PROPOSED MARKING GUIDE UACE 2024 PURE MATHEMATICS UMTA P425/1

NO	SOLUTION	MKS	COMMENT
1	Let $u = \ln x$, $\frac{dv}{dx} = x^4$		
	$\frac{du}{dx} = \frac{1}{x}, v = \frac{x^5}{5}$		
	$\int x^4 \ln x dx = \frac{1}{5} x^5 \ln x - \frac{1}{5} \int x^5 \cdot \frac{1}{x} dx$		
	$= \frac{1}{5}x^5 \ln x - \frac{1}{25}x^5 + c$		
		05	
2	For $2x + 3y = 7$		
	$y = -\frac{2}{3}x + \frac{7}{3}, m_1 = -\frac{2}{3}$		
	For $x = 6y + 5$		
	$y = \frac{1}{6}x - \frac{5}{6}, m_2 = \frac{1}{6}$		
	Using $\theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $		
	$\theta = \tan^{-1} \left \frac{\frac{-\frac{2}{3} - \frac{1}{6}}{1 + \frac{2}{3} \times \frac{1}{6}} \right $		
	$\theta = \tan^{-1}\left(\frac{15}{16}\right)$		
	$\theta = 43.15^{0}$		
		05	
3	$y = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$		
	Rationalizing		

		I	1
	$y = \sqrt{\frac{(1-\cos 2x)(1-\cos 2x)}{(1+\cos 2x)(1-\cos 2x)}}$		
	$y = \sqrt{\frac{(1 - \cos 2x)^2}{1 - \cos^2 2x}}$		
	$y = \frac{1 - \cos 2x}{\sin 2x}$	A	
	$\frac{dy}{dx} = \frac{\sin 2x \cdot 2\sin 2x - (1 - \cos 2x) \cdot 2\cos 2x}{\sin^2 2x}$		
	$\frac{dy}{dx} = \frac{2\sin^2 2x - 2\cos 2x + 2\cos^2 2x}{\sin^2 2x}$		
	$\frac{dy}{dx} = \frac{2(1-\cos 2x)}{\sin^2 2x}$		
	$\frac{dy}{dx} = \frac{2(1-\cos 2x)}{1-\cos^2 2x}$		
	$\frac{dy}{dx} = \frac{2}{1 + \cos 2x}$		
	$\frac{dy}{dx} = \frac{2}{2\cos^2 x}$		
	$\therefore \frac{dy}{dx} = sec^2x$		
		05	
4	Let $\mathbf{a} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} - 3\mathbf{j} - 5\mathbf{k}$, $\mathbf{c} = 3\mathbf{i} - 4\mathbf{j} - 4\mathbf{k}$		
	For coplanar vectors, $\boldsymbol{c} = \mu \boldsymbol{a} + \lambda \boldsymbol{b}$		
	$\begin{pmatrix} 3 \\ -4 \\ -4 \end{pmatrix} = \mu \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -3 \\ -5 \end{pmatrix}$		
	$2\mu + \lambda = 3 \dots (i)$		
	$-\mu - 3\lambda = -4$		
	$\mu + 3\lambda = 4 \dots (ii)$		
	$\mu - 5\lambda = -4 \dots (iii)$		
	(ii) - (iii) ; $8\lambda = 8$		

		•	
	$\lambda = 1$		
	From (ii); $\mu + 3(1) = 4$		
	$\mu = 1$		
	Substituting for μ and λ in (i);		
	2(1) + 1 = 3	A	
	3 = 3	• (
	\therefore since the values of μ and λ are consistent, then the		
	vectors are coplanar.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		05	
5	$\tan x + \tan 2x + \tan x \tan 2x = 1$		
	$\tan x + \frac{2 \tan x}{1 - \tan^2 x} + \tan x \cdot \frac{2 \tan x}{1 - \tan^2 x} = 1$		
	$\tan x - \tan^3 x + 2\tan x + 2\tan^2 x = 1 - \tan^2 x$		
	$tan^3x - 3tan^2x - 3\tan x + 1 = 0$		
	Let $\tan x = m$		
	$m^3 - 3m^2 - 3m + 1 = 0$		
	Put $m = -1$;		
	-1 - 3 + 3 + 1 = 0		
	0 = 0		
	If $m = -1$ is a root, then $m + 1$ is a factor.		

$$\Rightarrow m^3 - 3m^2 - 3m + 1 = 0$$

$$(m+1)(m^2 - 4m + 1) = 0$$

$$m = -1 \text{ or } m^2 - 4m + 1 = 0$$

ALT:

Let
$$t = \tan x$$

$$t + \frac{2t}{1 - t^2} + t \cdot \frac{2t}{1 - t^2} = 1$$

$$t - t^3 + 2t + 2t^2 = 1 - t^2$$

$$t^3 - 3t^2 - 3t + 1 = 0$$

Put
$$t = -1$$
;

$$-1 - 3 + 3 + 1 = 0$$

$$0 = 0$$

If t = -1 is a root, then t + 1 is a factor.

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		05	
6	$9 \log_x 5 = \log_5 x$ $\frac{9}{\log_5 x} = \log_5 x$ $(\log_5 x)^2 = 9$ $\log_5 x = \pm 3$		
	When $\log_5 x = 3$ $x = 5^3$ x = 125 When $\log_5 x = -3$ $x = 5^{-3}$		

$x = \frac{1}{125}$ $y = (1 - x)(x + 2)$ Intercepts, $x, y = 0$ $(1 - x)(x + 2) = 0$ $x = 1, x = -2, (1,0), (-2,0)$ $y, x = 0$ $y = (1 - 0)(0 + 2) = 2, (0,2)$ $A = \int_{-2}^{1} (2 - x - x^{2}) dx$ $A = \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		~ -1		
The equation of the equation		$\chi - \frac{1}{125}$		
Intercepts, x, y = 0 (1 - x)(x + 2) = 0 x = 1, x = -2, (1,0), (-2,0) y, x = 0 y = (1 - 0)(0 + 2) = 2, (0, 2) A = $\int_{-2}^{1} (2 - x - x^2) dx$ $A = \left[2x - \frac{x^2}{2} - \frac{x^3}{3}\right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2}$ or 6.5 or $6\frac{1}{2}$ sq. units			05	
$x, y = 0$ $(1 - x)(x + 2) = 0$ $x = 1, x = -2, (1,0), (-2,0)$ $y, x = 0$ $y = (1 - 0)(0 + 2) = 2, (0,2)$ $A = \int_{-2}^{1} (2 - x - x^{2}) dx$ $A = \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$	7	y = (1 - x)(x + 2)		
$(1-x)(x+2) = 0$ $x = 1, x = -2, (1,0), (-2,0)$ $y, x = 0$ $y = (1-0)(0+2) = 2, (0,2)$ $x = 0$ $y = 2 - x - x^{2}$ $(1,0) \rightarrow x$ $A = \int_{-2}^{1} (2 - x - x^{2}) dx$ $A = \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		Intercepts,		
$x = 1, x = -2, (1,0), (-2,0)$ $y, x = 0$ $y = (1 - 0)(0 + 2) = 2, (0,2)$ $x = 1, x = -2, (1,0), (-2,0)$ $y = 2 - x - x^{2}$ $(-2,0) \qquad \qquad$		x, y = 0		
$y, x = 0$ $y = (1 - 0)(0 + 2) = 2, (0, 2)$ $y = 2 - x - x^{2}$ $A = \int_{-2}^{1} (2 - x - x^{2}) dx$ $A = \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		(1-x)(x+2)=0		
$y = (1 - 0)(0 + 2) = 2, (0, 2)$ $y = (1 - 0)(0 + 2) = 2, (0, 2)$ $y = 2 - x - x^{2}$ $A = \int_{-2}^{1} (2 - x - x^{2}) dx$ $A = \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		x = 1, x = -2, (1,0), (-2,0)		
$y = 2 - x - x^{2}$ $A = \int_{-2}^{1} (2 - x - x^{2}) dx$ $A = \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		y, x = 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
$A = \int_{-2}^{1} (2 - x - x^{2}) dx$ $A = \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3} \right) - \left(-6 - 2 + \frac{8}{3} \right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		y = (1 - 0)(0 + 2) = 2, (0, 2)		
$A = \int_{-2}^{1} (2 - x - x^{2}) dx$ $A = \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3} \right) - \left(-6 - 2 + \frac{8}{3} \right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		y_{lack}		
$A = \int_{-2}^{1} (2 - x - x^{2}) dx$ $A = \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3} \right) - \left(-6 - 2 + \frac{8}{3} \right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$				
$A = \int_{-2}^{1} (2 - x - x^{2}) dx$ $A = \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3} \right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3} \right) - \left(-6 - 2 + \frac{8}{3} \right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		$y = 2 - x - x^2$		
$A = \int_{-2}^{1} (2 - x - x^{2}) dx$ $A = \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$				
$A = \int_{-2}^{1} (2 - x - x^{2}) dx$ $A = \left[2x - \frac{x^{2}}{2} - \frac{x^{3}}{3}\right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$				
$A = \left[2x - \frac{x^2}{2} - \frac{x^3}{3}\right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		$(-2,0) \qquad (1,0) \qquad x$		
$A = \left[2x - \frac{x^2}{2} - \frac{x^3}{3}\right]_{-2}^{1}$ $A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		$A = \int_{0}^{1} (2 - x - x^{2}) dx$		
$A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		$J-2^{(2)}$		
$A = \left(2 - \frac{1}{2} - \frac{1}{3}\right) - \left(-6 - 2 + \frac{8}{3}\right)$ $A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		$A = \left[2x - \frac{x^2}{2} - \frac{x^3}{3}\right]_{-2}^{1}$		
$A = \frac{7}{6} + \frac{16}{3}$ $A = \frac{13}{2} \text{ or } 6.5 \text{ or } 6\frac{1}{2} \text{ sq. units}$		2		
$A = \frac{13}{2}$ or 6.5 or $6\frac{1}{2}$ sq. units				
		$A = \frac{7}{6} + \frac{16}{3}$		
		$A = \frac{13}{2}$ or 6.5 or $6\frac{1}{2}$ sq. units		
05			05	

8	$3^{2x+1} - 3^{x+1} - 3^x + 1 = 0$		
	$3^{2x} \cdot 3^1 - 3^x \cdot 3^1 - 3^x + 1 = 0$		
	$3 \cdot (3^x)^2 - 3 \cdot 3^x - 3^x + 1 = 0$		
	Let $m = 3^x$		
	$3m^2 - 3m - m + 1 = 0$	A	
	$3m^2 - 4m + 1 = 0$		
	$3m^2 - 3m - m + 1 = 0$		
	3m(m-1) - (m-1) = 0	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
	(3m-1)(m-1) = 0		
	$m = \frac{1}{3} \text{ or } m = 1$		
	When $m = 1$; $3^x = 1$		
	$3^x = 3^0$		
	x = 0		
	When $m = \frac{1}{3}$; $3^x = 3^{-1}$		
	x = -1		
		05	
9	$y = \frac{3x+3}{x(3-x)}$		
	a) $y(3x - x^2) = 3x + 3$		
	$yx^2 + (3 - 3y)x + 3 = 0$		
	For non-existence, $b^2 - 4ac < 0$		
	$9(1-y)^2 - 4 \times y \times 3 < 0$		
	$3(1 - 2y + y^2) - 4y < 0$		

$3y^2$	-10y	+ 3	< 0
--------	------	-----	-----

$$(y-3)(3y-1) < 0$$

Critical values; y = 3, $y = \frac{1}{3}$

у	$y < \frac{1}{3}$	$\frac{1}{3} < y < 3$	<i>y</i> > 3
(y-3)(3y-1)	+	_	+

∴For non-existence $\frac{1}{3} < y < 3$

Turning points

For
$$y = 3$$
;

$$3x^2 - 6x + 3 = 0$$

$$x^2 - 2x + 1 = 0$$

$$(x-1)^2=0$$

$$x = 1, (1,3)_{min}$$

For
$$y = \frac{1}{3}$$
;

$$\frac{1}{3}x^2 + 2x + 3 = 0$$

$$x^2 + 6x + 9 = 0$$

$$(x+3)^2=0$$

$$x = -3; \left(-3, \frac{1}{3}\right)_{max}$$

b) Intercepts

$$x; y = 0$$

$$3x + 3 = 0$$

$$x = -1$$
, $(-1,0)$

$$y; x = 0$$

$$y = \frac{3(0)+3}{0}$$
, y is undefined

Asymptotes Vertical, x(3-x)=0x = 0, x = 3Horizontal, As $x \to \pm \infty$; $y \to 0$ i.e y = 0c) 12 a) $\sqrt{3-x} - \sqrt{7+x} = \sqrt{16+2x}$ 10 Squaring both sides; $3 - x - 2\sqrt{(21 - 4x - x^2)} + 7 + x = 16 + 2x$ $-2\sqrt{(21-4x-x^2)} = 6 + 2x$

/	(21)	-4x	$-x^2$	= 3	+ x
V	(- -	170	,,		1 70

Squaring both sides again,

$$21 - 4x - x^2 = 9 + 6x + x^2$$

$$2x^2 + 10x - 12 = 0$$

$$x^2 + 5x - 6 = 0$$

$$(x+6)(x-1) = 0$$

$$x = -6, x = 1$$

For
$$x = -6$$
;

$$L.H.S = \sqrt{9} - \sqrt{1}$$

$$= 2$$

R.H.S =
$$\sqrt{4}$$
 = 2

For
$$x = 1$$
;

$$L.H.S = \sqrt{2} - \sqrt{8}$$

$$=-\sqrt{2}$$

$$R.H.S = \sqrt{18}$$

$$=3\sqrt{2}$$

$$\therefore x = -6$$

b) Let
$$\frac{x+2y}{-3} = \frac{y+2z}{4} = \frac{2x+z}{5} = k$$

$$\frac{3x+3y+3z}{6} = k$$

$$\frac{x+y+z}{2} = k$$

$$\frac{2}{2} = k$$

<u> </u>	1	ı
k = 1		
x + 2y = -3(i)		
y + 2z = 4(ii)		
2x + z = 5(iii)		
From (i); $x = -3 - 2y$	A	
Then in (iii);	• (
2(-3 - 2y) + z = 5		
-6 - 4y + z = 5	7	
-4y + z = 11(iv)		
4(ii)+(iv); 9z = 27		
z = 3		
From (ii); $y + 2(3) = 4$		
y = -2		
From $x = -3 - 2y$		
x = -3 + 4 = 1		
$\therefore x = 1, y = -2, z = 3$		
	12	
11 a) L.H.S = $\frac{(\cos 4\theta + i \sin 4\theta)^3 (\cos 2\theta - i \sin 2\theta)^5}{(\cos 2\theta + i \sin 2\theta)^4 (\cos 4\theta - i \sin 4\theta)^6}$		
$(\cos 3\theta + i \sin 3\theta)^{4}(\cos 4\theta - i \sin 4\theta)^{6}$		
$= \frac{(\cos\theta + i\sin\theta)^{12}(\cos\theta + i\sin\theta)^{-10}}{(\cos\theta + i\sin\theta)^{12}(\cos\theta + i\sin\theta)^{-24}}$		
$-(\cos\theta+i\sin\theta)^{12-10}$		
$-\frac{1}{(\cos\theta+i\sin\theta)^{12-24}}$		
$=\frac{(\cos\theta+i\sin\theta)^2}{(\cos\theta+i\sin\theta)^{-12}}$		
$= (\cos\theta + i\sin\theta)^{14}$		

	$= \cos 14\theta + i \sin 14\theta$		
	— COS I 10 t SIII I 10		
	b) $ z - 1 - i < 3$		
	Centre, $C(1, 1)$ and radius, $r = 3$ units		
	Let $z = x + yi$	A	(7)
	x + yi - 1 - i < 3		
	(x-1) + i(y-1) < 3		
	$\sqrt{(x-1)^2 + (y-1)^2} < 3$		1
	$(x-1)^2 + (y-1)^2 < 9$		
	$x^2 + y^2 - 2x - 2y + 2 < 9$		
	$x^2 + y^2 - 2x - 2y - 7 < 0$		
	Im(z)		
	z-1-i < 3		
	Re(z)		
		12	
12	$y = 2x^2, y = 10x - x^2$		
	For $y = 10x - x^2$		
	Intercepts,		
	x, y = 0		
	0 = x(10 - x)		
	x = 0, x = 10		
	(0,0), (10,0)		

y, x = 0

y = 0(10 - 0) = 0, (0, 0)

Points of intersection

$$2x^2 = 10x - x^2$$

$$3x^2 - 10x = 0$$

$$x(3x - 10) = 0$$

$$x = 0, x = \frac{10}{3}$$

$$V = \pi \int_{a}^{b} (y_1^2 - y_2^2) \, dx$$

$$V = \pi \int_0^{8/3} [(10x - x^2)^2 - (2x^2)^2] dx$$

$$V = \pi \int_0^{8/3} (100x^2 - 20x^3 + x^4 - 4x^4) \, dx$$

$$V = \pi \int_0^{8/3} (100x^2 - 20x^3 - 3x^4) \, dx$$

$$V = \pi \left[\frac{100}{3} x^3 - 5x^4 - \frac{3}{5} x^5 \right]_0^{8/3}$$

$$V = \pi \left(\frac{100}{3} \left(\frac{8}{3}\right)^3 - 5\left(\frac{8}{3}\right)^4 - \frac{3}{5} \left(\frac{8}{3}\right)^5 - 0\right)$$

$$V = 298.3506\pi$$
 or 937.2961 cubic unit

		12	
13	a) L.H.S = $\frac{\sin 5x - \sin 7x + \sin 8x - \sin 4x}{\cos 4x - \cos 5x - \cos 8x + \cos 7x}$		
	$\cos 4x - \cos 5x - \cos 8x + \cos 7x$ $\sin 5x - \sin 7x + \sin 8x - \sin 4x$		
	$= \frac{\sin 3x - \sin 7x + \sin 6x - \sin 4x}{\cos 4x - \cos 8x + \cos 7x - \cos 5x}$		
	$-\frac{1}{-2\sin 6x\sin(-2x)-2\sin 6x\sin x}$	A	
	$=\frac{2\cos 6x(\sin 2x-\sin x)}{\cos x}$		
	$2\sin 6x(\sin 2x - \sin x)$	A	
	$= \cot 6x$		
	b) $4\left(\frac{1-t^2}{1+t^2}\right) - 6\left(\frac{2t}{1+t^2}\right) = 5$, where $t = \tan\left(\frac{x}{2}\right)$		
	$4 - 4t^2 - 12t = 5 + 5t^2$		
	$9t^2 + 12t + 1 = 0$		
	$t = \frac{-12 \pm \sqrt{12^2 - 4 \times 9 \times 1}}{2 \times 9}$		
	t = or $t =$		
		12	
14	Let $\frac{3x^3 + x + 1}{(x - 2)(x + 1)^3} \equiv \frac{A}{x - 2} + \frac{B}{x + 1} + \frac{C}{(x + 1)^2} + \frac{D}{(x + 1)^3}$		
	$3x^3 + x + 1 \equiv A(x+1)^3 + B(x-2)(x+1)^2 + C(x-2)(x+1) + D(x-2)$		
	Put $x = 2$; $27 = 27A$		
	A = 1		
	Put $x = -1$; $-3 = -3D$		
	D=1		
	Comparing coefficient of;		
	x^3 ; 3 = $A + B$		
	3 = 1 + B		
	B= 2		

	Put $x = 0$; $1 = A - 2B - 2C - 2D$		
	1 = 1 - 2(2) - 2C - 2(1)		
	2C = -6		
	C = -3		
	$\therefore \frac{3x^3 + x + 1}{(x - 2)(x + 1)^3} \equiv \frac{1}{x - 2} + \frac{2}{x + 1} - \frac{3}{(x + 1)^2} + \frac{1}{(x + 1)^3}$		
	Hence;		
	$\int_{3}^{4} \frac{3x^{3} + x + 1}{(x - 2)(x + 1)^{3}} dx = \int_{3}^{4} \frac{1}{x - 2} dx + \int_{3}^{4} \frac{2}{x + 1} dx - 3 \int_{3}^{4} \frac{1}{(x + 1)^{2}} dx + \int_{3}^{4} \frac{1}{(x + 1)^{3}} dx$		
	$= \left[\ln(x-2)\right]_3^4 + 2\left[\ln(x+1)\right]_3^4 + \left[\frac{3}{x+1}\right]_3^4 - \frac{1}{2}\left[\frac{1}{(x+1)^2}\right]_3^4$		
	$= (\ln 2 - \ln 1) + 2(\ln 5 - \ln 4) + \left(\frac{3}{5} - \frac{3}{4}\right) - \frac{1}{2}\left(\frac{1}{25} - \frac{1}{16}\right)$		
	$= \ln 2 + 2 \ln \left(\frac{5}{4}\right) - \frac{3}{20} + \frac{9}{800}$		
	= 1.00068428318836		
	≈ 1.001		
		12	
15	$a)\frac{dy}{dx} = x - \frac{2y}{x}$		
	$\frac{dy}{dx} + \frac{2y}{x} = x$		
	$I.F = e^{\int \frac{2}{x} dx}$ $I.F = e^{2 \ln x}$		
	$I.F = e^{\ln x^2}$		
	$I.F = x^2$		
	Multiplying through by x^2		
	$x^2 \frac{dy}{dx} + 2xy = x^3$		

1			
	$\int \frac{d}{dx} (x^2 \cdot y) = \int x^3 dx$		
	$x^2y = \frac{x^4}{4} + c$		
	At point $(2, 4)$; $x = 2$ and $y = 4$		
	$4 \times 4 = 4 + c$	A	
	c = 16 - 4 = 12		
	$\therefore y = \frac{x^2}{4} + \frac{12}{x^2}$		
		7	
	b) $y = vx$		
	$\frac{dy}{dx} = v + x \frac{dv}{dx}$		
	$\Rightarrow x^2 \left(v + x \frac{dv}{dx} \right) = x^2 + (vx)^2 + x(vx)$		
	$v + x \frac{dv}{dx} = 1 + v^2 + v$		
	$x\frac{dv}{dx} = 1 + v^2$		
	Separating variables;		
	$\int \frac{1}{1+v^2} dv = \int \frac{1}{x} dx$		
	$\tan^{-1}(v) = \ln x + c$		
	$\tan^{-1}\left(\frac{y}{x}\right) = \ln x + c$		
	$\frac{y}{x} = \tan(\ln x + c)$		
	$\therefore y = x \tan(\ln x + c)$		
		12	
16	a) $\mathbf{r} = \begin{pmatrix} 1+2t\\1+2t\\-3+t \end{pmatrix}$		
	(-3 + t/		

(5,5,1) is the point of intersection. Let θ be the required angle. $d \cdot n = d n \sin \theta$ $\binom{2}{2} \cdot \binom{6}{-3} = \sqrt{2^2 + 2^2 + 1^2} \sqrt{6^2 + (-3)^2 + 2^2} \sin \theta$ $12 - 6 + 2 = 3 \times 7 \times \sin \theta$ $8 = 21 \sin \theta$ $\theta = \sin^{-1} \left(\frac{8}{21}\right)$ $\theta = 22.39^0$ b)
12