Beamer By Example

Subtitle: Frankfurt Theme

Willie Dewit ¹ Jessie May ² David Griffiths ³

Conference on Tasteful Presentations, 2007

Outline

Contents

1		Structure					
	1.1	Features					
	1.2	Basics					
	1.3	Colour					
2	Lists						
	2.1	Uncovering Text					
	2.2	Theorems/Proofs					
	2.3	Handouts					
3	Fancy Bits						
	3.1	Columns					
	3.2	pstricks package					
		Movies					

1 Structure

1.1 Features

Beamer

Written by Till Tantau while completing his PhD.

- Process with either pdflatex or latex+dvips
- Standard LATEX commands still work
- tableofcontents works
- Overlays & dynamic effects easily created
- Easy navigation through sections & subsections
- Many templates and examples included in package
- article style can be used to produce notes

1.2 Basics

Sample Code

```
\documentclass{beamer}
\usetheme{Frankfurt}
```

Use \scale and $\subsection{..}$ to create items for the Table of Contents

The code for a frame is \dots

```
\subsection{Basics}
\begin{frame}
    \frametitle{Sample Code}
          Frame content
          .
\end{frame}
```

1.3 Colour

Colouring Text

This a 2-stage process

Define the colour \setbeamercolor{blue}{fg=blue!50}

• Use the colour

```
{\usebeamercolor[fg]{blue} Some blue text}
Some blue text
```

or \newcommand{\green}[1]{\usebeamercolor[fg]{green}#1}
\green{some green text}....some green text
\alert<4>{Colours predefined in PSTRICKS}

2 Lists

2.1 Uncovering Text

Uncovering Text

- Use itemize a lot-with \pause
- Use very short sentences or short phrases.

```
\begin{itemize}
\item
  Use \texttt{itemize} a lot--with \pause
\item
  Use very short sentences or short phrases.
\end{itemize}
```

Uncovering Text

You can create overlays...

- using the \pause command:
 - First item. (\pause)
 - Second item.
- using overlay specifications:
 - First item. (\item<3->)
 - Second item.(\item<4>)
- using the general \uncover command:

```
(\uncover<5->{\item First item...})
```

- First item.
- Second item.

Uncover & alert

- Apple
- Peach
- Plum
- Orange

```
\begin{itemize}[<+-| alert@+>]
  \item Apple
  \item Peach
  \item Plum
  \item Orange
\end{itemize}
```

Uncovering Equations

$$A = B$$
$$= C$$
$$= D$$

```
\begin{align*}
A &= \uncover<2->{B}\\
\uncover<2->{&=C\\}
\uncover<3->{&=D\\}
\end{align*}
```

An example of replacement

This uses five overlays, each separate equations...

$$\frac{d}{dx} \frac{x+3}{(x-1)^2} =$$

$$= \frac{(x-1)^2 - 2(x+3)(x-1)}{(x-1)^4}$$

$$= \frac{(x-1)((x-1) - 2(x+3))}{(x-1)^4}$$

$$= \frac{((x-1) - 2(x+3))}{(x-1)^3} = -\frac{x+7}{(x-1)^3}$$

\alt is used to replace the first line and then \visible, as opposed to \uncover. Alignment not ideal.

An example of align with replacement

Three overlays, ...

$$left = rhs 1$$

= $rhs 3$

```
\begin{align*}
  left&=\alt<1>{rhs1}{\text{alternate rhs}}\\
  \visible<3->{&=rhs3}
\end{align*}
```

Uses \alt and \visible, as opposed to \uncover. Alignment spoiled because alternative is longer than original.

An example of align with replacement

Use of \phantom to add invisible text to 3rd overlay to ensure correct alignment when \alt string is longest...

$$left = rhs 1$$
$$= rhs 3$$

The align environment with replacement

$$\frac{d}{dx} \frac{x+3}{(x-1)^2} =$$

$$= \frac{(x-1)^2 - 2(x+3)(x-1)}{(x-1)^4}$$

$$= \frac{(x-1)((x-1) - 2(x+3))}{(x-1)^4}$$

$$= \frac{((x-1) - 2(x+3))}{(x-1)^3} = -\frac{x+7}{(x-1)^3}$$

 $\$ alt replaces the first line and then $\$ is opposed to $\$ uncover. Alignment is fixed.

Uncovering Rows

Class	A	В	C	D
X	1	2	3	4
Y	3	4	5	6
Z	5	6	7	8

\usepackage{colortbl}

\rowcolors[]{1}{blue!20}{red!10}
\begin{tabular}{1!{\vrule}cccc}\hline
Class & A & B & C & D\\hline
X & 1 & 2 & 3 & 4 \\pause
Y & 3 & 4 & 5 & 6 \\pause
Z & 5 & 6 & 7 & 8
\end{tabular}

Uncovering Columns

Class	Α	В	C	D
X	1	2	3	4
Y	3	4	5	6
Z	5	6	7	8

c<{decl.} inserts decl. right after the entry for the column.</pre>

2.2 Theorems/Proofs

Theorem and Proof

Theorem 1. There is no largest prime number

Proof. • Suppose p ... the largest prime

- Let q be the product of the first p numbers
- Then q + 1 is not divisible by any of them
- Thus q + 1 is a prime number larger than p.

Theorem and Proof-Code

```
\begin{theorem}
   There is no largest prime number
\end{theorem}

\begin{proof}
\begin{itemize}
\item Suppose $p$ were the largest prime\pause
\item Let $q$ be ... first $p$ numbers\pause
\item Then $q+1$ is not divisible ...\pause
\item Thus $q+1$ is a prime ... $p$.\pause
\end{itemize}
\end{proof}
```

Cantor's Theorem

Theorem 2. $\alpha < 2^{\alpha}$ for all ordinals α .

Cantor<2>Proof details

Proof. As shown by Cantor...

Cantor<1>Return

2.3 Handouts

Printing slides for handouts

With the header \documentclass[t,handout]{beamer}

1. the t option specifies vertically aligned top frames

2. all piecewise defined slides are aggregated into one.

```
3. \usepackage{enumerate}
...
\begin{enumerate}[<+->][(i)]
   \item the \texttt{\blue{t}} option specifies ....
   \item all piecewise defined ....
\end{enumerate}
```

Printing as article class

```
The header \documentclass{article} and package \usepackage{beamerarticle}
```

cause the material to be typeset as a "normal" article—all frame references are ignored.

3 Fancy Bits

3.1 Columns

Graphics & Text Side by Side


```
\begin{columns}[b]
\begin{column}{.25\textwidth}
\includegraphics[width=1.3in]%
\{FILE.epsc}\\end{column}
\begin{column}{.75\textwidth}
\text column
\end{column}
\end{column}
\end{column}
\end{columns}
```

[We actually use semiverbatim & incremental alerts.]

3.2 pstricks package

Diagrams

A small diagram with a few lines of LATEX. At the 2nd overlay we can add a link from one to another using PSTRICKS

\blue \rnode{START}{\textsc{PSTricks}}
...
\visible<2>{\nccurve%
[linecolor=red,angleA=270,angleB=300]{START}{c}}

Householder formula

The Householder formula below lets one compute $f(x_*) = 0$ for an arbitrary f.

$$x_{k+1} \mapsto \Phi_n(x_k) = x_k + (n-1) \frac{\left(\frac{1}{f(x_k)}\right)^{n-2}}{\left(\frac{1}{f(x_k)}\right)^{n-1}} + f(x_k)^{n+1} \quad \psi \tag{1}$$

where $n \geq 2$ and ψ is an arbitrary function.

Formula (1) gives an iteration of order n converging towards x_* such that: $f(x_*)=0$.

Some PSTRICKS

Any practical use for this?

Some more PSTRICKS

or this ...

S-ICM S-ICM

```
\pstextpath{\psccurve[linestyle=none]%
(.5,0)(3.5,1)(3.5,0)(.5,1)}%
{\blue ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS--ICMS
```

3.3 Movies

Including Movies

```
\movie[width=3in,height=2in,showcontrols,poster]%
{}{thank.avi}
```

Even though the movie is "embedded" in the .tex file, the .avi file must still reside in the same folder as the pdf file.

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a *third message*, but not more than that.

- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

References

- [1] A. Author. Handbook of Everything. Some Press, 1990.
- [2] S. Someone. On this and that. Journal of This and That, 2(1):50–100, 2000.
- [3] D.F. Griffiths Beamer By Example http://www.maths.dundee.ac.uk/ \sim dfg/talks.shtml