## PROGRAMMING LANGUAGES AND COMPUTATION

## Week 4: Regular Languages

In the problems this week you will need to make use of the formal definition of a finite state automaton, given at https://uob-coms20007.github.io/reference/regular/automata.html#finite-state-automaton.

- \* 1. Draw the diagram of the following automata:
  - (a)  $\{\{e,o\},\{0,1\},\{(e,0,o),(e,1,o),(o,0,e),(o,1,e)\},e,\{e\}\}$
  - (b)  $(Q, \{0, 1\}, \Delta, q_0, Q)$  where  $Q = \{q_0, q_1, q_2, q_3\}$  and  $\Delta$  is:  $\{(q_0, 0, q_0), (q_0, 1, q_1), (q_1, 0, q_2), (q_1, 1, q_3), (q_2, 0, q_1), (q_3, 0, q_3)\}$
  - (c)  $(Q, \Sigma, \Delta, q_0, Q)$  where:
    - $Q = \{1, 2, 3, 4, 5\}$
    - $\Sigma = \{a, b\}$
    - $\Delta = \{(i, a, i+1) \mid 1 \le i \le 5\} \cup \{(j, b, j) \mid j \text{ is even}\}$
    - $q_0 = 1$
    - $F = \{1, 3, 5\}$

```
procedure cl(X):
X' := \emptyset
while X \neq X' do
X' := X
for each q \in X
if (q, \epsilon, q') \in \Delta
X' := X' \cup \{q'\}
return X
```



Figure 1:  $\epsilon$ -closure of  $X \subseteq Q$  wrt transitions  $\Delta$ , and the automaton from Week 3 Q4(b)

- \* 2. Suppose M is a finite automaton with states Q. The  $\epsilon$ -closure of a set of states  $X \subseteq Q$  in M, written cl(X), is the set of all states that can be reached from any state in X using only  $\epsilon$ -transitions. It can be computed using the algorithm in Figure 1.
  - (a) Construct a table with two columns. Each row of the table should contain a state of the automaton from Figure 1 in the first column and the  $\epsilon$ -closure of that state in the second column.
  - (b) Let the automaton in Figure 1 be  $(Q, \{a, b\}, \Delta, 1, \{6\})$ . Draw the diagram for the automaton  $(Q', \{a, b\}, \Delta', cl(1), Q')$  where  $Q' = \{cl(1), cl(2), cl(3)\}$  and:

$$\Delta' = \{(X, \ell, \mathsf{cl}(j)) \mid \ell \in \{a, b\} \text{ and there is some } i \in X \text{ such that } (i, \ell, j) \in \Delta\}$$

\*\* 3. Let rev(w) be the reverse of the word w, e.g. rev(abccd) = dccba and  $rev(\epsilon) = \epsilon$ . Let P be the following automaton:



- (a) Construct another automaton that recognises  $\{rev(w) \mid w \in L(P)\}$ . Try not to think about what this language actually looks like, instead try to think how you could "reverse" the diagram, because, in the next part, you will not have a specific language.
- (b) Suppose  $M = (Q, \Sigma, \Delta, q_0, F)$  is a finite automaton. By filling out (i)–(iii), complete the following definition of a finite automaton N in such a way that  $L(N) = \{\text{rev}(w) \mid w \in L(P)\}$ .

Let *s* be a new state not in *Q*. Then finite automaton *N* is  $(Q', \Sigma, \Delta', q'_0, F')$  where:

- $Q' = Q \cup \{s\}$
- $\Delta' = (i)$
- $q_0' = (ii)$
- F' = (ii)
- (c) Argue that if *A* is a regular language, then so is  $\{rev(w) \mid w \in A\}$ .
- \*\* 4. Let tail(w) be the tail of the word w, i.e:

$$tail(\epsilon) = \epsilon$$
$$tail(a \cdot w) = w$$

By following a similar approach to parts (b) and (c) of the previous question, argue that if S is regular, then so is  $\{tail(w) | w \in S\}$ .

\*\* 5. Show that language  $S = \{w \in \{a, b\}^* \mid w = \text{rev}(w)\}$  is not regular.

\*\*\* 6. Prove that the language of squares (written in unary),  $\{1^{n^2} \mid n \in \mathbb{N}\}$ , is not regular.