DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2003** 

MSc and EEE PART IV: M.Eng. and ACGI

## **CURRENT-MODE ANALOGUE SIGNAL PROCESSING**

Wednesday, 14 May 10:00 am

Time allowed: 3:00 hours

There are SIX questions on this paper.

Answer FOUR questions.

**Corrected Copy** 

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s): E. Drakakis

Second Marker(s): C. Papavassiliou



**Special Information for Invigilators:** none

## Information for candidates

Some notation

 $\frac{W}{L}$  denotes the width over the length of a MOS transistor

The symbol "//" means "in parallel with"; for example  $R_1 /\!\!/ R_2$  means " $R_1$  in parallel with  $R_2$ "

## The Questions

- (a) Explain the reasons why the switched-current circuit design technique
  constitutes an attractive alternative compared to the conventional switchedcapacitor technique. [7]
  - (b) Figure 1.1 illustrates a switched-current circuit. Show that its z-domain current transfer function corresponds to an inverting lossy integrator and derive an expression for its time-constant when  $\omega T << 1$  (T denotes the clock period). You may assume that the switches are ideal and that the transistors' sizing are as follows:  $\left(\frac{W}{L}\right)_{M_1} = \left(\frac{W}{L}\right)_{M_2}$ ,  $\left(\frac{W}{L}\right)_{M_4} = b_4 \left(\frac{W}{L}\right)_{M_1}$  and  $\left(\frac{W}{L}\right)_{M_4} = b_3 \left(\frac{W}{L}\right)_{M_4}$ . [13]





Figure 1.1



Figure 2.1

2. (a) Figure 2.1 above illustrates the equivalent circuit of a current-feedback operational amplifier (CFOA) connected in a non-inverting amplifier configuration. By means of analytical calculations show that the closed-loop bandwidth can be set independently of the closed-loop gain when

$$A = A_0 / \left( 1 + j \frac{f}{f_0} \right)$$
. You may assume that  $1 + \frac{R_2}{R_1} = G$ . [12]

(b) With respect to figure 2.1 show how the closed-loop transfer function  $V_{out}/V_{in}$  can be expressed in terms of an open-loop transimpedance gain  $Z_t$  and calculate the closed-loop bandwidth when

$$Z_t = R_0 / / \frac{1}{j C_0 \omega}.$$
 [4]

(c) Figure 2.2 illustrates a typical CFOA. Draw a new CFOA with an input buffer stage of reduced offset voltage. Explain how the offset voltage is reduced and briefly discuss relevant design trade-offs. [4]



- 3. (a) Figure 3.1 illustrates a single op-amp-based amplifier.
  - (i) Show that the output voltage can be expressed as  $V_{out} = K_2V_2 K_1V_1$  with the quantities  $K_2$  and  $K_1$  dependent upon  $R_1, R_2, R_3$  and  $R_4$  and find the appropriate condition so that the op-amp realises a difference amplifier. [5]
  - (ii) Express the CMRR in terms of the resistors  $R_1, R_2, R_3$  and  $R_4$  and discuss the limitations caused by finite resistor tolerances. [5]



Figure 3.1

Question continued on the next page...

(b) Figure 3.2 illustrates a current-mode instrumentation amplifier.

Discuss the operation of the circuit for both differential and common-mode inputs. What is the main advantage of the circuit when compared to the 3-op-amp instrumentation amplifier? What limits its accuracy and its CMRR performance? [10]



Figure 3.2

4. (a) Derive the bipolar translinear principle with reference to a loop containing 2m base-emitter junctions. State all the assumptions that you make and list the conditions which must be satisfied in order for this principle to be valid.

[5]

- (b) Figure 4.1 illustrates a translinear circuit whose differential current output realises a trigonometric approximation.
  - (i) Express the currents  $I_3$  and  $I_4$  in terms of I and  $I_x$ . [3]
  - (ii) Next, express the differential output  $I_2 I_1$  in terms of I and  $I_x$  and show that when  $I_x = yI$  holds:  $I_2 I_1 = I \frac{y y^3}{I + y^2}$ . You may assume that the transistors' beta value is large. [4]



- (c) Figure 4.2 illustrates a translinear circuit whose output current  $I_z$  can implement a variety of trigonometric approximations.
  - (i) Express the current  $I_2$  in terms of I,  $I_x$  and the output current  $I_z$ . [2]
  - (ii) Next, express the output current  $I_z$  in terms of I,  $I_x$  and the emitter area A. [3]
  - (iii) Determine the emitter area A so that  $I_z = 1.54 I_x 0.54 \frac{I_x^3}{I^2}$ . [3]



Figure 4.2

5. The transfer function for a second order topology has been decomposed into the following state-space equations:

$$\dot{x}_1 = -\left(\frac{\omega_0}{Q}\right) x_1 + \omega_0 x_2$$

$$\dot{x}_2 = -\omega_0 x_1 + \omega_0 u$$

$$y_1 = x_1$$

$$y_2 = x_2$$

where  $y_1$  and  $y_2$  are outputs,  $x_1$  and  $x_2$  are state-variables and u is the input (a dot above a variable denotes time-differentiation).

(a) Show that the output  $y_1$  can be used to implement a second order lowpass transfer function whereas the output  $y_2$  can be used for the implementation of a "two-pole one-zero" second order transfer function. [4]

(b) Using the exponential mappings 
$$x_j = I_0 \exp\left(\frac{V_j}{V_T}\right)$$
 ( $j = 1,2$ ) and  $u = I_S \exp\left(\frac{V_u}{V_T}\right)$  show that the above linear state-space equations can be transformed into non-linear log-domain design equations. [7]

- (c) From these design equations sketch a transistor-level implementation of a log-domain topology which realises the two transfer functions (the lowpass and the "two-pole one-zero" ones). Assuming that all capacitors are equal to 20pF determine the dc current bias values  $I_0$  so that  $\omega_0 = 4$ MHz. You may assume that  $V_T \cong 26$ mV. [9]
- 6. (a) State the relation which must be satisfied by two N-port networks, if these two networks are to be considered adjoint networks. Exploiting this relation derive the adjoint network of a resistor, a nullor and an open-loop "ideal" voltage amplifier.
  [4]
  - (b) Figure 6.1 illustrates a voltage-mode Tow-Thomas biquad implemented by means of voltage op-amps. Derive its current-mode equivalent. [3]



Figure 6.1

- (c) You are asked to implement an I-I converter. What kind of amplifier would you choose to use if:
  - (i) high-gain ideal amplifiers of any of the four kinds were available to you.[1]
  - (ii) only practical amplifiers were available to you. [1]
  - (iii) if high-performance current-followers and voltage-followers were available to you. [1]
- (d) Figure 6.2 shows a log-domain filter.
  - (i) Express the capacitor current in terms of  $I_{out1}$  and its derivatives.
  - (ii) Express the current u in terms of  $I_{out_I}$  and known circuit parameters.
  - (iii) Exploiting the translinear principle determine the s-domain transfer function  $\frac{I_{out2}(s)}{I_{in}(s)}$ . When  $I_d = 10 \,\mu\text{A}$  determine the dc biasing current

 $I_0$  and the capacitor value C so that the filter has a low-frequency gain of 1 and a pole frequency of 1MHz. You may assume that  $V_T \cong 26 \text{mV}$  and that beta-induced errors are negligible. [10]



