PROJECT NAME = SALES PREDICTION

Importing Library

```
In [123]:  import pandas as pd
  import numpy as np
  import seaborn as sns
  import matplotlib.pyplot as plt
  import warnings
  warnings.filterwarnings("ignore")
```

Data

Out	[125]	١.
Out		

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

EDA

```
In [126]: ► df.head()
```

Out[126]:		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	12.0
	3	151.5	41.3	58.5	16.5
	4	180.8	10.8	58.4	17.9

In [127]: ► df.tail()

Out-	[127]	١.
Out	12/	н

	TV	Radio	Newspaper	Sales
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

In [128]: ► df.describe()

Out[128]:

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	15.130500
std	85.854236	14.846809	21.778621	5.283892
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000
50%	149.750000	22.900000	25.750000	16.000000
75%	218.825000	36.525000	45.100000	19.050000
max	296.400000	49.600000	114.000000	27.000000

Out[129]: pandas.core.frame.DataFrame

Out[130]: (200, 4)

```
In [132]:

    df.info()

              <class 'pandas.core.frame.DataFrame'>
              RangeIndex: 200 entries, 0 to 199
              Data columns (total 4 columns):
               #
                   Column
                               Non-Null Count Dtype
                0
                   ΤV
                               200 non-null
                                                float64
                1
                   Radio
                               200 non-null
                                               float64
                                               float64
                2
                   Newspaper 200 non-null
                3
                   Sales
                               200 non-null
                                               float64
              dtypes: float64(4)
              memory usage: 6.4 KB
```

Data Cleaning

```
In [133]:

    df.isna().sum()

   Out[133]: TV
                             0
               Radio
                             0
                             0
               Newspaper
               Sales
               dtype: int64
               df.duplicated()
In [134]:
   Out[134]: 0
                       False
               1
                       False
               2
                       False
               3
                       False
               4
                       False
               195
                       False
               196
                       False
               197
                       False
               198
                       False
               199
                       False
               Length: 200, dtype: bool

    df.duplicated().sum()

In [135]:
   Out[135]: 0
```

Data Visualization

In [137]: In sns.boxplot(df['Sales'])
plt.show()


```
    df.hist()

In [138]:
   Out[138]: array([[<AxesSubplot:title={'center':'TV'}>,
                       <AxesSubplot:title={'center':'Radio'}>],
                      [<AxesSubplot:title={'center':'Newspaper'}>,
                       <AxesSubplot:title={'center':'Sales'}>]], dtype=object)
                                TV
                                                                     Radio
                                                     30
                20
                                                     20
                10
                                                     10
                 0
                                                       0
                            100
                                                                               40
                    0
                                     200
                                              300
                                                          0
                                                                    20
                                                                    Sales
                            Newspaper
                                                     30
                40
                30
                                                     20
                20
                                                     10
                10
                 0
                                                       0
                               50
                                          100
                                                                  10
                                                                            20
                    0
In [139]:
              sns.pairplot(df, x_vars =['TV', 'Newspaper', 'Radio'], y_vars='Sales', hei
              plt.show()
```

```
In [140]: In sns.heatmap(df.corr(), cmap="viridis", annot = True)
plt.show()
```



```
In [143]: ▶ import statsmodels.api as sm
```

```
In [144]: 
train = sm.add_constant(X_train)

lr = sm.OLS(y_train, train).fit()
```

```
In [145]: ► lr.params
```

Out[145]: const 6.548509 TV 0.058475 dtype: float64

```
In [146]: ▶ print(lr.summary())
```

```
OLS Regression Results
   ______
   ======
   Dep. Variable:
                          Sales
                               R-squared:
   0.708
   Model:
                           OLS
                               Adj. R-squared:
   0.692
                    Least Squares F-statistic:
   Method:
   43.60
                  Sat, 09 Sep 2023 Prob (F-statistic):
   Date:
                                                     3.
   36e-06
   Time:
                        11:29:53 Log-Likelihood:
   47.205
   No. Observations:
                              AIC:
                            20
   98.41
   Df Residuals:
                            18
                               BIC:
   100.4
   Df Model:
                             1
   Covariance Type:
                       nonrobust
   ______
               coef
                                      P> t
                     std err
                                 t
                                              [0.025
   0.975]
   const
             6.5485 1.386 4.725 0.000
                                               3.637
   9.460
   TV
             0.0585 0.009 6.603
                                      0.000
                                               0.040
   0.077
   ______
                          1.544 Durbin-Watson:
   Omnibus:
   2.139
   Prob(Omnibus):
                          0.462 Jarque-Bera (JB):
   0.944
   Skew:
                         -0.123
                              Prob(JB):
   0.624
   Kurtosis:
                          1.965
                                Cond. No.
   359.
   ______
   Notes:
   [1] Standard Errors assume that the covariance matrix of the errors is c
   orrectly specified.
y_train_pred = lr.predict(train)
   res = (y_train - y_train_pred)
```

In [147]:

```
fig = plt.figure()
sns.distplot(res, bins = 15)
fig.suptitle('Error Terms', fontsize = 15)
plt.xlabel('y_train - y_train_pred', fontsize = 15)
plt.show()
```

Error Terms


```
In [149]:  plt.scatter(X_train,res)
  plt.show()
```



```
In [152]: ▶ np.sqrt(mean_squared_error(y_test, y_pred))
```

Out[152]: 2.267503601357533

Out[153]: 0.8186609418736366

```
In [154]:  plt.scatter(X_test, y_test)
  plt.plot(X_test, 6.948 + 0.054 * X_test, 'r')
  plt.show()
```


LinearRegression