Problema 1

Sea $f:[a,b] \to \mathbb{R}$ se considera el problema \mathcal{P} de evaluar

$$I(f) = \int_{a}^{b} f(x) dx, \qquad (1)$$

utilizando un procedimiento numérico.

«El cálculo diferencial es una ciencia. El cálculo integral es un arte»

¿Cómo debe ser f?

Recordemos como se define la «integral definida» en Cálculo.

El problema del área de una región

Problema

Se plantea el problema de hallar el área de la región S limitada por la gráfica de una función y = f(x) definida en un intervalo [a, b] y las rectas x = a, x = b e y = 0.

Se propone aproximar el área usando rectángulos.

Existen distintas posibilidades.

El problema del área de una región

Por ejemplo,

- usar un rectángulo inscripto cuya base sea el intervalo [a, b].
- usar un rectángulo circunscripto cuya base sea el intervalo [a, b].

$$A(r_1) < A(S) < A(R_1)$$

Para mejorar la aproximación se pueden usar más rectángulos, por ejemplo 6 rectángulos de igual base inscriptos o circunscriptos, como se observa en la figura.

Si se consideran más rectángulos la aproximación será cada vez mejor, de manera que si n>m, entonces

$$A\left(\bigcup_{i=1}^m r_i\right) \leq A\left(\bigcup_{i=1}^n r_i\right) \leq A(S) \leq A\left(\bigcup_{i=1}^n R_i\right) \leq A\left(\bigcup_{i=1}^m R_i\right).$$

El problema del área de una región

Definición 1

Sea la región S limitada por el gráfico de una función continua y no negativa $(f(x) \ge 0)$ en [a,b], las rectas x=a, x=b y el eje x. Sea p una partición del intervalo en n subintervalos no necesariamente de igual longitud $a=x_0 < x_1 < x_2 < \cdots x_{n-1} < x_n = b$, $\Delta x_i = x_i - x_{i-1}$ y $c_i \in [x_{i-1},x_i]$. El área de S es

$$A(S) = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x_i.$$

Funciones integrables

Definición 2

Sea f una función definida en un intervalo [a,b] y p una partición del intervalo. Si $\lim_{n\to\infty}\sum_{i=1}^n f(c_i)\Delta x_i$ con $c_i\in[x_{i-1},x_i]$ existe, se dice que f es integrable en [a,b] y la integral definida de f desde a hasta b es

$$\int_a^b f(x)dx = \lim_{n \to \infty} \sum_{i=1}^n f(c_i) \Delta x_i.$$

Algunas observaciones:

- El símbolo para la integral definida es una S alargada por ser el límite de una suma.
- Más adelante se verá que está relacionada con la integral indefinida que se ha visto antes.

En algunos casos, es posible calcular analíticamente esta integral y se obtiene el valor exacto, en otros casos no.

; Cuando no es posible?

- Si f está dada de manera dicreta, esto es se tiene información en un número finito de puntos de la forma (x_i, f_i) , i = 1, ..., n.
- Si la función es tal que la integral es difícil de calcular.
- Si la integral indefinida no puede expresarse en término de funciones elementales. Por ejemplo la función $\frac{2}{\sqrt{\pi}} \int_0^t e^{-x^2} dx$, que es muy importante en probabilidad y estadística.

¿Cómo se resuelve el problema?

Se aproxima la integral I(f) utilizando algún procedimiento numérico.

Definición 3

El proceso de aproximar la integral definida de una función usando la función evaluada en algunos puntos del dominio se dice integración numérica o cuadratura:

$$I(f) = \int_{a}^{b} f(x) dx = \underbrace{\sum_{i=0}^{n} A_{i} f(x_{i})}_{regla \ de \ integración} + E,$$

donde $A_i \in \mathbb{R}$, $x_i \in [a, b]$ y E es el error en la aproximación.

¿Cómo deben ser x_i y las constantes para que el método sea eficiente?

¿Cómo diseñar un método numérico para aproximar I(f)?

Idea geométrica (Interpolación polinomial)

Se aproxima la función f(x) en el intervalo [a,b] por una función fácil de integrar, por ejemplo una función polinómica de grado n, p_n y luego se integra para obtener la regla de integración.

$$I(f) = \int_{a}^{b} f(x) dx = \underbrace{\int_{a}^{b} p_{n}(x) dx}_{\text{regla de integración}} + E.$$

Idea analítica

Se considera

$$I(f) = \int_{a}^{b} f(x) dx = \sum_{i=0}^{n} A_{i} f(x_{i}) + E.$$
regla de integración

se fijan los nodos donde se evalua la función y se determinan las constantes de manera que la regla de integración resuelva exactamente la integral I(f) cuando f sea una función polinómica del mayor orden (método de coeficientes indeterminados).

Regla del punto medio

El método más simple consiste en aproximar la función f(x) con una constante en [a,b]. Si $f(x)=f\left(\frac{a+b}{2}\right)$ se dice regla del punto medio,

$$M_1(f) = \int_a^b f\left(\frac{a+b}{2}\right) dx = f\left(\frac{a+b}{2}\right)(b-a).$$

Además

$$I(f) = M_1(f) + E_T.$$

¿Qué error se comete? (Ejercicio de la práctica)

Regla del trapecio simple

Uno de los métodos más populares, consiste en interpolar la función f(x) en los puntos (a, f(a)) y (b, f(b)) con la forma de Lagrange de $p_1(x)$. Se dice regla del trapecio simple,

$$T_1(f) = \int_a^b f(a) \frac{x-b}{a-b} + f(b) \frac{x-a}{b-a} dx = \frac{b-a}{2} (f(a) + f(b)).$$

Además

$$I(f) = T_1(f) + E_T.$$

Error de la regla del trapecio simple

Teorema 1

Sea $f:[a,b]\to\mathbb{R},\,f\in C^2[a,b],$ entonces el error de la regla del trapecio simple es

$$E_T = -\frac{h^3}{12}f''(c), \qquad a < c < b, \qquad h = b - a.$$

Demostración:

$$I(f) = \int_{a}^{b} \underbrace{f(a) \frac{x-b}{a-b} + f(b) \frac{x-a}{b-a}}_{p_{L}(x)} + E_{L} dx$$

Integrando p_1 resulta la regla del trapecio

$$T_1(f) = \int_a^b f(a) \frac{x - b}{a - b} dx + \int_a^b f(b) \frac{x - a}{b - a} dx$$

$$T_1(f) = \frac{-f(a)}{b - a} \frac{(x - b)^2}{2} \Big|_a^b + \frac{f(b)}{b - a} \frac{(x - a)^2}{2} \Big|_a^b$$

$$T_1(f) = \frac{b - a}{2} (f(a) + f(b)).$$

Error de la regla del trapecio simple

Luego se integra $E_L = \frac{f''(c)}{2}(x-a)(x-b)$ para obtener el E_T , sustituyendo h = b - a y b = a + h:

$$E_1^T = \int_a^{a+h} \frac{f''(c)}{2} (x-a)(x-a-h) dx = \frac{f''(c)}{2} \int_a^{a+h} (x-a) (x-(a+h)) dx.$$

Se sustituye u = x - a, du = dx,

$$E_1^T = \frac{f''(c)}{2} \int_0^h \underbrace{u(u-h)}_{u^2-hu} du = \frac{f''(c)}{2} \left(\frac{u^3}{3} - h \frac{u}{2} \Big|_0^h \right).$$

Luego,
$$E_1^T = -\frac{h^3}{12}f''(c)$$
.

Regla del trapecio compuesta

Se observa que el error puede ser grande dependiendo de h y de la función f(x). Una manera sencilla de mejorar la aproximación consiste en particionar el intervalo [a, b] en n subintervalos.

Cuando se utiliza una partición regular de tamaño $h = \frac{b-a}{n}$ se obtiene la regla de integración del trapecio compuesta que se expresa como

$$\int_{a}^{b} f(x) dx = \underbrace{\frac{h}{2} \left(f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(a+hi) \right)}_{T_{n}} + E_{n}^{T},$$

donde E_n^T es el error al utilizar la regla del trapecio compuesta.

Error en la regla del trapecio compuesta

Teorema 2

Sea $f:[a,b] \to \mathbb{R}, f \in C^2([a,b])$, entonces el error al calcular I(f) usando la regla del trapecio compuesta es

$$E_n^T = -\frac{(b-a)h^2}{12}f''(c), \ c \in [a,b]$$

Demostración:

El error al utilizar la regla del trapecio compuesta se obtiene sumando los errores individuales en cada subintervalo.

$$E_n^T = \sum_{i=1}^n E_i^T = \sum_{i=1}^n -\frac{h^3}{12} f''(c_i) = -\frac{h^3}{12} \sum_{i=1}^n f''(c_i).$$

Error en la regla del trapecio compuesta

Sea $c \in (a, b)$, si se define $f''(c) = \frac{\sum_{i=1}^{n} f''(c_i)}{n}$, entonces

$$E_n^T = -\frac{h^3}{12} n f''(c) = -\frac{h^2}{12} \underbrace{nh}_{b-a} f''(c) = -\frac{h^2(b-a)}{12} f''(c).$$

Observaciones:

- El error de la regla del trapecio simple es $\mathcal{O}(h^3)$ (error local).
- El error de la regla del trapecio compuesta es $\mathcal{O}(h^2)$ (error global).

Ejemplos

Ejemplo 1

Aproximar $\int_0^1 \frac{dx}{1+x} dx$ usando las reglas del trapecio. Estimar el error cometido.

Usando trapecio simple:

$$T_1(f) = \frac{1}{2}(f(0) + f(1)) = \frac{1}{2}(1 + \frac{1}{2}) = \frac{3}{4} = 0.75.$$

La expresión para el error de truncado es $E_1^T=-\frac{h^3}{12}f''(c)$. Se acota el valor absoluto de la derivada segunda

$$f''(c) = \frac{2}{(1+c)^3}, c \in (0,1) \Rightarrow f''(c) < 2.$$

La cota el valor absoluto del error es $\frac{1}{6} \cong 0.16$, esto es 16%.

Ejemplos

Recordemos que el valor exacto es

$$\int_0^1 \frac{dx}{1+x} dx = \ln(1+x)|_0^1 = \ln(2) = 0.693147$$

Luego es error es -0.056853, esto es 5.7%.

Si se divide el intervalo de integración en dos subintervalos, esto es $h = \frac{1}{2}$ resulta:

$$T_{\frac{1}{2}}(f) = \frac{1}{4}\left(f(0) + f(1) + 2f\left(\frac{1}{2}\right)\right) = \frac{1}{4}\left(1 + \frac{1}{2} + 2\frac{2}{3}\right) = \frac{17}{24} \cong 0.70833.$$

La expresión para el error de truncado es $E_1^T = -\frac{h^2}{12}(b-a)f''(c)$ y la cota del el valor absoluto error es $\frac{1}{24} \cong 0.0417$, esto es 4.2%.

Regla de Simpson simple

Interpolar la función f(x) en los puntos (a, f(a)), (b, f(b)) y (c, f(c)) siendo $c = \frac{a+b}{2}$ con la forma de Lagrange de $p_2(x)$, se dice regla de Simpson simple,

$$S_1(f) = \frac{b-a}{6} \left(f(a) + 4f \left(\frac{a+b}{2} + f(b) \right) \right).$$

La demostración se deja como ejercicio. Puede hacerse de dos maneras diferentes, integrando el polinomio p_2 o bien con el método de los coeficientes indeterminados.

Regla de Simpson simple

Teorema 3

Sea $f:[a,b] \to \mathbb{R}, f \in C^4[a,b]$, entonces el error de la regla de Simpson simple es

$$E_1^S = -\frac{h^5}{90}f^{IV}(c), \qquad a < c < b, \qquad h = \frac{b-a}{2}.$$

Para demostrar este teorema se utiliza polinomio de Taylor. Se sugiere consultar el libro, «Análisis Numérico», Burden, R y Faires, J. (pag. 189).

Observaciones:

- Para aplicar la regla de Simpson se debe conocer la función en tres puntos.
- La fórmula puede re-escribirse como

$$S_1(f) = \frac{h}{3}(f(a) + 4f(a+h) + f(a+2h)),$$

• Es exacta para polinomios de grado menor o igual que 3.

Regla Simpson compuesta

De la misma manera que se hizo con la regla del trapecio, para mejorar la aproximación se particiona el intervalo [a,b] en un número par de subintervalos, n.

Cuando se utiliza una partición regular de tamaño $h = \frac{b-a}{n}$ se obtiene la regla de integración de Simpson compuesta que se expresa como

$$S_n(f) = \frac{h}{3} \left(f(a) + 2 \sum_{i,pares}^{n-2} f(x_i) + 4 \sum_{i,impares}^{n-1} f(x_i) + f(b) \right).$$

El error es

$$E_n^S = -\frac{(b-a)h^4}{90}f^{IV}(c), \ c \in (a,b).$$

Observaciones:

- El error de la regla de Simpson simple es $\mathcal{O}(h^5)$ (error local).
- El error de la regla de Simpson compuesta es $\mathcal{O}(h^4)$ (error global).

Ejemplos

...continua ejemplo

Aproximar $\int_0^1 \frac{dx}{1+x} dx$ usando las reglas de Simpson. Estimar el error cometido.

Si se aplica Simpson simple $h = \frac{1}{2}$ resulta:

$$S_1(f) = \frac{1}{6} \left(f(0) + 4f\left(\frac{1}{2} + f(1)\right) \right) = \frac{1}{6} \left(1 + 4\frac{2}{3}\frac{1}{2} \right) = \frac{25}{36} = 0.69444.$$

La expresión para el error de truncado es $E_1^T = -\frac{h^5}{90} f^{IV}(c)$. Se acota el valor absoluto de la derivada cuarta

$$\left|f^{IV}(c)\right| = \frac{4!}{(1+c)^5}, c \in (0,1) \Rightarrow f^{IV}(c) < 24.$$

La cota del valor absoluto del error es $\frac{1}{120} \cong 0.0083...$, esto es 0.8 %.

Ejemplos

...continua ejemplo

Los valores obtenidos al aproximar $\int_0^1 \frac{dx}{1+x} dx = \ln(2) \cong 0.693147$, las cotas del error de truncado y error calculado, porcentuales, se resumen en la tabla.

Regla	Valor Aprox.	Cota de error de trunc.	Error calc.
$\overline{T_1}$	0.75	16 %	5.7 %
$\overline{T_2}$	0.70833	4.2 %	1.5 %
S_1	0.69444	0.8 %	0.13 %