

Department of Computer Science & Engineering

Course Title: Operating System Lab

Course Code: CSE 406

Lab Report No: 03

Lab Report: Round Robin Scheduling

Submission Date: 07-03-2025

Submitted To: Submitted By:

Atia Rahman Orthi Name: Amirul Islam Papon

Lecturer, Reg No: 21201076

Department of CSE, UAP Sec: B

Problem Statement: Round Robin is a preemptive scheduling algorithm where each process is assigned a fixed time quantum, ensuring fair CPU allocation among processes. The implementation should compute the Completion Time (CT), Turnaround Time (TAT), and Waiting Time (WT) for each process.

Steps to Implement Round Robin Scheduling:

- 1. **Input Process Details:** Accept process ID, arrival time, and burst time.
- 2. **Initialize Required Data Structures:** Create a queue for process scheduling and maintain lists for remaining burst time, completion time, turnaround time, and waiting time
- 3. **Sort Processes by Arrival Time:** Ensure proper sequence for scheduling.
- 4. Execute Round Robin Scheduling:
 - Select the first process in the queue.
 - o Allocate CPU time based on the time quantum.
 - o If the process is not completed, re-add it to the queue.
 - o Keep track of completion time for finished processes.

Source Code:

Output:

```
Process
Arrival Time
Burst Time
Completion Time
Turn Around Time
Waiting Time

P1
0
5
12
12
7

P2
1
4
11
10
6

P3
2
2
6
4
2

P4
4
1
9
5
4

[Done] exited with code=0 in 0.053 seconds
```

Discussion and Conclusion: Round Robin Scheduling ensures that all processes get CPU time fairly, reducing starvation. It is effective for time-sharing systems but may lead to higher average waiting times if the time quantum is too small. The choice of time quantum plays a crucial role in balancing CPU utilization and responsiveness

Source Code: https://github.com/Amirul-Islam-Papon/Operating-System/blob/main/robin_round_scheduling.py