Association between Bilirubin and Survival in Primary Biliary Cirrhosis

By Amelia Tran

Supervisor: Dr. Marie Ozanne

Department of Mathematics and Statistics

Mount Holyoke College

Primary Biliary Cirrhosis (PBC)

- (Source: Bruce Blaus, Wikimedia Commons)
- Immune system attacks liver
- Damage bile ducts
- Lead to liver fibrosis and cirrhosis
- Possibly lead to liver cancer

- Relatively rare disease (1/3000)
- Common in women

Symptoms:

- Jaundice
- Fatigue
- Loss of appetite
- No symptoms

Treatment:

- Medications
- Liver transplantation

Study data - PBC Clinical Trial

- Follow-up for 10 years
- 312 patients: 154 in placebo group
 158 in treatment group
- Clinical factors: age, drug, sex
- Longitudinal biomarkers: Repeatedly measured at 6 months, one year, and annually thereafter e.g. serum bilirubin, albumin, prothrombin, platelets, etc.
- Outcome: alive/transplanted vs died

Research objectives

1. Measure the association between bilirubin and overall survival among PBC patients

Motivation:

- High level of bilirubin causes yellowing of the skin
- Help personalize patient care
- Better adjust medication for patients
- Allocate healthcare resources efficiently

Research objectives

- 1. Measure the association between bilirubin and overall survival among PBC patients
- 2. Use three different statistical approaches in survival analysis
- 3. Compare the results from three models

Survival Analysis

- Study of time-to-event/censored data
- Outcome variables:
 - Time: $y_i = min(T_i, C_i)$

Event: death, tumor recurrence, etc.

- Event indicator: δ_i

1 if event observed; 0 otherwise

id	years	status
1	1.09	dead
2	14.15	alive
3	2.78	dead
4	5.27	dead
5	4.12	transplanted
6	6.85	dead
7	6.84	alive
8	6.75	dead
9	6.57	dead
10	0.14	dead

Survival Analysis

- Censoring:
 - Loss to follow-up
 - Withdrawal from study
 - Event not observed

Motivation for Cox PH Model

Source: Dey, Tanujit, Anish Mukherjee, and Sounak Chakraborty. Chest 158.1 (2020).

Hazard Function

• Formula: $h(t) = \lim_{dt \to 0} \frac{\Pr(t \le T^* \le t + dt \mid T^* \ge t)}{dt}$

Instantaneous risk for event occurrence in time interval [t, t + dt)

• Cumulative hazard function: $H(t) = \int_0^t h(s) ds$

Accumulated risk up to time t

Survival Function

• Formula:
$$S(t) = \Pr(T^* > t) = \int_t^\infty f(s)ds$$

$$S(t) = \exp \{-H(t)\} = \exp \{-\int_0^t h(s)ds\}$$

Kaplan-Meier Approach:

$$\hat{S}(t) = \hat{S}(t-1) \times \Pr(T^* > t \mid T^* > t - 1)$$

$$= \prod_{i: t_i \le t} (T^* > t \mid T^* > t - 1)$$

$$= \prod_{i: t_i \le t} \frac{r_i - d_i}{r_i}$$

$$d_i: \text{ number of events at } t_i$$

$$r_i: \text{ number of subjects at risk at time } t_i$$

Cox Proportional Hazards Model

- Formula: $h_i(t \mid w_i) = h_0(t) \exp{\{\gamma^T w_i\}}$
- Baseline function $h_0(t)$ unspecified
- Hazard Ratio (HR): $\frac{h_i(t \mid w_i)}{h_k(t \mid w_k)} = \exp\{\gamma^T (w_i w_k)\}$
- HR: Constant over time → Proportionality Assumption
 Assessing Technique: Goodness-of-fit test

Methods

Cox Proportional Hazard Model Time-Dependent Cox Model

Joint Model

Cox PH Model

 Measure the association between <u>baseline</u> level of biomarker and survival

! Problem: Can only handle baseline bilirubin

$$h(t \mid w_i) = h_0(t) \exp{\{\boldsymbol{\gamma}^T \boldsymbol{w_i}\}}$$

Cox PH Model	Time-Dependent Cox Model
Measure the association between <u>baseline</u> level of biomarker and survival	 Measure the association between <u>current</u> level of biomarker and survival Account for progression of biomarker over time
! Problem: Can only handle baseline bilirubin	! Problem: Assume bilirubin is exogenous
$h(t \mid w_i) = h_0(t) \exp{\{\boldsymbol{\gamma}^T \boldsymbol{w_i}\}}$	$h(t \mid Y_i(t), w_i)$ $= h_0(t) \exp{\{\boldsymbol{\gamma}^T \boldsymbol{w_i} + \alpha \boldsymbol{y_i(t)}\}}$

Cox PH Model	Time-Dependent Cox Model	Joint Model
Measure the association between <u>baseline</u> level of biomarker and survival	 Measure the association between <u>current</u> level of biomarker and survival Account for progression of biomarker over time 	 Measure the association between <u>current</u> level of biomarker and survival Account for progression of biomarker over time Account for measurement error
! Problem: Can only handle baseline bilirubin	! Problem: Assume bilirubin is exogenous	Longitudinal sub-model: $y_i(t) = m_i(t) + \varepsilon_i(t)$ $\varepsilon_i(t) \sim \mathcal{N}(0, \sigma^2 I_{n_i})$
$h(t \mid w_i) = h_0(t) \exp{\{\boldsymbol{\gamma}^T \boldsymbol{w_i}\}}$	$h(t \mid Y_i(t), w_i)$ $= h_0(t) \exp{\{\gamma^T w_i + \alpha y_i(t)\}}$	Survival sub-model: $h(t \mid M_i(t), w_i)$ $= h_0(t) \exp{\{\gamma^T w_i + \alpha m_i(t)\}}$

Methodology

Each model follows this procedure:

Summary Statistics

- 51% in treatment group
- Median age: 50 (IQR: 42 57)
- Sex: 88.5% females
- Median baseline bilirubin: 1.4 (IQR: 0.8 3.4)
- Median follow-up duration: 6.3 years
- Patients: 172 alive/transplanted

140 died

Histogram of Baseline Bilirubin

Spaghetti plot of longitudinal bilirubin

- Median follow-up duration: 6.3 years
- Patients who died seemed to have higher level of bilirubin

Kaplan-Meier Curve

Overall survival probability

- Survival decreases over time
- Median survival time: 9.5 years
- After 6 years: 166 patients at risk

Baseline bilirubin

- Clinical cutoff: 1.2 mg/dl
- Normal baseline bilirubin
 - High baseline bilirubin

Univariate Analysis for Cox Models

Clinical Factor	Hazard Ratio	95% Confidence Interval	p-value
Drug	1.00	(0.72 - 1.39)	>0.9
Age	1.05	(1.03 - 1.06)	<0.001
Sex: male	Ref		
female	0.52	(0.34 - 0.80)	0.005

Interpretation:

- There's no treatment effect on the survival
- One-year increase in the baseline age is associated with a 5% increase in the hazard of death
- Female patients have a 48% lower hazard of death than male patients

Univariate Analysis for Cox Models

Biomarker	Hazard Ratio	95% Confidence Interval	p-value
Albumin	0.19	(0.13 – 0.28)	<0.001
Alkaline	1.00	(1.00 - 1.00)	0.094
SGOT	1.01	(1.00 - 1.01)	<0.001
Platelets	1.00	(0.99 - 1.00)	<0.001
Prothrombin	2.12	(1.81 – 2.48)	<0.001
Ascites (No/Yes)	7.58	(4.78 - 12.0)	<0.001
Hepatomegaly (No/Yes)	3.06	(2.14 – 4.38)	<0.001
Spiders (No/Yes)	2.42	(1.72 - 3.42)	<0.001
Edema: No edema	ref		<0.001
Edema no diuretics	1.63	(1.04 - 2.55)	
Edema diuretics	10.9	(6.61 – 18.0)	
Histologic: 1	ref		<0.001
2	6.39	(0.86 – 47.5)	
3	9.66	(1.33 – 70.1)	
4	24.0	(3.33 – 174)	

Univariate Analysis – Serum Bilirubin

Univariate Analysis - Serum Bilirubin				
Model Hazard Ratio 95% Confidence Interval p-value				
Model 1: Cox PH	1.16	(1.13 - 1.19)	<0.001	
Model 2: Time-Dependent Cox	1.16	(1.14 - 1.18)	<0.001	
Model 3: Joint Model	1.83	(1.66 - 2.02)	<0.0001	

Interpretation:

- Model 1(baseline bilirubin): One unit increase in the baseline bilirubin is associated with 16% increase in the death risk
- Model 2 (**longitudinal bilirubin**): One unit increase in the longitudinal bilirubin is associated with 16% increase in the death risk
- Model 3 (longitudinal bilirubin & measurement error): One unit increase in the longitudinal bilirubin is associated with 83% increase in the death risk

Multivariate Analysis – Serum Bilirubin

Model	Hazard Ratio	95% Confidence Interval	p-value
Model 1: Cox PH	1.11	(1.06 - 1.15)	<0.001
Model 2: Time-Dependent Cox	1.20	(1.17 - 1.22)	<0.001
Model 3: Joint Model	1.82	(1.64 - 2.03)	<0.0001

High bilirubin worsens survival

Model Adjustment:

- Model 1: bilirubin, albumin, age, edema, histologic, SGOT, prothrombin
- Model 2: bilirubin, albumin, age, edema, histologic
- Model 3: bilirubin, albumin, age, edema

Multivariate Analysis – Proportionality

Cox PH Model				
Characteristics	Chisq	df	P-value	
Bilirubin	6.305	1	0.012	
Albumin	3.043	1	0.081	
Age	0.195	1	0.659	
Edema	4.208	2	0.122	
Histologic	6.603	3	0.086	
SGOT	0.405	1	0.525	
Prothrombin	1.482	1	0.223	
GLOBAL	20.873	10	0.022	

Survival Sub-model of Joint Model				
Characteristics	Chisq	df	P-value	
Albumin	2.279	1	0.131	
Age	0.204	1	0.651	
Edema	4.848	2	0.089	
GLOBAL	6.394	4	0.172	

 H_0 : proportionality is met

 H_A : proportionality is violated

Diagnostic plots for LME

Conclusions

1. Association between bilirubin and survival from Multivariate Analysis:

Cox PH: HR = 1.11, Time-Dependent Cox: HR = 1.20, Joint Model: HR = 1.82

- 2. Difference in model outputs:
 - Cox PH: baseline values of bilirubin
 - Time-Dependent Cox: progression of bilirubin
 - Joint Model: progression of bilirubin & measurement error

Conclusions

1. Association between bilirubin and survival from Multivariate Analysis:

Cox PH: HR = 1.11, Time-Dependent Cox: HR = 1.20, Joint Model: HR = 1.82

- 2. Difference in model outputs:
 - Cox PH: baseline values of bilirubin
 - Time-Dependent Cox: progression of bilirubin
 - Joint Model: progression of bilirubin & measurement error

Discussion

Advantages of Joint Model:

- Smooth longitudinal trajectory
- Reduce potential bias

Disadvantages of Joint Model:

- Computational expense
- Large sample size
- → Time-Dependent Cox Model

 Trade-off: Biased estimate of HR

Source: Joint Models (Rizopoulos, 2012)

Discussion

Model Adjustment:

- Model 1: bilirubin, albumin, age, edema, histologic, SGOT, prothrombin
- Model 2: bilirubin, albumin, age, edema, histologic
- Model 3: bilirubin, albumin, age, edema

Explanation:

- Baseline SGOT and prothrombin not informative to the association in Model 2
- Baseline SGOT and prothrombin significant in the longitudinal generating process of bilirubin in Model 3

^{*}Model 1: Cox PH; Model 2: Time-Dependent Cox; Model 3: Survival sub-model

Limitations

- PBC Clinical Data: real dataset
 - → Cannot evaluate model performances with the true HR
- Survival Sub-model of Joint Model:

Baseline hazard is piecewise-constant with six knots

More knots allow more flexibility

! Computational demand

Future Work

- Simulation with predetermined censoring and hazard rate to estimate the bias
- Variable selection with BIC or AIC
- Multiple imputation method for missing data
- Competing Risk Analysis (alive vs transplanted)
- Joint Model for more than one longitudinal biomarker

Acknowledgements

- Supervisor: Dr. Marie Ozanne
- Mentor: Dr. Audrey Mauguen
- QSURE faculties: Drs. Kay See Tan and Margaret Du
- Math/Stat Department, MHC
- Biostat/Epi Department, MSKCC

Memorial Sloan Kettering Cancer Center

...

Selected References

- Rizopoulos, Dimitris. *Joint models for longitudinal and time-to-event data: With applications in R. CRC* press, 2012.
- Kleinbaum, D. G. and Klein, M. (2010), Survival analysis, Springer.
- Schober, Patrick, and Thomas R. Vetter. "Survival analysis and interpretation of time-to-event data: the tortoise and the hare." *Anesthesia and analgesia* 127.3 (2018): 792.
- Albert, Paul S. "Longitudinal data analysis (repeated measures) in clinical trials." *Statistics in medicine* 18.13 (1999): 1707-1732.
- Harrell Jr, Frank E., Kerry L. Lee, and Daniel B. Mark. "Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors." *Statistics in medicine* 15.4 (1996): 361-387.

Thank you!

Any question?

Supplementary slides

Assessing Proportionality

- Log-log survival curves
- Time-covariate interaction
- Goodness-of-fit test

Graphics with survival curves

- Log-log transformation: $ln\{-ln(S(t))\}$
- If the assumption is met, the curves are equally spaced
- For continuous covariates, stratify them into groups depending on their distribution

Time-covariate interaction

- X_i is suspicious of having time-varying effect, the added term is $X_i f(t)$
- Function of time f(t) can be linear, logarithmic, exponential, etc.
- If $X_i f(t)$ is statistically significant, proportionality is violated

Goodness-of-fit test

• Formula for Schoenfeld residuals of suspiciously time-varying covariate A:

Schoenfeld residual
$$A = Observed A - Weighted Average A$$

• If Schoenfeld residuals are correlated with failure times, proportionality is violated

Missingness mechanism

- Missing not at random (MNAR)
 - Depend on both observed and unobserved data
- Missing completely at random (MCAR)
 - Depend on unobserved data
- Missing at random (MAR)
 - Not depend on observed or unobserved data

Short data format

Counting Process format

id <fctr></fctr>	years <dbl></dbl>	status <fctr></fctr>	drug <fctr></fctr>	age <dbl></dbl>	id <fctr></fctr>	years <dbl></dbl>	status <fctr></fctr>	drug <fctr></fctr>	age <dbl></dbl>
1	1.0951703	dead	D-penicil	58.76684	1	1.0951703	dead	D-penicil	58.76684
2	14.1523382	alive	D-penicil	56.44782	1	1.0951703	dead	D-penicil	58.76684
3	2.7707809	dead	D-penicil	70.07447	2	14.1523382	alive	D-penicil	56.44782
4	5.2705071	dead	D-penicil	54.74209	2	14.1523382	alive	D-penicil	56.44782
5	4.1205782	transplanted	placebo	38.10645	2	14.1523382	alive	D-penicil	56.44782
6	6.8530281	dead	placebo	66.26054	2	14.1523382	alive	D-penicil	56.44782
7	6.8475523	alive	placebo	55.53609	2	14.1523382	alive	D-penicil	56.44782
8	6.7517249	dead	placebo	53.05826	2	14.1523382	alive	D-penicil	56.44782
9	6.5710218	dead	D-penicil	42.50904	2	14.1523382	alive	D-penicil	56.44782
10	0.1396342	dead	placebo	70.56182	2	14.1523382	alive	D-penicil	56.44782

Results from Multivariate Analysis

Subsets of significant covariates from variable selection for Cox PH Model									
Mu	ltivariate Co	x PH Model		Multiva	riate Time-Dependen	Survival Submodel of Joint Model			
Characteristic	HR	95% CI	p-value	HR	95% CI	p-value	HR	95% CI	p-value
bilirubin	1.11	(1.06-1.15)	<0.001	1.20	(1.17-1.23)	<0.001	1.81	(1.60-2.04)	<0.0001
albumin	0.52	(0.32-0.85)	0.008	0.59	(0.36-0.97)	0.036	0.67	(0.41-1.08)	0.1011
age	1.04	(1.03-1.06)	<0.001	1.06	(1.05-1.08)	<0.001	1.05	(1.03-1.07)	<0.0001
edema			0.019			0.003			0.0003
no edema	ref			ref			ref		
edema no diuretics	1.04	(0.65-1.67)		1.18	(0.72-1.93)		1.97	(1.18-3.30)	
edema diuretics	2.37	(1.33-4.22)		3.09	(1.66-5.72)		3.11	(1.64-5.89)	
histologic			0.014			<0.001			0.3422
1	ref			ref			ref		
2	4.49	(0.60-33.8)		1.97	(0.26-14.9)		1.72	(0.26-11.26)	
3	5.79	(0.79-42.5)		4.48	(0.61-33.0)		2.02	(0.31-13.00)	
4	8.04	(1.09-59.5)		6.69	(0.90-49.4)		2.58	(0.40-16.70)	
SGOT	1.00	(1.00-1.01)	0.012	1.00	(0.99-1.00)	0.4	1.00	(0.99-1.00)	0.9569
prothrombin	1.46	(1.20-1.78)	<0.001	1.11	(0.91-1.36)	0.3	1.22	(0.99-1.51)	0.623

Results from Multivariate Analysis

Subsets of significant covariates from variable selection for Time-Dependent Cox Model									
Mult	x PH Model	Multiva	riate Time-Dependent	Survival Submodel of Joint Model					
Characteristic	HR	95% CI	p-value	HR	95% CI	p-value	HR	95% CI	p-value
bilirubin	1.15	(1.11-1.18)	<0.001	1.20	(1.17-1.22)	<0.001	1.84	(1.65-2.06)	<0.0001
albumin	0.50	(0.31-0.81)	0.005	0.62	(0.38-1.01)	0.005	0.60	(0.37-0.97)	0.0364
age	1.04	(1.02-1.06)	<0.001	1.07	(1.05-1.09)	<0.001	1.05	(1.03-1.07)	<0.0001
edema			0.002			0.001			<0.0001
no edema	ref			ref			ref		
edema no diuretics	0.97	(0.60-1.55)		1.26	(0.78-2.04)		2.16	(1.30-3.59)	
edema diuretics	2.92	(1.62-5.27)		3.31	(1.80-6.09)		3.63	(1.96-6.70)	
histologic			<0.001			<0.001			0.0878
1	ref			ref			ref		
2	4.63	(0.62-34.5)		1.85	(0.24-14.0)		0.92	(0.21-4.12)	
3	6.39	(0.88-46.7)		4.35	(0.59-32.0)		1.23	(0.28-5.29)	
4	10.9	(1.49-80.1)		7.09	(0.96-52.3)		1.70	(0.39-7.38)	

Results from Multivariate Analysis

Subsets of significant covariates from variable selection for Joint Model									
Mult	ivariate Co	Multivariate Cox PH Model			Survival Submodel of Joint Model				
Characteristic	HR	95% CI	p-value	HR	95% CI	p-value	HR	95% CI	p-value
bilirubin	1.14	(1.11-1.17)	<0.001	1.19	(1.16-1.21)	<0.001	1.82	(1.64-2.03)	<0.0001
albumin	0.37	(0.23-0.58)	<0.001	0.47	(0.29-0.75)	0.002	0.52	(0.33-0.82)	0.054
age	1.04	(1.03-1.06)	<0.001	1.07	(1.05-1.09)	<0.001	1.05	(1.04-1.07)	<0.0001
edema			<0.001			<0.001			<0.0001
no edema	ref			ref			ref		
edema no diuretics	1.01	(0.63-1.62)		1.32	(0.83-2.10)		2.05	(1.25-3.36)	
edema diuretics	3.32	(1.83-6.01)		4.16	(2.25-7.70)		3.84	(2.09-7.06)	

Results from Multivariable Analysis

Mu	ıltivariable	Cox PH Model		Multiv	ariable Cox PH	Model	Survival Submodel of Joint Model			
Characteristic	HR	95% CI	p-value	HR	95% CI	p-value	HR	95% CI	p-value	
bilirubin	1.11	(1.06-1.15)	<0.001	1.20	(1.17-1.23)	<0.001	1.81	(1.60-2.04)	<0.0001	
bilirubin	1.15	(1.11-1.18)	<0.001	1.20	(1.17-1.22)	<0.001	1.84	(1.65-2.06)	<0.0001	
bilirubin	1.14	(1.11-1.17)	<0.001	1.19	(1.16-1.21)	<0.001	1.82	(1.64-2.03)	<0.0001	

Model	Hazard Ratios	95% Confidence Interval	p-value
Model 1: Cox PH	1.11	(1.06 - 1.15)	<0.001
Model 2: Time-Dependent Cox	1.20	(1.17 – 1.22)	<0.001
Model 3: Joint Model	1.82	(1.64 - 2.03)	<0.0001

Treatment effect

Sex

Log-rank based test for difference in survivorship between groups

Drug is not statistically significant

Sex is statistically significant

Kaplan-Meier Curves

Joint Model

- Longitudinal sub-model: Linear Mixed-Effect model
 - Response: Longitudinal bilirubin
 - Predictors: sex and baseline covariates for ascites, hepatomegaly, spiders, albumin, alkaline, SGOT, and prothrombin
 - Random Effect: visit-time | id

Bilirubin varies among patients and changes dynamically within individuals

- Survival sub-model: Cox PH model
 - Response: survival
 - Covariates: baseline values for albumin, edema, and age

Empirical CDF

• Formula:

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n I(X_i \le t)$$

• Indicator $I(X_i \le t)$ is a

Bernoulli R.V. with p = F(t)

• Without censoring:

$$\widehat{F}_n(t) = 1 - S(t)$$

Competing Risks Framework

Cause-Specific Hazards:

$$\lambda_{ik}^{\#}(t) = \lim_{dt \to 0} \frac{\Pr(t \le T^* \le t + dt, \ \Delta_i = k \mid T^* \ge t)}{dt}$$

Sub-distribution Hazards:

$$\lambda_{ik}^{F}(t) = \lim_{dt \to 0} \frac{\Pr(t \le T^* \le t + dt, \Delta_i = k \mid T^* \ge t \cup T^* < t, \Delta_i \ne k)}{dt}$$

Log-rank based test

- Nonparametric test for the difference in survival between two or more groups
- Formula:

Log-rank statistic =
$$\sum_{i=1}^{G} \frac{(E_i - O_i)^2}{Var(E_i)}$$

- Note: E_i , O_i are the expected and observed number of events
- Under null hypothesis, log-rank statistic approximately follows χ^2_{G-1} distribution