FLT Seminar Series, Session 1 An Introduction to Feature Learning Theory

Chen Yanbo ¹

Wuhan University

Summer 2025

Chen Yanbo (WHU)

FL-1

Outline

An Introduction to Feature Learning Theory (FLT)

- Overview: what is feature, learning, and theory, respectively?
 - Features in various fields (e.g., DS, ML, CS, SE, DL, LLM)
 - How machine learns? The paradigm of modern ML&DL
 - Statistical learning theory v.s. FLT
- A simplified example: how FLT works? (Delayed to Session 2!)
 - Theoretical framework: creating the "virtual environment"
 - Typical techniques and proof sketches.
- Future plan (Jun. 2025 Apr. 2026)
 - Seminars (topics and techniques)
 - Projects (GitHub repo + the survey paper)

2/16

Table of Contents

1 What is feature learning theory?

2 A simplified example: how FLT works?

Future Plan

3/16

Features in various fields

In general, a *feature* refers to a *property* or *characteristic* of the object being observed. For example,

Example (Feature in various fields)

- In CS and SE, the meaning of features depends on specific context.
 → "XXX is not a bug, it is a feature."
- (*) In DL and LLM, roughly speaking, higher-level feature \approx data representation, lower-level feature \approx data pattern.
 - after one convolutional layer → pattern (e.g., edges and shapes)
 - ▶ after many layers → representation (used for classification)

4/16

Features in various fields

Figure: Higher- and lower-level features in CNN-based classification

Remark

- We focus on the features in DL (on data, NNs, and specific tasks).
- 2 Feature can be easily misused due to its inherent ambiguity.
- 3 The main goal of ML&DL is to *learn* useful features from data.

How machine learns?

The main goal of ML&DL is to *learn* useful features from data

• Looks good? But not rigorous (specific) enough!

The paradigm of machine learning

- Data. The ground-truth; $\Rightarrow \mathbb{R}^d$ or other structural data
- **Hypothesis class**. A finite set of candidate models \Rightarrow parameterized NNs, e.g., $f(\mathbf{x}; \mathbf{w})$ with $\mathbf{w} \in \mathbb{R}^{depth \times width}$
- Algorithm. How to find a good model from the hypothesis class?
- Evaluation. What defines a task-specific good model? Loss!

cf. Understand Machine Learning, S. Shalev-Shwartz and S. Ben-David

How machine learns? Theory v.s. Practice

Table: The paradigm of modern machine learning

	Theoretical	In Practice
Data	vectors and matrices	tensor
Hypothesis Class	functions and mappings	multi-layer NN
Algorithm	optimization	optimizer, LR,
Evaluation	loss function, regularization	CE, MSE,

```
butch_size = 64

train_dataloader - DataLoader(training_data, batch_size-batch_size)

class Neumalhetwork(nn.Module):

def __init__(self):

...

def forward(self, x):
...

loss_fn = nn.CrossEntropyLoss()
optimizer - torch.optim.SdD(model.parameters(), lr-ie-3)

def train(dataloader, model, loss_fn, optimizer):
...

for batch, (X, y) in enumerate(dataloader):

# Compute prediction error
pred = model(X)
loss = loss_in(pred, y)
# Backpropagation
loss.backamer()
optimizer.step()
```

Figure: Typical training code (from PyTorch documentation)

How machine learns? Theory v.s. Practice

In summary, **machine learning** uses a specified **algorithm** to find the best model in the **hypothesis class** according to the performance of the model on the **data**, concerning the **evaluation** standard.

Remark

- Ourrently, ML theory falls far behind practice.
- 2 Learning theory topics focus on *separated* stages in the paradigm.
- **OPERATE STATE** Paradigm shifting: RL, in-context learning, and inference of LLM.

8/16

Statistical learning theory v.s. FLT?

Table: Some learning theory topics

Торіс	Idea
Probably Approximately Correct (PAC)	sample complexity
VC Dimension	capacity measure
Expressiveness	universal approximation
Online-Learning	regret minimization
Robust Optimization	minimax, DRO
Diffusion Models	SDE
Feature Learning Theory	training dynamics

(Wait so... What to do with the features?)

9/16

Statistical learning theory v.s. FLT

In summary, **machine learning** uses a specified **algorithm** to find the best model in the **hypothesis class** according to the performance of the model on the **data**, concerning the **evaluation** standard.

FLT specifies the learning task (network structure, data assumption, loss, and algorithm) and explore the *dynamics* of training.

Dynamics: how the parameters of the NN iterate from random initialization (noise) to useful features used for classification/regression?

10 / 16

Table of Contents

What is feature learning theory

2 A simplified example: how FLT works?

3 Future Plan

11/16

How FLT works?

FLT specifies the learning task (network structure, data assumption, loss, and algorithm)

Theoretical framework

- **Network Structure**: 2-layer (symmetric)-ReLU f(x; w)
- Data: orthogonal feature + sparse coding model

$$x = \mathbf{M}z + \xi, \ y = sign(\langle w^*, z \rangle)$$

• Algorithm: GD with random initialization

$$w^{(t+1)} = w - \eta \nabla Loss(f(x, w), y)$$

• Loss: mean square loss + logistic loss

For any specific task, create a "virtual environment" to play around with.

Chen Yanbo (WHU) FL-1 Summer 2025 12 / 16

Techniques

- Define "good neuron sets" (lottery ticket theorem)
- Mathematical induction

(We will elaborate on these in FLT-2)

13/16

Table of Contents

What is feature learning theory

2 A simplified example: how FLT works?

3 Future Plan

14/16

Future Plan

GitHub Repo

- Tutorials (in Jupyter notebook)
- Python module (FLTK)

The survey paper

- Literature review and seminar speaker
- Open to cooperation!

Visit our project page at https://github.com/yanboc/feature-learning-theory

15/16

Thanks for your participation!

Welcome to join our WeChat group! If this expires, please don't hesitate to contact me at yanboch@126.com.

Chen Yanbo (WHU) FL-1 Summer 2025 16/16