

Licenciatura em Engenharia Informática Ano letivo 2021-2022

Unidade Curricular Métodos Estatísticos

Docente José Palma

Ema Barão

Nuno Reis

Bernardo Teixeira

| 201400238

| 202000753

201801954

Conteúdo

Resumo	4
Introdução	5
Dados fornecidos e tratamento dos dados	7
Variável year_born - análise estatística descritiva	8
Analise da distribuição year_born	11
Teste de ajustamento Qui-Quadrado year_born	11
Variável company_size - análise estatística descritiva	11
Regressão Linear	15
Diagrama de dispersão	15
Coeficiente de correlação linear de Pearson	16
Reta de regressão linear	16
Resíduos	17
Ajustamento de Kolmogorov-Smirnov	18
Relação family_member/year	18
Estatística descritiva family_member	18
Estatística descritiva year	21
Distribuição family_member/year	25
Teste de Independência Qui-Quadrado	25
Conclusões	26
Referências bibliográficas	28
Índice de gráficos	
Gráfico 1- Histograma das frequências absolutas da variável year_born	9
Gráfico 2- Gráfico de barras das frequências absolutas da variável company_si:	
Gráfico 3-Gráfico circular das frequências relativas da variável company_size. Gráfico 4- Diagrama de dispersão com todo o conjunto de dados	
Gráfico 5- Diagrama de dispersão com a reta da regressão linear	
Gráfico 6 - Gráfico de resíduos	17
Gráfico 7 - Gráfico de barras das frequências absolutas por extensão de agrega	
Gráfico 8 - Gráfico circular das frequências relativas por extensão de agregado Gráfico 9 - Gráfico circular das frequências relativas do ano de estudo	
Ema Barão Nuno Reis Bernardo Teixeira	201400238 202000753 201801954

Gráfico 10 - Gráfico de barras das frequências absolutas do ano de estudo	23
Índice de tabelas	
Tabela 1- Tabela de frequências da variável year_born	
Tabela 3 - Medidas de dispersão da variável year_born	12
Tabela 5- Medidas de dispersão da variável company_size	14
Tabela 8 - Medidas de localização da variável family_member	20
Tabela 10 - Tabela de frequências da variável year	23
Tabela 12 - Medidas de localização da variável year	Z4
Índice de figuras	
Figura 1- Caixa de bigodes da variável year_born	14 21
<u> </u>	· · - ·

Resumo

No âmbito da disciplina de métodos estatísticos, após o primeiro trabalho que se tratou da análise de um conjunto de dados na esfera da estatística descritiva, no segundo trabalho onde se abordou os modelos de regressão linear iremos dar seguimento com o mesmo conjunto de dados relativo a um estudo conduzido pela Coreia do Sul, de 2005 a 2018, que recolheu várias informações sobre os seus cidadãos, particularmente sobre o rendimento das famílias, para o terceiro trabalho.

Conforme solicitado no enunciado iremos testar as distribuições dos dados selecionados, realizar testes de ajustamento tal como testes de independência e daí tecer ilações e tomar decisões.

Durante a análise irá ser produzido um script de R e todos os materiais daí resultantes serão aqui devidamente apresentados.

Palavras-chave: Testes de ajustamento Qui-Quadrado; teste de ajustamento de Kolmogorov-Smirnov; Análise de resíduos;

Introdução

Este trabalho foi nos solicitado no âmbito da Unidade Curricular de Métodos Estatísticos e tem como principal objetivo estudar as distribuições teóricas dos dados selecionados, aplicar testes de ajustamento tal como testes de independência.

Para este efeito foram lançados diferentes desafios:

1. Estudar uma variável selecionada

Selecionamos a seguinte variável aleatória quantitativa:

Ano de nascimento(no script de R denominada como year_born);

Para o estudo desta variável apresentamos:

- Estatística descritiva;
- Testamos a distribuição que parece adequada, justificando;
- Testes de ajustamento Qui-Quadrado considerando uma significância de 10%;
 - As hipóteses testadas;
 - Valor -p;
 - Região critica;
 - Conclusões da tomada de decisão relativamente às hipóteses testadas
- 2. Estudar a relação de 2 variáveis quantitativas presentes no nosso conjunto de dados e no trabalho 2 representaram o exercício da regressão linear.

Selecionamos as seguintes variáveis aleatórias quantitativas:

- Tamanho da companhia (no script de R denominada como company_size);
- Ano de nascimento(no script de R denominada como year_born);

Para o estudo da relação das variáveis quantitativas apresentamos:

- Estatística descritiva de ambas as variáveis;
- Testamos a distribuição que parece adequada, justificando;
- Qual o modelo de regressão linear obtido com indicação da variável independente e dependente escolhidas;
- Caso o modelo seja uma regressão linear, quantificamos a força da correlação linear:
 - Através do diagrama de dispersão:
 - Coeficiente de correlação linear de Pearson;
- Através do teste de ajustamento de Kolmogorov-Smirnov, analisamos os resíduos obtidos pelo modelo;
 - As hipóteses testadas;
 - Valor -p;
 - Região critica;

- o Conclusões da tomada de decisão relativamente às hipóteses testadas
- Aplicamos independência Qui-Quadrado para verificar a associação entre as variáveis com um grau de significância de 1%
 - As hipóteses testadas;
 - Valor -p;
 - Região critica;
 - o Conclusões da tomada de decisão relativamente às hipóteses testadas
- 3. Estudar a relação de 2 variáveis quantitativas presentes no nosso conjunto de dados.

Selecionamos as seguintes variáveis aleatórias quantitativas:

- Agregado familiar (no script de R denominada como family_member);
- Ano em que foi realizado o estudo(no script de R denominada como year);

Para o estudo da relação das variáveis quantitativas apresentamos:

- Estatística descritiva de ambas as variáveis;
- Testamos a distribuição que parece adequada, justificando;
- Através do teste de independência de Qui-Quadrado, analisamos os resíduos obtidos;
 - As hipóteses testadas;
 - Valor -p;
 - Região critica;
 - o Conclusões da tomada de decisão relativamente às hipóteses testadas
- Aplicamos o teste de independência Qui-Quadrado para verificar a associação entre as variáveis com um grau de significância de 1%
 - As hipóteses testadas;
 - Valor -p;
 - o Região critica;
 - o Conclusões da tomada de decisão relativamente às hipóteses testadas

Na conclusão deste processo será possível conhecer as distribuições dos dados, dos resíduos e mais importante tomar decisões sobre as hipóteses testadas no teste de ajustamento e no teste de independência.

Dados fornecidos e tratamento dos dados

O conjunto de dados Korea Income and Welfare apresentava as seguintes características:

- 1. Representa os dados que caracterizam o rendimento das famílias em determinada área geográfica e em determinado período de tempo;
- 2. Têm a dimensão de 92857 linhas (observações) e 14 colunas (variáveis aleatórias);
- 3. É composto pelas seguintes variáveis aleatórias:
 - a. id;
 - b. year;
 - c. wave;
 - d. region;
 - e. income;
 - f. family_member;
 - g. gender;
 - h. year_born;
 - i. education_level;
 - j. marriage;
 - k. religion;
 - l. occupation;
 - m. company_size;
 - n. reason_none_worker

Para este trabalho e apesar de trabalhar com todo o conjunto de dados vamos focar-nos no estudo da distribuição teórica da variável year_born num primeiro exercício . De seguida vamos incidir na analise da relação entre duas variáveis quantitativas são elas:

```
# variável independente -> company_size = X
# variável dependente -> year born = Y
```

Apesar de se vir a demonstrar que têm uma fraca correlação linear, foi a melhor correlação encontrada de entre as variáveis aleatórias quantitativas constantes no conjunto de dados, para cumprir com os objetivos do trabalho fomos instruídos a perseguir este modelo.

No conjunto de dados Korea Income and Welfare, procedemos à remoção dos valores a Null, tal como, removemos os outliers conforme se pode observar no script de R constante na entrega do projeto.

Apresentamos de seguida a analise estatística descritiva das variáveis de maior foco neste estudo, apenas para conhecimento transversal do conjunto de dados.

Variável year_born - análise estatística descritiva

É uma variável quantitativa discreta, representa o ano do nascimento do individuo observado. Por apresentar tantos níveis (90), foi agrupada em classes.

Aplicando se a regra de Sturges consegui-o apurar 17 classes (K=17), as classes são fechadas à direita e a amplitude de cada classe é de 5.411765, pois h= 5.411765. Apresenta a seguinte tabela de frequências.

Apresenta se na seguinte tabela de frequências.

```
ni
                         fi
       classes
                               Νi
  [1910,1915]
                  37 0.0004
                               37 0.0004
   (1915,1921)
                 261 0.0028
                              298 0.0032
  (1921,1926]
                1766 0.0190
                             2064 0.0222
   (1926, 1932]
               4647 0.0500 6711 0.0723
   (1932,1937] 11895 0.1281 18606 0.2004
5
   (1937,1942] 12397 0.1335 31003 0.3339
   (1942,1948]
               9058 0.0975 40061 0.4314
8
  (1948,1953]
               8541 0.0920 48602 0.5234
   (1953, 1959]
              7807 0.0841 56409 0.6075
10 (1959,1964] 10657 0.1148 67066 0.7223
11 (1964,1970] 7972 0.0859 75038 0.8081
12 (1970,1975]
               8218 0.0885 83256 0.8966
13 (1975,1980]
               6225 0.0670 89481 0.9636
                2236 0.0241 91717 0.9877
14 (1980,1986]
15 (1986,1991]
               873 0.0094 92590 0.9971
16 (1991,1997]
                 244 0.0026 92834 0.9998
17 (1997,2002]
                 23 0.0002 92857 1.0000
```

Tabela 1- Tabela de frequências da variável year_born

No histograma do gráfico 11 podemos visualizar a distribuição das observações desta variável.

Gráfico 1- Histograma das frequências absolutas da variável year_born

Podemos visualizar como se comportam as medidas de localização e de dispersão respetivamente nas tabelas 18 e 19.

Medidas de Localização					
Moda	1942	Quartis		De	ecis
Média	1952.957				
Mediana	1952				
		25%	1939		
		50%	1952		
		75%	1966		
				10%	1933
				20%	1937
				30%	1941
				40%	1946
				50%	1952
				60%	1958
				70%	1963
				80%	1969
				90%	1975

Tabela 2 - Medidas de localização da variável year_born

Ema Barão Nuno Reis Bernardo Teixeira | 201400238 | 202000753 | 201801954

Medidas de dispersão				
Variância	256.1941			
Desvio Padrão	16.00607			
Amplitude Total	92			
Amplitude Interquartil	27			

Tabela 3 - Medidas de dispersão da variável year_born

Na caraterização da distribuição das frequências verificamos o valor da assimetria é de (b1= 0. 0.1768795). Podemos agora afirmar que a assimetria é positiva pois, b1>0.

Relativamente aos valores de curtose, podemos afirmar que a variável apresenta uma curva platicúrtica ou achatada dado que b2<0, (b2= -0.9478836).

Podemos verificar que os quartis da caixa de bigodes tem uma concentração de dados muito uniforme.

Figura 1- Caixa de bigodes da variável year_born

Analise da distribuição year_born

Através da observação do histograma conseguimos prever que a distribuição da variável é aproximadamente Normal.

O teste de ajustamento do Qui-Quadrado é valido para distribuições discretas e a amostra segue todas as regras recomendadas (a dimensão da amostra deve ser maior que 30, todas as frequências esperadas devem ser maiores ou iguais a 1, não há mais de 20% das frequências esperadas inferiores a 5, para tal foi necessário agrupar dados), por isso faz sentido usar este teste para confirmar ou anular esta previsão.

Teste de ajustamento Qui-Quadrado year_born

Neste teste de ajustamento temos como hipótese nula (H_0) - os dados provêm de uma população que segue uma distribuição Normal e hipótese alternativa (H_1) - os dados provêm de uma população que não segue uma distribuição Normal. Vamos considerar um nível de significância de 10%.

Foram agrupados os dados e registadas as frequências absolutas, calculadas e registadas as frequências esperadas e posteriormente calculado o valor-p e o valor observado da estatística de teste sob a hipótese H₀.

Visto que o valor observado da estatística de teste sob a hipótese H₀ não está dentro da região critica e que o valor-p é maior que o nível de significância, não rejeitamos a hipótese H₀, logo conseguimos concluir que os dados provêm de uma população que segue uma distribuição Normal.

Variável company_size - análise estatística descritiva

É uma variável quantitativa discreta, representa o tamanho de uma companhia através do número de funcionários. O estudo incidiu em empresas com um intervalo do número de funcionários de 1 a 99.

Apresenta a seguinte tabela de frequências.

i	хi	ni	fi	Ni	Fi
1	1	28319	0.478304930	28319	0.4783049
2	2	5612	0.094786089	33931	0.5730910
3	3	6497	0.109733646	40428	0.6828247
4	4	2669	0.045079129	43097	0.7279038
5	5	1860	0.031415204	44957	0.7593190
6	6	1346	0.022733798	46303	0.7820528
7	7	3478	0.058743054	49781	0.8407959
8	8	1031	0.017413482	50812	0.8582093
9	9	1097	0.018528215	51909	0.8767375
10	10	6905	0.116624723	58814	0.9933623
11	11	393	0.006637729	59207	1.0000000

Tabela 4- Tabela de frequências da variável company_size

Podemos visualizar as frequências quer relativas quer absolutas da variável nos gráficos 14 e 15.

Gráfico 2- Gráfico de barras das frequências absolutas da variável company_size

Gráfico Circular: TAMANHO DA EMPRESA

Gráfico 3-Gráfico circular das frequências relativas da variável company_size

Podemos visualizar como se comportam as medidas de dispersão e de localização respetivamente nas tabelas 24 e 25.

Medidas de dispersão					
Variância	10.38252				
Desvio Padrão	3.222192				
Amplitude Total	10				
Amplitude Interquartil	4				
T F 1					

Tabela 5- Medidas de dispersão da variável company_size

Medidas de Localização					
Moda	1	Quartis		Decis	
Média	3.427399				
Mediana	2				
		25%	1		
		50%	2		
		75%	5		
				10%	1
				20%	1
				30%	1
				40%	1
				50%	2
				60%	3
				70%	4
				80%	7
				90%	10

Tabela 6 - Medidas de localização da variável company_size

Figura 2-Caixa de bigodes variável company_size

Na caraterização da distribuição das frequências verificamos o valor da assimetria é de (b1= 1.104122). Podemos assim afirmar que a assimetria é positiva pois, b1>0.

Relativamente aos valores de curtose verificamos que a variável apresenta uma curva platicúrtica ou achatada dado que b2<0, (b2= -0.284578).

Na figura 6 podemos visualizar a caixa de bigodes da variável company_size e verificamos o estudo focou se em empresas de pequena dimensão pois a mediana situa se em empresas com 2 funcionários .

Regressão Linear

Para atingir este objetivo vamos investigar a presença ou ausência de relação linear entre as duas variáveis com todo o conjunto de dados.

Após diversos ensaios, onde foram exploradas as combinações entre 5 variáveis quantitativas tomadas de 2 a 2, para verificar qual seria a melhor combinação para uma correlação linear mais forte, chegou se há conclusão de que as melhores variáveis aleatórias quantitativas em estudo são:

variável independente -> company_size = X

variável dependente -> year born = Y

Esta relação estuda se o do tamanho da companhia está a ser alterada pelo ano de nascimento dos funcionários.

Diagrama de dispersão

Pela análise do diagrama de dispersão não se vê uma relação linear entre as variáveis, pois não é possível imaginar uma reta nem com declive negativo nem com declive positivo a passar pela nuvem de pontos

Gráfico 4- Diagrama de dispersão com todo o conjunto de dados

Coeficiente de correlação linear de Pearson

Coeficiente confirma o que vimos no diagrama de dispersão, a correlação linear é muito fraca.

O rxy= 0.5082532 não se encontra entre -1<rxy<-0.8 nem entre 0.8<rxy<1, onde poderíamos considerar um coeficiente de correlação linear muito forte.

Sabemos que seria a melhor opção abandonar este modelo, contudo no âmbito deste trabalho vamos mantê-lo e considera lo como válido para cumprir os objetivos que nos foram propostos.

Reta de regressão linear

Quando a correlação linear é forte, podemos inferir o valor de uma se conhecer mos a outra. A reta que atravessa a nuvem de pontos conforme podemos verificar no gráfico X divide o diagrama de dispersão em dois grupos idênticos.

A reta de regressão passa pelo ponto cujas coordenadas são, respetivamente, as médias das variáveis em estudo, ou seja, o centro de gravidade da nuvem de pontos (ponto de coordenadas (x, y)).

Diagrama de Dispersão Ano de Nascimento Oct. Oct.

Gráfico 5- Diagrama de dispersão com a reta da regressão linear

No gráfico 10 podemos visualizar a reta regressão linear que apresenta os valores de interceção para a variável independente, company_size ⇔ X=2.663 e para a variável dependente, year_born ⇔ Y=1947.138.

Resíduos

Ao analisarmos os resíduos podemos concluir a qualidade do nosso modelo. Vamos analisar a diferença entre os valores observados e os valores ajustados.

Começamos por analisar o diagrama de dispersão dos resíduos no gráfico 8.

Gráfico dos resíduos

Os resíduos são muito grandes (entre mais 40 e -40), têm um padrão bem definido e constante e isto é sintoma que o modelo ajustado não é bom. Este padrão indica que os resíduos não são independentes.

Gráfico 6 - Gráfico de resíduos

Isto apenas vêm reforçar o que já havíamos concluído anteriormente, que este modelo não têm uma correlação linear forte e apenas não abandonamos e escolhemos outro modelo mais ajustado para correta conclusão dos objetivos propostos neste trabalho.

Ajustamento de Kolmogorov-Smirnov

Relação family_member/year

Estatística descritiva family_member

É uma variável quantitativa discreta, representa o número de elementos do agregado familiar a que foi efetuado o estudo. O estudo incidiu em famílias com 1 elemento até famílias de grandes dimensões com 9 elementos.

Apresenta a seguinte tabela de frequências.

```
i xi ni fi Ni Fi
1 1 25086 2.701573e-01 25086 0.2701573
2 2 28668 3.087328e-01 53754 0.5788901
3 3 16030 1.726310e-01 69784 0.7515212
4 4 16857 1.815372e-01 86641 0.9330584
5 5 4845 5.217700e-02 91486 0.9852354
6 6 1123 1.209386e-02 92609 0.9973292
7 7 211 2.272311e-03 92820 0.9996015
8 8 28 3.015389e-04 92848 0.9999031
9 9 9.692323e-05 92857 1.0000000
```

Tabela 7 - Tabela de frequências da variável family_member

Podemos visualizar as frequências quer relativas quer absolutas da variável nos gráficos 7,8.

Gráfico 7 - Gráfico de barras das frequências absolutas por extensão de agregado familiar

Gráfico Circular: Agregado Familiar

Gráfico 8 - Gráfico circular das frequências relativas por extensão de agregado familiar

Podemos visualizar como se comportam as medidas de localização e de dispersão respetivamente nas tabelas 12 e 13.

Medidas de Localização					
Moda	2	Quartis		De	cis
Média	2.484304				
Mediana	2				
	-				
		25%	1		
		50%	2		
		75%	3		
				10%	1
				20%	1
				30%	2
				40%	2
				50%	2
				60%	3
				70%	3
				80%	4
				90%	4

Tabela 8 - Medidas de localização da variável family_member

Medidas de dispersão				
Variância	1.669912			
Desvio Padrão	1.292251			
Amplitude Total	8			
Amplitude Interquartil	2			

Tabela 9 - Medidas de dispersão da variável family_member

Figura 3 - Caixa de bigodes da variável family_member

Na caixa de bigodes podemos verificar que o estudo abrangeu maioritariamente famílias com 1 e 2 elementos, pois 50% dos dados encontram se até ao 2ª Quartil.

Mais esporadicamente foram estudadas famílias com 7,8 e 9 elementos, podemos verificar que são outliers, sem expressão.

Na caraterização da distribuição das frequências verificamos o valor da assimetria é de (b1= 0.6395767).

Podemos agora afirmar que a assimetria é positiva pois, b1>0. Relativamente aos valores de curtose, podemos afirmar que a variável apresenta uma curva platicúrtica ou achatada dado que b2

Estatística descritiva year

É uma variável quantitativa discreta, representa o ano em que o estudo foi efetuado. E organiza se na seguinte tabela de frequências.

i	xi	ni	fi	Ni	Fi
1	2005	7072	0.07616012	7072	0.07616012
2	2006	6580	0.07086165	13652	0.14702176
3	2007	6314	0.06799703	19966	0.21501879
4	2008	6207	0.06684472	26173	0.28186351
5	2009	6034	0.06498164	32207	0.34684515
6	2010	5735	0.06176163	37942	0.40860678
7	2011	7532	0.08111397	45474	0.48972075
8	2012	7312	0.07874474	52786	0.56846549
9	2013	7048	0.07590166	59834	0.64436715
10	2014	6914	0.07445858	66748	0.71882572
11	2015	6723	0.07240165	73471	0.79122737
12	2016	6581	0.07087242	80052	0.86209979
13	2017	6474	0.06972011	86526	0.93181990
14	2018	6331	0.06818010	92857	1.00000000

Tabela 10 - Tabela de frequências da variável year

Podemos visualizar as frequências quer relativas quer absolutas da variável nos gráficos 1 e 2.

Gráfico Circular: Ano do Estudo

Gráfico 9 - Gráfico circular das frequências relativas do ano de estudo

Gráfico 10 - Gráfico de barras das frequências absolutas do ano de estudo

Podemos visualizar como se comportam as medidas de dispersão e de localização respetivamente nas tabelas 3 e 4.

Medidas de dispersão				
Variância	16.08991			
Desvio Padrão	4.011222			
Amplitude Total	13			
Amplitude Interquartil	7			

Tabela 11 - Medidas de dispersão da variável year

Medidas de Localização					
Moda	2011	Quartis		De	cis
Média	2011.518				
Mediana	2012				
		25%	2008		
		50%	2012		
		75%	2015		
				10%	2006
				20%	2007
				30%	2009
				40%	2010
				50%	2012
				60%	2013
				70%	2014
				80%	2016
				90%	2017

Tabela 12 - Medidas de localização da variável year

Figura 4 - Caixa de bigodes da variável year

Na caraterização da distribuição das frequências verificamos o valor da assimetria é de (b1=- 0.03954851). Podemos assim afirmar que a assimetria é negativa pois, b1<0.

Relativamente aos valores de curtose verificamos que a variável apresenta uma curva platicúrtica ou achatada dado que b2<0, (b2=-1.182807).

Na figura 1 podemos visualizar a caixa de bigodes da variável year.

Distribuição family_member/year

Teste de Independência Qui-Quadrado

Conclusões

Neste projeto abordamos o conjunto de dados intitulado 'Korea Income and Welfare', com o objetivo de estudar as distribuições teóricas dos dados selecionados, aplicar testes de ajustamento tal como testes de independência.

Com o auxílio do RStudio e através da linguagem de R produzimos um script que nos permitiu analisar os dados.

Apenas cumprimos um dos objetivos a que nos tínhamos proposto, objetivo esse que consistia em testar a distribuição da população á qual pertence a amostra da variável ano de nascimento a que nos pareceu mais adequada, considerando um nível de significância de 10%. Infelizmente não conseguimos concluir os outros dois objetivos.

Este projeto teve uma importância valiosa na aquisição de conhecimentos na esfera dos testes de ajustamento e independência e da linguagem de R, pois obrigou todos os elementos deste grupo a pesquisar e analisar e aperfeiçoar técnicas fundamentais nesta área.

Referências bibliográficas

- Departamento de Matemática Escola Superior de Tecnologia de Setúbal. Capítulo 1 –
 Estatística Descritiva. 2021-2022. Materiais de apoio. Disponível em:
 https://moodle.ips.pt/2122/mod/resource/view.php?id=3386>. Acesso em:
 10/04/2022
- Departamento de Matemática Escola Superior de Tecnologia de Setúbal. Capítulo 2 Regressão Linear Simples. 2021-2022. Materiais de apoio. Disponível em: https://moodle.ips.pt/2122/mod/resource/view.php?id=3386 >. Acesso em: 07/05/2022
- Departamento de Matemática Escola Superior de Tecnologia de Setúbal. Capítulo 3 Distribuições Teóricas. 2021-2022. Materiais de apoio. Disponível em: https://moodle.ips.pt/2122/mod/resource/view.php?id=3386 >. Acesso em: 07/05/2022
- Departamento de Matemática Escola Superior de Tecnologia de Setúbal. Capítulo 4 Elementos da Teoria da Amostragem. 2021-2022. Materiais de apoio. Disponível em: https://moodle.ips.pt/2122/mod/resource/view.php?id=3386 >. Acesso em: 07/05/2022
- Departamento de Matemática Escola Superior de Tecnologia de Setúbal. Capítulo 5 Elementos da Teoria da Estimação. 2021-2022. Materiais de apoio. Disponível em: https://moodle.ips.pt/2122/mod/resource/view.php?id=3386 >. Acesso em: 07/05/2022
- Departamento de Matemática Escola Superior de Tecnologia de Setúbal. Capítulo 6 Testes de Hipótese Paramétricos. 2021-2022. Materiais de apoio. Disponível em: https://moodle.ips.pt/2122/mod/resource/view.php?id=3386 >. Acesso em: 07/05/2022
- Departamento de Matemática Escola Superior de Tecnologia de Setúbal. Capítulo 7 Testes de Hipótese Não Paramétricos. 2021-2022. Materiais de apoio.
 Disponível em: https://moodle.ips.pt/2122/mod/resource/view.php?id=3386 >. Acesso em: 07/05/2022
- Departamento de Matemática Escola Superior de Tecnologia de Setúbal. Capítulo 7 Testes de Hipótese Não Paramétricos-Parte 1 -Testes de Ajustamento. 2021-2022. Materiais de apoio. Disponível em:

- https://moodle.ips.pt/2122/mod/resource/view.php?id=3386. Acesso em: 07/05/2022
- Departamento de Matemática Escola Superior de Tecnologia de Setúbal. Capítulo 7 Testes de Hipótese Não Paramétricos- Parte 2 -Testes de Independência. 2021-2022. Materiais de apoio. Disponível em:
 https://moodle.ips.pt/2122/mod/resource/view.php?id=3386>. Acesso em: 07/05/2022
- Departamento de Matemática Escola Superior de Tecnologia de Setúbal. Capítulo 7 Testes de Hipótese Não Paramétricos- Parte 3 -Testes à igualdade de duas distribuições. 2021-2022. Materiais de apoio. Disponível em: https://moodle.ips.pt/2122/mod/resource/view.php?id=3386 >. Acesso em: 07/05/2022