Лабораторная работа 2.2.6

Определение энергии активации по температурной зависимости вязкости жидкости

Рашковецкий М.М., группа 526т

12 марта 2016 г.

Цель работы: измерение скорости падения шариков при разной температуре жидкости и вычисление вязкости жидкости по закону Стокса.

Оборудование и материалы: стеклянный цилиндр с глицерином, термостат, секундомер, микроскоп, стеклянные и железные шарики.

Краткая теория

Для перехода в новое состояние молекула жидкости должна преодолеть участки с высокой потенциальной энергией, которая больше тепловой, этим обусловена высокая вязкость жидкостей. Она обратно пропорциональна доле молекул, способных на этот переход, поэтому из распределения Больцмана

$$\eta \sim e^{\frac{W}{kT}},\tag{1}$$

где W — энергия активации жидкости.

По графику в координатах $(\frac{1}{T}, \ln \eta)$ можно найти W. Если график аппроксимирован как

$$\ln \eta = \frac{A}{T} + B,$$
(2)

то энергия активации

$$W = kA. (3)$$

Формула (1) даёт неплохое согласие при небольших разностях температур, но дальше становится плохо применимой, потому что выведена очень приближённо.

Для ламинарного обтекания шарика бесконечной жидкостью верна формула Стокса:

$$\vec{F} = -6\pi \eta r \vec{v},\tag{4}$$

где r и \vec{v} — радиус и скорость шарика, \vec{F} — сила сопротивления, действуюбщая на него.

Вопрос о применимости формулы (4) решается только экспериментально. Критерием для этого может служить число Рейнольдса

$$Re = \frac{\rho vr}{\eta}. ag{5}$$

Если Re < 0.5, то течение можно считать ламинарным.

Для вертикального движения шарика в жидкости из второго закона Ньютона (на него действуют сила тяжести, сила Архимеда и сила сопротивления) в проекции на вертикальную ось легко получить следующее дифференциальное уравнение:

$$Vg\left(\rho - \rho_{\mathsf{x}}\right) - 6\pi\eta rv = V\rho \frac{dv}{dt},\tag{6}$$

где V — объём шарика, ρ и $\rho_{\mathtt{ж}}$ — плотности шарика и жидкости.

Его решение имеет вид:

$$v = v_{\text{yct}} - (v_{\text{yct}} - v_0) e^{-fract\tau}, \tag{7}$$

где v_0 — скорость в начальный момент времени,

$$v_{\text{yct}} = \frac{Vg\left(\rho - \rho_{\text{m}}\right)}{6\pi\eta r} = \frac{2}{9}gr^2\frac{\rho - \rho_{\text{m}}}{\eta} \tag{8}$$

И

$$\tau = \frac{V\rho}{6\pi\eta r} = \frac{2}{9} \frac{r^2\rho}{\eta}.\tag{9}$$

Как видно из (7), скорость экспоненциально приближается к установившейся со временем релаксации τ . При временах, в несколько раз превышающих время релаксации, процесс уже можно считать установившимся.

Из (8) ясно, что если измерить на опыте $v_{\rm ycr},\,r,\,\rho$ и $\rho_{\rm x},\,$ можно определить вязкость:

$$\eta = \frac{2}{9}gr^2 \frac{\rho - \rho_{\mathsf{x}}}{v_{\mathsf{vcT}}}.\tag{10}$$

Есть два пути проверки применимости формулы Стокса:

1. Подсчёт числа Рейнольдса из (5) и (10):

$$Re = \frac{9v_{\text{yct}}^2}{2gr} \frac{\rho}{\rho - \rho_{\text{x}}}.$$
 (11)

2. Проверка отсутствия систематической зависимости η от r. Если она наблюдается, можно использовать более точную формулу, учитывающую ограниченность жидкости в нашем эксперименте, полученную для движения шарика вдоль оси сосуда:

$$\eta = \frac{2}{9}gr^2 \frac{\rho - \rho_{\text{x}}}{\left(1 + 2A_{\overline{R}}^{\underline{r}}\right)v_{\text{ycr}}},\tag{12}$$

где R — радиус сосуда.

Также можно найти путь, пройденный шариком, проинтегрировав (7):

$$S = v_{\text{ycr}} \tau \left(\frac{t}{\tau} - 1 + e^{-\frac{t}{\tau}} \right). \tag{13}$$

Случаю установления $t\gg \tau$ соответствует

$$S \gg v_{\text{ycr}} \tau = \frac{4gr^4 \rho \left(\rho - \rho_{\text{xc}}\right)}{81\eta^2}.$$
 (14)

Сделаем оценку сверху. В эксперименте r<1 мм, $\rho<8000\frac{\mathrm{Kr}}{\mathrm{M}^3},~\rho_{\mathrm{ж}}>1000\frac{\mathrm{Kr}}{\mathrm{M}^3},~\eta>0,05~\Pi\mathrm{a\cdot c},$ тогда

$$S \gg 1, 1 \,\text{cm}. \tag{15}$$

Установка

Установка состоит из сосуда C в рубашке, омываемового циркулирующей водой B из термостата T. На термостате устанавливаются разные температуры, которые приобретает и глицерин в сосуде.

Для шариков, сбрасываемых в сосуд, рекомендуется измерять несколько диаметров и усреднять, потому что они могут быть не вполне сферическими.

Ход работы

- 1. Мы отобрали 10 железных шариков ($\rho_{\text{жел}}=7800\frac{\text{кг}}{\text{м}^3}$) и 10 стеклянных ($\rho_{\text{ст}}=2500\frac{\text{кг}}{\text{м}^3}$).
- 2. Измерили диаметр сосуда $D = 2.4 \,\mathrm{cm}$.
- 3. Положив каждый из них под микроскоп в разных положениях по 3 раза, измерили по 3 разных диаметра.
- 4. Выставили температуру t на термостате, подождали, пока она установится.
- 5. Сбросили в сосуд по 2 железных и 2 стеклянных шарика, замерили время τ , за которое каждый из них проходит расстояние между нижними полосами $l=10\,\mathrm{cm}$.
- 6. Повторили пп. 4 5 для 5 разных температур.

Обработка результатов

Результаты измерений приведены в таблице 1. Плотность глицерина для нужных температур снята из графика в лабнике (хотя целесообразность этого весьма сомнительна — изменения плотности крайне незначительны относительно погрешностей.)

$N_{\overline{0}}$	d_i , mm			t,° C	τ , c	ρ , K Γ /M ³	$\rho_{\mathrm{ж}}, \mathrm{K}\Gamma/\mathrm{M}^3$
1	0,6	0,7	0,7	33	11,1	7800	1254
2	0,65	0,7	0,65	33	10,9	7800	1254
3	0,5	0,6	0,7	40	10,9	7800	1250
4	0,8	0,8	0,7	40	6,0	7800	1250
5	0,7	0,7	0,7	47	5,0	7800	1245
6	0,8	0,7	0,7	26	12,8	7800	1258
7	0,7	0,8	0,7	47	4,8	7800	1245
8	0,9	0,8	0,8	26	10,0	7800	1258
9	1,9	1,9	1,8	26	9,7	2500	1258
10	2,1	2,0	2,0	54	2,3	2500	1251
11	2,0	2,0	2,0	26	9,9	2500	1258
12	2,0	1,9	1,9	54	2,2	2500	1251
13	2,1	1,9	1,9	47	3,3	2500	1245
14	2,1	2,0	2,2	47	3,3	2500	1245
15	1,9	2,0	2,0	40	4,6	2500	1250
16	2,1	2,0	2,0	40	5,1	2500	1250
17	1,8	2,0	1,9	33	6,4	2500	1254
18	2,0	2,1	2,0	33	7,7	2500	1254
19	0,8	0,9	0,8	54	2,6	7800	1251
20	0,8	0,75	0,75	54	2,8	7800	1251

Таблица 1: Результаты эксперимента

После этого я рассчитал средние значения и среднеквадратичные отклонения диаметров для всех шариков.

Вязкость я находил согласно (10)

$$\eta = \frac{2}{9}gr^2t\frac{\rho - \rho_{\mathcal{K}}}{l}.\tag{16}$$

Отсюда её погрешность

$$\sigma_{\eta} = \eta \sqrt{\left(2\frac{\sigma_r}{r}\right)^2 \left(\frac{\sigma_t}{t}\right)^2},\tag{17}$$

где погрешность времени $\sigma_t \approx 0.1$ с.

Число Рейнольдса находил по (11).

Числа Рейнольдса получилось в основном достаточно маленьким (Re < 0.5), за исключением шариков 10 и 12, но я посчитал, что их влияние на лучшую прямую незначительно, и не стал исключать их из рассмотрения.

Затем я построил график (рис. 2) в соответствии с (2) и линейно аппроксимировал его по методу наименьших квадратов с учётом весов точек (из погрешностей).

Таблица 2: Результаты обработки

$N_{\overline{0}}$	d, mm	t,° C	$\eta, \Pi a \cdot c$	Re	$\eta', \Pi a \cdot c$
1	0.67 ± 0.05	33	0.18 ± 0.02	0,02	0.17 ± 0.02
2	0.67 ± 0.02	33	0.173 ± 0.012	0,02	0.163 ± 0.011
3	0.60 ± 0.08	40	0.14 ± 0.04	0,02	0.13 ± 0.04
4	0.77 ± 0.05	40	0.126 ± 0.016	0,06	0.115 ± 0.015
5	0.7	47	0.0874 ± 0.0017	0,1	0.0825 ± 0.0016
6	0.73 ± 0.05	26	0.25 ± 0.03	0,015	0.23 ± 0.03
7	0.73 ± 0.05	47	0.092 ± 0.011	0,1	0.087 ± 0.011
8	0.83 ± 0.05	26	0.25 ± 0.03	0,02	0.23 ± 0.03
9	1.87 ± 0.05	26	0.229 ± 0.012	0,05	0.197 ± 0.010
10	2.03 ± 0.05	54	0.064 ± 0.004	0,9	0.055 ± 0.004
11	2	26	0.267 ± 0.003	0,05	0.229 ± 0.002
12	1.93 ± 0.05	54	0.055 ± 0.004	1	0.047 ± 0.003
13	1.97 ± 0.09	47	0.087 ± 0.009	0,4	0.075 ± 0.008
14	2.10 ± 0.08	47	0.099 ± 0.008	0,4	0.084 ± 0.007
15	1.97 ± 0.05	40	0.121 ± 0.006	0,2	0.103 ± 0.005
16	2.03 ± 0.05	40	0.143 ± 0.007	0,2	0.122 ± 0.006
17	1.90 ± 0.08	33	0.157 ± 0.014	0,1	0.134 ± 0.011
18	2.03 ± 0.05	33	0.215 ± 0.010	0,08	0.184 ± 0.009
19	0.83 ± 0.05	54	0.064 ± 0.008	0,3	0.060 ± 0.007
20	0.77 ± 0.03	54	0.059 ± 0.004	0,3	0.055 ± 0.004

Рис. 2: График

Разброс точек показался мне большим, поэтому я пересчитал вязкость по (12):

$$\eta' = \frac{2}{9}gr^2t \frac{\rho - \rho_{\mathsf{xx}}}{\left(1 + 2, 4\frac{r}{R}\right)l},\tag{18}$$

влиянием поправочного к (16) члена на погрешность пренебрёг. Числа Рейнольдса я пересчитал, но ситуация с ними существенно не изменилась, поэтому не привожу их в отчёте.

По этим данным построил ещё один график (рис. 3).

Ситуация с точками несколько улучшилась (их погрешности не изменились относительно прошлого случая, но они стали ближе к прямой).

Значение углового коэффициента прямой

$$A = (4760 \pm 120) \,\mathrm{K}.\tag{19}$$

Тогда, согласно (3), энергия активации

$$W = (6.57 \pm 0.17) \cdot 10^{-20} \text{Д} \times = (0.41 \pm 0.01) \text{ sB}. \tag{20}$$

Зная молярную массу глицерина $\mu=92\frac{\Gamma}{\text{моль}},$ несложно пересчитать удельную энергию активации:

$$W = (430 \pm 10) \frac{\kappa \Lambda \kappa}{\kappa \Gamma}.$$
 (21)

Это приблизительно на порядок ниже удельной теплоты парообразования, что соответствует здравому смыслу.

Погрешность может быть сильно занижена, потому что не учтён разброс точек при подсчёте погрешности углового коэффициента.