2017-2018年工科高等代数期末练习题

一. 选择题(共30分)

1. 设 A 是 $m \times n$,则 m < n 是齐次线性方程组 AX = 0 有非零解的()

(a) 充分条件; (b) 必要条件; (c)充要条件; (d)以上都不对

2.设
$$A = A_{3\times 1}, B = B_{1\times 3}$$
 则必有 $|AB| = ($

(a) |AB|=0; (b) |A||B|; (c) |BA|; (d)以上都不正确

3.若 3 阶阵 $A = (\alpha_1, \alpha_2, \alpha_3)$ 的行列式|A| = 1,则 $|\alpha_1, \alpha_2, \alpha_3 - \alpha_1| = ($

(a) a_1, a_2 , (b) a_1, a_2, a_3 , (c) a_1, a_2, a_4 , (d) a_1, a_2, a_3, a_4

5.若 A 是 n 阶实方阵, x 是 \mathbb{R}^n 中的列向量, 则 $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = ($

a. 长度|Ax|; b. 正数; c. 长度 |x|; d. |Ax|².

6.设 $A=A_{m\times n}$ 为 $m\times n$ 实矩阵,令 $W=\{x\in \mathbf{R}^n|Ax=0\}$,则 dn(W +xak(A) =().

a. n-1; b. m-n; c. n; d. m.

7.设 A, B 分别是 m 阶与 n 阶方阵,则行列式 $\begin{vmatrix} B & 0 \\ C & A \end{vmatrix} = ($

(a) |A||B|; (b) -|AB|; (c)0; (d) $(-1)^{m \cdot n} |A||B|$

8.实对称阵 A 为正定阵的充分必要条件是()

a. A 的全体特征根为正数; b. A 可逆; c. |A|为正; d. A 满秩

 $P_2P_1A = B$,则初等阵 $P_2 = ($

$$\text{(a)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad \text{(b)} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \qquad \text{(c)} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \text{(d)} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

10. A , B 都是 n 阶矩阵,且 AB = 0 , 则秩数的和 r(A) + r(B) 必定 (

(a) 小于或等于n; (b) 大于n; (c)等于n (d) 小于n

11.设 A 为 n 阶正交阵,下列说法正确的是() a. $A^{-1} = A^{T}$; b. $A^{T} = A^{*}$ (伴随阵); c. |A| = -1; d. |A| = 112. 设A, B 都是n 阶非0 矩阵, 且AB=0, 则A 和B 的**秩** () (a) 必有一个等于零:(b) 都小于 n: (c) 一个小于 n, 一个等于 n: (d) 都等于 n 13. 设 A 是 n 阶实矩阵, A^T 为 A 的转置,对于方程组(I) AX = 0 与(II) $A^TAX = 0$ 必有() (a).(II) 的解是 (I) 的解, 但 (I) 的解不是 (II) 的解; (b). (II) 的解与 (I) 的解相同 (c).(I)解是(II)的解但(II)解不是(I)的解 14. 设 α_1 , α_2 , α_3 是四元齐次线性方程组 AX=b 的三个解向量,且r(A)=3, $\alpha_1 = (1, 2, 3, 4)^T, \alpha_2 + \alpha_3 = (0, 1, 2, 3)^T$,k 为任意数,则方程组 AX=b 的通解 X=((a) $(1,2,3,4)^T + k(1,1,1,1)^T$; (b) $(1,2,3,4)^T + k(0,1,2,3)^T$; (c) $(1,2,3,4)^T + k(2,3,4,5)^T$ 15. 设 ξ_1, ξ_2, ξ_3 是Ax = 0的基础解系,则该方程组的基础解系还可以表成((a) ξ_1, ξ_2, ξ_3 的一个等价向量组; (b) $\xi_1 - \xi_2, \xi_2 - \xi_3, \xi_3 - \xi_1$; (c) $\xi_1, \xi_1 + \xi_2, \xi_1 + \xi_2 + \xi_3$ 二. 填空(共5分) 2.A, B 都是 n 阶矩阵,且 AB = 0,则秩数和 $r(A) + r(B) - n \le$ 3. 若 $P^{-1}AP$ 有定义, f(x) 是多项式,则 $f(P^{-1}AP) = P^{-1}$ (P $4. \begin{pmatrix} \cos\varphi & -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix}^{n} = \begin{pmatrix} -\sin\varphi \\ \sin\varphi & \cos\varphi \end{pmatrix}^{n}$ 5. 设可逆方阵 A 与 B 相似,则 $A^{-1} 与 B^{-1}$ (相似,不相似) 三. 判断题(10 分)(正确的在括号内打"√(T)", 错误的在括号内打"X(F)") 1.初等变换不改变矩阵的秩(2. n 阶方阵 A 的行列式 $|A|=0 \Leftrightarrow rank(A) < n \Leftrightarrow Ax = 0$ 有非零解 () 3.若方阵 A, B 相似,则 A, B 有相同的特征向量(4.设 $\alpha_1, \dots, \alpha_s$ 是非齐次方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的 s 个解, 若 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_s\alpha_s$ 也是 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解, 则 $k_1 + \cdots + k_s$ 等于 1; 特别 $(\alpha_1 + \cdots + \alpha_s)/s$ 也是 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 的解()

5.若 n 阶方阵 A 有 n 个线性无关的特征向量,则 A 必相似于对角阵(

6.设 3 阶可逆阵 A 的特征值是 λ_1 , λ_2 , λ_3 ,则 A^{-1} 的特征值是 λ_1^{-1} , λ_2^{-1} , λ_3^{-1} ()

7.若向量 $\alpha_1,\alpha_2,\alpha_3$ 可由 ν_1,ν_2 线性表示,则 $\alpha_1,\alpha_2,\alpha_3$ 一定线性相关()

8.若 n 元方程组 $A_{m\times n}$ $\mathbf{x}=0$ 只有零解,则 $A_{m\times n}$ $\mathbf{x}=\mathbf{b}$ 必有唯一解()

9. 实对称阵 A 不一定相似于对角阵()

10.若矩阵 $\mathbf{A} \neq \mathbf{0}$, $\mathbf{B} \neq \mathbf{0}$, 则 $\mathbf{A}\mathbf{B} \neq \mathbf{0}$ ()

四. 计算下列各题(共 20 分)

1. 设 4 阶方阵 $A = A_{4\times4}$ 的元素全是 1,(1)把 A 分解为列向量与行向量的积,并计算 \mathbf{A}^{2014} ;(2)求全体特征根与特征多项式;(3)求出非 0 特征根对应的全体特征向量.

2.
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
 利用初等变换计算 A^{-1} ,并利用 A^{-1} 写出伴随阵

五. (10 分) 1.设 R^4 中列向量 v_1, v_2, v_3, v_4, v_5 ,矩阵 $A = (v_1, v_2, v_3, v_4, v_5)$, 已知:

$$A = (v_1, v_2, v_3, v_4, v_5) \longrightarrow B = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

求向量组 v_1, v_2, v_3, v_4, v_5 的一个极大无关组,并用它表示向量 v_5 与 v_3

2. 设 2 个 n 阶方阵
$$A, B$$
 都可逆,求 $\begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}^{-1}$ 与 $\begin{pmatrix} 0 & A \\ B & D \end{pmatrix}^{-1}$

六.
$$(13 分) A = \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix}$$
. (1) 求特征多项式 $|\lambda I - A|$; (2) 求出 3 个互相正交的

特征向量; (3)求正交阵 P, 使 $P^{-1}AP$ 为对角阵; (4)写出二次型 $\mathbf{f} = \mathbf{x}^{T}A\mathbf{x}$ 的普通表达式. 并且利用(3)的结论直接写出二次型 $\mathbf{f} = \mathbf{x}^{T}A\mathbf{x}$ 的一个标准形

七. 证明题 (共12分)

- 1. 已知秩 $r(a_2, a_3, a_4) = 3$, $r(a_1, a_2, a_3) = 2$, 证明
 - (1) a1 能由a2,a3 线性表示; (2) a4 不能由a1,a2,a3 线性表示

2.若 A 是 n 阶正交阵,行列式|A| = -1. 证明: -1 是 A 的一个特征根;而且对于列向量 $x \in \mathbf{R^n}$, $\mathbf{A}x$ 的长度必满足 $|\mathbf{A}x|^2 = |x|^2$, 其中 $|x| = \sqrt{x_1^2 + \dots + x_n^2}$ 代表 x 的长度.

- 3. 已知 3 阶方阵 $A = A_{3\times 3}$ 的秩: $\mathbf{r}(A) = 2$,其伴随阵 $A^* = (B_1, B_2, B_3)$ 的列向量为 B_1, B_2, B_3 .证明: (1) $\mathbf{r}(A^*) = 1$
- (2) **X** 是方程组 **AX** = **0** 的解 **X** 可写成 **X** = $k_1B_1 + k_2B_2 + k_3B_3$