CSE 211: Discrete Mathematics

(Due: 30/10/22)

Homework #1

Instructor: Dr. Zafeirakis Zafeirakopoulos Name: Student Id:

Assistant: Başak Karakaş

Course Policy: Read all the instructions below carefully before you start working on the assignment, and before you make a submission.

- It is not a group homework. Do not share your answers to anyone in any circumstance. Any cheating means at least -100 for both sides.
- Do not take any information from Internet.
- No late homework will be accepted.
- For any questions about the homework, send an email to bkarakas2018@gtu.edu.tr
- Use LaTeX. You can work on the tex file shared with you in the assignment document.
- Submit both the tex and pdf files into Homework1. Name of the files should be "SurnameName_Id.tex" and "SurnameName_Id.pdf".

Problem 1: Sets (3+3+3+3=15 points)

Which of the following sets are equal? Show your work step by step.

- (a) $\{t : t \text{ is a root of } x^2 6x + 8 = 0\}$
- **(b)** {y : y is a real number in the closed interval [2, 3]}
- (c) {4, 2, 5, 4}
- (d) {4, 5, 7, 2} {5, 7}
- (e) {q: q is either the number of sides of a rectangle or the number of digits in any integer between 11 and 99}

(Solution)

(a) Root of the set are

$$x^{2} - 6x + 8 = 0 \quad \Rightarrow (x - 2)(x - 4) = 0$$
$$\Rightarrow x = 2 \land x = 4$$

- (b) $\{y: y \text{ is a real number in the closed interval } [2,3]\} = [2,3] \subset \mathbb{R}$
- (c) Since it does not matter if an element of a set is listed more than once, $\{4, 2, 5, 4\} = \{2, 4, 5\}$
- (d) $\{4, 5, 7, 2\} \{5, 7\} = \{2, 4\}$
- (e) Because the number of sides of a rectangle is 4 and the number of digits in any integer between 11 and 99 is 2.
- $\{q:q \text{ is either the number of sides of a rectangle or the number of digits in any integer between 11 and <math>99\} = \{q:q=2 \lor q=4\} = \{2,4\}$

1

In conclusion, the sets in (a), (d) and (e) have same elements {2,4}. So, they are equal.

Problem 2: Cardinality of Sets

(2+2+2+2=8 points)

What is the cardinality of each of these sets? Explain your answers.

- (a) $\{\emptyset\}$
- (b) $\{\emptyset, \{\emptyset\}\}$
- (c) $\{\emptyset, \{\emptyset, \{\emptyset\}\}\}$
- (d) $\{\emptyset, \{\emptyset, \{\emptyset, \{\emptyset\}\}\}\}\$

(Solution)

- (a) $\emptyset \in \{\emptyset\} \Rightarrow$ the cardinality is 1.
- **(b)** $\emptyset \in \{\emptyset, \{\emptyset\}\}$ and $\{\emptyset\} \in \{\emptyset, \{\emptyset\}\}\} \Rightarrow$ the cardinality is 2
- (c) $\emptyset \in \{\emptyset, \{\emptyset, \{\emptyset\}\}\}\$ and $\{\emptyset, \{\emptyset\}\}\} \in \{\emptyset, \{\emptyset, \{\emptyset\}\}\}\}\$ \Rightarrow the cardinality is 2
- (d) $\emptyset \in \{\emptyset, \{\emptyset, \{\emptyset, \{\emptyset\}\}\}\}\$ and $\{\emptyset, \{\emptyset, \{\emptyset\}\}\}\}\$ $\in \{\emptyset, \{\emptyset, \{\emptyset\}\}\}\}\}\$ \Rightarrow the cardinality is 2

Problem 3: Cartesian Product of Sets

(15 points)

Explain why $(A \times B) \times (C \times D)$ and $A \times (B \times C) \times D$ are not the same.

(Solution)

$$(A \times B) \times (C \times D) = \{((a,b),(c,d)) : a \in A, b \in B, c \in C \text{ and } d \in D\}$$
 Elements of the set are ordered pair of ordered pairs.

Elements of the set are ordered pair of ordered pairs.

$$A \times (B \times C) \times D = \{(a,(b,c),d) : a \in A, b \in B, c \in C \text{ and } d \in D\}$$
 Elements of the set are ordered triple with an ordered pair in the middle.

For
$$a \in A, b \in B, c \in C$$
 and $d \in D$,

$$((a,b),(c,d)) \neq (a,(b,c),d)$$

That means the elements of these two sets are not the same, so sets also not.

Problem 4: Cartesian Product of Sets in Algorithms

(25 points)

Let A, B and C be sets which have different cardinalities. Let (p, q, r) be each triple of $A \times B \times C$ where $p \in A$, $q \in B$ and $r \in C$. Design an algorithm which finds all the triples that are satisfying the criteria: $p \le q$ and $q \ge r$. Write the pseudo code of the algorithm in your solution.

For example: Let the set A, B and C be as $A = \{3, 5, 7\}$, $B = \{3, 6\}$ and $C = \{4, 6, 9\}$. Then the output should be : $\{(3, 6, 4), (3, 6, 6), (5, 6, 4), (5, 6, 6)\}$.

(Note: Assume that you have sets of A, B, C as an input argument.)

(Solution)

Algorithm 1: Pseudo Code of Your Algorithm

```
Input: The sets of A, B, C
Output: The set D
for i = 1 to length of A do
   for j = 1 to length of B do
       p = A[i]
       q = B[j]
       if p \leq q then
           for k = 1 to length of C do
               r = C[k]
               if r \leq q then
                Put (p, q, r) into D
               else
           \mathbf{end}
       else
   \quad \text{end} \quad
end
return D
```

Problem 5: Functions

(16 points)

If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one? Justify your answer.

(Solution)

Let $f: B \to C$ and $g: A \to B$. Then $fog: A \to C$.

f is one-to-one \iff $\forall b_1, b_2 \in B, f(b_1) = f(b_2) \Rightarrow b1 = b2$

fog is one-to-one $\iff \forall a_1, a_2 \in A, fog(a_1) = fog(a_2) \Rightarrow a_1 = a_2$

(1)
$$fog(a_1) = fog(a_2)$$
 $\Rightarrow f(g(a_1)) = f(g(a_2))$ by definition of composition $\Rightarrow g(a_1) = g(a_2)$ since f is $1-1$

(2)
$$f \circ g(a_1) = f \circ g(a_2) \implies a_1 = a_2$$
 since $f \circ g$ is $1 - 1$

Is g one-to-one? In other words, for all $a_1, a_2 \in A$, are a_1 and a_2 equal when $g(a_1) = g(a_2)$?

Assume g is not 1-1. That means,

$$\exists a_1, a_2 \in A, g(a_1) = g(a_2) \text{ but } a_1 \neq a_2.$$

However, by (1) and (2), both $g(a_1) = g(a_2)$ and $a_1 = a_2$ are true for all $a_1, a_2 \in A$. So, there is a contradiction, which means our assumption is wrong. Therefore, g is one-to-one.

Problem 6: Functions

(7+7+7=21 points)

Determine whether the function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto if

(a)
$$f(m,n) = 2m - n$$

(b)
$$f(m,n) = m^2 - n^2$$

(c)
$$f(m,n) = |m| - |n|$$

(Solution)

$$f$$
 is onto $\iff \forall z \in \mathbb{Z}, \quad z = f(x, y) \quad \therefore \exists (x, y) \in \mathbb{Z} \times \mathbb{Z}$

(a) f(m,n) = 2m - n

Let $m \in \mathbb{Z}$.

$$z = f(m, n) \in \mathbb{Z} \quad \Rightarrow \quad z = 2m - n \in \mathbb{Z}$$

$$\Rightarrow \quad n = 2m - z \in \mathbb{Z} \qquad \text{since } m, z \in \mathbb{Z}$$

$$\Rightarrow \quad \text{for } (x, y) = (m, 2m - z), z = f(x, y)$$

$$\Rightarrow \quad f \text{ is onto}$$

(b)
$$f(m,n) = m^2 - n^2$$

$$\begin{split} z &= f(m,n) \in \mathbb{Z} & \Rightarrow & z &= m^2 - n^2 \in \mathbb{Z} \\ & \Rightarrow & z &= (m-n)(m+n) \in \mathbb{Z} \\ & \Rightarrow & (m-n), (m+n) \in \mathbb{Z} & \oplus & (m-n), (m+n) \notin \mathbb{Z} \end{split}$$

So, check both $(m-n), (m+n) \in \mathbb{Z}$ and $(m-n), (m+n) \notin \mathbb{Z}$ situations:

If $(m-n), (m+n) \notin \mathbb{Z}$, then either $m \in \mathbb{Z}$ and $n \notin \mathbb{Z}$ or $m \notin \mathbb{Z}$ and $n \in \mathbb{Z}$. Hence, there is no $(m,n) \in \mathbb{Z} \times \mathbb{Z}$ such that z = f(m,n).

If
$$(m-n), (m+n) \in \mathbb{Z}$$
, is f onto?

Let $z = 2 \in \mathbb{Z}$. Then, there are 4 cases: z = 1 * 2, z = 2 * 1, z = (-1) * (-2) and z = (-2) * (-1).

1.
$$z = 1 * 2$$
 \Rightarrow $m - n = 1$ \land $m + n = 2$ \Rightarrow $m = 3/2$ \land $n = 1/2$ \Rightarrow $m, n \notin \mathbb{Z}$

2.
$$z = 2 * 1$$
 \Rightarrow $m - n = 2$ \land $m + n = 1$ \Rightarrow $m = 3/2$ \land $n = -1/2$ \Rightarrow $m, n \notin \mathbb{Z}$

3.
$$z = (-1) * (-2)$$
 \Rightarrow $m - n = -1$ \land $m + n = -2$ \Rightarrow $m = -3/2$ \land $n = -1/2$ \Rightarrow $m, n \notin \mathbb{Z}$

4.
$$z = (-2) * (-1)$$
 \Rightarrow $m - n = -2$ \land $m + n = -1$ \Rightarrow $m = -3/2$ \land $n = 1/2$ \Rightarrow $m, n \notin \mathbb{Z}$

These cases imply that, for $z=2\in\mathbb{Z}$, there is no pair $(m,n)\in\mathbb{Z}\times\mathbb{Z}$ such that z=f(m,n). Hence, f is not onto when $(m-n),(m+n)\in\mathbb{Z}$.

In summary, for both possible situations $(m-n), (m+n) \in \mathbb{Z}$ and $(m-n), (m+n) \notin \mathbb{Z}$, f is not onto.

(c)
$$f(m,n) = |m| - |n|$$

Since there are taking absolute value operation, we should handle it in two cases which are z = f(m, n) < 0 and $z = f(m, n) \ge 0$.

1. For z < 0, let m = 0.

$$z = f(m,n) \quad \wedge \quad m = 0 \quad \iff \quad z = |m| - |n| \quad \wedge \quad m = 0 \\ \iff \quad z = 0 - |n| \\ \iff \quad z = -|n| \\ \iff \quad n = z \quad \vee \quad n = -z \\ \iff \quad (m,n) = (0,z) \in \mathbb{Z} \times \mathbb{Z} \quad \vee \quad (m,n) = (0,-z) \in \mathbb{Z} \times \mathbb{Z}$$

We can say that, for z < 0, $(m, n) = (0, z) \in \mathbb{Z} \times \mathbb{Z}$ satisfies z = f(m, n).

2. For $z \ge 0$, let n = 0.

$$z = f(m, n) \quad \wedge \quad n = 0 \quad \iff \quad z = |m| - |n| \quad \wedge \quad n = 0$$

$$\iff \quad z = |m| - 0$$

$$\iff \quad z = |m|$$

$$\iff \quad m = z \quad \vee \quad m = -z$$

$$\iff \quad (m, n) = (z, 0) \in \mathbb{Z} \times \mathbb{Z} \quad \vee \quad (m, n) = (-z, 0) \in \mathbb{Z} \times \mathbb{Z}$$

We can say that, for z < 0, $(m, n) = (z, 0) \in \mathbb{Z} \times \mathbb{Z}$ satisfies z = f(m, n).

To conclude, for all $z = f(m, n) \in \mathbb{Z}$, there exists a pair $(m, n) \in \mathbb{Z} \times \mathbb{Z}$, meaning f is onto.

Problem 7: Functions

(Bonus 20 points)

Suppose that f is a function from A to B, where A and B are finite sets with |A| = |B|. Show that f is one-to-one if and only if it is onto.

(Solution)

 $f: A \to B$ and $|A| = |B| = n < \infty$.

Show that: f is $1-1 \iff f$ is onto

 (\Rightarrow)

f is one-to-one \iff $\forall a_1, a_2 \in A, f(a_1) = f(a_2) \Rightarrow a_1 = a_2$

Is f onto? In other words, is there any $a \in A$ such that b = f(a) for all $b \in B$?

Assume f is not onto. That means,

 $\exists b \in B, \forall a \in A, b \neq f(a).$

Let say for k different $b \in B$, this proposition is true. Then, just for n - k elements of B, there exists an $a \in A$ such that b = f(a). On the other hand, because f is one-to-one, for each b, at most one a satisfies b = f(a). Hence, only n - k elements of A go to B, that is k elements of A goes nowhere. In this situation f cannot be a function, which is a contradiction. Thus our assumption is wrong. The function f is onto.

 (\Leftarrow)

f is onto $\iff \forall b \in B, b \neq f(a) : \exists a \in A$

Is f one-to-one?

Assume f is not one-to-one. That means,

 $\exists a_1, a_2 \in A \text{ such that } f(a_1) = f(a_2) \text{ but } a_1 \neq a_2.$

For these a_1 and a_2 , there exists a $b \in B$ such that $b = f(a_1)$ and $b = f(a_2)$. For the other n-1 elements of B, there also exists at least one $a \in A$ due to the fact that f is onto. Nevertheless, the remaining n-2 elements of A maps to at most n-2 elements of B. So, for (n-1)-n(-2)=1 element of B, there is no element in A satisfying b = f(a). This is a contradiction. Our assumption is wrong. Thus, f is one-to-one when it is onto.