Lecture 1: Convex sets

- convex set, convex cone, subspace, affine set
- simple examples and properties
- combination and hulls
- polyhedra, norm balls
- affine and projective transformations
- ellipsoids
- separating hyperplanes
- generalized inequalities

Convex sets

 $S \subseteq \mathbf{R}^n$ is a **convex set** if

$$x, y \in S, \ \lambda, \mu \ge 0, \ \lambda + \mu = 1 \Longrightarrow \lambda x + \mu y \in S$$

geometrically: $x,y\in S\Rightarrow \text{ segment } [x,y]\subseteq S$. . . many representations

 $S \subseteq \mathbf{R}^n$ is a **convex cone** if

$$x, y \in S, \ \lambda, \mu \ge 0, \implies \lambda x + \mu y \in S$$

geometrically:

$$x,y\in S\Rightarrow$$
 'pie slice' between $x,y\subseteq S$

. . . many representations

Affine sets

 $S \subseteq \mathbf{R}^n$ is affine if

$$x, y \in S, \ \lambda, \mu \in \mathbb{R}, \ \lambda + \mu = 1 \Longrightarrow \lambda x + \mu y \in S$$

geometrically: $x, y \in S \Rightarrow$ line through $x, y \subseteq S$

representations: range of affine function

$$S = \{Az + b \mid z \in \mathbf{R}^q\}$$

via linear equalities

$$S = \{x \mid b_1^T x = d_1, \dots, b_p^T x = d_p\} = \{x \mid Bx = d\}$$

Subspaces

 $S \subseteq \mathbf{R}^n$ is a subspace if

$$x, y \in S, \quad \lambda, \mu \in \mathbf{R} \implies \lambda x + \mu y \in S$$

geometrically: $x, y \in S \Rightarrow \text{plane through } 0, x, y \subseteq S$

representations

range(A) =
$$\{Aw \mid w \in \mathbf{R}^q\}$$

= $\{w_1a_1 + \dots + w_qa_q \mid w_i \in \mathbf{R}\}$
= $\operatorname{span}(a_1, a_2, \dots, a_q)$

where $A = [a_1 \cdots a_q]$

nullspace(B) =
$$\{x \mid Bx = 0\} = \{x \mid b_1^T x = 0, \dots, b_p^T x = 0\}$$

where
$$B = \left[egin{array}{c} b_1^T \ dots \ b_p^T \end{array}
ight]$$

Combinations and hulls

$$y = \theta_1 x_1 + \cdots + \theta_k x_k$$
 is a

- ullet linear combination of x_1 , . . . , x_k
- affine combination if $\sum_i \theta_i = 1$
- convex combination if $\sum_i \theta_i = 1$, $\theta_i \geq 0$
- conic combination if $\theta_i \geq 0$

```
(linear,...) hull of S: set of all (linear, ...) combinations from S
```

linear hull: $\operatorname{span}(S)$, affine hull: $\operatorname{\mathbf{Aff}}(S)$, convex hull: $\operatorname{\mathbf{Coo}}(S)$, conic hull: $\operatorname{\mathbf{Cone}}(S)$.

$$\mathbf{Co}(S) = \bigcap \{G \mid S \subseteq G, G \text{ convex } \}, \dots$$

example. $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ what is linear, affine, . . . , hull?

Hyperplanes and halfspaces

hyperplane: $\{x \mid a^T x = b\} \ (a \neq 0)$

affine; subspace if b = 0

useful representation: $\{x \mid a^T(x - x_0) = 0\}$

a is normal vector; x_0 lies on hyperplane

halfspace: $\{x \mid a^Tx \leq b\}$ $(a \neq 0)$ convex; convex cone if b = 0 useful representation: $\{x \mid a^T(x - x_0) \leq 0\}$ a is *(outward) normal vector*; x_0 lies on boundary

Intersections

$$S_{lpha}$$
 is $\left(egin{array}{c} ext{subspace} \\ ext{affine} \\ ext{convex cone} \end{array}
ight)$ for $lpha\in\mathcal{A}\Longrightarrow\bigcap_{lpha\in\mathcal{A}}S_{lpha}$ is $\left(egin{array}{c} ext{subspace} \\ ext{affine} \\ ext{convex cone} \end{array}
ight)$

example: polyhedron is intersection of a finite number of halfspaces

$$\mathcal{P} = \{x \mid a_i^T x \leq b_i, i = 1, \dots, k\}$$
$$= \{x \mid Ax \leq b\}$$

 $(\preceq means componentwise)$

a bounded polyhedron is called a polytope

in fact, every closed convex set S is (usually infinite) intersection of halfspaces:

$$S = \bigcap \{ \mathcal{H} \mid \mathcal{H} \text{ halfspace}, \ S \subseteq \mathcal{H} \}$$

example:

$$S = \{ a \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

with $p(t) = \sum_{k=1}^{m} a_k \cos kt$

can express S as intersection of slabs: $S = \bigcap_{|t| \le \pi/3} S_t$,

$$S_t = \{a \mid -1 \leq [\cos t \cdot \cdots \cos mt] \mid a \leq 1\}.$$

Polyhedra

Examples

- nonnegative orthant $\mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x \succeq 0\}$
- ullet k-simplex $\mathbf{Co}\{x_0,\ldots,x_k\}$ with x_0,\ldots,x_k affinely independent, i.e.,

Rank
$$\left(\begin{bmatrix} x_0 & x_1 & \cdots & x_k \\ 1 & 1 & \cdots & 1 \end{bmatrix} \right) = k+1,$$

or equivalently, $x_1 - x_0, \ldots, x_k - x_0$ lin. indep.

• probability simplex $\{x \in \mathbf{R}^n \mid x \succeq 0, \sum_i x_i = 1\}$

Norm balls & cones

 $f: \mathbf{R}^n \to \mathbf{R}$ is a *norm* if for all $x, y \in \mathbf{R}^n$, $t \in \mathbf{R}$,

- 1. $f(x) \ge 0$; $f(x) = 0 \implies x = 0$
- 2. f(tx) = |t| f(x)
- 3. $f(x+y) \le f(x) + f(y)$

f(x) usually denoted $||x||_{\text{mark}}$ (subscript identifies norm)

if f is a norm,

- the norm ball $B = \{x \mid f(x x_c) \le 1\}$ is convex
- the norm cone $C = \{(x, t) \mid f(x) \leq t\}$ is a convex cone

ℓ_p norms

 ℓ_p norms on \mathbf{R}^n : for $p \geq 1$,

$$||x||_p = \left(\sum_i |x_i|^p\right)^{1/p},$$

for $p = \infty$, $||x||_{\infty} = \max_i |x_i|$

- $\bullet \ \ell_2 \quad \text{norm} \quad \text{is Euclidean norm} \quad \|x\|_2 = \sqrt{\sum_i |x_i|^2}$
- ℓ_1 norm is sum-abs-values $||x||_1 = \sum_i |x_i|$
- ullet ℓ_∞ norm is max-abs-value $\|x\|_\infty = \max_i |x_i|$

Figure shows corresponding norm balls (in \mathbb{R}^2)

Second-order cone

norm cone associated with Euclidean norm is *second-order cone* (also called *quadratic* or *Lorentz* cone)

$$S = \{(x,t) \mid \sqrt{x^T x} \le t\}$$

$$= \left\{ (x,t) \mid \begin{bmatrix} x \\ t \end{bmatrix}^T \begin{bmatrix} I & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} \le 0, \ t \ge 0 \right\}$$

Affine transformations

suppose f is affine, i.e., linear plus constant:

$$f(x) = Ax + b$$

if S, T convex, then so are

$$f^{-1}(S) = \{x \mid Ax + b \in S\}$$
$$f(T) = \{Ax + b \mid x \in T\}$$

example: coordinate projection

$$\left\{ x \left| \left[\begin{array}{c} x \\ y \end{array} \right] \in S \text{ for some } y \right. \right\}$$

Ellipsoids

$$\mathcal{E} = \{x \mid (x - x_c)^T A^{-1} (x - x_c) \leq 1\}$$
 ($A = A^T \succ 0$; $x_c \in \mathbf{R}^n$ center)

- semiaxis lengths: $\sqrt{\lambda_i}$; λ_i eigenvalues of A
- ullet semiaxis directions: eigenvectors of A
- volume: $\alpha_n \left(\prod \lambda_i\right)^{1/2} = \alpha_n \left(\det A\right)^{1/2}$

other descriptions

•
$$\mathcal{E} = \{Bu + x_c \mid ||u|| \le 1\} \ (||u|| = \sqrt{u^T u})$$

$$\bullet \ \mathcal{E} = \{x \mid f(x) \le 0\}$$

$$f(x) = x^{T}Cx + 2d^{T}x + e$$

$$= \begin{bmatrix} x \\ 1 \end{bmatrix}^{T} \begin{bmatrix} C & d \\ d^{T} & e \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$$

$$(C = C^T \succ 0, e - d^T C^{-1} d < 0)$$

exercise: convert among representations; give center, semiaxes, volume

Linear matrix inequalities

- set of symmetric matrices $S^n = \{X \in \mathbb{R}^{n \times n} \mid X = X^T\}$; subspace of $\mathbb{R}^{n \times n}$
- set of symmetric positive semidefinite (PSD) matrices

$$\mathbf{S}_{+}^{n} = \{ X \in \mathbf{S}^{n} \mid X \succeq 0 \}$$

is a convex cone

$$\mathbf{S}_{+}^{n} = \bigcap_{z \in \mathbf{R}^{n}} \left\{ X \in \mathbf{S}^{n} \mid z^{T}Xz = \sum_{i,j=1}^{n} z_{i}z_{j}X_{ij} \geq 0 \right\}$$

(intersection of infinite number of halfspaces in S^n)

• hence, if $A_0, A_1, \ldots, A_m \in \mathbf{S}^n$, solution set of the *linear matrix inequality* (LMI)

$$A_0 + x_1 A_1 + \dots + x_m A_m \succeq 0$$

is convex

Linear-fractional transformation

linear-fractional (or projective) function $f: \mathbb{R}^m \to \mathbb{R}^n$,

$$f(x) = \frac{Ax + b}{c^T x + d}$$

on domain $\operatorname{dom} f = \mathcal{H} = \{x \mid c^T x + d > 0\}$

line segments preserved: for $x, y \in \mathcal{H}$,

$$f([x,y]) = [f(x), f(y)]$$

hence, if C convex, $C\subseteq \mathcal{H}$, then f(C) convex

Separating hyperplanes

separating hyperplane theorem:

if $S,\ T\subseteq \mathbf{R}^n$ are convex and disjoint $(S\cap T=\emptyset)$, then, there are $a\neq 0,\ b$ such that

$$a^T x \ge b$$
 for $x \in S$, $a^T x \le b$ for $x \in T$

i.e., hyperplane $\{x \mid a^Tx - b = 0\}$ separates S, T (stronger forms use strict inequality, require more conditions on S, T)

Supporting hyperplane

hyperplane $\{x \mid a^Tx = a^Tx_0\}$ supports S at $x_0 \in \partial S$ if

$$x \in S \Rightarrow a^T x \le a^T x_0$$

halfspace $\{x \mid a^Tx \leq b\}$ contains S for $b = a^Tx_0$ but not for smaller b

S convex $\Rightarrow \exists$ supporting hyperplane for each $x_0 \in \partial S$

Generalized inequalities

convex cone $K\subseteq \mathbf{R}^n$ is *proper* if it

- is closed
- has nonempty interior
- ullet is *pointed*: there is no line in K

a proper cone K defines a generalized inequality \leq_K in \mathbf{R}^n : $x \leq_K y \iff y - x \in K$ strict version: $x \prec_K y \iff y - x \in \mathbf{int} K$

examples:

• $K = \mathbf{R}^n_+$: $x \leq_K y$ means $x_i \leq y_i$ (componentwise vector inequality)

• K is PSD cone in $\{X \in \mathbf{R}^{n \times n} | X = X^T\}$: $X \preceq_K Y$ means Y - X is PSD

(these are so common we drop K)

many properties of \leq_K similar to \leq on **R**, e.g.,

- $\bullet \ x \preceq_K y, \ u \preceq_K v \implies x + u \preceq_K y + v$
- $\bullet \ \ x \leq_K y, \ y \leq_K x \implies x = y$

unlike \leq , \leq_K is not in general a *linear ordering*

Dual cones and inequalities

if K is a cone, dual cone is defined as

$$K^* = \{ y \mid x^T y \ge 0 \text{ for all } x \in K \}$$

• for $K = \mathbf{R}^n_+$, $K^\star = K$, since

$$\sum_{i} x_{i} y_{i} \ge 0 \text{ for all } x_{i} \ge 0 \iff y_{i} \ge 0$$

• for $K = \mathsf{PSD}$ cone, $K^\star = K$; (called *self-dual* cones)