

IBM Research | Zurich

Bachelor Thesis Presentation

Low Jitter Phase-Locked Loop Integrated Circuit

Lorenzo Lazzaroni Ilazzaroni@student.ethz.ch

Presentation Overview

- -Project Goal
- -Phase-Locked Loops: Background
- -Sub-Sampling PLL
- -Double-Sampling PLL
- -Double-Sampling PLL: Implementation
- -Results

Project Goal

- -Reduce the jitter of a PLL
- -Keep in mind power and area constraints
- -Investigate the literature to find feasible solutions

A Phase-Locked Loop is a control system that generates an output signal whose phase is fixed relative to the phase of an input signal

Limited chip area -> ring Our specific PLL requirements: oscillator instead of an LC tank oscillator FREF = 100 MHz Low-Pass Phase VCO FOUT = 16 GHz**Detector** Filter ÷ N Counter Feedback factor of 160

PLL's problem: Jitter

The jitter is the difference between the ideal zero-crossings and the actual zero-crossings

$$\Delta T_{abs,rms} = \lim_{N \rightarrow \infty} \frac{1}{N} \sqrt{\Delta T_1^2 + \Delta T_2^2 + \ldots + \Delta T_N^2}$$

Goal of the project: design a PLL with low jitter

Sub-Sampling PLL

-Bring the VCO to the desired frequency

-From this point, sample the output with the input and compare it to the DC common level

-There is no divider in the feedback path

Xiang Gao. "Low Jitter Low Power Phase Locked Loops Using Sub-Sampling Phase Detection". PhD thesis. University of Twente, 2010

Sub-Sampling PLL

Advantage: very good jitter performance, because there is no divider in the feedback path

Disadvantage: every time the PLL is not locked, the VCO must be brought back to the locked state

Xiang Gao. "Low Jitter Low Power Phase Locked Loops Using Sub-Sampling Phase Detection". PhD thesis. University of Twente, 2010

Double-Sampling PLL

-In this topology, there is a divider in the feedback path

-Sample the input phase with the output phase

-Take the difference between the rising edge's sampled value and the falling edge's sampled value

Yu Zhao. "Low Jitter Techniques for High-Speed Phase-Locked Loops". PhD thesis. University of California, 2022

Double-Sampling PLL

-In this topology, there is a divider in the feedback path

-Sample the input phase with the output phase

-Take the difference between the rising edge's sampled value and the falling edge's sampled value

Input and output are aligned: the sampled values are the same

Yu Zhao. "Low Jitter Techniques for High-Speed Phase-Locked Loops". PhD thesis. University of California, 2022

Double-Sampling PLL

-In this topology, there is a divider in the feedback path

-Sample the input phase with the output phase

-Take the difference between the rising edge's sampled value and the falling edge's sampled value

Input and output are not aligned: the sampled values are not the same

Yu Zhao. "Low Jitter Techniques for High-Speed Phase-Locked Loops". PhD thesis. University of California, 2022

General Schematic

Double-Sampling unit

 $\phi_1 \ {\rm and} \ \phi_2$ follow the output and sample the rising edges of the input

 $\overline{\phi_1}$ and $\overline{\phi_2}$ follow the inverse of the output and sample the falling edges of the input

Phase Detector gain:

$$K_{PD} = SR_{REF}A_{v,inv} / \pi f_{REF}$$
 = 11.25

$$\frac{\overline{\varphi}_{1}}{\overline{\varphi}_{2}} = \frac{\overline{V_{out}} \wedge \overline{\varphi}_{2}}{\overline{V_{out}} \wedge \overline{\varphi}_{1}}$$

Gm Amplifier

- -It takes the difference between the sampled values, transforms it into a current and injects it into the loop filter
- -The gain is regulated by the ratio of the widths in the current mirror stage

Gm gain:

 $0.228 \mu A/V$

Overview of the circuit

Phase detector gain: 11.25

Gm gain: 0.228 µA/V

Loop filter parameters: Rp = 30 k Ω , Cp1 = 5 pF,

Cp2 = 500 fF

VCO gain: 13.9 MHz/mV Reference buffer gain: 12.5

Power consumption: 1.88 mW

VCO: 1.48 mW

Divider: 0.219 mW

PD: 0.087 mW

Buffer: 0.009 mW

Overview of the circuit: Stability

Phase margin: 54°

Open loop transfer function:

$$\frac{K_{PD}K_{VCO}g_m}{s^2} \frac{sR_PC_{P1} + 1}{sC_{P1}C_{P2}R_P + C_{P1}}$$

Open loop transfer function bode plot

Results

Jitter at the output: 1 ps

Power consumption: 1.88 mW

Eye Diagrams of all the generated frequencies

Results

Settling of the PLL at the beginning of the simulation (1.8 µs settling time)

90 deg phase step response

Results

Behavior of unstable PLLs (wrong Loop Filter parameters)

Questions

Thank you for listening