Conics Assignment

Pallavarapu Sravan kumar

October 2022

Problem Statement: Through the vertex O of parabola $y^2=4x$, chords OP and OQ are drawn at right angles to one another show that for all positions of P,PQ cuts the axis of the parabola a fixed point. Also find the locus of the middle point of PQ

Solution

Figure 1: The intersection of PQ with x-axis is (4,0)

Construction

Symbol	value	Description
V	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	Vertex of parabola
F	$\begin{pmatrix} -2 \\ 0 \end{pmatrix}$	focus of parabola
n	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	normal of directrix

Table 1:

the parametric coordinates of the parabola are P and Q

$$\mathbf{P} = \begin{pmatrix} at_1^2 \\ 2at_1 \end{pmatrix}, \ \mathbf{Q} = \begin{pmatrix} at_2^2 \\ 2at_2 \end{pmatrix}$$

from above parabola equation a=1 let us consider $t_1 = 2$ and $t_2 = -2$,then

$$\mathbf{P} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}, \quad \mathbf{Q} = \begin{pmatrix} 4 \\ -4 \end{pmatrix}$$

the line equatin of OP and OQ is

$$\begin{aligned} \mathbf{A} &= \mathbf{OP} = \mathbf{O} - \mathbf{P} \\ \mathbf{B} &= \mathbf{OQ} = \mathbf{Q} - \mathbf{O} \end{aligned}$$

Then,

$$\mathbf{A} = \begin{pmatrix} -4 \\ -4 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 4 \\ -4 \end{pmatrix}$$

given that $\mathbf{OP} \perp \mathbf{OQ}$ to find that

$$\theta = \cos^{-1}(\frac{\mathbf{A}^{\mathbf{T}}\mathbf{B}}{\|\mathbf{A}\|\|\mathbf{B}\|})$$

on solving we get $\theta = 90$. Therefore, **A** and **B** are \perp satisfy the given condition the equation of PQ is

$$C = PQ = P - Q$$

the intersection of PQ line and X-axis gives the fixed point

$$\mathbf{X} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

the mid point of \mathbf{P} and \mathbf{Q}

$$\mathbf{R} = rac{\mathbf{P} + \mathbf{Q}}{\mathbf{2}}$$
 $\mathbf{R} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$

Proof:

The given equation of parabola $y^2 = 4x$ and vertex $\mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0 \tag{1}$$