Chapter - 5: Appendix

Import the Dataset and Necessary Libraries

```
In []: import pandas as pd
    from tabulate import tabulate
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns

# Specify the path to the Excel file
    excel_file_path = "CDM_nfca.xlsx"

# Read the Excel file into a DataFrame
    df = pd.DataFrame(pd.read_excel(excel_file_path))

# Display the first few rows of the dataframe
    df.head(10)
```

index	Title	Theme	Subject
0	Jack Leeson photograph, Nottingham Goose Fair, 1958.	Fairs	Amusement rides Dodgems Or and Spooner
1	Jack Leeson photograph, Nottingham Goose Fair, 1958.	Fairs	Transport
2	Jack Leeson photograph, Nottingham Goose Fair, 1958.	Fairs	Transport
3	Jack Leeson photograph, Nottingham Goose Fair, 1958.	Fairs	Amusement rides Ark Lakin
4	Jack Leeson photograph, Nottingham Goose Fair, 1958.	Fairs	Amusement rides Dodgems

Primary Investigation

```
In [ ]: # Display the shape of the dataset
print(df.shape)

# Display the information of the dataframe
df.info()
```

(76676, 44)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 76676 entries, 0 to 76675
Data columns (total 44 columns):

```
Column
                               Non-Null Count Dtype
    ----
                                -----
0
    Title
                               76676 non-null object
1
    Theme
                               76387 non-null object
 2
    Subject
                               76630 non-null object
 3
    Name
                               61391 non-null object
 4
    Description
                               76663 non-null object
 5
                               76657 non-null object
    Type
 6
                               76663 non-null object
    Accession Number
 7
    Derivative
                               17341 non-null object
 8
                               76406 non-null object
    Digital Master
 9
    Place Name
                               64636 non-null object
10 Place Name (specific)
                               75991 non-null object
11 Geotag Location
                               56965 non-null object
12 Date of Subject
                               76019 non-null object
                               76507 non-null object
13 Period
                               75913 non-null object
14 Creator
15 Publisher
                               76666 non-null object
    Donor
                               75181 non-null object
16
 17 Collection Number
                               76435 non-null object
                               76537 non-null object
 18 Collection Name
19 Digitiser
                               76484 non-null object
20 Rights
                               76666 non-null object
 21 Permitted Uses
                               76666 non-null object
 22 Contact for Further Uses
                               76666 non-null object
 23 Date Created
                               75803 non-null object
 24 Date Digitised
                               76601 non-null object
25 Original Format (specific) 76554 non-null object
 26 Original Format (general)
                               76666 non-null object
 27 Physical Extent
                               52837 non-null object
 28 Orientation
                               76432 non-null object
 29 Digital Format
                               76529 non-null object
                               76007 non-null object
 30 Digital Extent
 31 Digital Size
                               76579 non-null object
                               75828 non-null object
32 Colour
 33 Sound
                               7 non-null
                                               object
 34 Quality
                               344 non-null
                                               object
35 Identifier
                               76582 non-null object
 36 Language
                               920 non-null
                                               object
 37 OCLC number
                               0 non-null
                                               float64
 38 Date created
                               76676 non-null datetime64[ns]
 39 Date modified
                               76676 non-null datetime64[ns]
40 Reference URL
                               76676 non-null object
41 CONTENTdm number
                               76676 non-null int64
42 CONTENTdm file name
                               76676 non-null object
43 CONTENTdm file path
                               76676 non-null object
dtypes: datetime64[ns](2), float64(1), int64(1), object(40)
memory usage: 25.7+ MB
```

```
missing_counts = df.isna().sum()
missing_percentile = (df.isna().sum()/76676) * 100

# Display the missing value counts
missing_data = pd.DataFrame({
    'Missing Count': missing_counts,
    'Missing Percentage': missing_percentile
})
missing_data
```

index	Missing Count	Missing Percentage
Title	0	0
Theme	289	0.37691063696593463
Subject	46	0.05999269654129063
Name	15285	19.93452970942668
Description	13	0.01695445771819083
Туре	19	0.024779592049663516
Accession Number	13	0.01695445771819083
Derivative	59335	77.38405759298868
Digital Master	270	0.35213104491627106
Place Name	12040	15.702436225155198

Data Pre-processing

```
In []: ## Treating Missing Values
# Remove missing values in columns which have less than 5% of missing values
# Filter out the columns where the missing percentage is less than 5%
columns_to_treat = missing_data[missing_percentile < 5].index
df = df.dropna(subset=columns_to_treat)

# Display the treated missing value counts and percentages
missing_counts = df.isna().sum()
missing_percentile = df.isna().sum()/76676 * 100
missing_data = pd.DataFrame({
    'Missing Count': missing_counts,
    'Missing Percentage': missing_percentile
})
missing_data</pre>
```

index	Missing Count	Missing Percentage
Title	0	0
Theme	0	0
Subject	0	0
Name	14462	18.861182116959675
Description	0	0
Туре	0	0
Accession Number	0	0
Derivative	56263	73.37758881527466
Digital Master	0	0
Place Name	11163	14.558662423704941
Page 1 of 5 G	o to page: 1 Show 10	

```
In []: # Get the list of distinct themes
distinct_themes = df['Theme'].unique()

# Print the distinct themes after
print("Distinct Themes")
for theme in distinct_themes:
    print(theme)

print("Number of Unique Themes: "+ str(len(distinct_themes)))
```

```
Distinct Themes
Fairs
Amusement parks
Circus
Steam-engines -- Exhibitions
Fetes
Fairs
Great Ouse River (England)
Church buildings
Exhibitions
Machinery models
Factories
Museums
Zoos
Fairgrounds
Seaside Entertainment
Factories; Fairs
Amusement Parks
Museums; Steam-engines -- Exhibitions
Cemeteries
Road rollers
Weddings
Parks
Seaside resorts
Rivers
Traction-engines
Buses
Fairs; Exhibitions
Fairs; Exhibitions; Variety and Music Hall
Motion picture theaters
Variety and Music Hall; Exhibitions
Steam-engines -- Exhibitions; Fairs; Exhibitions
Bingo
Ploughing
Taverns (Inns)
Plowing
Castles
Narrow gauge railroads
Cafeterias
Amusement parks; Zoos
Aquariums
Circus; Amusement parks
Circus; Exhibitions
Circus; Zoos
Zoos; Circus
Music-halls
Circus; Seaside Entertainment
Speedway motorcycle racing
Exhibition
fairs
Fairs; Circus
Exhibitions; Variety and Music Hall
Circus; Fair
Fairs; Amusement parks
Amusement parks
Number of Unique Themes: 54
```

```
In [ ]: ## Mapping Redundant and Inconsistent values in 'Theme'
        themes_mapping = {
            'Fetes': 'Fairs',
            'Fairs ' : 'Fairs',
            'Fairs; Traction-engines; Steam-engines -- Exhibitions; Steam-engines;':
            'Fairs; Steam-engines -- Exhibitions': 'Fairs',
            'Fairs; Amusement Parks and Theme Parks; Fixed Entertainment Venue':'Fai
            'Fairs; Amusement parks': 'Fairs',
            'fairs':'Fairs',
            'Fairs; Circus': 'Fairs',
            'Fairs; Circus; Exhibitions':'Fairs',
            'Fairs; Exhibitions':'Fairs',
            'Fairs; Exhibitions; Variety and Music Hall': 'Fairs',
            'Circus; Amusement parks': 'Circus',
            'Circus; Exhibitions': 'Circus',
            'Circus; Zoos' : 'Circus',
            'Zoos; Circus' : 'Circus',
            'Fixed Entertainment Venue; Circus;':'Circus',
            'Circus; Seaside Entertainment': 'Circus',
            'Circus; Fair':'Circus',
            'Circus; Music Hall and Variety':'Circus',
            'Circus;':'Circus',
            'Circus; Variety and Music Hall;' : 'Circus',
            'Circus; Fairs;': 'Circus',
            'Circus; Zoos;': 'Circus',
            'Circus; Variety and Music Hall':'Circus',
            'Seaside Resorts (Seaside Entertainment); Performers': 'Seaside Resorts
            'Seaside Resorts (Seaside Entertainment): Performers': 'Seaside Resorts
            'Seaside Resorts (Seaside Entertainment): Amusement Parks':'Seaside Reso
            'Great Ouse River (England)':'Seaside Resorts (Seaside Entertainment)',
            'Seaside Entertainment':'Seaside Resorts (Seaside Entertainment)',
            'Rivers' :'Seaside Resorts (Seaside Entertainment)',
            'Seaside Resorts (Seaside Entertainment)':'Seaside Resorts (Seaside Ente
            'Seaside resorts':'Seaside Resorts (Seaside Entertainment)',
            'Variety and Music Hall; Circus;':'Variety and Music Hall',
            'Variety and Music Hall; Circus; Exhibitions' : 'Variety and Music Hall'
            'Amusement Parks and Theme Parks;': 'Amusement Parks',
            'Amusement Parks and Theme Parks; Seaside Entertainment' : 'Amusement Pa
            'Amusement parks; Zoos': 'Amusement Parks',
            'Amusement parks; Zoos ': 'Amusement Parks',
            'Amusement parks ': 'Amusement Parks',
            'Amusement parks': 'Amusement Parks',
            'Amusement Parks and Theme Parks; Circus': 'Amusement Parks',
            'Exhibitions; Variety and Music Hall' : 'Exhibition',
            'Exhibitions; Circus; Variety and Music Hall' : 'Exhibition',
            'Exhibition; Variety and Music Hall' : 'Exhibition',
            'Exhibitions; Circus': 'Exhibition',
            'Exhibition; Variety and Music Hall; Circus': 'Exhibition',
            'Exhibitions; Fairs': 'Exhibition',
            'Performers; Circus': 'Performers',
            'Showpeople':'Performers',
            'Performer': 'Performers',
            'Performers; Seaside Entertainment': 'Performers',
            'Peterborough Cathedral': 'Church buildings',
            'Cemeteries':'Church buildings',
```

```
'Fairground': 'Exhibitions',
             'Music Hall and Variety': 'Exhibitions',
             'Fairgrounds; Exhibitions': 'Exhibitions',
            'Fixed Enertainment Venue': 'Exhibitions',
            'Traction-engines; Steam-engines -- Exhibitions; Steam-engines;':'Exhibi
            'Fixed Entertainment Venue;':'Exhibitions',
            'Variety and Music Hall;':'Exhibitions',
             'Steam-engines -- Exhibitions; Circus': 'Exhibitions',
             'Speedway motorcycle racing':'Exhibitions',
            'Exhibition':'Exhibitions',
            'Steam-engines -- Exhibitions ': 'Exhibitions',
            'NFA Logo opacity 30': 'Exhibitions',
             'Exhibition; Circus': 'Exhibitions',
            'Machinery models': 'Exhibitions',
             'Steam-engines':'Exhibitions',
            'Museums; Steam-engines -- Exhibitions': 'Exhibitions',
            'Variety and Music Hall; Exhibitions': 'Exhibitions',
             'Steam-engines -- Exhibitions; Fairs; Exhibitions': 'Exhibitions',
            'Variety and Music Hall': 'Exhibitions',
            'Traction-engines': 'Exhibitions',
            'Buses': 'Exhibitions',
            'Motion picture theaters': 'Exhibitions',
             'Steam-engines -- Exhibitions': 'Exhibitions',
            'Narrow gauge railroads': 'Exhibitions',
            'Plowing': 'Ploughing',
            'Factories; Fairs':'Factories',
            'Fairgrounds':'Fairs'
        # Apply the mapping to the 'Theme' column
        df['Theme'] = df['Theme'].replace(themes_mapping)
        # Get the updated list of distinct themes after grouping
        distinct_themes = df['Theme'].unique()
        print("Number of Unique Themes: "+ str(len(distinct_themes)))
        Number of Unique Themes: 20
In [ ]: # Extract individual years from the 'Period' column to create a new 'Year' c
        df['Year'] = df['Period'].str.extract(r'(\d{4})')
In [ ]: # install NLTK package
        !pip install nltk
```

```
In [ ]: import nltk
        from nltk.tokenize import word_tokenize
        from nltk.corpus import stopwords
        from nltk.stem import WordNetLemmatizer
        import string
        # Download NLTK resources
        nltk.download('punkt')
        nltk.download('stopwords')
        nltk.download('wordnet')
        nltk.download('maxent_ne_chunker')
        nltk.download('words')
        nltk.download('averaged_perceptron_tagger')
        # Load the set of English stopwords
        stop_words = set(stopwords.words('english'))
        # Function to remove named entities from text
        def remove_named_entities(text):
            tokens = word_tokenize(text)
            tagged_tokens = nltk.pos_tag(tokens)
            non_entities = [word for word, tag in tagged_tokens if not is_named_enti
            return ' '.join(non_entities)
        # Function to check if a POS tag represents a named entity
        def is_named_entity(tag):
            return tag in ['NNP', 'NNPS']
        # Function to tokenize a text and remove stop words, dates, punctuation mark
        def tokenize_text(text):
            words = word_tokenize(text)
            words = [word.lower() for word in words]
            words = [word for word in words if word not in string.punctuation]
            words = [word for word in words if word not in stop_words]
            words = [word for word in words if not
                     any(char.isdigit() for char in word) and
                      word != '-' and word != "'s" and
                      word != "photographed" and
                      word != "photograph" and
                      word != "photograph " and
                      word != "digitisation" and
```

```
word != "number" and
              word != "registration" and
              word != '--' and
              word != '_' ]
    lemmatizer = WordNetLemmatizer()
    words = [lemmatizer.lemmatize(word) for word in words]
    return words
# Combine 'Description', 'Subject' and 'Theme' columns
df['tags'] = df['Description'].fillna('') + ' ' + df['Subject'].fillna('') +
# Remove named entities from 'tags' column
df['tags'] = df['tags'].apply(remove_named_entities)
# Tokenize the cleaned text
df['tags'] = df['tags'].apply(tokenize_text)
# Display the DataFrame with the 'tags' column containing the cleaned and to
df.head()
[nltk_data] Downloading package punkt to /home/noteable/nltk_data...
              Package punkt is already up-to-date!
[nltk_data]
[nltk_data] Downloading package stopwords to
                /home/noteable/nltk_data...
[nltk_data]
              Package stopwords is already up-to-date!
[nltk_data]
[nltk_data] Downloading package wordnet to /home/noteable/nltk_data...
[nltk_data]
              Package wordnet is already up-to-date!
[nltk_data] Downloading package maxent_ne_chunker to
[nltk_data]
                /home/noteable/nltk_data...
              Package maxent_ne_chunker is already up-to-date!
[nltk_data]
[nltk_data] Downloading package words to /home/noteable/nltk_data...
              Package words is already up-to-date!
[nltk_data]
[nltk_data] Downloading package averaged_perceptron_tagger to
                /home/noteable/nltk_data...
[nltk_data]
              Package averaged_perceptron_tagger is already up-to-
[nltk_data]
[nltk_data]
                  date!
```

index	Title	Theme	Subject
0	Jack Leeson photograph, Nottingham Goose Fair, 1958.	Fairs	Amusement rides Dodgems Or and Spooner
1	Jack Leeson photograph, Nottingham Goose Fair, 1958.	Fairs	Transport
2	Jack Leeson photograph, Nottingham Goose Fair, 1958.	Fairs	Transport
3	Jack Leeson photograph, Nottingham Goose Fair, 1958.	Fairs	Amusement rides Ark Lakin
4	Jack Leeson photograph, Nottingham Goose Fair, 1958.	Fairs	Amusement rides Dodgems

Exploratory Data Analysis(EDA)

```
In [ ]: # Top 10 Tags by Frequency
        import seaborn as sns
        import matplotlib.pyplot as plt
        from collections import Counter
        tags_data = df['tags'].tolist()
        # Flatten the list of tokens into a single list
        all_tags = [tag for tags in tags_data for tag in tags]
        # Compute the frequency of each tag
        tag_frequencies = Counter(all_tags)
        # Convert the tag frequencies to a DataFrame for better visualization
        tag_frequency_df = pd.DataFrame(tag_frequencies.items(), columns=['Tag', 'Fr
        # Sort the DataFrame in descending order based on tag frequency
        tag_frequency_df = tag_frequency_df.sort_values(by='Frequency', ascending=Fa
        # Set up the plot using seaborn
        plt.figure(figsize=(10, 6))
        sns.barplot(x='Frequency', y='Tag', data=tag_frequency_df.head(10), palette=
        sns.set(rc={"figure.figsize":(2, 4)})
        # Customise the plot
```

```
plt.xlabel('Frequency')
plt.ylabel('Tag')
plt.title('Top 10 Tags by Frequency')
plt.tight_layout()

# Show the plot
plt.show()
```



```
In []: # Tag Popularity Evolution Over Years
# Select a subset of tags for visualisation (e.g., top 10 most common tags)
top_tags = tag_count_by_year.groupby('tags')['tag_count'].sum().nlargest(10)
top_tags_data = tag_count_by_year[tag_count_by_year['tags'].isin(top_tags)]

sns.lineplot(x='Year', y='tag_count', hue='tags', data=top_tags_data, marker
sns.set(rc={"figure.figsize":(10, 5)}) #width=3, #height=4
plt.xlabel('Year')
plt.ylabel('Tag Count')
plt.title('Tag Popularity Evolution Over Years')
plt.xticks(rotation=45)
plt.legend(title='Tags', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()
```


In []: !pip install wordcloud

Collecting wordcloud

Downloading wordcloud-1.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (460 kB)

Requirement already satisfied: pillow in /opt/conda/lib/python3.9/site-packa ges (from wordcloud) (9.2.0)

Requirement already satisfied: numpy>=1.6.1 in /opt/conda/lib/python3.9/site -packages (from wordcloud) (1.23.5)

Requirement already satisfied: matplotlib in /opt/conda/lib/python3.9/site-p ackages (from wordcloud) (3.6.0)

Requirement already satisfied: python-dateutil>=2.7 in /opt/conda/lib/python 3.9/site-packages (from matplotlib->wordcloud) (2.8.2)

Requirement already satisfied: pyparsing>=2.2.1 in /opt/conda/lib/python3.9/ site-packages (from matplotlib->wordcloud) (3.0.9)

Requirement already satisfied: contourpy>=1.0.1 in /opt/conda/lib/python3.9/ site-packages (from matplotlib->wordcloud) (1.0.5)

Requirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.9/site -packages (from matplotlib->wordcloud) (0.11.0)

Requirement already satisfied: fonttools>=4.22.0 in /opt/conda/lib/python3. 9/site-packages (from matplotlib->wordcloud) (4.37.4)

Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.

9/site-packages (from matplotlib->wordcloud) (1.4.4)

Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.9/s ite-packages (from matplotlib->wordcloud) (23.1)

Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.9/site-pac kages (from python-dateutil>=2.7->matplotlib->wordcloud) (1.16.0)

Installing collected packages: wordcloud

Successfully installed wordcloud-1.9.2

```
In []: from wordcloud import WordCloud

# Group by 'Theme' and count the frequency of each theme
theme_counts = df['Theme'].value_counts()

# Create a WordCloud object
wordcloud = WordCloud(width=800, height=400, background_color='white').gener

# Display the word cloud using matplotlib
```

```
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title('Word Cloud of Popular Themes')
plt.show()
```

Word Cloud of Popular Themes

Amusement Parks


```
In []: # Calculate the frequency of each theme
    theme_freq = df['Theme'].value_counts()

# Create a new DataFrame to store the frequency table
    theme_freq_table = pd.DataFrame({'Theme': theme_freq.index, 'Frequency': the

# Display the frequency table
    theme_freq_table
```

index	Theme	Frequency	
0	Fairs	54749	
1	Amusement Parks	8237	
2	Exhibitions	6342	
3	Circus	2650	
4	Factories	1016	
5	Museums	247	
6	Zoos	118	
7	Seaside Resorts (Seaside Entertainment)	44	
8	Road rollers	34	
9	Church buildings	26	

Implementing Tag Recommendation Systems

```
In [ ]: # Install the Gensim package to import Word2Vec and LDA model
       !pip install gensim
       Collecting gensim
        Downloading gensim-4.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86
       _64.whl (26.6 MB)
           \Theta:\Theta\Theta
       Collecting smart-open>=1.8.1
        Downloading smart_open-6.3.0-py3-none-any.whl (56 kB)
           \Theta:\Theta\Theta
       Requirement already satisfied: numpy>=1.18.5 in /opt/conda/lib/python3.9/sit
       e-packages (from gensim) (1.23.5)
       Requirement already satisfied: scipy>=1.7.0 in /opt/conda/lib/python3.9/site
       -packages (from gensim) (1.9.1)
       Installing collected packages: smart-open, gensim
       Successfully installed gensim-4.3.2 smart-open-6.3.0
```

Word2Vec

```
In [ ]: import pandas as pd
        import numpy as np
        from gensim.models import Word2Vec
        from sklearn.metrics.pairwise import cosine_similarity
        import random
        import time
        # Set a random seed for reproducibility
        random.seed(42)
        def tag_recommendation(df, given_tag, top_N=5):
            tag_list = df['tags'].tolist()
            # Train a Word2Vec model
            model = Word2Vec(sentences=tag_list, vector_size=100, window=5, min_coun
            # Dictionary to store mappings
            tag_embedding_map = {}
            embedding_dim = 100
            # Function to get tag embedding
            def get_tag_embedding(tag, model, embedding_dim):
                if tag in model.wv:
                    embedding = model.wv[tag]
                    #print(f"Word Embedding of '{tag}': {embedding}")
                    return embedding
                elif tag in tag_embedding_map:
                    return tag_embedding_map[tag]
                else:
                    # Generate a random embedding for the out-of-vocabulary tag
                    random_embedding = np.random.rand(embedding_dim)
                    tag_embedding_map[tag] = random_embedding
                    return random_embedding
```

```
# Get the word embedding for the given tag
   qiven_tag_embedding = get_tag_embedding(given_tag, model, embedding_dim)
   if given_tag_embedding is not None:
        # Measure the start time
       start_time = time.time()
       # Calculate the cosine similarity between the word embeddings of the
        similarity_scores = []
        unique_tokens = set(token for tokens_list in tag_list for token in t
        for tag in unique_tokens:
            tag_embedding = get_tag_embedding(tag, model, embedding_dim)
            if tag_embedding is not None:
                similarity_score = cosine_similarity([given_tag_embedding],
                if similarity_score >= 0.5:
                    similarity_scores.append((tag, similarity_score))
        # Sort the tags based on similarity scores in descending order
        similarity_scores.sort(key=lambda x: x[1], reverse=True)
       # Get the top-N recommended tags
        recommended_tags = similarity_scores[:top_N]
       # Measure the end time
       end_time = time.time()
       # Calculate the recommendation response time
        response_time = end_time - start_time
        # Get the top-N recommended tags
       total_recommended_tags = [tag for tag, _ in similarity_scores]
       # Display the total number of recommendations found
        total_recommendations = len(total_recommended_tags)
        print(f"Total Recommendations found: {total_recommendations}")
       # Display the recommendation response time
       print(f"Recommendation Response Time: {response_time:.4f} seconds")
        return recommended_tags, total_recommended_tags ## JUST change to t
   else:
        return None
# User-defined given tag
given_tag = input("Enter your search variable : ")
recommended_tags_word2vec, total_recommendations_word2vec = tag_recommendati
# JUST comment these for overlap and Shannon's Entropy
if recommended_tags_word2vec is not None:
   print("Recommended Tags and their Cosine Similarities:")
   for tag, similarity in recommended_tags_word2vec:
        print(f"Tag: {tag}, Cosine Similarity: {similarity:.4f}")
else:
    print("Given tag not found in the Word2Vec model.")
```

```
Total Recommendations found: 3251
Recommendation Response Time: 1.1193 seconds
Recommended Tags and their Cosine Similarities:
Tag: waltzer, Cosine Similarity: 1.0000
Tag: fogged, Cosine Similarity: 0.9758
Tag: rafter, Cosine Similarity: 0.9730
Tag: cyclone, Cosine Similarity: 0.9717
Tag: chair, Cosine Similarity: 0.9716
```

LDA

```
In [ ]: from gensim.models import CoherenceModel
        from gensim.corpora import Dictionary
        from gensim.models import LdaModel
        import matplotlib.pyplot as plt
        # Convert 'tags' column to a list
        tags = df['tags'].tolist()
        # Create a dictionary and corpus for the LDA model
        dictionary = Dictionary(tags)
        corpus = [dictionary.doc2bow(doc) for doc in tags]
        # Calculate coherence scores for different topic numbers
        coherence_scores = []
        for num_topics in range(5, 30, 5):
            lda_model = LdaModel(corpus, num_topics=num_topics, id2word=dictionary,
            coherence_model = CoherenceModel(model=lda_model, texts=tags, dictionary
            coherence_scores.append(coherence_model.get_coherence())
        # Plot coherence scores
        plt.plot(range(5, 30, 5), coherence_scores)
        plt.xlabel("Number of Topics")
        plt.ylabel("Coherence Score")
        plt.title("Optimal Number of Topics Selection")
        plt.show()
```


In []: # Install pyLDAviz package
!pip install pyLDAvis

```
Collecting pyLDAvis
 Downloading pyLDAvis-3.4.1-py3-none-any.whl (2.6 MB)
    Requirement already satisfied: jinja2 in /opt/conda/lib/python3.9/site-packa
ges (from pyLDAvis) (3.1.2)
Requirement already satisfied: joblib>=1.2.0 in /opt/conda/lib/python3.9/sit
e-packages (from pyLDAvis) (1.2.0)
Collecting numpy>=1.24.2
 Downloading numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86
_64.whl (18.3 MB)
    Collecting pandas>=2.0.0
 Downloading pandas-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86
_64.whl (12.4 MB)
    0:00
Requirement already satisfied: scipy in /opt/conda/lib/python3.9/site-packag
es (from pyLDAvis) (1.9.1)
Requirement already satisfied: gensim in /opt/conda/lib/python3.9/site-packa
ges (from pyLDAvis) (4.3.2)
Requirement already satisfied: setuptools in /opt/conda/lib/python3.9/site-p
ackages (from pyLDAvis) (68.1.0)
Collecting funcy
 Downloading funcy-2.0-py2.py3-none-any.whl (30 kB)
Requirement already satisfied: numexpr in /opt/conda/lib/python3.9/site-pack
ages (from pyLDAvis) (2.8.3)
Requirement already satisfied: scikit-learn>=1.0.0 in /opt/conda/lib/python
3.9/site-packages (from pyLDAvis) (1.1.2)
Requirement already satisfied: python-dateutil>=2.8.2 in /opt/conda/lib/pyth
on3.9/site-packages (from pandas>=2.0.0->pyLDAvis) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.9/site
-packages (from pandas>=2.0.0->pyLDAvis) (2023.3)
Requirement already satisfied: tzdata>=2022.1 in /opt/conda/lib/python3.9/si
te-packages (from pandas>=2.0.0->pyLDAvis) (2022.4)
Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python
3.9/site-packages (from scikit-learn>=1.0.0->pyLDAvis) (3.1.0)
Collecting numpy>=1.24.2
 Downloading numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86
_64.whl (17.3 MB)
    0:00
Requirement already satisfied: smart-open>=1.8.1 in /opt/conda/lib/python3.
9/site-packages (from gensim->pyLDAvis) (6.3.0)
Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.9/s
ite-packages (from jinja2->pyLDAvis) (2.1.2)
Requirement already satisfied: packaging in /opt/conda/lib/python3.9/site-pa
ckages (from numexpr->pyLDAvis) (23.1)
Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.9/site-pac
kages (from python-dateutil>=2.8.2->pandas>=2.0.0->pyLDAvis) (1.16.0)
Installing collected packages: funcy, numpy, pandas, pyLDAvis
 Attempting uninstall: numpy
   Found existing installation: numpy 1.23.5
   Uninstalling numpy-1.23.5:
     Successfully uninstalled numpy-1.23.5
```

```
Found existing installation: pandas 1.5.3
            Uninstalling pandas-1.5.3:
              Successfully uninstalled pandas-1.5.3
        ERROR: pip's dependency resolver does not currently take into account all th
        e packages that are installed. This behaviour is the source of the following
        dependency conflicts.
        numba 0.56.2 requires numpy<1.24,>=1.18, but you have numpy 1.24.4 which is
        incompatible.
        noteable 2.0.0 requires pandas<2.0.0,>=1.5.3, but you have pandas 2.0.3 whic
        h is incompatible.
        fugue 0.8.3 requires pandas<2,>=1.2.0, but you have pandas 2.0.3 which is in
        compatible.
        flytekit 1.2.11 requires numpy<1.24.0, but you have numpy 1.24.4 which is in
        compatible.
        flytekit 1.2.11 requires pandas<2.0.0,>=1.0.0, but you have pandas 2.0.3 whi
        ch is incompatible.
        flytekit 1.2.11 requires protobuf<4,>=3.6.1, but you have protobuf 4.21.7 wh
        ich is incompatible.
        dx 1.3.0 requires pandas<2.0.0, >=1.3.5, but you have pandas 2.0.3 which is i
        ncompatible.
        databricks-sql-connector 2.5.2 requires pandas<2.0.0,>=1.2.5, but you have p
        andas 2.0.3 which is incompatible.
        Successfully installed funcy-2.0 numpy-1.24.4 pandas-2.0.3 pyLDAvis-3.4.1
In [ ]: import pyLDAvis
        import pyLDAvis.gensim
        # Train an LDA model
        lda_model = LdaModel(corpus, num_topics=20, id2word=dictionary, passes=10)
        # Prepare the visualisation
        vis = pyLDAvis.gensim.prepare(lda_model, corpus, dictionary)
        # Visualise the topics
        pyLDAvis.enable_notebook()
        pyLDAvis.display(vis)
Out[ ]:
In [ ]: #Implement Tag Recommendation System
        import pandas as pd
        from gensim.corpora import Dictionary
        from gensim.models import LdaModel
        from gensim.models import TfidfModel
        from sklearn.metrics.pairwise import cosine_similarity
        import time
        def lda_tag_recommendation(df, given_tag, top_N=5):
            tags= df['tags'].tolist()
            # Create a dictionary and corpus for the LDA model
            dictionary = Dictionary(tags)
            corpus = [dictionary.doc2bow(doc) for doc in tags]
            # Train a TF-IDF model on the corpus
            tfidf = TfidfModel(corpus)
```

Attempting uninstall: pandas

```
corpus_tfidf = tfidf[corpus]
# Train an LDA model
num\_topics = 20
lda_model = LdaModel(corpus_tfidf, num_topics=num_topics, id2word=diction)
# Function to get topic distribution for a given document
def get_document_topics(tags):
    bow = dictionary.doc2bow(tags)
    tfidf_weights = tfidf[bow]
    topics = lda_model.get_document_topics(tfidf_weights)
    return topics
# Get topic distribution for the given tag
given_tag_topics = get_document_topics(given_tag.split())
# Get the most relevant tags for the given tag based on topic distributi
recommended_tags = []
total_recommended_tags = set() # Use a set to avoid duplicate tags
for topic, score in sorted(given_tag_topics, key=lambda x: x[1], reverse
    topic_tags = lda_model.show_topic(topic, topn=5) # Get the top 5 wo
    recommended_tags.extend([tag for tag, _ in topic_tags])
    total_recommended_tags.update([tag for tag, _ in topic_tags])
num_recommended_tags = len(total_recommended_tags) # Count the number o
# Calculate recommendation response time
start_time = time.time()
# Calculate the cosine similarity between the topic distribution of the
similarity_scores = []
for tag in recommended_tags:
    tag_topics = get_document_topics(tag.split())
    given_tag_distribution = [topic for _, topic in given_tag_topics]
    tag_distribution = [topic for _, topic in tag_topics]
    cosine_sim = cosine_similarity([given_tag_distribution], [tag_distri
    similarity_scores.append((tag, cosine_sim))
similarity_scores.sort(key=lambda x: x[1], reverse=True)
# Measure the end time
end_time = time.time()
# Calculate the recommendation response time
response_time = end_time - start_time
#JUST comment these lines for overlap and Shannon's entropy
# Display the results
print(f"Total Number of Recommendations: {num_recommended_tags}")
print(f"Recommendation Response Time: {response_time:.4f} seconds")
print("Top 5 Recommended Tags and Their Cosine Similarities:")
for tag, cosine_sim in similarity_scores[:5]:
    print(f"Tag: {tag}, Cosine Similarity: {cosine_sim:.4f}")
return total_recommended_tags #JUST uncomment return statement for over
```

```
# User-defined given tag
given_tag = input("Enter your search variable: ")
total_recommendations_lda = lda_tag_recommendation(df, given_tag) # JUST co
#JUST uncomment return statement for overlap and Shannon's entropy
# recommended_tags_lda = lda_tag_recommendation(df, given_tag)

Total Number of Recommendations: 83
Recommendation Response Time: 0.0545 seconds
Top 5 Recommended Tags and Their Cosine Similarities:
Tag: bus, Cosine Similarity: 1.0000
Tag: build, Cosine Similarity: 1.0000
Tag: performing, Cosine Similarity: 1.0000
Tag: animal, Cosine Similarity: 1.0000
Tag: miscellaneous, Cosine Similarity: 1.0000
```

Overlap

```
In []: # Overlap
# Convert the lists to sets for efficient comparison
set_word2vec = set(total_recommendations_word2vec)
set_lda = set(total_recommendations_lda)

# Find the common tags by taking the intersection of the sets
common_tags = set_word2vec.intersection(set_lda)

# Count the number of common tags
num_common_tags = len(common_tags)

print(f"Number of Common Tags: {num_common_tags}")
```

Number of Common Tags: 75

Diversity

```
import math

def calculate_entropy(recommendations):
    # Count the frequency of each recommendation
    freq = {}
    for rec in recommendations:
        if rec not in freq:
            freq[rec] = 1
        else:
            freq[rec] += 1

# Calculate the total number of recommendations
total = len(recommendations)

# Calculate entropy
entropy = 0.0
    for key in freq:
```

```
prob = freq[key] / total
    entropy -= prob * math.log2(prob)

return entropy
entropy_word2vec = calculate_entropy(total_recommendations_word2vec)
entropy_lda = calculate_entropy(total_recommendations_lda)

print(f"Entropy for Word2Vec Recommendations: {entropy_word2vec}")
print(f"Entropy for LDA Recommendations: {entropy_lda}")
```

Entropy for Word2Vec Recommendations: 11.66666784069043 Entropy for LDA Recommendations: 6.375039431346932