

REPORTE DE PRACTICA NO. 2

NOMBRE DE LA PRÁCTICA: AFD y AFND

ALUMNO:

José Manuel Hernández Lara

Introducción

Los autómatas finitos son modelos teóricos que desempeñan un papel crucial en la computación y la teoría de lenguajes formales. Dentro de esta categoría, los autómatas finitos deterministas (AFD) y los autómatas finitos no deterministas (AFND) se destacan por sus enfoques distintivos para procesar cadenas de símbolos. Los AFD operan de manera predecible, con una única transición para cada estado y símbolo de entrada, lo que los hace más simples y eficientes en términos de ejecución. Por otro lado, los AFND permiten múltiples transiciones para un mismo símbolo o incluso transiciones vacías, ofreciendo mayor flexibilidad en el reconocimiento de patrones. Aunque los AFD y AFND son equivalentes en poder expresivo es decir, ambos pueden reconocer los mismos lenguajes regulares la forma en que abordan el procesamiento de la información difiere significativamente.

Marco Teórico

Los autómatas finitos son modelos matemáticos que representan sistemas capaces de procesar cadenas de símbolos. Se utilizan ampliamente en la teoría de la computación y la lingüística formal, siendo herramientas esenciales en la construcción de compiladores y el diseño de lenguajes de programación. Dentro de esta categoría, se distinguen dos tipos fundamentales: los Autómatas Finitos Deterministas (AFD) y los Autómatas Finitos No Deterministas (AFND).

Autómatas Finitos Deterministas (AFD)

Un AFD es un modelo que, para cada estado y símbolo de entrada, tiene una única transición definida. Está compuesto por:

Conjunto de Estados (Q): Un conjunto finito de estados, incluyendo al menos un estado inicial y uno o más estados finales.

Alfabeto (Σ): Un conjunto finito de símbolos que se pueden leer como entradas.

Función de Transición (δ): Una función que toma un estado y un símbolo de entrada, y retorna el siguiente estado. Esta función es única, es decir, no hay ambigüedad en la transición.

Estado Inicial (q0): El estado donde comienza el autómata.

Conjunto de Estados Aceptadores (F): Un subconjunto de Q que define los estados donde el autómata acepta la cadena de entrada.

Autómatas Finitos No Deterministas (AFND)

Los AFND, por otro lado, permiten múltiples transiciones para un mismo estado y símbolo de entrada, así como transiciones vacías (ε-transiciones). Esto significa que un AFND puede estar en múltiples estados al mismo tiempo. Sus componentes son similares a los de un AFD:

Conjunto de Estados (Q): Igual que en un AFD.

Alfabeto (Σ): Igual que en un AFD.

Función de Transición (δ): Esta función puede devolver un conjunto de estados en lugar de un único estado, permitiendo transiciones múltiples o ϵ -transiciones.

Estado Inicial (q0): Igual que en un AFD.

Conjunto de Estados Aceptadores (F): Igual que en un AFD.

Desarrollo:

Ejercicio 1. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que inician en "0".

Ejercicio 2. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que terminan en "1".

Ejercicio 3. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que contienen la subcadena "01".

Ejercicio 4. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que no contienen la subcadena "01".

Ejercicio 5. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {a, b, c}, que acepte el conjunto de palabras que inician con la subcadena "ac" o terminan con la subcadena "ab".

Ejercicio 6. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {a, b, c}, que acepte el conjunto de palabras que inician con la subcadena "ac" y no terminan con la subcadena "ab".

Ejercicio 7. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {a, b, c}, que acepte el conjunto de palabras que inician con la subcadena "ac" o no terminan con la subcadena "ab".

Ejercicio 8. Obtenga un Autómata Finito Determinista (AFD) dado el lenguaje definido en el alfabeto Σ = {a, b, c}, que acepte el conjunto de palabras que no inician con la subcadena "ac" y no terminan con la subcadena "ab".

Ejercicio 9. Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = \{0, 1\}$, que acepte el conjunto de palabras que no contienen a la subcadena "01".

Ejercicio 10. Obtenga un Autómata Finito No Determinista (AFND) dado el lenguaje definido en el alfabeto $\Sigma = \{a, b, c\}$, que acepte el conjunto de palabras que inician en la subcadena "ac" y terminan en la subcadena "ab".

