

Compiler Design

Lecture 7: Syntax Analysis III (Parsing)

Sahar Selim

Agenda

- ► Types of Parsing
- ► Top-Down Parsing
 - ▶ LL(1) Parsing
 - Parse Table

Types of Parsers

Top-down Parser

- ► Top-down parser is the parser which generates parse tree for the given input string with the help of grammar productions by expanding the non-terminals
 - ▶ It starts from the start symbol and ends on the terminals.
- It uses left most derivation.
- ▶ It is classified into 2 types:
 - Recursive descent parser
 - Non-recursive descent parser

Top-down Parser

A. Recursive descent parser:

- ▶ It is also known as Brute force parser or the with backtracking parser.
- It basically generates the parse tree by using brute force and backtracking.

Lecture 7: Syntax Analysis III

Sahar Selim

Top-down Parser

B. Non-recursive descent parser:

- ▶ It is also known as LL(1) parser or predictive parser or without backtracking parser or dynamic parser.
- It uses parsing table to generate the parse tree instead of backtracking

Bottom-up Parser

It generates the parse tree for the given input string with the help of grammar productions by compressing the non-terminals i.e. it starts from non-terminals and ends on the start symbol.

- ▶ It uses reverse of the right most derivation.
- ▶ Bottom-up parser is classified into 2 types:
 - A. LR parser
 - B. Operator precedence parser

Bottom-up Parser

A. LR parser:

- ▶ It is the bottom-up parser which generates the parse tree for the given string by using unambiguous grammar.
- ▶ It follows reverse of right most derivation.
- ► LR parser is of 4 types: LR(0), SLR(1), LALR(1), and CLR(1)

Bottom-up Parser

B. Operator precedence parser:

▶ It builds a parse tree for a grammar that doesn't contain epsilon productions and does not contain two adjacent non-terminals on R.H.S. of any production.

- \triangleright S \rightarrow aABe
- ightharpoonup A
 ightharpoonup Abc | b
- ightharpoonup B o d

Sahar Selim

► String: abbcde

- \triangleright S \rightarrow aABe
- ightharpoonup A
 ightharpoonup Abc | b
- ightharpoonup B o d

► String: abbcde

Left Most Derivation

Top-down

CSCI415 | Compiler Design

Right Most Derivation

Bottom-up

Top-down Parsing

Concept of Top-Down Parsing (1)

- It generates parse tree for the given input string with the help of grammar productions by expanding the non-terminals.
- It parses an input string of tokens by *tracing out* the steps in a <u>leftmost derivation</u>.
 - ▶ It starts from the start symbol and ends on the terminals.
 - And the implied traversal of the parse tree is a preorder traversal and, thus, occurs <u>from the root to</u> <u>the leaves</u>.

Concept of Top-Down Parsing (2)

- ► The example: number + number, and corresponds to the following parse tree
- ▶ The parse tree corresponds to the leftmost derivations:
 - (1) $exp \Rightarrow exp op exp$
 - (2) => *number op exp*
 - => number + exp
 - (4) => number + number

 $exp \rightarrow exp op exp | number op \rightarrow + | -$

Two forms of Top-Down Parsers

Predictive parsers

➤ attempts to predict the next construction in the input string using one or more look-ahead tokens

► Backtracking parsers

- try different possibilities for a parse of the input, backing up an arbitrary amount in the input if one possibility fails.
- It is more powerful but much slower, unsuitable for practical compilers.

Predictive Parsing

Predictive Parsing

- ► The *leftmost Depth First Search/Breadth First Search* algorithms are backtracking algorithms.
 - ► Guess which production to use, then back up if it doesn't work.
 - Try to match a prefix by sheer luck.
- There is another class of parsing algorithms called predictive algorithms.
 - ▶ Based on remaining input, predict (without backtracking) which production to use.

Tradeoffs in Prediction

- ▶ Predictive parsers are fast.
- ► Many predictive algorithms can be made to run in linear time.
- ▶ Often can be table-driven for extra performance.
- ▶ Predictive parsers are weak.
- Not all grammars can be accepted by predictive parsers.
- ► Trade expressiveness for speed.

Exploiting Lookahead

- Given just the start symbol, how do you know which productions to use to get to the input program?
- Idea: Use lookahead tokens.

Sahar Selim

When trying to decide which production to use, look at some number of tokens of the input to help make the decision.

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

E

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

E

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

$$\mathbf{E} \rightarrow \mathbf{T}$$
 $\mathbf{E} \rightarrow \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

E
T + E
int + E

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

E				
T + E				
int + E				

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

E
T + E
int + E

$$\mathbf{E} \to \mathbf{T}$$
 $\mathbf{E} \to \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \to \mathbf{int}$
 $\mathbf{T} \to (\mathbf{E})$

E				
T + E				
int + E				

$$\mathbf{E} \rightarrow \mathbf{T}$$
 $\mathbf{E} \rightarrow \mathbf{T} + \mathbf{E}$
 $\mathbf{T} \rightarrow \mathbf{int}$
 $\mathbf{T} \rightarrow (\mathbf{E})$

Ē	\rightarrow	T	
E	\rightarrow	T +	E
T	\rightarrow	int	
T	\rightarrow	(E)	

E
T + E
int + E
int + T

Ē	\rightarrow	T		
E	\rightarrow	T ·	+	E
T	\rightarrow	in	t	
T	\rightarrow	(E)	

E
T + E
int + E
int + T

Ē	\rightarrow	T		
E	\rightarrow	T	+	E
T	\rightarrow	ir	ıt	
T	\rightarrow	(1	Ξ)	

E
T + E
int + E
int + T

Ē	\rightarrow	T		
E	\rightarrow	T ·	+	E
T	\rightarrow	in	t	
T	\rightarrow	(E)	

E
T + E
int + E
int + T
int + (E)

Ē	\rightarrow	T		
E	\rightarrow	T	+	E
T	\rightarrow	ir	ıt	
T	\rightarrow	(I	Ξ)	

Ē	\rightarrow	T		
E	\rightarrow	T	+	E
T	\rightarrow	ir	ıt	
T	\rightarrow	(I	Ξ)	

E
T + E
int + E
int + T
int + (E)

Ē	\rightarrow	T		
E	\rightarrow	T	+	E
T	\rightarrow	ir	ıt	
T	\rightarrow	(1	Ξ)	

E
T + E
int + E
int + T
int + (E)

Ē	\rightarrow	T		
E	\rightarrow	T	+	F
T	\rightarrow	in	ıt	
T	\rightarrow	(I	3)	

E
T + E
int + E
int + T
int + (E)
int + (T + E)

Ē	\rightarrow	T		
E	\rightarrow	T	+	E
T	\rightarrow	ir	ıt	
T	\rightarrow	(1	Ξ)	

Ē	\rightarrow	T	
E	\rightarrow	T +	E
T	\rightarrow	int	
T	\rightarrow	(E)	

Ē	\rightarrow	T		
E	\rightarrow	T	+	F
T	\rightarrow	ir	ıt	
T	\rightarrow	(I	Ξ)	

Ē	\rightarrow	T		
E	\rightarrow	T	+	E
T	\rightarrow	ir	ıt	
\mathbf{T}	\rightarrow	(1	Ξ)	

E		
T + E		
int + E		
int + T		
int + (E)		
int + (T + E)		
int + (int + E)		

Ē	\rightarrow	T		
E	\rightarrow	T	+	E
T	\rightarrow	ir	ıt	
T	\rightarrow	(1	Ξ)	

E		
T + E		
int + E		
int + T		
int + (E)		
int + (T + E)		
int + (int + E)		

Ē	\rightarrow	T		
E	\rightarrow	T	+	F
T	\rightarrow	ir	ıt	
T	\rightarrow	(I	Ξ)	

E		
T + E		
int + E		
int + T		
int + (E)		
int + (T + E)		
int + (int + E)		

Ē	\rightarrow	T	
E	\rightarrow	T +	E
T	\rightarrow	int	t
T	\rightarrow	(E)

E			
T + E			
int + E			
int + T			
int + (E)			
int + (T + E)			
int + (int + E)			
int + (int + T)			

Ē	\rightarrow	T		
E	\rightarrow	T	+	E
T	\rightarrow	ir	ıt	
T	\rightarrow	(I	Ξ)	

E			
T + E			
int + E			
int + T			
int + (E)			
int + (T + E)			
int + (int + E)			
int + (int + T)			

Ē	\rightarrow	T	
E	\rightarrow	T +	E
T	\rightarrow	int	
T	\rightarrow	(E)	

E			
T + E			
int + E			
int + T			
int + (E)			
int + (T + E)			
int + (int + E)			
int + (int + T)			
int + (int + int)			


```
\mathbf{E} \rightarrow \mathbf{T}
\mathbf{E} \rightarrow \mathbf{T} + \mathbf{E}
\mathbf{T} \rightarrow \mathbf{int}
\mathbf{T} \rightarrow (\mathbf{E})
```

E			
T + E			
int + E			
int + T			
int + (E)			
int + (T + E)			
int + (int + E)			
int + (int + T)			
int + (int + int)			

Ē	\rightarrow	T		
E	\rightarrow	T	+	F
T	\rightarrow	ir	ıt	
T	\rightarrow	(I	Ξ)	

E			
T + E			
int + E			
int + T			
int + (E)			
int + (T + E)			
int + (int + E)			
int + (int + T)			
int + (int + int)			

LL(1) Predictive Parsing

A Simple Predictive Parser: LL(1)

Top-down, predictive parsing:

- L: Left-to-right scan of the tokens
- L: Leftmost derivation.
- ▶ (1): One token of lookahead
- Construct a leftmost derivation for the sequence of tokens.
- ▶ When expanding a nonterminal, we predict the production to use by looking at the next token of the input. The decision is forced.
- ▶ It uses parsing table to generate the parse tree.

LL(1) Parse Tables

Lecture 7: Syntax Analysis III

LL(1) Parse Tables


```
E \rightarrow int
E \rightarrow (E Op E)
Op \rightarrow +
Op \rightarrow *
```

Non-Ter	minals					
		int	()	+	*
	Е	int	(E Op E)			
	Ор				+	*

Terminals

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

Sahar Selim

Lecture 7: Syntax Analysis III

(int + (int * int))

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

Sahar Selim

	int	()	+	*
Е	1	2			
Ор				3	4

E\$ (int + (int * int))\$

(1)				
	E	\rightarrow	1 T	٦Ŧ
\			_	

(2)
$$E \rightarrow (E Op E)$$

	int	()	+	*
Е	1	2			
Ор				3	4

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- (3) Op \rightarrow +
- (4) **Op** → *

	int	()	+	*
Е	1	2			
Ор				3	4

The \$ symbol is the end-of-input marker and is used by the parser to detect when we have reached the end of the input. It is not a part of the grammar.

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- (3) Op \rightarrow +
- (4) **Op** → *

	int	()	+	*
Е	1	2			
Ор				3	4

E\$

(int + (int * int))\$

(1) $\mathbf{E} \to \mathbf{in}$

- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

E \$	(int +	(int	*	int))\$
(E Op E)\$	(int +	(int	*	int))\$

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- (3) Op \rightarrow +
- (4) **Op** → *

	int	()	+	*
Е	1	2			
Ор				3	4

match

The first symbol of our guess is now a terminal symbol. We thus match it against the first symbol of the string to parse.

This is called a match step.

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

			,
E\$	(int +	(int *	int))\$
(E Op E)\$	(int +	(int *	int))\$
E Op E)\$	int +	(int *	int))\$
predict			

E \$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

	int	()	+	*
Е	1	2			
Ор				3	4

E\$ (int + (int * int))\$
(E Op E)\$ (int + (int * int))\$
E Op E)\$ int + (int * int))\$
int Op E)\$ int + (int * int))\$

(1) $\mathbf{E} \rightarrow \mathtt{int}$

(2)
$$E \rightarrow (E Op E)$$

	int	()	+	*
Е	1	2			
Ор				3	4

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- (4) **Op** → *

	int	()	+	*
Е	1	2			
Ор				3	4

E \$	(int +	(int *	int))\$
(E Op E)\$	(int +	(int *	int))\$
E Op E)\$	int +	(int *	int))\$
int Op E)\$	int +	(int *	int))\$
match			

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

E \$	(int	+	(int	*	int))\$
(E Op E)\$	(int	+	(int	*	int))\$
E Op E)\$	int	+	(int	*	int))\$
int Op E)\$	int	+	(int	*	int))\$
Op E)\$		+	(int	*	int))\$
<u> </u>		1			
predict	•				

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

E\$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E)\$	+ (int * int))\$

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

E \$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E)\$	+ (int * int))\$
+ E)\$	+ (int * int))\$

	int	()	+	*
Е	1	2			
Ор				3	4

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

E \$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E)\$	+ (int * int))\$
+ E)\$	+ (int * int))\$
E)\$	(int * int))\$

	int	()	+	*
П	1	2			
Ор				3	4

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

E\$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E)\$	+ (int * int))\$
+ E)\$	+ (int * int))\$
E)\$	(int * int))\$

	int	()	+	*
Е	1	2			
Ор				3	4

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

(int + (int * int))\$
(int + (int * int))\$
int + (int * int))\$
int + (int * int))\$
+ (int * int))\$
+ (int * int))\$
(int * int))\$
(int * int))\$

	int	()	+	*
Е	1	2			
Ор				3	4

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

E\$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E)\$	+ (int * int))\$
+ E)\$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$

	int	()	+	*
Е	1	2			
Ор				3	4

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	· -
E \$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E)\$	+ (int * int))\$
+ E)\$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$

	int	()	+	*
Е	1	2			
Ор				3	4

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

(int + (int * int))\$
(int + (int * int))\$
int + (int * int))\$
int + (int * int))\$
+ (int * int))\$
+ (int * int))\$
(int * int))\$
(int * int))\$
int * int))\$
int * int))\$

	int	()	+	*
Е	1	2			
Ор				3	4

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

					,
E \$	(int	+	(int	*	int))\$
(E Op E)\$	(int	+	(int	*	int))\$
E Op E)\$	int	+	(int	*	int))\$
int Op E)\$	int	+	(int	*	int))\$
Op E)\$		+	(int	*	int))\$
+ E)\$		+	(int	*	int))\$
E)\$			(int	*	int))\$
(E Op E))\$			(int	*	int))\$
E Op E))\$			int	*	int))\$
int Op E))\$			int	*	int))\$
Op E))\$				*	int))\$

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

					1
E \$	(int	+	(int	*	int))\$
(E Op E)\$	(int	+	(int	*	int))\$
E Op E)\$	int	+	(int	*	int))\$
int Op E)\$	int	+	(int	*	int))\$
Op E)\$		+	(int	*	int))\$
+ E)\$		+	(int	*	int))\$
E)\$			(int	*	int))\$
(E Op E))\$			(int	*	int))\$
E Op E))\$			int	*	int))\$
int Op E))\$			int	*	int))\$
Op E))\$				*	int))\$

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

E \$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E)\$	+ (int * int))\$
+ E)\$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E))\$	* int))\$
* E))\$	* int))\$

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

E\$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E)\$	+ (int * int))\$
+ E)\$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E))\$	* int))\$
* E))\$	* int))\$
E))\$	int))\$

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

E\$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E)\$	+ (int * int))\$
+ E)\$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E))\$	* int))\$
* E))\$	* int))\$
E))\$	int))\$

- (1) $\mathbf{E} \to \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

(int	+	(int	*	int))\$
(int	+	(int	*	int))\$
int	+	(int	*	int))\$
int	+	(int	*	int))\$
	+	(int	*	int))\$
	+	(int	*	int))\$
		(int	*	int))\$
		(int	*	int))\$
		int	*	int))\$
		int	*	int))\$
			*	int))\$
			*	int))\$
				int))\$
				int))\$
	(int	(int + int + + +	(int + (int int + (int int + (int + (int + (int + (int + (int (int (int int int + (int int int + (int int int + (int int int + (int int int int + (int int int int int int int int int int	(int * int * int *

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

E\$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E)\$	+ (int * int))\$
+ E)\$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E))\$	* int))\$
* E))\$	* int))\$
E))\$	int))\$
int))\$	int))\$
))\$))\$

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

E\$ (int + (int * int))\$ (E Op E)\$ (int + (int * int))\$ E Op E)\$ int + (int * int))\$ int Op E)\$ int + (int * int))\$ Op E)\$ + (int * int))\$ + E)\$ + (int * int))\$ E)\$ (int * int))\$ (E Op E))\$ int * int))\$ int Op E))\$ int * int))\$ Op E))\$ * int * int))\$ E Op E))\$ * int * int))\$ int Op E))\$ * int * int))\$ **E))\$ * int))\$ **E))\$ * int))\$ **Int))\$		
E Op E) \$ int + (int * int)) \$ int Op E) \$ int + (int * int)) \$ Op E) \$ + (int * int)) \$ + E) \$ + (int * int)) \$ E) \$ (int * int)) \$ (E Op E)) \$ (int * int)) \$ E Op E)) \$ int * int)) \$ int Op E)) \$ * int * int)) \$ Op E)) \$ * int)) \$ * E)) \$ int)) \$ * int)) \$ * int)]	E\$	(int + (int * int))\$
<pre>int Op E)\$</pre>	(E Op E)\$	(int + (int * int))\$
Op E)\$ + (int * int))\$ +E)\$ + (int * int))\$ E)\$ (int * int))\$ (E Op E))\$ (int * int))\$ E Op E))\$ int * int))\$ int Op E))\$ * int * int))\$ Op E))\$ * int))\$ *E))\$ int))\$ int))\$	E Op E)\$	int + (int * int))\$
+ E)\$ + (int * int))\$ E)\$ (int * int))\$ (E Op E))\$ (int * int))\$ E Op E))\$ int * int))\$ int Op E))\$ * int * int))\$ Op E))\$ * int))\$ * E))\$ int))\$ int))\$ int))\$ int))\$	int Op E)\$	int + (int * int))\$
E)\$ (int * int))\$ (E Op E))\$ (int * int))\$ E Op E))\$ int * int))\$ int Op E))\$ int * int))\$ Op E))\$ * int))\$ * E))\$ int))\$ int))\$ int))\$	Op E)\$	+ (int * int))\$
(E Op E))\$ (int * int))\$ E Op E))\$ int * int))\$ int Op E))\$ int * int))\$ Op E))\$ * int))\$ * E))\$ int))\$ int))\$ int))\$	+ E)\$	+ (int * int))\$
E Op E))\$ int * int))\$ int Op E))\$ int * int))\$ Op E))\$ * int))\$ * E))\$ int))\$ E))\$ int))\$ int))\$ int))\$	E)\$	(int * int))\$
<pre>int Op E))\$ int * int))\$ Op E))\$ * int))\$ * E))\$ int))\$ int))\$ int))\$))\$</pre>	(E Op E))\$	(int * int))\$
Op E))\$	E Op E))\$	int * int))\$
* E))\$	int Op E))\$	int * int))\$
E))\$ int))\$ int))\$))\$))\$	Op E))\$	* int))\$
int))\$ int))\$))\$	* E))\$	* int))\$
))\$	E))\$	int))\$
	int))\$	int))\$
)\$)\$))\$))\$
) \$)\$

- (1) $\mathbf{E} \rightarrow \mathbf{int}$
- (2) $E \rightarrow (E Op E)$
- **(3) Op** → **+**
- **(4) Op** → *****

	int	()	+	*
Е	1	2			
Ор				3	4

E\$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E)\$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E)\$	+ (int * int))\$
+ E)\$	+ (int * int))\$
E)\$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E))\$	* int))\$
* E))\$	* int))\$
E))\$	int))\$
int))\$	int))\$
))\$))\$
)\$)\$
\$	\$
·	

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

(3)
$$\mathbf{Op} \rightarrow \mathbf{+}$$

int + int	\$
-----------	----

	int	()	+	*
Е	1	2			
Ор				3	4

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

	int	()	+	*
Е	1	2			
Ор				3	4

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

F¢	int + int\$
ΕŞ	int + intş

	int	()	+	*
Е	1	2			
Ор				3	4

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

(3)
$$\mathbf{Op} \rightarrow \mathbf{+}$$

E\$	int + int\$
int \$	int + int\$

	int	()	+	*
Е	1	2			
Ор				3	4

(1)
$$\mathbf{E} \to \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

E \$	int + int\$
int \$	int + int\$
\$	+ int\$

	int	()	+	*
Е	1	2			
Ор				3	4

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

E\$	int + int\$
int \$	int + int\$
\$	+ int\$

	int	()	+	*
Е	1	2			
Ор				3	4

(1)
$$\mathbf{E} \to \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

	int	()	+	*
Е	1	2			
Ор				3	4

(int ((int)	15
(/ 4

E\$

(int (int))\$

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

	int	()	+	*
Е	1	2			
Ор				3	4

Lecture 7: Syntax Analysis III

E\$

(int (int))\$

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

	int	()	+	*
Е	1	2			
Ор				3	4

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

E\$	(int (int))\$
(E Op E) \$	(int (int))\$

	int	()	+	*
Е	1	2			
Ор				3	4

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

	E\$	(int	(int))\$
(E	Op E)\$	(int	(int))\$
Ε (Op E)\$	int	(int))\$

	int	()	+	*
Е	1	2			
Ор				3	4

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

E\$	(int (int))\$
(E Op E)\$	(int (int))\$
E Op E) \$	int (int))\$

		int	()	+	*
Е		1	2			
0	p				3	4

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

E\$	(int (int))\$
(E Op E)\$	(int (int))\$
E Op E)\$	int (int))\$
int Op E)\$	int (int))\$

	int	()	+	*
Е	1	2			
Ор				3	4

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

E\$	(int (int))\$
(E Op E) \$	(int (int))\$
E Op E)\$	int (int))\$
int Op E)\$	int (int))\$
Op E)\$	(int))\$

	int	()	+	*
Е	1	2			
Ор				3	4

(1)
$$\mathbf{E} \rightarrow \mathbf{int}$$

(2)
$$E \rightarrow (E Op E)$$

E\$	(int (int))\$
(E Op E) \$	(int (int))\$
E Op E)\$	int (int))\$
int Op E)\$	int (int))\$
Op E)\$	(int))\$

	int	()	+	*
Е	1	2			
Ор				3	4

The LL(1) Algorithm

- > Suppose a grammar has start symbol $\frac{S}{2}$ and LL(1) parsing table T. We want to parse string ω
- Initialize a stack containing \$\$.
- Repeat until the stack is empty:
 - ▶ Let the next character of ω be t.
 - ▶ If the top of the stack is a terminal **r**:
 - ▶ If r and t don't match, report an error.
 - \triangleright Otherwise consume the character t and pop r from the stack.

Lecture 7: Syntax Analysis III

- ▶ Otherwise, the top of the stack is a nonterminal A:
 - ▶ If T[A, t] is undefined, report an error.
 - \triangleright Replace the top of the stack with T[A, t].


```
A Simple LL(1) Grammar
STMT → if EXPR then STMT
       while EXPR do STMT
       EXPR;
```

```
EXPR
        \rightarrow TERM -> id
           zero? TERM
          not EXPR
```

```
TERM
          \rightarrow id
             constant
```



```
NG
```

```
STMT → if EXPR then STMT
          while EXPR do STMT
          EXPR;
                             id -> id;
FXPR
       \rightarrow TERM -> id
          zero? TERM
                             while not zero? id
          not EXPR
                                do --id;
          ++ id
                             if not zero? id then
                                if not zero? id then
TERM \rightarrow id
                                    constant -> id;
          constant
```

```
NG
```

```
STMT
         \rightarrow if EXPR then STMT
                                     (1)
            while EXPR do STMT
                                     (2)
            EXPR;
                                     (3)
EXPR
         → TERM -> id
                                     (4)
            zero? TERM
                                     (5)
            not EXPR
                                     (6)
            ++ id
                                      (7)
                                     (8)
            -- id
```

TERM	\rightarrow	id	(9)
		constant	(10)

	if	then	while	do	zero?	not	++	1	1	id	const	••
STMT												
EXPR												
TERM												

```
STMT
         \rightarrow if EXPR then STMT
                                     (1)
            while EXPR do STMT
                                     (2)
            EXPR;
                                     (3)
EXPR
         → TERM -> id
                                     (4)
            zero? TERM
                                     (5)
            not EXPR
                                     (6)
            ++ id
                                     (7)
                                     (8)
            -- id
TERM
                                     (9)
            id
```

constant

	if	then	while	do	zero?	not	++	1	†	id	const	**
STMT												
EXPR												
TERM										9	10	

(10)

```
NG
```

```
STMT
         \rightarrow if EXPR then STMT
                                      (1)
            while EXPR do STMT
                                      (2)
            EXPR;
                                      (3)
EXPR
         → TERM -> id
                                      (4)
            zero? TERM
                                      (5)
            not EXPR
                                      (6)
            ++ id
                                      (7)
                                      (8)
            -- id
TERM
                                      (9)
            id
                                      (10)
            constant
```

	if	then	while	do	zero?	not	++	1	Ļ	id	const	;
STMT												
EXPR												
TERM										9	10	

```
STMT
         → if EXPR then STMT
                                   (1)
            while EXPR do STMT
                                   (2)
            EXPR;
                                   (3)
EXPR
         → TERM -> id
                                   (4)
            zero? TERM
                                    (5)
            not EXPR
                                    (6)
            ++ id
                                    (7)
                                   (8)
            -- id
TERM
                                   (9)
           id
                                   (10)
            constant
```

	if	then	while	do	zero?	not	++	l	1	id	const	**
STMT												
EXPR					5	6	7	8				
TERM										9	10	

```
STMT
         \rightarrow if EXPR then STMT
                                      (1)
            while EXPR do STMT
                                      (2)
            EXPR;
                                      (3)
EXPR
            TERM -> id
                                      (4)
            zero? TERM
                                      (5)
            not EXPR
                                      (6)
                                      (7)
            ++ id
                                      (8)
            -- id
TERM
                                      (9)
            id
                                      (10)
            constant
```

	if	then	while	do	zero?	not	++		→	id	const	;
STMT												
EXPR					5	6	7	8		4	4	
TERM										9	10	

```
STMT
           if EXPR then STMT
                                   (1)
           while EXPR do STMT
                                   (2)
```

(3)

```
EXPR
         → TERM -> id
                                   (4)
           zero? TERM
                                   (5)
           not EXPR
                                   (6)
           ++ id
                                   (7)
                                   (8)
```

EXPR;

TERM	→ id	(9)
	constant	(10)

	if	then	while	do	zero?	not	++	1	ļ	id	const	;
STMT	1		2									
EXPR					5	6	7	8		4	4	
TERM										9	10	


```
NU
```

```
STMT
         → if EXPR then STMT
                                    (1)
            while EXPR do STMT
                                    (2)
                                    (3)
            EXPR:
EXPR
           TERM -> id
                                    (4)
            zero? TERM
                                    (5)
            not EXPR
                                    (6)
                                    (7)
            ++ id
                                    (8)
            -- id
TERM
                                    (9)
           id
                                   (10)
            constant
```

	if	then	while	do	zero?	not	++	1	1	id	const	;
STMT	1		2									
EXPR					5	6	7	8		4	4	
TERM										9	10	

```
STMT
         → if EXPR then STMT
                                    (1)
            while EXPR do STMT
                                    (2)
                                    (3)
            EXPR:
EXPR
           TERM -> id
                                    (4)
            zero? TERM
                                    (5)
            not EXPR
                                    (6)
                                    (7)
            ++ id
                                    (8)
            -- id
TERM
                                    (9)
            id
                                   (10)
            constant
```

	if	then	while	do	zero?	not	++		→	id	const	;
STMT	1		2		3	3	3	3				
EXPR					5	6	7	8		4	4	
TERM										9	10	


```
STMT
         \rightarrow if EXPR then STMT
                                       (1)
             while EXPR do STMT
                                       (2)
             EXPR:
```

EXPR	→ TERM -> id	(4)
	zero? TERM	(5)
	not EXPR	(6)
	++ id	(7)
	id	(8)

TERM	\rightarrow	id	(9)
		constant	(10)

	if	then	while	do	zero?	not	++		→	id	const	;
STMT	1		2		3	3	3	3				
EXPR					5	6	7	8		4	4	
TERM										9	10	


```
STMT
         \rightarrow if EXPR then STMT
                                       (1)
             while EXPR do STMT
                                       (2)
             EXPR:
```

EXPR	→ TERM -> id	(4)
	zero? TERM	(5)
	not EXPR	(6)
	++ id	(7)
	id	(8)

TERM	\rightarrow	id	(9)
		constant	(10)

	if	then	while	do	zero?	not	++	-	1	id	const	;
STMT	1		2		3	3	3	3		3	3	
EXPR					5	6	7	8		4	4	
TERM										9	10	

```
STMT
         → if EXPR then STMT
                                     (1)
            while EXPR do STMT
                                     (2)
            EXPR;
                                     (3)
EXPR
         \rightarrow TERM -> id
                                     (4)
            zero? TERM
                                     (5)
            not EXPR
                                     (6)
            ++ id
                                     (7)
                                     (8)
            -- id
TERM
                                     (9)
            id
                                     (10)
            constant
```

	if	then	while	do	zero?	not	++		Ļ	id	const	;
STMT	1		2		3	3	3	3		3	3	
EXPR					5	6	7	8		4	4	
TERM										9	10	

Next Lecture

- First Sets
- 2. Follow Sets
- 3. Left factoring

Useful links

► Introduction to parsers and LL(1) parsing

Lecture 7: Syntax Analysis III

- Presentation slides of the book: COMPILER CONSTRUCTION, Principles and Practice, by Kenneth C. Louden
- Credits for Dr. Sally Saad, Prof. Mostafa Aref, Dr. Islam Hegazy, and Dr. Abd ElAziz for help in content preparation and aggregation (FCIS-ASU)

Lecture 7: Syntax Analysis III

Sahar Selim

See you next lecture

