

La Maldición de la Dimensionalidad

Muchas variables implican un crecimiento exponencial de los datos necesarios para obtener resultados significativos porque la información queda dispersa en el hiperespacio.

Tomando una foto

Tomando una foto

Datos de casas

Area
Numero de habitaciones
Numero de baños
Escuelas cercanas
Crimen en el area

Datos de casas

Area
Numero de habitaciones
Numero de baños

Escuelas cercanas
Crimen en el area

Tamaño

Datos de casas

5 dimensiones 2 dimensions

Area Numero de habitaciones Numero de baños

Escuelas cercanas crimen en el area

Tamaño

Ubicación

Promedio, varianza, covarianza

Promedio

Varianza =
$$\frac{5^2+0^2+5^2}{3}$$
 = 50/3

x-varianza =
$$\frac{2^2 + 0^2 + 2^2}{3}$$
 = 8/3

y-varianza =
$$\frac{1^2+0^2+1^2}{3}$$
 = 2/3

covarianza =
$$\frac{(-2) + 0 + (-2)}{3} = -4/3$$

$$covarianza = \frac{2+0+2}{3} = 4/3$$

covarianza negativa covarianza cero (o muy pequena)

covarianza positiva

Valores y vectores propios (eigenvalues and eigenvectors)

Matriz de covarianza

Transformaciones lineales

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix}$$

Transformaciones lineales

Transformaciones lineales

Vectores propios (dirección)

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

Valores propios (magnitud)

1

Valores y vectores propios

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix} v = \lambda v$$
Valor propio

Valores propios

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix}$$

Polinomio característico

$$\begin{vmatrix} x-9 & -4 \\ -4 & x-3 \end{vmatrix} = (x-9)(x-3) - (-4)(-4) = x^2 - 12x + 11$$
$$= (x-11)(x-1)$$

Valores propios 11 y 1

Vectores propios

$$\begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 11 \begin{pmatrix} u \\ v \end{pmatrix} \qquad \begin{pmatrix} 9 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 1 \begin{pmatrix} u \\ v \end{pmatrix}$$
$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

Análisis de componentes principales (PCA)

Análisis de componentes principales (PCA)

Análisis de componentes principales (PCA)

Transformación de variables

Variable 1	Variable 2	Variable 3	Variable 4	Variable 5	Variable 6

Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	Comp. 6

- Los primeros componentes reúnen la mayor cantidad de varianza de los datos originales.
- Los componentes son combinaciones lineales de las variables originales.

$$Comp_1 = w_{11}Var_1 + w_{12}Var_2 + \dots + w_{1n}Var_n$$

Conceptos

Análisis Factorial

El objetivo es develar la estructura de los datos. El fin último generalmente es detectar redundancia de variables (o casos) y, si se desea, realizar reducción de variables independientes (o casos). Otro posible objetivo es detectar factores latentes.

Análisis Factorial Vs Componentes Principales

EFA: Variables observadas son combinaciones lineales de los factores latentes.

PCA: Los componentes son combinaciones lineales de las variables observadas.

Análisis Factorial

Objetivo:

- Determinar factores latentes a las variables observadas
- Disminución de dimensiones

Técnica de extracción:

- Componentes principales
- Mínimos cuadrados: entre matriz de correlación y matriz reproducida
- Máxima verosimilitud: supuesto de normalidad multivariada

Rotación:

Se rotan los factores latentes para mejorar su interpretación.

Supuestos

Correlación Lineal

- Las Relaciones que se prueban únicamente son lineales
- Pueden utilizarse otro tipo de coeficientes de correlación

Naturaleza de las variables

 Deben ser variables escalares pero puede adaptarse para variables ordinales

Factorabilidad

- Existe correlación entre las variables
- Colinearidad. KMO, Barlett

Tamaño de muestra

N/k>20:1

Factor II

Rotaciones: Varimax - Quartimax

Original

	Factor 1	Factor 2
Variable 1	0.5	0.4
Variable 2	-0.2	0.5
Variable 3	0.3	0.4
Variable 4	0.6	0.2

Varimax

	Factor 1	Factor 2
Variable 1	0.8	0.4
Variable 2	-0.2	0.3
Variable 3	0.3	0. 9
Variable 4	0.9	0.2

	Factor 1	Factor 2
Variable 1	0.6	0.2
Variable 2	-0.1	0.6
Variable 3	0.2	0.65
Variable 4	0.7	0.05

Las cargas factoriales no son representativas de valores verdaderos, solo ilustrativas del concepto

Data Understanding/Preparation

- Estandarizar variables
 - Vuelve comparables las magnitudes de las variables
- Análisis de correlaciones
 - Permite darse una idea de la estructura de correlación en los datos
 - Da cierta forma valida la pertinencia de la reducción de dimensiones
 - Puede hacerse sobre:
 - ✓ Mapa de calor de matriz de correlaciones/covarianzas: debe percibirse cierta
 correlación entre las variables
 - ✓ Prueba de esfericidad de Barlet: contrasta la hipótesis de que la matriz de covarianzas es la matriz identidad
 - ✓ KMO: Compara correlaciones vs las correlaciones parciales. Regla del pulgar KMO>0.5

Aplicaciones de PCA/EFA

Reducción de dimensiones

Volver escalables algunos algoritmos aplicados dentro de Analítica

Identificar factores latentes

- Aplicados usualmente dentro del campo de la psicología
- A través de información "indirecta" ayudan, de cierta manera, a la medición de variables que no se pueden observar directamente: felicidad, inteligencia, satisfacción, etc.
- Permite mejorar la comprensión de grandes volúmenes de variables
- Puede apoyar técnicas de clustering