CS 446: Machine Learning Homework

Due on Tuesday, April 17, 2018, 11:59 a.m. Central Time

1. [2 points] KL Divergence

(a) [1 point] What is the expression of the KL divergence $D_{KL}(q(x)||p(x))$ given two continuous distributions p(x) and q(x) defined on the domain of \mathbb{R}^1 ?

Your answer:

$$D_{KL}(p(x)||q(x)) = -\int p(x) \left(\log\left\{\frac{q(x)}{p(x)}\right\}\right) dx$$

(b) [1 point] Show that the KL divergence is non-negative. You can use Jensen's inequality here without proving it.

Your answer:

$$KL(p(x)||q(x)) = -\int p(x) \left(\log\left\{\frac{q(x)}{p(x)}\right\}\right) dx \ge -\log\int p(x) \frac{q(x)}{p(x)} = -\log\int q(x) dx = 0$$

2. [3 points] In the class, we derive the following equality:

$$\log p_{\theta}(x) = \int_{z} q_{\phi}(z|x) \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} dz + \int_{z} q_{\phi}(z|x) \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} dz$$

Instead of maximizing the log likelihood $\log p_{\theta}(x)$ w.r.t. θ , we find a lower bound for $\log p_{\theta}(x)$ and maximize the lower bound.

(a) [1 point] Use the above equation and your result in 1(b) to give a lower bound for $\log p_{\theta}(x)$.

Your answer:

$$\log p_{\theta}(x) = \int_{z} q_{\phi}(z|x) \log \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} dz + \int_{z} q_{\phi}(z|x) \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)} dz$$
$$= \mathcal{L}(p_{\theta}, q_{\phi}) + D_{KL}(q_{\phi}, p_{\theta})$$
$$\geq \mathcal{L}(p_{\theta}, q_{\phi})$$

(b) [1 point] What do people usually call the bound?

Your answer: $\mathcal{L}(p_{\theta}, q_{\phi})$ is often referred to as empirical lower bound (ELBO).

(c) [1 point] In what condition will the bound be tight?

Your answer: It holds with equality if and only if $q_{\phi} = p_{\theta}$ for all x.

3. [2 points] Given $z \in \mathbb{R}^1$, $p(z) \sim \mathcal{N}(0,1)$ and $q(z|x) \sim \mathcal{N}(\mu_z, \sigma_z^2)$, write $D_{KL}(q(z|x)||p(z))$ in terms of σ_z and μ_z .

Your answer:

$$D_{KL}(q(z|x)||p(z)) = \mathbb{E}[\log q(z|x) - p(z)]$$

= $\frac{1}{2} \cdot (\sigma_z^2 + \mu_z^2 - 1 - \log(\sigma_z^2))$

4. [1 points] In VAEs, the encoder computes the mean μ_z and the variance σ_z^2 of $q_{\phi}(z|x)$ assuming $q_{\phi}(z|x)$ is Gaussian. Explain why we usually model σ_z^2 in log space, i.e., modeling $\log \sigma_z^2$ instead of σ_z^2 when implementing it using neural nets?

Your answer:

It is more numerically stable to take exponent compared to computing log.

$$D_{KL}(q(z|x)||p(z)) = \frac{1}{2} \cdot (\exp(\sigma_z^2) + \mu_z^2 - 1 - \sigma_z^2)$$

Furthermore, if we model just σ_z^2 , it always outputs a non-negative number, but if we model σ_z^2 in log space, we can get all the number in \mathbb{R}^1 , which will give us more options.

5. [1 points] Why do we need the reparameterization trick when training VAEs instead of directly sampling from the latent distribution $\mathcal{N}(\mu_z, \sigma_z^2)$?

Your answer: In a nutshell, reparametrization trick make sure we can backpropagate. We are given z that is drawn from a distribution $q_{\phi}(z|x)$, and we want to take derivatives of a function of z with respect to ϕ , The reparametrization trick lets us backpropagate (take derivatives using the chain rule) with respect to ϕ through the objective (the ELBO) which is a function of samples of the latent variables z.