

ตรวจสอบว่าปุ๋ยแต่ละ ชนิดมีผลต่อความสูง หรือไม่ ด้วยใช้ ANOVA

Pontagorn Boonjen

Question: The plant biologist may think that plant height may be affected by applying different fertilizers. The plant biologist kept all the plants under controlled conditions in the greenhouse, to focus on the effect of the fertilizer, the only thing we know to differ among the plants. At the end of the experiment, the biologist measured the height of each plant.

Control	F1	F2	F3
21	32	22.5	28
19.5	30.5	26	27.5
22.5	25	28	31
21.5	27.5	27	29.5
20.5	28	26.5	30
21	28.6	25.2	29.2

ทดสอบว่าปุ๋ยสงผลต่อความสูง ต่างกันหรือไม่โดย P-Value

Analysis of Variance

Source DF Adj SS Adj MS F-Value P-Value

27.46 0.000

3.052

23 312.47 Total

Control	F1	F2	F3
21	32	22.5	28
19.5	30.5	26	27.5
22.5	25	28	31
21.5	27.5	27	29.5
20.5	28	26.5	30
21	28.6	25.2	29.2

 μ_1,μ_2,μ_3,μ_4 แทนค่าเฉลี่ยของความสูง เมื่อ ไม่ใส่ปุ๋ย,ใส่ปุ๋ย F1 ,ใส่ปุ๋ย F2, ใส่ปุ๋ย F3 ตามลำดับ

 $H_0: \mu_0 = \mu_1 = \mu_2 = \mu_3$ $H_1: \mu$ อย่างน้อยหนึ่งค่าที่แตกต่าง

จะปฏิเสธ H_0 ถ้า p-value < 0.05 จากการวิเคราะห์ พบว่า F = 27.46 และ p-value < 0.05 จึงตัดสินใจปฏิเสธ H_0 และสรุปว่า มีปุ๋ยอย่างน้อยหนึ่ง 1 ชนิด ที่ส่งผลต่อ ความสูง

สมมุติฐาน	P-value	ความต่างของ $ar{x}$	ตัดสินใจ	สรุปผล
$H_0: \mu_1 = \mu_0 \\ H_1: \mu_1 \neq \mu_0$	0.0001	7.6	ปฏิเสธ H_0	$\mu_1 eq \mu_0$ และ $\mu_1 > \mu_0$
$H_0: \mu_2 = \mu_0$ $H_1: \mu_2 \neq \mu_0$	0.001	4.87	ปฏิเสธ H ₀	$\mu_2 eq \mu_0$ และ $\mu_2 > \mu_0$
$H_0: \mu_3 = \mu_0$ $H_1: \mu_3 \neq \mu_0$	0.0001	8.2	ปฏิเสธ <i>H</i> ₀	$\mu_3 eq \mu_0$ และ $\mu_3 > \mu_0$
$H_0: \mu_2 = \mu_1$ $H_1: \mu_2 \neq \mu_1$	0.06	-2.73	ยอมรับ <i>H</i> ₀	$\mu_2 = \mu_1$
$H_0: \mu_3 = \mu_1$ $H_1: \mu_3 \neq \mu_1$	0.932	0.6	ยอมรับ <i>H</i> ₀	$\mu_3 = \mu_1$
$H_0: \mu_3 = \mu_2$ $H_1: \mu_3 \neq \mu_2$	0.017	3.33	ปฏิเสธ H ₀	$\mu_3 eq \mu_2$ และ $\mu_3 > \mu_2$

สรุปได้ว่า $\mu_3=\mu_1>\mu_2>\mu_0\;\;$ ก็คือ ปุ๋ย F3=ปุ๋ย F1>ปุ๋ย F2>ไม่ใส่ปุ๋ย

fertilizer N Mean Grouping

_				
3	6	29.200	А	
1	6	28.600	A B	
2	. 6	25.867	В	
0	6	21.000		C

Normality Test

 $H_0: \mathsf{residual}$ มีการแจกแจงปกติ

 H_1 : residual ไม่มีการแจกแจงปกติ

จะปฏิเสธ H_0 ถ้า p-value < 0.05 จากการวิเคราะห์ พบว่า RJ = 0.984 และ p-value > 0.1 จึงตัดสินใจยอมรับ H_0 และสรุปว่า residual มีการแจกแจง ปกติ

Test for Equal Variances

 $H_0: \sigma_0^2 = \sigma_1^2 = \sigma_2^2 = \sigma_3^2$

 $H_1: \sigma_i^2$ อย่างน้อยหนึ่งค่าที่แตกต่าง

จะปฏิเสธ H_0 ถ้า p-value < 0.05 จากการวิเคราะห์ พบว่า $x^2=0.43$ และ p-value = 0.249 จึงตัดสินใจยอมรับ H_0 และสรุปว่า ความแปรปรวน ของ residual ทุกกลุ่มเท่ากัน

The residual have a mean of O

 $H_0: \mu_{\varepsilon} = 0$ $H_1: \mu_{\varepsilon} \neq 0$

จะปฏิเสธ H_0 ถ้า p-value < 0.05 จากการวิเคราะห์ พบว่า T = 0 และ p-value = 1 จึงตัดสินใจยอมรับ H_0 และสรุปว่า ค่าเฉลี่ยของ residual = 0

Descriptive Statistics

N Mean StDev SE Mean 95% CI for μ

24 -0.000 1.629

0.333 (-0.688, 0.688)

μ: mean of RESI

Test

Null hypothesis H_0 : $\mu = 0$

Alternative hypothesis H_1 : $\mu \neq 0$

T-Value P-Value

-0.00 1.000

