4. Előadás Döntési Fák A CART tanító algoritmus

A döntési fa helye az ML-ben

- Olyan, mint egy svájci bicska!
- Mindig kéznél van, mindenre jó, de szinte semmire sem a legalkalmasabb.
 - Ahogy a kézifűrész jobb, mint a bicskás fűrész.
 - Ahogy a séfkés jobb, mint a bicskás kés.
 - Ahogy a harapófogó jobb, mint a bicskás fogó.
 - De lehet-e egy séfkéssel anyacsavart meglazítani?
- A döntési fák különösen hasznosak gyorsaságuk és egyszerűségük miatt adatfeltérképezésre, gyors eredmények megmutatására, változók közötti kapcsolatok megmutatására.

Az alap elképzelés

- A döntési fák sokoldalú gépi tanulási algoritmusok, amelyek mind bináris és multioutput osztályozást, illetve regressziót is képesek végrehajtani. Könnyen illeszthetők komplex adathalmazokra. Ez az erősségük és gyengeségük is egyben.
- Az algoritmus alapja, hogy mintaegyedeket osztályoz változóikban felvett értékeik alapján.
- A balra látható döntési fa egy tönk: nincs internális csomópontja.

Szereti a csülkös pacalt

IGAZ

Igazi ínyenc

HAMIS

Majd megszereti

Egy hasznos döntési fa példának

- A végső
 osztályok típusa
 lehet diszjunkt
 osztály
 és folytonos
 változó is!
- A mintaegyedek a csomópontok kérdéseire válaszolnak, változóik alapján.

Egy kezdeti döntési fa az Írisz adathalmazon

```
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

iris = load_iris()
X = iris.data[:, 2:] # szirom hossz és szélesség
y = iris.target

tree_clf = DecisionTreeClassifier(max_depth=2, random_state=42)
tree_clf.fit(X, y)

DecisionTreeClassifier(max_depth=2, random_state=42)
```

- Hogyan osztályoznánk be egy új virágot?
- A gyökércsomóponttól indulva (0. szint), mindig a node által feltett kérésre válaszolva, ameddig a mintaegyed el nem éri valamelyik terminális régiót.
- A gyökér kérdése pl. hogy a szirom hossz nagyobb-e mint 2.45cm.

- Melyik lépés maradt ki a regresszor tanításából?
- \bigcirc Mi lehet a gini = 0.043?

A modell ábrázolása (white box modell)

- Az ábra ennek a döntési fának a határvonalait mutatja. A vastag vonal a gyökérből származó határ. Mivel a bal oldali halmaz teljesen tiszta, nem lehet tovább bontani. De a jobb oldali részhalmaz továbbra is kevert, ezért a jobb oldali 1. szintű belső node tovább bontja petal width = 1.75cm-nél.
- Mivel a $\max_{depth} = 2$, a modell itt megáll, de ha ez az érték 3 lenne, a függőleges pöttyözött vonal mentén történne a szétválasztás.

A levelek jóságának mérése (tisztaság)

Azok a változók, amelyek nem tudják 1: 0 arányban szeparálni az egyedeket, tisztátalannak számítanak. Ennek egyik mérőszáma a Gini-index.

$$Gini = 1 - P(A)^2 - P(B)^2$$

Egy változó Gini-indexe levelei Gini-indexének súlyozott átlaga.

Szeparáció folytonos változó esetén

- A folytonos változónak minden értékéhez tartozik egy Gini érték.
- Ezt felírva kapjuk a Gini-függvényt adott változóra kiszámolva.

Mikor érdemes szeparálni?

- Amikor egy csomópontnak magasabb a tisztátalansága tovább bontáskor, felesleges a szeparáció, és levélcsomópont válik belőle.
- Gyökércsomópont abból a változóból válik, amelynek a legalacsonyabb a tisztátalansága.

A CART tanító algoritmus

- **A scikit-learn a Classification And Regression Trees algoritmust** használja a növekvő fák tanításához.
- Az ötlet meglehetősen egyszerű: először az algoritmus a tanító pontokat k jellemző és t_k küszöbérték szerint kettéválasztja.
- Az algoritmus olyan (k, t_k) párokat keres, amelyekkel a létrejövő részhalmazoknak a lehető legalacsonyabb a tisztátlansága.
- Ezt addig ismétli rekurzívan, ameddig a szintek száma el nem éri a max_depth hiperparamétert.
- A CART osztályozó költségfüggvénye: $J(k, t_k) = \frac{m_{\text{left}}}{m}G_{\text{left}} + \frac{m_{\text{right}}}{m}G_{\text{right}}$
- **@**Ahol:
 - $colon G_{left/right}$: a bal/jobb adathalmaz tisztátalansága

 - *[©]G*: Gini-index

Regularizációs hiperparaméterek

- A döntési fák meglehetősen kevés előfeltételezéssel élnek az adatok irányába. Ha megkötések nélkül tanítjuk, akkor a fa struktúrája nagyon szorosan fog alkalmazkodni a tanító pontokhoz.
- Ahhoz, hogy a túltanulást elkerüljük, bizonyos megszorításokat kell tennünk a döntési fa illesztési szabadsága felé (regularizáció).
- Néhány hiperparaméter: hogyan kell állítani a max és min értékeket?
 - Max_depth: a döntési fa maximális mélysége (0-ról indul a gyökérrel!)
 - Min_samples_split: a minimum mintaegyedszám, ami ahhoz kell, hogy szeparáljon a csomópont
 - Min_samples_leaf: egy levélbe bekerülő minimális mintaegyedszám
 - *Max leaf nodes*: a levelek max. száma
 - Max_features: maximum változó amit ki kell értékelni szeparálás előtt

Félreosztályozási ráta: subtree assessment plot

- Hány változó szükséges a predikcióhoz?
- Csakúgy mint a többi modellnél, a döntési fáknál is megfigyelhető a túltanulás.
- Ebben az esetben a tanító hiba csökken, de a validációs hiba emelkedik.
- Annyi változót érdemes meghagyni, amennyinél a lehető legalacsonyabb a validációs hiba.
- Ezt ábrázolja a subtree assessment plot: hány levél kell a minimális validációs hiba eléréséhez?

Feladat: hányféleképpen tudja egy <u>tönk</u> beosztályozni az alábbi pontokat, x1 és x2 változó szerint?

Megoldás: 12

- ♣ Hát de ez csak 6!
- Minden változó bármely két mintaegyed közé állíthat egy döntési fát úgy, hogy az egyik levél A osztály, a másik B.
- De ennek a fordítottja is igaz, tehát minden döntési ponthoz két lehetséges osztály konfiguráció tartozik: [A, B]; [B, A].

Regresszió döntési fákkal

- Tanítsunk zajos adatokon egy DecisionTreeRegressor-t. A létrejövő modell nagyon hasonlít az osztályozóhoz. Mi a levél jóságának mértéke?
- Az egyetlen különbség az, hogy a levelek értékeket reprezentálnak.
- Ebben az esetben a predikció egyszerűen az átlaga a terminális régióba bekerült mintaegyedek célváltozóikban felvett értékének.
- A modell mélysége 2, de látható, hogy nézne ki, ha 3 lenne.

Tanítás regresszió esetén

A regresszor fák a tisztátalanság minimalizálása helyett az MSE-t minimalizálják, így a CART regresszor költségfüggvény a következő:

@Ahol:

$$\$MSE_{node} = \sum_{i \in node} (\hat{y}_{node} - y^{(i)})^2$$

$$\hat{\mathbf{y}}_{node} = \frac{1}{m_{node}} \sum_{i \in node} y^{(i)}$$

- A regressziós fák is nagyon hajlamosak túltanulásra.
- Regularizáció nélkül a bal, vele pedig a jobb oldali modellt kapjuk.

Instabilitás: adathalmaz rotációja

- Ahogy már biztosan észrevettük, a döntési fák ortogonális döntési határokkal dolgoznak (minden szeparáció a tengelyekre párhuzamosan történik).
- Ez a tulajdonságuk az adathalmaz rotációval szemben érzékennyé teszi őket.
- Az ábrán egy egyszerű, lineárisan szeparálható adathalmazt látunk.

A bal oldalon egy döntési fa egyszerűen elvégzi a szeparációt, de a 45°-os

rotáció esetében a döntési határ szükségtelenül összetett, nem rendelkezik jó generalizációs tulajdonságokkal.

Instabilitás: variációk az adathalmazban

Vegyük ki a legszélesebb Versicolor-t (kék) a korábbi modellünkből, és tanítsunk egy fát ugyanazzal az eljárással. Hasonlítsuk össze a modelleket.

