Logical constants: Invariance and definability

Fredrik Engström Institut Mittag-Leffler

2009-10-22

- 1 Introduction
- 2 Permutation invariance
- 3 General invariance

4 Borel quantifiers

- Everyone living in Djursholm is wealthy. I live in Djursholm. Therefore I'm wealthy.
- Everyone living in Botkyrka is wealthy. I live in Botkyrka.
 Therefore I'm wealthy.
- Everyone living in Djursholm is wealthy. Björn lives in Djursholm. Therefore Björn is wealthy.
- Someone living in Djursholm is wealthy. I live in Djursholm.
 Therefore I'm wealthy.

An "inferential" approach

$$\forall x (Px \to Rx)$$

$$\frac{Pc}{Rc}$$

$$\forall x (Px \to Qx)$$

$$\frac{Pc}{Qc}$$

$$\forall x (Px \to Rx)$$

$$\frac{Pd}{Rd}$$

$$\forall x (Px \lor Rx)$$

$$\frac{Pc}{Rc}$$

A "model theoretic" approach

An operator (function/predicate) is a logical constant if it is **topic** neutral.

- Examples: \exists , \forall , \neg , and \rightarrow .
- Non-example: "for all even numbers"
- Debatable: "for infinitely many", =

Mautner, Tarski, Mostowski, Lindenbaum: Logic is the the study of the invariants under the most general transformations (=permutations). (Klein's Erlangen program)

Definition (Lindström/Mostowski)

A (global) generalized quantifier Q of type $\langle n_1, \ldots, n_k \rangle$ is a (class) of structures in the language $\{R_1, \ldots, R_k\}$ where R_i is of arity n_i.

Examples:

- $\bullet \exists = \{ (M, A) \mid A \subseteq M, A \neq \emptyset \}$
- $\bullet \ \forall = \{ (M, M) \mid M \}$
- $Q_0 = \{ (M, A) \mid A \subseteq M, |A| \ge \aleph_0 \}$
- $\exists^{=\kappa} = \{ (M, A) \mid A \subseteq M, |A| = \kappa \}$
- $I = \{ (M, A, B) \mid A, B \subseteq M, |A| = |B| \}$
- $W = \{ (M, R) \mid R \subseteq M^2, R \text{ is well-founded } \}$
- $Q^A = \{ (M, B) | A \subseteq B \}$

- $\bullet \ \varphi(M) = \{ \ \overline{a} \in M^k \mid M \models \varphi(\overline{a}) \ \}$
- $M \models Qx_0 \dots x_{k-1} \varphi(x_0, \dots, x_{k-1})$ iff $(M, \varphi(M)) \in Q$ $(Q \text{ of type } \langle k \rangle)$

Local versions: For a given domain M, let (for Q of type $(\langle k \rangle)$

$$Q_M = \left\{ R \subseteq M^k \mid (M, A) \in Q \right\}.$$

A (local) quantifier Q_M of type $\langle k \rangle$ is definable in the logic $\mathscr L$ if there is φ of $\mathscr L$, such that

$$(M,R) \models \varphi \text{ iff } R \in Q_M.$$

Tarski's thesis

A (local) quantifier on a domain M is a logical constant iff it is invariant under all **permutations** of M.

Examples: $\exists, \forall, Q_0, \exists^{=\kappa}, I$

Non-examples: Q^A

Mostowski's thesis

A quantifier Q is a logical constant iff it is invariant under all bijections (across domains).

Theorem (McGee -91 / Krasner -38)

Q is bijection invariant iff for each κ there is a formula in $\mathcal{L}_{\infty\infty}$ defining Q_{κ} .

Fix a domain Ω . Quantifier means local quantifier on Ω .

 ${\mathcal Q}$ is a set of quantifiers.

G subgroup of the full symmetric group S_{Ω} .

Definition

• Let $\operatorname{Aut}(\mathcal{Q})$ be the group of all permutations of Ω fixing all quantifiers in \mathcal{Q} :

$$\operatorname{\mathsf{Aut}}(\mathscr{Q}) = \{ \ g \in \mathcal{S}_{\Omega} \mid g(Q) = Q \ \text{for all} \ Q \in \mathscr{Q} \ \}.$$

• Let Inv(G) be the set of quantifiers fixed by G: $Inv(G) = \{ Q \mid g(Q) = Q \text{ for all } g \in G \}.$

Theorem (Krasner/Bonnay/E)

- Aut(Inv(G)) = G
- Inv(Aut(\mathcal{Q})) is the set of quantifiers definable in $\mathcal{L}_{\infty\infty}(\mathcal{Q})$

Proof

Aut(Inv(G)) = G: Let \leq well-order Ω , and $Q = \{ g(\leq) \mid g \in G \}$ of type $\langle 2 \rangle$. If $h \in \text{Aut}(\text{Inv}(G))$ then $h(\leq) \in Q$ and so there is $g \in G$ such that $h(\leq) = g(\leq)$, implying h = g.

Inv(Aut(\mathcal{Q})) is the set of Qs definable in $\mathcal{L}_{\infty\infty}(\mathcal{Q})$: We assume all quantifiers of type $\langle 1 \rangle$ and $\Omega = \omega$. $Q' \in \text{Inv}(\text{Aut}(\mathcal{Q}))$ is defined by

$$\forall x_0, x_1, \dots \left[\bigwedge_{i \neq j} x_i \neq x_j \land \forall y \bigvee_i y = x_i \land \left(\left(\bigwedge_{A \in Q} Qy \bigvee_{i \in A} y = x_i \right) \land \left(\bigwedge_{A \notin Q} \neg Qy \bigvee_{i \in A} y = x_i \right) \right) \rightarrow \bigvee_{A \in Q'} \left(\bigwedge_{i \in A} Px_i \land \bigwedge_{i \notin A} \neg Px_i \right) \right]$$

$\mathsf{Theorem}$

If $Inv_m(G)$ are all **monadic** quantifiers invariant under G then there is a subgroup G such that $Aut(Inv_m(G)) \supseteq G$.

Proof. Let G be the group of **piecewise monotone** permutations on ω : $g \in S_{\omega}$ is piecewise monotone if there exists partitions $A_1 \cup \ldots \cup A_k = B_1 \cup \ldots \cup B_k = \omega$ such that $g|A_i$ is the unique increasing function $A_i \to B_i$.

 $Aut(Inv_m(G))$ is closed in the topology generated by

$$U_{\bar{A},\bar{B}} = \{ h \in S_{\omega} \mid h(A_i) = B_i \text{ all } i < k \}$$

as basic open sets, where $\bar{A} = A_0, \dots, A_{k-1}$ and $\bar{B} = B_0, \dots, B_{k-1}$ are subsets of ω .

The closure of G is S_{ω} .

Feferman's thesis -99

Definition

A (global) quantifier Q is invariant under preimages of surjections if for every $h: M \to N$ surjection and for all $R \subseteq N^k$: $h^{-1}(R) \in Q_M$ iff $R \in Q_N$.

Theorem (Feferman)

Quantifiers of type $\langle 1, ..., 1 \rangle$ are invariant under **preimages of** surjections iff they are definable in $\mathcal{L}_{\omega\omega}$.

Feferman's thesis

A quantifier is a logical constant iff it can de defined (in typed λ -calculus) from equality and monadic quantifiers invariant under preimages of surjections.

 $h: M \to N$ can be "lifted" by: $h(Q_M) = \{ h(R) \mid R \in Q_M \}$. Invariance under **surjections**: $h(Q_M) = Q_N$ for all surjective h.

Theorem (Casanovas -07)

"Quantifiers" are invariant under surjections iff they are definable in a certain positive fragment of $\mathcal{L}_{\omega\omega}$ (with restricted use of equality).

Invariance under back-and-forth equivalence: If (M, A) and (N, B) are back-and-forth equivalent, then $A \in Q_M$ iff $B \in Q_N$.

Theorem (Barwise -73)

A local quantifier Q on M is back-and-forth invariant iff Q is definable in $\mathcal{L}_{\infty\omega}$.

Bonnay (BSL -08) argues well for that **if** the logical constants are **the invariants** under some relation between structures, then this relation is **back-and-forth equivalence**.

Assume now all quantifiers are local quantifiers on ω .

Theorem (Lopez-Escobar)

A quantifier is **Borel** and **permutation invariant** iff it is definable in $\mathcal{L}_{\omega_1\omega}$.

Indicates a strong connection between $\mathscr{L}_{\omega_1\omega}$ and Borel quantifiers.

FALSE

Q is Borel and $\operatorname{Aut}(\mathcal{Q})$ invariant iff Q is definable in $\mathcal{L}_{\omega_1\omega}(\mathcal{Q})$.

Let $A \subseteq \omega$ be infinite and coinfinite and $Q' = \{A\}$ then Q^A is $\operatorname{Aut}(Q')$ invariant, but not definable in $\mathscr{L}_{\omega_1\omega}(Q')$.

Theorem (E/Schlicht)

Let \mathscr{Q} be a countable set of clopen quantifiers. Then Q is Borel and $\operatorname{Aut}(\mathscr{Q})$ invariant iff it is definable in $\mathscr{L}_{\omega_1\omega}(\mathscr{Q})$.

Question

For which sets \mathcal{Q} of quantifiers does the theorem hold?

Thanks