Méréstechnika laboratórium $2/\mathrm{b}$ jegyzőkönyv

Koncz István Márton 2016. november 7.

1. 16. sz. laboratóriumi mérés

1.1. A mérés célja

Egyes nem-villamos fizikai jellemzők (erő, nyomaték, nyomás, mechanikai feszültség) mérésére alkalmas nyúlásmérő bélyeg fontosabb statikus méréstechnikai jellemzőinek megállapítása. Egy adott feladatra való alkalmazás megismerése. A mérést "zavaró" jellemzők közül a hőmérsékletváltozás hatásának, mértékének megállapítása, vizsgálata.

1.2. Mérési feladatok

A mérésben egy befogott rugólap átellenes oldalára ragasztott mérőbélyegekkel állapíthatjuk meg a lapban keletkező mechanikai feszültség értékét. A rugólap hajlítását csavarorsóval hozzuk létre. A hajlítás mértékét - az elmozdulást (Δf) 1/100 mm-es mérőórával mérjük. A csavarorsó tengelyében ható F erő L (43 mm) hosszúságú karon végzi a hajlítást, a rugólap keresztmetszeti méretei: h (1,2 mm) * b (10 mm.)

1.2.1. Elmozdulás (hajlítás) - ellenállásváltozás karakterisztika felvétele és kiértékelése

A 6. sz. mérőpanelon a felső kivezetések a húzott, az alsók a nyomott bélyeghez csatlakoznak. Mérje meg mindkét bélyeg ellenállását a rugólap terheletlen és maximális kitérése között 0,5 mm-enként. A mért adatokat foglalja táblázatba és ábrázolja eltolt koordináta rendszerben mm papíron! (Az eltolás mértéke a bélyegek előfeszítés nélküli alap ellenállása.) Állapítsa meg a húzott és a nyomott bélyegek linearitási és hiszterézis hibáját!

A linearitási hiba megállapítása:

$$h_{lin} = \frac{H_{max}}{X_{l}MT} * 100\%$$

Mért adatok húzott bélyeg esetén:

l[mm]	0	0,5	1	1,5	2	2,5	3
$R[\Omega]$	354,41	354,52	354,62	354,69	354,70	354,88	354,97

Mért adatok húzott bélyeg esetén (visszafelé):

l[mm]	3	2,5	2	1,5	1	0,5	0
$R[\Omega]$	354,97	354,88	354,79	354,72	354,63	$354,\!56$	354,48

Mért adatok nyomott bélyeg esetén:

ĺ	l[mm]	0	0,5	1	1,5	2	2,5	3
ĺ	$R[\Omega]$	343,64	343,53	343,43	343,34	343,24	343,14	343,04

A számolás és az ábra az 1. számú mellékletben található meg.

1.2.2. Nyúlásmérő bélyeges negyedhíd vizsgálata!

Mérje meg a híd kimeneti feszültségét a rugólap terheletlen és maximális kitérése között 0.5 mm-enként. A hídban történő mérést is mindkét bélyeggel (húzott és nyomott) külön-külön végezze el! (Nekünk csak a húzott bélyeggel kellett.) Az egyik bélyegnél az elmozdulás csökkentésekor ("visszafelé") is vegye fel az adatokat! A hídban lévő R ellenállások értéke: $360 \pm 1\%$. Foglalja a mért adatokat táblázatba és rajzolja meg a hídkapcsolás Uki- (elhajlítás) karakterisztikáját! (Mivel a híd nincsen kinullázva az ábrázolást eltolt koordináta rendszerben végezze. Az eltolás mértéke a híd alapállapotban mért kimeneti feszültsége legyen.) Állapítsa meg a kapcsolás átalakítási tényezőjét!

Mért adatok húzott bélyeg esetén:

$$U_0 = 25, 16mV$$

l[mm]	0	0,5	1	1,5	2	2,5	3
$\Delta U[mV]$	0	-0,35	-0,69	-1,01	-1,33	-1,63	-1,96

Mért adatok húzott bélyeg esetén (visszafelé):

l[mm]	3	2,5	2	1,5	1	0,5	0
$\Delta U[mV]$	-1,96	-1,60	-1,27	-0,95	-0,63	-0,32	0

A számolás és az ábra az 2. számú mellékletben található meg.

1.2.3. Nyúlásmérő bélyeges félhíd vizsgálata!

Mérje meg a híd kimeneti feszültségét a rugólap terheletlen és maximális kitérése között 0,5 mm-enként. Foglalja a mért adatokat táblázatba és rajzolja meg a hídkapcsolás Uki- (elhajlítás) karakterisztikáját! (A karakterisztikát az előző ábrába rajzolja bele!) Értékelje a kapcsolás érzékenységét a negyedhídhoz képest!

Mért adatok húzott bélyeg esetén:

$$U_0 = 42mV$$

l[mm]	0	0,5	1	- , -	2	2,5	3
$\Delta U[mV]$	0	0,8	1,6	2,2	3,0	3,7	4,5

Az ábra az 2. számú mellékletben található meg.

1.2.4. A hőmérsékleti hatás vizsgálata!

A rugólap terhelését állítsa be a maximális 3 mm-re. Mérje meg a húzott és a nyomott mérőbélyeg ellenállását. A mérőpanelba épített hőfokszabályzós fűtőtest segítségével a mérőbélyegek tere (és így a mérőbélyegek hőmérséklete) kb. 44 °C-ra beállítható, így a hőmérsékleti hatások vizsgálhatók. Kapcsoljon 12 V feszültséget a FŰTÉS feliratú pontra! Mintegy 15 perc múlva beáll a termikus egyensúly. Ilyenkor a tér hőmérséklete kb. 44°C. A hőmérsékletváltozás hatására megváltozik a mérőbélyeg ellenállása. A tér hőmérsékletének elérését a fűtő áram értékének lecsökkenése jelzi. A tér felfűtött állapotában ismét mérje meg a húzott és a nyomott mérőbélyeg ellenállását! Az ellenállás mérést kétféle "polaritással" végezze el! Értékelje a kapott értékeket!

Húzott bélyeg:

•	Fűtés nélkül	Fűtve
Polaritás helyesen	$354,44~\Omega$	$353,82 \Omega$
Ellentétesen	$354,44 \Omega$	$355,97 \Omega$

Fűtve 1% különbség van, ha ellentétes polaritással kötjük be a bélyeget.

2. 17. sz. laboratóriumi mérés

2.1. A mérés célja

A digitális oszcilloszkóp kezelésének többlet funkcióinak elsajátítása, a kapott mérési eredmények kiértékeléséhez szükséges szemlélet kialakítása.

2.2. Mérési feladatok

2.2.1. Kurzoros mérések

Végezzen kurzoros méréseket szinuszos jel frekvenciájának és amplitúdójának, illetve négyszögjel felfutási idejének megállapításához, hasonlítsa össze mérési eredményeit az azonos jelalakon elvégzett automatikus mérések eredményeivel. (Javasolt jelalakok: 1kHz-es, 1V amplitúdójú szinuszjel, 1V DC ofszettel, 10kHz-es 1V amplitúdójú négyszögjel, 100mV DC ofszettel.) Mindenképpen térjen ki a jelek effektív értékének automatikus mérésére, a kapott eredményeket hasonlítsa össze a kurzoros mérések alapján számított értékekkel!

Jelalak	Szinusz	Négyszög
Amplitúdó (kurzor)	2 V	2 V
Amplitúdó (automatikus)	2,03 V	2 V
Felfutási idő (kurzor)	$1 \mathrm{\ ms}$	79,6 ns
Felfutási idő (automatikus)	$1 \mathrm{\ ms}$	81 ns

2.2.2. Adatgyűjtési mód

Vizsgálja a függvénygenerátoron a legnagyobb beállítható frekvenciájú négyszögjel egy periódusát, majd csak a felfutó élét a három adatgyűjtési üzemmódban! Rajzolja le a látott jelalakokat!

Az ábra a 3. számú mellékletben található meg.

2.2.3. Bemeneti komparátor működési feltételeinek, működési idejének vizsgálata

A LEVEL potencióméterrel a komparálási szintet állítja a SENSE potencióméterrel pedig a hiszterézis nagyságát. Adjon az 3. mérőpanelre +5V tápfeszültséget. Állítson be a függvénygenerátoron 2V csúcsértékű 1kHz frekvenciájú háromszögjelet 0V egyenfeszültségű összetevővel, a jelet csatlakoztassa a mérőpanel CH1 bemenetére! Kétcsatornás oszcilloszkóp egyik bemenetére a CH1 jelét, másik bemenetére a KOMP1 komparátor kimeneti jelét csatlakoztatva mérje meg a következőket:

Milyen határok közt tudja állítani a komparálási szintet a LEVEL potenciométerrel? A SENSE potencióméter a jobb oldali végállásában legyen!

Mekkora a maximálisan beállítható hiszterézis a SENSE potencióméterrel?

$$min - > \Delta t 200 \mu s$$

$$max - > \Delta t 240 \mu s$$

Az oszcilloszkóp XY üzemmódjának segítségével rajzolja le a hiszterézises komparátor $U_{ki}-U_{be}$ karakterisztikáját! A SENSE potencióméter a bal míg a LEVEL potencióméter a jobboldali végállásban legyen.

Az ábra a 4. számú mellékletben található meg.

2.2.4. Komparátor késleltetési idejének vizsgálata

Az előbbi kapcsolást felhasználva adjon a CH1 bemenetre $100~\rm kHz$ -es négyszögjelet. A négyszög-jel negatív csúcsértéke $0~\rm V$, pozitív csúcsértéke $3~\rm V$ legyen. Mérje meg a komparátor késleltetési idejét a négyszögjel fel- és lefutó éléhez képest!

$$fel->\Delta t400ns$$

$$le- > \Delta t 920 ns$$

3. 18. sz. laboratóriumi mérés

3.1. A mérés célja

Az ipari méréstechnikában a leggyakoribb mérendő jellemző a hőmérséklet. Hőmérséklet mérésére széles hőmérséklet tartományban fémalapú mérőellenállásokat, kisebb hőmérsékleti tartomány, de nagy érzékenységi igény esetén a félvezető alapúakat (termisztorok) alkalmaznak. Egyre elterjedtebbek az analóg vagy digitális kimeneti jellel rendelkező hőmérséklet mérő chippek is. Nagyobb hőmérsékletek mérésekor $(0-1600\,^{\circ}C)$ hőelemeket használnak. Jelen mérésben az említett hőmérséklet érzékelők legfontosabb tulajdonságaival ismerkedünk meg.

3.2. Mérési feladatok

3.2.1. Önmelegedés vizsgálata

Mérje meg a Therm 0 termisztor ellenállását a HM8012-es típusú digitális multiméterrel az alábbi táblázatban megadott méréshatárokban. Mint az alábbi táblázatból is látja a DMM az ellenállásmérő üzemmód esetén a különböző méréshatárokban más és más áramot hajt át a mérendő ellenálláson. A különböző méréshatárok beállítása után várja meg a termikus egyensúly beállását (nem változik tovább a mért ellenállás kb. 2 perc). A 10 μA -es mérőáram esetén a mérés kezdetén mért értéket tekintse alap értéknek. Számítsa ki, hogy a különböző mérőáramok a termikus egyensúly beállta után mekkora relatív hibát okoznak!

Mért értékek:

Méréshatár	Mérőáram	R (mérés kezdetén)	R (termikus egyensúly beállta után)	ΔR	h%
$500 \ k\Omega \ (\text{L4})$	$10 \ \mu A$	$11,44 \ k\Omega$	11,31 $k\Omega$	120Ω	•
$50 \ k\Omega \ (\text{L3})$	$100 \ \mu A$	$11,44 \ k\Omega$	$11,18 \ k\Omega$	260Ω	•
$5 k\Omega \text{ (L2)}$	1 mA	$11,44 \ k\Omega$	Offline	-	-

3.2.2. Hőmérséklet jelleggörbék felvétele

A mérendő objektum egy 6x6x1cm-es alumínium tömb, melynek a hátlapjára (6x6cm) egy $47~\Omega$ -os 25~W-os fűtőellenállást helyeztünk el. Az érzékelők a tömb felső szélén vannak elhelyezve. Ezzel az elrendezéssel próbáljuk meg biztosítani, hogy minden érzékelő közel azonos hőmérsékletet mérjen. Az alumínium tömb tetején a 6x1~cm-es felületen van 4 féle érzékelő rögzítve, ezek kivezetéseit találják meg a mérőpanel előlapján. A mérőpanel tápfeszültség ellátásának egy része fixen bekötött (12V és 42V), de az előlapra egy $\pm 15~\text{V}$ -os tápfeszültséget kell csatlakoztatni. A hőmérséklet változtatását a beépített kapcsoló változtatásával tudják elérni. A maximális hőmérséklet biztonsági okokból kb $50~^{\circ}C~\text{A}$ mérést a hőmérséklet beállító kapcsoló minden állásában végezze el. A hőmérséklet beállítását egy szabályzás végzi. A kapcsolóval az alapjelet állítják. A stabil hőmérséklet beállításához kb. 3 percre van szükség. A termikus egyensúly beállásának elérését a thermisztor ellenállásváltozását figyelve tudjuk legegyszerűbben nyomon követni. Amikor a thermisztor ellenállása már nem változik (esetleg csak nagyon lassan) beálltnak tekinthetjük a termikus egyensúlyt. A

méréshez használjon két darab HM8012-es, egy TR1667/B és két MX-25201-es típusú digitális multimétert. Tervezze meg melyik műszerrel érdemes melyik érzékelő kimeneti jelét mérni! A panel bal oldalán lévő piros banánhüvelyekre csatlakoztassa az egyik HM8012-es multimétert °C mérő üzemmódban, a műszer által mutatott feszültséget tekintsük a "hiteles" referenica hőmérsékletnek!

Mért értékek:

Referencia hőmérséklet $[{}^{\circ}C]$	Therm $[k\Omega]$	PT100 [Ω]	Hőelem [mV]	IC [mV]
28	7,68	108,6	0,1	144
29,1	7,32	109,2	0,2	271,19
34,1	5,81	111,7	0,3	294,76
36,9	5,11	113,8	0,3	311,82
40,1	4,43	114,9	0,3	328,73
43	3,9	115,9	0,3	346,7
46,4	3,35	117,2	0,3	364,11

Az ábra az 5. számú mellékletben található meg.

3.2.3. A szilárd testek felületén mérhető hőmérséklet eloszlásának vizsgálata

A mérendő objektum felfűtés után a kézi tapintófejes hőmérsékletmérő műszer segítségével mérje meg az alumínium tömb közepén és alsó szélén a hőmérsékletét. Adjon magyarázatot a mért hőmérséklet értékekre.

Mért értékek:

Középen	Alul
38,4 °C	$39,5 {}^{\circ}C$

Tartalomjegyzék

. 16. sz. laboratóriumi mérés	2
1.1. A mérés célja	. 2
1.2. Mérési feladatok	. 2
1.2.1. Elmozdulás (hajlítás) - ellenállásváltozás karakterisztika	
felvétele és kiértékelése	. 2
1.2.2. Nyúlásmérő bélyeges negyedhíd vizsgálata!	. 3
1.2.3. Nyúlásmérő bélyeges félhíd vizsgálata!	. 3
1.2.4. A hőmérsékleti hatás vizsgálata!	. 4

2.	17.	sz. labo	ratóriumi mérés
	2.1. A mérés célja		
	2.2.	Mérési f	eladatok
		2.2.1. I	Kurzoros mérések
		2.2.2. A	Adatgyűjtési mód
		2.2.3. H	Bemeneti komparátor működési feltételeinek, működési
		i	dejének vizsgálata
			Komparátor késleltetési idejének vizsgálata
3.	18. sz. laboratóriumi mérés		
	3.1.	A mérés	s célja
	3.2.	Mérési f	${ m eladatok}$
		3.2.1. (Önmelegedés vizsgálata
		3.2.2. H	Hőmérséklet jelleggörbék felvétele
		3.2.3. A	A szilárd testek felületén mérhető hőmérséklet eloszlásá-
		r	nak vizsgálata