MÉTODO DAS APROXIMAÇÕES SUCESSIVAS: UM EXERCÍCIO DA LISTA II

MAT 271 – CÁLCULO NUMÉRICO –PER3/2021/UFV

Professor Amarísio Araújo – DMA/UFV

EXERCÍCIO 2 DA LISTA II

A equação $e^{-x^2} - x = 0$ é equivalente à equação $x = \varphi(x)$, onde $\varphi(x) = e^{-x^2}$, e possui uma solução única $\bar{x} \in [0.5, 1]$.

Usando o Método das Aproximações Sucessivas, com a função φ e aproximação inicial $x_0=0.5$, calcule os seis termos seguintes da sequência de aproximações de \bar{x} .

É possível concluir que a sequência está convergindo para \bar{x} ?

RESOLVENDO O EXERCÍCIO

PRIMEIRA PARTE

Equação iterativa $x_{n+1} = \varphi(x_n), n = 0,1,2,3,...$, com $x_0 = 0.5$ e $\varphi(x) = e^{-x^2}$.

$$x_{n+1} = e^{-x_n^2}$$
, $n = 0,1,2,3,...$, com $x_0 = 0.5$.

$$x_1 = 0.77880$$
 $x_2 = 0.54524$ $x_3 = 0.74283$

$$x_4 = 0.57591$$
 $x_5 = 0.71772$ $x_6 = 0.59743$

RESOLVENDO O EXERCÍCIO

SEGUNDA PARTE

Verificar se a sequência $x_{n+1} = \varphi(x_n)$ é convergente:

Verificar as condições suficientes de convergência do método:

- φ derivável em [a, b]
- $|\varphi'(x)| < 1 \text{ em } [a, b]$

A função $\varphi(x)=e^{-x^2}$ é derivável em [0.5,1], sendo $\varphi'(x)=-2xe^{-x^2}$.

$$|\varphi'(x)| = |-2xe^{-x^2}| = 2xe^{-x^2}, \forall x \in [0.5, 1].$$

Vejamos se $|\varphi'(x)| < 1$ no intervalo [0.5, 1].

Ou seja: vejamos se $2xe^{-x^2} < 1$ no intervalo [0.5 , 1].

RESOLVENDO O EXERCÍCIO

SEGUNDA PARTE

Vejamos se $2xe^{-x^2} < 1$ no intervalo [0.5, 1].

Seja
$$h(x) = 2xe^{-x^2}$$
. Então: $h'(x) = 2e^{-x^2} + 2x(-2x)e^{-x^2} = 2(1-2x^2)e^{-x^2}$

No intervalo [0.5, 1], vemos, então, que $h(x) = 2xe^{-x^2}$ cresce entre 0.5 e $\sqrt{2}/2$ e decresce entre $\sqrt{2}/2$ e 1, atingindo máximo em $x = \sqrt{2}/2$.

Assim, para todo $x \in [0.5, 1], h(x) \le h(\sqrt{2}/2) = 0.85776 < 1.$

Logo $|\varphi'(x)| = 2xe^{-x^2} < 1$ no intervalo [0.5 , 1].

Portanto a sequência $x_{n+1} = \varphi(x_n)$ é convergente.

 $\bar{x} \cong x_{30} = 0.65394$ com erro absoluto $|x_{30} - x_{29}| < 0.001$

VERIFICANDO GRAFICAMENTE $|\varphi'(x)| < 1$

Verificar graficamente se $|\varphi'(x)| = 2xe^{-x^2} < 1$ no intervalo [0.5, 1].

Esboçando o gráfico de $h(x) = 2xe^{-x^2}$ no intervalo [0.5, 1].

UMA OBSERVAÇÃO SOBRE A CONDIÇÃO $|\varphi'(x)| < 1$

A condição $|\varphi'(x)| < 1$ pode não ser satisfeita no intervalo de busca inicial [a, b], mas ser satisfeita em um intervalo $I \subset [a, b]$, contendo a solução da equação.

Neste caso, a sequência $x_{n+1} = \varphi(x_n)$ será convergente:

Exemplo: a equação $e^{-x} - x = 0$ tem solução única no intervalo [0, 1].

Consideremos a função $\varphi(x)=e^{-x}$ ($e^{-x}-x=0 \Leftrightarrow x=e^{-x}$).

$$|\varphi'(x)| = |-e^{-x}| = e^{-x}, \forall x \in [0, 1].$$

É fácil ver que $|\varphi'(x)| < 1$ para todo $x \in [0,1], x \neq 0$, com $|\varphi'(0)| = 1$.

Portanto $|\varphi'(x)| \leq 1$ para todo $x \in [0,1]$.

Ou seja, a condição $|\varphi'(x)| < 1$ não é satisfeita no intervalo considerado inicialmente.

Mas a condição não é satisfeita só por causa do extremo inferior do intervalo (x=0).

Portanto, basta considerar que a solução da equação está no intervalo I=(0,1], e, neste intervalo, $|\varphi'(x)| < 1$ para todo x, o que nos dá a garantida a convergência.