# **LG Aimers**

MQL 데이터 기반 B2B 영업기회 창출 예측 모델 개발

## **Data Raiders**

(고경준, 안현준, 진실, 유승태, 문정현)

# Contents.

**01.** EDA

**02.** Pre-Processing

03. Model Selection

04. Ensemble

05. Appendix

# **Data Raiders**



"데이터 탐색 및 Insight 발견하기"

데이터 개요 변수별 target 분포 주요 변수 EDA & Insight

# 1. 데이터 개요

: MQL 고객의 38개 정보와 영업 전환 성공여부를 포함한 데이터

1. **train.csv** shape: (59299, 39)

row: 59299 개

column : 39 개 → 영업 전환 성공 여부(target) + 고객정보, 요청사항, 상품 정보, 문의 정보 등

2. Target ('is\_converted', 영업 성공 전환 여부) 비율 : True (8.2%), False (91.8%) 로 데이터 불균형



# 1. 데이터 개요

#### 결측치 분포

#### 결측치 0%

bant\_submit
business\_unit
customer\_idx
customer\_history
enterprise
lead\_desc\_length
customer\_position
response\_corporate
ver\_cus
ver\_pro
lead\_owner
is\_converted

11개

#### 결측치 1~79%

customer\_country
com\_reg\_ver\_win\_rate
 customer\_type
historical\_existing\_cnt
 customer\_job
 inquiry\_type
 product\_category
 customer\_country.1
 expected\_timeline
 ver\_win\_rate\_x
 ver\_win\_ratio\_per\_bu
 business\_area

**12**개

#### 결측치 80%~

id\_strategic\_ver it\_strategic\_ver idit\_strategic\_ver product\_subcategory product\_modelname business\_subarea

6개

· 결측치 0~79% 각 변수 내 카테고리 축소, 변수 활용하여 새로운 변수 생성 아이디어

🥊 결측치 80% 결측치 채울 아이디어, 변수 제거 타당성 확인

# 2. 변수별 Target 분포

#### Target 분포 차이 큰 변수 (Good)



'com\_reg\_ver\_win\_rate', 'product\_modelname', 'ver\_win\_rate\_x', 'business\_area', 'business\_subarea'

#### Target 분포 차이 작은 변수 (Bad)



# 3. 주요 변수 EDA & Insight

1. Response\_corporate & Customer\_country



# • Insight

- 'response\_corporate' 변수는 총 53개의 자사 법인명으로, 법인에 따라 구매 전환율이 크게 달라진다.
- 'customer\_country' 변수를 기준으로 법인명의 지역이 잘 구분된다.

# 3. 주요 변수 EDA & Insight

#### 2. Product\_category

Product\_category

'multi-split'

'single-split'

...

'solar, tv'

'monitor signage, tv'

' solar tv'

: Product\_category 값 중 컴마(,)를 사이로 여러 값이 있는 데이터 존재



# 🥊 Insight

- 'product\_category' 변수 내 각 클래스가 하나의 정보가 아닌 여러 정보를 포함하여 총 357개의 많은 클래스 값을 가진다.
- 데이터 수를 기준으로 정렬한 클래스에서 357개 중 상위 30개에 대부분의 데이터가 몰렸다.
  - → 지엽적인 데이터로 overfitting 우려된다.

# 3. 주요 변수 EDA & Insight

#### 3. Product\_modelname



# <equation-block>

제품 사이트 참고하여 제품명이 가지는 규칙 세워, 새로운 변수(sinage\_type) 생성 가능해 보인다.

#### 4. Business\_unit





'business\_unit' 의 클래스는 총 5개로, 대부분 데이터가 AS, ID, IT로 분류되어 클래스 개수를 줄여볼 수 있다.

# 3. 주요 변수 EDA & Insight

#### 5. Business\_area & Business\_subarea



['business\_area', 'business\_subarea'] 은 다대일 대응 (1 : n)

['business\_area', 'business\_subarea'] 간의 관계파악을 위해 business\_subarea에 따른 business\_area의 패턴을 Clustering



- Clustering 결과: 13개 Cluster로 묶인다.
- 'business\_area'의 클래스 개수가 12개인 점을 감안하면, other를 새로운 클러스터라 할 경우 거의 같다.
  - → 'business\_subarea' 는 'business\_area'의 부분집합으로 볼 수 있다. (business\_subarear ⊂ business\_area)

# 3. 주요 변수 EDA & Insight

#### 6. Lead\_desc\_length



|         | False | True | Data_count | True(%) |
|---------|-------|------|------------|---------|
| 0-1.9   | 12959 | 557  | 13516      | 4.12    |
| 2-3.4   | 14763 | 647  | 15410      | 4.20    |
| 3.5-4.5 | 13213 | 1391 | 14604      | 9.52    |
| 4.5+    | 12748 | 2250 | 14998      | 15.00   |



- 데이터의 값들이 넓은 범위에서 continuous하게 분포해 있지만, 대부분의 데이터는 특정 임계치를 넘어서지 않는다.
- 영업 설명 길이가 길어질수록 영업 성공 전환 비율은 높아진다.

# 3. 주요 변수 EDA & Insight

#### 7. Event\_name



# 🦆 In

- 'event\_name' 에는 <'besiness\_unit', 'response\_corperate', 'lead\_date', 'lead\_from\_channel'> 과 같이 다양한 변수의 정보들이 들어있다.
  - $\rightarrow$  '\_'를 기준으로 split 하여 파생 변수를 생성

# 3. 주요 변수 EDA & Insight

8. Etc.



'تافىيكت' 'הבורמ לוציפ' '醫院電視' 'điều hòa cục bộ' ...

다양한 외국어 존재



'customer\_country' 변수에서 나라만 추출하여 워드클라우드 결과, 인도가 가장 많음

→ 하지만 영어 외 외국어 중 인도어는 거의 없는 것으로 보아 인도는 영어를 사용한다 추측



- 데이터 중 인도 고객이 가장 많지만, 영어 외 외국어 중 인도어는 거의 없는 것으로 보아 번역을 하지 않아도 되어 보인다.
- 텍스트 클래스를 갖는 변수 내에 같은 의미지만, [기호, 알파벳 대소문자, 동의어]로 다른 클래스로 간주되는 값이 있다.

# 02 Pre-Processing

"전처리로 데이터 품질 높이기"

Data Reduction
Data Transformation
Data Imputation

### 1. Data Reduction

Input feautre의 수가 38개이며, null값을 많이 포함한 feature들이 존재. 중복된 feature, feature importance가 낮거나 불필요한 feature 제거.

#### 1. 11개 feature 제거

```
removal_features = {
'id', 'bant_submit', 'id_strategic_ver', 'it_strategic_ver', 'idit_strategic_ver', 'custom
er_country', 'customer_country.1', 'business_subarea', 'business_area', 'lead_date'
, 'lead_description'
}
```

#### 2. 변수 제거

변수명

[id\_strategic\_ver, it\_strategic\_ver, idit\_strategic\_ver] 변수 제거

: 결측치가 많으며 세 변수끼리 만 분포가 같고, 다른 컬럼과 연관성 보이지 않음

id\_strategic\_ver

it\_strategic\_ver

idit\_strategic\_ver

#### [bant\_submit] 변수 제거

: 분산 0.082 로 각 class 별 분포의 차이 크지 않음 target (is\_converted) 의 비율 차이도 없다고 판단



#### 2. 변수 제거

[customer\_country.1] 변수 제거

: customer\_country 변수와 중복됨

|       | customer_country          | customer_country.1        |
|-------|---------------------------|---------------------------|
| 0     | /Quezon City/Philippines  | /Quezon City/Philippines  |
| 1     | /PH-00/Philippines        | /PH-00/Philippines        |
| 2     | /Kolkata /India           | /Kolkata /India           |
| 3     | /Bhubaneswar/India        | /Bhubaneswar/India        |
| 4     | /Hyderabad/India          | /Hyderabad/India          |
|       |                           |                           |
| 64565 | /São Paulo/Brazil         | /São Paulo/Brazil         |
| 64566 | General / / United States | General / / United States |
| 64567 | / OURO BRANCO / Brazil    | / OURO BRANCO / Brazil    |
| 64568 | / / Germany               | / / Germany               |
| 64569 | / Ongole / India          | / Ongole / India          |

[business\_area, business\_subarea] 변수 제거 : hospital & healthcare만 target 분포 차이 있음 결측치 비율이 높음

| 변수명    | business_area | business_subarea |
|--------|---------------|------------------|
| 결측치 비율 | 68.19%        | 90.68%           |



#### 2. 변수 제거

#### [customer\_country] 변수 제거

- unique 값 수가 많음 -> 정제 되어있지 않음
- 형식 통일되어 있지 않음 (e.g. //나라, 도시/나라 등)
- 같은 값이지만 다르게 표시된 경우 다수 (e.g. 터키, 튀르키예)





## 2. Data Transformation

♥ 영어로 작성된 문자형 feature들 존재.특수문자가 들어가 있거나, 대 소문자의 차이로 서로 다른 변수 값으로 나타남.

#### 1. 변수 값 통일

- → 모든 문자 소문자화, 쉼표 및 마침표 제거, 밑줄 및 하이픈 공백으로 변환.
- → Feature에서 'other', 'others', 'etc' 값을 'Others'로 통일.

#### 2. 변수 값 대체

→ ['business\_unit'] feature에서 'Solution', 'CM' 값은 'Others'로 변경.

## 2. Data Transformation

- 범주형 feature 중 변수값 종류가 너무 다양하고, 소수의 특정 변수 값들이 feature의 대다수를 차지하고 있음.
- 1. Feature 내 변수 category 축소를 통한 새로운 feature 생성
  - → ['continent'] : ['response\_corporate'] feature를 활용하여 'Asia', 'Africa', 'NorthAmerica', 'SouthAmerica', 'Europe', 'Oceania' 값을 가진 대륙 feature 생성
  - → ['business\_area\_group'] : ['business\_area'] feature를 활용하여 'Office', 'Public', 'Amenity', 'Industry', 'Cur\_area' 값을 가진 feature 생성
- 2. 변수 값에서 등장하는 특정 패턴 counting을 통한 새로운 feature 생성
  - → ['product\_category\_count'] : ['product\_category'] feature에서 쉼표(,)로 분리하여 그 개 수를 세어 feature 생성
  - → ['lead\_owner\_count'] : ['lead\_owner'] feature에서 값의 등장 횟수를 계산한 feature 생성

## 2. Data Transformation

- 수치형 feature임에도 불구하고 변수 값의 다양성이 매우 적거나, 수치의 높고 낮음이 유의미하지 않은 feature 존재.
- 1. 수치형 feature 범주화
  - → ['customer\_idx', 'lead\_owner', 'ver\_cus', 'ver\_pro']

# 2. expected\_budget (미사용)

- 🥊 문자열에서 숫자 추출 및 화폐 통일 필요성에 대한 분석
- 1. 영어로 번역
  - → ['weniger als', 'menos de' -> 'less than']
  - → ['uber' -> 'more than']
- 2. 문자열에서 숫자 추출
  - → lower\_budget과 upper\_budget 정의
  - → 예: less than 200,000 -> [0, 200000]
- 3. 달러로 통화 통일
  - → forex-python의 CurrencyRates() 이용해서 '2021-01-01'의 환율 계산
  - → lower\_budget\_usd과 upper\_budget\_usd로 저장

# 2. lead\_from\_channel (미완성)

- ♠ Lead로 연락되는 경로에서 인사이트 찾기
- 1. 1% 이상 등장한 channel 경로 필터링
  - → unique 개수 약 60개
- 2. 텍스트 클러스터링
  - → 의미 유사도가 아니라 텍스트 유사도를 이용
  - → edit distance 사용

# 3. Data Imputation

- 🥊 24개의 Input feature 중 12개의 feature가 null값 존재.
- 1. 범주형 feature
  - → String 'UNK'로 결측치 처리.
- 2. 수치형 feature
  - → 전처리 이후 존재할 수 없는 값(-1)으로 결측치 처리.

# 03 Model Selection

"베이스라인 모델 선택 및 학습"

베이스라인 모델 선택 기준 Catboost 학습 파라미터

# 1. 베이스라인 모델 선택 기준 (1)

- Which model is good?
- 1. Interpretability
  - → 어떤 feature가 고객 전환에 영향을 미치는지 알아야 현업에서 사용 가능
- 2. Fast training and inference
  - → 모델 학습/추론 속도가 일정 수준 이상
  - → 다양한 실험을 빠르게 할 수 있음



#### **Candidate Baseline Models**

- Linear models (Linear regression, SVM, etc.)
- Decision Trees (including Random Forests, Boosting-based, etc.)
- Deep learning models are typically difficult to interpret.

# 1. 베이스라인 모델 선택 기준 (2)

- - How to convert categorical features to real numbers?
- 1. One-hot encoding
  - → 차원이 급격히 늘어나는 문제가 있음. (차원의 저주)
  - → customer\_idx, lead\_owner, product\_category 등은 cardinality가 매우 높음
- 2. Target encoding
  - → class label의 통계량으로 변환 (i.e. 평균값, 중앙값)
  - → 높은 Overfitting의 위험성
- 3. Unseen category
  - → unseen category에 대해서도 모델이 대응 가능해야 함



### 2. Baseline model: Catboost

- Advantages of Catboost
- 1. Boosting-based Decision Tree
  - → feature importance로 interpretability 확보 가능
  - → 빠른 학습/추론 속도
- 2. Good handling of categorical features
  - → high cardinality
  - → avoid overfitting
  - → unseen categorical features

### 2. Catboost



#### Catboost Algorithm

- 1. High cardinality → average class label value
- 2. Avoid overfitting → random permutation
- 3. Unseen categorical features → using prior probability of class label

"모델 앙상블로 Robustness 향상하기"

Ensemble 이유 Bagging vs Boosting Ensemble 적용

# 1. Ensemble 이유

- 🥊 Overfitting을 방지하고 Robust한 모델 예측 결과를 내기 위해 사용
- 1. 모델에 다양성 도입
  - → Ensemble은 다양한 개별 모델로 구성되어 각 모델이 데이터의 서로 다른 측면을 학습할 수 있음
- 2. Overfitting(과적합) 감소
  - → Ensemble은 여러 모델의 예측을 평균화하거나 가중치를 부여하여 종합함으로써 과적합을 줄일 수 있음
- 3. 최종 모델 오류 감소
  - → 개별 모델이 서로 다른 유형의 오류를 만들 수 있는데, Ensemble을 통해 모델들의 서로 다른 오류 를 상쇄시킬 수 있음

# 2. Bagging vs Boosting

- Boosting 기반 모델로 Bagging 기법 적용
- 1. Boosting 기반 모델 사용
  - → Catboost 모델 사용
  - → Boosting 기반 모델 사용하여 Bias 감소
- 2. Bagging 기법 적용
  - → Random Seed Ensemble 사용
  - → Catboost 모델 기반으로 Bagging 기법 적용하여 Variance 감소

Bagging과 Boosting을 동시에 사용하여 Bias와 Variance를 동시에 감소시킴

# 3. Ensemble 적용



Random Seed Ensemble

#### 1. Random Seed

- → 난수 생성에 영향을 주는 hyperparameter
- → 동일한 모델 및 hyperparameter 값을 사용해도 Random Seed 값에 따라 모델 예측 결과가 달라질 수 있음

#### 2. Seed Ensemble

- → Random Seed 값을 다양하게 활용하는 Ensemble 기법
- → 각기 다른 예측을 하는 각각의 Random Seed 값을 갖는 모델들을 조합하여 Robust한 모델을 구축할 수 있음 (9개 값 사용)

"미사용된 실험들 소개"

변수 분포 단순화하기
customer\_country 변수 전처리
customer\_idx 처리
Hyper-Parameter Tuning
의미있는 변수 생성 시도
True 비율을 유지하는 데이터 셋 조정

# 1. 변수 분포 단순화하기

- Categorical 변수는 cardinality가 높으면서 빈도수가 적은 category가 많았고, Numerical 변수는 분포가 매우 넓고 치우친 형태를 띄었음 이를 단순화하여 over/under fitting 을 방지해보자는 아이디어
- 1-1. 비슷한 category를 통합하기 (cat)
  - → category를 통합하는 rule에 주관이 반영되어 데이터 오염이 된 것으로 추정.
- 1-2. 빈도수가 특정 값 ( $\alpha$ ) 미만인 변수는 'others'로 치환하기 (cat)
  - → 주관이 반영되었고, 의미 있는 category 정보가 누락되었을 수 있을 것으로 추정.
- 1-3. category 별 영업 전환율에 laplace smoothig 적용 (cat)
  - → 초기 영업 전환율이 이후 전환율에 유의미한 영향이 있는지 (?)
- 1-4. binning 적용 (num)
  - → numerical 변수에 대한 CatBoost의 기본 rule이 더 강력한 것으로 추정.

# 2. customer\_country 변수 전처리



🥊 customer\_country 변수는 text가 정제되지 않아서 활용이 어려움 고객의 나라, 도시 등의 위치 정보를 제대로 반영하기 위해 전처리 진행



▶ 추출된 변수(country, city)의 결측값이 많아서 학습이 잘 되지 않았을 것으로 추정.

# 3. Unseen customer\_idx 처리

customer\_idx 변수는 항상 Feature Importance가 컸지만, train set에 속한 고객과 test set에 속한 고객이 달라서 성능 향상에 크게 도움이 되지 않았음 Train에서 학습되지 않은 customer\_idx는 모델을 변경해주는 시도



# 4. Hyper-Parameter Tuning

🥊 CatBoost 모형의 최적 hyper-parameter setting을 위한 시도 실험은 앨리스와 로컬, colab 등으로 병렬적으로 진행

#### 4-1. Optuna 활용

- : hyper-parameter optimization 프레임워크 optuna로 최적 setting을 적용했습니다.
- → train test set 간 분포의 차이로 인해 적용이 안되는 것으로 판단.

#### 4-2. Hyper-Parameter Ensemble

- : hyper-parameter를 변경하며 5, 7, 9 개 모델을 앙상블
- → robustness 향상에는 도움이 되었을 것으로 추측하는데, 성능이 향상되지는 않음.

# 5. 의미 있는 변수 생성 시도

FDA를 진행하며 구매 전환의 signal이 되는 변수를 생성하기 위해 노력특히, 앙상블 모형의 Feature Importance를 참고하여 engineering을 진행

#### 5-1. lead\_owner

- → 영업 사원마다 구매 전환율이 다를 것이라고 추측
- → sales 횟수가 많은데도 전환율이 높은 사원들만 추출 (sales\_king 변수)

#### 5-2. inquiry\_type

- → inquiry message 내용 중 구매 전환의 단서가 되는 keyword가 있을 것으로 추측
- → 구매 전환이 된 경우와 되지 않은 경우를 Document로 TF-IDF 진행
- → 구매 전환 시 자주 등장한 단어들(keyword)을 언급했는지 여부를 추출 (keyword 변수)

# 6. True 비율을 유지하는 데이터 셋 조정

Precision보다 Recall이 매우 낮은 점을 해결하기 위한 시도입니다. True 판별 성능을 높이기 위해 K-fold 시 사용하는 데이터 셋을 변형했습니다.



# Q&A

LG Aimers Data Raiders (고경준, 안현준, 진실, 유승태, 문정현)