GRIP-Task 6

February 4, 2021

```
0.0.1 Task 6
```

0.0.2 Author: Manisha Das

0.0.3 Objective:

To create a Decision Tree Classifier and visualize it graphically. I have used ensemble technique to get a better result as decision trees have high variance.

```
[1]: import numpy as np
  import pandas as pd
  from pandas import Series,DataFrame
  import matplotlib.pyplot as plt
  %matplotlib inline
  import seaborn as sns
  sns.set_style('whitegrid')
```

0.0.4 Import the Dataset

```
[2]: df=pd.read_csv('Iris.csv')

df.head()

[3]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 6 columns):
Ιd
                 150 non-null int64
SepalLengthCm
                 150 non-null float64
SepalWidthCm
                 150 non-null float64
PetalLengthCm
                 150 non-null float64
PetalWidthCm
                 150 non-null float64
Species
                 150 non-null object
dtypes: float64(4), int64(1), object(1)
memory usage: 7.2+ KB
```

From the above information it follows that there is no missing observation in the dataset

0.0.5 Delete the Id Column

[4]: df.drop('Id',axis=1,inplace=True)

[5]: df.head()

[5]:	${\tt SepalLengthCm}$	${\tt SepalWidthCm}$	${\tt PetalLengthCm}$	${\tt PetalWidthCm}$	Species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

0.0.6 Visualize the Dataset

[6]: sns.pairplot(df,hue="Species")

[6]: <seaborn.axisgrid.PairGrid at 0x19097bd2f88>

From the diagram, it can be inferred that Iris-setosa has very different Petal Width and Petal Length compared to iris-versicolor and Iris-virginica. Also, from the scatter plots it follows that we can easily separate iris-setosa from the other two species.

0.0.7 Box Plot Representation

```
[7]: sns.boxplot(x="Species",y="PetalLengthCm",data=df,hue="Species")
```

[7]: <matplotlib.axes._subplots.AxesSubplot at 0x19099a00d48>


```
[8]: sns.boxplot(x="Species",y="PetalWidthCm",data=df,hue="Species",palette="pastel")
```

[8]: <matplotlib.axes._subplots.AxesSubplot at 0x190997ff648>

- [9]: sns.boxplot(x="Species",y="SepalLengthCm",data=df,hue="Species",palette="husl")
- [9]: <matplotlib.axes._subplots.AxesSubplot at 0x19099899688>


```
[10]: sns.boxplot(x="Species",y="SepalWidthCm",data=df,hue="Species")
```

[10]: <matplotlib.axes._subplots.AxesSubplot at 0x19099948ac8>

0.0.8 Test Train Split

80 % of the data is used to train the classifier. 20 % of the data is used for testing purpose.

```
[11]: X=df.loc[:,df.columns!='Species']
[12]: X.head()
                         SepalWidthCm PetalLengthCm
[12]:
         SepalLengthCm
                                                       PetalWidthCm
      0
                    5.1
                                   3.5
                                                  1.4
                                                                 0.2
      1
                   4.9
                                  3.0
                                                  1.4
                                                                 0.2
      2
                   4.7
                                  3.2
                                                  1.3
                                                                 0.2
                   4.6
                                   3.1
                                                                 0.2
      3
                                                  1.5
      4
                    5.0
                                  3.6
                                                  1.4
                                                                 0.2
[13]:
     Y=df['Species']
[14]: Y.head()
```

```
4
           Iris-setosa
      Name: Species, dtype: object
[15]: from sklearn.model_selection import train_test_split
[16]: X_train, X_test, Y_train, Y_test=train_test_split(X,Y,test_size=0.2,random_state=0)
     0.0.9 Random Forest Classifier
[17]: from sklearn.ensemble import RandomForestClassifier
[18]: rf=RandomForestClassifier(n_estimators=1000,n_jobs=-1,random_state=1)
[19]: rf.fit(X_train,Y_train)
[19]: RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                             max_depth=None, max_features='auto', max_leaf_nodes=None,
                             min_impurity_decrease=0.0, min_impurity_split=None,
                             min_samples_leaf=1, min_samples_split=2,
                             min_weight_fraction_leaf=0.0, n_estimators=1000,
                             n_jobs=-1, oob_score=False, random_state=1, verbose=0,
                             warm_start=False)
     0.0.10 Testing the Performance of the Classifier
[20]: from sklearn.metrics import accuracy_score,confusion_matrix
[21]: accuracy_score(Y_test,rf.predict(X_test))
[21]: 1.0
[22]: confusion_matrix(Y_test,rf.predict(X_test))
[22]: array([[11, 0, 0],
             [0, 13, 0],
             [ 0, 0, 6]], dtype=int64)
```

 $\lceil 14 \rceil : 0$

1

2

3

observation.

Iris-setosa

Iris-setosa

Iris-setosa

Iris-setosa

We can conclude that the performance of the classifier is really good as it has not misclassified any

0.0.11 Visualize the Decision Tree

From the 1000 trees in the Random Forest , we have randomly picked a decision tree and represented it visually

```
[34]: from dtreeplt import dtreeplt
[35]: cn=['Iris-setosa','Iris-versicolor','Iris-virginica']
           dtree = dtreeplt(
                   model=rf.estimators_[5],
                   feature_names=X_train.columns,
                   target_names=cn
           fig = dtree.view()
                                                                               PetalWidthCm <= 1.60
                                                                                     gini = 0.66
                                                                                    samples = 77
                                                                               values = [[33. 42. 45.]]
class = Iris-virginica
                                                            PetalLengthCm <= 2.30
                                                                                                 PetalLengthCm <= 5.05
                                                                  gini = 0.52
                                                                                                        gini = 0.08
                                                                                                  samples = 28
values = [[ 0. 2. 43.]]
class = Iris-virginica
                                                                 samples = 49
                                                            values = [[33, 40, 2.]] class = Iris-versicolor
                                                            PetalLengthCm <= 4.95
                                                                                                 SepalLengthCm <= 6.50
                             gini = 0.00
                                                                                                                                             gini = 0.00
                                                            gini = 0.09
samples = 25
values = [[ 0. 40. 2.]]
class = Iris-versicolor
                                                                                                        gini = 0.35
                           samples = 24
                                                                                                                                            samples = 21
                                                                                                       samples = 7
                        values = [[33. 0. 0.]]
                                                                                                                                        values = [[ 0. 0. 36.]]
                                                                                                    values = [[0. 2. 7.]]
                         class = Iris-setosa
                                                                                                                                         class = Iris-virginica
                                                                                                   class = Iris-virginica
                                                                                                 SepalWidthCm <= 3.10
                             gini = 0.00
                                                                  gini = 0.00
                                                                                                                                             gini = 0.00
                                                                                                        gini = 0.22
                                                              samples = 1
values = [[0. 0. 2.]]
                       samples = 24
values = [[ 0. 40. 0.]]
class = Iris-versicolor
                                                                                                                                            samples = 1
                                                                                                       samples = 6
                                                                                                                                         values = [[0. 1. 0.]]
                                                                                                    values = [[0. 1. 7.]]
                                                             class = Iris-virginica
                                                                                                                                        class = Iris-versicolor
                                                                                                   class = Iris-virginica
                                                                                     gini = 0.00
                                                                                                                          gini = 0.00
                                                                                                                     samples = 1
values = [[0. 1. 0.]]
class = Iris-versicolor
                                                                                    samples = 5
                                                                                 values = [[0. 0. 7.]]
                                                                                class = Iris-virginica
```

[]: