Universidade de Aveiro Departamento de Matemática

Cálculo II - Agrupamento 4

2014/15

Folha 5 - parte 1: Soluções

1. —

2. (a)
$$e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^{2n} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \dots + \frac{(-1)^n}{n!} x^{2n} + \dots, \quad x \in \mathbb{R}.$$

(b)
$$\cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots, \quad x \in \mathbb{R}.$$

(c)
$$\operatorname{senh}(3x) = \sum_{n=0}^{\infty} \frac{3^{2n+1}x^{2n+1}}{(2n+1)!} = 3x + \frac{3^3}{3!}x^3 + \dots + \frac{3^{2n+1}}{(2n+1)!}x^{2n+1} + \dots , \ x \in \mathbb{R}.$$

(d)
$$2\cos^2 x = 1 + \cos(2x) = 1 + \sum_{n=0}^{\infty} \frac{(-1)^n 2^{2n}}{(2n)!} x^{2n}$$

= $2 - \frac{4}{2!} x^2 + \frac{2^4}{4!} x^4 + \dots + \frac{(-1)^n 2^{2n}}{(2n)!} x^{2n} + \dots, \quad x \in \mathbb{R}.$

(e)
$$\frac{1}{4+x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} x^{2n} = \frac{1}{4} - \frac{x^2}{4^2} + \frac{x^4}{4^3} - \dots + \frac{(-1)^n}{4^{n+1}} x^{2n} + \dots, \quad x \in]-2, 2[.$$

3.
$$\frac{1}{x+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{4^{n+1}} (x-3)^n$$
, $x \in]-1,7[$.

4. (a)
$$e^{-x}$$
, $x \in \mathbb{R}$;

(b)
$$\frac{1}{1+x^3}$$
, $x \in]-1,1[$.

5. (a)
$$\ln(x+1) = \int_0^x \frac{1}{t+1} dt = \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, \quad x \in]-1, 1[.$$

(Observação: a igualdade é também válida no ponto x = 1; a justificação pode ser encontrada no texto de apoio).

(b)
$$(x+1)\ln(x+1)-x$$
, $x \in]-1,1[$ (por integração termo a termo da série da alínea anterior).

6. (a) 1; (b)
$$\cosh(1)$$
; (c) $-3\ln(2/3)$; (d) $2\sqrt{e}$.

(b)
$$f(x) = \frac{2x}{(2-x)^2}$$
.

9. Sugestão: comece por mostrar que a série é uniformemente convergente em \mathbb{R}_0^+ .

(b)
$$f'(4) = 1$$
.

11. (a)
$$xe^{x^3} = \sum_{n=0}^{\infty} \frac{x^{3n+1}}{n!}, \quad x \in \mathbb{R}.$$

(b)
$$\int_0^1 x e^{x^3} dx = \sum_{n=0}^\infty \frac{1}{(3n+2) \, n!}.$$

12. Represente e^{x^2} em série de MacLaurin e derive termo a termo.