(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 19 February 2004 (19.02.2004)

PCT

(10) International Publication Number WO 2004/015180 A2

(51) International Patent Classification7:

D03D

(21) International Application Number:

PCT/US2003/021561

10 July 2003 (10.07.2003) (22) International Filing Date:

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 10/214,954

8 August 2002 (08.08.2002)

- (71) Applicant: MILLIKEN & COMPANY [US/US]; 920 Milliken Road, Spartanburg, SC 29303 (US).
- (72) Inventors: MCKEE, Paul A.; 202 Overland Drive, Spartanburg, SC 29304 (US). GLENN, Joseph B.; 116 Steeplechase, Belton, SC 29627 (US). RICHARDSON, Mathias; 7014 Liberty Hwy., Pendleton, SC 29760 (US). EMERY, Nathan B.; 205 Woodridge, Spartanburg, SC 29301 (US). DEMOTT, Roy P.; 307 Holly Drive, Spartanburg, SC 29301 (US).
- (74) Agent: CURRENT, Sara M.; Milliken & Company, Legal Department (M-495), 920 Milliken Road, Spartanburg, SC 29303 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: FLAME RESISTANT FABRICS WITH IMPROVED AESTHETICS AND COMFORT, AND METHOD OF MAKING

(57) Abstract: Fabrics having improved aesthetic characteristics in addition to good FR characteristics and strength are described, as well as a method for making the fabrics. The fabrics are made by subjecting a fabric containing inherently flame resistant fibers to a fluid treatment process such that a fabric with good comfort and aesthetic characteristics is formed. In one form of the invention, the fabric comprises plied yarns, and the fluid treatment process serves to separate the plies from each other. The fabrics have a soft hand, good protective characteristics, good strength and durability, as well as good wicking and soil release characteristics.

1

FLAME RESISTANT FABRICS WITH IMPROVED AESTHETICS AND COMFORT, AND METHOD OF MAKING SAME

Background of the Invention

5

20

25

30

35

A variety of occupations require workers to come into close contact with hot equipment, hot substances open flames, and electric arcs and the like. For example, oil refinery, petro chemical workers, electricians, military personnel, etc. typically operate in such environments. In order to minimize their risk of injury from the hot elements, such workers typically wear flame resistant apparel.

Flame resistant garments are generally made from flame resistant materials such as those made from aramid fibers (including meta-aramids and para-aramids), melamine fibers, or those treated with flame resistant "FR" chemistries. Prior protective garments have focused strictly on flame resistant protection and durability, since the garments must provide good protection to the wearer, and must withstand hazardous environments. In addition, because many garments are often laundered under industrial wash conditions, they must be capable of withstanding a number of such industrial launderings in order to have an acceptable useful life. For example, it is generally considered by the purchasers of these garments that the garments must last through a minimum of 125 industrial launderings. Therefore, the prior garments, which have tended to perform relatively well from the standpoint of protection and durability, have been extremely deficient in aesthetic characteristics such as wearer comfort. For example, they are known to be stiff and to have a harsh handle, and they are generally considered to be hot and uncomfortable to the wearers. Not only is the discomfort typically associated with these garments a source of displeasure to the wearers, but it may discourage them from wearing the equipment that would optimize their protection, thereby jeopardizing their safety. Furthermore, these garments are typically so uncomfortable as to require an undergarment of some sort to protect the wearer's skin, which can be undesirable when the garment is to be worn in hot environments.

There are two general types of FR apparel fabrics currently in the market. The first category is that of inherently flame resistant fibers (such as aramids, melamines, etc.) and the second category achieves flame resistance primarily through the subsequent application of chemistry to the fiber. Fabrics of inherently FR fibers are generally considered to provide

2

greater durability, while chemically-treated fabrics (such as FR cotton) are often considered to provide a lesser degree of durability but at a lesser degree of discomfort to the wearer.

Past attempts to improve the comfort of FR garments have generally been directed to the garment construction, e.g. through the provision of garment vents and the like. As will be appreciated by those of ordinary skill in the art, the garment construction modifications made to enhance comfort can have a negative effect on wearer protection.

Therefore, a need exists for fabrics and garments that provide a good degree of FR
protection to users, while providing a greater degree of user comfort and improved aesthetic characteristics. In addition, a need exists for a method of enhancing the aesthetic characteristics of FR fabrics and garments.

Summary

15

30

35

5

With the foregoing in mind, it is therefore an object of the invention to provide flame resistant fabrics having improved wearer comfort at comparable levels of FR protection and strength to conventional FR fabrics.

20 It is also an object of the invention to provide FR fabrics having improved aesthetics relative to commercially-available FR fabrics, and in particular, relative to commercially-available fabrics made from inherently FR fibers.

It is also an object of the invention to provide a method for enhancing the comfort of FR fabrics, and for manufacturing FR fabrics having good comfort and aesthetic characteristics in combination with good strength and durability.

It is a further object of the invention to provide an FR fabric having improved strength and moisture absorption with improved cleanability and a reduced tendency for soil redeposition.

The general predictors of how comfortable a fabric will be to wear are the mechanical and surface properties of the fabric, the freedom of movement it affords a wearer (e.g. by draping well rather than being stiff), how well it manages moisture, and its air permeability. In addition, how comfortable a wearer will perceive a garment to be will also depend largely

3

upon which part of the wearer's body the garment is worn and the environment (e.g. hot or cold, humid or dry, etc.) in which it is worn.

The present invention is directed to flame resistant fabrics that provide good protection to the wearer from short exposure open flame, and/or electric arc, while also providing enhanced aesthetics. In particular, the fabrics of the invention have superior hand, physical strength, durability, moisture transport, and soil release, and are more comfortable to the wearer than existing fabrics having comparable levels of FR protection.

In a preferred form of the invention, the fabric is a woven fabric having a weight of about 2 to about 12 oz/sq yard, and more preferably about 4 to about 8 oz/sq yard. In particular, fabrics in these weight ranges are particularly good in apparel type applications. The fabric can be of any desired weave construction, including but not limited to plain weave, twill weave (e.g. 2X1, 2X2, 3X1, etc.), basket weave, ripstop, and oxford weave.

15

20

5

10

The fabrics of the invention desirably comprise inherently flame resistant fibers ("FR fibers"). In a preferred form of the invention, the fabric is made predominately from (e.g. at least about 65%), or substantially entirely from, FR fibers. It has been found that fabric blends including about 90% to 95% FR fibers perform well. Where the fabric is made substantially entirely from FR fibers, it may also include minor amounts of additional fibers to enhance certain characteristics of the fabric (e.g. physical, aesthetic, and/or performance characteristics such as, but not limited to strength, static dissipation, abrasion resistance, etc. without adversely impacting FR resistance to a substantial extent. Preferably, at least some of the FR fibers are provided in staple form and even more preferably substantially all of the FR fibers are provided in staple fiber form. To this end, it has been found to be desirable to manufacture the fabric at least partially and preferably substantially entirely, from spun yarns. In particular, where the fabric is a woven fabric, it has been found to be desirable to include spun yarns in at least the fabric warp.

30

35

25

The FR fibers can be of any commercially available variety within the scope of the invention, but are desirably selected from the group consisting of aramid fibers, meta-aramids, para-aramids, fluoropolymers and copolymers thereof, chloropolymers, polybenzimidazole, polyimides, polyamideimides, partially oxidized polyacrylonitriles, novoloids, poly(p-phenylene benzobisoazoles), poly)p-phenylene benzothiazoles), polyphenylene sulfides, flame retardant viscose rayons, polyvinyl chloride homopolymers and copolymers thereof, polyetheretherketones, polyketones, polyetherimides, polylactides,

4

melamine fibers, or combinations thereof with other FR fibers or fibers that are not inherently flame resistant. In many instances, commercially-available spun yarns made from inherently FR fibers include minor quantities of other types of fibers such as Kevlar® brand fiber available from DuPont of Wilmington, Delaware, nylon, P-140 nylon with carbon core from DuPont, or the like, to enhance a fabric's strength, durability, ability to be processed in conventional textile equipment, etc. For example, a preferred fabric of the invention is made from Nomex® IIIA yarns, which contain approximately 95% aramid fiber, and 5% other fibers (Kevlar® aramid and P-140 nylon/carbon), and are available from I.E. DuPont de Nemours of Wilmington, Delaware. Examples of some other commercially available FR fibers are those sold under the tradenames Kermel and Basofil, available from Rhodia of Colmar, France, and McKinnon-Land of Charlotte, North Carolina, respectfully.

The fabric of the invention is made by processing the fabric comprising inherently FR fibers with a fluid process designed to raise loops of fibers outwardly from the fabric surface, and form a plurality of fiber tangles that are primarily composed of fibers that are substantially intact and undamaged. Where the fabric comprises plied yarns, the fluid treatment process also desirably separates at least a portion of the plies from each other, detwists them, and causes fibers from adjacent plies to become entangled with each other.

20

15

10

Brief Description of the Drawings

Fig. 1 is a photomicrograph (30X magnification) of the unenhanced fabric of Example A;

25

- Fig. 2 is a photomicrograph (30X magnification) of the enhanced fabric of Example B;
- Fig. 3 is a photomicrograph (100X magnification) of the unenhanced fabric according to Example A;

30

- Fig. 4 is a photomicrograh (100X magnification) of the enhanced fabric of Example B below;
- Fig. 5 is a photomicrograph (200X magnification) of the unenhanced fabric of 35 Example A; and

5

Fig. 6 Is a photomicrograph (200X magnification) of the enhanced fabric of Example B below.

Detailed Description

5

10

15

20

25

30

In the following detailed description of the invention, specific preferred embodiments of the invention are described to enable a full and complete understanding of the invention. It will be recognized that it is not intended to limit the invention to the particular preferred embodiment described, and although specific terms are employed in describing the invention, such terms are used in a descriptive sense for the purpose of illustration and not for the purpose of limitation.

The fabric of the invention desirably comprises inherently flame resistant fibers ("FR fibers"). In a preferred form of the invention, the fabric includes at least about 65% FR fibers, more preferably at least about 90% FR fibers, and even more preferably, at least about 95% FR fibers. Preferably, at least some of the FR fibers are provided in staple form and even more preferably, substantially all of the FR fibers are provided in the form of spun yarns. As will be appreciated by those of ordinary skill in the art, spun yarns can be made by a variety of production methods, including but not limited to open end spinning, air jet spinning, vortex spinning, ring spinning and the like.

In a preferred form of the invention, the fabric is made substantially entirely from spun yarns. Also in a preferred form of the invention, the yarns are formed of plural plies. Preferably, each of the plies comprises FR staple fibers. Where the fabric of the invention is in the form of a woven fabric, it is particularly preferred that plied spun yarns are provided in at least the fabric warp.

In a preferred form of the invention, the fabric is a woven fabric having a weight of about 2 to about 12 oz/sq yard, and more preferably about 4 to about 8 oz/sq yard. Where the fabric is to be used in the manufacture of industrial clothing such as pants, shirts and overalls, it has been found that fabrics having a weight of about 5.5-6.5 oz/sq yd, and more preferably about 5.8-6.2 oz/sq yard perform well. For example, a fabric having an approximate weight of about 6 oz/sq yd would perform well as an industrial bottom weight fabric.

6

The fabric is preferably a woven fabric, and can be of any desired weave construction, including but not limited to plain weave, twill weave (e.g. 2X1, 2X2, 3X1, etc.), basket weave, oxford weave, satin weave, and jacquard weave. The fabrics can be woven according to conventional weaving processes.

5

10

The fabric desirably has first and second surfaces, with at least one surface having a plurality of fiber tangles that are composed primarily of fibers that are substantially intact and undamaged. When the fabric is formed from plied yarns, the individual plies are desirably at least partially separated from each other and individual fibers from different plies are entangled with each other.

As illustrated in the drawings, Figs. 1, 3 and 5 are photomicrographs at 30X, 100X, and 200X magnification, while Figs. 2, 4 and 6 are photomicrographs at the same levels of magnification (i.e 30X, 100X and 200X, respectively) of the fabrics of the invention. As can clearly be seen from the photomicrographs, the fabrics of the invention are characterized by a plurality of fiber tangles or teased loops that are comprised of fibers that are substantially intact and undamaged, as opposed to the unenhanced fabrics which have very little entanglement of the fibers and little surface effect. Also as shown, the plied yarns used in this embodiment of the invention are at least partially separated into their individual components and in some cases, the fibers from the individual components are also entangled with each other. This characteristic was not only unexpected, but it has been found to provide a unique and dramatic improvement in aesthetic and hand characteristics as compared with the untreated fabric, while retaining good fiber strength and FR characteristics as well.

25

30

20

One method of manufacturing the fabrics of the instant invention is as follows: a fabric as described above is woven or obtained. The fabric is then subjected to a high pressure fluid stream that is designed to soften and loft the fabric. One example of a fluid process that may be used is a hydraulic process of the variety described in commonly-assigned co-pending U.S. Patent Application Serial No. 09/344,596 to Emery et al, filed June 25, 1999, the disclosure of which is incorporated herein by reference. The type of fabric treatment and treatment parameters were selected to optimize the aesthetic characteristics of the fabric. Where multi-ply yarns are used, the high pressure stream also was surprisingly found to separate the plies from each other and to de-twist the yarns to some extent. It is believed that this lofting and ply separation dramatically enhanced the fabric hand and comfort, without adversely impacting fabric strength. The fabric can be treated on one or

7

both fabric surfaces, depending on the desired end result. Also, if desired, one or more chemistries designed to enhance the fabric characteristics can be applied, either prior or subsequent to the hydraulic processing.

The fabric can be dyed to achieve an aesthetically appealing color, as desired. The dye process can be selected to optimize processing for the particular fiber content of the fabric and color desired. In the instant case, it has been found that using cationic dyes of the variety recommended by dye manufacturers for dyeing Nomex® aramid fibers in a jet dye process at temperatures from about 220 degrees to about 270 degrees F (and more preferably from about 250-270°F) achieves a good color shade and fabrics having good colorfastness.

As noted above, chemistries can be applied to the fabric at any stage of the process, including before, during or after dyeing. In this way, additional characteristics such as moisture wicking, soil release, hand improvements, etc. can be obtained via chemical means. For example, it was surprisingly found that by applying an ethoxylated polyamide (traditionally used as a lubricant for nylon) and a high molecular weight ethoxylated polyester (typically used to enhance softness, wicking and stain release), fabrics having soil release and moisture transmission characteristics superior to those of commercially available fabrics were achieved at comparable levels of FR protection. Furthermore, it is believed that this superior soil release will also enhance the FR protection provided by the fabrics during their useful lives, since the fabrics of the invention will more readily release flammable soils such as oil and the like.

The fabrics are then desirably dried in a conventional manner, such as by running them through a heated tenter frame at a temperature of between about 325 and about 425 degrees F.

The fabrics of the invention have superior aesthetic characteristics (e.g. hand), as well as superior durability and performance (as evidenced by the test data below.) In addition, the fabrics had superior performance in the features correlating to enhanced wearer comfort. Furthermore, the fabrics had a unique surface characteristic, heretofore unachieved in FR fabrics.

5

10

15

8

Examples

20

25

30

35

Example A- A fabric was woven from 30/2 100% Nomex IIIA® air-jet spun yarns (95% Aramid, 3% Kevlar®, and 2% Nylon P-140 (from DuPont) with a twist multiple of 14 of the variety available from Pharr Yarns of McAdenville, N.C. in a 1X1 plain weave construction. The fabric was jet dyed in a conventional manner using cationic dyes of the variety conventionally recommended for the dyeing of the Nomex, and acid dyes of the variety commonly used to dye nylon (both of which will be readily appreciated by those of ordinary skill in the art. Dyeing was performed at approximately 266°F for one hour. The fabric was then passed through a pad containing 1-1/2% Lurotex A-25 ethoxylated polyamide 10 (distributed by BASF of Mount Olive, New Jersey) and 1-1/2% Lubril QCX high molecular weight ethoxylated polyester manufactured by Tennessee Eastman (to facilitate stain release and wicking). The fabric was then dried in a conventional manner on a tenter frame at about 410°F at a speed of approximately 25 yards per minute, after which the fabric was taken up for inspection. The finished product was nominally 68 ends per inch X 44 picks per 15 inch, and was 5.89 oz/sq yd in weight.

Example B- A fabric was woven in the same manner as Example A. However, prior to the jet dyeing step, it was run through a pad containing 1% Lubril QCX, a high molecular weight ethoxylated polyester of the variety designed to promote stain release (1% Lubril QCX from Tennessee Eastman), then the fabric was impacted by water jets on each of its face and back in the manner described in commonly-assigned co-pending U.S. Patent Application Serial No. 09/344,596 to Emery et al, filed June 25, 1999. The fabric was pulled through the pad and hydraulically treated at a speed of 30 yards per minute, and hydraulic treatment was performed using 1200 psi of the front side of the fabric and 800 psi on the opposite side of the fabric (manifold exit pressure). The water originated from a linear series of nozzles which were rectangular 0.015 inches wide, (filling direction) X 0.010 inches high (warp direction) in shape and were equally spaced along the treatment zone. There were 40 nozzles per inch along the width of the manifold. The fabric traveled over a smooth stainless steel roll that was positioned 0.120 inches from the nozzles. The nozzles were directed downward about five degrees from perpendicular, and the water streams intersected the fabric path as the fabric was moving away from the surface of the roll. The tension in the fabric within the first treatment zone was set at about 45 pounds. In the second treatment zone, the opposite side of the fabric was treated with high pressure water that originated from a similar series of nozzles as described above. In this zone the water pressure was about 800 psig, the gap between the nozzles and the treatment roll was about 0.120 inches,

9

and the nozzles were directed downward about five degrees from perpendicular. As before, the water streams intersected the fabric path as the fabric was moving away from the surface of the roll. The fabric tension between the treatment zones was set at about 85 pounds, and the fabric exit tension was set at about 90 pounds. The fabric was then dried to 5 remove 95% of the moisture. The fabric was then dyed and finished in the same manner as Example A. It was surprisingly found that the hydraulic processing served to distinctly separate the plies of the multi-ply yarns and entangle yarns from different plies, in addition to expanding and opening the interstices of the fabric, and that this particular hydraulic treatment process primarily affected the yarns in the fabric warp.

10

Example C- A fabric was produced in the same manner as Example B, except the pressures used during hydraulic processing were 1100 on the front side of the fabric and 800 on the back side of the fabric.

Example D- A commercially available 6.39 ozl sq yd plain woven 100% Nomex® IIIA aramid 15 fabric of the variety typically used for coveralls or pants was obtained. It is believed that the fabric was finished with hand builders for added stiffness. The fabric had 26.46/2 MJS yarns (1.67 dpf) in the warp and 27.32/2 MJS yarns (1.76 dpf) in the filling. The fabric had approximately 66 ends per inch (epi) and 47 picks per inch (ppi), and had been dyed a navy 20 color.

25

30

Example E is a commercially available 6.00 oz/sq yd plain woven 100% Nomex® IIIA aramid fabric. The fabric had 28.74/2 MJS yarns (1.72 dpf) in the warp and 28.85/2 MJS yarns (1.76 dpf) in the filling. The fabric had approximately 66 epi and 42 ppi, and had been dyed a spruce green color.

Example F is a commercially available 6.05 oz/sq yd plain woven 100% Nomex ® IIIA aramid fabric. The fabric had 27.37/2 MJS yarns (1.71 dpf) in the warp and 28.41 MJS (1.74 dpf) yarns in the filling. The fabric had approximately 65 epi and 44 ppi. The fabric had been dyed a royal blue color.

Example G is a commercially available 6.39 oz/ sq yd plain woven 100% Nomex® IIIA aramid fabric of the variety typically used for outer clothing was obtained. It is believed that the fabric was finished with hand builders for added stiffness. The fabric had 26.46/2 MJS varns (1.67 dpf) in the warp and 27.32/2 MJS yarns (1.76 dpf) in the filling. The fabric had

10

approximately 66 ends per inch (epi) and 47 picks per inch (ppi), and had been dyed a navy blue color.

- Example H was another commercially available FR fabric. The fabric was a 7 oz. 3X1
 lefthand twill woven 100% cotton FR treated fabric having 92 epi x 49 ppi, with 17.82/1 ring spun yarns in the warp and 12.08/1 RS yarns in the filling. The fabric had been dyed a navy blue color. It is believed that the FR treatment was achieved through a conventional ammonia treatment.
- 10 Example I was a commercially available 9 oz/sq yd 3X1 lefthand twill woven 100% cotton FR treated fabric. The fabric had 87 ends per inch and 50 picks per inch using 12.44/1 ring spun yarns in the warp and 8.53/1 ring spun yarns in the filling. The fabric had been dyed a khaki color. It is believed that the FR treatment was achieved through a conventional ammonia treatment.

Example J was another commercially available FR fabric. The fabric was a 7 oz. 88% cotton / 12% nylon fabric. The fabric had 93 epi x 50 ppi, with 18.12/1 RS yarns in the warp and 11.89/1 RS yarns in the filling. The fabric had been dyed a khaki color. It is believed that the FR treatment was achieved through a conventional ammonia treatment.

Example K was another commercially available FR fabric. The fabric was 9.68 oz. 88% cotton/ 12% nylon 3 x 1 twill woven fabric. The fabric had 92 epi x 50 ppi, and 12.56 RS yarns in the warp and 8.58/1 RS yarns in the filling. The fabric had been dyed a navy blue color. It is believed that the FR treatment was achieved through a conventional ammonia treatment.

The fabrics were all subjected to a variety of tests as outlined below. The fabrics were tested in their as-produced form (unless otherwise specified in the test method), after 50 washes, and after 125 washes. All washes were performed in accordance with the Standard Formula Industrial Wash Method described below. The results of the tests are listed in the tables below.

TEST METHODS

20

25

30

35 <u>Standard Formula Industrial Wash Method</u>- All washings were performed according to the following wash method: Garments were washed in a conventional industrial washer at 80%

11

capacity for 12 minutes at 140°F, using the low water level and 8.0 oz of Choice chemical, which is commercially from Washing Systems, Inc. of Cincinnati, Ohio. The washing cycle was performed as follows: drop/fill/wash for 3 minutes at 140°F, low level water using 7.5 oz of Choice chemical; drop/fill/rinse for 2 minutes at 140°F, high level water, no chemical; drop/fill/rinse for 2 minutes at 80°F, high level water, no chemical; drop/fill/rinse for 2 minutes at 80°F, high level water, no chemical; drop/fill/wash for 4 minutes at 80°F, low level water using 0.3 oz acid sour; Extract water for 7 minutes at high speed.

Tensile Strength- Tensile strengths in both the warp and filling directions were measured according to ASTM D1682-75. Generally speaking, in a protective product/protective garment end use, relatively high tensile strengths are desired since they positively impact durability. An exemplary industry specification for an industrial garment such as an overall or pant is 150 lbs in the warp and 100 lbs in the filling.

15 Tear Strength- Tear strengths in both the warp and filling directions were measured according to ASTM D2262- 83. Generally speaking, in a protective product/protective garment end use, relatively high tear strengths are considered to be desirable, since they correlate to durability. An exemplary industry specification for an overall or pant garment is a tear strength of 7.5 lbs in the warp direction and 7.5 lbs in the filling direction.

20

<u>Pilling</u>- Pilling was tested after 30 minutes, 60 minutes, and 90 minutes according to ASTM D3512- 82. A higher pilling rating indicates that the fabric has a greater resistance to pilling. A typical industry specification for an industrial garment such as an overall or a pant is 3.5 - 5 after 60 minutes.

25

<u>Seam Slippage</u>- Seam slippage was measured in both the warp and filling directions according to ASTM D434-75. Generally speaking, a higher seam slippage will enhance product durability and an exemplary industry specific for a fabric to be used in an industrial garment such as a pant or overall would be 30 lbs in each direction.

30

Stoll Flat Abrasion - Abrasion resistance was measured according to ASTM D3886-80. The maximum reading that the test will register is 1000.

Stretch- Stretch in each of the warp and filling directions was measured according to ASTM D3107-75.

12

Fray- Fray was measured in both the warp and filling directions according to the following procedure, and the results recorded. A set of five (5) 4-1/4" circle specimens of each sample are cut using a punch press machine, and are conditioned for one hour at 65% relative humidity \pm 5% at 70 \pm 5°F. (When cutting the samples, cut no closer to the selvage than 10% (±1%) of the fabric width, and mark the warp direction on each specimen.) A Random Tumble Pilling Machine available from Atlas, Inc. If the cork liner in the pilling apparatus has been used more than 3 times, place a new cork liner into test cylinders of the pilling tester making sure they are fitted properly to give a smooth joint. Put the five specimens from one sample into a single test cylinder. Make sure all specimens are in the path of the rotor. Up 10 to six samples can be tested at a time. When the tester is loaded, start it and tumble the specimen for a period of 10 minutes (± 30 seconds.) After this time period, remove the specimen from the tester. Measure the diameter in the direction of the marking (\longleftrightarrow) to measure the warp through the marking (↑↓) to measure the filling using a 1/8th inch graduated ruler R-9. Measure to first loose thread. The fraying value is expressed as a percentage and is calculated for both directions: %fray = (original length - tumbled length)/original length X 100. (Note: original length = 4.2) A lower fray value indicates a fabric has greater fray resistance. In particular, a lower warp fray value would suggest that a fabric would be more easily handled, thereby making product or garment manufacture more efficient.

20

30

35

Shrinkage- Shrinkage in the warp and filling directions was measured according to AATCC Test Method 135-1995.

Appearance-Wash appearance was rated according to AATCC Test Method 124-1996. The fabrics are rated on a scale from 1 to 5, with a higher rating indicating that the fabric retains a better appearance following washing.

<u>Crease Retention</u>- Crease Retention was measured according to AATCC Test Method 39C-1984. Fabrics are rated on a scale from 1 to 5, with a higher rating indicating that a fabric has greater crease retention.

Soil Release- The soil release properties of the fabrics were measured according to AATCC 130-1995 (corn oil), as follows: 0/1= Soiled prior to washing, tested after 1 wash. 4/5= Soiled after 4 washes, tested after 5 washes. 48/49=Soiled after 48 washes, tested after 49 washes. 48/50=Soiled after 48 washes, tested after 50 washes. 123/124=Soiled after 123

13

washes, tested after 124 washes. 123/125=Soiled after 123 washes, tested after 125 washes.

<u>Vertical Wicking-</u> Wicking was measured using a vertical wicking test as follows. The test is used to determine the rate at which water will wick on test specimens suspended in water.

Equipment: 1. 500 ml Erlenmeyer flasks

- 2. Straight pins (approximately 3" in length)
- Food coloring (any color to make water level visible on specimen)
- 10 Procedure: 1. Fill 500 ml Erlenmeyer flasks with 200 ml colored water (fill as many flasks as specimens to be tested).
 - 2. A. Cut 6" x 1" strip of specimens to be tested (6" length is cut in the wale direction).
 - B. Pierce top edge of strip (approximately 1/8" 1/2" from top) with long straight pin.
 - 3. Suspend strip from pin in flask filled with 200 ml colored water.
 - 4. After 1 minute:
 - A. Remove strip from flask
 - B. Measure water level on strip in inches and record
 - C. Return strip to water
 - 5. Repeat steps A., B., and C., from above at the following time intervals; 3 minutes, 5 minutes, and each 5 minute interval following until the water level reaches 6" or 1 hour has elapsed.
- 25 A higher score indicates the fabric has better wicking capability.

<u>Drop Disappearance</u>- Wicking was also measured according to a drop disappearance test as follows. This test method is used to determine the efficiency of the fabric in transporting or wicking the moisture (such as an aqueous perspiration).

30 Equipment: 1. Straight medicine dropper

15

20

35

- 2. Stop watch
- Distilled water
- 4. Embroidery hoops

Test Specimens: A sample large enough to test three different areas is required (preferably full fabric width).

14

Procedure: 1. Place the sample in an embroidery hoop and pull tight. (Care must be taken not to pull the sample too tight.)

- The tip of the dropper should be one inch from the sample. Allow one drop of water to fall onto the sample. Start timer immediately. Watch the drop of water until it disappears and stop the time. Record the time required for the drop to disappear.
- Repeat the above procedure on three different areas of each sample. Test samples "as received" and after five washings and tumble dryings, or as specified.

Report: The average time required for the drop of water to disappear. A lower time indicates a fabric absorbs moisture more quickly.

Thickness- Fabric thickness was measured according to ASTM D1777-1996.

15

20

5

10

<u>Air Permeability</u>- Air permeability was measured according to AATCC Test Method 737-1996. In many applications (such as those where a wearer will wear the garment in a hot environment), higher air permeability will enhance the wearer's perception of the comfort of the garment. The air permeability is measured in cubic ft/min of air that travel through the fabric, with a higher number indicating that the fabric is more breathable.

<u>Flammability (After Flame)</u>- Flammability (after flame) was measured according to National Fire Protection Agency ("NFPA") Test Method 701- 1989. The test indicates how long a fabric continues to burn after the flame has expired (with a lower number generally being preferable in an FR product.)

<u>Flammability (After Glow)</u>- Flammability (after glow) was measured according to NFPA Test Method 701- 1989. This test indicates how long a fabric continues to glow after the flame has expired (with a lower number generally being preferably in an FR product.

30

25

<u>Flammability (Char Length)</u>- Char Length was measured according to NFPA Test Method 701- 1989. A lower char length indicates a lesser tendency of a fabric to burn. Generally, to be suitable for an FR garment, a fabric must have a char length of less than 4 inches.

15

<u>Thermal Protection Performance (TPP)</u>- Thermal Protection Performance was measured according to ASTM D4108-1996. A higher TPP value indicates that a fabric provides greater insulation.

- 5 Arc Thermal Protection Value (ATPV) Arc Thermal Protection Value was measured according to ASTM F 1959-1999. A minimum of twenty-one samples were tested for each fabric, and the results were averaged. A higher ATPV indicates that a fabric provides greater protection against electrical arc exposure.
- 10 Pyroman Test- Burns were conducted on the Pyroman equipment (such as that available at the test labs at North Carolina State University) according to NFPA Test Method 2112 for 3 seconds. The % total body burn after each of the burns was recorded. A lower % body burn indicates the product is more protective of a wearer or user. A typical industry specification for a 3 second burn for a industrial garment (such as a pant or overall) is <50%.

Predicted Burn- Also using the Pyroman equipment and test method described above, fabrics were tested at various flame exposure times, and the level of predicted burn (second degree, third degree, and total) were recorded. Several samples of each Example fabric were run.

20

25

30

35

<u>Handle-O-Meter-</u> Handle-o-meter readings were measured in each of the warp and filling directions according to the following method, using Handle-o-meter model number 211-300 from Thwing Albert.

Using the Handle-O-Meter template (T-3), cut out three samples (face up). Be sure to cut samples at least 50 mm from selvage and/or 50 mm away from cut end of cloth. Avoid areas that have a fold or crease. Cut one from the left side, one from the center, and one from the right side. Label samples to indicate from where they were cut, and mark the warp and filling directions. Ensure the MODE selector is set in the TEST mode. If the Handle-O-Meter is not zeroed, unlock the ZERO control, adjust the knob until the indicator reads +000, then re-lock the ZERO control. Set MODE selector to PEAK. Place swatch over slot extending across the platform, FACE UP. To check the warp, turn sample 90 degrees so that the sample top is on the left. To check the filling, place the sample in the machine with the sample top in the 12:00 position. Press START/RESET control. Test the samples, starting with the warp right, then test the filling right. Test the center and left side the same as above. Readings for standard should be recorded on 11ZHAND. Run Chart reading should be recorded on the correct style sheet and Data Document 11ZCTAN. When all 3

16

warps and all 3 fillings have been tested, average the warp and filling measurements and record. Repeat for additional set. A lower Handle-O-Meter reading indicates that the fabric is more flexible. Readings were recorded in units of grams-force.

Drape- The drape coefficient was measured according to the following test process: Using an FRL® Drapemeter (of the variety described by Chu, C.C., Cummings, C.L. and Teixeira, N.A., in "Mechanics of Elastic Performance of Textile Materials Part V: A Study of the Factors Affecting the Drape of Fabrics- The Development of a Drape Meter", Textile Research Journal Vol 39 No. 8, 1950, pp. 539-548). This test is designed to determine the extent to which a fabric will deform when allowed to hang under its own weight, or by the 10 ability of the fabric to drape by orienting itself into folds or pleats when acted upon by the force of gravity. The test used an FRL® Drapemeter, a uniform grade of tracing paper, a balance and scissors. The test specimens and tracing paper were conditioned to equilibrium and tested in the standard atmosphere of 65% relative humidity and 70°F temperature. Moisture equilibrium shall be approached from the dry side (not moisture free.) Six test 15 specimens (3 face up, and 3 face down), 10 inches in diameter were cut from the fabric. The specimens were taken from the right, center and left fabric areas, but no closer to the selvage than 1/10 of the fabric width. The specimens were marked as to face and back. A 10 inch diameter circle was cut from a uniform grade of tracing paper and it was weighed to the nearest milligram. The weight was recorded as W1. A 4 inch diameter circle (to represent the annular support ring) was cut and weighed to the nearest milligram. The weight was recorded as W2. A 10 inch diameter specimen was taken and a hole was made to mark the center of the test specimen. The specimen was placed on the support ring, and centered on the support. A sheet of tracing paper was placed on the clear top side of the Drapemeter. With the light source on, the paper was centered about the projected image of the fabric specimen and the outline of the shadow image was carefully traced on the paper. The traced image was cut out and the image paper was weighed to the nearest milligram, and recorded as W3.

The following calculation was made:

30

Drape coefficient = [(W3-W2)/(W1-W2)] X 100, where
W1= weight, 10 inch diameter paper, mg.
W2 = weight, 4 inch diameter paper, mg
W3 = weight, projected image, cut from paper used to obtain W1, mg.

17

The six readings were averaged, and reported as the Drape Coefficient. If a side effect was noticed (back vs. face), sides are reported separately. A lower drape coefficient indicates that the fabric is more drapeable.

Ring Test Load- Ring test load (i.e. Fabric handle by ring tensile) was measured according to the following test method. The test involves pulling the fabric through a ring at a set rate to determine the forces associated with friction and bending. A 10 inch diameter circle of the fabric to be tested was cut. The center of the circle was marked. The tensile tester was set up with a 38 mm diameter ring with a radius of 24 mm. The test speed was set at 10 inches/minute. A string was attached to a small fishhook, with the barb removed, and it was attached to the center of the fabric via the fishhook. The other end of the string was attached to the crosshead of the tensile tester. The tester was started and run until the fabric was pulled completely through the ring. The force required to pull the fabric through the ring and the modulus of the initial folding of the fabric as it approached the ring were
 recorded. A lower ring test load value indicates that a fabric is more supple and flexible.

Kawabata Testing-

A variety of characteristics were measured using the Kawabata Evaluation System
("Kawabata System"). The Kawabata System was developed by Dr. Sueo Kawabata,
Professor of Polymer Chemistry at Kyoto University in Japan, as a scientific means to
measure, in an objective and reproducible way, the "hand" of textile fabrics. This is achieved
by measuring basic mechanical properties that have been correlated with aesthetic
properties relating to hand (e.g. smoothness, fullness, stiffness, softness, flexibility, and
crispness), using a set of four highly specialized measuring devices that were developed
specifically for use with the Kawabata System. These devices are as follows:

Kawabata Tensile and Shear Tester (KES FB1)
Kawabata Pure Bending Tester (KES FB2)
Kawabata Compression Tester (KES FB3)
Kawabata Surface Tester (KES FB4)

30

35

KES FB1 through 3 are manufactured by the Kato Iron Works Col, Ltd., Div. Of Instrumentation, Kyoto, Japan. KES FB4 (Kawabata Surface Tester) is manufactured by the Kato Tekko Co., Ltd., Div. Of Instrumentation, Kyoto, Japan. In each case, the measurements were performed according to the standard Kawabata Test Procedures, with four 8-inch X 8-inch samples of each type of fabric being tested, and the results averaged. Care was taken to avoid folding, wrinkling, stressing, or otherwise handling the samples in a

18

way that would deform the sample. The fabrics were tested in their as-manufactured form (i.e. they had not undergone subsequent launderings.) The die used to cut each sample was aligned with the yarns in the fabric to improve the accuracy of the measurements.

SHEAR MEASUREMENTS

10

The testing equipment was set up according to the instructions in the Kawabata manual. The Kawabata shear tester (KES FB1) was allowed to warm up for at least 15 minutes before being calibrated. The tester was set up as follows:

Sensitivity: 2 and X5

Sample width: 20 cm Shear weight: 195 g Tensile Rate: .2 mm/s

Elongation Sensitivity: 25 mm

The shear test measures the resistive forces when the fabric is given a constant tensile force and is subjected to a shear deformation in the direction perpendicular to the constant tensile force.

Mean Shear Stiffness (G) [gf/(cm-deg)]. Mean shear stiffness was measured in each of the warp and filling directions. A lower value for shear stiffness is indicative of a more supple hand.

<u>Shear Hysteresis at 0.5°, 2.5° and 50°-</u> (2HG05, 2HG25, and 2HG50, respectively) [gf/cm]— A lower value indicates that the fabric recovers more completely from shear deformation. This correlates to a more supple hand.

Residual Shear Angle at 0.5°, 2.5°, and 5.0° (RG05, RG25, and RG50, respectively.) [degrees] The lower the number, the more "return energy" required to return the fabric to its original orientation.

Four samples were taken in each of the warp and filling directions, averaged, and are listed below.

BENDING MEASUREMENTS

35

25

30

Bending Stiffness (B) - A lower value means a fabric is less stiff.

Bending hysteresis at 0.5° , 1.0° , and 1.5° (2HB05, 2HB10, 2HB15) Mean bending stiffness per unit width at K = 0.5, 1.0 and 1.5 cm⁻¹ [gf-cm/cm]. Bending stiffness was measured in each of the warp and filling. A lower value means the fabric recovers more completely from bending, and has a softer, more supple hand.

19

Residual Bending at 0.5°, 1.0°, and 1.5°- (RB05, RB10, RB15) Residual bending curvature at K= 0.5, 1.0 and 1.5 cm⁻¹. A lower residual bending curvature indicates that a fabric is stiffer (less supple).

10

COMPRESSION ANALYSIS

The testing equipment was set up according to the instructions in the Kawabata manual. The Kawabata Compression Tester (KES FB3) was allowed to warm up for at least 15 minutes before being calibrated. The tester was set up as follows:

Sensitivity: 2 and X5

Stroke: 5mm

Compression Rate: 1mm/50s Sample Size: 20 X 20 cm

20

15

The compression test measured the resistive forces experienced by a plunger having a certain surface area as it moves alternately toward and away from a fabric sample in a direction perpendicular to the fabric. The test ultimately measures the work done in compressing the fabric (forward direction) to a preset maximum force and the work done while decompressing the fabric (reverse direction).

25

<u>Percent compressibility at 0.5 grams</u> (COMP05) The higher the measurement, the more compressible the fabric.

Maximum Thickness (TMAX)- Thickness [mm] at maximum pressure (nominal is 50 gf/cm²).

A higher TMAX indicates a loftier fabric.

Minimum Thickness (TMIN) Thickness at 0.5g/sq cm. More is generally considered to be better. A higher TMIN indicates a loftier fabric.

35 <u>Minimum Density</u> – Density at TMIN (DMIN). Less is generally considered to be better) $T_{min}[g/cm^3]$

20

<u>Maximum Density</u> – Density at TMAX (DMAX)- T_{max}[g/cm³] A lower value is generally considered to be better.

Thickness Change During Compression (TDIFF)- Higher indicates a loftier fabric.

Compressional Work per Unit Area (WC) Energy to compress fabric to 50 gf/cm²[gf-cm/cm²]. More is generally considered to be better.

Decompressional Work per Unit Area (WC') This is an indication of the resilience of the fabric. A larger number indicates more resilience (i.e. a springier hand), which is generally considered to be better.

<u>Linearity of Compression</u> - 0.5 grams-(LC05)- Compares compression work with the work along a hypothetical straight line from $(X_0, y(X_0))$ to $(X_{max}, y(X_{max}))$ The closer to linear, the more consistent the fabic is.

% Compression Resilience – (RC) Higher means recovers better from compression.

SURFACE ANALYSIS

20

25

15

5

The testing equipment was set up according to the instructions in the Kawabata Manual. The Kawabata Surface Tester (KES FB4) was allowed to warm up for at least 15 minutes before being calibrated. The tester was set up as follows:

Sensitivity 1: 2 and X5 Sensitivity 2: 2 and X5

Tension Weight: 480 g

Surface Roughness Weight: 10 g

Sample Size: 20 X 20 cm

The surface test measures frictional properties and geometric roughness properties of the surface of the fabric.

<u>Coefficient of Friction-</u> (MIU) Mean coefficient of friction [dimensionless]. This was tested in each of the warp and filling directions. A higher value indicates that the surface consists of more fiber ends and loops, which gives the fabric a soft, fuzzy hand.

30

Mean Deviation of Coefficient of Friction (MMD)- Indicates the level of consistency of the coefficient of friction.

Surface roughness (SMD) Mean deviation of the displacement of contactor normal to
 surface [microns]. Indicative of how rough the surface of the fabric is. A lower value indicates that a fabric surface has more fiber ends and loops that give a fabric a softer, more comfortable hand.

TENSILE ANALYSIS

10

<u>Tensile Energy</u> (WT) was measured in each of the warp and filling directions. A lower tensile energy generally indicates the fabric has "give" to it and is more extensible, which would be expected to be indicative of greater fabric comfort.

15 <u>Linearity of Extension</u> (LT)- Dimensionless- Indicates consistency of extension.

<u>Tensile Resiliency</u>(RT)- Measured in percent. Indicates ability of fabric to recover from tensile stretch.

20 <u>Percent Extensibility</u> (EMT)- Measured in each of the warp and filling directions. A higher number indicates a fabric has a greater stretch property. (This is a static profile.)

Table A

Table A									
Parameter	Tensile Warp (LBS)			Tensile Fill (LBS)					
	0 Washes	50 Washes	100 Washes	0 Washes	50 Washes	125 Washes			
Example A	236	215	227	130	140	140			
Example B	221	204	206	131	142	146			
Example C						<u> </u>			
Example D	235	213	224	166	150	159			
Example E	212	199	212	133	135	149			
Example F	231	210	209	152	139	138			
Example G	235	213	224	166	150	159			
Example H	78	78 .	86	40	44	66			
Example I	139	137	123	83	75	97			
Example J	87	84	77	59	59	65			
Example K	139	140	106	84	87	90			

Table B

Parameter	Tear Warp (LBS)			Tear Fill (LBS)		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	15.4	10.6	8.9	12.7	7.2	6.5
Example B	13.2	8.7	8.6	10.3	6.7	6.7
Example C		_				
Example D	14.3	9.1	9.1	9.8	7.6	6.3
Example E	13.4	9.4	10.2	8.1	7.3	6.7
Example F	9.7	8.4	8.7	8.2	5.9	6.3
Example G	14.3	9.1	9.1	9.8	7.6	6.3
Example H	7.7	6.4	4.3	8.0	7.1	3.5
Example I	8.2	4.2	4.4	7.8	4.9	4.9
Example J	8.2	4.1	3.9	7.8	4.3	3.6
Example K	7.3	4.4	3.6	9.2	4.7	5.1

Table C

Parameter	Pilling –30 minutes (Rated 1-5)			Pilling –60 minutes (Rated 1-5)		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	4.0	5.0	5.0	4.0	5.0	5.0
Example B	4.0	5.0	5.0	4.0	5.0	5.0
Example C			-			
Example D	4.3	4.8	5.0	4.3	4.8	5.0
Example E	4.0	5.0	4.5	4.0	4.5	5.0
Example F	4.0	5.0	5.0	4.0	5.0	5.0
Example G	4.3	4.8	5.0	4.3	4.8	5.0
Example H	4.5	5.0	4.0	4.5	5.0	2.5
Example I	4.5	5.0	5.0	4.5	5.0	5.0
Example J	4.5	4.5	5.0	4.5	4.5	4.0
Example K	4.5	5.0	5.0	4.5	5.0	5.0

Table D

Parameter	Pilling –90 minutes (Rated1-5)			Stoll Flat Abrasion (Cycles until sample falls apart – Test Maximum is 1000 cycles)		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	4.0	5.0	5.0	1000	1000	1000
Example B	4.0	5.0	5.0	1000	1000	1000
Example C						
Example D	4.3	5.0	4.8	1000	1000	1000
Example E	4.0	5.0	4.5	1000	1000	1000
Example F	4.0	5.0	5.0	1000	1000	1000
Example G	4.3	5.0	4.8	1000	1000	1000
Example H	4.5	4.5	2.0	1000	1000	1000
Example I	4.5	5.0	5.0	1000	1000	1000
Example J	4.5	3.5	4.5	1000	1000	1000
Example K	4.5	5.0	5.0	1000	1000	1000

Table E

Parameter	Seam Slippage - Warp (LBS)	Seam Slippage - Filling (LBS)				
	0	50	125	0	50	125
	Washes	Washes	Washes	Washes	Washes	Washes
Example A	50	46.6	43.7	45	44	43.2
Example B	58	49	50	47	47	45
Example C		7				
Example D	48	47	45	48	47	45
Example E	55	48	46	55	48	46
Example F	48	45	51	48	45	51
Example G	48	47	45	48	47	45
Example H	48	43	42	43	43	41
Example I	53	40	43	49	43	40
Example J	44	38	42	47	40	43
Example K	40	47	49	35	41	46

Table F

Parameter	Warp Stretch (%)			Fill Stretch (%)		
	0	50	125	0	50	125
	Washes	Washes	Washes	Washes	Washes	Washes
Example A	3.80	6.30	7.50	1.25	3.80	3.80
Example B	5.00	7.50	7.50	2.50	2.50	3.80
Example C			_			
Example D	5.00	7.50	7.50	2.50	3.80	3.80
Example E	7.50	7.50	7.50	3.80	3.80	3.80
Example F	3.80	6.30	6.30	2.50	3.80	5.00
Example G	5.00	7.50	7.50	2.50	3.80	3.80
Example H	5.00	7.50	10.00	6.30	10.00	10.00
Example I	6.30	7.50	7.50	5.00	7.50	10.00
Example J	8.80	8.80	7.50	7.50	10.00	10.00
Example K	6.00	8.80	6.30	5.00	7.50	7.50

Table G

Parameter	Fray Warp (%)			Fray Fill (%)		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	13.80	2.38	10.95	26.90	11.90	21.43
Example B	4.80	2.86	2.38	9.50	8.57	10.48
Example C						
Example D	19.30	3.34	14.04	4.70	4.05	14.28
Example E	13.40	8.60	7.62	16.20	18.00	20.00
Example F	13.80	21.43	10.95	4.70	19.52	19.05
Example G	19.30	3.34	14.04	4.70	4.05	14.28
Example H	23.00	4.76	15.71	17.00	13.33	7.62
Example I	2.40	18.10	15.24	2.40	6.19	4.76
Example J	7.10	17.14	16.67	21.40	7.62	1.48
Example K	2.40	11.90	2.86	4.80	4.29	11.90

25

Table H

Parameter	Shrinkage Warp (%) 0 Washes	Shrinkage Filling (%) 50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	2.1	0.0	0.5	0.6	0.3	0.5
Example B	2.7	0.6	0.3	0.8	0.3	0.1
Example C						
Example D	1.9	0.3	0.8	1.2	0.6	0.0
Example E	1.5	0.9	1.0	0.7	0.5	0.9
Example F	1.4	0.3	0.1	1.4	0.7	0.4
Example G	1.9	0.3	0.8	1.2	0.6	0.0
Example H	0.6	0.7+	0.3	3.1	0.2+	0.2
Example I	0.9	0.1	0.5	0.0	0.6	0.1
Example J	0.6	1.1	0.8	3.2	0.6	0.2
Example K	3.7	1.0	0.2	0.0	1.0	0.5

Table I

Parameter	Appearance (Rated 1-5)			Crease Retention (Rated 1-5)		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	3.5	4.5	4.5	4.0	5.0	5.0
Example B.	3.5	4.0	4.5	4.0	5.0	5.0
Example C						
Example D	3.5	3.8	3.8	4.0	5.0	5.0
Example E	4.0	4.0	4.5	4.0	5.0	5.0
Example F	3.0	4.0	4.0	4.0	5.0	5.0
Example G	3.5	3.8	3.8	4.0	5.0	5.0
Example H	3.0	3.5	3.5	4.0	5.0	5.0
Example I	3.0	3.5	3.5	4.0	5.0	5.0
Example J	3.5	3.5	3.5	4.0	5.0	5.0
Example K	3.0	4.0	3.5	4.0	5.0	5.0

Table J

Parameter	Soil Relea (Rated 1-					
	0/1	4/5	48/49	48/50	123/124	123/125
Example A	2.5	3.5	4.5	2.5	3.5	4.5
Example B	3.3	3.0	4.0	4.5	4.0	5.0
Example C						
Example D	2.0	1.3	2.4	3.6	1.9	3.9
Example E	1.5	2.0	3.0	3.7	2.5	3.0
Example F	2.0	1.0	2.6	3.4	2.3	4.3
Example G	2.0	1.3	2.4	3.6	1.9	3.9
Example H	1.0	1.0	1.5	2.6	1.3	4.0
Example I	1.0	1.0	1.5	3.9	1.5	4.3
Example J	1.0	1.0	3.1	4.3	3.8	4.5
Example K	1.0	1.0	1.6	1.8	1.0	3.5

Table K

Parameter	Vertical Wicking- 15 minutes (inches)			Drop Disappearance (seconds)		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	5.9	4.7	5.1	<1 sec	1.7	2.5
Example B	6.8	4.7	4.7	< 1 sec	2.0	1.7
Example C	-			_		
Example D	4.6	5.3	5.8	2.2	2.7	4.4
Example E	4.9	5.3	5.9	3.0	3.8	3.9
Example F	5.6	6.5	6.6	5.3	4.7	4.0
Example G	4.6	5.3	5.8	2.2	2.7	4.4
Example H	5.1	6.4	6.4	3.1	0.4	0.8
Example I	5.1	5.4	5.0	2.9	0.7	0.5
Example J	5.2	6.6	6.6	1.5	0.3	0.4
Example K	4.7	5.5	5.1	2.5	0.6	0.7

Table L

Parameter	Thickness (mm)			Air Permeability (cfm)		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	19.40	22.32	22.01	84.4	61	58.8
Example B	22.48	25.63	25.16	77.6	57.6	55.3
Example C						
Example D	19.87	22.10	21.85	47.3	39.5	42.8
Example E	20.78	21.33	21.88	80.6	83.4	84.6
Example F	21.25	21.63	22.13	47.1	78.3	80.2
Example G	19.87	22.10	21.85	47.3	39.5	42.8
Example H	16.5	25.13	25.63	54.1	53.8	64.7
Example I	22.33	29.19	28.88	19.6	10.6	10.9
Example J	19.65	26.32	26.13	37.6	55.2	58.1
Example K	23.65	29.69	30.44	26.07	10	9.84

Table M

Parameter	Flammability- After Flame (seconds)			Flammability- After Glow (seconds)		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec
Example B	<1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec
Example C	_					
Example D	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec_	<1 sec
Example E	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec
Example F	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec
Example G	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec
Example H	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec
Example I	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec
Example J	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec
Example K	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec	<1 sec

Table N

Parameter	Flammability- Char Length (inches)		ength	Thermal Protection Performance (TPP) (calories/cubic cm)
	0 Washes	50 Washes	125 Washes	0 Washes
Example A	1.9	2.9	3.1	8.83
Example B	2.3	3.1	2.3	9.21
Example C				
Example D	3.8	2.3	2.4	9.19
Example E	3.9	2.1	2.0	
Example F	3.6	2.3	2.8	9.25
Example G	3.8	2.3	2.1	9.19
Example H	3.1	1.9	2.4	7.48
Example I	2.5	1.9	2.4	9.53
Example J	3.2	2.9	3.8	8.90
Example K	3.4	2.6	2.1]

Table O

Parameter	Arc Thermal Protection Value (ATPV) (calories/cm²)	Pyroman
	All are washed as part of test	3 seconds
Example A	6.1	
Example B	6.0	28
Example C		
Example D	5.7	<50R
Example E	-	<50R
Example F	5.6	<50R
Example G	5.7	<50R
Example H	6.0R	<50R
Example I	7.9R	<50R
Example J	7.3R	<50R
Example K	11.2R	<50R

⁵ R= recorded in the literature

Table P

Example	Flame Exposure (sec)	Predicted Burn				
	Exposure (sec)	Second Degree	Third Degree	Total		
Example B Sample 1	4.00	40.98	8.20	49.18		
Example B Sample 2	4.00	45.08	8.20	53.28		
Example B Sample 3	4.00	41.80	9.02	50.82		
Average		42.62	8.47	51.09		
Example B Sample 1	3.00	18.85	6.56	25.41		
Example B Sample 2	3.00	22.13	6.56	28.69		
Example B Sample 3	3.00	23.77	6.56	30.33		
Average		21.59	6.56	28.14		
Example B Sample 1	3.50	28.69	6.56	28.14		
Example B Sample 1	5.00	39.34	22.95	62.30		
Example B Sample 2	5.00	43.44	18.03	61.48		
Example B Sample 3	5.00	42.62	20.49	63.11		
Average		41.80	20.49	62.29		

Table Q

Parameter	Handle-O-Meter- Warp (grams force)	Handle-O-Meter- Filling (grams force)
	0 Washes	0 Washes
Example A	33	27
Example B	34	26
Example C	-	
Example D	97	70
Example E	109	79
Example F	124	52
Example G	97	70
Example H	41	21
Example I	192	182
Example J	32	18
Example K	209	264

Table R

Parameter	Drape Coefficient (0-100)			Ring Test Load (lbs.)		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	33.4	26.86	26.50	72.64	59.25	72.36
Example B	30.90	28.46	24.17	90.80	66.93	102.10
Example C						
Example D	64.90	34.61	31.20	208.84	90.25	83.71
Example E	70.60	31.08		249.70	83.28	
Example F	65.20	33.47	30.54	340.50	93.00	89.86
Example G	64.90	34.61	31.20	208.84	80.25	83.71
Example H	39.3	38.8	31.7	140.74	120.190	121.277
Example I	74.0	56.5	47.3	612.90	541.826	297.478
Example J	34.4	37.3	35.9	136.20	97.203	100.951
Example K	80.3	53.0	51.2	862.60	352.747	392.280

Table S

Parameter	Bending Stiffness (B) Warp Direction			Bending Stiffness (B) Filling Direction		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	0.140	0.091	0.085	0.101	0.083	0.088
Example B	0.15	0.088	0.084	0.11	0.090	0.089
Example C						
Example D	0.766	0.130	0.101	0.418	0.112	0.087
Example E	0.723	0.120	0.112	0.371	0.085	0.073
Example F	0.903	0.270	0.260	0.324	0.090	0.081
Example G	0.766	0.130	0.101	0.418	0.112	0.087
Example H	0.21	0.162	0.119	0.13	0.084	0.080
Example I	1.04	0.359	0.337	1.06	0.214	0.214
Example J	0.17	0.173	0.169	0.12	0.083	0.092
Example K	1.50	0.362	0.398	1.66	0.226	0.257

Table T

Parameter	% Compressibility (Comp 05)					
	0 Washes	50 Washes	125 Washes			
Example A	40.680	42.808	42.141			
Example B	40.126	45.044	42.182			
Example C	42.459	44.727	42.398			
Example D	33.454	40.529	38.959			
Example E	34.717	41.842	40.427			
Example F	36.736	41.994	42.182			
Example G	33.454	40.529	38.959			
Example H	40.432	39.837	34.407			
Example I	31.886	29.658	25.763			
Example J	39.871	37.860	33.236			
Example K	32.183	33.251	27.035			

Table U

Parameter	Shear Stiffness (G) Warp			Shear Stiffness (G) Filling		
	0	50	125	0	50	125
	Washes	Washes	Washes	Washes	Washes	Washes
Example A	0.7770	0.658	0.592	0.6357	0.489	0.435
Example B	0.9590	0.739	0.612	0.7833	0.583	0.490
Example C	0.9260	0.701	0.653	0.7683	0.569	0.521
Example D	3.4670	1.068	0.968	3.3963	1.028	0.871
Example E	2.4437	0.692	0.633	2.2013	0.615	0.568
Example F	2.2210	0.512	0.498	2.0490	0.470	0.403
Example G	2.9357	1.068	0.968	2.7140	1.028	0.871
Example H	0.7547	0.838	0.835	0.6633	0.829	0.734
Example, I	2.7373	2.763	2.575	2.6953	2.773	2.662
Example J	0.9037	0.845	0.868	0.8197	0.772	0.757
Example K	3.0097	2.905	3.268	2.9207	3.096	3.307

Table V

Parameter	Coefficient of Friction (MIU) Warp			Coefficient of Friction (MIU) Filling		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Wash es	125 Washes
Example A	0.193000	0.212	0.214	0.217667	0.222	0.227
Example B	0.213667	0.217	0.216	0.224667	0.224	0.227
Example C	0.209667	0.217	0.223	0.219667	0.229	0.233
Example D	0.189333	0.211	0.214	0.199667	0.218	0.233
Example E	0.187000	0.202	0.208	0.187000	0.225	0.227
Example F	0.209667	0.199	0.210	0.221667	0.212	0.219
Example G	0.185667	0.211	0.214	0.201667	0.218	0.233
Example H	0.217333	0.231	0.228	0.225667	0.257	0.250
Example I	0.178333	0.221	0.226	0.194667	0.246	0.242
Example J	0.217000	0.231	0.247	0.233333	0.253	0.273
Example K	0.177000	0.242	0.231	0.198333	0.252	0.241

Table W

Parameter	1 44.			WT Filling		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	10.521	12.639000	13.34970	5.375	7.151300	7.28630
Example B	10.668	13.716700	13.59600	5.444	7.536700	7.66530
Example C	11.006	13.672700	13.76430	5.578	7.473700	7.68270
Example D	9.262	13.063700	12.90800	4.917	7.490700	7.30570
Example E	8.198	11.222700	11.92700	5.533	6.780700	6.95670
Example F	10.673	13.130000	13.12900	6.191	8.625300	8.51500
Example G	10.931	12.657700	13.06700	6.012	6.696000	7.33100
Example H	9.494	12.851700	14.12670	15.510	18.642000	20.06800
Example I	13.509	13.933700	15.92600	13.516	16.307700	16.75200
Example J	12.471	13.630700	14.99430	17.192	18.972700	19.43500
Example K	14.217	14.322700	17.07100	11.616	16.035300	16.29770

Table X

Parameter	% Extensibility (EMT) Warp			% Extensibility (EMT) Filling		
	0	50	125	0	50	125
	Washes	Washes	Washes	Washes	Washes	Washes
Example A	5.8950	8.562	8.977	2.9100	4.808	4.575
Example B	6.2217	8.905	8.788	2.9967	4.982	4.797
Example C	5.9317	9.125	8.725	3.3033	5.045	4.703
Example D	5.1833	8.161	8.024	2.9167	4.455	4.553
Example E	3.9750	7.585	7.320	3.0500	4.508	3.862
Example F	6.0233	8.135	8.160	3.6250	5.608	5.385
Example G	5.8650	8.161	8.024	3.1783	4.455	4.553
Example H	6.3400	8.465	9.192	9.8617	12.215	13.150
Example I	7.8883	8.083	8.982	6.6200	9.277	9.210
Example J	7.3300	8.942	9.871	11.3317	12.400	12.537
Example K	7.6650	8.323	9.702	6.0950	9.250	8.527

Table Y

Parameter	Bending H Warp	łysteresis (2ł	HB05)	Bending Hysteresis (2HB05) Filling		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	0.07200	0.045330	0.04067	0.06400	0.052333	0.04433
Example B	0.07400	0.046670	0.04600	0.06967	0.045667	0.04400
Example C	0.07133	0.047000	0.04900	0.05567	0.055333	0.03900
Example D	0.25633	0.061670	0.05067	0.20100	0.059667	0.04500
Example E	0.22133	0.069670	0.05800	0.13933	0.054667	0.04333
Example F	0.28000	0.165670	0.12800	0.14500	0.052000	0.04300
Example G	0.25667	0.078330	0.05867	0.22467	0.076333	0.05100
Example H	0.11900	0.113330	0.09300	0.05200	0.049333	0.05200
Example I	0.30133	0.208670	0.19967	0.22333	0.135667	0.14833
Example J	0.10467	0.114330	0.15000	0.06200	0.051333	0.06733
Example K	0.39700	0.244330	0.35900	0.32400	0.152333	0.19800

Table Z

Parameter	Bending Hysteresis (2HB10) Warp	Bending Hysteresis (2HB10) Filling				
	0 Washes	50	125	0 Washes	50	125
		Washes	Washes		Washes	Washes
Example A	0.07467	0.056330	0.05033	0.06500	0.064000	0.06033
Example B	0.08267	0.058000	0.05600	0.07400		
					0.059333	0.05967
Example C	0.08067	0.058670	0.06133	0.07000	0.072000	0.01533
Example D	0.38700	0.078330	0.06567	0.26567	0.077333	0.05800
Example E	0.30867	0.089000	0.07633	0.18467	0.067667	0.05433
Example F	0.39633	0.223330	0.18700	0.17433	0.067667	0.05633
Example G	0.33067	0.098000	0.07333	026167	0.096000	0.06500
Example H	0.11700	0.146330	0.11600	0.05967	0.058333	0.06033
Example I	0.37533	0.295330	0.28667	0.32200	0.175667	0.18533
Example J	0.37533	0.156330	0.17933	0.06100	0.061333	0.07767
Example K	0.49600	0.332000	0.44800	0.44433	0.189667	0.24333

Table AA

Parameter	Bending Hysteresis (2HB15) Warp 0 Washes	Bending Hysteresis (2HB15) Filling 50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	0.07567	0.067670	0.05967	0.06333	0.074333	0.07000
Example B	0.08367	0.068670	0.06200	0.06567	0.068000	0.07400
Example C	0.08433	0.068000	0.07167	0.08400	0.084667	0.06267
Example D	0.40967	0.092670	0.07967	0.27933	0.099333	0.07400
Example E	0.31733	0.110670	0.09600	0.19767	0.078667	0.06467
Example F	0.42800	0.272670	0.24033	0.18567	0.082000	0.07067
Example G	0.32300	0.116330	0.08800	0.25333	0.119333	0.07967
Example H	0.11133	0.179330	0.13333	0.05133	0.070000	0.06833
Example I	0.39967	0.381670	0.37400	0.34700	0.218333	0.22733
Example J	0.10467	0.187330	0.19333	0.05667	0.073333	0.08333
Example K	0.51467	0.422330	0.48267	0.48967	0.233333	0.29467

Table BB

Parameter	Residual Bending (RB05) Warp			Residual Bending (RB05) Filling			
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes	
Example A	0.52267	0.499330	0.48167	0.65300	0.577000	0.50700	
Example B	0.48467	0.528670	0.55067	0.67033	0.554670	0.49233	
Example C	0.46500	0.539670	0.53133	0.42467	0.545000	0.48533	
Example D	0.28033	0.562670	0.49800	0.43867	0.556000	0.52333	
Example E	0.30667	0.590000	0.51667	0.37733	0.637670	0.59033	
Example F	0.32100	0.612670	0.49200	0.45633	0.572000	0.53333	
Example G	0.42333	0.628330	0.58600	0.60833	0.655000	0.58133	
Example H	0.57333	0.699000	0.78633	0.41467	0.587330	0.64667	
Example I	0.28500	0.582330	0.59933	0.21333	0.633000	0.69267	
Example J	0.63133	0.665000	0.88633	0.53767	0.617330	0.73233	
Example K	0.26100	0.684000	0.89667	0.19100	0.675000	0.76933	

Table CC

Parameter	Residual Bending (RB10) Warp			Residual Bending (RB10) Filling		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	0.53933	0.621330	0.58967	0.65467	0.707000	0.68233
Example B	0.54333	0.660330	0.66467	0.71600	0.715330	0.66367
Example C	0.52233	0.675330	0.66500	0.52167	0.714330	0.63567
Example D	0.42067	0.714000	0.64367	0.57767	0.720000	0.67600
Example E	0.42767	0.748330	0.68233	0.50067	0.789670	0.74600
Example F	0.44433	0.827670	0.71633	0.54300	0.747000	0.69767
Example G	0.54467	0.783330	0.73167	0.70667	0.825330	0.74033
Example H	0.56300	0.901670	0.97667	0.47300	0.692670	0.75300
Example I	0.35800	0.824330	0.85567	0.30567	0.820330	0.86333
Example J	0.63833	0.903000	1.05867	0.52967	0.738330	0.83967
Example K	0.33100	0.924000	1.12200	0.26533	0.839670	0.94600

Table DD

Parameter	Residual I Warp	Bending (RB	15)	Residual Bending (RB15) Filling			
	0	50	125	0	50	125	
	Washes	Washes	Washes	Washes	Washes	Washes	
Example A	0.54700	0.747000	0.70167	0.62800	0.823000	0.79767	
Example B	0.55100	0.782000	0.74033	0.62467	0.824000	0.82500	
Example C	0.54800	0.784000	0.77767	0.62800	0.845330	0.77333	
Example D	0.44433	0.844000	0.78300	0.60500	0.925330	0.85667	
Example E	0.43867	0.923330	0.85833	0.53367	0.920670	0.88400	
Example F	0.47800	1.008000	0.92300	0.56967	0.903000	0.87533	
Example G	0.53167	0.928330	0.88167	0.68467	1.021330	0.90500	
Example H	0.53633	1.102670	1.12200	0.40333	0.826000	0.86167	
Example I	0.38467	1.064670	1.11433	0.32767	1.021000	1.05967	
Example J	0.63400	1.079000	1.13933	0.49167	0.881000	0.90800	
Example K	0.34567	1.174670	1.21867	0.29800	1.033000	1.14533	

Table EE

Parameter	Maximum Thickness (Tmax) (mm)			Maximum Density (DENMAX)		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	0.536333	0.586000	0.58567	0.371000	0.367000	0.36700
Example B	0.582333	0.666333	0.67167	0.350333	0.333000	0.32967
Example C	0.588000	0.662000	0.64767	0.349000	0.333667	0.34000
Example D	0.551000	0.588000	0.57867	0.381333	0.377000	0.38367
Example E	0.555667	0.577333	0.57500	0.361000	0.351333	0.35067
Example F	0.585667	0.582333	0.59133	0.352667	0.362000	0.35567
Example G	0.543667	0.577667	0.56533	0.394667	0.381000	0.39200
Example H	0.496000	0.633667	0.65533	0.462333	0.377333	0.34600
Example I	0.604000	0.716000	0.75100	0.530000	0.465000	0.43633
Example J	0.518333	0.690333	0.67833	0.451000	0.34433	0.34367
Example K	0.631000	0.752667	0.79700	0.534333	0.448333	0.43000

Table FF

Parameter	Minimum T (mm)	Thickness (Tr	nin)	Minimum Density (DENMIN)		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	0.904330	1.025000	1.01233	0.220333	0.210000	0.21233
Example B	0.972670	1.212670	1.16200	0.209667	0.182667	0.19067
Example C	1.022330	1.197330	1.12367	0.201000	0.184333	0.19567
Example D	0.794330	0.987670	0.96000	0.264667	0.224333	0.23133
Example E	0.852000	0.992670	0.96533	0.235667	0.204667	0.20900
Example F	0.927330	1.004330	1.02233	0.223000	0.210000	0.20600
Example G	0.853330	0.973000	0.91500	0.251000	0.226667	0.24267
Example H	0.833000	1.054670	0.99900	0.275000	0.227333	0.22700
Example I	0.887670	1.018000	1.01133	0.361000	0.326667	0.32400
Example J	0.862670	1.111000	1.01600	0.271333	0.214000	0.22933
Example K	0.930670	1.127670	1.09167	0.362333	0.299333	0.31367

Table GG

Parameter	Compressional Work per Unit Area (WC)	Linearity of Compression (LC 05)			ı	
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	0.300000	0.407000	0.38300	0.32533	0.369670	0.35933
Example B	0.385000	0.517330	0.48633	0.39733	0.379670	0.39833
Example C	0.411000	0.510670	0.45800	0.38033	0.381670	0.38533
Example D	0.203670	0.359330	0.33200	0.33633	0.362330	0.34967
Example E	0.215000	0.357330	0.32633	0.29533	0.345670	0.33533
Example F	0.282330	0.368330	0.38300	0.33233	0.347330	0.35733
Example G	0.254670	0.386670	0.34100	0.32767	0.393000	0.39200
Example H	0.286670	0.370000	0.33900	0.33933	0.353000	0.39667
Example I	0.257670	0.322330	0.28767	0.36767	0.432000	0.44000
Example J	0.299000	0.401330	0.33233	0.34933	0.382670	0.39833
Example K	0.265670	0.362330	0.31333	0.35433	0.389670	0.42667

Table HH

Parameter	Decompressional Work per Unit Area (WCPrime)			Compression Resilience (RC) %			
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes	
Example A	0.153333	0,177000	0.16300	51.2443	43.446300	42.50530	
Example B	0.209667	0.219667	0.20800	53.0833	42.429700	42.76830	
Example C	0.218000	0.223000	0.19767	54.3957	43.721000	43.21800	
Example D	0.115333	0.155667	0.14267	56.6363	43.275300	43.03830	
Example E	0.117333	0.159000	0.14233	54.5963	44.414000	43.63930	
Example F	0.137667	0.165333	0.16633	48.9260	44.944300	43.43170	
Example G	0.132333	0.159667	0.13967	51.8593	41.299000	40.81070	
Example H	0.126667	0.130333	0.12000	44.2787	35.217700	35.42070	
Example I	0.125000	0.105333	0.10333	48.4010	32.861000	35.95200	
Example J	0.129333	0.132667	0.11467	43.2660	33.014300	34.47900	
Example K	0.123333	0.122667	0.11233	46.2480	33.939000	35.80870	

Table II

Parameter	Weight (g)	Thickness Change During Compression (Tdiff) (mm)				
	0	50 Washes	125	0	50	125
	Washes		Washes	Washes	Washes	Washes
Example A	19.9167	21.508300	21.50000	0.36833	0.439000	0.42667
Example B	20.4083	22.175000	22.15000	0.39033	0.546670	0.49033
Example C	20.5333	22.075000	22.01670	0.43433	0.535670	0.47667
Example D	21,0167	22.158300	22.18330	0.24333	0.400000	0.38133
Example E	20.0667	20.283300	20.14170	0.29600	0.415330	0.39067
Example F	20.6583	21.066700	21.02500	0.34133	0.422000	0.43167
Example G	21.4500	22.008300	22.17500	0.30933	0.395000	0.34967
Example H	22.9417	23.891700	22.65830	0.33733	0.422000	0.34400
Example I	32.0333	33.266700	32.76670	0.28300	0.302330	0.26033
Example J	23.3833	23.758300	23.30000	0.34433	0.420670	0.33800
Example K	33.7250	33.708300	34.22500	0.30000	0.375330	0.29500

Table JJ

Parameter	Shear Hysteresis (2HG05) Warp	Shear Hysteresis (2HG05) Filling	125	0	50	125
İ	0 Washes	50 Washes	Washes	Washes	Washes	Washes
		VVasiles	11451100	,,,,,,,,,,,		
Example A	1.2407	1.414670	1.21000	0.5727	0.600670	0.45330
Example B	1.2983	1.562330	1.30400	0.6270	0.724670	0.59230
Example C	1,4110	1.537670	1.34200	0.6723	0.715000	0.62330
Example D	3.7677	1.834670	1.61933	3.2570	1.103000	0.76230
Example E	1.3290	1.592670	1.48567	0.8907	0.869000	0.72970
Example F	1.8803	0.777670	0.80800	1.3053	0.485330	0.44800
Example G	2.8020	2.203000	2.17800	2.1960	1.340330	1.33870
Example H	1.2357	2.010330	2.24200	0.8807	1.396330	1.38970
Example I	2.2307	4.899670	5.02767	2.3563	4.347000	4.49430
Example J	1.5200	2.195670	2.43733	1.1197	1.395670	1.46300
Example K	3.2923	6.005000	7.25067	3.5930	5.752000	6.50470

Table KK

Parameter	Shear Hysteresis (2HG25) Warp			Shear Hysteresis (2HG25) Filling		
	0	50	125	0	50	125
	Washes	Washes	Washes	Washes	Washes	Washes
				•		
Example A	1.9400	1.064700	1.79367	1.2880	2.055000	0.90630
Example B	2.2257	1.346300	1.91900	1.5510	2.280300	1.07870
Example C	2.2390	1.299000	1.98067	1.5400	2.252700	1.19470
Example D	7.8223	2.323300	2.60267	7.3877	3.065300	1.66030
Example E	5.0633	1.496000	2.09100	4.4080	2.290700	1.29530
Example F	5.3043	0.948700	1.27000	4.5470	1.275300	0.81500
Example G	6.6990	2.630000	3.39833	5.9423	3.522000	2.57800
Example H	1.8830	2.307000	2.98100	1.5247	2.819700	2.15000
Example I	5.9453	8.038700	8.10300	5.8533	8.313000	7.87800
Example J	2.3677	2.259700	3.24800	2.0150	3.041000	2.26470
Example K	7.2243	9.493700	10.82367	7.3383	9.329000	10.35630

Table LL

Parameter	Shear Hys Warp	Shear Hysteresis (2HG50) Warp			Shear Hysteresis (2HG50) Filling			
·	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes		
Example A	3.089	3.456000	3.07830	2.560	2.344300	2.00830		
Example B	3.641	3.792000	3.19170	3.029	2.831700	2.36200		
Example C	3.614	3.845700	3.35530	3.029	2.810300	2.53730		
Example D	11.349	5.678700	4.91330	10.753	5.091000	3.94800		
Example E	10.141	3.730700	3.42100	9.827	3.054000	2.67300		
Example F	11.387	2.752700	2.48570	10.804	2.388300	1.95400		
Example G	10.268	5.884300	5.90670	9.731	5.192300_	5.29000		
Example H	3.021	4.163300	4.07170	2.538	3.850300	3.39070		
Example I	10.130	10.638700	10.58770	9.561	10.374000	10.3143 0		
Example J	3.483	4.272700	4.38070	3.275	3.603000	3.55800		
Example K	12.040	11.258300	12.62270	11.815	11.752000	12.1013 0		

Table MM

Parameter	Residual Shear Angle (RG05) Warp 0 Washes	Residual Shear Angle (RG05) Filling 50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	1.59567	2.153700	2.05033	0.90133	1.227000	1.04467
Example B	1.35633	2.118000	2.12667	0.80100_	1.243670	1.21200
Example C	1.52500	2.197000	2.05967	0.87800	1.255670	1.19533
Example D	1.08433	1.766000	1.87933	0.95733	1.099670	1.04733
Example E	0.54300	2.304000	2.34333	0.40700	1.421000	1.27533
Example F	0.86633	1.524700	1.62367	0.70667	1.033670	1.10933
Example G	0.85833	2.105000	2.03200	0.81133	1.274000	1.32533
Example H	1.64633	2.407300	2.68900	1.32633	1.686670	1.89500
Example I	0.81667	1.773700	1.95267	0.87533	1.567670	1.68700
Example J	1.69000	2.608700	2.80967	1.36700	1.812000	1.94000
Example K	1.10700	2.067700	2.21867	1.24100	1.857330	1.96800

Table NN

Parameter	Residual Shear Angle (RG25) Warp			Residual Shear Angle (RG25) Filling		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	2.49667	3.127330	3.03333	2.02633	2.173330	2.08567
Example B	2.32200	3.088330	3.13100	1.98033	2.309330	2.20200
Example C	2.41933	3.216330	3.03933	2.00633	2.279670	2.28933
Example D	2.25600	2.950670	3.01767	2.17667	2.316000	2.27667
Example E	2.07300	3.311670	3.30033	2.00333	2.437000	2.26967
Example F	2.37233	2.496330	2.55000	2.24533	2.019330	2.02133
Example G	2.28367	3.214000	3.17067	2.19267	2.501000	2.55067
Example H	2.49833	3.367670	3.57267	2.29667	2.784670	2.93067
Example I	2.17433	3.009000	3.14733	2.17433	2.898670	2.95833
Example J	2.62300	3.606670	3.74500	2.45600	2.932670	2.99867
Example K	2.41033	3.212000	3.31233	2.52000	3.066330	3.13333

Table OO

Parameter	Residual Shear Angle (RG50) Warp			Residual Shear Angle (RG50) Filling			
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes	
Example A	3.9760	5.267000	5.21770	4.0303	4.785300	4.61900	
Example B	3.7973	5.134700	5.21070	3.8673	4.859700	4.82470	
Example C	3.9040	5.488000	5.14600	3.9453	4.934000	4.86870	
Example D	3.2743	5.466300	5.69530	3.1717	5.089700	5.41270	
Example E	4.1503	5.392300	5.40700	4.4680	4.978000	4.70430	
Example F	5.1237	5.384700	4.99200	5.3377	5.084700	4.85630	
Example G	3.5250	5.367300	5.51200	3.6003	4.946000	5.23730	
Example H	4.0087	4.977000	4.87930	3.8227	4.648700	4.62200	
Example I	3.7033	3.850300	4.11200	3.5537	3.740700	3.87700	
Example J	3.8647	5.069000	5.05130	3.9990	4.672700	4.70970	
Example K	4.0127	3.876300	3.86300	4.0720	3.797300	3.66170	

Table PP

Parameter	Mean Deviation of Coefficient of Friction (MMD) Warp			Mean Deviation of Coefficient of Friction (MMD) Filling			
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes	
Example A	0.021333	0.026667	0.02867	0.024000	0.020667	0.02367	
Example B	0.024000	0.024000	0.02400	0.027667	0.023667	0.02500	
Example C	0.024333	0.023667	0.02433	0.025000	0.023333	0.02300	
Example D	0.039667	0.071667	0.07433	0.038667	0.032333	0.02733	
Example E	0.024333	0.019333	0.02267	0.029000	0.027000	0.02600	
Example F	0.035000	0.021667	0.02833	0.034667	0.032333	0.02767	
Example G	0.056667	0.076667	0.09700	0.038000	0.031333	0.03100	
Example H	0.014333	0.015333	0.01400	0.018333	0.021333	0.02067	
Example I	0.016000	0.012000	0.01433	0.022000	0.018333	0.01767	
Example J	0.016000	0.016333	0.01833	0.019333	0.022333	0.02500	
Example K	0.012667	0.012333	0.01133	0.022333	0.018000	0.01767	

Table QQ

Parameter	Surface Roughness (SMD) Warp	Surface Roughness (SMD) Filling	·			
	0 Washes	50 Washes	125	0	50	125
			Washes	Washes	Washes	Washes
Example A	12.6457	12.194700	11.75230	6.2930	6.042700	5.76130
Example B	9.4970	9.081000	8.73870	5.8047	5.950000	6.37500
Example C	9.9760	9.096000	9.45800	5.3733	5.618300	6.00500
Example D	12.4050	11.195000	10.84230	7.4990	7.373300	6.21030
Example E	12.8140	12.872000	12.50500	7.1800	7.856000	7.74670
Example F	10.6303	10.471300	10.46900	7.6433	6.938700	7.01330
Example G	10.6733	10.235700	10.59570	7.1230	6.476000	6.66370
Example H	2.3677	2.738300	2.33400	4.4337	5.433000	4.86400
Example I	2.5200	1.987300	1.98030	5.3827	4.622000	4.18800
Example J	3.8980	2.532000	2.61830	5.0787	5.642000	4.88630
Example K	2.5487	2.035700	1.85130	6.0113	4.168700	4.01170

Table RR

Parameter	Linearity of Extension (LT) Warp			Linearity of Extension (LT) Filling		
	0 Washes	50 Washes	125 Washes	0 Washes	50 Washes	125 Washes
Example A	0.705	0.580670	0.58800	0.730	0.583000	0.62600
Example B	0.679	0.606330	0.61100	0.731	0.595330	0.63433
Example C	0.736	0.590670	0.62233	0.666	0.583670	0.64700
Example D	0.700	0.613330	0.61033	0.679	0.613670	0.65800
Example E	0.813	0.584000	0.64300	0.728	0.593330	0.70500
Example F	0.703	0.637670	0.63500	0.674	0.608330	0.62533
Example G	0.733	0.633670	0.66667	0.753	0.647000	0.61267
Example H	0.588	0.598670	0.60900	0.622	0.601670	0.60567
Example I	0.672	0.682000	0.70133	0.807	0.693000	0.71867
Example J	0.675	0.601670	0.64333	0.599	0.603000	0.61433
Example K	0.727	0.677000	0.69700	0.748	0.685330	0.75567

Table SS

Parameter	Parameter Tensile Resiliency (RT) Warp			Tensile Resiliency (RT) Filling			
	0	50 Washes	125	0	50	125	
	Washes		Washes	Washes	Washes	Washes	
Example A	51.854	49.300700	48.44500	57.483	56.347700	55.96100	
Example B	52.120	48.758000	48.70300	57.281	54.911300	54.25900	
Example C	51.531	48.273300	47.83300	57.200	53.761700	53.68600	
Example D	55.109	48.086000	49.20500	58.795	54.777000	55.18900	
Example E	52.802	49.159700	47.17600	58.120	55.645300	56.80200	
Example F	42.334	44.300700	46.11400	50.833	51.461000	51.80000	
Example G	48.799	47.513000	47.20500	58.244	54.983000	54.36800	
Example H	43.341	38.401700	39.45900	50.383	41.756300	37.85300	
Example I	42.005	36.987300	33.71800	51.343	40.68700	39.71600	
Example J	37.993	37.798300	36.32200	48.606	40.566300	37.97300	
Example K	40.292	35.886700	32.63800	57.588	42.283300	39.91200	

In addition, the hand improvements were achieved while the strength of the fabric was maintained, and in fact, some strength measurements were improved. In addition, the fabrics of the invention had superior ATPV, lower char length, better warp fray, superior drape and bending modulus, better wicking and soil release, and better combination of comfort characteristics with a particular level of FR.

10

5

Stated differently, the fabrics had comfort levels approximating those of cotton, while at durability levels approximating those of fabrics made from inherently FR fabrics.

44

Furthermore, because of the improved soil release characteristics and reduced soil retention, it is expected that the fabrics would be less likely to hold onto oily stains that might otherwise adversely impact the FR potential of the fabrics.

In addition, the Handle-o-meter measurements on the unwashed fabrics of the present invention are substantially better than those of the conventional fabrics, which is indicative of the superior drape (and thus perceived comfort) that they possess.

The fabrics of the present invention have utility in a variety of end uses, including but not limited to protective apparel, industrial work apparel (i.e. that designed to be worn in an industrial environment and laundered under industrial wash conditions), military apparel, transportation vehicle interiors (including but not limited to aviation, boat, car, bus, train, RV etc. interiors), industrial fire barriers, home and office furnishings, office panels, and virtually anywhere that FR protection would be of advantage.

15

5

In the specification there has been set forth a preferred embodiment of the invention, and although specific terms are employed, they are used in a generic and descriptive sense only and not for purpose of limitation, the scope of the invention being defined in the claims.

45 CLAIMS

- 1. A woven flame resistant fabric comprising a plurality of multi-ply inherently flame resistant yarns, wherein at least a portion of the individual plies of said multi-ply inherently flame resistant yarns are separated from each other.
 - 2. A woven flame resistant fabric according to Claim 1, wherein said inherently flame resistant yarns comprise fibers selected from the group consisting of meta-aramids, para-aramids, melamines, aramid fibers, fluoropolymers and copolymers thereof, chloropolymers, polybenzimidazole, polyimides, polyamideimides, partially oxidized polyacrylonitriles, novoloids, poly(p-phenylene benzobisoazoles), poly(p-phenylene benzothiazoles), polyphenylene sulfides, flame retardant viscose rayons, polyvinyl chloride homopolymers and copolymers thereof, polyetheretherketones, polyketones, polyetherimides, polylactides, melamine fibers, and combinations thereof.

15

- 3. A woven flame resistant fabric according to Claim 1, wherein said yarns define a plurality of fiber tangles comprised of fibers that are substantially intact and undamaged extending outwardly from at least one surface of the fabric.
- 4. A woven flame resistant fabric according to Claim 1, wherein said fabric is woven in a construction that is selected from the group consisting of plain weave, twill weave, basket weave, oxford weave, satin weave, and jacquard weave.
- A woven flame resistant fabric according to Claim 1, wherein said woven fabric
 comprises warp yarns and filling yarns, and at least a plurality of said warp yarns are spun yarns.
 - 6. A woven flame resistant fabric according to Claim 5, wherein said at least a plurality of said filling yarns are spun yarns.

- 7. A woven flame resistant fabric according to Claim 1, wherein said fabric comprises at least about 65% inherently flame resistant yarns.
- 8. A woven flame resistant fabric according to Claim 1, wherein said fabric consists essentially of inherently flame resistant yarns.

46

- 9. A woven flame resistant fabric according to Claim 1, wherein at least a portion of the individual plies that are separated from each other comprise individual fibers that are entangled with the fibers forming another individual ply.
- 5 10. A flame resistant fabric comprising a plurality of spun yarns comprising inherently flame resistant fibers, wherein said fabric has first and second surfaces, and at least one of said surfaces comprises a plurality of fiber tangles comprised of fibers that are substantially intact and undamaged extending outwardly from said at least one surface of the fabric.
- 10 11. A fabric according to Claim 10, wherein at least a plurality of said spun yarns comprise a plurality of plies, and wherein said plies are at least partially separated from each other.
- 12. A fabric comprising at least about 65% inherently flame resistant fibers wherein said
 15 fabric has a surface that has been chemically modified to achieve an ATPV rating of about 4 or greater.
 - 13. The fabric according to Claim 12, wherein said fabric comprises at least about 90% inherently flame resistant fibers.

20
14. The fabric according to Claim 12, wherein said fabric has a soil release rating of about 2.5 or greater when soiled at 0 washes and tested after one wash, according to

AATCC 130-1995 Test Method.

- 25 15. The fabric according to Claim 12, wherein said fabric has a soil release rating of about 3.0 or greater when soiled at 0 washes and tested after 1 wash, according to AATCC 130-1995Test Method.
- 16. The fabric according to Claim 12, wherein said fabric has a Drop Disappearance of about 2 seconds or less.
 - 17. The fabric according to Claim 12, wherein said fabric has been chemically modified through the application of about .25- 5% owf of ethoxylated polyamide and about .25- 5% owf of ethoxylated polyester.

47

- 18. A woven flame resistant fabric comprising at least about 65% of inherently flame resistant fibers, wherein said fabric is defined by a plurality of interwoven warp and filling yarns, and a plurality of fibers forming said warp and filling yarns are entangled with each other to an extent sufficient to achieve a Warp Fray Value of about 10% or less when tested prior to washing.
- 19. The fabric according to Claim 18, wherein said fabric has a warp fray of less than about 5 when tested after 125 industrial launderings.
- 10 20. The fabric according to Claim 18, wherein said fabric comprises a plurality of fiber tangles comprised of fibers that are substantially intact and undamaged extending outwardly from a surface of said fabric.
- 21. A fabric comprising at least about 65% inherently flame resistant fabrics, wherein
 15 said fabric has a Handle-o-meter reading of about 90 grams force or less in its as-produced form.
 - 22. The fabric according to Claim 21, wherein said fabric comprises at least about 90% inherently flame resistant fibers.

23. The fabric according to Claim 21, wherein said fabric comprises a woven fabric having a weight of about 2 oz/sq yd to about 12 oz/sq yd.

20

- 24. A woven fabric comprising at least about 65% inherently flame resistant fibers, wherein
 25 said fabric has a chemically modified surface and a bending modulus of about .6 or less when tested in a warp direction and in an as-produced form.
 - 25. The woven fabric according to Claim 24, wherein said fabric comprises at least about 90% inherently flame resistant fibers.
 - 26. The woven fabric according to Claim 24, wherein said fabric has a weight of about 2 to about 12 oz/sq yd.
- The woven fabric according to Claim 24, wherein said fabric has been chemicallymodified through the application of an ethoxylated polyamide and an ethoxylated polyester.

WO 2004/015180

PCT/US2003/021561

48

- 28. A woven fabric having a weight of about 4 to about 8 oz/sq yd, said fabric comprising at least about 90% inherently flame resistant fibers, wherein said fabric has a Drape Coefficient of about 60 or less.
- 5 29. The woven fabric according to Claim 28, wherein said fabric has a Drape Coefficient of about 40 or less.
 - 30. A woven fabric comprising at least about 65% inherently flame resistant fibers and a weight of about 4 to about 8 oz/sq yd, wherein said fabric has an ATPV rating of about 6 calories/cm² or greater.
 - 31. A woven fabric according to Claim 30, wherein said fabric has been chemically treated to achieve a Vertical Wicking of about 5 inches or greater when tested in its asproduced form.

15

- 32. A fabric comprising at least about 65% inherently flame resistant fibers and having a weight of about 4 to about 8 oz/sq yd, an ATPV of about 4 or greater and a DMIN of about 0.22 or less in its as-produced form.
- 20 33. The fabric according to Claim 32, wherein said fabric has a DMIN of about 0.21 or less in its as-produced form.
 - 34. The fabric according to Claim 32, wherein said fabric comprises at least about 90% inherently flame resistant fibers.

- 35. A fabric having a weight of about 4 to about 8 oz/sq yd and comprising at least about 90% of inherently flame resistant fibers, wherein said fabric has a WC of about 0.35 or greater.
- 30 36. The fabric according to Claim 35, wherein said fabric has a plurality of fiber tangles comprised of fibers that are substantially intact and undamaged extending outwardly from at least one surface of the fabric.
- 37. A fabric comprising at least about 65% inherently flame resistant fibers, wherein said fabric has treatment of ethoxylated polyamide in an amount of about .25 5% owf and an ethoxylated polyester in an amount of about .25 –5% owf.

38. The fabric according to Claim 37, wherein said fabric has a soil release rating of about 2.5 or greater when soiled at 0 washes and tested after one wash in accordance with AATCC 130-1995 (corn oil).

5

39. The fabric according to Claim 37, wherein said fabric is a woven fabric about 2 to about 12 oz/sq yd in weight, and said fabric has a soil release rating of about 3 or greater when soiled at 0 washes and tested after one wash in accordance with AATCC 130-1995 (corn oil.)

10

- 40. A fabric comprising at least about 65% inherently flame resistant fibers and a chemical wicking treatment, wherein said fabric has a Drop Disappearance of about 2 seconds or less when tested in an unwashed condition.
- 15 41. The fabric according to Claim 40, wherein said fabric has a Drop Disappearance of about 1 second or less.
 - 42. The fabric according to Claim 40, wherein said fabric has a Drop Disappearance of about 2 seconds or less after 50 washes

- 43. The fabric according to Claim 40, wherein said fabric has a Drop Disappearance of about 3 seconds or less after 125 washes.
- 44. A fabric having a weight of about 2 to about 12 oz/sq yd and at least about 65%
 25 inherently flame resistant fibers, wherein a plurality of said fibers are entangled with each other, such that said fabric has an air permeability of about 70 cfm or greater when tested according to AATCC Test Method 737-1996, and an ATPV of about 6 or greater.
- 45. A fabric having a weight of about 4 to about 8 oz/sq yd, said fabric comprising at least about 90% inherently FR fibers, wherein said fabric has a soil release rating of about 2.5 or greater for corn oil when tested according to AATCC Test Method 130-1995 in an unwashed condition, and a vertical wicking of about 5 inches or greater.
- 46. A fabric according to Claim 45, wherein said fabric has a soil release rating of about
 3.5 or greater for corn oil when tested according to AATCC Test Method 130-95 when soilded at 48 washes and tested after 49 washes.

50

- 47. A fabric according to Claim 45, wherein said fabric comprises inherently flame resistant fibers selected from the group consisting of meta-aramids, para-aramids, melamines, aramid fibers, fluoropolymers and copolymers thereof, chloropolymers, polybenzimidazole, polyimides, polyamideimides, partially oxidized polyacrylonitriles,
 5 novoloids, poly(p-phenylene benzobisoazoles), poly(p-phenylene benzothiazoles), polyphenylene sulfides, flame retardant viscose rayons, polyvinyl chloride homopolymers and copolymers thereof, polyetheretherketones, polyketones, polyetherimides, polylactides, melamine fibers, and combinations thereof.
- 10 48. A method of making a soft fabric of inherently flame resistant fibers, comprising the steps of:

providing a fabric comprising yarns having at least two plies, wherein said yarns comprise inherently flame resistant fibers;

impinging said fabric with a fluid such that at least a portion of the plies of at least some of said yarns are separated from each other.

- 49. A method according to Claim 48, wherein said step of impinging said fabric with a fluid comprises impinging said fabric with a liquid.
- 20 50. A method according to Claim 48, wherein said fabric comprises a woven fabric.
 - 51. A method according to Claim 48, wherein said fabric comprises at least about 90% inherently flame resistant fibers.
- 25 52. A fabric made by the process of Claim 48.
 - 53. The process of Claim 48, wherein said step of impinging said fabric with a fluid also causes fibers forming said individual plies to become entangled with the fibers of other individual plies.

54. The process of Claim 48, wherein said step of impinging the fabric with a fluid causes the formation of a plurality of fiber tangles on at least one surface of the fabric, and said fiber tangles comprise fibers that are substantially intact and undamaged.

FIG. -1-

FIG. -2-

FIG. -3-

FIG. -4-

3/3

FIG. -5-

FIG. -6-