Homework 1 Report

For both plots, there're total 500 data points within the distance of 1000m. Notations:

- P_t is power of base station (in dBm)
- ullet G_t is gain of transmitter antenna (in dB)
- G_r is gain of receiver antenna (in dB)
- h_t, h_r are height of transmitter and receiver (in m)
- *d* is the distance (in m)
- T is temperature (in Kelvin)
- B is bandwidth (in Hz)
- k is boltzmann constant = 1.38×10^{-23}

Problem 1 - Path loss only

For this problem, the received power (in dB) is calculated by $S=P_t+G_t+G_r+10 imes log(h_t^2h_r^2/d^4)-30.$

Noise here is the constant $N=k\times T\times B$, there's no interference thus I=0, SNIR is calculated by S/N.

Problem 2 - Path loss with shadowing

Basically the same as P1, but S has to add X where X is a random variable (in dB) sampled normal distribution (numpy.random.normal) of zero-mean and $\sigma=6$. In other words, $S=P_t+G_t+G_r+10\times log(h_t^2h_r^2/d^4)+X-30, X\sim N(0,6)$.

SNIR calculation is identical.

