Problem A. Marketing Terms [25 points]

Note

For the following problems, write a program to solve the problem and display the answer. A possible output is shown in a example I/O section and responses to input statements appear green. Make sure you run scripts using Python 3.

Problem

The markup of an item is the difference between its selling price and its purchase price. Two other marketing terms are

$$percentage markup = \frac{markup}{purchase price} \quad and \quad profit margin = \frac{markup}{selling price}$$

where the quotients are expressed as percentages. Write a program that computes the markup, percentage markup, and profit margin of an item. Notice that when the purchase price is tripled, the percentage markup is 200%.

Restrictions

- Use the format method to display the following outputs.

Example I/O

Enter purchase price: 250 Enter selling price: 650

Markup: \$400.0

Percentage markup: 160.0% Profit margin: 61.54%

Submit format

- HW01_A_(NAME).py

Problem B. Change in Salary [25 points]

Problem

Common misconception is that if you receive three successive 10% pay raises, then your original salary will have increased by 30%. Request a salary as input and then display the salary after receiving three successive 10% pay raises. The program also should display the percentage change in salary.

Restrictions

- Do not use any loop.
- Use the format method to display the following outputs.

Example I/O

Enter beginning salary: 35000

New salary: \$46,585.00

Change: 33.10%

Submit format

- HW01_B_(NAME).py

Problem C. Digit Sum [25 points]

Problem

Write a program to calculate the total sum of the digits in the integers from 1 to a million.

Restrictions

- Use only for-loop (no while-loop).
- Use the format method to display the following outputs.

Example I/O

The sum of the digits in the numbers from 1 to one million is 27,000,001.

Submit format

- HW01_C_(NAME).py

Problem D. Bouncing Ball [25 points]

Problem

The coefficient of restitution of a ball, a number between 0 and 1, specifies how much energy is conserved when the ball hits a rigid surface. A coefficient of .9, for instance, means a bouncing ball will rise to 90% of its previous height after each bounce.

Write a program to input a coefficient of restitution and an initial height in meters, and report how many times a ball bounces when dropped from its initial height before it rises to a height of less than 10 centimeters. Also report the total distance traveled by the ball before this point.

Restrictions

- Use only while-loop (no for-loop).
- Use the format method to display the following outputs.

Example I/O

Enter coefficient of restitution: .8 Enter initial height in meters: 10

Number of bounces: 21 Meters traveled: 89.08

Submit format

- HW01_D_(NAME).py