An example of what Quiz 1 can look like

Q1: Say you are given the LU factorization of a matrix A with

$$L = \begin{bmatrix} 1 & 0 & 0 \\ -0.25 & 1 & 0 \\ 0.75 & 1 & 1 \end{bmatrix}, \qquad U = \begin{bmatrix} 4 & 0 & 6 \\ 0 & 2 & 4.5 \\ 0 & 0 & -2 \end{bmatrix},$$

and A = LU.

a: Find the matrix A.

b: Use the factorization to compute the determinant of A.

c: Use the factorization to solve the for x in Ax = 1.

d: Use the factorization to find the inverse of A.

e: Use the factorization to find a different factorization A = LDU where D is a diagonal matrix, L is lower triangular with 1's on the diagonal, and U is upper triangular with 1's on the diagonal.

Q2: Consider the function $f: \mathbb{R}^2 \to \mathbb{R}^3$ where,

$$f(x, y) = \begin{bmatrix} x^2 y \\ e^{x+y} \\ xe^y \end{bmatrix}.$$

a: Compute ||f(1,-1)||

b: Compute the trace of the matrix $f(x, y)f(x, y)^T$ at x = 1, y = 1.

c: Compute the Jacobian matrix for $f(\cdot, \cdot)$.

d: Can the rank of your answer to c be 3 for some values of x and y? Explain.

e: Consider now the function $g(x) = 2x^2y + 3e^{x+y} - xe^y$. Represent g(x) as $g(x) = u \cdot f(x, y)$. What is the vector u?