Throughout the homework sheet, IVT denotes the Intermediate Value Theorem.

Problem 1. Let $f: X \to Y$ be a continuous function and X be connected. Prove that the graph of f, $Gf(f) = \{(x, f(x)) | x \in X\}$, is connected in $X \times Y$.

Proof. We Claim that $\tilde{f}: X \to X \times Y$ defined by $x \mapsto (x, f(x))$ is continuous. Consider the diagram

Since f and Id_X is continuous, \tilde{f} is continuous by characteristic property of the product topology $X \times Y$. Clearly, $\tilde{f}(X) = \mathrm{Gf}(f)$. Thus $\mathrm{Gf}(f)$ is connected in $X \times Y$.

Problem 2. Show that a connected metric space with more than one point must be uncountable. Hence, if S is a countable subset of a metric space, then S is totally disconnected. Hint: Use IVT.

Proof. Let (X,d) be a connected metric space and $x,y \in X$ such that $x \neq y$. Then d(x,y) > 0. Define function $f: X \to \mathbb{R}$ by f(z) = d(x,z) for all $z \in X$. By homework, f is continuous. Thus f(X) is connected, so f(X) is singleton or interval. Since f(x) = 0 and f(y) > 0, f(X) = [a,b] for some $a,b \in \mathbb{R}$. Next, let $c \in [a,b]$, by IVT, there is $u \in X$ such that f(u) = c, that is f is surjective, so X is must be uncountable set. Note that every connected with more than one point is not totally disconnected. Now, we have if S is countable subset of a metric space, then S is totally disconnected as desired.

Problem 3. Determine whether the following spaces are connected, totally disconnected or neither:

- i) \mathbb{R} with the cocountable topology;
- ii) \mathbb{R} with the lower limit topology;
- $(iii) \{(x,y) \in \mathbb{R}^2 : x \text{ or } y \text{ is } rational\} \}$
- iv) $\{(x,y) \in \mathbb{R}^2 : x \text{ and } y \text{ is rational}\}$;
- v) $\{(x,y) \in \mathbb{R}^2 : x \text{ or } y \text{ but not both, is rational}\}$

Solution.

- i) We consider $(\mathbb{R}, \mathcal{T}_{\text{cocountable}})$. Recall that F is closed in $(\mathbb{R}, \mathcal{T}_{\text{cocountable}})$ if and only if F is countable or $F = \mathbb{R}$. Suppose to the contrary that X is disconnected. Then there is non-empty proper subset A of \mathbb{R} such that A is closed and A is open. Since A is closed, we have A is countable. Since A is open $\mathbb{R} \setminus A$ is countable. This implies that $\mathbb{R} = A \cup (\mathbb{R} \setminus A)$ is also countable, which is a contradiction. Thus $(\mathbb{R}, \mathcal{T}_{\text{cocountable}})$ is connected. Clearly, $(\mathbb{R}, \mathcal{T}_{\text{cocountable}})$ is not totally disconnected.
- ii) We consider $(\mathbb{R}, \mathcal{T}_{lower\ limit})$. Clearly, [0,1) is open in $(\mathbb{R}, \mathcal{T}_{lower\ limit})$. By Homework 8.2, [0,1) is closed. Thus $(\mathbb{R}, \mathcal{T}_{lower\ limit})$ is disconnected. Clearly, for all $x \in (\mathbb{R}, \mathcal{T}_{lower\ limit})$, $\{x\}$ is connected. Next, suppose A is any subset of $(\mathbb{R}, \mathcal{T}_{lower\ limit})$ that contains at least two point. Let a and b be distinct elements in A. WLOG we assume that a < b. Since [a,b) is clopen in X, we have $[a,b) \cap A$ is also clopen in A. Thus A is disconnected. Now, we conclude that $(\mathbb{R}, \mathcal{T}_{lower\ limit})$ is totally disconnected.
- iii) We consider $B:=\{(x,y):x \text{ or } y \text{ is rational}\}$. We show that for every $(x,y)\in B$ there is a path in B from (x,y) to (0,0). Let $(x,y)\in \mathbb{Q}$. WLOG suppose that $x\in \mathbb{Q}$. Since \mathbb{R} is path-connected, there is a path $\alpha:[0,1]\to\mathbb{R}$ such that $\alpha(0)=y$ and $\alpha(1)=0$. Define $\tilde{\alpha}:[0,1]\to B$ by $\tilde{\alpha}(t)=(x,\alpha(t))$ for all $t\in[0,1]$. Since $x\in\mathbb{Q}$, $(x,\alpha(t))\in B$ for all $t\in[0,1]$. Clearly, $\tilde{\alpha}$ is continuous, $\tilde{\alpha}(0)=(x,y)$ and $\tilde{\alpha}(1)=(x,0)$. Similarly, there is a path $\beta:[0,1]\to\mathbb{R}$ such that $\beta(0)=x$ and $\beta(1)=0$. Define $\tilde{\beta}:[0,1]\to B$ by $\tilde{\beta}(t)=(\beta(t),0)$ for all $t\in[0,1]$, so $\tilde{\beta}$ is a path in B from (x,0) to (0,0). Thus $\tilde{\alpha}*\tilde{\beta}$ is a path in B from (x,y) to (0,0). Let $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$. Then there is a path $(x,y)\in B$ from $(x,y)\in B$ from $(x,y)\in B$ is a path in $(x,y)\in B$.
- iv) We consider $\{(x,y) \in \mathbb{Q}^2\}$. Observe that \mathbb{Q}^2 is disconnected by, say, $\{(x,y) \in \mathbb{Q}^2 : x > \pi\}$ and $\{(x,y) \in \mathbb{Q}^2 : x < \pi\}$. Next, suppose A is any subset of \mathbb{Q}^2 that contains at least two point. Let (x_1,y_1) and (x_2,y_2) be distinct elements in A. WLOG assume that $x_1 < x_2$. Then there is $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ such that $x_1 < \alpha < x_2$, it follows that $\{(x,y) \in A : x < \alpha\}$ and $\{(x,y) \in A : x > \alpha\}$ disconnect A, so no subset with more than one point is connected. Thus \mathbb{Q}^2 is totally disconnected.
- v) We consider $\mathbb{R}^2 \setminus \mathbb{Q}^2$. Let $q \in \mathbb{R} \setminus \mathbb{Q}$. Since $\{q\} \times \mathbb{R} \cong \mathbb{R} \cong \mathbb{R} \times \{q\}$, $\{q\} \times \mathbb{R}$ and $\mathbb{R} \times \{q\}$ are connected. Since $\{q\} \times \mathbb{R} \cap \mathbb{R} \times \{q\} = \{(q,q)\} \neq \emptyset$, we have $\{q\} \times \mathbb{R} \cup \mathbb{R} \times \{q\}$ is connected. For each $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ we define $A_{\alpha} := \{\alpha\} \times \mathbb{R} \cup \mathbb{R} \times \{\alpha\}$. It is easy to see that $A_{\alpha} \cap A_{\beta} = \{(\alpha,\beta),(\beta,\alpha)\} \neq \emptyset$ for all $\alpha,\beta \in \mathbb{R} \setminus \mathbb{Q}$. Thus $\bigcup_{q \in \mathbb{R} \setminus \mathbb{Q}} A_q$ is connected, by Homework 4. Finally, we will show that $\mathbb{R}^2 \setminus \mathbb{Q}^2 = \bigcup_{q \in \mathbb{R} \setminus \mathbb{Q}} A_q$. Let $(x,y) \in \mathbb{R}^2 \setminus \mathbb{Q}^2$. Then $x \in \mathbb{R} \setminus \mathbb{Q}$ or $y \in \mathbb{R} \setminus \mathbb{Q}$. WLOG suppose that $x \in \mathbb{R} \setminus \mathbb{Q}$, so $(x,y) \in A_x \subseteq \bigcup_{q \in \mathbb{R} \setminus \mathbb{Q}} A_q$. Conversely, let $(x,y) \in \bigcup_{q \in \mathbb{R} \setminus \mathbb{Q}} A_q$, so $(x,y) \in A_x$ or $(x,y) \in A_y$. Thus $(x,y) \in \mathbb{R}^2 \setminus \mathbb{Q}^2$. Clearly, $\mathbb{R}^2 \setminus \mathbb{Q}^2$ is not totally disconnected.
- vi) We consider $H := (\mathbb{Q} \times \mathbb{R} \setminus \mathbb{Q}) \cup (\mathbb{Q} \times \mathbb{R} \setminus \mathbb{Q})$. Note that $x + y \in \mathbb{R} \setminus \mathbb{Q}$ if $(x, y) \in H$. For $q \in \mathbb{Q}$ let

$$G = \{(x, y) \in H : x + y > q\}$$

and

$$U = \{(x, y) \in H : x + y < q\}.$$

Thus $H = G \cup U$. Clearly G and U are disjoint open in H, so H is disconnected. Next, suppose A is any subset of H that contains at least two point. Let (x_1, y_1) and (x_2, y_2) be distinct elements in A. If $(x_1 + y_1) \neq (x_2 + y_2)$, WLOG $(x_1 + y_1) < (x_2 + y_2)$, then there is $r_1 \in \mathbb{Q}$ such that $\{(x, y) \in A : x + y > r_1\}$ and $\{(x, y) \in A : x + y < r_1\}$ disconnect A. If $x_1 + y_1 = x_2 + y_2$, then $\{(x, y) \in A : y - \frac{y_1 + y_2}{2} > x - \frac{x_1 + x_2}{2}\}$ and $\{(x, y) \in A : y - \frac{y_1 + y_2}{2} < x - \frac{x_1 + x_2}{2}\}$ disconnect A. Thus A is totally disconnected.

Problem 4. Assume that $\{A_{\alpha} : \alpha \in \Lambda\}$ is a family of connected subsets of a topological space X such that $A_{\alpha} \cap A_{\beta} \neq \emptyset$ for all $\alpha, \beta \in \Lambda$. Prove that $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is connected.

Proof. By assumption $A_{\alpha} \cap A_{\beta} \neq \emptyset$ for all $\alpha, \beta \in \Lambda$, we have $A_{\alpha} \neq \emptyset$ for all $\alpha \in \Lambda$. Fix $\lambda \in \Lambda$. Observe that $A_{\lambda} \cap A_{\alpha} \neq \emptyset$ for all $\alpha \in \Lambda$. It follows that $A_{\lambda} \cup A_{\alpha}$ is connected for all $\alpha \in \Lambda$, so $\{A_{\lambda} \cup A_{\alpha} : \alpha \in \Lambda\}$ is a family of connected subset of X. Since $\emptyset \neq A_{\lambda} \subseteq \bigcap_{\alpha \in \Lambda} (A_{\lambda} \cup A_{\alpha})$, $\bigcup_{\alpha \in \Lambda} (A_{\lambda} \cup A_{\alpha})$ is connected. Since $A_{\lambda} \subseteq \bigcup_{\alpha \in \Lambda} A_{\alpha}$, we have $\bigcup_{\alpha \in \Lambda} (A_{\lambda} \cup A_{\alpha}) = A_{\lambda} \cup \bigcup_{\alpha \in \Lambda} A_{\alpha} = \bigcup_{\alpha \in \Lambda} A_{\alpha}$. We are done.

Problem 5. A point $x \in X$ is called a cut point if X is connected but $X - \{x\}$ is disconnected. Prove that if $f: X \to Y$ is a homeomorphism and x is a cut point of X, then f(x) is a cut point of Y. Use this result to determine whether the following spaces are homeomorphic:

- (a) (0,1) and [0,1) with the usual topology.
- (b) \mathbb{R} and \mathbb{R}^2

Proof. Let $f: X \to Y$ is a homeomorphism and $x \in X$ is a cut point of X. Since X is connected, Y is also connected. We will show that $Y - \{f(x)\}$ is disconnected. Since $X - \{x\}$ is disconnected, there are two non-empty disjoint open subset of $X - \{x\}$, say A, B such that $A \cup B = X - \{x\}$.

- Since f is injective, $\emptyset = f(A \cap B) = f(A) \cap f(B)$ and $f(X \{x\}) = f(X) \{f(x)\}$.
- Since f is surjective, $f(X \{x\}) = Y \{f(x)\}.$
- Since restriction of an injective open map is an open map, f(A) and f(B) are open in $Y \{f(x)\}$. We can conclude that $Y \{f(x)\}$ is disconnected as desired.
- a) Suppose to the contrary that there is a homeomorphism $h:(0,1)\to[0,1)$. Since h is surjective, there is $x\in(0,1)$ such that h(x)=0. Observe that h(x) is not a cut point of [0,1). But $(0,1)-\{x\}=(0,x)\cup(x,1)$ is disconnected, so x is a cut point of (0,1). Thus f is not homeomorphism. It follows that $(0,1)\not\cong[0,1)$.
- b) Suppose to the contrary that there is a homeomorphism $g: \mathbb{R} \to \mathbb{R}^2$. Then there is $y \in \mathbb{R}$ such that g(y) = (0,0). Observe that for any $x_1, x_2 \in \mathbb{R}^2 \{(0,0)\}$ we can find path $\alpha: [0,1] \to \mathbb{R}^2$ such that $\alpha(0) = x_1$ and $\alpha(x_2) = x_2$, that is $\mathbb{R}^2 \{(0,0)\}$ is path-connected. Thus f(y) is not a cut point of \mathbb{R}^2 . But $\mathbb{R} \{y\}$ is a cut point of \mathbb{R} . Hence $\mathbb{R} \not\cong \mathbb{R}^2$.

Problem 6. Let f be a 1-1 continuous function from \mathbb{R} into \mathbb{R} . Prove the following:

- i) For any x < y in \mathbb{R} , if f(x) < f(y), then for any $z \in (x, y), f(z) \in (f(x), f(y))$.
- ii) For any x < y in \mathbb{R} , if f(x) < f(y), then for any a < x, f(a) < f(x).
- iii) f is monotone.

Proof. i) By iii), we are done.

- ii) By iii), we are done.
- iii) We will show that f is monotone. Suppose to the contrary that f is not monotone. WLOG assume that there exists $x < y < z \in \mathbb{R}$ such that $f(x) \le f(y)$ and $f(y) \ge f(z)$. If f(x) = f(y) or f(y) = f(z), then f is not injective. Thus f(x) < f(y) and f(y) > f(z). WLOG assume that f(x) < f(z) < f(y). By IVT, there is $c \in [x, y]$ such that f(c) = f(z), but $z \notin [x, y]$, we have f is not injective, which is a contradiction.

Problem 7. Let X be a space, and define a relation $x \sim y$ if and only if there is a path in X from x to y. Show that \sim is an equivalence relation whose equivalence classes are the path-components, i.e. the maximal path-connected subsets, of X.

Proof. i) Reflexive: Clearly, constant path is continuous, i.e. $c:[0,1] \to X$ such that c(t) = x for all $t \in [0,1]$. Thus $x \sim x$.

- ii) Symmetric: Let $x \sim y$. Then there is a path $\alpha : [0,1] \to X$ such that $\alpha(0) = x$ and $\alpha(1) = y$. Clearly, $\overline{\alpha}(t) = \alpha(1-t)$ is a continuous function from [0,1] to X such that $\overline{\alpha}(0) = \alpha(1) = y$ and $\overline{\alpha}(1) = \alpha(0) = x$. Thus $y \sim x$
- iii) Transitive: Let $y \sim z$. Then there is a path $\beta : [0,1] \to X$ such that $\beta(0) = y$ and $\beta(1) = z$. Define $\alpha * \beta : [0,1] \to X$ by

$$\alpha * \beta(t) = \begin{cases} \alpha(2t), & \text{if } t \in [0, 1/2], \\ \beta(2t - 1), & \text{if } t \in [1/2, 1]. \end{cases}$$

The map $\alpha * \beta$ is well defined, since if t = 1/2, we have $\alpha(1) = \beta(0)$. Since $\alpha * \beta$ is continuous on the two closed subsets [0, 1/2] and [1/2, 1] of [0, 1], it is continuous on [0, 1], by the gluing lemma. It is easy to see that $\alpha * \beta(0) = x$ and $\alpha * \beta(1) = z$. Hence $x \sim z$.

Problem 8. Let X be a locally path-connected space. Prove that an open connected subset of X path-connected. In particular, a locally path-connected and connected space is path-connected.

Hint: Let O be an open connected subset of X and fix $a \in O$. Define $U_{\alpha} = \{x \in O : there is a path in O joining a and x\}$. Prove that U_{α} is both open and closed in O.

4

Proof. We show that U_{α} is both open and closed in O. Note that we can show that every open subset of a locally path-connected space is locally path-connected and every path component of locally path-connected are open as in the locally connected case. By the way U_{α} was constructed, we see that U_{α} is a path component of O, so it is open in O. Next we claim that every path component of a locally path-connected space are equal to its component. Let $p \in X$, and let A and B be the component and the path component containing p, respectively. Then we have $B \subseteq A$ and A can be written as a disjoint union of path components, each of which is open in X and thus in A. If B is not the only path component in A, then the sets B and $A \setminus B$ disconnected A, which is a contradiction because A is connected. This implies that A = B. Now, we have U_{α} is also a component of O, so it is closed in O. Since O is connected, $U_{\alpha} = O$. Thus O is path-connected.

Problem 9. Let A and B be subsets of a topological space X such that $A \cap \overline{B} \neq \emptyset$. Prove or disprove the following statements:

- a) If A and B are connected, then $A \cup B$ is connected.
- b) If A and B are path-connected, then $A \cup B$ is path-connected. Solution.
- a) We claim that $A \cup B$ is connected. Suppose to the contrary that $A \cup B$ is disconnected. Then there is continuous surjective function $f:(A \cup B, \mathcal{T}_{A \cup B}) \to (\{a,b\}, \mathcal{T}_{\text{discrete}})$. Note that A and B are also connected in $A \cup B$ with the subspace topology. WLOG $f(B) = \{b\}$. Since f is continuous, $f^{-1}(\{b\})$ is closed set contain B, so $\overline{B} \subseteq f^{-1}(\{b\})$. But $A \cap \overline{B} \neq \emptyset$ and A is connected in $A \cup B$, $f(A) = \{b\}$. This implies that f is not surjective, which is a contradiction.
- b) Choose $A = \{(0,0)\} \subseteq \mathbb{R}^2$ and $B = \{(x,\sin(1/x)): x > 0\} \subseteq \mathbb{R}^2$. Note that $A \cup B$ is the topologist's sine curve. Clearly, there is a contstant path from [0,1] to A, so A is path-connected. Let $(x,\sin(1/x),(y,\sin(1/y))) \in B$. Define $f:[0,1] \to B$ by $f(t):((1-t)x+ty,\sin(1/((1-t)x+ty)))$. It is easy to check that f is continuous f(0)=x and f(1)=y. This implies that B is path-connected. Observe that $A \subseteq A \cup B \subseteq \overline{B}$. Thus $A \cap \overline{B} \neq \emptyset$. But the topologist's sine curve is not path-connected.

Problem 10. i) Prove that if X is totally disconnected and locally connected, then X is discrete.

ii) Verify whether \mathbb{R} with the lower limit topology is locally connected.

- *Proof.* i) Let $x \in X$. Since X is totally disconnected, we have every singleton $\{x\}$ is component. Moreover, each component of a locally connected space X is open, so $\{x\}$ is open.
 - ii) By Problem 3 ii), we know that \mathbb{R} with the lower limit topology is totally disconnected. If \mathbb{R} with the lower limit topology is locally connected, it must be discrete, by Problem 10 i). Note that [0,2] is not open in $(\mathbb{R}, \mathcal{T}_{lower\ limit})$, by Homework 8.2 i). Hence $(\mathbb{R}, \mathcal{T}_{lower\ limit})$ is not locally connected.

Problem 11. Prove that a locally connected compact space has finitely many components.

Proof. Let X be a locally connected compact space. Then we have every component of X is open. Note that Components of X form a partition of X. Since X is compact, so finitely many of these components cover it, say C_1, \ldots, C_n . If G is component of X and let $g \in G$, then $g \in C_j$ for some $1 \leq j \leq n$, so $G \cup C_j$ is connected. Thus $G = C_j$. Now, we can conclude that X has finitely many components.

Problem 12. Suppose that (X,d) is a compact metric space. Prove that X is locally connected if and only if for each $\varepsilon > 0$, there is a finite cover of X by compact connected sets of diameter less than ε .

Proof. (\Rightarrow) Let $\varepsilon > 0$, $x \in X$ and $B_d(x : \varepsilon/4)$. Since X is locally connected, there is open connected v_x of v_x of v_x contained in v_x of v_x . By compactness of v_x , finitely many of these, say v_x , v_x , cover v_x . Since v_x is compact, v_x is also compact for all v_x is also compact for all v_x . Recall that diam v_x is diam v_x .

(\Leftarrow) Let $p \in X$ and U be an nbhd of p. Then there is $\varepsilon > 0$ such that $p \in B_d(p : \varepsilon) \subseteq U$. By assumption, there is a finite cover of X by compact connected sets of diameter less than ε , say G_1, \ldots, G_m .

Let $A_1 = \{G_i : i \in \{1, ..., m\} \text{ and } x \in G_i\}$ and $A_2 = \{G_i : i \in \{1, ..., m\} \text{ and } x \notin G_i\}$. Note that G_i is closed for all i, since it is a compact subset of Hausdorff space.

Clearly, $A_1 \neq \emptyset$. If $A_2 \neq \emptyset$, then $K = \bigcup_{A \in A_2} A$ is a finite union of closed set does not containing x. Thus $X \setminus K$ is an open set containing x. Let $y \in X \setminus K$. Then we have $y \in A$ for some $A \in \mathcal{A}_1$, so $X \setminus K \subseteq \bigcup_{A \in \mathcal{A}_1} A$. Since $x \in A$ for all $A \in \mathcal{A}_1$ and $\bigcap_{A \in \mathcal{A}_1} A \neq \emptyset$, $\bigcup_{A \in \mathcal{A}_1} A$ is connected. Moreover, $A \subseteq B_d(x; \varepsilon)$ for all $A \in \mathcal{A}_1$, since diam $A < \varepsilon$ and $x \in A$ for all $A \in \mathcal{A}_1$. Now, we have $\bigcup_{A \in \mathcal{A}_1} A$ is connected nbhd of x contained in $X \in \mathcal{A}_1$ as desired. If $X \in \mathcal{A}_1 \in \mathcal{A}_1$, we have $X \in \mathcal{A}_1$ is a connected open set containing $x \in \mathcal{A}_1$.

Problem 13. Is there a continuous function $f : \mathbb{R} \to \mathbb{R}$ such that $f[\mathbb{Q}] \subseteq \mathbb{R} - \mathbb{Q}$ and $f[\mathbb{R} - \mathbb{Q}] \subseteq \mathbb{Q}$?

Proof. Suppose to the contrary that there is a continuous function $f: \mathbb{R} \to \mathbb{R}$ such that $f[\mathbb{Q}] \subseteq \mathbb{R} - \mathbb{Q}$ and $f[\mathbb{R} - \mathbb{Q}] \subseteq \mathbb{Q}$. Since f is continuous, $f|_{[0,1]}: [0,1] \to \mathbb{R}$ is also continuous. Note that [0,1] is compact and connected. Thus f([0,1]) is compact and connected in \mathbb{R} , so it is closed bounded interval. Let f([0,1]) = [a,b]. Next, define $g: x \mapsto \frac{f(x)-p}{q}$ where $p,q \in \mathbb{Q}$ such that $g([0,1]) \subseteq [0,1]$. Then we have $g: [0,1] \to [0,1]$. Observe that g is continuous, moreover g(x) is rational if and only if f is rational. We can use the IVT to show that g has a fixed point, that is there is $x \in [0,1]$ such that g(x) = x, so x is rational if and only if x = g(x) is irrational, which is a contradiction.