Задача А. Представление целого числа в 16-битном типе данных Примеры

Имя входного файла: binshort.in Имя выходного файла: binshort.out Ограничение по времени: 2 секунды 256 мебибайт Ограничение по памяти:

Во входном файле задано целое число. Выведите в выходной файл представление этого числа в 16-битном двоичном дополнительном коде.

Формат входных данных

В первой строке входного файла задано одно целое число n в десятичной записи $(-2^{15} \leqslant n < 2^{15}).$

Формат выходных данных

Выведите в выходной файл две строки. В первой строке выведите двоичную запись дополнительного кода для числа n. Во второй строке выведите шестнадцатеричную запись. Отделяйте записи соседних байтов пробелами. Следуйте формату, указанному в примере.

Примеры

binshort.in	binshort.out	
3	00000000 00000011	
	00 03	
-57	11111111 11000111	
	FF C7	

Задача В. Представление целого числа

Имя входного файла: binint.in Имя выходного файла: binint.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Во входном файле задано целое число. Выведите в выходной файл представление этого числа в 32-битном двоичном дополнительном коде.

Формат входных данных

В первой строке входного файла задано одно целое число n в десятичной записи $(-2^{31} \leqslant n < 2^{31}).$

Формат выходных данных

Выведите в выходной файл две строки. В первой строке выведите двоичную запись дополнительного кода для числа n. Во второй строке выведите шестнадцатеричную запись. Отделяйте записи соседних байтов пробелами. Следуйте формату, указанному в примере.

binint.in	binint.out	
3	00000000 00000000 00000000 00000011 00 00 00 03	
-57	11111111 11111111 11111111 11000111 FF FF FF C7	

Задача С. Представление вещественного числа в 32-битном типе с плавающей точкой

Имя входного файла: binflt32.in Имя выходного файла: binflt32.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Во входном файле задано вещественное число. Выведите в выходной файл представление этого числа в 32-битном типе float. В этом типе 1 старший бит хранит знак числа, следующие 8 битов отведены под экспоненту, а в оставшихся 23 битах находится мантисса.

Формат входных данных

В первой строке входного файла заданы два целых числа p и q через пробел $(|p|,|q|\leqslant 10^4,\,q\neq 0)$. Число, которое нужно представить в типе float — это $\frac{p}{q}$. Помните, что если результат деления нельзя сохранить точно, в результирующей переменной типа float должно оказаться наиболее близкое из тех чисел, которые в этом формате можно хранить.

Формат выходных данных

Выведите в выходной файл две строки. В первой строке выведите двоичную запись представления данного числа. Во второй строке выведите шестнадцатеричную запись. Отделяйте записи соседних байтов пробелами. Следуйте формату, указанному в примере.

Число 0 следует записывать с положительным (то есть нулевым) знаковым битом.

Примеры

binflt32.in	binflt32.out	
9 2	01000000 10010000 00000000 00000000	
	40 90 00 00	
5 -3	10111111 11010101 01010101 01010101	
	BF D5 55 55	

Задача D. Представление вещественного числа

Имя входного файла: binfloat.in Имя выходного файла: binfloat.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Во входном файле задано вещественное число. Выведите в выходной файл представле-

ние этого числа в 64-битном типе double. В этом типе 1 старший бит хранит знак числа, следующие 11 битов отведены под экспоненту, а в оставшихся 52 битах находится мантисса.

Формат входных данных

В первой строке входного файла заданы два целых числа p и q через пробел $(|p|,|q|\leqslant 10^9,\,q\neq 0)$. Число, которое нужно представить в типе double — это $\frac{p}{q}$. Помните, что если результат деления нельзя сохранить точно, в результирующей переменной типа double должно оказаться наиболее близкое из тех чисел, которые в этом формате можно хранить.

Формат выходных данных

Выведите в выходной файл две строки. В первой строке выведите двоичную запись представления данного числа. Во второй строке выведите шестнадцатеричную запись. Отделяйте записи соседних байтов пробелами. Следуйте формату, указанному в примере.

Число 0 следует записывать с положительным (то есть нулевым) знаковым битом.

Примеры

binfloat.in							
9 2							
			binfl	loat.out			
01000000	00010010	00000000	00000000	00000000	00000000	00000000	00000000
40 12 00	00 00 00	00 00					
binfloat.in							
5 -3							
binfloat.out							
10111111	11111010	10101010	10101010	10101010	10101010	10101010	10101011
BF FA AA	AA AA AA	AA AB					

Задача Е. Лишнее число

 Имя входного файла:
 excess.in

 Имя выходного файла:
 excess.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мебибайт

В штаб секретной службы поступило сообщение от одного из агентов. Поступившее сообщение в зашифрованном виде представляет собой последовательность чисел, и лишь специальная программа способна расшифровать его и получить связный текст.

Обычно программа-расшифровщик быстро и бесшумно выдаёт связистам расшифрованный текст, но в этот раз вместо текста от программы поступил сигнал тревоги, свидетельствующий о том, что при пересылке сообщение было взломано или просто повреждено.

Корректное зашифрованное сообщение — это последовательность из $4 \cdot k$ целых чисел, в котором k различных чисел присутствуют по 4 раза каждое; для расшифровки даже не важны значения этих чисел, а важен лишь их порядок.

Однако, изучив зашифрованное сообщение, связисты обнаружили, что в нём $4 \cdot k + 1$ число. При этом ровно одно число является «лишним», то есть при его удалении зашифрованное сообщение становится корректным сообщением из $4 \cdot k$ чисел (возможно, четыре из них равны удалённому числу).

Связисты решили, что на будущее им нужна программа, которая находит такое «лишнее» число автоматически. Помогите им написать такую программу.

Формат входных данных

В первой строке входного файла задано число $n=4\cdot k+1$, где n и k целые, и $1\leqslant k\leqslant 10\,000$. Во второй строке строках находятся числа $a_1,\,a_2,\,\ldots,\,a_n$, разделённые пробелами— зашифрованное сообщение. Известно, что $0\leqslant a_i\leqslant 1\,000\,000$.

Формат выходных данных

В первую строку выходного файла выведите «лишнее» число из набора A_i .

Примеры

excess.in	excess.out
5	1
4 1 4 4 4	
9	3
1 3 3 1 3 3 3 1 1	

Задача F. Квадратура круга

 Имя входного файла:
 squaring.in

 Имя выходного файла:
 squaring.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мебибайт

-Извини, Теодор, но это ты очень странно рассуждаешь. Бессмыслица — искать решение, если оно и так есть. Речь идёт о том, как поступать с задачей, которая решения не имеет. Это глубоко принципиальный вопрос, который, как я вижу, тебе, прикладнику, к сожалению, не доступен.

Аркадий и Борис Стругацкие, «Понедельник начинается в субботу»

Квадратура круга — задача, заключающаяся в нахождении построения с помощью циркуля и линейки квадрата, равновеликого данному кругу (то есть имеющего ту же площадь, что и круг). Наряду с трисекцией угла и удвоением куба, эта задача является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки. Однако, задача о квадратуре круга становится разрешимой, если расширить средства построения, а также если искать не точное, а приближённое решение.

В этой задаче требуется по кругу, заданному координатами центра и радиусом, построить квадрат, площадь которого отличается от площади этого круга не более чем на 10^{-6} . В качестве средства предлагается использовать компьютер и один из доступных языков программирования.

Напомним, что площадь квадрата со стороной a равна a^2 , а площадь круга радиуса r равна $\pi \cdot r^2$, где $\pi \approx 3.1415926535897932384626433832795... — это половина длины окружности единичного радиуса.$

Формат входных данных

В единственной строке входного файла заданы через пробел три целых числа x, y и $r(|x|, |y| \le 100, 1 \le r \le 100)$ — координаты центра круга и его радиус.

Формат выходных данных

Выведите в выходной файл четыре строки. Каждая строка должна содержать два числа через пробел — координаты одной из вершин квадрата. Найденный квадрат должен иметь стороны, параллельные осям координат, и площадь, равную площади данного круга, а его центр должен совпадать с центром круга. В первой строке выведите координаты левой нижней вершины квадрата, во второй — левой верхней, в третьей — правой верхней и в четвёртой — правой нижней вершины.

Выводите вещественные числа как можно более точно! Допускается экспоненциальная форма вывода. При проверке ответов **все** проверки на равенство — сравнение координат точек и площадей квадратов — производятся с точностью до 10^{-6} .

Пример

squaring.in	squaring.out	
2 3 5	-2.431134627264 -1.431134627264	
	-2.431134627264 7.431134627264	
	6.431134627264 7.431134627264	
	6.431134627264 -1.431134627264	

Задача G. Разность между значениями

 Имя входного файла:
 valdiff.in

 Имя выходного файла:
 valdiff.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мебибайт

В выражении

$$f(x) = ax + \frac{x}{b}$$

известны коэффициенты a и b. Найдите разность значений функции f(x) в двух точках x_1 и x_2 при условии, что $|x_2 - x_1| = 1$.

Формат входных данных

В первой строке входного файла заданы через пробел четыре целых числа a, b, x_1 и x_2 $(1 \le a, b, x_1, x_2 \le 10^9)$. Гарантируется, что числа x_1 и x_2 отличаются ровно на единицу.

Формат выходных данных

Выведите в выходной файл одно число — требуемую разность. Абсолютная погрешность должна составлять не более 10^{-5} .

Примеры

valdiff.in	valdiff.out	
1 2 3 4	-1.5	
2 1 4 3	3	

Задача Н. Сумма значений функции

 Имя входного файла:
 valsum.in

 Имя выходного файла:
 valsum.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мебибайт

Найдите сумму значений функции

$$f(x) = x + \frac{1}{x}$$

в нескольких целых точках.

Формат входных данных

В первой строке входного файла задано целое число n — количество точек ($1 \le n \le 50$). В следующей строке заданы n целых чисел x_1, x_2, \ldots, x_n через пробел — точки, значения функции в которых нужно просуммировать ($0 < |x_i| \le 10^9$).

Формат выходных данных

Выведите в выходной файл одно число—сумму значений функции f(x) в заданных точках. Ответ считается правильным, если абсолютная или относительная погрешность не превышает 10^{-9} .

Примеры

valsum.in	valsum.out
3	7.8333333333333
1 2 3	
2	0
1 -1	