Лекція 2.2. Тема 2. *Елементи теорії границь*

План

- 1. Границя функції. Основні властивості границь функцій. Односторонні границі. Типи невизначеностей.
- 2. Важливі границі функцій.
- 3. Порівняння двох нескінченно малих величин. Основні еквівалентності нескінченно малих величин.

1. Границя функції. Основні властивості границь функцій. Односторонні границі. Типи невизначеностей

Нехай D — деяка множина чисел. Якщо задано закон, за яким кожному числу x з множини D ставиться у відповідність єдине визначене число y, то будемо говорити, що на множині D задана функція, яку називають f. Число y — це значення функції f в точці x, що позначається формулою y = f(x).

Число x називається аргументом функції, множина D — областю визначення функції, а всі значення y утворюють множину E, яка називається множиною значень або областю зміни функції.

Функція f називається зростаючою (спадною) на множині G, якщо для будь-який чисел x_1 і x_2 з множини G, таких що $x_1 < x_2$, виконується умова $f(x_1) < f(x_2)$ ($f(x_1) > f(x_2)$).

Нехай ε — деяке додатне число. ε -околом точки x_0 називається множина всіх точок x, які належать проміжку (x_0 - ε , x_0 + ε), окрім самої точки x_0 .

$$0 < |x - x_0| < \varepsilon$$
.

Число є називається радіусом околу.

Нехай функція f(x) визначена у деякому околі точки x = a (у самій точці x = a функція може бути і не визначена).

Означення. Число A називається **границею** функції f(x) при $x \rightarrow a$, якщо для будь-якого $\varepsilon > 0$ існує таке число $\Delta > 0$, що для всіх x таких, що

$$0 < /x - a / < \Delta$$

$$/f(x) - A / < \varepsilon.$$

справедлива нерівність

Означення може бути записане в іншому вигляді:

Якщо a - $\Delta < x < a + \Delta$, $x \ne a$, то справедлива нерівність A - $\varepsilon < f(x) < A$ + ε .

Запис границі функції в точці: $\lim_{x \to a} f(x) = A$.

Означення. Якщо $f(x) \to A_I$ при $x \to a$ тільки при x < a, то $\lim_{x \to a - 0} f(x) = A_1$ - називається **границею** функції f(x) в точці x = a зліва, а

якщо $f(x) \to A_2$ при $x \to a$ тільки при x > a, то $\lim_{x \to a+0} f(x) = A_2$ називається

границею функції f(x) в точці x = a **справа**.

Дане означення стосується випадку, коли функція f(x) не визначена в самій точці x=a, але визначена в деякому як завгодно малому околі цієї точки.

Границі A_1 і A_2 називаються **односторонніми границями** функції f(x) в точці x=a.

Означення. Число A називається **границею** функції f(x) при $x \to \infty$, якщо для будь-якого числа $\varepsilon > 0$ існує таке число M > 0, що для всіх x, |x| > M виконується нерівність

$$|A-f(x)|<\varepsilon$$
.

При цьому припускається, що функція f(x) визначена в околі нескінченності.

Записують: $\lim_{x \to \infty} f(x) = A$.

Графічно це можна представити:

Аналогічно можна визначити границі $\lim_{x \to +\infty} f(x) = A$ для будь-якого x > M і $\lim_{x \to -\infty} f(x) = A$ для будь-якого x < M.

Основні теореми про границі.

Teopema 1.
$$\lim_{x\to a} C = C$$
, де $C = const.$

Наступні теореми справедливі у припущенні, що функції f(x) і g(x) мають скінченні границі при $x \rightarrow a$.

Teopema 2.
$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x).$$

Теорема 3.
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$
.

Наслідок.
$$\lim_{x \to a} C \cdot f(x) = C \cdot \lim_{x \to a} f(x)$$
.

Теорема 4.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$
 при $\lim_{x \to a} g(x) \neq 0$.

Теорема 5. Якщо f(x) > 0 поблизу точки x = a і $\lim_{x \to a} f(x) = A$, то A > 0.

Аналогічно визначається знак границі при $f(x) < 0, f(x) \ge 0, f(x) \le 0$.

Теорема 6. Якщо $g(x) \le f(x) \le u(x)$ поблизу точки x = a i $\lim_{x \to a} g(x) = \lim_{x \to a} u(x) = A$, то i $\lim_{x \to a} = A$.

Означення. Функція f(x) називається **обмеженою** поблизу точки x = a, якщо існує таке число M > 0, що |f(x)| < M поблизу точки x = a.

Теорема 7. Якщо функція f(x) має скінченну границю при $x \to a$, то вона обмежена поблизу точки x = a.

2. Важливі границі функцій

Перша чудова границя.
$$\lim_{x\to\infty} \frac{P(x)}{Q(x)}$$
, де $P(x) = a_0 x^n + a_1 x^{n-1} + ... + a_n$,

 $Q(x) = b_0 x^m + b_1 x_{m-1} + ... + b_m$ - многочлени.

$$\frac{P(x)}{Q(x)} = \frac{x^n (a_0 + \frac{a_1}{x} + \dots + \frac{a_n}{x^n})}{x^m (b_0 + \frac{b_1}{x} + \dots + \frac{b_m}{x^m})} = x^{n-m} \frac{a_0 + \frac{a_1}{x} + \dots + \frac{a_n}{x^n}}{b_0 + \frac{b_1}{x} + \dots + \frac{b_m}{x^m}},$$

$$\lim_{x \to \infty} \frac{a_0 + \frac{a_1}{x} + \dots + \frac{a_n}{x^n}}{b_0 + \frac{b_1}{x} + \dots + \frac{b_m}{x^m}} = \frac{a_0}{b_0}.$$

Отже,
$$\lim_{x \to \infty} \frac{P(x)}{Q(x)} = \begin{cases} 0, & npu & n < m, \\ \frac{a_0}{b_0}, & npu & n = m, \\ \infty, & npu & n > m. \end{cases}$$

Друга чудова границя. $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Третя чудова границя.
$$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$$
.

Можна записати, також, наступні корисні на практиці співвідношення:

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1; \qquad \lim_{x \to 0} \frac{a^x - 1}{x} = \ln a; \qquad \lim_{x \to 0} \frac{(1+x)^m - 1}{x} = m.$$

3. Порівняння двох нескінченно малих величин. Основні еквівалентності нескінченно малих величин

Означення. Функція f(x) називається **нескінченно малою** при $x \to a$, де a може бути числом або однією з величин ∞ , $+\infty$ або $-\infty$, якщо $\lim_{x \to a} f(x) = 0$.

<u>**Теорема.**</u> Для того, щоб функція f(x) при $x \rightarrow a$ мала границю, яка дорівнює A, необхідно і достатньо, щоб поблизу точки x=a виконувалась умова

$$f(x) = A + \alpha(x),$$

де $\alpha(x)$ – нескінченно мала при $x \to a$ ($\alpha(x) \to 0$ при $x \to a$).

Властивості нескінченно малих функцій:

- 1) Сума скінченного числа нескінченно малих функцій при $x \rightarrow a$ теж нескінченно мала функція при $x \rightarrow a$.
- 2) Добуток скінченного числа нескінченно малих функцій при $x \rightarrow a$ теж нескінченно мала функція при $x \rightarrow a$.
- 3) Добуток нескінченно малої функції на функцію, обмежену поблизу точки x = a є нескінченно малою функцією при $x \rightarrow a$.
- 4) Частка від ділення нескінченно малої функції на функцію, границя якої не дорівнює нулеві є величина нескінченно мала.

Означення. Границя функції f(x) при $x \rightarrow a$, де a - число, яке дорівнює нескінченності, якщо для будь-якого числа M>0 існує таке число $\Delta>0$, що нерівність

виконується при всіх x, які задовольняють умову

$$0 < |x - a| < \Delta$$
.

Записується це так: $\lim_{x \to a} f(x) = \infty$.

Якщо в означенні замінити умову |f(x)| > M на f(x) > M, то отримаємо:

$$\lim_{x \to a} f(x) = +\infty,$$

а якщо замінити на f(x) < M, то:

$$\lim_{x \to a} f(x) = -\infty.$$

Означення. Функція називається **нескінченно великою** при $x \to a$, де a — число або одна з величин ∞ , $+\infty$ або $-\infty$, якщо $\lim_{x \to a} f(x) = A$, де A — одна з величин ∞ , $+\infty$ або $-\infty$.

Теорема. Якщо $f(x) \rightarrow 0$ при $x \rightarrow a$ (якщо $x \rightarrow \infty$) і не перетворюється в нуль, то

$$y = \frac{1}{f(x)} \to \infty.$$

Нехай $\alpha(x)$, $\beta(x)$ і $\gamma(x)$ — нескінченно малі функції при $x \to a$. Будемо позначати ці функції α , β і γ відповідно. Ці нескінченно малі функції можна порівняти за швидкістю їх спадання, тобто за швидкістю їх прямування до нуля.

Означення. Якщо $\lim_{x\to a} \frac{\alpha}{\beta} = 0$, то функція α називається **нескінченно малою вищого порядку**, ніж функція β .

Означення. Якщо $\lim_{x\to a} \frac{\alpha}{\beta} = A$, $A \neq 0$, A = const, то α і β називаються нескінченно малими одного порядку.

Означення. Якщо $\lim_{x\to a} \frac{\alpha}{\beta} = 1$, то функції α і β називаються **еквівалентними нескінченно малими**. Записують: $\alpha \sim \beta$.

Означення. Нескінченно мала функція α називається **нескінченно** малою **порядку** k відносно нескінченно малої функції β , якщо границя $\lim_{x\to a} \frac{\alpha}{\beta^k}$ скінченна і відмінна від нуля.

Властивості еквівалентних нескінченно малих функцій:

1)
$$\alpha \sim \alpha$$
, $\left(\lim_{x \to a} \frac{\alpha}{\alpha} = 1\right)$.

2) Якщо
$$\alpha \sim \beta$$
 і $\beta \sim \gamma$, то $\alpha \sim \gamma$, $\left(\lim_{x \to a} \frac{\alpha}{\gamma} = \lim_{x \to a} \left(\frac{\alpha}{\beta} \cdot \frac{\beta}{\gamma}\right) = 1 \cdot 1 = 1\right)$.

3) Якщо
$$\alpha \sim \beta$$
, то $\beta \sim \alpha$,
$$\left(\lim_{x \to a} \frac{\beta}{\alpha} = \lim_{x \to a} \frac{1}{\frac{\alpha}{\beta}} = 1\right).$$

4) Якщо
$$\alpha \sim \alpha_l$$
 і $\beta \sim \beta_l$ і $\lim_{x \to a} \frac{\alpha}{\beta} = k$, то і $\lim_{x \to a} \frac{\alpha_1}{\beta_1} = k$ або

$$\lim_{x \to a} \frac{\alpha}{\beta} = \lim_{x \to a} \frac{\alpha_1}{\beta_1}.$$

Наслідок: а) якщо
$$\alpha \sim \alpha_l$$
 і $\lim_{x \to a} \frac{\alpha}{\beta} = k$, то і $\lim_{x \to a} \frac{\alpha}{\beta} = \lim_{x \to a} \frac{\alpha_1}{\beta}$,

б) якщо
$$\beta \sim \beta_l$$
 і $\lim_{x \to a} \frac{\alpha}{\beta} = k$, то $\lim_{x \to a} \frac{\alpha}{\beta} = \lim_{x \to a} \frac{\alpha}{\beta_l}$.

Якщо α і β - нескінченно малі при $x \rightarrow a$, причому β - нескінченно мала вищого порядку, ніж α , то $\gamma = \alpha + \beta$ - нескінченно мала, еквівалентна α .