Office of Naval Research

Contract NO0014-69-A-0060-0003

Task No. NR 053-472

TECHNICAL REPORT NO. 12

Synthesis of 4-,5-, and 6-Boron Metallocarboranes from the Polyhedral $C_2B_5H_7$ System

Vernon R. Miller and Russell N. Grimes
Department of Chemistry
University of Virginia
Charlottesville, Virginia 22901

Prepared for Publication in the

Journal of the American Chemical Society

June 1972

Reproduction in whole or in part is permitted for any purpose of the United States Government

UNCLASSIFIED security Classification DOCUMENT CONTROL DATA - R & D (Security - taxailleation of title, holy of abatract and indexing annotation must be entyred when the overall report is classified GINATING ACTIVITY (Corporate author) M. REPORT SECURITY CLASSIFICATION University of Virginia Department of Chemistry Unclassified 26. GROUP Charlottesville, Va. 22901 Not applicable Synthesis of 4-, 5-, and 6-Boron Metallocarboranes from the Polyhedral C2B5H7 System i. DESCRIPTIVE NOTES (Type of report and inclusive dates) Technical 5. AUTHOR(S) (First name, middle initial, last name) . Vernon R. Miller, Russell N. Grimes 4. REPORT DATE 76. NO. OF REFS June 29, 1972 SE, CONTRACT OR GRANT NO. 94. ORIGINATOR'S REPORT NUMBER(S) N00014-69-A-0060-0003 Technical Report No. 12 NR 053-472 9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report) 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT

A series of more than 20 new cobalt(III)-small carborane sandwich complexes, of which six are described in this paper, has been prepared from closo-C2BcH7 via reduction with sodium naphthalide in THF, followed by reaction with GoCl2 and NaC5H5 and air oxidation. Separation on silica gel columns and TLC plates has given (N-C2B4H6)Co(N-C5H5), (N-C2B5H7)Co(N-C5H5), (N-C2B5H8)Co(N-C5H5), (N-C2B5H8)Co(N-C5H5), (N-C2B5H8)Co(N-C5H5), all of which are air-stable sublimable solids. The characterization is based on boron-ll and proton nmr, infrared, and mass spectra.

Chemistry Branch

Office of Naval Research Arlington, Virginia 22217

Security Classification		LINK A		LINK 8		LINK	
KEY WORDS		ROLE	WŦ	ROLE	WT	ROLE	WT
Dicarba-closo-heptaborane(7)						
Sandwich complex							
Metallocarborane							,
Cobalt complexes							
Carboranes					•		
			,				
• !							
		,					
•							
·							
					:		
					İ		
a. Augustoning and an experience recommendation and the contraction of							

DD . PORM 1473 (BACK)
(PAGE 2)

UNCLASSIFIED

Security Classification

ß

Synthesis of 4-,5-, and 6-Beron Metallocarboranes from the Polyhedral C₂B₅H₇ System

Vernon R. Miller and Aussell N. Grimes*
Department of Chemistry
University : /irginia
Charlottesville irginia 22901

Abs tract

A series of more than 20 new cobalt(III)-small carborane sandwich complexes, of which six are described in this paper, has been prepared from $closo-C_2B_5H_7$ via reduction with sodium naphthalide in THF, followed by reaction with $CoCl_2$ and $N_4C_5H_5$ and air oxidation. Separation on silica gel columns and TLC plates has given $(\pi-C_2B_4H_8)Co(\pi-C_5H_5)$, $(\pi-C_2B_5H_7)Co(\pi-C_5H_5)$, $(\pi-C_2B_6H_8)Co(\pi-C_5H_5)$, $(\pi-C_2B_4H_8)Co_2(\pi-C_5H_5)_2$, all of which are air-stable sublimable solids. The characterization is based on boron-ll and proton nmr, infrared, and mass spectra.

Sir:

The two-electron alkali metal reduction of closed polyhedral carboranes to yield open-faced diamions which are capable of metallocene-like π -coordination to transition metal ions, has been established by Hawthorne and co-workers as a general reaction for closo-carboranes having six, eight, or ten boron atoms. 1-3 We anticipated that similar treatment of closo-C₂B₅H₇ would yield an open-faced C₂B₅H₇ species, from which complexes such as $(\pi$ -C₂B₅H₇)Co $(\pi$ -C₅H₅) could be prepared. In fact, the reduction of C₂B₅H₇ and subsequent reactions with metal ions have given an unexpectedly omplex chemistry, and have generated a wealth of air-stable metallocarboranes in which several structural families are represented. We report here the overall reaction scheme and several complexes which are representative of two of the structural classes identified thus far, $(C_2B_nH_{n+2})Co(C_5H_5)$ and $(C_2B_nH_{n+2})Co_2(C_5H_5)_2$ (n = 4-6).

The reaction of $C_2B_5H_7$ with two mol equivalents of sodium naphthalide at 25° in tetrahydrofuran (THF) proceeds without evolution of H_2 or other volatiles, yielding a dark orange solution presumed to a ain the disodium salt of the previously unknown $C_2B_5H_7^2$ ion. The reaction of this product with anhydrous $CoCl_2$ and NaC_5H_5 in THF under N_2 takes place readily at 25° to give a dark brown solution. Subsequent evaporation of most of the THF, treatment with water and acetone, and exposure to air followed by separation of the products <u>via</u> column and thin-layer chromatography on silica gel, has disclosed well over 20 carborane-metal-

cyclopentadienide complexes. All of those characterized thus far are electrically neutral species containing one to three cobalt atoms in the formal +3 state. The major product, a yellow solid obtained in 20-25% yield, has been characterized as $(\pi \cdot C_2B_4H_6)Co(\pi \cdot C_5H_5)$ (I). Formed in much smaller yields are the additional monocobalt species $(\pi \cdot C_2B_5H_7)Co(\pi \cdot C_5H_5)$ (II, orange) and $(\pi \cdot C_2B_6H_8)Co(\pi \cdot C_5H_5)$ (III,red), and the dicobalt species $(\pi \cdot C_2B_4H_8)Co_2(\pi \cdot C_5H_5)_2$ (IV, red), $(\pi \cdot C_2B_5H_7)Co_2$ $(\pi \cdot C_5H_5)_2$ (V, red-brown), and $(\pi \cdot C_2B_6H_8)Co_2(\pi \cdot C_5H_5)_2$ (VI, red-brown). All six compounds are air-stable sublimable solids.

Compounds I-VI all exhibit strong mass spectroscopic parent peaks, and in each case the intensities in the parent region are in close agreement with the calculated composition based on known isotopic distributions. In addition, the elemental compositions of I, III, IV, V, and VI have been confirmed by exact mass determinations on a high resolution spectrometer. The mass spectrum of each compound contains an intense peak at m/e 124 corresponding to $^{59}\text{Co}^{12}\text{C}_5\text{H}_5^+$, and the dicobalt complexes also exhibit a very strong peak at m/e 189 corresponding to $^{59}\text{Co}(\text{C}_5\text{H}_5)_2^+$, a characteristic feature of the spectra of compounds containing more than one metal-cyclopentadienide moiety. The infrared spectra of I-VI exhibit B-H stretching bands as well as absorptions attributed to cyclopentadienide and carboranyl C-H groups.

The nmr data presented in Tables I and II are consistent with the geometries in Figure 1, but alternative isomeric structures cannot be ruled out at this stage (the suggested structures are based on idealized

polyhedra having 7 to 10 vertices and are analogous to isoelectronic carboranes and metallocarboranes whose structures are known from X-ray studies 5). Discussion of the nmr spectra will be deferred to a later report, except to note that all of the compounds other than I exhibit a doublet at very low field (-57 to -118 ppm) which we assign to 4-coordinate apical BH groups adjacent to the metal. This particular structural feature has not been previously described in metallocarborane chemistry. The extremely low-field doublet at δ -118 in the spectrum of V is assigned to a unique 4-coordinate BH adjacent to two cobalt atoms (Figure 1, V).

Complex VI is evidently a new structural isomer of the $(C_2B_6H_6)Co_2(C_5H_5)_2$ species described earlier¹, while I and III are analogs of the known $(C_2B_4H_6)Fe(CO)_3^6$, $(C_2B_4H_6)Fe(C_5H_5)^7$, and $(C_2B_6H_8)Mn(CO)_3^{-8}$ species, respectively. The formal $C_2B_5H_7^{2-}$, $C_2B_4H_8^{4-}$, and $C_2B_5H_7^{4-}$ ligands in II, IV, and V, respectively, have not been previously reported.

Other complexes obtained in this reaction system include $(C_2B_3H_5)$ \bigcirc $Co_2(C_5H_5)_2$, $(C_2B_5H_7)Co_3(C_5H_5)_3$, and a family of biscarborane species such as $[\pi-G-C_2B_5H_6)-C_2B_4H_5]Co(\pi-C_5H_5)$. Investigation of the reaction and its netallocarborane products is continuing.

Acknowledgment

This work was supported in part by the Office of Naval Research.

 $$\underline{\text{Table I}}$$ 32.1-MHz ^{11}B nmr Chemical Shifts and Coupling Constants

Complex	ε, ppm(J,Hz) ^a	Area Ratio
I	-6.7(166); -1.4 (170)	3:1
II	-56.5(174); -11.3(146); +1 a (166); +10.7(162); +21.0(179)	1:1:1:1:1
III	-66.3(150); -4.3(173); +3.5(185); +9.0(168); +15.6(141); +20.4(162)	1:1:1:1:1:1
IV^b	-57.2(157)	
v	-118.8(162); -3.7(169); +12.6(163)	1:2:2
VI	-81(143); +3.4(147); +5.9(141); +15(~150)	1:2:2:1

^aChemical shifts in ppm relative to $BF_3.0(C_2H_5)$. All spectra were obtained in CCl_4 solution. ^bHigh-field resonances are not clearly distinguishable due to the presence of complex V in the sample.

Table II

100-MHz ¹H Nmr Data

δ, ppm^a

Complex	<u>С₅Н₅</u>	Carborane C-H	Area Ratio		
I	-4.86	-3.90	5:2		
II	-4.92	-4.42 -3.97	5:1:1		
III	-4.99	-5.88 -3.81	5:1:1		
IV	-4.54	ъ	r		
v	-4.81	-3.88	10:2		
VI	-4.88	-4.68 -4.44	10:1:1		

^aChemical shifts relative to (CH₃)₄Si; all spectra were obtained in CCl₄ solution. The expected H-B quartets are not well resolved and are largely masked by the H-C peaks. ^bToo weak to be clearly observed.

References

- (1) G. B. Dunks and M. F. Hawthorne, <u>J. Amer. Chem. Soc.</u>, <u>92</u>, 7213 (1970).
- (2) G. B. Dunks, M. M. McKown, and M. F. Hawthorne, <u>ibid.</u>, <u>93</u>, 2542 (1971).
- (3) W. J. Evans and M. F. Hawthorne, <u>ibid.</u>, <u>93</u>, 3063 (1971).
- (4) Recent review: M. Cais and M. S. Lupin, Adv. Organometal. Chem., 8, 211 (1970).
- (5) R. N. Grimes, "Carboranes", Academic Press, New York, 1970.
- (6) R. N. Grimes, <u>J. Amer. Chem. Soc.</u>, <u>93</u>, 261 (1971).
- (7) L. G. Sneddon and R. N. Grimes, submitted for publication.
- (8) A. D. George and M. F. Hawthorne, Inorg. Chem., 8, 1801 (1969).
- (9) V. R. Miller and R. N. Grimes, manuscript in preparation.

Figure Caption

Figure 1. Possible structures for $(\pi-C_2B_4H_8)Co(\pi-C_5H_5)$ (I), $(\pi-C_2B_5H_7)Co(\pi-C_5H_5)$ (III), $(\pi-C_2B_6H_8)Co(\pi-C_5H_5)$ (III), $(\pi-C_2B_4H_8)Co_2(\pi-C_5H_5)_2$ (IV), $(\pi-C_2B_5H_7)Co_2(\pi-C_5H_5)_2$ (V), and $(\pi-C_2B_6H_8)Co_2(\pi-C_5H_5)_2$ (VI). Solid circles represent CH groups, and open circles BH groups.

