

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

4192404433

COMPUTER SCIENCE

0478/11

Paper 1 Theory

October/November 2020

1 hour 45 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- Calculators must **not** be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1 Six devices are shown.

Tick (✓) to show if each device is an **Input**, **Output** or **Storage** device.

Device	Input (✓)	Output (✓)	Storage (✓)
Keyboard			
Sensor			
3D cutter			
2D scanner			
Microphone			
Hard disk drive (HDD)			

[6]

2 Ron is attending a music concert. He has bought three tickets.

Each ticket number is displayed as a hexadecimal number.

(a) Complete the table to show the **12-bit binary** values and the **Denary** values for each Hexadecimal ticket number.

Hexadecimal ticket number	12-bit binary value	Denary value
028		
1A9		
20C		

Working space		

	(b)	Each ticket also has a QR code. The QR code is scanned at the entrance to the venue.						
		A person can only enter the venue with a valid QR code that allows entry.						
		When a person enters, a count is incremented to show how many people have entered the venue.						
		Explain how the system scans the QR code, checks if a person can enter and counts how many people have entered.						
		[7]						
3		nsport Layer Security (TLS) protocol is used to secure the transmission of data over the rnet.						
	(a)	Identify the two layers in the TLS protocol.						
		Layer 1						
		Layer 2						
		[2]						

(b) The following paragraph explains how data is sent securely using the TLS protocol.

Use the terms to complete the paragraph. Not all terms may need to be used.

- binary
- browser
- certificate
- internet service provider
- signal
- web page
- web server
- website

	The browser requests the to identify its	elf
	by providing its This is sent and a che	eck
	is performed to see if it is	the
	sends a	
	back to the web server and data transmission begins.	[5]
(c)	Identify one other protocol that can be used to secure data transmission over the Internet.	
		[1]

Question 4 starts on page 6.

4 Consider the given logic statement:

$$X = ((NOT (A NAND B)) OR (B NOR C))$$

(a) Draw a logic circuit to represent the given logic statement.

All logic gates must have a maximum of **two** inputs. Do **not** attempt to simplify the logic statement.

(b) Complete the truth table for the given logic statement.

Α	В	С	Working space	X
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

(c)	The lo	gic statemer	nt aiven	has four	different	logic gates.
-----	--------	--------------	----------	----------	-----------	--------------

Identify two other logic gates and complete a truth table for each.

Truth table			
Α	В	Х	
0	0		
0	1		
1	0		
1	1		
	_		

Logic gate	Truth table				
	Α	В	X		
	0	0			
	0	1			
	1	0			
	1	1			

[4]

- **5** Luke is creating a website for his t-shirt design business.
 - (a) He is using HTML to create the website. HTML can be separated into structure and presentation.

(i)	Give two	examples	of HTML	structure.
-----	-----------------	----------	---------	------------

Example 1	
Example 2	
•	[2]

(ii) Give **two** examples of HTML presentation.

Example 1	
Example 2	

[2]

	(b)		e is concerned that his web server may be hacked or subjected to a denial of serves) attack.	′ice
			e two security methods that Luke could use to help protect the web server from hack DoS attack.	ing
		Metl	hod 1	
		Metl	hod 2	
				[2]
6	ΑV	on Ne	eumann model for a computer system contains several integrated circuits (IC).	
	(a)	Para	allel data transmission is used in an IC.	
		(i)	Describe how data is transmitted using parallel data transmission.	
				[2]
		(ii)	Give one benefit of using parallel, rather than serial, data transmission.	
				[1]
	(b)	The	computer has a central processing unit (CPU).	
		(i)	Identify the bus that carries signals around the CPU to control the components.	
				[1]
		(ii)	Identify the register built into the arithmetic logic unit (ALU).	
				[1]

(iii) Four statements about a Von Neumann model for a computer system are shown.

Tick (\checkmark) to show if each statement is **True** or **False**.

Statement	True (√)	False (√)
Data and instructions are stored in the same memory unit		
The control unit manages operations within the CPU		
Data and instructions can be fetched into the CPU at the same time		
The control unit is responsible for decoding an instruction		

4	

[4]

′	record them in MIDI or MP3 format.
	Explain what is meant by MIDI and MP3 format.
	MIDI
	MP3

8	Mat	thew is buying a new television v	vith a display that uses LED technology.
	(a)	Explain what is meant by LED to	echnology.
			[3]
	(b)	State three benefits of LED tech	hnology.
		Benefit 1	
		Benefit 2	
		Benefit 3	
			[3]
	(c)	Identify one other technology the	nat could have been used for the display.
			[1]
9	Vict	oria is entering data into a comp	uter system. The data will be transmitted to cloud storage.
	(a)	An even parity check is used to	check for errors in the binary values after transmission.
		For each of the 7-bit binary val	lues, write the Parity bit that makes sure even parity is met.
		7-bit binary value	Parity bit
		1100010	
		1001011	
		0100010	
		0010111	
			[4]

(b)	Identify two other error checking methods that could be used to check the binary values are correct after transmission.	Э
	Method 1	
	Method 2[2	
		·J
(c)	A check digit is used to check whether data is correct when entered into the system.	
	Describe how a check digit can be used to make sure the data entered is correct.	
	[4	[]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge IGCSE™

COMPUTER SCIENCE		0478/11
Paper 1		October/November 2020
MARK SCHEME		
Maximum Mark: 75		
	Published	
	Published	

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

© UCLES 2020 [Turn over

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2020 Page 2 of 11

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2020 Page 3 of 11

Question				An
1	One mark per each correct	ct row:		
	Device	Input (✓)	Output (✓)	Storage (✓)
	Keyboard	✓		
	Sensor	✓		
	3D Cutter		✓	
	2D Scanner	✓		
	Microphone	✓		
	Hard disk drive (HDD)			✓

Question			Answer
2(a)		rrect binary conversion rrect denary conversion	
	Hexadecimal ticket number	12-bit binary value	Denary value
	028	0000 0010 1000	40
	1A9	0001 1010 1001	425
	20C	0010 0000 1100	524

© UCLES 2020 Page 4 of 11

Question	Answer	Marks
2(b)	Seven from: Camera captures code // Laser/light shone on code Black squares reflect different light to white Corner squares are used for alignment Pattern converted to digital data // by example (Digital) data sent to microprocessor There is a database of valid QR codes Data compared to stored values/valid QR codes If data matches entry is granted is raised If data does not match, entry is denied	7

Question	Answer	Marks
3(a)	HandshakeRecord	2
3(b)	 Web server Certificate Authentic Browser Signal 	5
3(c)	Any one from: - SSL - HTTPS	1

© UCLES 2020 Page 5 of 11

© UCLES 2020 Page 6 of 11

Question				Ans	swer
4(b)	Three Two	mark marks	s for 6 for 4/	correct outputs 6/7 correct outputs 5 correct outputs correct outputs	
	Α	В	С	Working space	Х
	0	0	0		1
	0	0	1		0
	0	1	0		0
	0	1	1		0
	1	0	0		1
	1	0	1		0
	1	1	0		1
	1	1	1		1

© UCLES 2020 Page 7 of 11

Question					Answer	Marks
4(c)	One	mark	for the	e corr	ect gate and one mark for the correct truth table	4
	_	AND				
		Α	В	Х		
		0	0	0		
		0	1	0		
		1	0	0		
		1	1	1		
	_	XOR				
		Α	В	Х		
		0	0	0		
		0	1	1		
		1	0	1		
		1	1	0		

Question	Answer	Marks
5(a)(i)	 Two valid examples of Structure e.g. where text is placed, margins of page 	2
5(a)(ii)	 Two valid examples of Presentation e.g. font size, font colour 	2
5(b)	FirewallProxy server	2

© UCLES 2020 Page 8 of 11

Question	Answer				
6(a)(i)	 Uses multiple wires Sends multiple bits of data at a time 				2
6(a)(ii)	Faster transmission speed				1
6(b)(i)	- Control (bus)				1
6(b)(ii)	- Accumulator (ACC)				1
6(b)(iii)	Statement	True (✓)	False (✓)		4
	Data and instructions are stored in the same memory unit	✓			
	The control unit manages operations within the CPU	✓			
	Data and instructions can be fetched into the CPU at the same time		✓		
	The control unit is responsible for decoding an instruction	✓			

© UCLES 2020 Page 9 of 11

Question	Answer	Marks
7	Four from (Max two per format):	4
	MIDI Musical Instrument Digital Interface (file) Stores a set of commands/instructions (for how the sound should be played) Does not store the actual sounds Data in the file has been recorded using digital instruments // produced by synthesizer Specifies pitch of the note // specifies the note to be played Specifies when each note plays and stops playing // Specifies key on/off Specifies duration of the note Specifies volume of the note Specifies the tempo Specifies the tempo Specifies the type of instrument Individual notes can be edited MP3 MP3 is a format for digital audio MP3 is an actual recording of the sound MP3 is a (lossy) compression format Recorded using a microphone	

Question	Answer	Marks
8(a)	Any three from: Light emitting diodes (technology) The display is made up of pixels that are arranged together as a matrix each is formed of three LEDs/filters Shades of colour are achieved by mixing red, blue and green The screen can be back-lit/edge-lit NOTE: Use of liquid crystals with LED technology can also be awarded	3

© UCLES 2020 Page 10 of 11

Question	Answer	Marks
8(b)	Any three from: - Energy efficient // low power consumption - Long lasting // longevity - Focussed beam // less light strays from beam - Brighter/vivid colours - High resolution - No flicker - Display is thinner - Mercury free technology // environmentally friendly - Fewer pixel failure - Increased viewing in sunlight	3
8(c)	- LCD	1

Question	Answer	Marks
9(a)	- 1 - 0 - 0 - 0	4
9(b)	Two from: - Checksum - Automatic repeat request // ARQ	2
9(c)	Any four from: Data is input with check digit A calculation is performed on the (inputted) data // by example The calculated digit is compared to a stored value If it matches, the data entered is correct If it does not match, the data entered is incorrect	4

© UCLES 2020 Page 11 of 11