Feuille de TD n.10 de IPD 2022-2023, Ensimag 2A IF

H. Guiol

Exercice 1. Processus d'Ornstein-Uhlenbeck

Soit $(B_t)_{t\in\mathbb{R}^+}$ un mouvement brownien standard, $a\in\mathbb{R}$ fixé et $X_t:=\int_0^t e^{-a(t-s)}\,dB_s$ pour tous $t\in\mathbb{R}^+$. 1) Montrer que $(X_t)_{t\in\mathbb{R}^+}$ est un processus gaussien centré. Quelle est sa covariance?

- 2) Le processus $(X_t)_{t \in \mathbb{R}^+}$ est il une martingale? Est-il un processus à accroissements indépendants? Justifier.
- 3) Démontrer que $(X_t)_{t\in\mathbb{R}^+}$ satisfait l'équation suivante:

$$X_t = -a \int_0^t X_s \, ds + B_t.$$

4) Démontrer par la formule d'Itô que le processus $(f(X_t))_{t\in\mathbb{R}^+}$ est une martingale si f satisfait l'équation différentielle suivante:

$$-ax f'(x) + \frac{1}{2}f''(x) = 0, \quad f(0) = 0, \quad f'(0) = 1.$$

5) Poser g(x) = f'(x) et résoudre l'équation différentielle. Conclure que

$$f(x) = \int_0^x \exp(ay^2) \, dy.$$

6) Pour b < 0 < c fixés on pose $T := \inf\{t \in \mathbb{R}_+ : X_t \notin]b, c[\}$, le premier temps de sortie de l'intervalle]b, c[qui est un temps d'arrêt. On admettra que $\mathbb{P}(T < \infty) = 1$. Utiliser les question 3 et 4 pour calculer $\mathbb{P}(X_T = b)$.

Exercice 2. Le mouvement brownien "écrit" votre prénom avec probabilité > 0 en temps fini.

1) Montrer que si $(B_t)_{t\in\mathbb{R}^+}$ est un mouvement brownien standard, alors on a pour T>0 fixé,

$$\mathbb{P}\left(\sup_{0\leq t\leq T}|B_t|\leq \varepsilon\right)>0,\quad\forall \varepsilon>0.$$

2) Soit $g: \mathbb{R}_+ \to \mathbb{R}$ une fonction (déterministe) continûment dérivable et telle que g(0) = 0. Démontrer que

$$\mathbb{P}\left(\sup_{0 \le t \le T} |B_t - g(t)| \le \varepsilon\right) > 0, \quad \forall \varepsilon > 0.$$

Indication: Effectuer un changement de probabilité $\mathbb{P} \mapsto \tilde{\mathbb{P}}_T$ de telle sorte que $\tilde{B}_t := B_t - g(t)$ soit un mouvement brownien standard sous $\tilde{\mathbb{P}}_T$. Se rappeler également que $\mathbb{P}(A) = 0$ implique $\tilde{\mathbb{P}}_T(A) = 0$.

Remarque : cette propriété reste vraie pour un mouvement brownien en deux dimensions et g: $\mathbb{R}_+ \to \mathbb{R}^2$. Si on pense alors à la fonction g "qui écrit votre prénom" (avec des lettres liées pour être continûment dérivable...), on arrive à la conclusion citée au début de l'exercice. On peut même montrer que la probabilité vaut 1 si on a le choix de l'échelle à laquelle on regarde le mouvement brownien!