC
                                  29
## 569 CACTTCAC TCGACAAG
                                  27
## 570 CGGTAATC TCGACAAG
                                  26
## 571 TCGGATTC TCGACAAG
                                  25
## 572 GATCAAGG CACTTCAC
                                  24
## 573 TCGACAAG GATCTTGC
                                  23
## 574 TCGACAAG CGGTAATC
                                  22
## 575 GATCTTGC TCGACAAG
                                  19
## 576 TCGACAAG CACTTCAC
                                  14
## 577
        Unknown Unknown
                             5495481
```

The first 24 lines give the number of retained reads for each of our expected (matching) index pairs. In total, these account for 239750646 of the total 245598505; 97.6% of the retained reads. (Note: I've indcluded the Sorted_Index_counts.txt file with the breakdown of reads by index pair with this document, since the output is slightly unwieldy here.)

- b. There are a total of 352378 reads that have swapped indexes. Note that this does not include the counts of reads that contained indexes that did not match to any expected library (our "Unknown" counts)
- c. We can visualize the read counts per swapped index-pairs by plotting the first index against the second index in a dotplot and a heat map (Note: to keep the heatmap from oversaturation for the outlier read counts, all read counts have been log corrected such that the heatmap represents the distribution of log(Read Counts)):

Warning: package 'ggplot2' was built under R version 3.3.2

Read Counts for unmatched Index Pairs


```
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
```


lap of log-corrected Read Counts for Index Swapped pairs

These two visualizations illustrate that certain index swaps is much more likely to occur. The TATGGCAC (C4) index had the highest counts among the swapped index pairs, with TCTTCGAC (C10) and CTCTGGAT (B3) having very high representation as well. This makes sense, as these were also the libraries that had shared the largest proportion of the total read counts; however, the converse does not appear to be true, with the lowest represented libraries (CACTTCAC, TCGACAAG, and GATCTTGC) not appearing to be represented that much lower than some of the libraries with 2x or more reads. This could indicate a potential "read representation limit" below which index swapping does not become significantly more common.

3. No data to report – read files were not created due to file limit constraints.