17. 2. 2019 ppj: Rešitve

Principi programskih jezikov

Nadzorna plošča / Moji predmeti / ppj / Izpeljava tipov / Rešitve

Rešitve

Za vsakega od naslednjih izrazov izpeljite njegov *glavni* tip, ali ugotovite, da ga nima. Nato preverite odgovor še v SML.

Naloga

Izpeljite glavni tip izraza

```
fn x => fn y => (x, y, y)
```

Rešitev

Uvedemo nov parameter α in zabeležimo $x:\alpha$. Funkcija ima tip $\alpha \rightarrow \beta$, kjer je β tip izraza fn $y \Rightarrow (x, y, y)$.

Tip izraza fn y => (x, y, y): uvedemo nov parameter δ in zabeležimo y : δ. Tip izraza (x, y, y) je tako $\alpha \times \delta \times \delta$. Funkcija fn y => (x, y, y) ima torej tip $\delta \to \alpha \times \delta \times \delta$. Dobimo enačbo $\beta = \delta \to \alpha \times \delta \times \delta$.

V tipu $\alpha \rightarrow \beta$ zamenjamo $\beta \mapsto \delta \rightarrow \alpha \times \delta \times \delta$, da dobimo glavni tip izraza:

```
\alpha \rightarrow \delta \rightarrow \alpha \times \delta \times \delta
```

Naloga

Izpeljite glavni tip izraza

```
fn f => fn g => f (g 42)
```

Rešitev

Uvedemo nov parameter α in zabeležimo $f:\alpha$. Funkcija ima tip $\alpha \rightarrow \beta$, kjer je β tip izraza fn $g\Rightarrow f$ (g 42).

Tip funkcije fn g => f (g 42): uvedemo nov parameter γ in zabeležimo g : γ. Funkcija ima tip γ \rightarrow δ, kjer je δ tip izraza f (g 42). Dobimo enačbo β = γ \rightarrow δ.

Tip izraza f (g 42) je δ , zato mora imeti funkcija f tip $\epsilon \rightarrow \delta$, kjer je ϵ tip izraza g 42. Dobimo enačbo $\alpha = \epsilon \rightarrow \delta$.

Tip izraza g 42 je ε, zato mora imeti funkcija g tip int \rightarrow ε. Dobimo enačbo γ = int \rightarrow ε.

Imamo naslednje enačbe:

```
\alpha = \varepsilon \rightarrow \delta
\beta = \gamma \rightarrow \delta
\gamma = int \rightarrow \varepsilon
```

Upoštevamo definicijo γ:

```
\alpha = \epsilon \rightarrow \delta
\beta = \text{int} \rightarrow \epsilon \rightarrow \delta
```

In dobimo glavni tip celega izraza $\alpha \rightarrow \beta = (\epsilon \rightarrow \delta) \rightarrow (\text{int } \rightarrow \epsilon) \rightarrow \delta$.

Naloga

Izpeljite glavni tip izraza

```
if 3 < 5 then (fn x \Rightarrow x) else (fn y \Rightarrow (y, y))
```

Rešitev

Tip lahko izpeljemo po kosih: posebej obravnavamo pogoj 3 < 5, kjer preverimo, da je tip boo1, nato pa izpeljemo tipa obeh vej in ju izenačimo.

17. 2. 2019 ppj: Rešitve

Izraz 3 < 5 res ima tip bool, ker 3 in 5 imata tip int in < res vrne bool.

Tip funkcije fn x => x: uvedemo nov parameter α in zabeležimo x : α . Nato izpeljemo tip izraza x, ki je seveda α . Torej ima fn x => x tip $\alpha \rightarrow \alpha$.

Tip funkcije fn y => (y, y): uvedemo nov parameter β in zabeležimo y : β. Nato izpeljemo tip izraza (y, y). To je urejeni par, obe komponenti imata tip β, zato je tip urejenega para (y, y) enak $\beta \times \beta$. Torej ima fn y => (y, y) tip $\beta \rightarrow \beta \times \beta$.

Izenačimo tipa obeh vej:

```
(\alpha \rightarrow \alpha) = (\beta \rightarrow \beta \times \beta)
```

To je tudi edina enačba, ki jo moramo rešiti. Enačbo razbijemo na dve preprostejši enačbi:

```
\begin{array}{lll} \alpha &=& \beta \\ \alpha &=& \beta &\times \beta \end{array}
```

Prva enačba nam da rešitev $\alpha \mapsto \beta$, ki jo upoštevamo v drugi enačbi:

```
\beta = \beta \times \beta
```

Ta enačba nima rešitve, ker se β pojavi na desni strani. Končni odgovor: izraz nima tipa.

Naloga

Izpeljite glavni tip rekurzivne funkcije

```
fun f x = (if x = 0 then 1 else x * f (x - 1))
```

Rešitev

Uvedemo parameter α in zabeležimo $f:\alpha$.

Izraz fn x => if x = 0 then 1 else x * f (x - 1) ima tip $\beta \rightarrow \gamma$, pri čemer zabeležimo x : β in enačbo $\alpha = \beta \rightarrow \gamma$. Nato obravnavamo izraz if x = 0 then 1 else x * f (x - 1).

Iz pogoja dobimo enačbo β = int.

Tip izraza x * f (x - 1): izraz x - 1 ima tip int, zato mora imeti f tip int $\rightarrow \gamma$. Dobimo enačbo $\alpha = int \rightarrow \gamma$. Po drugi strani mora zaradi množenja imeti izrazf (x - 1) tip int, torej dobimo $\gamma = int$. Preveriti moramo še, da imata obe veji pogojnega stavka isti tip in da ima pogoj x = 0 res tip bool.

Glavni tip α celega izraza je tako int \rightarrow int.

Naloga

Izpeljite glavni tip funkcije map:

```
fun map f 1 =
  case 1 of
  [] => []
  | x :: xs => f x :: map f xs
```

Navodilo: uporabite pravilo za rekurzivne funkcije, ter pravila za sezname in case:

- prazen seznam [] ima tip α list, kjer je α nov parameter
- sestavljen seznam e₁ :: e₂:
 - izpeljemo tip τ₁ izraza e₁ in dobimo enačbe E₁
 - o izpeljemo tip τ₂ izraza e₂ in dobimo enačbe E₂

Tip e_1 :: e_2 je τ_1 list, z enačbami E_1 , E_2 in τ_2 = τ_1 list.

- izraz case e_1 of [] => e_2 | x :: xs -> e_3 :
 - o izpeljemo tip τ1 izraza e1 in dobimo enačbe E1
 - o izpeljemo tip τ_2 izraza e_2 in dobimo enačbe E_2
 - o uvedemo nov parameter α, zabeležimo x : α in xs : α list, izpeljemo tip τ₂ izraza e₂ in dobimo enačbe E₃

Tip case e_1 of $[] \Rightarrow e_2 \mid x :: xs \Rightarrow e_3$ je τ_2 z enačbami E_1 , E_2 , E_3 , $\tau_1 = \alpha$ list in $\tau_2 = \tau_3$.

Rešitev

Tip map označimo z α , tip f z β in 1 z γ . Nato izračunamo tip izraza case.

Prvi primer ima tip δ list, pri čemer je δ nov parameter.

17. 2. 2019 ppj: Rešitve

Za drugi primer moramo izračunati tip izraza f x :: map f xs, pri čemer uvedemo nov parameter ε in zabeležimo x : ε in xs : ε list. Tip izraza f x označimo s φ₁ in zapišemo enačbo β = ε → φ₁. Tip izraza map f xs označimo s φ₂ in zapišemo enačbo α = β → ε list → φ₂. Tip celotnega izraza je φ₁ list, pri čemer mora veljati še φ₂ = φ₁ list.

Tip izraza case je torej φ₂, pri čemer morata veljati še enačbi γ = ε list in δ list = φ₁ list. α = β → ε list → φ₂
β = ε → φ₁
δ list = φ₁ list
φ₂ = φ₁ list

↓ Σteh enačb dobimo tip funkcije map: α = (ε → φ₁) → ε list → φ₁ list.

Zadnja sprememba: torek, 17. april 2018, 11:32

¬ Vaje: izpeljava tipov

Skok na...

Vaje: programiranje s tokovi ►

Prijavljeni ste kot JAKOB MALEŽIČ (Odjavi) ppj