

EECS E6893 Big Data Analytics Intro to Big Data Analytics on GCP

Frank Ou Yang

Agenda

- GCP
- Cloud Storage
- BigQuery
- Dataproc

Google Cloud Platform (GCP)

GCP

- Cloud computing platform
 - Flexibility: on-demand and scale as you want
 - Efficiency: no need to maintain infra
- Services (relevant to this assignment)
 - Compute
 - Compute Engines: VMs
 - Big data products
 - BigQuery: Data warehouse for analytics
 - Dataproc: Hadoop and Spark
 - Storage & DBs
 - Cloud Storage: Object storage system
 - More at https://cloud.google.com/products/

GCP Setup

- Create a google account, you could use your Columbia account.
- Apply for \$300 credit for the first year: https://cloud.google.com/free/
- Go to Console dashboard -> Billing to check credit is there

GCP: Create project

- Project: basic unit for creating, enabling, and using all GCP services
 - o managing APIs, billing, permissions
 - adding and removing collaborators
- Visit console dashboard or <u>cloud resource manager</u>
- Click on "create project / new project" and complete the flow
- Ensure billing is pointing to the \$300 credit

GCP: Interaction

- Graphical UI / console: Useful to create VMs, set up clusters, provision resources, manage teams, etc
- <u>Command line tools / Cloud SDK</u>: Useful for interacting from local host and using the resources once provisioned. E.x. ssh into instances, submit jobs, copy files, etc
- Cloud shell: Same as command line, but web-based and pre-installed with SDK and tools

Search for services here

GCP: console

GCP: Cloud SDK setup

- Install the SDK that is suitable for your local environment: https://cloud.google.com/sdk/docs/quickstarts
- Some testing after installation:
 - o gcloud auth list
 - o gcloud components list

dyn-129-236-216-148:~ frank\$ gcloud components list

Your current Cloud SDK version is: 259.0.0 The latest available version is: 261.0.0

To install or remove components at your current SDK version [259.0.0], run:

^{\$} gcloud components install COMPONENT_ID
\$ gcloud components remove COMPONENT_ID

To update your SDK installation to the latest version [261.0.0], run: \$ ocloud components update

Cloud Storage

Cloud Storage

- Online file storage system
- Graphical UI through console

Command line tool: gsutil

Cloud Storage - graphical UI

Cloud Storage - graphical UI (cont')

Cloud Storage - gsutil

- Interact with Cloud Storage through command line
- Works similar to unix command line
- Useful commands:
 - Concatenate object content to stdout:

```
gsutil cat [-h] url...
```

Copy file:

```
gsutil cp [OPTION]... src_url dst_url
```

List files:

```
gsutil ls [OPTION]... url...
```

Explore more at https://cloud.google.com/storage/docs/gsutil

BigQuery

BigQuery

- Data warehouse for analytics
- SQL-like languages to interact with DB
- RESTful APIs for programmatic access
- Graphical UI

Dataproc

Dataproc

Install

Jupyter

Notebook

- On-demand, fully managed cloud service for running Apache Hadoop and Spark on GCP
- Cluster creation (using Cloud SDK):
 - Automatically creates VMs with Spark pre-installed
 - o gcloud dataproc clusters create <cluster-name>
 - o gcloud beta dataproc clusters create <cluster-name>

```
--optional-components=ANACONDA, JUPYTER --image-version=1.3
--enable-component-gateway --bucket {bucket-name} --project
cproject-id> --single-node --metadata
'PIP PACKAGES=graphframes==0.6' --initialization-actions
```

qs://dataproc-initialization-actions/python/pip-install.sh

Cloud Storage bucket: where your jupyter notebooks are saved

Works like pip install <your package>

Dataproc - Spark execution / submit jobs

Jupyter notebook:

Cloud SDK:

- o gcloud dataproc jobs submit pyspark <your_program.py>
 --cluster=<cluster-name>
- View your jobs in console

- program could be Cloud Storage URI or local path
- Data should be on Cloud storage

Dataproc - Spark execution / submit jobs (cont')

- Spark shell
 - ssh into master node

HW0

- Read documentations and tutorials
 - a. Setup GCP and Cloud SDK
 - b. Run Spark examples on Dataproc Pi calculation and word count
 - c. Familiar yourself with BigQuery
- 2. Two light programming questions
 - a. BigQuery
 - b. Spark program Find top k most frequent words

Remember to delete your dataproc clusters when you finish executions to save money.