M444 – Complex Analysis

Pierre-Olivier Parisé

University of Hawai'i at Manoa Chapter 3

Section 3.4: Cauchy's Theorem

Definition

A **Jordan curve** γ is a simple, continuous, closed curve. In other words, there is a parametrization $\gamma:[a,b]\to\mathbb{C}$ such that

- 1 If $a \le t_1, t_2 < b$, then $\gamma(t_1) \ne \gamma(t_2)$ whenever $t_1 \ne t_2$.
- (2) $\gamma(a) = \gamma(b)$.
- \mathfrak{I} γ is continuous.

- (a) Jordan curve
- (b) Not Jordan curve (c) Not Jordan curve

Figure – Different types of curves

Theorem

Any Jordan curve γ separates $\mathbb C$ into two regions :

- ① The **interior** of the curve, denoted by Ω^- .

Figure - Interior and Exterior of a Jordan Curve

Definition

Let γ be a Jordan curve with corresponding regions Ω^- , Ω^+ . Informally, we say

- 1 γ has **positive orientation** if traversing the curve, Ω^- is on the left.
- ② γ has **negative orientation** if traversing the curve, Ω^- is on the **right**.

Figure – Two orientations of a Curve

Theorem

- ① Assume f is an analytic function on a region U.
- ② Assume γ is a Jordan curve such that $\Omega^- \cup \gamma \subset U$.
- \bigcirc Assume f' is continuous on U.

Then
$$\int_{\gamma} f(z) dz = 0$$
.

Proof. Let f(z) = u(z) + iv(z). Let z(t) = x(t) + iy(t), $a \le t \le b$ be a parametrization of γ .

By definition,

$$I:=\int_{\gamma}f(z)\,dz=\int_{a}^{b}f(z(t))z'(t)\,dt.$$

We have f(z(t))z'(t) = ux' - vy' + i(vx' + uy') and so

$$I = \int_a^b ux' - vy' dt + i \int_a^b vx' + uy' dt = \int_\gamma udx - vdy + i \int_\gamma vdx + udy.$$

Green's Theorem.

- ① Let γ be a Jordan curve with positive orientation.
- ② Let Ω^- be the interior of γ .
- ③ Assume that P(x,y) and Q(x,y) have continuous partial derivatives on $\Omega^- \cup \gamma$.

Then,

$$\int_{\gamma} P \, dx + Q \, dy = \iint_{\Omega^{-}} Q_{x} - P_{y} \, dA.$$

Since $f'=u_x+iv_x$ and f' is continuous, then u_x and v_x are continuous. Similarly, since $f'=v_y+iu_y$ and f' is continuous, then u_y and v_y are continuous. Therefore, u and v have continuous partial derivatives.

Set
$$P = u$$
 and $Q = -v$:

$$\int_{\gamma} u dx - v dy = \iint_{\Omega^{-}} -v_{x} - u_{y} dA = -\iint_{\Omega^{-}} v_{x} + u_{y} dA.$$

Set P = v and Q = u:

$$\int_{\gamma} v dx + u dy = \iint_{\Omega^{-}} u_{x} - v_{y} dA.$$

Putting everything together:

$$I = -\iint_{\Omega^-} v_x + u_y \, dA + i \iint_{\Omega^-} u_x - v_y \, dA.$$

Recall the C-R Equations

$$u_X = v_V$$
 and $u_V = -v_X$.

Hence,

$$I = -\iint_{\Omega_{-}} 0 \, dA + i \iint_{\Omega_{-}} 0 \, dA = 0.$$

The proof is then completed.

Note : This is not the general statement of Cauchy's Theorem.

Theorem (General Cauchy's Theorem)

- ① Assume f is an analytic function on a region U.
- ② Assume γ is a Jordan curve such that $\Omega^- \cup \gamma \subset U$.

Then
$$\int_{\gamma} f(z) dz = 0$$
.

Independence of paths.

- ① Let γ_1 and γ_2 be two simple paths in a region U with the same starting and terminal points.
- ② Let $\Gamma := \gamma_1 \cup \gamma_2$. Assume that $\Omega^- \subset U$.
- \bigcirc Let f be analytic on U.

Then
$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz$$
.

Definition

A region Ω is called **simply connected** if the interior of any Jordan curve is contained in Ω .

Corollary

Let f be an analytic function on a simply connected region Ω . If γ is a Jordan curve in Ω , then

$$\int_{\gamma} f(z) dz = 0.$$

Consequences.

① If γ_0 and γ_1 are two paths in Ω with the same initial and terminal points, then

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz.$$

② There is an analytic function F defined on Ω such that F' = f.