Implementation Of A Breeding Programs

Peter von Rohr

06.04.2020

Recall

Types of breeding programs:

- ▶ focus on selection response (scientific)
- ▶ focus on customers and services (political)

Components of a Breeding Program

Example of Implementation

- Assume: beef breeding organisation
- Improvement of animal at production level with respect to economic profitability
- ▶ Implementation of scientific breeding program
- Start to design and to develop economic breeding goal
- Combine economically important traits into an aggregate genotype (H)
- Use hierarchical structure

Hierarchical Breeding Program

Three Steps To Design Economic Breeding Goal

The following steps are needed to implement a breeding program

- 1. description of production system
- 2. modelling profit of a typical herd
- 3. derive economic values

Production System

What is a Production System

- Simulation of production herd
- Collect input parameters (costs, biological parameters, labor, ...) from literature
- Use collected input parameters for simulation
- Run simulation
- Record output quantities (revenue, animals sold)

Why Production System

- Profit is computed based on revenue and costs
- Characteristics and traits of animals with impact on profitability are found
- Impact of traits on profitability detected by changing input parameters
- Progeny must meet needs of production farms
- Breeders must select parents such that optimal progeny produced for production farms

Structure of Production System

- Assume a hierarchical structure of the breeding program
- Alternatively: mixed farms in monolithic structure
- Breeding (and possibly multiplier) farms are selling their progeny to production farms

Example Of Typical Production Farm

Traits Of Interest

Profit (P) of production farm determined by revenues (R) and costs (C)

$$P = R - C$$

- ► Traits of economic interest influence *P*
- Restrict ourselves to output
 - age corrected carcass weight (CW)
 - carcass confirmation (CC)
 - carcass fat (CF)
- ► Above traits will be included in aggregate genotype (*H*)

$$H = a^T \cdot u$$

Economic Evaluation

Economic Values

- ... also known as economic weights
- ▶ Change of profit (P) due to small change of trait mean (μ_x)
- For trait x with mean μ_x , the economic value a_x is defined as

$$a_{\mathsf{x}} = \frac{\partial P}{\partial \mu_{\mathsf{x}}}$$

Genetic Evaluation

- Statistical modelling
- Stochastic relationship between genetic background and phenotypic expression
- Contrast: deterministic modelling in physics, e.g. law of gravity

Statistical Modelling

- In most cases, two steps plus preparation
- Given: dataset on breeding animals containing traits of interest as response variables and predictor variables
- Preparation: do model selection to eliminate unimportant predictor variables
- ► Steps:
 - 1. variance components estimation
 - 2. prediction of breeding values