# R을 활용한 탐색적 자료 분석



호서대학교 빅데이터경영공학부 연규필

# 탐색적 자료분석 (Exploratory Data Analysis)



- 1. 통계와 통계학
  - 1.1 통계학이란
  - 1.2 자료의 형태와 변수의 종류
- 2. 양적자료에 대한 EDA
  - 2.1 기술통계량
  - 2.2 R을 활용한 기초통계량 계산
  - 2.3 양적자료의 그래프 표현
- 3. 질적자료에 대한 EDA
  - 3.1 질적자료의 요약
  - 2.2 질적자료의 그래프 표현



# 1. 통계와 통계학

#### ■ 통계(statistic)

- 사회적 현상 또는 자연현상을 규명하기 위해 수집된 각종 데이터를 요약하거나 적절한 방법을 통하여 일차적으로 가공되어 나오는 정보를 말함
- 불확실성을 규명하기 위해 얻어지는 데이터로부터 생성된 정보
- 일상생활에서 통계적인 수치로 표현되는 여러 가지 정보를 자주 접하게 되며 주로 숫자, 그래프, 도표 또는 그림 등 적절한 표현 방법으로 나타냄
- 동일한 현상도 데이터에 따라 다양한 통계를 얻을 수 있으며 이를 종합하거나 따로 따로 해석함으로써 현상을 이해하고 예측하는데 사용
- 국가는 국가정책을 세우고, 기업에서 경영계획, 생산계획 등을 세우고, 개인은 사회생활이나 경제생활을 하는 데 지표로써 활용함
- 왜곡이 된다면 엄청난 재앙이 따를 수 있음
- 예) 물가지수, 경기종합지수, 산업생산지수, 경제성장률, 실업률, 인구증가율, 종합주가지수, 국민총생산고(GNP), 가용외환보유액, 부채비율 등 (http://www.nso.go.kr)

#### ■ 통계학(statistics)

- 자연과 사회적 집단 혹은 인간사회 등에서 나타나는 현상 등에서 보이는 불확실성 (uncertainty)을 규명하기 위해 다양한 데이터를 기초로 수학 또는 확률적 수단을 통해 학문적으로 분석하기 위한 설계 · 조사 · 분석 · 처리 · 추론에 대한 방법 또는 의사결정에 도움을 주는 방법을 연구하는 학문
- 적절한 데이터 또는 데이터의 가공을 통해 지식을 창출하는 방법을 다루는 학문
- 과학적인 이론에 근거하여 관심사에 대한 정확한 대상이 선정되어야 하며, 연구 목적에 필요한 자료와 정보가 경제성과 정밀도를 고려하여 최적의 방법으로 수집되고, 수집된 자료는 과학적인 이론에 의하여 정리 · 분석하여 최적의 의사결정을 제공하는 방법을 다루는 학문임
- 통계학적 지식은 <u>의사결정시 과학적이고 합당한 이유와 근거를 제시하여 줌</u>
- 통계적 도구들은 우리들의 일상생활에 영향을 끼치는 것에 대한 <u>의사결정</u>을 할 때 <u>합리적</u> <u>이고 과학적인</u> 도움을 줄 수 있음

#### ■ 통계학이란?

• 통계학이란 불확실성을 연구하는 학문임

#### 통계학의 어원

• 고대 로마시대에 국가(State)의 상태(State)를 살피는데 관심을 가졌는데 이것을 'Statistics'라 불렀음



#### 통계학이란?

- 연구 목적에 필요한 <u>자료 및 정보를 최적의 방법으로 수집하고, 수집한 자료를</u> 과학적이고 논리적인 이론에 의해 정리, 분석하는 학문
- 불확실한 상황에서 현명한 의사결정을 하기 위한 이론과 방법의 체계
- 일부로서 전체를 파악하기 위한 이론과 방법의 체계

#### ■ 통계적 문제 해결

■ 현실에서 발생하는 의사결정 문제를 통계적 방법을 통해 실제 문제에 대한 근본원인을 파악 및 해결할 수 있음



#### ■ 통계학의 필요 분야

- 인문 · 사회 · 자연과학, 경험과학 등 모든 분야에 이용되고 있음
  - 경험과학: 자연과 사회에서 일어나는 현상을 체계적으로 설명하기 위하여 새로운 이론을 수립하거나, 기존의 이론을 지지하거나 거부하기 위하여 자료를 수집하여 분석하는 과학
  - 주관적인 판단에 의한 이론이나 의견의 타당성을 주장하기 보다는 객관적 자료에 입각하여
     이론이나 의견을 주장하는 것이 보다 합리적이고 바람직함
    - => 자료분석에 의한 통계가 필수적인 수단
  - 예) 멀티미디어를 사용한 교수법이 전통적 교수법보다 학업성취도 향상에 효과적인지의 여부 를 검증
- 경제통계, 경영통계, 사회통계, 교육통계, 의학통계, 보건통계, 행정통계, 공업통계, 농업통계, 인구통계, 스포츠통계 등 모든 분야에 필요함
- 최근에는 많은 기업에서 자사가 보유하고 있는 데이터베이스(Database)를 이용하여 고객관 계관리(CRM: customer relationship management)를 활용하는 사례(통신사, 카드사, 보험사, 증권사, 백화점, 인터넷 쇼핑몰, 각종 전자상거래 사이트 등)가 큰 이슈로 부각

#### ■ 통계 적용 사례

- 소아마비용 쇼크 백신 : 1954년 백신실험은 엄격한 통제하에 약 40만 명의 어린이들에게 실시. 그 결과에 대한 훌륭한 통계적 분석은 백신의 효능을 확 실하게 믿게 함
- 챌린저호 폭발: 1986년 우주왕복선 챌린저호가 폭발하여, 7명의 우주비행 사들 사망. 이것은 우주선이 낮은 온도에서도 그 기능을 제대로 수행하는지에 대한 자료분석도 없이 우주선 발사를 결정한 결과임.
- 종이 헬리콥터의 설계: 미국의 저명한 통계학자인 박스교수가 제시한 종이 헬리콥터의 설계문제에 있어 설계 파라미터인 날개길이, 몸체길이, 몸체 폭을 얼마로 설계하여야 종이 헬리콥터가 가장 오래 날 것인가를 알아보는 문제, 날개길이와 몸체길이가 체공시간에 가장 큰 영향을 준다는 것을 통계분석의 결과 발견하게 됨. 체공시간에 맞는 헬리콥터를 설계가능
- 품질향상: 많은 기업들은 초우량 기업의 달성 기준을 산업표준으로서 6-시그마(6-sigma) 수준을 설정하고 있음. 이는 품질에 있어 99.999998%가 결함이 없는 프로세스이다. 통신산업의 예를 들면 10년 동안 2.6분 서비스가 중단되는 것과 동일할 정도로 완전무결한 수준을 유지 가능

#### ■ 통계 적용 사례

- 고객만족도 조사 : 고객만족도 조사를 통해 현재 소유하고 있는 TV에 대한 만족도, 광고인지도, TV 선택 시 중요 요인, 라이프 스타일, 인구학적 특성 등을조사하여 제품개발, 브랜드 로열티 분석, 향후 포트폴리오 전략수립, GAP분석, 포지셔닝(positioning) 분석 등에 활용한다
- 사회여론조사: 대통령 선거나 국회의원 선거 등과 같은 중요 정치상황에 대해 선거를 하기 전에 유권자들의 여론 방향을 조사하고, 또한 실제선거에 있어서의 당선자를 예측함.
- 인간 게놈 프로젝트: 대용량의 데이터 속에서 숨겨진 패턴과 지식을 찾아내는 데이터마이닝(Data Mining)과 빅데이터(Big Data) 통계기술이 인간 게놈의 비밀을 푸는데 결정적으로 기여하였다. 과학자들은 30억 개의 인간 염기 서열 중 3% 정도만이 유용한 것으로 보고 있는데, 30억 개 중 어떤 것이 3%에 해당되는지, 또 그 속에 담겨져 있는 유전자 정보를 찾아내 질병 발생원인을 밝혀내는데 데이터마이닝 기술이 절대적 기여를 함

#### ■ 기업에서 통계를 통한 의사결정 사례

- 보험회사들은 적절한 통계적 방법론을 이용하여 자동차 혹은 생명보험료의 적정 수가를 결정한다.
- 수자원공사는 주기적으로 한강의 오염도를 측정하여 정화작업의 필요성 여부에 이용한다.
- 의료업계에서 근무하는 연구자들은 새롭게 개발된 여러 가지 약물들에 대한 임상실험을 통하여 특정 질병의 생존율에 관하여 연구한다.
- 통신회사는 이용금액이 높고 이탈가능성이 높은 고객에게 기기변경에 대한 보조금을 차별 지급하며, 가입기간, 이용금액, 연체횟수에 따라 고객을 점수 화하여 멤버십등급을 구별한다.

#### ■ 마케팅 분야에서의 통계학의 활용

- 모델링(modeling): 이탈모델, 예측모델, 반응모델, Cross-sell 모델 등에 의한 타겟팅 제공하여 비용 감소 및 수익 증대
- 세분화(segmentation): 다양한 개별 고객을 활용 목적에 따라 유사한 몇몇 의 집단으로 그룹화하여 회원의 속성을 규명하는 마케팅 체계 구축 지원
- 분석(analysis): 고객, 상품, 가격, 영업, 경쟁사, 시장변화, 채널 등 다양한 마케팅 이슈에 대한 분석을 통한 마케팅 Insight 발견

#### • 성과 측정:

- 마케팅 성과측정 방법 및 기준을 수립하고, 마케팅 효율 및 성과 측정
- 고객, 상품, Segment에 대한 수익, 비용을 통해 정확한 수익성 평가

- 신용(Risk)관리 분야에서의 통계학의 활용
  - 신용 평가/심사: 고객 심사(underwriting), 연체 예측과 연체 상태 파악, 통 계적/계량적 대손 추정
  - 신용평점 산출(scoring): 고객 정보와 대외정보, 연체정보를 고려한 모델링을 통한 신용평점 개발 및 신용평점 시스템 관리
  - 신용등급 세분화(segmentation): 대외정보, 연체정보, 신용평점 등 리스크에 기반한 고객 세분화와 고객 리스크 관리
  - 사기 방지(Fraud Detect System): 제 3자 사기, 명의도용, 사고매출, 보험 사기 등을 방지하기 위한 모델링 및 사기 방지 시스템 개발

#### ■ 통계 소프트웨어

SAS, SPSS, Minitab, R, Excel, Statistica

- SAS: 대용량 데이터 사용이 가능하며 프로그램 중심으로 통계전문가들이 선호하며 기업에서 주로 많이 활용됨
- SPSS: 쉬운 메뉴방식으로 여론조사, 사회과학 분야에서 많이 사용됨
- Minitab: 프로그램의 부피가 작아 사용하기 편함. 공업통계, 품질관리와 6-시그마 분야에 특화되어 있음
- R: 프리 소프트웨어이며 프로그램 방식으로 대학에서 많이 사용되며 최근 빅데이터 분야에서 선호됨
- Excel: 쉽고, 기초 통계 자료분석에 적합함

#### ■ 통계학의 두 방향

- 기술통계학 (Descriptive Statistics)
  - 방대한 자료를 그래프나 표 또는 몇 개의 숫자로 요약하여, 주어진 자료의 전반적인 내용을 쉽고 빠르게 파악할수 있는 기법을 다루는 분야
- 추측통계학 (Inferential Statistics)
  - 관심의 대상이 되는 전체집단(모집단)으로부터 모집단의 일부(표본)를 추출하고, 표본으로부터 관측된 내용 (통계량)을 근거로 하여 모집단의 특성(모수)을 추측하고 검정하는 방법을 다루는 통계학
  - 통계적 모형을 설정하고 , 설정된 모형이 합리적인지 여부를 평가하며, 주어진 자료로부터 얻어지는 정보를 근거로 미지의 특성에 대한 결론을 내리고 미래를 예측하는 분야



#### ■ 모집단과 표본

- 모집단(population): 연구대상이 되는 모든 개체의 관측값이나 측정값의 집합 반드시 실존하는 개체의 집합이 아님
- 표본(sample): 통계적 처리를 위하여 추출한 모집단의 일부 또는 부분집합
- 추출단위(sampling unit): 모집단의 가능한 관측값이나 측정값이 얻어지는 개체
- 모수 (Parameter)
  - 모집단의 특성치, 고정된 미지의 상수
- 통계량 (Statistic)
  - 표본의 특성치
  - 통계량의 값은 데이터로부터 얻어지고 표본마다 다를 수 있다.
  - 표본평균, 표본비율, 표본분산 등
  - 예) <u>한국의 성인전체(모집단)의 흡연자비율(모수)를</u> 알기 위해서 <u>성인남자 1000명(표본)을</u> 추출하여 <u>이 중 흡연자비율(통계량)</u>이 얼마나 되는지를 조사하였다.

- 모집단과 표본
  - 모집단과 표본



# ■ 자료 (데이터)

- 데이터: 어떤 정황(Context)에 대한 정보를 포함한 숫자나 형태
- 정황은 우리가 어떠한 상황에 대한 배경지식을 이용하여 의사결정 또는 판단을 할 수 있도록 도와주는 역할을 함

상황 1

3.5



당신은 어떠한 판단을 할 수 있습니까?

3.5는 당신에게 어떠한 정보를 줍니까? 가장 친한 친구의 새로 태어난 아기의 몸무게가 3.5Kg라고 합니다. 이정보는 당신에게 어떠한 정보를 줍니까?

#### ■ 자료의 설명

- 자료집합(데이터세트, data set, table): 자료를 모아 놓은 표
- 변수(variable): 개체의 속성(attribute)을 나타내며 열(column)로 표시함
- 변수값: 해당된 변수에 속한 값들
- 자료값(data value): 각 개인의 임의 변수에 해당되는 측정값
- 관측값(observation): 관측대상이 되는 개인에 관한 자료값들의 모임
- 다변량자료(multivariate): 각 개체 별로 알고자 하는 속성이 한 개 이상의 변수로 구성되어 있는 경 우의 자료
- 일변량자료(univariate data): 한 변수만의 속성을 다루는 경우의 자료

# ■ 자료의 설명

| 변수      |  |
|---------|--|
| 필드      |  |
| 고<br>소성 |  |

#### 통계학 과목 수강학생에 대한 자료

| 번호 | → 나이 | <del>``</del> 성별 | 학년 | ₹l(cm)     | 몸무게(kg) |
|----|------|------------------|----|------------|---------|
| 1  | 28   | 0                | 3  | 183        | 82      |
| 2  | 18   | 1                | 1  | 168        | 52      |
| 3  | 46   | 1                | 2  | 165        | 52      |
| 4  | 18   | 1                | 1  | 158        | 55      |
| 5  | 55   | 0                | 5  | 180        | 93      |
| :  | :    | :                | :  | <b>∧</b> : | :       |
| :  | :    | :                | :  |            | :       |
| 33 | 19   | 1                | 2  | <b>170</b> | 54      |
| 34 | 19   | 0                | 2  | 168        | 79      |
| 35 | 19   | 0                | 2  | 183        | 70      |
| 36 | 20   | 1                | 2  | 145        | 37      |

관측값 개체 레코드

> 성별의 0은 남자, 1은 여자 학년의 5는 대학원생을 의미함

자료값

#### ■ 자료의 형태

- 질적 (qualitative) 자료
  - 범주형자료라고도 하며, 명목형 자료와 순서형 자료로 구분됨.
  - 명목형(nominal) 자료
    - 자료 값의 크기나 순서가 없고 단지 자료 값 자체의 이름만 부여할 수 있는 자료예) 성별, 지역, 직업, 혈액형, 종교, 운동선수의 번호, 인종 등이 있음
  - 순서형(ordinal) 자료
    - 기준에 의해 자료 값 들의 순서에 의미를 부여할 수 있는 자료, 비율이나 차이는 없음예) 달리기의 1위, 2위, 3위, 연비에 대한 등급, 성적에서의 수, 우, 미, 양, 가
- 질적자료는 계수형 자료와 함께 이산적인 값을 갖기 때문에 이들을 한데 묶어 <mark>이산형</mark> (discrete) 자료라고도 함

#### ■ 자료의 형태

- 양적 (quantitative) 자료
  - 측정자료(measurement data) 또는 연속자료(continuous data)라고 함
  - 계수형자료와 연속형자료의 구분
    - 계수형(count) 자료: 값이 셀 수 있는 정수 형태인 자료 예) 형제의 수, 자동차 보유대수, 입사 지원자수, 보험 해약건수
    - 연속형(continuous) 자료: 자료의 측정이 셀 수 없는 소수점을 포함하는 자료예) 키, 무게, 길이 등
  - 비율형자료와 등간형자료의 구분
    - 비율형(ratio) 자료: 값들 사이의 차이 또는 비율에도 의미를 부여 있는 자료예) 무게 (0은 절대 영점임)
    - 등간형(interval) 자료: 값들 사이의 차이에는 의미를 부여할 수 있지만 비율에는 의미를 부여할 수 없는 자료.
      - 예) 온도(0은 상대 영점임)

#### ■ 자료의 형태

- 범주형 변수 (categorical variable)
  - 자료의 형태가 명목형, 순서형, 계수형 자료를 다루는 변수
  - 명목형 자료: 성별(남, 여), 지역(서울, 부산, 광주 … ), 혈액형
  - 순서형 자료: 성적(A, B, C, D, E), 순위(1등, 2등, 3등)
  - 계수형(count) 자료: 불량품 수, 결석 인원 수, 방문 수, 보험 해약건수
- 연속형 변수 (continuous variable)
  - 비율형자료, 등간형 자료를 다루는 연속적인 값을 갖는 변수
  - 구간척도:온도
  - 비율척도: 키, 몸무게, 길이, 소요시간
- 질적 변수(quantitative variable)와 양적 변수(qualitative variable)
  - 질적 변수: 명목형 변수, 순서형 변수 => 사칙연산이 가능하지 않음
  - 양적 변수: 계수형 변수, 연속형 변수 => 사칙연산이 가능
- ※ 주의: 자료의 종류에 따라 요약과 통계적 분석의 방법이 다르다.

#### ■ 변수의 유형

- 종속변수(dependent variable) 또는 반응변수(response variable)
  - 가정된 원인에 의해 영향을 받아 변화되는 변수
- 독립변수(independent variable) 또는 설명변수(exploratory variable)
  - 다른 변수를 변화시키는 원인이 되는 변수
- 반응변수와 설명변수가 어떠한 자료의 형태를 따르느냐에 따라 사용 가능한 통계분석 방법들이 다르게 선택됨

# ■ 자료의 형태에 따른 분석 기법 분류

■ 자료의 종류에 따라 요약과 통계적 분석의 방법이 매우 다르게 적용된다.

| 분석의 목적               | 반응변수의 유형 | 설명변수의 유형          | 분석 기법                                                                                                                                        |
|----------------------|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 연관관계 분석<br>(반응변수 없음) |          | 연속형<br>(구간형, 비율형) | 단순상관분석 (변수가 2개)<br>주성분분석, 인자분석, 정준상관분석 (변수가 여러 개)                                                                                            |
|                      |          | 이산형<br>(명목형, 순서형) | Fisher's 정확검정, 카이제곱 검정, 대응분석 (변수가 2개)<br>감마, 람다 등 연관성의 측도<br>다중대응분석, 로그선형모형 (변수가 여러 개)                                                       |
| 인과관계 분석<br>(반응변수 있음) |          | 연속형<br>(이산형 포함)   | 회귀분석 (선영화귀, 비선영화귀, Regression Tree 등)<br>시계열자료분석                                                                                             |
|                      |          | 이산형<br>(연속형 포함)   | t-검정 (이산형 설명변수 1개, 수준 2)<br>일원 분산분석 (이산형 설명변수 1개, 수준 여러 개)<br>다윈 분산분석 (설명변수 여러 개)<br>공분산분석 (이산영과 연속형 설명변수의 혼합)                               |
|                      |          | 연속형<br>(이산형 포함)   | 판별분석 (선형판별, 2차판별, Classification Tree 등)<br>이항, 순서, 다항 로지스틱(프로빗)                                                                             |
|                      |          | 이산형<br>(연속형 포함)   | 로그선영모영                                                                                                                                       |
| ΠEŀ                  |          |                   | 경로분석 (반응변수 여러 개, 반응변수들 간의 인과관계 존재)<br>구조방정식모형 (경로분석과 인자분석의 혼합 형태)<br>군집분석 (개제들 간의 군집화), 다차원척도법(MDS)<br>비모수적 분석 (정규성, 등분산성 등의 가정이 적절하지 않은 경우) |



# 2. 양적 자료에 대한 EDA

#### ■ 대표값

- 위치를 나타내는 통계량
  - 자료들을 수치로 보았을 때 어느 위치에 있는지를 나타냄(위치측도)
  - 자료들이 대략 어떠한 값을 갖는 지를 알아보기 위하여, 어느 위치를 중심으로 자료들이 모여 있는 지를 나타내는 척도
  - 평균(mean), 중앙값(median),
  - 최빈값(mode),
  - 가중평균(weighted mean), 절사평균(trimmed mean),
  - 기하평균(geometric mean), 조화평균(harmonic mean),
  - 백분위수(percentile) 등이 있음
  - 자료에 특이하게 작거나 큰 값이 들어있게 되면 평균값은 대표값으로 부적절한 경우가 생김
  - 최대값, 최소값



#### ■ 대표값

- 자료의 평균값과 중앙값
  - (1) 자료의 평균  $\overline{x} = \sum_{i=1}^n x_i / n$
  - (2) 자료의 중앙값은 크기에 따라 늘어 놓을 때 가운데에 놓이는 값을 말함 중앙값의 위치는 (n+1)/2에 의해 결정되며 자료의 개수가 짝수일 때에는 2개의 중앙의 값의 평균이 중앙값이 된다.
  - (3) 평균은 이상점에 크게 영향을 받지만 중앙값은 별로 영향을 받지 않아 분포상태가 극도로 비대칭 인 경우에는 중앙값이 평균보다 더 큰 의미를 가진다.





평균 = 5, 중앙값=5

평균 = 6, 중앙값=5

#### ■ 대표값

■ 가중평균(weighted mean)

$$\overline{x}_{w} = \frac{\sum_{i=1}^{k} w_{i} x_{i}}{\sum_{i=1}^{k} w_{i}} = \frac{w_{1} x_{1} + w_{2} x_{2} + \dots + w_{k} x_{k}}{w_{1} + w_{2} + \dots + w_{k}}$$

- 최빈값(mode): 자료 중 그 빈도수가 최대인 값
- 범위의 중앙값(midrange): 최대값과 최소값의 평균
- 기하평균: 자료가 양수인 경우 증감율의 평균을 구할 때 사용

$$(x_1 x_2 \cdots x_n)^{1/n}$$

■ 조화평균

$$\left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{x_i}\right)^{-1}$$

# ■ 산포도 (Measure of Dispersion)

- 통계자료가 얼마나 서로 다른 값을 가지는가를 나타냄
- 자료들이 얼마나 변동하거나 퍼져있는 지를 표시함
- 변동성 척도(measure of variability), 퍼짐척도(measure of spread)
- 분산(Variance), 표준편차(Standard deviation),
- 변동계수(Coefficient of variation),
- 범위(Range),
- 4분위 범위(Interquartile range : I.Q.R.) 등이 있음



# ■ 산포도 (Measure of Dispersion)

- 자료의 분산과 표준편차
  - (1) 자료의 분산

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left\{ \sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2} \right\} = \frac{1}{n-1} \left\{ \sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n} \right\}$$

(2) 자료의 표준편차

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} = \sqrt{\frac{1}{n-1} \left\{ \sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \right\}}$$



# ■ 산포도 (Measure of Dispersion)

■ 자료의 분산과 표준편차



<그림> 평균은 같고 분산이 다른 두 표본

# ■ 산포도 (Measure of Dispersion)

■ 자료의 범위(range):

범위 = 최대값 - 최소값

- 쉽고 빠르게 구할 수 있음
- 특이하게 크거나 작은 값이 있을 경우 자료의 범위가 왜곡됨
- 자료의 개수와 상관없이 같게 나올 수 있음
- ⇒ 자료의 변동성을 대표하지 못하는 경우가 많음



<그림> 같은 범위를 갖는 두 표본

#### ■ 대표값

- 사분위수와 백분위수
  - 제 1 사분위  $Q_1$  = 제 25 백분위수
  - 제 2 사분위  $Q_2$  = 제 50 백분위수 (=중위수)
  - 제 3 사분위  $Q_3$  = 제 75 백분위수
  - 제 P 백분위수라 함은 자료를 크기 순서로 늘어 놓았을 때 적어도 P %의 관측값이 그 값보다 작거나 같고, 또한 적어도 (100-P)%의 관측값이 그 값보다 크거나 같게 되는 값을 말한다.
- 다섯숫자 요약 (5-number summary )
  - minimum,  $Q_1$ ,  $Q_2$ ,  $Q_3$ , maximum
- 변동계수 (coefficient of variation)
  - 자료의 측정단위에 의존하지 않는 상대적인 산포의 측도
  - 서로 측정단위가 다른 여러 개의 자료의 산포를 비교할 때 사용될 수 있음

$$CV = \frac{s}{\overline{x}} \times 100$$

# ■ 산포도 (Measure of Dispersion)

- 자료의 사분위범위(Interquartile range : I.Q.R.)
  - 사분위범위(IQR) =  $Q_3 Q_1$
  - 사분위편차(quartile deviation) =  $(Q_3 Q_1)/2$
  - 양쪽 극단 값에서 자료의 25%씩 안쪽으로 들어와 있는 값의 거리 ⇒특이값의 영향을 거의 받지 않음

예) (순서대로 나열): 11 12 13 16 16 17 17 18 21 사분위범위 = 
$$Q_3 - Q_1 = 17 - 13 = 4$$

■ 절대평균편차 (mean absolute deviation, MAD)

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|$$

- 범위가 가지는 단점을 보완한 측도
- 산술평균으로부터의 평균적인 거리
- 관찰값들의 측정단위와 같은 측정단위를 가짐

#### ■ 왜도와 첨도

- 표본 왜도 (Skewness)
  - 자료의 분포에 대한 비대칭의 정도를 나타냄

$$\hat{\mu}_3 = \frac{m_3}{(m_2)^{3/2}} = \frac{\sum_{i=1}^n (x_i - \overline{x})^3 / n}{\left(\sum_{i=1}^n (x_i - \overline{x})^2 / n\right)^{3/2}}$$

- 왜도가 0이면 자료분포의 형태가 좌우 대칭이라는 것을 의미
- 왜도가 0보다 크면 자료가 왼쪽으로 치우쳐진(오른쪽으로 긴 꼬리) 분포
- 왜도가 0보다 작으면 자료가 오른쪽으로 치우쳐진(왼쪽으로 긴 꼬리) 분포









#### ■ 왜도와 첨도

- 첨도 (Kurtosis)
  - 자료의 분포의 뾰족한 정도를 나타냄

$$\hat{\mu}_4 = \frac{m_4}{m_2^2} = \frac{\sum_{i=1}^n (x_i - \overline{x})^4 / n}{\left(\sum_{i=1}^n (x_i - \overline{x})^2 / n\right)^2} - 3$$

- 대칭이면 0, 표준정규분포의 첨도는 0
- 첨도가 0보다 크면 자료분포의 형태가 표준정규분포보다 더 뾰족하다는 것을 의미
- 첨도가 0보다 작으면 자료분포의 형태가 표준정규분포보다 더 납작하다는 것을 의미



# ■ 왜도와 첨도

■ 첨도 (Kurtosis)



#### ■ 기초 통계량 계산 함수

■ 기초 통계량 계산 함수

| 함수            | 내용       | 함수         | 내용        |          |            |
|---------------|----------|------------|-----------|----------|------------|
| ave, mean     | 평균       | median     | 중앙값       | summary  | 다섯수치요약, 평균 |
| var           | 분산       | sd         | 표준편차      | fivenum  | 다섯수치요약     |
| sum           | 합계       | range, IQR | 범위, 사분위범위 | scale    | 표준화        |
| weighted.mean | 가중평균     | quantile   | 사분위수      | skewness | 왜도         |
| min, max      | 최소값, 최대값 | rank       | 순위        | kurtosis | 첨도         |

```
> stat = c(87,85,86,96,78,83,89,95,92,68)
> sum(stat)
[1] 859
> mean(stat) # 평균
[1] 85.9
> max(stat) # 최대값
[1] 96
> min(stat) # 최소값
[1] 68
> range(stat) # 범위
[1] 68 96
```

```
# 분산
> var(stat)
[1] 69.43333
> sd(stat)
             # 표준편차
[1] 8.332667
> median(stat) # 중앙값
[1] 86.5
> rank(stat)
             # 순위
[1] 6 4 5 10 2 3 7 9 8 1
> summary(stat) # 다섯수치요약
  Min. 1st Qu. Median
                       Mean 3rd Qu.
                                     Max.
 68.00 83.50
               86.50
                      85.90 91.25
                                    96.00
```

#### ■ 기초 통계량 계산 함수

■ 기초 통계량 계산 함수

| 함수           | 의미                                                                                                               |
|--------------|------------------------------------------------------------------------------------------------------------------|
| table()      | <ul> <li>분할표를 작성 한다.</li> <li>반환 값은 table 클래스의 인스턴스로, 인자의에 지정한 factor들의<br/>모든 조합에 대해 빈도수를 구한 결과를 저장함</li> </ul> |
| which.max(x) | • 최대값이 저장된 위치의 색인을 반환한다.                                                                                         |

```
> fivenum(stat)
[1] 68.0 83.0 86.5 92.0 96.0
> y <- rnorm(500, 0, 5)
> mean(y)
[1] -0.3851284
> sd(y)
[1] 5.244368
> install.packages("moment")
> library(moments)
> skewness(y)
[1] -0.009739736
> kurtosis(y)
[1] 2.682978
```

```
> x =factor(c("a","b","c","c","c","d","d"))
> x
[1] a b c c c d d
Levels: a b c d
> table(x)

x
a b c d
1 1 3 2
> which.max(table(x)) # 최빈값
c
3
> names(table(x))[3]
[1] "c"
```

# ■ apply 계열 함수

- R에는 벡터, 행렬 또는 데이터 프레임에 임의의 함수를 적용한 결과를 얻기 위한 apply 계열 함수가 있다.
- 이 함수들은 데이터 전체에 함수를 한번에 적용하는 벡터 연산을 수행함으로 속도가 빠르다.

#### < apply 계열 함수 >

| 함수       | 의미                                                                                                                       | 비고                         |
|----------|--------------------------------------------------------------------------------------------------------------------------|----------------------------|
| apply()  | • <mark>배열 또는 행렬에</mark> 주어진 함수를 적용한 뒤 그 결과를 벡터,<br>배열 또는 리스트로 반환한다.                                                     | • 배열 또는 행렬에 적용             |
| lapply() | • 벡터, 리스트 또는 표현식에 함수를 적용하여 그 결과를 리스<br>트로 반환한다.                                                                          | • 결과가 리스트                  |
| sapply() | • lapply와 유사하지만 결과를 벡터, 행렬 또는 배열로 반환함                                                                                    | • 결과를 벡터, 행렬 또는 배열         |
| tapply() | • 벡터에 있는 데이터를 특정 기준에 따라 그룹으로 묶은 뒤 각<br>그룹마다 주어진 함수를 적용하고 그 결과를 반환한다.                                                     | • 데이터를 그룹으로 묶은 뒤<br>함수를 적용 |
| mapply() | • sapply의 확장된 버전으로, 여러 개의 벡터 또는 리스트를 인<br>자로 받아 함수에 각 데이터의 첫째 요소들을 적용한 결과,<br>둘째 요소들을 적용한 결과, 셋째 요소들을 적용한 결과 등을<br>반환한다. | • 여러 데이터를 함수의 인자<br>로 적용   |

# ■ apply 함수

- apply 함수는 행렬의 행 또는 열 방향으로 특정 함수를 적용하는 데 사용된다.
- rowSums, colSums, rowMeans, colMeans을 통해서도 합 또는 평균을 구할 수 있다.

#### <apply, rowSums, colSums, rowMeans, colMeans 함수>

| 함수                       | 의미                                                                                                                                                                                              |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| apply(x, MARGIN, FUN)    | <ul> <li>배열 또는 행렬에 FUN을 MARGIN 방향으로 적용하여 그 결과를 벡터, 배열 또는 리스트로 반환한다.</li> <li>margin=1 이면 행, margin=2 이면 열</li> <li>반환 값은 FUN이 길이 1인 벡터들이면 벡터, 1보다 큰 벡터들이면 행렬, 서로 다른 길이의 벡터들이면 리스트이다.</li> </ul> |
| rowSums(x, na.rm=FALSE)  | • 숫자 배열 또는 데이터 프레임에서 행의 합을 구한다.                                                                                                                                                                 |
| colSums(x, na.rm=FALSE)  | • 숫자 배열 또는 데이터 프레임에서 열의 합을 구한다.                                                                                                                                                                 |
| rowMeans(x, na.rm=FALSE) | • 숫자 배열 또는 데이터 프레임에서 행의 평균을 구한다.                                                                                                                                                                |
| colMeans(x, na.rm=FALSE) | • 숫자 배열 또는 데이터 프레임에서 행의 평균을 구한다.                                                                                                                                                                |

# ■ apply 함수

```
> (d = matrix(1:9, ncol=3))
     [,1] [,2] [,3]
[1,]
[2,] 2
[3,]
> apply(d,1, sum)
                           # margin=1 이면 행
[1] 12 15 18
> apply(d,2, sum)
                           # margin=2 이면 열
[1] 6 15 24
> head(iris,3)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          5.1
                      3.5
                                   1.4
                                              0.2 setosa
2
          4.9
                      3.0
                                              0.2 setosa
                                   1.4
                      3.2
                                              0.2 setosa
          4.7
                                   1.3
> apply(iris[,1:4],2,sum)
Sepal.Length Sepal.Width Petal.Length Petal.Width
      876.5
                   458.6
                                563.7
                                             179.9
> colSums(iris[,1:4])
Sepal.Length Sepal.Width Petal.Length Petal.Width
      876.5
                   458.6
                                563.7
                                             179.9
```

# ■ lapply 함수

■ lapply 함수는 리스트로 반환하는 특징이 있는 apply 계열 함수이다.

#### <lapply, unlist 함수>

| 함수                                         | 의미                                                                                            |
|--------------------------------------------|-----------------------------------------------------------------------------------------------|
| lapply(x, FUN,)                            | • 벡터, 리스트, 표현식, 데이터 프레임 등에 함수를 적용하고 그 결과<br>를 <mark>리스트로 반환</mark> 한다. 반환 값은 x와 같은 길이의 리스트이다. |
| unlist(x, recursive=FALSE, use.names=TRUE) | • 리스트 구조를 벡터로 변환한다.<br>• 반환 값은 벡터다.                                                           |

```
> (result=lapply(1:3, function(x) {x*2}))
[[1]]
[1] 2

[[2]]
[1] 4

[[3]]
[1] 6
> str(result)
List of 3
$ : num 2
$ : num 4
$ : num 6
```

```
> (t=unlist(result))
[1] 2 4 6

> x=list(a=1:3, b=4:6)

> (y=lapply(x, mean))
$a
[1] 2
$b
[1] 5
> str(y)
List of 2
$ a: num 2
$ b: num 5
```

# ■ lapply 함수

```
> y=lapply(iris[, 1:4], mean); y # 리스트
$Sepal.Length
[1] 5.843333
$Sepal.Width
[1] 3.057333
$Petal.Length
[1] 3.758
$Petal.Width
[1] 1.199333
> t=data.frame(y); t # 데이터프레임
 Sepal.Length Sepal.Width Petal.Length Petal.Width
     5.843333 3.057333
                               3.758
                                        1.199333
> u=unlist(y); u # 벡터
Sepal.Length Sepal.Width Petal.Length Petal.Width
   5.843333
               3.057333
                            3.758000
                                        1.199333
> colMeans(iris[, 1:4]) # 벡터
Sepal.Length Sepal.Width Petal.Length Petal.Width
   5.843333
               3.057333
                            3.758000
                                        1.199333
```

# ■ sapply 함수

■ sapply 함수는 lapply 함수와 유사하지만 리스트 대신 행렬, 벡터 등의 데이터 타입으로 결과를 반환함

| 함수              | 의미                                                                                                                                    |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|
| sapply(x, FUN,) | <ul> <li>벡터, 리스트, 표현식, 데이터 프레임 등에 함수를 적용하고 그 결과를 벡터 또는<br/>행렬로 반환한다.</li> <li>반환 값은 FUN이 길이 1인 벡터들이면 벡터, 1보다 큰 벡터들이면 행렬이다.</li> </ul> |

```
> x=sapply(iris[, 1:4], mean); x
Sepal.Length Sepal.Width Petal.Length Petal.Width
    5.843333
                 3.057333
                              3.758000
                                           1.199333
> class(x)
[1] "numeric"
> as.data.frame(x)
Sepal.Length 5.843333
Sepal.Width 3.057333
Petal.Length 3.758000
Petal.Width 1.199333
> as.data.frame(t(x))
  Sepal.Length Sepal.Width Petal.Length Petal.Width
      5.843333
                  3.057333
                                  3.758
                                           1.199333
```

```
> sapply(iris, class)
Sepal.Length Sepal.Width Petal.Length Petal.Width
Species
   "numeric"
                "numeric"
                              "numeric"
                                           "numeric"
"factor"
> y=sapp[y(iris[. 1:4], function(x) {x>3}); y
> class(y)
[1] "matrix"
> head(y)
 Sepal.Length Sepal.Width Petal.Length Petal.Width
[1,]
             TRUE
                         TRUE
                                      FALSE
                                                  FALSE
[2,]
                                      FALSE
             TRUE
                        FALSE
                                                  FALSE
```

# ■ tapply 함수

■ tapply 함수는 그룹별로 함수를 적용하기 위한 apply 계열 함수로 배열을 반환한다.

| 함수                     | 의미                                                                                                          |
|------------------------|-------------------------------------------------------------------------------------------------------------|
| tapply(x, INDEX, FUN,) | <ul> <li>벡터 등에 저장된 데이터를 주어진 기준에 따라 그룹으로 묶은 뒤 각<br/>그룹에 함수를 적용하고 그 결과를 반환한다.</li> <li>반환 값은 배열이다.</li> </ul> |

```
> tapply(1:10, rep(1,10), sum)
1
55
> tapply(1:10, 1:10 %% 2, sum)
0  1
30 25
> tapply(iris$Sepal.Length, iris$Species, mean)
    setosa versicolor virginica
    5.006    5.936    6.588
```

# ■ mapply 함수

■ mapply 함수는 sapply 함수와 유사하지만 <mark>다수의 인자를 함수에 넘긴다는</mark> 점에서 차이가 있다.

| 함수           | 의미                                                                                                                                                                       |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mapply(FUN,) | <ul> <li>함수에 리스트 또는 벡터로 주어진 인자를 적용한 결과를 반환한다.</li> <li>…에 주어진 여러 데이터가 있을 때 FUN에 이들 데이터 각각의 첫째 요소를<br/>인자로 전달하여 실행한 결과,각각의 둘째 요소를 인자로 전달하여 실행한<br/>결과 등을 반환한다.</li> </ul> |

```
> rnorm(10, 0, 1)
 [1] -0.277173007 0.256457498 1.424091000 0.715459531 -0.005594503
                                                                   0.896659832
 [7] -0.175640622 -0.194556803 1.279371985 0.428433761
> mapply(rnorm,
        c(1, 2, 3),
                            # n
                       # mean
        c(0, 10, 100),
        c(1, 1, 1)
                            # sd
[[1]]
[1] -1.323438
                                           > mapply(mean, iris[, 1:4])
[[2]]
                                            Sepal.Length Sepal.Width Petal.Length Petal.Width
[1] 9.447432 9.494280
                                               5.843333
                                                            3.057333
                                                                        3.758000
                                                                                     1.199333
[[3]]
[1] 99.80582 100.97717 100.82098
```

# ■ aggregate 함수

■ aggregate 함수는 그룹별 연산을 위한 함수임. tapply와 같은 동일한 결과를 출력함.

| 함수                           |         | Arguments                                                                           |  |  |
|------------------------------|---------|-------------------------------------------------------------------------------------|--|--|
| aggregate(x,<br>by,<br>FUN,) | X       | • R 객체                                                                              |  |  |
|                              | by      | • 데이터프레임안의 변수로서 그룹을 하고자 하는 변수로 factor이어야 함                                          |  |  |
|                              | FUN     | • 적용하고자 하는 함수                                                                       |  |  |
| aggregate(formula            | formula | • y ~ x or cbind(y1, y2) ~ x1 + x2와 같은 <u>formula</u> . x<br>또는 x1, x2는 factor이어야 함 |  |  |
| data,<br>FUN,)               | data    | • 적용할 데이터프레임 또는 리스트                                                                 |  |  |
|                              | FUN     | • 적용하고자 하는 함수                                                                       |  |  |

#### ■ 자료의 그래프 표현

- 수집된 자료를 효과적으로 정리, 요약하기 위해서 적절한 도표나 그래프를 사용하여 시각화 할 필요가 있음
- 자료의 시각화를 통해 자료의 대략적인 분포 형태 및 특성 등을 파악할 수 있음
  - 자료의 시각화를 통해 대칭 혹은 비대칭의 정도, 대부분의 자료로부터 동떨어진 이상점(outliers)의 유무, 그리고 상대적으로 많은 자료가 분포되어 있는 봉우리의 위치 등
- 그래프 표현은 수치를 이용하는 것을 보완하여 자료의 내포된 정보를 보다 쉽고 빠르게 파악할 수 있게 함
- 탐색적 자료 분석의 단계에서는 필수적인 요소임

# ■ hist 함수

| 함수                                                                                                                                                                                                                                                                                                                                  | 의미                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hist(x, breaks = "Sturges", freq = NULL, probability = !freq, include.lowest = TRUE, right = TRUE, density = NULL, angle = 45, col = NULL, border = NULL, main = paste("Histogram of", xname), xlim = range(breaks), ylim = NULL, xlab = xname, ylab, axes = TRUE, plot = TRUE, labels = FALSE, nclass = NULL, warn.unused = TRUE,) | <ul> <li>x: 히스토그램을 그려야할 벡터</li> <li>breaks: breakpoint를 주어야 할 벡터, 함수, 수, 문자 또는 셀의 수를 계산 할 함수</li> <li>freq: 빈도이면 TRUE, 확률이면 FALSE</li> <li>include.lowest: 첫번째를 포함하면 TRUE</li> <li>density: 밀도함수 선을 그림. Default는 NULL</li> </ul> |

#### > hist(islands)



Histogram of islands

# ■ hist 함수

cars example : speed, dist

```
> par(mfrow = c(1, 2))
```

- > hist(cars\$speed)
- > hist(cars\$dist)

#### Histogram of cars\$speed

# Ledneuck 0 5 10 20 cars\$speed

#### Histogram of cars\$dist



# ■ hist 함수

■ histogram 장식

```
> hist(cars$dist, xlab = "Distance")
> hist(cars$dist, 15, xlab = "Distance", main = "Histogram of Distance")
```

#### Histogram of cars\$dist

# Eredneuck 0 40 80 120 Distance

#### **Histogram of Distance**



# ■ hist 함수

■ histogram에 추정 밀도 추가하기

```
> par(mfrow = c(1, 1))
> hist(cars$dist, 15, xlab = "Distance", main = "Histogram of Distance", prob = T)
> lines(density(cars$dist))
```

#### **Histogram of Distance**



# ■ boxplot 함수

| 함수                                                                                                                                                                                                                                                          | 의미                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| boxplot(formula, data = NULL,, subset,<br>na.action = NULL,<br>drop = FALSE, sep = ".", lex.order = FALSE)                                                                                                                                                  | • y~grp 와 같은 식<br>• data: 데이터프레임 |
| boxplot(x,, range = 1.5, width = NULL, varwidth = FALSE, notch = FALSE, outline = TRUE, names, plot = TRUE, border = par("fg"), col = NULL, log = "", pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5), horizontal = FALSE, add = FALSE, at = NULL) | • x: 그림을 그려야할 벡터                 |

- > par(mfrow = c(1, 2))
- > boxplot(cars\$speed, main = "Speed")
- > boxplot(cars\$dist, main = "Distance")

#### Speed



#### Distance





[1] 2 26 36 56 93

\$n [1] 50

\$conf

[1] 29.29663 42.70337

\$out

[1] 120

# ■ boxplot 함수

- outlier에 label 붙이기
- pos는 문자열은 하단에 표시하라는 옵션



# ■ boxplot 함수

■ boxplot에 평균 추가

```
> boxstats <- boxplot(cars$dist, horizontal = TRUE)
> mean.dist <- mean(cars$dist)
> text(mean.dist, 1 + 0.08, labels = mean.dist)
```



# ■ boxplot 함수

■ boxplot을 이용한 그룹간 분포 비교

```
> par(mfrow = c(1, 2))
> boxplot(extra ~ group, data = sleep)
> plot(extra ~ group, data = sleep)
```







# 3. 질적 자료에 대한 EDA

# 3.1 질적자료의 요약



#### Drink 데이터

| ID | Age | Drink | ID  | Age | Drink |
|----|-----|-------|-----|-----|-------|
| 1  | 20대 | С     | 55  | 10대 | С     |
| 2  | 10대 | D     | 56  | 10대 | D     |
| 3  | 10대 | D     | 57  | 30대 | D     |
| 4  | 10대 | Α     | 58  | 10대 | D     |
| 5  | 10대 | В     | 59  | 20대 | С     |
| 6  | 10대 | D     | 60  | 20대 | В     |
| 7  | 30대 | В     | 61  | 10대 | В     |
|    |     |       |     |     |       |
| 54 | 10대 | D     | 108 | 10대 | В     |

```
Drink = read.csv( "D:/Drink.csv",header=TRUE)
table(Drink$Age) # 1차원 빈도표
table(Drink$Age,Drink$Drink) # 2차원 분할표(교차표)
```

# 3.1 질적자료의 요약

#### ■ 빈도표

```
Drink = read.csv( "D:/Drink.csv",header=TRUE)
table(Drink$Age) # 1차원 빈도표
table(Drink$Age,Drink$Drink) # 2차원 분할표(교차표)
```

```
> table(Drink$Age) # 1차원 빈도표
10대 20대 30대
38 38 32
```

```
> table(Drink$Age,Drink$Drink) # 2차원 분할표(교차표)

A B C D
10대 10 14 2 12
20대 13 7 10 8
30대 12 4 6 10
```



#### ■ 주변합계의 추가

```
addmargins(table(Drink$Age))
addmargins(table(Drink$Age,Drink$Drink),margin=2)
```

> addmargins(table(Drink\$Age))

```
10대 20대 30대 Sum
38 38 32 108
```

> addmargins(table(Drink\$Age,Drink\$Drink),margin=2)

# 3.1 질적자료의 요약

# ■ 비율(백분율)의 출력

30CH

```
Age.table = table(Drink$Age)
prop.table(Age.table)*100
round(prop.table(Age.table)*100.1)
                                                > round(prop.table(Age.table)*100,1)
       > Age.table = table(Drink$Age)
       > prop.table(Age.table)*100
                                                10대 20대 30대
                                                35.2 35.2 29.6
           10CH
                     20CH
                              30CH
       35.18519 35.18519 29.62963
 Drink.table = table(Drink$Age,Drink$Drink)
 round(addmargins(prop.table(Drink.table,margin=1)*100,margin=2),1)
       > Drink.table = table(Drink$Age,Drink$Drink)
       > round(addmargins(prop.table(Drink.table,margin=1)*100,margin=2),1)
                                          Sum
               26.3 36.8
          10CH
                             5.3 31.6 100.0
          20대
               34.2 18.4 26.3 21.1 100.0
```

37.5 12.5 18.8 31.2 100.0

# 3.1 질적자료의 요약

#### ■ Xtabs 함수를 이용한 분할표 출력

```
xtabs(~Age,data=Drink)
xtabs(~Age+Drink,data=Drink)
```



#### ■ 요약데이터에 대한 빈도표

#### Count 데이터

| Obs. | Age | Drink | Freq | Obs. | Age | Drink | Freq |
|------|-----|-------|------|------|-----|-------|------|
| 1    | 10대 | Α     | 10   | 7    | 20대 | С     | 10   |
| 2    | 10대 | В     | 14   | 8    | 20대 | D     | 8    |
| 3    | 10대 | С     | 2    | 9    | 30대 | Α     | 12   |
| 4    | 10대 | D     | 12   | 10   | 30대 | В     | 4    |
| 5    | 20대 | Α     | 13   | 11   | 30대 | С     | 6    |
| 6    | 20대 | В     | 7    | 12   | 30대 | D     | 10   |

Count = read.csv("data/Count.csv",header=TRUE)
Drink.table = xtabs(Freq~Age+Drink,data=Count)
Drink.table

### 3.1 질적자료의 요약

#### ■ 요약데이터에 대한 빈도표

```
round(addmargins(prop.table(Drink.table,margin=1)*100,margin=2),2)
```

> round(addmargins(prop.table(Drink.table,margin=1)\*100,margin=2),2)
Drink

```
Age A B C D Sum
10대 26.32 36.84 5.26 31.58 100.00
20대 34.21 18.42 26.32 21.05 100.00
30대 37.50 12.50 18.75 31.25 100.00
```



# 3.2 그래프를 이용한 질적자료의 표현

# ■ 막대도표

Chart.table = table(Drink\$Drink) barplot(Chart.table,col="green",main="선호하는 음료수",cex.axis=1)





# 3.2 그래프를 이용한 질적자료의 표현

# ■ 원도표

pie(Chart.table,main="선호하는 음료수",cex=1)

#### 선호하는 음료수





#### ■ 파레토 도표





# 3.2 그래프를 이용한 질적자료의 표현

#### ■ 모자이크 도표

Drink.table = table(Drink\$Age,Drink\$Drink)
mosaicplot(Drink.table,color=TRUE,cex.axis=1)
mosaicplot(Age~Drink,data=Drink,color=TRUE,cex.axis=1)

#### Drink





#### ■ 연결선 그래프

#### Temperature 데이터: 우리나라 1984년도 8월의 일자별 기온

```
temp = read.csv("data/temperature.csv",header=TRUE)
head(temp)
plot(temp$Date,temp$Temperature,type="b",lty="solid",lwd=1,pch=1,cex=2,
        col="blue",xlab="Date",ylab="Temperature",xlim=c(1,30),ylim=c(20,40))
plot(Temperature~Date,data=temp,type="b",lty="solid",lwd=1,pch=1,cex=2,
        col="blue",xlab="Date",ylab="Temperature",xlim=c(1,30),ylim=c(20,40))
```

#### > head(temp)

|   |      | •           |
|---|------|-------------|
|   | Date | Temperature |
| 1 | 1    | 24          |
| 2 | 2    | 27          |
| 3 | 3    | 28          |
| 4 | 4    | 32          |
| 5 | 5    | 30          |
| 6 | 6    | 35          |
|   |      |             |

