

本文件是針對 OTI 與 OTM 系列的通信方法進行說明,OTI 與 OTM 系列內建遠紅外線溫度感測元件,可以被應用於非接觸式之目標物體溫度量測。OTI 與 OTM 系列輸出的資料為數字格式,只需經過簡單的計算,便可得到實際的溫度值($^{\circ}$ C)。

Data communication protocol for OTI and OTM series

由於 OTI 與 OMT 系列的數據通信方法一樣,為了簡化說明,在接下來的說明文字中,我們將簡稱為 "OTI-301"。

1. 通訊介面

OTI-301 使用 I2C 通訊介面,外部裝置可以經由簡易指令與 OTI-301 溝通。 應用電路如圖一所示,在 SDA 和 SCL 的線路上,建議加裝 $10 \mathrm{K}\,\Omega$ 的提升電阻。

圖1應用電路

在 I2C 的通信過程中,OTI-301 是屬於從屬裝置,採用 7bits 的定址格式,它的位址為 10H,I2C 的參數值如表 1 所示。

表 1 I2C 參數

裝置位置	7 bits: 0010 000b (b=R/W bit)
	8 bits: Read 21H, Write 20H
頻率	100 KHz
資料更新速率	2 records/second

OTI-AN-002

2. 硬體腳位輸出定義

關於每個產品型號的硬件引腳定義及相關詳細訊息,請參閱相關產品規格 書。

3. 數據讀取指令

當主控裝置要讀取 OTI-301 的目標溫度資料時,需要發送以下的指令集給 OTI-301,該指令集共由2個bytes所組成。

表 2 讀出命令集合

Byte sequence	Syntax	Value	Description
Byte 1	ADR	20H	Write data to I2C slave address 10H
Byte 2	CMD	80H	Readout request command

4. 回應之數據

在接收到數據讀取指令集後,OTI-301 會回應 6 bytes 的資料,此 6 bytes 的 資料可以被劃分為 2 個溫度數據集,前 3 Bytes 可以被組合成一個環境溫度數據 集,而後3Bytes則可以被組合成一個目標溫度數據集。

表 3 OTI-301 回傳資料內容

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
Ambient_L	Ambient_M	Ambient_H	Object_L	Object_M	Object_H

5. 數據的讀取和回應過程

關於在第3節和第4節中提到的數據通信過程,經過整理後,歸納如圖2 所示。

Temperature information reading process

圖 2 溫度數據讀取過程

6. 溫度轉換方式

溫度信息是由二進制的24bits所組成的數據集,並按照3個bytes分別發送。

Ambient_L & Object_L: 最低 8 bits 的溫度信息。

Ambient_M & Object_M: 中間 8 bits 的溫度信息。

Ambient_H & Object_H: 最高 8 bits 的溫度信息。

6.1 正或負值的判斷

Ambient_H&Object_H屬於 24bits 信息組合中之高位元組,此位元組包含正負號的信息;如果 Ambient_H 或 Object_H 的值小於 80H,這意味著讀出的數據集是正的。否則,讀取數據集是負的。如果檢查發現數據集是負值,該數據集必須通過 2 的補數計算處理 ,如下面章節之公式(2)及公式(4)所示。

OTI-AN-002

6.2 環境溫度計算(Ta)

環境溫度(℃)可以經由以下的公式計算得到。

環境溫度值是取環境溫度數據集的資料來進行計算,若 Ambient_H 小於 80H,

$$Ta = (Byte_1 + Byte_2*256 + Byte_3*65536)/200$$
(1) 否則

$$Ta = \{ [(Byte \ 1 + Byte \ 2*256 + Byte \ 3*65536)] - 16777216 \} / 200....(2) \}$$

6.3 目標溫度計算(To)

目標溫度(℃)可以經由以下的公式計算得到。

目標溫度值是取目標溫度數據集的資料來進行計算,若 Object_H 小於 80H,

$$To = (Byte_4 + Byte_5*256 + Byte_6*65536)/200$$
(3) 否則

$$To = \{ [(Byte_4 + Byte_5*256 + Byte_6*65536)] - 16777216 \} / 200 \dots (4) \}$$

6.4 計算溫度範例(正值)

假設 OTI-301 所回傳的6 bytes 資料為 "EC 14 00 F8 15 00",經觀察各別的數據集內容後,可以發現 Ambient_H 為 "00H"及 Object_H 為 "00H", 兩者都小於 80H,故可套用公式(1)以及公式(3)。

在環境溫度(Ta)部份,取前面 3 Bytes "EC 14 00"(Hex) 進行計算

$$Ta = (0ECH) + (14H) *100H + (00H) *10000H$$

$$= 236 + 20 *256 + 0 *65536 = 5326$$

5326/200 = 26.78 °C

在目標溫度(To)部份,取後面 3 Bytes "F8 15 00"(Hex) 進行計算

$$To = (0F8H) + (15H)*100H + (00H)*10000H$$

$$= 248 + 21 *256 + 0 *65536 = 5624$$

5624/200 = 28.12 °C

可得到環境溫度為 26.78 ℃ 目標溫度為 28.12 ℃。

6.5 計算溫度範例(負值)

假設 OTI-301 所回傳的6 bytes 資料為 "70 FD FF 30 F6 FF",經觀察各別的數據集內容後,可以發現 Ambient_H 為 "0FFH"及 Object_H 為 "0FFH",兩者都大於 80H,故應採用公式(2)以及公式(4)。

OTI-AN-002

Ta =
$$[(70H) + (0FDH) *100H + (0FFH) *10000H] - 1000000H$$

= $[112 + 253 *256 + 255 *65536] -16777216 = -656$
-656/200 = -3.28 °C

To =
$$[(30H) + (0F6H)*100H + (0FFH)*10000H] - 1000000H$$

= $[48 + 246 *256 + 255 *65536] - 16777216 = -2512$
 $-2512/200 = -12.56$ °C

可得到環境溫度為-3.28 ℃ 目標溫度為-12.56 ℃。

7. 睡眠和喚醒

OTI-301 為實現節能之目的,有建立睡眠模式的功能。

7.1 進入睡眠模式

如果主設備要讓 OTI-301 進入休眠模式,可以按順訊發送以下兩個命令。

- To send "20H", "0EH", "C9H"
- To send "20H", "0FH", "99H"

表 4 進入睡眠模式之命令

Byte sequence	Syntax	Value	Description
Byte 1	ADR	20H	Write data to I2C slave address 10H
Byte 2	CMD	0EH	1 st command
Byte 3	PRM	С9Н	1 st parameter

Byte sequence	Syntax	Value	Description
Byte 1	ADR	20H	Write data to I2C slave address 10H
Byte 2	CMD	0FH	2 nd command
Byte 3	PRM	99H	2 nd parameter

OTI-AN-002

進入睡眠模式過程的 I2C 位流如圖 3 所示。

Enter sleep mode process

S	Slave Address [001 0000]	Wr [0]	A	Command [0000 1110]	A	Parameter [1100 1001]	Ā	P
s	Slave Address [001 0000]	Wr [0]	A	Command [0000 1111]	A	Parameter [1001 1001]	Ā	P
	Data Direction	n: MA	STER	send to SLAVE				
	Data Direction	n: SLA	VE se	end to MASTER				

Legend:

S START Condition

Sr Repeated START Condition

Rd READ (bit value 1)

Wr WRITE (bit value 0)

A ACKNOWLEDGE (ACK)

Ā NOT ACKNOWLEDGE (NACK)

P STOP Condition

圖 3 進入睡眠模式過程

7.2 從睡眠模式中喚醒

當 OTI-301 處於睡眠模式後並且主設備想要喚醒時,可以發送以下命令。

- To send "20H", "0EH", "00H"

表 5 從睡眠模式中喚醒之命令

Byte	Syntax	Value	Description		
sequence					
Byte 1	ADR	20H	Write data to I2C slave address 10H		
Byte 2	CMD	0EH	Command		
Byte 3	PRM	00H	parameter		

OTI-AN-002

從睡眠模式中喚醒的 I2C 位流如圖 4 所示。

Wake-up process

S	Slave Address		Command [0000 1110]	A	Parameter [0000 0000]	Ā	P	
				R send to SLAVE				

Legend:

S START Condition

Sr Repeated START Condition

Rd READ (bit value 1)

Wr WRITE (bit value 0)

A ACKNOWLEDGE (ACK)

 $\bar{\mathbf{A}}$ NOT ACKNOWLEDGE (NACK)

P STOP Condition

圖 4 從睡眠模式中喚醒過程