Overview of gamapy.maps

Matthew Wood Gammapy Coding Sprint 9/21/17

Package Overview

- Documentation URL: https://gammapy.readthedocs.io/en/latest/maps/index.html
- Core Features
 - Common interface for HPX- and WCS-based maps
 - Support for arbitrary number of non-spatial dimensions (energy, time, hadronness, FoV angle, etc.)
 - Sparse FITS serialization format
 - In-memory sparse maps (not yet implemented)
 - Multi-resolution maps (different pixel size or geometry in each image plane)

Class Hierarchy

FITS I/O

- All classes support serialization to FITS (see http://gamma-astro-data-formats.readthedocs.io/en/latest/skymaps/index.html for format details)
- Both HPX and WCS classes support I/O to a sparse FITS table format by calling write with sparse=True
 - One row per pixel with pixel # and image plane index (channel #)
 - Geometry for non-spatial dimensions written to BANDS table
- Sample All-Sky Sparse LAT counts cube: https://www.dropbox.com/sh/wzh0p8d949uikz0/AACW50nmmG8wliJ-vsg2QDg_a?dl=0
 - 100 MeV 100 GeV (4 bins/decade)
 - Energy-dependent pixel size (~3 deg at 100 MeV and ~0.1 deg at 100 GeV)
 - Eight years (MET 239557414-492018217)
 - File Size: ~30MB

Multi-resolution Maps

- Multi-resolution maps allow for a different pixel or image geometry in each image plane
 - Allows for pixel-size to be matched to PSF (very useful for LAT where PSF is rapidly varying)
 - Model maps can be truncated at some distance that is a function of energy
- Currently implemented for both HpxMapND and WcsMapND by allocating a numpy array with image dimension commensurate with largest image plane
- Sparse maps would handle multi-resolution geometries more efficiently

Sparse Maps

- Sparse maps combine the advantages of binned and unbinned analysis
 - Speed proportional to # of photons in low counts regime (reduces to photon list)
 - Speed proportional to # of bins in high counts regime (reduces to counts map)
- For likelihood evaluation model only needs to be computed at non-zero pixels (as in unbinned analysis)
 - Likelihood evaluation loop can be a loop over pixels in the sparse map
 - Model map objects occupy much less memory (only occupied pixels need to be saved)

To Do List

- Missing API methods
 - cutout/paste
 - downsample/upsample
 - pad/crop
 - convolve
- Image Slicing (to slice)
- Sparse Maps
 - Just a basic skeleton currently lots of work to be done
 - Plan to implement with scipy.sparse
- Access by view vs. copy
 - get_by accessor methods return by value rather than reference
 - Need to implement view-based methods for high-performance applications

Open Questions and Next Steps

- Feedback on API and Design would be extremely valuable at this stage API will be much harder to change in the future
 - Method name and API changes
 - Proposals for new methods
- Improve integration with gammapy as a whole
 - What additional features are needed to allow migration from Skylmage and SkyCube?
 - Is there functionality gammapy.maps should be using from other submodules?
 - What should be the relationship with NDData classes?
 - Is there code in gammapy.maps that should be merged with code else in gammapy?
- Migrate fermipy to use gammapy
 - Plan to replace existing fermipy maps classes with gammapy.maps
 - Would like to have this ready for v0.7 release