- 1. Find the MLE of the following pdf, where the sample size is n.
 - (1) $f_X(x;\alpha,\beta)=\beta^{-\alpha}\alpha x^{\alpha-1}1_{(0,\beta)}(x)$ where $\alpha>0,\beta>0$. Also derive the MME in this problem.

(2)

$$f_X(x; heta) = egin{cases} 1_{(0,1)}(x) & heta = 0 \ (2\sqrt{x})^{-1}1_{(0,1)}(x) & heta = 1 \end{cases}$$

- (3) $f_X(x; heta)=rac{ heta}{1- heta}x^{(2 heta-1)/(1- heta)}1_{(0,1)}(x)$ where $heta\in(rac{1}{2},1)$
- 2. Suppose Y_1,\ldots,Y_n are a random sample from $N(\beta_0+\beta_1x_i,\sigma^2)$ $i=1,\ldots,n$ where x_i 's are known constants, find a sufficient statistic for $\theta=(\beta_0,\beta_1,\sigma^2)$
- 3. Suppose X_1, \ldots, X_n are random variables with finite mean and finite variances.
 - (1) If X_1, \ldots, X_n are independent with $E(X_i) = \alpha i$ and $Var(X_i) = \sigma^2$.Find the best **unbiased** estimator for α in the class $\hat{\alpha} = \sum_{i=1}^n c_i X_i$
 - (2) If X_1, \ldots, X_n are identically distributed with mean μ and variance σ^2 but are correlated with correlation coefficient ρ . Find the best unbiased estimator for μ in the class

$$\{\hat{\mu} = \sum_{i=1}^n c_i X_i : c_i \in \mathbb{R}, \sum_{i=1}^n c_i = 1\}$$

4. Suppose X_1,\ldots,X_n are a random sample from a Weibull distribution

$$f_X(x) = rac{lpha}{eta} x^{lpha-1} \exp(-x^lpha/eta) 1_{(0,+\infty)}(x)$$

where $\alpha>0$, $\beta>0$. Suppose α is known and β is unknown. Find an **unbiased** estimator for β such that it can reach the Cramer-Rao lower bound. Furthermore, show that the estimator is consistency to β

- 5. Find the generalized likelihood ratio of $H_0: a=1$ versus $H_1: a \neq 1$ from the $N(\theta, a\theta^2)$ family where $\theta>0$ is an unknown parameter.
- 6. Let X_1,\ldots,X_n be a random sample from $U(\theta,\theta+1)$. And we test $H_0:\theta=0$ versus $H_1:\theta>0$ we reject H_0 if $X_{(n)}\geq 1$ or $X_{(1)}\geq k$ where k is a constant.
 - (1) Find k so that the test has a significance level α .
 - (2) Derive the power curve of the test in (1).
- 7. Suppose X_1, \ldots, X_n are random samples from

$$f(x, heta) = e^{-(x- heta)} 1_{[heta,+\infty)}$$

find a (1-lpha)100% confidence interval for heta based on the estimator $X_{(1)}$.