方程式を使って、モノの動きをデザインする

どんな研究?

制御理論は、数学を使って実世界のモ ノを抽象化し、その動き設計する基盤 研究です。どんなモノにも通用する方 法論を作ることを目指しています。具 体的には、物理法則に基づいて記述さ れる微分方程式の性質を解析したり、 その微分方程式が望み通りの解を持つ ように入力を設計したりします。

何がわかる?

機械学習などのデータ駆動型のアプ ローチとの大きな違いは、データに頼 るのではなく、モノの本質を捉え、与 えられた仮定の下での性能保証を目指 すところにあります。

> 専門家向け:基本的に、ホワイトボック スもしくはグレイボックスモデルを対象 にします。

状況設定

美世界

解決したい問題

遺伝子ネットワークの解析から 飛行機の航路設計まで色々

少しの理論と職人技で問題解決?

数学世界

数理モデリング

物理法則などに基づ く方程式による記述 (複雑なものだと専門家が 担当することも)

理解や解決の糸口の提供

たくさんの試行錯誤

効率的で、数学的 保証がある設計

制御理論

様々な数学(線形代数、グ ラフ理論、集合論、確率論、 最適化などなど)を用いて、 数理モデルを解析したり、 制御則を提案したりします

(理論研究では、具体的な 対象物を考えることは少な く、問題の種類に合わせて 適切なクラスの数理モデル を仮定し、様々な条件を加 えて、制御入力を設計する ことが多いです)

研究内容

様々な方程式を様々な方法で解析して、以下を達成する制御器を設計する問題に取り 組んでいます

- 安定性 (x(t)をゼロに近づけていく)
- 最適性 (u(t)の時間積分を小さくする、 最短時間でx(t)をゼロに持っていくなど)
- ロバスト性(不確かな要素があっても、 望み通りに動くようにする)

制御器 制御信号を決定 制御信号 計測データ u(t) x(t)制御対象 動的システム

制御理論の応用範囲は∞一例は向かいのポスターで!

Email: kishida@nii.ac.jp

連絡先:岸田昌子/国立情報学研究所情報学プリンシプル研究系