

Suport de curs

OSCE

- Capitolul 5 CPU Scheduling
 MOS
 - Capitolul 2 Processes and Threads
 - Sectiunea 5 Scheduling

Cuprins

Notiuni de planificare Criterii de planificare Planificare pentru sisteme batch Planificare pentru sisteme interactive Planificare pentru sisteme real-time Implementarea planificarii

Noțiuni de planificare

Starea proceselor
Comportamentul proceselor
Schimbarea de context
Planificarea executiei
Apelarea planificatorului
Implementarea planificatorului

Implei

o functie apelata i • un apel de siste procesul)

• o intrerupere (e functia se cheama so

Starea proceselor

in marea parte a timpului procesele sunt in starea waiting in starea running sunt cel mult N procese

• N = numarul de core-uri

Comportamentul proceselor

•

load store add store read from file

wait for I/O

store increment index write to file

wait for I/O

load store add store read from file

wait for I/O

,

CPU burst

I/O burst

CPU burst

I/O burst

CPU burst

I/O burst

Comportamentul proceselor (2)

CPU-intensive IO-intensive

CPU bursts I/O bursts

tranzitii intre stari schimbare de context

Schimbarea de context

context switch

trecerea unui proces din READY in RUNNING cel din RUNNING trece in READY sau WAITING

overhead al schimbarii de context

- salvarea contextului curent
- incarcarea noului context
- asteptarea incheierii unui apel de sistem

Planificarea executiei

inlocuirea unui proces cu un alt proces

un context cu un alt context

eficienta: un proces blocat nu tine procesorul ocupat echitate: un proces este intrerupt pentru a da voie altuia

se apeleaza planificatorul

- alegerea unui proces
- inlocuirea procesului curent

Apelarea planificatorului

când procesul din starea RUNNING moare

cand procesul din starea RUNNING se blocheaza

• operatie blocanta (apel de sistem)

cand procesului din starea RUNNING ii expira cuanta

• intreruperea de ceas

cand un proces READY e prioritar

Implementarea planificatorului

o functie apelata in urma

- un apel de sistem (se blocheaza procesul, moare procesul)
- o intrerupere (expira cuanta) functia se cheama schedule() sau dispatch()

alte functii actualizeaza atributele proceselor si sorteaza procesele functie de criterii de planificare

planificatorul (functia schedule()):

- salveaza contextul curent (registre, resurse)
- selecteaza un proces
- · incarca un context nou

Criterii de planificare

Cooperativ si preemptiv
Timpi de planificare
Criterii de planificare
Tipuri de planificare
Notatii

Cooperativ si preemptiv

voluntary/involuntary preemption

cooperativ

- yielding
- · da acces voluntar procesorului
- interactivitate scazuta
- implementare simpla

preemptiv

- procesul este preemptat
- · de obicei expira cuanta
 - intrerupere de ceas
- interactivitate sporita
- · de avut in vedere sincronizare

Timpi de planificare

timp de asteptare: timp de asteptare in READY turnaround time: timp de rulare pe ceas

· de la intrarea in sistem pana la iesirea din sistem

dorim timpi cat mai mici

- timp de asteptare mic: sistem interactiv
- turnaround time mic: sistem productiv

in general nu poti avea si sistem productiv si interactiv

Criterii de planificare

gradul de ocupare a procesorului

· cat mai mare

productivitate (throughput)

- numar de procese incheiate
- cat mai mare

fairness

toate procesele sa aiba acces la procesor/resurse

(mean) turnaround time

cat mai mic

timp (mediu) de raspuns

- intervalul de la intrarea in sistem pana la rulare prima oara
- · cat mai mic

timp (mediu) de asteptare

cat mai mic

Tipuri de planificare

planificarea sistemelor batch (background processing)

accentul pe productivitate

planificarea sistemelor interactive

accentul pe interactivitate/fairness

planificarea proceselor real-time

• indeplinirea sarcinii in timp util

Notatii

WT - Waiting Time

MWT - Mean Waiting Time

TT - Turnaround Time

MTT - Mean Turnaround Time

J - job (batch processing)

P - process (interactive processing)

Planificarea in sisteme batch

Criterii sisteme batch
First Come First Served
Shortest Job First
Shortest Remaining Time First

Criterii sisteme batch

throughput turnaround time utilizarea procesorului

> First Come First Served Shortest Job First Shortest Remaining Time Next

First Come First Served

FCFS

planificare în ordinea intrării în sistem un proces care cere procesorul este trecut într-o coadă de ateptare procesele care se blochează sunt trecute la sfâritul cozii

- + usor de inteles si implementat
- procesele CPU-bound încetinesc procesele I/O-bound
 - convoying
- timp mediu de asteptare destul de mare

J1, J2, J3 joburile intra simultan in sistem timpii de executie: 24, 3, 3

FCFS: ordinea J1, J2, J3

$$TT(J1) = 24$$
; $TT(J2) = 27$; $TT(J3) = 30$
 $MTT = (24 + 27 + 30) / 3 = 27$

Shortest Job First

SJF

se planifica jobul cel mai scurt

• trebuie cunoscuta durata de executie

FCFS: J1, J2, J3, J4

$$TT(J1) = 12$$
; $TT(J2) = 32$; $TT(J3) = 40$; $TT(J4) = 44$
 $MTT = (12 + 32 + 40 + 44) / 4 = 32$

J1, J2, J3, J4 job-urile intră simultan în sistem timpii de execuie: 12, 20, 8, 4

Shortest Remaining Time First

SR7F

trebuie cunoscut timpul de executie a jobului

versiune preemptiva a algoritmului SJF

- cand un nou job este submis pentru executie
- ...si timpul de execuie al acestuia este mai mic decat timpul ramas din executia jobului curent
- jobul curent este suspendat si noul job este executat

J1, J2, J3, J4 timpii de intrare tn sistem: 0, 1, 2, 3 timpii de executie: 8, 4, 9, 5

Planificarea in sisteme interactive

Sisteme interactive
Round Robin
Planificarea cu prioritati
Shortest Process Next
Planificarea pentru sisteme real-time

Plani

ard real-t

· rezerva

oft real-tin

· procesele c

· pot cauza îi

Linux/

Sisteme interactive

sisteme desktop e importanta interactiunea cu utilizatorul

> timpul de raspuns interactivitate fairness

> > Round Robin clase de prioritati Shortest Process Next

Round Robin

time sharing

FCFS preemptiv cuanta de timp de rulare a programului la expirarea cuantei de timp procesul este preemptat

cuanta de timp mare

- productivitate ridicata
- interactivitate reduse

cuanta de timp mica

- interactivitate sporita
- productivitate redusa
 - timp consumat in schimbare de context

Planificarea cu prioritati

dezavantaj Round-Robin

• toate procesele sunt "egale"

abordare planificare cu prioritati

- unele procese sunt "mai egale" decat altele
- utilizatori importanti/mai putin importanti
- există procese mai importante/prioritare

prioritati dinamice si statice

Shortest Process Next

adaptare a SJF pentru sisteme interactive

problema: nu se cunoaste timpul de executie

solutie

- estimare pe baza comportamentului anterior
- se estimează o durată T0
- procesul durează T1
- estimarea pentru următoarea cuantă va fi a * T1 + (1-a) * T0
- a estimarea se uită sau nu repede
- tehnică de estimare de tip aging

Planificarea pentru sisteme real time

criterii importante

- indeplinirea operatiilor in timp limitat
- predictibilitatea

hard real-time

- rezervarea resurselor
- nu se folosete swapping sau memorie virtuală soft real-time
 - procesele critice au prioritate maximă
 - pot cauza întârzieri mari celorlalte procese

Linux/Windows au implementare de soft real-time

Implementarea planificării

Kernel preemptiv
Planificarea in Windows
Planificarea in Linux

Kernel preemptiv

un proces poate fi intrerupt in timp de lucreaza in kernel space

spatiul kernel e comun tuturor proceselor

- un proces poate fi intrerupt in orice punct din kernel
- nevoie de locking

latenta redusa, sistem mai responsiv

dificultate sporita in implementare (locking)

Linux si Windows au kernel preemptiv

Planificatorul in Windows

algoritm de planificare preemptiva bazat pe prioritati subsistemul de planificare se cheamă dispatcher

o schemă de prioritati pe 32 de niveluri

- 0 prioritate sistem
- 1-15 clasă variabila de prioritati
- 16-30 clasă real-time

nucleu preemptiv

Algoritmul de planificare in Windows

este selectat procesul cu prioritatea cea mai mare fiecare prioritate are asociata o coada

procese din fiecare coada sunt procese in starea READY

procesele din aceeasi coada sunt planificate asemanator cu Round-Robin

Planificarea executiei in Linux

planificator preemptiv, time-sharing suport pentru procese real-time

kernel preemptiv de la versiunea 2.6

planificatorul gestionează 4 clase de procese [5]

- real-time FCFS
- real-time RR
- interactive
- batch

Completely Fair Scheduler

CFS

2.6.23 – prezent

time-ordered red-black tree

virtual runtime

- fiecare proces are un timp "virtual" de execuie
- cel mai din stanga proces are timpul virtual cel mai mic
 - va fi urmatorul planificat

planificare: t_virtual_curent - t_virtual_stanga > threshold

operatii in O(log n)

Planificarea proceselor real-time

conform cu POSIX.1b

FCFS

 un proces din această clasa va fi inlocuit doar daca efectuează o operatie blocanta

RR

- la fel ca FCFS, dar un proces va fi preemptat daca ii consuma cuanta de timp
- cuanta de timp este mai mare decat pentru procesele interactive

Cuvinte cheie

starea proceselor
context switch
CPU-bound
IO-bound
planificarea executiei
planificator/scheduler
algoritmi de planificare
criterii de planificare
echitate (fairness)
productivitate (throughput)

timp de asteptare turnaround time procese batch procese interactive procese real-time FSFS Round Robin cuanta de timp prioritate CFS

