

INVESTIGATING SPARSITY IN RECURRENT NEURAL NETWORKS

DARJI, HARSHIL JAGADISHBHAI

SUPERVISORS:

1. PROF. DR. MICHAEL GRANITZER

2. PROF. DR. HARALD KOSCH

ADVISOR: JULIAN STIER

AGENDA

- 1. Introduction
- 2. Motivation
- 3. Related work
- 4. Research goals
- 5. <u>Dataset</u>
- 6. Experiments
- 7. Results
- 8. Conclusion

1. INTRODUCTION

Recurrent Neural Networks are standard models that have shown exceptional performance in many NLP tasks that make
use of sequential information.

- A standard RNN is parameterized with three weight matrices (W_{hx} , W_{hh} , W_{ho}) and two bias vectors (b_h , b_o).
- Deep extensions of such basic RNNs can be constructed by stacking multiple recurrent hidden states on top of each other.

1. INTRODUCTION (cont.)

Different variations of RNNs are created based on various internal architectures of hidden states as shown below:

Internal architecture of a hidden state

- A vanilla RNN differs based on the nonlinearity function used.
- Tanh and ReLU are two of the most used nonlinearity functions.

2. MOTIVATION

- Deep Neural Networks are more likely to have increased performance but also increased fast memory requirements.
- One way to decrease these memory requirements is to introduce sparsity into a network's connection¹.
- Sparsity in traditional neural networks is being studied widely from the past few years but is not explored much in case of recurrent neural networks.
- Sparse structures have shown a training potential in traditional neural networks² which if applied to RNNs, can also make training them less difficult while retaining their performance.

¹ Kaiming He et al. "Deep Residual Learning for Image Recognition". In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). DOI: 10.1109/CVPR.2016.90

² Simon Alford et al. Pruned and Structurally Sparse Neural Networks. Tech. rep. MIT, 2018. arXiv: 1810.00299v1

3. RELATED WORK

- Exploring Sparsity in Recurrent Neural Networks¹ (November 2016):
 - Pruned the linear layers that feed into the recurrent layers, the forward and backward recurrent layers and fully connected layer before the CTC layer.
- Pruned and Structurally Sparse Neural Networks² (September 2018):
 - Tested pruning based sparse topologies by pruning a pre-trained dense network and by using RadiX-Nets.
- Exploring Randomly Wired Neural Networks for Image Recognition³ (April 2019):
 - Explored randomly wired neural networks driven by random graph models from graph theory.
- Structural Analysis of Sparse Neural Networks⁴ (September 2019):
 - Predicted the performance of convolutional neural networks using its structural properties.

¹ Sharan Narang et al. "Exploring Sparsity in Recurrent Neural Networks". In: ICLR 2017 Conference. arXiv: <u>1704.05119v2</u>

² Simon Alford et al. Pruned and Structurally Sparse Neural Networks. Tech. rep. MIT, 2018. arXiv: 1810.00299v1

³ Saining Xie et al. Exploring Randomly Wired Neural Networks for Image Recognition. Tech. rep. Facebook Al Research (FAIR), 2019. arXiv: 1904.01569v2

⁴ Julian Stier and Michael Granitzer. "Structural Analysis of Sparse Neural Networks". In: 23rd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems. DOI: 10.1016/j.procs.2019.09.165

4. RESEARCH GOALS

- The primary goal is to investigate, both pruned and structural sparsity in RNNs by answering the following research questions:
 - What is the effect of weights pruning on a recurrent network's accuracy?
 - 2. What percentage of weights pruning is permissible without triggering a significant reduction in the performance?
 - 3. After pruning a certain percent of weights, if we see a significant reduction in the accuracy, how many re-training epochs can **regain accuracy**?
 - 4. How does a randomly structured recurrent network's **performance correlate with the graph properties** of its internal structure?
 - 5. Is it possible to **predict** a randomly structured recurrent network's performance using the graph properties of its base random graph?
- I will answer these questions by conducting several experiments on different datasets.

5. DATASETS

- Consists of a total of 25000 grammar sequences.
- 12500 are true Reber sequences, and 12500 are false Reber sequences.
- Train-Test split:

	Training set	Test set
True (Valid)	9339	3161
False (Invalid)	9411	3089

Minimum string length: 11 (216 strings)

Maximum string length: 53 (1 string)

Reber grammar flowchart

6. EXPERIMENTS

Base model 9

6. EXPERIMENTS (cont.)

- Pruning:
 - 1. Pruning both, input-to-hidden and hidden-to-hidden weights simultaneously,
 - 2. Pruning only input-to-hidden weights,
 - 3. Pruning only hidden-to-hidden weights
- Randomly structured RNN
- Performance prediction of Randomly Structured RNNs

6.1. PRUNING

- Pruning is performed on trained base model.
- After pruning p percentage, pruned performance is stored.
- Afterwards, this pruned model is retrained to identify the number of epochs required to regain the accuracy.
- This pruning experiement is performed for,
 - RNN_Tanh,
 - RNN_ReLU,
 - LSTM,
 - GRU
- Results of this experiment is presented in section 1.2.

6.2. RANDOMLY STRUCTURED RNN

 Start with a Random Graph and make it directed (if not!).

 Using the layer indexing algorithm, compute layer indexing of each node in the random graph.

Layered Random Graph

6.2. RANDOMLY STRUCTURED RNN (cont.)

Randomly Structured RNN model is then generated by introducing recurrent connections between consecutive layered RG:

6.3. PERFORMANCE PREDICTION RS RNN

- During training and evaluation of Randomly Structured RNN, graph properties of the base Random Graphs are stored along with its corresponding performance.
- Three regressor algorithms, namely Bayesian Ridge, Random Forest, and AdaBoost, are then trained on this data, with graph properties as features and performance as the target.
- An R²-value is then reported to understand how these data fit each regressor model.

7. RESULTS

Base model performance:

7.1. PRUNING RESULTS

Pruning performance (both I2H and H2H):

7.1. PRUNING RESULTS (cont.)

Pruning I2H weights:

7.1. PRUNING RESULTS (cont.)

Pruning H2H weights:

7.1. PRUNING RESULTS (cont.)

- In most cases, each pruned model recovers only after one epoch,
 - except in the case of RNN_Tanh, after pruning 90% I2H weights, it requires two epochs to recover.
- In almost all the cases, pruned models never recover after 100% pruning,
 - except in the case of LSTM and GRU, both models still recovers in just one epoch, even with 100% pruning of H2H weights.

7.2. RANDOMLY STRUCTURED RNN PERFORMANCE

Property	Correlation with test_acc				
	RNN_Tanh	RNN_ReLU	LSTM	GRU	
nodes	0.40	0.44	0.44	0.49	
edges	0.38	0.43	0.42	0.49	
source_nodes	0.35	0.47	0.57	0.74	
degree_var	-0.28	-0.26	-0.39	-0.58	
closeness_var	-0.46	-0.39	-0.51	-0.67	
nodes_between ness_var	-0.49	-0.41	-0.56	-0.52	
edge_betweenn ess_var	-0.34	-0.30	-0.44	-0.26	

Pearson correlation between test accuracy and different graph and recurrent network properties

7.3. PERFORMANCE PREDICTION

RNN variant	Bayesian Ridge	Random Forest	AdaBoost
RNN_Tanh	0.47919	0.43163	0.35698
RNN_ReLU	0.36075	0.61504	0.53469
LSTM	0.37206	0.57933	0.59514
GRU	0.67224	0.87635	0.78313

R²-value from each regressor, for each RNN variant

8. CONCLUSION

- Two different methods to induce sparsity:
 - 1. Pruning,
 - 2. Randomly structured RNN
- Pruning results conclude that the weight complexity of various RNN variants can safely be reduced by more than 60%.
- In most cases of pruning, it only takes one epoch for a model to recover.
- Random structure experiments identified two essential graph properties that are mutual in all four RNN variant.
- Performance prediction experiment shows data from RNN_ReLU and GRU fits well with Random Forest, while the data from LSTM fits good with AdaBoost.

THANK YOU

QUESTIONS?