

Optimization and Decision Support Methodologies

Date: 23/02/2022 Exam – 2nd Call Duration: 2 hours

Note: Present all the calculations you make, and conveniently justify your answers.

1. (Expected quotation: 7.0 values)

Consider the following single-objective linear programming problem:

Minimize $z = 3x_1 + 2 x_2$ subject to			
$2x_1 + x_2 \ge 10$	(1)		
$-3x_1 + 2x_2 \le 6$	(2)		
$x_1 + x_2 \ge 6$	(3)		
$x_1 \ge 0, x_2 \ge 0$			

Considering x_3 and x_5 the surplus and artificial variables of the functional constraint (1), x_6 the slack variable of the functional constraint (2), and x_4 and x_7 the surplus and artificial variables of the functional constraint (3), the *simplex* optimal tableau (using the technique of the Big M) is:

	Ci	-3	-2	0	0	-M	0	-M	
ΧB	c _B \ x i	X 1	\mathbf{X}_{2}	X 3	0 X 4	X 5	X 6	X 7	b
X ₁	-3	1	0	-1	1	1	0	-1	4
X 6	0	0	0	-5	7	5	1	-7	14
X 2	-2	0	1		-2	-1	0	2	2
z	j-cj	0	0	1	1	M-1	0	M-1	-16

For each of the following changes in the initial problem, determine, by carrying out a **post-optimization study**, what are the implications for the presented optimal solution (in the value of x^* , in the value of z^* and in the optimal basis), resulting from the variation:

- a) Changing the vector of terms independent of constraints, from $\begin{bmatrix} 10 \\ 6 \\ 6 \end{bmatrix}$ to $\begin{bmatrix} 15 \\ 7 \\ 8 \end{bmatrix}$;
- b) Change in the coefficient of the variable x_2 in the objective function, from 2 to 4;
- c) Introducing a new functional constraint in the problem: $x_1 + 2x_2 \le 16$.

2. (Expected quotation: 5.0 values)

Consider now the following pure integer linear programming problem:

Maximize
$$z = -x_1 + 3x_2$$

subject to
 $-x_1 + 2x_2 \le 4$ (1)
 $x_1 + x_2 \le 6$ (2)
 $x_1 + 3x_2 \le 9$ (3)
 $x_1 \ge 0, x_2 \ge 0$
 x_1 and x_2 integers

Departamento de Engenharia Informática e de Sistemas

Considering x_3 , x_4 and x_5 as the slack variables of the functional constraints (1), (2) and (3), respectively, suppose that the Gomory algorithm was applied to this same problem and at the end of the 1st step, the following optimal *simplex* tableau was obtained:

	Ci	-1	3	0	0	0	
ХВ	C _B \ X _i	X 1	X 2	X 3	X 4	X 5	b
X ₂	3	0	1	1/5	0	1/5	13/5
X_4	0	0	0	2/5	1	-3/5	11/5
\mathbf{X}_1	-1	1	0	-3/5	0	2/5	6/5
	Zj-cj	0	0	6/5	0	1/5	33/5

- a) Draw your **conclusions** and, if necessary, proceed with **the 2nd step of that algorithm** to solve the presented problem;
- **b)** If the variable x₁ has no longer an integrality constraint, do you consider that we would still be faced with an integer programming problem? Justify your answer.

3. (Expected quotation: 5.0 values)

Now consider the following goal programming problem:

Minimize Z = {
$$d_1^+$$
, d_3^- , d_2^- }
subject to
$$3x_1 + 4x_2 + d_1^- - d_1^+ = 24$$

$$2x_1 + x_2 + d_2^- - d_2^+ = 10$$

$$x_2 + d_3^- - d_3^+ = 5$$

$$2x_1 - 3x_2 + d_4^- = 6$$

$$x_1 \ge 0, \ x_2 \ge 0, \ d_i^- \ge 0, \ d_i^+ \ge 0 \ (i = 1,2,3,4)$$

a) Solve this problem by the graphical method;

Note: You can use the grid on page 3, identifying yourself with student name and number.

b) If there was a need for a **new goal** of **priority level 4**, specifying that, as far as possible, x_1+2x_2 should be greater than or equal to 3, indicate what changes you would introduce in the model.

Departamento de Engenharia Informática e de Sistemas

Name:	No
Name:	INO