Quantifying Uncertainty Bayesian Data Analysis in Python

Mat Leonard
Head of Learning, Al
Udacity
@MatDrinksTea

Data is Life, Life is Uncertain

Quantify Uncertainty with

STATISTICS

Hypothesis Testing Refresher

$$d = 0.3, n=100$$

$$t = \sqrt{n} \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{s_{X_1}^2 + s_{X_2}^2}}$$

$$H_0: t = 0$$

$$H_1: t \neq 0$$

Median of the p sampling distribution: function of the effect size (d) and the sample size

p-values are not a measure of uncertainty

Parameter estimation with confidence intervals?

What people think (and want)

95% probability the parameter is in the 95% confidence interval

What it actually is

If you perform your experiment an infinite number of times, calculating the 95% confidence interval for each experiment, then for 95% of those experiments the true parameter will fall within the 95% confidence interval

Frequentist CI theory says nothing at all about the probability that a particular, observed confidence interval contains the true value; it is either 0 (if the interval does not contain the parameter) or 1 (if the interval does contain the true value).

The fallacy of placing confidence in confidence intervals Morey, R.D., Hoekstra, R., Rouder, J.N. et al. Psychon Bull Rev (2016) 23: 103

Bayes' Theorem

$$P(\theta \mid y) \propto \prod_{i}^{N} P(y_{i} \mid \theta) P(\theta)$$

Bayes' Theorem

Posterior
$$P(\theta \mid y) \propto \prod_{i} P(y_{i} \mid \theta) P(\theta)$$
Data Likelihood

Flipping Coins, a Classic

Binomial distribution

Attempts Probability of success $Pr(n,k,p) = \binom{n}{k} p^k (1-p)^{n-k}$ Successes

Is our coin fair???

Bayesian Model

Likelihood

Binomial
$$(k, n \mid p)$$

Prior

$$p \sim \text{Beta}(\alpha, \beta)$$

Posterior

$$P(p | k, n) \propto P(k, n | p) P(p)$$

$$P(p | k, n) = \text{Beta}(\alpha + k, \beta + n - k)$$

Posterior distributions, p = 0.5

Now with Python

```
from scipy import stats
# Our data, events, array of 0s and 1s
successes = events.sum()
failures = len(events) - successes
# Prior parameters
\alpha, \beta = 1, 1
# Calculate posterior distribution
posterior = stats.beta(\alpha + successes, \beta + failures)
# Mean and 95% credible interval
mean = posterior.mean()
CR = posterior.interval(0.95)
# Posterior distribution for plotting
xs = np.linspace(0, 1, num=100)
pdf = posterior.pdf(xs)
```

Back to the T-test

$$d = 0.3, n=100$$

What do we want?

Means: μ_1, μ_2

Standard deviations: σ_1, σ_2

Estimates: $\mu_2 - \mu_1$ and $\sigma_2 - \sigma_1$

Assess the *uncertainty* in our estimates

Forget the T-test

Likelihood

$$y_1 \sim \text{Normal}(\mu_1, \sigma_1)$$

$$y_2 \sim \text{Normal}(\mu_2, \sigma_2)$$

Priors

$$\mu_1 \sim \text{Uniform}(-5,5)$$

$$\sigma_1 \sim \text{Half Cauchy}(\gamma = 5)$$

$$\mu_2 \sim \text{Uniform}(-5,5)$$

$$\sigma_2 \sim \text{Half Cauchy}(\gamma = 5)$$

Markov Chain Monte Carlo

Starting out

Converged

Sampled

Bayesian Data Analysis in Python

- PyMC
- PyStan
- Emcee
- Edward
- Sampyl

Independent Samples Model Define the model in Sampyl

import sampyl as smp
from sampyl import np

Independent Samples Model Define the model in Sampyl

```
def logp(\mu_1, \sigma_1, \mu_2, \sigma_2):
         model = smp.Model()
         # Priors for means
         model.add(smp.uniform(\mu_1, -5, 5),
                    smp_uniform(\mu_2, -5, 5))
         # Priors for standard devs
         model.add(smp.half_cauchy(\sigma_1, beta=5),
                    smp_half_cauchy(\sigma_2, beta=5))
         # Data Likelihood
         model.add(smp.normal(group1, mu=\mu_1, sig=\sigma_1),
                    smp.normal(group2, mu=\mu_2, sig=\sigma_2))
         return model()
```

Independent Samples Model Sample from the posterior

```
start = {'\mu_1': 0., '\sigma_1': 1., '\mu_2': 0., '\sigma_2': 1.} sampler = smp.NUTS(logp, start) chain = sampler(6100, burn=100, thin=2) Progress: [########################## 6100 of 6100 samples
```

Posterior chains

Posterior distributions

From attributes predict median home value

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
ID														
1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
7	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.60	12.43	22.9
11	0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15.0
12	0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311	15.2	396.90	13.27	18.9
13	0.09378	12.5	7.87	0	0.524	5.889	39.0	5.4509	5	311	15.2	390.50	15.71	21.7
14	0.62976	0.0	8.14	0	0.538	5.949	61.8	4.7075	4	307	21.0	396.90	8.26	20.4
15	0.63796	0.0	8.14	0	0.538	6.096	84.5	4.4619	4	307	21.0	380.02	10.26	18.2

Linear Model

Define the model

Likelihood

$$\hat{y} = \sum_{i}^{m} \beta_{i} x_{i} + \alpha$$

$$y \sim \text{Normal}(\hat{y}, \epsilon)$$

Priors

$$\beta \sim \text{Uniform}(-10,10)$$
 $\alpha \sim \text{Uniform}(0,100)$
 $\epsilon \sim \text{Half Cauchy}(\gamma = 5)$

Linear Model Define the model in Sampyl

```
# Here, β is an array of coefficients
def logp(\beta, \alpha, \epsilon):
     model = smp.Model()
     model.add(smp.half_cauchy(\epsilon, 5))
     model.add(smp.uniform(\beta, lower=-10, upper=10),
                 smp.uniform(\alpha, lower=0, upper=100))
     estimate = np.dot(X, \beta) + \alpha
     model.add(smp.normal(Y, mu = estimate, sig = \epsilon))
     return model()
```

Linear Model Sample from the posterior

```
start = {'\beta': np.zeros(X.shape[1]), '\alpha': 0., '\epsilon': 1.} sampler = smp.Slice(logp, start) chain = sampler(10000, burn=1000, thin=3)
```


Linear Model Making Predictions

```
# Get one random input
predict_data = np.random.randn(X.shape[1])
idx = np.random.choice(np.arange(chain.size))
post_sample = chain[idx]
estimate = np.dot(predict_data, post_sample.\beta) + post_sample.\alpha
single_predict = stats.norm(loc=estimate, scale=post_sample.ε).rvs()
# Now make posterior predictive distribution to get uncertainty
estimate = np.dot(predict_data, chain.\beta.T) + chain.\alpha
post_predict = stats.norm(loc=estimate, scale=chain.e).rvs()
```

Posterior predictive distribution

The logistic function $\sigma = \frac{1}{1 + e^{\beta t + \alpha}}$

Logistic Model

Define the model

Likelihood

$$\sigma = \frac{1}{1 + e^x}$$

$$p = \sigma(\beta t + \alpha)$$

$$y \sim \text{Bernoulli}(p)$$

Priors

$$\alpha \sim \text{Normal}(0, 1000)$$

$$\beta \sim \text{Normal}(0, 1000)$$

Logistic Model Define the model in Sampyl

```
def logistic(x):
    return 1/(1 + np.exp(x))
def logp(\beta, \alpha):
    model = smp.Model()
    # Wide normal priors on coefficients
    model.add(smp.normal(\alpha, sig=1000),
               smp.normal(β, sig=1000))
    # Add log-likelihood
    model.add(smp.bernoulli(damage, logistic(temperature*\beta + \alpha))
    return model()
```

Logistic Model Sample from the posterior

```
start = {'\beta': 0., '\alpha': 0.}
sampler = smp.Slice(logp, start)
chain = sampler(220000, burn=20000, thin=3)
```


Posterior expected value of probability of defect; plus realizations

Posterior expected value of probability of defect; plus 95% CR

Thank you! Questions?