ME 639

INTRODUCTION TO ROBOTICS

Assignment 3 & 4 (Part - 1)

Submitted by:

Rhitosparsha Baishya 23310039 PhD (Mechanical Engineering)

CONTENTS

1.	Question 1	1
2.	Question 3	2
3.	Question 4	5
4.	Question 5	7
5.	Question 6	9
6.	Question 7	12
7.	Question 8	13
8.	Question 10	15
9.	References	16

A **singular configuration** is a configuration where certain directions of motion at the end effector become impossible or problematic. It can be defined as a state where bounded end-effector velocities correspond to unbounded joint velocities. When a robot reaches singularity configuration, there is no unique solution for the inverse kinematic problem.

A singularity configuration can be detected in the following ways:

- 1. When the determinant of the Jacobian approaches zero, the manipulator reaches a near-singularity configuration.
- 2. If the rank of the Jacobian is less than the number of degrees of freedom of the robot, it indicates that the robot is at or near singularity.
- 3. Eigen values approaching zero also indicate singularity configurations.

Source Code: (Link to GitHub)

```
import numpy as np
def compute_jacobian_and_velocity(links, dh_parameters, joint_types=None):
    if joint_types is None:
        # Default assumption: All joints are revolute
        joint_types = ["R"] * len(links)
    if len(links) != len(dh_parameters) or len(links) != len(joint types):
        raise ValueError("Input lengths do not match")
    # Initialize the transformation matrix
    T = np.eye(4)
    # Initialize the Jacobian matrix
    J = np.zeros((6, len(links)))
    # Initialize the end-effector position
    end_effector_position = np.zeros(3)
    # Initialize the end-effector velocity
    end effector_velocity = np.zeros(6)
    for i in range(len(links)):
        a, alpha, d, theta = dh_parameters[i]
        if joint_types[i] == 'R': # Revolute joint
            theta = links[i]
        # Calculate the transformation matrix
        A = np.array([[np.cos(theta), -np.sin(theta) * np.cos(alpha),
np.sin(theta) * np.sin(alpha), a * np.cos(theta)],
                      [np.sin(theta), np.cos(theta) * np.cos(alpha), -
np.cos(theta) * np.sin(alpha), a * np.sin(theta)],
                      [0, np.sin(alpha), np.cos(alpha), d],
                      [0, 0, 0, 1]])
        # Update the transformation matrix
        T = np.dot(T, A)
        z_i_minus_1 = T[:3, 2]
        end_effector_position = T[:3, 3]
        J[:3, i] = np.cross(z_i_minus_1, end_effector_position)
```

```
# Calculate the translational part of the Jacobian
        J[3:, i] = z_i_minus_1
    return J, end effector position, end effector velocity
# Default values:
links = [0.1, 0.2, 0.15]
dh parameters = [
    [0.1, 0, 0.05, 0.1],
    [0.05, 0, 0, 0.2],
    [0.03, 0, 0, 0.15]
joint_types = ["R", "R", "R"]
choice = int(input("Do you want to :\n1. Use default values?\n2. Enter your
own values?\nEnter option no. : "))
n = int(input("\nEnter the number of links : "))
# Take inputs if user decides to input their own values
if choice == 2:
    print("\nEnter the following values row-wise, separated by spaces :")
    links = list(map(float, input("Enter link lengths in m : ").split()))
    e2 = list(map(float, input("Enter values of DH Parameters (Format : a,
alpha, d, theta) : ").split()))
    dh_parameters = np.array(e2).reshape(n, 4)
    joint_types = list(map(str, input("Enter joint types (R or P) :
").split()))
print("\nLink lengths (m) :")
print(links)
print("\nDH Parameters (Format : a, alpha, d, theta) : ")
print(dh_parameters)
print("\nJoint types : ")
print(joint_types)
jacobian, end_effector_position, end effector velocity =
compute_jacobian_and_velocity(links, dh_parameters, joint_types)
print("\nManipulator Jacobian:")
print(jacobian)
print("\nEnd-effector Position:")
print(end_effector_position)
print("\nEnd-effector Velocity:")
print(end effector velocity)
```

Output:

```
Do you want to:

    Use default values?
    Enter your own values?
    Enter option no. : 2

Enter the number of links : 2
Enter the following values row-wise, separated by spaces:
Enter link lengths in m : 2 2
Enter values of DH Parameters (Format : a, alpha, d, theta) : 2 0 0 0.7854 2 0 0 0.7854
Enter joint types (R or P) : R R
Link lengths (m):
[2.0, 2.0]
DH Parameters (Format : a, alpha, d, theta) :
                          0.7854]
[[2.
           0.
 [2.
                              0.7854]]
            0.
                     0.
Joint types :
['R', 'R']
Manipulator Jacobian:
[[-1.81859485 -0.30498986]
  [-0.83229367 -2.13958091]
 [ 0.
[ 0.
[ 0.
                  0.
                   0.
                   0.
                                 ]]
  [ 1.
End-effector Position:
[-2.13958091 0.30498986 0.
End-effector Velocity:
[0. 0. 0. 0. 0. 0.]
```

Output for Stanford Manipulator:

```
1. Use default values?
2. Enter your own values? Enter option no. : 2
Enter the following values row-wise, separated by spaces:
Enter link lengths in m : 1 1 1
Enter values of DH Parameters (Format : a, alpha, d, theta) : 0 -1.5707 0 0.7853 0 1.5707 1 0.7853 0 0 2 0
Enter joint types (R or P) : R R P
Link lengths (m):
[1.0, 1.0, 1.0]
DH Parameters (Format : a, alpha, d, theta) :
                             0.7853]
            -1.5707 0.
1.5707 1.
0. 2.
[[ 0.
[ 0.
[ 0.
                                 0.7853]
                                 0. ]]
Joint types :
['R', 'R', 'P']
Manipulator Jacobian:
[[ 0.00000000e+00 -2.91858374e-01 -2.91858374e-01]
  [ 0.000000000e+00 -4.54692506e-01 -4.54692506e-01]
[-0.000000000e+00 8.41470977e-01 8.41470977e-01]
 End-effector Position:
[0.06775192 1.95649698 1.08070095]
End-effector Velocity:
[0. 0. 0. 0. 0. 0.]
```

Output for SCARA Manipulator:

```
1. Use default values?

    Enter your own values?
    Enter option no. : 2

Enter the following values row-wise, separated by spaces:
Enter link lengths in m : 1 1 1
Enter values of DH Parameters (Format : a, alpha, d, theta) : 0 -1.5707 0 0.7853 0 1.5707 1 0.7853 0 0 2 0
Enter joint types (R or P) : R R P
Link lengths (m):
[1.0, 1.0, 1.0]
DH Parameters (Format : a, alpha, d, theta) :
[[ 0.
[ 0.
[ 0.
                 -1.5707 0.
1.5707 1.
                                          0.7853]
0.7853]
Joint types : ['R', 'R', 'P']
Manipulator Jacobian:
[[ 0.00000000e+00 -2.91858374e-01 -2.91858374e-01]
[ 0.00000000e+00 -4.54692506e-01 -4.54692506e-01]
  [-0.000000000e+00 8.41470977e-01 8.41470977e-01]

[-8.41470981e-01 4.54611450e-01 4.54611450e-01]

[ 5.40302303e-01 7.08097340e-01 7.08097340e-01]

[ 9.63267947e-05 5.40302310e-01 5.40302310e-01]]
End-effector Position:
[0.06775192 1.95649698 1.08070095]
End-effector Velocity:
[0. 0. 0. 0. 0. 0.]
```

95

PH parameters:

Sink	- R	0	a	a
2	d ₁	0	0	- 1/2
2	d ₂	7/2	0	11/2
3	d ₃	- 51/2	0	0

$$H_0^1 = \begin{bmatrix} R_{z_1} - \eta_2 & T_{3_1} d_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_{1}^{2} = \begin{bmatrix} R_{1}^{2} & A_{1}^{2} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & A_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H_{2}^{3} = \begin{bmatrix} R_{2}^{3} & a_{2}^{3} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & a_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 1 & d_3 \\ -1 & 0 & 0 & d_2 \\ 0 & -1 & 0 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Q6

Link	d	9	a	al
1	0	θ_{i}	0	列名
2	0	O _Z	a _z	0
3	0	03	a3	0
4	0	04	0	-11/2
5	0	05	0	0
6	26	06	Ô	0

$$A_{1} = \begin{bmatrix} e_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -e_{1} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} e_{1} & 0 & s_{1} & 0 \\ s_{1} & 0 & -e_{1} & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{2} = \begin{bmatrix} e_{2} & -s_{2} & 0 & a_{2}e_{2} \\ s_{2} & e_{2} & 0 & a_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} e_{3} & -s_{3} & 0 & e_{3} & e_{3} \\ s_{3} & e_{3} & 0 & e_{3} & s_{3} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}, A_{4} = \begin{bmatrix} e_{4} & 0 & -s_{4} & 0 \\ s_{4} & 0 & e_{4} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5} = \begin{bmatrix} c_{5} & 0 & s_{5} & 0 \\ s_{5} & 0 & -c_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A_{6} = \begin{bmatrix} c_{6} & -3_{6} & 0 & 0 \\ s_{6} & c_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where
$$t_{34} = t_1 \left(t_5 t_6 t_{234} - s_6 s_{234} \right) - s_1 s_5 t_6$$
 $\eta_{12} = -t_2 \left(t_5 s_6 t_{234} + t_6 s_{234} \right) + s_1 s_5 s_6$
 $t_{13} = t_1 s_5 t_{234} + s_1 t_5$
 $d_2 = a_2 t_1 t_2 + a_3 t_1 t_{23} + d_6 \left(t_1 s_5 t_{234} + s_1 t_5 \right)$
 $\eta_{21} = t_1 s_5 s_6 + s_1 t_5 t_6 t_{234} - s_1 s_6 s_{234}$
 $\eta_{22} = -t_1 s_5 s_6 - s_1 t_5 s_6 t_{234}$
 $\eta_{23} = -t_1 t_5 t_6 + s_1 t_5 t_6 t_{234}$

$$d_{y} = a_{2} b_{1} b_{2} + a_{3} b_{1} b_{23} - d_{6} (b_{1} b_{5} + b_{1} b_{5} b_{234})$$

$$b_{31} = b_{6} b_{234} + b_{5} b_{6} b_{234}$$

$$b_{32} = b_{6} b_{234} - b_{5} b_{6} b_{234}$$

$$b_{33} = b_{6} b_{234} - b_{5} b_{6} b_{234}$$

$$b_{33} = b_{6} b_{234} - b_{5} b_{6} b_{234}$$

$$b_{33} = b_{6} b_{234} - b_{5} b_{6} b_{234}$$

$$b_{34} = b_{35} b_{234} + b_{35} b_{234}$$

$$b_{35} b_{234} + b_{35} b_{234}$$

Direct Drive	Remotely-Driven	5-bar Parallelogram Arrangement
Both the links are directly actuated by motors present at each joint.	The first link is directly actuated by motor present at the joint and the second link is connected to the motor by a gearing or belt-pulley system.	Both the links are connected in a parallelogram configuration with a common base.
 Advantages: It allows precise endeffector position control. Independent control is possible. 	Advantages:Wiring and control is simpler.Less weight.	Advantages:Ensures that end-effector remains parallel to base.Very stable.

08

We know

you 2R Manipulator,

$$D(q) = \begin{bmatrix} m_1 e_1^2/4 + m_2 e_1^2 + l_2 & m_2 e_2 e_3/2 & \cos(q_2 - q_2) \\ m_2 e_1 e_2/2 & \cos(q_2 - q_1) & m_2 e_2^2/4 + l_2 \end{bmatrix}$$

$$C_{111} = \frac{1}{2} \left(\frac{\partial d_{11}}{\partial q_{1}} + \frac{\partial d_{21}}{\partial q_{1}} - \frac{\partial d_{11}}{\partial q_{2}} \right) = \frac{1}{2} \left(\frac{\partial d_{21}}{\partial q_{2}} \right) = 0$$

$$C_{121} = C_{211} = \frac{1}{2} \left(\frac{\partial d_{11}}{\partial q_{2}} + \frac{\partial d_{21}}{\partial q_{2}} - \frac{\partial d_{12}}{\partial q_{2}} \right) = \frac{1}{2} \left(\frac{\partial d_{11}}{\partial q_{2}} \right) = 0$$

$$C_{221} = \frac{1}{2} \left(\frac{\partial d_{21}}{\partial q_{1}} + \frac{\partial d_{21}}{\partial q_{2}} + \frac{\partial d_{22}}{\partial q_{1}} \right) = \frac{\partial d_{21}}{\partial q_{1}} - \frac{1}{2} \frac{\partial d_{22}}{\partial q_{1}} = -m_{2} \frac{1}{2} \frac{1}$$

Fortial energy:

$$V = m_2 g l_2/2 l_1 + m_2 g (l_1 l_1 + l_2/2 l_2)$$
 $\phi_1 = \frac{\partial V}{\partial q_1} = (m_1 l_2/2 + m_2 l_1) g l_1$
 $\phi_2 = \frac{\partial V}{\partial q_2} = m_2 g l_2/2 l_2$

:. Yinal eqⁿ:
$$d_{11} \ddot{q}_1 + d_{12} \ddot{q}_2 + C_{221} \ddot{q}_2^2 + \phi_1 = \mathcal{V}_1$$

$$d_{21} \ddot{q}_1 + d_{22} \ddot{q}_2 + C_{112} \ddot{q}_1^2 + \phi_2 = \mathcal{V}_2$$

$$\Rightarrow \left(m_{1}\ell_{1}^{2}/_{4} + m_{2}\ell_{1}^{2} + l_{1}\right)\mathring{q}_{1} + \left(m_{1}\ell_{1}\ell_{2}/_{2}\ell_{2-1}\right)\mathring{q}_{2}$$

$$+ -\left(m_{2}\ell_{1}\ell_{2}/_{2}^{2}\ell_{2-1}\right)\mathring{q}_{2}^{2} + \left(m_{1}\ell_{2}/_{2} + m_{2}\ell_{1}\right)\mathcal{J}\ell_{1}^{2} = \mathcal{L}_{1}$$
and
$$\left(m_{2}\ell_{1}\ell_{2}/_{2}\ell_{2}\ell_{2-1}\right)\mathring{q}_{1} + \left(m_{2}\ell_{2}/_{4} + l_{2}\right)\mathring{q}_{2}^{2}$$

$$+ \left(m_{2}\ell_{1}\ell_{2}/_{2}^{2}\ell_{2-1}\right)\mathring{q}_{1}^{2} + m_{2}\mathcal{J}\ell_{2}^{2}\ell_{2}^{2} = \mathcal{L}_{2}$$

:. There are the same egn as used in mini - project !

Q10

suppose where given D(q) and V(q)

Step - 1: compade the Christoppel symbols of first kind,

$$e_{ijk} = \frac{1}{2} \left(\frac{\partial dk_i}{\partial q_i} + \frac{\partial dk_i}{\partial q_i} - \frac{\partial dij}{\partial q_k} \right)$$

Step - 2% Define the terms

Step-3: Combine the Mans as follows:

$$\sum_{i} dk_{i}(q) \hat{q}_{i} + \sum_{i,j} e_{ijk}(q) \hat{q}_{i} \hat{q}_{j} + \phi_{k}(q) = C_{k}$$

where $k = 1, ..., n$

an matrix porm ".

REFERENCES

- 1. Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. *Robot Dynamics and Control*. https://www.kramirez.net/Robotica/Tareas/Kinematics.pdf
- 2. Take Matrix input from user in Python: https://www.geeksforgeeks.org/take-matrix-input-from-user-in-python/
- 3. NumPy Documentation: https://numpy.org/doc/stable/
- 4. ChatGPT: https://chat.openai.com/