Tous les ALI sont considérés comme idéaux. Dans les exercices 1 à 4, Is_{max} = 20 mA en sortie. Pour les exercices 1 à 3, on considèrera que U_{sat} = + 14 V et - U_{sat} = - 14 V

Exercice 1

- 1. Quel(s) type(s) de montage(s) reconnaissez-vous ci-contre?
- 2. L'ALI est-il en mode linéaire ou en mode saturé ? Justifier.
- 3. Calculer l'intensité du courant I. On donne E = 10 V, R1 = R2 = 10 k Ω et R3 = 5 k Ω .

Exercice 2

Dans le montage ci-dessous, U_1 = -6V, U_2 = -5V et R_1 = R_2 = R_3 = 1 k Ω . Que vaut l'intensité du courant I en sortie de l'ALI ?

Exercice 3

Dans le montage ci-dessous, R_1 = R_3 = 1 k Ω et R_2 = 5 k Ω . U_e = 2 V.

- 1. Quel type de montage reconnaissez-vous?
- 2. Exprimer Us en fonction de Ue et des données nécessaires.
- 3. Quelle est la valeur de I?

Exercice 4

On donne $U_1 = 5$ V, $R_1 = R_3 = 1$ k Ω et $R_2 = 4$ k Ω . Que vaut la tension U_2 en sortie de l'ALI?

Exercice 5

Comportement d'une photodiode :

Lorsque la photodiode n'est pas éclairée, elle se comporte comme une diode ordinaire.

Lorsque la photodiode est éclairée, sa caractéristique se déplace vers les courants négatifs (voir ci-contre).

Cette photodiode est placée dans le montage ci-dessous. L'amplificateur opérationnel est alimenté en +15V/-15V. On lui appliquera le modèle idéal.

a) On suppose l'amplificateur linéaire intégré en régime linéaire. Compléter les cases du tableau ci-dessous

V D	٥	12	Vs

b) Quelles sont les conditions nécessaires pour qu'un amplificateur linéaire intégré idéal soit en régime linéaire ?

Exercice 6

Déterminer l'expression numérique s(t) en fonction de e(t) en supposant l'amplificateur linéaire intégré idéal (non saturé) et en supposant que le Générateur Basse Fréquence présente une résistance interne de 600 Ω .

Exercice 7

On supposera l'amplificateur idéal en fonctionnement linéaire.

Démontrer l'expression de $v_{\scriptscriptstyle S}$ en fonction de e_1 , e_2 et e_3 , et des valeurs des résistances.

La méthode de démonstration n'est pas imposée. On peut, par exemple, exprimer i_s en fonction des tensions d'entrée et des valeurs des résistances et en déduire v_s

On peut également utiliser le théorème de Millman pour exprimer v^- en fonction de e_1 , e_2 , e_3 et v_s et des valeurs des résistances puis en déduire v_s

Exercice 8

On adoptera le modèle idéal pour l'amplificateur opérationnel ci-contre.

- 1. Exprimer \boldsymbol{V}^+ en fonction de \boldsymbol{e}_1 et des résistances présentes dans le montage.
- 2. Exprimer ${\cal V}^-$ en fonction de e_2 , v_s et des résistances présentes dans le montage.
- 3. En déduire, lorsque le fonctionnement est linéaire, $v_{\rm S}$ en fonction de $e_{\rm l}$, $e_{\rm 2}$ et des résistances du montage.

Que devient cette relation lorsque $R_1 = R_2 = R_3 = R_4$?

Exercice 9

On supposera l'amplificateur idéal.

Pour l'exercice, on supposera l'AO en fonctionnement linéaire.

- 1. Que vaut vd dans ce cas?
- 2. Le montage reçoit en entrées deux tensions : « e_1 » et « e_2 ». Trouver une relation entre i_1 , i_2 et i_s .

En déduire la relation exprimant $v_{\scriptscriptstyle S}$ en fonction de e_1 , e_2 , R_1 , R_2 et $R_{\scriptscriptstyle S}$

3. Application numérique : $e_1=5~V$ continu , $e_2(t)=2.\sin(\omega t)$, $R_1=R_2=R_s=1~k\Omega$. Exprimer $v_s(t)$

Exercice 10

L'amplificateur opérationnel ci-contre est supposé idéal non saturé.

Exprimer la relation entre $\frac{d(v_e(t))}{dt}$ et $v_s(t)$.

Quelle est la fonction réalisée par ce montage?

Exercice 11

Déterminer l'expression du rapport $\frac{s(t)}{e(t)}$ en fonction des

résistances R_I et R_2 en supposant l'amplificateur opérationnel idéal (non saturé).

Le montage ci-contre fonctionne en régime alternatif sinusoïdal. Il peut donc être étudié en considérant directement les grandeurs complexes.

Déterminer l'expression du rapport $\frac{\underline{S}}{\underline{E}}$ en fonction des impédances $\underline{Z_1}$ et $\underline{Z_2}$ en supposant l'amplificateur opérationnel idéal (non

4

 U_{REF} = + 2V Tensions de saturation de l'AO : V_{sat} = +/-14V.

1. Tracer la caractéristique de transfert $u_S = f(u_E)$

La tension de seuil de la LED est de 1,6 V.

- 2. Quelle relation lie us, u et i?
- 3. Au-dessus de quelle tension u_S la LED s'allume-t-elle (i $_2$ > 2 mA)
- 4. Au-dessous de quelle tension us la LED est-elle détruite ? (la tension de claquage est de 5V pour la LED)
- 5. Quel est l'état de la LED quand u_5 = + 14V ? Calculer i_2 .
- 6. Quel est l'état de la LED quand u_S = 14V ? Calculer u.

 U_{REF} = + 2V Tensions de saturation de l'AO : V_{sat} = +/- 14V.

7. A quelle condition sur u_E la LED s'allume-t-elle?

Exercice 13

- 1. Calculer les deux tensions de seuil.
- 2. Tracer la caractéristique de transfert u_S = $f(u_E)$ On pendra V_{SAT} = +/- 12 V

