Subgroups

Def A subject $H \subseteq G$ of a group (G_1m) is a subgroup if the restriction of m to $H \times H$ turn H into a group. We write $H \subseteq G$ in that case.

Rem In particular we ark that a, b & H = ' m (a, b) & H.

Prop H = Co is a rubgroup = ijH is non-empty and

4) a,b &H = ab 1 & H

Pert ii) is clear

It remains to visity that my consider the three group axioms.

associativity:

unit: (4)

inverse: (33)

Examples 0) Every group has trivial subgroup $Ce^{\frac{1}{4}} \leq C$ improper subgroup $Ce^{\frac{1}{4}} \leq Ce^{\frac{1}{4}}$

1) $nZ = \{nk \mid k \in Z\} \in Z \text{ is a subgroup of } (Z_1+)$

2) When $x \in G$ a group. $(x) = \int x^n | n \in \mathbb{Z}_f \subseteq G$ is a subgrap

7) Let $G \times X \to X$ be a group ordin, and $S \in X$. The stabilizer of S $G_S := \{g \in G \mid g, S = S \}$

is a subgroup.

4) Let $Q: G \to H$ be a group honomorphism. Then $\ker Q:= \{g \in G \mid Q(g)=e \}$

· im $\mathcal{G} := \mathcal{G}(G) = \mathcal{G}(\mathcal{G}) \in \mathcal{H} \mid \mathcal{G} \in \mathcal{G}$ are subgroups.

Exc Prove 1) - 4)