LeeP™ Plastic Composite Spring Series

Non-Magnetic Material • High Corrosion Resistance • High Strength to Weight Ratio

Tensile Strength							
[ASTM D638]	15,000 psi minimum						
Ultimate Shear							
Strength	Approx 15 000 poi						
[ASTM D732] Thermal	Approx. 15,000 psi						
Conductivity	0.85 BTU-in/hr-ft ² -°F						
Max. Working							
Temperature							
[or Relative Thermal Index							
(Continuous, air)]	340 °F (171°C)						
Dielectric Constant	, ,						
[1 MHz; ASTM							
D150(2)]	3.15						
Dielectric Strength [Short Term;							
ASTM D149(2)]	830 V/mil						
Flammability	000 1,						
UL94 Low	(V-0)						
Outgassing							
Total Mass Loss	0.40%						
Non-magnetic	YES						
Recyclable	YES						
Chemical Resistand							
Strong Acids	Excellent Resistance ¹						
Weak Bases	Excellent Resistance ¹						
Alcohols	Excellent Resistance ¹						
Ethers	Excellent Resistance ¹						
Inorganic Salt Solutions	Excellent Resistance ¹						
Steam	Excellent Resistance ¹						
Weak Alkalis	Excellent Resistance ¹						

NOTE: This information represents typical values intended to reference only. Environmental Stress Cracking Resistance [ESCR] to Chemicals at 73°F (23°C) and at 0.25-0.5% strain under immersion unless otherwise specified.

LeeP™ Plastic Composite Springs are an innovative compression spring designed to have properties unavailable in a metal spring. The LeeP™ Plastic Composite Spring Series offers a wide range of sizes and strength combinations. This unique non-magnetic spring offers high corrosion resistance, excellent strength to weight ratio and designed to perform under load with minimal side thrust.

Made of a unique formulation using Ultem* PEI resins, the LeeP™ Series is designed for optimal performance in a wide range of applications.

The LeeP™ Series is available in color coded strengths for ease of identification (weakest to strongest):

- Red
- Orange
- Yellow

- Green
- Violet

LeeP[™] Plastic Compression Springs offer many advantages including:

- Unique patented designs to maximize spring rates and cycle life, while minimizing solid height (US Patent No. 8,939,438 B2).
- High strength to weight ratios that optimize performance while reducing mass.
- Excellent stability of physical and mechanical properties at temperatures up to 340°F (171° C).
- High corrosion resistance and generally compatible with many chemicals including strong acids, weak bases, aromatics, and ketones.
- Non-magnetic material does not interfere with imaging and other Ferro-sensitive technologies.
- Dielectric insulating material suitable for non-conductive applications.
- Low flammability and toxicity ensuring environmental safety.
- Recyclable and compliant with most Global regulations including RoHS and REACH.

Lee Spring can manufacture custom LeeP™ plastic springs to your specifications. Contact us today!

LeeP PLASTIC SPRINGS

LeeP™ Plastic Composite Spring Series

Guide to using tables

Additional Information

- LeeP[™] Plastic Composite Springs can be stacked and/or nested to vary lengths and spring rates.
- Custom design capability to meet unique performance requirements.

(Note: A flat plastic washer could be used between springs while stacking for better performance.)

How to Determine Price

- 1. Select the spring you want by LEE STOCK NUMBER.
- Read across to the last column PRICE GROUP to obtain the price code: when applicable, select the price code that corresponds to the material type required.
- 3. Refer to the PRICE GROUP in the appropriate pricing chart by spring type located in the back of this catalog for pricing up to 199 pieces of an item.
- 4. Prices subject to change without notice.

FREE SHIPPING AVAILABLE

See Price List in back of catalog for details.

^{*}Trademark of SABIC Innovative Plastics IP BV. (1) Excellent resistance equals greater than 90% retention of mechanical properties.

LEE STOCK NUMBER	COLOR	HOLE DIAMETER		OUTSIDE DIAMETER		ROD DIAMETER		MATERIAL THICKNESS X RADIAL WALL		APPROX. LOAD @ SOLID HGT		FREE LENGTH		SPRING RATE		SOLID HEIGHT		PRICE
		IN.	MM	IN.	MM	IN.	MM	IN.	MM	LB.	KG	IN.	MM	LB/IN.	KG/MM	IN.	MM	
LL 038 038 U000 LL 038 038 U10G LL 038 038 U20G LL 038 038 U30G LL 038 038 U40G	R O Y G	.375	9.525	.350	8.890	.150	3.810	.030 x .082	0.76 x 2.08	0.991 1.498 1.636 1.811 2.041	0.449 0.679 0.742 0.822 0.926	0.375 0.375 0.375 0.375 0.375	9.525 9.525 9.525 9.525 9.525	3.70 5.59 6.11 6.76 7.62	0.066 0.100 0.109 0.121 0.136	0.108 0.108 0.108 0.108 0.108	2.738 2.738 2.738 2.738 2.738	L1 L1 L1 L1
LL 038 050 U000 LL 038 050 U10G LL 038 050 U20G LL 038 050 U30G LL 038 050 U40G	R O Y G	.375	9.525	.350	8.890	.150	3.810	.030 x .082	0.76 x 2.08	0.991 1.498 1.636 1.811 2.041	0.449 0.679 0.742 0.822 0.926	0.500 0.500 0.500 0.500 0.500	12.700 12.700 12.700 12.700 12.700	2.65 4.00 4.37 4.84 5.46	0.047 0.071 0.078 0.086 0.098	0.127 0.127 0.127 0.127 0.127	3.220 3.220 3.220 3.220 3.220	L2 L2 L2 L2 L2
LL 050 050 U000 LL 050 050 U10G LL 050 050 U20G LL 050 050 U30G LL 050 050 U40G	R O Y G	.500	12.700	.485	12.319	.218	5.537	.042 x .112	1.07 x 2.84	1.905 2.881 3.147 3.484 3.925	0.864 1.307 1.427 1.580 1.780	0.500 0.500 0.500 0.500 0.500	12.700 12.700 12.700 12.700 12.700	5.40 8.16 8.91 9.87 11.12	0.096 0.146 0.159 0.176 0.199	0.148 0.148 0.148 0.148 0.148	3.753 3.753 3.753 3.753 3.753	L2 L2 L2 L2 L2
LL 050 075 U000 LL 050 075 U10G LL 050 075 U20G LL 050 075 U30G LL 050 075 U40G	R O Y G	.500	12.700	.470	11.938	.218	5.537	.042 x .112	1.07 x 2.84	1.985 3.002 3.278 3.630 4.090	0.900 1.362 1.487 1.646 1.855	0.750 0.750 0.750 0.750 0.750	19.050 19.050 19.050 19.050 19.050	3.56 5.38 5.88 6.50 7.33	0.064 0.096 0.105 0.116 0.131	0.193 0.193 0.193 0.193 0.193	4.912 4.912 4.912 4.912 4.912	L3 L3 L3 L3 L3
LL 075 075 U000 LL 075 075 U10G LL 075 075 U20G LL 075 075 U30G LL 075 075 U40G	R O Y G	.750	19.050	.720	18.288	.343	8.712	.062 x .172	1.57 x 4.37	4.340 6.563 7.167 7.935 8.941	1.969 2.977 3.251 3.599 4.056	0.750 0.750 0.750 0.750 0.750	19.050 19.050 19.050 19.050 19.050	8.18 12.37 13.51 14.96 16.85	0.146 0.221 0.241 0.267 0.301	0.221 0.221 0.221 0.221 0.221	5.607 5.607 5.607 5.607 5.607	L3 L3 L3 L3 L3
LL 075 100 U000 LL 075 100 U10G LL 075 100 U20G LL 075 100 U30G LL 075 100 U40G	R O Y G	.750	19.050	.720	18.288	.343	8.712	.062 x .172	1.57 x 4.37	4.340 6.563 7.167 7.935 8.941	1.969 2.977 3.251 3.599 4.056	1.000 1.000 1.000 1.000 1.000	25.400 25.400 25.400 25.400 25.400	5.85 8.84 9.65 10.69 12.04	0.104 0.158 0.172 0.191 0.215	0.259 0.259 0.259 0.259 0.259	6.588 6.588 6.588 6.588 6.588	L4 L4 L4 L4 L4
LL 100 100 U000 LL 100 100 U10G LL 100 100 U20G LL 100 100 U30G LL 100 100 U40G	R O Y G	1.000	25.400	.965	24.511	.469	11.913	.085 x .230	2.16 x 5.84	8.133 12.298 13.431 14.870 16.755	3.689 5.578 6.092 6.745 7.600		25.400 25.400 25.400 25.400 25.400		0.208 0.314 0.343 0.380 0.428	0.303 0.303 0.303 0.303 0.303	7.699 7.699 7.699 7.699 7.699	L4 L4 L4 L4 L4
LL 100 125 U000 LL 100 125 U10G LL 100 125 U20G LL 100 125 U30G LL 100 125 U40G	R O Y G	1.000	25.400	.965	24.511	.469	11.913	.085 x .230	Χ	8.133 12.298 13.431 14.870 16.755	5.578 6.092	1.250 1.250 1.250	31.750 31.750 31.750 31.750 31.750	14.77 16.36	0.160 0.242 0.264 0.292 0.329	0.343 0.343 0.343 0.343 0.343	8.717 8.717 8.717 8.717 8.717	L5 L5 L5 L5 L5

SPECIAL INSTRUCTIONS FOR LEEP™ PLASTIC COMPOSITE SPRINGS SERIES

PRICING: See Inside Back Cover pricing for pricing up to 199 pieces. To price or order up to 599 pieces, visit leespring.com; 600+ pieces, contact Lee Spring. **CUSTOM DESIGNS:** Custom LeeP Spring designs are available on request; see Custom Springs Section for LeeP specification form.