

Laboratorio Avanzado I Tarea No. III

Universidad de Guanajuato, División de Ciencias e Ingenierias. Pedro Eduardo Medina Gonzalez

22 de febrero de 2024

Primer Problema

Cumulative distribution function for the Gaussian distribution. Encuentra la function de distribución acumulativa para la distribución Gaussiana, y reproduce las gráficas. Escuge un número entre el 0 y 1, usa CDF para asignar el correspondiente valor de H_0 . Genera tantos como quieras, y realiza el histograma de H_0 para verificar que se haya realizado correctamente. Usa un valor esperado de 70 y una $\sigma = 2$.

Solución:

La integral de una distribución Gaussiana no tiene forma analítica, pero su integral sobre todos los $\mathbf R$ puede ser resuelta, de hecho se tiene el cálculo que para una distribución de tipo $\exp(-x^2)$ es:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} \tag{1}$$

como la función e^{-x^2} es una función par, entonces, podemos dividir esta ecuación en dos partes

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \int_{-\infty}^{0} e^{-x^2} dx + \int_{0}^{\infty} e^{-x^2} dx \tag{2}$$

Y cada una de esas integrales (del lado derecho de la ecuación tiene un valor de $\frac{\sqrt{\pi}}{2}$

$$\int_{-\infty}^{0} e^{-x^2} dx = \int_{0}^{-\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$
 (3)

Ahora, esto significa que podemos integrar la función de densidad de probabilidad, llamamos a la función $\Psi(z)$ como:

$$\Psi(z) = \int_{z}^{-\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^{2}} dt$$

$$\Psi(z) = \int_{z}^{-\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^{2}} dt$$

$$= \frac{1}{\sqrt{\pi}} \int_{z/\sqrt{2}}^{-\infty} e^{-u^{2}} du$$
(4)

Bajo un cambio de variable $u = \frac{t}{\sqrt{2}}$ $= \frac{1}{\sqrt{\pi}} \left(\int_0^{-\infty} e^{-u^2} du + \int_0^{z/\sqrt{2}} e^{-u^2} du \right)$ $= \frac{1}{\sqrt{\pi}} \left(\frac{\pi}{2} + \int_0^{z/\sqrt{2}} e^{-u^2} du \right)$ $= \frac{1}{2} + \frac{1}{\sqrt{\pi}} \int_0^{z/\sqrt{2}} e^{-u^2} du$ $= \frac{1}{2} \left(1 + \frac{2}{\sqrt{\pi}} \right)$ $= \frac{1}{2} \left(1 + erf \left(\frac{z}{\sqrt{2}} \right) \right)$ (5)

Lo que hace que, utilizando otro cambio de variable, podamos definir a esta ecuación con otros valores de μ y σ distintos:

$$\Psi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{2}\left(1 + erf\left(\frac{x-\mu}{\sqrt{2}\sigma}\right)\right) \tag{6}$$

Ahora para algunos valores entre 0 y 1, utilizando una función gaussiana estandar $\mu=0$ y $\sigma=1$ tenenmos los siguientes valores:

Valores $z \in [0, 1]$	Valores H_0
0.1	0.10744
0.13	0.14712
0.22	0.24023
0.95	0.82153
0.36	0.39154
0.27	0.29886
0.74	0.70613
0.84	0.76689
0.41	0.44236
0.45	0.47706

Hablando en términos un poco más generales, la gráfica de la función $\Psi(x)$ es:

Figure 1: CDF con valores de $\mu = 0$ y $\sigma = 1$.

Segundo Problema

Para las distribuciones mencionadas, encuentre la CDF, el valor esperado y la desviasión estandar. Grafique la función PDF y CDF, para diferentes valores de μ y σ . Use un generador de números aleatórios para la función PDF y compare la función CDF usando la función de Python correspondientes.

- 1. Poisson
- 2. Binomial
- 3. χ^2

La distribución binomial está dada por:

$$f_{Binomial}(x) = \frac{n! p^{x} (1-p)^{n-x}}{x! (n-x!)}$$
 (7)

$$\langle x \rangle = \sum_{x=0}^{n} x f_b(x) = \sum_{x=0}^{n} \frac{x n! p^x (1-p)^{n-x}}{x! (n-x)!}$$
 (8)

Es sencillo ver que para $\mathbf{x}=0$ el valor xf(x)=0, así que podemos hacer que la suma comience en 1

$$\langle x \rangle = \sum_{x=1}^{n} \frac{x n! p^{x} (1-p)^{n-x}}{x! (n-x)!}$$
 (9)

Cancelamos los factores comunes de ${\bf x}$ que aparecen en el numerador y en el denominador

$$\langle x \rangle = \sum_{x=1}^{n} \frac{n! p^x (1-p)^{n-x}}{(x-1)! (n-x)!}$$
 (10)

Puesto que el índice de la suma es solo una variable auxiliar, podemos hacer que el cambio de $\mathbf{x}=\mathbf{x}\text{-}1$

$$\langle x \rangle = \sum_{x=1}^{n} \frac{n! p^{x+1} (1-p)^{n-x-1}}{x! (n-x-1)!}$$
 (11)

Sacando el factor cún np de los términos del numerador

$$\langle x \rangle = np \sum_{x=1}^{n} \frac{(n-1)!p^{x}(1-p)^{n-x-1}}{x!(n-x-1)!}$$
 (12)

Los términos de la suma de la ecuación (12) son exactamente los de la función binomial para n-1 intentos, y sumamos sobre todos los valores de x, por lo tanto,

la suma debe ser igual a 1 (debido a que la distribución está normalizada), entonces

$$\langle x \rangle = np \tag{13}$$

Ahora para la desviación estandar, utilizaremos la definición de este concepto utilizando momentos de probabilidad, es decir

$$\sigma = \sqrt{E(X^2) - [E(X)]^2} \tag{14}$$

Entonces, solo necesitamos encoentrar el valor de $E(X^2)$

$$E(X^{2}) = E[X(X-1) + X] = E[X(X-1)] + E(X)$$
(15)

La ecuación (15) se debe a la linealidad de E(X).

$$E[X(X-1)] = \sum_{x=0}^{n} x(x-1)f_b(x)$$

$$= \sum_{x=0}^{n} \frac{x(x-1)n!p^x(1-p)^{n-x}}{x!(n-x)!}$$

$$= \sum_{x=0}^{n} \frac{n!p^x(1-p)^{n-x}}{(x-2)!(n-x)!}$$

$$= n(n-1)p^2 \sum_{x=0}^{n} \frac{(n-2)!p^{x-2}(1-p)^{n-x}}{(x-2)!(n-x)!}$$

Utilizando el mismo argumento de un cambio de variable para $\mathbf{x}=\mathbf{x}\text{-}2$ nos queda al final que:

$$E[X(X-1)] = n(n-1)p^{2} \sum_{x=2}^{n} \frac{(n-2)!p^{x}(1-p)^{n-x-2}}{x!(n-x-2)!}$$

Y utilizando nuevamente el argumento de la normalización para la distribución binomial y recopilando todos los factores, nos queda

$$= E[X(X-1) + X] = E[X(X-1)] + E(X) = n(n-1)p^{2}$$
 (16)

$$E(X^{2}) = E[X(X - 1)] + E(X)$$

$$= n(n - 1)p^{2} - E(X)$$

$$= n(n - 1)p^{2} - np$$
(17)

Entonces la desviación estandar es:

$$\sigma = \sqrt{E[X^2] - [E(X)]^2} = \sqrt{n(n-1)p^2 + np - (np)^2} = \sqrt{np(1-p)}$$
 (18)

Ahora para la siguiente distribución, la distribución de Poissson

$$f_p(x) = \frac{e^{-\lambda} \lambda^x}{x!} \tag{19}$$

EL valor esperado es.

$$\sum_{x=0}^{n} x f_p(x) = \sum_{x=0}^{n} \frac{x e^{-\lambda} \lambda^x}{x!}$$
(20)

Aquí podemos observar que para x=0, el término de la suma también será 0, entonces podemos comenzar esta suma en x=1

$$\sum_{x=1}^{n} x f_p(x) = \sum_{x=0}^{n} \frac{e^{-\lambda} \lambda^x}{(x-1)!}$$
 (21)

$$\sum_{x=1}^{n} \frac{e^{-\lambda} \lambda^x}{(x-1)!} = \lambda \sum_{x=0}^{n} \frac{e^{-\lambda} \lambda^{x-1}}{(x-1)!}$$

Bajo el mismo argumento de comenzar para una nueva variable $x^\prime=x-1$ entonces tenemos:

$$\sum_{x=1}^n \frac{e^{-\lambda}\lambda^x}{(x-1)!} = \lambda \sum_{x'=0}^n \frac{e^{-\lambda}\lambda^{x'}}{(x')!} = \lambda$$

ESto significa que:

$$E(X) = \langle X \rangle = \lambda \tag{22}$$

Para calcular la varianza utilizamos

$$\sigma = \sqrt{E(X^2) - [E(X)]^2}$$

Y también

$$E(X^{2}) = E[X(X - 1) + X] = E[X(X - 1)] + E[X]$$

$$E[X(X-1)] = \sum_{x=0}^{n} x(x-1)f_p(x)$$

$$= \sum_{x=2}^{n} \frac{x(x-1)e^{-\lambda}\lambda^x}{x!}$$

$$= \sum_{x=2}^{n} \frac{e^{-\lambda}\lambda^x}{(x-2)!}$$

$$= \lambda^2 \sum_{x=2}^{n} \frac{e^{-\lambda}\lambda^{x-2}}{(x-2)!}$$
(23)

Aquí la suma comienza en 2, debido a que ambos términos para x=1 y x=2 son cero al estar multiplicando x(x-1).

Entonces por el argumento de cambio de variable x'=x-2 tenemos:

$$E(X(X-1)) = \lambda^2 \sum_{x'=0}^{n} \frac{e^{-\lambda} \lambda^{x'}}{x'!} = \lambda^2$$
 (24)

Entonces,

$$E(X^{2}) = E[X(X - 1)] + E(X) = \lambda^{2} + \lambda$$

Y por último

$$\sigma = \sqrt{E(X^2) - [E(X)]^2} = \sqrt{\lambda^2 + \lambda - [\lambda]^2} = \sqrt{\lambda}$$
 (25)