Теортест-1 (Вариант 95)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения:

- 1. первообразная дробно-рациональной функции выражается через элементарные функции;
- 2. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;
- 3. первообразная дробно-рациональной функции является дробно-рациональной функцией;
- 4. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если $\left| \int_a^b f(x) dx \right| = 0$, то $f(x) \equiv 0$ на [a, b];
- 2. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;
- 3. Если f > 0 на [a, b], то $\int_a^b f(x) dx > 0$;
- 4. Если $\int_a^b |f(x)| dx = 0$, то $f(x) \equiv 0$ на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения (тела A и B имеют объем):

- 1. любое множество имеет неотрицательный объем;
- 2. объем A всегда неотрицателен;
- 3. объем треугольника равен нулю;
- 4. объем $A \cup B$ равен сумме объемов A и B;

Задача 4

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна на [a,b] и f((a+b)/2)=1;
- 2. f непрерывна в точке a и f(b) = 1;
- 3. f((a+b)/2) = 1;
- 4. f возрастает (нестрого) на [a, b] и f(b) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^2 x f(x) dx$:

- 1. [-1, 20];
- 2. [-2, 20];
- 3. [-10, 20];
- 4. [0, 10];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. vdt = du;
- 2. v = u' + C;
- 3. u' = v + C;
- 4. v' = u + C:

Задача 7

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;s_{\tau},S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau : s_{\tau} < S_{\tau}$;
- 2. $\forall \tau \; \exists \xi : \; s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$
- 3. $\forall \tau \; \exists \xi \colon S_{\tau} = \sigma_{\tau}(\xi);$
- 4. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) > S_{\tau} + \varepsilon;$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $\int f(x) \ln x dx = \ln x \cdot f'(x) \int \frac{f'(x)}{x} dx;$
- 2. $\int \frac{f'(x)}{x^2} dx = \frac{f(x)}{x^2} + \int \frac{f(x)}{x} dx;$
- 3. $2 \int x f(x) dx = x^2 f'(x) \int x f'(x) dx;$
- 4. $\int f(x) \sin x dx = \cos x \cdot f(x) \int f'(x) \cos x dx$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. $\int_a^b f(x)dx = F(b) F(a);$
- 2. F дифференцируема на [a,b];
- 3. F ограничена на [a,b];
- 4. F первообразная для f на [a, b];

Задача 10

Выберите все верные утверждения:

- 1. Длина спрямляемой кривой конечна;
- 2. Гладкая кривая это кривая, все параметризации которой гладкие;
- 3. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 4. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 5. Длины противоположных путей равны;