Chapter 4: Orthogonality

Val Anthony Balagon

January 2019

Abstract

This chapter focuses on the orthogonality of the four subspaces, projections, and least squares approximations.

1 Orthogonality of the Four Subspaces

Two vectors are orthogonal when their dot product is zero $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w} = 0$. This chapter will revolve around orthogonal subspaces, orthogonal bases, and orthogonal matrices.

Definition 1.1. Orthogonal vectors have the following properties:

i.
$$v^T w = 0$$

ii.
$$||\boldsymbol{v}||^2 + ||\boldsymbol{w}||^2 = ||\boldsymbol{v} + \boldsymbol{w}||^2 \to \boldsymbol{v}^T \boldsymbol{v} + \boldsymbol{w}^T \boldsymbol{w} = (\boldsymbol{v} + \boldsymbol{w})^T (\boldsymbol{v} + \boldsymbol{w})$$

Remark. The zero vector is orthogonal to any vector.

Remark. The subspaces have orthogonal properties.

- 1. The rowspace $C(A^T)$ is perpendicular to the nullspace N(A). Every row of A is perpendicular to the solution of $A\mathbf{x} = \mathbf{0}$.
- 2. The column space C(A) is perpendicular to the left nullspaces $N(A^T)$. When \mathbf{b} is outside of the column space when we're trying to solve for $A\mathbf{x} = \mathbf{b}$, then this nullspace of A^T comes into its own. It contains the error $\mathbf{e} = \mathbf{b} A\mathbf{x}$ in the least-squares solution.

Definition 1.2. Two subspaces V and W of a vector space are orthogonal if every vector v in V is perpendicular to every vector w in W.

$$\mathbf{v}^T \mathbf{w} = 0$$
 for all \mathbf{v} in \mathbf{V} and all \mathbf{w} in \mathbf{W} .

Theorem 1. Every vector \boldsymbol{x} in the nullspace is perpendicular to every row of A, because $A\boldsymbol{x} = \boldsymbol{0}$. The nullspace N(A) and the row space $C(A^T)$ are orthogonal subspaces of \mathbb{R}^n .

$$A\boldsymbol{x} = \begin{bmatrix} \operatorname{row} & 1 \\ \vdots \\ \operatorname{row} & m \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$
$$C_1(\operatorname{row}_1^T) = 0$$
$$C_2(\operatorname{row}_2^T) = 0$$
$$\vdots$$
$$C_m(\operatorname{row}_m^T) = 0$$

(row 1) $\cdot \boldsymbol{x}$ is zero and (row m) $\cdot \boldsymbol{x}$ is also zero. Every row has a zero dot product with \boldsymbol{x} . Then \boldsymbol{x} is perpendicular to every combination of the rows. The whole row space $C(A^T)$ is orthogonal to N(A).

Proof. The vectors in the row space are combinations of $A^T y$ of the rows. We take the dot product of $A^T y$ with any x in the nullspace.

$$\boldsymbol{x} \cdot (A^T \boldsymbol{y}) = \boldsymbol{x}^T (A^T \boldsymbol{y}) = (A \boldsymbol{x})^T \boldsymbol{y} = 0^T \boldsymbol{y} = 0$$

Example 1. The rows of A are perpendicular to $\boldsymbol{x} = (1, 1, -1)$ in the nullspace:

$$A\boldsymbol{x} = \begin{bmatrix} 1 & 3 & 4 \\ 5 & 2 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1+3-4 \\ 5+2-7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

In this example, the column space is all of \mathbb{R}^2 . The nullspace of A^T is the zero vector. The column space of A and the nullspace of A^T are always orthogonal subspaces.

Theorem 2. Every vector \boldsymbol{y} in the nullspace of A^T is perpendicular to every column of A. The left nullspace $N(A^T)$ and the column space C(A) are orthogonal in \mathbb{R}^m .

Proof. The nullspace of A^T is orthogonal to the row space of A^T , which is the column space of A.

$$A^{T} \boldsymbol{y} = \begin{bmatrix} (\text{column 1})^{T} \\ \vdots \\ (\text{column n})^{T} \end{bmatrix} \begin{bmatrix} y_{1} \\ \vdots \\ y_{m} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Figure 1: The Four Subspaces. There are two pairs of orthogonal subspaces.

Theorem 3. If a vector v is orthogonal to itself, then v is the zero vector.

Theorem 4. Fundamental Theorem of Linear Algebra, Part 2: N(A) is the orthogonal complement of the row space $C(A^T)$ in \mathbb{R}^n . $N(A^T)$ is the orthogonal complement of the column space C(A) in \mathbb{R}^m .

Things to note from Figure 1

- 1. When A multiplies to $\mathbf{x} = \mathbf{x}_r + \mathbf{x}_n$, it goes to **b** which is in the column space.
- 2. When A multiplies to x_r , it goes to **b** which is also in the column space.
- 3. When A multiplies to x_n , the nullspace component goes to 0.

1.1 Combining Bases from Subspaces

Theorem 5. Any independent vectors in \mathbb{R}^n must span \mathbb{R}^n . So they are a basis. Any n vectors that span \mathbb{R}^n must be independent. So they are a basis

Theorem 6. If the *n* columns of *A* are independent, they span \mathbb{R}^n . So $A\mathbf{x} = \mathbf{b}$ is solvable. If the *n* columns span \mathbb{R}^n , they are independent. So $A\mathbf{x} = \mathbf{b}$ has only one solution.

2 Problems

Problem 1.1. asd

Solution. soln \Box