【AD 変換チップの実装】

3つ作成した.

[loopback]

① デフォルトだと Raspberry Pi はシリアルポートが無効になっているため, 設定を変更. \$ sudo raspi-config

からラズパイの設定を行い

 $s - 1/dev/ttyS^*$

これを実行することで、/dev/配下に有効化したシリアルポート ttySO が使用可能になる.

②ラズパイからのデータ(最終的には AD 変換させたセンサ値)を, 通信機器 MONOSTICK で送信し, そのデータを自らが受信する \rightarrow loopback

```
loopback.py ×
 3
        use_port = '/dev/ttyUSB0'
        _serial = serial.Serial(use_port)
       _serial.baudrate = 9600
_serial.parity = serial.PARITY_NONE
        _serial.bytesize = serial.EIGHTBITS
_serial.stopbits = serial.STOPBITS_ONE
_serial.timeout = 5 #sec
10
11
12
13
14
       commands = [ 0xB6, 0x01, 0x02, 0x00 ]
15
16
17
      □for cmd in commands:
             data = struct.pack("B", cmd)
print("tx: ", data)
18
19
             _serial.write(data)
20
21
22
        _serial.flush()
               _serial.readline()
        print("rx: ", rx)
24
        scrot
25
        _serial.close()
26
```

結果として、送受信することができたが、送信データを正しく、表示されていない. 以下がラズパイでの表示内容である.

(tx: 送信 , rx: 受信)

KYOHEI@KYOHEI:~/Desktop \$ python loopback.py
tx: b'\xb6'
tx: b'\x01'
tx: b'\x02'
tx: b'\x00'
rx: b'\xb7\xfd\xfb\xff'
KYOHEI@KYOHEI:~/Desktop \$ scrot -d 5

受信の際に16進数を表示できるようにする必要がある.

【スケジュール】

		<u> </u>	<u> </u>	(1 y 011011-2 3 /C/
	スケジュール	実施したこと	できなかったこと	来週への課題
6/16 ~23	・wiresharkでのデータ確認 ・PythonでのAD変換とUART 通信プログラミング	 ・wiresharkでの送信データの確認 ・実際のセンサを用いた過程での プログラム構築 ・UART通信を実現するプログラム 構築 	・プログラムの動作確認 (AD変換に必要なラズパイ のチップが手元にないため)	・センサとチップを使用し プログラムの動作確認
6/23~30	・AD変換に必要なチップ (ADS1015)を実装 ・E→R→Cの経路をsnifferで確認	特にR→Cの経路をsnifferで確認	AD変換チップが手元にない ため、未確認	AD変換チップをラズパイ に実装する.
6/30~7/7	・AD変換チップをラズパイに 実装・UARTの初期設定	・UARTに関する情報収集 ・論文調査	AD変換チップの実装	AD変換チップをラズパイ に実装する.
7/7~14	・ラズパイとMONOSTICK間で のUART通信の構築・狭い範囲でのSnifferを動作	・UART通信の大まかなプログラミング・SnifferをWiresharkで確認	・UART通信のloopback	・loopbackを可能にする ・AD変換チップの実装
7/14~ 21	・AD変換チップの実装 ・loopbackでのUART通信	・AD変換チップの実装・loopbackの通信	・受信データの正しい表示	・送信データを受信側で 正しく表示させること
7/21~28	・UARTの正確な受信表示			
7/28~9/22	・MONOSTICK 2 台での通信 ・センサを用いたAD変換 ・上記を繋げー連のデータ送受 信を構築			