Chapitre 26 Espaces de dimension finie

Exercice 1: $\Diamond \Diamond \Diamond$ Soit $F = \{ M \in M_2(\mathbb{R}) : \text{Tr}(M) = 0 \}.$

Montrer que F est un s.e.v. de $M_2(\mathbb{R})$ et calculer sa dimension.

Solution:

D'après le théorème du rang, on a $\dim(M_2(\mathbb{R})) = \dim(\operatorname{Ker}(\operatorname{Tr})) + \dim(\operatorname{Tr}(M_2(\mathbb{R}))).$

Ainsi, $\dim(\operatorname{Ker}(\operatorname{Tr})) = \dim(F) = \dim(M_2(\mathbb{R})) - \dim(\mathbb{R}) = 3.$ Exercice 2: $\Diamond \Diamond \Diamond$

La trace est une forme linéaire sur $M_2(\mathbb{R})$, donc F = Ker(Tr) est un s.e.v. de $M_2(\mathbb{R})$.

Solution:

Montrons que c'est une famille libre. Soient $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$ tels que : $\lambda_1 I_2 + \lambda_2 M_2 + \lambda_3 M_3 + \lambda_4 M_4 = 0$. Alors :

Montrer que (M_1,M_2,M_3,M_4) est une base de $M_2(\mathbb{R})$ avec :

tels que:
$$\lambda_1 I_2 + \lambda_2 M_2 + \lambda_3 M_3 + \lambda_4 M_4 = 0$$
. Alors
$$\begin{cases} \lambda_1 + \lambda_2 + 6\lambda_3 + \lambda_4 = 0 \\ \lambda_1 + \lambda_2 + 6\lambda_3 + \lambda_4 = 0 \end{cases}$$

 $M_1 = I_2, \ M_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ M_3 = \begin{pmatrix} 6 & 6 \\ 6 & 0 \end{pmatrix}, \ M_4 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$

$$\begin{cases} \lambda_1 + \lambda_2 + 6\lambda_3 + \lambda_4 = 0 \\ 6\lambda_3 + 2\lambda_4 = 0 \\ 6\lambda_3 + 3\lambda_4 = 0 \\ \lambda_1 + 4\lambda_4 = 0 \end{cases} \iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \\ \lambda_4 = 0 \end{cases}$$

En résolvant le système. Ainsi, (M_1, M_2, M_3, M_4) est une famille libre. Or $\dim(M_2(\mathbb{R})) = 4$, et c'est une famille libre de 4 vecteurs : c'est une base.

Exercice 3:
$$\spadesuit \spadesuit \lozenge$$

Pour $k \in [0, n]$, on pose $P_k = X^k (1 - X)^{n-k}$. Montrer que $(P_0, ..., P_n)$ est base de $\mathbb{K}_n[X]$.

Solution:

On sait déjà que c'est une famille libre (cf 25.13).

C'est une famille libre de n+1 vecteurs dans un espace de dimension n+1, donc c'est une base.

Exercice 4: $\Diamond \Diamond \Diamond$

Soient $\mathcal{B} = (e_1, ..., e_n)$ et $\mathcal{B}' = (e'_1, ..., e'_n)$ deux bases de E, \mathbb{K} -ev de dimension finie.

Montrer qu'il existe $j \in [1, n]$ tel que $(e_1, ..., e_{n-1}, e'_j)$ est une base de E.

Exercice 3: ♦♦♦

Solution:

Solution:

On sait que $(e_1, ..., e_{n-1})$ est une famille libre de E. Par théorème de la base incomplète, on peut compléter cette famille libre en une base de E.

Alors, pour tout j, $(e_1, ..., e_{n-1}, e'_j)$ est liée. Donc, pour tout j, e'_{j} est combinaison linéaire de $(e_{1},...,e_{n-1})$. Donc \mathcal{B}' est combinaison linéaire de \mathcal{B} , ce qui est absurde.

Supposons qu'il n'existe pas de j tel que $(e_1, ..., e_{n-1}, e'_j)$ est une base de E.

Donc il existe un j tel que $(e_1, ..., e_{n-1}, e'_j)$ est une base de E.

Justifier que \mathbb{C} est un \mathbb{C} -ev de dimension 1 et un \mathbb{R} -ev de dimension 2.

Exercice 5: $\Diamond \Diamond \Diamond$

Solution:

Exercice 6: ♦♦♦

Solution:

 $\mathbb C$ est un $\mathbb C$ -ev de dimension 1 car $\forall z \in \mathbb C, z=z\cdot 1$. \mathbb{C} est un \mathbb{R} -ev de dimension 2 car $\forall z \in \mathbb{C}, z = \Re(z) \cdot 1 + \Im(z) \cdot i$ avec $\Re(z), \Im(z) \in \mathbb{R}$.

Soient $n \in \mathbb{N}^*$ et $(\lambda_k)_{0 \le k \le n} \in \mathbb{K}^{n+1}$ tels que $\sum_{k=0}^n \lambda_k (X+k)^n = 0$. 1. Montrer que $\forall p \in \llbracket 0, n \rrbracket, \sum_{k=0}^n \lambda_k (X+k)^p = 0$. 2. Montrer que $\forall p \in \llbracket 0, n \rrbracket, \sum_{k=0}^n \lambda_k k^p = 0$. 3. Montrer que $\forall P \in \mathbb{K}_n[X], \sum_{k=0}^n \lambda_k P(k) = 0$. 4. Déduire que $((X+k)^n, k \in [0,n])$ est une base de $\mathbb{K}_n[X]$.

2. En évaluant en 0 l'égalité du 1., on obtient bien l'égalité. [3.] Soit $P \in \mathbb{K}_n[X]$. On a $P = \sum_{p=0}^n a_p X^p$. On a $\sum_{k=0}^n \lambda_k P(k) = \sum_{k=0}^n \lambda_k \sum_{p=0}^n a_p k^p = \sum_{p=0}^n a_p \sum_{k=0}^n \lambda_k k^p = 0$.

4. On a montré que $\forall P \in \mathbb{K}_n[X], \sum_{k=0}^n \lambda_k P(k) = 0$.

Donc $((X + k)^n, k \in [0, n])$ est une famille libre de $\mathbb{K}_n[X]$.

Exercice 7: ♦♦◊ 1. Pour $a \in \mathbb{R}$, on note $f_a : x \mapsto e^{ax}$. Montrer que $(f_a)_{a \in \mathbb{R}}$ est libre dans $\mathbb{R}^{\mathbb{R}}$.

2. Déduire que $\mathbb{R}^{\mathbb{R}}$ n'est pas de dimension finie.

On pose $P = \sum_{k=0}^{n} \lambda_k (X+k)^n = 0$. [1.] On a $P' = \sum_{k=0}^{n} \lambda_k n(X+k)^{n-1} = n \sum_{k=0}^{n} \lambda_k (X+k)^{n-1} = 0$. Donc $\sum_{k=0}^{n} \lambda_k (X+k)^{n-1} = 0$.

En dérivant n fois, on obtient bien l'égalité pour tout $p \in [\![0,n]\!].$

 $\overline{\text{Donc}}$, en particulier pour un polynôme ne s'annulant jamais, on a que les λ_k sont nuls.

Or, c'est une famille de n+1 vecteurs dans un espace de dimension n+1, donc c'est une base.

Soient $(\lambda_1, ...\lambda_n) \in \mathbb{R} \mid \sum_{k=1}^n \lambda_k f_{a_k} = 0.$ Alors $\sum_{k=1}^{n-1} \lambda_k f_{a_k} = -\lambda_n f_{a_n}$ et $\sum_{k=1}^{n-1} \lambda_k f_{a_k-a_n} = -\lambda_n.$ Or $\sum_{k=1}^{n-1} \lambda_k f_{a_k-a_n}(x) \xrightarrow[x \to +\infty]{} 0$ donc $\lambda_n = 0.$ En itérant, on obtient que $\lambda_1 = ... = \lambda_n = 0.$ Donc $(f_a)_{a \in \mathbb{R}}$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$.

Donc $\mathbb{R}^{\mathbb{R}}$ n'est pas de dimension finie.

2. Supposons que $\mathbb{R}^{\mathbb{R}}$ est de dimension finie.

1. Soit $n \in \mathbb{N}^*$ et $a_1 < ... < a_n \in \mathbb{R}$.

 $\overline{\text{Alors}}$, toute famille libre de $\mathbb{R}^{\mathbb{R}}$ est de cardinal inférieur ou égal à la dimension de $\mathbb{R}^{\mathbb{R}}$.

Or, on a montré que $(f_a)_{a\in\mathbb{R}}$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$ de cardinal infini.

Solution: