

BIRLA VISHVAKARMA MAHAVIDYALAY (AN AUTONOMOUS INSTITUTION) ELECTRONICS ENGINNERING DEPARTMENT

A.Y. 2023-2024

DIGITAL SYSTEM DESIGN: -25 VERILOG CODES

NAME: SHREYA VERMA

ID NO.: 21EL001

SEMESTER: 5TH

BATCH: A - BATCH

BRANCH: ELECTRONICS ENGINEERING

SR.	LIST
NO.	
1.	CLOCK DIVIDER
2.	JOHNSON COUNTER
3.	RING COUNTER
4.	5 INPUT MAJORITY CIRCUIT
5.	PARITY GENERATOR
6.	BINARY TO ONE HOT ENCODER
7.	4-BIT BCD SYNCHRONOUS COUNTER
8.	4-BIT CARRY LOOKAHEAD ADDER
9.	N-BIT COMPARATOR
10.	SERIAL IN SERIAL OUT SHIFT REGISTER
11.	SERIAL IN PARALLEL OUT SHIFT REGISTER
12.	PARALLEL IN PARALLEL OUT REGISTER
13.	PARALLEL IN SERIAL OUT REGISTER
14.	BIDIRECTION SHIFT REGISTER
15.	PRBS SEQUENCE GENERATOR
16.	8-BIT SUBTRACTOR
17.	8-BIT ADDER/SUBTRACTOR
18.	4-BIT MULTIPLIER
19.	FIXED POINT DIVISION
20.	MASTER SLAVE JK FLIP FLOP
21.	POSITIVE EDGE DETECTOR

22.	BCD ADDER
23.	4-BIT CARRY SELECT ADDER
24.	MOORE FSM 1010 SEQUENCE DETECTOR
25.	N:1 MUX

CODE-1: CLOCK DIVIDER

CODE FOR TESTBENCH:

endmodule

```
module testbench;
reg Clk, Rst;
wire [3:0] Count;
wire D2, D4, D8, D16;
Clock_Divider dut(Clk, Rst, Count, D2, D4, D8, D16);
initial
begin
$monitor("Clk=%b Rst=%b Count=%b D2=%b D4=%b D8=%b D16=%b",Clk,Rst,Count,D2,D4,D8,D16);
always
begin
 #50 Clk = ~Clk;
 end
initial
begin
     #100 Rst = 1;
     #100 Rst = 0;
     $finish;
   end
```

VERILOG CODE:

```
module Clock_Divider(
   input Clk,
   input Rst,
   output reg [3:0] Count,
   output reg D2, D4, D8, D16
   always@(posedge Clk)
  begin
  if (Rst==0)
  Count=4'b0000;
   else
   Count=Count+1;
   D2=Count[0];
   D4=Count[1];
   D8=Count[2];
   D16=Count[3];
   end
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

CODE-2: JOHNSON COUNTER

CODE FOR TESTBENCH:

```
module testbench;
reg Clk,Rst;
reg [3:0] Width;
wire [3:0] Count;

JOHNSON_COUNTER dut(Clk,Rst,Width,Count);
initial
begin
$monitor("Clk=%b Rst=%b Width=%b Count=%b",Clk,Rst,Width,Count);
end
always
begin
#50 Clk = ~Clk;
end
initial
begin
#100 Rst = 1;
#100 Rst = 0;

$finish;
end
endmodule
```

```
module JOHNSON_COUNTER(
    input [3:0] Width,
    input Clk,
    input Rst,
    output reg [3:0] Count
);

always@(posedge Clk)
    begin
    if(Rst)
    Count={~Count[0],Count[3:1]};
    else
    Count=4'b0001;
    end
endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 1.287 W

Junction Temperature: 26.8 °C

Thermal Margin: 58.2 °C (40.1 W)

Effective dJA: 1.4 °C/W

CODE-3: RING COUNTER

CODE FOR TESTBENCH:

```
module testbench;
reg [3:0] Width;
reg Clk, Rst;
wire [3:0] Count;
RING_COUNTER dut(Clk, Rst, Width, Count);
initial
begin
$monitor("Clk=%b Rst=%b Width=%b Count=%b",Clk,Rst,Width,Count);
  always
 begin
  #50 Clk=~Clk;
  end
  initial
  begin
  #100 Rst=1;
  #100 Rst=0;
   $finish;
   end
   endmodule
```

```
module RING_COUNTER(
   input [3:0] Width,
   input Clk,
   input Rst,
   output reg [3:0] Count
);

always@(posedge Clk)
  begin
   if(Rst)
   Count={~Count[0],Count[3:1]};
  else
   Count=4'b0001;
  end
endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 1.287 W

Junction Temperature: 26.8 ℃

Thermal Margin: 58.2 °C (40.1 W)

Effective dJA: 1.4 °C/W

CODE-4: 5 INPUT MAJORITY CIRCUIT

CODE FOR TESTBENCH:

```
module testbench;
req [4:0] x;
wire z;
INPUT_MAJORITY_CIRCUIT dut(x[0],x[1],x[2],x[3],x[4],z);
begin
$monitor("x[0]=8b x[1]=8b x[2]=8b x[3]=8b x[4]=8b z=8b",x[0],x[1],x[2],x[3],x[4],z);
  #2 x[0]=0; x[1]=0; x[2]=0; x[3]=0; x[4]=0;
  #3 x[0]=0; x[1]=0; x[2]=0; x[3]=0; x[4]=1;
  #4 x[0]=0; x[1]=0; x[2]=0; x[3]=1; x[4]=0;
  #5 x[0]=0; x[1]=0; x[2]=0; x[3]=1; x[4]=1;
  #6 x[0]=0; x[1]=0; x[2]=1; x[3]=0; x[4]=0;
  #7 x[0]=0; x[1]=0; x[2]=1; x[3]=0; x[4]=1;
  #8 x[0]=0; x[1]=0; x[2]=1; x[3]=1; x[4]=0;
  #9 x[0]=0; x[1]=1; x[2]=1; x[3]=1; x[4]=1;
  #10 x[0]=0; x[1]=1; x[2]=0; x[3]=0; x[4]=0;
  #11 x[0]=0; x[1]=1; x[2]=0; x[3]=0; x[4]=1;
  #12 x[0]=0; x[1]=1; x[2]=0; x[3]=1; x[4]=0;
  #13 x[0]=0; x[1]=1; x[2]=0; x[3]=1; x[4]=1;
  #14 x[0]=0; x[1]=1; x[2]=1; x[3]=0; x[4]=0;
  #15 x[0]=0; x[1]=1; x[2]=1; x[3]=0; x[4]=1;
  #16 x[0]=0; x[1]=1; x[2]=1; x[3]=1; x[4]=0;
  #17 x[0]=0; x[1]=1; x[2]=1; x[3]=1; x[4]=1;
  #18 x[0]=1; x[1]=0; x[2]=0; x[3]=0; x[4]=0;
  #19 x[0]=1; x[1]=0; x[2]=0; x[3]=0; x[4]=1;
  end
endmodule
```

VERILOG CODE:

```
module INPUT MAJORITY CIRCUIT (
    input [4:0] x,
    output z
    );
    wire [9:0] w;
    and and1(w[0],x[2],x[3],x[4]);
    and and 2(w[1], x[1], x[3], x[4]);
    and and 3(w[2], x[1], x[2], x[4]);
    and and4(w[3],x[1],x[3],x[2]);
    and and 5(w[4], x[0], x[3], x[4]);
    and and6(w[5],x[0],x[2],x[4]);
    and and 7(w[6], x[0], x[3], x[2]);
    and and8(w[7],x[1],x[0],x[4]);
    and and9(w[8],x[1],x[3],x[0]);
    and and 10(w[9], x[1], x[0], x[2]);
    or or1(z,w[0],w[1],w[2],w[3],w[4],w[5],w[6],w[7],w[8],w[9]);
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.712 W

Junction Temperature: 26.0 ℃

Thermal Margin: 59.0 °C (40.6 W)

Effective ϑJA : 1.4 $^{\circ}C/W$

CODE-5: PARITY GENERATOR

CODE FOR TESTBENCH:

```
module testbench;
reg x, y, z;
wire result;
PARITY_GENERATOR dut(x,y,z,result);
initial
begin
$monitor("x=%b y=%b z=%b result=%b",x,y,z,result);
 #100 x=0; y=0; z=0;
 #200 x=0; y=0; z=1;
 #300 x=0; y=1; z=0;
 #400 x=0; y=1; z=1;
#500 x=1; y=0; z=0;
  #600 x=1; y=0; z=1;
 #700 x=1; y=1; z=0;
 #800 x=1; y=1; z=1;
end
endmodule
```

```
module PARITY_GENERATOR(
    input x,
    input y,
    input z,
    output result
    );
    assign result= x^y^z;
endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W
Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective dJA: 1.4 °C/W

CODE-6: BINARY TO ONE HOT ENCODER

CODE FOR TESTBENCH:

```
module testbench;
reg [1:0] bin_i;
wire [1:0] one_hot_o;

BINARY_TO_ONE_HOT_ENCODER dut(bin_i,one_hot_o);

initial
begin
$monitor("bin_i=8b one_hot_o=8b",bin_i,one_hot_o);

#100 bin_i[0]=0; bin_i[1]=0;
#200 bin_i[0]=0; bin_i[1]=1;
#300 bin_i[0]=1; bin_i[1]=0;
#400 bin_i[0]=1; bin_i[1]=1;
end
endmodule
```

```
module BINARY_TO_ONE_HOT_ENCODER(
   input [2:0] bin_i,
   output [7:0] one_hot_o
);
   parameter bin_w=4;
   parameter one_hot_w=16;
   input [1:0] bin_i;
   output reg [1:0] one_hot_o;

assign one_hot_o = (1<<bin_i);
endmodule</pre>
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.712 W
Junction Temperature: 26.0 °C

Thermal Margin: 59.0 °C (40.6 W)

Effective #JA: 1.4 °C/W

CODE-7: 4 BIT BCD SYNCHRONOUS COUNTER

CODE FOR TESTBENCH:

```
module bcd counter(
 input wire clk, // Clock input
 input wire rst, // Reset input
 output wire [3:0] bcd // 4-bit BCD output
);
reg [3:0] count; // 4-bit counter
always @(posedge clk or posedge rst) begin
 if (rst) begin
   count <= 4'b0000; // Reset the counter to 0
 end else begin
   // Increment the counter
   if (count == 4'b1001) begin
     count <= 4'b0000; // Reset to 0 when it reaches 9 (BCD)
   end else begin
    count <= count + 1;
   end
 end
end
assign bcd = count; // Output BCD
endmodule
```

VERILOG CODE:

```
module BCD_COUNTER(
   input Clk,
    input Clear,
    output [3:0] Count
     reg [3:0] t;
     always@(posedge Clk)
     begin
     if(Clear)
     t <= 4'b0000;
     Count <= 4'b0000;
      end
     else
     begin
      t <= t+1;
     if(t==4'b1001)
     begin
     t <= 4'b0000;
      end
      Count <=t;
      end
      end
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 5.248 W

Junction Temperature: 32.3 °C

Thermal Margin: 52.7 °C (36.1 W)

Effective dJA: 1.4 °C/W

CODE-8: 4 - BIT CARRY LOOK AHEAD ADDER

CODE FOR TESTBENCH:

```
module testbench;
reg [3:0] a, b,cin;
wire [3:0] sum, cout;
CARRY LOOK AHEAD ADDER dut(a,b,cin,sum,cout);
initial
begin
$monitor("a=8b b=8b cin=8b sum=8b cout=8b",a,b,cin,sum,cout);
     cin=1:
#50 a[0]=0; a[1]=0; a[2]=0; a[3]=0;
    b[0]=0; b[1]=0; b[2]=0; b[3]=0;
#70 a[0]=0; a[1]=0; a[2]=0; a[3]=1;
    b[0]=0; b[1]=0; b[2]=0; b[3]=1;
#90 a[0]=0; a[1]=0; a[2]=1; a[3]=0;
    b[0]=0; b[1]=0; b[2]=1; b[3]=0;
#110 a[0]=0; a[1]=0; a[2]=1; a[3]=1;
    b[0]=0; b[1]=0; b[2]=1; b[3]=1;
#130 a[0]=0; a[1]=1; a[2]=0; a[3]=0;
    b[0]=0; b[1]=1; b[2]=0; b[3]=0;
#150 a[0]=0; a[1]=1; a[2]=0; a[3]=1;
    b[0]=0; b[1]=1; b[2]=0; b[3]=1;
#170 a[0]=0; a[1]=1; a[2]=1; a[3]=0;
     b[0]=0; b[1]=1; b[2]=1; b[3]=0;
#190 a[0]=0; a[1]=1; a[2]=1; a[3]=1;
    b[0]=0; b[1]=1; b[2]=1; b[3]=1;
#210 a[0]=1; a[1]=0; a[2]=0; a[3]=0;
    b[0]=1; b[1]=0; b[2]=0; b[3]=0;
     end
     endmodule
```

VERILOG CODE:

```
module CARRY_LOOK_AHEAD_ADDER(
   input [3:0] a,
   input [3:0] b,
   input cin,
   output [3:0] sum,
   output cout
   );
   and (g0,a[0],b[0]),
   (g1,a[1],b[1]),
    (g2,a[2],b[2]),
   (g3,a[3],b[3]);
   xor (p0,a[0],b[0]),
   (p1,a[1],b[1]),
    (p2,a[2],b[2]),
    (p3,a[3],b[3]);
    xor (sum[0],p0,cin),
        (sum[1],p1,c0),
        (sum[2],p2,c1),
        (sum[3],p3,c2);
       assign c0= g0 | (p0 & cin),
       c1= g1 | (p1 & g0) | (p1 & p0 & cin),
       c2= g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & cin),
       c3= g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) | (p3 & p2 & p1 & p0 & cin);
       assign cout=c3;
```

endmodule

SIMULATION:

Name	Value	0 n	s I		200 ns	1	400	ns	600 ns		800 ns		1,000 ns	1,200 ns 1
⊞- % a[3:0]	0001		(0000	1000	X 0100	110	ър	0010	1010	X	0110	Ċ	1110	0001
⊞ b[3:0]	0001		0000	1000	0100	X 110	oþ 💮	0010	1010	X	0110	\equiv	1110	0001
⊞	0001	\mathbb{I}							0001					
⊞ - ™ sum[3:0]	0011		(0	001	X	1001		χ ο	101	X	1	101	X	0011
	1010		ZZZO	2221	X 2220	X 22:	21	2220	2221		2220			.011

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective ®JA: 1.4 °C/W
Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-9: N - BIT COMPARATOR

CODE FOR TESTBENCH:

```
module testbench;
reg [1:0] a,b;
wire L, E, G;
N BIT COMPARATOR dut(a,b,L,E,G);
initial
begin
$monitor("a=%b b=%b L=%b E=%b G=%b",a,b,L,E,G);
#100 a[0]=0; a[1]=0;
    b[0]=0; b[1]=0;
#200 a[0]=0; a[1]=1;
    b[0]=0; b[1]=1;
#300 a[0]=1; a[1]=0;
    b[0]=1; b[1]=0;
#400 a[0]=1; a[1]=1;
    b[0]=1; b[1]=1;
#500 a[0]=0; a[1]=0;
    b[0]=0; b[1]=0;
#600 a[0]=0; a[1]=1;
    b[0]=0; b[1]=1;
     end
     endmodule
```

VERILOG CODE:

```
module N_BIT_COMPARATOR(
   input [1:0]a,
   input [1:0] b,
   output L,
   output G,
   output E
   );
  parameter n=32;
   input [1:0]a,b;
   output L,G,E;
   reg L=0, G=0, E=0;
   always@(a,b)
   begin
   if(a>b)
   begin
   L=0; E=0; G=1;
   end
   else if (a<b)
   begin
   L=1; E=0; G=0;
   end
   else
  begin
   L=0; E=1; G=0;
   end
   end
endmodule
```

SIMULATION:

Name	Value	0 ns .		200 ns .		400	ns .	600 ns .		800 ns .		1,000 ns	1,200 ns 1
- F4 (n n)				لحصيا					上		누		<u> </u>
⊞ 🖥 a[3:0]	0001	(0000	X 1000	X 0100	X 110		0010	1010 X	_	0110	\subseteq	1110 X	0001
⊞ · 😽 b[3:0]	0001	0000	1000	0100	110		0010	1010	\subseteq	0110		1110	0001
	0001							0001					
⊞	0011		0001	χ :	1001			101		1.	101	X	0011
	1010	2220	X ZZZ1	X 2220	X ZZZ	1	2220	2221		2220			.011

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W
Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective ϑJA : 1.4 °C/W

CODE-10: SERIAL IN SERIAL OUT SHIFT REGISTER

CODE FOR TESTBENCH:

```
module testbench;
reg [3:0] Width;
reg Clk, Rst;
wire [3:0] Count;
RING_COUNTER dut(Clk, Rst, Width, Count);
initial
$monitor("Clk=%b Rst=%b Width=%b Count=%b",Clk,Rst,Width,Count);
  always
 begin
  #50 Clk=~Clk;
  end
  initial
  begin
  #100 Rst=1;
   #100 Rst=0;
   $finish;
   end
   endmodule
```

```
module SISO_REG(
    input clk,
    input si,
    input clear,
    output so
);
    reg [3:0] tmp;
    always@(posedge clk)
    begin
    if(clear)
    tmp <=4'b0000;
    else
    tmp <= tmp >>1;
    tmp[3] <= si;
    end
    assign so = tmp;
endmodule</pre>
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power:0.43 WJunction Temperature:25.6 °CThermal Margin:59.4 °C (40.9 W)Effective ♂JA:1.4 °C/WPower supplied to off-chip devices:0 WConfidence level:Low

CODE-11: SERIAL IN PARALLEL OUT SHIFT REGISTER

CODE FOR TESTBENCH:

```
module testbench;
reg clk, clear;
reg [3:0] din;
wire [3:0] dout;
SIPO_REG dut(clk,clear,din,dout);
initial
begin
$monitor("clk=%b clear=%b din=%b dout=%b",clk,clear,din,dout);
#100 din[0]=0; din[1]=0; din[2]=0; din[3]=0;
#200 din[0]=0; din[1]=0; din[2]=0; din[3]=1;
#300 din[0]=0; din[1]=0; din[2]=1; din[3]=0;
#400 din[0]=0; din[1]=0; din[2]=1; din[3]=1;
#500 din[0]=0; din[1]=1; din[2]=0; din[3]=0;
#600 din[0]=0; din[1]=1; din[2]=0; din[3]=1;
end
endmodule
```

```
module SIPO_REG(
    input clk,
    input clear,
    input [3:0] din,
    output reg [3:0] dout
);
    always@(posedge clk)
    begin
    if(clear)
    dout <= 4'b0000;
    else
    dout <= din;
    end
endmodule
```

Name	Value		1,000 ns	1,500 ns	12.0	100 ns	2,500 ns	3,000 ns	3,500 ns	4,000 n
				-7						
¹⅓ dk	1									
™ dear	0									
⊞ - ₩ din[3:0]	1010	0100	1100	0010	\Box	X		1010		
■ ■ dout[3:0]	1010	xxxx	1100	0010	\Box	X		1010		
					Γ					

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W
Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective 0JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-12: PARALLEL IN PARALLEL OUT SHIFT REGISTER

CODE FOR TESTBENCH:

```
module testbench:
reg clk, clear;
reg [3:0] din;
wire [3:0] dout;
PIPO_REG dut(clk,clear,din,dout);
initial
begin
$monitor("clk=%b clear=%b din=%b dout=%b",clk,clear,din,dout);
#100 din[0]=0; din[1]=0; din[2]=0; din[3]=0;
#200 din[0]=0; din[1]=0; din[2]=0; din[3]=1;
#300 din[0]=0; din[1]=0; din[2]=1; din[3]=0;
#400 din[0]=0; din[1]=0; din[2]=1; din[3]=1;
#500 din[0]=0; din[1]=1; din[2]=0; din[3]=0;
#600 din[0]=0; din[1]=1; din[2]=0; din[3]=1;
end
endmodule
```

```
module PIPO_REG(
   input clk,
   input clear,
   input [3:0] din,
   output reg [3:0] dout
  );
   always@(posedge clk)
   begin
   if(clear)
   dout <= 4'b0000;
   else
   dout <= din;
   end
endmodule</pre>
```

Name	Value		1,000 ns	1,500 ns	12,0	00 ns	2,500 ns	3,000 ns	3,500 ns	4,000 n
TB dk TB dear	1				Ĺ					
⊡ - S din[3:0]	1010	0100	1100	0010	\Box			1010		
■ ■ dout[3:0]	1010	XXXX	1100	0010				1010		

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective 0JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-13: PARALLEL IN SERIAL OUT SHIFT REGISTER

CODE FOR TESTBENCH:

```
module s1(
input a,b,s1,
output q
);
assign q = (\sim s1 \epsilon b) \mid (s1 \epsilon a);
endmodule
module dff(
input d, clk,
output q
);
reg q=0;
always@(posedge clk)
begin
q <= d;
end
endmodule
module PISO REG(
    input [3:0] d,
    input clk,
    input s1,
   output q
    );
   wire q1,q2,q3,d1,d2,d3;
    dff a(d[3],clk,q1);
    s1 a1(q1,d[2],s1,d1);
    diff b(d1,clk,q2);
    s1 b1(q2,d[1],s1,d2);
    dff c(d2,clk,q3);
    s1 c1(q3,d[0],s1,d3);
    dff dd(d3,clk,q);
endmodule
```

VERILOG CODE:

```
module s1(
input a,b,s1,
output q
);
assign q = (\sim s1sb) \mid (s1sa);
endmodule
module dff(
input d, clk,
output q
);
reg q=0;
always@(posedge clk)
begin
q \ll d;
end
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.796 W

Junction Temperature: 26.1 °C

Thermal Margin: 58.9 °C (40.6 W)

Effective &JA: 1.4 °C/W

CODE-14: BIDIRECTIONAL SHIFT REGISTER

CODE FOR TESTBENCH:

```
module testbench;
reg [3:0] Width;
reg Clk,Rst;
wire [3:0] Count;

RING_COUNTER dut(Clk,Rst,Width,Count);

initial
begin
$monitor("Clk=%b Rst=%b Width=%b Count=%b",Clk,Rst,Width,Count);
end
always
begin
#50 Clk=-Clk;
end
initial
begin
#100 Rst=1;
#100 Rst=0;
$finish;
end
endmodule
```

```
module BIDIRECTIONAL SHIFT REG
#(parameter MSB=4)
    input d,
    input clk,
    input en,
    input dir,
    input rstn,
    output reg [MSB-1:0] out
    );
    always@(posedge clk)
   if(!rstn)
    out <= 0;
    else
   begin
   if (en)
   case (dir)
    0: out <= {out[MSB-2:0],d};
    1: out <= {d,out[MSB-1:1]};
    endcase
    else
       out <= out;
        end
endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 2.542 W

Junction Temperature: 28.6 ℃

Thermal Margin: 56.4 °C (38.8 W)

Effective &JA: 1.4 °C/W
Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-15: PRBS SEQUENCE GENERATOR

CODE FOR TESTBENCH:

```
module tb PRBS SEQUENCE GENERATOR;
 reg clk;
 reg rst;
 wire rand;
 PRBS_SEQUENCE_GENERATOR uut (
   .clk(clk),
   .rst(rst),
   .rand(rand)
   always begin
   #5 clk = \sim clk;
   initial begin
   rst = 1;
   #10 \text{ rst} = 0;
 end
    initial begin
    $display("Time\tPRBS Output");
    $monitor("%d\t%b", $time, rand);
    #100;
    $finish;
  end
endmodule
```

VERILOG CODE:

```
module PRBS_SEQUENCE_GENERATOR(
input clk, rst,
output rand
);
reg [3:0] temp;
always@(posedge rst)
begin
temp <= 4'hf;
end
always@(posedge clk)
begin
if (~rst)
begin
temp <= {temp[0]^temp[1],temp[3],temp[2],temp[1]};
end
end
assign rand = temp[0];
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.274 W

Junction Temperature: 25.4 ℃

Thermal Margin: 59.6 $^{\circ}$ C (41.1 W)

Effective đJA: 1.4 °C/W

CODE-16: 8 - BIT SUBTRACTOR

CODE FOR TESTBENCH:

```
module SUBTRACTOR_8_BIT(
    input [7:0] a,
    input [7:0] b,
    output reg [7:0] result
);

reg neg_b;
    always@(a or b)
    begin
    neg_b = ~ b + 1;
    result = a + neg_b;
    end
endmodule
```

					1,000.
Name	Value	200 ns	400 ns ,	600 ns ,	800 ns
⊡	01011000	01010101	*	01011000	
■ • b [7:0]	11110111	11101011	k	11110111	
■ Note: The second in the sec	01011001	01010110	k	01011001	
16 [7]	0				
U ₆ [6]	1				
16 [5]	0				
U ₆ [4]	1				
Va [3]	1				
V _a [2]	0				
V ₆ [1]	0				
U _a [0]	1				

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-17: &-BIT ADDER SUBTRACTOR

CODE FOR TESTBENCH:

```
module testbench;
reg [7:0] a,b;
wire [7:0] result;
SUBTRACTOR_8_BIT dut(a,b,result);
initial
begin
$monitor("a=8b b=8b result=8b",a,b,result);
#100 a[0]=1; a[1]=0; a[2]=1; a[3]=0; a[4]=1; a[5]=0; a[6]=1; a[7]=0;
    b[0]=1; b[1]=1; b[2]=0; b[3]=1; b[4]=0; b[5]=1; b[6]=1; b[7]=1;
#300 a[0]=0; a[1]=0; a[2]=0; a[3]=1; a[4]=1; a[5]=0; a[6]=1; a[7]=0;
    b[0]=1; b[1]=1; b[2]=1; b[3]=0; b[4]=1; b[5]=1; b[6]=1; b[7]=1;
    end
    endmodule
```

```
module ADDER_SUBTRACTOR_8_BIT(
    input [7:0] a,
   input [7:0] b,
   input mode,
   output reg [7:0] result,
   output reg ovfl
   wire [7:0] a,b;
   wire mode;
   reg [7:0] neg_b;
   always@(a or b or mode)
   begin
   if (mode==0)
   begin
   result = a+b;
   ovfl = (a[7] & b[7] & ~result[7]) | (~a[7] & ~b[7] & result[7]);
   else
   begin
   neg_b = \sim b+1;
   result = a + neg b;
    ovfl = (a[7] & neg_b[7] & ~result[7]) | (~a[7] & ~neg_b[7] & result[7]);
endmodule
```

					1,000.
Name	Value	200 ns	400 ns ,	600 ns ,	800 ns
⊡	01011000	01010101	*	01011000	
■ • b [7:0]	11110111	11101011	k	11110111	
■ Note: The second in the sec	01011001	01010110	k	01011001	
16 [7]	0				
U ₆ [6]	1				
16 [5]	0				
U ₆ [4]	1				
Va [3]	1				
V _a [2]	0				
V ₆ [1]	0				
U _a [0]	1				

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-18: 4 - BIT MULTIPLYER

CODE FOR TESTBENCH:

```
module testbench;
reg [3:0]a,b;
wire [7:0] product;

MULTIPLYER dut(a,b,product);
initial
  begin
  $monitor("a=8b b=8b product=8b",a,b,product);

#100 a[0]=0; a[1]=1; a[2]=1; a[3]=0;
  b[0]=1; b[1]=0; b[2]=1; b[3]=1;
#200 a[0]=1; a[1]=0; a[2]=1; a[3]=0;
  b[0]=1; b[1]=1; b[2]=0; b[3]=1;
#300 a[0]=0; a[1]=1; a[2]=0; a[3]=0;
  b[0]=1; b[1]=1; b[2]=0; b[3]=1;
end
endmodule
```

```
module MULTIPLYER(
    input [3:0] a,
    input [3:0] b,
    output [7:0] product
    );
   wire [3:0] m0;
   wire [4:0] m1;
   wire [5:0] m2;
    wire [6:0] m3;
   wire [7:0] s1,s2,s3;
    assign m0={4{a[0]}}&b[3:0];
    assign m1={4{a[1]}}&b[3:0];
    assign m2={4{a[2]}}&b[3:0];
    assign m3={4{a[3]}}&b[3:0];
    assign s1=m0+(m1<<1);
    assign s2=s1+(m2<<1);
    assign s3=s2+(m3<<1);
    assign product= s3;
endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective dJA: 1.4 °C/W

CODE-19: FIXED POINT DIVISION

CODE FOR TESTBENCH:

```
module testbench;
reg [7:0]a;
reg [3:0]b;
reg start;
wire [7:0] result;
    FIXED POINT DIVISION dut(a,b,start,result);
    initial
    begin
    $monitor("a=%b b=%b start=%b result=%b",a,b,start,result);
    #100 a[0]=0; a[1]=1; a[2]=1; a[3]=0; a[4]=1; a[5]=0; a[6]=1; a[7]=1;
         b[0]=1; b[1]=0; b[2]=1; b[3]=1;
    #200 a[0]=1; a[1]=0; a[2]=1; a[3]=0; a[4]=0; a[5]=1; a[6]=0; a[7]=0;
         b[0]=1; b[1]=1; b[2]=0; b[3]=1;
    #300 a[0]=0; a[1]=1; a[2]=0; a[3]=0; a[4]=1; a[5]=1; a[6]=1; a[7]=1;
         b[0]=1; b[1]=1; b[2]=0; b[3]=1;
         end
         endmodule
```

```
module FIXED POINT DIVISION(
   input [7:0] a,
   input [3:0] b,
   input start,
   output reg [7:0] result
   );
   wire[3:0] b bar;
   reg [3:0] b_neg;
   reg [3:0] count;
   assign b_bar=~b;
   always@(b bar)
   b neg=b bar+1;
   always@(posedge start)
   begin
   result=a;
   count=4'b0000;
   if((a!=0) && (b!=0))
   while (count)
   begin
   result=result<<1;
   result={(result[7:4] + b), result[3:1],1'b0};
   count=count-1;
   end
   else
   begin
   result={result[7:1],1'b1};
   count=count-1;
   end
    end
endmodule
```

							1.
Name	Value		1,000,000 ps	1,000,200 ps	1,000,400 ps	1,000,600 ps	1,000
⊞™ a[7:0]	10101011	峝	*		0101011	111111111	
	1100	I≣	X		1100		
୍ଲ start	1						
⊞ 📲 result[7:0]	10101011	I⊡	X	1	0101011		
⊞ - ■ b_bar[3:0]	0011	I⊡	X		0011		
⊞ ■ b_neg[3:0]	0100	┃	X		0100		
	0000	I⊡	X		0000		
		Γ					

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 2.564 W

Junction Temperature: 28.6 °C

Thermal Margin: 56.4 °C (38.8 W)

Effective ϑJA : 1.4 $^{\circ}C/W$

CODE-20: MASTER SLAVE JK FLIP FLOP

CODE FOR TESTBENCH:

```
module master_slave(
   input s,r,clk,
   output qn,qn_bar
);
   wire mq;
   wire mq_bar;
   wire mclk;
   assign mclk=~clk;
   JK_FF master(s,r,clk,mq,mq_bar);
   JK_FF slave(mq,mq_bar,mclk,qn,qn_bar);
   endmodule
```

```
module JK FF(
   input j,
   input k,
   input clk,
   output reg q,
   output q_bar
   );
   assign q_bar=~q;
   always@(posedge clk)
   case({j,k})
   2'b00: q<=q;
   2'b01: q<=0;
   2'b10: q<=1;
   2'b11: q<=~q;
   endcase
   end
endmodule
module master_slave(
  input s,r,clk,
   output qn,qn_bar
   );
   wire mq;
   wire mq_bar;
   wire mclk;
   assign mclk=~clk;
   JK_FF master(s,r,clk,mq,mq_bar);
   JK_FF slave(mq,mq_bar,mclk,qn,qn_bar);
  endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 1.586 W

Junction Temperature: 27.2 °C

Thermal Margin: 57.8 °C (39.8 W)

Effective 0JA: 1.4 °C/W

CODE-21: POSITIVE EDGE DETECTOR

CODE FOR TESTBENCH:

```
module testbench;
reg data,clk;
wire edge_detect;
    EDGE_DETECTOR dut(data,clk,edge_detect);
    initial
    begin
    $monitor("data=%b clk=%b edge_detect=%b",data,clk,edge_detect);
    end
    always
    begin
    #50 clk = ~clk;

    end
endmodule
```

```
module EDGE_DETECTOR(
    input data,
    input clk,
    output edge_detect
);
    reg data_d;
    always@(posedge clk)
    begin
    data_d <= data;
    end
    assign edge_detect= data & ~data_d;
endmodule</pre>
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

CODE-22: BCD ADDER

CODE FOR TESTBENCH:

```
module BCD_Adder_Testbench;
reg [3:0] A, B;
wire [3:0] Sum;
wire CarryOut;
BCD Adder uut(
    .A(A),
   .B(B),
    .Sum (Sum),
    .CarryOut (CarryOut)
initial begin
    $display("Testing BCD Adder");
   A = 4'b0101;
    B = 4'b0011;
   #10 $display("A = %b, B = %b, Sum = %b, CarryOut = %b", A, B, Sum, CarryOut);
   A = 4'b1001;
    B = 4'b1001;
    #10 $display ("A = %b, B = %b, Sum = %b, CarryOut = %b", A, B, Sum, CarryOut);
   A = 4'b00000;
   B = 4'b00000;
    #10 $display("A = %b, B = %b, Sum = %b, CarryOut = %b", A, B, Sum, CarryOut);
    $finish;
end
endmodule
```

VERILOG CODE:

```
module BCD_Adder(
    input [3:0] A,
    input [3:0] B,
    output reg [3:0] Sum,
    output reg CarryOut
);
always @(*) begin
    Sum = A + B;
    if (Sum >= 10) begin
        Sum = Sum - 10;
        CarryOut = 1;
    end else begin
        CarryOut = 0;
    end
end
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective ®JA: 1.4 °C/W
Power supplied to off-chip devices: 0 W
Confidence level: Low

CODE-23: 4-BIT CARRY SELECT ADDER

CODE FOR TESTBENCH:

```
module testbench;
reg [3:0]x,y;
reg carry;
wire [3:0] s;
    CARRY_SELECT_dut(x,y,carry,s);
    initial
    begin
    $monitor("x=%b y=%b carry=%b s=%b",x,y,carry,s);
    carry = 1;
    carry = ~carry;
    #100 x[0]=0; x[1]=1; x[2]=1; x[3]=0;
         y[0]=1; y[1]=0; y[2]=1; y[3]=1;
    #200 x[0]=1; x[1]=0; x[2]=1; x[3]=0;
         y[0]=1; y[1]=1; y[2]=0; y[3]=1;
    #300 x[0]=0; x[1]=1; x[2]=0; x[3]=0;
         y[0]=1; y[1]=1; y[2]=0; y[3]=1;
         end
         endmodule
```

```
module FULL_ADDER(
   input a,
   input b,
   input cin,
   output reg S, cout
   always@(a or b or cin)
   begin
   S = a^b^cin;
   cout = asb | bscin | cinsa;
   end
   endmodule
   module mux(
   input a,b,
   input S,
   output reg y
   );
   always@(a,b,S)
   begin
   y = Sea | Seb;
   end
    endmodule
module CARRY_SELECT(
   input [3:0] x,
   input [3:0] y,
   input carry,
   output [3:0] s,
   output cout
   wire w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15, w16;
   FULL ADDER fa0(x[0],y[0],1'b0,w1,w2);
   FULL ADDER fa1(x[1],y[1],w2,w3,w4);
   FULL_ADDER fa2(x[2],y[2],w4,w5,w6);
   FULL ADDER fa3(x[3],y[3],w6,w7,w8);
   FULL_ADDER fa4(x[0],y[0],1'b1,w9,w10);
   FULL ADDER fa5(x[1],y[1],w10,w11,w12);
   FULL_ADDER fa6(x[2],y[2],w12,w13,w14);
   FULL_ADDER fa7(x[3],y[3],w14,w15,w16);
   mux mu0(w1,w9,carry,s[0]);
   mux mu1(w3,w11,carry,s[1]);
   mux mu2(w5,w13,carry,s[2]);
   mux mu3(w7,w15,carry,s[3]);
   mux mu4 (w8, w16, carry, cout);
endmodule
```

Name	Value			500	ns		1,000 ns	1,500 ns	2,000 ns 2
⊞- ₩ x[3:0]	0010	0110	0101	$\equiv \chi$				0010	
⊞ - ₩ y[3:0]	1111	1101					1011		
¹⅓ carry	1								
⊞	1010					C	000		1010

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-24: MOORE FSM 1010 SEQUENCE DETECTOR

CODE FOR TESTBENCH:

```
module testbench;
reg din,clk,rst;
wire y;
   MOORE_FSM dut(din,clk,rst,y);
   initial
   begin
   $monitor("din=%b clk=%b rst=%b y=%b",din,clk,rst,y);
   end
   always
   begin
   #50 clk = ~clk;

   end
   endmodule
```

```
module MOORE FSM(
    input din,
    input clk,
    input rst,
    output reg y
    );
    reg [2:0] cst,nst;
    localparam s0=3'b000,
               s1=3'b001,
               s2=3'b010,
               s3=3'b100,
               s4=3'b101;
    always@(cst or din)
    begin
    case (cst)
    s0 : if(din==1'b1)
        begin
       nst = s1;
       y=1'b0;
        end
      else nst = cst;
      s1 : if(din==1'b0)
              begin
              nst = s2;
              y=1'b0;
              end
      else
      begin
      nst = cst;
      y=1'b0;
      end
      s2 : if(din==1'b1)
                   begin
                   nst = s3;
                   y=1'b0;
                   end
           else
```

```
begin
           nst = s0;
          y=1'b0;
           end
       s3 : if(din==1'b0)
                        begin
                        nst = s4;
                        y=1'b0;
                        end
                else
                begin
                nst = s1;
               y=1'b0;
                end
        s4 : if(din==1'b0)
                             begin
                             nst = s1;
                             y=1'b1;
                             end
                     else
                     begin
                     nst = s3;
                     y=1'b1;
                     end
          default: nst=s0;
          endcase
          end
          always@(posedge clk)
         begin
         if(rst)
          cst<=s0;
         else
          cst<=nst;
         end
endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.246 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective dJA: 1.4 °C/W

CODE-25: N:1 MUX

CODE FOR TESTBENCH:

```
module testbench:
  N MUX uut (
    .data inputs({16'b00000001, 16'b00000010, 16'b00000100, 16'b00001000,
                 16'b00010000, 16'b00100000, 16'b01000000, 16'b10000000,
                 16'b00000001, 16'b00000010, 16'b00000100, 16'b00001000,
                 16'b00010000, 16'b00100000, 16'b01000000, 16'b10000000}),
   .sel(sel),
   .y(y)
  );
  reg [15:0] in;
  reg [3:0] sel;
 wire y;
  reg clk = 0;
  always #5 clk = ~clk;
  initial begin
   sel = 4'b00000;
   #10;
   sel = 4'b0101;
   #10;
   sel = 4'b1111;
   #10;
    $finish;
  end
 always @(posedge clk)
  begin
    $monitor("sel = %b in = %b y=%b", sel, in, y);
  end
endmodule
```

```
module N MUX(
    input [15:0] in,
    input clk,
   input [3:0] sel,
   output reg y
    );
   always@(in or sel)
   begin
   case(sel)
    4'b00000 : y = in[0];
    4'b0001 : y = in[1];
   4'b0010 : y = in[2];
    4'b0011 : y = in[3];
    4'b0100 : y = in[4];
    4'b0101 : y = in[5];
   4'b0110 : y = in[6];
   4'b0111 : y = in[7];
   4'b1000 : y = in[8];
    4'b1001 : y = in[9];
    4'b1010 : y = in[10];
    4'b1011 : y = in[11];
   4'b1100 : y = in[12];
   4'b1101 : y = in[13];
   4'b1110 : y = in[14];
   4'b11111 : y = in[15];
   default : y = 4'b00000;
   endcase
   end
endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 1.202 W

Junction Temperature: 26.7 °C

Thermal Margin: 58.3 °C (40.2 W)

Effective ϑJA : 1.4 $^{\circ}C/W$

