Digital Logic Design

Lecture 13:

Multiplexers: (Data Selector)

A digital multiplener is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line

Fig: Logic symbol for a 1-of-4 multiplexer

	Data-		
	Inp	Output	
*	Si	So	Y
	0	0	0
	Ô		0,
	1	0.	p ₂
		1	\mathcal{O}_3

Fig: Logic diagram of a top-2 multiplener

Fig: Logic diagram for a 1-07-4-multiplexer

anadruple 2-Input Data Selector/multiplener

Fig: quadruple 2-inplut data selector/multiplener

Cascading data selector/ multiplexer:

	Y ₂	Y
h	n	
Do	02	Do Di
Do		PL
0,	P ₃	Pz
	Do Do O,	D ₁ D ₃ D ₂

Fig: 3, 2-input mux used to som implement a 4-input mux

Fig: 8-injust date solector / min

. Boleon Function Implementation using Mux

It is possible to generate any function of (n+1) variables with zn-to-1 multiplener

Implement the function f(A,3,c) = 223,4,600using multiplexer

ninterms	A	B	C	F
0	0	O	0	0
1	0	0	1	υ
. 2	0	1	0	1
3	0	Ì	1	01
4	1	0	_6	j
5	1	0	Į,	0
C	1	1	0	1
7	11	1	1	0

$$BC = 00$$
, $F = A$
 $BC = 01$, $F = 0$
 $BC = 10$, $F = 1$
 $BC = 11$, $F = A$

Demultipleners:

A demultiplener (DEMUX) takes data from one line and distribute than to a given number of output lines.

Decodors Fig: A 1-10-4 him demultiplener Decodors can be used as demultipliners

& Design a 1 to 8 line Demultiplener using a
3 line-to-8 line Decoder