计算机学院高等数学上第3次周考题

1. 函数 $f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$ 在 $x = 0$ 处	[]
(A) 连续且可导; (B) 连续,不可导;		
(C) 不连续,有定义; (D) 没有定义.		
2. 选择下述题中给出的四个结论中一个正确的结论:	\ ba bl. El r	
设 $f(x)$ 在 $x=a$ 的某个邻域内有定义,则 $f(x)$ 在 $x=a$ 处可导的一个充分	7条件是 [] .
(A) $\lim_{h \to +\infty} h[f(a+\frac{1}{h})-f(a)]$ 存在;		
(B) $\lim_{h\to 0} \frac{f(a+2h)-f(a+h)}{h}$ 存在;		
(C) $\lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h}$ 存在;		
(D) $(D)\lim_{h\to 0} \frac{f(a)-f(a-h)}{h}$ 存在.		
3. 设 $\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, 则 \frac{d^2 y}{dx^2} . 等于$	[]
$(A) \frac{b}{a^2} \csc^3 t \; ; \qquad (B) -\frac{b}{a^2} \csc^3 x \; ;$		
$(C) -\frac{b}{a^2}\csc^3 t \; ; \qquad (D) \frac{b}{a}\csc^2 t \; .$		
4. 设 $y = e^{u}, u = \phi(x)$, 则 $d y$ 等于	[]
(A) $e^{u} dx$; (B) $e^{\phi(x)} \phi'(x) dx$; (C) $e^{u} \phi'(x) du$; (D) $e^{u} \phi'(x) du$	$e^{\phi(x)}\phi(x)$	dx.
5. 一元函数可导是可微的	[]
(A) 充分条件; (B) 必要条件;		
(C) 充要条件: (D) 既非充分又非必要条件.		
6. 设函数 $y = \tan^2 x$,则 dy 等于	[]
(A) $2\tan x dx$; (B) $\frac{2}{1+x^2}\tan x dx$;		
(C) $2 \tan x \sec^2 x dx$; (D) $2 \tan x \sec^2 x$.		

7. 若
$$y = f(x)$$
 二阶可导, $y \neq 0$, 且 $\frac{dx}{dy} = \frac{1}{y}$,则 $\frac{d^2x}{dy^2} =$ []

(A) $\frac{y''}{(y')^3}$; (B) $-\frac{y''}{(y')^3}$;

(C) $-\frac{1}{(y')^2}$; (D) $-\frac{y''}{(y')^3}$.

8. 下列函数在给定区间上满足罗尔定理的是 []

(A) $f(x) = x^2 - 5x + 6$, [2, 3];

(B) $f(x) = xe^{-x}$, [0,1];

(C) $f(x) = \frac{1}{\sqrt[3]{(x-1)^2}}$, [0, 2];

(D) $f(x) = \begin{cases} x+1, & x<5\\ 1, & x\geq 5 \end{cases}$ [0,5].

9. 对于函数 $f(x) = \frac{3-x^2}{3}$, 在区间[0,1]上满足拉格朗日定理的点 ξ 是 []

(A) $\frac{1}{2}$; (B) $\pm \frac{1}{\sqrt{3}}$; (C) $\frac{1}{\sqrt{3}}$; (D) 1.

10. 函数 $f(x) = (x-1)(x-2)(x-3)(x-4)$, 方程 $f'(x) = 0$ 实根的个数是 []

(A) 1; (B) 2; (C) 3; (D) 4.

11. 选择以下题中给出的四个结论中一个正确的结论: 设在[0,1]上 $f''(x) > 0$, 则 $f''(0) = f'(1) = f'(0) = f'(1) = f'(0)$; (C) $f(1) = f'(0) = f'(1) = f'(0)$; (C) $f(1) = f'(0) = f'(1) = f'(0)$; (D) $f''(1) = f'(0) = f'(1) = f'(0)$.

12. $\lim_{x \to 0} \frac{e^x - e^{-x}}{\sin x} =$ []

(D) 4.

(A) 1; (B) 2; (C) 3;

13.
$$\lim_{x \to \frac{\pi}{2}} \frac{\ln \sin x}{(\pi - 2x)^2} =$$

- (A) 1; (B) $\frac{1}{8}$; (C) $\frac{1}{\sqrt{3}}$; (D) $-\frac{1}{8}$.
- 14. $\lim_{x \to 0^+} \frac{\ln \tan 7x}{\ln \tan 2x} =$ []
- (A) 1; (B) $\frac{7}{2}$; (C) $\frac{2}{7}$; (D) 0.
- $\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{\tan 3x} =$
- (A) 1; (B) $\frac{1}{3}$; (C) 3; (D) 0.
- 16. $\lim_{x \to 0^+} x^{\sin x} =$ []
- (A) 1; (B) ∞ ; (C) 不存在但不是 ∞ ; (D) 0.
- 17. $\lim_{x \to 0^+} (\frac{1}{x})^{\tan x} =$
- (A) 1; (B) ∞ ; (C) 不存在但不是 ∞ ; (D) 0.
- 18. $\lim_{x\to 0} \left[\frac{1}{\ln(1+x)} \frac{1}{x} \right] =$
 - (A) 0; (B) ∞ ; (C) $\frac{1}{2}$; (D) $\frac{1}{3}$.
- 19. $\lim_{x \to 0^+} (\cos x)^{\frac{1}{\ln(1+x^2)}} =$ []
 - (A) 0; (B) $e^{-\frac{1}{2}}$; (C) $e^{\frac{1}{2}}$; (D) 不存在.
- 20. $\lim_{x \to \infty} \left[\frac{x^2}{(x-a)(x+b)} \right]^x =$ []
 - (A) 1; (B) e; (C) e^{a-b} ; (D) e^{b-a} .