

หน้า

1 / 14

รหัสวิชา010113340 ชื่อวิชา Antenna and Microwave Engineering Laboratory
ภาคการศึกษาที่2บระจำปีการศึกษา25652565
รหัสนักศึกษา6201011631188ชื่อ-นามสกุลนายโสภณสุขสมบูรณ์
รหัสนักศึกษา6201011631072ชื่อ-นามสกุลนาย ธนภูมิอังอำนวยศิริ
วันที่ และช่วงเวลาที่ทำการทดลองWed13.00-16.00
อาจารย์ผู้สอนPTD,WWT

<u>วัตถุประสงค์</u>

- 1. เพื่อให้นักศึกษามีความรู้ ความเข้าใจเกี่ยวกับแบบรูปการแผ่กระจายพลังงาน
- 2. เพื่อให้นักศึกษามีทักษะในการวัดแบบรูปการแผ่กระจายพลังงานในระบบ XYZ
- 3. เพื่อให้นักศึกษาสามารถคำนวณหาอัตราขยายของสายอากาศได้
- 4. เพื่อให้นักศึกษามีทักษะในการใช้เครื่อง Spectrum Analyzer และ Signal Generator

<u>ทฤษฎี</u>

แบบรูปการแผ่กระจายพลังงาน

ไอโซทรอปิก (Isotropic radiation pattern) เป็นแบบรูปที่มีคุณสมบัติของการแผ่กระจายพลังงาน เท่ากันในทุกทิศทางเป็นรูปทรงกลม เช่น แหล่งกำเนิดแบบจุด (Point source)

ชี้ทิศทาง (Directional radiation pattern) เป็นแบบรูปที่มีคุณสมบัติของการแผ่กระจายพลังงานหรือ รับพลังงานเข้ามาในทิศทางใดทิศทางหนึ่งอย่างมีประสิทธิภาพมากกว่าทิศทางอื่น

รอบทิศทางในระนาบเดี่ยว (Omnidirectional radiation pattern) เป็นแบบรูปที่มีคุณสมบัติของการ แผ่กระจายพลังงานออกไปรอบตัวในระนาบใดระนาบหนึ่ง ส่วนระนาบอื่นที่ตั้งฉากกันจะมีการแผ่พลังงานแบบมี ทิศทาง

(ก) แบบรูปไอโซทรอปิก

(ข) แบบรูปชี้ทิศทาง

(ค) แบบรูปรอบทิศทางในระนาบเดี่ยว

รูปที่ 1 แบบรูปการแผ่กระจายพลังงานแบบต่าง ๆ

ระยะที่เหมาะสมในการวัดทดสอบสายอากาศ

รูปที่ 2 ระยะห่างและความสูงระหว่างสายอากาศรับและส่ง

ในการวัดทดสอบแบบรูปการแผ่กระจายพลังงานของสายอากาศในทางปฏิบัติจะวัดในย่านสนาม ระยะไกล (Far-field region) โดยระยะห่างระหว่างสายอากาศส่งและสายอากาศรับที่ต้องการวัดทดสอบแบบ รูปการแผ่กระจายพลังงานสามารถหาได้คือ

$$R^{3} \frac{2D^{2}}{I} \tag{1}$$

โดยที่ D คือ ความกว้างสูงสุดของสายอากาศ (เมตร)

l คือ ความยาวคลื่นที่ความถี่ที่ต้องการวัดทดสอบ (เมตร)

นอกจากนี้ความสูงของสายอากาศทั้งตัวรับและตัวส่ง ต้องมีความสูงไม่น้อยกว่าระยะ 1" Fresnel zone คือ

Height
3
 $\frac{3' \text{ Distance}}{40f}$ (2)

โดยที่ f คือ ความถี่ที่ต้องการวัดทดสอบ (GHz)

การวัดแบบรูปการแผ่กระจายพลังงาน (Radiation Pattern)

การวัดแบบรูปการแผ่กระจายพลังงานของสายอากาศในระนาบ 2 มิติ จะทำได้โดยการวัดระนาบหลัก ที่ตั้งฉากกันสองระนาบ เช่น ระนาบสนามไฟฟ้า (E-Plane) และระนาบสนามแม่เหล็ก (H-plane) นอกจากนี้ยัง แบ่งเป็นการวัดในรูปของโพลาไรเซชั่นร่วม (Co-polarization) คือโพลาไรเซชั่นของสายอากาศส่งและ สายอากาศรับตรงกัน และโพลาไรเซชั่นไขว้ (Cross-polarization) คือโพลาไรเซชั่นของสายอากาศส่งและ

สายอากาศรับตั้งฉากกัน อย่างไรก็ตามการวัดแบบรูปการแผ่กระจายพลังงานในระนาบสนามไฟฟ้าและระนาบ สนามแม่เหล็กของสายอากาศนั้นทำได้ค่อนข้างยาก เนื่องจากต้องทราบลักษณะของสนามไฟฟ้าและ สนามแม่เหล็กของสายอากาศนั้น ๆ โดยทั่วไปลักษณะของสนามไฟฟ้าและสนามแม่เหล็กของสายอากาศแต่ละ ชนิดจะไม่เหมือนกัน ดังนั้นจึงนิยมใช้การวัดแบบรูปการแผ่กระจายพลังงานในระบบ xyz ตามโครงสร้าง สายอากาศต้นแบบแทน

การวัดแบบรูปการแผ่กระจายพลังงานในระบบ xyz จะทำการวัดในระนาบ xy ระนาบ xz และ ระนาบ yz ซึ่งการวัดแบบรูปการแผ่กระจายพลังงานในระนาบใดนั้น จะยึดจากระนาบของสายอากาศที่ต้องการ วัดทดสอบเป็นหลัก โดยจะใช้หลักการที่ว่าถ้าต้องการวัดระนาบใดให้เอาระนาบนั้นขนานกับพื้นโลกดังแสดงใน รูปที่ 3

(ง) ระนาบ xy ของสายอากาศ

รูปที่ 3 ระนาบการวัดแบบรูปการแผ่กระจายพลังงานของสายอากาศ

การวัดอัตราขยายของสายอากาศ (Antenna Gain)

การวัดอัตราขยายของสายอากาศ สามารถหาได้โดยใช้สมการส่งผ่านของฟรีส (Friis) โดยในการวัดจะให้ สายอากาศสองตัววางห่างกันด้วยระยะ R ซึ่งเป็นระยะในย่านสนามระยะไกล (Far field region) ที่คำนวณได้ จากความถี่และขนาดของสายอากาศที่ทำการวัดดังแสดงในสมการ (1) เมื่อพิจารณาให้สายอากาศทั้งสองมีการ แมตซ์ของโพลาไรเซชัน ดังนั้นสามารถหาอัตราขยายในทิศทางการแผ่พลังงานสูงสุดได้จากสมการส่งผ่านของ ฟรีสคือ

$$(P_r)_{dB} = (P_t)_{dB} + (G_{ot})_{dB} - 20\log\left(\frac{4\pi R}{\lambda}\right) + (G_{or})_{dB}$$

หรือ

$$(G_{ot})_{dB} + (G_{or})_{dB} = (P_r)_{dB} - (P_t)_{dB} + 20\log\left(\frac{4\pi R}{\lambda}\right)$$
 (3)

เมื่อ $(G_{ot})_{\mathrm{dB}}$ คือ อัตราขยายของสายอากาศตัวส่ง (dB) ที่มุม 0 องศา

 $(G_{or})_{
m dB}$ คือ อัตราขยายของสายอากาศตัวส่ง (dB) ที่มุม 0 องศา

 P_{r} คือ กำลังที่รับได้ (dB)

 P_{r} คือ กำลังที่ใช้ส่ง (dB)

R คือ ระยะห่างระหว่างสายอากาศ (m)

 λ คือ ความยาวคลื่นของความถี่ที่ใช้วัด (m)

โดยที่ $20\log\left(\frac{4\pi R}{\lambda}\right)$ คือ ค่าการสูญเสียในอวกาศว่าง (Free space path loss) ถ้าคิดการสูญเสียในสายนำ สัญญาณด้วย จะสามารถคำนวณหาอัตราขยายของสายอากาศได้จาก

$$(G_{ot})_{dB} + (G_{or})_{dB} = (P_r)_{dB} - (P_t)_{dB} + 20\log\left(\frac{4\pi R}{\lambda}\right) + (cable loss)_{dB}$$
 (4)

ในการวัดทดสอบอัตราชยายสายอากาศนั้น โดยทั่วไปแล้วจะทำการวัดอัตราชยายของสายอากาศรับ โดยที่ สายอากาศส่งจะเป็นสายอากาศมาตรฐานที่รู้ค่าอัตราชยายแน่นอน แต่ในกรณีที่ไม่มีสายอากาศมาตรฐาน จะใช้ สายอากาศตัวส่งและตัวรับที่เหมือนกันทุกประการ $\left((G_{ot})_{\mathrm{dB}}=(G_{or})_{\mathrm{dB}}\right)$ ดังนั้นจะสามารถหาอัตราชยายได้คือ

$$(G_{or})_{dB} = (G_{ot})_{dB} = \frac{1}{2} \left[(P_r)_{dB} - (P_t)_{dB} + 20 \log \left(\frac{4\pi R}{\lambda} \right) + (\text{cable loss})_{dB} \right]$$
 (5)

หน้า

5 / 14

<u>อุปกรณ์การทดลอง</u>

- 1. สายอากาศที่เหมือนกัน 2 ตัว
- 2. Signal Generator 1 เครื่อง
- 3. Spectrum Analyzer 1 เครื่อง
- 4. สาย Coaxial
- 5. ขาตั้งสายอากาศ และแท่นหมุนสายอากาศ

ขั้นตอนการเตรียมความพร้อมเครื่อง Signal Generator

- 1. เปิดเครื่อง Signal Generator
- 2. ต่อสาย Coaxial เข้ากับ Signal Generator และสายอากาศส่ง โดยที่สายอากาศส่งจะถูกติดตั้งกับเสา ส่งและหันหน้าเข้าหาสายอากาศรับ

- 3. เลือกความถี่ใช้งาน โดยกด Center แล้วตามด้วยความถี่ดำเนินงานของสายอากาศ
- 4. เลือกกำลังงานที่ใช้ส่ง โดยกด Power Level แล้วตามด้วยกำลังงานที่ต้องการส่งให้กับสายอากาศส่ง ซึ่ง ในการทดลองให้ตั้งไว้ที่ 0 dBm (แต่ถ้าไม่สามารถรับ-ส่งกำลังงานกันได้ให้เพิ่ม Power Level)

ขั้นตอนการเตรียมความพร้อมเครื่อง Spectrum Analyzer

- 1. เปิดเครื่อง Spectrum Analyzer
- 2. ต่อสาย Coaxial เข้ากับ Spectrum Analyzer และสายอากาศรับที่ต้องการวัดทดสอบแบบรูปการแผ่ กระจายพลังงาน โดยสายอากาศรับจะติดตั้งกับแท่นหมุน เพื่อหมุนรับกำลังงานจากสายอากาศส่งในแต่ละองศา
- 3. เลือกความถี่ใช้งาน โดยกด Center Frequency แล้วตามด้วยความถี่ดำเนินงานของสายอากาศ ทั้งนี้ ความถี่ของสายอากาศส่งและสายอากาศรับต้องเป็นความถี่เดียวกัน และตั้งค่าการลดทอน (Attenuation) เป็น 0 dB
 - 4. กด Peak Search เพื่อดูระดับกำลังงานที่รับได้โดยสายอากาศรับ

หน้า 6 / 14

คำสั่ง ให้นักศึกษา**เลือก**ทำการวัดแบบรูปการแผ่กระจายพลังงานของสายอากาศไมโครสตริป เช่น สายอากาศ ไมโครสตริปไดโพล หรือสายอากาศไมโครสตริปแพทซ์ ในระนาบ xz และระนาบ yz

ข<u>ั้นตอนการทดลอง</u>

- 1. ทำการติดตั้งสายอากาศส่งและสายอากาศรับที่ต้องการจะวัดในระนาบต่าง ๆ ได้แก่ ระนาบ x_Z (โพลาไรเซชั่นร่วม) ระนาบ x_Z (โพลาไรเซชั่นไขว้) ระนาบ y_Z (โพลาไรเซชั่นร่วม) และระนาบ y_Z (โพลาไรเซชั่นไขว้) ตัวอย่างดังรูปที่ 4
- 2. หมุนสายอากาศตัวรับไปครั้งละ 10 องศา โดยเริ่มจาก 0 องศา ไปจนถึง 360 องศา และบันทึกค่า Received Power ที่ได้ในตารางที่ 1, 2, 3, และ 4
- 3. นำค่าที่วัดได้จากตารางที่ 1 และ 2 มาฟล็อตกราฟแบบเชิงขั้ว (Polar plot) โดยมีขั้นตอนดังนี้ 3.1) หาค่า Received Power สูงสุดของแต่ละตาราง
- 3.2) ทำการเปรียบเทียบ Maximum Received Power ของตารางที่ 1 และ 2 แล้ว**เลือกค่าที่มากกว่า** มาทำการ Normalize
- 3.3) ทำการ Normalize ค่ากำลังงานที่วัดได้ โดยนำค่ากำลังที่วัดได้ในองศาต่าง ๆ ลบด้วยค่า Maximum Received Power ซึ่งจะทำให้ค่ากำลังงานสูงสุดมีค่าเท่ากับ 0 dB
 - 3.4) ทำการฟล็อตกราฟค่าที่ได้จากการ Normalize จากตารางที่ 1 และตารางที่ 2 ลงในกราฟเดียวกัน
- 4. นำค่าที่วัดได้จากตารางที่ 3 และ 4 มาฟล็อตกราฟแบบเชิงขั้ว (Polar plot) โดยมีขั้นตอนดังนี้
 - 4.1) หาค่า Received Power สูงสุดของแต่ละตาราง
- 4.2) ทำการเปรียบเทียบ Maximum Received Power ของตารางที่ 3 และ 4 แล้ว**เลือกค่าที่มากกว่า** มาทำการ Normalize
- 4.3) ทำการ Normalize ค่ากำลังงานที่วัดได้ โดยนำค่ากำลังที่วัดได้ในองศาต่าง ๆ ลบด้วยค่า Maximum Received Power ซึ่งจะทำให้ค่ากำลังงานสูงสุดมีค่าเท่ากับ 0 dB
 - 4.4) ทำการฟล็อตกราฟค่าที่ได้จากการ Normalize จากตารางที่ 3 และตารางที่ 4 ลงในกราฟเดียวกัน

หน้า

7 / 14

(ก) สายอากาศไดโพล

(ข) สายอากาศไมโครสตริปแพทซ์

รูปที่ 4 ตัวอย่างการจัดวางสายอากาศส่งและสายอากาศรับที่ต้องการวัดทดสอบแบบรูปการแผ่กระจายพลังงาน

หน้า 8 / 14

บันทึกผลการทดลอง

Signal Generator ที่ใช้ในการทดสอบ	Vector Signal Generator	
Spectrum Analyzer ที่ใช้ในการทดสอบ	T8260	
สายอากาศที่นำมาวัดทดสอบ	Microstrip Patch Antenna	
กำลังงานที่ใช้ในการส่ง (Power level)	0 dB	
ย่านความถี่ดำเนินงานของสายอากาศส่ง/รับ	Tx1.5 GHzRx1.5 GHz	
ความถี่ที่ใช้ในการวัดทดสอบ และระยะในการทดสอบ	$f = \dots 1.5 \text{ GHz} \dots R = \dots 17 \text{ cm}$	
ค่าการสูญเสียในสายนำสัญญาณเส้นที่ 1 และ 2	Cable Tx3.4 dBmCable Rx2 dBm	

ตารางที่ 1 กำลังงานที่ถูกรับได้โดยสายอากาศรับในระนาบxz (โพลาไรเซชั่นร่วม)

Angle	Received	Normalize	Angle	Received	Normalize
(degree)	Power (dB)	(dB)	(degree)	Power (dB)	(dB)
0	-41.69	-6.02	190	-51.23	-15.56
10	-41.97	-6.30	200	-54.73	-19.06
20	-42.67	-7.00	210	-56.23	-20.56
30	-43.37	-7.70	220	-56.97	-21.30
40	-44.87	-9.20	230	-56.32	-20.65
50	-48.63	-12.96	240	-52.11	-16.44
60	-51.12	-15.45	250	-52.24	-16.57
70	-50.24	-14.57	260	-49.97	-14.30
80	-48.84	-13.17	270	-49.51	-13.84
90	-46.72	-11.05	280	-48.21	-12.54
100	-44.71	-9.04	290	-47.23	-11.56
110	-47.63	-11.96	300	-45.22	-9.55
120	-50.74	-15.07	310	-45.11	-9.44
130	-51.23	-15.56	320	-44.87	-9.20
140	-49.21	-13.54	330	-42.17	-6.50
150	-45.66	-9.99	340	-42.11	-6.44
160	-52.02	-16.35	350	-42.23	-6.56
170	-52.62	-16.95	360	-41.77	-6.10
180	-51.82	-16.15			

หน้า 9 / 14

ค่า Maximum Received Power<mark>-41.69 dB</mark>.....

ตารางที่ 2 กำลังงานที่ถูกรับได้โดยสายอากาศรับในระนาบ $x_{\mathcal{Z}}$ (โพลาไรเซชั่นไขว้)

Angle	Received	Normalize	Angle	Received	Normalize
(degree)	Power (dB)	(dB)	(degree)	Power (dB)	(dB)
0	-36.87	-1.2	190	58.12	-22.45
10	-37.15	-1.48	200	-56.89	-21.22
20	-38.12	-2.45	210	-57.12	-21.45
30	-42.21	-6.54	220	-55.72	-20.05
40	-49.21	-13.54	230	-51.76	-16.09
50	-51.17	-15.50	240	-50.19	-14.52
60	-52.70	-17.03	250	-45.29	-9.62
70	-52.79	-17.12	260	-43.01	-7.34
80	-51.72	-16.05	270	-41.27	-5.60
90	-52.27	-16.60	280	-39.37	-3.70
100	-52.74	-17.07	290	-40.26	-4.59
110	-50.12	-14.45	300	-49.39	-13.72
120	-48.12	-12.45	310	-38.12	-2.45
130	-47.02	-11.35	320	-37.27	-1.60
140	-49.27	-13.60	330	-36.94	-1.27
150	-49.56	-13.89	340	-36.07	-0.40
160	-51.67	-16.00	350	-35.67	0.00
170	-55.37	-19.70	360	-36.74	-1.07
180	-53.28	-17.61			

ค่า Maximum Received Power.......<mark>-35.67 dB</mark>.....

แบบรูปการแผ่กระจายพลังงานของสายอากาศในระนาบ xz ทั้งโพลาไรเซชั่นร่วมและโพลาไรเซชั่นไขว้

Radiation Pattern in xz-plane

หน้า

11 / 14

ตารางที่ 3 กำลังงานที่ถูกรับได้โดยสายอากาศรับในระนาบyz (โพลาไรเซชั่นร่วม)

Angle	Received	Normalize	Angle	Received	Normalize
(degree)	Power (dB)	(dB)	(degree)	Power (dB)	(dB)
0	-38.72	0	190	-52.60	-13.88
10	-39.76	-1.04	200	-50.97	-12.25
20	-41.03	-2.31	210	-49.07	-10.35
30	-41.03	-2.31	220	-49.83	-11.11
40	-41.76	-3.04	230	-52.13	-13.41
50	-45.27	-6.55	240	-51.23	-12.51
60	-46.74	-8.02	250	-49.67	-10.95
70	-43.27	-4.55	260	-48.91	-10.19
80	-46.23	-7.51	270	-50.92	-12.20
90	-46.12	-7.40	280	-48.12	-9.40
100	-45.21	-6.49	290	-45.97	-7.25
110	-52.97	-14.25	300	-44.92	-6.20
120	-52.87	-14.15	310	-43.67	-4.95
130	-51.92	-13.20	320	-44.12	-5.40
140	-49.21	-10.49	330	-43.03	-4.31
150	-48.97	-10.25	340	-41.29	-2.57
160	-47.23	-8.51	350	-40.23	-1.51
170	-49.14	-10.42	360	-39.27	-0.55
180	-52.17	-13.45			

ค่า Maximum Received Power<mark>-38.72 dB</mark>.....

หน้า

12 / 14

ตารางที่ 4 กำลังงานที่ถูกรับได้โดยสายอากาศรับในระนาบyz (โพลาไรเซชั่นไขว้)

Angle	Received	Normalize	Angle	Received	Normalize
(degree)	Power (dB)	(dB)	(degree)	Power (dB)	(dB)
0	-41.73	3.01	190	-41.07	-2.35
10	-43.07	-4.35	200	-42.82	-4.10
20	-43.91	-5.19	210	-43.69	-4.97
30	-41.85	-3.13	220	-45.92	-7.20
40	-41.07	-2.35	230	-44.23	-5.51
50	-42.03	-3.31	240	-42.32	-3.60
60	-40.87	-2.15	250	-43.91	-5.19
70	-40.39	-1.67	260	-46.82	-8.10
80	-42.39	-3.67	270	-48.67	-9.95
90	-40.27	-1.55	280	-48.07	-9.35
100	-41.07	-2.35	290	-47.71	-8.99
110	-42.08	-3.36	300	-44.39	-5.67
120	-43.37	-4.65	310	-43.14	-4.42
130	-45.61	-6.89	320	-42.41	-3.69
140	-44.39	-5.67	330	-42.06	-3.34
150	-44.72	-6.00	340	-42.13	-3.41
160	-44.12	-5.40	350	-40.73	-2.01
170	-45.62	-6.90	360	-40.41	-1.69
180	-42.03	-3.31			

ค่า Maximum Received Power<mark>-40.27 dB</mark>.....

แบบรูปการแผ่กระจายพลังงานของสายอากาศในระนาบ yz ทั้งโพลาไรเซชั่นร่วมและโพลาไรเซชั่นไขว้

หน้า

14 / 14

จากกราฟที่ได้จากผลการวัดแบบรูปการแผ่กระจายพลังงานในระบบ XYZ จะได้ว่า สายอากาศที่นำมาวัดทดสอบมีแบบรูปการแผ่กระจายพลังงานแบบใด

Isotropic Directional Omnidirectional

จงแสดงวิธีคำนวณอัตราขยายของสายอากาศที่มุม 0 องศา

จากสูตร $(G_{or})_{dB} = (G_{ot})_{dB} = \frac{1}{2} \left[(P_r)_{dB} - (P_t)_{dB} + 20 \log \left(\frac{4\pi R}{\lambda} \right) + (\text{cable loss})_{dB} \right] \dots (1)$ สิ่งที่เราทราบ

- กำลังที่ฝั่งเครื่องรับ : P_{r} = -36.87 dB (จากตารางที่ 2)
- กำลังที่ฝั่งเครื่องส่ง : P_t = 0 dB (จากเครื่อง Vector Generator Signal)
- ระยะทางระหว่างเครื่องรับและเครื่องส่ง : \mathbf{R} = 17 cm (Far-Field)
- ความยาวคลื่น : **λ** = 0.2 m (ความถี่ 1.5 GHz)
- ค่าความสูญเสียเนื่องจากสายส่ง : cable loss = -3.4 dBm และ -2 dBm หรือเท่ากับ -35.40 dB จากข้อมูลข้างต้น เมื่อเรานำค่าไปแทนในสมการ (1) จะได้ว่า

;
$$(G_{or})_{dB} = (G_{ot})_{dB} = \frac{1}{2} [-36.87 - 0 + 20 \log \left(\frac{4\pi (17 \times 10^{-2})}{0.2}\right) + (-35.40)]$$

 $\therefore (G_{or})_{dB} = (G_{ot})_{dB} = -12.45 \text{ dB } \#$

$$G_{or}$$
 G_{or} G_{or}

สรุปได้ว่า อัตราขยายของสายอากาศที่มุม 0 องศา มีค่าเท่ากับ -12.45 เดซิเบล

สรุปผลการทดลอง

จากการทดลอง พบว่าสายอากาศแบบ Microstrip Patch ที่นำมาใช้ทดลองเพื่อพิจารณาแบบรูปการแผ่พลังงาน นั้น มีลักษณะการแผ่พลังงานแบบ Omnidirectional หรือก็คือ ระนาบหนึ่งมีการแผ่กระจายรอบทิศทาง และ ระนาบหนึ่งมีการแผ่กระจายแบบมีทิศทาง โดยจากการทดลองเมื่อนำค่าไปพล็อตและสังเกตผล จะพบว่า ระนาบ XZ มีการแผ่กระจายพลังงานไปยังด้านหนึ่ง ๆ โดยเฉพาะ และระนาบ YZ มีการแผ่กระจายพลังงานเสมือนรอบ ทิศทาง เนื่องจากการทดลองในห้องปฏิบัติการนั้นมีปัญหาหลายอย่าง เช่น อุปกรณ์สำหรับการทดลองไม่พร้อมใช้ งาน สภาพแวดล้อมสำหรับการทดลองภายในห้องปฏิบัติการ ทำให้ผลลัพธ์ที่ได้มีความคลาดเคลื่อน แต่สามารถ พิจารณาได้ว่ามีลักษณะคล้ายกับการแผ่พลังงานแบบรอบทิศทาง ซึ่งการทดลองมีทั้งหมด 4 การทดลอง มีการ พิจารณาการแผ่พลังงานแบบ Co-Polarization และ Cross-Polarization ซึ่งจากการทดลองจะพบว่า สายอากาศเมื่อทำการติดตั้งแบบ Cross-Polarization มีแบบรูปการแผ่พลังงานดีกว่า มีกำลังงานสูงกว่าในระยะ Far-Field ดังนั้น สายอากาศ Microstrip Patch 1.5 GHz ที่ใช้สำหรับการทดลองนี้มีแบบรูปการณ์แผ่พลังงาน แบบ Omnidirectional และแผ่พลังงานได้ดีเมื่อมีการติดตั้งแบบ Cross-Polarization