西安交通大学研究生课程考试题(数理统计2007)

附表:

标准正态分布的分布函数值: $\Phi(1.96) = 0.9750$

t 分布的上侧分位数:

χ^2 分布的上侧分位数	:
-------------------	---

n	0.025	0.05
12	2.1788	1.7823
15	2.1314	1.7531
18	2.1009	1.7341

α	0.05	0.95
15	24.996	7.261

F 分布的上侧分位数: $F_{0.025}(9,9) = 4.03$, $F_{0.05}(2,12) = 3.89$ 。

- 一. 填空题(本题分值为30)
 - (1) 设 X_1, \dots, X_n 为**i.i.d.**,其含义是_____
 - (2) 设 $U \sim N(0,1)$,若有 $P\{|U| < c\} = \alpha$ (0 < α < 1),则 c=_____ (用N(0,1)分 布的上侧分位数符号表示)。
 - (3) 设 $X_1, \dots, X_n, X_{n+1}, \dots, X_{n+m}$ 为正态总体 $N(0, \sigma^2)$ 的样本,若要

$$a \frac{\sum_{i=1}^{n} X_{i}^{2}}{\sum_{i=n+1}^{n+m} X_{i}^{2}} \sim F(b, c)$$

(4) 写出估计参数最常用的三种方法:

(5) 若参数假设问题 $H_0:\theta\in\Theta_0\longleftrightarrow H_1:\theta\in\Theta_1$ 的拒绝域为W,则该检验犯第 I 类错误的概率 $p_1=$ _______。

二. (本题分值为 12) 已知总体 X 的概率密度函数为

$$f(x; \theta_1, \theta_2) = \begin{cases} \frac{1}{\theta_2} \exp\left\{-\frac{x - \theta_1}{\theta_2}\right\}, x > \theta_1 \\ 0, & x < \theta_1 \end{cases}, \quad (-\infty < \theta_1 < +\infty, \theta_2 > 0)$$

设 X_1, \dots, X_n 是总体X的样本,求未知参数 θ_1, θ_2 的矩估计。

五. (本题分值为 12)

(1) 完成下列方差分析表中欠缺的项目:

方差来源	离差平方和	自由度	均方离差	F 值
组间	2578.8		1289.4	
组内		12		
总和	6279.6			

- (2) 问这是几个因素几种水平试验的方差分析表?、
- (3) 由上述方差分析表,检验各组均值是否有显著差异 ($\alpha = 0.05$)?
- (4) 已知在因素的每一水平上进行等重复试验,且算得 $\bar{x}_1 = 87.2$, $\bar{x}_2 = 55.4$,求 $\mu_1 \mu_2$ 的 95% 置信区间
- 六. (本题分值为 6) 假设 (x_i, y_i) 满足线性回归关系:

$$y_i = a + bx_i + \varepsilon_i$$
, $(i = 1, \dots, n)$

其中 $\varepsilon_1,\cdots,\varepsilon_n$ 为 i.i.d.且 $\varepsilon_1\sim N(0,\sigma^2)$, x_1,\cdots,x_n 不全相同,试用极大似然法估计参数a,b。

- 七. (本题分值为 6) 设 X_1, \dots, X_n 是取自 $N(0, \sigma^2)$ 的样本,其中 $\sigma > 0$ 为未知参数。
 - (1) 问 $\sigma = \frac{1}{n} \sum_{i=1}^{n} |X_i|$ 是否为 σ 的无偏估计? (若认为是 σ 的无偏估计,请给出证明;

若认为不是,对它作适当的修正,给出 σ 的无偏估计。)

- (2) 针对 (1) 的讨论结果, 求 σ 的无偏估计的 (有) 效率。
- 八. (本题分值为 5) 设 $X \sim N(\mu,1)$, 其中 μ 为未知参数, F(x) 为 X 的分布函数。又设常数 c 满足等式: F(c)=0.975。先从总体 X 抽取一个样本,算得 $\overline{x}=3.04$,求 c 的极大似然估计值。
- 九.(本题分值为 5)设 X_1,\cdots,X_n 为取自总体 X 的样本,已知总体 X 的分布函数 F(x) 为连续函数,证明 $F(X_{(1)})\sim \beta(1,n)$,其中 $X_{(1)}$ 是第一顺序统计量(已知 $\beta(1,n)$ 分

布的概率密度为
$$f(x;1,n) = \begin{cases} n(1-x)^{n-1}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$$
)。