Analiza numeryczna

Stanisław Lewanowicz

Listopad 2007 r.

Interpolacja wielomianowa

Definicje, twierdzenia, algorytmy

1 Postaci wielomianu

OZNACZENIE: Symbol Π_n $(n=0,1,\ldots)$ będzie oznaczać zbiór wszystkich wielomianów stopnia nie wyższego niż n.

1.1 Postać naturalna (potęgowa)

$$w(x) = \sum_{k=0}^{n} a_k x^k \qquad (w \in \Pi_n).$$

Algorytm 1.1 (Schemat Hornera) Dla danej wartości argumentu x obliczamy wielkości pomocnicze w_0, w_1, \ldots, w_n za pomocą wzorów

$$w_n := a_n,$$

 $w_k := w_{k+1} \times x + a_k \qquad (k = n - 1, n - 2, \dots, 0).$

Otrzymujemy $w(x) = w_0$.

Twierdzenie 1.2 Algorytm Hornera jest numerycznie poprawny.

1.2 Postać Newtona

Dla danego układu parami różnych punktów rzeczywistych x_0, x_1, \ldots określ
my takie wielomiany p_0, p_1, \ldots , że $p_k \in \Pi_k \ (k=0,1,\ldots)$ i że

$$(1.1) p_0(x) \equiv 1,$$

$$(1.2) p_k(x) = (x - x_0)(x - x_1) \dots (x - x_{k-1}) (k = 1, 2, \dots).$$

Definicja 1.3 Niech będzie $w \in \Pi_n$. Następujący wzór podaje postać Newtona wielomianu w:

(1.3)
$$w(x) = \sum_{k=0}^{n} b_k p_k(x).$$

Algorytm 1.4 (Uogólniony schemat Hornera)

$$w_n := b_n;$$

 $w_k := w_{k+1}(x - x_k) + b_k \qquad (k = n - 1, n - 2, \dots, 0);$
 $w(x) = w_0.$

1.3 Postać Lagrange'a

Dla danego układu parami różnych punktów rzeczywistych $x_0, x_1, \dots x_n$ wielomian $w \in \Pi_n$ można zapisać w postaci Lagrange'a

(1.4)
$$w(t) = \sum_{i=0}^{n} \sigma_i w(x_i) \prod_{j=0, j \neq i}^{n} (t - x_j),$$

gdzie

$$\sigma_i := 1 / \prod_{j=0, j \neq i}^n (x_i - x_j) \qquad (i = 0, 1, \dots, n).$$

Stałe σ_k występujące we wzorach (1.4) oblicza się stosując następujący algorytm:

Algorytm 1.5 (Werner, 1984)

1. Obliczamy pomocnicze wielkości $a_k^{(i)}$ wg wzorów

$$\begin{aligned} a_0^{(0)} &:= 1, \quad a_k^{(0)} := 0 \quad (k = 1, 2, \dots, n), \\ a_k^{(i)} &:= a_k^{(i-1)} / (x_k - x_i), \\ a_i^{(k+1)} &:= a_i^{(k)} - a_k^{(i)} \end{aligned} \right\} \quad (i = 1, 2, \dots, n; \ k = 0, 1, \dots, i-1),$$

2. Wówczas $\sigma_k := a_k^{(n)} \ (k = 0, 1, \dots, n).$

1.4 Kombinacja liniowa wielomianów Czebyszewa

Definicja 1.6 Wielomiany Czebyszewa (pierwszego rodzaju) T_k definiujemy w następujący sposób rekurencyjny:

$$T_0(x) \equiv 1;$$
 $T_1(x) = x;$ $T_k(x) = 2xT_{k-1} - T_{k-2}$ $(k = 2, 3, ...).$

Każdy wielomian $w\in\Pi_n$ można jednoznacznie przedstawić w postaci

(1.5)
$$w(x) = \sum_{k=0}^{n} c_k T_k(x) = \frac{1}{2} c_0 T_0(x) + \sum_{k=1}^{n} c_k T_k(x).$$

Wartość wielomianu podanego w powyższej postaci można obliczać za pomocą następującego algorytmu Clenshawa:

Algorytm 1.7 Aby obliczyć wartość wielomianu (1.5) w punkcie x określamy pomocniczo wielkości B_0, B_1, \ldots, B_n wzorami

$$B_{n+2} := B_{n+1} := 0;$$

 $B_k := 2xB_{k+1} - B_{k+2} + c_k \qquad (k = n, n - 1, \dots, 0).$

 $W\'owczas\ w(x) = \frac{1}{2}(B_0 - B_2).$

2 Interpolacja Lagrange'a

2.1 Postać Lagrange'a wielomianu interpolacyjnego

Zadanie interpolacyjne Lagrange'a. Dla danych: $n \in \mathbb{N}, x_0, x_1, \dots, x_n \ (x_i \neq x_j \ \text{dla} \ i \neq j)$, funkcji f określonej w punktach $\{x_0, x_1, \dots, x_n\}$ znaleźć wielomian $L_n \in \Pi_n$, spełniający następujące warunki:

(2.1)
$$L_n(x_i) = f(x_i) \qquad (i = 0, 1, \dots, n).$$

Twierdzenie 2.1 Zadanie interpolacyjne Lagrange'a ma zawsze jednoznaczne rozwiązanie, które można wyrazić wzorem

(2.2)
$$L_n(x) := \sum_{k=0}^n f(x_k) \lambda_k(x),$$

gdzie

(2.3)
$$\lambda_k(x) := \prod_{j=0, j \neq k}^n \frac{x - x_j}{x_k - x_j} \qquad (k = 0, 1, ..., n).$$

Definicja 2.2 Wielomian L_n nazywamy wielomianem interpolacyjnym Lagrange'a. Wzór (2.2) nazywamy wzorem interpolacyjnym Lagrange'a.

2.2 Postać Newtona wielomianu interpolacyjnego

Definicja 2.3 Niech funkcja f będzie określona w parami różnych punktach x_0, x_1, \ldots Iloraz różnicowy k-tego rzędu (krócej: k-ty iloraz różnicowy) ($k=0,1,\ldots$) funkcji f w punktach x_0,x_1,\ldots,x_k oznaczamy symbolem $f[x_0,x_1,\ldots,x_k]$ i określamy następującym wzorem:

(2.4)
$$f[x_0, x_1, \dots, x_k] := \sum_{i=0}^k \frac{f(x_i)}{\prod_{j=0, j \neq i}^k (x_i - x_j)}.$$

2.3 Własności ilorazów różnicowych

- 1. Iloraz $f[x_0, x_1, \dots, x_k]$ jest symetryczną funkcją zmiennych x_0, x_1, \dots, x_k .
- 2. Iloraz różnicowy zależy liniowo od funkcji, dla której został utworzony, tj. jeśli f=g+ch (c stała), to $f[x_0,x_1,\ldots,x_k]=g[x_0,x_1,\ldots,x_k]+ch[x_0,x_1,\ldots,x_k]$.
- 3. Jeśli $w \in \Pi_m \setminus \Pi_{m-1}$, to $w[x, x_1, \ldots, x_k]$ jest wielomianem stopnia (m-k)-tego zmiennej x; w szczeg. iloraz $w[x, x_1, \ldots, x_m]$ jest stałą, a $w[x, x_1, \ldots, x_{m+1}]$ jest zerem.
- 4. Prawdziwy jest związek rekurencyjny

(2.5)
$$f[x_0, x_1, \dots, x_k] = \frac{f[x_1, x_2, \dots, x_k] - f[x_0, x_1, \dots, x_{k-1}]}{x_k - x_0} \qquad (k = 1, 2, \dots),$$

gdzie $f[x_j] := f(x_j) \ (j \ge 0).$

Wzór interpolacyjny Newtona:

(2.6)
$$L_n(x) = \sum_{k=0}^n f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \cdots (x - x_{k-1}).$$

Wartość wielomianu L_n wyrażonego za pomocą wzoru Newtona (2.6) obliczać stosując uogólniony schemat Hornera (zob. algorytm 1.4).

Schemat obliczeń wszystkich ilorazów $f[x_0, x_1, \dots, x_k]$ ilustruje następując diagram:

Strzałki wskazują, które obliczone wcześniej ilorazy wykorzystuje się przy tworzeniu następnych. Zauważmy, że we wzorze (2.6) występują tylko ilorazy z przekątnej głównej tabeli (podkreślone), lecz dla ich obliczenia trzeba wyznaczyć również pozostałe ilorazy.

2.4 Reszta wzoru interpolacyjnego

Twierdzenie 2.4 Niech f będzie funkcją określoną w przedziale [a,b], niech $x_0, x_1, \ldots, x_n \in [a,b]$ będą parami różne i niech wielomian $L_n \in \Pi_n$ spełnia warunki

(2.8)
$$L_n(x_i) = f(x_i) \qquad (i = 0, 1, \dots, n).$$

Wówczas dla każdego $x \in \langle a, b \rangle \setminus \{x_0, x_1, \dots, x_n\}$ zachodzi równość

(2.9)
$$f(x) - L_n(x) = f[x, x_0, x_1, \dots, x_n] p_{n+1}(x),$$

qdzie

$$p_{n+1}(x) = (x - x_0)(x - x_1) \cdots (x - x_n).$$

 $\label{eq:lemma:condition} \textit{Jeśli funkcja f ma w przedziałe } [a,b] \ \textit{ciąglą } (n+1) \text{-} \textit{szą pochodną, wówczas wzór } (2.9) \ \textit{można zapisać w postaci}$

(2.10)
$$f(x) - L_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) p_{n+1}(x),$$

gdzie ξ_x jest pewną liczbą (zależną od x) z przedziału (a,b).

Twierdzenie 2.5 Jeśli $f \in C^{n+1}[a,b], x, x_0, x_1, \dots, x_n \in [a,b],$ to istnieje taki punkt $\xi \in (a,b),$ że

$$f[x, x_0, x_1, \dots, x_n] = \frac{1}{(n+1)!} f^{(n+1)}(\xi).$$

2.5 Wybór węzłów interpolacyjnych

Rozważania powyższe wskazują, że wielkość błędu interpolacji $|f(x)-L_n(x)|$ zależy od wielkości $\max_{a\leq x\leq b}|f^{(n+1)}(x)|$, a także od wielkości $\max_{a\leq x< b}|p_{n+1}(x)|$, związanej z rozkładem węzłów w przedziale [a, b].

Można udowodnić następujące twierdzenie:

Wniosek 2.6 Jeśli funkcja f ma w przedziałe [a, b] ciąglą (n+1)-szą pochodną, to

(2.11)
$$\max_{a \le x \le b} |f(x) - L_n(x)| \le \frac{M_{n+1} P_{n+1}}{(n+1)!},$$

gdzie

$$M_{n+1} := \max_{a \le x \le b} |f^{(n+1)}(x)|,$$

$$P_{n+1} := \max_{a \le x \le b} |p_{n+1}(x)|.$$

Prawa strona nierówności (2.11) jest najmniejsza i równa

(2.12)
$$2\frac{M_{n+1}}{(n+1)!} \left(\frac{b-a}{4}\right)^{n+1}$$

wtedy i tylko wtedy, gdy

$$p_{n+1}(x) = 2\left(\frac{b-a}{4}\right)^{n+1} T_{n+1}(t), \qquad t = \frac{2}{b-a}\left(x - \frac{a+b}{2}\right),$$

tj. gdy węzłami x_0, x_1, \ldots, x_n są punkty

(2.13)
$$x_k^* = \frac{a+b}{2} + \frac{b-a}{2} t_{n+1,k} \qquad (k=0,1,\ldots,n),$$

gdzie z kolei

(2.14)
$$t_{n+1,k} = \cos \frac{2k+1}{2n+2}\pi \qquad (k=0,1,\ldots,n)$$

(zera (n+1)-go wielomianu Czebyszewa T_{n+1}).

W wypadku węzłów równoodległych $x_k = a + kh$ (k = 0, 1, ..., n; h := (b - a)/n) mamy

$$\frac{1}{n^{3/2}} \left(\frac{b-a}{e} \right)^{n+1} \le P_{n+1} \le n! \left(\frac{b-a}{n} \right)^{n+1},$$

przy czym lewa nierówność zachodzi dla dostatecznie dużego n, natomiast w wypadku węzłów Czebyszewa (2.13) mamy

$$P_{n+1} = 2\left(\frac{b-a}{4}\right)^{n+1}.$$

2.6 Zbieżność ciągu wielomianów interpolacyjnych

Niech $\{x_{nk}\}$ będą punktami przedziału [a,b] wypełniającymi tablicę trójkątną

$$x_{00}$$
 x_{10} x_{11}
 x_{20} x_{21} x_{22}
 x_{n0} x_{n1} x_{n2} x_{nn}

Niech będzie $x_{ni} \neq x_{nj}$ $(i \neq j; n = 1, 2, ...)$. Ponadto niech $\{L_n\}$ będzie ciągiem wielomianów interpolacyjnych określonych tak, by dla ustalonej funkcji f zachodziły warunki

$$L_n(x_{nk}) = f(x_{nk})$$
 $(k = 0, 1, ..., n; n = 0, 1, ...).$

Pytanie. Czy dla dowolnego $x \in [a, b]$ jest

$$\lim_{n \to \infty} L_n(x) = f(x)?$$

Twierdzenie 2.7 (Runge) Niech będzie $f(x) = 1/(1 + 25x^2)$, [a,b] = [-1,1], $x_{nk} = -1 + \frac{2k}{n}$ $(k = 0,1,\ldots,n;\ n > 0)$. Ciąg $\{L_n(x)\}$ jest zbieżny do f(x) tylko dla $|x| \leq 0.72668\ldots$ i rozbieżny dla $|x| > 0.72668\ldots$

Węzły $\{x_{nk}\}$ były równoodległe (dla ustalonego n). Może dałoby się wybrać je tak zręcznie, by proces interpolacji był zbieżny? Niestety, następne twierdzenie zawiera pesymistyczną odpowiedź.

Twierdzenie 2.8 (Faber) Dla każdej tablicy węzłów $\{x_{nk}\}$ istnieje taka funkcja ciągła w przedziale [a,b], do której ciąg wielomianów interpolacyjnych nie jest zbieżny jednostajnie (tj. taka, że $\max_{a \le x \le b} |f(x) - L_n(x)| \ne 0$).

Dla specyficznych "Czebyszewowskich" węzłów interpolacyjnych

(2.15)
$$x_{nk} := \cos \frac{2k+1}{2n+2}\pi \qquad (k=0,1,\ldots,n; n=0,1,\ldots)$$

można dla dostatecznie regularnych funkcji zagwarantować zbieżność, mianowicie zachodzi następujące twierdzenie:

Twierdzenie 2.9 (Kryłow) Niech dana będzie funkcja $f \in C^1[-1,1]$ i niech $\{L_n\}$ będzie ciągiem wielomianów interpolujących funkcję f w węzłach (2.15). Wówczas dla każdego $x \in [-1,1]$ jest

$$\lim_{n \to \infty} L_n(x) = f(x).$$

Można zapytać, czy - wobec braku zbieżności ciągu $\{L_n(x)\}$ do f(x) - interpolacja jest przydatna w praktyce? Odpowiedź brzmi: ZWYKLE JEST, bowiem najczęściej błąd $|f(x) - L_n(x)|$ maleje dla $n = 1, 2, \ldots, n_{crit}$. Dla $n \leq n_{crit}$ można otrzymać dobre przybliżenia, natomiast dla dużych n ODRADZA się stosowanie interpolacji.