Problem 1

Consider the nonlinear regression model,

$$y_i = m\left(x_i
ight) + \sigma\epsilon_i, \quad i = 1, 2, \dots, n,$$

where n=100 and the data (x_i,y_i) are provided in "HW10_data.csv".

(1) (10 pts)

Using the uniform kernel giving weights of the form

$$w_{i,h}(x) = rac{\mathbf{1}\left(|x_i - x| < h
ight)}{\sum_{i=1}^n \mathbf{1}\left(|x_i - x| < h
ight)},$$

find the estimator of m(0); i.e. $\widehat{m}(0)$, obtained by minimizing

$$\sum_{i=1}^n w_{i,h}(0)(y_i- heta)^2$$

with h = 0.1.

Solution:

$$\widehat{m}(x) = rac{\sum_{i=1}^n y_i w_{i,h}(x)}{\sum_{i=1}^n w_{i,h}(x)}$$
 $\widehat{m}(0) = rac{\sum_{i=1}^n y_i w_{i,h}(0)}{\sum_{i=1}^n w_{i,h}(0)} = \sum_{i=1}^n y_i w_{i,h}(0) = -0.1111179$

is a Nadaraya-Watson estimator.

```
import pandas as pd
df = pd.read_csv("data.csv")
h = 0.1
x = 0

def w_i_h(x_i, x, h, all_xi):
    if abs(x_i - x) < h:
        denominator = sum([(1 if abs(x_i_el - x) < h else 0) for x_i_el in all_xi])
        return 1 / denominator
    else:
        return 0

# check that weights sum to one
sum([w_i_h(x_i=x_i, x=x, h=h, all_xi = df["x"]) for x_i in df["x"]])</pre>
```

Out[18]: -0.11111796963636363

(2) (10 pts)

Write down an expression for and hence find the value of the bias of $\widehat{m}(0)$ if the true function m(x) is linear with slope 1.2.

Solution

$$E\widehat{m}(0) - m(0) = rac{\sum_{|x-x_i| < h} \left(m\left(x_i
ight) - m(0)
ight)}{\sum_{|x-x_i| < h} 1} = rac{\sum_{|x-x_i| < h} \left(1.2x_i
ight)}{\sum_{|x-x_i| < h} 1} = -0.0305$$

Out[20]: -0.030515620690909087

(3) (10 pts)

What is the variance of $\widehat{m}(0)$? Leave your answer in terms of the unknown σ^2 .

Solution

$$Var(\widehat{m}(0)) = \sigma^2 \sum_{i=1}^n w_{i,h}^2(0) = 0.0909\sigma^2$$

```
In [21]: sum([w_i_h(x_i=x_i, x=x, h=h, all_xi = df["x"]) ** 2 for x_i in df["x"]])
```

Out[21]: 0.09090909090909091

(4) (10 pts)

Without actually calculating the variance, write down an expression for estimating σ^2 .

Solution

$$\widehat{\sigma}^2 = \sum_{i=1}^{100} rac{\left(\mathbf{y}_i - \hat{m}\left(\mathbf{x}_i
ight)
ight)^2}{\left(\mathbf{n} - \mathbf{q}
ight)}$$

(5) (10 pts)

If the true value of σ is known to be 0.1, find the 95% confidence interval for the predictive value of y at x=0.

$$Var(\widehat{m}(0)) = 0.0909\sigma^2 = 0.0909 * (0.1^2) = 0.000909$$

$$\sqrt{Var(\widehat{m}(0))} = 0.030$$

$$\widehat{m}(0) \pm c_{\alpha/2} \sqrt{\operatorname{Var}\{\widehat{m}(0)\}} = -0.111 \pm 1.96 * 0.030$$

$$CI = (-0.698, 0.478)$$

```
In [29]: 0.0909 * (0.1) ** 2

Out[29]: 0.000909000000000001

In [28]: -0.11 - 1.96*0.3

Out[28]: -0.698

In [27]: -0.11 + 1.96*0.3
```

Problem 2

Out[27]:

Consider the nonlinear regression model, with n=100 and data (x_i,y_i) provided in "HW10_data.csv" (the same dataset as Problem 1),

$$y_i = m\left(x_i
ight) + \sigma\epsilon_i, \quad x_i \in (-1,1), \quad i = 1,\dots,n,$$

and the aim is to split the range of $x \in (-1,1)$ into two intervals; the start of a regression tree. That is, we are looking for the estimator

$$\widehat{m}(x) = \left\{egin{array}{ll} m_1 & x \leq r \ m_2 & x > r \end{array}
ight.$$

(1) (10 pts)

Find the optimal choice of r which minimizes the sum of square errors. Show your working and algorithm.

$$T(r) = \sum_{x_i \leq r} \left(y_i - \widehat{m}_1
ight)^2 + \sum_{x_i > r} \left(y_i - \widehat{m}_2
ight)^2$$

```
In [94]:
          import pandas as pd
          df = pd.read_csv("data.csv")
          df = df.sort_values("x")
          df["split_points"] = (df["x"] + df["x"].shift(-1)) / 2
          df["sum_of_square_errors"] = None
          for index, row in df.iterrows():
              split_point = row.split_points
              if pd.isna(split_point):
                  continue
              left_part = (df.loc[df.x <= split_point, "y"] -</pre>
                           df.loc[df.x <= split_point, "y"].mean()) ** 2</pre>
              right_part = (df.loc[df.x > split_point, "y"] -
                             df.loc[df.x > split_point, "y"].mean()) ** 2
              df.loc[index, "sum_of_square_errors"] = left_part.sum() + right_part.sum()
          df = df.sort_values("sum_of_square_errors")
          best_split = df.iloc[0]["split_points"]
          df
```

Out[94]:		У	x	split_points	sum_of_square_errors
	92	0.014877	0.104154	0.119498	11.188598
	39	-0.182545	-0.008309	0.013323	11.285947
	76	0.013892	0.070919	0.078534	11.421178
	10	0.106374	0.086149	0.095152	11.464895
	13	0.169866	0.034954	0.052937	11.609307
	•••				
	94	0.939073	0.870908	0.904040	66.487117
	8	0.498787	0.937172	0.945644	66.699354
	50	0.780020	0.954115	0.961564	67.150652
	83	0.385694	0.969013	0.970523	67.263005
	32	0.433632	0.972033	NaN	None

100 rows × 4 columns

(2) (10 pts)

What is your result from (1)? State your optimal choice of r and $\hat{m}(x)$ function.

$$\widehat{m}(x) = \left\{ egin{array}{ll} -0.6377 & x \leq 0.11949 \ 0.86671 & x > 0.11949 \end{array}
ight.$$

```
In [95]: best_split
Out[951: 0.119497607
In [98]: df.loc[df.x <= best_split, "y"].mean()
Out[98]: -0.6377018859259259</pre>
```

```
In [99]: df.loc[df.x > best_split, "y"].mean()
Out[99]: 0.8667163272608694
```

(3) (5 pts)

What is the predictive value for the y corresponding to x=0.5.

Since 0.5 > 0.11949, predictive value for the y is 0.86671

(4) (15 pts)

Using the non-parametric bootstrap, find an estimator for the variance of $\widehat{m}(0.5)$. Provide all your working.

```
In [96]:
          import numpy as np
          m_hat_list = []
          for _ in range(200):
              bootstrap = df.iloc[:,:2].sample(n=df.shape[0], replace=True).sort values("x")
              bootstrap["split_points"] = (bootstrap["x"] + bootstrap["x"].shift(-1)) / 2
              bootstrap["sum_of_square_errors"] = None
              for index, row in bootstrap.iterrows():
                  split_point = row.split_points
                  if pd.isna(split_point):
                      continue
                  left_part = (bootstrap.loc[bootstrap.x <= split_point, "y"] -</pre>
                                bootstrap.loc[bootstrap.x <= split_point, "y"].mean()) ** 2</pre>
                  right_part = (bootstrap.loc[bootstrap.x > split_point, "y"] -
                                 bootstrap.loc[bootstrap.x > split_point, "y"].mean()) ** 2
                  bootstrap.loc[index, "sum of square errors"] = left part.sum() + right part.sum()
              bootstrap = bootstrap.sort_values("sum_of_square_errors")
              best_split = bootstrap.iloc[0]["split_points"]
              if 0.5 <= best_split:</pre>
                  m hat = bootstrap.loc[bootstrap.x <= best split, "y"].mean()</pre>
              elif 0.5 > best split:
                  m_hat = bootstrap.loc[bootstrap.x > best_split, "y"].mean()
              m_hat_list.append(m_hat)
          m hat variance = np.var(m hat list)
```

```
In [97]: m_hat_variance
```

Out[97]: 0.004076547533452653

 $\widehat{m}(0.5) = 0.00407$

(5) (10 pts)

Using the answer to part (4), construct a 95% confidence interval for m(0.5).

```
In [100... m_hat_variance ** (0.5)
```

Out[100... 0.06384784674092504

$$\widehat{m}(0.5)\pm c_{lpha/2}\sqrt{{
m Var}\{\widehat{m}(0.5)\}}=0.86671\pm 1.96*0.0638$$
 $CI=(0.7416,0.9917)$

In [103... 0.86671 - 1.96 * 0.0638

Out[103... 0.741662

In [101... 0.86671 + 1.96 * 0.0638

Out[101... 0.9917579999999999