Examenul de bacalaureat național 2015 Proba E. c) Matematică *M_tehnologic* Clasa a XI-a

BAREM DE EVALUARE SI DE NOTARE

Simulare

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{25} = 5$	2p
	$m_a = \frac{3+5}{2} = 4$	3 p
2.	g(-2)=1	2p
	g(-2)=1 $(f \circ g)(-2) = f(1) = -1$	3 p
3.	$2x^2 + 4 = 12$	2p
	$x_1 = -2$ și $x_2 = 2$, care verifică ecuația	3 p
4.	Numerele cerute sunt 5, 15, 25, 35 și 45	3 p
	Sunt 5 numere care sunt divizibile cu 5 și nu sunt divizibile cu 10	2p
5.	3+(m-1)-3=0	3 p
	m=1	2 p
6.	$\cos B = \frac{5^2 + 6^2 - 5^2}{2 \cdot 5 \cdot 6} =$	3p
	$=\frac{3}{5}$	2 p

SUBIECTUL al II-lea

(30 de puncte)

1.a)	2 -1 1	
	$D(0) = \begin{vmatrix} 0 & 1 & -1 \end{vmatrix} =$	2p
	$D(0) = \begin{vmatrix} 2 & -1 & 1 \\ 0 & 1 & -1 \\ 2 & 3 & 0 \end{vmatrix} =$	
	=0+0+2-2+6-0=6	3 p
b)	2 -1 1	
	$D(m) = \begin{vmatrix} 2 & -1 & 1 \\ m & 1 & -1 \\ 2 & 3 & m \end{vmatrix} = m^2 + 2m + 3m + 6 =$	3 p
	$\begin{vmatrix} 2 & 3 & m \end{vmatrix}$	
	= m(m+2) + 3(m+2) = (m+2)(m+3), pentru orice număr real m	2p
c)	$(n^2 - 3n + 2)(n^2 - 3n + 3) = 0$	3p
	$n_1 = 1$ și $n_2 = 2$	2 p
2.a)	$A(-1) = \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}, \ A(1) = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}, \ A(0) = \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix}$	3p
	$A(-1) + A(1) = \begin{pmatrix} 2 & -2 \\ 0 & 6 \end{pmatrix} = 2 \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix} = 2A(0)$	2p

b)	$A(a) \cdot \begin{pmatrix} 3 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 3a - 6 & a + 3 \end{pmatrix}$	3p
	$ \begin{pmatrix} 5 & 0 \\ 3a - 6 & a + 3 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \Leftrightarrow a = 2 $	2p
c)	$\det(A(1)) = 4 \neq 0 \Rightarrow (A(1))^{-1} = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$	3p
	$X = 4 \cdot \frac{1}{4} \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 5 & 0 \\ 1 & 4 \end{pmatrix}$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$\lim_{x \to 3} \left(x + \frac{4}{x - 2} \right) = 3 + 4 =$	3p
	$ \begin{vmatrix} x \to 3 \\ = 7 \end{vmatrix} $	2 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(1 + \frac{4}{x(x-2)} \right) = 1$	2p
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{4}{x - 2} = 0, \text{ deci dreapta de ecuație } y = x \text{ este asimptotă oblică spre}$ $+\infty \text{ la graficul funcției } f$	3 p
c)	$\lim_{x \to 2} \left((x-2) \left(x + \frac{4}{x-2} \right) \right) = \lim_{x \to 2} \frac{(x-2) \left(x (x-2) + 4 \right)}{x-2} =$	3p
	=4	2p
2.a)	f(0)+f(2)=-1+3=	3 p
	= 2	2p
b)	$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} (2x^2 + x - 1) = 2$	2p
	$\lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x > 1}} (x+1) = 2$	2p
	Cum $f(1) = 2$, obținem $\lim_{x \to 1} f(x) = f(1)$, deci funcția f este continuă în punctul $x = 1$	1p
c)	Dacă $x \in (1, +\infty)$, atunci $f(x) = x + 1$ și $x + 1 \le 0$ nu are soluții în intervalul $(1, +\infty)$	2p
	Dacă $x \in (-\infty, 1]$, atunci $f(x) = 2x^2 + x - 1$ și $2x^2 + x - 1 \le 0 \Leftrightarrow x \in \left[-1, \frac{1}{2}\right]$	3 p