

New Product

P-Channel 60-V (D-S) MOSFET

PRODUCT SUMMARY					
V _{DS} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (A)			
-60	0.0145 @ V _{GS} = -10 V	-14.4			
	0.019 @ V _{GS} = -4.5 V	-12.6			

PowerPAK SO-8

Ordering Information: Si7461DP-T1—E3

FEATURES

- TrenchFET® Power MOSFET
- New Low Thermal Resistance PowerPAK® Package with Low 1.07-mm Profile

APPLICATIONS

- Automotive
 - 12-V Boardnet
 - High-Side Switches
 - Motor Drives

P-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C UNLESS OTHERWISE NOTED)						
Parameter		Symbol	10 secs	Steady State	Unit	
Drain-Source Voltage		V _{DS}	-60		.,	
Gate-Source Voltage		V _{GS}	±20		V	
Continuous Drain Current (T _{.1} = 150°C) ^a	T _A = 25°C	I _D	-14.4	-8.6		
Continuous Diam Current (1) = 150 C)*	T _A = 70°C		-11.5	-6.9		
Pulsed Drain Current		I _{DM}	-60		Α	
Continuous Source Current (Diode Conduction) ^a		I _S	-4.5	-1.6		
Avalanche Current	1 04 mH	I _{AS}	50			
Single Pulse Avalanche Energy	L= 0.1 mH	E _{AS}	125		mJ	
Maximum Davias Dissinations	T _A = 25°C	Б	5.4	1.9	W	
Maximum Power Dissipation ^a	T _A = 70°C	- P _D	3.4	1.2		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C	

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
	t ≤ 10 sec	R _{thJA}	18	23	°C/W	
Maximum Junction-to-Ambient ^a	Steady State		52	65		
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	1.0	1.3		

Notes

a. Surface Mounted on 1" x 1" FR4 Board.

Vishay Siliconix

New Product

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)								
Parameter	Symbol	Test Condition		Тур	Max	Unit		
Static			-	1	•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-1		-3	V		
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA		
7 0 1 1/1 5 1 0 1		$V_{DS} = -60 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μΑ		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -60 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 70^{\circ}\text{C}$			-10			
On-State Drain Currenta	I _{D(on)}	$V_{DS} \le -5 \text{ V}, V_{GS} = -10 \text{ V}$	-40			Α		
Drain-Source On-State Resistance ^a	_	$V_{GS} = -10 \text{ V}, \ I_D = -14.4 \text{ A}$		0.0115	0.0145	Ω		
Drain-Source On-State Resistance	r _{DS(on)}	$V_{GS} = -4.5 \text{ V}, I_D = -12.6 \text{ A}$		0.015	0.019			
Forward Transconductancea	9fs	$V_{DS} = -15 \text{ V, } I_D = -14.4 \text{ A}$		31		S		
Diode Forward Voltage ^a	V _{SD}	I _S = -4.5 A, V _{GS} = 0 V		-0.8	-1.2	V		
Dynamic ^b								
Total Gate Charge	Qg			121	190	nC		
Gate-Source Charge	Q _{gs}	V_{DS} = -30 V, V_{GS} = -10 V, I_D = -14.4 A		20				
Gate-Drain Charge	Q _{gd}			32				
Gate-Resistance	R _g			3		Ω		
Turn-On Delay Time	t _{d(on)}			20	30			
Rise Time	t _r	V_{DD} = -30 V, R_L = 30 Ω		20	30			
Turn-Off Delay Time	t _{d(off)}	$I_D \cong -1 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 6 \Omega$		205	310	ns		
Fall Time	t _f			90	135			
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = -4.5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$		45	70			

- $\begin{array}{ll} \mbox{Notes} \\ \mbox{a.} & \mbox{Pulse test; pulse width} \leq 300 \ \mu \mbox{s, duty cycle} \leq 2 \%. \\ \mbox{b.} & \mbox{Guaranteed by design, not subject to production testing.} \end{array}$

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

r_{DS(on)} - On-Resiistance (Normalized)

New Product

Source-Drain Diode Forward Voltage

On-Resistance vs. Gate-to-Source Voltage

Source Current (A)

New Product

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

Normalized Thermal Transient Impedance, Junction-to-Ambient

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

