Interpretable Machine Learning of PET Imaging for Individualized Predictions of Seizure Outcomes after Temporal Lobe Epilepsy Surgery

2022 GDMA Nuclear Medicine Annual Conference

Huanhua Wu Prof. Hao Xu*

The First Affiliated Hospital of Jinan University

2022-12-03

Introduction

The Data

The Model

The Explanation

Conclusion

Introduction

Background

Figure 1: Epilepsy Epidemiology

Aims

Figure 2: Focus on Interpretability of ML

Scheme

Figure 3: Flowchart of TLE Postsurgical IML

The Data

Introduction The Data The Model The Explanation Conclusion References

Combined of PET Radiomics and Clinical Features

Figure 4: PET Radiomics Score and Clinical-PET Features

ntroduction The Data The Model The Explanation Conclusion References

OOO OO OOO OOO

Exploratory Data Analysis

Figure 5: Heatmap of Clinical-PET Features

The Model

Benchmark

Table 1: Performance Comparison Eleven ML algorithms and K-folds Cross-validation of the Selected AdaBoost

								Folds\Tuned	_Ada Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	APC
								1	0.882	0.733	0.000	0.000	0.000	0.000	0.000	0.361
Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Ada Boost Classifier	0.883	0.789	0.400	0.433	0.393	0.345	0.357									
Extreme Gradient Boosting	0.884	0.777	0.300	0.400	0.333	0.287	0.295	3	0.824	0.550	0.000	0.000	0.000	-0.085	-0.091	0.183
Random Forest Classifier	0.884	0.763	0.200	0.350	0.250	0.217	0.230	4	0.875	0.893	0.000	0.000	0.000	0.000	0.000	0.500
Gradient Boosting Classifier	0.890	0.762	0.350	0.483	0.390	0.346		5	0.938	0.929	0.500	1.000	0.667	0.636	0.683	0.750
Light Gradient Boosting Machine	0.859	0.749	0.250	0.325	0.267	0.211	0.221	0	0.938	0.964	0.500	1.000	0.667	0.636	0.683	0.833
Logistic Regression	0.878	0.669	0.050	0.100	0.067	0.055	0.059	0								
Extra Trees Classifier	0.884	0.662	0.100	0.200	0.133	0.118	0.127	7	0.875	0.554	0.000	0.000	0.000	0.000	0.000	0.321
K Neighbors Classifier	0.865	0.646	0.200	0.200	0.183	0.140	0.149	8	0.938	0.964	0.500	1.000	0.667	0.636	0.683	0.833
Linear Discriminant Analysis	0.884	0.642	0.100	0.200	0.133	0.119	0.128	Q	0.938	1.000	0.500	1.000	0.667	0.636	0.683	1.000
Naive Bayes	0.251	0.586	0.900	0.129	0.226	0.014	0.072	**								
Decision Tree Classifier	0.798	0.584	0.300	0.264	0.259	0.158	0.167	10	0.938	0.679	0.500	1.000	0.667	0.636	0.683	0.591
								Mean	0.914	0.827	0.350	0.600	0.433	0.410	0.432	0.637
								Std	0.047	0.172	0.320	0.490	0.367	0.368	0.384	0,200

Table 1: Performance Comparison Eleven ML algorithms

Model	Accuracy	AUC	Recall	Prec.	F1	Kapp
Ada Boost Classifier	0.883	0.789	0.4	0.433	0.393	0.345
Extreme Gradient Boosting	0.884	0.777	0.3	0.4	0.333	0.287
Random Forest Classifier	0.884	0.763	0.2	0.35	0.25	0.217
Gradient Boosting Classifier	0.89	0.762	0.35	0.483	0.39	0.346
Light Gradient Boosting Machine	0.859	0.749	0.25	0.325	0.267	0.211
Logistic Regression	0.878	0.669	0.05	0.1	0.067	0.055
Extra Trees Classifier	0.884	0.662	0.1	0.2	0.133	0.118
K Neighbors Classifier	0.865	0.646	0.2	0.2	0.183	0.14
Linear Discriminant Analysis	0.884	0.642	0.1	0.2	0.133	0.119
Naive Bayes	0.251	0.586	0.9	0.129	0.226	0.014
Decision Tree Classifier	0.798	0.584	0.3	0.264	0.259	0.158
Decision Tree Classifier	0.798	0.584	0.3	0.264	0.259	

AdaBoost Algorithm

Figure 6: Illustration of AdaBoost Algorithm

 AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=0.2, n_estimators=230, random_state=123)

The Explanation

Introduction The Data The Model The Explanation Conclusion References

Permutation Importance

```
Weight Feature
0.0394 ± 0.0329 Al radscore
0.0197 ± 0.0138 Lat radscore
0.0085 ± 0.0138 Durmon
0.0085 ± 0.0138 SGS
0.0028 ± 0.0113 Onsetmon
     0 ± 0.0000 Freq
     0 \pm 0.0000 side
     0 ± 0.0000 Sex
     0 ± 0.0000 MRI
     0 ± 0.0000 history of previous surgery
     0 ± 0.0000 early brain injury
     0 ± 0.0000 familial epilepsy
     0 ± 0.0000 brain_hypoxia
     0 ± 0.0000 Central Nervous System Infections
     0 ± 0.0000 traumatic brain injury
     0 ± 0.0000 SE
-0.0028 ± 0.0113 Suramon
```

Figure 7: Permutation Importance of AdaBoost

Partial Dependence Plot

• PDP plot:

Partial Dependence Plot

• PDP plot:

Conclusion

Key Points

• Metabolic radiomics are helpful to predict the postsurgical seizure outcomes;

Key Points

- Metabolic radiomics are helpful to predict the postsurgical seizure outcomes;
- Combination of PET Radiomics and Clinical Features are more robust;

Key Points

- Metabolic radiomics are helpful to predict the postsurgical seizure outcomes;
- Combination of PET Radiomics and Clinical Features are more robust;
- IML technique can further deepen the understanding of the principle of ML models and the decision-making process for professional and intuitive interpretation

Limitations

• More data, especially external validation cohort;

Limitations

- More data, especially external validation cohort;
- Fusion of PET/MRI multimodal imaging;

Limitations

- More data, especially external validation cohort;
- Fusion of PET/MRI multimodal imaging;
- Other subtypes of drug-resistant epilepsy

For more theoretical approaches to machine learning model explanation, see Interpretable Machine Learning: A Guide for Making Black Box Models Explainable, refer to (Beghi et al., 2019), (Rajpurkar, 2021), (Marc Becker, 2022), (Molnar, 2022).

Email: wane199@outlook.com

GDMA2022過過 广东省医学会核医学学术年会

THANKS!

References I

Beghi, E., Giussani, G., Nichols, E., Abd-Allah, F., Abdela, J., Abdelalim, A., Abraha, H. N., Adib, M. G., Agrawal, S., Alahdab, F., et al. (2019). Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the global burden of disease study 2016. *The Lancet Neurology*, 18(4):357–375.

Marc Becker, e. a. (2022). mlr3book.

Molnar, C. (2022). Interpretable Machine Learning. 2 edition.

Rajpurkar, P. S. (2021). *Deep Learning for Medical Image Interpretation*. Stanford University.

