Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

Eletrônica Básica – EEL 5346 Recuperação – 2015/1 (14/07/2015)

<u>Questão 1:</u> [3,0 pontos] Assumindo-se que o amplificador operacional seja ideal, determine a função transferência $H(s)=V_o(s)/V_i(s)$ do circuito.

Questão 2: [3,0 pontos] Dado o circuito a seguir, assumindo-se que o diodo é ideal, determine a saída do circuito $v_o(t)$ para uma entrada $v_i(t)$ =20·sen(2π ·1000t). Explique detalhadamente como chegou a sua resposta.

Questão 3: [4,0 pontos] Dado o circuito a seguir: (a) assumindo que V_{BEQ1} =0,7V, V_{EBQ2} =0,7V e β_1 = β_2 =100, determine as correntes quiescentes de coletor dos transistores; (b) assumindo o conhecimento de gm₁, gm₂, r_{π 1} e r_{π 2}, $|V_A| \rightarrow \infty$, e que tenha sido incluído um capacitor em paralelo com R₁, determine o circuito para pequenos sinais na forma transversal com v_i a esquerda e v_o a direita; (c) determine a impedância de entrada.

FORMULÁRIO

• MOSFET reforço (enriquecimento, acumulação, intensificação):

NMOS	Equações	PMOS
$V_{T} > 0 V_{DS} > 0$	$K = k_n \left(\frac{W}{L}\right)$ $k_n = \mu_n C_{ox} , \lambda = 1/V_A$	
$V_T > 0$ $V_{DS} > 0$ $V_{GS} < V_T$	(a) Região de Corte I _D =0	$V_T < 0 V_{DS} \le 0$ $V_{GS} \ge V_T$
$\begin{cases} V_{GS} \geq V_T \\ V_{DS} < V_{GS} - V_T \\ V_{GD} \geq V_T \end{cases}$	(b) Região de Triodo $I_D = K \left[\left(V_{GS} - V_T \right) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} > V_{GS} - V_T \\ V_{GD} \leq V_T \end{cases}$
$\begin{cases} V_{GS} \ge V_T \\ V_{DS} \ge V_{GS} - V_T \\ V_{GD} \le V_T \end{cases}$	(c) Região de Saturação $I_D = \frac{K}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} \leq V_{GS} - V_T \\ V_{GD} \geq V_T \end{cases}$
(c) V _{os} V _{os} V _{os} V _{os}		V ₀₅₀ (c) (b) V ₀₅₁ (a)

- Modelo de pequenos sinais para o transistor NPN: $g_m = I_{CQ}/v_T$; $r_\pi = \beta/g_m$; $r_o = V_A/I_C$; $v_T = 25mV$

• Modelo de Ebers-Moll para o transistor NPN: v_T=25mV

$$\begin{split} i_{DE} &= I_{SE} \left(e^{\frac{v_{BE}}{v_T}} - 1 \right); \ i_{DC} &= I_{SC} \left(e^{\frac{v_{BC}}{v_T}} - 1 \right); \\ I_{SE} &= \frac{I_S}{\alpha_F}; \ I_{SC} = \frac{I_S}{\alpha_R} \end{split}$$

