// Introdução

- A Terra exerce uma força de atracção em todas as partículas que compõem um corpo. Estas forças podem ser substituídas por uma única força igual ao peso do corpo e aplicada no *centro de gravidade* (ou *centro de massa*) do corpo.
- O centróide de uma área é análogo ao centro de massa de um corpo, mas refere-se ao centro geométrico do mesmo.

// Centro de massa e centróide de um corpo

Teorema de Varignon: "o momento em relação a um ponto O da resultante de várias forças concorrentes é igual à soma dos momentos das diversas forças em relação ao mesmo ponto O".

Os momentos de P relativamente aos eixos "y", "x", são iguais às somas dos momentos de cada força infinitesimal, relativamente aos respectivos eixos.

$$\sum M_{y} \quad \overline{x}W = \sum x\Delta W \qquad \overline{x}W = \int x dW$$

$$= \int x dW \qquad \overline{x}(\gamma A t) = \int x(\gamma t) dA$$

$$\sum M_{y} \quad \overline{y}W = \sum y\Delta W \qquad \overline{x}A = \int x dA = Q_{y} = \text{momento estático segundo } y$$

$$= \int y dW \qquad \overline{y}A = \int y dA = Q_{x} = \text{momento estático segundo } x$$

// Placas e áreas compostas

• Placas compostas

$$\overline{X} \sum W = \sum \overline{x} W$$

$$\overline{Y} \sum W = \sum \overline{y} W$$

• Áreas compostas

$$\overline{X} \sum A = \sum \overline{x} A$$
$$\overline{Y} \sum A = \sum \overline{y} A$$

• Para a placa mostrada, determine os momentos de primeira ordem segundo x e y e a localização do centróide.

Component	A, mm ²	⊼, mm	\overline{y} , mm	$\bar{x}A$, mm ³	<i>ȳA</i> , mm³
Rectangle Triangle Semicircle Circle	$(120)(80) = 9.6 \times 10^{3}$ $\frac{1}{2}(120)(60) = 3.6 \times 10^{3}$ $\frac{1}{2}\pi(60)^{2} = 5.655 \times 10^{3}$ $-\pi(40)^{2} = -5.027 \times 10^{3}$	60 40 60 60	40 -20 105.46 80	$+576 \times 10^{3}$ $+144 \times 10^{3}$ $+339.3 \times 10^{3}$ -301.6×10^{3}	$+384 \times 10^{3}$ -72×10^{3} $+596.4 \times 10^{3}$ -402.2×10^{3}
В	$\Sigma A = 13.828 \times 10^3$			$\Sigma \overline{x}A = +757.7 \times 10^3$	$\Sigma \overline{y}A = +506.2 \times 10^3$

• Os momentos estáticos são dados por,

• As coordenadas do centróide,

$$\overline{X} = \frac{\sum \overline{x}A}{\sum A} = \frac{+757.7 \times 10^3 \,\text{mm}^3}{13.828 \times 10^3 \,\text{mm}^2}$$

$$\overline{X} = 54.8 \, \mathrm{mm}$$

$$\overline{Y} = \frac{\sum \overline{y}A}{\sum A} = \frac{+506.2 \times 10^3 \,\text{mm}^3}{13.828 \times 10^3 \,\text{mm}^2}$$

$$\overline{Y} = 36.6 \,\mathrm{mm}$$

// Exercícios

Determine as coordenadas do centróide das seguintes secções.

// Corpos compostos a 3D

• Determine o centro de gravidade do elemento de aço. Cada furo tem um diâmetro de 1 in.

	V, in ³	\overline{x} , in.	\overline{y} , in.	₹, in.	$\bar{\chi}V$, in ⁴	ӯѴ, in⁴	<i>ī∨</i> , in⁴
I II III IV	$(4.5)(2)(0.5) = 4.5$ $\frac{1}{4}\pi(2)^{2}(0.5) = 1.571$ $-\pi(0.5)^{2}(0.5) = -0.3927$ $-\pi(0.5)^{2}(0.5) = -0.3927$	0.25 1.3488 0.25 0.25	-1 -0.8488 -1 -1	2.25 0.25 3.5 1.5	1.125 2.119 -0.098 -0.098	-4.5 -1.333 0.393 0.393	10.125 0.393 -1.374 -0.589
	$\Sigma V = 5.286$				$\Sigma \overline{x}V = 3.048$	$\Sigma \overline{y}V = -5.047$	$\Sigma \overline{z}V = 8.555$

$$\overline{X} = \sum \overline{x} V / \sum V = (3.08 \text{ in}^4) / (5.286 \text{ in}^3)$$
 $\overline{X} = 0.577 \text{ in}$

$$\overline{Y} = \sum \overline{y}V/\sum V = (-5.047 \text{ in}^4)/(5.286 \text{ in}^3)$$
 $\overline{Y} = 0.577 \text{ in}.$

$$\overline{Z} = \sum \overline{z}V/\sum V = (1.618 \text{ in}^4)/(5.286 \text{ in}^3)$$
 $\overline{Z} = 0.577 \text{ in}.$

// Momentos de Inércia

Caracteriza ou quantifica e capacidade resistência dos elementos estruturais (ex. flexão de vigas)

Momentos de segunda ordem ou momentos de inércia segundo os eixos x e y.

$$I_{x} = \int y^{2} dA \qquad I_{y} = \int x^{2} dA$$

dA = hdx

// Cálculo do momento de inércia por integração

Para uma área rectangular,

$$dA = bdy$$

$$I_{x} = \int_{Area} y^{2} dA = \int_{-h/2}^{h/2} y^{2} b dy$$

$$I_{y} = \int_{Area} x^{2} dA = \int_{-b/2}^{b/2} x^{2} h dx$$

$$= \left[b \frac{y^{3}}{3} \right]_{-h/2}^{h/2} = \frac{bh^{3}}{12}$$

$$= \left[h \frac{x^{3}}{3} \right]_{-h/2}^{b/2} = \frac{b^{3}h}{12}$$

$$I_{y} = \int_{Area} x^{2} dA = \int_{-b/2}^{b/2} x^{2} h dx$$

$$\begin{bmatrix} x^{3} \end{bmatrix}^{b/2} b^{3} h$$

// Momento polar de inércia

• O momento polar de inércia é um parâmetro geométrico preponderante no dimensionamento de veios cilíndricos sujeitos à torção.

$$J_0 = \int r^2 dA$$

O momento polar de inércia de uma secção pode ser relacionado com os momentos de inércia.

$$J_0 = \int r^2 dA = \int (x^2 + y^2) dA = \int x^2 dA + \int y^2 dA$$
$$= I_y + I_x$$

// Raio de giração

O raio de giração de uma área A, relativamente ao eixo x, é definido como a distância k_x , na qual se concentra uma faixa estreita paralela a x que produz o mesmo momento de inércia.

$$I_x = k_x^2 A \qquad k_x = \sqrt{\frac{I_x}{A}}$$

De igual modo,

$$I_{y} = k_{y}^{2} A \quad k_{y} = \sqrt{\frac{I_{y}}{A}}$$

$$k_{y} = \sqrt{\frac{I_{y}}{A}}$$

// Teorema de Steiner ou eixos paralelos

• O teorema dos Eixos Paralelos determina que o momento de inércia I de uma área relativamente a um eixo arbitrário AA' é igual ao momento de inércia I segundo o eixo que passa no centróide da área (BB') mais o produto da área pelo quadrado da distância entre eixos.

$$I = \bar{I} + Ad^2$$

Demonstração:

 Considere o momento de inércia I da área A segundo o eixo AA', fornecido pela equação,

$$I = \int y^2 dA$$

• Como o eixo BB' passa pelo centróide,

$$I = \int y^2 dA = \int (y'+d)^2 dA$$
$$= \int y'^2 dA + 2d \int y' dA + d^2 \int dA$$

$$I = \bar{I} + Ad^2$$
 Teorema dos eixos paralelos

• Determine o momento de inércia segundo o eixo x.

$$a = \frac{4r}{3\pi} = \frac{(4)(90)}{3\pi} = 38.2 \text{ mm}$$

$$b = 120 - a = 81.8 \text{ mm}$$

$$A = \frac{1}{2}\pi r^2 = \frac{1}{2}\pi (90)^2$$

$$= 12.72 \times 10^3 \text{ mm}^2$$

Rectângulo

$$I_x r = \frac{1}{3}bh^3 = \frac{1}{3}(240)(120) = 138.2 \times 10^6 \text{ mm}^4$$

Semi-circulo: Momento de inércia segundo AA',

$$I_{AA'} = \frac{1}{8}\pi r^4 = \frac{1}{8}\pi (90)^4 = 25.76 \times 10^6 \text{ mm}^4$$

Momento de inércia segundo x',

$$\bar{I}_{x'} = I_{AA'} - Aa^2 = (25.76 \times 10^6)(12.72 \times 10^3)$$

= 7.20×10⁶ mm⁴

Momento de inércia segundo x,

$$I_x c = \bar{I}_{x'} + Ab^2 = 7.20 \times 10^6 + (12.72 \times 10^3)(81.8)^2$$

= 92.3×10⁶ mm⁴

$$I_{x}total = I_{x}r - I_{x}c = 45.9 \times 10^{6} \text{ mm}^{4}$$

// Exercícios

Determine os momentos de inércia segundo x e y.

// Produto de inércia

• O produto de inércia de uma superfície A relativamente ao eixos de coordenadas OXY, obtém-se multiplicando as coordenadas x e y pela superfície elementar dA e integrando ao longo do seu domínio;

$$P_{xy} = \int xy \, dA$$

Quando um eixo, x ou y, ou ambos são se simetria, o produto de inércia é nulo.

Teorema dos eixos paralelos para produtos de inércia

$$P_{xy} = \overline{P}_{xy} + \overline{x}\overline{y}A$$

// Eixos principais e momentos principais de inércia

• Considere um novo eixo Ox'y' que sofreu uma rotação de θ segundo z relativamente ao eixo Oxy. Recorrendo às relações geométricas, podem-se definir os momentos de inércia e o produto de inércia do novo sistema de eixo em relação ao primeiro.

Sabendo:
$$I_x = \int y^2 dA$$
 $I_y = \int x^2 dA$ $I_{xy} = \int xy dA$

Qual o momento de inércia segundo x' e y'?

Nota:
$$x' = x \cos \theta + y \sin \theta$$

 $y' = y \cos \theta - x \sin \theta$

• Para o novo sistema de eixos,

$$I_{x'} = \frac{I_x + I_y}{2} + \frac{I_x - I_y}{2} \cos 2\theta - I_{xy} \sin 2\theta$$

$$I_{y'} = \frac{I_x + I_y}{2} - \frac{I_x - I_y}{2} \cos 2\theta + I_{xy} \sin 2\theta$$

$$I_{x'y'} = \frac{I_x - I_y}{2} \sin 2\theta + I_{xy} \cos 2\theta$$

• As equações para $I_{x'}$ e $I_{x'y'}$ são as equações paramétricas de um circulo,

$$(I_{x'} - I_{med})^2 + P_{x'y'}^2 = R^2$$

$$I_{med} = \frac{I_x + I_y}{2} \quad R = \sqrt{\left(\frac{I_x - I_y}{2}\right) + P_{xy}^2}$$

// Eixos principais e momentos principais de inércia — Circulo de Mohr

• O círculo referido é designado de Círculo de Mohr para momentos e produtos de inércia.

• Nos pontos A e B, $I_{x'y'} = 0$ e $I_{x'}$ é máximo e mínimo, respectivamente.

$$I_{\text{max,min}} = I_{med} \pm R$$

$$\tan 2\theta_m = -\frac{2I_{xy}}{I_x - I_y}$$

• A equação de θ_m define dois ângulos desfasados de 90°, correspondendo aos eixos principais.

• I_{max} e I_{min} são os momentos principais de inércia.

• Considere a secção apresentada. Calcule os momentos principais de inércia e as direcções principais. Calcule o momentos de inércia e o produto de inércia segundo x'y'.

$$Ix = 7.24 \times 106 \text{ mm}^4 Iy = 2.61 \times 106 \text{ mm}^4 Pxy = -2.54 \times 106 \text{ mm}^4.$$

Construção do circulo de Mohr

$$OC = I_{med} = \frac{1}{2}(I_x + I_y) = 4.925 \times 10^6 \text{ mm}^4$$

 $CD = \frac{1}{2}(I_x - I_y) = 2.315 \times 10^6 \text{ mm}^4$
 $R = \sqrt{(CD)^2 + (DX)^2} = 3.437 \times 10^6 \text{ mm}^4$

Com base no circulo,

$$\tan 2\theta_m = \frac{DX}{CD} = 1.097$$
 $2\theta_m = 47.6^{\circ}$ $\theta_m = 23.8^{\circ}$ $I_{\text{max}} = I_{med} + R$ $I_{\text{max}} = 8.36 \times 10^6 \text{mm}^4$ $I_{\text{min}} = I_{med} - R$ $I_{\text{min}} = 1.49 \times 10^6 \text{mm}^4$

$$OC = I_{med} = 4.925 \times 10^6 \text{ mm}^4$$

 $R = 3.437 \times 10^6 \text{ mm}^4$

• No circulo de Mohr a rotação é
$$\theta = 2(60^{\circ}) = 120^{\circ}$$
.

• O ângulo que CX' faz com a horizontal é $\phi = 120^{\circ}$ - $47.6^{\circ} = 72.4^{\circ}$.

$$I_{x'} = OF = OC + CX' \cos \varphi = I_{ave} + R \cos 72.4^{\circ}$$

 $I_{x'} = 5.96 \times 10^{6} \text{ mm}^{4}$

$$I_{y'} = OG = OC - CY' \cos \varphi = I_{ave} - R \cos 72.4^{o}$$

$$I_{y'} = 3.89 \times 10^{6} \text{ mm}^{4}$$

$$I_{x'y'} = FX' = CY' \sin \varphi = R \sin 72.4^{\circ}$$

 $I_{x'y'} = 3.28 \times 10^{6} \text{mm}^{4}$

// Exercícios

Determine os momentos de inércia de inércia e as direcções principais

