3-subnetting

- minimizes the wastage of IP addresses
- 2 methods
 - FLSM
 - VLSM

√ Formulas

Subnetting can be done based on the requirement.
Requirement of Hosts?

2^h - 2 ≥ requirement
Requirement of Networks?

2^n ≥ requirement
Number of Subnets

2^number of host bits

What we do in Subnetting

- Converting Host into Network Bits (reduce number of host bits)
- Converting 0's into 1's.

Exercise

C-class, Req = 50 hosts (FLSM)

Subnetting can be done based on the requirement. Requirement of Hosts? 2^h - 2 ≥ requirement Requirement of Networks? 2^n ≥ requirement Number of Subnets 2^number of host bits

21	2	28	256
2 ²	4	29	512
2 ³	8	210	1024
24	16	211	2048
2 ⁵	32	2 ¹²	4096
26	64	2 ¹³	8192
27	128	214	16384

2^6 - 2 ≥ 50. 62 - Valid Hosts

Required Host Bits

```
power value will be the host bits.

Number of Subnets - 2^2 = 4.

N.N.N.H

11111111 . 11111111 . 11111111 . 11000000

8 + 8 + 8 + 2 = 26 Network bits

Class B = 24/8 ⇒ 26/6

Subnet mask - 255 . 255 . 255 . 192
```

Range (Size of the network)

```
Subnetting can be done based on the requirement.

Requirement of Hosts?

2^h - 2 \gequirement

Requirement of Networks?

2^n \geq requirement

Number of Subnets

2^number of host bits
```

2^h = 2^6 = 64 Networks

Number of Networks

- 64 127
- 128 191
- 192 255

Ip addresses

- $\bullet\,$ an ip address is a 32 bit binary form.
- the address can be divided into 4 octets.