Stochastik I

7. Übung

Aufgabe 25 (5 Punkte)

Seien $\mu, \nu, \nu_1, \nu_2, \dots$ Maße auf einem messbaren Raum (Ω, \mathcal{F}) und p > 0. Beweisen Sie die folgenden Aussagen:

- (i) Aus $\nu \perp \mu$ folgt $p \nu \perp \mu$.
- (ii) Aus $\nu_1 \perp \mu$ und $\nu_2 \perp \mu$ folgt $(\nu_1 + \nu_2) \perp \mu$.
- (iii) Aus $\nu_n \perp \mu$, $n \in \mathbb{N}$, and $\nu(\cdot) = \sup_{n \in \mathbb{N}} \nu_n(\cdot)$ folgt $\nu \perp \mu$.
- (iv) Aus $\nu_1 \ll \mu$ und $\nu_2 \perp \mu$ folgt $\nu_1 \perp \nu_2$.
- (v) Aus $\nu \ll \mu$ und $\nu \perp \mu$ folgt $\nu \equiv 0$.

Aufgabe 26 (5 Punkte)

Es seien ℓ das Lebesgue-Maß auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ und $f \in \mathcal{L}_+(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ so, dass das Maß $f\ell$ endlich ist. Ferner seien $x, x_1, x_2, \ldots \in \mathbb{R}, p_1, p_2, \ldots \in (0, \infty)$ und $\nu := \sum_{k \in \mathbb{N}} p_k \delta_{x_k}$. Zeigen Sie die folgenden Aussagen:

- (i) Es gilt $f\ell \approx \ell$ genau dann, wenn f > 0 ℓ -f.s. In diesem Fall gilt $\frac{d(f\ell)}{d\ell} = f$ und $\frac{d\ell}{d(f\ell)} = 1/f$ $(\ell$ -f.s.).
- (ii) Es gilt $\delta_x \perp \ell$.
- (iii) Es gilt $\nu \perp \ell$.

Aufgabe 27 (3 Punkte)

Es seien (Ω, \mathcal{F}) ein messbarer Raum, $(\omega_k)_{k \in \mathbb{N}}$ eine Folge paarweise verschiedener Elemente aus Ω , $(p_k)_{k \in \mathbb{N}}$ eine Folge in $\mathbb{R}_+ := [0, \infty)$ sowie $\mu := \sum_{k \in \mathbb{N}} \delta_{\omega_k}$ und $\nu := \sum_{k \in \mathbb{N}} p_k \delta_{\omega_k}$.

- (i) Zeigen Sie, dass $\nu \ll \mu$.
- (ii) Bestimmen Sie die Dichte (Radon–Nikodym-Ableitung) $\frac{d\nu}{d\mu}$ von ν bzgl. $\mu.$

Aufgabe 28 (3 Punkte)

Für jedes $n \in \mathbb{N}$ und $p \in (0,1)$ betrachten wir das folgende (W-) Maß auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$:

$$B_{n,p}(\cdot) := \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} \delta_k(\cdot).$$

- (i) Zeigen Sie, dass $B_{n,p} \approx B_{n,q}$ für alle $p, q \in (0, 1)$.
- (ii) Bestimmen Sie die Dichten (Radon–Nikodym-Ableitungen) $\frac{dB_{n,p}}{dB_{n,q}}$ und $\frac{dB_{n,q}}{dB_{n,p}}$