Statistics 135

Chapter 10 Canonical Correlations

Chris Drake

Department of Statistics

University of California, Davis

Purpose of Canonical Correlations

Principal components (PCA) is used to investigate one set of variables. The original variables are replaced by a set of variables called principal components which are created to account for maximal variation among the original variables. Canonical correlations is a generalization of PCA with the goal to identify and quantify the associations between two sets of variables.

- 1 Two vectors $\mathbf{X}_{p\times 1}^{(1)}$ and $\mathbf{X}_{q\times 1}^{(2)}$ with $p \leq q$.
- Focus is on the correlation between a linear combination of one set of variables $\mathbf{X}^{(1)}$ and the linear combination of another set of variables $\mathbf{X}^{(2)}$.
- 3 Determine the pair of linear combinations with the largest correlation
- 4 Next, determine a pair of linear combinations having the largest correlation among pairs uncorrelated with the initial pair and so on.

We assume the following model:

$$E(\mathbf{X}^{(1)}) = \mu^{(1)} \qquad Cov(\mathbf{X}^{(1)}) = \Sigma^{11}$$

$$E(\mathbf{X}^{(2)}) = \mu^{(2)} \qquad Cov(\mathbf{X}^{(2)}) = \Sigma^{22}$$

$$Cov(\mathbf{X}^{(1)}, \mathbf{X}^{(2)}) = \mathbf{\Sigma}_{12} = \mathbf{\Sigma}'_{21}$$

Let U, V be linear combinations of $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$ where

$$U = \mathbf{a}' \mathbf{X}^{(1)}$$
 and $V = \mathbf{b}' \mathbf{X}^{(2)}$

then

$$Var(U) = \mathbf{a}' \mathbf{\Sigma}_{11} \mathbf{a}$$
 and $Var(V) = \mathbf{b}' \mathbf{\Sigma}_{22} \mathbf{b}$
 $Cov(U, V) = \mathbf{a}' \mathbf{\Sigma}_{12} \mathbf{b}$

We are interested in finding **a** and **b** which maximize

$$Corr(U, V) = \frac{\mathbf{a}' \mathbf{\Sigma}_{12} \mathbf{b}}{\sqrt{\mathbf{a}' \mathbf{\Sigma}_{11} \mathbf{a}} \sqrt{\mathbf{b}' \mathbf{\Sigma}_{22} \mathbf{b}}}$$
(1)

- 1 The first pair of canonical variables U_1, V_1 maximizes (1) subject to $Var(U_1) = Var(V_1) = 1$
- 2 The second pair of canonical variables U_2, V_2 maximizes (1) subject to

$$Var(U_2) = Var(V_2) = 1$$

$$Cov(U_1, U_2) = Cov(V_1, V_2) = Cov(U_1, V_2) = Cov(U_2, V_1) = 0$$

3 The k^{th} canonical pair is given by

$$U_k = \mathbf{e}_k' \mathbf{\Sigma}_{11}^{-1/2} \mathbf{X}^{(1)}$$
 and $V_k = \mathbf{f}_k' \mathbf{\Sigma}_{22}^{-1/2} \mathbf{X}^{(2)}$

$$Corr(U_k, V_k) = \rho^*$$

- 4 $\rho_1^* > \rho_2^* > ... > \rho_p^*$ are the eigenvalues of $\Sigma_{11}^{-1/2} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21} \Sigma_{11}^{-1/2}$ and $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_p$ are the associated eigenvectors;
- 5 $\rho_1^* > \rho_2^* > ... > \rho_p^*$ are also the p largest eigenvalues (out of q>p) of $\Sigma_{22}^{-1/2} \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1/2}$ with eigenvectors $\mathbf{f}_1, \mathbf{f}_2, ..., \mathbf{f}_q$

Calculation and Interpretation

- 1 Split the $(p+q) \times (p+q)$ covariance matrix of $(\mathbf{X}_1', \mathbf{X}_2')'$ into Σ_{11}, Σ_{12} and Σ_{22}
- 2 Calculate $\boldsymbol{\Sigma}_{11}^{-1/2}\boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}\boldsymbol{\Sigma}_{11}^{-1/2}$
- 3 Obtain the eigenvalues ρ_j^* for j = 1, ..., p and the associated eigenvectors \mathbf{e}_j .
- 4 For the eigenvalues in (3) obtain the eigenvectors $\mathbf{f}_1, ..., \mathbf{f}_q$ (only the first p are needed) of $\Sigma_{22}^{-1/2} \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1/2}$, this matrix as its p largest has eigenvalues $\rho_1^*, ..., \rho_p^*$, the other eigenvalues are $\rho_{p+1}^*, ..., \rho_q^*$.
- 5 Form the linear combinations $U_k = \mathbf{e}_k \mathbf{\Sigma}_{11}^{-1/2} \mathbf{X}^{(1)}$ and $V_k = \mathbf{f}_k \mathbf{\Sigma}_{22}^{-1/2} \mathbf{X}^{(2)}$ for k = 1, ..., p.
- 6 Continue until the canonical correlation ρ_k^* is very small.

7 Let $\mathbf{U} = \mathbf{A}\mathbf{X}^{(1)}$ and $\mathbf{V} = \mathbf{B}\mathbf{X}^{(2)}$ where $\mathbf{A} = \mathbf{E}'\boldsymbol{\Sigma}_{11}^{-1/2}$ and $\mathbf{B} = \mathbf{F}'\boldsymbol{\Sigma}_{22}^{-1/2}$. Then

$$Cov(\mathbf{U}) = \mathbf{A}\Sigma_{11}\mathbf{A}' = \mathbf{I}$$
 and $Cov(\mathbf{V}) = \mathbf{B}\Sigma_{11}\mathbf{B}' = \mathbf{I}$

8 Since $\Sigma_{11} = \mathbf{P}_1 \mathbf{\Lambda} \mathbf{P}'_1$ we can write

$$\mathbf{U} = \mathbf{A}\mathbf{X}^{(1)} = \mathbf{E}'\mathbf{P}_1\mathbf{\Lambda}^{-1/2}\mathbf{P}_1'\mathbf{X}^{(1)}$$

and we have a similar expression for V. Therefore, ${\bf U}$ can be interpreted as

- a a transformation of $\mathbf{X}^{(1)}$ to uncorrelated principal components followed by
- b a rigid rotation \mathbf{P}_1 determined by $\mathbf{\Sigma}_{11}$ followed by
- c another rotation \mathbf{E}' determined from the full covariance matrix Σ of $\mathbf{X}^{(1)}, \mathbf{X}^{(2)}$.

Estimation

When we have a sample $(\mathbf{x}_1^{(1)}, \mathbf{x}_1^{(2)}), ..., (\mathbf{x}_1^{(1)}, \mathbf{x}_1^{(2)})$, then we calculate the sample mean vector $\mathbf{\bar{x}}^{(1)}, \mathbf{\bar{x}}^{(2)}$ and the sample covariance matrix

$$\mathbf{S} = egin{pmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} \ \mathbf{S}_{21} & \mathbf{S}_{22} \end{pmatrix}$$

The calculations outlined in items (1) through (6) in the calculation section are then carried out for the sample covariance or correlation matrix.

A test for a diagonal covariance matrix H_0 : $\Sigma_{12} = \mathbf{0}$ is given by

$$-2ln\Lambda = n \ln\left(\frac{|\mathbf{S}_{11}||\mathbf{S}_{22}|}{|\mathbf{S}|}\right) = -n \ln\prod_{i=1}^{p} (1 - \hat{\rho}_i^{*2})$$

which has a χ_{pq}^2 distribution. An improved version is

$$-\left(n-1-\frac{1}{2}(p+q+1)\right) \ln \prod_{i=1}^{p} (1-\hat{\rho}_{i}^{*2})$$