MATH 8510, Abstract Algebra I

Fall 2016

Exercises 10-1

Due date Thu 03 Nov 4:00PM

Name: Shuai Wei

Collaborator: DaoZhou Zhu, Yuanxiao Liu

Exercise 1 (6.1.14). Let G be a group. Prove that G^i is a characteristic subgroup of G for all i.

Proof. Let $\sigma \in Aut(G)$.

We will show it by induction.

Basic steps:

 $G^0 = G$, $\sigma(G) = G$ as $\sigma \in Aut(G)$.

So G^0 is a characteristic subgroup of G.

Inductive steps:

Assume G^n is a characteristic subgroup of G for $n \geq 2$ and $n \in \mathbb{N}$.

Then $\sigma(G^n) = G^n$.

Since

$$G^{n+1} = \langle h^{-1}k^{-1}hk|h \in G, k \in G^n \rangle.$$

let $g \in G^{n+1}$, then by the definition of the span $\langle \cdot \rangle$, $\exists n \in \mathbb{N}$ and $m_1, m_2, \dots, m_n \in \mathbb{N}$ and $h_1, h_2, \dots, h_n \in G$ and $k_1, k_2, \dots, k_n \in G^n$ such that

$$g = (h_1^{-1}k_1^{-1}h_1k_1)^{m_1} (h_2^{-1}k_2^{-1}h_2k_2)^{m_2} \cdots (h_n^{-1}k_n^{-1}h_nk_n)^{m_n}.$$

Since $\sigma \in \text{Aut}(G)$,

$$\begin{split} \sigma(g) &= \sigma\left(\left(h_1^{-1}k_1^{-1}h_1k_1\right)^{m_1}\left(h_2^{-1}k_2^{-1}h_2k_2\right)^{m_2}\cdots\left(h_n^{-1}k_n^{-1}h_nk_n\right)^{m_n}\right) \\ &= \sigma\left(\left(h_1^{-1}k_1^{-1}h_1k_1\right)^{m_1}\right)\sigma\left(\left(h_2^{-1}k_2^{-1}h_2k_2\right)^{m_2}\right)\cdots\sigma\left(\left(h_n^{-1}k_n^{-1}h_nk_n\right)^{m_n}\right) \\ &= \left(\sigma\left(h_1^{-1}k_1^{-1}h_1k_1\right)\right)^{m_1}\left(\sigma\left(h_2^{-1}k_2^{-1}h_2k_2\right)\right)^{m_2}\cdots\left(\sigma\left(h_n^{-1}k_n^{-1}h_nk_n\right)\right)^{m_n}. \end{split}$$

For $i=1,2,\cdots,n,\ h_i\in G$ and $k_i\in G^n$, since $\sigma(G^n)=G^n$ by assumption and $\sigma(G)=G$, we have $\sigma(h_i)\in G$ and $\sigma(k_i)\in G^n$.

For $i = 1, 2, \dots, n$, let $g_i = \sigma(h_i^{-1} k_i^{-1} h_i k_i)$, since $\sigma \in \operatorname{Aut}(G)$,

$$g_i = \sigma(h_i^{-1})\sigma(k_i^{-1})\sigma(h_i)\sigma(k_i)$$
$$= (\sigma(h_i))^{-1} (\sigma(k_i))^{-1} \sigma(h_i)\sigma(k_i)$$
$$\in G^{n+1}.$$

So

$$\sigma(g) = g_1^{m_1} g_2^{m_2} \cdots g_n^{m_n} \in G^{n+1}.$$

As a result, $\sigma(G^{n+1}) \subset G^{n+1}$.

So G^{n+1} is a characteristic subgroup of G.

It implies our assumption also holds for the n+1 case.

Thus, G^i is characteristic subgroup of G for all i.

Exercise 2 (6.1.17). Let G be a group. Prove that $G^{(i)}$ is a characteristic subgroup of G for all i.

Proof. Let $\sigma \in Aut(G)$.

We will show it by induction.

Basic steps:

 $G^{(0)} = G$, $\sigma(G) = G$ as $\sigma \in \text{Aut}(G)$.

So $G^{(0)}$ is a characteristic subgroup of G.

Inductive steps:

Assume $G^{(n)}$ is a characteristic subgroup of G for $n \geq 2$ and $n \in \mathbb{N}$.

Then $\sigma(G^{(n)}) = G^{(n)}$.

Since

$$G^{(n+1)} = \langle h^{-1}k^{-1}hk|h \in G^{(n)}, k \in G^{(n)} \rangle.$$

let $g \in G^{(n+1)}$, then by the definition of the span $\langle \cdot \rangle$, $\exists n \in \mathbb{N}$ and $m_1, m_2, \dots, m_n \in \mathbb{N}$ and $h_1, h_2, \dots, h_n \in G^{(n)}$ and $k_1, k_2, \dots, k_n \in G^{(n)}$ such that

$$g = \left(h_1^{-1}k_1^{-1}h_1k_1\right)^{m_1} \left(h_2^{-1}k_2^{-1}h_2k_2\right)^{m_2} \cdots \left(h_n^{-1}k_n^{-1}h_nk_n\right)^{m_n}.$$

Since $\sigma \in Aut(G)$,

$$\begin{split} \sigma(g) &= \sigma \left(\left(h_1^{-1} k_1^{-1} h_1 k_1 \right)^{m_1} \left(h_2^{-1} k_2^{-1} h_2 k_2 \right)^{m_2} \cdots \left(h_n^{-1} k_n^{-1} h_n k_n \right)^{m_n} \right) \\ &= \sigma \left(\left(h_1^{-1} k_1^{-1} h_1 k_1 \right)^{m_1} \right) \sigma \left(\left(h_2^{-1} k_2^{-1} h_2 k_2 \right)^{m_2} \right) \cdots \sigma \left(\left(h_n^{-1} k_n^{-1} h_n k_n \right)^{m_n} \right) \\ &= \left(\sigma \left(h_1^{-1} k_1^{-1} h_1 k_1 \right) \right)^{m_1} \left(\sigma \left(h_2^{-1} k_2^{-1} h_2 k_2 \right) \right)^{m_2} \cdots \left(\sigma \left(h_n^{-1} k_n^{-1} h_n k_n \right) \right)^{m_n}. \end{split}$$

For $i = 1, 2, \dots, n$, $h_i \in G^{(n)}$ and $k_i \in G^{(n)}$, since $\sigma(G^n) = G^{(n)}$ by assumption, we have $\sigma(h_i) \in G^{(n)}$ and $\sigma(k_i) \in G^{(n)}$.

For $i = 1, 2, \dots, n$, let $g_i = \sigma(h_i^{-1}k_i^{-1}h_ik_i)$, since $\sigma \in \text{Aut}(G)$,

$$g_i = \sigma(h_i^{-1})\sigma(k_i^{-1})\sigma(h_i)\sigma(k_i)$$
$$= (\sigma(h_i))^{-1} (\sigma(k_i))^{-1} \sigma(h_i)\sigma(k_i)$$
$$\in G^{(n+1)}.$$

So

$$\sigma(g) = g_1^{m_1} g_2^{m_2} \cdots g_n^{m_n} \in G^{n+1}.$$

As a result, $\sigma(G^{(n+1)}) \subset G^{(n+1)}$.

So $G^{(n+1)}$ is a characteristic subgroup of G.

It implies our assumption also holds for the n+1 case.

Thus, $G^{(i)}$ is characteristic subgroup of G for all i.