Федеральное государственное автономное образовательное учреждение высшего образования

Национальный Исследовательский Университет ИТМО

Лабораторная работа №2 «Численное решение нелинейных уравнений и систем»

Дисциплина: Вычислительная математика Вариант 13

Выполнил: Терехин Никита Денисович

Факультет: Программной инженерии и компьютерной техники

Группа: Р3208

Преподаватель: Машина Екатерина Алексеевна

Оглавление

Цель работы	3
Уравнение	
Вычислительная реализация задачи	
Решение нелинейного уравнения	3
Графическое решение	3
Аналитическое решение	4
Решение системы нелинейных уравнений	5
Графическое приближение	6
Программная реализация задачи	8
Для нелинейных уравнений	8
Для системы уравнений	13
Вспомогательные методы и классы	15
Результаты выполнения программы	
Выводы	

Цель работы

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов

Уравнение

№ варианта	Функция
13	$x^3 + 4,81x^2 - 17,37x + 5,38$

Вычислительная реализация задачи

Решение нелинейного уравнения

Графическое решение

Аналитическое решение

Корень	Левый крайний x_{1}	Правый крайний x_2	Центральный $x_{_3}$
Метод	Метод простой итерации	Метод хорд	Метод Ньютона
Интервал изоляции	[- 8; - 7]	[2; 3]	[0; 1]

Уточним первый корень

Рабочая формула метода простой итерации

$$x_{i+1} = \varphi(x_i) \quad \varphi(x) = x + \lambda f(x)$$

$$f(x) = x^3 + 4,81x^2 - 17,37x + 5,38$$

$$f'(x) = 3x^2 + 9,62x - 17,37$$

$$\varphi(x) = x + \lambda(x^3 + 4,81x^2 - 17,37x + 5,38)$$

$$m = \max_{[-8,-7]} (f'(x)) = 97,67 \quad \text{при } x = -8$$

$$\lambda = -\frac{1}{m} = -0,0102$$

$$\varphi(x) = x - 0,0102(x^3 + 4,81x^2 - 17,37x + 5,38) = -0,0102x^3 - 0,0491x^2 + 1,1772x - 0,0549$$

Условие сходимости $|\phi'(-\ 8)| << 1 \ |\phi'(-\ 7)| < 1 \$ выполнено

№ итерации	x_{k}	x_{k+1}	$f(x_{k+1})$	$ x_k - x_{k+1} $
1	-8,0000	-7,3925	48,1869	0,6075
2	-7,3925	-7,3199	4,4443	0,0726
3	-7,3199	-7,3022	0,8820	0,0177
4	-7,3022	-7,2976	0,0643	0,0046
5	-7,2976	-7,2964	-0,1447	0,0012
6	-7,2964	-7,2961	-0,1996	0,0003

Уточненное значение $x_1 = -7,2961$

Второй корень

Рабочая формула метода хорд

$$x_{i} = \frac{a_{i}f(b_{i}) - b_{i}f(a_{i})}{f(b_{i}) - f(a_{i})}$$

№ шага	а	b	х	f(a)	f(b)	f(x)	$ x_k - x_{k+1} $
1	2,0000	3,0000	2,0826	-2,1200	23,5600	-0,9007	0,0826
2	3,0000	2,0826	2,1163	23,5600	-0,9007	-0,3585	0,0338
3	3,0000	2,1163	2,1296	23,5600	-0,3585	-0,1390	0,0132
4	3,0000	2,1296	2,1347	23,5600	-0,1390	-0,0533	0,0051

Уточненное значение $x_2 = 2$, 1347

Третий корень

Рабочая формула метода Ньютона

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

№ шага	x_{k}	$f(x_k)$	<i>f</i> '(<i>x</i>)	x_{k+1}	$ x_k - x_{k+1} $
1	0,0000	5,3800	-17,3700	0,3097	0,3097
2	0,3097	0,4911	-14,10261	0,3446	0,0348
3	0,3446	0,0070	-13,69921	0,3451	0,0005

Уточненное значение $x_3 = 0$, 3451

Решение системы нелинейных уравнений

|--|

$$egin{cases} \sin y + 2x = 0 \ y + \cos \left(x - 1
ight) = 0,7 \end{cases}$$

Метод простых итераций

Графическое приближение

Рабочая формула метода простой итерации для системы

$$egin{cases} x_1^{(k+1)} = \, arphi_1ig(x_1^k,\, x_2^k, \ldots,\, x_n^kig) \ x_2^{(k+1)} = \, arphi_2ig(x_1^k,\, x_2^k, \ldots,\, x_n^kig) \ \ldots \ x_n^{(k+1)} = \, arphi_nig(x_1^k,\, x_2^k, \ldots,\, x_n^kig) \end{cases}$$

Приведем систему уравнений к эквивалентному виду

$$\begin{cases} x = 1 - \frac{\sin y}{2} \\ y = 0, 7 - \cos(x - 1) \end{cases}$$

Интервал изоляции $y \in [-1; 0]$ $x \in [1; 2]$

Проверим условие сходимости:

$$\frac{\partial \varphi_1}{\partial x} = 0 \qquad \frac{\partial \varphi_2}{\partial x} = \sin(x - 1) \qquad \frac{\partial \varphi_1}{\partial y} = -\frac{\cos y}{2} \qquad \frac{\partial \varphi_2}{\partial y} = 0$$

$$\left| \frac{\partial \varphi_1}{\partial x} \right| + \left| \frac{\partial \varphi_1}{\partial y} \right| < 1 \qquad \left| \frac{\partial \varphi_2}{\partial x} \right| + \left| \frac{\partial \varphi_2}{\partial y} \right| < 1$$

Выберем начальное приближение: $x^{(0)} = 1$ $y^{(0)} = -1$

1 шаг

$$x^{(1)} = 1 - \frac{\sin(-1)}{2} = 1,4207$$
 $|x^{(0)} - x^{(1)}| = 0,4207 > \varepsilon$
 $y^{(1)} = 0,7 - \cos(1-1) = -0,3000$ $|y^{(0)} - y^{(1)}| = 0,7000 > \varepsilon$

2 шаг

$$x^{(2)} = 1 - \frac{\sin(-0.3)}{2} = 1,1478$$
 $|x^{(2)} - x^{(1)}| = 0,2729 > \varepsilon$
 $y^{(2)} = 0,7 - \cos(1,4207 - 1) = -0,2128$ $|y^{(2)} - y^{(1)}| = 0,0872 > \varepsilon$

3 шаг

$$x^{(3)} = 1 - \frac{\sin(-0.2128)}{2} = 1,1056$$
 $|x^{(2)} - x^{(3)}| = 0,0422 > \varepsilon$
 $y^{(3)} = 0,7 - \cos(1,1478 - 1) = -0,2891$ $|y^{(2)} - y^{(3)}| = 0,0763 > \varepsilon$

4 шаг

$$x^{(4)} = 1 - \frac{\sin(-0.2891)}{2} = 1,1425$$
 $|x^{(4)} - x^{(3)}| = 0,0369 > \varepsilon$
 $y^{(4)} = 0,7 - \cos(1,1056 - 1) = -0,2944$ $|y^{(4)} - y^{(3)}| = -0,0053 > \varepsilon$

5 шаг

$$x^{(5)} = 1 - \frac{\sin(-0.2944)}{2} = 1,1451$$
 $|x^{(4)} - x^{(5)}| = 0,0025 < \varepsilon$
 $y^{(5)} = 0,7 - \cos(1,1425 - 1) = -0,2899$ $|y^{(4)} - y^{(5)}| = 0,0045 < \varepsilon$

Итоговое приближение x = 1,1451 y = -0,2899

Программная реализация задачи

Для нелинейных уравнений

```
class Describable:
  option name: str = 'option'
  def init (self, description: str) -> None:
       self.description = description
class Function(Describable):
   option name = 'function'
  def init (self, func: Callable[[float], float],
first derivation: Callable[[float], float],
                second derivation: Callable[[float], float],
description: str) -> None:
      super(). init (description)
       self.func = func
      self.second derivation = second derivation
FUNCTIONS: Final[list[Function]] = [
            ^{1}2x^{3} - 1,89x^{2} - 5x + 2,34^{1}
   Function(lambda x: math.exp(x / 3) - 2 * math.cos(x + 4),
            lambda x: math.exp(x / 3) / 3 + 2 * math.sin(x + 4),
            lambda x: math.exp(x / 3) / 9 + 2 * math.cos(x + 4),
   Function(lambda x: x ** 2 - math.exp(x),
            lambda x: 2 * x - math.exp(x),
            lambda x: 2 - math.exp(x),
```

```
# классы методов

class Method(Describable):
```

```
option name = 'method'
  def init (self, description: str) -> None:
      super(). init (description)
      self.prev: float = math.inf
      self.eps: float = 0.01
      self.a: float = -10
      self.func: Function | None = None
  @abstractmethod
  def set arguments (self, func: Function, a: float, b: float,
eps: float) -> None:
      self.eps = eps
class DichotomyMethod(Method):
      self.step = 0
      self.prev = 0
          return ans, self.step, self.func.func(ans)
       else:
      self.step += 1
       if abs(x - self.prev) < self.eps:</pre>
      self.prev = x
```

```
return self.do iteration(func)
class NewtonMethod(Method):
      self.step = 0
       if self.func is not None:
           self.set first approx(self.func)
           return ans, self.step, self.func.func(ans)
       x: float = self.prev - func.func(self.prev) /
func.first derivation(self.prev)
       if abs(x - self.prev) < self.eps:</pre>
       self.prev = x
  def set first approx(self, func: Function) -> None:
           if func.func(self.a) * func.second derivation(self.a) >
0:
               self.prev = self.a
           elif func.func(self.b) * func.second derivation(self.b)
               self.prev = self.b
               self.step += 1
class SecantsMethod(NewtonMethod):
```

```
self.pprev: float = math.inf
      self.step = 0
           self.set first approx(self.func)
           return ans, self.step, self.func.func(ans)
       else:
       self.step += 1
       x: float = (self.prev - (self.prev - self.pprev) /
(func.func(self.prev) - func.func(self.pprev))
                  * func.func(self.prev))
       if abs(x - self.prev) < self.eps:</pre>
       self.prev = x
      super().set_first_approx(func)
      self.pprev = self.prev + self.eps
class SimpleIterationMethod(Method):
      self.scale = 100
      self.param: float = 0
           phi: Callable[[float], float] = lambda x: x +
self.param * self.func.func(x)
           if self.check convergence(self.func):
               ans: float = self.do iteration(phi)
               return ans, self.step, self.func.func(ans)
smaller interval')
       else:
  def do iteration(self, phi: Callable[[float], float]) -> float:
      self.step += 1
```

```
x: float = phi(self.prev)
       if abs(x - self.prev) < self.eps:</pre>
       self.prev = x
       return self.do_iteration(phi)
   def set arguments (self, func: Function, a: float, b: float,
eps: float) -> None:
       super().set arguments(func, a, b, eps)
       max val: float = max([func.first derivation(x / self.scale)
for x in range(int(self.a * self.scale),
int(self.b * self.scale))])
       self.param = 1 / max val
func.first derivation(self.b) > 0:
           self.param *=-1
       phi derivation: Callable[[float], float] = lambda x: 1 +
self.param * func.first_derivation(x)
       self.prev = self.a if phi derivation(self.a) <</pre>
phi derivation(self.b) else self.b
       return max(phi derivation(self.a), phi derivation(self.b))
```

```
# для рисования графиков

def draw_and_show(function: Callable[[float], float], point:
tuple[float, float] | None = None) -> list[float]:
    x: list[float] = [i / SCALE - GRID for i in range(2 * GRID *
SCALE)]
    y: list[float] = [function(num) for num in x]
    bounds: list[float] = [x[i] for i in range(1, len(y)) if (y[i -
1] * y[i] < 0)]

    ax: Axes = plt.axes()
    ax.spines['left'].set_position('zero')
    ax.spines['bottom'].set_position('zero')
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    if bounds:
        l_limit: float = min(-4.0, bounds[0], bounds[-1]) - 1
        r_limit: float = max(bounds[0], bounds[-1], 4.0) + 1
    else:
        l_limit = -GRID
        r_limit = GRID
```

```
ax.grid(which='minor', alpha=0.2)
   ax.set xticks([i * 0.5 - GRID for i in range(GRID * 4)],
minor=True)
  ax.set_yticks([i * 0.5 - GRID for i in range(GRID * 4)],
minor=True)
  ax.set xticks([i * 2 - GRID for i in range(GRID)])
  ax.set yticks([i * 2 - GRID for i in range(GRID)])
  ax.set xlim(l limit, r limit)
  ax.set ylim(-GRID, GRID)
  plt.plot(x, y, linewidth=2)
  if point is not None:
      plt.plot(point[0], point[1], 'bo')
       plt.annotate(f'[{round(point[0], 2)}, {round(point[1],
2) } ] ',
                    xy=(point[0], point[1]), textcoords='offset
points',
  plt.show()
```

Для системы уравнений

```
class FunctionSystem(Describable):
   option name = 'system'
        init (self, first: Callable[[float, float], float],
second: Callable[[float, float], float],
float],
                first y derivation: Callable[[float, float],
float],
                second x derivation: Callable[[float, float],
float],
                second y derivation: Callable[[float, float],
float],
list[float]],
                second y from x: Callable[[float], float |
list[float]], description: str):
      super(). init (description)
      self.first = first
```

```
self.second = second
       self.second x derivation = second x derivation
       self.first y from x = first y from x
SYSTEMS: Final[list[FunctionSystem]] = [
   FunctionSystem(lambda x, y: math.sin(y) + 2 * x,
                  lambda x, y: math.cos(x - 1) + y - 0.7,
                  lambda x, y: math.cos(y),
                  lambda x: [math.asin(-2 * x) + 2 * math.pi * i]
if 2 * abs(x) \le 1 else math.nan
 x) + 2 * math.pi * i - math.pi if 2 * abs(x) <= 1
                                                       else
math.nan for i in range(-3, 3)],
                  lambda x: 0.7 - math.cos (x - 1),
  FunctionSystem(lambda x, y: math.tan(x * y + 0.3) - x ** 2,
                  lambda x, y: x / (math.cos(x * y + 0.3))**2,
                  lambda x, y: x,
                  lambda x: [(math.atan(x**2) + 2 * math.pi * i -
0.3) / x if x != 0
                  lambda x: [math.sqrt((1 - 0.5 * x**2) / 2) if
abs(x)**2*0.5 \le 1 else math.nan,
                             -math.atan(math.sqrt((1 - 0.5 *
x^{**2})) / 2) if abs(x)**2 * 0.5 <= 1 else math.nan],
def get cramer answer(mat: list[list[float]]) -> tuple[float,
float]:
```

Вспомогательные методы и классы

https://github.com/ITerNik/Computational-Math-2024/tree/main/P3208/Terekhin 367558/lab2

Результаты выполнения программы

```
1. x^3 + 4,81x^2 - 17,37x + 5, 38
2. x^3 - 1,89x^2 - 5x + 2,34
3. e^(x / 3) - 2cos(x + 4)
4. x^2 - e^x
Choose function:
-1
No such function. Try again
letters
No such function. Try again
3
1.From console
2. From file
Choose option:
1
Input first approximation interval using two numbers:
```

```
Input precision:
1. Dichotomy method
2.Newton's method
3.Secants Method
4.Simple Iteration Method
Choose method:
Final answer: -2.6382,
Steps: 5,
Function value: 0.0
                                                           8 -
                       6
                                                           4 -
                                                 [-2.64, 0.0]
                                                          -2
                      -2
                      -6
                                                          -6
                      -10
                                                          -10
   | \sin(y) + 2x = 0
2. | tg(xy + 0,3) = x^2
Choose system:
```

```
| cos(x - 1) + y = 0,

| tg(xy + 0,3) = x^2 | 0.5x^2 + 2y^2 = 1

| Choose system:

| Trom console | Choose option:

| Enter file name with extension:

| text.txt | No such file. Try again:

| test.txt | Newton's method calculations: -1.014 -0.493
```


Выводы

В ходе выполнения работы удалось изучить численные методы решения нелинейных уравнений и их систем, найти корни нелинейных уравнений и систем нелинейных уравнений, выполнить программную реализацию методов

Получилось понять как автоматизировать численные методы из математики, переносить их в код с учетом ошибок ввода пользователей и погрешности

Все методы для решения единичного уравнения показывают в равной степени эффективную работу. Некоторые методы сильно зависят от выбора изоляции корней. Итерационный метод, хоть и прост в реализации, может расходиться на большом интервале изоляции

В системах уравнений также важно начальное приближение. Скорость сходимости метода простых итераций в этом плане зависима