Scalable ML 10605-10805

Random Fourier Features

Barnabás Póczos

Motivation

Kernel Function

$$k(x,z) \doteq \langle \lambda(x), \lambda(z) \rangle_{\mathcal{H}} \ \forall \ x, z \in \mathbb{R}^d$$

Kernel Methods

- Powerful tools in ML
- Can represent complex relations
- Requires inverting an nxn Gram matrix,
 where n is the number of instances in the training set
- Computationally expensive O(n³)
- Pure scalability

Goal: Scale up Kernel Methods for large datasets

We want O(n) methods instead of O(n³)

Trick: Approximate the kernel with Random Fourier Features motivated by the Bochner's theorem

Bochner's Theorem

Theorem: [Bochner]

Part 1

If ϕ is a **characteristic function** of a **probability distribution** on \mathbb{R} , then ϕ is a **positive semidefinite function**.

Part 2

If ϕ is a positive semidefinite function, continuous at 0, $\phi(0) = 1$, then ϕ is a characteristic function of a probability distribution.

The Kernel Function

$$k(x,z) \doteq \langle \lambda(x), \lambda(z) \rangle_{\mathcal{H}} \ \forall \ x, z \in \mathbb{R}^d$$

Let $k: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be a

- bounded
- o continuous
- translation invariant
- PSD kernel
- $\circ k(x,y) \doteq \phi(x-y) \ \forall \ x,y \in \mathbb{R}^d$
- $k(x,x) = \phi(x-x) = \phi(0) = 1 \forall x \in \mathbb{R}^d$

Now, according to Bochner's theorem

 ϕ is a characteristic function of a d-dim probability distribution \mathbb{P} .

$$k(x,z) = \phi(x-z) = \int_{\mathbb{R}^d} e^{iw^T(x-z)} d\mathbb{P}(w)$$
$$= \mathbb{E}_{w \sim \mathbb{P}} \left[e^{iw^T(x-z)} \right]$$

From the proof of Bochner's theorem we also know that the density of \mathbb{P} is the inverse Fourier transform of ϕ .

The Kernel Function

$$k(x,z) = \phi(x-z) = \int_{\mathbb{R}^d} e^{iw^T(x-z)} d\mathbb{P}(w)$$
$$= \mathbb{E}_{w \sim \mathbb{P}} \left[e^{iw^T(x-z)} \right]$$

Since $k(x,z) \in \mathbb{R}$, its imaginary part is zero.

$$\Rightarrow k(x,z) = Re \left[\int_{\mathbb{R}^d} e^{iw^T(x-z)} d\mathbb{P}(w) \right]$$

$$= Re \left[\int_{\mathbb{R}^d} \left\{ \cos(w^T(x-z)) + i \sin(iw^T(x-z)) \right\} d\mathbb{P}(w) \right]$$

$$= \int_{\mathbb{R}^d} \cos(w^T(x-z)) d\mathbb{P}(w)$$

$$= \mathbb{E}_{w \sim \mathbb{P}} \left[\cos(w^T(x-z)) \right]$$

Kernel Approximation

We already know that

$$k(x, z) = \mathbb{E}_{w \sim \mathbb{P}} \left[\cos(w^T (x - z)) \right]$$

Main idea:

Approximate this expected value with the empirical average of a random sample:

Let $w_1, \ldots, w_m \sim \mathbb{P}(w)$ iid, where the density of \mathbb{P} is the inverse Fourier transform of ϕ .

The kernel function can be approximated:

$$\hat{k}(x,z) = \frac{1}{m} \sum_{i=1}^{m} \cos(w_i^T(x-z))$$

Random Fourier Features

We already know that

$$\hat{k}(x,z) = \frac{1}{m} \sum_{i=1}^{m} \cos(w_i^T(x-z))$$

approximates
$$k(x,z) = \mathbb{E}_{w \sim \mathbb{P}} \left[\cos(w^T(x-z)) \right]$$

Random Fourier Features

Lets calculate the features $\lambda(x)$ and $\lambda(z)$ corresponding to $\hat{k}(x,z) = \langle \lambda(x), \lambda(z) \rangle = \lambda^T(x)\lambda(z)$

Since cos(a - b) = cos a cos b + sin a sin b, we have that

$$\hat{k}(x,z) = \frac{1}{m} \sum_{i=1}^{m} \cos(w_i^T(x-z))$$

$$\hat{k}(x,z) = \frac{1}{m} \sum_{i=1}^{m} \left[\cos(w_i^T x) \cos(w_i^T z) + \sin(w_i^T x) \sin(w_i^T z) \right]$$

Random Fourier Features

$$\begin{split} \hat{k}(x,z) &= \frac{1}{m} \sum_{i=1}^{m} \left[\cos(w_i^T x) \cos(w_i^T z) + \sin(w_i^T x) \sin(w_i^T z) \right] \\ &= \langle \frac{1}{\sqrt{m}} \left[\cos(w_1^T x), \dots, \cos(w_m^T x), \sin(w_1^T x), \dots, \sin(w_m^T x) \right], \\ &\frac{1}{\sqrt{m}} \left[\cos(w_1^T z), \dots, \cos(w_m^T z), \sin(w_1^T z), \dots, \sin(w_m^T z) \right] \rangle \\ &= \langle \lambda(x), \lambda(z) \rangle \end{split}$$

where $w_1, \ldots, w_m \sim \mathbb{P}(w)$ iid.

$$\lambda(x), \lambda(z) \in \mathbb{R}^{2m}$$

These features are the so-called Random Fourier Features.

Random Fourier Features

Examples
$$k(x,z) = \phi(x-z) = \int_{\mathbb{R}^d} e^{iw^T(x-z)} d\mathbb{P}(w)$$

= $\mathbb{E}_{w \sim \mathbb{P}} \left[e^{iw^T(x-z)} \right]$

Kernel Name	Kernel	p(w)
Gaussian	$\phi(x-z) = \exp\left(\frac{-\ x-z\ _2^2}{2}\right)$	p(w) = Gauss
Laplacian	$\phi(x-z) = \exp(-\ x-z\ _1)$	p(w) = Cauchy
Cauchy	$\phi(x-z) = \prod_{j=1}^{d} \frac{1}{1 + (x_j - z_j)^2}$	p(w) = Laplace

Random Fourier Features The two most pupular versions

Feature map version 1:

$$\lambda(x) \doteq \frac{1}{\sqrt{m}} \left[\cos(w_1^T x), \dots, \cos(w_m^T x), \sin(w_1^T x), \dots, \sin(w_m^T x) \right] \in \mathbb{R}^{2m},$$
 where $w_1, \dots, w_m \sim \mathbb{P}(w)$ iid.

Feature map version 2:

$$\lambda(x) \doteq \sqrt{\frac{2}{m}} \left[\cos(w_1^T x + b_1), \dots, \cos(w_i^T x + b_i), \dots \cos(w_m^T x + b_m) \right] \in \mathbb{R}^m$$
 where $w_1, \dots, w_m \sim \mathbb{P}(w)$ iid, and $b_1, \dots, b_m \sim U[0, 2\pi]$ iid

The Primal Hard SVM with Random Features

- Given $D = \{(\mathbf{x}_i, y_i), i = 1, \dots, n\}$ training data set.
- Assume that D is linearly separable.

$$\widehat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^{2m}} \frac{1}{2} \|\mathbf{w}\|^2$$
 subject to $y_i \langle \lambda(\mathbf{x}_i), \mathbf{w} \rangle \geq 1$, $\forall i = 1, \dots, n$

Prediction: $f_{\widehat{\mathbf{w}}}(\mathbf{x}) = \text{sign}(\langle \widehat{\mathbf{w}}, \lambda(\mathbf{x}) \rangle)$

Here $\lambda(x)$ is a random Fourier feature map:

$$\lambda(x) \doteq \frac{1}{\sqrt{m}} \left[\cos(w_1^T x), \dots, \cos(w_m^T x), \sin(w_1^T x), \dots, \sin(w_m^T x) \right] \in \mathbb{R}^{2m}$$

The Primal Soft SVM problem

$$\widehat{\mathbf{w}} = \arg \min_{\mathbf{w} \in \mathbb{R}^{2m}, \boldsymbol{\xi} \in \mathbb{R}^n} C \sum_{i=1}^n \xi_i + \frac{1}{2} \|\mathbf{w}\|^2$$

subject to
$$y_i \langle \lambda(\mathbf{x}_i), \mathbf{w} \rangle \geq 1 - \xi_i$$
, $\forall i = 1, \dots, n$

$$\xi_i \geq 0$$
, $\forall i = 1, \ldots, n$

Prediction: $f_{\widehat{\mathbf{w}}}(\mathbf{x}) = \text{sign}(\langle \widehat{\mathbf{w}}, \lambda(\mathbf{x}) \rangle)$

Here $\lambda(x)$ is a random Fourier feature map:

$$\lambda(x) \doteq \frac{1}{\sqrt{m}} \left[\cos(w_1^T x), \dots, \cos(w_m^T x), \sin(w_1^T x), \dots, \sin(w_m^T x) \right] \in \mathbb{R}^{2m}$$

Thanks for your Attention! ©