1. Avgör om det finns en multiplikativ invers till 14 mod 8

Lösning: Testa dig fram

Svar: Nej

2. Vad blir den minsta positiva resten då 61 · $2^{1000} + 2^{2000}$ delas med 33?

Svar: Resten är 29.

3. Beräkna $5^{327} \mod 17$

$$5^{327} \equiv 10 \operatorname{mod} 17$$

4. Bestäm samtliga lösningar till $3x \equiv 5 \mod 9$

Eftersom sgd(3,9) = 3 och 3 inte delar 5, så saknar ekvationen lösningar

5. Ange entalssiffran i talet $3^{14} + 4^{15}$

Entalssiffran är 3.

6. Bestäm alla lösningar till ekvationen $3x \equiv 8 \mod 10$

$$x \equiv 6 \mod 10$$

- 7. a) Låt a, b och n vara heltal sådana att $n \ge 2$. Definiera vad det innebär att a är kongruent med b modulo n (d.v.s. att $a \equiv b \mod n$).
 - b) Låt a,b,m och n vara positiva heltal och antag att $n\mid m$. Visa att om $a\equiv b \bmod m$, så gäller $a\equiv b \bmod n$.
 - a) Lösning: $a \equiv b \mod n$ om $n \mid (a-b)$, d.v.s. a-b=kn för något $k \in \mathbb{Z}$.
 - b) Lösning: Vi har att $a\equiv b \bmod m$, d.v.s. $k_1m=a-b$ för något $k_1\in\mathbb{Z}$. Vidare gäller att n|m, d.v.s. $m=k_2n$, för något $k_2\in\mathbb{Z}$. Genom att kombinera dessa likheter får vi att $k_1k_2n=a-b$, så $a\equiv b \bmod n$.
- 8. Hur många positiva heltal delar minst ett av talen $a = 2^2 \cdot 3^5 \cdot 5^4 \cdot 7^4 \cdot 11^3 \cdot 13^2 \cdot 19^4$ och $b = 3^2 \cdot 5^8 \cdot 7^3 \cdot 11^3 \cdot 13^5 \cdot 17 \cdot 19$?

Lösning: Antalet positiva heltal som delar a är $3\cdot 6\cdot 5\cdot 5\cdot 4\cdot 3\cdot 5=27000$, och antalet tal som delar b är $3\cdot 9\cdot 4\cdot 4\cdot 6\cdot 2\cdot 2=10368$ Antalet tal som delar både a och b är $3\cdot 5\cdot 4\cdot 4\cdot 3\cdot 2=1440$. Sökt antal är alltså 27000+10368-1440=35928