Lecture 01: Introduction

Presented By: **Dr. Vinay Kulkarni**

What is 'Statistics'

What is 'Statistics'

STATISTICS

- The branch of science that deals with
 - Collecting data
 - Organizing and summarizing data
 - Analysis of data
 - Inferring / Predicting / Deciding based on the data and its analysis

- 3

DESCRIPTIVE STATISITCS

Seeks to summarize the measurements in a single data set without further interpretation.

EXPLORATORY ANALYSIS

Builds on descriptive data analysis by searching for discoveries, trends, correlations or relationships between the measurement of multiple variables to generate ideas or hypotheses.

Leek, http://leanpub.com/datastyle

INFERENTIAL ANALYSIS

Goes beyond exploratory analysis by quantifying whether an observed pattern will hold beyond the data set in hand – relationships among measurements at population scale. This is the most common form of data analysis.

PREDICTIVE ANALYSIS

This uses a subset of measurements (features) to predict another measurement (outcome) for a person or a unit. There is however no attempt to explain why the prediction works.

SCHOOL OF BUSINESS SCHOOL OF DATA SCIENCE SCHOOL OF TELECOMMUNICATION

O

CAUSAL ANALYSIS

Seeks to reliably find out what happens to one measurement if you make changes to another measurement. Unlike predictive or inferential data analysis, causal analysis identifies both – magnitude and direction of relationships between variables.

MECHANISTIC ANALYSIS

Mechanistic analysis seeks to demonstrate that changing one measurement always and exclusively leads to a specific deterministic behaviour in another.

1

The Big Picture

- Foundations
- Methods
- Tools
- Applications
- Advanced applications

Č

FOUNDATIONS

What is 'Statistics'

STATISTICS

- The branch of science that deals with
 - Collecting data
 - Organizing and summarizing data
 - Analysis of data
 - Inferring / Predicting / Deciding based on the data and its analysis

Population v/s Sample

Population

- It is the collection of the entire set of objects that share a property or properties, which need to be studied
 - Population of a state
 - Population of all students in a university

Sample

- A smaller and a representative part, or subset, of the population
 - Important since it always impossible to know about and deal with the entire population

Population v/s Sample: Example

- In a population comprising all students of a class, select three students to form a committee
 - Three students = Sample
 - All students of the class = Population

- Aspects related to samples:
 - Size of sample?
 - Adequacy of sample?
 - Selection of the sample?
 - Quality of results based on the sample?

Rule: Sample v/s Population

Any set of data should be considered as a **Sample** until it is clearly specified that data is the whole **Population**

Attributes of a Sample / Population

- Aspects that we observe about the population or sample are known as:
 - Observations
 - Measurements
 - Scores
 - Data

- Levels of Measurements
 - There are different types of measurements
 - Detailed in the next slide

Types of Measurements / Data

Nominal Data

- No obvious ordering / no arithmetic
- Example: Gender

Ordinal Data

- Can be arranged in some order / no arithmetic
- Example: Grades in a course

Interval Data

- Similar to ordinal data / Subtraction possible
- Example: Time interval; 1985 2014

Ratio Data

- Similar to interval / Division possible
- Example: Income information

Variables

- Variables are characteristics of individual parameters of a population
- Variables can be of following types:

10

Variables

 When two variables show some connection with each other they are known as associated variables or dependent variables

Associated or independent, not both

A pair of variables are either related in some way (associated) or not (independent). No pair of variables is both associated and independent.

Variables

- Explanatory variables & Response Variables
 - Also known as independent & dependent variable
- Correlation and causation
 - Confounding variable
 - A variable that is correlated with both, the explanatory and response variables

18