Machine Learning DSE 2254

Rohini R. Rao & Manjunath Hegde

Department of Data Science and Computer Applications

MIT, Manipal

March 2022

Slide - Set 5 – Clustering

Unsupervised Learning

- Data with no target attribute. Describe hidden structure from unlabeled data.
- Explore the data to find some intrinsic structures in them.
- Clustering: the task of grouping a set of objects in such a way that objects in the same group (called a <u>cluster</u>) are more similar to each other than to those in other clusters.
- Useful for
 - Automatically organizing data.
 - Understanding hidden structure in data.
 - Preprocessing for further analysis.

Applications

- Biology: classification of plants and animal kingdom given their features
- Marketing: Customer Segmentation based on a database of customer data containing their properties and past buying records
- Clustering weblog data to discover groups of similar access patterns.
- Recognize communities in social networks.

Aspects of Clustering

- A clustering algorithm such as
 - Partitional clustering eg, kmeans
 - Hierarchical clustering eg, AHC
 - Mixture of Gaussians
- A distance or similarity function
 - such as Euclidean, Minkowski, cosine
- Clustering quality
 - Inter-clusters distance ⇒ maximized
 - Intra-clusters distance ⇒ minimized

The quality of a clustering result depends on the algorithm, the distance function, and the application.

Major Clustering Approaches

- <u>Partitioning</u>: Construct various partitions and then evaluate them by some criterion
- <u>Hierarchical</u>: Create a hierarchical decomposition of the set of objects using some criterion
- Model-based: Hypothesize a model for each cluster and find best fit of models to data
- <u>Density-based</u>: Guided by connectivity and density functions
- Graph-Theoretic Clustering

Partitioning Algorithms

- Partitioning method: Construct a partition of a database D of m objects into a set of k clusters
- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic method: <u>k-means</u> (MacQueen, 1967)

Hierarchical Clustering

- Produce a nested sequence of clusters.
- One approach: recursive application of a partitional clustering algorithm.

Model Based Clustering

- · A model is hypothesized
- e,g., Assume data is generated by a mixture of underlying probability distributions
- · Fit the data to model

Density based Clustering

- Based on density connected points
- Locates regions of high density separated by regions of low density
- e.g., DBSCAN

Rohini R Rao & Manjunath Hegde

Graph Theoretic Clustering

- Weights of edges between items (nodes) based on similarity
- E.g., look for minimum cut in a graph

(Dis) Similarity Measures

- Euclidean Distance
 - $X_1 = (x_{11}, x_{12}, ... x_{1n})$ and $X_2 = (x_{21}, x_{22}, ... x_{2n})$ is
 - $\operatorname{dist}(X_1, X_2) = \sqrt{\sum_{i=1}^{n} (x_{1i} x_{2i})^2}$
- Manhattan or City Block Distance
 - dist(i, j) = $| x_{i1} x_{j1} | + | x_{i2} x_{j2} | + ... | x_{in} x_{jn} |$
- Minkowski Distance
 - $dist(i,j) = (|x_{i1} x_{j1}|^p + |x_{i2} x_{j2}|^p + ... |x_{in} x_{jn}|^p)^{1/p}$

- Correlation coefficients (scale-invariant)
- Mahalanobis distance

$$d(x_i, x_i) = \sqrt{(x_i - x_j)\Sigma^{-1}(x_i - x_j)}$$

Pearson correlation

$$r(x_i, x_j) = \frac{Cov(x_i, x_j)}{\sigma_{x_i} \sigma_{x_j}}$$

Quality of Clusters

- Internal evaluation:
 - assign the best score to the algorithm that produces clusters with high similarity within a cluster and low similarity between clusters, e.g., Davies-Bouldin index.

$$DB = \frac{1}{n} \sum_{i=1}^{k} \max_{j \neq i} \frac{\sigma_i + \sigma_j}{d(c_i, c_j)}$$

- External evaluation:
 - evaluated based on data such as known class labels and external benchmarks, eg, Rand Index, Jaccard Index, f-measure

$$RI = \frac{TP + TN}{TP + FP + FN + TN}$$

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{TP}{TP + FP + FN}$$

K-means Clustering

Given k

- Randomly choose k data points (seeds) to be the initial cluster centres
- Assign each data point to the closest cluster centre
- Re-compute the cluster centres using the current cluster memberships.
- 4. If a convergence criterion is not met, go to 2.

Stopping/convergence criterion

OR

- no re-assignments of data points to different clusters
- no (or minimum) change of centroids
- 3. minimum decrease in the sum of squared error

$$SSE = \sum_{i=1}^{k} \sum_{x \in S_i} ||x_i - \mu_i||^2$$

K-means Illustrated

Optimization Objective

• Min

$$J(\underline{c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K}) = \frac{1}{m} \sum_{i=1}^{m} ||\underline{x^{(i)} - \mu_{c^{(i)}}}||^2$$

 $c^{(i)}$ = index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned

 $\mu_{c^{(i)}}$ = cluster centroid of cluster to which example $x^{(i)}$ has been

$$\mu_k = \text{cluster centroid} \, \underline{k} \, (\mu_k \in \mathbb{R}^n)$$

Advantages

- Fast, robust easy to understand.
- Relatively efficient: O(tkmn)
- Gives best result when data set are distinct or well separated from each other.

Disadvantages

- Requires apriori specification of the number of cluster centers.
- Hard assignment of data points to clusters
- Euclidean distance measures can unequally weight underlying factors.
- Applicable only when mean is defined i.e. fails for categorical data.
- Only local optima

Types of hierarchical clustering

- Agglomerative (bottom up) clustering: It builds the dendrogram (tree) from the bottom level, and
 - merges the most similar (or nearest) pair of clusters
 - stops when all the data points are merged into a single cluster (i.e., the root cluster).
- Divisive (top down) clustering: It starts with all data points in one cluster, the root.
 - Splits the root into a set of child clusters. Each child cluster is recursively divided further
 - stops when only singleton clusters of individual data points remain, i.e., each cluster with only a single point

Dendrogram: Hierarchical Clustering

Dendrogram

- Given an input set S
- nodes represent subsets of S
- Features of the tree:
- The root is the whole input set S.
- The leaves are the individual elements of S.
- The internal nodes are defined as the union of their children.

Hierrarchical Agglomerative clustering

- Initially each data point forms a cluster.
- Compute the distance matrix between the clusters.
- Repeat
 - Merge the two closest clusters
 - Update the distance matrix
- · Until only a single cluster remains.

Different definitions of the distance leads to different algorithms.

Closest Pair

- A few ways to measure distances of two clusters.
- Single-link
 - Similarity of the most similar (single-link)
- Complete-link
 - Similarity of the least similar points
- Centroid
 - Clusters whose centroids (centers of gravity) are the most similar
- Average-link
 - Average cosine between pairs of elements

Distance between two clusters

Single-link distance between clusters C_i and C_j is the minimum distance between any object in C_i and any object in C_j

$$sim(C_i, C_j) = \max_{x \in C_i, y \in C_j} sim(x, y)$$

Complete link method

 The distance between two clusters is the distance of two furthest data points in the two clusters.

$$sim(c_i, c_j) = \min_{x \in c_i, y \in c_j} sim(x, y)$$

- Makes "tighter," spherical clusters that are typically preferable.
- · It is sensitive to outliers because they are far away

Average Link Clustering

 Similarity of two clusters = average similarity between any object in Ci and any object in Cj

$$sim(c_i, c_j) = \frac{1}{|C_i||C_j|} \sum_{\vec{x} \in C_i} \sum_{\vec{y} \in C_j} sim(\vec{x}, \vec{y})$$

- Compromise between single and complete link. Less susceptible to noise and outliers.
- Two options:
 - Averaged across all ordered pairs in the merged cluster
 - Averaged over all pairs between the two original clusters

Example

Distance Matrix

Morged (I1, I3)

Hereton 3 (III3]4 IS) (I1, I3 I4) Mugiz = 1 chustin [1, 12, 13, I4, I5] Vienalization

Step3

SENDROGRAM STEP3 Step2 Step 1 Step O Rohini R Rao & Manjunath Hegoß

392 cars – Agglomerative clustering Euclidean distance & average linkage

Table 6.8. Table of car observations

Names	Cylinders	Displace- ment	Horse power	Weight	Accele- ration	Model/ Year	Origin	MPG
Chevrolet Chevelle	8	307	130	3,504	12	1970	1	18
Malibu Buick Skylark 320	8	350	165	3,693	11.5	1970	1	15
Plymouth Satellite	8	318	150	3,436	11	1970	1	18
Amc Rebel SST	8	304	150	3,433	12	1970	1	16
Ford Torino	8	302	140	3,449	10.5	1970	1	17
Ford Galaxie 500	8	429	198	4,341	10	1970	1	15
Chevrolet Impala	8	454	220	4,354	9	1970	1	14
Plymouth Fury III	8	440	215	4,312	8.5	1970	1	14

Result - Summary of Cluster 1

Result - Summary of Cluster 2

Computational Complexity

- In the first iteration, all HAC methods need to compute similarity of all pairs of N initial instances, which is O(N²).
- In each of the subsequent N-2 merging iterations, compute the distance between the most recently created cluster and all other existing clusters.
- In order to maintain an overall O(N²)
 performance, computing similarity to each other
 cluster must be done in constant time.
 - Often O(N³) if done naively or O(N² log N) if done more cleverly

The complexity

- All the algorithms are at least O(n²). n is the number of data points.
- Single link can be done in O(n²).
- Complete and average links can be done in O(n²logn).
- Due the complexity, hard to use for large data sets.

Anomaly Detection

- → Dataset: $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- \rightarrow Is x_{test} anomalous?

What Is Outlier Discovery or Anomaly Detection?

- What are outliers?
 - The set of objects are considerably dissimilar from the remainder of the data
 - Can be measurement or execution error.
- Problem
 - Given a set of n data points, Find top k outlier points that are considerably dissimilar with respect to remaining data
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation
 - Medical analysis
- Type of outliers
 - Global Outliers
 - Contextual Outliers
 - Collective Outliers

Anomaly Detection: Statistical Approaches

- Assume a model underlying distribution that generates data set (e.g. normal distribution)
- Use discordancy tests depending on
 - data distribution
 - Examines two hypotheses:
 - Working hypothesis H: Oi belongs to F
 - Alternative hypothesis H : Oi belongs to G
 - 2 procedures to detect outliers
 - Block procedure all suspect objects are treated as outliers
 - Sequential procedure Object least likely is tested first. If it is an outlier all extreme values are also outliers
 - distribution parameter (e.g., mean, variance) for the distribution must be detected
 - number of expected outliers
- Drawbacks
 - most tests are for single attribute
 - In many cases, data distribution may not be known

Gaussian distribution example

Anomaly Detection Algorithm

- 1 Choose features Xi that are indicative of anomalous examples
- 2. Fit parameters $\mu_1, \ldots, \mu_n, \sigma_1^2, \ldots, \sigma_n^2$

$$\frac{\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}}{\sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2}$$

Given new example
$$x$$
, compute $\underline{p(x)}$:
$$\underline{p(x)} = \prod_{i=1}^n \underline{p(x_j; \mu_j, \sigma_j^2)} = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma_j} \exp{(-\frac{(x_j - \mu_j)^2}{2\sigma_j^2})}$$

Anomaly if $p(x) < \varepsilon$

Multivariate Anomaly Detection

Multivariate Gaussian (Normal) distribution

Parameters μ, Σ

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Parameter fitting:

Given training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ \longleftarrow

$$\boxed{\mu} = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} \quad \boxed{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

Anomaly detection with the multivariate Gaussian

1. Fit model $\underline{p(x)}$ by setting

$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^{T}$$

2. Given a new example x, compute

$$p(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

Flag an anomaly if $p(x) < \varepsilon$

Outlier Discovery: Distance-Based Approach

- Introduced to counter the main limitations imposed by statistical methods
 - We need multi-dimensional analysis without knowing data distribution.
- Distance-based outlier: A DB(p, D)-outlier is an object O in a dataset T such that at least a fraction p of the objects in T lies at a distance greater than D from O
- For ex: Objects that lie 3 or more std. deviations from the mean.
- Algorithms for mining distance-based outliers
 - Index-based algorithm
 - Uses multidimensional indexing structures such as R trees to search for neighbors of each object o within radius dmin around the object.
 - Let M be the maximum number of objects within the dmin neighborhood.
 - Once M+1 neighbors are found, o is not an outlier.
 - Searches for neighbors of each object O within radius dmin around the object.
 - Time complexity O(n²k).

Outlier Discovery: Density based Local Outlier Detection

- Previous methods depend on overall or global distribution
- Local outliers if the data point is outlying relative to its local neighborhood with respect to the density of the neighborhood.
- Outliers are not binary properties, (Linear Outlier Factor) an assessment of the degree to which an object is an outlier
- K-distance of an object p is the maximal distance that p gets from its k-nearest neighbors. K can be minimum points in the neighborhood.

Outlier Discovery: Deviation-Based Approach

- Identifies outliers by examining the main characteristics of objects in a group
- Objects that "deviate" from this description are considered outliers
- sequential exception technique
 - simulates the way in which humans can distinguish unusual objects from among a series of supposedly like objects
 - Derives exception set set of deviations or outliers smallest subset of objects whose removal results in the greatest reduction of dissimilarity in the residual set.
 - Dissimilarity functions can be used instead of similarity
 - Ex:Variance
- OLAP data cube technique
 - uses data cubes to identify regions of anomalies in large multidimensional data