A. THE RESPIRATORY SYSTEM

- Air enters through the nose or mouth and enters the trachea (windpipe).
- The trachea splits into two bronchi which connect to each lung.
- The bronchi divide into many smaller tubes called bronchioles, which increases the surface area.
- The bronchioles lead to tiny air sacs called alveoli, where gas exchange with the blood occurs.

Structure

- There are two sets of intercostal muscles between the ribs that move the ribcage up or down.
- They are called the internal intercostal muscles and the external intercostal muscles.

B. SOME KEY TERMS

VENTILATION

The physical movements in the chest (thorax) that brings fresh air (O_2) to the alveoli and removes stale air (CO_2)

GAS EXCHANGE

Swapping gases (O₂ and CO₂) between the alveoli and blood

RESPIRATION

The release of energy from glucose, usually in the presence of oxygen

C. VENTILATION

This is the physical movements that happen in the chest that allow air to enter or leave.

Some quick reminders

- 1. Atmospheric (air) pressure outside the body is relatively constant.
- 2. Air pressure inside the body must therefore change if gases are to enter or leave.
- 3. Air moves from high \rightarrow low pressure.
- 4. **Higher** volume = **lower** pressure (and vice versa).

How we inhale (= 'inspiration')

• More **energy** is needed for **inhaling** than exhaling as **more muscles are contracting** and the **ribcage** is **moved up and out**.

4 Volume in chest (thorax) increases

5 Pressure in chest (thorax) decreases to below atmospheric pressure

6 (So) air enters chest moving from high → low pressure

4 Volume in chest (thorax) decreases

5 Pressure in chest (thorax) increases to above atmospheric pressure

6 (So) air leaves chest moving from high → low pressure

	INHALING	EXHALING
EXTERNAL INTERCOSTAL MUSCLES	CONTRACT	RELAX
INTERNAL INTERCOSTAL MUSCLES	RELAX	CONTRACT
RIBCAGE MOVES	UP AND OUT	DOWN AND IN
DIAPHRAGM MUSCLE	CONTRACTS = flattens and moves down	RELAXES = pushed up into a 'dome' shape
ABDOMINAL MUSCLES	RELAX	CONTRACT
VOLUME IN CHEST	INCREASES	DECREASES
PRESSURE IN CHEST	DECREASES (below atmospheric)	INCREASES (above atmospheric)
SO, AIR	ENTERS CHEST DOWN PRESSURE GRADIENT	LEAVES CHEST DOWN PRESSURE GRADIENT

D. GAS EXCHANGE AT THE ALVEOLI

E. ALVEOLI CELLS

• Alveoli are made up of **two** types of cell, which are called **Type I** and **Type II pneumocytes**.

TYPE I PNEUMOCYTES	TYPE II PNEUMOCYTES
Thin and permeable cells	Secrete a fluid to keep the inner surface moist
Make up most of the wall	To dissolve gases
Wall has a single layer of these cells	Fluid contains surfactant
	To reduce surface tension
Where gas exchange occurs	This prevents the sides of the alveoli from sticking together

F. DRAWING AN ALVEOLUS AND BLOOD CAPILLARY

G. LUNG DISEASE 1: EMPHYSEMA

Overview

Affects the alveoli:

Specifics

Toxins in cigarette smoke and polluted air:

- cause inflammation
- damage white blood cells

Inflamed cells and damaged white blood cells release trypsin enzyme

Trypsin is a protease that digests elastic fibres in the alveoli <u>walls</u>, so they break down (collapse)

- Less surface area = slower diffusion of oxygen into blood = more tired
- Larger alveoli / less permeable walls = longer diffusion distance for oxygen = more tired
- Loss of elastic tissue = lungs lose elasticity so more difficult to exhale = more tired
- Cilia damaged so mucus builds up in lungs = more chest infections

H. LUNG DISEASE 2: LUNG CANCER

Cause:

Mutation of:

• proto-oncogene that switches on cell division = protein is even better at switching it on

OR:

• tumour suppressor gene that switches off cell division = protein is not able to switch it off

Symptoms

- Persistent cough
- Coughing up blood
- Tiredness
- Breathing difficulties
- Chest pain
- Loss of appetite
- · Weight loss

I. VENTILATION RATE & TIDAL VOLUME

VENTILATION RATE = NUMBER OF BREATHS PER MINUTE

TIDAL VOLUME = VOLUME OF AIR INHALED OR EXHALED PER BREATH

J. CALCULATIONS FROM GRAPHS

Mean tidal volume

- Mean tidal volume = Maximum value Minimum value for one breath
- Repeat for several breaths and calculate the mean value

Ventilation Rate

• One breath = inhale + exhale

- 4 breaths in 10s or 6 breaths in 15s;
- (So) 24 breaths per min;

K. SPIROMETER = ACCURATE MEASUREMENTS

