SoaPy

m-a-huber

class soapy.SFS(*params)

Bases: object

This is a class for working with orientable Seifert fibered spaces (SFS) whose base orbifold is the 2-sphere.

params

List of integer coefficients representing the SFS specified. These do not necessarily coincide with the input parameters, but rather are normalized in such a way that the corresponding integer surgery diagram is definite.

Type list[int]

central_weight

The weight of the central vertex of the normalized surgery description of the SFS specified.

Type int

branch_weights

Tuple containing the rational surgery coefficients of the exceptional fibers of the SFS specified.

Type tuple(sym.Rational)

fractional_branch_weights

Tuple containing the fractional parts of the branch weights.

Type tuple(sym.Rational)

euler_number

The orbifold Euler number of the normalized surgery description of the SFS specified.

Type sym.Rational

exceptional_fibers

The number of exceptional fibers of the normalized surgery description of the SFS specified.

Type int

classmethod from_plumbing(central_weight, *lists_of_coeffs)

Allows one to construct a soapy.SFS object from an integer plumbing description, all of whose weights are non-zero.

Parameters

- **central_weight** (*int*) The weight of the central vertex of the plumbing tree.
- *lists_of_coeffs (list[int]) A variable number of lists of weights of the branches, each read starting from the central vertex

Raises Exception – If any of the weights specified is zero.

Returns The SFS corresponding to the integer plumbing description specified.

Return type *soapy.SFS*

to_plumbing()

Returns the definite plumbing (equivalently: an integral surgery description) corresponding to the SFS specified.

Returns A tuple whose first elements is the central weight, followed by the lists of integer weights on the branches (read starting from the central vertex).

Return type tuple(int, lists[int])

seifert_invariants()

Returns the Seifert invariants of the SFS specified.

Returns A tuple of the format (Euler number, (tuple of fractional branch weights)).

Return type tuple(sym.Rational, tuple(sy.Rational))

linking_matrix()

Returns the linking matrix of the SFS specified.

Returns A SymPy-matrix with SymPy-integers as entries, representing the linking matrix of the integer plumbing corresponding to the SFS specified.

Return type sym.Matrix

first_homology()

Returns the first homology of the SFS specified.

Returns The orders of the non-trivial cyclic summands of the first homology of the SFS specified.

Return type tuple(int)

order_of_first_homology()

Returns the order of the first homology of the SFS specified.

Returns The order of the first homology of the SFS specified.

Return type int

spinc_to_HF()

Computes HF $^+$ in each spin $^-$ c-structure of the SFS specified. The Z[U]-module-structure of HF $^+$ is encoded as a dictionary of the format { 'order of Z[U]-module-summand' : 'list of bottommost gradings of all Z[U]-module-summands of that order' }.

Returns A dictionary of the format {'spin^c-structure': 'Z[U]-module-structure of HF^+'}.

Return type dict

print_HF()

Prints HF^+ of the SFS specified by a definite plumbing in a more legible manner.

Returns Just prints HF^+ of the SFS specified.

Return type None

correction_terms()

Returns a list of the corrections terms of the SFS specified.

Returns List of all correction terms of the SFS specified.

Return type list[sym.Rational]

is_lspace()

Checks whether or not the SFS specified is a Heegaard Floer L-space.

Returns Whether or not the the SFS specified is an L-space.

Return type bool

casson_walker()

Computes the Casson-Walker invariant of the SFS specified.

Returns The Casson-Walker invariant of the SFS specified.

Return type sym.Rational

is_lens_space()

Checks whether or not the SFS specified is homeomorphic to a lens space.

Returns Whether or not the the SFS specified is homeomorphic to a lens space.

Return type bool

to_lens_space()

Transforms the SFS specified into the corresponding lens space.

Raises Exception – If the SFS specified is not homeomorphic to any lens space.

Returns Lens space homeomorphic to the SFS specified.

Return type soapy.Lens

is_prism_mfld()

Checks whether or not the SFS specified is homeomorphic to a prism manifold.

Returns Whether or not the the SFS specified is homeomorphic to a prism manifold.

Return type bool

to_prism_mfld()

Transforms the SFS specified into the corresponding prism manifold.

Raises Exception – If the SFS specified is not homeomorphic to any prism manifold.

Returns Prism manifold homeomorphic to the SFS specified.

Return type soapy.Prism

class soapy.Lens(p, q)

Bases: soapy.SFS

This is a subclass of SFS representing lens spaces.

p

The first parameter of the lens space specified, normalized to be greater than zero.

Type int

q

The second parameter of the lens space specified, normalized so that p > q > 0.

Type int

classmethod from_linear_lattice(*params)

Allows one to construct a soapy.Lens object from a linear lattice specifying a lens space, all of whose weights are non-zero.

Parameters *params (*int*) – A variable number of integer weights of the linear lattice, read starting from either end.

Raises Exception – If any of the weights specified is zero.

Returns The lens space corresponding to the linear lattice specified.

Return type soapy.Lens

to_SFS()

Transforms the lens space specified into a SFS.

Returns The SFS homeomorphic to the lens space specified.

Return type soapy.SFS

to_linear_lattice(epsilon=- 1)

Returns the weights of the linear lattice bounded by the lens space specified. By default, the negative definite linear lattice is returned, unless epsilon is set to 1.

Parameters epsilon (int, optional) – The sign of definiteness of the linear lattice to be returned. Defaults to -1. **Raises Exception** – If epsilon is not 1 in absolute value. **Returns** A tuple containing the weights of the linear lattice bounded by the lens space specified. **Return type** tuple(int) class soapy. Prism(p, q)Bases: soapy.SFS This is a subclass of SFS representing prism manifolds. p The first parameter of the prism manifold specified, normalized to be greater than 1. Type int q The second parameter of the prism manifold specified; can be any non-zero integer. Type int to_SFS() Transforms the prism manifold specified into a SFS. Returns The SFS homeomorphic to the prism manifold specified. Return type soapy.SFS class soapy.Brieskorn(*params) Bases: soapy.SFS This is a subclass of SFS representing Brieskorn homology spheres. The parameters of the Brieskorn homology sphere specified. **Type** list[int] to_SFS()

Transforms the Brieskorn homology sphere specified into a SFS.

Returns The SFS homeomorphic to the Brieskorn homology sphere specified.

Return type soapy.SFS

PYTHON MODULE INDEX

S

soapy, ??