

REPASO ALGEBRA RELACIONAL

Unión

Diferencia (-)

 Se utiliza la diferencia entre la tabla R y la tabla S para determinar las personas que no están en las dos tablas.

Intersección (n)

La operación de intersección permite identificar filas que son comunes en dos relaciones. Al igual que la operación Union, para poder realizar esta operación es necesario e imprescindible que las tablas a unir tengan las mismas estructuras, que sus campos sean iguales.

Producto (x)

- La operación producto consiste en la realización de un producto cartesiano entre dos tablas dando como resultado todas las posibles combinaciones entre los registros de la primera y los registros de la segunda.
- Sean R y S dos relaciones de grado m y n, respectivamente. El producto cartesiano, R×S, es una relación de grado m + n formada por todas las posibles tuplas en las que los m primeros elementos constituyen una tupla de R y los n últimos una tupla de S:

R	Α	В		S	В	C	D
	1	2			2	5	6
	3	4			4	7	8
	J	Т Т			9	10	11
RXS	A 1	R.		В	C	D 6	
RXS	Α	R.	B S	В	С	D	
RXS	1	R. 2		B 2	C 5	D 6	
RXS	1 1 1	2		2	5	6	
RXS	1	2		1	5 7	6	
RXS	1 1	2 2 2		1	5 7 10	6 8 11	

Selección (σ)

- Por medio de esta operación se posibilita la selección de un subconjunto de tuplas de una relación que corresponden a una condición: (columnaOPERADORvalor) determinada.
- El grado (total de columnas de la Relación),se conserva
 - Formato de Uso: σ (condición) (RELACION)
 - $\sigma_{F}(R)$
 - Esta operación es la que normalmente se conoce como consulta.
 - En este tipo de consulta se emplean los diferentes operadores de comparación
 - (=,>, <, >=, <=, <>)
 - Y los operadores lógicos:
 - ∧(and), ∨(or), ¬ (not)

Operación Selección (σ)

PERSONA	PERSONA									
Cedula	Nombre	Primer_Apellido	Segundo_Apellido	Sexo	Dirección	Telefono	Salario			
71134534	Juan	Mesa	Uribe	M	Cra 25 22-1	2567532	1,600,000			
	Ana									
23423445	María	Betancur	Bermudez	F	Cra 45 11-13	3433444	1,300,000			
12453535	Gloria	Betancur	Garces	F	Tr. 12 43-5	2756533	1,700,000			
75556743	Pedro	Ochoa	Pelaez	M	CII.6ta 14-45	2686885	1,200,000			
43533322	Patricia	Angel	Guzmán	F	CII. 45 23-1	2674563	1,350,000			
78900456	Carlos	Betancur	Agudelo	M	Cir. 5 12-5	4445775	1,500,000			

- 1.- Mostrar las personas con cedula=71134534
- 2.- Mostrar las personas de sexo Femenino
- 3.- Mostrar las personas que cumplan las dos condiciones anteriores
- 4.- Mostrar las personas de sexo Masculino o las que tengan un salario igual o superior a 1.350.000
 - Muestra el resultado de las siguientes selecciones:
 - σ_{cedula = 71134534} (PERSONA)
 - $\sigma_{\text{sexo} = "F"}(\text{PERSONA})$
 - σ_{(primer_apellido = "Bentancur") ∧ (sexo ="F")} (PERSONA)
 - σ_{sexo = "M") ∨ (salarios >= 1,350,000)} (PERSONA)

 $\sigma_{(primer_apellido \,=\, "Bentancur") \, \land \, (sexo \,=\, "F")} \, (PERSONA)$

Resultado:

Cedula	Nombre	Primer_Apellido	Segundo_Apellido	Sexo	Dirección	Telefono	Salario
	Ana						
23423445	María	Betancur	Bermudez	F	Cra 45 11-13	3433444	1,300,000
12453535	Gloria	Betancur	Garces	F	Tr. 12 43-5	2756533	1,700,000

 $\sigma_{\text{sexo} = \text{"M"}) \ \lor \ (\text{salarios} >= 1,350,000)} \left(PERSONA \right)$

Resultado:

Cedula	Nombre	Primer_Apellido	Segundo_Apellido	Sexo	Dirección	Telefono	Salario
71134534	Juan	Mesa	Uribe	M	Cra 25 22-1	2567532	1,600,000
12453535	Gloria	Betancur	Garces	F	Tr. 12 43-5	2756533	1,700,000
75556743	Pedro	Ochoa	Pelaez	M	Cll.6ta 14-45	2686885	1,200,000
43533322	Patricia	Angel	Guzmán	F	CII. 45 23-1	2674563	1,350,000
78900456	Carlos	Betancur	Agudelo	М	Cir. 5 12-5	4445775	1,500,000

.

Proyección (∏)

 Una proyección es una operación en la que seleccionamos aquellos campos que queremos recuperar.

- Formato de Uso: $\pi_{\text{<lista de atributos>}}$ (Relación)
 - π_(x)(R)
- Ejemplos:
 - La proyección, \(\pi_X(R)\), donde \(R\) es una relación definida sobre el conjunto de atributos \(T y X \subseteq T\), es una relación constituida por las columnas de \(R\) correspondientes a los atributos de \(X\)

Proyección (∏)

Ejemplos Proyección (□)

- Muestre el resultado de las siguientes proyecciones:
 - π_{cedula, nombre, primer_apellido, segundo_apellido} (PERSONA)
 - π_{cedula, salario} (PERSONA)
 - π_{cedula, nombre, salario} (σ_{(sexo = "M") ∨ (salario >= 1,350,000)}
 (PERSONA))

Ejemplos Proyección (□)

Ejemplos Proyección (□)

Reunión (Join) θ

- La reunión se utiliza para recuperar datos a través de varias tablas conectadas unas con otras mediante cláusulas JOIN. La operación reunión se puede combinar con las operaciones selección y proyección.
- Se forma el producto cartesiano R y S. Se selecciona, en el producto, solo la tupla que cumplan la condición C

R				S		
Α	В	С	D	Α	С	Е
1	3	5	7	1	5	2
3	2	9	1	1	5	9
2	3	5	4	3	9	2
				2	3	7

Ejemplo Reunión (Join) θ

La condición es: C = A >= E

$R >< _{C}S$	Α	В	С	D	S.A	S.C	Е
	3	2	9	1	1	5	2
	3	2	9	1	3	9	2
	2	3	5	4	1	5	2
	2	3	5	4	3	9	2

Reunión Natural (Join Natural)

- Sean R y S dos relaciones con uno o mas atributos en común. La reunión natural, R |><| S , se calcula del modo siguiente:
- Se calcula el producto cartesiano R x S Para cada atributo Ai común, se seleccionan las filas en las que el valor R.Ai coinciden con el valor de S.Ai Realizada la selección, eliminar la columna S.Ai

					_					
R	Α	В	С	D		S	Α		С	E
	1	3	Ę	5	7		1		5	2
							1		5	9
	3	2	(9	1		3		9	2
	2	3	Ę	5	4		2		3	7
		R	>< S	А	В	С	D	E		
				1	3	5	7	2		
				1	3	5	7	9		
				3	2	9	1	2		

División ÷

 Operación del álgebra relacional que crea una nueva relación, seleccionando las filas en una relación que se corresponden con todas las filas en otra relación.

Sean R y S relaciones de grado r y s, respectivamente, donde r > s y $S \neq \emptyset$. Entonces, el cociente, $R \div S$, es el conjunto de tuplas t de grado (r-s), tales que para toda tupla u de S, la tupla (t, u) esta en R.

En términos de operaciones básicas:

$$\mathsf{R} \div \mathsf{S} \equiv \pi_{_{1,2,\ldots,r\text{-s}}} \left(\mathsf{R} \right) - \pi_{_{1,2,\ldots,r\text{-s}}} \left(\left(\pi_{_{1,2,\ldots,r\text{-s}}} \left(\mathsf{R} \right) \times \mathsf{S} \right) - \mathsf{R} \right)$$

División÷

					1		
R	Α	В	С	D	S	С	D
	1	2	3	5		3	5
	4	3	5	9		2	7
	3	2	8	1			
	1	2	2	7			
	1	3	2	7			
	. 	R ÷ S		A	В		
				1	2		

Estructura del Lenguaje SQL

La estructura del lenguaje SQL contiene un limitado número de verbos o palabras clave, distribuidos en tres grandes grupos funcionales:

- •DDL Data Definition Language (lenguaje de descripción de datos) Permite la descripción de la estructura dela BD (tablas, vistas,índices,...)
- •DML Data Manipulation Language (lenguaje de manipulación de datos) Permite el manejo de las tablas y las vistas mediante sus cuatro verbos, correspondientes alas cuatro operaciones fundamentales sobre los datos.
- •DCL Data Control Language (lenguaje de control de datos) Contiene los operadores para la gestión de transacciones (COMMIT y ROLLBACK) y prioridades de acceso a los datos (GRANT y REVOKE)

Los	Comandos	mas im	portantes	son:
	Comando	mas min	portaritos	3011.

DDL	DML	DCL
CREATE DROP ALTER	SELECT INSERT DELETE UPDATE	GRANT REVOKE COMMIT ROLLBACK

Consulta de Datos con SQL

- El DQL Data Query Language (lenguajede consulta de datos) forma parte del lenguaje DML de SQL. El único comando que pertenece a este lenguaje es el comando SELECT.
- Este comando permite:
 - Obtener datos de ciertas columnas de una tabla (proyección).
 - Obtener registros (filas) de una tabla de acuerdo con ciertos criterios (selección)
 - Mezclar datos de tablas diferentes (union, join)
 - Realizar cálculos sobre los datos
 - Agrupar datos

Sintaxis sencilla del Select

SELECT * | { [DISTINCT] columna | expresión [[AS] alias] , } FROM tabla;

- * => significa que se seleccionan todas las columnas
- DISTINCT. Hace que no se muestren los valores duplicados
- Columna. Es el nombre de la columna de la tabla que se desea mostrar
- expresión. Una expresión valida SQL
- Alias. Es el nombre que se le da a la cabecera de la columna en el resultado de esta instrucción

Ejemplos Select

 Selección de todos los registros de la tabla clientes:

SELECT * FROM Clientes;

 Selección de algunos campos: SELECT nombre, apellido1, apellido2 FROM Clientes

Relación con el álgebra •El comando SELECT permite imprementar de lornal exacta todas las

- •El comando SELECT permite implementar de forma exacta todas las consultas del álgebra relacional.
- •La **proyección** (π) se implementa así:

π nombre, apellido (Cliente)

En SQL se escribe como:

SELECT nombre, apellido FROM Cliente;

•La **selección** (σ) se implementa usando la cláusula WHERE

 σ nombre="Pepe" Λ edad > 25(Cliente)

En SQL se escribiría así:

SELECT * FROM Cliente WHERE nombre='Pepe and edad > 25

- •En la clausula WHERE se pueden utilizarlos siguientes operadores de comparación: >, <, >=, <=, =, <>
- •Y los operadores lógicos: AND, OR, NOT

Ejemplos

- /* Obtener las personas entre 25 y 50 años de edad */
- ☐ SELECT nombre, apellido FROM Personas WHERE edad>=25 AND edad<=50;
 - /* Obtener a las personas de más de 60 años o de menos de 20 años */
- □SELECT nombre, apellido FROM Personas WHERE edad>60 or edad<20;

Relación con el álgebra relacional

- El Producto Cartesiano (R X S) se implementa en SQL así: SELECT * FROM R, S
- Ejemplo: Teniendo dos tablas una llamada Películas y otra Estudio. El Producto Cartesiano se escribiría así: Algebra relacional→Película x Estudio SQL→SELECT * FROM Película, Estudio

Ejemplo Producto Cartesiano

Película		Estudio			
ID_Película	Nombre	Año	ID_Estudio	ID_Estudio	Nombre
1	La guerra de las galaxias	1977	3	1	Ghibli
2	La comunidad del anillo	2001	2	2	New Line Cinema
3	Mar adentro	2004	4	3	Lucasfilms
4	El viaje de Chihiro	2001	1	4	Sogecine

Ejemplo Producto Cartesiano

Película x Est	tudio				
ID_Película	Nombre	Año	ID_Estudio	ID_Estudio	Nombre
1	La guerra de las galaxias	1977	3	1	Ghibli
1	La guerra de las galaxias	1977	3	2	New Line Cinema
1	La guerra de las galaxias	1977	3	3	Lucasfilms
1	La guerra de las galaxias	1977	3	4	Sogecine
2	La comunidad del anillo	2001	2	1	Ghibli
2	La comunidad del anillo	2001	2	2	New Line Cinema
2	La comunidad del anillo	2001	2	3	Lucasfilms
2	La comunidad del anillo	2001	2	4	Sogecine
3	Mar adentro	2004	4	1	Ghibli
3	Mar adentro	2004	4	2	New Line Cinema
3	Mar adentro	2004	4	3	Lucasfilms
3	Mar adentro	2004	4	4	Sogecine
4	El viaje de Chihiro	2001	1	1	Ghibli
4	El viaje de Chihiro	2001	1	2	New Line Cinema
4	El viaje de Chihiro	2001	1	3	Lucasfilms
4	El viaje de Chihiro	2001	1	4	Sogecine

Relación con el álgebra relacional

- La operación Reunion (Join)R |><|
 cS
 - En SQL se escribe:
 - SELECT * FROM R, S WHERE R.c = S.c
- Usando las tablas anteriores
- SELECT * Película, Estudio WHERE Pelicula.ID_Estudio = Estudio.ID_Estudio

Ejemplo Join

Película >< Estudio					
ID_Película	Nombre	Año	ID_Estudio	ID_Estudio	Nombre
1	La guerra de las galaxias	1977	3	3	Lucasfilms
2	La comunidad del anillo	2001	2	2	New Line Cinema
3	Mar adentro	2004	4	4	Sogecine
4	El viaje de Chihiro	2001	1	1	Ghibli

Relación con el álgebra relacional

- El operador Renombrar (ρ)
 Permite cambiar el nombre de la relación, para diferenciar atributos del mismo nombre.
- SQL proporciona un mecanismo para renombrar tanto relaciones como atributos. Para ello utiliza la cláusula AS, que tiene la forma siguiente: SELECT * nombre-antiguo AS nombre-nuevo

Relación con el álgebra relacional

- Las operaciones de SQL UNION,INTERSECT y EXCEPT operan sobre relaciones y corresponden a las operaciones del álgebra relacional, u n y -
- Al igual que la unión, intersección y diferencia de conjuntos en el álgebra relacional, las relaciones que participan en las operaciones han de ser compatibles; esto es, deben tener el mismo conjunto de atributos

Ejemplo SELECT - UNIÓN

- Para encontrar todas las mascotas que están en una de las dos tablas o en las dos, se escribirá:
- (SELECT nombre FROM mascotas)UNION (SELECT nombre FROM copiamascotas3)

```
mysql> select nombre from mascotas UNION select nombre FROM copiamascotas3;

| nombre |
| nombre |
| copiamascotas |
| c
```

Inicialmente ambas tablas contienen los mismos datos. Vamos a añadir algunos elementos a la tabla mascotas:

Ejemplo SELECT - INTERSECCIÓN

- Para encontrar todas las mascotas que están en las dos tablas simultáneamente:
- (SELECT nombre FROM mascotas)INTERSECT (SELECT nombre FROM copiamascotas3)
- Para encontrar todos los clientes que tienen tanto un préstamo como una cuenta en el banco se escribiría:
- (SELECT nom_clien FROM prestatario)INTERSECT (SELECT nom_clien FROMimpositor)
- No mysql

Ejemplo SELECT – DIFERENCIA

 Para encontrar todos los clientes que tienen cuenta pero no tienen ningún préstamo en el banco, se escribiría:

(SELECT nom_clien FROM prestatario)EXCEPT (SELECT nom_clien FROMimpositor)

No mysql

BIBLIOGRAFÍA

 http://es.scribd.com/doc/2450884/Alg ebra-Relacional#scribd