Difference of cubes: $A^3 - B^3 = (A - B)(A^2 + AB + B^2)$ Law of trigonometric limit $\lim_{x\to 0} \frac{x}{\sin(x)} = 1$ so $\lim_{x\to 0} \frac{\tan(x)}{x} = 1$ Limits.

- 1. Try plugging indirectory, make sure limit exists from both sides.
- 2. Factor and simplify, try plugging value in again.
- 3. Multiply by the conjugate to rationalize if there is a denominator
- 4. Multiply by GCD of any complex fractions

Product Rule: h(x) = f(x)g(x) then h'(x) = f'(x)g(x) + f(x)g'(x)

Quotient Rule:
$$h(x) = \frac{f(x)}{g(x)}$$
 then $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$

Chain Rule: h(x) = f(g(x)) then h' = f'(g(x))g'(x)

Trig Derivatives:

- $f(x) = \sin(x)$ then $f'(x) = \cos(x)$
- $f(x) = \cos(x)$ then $f'(x) = -\sin(x)$
- $f(x) = \tan(x)$ then $f'(x) = \sec^2(x)$
- $f(x) = \sec(x)$ then $f'(x) = \sec(x)\tan(x)$
- $f(x) = \csc(x)$ then $f'(x) = -\csc^2(x)$
- $f(x) = \cot(x)$ then $f'(x) = -\csc(x)\cot(x)$

General trig identities:

- $\tan \theta = \frac{\sin \theta}{\cos \theta}$
- $\cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$
- $\sec \theta = \frac{1}{\cos \theta}$
- $\csc \theta = \frac{1}{\sin \theta}$
- $\bullet \ 1 + \cot^2 x = \csc^2 x$
- $\bullet \ 1 \cos^2 a = \sin^2 a$
- $\bullet 1 + \tan^2 x = \sec^2 x$
- $\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$
- $\cos(\theta + \phi) = \cos\theta\cos\phi \sin\theta\sin\phi$

θ		sin θ	cos θ	tan θ	csc θ	sec θ	cot θ
Rad	Deg	SIN U	000 0	turi o	CSC O	500 0	0010
0	0	0	1	0	Undef	1	Undef
π/6	30	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$	2	$2\sqrt{3}/3$	$\sqrt{3}$
π/4	45	$\sqrt{2}/2$	$\sqrt{2}/2$	1	$\sqrt{2}$	$\sqrt{2}$	1
π/3	60	$\sqrt{3}/2$	1/2	$\sqrt{3}$	$2\sqrt{3}/3$	2	$\sqrt{3}/3$
π/2	90	1	0	Undef	1	Undef	0