PLATFORM USERS CONFERENCE 2000

Building the Best Computer Clusters for Mechanical Design Environments

Daniel Chan and Ed Huott
GE Corporate R&D Center

Key Challenges

- A Highly Diverse Environment
 - Many Different Businesses
 - Engineering, Chemistry, Financial, Services
- Short-Term Technical Support
 - Quick Turnaround
- Costs
 - Downtime, System Admin., Software Licenses, Productivity

Design Requirements

- Web-Centric
 - Simplify Job Submission in a Heterogeneous Environment
 - Access from Anywhere and Anytime
- Minimize Complexity and Cost
- Stable and Highly-Available
 - Isolate Network, NFS and Insufficient Disk Space Problems, Software License Management

Reasons for Having a Heterogeneous Environment

- Performance
- Costs
- Legacy Applications

Let's Do An Experiment

NT 4.0

GE Corporate Standard
PIII 450 MHz
256 MB RAM
\$1400

Unix/Solaris 2.6

Sun Ultra 10 UltraSPARC 440 MHz 256 MB RAM \$5000

Use Perl script to launch 1, 2 and 3 concurrent jobs, respectively, for 30 times CFX 5 23,862 Nodes 102 MB Required

Extract wall clock times from output files then use Minitab to analyze data

Test stability, multitasking and paging capabilities

Results For Sun Ultra 10

1 job

2 jobs

3 jobs

Results for Dell OptiPlex G1x

1 job 2 jobs

Scorecard for Sun Ultra 10

$$Z = \left| \frac{USL - \mu}{\sigma} \right| = \frac{0.1\mu}{\sigma}$$

	Mean	Standard	Z
		Deviation	
1 job	1724	15.9	10.8
2 jobs	3442	26.1	13.2
	(2X)		
3 jobs	5144	350.2	1.5
	(3X)		

Paging

Scorecard For Dell Optiplex GX1

$$Z = \left| \frac{USL - \mu}{\sigma} \right| = \frac{0.1\mu}{\sigma}$$

	Mean	Standard	Z
		Deviation	
1 job	1926	1.2	161
2 jobs	3909	15.6	25
	(2.1X)		
3 jobs	5828	26.4	22
	(3X)		

Summary of Results

- The SUN workstation is about 10% faster, but nearly 5 times as expensive
- Both systems are just as stable for a period of one week
- NT can multitask
- NT can page and appears to have "better" memory management scheme

APNASA Parallel Performance

308,115 Grid Points

APNASA Parallel Performance 308,115 Grid Points

CFX PERFORMANCE ON A VARIETY OF COMPUTER PLATFORMS

ANSYS Performance on a Variety of Computers

160,000 ELEMENTS WITH 2D CONTACT 2.1 GB OF OUTPUT AND 615 MB PAGE FILE

eComputing Architecture

Quality Tools

Remote Access from Anywhere Anytime (Globalization)

Field and Customer Data (Services and eCommerce)

Web-Enabled Environment

ad Sharing Facility

SGI SC

HP Cluster

NT Cluster

DM Cluster

user-transparent work load management

Key LSF Challenges

- Implicit Assumptions of A Homogeneous Environment
 - Uniform View of NFS
 - Uniform Mounting of User Home Directory
 - Unix Bias
- Wholesale Migration of User Environment Variables from Submit to Execution Hosts

A Web-Centric Job Management System

Screen Shot of Web Interface

Job Source Files

Job Output Destination

Command to Run on Execution Host

Files Sent to
Output
Destination

Process, Data Flow and Security for Web-Based Jobs

LSF Cluster

Normalized Job Execution Wrapper/ Environment

- Standard job execution wrapper that runs on all execution hosts.
- Key "ingredients": Perl (with Net::FTP package), wget, subset of "standard" Unix utilities (e.g. /bin/sh, cp, mv, etc.)
 - (Note: Makes use of Cygwin tools on Windows NT. See http://sources.redhat.com/cygwin/)
- Reads Job Specification File to determine:
 - Source of remote job directory
 - Command to run o Destination for job output file(s)
- Pre-determined top level (local) directory for jobs on each execution host.
- Remote jobs are migrated by FTP (wget) to unique sub-directories under top level.
- Specified command is run in migrated job directory.
- Output files are transferred by FTP to specified destination.

Summary

- Leveraging Low-Cost NT Solution
- Shield Users from Complexity
 - productivity gain
 - better centralized resource management
- Enterprise Resource Planning
 - compute cycles
 - software licenses

