S.1)Açık çevrim transfer fonksiyonu $G(z)H(z) = K \frac{z+0.5}{z^2-1.2z-0.4}$ olarak verilen sistem için,

- i) 0<K<\pi aralığı için kök-yer eğrisini çiziniz.(kutup-sıfır noktaları, kopma noktası, imajiner ekseni kesme noktası vs. hesaplayınız)
- ii) Sistemin kararlı yapan K aralığını hesaplayınız.

C.1-)Açık çevrim transfer fonksiyonuna ait:

Kutuplar (2p)Sıfırlar(2p)

$$p_1 = 1.4718$$
 $z_1 = -0.5$

$$p_2 = -0.2718 \ z_2 = -\infty$$

n = 2 Kutup sayısı. m = 1 Sıfır sayısı.

n-m=2-1=1 adet asimtod vardır.

Asimtodların reel eksen ile yaptıkları açı: $\theta = \pm \frac{\pi}{n-m} (2k+1)$ ile hesap edilir. Bir adet asimtot olduğu için k=0 için bir adetasimtot açısı hesap edilir.

$$\theta = \frac{\pi}{1}(2*0+1)$$
 ise $\theta = \pi$ dir.(2p)

(**Not:**k'ya farklı bir değerde verilsebile, k=1 $\theta=3\pi$ veya k=-1 $\theta=-\pi$ gibi. Görüldüğü gibi k'ya hangi değer verilirse verilsin aynı açı çıkar. Bir adet asintok olduğu için k'ya tek değer verilir. Basit olması için k=0 verilebilir.)

Asimtodların reel ekseni Kesme noktası:

$$\sigma = \frac{\sum sonlu kutuplar - \sum sonlu ksifirlar}{n - m} = \frac{1.4718 + (-0.2718) - (-0.5)}{1}$$

$$\sigma = 1.7 \quad \textbf{(2p)}$$

Kopma noktaları; $\frac{dG(z)H(z)}{dz} = 0$ köklerinden kopma noktaları elde edilir.

$$\frac{d}{dz}(K\frac{z+0.5}{z^2-1.2z-0.4})=0$$
 dan

$$\Rightarrow K \left[\frac{z^2 - 1.2z - 0.4 - (2z - 1.2z)(z + 0.5)}{\left(z^2 - 1.2z - 0.4\right)^2} \right] = 0 \operatorname{dan} z^2 + z - 0.2 = 0 \quad \text{denklemi elde edilir.}$$

Bu denklemin Kökleri: -1,171 ve 0.171 olarak bulunur. (4p)

Yer eğrisinin birim çemberi kesme noktaları karakteristik denklem köklerinin kritik kazanç değeri için hesaplanması ile elde edilebilir.

karakteristik denklem:
$$F(z) = 1 + G(z)H(z) = 1 + K\frac{z + 0.5}{z^2 - 1.2z - 0.4} = 0 \implies F(z) = z^2 + (K - 1, 2)z + 0.5K - 0.4 = 0$$
 (4p)

Jurry kararlılık testi ile gerek koşullar:

$$F(1) > 0 \to 1 + K - 1, 2 + 0, 5K - 0, 4 > 0 \implies K > 0, 4$$
 (1p)
 $(-1)^2 F(-1) > 0 \to 1 + 1, 2 - K + 0, 5K - 0, 4 > 0 \implies K < 3.6$ (1p)

Yeter koşul:
$$|a_n| > |a_0| \to 1 > |0.5K - 0.4| \implies -1.2 < K < 2.8 (2p)$$

Sistemin kararlı olabilmesi için her üç koşulun sağlandığı bölge: 0.4 < K < 2.8 elde edilir. Her iki değer için birim daireyi kesme noktaları: $K_s = K = 2.8$ alınarak, Karakteristik denklemde $K = K_s$ yerine koyulur.

 $F(z) = z^2 + (2.8 - 1, 2)z + 0.5 * 2.8 - 0.4 = 0$ $F(z) = z^2 + 1.6z + 1 = 0$ denklemin kökleri hesap edilir. $z_{1.2} = -0.8 \pm 0.6$ j birim çemberi kesme noktaları elde edilir. (2p)

olarak bulunur.

(3p)

S.2) Açık çevrim transfer fonksiyonu $G(s)H(s) = \frac{K}{s(\tau s + 1)}$ olarak verilen bir DC-motorun <u>konum kontrolü</u> yapılacaktır Açık çevrim kazancı K=0.6 ve zaman sabiti $\tau = 0.2s$ ve $G_c(s) = K_p$ (oransal kontrolör) olmak üzere;

- i) Sistemin kapalı çevrim kontrol blok diyagramını çiziniz.
- ii) Basamak giriş için sistemin %16.3 aşım(ξ =0.5) ve %2 kriterine göre yerleşme zamanının t_s =1.6s olması istendiğine göre K_p değerini hesaplayınız.
- iii) Sistemin basamak (r(t) = u(t)) ve rampa giriş (r(t) = tu(t)) için sürekli-hal hatalarını hesaplayınız.

C.2.
$$G(s)H(s) = \frac{K}{s(\tau s + 1)}$$

i)Kapalı – Çevrim Kontrol Blok diyagram: (7p)

$$\theta_{ref}(s) \longrightarrow K_{p} \longrightarrow K_{g}(\tau s + 1)$$

ii)

$$KCTF = \frac{\theta(s)}{\theta_{ref}(s)} = \frac{\frac{K_p K / \tau}{s(s+1/\tau)}}{1 + \frac{K_p K}{\tau} \frac{1}{s(s+1/\tau)}} = \frac{K_p K / \tau}{s(s+1/\tau) + K_p K}$$

Değerler yerine konularak;

$$KCTF = \frac{3K_p}{s^2 + 5s + 3K_p}$$
 (5p)

İkinci dereceden birim geribeslemeli bir sisteme ilişkin kapalı çevrim transfer fonksiyonu eşitliğinden faydalanılarak

$$\frac{{w_n}^2}{s^2 + 2\zeta w_n s + {w_n}^2} = \frac{3K_p}{s^2 + 5s + 3K_p} \text{ ise } 3K_p = {w_n}^2 \to K_p = \frac{{w_n}^2}{3} \text{ olmalıdır.}$$

İstenen %2 yerleşme zamanından, $t_s = \frac{4}{\xi w_n} = 1.6 \rightarrow w_n = \frac{4}{1.60.5} = 5$ bu değer yukarıda yerine koyulur ise.

$$K_p = \frac{5^2}{3}$$
 ise $K_p = 8,33$ olarak bulunur. (5p)

iii)Birim geribeslemeli sistem için hata fonksiyonu

A-YOLU

$$\varepsilon(s) = \frac{R(s)}{1 + A.C.T.F} = \frac{R(s)}{1 + G(s)}$$
 ve son değer teoremi yardımıyla **Sürekli Hal Hatası** $e_{ss} = \lim_{s \to 0} s \frac{R(s)}{1 + A.C.T.F}$

$$A.C.T.F = G(s) = \frac{25}{s(s+5)}$$

O halde birim basamak giriş için,

$$e_{ss} = \lim_{s \to 0} s \frac{1/s}{1 + \frac{25}{s(s+5)}} = \lim_{s \to 0} \frac{s(s+5)}{s^2 + 5s + 25} = 0$$
 (4p)

Rampa giriş içir

Rampa giriş için
$$e_{ss} = \lim_{s \to 0} s \frac{1/s^2}{1 + \frac{25}{s(s+5)}} = \lim_{s \to 0} \frac{s+5}{s^2 + 5s + 25} = 0, 2 = \%20 \text{ (4p)}$$

B-YOLU

Basamak giriş için sürekli hal hatası: $\varepsilon_{ss} = \frac{1}{1+K_p}$ ve konum hata katsayısı: $K_p = G(0)$ dır.

$$G(0) = \frac{25}{0(0+5)} \rightarrow K_p = G(0) = \infty \ \varepsilon_{ss} = \frac{R}{I+\infty} \rightarrow \text{Basamak giriş için SHH } \varepsilon_{ss} = 0$$

Basamak Rampa için sürekli hal hatası: $\varepsilon_{ss} = \frac{1}{K_{vs}} K_v = \lim_{s \to 0} sG(s) dir.$

$$K_{\nu} = \lim_{s \to 0} / \frac{25}{/(s+5)} K_{\nu} = 5$$
 olarak elde edilir ve ε_{ss} ifadesinde yerine koyulur.

$$\varepsilon_{ss} = \frac{1}{5} \rightarrow \varepsilon_{ss} = 0.2 = \%20 \, \text{dir.}$$

Bilgi Amaçlı:

Birim Basamak giriş ve cevap

Birim rampa giriş ve Cevap

S.3)

a) $\frac{C(z)}{R(z)}$ Ayrık-zaman kapalı çevrim transfer fonksiyonunu elde ediniz.

b)
$$G_c(s) = 0.025 \ G(s) = \frac{e^{-s}}{s+1} \ H(s) = 1 \ T = 1 sn$$
 ve $r(t) = 10 u(t)$ olmak üzere $C(z) = ?$ elde ediniz.

c) C(k) = ? elde ediniz. C(5) = ? değerini hesap ediniz.

C.3.

a)
$$\frac{C(z)}{R(z)} = \frac{G_c(z)G_s(z)}{1 + G_c(z)G_{ch}(z)}$$
 (7**p**)

$$\mathbf{b}) G_s(z) = z \left\{ \frac{1 - e^{-sT}}{s} G(s) \right\} \qquad G_{sh}(z) = z \left\{ \frac{1 - e^{-sT}}{s} G(s) H(s) \right\}$$

G(s) ve H(s) arasında örnekleyicinin bulunmadığına dikkat edilmelidir! Dolayısıyla $G_s(z) = G_{sh}(z)$

$$G_{s}(s) = 0.025$$

$$G_{s}(z) = G_{sh}(z) = z \left\{ \frac{1 - e^{-sT}}{s} \frac{e^{-s}}{s+1} \right\}_{T=1} = (1 - z^{-1})z^{-1}z \left\{ \frac{1}{s(s+1)} \right\}_{T=1} = \frac{0,632}{z(z-0,368)}$$

$$\frac{C(z)}{R(z)} = \frac{0,025 \frac{0,632}{z(z-0,368)}}{1 + 0,025 \frac{0,632}{z(z-0,368)}} = \frac{0,0158}{z^2 - 0,368z + 0,0158} \rightarrow C(z) = \frac{0,0158}{z^2 - 0,368z + 0,0158} R(z)$$

$$C(z) = \frac{0,0158}{(z-0,32)(z-0,05)} \frac{z}{z-1} \quad \text{Olarak elde edilir}(8p)$$

c)Rezidü yöntemi kullanılarak

$$c(k) = (z - 0.32) \frac{0.0158z}{(z - 0.32)(z - 0.05)(z - 1)} z^{k-1} \Big|_{z=0.32} + (z - 0.05) \frac{0.0158z}{(z - 0.32)(z - 0.05)(z - 1)} z^{k-1} \Big|_{z=0.05} + (z - 0.32) \frac{0.0158z}{(z - 0.32)(z - 0.05)(z - 1)} z^{k-1} \Big|_{z=1}$$

$$c(k) = \frac{5,056.10^{-3}.3,125}{0,27.(-0,68)}0,32^{k} + \frac{7,9.10^{-4}.20}{(-0,27)(-0,95)}0,05^{k} + \frac{0,0158}{0,68.0,95}I^{k}$$

$$c(k) = -0.086.0.32^{k} + 0.062.0.05^{k} + 0.025.1^{k}$$
 (7p)

$$c(5) = 0.025$$
 olarak elde edilir. (3p)

Yanda verilen yay ve sönümlendirici sisteminde alan kontrollü DC makine ile pozisyon kontrolü yapılmaktadır. Disk ve motora ait atalet ve sürtünmeler ihmal edilmektedir ($J_{\rm m}=B_{\rm m}=0$).

- a) Sisteme ait dinamik denklemleri yazınız. Kontrol blok diyagramını elde ediniz. $y_x = x(t) \mbox{ (\"olçülen konum)}$
- b) y_r referans konum girişi ve $G_c(z)$ ayrıkzaman kontrolör olmak üzere, ayrıkzaman sayısal kapalı çevrim kontrol blok diyagramını çiziniz.

C.4. a)(5p) +

$$e(t) = Ri(t) + L \frac{di(t)}{dt}$$

$$T_e(t) = K_i i(t)$$

$$T_m(t) = T_t(t)$$

$$T_e(t) = T_m(t)$$
$$T_m(t) = F(t).r$$

$$F(t) = kx(t) + B \frac{dx(t)}{dt}$$

(5p)
$$E(s) = RI(s) + sLI(s) \rightarrow I(s) = \frac{E(s)}{R + sL}$$

$$T_m(s) = K_i I(s)$$

$$T_m(s) = F(s).r$$

$$F(s) = BsX(s) + K.X(s), \quad m = 0$$

Giriş E(s), çıkış X(s) olduğuna göre

$$X(s) = \frac{F(s)}{Bs + K}$$

Olarak bulunur.

(5p)

Sistem Kontrol Blok Diyagramı

b)(10p)

