

Seminar 2 Stochastic Volatility Models

Vega Institute

Problem 1 🧠 🦠

Find the solution of SDE and prove its $\exists!$:

a)
$$dX_t = dt + \sigma X_t dB_t$$

b)
$$dX_t = \frac{1}{X_t}dt + dB_t$$

Problem 2 🧠

Solve the differential equation using Feynman-Kac formula:

$$\begin{cases} \frac{\partial u}{\partial t} + x \frac{\partial u}{\partial x} + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} = u \\ u(T,x) = x^2 \end{cases}$$

Problem 3 🧠

Let u(t,x) be the solution of Black-Scholes PDE:

$$\begin{cases} \frac{\partial u}{\partial t} + rx \frac{\partial u}{\partial x} + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 u}{\partial x^2} = ru \\ u(T, x) = (x - K)^+ \end{cases}$$

Prove that u(t,x) can be represented as $u(t,x)=\frac{e^{-r(T-t)}}{\sqrt{2\pi(T-t)}}\int_{\mathbb{R}}(xe^{(r-\frac{\sigma^2}{2})(T-t)+\sigma y}-K)^+e^{-\frac{y^2}{2(T-t)}}dy$ and derive an analytical formula.

Problem 4 🧠

Derive the formula for call and put options in the Bachelier model, where $S_t = S_0 + \mu t + \sigma W_t$ and

- a) $B_t = 1$
- b) $dB_t = rB_t dt, B_0 = 1$

Problem 5 🧠

Provide an interpretation of $\Phi(d_1)$ and $\Phi(d_2)$ in Black-Scholes formula.

Problem 6 🧠

Prove that in Black-Scholes model for call and put options

$$\frac{\partial C}{\partial \sigma} = \frac{\partial P}{\partial \sigma} = S\varphi(d)\sqrt{T}$$

.

Problem 7 💅

Prove put-call parity $C - P = S(0) - Ke^{-rT}$ for a non-dividend stock S and European options using non-arbitrage principle (do not assume any model for asset price dynamics). Using this parity prove the following general properties:

- a) $max(0, S(0) Ke^{-rT}) \le C < S(0)$
- b) $max(0, -S(0) + Ke^{-rT}) \le P < Ke^{-rT}$
- c) C is decreasing in K, P is increasing in K
- d) $K' < K'' \Rightarrow C(K') C(K'') < e^{-rT}(K'' K'),$
- e) $K' < K'' \Rightarrow P(K'') P(K') < e^{-rT}(K'' K')$,
- f) C and P are convex functions of K

- f) C is increasing in S, P is decreasing in S
- g) $S' < S'' \Rightarrow C(S'') P(S') < S'' S'$
- g) $S' < S'' \Rightarrow P(S') P(S'') < S'' S'$
- h) C and P are convex functions of S

Problem 8 🧠

Provide an example of strategy π_t , which is not admissible and leads to arbitrage (see lecture 4).