

一、波函数

x 处质元 t 时刻的位移:

$$y = y(x, t) = ?$$

设:原点处质元的振动方程

$$y(0, t) = A\cos(\omega t + \varphi_o)$$

x 处质元的振动落后于 o 点

位相:
$$\omega \Delta t = \omega \frac{x}{u}$$

$$\phi(x, t) = (\omega t + \varphi_o) - \omega \Delta t$$

$$= \omega(t - \Delta t) + \varphi_o$$

x 处质元的振动方程:

$$y(x, t) = A\cos\phi(x, t)$$

$$y = A\cos\left[\omega\left(t\mp\frac{x}{u}\right) + \varphi_o\right]$$

波函数亦称 波动方程。

波动方程 的几种标准形式:

$$y = A\cos\left[\omega\left(t\mp\frac{x}{u}\right)+\varphi_{o}\right]$$

$$y = A\cos\left[\frac{2\pi}{T}(t\mp\frac{x}{u}) + \varphi_o\right]$$

$$y = A\cos\left[2\pi\left(\frac{t}{T} \mp \frac{x}{\lambda}\right) + \varphi_o\right]$$

$$y = A\cos\left[\frac{2\pi}{\lambda}(ut \mp x) + \varphi_o\right]$$

右行波:取一号;

左行波:取+号。

 $\mathbf{p}: x$ 处质元的振动方程,或在 t 时刻的位移!

二、波动方程的物理含义

$$y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi_o\right]$$

1.
$$x \rightarrow \Xi$$
: $x = x0$, $y(x_0, t) = A\cos\left[\omega\left(t - \frac{x_0}{u}\right) + \varphi_o\right]$

$$y(x_0,t) = A\cos(\omega t + \varphi_x)$$

$$\boldsymbol{\varphi}_{x} = -\frac{\boldsymbol{\omega} x_{0}}{u} + \boldsymbol{\varphi}_{o}$$

$$v = \frac{dy}{dt} = -\omega A \sin(\omega t + \varphi_x)$$

$$a = \frac{dv}{dt} = -\omega^2 A \cos(\omega t + \varphi_x)$$

$$y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi_o\right]$$

2.
$$t \rightarrow \Xi$$
: $t = t_0$, $y(x, t_0) = A\cos\left[\omega\left(t_0 - \frac{x}{u}\right) + \varphi_0\right]$

$$y(x,t_0) = A\cos\left(\frac{2\pi}{\lambda}x + \varphi^*\right)$$

判断:

右图中各点的速度方向

或运动趋势。

$$y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi_o\right]$$

3.
$$x$$
、 t 都不定: $y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi_o\right]$

$$\omega (t - \frac{x}{u}) + \varphi_o = \omega (t + \Delta t - \frac{x + \Delta x}{u}) + \varphi_o$$

$$\Delta x = u \Delta t$$

- ○波速即为相位传播速度 (相速)。
- ○行波或前进波。

$$\frac{1}{u^2} = \mu \varepsilon$$
 电磁波波速:

$$u = 1/\sqrt{\mu\varepsilon}$$

平面电磁波波函数:

$$\begin{cases} E = E_0 \cos(\omega t - kx) \\ H = H_0 \cos(\omega t - kx) \end{cases}$$

波矢:
$$\left| \vec{k} \right| = \frac{2\pi}{\lambda}$$

电磁波的主要特性:

- 1. 横波特性: $\vec{E} \perp \vec{B} \perp \vec{k}$
- 2. 产和产同位相。
- 3. 产和 户的数值成比例:

$$\frac{E}{H} = \sqrt{\frac{\mu}{\varepsilon}}$$
 or $\sqrt{\varepsilon}E = \sqrt{\mu}H$

4. 真空中电磁波波速=真空中光速:

$$u = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \approx 2.998 \times 10^8 \text{ m/s} = c$$

四、波函数的求解

简谐波波函数:
$$y = A\cos\left[\omega\left(t \mp \frac{x}{u}\right) + \varphi_o\right]$$

- ♡波函数与坐标系的建立有关。
- ♡ 沿波的传播方向各点相位依次落后: _____u

$$\phi_{Q}(t) - \phi_{P}(t) = \omega \Delta t = \omega \frac{\Delta x}{u} = \frac{2\pi}{\lambda} \Delta x$$

$$P \qquad Q$$

- $v x_0$ 处质元在 t_0 时刻的 $v x_0$ 。

$$v(x_0, t_0) = \frac{\partial y}{\partial t} \bigg|_{x_0, t_0} \quad a(x_0, t_0) = \frac{\partial^2 y}{\partial t^2} \bigg|_{x_0, t_0}$$

例 如图,波沿-x方向传播,oM=2m,M点的振动方程:

$$y = 10\cos(\pi t + \frac{\pi}{2})$$
, $u=2\text{m/s}$, 求波动方程(即波函数)。

解 x 处相位超前 M 点:

$$\phi(x,t)-\phi(x_M,t)=\omega\frac{x-x_M}{u}$$

$$\phi(x_M,t) = \pi t + \frac{\pi}{2}$$

$$\phi(x,t) = (\pi t + \frac{\pi}{2}) + \pi \frac{x-2}{2} = 2\pi (\frac{t}{2} + \frac{x}{4}) - \frac{\pi}{2}$$

$$y = 10\cos[2\pi(\frac{t}{2} + \frac{x}{4}) - \frac{\pi}{2}]$$

(the end)

例 图示为 t=0 时的波形图,求波动方程及此时P点 v。

 \mathbf{m} $\lambda = 0.40\,\mathrm{m}$

$$\omega = \frac{2\pi}{\lambda}u = \frac{2\pi}{5}$$

由旋转矢量图可知:

$$\varphi_o = -\frac{\pi}{2}$$

波函数的标准形式:

$$y = A\cos\left[\omega\left(t - \frac{x}{u}\right) + \varphi_o\right]$$

$$y = 0.04 \cos \left[\frac{2\pi}{5} \left(t - \frac{x}{0.08} \right) - \frac{\pi}{2} \right]$$

t=0 时 P 点的速度:

$$\begin{aligned} v_P &= \frac{\partial y}{\partial t} \bigg|_{\substack{x=0.20\\t=0}} \\ &= -0.04 \times \frac{2\pi}{5} sin(-\frac{3\pi}{2}) \end{aligned}$$

 $=-0.05 \, (m/s)$

沿-y方向。 (the end)

课堂练习图示为t=1s时的波形曲线,求波动方程。

提示 关键:求解原点o处质元初位相 φ_o !

$$\omega\Delta t = \frac{2\pi}{5}(1-0) = \frac{2\pi}{5}$$

$$\therefore \varphi_o = -\frac{\pi}{2} - \frac{2\pi}{5} = -\frac{9\pi}{10}$$

答案:
$$y = 0.04 cos \left[\frac{2\pi}{5} \left(t - \frac{x}{0.08} \right) - \frac{9\pi}{10} \right]$$

