Név:		
	EHA:	ELTE

Logika és számításelmélet 2. zárthelyi

2009. december 10., 16 óra, A csoport

1. Tekintsük az alábbi függvényeket!

$$f(n) = n^{\frac{1}{10}} 10^{10}, \quad g(n) = 10^{\frac{1}{10}} n^{10}, \quad h(n) = 10 n^{\frac{1}{10}}.$$

Az $f(n) = \Omega(g(n)), g(n) = \Omega(f(n)), g(n) = O(h(n)), h(n) = O(g(n))$ állítások közül melyek igazak? Röviden indokoljuk is a választ. (10 pont)

- 2. Legyen U egy megszámlálhatóan végtelen számosságú halmaz. Legyen továbbá H az U elemeiből képezhető véges hosszúságú sorozatok halmaza. Mutassuk meg, hogy a H halmaz számossága megszámlálhatóan végtelen. (Azaz, egy megszámlálhatóan végtelen számosságú ábécé feletti szavak is megszámlálhatóan végtelennyien vannak.) (10 pont)
- 3. Adott az $\mathcal{M} = \langle \{q_0, q_1, q_2, q_3, q_4, q_5, q_i, q_n\}, \{a, b, c\}, \{a, b, c, \#, @, \sqcup\}, \delta, q_0, q_i, q_n \rangle$ determinisztikus Turing gép. Állapotátmenetei az alábbi átmenetdiagrammal vannak megadva. Az átmenetdiagramon (az áttekinthetőség kedvéért) nincs megadva minden állapot-betű párra az átmenet. Ezeket úgy értelmezzük, hogy ekkor a Turing-gép a q_n állapotba megy, az inputszalagon olvasott betűt nem módosítja, és az író-olvasó fej helyben marad.

- (a) Elfogadja-e \mathcal{M} a abcc szót? Adjuk meg erre a szóra a kezdőkonfigurációból egy megállási konfigurációba a konfigurációátmenetetek sorozatát! (4 pont)
- (b) Mi lesz a Turing-gép által felismert $L(\mathcal{M})$ nyelv? A választ röviden indokoljuk is! (4 pont)
- (c) Adjunk meg egy olyan k természetes számot, melyre \mathcal{M} $O(n^k)$ időkorlátos! (n az input szó hossza.) A választ röviden indokoljuk is! (2 pont)
- 4. (a) Készítsünk egyszalagos, determinisztikus Turing-gépet, mely az $u \mapsto uu^{-1}$ szófüggvényt számolja ki! ($\Sigma = \{a, b\}$.) (Tehát az u input szóra a Turing-gép megállásakor az uu^{-1} szó legyen olvasható a szalagon. Például az aabab input esetén aababbabaa.) (8 pont)
 - (b) Adjunk meg egy olyan $f: \mathbb{N} \to \mathbb{R}_+$ függvényt, melyre igaz lesz, hogy a kapott Turing-gép időigénye $\Theta(f(n))$. (2 pont)
- 5. Bizonyítsuk be, hogy a 3-sat-3 probléma NP-teljes!

3-sat-3 = $\{\langle \varphi \rangle \mid \varphi \text{ KNF-jú kielégíthető formula, minden elemi diszjunkció} \leq 3 literált tartalmaz és minden ítéletváltozó \le 3-szor fordul elő \varphi-ben\}.$