Notes on Lie Algebra

Rongqing Shang^{1,a}

1. Eigenspace decomposition

 $\mathfrak{sl}_2(\mathbb{C})$ is the set of 2×2 matrices with zero trace. It is spanned by three basis:

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Here we have three relations

$$[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H.$$
 (1)

Definition 1.1. A Lie algebra \mathfrak{g} is a vector space V over \mathbb{R} or \mathbb{C} with the Lie bracket $[,]: V \times V \to V$, which satisfies the following properties:

- [,] is bilinear.
- [X,Y] = -[Y,X] for all $X,Y \in V$.
- [X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]] for all $X, Y, Z \in V$.

Let V be an irreducible finite dimensional representation of $\mathfrak{sl}_2(\mathbb{C})$. The action of H on V is diagonalizable. Equivalently, that there is a basis of V consisting of eigenvectors:

$$V = \bigoplus V_{\alpha} \tag{2}$$

where the α is the eigenvalue for each eigenspace, namely V_{α} . For any $v \in V$,

$$H(v) = \alpha \cdot v. \tag{3}$$

We have seen that H act on a vector in the eigenspaces by scaling the vector with a complex number. To see the actions of X, Y on $v \in V_{\alpha}$, we need to compute how H acts on X(v), Y(v):

$$H(X(v)) = X(H(v)) + H(X(v)) - X(H(V))$$

$$= X(H(v)) + [H, X](v)$$

$$= X(\alpha \cdot v) + 2X(v)$$

$$= (\alpha + 2) \cdot X(v)$$
(4)

¹Mathematics, University of California, Davis,

arshang@ucdavis.edu

Similar for Y:

$$H(Y(v)) = (\alpha - 2) \cdot Y(v) \tag{5}$$

So X(v) and Y(v) are both eigenvectors for H with eigenvalues $\alpha + 2$, $\alpha - 2$, respectively. In another words, $X(V_{\alpha}) \subset V_{\alpha+2} \subset V$. Y is similar. Recall that we started from the irreducible representation, since V is invariant under the actions of X, Y, we conclude that the eigenvalues are must be congruent to one another mod 2, i.e., for a fixed α_0 ,

$$V = \bigoplus_{n \in \mathbb{Z}} V_{\alpha_0 + 2n}. \tag{6}$$

Since V is finite dimensional, the eigenvalue cannot be arbitrarily large. Choose n to be the maximum eigenvalue, we have $V_n \subseteq \ker x$, $V_{n+2} = 0$. By far, we have the following picture:

Now we consider the repeated action of Y on $v \in V_n$.

Lemma 1.2.
$$X(Y^m(v)) = m(n-m+1) \cdot Y^{m-1}(v)$$
.

Proof. The two base cases are:

$$X(Y(v)) = [X, Y](v) + Y(X(v)) = H(v) + Y(0) = n \cdot v$$

$$X(Y^{2}(v)) = (n-2) \cdot Y(v) + n \cdot Y(v).$$

By induction:

$$X(Y^m(v)) = (n + (n-2) + (n-4) + \dots + (n-2m+2)) \cdot Y^{m-1}(v),$$

= $m(n-m+1) \cdot Y^{m-1}(v)$

Similar to the previous case, we can choose m to be the minimal integer such that Y annihilates v. Explicitly,

$$0 = X(Y^{m}(v)) = m(n - m + 1) \cdot Y^{m-1}(v).$$

So we have the relation: n=m-1. This calculation tells us several important facts.

Lemma 1.3. Eigenvalues for the representation V are integers symmetric about zero.

Proof. m is a positive integer, so n is a non-negative integer.

Theorem 1.4. The vectors $\{v, Y(v), Y^2(v)...\}$ span V.

Proof. Let $W = span\{v, Y(v), Y^2(v)...\} \subset V$. Since V is irreducible, it is suffices to prove that the actions of $\mathfrak{sl}_2(\mathbb{C})$ preserves W. Y preserves Y^m trivially, since $Y(Y^m(v)) = Y^{m+1}(v)$. From equation 5, we have seen that the action of Y decreases the eigenvalue by two, which means $H(Y^m(v)) = (n-2m) \cdot Y(v)$. By Lemma 1.2, $X(Y^m(v)) \subset W$. W is non-trivial, so W = V. \square