Last name	
First name	

LARSON—MATH 610—CLASSROOM WORKSHEET 23 Linear Functionals.

Concepts & Notation

- (Sec. 3.1) linear transformation, range, rank, null space, nullity.
- (Sec. 3.2) L(V, W), linear operator, invertible linear transformation, non-singular linear transformation.
- (Sec. 3.3) isomorphism.
- (Sec. 3.4) matrix of T relative to (ordered) bases, similar matrices.
- (Sec. 3.5) linear functional, trace, dual space, V*, dual basis, annihilator.
- 1. What is a *linear functional* on a vector space V over a field \mathbb{F} ?

2. (**Example**) What is the *trace* tr(A) of an $n \times n$ matrix A? **tr** is a linear functional on the vector space of $n \times n$ matrices over a field \mathbb{F} .

3. (**Example**) Let V be the vector space of polynomial functions from a vector space V (over a field \mathbb{F}) to \mathbb{F} . Let $t \in \mathbb{F}$. $L_t(p) = p(t)$ is a linear functional on V ($p \in V$).

4. (**Example**) Let C([0,1]) be the vector space of continuous real-valued functions on the interval [0,1]. Then $L(g) = \int_0^1 g(t)dt$ is a linear functional on C([0,1]) $(g \in C([0,1]))$.

5. What is the dual space V^* .

- 6. (Claim:) If V is finite-dimensional then $\dim V = \dim V^*$.
- 7. If $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$ is a basis for a vector space V, what is the dual basis \mathcal{B}^* ?

Let V be a finite-dimensional vector space over a field \mathbb{F} with basis $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$ and dual basis $\mathcal{B}^* = \{f_1, \dots, f_n\}$.

8. (Claim:) For every linear functional f on V:

$$f = \sum_{1}^{n} f(\alpha_i) f_i.$$

9. (Claim:) For every vector $\alpha \in V$:

$$\alpha = \sum_{1}^{n} f_i(\alpha) \alpha_i.$$

10. If V is a vector space over a field \mathbb{F} and $S \subseteq V$, what is the annihilator of S?