Lecture 9 Wavelet and Other Image Transforms

Dr. Xiran Cai

Email: caixr@shanghaitech.edu.cn

Office: 3-438 SIST

Tel: 20684431

ShanghaiTech University

Outline

- **□ 2D** Unitary transform
- **□** Frequency Domain Extension
 - ➤ Discrete Cosine Transform (余弦变换)
 - ▶ Hadamard Transform (哈德马变换)
 - ➤ Discrete Wavelet Transform (小波变换)
- **□** Discrete Wavelet Transform (DWT)
 - ➤ An example for 1D-DWT
 - ➤ Generalization of 1D-DWT
 - > 2D-DWT

Unitary Transform

☐ Forward Transform:

$$t = Af$$

$$t[k] = \sum_{n=0}^{N-1} A[k, n] f[n]$$

☐ Inverse Transform:

$$f = A^H t$$
 if $A^H = (A^T)^*$ and $AA^H = I$

Example for 1D Unitary Transform

☐ Image rotation:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} * \begin{bmatrix} x \\ y \end{bmatrix}$$

☐ Principle Component Analysis (PCA):

$$Y = PX$$
 that satisfies $C = XX^T$ $D = PCP^T$

and
$$PP^T = I$$

Discrete Fourier Transform

Forward Transform:

$$t = Af;$$
 $t[k] = \sum_{n=0}^{N-1} A[k, n] f[n]$

> Inverse Transform:

$$f = A^{H}t; f[n] = \sum_{k=0}^{N-1} A^{H}[k, n]t[k]$$

> 1-D DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}, (k = 1, 2, \dots, N)$$

$$A[k,n] = e^{-j\frac{2\pi kn}{N}} = cos(2\pi \frac{kn}{N}) - jsin(2\pi \frac{kn}{N})$$

2D Unitary Transform

☐ Forward Transform:

$$F(u,v) = \sum_{x=0}^{M} \sum_{y=0}^{N} f[x,y] e^{-j(\frac{2\pi ux}{M} + \frac{2\pi vy}{N})}$$
$$= A_M f A_N$$

☐ Inverse Transform

$$f = A_M^T F A_N^T \qquad A A^T = I$$

Image Transform

☐ The general approach for operating in linear transform domain

☐ The unitary transform satisfies

$$\sum_{x=0}^{M} \sum_{y=0}^{N} (f[x, y])^2 = \sum_{u=0}^{M} \sum_{v=0}^{N} (F[u, v])^2$$

➤ i.e., the energy is preserved.

Good and Bad things about DFT

□ Positive:

- > Energy is usually packed into low-frequency coefficients
- Convolution property
- > Fast implementation

□ Negative:

- Transform is complex, even if image is real
- ➤ The basis function span image height/width

DFT vs. DCT (Discrete Cosine Transform)

> 1D-DFT

$$A[k,n] = e^{-j\frac{2\pi kn}{N}}$$
$$= \cos\left(2\pi\frac{kn}{N}\right) + j\sin\left(2\pi\frac{kn}{N}\right)$$

,

> 1D-DCT

$$A[k,n] = \sqrt{\frac{2}{N}} \cos \frac{\pi (2n+1)k}{2N}$$

What's the difference???

2D DCT

☐ Forward Transform

$$F(0,0) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)$$

$$F(u,0) = \frac{\sqrt{2}}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \frac{(2x+1)u\pi}{2N}$$

$$F(0,v) = \frac{\sqrt{2}}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \frac{(2y+1)v\pi}{2N}$$

$$F(u,v) = \frac{2}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \frac{(2x+1)u\pi}{2N} \cos \frac{(2y+1)v\pi}{2N}$$

2D IDCT

☐ Inverse Transform

$$f(x,y) = \frac{1}{N}F(0,0)$$

$$+ \frac{\sqrt{2}}{N} \sum_{u=1}^{N-1} F(u,0) \cos \frac{(2x+1)u\pi}{2N}$$

$$+ \frac{\sqrt{2}}{N} \sum_{v=1}^{N-1} F(0,v) \cos \frac{(2y+1)v\pi}{2N}$$

$$+ \frac{2}{N} \sum_{x=1}^{N-1} \sum_{y=1}^{N-1} F(u,v) \cos \frac{(2x+1)u\pi}{2N} \cos \frac{(2y+1)v\pi}{2N}$$

DFT example

Input image

DCT example

Input image

Good and bad things about DCT

- **≻** Positive
- Transform is real, $C^{-1} = C^T$ (unitary transform).
- Excelent energy compaction for nature images.
- Fast transform.
- JPEG algorithm.

Walsh Transform

- Consist of ±1 arranged in a checkerboard pattern
- > Transform:

$$W(i) = \frac{1}{N} \sum_{t=0}^{N-1} f(t) \cdot \text{Wal}(i, t)$$

$$f(t) = \sum_{i=0}^{N-1} W(i) \cdot \text{Wal}(i, t)$$

- \triangleright Types of Wal(i, t)
 - Walsh Ordering (沃尔什定序)
 - Paley Ordering (佩利定序)
 - Hadamard Matrix Ordering (哈达玛矩阵定序)

Hadamard Matrix Ordering

Hadarmad Transform

DFT, DCT, & Hadamard

Any connection between DFT and DCT?

Take home message

- ☐ The key idea for unitary transform is to find a proper basis for data decomposition.
- □ DCT provides better frequency consistency than DFT.
- ☐ Hadamard transform is able to present a simple image with simple coefficients. But can not keep energy compact for image full of details.

Wavelet transform Outline

- □ Discrete Wavelet Transform (DWT)(小波变换)
 - ➤ An example for 1D-DWT
 - ➤ Generalization of 1D-DWT
 - >2D-DWT

Discrete Wavelet Transform (DWT)

- Based on small waves called Wavelets-1) limited; 2) oscillation.
- ☐ Key idea: Translation & Scaling.
- □ Localized both time/space and frequency.
- □ Efficient for noise reduction and image compression.
- ☐ Two types of DWT one for image processing (easy invertible) and one for signal processing (invertible but computational expensive).

We can decompose an eight-point signal x(n):

into two four-point signals:

$$c(n) = 0.5x(2n) + 0.5x(2n+1)$$

$$c(n) = 0.5x(2n) + 0.5x(2n+1)$$
 $d(n) = 0.5x(2n) - 0.5x(2n+1)$

> The above process can be represented by a block diagram:

$$x(n) \longrightarrow \begin{array}{|c|c|} AVE/ \longrightarrow c(n) \\ DIFF \longrightarrow d(n) \end{array}$$

It is clear that this decomposition can be easily reversed:

$$y(2n) = c(n) + d(n)$$
$$y(2n+1) = c(n) - d(n)$$

Which is also represented by a block diagram:

$$\begin{array}{c} c(n) \longrightarrow \\ d(n) \longrightarrow \end{array} \text{INV} \longrightarrow y(n)$$

When we repeat the simple AVE/DIFF signal decomposition:

$$x(n) = [x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8] = [3, 4, 5, 5, 7, 6, 4, 2]$$

Level 1

$$c_1 = \frac{1}{2} [x_1 + x_2, x_3 + x_4, x_5 + x_6, x_7 + x_8]$$

$$c_1 = \frac{1}{2}[x_1 + x_2, x_3 + x_4, x_5 + x_6, x_7 + x_8]$$

$$d = d_1 = \frac{1}{2}[x_1 - x_2, x_3 - x_4, x_5 - x_6, x_7 - x_8]$$

Level 2

$$c_2 = \frac{1}{4} [x_1 + x_2 + x_3 + x_4, x_5 + x_6 + x_7 + x_8]$$

$$d_2 = \frac{1}{4} [x_1 - x_3 + x_2 - x_4, x_5 - x_7 + x_6 - x_8]$$

Level 3

$$c_3 = \frac{1}{8} [x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8]$$

$$c_3 = \frac{1}{8}[x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8] \qquad d_3 = \frac{1}{8}[x_1 + x_2 + x_3 + x_4 - x_5 - x_6 - x_7 - x_8]$$

When we repeat the simple AVE/DIFF signal decomposition:

The Haar wavelet representation of the eight-point signal x[n] is simply the set of four output signals produced by this three-level operation:

$$c_3 = [4.5]$$

 $d_3 = [-0.25]$
 $d_2 = [-0.75, 1.75]$
 $d = [-0.5, 0, 0.5, 1]$

 \triangleright When N=2 we have:

$$\mathbf{H}_2 = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right]$$

 \triangleright When N=4 we have:

$$\mathbf{H}_4 = rac{1}{2} \left[egin{array}{cccc} 1 & 1 & 1 & 1 \ 1 & 1 & -1 & -1 \ \sqrt{2} & -\sqrt{2} & 0 & 0 \ 0 & 0 & \sqrt{2} & -\sqrt{2} \ \end{array}
ight]$$

▶ When N=8 we have:

The family of N Haar functions $h_u(x)$, (u = 0, ..., N - 1) are defined on the interval $0 \le x \le 1$. The shape of the specific function $h_u(x)$ of a given index u depends on two parameters p and q:

$$u=2^p+q$$

и	p	\boldsymbol{q}
1	0	0
2	1	0
3	1	1

> The Haar basis functions are defined by:

$$h_u(x) = \begin{cases} 1 & u = 0 \text{ and } 0 \le x < 1 \\ 2^{p/2} & u > 0 \text{ and } q/2^p \le x < (q+0.5)/2^p \\ -2^{p/2} & u > 0 \text{ and } (q+0.5)/2^p \le x < (q+1)/2^p \\ 0 & \text{otherwise} \end{cases}$$

Generalization of 1D-DWT

Discrete Wavelet Transform (DWT):

$$W_{\varphi}(j_0, k) = \frac{1}{\sqrt{M}} \sum_{n} f(n) \, \varphi_{j_0, k}(n)$$

$$W_{\psi}(j,k) = \frac{1}{\sqrt{M}} \sum_{n} f(n) \, \psi_{j,k}(n) \quad j \ge j_0$$

➤ Inverse Discrete Wavelet Transform (IDWT):

$$f(n) = \frac{1}{\sqrt{M}} \sum_{k} W_{\varphi}(j_0, k) \, \varphi_{j_0, k}(n) + \frac{1}{\sqrt{M}} \sum_{j=j_0}^{\infty} \sum_{k} W_{\psi}(j, k) \, \psi_{j, k}(n)$$

Where

 $\varphi_{j_0,k}(n)$: scaling function (尺度函数) $\psi_{j,k}(n)$: Wavelet (小波)

 $W_{\varphi}(j_0,k)$: Approximation coefficients (近似系数) $W_{\psi}(j,k)$: detail coefficients (细节系数)

2D-DWT

▶ Define 2D wavelet function: Directionally sensitive wavelet

$$\psi^H(x,y) = \psi(x)\varphi(y)$$
 $\psi^V(x,y) = \varphi(x)\psi(y)$ $\psi^D(x,y) = \psi(x)\psi(y)$

> 2D-DWT

$$W_{\varphi}(j_0, m, n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \, \varphi_{j_0, m, n}(x, y)$$

$$W_{\psi}(j,m,n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \, \psi_{j,m,n}^{i}(x,y) \qquad i = \{H,V,D\}$$

> 2D-IDWT

$$f(x,y) = \frac{1}{\sqrt{MN}} \sum_{m} \sum_{n} W_{\varphi}(j_0, m, n) \varphi_{j_0, m, n}(x, y)$$

$$+\frac{1}{\sqrt{MN}}\sum_{i=\{H,V,D\}}\sum_{j=j_0}^{\infty}\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}W_{\psi}(j,m,n)\,\psi_{j,m,n}^i(x,y)$$

Input: image size $8X8 I_{in}$

Generate a Haar matrix of 8X8 as shown right Then clip it into 4 part:

$$H_{L1}(dim = 4 * 8); H_{L2}(dim = 2 * 8); H_{L3}(dim = 1 * 8); L_{L3}(dim = 1 * 8);.$$

$$\begin{bmatrix} \frac{1}{1} & \frac{1}{1} \\ \frac{1}{\sqrt{2}} & \sqrt{2} & -\sqrt{2} & -\sqrt{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{2} & \sqrt{2} & -\sqrt{2} & -\sqrt{2} \\ 2 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & -2 \end{bmatrix} \begin{bmatrix} \mathbf{H}_{L3} \\ \mathbf{H}_{L2} \\ \mathbf{H}_{L1} \end{bmatrix}$$

For computing *level 1* components:

LL_1 is downsample of $m{I_{in}}$ on both X and Y direction	HL ₁ =H _{L1} *I _{in} + downsample on Y direction		
LH_1 = $I_{in} * H_{L1} +$ downsample on X direction	HH ₁ = H _{L1} *I _{in} * H _{L1}		

For computing *level 2* components:

LL_2 is downsample of LL_1 on both X and Y direction	HL_2 = H_{L2} * I_{in} + downsample twice on Y direction		
LH_2 = $I_{in} * H_{L2} +$ downsample twice on X direction	HH ₂ = H _{L2} *I _{in} * H _{L2}		

For computing *level 3* components:

LL_3 is downsample of LL_2 on both X and Y direction	HL ₃ =H _{L3} *I _{in} + downsample 3 times on Y direction		
LH_3 = $I_{in} * H_{L3} +$ downsample 3 times on X direction	HH ₃ = H _{L3} *I _{in} * H _{L3}		

2D-DWT

2D Haar Transform

2D Haar Transform

$$A = \begin{pmatrix} 88 & 88 & 89 & 90 & 92 & 94 & 96 & 97 \\ 90 & 90 & 91 & 92 & 93 & 95 & 97 & 97 \\ 92 & 92 & 93 & 94 & 95 & 96 & 97 & 97 \\ 93 & 93 & 94 & 95 & 96 & 96 & 96 & 96 \\ 92 & 93 & 95 & 96 & 96 & 96 & 96 & 95 \\ 92 & 94 & 96 & 98 & 99 & 99 & 98 & 97 \\ 94 & 96 & 99 & 101 & 103 & 103 & 102 & 101 \\ 95 & 97 & 101 & 104 & 106 & 106 & 105 & 105 \end{pmatrix}$$

3 level Haar Transform for the first row

$$r_1 = (88 \quad 88 \quad 89 \quad 90 \quad 92 \quad 94 \quad 96 \quad 97)$$

Group r_1 **in pair** [88, 88], [89, 90], [92, 94], [96, 97]

$$r_1 h_1 = (88 \quad 89.5 \quad 93 \quad 96.5 \quad 0 \quad -0.5 \quad -1 \quad -0.5)$$

Approximation coefficients Detail coefficients

Group the first 4 columns in pair [88, 89.5], [93, 96.5]

$$r_1 h_1 h_2 = (88.75 \quad 94.75 \quad -0.75 \quad -1.75 \quad 0 \quad -0.5 \quad -1 \quad -0.5)$$

Group the first 2 columns in pair [88, 94.75]

$$r_1h_1h_2h_3 = (91.75 \quad -3 \quad -0.75 \quad -1.75 \quad 0 \quad -0.5 \quad -1 \quad -0.5)$$

2D Haar Transform

Repeat the same processing for all the columns and for the rows of the resulting matrix, we get

/ 96	-2.0312	<i>-</i> 1 <i>.</i> 5312	-0.2188	<i>-</i> 0 <i>.</i> 4375	<i>-</i> 0 <i>.</i> 75	<i>-</i> 0 <i>.</i> 3125	0.125\
<i>-</i> 2 <i>.</i> 4375	-0.0312	0.7812	-0.7812	0.4375	0.25	-0.3125	-0 <i>.</i> 25
<i>-</i> 1 <i>.</i> 125	<i>-</i> 0 <i>.</i> 625	0	<i>-</i> 0 <i>.</i> 625	0	0	<i>-</i> 0 <i>.</i> 375	<i>-</i> 0 <i>.</i> 125
<i>-</i> 2 <i>.</i> 6875	0.75	0.5625	-0.0625	0.125	0.25	0	0.125
<i>-</i> 0 <i>.</i> 6875	<i>-</i> 0 <i>.</i> 3125	0	<i>-</i> 0 <i>.</i> 125	0	0	0	-0 <i>.</i> 25
<i>-</i> 0 <i>.</i> 1875	<i>-</i> 0 <i>.</i> 3125	0	<i>-</i> 0 <i>.</i> 375	0	0	<i>-</i> 0 <i>.</i> 25	0
-0 <i>.</i> 875	0.375	0.25	<i>-</i> 0 <i>.</i> 25	0.25	0.25	0	0
-1.25	0.375	0.375	0.125	0	0.25	0	0.25

Mother Wavelet (母小波)

Mother Wavelet should satisfy:

$$\bullet \quad \int_{-\infty}^{\infty} |\psi(t)|^2 dt = 1$$

•
$$\int_{-\infty}^{\infty} |\psi(t)| dt < \infty$$

•
$$\int_{-\infty}^{\infty} \psi(t)dt = 0$$

Take home message

- Based on small waves called Wavelets-1) limited; 2) oscillation.
- ☐ Key idea: Translation & Scaling.
- Localized both time/space and frequency.
- Efficient for noise reduction and image compression.
- □ JPEG2000, FBI finger printing databased.

