MICROECONOMIA I TEORIA DA PRODUÇÃO

Rafael V. X. Ferreira rafaelferreira@usp.br

Abril de 2020

Universidade de São Paulo (USP) Faculdade de Economia, Administração e Contabilidade (FEA) Departamento de Economia

Teoria da Produção

- A teoria da produção se ocupa do lado da oferta da economia;
- A oferta da economia é feita por unidades produtivas que chamamos de "firmas".
- Estamos interessados em construir o arcabouço teórico mais simples possível, que nos permita descrever o comportamento de mercado das firmas.
- Uma firma será, portanto, nada mais que uma "caixa preta" que transforma fatores de produção (insumos) em produtos.
- Não nos interessa, nesse curso, a forma como ela faz essa transformação, como ela é gerida, etc.

Tecnologia

- Produção é o processo de transformar insumos em produtos.
- Tecnologia determina que transformações são possíveis.
- Chamamos de **plano de produção** um vetor $y \equiv (y_1, y_2, \dots, y_L) \in \mathbb{R}^L$, tal que $y_l > 0$ se l é um produto e $y_l < 0$ se l é um insumo (fator de produção).
- O conjunto de todos os planos de produção possíveis para uma dada tecnologia é representado pelo conjunto de possibilidades de produção, que denotamos por Y.
 - ∘ $y \in Y$: y é viável
 - o *y* ∉ *Y*: *y* é inviável
- Uma tecnologia é descrita pelas propriedades de Y.

Tecnologia

Propriedades comuns a conjuntos de produção

- 1. Y fechado
- 2. Free disposal
- 3. No free lunch
- 4. Custos afundados
- 5. Inação
- 6. Irreversibilidade
- 7. Retornos à escala
- 8. Aditividade
- 9. Convexidade

Conjunto de produção fechado

$$\forall \tilde{y}_n \in Y, n \in \mathbb{N}$$
, seja $y = \lim_{n \to \infty} \tilde{y}_n$. Segue que $y \in Y$

O conjunto de produção inclui a sua fronteira.

Livre descarte (free disposal)

$$\tilde{y} \in Y \text{ e } \tilde{x} \in \mathbb{R}_+^L \implies \tilde{y} - \tilde{x} \in Y$$

 É sempre possível usar mais insumos, sem alterar a quantidade produzida.

No free-lunch

Não é possível produzir algo do nada; não há output sem inputs.

Inação é possível

○ É possível fechar a firma e não produzir nada, sem incorrer em custos.

Custos afundados (sunk costs)

- Inação não é possível.
- Período de tempo considerado afeta a existência de custos afundados.

Irreversibilidade

Se
$$y \in Y$$
 e $y \neq 0 \implies -y \notin Y$

 Uma vez transformados insumos em produtos, não é possível transformar produtos de volta em insumos.

Retornos não-crescentes à escala

Se
$$y \in Y \implies \alpha y \in Y, \ \forall \alpha \in [0,1]$$

Retornos não-decrescentes à escala

Se
$$y \in Y \implies \alpha y \in Y, \ \forall \alpha \ge 1$$

Retornos constantes à escala

Se
$$y \in Y \implies \alpha y \in Y, \ \forall \alpha \ge 0$$

Convexidade

$$y_0 \in Y \text{ e } y_1 \in Y \implies \lambda y_0 + (1 - \lambda)y_1 \in Y, \ \forall \lambda \in [0, 1]$$

 Se inação é possível, convexidade implica retornos não-crescentes à escala.

Outras propriedades

Aditividade

$$y_0 \in Y \ \text{e} \ y_1 \in Y \implies y_0 + y_1 \in Y$$

- Conjunto de produção agregado precisa satisfazer aditividade para que livre-entrada seja possível.
- Cone convexo

$$y_0, y_1 \in Y \in \alpha, \beta \in \mathbb{R}_+ \implies \alpha y_0 + \beta y_1 \in Y, \ \forall \alpha, \beta \ge 0$$

 Equivale à junção das propriedades de aditividade e retornos constantes à escala.

Função de Transformação

- Uma função de transformação F descreve o conjunto de possibilidades de produção.
 - 1. $\forall y \in Y, F(y) \leq 0$.
 - 2. $F(\bar{y}) = 0$, para todo \bar{y} na fronteira de Y.
- Fronteira de transformação: $\{y \in Y : F(y) = 0\}$
- O Se F é diferenciável e \bar{y} está na fronteira de transformação, podemos definir a **taxa marginal de transformação** do bem l para o bem k em \bar{y} como:

TMT_{l,k}(
$$\bar{y}$$
) = $\frac{\frac{\partial F(\bar{y})}{\partial y_l}}{\frac{\partial F(\bar{y})}{\partial y_k}}$

Objetivos da firma

- Firmas não são unidades autônomas. Seus objetivos derivam dos objetivos dos indivíduos que a controlam.
- Em vista disso, maximização de lucro pode ser vista como um objetivo razoável para a firma?
- A resposta é: sob certas condições, sim.
- Suponha haver J firmas e I indivíduos. As firmas são de propriedade dos indivíduos, de modo que o indivíduo i possui uma parcela $\theta_i^i \in [0,1]$ da firma j. E, obviamente:

$$\sum_{i} \theta_{j}^{i} = 1$$

Objetivos da firma

○ Se $e^i \in X^i$ é a dotação inicial do indivíduo i, sua restrição orçamentária é dada por:

$$p \cdot x \le p \cdot e^i + \sum_j \theta^i_j \pi_j(p)$$

- Quanto maior o lucro, maior será a renda dos acionistas, fazendo com que maximização do lucro seja compatível com os objetivos individuais de todos os acionistas.
- Algumas hipóteses são chave:
 - 1. Preços são fixos e não dependem da ação da firma
 - 2. Lucros são determinísticos
 - 3. Acionistas administram a firma

Problema da Firma: Hipóteses

- O Firma é maximizadora de lucros
- Firma é tomadora de preços: sua oferta de produtos e sua demanda por insumos não afeta os preços.
- $\bigcirc \ p \gg 0 \ (p_\ell > 0, \forall \ell)$
- $Y \neq \emptyset$: há ao menos um plano de produção factível.
- Y é fechado
- Vale free-disposal

Atenção: note que não explicamos de onde vêm os preços, nem como ou por quem são eles estabelecidos.

Problema da Firma

O Dado um vetor $p \in \mathbb{R}^L$ de preços, a firma escolhe o plano de produção de modo a maximizar o seu lucro π

$$\pi(p) = \max_{y \in Y} \ p \cdot y$$

 O conjunto dos planos de produção que solucionam o problema da firma é dado por:

$$S(p) = \arg \max\{p \cdot y : y \in Y\}$$

○ Em outras palavras, a firma observa o vetor de preços e escolhe um plano de produção $y^* \in Y$ tal que $p \cdot y^* \ge p \cdot y, \forall y \in Y$.

Função lucro

Proposição

Seja $\pi(\cdot)$ a função lucro associada a um conjunto de produção Y, e seja $y(\cdot)$ a correspondência de oferta associada. Se Y é fechado e satisfaz a propriedade de livre descarte, temos que:

- 1. **Lema de Hotelling**: se $y(\bar{p})$ é unitário, então $\pi(\cdot)$ é diferenciável em \bar{p} e $\forall \pi(\bar{p}) = y(\bar{p})$.
- 2. $\pi(\cdot)$ é homogênea de grau 1;
- 3. Se Y é convexo, então $Y = \{ y \in \mathbb{R}^L : p \cdot y \le \pi(p), \forall p \gg 0 \}.$
- 4. $y(\cdot)$ é homogênea de grau zero;
- 5. Se Y é convexo, y(p) é convexo, $\forall p$

Função lucro

Proposição

Seja $\pi(\cdot)$ a função lucro associada a um conjunto de produção Y, e seja $y(\cdot)$ a correspondência de oferta associada. Se Y é fechado e satisfaz a propriedade de livre descarte, temos que:

- 6. $\pi(\cdot)$ é convexa;
- 7. Se $y(\cdot)$ é uma função diferenciável em \bar{p} , então $Dy(\bar{p}) = D^2\pi(\bar{p})$ é uma matriz positiva semi-definida simétrica, com $Dy(\bar{p})\bar{p} = 0$.

Firmas de produto único

- Nestes casos, podemos representar a tecnologia da firma usando uma **função de produção** $f : \mathbb{R}^{L-1}_+ \to \mathbb{R}_+$:
- Uma função de produção associa quantidades de insumos a quantidades do produto.
- O Hipóteses comumente feitas sobre a função de produção:
 - 1. Contínua
 - 2. Estritamente crescente
 - 3. Estritamente quase-côncava
 - 4. f(0) = 0
- Similarmente à curva de indiferença na teoria do consumidor, podemos definir uma isoquanta como:

$$Q(q) = \{ z \in \mathbb{R}^{L-1}_+ : f(z) = q \}$$

Condições de Inada

Uma função de produção satisfaz as condições de Inada se:

1.
$$f(0) = 0$$

2. f é duas vezes continuamente diferenciável

$$3. \ \frac{\partial f(z)}{\partial z_l} > 0.$$

$$4. \ \frac{\partial^2 f(z)}{\partial z_1^2} < 0.$$

5.
$$\lim_{z \to 0} \frac{\partial f(z)}{\partial z_l} = +\infty$$

$$6. \lim_{z \to +\infty} \frac{\partial f(z)}{\partial z_l} = 0$$

Taxa Marginal de Substituição Técnica

 Similarmente à taxa marginal de substituição na teoria do consumidor, podemos definir a taxa marginal de substituição técnica entre os insumos l e k no ponto z como:

$$TMST_{l,k}(z) = \frac{\frac{\partial f(z)}{\partial z_l}}{\frac{\partial f(z)}{\partial z_k}}$$

 Utilidade marginal n\u00e3o tem significado cardinal, mas a produtividade marginal tem.

Firmas de produto único no longo prazo

- O Dado um vetor $w \in \mathbb{R}^{L-1}$, de preços de insumos e um preço de produto, $p \in \mathbb{R}$, a firma escolhe um vetor de insumos $z \in \mathbb{R}^{L-1}$, incorrendo em um custo de $w \cdot z$.
- Com essa quantidade de insumos, a firma pode produzir qualquer quantidade $q \in [0, f(z)]$, e pode vender essa quantidade de produtos no mercado, obtendo pq.
- função lucro de longo prazo:

$$\pi(p, w) = \begin{cases} \max_{q, z} & pq - w \cdot z \\ \text{s.a.} & f(z) \ge q \end{cases}$$

O Se $f(\cdot)$ é estritamente crescente, sabemos que a restrição $f(z) \ge q$ é ativa.

Firmas de produto único no longo prazo

O Demanda incondicional por insumos:

$$z^*(p, w) \in \arg\max_{z} pf(z) - w \cdot z$$

 \bigcirc Se z^* é ótimo e f é diferenciável, precisamos ter:

$$p_l \frac{\partial f(z^*)}{\partial z_l} - w_l \le 0, \ \ (=0, \ \text{se} \ z_l^* > 0)$$

- Se Y é convexo, esta CPO é também suficiente.
- \bigcirc E, para quaisquer dois bens l, k, precisamos ter:

$$TMST_{l,k}(z) = \frac{\frac{\partial f(z)}{\partial z_l}}{\frac{\partial f(z)}{\partial z_k}} = \frac{w_l}{w_k}$$

Lei da Oferta

Proposição

A oferta da firma $y(p, w) = f(z^*(p, w))$ é positivamente inclinada e a demanda por fatores é negativamente inclinada.

Demonstração:

Sejam dois vetores (p^0,w^0) e (p^1,w^1) e as suas escolhas ótimas $(y^0,-z^0)$ e $(y^1,-z^1)$. Logo, temos que ter:

$$\begin{array}{lll} p^0y^0-w^0\cdot z^0 \geq p^0y^1-w^0\cdot z^1 & \Longrightarrow & p^0(y^0-y^1)-w^0\cdot (z^0-z^1) \geq 0 \\ p^1y^1-w^1\cdot z^1 \geq p^1y^0-w^1\cdot z^0 & \Longrightarrow & p^1(y^1-y^0)-w^1\cdot (z^1-z^0) \geq 0 \end{array}$$

Segue, pois, que:

$$\left[(p^0, w^0) - (p^1, w^1) \right] \left[\begin{pmatrix} y^0 \\ -z^0 \end{pmatrix} - \begin{pmatrix} y^1 \\ -z^1 \end{pmatrix} \right] \ge 0$$

Firmas de produto único no curto prazo

- Seja $z \equiv (x, \bar{x})$ um vetor de insumos, em que x é um subvetor de insumos variáveis, e \bar{x} um subvetor de insumos fixos. w e \bar{w} são os respectivos vetores de preços.
- função lucro de curto prazo:

$$\pi(p, w, \bar{w}, \bar{x}) = \begin{cases} \max_{q, x} & pq - \bar{w} \cdot \bar{x} - w \cdot x \\ \text{s.a.} & f(x, \bar{x}) \ge q \end{cases}$$

○ demanda por insumos no curto prazo:

$$z^*(p, w, \bar{w}, \bar{x}) \in \arg\max_{x} pf(x, \bar{x}) - w \cdot x - \bar{w} \cdot \bar{x}$$

Minimização de custos

 Qual o mínimo que a firma precisa gastar para produzir uma quantidade q?

$$c(w,q) = \min_{x} \left\{ w \cdot x : x \in \mathbb{R}^{L-1}_+ \text{ e } f(x) \ge q \right\}$$

- \bigcirc A função c(w, q) é chamada de função custo.
- A solução do problema de minimização de custos é chamada de demanda condicional por fatores:

$$\bar{z}(w,q) = \arg\min_{x} \left\{ w \cdot x \ : \ x \in \mathbb{R}^{L-1}_{+} \ \mathrm{e} \ f(x) \geq q \right\}$$

- **Existência**: se $f(\cdot)$ é contínua (já que a restrição cria um conjunto fechado).
- O **Unicidade**: se $f(\cdot)$ é estritamente quase-côncava.

Minimização de custos

○ $f(\cdot)$ diferenciável e z^* ótimo implica que, $\forall \ell = 1, ..., L-1$ precisamos ter:

$$\frac{\partial \mathcal{L}(z,\lambda)}{\partial z_{\ell}} \geq 0 \;\; \Leftrightarrow \;\; w_{\ell} \geq \lambda \frac{\partial f(z^*)}{\partial z_{\ell}}, \;\; \text{com igualdade se} \;\; z_{\ell}^* > 0$$

Ou, em notação matricial:

$$w \ge \lambda \nabla f(z^*)$$
 e $[w - \lambda \nabla f(z^*)] \cdot z^* = 0$

- λ é a variação marginal na função objetivo ao se relaxar a restrição $f(z) \ge q$: custo marginal de produção.
- $\bigcirc \ c(w,q)$, a função valor do problema, é chamada de função custo.

Minimização de Custos

Proposição

Seja c(w,q) função custo de uma firma de produto único com tecnologia Y e função de produção $f(\cdot)$ e seja z(w,q) a correspondência de demanda condicional por fatores associada. Suponha Y fechado e satisfazendo a propriedade de livre descarte.

1. **Lema de Sheppard**: se $z(\bar{w}, q)$ consiste de um único ponto e c(w, q) é diferenciável com respeito a w em \bar{w} , então:

$$\frac{\partial c(\bar{w},q)}{\partial w_{\ell}} = z(\bar{w},q)$$

- 2. $c(\cdot)$ é homogênea de grau um em w e não-decrescente em q.
- 3. $c(\cdot)$ é côncava em w

Minimização de Custos

Proposição

Seja c(w,q) função custo de uma firma de produto único com tecnologia Y e função de produção $f(\cdot)$ e seja z(w,q) a correspondência de demanda condicional por fatores associada. Suponha Y fechado e satisfazendo a propriedade de livre descarte.

- 4. $z(\cdot)$ é homogênea de grau zero em w
- 5. Se $f(\cdot)$ é homogênea de grau um (retornos constantes à escala), então $c(\cdot)$ e $z(\cdot)$ são homogêneas de grau um em q.
- 6. Se $f(\cdot)$ é côncava, então $c(\cdot)$ é uma função convexa em q (custos marginais não-decrescentes em q).

Equivalência

Proposição

Maximização de lucros implica minimização de custos.

Demonstração:

- 1. Seja y^* o nível de produto que maximiza o lucro e z^* o vetor de insumos utilizados para produzir y^* .
- 2. Suponha que exista um outro vetor de insumos \tilde{z} tal que $f(\tilde{z}) \ge y^*$, e $w \cdot \tilde{z} < w \cdot z^*$.
- 3. Logo, o lucro associado a \tilde{z} é tal que $pf(\tilde{z}) w \cdot \tilde{z} \ge py^* w \cdot \tilde{z} > py^* w \cdot z^*$.
- 4. Segue, pois, que y^* não é ótimo. Contradição.

Problema da firma em 2 estágios

- Equivalência permite dividir o problema da firma em dois estágios:
 - 1. Para todo q, computamos c(w, q).
 - 2. Em seguida, resolvemos:

$$\max_{q \in \mathbb{R}_+} pq - c(w, q)$$

Solução do problema é dada por:

$$p \le \frac{\partial c(w, q^*)}{\partial q}$$
 e $\frac{\partial^2 c(w, q)}{\partial q^2} \ge 0$

 \bigcirc Função custo é convexa em q se Y for convexo.

Problema da firma em 2 estágios

- Equivalência permite dividir o problema da firma em dois estágios:
 - 1. Para todo q, computamos c(w, q).
 - 2. Em seguida, resolvemos:

$$\max_{q \in \mathbb{R}_+} pq - c(w, q)$$

Solução do problema é dada por:

$$p = \frac{\partial c(w, q)}{\partial q}$$
 e $\frac{\partial^2 c(w, q)}{\partial q^2} \ge 0$

 \bigcirc Função custo é convexa em q se Y for convexo.

Excedente do Produtor

 O excedente do produtor é a diferença entre as receitas e os custos variáveis:

$$CV(q, w) = \int_0^q \frac{\partial c(s, w)}{\partial s} ds$$

○ Como a receita é *pq*, o excedente é dado por:

$$EP(q, p, w) = \int_0^q \left(p - \frac{\partial c(s, w)}{\partial s} \right) ds$$

O lucro será o excedente do produtor menos o custo fixo.

Condição de encerramento de operações

- A firma pode operar no curto prazo mesmo com lucro negativo, mas no longo prazo ela só produz se o lucro for não-negativo.
- Em outras palavras: uma firma nunca produzirá uma quantidade positiva no curto prazo se o preço for menor que o custo variável médio:

$$EP(q^*, p, w) > 0 \implies pq^* - CV(q^*, w) > 0$$

$$\left[p - \frac{CV(q^*, w)}{q^*} \right] q^* > 0$$

- Como vimos anteriormente, variações na oferta da firma não possuem efeito análogo ao efeito-renda do consumidor.
- Isso simplifica a agregação no lado da oferta, e as propriedades mais importantes da oferta individual se preservam mediante agregação.
- \supset Seja a correspondência de oferta agregada, y(p) dada por:

$$y(p) = \sum_{j} y_{j}(p)$$

$$= \{ y \in \mathbb{R}^{L} : y = \sum_{j} y_{j}, \text{ para algum } y_{j} \in y_{j}(p), j = 1, \dots, J \}$$

Proposição

Para todo $p \gg 0$, temos:

1.
$$\pi^*(p) = \sum_{j} \pi^{j}(p)$$

2.
$$y^*(p) = \sum_j y^j(p) = \left\{ \sum_j y^j : y_j \in y(p) \ \forall j \right\}.$$

Proposição

Para todo $p \gg 0$, temos:

1.
$$\pi^*(p) = \sum_j \pi^j(p)$$

Demonstração (≥):

- 1. Tome uma coleção $\{y_j\}_{j=1}^J$, com $y_j \in Y^j$. Então $\sum\limits_j y^j \in Y$.
- 2. $\pi^*(p)$ é a função lucro associada a Y. Logo:

$$\pi^*(p) \ge p \cdot \sum_j y^j = \sum_j p \cdot y^j$$

3. Em particular, para $y^j = y^j(p)$, temos $\pi^*(p) \ge \sum_j \pi^j(p)$.

Proposição

Para todo $p \gg 0$, temos:

1.
$$\pi^*(p) = \sum_j \pi^j(p)$$

Demonstração (≤):

- 4. Tome $y \in Y$. Por definição, existe $\{y_j\}_{j=1}^J$, com $y_j \in Y^j$, tal que $\sum\limits_j y_j = y$.
- 5. Então $p \cdot y = p \cdot \sum_j y_j = \sum_j p \cdot y_j \le \pi^j(p)$, para todo $y \in Y$.
- 6. Logo, $\pi^*(p) \leq \sum_j \pi^j(p)$.

Proposição

Para todo $p \gg 0$, temos:

2.
$$y^*(p) = \sum_{j} y_j(p) = \left\{ \sum_{j} y_j : y_j \in y(p) \ \forall j \right\}.$$

Demonstração:

- 1. Vamos mostrar primeiro que $\sum\limits_{j}y_{j}(p)\subset y^{*}(p).$
- 2. Considere qualquer família $\{y_j\}_{j=1}^J$, com $y_j \in y_j(p)$. Temos que:

$$p \cdot \sum_j y_j = \sum_j p \cdot y_j = \sum_j \pi^j(p) = \pi^*(p)$$

A última igualdade segue da parte (1) da proposição.

Proposição

Para todo $p \gg 0$, temos:

2.
$$y^*(p) = \sum_{j} y_j(p) = \left\{ \sum_{j} y_j : y_j \in y(p) \ \forall j \right\}.$$

- 1. Vamos agora mostrar que $y^*(p) \subset \sum_j y_j(p)$.
- 2. Considere um $y \in y^*(p)$. Então $y = \sum_j y_j$, para alguma família $\{y_j\}_{j=1}^J$ com $y_j \in Y^j$.
- 3. Como $p \cdot \sum_j y_j = \pi^*(p) = \sum_j \pi^j(p)$ e, $\forall j$ temos $p \cdot y_j \leq \pi^j(p)$, segue que $p \cdot y_j = \pi^j(p)$, para todo j.

Proposição

Para todo $p \gg 0$, temos:

2.
$$y^*(p) = \sum_j y_j(p) = \left\{ \sum_j y_j : y_j \in y(p) \ \forall j \right\}.$$

- 4. Logo, $y_j \in y_j(p)$, para todo j, o que implica que $y \in \sum\limits_{j} y_j(p)$.
- 5. Segue, pois, que $y^*(p) \subset \sum_i y(p)$.

- Eficiência de Pareto é uma das questões-chave da análise de bem-estar.
- Quando estudarmos equilíbrio geral, eficiência de Pareto e eficiência da produção se confundem. Por ora, contudo, nos concentramos apenas no âmbito da firma.
- No âmbito da produção, dizemos que um plano $y \in Y$ é eficiente se não há nenhum $e \in \mathbb{R}_+^L \setminus \{0\}$ tal que $y + e \in Y$.

Proposição

Se $y \in Y$ maximiza lucros para algum vetor de preços $p \gg 0$, então y é eficiente.

- 1. Suponha que não.
- 2. Seja $y \in y^*(p)$ e suponha que existe $e \in \mathbb{R}_+^L \setminus \{0\}$ tal que $y + e \in Y$.
- 3. Como $p \gg 0$, segue que $p \cdot (y + e) = p \cdot y + p \cdot e > p \cdot y$.
- 4. Logo, $y \notin y^*(p)$. Contradição.

Proposição

Suponha que Y é convexo. Então para todo y eficiente, existe um vetor de preços $p \ge 0$ para o qual y é a escolha maximizadora de lucro.

- 1. Seja y eficiente, e defina o conjunto $P_y = \{ \tilde{y} \in \mathbb{R}^L : \tilde{y} \gg y \}.$
- 2. Como y é eficiente, $Y \cap P_y = \emptyset$.
- 3. Pelo teorema do hiperplano separador, $\exists p \in \mathbb{R}^L$, $p \neq 0$, tal que $p \cdot \tilde{y} \geq p \cdot \hat{y}$, $\forall \tilde{y} \in P_y$ e $\forall \hat{y} \in Y$.
- 4. Logo, precisamos ter $p \ge 0$, ou $p \cdot \tilde{y} para valores grandes o suficiente de <math>\hat{y}_l$, se $p_l < 0$.

Proposição

Suponha que Y é convexo. Então para todo y eficiente, existe um vetor de preços $p \ge 0$ para o qual y é a escolha maximizadora de lucro.

Demonstração (cont.):

- 5. Em seguida, tome $\hat{y} \in Y$.
- 6. Então $p \cdot \tilde{y} \ge p \cdot \hat{y}$, $\forall \tilde{y} \in P_y$.
- 7. Como y está na fronteira de Y e \tilde{y} pode ser arbitrariamente próximo de y, segue que $p \cdot y \ge p \cdot \hat{y}$, para qualquer $\hat{y} \in Y$.
- 8. Logo, $y \in y^*(p)$.