# Statistiques élémentaires des données Iris

| LoSe        | LaSe          | Lo          | Pe       | Lal     | Pe     |
|-------------|---------------|-------------|----------|---------|--------|
| Min. :4.3   | 00 Min. :2.   | 000 Min.    | :1.000 N | Min.    | :0.100 |
| 1st Qu.:5.1 | 00 1st Qu.:2. | 800 1st Qu. | :1.600   | 1st Qu. | :0.300 |
| Median:5.8  | 00 Median :3. | 000 Median  | :4.350 N | Median  | :1.300 |
| Mean :5.8   | 43 Mean :3.   | 057 Mean    | :3.758 N | Mean    | :1.199 |
| 3rd Qu.:6.4 | 00 3rd Qu.:3. | 300 3rd Qu. | :5.100 3 | 3rd Qu. | :1.800 |
| Max. :7.9   | 00 Max. :4.   | 400 Max.    | :6.900 N | Max.    | :2.500 |



# Histogramme : longueur du pétale des données Iris







### Exemple de novaux

- Rectangulaire : K(x) = 1[-0.5, +0.5](x)
- Triangulaire : K(x) = (1 |x|).1[-1, +1](x)
- Gaussien :  $K(x) = \frac{1}{\sqrt{2\pi}} exp(-\frac{1}{2}x^2)$
- Epanechnikov :  $K(x) = \frac{3}{4\sqrt{5}}(1-x^2/5).1[-\sqrt{5},+\sqrt{5}](x)$
- Lejeune :  $K(x) = \frac{105}{64}(1-x^2)^2(1-3x^2).1[-1,+1](x)$



Introduction 3 / 17

### Exemple d'estimation de la densité

| 21.86 | 21.92 | 21.91 | 21.97 | 22.0121.84 | 21.90 | 21.91 | 21.98 | 21.96 |
|-------|-------|-------|-------|------------|-------|-------|-------|-------|
| 21.88 | 21.91 | 21.92 | 21.95 | 21.9521.90 | 21.89 | 21.91 | 21.89 | 21.95 |
| 21.92 | 21.91 | 21.93 | 21.98 | 21.9721.87 | 21.87 | 21.96 | 21.96 | 21.96 |
| 21.90 | 21.89 | 21.91 | 21.98 | 21.9521.87 | 21.90 | 21.97 | 21.95 | 21.94 |
| 21.90 | 21.89 | 21.97 | 21.97 | 21.9721.93 | 21.92 | 21.97 | 21.94 | 21.95 |

#### Estimation avec noyau gausssier



# Histogramme $\infty$ -requency 9 S 21.85 22,00 21.90 21.95

longueur

# Diagramme en boîte





## Graphique de dispersion

| jean | 6.0  | 6.0  |
|------|------|------|
| alin | 8.0  | 8.0  |
| anni | 6.0  | 7.0  |
| moni | 14.5 | 14.5 |
| didi | 14.0 | 14.0 |
| andr | 11.0 | 10.0 |
| pier | 5.50 | 7.0  |
| brig | 13.0 | 12.5 |
| evel | 9.0  | 9.5  |



## Graphique de dispersion





# Graphique de dispersion (suite)

```
15
             16
2
4
5
6
7
             3
            16
            15
      16
             4
            14
8
      17
             14
9
       5
            17
10
11
      14
             15
12
       2
             16
```

UTC-SY09



# Graphique de dispersion (suite)







## Exemple de corrélation



# Exemple de corrélation (suite)





# Histogramme bidimensionnelle





### Estimation de densité bidimensionnelle





#### Covariance et corrélation des données Iris

#### Matrice de covariance

#### Matrice de corrélation

|      | LoSe  | laSe  | LoPe | laPe  |      | LoSe  | laSe  | LoPe | laPe  |
|------|-------|-------|------|-------|------|-------|-------|------|-------|
| LoSe | 0.69  | -0.04 | 1.3  | 0.52  | LoSe | 1.00  | -0.12 | 0.9  | 0.82  |
| laSe | -0.04 | 0.19  | -0.3 | -0.12 | laSe | -0.12 | 1.00  | -0.4 | -0.37 |
|      |       |       |      | 1.30  |      |       |       |      |       |
| laPe | 0.52  | -0.12 | 1.3  | 0.58  | laPe | 0.82  | -0.37 | 1.0  | 1.00  |

# Graphique matriciel

#### Les Iris



# Graphique matriciel avec variable qualitative





# Pourcentage de de points situées dans $[-r, +r]^p = r^p$

|   |      | р    |      |       |         |               |  |  |
|---|------|------|------|-------|---------|---------------|--|--|
|   |      | 1    | 2    | 5     | 10      | 100           |  |  |
|   | 0.50 | 0.50 | 0.25 | 0.031 | 0.00098 | $7.910^{-31}$ |  |  |
| r | 0.75 | 0.75 | 0.56 | 0.24  | 0.056   | $3.210^{-13}$ |  |  |
|   | 0.95 | 0.95 | 0.90 | 0.77  | 0.60    | 0.0059        |  |  |



# Problème lié à la projection





# Description de la variable Espèce pour les Iris



