Mathematical Tools Problem Set 7

Multivariate Calculus 1

Functions of Several Variables [1]

- 1. Define the following terms: vector-valued function, scalar field, level curves, contour plots, vector fields.
- 2. For each of the following functions, evaluate f(3,2) and find and sketch the domain.
 - (a) $f(x,y) = \frac{\sqrt{x+y+1}}{x-1}$ (b) $f(x,y) = x \ln(y^2 x)$
- 3. Find the domain and co-domain of the function $g(x,y) = \sqrt{9 x^2 y^2}$
- 4. A contour map for a function f is shown below. Use it to estimate the values of f(1,3), f(4,5).

- 5. Sketch the level curves of the function f(x,y) = 6 3x 2y for the values k = 26, 0, 6, 12.
- 6. Sketch some level curves of the function $h(x,y) = \sqrt{4x^2 + y^2 + 1}$.

1.2 Derivatives and Gradients

- 1. Describe the differences between the following: partial derivatives, gradients, and directional derivatives.
- 2. Review the following definitions: second partial derivative, Hessian, Jacobian, and critical points.
- 3. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$ does not exits.
- 4. If $f(x,y) = \frac{xy}{x^2 + y^2}$, does $\lim_{(x,y)\to(0,0)} f(x,y)$ exist?
- 5. If $f(x,y) = x^3 + x^2y^3 2y^2$, find $f_x(2,1)$ and $f_y(2,1)$.
- 6. If $f(x,y) = 4 x^2 2y^2$, find $f_x(1,1)$ and $f_y(1,1)$ and interpret these numbers as slopes.
- 7. If $f(x,y) = \sin\left(\frac{x}{1+y}\right)$, calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
- 8. A function u(x,y) is called harmonic if $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. Show that the function $u(x,y) = e^x \sin y$ is a harmonic function.
- 9. Find the tangent plane to the elliptic paraboloid $z=2x^2+y^2$ at the point (1,1,3).
- 10. Show that $f(x,y) = xe^{xy}$ is differentiable at (1,0) and find its linearization there. Then use it to approximate f(1.1,-0.1).
- 11. (a) If $z = f(x, y) = x^2 + 3xy y^2$, find the differential dz.
 - (b) If x changes from 2 to 2.05 and y changes from 3 to 2.96 compare the values of Δz and dz.
- 12. The base radius and height of a right circular cone are measured as 10 cm and 25 cm, respectively, with a possible error in measurement of as much as 0.1 cm in each. Use differentials to estimate the maximum error in the calculated volume of the cone.
- 13. If $z = x^2 + 3xy^4$, where $x = \sin 2t$ and $y = \cos t$, find $\frac{dz}{dt}$ when t = 0.
- 14. If $z = e^x \sin y$, where $x = st^2$ and $y = s^2t$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
- 15. Considering a neural network with inputs u,v, output w, and hidden layer nodes x,y,z,t write out the Chain Rule for the case where w=f(x,y,z,t) and $x=x(u,v),\ y=y(u,v),\ z=z(u,v),$ and t=t(u,v) and compute $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$.

16. If $g(s,t) = f(s^2 - t^2, t^2 - s^2)$ and f is differentiable, show that g satisfies the equation

$$t\frac{\partial g}{\partial s} + s\frac{\partial g}{\partial t} = 0$$

17. Find the directional derivative $D_u f(x, y)$ if

$$f(x,y) = x^3 - 3xy + 4y^2$$

- 18. Find the gradient of the following functions:
 - (a) $f(x,y) = \sin x + e^{xy}$.
 - (b) $f(x,y) = x^2y^3 4y$.
 - (c) $f(x, y, z) = x \sin yz$.
- 19. (a) If $f(x,y) = xe^y$ find the rate of change of f at the point P(2,0), in the direction from P to $Q(\frac{1}{2},2)$.
 - (b) In what direction does f have the maximum rate of change? What is this maximum rate of change?

1.3 Optimization

- 1. We have two neuron types A and B. Neuron A computes the squared value of its input and neuron B subtracts its first input from the second. Considering that we have two neurons of type A (call them A_1 and A_2) and a neuron of type B the goal is to find inputs to neurons A_1 and A_2 that maximizes or minimizes the output of neuron B. If the inputs to A_1 and A_2 are represented by y and x the output of neuron B is just $f(x,y) = y^2 x^2$. Find the extreme values of $f(x,y) = y^2 x^2$.
- 2. Find the local maximum and minimum values and saddle points of $f(x,y) = x^4 + y^4 4xy + 1$.
- 3. Find and classify the critical points of the function $f(x,y)=10x^2y-5x^2-4y^2-x^4-2y^4$.
- 4. Find the shortest distance from the point (1,0,-2) to the plane x+2y+z=4
- 5. A rectangular box without a lid is to be made from $12\ m^2$ of cardboard. Find the maximum volume of such a box. Provide two solutions, one with and one without using lagrange multipliers.
- 6. Find the absolute maximum and minimum values of the function $f(x,y)=x^2-2xy+2y$ on the rectangle $D=\{(x,y)|\ 0\leq x\leq 3, 0\leq y\leq 2\}.$
- 7. Find the extreme values of the function $f(x,y) = x^2 + 2y^2$ on the circle $x^2 + y^2 = 1$.

References

[1] James Stewart. Single variable calculus: Early transcendentals. Cengage Learning, 2011.