EN.601.414/614 Computer Networks

Inter-Domain Routing

Xin Jin

Spring 2019 (MW 3:00-4:15pm in Shaffer 301)

Agenda

- Midterm survey summary
- Final exam announcement
- Inter-domain routing

Midterm Survey Summary

Lectures

- > Ask questions if you feel I am going too fast
 - Don't be shy

 . If you do not understand, many of your classmates do not understand it, either.
- Exercise questions are embedded in slides
- Notes in PowerPoint contain pointers and answers
- Provide both PDF and PPT for slides
- ➤ Slides are now uploaded before class
 - May still update after class based on feedback
- > "Better chalk would help when you draw things on the board. Current chalk is hard to see."
 - Sit in front. The first row is not full \(\exists).
- Advanced topics (will cover all of them, but only briefly because of time): security, programmable networks, software-defined networking, networking testing, big network data processing, cloud computing and network virtualization, bitcoin and blockchain, AI & networks, IoT, distributed systems

Midterm Survey Summary

Assignments

- > Provide more description and hints (along with code)
- ➤ Provide more scaffolding code
- ➤ Provide test scripts
- The goal is to make the assignments more accessible, and clear about the goals and expectations
 - They are designed to convey the key networking concepts, without heavy workload to consume your life
 - They are practical (industry-ready), based on real protocols (e.g., socket, TCP, link-state, distance-vector, P4)
- For students interested in the materials and want to learn more about computer networks
 - Try to earn bonus points
 - Try to implement in C/C++/Java/Go, and design own test scripts
 - Take Advanced Computer Networks

Midterm Survey Summary

Piazza and office hours

- Summary of frequently-asked questions for assignments will be pinned on top on Piazza and updated regularly, based on discussions on Piazza and during office hours
- ➤ More personal questions: come to office hours, send emails to me, and use the anonymous Midterm survey

Others

- Final exam will contain less calculation, and more on understanding of concepts and reasoning about the pros and cons of different design choices
- ➤ "i waved to u in the hall one night and u didnt wave back :c":
 - Sorry, I did not see you.
 - I'm sorry that I cannot remember all your names. It's a big class. Try to come to my office hour and introduce yourselves.

Final Exam

- Time: 6pm-7:30pm, Wednesday, May 8
- Location: Shaffer 301
- Form: Closed-book
 - ➤ Can bring TWO A4/letter papers with notes on both sides
 - ➤ Can bring a calculator
 - ➤ Anything else is prohibited
- Focus on materials after midterm
 - ➤ Materials before midterm will be tested, but not a focus

Assignment 2

- The grades are out
- Come to TAs' office hours if you want to find out what is wrong with your code and why you lose the points

This is IMPORTANT

- Now you have your points on two assignments and the midterm exam.
 - Calculate your total points so far
 - Estimate what you will get in the other two assignments and final
 - Then you have a rough idea of your final grade
- Come to my office hours to chat if you are worried
 - Especially if I have contacted you. Don't be nervous. I'm going to help, not to blame .
- If you are not doing well so far, it is not the end of the world, yet
 - ➤ Participation (5%): try to attend all remaining lectures
 - ➤ Two assignments (20%+4%): try to pass the test scripts and get the bonus points
 - Final exam (30%): prepare well, and come to office hours if you are not sure about some course materials

Recap: Link-state routing

- Every router knows its local "link state"
 - \triangleright Router u: "(u,v) with cost=2; (u,x) with cost=1"
- Each router floods its local link state to all other routers in the network
 - > Does so periodically or when its link state changes
- Every router learns the entire network graph
 - ➤ Each runs Dijkstra's Shortest-Path First (SPF) algorithm locally to compute forwarding table

Recap: Distance-vector protocol

- Link-state routing protocol
 - Each node broadcasts its local information

- Distance-vector routing protocol
 - ➤ The opposite (sort of)
 - Each node tells its neighbors about its global view

Recap: Distance vector algorithm

- From time-to-time, each node sends its own distance vector estimate to neighbors
- When x receives new DV estimate from neighbor, it updates its own DV using B-F equation

```
\triangleright D_{v}(y) \leftarrow \min_{v} \{c(x,v) + D_{v}(y)\} for each node y \in N
```

 Eventually, the estimate D_x(y) may converge to the actual least cost d_x(y)

Recap: Similarities between LS and DV routing

- Both are shortest-path based routing
 - ➤ Minimizing cost metric (link weights) a common optimization goal
 - Routers share a common view as to what makes a path "good" and how to measure the "goodness" of a path
- Due to shared goal, commonly used inside an organization
 - >RIP and OSPF are mostly used for intra-domain routing

"Autonomous System (AS)" or "Domain" Region of a network under a single administrative entity "End hosts" "Clients", "Users" "End points" "Route" or "Path" "Border Routers" "Interior Routers"

AS-level Internet

Internet Inter-Domain Traffic, SIGCOMM, 2010

Autonomous systems (AS)

- An AS is a network under a single administrative control
 - Currently over 55,000 ASes
 - ➤ Updated daily at http://www.cidr-report.org/as2.0/
- ASes are sometimes called "domains"
- Each AS is assigned a unique identifier (ASN)

"Intra-domain" routing: Within an AS

- Link-State (e.g., OSPF) and Distance-Vector (e.g., RIP)
- Primary focus
 - > Finding least-cost paths
 - > Fast convergence

"Inter-domain" routing: Between ASes

- Two key challenges
 - **>** Scaling
 - >Administrative structure
 - Issues of autonomy, policy, privacy

Recall: Addressing (so far)

- Each host has a unique ID
- No particular structure to those IDs

Recall: Forwarding

Scaling

- A router must be able to reach any destination
 - ➤ Given packet's destination address, lookup next hop
- Naive: Have an entry for each destination
 - There would be over 109 entries!
 - AND routing updates per destination!
- How can we improve scalability?
 - ➤ We have already seen an example: longest-prefix matching

A smaller table at node B?

Re-number the end-systems?

- Careful address assignment → can aggregate multiple addresses into one range → scalability!
- Akin to reducing the number of destinations

Scaling

- A router must be able to reach any destination
- Naive: Have an entry for each destination
- Better: Have an entry for a range of addresses
 - > Can't do this if addresses are assigned randomly!
 - > How addresses are allocated will matter!

Host addressing is key to scaling

Two key challenges

- Scaling
- Administrative structure
 - ➤ Issues of autonomy, policy, privacy

Administrative structure shapes inter-domain routing

ASes want freedom in picking routes

- "My traffic can't be carried over my competitor's network"
- "I don't want to carry A's traffic through my network"
- ➤ Not expressible as Internet-wide "least cost"

ASes want autonomy

- Want to choose their own internal routing protocol
- ➤ Want to choose their own policy

ASes want privacy

➤ Choice of network topology, routing policies, etc.

Choice of routing algorithm

Link-state

- ➤ No privacy broadcasts all network information
- >Limited autonomy needs agreement on metric, algo
- Distance-vector is a decent starting point
 - Per-destination updates give some control
 - > BUT wasn't designed to implement policy
 - ➤ AND is vulnerable to loops

• The "Border Gateway Protocol" (BGP) extends distance-vector ideas to accommodate policy

Agenda

- Inter-domain-routing
 - ➤ Addressing (Scalability)
 - ➤ BGP (Autonomy, policy, privacy)
 - Context and basic ideas: today
 - Details and issues: next lecture

IP addressing

Goal of addressing: Scalable routing

- State: Small forwarding tables at routers
 - ➤ Much less than the number of hosts
- Churn: Limited rate of change in routing tables
- Ability to aggregate addresses is crucial for both

Aggregation works if...

- Groups of destinations reached via the same path
- These groups are assigned contiguous addresses
- These groups are relatively stable
- Few enough groups to make forwarding easy

IP addressing is hierarchical

- Hierarchical address structure
- Hierarchical address allocation
- Hierarchical addresses and routing scalability

IP addresses (IPv4)

Unique 32-bit number associated with a host
 00001100 00100010 10011110 00000101

• Represented with the "dotted-decimal" notation ➤ e.g., 12.34.158.5

Hierarchy in IP addressing

- 32 bits are partitioned into a prefix and suffix components
- Prefix is the network component; suffix is the host component

Inter-domain routing operates on network prefix

CIDR: Classless inter-domain routing

- Flexible division between network and host addresses
- Offers a better tradeoff between size of the routing table and efficient use of the IP address space

CIDR example

- Suppose a network has 50 computers
 - \triangleright Allocate 6 bits for host addresses (2⁵ < 50 < 2⁶)
 - ➤ Remaining 32 6 = 26 bits as network prefix
- Flexible boundary means the boundary must be explicitly specified with the network address!
 - ➤Informally, "slash 26" → 128.23.9/26
 - Formally, prefix represented with a 32-bit mask: 255.255.255.192, where all network prefix bits set to "1" and host suffix bits to "0"
 - Also known as subnet mask (a group of machines with the same prefix are in the same subnet)

Before CIDR: Classful addressing

Three classes

- >8-bit network prefix (Class A),
- ➤ 16-bit network prefix (Class B), or
- >24-bit network prefix (Class C)

Example: an organization needs 500 addresses.

- > A single class C address is not enough (<500 hosts)
- ➤ Instead, a class B address is allocated (~65K hosts)
 - Huge waste!

IP addressing is hierarchical

- Hierarchical address structure
- Hierarchical address allocation
- Hierarchical addresses and routing scalability

Allocation done hierarchically

- Internet Corporation for Assigned Names and Numbers (ICANN) gives large blocks to...
- Regional Internet Registries, such as the American Registry for Internet Names (ARIN), which give blocks to...
- Large institutions (ISPs), which give addresses to...
- Individuals and smaller institutions
- FAKE Example:
 - \rightarrow ICANN \rightarrow ARIN \rightarrow AT&T \rightarrow JHU \rightarrow CS

CIDR: Addresses allocated in contiguous prefix chunks

 Recursively break down chunks as get closer to host

FAKE example in more detail

- ICANN gave ARIN several /8s
- ARIN gave AT&T one /8, 12.0/8
 - ➤ Network Prefix: 00001100
- AT&T gave JHU a /16, 12.34/16
 - > Network Prefix: 0000110000100010
- JHU gave CS a /24, 12.34.56/24
 - > Network Prefix: 00001100001000111000
- CS gave me specific address 12.34.56.78
 - >Address: 0000110000100011100001001110

IP addressing is hierarchical

- Hierarchical address structure
- Hierarchical address allocation
- Hierarchical addresses and routing scalability

IP addressing -> Scalable routing?

 Hierarchical address allocation only helps routing scalability if allocation matches topological hierarchy

IP addressing -> Scalable routing?

IP addressing → Scalable routing?

Can add new hosts/networks without updating the routing entries at France Telecom

IP addressing -> Scalable routing?

ESNet must maintain routing entries for both a.*.*.* and a.c.*.*

IP addressing -> Scalable routing?

- Hierarchical address allocation only helps routing scalability if allocation matches topological hierarchy
- May not be able to aggregate addresses for "multi-homed" networks
 - A multi-homed network is connected to more than one ASes for fault-tolerance, load balancing, etc.

BGP: Border Gateway Protocol

BGP (Today)

- The role of policy
 - ➤ What we mean by it
 - ➤ Why we need it
- Overall approach
 - ➤ Four non-trivial changes to DV

Administrative structure shapes Inter-domain routing

- ASes want freedom to pick routes based on policy
- ASes want autonomy
- ASes want privacy

Topology & policy shaped by inter-AS business relationship

- Three basic kinds of relationships between ASes
 - >AS A can be AS B's customer
 - >AS A can be AS B's provider
 - >AS A can be AS B's peer
- Business implications
 - Customer pays provider
 - ➤ Peers don't pay each other
 - Exchange roughly equal traffic

Business relationships

Business implications

- Customers pay provider
- Peers don't pay each other

Why peer?

Routing follows the money!

- ASes provide "transit" between their customers
- Peers do not provide transit between other peers

Routing follows the money!

 An AS only carries traffic to/from its own customers over a peering link

Routing follows the money!

Routes are "valley" free (more details later)

In short

- AS topology reflects business relationships between ASes
- Business relationships between ASes impact which routes are acceptable

BGP (Today)

- The role of policy
 - >What we mean by it
 - ➤ Why we need it
- Overall approach
 - ➤ Four non-trivial changes to DV

Inter-domain routing: Setup

- Destinations are IP prefixes (12.0.0.0/8)
- Nodes are Autonomous Systems (ASes)
 - ► Internals of each AS are hidden
- Links represent both physical links and business relationships
- BGP (Border Gateway Protocol) is the Interdomain routing protocol
 - ➤ Implemented by AS border routers

BGP: Basic idea

You've heard this story before!

BGP inspired by Distance-Vector

- Per-destination route advertisements
- No global sharing of network topology information
- Iterative and distributed convergence on paths
- With four crucial differences!

BGP & DV differences: (1) Not picking shortest-path routes

- BGP selects the best route based on policy, not shortest distance (i.e., least-cost)
- AS A may prefer "A,B,C" over "A,C"

How do we avoid loops?

BGP & DV differences: (2) Path-Vector routing

- Key idea: advertise the entire path
 - ➤ Distance vector: send distance metric per dest d
 - > Path vector: send the entire path for each dest d

BGP & DV differences: (2) Path-Vector routing

Key idea: advertise the entire path

- ➤ Distance vector: send distance metric per destination
- > Path vector: send the entire path for each destination

Benefits

- Loop avoidance is straightforward (simply discard paths with loops)
- > Flexible and expressive policies based on entire path

BGP & DV differences: (3) Selective route advertisement

- For policy reasons, an AS may choose not to advertise a route to a destination
- Hence, reachability is not guaranteed even if graph is physically connected

BGP & DV differences: (4) BGP may aggregate routes

 For scalability, BGP may aggregate routes for different prefixes

Summary

- Two key challenges in inter-domain routing
 - ➤ Scaling (Addressing)
 - ➤ Administrative structure (BGP)
 - Issues of autonomy, policy, privacy

 Next lecture: BGP policies, protocol, and challenges

Thanks! Q&A