Digital Health UCSD Extension – Specialization Certificate

Data Science for Healthcare

L5: Deep Learning & **Artificial Intelligence**

Hobson Lane, UC San Diego Instructor

Agenda

- Machine Learning Review
- Deep Learning
 - Layered linear regression
 - Forward and backward propagation
 - Making it nonlinear
 - What it's good for
 - Playground
- Artificial Intelligence
 - Intelligence Augmentation

Linear Regression Review: Diabetes

$$y = c_0 + c_1 \cdot x_1 + c_2 \cdot x_2 + \dots$$

	age	sex	bmi	bp	tc	ldl	hdl	tch	ltg	glu	severity
0	59	1	32.1	101	157	93.2	38	4	4.9	87	151
1	48	0	21.6	87	183	103.2	70	3	3.9	69	75
2	72	1	30.5	93	156	93.6	41	4	4.7	85	141
3	24	0	25.3	84	198	131.4	40	5	4.9	89	206
4	50	0	23.0	101	192	125.4	52	4	4.3	80	135
5	23	0	22.6	89	139	64.8	61	2	4.2	68	97
6	36	1	22.0	90	160	99.6	50	3	4	82	138
7	66	1	26.2	114	255	185.0	56	4.6	4.2	92	63
8	60	1	32.1	83	179	119.4	42	4	4.5	94	110
9	29	0	30.0	85	180	93.4	43	4	5.4	88	310
10	22	0	18.6	97	114	57.6	46	2	4	83	101
11	56	1	28.0	85	184	144.8	32	6	3.6	77	69
12	53	0	23.7	92	186	109.2	62	3	4.3	81	179

LinearRegression().fit(X,y).coef_

 $y = intercept_ + coef_[0]*x[0] + coef_[1]*x[1] + ...$

	age	sex	bi	bp	τc	ldl	hdl	tch	ltg	glu	severity
0	59	1	32.1	101	157	93.2	38	4	4.9	87	151
1	48	0	21.6	87	183	103.2	70	3	3.9	69	75
2	72	1	30.5	93	156	93.6	41	4	4.7	85	141
3	24		25.3	84	198	131.4	40	5	4.9	89	206
4			23.0	101	192	125.4	52	4	4.3	80	135
5	23		22.6	89	139	64.8	61	2	4.2	68	97
6	36	1	22.0	90	160	99.6	50	3	4	82	138
7	66	1	26.2	114	255	185.0	56	4.6	4.2	92	63
8	60	1	32.1	83	179	119.4	42	4	4.5	94	110
9	29		30.0	85	180	93.4	43	4	5.4	88	310
10	22		18.6	97	114	57.6	46	2	4	83	101
11	56	1	28.0	85	184	144.8	32	6	3.6	77	69
12	53	0	23.7	92	186	109.2	62	3	4.3	81	179

Data Flow

```
    age
    sex
    bmi
    bp
    tc
    ...

    59
    2
    32.1
    101
    157
    ...
```


Multiplication

```
    age
    sex
    bmi
    bp
    tc
    ...

    59
    1 32.1 101 157
    ...
```

```
y = intercept_ + coef_[0]*x[0] + coef_[1]*x[1] + ... x[3]
x[0]
x_1(age)
x_2(sex)
x_3(BMI)
x_3(BMI)
x_2(sex)
x_3(bex)
x_3(bex)
x_1(age)
x_2(bex)
x_2(bex)
x_3(bex)
x_3(bex)
x_3(bex)
x_3(bex)
x_3(bex)
x_3(bex)
```

Coefficients as Slopes

Combine the Nudges

Network Diagram

Neuron

Perceptron = Neuron Simulation

More neurons = smarter?

Try it!

More layers = smarter?

More Power?

Activation Function

Sigmoid

Activation Function ReLU 1.0 0.8 0.6 0.4 0.2 0.0

0.0

Grouping Features Together

Dense (Fully Connect) Network

Your Network is Dense

Synapse Activation

Dot Products in Python

```
LDL
                                 HDL BP
                                               TCH
                BMI
  age
         sex
z[0,0] = intercept [0,0] + coef [0,0,0]*x[0] + coef [0,0,1]*x[1] + ...
z[0,1] = intercept [0,1] + coef [0,1,0]*x[0] + coef [0,1,1]*x[1] + ...
z[0,2] = intercept [0,2] + coef [0,2,0]*x[0] + coef [0,2,1]*x[1] + ...
  y = intercept [1,0] + coef [1,0,0]*z[0,0] + coef [1,0,1]*z[0,1]
                      + coef [1,0,1]*z[0,2]
```

Input 1 (age)

```
HDL
                                          BP
                                                 TCH
                  BMI
          sex
      = intercept [0,0] + coef [0,0,0]*x[0] + coef [0,0,1]*x[1] + ...
z[0,1] = intercept [0,1] + coef [0,1,0]*x[0] + coef [0,1,1]*x[1] + ...
z[0,2] = intercept [0,2] + coef [0,2,0]*x[0] + coef [0,2,1]*x[1] + ...
  y = intercept [1,0] + coef [1,0,0]*z[0,0] + coef [1,0,1]*z[0,1]
                       + coef [1,0,1]*z[0,2]
```

Input 2 (sex)

```
HDL
                                          BP
                                                TCH
                 BMI
  age
z[0,0] = intercept [0,0] + coef [0,0,0]*x[0] + coef [0,0,1]*x[1]
z[0,1] = intercept [0,1] + coef [0,1,0]*x[0] + coef [0,1,1]*.
z[0,2] = intercept [0,2] + coef [0,2,0]*x[0] + coef [0,2,1]*x[1] + ...
      intercept [1,0] + coef [1,0,0]*z[0,0] + coef [1,0,1]*z[0,1]
                      + coef [1,0,1]*z[0,2]
```

Inputs 3-10

```
BMI
  age
          sex
z[0,0] = intercept_{[0,0]} + coer_{[0,0,0]} + coer_{[0,0,1]} *x[1]
z[0,1] = intercept [0,1] + coef [0,1,0]*x[0] + coef [0,1,1]*x[1]
z[0,2] = intercept_[0,2] + coef_[0,2,0]*x[0] + coef_[0,2,1]*x[1] + ...
   y = intercept [1,0] + coef [1,0,0]*z[0,0] + coef [1,0,1]*z[0,1]
                       + coef [1,0,1]*z[0,2]
```

Layer 1, Intercept

Layer 1, Neuron 1

Layer 1, Neuron 2

```
HDL BP
                                                TCH
                BMI
  age
         sex
z[0,0] = intercept [0,0] + coef [0,0,0]*x[0] + coef [0,0,1]*x[1] + ...
z[0,1] = intercept [0,1] + coef [0,1,0]*x[0] + coef [0,1,1]*x[1] + ...
z[0,2] = intercept [0,2] + coef [0,2,0]*x[0] + coef [0,2,1]*x[1] + ...
                                z[0,1]
  y = intercept [1,0] + coef [1,0,0]*z[0,0] + coef [1,0,1]*z[0,1]
                      + coef [1,0,1]*z[0,2]
```

Layer 1, Neuron 3

Backpropagation

Backpropagation: Prediction Error Gradients

```
HDL
                                            BP
                             LDL
                                                    TCH
                                                            GI U
                   BMI
     age
            sex
                         [0,3] [0,4] [0,5]
                                                    [0,6]
                                                            [0,7]
coef [0,0]
                    [0,2]
          [0,1]
  z[0,0] = intercept [0,0] + coef [0,0,0] \times [0] + coef [0,0,1] \times [1] + ...
  z[0,1] = intercept [0,1] + coef [0,1,0] *x[0] + coef [0,1,1] *x[1] + ...
  z[0,2] = intercept [0,2] + coef [0,2,0]*x[0] + coef [0,2,1]*x[1] + ...
    y = intercept [1,0] + coef_[1,0,0]*z[0,0] + coef_[1,0,1]*z[0,1]
                         + \cos[1,0,1] *z[0,2]
```