Bank Marketing Campaign Study

A Data-Driven Approach to Predict the Success of Bank Telemarketing

The Business Aspect

Company

Banco Português de Investimento

- A Portuguese commercial bank
- Core services include providing term deposit

Context

From 2008-10, Information is collected from three main aspects

- Client
- Telemarketing
- Social and economic

Problem statement

Understand attributes' meaning in a business context

Predict if the client will subscribe to a bank term deposit

Maximize potential business values

The Modeling Aspect

Data Dimension

Training set

• 4119 x 21

Test set

• 41188 x 21

Attributes

Client data

Job, age, education

Telemarketing data

Pdays, previous

Social/economic data

emp.var.rate

Modeling

Exploratory analysis

Tree-based and Kernel-based Modeling and their Learning curve

Cost analysis

Exploratory Analysis

Understand attributes' meaning in a business context

What defines a dimension?

What is the relationship between dimensions?

How do we use these dimensions to interpret the current business situation?

Principal Component Analysis

Notable variables from PC1

- Emp.var.rate
- Euribor3m
- Nr.employed
- Previous

Notable variables from PC2

- Previous
- pdays

K-Means on PCA

K-Means on PCA

Modeling

Predict if the client will subscribe a bank term deposit

How to identify overfitting?

What are the learning curves?

Tree-Based Modeling

- Cross-validated error rate is used for both tuning parameters and accessing model accuracy
- Class ratio within the response variable
 - yes/no: 12.29%
- Parameters
 - Classification decision tree: minsplit, minbucket
 - Random forest: mtry
- Results
 - Classification decision tree:
 198.34000000
 0.09328464
 - elapsed

 Random forest: 461.26000000 0.08760639

Kernel-Based Modeling

- Parameters
 - SVC: cost
 - SVM Polynomial: degree, cost, gamma
 - SVM Radial: cost, gamma
- Results
 - elapsed

 SVC: 983.30000000 0.08988952
 - SVM Polynomial: 2876.22000000 0.09316021
 - o SVM Radial: elapsed 0.09011496

Modeling Results

Model Selection Approach 1

Potential Overfitting Issue

Model Selection Approach 2

Potential Overfitting Issue

Model Selection Approach 2

Final Modeling Results

Classification decision tree

```
TP 0.33434015
TN 0.97271516
FP 0.02728484
FN 0.66565985
Err 0.09479637
```

• SVM - Polynomial

```
TP 0.1977323
TN 0.9880065
FP 0.0119935
FN 0.8022677
Err 0.1024857
```

Cost Analysis

Maximize potential business values from the model

What assumptions are made?

Assumptions

- The current campaign is to promote a specific type of certificate deposit.
- The bank promises to return 2% of annual cumulative amount to buyers. The bank itself will earn 5%.
- 40% of all clients are term deposits subscribers. While all clients are likely to purchase such certificate deposit, term deposit clients are the targeted customers for this campaign.
- When a normal client became a term deposit client for the first time, we promote our certificate deposit to them. The probability of them accepting our promotion is 30%.

Assumptions

- If the client did not buy the promoted product, we will follow up to these clients in two weeks to promote the product once again. There is a 30% chance for the client to buy the promoted product.
- The probabilities of a client buying the promoted product after the first contact is independent from the probabilities of buying the product after the second contact.
- There is 27% of chance for the clients to get irritated and cancel the term deposit subscription.
- The certificate deposit requires clients to deposit 2000 USD each month.

Cost Calculations

- 1 year cumulative amount: \$2,000 * 12 = \$24,000
- Bank's earning based on 5%: \$24,000 * 5% = \$1,200
- Client's earning based on 2%: \$24,000 * 2% = \$480

- 2nd cycle telemarketing cost: -\$20
- Term deposit cancellation cost: -\$20-(\$1,200 * 27%) = -\$344
- Opportunity cost for not promoting: -\$50

Comprehensive Probability Combinations

TD?	Offer?	Accept?	Probability	Net Cost
Υ	Y	Y	P.yes * P.buy * TP	\$700
Υ	Υ	N	P.yes * P.still * TP	-\$344
Υ	N	Y	P.yes * P.buy * Type 2	\$720
Υ	N	N	P.yes * P.still * Type 2	-\$50
N	Y	Y	P.no * P.buy * Type 1	\$700
N	Y	N	P.no * P.still * Type 1	-\$20
N	N	Y	0%	
N	N	N		\$0

Results

Results

Comparison of two models

Decision Tree

This model has more variability, but significantly lower cost.

Option for larger banks with more room for risk

SVM-Polynomial

Higher costs, but more predictable.

More stable cost planning for banks