From Linear Regression to Logistic Regression

Quang-Vinh Dinh
PhD in Computer Science

Outline

- > Optimization Review
- > Linear Regression Review
- > Logistic Regression
- > Examples
- > Vectorization
- > Implementation (optional)

Gradient descent

$$\frac{d}{dx}J(x) = \lim_{\Delta x \to 0} \frac{J(x + \Delta x) - J(x)}{\Delta x}$$

$$x_{new} = x_{old} - \eta \frac{d}{dx} J(x_{old})$$
 Derivate at x_{old} learning rate

Gradient descent

Dịch chuyển θ

về phía phải

$$-100 \le x \le 100$$
$$x \in \mathbb{N}$$

$$x_t = x_{t-1} - \eta f'(x_{t-1})$$

$$x_0 = 99.0$$

$$\eta = 0.1$$

$$x_t = x_{t-1} - \eta f'(x)$$

$$x_0 = 99.0$$
 $\eta = 0.001$

$$x_t = x_{t-1} - \eta f'(x)$$

$$x_0 = 99.0$$

$$\eta = 0.8$$

$$x_t = x_{t-1} - \eta f'(x)$$

$$x_0 = 99.0$$

$$\eta = 1.1$$

$$x_t = x_{t-1} - \eta f'(x)$$

Optimization: 2D function

$$f(x,y) = x^2 + y^2$$
$$-100 \le x, y \le 100$$
$$x, y \in \mathbb{N}$$

Derivative

***** Optimization: 2D function

$$f(x,y) = x^2 + y^2$$
$$-100 \le x, y \le 100$$
$$x, y \in \mathbb{N}$$

$$x = x - \eta \frac{\partial f(x, y)}{\partial x}$$

$$y = y - \eta \frac{\partial f(x, y)}{\partial y}$$

$$\eta = 1.0$$

$$x_0 = 3.0$$

$$y_0 = 4.0$$

$$\frac{\partial f(x_0, y_0)}{\partial x} = 6.0$$

$$x_1 = 2.0$$

$$y_1 = 3.0$$

$$\frac{\partial f(x_1, y_1)}{\partial x} = 4.0$$

$$\frac{\partial f(x_1, y_1)}{\partial y} = 6.0$$

$$x_2 = 1.0$$

$$y_2 = 2.0$$

$$\frac{\partial f(x_2, y_2)}{\partial x} = 2.0$$

$$\frac{\partial f(x_2, y_2)}{\partial y} = 4.0$$

$$y_3 = 1.0$$

$$\frac{\partial f(x_3, y_3)}{\partial x} = 0.0$$

$$\frac{\partial f(x_3, y_3)}{\partial y} = 0.0$$

$$y_4 = 0.0$$

***** For composite function

$$\frac{d}{dx}g(f(x)) = \left[\frac{d}{df}g(f)\right] * \left[\frac{d}{dx}f(x)\right]$$

***** For composite function

$$\frac{d}{dx}g(f(x)) = \left[\frac{d}{df}g(f)\right] * \left[\frac{d}{dx}f(x)\right]$$

$$f(x) = 2x - 1$$
$$g(f) = (f - 3)^2$$

$$g'(x) = 4(2x - 4)$$
$$= 8x - 16$$

***** For composite function and chain rule

$$\frac{d}{dx}g(f(x)) = \left[\frac{d}{df}g(f)\right] * \left[\frac{d}{dx}f(x)\right]$$

$$f(x) = 2x - 1$$
$$g(f) = (f - 3)^2$$

$$f'(x) = 2$$
$$g'(f) = 2(f - 3)$$

Outline

- > Optimization Review
- > Linear Regression Review
- > Logistic Regression
- > Examples
- > Vectorization
- > Implementation (optional)

House Price Prediction

Feature	Label
area	price
6.7	8.1
4.6	5.6
3.5	4.3
5.5	6.7

House price data

Feature		Label	
	area	price	_
	6.7	9.1	
	4.6	5.9	
	3.5	4.6	
	5.5	6.7	

House price data

Area-based house price prediction

$$\hat{y} = wx + b$$
$$L(\hat{y}, y) = (\hat{y} - y)^2$$

area	price	predicted	error
6.7	9.1	-2.238	128.55
4.6	5.9	-1.524	55.11
3.5	4.6	-1.15	33.06
5.5	6.7	-1.83	72.76

$$w = -0.34$$

$$b = 0.04$$

Area-based house price prediction

$$\hat{y} = wx + b$$
$$L(\hat{y}, y) = (\hat{y} - y)^2$$

area	price	predicted	error
6.7	9.1	8.099	1.002
4.6	5.9	5.642	0.066
3.5	4.6	4.355	0.06
5.5	6.7	6.695	0.00002

$$\mathbf{w} = 1.17$$

$$b = 0.26$$

Area-based house price prediction

$$\hat{y} = wx + b$$
$$L(\hat{y}, y) = (\hat{y} - y)^2$$

How to change w and b so that $L(\hat{y}, y)$ reduces

$\hat{y} = wx + b$ $L(\hat{y}, y) = (\hat{y} - y)^2$

Understanding the loss function

How to change w and b so that $L(\hat{y}, y_i)$ reduces

Different b values with a fixed w value

Different w values with a fixed b value

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value, w and b are parameters and x is input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

Linear equation

$$\hat{y} = wx + b$$

where \hat{y} is a predicted value,

w and b are parameters

and *x* is input feature

Error (loss) computation

Idea: compare predicted values \hat{y} and label values y Squared loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

Find better w and b

Use gradient descent to minimize the loss function

Compute derivate for each parameter

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w} = 2x(\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = 2(\hat{y} - y)$$

Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

 η is learning rate

Example

Toy example

Model prediction before and after the first update

Before updating

After updating

5.5

6.0

6.5

7.0

Summary (one feature and one sample)

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$\hat{y} = wx + b$$

3) Compute loss

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = 2x(\hat{y} - y) \qquad \qquad \frac{\partial L}{\partial b} = 2(\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

Outline

- > Optimization Review
- > Linear Regression Review
- > Logistic Regression
- > Examples
- > Vectorization
- > Implementation (optional)

***** Linear regression

Find the line $\hat{y} = \theta^T x$ that is best fitting to given data, then use \hat{y} to predict for new data

Given a new kind of data

Feature	Label	
Petal_Length	Category	
1.4	Flower A	
1	Flower A	Category 0
1.5	Flower A	
3	Flower B	
3.8	Flower B	Category 1
4.1	Flower B	

Feature Label

	Category	Petal_Length
	0	1.4
Category 0	0	1
	0	1.5
	1	3
Category 1	1	3.8
	1	4.1

Sigmoid function

$$\sigma(u) = \frac{1}{1 + e^{-z}}$$

$$z \in (-\infty + \infty)$$

$$\sigma(u) \in (0 + 1)$$

Property

$$\forall z_1 z_2 \in [a \ b] \text{ and } z_1 \leq z_2$$

 $\rightarrow \sigma(z_1) \leq z(u_1)$

$$z = wx + b$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma(z) \in (0 \quad 1)$$

$$z = wx + b$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma(z) \in (0 \quad 1)$$

Feature	Label	
Petal_Length	Category	
1.4	0	
1	0	Category 0
1.5	0	
3	1	
3.8	1	Category 1

Z	$\sigma(z)$
0.095	0.52
-0.119	0.47
0.1485	0.53
0.951	0.72
1.379	0.79
1.5395	0.82

4.1

$$z = wx + b$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma(z) \in (0 \quad 1)$$

$$z = 0.535 * x - 0.654$$

Feature Label

P	etal_Length	Category		
	1.4	0		
	1	0	Cat	egory 0
	1.5	0		
	3	1		
	3.8	1	Cat	egory 1
	4.1	1		

Z	$\sigma(z)$
-1.89	0.1309
-2.82	0.0559
-1.65	0.1598
1.837	0.8625
3.701	0.9759
4.401	0.9878

$$z = 2.331 * x - 5.156$$

Feature	Label	
Petal_Length	Category	
1.4	0	
1	0	Category 0
1.5	0	
3	1	
3.8	1	Category 1
4.1	1	

$$z = wx + b$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma(z) \in (0 \quad 1)$$

***** Loss function

Feature Label

	Category	Petal_Length
	0	1.4
Category 0	0	1
	0	1.5
	1	3
Category 1	1	3.8
	1	4.1

$$z = wx + b$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\sigma(z) \in (0 \quad 1)$$

How to remove if?

***** Loss function

Feature	Output	Label
1 Catule	Output	Label

	_	
Input	Output	Label
	0.3	0
	0.8	0
	0.7	0
	0.4	0
	0.6	1
	0.8	1
	0.9	1
	0.2	1

if
$$y = 0$$

$$L(\hat{y}) = -\log(1 - \hat{y})$$
if $y = 1$

$$L(\hat{y}) = -\log(\hat{y})$$

Binary cross-entropy

$$L(y, \hat{y}) = -y\log\hat{y} - (1 - y)\log(1 - \hat{y})$$

Given a new kind of data

Feature Label

Petal_Length	Category	
1.4	Flower A	
1	Flower A	Category 0
1.5	Flower A	· ·
3	Flower B	
3.8	Flower B	Category 1
4.1	Flower B	

Feature Label

	Category	Petal_Length	
	0	1.4	
Category 0	0	1	
	0	1.5	
	1	3	
Category 1	1	3.8	
	1	4.1	

Sigmoid function could fit the data

$$z = wx + b$$

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$\hat{y} \in (0 \ 1)$$

Error

$$if y = 1$$

$$error = 1 - \hat{y}$$

$$if y = 0$$

$$error = \hat{y}$$

Construct loss

Error

$$if y = 1$$

$$error = 1 - \hat{y}$$

$$if y = 0$$

$$error = \hat{y}$$

$$if y = 1$$

$$belief = \hat{y}$$

$$if y = 0$$

$$belief = 1 - \hat{y}$$

$$P = \hat{y}^{y} (1 - \hat{y})^{1 - y}$$

Construct loss

if
$$y = 1$$

belief = \hat{y}
if $y = 0$
belief = $1 - \hat{y}$

$$P = \hat{y}^{y}(1 - \hat{y})^{1-y}$$

Done sample belief = P $log_belief = logP$ $log_belief = ylog\hat{y} + (1 - y)log(1 - \hat{y})$ $loss = -log_belief$ $= -[ylog\hat{y} + (1 - y)log(1 - \hat{y})]$

$$L(\hat{y}, y) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y})$$
Binary cross-entropy

Logarithm

Công thức phổ biến

$$\log_a a = 1$$
$$\log_a xy = \log_a x + \log_a y$$

Hàm log là hàm đơn điệu (~thứ tự không thay đổi)

$$\forall x_1 x_2 \in [a \ b] \text{ và } x_1 \le x_2$$
$$\to \log(x_1) \le \log(x_1)$$

Tìm bộ tham số **0** cho một model sao cho model mô tả được dữ liệu training

$$\underset{\theta}{\operatorname{argmax}} f(\theta) = \operatorname{argmax} P_{\theta}(\operatorname{training data})$$

Với data sample được thu nhập độc lập với nhau

$$\underset{\theta}{\operatorname{argmax}} f(\theta) = \underset{\theta}{\operatorname{argmax}} P_{\theta}(\operatorname{sample_1}) * \cdots * P_{\theta}(\operatorname{sample_n})$$

Úng dụng trong Machine Learning

Ví trí cực đại của hàm $f(\theta)$ và $\log f(\theta)$ không thay đổi

Dùng hàm log

$$\underset{\theta}{\operatorname{argmax}} \log f(\theta) = \underset{\theta}{\operatorname{argmax}} [\log P_{\theta}(\operatorname{sample_1}) + \dots + \log P_{\theta}(\operatorname{sample_n})]$$

Construct loss

if
$$y_i = 1$$

belief = \hat{y}_i
if $y_i = 0$
belief = $1 - \hat{y}_i$

$$P_i = \hat{y}_i^{y_i} (1 - \hat{y}_i)^{1-y_i}$$

$$belief = \prod_{i=1}^{n} P_i \quad since iid$$

$$log_belief = \sum_{i=1}^{n} log P_i \quad N \text{ samples}$$

$$log_belief = \sum_{i=1}^{n} [y_i log \hat{y}_i + (1 - y_i) log (1 - \hat{y}_i)]$$

$$loss = -log_belief$$

$$= -\sum_{i=1}^{n} [y_i log \hat{y}_i + (1 - y_i) log (1 - \hat{y}_i)]$$

$$L = \frac{1}{N} \left(-\mathbf{y}^T log(\widehat{\mathbf{y}}) - (\mathbf{1} - \mathbf{y}^T) log(\mathbf{1} - \widehat{\mathbf{y}}) \right)$$
Binary cross-entropy

Construct loss

$$z = wx + b$$

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$L(\hat{y} - y) = -y\log(\hat{y}) - (1 - y)\log(1 - \hat{y})$$

$$\frac{\partial L}{\partial \theta_i} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z} \frac{\partial z}{\partial \theta_i}$$

$$\frac{\partial L}{\partial \hat{y}} = -\frac{y}{\hat{y}} + \frac{1-y}{1-\hat{y}} = \frac{\hat{y}-y}{\hat{y}(1-\hat{y})}$$

$$\frac{\partial \hat{y}}{\partial z} = \hat{y}(1-\hat{y})$$

$$\frac{\partial z}{\partial \theta_i} = x_i$$

$$\frac{\partial L}{\partial \theta_i} = x_i(\hat{y}-y)$$

Feature Label

у	Category	Petal_Length	
	0	1.4	
Category 0	0	1	
	0	1.5	
	1	3	
Category 1	1	3.8	
	1	4.1	

$z = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$
$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$

Feature Label

	Category	Petal_Length
	1	1.4
Category 0	1	1
	1	1.5
	0	3
Category 1	0	3.8
	0	4.1

Outline

- > Optimization Review
- > Linear Regression Review
- > Logistic Regression
- > Examples
- > Vectorization
- > Implementation (optional)

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$z = wx + b$$

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$L(\hat{y}, y) = (-y\log\hat{y} - (1-y)\log(1-\hat{y}))$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = x(\hat{y} - y) \qquad \qquad \frac{\partial L}{\partial b} = (\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

1.4 0	
1.5 0	
3 1	
4.1 1	

$$x = \begin{bmatrix} 1 \\ 1.4 \end{bmatrix} \qquad y = [0]$$

Petal_Length	Label
1.4	0
1.5	0
3	1
4.1	1

$$x = \begin{bmatrix} 1 \\ 1.4 \end{bmatrix} \qquad y = [0]$$

Pe	etal_Length	Label
1.4	4	0
1.5	5	0
3		1
4.	1	1

$$x = \begin{bmatrix} 1 \\ 1.4 \end{bmatrix} \qquad y = [0]$$

Another example

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$z = w_1 x_1 + w_2 x_2 + b$$

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$L(\hat{y}, y) = (-y\log\hat{y} - (1-y)\log(1-\hat{y}))$$

4) Compute derivative

$$\frac{\partial L}{\partial w_i} = x_i(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = (\hat{y} - y)$$

5) Update parameters

$$w_i = w_i - \eta \frac{\partial L}{\partial w_i} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

Petal_Length	Petal_Width	Label
1.4	0.2	0
1.5	0.2	0
3	1.1	1
4.1	1.3	1

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1.4 \\ 0.2 \end{bmatrix} \qquad \mathbf{y} = [0]$$

Petal_Length	Petal_Width	Label
1.4	0.2	0
1.5	0.2	0
3	1.1	1
4.1	1.3	1

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1.4 \\ 0.2 \end{bmatrix} \qquad \mathbf{y} = [0]$$

$$\begin{bmatrix} L'_b \\ L'_{w_1} \\ L'_{w_2} \end{bmatrix} = \begin{bmatrix} 1 * 0.6856 \\ 1.4 * 0.6856 \\ 0.2 * 0.6856 \end{bmatrix} = \begin{bmatrix} 0.6856 \\ 0.9599 \\ 0.1371 \end{bmatrix}$$

$$\eta = 0.01$$

$$b = 0.1 - \eta 0.6856$$
$$= 0.0931$$

$$w_1 = 0.5 - \eta 0.9598$$
$$= 0.4990$$

$$w_2 = -0.1 + \eta 0.1371$$
$$= -0.1013$$

Petal_Length	Petal_Width	Label
1.4	0.2	0
1.5	0.2	0
3	1.1	1
4.1	1.3	1

$$x = \begin{bmatrix} 1 \\ 1.4 \\ 0.2 \end{bmatrix} \qquad y = [0]$$

$$\begin{bmatrix} L'_b \\ L'_{w_1} \\ L'_{w_2} \end{bmatrix} = \begin{bmatrix} 1 * 0.6856 \\ 1.4 * 0.6856 \\ 0.2 * 0.6856 \end{bmatrix} = \begin{bmatrix} 0.6856 \\ 0.9599 \\ 0.1371 \end{bmatrix}$$

$$\eta = 0.01$$

$$b = 0.1 - \eta 0.6856$$
$$= 0.0931$$

$$w_1 = 0.5 - \eta 0.9598$$
$$= 0.4990$$

$$w_2 = -0.1 + \eta 0.1371$$
$$= -0.1013$$

Dataset

Petal_Length	Petal_Width	Label
1.4	0.2	0
1.5	0.2	0
3	1.1	1
4.1	1.3	1

$$x = \begin{bmatrix} 1 \\ 1.4 \\ 0.2 \end{bmatrix} \qquad y = [0]$$

 $\hat{y} = 0.6812$

Outline

- > Optimization Review
- > Linear Regression Review
- > Logistic Regression
- > Examples
- > Vectorization
- > Implementation (optional)

Review

Transpose

$$\vec{v} = \begin{bmatrix} v_1 \\ \dots \\ v_n \end{bmatrix}$$

$$\vec{v}^T = [v_1 \dots v_n]$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \qquad A^T = \begin{bmatrix} a_{11} & \dots & a_{m1} \\ \dots & \dots & \dots \\ a_{1n} & \dots & a_{mn} \end{bmatrix}$$

```
import numpy as np
 # create data
 data = np.array([1,2,3])
 factor = 2
# broadcasting
result_multiplication = data*factor
```

[1 2 3] [2 4 6]

Multiply with a number

$$\alpha \vec{u} = \alpha \begin{bmatrix} u_1 \\ \dots \\ u_n \end{bmatrix} = \begin{bmatrix} \alpha u_1 \\ \dots \\ \alpha u_n \end{bmatrix}$$

Review

Dot product

$$\vec{v} = \begin{bmatrix} v_1 \\ \dots \\ v_n \end{bmatrix} \qquad \vec{u} = \begin{bmatrix} u_1 \\ \dots \\ u_n \end{bmatrix}$$

$$\vec{v} \cdot \vec{u} = v_1 \times u_1 + \dots + v_n \times u_n$$

$$\begin{array}{c|cccc} \mathbf{v} & \mathbf{w} & \mathbf{result} \\ \hline 1 & 2 & \bullet & 2 & = & 8 \\ \hline & 3 & & & \end{array}$$

Traditional

I	Feature	Label	
	area	price	
	6.7	9.1	
	4.6	5.9	
	3.5	4.6	
	5.5	6.7	
	$\boldsymbol{\mathcal{X}}$	y	

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$z = wx + b$$

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$L(\hat{y}, y) = (-y\log\hat{y} - (1-y)\log(1-\hat{y}))$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = x(\hat{y} - y) \qquad \qquad \frac{\partial L}{\partial h} = (\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

$$z = wx + b$$
 $x = \begin{bmatrix} 1 \\ x \end{bmatrix}$ $\theta = \begin{bmatrix} b \\ w \end{bmatrix}$

$$\boldsymbol{\theta} = \begin{bmatrix} \boldsymbol{b} \\ \boldsymbol{w} \end{bmatrix} \rightarrow \boldsymbol{\theta}^T = [\boldsymbol{b} \ \boldsymbol{w}]$$

$$z = wx + b1 = \begin{bmatrix} b & w \end{bmatrix} \begin{bmatrix} 1 \\ x \end{bmatrix} = \theta^T x$$
dot product

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$z = wx + b$$

Traditional

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$L(\hat{y}, y) = \underline{(-y\log\hat{y} - (1-y)\log(1-\hat{y}))}$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = x(\hat{y} - y) \qquad \qquad \frac{\partial L}{\partial b} = (\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = (\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta \text{ is learning rate}$$

$$z = wx + b$$
 $x = \begin{bmatrix} 1 \\ x \end{bmatrix}$ $\theta = \begin{bmatrix} b \\ w \end{bmatrix}$

$$z = \boldsymbol{\theta}^T \boldsymbol{x} \qquad \qquad \hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

$$L(\hat{y}, y) = (\hat{y} - y)^2$$
numbers

What will we do?

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

Traditional

$$z = wx + b$$

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$L(\hat{y}, y) = (-y\log\hat{y} - (1-y)\log(1-\hat{y}))$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = x(\hat{y} - y) \qquad \qquad \frac{\partial L}{\partial b} = (\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w} \qquad b = b - \eta \frac{\partial L}{\partial b}$$

$$\begin{bmatrix}
(\hat{y} - y) \times 1 \\
(\hat{y} - y) \times x
\end{bmatrix} = (\hat{y} - y) \begin{bmatrix} 1 \\ x \end{bmatrix} = (\hat{y} - y) x = \begin{bmatrix} \frac{\partial L}{\partial b} \\ \frac{\partial L}{\partial w} \end{bmatrix} = \nabla_{\theta} L \qquad \rightarrow \qquad \nabla_{\theta} L = 2x(\hat{y} - y)$$
common factor

Vectorization

$$z = wx + b$$
 $x = \begin{bmatrix} 1 \\ x \end{bmatrix}$ $\theta = \begin{bmatrix} b \\ w \end{bmatrix}$

$$\begin{cases} \frac{\partial L}{\partial b} = (\hat{y} - y) = (\hat{y} - y) \times 1 \\ \frac{\partial L}{\partial w} = x(\hat{y} - y) = (\hat{y} - y) \times x \end{cases}$$

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$z = wx + b$$

Traditional

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$L(\hat{y}, y) = (-y\log\hat{y} - (1-y)\log(1-\hat{y}))$$

4) Compute derivative

$$\frac{\partial L}{\partial w} = x(\hat{y} - y) \qquad \qquad \frac{\partial L}{\partial b} = (\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = (\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

$$\eta$$
 is learning rate

$$z = \boldsymbol{\theta}^T \boldsymbol{x}$$

$$x = \begin{bmatrix} 1 \\ x \end{bmatrix}$$

$$\boldsymbol{\theta} = \begin{bmatrix} b \\ w \end{bmatrix}$$

$$\nabla_{\boldsymbol{\theta}} L = \begin{bmatrix} \frac{\partial L}{\partial b} \\ \frac{\partial L}{\partial w} \end{bmatrix}$$

$$\begin{bmatrix}
b \\
b
\end{bmatrix} = \begin{bmatrix}
b \\
- \eta
\end{bmatrix} - \eta \begin{bmatrix}
\frac{\partial L}{\partial b} \\
\frac{\partial L}{\partial w}
\end{bmatrix}$$

$$\begin{bmatrix}
\theta \\
\end{bmatrix} = \begin{bmatrix}
\theta
\end{bmatrix} - \eta \begin{bmatrix}
\frac{\partial L}{\partial b} \\
\frac{\partial L}{\partial w}
\end{bmatrix}$$

$$\rightarrow \quad \boldsymbol{\theta} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} L$$

- 1) Pick a sample (x, y) from training data
- 2) Compute the output \hat{y}

$$z = wx + b$$

$$z = wx + b \qquad \qquad \hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$L(\hat{y}, y) = (-y\log\hat{y} - (1-y)\log(1-\hat{y}))$$

4) Compute derivative

Traditional

$$\frac{\partial L}{\partial w} = x(\hat{y} - y) \qquad \frac{\partial L}{\partial b} = (\hat{y} - y)$$

$$\frac{\partial L}{\partial b} = (\hat{y} - y)$$

5) Update parameters

$$w = w - \eta \frac{\partial L}{\partial w}$$

$$b = b - \eta \frac{\partial L}{\partial b}$$

 η is learning rate

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$z = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta}$$
 $\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$L(\hat{y}, y) = (-y\log\hat{y} - (1-y)\log(1-\hat{y}))$$

Vectorized

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} L = \boldsymbol{x}(\hat{y} - y)$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} L$$

 η is learning rate

❖ Implementation (using Numpy)

- \rightarrow 1) Pick a sample (x, y) from training data
 - 2) Compute output \hat{y}

$$\downarrow z = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta} \qquad \hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$\downarrow L(\hat{y}, y) = (-y\log\hat{y} - (1-y)\log(1-\hat{y}))$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} L = \boldsymbol{x}(\hat{y} - y)$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} L$$

 η is learning rate

```
def sigmoid function(z):
    return 1 / (1 + np.exp(-z))
def predict(X, theta):
    return sigmoid_function( np.dot(X.T, theta) )
def loss_function(y_hat, y):
    return -y*np.log(y_hat) - (1 - y)*np.log(1 - y_hat)
def compute_gradient(X, y_hat, y):
    return X*(y_hat - y)
def update(theta, lr, gradient):
    return theta - lr*gradient
# compute output
y_hat = predict(X, theta)
# compute loss
                                     # Given X and y
loss = loss_function(y_hat, y)
# compute mean of gradient
gradient = compute gradient(X, y hat, y)
# update
theta = update(theta, lr, gradient)
```

	Petal_Length	Petal_Width	Label
	1.4	0.2	0
D 4 4	1.5	0.2	0
Dataset	3	1.1	1
	4.1	1.3	1

1) Pick a sample
$$(x, y)$$
 from training data

2) Compute output \hat{y}

$$\downarrow z = \boldsymbol{\theta}^T \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{\theta} \qquad \hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$L(\hat{y}, y) = (-y\log\hat{y} - (1-y)\log(1-\hat{y}))$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} L = \boldsymbol{x}(\hat{y} - y)$$

5) Update parameters

$$\theta = \theta - \eta \nabla_{\theta} L$$

$$\theta = \begin{bmatrix} 0.1 \\ 0.5 \\ -0.1 \end{bmatrix}$$
 Model
$$\hat{y} = \sigma(\theta^T x) = 0.6856$$
 Loss

$$\nabla_{\theta} L = x(\hat{y} - y) = \begin{bmatrix} 1 \\ 1.4 \\ 0.2 \end{bmatrix} [0.6856] = \begin{bmatrix} 0.6856 \\ 0.9599 \\ 0.1371 \end{bmatrix} = \begin{bmatrix} L'_b \\ L'_{w_1} \\ L'_{w_2} \end{bmatrix}$$

L = 1.1573

$$\mathbf{0} - \eta \mathbf{L}'_{\mathbf{\theta}} = \begin{bmatrix} \mathbf{0.1} \\ \mathbf{0.5} \\ -\mathbf{0.1} \end{bmatrix} - \eta \begin{bmatrix} 0.6856 \\ 0.9599 \\ 0.1371 \end{bmatrix} = \begin{bmatrix} 0.093 \\ 0.499 \\ -0.101 \end{bmatrix}$$

Dataset

Petal_Length	Petal_Width	Label
1.4	0.2	0
1.5	0.2	0
3	1.1	1
4.1	1.3	1

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1.4 \\ 0.2 \end{bmatrix} \qquad \mathbf{y} = [0]$$

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$z = \boldsymbol{\theta}^T \boldsymbol{x}$$

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$L(\boldsymbol{\theta}) = -y\log\hat{y} - (1-y)\log(1-\hat{y})$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} L = \mathbf{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} L$$

 η is learning rate

Epoch 0 5

Feature

- 1) Pick a sample (x, y) from training data
- 2) Compute output \hat{y}

$$z = \boldsymbol{\theta}^T \boldsymbol{x}$$

$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}}$$

3) Compute loss

$$L(\boldsymbol{\theta}) = -y\log\hat{y} - (1-y)\log(1-\hat{y})$$

4) Compute derivative

$$\nabla_{\boldsymbol{\theta}} L = \mathbf{x}(\hat{\mathbf{y}} - \mathbf{y})$$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} L$$

 η is learning rate

