<u>12 November 2020</u>

Estimation

Maximum Likelihood Estimation

1. Ungrouped data: Response - y_i for i = 1, ..., nAssume $y_i \sim Bernoulli(P_i)$

$$L(\beta) = \prod_{i=1}^{n_1} \left(\frac{e^{\boldsymbol{x}_i^T \boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_i^T \boldsymbol{\beta}}} \right) \prod_{i=n_1+1}^{n} \left(\frac{1}{1 + e^{\boldsymbol{x}_i^T \boldsymbol{\beta}}} \right)$$

2. Grouped data: Response - (n_i, r_i) for i = 1, ..., sAssume $r_i \sim Binomial(n_i, P_i)$

$$L(\beta) = \prod_{i=1}^{s} \left(\frac{e^{\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}} \right)^{r_{i}} \left(\frac{1}{1 + e^{\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}}} \right)^{n_{i} - r_{i}}$$

The maximum likelihood estimators can be obtained by maximizing the log-likelihood function of $L(\beta)$.

Confidence interval

C.I. of
$$\beta_j$$
 is $\hat{\beta}_j \pm z_{\alpha/2} \sqrt{c^{jj}}$ for $j = 0, 1, \dots, p$

where the c^{jj} is the $(j+1)^{th}$ diagonal element of C^{-1} , where C^{-1} is the estimate of the variance-covariance matrix of the regression coefficients and the $(i,j)^{th}$ element in C is defined as

$$c_{ij} = \frac{-\partial^2 \log L(\hat{\boldsymbol{\beta}})}{\partial \hat{\beta}_i \partial \hat{\beta}_j} \quad (i = 0, 1, \dots, p; \ j = 0, 1, \dots, p)$$

Odds, Odds ratio & Probability

Odds =
$$\frac{p}{1-p} = \exp(\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p)$$

Odds Ratio = $\frac{\frac{p}{1-p}}{\frac{p}{1-p}}$

Parameter	Estimate	Standard Error	Confidence Interval
$\omega = \sum_{i=0}^{p} a_i \beta_i$	$\hat{\omega} = \sum_{i=0}^{p} a_i \hat{\beta}_i$	$s.e.(\hat{\omega})$	$\hat{\omega} \pm 1.96 * s.e.(\hat{\omega}) = (\hat{\omega}_l, \hat{\omega}_u)$
$\exp(\omega)$	$\exp(\hat{\omega})$	$\exp(\hat{\omega}) * s.e.(\hat{\omega})$	$(\exp(\hat{\omega}_l), \exp(\hat{\omega}_u))$
$P = \frac{\exp(\omega)}{1 + \exp(\omega)}$	$\hat{P} = \frac{\exp(\hat{\omega})}{1 + \exp(\hat{\omega})}$	$\frac{\exp(\hat{\omega})}{(1+\exp(\hat{\omega}))^2} * s.e.(\hat{\omega})$	$\left(\frac{\exp(\hat{\omega}_l)}{1 + \exp(\hat{\omega}_l)}, \frac{\exp(\hat{\omega}_u)}{1 + \exp(\hat{\omega}_u)}\right)$

31

where
$$s.e.(\hat{\omega}) = \sqrt{\sum_{i=0}^{p} a_i^2 Var(\hat{\beta}_i) + \sum \sum_{j \neq k} a_j a_k Cov(\hat{\beta}_j, \hat{\beta}_k)}$$

Hypothesis testing

1. For testing

$$H_o: P_i = \frac{e^{\boldsymbol{x}_i^T \boldsymbol{\beta}}}{1 + e^{\boldsymbol{x}_i^T \boldsymbol{\beta}}},$$

the test statistic is

$$\lambda(\beta) = -2\log\left[\frac{L(\hat{\beta})}{L(\hat{P})}\right]$$

(a) Ungrouped data:

$$L(\mathcal{P}) = \prod_{i=1}^{n} P_i^{y_i} (1 - P_i)^{1 - y_i}$$
As $\hat{P}_i = y_i$ if all \boldsymbol{x}_i are distinct
$$\Rightarrow L(\hat{\mathcal{P}}) = \prod_{i=1}^{n} y_i^{y_i} (1 - y_i)^{1 - y_i}$$

$$L(\hat{\mathcal{P}}) = \prod_{i=1}^{n_1} \left(\frac{e^{\boldsymbol{x}_i^T \hat{\boldsymbol{\beta}}}}{1 + e^{\boldsymbol{x}_i^T \hat{\boldsymbol{\beta}}}} \right) \prod_{i=n_1+1}^{n} \left(\frac{1}{1 + e^{\boldsymbol{x}_i^T \hat{\boldsymbol{\beta}}}} \right)$$

$$\Rightarrow \lambda(\hat{\mathcal{P}}) \sim \chi_{n-(p+1)}^2$$

(b) Grouped data:

$$L(\hat{\mathcal{P}}) = \prod_{i=1}^{s} P_i^{r_i} (1 - P_i)^{n_i - r_i}$$

$$\text{As } \hat{P}_i = \frac{r_i}{n_i}$$

$$\Rightarrow L(\hat{\mathcal{P}}) = \prod_{i=1}^{s} \left(\frac{r_i}{n_i}\right)^{r_i} \left(\frac{n_i - r_i}{n_i}\right)^{n_i - r_i}$$

$$L(\hat{\mathcal{B}}) = \prod_{i=1}^{s} \left(\frac{e^{\mathbf{x}_i^T \hat{\boldsymbol{\beta}}}}{1 + e^{\mathbf{x}_i^T \hat{\boldsymbol{\beta}}}}\right)^{r_i} \left(\frac{1}{1 + e^{\mathbf{x}_i^T \hat{\boldsymbol{\beta}}}}\right)^{n_i - r_i}$$

$$\Rightarrow \lambda(\hat{\mathcal{B}}) \sim \chi_{s-(p+1)}^2$$

The test statistic $\lambda(\beta)$ is called the *deviance* associated with the fitted logistic regression.