

COMSATS UNIVERSITY ISLAMABAD ATTOCK CAMPUS

Lab Report 10: Operating System

Submitted to: Sir Fayyaz Ali

Group Members Muaaz Shoaib FA20-BCS-074

Shahzeb Shaheen FA20-BCS-040

Rubrics Assessment Sheet for Operating System					
Lab #:	Lab no 10				
Lab Title:	Banker Algorithm and D	Banker Algorithm and Deadlock Avoidance			
Submitted by:	·				
Names		Registration			
Muaaz Shoaib		FA20-BCS-074			
Shahzeb Shaheen		FA20-BCS-040			

Rubrics name & number		Marks	
		ln-Lab	Post lab
Engineering Knowledge	R2:Use of Engineering Knowledge and follow Experiment Procedures: Ability to follow experimental procedure,control variables,and record Procedural steps on lab report.		
Problem Analysis	R6: Experimental Data Analysis : Ability to interept findings, compare them to values in the literature, identify weaknesses and limitations		
Design	RS: Best Coding Staudards: Ability lofo llow the coding standards and programming practices		
Modem Tools Usage	R9: Understalld Tools: Ability to describe and explain the principles behind applicability of engineering tools.		
Individual and Teamwork	R9:Management of Team Work: Ability to appreciate, understand and work multidisciplinary team members		

Rubrics #	R2	R6	RS	R9	R13
Jn -Lab					
Post- Lab					

IN-LAB QUESTIONS

Q: Write a C program to simulate Bankers algorithm for the purpose of deadlock avoidance.

Answer:

Code:

```
#include<stdio.h>
struct file {
 int all[100];
 int max[100];
 int need[100];
 int flag;
};
void main() {
 struct file f[100];
 int fl;
 int i, j, k, p, b, n, r, g, cnt = 0, id, newr;
 int avail[100], seq[100];
 //clrscr();
 printf("Enter number of processes -- ");
 scanf("%d", & n);
 printf("Enter number of resources -- ");
 scanf("%d", & r);
 for (i = 0; i < n; i++) {
  printf("Enter details for P%d", i);
  printf("\nEnter allocation\t -- \t");
 for (i = 0; i < n; i++) {
  printf("P%d\t", i);
  for (j = 0; j < r; j++)
```

```
\begin{split} & printf("\%6d", f[i].all[j]); \\ & for \ (j=0; j < r; j++) \\ & printf("\%6d", f[i].max[j]); \\ & for \ (j=0; j < r; j++) \\ & printf("\%6d", f[i].need[j]); \\ & printf("\n"); \\ & \} \\ & getch(); \end{split}
```

Output:

```
Enter Request for Resources -- 1
2
3
4
5

REQUEST NOT GRANTED -- DEADLOCK OCCURRED
SYSTEM IS IN UNSAFE STATE
Process Allocation Max Need
P0 1 2 3 4 5 3 7 8 9 1 2 5 5 5 0
P1 1 2 3 4 5 8 7 6 5 4 7 5 3 1 0
P2 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P4 1 2 3 4 5 7 6 5 8 9 6 4 2 4 4
P5 1 2 3 4 5 6 9 2 5 1 5 7 0 1 0
P7 1 2 3 4 5 6 9 2 5 1 5 7 0 1 0
P8 1 2 3 4 5 6 9 2 5 1 5 7 0 1 0
P8 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P9 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P9 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P9 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P9 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P1 1 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P1 1 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P1 1 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P1 1 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P1 1 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P1 1 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P1 1 1 2 3 4 5 1 2 3 4 5 0 0 0 0 0 0
P1 1 1 2 3 4 5 5 4 3 2 1 4 2 0 0 0 0
P1 1 1 2 3 4 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 5 0 0 0 0 0 0 0
P1 1 1 2 3 4 5 5 5 5 5 5 0
```