Welcome

Announcements:

- The Mock Test has been released on Blackboard
- A new Stanage reservation for completing the assignment com6012-11 will be available from 1pm on 26 April to 1pm 3rd May
 - This DOES NOT mean you should wait until 26 April to start on your assignment
 - Use your university account to access assignment
- Please fill out the TellUS survey for this module

PCA-06-scaled.jpg (2560×1051) (perfectial.com)

Lecture 9: Scalable PCA for Dimensionality Reduction

COM6012: Scalable ML with Robert Loftin

Slides courtesy of Haiping Lu

Principal Component Analysis

Singular Value Decomposition (SVD)

PCA via SVD

Principal Component Analysis

Singular Value Decomposition (SVD)

PCA via SVD

Dimensionality Reduction

- Raw data: complex and high-dimensional
- Assumption: data lie on a low-dimensional subspace
 - Axes of this subspace → representation of the data
 - Simpler, more compact, showing interesting patterns

Uses of Dimensionality Reduction

- Discover hidden correlations/topics
- Remove redundant/noisy features
- Interpretation and visualisation
- Easier storage and processing of the data

<u>owners-icebergs-blog-image-</u> <u>300x300.jpg (resettogrow.com)</u>

<u>1*KvKlx9OnlxdoTfNxWKAY g.jpeg</u> (480×320) (medium.com)

Interpreting and Translation
Blog: Image (wordpress.com)

Principal Component Analysis

- Input: *n* data points in a *d*-dimensional feature space
 - $X_0 \leftarrow n \times d$ data matrix, data point \rightarrow row vector x_i
 - "Centered" data X mean of each column is zero
- Goal: Find a feature transformation $W(d \times r)$ such that T = X W preserves important information
- Idea: Find W that explains most of the variance of X
 - The first principal component w₁ maximizes variance
 - kth PC w_k maximizes variance after subtracting the variance explained by the first k-1 principal components

PCA > Variance Maximisation

- The first principal component w_1 maximises the variance of the transformed data Xw_1
- Mean of X is zero, so we can find w_1 by computing

$$w_1 \in \underset{w}{\operatorname{argmax}} \frac{w^T X^T X w}{\|w\|_2^2}$$

• It turns out, w_1 is an eigenvector corresponding to the largest eigenvalue of $X^T\!X$

Principal Component Analysis

- Input: *n* data points in a *d*-dimensional feature space
 - $X_0 \leftarrow n \times d$ data matrix, data point \rightarrow row vector X_i
- Basic PCA algorithm
 - X: subtract mean x from each row vector x_i in X_0
 - X^TX: Gramian/scatter matrix for X
 - Find eigenvectors and eigenvalues of X^TX
 - W $(d \times r)$ \leftarrow the top r eigenvectors (PCs)
- PCA features $y_i = x_i^T W$ (dimension: $d \rightarrow r$)
 - Zero correlation, ordered by variance

Scalability Problems with PCA

- Input dimensionality -> scatter matrix
 - Images: $100 \times 100 \rightarrow 10^4$; $1000 \times 1000 \rightarrow 10^6$
 - Scatter matrix X^TX is of size d^2
 - $d = 10^4 \rightarrow X^TX$ is of size 10^8
 - $d = 10^6 \rightarrow X^TX$ is of size = 10^{12}
- Computing all k eigenvectors of X^TX takes $O(d^3)$
- Alternative: Singular Value Decomposition (SVD)
 - Efficient algorithms available
 - Often need just top r eigenvectors

Principal Component Analysis

Singular Value Decomposition (SVD)

PCA via SVD

Singular Value Decomposition (SVD)

$$\mathbf{A}_{[n \times d]} = \mathbf{U}_{[n \times r]} \, \mathbf{\Sigma}_{[r \times r]} \, (\mathbf{V}_{[d \times r]})^{\mathrm{T}}$$

- r: the rank of the matrix A
- U: $n \times r$ matrix, column orthonormal, $U^{T}U = I$
- $\Sigma : r \times r$ diagonal matrix, strength of each factor
- V: $d \times r$ matrix, column orthonormal, $V^TV = I$

svd-matrices.png (800×339) (intoli.com

Example on a Document x Term

Term Document	data	information	retrieval	brain	lung
CS-TR1	1	1	1	0	0
CS-TR2	2	2	2	0	0
CS-TR3	1	1	1	0	0
CS-TR4	5	5	5	0	0
MED-TR1	0	0	0	2	2
MED-TR2	0	0	0	3	3
MED-TR3	0	0	0	1	1

- d = 5 but $r=2 \rightarrow$ two bases [1 1 1 0 0] & [0 0 0 1 1]
- U: document-to-concept similarity matrix
- V: term-to-concept similarity matrix
- Σ : its diagonal elements \rightarrow strength of each concept

Interpretation

Term Document	data	information	retrieval	brain	lung
CS-TR1	1	1	1	0	0
CS-TR2	2	2	2	0	0
CS-TR3	1	1	1	0	0
CS-TR4	5	5	5	0	0
MED-TR1	0	0	0	2	2
MED-TR2	0	0	0	3	3
MED-TR3	0	0	0	1	1

doc-to-concept similarity matrix retrieval CS-concept inf. lung MD-concept brain data strength of 0.18)0 CS-concept CS-concept $0.36 \ 0$ 0 CS 0.1800 0 9.64 0 X 0.90 0 0 5 0 5.29 term-to-concept 0.53 0 similarity matrix 0.80(0.58) 0.58 0.58 0 0.27 0.71 0.71

SVD - Dimensionality Reduction

To reduce the dimensionality further (3 zero singular

values have already been removed)

Best rank-1 approximation →

Principal Component Analysis

Singular Value Decomposition (SVD)

PCA via SVD

SVD ←→ Eigen-decomposition

- SVD of $X = U \Sigma V^T$
- Eigen-decomposition of $X^TX = W \wedge W^T$
 - Because X^TX is *real* and *symmetric*
- U, V: orthonormal \rightarrow U^TU = I, V^TV = I
- Σ , Λ : diagonal
- Relationship:
 - $X^TX = V \Sigma^T U^T (U \Sigma V^T) = V \Sigma \Sigma^T V^{T} = V \Sigma^2 V^T$
 - $X^TXV = (V \Sigma^2 V^T)V = V\Sigma^2$
- Columns of V are eigenvectors of X^TX (W = V)
 - Singular values are square roots of eigenvalues ($\Lambda = \Sigma^2$)

PCA via SVD

- Better PCA algorithm:
 - $X_0 \leftarrow n \times d$ data matrix, data point \rightarrow row vector x_i
 - X: subtract mean x from each row vector x_i in X_0
 - U Σ V^T \leftarrow SVD of X
 - Compute top r right singular vectors V of $X \rightarrow$ the PCs
 - The singular values in Σ = the square roots of the eigenvalues of X^TX

 We can do this without computing the full eigendecomposition of X^TX

Principal Component Analysis

Singular Value Decomposition (SVD)

PCA via SVD

Three PCA APIs in Spark

- DataFrame-based API <u>PCA</u> (<u>source code</u>, <u>Scala doc</u>)
 - pyspark.ml.feature.PCA(k=None, inputCol=None, outputCol=None)
- RDD-based API RowMatrix (source code, Scala doc)
 - computePrincipalComponents(k)
 - Scalable: computeSVD(k, computeU=False, rCond=1e-09)

```
465
        @Since("1.6.0")
        def computePrincipalComponentsAndExplainedVariance(k: Int): (Matrix, Vector) = {
          val n = numCols().toInt
467
          require(k > 0 && k <= n, s"k = k out of range (0, n = n)")
468
          if (n > 65535) {
470
            val svd = computeSVD(k)
471
            val s = svd.s.toArray.map(eigValue => eigValue * eigValue / (n - 1))
472
473
            val eigenSum = s.sum
474
            val explainedVariance = s.map(_ / eigenSum)
```

SVD in Spark MLlib (RDD)

- U: $m \times k$; $\Sigma : k \times k$; V: $n \times k$
- Assumption: n (dimensionality) < m (# samples)
- Different methods based on computational cost:
 - If n is small (n<100) or k is large compared with n (k>n/2):
 - Construct X^TX first, then compute its top eigenvalues and eigenvectors locally on the driver node
 - Otherwise:
 - Run ARPACK on the driver node to compute eigenvalues/eigenvectors
 - ARPACK makes calls to Spark to compute $(X^TX)v$ for different vectors v which in Spark computes in a distributed wa

Selection of SVD Computation

```
if (n < 100 | (k > n / 2 && n <= 15000)) {
                // If n is small or k is large compared with n, we better compute the Gramian matrix first
                // and then compute its eigenvalues locally, instead of making multiple passes.
337
                if (k < n / 3) {
                  SVDMode, LocalARPACK
338
                } else {
                  SVDMode.LocalLAPACK
340
341
              } else {
342
                // If k is small compared with n, we use ARPACK with distributed multiplication.
343
                SVDMode.DistARPACK
345
            case "local-svd" => SVDMode.LocalLAPACK
347
            case "local-eigs" => SVDMode.LocalARPACK
            case "dist-eigs" => SVDMode.DistARPACK
            case => throw new IllegalArgumentException(s"Do not support mode $mode.")
```

Acknowledgement & References

- Acknowledgement
 - Some slides are adapted from the MMDS book slides
- References
 - Chapter 11 of the MMDS book

Thank You

Announcements:

- The Mock Test has been released on Blackboard
- A new Stanage reservation for completing the assignment com6012-11 will be available from 1pm on 26 April to 1pm 3rd May
 - This DOES NOT mean you should wait until 26 April to start on your assignment
 - Use your university account to access assignment
- Please fill out the TellUS survey for this module