

LINEAR ALGEBRA AND ITS APPLICATIONS UE19MA251

Rotation Matrices Q:

The linear system of equations ANED can be represented as a Linear Transformation

Tack = Ax, where TA: Rh > Rm

Rotation Matrices Q:

Rotation Matrices Q:

Note

Rotation Matrices Q:

Rotation preserves all angles between the vertors as well as their length. So it is severible protons.

Projection Matrices P

P[e] = P[o] =
$$\beta'$$
 = β' =

$$P[e_{2}] = P[i] = B = \begin{cases} 0B & \text{ord} \\ 0B & \text{ord} \end{cases} = \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

$$= \begin{cases} 8in0 & \text{ord} \\ 8in0 & \text{ord} \end{cases}$$

Projection Matrices P

- . This matrix has no enverse, because the transformation has no enverse.
- Projecting twice is the some as

 projection one

 i e pa = P

THANK YOU