Denotational Semantics; Divergence; Runtime Errors

CS 536: Science of Programming, Fall 2019

A. Why

- Our simple programming language is a model for the kind of constructs seen in actual languages.
- Execution of an entire programs can be viewed as a state transformers.
- Infinite loops and runtime errors cause failure of normal program execution.

B. Outcomes

At the end of today, you should know how to

- Use denotational semantics to describe overall execution of programs in our language
- Determine that evaluation of an expression or program fails due to a runtime error.

C. Denotational Semantics Definition and Rules

- In addition to the small step-by-step operational semantics for our programs, we'll also introduce a version of semantics that concentrates only on the beginning and end of the evaluation process (hence he name "large-step" semantics).
- **Definition**: The **denotational semantics** of S in σ is τ if in state σ , program S terminates in τ . (I.e., $\langle S, \sigma \rangle \rightarrow^* \langle E, \tau \rangle$.) Symbolically, we write $M(S, \sigma) = \{\tau\}$.
 - The reason we have a singleton set containing τ instead of just τ is that later, we'll look at non-deterministic computations, which can have more than one possible final state.
- **Notation**: If you slip up and write $M(S, \sigma) = \tau$ instead of $\{\tau\}$, it's not a big deal.
- Example 1: Let σ be a state and let $S = \mathbf{x} := 1$; $\mathbf{y} := 2$. Since $\langle \mathbf{x} := 1 ; \mathbf{y} := 2, \sigma \rangle \rightarrow \langle \mathbf{y} := 2, \sigma[\mathbf{x} \mapsto 1] \rangle \rightarrow \langle E, \sigma[\mathbf{x} \mapsto 1][\mathbf{y} \mapsto 2] \rangle$, we know $M(S, \sigma) = \{\sigma[\mathbf{x} \mapsto 1][\mathbf{y} \mapsto 2]\}$.
- **Notation**: In the literature, some people write hollow square brackets around arguments that are syntactic to emphasize that they are indeed syntactic. Other notations for $M(S, \sigma)$ include $M[S](\sigma)$ and $M[S](\sigma)$ and $M(S)(\sigma)$. In the last two cases, $M[S](\sigma)$ and $M(S)(\sigma)$ are viewed as functions that transform memory state, so $M[S](\sigma) = \tau$ means $M[S](\sigma) = \tau$ maps σ to τ .

Denotational Semantics Rules

- Since $M(S, \sigma) = \tau$ means $\langle S, \sigma \rangle \to^* \langle E, \tau \rangle$, we can give specific rules for $M(S, \sigma)$ depending on the kind of S.
- **Skip and Assignment:** These statements complete in only one step, so the operational semantics rules give the denotational semantics immediately.
 - $M(\mathbf{skip}, \sigma) = {\sigma}$
 - $M(v := e, \sigma) = {\sigma[v \mapsto \sigma(e)]}$

- $M(b[e_1] := e, \sigma) = {\sigma[b[\alpha] \mapsto \beta]}$ where $\alpha = \sigma(e_1)$ and $\beta = \sigma(e)$.
- Composition: $M(S_1; S_2, \sigma) = M(S_2, \tau)$ where $\{\tau\} = M(S_1, \sigma)$. To justify this, say we have $\langle S_1; S_2, \sigma \rangle \rightarrow^* \langle S_2, \tau \rangle \rightarrow^* \langle E, \tau' \rangle$. Since $M(S_1, \sigma) = \{\tau\}$, we run S_2 starting in state τ , so $M(S_1; S_2, \sigma) = M(S_2, \tau) = M(S_2, M(S_1, \sigma))$.
 - Note the subscripts in S_1 ; S_2 are 1 then 2 but the subscripts in $M(S_2, M(S_1, \sigma))$ are 2 then 1.
- Notation: We'll bend the notation a bit and write $M(S_2, M(S_1, \sigma))$ to mean $M(S_2, \tau)$ where $\{\tau\} = M(S_1, \sigma)$.
- Conditional: The meaning of an **if-else** statement is either the meaning of the true branch or the meaning of the false branch.
 - If $\sigma(B) = T$, then $M(\mathbf{if} B \mathbf{then} S_1 \mathbf{else} S_2 \mathbf{fi}, \sigma) = M(S_1, \sigma)$
 - If $\sigma(B) = F$, then $M(\mathbf{if} B \mathbf{then} S_1 \mathbf{else} S_2 \mathbf{fi}, \sigma) = M(S_2, \sigma)$
- Example 2: Let S = if y then x:=x+1 else z:=x+2 fi, then
 - If $\sigma(y) = T$, then $M(S, \sigma) = {\sigma[x \mapsto \sigma(x) + 1]}$
 - If $\sigma(y) = F$, then $M(S, \sigma) = {\sigma[z \mapsto \sigma(x) + 2]}$
- **Iterative**: One way to definite the meaning of *W* = **while** *B* **do** *S* **od** is recursively:
 - If $\sigma(B) = F$ then $M(W, \sigma) = {\sigma}$
 - If $\sigma(B) = T$ then $M(W, \sigma) = M(S; W, \sigma) = M(W, M(S, \sigma))$.
 - Unfortunately, this definition is not well-formed if *W* leads to an infinite loop.
- Another way to characterize $M(W, \sigma)$ involves looking at the series of states in which we evaluate the test.
 - Let $\sigma_0 = \sigma$, and for for k = 0, 1, ..., let $\sigma_{k+1} = M(S, \sigma_k)$. Then $\sigma_0, \sigma_1, \sigma_2, ...$ is the sequence of states seen at successive **while** loop tests: σ_k is the state in effect the k'th time we evaluate the loop test.
 - Then $M(W, \sigma)$ is the (set containing the) first state in this sequence that satisfies $\neg B$, assuming there is such a state. (If there isn't, we have an infinite loop.)
- Example 3: Let W = while x < n do S od, where the loop body S = x := x+1; y := y+y. The general case for the behavior of S is (for any τ), $M(S, \tau[x \mapsto \alpha][y \mapsto \beta]) = \{\tau[x \mapsto \alpha+1][y \mapsto 2\beta]\}$. Say we start execution of W in state $\sigma = \{x = 0, n = 3, y = 1\}$. Our sequence of states is
 - $\sigma_0 = \sigma = \{x = 0, n = 3, y = 1\}$
 - $M(S, \sigma_0) = {\sigma_1}$ where $\sigma_1 = {x = 1, n = 3, y = 2}$
 - $M(S, \sigma_1) = {\sigma_2}$ where $\sigma_2 = {x = 2, n = 3, y = 4}$, and
 - $M(S, \sigma_2) = {\sigma_3}$ where $\sigma_3 = {x = 3, n = 3, y = 8}$.
 - Of this sequence, σ_3 is the first state that satisfies $x \ge n$, so $M(W, \sigma) = {\sigma_3} = {\{x = 3, n = 3, y = 8\}}$.

D. Convergence and Divergence of Loops

- Not all loops terminate. Evaluation of an infinite loop yields an unending path of → steps: Either an
 infinite sequence of different configurations or a finite-length cycle of configurations. More
 generally in computer science we can also also have infinite recursion, which we won't study in
 detail but is treated similarly to infinite iteration.
- **Definition**: Execution of S starting in σ diverges if it doesn't converge; i.e., $\langle S, \sigma \rangle \rightarrow^* \langle E, \tau \rangle$ for no τ .
- Notation: $M(S, \sigma) = \{\bot_d\}$ ("bottom sub-d") means S diverges in σ . Note that although we're writing it in a place where you'd expect a memory state, \bot_d is not an actual memory state; we'll call it a pseudo-state as apposed to an actual or real memory state like σ and τ .
 - Note: Divergence is one way in which a program doesn't successfully terminate. We'll
 introduce other flavors of ⊥ as we look at other ways to not get successful termination.
- To determine when $M(W, \sigma) = \{\bot_d\}$, recall that in the previous section we looked at the series of states σ_0 , σ_1 , σ_2 , ... in which we evaluate the loop test. For this sequence, $\sigma_0 = \sigma$, and $\sigma_{k+1} = M(S, \sigma_k)$ for $k \ge 0$. For terminating loops, $M(W, \sigma)$ is the first state in the sequence that satisfies $\neg B$. We can now write $M(W, \sigma) = \{\bot_d\}$ to indicate that no state in the sequence satisfies $\neg B$.
- **Example 4**: Let W = while T do skip od and σ be any state. Then $\langle W, \sigma \rangle \rightarrow \langle \text{skip }; W, \sigma \rangle$ but $\langle \text{skip }; W, \sigma \rangle \rightarrow \langle W, \sigma \rangle$. (As a directed graph, this is a two-node cycle, $\langle W, \sigma \rangle \rightleftharpoons \langle \text{skip }; W, \sigma \rangle$.) Hence $M(W, \sigma) = \{ \bot_d \}$.
- Example 5: Let W =while $x \ne n$ do x := x-1 od and let $\sigma = \{x = -1, n = 0\}$.
 - Let $\sigma_0 = \sigma = \{x = -1, n = 0\}$
 - Let $\{\sigma_1\} = M(\mathbf{x} := \mathbf{x} 1, \sigma_0) = \{\sigma_0[\mathbf{x} \mapsto -2]\} = \{\{\mathbf{x} = -2, \ n = 0\}\}$
 - Let $\{\sigma_2\} = M(\mathbf{x} := \mathbf{x} 1, \sigma_1) = \{\sigma_1[\mathbf{x} \mapsto -2]\} = \{\{\mathbf{x} = -3, \ n = 0\}\}$
 - In general, let $\{\sigma_{k+1}\} = M(\mathbf{x} := \mathbf{x} 1, \sigma_k) = \{\{\mathbf{x} = -k 2, \mathbf{n} = 0\}\}$
 - Since every $\sigma_k \models x \neq n$, we have $M(W, \sigma) = \{\bot_d\}$.

E. Expressions With Runtime Errors

- Using \perp_d lets us talk about a program not successfully terminating because it simply doesn't terminate at all.
- Runtime errors cause a program to terminate, but unsuccessfully E.g, in σ, the assignment z := x/y fails if σ(y) = 0 because evaluation of σ(x/y) fails. There are two notions of failure here: The expression fails, and this causes the statement to fail.
- **Definition**: $\sigma(e) = \bot_e$ means evaluation of *e* in state σ causes a runtime error.

- Here, \(\perp_e\) is used as a pseudo-value of an expression, to indicate an error. It's not a value
 (though if you want to think of it as one, there's no real harm).
- If e can fail at runtime, then instead of $\sigma(e) \in V$ for some set of values V, we now have $\sigma(e) \in V \cup \{\bot_e\}$. Of course, some expressions never fail: $\sigma(2+2) \in \mathbb{Z} \cup \{\bot_e\}$ but more specifically, $\sigma(2+2) \in \mathbb{Z}$.
- **Primary errors**: The primitive values and operations being supported determines what basic runtime errors can occur. For us, let's include:
 - Array index out of bounds: $\sigma(b[e]) = \bot_e$ if $\sigma(e) < 0$ or $\ge \sigma(size(b))$; similar for multiple dimensions.
 - Division by zero: $\sigma(e_1/e_2) = \sigma(e_1 \% e_2) = \bot_e$ if $\sigma(e_2) = 0$.
 - Square root of negative number: $\sigma(\operatorname{sqrt}(e)) = \bot_e \text{ if } \sigma(e) < 0.$
- Example 6: b[-1], n/0, and sqrt(-1) fail for all σ . b[k] fails in state $\{b = (2, 3, 5, 8), k = 4\}$ but not in state $\{b = (6), k = 0\}$
- Hereditary Failure: If evaluating a subexpression fails, then the overall expression fails.
 - If op is a unary operator, then $\sigma(op\ e) = \bot_e$ if $\sigma(e) = \bot_e$.
 - If op is a binary operator, then $\sigma(e_1 \text{ op } e_2) = \bot_e$ if $\sigma(e_1)$ or $\sigma(e_2) = \bot_e$.
 - For a conditional expression, $\sigma(\mathbf{if} B \mathbf{then} e_1 \mathbf{else} e_2 \mathbf{fi}) = \bot_e$ if one of the following three situations occurs: (1) $\sigma(B) = \bot_e$ (2) $\sigma(B) = T$ and $\sigma(e_1) = \bot_e$ or (3) $\sigma(B) = F$ and $\sigma(e_2) = \bot_e$. We don't worry about a hypothetical failure of the branch we don't evaluate.
- Example 7: $\sigma(x/y) = \bot_e$ when $\sigma(y) = 0$, but $\sigma(y = 0 ? 0 : x/y)$ never = \bot_e .

F. Statements With Runtime Errors

- An expression that causes a runtime error causes the statement it appears in terminate unsuccessfully. We'll write ⟨S, σ⟩ → ⟨E, ⊥_e⟩ for the operational semantics of such a statement. This use of ⊥_e as a (pseudo)-state is different from its use as a pseudo-value (σ(e) = ⊥_e).
- **Definition** (Statements with expressions with runtime errors) If a statement evaluates an expression that causes a runtime error, then the statement terminates unsuccessfully. To the operational semantics, we add:
 - If $\sigma(e) = \bot_e$, then $\langle v := e, \sigma \rangle \rightarrow \langle E, \bot_e \rangle$.
 - If $\sigma(e_1)$ or $\sigma(e_2) = \bot_e$, then $\langle b[e_1] := e_2, \sigma \rangle \rightarrow \langle E, \bot_e \rangle$
 - If $\sigma(B) = \bot_e$, then \(\text{while } B \text{ do } S \text{ od}, \sigma \rangle \tau \(E, \bot_e \rangle \)
 - If $\sigma(B) = \bot_e$, then $\langle \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi}, \sigma \rangle \to \langle E, \bot_e \rangle$
 - If $\langle S_1, \sigma \rangle \to \langle T_1, \bot_e \rangle$ then $\langle S_1; S_2, \sigma \rangle \to \langle E, \bot_e \rangle$ where T_1 either is a statement or E
- The pseudo-states \perp_d and \perp_e share some properties, so it's helpful to have a more general notation for "error".

- **Notation**: \bot refers generically to \bot_d and/or \bot_e (with the context hopefully making it clear which).
- **Notation**: To make \bot_d more analogous to \bot_e , we'll write $\langle S, \sigma \rangle \to^* \langle E, \bot_d \rangle$ to mean that evaluation of S in σ never terminates. Thus $\langle S, \sigma \rangle \to^* \langle E, \bot \rangle$ means that evaluation of S in σ does not terminate successfully.
- **Notation**: $\bot \in M(S, \sigma)$ means $\langle S, \sigma \rangle \to^* \langle E, \bot \rangle$. (Here, \bot can be \bot_d or \bot_e .)
 - Since we are writing \(\pext{\pm}\) in some of the places where an actual memory state would appear, it's
 good to be thorough, look at the other places states appear, and extend those notions or
 notations.
- Errors are not actual memory states or actual values, so we define
 - $M(S, \perp) = \{\perp\}$
 - $\sigma[v \mapsto \bot] = \bot$. Also, $\bot[v \mapsto \alpha] = \bot$.
 - If $\sigma = \bot$, then $\sigma(e) = \bot$
 - If $\langle S_1, \sigma \rangle \to \langle E, \bot \rangle$, then $\langle S_1; S_2, \sigma \rangle \to \langle E, \bot \rangle$ [as we saw above]
- From this last definition, it follows that
 - If $M(S_1, \sigma) = \{\bot\}$, then $M(S_1; S_2, \sigma) = M(S_2, M(S_1, \sigma)) = M(S_2, \bot) = \{\bot\}$
 - Also, if $M(S_1, \sigma) = \{\bot\}$, then if $W = \text{while } B \text{ do } S_1 \text{ od } \text{and } \sigma(B) = T$, then $M(W, \sigma) = M(S_1; W, \sigma) = M(W, M(S_1, \sigma)) = M(W, \bot) = \{\bot\}$.
- Errors and Satisfaction / Validity of predicates: \bot never satisfies a predicate: $\bot \nvDash p$ for all p, even if p = the constant T. In general, we now have three possibilities: $\sigma \vDash p$, $\sigma \vDash \neg p$, or $\sigma = \bot$. So $\sigma \nvDash p$ is now equivalent to $(\sigma \vDash \neg p \text{ or } \sigma = \bot)$, not just $\sigma \vDash \neg p$. We can also have $\sigma \nvDash p$ and $\sigma \nvDash \neg p$ simultaneously (when $\sigma = \bot$).
 - Since $\sigma \vDash \neg p$ is no longer equivalent to $\sigma \nvDash p$, we need a better notion of what $\neg p$ means.
 - The solution is to treat $\neg p$ as shorthand for $p \to F$ where F is the predicate "false".
 - We can define the meaning of F by saying that $\sigma \nvDash F$ for all σ . Defining $F \equiv 0 \neq 0$ is another approach.
 - It's straightforward to show properties like $\sigma \vDash \neg F$ iff $\sigma \neq \bot$.
 - The other problem to worry about is what to do if evaluation of a predicate causes an error?
 - Clearly, we can't allow things like $\{y=0\} \models y/y = 1$.
 - To handle this, we'll add \perp to the semantics of basic operations and tests:
 - For any relation (like less than, etc), we have $(\alpha \text{ relation } \beta) \text{ yields}^* \perp \text{ if } \alpha \text{ or } \beta = \bot$.

^{*} I'm using "yields" here for "semantically evaluates to". Using "equals" or "=" might get confused with "semantically equal to".

- For any binary operation (like addition, etc), we have (α operation β) yields \perp if α or $\beta = \perp$.
- Similarly for a unary operation *op*, we have $(op \ \alpha)$ yields \bot if $\alpha = \bot$.
- Some of the implications of this are reasonably intuitive: (\bot plus one) yields \bot .
- But some implications are less intuitive: \bot is also the result of $\bot \ne 2$ (e.g), $\bot < \bot$, $\bot = \bot$, and $\bot \ne \bot$.
- Returning to y/y = 1, we still have $\sigma \models y/y = 1$ iff $\sigma(y/y) = \sigma(1)$ iff $(\sigma(y) \text{ divided by } \sigma(y)) = \text{one}$, so
 - If $\sigma(y) = \text{some } \alpha \neq 0$, then $\sigma \models y/y = 1$ iff $(\alpha \text{ divided by } \alpha = \text{one})$ iff (one = one) iff true
 - But if $\sigma(y) = 0$, then $\sigma \models y/y = 1$ iff (0 divided by 0 = one) iff ($\bot = one$) iff \bot .
 - Thus $\sigma \nvDash y/y = 1$ and similarly (since $(\bot \neq one)$ yields \bot), $\sigma \nvDash y/y \neq 1$.

Denotational Semantics; Divergence; Runtime Errors

CS 536: Science of Programming, Fall 2019

A. Why

- Our simple programming language is a model for the kind of constructs seen in actual languages.
- Our programs stand for state transformers.
- Runtime errors cause failure of normal program execution.

B. Outcomes

At the end of today, you should be able to

- Give the denotational semantics of a program in a state.
- Say when and how evaluation of an expression or program fails due to a runtime error.

C. Problems

Problems 1-4 are the denotational versions of the similar questions from Activity 5

- 1. What is
 - a. $M(x := x+1, \{x=5\})$?
 - b. $M(x := x+1, \sigma)$? (Your answer will be symbolic.)
 - c. $\langle x := x+1; y := 2 * x, \{x = 5\} \rangle$?
- 2. Let S = if x > 0 then x := x+1 else y := 2 * x fi.
 - a. Let $\sigma(\mathbf{x}) = 8$. What is $M(S, \sigma)$?
 - b. Repeat, if $\sigma(x) = 0$.
 - c. Repeat, if we don't know what $\sigma(x)$ is. (Your answer will be symbolic.)
- 3. Let S = if x > 0 then x := x/z fi.
 - a. What is $M(S, \sigma)$ if $\sigma = \{x = 8, z = 3\}$? (Don't forget, integer division truncates)
 - b. What is $M(S, \{x = -2, z = 3\})$?
- 4. Let W = while x < 3 do S od where S = x := x+1; y := y*x.
 - a. Evaluate the body *S* in an arbitrary state τ and give $M(S, \tau)$.
 - b. What is $M(W, \sigma)$ if $\sigma \models x = 4 \land y = 1$?
 - c. What is $M(W, \sigma)$ if where $\sigma \models x = 1 \land y = 1$?

- 5. Let S = x := y/b[x] and let $\sigma = \{b = (3, 0, -2, 4), x = \alpha, y = 13\}$. Find all α such that $M(S, \sigma) = \{\bot_e\}$. (Remember, integer division truncates.)
- 6. Repeat the previous problem on S = y := y / sqrt(b[x]) and $\sigma = \{b = (-1, 9, 12, 0), x = \alpha, y = 8\}$. Treat sqrt as returning the truncated integer square root of its argument. (I.e., sqrt(0) = 0, sqrt of 1, 2, and 3 all = 1, sqrt of 4 through 8 = 2, etc.)

Solution to Activity 6 (Denotational Semantics; Divergence; Runtime Errors)

- 1. (Calculate meanings of programs)
 - a. $M(x := x+1, \{x=5\}) = \{\{x=5\} | x \mapsto \{x=5\} (x+1)\} = \{\{x=6\}\}$
 - b. $M(x := x+1, \sigma) = {\sigma[x \mapsto \sigma(x+1)]} = {\sigma[x \mapsto \sigma(x)+1]}$
 - c. $M(x := x+1; y := 2 * x, \{x = 5\})$
 - $= M(y := 2 * x, M(x := x+1, \{x = 5\})$
 - $= M(y := 2 * x, \{x = 6\})$

[from part (a)]

- = $\{\{x = 6\}[y \mapsto \beta]\}$ where $\beta = \{x = 6\}(2 * x) = 12$
- $= \{ \{ x = 6, y = 12 \} \}$
- 2. Let $S = \mathbf{if} \times 0$ then x := x+1 else $y := 2 \times x$ fi.
 - a. If $\sigma(x) = 8$, then $\sigma(x > 0) = T$, so $M(S, \sigma) = M(x := x + 1, \sigma) = {\sigma[x \mapsto \sigma(x + 1)]} = {\sigma[x \mapsto 9]}$
 - b. If $\sigma(\mathbf{x}) = 0$, then $\sigma(\mathbf{x} > 0) = F$, so $M(S, \sigma) = M(\mathbf{y} := 2 \times \mathbf{x}, \sigma) = {\sigma[\mathbf{y} \mapsto \sigma(2 \times \mathbf{x})]} = {\sigma[\mathbf{y} \mapsto \sigma(3 \times \mathbf{y})]} = {\sigma[\mathbf{y} \mapsto \sigma$
 - c. If $\sigma(x) > 0$ then $M(S, \sigma) = M(x := x+1, \sigma) = {\sigma[x \mapsto \sigma(x)+1]}$
 - If $\sigma(\mathbf{x}) \le 0$ then $M(S, \sigma) = M(\mathbf{y} := 2 \times \mathbf{x}, \sigma) = {\sigma[\mathbf{y} \mapsto 2 \times \sigma(\mathbf{x})]}$
- 3. Let S = if x > 0 then x := x/z fi = if x > 0 then x := x/z else skip fi
 - a. If $\sigma = \{\mathbf{x} = 8, \mathbf{z} = 3\}$, then $\sigma(\mathbf{x} > 0) = T$, so $M(S, \sigma) = M(\mathbf{x} := \mathbf{x} / \mathbf{z}, \sigma) = \{\sigma[\mathbf{x} \mapsto \alpha]\}$ where $\alpha = \sigma(\mathbf{x} / \mathbf{z}) = \sigma[\mathbf{x} \mapsto 8/3] = \sigma[\mathbf{x} \mapsto 2]$, since integer division truncates.
 - b. If $\sigma = \{x = -2, z = 3\}$ then $\sigma(x > 0) = F$, so $M(S, \sigma) = \text{so } M(\mathbf{skip}, \sigma) = \{\sigma\}$.
- 4. Let W = while x < 3 do S od where S = x := x+1; y := y*x.
 - a. For arbitrary τ ,

$$M(S,\tau) = M(\mathbf{x} := \mathbf{x} + \mathbf{1}; \ \mathbf{y} := \mathbf{y} * \mathbf{x}, \tau)$$

$$= M(\mathbf{y} := \mathbf{y} * \mathbf{x}, \tau[\mathbf{x} \mapsto \tau(\mathbf{x}) + 1])$$

$$= \{\tau[\mathbf{x} \mapsto \tau(\mathbf{x}) + 1][\mathbf{y} \mapsto \alpha]\} \text{ where } \alpha = \tau[\mathbf{x} \mapsto \tau(\mathbf{x}) + 1](\mathbf{y} * \mathbf{x}) = \tau(\mathbf{y}) \times (\tau(\mathbf{x}) + 1)$$

- b. If $\sigma \models x = 4 \land y = 1$, then $\sigma(x < 3) = F$ so $M(W, \sigma) = {\sigma}$.
- c. If $\sigma \models x = 1 \land y = 1$, then $\sigma(x < 3) = T$ so we have at least one iteration to do. Let $\sigma_0 = \sigma$,

let
$$\sigma_1 = M(S, \sigma_0) = \sigma_0(\mathbf{y}) \times (\sigma_0(\mathbf{x}) + 1)$$
, and let $\sigma_2 = M(S, \sigma_1) = \sigma_1(\mathbf{y}) \times (\sigma_1(\mathbf{x}) + 1)$. Then $\sigma_0 = \sigma[\mathbf{x} \mapsto 1][\mathbf{y} \mapsto 1]$

$$\sigma_1 = M(S, \sigma_0) = \sigma_0[\mathbf{x} \mapsto \sigma_0(\mathbf{x}) + 1][\mathbf{y} \mapsto \sigma_0(\mathbf{y}) \times (\sigma_0(\mathbf{x}) + 1)] = \sigma[\mathbf{x} \mapsto 2][\mathbf{y} \mapsto 2]$$

$$\sigma_2 = M(S, \sigma_1) = \sigma_1[\mathbf{x} \mapsto 2+1][\mathbf{y} \mapsto 2 \times (2+1)] = \sigma[\mathbf{x} \mapsto 3][\mathbf{y} \mapsto 6]$$

Since σ_0 and $\sigma_1 \vDash x < 3$ but $\sigma_2 \vDash x \ge 3$, we have $M(W, \sigma) = {\sigma_2} = {\sigma[x \mapsto 3][y \mapsto 6]}$.

```
5. M(S, \sigma) = M(\mathbf{x} := \mathbf{y}/\mathbf{b}[\mathbf{x}], \sigma) = \{\sigma[\mathbf{x} \mapsto \gamma]\} \text{ where } \gamma = \sigma(\mathbf{y}/\mathbf{b}[\mathbf{x}]) = 13 / \sigma(\mathbf{b})(\alpha) = \bot_e iff \sigma(\mathbf{b})(\alpha) = \bot_e or \sigma(\mathbf{b})(\alpha) = 0 iff (\alpha \text{ is out of range for } \sigma(\mathbf{b})) or (\sigma(\mathbf{b})(\alpha) = 0) (\sigma(\mathbf{b})(\alpha) = 0) (\sigma(\mathbf{b})(\alpha) = 0) iff (\alpha < 0 \text{ or } \alpha \ge 4) or (\sigma(\mathbf{b})(\alpha) = 0) (\sigma(\mathbf{b})(\alpha) = 0) (\sigma(\mathbf{b})(\alpha) = 0) iff \sigma(\alpha) = 0 (\sigma(\alpha) = 0) (\sigma(\alpha) = 0) (\sigma(\alpha) = 0) iff \sigma(\alpha) = 0, \sigma(\alpha) = 0 (\sigma(\alpha) = 0) (\sigma(\alpha) = 0) iff \sigma(\alpha) = 0, \sigma(\alpha) = 0 (\sigma(\alpha) = 0) (\sigma(\alpha) = 0) iff \sigma(\alpha) = 0, \sigma(\alpha) = 0 (\sigma(\alpha) = 0) (\sigma(\alpha) = 0) iff \sigma(\alpha) = 0, \sigma(\alpha) = 0 (\sigma(\alpha) = 0) (\sigma(\alpha) = 0) (\sigma(\alpha) = 0) iff \sigma(\alpha) = 0, \sigma(\alpha) = 0 (\sigma(\alpha) = 0) (\sigma(\alpha) = 0) (\sigma(\alpha) = 0) iff \sigma(\alpha) = 0 (\sigma(\alpha) = 0) (\sigma(\alpha)
```

6. $M(S, \sigma) = M(y := y / \text{sqrt}(b[x]), \sigma) = \{\sigma[y \mapsto \beta]\} \text{ where } \beta = (\sigma(y) / sqrt(\gamma)) = (8 / sqrt(\gamma)) \text{ and } \gamma = \sigma(b)(\sigma(x)) = \sigma(b)(\alpha)$

```
So \beta = \bot_e (and thus M(S, \sigma) = \{\sigma[\mathbf{y} \mapsto \bot_e]\} = \{\bot_e\})
 \text{iff } \gamma = \bot_e \text{ or } \gamma < 0 \text{ or } sqrt(\gamma) = 0 \qquad \qquad \text{(i.e., b[x] fails, b[x] < 0, or } sqrt(b[x]]) = 0) 
 \text{iff } (\alpha \text{ out of range for } \sigma(b)] \text{ or } \gamma < 0 \text{ or } sqrt(\gamma) = 0 \qquad \qquad (\gamma = \bot_e \text{ iff b[x] has a bad index}) 
 \text{iff } (\alpha < 0 \text{ or } \alpha \ge 4) \text{ or } \gamma = \sigma(b)(\alpha) < 0 \text{ or } sqrt(\gamma) = 0 \text{ (only b[0] < 0)} 
 \text{iff } (\alpha < 0 \text{ or } \alpha \ge 4) \text{ or } (\alpha = 0) \text{ or } sqrt(\gamma) = 0 \qquad \qquad \text{(only b[0] < 0)} 
 \text{iff } (\alpha < 0 \text{ or } \alpha \ge 4) \text{ or } (\alpha = 0) \text{ or } (\alpha = 3) \qquad \qquad \text{(only sqrt(b[3]) = sqrt(0) = 0)} 
 \text{iff } (\alpha \le 0 \text{ or } \ge 3) \qquad \qquad \text{(combining terms)}
```

For next time, add these (from old lecture on total correctness)

- 1. Give a total correctness precondition p for $\{p\}$ $\mathbf{x} := \mathbf{y}/\mathbf{b}[\mathbf{i}] \{\mathbf{x} > 0\}$. Logically simplify if you wish.
- 1. For $\{p\}$ x := y/b[i] $\{x > 0\}$, let $p \Leftrightarrow wp(x := y/b[i], x > 0)$ $\Leftrightarrow D(y/b[i]) \land (y/b[i] > 0)$. $\Leftrightarrow (0 \le i < size(b) \land b[i] \ne 0) \land (y/b[i] > 0)$
- 2. Repeat problem 1 on $\{p_2\}$ j := x/j; $\{p_1\}$ y := e $\{z < y\}$ where $e \equiv \text{sqrt}(b[j])$.
- 2. For $\{p_2\}$ j := x/j; $\{p_1\}$ y := sqrt(b[j]) $\{z < y\}$, take $p_1 \Leftrightarrow wp(y := sqrt(b[j]), z < y)$ $\Leftrightarrow D(sqrt(b[j])) \land wlp(y := sqrt(b[j]), z < y)$ $\Leftrightarrow 0 \le j < size(b) \land b[j] \ge 0 \land z < sqrt(b[j])$

```
and p_2 \Leftrightarrow wp(j := x/j, p_1)
\Leftrightarrow D(x/j) \land wlp(j := x/j, p_1)
\Leftrightarrow j \neq 0 \land (0 \leq j < size(b) \land b[j] \geq 0 \land z < sqrt(b[j]))[x/j / j]
\Leftrightarrow j \neq 0 \land 0 \leq x/j < size(b) \land b[x/j] \geq 0 \land z < sqrt(b[x/j]).
```