Written Assignment 3: Due Friday, February 23

Problem 1: Consider the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by:

$$T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x - y \\ x + y \end{pmatrix}.$$

Is T injective? Justify your answer carefully.

Problem 2: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. Recall that

range
$$(T) = {\vec{w} \in \mathbb{R}^2 : \text{There exists } \vec{v} \in \mathbb{R}^2 \text{ with } \vec{w} = T(\vec{v})}.$$

Notice that $\vec{0} \in \text{range}(T)$ because we know that $T(\vec{0}) = \vec{0}$ by Proposition 2.4.2.

- a. Show that if $\vec{w}_1, \vec{w}_2 \in \text{range}(T)$, then $\vec{w}_1 + \vec{w}_2 \in \text{range}(T)$.
- b. Show that if $\vec{w} \in \text{range}(T)$ and $c \in \mathbb{R}$, then $c\vec{w} \in \text{range}(T)$.

Problem 3: We defined linear transformations from \mathbb{R}^2 to \mathbb{R}^2 , but we can also define them from \mathbb{R} to \mathbb{R} as follows. A linear transformation from \mathbb{R} to \mathbb{R} is a function $f: \mathbb{R} \to \mathbb{R}$ with both of the following properties:

- f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$.
- $f(c \cdot x) = c \cdot f(x)$ for all $c, x \in \mathbb{R}$.
- a. Let $r \in \mathbb{R}$. Show that the function $g_r \colon \mathbb{R} \to \mathbb{R}$ given by $g_r(x) = rx$ is a linear transformation
- b. Show that if $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are both linear transformations, and f(1) = g(1), then f = g.