# Computer Programming 1

Laboratory 05

(fundamental data types – instructions – part 1)

## **ASCII** encoding



#### **ASCII Table**

| Dec | Hex | 0ct | Char | Dec | Hex | 0ct | Char    | Dec | Hex | 0ct | Char | Dec | Hex | 0ct | Char |
|-----|-----|-----|------|-----|-----|-----|---------|-----|-----|-----|------|-----|-----|-----|------|
| 0   | 0   | 0   |      | 32  | 20  | 40  | [space] | 64  | 40  | 100 | @    | 96  | 60  | 140 | *    |
| 1   | 1   | 1   |      | 33  | 21  | 41  | !       | 65  | 41  | 101 | Α    | 97  | 61  | 141 | a    |
| 2   | 2   | 2   |      | 34  | 22  | 42  |         | 66  | 42  | 102 | В    | 98  | 62  | 142 | b    |
| 3   | 3   | 3   |      | 35  | 23  | 43  | #       | 67  | 43  | 103 | C    | 99  | 63  | 143 | c    |
| 4   | 4   | 4   |      | 36  | 24  | 44  | \$      | 68  | 44  | 104 | D    | 100 | 64  | 144 | d    |
| 5   | 5   | 5   |      | 37  | 25  | 45  | %       | 69  | 45  | 105 | E    | 101 | 65  | 145 | e    |
| 6   | 6   | 6   |      | 38  | 26  | 46  | &       | 70  | 46  | 106 | F    | 102 | 66  | 146 | f    |
| 7   | 7   | 7   |      | 39  | 27  | 47  | •       | 71  | 47  | 107 | G    | 103 | 67  | 147 | g    |
| 8   | 8   | 10  |      | 40  | 28  | 50  | (       | 72  | 48  | 110 | Н    | 104 | 68  | 150 | h    |
| 9   | 9   | 11  |      | 41  | 29  | 51  | )       | 73  | 49  | 111 | I    | 105 | 69  | 151 | i    |
| 10  | Α   | 12  |      | 42  | 2A  | 52  | *       | 74  | 4A  | 112 | J    | 106 | 6A  | 152 | j    |
| 11  | В   | 13  |      | 43  | 2B  | 53  | +       | 75  | 4B  | 113 | K    | 107 | 6B  | 153 | k    |
| 12  | C   | 14  |      | 44  | 2C  | 54  | ,       | 76  | 4C  | 114 | L    | 108 | 6C  | 154 | ı    |
| 13  | D   | 15  |      | 45  | 2D  | 55  | -       | 77  | 4D  | 115 | M    | 109 | 6D  | 155 | m    |
| 14  | E   | 16  |      | 46  | 2E  | 56  |         | 78  | 4E  | 116 | N    | 110 | 6E  | 156 | n    |
| 15  | F   | 17  |      | 47  | 2F  | 57  | /       | 79  | 4F  | 117 | 0    | 111 | 6F  | 157 | 0    |
| 16  | 10  | 20  |      | 48  | 30  | 60  | 0       | 80  | 50  | 120 | P    | 112 | 70  | 160 | p    |
| 17  | 11  | 21  |      | 49  | 31  | 61  | 1       | 81  | 51  | 121 | Q    | 113 | 71  | 161 | q    |
| 18  | 12  | 22  |      | 50  | 32  | 62  | 2       | 82  | 52  | 122 | R    | 114 | 72  | 162 | r    |
| 19  | 13  | 23  |      | 51  | 33  | 63  | 3       | 83  | 53  | 123 | S    | 115 | 73  | 163 | S    |
| 20  | 14  | 24  |      | 52  | 34  | 64  | 4       | 84  | 54  | 124 | Т    | 116 | 74  | 164 | t    |
| 21  | 15  | 25  |      | 53  | 35  | 65  | 5       | 85  | 55  | 125 | U    | 117 | 75  | 165 | u    |
| 22  | 16  | 26  |      | 54  | 36  | 66  | 6       | 86  | 56  | 126 | V    | 118 | 76  | 166 | V    |
| 23  | 17  | 27  |      | 55  | 37  | 67  | 7       | 87  | 57  | 127 | W    | 119 | 77  | 167 | w    |
| 24  | 18  | 30  |      | 56  | 38  | 70  | 8       | 88  | 58  | 130 | X    | 120 | 78  | 170 | ×    |
| 25  | 19  | 31  |      | 57  | 39  | 71  | 9       | 89  | 59  | 131 | Υ    | 121 | 79  | 171 | У    |
| 26  | 1A  | 32  |      | 58  | 3A  | 72  | :       | 90  | 5A  | 132 | Z    | 122 | 7A  | 172 | z    |
| 27  | 1B  | 33  |      | 59  | 3B  | 73  | ;       | 91  | 5B  | 133 | [    | 123 | 7B  | 173 | {    |
| 28  | 1C  | 34  |      | 60  | 3C  | 74  | <       | 92  | 5C  | 134 | \    | 124 | 7C  | 174 |      |
| 29  | 1D  | 35  |      | 61  | 3D  | 75  | =       | 93  | 5D  | 135 | ]    | 125 | 7D  | 175 | }    |
| 30  | 1E  | 36  |      | 62  | 3E  | 76  | >       | 94  | 5E  | 136 | ^    | 126 | 7E  | 176 | ~    |
| 31  | 1F  | 37  |      | 63  | 3F  | 77  | ?       | 95  | 5F  | 137 | _    | 127 | 7F  | 177 |      |

1

#### Exercise 1.1: AND and OR



Write a program that prints the truth table of the AND operator (&&) and the OR operator (||) on the screen.

#### Steps:

- 1. Define two boolean variables
- 2. Initialize the two variables
- 3. Use the logic operators (&& || !) between the two variables to obtain each row of the tables

Constraint: each row of the table must be the result of a logical expression, i.e., do not use IF-THEN or any other statement to control the flow

| ΑN | D | g | a | te |
|----|---|---|---|----|
|    |   |   |   |    |

| Input A | Input B | Output |  |  |
|---------|---------|--------|--|--|
| 0       | 0       | 0      |  |  |
| 1       | 0       | 0      |  |  |
| 0       | 1       | 0      |  |  |
| 1       | 1       | 1      |  |  |

OR gate

| Input A | Input B | Output |
|---------|---------|--------|
| 0       | 0       | 0      |
| 1       | 0       | 1      |
| 0       | 1       | 1      |
| 1       | 1       | 1      |

#### Exercise 1.2: XOR



Write a program that prints the truth table of the XOR operation on the screen.

#### Steps:

- Define two boolean variables
- 2. Initialize the two variables (the value can be then changed in the program)
- 3. Use the logic operators (&& || !) between the two variables to obtain each row of the table

Constraint: each row of the table must be the result of a logical expression, i.e., do not use IF-THEN or any other statement to control the flow

| Inp | out | Output  |  |  |
|-----|-----|---------|--|--|
| Α   | В   | A xor B |  |  |
| 0   | 0   | 0       |  |  |
| 0   | 1   | 1       |  |  |
| 1   | 0   | 1       |  |  |
| 1   | 1   | 0       |  |  |

2

## Example 2.1: VAT



Write a program that defines two real numbers and use them to calculate the customer price of a product by using the following formula.

$$P = P + \frac{P * I}{100}$$

Constraint: use a precision of 5 digits

#### Example 2.2: Second-degree equation



Given three real numbers, a, b and c as input, write a program that calculates the solutions of the (complete) second-degree equation (a!=0, b!=0, c!=0).

$$ax^2 + bx + c = 0$$

delta > 0 
$$x_{1,2} = \frac{-b \pm}{}$$

$$delta = b^2 - 4ac$$

delta < 0 no solutions 
$$x = \frac{-b}{a}$$

#include <cmath>
float c = sqrt(5);

Reference to the library <cmath>
<a href="http://www.cplusplus.com/reference/cmath/">http://www.cplusplus.com/reference/cmath/</a>

Test: 
$$2x^2 - x - 6 = 0$$
  $x_1$ =-1.5 and  $x_2$ =2

Test: 
$$x^2 + 3x + 2 = 0$$
  $x_1$ =-2 and  $x_2$ =-1

Alessandro Marchetto - University of Trento

## Example 2.3(a): Encoding ASCII+10



Given a character as input, write a program that returns the same character in ASCII + 10 encoding

Then use -10 from the obtained characters, to turn back to the original character. Attention to use the casting operator to get the correct value of the variable

## Example 2.3(b): Encoding ASCII+10



Given a character as input, write a program that returns the same character in ASCII + 10 encoding

Then use -10 from the obtained characters, to turn back to the original character. Attention to use the casting operator to get the correct value of the variable

Variant: use +/-x, where x is an integer inserted by the user in the standard input, instead of a fixed +/-10 encoding/decoding value

#### Example 2.4(a): Lower-to-Upper case



Given a lower-case character as input, write a program that stores the character in a variable and that returns the same character in upper-case.

Constraint: do not use the tolower(c) of the cctype library

#### Example 2.4(b): Lower-to-Upper case



Given a lower-case character as input, write a program that stores the character in a variable and that returns the same character in upper-case.

Variant: use the function tolower(c) of the cctype library

#### Example 2.4(c): Lower-to-Upper case



Given a lower-case character as input, write a program that stores the character in a variable and that returns the same character in upper-case.

Variant: consider a sequence of X characters, where X is defined by the user and inserted in the standard input

#### Example 2.4(d): Lower-to-Upper case



Given a lower-case character as input, write a program that stores the character in a variable and that returns the same character in upper-case.

Variant: consider a sequence of X characters, where X is defined by the user and inserted in the standard input

Variant: consider as valid only alphabetic lower-case character in input

## Example 2.5(a): Variable exchange



Given two variables as input (you can choose their type), a and b, write a program that exchanges the value of a for the value of b and vice versa.

## Example 2.5(b): Variable exchange



Given two variables as input (you can choose their type), a and b, write a program that exchanges the value of a for the value of b and vice versa.

Variant: without the use of a temporary variable