

Multi-Scale Model for Mandarin Tone Recognition

Linkai Peng, Wang Dai, Dengfeng Ke, Jinsong Zhang

School of Information Science, Beijing Language and Culture University, China

penglinkai96@gmail.com, daiwang_ai@163.com, 8363331@qq.com, jinsong.zhang@blcu.edu.cn

- Background & Motivation
- Model Design
- Experiment
- □ Results
- Conclusions

- **□** Background & Motivation
- Model Design
- Experiment
- □ Results
- Conclusions

Background & Motivation

- Previous methods
 - using **forced alignment** to get the frame/segment-level label and then predict tone.
 - CNN-CTC based model.
- Problem
 - without considering multi-resolution processing.

Background & Motivation

■ Multi-Scale

Figure 1: Mel-spectrogram of F03A161 in dataset 863. Transcript of this part is "... Anger can be understood (... fen4 kai3 shi4 ke3 yi3 li3 jie3 de0)".

- Different tone contours in continue speaking stream have various time and frequency range.
- Multi-scale feature representations have proven successful for many vision and speech recognition tasks compared to single-scale methods.

- Background & Motivation
- **□** Model Design
- Experiment
- □ Results
- Conclusions

Model Design

■ Model Framework

Figure 2: Model architecture of our method. (a) Bottom-up CNN structure. (b) Merge the deeper branch (high-scale feature representation) and the shallower one (low-scale feature representation) to the standard one. (c) A bi-directional GRU is applied to capture temporal information and a fully-connected layer will predict tone sequences.

- Background & Motivation
- Model Design
- **□** Experiment
- □ Results
- Conclusions

Experiment

- Dataset
 - Chinese National Hi-Tech Project 863 corpus
 - Consists of 48373 utterances and total duration is 107 hours...
 - The dataset was divided into training set and test set at the ratio of 9:1. The training set and testing set have not any overlap at the speaker-level and utterance-level.
- ☐ Input Features
 - Mel-spectrogram (extracted by tool librosa; 20~8000Hz, frame length 2048(120ms), frameshift of 100 (6ms)., n-fft 2048, Mel bins 512)

Experiment

- Baselines
 - Single scale
 - LSTM, Bi-LSTM and TCN
- ☐ Training Configuration
 - learning rate was fixed 0.0001 with total 50 epochs
 - simple greedy decoding
- Evaluation Metrics
 - TER: the average Levenshtein distance between predictions and labels

- Background & Motivation
- Model Design
- Experiment
- **□** Results
- Conclusions

Results

Table 2: Performance comparison of using various CNN Mod ules.

CNN module	Low	Standard	High	TER
Baseline				12.53%
ResNet		$\sqrt{}$		11.55%
ResNet-preact		$\sqrt{}$		11.38%
Inception-v4-A				16.87%
ResNet		$\sqrt{}$		10.51%
ResNet-preact	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	10.79%
Inception	-	-	-	11.35%

Table 3: Ablation study of our method.

CNN module	Low	Standard	High	TER
ResNet				11.55%
			\checkmark	10.95%
				10.74%
	$\sqrt{}$		\checkmark	10.51%

Results

Table 5: Performance comparison between feature fusion methods.

Operation	TER	
element-wise addition	11.13%	
concatenation	10.51%	

Results

■ Error Analysis

Table 6: Breakdowns of errors.

Method	Insertions	Deletions	Substitutions
Baseline	79	1207	7479
Standard	187	752	7211
Multi-Scale	169	530	6696

Table 7: *Pre-tone accuracy*.

Method	Tone 0	Tone 1	Tone 2	Tone 3	Tone 4
Baseline	68.8%	93.6%	90.1%	81.5%	94.4%
Proposed	77.2%	94.3%	91.6%	82.0%	95.2%

- Background & Motivation
- Model Design
- Experiment
- □ Results
- Conclusions

Conclusions

- Advantages
 - Both the low-resolution branch and the high-resolution one can extract more meaningful features and enrich the standard one. **multi-scale model is necessary.**
- Contribution
 - We hope this work can provide insight for researchers on adopting multi-scale method to tone-related tasks.

Thanks for Listening!