Machine Learning from Data

Lecture 5: Spring 2021

Today's Lecture

- Training Vs Testing
 - The Two Questions of Learning
 - Theory of Generalization (Ein ≈ Eout)
 - An Effective Number of Hypotheses

- 1. Can we make sure that $E_{\text{out}}(g)$ is close enough to $E_{\text{in}}(g)$?
- 2. Can we make $E_{\rm in}(g)$ small enough?

The Hoeffding generalization bound:

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2|\mathcal{H}|}{\delta}}$$
generalization error bar

 $E_{\rm in}$: training (eg. the practice exam)

 E_{out} : testing (eg. the real exam)

There is a tradeoff when picking $|\mathcal{H}|$.

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{1}{2N} \ln \frac{2|\mathcal{H}|}{\delta}}$$

$$E_{\text{out}}(g) \le E_{\text{in}}(g) + \sqrt{\frac{8}{N} \ln \frac{4m_{\mathcal{H}}}{\delta}}$$

- \mathcal{B}_m are events (sets of outcomes); they can overlap.
- If the \mathcal{B}_m overlap, the union bound is loose.
- If many h_m are similar, the \mathcal{B}_m overlap.
- There are "effectively" fewer than |H| hypotheses,.
- We can replace $|\mathcal{H}|$ by something smaller.

Meaning of cardinality of H?

How did H come in?

Effective Number of Hypothesis

- We need a way to measure the diversity of H.
- A simple idea:
 - Fix any set of N data points.
 - If H is diverse it should be able to implement all functions . . . on these N points.

The Growth Function

Another Example

Dichotomies in 2-D Perceptron

Example - Growth Functions 2-D Perceptron Model

1-D Positive Ray

Positive Rectangles in 2-D

Summarize

	N				
	1	2	3	4	5
2-D perceptron	2	4	8	14	
1-D pos. ray	2	3	4	5	
2-D pos. rectangles	2	4	8	16	$<2^5$ ···

- $m_{\mathcal{H}}(N)$ drops below 2^N there is hope for the generalization bound.
- A break point is any n for which $m_{\mathcal{H}}(n) < 2^n$.

Definition: Shatter a Data Set

Combinatorial Puzzle

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3
0	0	0
0	0	
0		0
0		

2 points are shattered

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3
0	0	0
0	0	
0		0
0		

$x_1 x_2 x_3$ No Pair of Points is Shattered

If N = 4 how many possible dichotomys with no 2 points shattered?

 \mathbf{x}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{x}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4
0	0	0	0	0	0	0
0	0	•	0	0	0	•
0	•	0				
•	0	0				

Thanks!