H36.D2.B7 ANTI-TISSUE FACTOR LIGHT CHAIN VARIABLE REGION

GACATTCAGATGACCCAGTCTCCTGCCTCCCAGTCTGCATCTCTGGGAGAAAGTGTCACCATCACATGC SPASQSASLGESVTI ø ⊢ × Ø CTGGCAAGTCAGACCATTGATACATGGTTAGCATGGTATCAGCAGAAACCAGGGAAATCTCCTCAGCTC DT W L A W Y Q Q K P G K S P တ

CTGATTTATGCTGCCACCAACTTGGCAGATGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGCACA တ A D G V P S R F S G S G S Z

<u> AAATTTTCTTTCAAGATCAGCAGCCTACAGGCTGAAGATTTTGTAAATTATT TACTGT<u>CAACAAGTTTA</u>C</u> SSILQAEDFVNY

AGTTCTCCATTCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAAASS S P F T F G A G T K L E L K

FIG. 1A

H36.D2.B7 ANTI-TISSUE FACTOR HEAVY CHAIN VARIABLE REGION

GAGATCCAGCTGCAGCAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGCAGGTATCCTGCAAG Q L Q Q S G P E L V K P G A S V Q V S

ACTTCTGGTTACTCATTCACTGACTACAACGTGTACTGGGTGAGGCCAGAGGCCATGGAAAGAGAGCCTTGAG SGYSF<u>TDYNVY</u>WVRQSHGKSL

TGGATTGGA<u>TATATTGATCCTTACAATGGTATTACTATCTACGACCAGAACTTCAAGGGC</u>AAGGCCACA WIGYIDPYNGITIYDQNFKGKA TTGACTGTTGACAAGTCTTCCACCACAGCCTTCATGCATCTCAACAGCCTGACATCTGACGACTCTGCA STTAFMHLN GTTTATTTCTGTGCAAGAGATGTGACTACGGCCCTTGACTTCTGGGGCCCAAGGCCACCACTCTCACAGTC

V Y F C A R D V T T A L D F W G Q G T T L T V F W G C C

TCCTCA

FIG. 1B

3/17

ANTIBODY	APPARENT K ₁ , M ⁻¹	APPARENT K ₁ , M
BY ELISA		
D2	5.2 x 10 ⁹	1.9 x 10 ⁻¹⁰
147	6.5 x 10 ⁹	1.5 x 10 ⁻¹⁰
K73	9.8 x 10 ⁹	1.0×10^{-10}
K80	2.3×10^9	4.3 x 10 ⁻¹⁰
L102	2.5×10^9	4.0×10^{-10}
L133	1.7×10^9	5.9 x 10 ⁻¹⁰
BY BIACore		
H36	3.1 x 10 ¹⁰	3.2 x 10 ⁻¹¹
143	2.3 x 10 ⁹	4.3×10^{-10}
147	3.2 x 10 ⁹	3.1 x 10 ⁻¹⁰
L133	4.6 x 10 ⁹	2.2 x 10 ⁻¹⁰
M107	1.1 × 10 ⁹	9.1 x 10 ⁻¹⁰

FIG. 2

	O/ INILIIDITION
ANTIBODY NAME	% INHIBITION
ANTIBODI NAME	ANTIBODY PREINCUBATED WITH TF/VIIa
D1	0
D1B	1
H31	4
H36	95
143	1
J131	7
K80	0
K82	0
K87	1
L97B	7
. L101	0
L102	0
L105	0
L133	0
M5	1
M107	34
	<u> </u>

ANTIBODY NAME	% INHIBITION TF PREINCUBATED WITH ANTIBODY PRIOR TO ADDITION OF VIIa	% INHIBITION TF PREINCUBATED WITH VIIa PRIOR TO ADDITION OF ANTIBODY
D1	15	nd 10.7
D1B H31	48 64	12.7 21
H36	0	0
143	68	55
J131	38	11
K80	12	nd
K82	0	nd
K87	0	nd
L96	0	nd
L101	38	11
L102	14	nd
L105	4	nd
L133	13	nd
M5	0	nd
M107	0	nd

FIG. 4

		LISC DOWNTE	CLOTTING TIME	% INHIBITION OF
[rhTF], nM	[H36.D2], nM	H36.D2/rhTF MOLAR RATIO	CLOTTING TIME (SECONDS)	% INHIBITION OF rhTF FUNCTION
	. 0	0	102.3	0
0.0048	1.61 3.23	335.4 670.8	114.3 121.3	31.3 45.8
	0	0	77.6	0
0.023	1.61	70.0	85.3	52.2
	3.23 6.45	140.0 280.4	91.1 99.6	65.2 73.9
	0	0	49.3	0
0.092	3.23	35.1	65.8	65.2
0.092	6.45	70.1	88.5	90.2
	12.90	140.2	113.3	95.7
	0	0	32.6	0
0.46	6.45	14.0	52.7	82.4
0.40	12.90	28.0	80.2	96.7
	32.30	70.2	117.9	99.3
	0	0	23.9	0
2.30	16.10	7.0	47.1	94.4
2.30	32.30	14.0	95.2	99.7
	64.50	28.0	115.3	99.9
	0	0	22.2	0
	16.10	1.4	30.2	93.4
11.52	32.30	2.8	46.0	98.8
	64.50	5.6	87.6 114.0	99.9 100.0
	161.30	14.0	114.0	100.0

FIG. 5

FIG. 6B

% INHIBITION FX AND H36.D2 ARE ADDED SIMULTANEOUSLY TO CELLS (TF/FVII)	0	pu	pu	pu	92	78	92
% INHIBITION CELLS (TF/FVII) AND H36.D2 PREINCUBATED PRIOR TO FX ADDITION	0	88	92	26	pu	pu	pu
H36.D2 CONCENTRATION (ng)	0	20	100	200	800	1600	3200

FIG. 7

9/17

FIG. 9B

FIG. 9D

FIG. 10B

FIG. 11

Humanization of anti-Tissue Factor Antibody cH36

Sequences of Partially and Fully Humanized Light Chain (LC) Variable Regions Light Chain (LC) FR Sequences

FR1 (23 AA)	FR2 (14 AA)	FR3 (32 AA)	FR4 (10 AA)	Names
20	35 47	47 57 60 70 80 86	98 107	•
LGESVTITC	DIQMTQSPASQSASLGESVTITC WYQQKPGKSPQLIY	PQLIY GVPSRFSGSGSGTKFSFKISSLQAEDFVNYYC	FGAGTKLELK	CH36-LC
SIGESVTITC	DIQMTQSPASQSASLGESVTITC: WYQQKPGKSPQLIY	GVPSRFSGSGSGTKFSFKISSLQAEDFVNYYC	FGAGTKLEIK	LC-03
SLGESVTITC	DIOMIQSPASOSASLGESVIIIC WYJOKPGKSPOLIY	GVPS FSGSGSGTKFSFKISSLQAEDFVNYYC	FGAGTKLEIK	LC-04
SVGDRVTITC	DIOMIQSPASISASWGDRVTITC WYLOKPGKSPOLIY	GVPSRFSGSGSGTKFSFKISSLQAEDFVNYYC	FGOGTKLEIK	IC-05
SIGESVTITC	DIOMIOSPASOSASLGESVIIIC WYLOKPGKSPOLIY	GVPSRFSGSGSGTKFSFKISSLQAEDFVNYYC	FGOGTKLEIK	IC-06
SLGESVTITC	DIQMTQSPASQSASLGESVTITC WYLQKPGKSPQLIY	GVPSRFSGSGSGTDFSFTTSSLOPEDFVNYYC	FGOGTKLEIK	IC-07
SLGESVTITC	DIQMTQSPASQSASLGESVTITC WYLQKPGKSPQLIY	GVPSRFSGSGSGTDFSFTTSSLOPEDFATYYC	FGOGTKLETK	IC-08
SVGDRVTITC	DIOMIOSPASIISASMGDRVIIIC WYLOKPGKSPOLIY	GVPSRFSGSGSGTDFSFTTSSLOPEDFATYYC	FGOGTKLEIK	IC-09
SVGDRVTITC	DIOMIQSPASISASWGDRVIIIC WYLOKPGKSPOLIY	GVPSRFSGSGSGTDFSFTTSSLOPEDFANYYC	FGOGTKLEIK	LC-10
DIOMIOSPASIJSASVGDRVIIIC WYLOKPGKS	WYLOKPGKSPOLIY	GVPSRFSGSGSGTKFSFTTSSLOPEDFANYYC	FGOGTKLETK	LC-11
SVGDRVTITC	DIQMTQSPASIJSASMGDRVTITC WYLOKPGGSPQLIY	GVPSRFSGSGSGTKFSFTTSSLOPEDFNYYC	FGOGTKLEIK	LC-12

FIG. 12A

Light Chain CDR Sequnces of cH36	of cH36	
CDR1 (11 AA)	CDR2 (7 AA)	CDR3 (9 AA)
24 34	50 56	68
LASQTIDTWLA	AATNLAD	SOVYSSP
FIG. 12B	FIG. 12C	FIG. 12D

97 F T

Sequences of Partially and Fully Humanized Heavy Chain (LC) Variable Regions

Heavy Chain (HC) FR Sequences

FR1 (30 AA)	FR2 (14 AA)	FR3 (32 AA) FR4 (11 AA)	Names
1 10 20 29	36 44	85 95	
EIQLQQSGPELVKPGASVQVSCKTSGYSFT WVRQSHGKSLEWIG	WVRQSHGKSLEWIG	KATLIVDKSSTTAFMHLNSLTSDDSAVYFCAR WGQGTTLTVSS	CH36-HC
QIQLQQSGPELVKPGASVQVSCKTSGYSFT	WVRQSHGKSLEWIG	KATLTVDKSSTTAFMHLNSLTSDDSAVYFCAR WGQGTTWTVSS	HC-01
QIQLQQSGPELVKPGASVQVSCKTSGYSFT	WVRQSPGKGLEWIG	KATLIVDKSSITAFMHLNSLISDDSAVYFCAR WGQGITIVIVSS	HC-02
QIQLQQSGPELVKPGASVQVSCKTSGYSFT	WVRQSPGKGLEWIG	KATLIVDKSSTTAFMHINSLRSEDFAVYFCAR WGOGTTVTVSS	HC-03
QIQLQQSGPELVKPGASVQVSCKTSGYSFT	WVRQSPGKGLEWIG	KATLIVDKSSTTAFMELSSLRSEDIRVYFCAR WGQGTTVTVSS	HC-04
OIQUQSGPELVKPGASVQVSCKTSGYSFT	WVRQSPGKGLEWIG	KATLIVDKSTSTAMELSSLRSEDTAVYFCAR WGOGTIVIVSS	HC-05
OMOLOQSGGELVKPGASVRVSCKASGYSFT	WVRQSPGKGLEWIG	KAILIVDKSITSITAMADISSIRSEDIAVYFCAR WGOGITIVITVSS	HC-06
CIQIWOSGCELVKPGASVRVSCKASGYSFT	WVRQSPGKGLEWIG	KATLIVDKSTSTAMPLISILRSEDTAVYFCAR WGOGTTVTVSS	HC-07
CIQINOSGGEVKKPGASVRVSCKASGYSFT	WVRQSPGKGLEWIG	KATLIVDKSTSTANMELSSLRSEDTAVYFCAR WGOGTIVIVSS	HC-08
CIOLVOSGGEVKKPGASVRIVSCKASGYSFT	WVRQSPGKGLEWIG	KATLIVDKSTSTAMPLSSLRSEDDAVYFCAR WGOGITVTVSS	HC-08R1
OIQLWOSGPEWKKPGASWRWSCKASGYSFT	WVRQSPGKGLEWIG	KATLTVDKSTSTAMPLSSLRSEDDAVYFCAR WGOGTTWTVSS	HC-11
OIOLVOSGPELKKPGASVRVSCKASGYSFT	WVRQSPGKGLEWIG	KATLIVDKSTSTAMELISISLRSEDTAVYFCAR WGOGTIVIVSS	HC-12
CIOLVOSGPELVKPGASVRVSCKASGYSFT	WVRQSPGKGLEWIG	KATLIVDKSTSTAMPLSSLRSEDTAVYFCAR WGOGTIVTVSS	HC-09
QIQLYYOSGPEVIYKPGASVRYSCKASGYSFT WVRQSPGKGLEWIG	WVRQSPGKGLEWIG	KATLTVDKSTSTAMBLSSLRSBDDAVYFCAR WGOGTTVTVSS	HC-10

1G. 13A

Ø
a
~
\mathbf{z}
Ħ
2
ש
Segunce
ľŇ
•.
_
SB
Ω
C)
_
~
۲,
٠.
Chain
2
O
_
~ .
יצ
2
ieav
Ø
•

Names		cH36		HC-08	
CDR3 (8AA)	901 66	DVTTALDF	99 106	DVTTALDF	
CDR2 (17 AA)	99 09	YIDPYNGITIYDQNFKG	99 99	YIDPYNGITIYDQNLKG	
CDR1 (5 AA)	31 35	DYNVY	31 35	DYNVY	

hoat (Igg1) constant regions sequences

SEQUENCES OF LC CONSTANT:

RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKH

KVYACEVTHQGLSSPVTKSFNRGEC

FIG. 14A

SEQUENCES OF HC CONSTANT:

EFASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYIC NVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSSHEDPEVKFNWYVDGVEV HNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK

FIG. 14B

hFAT (IgG1) CONSTANT REGION SEQUENCES

SEQUENCES OF LC CONSTANT:

RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEK

HKVYACEVTHQGLSSPVTKSFNRGEC

FIG. 15A

SEQUENCES OF HC CONSTANT:

EFASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTY EVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSL TCLVKGFYPSDDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLGK TCNVDHKPSNTKVDKRVESKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGV

FIG. 15B