The centroid of a $\operatorname{\underline{semicircle}}$ of radius R is given by

$$\overline{x} = \frac{2R}{\pi}.$$

The centroids of several common laminas bounded by the following curves along the nonsymmetrical axis are summarized in the following table.

Summanzed in the following table.		
lamina	ÿ	
circular sector	$\frac{4R\sin\left(\frac{1}{2}\theta\right)}{3\theta}$	
circular segment	$\frac{4R\sin^3\left(\frac{1}{2}\theta\right)}{3(\theta-\sin\theta)}$	
isosceles triangle	$\frac{1}{3}h$	
parabolic segment	$\frac{2}{5}h$	
<u>semicircle</u>	$\frac{4R}{3\pi}$	

In three dimensions, the mass of a solid with density function $\rho(x,y,z)_{is}$

$$M = \iiint \rho(x, y, z) dV,$$

and the coordinates of the center of mass are

\overline{x}	=	$\frac{\iint x \rho(x, y, z) dV}{M}$
ÿ	=	$\frac{\iint y \rho(x,y,z) dV}{M}$
Z	=	$\frac{\iint z \rho(x,y,z) dV}{M}.$

solid	₹
cone	$\frac{1}{4}$ h
conical frustum	$\frac{{\scriptstyle R\left(R_{1}^{2}+2R_{1}R_{2}+3R_{2}^{2}\right)}}{4\left(R_{1}^{2}+R_{1}R_{2}+R_{2}^{2}\right)}$
half- <u>ellipsoid</u>	$\frac{3}{16} a_1 \frac{3}{16} b_1 \frac{3}{16} c$
<u>hemisphere</u>	$\frac{3}{8}R$
<u>paraboloid</u>	$\frac{2}{3}$ h
<u>pyramid</u>	$\frac{1}{4}$ h
spherical cap	$\frac{3 (2 R - h)^2}{4 (3 R - h)}$
vault	$\frac{3}{8}$ r