Diffusion Models for Non-autoregressive Text Generation: A Survey

Диффузионная модель (DM)

Идея:

- forward: добавление случайного шума в объект в течение Т шагов
- reverse: обучение сети итеративному восстановлению объекта из шума

Forward-процесс

Объект $x_0 \sim q(x)$ переводится в последовательность $x_1, ..., x_T$ последовательным сэмплированием из распределения

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t \mathbf{I})$$

 $eta_t \in (0,1)$ - масштаб шума, растущий с номером итерации по заданному расписанию

За счёт репараметризации можно вычисление x_t можно производить напрямую из x_0, минуя промежуточные шаги:

$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, \sqrt{1-\bar{\alpha}_t}\mathbf{I})$$

 $\alpha_t = 1 - \beta_t \text{ and } \bar{\alpha}_t = \prod_{i=1}^t \alpha_i$

Reverse-процесс

Искомое апостериорное распределение $q(x_{t-1}|x_t)$ можно приблизить (при малых \beta) нормальным и параметризовать нейросетью:

$$p_{\theta}(x_{t-1}|x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \Sigma_{\theta}(x_t, t))$$

Старт с $p(x_T) = \mathcal{N}(x_T; 0, \mathbf{I})$ с итеративным очищением до получения х_0

Лосс на основе VLB:
$$\mathcal{L}_{\text{vlb}} = \mathbb{E}_q[\underbrace{D_{\text{KL}}(q(x_t|x_0)||p_{\theta}(x_T))}_{\mathcal{L}_T}] - \underbrace{\log p_{\theta}(x_0|x_1)}_{\mathcal{L}_0} + \mathbb{E}_q[\underbrace{\sum_{t=2}^T D_{\text{KL}}(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t))}_{\mathcal{L}_{t-1}}].$$

Функционал качества

- Лосс может определяться не только напрямую через вариационную нижнюю оценку
- Можно упростить и свести всё к MSE с усреднением по всем объектам x_0 и итерациям t
- Предсказывать для объекта (и штрафовать в MSE) можно разные величины:
 - среднее апостериорного распределения $q(x_{t-1}|x_t,x_0)$
 - сам объект x_0
 - внесённый в объект x_0 до шага t шум

Диффузионная модель для текстов

- Зачем: можно сильно ускорить инференс, если генерировать всё сразу
- DM хорошо работает для непрерывных объектов (изображения, аудио)
- В качестве базовой архитектуры обычно используется U-Net
- Тексты имеют дискретную природу, работать в чистом виде с токенами нельзя, нужны обходные пути:
 - использование дискретного вариант диффузии
 - переход от токенов к их эмбеддингам
 - переход от текстов к суррогатным изображениям
 - ...
- Базовая архитектура для текстов Transformer

Дискретная диффузионная модель

Для $x \in 1, ..., K$ вводятся матрицы переходов $[\mathbf{Q}_t]_{ij} = q(x_t = j | x_{t-1} = i)$ Формула перехода между шагами:

$$q(x_t|x_{t-1}) = \operatorname{Cat}(x_t; \boldsymbol{p} = x_{t-1}\mathbf{Q}_t)$$

х - one-hot векторы **слов**, Cat - распределение над х с вероятностями р

Формула перехода к нужному шагу:

$$q(x_t|x_0) = \operatorname{Cat}(x_t; \boldsymbol{p} = x_0 \bar{\mathbf{Q}}_t)$$

$$\bar{\mathbf{Q}}_t = \prod_{i=1}^t \mathbf{Q}_i$$

$$[\boldsymbol{Q}_t]_{ij} = \begin{cases} 1 & \text{if } i = j = m \\ 1 - \beta_t & \text{if } i = j \neq m \\ \beta_t & \text{if } j = m, i \neq m \end{cases}$$

Q_t может быть разной, например, позволять переходы в токен MASK с заданной вероятностью или исходить из семантической близости слов

Дискретная диффузионная модель

Формула для апостериорного распределения для слова:

$$q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t,\boldsymbol{x}_0) = \frac{q(\boldsymbol{x}_t|\boldsymbol{x}_{t-1},\boldsymbol{x}_0)q(\boldsymbol{x}_{t-1}|\boldsymbol{x}_0)}{q(\boldsymbol{x}_t|\boldsymbol{x}_0)} = \operatorname{Cat}\left(\boldsymbol{x}_{t-1};\boldsymbol{p} = \frac{\boldsymbol{x}_t\boldsymbol{Q}_t^\top\odot\boldsymbol{x}_0\overline{\boldsymbol{Q}}_{t-1}}{\boldsymbol{x}_0\overline{\boldsymbol{Q}}_t\boldsymbol{x}_t^\top}\right)$$

По сути общее распределение q на всём объекте-тексте факторизуется на множество независимых распределений для отдельных элементов-слов

Это позволяет рассчитать KL-дивергенции для VLB-лосса суммированием по всем компонентам объекта

Нейросеть может предсказывать логиты для $p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t)$ напрямую или с использованием дополнительной информации, например, для учёта шаблона разреженности Q_t

Дискретная диффузионная модель

Непрерывные модели

- Дискретные компоненты w_i объекта w можно перевести в векторы x во время forward-процесса

$$q_{\phi}(\mathbf{x}_0|\mathbf{w}) = \mathcal{N}(\text{EMB}(\mathbf{w}), \sigma_0 I)$$

обучаемые эмбеддинги лучше фиксированных предобученных

- В конце reverse-процесса добавляется обучаемый шаг, делающий обратное преобразование:

$$p_{\theta}(\mathbf{w} \mid \mathbf{x}_0) = \prod_{i=1}^n p_{\theta}(w_i \mid x_i)$$

 $p_{ heta}(w_i \mid x_i)$ - распределение, получаемое после softmax

- Обучение диффузии, эмбеддингов и обратного шага обычно совместное

Непрерывные модели

Непрерывные модели

Интересный подход - GlyphDiffusion: шум -> изображение текста -> текст

Стратегии управления шумом

Linear:

- линейный рост с итерациями \beta_t
- упрощение на старте, усложнение ближе к Т

Cosine:

- меняется сразу $ar{lpha}_t=rac{f(t)}{f(0)}$, где $f(t)=\cos(rac{t/T+s}{1+s}\cdotrac{\pi}{2})^2$
- замедление роста шума к последним итерациям

Mutual Information:

- для дискретных DM, поскольку cosine напрямую не применяется
- \beta_t вычисляется как линейная интерполяция взаимной информации между x_0 и x_t
- $\,$ для основного случая с MASK это сводится к $\,$ $\,eta_t = (T-t+1)^{-1}_{\,$.

Стратегии управления шумом

- Sqrt:

- в моделях с эмбеддингами слабый шум в начале будет приводить слишком простой задаче восстановления, т.к. в небольшой окрестности вектора слова других векторов нет
- нужно усилить стартовый шум, не увеличивая сильно шум в конце
- $ar{lpha}_t = 1 \sqrt{t/T + s}$ где s небольшая константа стартового шума

- Spindle:

- первыми должны генерироваться более частые слова для контекста
- редкие слова будут заменены на MASK в начале forward и восстановлены в самом конце reverse

- Adaptive:

- Sqrt шедулер + обновление уровня шума в зависимости от текущего значения лосса

Функционалы качества

- Для текстовых моделей предсказание среднего апостериорного распределения $q(x_{t-1}|x_0,x_t)$ может приводит к несходимости
- Часто в MSE предсказывают напрямую эмбеддинги текста (**x_0-param**)
- Лосс для моделей с эмбеддингами:
 - для обучения получения слов из векторов вводится лосс $\;\mathcal{L}_{ ext{round}}\;=\;-\log p_{ heta}(w|x_0)\;$
 - без этого совместное обучение параметров и эмбеддингов приводит к тому, что все эмбеддинги получаются очень близкими
 - но и этого лосса недостаточно, поскольку x_0 получен из оригинального эмбеддинга с небольшим шумом
 - предлагается дополнительный лосс $\mathcal{L}_{ ext{anchor}} = -\log p_{ heta}(w|\hat{x}_0)$ лерирующий не правильным эмбеддингом, а тем, который был сгенерирован моделью

Подходы к обуславливанию генерации

- Unconditional: по сути бейзлайн для оценки способности к генерации
- Attribute-to-text:
 - classifier-guidance: обученный классификатор сдвигает градиент в свою сторону

$$\nabla_{\mathbf{x}_{t-1}} \log p(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{c}) = \nabla_{\mathbf{x}_{t-1}} \log p(\mathbf{x}_{t-1} \mid \mathbf{x}_t) + \nabla_{\mathbf{x}_{t-1}} \log p(\mathbf{c} \mid \mathbf{x}_{t-1})$$

- classifier-free:
 - часть сэмплов обучается с вектором-условием, часть без (с нулевым вектором)
 - в качестве условий могут использоваться всё, что можно векторизовать
 - на инференсе к предсказанию без условия добавляется с весом s разность между предсказанием с условием и без

$$ilde{oldsymbol{x}}_{0,s}^t = \hat{oldsymbol{x}}_0ig(oldsymbol{x}_t,0,0,t, hetaig) + s\,\cdot\, \Big(\hat{oldsymbol{x}}_0ig(oldsymbol{x}_t,oldsymbol{c}, ilde{oldsymbol{x}}_0^{t+1},t, hetaig) - \hat{oldsymbol{x}}_0ig(oldsymbol{x}_t,0,0,t, hetaig)\Big)$$

Подходы к обуславливанию генерации

Text-to-text:

- Если условием является последовательность, то использовать напрямую подходы с классификатором нельзя
- Можно конкатенировать текст-условие и текст-результат в одну последовательность:
 - текст-условие не подвергается изменениям на этапе forward-процесса
 - на этапе reverse текст-условие соединяется с шумом и тоже не изменятся
- Другой вариант закодировать текст с помощью модели-кодировщика и связать эти эмбеддинги с эмбеддингами текста-результата в декодировщике через cross-attention

Дополнительные улучшения

Clamping Trick:

- выходы модели на инференсе приближают к ближайшему реальному эмбеддингу
- это заставляет модель приближает модель к настоящим словам
- считать близости может быть затратно, иногда применяют только на последнем шаге

- Self-conditioning:

- в латентных моделях генерация на шаге t обусловлена на текущую латентную переменную и t
- можно добавлять к этому ещё и выход модели (получаемый из латентной переменной) с предыдущего шага
- обычно это делается конкатенацией и позволяет улучшить качество
- на инференсе такой выход есть всегда, на обучении он аппроксимируется на основе шага и модели шума и добавляется в половине случаев

Дополнительные улучшения

Semi-NAR Generation:

- средний вариант между AR и NAR генерация блоками токенов
- блок генерируется в контексте уже сгенерированного, после чего сам идёт в контекст

Additional Normalization:

- замечено, что норма векторов редких слов оказывается ощутимо больше, чем у частых, из-за этого один и тот же уровень шума действует по-разному
- для борьбы с этим добавляется LayerNorm поверх слоя эмбеддингов

Timestep Sampling:

- обычно при обучении шаг t сэмплируется равномерно
- вместо этого можно сэмплировать так, чтобы чаще использовались шаги, дающие наибольший вклад в лосс

Пример архитектуры: SED

- Модель с непрерывными эмбеддингами и управлением classifier-free
- В основе кодировщик Transformer
- Относительное позиционное кодирование из Transformer-XL
- Зашумлённые эмбеддинги сперва проектируются в размерность входа
- Кодирование шага диффузии:
 - на шаге t диффузии вычисляется синусоидальный эмбеддинг шага размерности входа
 - он дополнительно пропускается через полносвязный слой той же размерности
 - далее этот вектор добавляется ко всем входным
- На выходе сети тоже ставится слой линейный слой для проектирования результатов в размерность эмбеддингов слов
- Дополнительные условия могут добавляться конкатенацией с входными векторами сети

Использование предобученных LM (PLM)

- Задача демаскирования токенов в DM очень схожа с задачами PLM
- Но использовать напрямую PLM проблематично, т.к. они не обусловлены на шаг t
- Пробуют разные варианты:
 - Инициализация эмбеддингов выходами предобученных кодировщиков
 - Использование PLM как генератора латентного пространства для DM

Диффузионные модели для текстов

Model	NAR	Diffusion space	Noise schedule	Tasks	x_0 -param	PLMs	Clamping
D3PM [2021]	1	Discrete	Mutual information	UCG	√	X	X
Diffusion-LM [2022]	1	Continuous	Sqrt	A2T	✓	X	✓
Diffuseq [2022]	1	Continuous	Sqrt	T2T	✓	X	✓
SED [2022]	1	Continuous	Cosine	UCG, A2T	✓	X	×
SSD-LM [2022]	1	Continuous	Cosine	UCG, A2T	1	1	×
DiffusionBERT [2022]	1	Discrete	Spindle	UCG	✓	✓	×
CDCD [2022]	1	Continuous	-	T2T	✓	X	×
Difformer [2022]	1	Continuous	Linear	T2T	✓	1	×
LD4LG [2022]	X	Continuous	Linear	UCG, A2T	✓	✓	×
SeqDiffuSeq [2022]	1	Continuous	Adaptive	T2T	1	X	×
Diff-Glat [2022]	1	Discrete	×	T2T	✓	X	×
GENIE [2022]	1	Continuous	_	T2T	×	X	✓
DINOISER [2023]	1	Continuous	Linear	T2T	1	X	×
GlyphDiffusion [2023]	1	Continuous	-	T2T	×	X	×
Diffusion-NAT [2023]	1	Discrete	Linear	T2T	✓	✓	×

UCG - безусловная генерация, A2T - генерация по атрибутам, T2T - текст в текст

Еще больше моделей тут: https://github.com/heejkoo/Awesome-Diffusion-Models#natural-language

Примеры генерации

input (Semantic Content) output text	food: Japanese Browns Cambridge is good for Japanese food and also children friendly near The Sorrento.		
input (Parts-of-speech) output text	PROPN AUX DET ADJ NOUN NOUN VERB ADP DET NOUN ADP DET NOUN PUNCT Zizzi is a local coffee shop located on the outskirts of the city .		
input (Syntax Tree) output text	(TOP (S (NP (*) (*) (*)) (VP (*) (NP (NP (*) (*)))))) The Twenty Two has great food		
input (Syntax Spans) output text	(7, 10, VP) Wildwood pub serves multicultural dishes and is ranked 3 stars		
input (Length) output text	14 Browns Cambridge offers Japanese food located near The Sorrento in the city centre.		
input (left context) input (right context) output text	My dog loved tennis balls. My dog had stolen every one and put it under there. One day, I found all of my lost tennis balls underneath the bed.		

<u>Diffusion-LM Improves Controllable Text Generation</u>

Примеры генерации

AR-DIFFUSION: Auto-Regressive Diffusion Model for Text Generation

Ссылки:

- <u>Diffusion Models for Non-autoregressive Text Generation: A Survey</u>
- <u>Structured Denoising Diffusion Models in Discrete State-Spaces</u>
- <u>Diffusion-LM Improves Controllable Text Generation</u>
- Self-Conditioned Embedding Diffusion For Text Generation
- <u>GlyphDiffusion: Text Generation Is Also Image Generation</u>
- <u>Difformer: Empowering Diffusion Models on the Embedding Space for Text Generation</u>
- <u>Diffusion-NAT: Self-Prompting Discrete Diffusion for Non-Autoregressive Text Generation</u>
- <u>Latent Diffusion for Language Generation</u>

Спасибо за внимание!