Mobile Cloud Computing

Decision Trees

Prof. Dr. Ch. Reich

rch@hs-furtwangen.de

http://wolke.hs-furtwangen.de

What is a Decision Tree?

- An inductive learning task
 - Use particular facts to make more generalized conclusions
- Decision Trees is one of the most widely used and practical methods of inductive inference
- Features
 - Method for approximating discrete-valued functions (including boolean)
 - Learned functions are represented as decision trees (or ifthen-else rules)
 - Expressive hypotheses space, including disjunction
 - Robust to noisy data

Decision tree representation (PlayTennis)

<Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong> No

04/19/17 *Maria Simi*

Decision trees expressivity

- Decision trees represent a disjunction (OR) of conjunctions (AND) on constraints on the value of attributes:
 - If ((Outlook = Sunny) AND (Humidity=Normal)) then
 play_tennis
 - If (Outlook = Overcast) then play tennis
 - If ((Outlook = Rain) AND (Wind=Weak)) then play_tennis

Predicting Commute Time

If we leave at 10 AM and there are no cars stalled on the road, what will our commute time be?

Inductive Learning

- In this decision tree, we made a series of Boolean decisions and followed the corresponding branch
 - Did we leave at 10 AM?
 - Did a car stay because of traffic jam on the road?
 - Is there an accident on the road?
- By answering each of these yes/no questions, we then came to a conclusion on how long our commute might take

Decision Trees as Rules

 We did not have represent this tree graphically

 We could have represented as a set of rules. However, this may be much harder to read...

Decision Tree as a Rule Set

```
if hour == 8am
   commute time = long
else if hour == 9am
   if accident == yes
      commute time = long
   else
      commute time = medium
else if hour == 10am
   if trafficJam == yes
      commute time = long
   else
      commute time = short
```

- Notice that all attributes to not have to be used in each path of the decision.
- As we will see, all attributes may not even appear in the tree.

How to Create a Decision Tree

- We first make a list of attributes that we can measure
 - These attributes (for now) must be discrete
- We then choose a target attribute that we want to predict
- Then create an *experience table* that lists what we have seen in the past

Sample Experience Table

Example	Attributes				Target
	Hour	Weather	Accident	Traffic Jam	Commute
D1	8 AM	Sunny	No	No	Long
D2	8 AM	Cloudy	No	Yes	Long
D3	10 AM	Sunny	No	No	Short
D4	9 AM	Rainy	Yes	No	Long
D5	9 AM	Sunny	Yes	Yes	Long
D6	10 AM	Sunny	No	No	Short
D7	10 AM	Cloudy	No	No	Short
D8	9 AM	Rainy	No	No	Medium
D9	9 AM	Sunny	Yes	No	Long
D10	10 AM	Cloudy	Yes	Yes	Long
D11	10 AM	Rainy	No	No	Short
D12	8 AM	Cloudy	Yes	No	Long
D13	9 AM	Sunny	No	No	Medium

Choosing Attributes

- The previous experience decision table showed 4 attributes: hour, weather, accident and traffic jam
- But the decision tree only showed 3 attributes: hour, accident and traffic jam
- Why is that?

Choosing Attributes

- Methods for selecting attributes (which will be described later) show that weather is not a discriminating attribute
- We use the principle of *Occam's Razor*: Given a number of competing hypotheses, the simplest one is preferable

Choosing Attributes

- The basic structure of creating a decision tree is the same for most decision tree algorithms
- The difference lies in how we select the attributes for the tree
- We will focus on the ID3 algorithm developed by Ross Quinlan in 1975

Decision Tree Algorithms

- The basic idea behind any decision tree algorithm is as follows:
 - Choose the *best* attribute(s) to split the remaining instances and make that attribute a decision node
 - Repeat this process for recursively for each child
 - Stop when:
 - All the instances have the same target attribute value
 - There are no more attributes
 - There are no more instances

Identifying the Best Attributes

Refer back to our original decision tree

How did we know to split on leave at and then on Traffic Jam and accident and not weather?

ID3 Heuristic

- To determine the best attribute, we look at the ID3 heuristic
- ID3 splits attributes based on their *entropy*.
- Entropy is the measure of disinformation...

Entropy

- Entropy is minimized when all values of the target attribute are the same.
 - If we know that commute time will always be short, then entropy = 0
- Entropy is maximized when there is an equal chance of all values for the target attribute (i.e. the result is random)
 - If commute time = short in 3 instances, medium in 3 instances and long in 3 instances, entropy is maximized

Entropy

- Calculation of entropy
 - Entropy(S) = $\sum_{i=1 \text{ to } n} -|S_i|/|S| * \log_2(|S_i|/|S|)$
 - S = set of examples
 - S_i = subset of S with value v_i under the target attribute
 - n = size of the range of the target attribute

```
Example: 3 yes / 3 no
```

Entropy (S) =
$$-3/6*\log(3/6)-3/6*\log(3/6) = 1$$

Example: 4yes / 0 no

Entropy (S) =
$$-4/4*log(4/4) - 0/4*log(0/4) = 0$$

Entropy

ID3

- ID3 splits on attributes with the lowest entropy
- We calculate the entropy for all values of an attribute as the weighted sum of subset entropies as follows:
 - $\sum_{(i=1 \text{ to } k)} |S_i|/|S|$ Entropy(S_i), where k is the range of the attribute we are testing
- We can also measure information gain (which is inversely proportional to entropy) as follows:
 - Entropy(S) $\sum_{(i = 1 \text{ to } k)} |S_i|/|S|$ Entropy(S_i)

ID3

• Given our commute time sample set, we can calculate the entropy of each attribute at the root node

Attribute	Expected Entropy	Information Gain
Hour	0.6511	0.768449
Weather	1.28884	0.130719
Accident	0.92307	0.496479
Traffic Jam	1.17071	0.248842

Potential ID3-generated decision tree.

Problems with ID3

- ID3 is not optimal
 - Uses *expected* entropy reduction, not actual reduction
- Must use discrete (or discretized) attributes
 - What if we left for work at 9:30 AM?
 - We could break down the attributes into smaller values...

Problems with Decision Trees

- While decision trees classify quickly, the time for building a tree may be higher than another type of classifier
- Decision trees suffer from a problem of errors propagating throughout a tree
 - A very serious problem as the number of classes increases

Error Propagation

- Since decision trees work by a series of local decisions, what happens when one of these local decisions is wrong?
 - Every decision from that point on may be wrong
 - We may never return to the correct path of the tree

Problems with ID3

 If we broke down leave time to the minute, we might get something like this:

Since entropy is very low for each branch, we have n branches with n leaves. This would not be helpful for predictive modeling.

Problems with ID3

- We can use a technique known as discretization
- We choose *cut points*, such as 9AM for splitting continuous attributes
- These cut points generally lie in a subset of boundary points, such that a boundary point is where two adjacent instances in a sorted list have different target value attributes