Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{0}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 1 / 2 / 1

Выполнила: студентка 106 группы Королёва Д. Л.

> Преподаватели: Корухова Л. С. Манушин Д. В.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	5
Структура программы и спецификация функций	7
Сборка программы (Маке-файл)	14
Отладка программы, тестирование функций	15
Программа на Си и на Ассемблере	17
Анализ допущенных ошибок	18
Список цитируемой литературы	19

Постановка задачи

В задании требуется с заданной точностью $\varepsilon=10^{-3}$ вычислить площадь плоской фигуры, ограниченной тремя кривыми, заданными следующими функциями:

$$f_1 = 2^x + 1$$
 $f_2 = x^5$ $f_3 = \frac{1-x}{3}$

Площадь вычисляется как разность площадей под графиками функций на соответствующих отрезках, ограниченных точками пересечения графиков функций, которые вычисляются в ходе выполнения программы.

В данном варианте задания площадь по графиком функции предлагалось считать используя метод прямоугольников.

Для поиска точек пересечения графиков функций f(x) и g(x) расмматривается промежуточная функция F(x) = f(x) - g(x) и находится её корень на выбранном отрезке с помощью метода хорд.

Отрезки, на которых происходит поиск корней предварительно были вычислены аналитически.

Математическое обоснование

В методе хорд существенным является направление выпуклости функции и тип её монотонности на заданном отрезке. Так, если функция выпукла вниз и монотонно возрастает, то приближение идёт слева направо, если функция выпукла вниз и монотонно убывает - справа налево (т.е. фиксируется конец отрезка - точка b и вычисляется новое значение для точки x=a на первой итерации метода). Данное замечание изображено на рисунке 1.

Рис. 1: Выпуклая вверх, возрастающая функция => приближаемся справа налево

Для того, чтобы понять тип монотонности функции на расматриваемом отрезке F(x) рассматривается знак её приращения delta(F(x)) = F(x+x0) - F(x0), где x = b, x0 = a.

Для того, чтобы понять тип выпуклости функции на отрезке используется неравенство Йенсена: $F(\frac{a+b}{2})$ сравнивается с $\frac{F(a)+F(b)}{2}$. Отрезки вычисляются таким образом, чтобы на них имелся только один корень,

Отрезки вычисляются таким образом, чтобы на них имелся только один корень, иначе метод хорд не будет сходится к какой-то одной из них. Для вычисления отрезков использовался графический калькулятор Desmos:

$$f_1 = 2^x + 1$$

$$f_2 = x^5$$

$$f_3 = \frac{1 - x}{3}$$

$$y_1 = 2^x + 1$$

$$y_2 = x^5$$

$$y_3 = \frac{(1 - x)}{3}$$

Из данных графиков были выбраны следующие отрезки:

для
$$y1, y2 - [0, 2]$$

для $y1, y3 - [-4, -2]$
для $y2, y3 - [0.3, 0.9]$

Для того, чтобы при суммировании площадей значение было вычисленно с точность $\varepsilon=10^{-3}$ требуется, чтобы сами площади были вычислены с точностью, на один знак большей, чтобы избежать погрешности вычислений с плавающей точкой, поэтому $\varepsilon_2=10^{-4}$.

Из-за погрешности вычислений с плавающей точкой при расчёте значений функции в точке точность вычисления корня должна быть ещё на один порядок выше, поэтому $\varepsilon_1=10^{-5}$. При сравнении ответа, полученного своей программой с ответом от онлайн программы "Калькулятор Интегралов"и графичским калькулятором Desmos было подтверждено, что указанная точность достигается.

При численном интегрировании условием окончания вычисления интегральных сумм использовалась оценка погрешности численного метода: $\frac{(b-a)^3}{24n^2}f''(\xi)$ [1]. Где константа 24 - фиксированная, а $f''(\xi)$ и (b-a) были посчитаны для данных функций аналитически. Таким образом в программе сначала высчитывается шаг для необходимой точности, как $step = \frac{\sqrt[3]{10^{-5}}}{24*5.0}$, после чего считается необходимое количество итераций для подсчёта площади.

Результаты экспериментов

Координаты по x точек пересечения, посчитанные методом хорд:

Кривые	x
1 и 2	1.279293
2 и 3	0.649762
1 и 3	-2.522391

Таблица 1: Координаты точек пересечения

Координаты точек пересечения, посчитанных в Desmos:

Формула для подсчёта площади выглядит следующим образом: integral(y1[root3, root1]) - integral(y2[root1, root2]) - integral(y3[root2, root1]), где root1 = root(y1, y2) root2 = root(y2, y3) root3 = root(y1, y3) Отрезки интегрирования и значения площадей под графиками на данных отрезках, почитанные с помощью программы "Калькулятор Интегралов":

кривая	начало отрезка	конец отрезка	площадь
1	-2.522	1.279	7.050
2	0.651	1.279	0.716
3	-2.522	0.651	2.047

Таблица 2: Значения площадей под графиками

Результат работы программы "Калькулятор Интегралов 4.287. Результат работы моей программы - 4.287873.

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Программа состоит из файлов:

calculation_functions.c, print functions.c ascii_art_func.c и соответствующих заголовочных файлов (.h), ascii_art.txt, main.c, input_functions.s и соответствующего файла (.h).

Каждый из них содержит следующие модули:

calculation_functions.c: содежит функции root и integral

double root(double(*f)(double), double(*g)(double), double left_border, double right_border, double eps1, int* iterations) — функция нахождения точки пересечения двух графиков функций методом хорд. Принимает указатели на две функции, а также границы отрезка, на котором производится поиск и точность, с которой будет найден корень, также принимает указатель на переменную, в которой будет посчитано количество итераций. Возвращает найденное значение корня с точностью esp1.

double integral(double(*f)(double), double left_border, double right_border, double eps2) — функция вычисления определенного интеграла заданной функции на отрезке [a,b] с точностью eps2 методом прямоугольников. Принимает указатель на функцию, границы отрезка интегрирования и точность, с которой происходит интегрирование. Функция возвращает значение интеграла на отрезке.

input_functions.s — содержит реализации функций f_1, f_2, f_3 из задания и их производных.

ascii_art_func.c: содежит функцию void print_ascii_art(FILE* file, int length) для вывода в начале исполнения программы содержимого файла ascii_art.txt - изображения русалки и названия программы.

print functions.c: содержит функции вывода значений корней, интегралов, площади, ограниченной графиками функции, числа итераций, тестовых значений интегралов и корней:

```
void print_iters_roots(void);
void print_x_coordinates(void);
void print_integral_value(void);
void print_coordinates_and_integral(void);
void print_face_border(void);
void print_usual_border(void);
void print_instructions_info(void);
void print_test_roots(int index_func1, int index_func2, double a, double b);
void print_test_integral(int index_func1, double a, double b);
```

Программа запускается из консоли и поддерживает следующие флаги:

• без флагов – выводит значение площади.

ullet -help — выводит информацию о командах и функциях.

• -roots — выводит абсциссы точек пересечения функций из задания.

• -square — выводит значение площади, ограниченной соответствующими графиками функций.

 \bullet -iters — считает число итераций при вычислении точек пересечения данных функций.

• -test-root <номер первой функции> <номер второй функции> <левая граница отрезка> <правая граница отрезка> — находит точку пересечения двух выбранных функций на выбранном интервале.

• -test-integral <номер функции> <левая граница отрезка> <правая граница отрезка> — находит интеграл выбранной функции на выбранном отрезке.

Если вводится неправильный ключ, то программа сообщит вам об этом и выведет опцию -help:

Подерживается воод нескольких ключей подряд:

Сборка программы (Маке-файл)

текст Make-файла

```
FINAL = Mermaid
COMPILER = gcc
ASSEMBLER = nasm
CFLAGS = -std = c99 - c - m32 - g
SFLAGS = -f elf32
OFLAGS = -no-pie - z noexecstack - m32 - lm
SRCC = $(wildcard *.c)
SRCS = $(wildcard *.s)
OBJC = $(patsubst %.c, %.o, $(SRCC))
OBJS = $(patsubst %.s, %.o, $(SRCS))
$(FINAL) : $(OBJC) $(OBJS)
        $(COMPILER) $(OBJC) $(OBJS) $(OFLAGS) -o $(FINAL)
%.o: %.c
        $(COMPILER) $(CFLAGS) $< -o $@
%.o: %.s
        $(ASSEMBLER) $(SFLAGS) $< -o $@
clean :
        rm $(FINAL) *.o
```

Схема работы компановщика (также на последнем шаге подключается math.h).

Отладка программы, тестирование функций

Отладка root:

Будем тестировать на следующих функциях, чьи точки пересечения можно посчитать в графическом калькуляторе Desmos, либо посчитать вручную, корни ищем на отрезке [-2,0] для y1,y2, на отрезке [0,0.7] для y1,y3, на отрезке [0,2] для y2,y3:

функция №1	функция №2	ответ программы
y = x + 1	$y = x^2$	-0.617612
y = x + 1	y = 2 - x	0.50000
$y = x^2$	y = 2 - x	1.000000

Корни, полученные в Desmos:

Тестирование integral: Будем вычислять определенный интеграл функции f на интервале [a,b] и сравнивать с полученным программой "Калькулятор Интегралов".

функция f	интеграл	a	b	ответ программы	"Калькулятор Интегралов"
y = x + 1	$y = \frac{x^2}{2} + x$	-2	2	4.0000	4
$y = x^2$	$y = \frac{x^3}{3}$	-1	3	9.32323	9.3333
y = 2 - x	$y = 2x - fracx^2 2$	2	3	-0.5000	-0.5

Программа на Си и на Ассемблере

Исходные тексты программы приложены к этому отчету.

Анализ допущенных ошибок

- 1. На каждой следующей итерации пересчитывала значения предыдущей итерации в функции integral, что приводило к чрезмерному расходу памяти.
- 2. При работе написании Makefile связывала не те файлы были забыты некоторые флаги компиляции (-no-pie -m32)
- 3. При написании функции verb|integral| при отладке устанавливала ограничение на количество итераций, из-за чего не достигалась нужная точность.
- 4. При написании функций на языке nasm забывала команду finit при работе с x87.
- 5. При описании работы с входными параметрами int agrc, char* argv[] были ошибки с индексацией.
 - Все перечисленные ошибки исправлены. Программа работает корректно.

Список литературы

- [1] Садовничая И.В. Методы вычисления определенных интегралов. Москва: 2024.
- [2] «Задания практикума на ЭВМ» Трифонов Н.П., Пильщиков В.Н

Список использованных сайтов:

https://www.geeksforgeeks.org/ https://app.diagrams.net/

https://www.integral-calculator.ru/

 $https://www.desmos.com/calculator?lang{=}ru$