Recommender Systems

Lecture 5

Previous lecture

Previous lecture: neighborhood formation

- 1. sample w.r.t. observed ratings: $\mathcal{N}_i(u)$ or $\mathcal{N}_u(i)$
- 2. sample *n* entities, s.t. $k \ll n \ll N$
 - randomly
 - by recency
- 3. select top-k most similar
 - what similarity?

Choosing between user-based and item-based:

- # users vs. # items
- system dynamics
- explainability vs. serendipity

Previous lecture: limited coverage problems

Unreliable correlations

Weak generalization

Today's Lecture

- Low-rank approximation for CF
 - PureSVD
 - Recommendation vs matrix completion
- Revisiting popularity bias

Low rank representation

$A \approx PQ^{T}$	/
ARP	

4	3	?		
	3	5		
4	?	5		
			4	5
			?	5

A general view on latent factors models

• **Task**: find utility (relevance) function f_R :

 f_R : Users × Items → Relevance score

• As optimization problem with some *loss function* \mathcal{L} :

Components of the model:

- Utility function to generate R
- Optimization objective defined by \mathcal{L}
- Optimization method (algorithm)

What is the form of R and \mathcal{L} ?

Intuition behind MF

Assumption: observed interactions can be explained via

- a *small* number of common patterns in human behavior
- + individual variations (including random factors and "unknown unknowns")

$$A_{full} = R + E, \qquad R = PQ^{\mathsf{T}}$$

Predicted utility of item *j* for user *i*:

$$r_{ij} pprox \boldsymbol{p}_i^{\mathsf{T}} \boldsymbol{q}_j = \sum_{k=1}^d p_{ik} q_{jk}$$

 p_i – latent factors vector for user i q_i – latent factors vector for item j

Simplistic view on latent features

rows of P – user embeddings rows of Q – item embeddings

Singular Value Decomposition

Quick reminder:

$$A = U\Sigma V^{\mathsf{T}}$$
 $U \in \mathbb{R}^{M \times M}, \quad V \in \mathbb{R}^{N \times N}$
 $U^{\mathsf{T}}U = I_M, \quad V^{\mathsf{T}}V = I_N$

 $\Sigma \in \mathbb{R}^{M \times N}$ - diagonal, with $[\Sigma]_{kk} = \sigma_k$:

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_{\min(M,N)} \ge 0$$

$$\sigma_k(A) = \sqrt{\lambda_k(A^{\mathsf{T}}A)} = \sqrt{\lambda_k(AA^{\mathsf{T}})}$$

Low-rank approximation task:

$$||A - R||_F^2 \longrightarrow \min, \text{ s.t. } \operatorname{rank}(R) = d$$

$$R = U_d \Sigma_d V_d^{\mathsf{T}}, \quad ||A - R||_F^2 = \sum_{i = d+1}^{2} C_i^{\mathsf{T}}$$

Is it directly applicable here?

PureSVD model for CF

Let's impute zeros in place of unknowns!

$$A_0 = U\Sigma V^{\mathsf{T}}, \qquad [A_0]_{ij} = \begin{cases} a_{ij}, \\ 0, & \text{otherwise} \end{cases}$$

$$R = U_d \Sigma_d V_d^{\mathsf{T}}$$

if known otherwise

Relevance score prediction:

$$A_{0}V_{d}V_{d}^{\mathsf{T}} = 12 \text{ Model}$$

$$= 2 \text{ Model}$$

$$= 12 \text$$

Explaining recommendations

Which one is more explainable?

$$r_{\alpha} = Q p_{\alpha}$$
 vs

$$\mathbf{r}_{\alpha} = Q\mathbf{p}_{\alpha} \quad \text{vs.} \quad \mathbf{r}_{\alpha} = \mathbf{V}\mathbf{V}^{\mathsf{T}}\mathbf{a}_{\alpha} \qquad \mathbf{h} = \mathbf{V} \mathbf{v}^{\mathsf{T}}$$

$$\mathbf{v}^{\mathsf{T}}\mathbf{a} = \mathbf{v}^{\mathsf{T}}\mathbf{v}^{\mathsf{T}}\mathbf{a}_{\alpha} \qquad \mathbf{h} = \mathbf{v}^{\mathsf{T}}\mathbf{v}^{\mathsf{T}$$

Which model does PureSVD resemble?

PureSVD computation

• Efficient computation with Lanczos algorithm

• complexity $O(nnz \cdot d) + O((M+N) \cdot d^2)$

nnz – number of non-zeros of A_0

- Efficient implementations in Python:
 - SciPy Sparse svds,
 - Scikit-Learn TruncatedSVD.
- Core functionality is also implemented in Spark.

Billion-scale computations with SVD

In practice, in distributed setups, randomized SVD is used.

Examples:

- Criteo* https://github.com/criteo/Spark-RSVD
- Facebook's randomized SVD implementation https://research.fb.com/fast-randomized-svd

Research:

- "out-of-memory" SVD [Kabir 2017]
- communication-avoiding algebra [Demmel 2008]
- DeepMind's attempt to adapt to modern hardware (GPU, TPU) via game-theoretic approach https://www.deepmind.com/blog/game-theory-as-an-engine-for-large-scale-data-analysis

Lifecycle of a recsys model

PureSVD – recommending online

folding-in technique*

Finding a warm-start user representation:

$$\|\boldsymbol{a}_0^{\mathsf{T}} - \boldsymbol{u}^{\mathsf{T}} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathsf{T}}\|_2^2 \to \min$$

new user embedding

$$\boldsymbol{u}^{\mathsf{T}} = \boldsymbol{a}_0^{\mathsf{T}} V \Sigma^{-1}$$

Prediction:

$$\boldsymbol{r}^{\mathsf{T}} = \boldsymbol{u}_d^{\mathsf{T}} \boldsymbol{\Sigma}_d V_d^{\mathsf{T}} = \boldsymbol{a}_0^{\mathsf{T}} V_d V_d^{\mathsf{T}}$$

$$r = V_d V_d^{\mathsf{T}} \boldsymbol{a}_0$$

- convenient for evaluation
- complexity $\sim 0(Nd)$
- enables real-time recommendations

^{*}G. Furnas, S. Deerwester, and S. Dumais, "Information Retrieval Using a Singular Value Decomposition Model of Latent Semantic Structure," Proceedings of ACM SIGIR Conference, 1988

On-stream and incremental learning

Incremental learning:

- Adding new users/items:
 - rank-1 updates (see G. Golub, C. Van Loan, "Matrix Computations")
 - M. Brand "Incremental singular value decomposition of uncertain data with missing values.", 2002.

Adding new interactions:

- via projector splitting approach [Lubich & Oseledets 2013]:
 - example in recsys: [Olaleke et al. 2021]
- streaming:
 - Method of frequent directions [Ghashami et al. 2016]
 - Zoom SVD [Jang et al. 2018]

CF as low-rank approximation task

Approximation with irreducible noise

Practical consequences

- larger # of items harder pattern discovery task
- even in the simplest case singular values won't become 0
 - let's check it!

no simple choice of the optimal rank of the decomposition

•
$$||A - U_d \Sigma_d V_d^{\mathsf{T}}||_{\mathsf{F}} = \sqrt{\sigma_{d+1}^2 + \dots + \sigma_{\min(M,N)}^2}$$

doesn't mean you can't get close to zero RMSE on trainset

Data centering (PCA style)

Observations:

- today: in PureSVD, values are highly biased towards 0
- previously: a signal is carried mostly by baseline estimators

How does it affect rating prediction?

Strategy:

- value imputation → mean shifted matrix
- akin to data centering in PCA

Spectrum of mean-shifted ratings matrix

$$A = \hat{A}_0 + \alpha \boldsymbol{e}_M \boldsymbol{e}_N^{\mathsf{T}} \qquad \qquad \hat{A}_0 = \hat{A}_0^2 (\hat{A}_0) + \alpha^2 M N, \qquad \sigma_k^2(A) \approx \sigma_k^2(\hat{A}_0), k \gg 1$$

Let's evaluate!

Note: we have a dense (and potentially huge) matrix

$$A = \hat{A}_0 + \alpha \, \boldsymbol{e}_M \boldsymbol{e}_N^{\mathsf{T}}$$

Example: $M = 1_000_000$ users and $N = 100_000$ items would require ≈ 745 Gb of RAM /

How to avoid explicitly forming it?

$$Av = \underbrace{Avv} + \underbrace{Jen(env)}$$

Practical consequences

- SVD for CF is:
 - NOT pure matrix completion
 - NOT pure dimensionality reduction
- common PCA-like preprocessing may spoil data representation
- rating prediction doesn't make sense
 - recommendations can still be good!
 - we can treat rating values more flexibly