1 Norms Equivalency

Two norms in a finite-dimensional linear space X (e.g.: \mathbb{R}^n), $\|\cdot\|_a$ and $\|\cdot\|_b$, are called equivalent if there exists constant c and C, such that for all x in X,

$$c||x||_a \le ||x||_b \le C||x||_a \tag{1}$$

- (1.a) Suppose $\|\cdot\|_a$ and $\|\cdot\|_b$ are equivalent, and we know that an algorithm produces a sequence of vectors $\{e_n\}_{n\geq 1}$, $\|e_n\|_a \to 0$ as $n\to\infty$. What could we conclude about $\|e_n\|_b$'s behavior for $n\to\infty$?
- (1.b) We first show that the vector norms on \mathbb{R}^n , $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$, are equivalent. To do this prove the inequality:

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}.$$

(1.c) The induced matrix norm on $\mathbb{R}^{n\times n}$: $\|\cdot\|_2$ and $\|\cdot\|_{\infty}$ are equivalent as well. Prove the inequality

$$||A||_{\infty} \le \sqrt{n} ||A||_{2},$$

 $||A||_{2} \le \sqrt{n} ||A||_{\infty}.$

2 Inverse matrix computation

Let us use the LU-decomposition to compute the inverse of a matrix.

- (2.a) Describe an algorithm that uses the LU-decomposition of an $n \times n$ matrix A for computing A^{-1} by solving n systems of equations (one for each unit vector).
- (2.b) Calculate the floating point operation count of this algorithm.
- (2.c) Improve the algorithm by taking advantage of the structure (i.e., the many zero entries) of the right-hand side. What is the new algorithm's floating point operation count? (Hint: consider splitting the solution vector for the k-th equation from part (a) into two pieces, and solve for each piece separately, on paper or using forward/backward substitution.)

3 Stability of the Gaussian elimination

Consider the linear system

$$Ax = b$$
,

where A is an $n \times n$ matrix that has ones on the diagonal, minus ones below the diagonal, and ones in the last column, with all other entries zero. For example, when n = 5, we have

- (3.a) Consider the matrix A for some arbitrary n. Perform Gaussian elimination on A to obtain the upper triangular matrix U appearing in the LU-factorization A = LU. What is $\max_{i,j} |u_{i,j}|$ as a function of n?
- (3.b) For large n, e.g., n = 2000, what problems can you envision if you try to solve the system using Gaussian elimination on a computer?