Natural Language Processing

Tianchu Zhao@uts.edu.au

Stages

- Text processing
- Text embedding (turn text to vectors)
- Modelling

NLP task: Mostly solved:

```
Spam detection
      BUY! V1GGG
      spam
Part-of-speech(POS) tagging
     sheep is eating green grass
     noun verb
                     adi
                           noun
Named entity recognition (NER)
      I saw Einstein's statue in Princeton
                     Object Location
           Person
```

Making very good progress:

```
Sentiment analysis
      The package feels flimsy
      negative
Coreference resolution
      Peter told Parker he should do his homework
               he?
      he?
Word sense disambiguation (WSD)
      The new mouse looks so cool
    ?animal/computer
```

Parsing

Machine Translation

Je suis allé au centre commercial

I went to the mall

information extraction (IE)

I will see you tomorrow at 9:30 create new calendar entry

Hard

```
Question answering
      How is the quantum computing and quantum physics related
Paraphrase
      ABC acquired XYZ yesterday
      XYZ has been taken over by ABC
Summarisation
      The Dow Jones is up, The S&P500 jumped
      economy is good
Dialog
      When's the next Swan's game
      xx/xx xx:xx at SCG
```

What makes Natural language understanding difficult

```
Non-standard english
           U2
segmentation issues
           the | New York | - New | Haven | Railroad
           the | New | York-New | Haven | Railroad
idioms
           get cold feet
neologisms
           unfriend
world knowledge
           Mary and Sue are sisters
           Mary and Sue are mothers
tricky entity names
           Let It Be was recorded in xxxx
```

Technique

- probabilistic models from language data
- neural network embedding from language data

Text processing Regular expression

use expression to capture words

woodchuck

woodchucks

Woodchuck

Woodchucks

Word Tokenization

Tokenization is the act of breaking up a sequence of strings into pieces such as words, keywords, phrases, symbols and other elements called tokens.

Issues:

Finland's captial -> Finland Finlands Finland's ?

San Francisco -> one token or two?

m.p.h., PhD. -> ??

other languages...

Word Normalization

U.S.A and USA windows, windows, Windows

Word Normalisation: Case folding

all lower case:

upper case in mid sentence

eg, US vs us

Lemmatization

to reduce inflections or variant forms to base form

am, are, is -> be

car, cars, car's -> car

Morphology

Morphemes:

The small meaningful units that make up words

Stems: The core meaning-bearing units

Affixes: Bits and pieces that adhere to stems

Often with grammatical functions

Stemming is crude chopping of affixes

eg reduce terms to their stems in information retrieval

automate(s), automatic, automation ->

automat

for example compressed and compression are both accepted as equivalent to compress ->

for exampl compress and compress ar both accept as equival to compress

Sentence Segmentation

- !, ? relatively unambiguous
- . ambiguous
 - Sentence boundary
 - **Abbreviation**
 - Number decimals

Word representation one hot encoding

if man is word 5300th it can be represented as [0,0,0,...,1,...,0,0] if woman is word 9000th it can be represented as [0,0,0,...,0,1,...,0]

 the disadvantage of this embedding is that the algorithm will treat each word as itself, doesn't generalise across words

for example

- if the algorithm learns
- I want a glass of orange juice
- it is hard for the algorithm to predict that the next word in the following sentence is juice
- I want a glass of apple _____
- That is because the any product between any two different one-hot vector is zero
- intuitively: distance between any word is the same

Featurised representation

	Man	Woman	Apple	Orange
Gender	-1	1	0	0
Food				
Age				
Quality				

- so that man is represented by a n-row features
- and we will notice that Apple and Orange has a similar values
- This increase odd the learning algorithm to put juice after apple

- If we learn the feature embedding then perform dimension reduction on the embedding and plot it
- we will notice that there exist group of words that are similar to each other
- eg usage NER

Transfer learning and word embeddings

- learn word embedding from large text corpus (1-100b words)
 (or download pretrain models online)
- transfer embedding to new task with smaller training set (100k words)
- Optional: Continue to finetune the word embeddings with new data

Embedding properties

- man -> woman
- king -> ?
- embed man embed woman = [-2,0,0,0..]
- give king, find another vector that result in [-2,0,0,0..]

cosine function calculates similarity

$$sim(u,v) = rac{u^T v}{||u||_2 ||v||_2}$$

How do we learn word embedding

 Neural language model is able to use words around a word to predict unseen words, we use this to learn embedding

- Context word, e.g. 4 words on left & right
- Model: Context word vectors (one-hot encoded) ->

Embedding Matrix ->

Embedded vectors ->

1 layer Neurons ->

Softmax ->

Target word class

Word2vec

- Skip gram
- Continuous Bag of words (CBOW)

Skip-gram

- more efficient than the vanilla neural language model
- use target to predict context
- to create Target to Context model to train supervised learning
- eg, I want to pass the interview tomorrow
- For context Instead of picking pre4words or post4words immediately after
- say we randomly pick a word
- pass
- The target word is a random word within a window (say 2)
- say want/to/the/interview
- the goal is not do well on prediction but to learn the embedding vector

problem

- computational speed
- softmax is very slow (summation denominator)
- solution:
- hierarchical softmax
- classifier1: first 5000 words, second 5000 words
- classifier2: first 2500, second 2500 words
- building a tree
- computation cost become log(number of words)

$$\sigma(x_j) = \frac{e^{x_j}}{\sum_i e^{x_i}}$$

usually not symmetric tree, asymmetric with common words on top (leaf)

Continuous Bag of words (CBOW)

- reverse skip-gram
- use context to predict target

- **Skip-gram:** works well with small amount of the training data, represents well even rare words or phrases.
- **CBOW:** several times faster to train than the skip-gram, slightly better accuracy for the frequent words

Negative sampling

- modify learning problem, that does task similar to skip gram but much more efficient
- given two words, predict if they are a context target pair
- eg, orange, juice ->1
- eg, orange, man ->0
- first pick a target word that is actual pair
- next random pick k words
- Model: onehot -> E matrix -> embed vector -> n(corpus size) logistic classification problem (is the word the target word or not)
- each iteration we only train 5(k) logistic instead of n

Glove (global vectors for word representation)

$$J = \sum_{i=1}^{N} \sum_{j=1}^{N} f(X_{ij})(\theta_i^t e_j + b_i + b_j - \log(X_{ij}))^2$$

- X_{ii}: number of times i appears in context j
- θ_i : i vector
- e_i : j vector
- b_i b_i: bias for word i, j
- $f(X_{ij})$: =0 when X_{ij} = 0 to avoid $log(X_{ij})$ error or weight in normal situation

Probability language model

• Goal: compute probability of a sentence/sequence of words

Backgrounds on probability

probability measures the likelihood an event will occur

P(A)

conditional probability measures the likelihood an event will occur given (by assumption) that another event have occurred

$$P(A|B) = \frac{P(A)}{P(A)}$$

probability of both A and B occur

Bayes' theorem that is express as follows

Probability language model

- Goal: compute probability of a sentence/sequence of words
- $P(W) = P(w_1, w_2, w_3, ..., w_n)$
- or
- P(w₄ | w₁, w₂, w₃)

How to estimate probabilities

- P(interview | I want to pass the)
 - $= \frac{Count(I \ want \ to \ pass \ the \ interview)}{Count(I \ want \ to \ pass \ the)}$
- doesn't work, too many possibilities

- Markov assumption
- $P(interview \mid I \text{ want to pass the}) \approx P(interview \mid the)$
- or
- $P(interview \mid I \text{ want to pass the}) \approx P(interview \mid pass the)$

Markov Assumption

$$P(w_1, w_2, ..., w_n) \approx \prod_{i} P(w_i \mid w_{i-k}, ..., w_{i-1})$$

We can approximate each word in the product as

$$P(w_i \mid w_1, w_2, ..., w_{i-1}) \approx P(w_i \mid w_{i-k}, ..., w_{i-1})$$

Unigram, Bigram, N-gram

- Unigram: the simplest case of markov model
- $P(w_1, w_2, ..., w_n) \approx \prod_i P(w_i)$
- this doesn't generate meaningful sentence
- Bigram: condition on previous word
- $P(w_i | w_1, w_2, ..., w_{i-1}) \approx P(w_i | w_{i-1})$
- N-gram
- $P(w_i \mid w_1, w_2, ..., w_{i-1}) \approx P(w_i \mid w_{i-n}, ..., w_{i-1})$

FastText

- was developed by the team of Tomas Mikolov who proposed the w2v in 2013
- compare to word2vec, which treats each word in the corpus as an atomic entity and generates vector for each word, fasttext uses n-gram
- eg. tri-gram for apple is app, ppl, ple, the word embedding vector for apple will be the sum of all these n-grams
- After training the Neural Network, we will have word embeddings for all the n-grams given the training dataset.
- Rare words can now be properly represented since it is highly likely that some of their n-grams also appears in other words, therefore can be reconstruct

State of the art (word embedding)

- BERT Deep contextualized word representations (few days ago)
- ELMo (Embeddings from Language Models)

Sentence Embedding

- State of the art
- Unsupervised
 - Skip-Thoughts
 - Quick-Thoughts
- Supervised
 - InferSent
 - Multi-task learning
 - MILA/MSR's General Purpose Sent
 - Google's Universal Sentence Enc.

doc2vec

- an extension of word2vec
- Paragraph/sentence vectors extend this by training paragraph vectors as auxiliary information during this prediction task.

Skip-Thought Vectors

- word2vec for sentences
- predicts surrounding sentences from a given sentence
- using encoder-decoder framework

Models

- Conditional Random Field (CRF)
- LSTM variation