PRINCIPI DI ELETTROSTATICA

carica elettrica (puè crere positive o negetive)

è une propriété intrinsece delle materie (tipe le masse) se que qui hanno la stessa scoro » si respingona se que qui hanno segra opposto » si attraggona

- 1 elettrone possiede une carie (elettria)

 negative = -1.60707.10-19 Coulomb

 1 Coulomb = 1 C

 della cariea

 (S.I.)
- 1 protone possiède une carie positive peri 2 + 1.60207.10-19 C

<u>Materiali</u>:

- 1) Conduttori (le ceriche)
- 2) Isolenti (le cariche sono ferme)
- 3) Semi conduttori (ci sono poche cariche che si muovono)

- Fotte di Coulomb (elettrice)

ci dice quanto vale la forza tre due cariche elettriche puntiformi que qz, quando si trovano a distanza r

F_{1 > 2} = Ke
$$\frac{9192}{Y^2}$$
 $\frac{2}{Y_{12}}$

per il III principio di Newton abbiono che Pz = P1>>2

$$Ke = \frac{1}{4\pi E_0}$$
 dove $E_0 = Un'$ eltre ostante $E_0 = \frac{1}{4\pi K_0} = 8.85 \cdot 10^{-12} \frac{C^2}{Nm^2}$ (E_0 : costante dielettrice del vuoto)

(1 elettrone)
1 protone) · Modello di Rutherford doll'atomo di idrogeno

masse protone >> masse elettrane (22000 volte) ' protone

>> posso tresourate l'accelerazione indotta sul protone de Fezz

Fe,, genere l'accelerazione contripeta necessaria

Oltre a Felettia, de anche Fgravitazionale

Elettrone 9e= -1.6.10-13C Protone 9p = 1.6.10-19 C mp = 1.67.10-27 Kg

|Fe| = Ke |9p9e| = 8.7-10-8 N

|Fg|= G mpme = 3.6.10-47 N

Me> 9.1.10⁻³¹ kg dè circe peri e: TH = 0.5.10-10 m

> omoirsed ipuino trescurate la F

Fe = ke 9p9el = me re = me we d -> Vez = Keqp | gel med

Compo elettrico

Lampo: una grandezza (scalete o vottoriale) associate a qualsiasi positione nello spotio.

se metto una carica di prono qo in un punto dello spazio, questa risentira di una forza

Fe (X, Y, 7) = 9. È (X, Y, 7)

il compo elettrico È (x,y,z) Non dipende de 90, me delle altre coniche presenti nel sistema

genere un compo elettrico che fa in modo che qui venge artmette o respirte $\vec{E} = \frac{F_e}{9z} = ke \frac{91}{p^2} \hat{r}$

linee di compo

- in ogni punto il compo è TANGENTE alle linec di compo

→ sono omientale: verso enthonte @ Verso uscente @

-> il # di linec è proporsionale all'intensità del carpo

-> le lince di campo NON si interseceno mei

Drincipio di sovrepposizione

Se ho tante cariche not sistema (91,92,93,...), allow il campo elettrico generato dalle cariche in un punto dello spazio è la somma VETTORIALE dei campi generati de ogni caria in quel punto

$$|\vec{E}_1| = ke \frac{91}{12}$$
; $|\vec{E}_1| = ke \frac{92}{12}$; $|\vec{E}_3| = ke \frac{93}{13}$
 $|\vec{E}_1| = ke \frac{91}{12}$; $|\vec{E}_3| = ke \frac{93}{13}$

• Se io one mettessi una cenice di prove que nel punto P, avrei questa forze eleltrice su di esso: $\vec{F}_e = q_0 \vec{E}_p = q_0 \vec{E}_1 + q_0 \vec{E}_2 + q_0 \vec{E}_3$ $= Ke \frac{q_0 q_1}{t_1^2} \hat{F}_1 + ke \frac{q_0 q_2}{t_2^2} \hat{F}_2 + ke \frac{q_0 q_3}{t_3^2} \hat{F}_3$

Dipolo elettrico genere un campo elettrico

**Polo elettrico genere un campo elettrico

**Momento di dipolo: $\vec{p} = q \ell \hat{k}$ **LinA) = $ke \frac{P}{R^3} \left[3(\hat{F} \cdot \hat{R}) \hat{F} - \hat{k} \right]$

En=E+q+E-q

$$\frac{1}{z^2-2az+p^2} \simeq \frac{1}{z^2\left(1-2\frac{a}{z}\right)} \simeq \frac{1}{z^2}\left(1+\frac{2a}{z}\right)$$

$$\frac{1}{z^{2}+2a^{2}+2a^{2}} \simeq \frac{1}{z^{2}\left(1+2\frac{a}{z}\right)} \simeq \frac{1}{z^{2}}\left(1-\frac{2a}{z}\right)$$

$$|\vec{E}(3)| \simeq ke \frac{9}{z^2} \left(x + \frac{z_a}{z} - \left(x - \frac{z_a}{z} \right) \right)$$

$$\simeq \text{ Ke } \frac{9}{z^2} \left(\frac{4a}{z} \right) = \text{ Ke } \frac{4a9}{z^3}$$

Significe the $\frac{2}{R^2}$ $= \frac{1}{R^2}$ $= \frac{1}{R^2}$ =

$$|\vec{E}| = ke^{\frac{2eq}{R^3}}$$

$$|\vec{E}_{+q,P}| = k_e \cdot \frac{+q}{R^2} = |\vec{E}_{-q,P}|$$

$$(\tilde{E}_p)_y = 0$$

$$(\vec{E}_p)_z = -2 |\vec{E}_{+q}| \cos \lambda = -2 \left(ke \frac{tq}{R^2}\right) \cdot \cos \lambda$$

$$\Rightarrow (\vec{E}_p)_z = -2 ke \frac{qe}{R^3}$$