Matrix Multiplication with Transpose

Given two matrices A and B with dimensions $n \times m$, you are required to compute the product of matrix A with the transpose of matrix B (denoted as B^T). The resulting matrix will have dimensions $n \times n$.

You must implement the solution using functions and handle any errors during input or calculation.

Function Description

Complete the 'matrix_multiplication_with_transpose' function in the editor below. The function should read two matrices A and B and output their product AB^T .

- 'matrix_multiplication_with_transpose(n: int, m: int, A: List[List[int]], B: List[List[int]]) -> List[List[int]]:'
 - o 'n' (integer): The number of rows in matrices A and B.
 - \circ 'm' (integer): The number of columns in matrices A and B.
 - o 'A' (List[List[int]]): Matrix A with dimensions $n \times m$.
 - o 'B' (List[List[int]]): Matrix B with dimensions $n \times m$.
 - Returns: The resulting matrix AB^T with dimensions $n \times n$.

You should print "Invalid Matrix" if the entered matrix dimensions are inconsistent or do not comply with the expected format. Print "Error" for any other exceptions.

Input Format

- The first line contains two integers *n* and *m*, the dimensions of matrices *A* and *B*.
- The next *n* lines contain *m* integers each, representing the elements of matrix *A*.
- The next *n* lines contain *m* integers each, representing the elements of matrix *B*.

Constraints

- 1≤n, m≤100
- The elements of the matrices are integers within the range [-1000,1000].

Output Format

- Print the resulting $n \times n$ matrix AB^T , with each row on a new line.
- If the input is invalid, print "Invalid Matrix".
- If any other error occurs, print "Error".

Sample Input

3	4			
1	2	3	4	
3	3	4	4	
4	4	5	5	
1	7	3	3	
3	7	_	4	
5	7	5	5	

Sample Output

36	45	54	
48	62	76	
62	80	98	

Explanation

The input consists of two matrices A and B both of size 3×4 . The resulting matrix AB^T is calculated as the product of A and the transpose of B, resulting in a 3×3 .