## MA 523: Homework 4

Carlos Salinas

September 28, 2016

## Problem 4.1 (Legendre Transform)

Let  $u(x_1, x_2)$  be a solution of the quasilinear equation

$$a^{11}(Du)u_{x_1x_1} + 2a^{12}(Du)u_{x_1x_2} + a^{22}(Du)u_{x_2x_2} = 0$$

in some region of  $\mathbb{R}^2$ , where we can invert the relations

$$p^1 = u_{x_1}(x_1, x_2), \quad p^2 = u_{x_2}(x_1, x_2)$$

to solve for

$$x^1 = x^1(p_1, p_2), \quad x^2 = x^2(p_1, p_2).$$

Define then

$$v(p) := \mathbf{x}(p) \cdot p - u(\mathbf{x}(p)),$$

where  $\mathbf{x} = (x^1, x^2), p = (p_1, p_2)$ . Show that v satisfies the *linear* equation

$$a^{22}(p)v_{p_1p_2} - 2a^{12}(p)v_{p_1p_2} + a^{11}(p)v_{p_1p_2} = 0.$$

(Hint: See [Evans, 4.4.3b], prove the identities (29)).

SOLUTION. Assuming the regularity on v prescribed above, we compute  $v_{p_1p_1}$ ,  $v_{p_1p_2}$  and  $v_{p_2p_2}$ . First, we compute  $v_{p_1p_2}$  since in the case of  $v_{p_1p_1}$  and  $v_{p_2p_2}$ , there is some symmetry we can exploit. Taking the first partial with respect to  $p^1$ , we have

$$(4.1) v_{p_1} = \frac{\partial}{\partial p_1} \left( x^1(p)p^1 + x^2(p)p^2 - u(\mathbf{x}(p)) \right)$$

$$= x^1(p) + x_{p_1}^1(p)p^1 + x_{p_1}^2(p)p^2 - u_{x_1}(\mathbf{x}(p))x_{p_1}^1(p) - u_{x_2}(\mathbf{x}(p))x_{p_1}^2(p)$$

$$= x^1 + x_{p_1}^1 p^1 + x_{p_1}^2 p^2 - p^1 x_{p_1}^1 - p^2 x_{p_1}^2$$

$$= x^1.$$

since  $u_{x_1} = p^1$  and  $u_{x_2} = p^2$ .

Similarly, for  $v_{p_2}$ , we have

$$(4.2) v_{p_2} = \frac{\partial}{\partial p_2} \left( x^1(p) p^1 + x^2(p) p^2 - u(\mathbf{x}(p)) \right)$$

$$= x_{p_2}^1(p) x^1(p) + x^2(p) + x_{p_2}^2(p) p^2 - u_{x_1} (\mathbf{x}(p)) x_{p_2}^1(p) - u_{x_2} (\mathbf{x}(p)) x_{p_2}^2(p)$$

$$= x_{p_2}^1 x^1 + x^2 + x_{p_2}^2 p^2 - p^1 x_{p_2}^1 - p^2 x_{p_2}^2$$

$$= x^2.$$

Now, taking the partial of (4.1) with respect to  $p_1$  and then  $p_2$ , we have

$$v_{p_1p_1} = x_{p_1}^1 = x_{u_{x_1}}^1, \qquad v_{p_1p_2} = x_{p_2}^1 = x_{u_{x_2}}^1,$$

and similarly for (4.2),

$$v_{p_1p_2} = x_{p_1}^2 = x_{u_{x_1}}^2, \qquad v_{p_2p_2} = x_{p_2}^2 = x_{u_{x_2}}^2.$$

By the inverse function theorem, we have

$$\begin{bmatrix} v_{p_1p_1} & v_{p_1p_2} \\ v_{p_1p_2} & v_{p_2p_2} \end{bmatrix} = \begin{bmatrix} x_{u_{x_1}}^1 & x_{u_{x_2}}^1 \\ x_{u_{x_1}}^2 & x_{u_{x_2}}^2 \end{bmatrix}$$

$$= \begin{bmatrix} u_{x_1x_1} & u_{x_1x_2} \\ u_{x_1x_2} & u_{x_2x_2} \end{bmatrix}^{-1}$$

$$= \frac{1}{J} \begin{bmatrix} u_{x_2x_2} & -u_{x_1x_2} \\ -u_{x_1x_2} & u_{x_1x_1} \end{bmatrix}.$$

Hence,

(4.3) 
$$\begin{cases} u_{x_1x_1} = Jv_{p_2p_2} \\ u_{x_1x_2} = -Jv_{p_1p_2} \\ u_{x_2x_2} = Jv_{p_1p_1}, \end{cases}$$

which verifies Equation (29) from [E, 4.4.3b]. Substituting (4.3) into the original equation,

$$0 = Ja^{11}(p)v_{p_2p_2} - Ja^{12}(p)v_{p_1p_2} + Ja^{22}(p)v_{p_1p_1}$$
  
=  $a^{22}(p)v_{p_1p_1} - a^{12}(p)v_{p_1p_2} + a^{11}(p)v_{p_2p_2}$ ,

as was to be shown.

CARLOS SALINAS PROBLEM 4.2

## Problem 4.2

Find the solution u(x,t) of the one-dimensional wave equation

$$u_{tt} - u_{xx} = 0$$

in the quadrant x > 0, t > 0 for which

$$\begin{cases} u(x,0) = f(x), & u_t(x,0) = g(x), & \text{for } x > 0, \\ u_t(0,t) = \alpha u_x(0,t), & \text{for } t > 0, \end{cases}$$

where  $\alpha \neq -1$  is a given constant. Show that generally no solution exists when  $\alpha = -1$ . (*Hint*: Use a representation u(x,t) = F(x-t) + G(x+t) for the solution.)

SOLUTION. Suppose u(x,t) = F(x-t) + G(x-t) is a classical solution to the one-dimensional wave equation. From [E], we know that d'Alembert's solution

(4.4) 
$$u(x,t) = \frac{f(x+t) + f(x-t)}{2} + \frac{1}{2} \int_{x-t}^{x+t} g(s) \, ds$$

is a solution to the one-dimensional wave equation.

Now, taking the boundary conditions into consideration, we have

$$2u_t(0,t) = f'(t) - f'(-t) + g(t) - g(-t)$$
  
=  $\alpha (f'(t) + f'(-t) + g(t) - g(-t)),$ 

hence,

$$(-\alpha + 1)f'(t) - (\alpha + 1)f'(-t) = (\alpha - 1)(g(t) - g(-t))$$
$$f'(t) - (\frac{\alpha + 1}{\alpha - 1})f'(-t) = g(t) - g(-t).$$

From our assumptions on the form of u, we have

CARLOS SALINAS PROBLEM 4.3

## Problem 4.3

(a) Let u be a solution of the wave equation  $u_{tt} - c^2 u_{xx} = 0$  for  $0 < x < \pi$ , t > 0 such that  $u(0,t) = u(\pi,t) = 0$ . Show that the energy

$$E(t) = \frac{1}{2} \int_0^{\pi} \left( u_t^2 + c^2 u_x^2 \right) dx, \quad t > 0$$

is independent of t; i.e.,  $\frac{d}{dt}E=0$  for t>0. Assume that u is  $C^2$  up to the boundary. (b) Express the energy E of the Fourier series solution

$$u(x,t) = \sum_{n=1}^{\infty} (a_n \cos(nct) + b_n \sin(nct)) \sin(nx)$$

in terms of coefficients  $a_n$ ,  $b_n$ .

SOLUTION. For part (a), suppose that u is, as above, a solution to the wave equation which is  $C^2$ up to the boundary. We show that its energy is independent of t, i.e., that  $\frac{d}{dt}E = 0$ . Assuming the energy is bounded, the dominated convergence theorem allows us to permute the order of integration and differentiation like so

$$\frac{d}{dt}E(t) = \frac{d}{dt} \left( \frac{1}{2} \int_0^{\pi} \left( u_t^2 + c^2 u_x^2 \right) dx \right)$$

$$= \frac{1}{2} \int_0^{\pi} \frac{\partial}{\partial t} \left( u_t^2 + c^2 u_x^2 \right) dx$$

$$= \frac{1}{2} \int_0^{\pi} 2u_t u_{tt} + 2c^2 u_x u_{xt} dx$$

which, after using the relation  $u_{tt} = c^2 u_{xx}$ , becomes

$$= c^2 \int_0^{\pi} u_t u_{xx} + u_x u_{xt} dx$$

$$= c^2 \int_0^{\pi} \frac{\partial}{\partial x} (u_x u_t) dx$$

$$= c^2 \left( u_x(\pi, t) u_t(\pi, t) - u_x(0, t) u_t(0, t) \right)$$

$$= 0$$

since the boundary conditions, i.e., u = 0, implies  $u_x = u_t = 0$  at the boundary. For part (b), suppose u is a Fourier series solution to the wave equation, i.e.,

$$u(x,t) = \sum_{n=1}^{\infty} (a_n \cos(nct) + b_n \sin(nct)) \sin(nx).$$

CARLOS SALINAS PROBLEM 4.3

First we compute  $u_t$  and  $u_x$ . They are

$$u_t(x,t) = \frac{\partial}{\partial t}u(x,t)$$
$$= \sum_{n=1}^{\infty} cn(b_n \cos(nct) - a_n \sin(nct))\sin(nx)$$

and

$$u_x(x,t) = \frac{\partial}{\partial x} u(x,t)$$
$$= \sum_{n=1}^{\infty} n(a_n \cos(nct) + b_n \sin(nct)) \cos(nx).$$

Thus,

$$E(t) = \frac{1}{2} \int_0^{\pi} \left[ \left( \sum_{n=1}^{\infty} cn \left( b_n \cos(nct) - a_n \sin(nct) \right) \sin(nx) \right)^2 + c^2 \left( \sum_{n=1}^{\infty} n \left( a_n \cos(nct) + b_n \sin(nct) \right) \cos(nx) \right)^2 \right]$$

which, after expanding and using the fact that  $\cos(nct)$ ,  $\sin(nct)$ ,  $\cos(nx)$ , and  $\sin(nx)$  are orthogonal, becomes

$$= \frac{1}{2} \int_0^{\pi} \left[ \sum_{n,m=1}^{\infty} c^2 nm \left( b_n b_m \cos(nct) \cos(mct) + a_n a_m \sin(nct) \sin(mct) \right) - a_n b_m \cos(mct) \sin(nct) - a_m b_n \cos(nct) \sin(mct) \right] \sin(nx) \sin(mx)$$

$$- c^2 \sum_{n,m=1}^{\infty} n^2 \left( a_n a_m \cos(nct) \cos(mct) + b_n b_m \sin(nct) \sin(mct) \right)$$

$$+ a_n b_m \cos(nct) \sin(mct) + a_m b_n \cos(mct) \sin(nct) \right) \cos(nx) \cos(mx)$$

$$= \frac{1}{2} \int_0^{\pi} \sum_{n=1}^{\infty} \left( cn^2 \left( b_n^2 \cos^2(nct) + a_n^2 \sin^2(nct) \right) \sin^2(nx) - cn^2 \left( a_n^2 \cos^2(nct) + b_n^2 \sin^2(nct) \right) \cos^2(nx) \right)$$

Consider the map  $X \leftarrow Y$