Microcomputer Organization

II CPU

CPU Components

- Hardware components
 - Control Unit (CU)
 - Registers
 - Arithmetic Logic Unit (ALU)
 - Bus Interface Logic unit (BIL)
- Software Components
 - Instruction Set
 - Addressing modes

CPU

Data Path and Control Path

- Data Path: HW components that perform operations
 - ALU
 - Registers and Internal Buses
 - Specialized units
- Control Path: HW components controlling system operation
 - CU
 - BIL
 - Timing and synchronization units

CPU: Registers

- Special Purpose Registers
 - Instruction Register (IR)
 - Program Counter (PC)
 - Stack Pointer (SP)
 - Status Register (SR)
- General Purpose registers
- "Invisible registers" not available to programmer

Instruction Cycle or CPU Cycle: Fetch-Decode Execute

- <u>Fetch</u>: The CU brings a new instruction from memory through BIL
 - Register PC provides the address of instruction to be fetched
 - Instruction is stored in IR
- <u>Decode</u>: instruction meaning is deciphered
- Execute: CU commands the corresponding units to perform the actions.
 - PC has new address after execution
- Reset: A defined state after power up or after a reset occurs

Example: Initial State

Just after a previous cycle:

- a) Contents of IR is irrelevant.
- b) PC points to next instruction

FETCH

DECODE

IR

CU decodes:

Add contents of R10 to contents of R6

The information is complete. so decoding is finished.

a) In Register Transfer Notation (RTN):

b) Decoding is finished and PC is pointing to address following this instruction

EXECUTE

FETCH

DECODE (1)

DECODE (2)

Execute

Fetch

Decode (1)

Decode (2,3)

DECODED instruction:

Add the word in memory with address 2034 to the word in memory with address 2038

a) In RTN:

$$(2038) \leftarrow (2034) + (2038)$$

Also $&2038 \leftarrow &2034 + &2038$

b) Decoding is finished and PC is pointing to address following this instruction

Execute

Fetch

Decode

Execute

The execution in this case changes the contents of the PC.

This will cause a <u>JUMP</u> in the sequence of instructions.

The next instruction to be fetched is not the one after the current one.

The instruction does not affect flags.

Important facts to remember

- Instruction can have one or more words
 - Instruction word: First word in the set.
 - Instruction word: Op Code and Addressing modes
- After the execution state, the PC has the address of the next instruction
- After the decode state, the PC holds the memory address after the current instruction
 - Execution of Program flow instructions may alter PC
 - For other instructions, this is the address of next instruction

Status Register

- Contains flags related to result of execution for some instructions involving ALU and a control Interrupt Flag. All systems include
 - Carry Flag (C)Zero Flag (Z)
 - Negative Flag (N)Overflow Flag (V)
 - Interrupt flag (IF) or General Interrupt flag (GIE)
 - Interrupts blocked with IF are called <u>maskable</u>
- Contains group of bits related to system control

Carry flag: Special remarks

- In arithmetic operations, the Carry Flag may have dual function: Carry and Borrow
 - Some MCU's have a separate borrow flag
- Depending on the MCU model (see user guide):
 - C=1 if a borrow is needed in subtraction ... or
 - C=0 if a borrow is needed in subtraction
 - MSP430 adheres to this convention

Flags and Number comparison (Using A-B)

Comparison	Unsigned Numbers	Signed Numbers
A = B	Z=1	Z=1
$A \neq B$	Z=0	Z=0
$A \geq B$	C=1	N=V
A > B	C=1 and $Z=0$	N=V and $Z=0$
A < B	C=0	$N \neq V$
$A \leq B$	C=0 or $Z=1$	$N \neq V$ or $Z=1$

Note: This table assumes that C=0 indicates need of borrow in subtraction

Microcomputer Organization

III MSP430 CPU - CPUX

Highlights

- MSP430 offers two architectures:
 - Original MSP430 64K memory, with CPU
 - Extended MSP430X with 1M memory capacity,
 CPUX
- MSP430X is 100% downward compatible with MSP430
- ALU
 - CPU: 16 bits
 - CPUX: 20 bits

CPU and **CPUX** registers

- 16 registers.
 - CPU has 16-bit registers
 - CPUX has 20-bit registers that operate as CPU registers for all CPU instructions .
 - Status Register has 16-bits in both cases.
- Register R0: Program Counter (PC) with bit0=0, hardwired
- Register R1: Stack Pointer (SP) with Bit0 = 0, hardwired
- Register R2: Status Register (SR), 16-bits only
 - Also works as constant generator (CG1)
- Register R3: Constant Generator (CG2)
- Registers R4 to R15: General Purpose generators.

MSP430 Status Register (1/2)

- C: Carry Flag
- Z: Zero Flag
- N: Sign Flag
- GIE: Global Interrupt enable Flag
- V: Overflow Flag

MSP430 Status Register (2/2)

- CPU Off: Turns on and off the CPU
 - CPU Off if CPUOFF=1
- OSCOFF: Turns on and off the Crystal Oscillator
 - Oscillator Off when OSCOFF=1
- SCG1 and SCG0 are combined with CPUOFF and OSCOFF to define the modes of operation

Modes of operation

SCG1	SCG0	OSCOFF	CPUOFF	Mode
0	0	0	0	Active
0	0	0	1	LPM0
0	1	0	1	LPM1
1	0	0	1	LPM2
1	1	0	1	I DMo
1	1	0	1	LPM3
1	1	1	1	LPM4

LPM: Low power mode