DEVOIR SURVEILLÉ N°08

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Problème 1 –

Partie I -

Notons E le \mathbb{R} -espace vectoriel des applications de \mathbb{R} dans \mathbb{R} de classe C^{∞} et $D: f \in E \mapsto f'$. Il est clair que D est un endomorphisme de E.

1. Déterminer le noyau et l'image de D.

On considère les trois fonctions

$$f_1 \colon t \in \mathbb{R} \mapsto e^t \qquad \quad f_2 \colon t \in \mathbb{R} \mapsto e^{-t/2} \sin \left(\frac{t\sqrt{3}}{2} \right) \qquad \quad f_3 \colon t \in \mathbb{R} \mapsto e^{-t/2} \cos \left(\frac{t\sqrt{3}}{2} \right)$$

Nous noterons $\mathcal{B}=(f_1,f_2,f_3)$ et G le sous-espace vectoriel de E engendré par $\mathcal{B}.$

Nous allons montrer que ${\mathcal B}$ est une famille libre de vecteurs de E.

Soient a, b et c des réels tels que $af_1 + bf_2 + cf_3$ soit la fonction nulle.

2. L'étudiante Antoinette observe que $\mathfrak{af}_1(t)+\mathfrak{bf}_2(t)+\mathfrak{cf}_3(t)=0$ pour tout réel t. Elle choisit (adroitement) trois valeurs de t, obtient un système de trois équations à trois inconnues \mathfrak{a} , \mathfrak{b} et \mathfrak{c} , qu'elle résout ; il ne lui reste plus qu'à conclure.

Faites comme elle!

3. L'étudiante Lucie propose d'exploiter le développement limité à l'ordre 2 de la fonction $\alpha f_1 + b f_2 + c f_3$ au voisinage de 0.

Faites comme elle!

4. L'étudiante Nicole décide de s'intéresser au comportement de $af_1 + bf_2 + cf_3$ au voisinage de $+\infty$. Faites comme elle!

La famille \mathcal{B} est donc une base de G et ce sous-espace est de dimension 3.

5. Montrer que G est stable par D c'est-à-dire que $D(G) \subset G$.

Nous noterons \widehat{D} l'endomorphisme de G induit par D, c'est-à-dire l'endomorphisme de G défini par $\widehat{D}(f) = D(f)$ pour $f \in G$.

- **6.** Montrer que $\widehat{D}^3 = Id_G$.
- 7. En déduire que \widehat{D} est un automorphisme de G et exprimer $(\widehat{D})^{-1}$ en fonction de \widehat{D} .

Partie II -

Nous nous intéressons dans cette partie à l'équation différentielle y'''=y, que nous noterons (\mathcal{E}) . Une solution sur \mathbb{R} de (\mathcal{E}) est une fonction définie sur \mathbb{R} à valeurs dans \mathbb{R} , trois fois dérivable sur \mathbb{R} , vérifiant f'''(t)=f(t) pour tout $t\in\mathbb{R}$.

8. Montrer que toute solution f de (\mathcal{E}) est \mathcal{C}^{∞} .

Notons $T=D^3-Id_E$, où Id_E est l'identité de E, et $D^3=D\circ D\circ D$. Le noyau de T est donc l'ensemble des solutions de (\mathcal{E}) .

9. Montrer que G est contenu dans le noyau de T.

Nous allons établir l'inclusion inverse ; ainsi G sera exactement l'ensemble des solutions de (\mathcal{E}) . Soit f une solution de (\mathcal{E}) ; nous noterons g = f'' + f' + f.

- **10.** Montrer que g est solution de l'équation différentielle y' = y.
- 11. Décrivez rapidement l'ensemble des solutions à valeurs réelles de l'équation différentielle y' y = 0.
- 12. Résolvez l'équation différentielle y'' + y' + y = 0. Vous donnerez une base de l'ensemble des solutions à valeurs réelles.
- 13. Soit $\lambda \in \mathbb{R}$. Décrivez l'ensemble des solutions à valeurs réelles de l'équation différentielle $y'' + y' + y = \lambda e^t$.
- 14. Et maintenant, concluez!

Problème 2 -

On note I l'application identité de \mathbb{R}^2 , c'est-à-dire l'application

$$I \colon \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (x,y) \end{array} \right.$$

On note également S l'application

$$S: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (y,x) \end{array} \right.$$

Enfin, pour $p \in \mathbb{R}$, on pose $U_p = pS + (1-p)I$.

Partie I - Préliminaires

- **1.** Vérifier que S est un endomorphisme de \mathbb{R}^2 . Que peut-on dire de S^2 ?
- 2. Soit $p \in \mathbb{R}$. Justifier que U_p est également un endomorphisme de \mathbb{R}^2 .
- 3. Déterminer le noyau et l'image de $U_{\frac{1}{2}}$.

Partie II – Un sous-groupe de $GL(\mathbb{R})^2$

4. Soit $(p,q) \in \mathbb{R}^2$. Montrer qu'il existe $r \in \mathbb{R}$ tel que

$$U_{\mathfrak{p}} \circ U_{\mathfrak{q}} = U_{\mathfrak{q}} \circ U_{\mathfrak{p}} = U_{r}$$

- 5. Soit $p \in \mathbb{R}$. Montrer que U_p est un automorphisme de \mathbb{R}^2 si et seulement si $p \neq \frac{1}{2}$ et montrer que, dans ce cas, il existe un réel q tel que $U_p^{-1} = U_q$.
- 6. On note

$$G=\left\{U_{\mathfrak{p}},\;\mathfrak{p}\in\mathbb{R}\setminus\left\{\frac{1}{2}\right\}\right\}$$

Montrer que G est un sous-groupe de $(GL(\mathbb{R}^2), \circ)$.

Partie III - Puissances d'un endomorphisme

On fixe $p \in \mathbb{R}$ dans cette partie et on souhaite calculer les puissances de U_p .

- 7. Montrer que $(S + I) \circ U_p = S + I$ et que $(S I) \circ U_p = (1 2p)(S I)$
- **8.** Déterminer $(S + I) \circ U_p^n$ et $(S I) \circ U_p^n$ pour tout $n \in \mathbb{N}$.
- **9.** En déduire, pour $n \in \mathbb{N}$, une expression de U_p^n en fonction de S et I.

Partie IV - Application

On considère deux récipients A et B. Le récipient A contient initialement un volume V de grenadine tandis que le récipient B contient initialement un volume V d'eau. On appelle «opération» la procédure suivante :

- on prélève un volume ν de liquide dans le récipient A que l'on verse dans le récipient B (le récipient A contient alors un volume $V \nu$ et le récipient B un volume $V + \nu$);
- on mélange le contenu du récipient B;
- on prélève alors un volume v de liquide du récipient B que l'on verse dans le récipient A (les récipients A et B contiennent alors à nouveau le même volume V de liquide);
- on mélange le contenu du récipient A.

On procède à plusieurs «opérations» successives et on note a_n et b_n les proportions respectives de grenadine dans les récipients A et B après n «opérations». On a donc notamment initialement $a_0=1$ et $b_0=0$. On suppose enfin que $0 < \nu < V$.

- **10.** Montrer qu'il existe $p \in]0, 1[$ tel que pour tout $n \in \mathbb{N}$, $(a_{n+1}, b_{n+1}) = U_p(a_n, b_n)$.
- 11. En déduire les termes généraux des suites (a_n) et (b_n) ainsi que leurs limites.

Exercice 1.

Soient E, F et G trois espaces vectoriels, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$.

- **1.** Montrer que F = Im(f) + Ker(g) si et seulement si $Im(g \circ f) = Im(g)$.
- **2.** Montrer que $Ker(g) \cap Im(f) = \{0_F\}$ si et seulement si $Ker(g \circ f) = Ker(f)$.