Univerzita Karlova v Praze Matematicko-fyzikální fakulta

DIPLOMOVÁ PRÁCE

David Marek

Implementace aproximativních bayesovských metod pro odhad stavu v dialogových systémech

Ústav formální a aplikované lingvistiky

Vedoucí diplomové práce: Ing. Mgr. Filip Jurčíček, Ph.D.

Studijní program: program

Studijní obor: obor

Praha 2013

Poděkování.

	omovou práci vypracoval(a) samostatně a výhradr
Beru na vědomí, že se na mo zákona č. 121/2000 Sb., autor že Univerzita Karlova v Praze	nů, literatury a dalších odborných zdrojů. oji práci vztahují práva a povinnosti vyplývající z rského zákona v platném znění, zejména skutečnos e má právo na uzavření licenční smlouvy o užití tér e §60 odst. 1 autorského zákona.
V dne	Podpis autora

Název práce: Implementace aproximativních bayesovských metod pro odhad stavu v dialogových systémech
Autor: David Marek
Katedra: Ústav formální a aplikované lingvistiky
Vedoucí diplomové práce: Ing. Mgr. Filip Jurčíček, Ph.D., Ústav formální a aplikované lingvistiky
Abstrakt:
Klíčová slova:
Title:
Author: David Marek
Department: Institute of Formal and Applied Linguistics
Supervisor: Ing. Mgr. Filip Jurčíček, Ph.D., Institute of Formal and Applied Linguistics
Abstract:
Keywords:

Obsah

Ú۶	vod		2
1	Teo	rie dialogových systémů	3
	1.1	Dialogový systém	3
	1.2	Součásti dialogového systému	3
		1.2.1 Systém rozpoznávání řeči (ASR)	4
		1.2.2 Porozumění mluvené řeči (SLU)	4
		1.2.3 Dialogový manager (DM)	5
		1.2.4 Generování přirozené řeči (NLG a TTS)	6
	1.3	Dialogový stav	6
		1.3.1 Aktualizace dialogového stavu	7
2	Bay	resovské sítě a inference	9
	$\frac{-1.5}{2.1}$	Bayesovské sítě	9
		2.1.1 Šíření informace v bayesovských sítích	10
	2.2	Inference v Bayesovských sítích	10
	2.3	Aproximativní inference	10
3	Uče	ení parametrů	11
	3.1	Grafický model	11
	3.2	Výpočet marginálních pravděpodobností	11
	٥	3.2.1 Marginální pravděpodobnost proměnných	11
		3.2.2 Marginální pravděpodobnost parametrů	13
	3.3	Aproximace marginálních pravděpodobností	14
	3.4	Algoritmus	18
Zá	ivěr		19
Se	Seznam použité literatury		20
Seznam tabulek		22	
Se	Seznam použitých zkratek		23
	Přílohy		24
	TIOIL'	V	44±

Úvod

Dialog je přirozený způsob dorozumívání a sdělování informací mezi lidmi. Počítač, který by dokázal vést dialog s uživatelem, byl vždy snem nejen příznivců vědecko-fantastické literatury. Už pro první počítače vnikaly programy, které se snažily využívat přirozenou řeč pro interakci s uživatelem. Jedním z takových programů byl například Eliza, program, který předstíral, že jej zajímá, co mu uživatel říká. Fungoval na principu rozpoznání textu pomocí gramatiky a následné transformace textu do promluv dle pravidel. Avšak gramatiky a pravidlové systémy se ukázaly nedostačné pro praktické aplikace a tak se vývoj přesunul do statistických metod. S využitím statistickým metod a metod strojového učení bylo možné začít s porozumíváním mluveného slova. Přijetí bylo zpočátku chladné a veřejnost byla

1. Teorie dialogových systémů

1.1 Dialogový systém

Dialogový systém je počítačový systém, který umožňuje uživatelům komunikovat s počítačem ve formě, která je přirozená a efektivní pro použití. Dialogové systémy stále mají spoustu problémů k překonání a pro praktické použití je třeba se uchýlit k několika předpokladům a zjednodušením. Prvním zjednodušením je doménová specializace, v současné době není možné vytvořit dialogový systém, který by se dokázal s uživatelem bavit o libovolném tématu. Vždy je potřeba při vývoji dialogového systému mít ontologii určující, jaké informace má systém poskytovat a o čem se může chtít uživatel bavit.

Další zjednodušení se týkají přímo dialogu. Předpokládá se, že dialog probíhá vždy mezi systémem a jedním uživatelem. Navíc se pravidelně střídají v obrátkách. Jedna obrátka dialogu je složená z jedné promluvy systému a jedné promluvy uživatele.

Příkladem dialogového systému může být systém pro nalezení spojení pomocí městské dopravy. Příkazu od uživatele může vypadat např. takto: "Chci jet z Malostranského náměstí na Anděl". Dialogový systém se nyní může rozhodnout, zda-li mu zadané informace stačí pro nalezení spojení. V tomto případě systém stále neví, kdy chce uživatel jet. Může předpokládat, že uživatel už na zastávce stojí a tak tedy uživateli nalezne nejbližší spojení.

Důležitou vlastností dialogového systému je robustnost. Pokud budeme používat dialogový systém v přirozeném prostředí, musíme se vyrovnat s tím, že často nebude uživateli rozumět. Systém může informaci přeslechnout, anebo si nemusí být jistý tím, co slyšel. Dialogový systém se proto musí umět uživatele doptat na chybějící informace

1.2 Součásti dialogového systému

Dialogový systém se skládá z několika částí, které spolu komunikují. Na vstupu je zvukový záznam uživatele, o jeho převedení do textu se stará systém rozpoznávání řeči (ASR). Z textu je potřeba získat sémantické informace pomocí systému porozumění mluvené řeči (SLU). Nad sémanticky anotovanými informacemi už může pracovat dialogový manager (DM), který zvolí patřičnou odpověď. Výstupem dialogového manageru jsou informace, které se mají předat uživateli. O jejich převedení do textu se stará systém generování přirozené řeči (NLG). Do zvukového záznamu převede text syntetizér řeči (TTS).

1.2.1 Systém rozpoznávání řeči (ASR)

Systém rozpoznávání řeči slouží k převedení mluveného projevu do textové podoby. Po získání textové podoby je teprve možné se zabývat významem textu. Aktuálně nejlepší systémy jsou založené na pravděpodobnostním modelu a využívají skryté Markovské modely (HMM) k určení nejpravděpodobnější sekvence slov pro daný zvukový záznam. Pro tuto část dialogového systému existuje řada dostupných otevřených toolkitů, např. systém HTK [13], Kaldi [7] nebo SPHINX [11]. Existuje i celá řada komerčního software od firem jako IBM nebo Nuance.

Úspěšnost systému rozpoznání řeči je závislá na obtížnosti úlohy a na počtu trénovacích dat, pocházejících ze stejné domény. Pro obecnou doménu se problém stává mnohem těžší a je třeba velké množství dat. Word error rate (WER) je častá metrika pro počítání výkonu ASR. Pro spočítání WER je třeba nejprve provést zarovnání rozpoznaného a originálního textu. WER je pak počet slov, která jsou změněná, smazaná anebo přidaná, vydělený počtem slov v originálním textu. Systém Let's Go! [8] dosahuje průměrné WER 64.3%.

Systém rozpoznávání řeči může produkovat více hypotéz pro jeden vstup. Často existuje pro jeden zvukový záznam více možných slovních sekvencí, z kterých by mohl pocházet. Reprezentace možných hypotéz může být seznam slovních sekvencí s jejich věrohodností. Věrohodnosti jsou skóre přiřazené hypotézám, které určují jakou důvěru má systém rozpoznávání řeči ve správnost dané slovní sekvence. V ideálním případě je věrohodnost ekvivalentní aposteriorní pravděpodobnosti sekvence slov, dáno vstupní zvuk. Ovšem ne všechny rozpoznávače pracují na pravděpodobnostním principu a pak není možné od nich požadovat skutečné pravděpodobnosti.

Další možností jak reprezentovat výstup je použití konfůzní sítě [1]. Konfůzní síť je vážený orientovaný graf, obsahující startovní a konečný vrchol a hrany označené slovy. Každá cesta ze startovního do konečného vrcholu vede přes všechny ostatní vrcholy. Váhy hran jsou pravděpodobnosti slova přiřazeného dané hraně. Hrany mohou obsahovat i prázdné slovo ϵ . Pravděpodobnost sekvence slov je součinem vah po cestě ze startovního do konečného uzlu. Výhodou konfůzní sítě je, že umožňuje v komprimované podobě uložit mnohem více hypotéz.

1.2.2 Porozumění mluvené řeči (SLU)

Jakmile má systém seznam možných hypotéz toho, co uživatel řekl, musí se pokusit porozumět, co tím uživatel myslel. Dialogový systém nepotřebuje vědět, co přesně uživatel řekl, důležité je pouze zjistit, co se uživatel snaží sdělit. Pokud například uživatel řekne "Chtěl bych nalézt spojení z Malostranského náměstí na Anděl", anebo "Jak se dostanu na Anděl ze zastávky Malostranské náměstí?", tak

Přida příklad seznamu hy-

potéz

Přida příklad konfůzní

sítě

výsledek je stejný, uživatel požaduje informace o spojení mezi dvěma zastávkami, i když v jednom případě jde o větu oznamovací a v druhém případě o otázku.

Semántická reprezentace sdělení uživatele se nazývá dialogový akt (DA), skládá se z jedné nebo více položek dialogového aktu (DAI), které jsou spojené v konjunkci. Každá DAI se skládá z typu, názvu slotu a jeho hodnoty. Typy jsou doménově nezávislé, sloty a jejich hodnoty reprezentují koncepty ontologie. Příklad dialogového aktu z dialogového systému pro hledání restaurací:

hello()&inform(food="chinese").

Zde se dialogový akt skládá ze dvou položek, první položka má pouze typ hello, značící pozdrav. Druhá položka má typ inform, tzn. uživatel nás informuje o svém požadavku. Název slotu je food a hodnota je "chinese", tedy uživatel nám říká, že hledá restauraci, kde servírují čínské jídlo.

Typů může být libovolné množství, ale existuje několik základních, jejichž použití je ustálené.

- inform sdělujeme informaci, doplňujeme hodnotu do slotu,
- request požadujeme od protějšku doplnění hodnoty pro dotazovaný slot,
- confirm chceme potvrdit hodnotu slotu, potvrzení může být implicitní, anebo explicitní. Při explicitním potvrzení očekáváme odpověď buď "Ano" nebo "Ne", U implicitního, pokud se nám nedostane odpovědi předpokládáme, že protějšek souhlasí,
- select žádáme protějšek, aby zvolil z nabízených možností.

Existuje široké množství technik, které lze použít pro porozumění mluvené řeči. Unifikace pomocí šablon anebo gramatiky jsou příklady ručně psaných metod. Metody založené na datech jsou například Hidden Vector State model [4], techniky strojového překladu [12], Combinatory Categorical Grammars [16] nebo Support Vector Machines [6].

1.2.3 Dialogový manager (DM)

Pokud už jsou pravděpodobné dialogové akty dekódovány, je třeba rozhodnout, co bude systém dělat. Komponenta tvořící tato rozhodnutí je dialogový manager. Odpověď systému je zakódována do formy dialogových aktů a nazývá se systémová akce.

Zvolená systémová akce je vybrána z množiny možných akci $a \in \mathcal{A}$ a závisí na vstupu, který systém obdržel z SLU. Tento vstup se nazývá pozorování $o \in \mathcal{O}$, protože obsahuje vše, co systém pozoroval o uživateli.

Zvolení správné akce potřebuje více znalostí než jen poslední pozorování. Celá historie dialogu a také kontext hrají důležitou roli. Dialogový manager bere na vše ohled pomocí udržovaní interní reprezentace celého pozorovaného dialogu. Tato reprezentace se nazývá dialogový stav, nebo také belief stav, značí se $b \in \mathcal{B}$. Aktuální dialogový stav závisí na přechodové funkci, která dialogový stav aktualizuje pro každé nové pozorování a systémovou akci. Přechodová funkce je tedy mapování $\mathcal{T}: \mathcal{B} \times \mathcal{A} \times \mathcal{O} \longrightarrow \mathcal{B}$. V této práci se budeme věnovat právě metodám aktualizace dialogového stavu.

Chování dialogového stavu definuje dialogová strategie π . Strategie určuje co má systém provést v závislosti na aktuálním dialogovém stavu. Obecně strategie vytvoří pravděpodobnostní rozložení přes možné akce. Pokud $\Pi(\mathcal{A})$ značí množinu těchto distribucí, pak dialogová strategie bude zobrazení z dialogového stavu do této množiny, $\pi: \mathcal{B} \longrightarrow \Pi(\mathcal{A})$.

Pozorování, dialogový stav a akce jsou číslovány podle obrátky. Pokud je časový okamžik důležitý, jsou pozorování, dialogový stav a akce z obrátky číslo t označeny o_t , b_t a a_t .

1.2.4 Generování přirozené řeči (NLG a TTS)

Posledním krokem v tahu dialogového systému je vytvoření odpovědi pro uživatele. Nejprve systém generování přirozené řeči převede dialogové akty na text. Následně je text převeden na zvuk pomocí textového syntetizéru řeči.

Nejjednodušším přístup ke generování přirozeného jazyka z dialogových aktů je použití šablon. Například pro dialogový akt inform(type="x") bude vytvořena šablona "Restaurace servíruje x jídlo", kde "x" bude nahrazeno například za "čínské", "indické", atd. Šablony se při generování osvědčily, protože počet možných dialogových je většinou zvládnutelný.

Při syntéze řeči existuje mnoho alternativ. Je možné použít segmenty řeči z databáze pro vygenerování zvuků tvořících dohromady celou sekvenci slov. Příkladem těchto systémů je Festival [2] nebo FLite [3].

Alternativní metodou syntézy je použití skrytých Markovských modelů pro generování zvuku, příkladem je HTS systém [15].

1.3 Dialogový stav

Nejistota je základním problémem, s kterým se dialogový systém musí vypořádat. Systémy pro rozpoznávání i porozumění řeči často chybují a tuto možnost musí brát dialogový manager v potaz. Vypořádat se s nejistotou lze pomocí jejího zakomponování do modelu pro odhad dialogového stavu.

Cíle uživatele a další vlastnosti prostředí lze považovat za náhodné částečně pozorovatelné proměnné a je možné je odvodit z pozorování. Pravděpodobnostní rozložení těchto náhodných proměnných dává dobře definovanou reprezentaci nejistoty, navíc je možné je reprezentovat pomocí Bayesovské sítě.

Jedním z možných modelů dialogového stavu je generativní model. Definujeme množinu stavů prostředí, $s \in \mathcal{S}$. Předpokládáme, že pozorování závisí podmíněně pouze na stavu prostředí a definujeme pravděpodobnostní rozdělení pro pozorování, $p(o \mid s)$. Dále předpokládáme, že cíle uživatele se nemění v čase a stav prostředí je tedy závislý pouze na stavu v předchozí obrátce a na poslední akci systému. Tato závislost je zachycena v přechodové pravděpodobnosti $p(s_{t+1} \mid s_t, a_t)$. Předpoklad, že stav prostředí závisí pouze na minulé hodnotě se nazývá Markovská vlastnost.

Pokud vezmeme předchozí předpoklady, tak lze využít bayesovský přístup pro počítání s nejistotou. Stav v čase t označíme s_t . Podle Bayesova vzorce můžeme spočítat pravděpodobnost stavu v čase t+1 po přijetí nového pozorování $o_{t+1}=o'$.

$$p(s_{t+1} = s') \propto \sum_{s \in \mathcal{S}} p(s_t = s) p(s_{t+1} = s' \mid s_t = s, a_t = a) p(o_{t+1} = o' \mid s_{t+1} = s')$$

$$(1.1)$$

Nyní můžeme definovat dialogový stav v čase t, b_t , jako pravděpodobnost přes stavy dáno všechna pozorování až do času t. Množina všech možných dialogových stavů je pravděpodobnost přes všechny možné stavy prostředí $\mathcal{B} = \prod(\mathcal{S})$.

Můžeme přepsat rovnici (1.1) s pomocí dialogových stavů.

$$b(s_{t+1}) \propto \sum_{s \in S} b(s_t) p(s_{t+1} \mid s_t, a_t) p(o_{t+1} \mid s_{t+1})$$
(1.2)

Rovnice (1.2) nám dává předpis pro přechodovou funkci \mathcal{T} . V praxi ovšem bude množina možných hodnot pro slot s_t příliš velká, protože stav musí obsahovat všechny informace potřebné pro rozhodování, to znamená celou historii dialogu a cíle uživatele. Pokud systém obsahuje sloty, tak každá kombinace hodnot slot je jedním možným cílem uživatele. Tedy velikost stavového prostoru roste exponenciálně.

1.3.1 Aktualizace dialogového stavu

Efektivní metodou pro aktualizaci dialogového stavu je použití dynamických bayesovských sítí [9]. Bayesovské sítě umoňují efektivní výpočet využitím podmíněných nezávislostí mezi sloty. Stále ovšem zůstává problém s výpočtem, pokud i jednotlivé sloty obsahují příliš mnoho hodnot. Lze použít aproximace a počítat

jen sk nejpravděpodobnějšími hodnotami [10].

Alternativním zjednodušením je rozdělit stav prostředí do skupin. Tento přístup se nazývá Hidden Information State (HIS) [14]. Základním předpokladem zde musí být, že uživatel nezmění svůj cíl v průběhu dialogu. Pak lze efektivně provádět aktualizaci, protože rovnice pro aktualizace pravděpodobnosti se nemění mezi jednotlivými skupinami.

2. Bayesovské sítě a inference

2.1 Bayesovské sítě

Bayesovské sítě jsou pravděpodobnostní grafický model, který využívá podmíněných nezávislostí pro úspornou reprezentaci sdružené pravděpodobnosti. Bayesovská sít je orientovaný acyklický graf, jeho vrcholy jsou náhodné proměnné a hrany odpovídají přímé závislosti jednoho uzlu na druhý. Pro každou náhodnou proměnnou v síti platí, že její pravděpodobnost je jednoznačně určena jejími rodiči v grafu. Podmíněná pravděpodobnostní distribuce (CPD) proměnné X popisuje pravděpodobnost proměnné X dáno její rodiče, $P(X \mid parents(X))$. Pokud proměnná nemá žádná rodiče, pak její podmíněná pravděpodobnostní distribuce je ekvivalentní marginální pravděpodobnostní distribuci.

Příklad Student [5]: firma zvažuje, zda-li přijme studenta. Firma chce přijmat chytré studenty, ale nesmí je testovat na inteligenci (I) přímo. Má však výsledek studentových SAT testů, které ale nemusí stačit pro správné zhodnocení inteligence. Požadují tak tedy i doporučení (D) od jednoho z učitelů. Učitel studentovi napíše doporučující dopis na základě známky (Z), kterou student získal v jeho předmětu. Předměty se ovšem liší v obtížnosti (O) a tak je studentova známka v předmětu závislá nejen na jeho inteligenci, ale také na obtížnosti předmětu. Grafický model reprezentující tento problém je vyobrazen na obrázku 2.1.

V tomto modelu je několik nezávislostí. Obtížnost předmětu a inteligence studenta jsou zjevně nezávislé. Studentova známka z předmětu je závislá na obtížnosti předmětu a inteligenci studenta, ale je podmíněně nezávislá na jeho výsledku ze SAT, dáno studentova inteligence. Konečně doporučení, které student obdrží, je podmíněně nezávislé na všech ostatních proměnných, dáno studentova známka.

Sdruženou nezávislot tohoto modelu lze zapsat ve formě podmíněných pravděpodob-

Obrázek 2.1: Bayesovská síť pro příklad se studentem.

nostních distribucí s pomocí řetízkového pravidla.

$$P(O, I, Z, S, D) = P(D \mid Z)P(Z \mid O, I)P(SAT \mid I)P(O)P(I)$$
 (2.1)

Předpokládejme, že obtížnost předmětu, inteligence studenta, doporučující dopis a výsledek SAT jsou binární proměnné. Známka z předmětu pak je ternární proměnná. Pokud bychom zapsali sdruženou pravděpodobnost ve formě tabulky, tak se dostaneme k 48 položkám. Díky rozdělení do podmíněných pravděpodobnostních rozložení, které nám bayesovská síť poskytuje, se dostáváme k 2+2+12+4+6=26 položkám. Tedy i v tomto jednoduchém modelu dochází k značné úspoře.

- 2.1.1 Šíření informace v bayesovských sítích
- 2.2 Inference v Bayesovských sítích
- 2.3 Aproximativní inference

3. Učení parametrů

3.1 Grafický model

Máme vybraný faktor f, tento faktor je spojený s několika proměnnými $\boldsymbol{x} = (x_0, x_1, \dots, x_{N_x})$ a množinami parametrů $\boldsymbol{\Theta} = (\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_{N_\theta})$. Tento faktor reprezentuje podmíněnou pravděpodobnost:

$$f(\boldsymbol{x},\Theta) = p(x_0|x_1,\ldots,x_{N_x};\Theta)$$

Rodičovské proměnné x_1, \ldots, x_{N_x} označujeme jako $\boldsymbol{x'}$. Vektor $\boldsymbol{x'}$ určuje, která množina parametrů bude použita. Protože množiny parametrů jsou číslovány $1, \ldots, N_{\theta}$ a rodičovské proměnné $1, \ldots, N_x$, musí být pro vybrání správné množiny parametrů použito mapování $\rho(\boldsymbol{x'})$. Faktor pak může být zapsán zkráceně:

$$f(\boldsymbol{x},\Theta) = p(x_0|x_1,\ldots,x_{N_x};\Theta) = \theta_{\rho(x'),x_0}$$

3.2 Výpočet marginálních pravděpodobností

Pro výpočet sdružené pravděpodobnosti používáme plně faktorizovanou distribuci. Pro každou proměnnou anebo množinu parametrů je její marginální pravděpodobnost rovna součinu zpráv přicházejících z faktorů, které jsou s danou proměnnou nebo množinu parametrů propojeny. Pro daný faktor je cavity distribuce $q^{\setminus}(x_i)$, popř. $q^{\setminus}(\theta_i)$ rovna součinu zpráv ze všech ostatních faktorů do x_i , popř θ_i . Aproximovaná marginální pravděpodobnost proměnné je pak součinem cavity distribuce a zprávy z faktoru:

$$q(x_i) = q^{\setminus}(x_i) m_{f \to x_i}(x_i)$$

$$q(\boldsymbol{\theta}_i) = q^{\setminus}(\boldsymbol{\theta}_i) m_{f \to \theta}(\boldsymbol{\theta}_i)$$

Cavity distribuce je právě zpráva z proměnné, popř. množiny parametrů do faktoru.

$$m_{x_i \to f} = q^{\setminus}(x_i)$$

$$m_{\boldsymbol{\theta}_i \to f} = q^{\setminus}(\boldsymbol{\theta}_i)$$

3.2.1 Marginální pravděpodobnost proměnných

Pokud chceme aktualizovat hodnotu naší aproximace marginální pravděpodobnosti, tak je třeba minimalizovat její vzdálenost od skutečné marginální pravděpo-

dobnosti:

$$p^*(\tilde{x}_j) = \sum_{\boldsymbol{x}: x_j = \tilde{x}_j} \int_{\boldsymbol{\Theta}} \prod_i q^{\setminus}(x_i) \prod_l q^{\setminus}(\boldsymbol{\theta}_l) f(\boldsymbol{x}; \boldsymbol{\Theta})$$
(3.1)

$$= \sum_{\boldsymbol{x}: x_{i} = \tilde{x}_{i}} \prod_{i} q^{\setminus}(x_{i}) \int_{\boldsymbol{\theta}_{\rho(\boldsymbol{x'})}} q^{\setminus}(\boldsymbol{\theta}_{\rho(\boldsymbol{x'})}) \theta_{\rho(\boldsymbol{x'}), x_{0}}$$
(3.2)

$$= \sum_{\boldsymbol{x}: x_j = \tilde{x}_j} \prod_i q^{\setminus}(x_i) \mathbb{E}_{q^{\setminus}}(\theta_{\rho(\boldsymbol{x'}), x_0})$$
(3.3)

$$= \sum_{\boldsymbol{x}: x_j = \tilde{x}_j} \prod_i m_{x_i \to f}(x_i) \mathbb{E}_{q}(\theta_{\rho(\boldsymbol{x'}), x_0})$$
(3.4)

Rovnost (3.1) vychází z definice výpočtu marginální pravděpodobnosti ze sdružené pravděpodobnosti. V (3.2) byla použita definice faktoru, z integrálu byly vytaženy členy, které neobsahují Θ a nakonec bylo využito toho, že pro množiny parametrů, které nejsou spojeny s faktorem f, je jejich jejich cavity distribuce rovná marginální distribuci a tedy $\int_{\theta_i} q(\theta_i) = 1$. V (3.3) byla použita definice očekávané hodnoty.

Marginální pravděpodobnost proměnné x_i tedy je

$$p^*(\tilde{x}) = \sum_{\boldsymbol{x}: x_j = \tilde{x}_j} \prod_i m_{x_i \to f}(x_i) \mathbb{E}_{q^{\setminus}}(\theta_{\rho(\boldsymbol{x'}), x_0})$$
(3.5)

Tady docházíme k výsledku, který je velmi podobný výpočtu marginální pravděpodobnosti v Loopy Belief Propagation algoritmu.

Zprávu z faktoru f do vrcholu x_j pak získáme vydělením zprávy z x_j z marginální pravděpodobnosti.

$$m_{f \to x_j}(x_j) = \sum_{\boldsymbol{x}: x_j = \tilde{x}_j} \prod_{i \neq j} m_{x_i \to f}(x_i) \mathbb{E}_{q \setminus \{\theta_{\rho(\boldsymbol{x'}), x_0}\}}$$
(3.6)

3.2.2 Marginální pravděpodobnost parametrů

Pro množiny parametrů se jejich marginální pravděpodobnost spočítá podobně jako pro proměnné.

$$p^*(\tilde{\boldsymbol{\theta}}_j) = \sum_{\boldsymbol{x}} \int_{\boldsymbol{\Theta}: \boldsymbol{\theta}_j = \tilde{\boldsymbol{\theta}}_j} \prod_i q^{\setminus}(x_i) \prod_l q^{\setminus}(\boldsymbol{\theta}_l) f(\boldsymbol{x}; \boldsymbol{\Theta})$$
(3.7)

$$= \sum_{l \neq j} \sum_{\boldsymbol{x}: o(\boldsymbol{x'}) = l} \prod_{i} q^{\setminus}(x_i) \int_{\boldsymbol{\Theta}: \boldsymbol{\theta}_j = \tilde{\boldsymbol{\theta}}_j} \prod_{k} q^{\setminus}(\boldsymbol{\theta}_k) \theta_{l, x_0} +$$
(3.8)

$$+ \sum_{\boldsymbol{x}: \rho(\boldsymbol{x'})=j} \prod_{i} q^{\setminus}(x_i) \int_{\boldsymbol{\Theta}: \boldsymbol{\theta}_j = \tilde{\boldsymbol{\theta}}_j} \prod_{k} q^{\setminus}(\boldsymbol{\theta}_k) \tilde{\boldsymbol{\theta}}_{j,x_0}$$

$$= \left[\sum_{l \neq j} \sum_{\boldsymbol{x}: \rho(\boldsymbol{x'}) = l} \prod_{i} q^{\backslash}(x_i) \mathbb{E}_{q^{\backslash}(\boldsymbol{\theta}_l)}(\boldsymbol{\theta}_{l,x_0}) \right] q^{\backslash}(\tilde{\boldsymbol{\theta}}_j) +$$
(3.9)

$$+ \sum_{\boldsymbol{x}: \rho(\boldsymbol{x}')=i} \prod_{i} q^{\setminus}(x_i) \tilde{\theta}_{j,x_0} q^{\setminus}(\tilde{\boldsymbol{\theta}}_j)$$

$$= w_0 q^{\setminus}(\tilde{\boldsymbol{\theta}}_j) + \sum_k w_k \tilde{\theta}_{j,k} q^{\setminus}(\tilde{\boldsymbol{\theta}}_j), \tag{3.10}$$

$$= w_0 m_{\tilde{\boldsymbol{\theta}}_j \to f}(\tilde{\boldsymbol{\theta}}_j) + \sum_k w_k \tilde{\boldsymbol{\theta}}_{j,k} m_{\tilde{\boldsymbol{\theta}}_j \to f}(\tilde{\boldsymbol{\theta}}_j), \tag{3.11}$$

kde

$$w_0 = \sum_{l \neq i} \sum_{\boldsymbol{x}: \rho(\boldsymbol{x}') = l} \prod_i m_{x_i \to f}(x_i) \mathbb{E}_{q \setminus (\boldsymbol{\theta}_l)}(\theta_{l, x_0})$$
(3.12)

$$w_k = \sum_{x: \rho(x') = i} \prod_{x_0 = k} m_{x_i \to f}(x_i)$$
(3.13)

Opět vycházíme z výpočtu marginální pravděpodobnosti ze sdružené pravděpodobnosti. V rovnici (3.8) jsme rozdělili sumu přes \boldsymbol{x} na ty, pro které se ve faktoru použije množina parametrů $\tilde{\boldsymbol{\theta}}_j$ a na ty ostatní. Také jsme z integrálu vytknuli součin cavity distribucí pro proměnné. V dalším kroku (3.9) jsme opět použili toho, že integrál přes $\boldsymbol{\Theta}$ je ve skutečnosti několik integrálů přes jednotlivé množiny parametrů. A tedy je můžeme vložit mezi jednotlivé členy produktu cavity distribucí pro množiny parametrů. Ve výsledku získáme $q^{\setminus}(\tilde{\boldsymbol{\theta}}_j) \int_{\boldsymbol{\theta}_l} q^{\setminus}(\boldsymbol{\theta}_l) \theta_{l,x_0}$ a pak zbylé členy, které zmizí.

Docházíme k vyjádření skutečné marginální pravděpodobnosti, ve které není třeba integrovat přes všechny množiny parametrů, ale stačí jen očekávaná hodnota těchto parametrů.

3.3 Aproximace marginálních pravděpodobností

Stále tu ovšem zůstává problém, že spočítat aproximující distribuci $q(\boldsymbol{\theta}_j)$ může být příliš složité, protože skutečná marginální distribuce je směs několika distribucí a ta nemusí být v obecném případě vyjádřitelná. Je tedy třeba model dále aproximovat. Pro zjednodušení výpočtu jsou zprávy z faktoru do množiny parametrů, $m_{f \to \theta_i}(\boldsymbol{\theta}_i)$, ve tvaru Dirichletovského rozdělení s parametry $\boldsymbol{\alpha}_{f \to \theta_i}$:

$$m_{f \to \theta_i}(\boldsymbol{\theta}_i) = Dir(\boldsymbol{\theta}_i; \boldsymbol{\alpha}_{f \to \theta_i}) = \frac{\Gamma(\sum_j \boldsymbol{\alpha}_{f \to \theta_i, j})}{\prod_j \Gamma(\boldsymbol{\alpha}_{f \to \theta_i, j})} \prod_j \theta_{i, j}^{\boldsymbol{\alpha}_{f \to \theta_i, j} - 1}$$
(3.14)

kde Γ je Gamma funkce (zobecnění faktoriálu):

$$\Gamma(z) = \int_0^\infty t^{z-1} \exp(-t) dt$$
 (3.15)

Dirichletovské rozdělení bylo zvoleno, protože má důležité vlastnosti pro součin, které budou využity dále pro výpočet cavity distribuce a celkové aproximace. Pokud označíme aproximované faktory indexem β a každý bude mít vlastní parametry $\alpha_{f_{\beta} \to \theta_i}$, tak výsledná aproximace bude tvaru:

$$q(\boldsymbol{\theta}_i) \propto \prod_{\beta} m_{f_{\beta} \to \boldsymbol{\theta}_i}(\boldsymbol{\theta}_i)$$
 (3.16)

$$\propto \prod_{\beta} \prod_{j} \theta_{i,j}^{\alpha_{f_{\beta} \to \theta_{i},j} - 1} \tag{3.17}$$

$$\propto Dir(\boldsymbol{\theta}_i; \sum_{\beta} \boldsymbol{\alpha}_{f_{\beta} \to \boldsymbol{\theta}_i} - (|\beta| - 1)\mathbf{1})$$
 (3.18)

$$= Dir(\boldsymbol{\theta}_i; \boldsymbol{\alpha}_i) \tag{3.19}$$

kde $\alpha_i = \sum_{\beta} \alpha_{f_{\beta} \to \theta_i} - (|\beta| - 1)\mathbf{1}).$

Při aktualizaci faktoru $\tilde{\beta}$ tedy cavity distribuce bude:

$$q^{\setminus \tilde{\beta}}(\boldsymbol{\theta_i}) \propto \prod_{\beta \neq \tilde{\beta}} m_{f_{\beta} \to \boldsymbol{\theta_i}}(\boldsymbol{\theta_i})$$
 (3.20)

$$\propto Dir(\boldsymbol{\theta}_i; \boldsymbol{\alpha}_i - \boldsymbol{\alpha}_{f_{\beta} \to \boldsymbol{\theta}_i} + 1)$$
 (3.21)

Naším cílem je nalézt parametry α^* aproximované marginální pravděpodobnosti (3.19), které minimalizují vzdálenost od skutečné marginální pravděpodobnosti (3.10). Pro měření vzdálenosti mezi dvěma pravděpodobnostními rozloženími se používá Kullback-Leiblerova divergence:

$$KL(p||q) = \int_{-\infty}^{\infty} p(x) \log\left(\frac{p(x)}{q(x)}\right) dx$$
 (3.22)

Pro nalezení minima použijeme algoritmus Expectation Propagation a budeme tedy minimalizovat $KL(p^*||q)$.

Pokud se podíváme na skutečnou marginální pravděpodobnost $p^*(\boldsymbol{\theta}_i)$, zjistíme, že můžeme některé její členy upravit. Využijeme také vlastnosti gamma funkce $\Gamma(x) = (x-1)\Gamma(x-1)$.

$$w_j \theta_j Dir(\boldsymbol{\theta}; \boldsymbol{\alpha}) \propto w_j \theta_j \frac{\Gamma(\sum_i \alpha_i)}{\prod_i \Gamma(\alpha_i)} \prod_i \theta_i^{\alpha_i - 1}$$
 (3.23)

$$\propto w_j \frac{\Gamma(\sum_i \alpha_i)}{\prod_i \Gamma(\alpha_i)} \theta_j^{\alpha_j} \prod_{i \neq j} \theta_i^{\alpha_i - 1}$$
(3.24)

$$\propto w_j \frac{\Gamma(\sum_i \alpha_i)}{\prod_i \Gamma(\alpha_i)} \frac{\Gamma(\alpha_j + 1) \prod_{i \neq j} \Gamma(\alpha_i)}{\Gamma(1 + \sum_i \alpha_i)} Dir(\boldsymbol{\theta}; \boldsymbol{\alpha} + \boldsymbol{\delta}_j)$$
(3.25)

$$\propto w_j \frac{\Gamma(\sum_i \alpha_i)}{\prod_i \Gamma(\alpha_i)} \frac{\alpha_j \Gamma(\alpha_j) \prod_{i \neq j} \Gamma(\alpha_i)}{(\sum_i \alpha_i) \Gamma(\sum_i \alpha_i)} Dir(\boldsymbol{\theta}; \boldsymbol{\alpha} + \boldsymbol{\delta}_j)$$
(3.26)

$$\propto w_j \frac{\alpha_j}{\sum_i \alpha_i} Dir(\boldsymbol{\theta}; \boldsymbol{\alpha} + \boldsymbol{\delta}_j)$$
 (3.27)

(3.28)

Díky této úpravě lze p^* vyjádřit jako směs Dirichletovských rozdělení.

$$p^*(\boldsymbol{\theta}) = w_0^* Dir(\boldsymbol{\theta}; \boldsymbol{\alpha}) + \sum_j w_j^* Dir(\boldsymbol{\theta}; \boldsymbol{\alpha} + \boldsymbol{\delta}_j)$$
 (3.29)

kde

$$w_0^* \propto w_0 \tag{3.30}$$

$$w_j^* \propto w_j \frac{\alpha_j}{\sum_i \alpha_i} \tag{3.31}$$

$$\sum_{i=0}^{k} w_i^* = 1 \tag{3.32}$$

Pro minimalizaci KL divergence mezi dvěma rozděleními z exponenciální rozdělení stačí, pokud se budou rovnat jejich postačující statistiky. Dokážeme jednoduše spočítat první dva momenty Dirichletovského rozdělení a tedy použijeme aproximaci a budeme počítat pouze s nimi a zbylé momenty zanedbáme. Je tedy třeba nalézt střední hodnotu a rozptyl proměnných z $p^*(\theta)$.

$$\mathbb{E}_{p^*}[\boldsymbol{\theta}] = \int \boldsymbol{\theta} p^*(\boldsymbol{\theta}) \, d\boldsymbol{\theta}$$
 (3.33)

$$= \int \boldsymbol{\theta}(w_0^* Dir(\boldsymbol{\theta}; \boldsymbol{\alpha}) + \sum_j w_j^* Dir(\boldsymbol{\theta}; \boldsymbol{\alpha} + \boldsymbol{\delta}_j)) d\boldsymbol{\theta}$$
 (3.34)

$$= w_0^* \int \boldsymbol{\theta} Dir(\boldsymbol{\theta}; \boldsymbol{\alpha}) \ d\boldsymbol{\theta} + \sum_j w_j^* \int \boldsymbol{\theta} Dir(\boldsymbol{\theta}; \boldsymbol{\alpha} + \boldsymbol{\delta}_j) \ d\boldsymbol{\theta}$$
(3.35)

$$= w_0^* \mathbb{E}_{Dir(\boldsymbol{\alpha})}[\boldsymbol{\theta}] + \sum_j w_j^* \mathbb{E}_{Dir(\boldsymbol{\alpha} + \boldsymbol{\delta}_j)}[\boldsymbol{\theta}]$$
 (3.36)

Střední hodnotu proměnných θ podle rozdělení p^* lze tedy spočítat jako vážený součet středních hodnot θ podle jednotlivých Dirichletovských distribucí, z kterých se p^* skládá. Střední hodnota proměnné X_i podle Dirichletovského rozdělení je

První moment tedy máme spočítáný, pro výpočet rozptylu můžeme využít přímo definici:

$$Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \tag{3.37}$$

Chybí nám tedy ještě výpočet střední hodnoty druhé mocniny proměnné θ podle p^* . Můžeme ji vyjádřit z definice střední hodnoty.

$$\mathbb{E}_{p^*}[\boldsymbol{\theta}^2] = \int \boldsymbol{\theta}^2 p^*(\boldsymbol{\theta}) \ d\boldsymbol{\theta}$$
 (3.38)

$$= w_0^* \int \boldsymbol{\theta}^2 Dir(\boldsymbol{\theta}; \boldsymbol{\alpha}) \ d\boldsymbol{\theta} + \sum_i w_i^* \int \boldsymbol{\theta}^2 Dir(\boldsymbol{\theta}; \boldsymbol{\alpha} + \boldsymbol{\delta}_i) \ d\boldsymbol{\theta}$$
(3.39)

$$= w_0^* \mathbb{E}_{Dir(\boldsymbol{\alpha})}[\boldsymbol{\theta}^2] + \sum_j w_j^* \mathbb{E}_{Dir(\boldsymbol{\alpha} + \boldsymbol{\delta}_j)}[\boldsymbol{\theta}^2]$$
 (3.40)

Opět získáváme vážený součet středních hodnot podle Dirichletovských rozdělení. Střední hodnotu druhé mocniny proměnné podle Dirichletovského rozdělení lze opět jednoduše odvodit z definice.

$$\mathbb{E}_{Dir(\boldsymbol{\alpha})}[x_i^2] = \int x_i^2 Dir(\boldsymbol{x}; \boldsymbol{\alpha}) d\boldsymbol{x}$$
 (3.41)

$$= \int x_i^2 \frac{\Gamma(\alpha_0)}{\prod_{j=1}^N \Gamma(\alpha_j)} \prod_{j=1}^N x_j^{\alpha_j - 1} d\boldsymbol{x}$$
 (3.42)

Nyní jsme v podobné situaci jako v (3.23). Budeme postupovat stejně, vyjádříme nové Dirichletovské rozdělení.

$$\mathbb{E}_{Dir(\boldsymbol{\alpha})}[x_i^2] = \int \frac{\Gamma(\alpha_0 + 2)\alpha_i(\alpha_i + 1)}{\alpha_0(\alpha_0 + 1)\Gamma(\alpha_i + 2)\prod_{j \neq i}\Gamma(\alpha_j)} x_i^{\alpha_i + 1} \prod_{j \neq i} x_j^{\alpha_j - 1} d\boldsymbol{x}$$
(3.43)

$$= \frac{\alpha_i(\alpha_i + 1)}{\alpha_0(\alpha_0 + 1)} \int \frac{\Gamma(\beta_0)}{\prod_i \Gamma(\beta_i)} \prod_i x_i^{\beta_i - 1} d\boldsymbol{x}$$
(3.44)

$$= \frac{\alpha_i(\alpha_i + 1)}{\alpha_0(\alpha_0 + 1)} \int Dir(\boldsymbol{x}; \boldsymbol{\beta}) d\boldsymbol{x}$$
 (3.45)

$$=\frac{\alpha_i(\alpha_i+1)}{\alpha_0(\alpha_0+1)}\tag{3.46}$$

Vyjádřili jsme $\Gamma(\alpha_0)$ a $\Gamma(\alpha_i)$ s pomocí $\Gamma(\alpha_0 + 2)$ a $\Gamma(\alpha_i + 2)$

$$\Gamma(\alpha_0) = \frac{\Gamma(\alpha_0 + 2)}{\alpha_0(\alpha_0 + 1)} \tag{3.47}$$

$$\Gamma(\alpha_i) = \frac{\Gamma(\alpha_i + 2)}{\alpha_i(\alpha_i + 1)} \tag{3.48}$$

Následně jsme vytvořili nové parametry $\boldsymbol{\beta}$:

$$\beta_i = \alpha_i + 2 \tag{3.49}$$

$$\beta_{j \neq i} = \alpha_j \tag{3.50}$$

$$\beta_0 = \sum_i \beta_i \tag{3.51}$$

Nyní tedy dokážeme spočítat $\mathbb{E}_{p^*}[\boldsymbol{\theta}]$ a $\mathbb{E}_{p^*}[\boldsymbol{\theta}^2]$. Parametry aproximovaného rozdělení nalezneme následovně

$$\frac{\mathbb{E}[X_1] - \mathbb{E}[X_1^2]}{\mathbb{E}[X_1^2] - \mathbb{E}[X_1]^2} = \frac{\frac{\alpha_1}{\alpha_0} - \frac{\alpha_1(\alpha_1 + 1)}{\alpha_0(\alpha_0 + 1)}}{\frac{\alpha_1(\alpha_1 + 1)}{\alpha_0(\alpha_0 + 1)} - \frac{\alpha_1^2}{\alpha_0^2}}$$

$$= \frac{\frac{\alpha_1(\alpha_0 + 1) - \alpha_1(\alpha_1 + 1)}{\alpha_0(\alpha_0 + 1)}}{\frac{\alpha_0(\alpha_1 + 1) - \alpha_1^2(\alpha_0 + 1)}{\alpha_0^2(\alpha_0 + 1)}}$$
(3.52)

$$= \frac{\frac{\alpha_1(\alpha_0+1) - \alpha_1(\alpha_1+1)}{\alpha_0(\alpha_0+1)}}{\frac{\alpha_0\alpha_1(\alpha_1+1) - \alpha_1^2(\alpha_0+1)}{\alpha_0^2(\alpha_0+1)}}$$
(3.53)

$$= \frac{\alpha_0 \alpha_1 (\alpha_0 - \alpha_1)}{\alpha_1 (\alpha_0 \alpha_1 + \alpha_0 - \alpha_0 \alpha_1 - \alpha_1)}$$
(3.54)

$$=\alpha_0\tag{3.55}$$

$$\alpha_i = \mathbb{E}[X_i]\alpha_0 \tag{3.56}$$

Z rovnice (3.52) vypočítáme sumu všech parametrů α_0 . Protože střední hodnota proměnné z Dirichletovského rozdělení je právě $\frac{\alpha_i}{\alpha_0}$, tak jednotlivé parametry získáme z rovnice (3.56).

3.4 Algoritmus

```
Algoritmus 1 Expectation Propagation pro učení parametrů
   Parametry zpráv z faktoru \beta do množiny parametrů \boldsymbol{\theta}_i označíme \boldsymbol{\alpha}_{f_{\beta} \to \boldsymbol{\theta}_i}.
   Parametry zpráv z množiny parametrů \theta_i do faktoru \beta označíme \alpha_{\theta_i \to f_\beta}.
   Parametry marginální distribuce množiny parametrů \theta_i označíme \alpha_i.
   init
        Nastav zprávy mezi faktory a proměnnými na 1.
        Nastav parametry \alpha_{f_{\beta} \to \theta_i} na 1.
        Nastav parametry \alpha_i na apriorní hodnotu.
   end init
   repeat
        Vyber faktor f_{\tilde{\beta}}, který se bude aktualizovat.
        Spočítej všechny zprávy z parametrů:
        for každý parametr \boldsymbol{\theta}_i spojený s faktorem f_{\tilde{\beta}} do
             Parametry zprávy z \boldsymbol{\theta}_i do f_{\tilde{\beta}}: \boldsymbol{\alpha}_{\boldsymbol{\theta}_i \to f_{\beta}} = \boldsymbol{\alpha}_i - \boldsymbol{\alpha}_{f_{\beta} \to \boldsymbol{\theta}_i} + 1.
        end for
        Aktualizuj zprávy z faktoru do proměnných:
        for každou proměnnou X_i, spojenou s faktorem f_{\tilde{\beta}} do
             Zpráva z f_{\tilde{\beta}} do X_i podle (3.6):
                  \hat{f}(x_j) = \sum_{\boldsymbol{x}: x_j = \tilde{x}_j} \mathbb{E}_{q^{\setminus}}(\theta_{\rho(\boldsymbol{x'}), x_0}) \prod_{i \neq j} m_{x_i \to f_{\tilde{\beta}}}(x_i)
        end for
        Aktualizuj marginální pravděpodobnost parametrů:
        for každý parametr \theta_i spojený s faktorem f_{\tilde{\beta}} do
             Spočítej parametry \alpha_i^* pro Dirichletovské rozdělení, které nejlépe
             aproximuje cílovou marginální distribuci (3.29). Metoda popsána
             v předchozí sekci.
             Parametry zprávy z f_{\tilde{\beta}} do \boldsymbol{\theta}_i:
                  \alpha_{f_{\beta} \to \theta_i} = \alpha_i^* - \alpha_{\theta_i \to f_{\beta}} + 1
             Aktualizuj parametry marginální distribuce q(\boldsymbol{\theta}_i)
                   \alpha_i = \alpha_i^* = \alpha_{f_\beta \to \theta_i} + \alpha_{\theta_i \to f_\beta} - 1
        end for
        for každou proměnnou X_i, spojenou s faktorem f_{\tilde{\beta}} do
              Aktualizuj zprávy z proměnných do faktoru:
                  m_{x_i \to f_{\tilde{\beta}}}(x_i) = \prod_{\beta \neq \tilde{\beta}} m_{f_{\beta} \to x_i}(x_i)
        end for
   until konvergence
```

Závěr

Literatura

- [1] Bertoldi, N.; Federico, M.: A new decoder for spoken language translation based on confusion networks. In *Automatic Speech Recognition and Understanding*, 2005 IEEE Workshop on, IEEE, 2005, s. 86–91.
- [2] Black, A.; Taylor, P.; Caley, R.; aj.: The Festival Speech Synthesis System, Version 1.4. 2. Unpublished document available via http://www.cstr.ed.ac.uk/projects/festival.html, 2001.
- [3] Black, A. W.; Lenzo, K. A.: Flite: a small fast run-time synthesis engine. In 4th ISCA Tutorial and Research Workshop (ITRW) on Speech Synthesis, 2001.
- [4] He, Y.; Young, S.: Semantic processing using the hidden vector state model. Computer speech & language, ročník 19, č. 1, 2005: s. 85–106.
- [5] Koller, D.; Friedman, N.: Probabilistic graphical models: principles and techniques. MIT press, 2009.
- [6] Mairesse, F.; Gasic, M.; Jurcicek, F.; aj.: Spoken language understanding from unaligned data using discriminative classification models. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, IEEE, 2009, s. 4749–4752.
- [7] Povey, D.; Ghoshal, A.; Boulianne, G.; aj.: The Kaldi Speech Recognition Toolkit. In *IEEE 2011 Workshop on Automatic Speech Recognition and Understanding*, IEEE Signal Processing Society, Prosinec 2011, iEEE Catalog No.: CFP11SRW-USB.
- [8] Raux, A.; Bohus, D.; Langner, B.; aj.: Doing research on a deployed spoken dialogue system: One year of Let's Go! experience. In *Proc. Interspeech*, 2006, s. 65–68.
- [9] Thomson, B.; Schatzmann, J.; Young, S.: Bayesian update of dialogue state for robust dialogue systems. In *Acoustics, Speech and Signal Processing*, 2008. ICASSP 2008. IEEE International Conference on, IEEE, 2008, s. 4937–4940.
- [10] Thomson, B.; Young, S.: Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems. *Computer Speech & Language*, ročník 24, č. 4, 2010: s. 562–588.
- [11] Walker, W.; Lamere, P.; Kwok, P.; aj.: Sphinx-4: A flexible open source framework for speech recognition. 2004.
- [12] Wong, Y. W.; Mooney, R.: Learning synchronous grammars for semantic parsing with lambda calculus. In *ANNUAL MEETING-ASSOCIATION FOR COMPUTATIONAL LINGUISTICS*, ročník 45, 2007, str. 960.
- [13] Young, S.; Evermann, G.; Gales, M.; aj.: The HTK book. Cambridge University Engineering Department, ročník 3, 2002.

- [14] Young, S.; Gašić, M.; Keizer, S.; aj.: The Hidden Information State Model: a practical framework for POMDP-based spoken dialogue management. Computer Speech & Language, ročník 24, č. 2, 2010: s. 150–174.
- [15] Zen, H.; Nose, T.; Yamagishi, J.; aj.: The HMM-based speech synthesis system (HTS) version 2.0. In *Proc. of Sixth ISCA Workshop on Speech Synthesis*, 2007, s. 294–299.
- [16] Zettlemoyer, L. S.; Collins, M.: Online learning of relaxed CCG grammars for parsing to logical form. In *In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL-2007)*, Citeseer, 2007.

Seznam tabulek

Seznam použitých zkratek

Přílohy