ВИОЛОГИЯ

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

УЧЕБНОЕ ПОСОБИЕ

ИЗДАТЕЛЬСТВО РОСТОВСКОГО УНИВЕРСИТЕТА

Ростовский ордена Трудового Красного Знамени государственный университет

ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Ответственный редактор доктор биологических наук, профессор Г. А. Кураев

Рекомендовано Комитетом по высшей школе Миннауки России в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению «Биология», специальности «Физиология»

Ростов-на-Дону

Издательство Ростовского университета 1995 в процесс практически весь спинной мозг, как например, «рефлекс шагания». В ряду позвоночных вместе с прогрессирующим усложнением структуры и функции спинного мозга нарастает его зависимость от головного. Это хорошо видно на примере динамики спинального шока. Известно, что явления спинального шока обусловлены в первую очередь прекращением нисходящих корригирующих влияний со стороны головного мозга. Чем сильнее эти влияния, тем более глубоки и длительны последствия их прекращения. Спинальная лягушка в двигательном поведении мало чем отличается от интактной Спинальный шок у нее длится минуты. Для кошки это время исчисляется часами, у приматов — неделями и месяцами. Клиническая практика свидетельствует, что травматический перерыв спинного мозга у человека приводит к развитию тяжелейших, практически необратимых проявлений спинального шока.

Процесс энцефализации, т. е. совершенствование структуры и функции головного мозга, у млекопитающих дополняется кортиколизацией — формированием и совершенствованием коры больших полушарий. Если на уровне стволовых отделов и базальных ганглиев переднего мозга мы встречаемся со специализированными ганглиями, обособленными морфологически и функционально ядрами, то кора дает примеры совершенно новых принципов и структурной, и функциональной организации. Построенная по эранному принципу кора больших полушарий содержит не только специфические проекционные (соматочувствительные, зрительные, слуховые и т. д.), но и значительные по площади ассоциативные зоны. Последние служат для корреляции различных сенсорных влияний, их интеграции с прошлым опытом для того, чтобы по моторным путям передать сформированные паттерны возбуждения и торможения для поведенческих актов.

В отличие от ганглионарных структур, кора мозга обладает рядом свойств, характерных только для нее. Важнейшее из них — чрезвычайно высокая пластичность и надежность, как структурная, так и функциональная. Изучение этих свойств центральной нервной системы в эволюции позвоночных позволило А. Б. Когану в 60-х годах обосновать вероятностно-статистический принцип организации высших функций мозга. Этот принцип в наиболее яркой форме выступает в коре мозга, являясь одним из приобретений прогрессивной эволюции.

3.2. Свойства нервных центров

Нервные центры обладают рядом специфических особенностей, обусловленных конструкцией нейронных связей, структурой и свойствами синапсов, характером и результатом «синаптической игры» нервных волоконных входов на мембране нейрона-интегратора.

Основные свойства нервных центров — это одностороннее и замедленное проведение, суммация и трансформация ритма возбуждения, последействие (облегчение), утомление и тонус нервных центров, чувобеспечивающей приспособляемость нервной системы и ее компенсаторные возможности в случае каких-либо возникающих нарушений функций (И. П. Павлов, П. К. Анохин, А. А. Асратян, А. Б. Коган).

3.3. Кодирование информации в первной системе

Вся информация или значительная ее часть, передаваемая в нервной системе от одного отдела к другому, заключена в пространственном и временном распределении импульсных потоков.

Передача виформации от одного нейрона к другому — от «корреспондента» к «адресату» — производится с помощью различных нейронных кодов. Перкел и Баллок предлагают рассматривать три основные группы возможных кандидатов в коды: 1 — неимпульсные факторы, 2 — импульсные сигналы в одиночных нейронах, 3 — ансамблевая активность (кодирование по ансамблю). В каждой из этих групп выделены свои кандидаты в коды.

Для неимпульсных кодов — это внутриклеточные факторы (амплитудные характеристики рецепторных и синаптических потенциалов, амплитудные и пространственные характеристики изменений синаптической проводимости, пространственное и временное распределение характеристик мембранного потенциала, градуальные потенциалы в аксонных терминалях) и внеклеточные факторы (освобождение медиаторов и монов кадия, нейросекреция, электротонические взаимодействия). Для импульсных кодов главными кандидатами являются коды пространственные («меченые линии», т. е. представление информации номером канала) и временные - различные виды частотных или интервальных кодов (взвещенное среднее значение частоты, мгновенное значение частоты, частота разряда, форма интервальных гистограмм и т. д.). Выделяют также микроструктурное, или даттерновое, кодирование (временным узором импульсов), латентный код (моментом появления разряда или фазовых изменений разряда), числовой код (количеством импульсов в пачке), код длинной пачки (длительностью импульсации), наличие отдельного импульса (или его отсутствие), изменение скорости распространения возбуждения в аксоне, пространственную последовательность явлений в аксоне (рис. 3.2).

Для кодирования по ансамблю характерно представление информации пространственным множеством элементов (за счет топографического распределения активированных волокон), различными пространственными отношениями между отдельными каналами (распределение в них латентных периодов (ЛП) реакций и фазовых отношений, вероятность разряда в ответ на стимуляцию) и сложной формой многоклеточной активности (форма ВП и медленные изменения ЭЭГ).

Весьма интересным и нетривиальным является нейроголографический подход к вопросам кодирования сенсорной информации в нервной системе (Вестлейк, Прибрам). При этом роль опорной волны может

Puc. 3.2. Основные кандидаты в импульсные коды: 1 — input; natural stimulus; output: sensory nerve impulses: 2 — electric organ discharge; 3 — latency code; 4 — burst duration code; 5 — probability code; 6 — microstructure code; 7 — frequency (Баллок, 1977)

играть импульсация от низкопороговых коротколатентных нейронов с константной реакцией («нейроны-таймеры», по И. А. Шевелеву, или синхронизаторы, или реперные нейроны), роль сигнальной волны — импульсация от нейронов, более высокопороговых и длиннолатентных, реакция которых зависит от силы и характера стимуляции («нейронысканеры», по И. А. Шевелеву), волновой фронт может создаваться когерентными импульсными потоками, а разность фаз возникать за счет разностей ЛП реакций.

В большинстве случаев в центральной нервной системе используется пространственно-временное кодирование, когда информация о признаках сигнала передается канально и уточняется различными модификациями временных кодов.

Глава 4 СПИННОЙ МОЗГ

4.1. Морфофункциональная организация

Спинной мозг, являясь самым каудальным отделом центральной нервной системы, осуществляет две основные функции — рефлекторную и проводниковую. Импульсы, приходящие от экстерореценторов кожи, проприо- и висцерореценторов, обеспечивают разнообразие двигательных

вазоконстрикции. Симпатомнгибирующее действие проявляется двояко — либо путем дисфацилитации, т. е. подавления источников активации вазомоторных преганглионаров, либо путем непосредственного их торможения. что приводит к вазодилатации.

Подытоживая все сказанное, следует, очевидно, согласиться, со все чаще звучащими предложеннями отказаться от понятия «бульбарный вазомоторный центр» в классическом понимании. Скорее всего, роль бульбарного отдела в системе вазомоторной регуляции сводится к реализации гипоталамических влияний (где находятся высшие центры регуляции артериального давления) и сопряжению сосудодвигательных и дыхательных системных реакций.

5.2. Мост и средний мозг

5.2.1. Морфофункциональная организация и рефлекторная деятельность варолиева моста

Варолиев мост входит в систему заднего мозга, который вместе со средним мозгом образует ствол мозга. Ствол мозга включает большое число ядер и путей — восходящих и нисходящих. Важную функциональную роль играет локализованная в этих структурах ретикулярная формация.

Все восходящие, равно как и висходящие, пути центральной нервной системы, связывающие отделы спинного и головного мозга, проходят через варолиев мост, в котором сосредоточен ряд ядер черепно-мозговых нервов, а также ретикулярных ядер, играющих роль в регуляциях вегетативных функций.

Так, в каудальной части моста снаружи от латеральной петли локализованы тела нейронов лицевого нерва (VII пара); в задней половине моста на дне IV желудочка, у средней линии расположено ядро отводящего (VI пара) нерва; на среднем уровне моста непосредственно впереди ядра лицевого нерва локализованы тела нейронов моторного ядра тройничного (V пара) нерва, на уровне же моста лежит среднее сенсорное ядро тройничного нерва (каудальное ядро локализовано в бульбарном отделе, а ростральное — в мезенцефальном).

Основные ретикулярные ядра моста — это каудальное ретикулярное ядро, являющееся ростральным продолжением гигантоклеточного ядра продолговатого мозга, оральное ретикулярное ядро моста, являющееся продолжением каудального ядра и переходящее в ретикулярную формацию среднего мозга, и ретикулярное ядро покрышки моста, расположенное вентральнее каудального ретикулярного ядра моста. Волокна от нейронов ретикулярного ядра покрышки моста проецируются в мозжечок (Бродал), а от других ретикулярных нейронов моста — в спинной мозг (ретикулоспинальный путь) к нейронам VIII пластинки, по Рекседу; волокна от нейронов каудального ядра моста достигают шейных, грудных

Глава 7

АРХИПАЛЕОКОРТЕКС

7.1. Морфофункциональная организация старой и древней коры мозга

Кора больших полушарий представлена древней корой (палеокортекс), старой корой (архикортекс), межуточной корой (мезокортекс) и новой корой (неокортекс).

Древняя (палеокортекс) и старая кора (архикортекс) включают ряд структур больших полушарий, филогенетически возникших раньше неокортекса. В состав палеокортекса входят препириформная, периамигдалярная и диагональные области, обонятельный бугорок и прозрачная перегородка, а в состав архикортекса — аммонов рог, зубчатая фасция, субикулюм. Эти образования объединены под названием висцерального, или обонятельного, мозга (Пейпез), хотя функции архипалеокортекса значительно щире. Этот отдел мозга нельзя рассматривать только как часть обонятельного анализатора, ибо здесь фактически отражены все афферентные системы. И, кроме того, архипалеокортекс, представляя собой одну из важных интегративных систем мозга, корригирует функции диенцефальных и неокортикальных образований и является неспецифическим активатором всех видов корковой деятельности (Херрик). Эта система не только ведает функциями обоняния, но и принимает участие в проявлении реакции настораживания и внимания и в регуляции вегетативных функций (Пейцез), обеспечивая осуществление биологически важных врожденных рефлексов, таких как поисковый, пищевой, половой, оборонительный, и формируя эмоциональное поведение.

Отделы «обонятельного мозга» Пейпеза Маклин включил в структуры лимбической системы, объединившей все образования архипалеокортекса, миндалевидные ядра, лимбическую кору, гиноталамус, некоторые ядра таламуса и среднемозговые ретикулярные ядра Гуддена и Бехтерева. Эта система, по Маклину, обеспечивает гомеостаз, самосохранение и сохранение вида, она играет важную роль в формировании различных аффективно-эмоциональных и вегетативных реакций, оказывает значительное влияние на условно-рефлекторную деятельность и участвует в мотивации поведения.

Структуры архипалеокортекса имеют множественные связи как между собой, так и с другими образованиями лимбической системы, локализованными в стволовой части мозга. Так, ядра перегородки имеют двусторонние связи с гиппокампом, амигдалами и гипоталамусом. Гиппокамп связан двусторонне не только с ядрами перегородки, но и с некоторыми ядрами таламуса, гипоталамуса и центральным серым веществом среднего мозга, а также с энториальной корой и субикулюмом. Практически все отделы архипалеокортекса

Глава 9

ПРИНЦИПЫ РЕГУЛЯЦИИ МОТОРНЫХ ФУНКЦИИ

9.1. Общие принципы организации двигательных функций

Структуры, отвечающие за удержание позы и регуляцию движений (двигательные или моторные центры), локализуются в самых различных отделах центральной нервной системы — от коры больших полушарий до спинного мозга. В их расположении прослеживается четкая иерархия, отражающая постепенное усовершенствование двигательных функций в процессе эволюции, сопровождавшейся не только и не столько перестройкой существовавших двигательных систем, сколько надстраиванием новых контролирующих структур, отвечающих за определенные программы движения. На рис. 9.1 приводится общий план организации двигательной системы.

Для адекватного выбора характера локомоций и для нормального протекания локомоторного акта весьма важным является точное управление двигательной системой. При этом для регулирования сложного, хорошо отлаженного движения тела необходима предварительно выработанная программа управления, а для обеспечения вариативности биомеханических параметров движения программа не должна быть абсолютно жесткой и должна иметь возможность коррекции двигательного акта. По Бернштейну, координация движений есть преодоление избыточности степеней свободы движущегося органа, т. е. превращение его в управляемую систему. Таким образом, координация — это организация управляемости двигательного аппарата. Бернштейн предложил схему замкнутого контура взаимодействий, обеспечивающую управление движениями (рис. 9.2).

Обязательными элементами этой саморегулирующейся системы являются следующие звенья: 1- эффектор (мотор), работа которого подлежит регулированию по данному параметру; 2- задающий прибор, вносящий тем или иным путем в систему требуемое значение регулируемого параметра; 3- рецептор, воспринимающий фактические текущие значения параметра и сигнализирующий о них каким-либо способом в прибор сличения; 4— прибор сличения, воспринимающий расхождение (Sw) фактического (Iw or Istwert) и требуемого (Sw от Sollwert) значений с его величиной и знаком; 5- перешифровывающее устройство, трансформирующее данные прибора сличения в коррекционные импульсы, подаваемые по обратной связи на регулятор; 6— регулятор, управляющий по данному параметру функционированием эффектора. Центральным пунктом этой кольцевой системы управления является ее задающий элемент (2), в зависимости от свойств которого получается система либо стабилизирующая (когда Sw имеет постоянное значение), либо «следящая» (когда Sw имеет переменные характериств-

ОГЛАВЛЕНИЕ

Предисловие (Кураев Г. А.)	3
Глава 1. МЕТОДЫ ИЗУЧЕҢИЯ ФИЗИОЛОГИИ	
ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ (Думбай В. Н.) .	5
1.1. Аналитические методы	5
1.2. Нейрокибернетические методы	7
1.3. Нейропсихологические методы	8
Глава 2. ОСНОВЫ ФИЗИОЛОГИИ НЕЙРОНА, ГЛИИ,	
СИНАПСА (Фельдман Г. Л.)	9
2.1. Физиология пейрона	9
2.2. Электрические процессы в нейронах	14
2.3. Синапс	17
2.4. Нейроглия	19
Глава 3. ОБЩИЕ СВОЙСТВА НЕРВНОЙ СИСТЕМЫ	21
3.1. Эволюция нервной системы (Думбай В. Н.)	21
3.2. Свойства нервных центров (Алейнико-	
ва Т. В.)	26
3.3. Кодирование информации в нервной систе-	
ме (Алейникова Т. В.)	32
Глава 4. СПИННОЙ МОЗГ (Алейникова Т. В.)	33
4.1. Морфофункциональная организация	33
4.2. Рефлекторная деятельность спинного мозга.	37
4.3. Электрическая активность	38
4.4. Вообудительно-гормозные отношения в спин-	
ном мозге	39
4.5. Спинальные рефлексы	41
Глава 5. СТВОЛ МОЗГА	42
5.1. Продолговатый мозг (Думбай В. Н.)	43
5.1.1. Вегетативные рефлексы	43
5.1.2. Соматические рефлексы	44
5.1.3. Ретикулярная формация	46
5.2. Мост и средний мозг (Алейнико-	
ва Т. В.)	52
5.2.1. Морфофункциональная организация	
и рефлекторная деятельность варолиева	
моста	52
5.9.9 Молфофункциональная оптанязання	

	и рефлекторная деятельность среднего мозга
5.3. 1	Промежуточный мозг (Фельдман Г. Л.)
5.01	5.3.1. Таламус
	F 0 0 T
54 (5.3.2. Гипоталамус Физиология мозжечка (Думбай В. Н.)
0.1.	5.4.1. Анатомо-физиологические особенно-
	сти внутримозжечковых связей
	5.4.2. Афферентные связи мозжечка
	5.4.3. Эфферентные связи моэжечка
	5.4.4. Эффекты повреждения мозжечка .
	· · · ·
	ГРИОПАЛЛИДАРНАЯ СИСТЕМА (Ку-
paes I'. A.)	
6,1.	Анатомия стриопаллидарной системы
	Фукции ядер стриопаллидарной системы .
6.3.	Хвостатое ядро
6.4.	Скорлупа
	Функции палеостриатума
6.6.	Ограда
Глава 7. А	РХИПАЛЕОКОРТЕКС (Алейникова Т. В.)
	Морфофункциональная организация старой
	евней коры мозга
	Электрическая активность архипалеокортек-
ca .	
	Архипалеокортско и вегстативные функции
7.4.	Архипалеовортекс, эндокринная система
	тивационно-эмоциональное поведение
7.5.	Архипалеокортекс и высшая нервная дея-
тель	ность
	ЮВАЯ КОРА БОЛЬШИХ ПОЛУШАРИЙ
головного мо	${ m 3\Gamma A}$ (Фельдман ${\it \Gamma.~J.}$)
8.1.	Структура и эволюция новой коры
	Организация нейронных систем
	Электрическая активность коры
	Локализация функций в коре
0.1	
Глава 9. П	РИНЦИПЫ РЕГУЛЯЦИИ МОТОРНЫХ
	йникова Т. В.)
9.1.	Обидне принципы организации двигатель-
	функций
	Функции Спинальные регуляции моторных функций
7,2.	Consequence berlaumen marcheny dissertes

	9.3. Стволовой уровень регуляции моториых
	функций
	9.4. Мозжечок и регуляция двигательных функ-
	цк
	9.5. Базальные ганглин и регуляция моторимх
	функций
	9.6. Корковый уровень регуляции могориых
	функций
Слава	а 10. ПРИВЦИНЫ ОРГАНИЗАЦИИ СЕНСОР-
	КЦИЙ (Думбай В. Н.)
	,
	10.1. Некоторые общие закономерности функцио-
	нирования сенсорных систем
	10.2. Трапсформация виформационных потоков
	в звеньях сенсорных систем
	10.3. Межсенсорное взаимодействие
Б	AA TUDUUUUTIILU I MANAY MATILIYI MANAMAANIN
	а 11. ПРИНЦИПЫ РЕГУЛЯЦИИ ВЕГЕТАТИВ-
ных фун	КЦИЙ (Кураев Г. А.)
	11.1. Особенности организации влияния вегета-
	тивной нервной системы на организм
	11.2 Особенности симпатической и парасимпати-
	ческой нервиых систем
	11.3. Центральная регуляция вегетативных
	функций
	11.4. Гипоталамус
	11.5. Средний мозг
	11.6. Лимбический мозг
	11.7. Таламуе
	11.8. Мозжечок
	11.9. Подкорковме узлы
	11.10. Kopa mosra
•	а 12. САМОРЕГУЛЯЦИЯ ФУНКЦИОНАЛЬ-
ного сос	ТОЯНИЯ ГОЛОВНОГО МОЗГА (Фельдман Г. Л.)
	12.1. Неспецифические системы головного моз-
	På
	12.2. Нейрофизиологические механизмы сна .
	а 13. ФУНКЦИОНАЛЬНАЯ МЕЖПОЛУШАР-
ная асим	ІМЕТРИЯ МОЗГА (Кураев Г. А.)
Лите	Datypa