第6章 容斥原理

```
2021年4月1日 10:51
```

```
6.1 容斥原理
设S是有限集合,P_1,P_2是S中元素的性质,A_1,A_2分别是具有P_1,P_2性质的元素集合,则S中既没有性质P_1也没有性质P_2的元素个数为
       |\overline{A_1} \cap \overline{A_2}| = |S| - |A_1| - |A_2| + |A_1 \cap A_2|
证明:对任意x \in S,证明它对等号左右两边贡献始终相等
       \forall x \in S
 (1) x \in \overline{A_1} \cap \overline{A_2}, 对左边贡献 = 1
 x\in\overline{A_1}\cap\overline{A_2}\Rightarrow x\notin A_1且x\notin A_2:x\notin A_1\cap A_2,对右边贡献 = 1-0-0+0=1 (2) x\notin\overline{A_1}\cap\overline{A_2},对左边贡献 = 0
       x\not\in\overline{A_1\cup A_2}\Longleftrightarrow x\in A_1\cup A_2
 (2.1)\ x\in A_1\hbox{$\stackrel{\frown}{\boxtimes}$} x\not\in A_2\,,\ x\not\in A_1\cap A_2
```

右边= 1-1-0+0=0 $(2.2)\ x\notin A_1 \hbox{$\underline{\'e}$} x\in A_2\,,\ x\notin A_1\cap A_2$

右边= 1-0-1+0=0

 $(2.3)\ x\in A_1 \underline{\boxminus} x\in A_2,\ x\in A_1\cap A_2$

右边=1-1-1+1=0

设S是有限集合, P_1 , P_2 ,…, P_m 是S中元素的性质, A_1 , A_2 ,…, A_m 分别是具有 P_1 , P_2 ,…, P_m 性质的元素集合,则S中没有性质 P_1 , P_2 ,…, P_m 的元素个数为

$$|\overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_m}| = |S| - \sum_{i=1}^m |A_i| + \sum_{i,j} |A_i \cap A_j| - \sum_{i,j,k} |A_i \cap A_j \cap A_k| + \dots + (-1)^t \sum_{i_1,i_2,\dots i_t} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_t}| + \dots + (-1)^m |A_1 \cap A_2 \cap \dots \cap A_m|$$

证明: $\forall x \in S$

(1)
$$x$$
恰有0个性质, $x \in \overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_m}$

左边 = 1

(2) x恰有m个性质, $x \in A_1, ..., A_m$

左边 = 0

右边 =
$$1 - m \cdot 1 + C_m^2 \cdot 1 - C_m^3 + \dots + (-1)^t C_m^t + \dots + (-1)^m C_m^m$$

= $C_m^0 - C_m^1 + C_m^2 - C_m^2 + \dots + (-1)^t C_m^t + \dots + (-1)^m C_m^m$
= $(1 + x)^m = (1 - 1)^m = 0$

(3) x恰有t(< m)个性质

左边=0

右边 =
$$1 - C_t^1 + C_t^2 - C_t^3 + \dots + (-1)^k C_t^k + \dots + (-1)^t C_t^k$$

= $(1 + x)^t = (1 - 1)^t = 0$

 $|\overline{A_1}\cap\cdots\cap\overline{A_m}|$: 一个性质都没有 $|A_1\cup\cdots\cup A_m|$: 至少有一个性质

$$|A_1 \cup \cdots \cup A_m| = |S| - |\overline{A_1} \cap \cdots \cap \overline{A_m}| = (|A_1| + \cdots + |A_m|) - \sum \left|A_i \cap A_j\right| + \sum \left|A_i \cap A_j \cap A_k\right| + \cdots$$

例1: 1~1000不能被5, 6, 8整除的个数

解:
$$S = \{1, 2, ..., 1000\}, |S| = 1000$$

$$P_1$$
:能被5整除 $|A_1| = \frac{1000}{5} = 200$

$$P_2$$
:能被6整除 $|A_2| = \left| \frac{1000}{6} \right| = 166$

$$P_3$$
: 能被8整除 $|A_3| = \left| \frac{1000}{8} \right| = 12$

$$|A_1 \cap A_2| = \left\lfloor \frac{1000}{30} \right\rfloor = 33, |A_2 \cap A_3| = \left\lfloor \frac{1000}{24} \right\rfloor = 41, |A_1 \cap A_3| = \left\lfloor \frac{1000}{40} \right\rfloor = 25, |A_1 \cap A_2 \cap A_3| = \left\lfloor \frac{1000}{120} \right\rfloor = 8$$
所求为 $|\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| = 1000 - (200 + 166 + 125) + (33 + 41 + 25) - 8 = 600$

例2: M, A, T, H, I, S, F, U, N的所有排列中MATH, IS, FUN不出现的个数

解: S = 9个字符的全排列

 $P_1:MATH 出现 \rightarrow |A_1| = 6!$ $P_2:IS 出现 \rightarrow |A_2| = 8!$ $P_3:FUN 出现 \rightarrow |A_2| = 7!$ $|A_1 \cap A_2| = 5!, |A_1 \cap A_3| = 4!$, $|A_2 \cap A_3| = 6!$, $|A_1 \cap A_2 \cap A_3| = 3!$

所求为 $|\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| = |S| - (|A_1| + |A_2| + |A_3|) + (|A_1 \cap A_2| + |A_1 \cap A_3| + |A_2 \cap A_3|) - |A_1 \cap A_2 \cap A_3|$

例3: 0~99999有多少含2, 5, 8的数字

解: S: 0~99999

$$P_1$$
: 不含2 $-\rightarrow |A_1| = 9^5$

$$P_2$$
: 不含5 $-\rightarrow |A_2| = 9^5$

$$P_2$$
:不含5 $-\rightarrow |A_2| = 9^5$
 P_2 :不含8 $-\rightarrow |A_1| = 9^5$

S: 0~99999 $P_1:$ 不含 $2 \rightarrow |A_1| = 9^5$ $P_2:$ 不含 $5 \rightarrow |A_2| = 9^5$ $P_3:$ 不含 $8 \rightarrow |A_3| = 9^5$ $|A_1 \cap A_2| = |A_1 \cap A_2| = |A_2 \cap A_3| = 8^5, |A_1 \cap A_2 \cap A_3| = 7^5$

所求为 $|\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}| = 10^5 - 3 \times 9^5 + 7^5$

6.2 带重复的组合

例1:
$$T = \{3 \cdot a, 4 \cdot b, 5 \cdot c\}$$
的10组合数

解:
$$|S| = \{\infty \cdot a, \infty \cdot b, \infty \cdot c\}$$
的10组合数 = C_{10+3-1}^{10}

 $|S|=\{\omega\cdot a,\omega\cdot b,\omega\cdot c)$ 問①理音数 $=c_{10+3-1}^{-1}$ $P_1:a$ 的个数至少为4 \longrightarrow $|A_1|=C_{6+3-1}^{6}$ $P_2:b$ 的个数至少为5 \longrightarrow $|A_2|=C_{6+3-1}^{6}$ $P_3:c$ 的个数至少为6 \longrightarrow $|A_3|=C_{4+3-1}^{6}$ $|A_1|=C_{1+3-1}^{6}=3$ $|A_1\cap A_2|=C_{1+3-1}^{6}=3$ $|A_1\cap A_3|=C_{1+3-1}^{6}=3$ $|A_1\cap A_2|=C_{1+3-1}^{6}=3$ $|A_1\cap A_3|=C_{0+3-1}^{6}=1$ $|A_1\cap A_2|=C_{1+3-1}^{6}=3$ $|A_1\cap A_3|=C_{0+3-1}^{6}=3$

所求为 $|\overline{A_1} \cap \overline{A_2} \cap \overline{A_3}|$

6.3 错位排列

$$1\sim$$
n全排列 $i_1,i_2,i_3,...,i_n$,满足 $i_1\neq 1,i_2\neq 2,...,i_n\neq n$

错排数 D_n $D_1 = 0, D_2 = 1, D_3 = 2, D_4 = 9$

$$D_1 = 0, D_2 = 1, D_3 = 2, D_4 = 9$$
1. $D_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \cdot \frac{1}{n!} \right)$

pf1(容斥原理):

$$S: 1 \sim n$$
的全排列, $|S| = n!$

$$S: 1 \sim n$$
的全排列, $|S| = n!$
 P_i : 第i个位置是 $_i$, $(i = 1, 2, ..., n)$
所求即为 $|\overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_n}|$

所求即为
$$|\overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_n}|$$

$$|A_i| = 1 \cdot (n-1)!$$
, $(i = 1, 2, ..., n)$
 $|A_i \cap A_j| = (n-2)!$

$$|A_i \cap A_j| = (n-2)!$$

...
$$\left|A_{i_1}\cap\cdots\cap A_{i_k}\right|=(n-k)!\;,\;\;(1\leq k\leq n)$$

$$\begin{array}{l} \vdots \\ A_{i} \cap \cdots \cap A_{n}| & = (n-n)! = 1 \\ \vdots \\ A_{i} \cap A_{i} \cap A_{i} \cap A_{i} = (n-n)! = 1 \\ \vdots \\ A_{n} = |A_{i} \cap A_{i} \cap A_{n}| & = |S| - \sum |A_{i}| + \sum |A_{i} \cap A_{j}| + \dots + (-1)^{k} \sum |A_{i_{1}} \cap \dots \cap A_{i_{k}}| + \dots + (-1)^{n} |A_{i} \cap \dots \cap A_{n}| \\ & = n! - n \cdot (n-1)! + C_{n}^{2}(n-2)! + \dots + (-1)^{k} C_{n}^{k}(n-k)! + \dots + (-1)^{n} C_{n}^{n}(n-n)! \\ \vdots \\ C_{n}^{k}(n-k)! & = \frac{n!}{k!} \frac{n!}{(n-k)!} \cdot (n-k)! = \frac{n!}{k!} \\ \vdots \\ D_{n} = n! - \frac{n!}{1!} \frac{n!}{1!} \frac{n!}{2!} - \frac{n!}{3!} + \dots + (-1)^{k} \frac{n!}{k!} + \dots + (-1)^{n} \frac{n!}{n!} \\ & = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^{n} \cdot \frac{1}{n!}\right) \end{array}$$

$$C_{n}^{k}(n-k)! = \frac{n!}{n!} \cdot (n-k)! = \frac{n!}{n!}$$

$$\therefore D_n = n! - \frac{n!}{1!} + \frac{n!}{2!} - \frac{n!}{3!} + \dots + (-1)^k \frac{n!}{k!} + \dots + (-1)^n \frac{n!}{n!}$$

```
\begin{split} e^x &= 1 + \frac{x}{1!} + \dots + \frac{x^k}{k!} + \dots \\ e^{-1} &= 1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^k \frac{1}{k} \\ e^{-1} &\approx \frac{D_n}{n!} \;, \; \left( \left| e^{-1} - \frac{D_n}{n!} \right| < \frac{1}{(n+1)!} \right) \end{split}
                                                                                             +\cdots+(-1)^k\frac{1}{k!}+\cdots+(-1)^n\frac{1}{n!}+(-1)^{n+1}\frac{1}{(n+1)!}+\cdots
```

pf2(递推关系):

首位是2, 3, 4, ..., n的n阶错排 $D_n = (n-1)d_n$, d_n : 首位是2的n阶错排数 (1) 1在第2位

 $3\sim$ n填入第 $3\sim$ n位,原问题缩小为n-2个数字,即 D_{n-2}

(2) 1不在第2位

 $1,3\sim$ n填入 $2\sim$ n位,原问题缩小为n-1个数字,即 D_{n-1}

由上可知, $D_n = (n-1)(D_{n-1} + D_{n-2})$

n! = n(n-1)! n! = (n-1)(n-2)! + (n-1)!

例: n男n女

(1) n位女士选舞伴: n!

(2) 每人换舞伴: D_n

(3) 每人拿到帽子: n!·n!(区分男女帽式),(2n)!(不区分)

(4) 没有人拿到自己的帽子: $D_n \cdot D_n$ (区分)

6.4 带有禁止位置的排列

上图: $x_1 = \{1, 4\}, x_2 = \{5\}, x_3 = \{2\}, x_4 = \{1\}, x_5 = \{4, 5\}$

问题: 1~n的全排列, $x_1,\ldots,x_n\subseteq\{1,\ldots,n\}$, 求1~n的全排列 i_1,\ldots,i_n 个数, 使 $i_1\notin x_1,i_2\notin x_2,\ldots,i_n\notin x_n$

个数记为 $P(x_1, x_2, ..., x_n)$

错排 $D_n = P(\{1\},\ldots,\{n\})$

定理6.4.1: 将n个非攻击型不可区分的车放到带有禁止位置的n行n列棋盘上的放置方法数为

 $n! - r_1(n-1)! + r_2(n-2)! + \cdots + (-1)^k r_k(n-k)! + \cdots + (-1)^n r_n(n-n)!$ 其中, r_i 等于棋盘上禁止放置 i 个车的方格的个数

解法(容斥原理):

 $S: 1 \sim n \leq h \neq h$ 列,|S| = n! P_i : 第i位放置 x_i 中元素,(i = 1, 2, ..., n)

所求为 $|\overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_n}|$

 $|n_i(x_i)||n_$

r_k 的计算:划分棋盘为行列不交的小棋盘(行,列≤3)

如上图,
$$B_1: r_1 = 3, r_2 = 1, r_3 = r_4 = \cdots = 0$$

如上图, $B_1: r_1=3, r_2=1, r_3=r_4=\cdots=0$ $B_2: r_1=4, r_2=2, r_3=r_4=\cdots=0$ \therefore 对模盘B: $r_1=3+4$ $r_2=1+2+3\times4$, B_1 取2个或 B_2 取2个或 B_1 , B_2 各取一个 $r_3=3\times2+1\times4$, B_1 取2个, B_2 取1个或 B_1 取1个, B_2 取2个 $r_4=1\times2$, B_1 取2个, B_2 取2个, B_2 取2个

另一种禁止位置问题

1~n的全排列,不要出现12,23,...,(n-1)n的排列数

解(容斥原理):

S: 1~n全排列, |S| = n! P_i: i(i + 1)出现, i = 1,2,...,n-1

所求为 $|\overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_{n-1}}|$

 $|A_i| = (n-1)!$ $|A_i \cap A_j|$:

(1) j = i + 1:(n-2)!

(2) j > i + 1:(n-2)!

$$\begin{split} & \{i_1(n-n) - A_{i_k}| = (n-k)! \\ & \{i_1(i_1+1) \quad i_2(i_2+1) \quad \dots \quad i_k(i_k+1) \quad n-2k \not \bowtie \\ & \frac{1}{n} + \frac{1}{n} +$$

Chap6: 1, 9

Chap6: 15, 24c, 28

