Elementi di Bioinformatica

Gianluca Della Vedova

Univ. Milano-Bicocca https://gianluca.dellavedova.org

30 settembre 2020

Alberi evolutivi

Evoluzione

- Effetti visibili in generazioni
- Mutazioni casuali

Mutazioni reali

Mutazione fantasiosa

Evoluzione in un individuo

Cellule accumulano mutazioni durante la vita

Evoluzione basata su caratteri

Regola 1 (semplice)

Ogni carattere è acquisito esattamente una volta nell'albero.

Filogenesi perfetta

	Α	J	Н	L	V
Scorpione	0	0	0	0	0
Anguilla	0	0	0	0	1
Tonno	0	1	0	0	1
Salamandra	0	1	0	1	1
Tartaruga	1	1	0	1	1
Leopardo	1	1	1	1	1

Problema

- Input: matrice binaria *M*
- Output: un albero che spiego M, se esiste

Algorithm di Gusfield — lineare

- Radix Sort delle colonne, in ordine decrescente (anche del numero di 1)
- 2 Costruire l'albero, una specie alla volta

Caratteri e stati

Cambio di stato

- Un carattere c è acquisito \Rightarrow lo stato di c passa da 0 a 1 in un arco
- Un carattere $c \in \text{perso} \Rightarrow \text{lo stato di } c \text{ passa da 1 a 0 in un arco (backmutation)}$

Modelli di evoluzione

Ogni carattere c è acquisito esattamente una volta nell'albero.

- Filogenesi perfetta: nessuna backmutation
- 2 Filogenesi persistente: ogni carattere può essere perso al massimo una volta nell'albero. modello ULZ
- 3 Dollo: backmutations senza limiti

Tumori

- Un tumore contiene sia cellule cancerose che sane
- Un tumore è un miscuglio di cloni (sottopopolazioni) diverse.

Evoluzione tumorale

 I cloni compaiono con numerosità differente nel tumore

Evoluzione tumorale

- Un campione contiene diversi cloni
- Per ogni campione, abbiamo la frequenza con cui ogni mutazione appare
- matrice di frequenze *F*

 S_1 0.2 0.6 0.6 0.4 0.2 0.0

 S_2 0.0 0.4 1.0 0.0 0.0 0.4

Calcolare l'evoluzione tumorale

Matrice B spiegata da T

		•		X	*
0	0	1	0	0	1
0	1	1	1	1	0
0	1	1	0	0	0
0	0	1	0	0	0
1	1	1	1	Λ	Λ

Approcci basati su parsimonia.

- Piccola (topologia nota) vs grande (topologia ignota)
- Algoritmo di Fitch
- Algoritmo di Sankoff
- Confronto

Piccolo problema di parsimonia

Istanza

- Matrice binaria M con n specie e insieme di m caratteri C
- $lue{T}$ Albero T, le cui foglie corrispondono alle specie di M
- Per ogni carattere $c \in C$, un costo w_c fra ogni coppia di stati

Soluzioni ammissibili

Per ogni carattere $c \in C$, una etichettatura λ_c che assegna ad ogni nodo uno degli stati possibili per C

Funzione obiettivo

 $\min \sum_{c \in C} \sum_{(x,y) \in E(T)} w_c(\lambda_c(x), \lambda_c(y))$, dove E(T) è l'insieme di lati di T

Algoritmo Sankoff

Osservazione

Ogni carattere può essere gestito separatamente

Programmazione dinamica

- P[x,z]: soluzione ottimale del sottoalbero di T che ha radice x, sotto la condizione che x abbia etichetta z
- P[x,z] = 0, se x è una foglia con etichetta z
- $P[x,z] = +\infty$, se x è una foglia con etichetta diversa da z
- $P[x,z] = \sum_{f \in F(x)} \min_s \{w(z,s) + P[f,s]\}, \text{ dove } F(x) \text{ è l'insieme dei figli di } x \text{ in } T,$ se x è un nodo interno
- soluzione ottimale $\min_s \{P[r,s]\}$, dove r è la radice di T

Algoritmo Fitch

Solo per il caso non pesato, albero *T* binario

Algoritmo

S(x) è l'insieme di stati ottimali per il nodo x. Nessuna restizione sull'insieme degli stati.

- $S(x) = \lambda_c(x)$, se x è una foglia
- $S(x) = S(f_l) \cap S(f_r)$, dove f_l e f_r sono i figli di x in T, se $S(f_l) \cap S(f_r) \neq \emptyset$
- $S(x) = S(f_l) \cup S(f_r)$, dove f_l e f_r sono i figli di x in T, se $S(f_l) \cap S(f_r) = \emptyset$

Unificazione

B(x): insieme degli stati z tali che P[x,z] è minimo.

Algoritmo Fitch

Solo per il caso non pesato, albero *T* binario

Algoritmo

S(x) è l'insieme di stati ottimali per il nodo x. Nessuna restizione sull'insieme degli stati.

- $S(x) = \lambda_c(x)$, se x è una foglia
- $S(x) = S(f_l) \cap S(f_r)$, dove f_l e f_r sono i figli di x in T, se $S(f_l) \cap S(f_r) \neq \emptyset$
- $S(x) = S(f_l) \cup S(f_r)$, dove f_l e f_r sono i figli di x in T, se $S(f_l) \cap S(f_r) = \emptyset$

Unificazione

B(x): insieme degli stati z tali che P[x,z] è minimo. B(x) = S(x)

Algoritmo Fitch

Solo per il caso non pesato, albero *T* binario

Algoritmo

S(x) è l'insieme di stati ottimali per il nodo x. Nessuna restizione sull'insieme degli stati.

- $S(x) = \lambda_c(x)$, se x è una foglia
- $S(x) = S(f_l) \cap S(f_r)$, dove f_l e f_r sono i figli di x in T, se $S(f_l) \cap S(f_r) \neq \emptyset$
- $S(x) = S(f_l) \cup S(f_r)$, dove f_l e f_r sono i figli di x in T, se $S(f_l) \cap S(f_r) = \emptyset$

Unificazione

B(x): insieme degli stati z tali che P[x,z] è minimo. B(x) = S(x)

Come estendere Fitch ad albero generico (sempre caso non pesato)?

Approcci basati su distanze.

Distanza

 $d: S \times S \mapsto \mathbb{R}^+$ tale che:

- 1 $d(a,b) = 0 \Leftrightarrow a = b, \forall a,b \in S$
- 2 $d(a,b) = d(b,a), \forall a,b \in S$ (simmetria)
- d(a,b) ≤ d(a,c)+d(c,b), $\forall a,b,c \in S$ (disuguaglianza triangolare)

Ultrametrica

definizion ϵ

 $d: S \times S \mapsto \mathbb{R}^+$ tale che:

- 1 $d(a,b) = 0 \Leftrightarrow a = b, \forall a,b \in S$
- $d(a,b) = d(b,a), \forall a,b \in S \text{ (simmetria)}$
- 3 $d(a,b) \le d(a,c) + d(c,b), \forall a,b,c \in S$ (disuguaglianza triangolare)
- max $\{d(a,b),d(a,c),d(c,b)\}$ ottenuto da almeno 2 casi, $\forall a,b,c\in S$

Ultrametrica e orologio molecolare.

Alberi e distanze additive.

Proprietà

Sia T un albero binario senza radice e sia D la matrice delle distanze associata a T. Allora D soddisfa la condizione dei 4 punti.

Condizione dei 4 punti

Si consideri:

- 1 D[v, w] + D[x, y]
- 2 D[v, x] + D[w, y]
- $\overline{D[v,y]} + \overline{D[w,x]}$

Il massimo dei tre valori è ottenuto da esattamente due dei 3 casi sopra

Algoritmo per matrice di distanze additive.

Tripla degenere

Siano x, y, z tre specie e sia D la matrice di distanza. Allora la tripla (x, y, z) è degenere se D[x, y] + D[x, z] = D[y, z].

Sbilancio

Siano x, y, z tre specie e sia D la matrice di distanza. Allora lo sbilancio di x rispetto a (y,z) è S(x,y,z) = D[x,y] + D[x,z] - D[y,z].

UPGMA

- Unweighted Pair Group with Arithmetic Mean
- $D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$
- All'inizio h = 0 per ogni cluster/specie
- Fondi i due cluster C_1 , C_2 con minimo $D(\cdot, \cdot)$, ottenendo C
- Per ogni cluster $C^* \neq C$, $D(C, C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i, j)$
- $h(C) \leftarrow \frac{1}{2}D(C_1, C_2)$
- $h(C) h(C_1)$ etichetta (C, C_1) ; $h(C) h(C_2)$ etichetta (C, C_2)
- UPGMA produce ultrametrica

Neighbor Joining.

$$D(C_1, C_2) \leftarrow \frac{1}{|C_1||C_2|} \sum_{i \in C_1} \sum_{j \in C_2} D(i, j)$$

- $u(C) \leftarrow \frac{1}{\text{num. cluster}-2} \sum_{C_3} D(C, C_3)$
- Fondi i due cluster C_1 , C_2 con minimo $D(C_1, C_2) u(C_1) u(C_2)$, ottenendo C
- Per ogni cluster $C^* \neq C$, $D(C, C^*) = \frac{1}{|C||C^*|} \sum_{i \in C} \sum_{j \in C^*} D(i, j)$
- $\frac{1}{2}(D(C_1, C_2) + u(C_1) u(C_2))$ etichetta (C, C_1)
- $\frac{1}{2}(D(C_1, C_2) + u(C_2) u(C_1))$ etichetta (C, C_2)

Modelli di evoluzione.

- Probabilità di transizione fra stati (A, C, G, T).
- dipende dal tempo trascorso fra i due eventi
- tasso istantaneo di mutazione
- probabilità di mutazione in una generazione: somma su ogni riga = 1
- J. Felsenstein. Theoretical Evolutionary Genetics

Modelli di evoluzione: Jukes-Cantor.

- ogni mutazione è equiprobabile
- $1-\mu$: nessuna mutazione
- $\mu/3$: mutazione

Modelli di evoluzione: Kimura 2 parametri

- Distinzione transizioni ($A \leftrightarrow G, C \leftrightarrow T$), transversioni
- $\mathbf{1} \mu$: nessuna mutazione
- $\frac{R}{R+1}\mu$: probabilità transizione
- $\frac{1}{2(R+1)}\mu$: probabilità di trasversione $A \leftrightarrow C$ o $G \leftrightarrow T$
- $\frac{1}{2(R+1)}\mu$: probabilità di trasversione $A \leftrightarrow T$ o $C \leftrightarrow G$
- $R = \frac{R}{R+1}\mu/\left(2\frac{1}{2(R+1)}\mu\right)$: rapporto probabilità di transizioni / probabilità trasversioni

Modelli di evoluzione: General time-reversible

- matrice simmetrica
- consequenza: alberi senza radice

Massima verosimiglianza.

Licenza d'uso

Quest'opera è soggetta alla licenza Creative Commons: Attribuzione-Condividi allo stesso modo 4.0. (https://creativecommons.org/licenses/by-sa/4.0/). Sei libero di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire, recitare e modificare quest'opera alle seguenti condizioni:

- Attribuzione Devi attribuire la paternità dell'opera nei modi indicati dall'autore o da chi ti ha dato l'opera in licenza e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.
- Condividi allo stesso modo Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.