School of Statistics, University of the Philippines (Diliman) Linangan ng Estadistika, Unibersidad ng Pilipinas (Diliman)

14 of April 2015

Al-Ahmadgaid B. Asaad alstated@gmail.com

Problem Set 3 | Stat232

- 7.22 This exercise will prove the assertions in Example 7.2.16, and more. Let X_1, \dots, X_n be a random sample from a $n(\theta, \sigma^2)$ population, and suppose that the prior distribution on θ is $n(\mu, \tau^2)$. Here we assume that σ^2, μ and τ^2 are all known.
 - (a) Find the joint pdf of \bar{X} and θ .
 - (b) Show that $m(\bar{x}|\sigma^2, \mu, \tau^2)$, the marginal distribution of \bar{X} , is $n(\mu, (\sigma^2/n) + \tau^2)$.
 - (c) Show that $\pi(\theta|\bar{x}, \sigma^2, \mu, \tau^2)$ the posterior distribution of θ , is normal with means and variance given by Equation (7.2.10).

Solution

(a) The distribution of \bar{X} , assuming X_i 's are iid, is obtain using the mgf technique, that is

$$\begin{split} M_{\frac{1}{n}\sum X_i}(t) &= \mathbf{E}e^{\frac{t}{n}\sum X_i} = \mathbf{E}e^{\frac{t}{n}X_1}\cdots \mathbf{E}e^{\frac{t}{n}X_n} \\ &= \exp\left[\theta\frac{t}{n} + \frac{\sigma^2}{2}\left(\frac{t}{n}\right)^2\right]\cdots \exp\left[\theta\frac{t}{n} + \frac{\sigma^2}{2}\left(\frac{t}{n}\right)^2\right] \\ &= \exp\left[\theta\frac{t}{n} + \sigma^2\frac{t^2}{2n^2}\right]^n = \exp\left[\theta t + \frac{\sigma^2}{n}\frac{t^2}{2}\right] \\ &= \mathrm{mgf} \ \mathrm{of} \ \mathrm{n}(\theta, \sigma^2/n) \end{split}$$

Let $Y = \bar{X}$, then the joint density of Y and θ is,

$$\begin{split} f(y,\theta) &= f(y|\theta)\pi(\theta) \\ &= \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left[-n\frac{(y-\theta)^2}{2\sigma^2}\right] \frac{1}{\sqrt{2\pi}\tau} \exp\left[-\frac{(\theta-\mu)^2}{2\tau^2}\right] \\ &= \frac{\sqrt{n}}{2\pi\sigma\tau} \exp\left\{-\frac{1}{2}\left[\frac{n}{\sigma^2}(y-\theta)^2 + \frac{(\theta-\mu)^2}{\tau^2}\right]\right\}. \end{split}$$

(b) From part (a), the marginal distribution of $Y = \bar{X}$ is,

$$\int_{-\infty}^{\infty} f(y,\theta) d\theta = \int_{-\infty}^{\infty} \frac{\sqrt{n}}{2\pi\sigma\tau} \exp\left\{-\frac{1}{2} \left[\frac{n}{\sigma^2} (y-\theta)^2 + \frac{(\theta-\mu)^2}{\tau^2}\right]\right\} d\theta$$

$$= \int_{-\infty}^{\infty} \frac{\sqrt{n}}{2\pi\sigma\tau} \exp\left\{-\frac{1}{2} \left[\frac{ny^2}{\sigma^2} - \frac{2y\theta n}{\sigma^2} + \frac{n\theta^2}{\sigma^2} + \frac{\theta^2}{\tau^2}\right]\right\} d\theta$$

$$= \frac{\sqrt{n}}{2\pi\sigma\tau} \int_{-\infty}^{\infty} \exp\left\{-\frac{1}{2} \left[\theta^2 \left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right) - 2\theta \left(\frac{yn}{\sigma^2} + \frac{\mu}{\tau^2}\right) + \left(\frac{ny^2}{\sigma^2} + \frac{\mu^2}{\tau^2}\right)\right]\right\} d\theta. \tag{1}$$

To simplify this, consider the integral of the function below over the reals of θ ,

$$\int_{-\infty}^{\infty} \exp\left[-a\theta^2 + b\theta + c\right] d\theta = \sqrt{\frac{\pi}{a}} \exp\left[\frac{b^2}{4a} + c\right].$$

Above identity is true according to Wikipedia (Topic: Gaussian Integral). Hence for our case, we can write the integrand of Equation (1) into the following simple form,

$$\int_{-\infty}^{\infty} \exp\left[-\frac{1}{2}(a\theta^2 - 2b\theta + c)\right] = \int_{-\infty}^{\infty} \exp\left[-\frac{a\theta^2}{2} + b\theta - \frac{c}{2}\right]$$

$$= \sqrt{\frac{\pi}{\frac{a}{2}}} \exp\left[\frac{b^2}{\frac{4a}{2}} - \frac{c}{2}\right]$$

$$= \sqrt{\frac{2\pi}{a}} \exp\left[-\frac{1}{2}\left(c - \frac{b^2}{a}\right)\right].$$
(2)

Thus, substituting $a = \left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right), b = \left(\frac{yn}{\sigma^2} + \frac{\mu}{\tau^2}\right), c = \left(\frac{ny^2}{\sigma^2} + \frac{\mu^2}{\tau^2}\right)$, we have

$$\int_{-\infty}^{\infty} f(y,\theta) d\theta = \frac{\sqrt{n}}{2\pi\sigma\tau} \sqrt{\frac{2\pi}{\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)}} \exp\left\{-\frac{1}{2} \left[\left(\frac{ny^2}{\sigma^2} + \frac{\mu^2}{\tau^2}\right) - \frac{\left(\frac{yn}{\sigma^2} + \frac{\mu}{\tau^2}\right)^2}{\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)} \right] \right\}$$
$$= \frac{\sqrt{2\pi n}}{2\pi\sigma\tau\sqrt{\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)}} \exp\left\{-\frac{1}{2} \left[\left(\frac{ny^2}{\sigma^2} + \frac{\mu^2}{\tau^2}\right) - \frac{\left(\frac{yn}{\sigma^2} + \frac{\mu}{\tau^2}\right)^2}{\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)} \right] \right\}$$

(c) Let $Y = \bar{X}$,

$$\begin{split} \pi(\theta|y,\sigma^2,\mu,\tau^2) &= \frac{f(y,\theta)}{m(y|\sigma^2,\mu,\tau^2)} \\ &= \frac{\frac{\sqrt{n}}{2\pi\sigma\tau} \exp\left\{-\frac{1}{2}\left[\frac{n}{\sigma^2}(y-\theta)^2 + \frac{(\theta-\mu)^2}{\tau^2}\right]\right\}}{\frac{\sqrt{2\pi n}}{2\pi\sigma\tau\sqrt{\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)}} \exp\left\{-\frac{1}{2}\left[\left(\frac{ny^2}{\sigma^2} + \frac{\mu^2}{\tau^2}\right) - \frac{\left(\frac{yn}{\sigma^2} + \frac{\mu}{\tau^2}\right)^2}{\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)}\right]\right\}} \\ &= \frac{\exp\left\{-\frac{1}{2}\left[\theta^2\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right) - 2\theta\left(\frac{yn}{\sigma^2} + \frac{\mu}{\tau^2}\right) + \left(\frac{ny^2}{\sigma^2} + \frac{\mu^2}{\tau^2}\right)\right]\right\}}{\sqrt{\frac{2\pi}{\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)}} \exp\left\{-\frac{1}{2}\left[\left(\frac{ny^2}{\sigma^2} + \frac{\mu^2}{\tau^2}\right) - \frac{\left(\frac{yn}{\sigma^2} + \frac{\mu^2}{\tau^2}\right)}{\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)}\right]\right\}} \\ &= \frac{\exp\left[-\frac{\theta^2}{2}\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right) + \theta\left(\frac{yn}{\sigma^2} + \frac{\mu}{\tau^2}\right) - \frac{1}{2}\left(\frac{ny^2}{\sigma^2} + \frac{\mu^2}{\tau^2}\right)\right]}{\sqrt{\frac{2\pi}{\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)}}} \\ &= \frac{\exp\left[-\frac{\theta^2}{2}\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right) + \theta\left(\frac{yn}{\sigma^2} + \frac{\mu^2}{\tau^2}\right) - \frac{1}{2}\left(\frac{yn^2}{\sigma^2} + \frac{\mu^2}{\tau^2}\right)\right]}{\sqrt{\frac{2\pi}{\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)}}} \\ &= \frac{\exp\left[-\frac{\theta^2}{2}\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right) + \theta\left(\frac{yn}{\sigma^2} + \frac{\mu}{\tau^2}\right) - \frac{1}{2}\left(\frac{yn^2}{\sigma^2} + \frac{\mu}{\tau^2}\right)^2}{\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)}\right]} \\ &= \frac{1}{\sqrt{\frac{2\pi}{\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)}}} \exp\left\{-\frac{\left[\theta\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right) - \left(\frac{yn}{\sigma^2} + \frac{\mu}{\tau^2}\right)\right]^2}{2\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)}\right\}}, \end{split}$$

which is a normal density with mean, $\left(\frac{yn}{\sigma^2} + \frac{\mu}{\tau^2}\right)$, and variance, $\left(\frac{n}{\sigma^2} + \frac{1}{\tau^2}\right)$.

- 7.24 Let X_1, \dots, X_n be iid Poisson(λ), and let λ have a gamma(α, β) distribution, the conjugate family for the Poisson.
 - (a) Find the posterior distribution of λ .
 - (b) Calculate the posterior mean and variance.

Solution

(a) The posterior distribution of λ is given by,

$$\pi(\lambda|\mathbf{x}) = \frac{f(\mathbf{x}|\lambda)\pi(\lambda)}{m(\mathbf{x})},\tag{3}$$

where the joint density of the sample is obtain using the mgf technique, that is

$$M_{\sum_{i=1}^{n} X_i}(t) = \operatorname{E} e^{t \sum_{i=1}^{n} X_i} = \operatorname{E} e^{t X_1} \cdots \operatorname{E} e^{t X_n}$$
$$= \exp[\lambda(e^t - 1)]^n = \exp[n\lambda(e^t - 1)]$$
$$= \operatorname{mgf of Poisson}(n\lambda).$$

So that, if $Y = \sum_{i=1}^{n} X_i$ then,

$$f(y|\lambda) = \frac{\exp[-n\lambda](n\lambda)^y}{y!},$$

and the joint density of Y and λ is,

$$f(y,\lambda) = f(y|\lambda)\pi(\lambda) = \frac{\exp[-n\lambda](n\lambda)^y}{y!} \times \frac{1}{\Gamma(\alpha)\beta^{\alpha}}\lambda^{\alpha-1}\exp[-\lambda/\beta].$$

Implies that the marginal distribution of λ is,

$$m(\mathbf{x}) = \int_0^\infty f(y,\lambda) \, \mathrm{d}\,\lambda = \int_0^\infty \frac{\exp[-n\lambda](n\lambda)^y}{y!} \times \frac{1}{\Gamma(\alpha)\beta^\alpha} \lambda^{\alpha-1} \exp[-\lambda/\beta] \, \mathrm{d}\,\lambda$$

$$= \frac{n^y}{\Gamma(\alpha)\beta^\alpha y!} \int_0^\infty \exp[-n\lambda - \lambda/\beta] \lambda^{y+\alpha-1} \, \mathrm{d}\,\lambda$$

$$= \frac{n^y}{\Gamma(\alpha)\beta^\alpha y!} \int_0^\infty \exp\left[\frac{-\lambda(n\beta+1)}{\beta}\right] \lambda^{y+\alpha-1} \, \mathrm{d}\,\lambda$$

$$= \frac{n^y}{\Gamma(\alpha)\beta^\alpha y!} \int_0^\infty \lambda^{(y+\alpha)-1} \exp\left[\frac{-\lambda}{\frac{\beta}{(n\beta+1)}}\right] \, \mathrm{d}\,\lambda.$$

Notice the integrand is the kernel of gamma $\left(y + \alpha, \frac{\beta}{n\beta + 1}\right)$. Thus,

$$m(\mathbf{x}) = \frac{n^y}{\Gamma(\alpha)\beta^{\alpha}y!}\Gamma(y+\alpha)\left(\frac{\beta}{n\beta+1}\right)^{y+\alpha}.$$

Substituting this to Equation (3),

$$\pi(\lambda|\mathbf{x}) = \frac{\frac{\exp[-n\lambda](n\lambda)^y}{y!} \times \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \lambda^{\alpha-1} \exp[-\lambda/\beta]}{\frac{n^y}{\Gamma(\alpha)\beta^{\alpha}y!} \Gamma(y+\alpha) \left(\frac{\beta}{n\beta+1}\right)^{y+\alpha}}$$

$$= \frac{\frac{n^y}{\Gamma(\alpha)\beta^{\alpha}y!} \lambda^{(y+\alpha)-1} \exp\left[\frac{-\lambda}{\frac{\beta}{(n\beta+1)}}\right]}{\frac{n^y}{\Gamma(\alpha)\beta^{\alpha}y!} \Gamma(y+\alpha) \left(\frac{\beta}{n\beta+1}\right)^{y+\alpha}}$$

$$= \frac{\lambda^{(y+\alpha)-1} \exp\left[\frac{-\lambda}{\frac{\beta}{(n\beta+1)}}\right]}{\Gamma(y+\alpha) \left(\frac{\beta}{n\beta+1}\right)^{y+\alpha}}$$

$$= \text{density of gamma} \left(y+\alpha, \frac{\beta}{n\beta+1}\right).$$

(b) From part (a) the posterior mean and variance is,

$$E(\lambda|\mathbf{x}) = \frac{\beta(y+\alpha)}{n\beta+1},$$
$$Var(\lambda|\mathbf{x}) = (y+\alpha) \left[\frac{\beta}{n\beta+1}\right]^{2}.$$

7.25 We examine a generalization of the heirarchical (Bayes) model considered in Example 7.2.16 and Exercise 7.22. Suppose that we observe X_1, \dots, X_n , where

$$X_i | \theta_i \sim \mathrm{n}(\theta_i, \sigma^2), \quad i = 1, \dots, n, \quad \text{independent},$$

 $\theta_i \sim \mathrm{n}(\mu, \tau^2), \quad i = 1, \dots, n, \quad \text{independent}.$

- (a) Show that the marginal distribution of X_i is $n(\mu, \sigma^2 + \tau^2)$ and that, marginally, X_1, \dots, X_n are iid. (*Empirical Bayes analysis would use the marginal distribution of the X*_is to estimate the prior parameters μ and τ^2 . See Miscellanea 7.5.6)
- (b) Show, in general, that if

$$X_i | \theta_i \sim f(x | \theta_i), \quad i = 1, \dots, n,$$
 independent,
 $\theta_i \sim \pi(\theta, \tau), \quad i = 1, \dots, n,$ independent,

then marginally, X_1, \dots, X_n are iid.

Solution

(a) For a particular i, the marginal distribution of X_i is,

$$m(x|\mu, \sigma^2, \tau^2) = \int_{-\infty}^{\infty} f(x|\theta, \sigma^2) \pi(\theta|\tau^2) d\theta$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\theta)^2}{2\sigma^2}\right] \frac{1}{\sqrt{2\pi\tau^2}} \exp\left[-\frac{(\theta-\mu)^2}{2\tau^2}\right] d\theta$$

$$= \frac{1}{2\pi\sigma\tau} \int_{-\infty}^{\infty} \exp\left[-\frac{(x^2 - 2x\theta + \theta^2)}{2\sigma^2} - \frac{(\theta^2 - 2\theta\mu + \mu^2)}{2\tau^2}\right] d\theta$$

$$= \frac{1}{2\pi\sigma\tau} \int_{-\infty}^{\infty} \exp\left\{-\frac{1}{2} \left[\frac{x^2}{\sigma^2} - \frac{2x\theta}{\sigma^2} + \frac{\theta^2}{\sigma^2} + \frac{\theta^2}{\tau^2} - \frac{2\theta\mu}{\tau^2} + \frac{\mu^2}{\tau^2}\right]\right\} d\theta$$

$$= \frac{1}{2\pi\sigma\tau} \int_{-\infty}^{\infty} \exp\left\{-\frac{1}{2} \left[\theta^2 \left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right) - 2\theta \left(\frac{x}{\sigma^2} + \frac{\mu}{\tau^2}\right) + \left(\frac{x^2}{\sigma^2} + \frac{\mu^2}{\tau^2}\right)\right]\right\} d\theta.$$

To simplify this, we use again Equation (2), where in this case $a = \left(\frac{1}{\sigma^2} + \frac{1}{\tau^2}\right)$, $b = \left(\frac{x}{\sigma^2} + \frac{\mu}{\tau^2}\right)$, and $c = \left(\frac{x^2}{\sigma^2} + \frac{\mu^2}{\tau^2}\right)$.

$$m(x|\mu, \sigma^{2}, \tau^{2}) = \sqrt{\frac{2\pi}{a}} \exp\left[-\frac{1}{2}\left(c - \frac{b^{2}}{a}\right)\right]$$
$$= \sqrt{\frac{2\pi}{\left(\frac{1}{\sigma^{2}} + \frac{1}{\tau^{2}}\right)}} \exp\left\{-\frac{1}{2}\left[\left(\frac{x^{2}}{\sigma^{2}} + \frac{\mu^{2}}{\tau^{2}}\right) - \frac{\left(\frac{x}{\sigma^{2}} + \frac{\mu}{\tau^{2}}\right)^{2}}{\left(\frac{1}{\sigma^{2}} + \frac{1}{\tau^{2}}\right)}\right]\right\}.$$

(b) For a particular observation of X and θ , the marginal pdf of X is,

$$m(x|\tau) = \int_{-\infty}^{\infty} f(x|\theta)\pi(\theta|\tau) d\theta.$$

Thus the marginal pdf of the joint pdf of the random vector $\mathbf{X} = (X_1, \dots, X_n)$ and $\boldsymbol{\theta} = (\theta_1, \dots, \theta_n)$ is

$$m(\mathbf{x}|\tau) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{i=1}^{n} f(x_{i}|\theta_{i}) \pi(\theta_{i}|\tau) d\theta_{1} \cdots d\theta_{n}.$$

$$= \int_{-\infty}^{\infty} \cdots \left\{ \int_{-\infty}^{\infty} f(x_{1}|\theta_{1}) \pi(\theta_{1}|\tau) d\theta_{1} \right\} \prod_{i=2}^{n} f(x_{i}|\theta_{i}) \pi(\theta_{i}|\tau) d\theta_{2} \cdots d\theta_{n}.$$

Observe that we can factor the integrals into a product of the marginal pdf of x_i s. That is the first factor that we can evaluate above is the one inside the braces, which is the marginal of x_1 . Applying this procedure to the remaining n-1 x_i s, we can simplify this into the following equation

$$m(\mathbf{x}|\tau) = \prod_{i=1}^{n} m(x_i|\tau),$$

implying that marginally X_1, \dots, X_n are independent and identically distributed.

7.38 For each of the following distribution, let X_1, \dots, X_n be a random sample. Is there a function of θ , say $g(\theta)$, for which there exists an unbiased estimator whose variance attains the Cramér-Rao Lower Bound? If so, find it. If not, show why not.

(a)
$$f(x|\theta) = \theta x^{\theta-1}$$
, $0 < x < 1$, $\theta > 0$

(b)
$$f(x|\theta) = \frac{\log(\theta)}{\theta - 1} \theta^x$$
, $0 < x < 1$, $\theta > 1$

Solution

(a) To answer the question, we use the CRLB Attainment Corollary, that is

$$\frac{\partial}{\partial \theta} \ell(\theta | \mathbf{x}) = \frac{\partial}{\partial \theta} \log \left(\prod_{i=1}^{n} \theta x_i^{\theta - 1} \right) = \frac{\partial}{\partial \theta} \left[n \log \theta + (\theta - 1) \sum_{i=1}^{n} \log x_i \right]$$
$$= \frac{n}{\theta} + \sum_{i=1}^{n} \log x_i = -n \left(-\sum_{i=1}^{n} \frac{\log x_i}{n} - \frac{1}{\theta} \right)$$

Therefore, the function of θ , $g(\theta) = \frac{1}{\theta}$, with unbiased estimator $-\sum_{i=1}^{n} \frac{\log x_i}{n}$ attains the CRLB, implies that the estimator is the UMVUE of population parameter $\frac{1}{\theta}$.

(b) Using CRLB Attainment Corollary, we have

$$\begin{split} \frac{\partial}{\partial \theta} \ell(\theta | \mathbf{x}) &= \log \left(\prod_{i=1}^{n} \frac{\log \theta}{\theta - 1} \theta^{x_i} \right) \\ &= \frac{\partial}{\partial \theta} \left[n \log(\log \theta) - n \log(\theta - 1) + \log \theta \sum_{i=1}^{n} x_i \right] \\ &= \frac{n}{\log \theta} \frac{1}{\theta} - \frac{n}{\theta - 1} + \frac{1}{\theta} \sum_{i=1}^{n} x_i \\ &= \frac{n}{\theta} \left[\frac{1}{n} \sum_{i=1}^{n} x_i - \left(\frac{\theta}{\theta - 1} - \frac{n}{n \log \theta} \right) \right] \end{split}$$

Thus we can write $a(\theta) = \frac{n}{\theta}$ and the CRLB of the estimator \bar{X} is attainable, hence the statistic is the UMVUE of the population parameter $\frac{\theta}{\theta-1} - \frac{n}{n\log\theta}$.

7.44 Let X_1, \dots, X_n be iid $n(\theta, 1)$. Show that the best unbiased estimator of θ^2 is $\bar{X}^2 - (1/n)$. Calculate its variance(use Stein's Identity from Section 3.6), and show that it is greater than the Cramér-Rao Lower Bound.

Solution

Since $X_i \sim n(\theta, 1)$, which is an exponential family model. Then by Example 3.4.4, Theorem 6.2.10, and Theorem 6.2.25, it should be clear that $\sum_{i=1}^{n} X_i$ is a complete sufficient statistic for θ . And because $\bar{X}^2 - 1/n$ is a function of $\sum_{i=1}^{n} X_i$, then by Theorem 7.3.23, $\bar{X}^2 - 1/n$ is the unique best unbiased estimator of θ^2 . Using mgf technique like what we did in Exercise 7.22, $\bar{X} \sim n(\theta, 1/n)$, so that

$$\mathrm{E}\left[\bar{X}^2 - \frac{1}{n}\right] = \mathrm{E}\bar{X}^2 - \frac{1}{n},$$

where

$$\mathrm{E}\bar{X}^2 = \mathrm{Var}\bar{X} + \left(\mathrm{E}\bar{X}\right)^2 = \frac{1}{n} + \theta^2.$$

So that,

$$\mathrm{E}\left[\bar{X}^2 - \frac{1}{n}\right] = \frac{1}{n} + \theta^2 - \frac{1}{n} = \theta^2,$$

implies that $\bar{X}^2 - 1/n$ is the UMVUE of θ^2 . Next we calculate the variance,

$$Var[\bar{X}^2 - 1/n] = Var\bar{X}^2 = E\bar{X}^4 - (E\bar{X}^2)^2,$$

where,

$$\begin{split} &\mathbf{E}\bar{X}^4 = \mathbf{E}[\bar{X}^3(\bar{X}-\theta+\theta)] = \mathbf{E}[\bar{X}^3(\bar{X}-\theta)] + \mathbf{E}\bar{X}^3\theta \\ &= \frac{3}{n}\mathbf{E}\bar{X}^2 + \mathbf{E}\bar{X}^3\theta = \frac{3}{n^2} + \frac{3\theta^2}{n} + \mathbf{E}\bar{X}^3\theta, \quad \text{by Stein's Lemma} \\ &\mathbf{E}\bar{X}^3 = \mathbf{E}[\bar{X}^2(\bar{X}-\theta+\theta)] = \mathbf{E}[\bar{X}^2(\bar{X}-\theta)] + \mathbf{E}\bar{X}^2\theta \\ &= \frac{2\theta}{n} + \frac{\theta}{n} + \theta^3 \end{split}$$

So that,

$$E\bar{X}^4 = \frac{3}{n^2} + \frac{3\theta^2}{n} + \frac{3\theta^2}{n} + \theta^4 = \frac{3}{n^2} + \frac{6\theta^2}{n} + \theta^4.$$

Substituting this,

$$Var \bar{X}^{2} = \frac{3}{n^{2}} + \frac{6\theta^{2}}{n} + \theta^{4} - \left(\frac{1}{n} + \theta^{2}\right)^{2}$$

$$= \frac{3}{n^{2}} + \frac{6\theta^{2}}{n} + \theta^{4} - \frac{1}{n^{2}} - \frac{2\theta^{2}}{n} - \theta^{4}$$

$$= \frac{2}{n^{2}} + \frac{4\theta^{2}}{n}$$

Now we compare this with the CRLB of the estimator, which is obtain as follows:

$$CRLB = \frac{\left(\frac{d}{d\theta} E \bar{X}^2\right)^2}{nE\left\{\left[\frac{\partial}{\partial \theta} \log f(X|\theta)\right]^2\right\}} = \frac{4\theta^2}{nE\left\{\left[\frac{\partial}{\partial \theta} \log \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\theta)^2}{2}\right)\right]^2\right\}}$$
$$= \frac{4\theta^2}{nE\left\{\left[\frac{\partial}{\partial \theta} \left(-\log\sqrt{2\pi} - \frac{(x-\theta)^2}{2}\right)\right]^2\right\}} = \frac{4\theta^2}{nE\left\{\left[-(x-\theta)(-1)\right]^2\right\}}$$
$$= \frac{4\theta^2}{nVarX} = \frac{4\theta^2}{n}.$$

Equating this with the computed variance of the estimator, we have

$$\operatorname{Var}\bar{X}^2 = \frac{2}{n^2} + \frac{4\theta^2}{n} > \frac{4\theta^2}{n} = \operatorname{CRLB}$$

Q.E.D.

- 7.52 Let X_1, \dots, X_n be iid $Poisson(\lambda)$, and let \bar{X} and S^2 denote the sample mean and variance, respectively. We now complete Example 7.3.8 in a different way. There we used the Cramér-Rao Bound, now we use completeness.
 - (a) Prove that \bar{X} is the best unbiased estimator λ without using the Cramér-Rao Theorem.
 - (b) Prove the rather remarkable identity $E(S^2|\bar{X}) = \bar{X}$, and use it to explicitly demonstrate that $VarS^2 > Var\bar{X}$.
 - (c) Using completeness, can a general theorem be formulated for which the identity in part (b) is a special case?

Solution

(a)

$$\mathrm{E}\bar{X} = \frac{1}{n} \sum_{i=1}^{n} \mathrm{E}X_i = \frac{1}{n} \sum_{i=1}^{n} \lambda = \lambda$$

So \bar{X} is an unbiased estimator of λ . Now consider the density of the sample,

$$\frac{\exp(-\lambda)\lambda^x}{x!} = \frac{1}{x!} \exp(-\lambda) \exp(x \log \lambda)$$

where $h(x) = \frac{1}{x!}$, $c(\lambda) = \exp(-\lambda)$, $w(\lambda) = \log \lambda$, t(x) = x, tells us that this is an exponential family model. Then by Theorem 6.2.10 and Theorem 6.2.25, $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$ is a complete sufficient statistic, also since \bar{X} is an estimator based only on $T(\mathbf{X})$, then by Theorem 7.3.23, \bar{X} is the unique best unbiased estimator of λ .

7.66 (a) Show that the MLE of θ^2 , $(\sum_{i=1}^n X_i/n)^2$, is biased estimator of θ^2 .

- (b) Derive the one-step jackknife estimator based on the MLE.
- (c) Show that the one-step jackknife estimator is an unbiased estimator of θ^2 . (In general, jackknifing only reduces bias. In special case, however, it removes it entirely.)
- (d) Is this jackknife estimator the best unbiased estimator of θ^2 ? If so, prove it. If not, find the best unbased estimator.

Solution

(a) For $\hat{\theta}^2 = \left(\frac{1}{n}\sum_{i=1}^n X_i\right)^2$, if we let $Y = \sum_{i=1}^n X_i$, then $Y \sim \text{Binomial}(n, \theta)$ since $X_i \sim \text{Bernoulli}(\theta)$. Then

$$E\hat{\theta}^{2} = \frac{1}{n^{2}}EY^{2} = \frac{1}{n^{2}}\left[VarY + (EY)^{2}\right] = \frac{1}{n^{2}}\left[n\theta(1-\theta) + n^{2}\theta^{2}\right]$$
$$= \frac{\theta(1-\theta)}{n} + \theta^{2} = \frac{\theta}{n} - \frac{\theta^{2}}{n} + \theta^{2},$$

which is what we wanted to show.

(b) The MLE is defined as $\hat{\theta} = \frac{1}{n^2}Y^2$, where $Y = \sum_{i=1}^n X_i$. And since $X_i \sim \text{Bernoulli}(\theta)$, then the support of X_i is either 0 or 1. Thus, if $T_n^{(j)} = \frac{1}{n-1} \sum_{i \neq j}^n X_i$, implying that we compute the statistic using the n-1 observations by dropping out the jth observation, whose value is either 0 or 1, then for each j there will be two factors:

Factor 1 For $Y = \sum_{i=1}^{n} X_i$ values,

$$T_n^{(j)} = \frac{(Y-1)^2}{(n-1)^2},$$

since the dropped out jth observation is 1; and,

Factor 2 For the remaining, $n - Y = n - \sum_{i=1}^{n} X_i$ values,

$$T_n^{(j)} = \frac{(Y)^2}{(n-1)^2},$$

since the dropped out jth observation is 0.

So that the jackknife estimator of θ is given by,

$$JK(T_n) = n\frac{Y^2}{n^2} - \frac{n-1}{n} \left(Y \frac{(Y-1)^2}{(n-1)^2} + (n-Y) \frac{Y^2}{(n-1)^2} \right) = \frac{Y^2 - Y}{n(n-1)}$$

(c) The expected value of jackknife estimator of θ is,

$$EJK(T_n) = \frac{1}{n(n-1)} (EY^2 - EY)$$
$$= \frac{1}{n(n-1)} (n\theta(1-\theta) + n^2\theta^2 - n\theta) = \theta^2$$