MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 3 - DECEMBER 2008 SOLUTION KEY**

Round 5 - continued

C) Alternate solution:

$$\frac{z}{z+y} = 2 \Rightarrow \frac{\frac{z}{x}}{1+\frac{y}{x}} = 2 \text{ and } \frac{y}{x+z} = 3 \Rightarrow \frac{\frac{y}{x}}{1+\frac{z}{x}} = 3$$

Rearranging, we get: $\begin{cases} \frac{y}{x} - 3\frac{z}{x} = 3\\ 2\frac{y}{x} - \frac{z}{x} = -2 \end{cases}$ Solving we get $\frac{z}{x} = -\frac{8}{5}$ and $\frac{y}{x} = -\frac{9}{5} \Rightarrow \frac{y}{z} + 1 = \frac{17}{8}$

Thus,
$$\frac{z}{y+z} = \frac{1}{\frac{y}{z}+1} = \frac{8}{17}$$

(contributed by Shing S. So Dept. Math and Computer Science - University of Central Missouri)

Given:
$$\frac{z}{x+y} = a$$
 and $\frac{y}{x+z} = b$, find $\frac{z}{y+z}$ in terms of a and b.

$$\frac{z}{y+z} = \frac{1}{\frac{y}{z}+1}$$
 so we solve for $\frac{y}{z}$.

From
$$\frac{z}{x+y} = a$$
 we have $z = ax + ay$

From
$$\frac{y}{x+z} = b$$
 we have $y = bx + bz$

Substituting we have
$$z = ax + a(bx + bz) = ax + abx + abz$$
, so $\frac{z}{x} = \frac{a + ab}{1 - ab}$

Substituting again we have
$$y = bx + b(ax + ay) = bx + abx + aby$$
, so $\frac{y}{x} = \frac{b + ab}{1 - ab}$.

Now
$$\frac{y}{z} = \frac{\frac{y}{x}}{\frac{z}{x}} = \frac{b+ab}{a+ab}$$
 and $\frac{y}{z} + 1 = \frac{b+ab+a+ab}{a+ab} = \frac{2ab+a+b}{a+ab}$

Inverting we have the required ratio, namely
$$\frac{z}{y+z} = \frac{a+ab}{2ab+a+b}$$

Inverting we have the required ratio, namely $\frac{z}{y+z} = \frac{a+ab}{2ab+a+b}$ Note if the values of the two given ratios are reversed we have $\frac{z}{y+z} = \frac{b+ab}{2ab+a+b}$,

and these two values sum to 1.