Case study: windmill

## The windmill data

- Engineer: does amount of electricity generated by windmill depend on how strongly wind blowing?
- Measurements of wind speed and DC current generated at various times.
- Assume the "various times" to be randomly selected aim to generalize to "this windmill at all times".
- Research questions:
  - Relationship between wind speed and current generated?
  - If so, what kind of relationship?
  - Can we model relationship to do predictions?

# Packages for this section

```
library(tidyverse)
library(broom)
```

## Reading in the data

```
my_url <-
   "http://ritsokiguess.site/datafiles/windmill.csv"
windmill <- read_csv(my_url)
windmill</pre>
```

```
# A tibble: 25 x 2
  wind_velocity DC_output
         <dbl>
                  <dbl>
          5
                 1.58
          6
                 1.82
3
          3.4 1.06
          2.7 0.5
5
                 2.24
         10
6
          9.7
                2.39
          9.55
              2.29
8
          3.05
                  0.558
9
          8.15
                  2.17
```

## Strategy

- Two quantitative variables, looking for relationship: regression methods.
- Start with picture (scatterplot).
- Fit models and do model checking, fixing up things as necessary.
- Scatterplot:
  - 2 variables, DC\_output and wind\_velocity.
  - ▶ First is output/response, other is input/explanatory.
  - ▶ Put DC\_output on vertical scale.
- Add trend, but don't want to assume linear:

```
ggplot(windmill, aes(y = DC_output, x = wind_velocity)) +
  geom_point() + geom_smooth()
```

# Scatterplot



## Comments

- Definitely a relationship: as wind velocity increases, so does DC output. (As you'd expect.)
- Is relationship linear? To help judge, geom\_smooth smooths scatterplot trend. (Trend called "loess", "Locally weighted least squares" which downweights outliers. Not constrained to be straight.)
- Trend more or less linear for while, then curves downwards (levelling off?). Straight line not so good here.

# Fit a straight line (and see what happens)

```
DC.1 <- lm(DC_output ~ wind_velocity, data = windmill)
summary(DC.1)</pre>
```

```
Call:
```

```
lm(formula = DC_output ~ wind_velocity, data = windmill)
```

#### Residuals:

```
Min 1Q Median 3Q Max -0.59869 -0.14099 0.06059 0.17262 0.32184
```

#### Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.13088 0.12599 1.039 0.31
wind_velocity 0.24115 0.01905 12.659 7.55e-12 ***
```

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' '

## Another way of looking at the output

 The standard output tends to go off the bottom of the page rather easily. Package broom has these:

```
# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
<dbl> <6bl> <dbl> <dd> <dbl> <dbl>
```

showing that the R-squared is 87%, and

glance(DC.1)

```
tidy(DC.1)
```

showing the intercept and slope and their significance.

## Comments

- Strategy: 1m actually fits the regression. Store results in a variable. Then look at the results, eg. via summary or glance/tidy.
- My strategy for model names: base on response variable (or data frame name) and a number. Allows me to fit several models to same data and keep track of which is which.
- Results actually pretty good: wind.velocity strongly significant,
   R-squared (87%) high.
- How to check whether regression is appropriate? Look at the residuals, observed minus predicted, plotted against fitted (predicted).
- Plot using the regression object as "data frame" (in a couple of slides).

## Scatterplot, but with line

```
ggplot(windmill, aes(y = DC_output, x = wind_velocity)) +
geom_point() + geom_smooth(method="lm", se = FALSE)
```



# Plot of residuals against fitted values

```
ggplot(DC.1, aes(y = .resid, x = .fitted)) + geom_point()
```



Case study: windmill

## Comments on residual plot

- Residual plot should be a random scatter of points.
- Should be no pattern "left over" after fitting the regression.
- Smooth trend should be more or less straight across at 0.
- Here, have a curved trend on residual plot.
- This means original relationship must have been a curve (as we saw on original scatterplot).
- Possible ways to fit a curve:
  - ▶ Add a squared term in explanatory variable.
  - ▶ Transform response variable (doesn't work well here).
  - See what science tells you about mathematical form of relationship, and try to apply.

## normal quantile plot of residuals

```
ggplot(DC.1, aes(sample = .resid)) + stat_qq() + stat_qq_line
```



## Parabolas and fitting parabola model

A parabola has equation

$$y = ax^2 + bx + c$$

with coefficients a, b, c. About the simplest function that is not a straight line.

ullet Fit one using 1m by adding  $x^2$  to right side of model formula with +:

```
DC.2 <- lm(DC_output ~ wind_velocity + I(wind_velocity^2),
   data = windmill
)</pre>
```

- The I() necessary because ^ in model formula otherwise means something different (to do with interactions in ANOVA).
- Call it parabola model.

# Parabola model output

data = windmill)

```
summary(DC.2)
```

Call:

lm(formula = DC output ~ wind velocity + I(wind velocity^2),

## Comments on output

- R-squared has gone up a lot, from 87% (line) to 97% (parabola).
- Coefficient of squared term strongly significant (P-value  $6.59 \times 10^{-8}$ ).
- Adding squared term has definitely improved fit of model.
- Parabola model better than linear one.
- But...need to check residuals again.

# Residual plot from parabola model

```
ggplot(DC.2, aes(y = .resid, x = .fitted)) +
geom_point()
```



Case study: windmill

# normal quantile plot of residuals

ggplot(DC.2, aes(sample = .resid)) + stat\_qq() + stat\_qq\_line



Case study: windmill

# Make scatterplot with fitted line and curve

- Residual plot basically random. Good.
- Scatterplot with fitted line and curve like this:

```
ggplot(windmill, aes(y = DC_output, x = wind_velocity)) +
geom_point() + geom_smooth(method = "lm", se = F) +
geom_line(data = DC.2, aes(y = .fitted))
```

## Comments

- This plots:
  - scatterplot (geom\_point);
  - straight line (via tweak to geom\_smooth, which draws best-fitting line);
  - ▶ fitted curve, using the predicted DC\_output values, joined by lines (with points not shown).
- Trick in the geom\_line is use the predictions as the y-points to join by lines (from DC.2), instead of the original data points. Without the data and aes in the geom\_line, original data points would be joined by lines.

# Scatterplot with fitted line and curve



## Another approach to a curve

- There is a problem with parabolas, which we'll see later.
- Ask engineer, "what should happen as wind velocity increases?":
  - ▶ Upper limit on electricity generated, but otherwise, the larger the wind velocity, the more electricity generated.
- Mathematically, asymptote. Straight lines and parabolas don't have them, but eg. y=1/x does: as x gets bigger, y approaches zero without reaching it.
- What happens to y = a + b(1/x) as x gets large?
  - $lackbox{ } y$  gets closer and closer to a: that is, a is asymptote.
- Fit this, call it asymptote model.
- Fitting the model here because we have math to justify it.
  - lacktriangle Alternative,  $y=a+be^{-x}$  , approaches asymptote faster.

# How to fit asymptote model?

- Define new explanatory variable to be 1/x, and predict y from it.
- x is velocity, distance over time.
- So 1/x is time over distance. In walking world, if you walk 5 km/h, take 12 minutes to walk 1 km, called your pace. So 1 over wind\_velocity we call wind\_pace.
- Make a scatterplot first to check for straightness (next page).

```
windmill %>% mutate(wind_pace = 1 / wind_velocity) -> windmill
ggplot(windmill, aes(y = DC_output, x = wind_pace)) +
  geom_point() + geom_smooth(se = F)
```

## and run regression like this:

```
DC.3 <- lm(DC_output ~ wind_pace, data = windmill)
summary(DC.3)</pre>
```

```
Call:
lm(formula = DC output ~ wind pace, data = windmill)
```

#### Residuals:

Min 1Q Median 3Q Max -0.20547 -0.04940 0.01100 0.08352 0.12204

#### Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.9789 0.0449 66.34 <2e-16 \*\*\*
wind\_pace -6.9345 0.2064 -33.59 <2e-16 \*\*\*
--Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ':

# Scatterplot for wind\_pace

Pretty straight. Blue actually smooth curve not line:



## Regression output

```
glance(DC.3)
```

### tidy(DC.3)

## Comments

- R-squared, 98%, even higher than for parabola model (97%).
- Simpler model, only one explanatory variable (wind.pace) vs. 2 for parabola model (wind.velocity and its square).
- wind.pace (unsurprisingly) strongly significant.
- Looks good, but check residual plot (over).

# Residual plot for asymptote model



## normal quantile plot of residuals

ggplot(DC.3, aes(sample = .resid)) + stat\_qq() + stat\_qq\_line



Case study: windmill

# Plotting trends on scatterplot

- Residual plot not bad. But residuals go up to 0.10 and down to -0.20, suggesting possible skewness (not normal). I think it's not perfect, but OK overall.
- Next: plot scatterplot with all three fitted lines/curves on it (for comparison), with legend saying which is which.
- First make data frame containing what we need, taken from the right places:

```
w2 <- tibble(
  wind_velocity = windmill$wind_velocity,
  DC_output = windmill$DC_output,
  linear = fitted(DC.1),
  parabola = fitted(DC.2),
  asymptote = fitted(DC.3)
)</pre>
```

## What's in w2

w2

```
A tibble: 25 x 5
  wind_velocity DC_output linear parabola asymptote
          <dbl>
                    <dbl>
                          <dbl>
                                   <dbl>
                                             <dbl>
           5
                    1.58 1.34
                                   1.51
                                             1.59
           6
                   1.82 1.58
                                   1.81
                                             1.82
 3
           3.4
                   1.06 0.951
                                   0.861
                                             0.939
4
           2.7
                   0.5 0.782
                                   0.518
                                             0.411
 5
          10
                   2.24
                          2.54
                                   2.26
                                             2.29
 6
                   2.39
                                             2.26
           9.7
                          2.47
                                   2.27
           9.55
                    2.29
                          2.43
                                   2.27
                                             2.25
8
           3.05
                   0.558
                          0.866
                                   0.694
                                             0.705
 9
           8.15
                   2.17
                          2.10
                                   2.20
                                             2.13
10
                                   1.86
                                             1.86
           6.2
                    1.87
                          1.63
# i 15 more rows
```

# Making the plot

- ggplot likes to have one column of x's to plot, and one column of y's, with another column for distinguishing things.
- But we have three columns of fitted values, that need to be combined into one.
- pivot\_longer, then plot:

# Scatterplot with fitted curves



### Comments

- Predictions from curves are very similar.
- Predictions from asymptote model as good, and from simpler model (one x not two), so prefer those.
- Go back to asymptote model summary.

## Asymptote model summary

## tidy(DC.3)

#### Comments

- Intercept in this model about 3.
- Intercept of asymptote model is the asymptote (upper limit of DC.output).
- Not close to asymptote yet.
- Therefore, from this model, wind could get stronger and would generate appreciably more electricity.
- This is extrapolation! Would like more data from times when wind.velocity higher.
- Slope -7. Why negative?
  - ▶ As wind.velocity increases, wind.pace goes down, and DC.output goes up. Check.
- Actual slope number hard to interpret.

Case study: windmill

### Checking back in with research questions

- Is there a relationship between wind speed and current generated?
  - Yes.
- If so, what kind of relationship is it?
  - One with an asymptote.
- Can we model the relationship, in such a way that we can do predictions?
  - Yes, see model DC.3 and plot of fitted curve.
- Good. Job done.

#### Job done, kinda

- Just because the parabola model and asymptote model agree over the range of the data, doesn't necessarily mean they agree everywhere.
- Extend range of wind.velocity to 1 to 16 (steps of 0.5), and predict DC.output according to the two models:

```
wv <- seq(1, 16, 0.5)
wv
```

```
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6 [14] 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13 [27] 14.0 14.5 15.0 15.5 16.0
```

• R has predict, which requires what to predict for, as data frame. The data frame has to contain values, with matching names, for all explanatory variables in regression(s).

### Setting up data frame to predict from

- Linear model had just wind\_velocity.
- Parabola model had that as well (squared one will be calculated)
- Asymptote model had just wind\_pace (reciprocal of velocity).
- So create data frame called wv\_new with those in:

```
wv_new <- tibble(wind_velocity = wv, wind_pace = 1 / wv)</pre>
```

#### wv new

#### wv\_new

```
# A tibble: 31 x 2
  wind_velocity wind_pace
           <dbl>
                     <dbl>
             1.5
                    0.667
 3
                    0.5
4
             2.5 0.4
 5
             3
                   0.333
 6
            3.5
                0.286
                   0.25
8
            4.5
                   0.222
 9
             5
                    0.2
10
             5.5
                    0.182
# i 21 more rows
```

### Doing predictions, one for each model

Use same names as before:

```
linear <- predict(DC.1, wv_new)
parabola <- predict(DC.2, wv_new)
asymptote <- predict(DC.3, wv_new)</pre>
```

• Put it all into a data frame for plotting, along with original data:

```
my_fits <- tibble(
   wind_velocity = wv_new$wind_velocity,
   linear, parabola, asymptote
)</pre>
```

#### my\_fits

#### my\_fits

```
A tibble: 31 \times 4
  wind_velocity linear parabola asymptote
          <dbl>
                 <dbl> <dbl>
                                    <dbl>
                 0.372 - 0.471
                                  -3.96
            1.5 \quad 0.493 \quad -0.157 \quad -1.64
3
            2
                0.613 0.137
                                  -0.488
4
            2.5 0.734 0.413
                                    0.205
5
            3
                 0.854
                          0.670
                                    0.667
6
            3.5 0.975
                          0.907
                                    0.998
                1.10
                          1.13
                                    1.25
8
            4.5 1.22
                          1.33
                                    1.44
9
            5
                 1.34
                          1.51
                                    1.59
                                    1.72
10
            5.5 1.46
                          1.67
   21 more rows
```

## Making a plot 1/2

 To make a plot, we use the same trick as last time to get all three predictions on a plot with a legend (saving result to add to later):

```
my_fits %>%
    pivot longer(
    linear:asymptote,
    names to="model",
    values to="fit"
  ) %>%
  ggplot(aes(
    y = fit, x = wind velocity,
    colour = model
  )) + geom_line() -> g
g
```

4-

## Making a plot 2/2

• The observed wind velocities were in this range:

```
(vels <- range(windmill$wind_velocity))</pre>
```

```
[1] 2.45 10.20
```

• DC.output between 0 and 3 from asymptote model. Add rectangle to graph around where the data were:

```
g + geom_rect(
   xmin = vels[1], xmax = vels[2], ymin = 0, ymax = 3,
   alpha = 0, colour = "black"
)
```

# The plot



# Comments (1)

- Over range of data, two models agree with each other well.
- Outside range of data, they disagree violently!
- For larger wind.velocity, asymptote model behaves reasonably, parabola model does not.
- What happens as wind.velocity goes to zero? Should find DC.output goes to zero as well. Does it?

Case study: windmill

## Comments (2)

• For parabola model:

#### tidy(DC.2)

```
# A tibble: 3 \times 5
                    estimate std.error statistic
                                                p.value
 term
 <chr>>
                       <dbl>
                                <dbl>
                                          <dbl>
                                                   <dbl>
                    -1.16
                              0.175
                                          -6.62 1.18e- 6
1 (Intercept)
                                          11.8 5.77e-11
2 wind_velocity
                     0.723 0.0614
3 I(wind velocity^2)
                     -0.0381
                              0.00480
                                          -7.95 6.59e- 8
```

• Nope, goes to -1.16 (intercept), actually significantly different from zero.

# Comments (3): asymptote model

#### tidy(DC.3)

- As wind.velocity heads to 0, wind.pace heads to  $+\infty$ , so DC.output heads to  $-\infty$ !
- Also need more data for small wind.velocity to understand relationship. (Is there a lower asymptote?)
- Best we can do now is to predict DC.output to be zero for small wind.velocity.
- Assumes a "threshold" wind velocity below which no electricity generated at all.

### Summary

- Often, in data analysis, there is no completely satisfactory conclusion, as here.
- Have to settle for model that works OK, with restrictions.
- Always something else you can try.
- At some point you have to say "I stop."