1. Shorten Page Table to reduce accesses

2. Keep PTEs in the cache for quicker walks

Every Walk's a Hit: Making Page Walks Single-Access Cache Hits

Chang Hyun Park, Ilias Vougioukas, Andreas Sandberg, and David Black-Schaffer

arm Research

Background

- TLB reach not scaling with DRAM
- TLB misses resolved with Page table walks
- Page walk caches enable skipping over levels
 - 1.1-2.5 (avg. 1.5) accesses per walk for workloads of up to 8 GB size)

Larger memory sizes, 5-level page tables → more memory accesses per walk

Prior work: require large contiguous memory

- Address Translation with Prefetching² (ASAP)
 - Prefetch leaf nodes of page table
- Elastic Cuckoo Page Tables³ (ECPT)
 - Multi-way hash page tables \rightarrow concurrent lookups

Prior work **need** large contiguous physical memory allocations

Page table allocation is a critical task

Data

Cannot fail, cannot take too long

Virtual ① L4 ② L3 Prefetch Address

Difficult to guarantee large contiguous allocations

Our Proposal: Single-access cache hitting walks

Flatten the Page Table to reduce accesses

- Use large pages (2 MB) as page table nodes
 - Leverage existing OS support for large pages
- 2 MB page tables can flatten 2-levels of PT
- Flatten L4+L3 and L2+L1 → 2 memory accesses
- Page walker cache helps skip $L4+L3 \rightarrow 1$ memory access
- Fallback to 4 KB PT when 2 MB not available

Prioritize keeping PTE in the cache

L3 Cache Occupancy for GUPS 41% 59% Prioritize PT **◆** 16% 84%

- Workloads with high TLB miss → high data miss
 - Data caching not effective → cache PTE instead

Page Table

- Insight: one PTE represents region of 64 cachelines
 - 64x more likely to hit PTE than individual cachelines
- Simple solution: bias replacement policy
 - Prioritize keeping PTE over data

- Gem5 Simulator
- System-call Emulation mode
- Modeled after Intel Skylake uArch

Memory: 4.7% less accesses