M146 - Homework Set #3

Name: Yangyang Mao UID: 504945234

Problem 1

- (a) $:= (X^T z)^d$ is a Valid function
 - · Y Vector V, VTK(X,3)V>O, VT(XTE)d V30 Knew (X, Z) = (\$\sum_{\text{in}} \sum_{\text{in}} \sum_{

VT KNEW (X/2)V = VT (* AT B)d V 30 where $A = \begin{bmatrix} J\bar{x}_1 \\ \vdots \\ J\bar{x}_n \end{bmatrix}$ $B = \begin{bmatrix} J\bar{x}_1 \\ \vdots \\ J\bar{x}_n \end{bmatrix}$

Thus, $K_{\text{new}}(X_1, 2) = \left(\sum_{i=1}^{n} \sqrt{X_i} E_i\right)^d$ is a valid kernel. (b) : k, and k, are both valid kernels

:. & vector v , VTK, V70 VTK2 V70

Since a. BERT

- + vector V. VTak, V70, VTBK, V70

- " KY (Knew) M VT ak, V + VTBK, V >0
- :. VT (dk1+Bk2) V >0
- :. Knew (X,2) = aki (x,2) + BEK2 (X,2) is a valid kevnel

Problem 2

Y2-215= 3 (41+1.5)

We take a midpoint of (1:1) and (-2:4). And drow a line which is perpondicular to the true through (1,1) and 62,10.610p = 1

Thus, maximum margin separating hyper plane in R2 is 342 = 41-9=0

margin = (wib) = min
$$\frac{\text{YnLW}^{\dagger}\phi(x_n)+b]}{\text{IIW}_{2}} = \frac{\sqrt{10}}{2}$$

Decision boundary of the separating hyperplane in original R1 feature space

(d) .: support vectors: u. u.

only as and as are non-zero. suppose as=as=a

$$L(a) = \sum_{n=1}^{N} a_n + \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(x_n, x_m)$$

$$=\alpha_{1}+\alpha_{2}-\frac{1}{2}(\alpha_{1}^{2}(u_{1}\cdot u_{1})-2\alpha_{1}\alpha_{2}(u_{1}\cdot u_{2})+\alpha_{1}^{2}(u_{2}\cdot u_{2})$$

(e) The hyperplane will not change, since the training point is classified correctly.

Problem 3

constrain: 4 w xn 71 . equals to + FW [w., w.] [e] 71

we move the constraint into objective function and introduce a Lagrange multiplier:

y=-1. And take derivative above wit w: WHANED

there is only a single point x, Hence x must be support vector.

:- 1=y (wx+b) for any support vectorises on margin. And here hard margin:

(b)
$$X_1 = (1,1)^T$$
, $y_1 = 1$. $X_2 = (1,0)^T$, $y_2 = -1$

These two points lie on hard margin $15D_2$

These two points lie on hard margin $15D_2$

These two points lie on hard margin $15D_2$

Thus $1 = (w_1 + w_2) = 0$
 $1 + w_1 + b = 0$

Thus the margin is larger if the classifier with has offset parameter b .

with offset: margin $= \frac{1}{2}$, without offset; margin $= \frac{1}{45}$

Problem 4

0.2

(b) Stratified splits are important, since the fundamental assumption of most ML algorithms is that the training set should represent the test set. the training and test data are drawn from the same underlying distributions. If the ratio of positive to negative examples (the class balance) differs significantly between the training and test sets (across folds), the assumption will not hold.

(d)						
С	accuracy	F1-score	AUROC	Precision	Sensitivity	Specificity
0.001	0.708941953964	0.829682822742	0.5	0.708941953964	1.0	0.0
0.01	0.710743755766	0.830562800464	0.503125	0.710235975258	1.0	0.00625
0.1	0.806032676165	0.875472682956	0.71878715957	0.835683713447	0.929430379747	0.508143939394
1	0.814627111309	0.87486483275	0.753111334868	0.856161851838	0.90167721519	0.604545454545
10	0.818182737099	0.876562152887	0.759171940928	0.859521253319	0.90167721519	0.616666666667
100	0.818182737099	0.876562152887	0.759171940928	0.859521253319	0.90167721519	0.616666666667
Best C	10;100	10;100	10;100	10;100	0.001;0.01	10;100

As we can see from the table shown above, accuracy, F1-score, AUROC, precision and Specificity increase with C increasing in range [0.001,100], they all achieve maximum value when C = 10 and 100. In contrast, Sensitivity is decreasing with C increasing in range [0.001,100], and it achieves maximum value when C=0.001 and 0.01.

0.3

(a) The gamma parameter defines how far the influence of a single training example reaches, with low values meaning 'far' and high values meaning 'close'. The gamma parameters can be seen as the inverse of the radius of influence of samples selected by the model as support vectors. The behavior of the model is very sensitive to the gamma parameter. If gamma is too large, the radius of the area of influence of the support vectors only includes the support vector itself and no amount of regularization with C will be able to prevent overfitting. When gamma is very small, the model is too constrained and cannot capture the complexity or "shape" of the data.

(b)gamma ranges in 10^{-3} , 10^{-2} , 10^{-1} , 1, 10, 10^{2} , 10^{3} , and C ranges in 10^{-3} , 10^{-2} , 10^{-1} , 1, 10, 10^{2} , 10^{3} , 10^{4} . Since gamma and C must be larger than 0, and I use a relative large grid to search the best C and gamma, and this range is usually sufficient. If the best parameters lie on the boundaries of the grid, I extended in that direction in a subsequent search.

(c)

(-)				
Metric	score	С	γ	
accuracy	0.816460518673	100	0.01	
F1-score	0.876285736173	100	0.01	
AUROC	0.756141637898	1000	0.01	
precision	0.858265970904	100	0.01	
sensitivity	1.0	0.001	1000	
specificity	0.610606060606	1000	0.01	

From the table shown above, we can see that accuracy, F1-score, precision achieve maximum value when C=100 and gamma=0.01. AUROC and specificity achieves maximum value when C=1000 and gamma=0.01. There exists many sets of C and gamma that can make sensitivity achieve maximum value, which is 1.0, the one I extracted is C=0.001 and gamma=1000.

0.4

(a)I choose C=100 as parameter for linear-kernel SVM and C=100, gamma=0.01 for RBF-kernel SVM. Since in 0.2 we see that performance measures achieves maximum value when C=10 or 100 in linear-kernel SVM. In 0.3 we see that performance measures achieves maximum or relative high value when C=100, gamma=0.01.

(c)

(0)			
Performance metric	Linear kernel (C=100;10)	RBF kernel (C=100;	
		$\gamma = 0.01$)	
accuracy	0.742857142857	0.757142857143	
F1-score	0.4375	0.451612903226	
AUROC	0.625850340136	0.636054421769	
precision	0.636363636364	0.7	

sensitivity	0.33333333333	0.33333333333
specificity	0.918367346939	0.938775510204

From the table shown above, we can see that in the listed 6 performance metrics, the results achieved by RBF-kernel SVM are slightly better than results achieved by linear-kernel SVM.