

Scaling Laws for Multilingual Neural Machine Translation

Patrick Fernandes

Joint Work:

Behrooz Ghorbani, Xavier Garcia, Markus Freitag, Orhan Firat

Accepted at ICML 2023

The unreasonable effectiveness of **Scaling**

Scaling up model and data size is an effective way to improve performance of NNs!

The unreasonable effectiveness of **Scaling**

- Scaling up model and data size is an effective way to improve performance of NNs!
- Current state-of-the-art models have (many) billions of parameters

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: task description

sea otter => loutre de mer examples

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
```


Brown et al. (2020) "Language Models are Few-Shot Learners" Chowdhery et al. (2022) "PaLM: Scaling Language Modeling with Pathways"

- Growing body of literature on predicting the performance of models as we scale
 - o In capacity (N)
 - In dataset size (D)
 - o In compute (C)

- Growing body of literature on predicting the performance of models as we scale
 - o In capacity (N)
 - In dataset size (D)
 - o In compute (C)
- Use scaling law to quantify the relationship between these quantities and performance

- Growing body of literature on predicting the performance of models as we scale
 - o In capacity (N)
 - In dataset size (D)
 - o In compute (C)
- Use scaling law to quantify the relationship between these quantities and performance
 - Assuming (almost)-infinite data and compute, the loss of a model is given by

$$\mathcal{L}(N) = \beta N^{-\alpha} + L_{\infty}$$

- Growing body of literature on predicting the performance of models as we scale
 - o In capacity (N)
 - In dataset size (D)
 - o In compute (C)
- Use **scaling law** to quantify the relationship between these quantities and performance
 - Assuming (almost)-infinite data and compute, the loss of a model is given by

$$\mathcal{L}(N) = \beta N^{-lpha} + L_{\infty}$$
Model Scaling Multiplier

- Growing body of literature on predicting the performance of models as we scale
 - o In capacity (N)
 - In dataset size (D)
 - o In compute (C)
- Use **scaling law** to quantify the relationship between these quantities and performance
 - Assuming (almost)-infinite data and compute, the loss of a model is given by

$$\mathcal{L}(N) = \beta N^{-\alpha} + L_{\infty}$$

Model Scaling Exponent

- Growing body of literature on predicting the performance of models as we scale
 - o In capacity (N)
 - In dataset size (D)
 - o In compute (C)
- Use **scaling law** to quantify the relationship between these quantities and performance
 - Assuming (almost)-infinite data and compute, the loss of a model is given by

$$\mathcal{L}(N) = \beta N^{-\alpha} + L_{\infty}$$

Irreducible Loss

(Limitations of Transformers) (Intrinsic Variance in the Task)

- Growing body of literature on predicting the performance of models as we scale
 - o In capacity (N)
 - o In dataset size (D)
 - o In compute (C)
- Use **scaling law** to quantify the relationship between these quantities and performance
 - Assuming (almost)-infinite data and compute, the loss of a model is given by

$$\mathcal{L}(N) = \beta N^{-\alpha} + L_{\infty}$$

• Follows a **power-law** relationship

Scaling Laws for Machine Translation

Performance of Machine Translation models also seems to follow a power-law

Scaling Laws for Machine Translation

- Performance of Machine Translation models also seems to follow a power-law
 - Similar laws for <u>data</u> scaling and different architectures

Bansal et al (2022). "Data Scaling Laws in NMT: The Effect of Noise and Architecture"

Zhang et al (2022). "Examining Scaling and Transfer of Language Model Architectures for Machine Translation"

Previous works has mostly consider scaling laws for a single language/task

- Previous works has mostly consider scaling laws for a single language/task
- One important capability that highly benefits from scale is multilinguality
 - The ability to solve a task in multiple languages

- Previous works has mostly consider scaling laws for a single language/task
- One important capability that highly benefits from scale is multilinguality
 - The ability to solve a task in multiple languages
- Massive multilingual models are <u>crucial</u> to break the language barrier in NLP

• Challenges in developing massive multilingual models that current scaling laws don't help

- Challenges in developing massive multilingual models that current scaling laws don't help
 - How should I weigh each language in the training set?

- Challenges in developing massive multilingual models that current scaling laws don't help
 - How should I weigh each language in the training set?
 - o Can't easily do hyperparameter optimization with 10's/100's billions of parameters

- Challenges in developing massive multilingual models that current scaling laws don't help
 - How should I weigh each language in the training set?
 - Can't easily do hyperparameter optimization with 10's/100's billions of parameters

Can we empirically derive scaling laws for multitask/multilingual models the predict their performance for **any** weighting of the languages in the training set?

- ullet Suppose we want to train a model with parameters $oldsymbol{ heta} \in \mathbb{R}^p$ for K tasks
 - \circ Task i with loss $\mathcal{L}_i(oldsymbol{ heta})$

- ullet Suppose we want to train a model with parameters $oldsymbol{ heta} \in \mathbb{R}^p$ for K tasks
 - \circ Task i with loss $\mathcal{L}_i(oldsymbol{ heta})$
- Multi-task models are often trained by minimizing the scalarized loss

$$\hat{\boldsymbol{\theta}}(\boldsymbol{w}) = \arg\min \sum_{i=1}^K \boldsymbol{w}_i \mathcal{L}_i(\boldsymbol{\theta}) \quad \text{where} \quad \boldsymbol{w} > 0, \quad \sum_{i=0}^K \boldsymbol{w}_i = 1$$

w is a fixed vector of task weights

- ullet Suppose we want to train a model with parameters $oldsymbol{ heta} \in \mathbb{R}^p$ for K tasks
 - \circ Task i with loss $\mathcal{L}_i(oldsymbol{ heta})$
- Multi-task models are often trained by minimizing the scalarized loss

$$\hat{\boldsymbol{\theta}}(\boldsymbol{w}) = \arg\min \sum_{i=1}^K \boldsymbol{w}_i \mathcal{L}_i(\boldsymbol{\theta}) \quad \text{where} \quad \boldsymbol{w} > 0, \quad \sum_{i=0}^K \boldsymbol{w}_i = 1$$

- o w is a fixed vector of task weights
- Scalarization perform on par/better than more complex multi-task optimizers

- ullet Suppose we want to train a model with parameters $oldsymbol{ heta} \in \mathbb{R}^p$ for K tasks
 - \circ Task i with loss $\mathcal{L}_i(oldsymbol{ heta})$
- Multi-task models are often trained by minimizing the **scalarized** loss

$$\hat{\boldsymbol{\theta}}(\boldsymbol{w}) = \arg\min \sum_{i=1}^K \boldsymbol{w}_i \mathcal{L}_i(\boldsymbol{\theta}) \quad \text{where} \quad \boldsymbol{w} > 0, \quad \sum_{i=0}^K \boldsymbol{w}_i = 1$$

- o w is a fixed vector of task weights
- Scalarization perform on par/better than more complex multi-task optimizers
- Typically implemented implicitly
 - Sample observations from each task according to its weight on the loss

Data-Rich Multi-Task Optimization

• In the presence of sufficient data for each, there is a *performance trade-off frontier*

Data-Rich Multi-Task Optimization

• In the presence of sufficient data for each, there is a performance trade-off frontier

Data-Rich Multi-Task Optimization

• In the presence of sufficient data for each, there is a *performance trade-off frontier*

Can we empirically derive scaling laws for multilingual models in the **data-rich** scenario?

We attempt to first fully understand data-rich scenario

- We attempt to first fully understand data-rich scenario
- We train models for three language-pair combinations
 - English→German+Chinese, English→German+French and German+Chinese→English
 - o 600M sentences of production data for each language pair (1.2B for each model)

- We attempt to first fully understand data-rich scenario
- We train models for three language-pair combinations
 - English→German+Chinese, English→German+French and German+Chinese→English
 - 600M sentences of production data for each language pair (1.2B for each model)
- We train up to 8 model sizes (from 10M to 1B non-embedding parameters)

- We attempt to first fully understand data-rich scenario
- We train models for three language-pair combinations
 - English→German+Chinese, English→German+French and German+Chinese→English
 - o 600M sentences of production data for each language pair (1.2B for each model)
- We train up to 8 model sizes (from 10M to 1B non-embedding parameters)

- We attempt to first fully understand data-rich scenario
- We train models for three language-pair combinations
 - English→German+Chinese, English→German+French and German+Chinese→English
 - o 600M sentences of production data for each language pair (1.2B for each model)
- We train up to 8 model sizes (from 10M to 1B non-embedding parameters)
- We vary the task weight/probability for each language (different mixture probabilities)

$$p_1 \in [0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99, 1]$$
 $p_2 = 1 - p_1$

- We attempt to first fully understand data-rich scenario
- We train models for three language-pair combinations
 - English→German+Chinese, English→German+French and German+Chinese→English
 - o 600M sentences of production data for each language pair (1.2B for each model)
- We train up to 8 model sizes (from 10M to 1B non-embedding parameters)
- We vary the task weight/probability for each language (different mixture probabilities)

$$p_1 \in [0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99, 1]$$
 $p_2 = 1 - p_1$

• We evaluate on **in-domain** and **out-of-domain** test sets

We then fit individual scaling laws for each task weighting for both languages

$$\mathcal{L}_i(N;p) = \beta_{p,i} N^{-\alpha_{p,i}} + L_{\infty}^{(p,i)}$$

We then fit individual scaling laws for each task weighting for both languages

$$\mathcal{L}_i(N;p) = \beta_{p,i} N^{-\alpha_{p,i}} + L_{\infty}^{(p,i)}$$

• The scalings laws seem to possess certain **invariances**

$$\mathcal{L}_i(N;p) = \beta_{p,i} N^{-\alpha_{p,i}} + L_{\infty}^{(p,i)}$$

• The scalings laws seem to possess certain **invariances**

$$\mathcal{L}_i(N;p) = \beta_{p,i} N^{-\alpha_{p,i}} + L_{\infty}^{(p,i)}$$

<u>Scaling exponent</u> and <u>irreducible loss</u> seem to be (~) constant across mixture probabilities!

Results: English→German+Chinese

When we subtract a constant for irreducible loss, we plot in log-log axes

Results: Out-of-Domain

These findings hold for different domains

Results: Other Language-Pair Combinations

These findings hold for different language-pair combinations

Jointly Modeling Multitask Scaling

Based on these findings, we make the assumption that

The scaling exponents and irreducible loss are independent of task weight

Jointly Modeling Multitask Scaling

Based on these findings, we make the assumption that

The scaling exponents and irreducible loss are independent of task weight

• This means we can derive a joint scaling law for all task weights

$$\mathcal{L}_i(N;p) = \beta_{p,i} N^{-\alpha_i} + L_{\infty}^{(i)}$$

Jointly Modeling Multitask Scaling

Based on these findings, we make the assumption that

The scaling exponents and irreducible loss are independent of task weight

• This means we can derive a joint scaling law for all task weights

$$\mathcal{L}_i(N;p) = \beta_{p,i} N^{-\alpha_i} + L_{\infty}^{(i)}$$

- Same exponent and irreducible loss for all task weights, different multipliers for each
- ~1 coefficient per mixture weighting!

Jointly Modeling Multitask Scaling: En→De+Zh

A joint scaling law provides a good fit for most task weightings!

We joint scaling exponents and loss, we can ask:

We joint scaling exponents and loss, we can ask:

We joint scaling exponents and loss, we can ask:

We joint scaling exponents and loss, we can ask:

$$\mathcal{L}_i(N_{eff}^{(i,p)};1)$$

We joint scaling exponents and loss, we can ask:

$$\mathcal{L}_i(N;p) = \mathcal{L}_i(N_{eff}^{(i,p)};1)$$

• We joint scaling exponents and loss, we can ask:

"How large should a model trained on both German+French be to match one trained only on German?"

$$\mathcal{L}_i(N;p) = \mathcal{L}_i(N_{eff}^{(i,p)};1)$$

We can empirically compute this

effective parameters number

$$N_{eff}^{(i,p)} = \left(\frac{\beta_{1,i}}{\beta_{p,i}}\right)^{\frac{1}{\alpha_i}} N$$

- Effective parameter reduction is almost linear on task probability!
 - Model with 50% german is <u>close to</u> a model 50% parameters on only german!

- Effective parameter reduction is almost linear on task probability!
 - Model with 50% german is <u>close to</u> a model 50% parameters on only german!
- Capacity splitting is similar for in-domain and out-of-domain

- Despite being more similar, capacity for English→German+French are very similar
 - Very little "sharing" of parameters between languages

- In contrast, "direction" plays an important role in effective capacity
 - Positive synergy between tasks and higher "parameter sharing"

• Can we leverage our multilingual/multitask scaling law to guide task balancing in large models?

Can we leverage our multilingual/multitask scaling law to guide task balancing in large models?

$$\mathcal{L}_i(N;p) = \mathcal{L}_i(f_i(p) \times N;1) \qquad f_i(p) \equiv \frac{N_{\text{eff}}^{(i,p)}}{N} = \left(\frac{\beta_{1,i}}{\beta_{n,i}}\right)^{\frac{1}{\alpha_i}}$$

Can we leverage our multilingual/multitask scaling law to guide task balancing in large models?

$$\mathcal{L}_i(N;p) = \mathcal{L}_i(f_i(p) \times N;1) \qquad f_i(p) \equiv \frac{N_{\text{eff}}^{(i,p)}}{N} = \left(\frac{\beta_{1,i}}{\beta_{p,i}}\right)^{\frac{1}{\alpha_i}}$$

In its current form can only predict performance for weighting used to fit the law

Can we leverage our multilingual/multitask scaling law to guide task balancing in large models?

$$\mathcal{L}_i(N;p) = \mathcal{L}_i(f_i(p) \times N;1) \qquad f_i(p) \equiv \frac{N_{\text{eff}}^{(i,p)}}{N} = \left(\frac{\beta_{1,i}}{\beta_{p,i}}\right)^{\frac{1}{\alpha_i}}$$

- In its current form can only predict performance for weighting used to fit the law
- ullet To extend to unseen task weightings, we instead focus on estimating f(p)

$$\hat{f}_i(p) = p + c_1 p^{c_2} (1 - p)^{c_3}$$

 \circ c^1 , c^2 and c^3 are coefficient fitted with joint scaling law

Can we leverage our multilingual/multitask scaling law to guide task balancing in large models?

$$\mathcal{L}_i(N;p) = \mathcal{L}_i(f_i(p) \times N;1) \qquad f_i(p) \equiv \frac{N_{\text{eff}}^{(i,p)}}{N} = \left(\frac{\beta_{1,i}}{\beta_{p,i}}\right)^{\frac{1}{\alpha_i}}$$

- In its current form can only predict performance for weighting used to fit the law
- ullet To extend to unseen task weightings, we instead focus on estimating f(p)

$$\hat{f}_i(p) = p + c_1 p^{c_2} (1 - p)^{c_3}$$

- \circ c^1 , c^2 and c^3 are coefficient fitted with joint scaling law
- With this parameterization, we can predict performance for any task weighting

Guiding Task Balancing: En→De+Zh

Almost perfectly captures the full task performance frontier across a variety of model scales.

Guiding Task Balancing: Simpler Models

- A simpler linear model is still able to perform relatively well
 - Requires training less models/task weightings

$$\hat{f}_i(p) = c_1(p-1) + 1.$$

Translation Quality

- In MT research, quality is often measured via automatic metrics opposed to cross-entropy
 - o BLEU, ChrF, BLEURT, COMET, ...
 - These metrics take into account the *decoding* problem
 - Likelihood might not correlate human preference in certain situations

Translation Quality

- In MT research, quality is often measured via automatic metrics opposed to cross-entropy
 - o BLEU, ChrF, BLEURT, COMET, ...
 - These metrics take into account the *decoding* problem
 - Likelihood might not correlate human preference in certain situations
- To ensure the practical applicability of results, we repeat our analysis for ChrF and BLEURT
 - Obtain translations from model by decoding with beam search

Translation Quality: ChrF

ChrF has an almost linear relationship with perplexity

Translation Quality: ChrF

- ChrF has an almost linear relationship with perplexity
- We are able to capture the trade-off frontier well

Translation Quality: BLEURT

Similar findings for BLEURT in out-of-domain test sets

Conclusion & Future Work

- The scaling behaviour of multilingual models in an <u>interference</u> scenario is surprisingly simple
 - Almost constant scaling independent of task weight
 - Language/task similarity plays a limited role
 - o "Direction" matters for parameter sharing

Conclusion & Future Work

- The scaling behaviour of multilingual models in an <u>interference</u> scenario is surprisingly simple
 - Almost constant scaling independent of task weight
 - Language/task similarity plays a limited role
 - "Direction" matters for parameter sharing

- As future work, we plan investigate:
 - Multi-task optimization for more diverse tasks (LMs + Code Modelling for example)
 - The scaling properties in the <u>transfer</u> scenario

Generalizing to More Tasks

Figure 20. The evolution of the (in-domain) test cross-entropy loss with model size for $En \rightarrow \{De, Fr, Zh\}$ models, as well as the fitted scaling laws fitted for $En \rightarrow \{De, Zh\}$ (left and middle) and $En \rightarrow \{De, Fr\}$ (right). The color represents the weighting of the languages. Note that we don't show the zero-shot behavior.

Extension to Low-Resource Languages

On the Pareto Front of Multilingual Neural Machine Translation

Liang Chen^{1*} Shuming Ma^{2*} Dongdong Zhang² Furu Wei² Baobao Chang^{1†}
Peking University¹
Microsoft Research²
leo.liang.chen@outlook.com chbb@pku.edu.cn
{shumma_dozhang_fuwei}@microsoft.com

Figure 4: Generalization Performance (BLEU) trade-off curves for English \(\){French, Chinese} under different model sizes and data distributions. The collapse of Pareto front exists in different model sizes when the training data is imbalanced.