Parţial Algebră – Rândul 1

1. a) Să se definiească noțiunile și să se dea câte un exemplu din fiecare: mulțime factor, element minimal, homomorfism de grupuri.

b) Fie $f:G\to H$ un homomorfism de grupuri. Să se arate că $\operatorname{Ker}(f)$ este subgrup în G.

c) Fie A o mulțime și G un grup. Să se arate că dacă $\alpha: G \times A \to A$ este o funcție cu proprietățile $\alpha(g,\alpha(h,x)) = \alpha(gh,x)$ și $\alpha(1,x) = x$ pentru orice $g,h \in G$ și orice $x \in A$ atunci $\phi: G \to S(A), \ \phi(g)(x) = \alpha(g,x)$ este un homomorfism de grupuri (S(A)) este grupul simetric al mulțimii A).

2. Se consideră funcțiile: $f: \mathbb{R} \to \mathbb{R}$ și $g: (0, \infty) \to \mathbb{R}$

$$f(x) = \begin{cases} x^2, & x \ge 2 \\ 3x - 2, & x < 2 \end{cases} \text{ si } g(x) = x^2 - 6x + 5.$$

a) Să se studieze injectivitatea și surjectivitatea acestor funcții.

b) Dacă există să se determine inversele acestor funcții.

c) Dacă sunt definite să se calculeze compunerile $f \circ g$ şi $g \circ f$.

d) Să se găsească două functții h_1,h_2 asftfel încât $g\circ h_1$ și $g\circ h_2$ să fie definite, $g\circ h_1=g\circ h_2$, dar $h_1\neq h_2$.

3. a) Arătați că relația $(\mathbb{R}, \mathbb{R}, \equiv)$ este o echivalență, unde $x \equiv y$ ddacă [x] = [y], unde [x] este partea întreagă a lui $x \in \mathbb{R}$. Determinați o bijecție $\mathbb{R}/_{\equiv} \to \mathbb{Z}$.

b) Arătați că $(\mathbb{N}, \mathbb{N}, \dot{:})$ este o relație de ordine, unde $n \dot{:} m$ ddacă există $q \in \mathbb{N}$ astfel încât n = mq, și că $f : (\mathbb{N}, \dot{:}) \to (\mathcal{P}(\mathbb{Z}), \subseteq)$, $f(n) = n\mathbb{Z}$ este o funcție crescătoare, unde $\mathcal{P}(\mathbb{Z})$ este mulțimea submulțimilor lui \mathbb{Z} .

4. a) Arătați că $G = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$ este un subgrup în $GL_2(\mathbb{R}) = \{A \in M_n(\mathbb{R}) \mid \det A \neq 0\}$.

b) Găsiți un izomorfism de grupuri $f: \mathbb{C}^* \to G$, cu G de la a).

c) Arătați că într-un grup (oarecare) (G,\cdot) este valabilă $\operatorname{ord}(xy)=\operatorname{ord}(yx),$ $\forall x,y\in G.$