PCT

INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number:	WO 98/58943	
C07H 21/02, 2/04, C12N 5/00, 5/10, 15/00, 15/09, 15/11, 15/31	A1	(43) International Publication Date:	30 December 1998 (30.12.98)	

(21) International Application Number: PCT/US98/12764 (US). SMITH, Hamilton Circle, Towson, MD 2126 (22) International Filing Date: 18 June 1998 (18.06.98)

(30) Priority Data: 60/050,359 20 June 1997 (20.06.97) US

60/053,377 22 July 1997 (22.07.97) US 60/053,344 22 July 1997 (22.07.97) US 60/057,483 3 September 1997 (03.09.97) US (71) Applicants (for all designated States except US): HUMAN

(71) Applicants (for all designated States except US): HUMAN GENOME SCIENCES, INC. [US/US]; 9410 Key West Avenue, Rockville, MD 20850 (US). MEDIMMUNE, INC. [US/US]; 35 West Watkins Mill Road, Gaithersburg, MD 20878 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): FRASER, Claire [US/US]; 11915 Glen Mill Road, Potomac, MD 20854 (US). WHITE, Owen, R. [US/US]; 886 Quince Orchard Boulevard #202, Gaithersburg, MD 20878 (US). CLAYTON, Rebecca [US/US]; 6706 B. Polor Avenue, Takoma Park, MD 20912 (US). DOUGHERTY, Brian, A. [US/US]; 10 Rosemary Lane, Killingworth, CT 06419 (US). LATHIGRA, Raju [IN/US]; 19051 Steeple Place, Germantown, MD 20874

(US). SMITH, Hamilton, O. [US/US]; 8222 Carrbridge Circle, Towson, MD 21204 (US).

(74) Agents: HOOVER, Kenley, K. et al.; Human Genome Sciences, Inc., 9410 Key West Avenue, Rockville, MD 20850 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: BORRELIA BURGDORFERI POLYNUCLEOTIDES AND SEQUENCES

(57) Abstract

The present invention provides polynucleotide sequences of the genome of Borrelia Burgdorferi, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynucleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

0

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Singapore

BB Barbados BE Belgium BF Burkina Fa BG Bulgaria BJ Benin BR Brazil BY Belarus CA Canada	HU IE IL IS IT rican Republic d KG ohre KR KZ	Spain Finland France Gabon United Kingdom Georgia Ghana Guinea Greece Hungary Ireland Israel Iceland Italy Japan Kenya Kyrgyzstan Democratic People's Republic of Korea Republic of Korea Kazakstan Saint Lucia Liechtenstein Sri Lanka	LS LT LU LV MC MD MG MK ML MN MR MW MX NE NL NO NZ PL PT RO RU SD SE	Lesotho Lithuania Luxembourg Latvia Monaco Republic of Moldova Madagascar The former Yugoslav Republic of Macedonia Mali Mongolia Mauritania Malawi Mexico Niger Netherlands Norway New Zealand Poland Portugal Romania Russian Federation Sudan Sweden	SI SK SN SZ TD TG TJ TM TR TT UA UG US UZ VN YU ZW	Slovenia Slovakia Senegal Swaziland Chad Togo Tajikistan Turkmenistan Turkey Trinidad and Tobago Ukraine Uganda United States of America Uzbekistan Viet Nam Yugoslavia Zimbabwe
--	---	---	--	---	--	--

Sri Lanka

Liberia

LK

LR

Denmark

Estonia

DK

EE

10

15

20

25

30

35

Borrelia burgdorferi Polynucleotides and Sequences

1

Field of the Invention

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Borrelia burgdorferi*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

Statement as to Rights to Inventions Made Under Federally-Sponsored Research and Development

Part of the work performed during development of this invention utilized U.S. Government funds. The U.S. Government may have certain rights in the invention - DE-FC02-95ER61962; DE-FC02-95ER61963; and NAGW 2554.

Background of the Invention

Spirochetes are a family of motile, unicellular, spiral-shaped bacteria which share a number of structural characteristics. Three genera of the spirochetes are pathogenic in humans: (a) *Treponema*, which includes the pathogens that cause syphilis (*T. pallidum*), yaws (*T. pertenue*), and pinta (*T. carateum*); (b) *Borrelia*, which includes the pathogens that cause epidemic and endemic relapsing fever and Lyme disease; and (c) *Leptospira*, which includes a wide variety of small spirochetes that cause mild to serious systemic human illness (Koff, A. B. and Rosen, T. *J. Am. Acad. Dermatol.* **29:**519-535 (1993)).

Lyme borreliosis, more commonly known as Lyme disease, is presently the most common human disease in the United States transmitted by an arthropod vector. Centers for Disease Control, Morbid. Mortal. Weekly Rep. 44:590-591 (1995). Further, infection of household pets, such as dogs, is a considerable problem. The causative agent of this affliction is the spirochete *Borrelia burgdorferi*, which is generally transmitted to mammalian hosts by feeding ticks. Barbour, A. and Fish, D. Science 260:1610-1616 (1993). Once the bacteria pass through the skin they disseminate and produce a variety of clinical manifestations. Diagnosis of this disease is often made serologically by the identification of antiborrelial antibodies. Hilton, E. et al., J. Clin. Microbiol. 35:774-776 (1997).

10

15

20

25

30

35

While initial symptoms often include a rash at the infection point, Lyme disease is a multisystemic disorder that may include arthritic, carditic, and neurological manifestations. While antibiotics are currently used to treat active cases of Lyme disease, *B. burgdorferi* appears to be able to persist even after prolonged antibiotic treatment. Further, *B. burgdorferi* can persist for years in a mammalian host even in the presence of an active immune response. Straubinger, R. et al., J. Clin. Microbiol. 35:111-116 (1997); Steere, A., N. Engl. J. Med. 321:586-596 (1989).

Animal models have proven useful for studying the progression of Lyme disease, methods for preventing this disease, and immunological responses to antigenic challenges with *B. burgdorferi* proteins. Garcia-Monoco, J. et al., J. Infect. Dis. 175:1243-1245 (1997). Using a canine model, Starubinger, R. et al., Infect. Immun. 65:1273-1285 (1977), demonstrated that *B. burgdorferi* migrates into joints and induces up-regulation of interleukin-8 in synovial membranes. Similarly, *B. burgdorferi* induction of interleukin-8 production has been demonstrated in cultured human endothelial cells. Burns, M. et al., Infect. Immun. 65:1217-1222 (1997).

Antigenic heterogeneity has been postulated as a mechanism used by *B. burgdorferi* for evasion of host immune responses. Schwan, T. et al., Can. J. Microbiol. 37:450-454 (1991). In support of this mechanism, antigenic variation has been described with other pathogenic bacteria. Hagbloom, P. et al., Nature 315:156-158 (1985). Further, cassette type genetic recombination of genes encoding *B. burgdorferi* surface proteins has been shown to decrease the antigenicity of these organisms to antibodies generated against strains which have not undone the same recombination. Zhang, J. et al., Cell 89:275-285 (1997).

A number of different types of Lyme disease vaccines have been tested and shown to induce immunological responses. Whole-cell *B. burgdorferi* vaccines have been shown to induce both immunological responses and protective immunity in several animal models. Reviewed in Wormser, G., Clin. Infect. Dis. 21:1267-1274 (1995). For example, dogs inoculated with a chemically inactivated whole-cell vaccine primarily develop antibodies to outer surface membrane proteins of the administered organism. Further, passive immunity has been also demonstrated in animals using *B. burgdorferi* specific antisera. Similarly, passive immunity is conferred human by the administration of sera obtained from Lyme disease patients.

While whole-cell Lyme disease vaccines confer protective immunity in animal models, use of such vaccines presents the risk that responsive antibodies will be generated which cross react with human antigens. Reviewed in Wormser, G., supra. This problem is at least partly the result of the production of *B. burgdorferi* specific antibodies which cross-react with hepatocytes and both muscle and nerve cells. *B. burgdorferi* heat shock proteins and the 41-kd flagellin subunit are believed to contain the antigens against which these cross-reactive antibodies are generated.

It is clear that the etiology of diseases mediated or exacerbated by *B. burgdorferi* genes, and that characterizing the genes and their patterns of expression would add dramatically to our

10

15

20

25

30

35

understanding of the organism and its host interactions. Knowledge of *B. burgdorferi* genes and genomic organization would dramatically improve understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of *B. burgdorferi* would provide reagents for, among other things, detecting, characterizing and controlling *B. burgdorferi* infections. There is a need therefore to characterize the genome of *B. burgdorferi* and for polynucleotides and sequences of this organism.

3

SUMMARY OF THE INVENTION

The present invention is based on the sequencing of fragments of the *Borrelia burgdorferi* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS:1-155.

The present invention provides the complete nucleotide sequence of the *Borrelia burgdorferi* chromosome and 154 contigs representing the majority of the sequence of the B. burgdorferi extrachromosomal elements, all of which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS: 1-155.

The present invention further provides nucleotide sequences which are at least 95%, 96%, 97%, 98%, and 99%, identical to the nucleotide sequences of SEQ ID NOS:1-155, ORF IDs and corresponding ORFs.

The nucleotide sequences of SEQ ID NOS:1-155, ORF ID or ORF within, a representative fragment thereof, or a nucleotide sequence which is at least 95% identical to said nucleotide sequence may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.

The present invention further provides systems, particularly computer-based systems which contain the sequence information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the *Borrelia burgdorferi* genome.

Another embodiment of the present invention is directed to fragments of the *Borrelia* burgdorferi genome having particular structural or functional attributes. Such fragments of the *Borrelia burgdorferi* genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter referred to as open reading frames or ORFs, fragments which modulate the expression of an operably linked ORF, hereinafter referred to as expression

10

15

20

25

30

35

modulating fragments or EMFs, and fragments which can be used to diagnose the presence of *Borrelia burgdorferi* in a sample, hereinafter referred to as diagnostic fragments or DFs.

Each of the ORF IDs and ORFs in fragments of the *Borrelia burgdorferi* genome disclosed in Tables 1-6, and the EMFs found 5' prime of the initiation codon, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

The present invention further includes recombinant constructs comprising one or more fragments of the *Borrelia burgdorferi* genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Borrelia burgdorferi* has been inserted.

The present invention further provides host cells containing any of the isolated fragments of the *Borrelia burgdorferi* genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to isolated polypeptides and proteins encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention from cells which have been altered to express them.

The invention further provides methods of obtaining homologs of the fragments of the *Borrelia burgdorferi* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the above-described antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such

10

15

20

25

30

35

methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the DFs of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of bound antibodies or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a)contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b)determining whether the agent binds to said protein.

The present genomic sequences of *Borrelia burgdorferi* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Borrelia burgdorferi* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Borrelia burgdorferi* researchers and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

DESCRIPTION OF THE FIGURES

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the *Borrelia burgdorferi* genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage *et al.*, *Proceedings of the Twenty-Sixth*

10

15

20

25

30

35

Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Borrelia burgdorferi relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using Extrseq, a Unix utility for retrieving sequences from an SOL database. The resulting sequence file is processed to trim portions of the sequences with a high rate ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR) for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading frames (ORFs) is accomplished by processing contigs with zorf. The ORFs are searched against B. burgdorferi sequences from GenBank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-6.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention is based on the sequencing of fragments of the *Borrelia burgdorferi* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS: 1-155. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.) SEQ ID NOS:1-155

In addition, the present invention provides the nucleotide sequences of SEQ ID NOS: 1-155, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-155" refers to any portion of the SEQ ID NOS: 1-155 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Borrelia burgdorferi* open reading frames (ORFs) represented by ORF IDs, expression modulating fragments (EMFs) and diagnostic fragments (DFs)which can be used to diagnose the presence of *Borrelia burgdorferi* in sample. A non-limiting identification of preferred representative portions are provided in Tables 1-6 as ORF IDs. As discussed in detail below, the information provided in SEQ ID NOS:1-155 and in Tables 1-6 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including ORFs encoding a large variety of *Borrelia burgdorferi* proteins.

10

15

20

25

30

35

The present invention is further directed to nucleic acid molecules encoding portions or fragments of the nucleotide sequences described herein. Fragments include portions of the nucleotide sequences of Table 1-6 (ORF IDs) and SEQ ID NOS:1-155, at least 10 contiguous nucleotides in length selected from any two integers, one of which representing a 5' nucleotide position and a second of which representing a 3' nucleotide position, where the first nucleotide for each nucleotide sequence in SEQ ID NOS:1-155 is position 1 (therefore, the sequence postions for each ORF ID is determined by the numbering of the SEQ ID comprising the ORF ID). That is, every combination of a 5' and 3' nucleotide position that a fragment at least 10 contiguous nucleotides in length could occupy is included in the invention. At least means a fragment may be 10 contiguous nucleotide bases in length or any integer between 10 and the length of an entire nucleotide sequence of SEQ ID NOS:1-155 minus 1. Therefore, included in the invention are contiguous fragments specified by any 5' and 3' nucleotide base positions of a nucleotide sequences of SEQ ID NOS:1-155 wherein the contiguous fragment is any integer between 10 and the length of an entire nucleotide sequence minus 1.

Further, the invention includes polynucleotides comprising fragments specified by size, in nucleotides, rather than by nucleotide positions. The invention includes any fragment size, in contiguous nucleotides, selected from integers between 10 and the length of an entire ORF ID or SEQ ID NO:, minus 1. Preferred sizes of contiguous nucleotide fragments include 20 nucleotides, 30 nucleotides, 40 nucleotides, 50 nucleotides. Other preferred sizes of contiguous nucleotide fragments, which may be useful as diagnostic probes and primers, include fragments 50-300 nucleotides in length which include, as discussed above, fragment sizes representing each integer between 50-300. Larger fragments are also useful according to the present invention corresponding to most, if not all, of the nucleotide sequences shown in Tables 1-6 (ORF IDs) and SEQ ID NOS:1-155. The preferred sizes are, of course, meant to exemplify not limit the present invention as all size fragments, representing any integer between 10 and the length of an entire nucleotide sequence minus 1, of each ORF ID and SEQ ID NO:, are included in the invention.

The present invention also provides for the exclusion of any fragment, specified by 5' and 3' base positions or by size in nucleotide bases as described above for any ORF ID or SEQ ID NOS:1-155. Any number of fragments of nucleotide sequences in ORF IDs or SEQ ID NOS:1-155, specified by 5' and 3' base positions or by size in nucleotides, as described above, may be excluded from the present invention.

While the presently disclosed sequences of SEQ ID NOS: 1-155 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS: 1-155. However, once the present invention is made available (*i.e.*, once the information in SEQ ID NOS: 1-155 and Tables 1-6 has been made available), resolving a rare sequencing error in SEQ ID NOS: 1-155 will be well within the skill

15

20

25

30

35

of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS: 1-155 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS: 1-155.

As discussed elsewhere herein, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining libraries and for sequencing are provided below, for instance. A wide variety of *Borrelia burgdorferi* strains that can be used to prepare *B. burgdorferi* genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC). While the present invention is enabled by the sequences and other information herein disclosed, the *B. burgdorferi* strain that provided the DNA of the present Sequence Listing, has been deposited with the ATCC, 10801 University Blvd. Manassas, VA 20110-2209, as Deposit No. 202012, on 8 August 1997. The ATCC Deposit is provided merely as a convenience to those of skill in the art. Reference to the deposit is not a waiver of any rights of the inventors or their assignees in the present subject matter.

The nucleotide sequences of the genomes from different strains of *Borrelia burgdorferi* differ somewhat. However, the nucleotide sequences of the genomes of all *Borrelia burgdorferi* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS: 1-155 and the ORF IDs within. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

The present application is further directed to nucleic acid molecules at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence shown in SEQ ID NOS: 1-155 and the ORF IDs within. The above nucleic acid sequences are included irrespective of whether they encode a polypeptide having *B. burgdorferi* activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having *B. burgdorferi* activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having *B. burgdorferi* activity include, *inter alia*, isolating a *B. burgdorferi* gene or allelic variants thereof from a DNA library, and detecting *B. burgdorferi* mRNA expression from

10

15

20

25

30

35

biological or environmental samples, suspected of containing *B. burgdorferi* by Northern Blot, PCR, or similar analysis.

Preferred, are nucleic acid molecules having sequences at least 90%, 95%, 96%, 97%, 98% or 99% identical to the nucleic acid sequence shown in SEQ ID NOS: 1-155, the ORF IDs, and the ORF within each ORF ID, which do, in fact, encode a polypeptide having *B. burgdorferi* protein activity. By "a polypeptide having *B. burgdorferi* activity" is intended polypeptides exhibiting activity similar, but not necessarily identical, to an activity of the *B. burgdorferi* protein of the invention, as measured in a particular biological assay suitable for measuring activity of the specified protein.

Due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to the nucleic acid sequences shown in SEQ ID NOS: 1-155, the ORF IDs, and the ORF within each ORF ID, will encode a polypeptide having *B. burgdorferi* protein activity. In fact, since degenerate variants of these nucleotide sequences all encode the same polypeptide, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having *B. burgdorferi* protein activity. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid), as further described below.

The biological activity or function of the polypeptides of the present invention are expected to be similar or identical to polypeptides from other bacteria that share a high degree of structural identity/similarity. Tables 1, 2, 4, and 5 lists accession numbers and descriptions for the closest matching sequences of polypeptides available through Genbank. It is therefore expected that the biological activity or function of the polypeptides of the present invention will be similar or identical to those polypeptides from other bacterial genuses, species, or strains listed in Tables 1, 2, 4, and 5.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the *B. burgdorferi* polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted, inserted, or substituted with another nucleotide. The query sequence may be an entire sequence shown in SEQ ID NOS: 1-155, an ORF ID, or the ORF within each ORF ID, or any fragment specified as described herein.

As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the presence invention can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. See Brutlag et al. (1990) Comp. App. Biosci. 6:237-245. In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by first converting U's to T's. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only nucleotides outside the 5' and 3' nucleotides of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.

For example, a 90 nucleotide subject sequence is aligned to a 100 nucleotide query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/alignment of the first 10 nucleotides at 5' end. The 10 unpaired nucleotides represent 10% of the sequence (number of nucleotides at the 5' and 3' ends not matched/total number of nucleotides in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 nucleotides were perfectly matched the final percent identity would be 90%. In another example, a 90 nucleotide subject sequence is compared with a 100 nucleotide query sequence. This time the deletions are internal deletions so that there are no nucleotides on the 5' or 3' of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only nucleotides 5' and 3' of the

10

15

20

25

30

35

subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to made for the purposes of the present invention.

COMPUTER RELATED EMBODIMENTS

The nucleotide sequences provided in SEQ ID NOS: 1-155, including ORF IDs and corresponding ORFs, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 96%, 97%, 98% or 99%, and most preferably at least 99.9% identical to said nucleotide sequences may be "provided" in a variety of mediums to facilitate use thereof. As used herein, provided refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of the present invention. Such a manufacture provides a large portion of the *Borrelia burgdorferi* genome and parts thereof (*e.g.*, a *Borrelia burgdorferi* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the *Borrelia burgdorferi* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD- ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase,

10

15

20

25

30

35

Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of the present invention (e.g. SEQ ID NOS: 1-155), a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 96%, 97%, 98%, 99% and most preferably at least 99.9% identical to a sequence of the present invention (e.g. SEQ ID NOS: 1-155) enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the Borrelia burgdorferi genome which contain homology to ORFs or proteins from both Borrelia burgdorferi and from other organisms. Among the ORFs discussed herein are protein encoding fragments of the Borrelia burgdorferi genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Borrelia burgdorferi* genome.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of

10

15

20

25

30

35

commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Borrelia burgdorferi* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the *Borrelia burgdorferi* genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul *et al.*, *J. Mol. Biol. 215:* 403-410 (1990), is used to identify open reading frames within the *Borrelia burgdorferi* genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device

10

15

20

25

30

35

114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for accessing and processing the genomic sequence (such as search tools, comparing tools, *etc.*) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

BIOCHEMICAL EMBODIMENTS

Other embodiments of the present invention are directed to isolated fragments of the *Borrelia burgdorferi* genome. The fragments of the *Borrelia burgdorferi* genome of the present invention include, but are not limited to fragments which encode peptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Borrelia burgdorferi* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Borrelia burgdorferi* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS: 1-155, to representative fragments thereof as described above including ORF IDs and ORFs, to polynucleotides at least 95%, preferably at least 96%, 97%, 98%, or 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generate the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, *Borrelia burgdorferi* DNA can be enzymatically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate a *Borrelia burgdorferi* library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-6 can then be generated using nucleotide sequence information provided in SEQ ID NOS: 1-155. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library or *Borrelia burgdorferi* genomic DNA. Thus, given the availability of SEQ ID NOS:1-

10

15

20

25

30

35

155, the information in Tables 1-6, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-155 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA. For purposes of numbering and reference to polynucleotide and polypeptide sequences the entire sequence of each sequence of SEQ ID NOS:1-155 is included with the first nucleotide being position 1. Therefore, for reference purposes the numbering used in the present invention is that provided in the sequence listing for SEQ ID NOS:1-155.

As used herein, an open reading frame (ORF), means a series of nucleotide triplets coding for amino acid residues without any termination codons and is a sequence translatable into protein. Further, unless specified, the term "ORF" for each ORF ID is defined by the termination codon at the 3' end and the 5' most methionine codon, at the 5' end, in frame with said 3' termination codon. Unless specified, the term "ORF" also refers to a particular polypeptide sequence defined by the ORF polynucleotide sequence, wherein the N-terminus is defined by the 5' most methionine codon in frame with the termination codon at the 3' end of the ORF ID and the C-terminus is defined by the last codon before the said 3' termination codon. As used herein, an ORF ID represents a sequence without any internal termination codons flanked by termination codons.

Tables 1-6 list ORF IDs in the *Borrelia burgdorferi* genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive, or more selective lists.

The *B. burgdorferi* genome consists of one large linear chromosome containing approximately two thirds of its genetic material and multiple extrachromosomal elements (approximately 15) containing the remaining one third of its genetic material. SEQ ID NO:1 (Contig ID 1) is the complete sequence of the large linear *B. burgdorferi* chromosome. SEQ ID NOS:2-155 (Contig ID 2-155 respectively) are fragments (contigs) of the extrachromosomal elements. Tables 1-3 below relate only to SEQ ID NO:1. Tables 4-6 relate to the extrachromosomal elements (SEQ ID NOS:2-155).

Table 1 sets out ORF IDs in the *Borrelia burgdorferi* chromosome of the present invention that cover a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis using default parameters) to a nucleotide sequence available through GenBank in July, 1997.

Table 2 sets out ORF IDs in the *Borrelia burgdorferi* chromosome of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in July, 1997.

10

15

20

25

30

35

Table 3 sets out ORF IDs in the *Borrelia burgdorferi* chromosome of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in July, 1997.

Table 4 sets out ORF IDs in the *Borrelia burgdorferi* extrachromosomal element contigs of the present invention that over a continuous region of at least 50 bases are 95% or more identical (by BLAST analysis) to a nucleotide sequence available through GenBank in July, 1997.

Table 5 sets out ORF IDs in the *Borrelia burgdorferi* extrachromosomal element contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through GenBank in July, 1997.

Table 6 sets out ORF IDs in the *Borrelia burgdorferi* extrachromosomal element contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through GenBank in July, 1997.

In each table, the first and second columns identify the ORF ID by, respectively, contig number and ORF ID number within the contig; the third column indicates the first nucleotide of the ORF ID, counting from the 5' end of the contig strand; and the fourth column indicates the last nucleotide of the ORF ID, counting from the 5' end of the contig strand.

In Tables 1, 2, 4 and 5, column five, lists the Reference for the closest matching sequence available through GenBank. These reference numbers are the database accession numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the nomenclature are available from the National Center for Biotechnology Information. Column seven provides the BLAST identity score from the comparison of the ORF ID and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair identified by the BLAST identity analysis.

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions 1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). As is known in the art, substitution of one amino acid for a "similar" amino acid is a conservative substitution. Generally, proteins are highly tolerant of conservative substitutions. Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list percent identity of a matching region as an output parameter. Thus, for instance, Tables 1, 2, 4 and 5 herein enumerate the percent identity and similarity of the highest scoring segment pair in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

10

15

20

25

30

35

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Borrelia burgdorferi* genome other than those listed in Tables 1-6, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the *Borrelia burgdorferi* genome by their proximity to the ORFs provided in Tables 1-6. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-6 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the *Borrelia burgdorferi* genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below. A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Borrelia burgdorferi* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Borrelia burgdorferi* genome, such as by using well-known computer analysis software, and by generating and testing probes or

10

15

20

25

30

35

amplification primers consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-155, ORF IDs and ORFs within, a representative fragment thereof, or a nucleotide sequence at least 99% and preferably 99.9% identical to SEQ ID NOS: 1-155, ORF IDs and ORFs within, with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated.

Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (*i.e.*, sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of *Borrelia burgdorferi* origin isolated by using part or all of the fragments in question as a probe or primer.

Each of the ORF IDs and ORFs of the *Borrelia burgdorferi* genome disclosed in Tables 1-6, and the EMFs found 5' to the ORF IDs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particularly *Borrelia burgdorferi*. Especially preferred in this regard are ORF IDs and ORFs such as those of Tables 3 and 6, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for *Borrelia burgdorferi*. Also particularly preferred are ORF IDs and ORFs that can be used to distinguish between strains of *Borrelia burgdorferi*, particularly those that distinguish medically important strain, such as drug-resistant strains.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helixformation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991). Antisense techniques in general are discussed in, for instance, Okano,

10

15

20

25

30

35

J. Neurochem. 56:560 (1991) and Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Borrelia burgdorferi* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Borrelia burgdorferi* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORF IDs or ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF ID or ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF ID or ORF operably linked to the EMF.

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK, pBS KS, pNH8a, pNH16a, pNH18a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia); pQE vectors (available from Promega). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG (available from Stratagene) pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Borrelia burgdorferi* genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. et al., BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the *Borrelia burgdorferi* genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

10

15

20

25

30

35

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORF IDs depicted in Tables 2, 3, 5 and 6, and ORFs witin, which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polypeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography.

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of the *B. burgdorferi* polypeptide can be substantially purified by the one-step method described by Smith et al. (1988) Gene 67:31-40. Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies directed against the polypeptides of the invention in methods which are well known in the art of protein purification.

The invention further provides for isolated *B. burgdorferi* polypeptides comprising an amino acid sequence selected from the group including: (a) the amino acid sequence of a full-length *B. burgdorferi* polypeptide having the complete amino acid sequence from the first methionine codon to the termination codon of each sequence listed in SEQ ID NOS:1-155, wherein said termination codon is at the end of each SEQ ID NO: and said first methionine is the

10

15

20

25

30

35

first methionine in frame with said termination codon; and (b) the amino acid sequence of a full-length *B. burgdorferi* polypeptide having the complete amino acid sequence in (a) excepting the N-terminal methionine.

The polypeptides of the present invention also include polypeptides having an amino acid sequence at least 80% identical, more preferably at least 90% identical, and still more preferably 95%, 96%, 97%, 98% or 99% identical to those described in (a) and (b) above.

The present invention is further directed to polynucleotides encoding portions or fragments of the amino acid sequences described herein as well as to portions or fragments of the isolated amino acid sequences described herein. Fragments include portions of the amino acid sequences described herein at least 5 contiguous amino acid in length and selected from any two integers, one of which representing an N-terminal position and another representing a C-terminal position. The initiation codon of the ORFs of the present invention is position 1. The initiation codon (positon 1) for purposes of the present invention is the first methionine codon of each ORF ID which is in frame with the termination codon at the end of each said sequence. Every combination of a N-terminal and C-terminal position that a fragment at least 5 contiguous amino acid residues in length could occupy, on any given ORF is included in the invention, i.e., from initiation codon up to the termination codon. "At least" means a fragment may be 5 contiguous amino acid residues in length or any integer between 5 and the number of residues in an ORF, minus 1. Therefore, included in the invention are contiguous fragments specified by any Nterminal and C-terminal positions of amino acid sequence set forth in SEQ ID NOS:1-155 or Tables 1-6 wherein the contiguous fragment is any integer between 5 and the number of residues in an ORF minus 1.

Further, the invention includes polypeptides comprising fragments specified by size, in amino acid residues, rather than by N-terminal and C-terminal positions. The invention includes any fragment size, in contiguous amino acid residues, selected from integers between 5 and the number of residues in an ORF, minus 1. Preferred sizes of contiguous polypeptide fragments include about 5 amino acid residues, about 10 amino acid residues, about 20 amino acid residues, about 30 amino acid residues, about 40 amino acid residues, about 50 amino acid residues, about 100 amino acid residues, about 200 amino acid residues, about 300 amino acid residues, and about 400 amino acid residues. The preferred sizes are, of course, meant to exemplify, not limit, the present invention as all size fragments representing any integer between 5 and the number of residues in a full length sequence minus 1 are included in the invention. The present invention also provides for the exclusion of any fragments specified by N-terminal and C-terminal positions or by size in amino acid residues as described above. Any number of fragments specified by N-terminal and C-terminal positions or by size in amino acid residues as described above may be excluded.

The above fragments need not be active since they would be useful, for example, in immunoassays, in epitope mapping, epitope tagging, to generate antibodies to a particular portion of the protein, as vaccines, and as molecular weight markers.

10

15

20

25

30

35

Further polypeptides of the present invention include polypeptides which have at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98% or 99% similarity to those described above.

A further embodiment of the invention relates to a polypeptide which comprises the amino acid sequence of a *B. burgdorferi* polypeptide having an amino acid sequence which contains at least one conservative amino acid substitution, but not more than 50 conservative amino acid substitutions, not more than 40 conservative amino acid substitutions, not more than 30 conservative amino acid substitutions, and not more than 20 conservative amino acid substitutions. Also provided are polypeptides which comprise the amino acid sequence of a *B. burgdorferi* polypeptide, having at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 conservative amino acid substitutions.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

As a practical matter, whether any particular polypeptide is at least 90%, 95%, 96%, 97%, 98% or 99% identical to the ORF amino acid sequences encoded by the sequences of SEQ ID NOS:1-155, as described hererin, can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al., (1990) Comp. App. Biosci. 6:237-245. In a sequence alignment the query and subject sequences are both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB amino acid alignment are:

Matrix=PAM 0, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.

If the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, the results, in percent identity, must be manually corrected. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject

10

15

20

25

30

35

sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query amino acid residues outside the farthest N- and C-terminal residues of the subject sequence.

For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not match/align with the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal so there are no residues at the N- or C-termini of the subject sequence which are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C-terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequence are manually corrected. No other manual corrections are to made for the purposes of the present invention.

The above polypeptide sequences are included irrespective of whether they have their

normal biological activity. This is because even where a particular polypeptide molecule does not have biological activity, one of skill in the art would still know how to use the polypeptide, for instance, as a vaccine or to generate antibodies. Other uses of the polypeptides of the present invention that do not have *B. burgdorferi* activity include, *inter alia*, as epitope tags, in epitope mapping, and as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods known to those of skill in the art.

As described below, the polypeptides of the present invention can also be used to raise polyclonal and monoclonal antibodies, which are useful in assays for detecting *B. burgdorferi* protein expression or as agonists and antagonists capable of enhancing or inhibiting *B. burgdorferi* protein function. Further, such polypeptides can be used in the yeast two-hybrid system to "capture" *B. burgdorferi* protein binding proteins which are also candidate agonists and antagonists according to the present invention. *See, e.g.*, Fields et al. (1989) Nature 340:245-246.

10

15

20

25

30

35

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

24

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial"defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Borrelia burgdorferi* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancer and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokaryotic or eukaryotic. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to

10

15

20

25

30

35

produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3- phosphoglycerate kinase (PGK), alpha-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of *E. coli*, *B. subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas* and *Streptomyces*. Others may, also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney

10

15

20

25

30

35

fibroblasts, described in Gluzman, Cell 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. Particularly preferred in this regard are conservative substitutions, known to those of skill in the art. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence (e.g., removal of leader sequence(s)) should be disregarded.

The invention further provides methods of obtaining homologs from other strains of Borrelia burgdorferi, of the fragments of the Borrelia burgdorferi genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Borrelia burgdorferi is defined as a homolog of a fragment of the Borrelia burgdorferi fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Borrelia burgdorferi genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which possess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 95% or more homology. Among especially

10

15

20

25

30

35

preferred homologs those with 96, 97%, 98%, 99% or more homology are particularly preferred. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS: 1-155 or from a nucleotide sequence at least 95%, particularly at least 96%, 97%, 98% or 99%, especially at least 99.5% identical to a sequence of SEQ ID NOS: 1-155 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis et al., PCR Protocols, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS: 1-155 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-155, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-155, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS: 1-155, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacteria which are closely related to *Borrelia burgdorferi*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF of the ORF IDs provided in Tables 1, 2, 4 and 5 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the polypeptide. Such identifications permit one skilled in the art to use the *Borrelia burgdorferi* ORFs in a manner similar to the known type

15

20

25

30

35

of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., MacMillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper *et al.*, Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Borrelia burgdorferi* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-6 and SEQ ID NOS:1-155.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al., Symbiosis 21:79 (1986) and Voragen et al. in Biocatalysts In Agricultural Biotechnology, Whitaker et al., Eds., American Chemical Society Symposium Series 389:93 (1989).

The metabolism of sugars is an important aspect of the primary metabolism of *Borrelia burgdorferi*. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger *et al.*, *Biotechnology* <u>6(A)</u>, Rhine *et al.*, Eds., Verlag Press, Weinheim, Germany (1984).

10

15

20

25

30

35

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1:21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872:83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger et al., Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman *et al.*, Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey *et al.*, Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner *et al.*, Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae et al., Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton,

10

15

20

25

30

35

Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists: hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other hand, has been described in detail by Bud *et al.*, Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology 136*:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination.

2. Generation of Antibodies

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety of procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein.

B. burgdorferi protein-specific antibodies for use in the present invention can be raised against the intact B. burgdorferi protein or an antigenic polypeptide fragment thereof, which may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier.

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules, single chain whole antibodies, and antibody fragments. Antibody fragments of the present invention include Fab and F(ab')2 and other fragments including single-chain Fvs (scFv) and disulfide-linked Fvs (sdFv). Also included in the present invention are chimeric and humanized monoclonal antibodies and polyclonal antibodies specific for the polypeptides of the present invention. The antibodies of the present invention may be prepared by any of a variety of methods. For example, cells expressing a polypeptide of the present invention or an antigenic fragment thereof can be administered to an animal in order to induce the production of sera containing polyclonal antibodies. For example, a preparation of *B. burgdorferi* polypeptide or fragment thereof is prepared and purified to render it substantially free

10

15

20

25

30

35

of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In a preferred method, the antibodies of the present invention are monoclonal antibodies or binding fragments thereof. Such monoclonal antibodies can be prepared using hybridoma technology. *See, e.g.*, Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: MONOCLONAL ANTIBODIES AND T-CELL HYBRIDOMAS 563-681 (Elsevier, N.Y., 1981). Fab and F(ab')2 fragments may be produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, *B. burgdorferi* polypeptide-binding fragments, chimeric, and humanized antibodies can be produced through the application of recombinant DNA technology or through synthetic chemistry using methods known in the art.

Alternatively, additional antibodies capable of binding to the polypeptide antigen of the present invention may be produced in a two-step procedure through the use of anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and that, therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, *B. burgdorferi* polypeptide-specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the *B. burgdorferi* polypeptide-specific antibody can be blocked by the *B. burgdorferi* polypeptide antigen. Such antibodies comprise anti-idiotypic antibodies to the *B. burgdorferi* polypeptide-specific antibody and can be used to immunize an animal to induce formation of further *B. burgdorferi* polypeptide-specific antibodies.

Antibodies and fragements thereof of the present invention may be described by the portion of a polypeptide of the present invention recognized or specifically bound by the antibody. Antibody binding fragements of a polypeptide of the present invention may be described or specified in the same manner as for polypeptide fragements discussed above., i.e, by N-terminal and C-terminal positions or by size in contiguous amino acid residues. Any number of antibody binding fragments, of a polypeptide of the present invention, specified by N-terminal and C-terminal positions or by size in amino acid residues, as described above, may also be excluded from the present invention. Therefore, the present invention includes antibodies the specifically bind a particuarlly discribed fragement of a polypeptide of the present invention and allows for the exclusion of the same.

Antibodies and fragements thereof of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies and fragements that do not bind polypeptides of any other species of *Borrelia* other than *B. burgdorferi* are included in the present invention. Likewise, antibodies and fragements that bind only species of *Borrelia*, i.e. antibodies and fragements that do not bind bacteria from any genus other than *Borrelia*, are included in the present invention.

10

15

20

25

30

35

3. Epitope-Bearing Portions

In another aspect, the invention provides peptides and polypeptides comprising epitope-bearing portions of the *B. burgdorferi* polypeptides of the present invention. These epitopes are immunogenic or antigenic epitopes of the polypeptides of the present invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein or polypeptide is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic determinant" or "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. *See, e.g.,* Geysen, et al. (1983) Proc. Natl. Acad. Sci. USA 81:3998- 4002. Amino acid residues comprising anigenic epitopes may be determined by algorithms such as the the Jameson-Wolf analysis or similar algorithms or by *in vivo* testing for an antigenic response using the methods described herein or those known in the art.

As to the selection of peptides or polypeptides bearing an antigenic epitope (*i.e.*, that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. *See*, *e.g.*, Sutcliffe, et al., (1983) Science 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (*i.e.*, immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, peptides, especially those containing proline residues, usually are effective. *See*, Sutcliffe, et al., *supra*, p. 661. For instance, 18 of 20 peptides designed according to these guidelines, containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HA1 polypeptide chain, induced antibodies that reacted with the HA1 protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.

Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. Thus, a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an antigen epitope-bearing peptide generally secrete antibody reactive with the native protein. *See* Sutcliffe, et al., *supra*, p. 663. The antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational processing. The peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (*e.g.*, about 9 amino acids)

10

15

20

25

30

35

can bind and displace the larger peptides in immunoprecipitation assays. See, e.g., Wilson, et al., (1984) Cell 37:767-778. The anti-peptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods known in the art.

Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 10 to about 50 amino acids (i.e. any integer between 7 and 50) contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 50 to about 100 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.

The epitope-bearing peptides and polypeptides of the present invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, an epitope-bearing amino acid sequence of the present invention may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis. For instance, Houghten has described a simple method for synthesis of large numbers of peptides, such as 10-20 mg of 248 different 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks (Houghten, R. A. Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985)). This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten and coworkers (1986). In this procedure the individual resins for the solid-phase synthesis of various peptides are contained in separate solvent-permeable packets, enabling the optimal use of the many identical repetitive steps involved in solid-phase methods. A completely manual procedure allows 500-1000 or more syntheses to be conducted simultaneously (Houghten et al. (1985) Proc. Natl. Acad. Sci. 82:5131-5135 at 5134.

Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, e.g., Sutcliffe, et al., supra;; Wilson, et al., supra;; and Bittle, et al. (1985) J. Gen. Virol. 66:2347-2354. Generally, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine may be coupled to carrier using a linker such

10

15

20

25

30

35

as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 µg peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance, Geysen, et al., supra, discloses a procedure for rapid concurrent synthesis on solid supports of hundreds of peptides of sufficient purity to react in an ELISA. Interaction of synthesized peptides with antibodies is then easily detected without removing them from the support. In this manner a peptide bearing an immunogenic epitope of a desired protein may be identified routinely by one of ordinary skill in the art. For instance, the immunologically important epitope in the coat protein of foot-and-mouth disease virus was located by Geysen et al. supra with a resolution of seven amino acids by synthesis of an overlapping set of all 208 possible hexapeptides covering the entire 213 amino acid sequence of the protein. Then, a complete replacement set of peptides in which all 20 amino acids were substituted in turn at every position within the epitope were synthesized, and the particular amino acids conferring specificity for the reaction with antibody were determined. Thus, peptide analogs of the epitope-bearing peptides of the invention can be made routinely by this method. U.S. Patent No. 4,708,781 to Geysen (1987) further describes this method of identifying a peptide bearing an immunogenic epitope of a desired protein.

Further still, U.S. Patent No. 5,194,392, to Geysen (1990), describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (*i.e.*, a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092, also to Geysen (1989), describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. *et al.* (1996) discloses linear C₁-C₇-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods. The entire disclosure of each document cited in this section on "Polypeptides and Fragments" is

10

15

20

25

30

35

hereby incorporated herein by reference.

As one of skill in the art will appreciate, the polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life *in vivo*. This has been shown, *e.g.*, for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EPA 0,394,827; Traunecker et al. (1988) Nature 331:84-86. Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than a monomeric *B. burgdorferi* polypeptide or fragment thereof alone. *See* Fountoulakis et al. (1995) J. Biochem. 270:3958-3964. Nucleic acids encoding the above epitopes of *B. burgdorferi* polypeptides can also be recombined with a gene of interest as an epitope tag to aid in detection and purification of the expressed polypeptide.

35

4. Diagnostic Assays and Kits

The present invention further relates to methods for assaying Borrelia infection in an animal by detecting the expression of genes encoding Borrelia polypeptides of the present invention. The methods comprise analyzing tissue or body fluid from the animal for *Borrelia*-specific antibodies, nucleic acids, or proteins. Analysis of nucleic acid specific to *Borrelia* is assayed by PCR or hybridization techniques using nucleic acid sequences of the present invention as either hybridization probes or primers. *See, e.g.,* Sambrook et al. Molecular cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed., 1989, page 54 reference); Eremeeva et al. (1994) J. Clin. Microbiol. 32:803-810 (describing differentiation among spotted fever group *Rickettsiae* species by analysis of restriction fragment length polymorphism of PCR-amplified DNA) and Chen et al. 1994 J. Clin. Microbiol. 32:589-595 (detecting *B burgdorferi* nucleic acids *via* PCR).

Where diagnosis of a disease state related to infection with *Borrelia* has already been made, the present invention is useful for monitoring progression or regression of the disease state whereby patients exhibiting enhanced *Borrelia* gene expression will experience a worse clinical outcome relative to patients expressing these gene(s) at a lower level.

By "biological sample" is intended any biological sample obtained from an animal, cell line, tissue culture, or other source which contains *Borrelia* polypeptide, mRNA, or DNA. Biological samples include body fluids (such as saliva, blood, plasma, urine, mucus, synovial fluid, etc.) tissues (such as muscle, skin, and cartilage) and any other biological source suspected of containing *Borrelia* polypeptides or nucleic acids. Methods for obtaining biological samples such as tissue are well known in the art.

The present invention is useful for detecting diseases related to *Borrelia* infections in animals. Preferred animals include monkeys, apes, cats, dogs, birds, cows, pigs, mice, horses, rabbits and humans. Particularly preferred are humans.

10

15

20

25

30

35

Total RNA can be isolated from a biological sample using any suitable technique such as the single-step guanidinium-thiocyanate-phenol-chloroform method described in Chomczynski et al. (1987) Anal. Biochem. 162:156-159. mRNA encoding *Borrelia* polypeptides having sufficient homology to the nucleic acid sequences identified in SEQ ID NOS:1-155 to allow for hybridization between complementary sequences are then assayed using any appropriate method. These include Northern blot analysis, S1 nuclease mapping, the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction (RT-PCR), and reverse transcription in combination with the ligase chain reaction (RT-LCR).

Northern blot analysis can be performed as described in Harada et al. (1990) Cell 63:303-312. Briefly, total RNA is prepared from a biological sample as described above. For the Northern blot, the RNA is denatured in an appropriate buffer (such as glyoxal/dimethyl sulfoxide/sodium phosphate buffer), subjected to agarose gel electrophoresis, and transferred onto a nitrocellulose filter. After the RNAs have been linked to the filter by a UV linker, the filter is prehybridized in a solution containing formamide, SSC, Denhardt's solution, denatured salmon sperm, SDS, and sodium phosphate buffer. A *B. burgdorferi* polynucleotide sequence shown in SEQ ID NOS:1-155 labeled according to any appropriate method (such as the ³²P-multiprimed DNA labeling system (Amersham)) is used as probe. After hybridization overnight, the filter is washed and exposed to x-ray film. DNA for use as probe according to the present invention is described in the sections above and will preferably at least 15 nucleotides in length.

S1 mapping can be performed as described in Fujita et al. (1987) Cell 49:357-367. To prepare probe DNA for use in S1 mapping, the sense strand of an above-described *B. burgdorferi* DNA sequence of the present invention is used as a template to synthesize labeled antisense DNA. The antisense DNA can then be digested using an appropriate restriction endonuclease to generate further DNA probes of a desired length. Such antisense probes are useful for visualizing protected bands corresponding to the target mRNA (*i.e.*, mRNA encoding *Borrelia* polypeptides).

Levels of mRNA encoding *Borrelia* polypeptides are assayed, for *e.g.*, using the RT-PCR method described in Makino et al. (1990) Technique 2:295-301. By this method, the radioactivities of the "amplicons" in the polyacrylamide gel bands are linearly related to the initial concentration of the target mRNA. Briefly, this method involves adding total RNA isolated from a biological sample in a reaction mixture containing a RT primer and appropriate buffer. After incubating for primer annealing, the mixture can be supplemented with a RT buffer, dNTPs, DTT, RNase inhibitor and reverse transcriptase. After incubation to achieve reverse transcription of the RNA, the RT products are then subject to PCR using labeled primers. Alternatively, rather than labeling the primers, a labeled dNTP can be included in the PCR reaction mixture. PCR amplification can be performed in a DNA thermal cycler according to conventional techniques. After a suitable number of rounds to achieve amplification, the PCR reaction mixture is electrophoresed on a polyacrylamide gel. After drying the gel, the radioactivity of the appropriate

10

15

20

25

bands (corresponding to the mRNA encoding the *Borrelia* polypeptides of the present invention) are quantified using an imaging analyzer. RT and PCR reaction ingredients and conditions, reagent and gel concentrations, and labeling methods are well known in the art. Variations on the RT-PCR method will be apparent to the skilled artisan. Other PCR methods that can detect the nucleic acid of the present invention can be found in PCR PRIMER: A LABORATORY MANUAL (C.W. Dieffenbach et al. eds., Cold Spring Harbor Lab Press, 1995).

The polynucleotides of the present invention, including both DNA and RNA, may be used to detect polynucleotides of the present invention or Borrelia species including B. burgdorferi using bio chip technology. The present invention includes both high density chip arrays (>1000 oligonucleotides per cm²) and low density chip arrays (<1000 oligonucleotides per cm²). Bio chips comprising arrays of polynucleotides of the present invention may be used to detect Borrelia species, including B. burgdorferi, in biological and environmental samples and to diagnose an animal, including humans, with an B. burgdorferi or other Borrelia infection. The bio chips of the present invention may comprise polynucleotide sequences of other pathogens including bacteria, viral, parasitic, and fungal polynucleotide sequences, in addition to the polynucleotide sequences of the present invention, for use in rapid diffenertial pathogenic detection and diagnosis. The bio chips can also be used to monitor an B. burgdorferi or other Borrelia infections and to monitor the genetic changes (deletions, insertions, mismatches, etc.) in response to drug therapy in the clinic and drug development in the laboratory. The bio chip technology comprising arrays of polynucleotides of the present invention may also be used to simultaneously monitor the expression of a multiplicity of genes, including those of the present invention. The polynucleotides used to comprise a selected array may be specified in the same manner as for the fragements, i.e, by their 5' and 3' positions or length in contigious base pairs and include from. Methods and particular uses of the polynucleotides of the present invention to detect Borrelia species, including B. burgdorferi, using bio chip technology include those known in the art and those of: U.S. Patent Nos. 5510270, 5545531, 5445934, 5677195, 5532128, 5556752, 5527681, 5451683, 5424186, 5607646, 5658732 and World Patent Nos. WO/9710365, WO/9511995, WO/9743447, WO/9535505, each incorporated herein in their entireties.

Biosensors using the polynucleotides of the present invention may also be used to detect, diagnose, and monitor *B. burgdorferi* or other Borrelia species and infections thereof. Biosensors using the polynucleotides of the present invention may also be used to detect particular polynucleotides of the present invention. Biosensors using the polynucleotides of the present invention may also be used to monitor the genetic changes (deletions, insertions, mismatches, etc.) in response to drug therapy in the clinic and drug development in the laboratory. Methods and particular uses of the polynucleotides of the present invention to detect Borrelia species, including *B. burgdorferi*, using biosenors include those known in the art and those of: U.S. Patent Nos 5721102, 5658732, 5631170, and World Patent Nos. WO97/35011, WO/9720203, each incorporated herein in their entireties.

10

15

20

25

30

35

Thus, the present invention includes both bio chips and biosensors comprising polynucleotides of the present invention and methods of their use.

Assaying *Borrelia* polypeptide levels in a biological sample can occur using any art-known method, such as antibody-based techniques. For example, *Borrelia* polypeptide expression in tissues can be studied with classical immunohistological methods. In these, the specific recognition is provided by the primary antibody (polyclonal or monoclonal) but the secondary detection system can utilize fluorescent, enzyme, or other conjugated secondary antibodies. As a result, an immunohistological staining of tissue section for pathological examination is obtained. Tissues can also be extracted, *e.g.*, with urea and neutral detergent, for the liberation of *Borrelia* polypeptides for Western-blot or dot/slot assay. *See*, *e.g.*, Jalkanen, M. et al. (1985) J. Cell. Biol. 101:976-985; Jalkanen, M. et al. (1987) J. Cell . Biol. 105:3087-3096. In this technique, which is based on the use of cationic solid phases, quantitation of a *Borrelia* polypeptide can be accomplished using an isolated *Borrelia* polypeptide as a standard. This technique can also be applied to body fluids.

Other antibody-based methods useful for detecting *Borrelia* polypeptide gene expression include immunoassays, such as the ELISA and the radioimmunoassay (RIA). For example, a *Borrelia* polypeptide-specific monoclonal antibodies can be used both as an immunoabsorbent and as an enzyme-labeled probe to detect and quantify a *Borrelia* polypeptide. The amount of a *Borrelia* polypeptide present in the sample can be calculated by reference to the amount present in a standard preparation using a linear regression computer algorithm. Such an ELISA is described in Iacobelli et al. (1988) Breast Cancer Research and Treatment 11:19-30. In another ELISA assay, two distinct specific monoclonal antibodies can be used to detect *Borrelia* polypeptides in a body fluid. In this assay, one of the antibodies is used as the immunoabsorbent and the other as the enzyme-labeled probe.

The above techniques may be conducted essentially as a "one-step" or "two-step" assay. The "one-step" assay involves contacting the *Borrelia* polypeptide with immobilized antibody and, without washing, contacting the mixture with the labeled antibody. The "two-step" assay involves washing before contacting the mixture with the labeled antibody. Other conventional methods may also be employed as suitable. It is usually desirable to immobilize one component of the assay system on a support, thereby allowing other components of the system to be brought into contact with the component and readily removed from the sample. Variations of the above and other immunological methods included in the present invention can also be found in Harlow et al., ANTIBODIES: A LABORATORY MANUAL, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988).

Suitable enzyme labels include, for example, those from the oxidase group, which catalyze the production of hydrogen peroxide by reacting with substrate. Glucose oxidase is particularly preferred as it has good stability and its substrate (glucose) is readily available. Activity of an oxidase label may be assayed by measuring the concentration of hydrogen peroxide formed by the enzyme-labeled antibody/substrate reaction. Besides enzymes, other suitable

20

25

30

35

labels include radioisotopes, such as iodine (¹²⁵I, ¹²¹I), carbon (¹⁴C), sulphur (³⁵S), tritium (³H), indium (¹¹²In), and technetium (^{99m}Tc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

Further suitable labels for the *Borrelia* polypeptide-specific antibodies of the present invention are provided below. Examples of suitable enzyme labels include malate dehydrogenase, Borrelia nuclease, delta-5-steroid isomerase, yeast-alcohol dehydrogenase, alpha-glycerol phosphate dehydrogenase, triose phosphate isomerase, peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholine esterase.

Examples of suitable radioisotopic labels include ³H, ¹¹¹In, ¹²⁵I, ¹³¹I, ³²P, ³⁵S, ¹⁴C, ⁵¹Cr, ⁵⁷To, ⁵⁸Co, ⁵⁹Fe, ⁷⁵Se, ¹⁵²Eu, ⁹⁰Y, ⁶⁷Cu, ²¹⁷Ci, ²¹¹At, ²¹²Pb, ⁴⁷Sc, ¹⁰⁹Pd, etc. ¹¹¹In is a preferred isotope where *in vivo* imaging is used since its avoids the problem of dehalogenation of the ¹²⁵I or ¹³¹I-labeled monoclonal antibody by the liver. In addition, this radionucleotide has a more favorable gamma emission energy for imaging. *See, e.g.*, Perkins et al. (1985) Eur. J. Nucl.

Med. 10:296-301; Carasquillo et al. (1987) J. Nucl. Med. 28:281-287. For example, ¹¹¹In coupled to monoclonal antibodies with 1-(P-isothiocyanatobenzyl)-DPTA has shown little uptake in non-tumors tissues, particularly the liver, and therefore enhances specificity of tumor localization. See, Esteban et al. (1987) J. Nucl. Med. 28:861-870.

Examples of suitable non-radioactive isotopic labels include ¹⁵⁷Gd, ⁵⁵Mn, ¹⁶²Dy, ⁵²Tr, and ⁵⁶Fe.

Examples of suitable fluorescent labels include an ¹⁵²Eu label, a fluorescein label, an isothiocyanate label, a rhodamine label, a phycocrythrin label, a phycocyanin label, an allophycocyanin label, an o-phthaldehyde label, and a fluorescamine label.

Examples of suitable toxin labels include, *Pseudomonas* toxin, diphtheria toxin, ricin, and cholera toxin.

Examples of chemiluminescent labels include a luminal label, an isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridinium salt label, an oxalate ester label, a luciferin label, a luciferase label, and an aequorin label.

Examples of nuclear magnetic resonance contrasting agents include heavy metal nuclei such as Gd, Mn, and iron.

Typical techniques for binding the above-described labels to antibodies are provided by Kennedy et al. (1976) Clin. Chim. Acta 70:1-31, and Schurs et al. (1977) Clin. Chim. Acta 81:1-40. Coupling techniques mentioned in the latter are the glutaraldehyde method, the periodate method, the dimaleimide method, the m-maleimidobenzyl-N-hydroxy-succinimide ester method, all of which methods are incorporated by reference herein.

In a related aspect, the invention includes a diagnostic kit for use in screening serum containing antibodies specific against *B. burgdorferi* infection. Such a kit may include an isolated *B. burgdorferi* antigen comprising an epitope which is specifically immunoreactive with at least one anti-*B. burgdorferi* antibody. Such a kit also includes means for detecting the

10

15

20

25

30

35

binding of said antibody to the antigen. In specific embodiments, the kit may include a recombinantly produced or chemically synthesized peptide or polypeptide antigen. The peptide or polypeptide antigen may be attached to a solid support.

In a more specific embodiment, the detecting means of the above-described kit includes a solid support to which said peptide or polypeptide antigen is attached. Such a kit may also include a non-attached reporter-labeled anti-human antibody. In this embodiment, binding of the antibody to the *B. burgdorferi* antigen can be detected by binding of the reporter labeled antibody to the anti-*B. burgdorferi* polypeptide antibody.

In a related aspect, the invention includes a method of detecting *B. burgdorferi* infection in a subject. This detection method includes reacting a body fluid, preferably serum, from the subject with an isolated *B. burgdorferi* antigen, and examining the antigen for the presence of bound antibody. In a specific embodiment, the method includes a polypeptide antigen attached to a solid support, and serum is reacted with the support. Subsequently, the support is reacted with a reporter-labeled anti-human antibody. The support is then examined for the presence of reporter-labeled antibody.

The solid surface reagent employed in the above assays and kits is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plates or filter material. These attachment methods generally include non-specific adsorption of the protein to the support or covalent attachment of the protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s).

The polypeptides and antibodies of the present invention, including fragments thereof, may be used to detect Borrelia species including *B. burgdorferi* using bio chip and biosensor technology. Bio chip and biosensors of the present invention may comprise the polypeptides of the present invention to detect antibodies, which specifically recognize Borrelia species, including *B. burgdorferi*. Bio chip and biosensors of the present invention may also comprise antibodies which specifically recognize the polypeptides of the present invention to detect Borrelia species, including *B. burgdorferi* or specific polypeptides of the present invention. Bio chips or biosensors comprising polypeptides or antibodies of the present invention may be used to detect Borrelia species, including *B. burgdorferi*, in biological and environmental samples and to diagnose an animal, including humans, with an *B. burgdorferi* or other Borrelia infection. Thus, the present invention includes both bio chips and biosensors comprising polypeptides or antibodies of the present invention and methods of their use.

The bio chips of the present invention may further comprise polypeptide sequences of other pathogens including bacteria, viral, parasitic, and fungal polypeptide sequences, in addition to the polypeptide sequences of the present invention, for use in rapid differential pathogenic detection and diagnosis. The bio chips of the present invention may further comprise antibodies or fragements thereof specific for other pathogens including bacteria, viral, parasitic, and fungal

25

30

35

polypeptide sequences, in addition to the antibodies or fragements thereof of the present invention, for use in rapid diffenertial pathogenic detection and diagnosis. The bio chips and biosensors of the present invention may also be used to monitor an B. burgdorferi or other Borrelia infection and to monitor the genetic changes (amio acid deletions, insertions, substitutions, etc.) in response to drug therapy in the clinic and drug development in the 5 laboratory. The bio chip and biosensors comprising polypeptides or antibodies of the present invention may also be used to simultaneously monitor the expression of a multiplicity of polypeptides, including those of the present invention. The polypeptides used to comprise a bio chip or biosensor of the present invention may be specified in the same manner as for the 10 fragements, i.e, by their N-terminal and C-terminal positions or length in contigious amino acid residue. Methods and particular uses of the polypeptides and antibodies of the present invention to detect Borrelia species, including B. burgdorferi, or specific polypeptides using bio chip and biosensor technology include those known in the art, those of the U.S. Patent Nos. and World Patent Nos. listed above for bio chips and biosensors using polynucleotides of the present invention, and those of: U.S. Patent Nos. 5658732, 5135852, 5567301, 5677196, 5690894 15 and World Patent Nos. WO9729366, WO9612957, each incorporated herein in their entireties.

5. Screening Assay for Binding Agents

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the *Borrelia burgdorferi* fragment and contigs herein described.

In general, such methods comprise steps of:

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the *Borrelia burgdorferi* genome; and
 - (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby *et al.*, "Application of Synthetic Peptides: Antisense Peptides," in *Synthetic*

10

15

20

25

30

35

Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix- formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

6. Pharmaceutical Compositions and Vaccines

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Borrelia burgdorferi*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth pathogenicity of Borrelia burgdorferi or a related organism, in vivo or in vitro," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer surface of the organism blocking attachment or

10

15

20

25

30

35

rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of a vaccine based on outer membrane components are well known in the art.

As used herein, a "related organism" is a broad term which refers to any organism whose growth can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, *etc*. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, *etc*. Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

10

15

20

25

30

35

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

44

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s) serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in a mixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, *e.g.*, human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by

10

15

20

25

30

a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

7. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

35

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

10

15

20

25

30

35

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, *Genomics* 2:231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P0, that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random sequence has been determined can be calculated by the equation P0 = e-m, where m is L/n, the fold coverage. For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, P0 = e-1 = 0.37. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivalent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a 2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation G = Le-m, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, *Genomics* 2: 231 (1988).

2. Random Library Construction

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end.

Borrelia burgdorferi DNA is prepared by phenol extraction. A mixture containing 200 μ g DNA in 1.0 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 50% glycerol is processed through a nebulizer (IPI Medical Products) with a stream of nitrogen adjusted to 35 Kpa for 2 minutes. The sonicated DNA is ethanol precipitated and redissolved in 500 μ l TE buffer.

To create blunt-ends, a 100 μ l aliquot of the resuspended DNA is digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 μ l BAL31 buffer. The digested DNA is phenol-extracted, ethanol-precipitated, redissolved in 100 μ l TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size is excised from the gel, and the LGT agarose is melted and the resulting solution is extracted with phenol to separate the agarose from the DNA. DNA is ethanol precipitated and redissolved in 20 μ l of TE buffer for ligation to vector.

A two-step ligation procedure is used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contains 2 μg of DNA fragments, 2 µg pUC18 DNA (Pharmacia) cut with SmaI and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and is incubated at 14°C for 4 hr. The ligation mixture then is phenol extracted and ethanol precipitated, and the precipitated DNA is 5 dissolved in 20 µl TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder are visualized by ethidium bromide-staining and UV illumination and identified by size as insert (I), vector (v), v+I, v+2i, v+3i, etc. The portion of the gel containing v+I DNA is excised and the v+I DNA is recovered and resuspended into 20 μ l TE. The v+I DNA then is blunt-ended by T4 polymerase treatment for 5 min. at 37°C in a reaction mixture (50 ul) 10 containing the v+I linears, $500\,\mu\text{M}$ each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+I linears are dissolved in 20 µl TE. The final ligation to produce circles is carried out in a 50 μ l reaction containing 5 μ l of v+I linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture is stored at -20°C. 15

This two-stage procedure results in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E. coli* host cells deficient in all recombination and restriction functions (A. Greener, *Strategies 3 (1)*:5 (1990)) are used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells are plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating is carried out as follows. A $100\,\mu l$ aliquot of Epicurian Coli SURE II 25 Supercompetent Cells (Stratagene 200152) is thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 μ l aliquot of 1.42 M beta-mercaptoethanol is added to the aliquot of cells to a final concentration of 25 mM. Cells are incubated on ice for 10 min. A 1 μ l aliquot of the final ligation is added to the cells and incubated on ice for 30 min. The cells are heat pulsed for 30 sec. at 42°C and placed back on ice for 2 min. The outgrowth period in liquid culture is eliminated from this protocol in order to minimize the preferential growth of any given 30 transformed cell. Instead the transformation mixture is plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl2 (1 M), and 1 ml MgSO4/100 ml SOB agar. 35 The 15 ml top layer is poured just prior to plating. Our titer is approximately 100 colonies/10 µl aliquot of transformation.

10

15

20

25

30

35

All colonies are picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products are deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

High quality double stranded DNA plasmid templates are prepared using a "boiling bead" method developed in collaboration with Advanced Genetic Technology Corp. (Gaithersburg, MD) (Adams *et al.*, *Science 252*:1651 (1991); Adams *et al.*, *Nature 355*:632 (1992)). Plasmid preparation is performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Template concentration is determined using Hoechst Dye and a Millipore Cytofluor. DNA concentrations are not adjusted, but low-yielding templates are identified where possible and not sequenced.

Templates are also prepared from two Borrelia burgdorferi lambda genomic libraries. An amplified library is constructed in the vector Lambda GEM-12 (Promega) and an unamplified library is constructed in Lambda DASH II (Stratagene). In particular, for the unamplified lambda library, Borrelia burgdorferi DNA (> 100 kb) is partially digested in a reaction mixture (200 ul) containing 50 µg DNA, 1X Sau3AI buffer, 20 units Sau3AI for 6 min. at 23°C. The digested DNA was phenol-extracted and electrophoresed on a 0.5% low melting agarose gel at 2V/cm for 7 hours. Fragments from 15 to 25 kb are excised and recovered in a final volume of 6 ul. One μl of fragments is used with 1 μl of DASHII vector (Stratagene) in the recommended ligation reaction. One µl of the ligation mixture is used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract (Stratagene, #227711). Phage are plated directly without amplification from the packaging mixture (after dilution with $500\,\mu l$ of recommended SM buffer and chloroform treatment). Yield is about $2.5x103\,pfu/ul$. The amplified library is prepared essentially as above except the lambda GEM-12 vector is used. After packaging, about 3.5x104 pfu are plated on the restrictive NM539 host. The lysate is harvested in 2 ml of SM buffer and stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x109 pfu/ml.

Liquid lysates (100 μ l) are prepared from randomly selected plaques (from the unamplified library) and template is prepared by long-range PCR using T7 and T3 vector-specific primers.

Sequencing reactions are carried out on plasmid and/or PCR templates using the AB Catalyst LabStation with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers (Adams et al., Nature 368:474 (1994)). Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. T7 and SP6 primers are used to sequence the ends of the inserts from the Lambda GEM-12 library and T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are performed

10

15

20

25

30

35

by eight individuals using an average of fourteen AB 373 DNA Sequencers per day. All sequencing reactions are analyzed using the Stretch modification of the AB 373, primarily using a 34 cm well-to-read distance. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences and 65% for dye-terminator reactions. The average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

Richards *et al.*, Chapter 28 in AUTOMATED DNA SEQUENCING AND ANALYSIS, M. D. Adams, C. Fields, J. C. Venter, Eds., Academic Press, London, (1994) described the value of using sequence from both ends of sequencing templates to facilitate ordering of contigs in shotgun assembly projects of lambda and cosmid clones. We balance the desirability of bothend sequencing (including the reduced cost of lower total number of templates) against shorter read-lengths for sequencing reactions performed with the M13RP1 (reverse) primer compared to the M13-21 (forward) primer. Approximately one-half of the templates are sequenced from both ends. Random reverse sequencing reactions are done based on successful forward sequencing reactions. Some M13RP1 sequences are obtained in a semi-directed fashion: M13-21: sequences pointing outward at the ends of contigs are chosen for M13RP1 sequencing in an effort to specifically order contigs.

4. Protocol for Automated Cycle Sequencing

The sequencing is carried out using ABI Catalyst robots and AB 373 Automated DNA Sequencers. The Catalyst robot is a publicly available sophisticated pipetting and temperature control robot which has been developed specifically for DNA sequencing reactions. The Catalyst combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates are combined in the wells of an aluminum 96-well thermocycling plate. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps are performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols are used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer is labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 DNA Sequencer for electrophoresis, detection, and base-calling. ABI currently supplies pre-mixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR- generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

10

15

20

25

30

35

Thirty-two reactions are loaded per AB373 Sequencer each day, for a total of 960 samples. Electrophoresis is run overnight following the manufacturer's protocols, and the data is collected for twelve hours. Following electrophoresis and fluorescence detection, the ABI 373 performs automatic lane tracking and base-calling. The lane-tracking is confirmed visually. Each sequence electropherogram (or fluorescence lane trace) is inspected visually and assessed for quality. Trailing sequences of low quality are removed and the sequence itself is loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence is removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 are around 400 bp and depend mostly on the quality of the template used for the sequencing reaction. ABI 373 Sequencers converted to Stretch Liners provide a longer electrophoresis path prior to fluorescence detection and increase the average number of usable bases to 500-600 bp.

INFORMATICS

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow wherever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was employed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 104 fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods

10

15

20

25

30

35

in Enzymology 164:765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain range of base pairs (definable for each clone based on the known clone size range for a given library). The process resulted in 155 contigs as represented by SEQ ID NOs:1-155.

51

3. Identifying Genes

The predicted coding regions of the *Borrelia burgdorferi* genome were initially defined with the program GeneMark, which finds ORFs using a probabilistic classification technique. The predicted coding region sequences were used in searches against a database of all nucleotide sequences from GenBank (July, 1997), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity (using default parameters). Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases. ORFs that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

1. Production of an Antibody to a Borrelia burgdorferi Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can be chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

10

15

20

25

30

35

2. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., *Nature 256*:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., *Meth. Enzymol. 70:*419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. *et al.*, *Basic Methods in Molecular Biology*, Elsevier, New York. Section 21-2 (1989).

3. Polyclonal Antibody Production by Immunization

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0. 1 to 0. 2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological

samples; they are also used semi- quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, antibodies are useful in various animal models of pneumococcal disease as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunotherapeutic or immunoprophylactic reagent.

4. Preparation of PCR Primers and Amplification of DNA

Various fragments of the *Borrelia burgdorferi* genome, such as those of Tables 1-6 and SEQ ID NOS: 1-155 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approximately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

15

20

25

30

35

10

5

5. Isolation of a Selected DNA Clone From B. burgdorferi

Three approaches are used to isolate a *B. burgdorferi* clone comprising a polynucleotide of the present invention from any *B. burgdorferi* genomic DNA library. The *B. burgdorferi* strain B31PU has been deposited as a convienent source for obtaining a *B. burgdorferi* strain although a wide varity of strains *B. burgdorferi* strains can be used which are known in the art.

B. burgdorferi genomic DNA is prepared using the following method. A 20ml overnight bacterial culture grown in a rich medium (e.g., Trypticase Soy Broth, Brain Heart Infusion broth or Super broth), pelleted, ished two times with TES (30mM Tris-pH 8.0, 25mM EDTA, 50mM NaCl), and resuspended in 5ml high salt TES (2.5M NaCl). Lysostaphin is added to final concentration of approx 50ug/ml and the mixture is rotated slowly 1 hour at 37C to make protoplast cells. The solution is then placed in incubator (or place in a shaking water bath) and warmed to 55C. Five hundred micro liter of 20% sarcosyl in TES (final concentration 2%) is then added to lyse the cells. Next, guanidine HCl is added to a final concentration of 7M (3.69g in 5.5 ml). The mixture is swirled slowly at 55C for 60-90 min (solution should clear). A CsCl gradient is then set up in SW41 ultra clear tubes using 2.0ml 5.7M CsCl and overlaying with 2.85M CsCl. The gradient is carefully overlayed with the DNA-containing GuHCl solution. The gradient is spun at 30,000 rpm, 20C for 24 hr and the lower DNA band is collected. The volume is increased to 5 ml with TE buffer. The DNA is then treated with protease K (10 ug/ml) overnight at 37 C, and precipitated with ethanol. The precipitated DNA is resuspended in a desired buffer.

In the first method, a plasmid is directly isolated by screening a plasmid *B. burgdorferi* genomic DNA library using a polynucleotide probe corresponding to a polynucleotide of the present invention. Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The

10

15

20

25

30

35

oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (*See, e.g.*, Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The library is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art. *See, e.g.*, Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al., CURRENT PROTOCALS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989). The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening. *See, e.g.*, Sambrook et al. MOLECULAR CLONING: A LABORATORY MANUAL (Cold Spring Harbor, N.Y. 2nd ed. 1989); Ausubel et al., CURRENT PROTOCALS IN MOLECULAR BIOLOGY (John Wiley and Sons, N.Y. 1989) or other techniques known to those of skill in the art.

54

Alternatively, two primers of 15-25 nucleotides derived from the 5' and 3' ends of a polynucleotide of SEQ ID NOS:1-155 are synthesized and used to amplify the desired DNA by PCR using a *B. burgdorferi* genomic DNA prep as a template. PCR is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above DNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Finally, overlapping oligos of the DNA sequences of SEQ ID NOS:1-155 can be chemically synthesized and used to generate a nucleotide sequence of desired length using PCR methods known in the art.

6(a). Expression and Purification Borrelia polypeptides in E. coli

The bacterial expression vector pQE60 is used for bacterial expression of some of the polypeptide fragements of the present invention. (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311). pQE60 encodes ampicillin antibiotic resistance ("Ampr") and contains a bacterial origin of replication ("ori"), an IPTG inducible promoter, a ribosome binding site ("RBS"), six codons encoding histidine residues that allow affinity purification using nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin (QIAGEN, Inc., supra) and suitable single restriction enzyme cleavage sites. These elements are arranged such that an inserted DNA fragment encoding a polypeptide expresses that polypeptide with the six His residues (i.e., a "6

10

15

20

25

30

35

X His tag") covalently linked to the carboxyl terminus of that polypeptide.

The DNA sequence encoding the desired portion of a *B. burgdorferi* protein of the present invention is amplified from *B. burgdorferi* genomic DNA using PCR oligonucleotide primers which anneal to the 5' and 3' sequences coding for the portions of the *B. burgdorferi* polynucleotide shown in SEQ ID NOS:1-155. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' sequences, respectively.

55

For cloning the mature protein, the 5' primer has a sequence containing an appropriate restriction site followed by nucleotides of the amino terminal coding sequence of the desired *B. burgdorferi* polynucleotide sequence in SEQ ID NOS:1-155. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begin may be varied to amplify a DNA segment encoding any desired portion of the complete protein shorter or longer than the mature form. The 3' primer has a sequence containing an appropriate restriction site followed by nucleotides complementary to the 3' end of the polypeptide coding sequence of SEQ ID NOS:1-155, excluding a stop codon, with the coding sequence aligned with the restriction site so as to maintain its reading frame with that of the six His codons in the pQE60 vector.

The amplified *B. burgdorferi* DNA fragment and the vector pQE60 are digested with restriction enzymes which recognize the sites in the primers and the digested DNAs are then ligated together. The *B. burgdorferi* DNA is inserted into the restricted pQE60 vector in a manner which places the *B. burgdorferi* protein coding region downstream from the IPTG-inducible promoter and in-frame with an initiating AUG and the six histidine codons.

The ligation mixture is transformed into competent *E. coli* cells using standard procedures such as those described by Sambrook et al., *supra*.. *E. coli* strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing a *B. burgdorferi* polypeptide, is available commercially (QIAGEN, Inc., *supra*). Transformants are identified by their ability to grow on LB agar plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.

Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin (100 μ g/ml) and kanamycin (25 μ g/ml). The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. Isopropyl- β -D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from the lac repressor sensitive promoter, by inactivating the lacI repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation.

The cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH 8. The cell

10

15

20

25

30

35

debris is removed by centrifugation, and the supernatant containing the *B. burgdorferi* polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity are purified in a simple one-step procedure (for details see: The QIAexpressionist, 1995, QIAGEN, Inc., *supra*). Briefly the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the *B. burgdorferi* polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein could be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins can be eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

The polypeptide of the present invention are also prepared using a non-denaturing protein purification method. For these polypeptides, the cell pellet from each liter of culture is resuspended in 25 mls of Lysis Buffer A at 4°C (Lysis Buffer A = 50 mM Na-phosphate, 300 mM NaCl, 10 mM 2-mercaptoethanol, 10% Glycerol, pH 7.5 with 1 tablet of Complete EDTA-free protease inhibitor cocktail (Boehringer Mannheim #1873580) per 50 ml of buffer). Absorbance at 550 nm is approximately 10-20 O.D./ml. The suspension is then put through three freeze/thaw cycles from -70°C (using a ethanol-dry ice bath) up to room temperature. The cells are lysed via sonication in short 10 sec bursts over 3 minutes at approximately 80W while kept on ice. The sonicated sample is then centrifuged at 15,000 RPM for 30 minutes at 4°C. The supernatant is passed through a column containing 1.0 ml of CL-4B resin to pre-clear the sample of any proteins that may bind to agarose non-specifically, and the flow-through fraction is collected.

The pre-cleared flow-through is applied to a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (Quiagen, Inc., *supra*). Proteins with a 6 X His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure. Briefly, the supernatant is loaded onto the column in Lysis Buffer A at 4°C, the column is first washed with 10 volumes of Lysis Buffer A until the A280 of the eluate returns to the baseline. Then, the column is washed with 5 volumes of 40 mM Imidazole (92% Lysis Buffer A / 8% Buffer B) (Buffer B = 50 mM Na-Phosphate, 300 mM NaCl, 10% Glycerol, 10 mM 2-mercaptoethanol, 500 mM Imidazole, pH of the final buffer should be 7.5). The protein is eluted off of the column with a series of increasing Imidazole solutions made by adjusting the ratios of Lysis Buffer A to Buffer B. Three different concentrations are used: 3 volumes of 75 mM Imidazole, 3 volumes of

10

15

20

25

30

35

150 mM Imidazole, 5 volumes of 500 mM Imidazole. The fractions containing the purified protein are analyzed using 8 %, 10 % or 14% SDS-PAGE depending on the protein size. The purified protein is then dialyzed 2X against phosphate-buffered saline (PBS) in order to place it into an easily workable buffer. The purified protein is stored at 4°C or frozen at -80°.

57

The following alternative method may be used to purify B. burgdorferi expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at $4-10^{\circ}$ C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells are harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 x g for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 x g centrifugation for 15 min., the pellet is discarded and the B. burgdorferi polypeptide-containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 x g) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded *B. burgdorferi* polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 mm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the B. burgdorferi polypeptide are then pooled and mixed with 4

10

15

20

25

30

35

volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the *B. burgdorferi* polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant *B. burgdorferi* polypeptide exhibits greater than 95% purity after the above refolding and purification steps. No major contaminant bands are observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein is also tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

6(b). Alternative Expression and Purification Borrelia polypeptides in E. coli

The vector pQE10 is alternatively used to clone and express some of the polypeptides of the present invention for use in the soft tissue and systemic infection models discussed below. The difference being such that an inserted DNA fragment encoding a polypeptide expresses that polypeptide with the six His residues (i.e., a "6 X His tag") covalently linked to the amino terminus of that polypeptide. The bacterial expression vector pQE10 (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311) was used in this example. The components of the pQE10 plasmid are arranged such that the inserted DNA sequence encoding a polypeptide of the present invention expresses the polypeptide with the six His residues (i.e., a "6 X His tag")) covalently linked to the amino terminus.

The DNA sequences encoding the desired portions of a polypeptide of SEQ ID NOS:1-155 were amplified using PCR oligonucleotide primers from genomic *B. burgdorferi* DNA. The PCR primers anneal to the nucleotide sequences encoding the desired amino acid sequence of a polypeptide of the present invention. Additional nucleotides containing restriction sites to facilitate cloning in the pQE10 vector were added to the 5' and 3' primer sequences, respectively.

For cloning a polypeptide of the present invention, the 5' and 3' primers were selected to amplify their respective nucleotide coding sequences. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begins may be varied to amplify a DNA segment encoding any desired portion of a polypeptide of the present invention. The 5' primer was designed so the coding sequence of the 6 X His tag is aligned with the restriction site so as to maintain its reading frame with that of *B. burgdorferi* polypeptide. The 3' was designed to include an stop codon. The amplified DNA fragment was then cloned, and the protein expressed, as described above for the pQE60 plasmid.

10

15

20

25

30

35

The DNA sequences of SEQ ID NOS:1-155 encoding amino acid sequences may also be cloned and expressed as fusion proteins by a protocol similar to that described directly above, wherein the pET-32b(+) vector (Novagen, 601 Science Drive, Madison, WI 53711) is preferentially used in place of pQE10.

The above methods are not limited to the polypeptide fragements actually produced. The above method, like the methods below, can be used to produce either full length polypeptides or desired fragements therof.

6(c). Alternative Expression and Purification of Borrelia polypeptides in E. coli

The bacterial expression vector pQE60 is used for bacterial expression in this example (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311). However, in this example, the polypeptide coding sequence is inserted such that translation of the six His codons is prevented and, therefore, the polypeptide is produced with no 6 X His tag.

The DNA sequence encoding the desired portion of the *B. burgdorferi* amino acid sequence is amplified from an *B. burgdorferi* genomic DNA prep the deposited DNA clones using PCR oligonucleotide primers which anneal to the 5' and 3' nucleotide sequences corresponding to the desired portion of the *B. burgdorferi* polypeptides. Additional nucleotides containing restriction sites to facilitate cloning in the pQE60 vector are added to the 5' and 3' primer sequences.

For cloning a *B. burgdorferi* polypeptides of the present invention, 5' and 3' primers are selected to amplify their respective nucleotide coding sequences. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' and 3' primers begin may be varied to amplify a DNA segment encoding any desired portion of a polypeptide of the present invention. The 3' and 5' primers contain appropriate restriction sites followed by nucleotides complementary to the 5' and 3' ends of the coding sequence respectively. The 3' primer is additionally designed to include an in-frame stop codon.

The amplified *B. burgdorferi* DNA fragments and the vector pQE60 are digested with restriction enzymes recognizing the sites in the primers and the digested DNAs are then ligated together. Insertion of the *B. burgdorferi* DNA into the restricted pQE60 vector places the *B. burgdorferi* protein coding region including its associated stop codon downstream from the IPTG-inducible promoter and in-frame with an initiating AUG. The associated stop codon prevents translation of the six histidine codons downstream of the insertion point.

The ligation mixture is transformed into competent *E. coli* cells using standard procedures such as those described by Sambrook et al. *E. coli* strain M15/rep4, containing multiple copies of the plasmid pREP4, which expresses the lac repressor and confers kanamycin resistance ("Kanr"), is used in carrying out the illustrative example described herein. This strain, which is only one of many that are suitable for expressing *B. burgdorferi* polypeptide, is available commercially (QIAGEN, Inc., *supra*). Transformants are identified by their ability to grow on

10

15

20

25

30

35

LB plates in the presence of ampicillin and kanamycin. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.

Clones containing the desired constructs are grown overnight ("O/N") in liquid culture in LB media supplemented with both ampicillin ($100\,\mu g/ml$) and kanamycin ($25\,\mu g/ml$). The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. isopropyl-b-D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM to induce transcription from the *lac* repressor sensitive promoter, by inactivating the lacI repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells then are harvested by centrifugation.

To purify the *B. burgdorferi* polypeptide, the cells are then stirred for 3-4 hours at 4°C in 6M guanidine-HCl, pH 8. The cell debris is removed by centrifugation, and the supernatant containing the *B. burgdorferi* polypeptide is dialyzed against 50 mM Na-acetate buffer pH 6, supplemented with 200 mM NaCl. Alternatively, the protein can be successfully refolded by dialyzing it against 500 mM NaCl, 20% glycerol, 25 mM Tris/HCl pH 7.4, containing protease inhibitors. After renaturation the protein can be purified by ion exchange, hydrophobic interaction and size exclusion chromatography. Alternatively, an affinity chromatography step such as an antibody column can be used to obtain pure *B. burgdorferi* polypeptide. The purified protein is stored at 4°C or frozen at -80°C.

The following alternative method may be used to purify *B. burgdorferi* polypeptides expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells are harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells ware then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 x g for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 x g centrifugation for 15 min., the pellet is discarded and the B. burgdorferi polypeptide-containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

10

15

20

25

30

35

Following high speed centrifugation (30,000 x g) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded *B. burgdorferi* polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 mm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the *B. burgdorferi* polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the *B. burgdorferi* polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant *B. burgdorferi* polypeptide exhibits greater than 95% purity after the above refolding and purification steps. No major contaminant bands are observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein is also tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

6(d). Cloning and Expression of B. burgdorferi in Other Bacteria

B. burgdorferi polypeptides can also be produced in: B. burgdorferi using the methods of S. Skinner et al., (1988) Mol. Microbiol. 2:289-297 or J. I. Moreno (1996) Protein Expr. Purif. 8(3):332-340; Lactobacillus using the methods of C. Rush et al., 1997 Appl. Microbiol. Biotechnol. 47(5):537-542; or in Bacillus subtilis using the methods Chang et al., U.S. Patent No. 4,952,508.

7. Cloning and Expression in COS Cells

A B. burgdorferi expression plasmid is made by cloning a portion of the DNA encoding a

10

15

20

25

30

35

B. burgdorferi polypeptide into the expression vector pDNAI/Amp or pDNAIII (which can be obtained from Invitrogen, Inc.). The expression vector pDNAI/amp contains: (1) an E. coli origin of replication effective for propagation in E. coli and other prokaryotic cells; (2) an ampicillin resistance gene for selection of plasmid-containing prokaryotic cells; (3) an SV40 origin of replication for propagation in eukaryotic cells; (4) a CMV promoter, a polylinker, an SV40 intron; (5) several codons encoding a hemagglutinin fragment (i.e., an "HA" tag to facilitate purification) followed by a termination codon and polyadenylation signal arranged so that a DNA can be conveniently placed under expression control of the CMV promoter and operably linked to the SV40 intron and the polyadenylation signal by means of restriction sites in the polylinker. The HA tag corresponds to an epitope derived from the influenza hemagglutinin protein described by Wilson et al. 1984 Cell 37:767. The fusion of the HA tag to the target protein allows easy detection and recovery of the recombinant protein with an antibody that recognizes the HA epitope. pDNAIII contains, in addition, the selectable neomycin marker.

A DNA fragment encoding a *B. burgdorferi* polypeptide is cloned into the polylinker region of the vector so that recombinant protein expression is directed by the CMV promoter. The plasmid construction strategy is as follows. The DNA from a *B. burgdorferi* genomic DNA prep is amplified using primers that contain convenient restriction sites, much as described above for construction of vectors for expression of *B. burgdorferi* in *E. coli*. The 5' primer contains a Kozak sequence, an AUG start codon, and nucleotides of the 5' coding region of the *B. burgdorferi* polypeptide. The 3' primer, contains nucleotides complementary to the 3' coding sequence of the *B. burgdorferi* DNA, a stop codon, and a convenient restriction site.

The PCR amplified DNA fragment and the vector, pDNAI/Amp, are digested with appropriate restriction enzymes and then ligated. The ligation mixture is transformed into an appropriate *E. coli* strain such as SURE™ (Stratagene Cloning Systems, La Jolla, CA 92037), and the transformed culture is plated on ampicillin media plates which then are incubated to allow growth of ampicillin resistant colonies. Plasmid DNA is isolated from resistant colonies and examined by restriction analysis or other means for the presence of the fragment encoding the *B. burgdorferi* polypeptide

For expression of a recombinant *B. burgdorferi* polypeptide, COS cells are transfected with an expression vector, as described above, using DEAE-dextran, as described, for instance, by Sambrook et al. (*supra*). Cells are incubated under conditions for expression of *B. burgdorferi* by the vector.

Expression of the *B. burgdorferi*-HA fusion protein is detected by radiolabeling and immunoprecipitation, using methods described in, for example Harlow et al., *supra*.. To this end, two days after transfection, the cells are labeled by incubation in media containing ³⁵S-cysteine for 8 hours. The cells and the media are collected, and the cells are washed and the lysed with detergent-containing RIPA buffer: 150 mM NaCl, 1% NP-40, 0.1% SDS, 1% NP-40, 0.5% DOC, 50 mM TRIS, pH 7.5, as described by Wilson et al. (*supra*). Proteins are

precipitated from the cell lysate and from the culture media using an HA-specific monoclonal antibody. The precipitated proteins then are analyzed by SDS-PAGE and autoradiography. An expression product of the expected size is seen in the cell lysate, which is not seen in negative controls.

63

5

10

15

20

25

30

35

8. Cloning and Expression in CHO Cells

The vector pC4 is used for the expression of *B. burgdorferi* polypeptide in this example. Plasmid pC4 is a derivative of the plasmid pSV2-dhfr (ATCC Accession No. 37146). The plasmid contains the mouse DHFR gene under control of the SV40 early promoter. Chinese hamster ovary cells or other cells lacking dihydrofolate activity that are transfected with these plasmids can be selected by growing the cells in a selective medium (alpha minus MEM, Life Technologies) supplemented with the chemotherapeutic agent methotrexate. The amplification of the DHFR genes in cells resistant to methotrexate (MTX) has been well documented. *See, e.g.*, Alt et al., 1978, J. Biol. Chem. 253:1357-1370; Hamlin et al., 1990, Biochem. et Biophys. Acta, 1097:107-143; Page et al., 1991, Biotechnology 9:64-68. Cells grown in increasing concentrations of MTX develop resistance to the drug by overproducing the target enzyme, DHFR, as a result of amplification of the DHFR gene. If a second gene is linked to the DHFR gene, it is usually co-amplified and over-expressed. It is known in the art that this approach may be used to develop cell lines carrying more than 1,000 copies of the amplified gene(s). Subsequently, when the methotrexate is withdrawn, cell lines are obtained which contain the amplified gene integrated into one or more chromosome(s) of the host cell.

Plasmid pC4 contains the strong promoter of the long terminal repeat (LTR) of the Rouse Sarcoma Virus, for expressing a polypeptide of interest, Cullen, et al. (1985) Mol. Cell. Biol. 5:438-447; plus a fragment isolated from the enhancer of the immediate early gene of human cytomegalovirus (CMV), Boshart, et al., 1985, Cell 41:521-530. Downstream of the promoter are the following single restriction enzyme cleavage sites that allow the integration of the genes: Bam HI, Xba I, and Asp 718. Behind these cloning sites the plasmid contains the 3' intron and polyadenylation site of the rat preproinsulin gene. Other high efficiency promoters can also be used for the expression, e.g., the human \(\beta\)-actin promoter, the SV40 early or late promoters or the long terminal repeats from other retroviruses, e.g., HIV and HTLVI. Clontech's Tet-Off and Tet-On gene expression systems and similar systems can be used to express the B. burgdorferi polypeptide in a regulated way in mammalian cells (Gossen et al., 1992, Proc. Natl. Acad. Sci. USA 89:5547-5551. For the polyadenylation of the mRNA other signals, e.g., from the human growth hormone or globin genes can be used as well. Stable cell lines carrying a gene of interest integrated into the chromosomes can also be selected upon co-transfection with a selectable marker such as gpt, G418 or hygromycin. It is advantageous to use more than one selectable marker in the beginning, e.g., G418 plus methotrexate.

The plasmid pC4 is digested with the restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from

10

30

35

a 1% agarose gel. The DNA sequence encoding the *B. burgdorferi* polypeptide is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' sequences of the desired portion of the gene. A 5' primer containing a restriction site, a Kozak sequence, an AUG start codon, and nucleotides of the 5' coding region of the *B. burgdorferi* polypeptide is synthesized and used. A 3' primer, containing a restriction site, stop codon, and nucleotides complementary to the 3' coding sequence of the *B. burgdorferi* polypeptides is synthesized and used. The amplified fragment is digested with the restriction endonucleases and then purified again on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC4 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene are used for transfection. Five μg of the expression plasmid pC4 is cotransfected with 0.5 μg of the plasmid pSVneo using a lipid-mediated transfection agent such as Lipofectin™ or LipofectAMINE.™ (LifeTechnologies Gaithersburg, MD). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene 15 from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri dishes or 10 ml flasks 20 using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 μ M, 2 μ M, 5 μ M, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 25 100-200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

The disclosure of all publications (including patents, patent applications, journal articles, laboratory manuals, books, or other documents) cited herein are hereby incorporated by reference in their entireties.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention. Functionally equivalent methods and components are within the scope of the invention, in addition to those shown and described herein and will become apparant to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

TABLE 1.

Contig C	ORF	Start (nt)	Stop	match	match gene name	% sim	%
	92	100363	100184	gil500722	similar to entire extracellular domain of glycine receptors	100	1 aen t
					[Caenorhabditis elegans]	3	}
1	537		513608 ₈	gil47453	ribosomal protein S12 [Streptococcus pneumoniae]	92	85
1	283			_	ATP-dependent protease ATPase subunit [Synechocystis sp.]	89	75
-	847	,	799131	gil467373	ribosomal protein S18 [Bacillus subtilis]	86	69
-	78				ribosomal protein L27 (rpL27) [Haemophilus influenzae]	85	70
	732	687538	686753 gill	şil1591672	phosphate transport system ATP-binding protein [Methanococcus jannaschii]	84	65
1	788	739513	739232 g	gil142459	initiation factor 1 [Bacillus subtilis]	84	89
	096	901448	901780 gnIII 69	gnllPIDle2437	PIDle2437 ORF YGL149w [Saccharomyces cerevisiae]	84	89
	760	717009	715843 E	23028	orf 361; ranslated orf similarity to SW: RF1_SALTY peptide chain release factor 1 of Salmonella typhimurium [Coxiella burnetii]	83	09
1	115		115312g	95315	NADH dehydrogenase subunit [Digitalis grandiflora]	82	58
_	184	178954	176918 bbs		EF-G=elongation factor G [Thermotoga maritima, Peptide, 682 aal [Thermotoga maritima]	82	63
1	447	425980	425453 g	gil143804	Ndk [Bacillus subtilis]	82	56
1	201	194702	194103 gil5	30438	arabinose transport protein [Mycoplasma capricolum]	81	53
1	477	446671	445589 gil8	82454	fructose 1,6-bisphosphate aldolase [Escherichia coli]	81	61
1	601	569453	568650 g	49227		81	56
-	887		837224 gil1	237019	Srb [Bacillus subtilis]	81	52
1	688		839497 _g	54276	peptide chain release factor 2 [Salmonella typhimurium]	81	65
1	968	∞	845440 g	377823	aminopeptidase [Bacillus subtilis]	81	09
1	8		68890 gil 1	1619909	DNA mismatch repair protein [Thermotoga maritima]	80	59
1	354		349157 gill	165976	chemotaxis protein Che Y [Treponema pallidum]	08	42
	423	409238	408855 g	gnllPIDle2118 29	PIDIe2118 50S ribosomal protein L14 [Odontella sinensis]	08	61
I	426	410130	409711 _g		50S ribosomal protein L16 [Synechocystis sp.]	08	59
	507	482736	482936 g	15924	glucosyltransferase [Saccharomyces cerevisiae]	80	40
	534	505081	505467 _p	pirlA02771IR	ribosomal protein L7/L12 - Micrococcus luteus	80	67

		PCT	US98/	12764
54	56	09	38	47

		0 59	9 62	99 6	09		50		58		09	51	7 59			52	54	99	09	38	47		
		8	79	79	79	78	78	78	78	78	77	77	77	77	17	77	77	77	9/	76	9/	76	76
Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins	7MCML	gilS	9994 gnllPIDle2426 arginine deiminase [Clostridium perfringens]	446835 gnllPIDle2881 glucose epimerase [Bacillus thuringiensis]	757704 gil455176 glucosamine-6-phosphate deaminase protein [Escherichia coli]	17809	134323 gil159199 cecropin D [Hyalophora cecropia]	216028 gnllPIDle2655 DnaJ-homologue [Thermus aquaticus thermophilus]	503849 gil587583 ribosomal protein L11 [Thermus aquaticus thermophilus]		127745 gil537364 heat shock protein 60 (GroEL) like protein [Porphyromonas gingivalis]	5682	Phosphoglycerate mutase 1 [Escherichia co	1349	3746	531370 gil143795 [transfer RNA-Tyr synthetase [Bacillus subtilis]	892 gil 1653602 [hypothetical protein [Synechocystis sp.]	790909 gnllPIDle2488 unknown [Mycobacterium tuberculosis]	6	141736 bbs/77721 KHS toxin, killer heat sensitive toxin=KHS [Saccharomyces cerevisiae]		5	355508 aik33147 rihosa phosphata arranhosahaltingg [Docilling 11-1-1-1
	Ш			447926		31595	134667	215177 2	L.		~	182991		272770 2				790115 7	62205		Ш		356740 3
		597	9	478	804	25	134	230	531	298	127	190	225	284	324	555	770	833	52	144	293	323	363
				1	1		1		1	1	=		=		1	1	1	-	_	-		=	=

410	403332	Borrelia bur 402922 91	burgdorferi - Puta 91606232	rgdorferi - Putative coding regions of novel proteins similar to know proteins 606232 130S ribosomal subunit protein S11 (Escherichia coli)	76	52
403754	754	403341		30S ribosomal protein \$13 [Synechocystis sp.]	76	55
431743	743	431003	gil1016012	neural cell adhesion protein BIG-2 precursor [Rattus norvegicus]	9/	19
670457	457	671569 gil	gi 467376	unknown [Bacillus subtilis]	76	58
824	824849	826675	gil1303804	YqeQ [Bacillus subtilis]	16	52
886017	017	886751	gil1183839	unknown [Pseudomonas aeruginosa]	9/	54
5	9956	8943	gil1552842	OTCase [Escherichia coli]	75	62
9	61909	59735	gil1184680	polynucleotide phosphorylase [Bacillus subtilis]	75	54
9	66283	63620	gil39954	IF2 (aa 1-741) [Bacillus stearothermophilus]	75	53
6	93454	94410	gnllPIDle2891 38	similar to flagellar hook-basal body proteins [Bacillus subtilis]	75	46
	97435	98283	gil687583	RpoS [Yersinia enterocolitica]	75	47
2.	229112	230158	gil1574806	spermidine/putrescine transport ATP-binding protein (potA) [Haemophilus influenzae]	75	55
2	251076	250801	gil1763634	alpha1 A-voltage-dependent calcium channel [Homo sapiens]	75	09
2	285723	284461	gil556886	serine hydroxymethyltransferase [Bacillus subtilis]	75	58
6	367682	366903	gil467372	3'-exo-deoxyribonuclease [Bacillus subtilis]	75	62
(c.)	378055	377114	gil45986	NAD synthetase [Rhodobacter capsulatus]	75	55
4	406437	405925	gil1044981	ribosomal protein S5 [Bacillus subtilis]	75	99
4	407390		gi	L6 ribosomal protein [Streptomyces coelicolor]	75	53
4	409520	409251	gil44218	ribosomal protein S17 (AA 1-85) [Mycoplasma capricolum]	75	58
	502806	503366	gil396321	nusG [Escherichia coli]	75	99
'	523428	522904	gil1573470	H. influenzae predicted coding region H10491 [Haemophilus influenzae]	75	55
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	546579	548393	pirlC30010lC	hypothetical ORF-6 protein - Sauroleishmania tarentolae	75	50
			30010	mitochondrion (SGČ6)		
∞	854433	855215	gil511148	hemolysin [Serpulina hyodysenteriae]	75	99
	85054	83102	gil467458	cell division protein [Bacillus subtilis]	74	57
1	158608	157502gil5	gil531460	Mbl protein [Bacillus subtilis]	74	49
<u> </u>	172327	171950 pirl/ 454	pirlA45434lA 45434	ribosomal protein L19 - Bacillus stearothermophilus	74	54
44	443773	445203	gil396501	aspartyl-tRNA synthetase [Thermus aquaticus thermophilus]	74	52
١						İ

wo	98	3/58	943	3)					6	8							PO	C T /	US	98/	127	64
	57	58	49	50	56	49	43	53	51	51	52	53	55	53		47	54	56	63	20	53	54	51	49	51	51	41	42
	74	74	74	74	73	73	73	73	73	73	73	73	73	73		73	73	73	73	73	72	72	72	72	72	72	72	72
Putative coding regions of novel proteins similar to know proteins	S-adenosylmethionine synthetase [Staphylococcus aureus]	enolase [Bacillus subtilis]	hypothetical protein [Synechocystis sp.]	UDP-glucose pyrophosphorylase [Bacillus subtilis]	excinuclease ABC subunit A [Synechocystis sp.]	sensor kinase [Bacillus subtilis]	Erg8p [Saccharomyces cerevisiae]	'ORF' [Escherichia coli]	ORF YLR069c [Saccharomyces cerevisiae]	hypothetical [Haemophilus influenzae]	hemolysin [Serpulina hyodysenteriae]	glycoprotein 120 [Simian immunodeficiency virus]	sporulation protein [Bacillus subtilis]	60 kda antigen [Borrelia coriaceae, C053, ATCC 4338, Peptide,	[514 aa] [Borrelia coriaceae]	type-I signal peptidase SpsB [Staphylococcus aureus]	unknown [Mycobacterium tuberculosis]	Similar to Seryl-tRNA synthetase [Saccharomyces cerevisiae]	36 ORF YGR248w [Saccharomyces cerevisiae]	hypothetical protein [Synechocystis sp.]	hemolysin [Serpulina hyodysenteriae]	NtrC/NifA-like protein regulator [Escherichia coli]	Similar to Saccharomyces cerevisiae SUA5 protein [Bacillus subtilis]	transcription-repair coupling factor [Bacillus subtilis]	ribosomal protein S4 (rpS4) [Haemophilus influenzae]	lon protease [Bacillus brevis]	haemolysin releasing protein (AA 1-548) [Vibrio cholerae]	CTP synthase [Methanococcus jannaschii]
gdorferi -	gil1020317	564347 gil460259	680489 gil1651962	701173 gil289287	17551 gil1652531	104947 gil 514330	181102 gil887601	302786 gil473817	361078 gnilPIDle2457	423181 gil1574704	533672 gil511145	548045 gil406135	567504 gil 143607	570729 bbs1161785		gil1595810	651727 gnllPIDle2684 56	680499 gil500705	 2	844964 gil1652288	26497 gil511145	106305 gil619917	135055 gil556881	260308 gil467444	268221 gil1573812	268472 gil402504	318363 gil48362	321053 gil1591801
	524561	565672	681529	702297	20409	103790	182064	303616	358916	424047	531372	548257	568379	572375		634175	654267	679186	682189	845455	24242	104935	134036	256925	267529	270922	319544	322678
	549	595	720	745	13	86	188	314	366	444	556	276	865	604		674	692	719	725	895	91	66	133	270	280	282	325	328

]

		23	55	54	51	47	48	54	52	42	43	48	52	48	54	52	52	42	53	56	53	32	50	58	41		48
C	/2/	72	72	72	72	72	72	72	71	71	71	71	71	711	71	71	71	71	71	71	70	70	70	70	70	-	70
	pism protein [Eschenchia con]	M. genitalium predicted coding region MG246 [Mycoplasma genitalium]	S14 protein (AA 1-61) [Bacillus subtilis]	ribosomal protein L13 (rpL13) [Haemophilus influenzae]	sporulation protein (spoIIIE) [Haemophilus influenzae]		large ribosomal subunit protein L35 [Buchnera aphidicola]	asparaginyl-tRNA synthetase [Synechocystis sp.]	UvrB [Helicobacter pylori]	beta-b protein [Barley stripe mosaic virus]	ORF9 [Rhizobium meliloti]			similar to multifunctional aminoacyl-tRNA synthetase, especially to the prolyl-tRNA synthetase region [Caenorhabditis elegans]		pyruvate kinase [Bacillus stearothermophilus]	ORF1 [Synechococcus elongatus]	secretion protein SecY (AA 1-482) [Mycoplasma capricolum]	ORF for methionine amino peptidase [Bacillus subtilis]	queA [Escherichia coli]	Cdc28p [Schizosaccharomyces pombe]	o287 [Escherichia coli]	[flgG protein product (AA 1-260) [Salmonella typhimurium]	H. influenzae predicted coding region HI1534 [Haemophilus influenzae]	(AE000012) Mycoplasma pneumoniae, phosphocarrier protein HPr; similar to GenBank Accession Number A49683, from M.	capricolum [Mycoplasma pneumoniae]	RL 50S RIBOSOMAL PROTEIN L1 (BL1).
burgdorferi -	gII14500/	gil 1045937	gil580930				50	60	50	gil1016781	gil534842	gil1652099	gil1732243	gil459009	530156 pirlS585221S5 8522	gil285623	gil217121	gil44228	_	gil	gil	gil290494	gil47677	gil1574387	gil1673757		splQ06797IRL
Borrelia	241102	399096	407779	563850	643399	710750	721640	810511	20407	87674	278239	296736	312130	496383	530156	552271	643661	681561	807700	890665	40613	44806	95220 gil	128569	441330		504529 sp
241460	341400	399941	408009	563383	641030	710160	721422	811923	22434	87471	278760	298685	313551	494911	528795	553725	644626	681731	806939	890096	38112	45750	94408	127889	441049		503834
340	040	405	420	593	682	754	191	098	14	72	289	307	321	225	554	582	684	723	856	947	28	36	84	128	468		532
	1					1	1		1		1	1	Ţ	I		1	I	1	-			_	T		1		

			Borrelia burgd	ourgdorferi - Puta	dorferi - Putative coding regions of novel proteins similar to know proteins		
	594	563858	564280 g	6169	30S ribosomal subunit protein S9 [Escherichia coli]	70	26
1	622	591070	591606 gill.	1153906	CheW protein [Salmonella typhimurium]	70	48
	703	664161	662611 g	PIDIe2839	glycerol kinase [Sulfolobus solfataricus]	70	09
	726	682886	682659 g	gil836815	cdc4 gene product which is essential for initiation of DNA replication in yeast [Saccharomyces cerevisiae]	0/	35
1	99/	720854	721417g	gil436165	Dsg [Myxococcus xanthus]	70	47
	892	721649	722008 g 8	gniiPIDle2549 81	PDle2549 ribosomal protein L20 [Bacillus subtilis]	70	48
	596	904395	905465 _g	100074	tryptophanyl-tRNA synthetase [Clostridium longisporum]	70	47
1	87	98696	97336g	60092	asparagine-rich protein [Plasmodium falciparum]	69	46
1	011	112658	113602 g	001733	ABC transporter [Synechocystis sp.]	69	46
	181	174037	173762 pirl(471	247154IC 54	ribosomal protein S16 - Bacillus subtilis	69	52
	233	219872	218076 gill	001493	protein-export membrane protein SecD [Synechocystis sp.]	69	47
1	234	220245	\sim		ORF11 [Enterococcus faecalis]	69	32
I	373	366148	_		hypothetical [Haemophilus influenzae]	69	48
	419	407781	Ī	98771	ribosomal S8 protein [Thermus aquaticus thermophilus]	69	46
1	517	489315	491207 gill	51932	fructose enzyme II [Rhodobacter capsulatus]	69	42
1	009	568891	568388 gil 14	3606	sporulation protein [Bacillus subtilis]	69	44
1	733	860689	687536 gil	03826	YqgI [Bacillus subtilis]	69	46
	874	826778	827746 pirlS 8183	08183180	L-lactate dehydrogenase (EC 1.1.1.27) X - Bacillus psychrosaccharolyticus	69	20
	894	844392		92324	M. jannaschii predicted coding region MJ1172 [Methanococcus jannaschii]	69	53
Ţ	934	879725	879237 g	53566	ORF (19K protein) [Enterococcus faecalis]	69	42
-	46	<i>61118</i>	57976 gil80	11809583	unknown [Saccharomyces cerevisiae]	89	36
-	107	110374	111513 gnllP 43	nIIPIDIe2559 3	PIDIe2559 M04B2.4 [Caenorhabditis elegans]	89	48
1	132	133978	133148 gil1	il1001663	rare lipoprotein A [Synechocystis sp.]	89	53
1	142	141239	142642 gnllPl 74	nIIPIDIe2338 4	'IDle2338 hypothetical protein [Bacillus subtilis]	89	45
1	148	145381	144005 gil55	8574	pyrophosphatefructose-6-phosphate 1-phosphotransferase	89	48

4	
\	
•	

	42	50	45	42	41	47	42	20	40	4	51	37	42	51	52	52	_		44	20	50	47	52	43	49	47
	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89	89			89	89	89	89	89	29	29	19
Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins [HEntamoeba histolytica]	beta-galactoside binding protein [Mus musculus]	ORF3 [Bacillus subtilis]	signal recognition particle protein [Synechocystis sp.]	galactose binding protein [Escherichia coli]	hypothetical [Haemophilus influenzae]	glucose 6-phosphate dehydrogenase [Synechocystis sp.]	fructose-permease IIBC component (fruA) [Haemophilus influenzae]	MHc, class IIB gene product [Poecilia reticulata]	ORF 1 [Mycoplasma mycoides]	SecY protein [Corynebacterium glutamicum]	ribosomal protein L29 [Methanococcus jannaschii]	adenylate kinase [Paracoccus denitrificans]	'ORF' [Escherichia coli]	hypothetical protein [Bacillus subtilis]	D9461.18p; CAI: 0.15 [Saccharomyces cerevisiae]	coded for by C. elegans cDNA CEESS55F; coded for by C. elegans cDNA vk84a1 3; coded for by C. elegans cDNA	yk78g7.3; coded for by C. elegans cDNA yk168g9.5; coded for	by C. elegans cDNA yk/8g/.5; coded for by C. elegans cDNA yk84a1.5; strong s	outer surface protein F [Borrelia burgdorferi]	hypothetical protein [Synechocystis sp.]	glcA gene product [Staphylococcus carnosus]	ORF III [Escherichia coli]	IllPIDle2902 polypeptide deformylase [Calothrix PCC7601]	IIPIDIe2804 unknown [Streptococcus pneumoniae]	ILS1 protein [Saccharomyces cerevisiae]	DNA topoisomerase I [Synechocystis sp.]
orrelia burgdorferi - Put 	147295 gil193442	169296 gil1389549	50	ЬÒ	227344 gi 1573101	B	251077 gil1573422	363333 gil976104	399874 gil150209	امةا	409508 gil1591164	ಹ	524549 gil473817	657673 gnIIPIDIe2551 17	1460 gil927711	686750 gil1707057			gi	gil	797807 gil 1072418	827776 gil147774		24255 gnllPIDle2804 90	29640 gil498991	139 gil1652946
Bo	147107 147	170051 169					249185 251	364016 363	401421 399	L.		482737 482		658281 657	1	989 506589				_		2	850141 850	22531 24		35545 38
	151	173	182	203	243	255	263	372	407	412	425	90\$	055	L69	717	05/			747	793	843	875	006	15	20	27
				1	1	1							1							1						

777	7/6611	114333 gii1001329	001529 [hypothetical protein [Synechocystis sp.]	29	36
1 170	166286	gil5	CapE [Staphylococcus aureus]	19	35
1 202	195499	194651 gil1674275	(AE000056) Mycoplasma pneumoniae, hypothetical ABC transporter (yjcW) homolog; similar to Swiss-Prot Accession Number P32721, from E. coli [Mycoplasma pneumoniae]	<i>L</i> 9	41
1 206	197487	Bill	P protein [Synechocystis sp.]	<i>L</i> 9	35
1 271	260292	gil34	acetate kinase [Methanosarcina thermophila]	<i>L</i> 9	44
1 313	302731	301643 gnllPIDle2499 81	PIDle 2499 phosphotransacety lase [Thermoanaerobacterium thermosaccharolyticum]	<i>L</i> 9	51
1 422	408897	408535 pirlA02819IR 5BS24	ribosomal protein L24 - Bacillus stearothermophilus	19	49
1 480	450326	gill	hypothetical [Haemophilus influenzae]	<i>L</i> 9	42
1 529	502315	502509 gil1001264	50S ribosomal protein L33 [Synechocystis sp.]	19	56
1 588	559618	gill	amidase [Moraxella catarrhalis]	1.9	51
1 683	643676		ribosomal protein S21 [Myxococcus xanthus]	19	49
1 698	658454		TagE [Vibrio cholerae]	<i>L</i> 9	38
1 700	660039	660536 gil 467420	unknown [Bacillus subtilis]	19	42
1 729	684089	685888 gnllPIDIe2676 07	685888 gnllPIDle2676 alanyl-tRNA synthatase [Thermus aquaticus thermophilus]	<i>L</i> 9	51
1 835	791754	792341 gnllPIDle2487 63	gnllPIDle2487 unknown [Mycobacterium tuberculosis]	<i>L</i> 9	46
1 857	807722	gill:	GsrA protein [Yersinia enterocolitica]	19	46
1 868	819577	820905 gil1590954	ATP synthase, subunit B [Methanococcus jannaschii]	<i>L</i> 9	53
1 74	88393	88028 gil1572979	hypothetical [Haemophilus influenzae]	99	43
1 91	99152	100252 gil561690	sialoglycoprotease [Pasteurella haemolytica]	99	44
1 123	121472		endonuclease III [Synechocystis sp.]	99	42
1 149	146362	gil12	orf304 gene product [Treponema pallidum]	99	43
1 185	179585	gil15	neutrophil activating protein (napA) [Haemophilus influenzae]	99	49
1 275	265075	gil40	cytidine deaminase [Mycoplasma pirum]	99	41
1 330	324514	323696 gil1574641	ribonucleotide transport ATP-binding protein (mkl) [Haemophilus influenzae]	99	41
335	327265		che Y gene product [Rhodobacter sphaeroides]	99	44
1 355	349142	382	Flis (Bacillus enhtilis)		00

WO 98/58943		73		PCT/US98/12764
53 53 41 40 40	33 47 47	33 46 40 40 39 42	41 43 47 47	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
99 99	99	99 65 65 65 65 65	65 65 65 65 65 65 65 65 65 65 65 65 65 6	65 65 65 65 65 65
Putative coding regions of novel proteins similar to know proteins [tar-1 [Trichostrongylus colubriformis] hemolysin [Serpulina hyodysenteriae] P. putida genes rpmH, rnpA, 9k, 60k, 50k, gidA, gidB, uncl and uncB [Pseudomonas putida] methyltransferase (cheR; EC 2.1.1.24) [Salmonella typhimurium] A 'c' was inserted after nt 369 (=nt 10459 in genomic sequence (M10126)) to correct -1 frameshift probably due to gel compression [Leishmania tarentolae]	putative pectinesterase [Medicago sativa] 9 OrfD [Streptococcus pneumoniae] could accelerate degradation of certain transcripts [Bacillus subtilis]	glycerol ester hydrolase [Staphylococcus aureus] novel hemolytic factor [Bacillus cereus] similar to the ATP-binding transport protein family [Buchnera aphidicola] spo VG gene product [Bacillus megaterium] phosphatidylserine decarboxylase [Bacillus subtilis] ClpP [Yersinia enterocolitica]	pencillin-oliding protein 2 (pbp2) [Haemophilus influenzae] poly(A) polymerase [Bacillus subtilis] bacterial cell wall hydrolase [Enterococcus faecalis] DNA ligase (lig) [Haemophilus influenzae] Pz-peptidase [Bacillus licheniformis] DNA mismatch repair protein [Aquifex pyrophilus]	single-stranded DNA-binding protein [Synechocystis sp.] gyrase A [Helicobacter pylori] leader peptidase I [Synechocystis sp.] YbbQ [Bacillus subtilis] hypothetical [Haemophilus influenzae] UDP-N-acetyl muramate-alanine ligase [Bacillus subtilis]
Borrelia burgdorferi - 350827 gil1546788 398324 gil296626 460550 gil45713 485159 gil153903 527316 gil340613	581069 gil886130 596288 gnllPIDle26 31 723522 gil1762342	770060 gil393266 795208 gil662880 834262 gil862629 87619 gil39656 102803 gil532272 109649 gil1377852	169323 169323 346553 655781	7988.27 gil1001362 878559 gil508471 882224 gil1652260 901519 gil1256146 904407 gil1573307 45683 gil556014
351051 399121 461335 486046 526495	595395 595395 723788	770251 795927 835002 87915 103039 110281	168084 255918 348568 657577 695297	876643 881238 902331 903280 47101
358 404 491 513 552	627 772	816 841 882 73 97 106	172 268 353 353 696 741	932 936 961 963 37

WO 98/58943			74		PCT/US98/12764
44 43 45 45	347	33 33 4	44 41 45 45	42 42 41	38 38 38 41 41 45
2 4 4 4 4	2 2 2 2	2 2 2 2	46 64 46	64 64	63 64 66 66
- Putative coding regions of novel proteins similar to know proteins I rhoptry protein [Plasmodium yoelii] valyl-tRNA synthetase (valS) [Haemophilus influenzae] threonyl-tRNA synthetase (thrS; EC 6.1.1.3) [Escherichia coli] acyl carrier protein [Synechocystis sp.] lipopolysaccharide core biosynthesis protein (kdtB) [Haemophilus influenzae]	2488 unknown [Mycobacterium tuberculosis] ORF2136 [Marchantia polymorpha]	hypothetical protein (GB:U00021_5) [Mycoplasma genitalium] transmembrane protein [Escherichia coli] unknown [Bacillus subtilis] cheW peptide [Escherichia coli]	monophosphatase [Synechocystis sp.] DNA polymerase III subunit [Bacillus subtilis] protein-glutamate methylesterase (EC 3.1.1.61) - Salmonella typhimurium dipeptide transport system permease protein (dppB) [Haemophilus influenzae]	soluble lytic transglycosylase [Synechocystis sp.] unknown [Mycobacterium tuberculosis] W04B2.3 [Caenorhabditis elegans]	hypothetical [Haemophilus influenzae] glutamate synthase [Escherichia coli] v-type Na-ATPase [Enterococcus hirae] methionyl-tRNA formyltransferase [Escherichia coli] thioredoxin [Arabidopsis thaliana] SbcC (AA 1-1048) [Escherichia coli]
Borrelia burgdorferi 71642 gil104178 129336 gil157422 151140 gil43066 170033 gil165239 170545 gil157365	173513 gnllPIDle7 173513 gnllPIDle7 93 197436 gil11665 205761 gil165286			640224 710194 771969	795211 gil1573939 812853 gil396314 823339 gil472918 851615 gil581088 853884 gil992960 31444 gil42914
72211 131969 152924 170326 171105	173764 173764 197654 206795	228146 228146 230149 253160 333349	376509 428137 484558 570416	637996 709637 771784	793892 811972 821501 850668 853492 34314
130 130 174 175	207	244 246 267 340	384 449 510 603	679 753 817	839 . 861 870 901 904 24
	- I— I— I—				 1 1 1 1 1

	F
•	

45	42	41	36	36	46	41	42	34	48	49	43	47	37	45	36	33	28	40	43	36	38	41	36	48	34
63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	62	62	62	62	62
urgdorferi - Putative coding regions of novel proteins similar to know proteins II1652022 GTP-binding protein [Synechocystis sp.]	ORF2136 [Marchantia polymorpha]	oxygen independent coprophorphyrinogen III oxidase [Synechocystis sp.]	protein-export membrane protein (secF) [Haemophilus influenzae]	SPERMIDINE/PUTRESCINE TRANSPORT SYSTEM PERMEASE PROTEIN POTC.	DJ-1 protein [Homo sapiens]	DD-carboxypeptidase [Bacillus subtilis]	mating type a-1 protein [Neurospora crassa]	[TRAB [Plasmid pPD1]	GLUTAMYL-TRNA SYNTHETASE (EC 6.1.1.17) (GLUTAMATETRNA LIGASE) (GLURS).	carboxyl-terminal protease [Synechocystis sp.]	Bts1p [Saccharomyces cerevisiae]	EC 1.1.99.5 [Mus musculus]	glycerol 3 phosphate dehydrogenase [Saccharomyces cerevisiae]	glycerol uptake facilitator [Bacillus subtilis]	ORF 4 (AA 1-198); 20 kD [Escherichia coli]	putative integral membrane protease required for high frequency lysogenization by bacteriophage lambda [Escherichia coli]	HflK [Vibrio parahaemolyticus]	stringent response-like protein [Streptococcus equisimilis]	transcription elongation factor [Escherichia coli]	basic membrane protein precursor [Treponema pallidum]	H. influenzae predicted coding region HI0594 [Haemophilus influenzae]	pantothenate metabolism flavoprotein (dfp) [Haemophilus influenzae]	ORF2 gene product [Bacillus subtilis]	hypothetical protein [Synechocystis sp.]	IIPIDle2118 50S ribosomal protein L21 [Odontella sinensis]
burgdorferi - Pu gil1652022	gil11665	<u>6</u> 6	gil1573204	spIP45169IPO TC_HAEIN	.20	gil143439	gil293954	gil1041116	spiP15189ISY (E_RHIME (gil1652577	gil1098641	gil1339938	gil763191	gil142997	gil41497	gil436158	gil507734	gil407881	gi	gil	gil1573583	gil1573978	gil49316	gil1001473	gnllPIDle2118 48
Borrelia bu 90194 gil	197862	213956	217193	231762 spl	261614	278735	325818	482759	528801	543747	589360 gil	660623	660735 gi	664159	702631 gil4	704671	705643 gil	713019	783289	804832 gil	7467	.51786 gil		19767	91806 gnl
91198	198041	214639	218116	230965	262171	279964	326012	484000	527314	542317	590442	660784	662231	664938	702035	705645	706431	715040	780572	803786	8945	50587	67740	78979	92123
77	509	227	232	247	272	290	333	208	553	569	620	701	702	704	746	748	749	756	825	853	4	42	57	64	80
	1		1	1	1	1	1			Ţ			1				1				1	1	I		-

	34	44	39	42	46	41	32	36	28	45	40	37	36	40	41	29	35	45	45	48	40	42	37	37		29
	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	61	61	61	61	61	61	61	61		61
Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins	hypothetical protein [Synechocystis sp.]	predicted 12.5Kd protein [Mycobacteriophage 15]	ribose 5-phosphate isomerase [Synechocystis sp.]	similar to APE1/LAP4, vacuolar aminopeptidase [Saccharomyces cerevisiae]	cysteinyl-tRNA synthetase [Bacillus subtilis]	similar to proofreading 3'-5' exonuclease and polymerase [Treponema pallidum]	putative orfW gene product [Clostridium acetobutylicum]	spoO193 gene product [Bacillus subtilis]	cheB peptide [Escherichia coli]	phosphomannose isomerase [Escherichia coli]	single-stranded-DNA-specific exonuclease (rec1) [Haemophilus influenzae]	unknown [Helicobacter pylori]	protoporphyrinogen oxidase (hemK) [Haemophilus influenzae]	hypothetical protein [Synechocystis sp.]	phosphatidate cytidylyltransferase [Synechocystis sp.]	collagenase [Clostridium perfringens]	tRNA guanine transglycosylase [Zymomonas mobilis]	adenine phosphoribosyltransferase form 1 [Triticum aestivum]	TagE [Vibrio cholerae]	hypothetical protein [Synechocystis sp.]	endospore forming protein [Bacillus subtilis]	gene not found in Erwinia uredovora crt gene cluster; ORF6 [Erwinia herbicola]	210668 splP37214IER GTP-BINDING PROTEIN ERA HOMOLOG. A. STRMU	possible N-terminal signal sequence; mature protein may be	membrane-anchored and start at Cys-17. 17.5% identity over 354-aa overlap with Candida pelliculosa beta-glucosidase.; putative IBacillus subtilis1	ORFveg 110 [Dictyostelium discoideum]
burgdorferi - P	gil16526/9	gil15893	gil1001678	gil529118	gil289284	352714 gil1633576	gil312380	gil40031	gil145524	$\dot{\mathbf{g}}$	93.	gil1477770	gil1574130	gil1652444	gil1652668	gil440851	gil498141	gil726305	gil460955	gil1001126	gi	gil148409	spIP37214IEF A_STRMU	gil438455		gil1513240
Borrelia	106/93	107883	213969	253175	287274 gil	352714	422495 gil	459582	484494	492322	644598	655063	714979 gi	719198	793891	862737	54726 gil	92174	106557		153051	184227	210668	264062		265581
1071201	10/458	107464	213238	251889	288749	349982	423190	458740	485147	491201	646727	655800	715668	718374	792941	862498	55889	92710	106820	111699	154445	185315	209790	262392		265982
101	IOI	102	226	266	299	357	443	489	511	518	685	695	758	762	837	917	46	81	100	109	157	193	223	273		277
-						_	I	1				1	I	1	=		7	7	7		=	1	Ĩ	I		T

- 1	

611 43			61 38	61 44	61 47	61 31	61 44	61 29	61 32	61 38	61 26	61 41	61 50	61 45	61 43	61 36	60 45	60 45	60 49	60 33	60 37	60 37	60 40	60 40	60 57	60 26	77
Pedorferi - Putative coding regions of novel proteins similar to know proteins 1354776 IMCP-1 (Trengens pallidum)				protein L17 [Escherichia coli]	ORF [Sulfolobus shibatae]	ribosomal protein L30 - Bacillus stearothermophilus	ribosomal protein L18 - Bacillus stearothermophilus	prolipoprotein signal peptidase [Staphylococcus aureus]	ssing protease [Saccharomyces cerevisiae]		TpN38(b) [Treponema pallidum]	dnaK homologue [Borrelia burgdorferi]	chocystis sp.]	YqgP [Bacillus subtilis]	hydrolase (GB:Z33006_1) [Haemophilus influenzae]	YqfM [Bacillus subtilis]	T24A11.1 [Caenorhabditis elegans]	YqgR [Bacillus subtilis]	s jannaschii]	hypothetical protein (SP:P32720) [Mycoplasma genitalium]) [Mycoplasma capricolum]	OrfH [Borrelia burgdorferi]		UDP-N-acetylglucosamine 1-carboxyvinyltransferase [Bacillus 6 subtilis]	tein diacylglyceryl transferase (lgt) [Haemophilus	us francisci]	
rferi - Putative coding	1737743 RecG [Tr			ribosomal riposomal	98	27IR	02IR			2				1303863 YqgP [Ba	573586 hydrolase		19		591369 cytidylate			372995 OrfH [Bor		PID e2768 UDP-N-ac subtilis	573923 prolipoprolinfluenzae	П	
Borrelia bu	313338 mil	1300010	372392 gi	4 401479 gil	7 404444 gil	405616 pir 5B	406435 pir 5B		441042 gil	581547 gil	585476 gil		635469 gil	(lig /59869	846688 gil 1	883282 gil	10627 gn 90	30475 gil l	44267 gil1	192053 gil	339440	362233 gil1	401872 gil	418793 gn 30	539698 gill	559655 gill	
701035				408 401874		415 405927	17 406848	41 421784	57 440722		15 584397	73 632123	675 634207	13 699438	97 847575	38 882836	7 10415	23 31428	35 44812	192994	17 341167	361817	9 402924	38 420142	540696	37 559368	000173
02 1	1 301	7C T	1 38	1 4(1 413	1 4	1 417	I 44	1 467	1 613	1 615	1 673	. 1 67	1 743	1 897	1 938	T	1 2	1 3	1 198	1 347	1 369	1 409	1 438	1 566	1 587	11

98/	589	43)	I	PCT/U	JS9	8/127	64
r								_	<u> </u>			_	<u> </u>		71				T			_						
47	34	33	56	38	36	38	Š	34	30	4	38	40	33		42	41	38	98	34	35	20		40	35	39	38	38	34
09	09	09	09	09	09	09		3	9	9	59	29	65		59	59	59	59	59	29	20	77	59	29	59	59	59	59
- Putative coding regions of novel proteins similar to know proteins O hypothetical protein [Synechocystis sp.]	elongation factor P [Synechococcus PCC7942]	hypothetical [Haemophilus influenzae]	mxaC gene product [Methylobacterium extorquens]	cytidylate kinase [Mycoplasma genitalium]	hypothetical [Haemophilus influenzae]	2550 hypothetical protein [Bacillus subtilis]		NifS protein. [Escherichia coli]	unknown [Schistosoma mansoni]	[type-I signal peptidase SpsB [Staphylococcus aureus]	ORF6 gene product [Bacillus subtilis]	DNA polymerase III subunit [Bacillus subtilis]	dipeptide transport system permease protein (dppB) [Haemophilus	influenzae]	phosphoglucose isomerase (AA 1-549) [Escherichia coli]	hypothetical [Haemophilus influenzae]	exodeoxyribonuclease V (recB) [Haemophilus influenzae]	rep helicase, single-stranded DNA-dependent ATPase (rep) homolog - Haemophilus influenzae (strain Rd KW20)	ORF_f560 [Escherichia coli]	Similar to arginyl-tRNA synthetase (E. coli) [Saccharomyces	CCIEVISIAE	allemate gene name yiod (eschencina com)	ORF for L15 ribosomal protein [Bacillus subtilis]	sigma factor (ntrA) (AA 1-502) [Azotobacter vinelandii]		unknown [Bacillus subtilis]	regulatory components of sensory transduction system [Synechocystis sp.]	proton glutamate symport protein [Bacillus caldotenax]
Borrella burgdorteri - Pt 690076 gil 1001260	691659 gill 399829	706626 gil1573060	gill 164996	gil1046033	813773 gill 574569	816105 gnllPIDle255	93	gil1742766	874110 gil1002666	882861 gil1595810	63234 gil580902	103802 gil467409	119914 gil1574678		141174 gil42377	gil1573129	245713 gil1574781	276257 pirID64084ID 64084	gil882504	296707 gil487937	יואררייבי	324004 g11400733	405179 gil216338	gil39269	461411 pirlA301911A 30191	463752 gil467425	481016 gil1651878	496395 gil143002
80rrelia 690076	69169	706626	735635	786567	813773	816105		829943	874110	882861	63234	103802	119914	-	141174	187659	245713	276257	281525	296707	172100	324304	405179	440759 gil39269	461411	463752	481016	496395
126069	691078	707879	734589	į .		813727		831250	872578	882211	63629	102744	118925		139567	186577	242174	278281	280005	294923	10000	972004	405646	439470	462064	462955	480078	16767
736	738	750	784	829	862	863		878	929	937	54	96	120		140	195	259	288	291	306		332	414	465	492	495	503	503
=	╬	F	-	-	-	-			1	-	-	┢	-		-	=	-		+	-	-	=	=	-	 	-	-	┝

			Borreli	burgdorferi - Puta	Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins		
	941	885060	886019	gil1685110	tetrahydrofolate dehydrogenase/cyclohydrolase [Streptococcus thermophilus]	59	36
	40	50348	48951	1574003	pantothenate permease (panF) [Haemophilus influenzae]	58	38
Ī	76	90160	89534 gil	303791	YgeJ [Bacillus subtilis]	28	32
	116	115845	115654 gnll	PIDle2758	T06E6.f [Caenorhabditis elegans]	28	37
	179	173515	173009	573163	hypothetical [Haemophilus influenzae]	58	37
	197	191904	189634	gil1066850	putative [Rhodobacter capsulatus]	28	37
	229	215111	214563	gil1573441	oxygen-independent coproporphyrinogen III oxidase (hemN) [Haemophilus influenzae]	28	34
	257	238952	241873	gil1041785	rhoptry protein [Plasmodium yoelii]	28	30
	440	421010	420792		(AE000047) Mycoplasma pneumoniae, MG246 homolog, from M. genitalium [Mycoplasma pneumoniae]	28	37
	557	533653	534750	534750 gil974332	NAD(P)H-dependent dihydroxyacetone-phosphate reductase [Bacillus subtilis]	58	41
	989	557259	559370	gil153062	helicase [Staphylococcus aureus]	28	41
	623	591542	592435	<u>.</u>	hypothetical protein [Synechocystis sp.]	28	35
	728	683208	684104	gil790935	fliG [Treponema denticola]	58	31
	961	750629	749508 gil	1574412	alanine racemase, biosynthetic (alr) [Haemophilus influenzae]	58	29
	823	778475	778723	1209836	minus strand repeat motif-containing gene [Borrelia burgdorferi]	58	22
	830	786540	788225	gil1574150	ribosomal protein S1 (rpS1) [Haemophilus influenzae]	58	34
	842	796255	796019	gnIIPIDle2434 74	ORF YGR089w [Saccharomyces cerevisiae]	58	35
	883	834332	834520	gil1575792	low Mr GTP-binding protein Rab32 [Homo sapiens]	28	43
	905	853953	854435	gil1303823	YqfG [Bacillus subtilis]	28	34
	919	863594	862875	gil1256625	putative [Bacillus subtilis]	28	34
	921	865297	864725	gil1054584	putative protein highly homologous to E. coli RNase HII [Magnetospirillum sp.]	58	42
	196	189636	187702	4	tlpC gene product [Bacillus subtilis]	57	32
Ī	797	249142	248192	gil46605	lacC polypeptide (AA 1-310) [Staphylococcus aureus]	57	41
	311	300776	301660	gil467431	high level kasgamycin resistance [Bacillus subtilis]	57	35
	365	358725	358495	gil396943	early protein [Human papillomavirus type 19]	57	38
	386	378249	378025	gil45986	NAD synthetase [Rhodobacter capsulatus]	57	32

•	

low proteins 437 [Methanococcus													1		l	56	56	56	95	56	56	56	56		1
Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins 394247 gil 1592085 M. jannaschii predicted coding region MJ 1437 [Methanococcus	jannaschii]	GTP-binding protein [Treponema pallidum]	Ribosomal Protein L10 [Bacillus subtilis]	YqgH [Bacillus subtilis]	ORF2136 [Marchantia polymorpha]	acriflavine resistance protein (acrB) [Haemophilus influenzae]	histidyl-tRNA synthetase [Methanococcus jannaschii]	elongation factor Ts [Chlamydia trachomatis]	hypothetical [Haemophilus influenzae]	50S ribosomal subunit protein L9 [Escherichia coli]	replicative DNA helicase [Synechocystis sp.]	acetyl coenzyme A acetyltransferase (thiolase) (fadA) homolog - Haemophilus influenzae (strain Rd KW20)	M. jannaschii predicted coding region MJ0798 [Methanococcus jannaschii]	ORF4 [Bacillus subtilis]	phospholipase C (EC 3.1.4.3) precursor - Clostridium bifermentans	exonuclease SbcD [Escherichia coli]	probable com101A gene [Haemophilus influenzae]	large tegument protein [Human herpesvirus 7]	ORF YPL216w [Saccharomyces cerevisiae]	NADH oxidase [Serpulina hyodysenteriae]	M. jannaschii predicted coding region MJ0240 [Methanococcus jannaschii]	aminodeoxychorismate lyase (pabC) [Haemophilus influenzae]	xylose repressor [Bacillus subtilis]	red alga1 chloroplast [Plasmodium falciparum]	UDP-N-acetylmuramoylalanine-D-glutamate ligase (murD) [Haemophilus influenzae]
Borrelia burgdorferi - Putati 394247 gil 1592085 N	e j	gil1732241	gil786163	gil1303855	gil11665	gil1573914	gil1591660	gil1518661	573941	gil537044	001271	IA I	806952 gil1499620 M	867809 gil1237015 O	6 pirlB30565lB 30565	gil1657594		39633	*IDle2469	2030	99018	73431	gil143841	gnIIPIDle2202 40	306992 gil1574691 UI
394690		397512	504504	689992	745857	768735	776835	790907	792328	98066 <i>L</i>	200668	802510	805240	865347	17611	35530	68915	91821	113768	142606	148561	165431	176655	301170	308362
1 399		1 402	1 533	1 735	1 794	1 814	1 821	1 834	1 836	1 848	1 849	1 851	1 855	1 922	1 12	1 26	1 59	1 79	1 112	1 147	1 153	1 169	1 183	1 312	1 317

V	

	448	426477	Borrelia 426133	burgdorferi - Pu	Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins 26133 gil467410 Junknown [Bacillus subtilis]	98	28
	456	437678	434457	oil142521	deoxyrihodinyrimidine nhotolyase [Bacillus subtilis]	25	
	500	070764	10101	1777119	decolationally minimum photoly asc [Dacinius submits]	200	1
-	94	4381/8	43/312 8118	g11882453	ORF_1286; alternate name yggB; or14 of X14436 [Escherichia colii]	26	31
	160	441300	1/3/120 ail 1	n:11/8216	NoII ontinorter protein [Entercoccons hine]	75	22
	407	441302	447470	100	INAIT-AIRIDUILEI DIOLEIN [EMICIOCOCCUS IIIIAE]	20	37
1	809	574772	574951	gill	NADH dehydrogenase subunit 2 [Paramecium aurelia]	99	37
1	669	659498	660055	gill	OrfH [Borrelia burgdorferi]	99	24
-	757	713509	713712	gil861327	F31D5.5 gene product [Caenorhabditis elegans]	99	40
-	791	741305	742837	gil1651873	4-alpha-glucanotransferase [Synechocystis sp.]	56	43
	822	779478	778291	gil1500309	M. jannaschii predicted coding region MJ1428 [Methanococcus	56	28
					Jannascnii		
-	196	907556	908932	gil1749528	similar to Saccharomyces cerevisiae probable UTP-glucose-1-	99	37
					phosphate uridylyltransferase, SWISS-PROT Accession Number D32861 [Schizosacharomyces nombel	************	
					r 32001 [Scilledsaccidalulilyces pullide]		
1	39	48953		gil1045895	[hypothetical protein (SP:P23851) [Mycoplasma genitalium]	55	41
T	131	132989	131967	gil1574007	nitrogen fixation nifR3 protein (nifR3) (PIR:S49971)	55	39
					[Haemophilus influenzae]		
1	152	148506	147148	gil1653100	Na+ -ATPase subunit J [Synechocystis sp.]	55	31
1	359	352690	353313 gill.	gi11213334	OrfX; hypothetical 22.5 KD protein downstream of type IV	55	33
					prepilin leader peptidase gene; Method: conceptual translation		
					supplied by author [Vibrio vulnificus]		
1	361	355510	354140	gil882698	L-fuculose kinase [Escherichia coli]	55	44
1	515	488398	487652	gil397486	endonuclease G [Bos taurus]	55	33
1	551	526427	525285	gil558266	orf gene product [Wolinella succinogenes]	55	30
I	270	543745	544482 gil]	gil1303811	YqeU [Bacillus subtilis]	55	33
1	279	551201	551494 ₈	gil290487	50S ribosomal subunit protein L28 [Escherichia coli]	55	37
1	584	555359	556063 ₈	gil1592301	M. jannaschii predicted coding region MJ0687 [Methanococcus	55	32
					jannaschii]		
	902	665310	965936		deoxyguanosine kinase/deoxyadenosine kinase(I) subunit [Lactobacillus acidophilus]	55	38
	771	722876	723538	gil1736440	O-sialoglycoprotein endopeptidase (EC 3.4.24.57) (Glycoprotease). [Escherichia coli]	55	39
-	786	736537	737187	gil1589778	SPINDLY [Arabidopsis thaliana]	55	34
]

•	

823341 823790 gil1590959 ĀTP synthase, subunit K [Methanococcus jannaschii] 55 847660 84942 gil1517942 aminopeptidase P [Sus scrofa] 55 867811 868236 gil114260 POMI [Plasmodium chabaudi chabaudi] 55 870915 870005 870005 870005 870005 870916 8700390 gil312694 ARS-binding factor 1 [Kluyveromyces maxianus] 55 44068 74679 gil41736 Orf635 gene product [Euglena gracilis] 54 184282 182904 gil151259 MMG-CoA reductase (EC. 1.1.188) [Pseudomonas mevalonii] 54 194105 192951 gil1045800 ribose transport system permease protein [Mycoplasma genitalium] 54 210749 21230 gil1591243 M. jamaschii] predicted coding region MJ0339 [Methanococcus 54 237491 238954 gil169164580 m. jamaschiii predicted coding region MJ0263 [Methanococcus 54 237491 238046 M. jamaschiii predicted coding region MJ0263 [Methanococcus 54 37706 379909 gil1909258 D.Dcarboxypeptidase [Eucroccus faccalis] 54 37706 37726 gil1439647 M. jamaschiii predicted coding reg	11 810	765243	Borrelia burgo 766130 gil98	dorferi - Puta 14805	rigdorferi - Putative coding regions of novel proteins similar to know proteins 1984805 [Blycine betaine-binding protein precursor [Bacillus subtilis]	55	35
847660 849462 gill 15 17942 aminopopidase P (Sus scrotal) 55 887811 88623 gill 15 17942 aminopopidase P (Sus scrotal) 55 870905 870079 gill 14566 POMJI (Plasmodium chabadi chabaudi) 55 904091 903900 gill 23839 CheR (Rhizobium melitoti) 54 44068 43124 gill 48660 delta-2-isopentenyl pyrophosphate transferase [Escherichia coli] 54 44068 43124 gill 48860 delta-2-isopentenyl pyrophosphate transferase [Escherichia coli] 54 79094 74709gill 47757 Grids 5 gene producte [Euglena gardlis] 54 194105 192909 gill 501243 M. jannaschii predicted coding region MJ0539 [Methanococcus 34 54 210749 212320 gill 591243 M. jannaschii predicted coding region MJ056 [Methanococcus 34 54 237491 238954 gill 791242 M. jannaschii predicted coding region MJ056 [Methanococcus 34 54 311333 312133 gill 209228 Dcaboxypeptidase [Enerococcus faecalis] 54 37096 377096 377096 377096 377096 377096 377096 377096 377096 377	1 871	823341	. 20	656069	ATP synthase, subunit K [Methanococcus jannaschii]	55	34
867811 868236 gill 142660 POM1 [Plasmodium chabaudi chabaudi] 55 870905 87005 970059 Gil12694 ARS-binding factor 1 [Kluyveronyces marxianus] 55 904091 903900 gil12694 ARS-binding factor 1 [Kluyveronyces marxianus] 54 40608 43124 gil46860 delta-2-isopentenyl pyrophosphate transferase [Escherichia colij] 54 184282 182969 gil15129 HMG-CoA reductase (EC 1.1.88) [Pseudomonas mevalonii] 54 194105 192951 gil164860 delta-2-isopentenyl pyrophosphate transferase [Escherichia colij] 54 194105 192951 gil164860 delta-2-isopentenyl pyrophosphate transportenyl pyrophosphatese [Entercococcus political pyrophatese [Entercococcus political pyrophatese] 54 24586 247542 gil1874782 exodeoxyribonuclease V (recD) [Haemophilus influenzae] 54 577096 579909 gil1499043 M. jannaschii predicted coding region MI026 [Methanococcus pyropenial pyropenia	1 898	847660	. <u>5</u> 2	17942	aminopeptidase P [Sus scrofa]	55	46
870905 870039 gil534839 CheR (Rhizobium melitot) 904091 903900 gil512860 delta-2-isopenteuryl pyropkente transferase [Escherichia coli] 55 904091 903900 gil312860 delta-2-isopenteuryl pyropkoshate transferase [Escherichia coli] 54 79004 74679 gil415736 Orf635 gene product [Euglena gracilis] 54 79034 74679 gil415736 Orf635 gene product [Euglena gracilis] 54 194105 192951 gil15739 HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonil] 54 194105 192320 gil1591243 M. jannaschii predicted coding region MJ0339 [Methanococcus familiana) 54 245698 247542 gil1574782 exodeoxyribonuclease V (recD) [Haemophilus influenze] 54 247698 247542 gil1574782 exodeoxyribonuclease V (recD) [Haemophilus virilis] 54 377096 579909 gil1499043 M. jannaschii predicted coding region MJ0263 [Methanococcus familianaschii] 54 797932 79999 gil290216 [bride of sevenless] gene product [Drosophila virilis] 54 884888 893912 gil173804 dosage-dependent dnak suppressor protein [Escherichia coli] 54 96019 <td< td=""><td>1 924</td><td>867811</td><td><u></u></td><td>42660</td><td>_</td><td>55</td><td>41</td></td<>	1 924	867811	<u></u>	42660	_	55	41
904091 903900 gil312694 ARS-binding factor 1 [Kluyvetomyces marxianus] 55 44068 43124 gil46860 delta-2-isopentenyl pyrophosphate transferase [Escherichia coli] 54 74068 43124 gil46860 delta-2-isopentenyl pyrophosphate transferase [Escherichia coli] 54 184068 43622 gil41378 HMG-CoA reductase (EC. I. 1. 88) [Pseudomonas mevalonii] 54 194105 192951 gil1045800 ribose transport system permease protein [Mycoplasma genitalium] 54 210749 212320 gil1512943 M. jannaschii predicted coding region MJ0539 [Methanococcus and anaschii] 54 245698 247542 gil1574782 exodeoxyribonuclease V (recD) [Haemophilus influenzae] 54 24607 247542 gil1574782 b.D-carboxypeptidase [Enterococcus facealis] 54 311333 312133 gil1209528 D.D-carboxypeptidase [Enterococcus facealis] 54 577096 579909 gil1499043 M. jannaschii predicted coding region MJ063 [Methanococcus jannaschii] 54 720685 719999 gil1045767 inbosomal protein [Seudomonas putida] 54 789607 719996 gil1045767 inbosomal protein [Reducted coding region MJ0798 [Methanococcus jannaschii]	1 927	870905	1.20	14839	CheR [Rhizobium meliloti]	55	32
44068 43124 gil 146860 delta-2-isopentenyl pyrophosphate transferase [Escherichia coli] 54 79094 74679 gil 14536 Orf655 gene product [Euglena gracilis] 54 179094 74679 gil 151259 HMO-Co-Ar ceductase (EC. I.1.1.88) [Pseudomonas mevalonii] 54 194105 192951 gil 1945800 ribose transport system permease protein [Mycoplasma genitalium] 54 210749 212320 gil 1591243 M. Jannaschii predicted coding region MJ0539 [Methanococcus and protein [Mycoplasma genitalium] 54 237491 238954 gnllPIDE-2450 unknown [Mycobacterium tuberculosis] 54 245698 247542 gil 1574782 exodeoxyribonuclease V (recD) [Haemophilus influenzae] 54 245698 247542 gil 1499043 M. Jannaschii predicted coding region MJ0263 [Methanococcus 54 54 577096 579909 gil 1499043 M. Jannaschii predicted coding region MJ078 [Methanococcus 54 54 720685 719999 gil 1499043 M. Jannaschii predicted coding region MJ0798 [Methanococcus 54 54 739607 739996 gil 1495043 M. Jannaschii predicted coding region MJ0798 [Methanococcus 54 54 79931 768386 M. Jannaschii predicted coding region MJ0798 [Methanococc	1 964	904091	903900 gil31	2694	ARS-binding factor 1 [Kluyveromyces marxianus]	55	50
79094 74679 gil415736 Orf635 gene product [Euglena gracilis] 184282 182969 gil415739 HMG-CoA reductase (EC I.1.1.88) [Pseudomonas mevalonii] 54 184282 182969 gil151239 HMG-CoA reductase (EC I.1.1.88) [Pseudomonas mevalonii] 54 194105 192931 gil1045800 ribose transport system permease protein [Mycoplasma genitalium] 54 210749 212320 gil1591243 M. jannaschii predicted coding region MJ0539 [Methanococcus 54 245698 247542 gil1591245 unknown [Mycobacterium tuberculosis] 247542 gil1309542 D.D-carboxypeptidase [Enterococcus faecalis] 54 577096 579909 gil1499043 M. jannaschii predicted coding region MJ0263 [Methanococcus 54 577096 579909 gil1499043 M. jannaschii predicted coding region MJ0263 [Methanococcus 54 577096 247542 gil1499043 M. jannaschii predicted coding region MJ0708 [Methanococcus 54 577096 579909 gil1499043 M. jannaschii predicted coding region MJ0798 [Methanococcus 54 579909 gil1499043 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 54 579909 gil1499650 Ingeallar P-ring protein [Pseudomonas putida] 55 570909 gil1499650 Ingeallar P-ring protein [Pseudomonas putida] 55 57090 gil1499650 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 5207426 gil1499650 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 5207426 gil1499650 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 5207426 gil1499650 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 5207102 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 57009 gil1015945 methyl accepting chemotaxis homolog [Treponena denticola] 55 57009 gil1015945 methyl accepting chemotaxis homolog [Treponena denticola] 55 57009 gil1015945 methyl accepting chemotaxis homolog [Treponena denticola] 57000 gil1015945 methyl accepting chemotaxis homolog [Treponena denticola] 57000 gil10160000000000000000000000000000000000	1 33	44068	43124 gil14	0989	delta-2-isopentenyl pyrophosphate transferase [Escherichia coli]	54	31
184282 182969 gil151259 HMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] 54 194105 192951 gil1645800 ribose transport system permease protein [Mycopalaama genitalium] 54 210749 212320 gil1591243 A. Jannaschii predicted coding region MJ0539 [Methanococcus] 54 237491 238954 gil15912450 unknown [Mycobacterium tuberculosis] 54 245698 247542 gil1574782 exodeoxyribonuclease V (recD) [Haemophilus influenzae] 54 21033 312133 gil1209528 D.D-carboxypeptidase [Enterococcus faecalis] 54 311333 312133 gil1209528 D.D-carboxypeptidase [Enterococcus faecalis] 54 377096 579909 gil1499043 M. Jannaschii predicted coding region MJ0056 [Methanococcus 54 720685 719999 gil290216 [bride of sevenless] gene product [Drosophila virilis] 54 739607 739996 gil473804 dosage-dependent dnak suppressor protein [Escherichia coli] 54 894898 893912 gil1303842 YqtU [Bacillus subtilis] 54 96019 97032 gil409550 flagellar P-ring protein [Escherichia coli] 53 159533 158562 gil149962	1 63	79094	74679 gil41	5736	Eugle	54	37
194105 192951 gil1045800 ribose transport system permease protein [Mycoplasma genitalium] 54 210749 212320 gil1591243 M. jannaschii predicted coding region MJ0539 [Methanococcus jannaschii] 54 237491 238954 gnllPIDle2450 unknown [Mycobacterium tuberculosis] 54 245698 247542 gil1574782 exodeoxyribonuclease V (recD) [Haemophilus influenzae] 54 245698 247542 gil1574782 exodeoxyribonuclease V (recD) [Haemophilus influenzae] 54 311333 312133 gil1209528 D.D-carboxypeptidase [Enterococcus faecalis] 54 377096 379909 gil290216 Ibride of sevenless] gene product [Drosophila virilis] 54 720685 719999 gil290216 Ibride of sevenless] gene product [Drosophila virilis] 54 720687 739906 gil473604 'dosage-dependent dnak suppressor protein' [Escherichia coli] 54 797932 798360 Janaschiils subtilis} 54 96019 97032 gil405560 Ilagellar P-ring protein [Pseudomonas putida] 53 98331 199215 gil1303842 Yqft [Bacillus subtilis] 53 159533 158562 gil1499650 M. jannaschii predicte	1 192	184282	182969 gill	1259	(EC 1	54	35
210749 212320 gil1591243 M. jannaschii predicted coding region MJ0539 [Methanococcus jannaschii] 54 237491 238954 gillPDle2450 unknown [Mycobacterium tuberculosis] 54 245698 247542 gill274782 exodeoxyribonuclease V (recD) [Haemophilus influenzae] 54 311333 312133 gill209228 D.D-carboxypeptidase [Enterococcus faecalis] 54 577096 579909 gill499043 M. jannaschii predicted coding region MJ0263 [Methanococcus jannaschii] 54 720685 719999 gil290216 [bride of sevenless] gene product [Drosophila virilis] 54 739607 739996 gil473804 dosage-dependent dnaK suppressor protein [Escherichia coli] 54 797932 798366 gil473804 dosage-dependent Beculomonas putida] 54 86019 97032 gil405767 riposomal protein [Pseudomonas putida] 54 96019 97032 gil405550 flagellar P-ring protein [Pseudomonas putida] 53 98331 99115478 No definition line found [Escherichia coli] 53 159533 158562 gil499620 M. jannaschii predicted coding region MJ0798 [Methanococcus standarding line found line found line found line giland line found line found line found line found line found	1 200	194105	192951 gill(008540	ribose transport system permease protein [Mycoplasma genitalium]	54	29
237491 238954 gnllPIDle2450 unknown [Mycobacterium tuberculosis] 54 245698 247542 gil 574782 exodeoxyribonuclease V (recD) [Haemophilus influenzae] 54 245698 247542 gil 574782 exodeoxyribonuclease V (recD) [Haemophilus influenzae] 54 31133 312133 gil 209528 D.D-carboxypeptidase [Enterococcus faecalis] 54 720685 719999 gil 499043 M. jannaschii predicted coding region MJ0263 [Methanococcus 54 739607 739996 gil 499044 dosage-dependent dnaK suppressor protein [Escherichia coli] 54 739607 739996 gil 445767 ribosomal protein S6 [Mycoplasma genitalium] 54 894888 893912 gil 3045767 ribosomal protein [Pseudomonas putida] 54 96019 97032 gil 499520 flagellar P-ring protein [Pseudomonas putida] 53 159533 158562 gil 1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 26053 257426 gil 749686 similar to Saccharomyces cerevisiae unknown, EMBL Accession 53 26053 257426 gil 749686 methyl accepting chemotaxis homolog [Treponema denticola] 53 292150 294309 gil 10159	1 224	210749	gil	91243	M. jannaschii predicted coding region MJ0539 [Methanococcus jannaschii]	54	45
245698 247542 gill 574782 exodeoxyribonuclease V (recD) [Haemophilus influenzae] 54 311333 312133 gill 209528 D.D-carboxypeptidase [Enterococcus faecalis] 54 577096 579909 gill 499043 M. jannaschii predicted coding region MJ0263 [Methanococcus jannaschii] 54 720685 719999 gill 200216 [bride of sevenless] gene product [Drosophila virilis] 54 739607 739996 gill 47804 dosage-dependent dnaK suppressor protein [Escherichia coli] 54 797932 798366 gill 045767 ribosomal protein [Se [Mycoplasma genitalium] 54 894898 893912 gill 303842 YqU [Bacillus subtilis] 53 96019 97032 gill 409550 flagellar P-ring protein [Pseudomonas putida] 53 159533 158562 gill 1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus familar to Saccharomyces cerevisiae unknown, EMBL Accession 53 266053 267426 gill 749686 similar to Saccharomyces cerevisiae unknown, EMBL Accession 53 292150 294309 gill 1015945 methyl accepting chemotaxis homolo	1 256	237491	gn 24	*IDIe2450	unknown [Mycobacterium tuberculosis]	54	34
311333 312133 gil1209528 D.D-carboxypeptidase [Enterococcus faecalis] 54 577096 579909 gil1499043 M. jannaschii predicted coding region MJ0263 [Methanococcus 54 720685 719999 gil290216 [bride of sevenless] gene product [Drosophila virilis] 54 739607 739996 gil473804 dosage-dependent dnaK suppressor protein' [Escherichia coli] 54 797932 798366 gil1045767 ribosomal protein S6 [Mycoplasma genitalium] 54 894898 893912 gil1303842 YqfU [Bacillus subtilis] 53 96019 97032 gil405550 flagellar P-ring protein [Pseudomonas putida] 53 159533 158562 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 266053 267426 gil1749686 similar to Saccharomyces cerevisiae unknown, EMBL Accession 53 292150 294309 gil1015945 methyl accepting chemotaxis homolog [Treponema denticola] 53 358298 357702 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 3	1 260	245698	<u> </u>	574782	exodeoxyribonuclease V (recD) [Haemophilus influenzae]	54	36
577096 579909 gil1499043 M. jannaschii predicted coding region MJ0263 [Methanococcus] 54 720685 719999 gil290216 [bride of sevenless] gene product [Drosophila virilis] 54 739607 739996 gil473804 'dosage-dependent dnaK suppressor protein' [Escherichia coli] 54 797932 798366 gil1045767 ribosomal protein S6 [Mycoplasma genitalium] 54 894898 893912 gil1045767 ribosomal protein S6 [Mycoplasma genitalium] 54 96019 97032 gil405550 flagellar P-ring protein [Pseudomonas putida] 53 96019 97032 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus] 53 159533 158562 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus] 53 266053 267426 gil1749686 similar to Saccharomyces crevisiae unknown, EMBL Accession 53 292150 294309 gil1015945 methyl accepting chemotaxis homolog [Treponema denticola] 53 358298 357702 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus] 53<	1 320	311333	<u></u>	92560	D,D-carboxypeptidase [Enterococcus faecalis]	54	40
720685 719999 gil290216 [bride of sevenless] gene product [Drosophila virilis] 54 739607 739996 gil173804 'dosage-dependent dnak suppressor protein' [Escherichia coli] 54 797932 798366 gil1045767 ribosomal protein S6 [Mycoplasma genitalium] 54 894898 893912 gil1045767 ribosomal protein S6 [Mycoplasma genitalium] 54 96019 97032 gil1045767 ribosomal protein S6 [Mycoplasma genitalium] 53 98331 99215 gil1045767 riposomal protein [Pseudomonas putida] 53 159533 158562 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 234276 232861 gil1749686 similar to Saccharomyces cerevisiae unknown, EMBL Accession 53 266053 267426 gil1015945 methyl accepting chemotaxis homolog [Treponema denticola] 53 292150 294309 gil10499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 358298 357702 gil1499620 M. jannaschiii] jannaschiii	1 610	577096	E.G.	99043	M. jannaschii predicted coding region MJ0263 [Methanococcus annaschii]	54	30
739607 739996 gil473804 'dosage-dependent dnaK suppressor protein' [Escherichia coli] 54 797932 798366 gil1045767 ribosomal protein S6 [Mycoplasma genitalium] 54 894898 893912 gil1045767 ribosomal protein S6 [Mycoplasma genitalium] 54 96019 97032 gil405550 flagellar P-ring protein [Pseudomonas putida] 53 98331 99215 gil912478 No definition line found [Escherichia coli] 53 159533 158562 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 234276 232861 gil1749686 similar to Saccharomyces cerevisiae unknown, EMBL Accession 53 266053 267426 gil1749686 similar to Saccharomyces pombe] 53 292150 294309 gil1015945 methyl accepting chemotaxis homolog [Treponema denticola] 53 358298 357702 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 358298 357702 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53	1 765	720685	719999 gil29	0216	bride of sevenless] gene product [Drosophila virilis]	54	25
797932 798366 gil1045767 ribosomal protein S6 [Mycoplasma genitalium] 54 894898 893912 gil1303842 YqfU [Bacillus subtilis] 53 96019 97032 gil405550 flagellar P-ring protein [Pseudomonas putida] 53 98331 99215 gil912478 No definition line found [Escherichia coli] 53 159533 158562 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 234276 232861 gil1749686 similar to Saccharomyces cerevisiae unknown, EMBL Accession 53 266053 267426 gil1749686 similar to Saccharomyces cerevisiae unknown, EMBL Accession 53 292150 294309 gil1015945 methyl accepting chemotaxis homolog [Treponema denticola] 53 358298 357702 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53	1 789	739607	739996 gil47	73804		54	35
894898 893912 gil1303842 YqfU [Bacillus subtilis] 53 96019 97032 gil405550 flagellar P-ring protein [Pseudomonas putida] 53 98331 99215 gil912478 No definition line found [Escherichia coli] 53 159533 158562 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 234276 232861 gil1749686 similar to Saccharomyces cerevisiae unknown, EMBL Accession 53 266053 267426 gil1749686 similar to Saccharomyces cerevisiae unknown, EMBL Accession 53 292150 294309 gil1015945 methyl accepting chemotaxis homolog [Treponema denticola] 53 358298 357702 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53	1 845	797932	798366 gil10	145767	ribosomal protein S6 [Mycoplasma genitalium]	54	35
96019 97032 gil405550 flagellar P-ring protein [Pseudomonas putida] 53 98331 99215 gil912478 No definition line found [Escherichia coli] 53 159533 158562 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 234276 232861 gil1303989 YqkI [Bacillus subtilis] 53 266053 267426 gil1749686 similar to Saccharomyces cerevisiae unknown, EMBL Accession 53 Number Z68194 [Schizosaccharomyces pombe] Number Z68194 [Schizosaccharomyces pombe] 53 292150 294309 gil1015945 methyl accepting chemotaxis homolog [Treponema denticola] 53 358298 357702 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53	1 951	894898	893912 gill 3	03842	YqfU [Bacillus subtilis]	54	28
98331 99215 gil912478 No definition line found [Escherichia coli] 53 15953 158562 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 234276 232861 gil1303989 YqkI [Bacillus subtilis] 53 266053 267426 gil1749686 similar to Saccharomyces cerevisiae unknown, EMBL Accession 53 Number Z68194 [Schizosaccharomyces pombe] Number Z68194 [Schizosaccharomyces pombe] 53 358298 357702 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 jannaschii] jannaschiil	1 86	96019	97032 gil40	5550	flagellar P-ring protein [Pseudomonas putida]	53	40
159533 158562 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 234276 232861 gil1303989 YqkI [Bacillus subtilis] 53 266053 267426 gil1749686 similar to Saccharomyces cerevisiae unknown, EMBL Accession 53 Number Z68194 [Schizosaccharomyces pombe] Number Z68194 [Schizosaccharomyces pombe] 53 358298 357702 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 jannaschii] jannaschiil 53	1 89	98331	99215 gil91	2478	No definition line found [Escherichia coli]	53	35
234276232861 gil1303989YqkI [Bacillus subtilis]53266053267426 gil1749686similar to Saccharomyces cerevisiae unknown, EMBL Accession53Number Z68194 [Schizosaccharomyces pombe]53292150294309 gil1015945methyl accepting chemotaxis homolog [Treponema denticola]53358298357702 gil1499620M. jannaschii predicted coding region MJ0798 [Methanococcus53	1 164	159533	158562 gil	99620	M. jannaschii predicted coding region MJ0798 [Methanococcus annaschii]	53	39
266053267426 gil1749686similar to Saccharomyces cerevisiae unknown, EMBL Accession53292150294309 gil1015945methyl accepting chemotaxis homolog [Treponema denticola]53358298357702 gil1499620M. jannaschii predicted coding region MJ0798 [Methanococcus]53	1 250	234276	232861 gil	68650	YqkI [Bacillus subtilis]	53	28
292150 294309 gil1015945 methyl accepting chemotaxis homolog [Treponema denticola] 53 358298 357702 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 jannaschii]	1 278	266053	267426 gil	49686	similar to Saccharomyces cerevisiae unknown, EMBL Accession Number Z68194 [Schizosaccharomyces pombe]	53	28
358298 357702 gil1499620 M. jannaschii predicted coding region MJ0798 [Methanococcus 53 jannaschii]	1 302	292150	294309 gil10		methyl accepting chemotaxis homolog [Treponema denticola]	53	31
	1 364	358298	357702 gil 14		M. jannaschii predicted coding region MJ0798 [Methanococcus annaschii]	53	41

WO 98/58943			PCT/US98/12764
		83	
28 33 32 35 30 26	26 34 37 24	34 25 28 28 32 47 47 40	35 29 20 27 27 29 29 29 29 29
53 53 53	22 22 22	\$25 \$2 \$2 \$25 \$2 \$25	\$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25 \$25
Putative coding regions of novel proteins similar to know proteins orf 06111 gene product [Saccharomyces cerevisiae] YIXH [Borrelia burgdorferi] cell division protein J [Methanococcus jannaschii] GlcNAc 6-P deacetylase [Vibrio furnissii] YqhZ [Bacillus subtilis] H. influenzae predicted coding region HI1555 [Haemophilus	influenzae] hypothetical protein [Synechocystis sp.] P35 gene product (AA 1 - 314) [Escherichia coli] repeat organellar protein [Plasmodium chabaudi] colicin V production protein (pur regulon) (cvpA) [Haemophilus influenzae]	secA gene product [Antithamnion sp.] hypothetical protein [Synechocystis sp.] trigger factor [Bacillus subtilis] glutamic acid-rich protein [Plasmodium falciparum] 24K membrane protein [Pseudomonas aeruginosa] phnP protein [Escherichia coli] unknown [Bacillus subtilis] hypothetical protein (GP:X91006_2) [Methanococcus jannaschii] (AE000047) Mycoplasma pneumoniae, MG246 homolog, from	M. genitalium [Mycoplasma pneumoniae] aspartyl-tRNA synthetase (aspS) [Haemophilus influenzae] fibronectin/fibrinogen-binding protein [Streptococcus pyogenes] dihydroorotate dehydrogenase [Plasmodium falciparum] S2 gene product [Borrelia burgdorferi] SpoVD [Bacillus subtilis] ATP synthase, subunit D [Methanococcus jannaschii] repeat organellar protein [Plasmodium chabaudi] putative [Bacillus subtilis]
Borrelia burgdorferi - P 486888 gil940842 540684 gil1165254 591032 gil1592021 758537 gil1732203 805298 gil1303915 834944 gil1574399	56944 gil1652686 62383 gil42219 65665 gil1151158 102746 gil1574136	116879 gil288998 208446 gil1652602 272764 gnllPIDle255 28 346532 gil160299 361800 gil216861 367695 gil147213 372412 gil467459 416768 gil1591425	443798 gil1573287 553802 gil496254 715610 gil397703 750674 gil1063419 774852 gil580936 821516 gil1592298 838106 gil1151158 862110 gil1256625
486253 541832 590418 759748 804825 835705	58236 63264 66168 102255	115800 208898 274152 344946 361087 368462 373209 418141 420801	443436 555235 715852 751384 776768 820887 839581 862856 83112
514 567 621 805 884 884	53 56 95	220 220 285 362 368 376 381 437 439	583 759 797 820 869 888 888 916

	1	1				1 29	51 26			50 25	50 35	50 29	50 32			50 30		50 32			50 30		48 21				70 21
	[5	5	5	5	5	[2	5	5	5	5	5	5	2	5	5	5	5	5	5	5	5	4	4	4	4	4	V
ative coding regions of novel proteins similar to know proteins	20844 orf4 [Bacillus subtilis]	3-hydroxy-3-methylglutaryl-CoA synthase [Gallus gallus]	ORF2 [Bacillus subtilis]	protein antigen LmSTI1 [Leishmania major]	chromate resistance protein A [Methanococcus jannaschii]	PIDIe2390 AMP-binding protein [Brassica napus]	a negative regulator of pho regulon [Pseudomonas aeruginosa]	ORF2 [Salmonella typhimurium]	phospho-N-acetylmuramoyl-pentapeptide- transferase [Bacillus subtilis]	RING-finger protein [Helicoverpa armigera nucleopolyhedrovirus	PgsA [Bacillus subtilis]	YqfV [Bacillus subtilis]	PIDle2767 unknown [Mycobacterium tuberculosis]	peptidase D [Escherichia coli]	ComE [Synechocystis sp.]	PIDIe2202 frameshift [Plasmodium falciparum]	beta-galactosidase [Thermoanaerobacterium thermosulfurigenes]	B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB [Bacillus subtilis]	CG Site No. 29739 [Escherichia coli]	T03G11.2 gene product [Caenorhabditis elegans]	murE gene product [Bacillus subtilis]	involucrin [Saguinus oedipus]	ORF2 [Salmonella typhimurium]	yejE [Escherichia coli]	putative [Bacillus subtilis]	FemA [Staphylococcus simulans]	Lemosthatian I manatoin [Cumanhangration and
Borrelia burgdorferi - Put	146360 gil520844	185275 gil211931	289676 gil142833	gill	439497 gil1591434		869955 gil633996	54062 gil505363	gil3	117096 gil1762996	150506 gil893358	224744 gil1303843	,	274710 gil147140		341581 gnilPIDle2202 45	434509 gil144839	447948 gil580905	641039 gil882579	690400 gil1086864	709662 gil40162	354157 gil343314	53216 gil505363	120774 gil405908	156653 gil143213	gill	11001170
	147190	186516	288759	362209	438943	<u> </u>	869257	54760	101155	118397	151159	224187	L	276164	299525	342477	435120	448691	640194	690152	708130	353288	54046	119896	157504	305940	10/150
	150	194	300	371	464	819	976	45	94	118	155	239	274	287	310	349	457	479	089	737	752	360	44	122	161	316	
	F	-	F		F		-	F		T	-	F			-	-	F		-	-	-	-	I		F	=	ŧ

9 1	628 596267	Borrelia burgdorferi - Puta 596566 gill 56218	dorferi - Putative coding regions of novel proteins similar to know proteins 56218 putative [Caenorhabditis elegans]	48	32
1 -		654452 gill 574476	dedA protein (dedA) [Haemophilus influenzae]	48	22
1 7	731 686392	686129 gil915207	gastric mucin [Sus scrofa]	48	27
1 8		843476 gnll	PIDIe2202 frameshift [Plasmodium falciparum]	48	32
	62 74673	72196	outer membrane protein [Neisseria gonorrhoeae]	47	30
10		108780 gill		47	27
	187 1811111	180215 gil1184118	mevalonate kinase [Methanobacterium thermoautotrophicum]	47	30
1 20		196616 gill	phosphoglycolate phosphatase, chromosomal (SP:P40852) [Haemophilus influenzae]	47	21
1 2	265 251835	251098 gil1209847	repeat motif-containing gene [Borrelia burgdorferi]	47	30
1 3			uridylate kinase [Methanococcus jannaschii]	47	26
1 3	356 349581	349991 gil8	Probable essential component of the nucleoskeleton (Swiss Prot. accession number P32380) [Saccharomyces cerevisiae]	47	27
1	460559	459834 gil1592264	type I restriction enzyme [Methanococcus jannaschii]	47	34
		1	ankyrin 3 [Mus musculus]	47	53
1 5		548390 gnll	PIDIe2202 frameshift [Plasmodium falciparum]	47	27
1 72	744 701189		PIDIe1604 orfA gene product [Borrelia burgdorferi]	47	23
1 7.	755 713050	1	710765 pirlS41649IS4 DNA polymerase - Plasmodium falciparum	47	22
11 7/	761 717229	i	M. jannaschii predicted coding region MJ1428 [Methanococcus jannaschii]	47	37
~	813 767745	768737	membrane fusion protein (mtrC) homolog - Haemophilus influenzae (strain Rd KW20)	47	23
- X	824 779587	780546 gild	contains TPR domain-like repeats [Caenorhabditis elegans]	47	28
1	881 834283	833015	H. influenzae predicted coding region H11548 [Haemophilus influenzae]	47	24
1	886 837236	836199 gil887563	serine/threonine-protein kinase [Plasmodium falciparum]	47	30
1	47 57001	55880 gil1652686	hypothetical protein [Synechocystis sp.]	46	23
		156171 gill	ORF4 protein (AA 1-156) [Paramecium aurelia]	46	9

28	20	18	27	21	28		29	32	29	19	26	29			27	23	23	26	26	31	25	19
46	46	46	46	46	46		46	46	46	46	46	46			45	45	45	44	44	44	44	43
Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins 765 232829 gil 1142681 Lpp38 [Pasteurella haemolytica]	322838 gil562039	327303 gil457146	421747 gil15		545596 gil1022328	been purified and found to bind in vitro to a promoter region [Myxococcus xanthus]					852741 gil806562	909948 gil438455	membrane-anchored and start at Cys-17. 17.5% identity over 354-	aa overlap with Candida pelliculosa beta-glucosidase.; putative [Bacillus subtilis]		438949 gil687689	695295 gil 1499043 M. jannaschii predicted coding region M jannaschii]	96 98756 gil303895 ORF 8: This ORF is required for the secretion of IpaB, IpaC and IpaD IPasmid pMYSH60001	234343 gil143245			Ш
2317	323695	3290	42251	428632	545081		586903	668290	7411	843474	853463	908917			197467	438197	698657	96166	235698	668406	802490	436119
249	329	336	442	1 452	573		617	108	190	892	1 903	896			208	462	742	06	253	709	850	458

	30	27	19	24	25	26	26	20	24					28	-	19	24	24	24
	43	43	42	42	42	41	41	41	40			-		40	Ç	5	\$ 9	40	04 04
tative coding regions of novel proteins similar to know proteins	309967 pirlS17998IS1 gene COX1 intron 4 protein - yeast (Kluyveromyces marxianus var. lactis) mitochondrion (SGC2)	no score generated - score shown is bogus [Mycoplasma genitalium]	hypothetical protein (GP:X91006_2) [Methanococcus jannaschii]	hypothetical protein (SP:P32720) [Mycoplasma genitalium]	VAR1 protein [Candida glabrata]	ipa-52r gene product [Bacillus subtilis]	546581 gnllPIDle 1632 MURF2 protein (AA 1-348) [Crithidia fasciculata]	repeat organellar protein [Plasmodium chabaudi]	Similar to chromosome segregation protein Smc1p of S. cerevisiae	(GenBank accession number L00602), chromosome segregation	protein Cut3p of S. pombe (Swiss Prot. accession number	P41004), and C. elegans hypothetical proteins R13G10.1	(GenBank	neural specific DNA binding protein [Xenopus laevis]	hymothatian matain (CD.V01006 3) [Mathanasasans inmescalin	hisponiencal protein (Or.A) 1000_2) [menianococcus jannascinii]	[Mus musculus (strain C3HF/RL) ORF mRNA, complete cds.],	[Mus musculus (strain C3HF/RL) ORF mRNA, complete cds.], gene product [Mus musculus]	[Mus musculus (strain C3HF/RL) ORF mRNA, complete cds.], gene product [Mus musculus] wall-associated protein [Bacillus subtilis]
ı burgdorferi - Pu	PirlS17998IS 7998	gil1045905	gil1591425	gil1045801	gil343962	gil413976	gnIIPIDle 1637 6	gil1151158	gil1256888	•				gil1150836	oil1501425	51117/114	gil499647	429700 gil499647	gil499647
Вотелі	809967 pirlS179 7998	879701 gil	309877 gil	588672 gi	594572	101021 gil	546581	692403 gill	6796 gill					214742 gil	308377 gi		429700	429700	429700 gi
	810560	881179	311250	587863	593472	100191	545523	693458	5792	-				214440	309735		431037	431037	431037
	829	935	319	618	625	93	574	740	3					228	318		453	453	453
	T				1	-	1							Γ		,	T		

Borrelia burgdorferi - Coding regions containing know proteins

Contig ID	Orf ID Start (nt)		Stop (nt)	match acession	match gene name	percent ident	HSP nt length
	69		85018		Borrelia burgdorferi peptidyl-tRNA hydrolase- like protein (pth) gene homologue, complete cds	100	220
	70	86918	86340	gblL321441	Borrelia burgdorferi peptidyl-tRNA hydrolase- like protein (pth) gene homologue, complete cds	100	579
	71	87573	86911	gb L32144	Borrelia burgdorferi peptidyl-tRNA hydrolase- like protein (pth) gene homologue, complete cds	100	129
	124	123885		121759 gblM60802l	B.burgdorferei immunogen gene, 5' flank	66	2127
	126	127421	1	125700 emblX91965l BBATPBP	B.burgdorferi abp gene	26	284
	137	136332	139151	gblL314241	Borrelia burgdorferi (clone BbK3.11) phoA fusion protein gene, partial cds	86	248
	138		138515	gblL314241	Borrelia burgdorferi (clone BbK3.11) phoA fusion protein gene, partial cds	96	09
	165	160705	159932	gblU175911	Borrelia burgdorferi primary sigma factor (rpoD) gene, complete cds	100	774
	166		160703	160703 gblU175911	Borrelia burgdorferi primary sigma factor (rpoD) gene, complete cds	100	1902
	167	162835	162602	162602 gblU175911	Borrelia burgdorferi primary sigma factor (rpoD) gene, complete cds	66	232
	168	164397	162811	gblU175911	Borrelia burgdorferi primary sigma factor (rpoD) gene, complete cds	66	1216
_	210	198495		199028 gblU61498	Borrelia burgdorferi CheA (cheA) gene, partial cds, CheW (cheW), CheX (cheX) and CheY (cheY) genes, complete cds	86	127
	211	199527		199069 gblU614981	Borrelia burgdorferi CheA (cheA) gene, partial cds, CheW (cheW), CheX (cheX) and CheY (cheY) genes, complete cds	66	459
	212			199549 gblU61498	Borrelia burgdorferi CheA (cheA) gene, partial cds, CheW (cheW), CheX (cheX) and CheY (cheY) genes, complete cds	66	519
	213	201455		200046 gblU61498l	Borrelia burgdorferi CheA (cheA) gene, partial	66	1410

88

Borrelia burgdorferi - Coding regions containing know proteins

	cds, CheW (cheW), CheX (cheX) and CheY (cheY) genes, complete cds	neX) and Che Y	- 6	1000
-	Borrelia burgdorferi histidine kinase (cheA) gene, complete cds	kinase (cheA)	66	2601
204115 gblU62900l Borrelia bu protein (fla chemotaxis cds	Borrelia burgdorferi flagellar filament outsheath protein (flaA) gene, complete cds, and chemotaxis histidine kinase (cheA) gene, partial cds	filament outsheath cds, and heA) gene, partial	86	1059
205220 gblU62900l Borrelia bu protein (fla chemotaxis chemotaxis cds	Borrelia burgdorferi flagellar filament outsheath protein (flaA) gene, complete cds, and chemotaxis histidine kinase (cheA) gene, partial cds	filament outsheath cds, and :heA) gene, partial	86	277
220232 emblX651391 B.burgdorf BBHSP60 protein	B.burgdorferi hsp60 gene for 60kDa heat shock protein	60kDa heat shock	86	139
220594 emblX651391 B.burgdorf BBHSP60 protein	B.burgdorferi hsp60 gene for 60kDa heat shock protein	60kDa heat shock	66	1695
160	Borrelia burgdorferi groEL gene for a common antigen	ne for a common	94	416
	Borrelia burgdorferi (clone BbK fusion protein gene, partial cds	bK1.4) phoA ds	66	231
283629 emblX877251 B.burgdorf BBDNA66K D	B.burgdorferi p66 gene for 66kDa protein	kDa protein	100	1881
283683 gblM584311 Borrelia bu	Borrelia burgdorferei PCR target sequence	get sequence	93	356
	Borrelia burgdorferi methionyl tRNA synthetase (metG) gene, partial cds	I tRNA synthetase	66	345
	Borrelia burgdorferi response regulator gene, partial cds	regulator gene,	100	191
330299 gblL399651 Borrelia bu gene, com	Borrelia burgdorferi histidine kinase (cheA) gene, complete cds	kinase (cheA)	66	1361
	Borrelia burgdorferi phosphotransferase enzyme II (crr) gene, hsp90 (hptg) gene, complete cds	ransferase enzyme ne, complete cds	100	95
338830 gblU51878 Borrelia bu	Borrelia burgdorferi phosphotransferase enzyme	ransferase enzyme	66	1980

Borrelia burgdorferi - Coding regions containing know proteins

346 339458 338868 gblU51878 Borrelia burgdorferi phosphotransferase enzyme 100						II (crr) gene, hsp90 (hptg) gene, complete cds		
378955 379590 gblM968471 Borrelia burgdorferi GrpE protein homologue gene, and DnaJ protein homologue gene, complete cds's and DnaJ protein homologue gene, complete cds s and bnaJ protein homologue gene, complete cds and thioredoxin reductase (trxB) genes, complete cds and thioredoxin reductase (trxB) gen	-	346	339458	338868	gbIU51878I	Borrelia burgdorferi phosphotransferase enzyme II (crr) gene, hsp90 (hptg) gene, complete cds	100	591
381512 emblX67646 B.burgdorferi dnak gene for heat-shock protein BBHSPRO 381512 381943 gblM97914 Borrelia burgdorferi GrpE protein homologue gene, complete cds 381507 382617 gblM96847 Borrelia burgdorferi GrpE protein homologue gene, and DnaJ protein homologue gene, complete cds's 382656 383360 gblM96847 Borrelia burgdorferi GrpE protein homologue gene, and DnaJ protein homologue gene, complete cds's 383005 382688 gblM96847 Borrelia burgdorferi GrpE protein homologue gene, and DnaJ protein homologue gene, complete cds's 384408 383416 gblU82978 Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenyla	_	388	378955	379590	gbIM96847I	Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's	100	636
381512 381943 gblM979141 Borrelia burgdorferi DnaJ gene, complete cds 382617 gblM968471 Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's 382656 383360 gblM968471 Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's 383405 382688 gblM968471 Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's 384408 383416 gblU829781 Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl- tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds synthetase alpha subunit (pheS), phenylalanyl- tRNA synthetase beta subunit (pheS) and thioredoxin reductase (trxB) genes, complete cds	-	389	379566	381521	emblX67646l BBHSPRO	B.burgdorferi dnaK gene for heat-shock protein	100	1956
381907 382617 gblM968471 Borrelia burgdorferi GrpE protein homologue gene, and DnaJ protein homologue gene, complete cds's gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's Borrelia burgdorferi GrpE protein homologue gene, and DnaJ protein homologue gene, complete cds's Borrelia burgdorferi GrpE protein homologue gene, and DnaJ protein homologue gene, complete cds's Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha	-	390	381512	381943	gblM97914l	Borrelia burgdorferi DnaJ gene, complete cds	62	424
382656 383360 gblM968471 Borrelia burgdorferi GrpE protein homologue gene, and DnaJ protein homologue gene, complete cds's protein homologue gene, complete cds's Borrelia burgdorferi GrpE protein homologue gene, and DnaJ synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase et a subunit (pheS), p	-	391	381907	382617	gbIM96847I	Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's	100	687
383005 382688 gblM96847l Borrelia burgdorferi GrpE protein homologue gene, and DnaJ protein homologue gene, complete cds's protein homologue gene, complete cds's synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds synthetase alpha subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheS), pheny	-	392	382656	383360	gbIM96847I	Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's	95	144
384408 383416 gblU829781 Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds thioredoxin reductase (trxB) genes, complete cds thioredoxin reductase (trxB) genes, complete cds synthetase alpha subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds synthetase alpha subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds synthetase alpha subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase alpha subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds (tRNA synthetase alpha subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds (tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds (tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds (tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds (tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds (tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds (tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds	_	393	383005	382688	gblM96847I	Borrelia burgdorferi GrpE protein homologue gene, DnaK protein homologue gene, and DnaJ protein homologue gene, complete cds's	95	144
384799 384467 gblU82978l Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheT) and tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds thioredoxin reductase (trxB) genes, complete cds synthetase alpha subunit (pheT) and tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds thioredoxin reductase (trxB) genes, complete cds synthetase alpha subunit (pheT) and tRNA synthetase alpha subunit (pheT) and tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds thioredoxin reductase (trxB) genes, complete cds	_	394	384408	383416	gbIU82978I	Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds	66	956
386169 384733 gblU82978l Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds thioredoxin phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds thioredoxin reductase (trxB) genes, complete cds		395	384799	384467	gblU82978I	Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds	66	292
387733 386144 gblU82978l Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds	-	396	386169	384733	gblU82978I	Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl- tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds	66	1416
		397	387733	386144	gblU82978l	Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl- tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds	66	1220

Borrelia burgdorferi - Coding regions containing know proteins

230	152	287	357	291	828	324	642
66	98	66	96	66	86	66	66
Borrelia burgdorferi phenylalanyl-tRNA synthetase alpha subunit (pheS), phenylalanyl-tRNA synthetase beta subunit (pheT) and thioredoxin reductase (trxB) genes, complete cds	B.burgdorferei promoter region DNA	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and	S3 (rpsC) gene, partial cds Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and
387727 gbiU82978I	gblM286811	410132 gblU781931	411017 gblU781931	411386 gblU781931	gbIU781931	412529 gblU78193l	412846 gblU781931
387727	407981	410132	411017	411386	411674	412529	412846
394257	408559	411019	411388	411676	412531	412852	413487
398	421	427	428	429	430	431	432
				_	P 1		-

SUBSTITUTE SHEET (RULE 26)

Borrelia burgdorferi - Coding regions containing know proteins

	633	324	1212	148	171	312	180
	66	100	100	100	100	100	100
S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi tuf-s10 operon: elongation factor (tuf), ribosomal proteins S10 (rpsJ), L3 (rplC), L4 (rplD), L23 (rplW), L2 (rplB), S19 (rpsS), and L22 (rplV)genes, complete cds, and S3 (rpsC) gene, partial cds	Borrelia burgdorferi elongation factor EF-Tu (tuf) gene, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA),
	413485 gbIU781931	414141 gblU781931	414503 gblL231251	450310 gblU045271	450650 gblU045271	450897 gbIU045271	451467 gbIU045271
	413485	414141	414503	450310		450897	451467
	414117	414464	415714	450681	450820	451208	451288
	433	434	435	481	482	483	484
				_			

Borrelia burgdorferi - Coding regions containing know proteins

	1170	1497	904	289	570	210	209
	66	001	86	96	100	96	66
DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	458681 emblZ12165IB B.burgdorferi gyrA gene encoding DNA gyrase BGYRAG subunit A (partial)	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes,
	451287 gblU045271	452685 gbIU045271	456237 gbIU04527I	emblZ12165ll BGYRAG	464394 gblU03396l	466958 gblU03396	468033 gblU03396l
		452685	456237	458681	464394	466958	468033
	452456	454181	454315	456228	463825	466650	467437
	485	486	487	488	496	497	498
			-		yanning .	-	1

Borrelia burgdorferi - Coding regions containing know proteins

					complete sequence		
-	499	468167	Į.	468433 gblU03396l	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrIA and rrIB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	86	267
	500	468391	468999	468999 gblU03396l	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	95	386
	501	470714	i	470445 gblM88330l	Borrelia burgdorferi 23S ribosomal RNA gene	100	270
_	502	475597	l	480090 gblU03396l	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	97	131
	535	505532	509017	509017 gblL48488l	Borrelia burgdorferi RNA polymerase beta subunit (rpoB) gene, complete cds, RNA polymerase beta' subunit (rpoC) gene, 5' end of cds	86	2490
	536	509015	513166	513166 gblL484881	Borrelia burgdorferi RNA polymerase beta subunit (rpoB) gene, complete cds, RNA polymerase beta' subunit (rpoC) gene, 5' end of cds	6	76
	538	513606	514106		Borrelia burgdorferi membrane protein D (bmpD) gene, complete cds	100	82
	539	514120	515229	gblU35450I	Borrelia burgdorferi membrane protein D (bmpD) gene, complete cds	66	1110
quanting	540	515472	516605	516605 gblU49938l	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase CI inhibitor PKCI (pkci) genes, complete cds	666	1134
-	541	516641	517666	517666 gblL241941	Borrelia burgdorferi immunodominant antigen P39 gene, complete cds	66	1026

Borrelia burgdorferi - Coding regions containing know proteins

8 457	909	1461	1386	453	130	314	1404	009
86	66	66	66	100	86	66	100	100
Borrelia burgdorferi (clone pB46) membrane lipoprotein A (bmpA) gene, 3' end, membrane lipoprotein (bmpB) gene, 5' end	Borrelia burgdorferi immunodominant antigen P39 gene, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	Borrelia burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	B.bergdorferi (ZS7) YSCI-like gene	B.bergdorferi (ZS7) YSC1-like gene	B.burgdorferi gene for lipoprotein
518256 gblL35050I	518779 gblL24194l	520316 gblU499381	521734 gblU49938I	522204 gblU49938I	522893 gbiU49938I	534772 embIX78708I BBYSC1	535058 embIX78708l BBYSC1	537144 emblX70826l
	l	520316	521734	522204	522893	534772	535058	537144
517732	518168	518856	520349	521752	522168	535086	536461	536545
542	543	544	545	546	547	559	995	561
			_			-		

Borrelia burgdorferi - Coding regions containing know proteins

	57	786	264	56	805		84		354	1185	912	1104	750	1269	1224	969	712	561
	100	100	100	188	92		100		100	100	66	66	66	<u>00</u>	001	001	86	100
	B.burgdorferi gene for lipoprotein	Borrelia burgdorferi 22 kD antigen	Borrelia burgdorferi 22 kD antigen	Borrelia burgdorferi 22 kD antigen	Borrelia burgdorferi periplasmic substrate-	binding protein homolog (p30) gene, complete cds	Borrelia burgdorferi periplasmic substrate-	cds	Borrelia burgdorferi (clone Bb2.13) phoA fusion protein gene, partial cds	Borrelia burgdorferi fesmid clone 31, complete sequence	B.burgdorferi cell division genes	B.burgdorferi cell division genes	B.burgdorferi ftsW, ftsQ & ftsA genes	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence
BBLA7	537191 emblX70826l BBLA7	gb M90084	537968 gblM900841	538757 gblM90084l	572497 gblU291431		574204 gbIU29143I		gb L31422	gbIU43739I	emblX96685l BBCDG	600153 emblX966851 BBCDG	600932 emblX964331 BBFTSWQA	602173 gblU437391	gblU43739I	gbIU43739I	605041 gblL763031	605599 gblU437391
	537191	537665	537968	538757	572497		574204		586936	597983	599052	600153	600932	602173	603394	604087	605041	605599
	537652	539695	537705	538395	574092		575817		585458	596586	297967	599050	600183	506009	602171	603392	604085	602039
	562	563	564	265	909		209		616	629	630	631	632	633	634	635	636	637
	-	1	1	1					-	 -	T	_	_		-	_		

Borrelia burgdorferi - Coding regions containing know proteins

	100 444	100 480	100 378	100 1770	100 1053	100 957	99 1332	99 453	100 630	99 1221	100 447	100 1350	100 231
606938 emblX966851 B.burgdorferi cell division genes BECDG	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence
38 emblX96685l B BBCDG	607379 gbiU437391 B	607861 gbIU437391 B	608208 gblL763031 Branch	609932 gblL763031 ft.	610982 gbIU437391 B	611917 gbIU437391 B	613246 gblL763031 Ba	613674 gblL763031 Bd ffts ffts	614284 gbiU43739l Ba	615470 gblL763031 Bo	615927 gblL763031 Bd fts ftl	617260 gbiU437391 Ba	617507 gbl 0437391 Bo
	ļ	2	607831 60820	608163 60999	606930 6109	610961 6119				614250 61547	615481 61592		617277 6175(
9 869	9 689	640 60	641 6	642 60	643 60	644 6	645 6	646 61	647 61	648 61	649 61	9 059	651 61
			-	_			V	-					

Borrelia burgdorferi - Coding regions containing know proteins

	68 <i>L</i>	288	1062	348					813	189	249
100	001	001	001	001	001	66	100	100	66	100	100
Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flbB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flbB), flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flbE), flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL,
618286 gblU43739l	619068 gblU43739l	619653 gblU43739l	620749 gblU43739l	621136 gblU43739l	621755 gblU43739l	622530 gblL759451	gbIL75945I	gbIL759451	623623 gblL759451	622819 gblL759451	623458 gblL759451
]	619068	619653	620749	621136	621755	622530	621822	622802	623623	622819	623458
617498	618280	619066	619688	620789	621114	621742	622028	622515	622811	623007	623706
652	653	654	929	959	159	658	629	099	199	999	663
								_	_		I

Borrelia burgdorferi - Coding regions containing know proteins

	1134	2109	1173	816	345	489	1935	286	78	2439	274	542	327	327
	66	100	100	66	100	100	100	001	100	66	100	66	001	100
fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhF, flbE genes	Borrelia burgdorferi fesmid clone 31, complete sequence	B.burgdorferei promoter element DNA	Borrelia burgdorferi (strain B31) protease (lon) gene, complete cds	Borrelia burgdorferi (strain B31) protease (lon) gene, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi P1G histone-like protein HBbu (hbb) gene, complete cds					
	624741 gblL759451	626843 gblL759451	628013 gblU43739l	628912 gblU43739l	628807 gbIU43739I	629398 gbIU43739I	631305 gblU43739l	631634 gblU43739l	635476 gblM28682l	649420 gblL772161	gbIL772161	672412 gbIU35673I	672744 gblU35673I	673083 gbiU486511
		626843	628013	628912	628807	629398	631305	631634	635476	649420	649409	672412	672744	673083
	623608	624735	626841	627998	629151	628910	629371	631314	636891	646982	09/159	671567	672418	672751
	664	999	999	<i>L</i> 99	899	699	029	671	9/9	289	889	711	712	713
		-		1	I	Ī	-	-	-	1	-	1	1	-

Borrelia burgdorferi - Coding regions containing know proteins

673491 gblU356731 675118 chi1356731
6/31
675424 gblU35673l
723770 gblU629011
724181 gblU629011
724164 gblU629011
_
gblU629011 Borrelia burgdorferi thdF gene, partial cds, putative motility protein (flbF), flagellar hook associated proteins FlgK (flgK) and FlgL (flgL) genes, complete cds
729308 emblX95669 B.burgdorferi thdF and gidA genes
731176 emblZ12160lB B.burgdorferi thdF, gidA and gidB genes BGIDAG
731799 emblX95668 B.burgdorferi gidA, gidB and moxR genes BBGIDMOX
732848 emblX96434 B.burgdorferi gidB moxR genes and ORF

Borrelia burgdorferi - Coding regions containing know proteins

Borrelia burgdorferi - Coding regions containing know proteins

					genes, complete cds		
	806	857228		858262 gblU28760	Borrelia burgdorferi glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), triosephosphate isomerase (TPI) genes, complete cds	66	1035
	606	858270	859463	gbIU28760I	Borrelia burgdorferi glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), triosephosphate isomerase (TPI) genes, complete cds	66	1194
	910	859315	ļ	860226 gblU28760	Borrelia burgdorferi glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), triosephosphate isomerase (TPI) genes, complete cds	66	912
	911	860224	1	860604 gblU576831	Borrelia burgdorferi sequence 3' to the triosephosphate isomerase (TPI) gene	76	183
	912	860645		860316 gblU576831	Borrelia burgdorferi sequence 3' to the triosephosphate isomerase (TPI) gene	95	94
	913	861447	860704	860704 gbIU57684I	Borrelia burgdorferi uracil DNA glycosylase (UDG) gene, partial cds	92	294
	914	861020	861397	861397 gbIU57684l	Borrelia burgdorferi uracil DNA glycosylase (UDG) gene, partial cds	93	244
_	915	861439	862113	862113 gblU57684l	Borrelia burgdorferi uracil DNA glycosylase (UDG) gene, partial cds	96	128
-	930	874089	874859	_	Borrelia burgdorferi 1-acyl-sn-glycerol-3- phosphate acetyltransferase (plsC) gene, 3' end; topoisomerase IV beta-subunit (parE) gene, 5' end	66	408
	931	874877	876679	876679 gblL32861	Borrelia burgdorferi 1-acyl-sn-glycerol-3- phosphate acetyltransferase (plsC) gene, 3' end; topoisomerase IV beta-subunit (parE) gene, 5' end	001	252
	943	887900	886758	886758 emblY088851 BBRUVABH L	B.burgdorferi ruvA, ruvB and queA genes	86	293

Borrelia burgdorferi - Coding regions containing know proteins

<u> </u>	ł I
890271 emblY088851 B.burgdorferi ruvA, ruvB and queA genes BBRUVABH	9615 890271 embly BBRI L
	719 892404 embl BBPI
	892893 893909 embl)
895371 emblX974491 B.burgdorferi priA and udk genes BBPRIAUDK	973 895371 embly BBPF
895991 emblX974491 BBPRIAUDK	308 895991 embl ³ BBPR
895988 emblX97449l BBPRIAUDK	7976 895988 embl
897963 emblX974491 B.burgdorferi priA and udk genes BBPRIAUDK	i
898555 emblY091411 B.burgdorferi truA gene BBTRUA	899298 898555 embly BBTF

TABLE 3.Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

Contig ID	ORF ID	Start (nt)	Stop (nt)
1	1	2330	1134
1	2	3317	2934
1	8	11375	13021
1	9	11673	11386
1	10	12925	13629
1	11	13538	14146
1	17	25212	24700
1	18	25782	25357
1	19	26115	25870
1	21	27308	27051
1	22	29628	30458
1	29	40696	41217
1	30	41201	41992
1	31	42542	41985
1	32	42593	42982
1	34	44234	44031
. 1	38	48041	47079
1	41	49318	49617
1	43	53234	51810
1	50	59737	58208
1	58	68227	67733
1	65	79757	80404
1	66	81516	80401
1	75	89552	88353
1	82	93338	92766
1	85	95207	95854
1	104	108788	108621
1	105	109764	108943
1	108	112003	111599
1	113	114317	115846
1	114	114522	114316
1	119	118439	118927
1	121	119802	119599
1	125	125688	123967
1	129	128594	129235
1	135	136116	135259
1	136	136558	136298
1	139	139149	139559
. 1	141	140573	140121
1	143	141738	141412
1	145	142218	142060
1	146	142686	142342
1	154	150528	149074
1	158	153832	153981
1	163	158277	158474

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

1	171	168052	166205
1	176	171592	171038
1	186	179607	180089
1	189	182345	182046
1	191	182567	182773
1	199	192561	192716
1	205	196592	197476
1	218	207717	206752
1	219	207733	208437
1	221	209337	208915
1	222	209712	209335
1	231	217179	216025
1	238	223660	223418
1	240	224720	225724
1	242	227006	227275
1	248	231761	231501
1	251	232973	233308
1	252	233669	234004
1	254	235115	235456
1	258	241824	242198
1	261	248009	247773
1	269	256846	255872
1	276	265430	265158
1	279	266582	266298
1	281	268474	268280
1	286	274157	274384
1	292	280495	280274
1	294	281344	281042
1	298	287276	285714
1	303	292943	292644
1	304	293273	293037
1	305	294965	294648
1	308	299427	298699
1	309	299051	299212
1	326	320375	319785
1	327	320425	321036
1	331	324198	324413
1	339	332785	332459
1	341	333503	334138
1	342	334116	334739
1	343	334880	335446
11	350	342916	342443
1	351	344789	342897
1	363	357596	356931
1	367	361065	360859
1	370	362519	362196
			502170

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

1	374	366905	366114
1	377	368632	369537
1	378	369928	370560
1	379	370532	371353
1	382	375028	373193
	383	375102	375542
1	387	378677	378198
1	400	394952	394722
	401	396247	394937
1	403	397569	398327
1	406	399103	399294
1	436	416160	416570
1	445	424660	423950
1	446	425181	424642
1	450	428559	428200
1	451	428933	428619
1	455	432590	431628
1	461	437823	438092
1	463	438690	438313
1	466	440749	440222
1	470	441568	441350
1	471	442039	441614
1	472	442216	442037
1	473	442666	442262
1	476	445202	445017
1	493	462106	462519
1	494	462893	462549
1	504	482111	481035
1	505	481552	481800
1	509	483249	483668
1	512	484864	485157
1	516	489171	488527
1	519	492989	492375
1	520	493626	492997
1	521	494169	494864
1	524	497185	497385
1	525	497674	499254
1	527	500251	501294
1	528	501281	502156
1	558	533912	533667
1	568	541267	541491
1	571	544436	544257
1	572	544565	545068
1	578	549603	551198
1	580	551508	551657
1	581	552337	551513

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

1			557271
1		561342	561139
1	I	561825	561520
1	592	562536	563360
1	596	565758	566519
1	599	568389	568682
1	602	568680	568856
1	605	570829	571167
1	609	576170	577093
1	612	581549	581091
1	614	582910	584013
1	619	589384	588674
1	624	592665	593465
1	626	594542	595405
1	672	631642	632175
1	677	636650	636892
1	678	637059	638078
1	681	640861	640412
1	686	644887	645207
1	689	649716	649961
1	690	650436	650735
1	691	650733	651056
1	693	653303	653689
1	705	664733	664918
1	707	665979	666770
1	718	679155	678391
1	721	680664	681047
1	722	681523	681849
1	724	681809	682171
1	727	682853	683272
1	734	687648	688067
1	739	691613	692290
1	751	707290	707718
1	763	719197	718904
1	764	720030	719257
1	769	722198	722482
1	783	733736	734647
1	785	735554	736618
1	787	737124	739184
1	792	742924	744801
1	799	753128	752655
1	811	766129	765980
1	812	766438	767772
1	815	770062	769790
1	818	771890	772282
1	831	788219	788836

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

1 838 793566 793414 1 840 794295 794119 1 844 796774 796586 1 852 803096 802908 1 858 809371 809970 1 864 816108 816497 1 865 816672 817283 1 866 817281 817838 1 872 823841 824836 1 876 828191 828739 1 877 828749 829147 1 879 831328 831714 1 879 831328 83005 1 880 831698 833005 1 880 831698 833005 1 880 831698 833005 1 890 841171 840590 1 891 840594 840860 1 899 849453 850148				
1 840 794295 794119 1 844 796774 796586 1 852 803096 802908 1 858 809371 809970 1 864 816108 816497 1 865 816672 817283 1 866 817281 817838 1 872 823841 824836 1 876 828191 828739 1 877 828749 829147 1 879 831328 831714 1 879 831328 831714 1 880 831698 833005 1 885 836201 835677 1 890 841171 840590 1 891 849594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109		832		789615
1 844 796774 796586 1 852 803096 802908 1 858 809371 809970 1 864 816108 816497 1 865 816672 817283 1 866 817281 817838 1 872 823841 824836 1 876 828191 828739 1 877 828749 829147 1 880 831328 831714 1 880 831698 833005 1 885 836201 835677 1 890 841171 840590 1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 923 865660 865346 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139				793414
1 852 803096 802908 1 858 809371 809970 1 864 816108 816497 1 865 816672 817283 1 866 817281 817838 1 872 823841 824836 1 876 828191 828739 1 877 828749 829147 1 879 831328 831714 1 880 831698 833005 1 880 831698 833005 1 885 836201 835677 1 890 841171 840590 1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 923 865660 865346 1 923 865660 865346				794119
1 858 809371 809970 1 864 816108 816497 1 865 816672 817283 1 866 817281 817838 1 872 823841 824836 1 876 828191 828739 1 877 828749 829147 1 879 831328 831714 1 880 831698 833005 1 880 831698 833005 1 885 836201 835677 1 890 841171 840590 1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 925 868212 869273				796586
1 864 816108 816497 1 865 816672 817283 1 866 817281 817838 1 872 823841 824836 1 876 828191 828739 1 877 828749 829147 1 879 831328 831714 1 880 831698 833005 1 885 836201 835677 1 890 841171 840590 1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 923 865660 865346 1 928 871012 872580 1 933 878576 879166	1		803096	802908
1 865 816672 817283 1 866 817281 817838 1 872 823841 824836 1 876 828191 828739 1 877 828749 829147 1 879 831328 831714 1 880 831698 833005 1 885 836201 835677 1 890 841171 840590 1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166				809970
1 866 817281 817838 1 872 823841 824836 1 876 828191 828739 1 877 828749 829147 1 879 831328 831714 1 880 831698 833005 1 885 836201 835677 1 890 841171 840590 1 891 840594 840860 1 891 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268	1	864	816108	816497
1 872 823841 824836 1 876 828191 828739 1 877 828749 829147 1 879 831328 831714 1 880 831698 833005 1 885 836201 835677 1 890 841171 840590 1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 949 892388 892924	1			817283
1 876 828191 828739 1 877 828749 829147 1 879 831328 831714 1 880 831698 833005 1 885 836201 835677 1 890 841171 840590 1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 923 865660 865346 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296	1		817281	817838
1 877 828749 829147 1 879 831328 831714 1 880 831698 833005 1 885 836201 835677 1 890 841171 840590 1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296	1	872	823841	824836
1 879 831328 831714 1 880 831698 833005 1 885 836201 835677 1 890 841171 840590 1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510	1		1	828739
1 880 831698 833005 1 885 836201 835677 1 890 841171 840590 1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 923 865660 865346 1 925 868212 869273 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510			828749	829147
1 885 836201 835677 1 890 841171 840590 1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510				831714
1 890 841171 840590 1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510	1		831698	833005
1 891 840594 840860 1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510	1		836201	835677
1 899 849453 850148 1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510	1		841171	840590
1 902 851608 852687 1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510				840860
1 918 862867 863109 1 920 864292 864705 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510			849453	850148
1 920 864292 864705 1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510			851608	852687
1 923 865660 865346 1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510	1		862867	863109
1 925 868212 869273 1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510			864292	864705
1 928 871012 872580 1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510	1		865660	865346
1 933 878576 879166 1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510	1			869273
1 939 884338 883268 1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510	1		871012	872580
1 940 884999 884325 1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510	1		878576	879166
1 949 892388 892924 1 957 900141 899296 1 958 900534 900139 1 959 901526 900510	1	939		883268
1 957 900141 899296 1 958 900534 900139 1 959 901526 900510	1		884999	884325
1 958 900534 900139 1 959 901526 900510	1	949	892388	892924
1 959 901526 900510	1		900141	899296
>00010	1	958	900534	900139
	1	959	901526	900510
	1	962	902383	903258

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

TABLE 4.

40	(nt)		•	markin being manne	% sim	% ident
			acession			
		4	4 gil 146582	beta-lactamase [Escherichia coli]	100	0 86
	2 692		240 gil344797	galactosidase fusion protein [unidentified]	1001	
	3 1575		2093 gil458219	ORF 4 [Borrelia burgdorferi]	96	
	41836	414	.59 gil47453	ribosomal protein S12 [Streptococcus pneumoniae]	92	
	14234	1295	51 bbs 161785	60 kda antigen [Borrelia coriaceae, C053, ATCC 4338, Peptide, 514 aal [Borrelia coriaceae]	88	
	1080	1652	2 gnllPIDle2012 50	ORF-D gene product [Borrelia burgdorferi]	88	8 74
	337	26	gnllPIDle1589 79	26 gnllPIDle1589 orfA gene product [Borrelia burgdorferi]	98	5 75
131	1421	1128	gnIIPIDIe 1604 37	gnllPIDle1604 orfD gene product [Borrelia burgdorferi]	85	5 46
	381	674	674 gil458220	ORF 5 [Borrelia burgdorferi]	85	37
	98152	97367	97367 gil 159 1672	phosphate transport system ATP-binding protein [Methanococcus jannaschii]	84	
2 107	108403	109485	gil882454	fructose 1,6-bisphosphate aldolase [Escherichia colil	8	19
19 4		4754	4754 pirlA34520IA3 4520	29K calcium-binding protein, brain-specific - guinea pig (fragments)	81	
20 9	6084	5791	gnllPIDle2012 (49	ORF-C gene product [Borrelia burgdorferi]	8	72
2 52	49986	49600	pirlA027711R7 MCML	pirlA027711R7 ribosomal protein L7/L12 - Micrococcus luteus MCML	08	19
14 1	3071	8	gil1522636	M. jannaschii predicted coding region MJECS02 [Methanococcus jannaschii]	80	09
29 2	218	409	gil1752736	gene required for phosphoylation of oligosaccharides/ has high homology with YJR061w Saccharomyces cerevisiae	80	37
32 2	719	925	gil433720	CDC25 [Homo sapiens]	80	73
00	7	946	6 gil 1522636	M. jannaschii predicted coding region MJECS02	80	

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

99	69	58	57	57	09	42	09	57	52	20	55		58	56	56	20	55	36
61	79	78	78	78	78	78	78	78	7.1	77	77		76	76	76	75	75	75
8239 gnllPIDle2881 glucose epimerase [Bacillus thuringiensis]	outer membrane porin protein Oms28 precursor [Borrelia burgdorferi]	ribosomal protein L11 [Thermus aquaticus thermophilus]	4 orfD gene product [Borrelia burgdorferi]	gnllPDle2532 ORF YDL065c [Saccharomyces cerevisiae]	gnllPIDle2012 ORF-B gene product [Borrelia burgdorferi]	CG Site No. 29739 [Escherichia coli]	gnllPIDle2012 ORF-C gene product [Borrelia burgdorferi]	ORF YDL065c [Saccharomyces cerevisiae]	transfer RNA-Tyr synthetase [Bacillus subtilis]	cellobiose phosphotransferase enzyme II" [Bacillus stearothermophilus]	similar to dihydropryridine-sensitive I-type, skeletal	muscle calcium channel alpha-1 subunit (SP:CIC1_RABIT, P07293) [Caenorhabditis elegans]	unknown [Bacillus subtilis]	(pos:59955997,aa:Met) [Bacillus subtilis]	orfC gene product [Borrelia burgdorferi]	674 pirlC30010IC3 hypothetical ORF-6 protein - Sauroleishmania 0010 tarentolae mitochondrion (SGC6)	H. influenzae predicted coding region HI0491 [Haemophilus influenzae]	nusG [Escherichia coli]
9 gnilPIDle288 24	4735 gil1543076	1218 gil587583	2 gn11PIDIe1604 c	gnllPIDle253.	gnllPIDle2017 48	4943 gil882579		gnllPIDle2532 11	gil143795	080 gil466474	536 gil1017809		2183 gil467376	2 gil1065989	3 gnllPIDIe1589 80	pirlC30010IC: 0010	gil1573470	701 gil396321
10823	473;	121	38742	27177	2966	4943	171	742	23697	24080	536		82183	2	3	6674	32163	51701
107148	4878	51661	39290	27416	2382	5107		503	24917	22722	889		81071	208	909	8488	31639	52261
106	4	55	45	46	4	5	_	2	30	34	1		16	1		6	37	26
7	8	7	4 -	ν.	7	19	78	105	7	9	<u>∞</u>	-	3	11	89	7	7	2

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

62	09	37	55	42	58	57	52	49	56	59	58	53	52	47	54	56	63	53	40
75	75	75	75	75	75	74	74	74	74	74	74	73	73	73	73	73	73	. 73	73
$\overline{}$			ORF 2 [Borrelia burgdorferi]	unknown [Borrelia burgdorferi]	4 orfA gene product [Borrelia burgdorferi]	S-adenosylmethionine synthetase [Staphylococcus aureus]	aspartyl-tRNA synthetase [Thermus aquaticus thermophilus]	hypothetical protein [Synechocystis sp.]	974 gnllPIDle1589 orfA gene product [Borrelia burgdorferi]	9 orfC gene product [Borrelia burgdorferi]	CdsK [Borrelia burgdorferi]	[glycoprotein 120 [Simian immunodeficiency virus]	hemolysin [Serpulina hyodysenteriae]	type-I signal peptidase SpsB [Staphylococcus aureus]	4 unknown [Mycobacterium tuberculosis]	Similar to Seryl-tRNA synthetase [Saccharomyces cerevisiae]	5 ORF YGR248w [Saccharomyces cerevisiae]	NADH dehydrogenase, subunit 5 [Acanthamoeba castellanii]	emml gene product [Streptococcus pyogenes]
414 gil520778	652 gnllPIDIe2012 49	62 gnlIPIDle2012 49	578 gil458217	388 gil520783		gil1020317	gil396501	gil1651962	gnllPIDle1589 79	gnilPIDle1589 84	gil1655798	gil406135	gil511145	.262 gil1595810	gnllPIDle2684 56	gil500705	8 gnilPIDle2436 (81	512 gil562035	079 gil694092
414	1652	62	578	388	684	31693	109871	91103	2974	1253	719	7022	21395	44262	62341	91113	93513	3512	8079
653	2437	856	1153	744		30506	111301	92143	4080	468	396	6810	23695	44789	64881	00868	92803	3697	8519
1	3	1	3	1	1	36	109	101	5	7		10	29	26	73	100	106	4	6
20	20	58	89	117	130	2	7	3	20	36	42	2	7	3	3	3	3	4	7

	7	10001	C1112 OC//1	00401	reverse gyrase Methanococcus iannaschii]	73	
14	3	4280	4438 gil520778	87.10	protein p23 [Borrelia burgdorferi]	73	5,5
19	6	7074	6742 gil1773311	73311	NADH dehydrogenase [Ceanothus cuneatus]	73	36
25	3	2369	2587 gil16	gil1655790	CdsC [Borrelia burgdorferi]	73	3
78	2	176	619 gnllP 50	1Dle2012	19 gnllPIDle2012 ORF-D gene product [Borrelia burgdorferi]	73	50
108	1	2	382 gill5	gil1573074	adhesin B precursor (fimA) [Haemophilus influenzae]	73	41
120	1	26	342 gil1978	78	heat shock protein 70 [Sus scrofa]	73	46
3	64	51644	54013 gil1574437	7	sporulation protein (spoIIIE) [Haemophilus influenzae]	72	51
5	9	2899			myosin heavy chain [Gallus gallus]	72	41
9	31	22140	21799 gil895748		putative cellobiose phosphotransferase enzyme II' [Bacillus subtilis]	72	46
8	8	8812	00	66	Orf1 [Borrelia hermsii]	72	55
10	12	8579	8376 gil536681		ORF YBR257w [Saccharomyces cerevisiae]	72	36
45	2	1440	9	7	ErpB2 [Borrelia burgdorferi]	72	42
7	2	1342	(C)	_	pyruvate kinase [Bacillus stearothermophilus]	71	52
7	31	26272	24911 pirIS5 8522	2185	glycyl-tRNA synthetase - Thermus thermophilus	71	54
7	64	95109	58684 gil459009		similar to multifunctional aminoacyl-tRNA	711	48
					synthetase, especially to the prolyl-tRNA synthetase region [Caenorhabditis elegans]		?
m	99	55240	54275 gil21712	1	ORF1 [Synechococcus elongatus]	71	52
m	104	92345	75		secretion protein SecY (AA 1-482) [Mycoplasma capricolum]	71	42
5	43	25567	4		sodium-hydrogen exchange protein-beta [Oncorhynchus mykiss]	71	50
7	3	1179	4		ORF 1 [Borrelia burgdorferi]	71	09
20	4	2964	2392 gil458217		ORF 2 [Borrelia burgdorferi]	71	47
51	7	984	2066 gil1373144		ErpD [Borrelia burgdorferi]	71	41
4 <u>7</u>	1	251	883 gil145280		ORFI [Escherichia coli]	71	40

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

48	41		48	09	35		21	28	4 48	40	47	47	50	CP	74	46	47	38	26	46	42	37
70	70		70	70	70	Î	0 6	0/	0/ 0/	0/0/	202	70	70	69	69	69	69	69	69	69	89	68
538 splQ06797IRL 50S RIBOSOMAL PROTEIN L1 (BL1).	(AE000012) Mycoplasma pneumoniae, phosphocarrier protein HPr; similar to GenBank	Accession Number A49683, from M. capricolum [Mycoplasma pneumoniae]	CheW protein [Salmonella typhimurium]	glycerol kinase [Sulfolobus solfataricus]	cdc4 gene product which is essential for initiation of	DNA replication in yeast [Saccharomyces cerevisiae]	dei AF gene product [Racillus subtilis]	ORF 5 IBorrelia hurodorferil	Orf2 (Borrelia hermsii)	F01G12.6 gene product [Caenorhabditis elegans]	Var1p [Saccharomyces douglasii]	NADH dehydrogenase (ubiquinone) (EC 1.6.5.3) chain 4 - wheat mitochondrion	orfD gene product [Borrelia burgdorferi]	fructose enzyme II [Rhodobacter capsulatus]	YqgI [Bacillus subtilis]	orfI; product unknown [Borrelia burgdorferi]	P30 [Borrelia burgdorferi]	protein 69 [Mycoplasma hyorhinis]	ND6 (AA 1 - 296) [Podospora anserina]	orfA gene product [Borrelia burgdorferi]	ORF' [Escherichia coli]	adenylate kinase [Paracoccus denitrificans]
50538 spiQ06797IRL 1_BACSU	113744 gil1673757		220	73225 gnllPIDle2839 19	93273 gil836815	123 91167913	35807 gil48808	47976 gil1421734	15904 gil1655860	3173 gil 1255880	37 gil 1236921	3970 pirlS16447IS1 6447	1653 gnlIPIDIe1604 37	360 gil151932		94 gil1663561	4	58 gil150176	87 gil13233	2402 gnllPIDle1589 c	30518 gil473817	30 gil1498049
51233	114025		1684	74775	93500	926	35616	48320	16458	2940	5470	4173	1270	65752	99712	25614	14584	7025	8414	1332	29769	72330
54	116		4	84	107	†	47	65	23	4	∞	C	m	69	114	36	71	12	41	7	35	79
2	7		70 (m	3	4	4	4	9	17	20	57	36	2	3	4	٥	77	77	94	2	7

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

42	51	52	52				54	57	43	48	46	44	56	49	38	42	51	49	41	51	48	37		47
89	89	89	89				89	89	89	89	89	89	19	19	19	19	<i>L</i> 9	29	19	19	129	29		129
hypothetical [Haemophilus influenzae]	hypothetical protein [Bacillus subtilis]	D9461.18p; CAI: 0.15 [Saccharomyces cerevisiae]	coded for by C. elegans cDNA CEESS55F; coded for by C. elegans cDNA vk84a1.3; coded for by C.	elegans cDNA yk78g7.3; coded for by C. elegans	yk78g7.5; coded for by C. elegans cDNA yk78g7.5; coded for by C. elegans cDNA yk84a1.5;	strong s	~ · I	ORF 1 [Borrelia burgdorferi]	Orf1 [Borrelia hermsii]	Orf1 [Borrelia hermsii]	ORF 2 [Borrelia burgdorferi]	L8479.4 gene product [Saccharomyces cerevisiae]	50S ribosomal protein L33 [Synechocystis sp.]	ribosomal protein S21 [Myxococcus xanthus]	TagE [Vibrio cholerae]	unknown [Bacillus subtilis]	1502 gnllPIDle2676 alanyl-tRNA synthatase [Thermus aquaticus thermophilus]	60 kda antigen [Borrelia coriaceae, C053, ATCC 4338, Peptide, 514 aal [Borrelia coriaceae]	orfD gene product [Borrelia burgdorferi]	_	SERA protein [Plasmodium falciparum]	gene required for phosphoylation of olioosaccharides/ has high homology with VIDO61	_	_
6385 gil1574032	gnllPIDle2551 17	86074 gil927711	97364 gil1707057			000	0046 gil458217	06/8 gil458216	gil1655859	3694 gil 1655859	gil458217	1133 gil577175	gil1001264	gil710340	gil460955	gil467420	gnllPIDle2676 07	bbs 161785	gnllPIDle1604	276 gil 1655859	889 gnllPIDle8903	906 gil1752736		gnllPIDle1589
106385	68287	86074	97364				40046	406/8	16520	3694	3254	1133	52558	54051	70114	71150	96502	31941	2967	6276	6889	5906		1817
104748	68895	88992	96519			07.707	40048	41916	1/296	2894	3832	927	52752	54290	89069	70653	94703	30304	3590	5524	6611	4995		1221
104	<u>»</u>	86				22	00 [),C	77	2	9	7	57	65	79	81	0110	42	9	6	01	9		2
7 0	<i>S</i>	m	m			+	1 -	1	0 (_ [29	72	7	20 6	m	m (70	4	12	12	12	17		34

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

-				183			
αγ	6	1317	707	mil/59217	ODE 7 (Bornelia humadanfari)		
2	7 8	1740		770 g114.3021.7	ORF 2 [BOITELIA BURGGOTTETI]	/.9	52
ন	33	28572	27751	gil340613	A 'c' was inserted after nt 369 (=nt 10459 in	99	40
					genomic sequence (M10126)) to correct -1 frameshift probably due to gel compression		
2	73	69021	80669	gil153903	methyltransferase (cheR; EC 2.1.1.24) [Salmonella typhimurium]	99	42
7	93	93739	94524	.524 gil45713	P.putida genes rpmH, rnpA, 9k, 60k, 50k, gidA, gidB. uncl and nncB [Pseudomonas mitida]	99	41
3	6	6009	6902	gnllPIDle2639	6902 gnllPIDle2639 OrfD [Streptococcus pneumoniae]	99	47
4	28	20922	20665	1665 gil471731	vacuolating cytotoxin homolog [Helicobacter pylori]	99	50
4	64	47985	47107	107 gil1421735	ORF 6 [Borrelia burgdorferi]	99	43
9	13	7227	8591	8591 gil1591045	hypothetical protein (SP:P31466) [Methanococcus jannaschii]	99	48
34	4	2556	3161	161 gil458218	ORF 3 [Borrelia burgdorferi]	99	42
37	1	985	689	689 gil974334	non-receptor tyrosine kinase [Dictyostelium discoideum]	99	55
3	17	68191	395	gil1651216	Pz-peptidase [Bacillus licheniformis]	65	47
3	123	105911	104070	070 gil 1575784	DNA mismatch repair protein [Aquifex pyrophilus]	65	45
9	6	5726	7126	126 gil1591045	hypothetical protein (SP:P31466) [Methanococcus jannaschii]	65	49
8	6	9684	10325	gnllPIDle2012 50	325 gnllPIDle2012 ORF-D gene product [Borrelia burgdorferi]	65	48
10	I	3	971	gil1373144	ErpD [Borrelia burgdorferi]	65	47
13	5	3956	3411	gil1209872	REV [Borrelia burgdorferi]	65	47
7	92	70509	71069	×	protein-glutamate methylesterase (EC 3.1.1.61) - Salmonella typhimurium	64	45
c	61	48610	50838	gil1001335	soluble lytic transglycosylase [Synechocystis sp.]	64	42
4	5	3519	3773		M protein [Streptococcus pyogenes]	49	32
4	53	38288	37824	824 gil1373141	ORF-10 [Borrelia burgdorferi]	49	50

proteins
know
ilar to
ns sim
gdorferi - Putative coding regions of novel proteins similar
i novel
ions of
ing regions
ve cod
Putativ
<u>-</u>
urgdorte
Borrella burgd
•

30	35	46	30	44	35	41	52	27	49	48	34	43	47	37	45	40	40	38	48	42	45	28
64	64	64	64	64	64	64	64	63	63	63	63	63	63	63	63	63	63	63	63	63	62	69
delta-endotoxin CrylG protoxin [Bacillus thuringiensis]	rhoptry protein [Plasmodium yoelii]	2.9-3 ORF-D [Borrelia burgdorferi]	hypothetical protein [Synechocystis sp.]	gnllPIDle2763 AARP1 protein [Plasmodium falciparum]	P35 antigen protein [Borrelia burgdorferi]	gene required for phosphoylation of oligosaccharides/ has high homology with YJR061w	kinetoplast-associated protein [Trypanosoma cruzi]	2592 gallPIDle2362 ZK287.2 [Caenorhabditis elegans]	carboxyl-terminal protease [Synechocystis sp.]	GLUTAMYL-TRNA SYNTHETASE (EC 6.1.1.17) (GLUTAMATETRNA LIGASE) (GLURS).	TRAB [Plasmid pPD1]	Bts1p [Saccharomyces cerevisiae]	EC 1.1.99.5 [Mus musculus]	glycerol 3 phosphate dehydrogenase [Saccharomyces cerevisiae]	glycerol uptake facilitator [Bacillus subtilis]	ORF-D gene product [Borrelia burgdorferi]	replicative DNA helicase [Bacillus subtilis]	bifunctional protein [Methanococcus jannaschii]	adenine deaminase [Bacillus subtilis]	unknown [Borrelia burgdorferi]	phosphomannose isomerase [Escherichia coli]	cheB peptide [Escherichia coli]
0824 g11402 / 1	gil1041785	gil1209840	gil1652934	gnllPIDIe2763 80	gil1553115	788 gil1752736	gil162142	gnllPIDle2362	gil1652577	266 spIP15189ISY E_RHIME	308 gil 104 l 116	58 gil1098641	237 gil 1339938	gil763191	gil142997	#gnllPIDle2012 (50)	.956 gil467330	853 gil1592217	906 gil633167	268 gil520783	745 gil 146722	573 gil 145524
5 780	4499	19289	2339	839	1177	1788	2	2592	11320	26266	72308	58	71237	71349	74773	4304	24956	3853	9061	268		70573
2985	7798	19738	1608	537	308	1928	589	2837	12750	27753	71067	1056	71398	72845	75552	3747	24123	4161	9558	753	93869	69920
01	7	30	3	-	1	3	1	3	15	32	77	7	82	83	85	9	38	5	13	_	89	75
0	7	7	11	16	19	42	142	7	2	7	7	8	3	ر	3	7	7	11	12	32	7	7

Вотеlia burgdorferi - Putative coding regions of novel proteins similar to know proteins

36	40	37	43	36	35	27	7	36	43	36	32	4	30	45	34	4	48	505	4	38	38	
62	62	62	62	62	69	200	7	62	69	62	- 61	19	61	61	61	61	61	61	61	61	61	
spoOJ93 gene product [Bacillus subtilis]	single-stranded-DNA-specific exonuclease (recJ) [Haemophilus influenzae]	unknown [Helicobacter pylori]	glcB gene product [Staphylococcus carnosus]	glutamine transport ATP-binding protein Q	CigB (Dictyostelium discoideum)	Fu=putative serine/threonine kinase [Drosonhila	melanogaster, Peptide Partial Mutant, 152 aaj [Drosophila melanogaster]	ORF-A gene product [Borrelia burgdorferi]	repeat organellar protein [Plasmodium chabaudi]	ORF-A gene product [Borrelia burgdorferi]	ubiquitin-specific processing protease Saccharomyces cerevisiae1	dnaK homologue [Borrelia burgdorferi]	lipoprotein NlpD [Synechocystis sp.]	YqgP [Bacillus subtilis]	ORF 7 [Borrelia burgdorferi]	CdsJ [Borrelia burgdorferi]	ORF 2 [Borrelia burgdorferi]	ORF 2 [Borrelia burgdorferi]	ORF-D gene product [Borrelia burgdorferi]	methyltransferase [Bacillus aneurinolyticus]	Similar to S. cerevisiae hypothetical protein Ykl012p (Swiss Prot. accession number P33203) and C.	scession number 024600) [Control (Swiss Prot.
5492 gil40031	5212 gil1574144	gil1477770	104 gil 1072419	5144 gil1591493	6976 gil1513302	4378 bbs1144872		8 gnllPIDle1539 (356 gil1151158	gallPIDle1539 (1032 gil 173128	236 gil 143999	gil1653709	261 gil 303863	46478 gil 142 1736	gil1655797	8872 gil458217	gil458217	8652 gnllPIDle2012 50	gil836624	2240 gil1066497	
95492	55212	65677	104	5144	9269	4378		538	356	629	114032	44236	46083	109261	46478	22971	8872	5551	8652	4377	2240	
96334	57341	66414	1762	4431	6743	4563		26	586	138	114352	42737	44821	110052	47119	21496	8300	2006	9398	9079	2449	
3	/9	9/		4	8	9			2		117	55	57	125	63	35		∞	10	12	4	
7 6	2	m	9	<u>∞</u>	19	20		81	106	114	2	3	m	m	4		× į	2	<u>4</u>	15	<u>o</u>	_

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

~				020 BILT0210	Inam-antiporter protein [Enterococcus hirae]	195	32
,	80	70112	6990/	1669 gil 1372995	OrfH (Borrelia burgdorferi)	95	4C
C	116	92686	99212	pirIE22845IE2 2845		56	36
9	26	18732	17791	gil1655797	CdsJ [Borrelia burgdorferi]	95	17
	21	14706	13510	510 gil1574247	H. influenzae predicted coding region HI1410	56	32
	∞	6722	7087	gnllPIDle2428 97	gnllPIDle2428 aBIM [Lactococcus lactis]	56	28
53	7	2446	2018	018 gil1421737	ORF 8 [Borrelia burgdorferi]	75	20
61	2	712	1410	gil583161	albumin binding protein [unidentified]	35	35
7	9	3866	3573	573 gil290487	50S ribosomal subunit protein L28 [Escherichia colil	55	37
7	14	11322	585	gil1303811	YqeU [Bacillus subtilis]	55	33
7	34	28640	82	gil558266	orf gene product [Wolinella succinogenes]	55	30
2	71	69999	67415	gil397486	endonuclease G [Bos taurus]	55	33
3	87	75924	76550	gil403984	deoxyguanosine kinase/deoxyadenosine kinase(I)	55	38
4	99	48434	48958	gil1100900	70 kDa heat shock protein [Theileria parva]	45	32
140	1	322	89	gil15611	gene 17, tail fiber protein [Bacterionhage T7]	55	32
4	34	24244	23867	gil1663563	orfIII; product unknown [Borrelia burgdorferi]	C 2	30
<u>v</u>	6	5510	4179	79 gil1513238	ORFveg 132; similar to Caenorhabditis elegans ORF	54	25
					F59B10.1 encoded by EMBL Accession Number Z49132 [Dictyostelium discoideum]		
<u> </u>	45	27187	25895 ₈	gnllPIDle2614 10	nuclear/mitotic apparatus protein [Xenopus laevis]	54	30
7	28	17905	18162g	62 gil36501	C protein [Homo sapiens]	75	11
	9	4415	5215 _g	5215 gil1707287	putative outer membrane protein [Borrelia	54	25
19	2	1674	2501 g	gil392799	GS/D6 ORF [Dictyostelium discoideum]	24	26
59	ν.	3284	2532 g	gnllPIDle1589 80	orfC gene product [Borrelia burgdorferi]	54	33
31	3	3328	4137p	irlS41649IS4	37 pirlS41649IS4 DNA polymerase - Plasmodium falciparum	1/2	٥٢

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

9 6362 7153 gil1553115 P35 antigen protein [Borrelia burgdorferi] 10 6603 7196 gnllPIDle2563 anti-P falciparum antigenic polypeptide [Saimin schures] 11 12 10333 9422 pir1A427711A4 reticulocyte-binding protein 1 - Plasmodium vivax 12 2771 2771 27711A4 reticulocyte-binding protein 1 - Plasmodium vivax 13 287 gil1498320 Ecli wall-associated protease precursor [Bacillus subtilis] 10 105 106383 107126 gil580905 B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB 11 195 gnllPIDle2202 ps. gene product [Plasmodium falciparum] 11 19 gil182579 CG Site No. 29739 [Escherichia coli] 11 19 100766 101014 gil168365 ord': product uknown [Borrelia burgdorferi] 11 10 100766 101014 gil168365 ord': product uknown [Borrelia burgdorferi] 11 10 100766 101014 gil163365 ord': product lorrelia burgdorferi] 11 10 100766 101014 gil1092864 T03G11.2 gene product [Borrelia burgdorferi] 11 10 100766 101014 gil1092809 ord': gene product [Borrelia burgdorferi] 11 10 100766 101014 gil15353115 P35 antigen protein [Borrelia burgdorferi] 11 10 100766 101014 gil15363 ord': gene product [Borrelia burgdorferi] 12 1277 S04 gil1533115 P35 antigen protein [Borrelia burgdorferi] 10 446 1634 gil1533115 P35 antigen protein [Borrelia burgdorferi] 11 10 6881 7180 gil156218 putative [Cænorhabditis elegans] 11 10 6881 7180 gil156218 putative [Cænorhabditis elegans] 11 12 97006 gil1574476 gadra protein [Sus scord] 11 12 97006 gil172294 protein-tyrosine phosphatase [Saccharomyces		26	34	31	38	25	32	38	31	30	36	27	28	96	32	40	34	22	37	200	77	33
10 6562 7153 gil1553115 9 6362 7196 gallPIDIe2563 93 9422 pirlA427711A4 2771 2771 2771 2771 2771 3 287 gil1498320 91 91 91 91 91 91 91 9		51	51	51	51	51	20	50	20	205	20	50	20	05	50	50	50	49	48	48	48	48
10 6562 7153 gil1553115 9 6362 7196 gallPIDle2563 93 9422 pirlA427711A4 2771 2919 6179 gil173241 1 1 1 1 1 1 1 1 1	jannaschii]	P35 antigen protein [Borrelia burgdorferi]	anti-P.falciparum antigenic polypeptide [Saimiri sciureus]	reticulocyte-binding protein 1 - Plasmodium vivax	ZIP1 protein [Saccharomyces cerevisiae]	cell wall-associated protease precursor [Bacillus subtilis]	B.subtilis genes rpmH, rnpA, 50kd, gidA and gidB Bacillus subtilis]	rps5 gene product [Plasmodium falciparum]	CG Site No. 29739 [Escherichia coli]	103G11.2 gene product [Caenorhabditis elegans]	orfV, product unknown [Borrelia burgdorferi]	VII.1 protein [Streptococcus pyogenes]	orfE gene product [Borrelia burgdorferi]	235 antigen protein [Borrelia burgdorferi]	021 [Borrelia afzelii]	ORF-D gene product [Borrelia burgdorferi]	inknown [Saccharomyces cerevisiae]	TARP antigen [Plasmodium falciparum]	utative [Caenorhabditis elegans]	edA protein (dedA) [Haemophilus influenzae]	astric mucin [Sus scrofa]	protein-tyrosine phosphatase [Saccharomyces cerevisiae]
4 9 6362 10 6603 11 12 10333 12 10333 13 1 14 100766 10 15 106383 10 16 100766 10 17 100766 10 11 100766 10 11 100766 10 11 100766 10 11 10076 10 11 339 10 10 6881 7 10 6881 7 11 97006 96 11 97006 96 14743 144 144		gil1553115	gnllPIDle2563 93	pirlA427711A4 2771	gil173241	gil1498320	gil580905		gil882579	gil1086864	gil1663565	gil49402	gnliPIDle1589 81	gil1553115	gnllPIDle2682 43	gnllPIDle2012 50	gnllPIDle2369 01	gil499325				
3 3 5 7 7 8 8 7 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10		7153	7196	9422	6179	287	107126	195	1653		2992	3470	4612	504	1634	941	4	2630	7180	99059	743	14970
3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6362	6603	10333	5919	m	106383	1	50808	100766	23555	4168	5190	1277	1948	582	339	2001	6881	65683	90026	14743
40 1 61 62 62 62 62 62 62 62 62 62 62 62 62 62		5 (01	12	7		105		62	119	32	œ	<u> </u>	2	3	3	_	3	10	75	112	23
		4	01	11	19	23	7	<u>m</u>	3	CC	4	2	0	-	13	92	148	28	m	m	m	

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

28	30	27	96	37	32	28			32	73	21	37	22	23	23	27	27	31	l
48	48	47	47	47	47	46			46	46	46	46	77	45	45	45	45	44	-
M. genitalium predicted coding region MG422 [Mycoplasma genitalium]	chorismate mutase subunit B [Methanococcus jannaschii]	frameshift [Plasmodium falciparum]	ankyrin 3 [Mus musculus]	type I restriction enzyme [Methanococcus januaschii]	P35 antigen protein [Borrelia burgdorferi]	Four tandem repeats of a DNA-binding domain	terminus of CarD. This protein has been purified and	found to bind in vitro to a promoter region [Myxococcus xanthus]	apolipoprotein N-acyltransferase (cute) Haemophilus influenzael	ribosomal protein S19 [Methanococcus jannaschii]	glutamic acid-rich protein [Plasmodium falciparum]	C41G6.i [Caenorhabditis elegans]	picaudalD protein [Drosophila melanogaster]	M. jannaschii predicted coding region MJ0263	ntegrin homolog - yeast (Saccharomyces cerevisiae)	inknown [Saccharomyces cerevisiae]	Inknown [Saccharomyces cerevisiae]	34G8.4 [Caenorhabditis elegans]	repeat Organellar protein [Dlocmodium ob L. 133]
gil1046137	gil1591322	gnIIPIDIe2202 45	gil710551	gil1592264	gil1553115	gil1022328									pirlS30782lS3 i	gnllPIDle2369	gnilPIDle2369	gnllPIDle2364 F	19 pil1151158
929.	282	1.199	80	95240	9941	9471			77324	25719	8816	3648	15	105909	15465	4852	4	81044	5019
7980	2628	5526	55075	94515	9057	9866			78904	24361	9895	3412	632	09271	14212	3950	258	79020	4075
	4	<u></u>	09	94	11	12			68	36	13	4	-	124 1	17	4	-	06	-
1.1	78	77 -	2	7	4	7			8	9	01	<u> </u>	138	3	4	23	92	6	12
	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 [Mycoplasma genitalium]	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 [Mycoplasma genitalium] 4 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus 48]	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus jannaschii] 48 8 5526 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus jannaschii] 48 8 5526 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47 60 55075 55803 gil710551 ankyrin 3 [Mus musculus] 47	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus jannaschii] 48 8 5526 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47 60 55075 55803 gil710551 ankyrin 3 [Mus musculus] 47 94 94515 95240 gil1592264 type I restriction enzyme [Methanococcus jannaschii] 47	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus jannaschii] 48 8 5526 6677 gallPIDle2202 frameshift [Plasmodium falciparum] 47 60 55075 55803 gil710551 ankyrin 3 [Mus musculus] 47 94 94515 95240 gil1592264 type I restriction enzyme [Methanococcus jannaschiii] 47 11 9057 9941 gil1553115 P35 antigen protein [Borrelia burgdorferi] 47	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus] 48 8 5526 6677 gallPIDle2202 frameshift [Plasmodium falciparum] 47 60 55075 55803 gil710551 ankyrin 3 [Mus musculus] 47 94 94515 95240 gil1592264 type I restriction enzyme [Methanococcus jannaschii] 47 11 9057 9941 gil1553115 P35 antigen protein [Borrelia burgdorferi] 47 12 9986 9471 gil1022328 Four tandem repeats of a DNA-binding domain 46	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus 48 8 5526 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47 60 55075 55803 gil710551 ankyrin 3 [Mus musculus] 47 94 94515 95240 gil1592264 type I restriction enzyme [Methanococcus jannaschii] 47 11 9057 9941 gil1553115 P35 antigen protein [Borrelia burgdorferi] 47 12 9986 9471 gil1022328 Four tandem repeats of a DNA-binding domain known as the AT-hook are found at the carboxy terminus of CarD. This protein has been purified and 46	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil159132 chorismate mutase subunit B [Methanococcus 48 8 5526 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47 60 55075 55803 gil710551 ankyrin 3 [Mus musculus] 47 94 94515 95240 gil1592264 type I restriction enzyme [Methanococcus jannaschii] 47 11 9057 9941 gil1553115 P35 antigen protein [Borrelia burgdorferi] 47 12 9986 9471 gil1022328 Four tandem repeats of a DNA-binding domain known as the AT-hook are found at the carboxy terminus of CarD. This protein has been purified and found to bind in vitro to a promoter region [Myxococcus xanthus]	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 4 2628 2825 gil159132 chorismate mutase subunit B [Methanococcus 48 8 5526 6677 gnllPIDle2202 frameshift [Plasmodium falciparum] 47 60 55075 55803 gil710551 ankyrin 3 [Mus musculus] 47 94 94515 95240 gil1592264 type I restriction enzyme [Methanococcus jannaschii] 47 11 9057 9941 gil1552115 P35 antigen protein [Borrelia burgdorferi] 47 12 9986 9471 gil1022328 Four tandem repeats of a DNA-binding domain 46 12 9986 9471 gil1022328 Four tandem repeats of a promoter region 46 12 9986 9471 gil1022328 Four tandem repeats of a promoter region 46 12 9986 9471 gil1022328 Four tandem repeats of a promoter region 46 12 9986 78904 77324 gil1573271 apolipoprotein N-acyltransferase (cute) 46	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus 48 2628 2825 gil1591322 chorismate mutase subunit B [Methanococcus 48 47	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48	11 7980 9293 giil 1046137 M. genitailum predicted coding region MG422 48	11 7980 9293 gil1046137 M. genitalium predicted coding region MG422 48

Borrelia burgdorferi - Putative coding regions of novel proteins similar to know proteins

					•		
1/		5 1/35		2 pirlA427711A4 2771	2142 pirlA427711A4 reticulocyte-binding protein 1 - Plasmodium vivax	44	26
22		7 4179		2827 pi1563812	Y CAP CIVE Company		
31		7 1687		1 200511	Action laevisj	44	20
				2/01 gii 1436931	Cutinase negative acting protein [Fusarium solani f. sp. pisi]	43	
3		7 4086		5186 gil343962	VARI protein [Candida olahrata]	5	
28	,	1 11(496 gil157804	Jaminin B2 chain [Drosophila malanaged]	47	25
28	,	5 2889		1 nirlS30787183	integrin homolog	42	23
				0782	0782	42	18
34		1 209		1234 gil 1655797	Cdel [Barrelia burradowil		
65	(*,)	3 1035		1415 oil1654220	cass [Doireira buigabile]]	42	27
2	=	9544		anlibinio 1220	Valiable major protein 16 [Borrella hermsii]	42	34
		· · · · · · · · · · · · · · · · · · ·		6 Stute 1052	Grithidia fasciculata]	41	26
3	122	104072	ľ	3017 gil1151158	Teneat organellar protein [Dlocmodium 1.1.1		
18	9			6366 gill 501/101	M issued in the second of the	41	20
				+7+1701119	Methanococcus januaschiil	40	20
9	9	4662		3964 gil600448	vari profein (aa 1-330) ICandida utilia		
₹	10	7637			microfilerial chaoth anglesis CIIDS II :	39	24
					sigmodontiel	37	19

Borrelia burgdorferi - Coding regions containing to know proteins

TABLE 5.

Contig	Orf ID	Contig Orf ID Start (nt) Stop	\vdash	nt) match	match gene name	nercent	HSP nt
				acession)	ident	length
2			17	402 gblM90084I	Borrelia burgdorferi 22 kD antigen	100	786
2	21	16672	16	310 gblM90084l	Borrelia burgdorferi 22 kD antigen	100	95
2			17	099 gblM90084I	Borrelia burgdorferi 22 kD antigen	100	6
		17415	17	876 emblX70826IB BLA7	B.burgdorferi gene for lipoprotein	100	
2	24	18522		923 emblX70826lB BLA7	B.burgdorferi gene for lipoprotein	100	009
2	25	18606	İ	emblX78708IB BYSC1	20009 emblX78708IB B.bergdorferi (ZS7) YSC1-like gene BYSC1	100	1404
2	26	18661	20295	emblX78708lB BYSC1	295 emblX78708IB B.bergdorferi (ZS7) YSC1-like gene BYSC1	66	314
2	38	32899	32]	74 gblU49938I	Borrelia burgdorferi potential virulence gene cluster	86	130
					membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C11		
	0				inhibitor PKCI (pkci) genes, complete cds		
7	39	33315	32863	363 gblU49938I	Borrelia burgdorferi potential virulence gene cluster	100	453
					(bmpA), BmpB protein (bmpB), putative protein 4,		
					Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds		
2	40	34718	33333	33 gblU49938l	Borrelia burgdorferi potential virulence gene cluster	66	1386
					membrane proteins BmpC (bmpC) and BmpA)
					(bmpA), BmpB protein (bmpB), putative protein 4,		
					ing for name of the complete control inhibitor PKCI (pkci) genes, complete cds	-	
2	41	36211	34751	51 gblU49938I	Borrelia burgdorferi potential virulence gene cluster	66	1461
					membrane proteins BmpC (bmpC) and BmpA		
					(vinpa), burps protein (vinps), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1		•
	1				inhibitor PKCI (pkci) genes, complete cds		
7	42	36899	36288	88 gblL241941	Borrelia burgdorferi immunodominant antigen P39	66	909
)

know proteins
100
tok
Coding regions containing to
regions
Coding
dorferi .
90
þ
rrelia bur
Bo

	457	1026	1134	1110	82	76	2490	131	270	386	209
	86	66	66	66	001	76	86	97	100	95	66
gene, complete cds	Borrelia burgdorferi (clone pB46) membrane lipoprotein A (bmpA) gene, 3' end, membrane lipoprotein (bmpB) gene, 5' end	Borrelia burgdorferi immunodominant antigen P39 gene, complete cds	Borrella burgdorferi potential virulence gene cluster membrane proteins BmpC (bmpC) and BmpA (bmpA), BmpB protein (bmpB), putative protein 4, Mg ion transporter MgtE (mgtE), protein kinase C1 inhibitor PKCI (pkci) genes, complete cds	Borrelia burgdorferi membrane protein D (bmpD) gene, complete cds	Borrelia burgdorferi membrane protein D (bmpD) gene, complete cds	Borrelia burgdorferi RNA polymerase beta subunit (rpoB) gene, complete cds, RNA polymerase beta' subunit (rpoC) gene, 5' end of cds	Borrelia burgdorferi RNA polymerase beta subunit (rpoB) gene, complete cds, RNA polymerase beta' subunit (rpoC) gene, 5' end of cds	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrIA and rrIB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	Borrelia burgdorferi 23S ribosomal RNA gene	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile- tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile- tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence
	811 gblL35050	gblL241941	38462 gblU49938	838 gblU35450	1961 gblU354501	901 gblL484881	050 gblL484881	977 gblU03396l	620 gblM88330l	066 gblU03396l	041 gblU03396
	811	37401	38462	39838	40961	41901	46050	74977	84620	99098	87041
	37335	38426	39595	40947	41461	46052	49535	79470	84351	86923	87637
	43	4	45	46	47	49	51	83	84	82	98
	2	7	2	2	2	2	2	2	2	2	2

Borrelia burgdorferi - Coding regions containing to know proteins

87 88424 88116 gblU03396l Borrelia burgdorferi B31 Ala-tRNA (rala), Ile-tRNA (ileT), Ile-tRNA (ile-tRNA (ileT), Ile-tRNA (ile-tRNA	210	570	289	904	1497	1170	180	312
88424 88116 gblU033961 91249 90680 gblU033961 98846 96393 emblZ12165IB BGYRAG 100759 98837 gblU045271 102618 103787 gblU045271 103786 103607 gblU045271	96	100	96	86	100	66	001	001
7 88424 88116 gblU033961 8 91249 90680 gblU033961 6 98846 96393 emblZ12165IB BGYRAG 7 100759 98837 gblU045271 8 102618 103787 gblU045271 9 103786 103607 gblU045271	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile- tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	B.burgdorferi gyrA gene encoding DNA gyrase subunit A (partial)	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit gyrB) and ribonuclease P protein component rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds	Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and
88424 8 91249 6 98846 6 98846 7 100759 102618 10 103786 10	gbiU03396i	gblU03396l	emblZ12165lB BGYRAG	gblU045271	gbIU045271	gbIU04527I	gbIU045271	gblU045271
	88116	90680	96393	98837	102389		103607	104177
88 88 96 96 101 101	88424	91249	98846	100759	100893	102618	103786	103866
	87	88	96	97	86	66	100	101
2 2 2 2 2 2	7	2	2	2	2	2	2	2

Borrelia burgdorferi - Coding regions containing to know proteins

ribosomal protein L34 (rpmH) genes, complete cds Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (mpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds Borrelia burgdorferi 212 DNA gyrase b subunit (gyrB) and ribonuclease P protein component (mpA) genes, partial cds, DnaA protein (dnaA), DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete cds Borrelia burgdorferi fesmid clone 31, complete sequence Sequence Sequence SeplU437391 Borrelia burgdorferi fesmid clone 31, complete sequence SeplU437391 Borrelia burgdorferi fesmid clone 31, complete sequence S	Sib Sib	e cds 100 17	1 148	100 1185	99 912	99 1104	100 213	99 750	100 1269	100 1224	100 696	sZ, 98 712 C	100 561	_
	104424 gblU04527 104764 gblU04527 8597 gblU43739 8666 emblX96685 B BCDG 10767 emblX96685 B BCDG 10614 emblX96433 B BFTSWQA 11546 emblX96433 B BFTSWQA 12787 gblU43739 14701 gblU43739 15655 gblL76303	Inbosomal protein L34 (rpmH) genes, complete Borrelia burgdorferi 212 DNA gyrase b subuni (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA) DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete	Borrelia burgdorferi 212 DNA gyrase b subuni (gyrB) and ribonuclease P protein component (rnpA) genes, partial cds, DnaA protein (dnaA) DNA polymerase III beta subunit (dnaN), and ribosomal protein L34 (rpmH) genes, complete	Borrelia burgdorferi fesmid clone 31, complete sequence	B.burgdorferi cell division genes	B.burgdorferi cell division genes	B.burgdorferi ftsW, ftsQ & ftsA genes	B.burgdorferi ftsW, ftsQ & ftsA genes	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ft orf230, smf, hslVU, flgBCE, fliEFGHI, flbAB genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	
	88 88 89 107 107 117 117 117 117 117 117 117	24 gbIU04527I	64 gblU045271	97 gblU43739l		57 emblX96685IB BCDG								

Borrelia burgdorferi - Coding regions containing to know proteins

444	480	378	1770	1053	957	1332	453	630	1221	447	1350	231	789
100	100	100	100	100	100	66	66	100	66	100	100	100	100
Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fisA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hsIVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi ftsA gene, 3' end of cds, ftsZ, orf230, smf, hslVU, flgBCE, fliEFGHI, flbABC genes, complete cds	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence
993 gbiU43739I	475 gbIU43739I	322 gblL763031	146 gblL763031	21596 gblU43739 	131 gblU437391	23860 gblL76303	88 gblL763031	gbIU43739I	26084 gblL763031	26541 gblL76303	27874 gbIU43739I	21 gblU43739l	28900 gbIU43739I
	18475	18822	20546	21596	22531	23860	24288	24898	26084	26541	27874	28121	28900
17550	17996	18445	18777	20544	21575	22529	23836	24269	24864	26095	26525	27891	28112
22	23	24	25	26	27	28	29	30	31	32	33	34	35
3	3	3	3	3	3	3	3	3	8	8	3	3	3

Borrelia burgdorferi - Coding regions containing to know proteins

789	588	1062	348	642	789	207	288	813	249	1134
100	100	100	100	100	66	100	100	100	100	66
Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhE, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhE, flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flhE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flbE genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flbF, flbE, genes	Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flbF, flbE genes
29682 gbIU43739I	67	363 gblU43739I	<u> </u>	369 gbIU43739I	4	436 gblL75945	116 gblL759451	237 gblL759451	772 gblL759451	55 gblL759451
						32642 3243	33129 334]		34320 3407	34222 35355
						42	43	44	45	46
		, (<i>E</i>	3	8	33	C.	m .		3

Borrelia burgdorferi - Coding regions containing to know proteins

2109	1173	816	345	489	1935	286	70	2439	274		542	327	327	411	1566	106
100	100	66	100	100	100	100	001	66	100		66	100	100	66	66	100
Borrelia burgdorferi flagellar hook protein (flgE), flbD, flagellar motor apparatus (motAB), fliL, fliM, fliZ, flagellar export apparatus (fliPQR, flhB), flbF, flbE genes	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	Borrelia burgdorferi fesmid clone 31, complete sequence	B.burgdorferei promoter element DNA	Borrelia burgdorferi (strain B31) protease (lon)	Borrelia burgdorferi (strain B31) protease (lon)	gene, complete cds	S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi PIG histone-like protein HBbu (hbb) gene, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes. complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds	Borrelia burgdorferi OrfR gene, partial cds, and S20, Hbb, OrfH and Rho genes, complete cds
7457 gblL759451	38627 gblU437391	39526 gblU437391	9421 gblU43739I	0012 gblU437391	919 gblU437391	42248 gbiU43739I	46090 gblM286821	60034 gblL772161	023 gblL77216i	026 abil 1256721	् ।	∞	697 gblU486511	5	732 gblU356731)38 gb <u>U35673 </u>
	37455 38						47505 46		62374 6002	82181 83						85778 8603
47	48	49	20	51	52	53	58	89	69	60	7 6	56	<u>2</u>	95	96	97
m l	33	3	33	3	3	3	3	m	3	C	, (2	2	3	m	£

Borrelia burgdorferi - Coding regions containing to know proteins

1935			1147 gblU61142l	Borrelia burgdorferi outer membrane porin protein Oms28 precursor (oms28) gene, complete cds	66	789
10037 11002 gblU59487	7 11002	gblUS	94871	Borrelia burgdorferi P35 antigen protein gene, and 7.5 kDa lipoprotein gene, complete cds	100	996
11365 11153 gblU59859	11153	gpIUS	98591	Borrelia burgdorferi strain B31 6.6 kDa lipoprotein gene, complete cds	100	213
11577 12230 gblU59487		gblUS	94871	Borrelia burgdorferi P35 antigen protein gene, and 7.5 kDa lipoprotein gene, complete cds	100	373
12578 13414 gblM85216	13	gbIM	352161	Borrelia burgdorferi 27kD protein antigen gene (p27), complete cds	78	370
13753	I		24511	Borrelia burgdorferi 49kb linear plasmid small 12kDa lipoprotein gene, complete cds	66	243
<u>(</u> I	<u>(</u> I	gblL3]	[427]	Borrelia burgdorferi (clone BbK2.1) phoA fusion protein gene, partial cds	100	169
36	36	gbIU75	1/989	Borrelia burgdorferi decorin binding protein B (DbpB) gene, complete cds	66	329
36351 36929 gbIU75867	36	gbIU7.	12989	Borrelia burgdorferi decorin binding protein B (DbpB) gene, complete cds	66	564
36838 36692 <u> gbIU75867 </u>	36	gbIU758	1298	Borrelia burgdorferi decorin binding protein B (DbpB) gene, complete cds	100	147
37001 37624 gbIU75866	1 37	gbIU7.	19989	Borrelia burgdorferi decorin binding protein A (DbpA) gene, complete cds	93	533
39318	68	gbIU42	25991	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	69	731
43349 42447 gb L23137	42447	gbIL23	1371	Borrelia burgdorferi (27985CT2) OspA gene, 3' end and OspB gene, complete cds	66	903
44228 43347 emblA04009IA 04009	43	emblA 04009		B.burgdorferi OspA gene and 5'flanking region	100	882
44792 44403 gblL19702	44403	gblL19		Borrelia burgdorferi outer surface protein A (ospA) and outer surface protein B (ospB) genes, complete cds	88	370
45198 44758 gblL19702	4	gblL19	17021	Borrelia burgdorferi outer surface protein A (ospA) and outer surface protein B (ospB) genes, complete	89	375

Borrelia burgdorferi - Coding regions containing to know proteins

				cds		
4	62	46440	382	Borrelia burgdorferi outer surface protein A (ospA) and outer surface protein B (ospB) genes, complete cds	88	622
4	<i>L</i> 9	49363	50622 gbiL34016	Borrelia burgdorferi (clone 8) S1 gene, complete cds	66	1260
4	89	50708	_	Borrelia burgdorferi (clone 8) S2 gene, complete cds	66	837
4	69	52203	51655 gblL314231	Borrelia burgdorferi (clone BbK2.14) phoA fusion protein gene, partial cds	66	292
4	70	53018	52488 gblL411511	Borrelia burgdorferi (clone 8) s3 gene, complete cds	66	297
5	1	535	71 gblU606421	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	91	465
2	2	1526	546 gblU606421	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	68	374
ς	4	2395	2129 gblL314251	Borrelia burgdorferi (clone BbK3.168) phoA fusion protein gene, partial cds	86	135
5	11	6832	6542 gblS66708l	{target sequence for detection of Lyme disease agent} [Borrelia burgdorferi, B31, 30-kb circular plasmid pIP87, Plasmid, 416 nt]	97	290
2	12	7422	6817 gblU44914l	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	87	595
2	13	8167	7565 gblU449141	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	84	147
5	14	9408	8284 gblU449141	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	72	268
5	15	10122	9427 gbIU30617I	Borrelia burgdorferi Bbk2.11 (bbk2.10), complete cds	93	260
5	16	10533	11324 gbiU44912l	Borrelia burgdorferi plasmid cp32-1, erpA and erpB genes, complete cds	93	790
2	17	11590	11330 gblŪ44913I	Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds	95	261

Borrelia burgdorferi - Coding regions containing to know proteins

173	143]	552	511	801	579	1075	927	379	596	390	384	354	210	440
96	95	100	100	66	86	94	98	80	82	16	66	66	97	95
Borrelia burgdorferi plasmid cp18, OspE (ospE)	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	B.burgdorferi plasmid, orfÅ, B, C, D, E, & F genes, clone pOMB14 and pOMB17	Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF. A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB
588 gblU425991	808 gblU425991	636 emblX87201lB BBRGABCD	185 emblX87201lB BBRGABCD	788 emblX87201lB BBRGABCD	519 emblX87201IB BBRGABCD	158 emblX872011B BBRGABCD	526 gblU45425i	564 gbiU454221	16 gblU454211	gbIU454211	gblU45426I	146 gblU967141	97 gbIU45426I	176 gbIU96714I
1158	11808	1363(14185	14788	15519	16158	18526	18564	19116	19775	20121		20797	21076
11761	13256	14187	14727	15588	16097	17276	17558	19040	19712	20164	20504	20799	21006	21903
18	19	50	21	22	23	24	25	26	27	- 58 - 78	29	30	31	32
5	S	Λ	Λ .	2	5	2	2	2	5	2	5	0	2	5

Borrelia burgdorferi - Coding regions containing to know proteins

	151	467	286	242	317	381	495	300	435	447	465	374	135
	94	06	93	95	96	95	06	97	66	97	96	86	87
(blyB) genes, complete cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF. A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF. A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi (clone BbK3.168) phoA fusion protein gene, partial cds
\prod													804 gblL31425i B
					2.	3 23	23				30	31	33577 328
	33	4£	35	36	37	38	30	51	52	53	54	55	29
	0	0	S	ς.	2	S	C	v	0	0	S.	2	S

Borrelia burgdorferi - Coding regions containing to know proteins

	657	1590	1212	510	693	375	437	193	140	362	309	756	675	447	1155	345
	100	86	100	100	66	86	77	80	50	96	100	66	100	100	100	100
	Borrelia burgdorferi B31 outer surface protein C (ospC) gene, complete cds	Borrelia burgdorferi 26 kb plasmid GMP synthetase (guaA) gene, complete cds	Borrelia burgdorferi 26 kb plasmid IMP dehydrogenase (guaB) gene, partial cds	Borrelia burgdorferi 26 kb plasmid IMP dehydrogenase (guaB) gene, partial cds	Borrelia burgdorferi transposase-like protein (tra)	Borrelia burgdorferi transposase-like protein (tra) gene, partial cds	Borrelia burgdorferi 2.9-3 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes. complete cds	Borrelia burgdorferi 16 kb plasmid DNA fragment	Borrelia burgdorferi transposase-like protein (tra) gene, partial cds	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid Ip16 DNA, complete sequence	Borrelia burgdorferi linear plasmid Ip16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence
11010101	9022 gbi UU 1894i	11425 gblL258831	12664 gblU13372l	11686 gblU13372l	3 gbIU85588I	677 gbIU85588I	25847 gbIU454231	746 gblU454241	14087 gblU84396l	17876 gblU85588I	507	19,	5862 gblU43414l	7255 gblU43414l	7467 gb U43414	8735 gbIU43414
0730	0/06	9836	11435	12195	695	1081	25041	1420	14287	18352	2815	3522	2188	6089	8621	9079
71	2	17	18	l9		2	39	7	12	17	-	77	2	4	<u>ν</u>	•
7	5	0	0	9	7	7	7	∞	∞ (∞	6	2	2	2	6	5

Borrelia burgdorferi - Coding regions containing to know proteins

110	603	738	273	27.7	210	8/7	143		290	531	Ċ	<u>CI/</u>	224	1202	519		4 <u>4 1</u>	576	210	
100	100	100	00	000	7 0	0	97		91	66	70	00	88	82	81	70	0/	84	91	
Borrelia burgdorferi linear plasmid lp16 DNA.	complete sequence Borrelia burgdorferi linear plasmid lp16 DNA,	complete sequence Borrelia burgdorferi linear plasmid lp16 DNA,	complete sequence Borrelia burgdorferi linear plasmid lp16 DNA	complete sequence Borrelia burgdorferi linear plasmid ln16 DNA	complete sequence Borrelia hirsdorferi 7 9-7 locus ORE Crease	partial cds, ORF-D, REP+, REP-, and lipoprotein	Borrelia burgdorferi 16 kb plasmid hypothetical	protein gene, complete cds	Borrelia burgdorferi Ip21 circular plasmid, complete sequence	Borrelia burgdorferi exported neurotoxin-like	Borrelia huradorferi In21 circular plasmid	complete sequence	Borrelia burgdorferi Ip21 circular plasmid,	Borrelia burgdorferi plasmid cp18, OspE (ospE)	B.burgdorferi repeated DNA element, 30.5 kb	circular plasmid copy Borrella burgdorferi In21 circular plasmid	complete sequence	Borrelia burgdorferi Ip21 circular plasmid, complete sequence	Borrelia burgdorferi Ip21 circular plasmid,	complete sequence
214 gblU43414l		107 gblU43414l	027 gblU43414l	241 gblU43414l			2886 gblU12332l		_	983 gblL166251 F	001 gblU036411)	167 gblU036411	41 gblU425991	88 emblX87127IB B	55 gblU036411		68 gblU036411	9544 gbiU036411 B	ည
10224 9	10370 10	11844 11	13299 13	13612 13.	2164 10	······································	2686 28			1525	4098 49		4691 44 	6348 50	6673 77	7786 83		8393 89	9290 95.	
7	<u></u>	6	10	111	2		m	-	-	77	9	Ţ		8	6	10		-	12	
6	6	6	6	6	10		10	13	C	13	13	2	13	13	13	13		13	13	

Borrelia burgdorferi - Coding regions containing to know proteins

366	85 242		77 267	95 296		93 594									
s cds	e cds	pD)	v					1.	÷ 0,						
Borrelia burgdorferi protein p23 gene, complete cds	Borrelia burgdorferi protein p23 gene, complete cds	Borrelia burgdorferi outer surface protein D (ospD) gene, complete cds	Borrelia burgdorferi (clone 8) s3 gene, complete cds	Borrelia burgdorferi plasmid cp32-1 PCR target site, partial sequence	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	Borrelia hirodorferi nlasmid cn32-2 em and	D genes, complete cds	erpD genes, complete cds Borrelia burgdorferi strain 297CH putative outer membrane protein (ospF) gene, complete cds	erpD genes, complete cds Borrelia burgdorferi strain 297CH putative outer membrane protein (ospF) gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds	erpD genes, complete cds Borrelia burgdorferi strain 297CH putative outer membrane protein (ospF) gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds	erpD genes, complete cds Borrelia burgdorferi strain 297CH putative outer membrane protein (ospF) gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds	erpD genes, complete cds Borrelia burgdorferi strain 297CH putative outer membrane protein (ospF) gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene complete cds Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	erpD genes, complete cds Borrelia burgdorferi strain 297CH putative outer membrane protein (ospF) gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	erpD genes, complete cds Borrelia burgdorferi strain 297CH putative outer membrane protein (ospF) gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	erpD genes, complete cds Borrelia burgdorferi strain 297CH putative outer membrane protein (ospF) gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp32-4, erpH gene, complete cds Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds
6217 gb L31616 Bo		2854 gblM97452l Bo	657 gblL411511 Bor	4 gbIU609631 Bo	834 gblU44914l Bo	581 gblU44914l Bo									
6217 ₁₈	6671 g	2854 g	3657 g	4	834 g	1581 g		2257 g	2257 g 2964 g	2257 g 2964 g 5143 g	2257 g 2964 g 5143 g 5183 g	2257 g 2964 g 5143 g 5183 g 5360 g	2257 g 2964 g 5143 g 5183 g 5360 g	2257 g 2964 g 5143 g 5183 g 5360 g 317 g	2257 g 2964 g 5183 g 5360 g 317 g 658 g
2168	6126	3660	3136	849	1427	2168		2946	2946	3794	2946 3794 4334 5362	2946 3794 4334 5362 5581	2946 3794 4334 5362 5581 306	2946 3794 4334 5362 5581 664	2946 3794 4334 5362 5581 564 664
9	7	5	CC .	1	2	3		4	4 8	4 0	4 8 9 6	4 2 9 5 8	4 2 9 2	4 2 0 1 8 - 2	4 0 0 6 8 - 2 6
14	14	16	19	21	21	21	_	21	21	21 21 21	21 21 21 21 21 21 21 21 21 21 21 21 21 2	21 21 21 21 21 21 21 21 21 21 21 21 21 2	21 21 21 21 21 21 21 21 21 21 21 21 21 2	22 22 22 22 22 22 22 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	22 22 21 21 21 21 21 21 21 21 21 21 21 2

Borrelia burgdorferi - Coding regions containing to know proteins

	750	378	204	603	221	362	220	478	309	219	610	419	786	615
	94	100	100	96	96	94	08	87	86	96	86	97	100	100
sedneuce	108 gblU76406l Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence		536 gblU43414l Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	82 emblX87127IB B.burgdorferi repeated DNA element, 30.5 kb BPBRGEA circular plasmid copy	~	873 gblAF000270l Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	2621 gblU454271 Borrelia burgdorferi 2.9-7 locus, ORF-A-D, REV, and lipoprotein (LPA and LPB) genes, complete cds						45 emblX87127IB B.burgdorferi repeated DNA element, 30.5 kb BPBRGEA circular plasmid copy	71B
	5108 gbi	760 gbl	1536 gbl	82 em BP	682 em BP	2573 gbl.	2621 gbl	149 gbl	4355 gblī	434 gblL316151	258 gblI	686 emt BPF	1545 emb BPE	
		383	1333	684	2				4		7			1543 21
		•				7	3(37	46	ς,	13	7	7	15.
	2		2		2	4	5	9	∞		7	7	7	3
	24	25	52	56	56	97	26	50	97	17	27	ر ا	9	30

Borrelia burgdorferi - Coding regions containing to know proteins

	100 645	92 976	100 546	100 1152	98 379	93 577	91 174	100 240		92 571	100 133	100 534	100 597	99 529	971 170
	30.5 kb	pE (ospE)			rpC and	rpC and	aT), Ile- rlA and nes,			pC and				(Đ)	
circular plasmid copy	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp32-5, erpl gene, complete cds	Borrelia burgdorferi plasmid cp32-1, erpA and erpB2 genes, complete cds	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	Borrelia burgdorferi B31 Ala-tRNA (alaT), Ile-tRNA (ileT), 16S rRNA, 23S rRNA (rrlA and rrlB), and 5S rRNA (rrfA and rrfB) genes, complete sequence	Borrelia burgdorferi 23S ribosomal RNA gene	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	Borrelia burgdorferi plasmid cp32-3, ErpG (erpG) and BapA (bapA) genes, complete cds	B.burgdorferi ospG and bapA genes	1604 emblX82409IB B.burgdorferi ospG and bapA genes BOSPG	Borrelia burgdorferi plasmid cp32-3, ErpG (erpG) and BapA (bapA) genes, complete cds	B.burgdorferi plasmid, orfA, B, C, D, E, & G
BPBRGEA	7IB		995 gbIU72996I		882 gblU44914l			737 gblM88330l		28 gblU44914l E	653 gblU42598l E	983 emblX82409IB B BOSPG	1604 embiX82409IB B BOSPG		665 emblX87202 B
	2158	3247	450	1008	2253	3050	co.	976	-	672	850	1516	2200	2602	296
	4	5		2	<i>c</i>	4		7			2	3	4	<u>ν</u>	
-	30	30	33	33	33	33	35	35	36	38	38	38	38	38	36

Borrelia burgdorferi - Coding regions containing to know proteins

BBRGBCDE genes, clone pOMB10 253 gblU42599 Borrelia burgdorferi plasmid cp18, OspE (ospE) 91 2572 emblX87201IB Burgdorferi plasmid, orfA, B, C, D, E, & F 94 BBRGABCD genes, clone pOMB14 and pOMB17 2572 emblX87127IB Burgdorferi repeated DNA element, 30.5 kb 91 2572 emblX87127IB Burgdorferi repeated DNA element, 30.5 kb 93 2586 emblX87127IB Burgdorferi repeated DNA element, 30.5 kb 93 2586 emblX87127IB Burgdorferi repeated DNA element, 30.5 kb 93 2586 emblX87127IB Burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence sequenc	06
	OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like
2284 2284 2572 2861 2861 1732 1732 1747 1747 1747 17418	
2353 2574 2874 2874 3000 3000 342 1172 1173 1133 635	
6 4 8 0 - 2 6 - 2 6 - 2 - - 2 -	
39 39 39 39 40 40 40 40 41 41 41 43 43	

Borrelia burgdorferi - Coding regions containing to know proteins

1 1				orf1 gene, partial cds		
<i>x</i>	2242	1784	1784 gblU45423I	Borrelia burgdorferi 2.9-3 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	85	421
4	2860	2318	2318 gblU454211	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	95	259
	1158	178	178 gbIU60642I	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	89	374
3	2531	1761	1761 gblL314251	Borrelia burgdorferi (clone BbK3.168) phoA fusion protein gene, partial cds	66	135
	287	3	3 gbIU78764	Borrelia burgdorferi plasmid cp32-1, erpA and erpB2 genes, complete cds	84	153
	2037	1453	1453 gblL13924l	Borrelia burgdorferi outer surface protein E (OspE) gene, complete cds	06	386
₹	2663	2893	2893 gblU44912l	Borrelia burgdorferi plasmid cp32-1, erpA and erpB genes, complete cds	06	230
	174	338	338 gbIU425991	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	96	91
7	259	996		Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	100	692
	964	1527		Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	100	564
4	1509	2111	2111 gblU425991	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	66	603
2	2537	2851	emblX872011B BBRGABCD	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	86	315
	2	526	526 gblU45425i	Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	95	525
	1245	724	724 gblU454241	Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	94	483

Borrelia burgdorferi - Coding regions containing to know proteins

651	327	91	804	909	1596	612	269	146	140	146	422	489	101
68	87	100	66	66	86	66	98	94	94	98	81	66	001
Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	Borrelia burgdorferi plasmid cp32-6, erpK gene, complete cds	Borrelia burgdorferi plasmid cp32-6, erpK gene, complete cds	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	B.burgdorferi plasmid, orfA, B, C, D, E, & G genes, clone pOMB10	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like
1321 gblU45424 	25 gbIU44914I	1182 gb U72997I	1244 gbIU72997I	18 gblU764061	704 gblU764061	7	7	236 emblX87202lB BBRGBCDE	6	0	1	581 gblAF0002701	719 gblAF000270l
1971	363	412	2047	713	2308	613	2203	3		250	1650	93	883
3	1	2	<u>e</u>		2		3	1	2	6	9		2
47	48	48	48	49	49	51	51	52	52	52	52	53	53

Borrelia burgdorferi - Coding regions containing to know proteins

			orf1 gene, partial cds		
	811	811 gblAF000270	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	100	289
	1064	064 gblAF000270	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	96	381
	1380	380 gbIU45427I	Borrelia burgdorferi 2.9-7 locus, ORF-A-D, REV, and lipoprotein (LPA and LPB) genes, complete cds	93	362
	1740 ₺	40 gblU45426I	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds	86	210
	434 8	134 gbIU45422I	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	92	326
	471	71 gblAF000270	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	86	362
	2109 el B	09 emblX87127IB BPBRGEA	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	84	246
	1800 g	gblL314251	Borrelia burgdorferi (clone BbK3.168) phoA fusion protein gene, partial cds	06	118
	1111e B		B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	75	519
	694 e B	694 emblX87127IB BPBRGEA	B.burgdorferi repeated DNA element, 30.5 kb circular plasmid copy	72	786
	1410e B		B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	95	498
	3e B		B.burgdorferi plasmid, orfÅ, B, C, D, E, & F genes, clone pOMB14 and pOMB17	62	260
-	282 er	82 emblX87202lB	B.burgdorferi plasmid, orfA, B, C, D, E, & G	74	501

Borrelia burgdorferi - Coding regions containing to know proteins

	351	510	204	300	435	440	207	384	390	342	374	393	281	552
	78	100	100	93	96	94	86	66	86	66	86	96	85	91
genes, clone pOMB10	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi linear plasmid Ip16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes, complete cds and REP+ gene, partial cds	Borrelia burgdorferi 2.9-3 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-5 locus, ORF-A-D,
BBRGBCDE	910 gblU42599I	gblU43414I	117 gblU43414l	75 gbIU60642I	641 gbIU60642I	018 gblU60642l	gblU96714l	600 gblU454261	946 gbIU454231	083 gblAF000270I	gbIU60642I	gbIU60642I	12 gblU45422l	340 gblU45425I
	910	54	1117	75	641	1018	275	009	946	1083	925	1328	12	540
	1704	563	1320	647	1075	1530	33	217	557	1424	7	936	464	1256
-	m		7		77	m		7	Č.	4		2		ন
-	62	49	49	99	99	99	70	0/	70	70	75	75	9	76

Borrelia burgdorferi - Coding regions containing to know proteins

	379	651	255	1198	347	440	151	486	148	135	195	243	447
	06	76	08	66	91	84	08	98	97	67	86	86	86
cds	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-4 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB (blyB) genes, complete cds	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-7 locus, ORF-A-D, REV, and lipoprotein (LPA and LPB) genes, complete cds	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at
	2 gblU454221	509 gblU45424l)34 gbIU43414I	202 gblU764061	360 gblU454211	gblU967141	gblU967141	289 gblU454221	54 gblU45427I	gbIU60642I	gbIU60642I	23 gbl 0606421	08 gblU60642I
	7	509	1034	1202	360	1008	636	289	954		31	323	508
	433	1159	657	က		358	791	891	1151	137	325	565	954
-		7	7			7	<i>c</i>		21		7	<u>~</u>	4
100		<u> </u>	81	83	8	82	85	98	98	<u>8</u>	8 8	<u> </u>	<u>×</u>

Borrelia burgdorferi - Coding regions containing to know proteins

201	313	. 331	368	243	458	472	380	234	220	234	477	889	146
86	97	68	96	76	06	94	70	100	86	100	66	66	100
Borrelia burgdorferi plasmid cp32-2, sequence at position 5kb	Borrelia burgdorferi 2.9-2 locus, ORF-C gene, partial cds, ORF-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi strain B31 2.9-like locus, OrfC, OrfD, Rev (rev), lipoprotein (LP), and 36 kDa-like orf2 genes, complete cds, and 36 kDa-like orf1 gene, partial cds	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	Borrelia burgdorferi plasmid cp18, OspE (ospE) gene, partial cds	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid Ip16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi putative vls recombination cassettes Vls2-Vls16b (vls) gene, complete sequence	Borrelia burgdorferi 2.9-6 locus, ORF-A-D genes,
891 gbIU60640I	34 gbl∪45422l	gblU454211	940 gbIU454211	245 gblU45425I	282 gblAF000270	3 gbIU44914 	264 gblU425991	408 gb U43414	757 gblU43414l	440 gblU43414l	837 gblU43414l	911 gb U76406	242 gblU45426l
891	34	578	940	245	282	3	264	408	757	440 8	837	91118	242 g
1091	927	162	572	co .	749	506	827	175	329	207	361	3	388
5		_	7	 -	79	—	-		7	-	7		1
88	91	93	93	94	94	97	86	66	66	I0I	101	102	104

Borrelia burgdorferi - Coding regions containing to know proteins

210	789	2001	306	228	456	310	405	300	374	391	234	356	238	234
100	95	70	93	66	95	93	68	86	86	85	100	66	100	1001
complete cds and REP+ gene, partial cds Borrelia burgdorferi B31 BlyA (blyA) and BlyB	(blyB) genes, complete cds Borrelia burgdorferi 2.9-5 locus, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete	cds Borrelia burgdorferi protein n/3 gene complete cds	Borrelia burgdorferi protein p23 gene, complete cds	Borrelia burgdorferi (clone BbK2.5-6) unknown protein gene, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi 2.9-1 locus, ORF 5-8, ORF-A-D, REP+, REP-, and lipoprotein (LP) genes, complete cds	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-4, sequence at position 4-6kb	Borrelia burgdorferi plasmid cp32-2, erpC and erpD genes, complete cds	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	Borrelia burgdorferi linear plasmid lp16 DNA, complete sequence	B.burgdorferi plasmid, orfA, B, C, D, E, & F genes, clone pOMB14 and pOMB17	Borrelia burgdorferi linear plasmid lp16 DNA,
386 gblU967141	gbIU45425I	4 gblL316161	173 gblL316161	580 gblL316151	456 gbIU454211	761 gblU454211	215 gblU45421	84 gbIU60642I	23 gblU60642I	gblU44914I	gblU43414I	'00 gbIU43414I	697 emblX87201IB BBRGABCD	467 gblU43414
386	811	4	173	280	456	761	215	84	123	2	408	700	697	467
595	2	264	298	807		450	787	653	719	403	175	329	458	234
72			2	8		7	_	-	= -	=-	-	2		- -
104	107	109	109	109	110	0110		119	171	77.1	87	78	671	132

Borrelia burgdorferi - Coding regions containing to know proteins

171		243	331	513	1	153)	432)	495	}	144		706	<u> </u>	351		
66		08	78	100)	100		86		94	`	98)	88	}	16		
Borrelia burgdorferi linear plasmid lp16 DNA,	complete sequence	309 embl x 8 / 12 / 1B B. burgdorferi repeated DNA element, 30.5 kb BPBRGEA circular plasmid conv	B.burgdorferi plasmid, orfA, B, C, D, E, & G	Borrelia burgdorferi B31 BlyA (blyA) and BlyB	(blyB) genes, complete cds	Borrelia burgdorferi B31 BlyA (blyA) and BlyB	(blyB) genes, complete cds	Borrelia burgdorferi plasmid cp32-3, ErpG (erpG)	and BapA (bapA) genes, complete cds	3 emblX87127IB B.burgdorferi repeated DNA element, 30.5 kb	circular plasmid copy	Borrelia burgdorferi Ip21 circular plasmid,	complete sequence	Borrelia burgdorferi plasmid cp32-4, sequence at	4-6kb	Borrelia burgdorferi GrpE protein homologue gene.	DnaK protein homologue gene, and DnaJ protein	homologue gene, complete cds's
Borreli	comple	B.burge circular		Borrelia	(blyB) (Borrelia	(blyB) g	Borrelia	and Bar	B.burgo	circular	Borrelia	complet	Borrelia	position 4-6kb	Borrelia	DnaK pi	homolog
660 gblU434141	GIEGI FOXI	emblX8/12/IB BPBRGEA	4 emblX87202lB BBRGBCDE	33 gblU967141		276 gblU96714I		498 gbIU42598I		emblX87127IB	BPBRGEA	2 gblU036411		542 gbIU60642I		2 gblM96847I		
099	003	000	4	33		276		498		m		7		542		ন		
388	,	n	339	554		124		19		497		193	1	m		352	-	
7	-	-	-		-	7							-	=	-	_		
132	133	133	134	141		141	- (143	-	144		146		147		133		
																•		_

TABLE 6.

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

Contig ID	ORF ID	Start (nt)	Stop (nt)	
2	4	2730	35	54
2	5	3559	34	
2	7	5464	38	
2	13	10502	99	
2	17	13800	135	
2	19	15368	152	
2	28	21155	214	
2	50	41944	421	86
2	58	53786	529	11
2	59	54816	537	73
2	61	57393	558	13
2	63	57882	576	82
2	65	60898	602	
2	66	61441	620	
2	67	62078	626	
2	70	65896	6654	
2	74	70203	699	
2	78	71818	7139	
2 2	80	72956	740:	
	81	73515	7320	
2 2	90	92181	9252	
2	91	92968	9255	
2	108	109872	11005	
2	112 113	112408	1128	
2	113	112858 113035	11303	
2	115	113506	11346	
2	119	114325	11372 11485	
3	6	3279	407	
3	8	5156	601	
3	54	42256	4278	
3	59	47264	4750	
3	60	47673	4869	
3	63	51475	5102	
3	70	60330	6057	
3	71	61050	6134	
3	72	61347	6167	
3	74	63917	6430	
3	86	75347	7553	
3	88	76593	7738	
3	99	89769	8900	
3	102	91278	9166	
3	103	92137	9246	
3	105	92423	9278	
3	108	93467	9388	
3	115	98262	9868	

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

3	121	102227	10200
3	126	111308	102904
4	6	3751	110055
4	7	4218	4179
4	19	16115	5042
4	20	17028	15516
4	21	17379	16075 17092
4	22	17735	17092
4	24	19243	18785
4	25	18942	19196
4	26	20677	19259
4	27	19431	19751
4	29	21376	20876
4	30	21899	21423
4	31	22918	21845
4	33	23951	23553
4	37	26253	25627
4	38	26991	26332
4	39	28181	26931
4	40	29175	28522
4	43	30605	30342
4	45	34906	33548
4	48	35750	35932
5	3	2102	1527
5	5	2656	2393
5	7	3460	2900
5	10	6544	5645
5	40	25278	24322
5	41	25235	25600
5	42	25665	25276
5	44	25881	25663
5	48	27883	27410
5	49	28351	27881
5	50	29028 29454	28324
5	56	32199	29026 31666
5	57	32571	32200
5	58	32826	32569
5	60	32913	33245
5	61	33766	33575
5	62	34173	33742
5	64	35514	34861
6	2	954	1181
6	3	1590	1763
6	5	3400	3954
6	7	4691	5218
6	8	5187	5699

152

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

		·	
6		6498	
6	12	6975	6727
6	14	7978	7448
6	15	8479	7976
6	22	15106	15636
6	27	19999	18842
6	28	20036	20668
6	29	21814	20690
6	30	20949	21269
6	35	24136	23630
6	37	25697	26248
7	8	8100	7792
7	10 11	8145	8288
7		9374	8517
7	12 13	9771	9325
7	13	9652	10185
7	15	10163 10517	9765
7	16	11363	10173
7	17	11363	10524
7	18	12495	11392
7	19	13516	11902
$\frac{1}{7}$	20	12807	12473 13154
7	22	15149	13134
7	24	15855	15046
7	25	15503	15826
7	26	16638	15853
7	27	19344	16636
7	31	19473	19727
7	32	20067	19675
7	33	20762	20049
7	34	21136	20738
7	36	22975	23406
7	40	26667	25870
8	3	2907	4118
8	5	5898	6059
8	6	7399	8313
8	13	15645	15899
8	14	17281	16331
8	15	16905	17111
10	4	3211	3684
10	6	3857	4456
10	8	5982	5599
10	11	8038	7802
10	14	10255	10100
11	7	5688	5828
11	9	7248	7685

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

11	10	7672	8028
11	13	9642	10154
12	1	101	370
12	2	982	680
12	3	1390	1115
12	4	1528	
12	5	1913	1388
12	11		1431
14	2	7308	6616
14		3588	3328
14	9	4657	4815
15		7981	8511
15	1	1	327
15	2	325	1077
	3	1478	657
15	4	2360	1758
15	5	2839	2507
15	9	3922	3743
15	10	4145	3900
15	11	4112	4270
15	13	7677	6127
15	14	7852	7709
15	15	8052	7825
15	16	8222	7857
16	2	1733	1936
16	3	1905	2063
16	6	5212	4220
16	7	8903	8505
17	2	1500	1709
17	5	4097	4660
17	7	6344	6189
18	1	1635	2465
18	2	2509	3306
18	3	3332	4390
18	5	4933	4727
18	7	6353	7084
18	8	7098	7625
20	7	4700	4557
22	4	2175	1228
22	5	2132	2314
22	6	2829	2173
22	8	3254	3601
22	9	4408	4169
22	10	4875	4402
22	11	5343	4873
23	2	2283	1537
23	3	3564	2617
25	6	3677	4147
	1	30,7	71-7/

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

26		4251	3889
28		732	1739
29	3	310	885
31	1	28	195
32	3	935	1603
32		1637	2332
37	2	1379	
42			1059
44	4	2708	2388
	2	1734	1159
44	4	2942	2532
47	4	2336	2115
50	1	908	120
52	4	674	501
56	1	152	1465
56	2	611	459
56	3	1479	2150
58	3	1691	1329
58	5	1867	2046
59	2	2018	
61			1044
	1	1	657
61	3	1389	1907
62	4	1115	1345
63	1	663	325
63	2	769	446
63	3	1759	1013
65	1	472	903
65	2	901	1236
67	1	387	4
67	2	979	401
67	3	1482	961
68	2		
69	3	451	612
		840	574
71	1	363	4
72	1	586	933
73	1	300	4
73	2 3 1	824	279
73	3	1396	1145
79	1	22	1119
82	1	701	303
82	2	1188	775
84		331	134
84	2	983	
87			348
87	1	277	2
	2	1136	267
96	1	434	57
96	2	748	557
97	2	976	659

Borrelia burgdorferi - Putative coding regions of novel proteins not similar to know proteins

103		301	2
103	L	886	
105	_	36	
106		425	3
106		761	600
112	1	416	799
113	1	685	59
118	1	1	489
118	2	487	753
120	2	299	691
124	1	1	630
127	1	702	322
135	1	287	3
135	2	649	407
136	1	1	645
140	2	619	332
145	1	1	480

(1) GENERAL INFORMATION:

- (i) APPLICANT: Human Genome Sciences, Inc. et al.
- (ii) TITLE OF INVENTION: Borrelia burgdorferi Polynucleotides and Sequences
- (iii) NUMBER OF SEQUENCES: 155
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
 - (D) STATE: Maryland
 - (E) COUNTRY: USA
 - (F) ZIP: 20850

(v) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
- (B) COMPUTER: HP Vectra 486/33
- (C) OPERATING SYSTEM: MSDOS version 6.2
- (D) SOFTWARE: ASCII Text
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: Herewith
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Brookes, A. Anders
- (B) REGISTRATION NUMBER: 36,373
- (C) REFERENCE/DOCKET NUMBER: PB370PCT

(vi) TELECOMMUNICATION INFORMATION:

- (A) TELEPHONE: (301) 309-8504
- (B) TELEFAX: (301) 309-8512

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 910715 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ATATAATTT	° ТААТТАСТАТ	AGAATATGTT	' AAACTTTACC	CTTGAATTTT	TCTACTCTAT	60
TTGTATATTC	TATAGAAAAA	ACGATTAGAA	TTAAACAAAG	CCATAACTGA	ACCAACGGTA	120
ATTAGTAGAT	AAAGGGATCA	AAATATTTTT	TATTGCAGCA	AGAATACCTT	GGTATATTAG	180
AAAAACCAAA	AGTCATAGTC	AAATCATCTT	TTGATAACAA	TCCCCAAATC	ТАТААТТТАТ	240
ТАТСАААТТА	ATTGCTCCCT	TGAAAAGATT	AGTTTTTAAA	ACTACAAGAC	ТАСТАТСААТ	300
CACTATCAGA	TAGATTAAAA	CAACCTTTAC	AAGAAAAAA	TCTTACTACT	ATTTTATTGT	360
AAATGTATTA	TAAAATAAGT	TCATGCAAAA	ACTTACAATT	TTTCACAACA	AACTACAATA	420
AAATCATGTA	AACAAACAAT	TTCTTTGAAA	ATTAAGCAAA	ТТТАТАААТА	ТАААТТАТАА	480
AGATATATAT	TTTTATATGA	ТСААТААТАА	AAATTAATAG	GATACTTATT	TGGAAAAATT	540
ATTGAAAAAA	CAATAAGCAT	GAATTGCCAC	AATAAGCTAA	TTGTCACTTA	ATAATTCTTG	600
TTTACTAGAC	CACATTAGTA	TAAACTCAAA	TATTGGCTAC	TATAATATAG	GGGCTTTATA	660
CGCCACATGT	TTAATGATAA	CATAAGAAAA	TATTGCAATA	ATAAAAAGAT	TGAAATATCT	720
TTATTAGAAA	AGAATCTCGA	TAATTTAGAA	AACAGAATAA	AAATCATAAC	ТААТАААТАТ	780
AACGTTGAAA	AAAATATATT	САААСТТТАА	CTATACAATT	AATTACACCT	TAAAAATGCG	840
ТТАСАТАААА	ATTAAGGACT	АСТАТАААТА	GAAAACACCA	САТААССТАС	AGACTCTAAA	900
GGAATAATTA	AATCCTCATA	TTTCAGTTCT	CCAAAAGTTT	AAATAGGGGC	CTTTTACTTT	960

TCTTGATTAG CATATACATT ATTAAAGGCA TCTTCTTGGG CACTATCCTA AACTTTTTTA	1020
CATTATTATT ATTTTATTCT TTATTATTAC AAGATAATTC AAGAATCTAG ATTACAAGAT	1080
ATCAATCCTG CCATTAGTAG TTCAATAAAA CATTTAGAAT ATTTATACAT TATTTAATGT	1140
ATTTTTTCA TTTTTGAAAT AATATTGTTA TAACTTAACT	1200
TCAACTTGAG AATCCGATGT ACATAGAATC TGAACATCTC CTCTGCCCCA TTTGCCAATA	1260
TTCTTAATAT ATCTAGTAAA ACCCTCTTTT AAAATTATTT GATCTAGAGC AACAGTAATA	1320
GTAATATTAA TTTTATTTAC CCCAGGTCTA AAGCTAAAAT CTACAAAATA TCCGCCCTGT	1380
ACTTTAAATC CTGTATAGCA CTGTGTTTCA ACTTTCTCAA TTTCATTAAA ATTTAAAACA	1440
AAAATAAAAT CTTCTAATTC TTTATATATT GCTTTCATAT CGGAATTTAA TTTTTCAAAT	1500
TTTTTTAAAT TTTCGGTTTT AATATTATTA TCTTTTATAC CAGAATCTGT GTCATCTTCT	1560
ATGTCACTTT TCTTGCTGTT TACTAATACA TCGCTTTTTT TTTCATCAAA AAACATACTA	1620
AAAATATTTT TAATAATATC ATTAAATATT TTATCTGAAT ATGTTTTTTT AAAACCAATT	1680
TTAGCTTTAA AAAAATCAAG CAAATCAACA CTTGGATTTT TTGTTTCCTT TTTTAAATAA	1740
GCTGAAAATT TGTCTGTATA TTTTTTTTTTT AATGCAAAAG ATCTAGCCTC TTCAACATTC	1800
AAAGAATTTC TAGAAAACTT TTTAAGATAT TCAAAATCCT TAGATGTTAA TTTTTCTAAA	1860
TTAACAACCA TAAAAGGCTC ATTGTCTAAC AAATTATCTT TATCTAGGTC AGTATAGAAT	1920
CTATATTCTA TGCCATCTGT TAATATACCA AATTCAACTC TCTTTGCTTG AGAACGAATA	1980
TTTTCAAAAT AAGGTTTTAA TTGCTTTAGA TGATTTTCAA GCTTTTCCCT GCTATTATGA	2040
TATTTGGCCT CTATTAAAAT AGTGGGTTCT TCATCCTTTT TTGTTGGATA AATAACATAA	2100
TCAACCCTTT TTAGTCCATC TTTAAGAATA TCTGCCTTCT CTTCAACTTT AACAATTGAA	2160
ATATCAGTAT GATCATAGCC CATCGCATCT AAAAATGGAT CAATAAGATT TTGTCTTGTT	2220
TGTGCTTCAT TTTCAATAAG ATCCTTATCC TTTTGAATTT TTCTACTTAC AGCTTTTATT	2280
GAATTTTCAA AATTTATATC TTTGTATTCA TTTGGCATAA TTATATTTTA CCAATAAAAT	2340
TAAAAATTAA TAATTCTAAA AATAAATTTC CAAAATGTTG TCTATTTTAA ACTCTTAACT	2400
GATACCTTAA TTCTTTTTTC TACCTAATTT TTTAGTTTAA AATCTTATTT TTTAATTTTA	2460
TTATTTTTTC CTTACCTTAT TTATACTAAA ATTTTTAGTA TTTAGCGAAT AATTTTCATA	
TCCTTTTATT AAAGACAAAA TATGATTTTC TCTTTTTTGT TTTTTAATAC CTTAAAATCA	2580
CTAAGCAAAG TAATAAAGTC TTCTTTGGTT AATGAATAAA AGACTAGCTA TAATAAAATT	2640
ATTTTATTT TCTTTACTAA ATTCAAAATG CTCTAAATAA AGCAAATTAG AGAAATTCAA	2700

		159			
AGGATCATTT TTAGCTATT					2760
AGCCAAAATT TCTTCTTTC					2820
GTCGGTATTT TAAAACAAA					2880
TATAATAAAC AATTTTTTA	T AAAAAGATA	T TGGTATTTT	C TCACAATTC	A TATCTATTTT	2940
ATAGAAACAC AATAATAAT	T TTTAGGAGA	r aaagtgcta <i>i</i>	A TCATGGTTC	T TTCATTTGTA	3000
TTGCTTGCAA TTCTTCTAT	A AAATATTCT	r TCATTTGGGT	C ACTGATCATO	TTTAGTTAAG	3060
ATTTTTTCTA AATCTTCTT	T ATATCCTATO	CATAAAAGCI	TATAACCTTC	TTTTACATAA	3120
TCATAAGTAA AAAATCTTA	A ATTAAATTG	A TAGATATTAG	CCCCAGAATA	AAGAAATATA	3180
AAGTTTTCAT TATTATATT	C CTTTAATAA	A GATTTGCGAT	TCTTTATACI	TGGATCTGGC	3240
ССТТТТТТАА ААТТААТАТ	C TTCTTTACTA	AGAATACTAA	ATGAACTAAA	TATTTTGTTT	3300
AATTTGGCCC ATGTTTAAT	T CAATTCCTT1	ATAAGGATTI	TCTTTGCAGT	CTTTTAAGTC	3360
TCTAGTTATT CCTTAATAA	T ATTATCACTA	CTTTGAATAA	CAAATTTTGC	ТТТААААТТТ	3420
AATGTAAAAG TTTATTACT	A CGAGGAAATA	TCGCAAATTT	AAAACTTGAA	TGCATATCTT	3480
AAAACCTTTT TTTGTTTTC	A AACTGATAAA	TAAGTTAAGT	ТТАТААТТАС	ТАААТАТАТС	3540
CTTTCTTAGC AAGCTAAGA	C CAAATATCAC	AATAGAAGTA	ATTCTCAATA	AACAAAATAC	3600
AAAAAGTAGT TATCATATCO	G TCTTTAACCT	TAAATAAGGT	TGCTATAAAC	AACCAAGATA	3660
TTTAATTTCT TTTAAAACCC	TTATTCAATC	TTTTTAAGCA	TAGGATCTTA	TAATTATAAG	3720
AATATAATTT TATTTACATO	С ТСТАТАТТАА	TAGAAAGATG	CAAATATGTG	ATCAAATTGT	3780
TATTTTTGTA ATATGGAATA	GTCCTTTATA	GGGACGCTTA	ATGCTCTATA	CTTAAGATTG	3840
GAATTCTCTA TGAAAATATA	A TACTCGCTAC	CCATGTAAAG	CTGACTTATT	TTAGCACGTA	3900
TCGCTTAAAC AATTATATTT	ATATTATCTT	TTATAAAGTT	AATTTTTTCT	TGTAGATTAT	3960
TTTTTAATAA AAAAGGCACA	AATTACCACA	ACAAGTTCCA	GTATAAATTA	ATAGTTCTTA	4020
TCTCAACACT AAAGTACATA	AACATCAAAT	АТСАААААТА	TATAAGAACA	ACATACTACA	4080
TTGTTTTAAT GAAAACCTTA	AAAGGAATGG	TTAAACTCTC	ATTAAGCTAA	AACCAATGCA	4140
ААААТАТСТТ ТАТАААТТАG	CAAAAGAACT	AAAAGTCACA	AACAACTACC	ATAAAAATTT	4200
GGTAGTAAAT TCTGGAACTG	AAATTTACTA	ТАААСТСААТ	TATTCTAAAA	AAAATATTGC	4260
CTTAAATTAA AGAATGCCTT	AAAAAAACAA	AATGCTCTGA	ТТТАААССТА	ТАСССААААТ	4320
ACAAATTTAC TAAAGAAGAA	GATATAGATT	TAGAGAAGAT	СТТААТААТА	AAAATATTAA	4380
TATAAAAGTT GCTCAGTATG	CTAAAGGCAA	AGAGTTTAAG	TCAAGTTTAG	AAATTACAAA	4440
GAGTAAAACT ATAAACTTCC	TTTAAGAATG	AAAATTTATT	ТТТАТАСТТА	CTTGGCTTAA	4500

TGTTTATAAA GAAATCTTAG AACTTGCAGA TTTAATACAA GCAGAGGTGC ATGTTGCAGG 6300 AAGGATAAAT AGCTATATAA AAAAAAGAAA GACCACTAAA GAAAAAGAAT ATAAGAAGAG 6360 AGAAATTAAG AATAAGATAG AAAAACAGGC TCTAATTAAG TTGTTCAATC AGTTATTAGA 6420 AAAAAGAGGC GATATTGAAA ATCTTCATAC TCAATTAAAT AGTGGACTTA GCGAGAGAGC 6480 ATCTGCAAAA TACTTTTTG AGAAAGCCAA AGAAACTTTA AAAGCTGCTA TTACTGAAAG 6540 ATTAAATAAC AAACGTAAAA ATCGGCCATG GTGGGCAAGA AGAACACATA GTAATTTAGC 6600 AATACAGGCA AAAAATGAGG CAGAGGATGC TTTAAACCAA TTAAGTACTT CTTCTTTTAG 6660 GATACTTGAA GCAATGAAAA TAAAGGAAGA TGTAAAACAG CTTCTTGAAG AAGTAAAATC 6720 TTTTCTAGAT TCTTCAAAGA GCAAAATCTT TTCTAGTGGC GATAGATTAT ATGATTTTTT 6780 AGAGACGAGT AAATAAAAAA ATATATTTTA AAGGCTAATA ACTTAAAATC AAAGTCTTCT 6840 GTTAAAGGAA GACTTTTTTA TAATTTTATT TAAATAACGA AAAGCTTGAT AGTTAAAAAA 6900 TCTTTTTTAT TAAAAATATG TTTACTAAAC AGAGCTCAAA AATGACTATA TTTAGTATCT 6960 CTATAAAAGA ATTTTTCAAT ATTTTAAAAA ATTTATAGAT AAACATAATC TAAAACCATG 7020 CATTAATACA AACCTAAAAC ATACTTGGTC ACTTGTAAAA GTAAATTGTA TCTAACTTTT 7080 TTTATTTATT GAATATACGT AAAAATTCTT TATAATTTCT ATTTTAAAAC GCTGCTATTT 7140 7200 TTACCCTCTG TTCTAATCCT ATCAAACAAG GTAATAAATT CTTTAAATTT CTAAAAAGCCT 7260 AAACTTTAAA AGAACTTGTC GAAAATAATA TTTCTCTTAA AAAAGGTTCT AATCTTTTAT 7320 TTATAAGAAC TTTTATACTA TTATAAAAAT GTATCTTGCC TTGATATATT TGTATTCTTT 7380 ATAAATCAAG CCTTCTACTT TTTTTAAGAA TATTTCTATT TTTTATAAAC TAGTTTTCTA 7440 CAATAGAAAA GAAATAACCC AAAGCCCTAA AAACTTAAAT AAATGTTAGC TATAATAACT 7500 AAAATAGAGA TAAAAAACTC AATCATAAAT AATGGTAAAA CAAACTTAAA CCACGTACCA 7560 TAACTCAATC TGGATATCCC CAATACAGCC ATTATAACTC CGCTGGTAGG TGTTATCAAA 7620 TTAATAAGCC CAGATGCAGT CTGCATGGCA ATAACAACTG AAGCTCTTGG AATTGACAAA 7680 AAATCGGCAA GAGGAGCCAT TATTGGCATA GTGAGACTAG CATGTCCTGA TGAAGATGGA 7740 ACAACAAATC CTATAAATAT TTGAATAATT TCATTCAATA TGATAAAAAG GGGTCTTGGA 7800 AGATTGTATA AAAAATTAGT AGCAGCATTT AACATAGTAT CTGTAATCAA CCCATCATCA 7860 CATACTATCA TAACACCTCT AGCAAGTCCA ATAACAAGAG CAGCGGTTAG CAGACTTTCA 7920 GAACCTTTCA CAAACGCATC CCACATTTCA GTTTCACCTA ATTTACAAAT AAAAGCCGAT 7980 ATAATAGCAA CTCCAAGATA CAACATTGTC ATTTCTTGCA TCCACCAACC AAGATTAACA 8040

እርጥልጥል ጥጥ ጥጥ ጥልርርመመጠልል	T ITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	103			
ACTATATTT TACCTTTAA					9840
TTAATCGATA AATCAAGTA					9900
AAGCTCCTAT TTCGTAAAT	T ATACATCAA	CACCAACCT	TACAATCAA	AAAAATTTTT 3	9960
CTCATTTAAC TCATGCTTA	ACATGCTTA	TAAATTAAA A	A TCCTCTCTTA	CTAAAGACAT	10020
AGACATGCAT CTTGGCCCAC	CACGACCCC	TGAAAGCTCC	S CTAGACGGAA	TTCTGTGAAC	10080
TTTAATACCA TTTTCTTCAA	ACAGCTTATT	r agttacatg <i>i</i>	TTTCTAGAAT	' AAGCAATTAC	10140
TTCTCCTGGA GCTATCGCCA	AAACATTAGO	ACCATCATTC	CATTGTTCTC	TTGCACCATG	10200
TATTAAATCT CCACCCGCAC	ATTTTATTA1	GTCAATTTTI	CTGCCTAAAT	AAAAGCTCAA	10260
AACATCTTTA AGCTTGGCTT	TTTCTTTTT	T AATATTAATI	TTATTAGAAT	TTGAATTGTA	10320
AGTTAAAACA TAAATTGAGA	AATACATATO	ATCACTTGTA	AAACTTGTAA	AAACGCTATA	10380
ATCAATTTGG GTAAAAACTG	TGTCTAAGTG	CATATAGGCT	CTGTTTTTG	GAATTTTAAA	10440
AGCCAAAATT GTGCTAAATG	GAGCCTTATT	' TTTAAAAAGA	CTAGCAGCTA	GTTTTTCTAC	10500
AGACCCCGCT TCTGTTCTTT	CTGAGATTCC	AATAACCAAA	AGATCTTTAT	TTAAAACAAA	10560
CTCATCCCCA CCTTCCAAAG	AAGTTTCTTC	ССАТСТАТТА	AACCAAATTG	GAACATTTTC	10620
TTTGTAAGCG GAATGATATT	ТАААААТАТА	CTCTGCAAAT	ATTGTCTCTC	TACGTCTAAC	10680
CTTGGTATAC ATTTTATTTA	TTGTAATTCC	ATTGCCAATA	CTGGCAAAAG	GATCTCTGGT	10740
AAATAAAACA TTGGGCATAG	GATCAATAAC	AAAAAGACTT	GAACCATTAA	CCCAATCATC	10800
AAGCGAAAAT TCACAATCTT	TAAGCTCTTC	TCTTGCAACG	CCGGAAATCA	TTTTAGAAAC	10860
CATATTATCA ACGGTTAAAT	TAGAAAAATA	ATCTTTTAAA	АТАТТААТТА	CACCATCTGT	10920
TTTTATTTCT GCTTCCAGAA	TAAATTGAGA	ТАТАААТТТА	TTTTTGAGCG	CTACAGAAGA	10980
AGCAAGAACT TCACTAACAA	GATCCTCAAC	ATACTCAATT	TCAACTGAAT	TATCTTTTAA	11040
AATATTTACA AAAACTTCAT	GCTCTTGTCT	TGCAACTTTA	AGATAAGGAA	TATCATCAAA	11100
ТАААААТТТ ТТСАТААТСА	AGGGTGTCAA	ATTTTCTAAT	TCTTCTCCTG	GCCTATGAAG	11160
CAAAACTTTT TTCAAACGAC	CTATTTCCGA	AAATATATTT	ATTGGATTTA	AATATTCTTC	11220
TTCCATCGAT TTCCCCCTTT	ATGAAAATTG	ТСАТАТАТТА	AAATACTATA	GTTTATATTA	11280
AAAAACATCA ACTATTTTTA	ATAATATTAA	АААТАТААТА	ТАААТАТААА	AAATTGAAAA	11340
AATAAAAGTT CTAAAAAACT					11400
AATCATGAAG AATATTAATA					11460
CTCTTGTGCC TTAATTGCAG					11520
AACACAAAAA ACACTACTAG					11580
					11300

	165		
	CAAAAATTTT CAAGGAATTA GCAATAATTT		13380
CTTGCCCTAT ATACAGCTC	СААААТАССА ТТААААСААА АТАТААТААА	CATATTTGGG	13440
GACAGTAAAT TAATAATTG	CTATTGGTCA AAAGGAATCT ATAATAGCAA	AAAATTAACA	13500
CAAATTACTA TTAATTTAA	CAAAAAGACA ACTGAACTAA GGAAAAAATT	TGAAGAACAA	13560
GGTGGAAAAA TTTCTTTTA	TCCAGGAAAT GAAAATATTG CAGATCTTGG	ТТТТСАТААА	13620
ACTAAGTAGA AATATTGTC	AAAAATACAT AAAAACAATA TTTCTGATTT	CAATGGTTTA	13680
TTTTTATTGT TGTACGACA	TAAAAATAAA CCATGATTAT GAAACTGATT	TTAAAGTTCT	13740
AGAATCTCCC TCTAAATACA	TCAATATAGA TGTAATTAAA GCTACAAATG	AATATATTTA	13800
TATTCAAATT ACAAACAATA	GCTTAGACGT AGTAAAAATA AATTGGCAAA	ACACTAGTCT	13860
TAACAACGAT AAGATCGTCT	TAAAAAAAGA AGATCTTACA ATAAACAATG	AAACAGGGTA	13920
TAAAAATAAA TACAGAGAGI	TTTTTATTGG TCCTAAAACT TCATTTAAAT	TTAAAGTATA	13980
TCCACTAAAA ATTCATTCTA	AAAACAAAAA TAGCAATAAC TTAAGCTCAA	СТАТТАААТА	14040
TCCGTCTATT TTTAAGCTCA	ACATAACAAA AGTAGGAATT GAAGCAAAAA	AAACAATAAA	14100
TGTTTTAATA ACAAGAACTA	CAAAAATTAA TATTACTAAT AAATGAAAAT	САТТАТТАТТ	14160
TTTTTGTTTT TCTATTAATA	ATAAACTCGT AGTTTGTATC TTTGTTGTTT	TCAAATGACG	14220
CTTTTATAGG AGCAAAAAG	TTCCAAGAAA TATAAATTGT AAAATTATTT	СТССАААТАС	14280
GAGAATAAAT CCCATCAGAT	CCCCTTAATA AATCTGGTTC TAAATTATAT	TCTCCAACAA	14340
ATTTCCAATC ATAAAATTG	AATTTAAAGC CTGATGAAAA TTTTTTAATT	TTAAAAAGTG	14400
AATCTTTTCT GTCTTGAGAA	TTAAAGAAAT TGAAAGATTT TGATAAATCA	ACAAAGAAAT	14460
TAACAGGTTC TAGACCAATT	TGGTCCATAT ACCCTTTAAA ATATTTAAAA	GTCTTAGTAT	14520
TAATAGATAA AGTAGAAAAG	TAAATTTCTA AAAATTCTGT ATATTTAAAC	TTCAAAGTCA	14580
ATGCAGATCG AAGTTCATTA	TCCGTAAATT TCTGCAAATT TATTTTCCAA	CCAACATCTA	14640
CCCCCAAGGT AAAAGAAAGC	TTATTGTCAA AAAAAGTTAA AACGTACAAT	PCCTTTTTGT	14700
AACTAGAATC TAAAGAATAT	GGAACAAGTT TGGTTGTAGT ACCAATCTTG	GAAAAATCTC	14760
CTTTTAAAGG ATCATAATTA	TATTCAAAGT CGTCTTTCAT AGCAAACAAA	AATTGAAAAT	14820
CAAAAACATT AAGCTTAAAA	GAAAGTTCAG AAACTCTATT TATCAAAGGA	PCATAGGCGA	14880
СТААААААСТ АААТТТАААА	TAATCCAAAT ATCTCGGCTC AATTTTATAA	FACAAAGCAG	14940
GAGACATTTC TAAATTTTTA	TAAGGCGATG ATGGTTTTTG AGGCTCCAAA (GACTTTGAA	15000
CAGCAGAAAT TCCAGAGTTT	TTCATAGCAT CTTCTTTAAA CTTTTTATAA 1	CATTTAATTC	15060
CAATCCCAGC TTCTTGTAGC	AAATAAGGAA AATCTAAAGA AAGTTTAAGC 1	CAGAAGAAG	15120

CTTTAATATC TTCAAAACTA TTTTTTAATT CACCTGAAAG CTCAGTAGTA AAATAATCAT	15180
AATCATAAAT TAAAGAGGCT GTTAAACTTT GATAAAAAGT TTCCGGATCA GATAAAAAAA	15240
TACTACTATT CTTATTAACC AAAGATTTTA CATCAGAATC ATATTTTTTA TTAAATGAAT	15300
ATAAAGTAGC CTTATTTTCA AACTTTAAAG TACTTCTAGA AAATAAAGGA TATCTAATAA	15360
AAGGAAGCAA GTTTAAATTT ATTTGGTTAA TAATAGAGTG CTCACTTTTT TTATCTTTAT	15420
CTTCAACTTT AAAATCTTTA TTTAAAGGAC TATACTCAAT AGTATTAAGA TATAATAAAT	15480
TTTCAAAAGT AATTAAACGA TTGTAAAAAT CAGCATGAAT TTTTATATCC GTTTTATTTT	15540
TTATATCAAA TAAATAATTT TTTATTTCAT AATTAAAGTC CTTTGGACTT GTTATGCCAT	15600
AATTATCAAA AAAAACATTA TTTCTTAAAT AAGGATTAAT GCCAAACCTA ATAAAAAAAG	15660
AATCGGATTG ATCAATATTT TTTAAAGTAA TTGGTTCTGG AGGAATATAT AAATCTTTGG	15720
TTAATTCTGT TGTTTTTTTA GTATTTTTCT CCTTCACACT CTTTTTATCA TTATCTTTAT	15780
CTTCTAGATT TTTAATTTCT GGGCGCATTA TCATTTCTTT AGTATCAGCT GGAAATGTCC	15840
ATTGGTTATT GTAAAGATCT TTTTGAAAAT TCAAATCAAT ATATGGAGCA TAAATTCTCT	15900
CCAAATAAAA CCATTTTCTT GTAGGATCAT TAACATCTTT TGGTTTCTCT AAAGGAGATT	15960
TAACATAAAG ATTTTCATAG CCCGACAATT TAAAACTTAA ACCTAAATTA TTTAATTTAT	16020
AATCTAAAAT CGAACCGTCA TTAAATGTTC GCTTATAAAA AGAAGATAAA TTCCAATCAA	16080
AAGTGCTAAT GCTAGTTTGC TCTTTAACCG AATCTTTATC TAAATTTAAA AGAGAAAAAA	16140
ATGTAGCACT TTCTATCCTA TCTCTAAAAT CAATATTAAC ATACGGGTCA GAATAGTGCT	16200
CTAAAACAAC CGAGAAAAGT GCATCACTTA AAAGAAATTC TGTTTTAAAT TTAAATAAAT	16260
ATCTAAAAGG AACTTCAAAC CCAAATACAT CTCCTTTGTT AAGATTGGAA AAACTAAAAA	16320
GAGATTGTTT TAAAGTCCTA TTATCAAAAG GATAATATCC TCCATCGTAA CTATAAACAT	16380
TCCTGGTAAA ACCCAATCCA AAATTTCCTT CCAAAGTTTT AAAATGCCCC AAAGTATTGC	16440
CCAAATTAAA ATCAATTCCA GAATAAAATC CCAGATTAGC ATAAATGTCA AAAATAAGCT	16500
TAACATAATC TTTATTAACA CTGGGTGCTA AATTTTCTGC AAAAAAATAA GTTAAATATC	16560
CATTTCTTAT ATAAGGTTTT TTACCCGAAT TATAAACAGA ATTGAAATCA AAATCCAAAA	16620
AAGAAGAATC TTCACTTGAA GATTTATTAC CAAAAAGATA AACGGTATTA AAAACAGAAA	16680
AACCTTTTCG TGGATTTAGA CCTAAAGATG GATTAAAAAA CAAACTATCT CCCGGTCTGA	16740
AAAAAAAAGG AATATAAAAT ACTGGAACTC TTCCCATGTA AAATATGGCA TTTAAAAAACC	16800
CAAAATCTCC CGAGGGCAAT GCCCATATTT TAGAAGCCTT GATTGAATAG TAAGGCTCTG	16860

		167			
GAATTTTACT AGTTGTTG					16920
TTAAAACCTT TCCTCCAA	AC GAAAGAATA1	GATCTATTT	ATTTTTTGC	CATTTTTTTTT	16980
GAAGAATACC ATTTTTTA	TTTTAAAAAA TA	GAGAATCAAA	ATCGACAAGA	AATTCATTGC	17040
CATAAAAATA AAGCTTTT	CA TTGGTATCCA	TATCAAGAAT	ATATTCAACA	TTTCCAATAG	17100
CATAAAGTTT TTTAGAGT	TC TTATTAAGGA	CTATTCTGTC	GCCTTTAATA	TTGTGCTTTT	17160
TATTTTCTTT AATATCTTC	CA ACCAAGATAT	' TAACTCTTCC	ТТСАААААТА	ATACTTTCAT	17220
CTTTAGTAAG TCCATAAG	G AAATTTTCAA	GATTATCTGC	AGTTTCAATG	АТТАТТТТАТ	17280
ATCTACCAGA TCCGGCAAC	T CCCTTTCCTT	TGATAAAAAG	CTCAGGATCT	ATTCCAAACT	17340
TTTTTAAAAG CAATTCTCC	T ATTTTTGAAA	CATCTGTTTC	TTTTAAACCC	TCTTTTAAGG	17400
CCCATTTTTT TAAATCCTC	A TCGGTTGAAA	GCTCAAGTTC	ТСТТАААТАА	GATTTTTGAC	17460
TTAAAGTTAG CTTATCCCT	T TTTTTAGAAT	TTTCATCATC	TATAGTCTGG	GCAAAAATTG	17520
CATTAGAAAA TGTTAAAAA	А АТТАААААТА	CTATAAAAGA	TTTTTTAAAA	ACATTCCTGT	17580
ATAGGAATTC TCGCATTTT	G CAACCTCTTC	AGGAATACCA	GAAACAACGA	TATTTCCCCC	17640
TGCCAACCCA CCATCAGGA	С ССАААТСТАТ	ТАТАТААТСТ	GCCTGTTTAA	ТТАСАТССАА	17700
ATTATGCTCT ATTAGTACA	A CTGTATTACC	ATTGGAAACT	AACCGCTGCA	AAACCTCTAA	17760
CAACTTCTTT ATGTCATCA	A AATGCAGCCC	AGTTGTTGGT	TCATCAATAA	TATAAAAGGT	17820
TTTACCCGTG CTCTTTTTA	C TTAACTCAAA	AGCCAACTTA	ATGCGCTGAG	CTTCTCCTCC	17880
TGATAAAGTT GTTGCAGAT	T GTCCTAATTT	AATATATTCA	AGTCCAACTT	СААТТААААА	17940
TTTTAAATAA TGACTAATT	T TTGGGACATT	СТСААААААТ	TTACTTGCCT	САААААСАСТ	18000
CATCTCTAAA ACATCATGT	A TATTTTTCC	TTTGTATCTA	ACTTCTAAAG	ТТТСТТСАТТ	18060
GAATTTTTTA CCCTTACAT	A AATCACAAGG	AACAAAAACA	TCTGGTAAAA	AATGCATTTG	18120
AATATTAAGA TACCCATCT	CTTGACATTT	CTCACACCTT	CCACCTTTAA	CATTAAAAGA	18180
AAATCTGCCG GCTTTAAAA	CCCTTGACTT	TGCATCTGGA	AGCTTGGCAA	AAAGCTCCCT	18240
AATTTCTGTA AAAAATCCAA	A CATAAGTTGC	TGGGTTTGAT	CTTGAAGTTC	TCCCTATTGG	18300
TTTTTGATTT ATTTGAATA	A TTTTATCGAT	TTTTTCATAC	ССААСААТАТ	CTTTAAAGCC	18360
ATCACAATAC TTTTCATTA	GCTTTAATCT	ACTATCAAGA	GCTGGATATA	ACACCTCGTT	18420
AAGTAAAGTA CTTTTTCCGC	TACCAGAAAC	ACCTGTTATT	ACGGTAAAAA	CTCCCAAAGG	18480
GATACTTAAG TCTATATTT	TAAGATTATT	TTTATTAGAG	CCCAAAAGCA .	AAATTTCTCC	18540
CTTATCTGCC TTTCTTCTAG	AGCTTGGAAC	ATCTATTTTA	AACTTGCCGC	TAAGATATTG	18600
ACCAGTTAAA CTATTTTTGC	TATTTAAAAT	ATCAATCAAG	GCTCCCTTTG	CAACTATTTC	18660
•					

CCCTCCAAGA ATTCCAGCAC	CAGGACCCA'	T ATCAATAATA	A TAGTCCGCAC	TACGCAAAGT	18720
TTGCTCATCA TGTTCAACAA	CAATTACAG'	T ATTACCAAGA	A TTTTTAAGAT	TAACAAGAGT	18780
AGAGATTAAT TTTTCATTAT	CTCTTTGAT	G AAGACCAATA	A CTTGGCTCAT	CAAGAACATA	18840
AATAACACCC GAAAGTGCTG	ATCCTATTT	G AGTAGCAAGC	CTAATACGCT	GAGCCTCGCC	18900
ACCAGATAGA CTACCTGATA	TTCTATTTA	A ATATAAATAA	A GAAAGGCCAA	CATCAATTAA	18960
AAATTTAAGC CTACTTTTAA	TTTCCTTTA	A AATTTCTTTA	GATATTTTT	CGTCCACCAT	19020
ATCAAGCTGC AAGTTTTCAA	AAAATACATA	AGAATCAAAT	ACTGACAAAT	' TGGTAAGATC	19080
TTGAATGTCT TTTCCATTAA	TTTTCACAGT	TAAAGCTCCA	ACGCTTAGGC	GTTTACCTTT	19140
GCATGAATTA CATATTTTTT	TAGACATCAA	ATTTTCGTAA	AAAATTTTAG	TACTCTCTGA	19200
TTCTGTTGCA AGATATCGCC	TTTTTAAAAC	GGGCAAAAGT	CCTTCAAATG	TTTTAGAATA	19260
ATGAAATCCT CCATCTAGCT	CTTTTGCTTC	CATTTCTTTG	GACTGGTAAA	ТААААТСТАТ	19320
TTTTTCATTT GAGCCGTATA	AAATCTGTTT	' AAGAACTTTA	TCTGGAATGT	CTTTTATGGG	19380
AGTATTTAAG TCAAAATTAT	AATGTTTAGC	AAGTCCTTTA	AAAATAGCCA	CAGACCAAGA	19440
TGAACTTGTC TTAAACGTAA	GAAAAGCATC	АТСАТТАААА	GAAAGACTAG	TATCAGGACA	19500
AATGCTCTCA AAATCAAACT	CAAGTGTAAC	GCCAAGACCA	GAGCACTCAC	TGCAAGCACC	19560
AAATGGACTA TTAAATGAAA	AAAGTCTGGG	TTCTATAAGA	GGAAGTGAAA	ATCCACACAA	19620
AGGACAACTG TTGTGCTCTG	TAAATAGTTT	GTCTATTTTT	TCCAAATCAT	TATCAATTTC	19680
CACTCTTAAA TATCCATTAG	AAACAGCAAG	AGAAGTCTCA	ATAGATTCCG	CAAGTCTAAC	19740
TCGAACATTA TTACCAAGCT	TAATCCTATC	AACTATAATT	TCAATGGTAT	GTTTTTTATT	19800
TTTATGTAAA TTTAAATTAA	GTGCATCTTC	ТАТТАААТАА	TCTTCAGAAT	TTATCCTAAC	19860
TCTATTAAAA CCTTGATTTA	ATATTTTTC	TAAAACCTTT	TTATGAGAGC	CTTTAGACCC	19920
CCTTACAATT GGTGCAAAAA	GTATAACCTT	GGATCCTTCA	GAATAACTTA	AAATAGTATT	19980
AACTATTTTA TCTAAAGATT	GCTCTTCTAT	ТААТСТАССА	TCATTTGGAC	AGTATGCTTT	20040
ACCAATTTTT GCAAATATTA	GTCTATAGTA	ATCATAAATC	TCAGTAATTG	TTCCAACAGT	20100
AGAGCGGGGA TTATTGCTTA	TTGTTCTCTG	CTCAATAGCT	ATAGAAGGAG	AAAGTCCATC	20160
TATATAATCA ACATTGGGTT	TTTTCATTAC	АССТАААААС	TGCCTTGCAT	AAGCTGAAAC	20220
AGATTCCATA TACCTTCTTT	GCCCTTCTGC	AAAAATAGTA	TCAAAAGCCA	GAGAAGACTT	20280
GCCAGAGCCA CTCTTGCCAG	ATATTACAAC	TAAACCATCT	TTTGGAATAT	CTACATCAAC	20340
ATTTTTTAAA TTATGTTCTT	TTGCTCCTCT	GACAATAATT	ТТТТТТТТСА	AACTTTTTTC	20400

			169			
СААААТТА	C ACCTCTCTT	TTTTATTAC(G AGCTATACTA	ATTTTGCTAC	TAAGCTCTTT	20460
TATTTTATC	T CTTAAAACA	A TTGCGTCTTC	C AAATCTTTCA	TCATTAACAG	G CTTCTTCTAA	20520
GTCAAATTT.	A AGCTTATCA	A TAAGCTTTT	TTTAGACAAT	CTCTCACCCG	AAATAATTT	20580
TTCAAAATC	A TAGCCAACAT	TTTTATTTT	T ATTATTAAGT	TCCTTTTCTA	AAATATTTTG	20640
AATCTTTTT	A ACAATTGTCT	TAGGAGTAAT	TTTTTTTTATTTA	TAATTATAT	CAATCTGAAT	20700
TTGACGTCT	r ctattagtci	CCTCAATTGC	CTCCCGCATA	GCTAAACTAA	TTTTGTCGTA	20760
ATACATTAT'	r acaagtccat	TAGAATTTCT	AGCAGCCCTA	CCAATTGTTT	GTATTAATGA	20820
AGTAGTAGA	r cttaaaaatc	CCACCTTATO	AGCATCTAAT	ATTGCAACAA	GAGATACTTC	20880
TGGAATATC	T AAGCCCTCTC	TAAGCAGGTT	' AATCCCAACA	ATAACATCGA	TTTCAGATTT	20940
TCTAAGCAAG	GAAATAACTT	CCACTCTCTC	AAGGGTATCA	AGCTCTGAAT	GTAAATATTT	21000
TGCCCTTACC	G CCAAGATTTA	CCAAATATTC	AGTCAAATCC	TCAGACATTT	TTTTTGTCAA	21060
AGTAGTAATT	AAAACCCGCT	CTTTAAGAGC	CACTCTTTTT	TGAATTTCGC	TGTAAAGATC	21120
TTCCATTTGC	CCATCAGAGT	GCCTAGTAAT	AATTTCAGGA	TCAACAAGAC	CTGTTGGACG	21180
AATTATTTGG	TCAACAACCA	CACTACTTTT	CTCATTCTCT	TCAACACCCG	GGGTTGCAGA	21240
TACAAACACA	ACCTGATTAA	TTAATGCTTC	AAATTCATCA	TATTTAAGAG	GTCTGTTTTC	21300
AAGCGCTGCA	GGAAGTCTAA	ACCCAAAGTT	AACAAGATTT	AATTTTCTAG	AATGATCTCC	21360
ATTATACATT	CCCCTAAATT	GAGGCAATGT	AACATGAGAT	TCATCTACAA	ATAATAAGTA	21420
ATCTTTCGGA	АААААТСАА	AAAGACAATA	AGGTCTTTCC	ATTGTACTTC	САСТСАААТА	21480
TTTAGAATAA	TTTTCAATGC	CCGAACAAAA	CCCTGTTTCT	CTAAGCATTT	ССАААТСАТА	21540
CTCTACCCTC	TGTTTGAGTC	TCTCGGCTTC	TACAAGTTTG	CCATTGTCTT	TAAAATATTG	21600
ACATTGAAGA	СТТАААТСАТ	GAGATATTTT	GGGTATCGCT	TCTAATACAT	TTTCATAAGG	21660
AATTACAAAA	TAAGATTTAG	CAAAAAGAGT	AAAACTATTT	GTAGCTCCTA	AATTTTTTT	21720
AGAAAATGAA	СТААСТСТАТ	ATATTTCAAC	AATTTCATCA	АААТСТАААС	AAATTCGATA	21780
AGCAAACTCT	CCATGTTCAC	TGCTAGGCCA	AATTTCAACA	ATATCTCCCT	TAATCGAAAA	21840
TTTATCTCTT	TCTAGATTCA	TTAAAGTTCT	СТСАТААТАА	AGCTCTACAA	AAATATCTGA	21900
TATTTCTTTA	ATAGAAATCT	TTTGACCTAC	AAAAAATTCT	CGTGCTGATT	TTTTGAAAAA	21960
ATCTGGAGAT	CCAAGAGCAT	AAATTGAAGA	TACGGTTGCA	ACAACAATTA	CATCTCGTCT	22020
TTTAGCAAGA	GACGTTACCG	TTCTTATTCG	CTTAATTTCT	ATCTCAGTAT	TAATAGTGGC	22080
TTCTTTTTCA	ATAAATAAAT	CTTTTGAAGG	AACATAAGAT	TCTGGCTGAT	AATAATCATA	22140
ATAAGAAACA	AAATACTCAA	CAGCATTATT	TGGAAAAAA	ТСТТТАААСТ	CTCTATAAAG	22200
			•			

CTGTGCTGCT	AATGTTTTGT	TGTGACTGAC	C AACTAAGGCA	GGCCTGTTTA	GATCTTTTAT	22260
TATATTTGCA	ATTGTAAAAG	TCTTTCCACT	GCCTGTAACA	CCTTTTAAAG	TTTGATATTT	22320
ATTTCCAAGC	AAAATAGAAT	TTTCAATCTC	TTTTATTGCC	TTAGGCTGAT	CCCCAGCAGG	22380
AAGATATTCT	GACTTCAAAA	AAAAATCTAT	CATTAATTTA	ACGACCAAAA	TTTAATACAC	22440
ATTCTTATAA	ATTATATGAT	AATAAATTCI	T ATATCAAGTA	ТАТААТТСАТ	ТАТАААТСАА	22500
ТАТААТТТАА	TTAATCTTTG	ТТТААТААА	TAAAAGGAAA	TATTGATGCT	AAAAATCGAA	22560
GCTAAAAGAA	AATTGAAAAA	TTATATTCTI	CTTGAAGAAG	ATATGCATTT	TAAAGAAGAA	22620
GCAATAAAAA	TTCAAAAAAC	AAATAATTCA	ACAGAAATTT	TAAATAGATT	TTACAAAGAT	22680
CTAGAATTTG	GCACTGCTGG	AATAAGGGGA	ATCATTGGAG	CTGGAACATG	TTACATGAAC	22740
ACATATAATA	TAAAAAAAT	AAGCCAAGGA	ATATGCAATT	ACATACTTAA	AATAAACAAA	22800
AACCCTAAAG	TTGCAATAAG	CTATGATTCA	AGATATTTT	CAAAAGAATT	TGCTTACAAT	22860
GCTGCTCAAA	TTTTTGCCTC	AAATAATTTT	GAAACATATA	TATATAAAAG	TTTAAGACCT	22920
TCCCCACAAC	TATCTTATAC	AATAAGAAAA	TTTGACTGTG	ATGCTGGCGT	TATGATAACA	22980
GCAAGTCATA	ATTCAAAAGA	ATATAATGGA	TATAAAGCAT	ATTGGAAAGG	TGGAATCCAA	23040
ATAATACCAC	CTCATGACAC	ACTAATAACT	AATGAAATTA	AAAATACAAA	AAACATAATA	23100
AATACAATTA	CCATAAAAGA	AGGCATTGAA	AAAGGGATCA	TCAAAGAACT	TGGCAATGAA	23160
ATAGACGAAG	AGTATGTGAA	AGCAATAAAC	AAAGAATTGC	CTGATTTTGA	AAAGAATAGC	23220
AAAGAAACAA	АСТТАААААТ	AGCCTACACA	GCATTACATG	GCACCGGTGG	GACCATAATA	23280
AAAAAACTCT	TTGCAAATAG	CAAAATACGG	CTTTTTTTAG	AAAAAAATCA	AATACTACCA	23340
AACCCTGAAT	TTCCAACAAT	AAATTATCCT	AATCCAGAAA	AACAAACATC	AATGCTTAAA	23400
GTAATAGAGC	TTGCAAAAA	AAAAGATTGT	GACATTGCCC	TTGCAACAGA	TCCAGATGCC	23460
GACAGAATAG	GGATTGCATT	TAAAGATCAA	AACGAATGGA	ТАТТСТТААА	CGGAAATCAA	23520
ATATCATGCA	TTTTAATGAA	СТАТАТАСТС	TCAAAAGAAA	AAAATCCTAA	AAATACĀTTT	23580
GTAATATCAT	CGTTTGTAAC	AACACCAATG	CTAGAAAAA	TTGCAAAAA	ATATGGTTCT	23640
CAAATTTTTA	GAACTTACAC	AGGATTTAAA	TGGATAGGAA	GCTTAATTAA	TGAAATGGAA	23700
AAAAATGAAC	САААТААААА	ATTTGCTTTT	GCATGCGAAG	AAAGTCATGG	АТАТСТААТА	23760
GGAAGAAAGG	TTAGAGATAA	GGATGCATTT	TCAGCCATAA	AAGGAATTTG	TTCTTTAGCA	23820
CTTGACTTAA	AAGCCAAACA	ACAAACAATT	AAGGATTATC	TTGAAAAGAT	ATACAAAGAA	23880
TTTGGATATT .	ATGAAGAATT	TAATATAGAA	AAAAACTTTG	AGGGGCCAA	TGGAGAAATT	23940

171	
CAAAGAGAAA AGTTAATGCT AAAACTAAGA AAAGAACAAA AAGTACAATT TGCAGGAATT	
AAAATAATTG AAAAATTAGA CTATAAAACT CTTAAAAAGA TTAACTTTAA AAATGAAATT	24060
TCAGAAATTA AAGAATATAA ATACCCCATA AACGCAATAA AATTTATACT TGAAAACGAA	24120
ATTGCAATAA TTGTAAGACC CTCTGGAACA GAGCCGAAAA TTAAATTTTA CATATCTGTA	24180
AAACTAGAGT ATAAGGAAAA ACATAAAATA TTTGATATAA TAAATGCAAT AAAGATGGAG	24240
ATAAAAAAT ATTAACATAA CAGAAAATTT AATAAATTTG GTAGAAATAG ACTCAAAAGA	24300
AATTGCAAGA AAAAATAAAA ATAAAGAGGT TTCAATTTGG CACTTATTAA TGTCTATAAT	24360
TACCACTCCC AAAAAATCCG AAATAAAATT TATAGATAGC AAAACTCTAA AAAACATTAA	24420
ACAAGAAGTT ATATCTGAAA TAGATAAATT AGAGAAAATT TTAATAGAAA AAAACGAAAT	24480
AATTATTCCC AAAATCAATA AAGAAATCTT TGCTCTCATA AAAGAAGCTA AAAAGGAATT	24540
TAAATCCAAA CCTTTAATAG GGGCAAAAGA AATTTTTTAT CAAATATTAA AAAATAAAAA	24600
ACTTCTTAAA AAACATAAAC TAAGTAAATC TAGCTTTAAC TTTAAAGATC AAAATATATT	24660
AGAATACATG GAAAAAAATA AAATAAGATT AATTGAAACC TACAAAGAAT TTGATGAAGA	24720
AATACGACTT GAAAATGAGC ACTTTGAAAT TGGAAAGTAT GTCAAAAATT TAACAGCACT	24780
TGCAAAAGCC AAAAAATTAG ACCCCTTGGT TGGAAGAGAA GCAGAGATTA AAACTCTTAC	24840
AAATATACTC TTGAGAAGAA ATAAAAATAG TGCAATGCTA ATAGGCGAAC CTGGTGTGGG	24900
AAAAACAGCA ATAGTTGAAG GCCTTGCATC AAGCATAGTG CAAAAAAAA TAAGTAGCAA	24960
ACTACAAGAC AAAACAATTC TAATGCTTAA GGTTTCAAAC TTGGTATCGG GAACAAAATA	25020
TAGAGGCGAG TTTGAAGATC GTTTAAATAA TATAATTAAG TATATTGAAA AAAACAAAAA	25080
CACAATCATA TTTATTGACG AAATACACAC TCTAATAGGA GCTGGAAACT CTGAAGGAGC	25140
TCTTGATGCA TCAAATATAC TAAAACCATC ACTTTCTAGA GCTGAAATAC AAATTATTGG	25200
CGCAACTACT TACAATGAAT ATCGAAAATA TATTTCAAAA GACAAAGCAT TCGCCAGAAG	25260
ATTCCAAACA ATTACCGTAA AAGAGCCTGA TGAAAAAGAT aCACTAAAAA TAATCGAAAA	25320
TATTGCAAAA AATTTTGAAG ACTATCATGG AGTGATCTAT GAAAAAAGCG CGCTTTTAAA	25380
TATAGTAAAA CTTTCATCCA AATATCTAAT AAATAAAAGA TTTCCAGATA AAGCAATAGA	25440
TATAATAGAC ATTGCCGGCG CAATTAAAAA GGAAGAACTT ACAAAAGACA ACATCATAAC	25500
ATCAGATGAT ATACAAAAGG CAATAAATGA AATATTATCT ATTAAAACAG CAAATAACAC	25560
TAAAGAAGAA ATTTTAGAAT TAAAAGAAAT AGAAAGCGAA ATAAATAAAA AGGTGATCGG	25620
ACAAAAACAT GCGGTAAGCG AACTTATCAA AGAAATTATT AAAGTCAAAC TTGGACTTAA	25680
TGACGATTCT AAGCCTTTAA CTTCAATATT GTTAATAGGA TCAAGTGGAT GTGGAAAAAC	25740

TGCTTTAACT	GATGAAATAT	' СТАААААААТ	TATCAAAGAT	CAAAATTCAG	ТАТТААААСТ	25800
AGATATGTCA	GACTATAAAG	AAGAAAACTC	ТАТТТСААДА	TTAATTGGCA	CAAATCCAGG	25860
ATACGTAGGC	TACTCTGATG	GAGGCATTCT	GACAAATAAA	TTAAGACATT	CATTTGAAAC	25920
TTTAATATTG	TTTGAAAATA	TTGAAAATGC	CCACAGCTCT	GTATTAAACC	TAATAAGTCG	25980
AATGCTTGAA	AACGGAGAAC	TTATTGACAG	CAAAGAAGAT	AAAATACTAT	TTAAAAACAC	26040
ААТТАТААТА	ATGACTACAA	ACATTGGATC	TAGAATGCTT	CTTGGAGAAA	AAAATATTGG	26100
ATTCAACAAA	AATCAACAAA	AAAGCTTAGA	AACAAAAAGC	TTTAAAGAAG	АААТАААССА	26160
AGATCTTGAA	AAAAGATTTA	AATTATCCTT	TTTAGACAGA	АТТСАААААА	AAATCATCCT	26220
AAATATCCTT	ACaAAGGAAA	ATGTAGAAGA	AATTTGCAAA	AACTACTTAA	ACACCCTTAA	26280
AACAAATTT	CACTCTAAAG	GAATCGAGAT	AGAAATAAAA	AAAGATGTTG	ACAAATTCAT	26340
AACCACAAAA	ТАСТАТАААА	AAAATTCAGG	AGCAAGAAGC	GTAATTGCTG	CAATAAAGGG	26400
GAAAATAGAA	GAAAATATTA	TCACCAAAAT	AGCTGAAAAT	СААААСАТАА	АТААААТААС	26460
GATTTATTTA	GAAAAAGAAA	AAATAATAAT	AGAATAAAGA	GGAATTATAA	TATGTTTAAA	26520
AAAGTAGAAA	ACAAGGCAAA	ТТТТССТААА	ATAGAAGAAA	AAATATTAAA	ATTTTGGAAT	26580
GACAATAAGA	TCTTTGAAAA	ATCAATAAAG	CAGAGAGAAG	GATGTGAAGA	ATTTACATTT	26640
TATGACGGAC	CGCCTTTTGC	AACAGGACTT	CCTCATTTTG	GACATTTTGT	TCCAAACACA	26700
ATAAAAGACA	TAATTCCAAG	ATATCAAACA	ATGCAAGGCA	AGTATGTTAA	AAGAAATTTT	26760
GGATGGGATA	CTCACGGACT	ACCTGTTGAA	TACGAAGTAG	AAAAAAATT	GGGAATTTCT	26820
GGAAAATACG	AAATAGAAAA	TTATGGCATT	GAAAATTTTA	ACAAAGAATG	CAGAAAAATA	26880
GTACTTAGAT	ATACAGAAGA	ATGGAAAAAT	ATAATCTTGA	GACTTGGACG	ATGGGTAGAT	26940
TTTGAAAAGG	GTTACAAAAC	CATGGATATA	AGCTTCATGG	AATCCGTGTG	GTGGGTATTT	27000
AAAAATCTTT	ATGAAAAAGG	TTTAATCTAC	GAAAGTTACT	ATGTACTACC	CTATTCCCCA	27060
AAGCTTGCAA	CTCCGCTTTC	AAATTTCGAA	GTGAATCTTG	GAGAATATAA	AGAAGTCAAT	27120
GACCCATCAT	TAACAATAAA	ATTAAAATTA	AAAGATAAAA	ACGAATACTT	ACTAGTGTGG	27180
ACAACCACCC	CCTGGACATT	GCCCTCAAAC	CTTGGAATTG	CAGTAGGACA	AGAAATAGAA	27240
TATTCTAAAA	TTTTTGACAA	AACAAAAGAA	GAGATTTTAA	TACTTGGATC	AAAAAAGCTT	27300
AATAGCTATT	ACGATGATGA	AAATTCATAT	ACTATTATAG	AAAAATTCAA	AGGCAGCAAG	27360
CTTGAAGGCA	TAGAATATGA	ACCTATTTT	AACTACTTTT	TAGAACAAAA	AGATAAGGGG	27420
GCTTTCAAGG	TACACACAGC	TGATTATGTT	ACAACTGACG	ATGGAACAGG	AATTGTTCAT	27480

		173			
ATTGCTCCTT TTGGAGAA					
ATAGACCCCT TAGATGCTC					27600
TTTGTAAAAG ATGCTGAT					27660
AAAAGAGAAA ATTATCTAC					27720
TACAGACCAA TAAGTTCGT	'G GTTTGTAAA'	T GTAGAAAAA	TAAAAACCAA	ACTTTTAGAG	27780
GTAAATGAAA AAATTAATT	G GATGCCAGC	C CATTTAAAAA	AAGGAAGATT	TGGAAAATGG	27840
TTAGAAAATG CAAAAGATT	G GGCAATAAG	C AGAAACAGAT	TTTGGGGAAA	TCCAATTCCA	27900
ATTTGGATAT GCTCAAAAA	C AGGAAAAAA	A ATTTGCATTG	GATCAAAAA	AGAGCTTGAA	27960
AACCTATCTG GCCAAAAAA	T CGAAGACTT	A CATAAAGACC	AAATAGATAA	AATAACCTGG	28020
CCAAGCAAAG ACGGTGGCA	A ATTTATCAGA	A ACAAGCGAGG	TTCTCGATTG	TTGGTTTGAA	28080
TCTGGAGCAA TGCCTTACG	C AAGCAACCAT	TATCCATTCA	CAAATGAAAT	ТААТТТТААА	28140
AATATATTTC CTGCTGACT	T TATTGCAGAA	GGTCTAGATC	AAACAAGAGG	ATGGTTTTAT	28200
ACTCTTACAA TCCTGGGAA	C TGCTCTTTT	' GAAAACACAG	CATTCAAAAA	CGTTATTGTA	28260
AATGGACTTG TGCTTTCAA	G CGATGGAAGA	AAAATGTCAA	AATCCTTTAA	АААТТАТАСА	28320
GACCCAATGC AAGTAATAA	A CACCTTCGGA	GCTGATGCTT	TAAGGCTTTA	TTTAATAATG	28380
AGCCCTGTAG TTAAAGCTG	Y TGATTTAAAA	TATAGCGACA	ATGGAGTAAG	AGACGTTCTT	28440
AAAAATATAA TAATACCCA	TTGGAACGCT	TATTCATTTT	TCACAACTTA	TGCAATAATT	28500
GATAAATTCA AACCTCCAAA	AAATCTCAGC	CTGGCTAAAA	ACAATAACCT	TGACAAATGG	28560
ATCATAAGCG AACTTGAAAC	TCTAAAAAAA	АТАСТАААТА	CAGAAATAGA	САААТАСААТ	28620
CTAACAAAAT CAATAGAATO	TTTACTTGAA	TTTATAGATA	AATTAAACAA	TTGGTACATA	28680
AGAAGATCAA GGCGAAGATT	' TTGGAAATCA	GAAAACGATA	AAGACAAAAA	TGATGCCTAC	28740
GAAACATTAT ATTATGCAAT	CAAAACTTTA	ATGATTTTAC	TTGCACCTTT	TATTCCATTT	28800
ATAACAGAAG AGATTTATCA	AAATTTAAAA	ACTGATGAAG	ACAAACAATC	AATACACCTT	28860
AACGATTATC CAAAAGCAAA	TGAAAATTTC	ATTAACAAAA	CAATTGAAGA	GAAAATAAAT	28920
CTCGCAAGAA AAATAACTTC	AATGGCAAGA	TCACTCAGAT	CATTGCACAA	ТАТААААТА	28980
CGCATGCCTA TTAGTACGAT	ATATATCGTC	ACAAAAAATC	AAAATGAACA .	AAATATGCTA	29040
ATGGAAATGC AAGAAATAAT	ATTAGATGAA	ATAAATGCAA	AAGAAATGAA	AATAAAAGCT	29100
AACGAAGAGG AGCTTATAAC	TTACAAAGCA	AAAGCAAACT	TTAAAGAACT '	TGGGAAAAG	29160
CTTGGAAAAG ATATGAAAGC	GGTATCTACT	GAAATTAGCA	AGCTAAAAAA '	rgaagacata	29220
АТААААТАА ТАААТGGAAC	ATCCTACGAG	ATAAAAGTAG	CCAATGCAAA (GCATTATTTA	29280

TCATTAAATG ATATAATATT AGAAAGAGAA GAAAAAGAGA ACTTAAAAGT AATAAATGAA	29340
GAATCCATTA CAATAGGAAT AGACTCACTA ATCACTAAAG AGTTGTACTT GGAAGGGCTG	29400
ACAAGAGAAT TTGTAAGGCA AATACAAAAT TTAAGAAAAG AAAAAAATTT TGATGTTAGC	29460
GATAGAATAA ATTTATACAT AGAAAATAAT GAAACTTTGA AAGAAATGCT AAATAAATTT	29520
GAAAAATACA TTAAAACTGA AACATTAGCC TTAAATATCA TATTAAACAA AAGTAAGCTA	29580
GAAAAAAAA TAAACCTTGC CGATGACATA TTTACACTAA TAGGAATTGA AAAATGTTAA	29640
AAACATTAAC AAAAATAATT ACCATTTCAT GCCTCATAGT GGGATGCGCA AGCCTGCCTT	29700
ACACTCCTCC AAAACAAAAT CTAAATTACT TAATGGAACT TTTACCTGGC GCAAATTTAT	29760
ACGCCCATGT AAATTTAATT AAAAACAGGT CTATTTATAA CTCTTTAAGC CCTAAATATA	29820
AATCAGTTCT TGGGCTTATA AGCAATTTAT ACTTTAGCTA TAAAAAAGAA AATAACGATT	29880
TTGCTCTACT AATAATGGGT AATTTCCCAA AAGATATTTT CTGGGGAATT CATAAAAATA	29940
GAAATACAGA ATCAATAGGC AATATATTTA CAAATCCAAA ATGGAAACTT AAAAATTCAA	30000
ATATATACAT TATTCCAAAC AAAGCTAGAA CTAGCATTGC AATAACCCAA AAAGATATAA	30060
CCGCAAAAGA CAATAATATG CTAACAACAA AATATATTGG GGAAATAGAA AAAAATGAAA	30120
TGTTTTTTTG GATTCAAGAT CCAACATTAT TGCTCCCAAA CCAAATAGTA AGCAGCAAAA	30180
ATTTAATTCC CTTTAGCAGT GGAACTTTGT CTATAAACAG CTTAAATCAA GAAGAATATA	30240
TTTTTAAATC CTTAATCAAA ACAAATAATC CACCAATACT AAAAATATTG TCAAAAAAGT	30300
TAATTCCAAC CGTCTTGACA AACATGACAA ACCTCACAAT ATCAAGCCAC ATAAAGACCA	30360
CAATAAAAGA CCAAAATACG GTTGAAATAG AATTTAATAT TCAAAAATCT AGTGTTGAAA	30420
GCCTTATAGA AAAACTAGCT TCAAATATTC AAACCTAAAA TTTCTGCCAC TCCACTAAAA	30480
TGAGGTATTA TTTTGATTTT TGCAAGTAAA ATAATGAAAC AAAGCTCCAA TTTTACCAGA	30540
TTCATTATTA AATTTAGTAG GCTCAAGTGC TACAAGATTT TTTATATTAT TATTATTATC	30600
AAAAGCCATT TCTAAAGACC ATAAATTTTC TAATTTTTCA TATATTCTAT CTATTAAATC	30660
GGGTCTTGCG CTTATTCCTC CTCCGATCAA AATTTTTTCA GGATTCAAAA TAAAAGTTAA	30720
ATTAAAAATA CCAAATGACA AATTCTCAAA AAATCTATCA ACTTCATTTT TGGCATGAAT	30780
ATTCCCATTC TCAGCTAGAT CAAAAACAAA TTCTCCTGAA ACCTCTTTTA AAGGTTTTCC	30840
TAATCGCATA GCAACTCTTT TTCTTAAAGC CGAAACAGAC GCAATGGATT CCCATTTGCA	30900
ATTAAAGGGA ATATTGTTGC TAATACCTCC AGTAATCATA AATCCAACCT CTCCGGACAT	30960
AAAAGAATTT CCTCTTAAAA GCTTGCCATT TGCAAAAATT CCAGCACCAA TTCCTGTGCC	31020

175

			1/5			
					TTTCTGCTAA	31080
	A TTAGCATCA					31140
CTCTTTTAA	A GGATAATTA	A CAAATCCAGA	AATAGCATTT	' ACCCTAAGAA	CATTTCCCTT	31200
AAGATCAAC	A AACCCAGGA	A TACAAATTGO	: AACTCCCGCA	ATATCACTTG	ATTCTTTGTA	31260
AGAATTAAT	A ATATTAACTA	AAATATTTAC	TTGTTCGTCA	GAAGTAGCAC	CTGTGCTTAT	31320
TTCATTTTT.	А ТСААААААА	CACCGCTTGA	ATCTGAAAGC	GAATATTTGG	TACTAGTCCC	31380
GCCAATATC.	A ATCGCTAAA1	AATGTTTCAT	ATTTATCCTC	AAGGCCTAAT	TGTACATAAA	31440
TGATCATAA	А ТТТТСТАТАС	CAATATAAGA	AATTTTAGAA	ATCTTGTTTA	TAACTATTTG	31500
CGCTTTAAT	C ATCTCCTTCA	AATAAGAAAC	ATGGGAAATT	ATGCCAATTT	GTCGCCCAGT	31560
CATCATTTG	A AACTTAGAAA	GCTTAGGCAT	AACTTGAGCC	AAAGTATCTT	CATCAAGATT	31620
GCCAAAACC	T TCATCTAGAA	AAAAAGCCTC	TATTTTTAAC	TCACTATCCC	ТТАТТТТАТС	31680
AGATAAAGC	r aaggacaaag	CTAAAGACAC	AAGAAATTTC	TCACCCCCAG	ACAAAGTTTT	31740
TACCGTTCTT	AATTTATTAA	CATCTTTTTT	GTCTTCAATT	ААААААТСАА	ACTCTTTGCT	31800
CTCTTTGTTC	C GTTTTGAGCT	CAAAATCAGG	AAAAATCCAC	СТТАААТАСТ	TTTCATTTGC	31860
CAGTCTTAAA	A ATATCATTAA	TTAAAAAAGT	TTGAACATAA	TATTTCAATC	CAGAAGATCT	31920
AATAACGACC	С ТТССТТААТА	CATCTAGCTT	ATCTTTCCTT	TCTTTAGCAA	GATTTAATTC	31980
ACCCCTTAGO	GAGTCTAAAT	TAATTTTTTG	TTGATTAATC	TTTTTTGAA	GAGTTTGAAA	32040
ATTTAAAAGC	TTGATTTAT	ACTTTTCAAT	ATCTCTGGAT	AAAAATTCAA	GCTTAGAACT	32100
AATTGATAAA	CTCAATTTTT	GCAAAAAAGA	CAGACTATTC	TTATTAATTT	GCTCTAAGTC	32160
AGTTGTTGAT	TCAAAAGAAA	ATGAACTAAA	AAAAACATTT	TTTAAATTTG	AAATTAGATT	32220
ААТААААТТА	TTTTGCTCTT	CATTTAATCT	CGCTTTTAAA	GTCAATATAG	ATTCCTTTGT	32280
AAATTTAATT	TGTGTTTCGG	TTTTAATTTT	TAAATCTTCT	AATTTTTAA	GATTTAAAAC	32340
AAGCATATTC	CATTCATTTT	CCACACTTTT	CTGCTTAGCC	ААААСААСАТ	ТАААТТСССТ	32400
TTCCAAAGAA	GAATAATCAT	ТААААСТТАА	АТТТАААТТА	AGTTTTAACA	ATAAATCCTT	32460
AATCTTTAAA	AGATTTTGAT	CAAAATTTTT	ATTTTTCAAA	GAAATTTCAA	ТТТТАААТС	32520
ТТТТТТСТТА	GCCTTAAATT	GTTCAAGCTT	ТТСТААТТТА	TTTTCAAATG	СТААААТТТТ	32580
TTCTCTGTCA	АААТААТТТА	TGTATTTGTC	АААТАААТТТ	TTTCCAATCA	АТСТТААААТ	32640
TTCAGCATTA	TTCTTTTCAA	ACTCCAAAGC	ATTAACCTCT	TGTTTAGAGA '	TTTCTTCTTG	32700
TCTACAAGAT	AGCTGATATT	TAAGCTCATC	AATTTGATTT '	TGTATCAAAT (GAAGCTTTGA	32760
ATTTAAAGCG	TAAAGCTCTT	TCAAACTGCA	AAGCGATAAT '	TTATCTTTAT (GCTGATAATT	32820

			177			
TATCAACTGO	CTCATTAAGI	TCAATTTTCA	AATAAATAGT	AAAAGACTCT	TCTTTTTTGG	34620
AATTAGCCA	AAAATCAAGA	ACTTCATTTA	AAGAACCTTT	AGCAAAGATT	AATTTATTGA	34680
AAATCGGCAC	CGGAAATGCT	TCTTGCAAGA	TTAATTTATT	GTCATTAAAA	TGTAAAACGT	34740
TTATGTATTI	TATCACAGGTC	TCATTAAATG	AATATTGCAT	AGGAGATCCT	GAATAAACAA	34800
TATTATCTCT	TAGTTTCATG	AACTTATGAA	TATGCCCAAG	AGCAACATAA	GAAAAACCAT	34860
ТТССАААААС	ATTAAAAGGG	ATAATATAAC	TACCTCCCAA	GGTGTCAATC	TTTTTACTGC	34920
TGCCAAAAA	AGAATGCGCC	ATTAATATCT	TAGGAATTCC	TTTATACTTG	ТТТТСТАААА	34980
AATTAGATAA	ATTTGATATT	TTTTCTCTGT	AGGCATTTTC	TAAATTTTCA	AGAAATAGTT	35040
TGCTGGAATA	CTGATCTTCC	AGTCCAAAAA	TATTGTCAAA	ATTTTGACCT	AAAATAAGCC	35100
TTTCATTTAT	ATGCGGAAGA	CAAACAACAA	TAAACTTAAG	ATTTCCATTA	ТСТТТТААТА	35160
AAACTATTTG	CTCATCAGAA	TCATATTCAG	ТТАТТААААА	AAAATTAAAC	CGTGAGAGAA	35220
GTTTTTTATT	ТАТАСТСААА	TAATCCTTTT	TGTCATGATT	TCCAGAAATA	ACCACACACC	35280
ATTTACAAGA	AGTAAAAGAA	AGTTCATAAA	AAAAATTATT	CACTAATCTT	TGCTCTTCAA	35340
ACCCAGGCCT	TTTGGAATCA	TAAACATCCC	CGGCAACAAG	TAAAAGATCT	ATATTTTCTT	35400
TTTTAATAAA	TTCTAAAAGA	AAATATAAA	AATTTTTCTG	CTCCTTAAGA	ATTGAAAAAT	35460
TTTCAATTTT	TTTTCCAATG	TGCCAATCTG	AAGTATGCAG	ААТТТТАТАА	TTGCTCACAA	35520
AATACTCTCA	СТТТТТТТАА	TTCTTAAATT	ATATTTATAT	АТТАТААТАС	AATATATAA	35580
CATAGGGAAT	TTATGCAAAA	TAAAAAGTTG	ATAATAGTTG	AATCGCCAAC	AAAAGCCAAA	35640
ACAATAAAGA	AGTTTCTCGA	TGAATCATTT	CTAGTAGAAG	CATGCATTGG	ACATGTAGTA	35700
GATCTACCAA	ACAACGCAAA	AGAAATCCCA	AAAGAATATA	AAAAATACGA	ATGGGCAAAT	35760
ATTTCTATAG	ATTATAACAA	TGGATTTAAT	CCAATTTACA	TTATTCCCAG	СААТААААА	35820
CCAATTGTAT	CAAAACTAAA	AAAATTAGTA	ААААСААТАА	ATGAAATATA	TCTTGCAACC	35880
GACCAAGACA	GAGAAGGAGA	AACTATAGCA	TTTCACTTAA	AAGAAGTATT	АААААТСААА	35940
AACTACAAAC	GGATGATATT	TCATGAAATC	ACAGAAACCG	CAATAACTGA	АТСАСТАААА	36000
AATACTAGAA	ATATAGACAT	GAACCTTGTT	AATGCCGGGG	AAGCTAGAAG	AATATTGGAC	36060
CGACTATACG	GGTATACAAT	CTCTCCACTA	CTTTGGAAAA	AAGTAGCTTA	TGGACTTTCT	36120
GCTGGGCGAG	TACAATCTGT	TGGATTAAAA	TTATTAATAG	AGAAAGAAAA	AACTAGAATA	36180
AATTTCAAAA	AGGCAAATTA	TTATTCAATT	TTACTTCAAT	GTAAACACGA	GAAAAAAAAC	36240
TTGTTGCTTG	AAGCAAAATT	AGAAGAAATT	GACGGCAAAA .	ATATAGCAGA	GGGTAAAGAC	36300
TTTGTAAATG	AAACTGGAAA	ACTTAAAAAT	ATTGCCAAAA	СААСААТААТ .	AACCCAAGAT	36360

			179			
GAAGAAATA	A ATGAGAAATA	TGTATTCAGO	ТТСТТАТААА	TATGAATGAT	TTCAAACTCC	38160
СААТТТАТА	A ATACAAAGAT	GAATTAATTA	AAGTACTAAA	AAACCACAAT	GTTTTAATTG	38220
TAGAAAGTC	C AACAGGTAGC	GGAAAAACCA	CCCAACTACC	AAGAATAATA	TATGAAGCGG	38280
GTTTTGCAA	A ATTAGGAAAA	ATTGGAGTAA	CTCAACCAAG	AAGAATAGCT	ACAGTATCAA	38340
TAGCTGAAT	A TATTGCCAAG	CATATTGGCG	TAAATGTTGG	AGAAGAAGTT	GGCTATAAGA	38400
TAAGATTTG	A AGAAATTACA	AGCCCAAAAA	ССААААТСАА	ATTAATGACT	GACGGAGTGC	38460
TTCTGCAAG	A GCTAAAAAA	GATACACTGC	TTTATGAATA	TGATGTAATA	ATAATAGACG	38520
AAGCACACG	A AAGAAGTTTA	AACATTGATT	TTATATTGGG	TCTTATCAAA	GACATTTCAA	38580
GGAAAAGGG	Y TGATTTTAAA	ATCATAGTTT	CGTCTGCTAC	AATAAACACA	AAAATATTTT	38640
CAAAATATTT	TAATAATGCA	CCGGTTGTTA	GTATTGAAAC	TATCACTTAC	CCAGTACAAA	38700
TAATATACAA	A TCCTCCTCTT	TTAAACACAT	CAAAAGGAAT	GATATTAAAA	ATAAAAGAAA	38760
TTGTCTTAA	CGTAATAAAA	GAAAAAAAAG	CGGGAGATAT	TCTTATATTT	TTATCTGGAG	38820
AGAAAGAAAT	AAAAGAAACT	ATAAAAGAAT	TACAAGAATT	AAACTCAAAA	AAAAATTTAA	38880
TAATATTTCC	TTTATACGGC	AGAATGCCCA	AAGAAGCTCA	AGAGCAAATA	TTTATGACTA	38940
СТССТАААА	TAAAAGAAAA	ATAATAGTGT	CAACAAACAT	AGCAGAAACT	TCAATCACAA	39000
TTGAAAATAT	TAAAATAGTA	ATAGATAGTG	GAAAAGTTAA	ААСАААТААА	TTCCAAACAA	39060
AAACTCATAC	CTATTCGCTC	CAGGAAGTTC	CAATTTCAAA	ATCATCAGCA	ACTCAAAGAG	39120
CTGGTCGAGC	AGGAAGACTT	TCAAAAGGAA	CTTGCTACAG	ACTTTACAAA	AGAGAAGATT	39180
ATCAATTAAG	AGAAGATTAT	CAAAAAGAAG	AAATATATAG	AACAGACCTA	TCTGAGGTAG	39240
TGTTGAGAAT	GGCAGATATT	GGAATTAGAG	ATTTTACCCA	CTTTGACTTT	ATCTCAAAAC	39300
CATCAACGCA	TTCGATTCAA	ACTGCAAGCA	АААТАТТААА	ATCTCTGGAT	GCTATAAACA	39360
ATAAAAACGA	ACTTACAGAA	ATTGGGAAAT	ATATGATACT	ATTCCCATTA	ATACCAGCAC	39420
ATTCAAGAGC	ATTAGTCGAA	GCAATGATAA	ATTACCCACA	AGCGATCTAT	CAAACCACAA	39480
TAGGTCTATC	ATTTTTATCC	ACAAGTGGAA	TTTTTCTACT	ACCCCAAAAT	GAAGAAATGG	39540
AAGCTAGACA	AGCTCACTTA	АААТАТАААА	ATCCAATGGG	AGATTTAATT	GGGTTTGTTA	39600
ATATCTTTGA	AGATTTTAAA	AAAGCTCTAA	ATAAAGAAGC	TTTCACAAAG	GAAAATTATT	39660
TAGATCTACA	AGGACTTGAA	GAGATAGCAA	ATGTGCAAAT	GCAGCTTGAA	AACATTATTA	39720
GCAAATTAAA	ТАТАССААТА	ATACAAAAAG	GTGTTTTTGA	CAACGAAGGA	ТАДААТТТАТ	39780
CAATAATGAG	AGGAATGAGG	GATTATATTT	GCTTTAAAAC	TTCAAAAAAG	AAATATAAA	39840
CCATCAAGGC	TCAAAACGTA	ATAATTCATC	CTGGATCACT	TATTAGCACC	GATTCTGTGA	39900

			181			
TTATGGATT	T AGCGGATTT	TTGTTTTAAT	CAAAAACGGA	AAGTATAAAA	AATTTTAAA .	41700
AGAAACAAG	G CACCCAAGAA	A CAATAATAGG	AACTGATAAA	AATAACAAGC	ATTTATTTCT	41760
TGTTACAAT.	A GAAGGAAGGG	GTGTCAATAA	TAGCAAAGGG	GCCTCTCTTA	ATGAAGCTAT	41820
TGATTTTGC	A TTAAGCTACG	GCATGACTAA	CGCTATTAAT	CTAGACGGG	GGGCTCAAG	41880
CACTCTTGT"	Г СТААААТСАА	ATAACGCTCC	ТТАСАААТТА	AACTTCACAG	CAAACATCTT	41940
TGGACAGGA	A AGACCTGTCC	CATTTCATTT	AGGAATAAAA	CTTCCTAATT	GAAAAATCTC	42000
CAACCGATA	r taaatccaag	CATAATCTCA	GTTGTTAACC	CAGAAAAATT	TTTATAATTA	42060
GAAAATGGAG	G AAATAGAAAG	САТАААСААА	GGCCTAATAT	ATAAACCATC	AAGATCGGGA	42120
ATAAAAAGAT	CAGCAGCAAG	CCCCATGCTT	AAAAAAAAGA	GATTGAAGTT	ATTAGAGCTT	42180
AAATCAAAA	Э САТАТТТА <u>А</u> А	СССААТТААТ	GGGAAAAGCA	TTCTAACCTG	CTCTTTGAAA	42240
ACCATTGGAT	ATGTTCCATA	AAGCCCAAGC	GAGAAATATC	TCCCATTGTG	AGTAACAACA	42300
AAAGCCTCTT	TGTAAGACAT	TTCAAAAAGT	ACATAATTTG	САТСААААА	ТАААТТСААА	42360
TTAATCCCAT	GATCTGCTCT	GGTAAAATTT	GGAGCAAATT	TAGTGGCGCC	TGTTTTATCA	42420
GTATAATTAG	ТАААТТ GАТА	AGAAAAACCT	CCACCAAAAG	AAAGTGGATA	AGAAACAATT	42480
AAATTATTAG	AAGAGATGAG	АААТАААТА	AAAAAAAGAT	ATTTCTTCAT	ТААСААТССТ	42540
TAAAAATTCT	AAAAAATACT	ATATTATTAT	AGTAACACAC	TAAAGTAGTA	ТАТАААААТ	42600
CTGGGAAATT	ATGAATACAA	AAACATTATA	TTTAATATCC	TTAATTCTTT	TAGCTTGCAA	42660
ТАААААТААС	AAAATTCCTC	TCATTCAAAA	ATTAGATTTG	CCCAAAAGCA	GCATTCTTGG	42720
CTTTAGCAAT	AAAATGGGCA	ТААТААТААА	AGATTATGCT	TTTCTTAGTA	AAAGCACTAA	42780
GAAAAATAGC	GAATTGGATT	ATGATTACGC	AATTCTACTC	AGAAAAGACG	AAGTCGTAAA	42840
AATTGAAAAA	ACACTAGAAA	AAACAGAGCG	CTATGGAATT	GAAGGAAATT	GGATCCTAGT	42900
CAATTACAAG	GGAACTAAAA	GATACATCTT	TAGCAAAGAC	ATCAATATAG	TCAACAATTT	42960
AATAATTGAT	CATTCTAAAT	AGCTTTACTA	CATAACCGGA	CAAAAGTCCG	ATCAATGTAA	43020
TAAATTACTT	ATTTTTTTC	TTATGTCTAT	ТТТТТСТТСТ	TTTTTTCTTC	CTTTTATGGG	43080
TAGAAATTTT	TTTTAATTTT	СТТТТТСТТС	CGCAAGGCAC	TCCCTAAATC	TCCTTATCAA	43140
CCTTAAAAAT	TAAATTCAAA	ATGTTATCTA	AATCATCCTC	TGGATGAAGC	САТААААСАТ	43200
CAGAAATTTT	GGCAAAAAAG	GTCATTTGCC	TTTTTGCATA	TAAAAACGAA	TTTTTGTTTA	43260
ТТАААССТАТ	ТАТАТСАТТТ	AAACCATAGC .	AAGGTCTACT '	TTTCCATAAC	АААААСТСАТ	43320
TATAGCCTAT	TCCTTTAAAA	GCCGGAGTAT	TTTCATTGTA	ACCCTTGCTA	ААТАААССТТ	43380
TAATCTCGGA	AAGTAGTCCA	CTATTAAGCA '	TTTCATTAAT 1	CTTATTGAT	ATTCTGGTTT	43440

TCAAATCTTC	AAAAGATCTC	TTAAGGCCTA	TAATCACAAT	ATTTTTAAAT	TCGCTACTTT	43500
GTTTTTTTG	AAATTGGCTA	ATAGGAATTC	CTGTTTGATA	GTAAACCTCA	AGCGATCTTT	43560
TAATGCGATA	AATATCATTC	ТТАТТТААСА	TATTAAATCT	GATGGGATCT	ACATTTTTTA	43620
ATTCTTTTAA	AAGATAAGAT	TTACCCTTAA	GCTCTAAAAG	ATTGTTTACA	ТАААТТСТТА	43680
TTTTAGAAGT	AACCAAGGGT	GTTGAAGGAA	ATCCATCCTT	TAAATGCTTA	AAATAAAAAG	43740
CAGTACCTCC	ТАСАААТАТА	GGAATTTTTT	TTTTCTGTCT	TATTTCTTTT	ACTATTTTTA	43800
AAGCTTGTTC	GTAAAAAATT	CCAATAGTAT	AATCCTTTTC	GGGATCTAAA	АААТСТАСТА	43860
AATGATGCTT	TATATGTTTC	ATTAAATTTT	TACTTGGCTT	TGAAGAAGCT	ATATTAAACT	43920
СТТТАТАААС	TTGAATAGAG	TCAACATTAA	TAATTTCTGC	TTTATTTTT	GGAAAATGAA	43980
ATAAAATATT	GCTTTTGCCC	ACAGCTGTAG	GGCCAAAAAT	AAAAACTACT	СТАТСТТССТ	44040
TCAATTGAAT	ATCTAAATTT	ACCAGTCAAA	ACGTCATTAA	AAGCTTGCCC	ТААТАТТТТА	44100
TCATCAAAAA	TAGCGTGTTC	TGCTAAAGAA	ATATTGTCTA	TAATTTGCTC	AGTGCGCATT	44160
ATAGTTGCAA	CAACAAGTTC	ATAAAAATTT	ССАТСААААТ	CTTGTATTTT	TTTTAAAGGC	44220
ACTTTAGTCA	TTTAATCTCC	TTATAAACCA	AACATATTAA	ATAAGTTTAG	СТАТТТТТТТ	44280
TCAAGTTTCT	TTTATCAATT	TCATCTCTAA	ТТААТТСААА	AACTTCATTT	GGATTAATAT	44340
TTGTAACATC	AATCACTAAA	TCGGTCTCTG	AAAAATAATC	ATCAATATCT	ATATTGTAAA	44400
TAGCTAAATA	TCTTTTTTTG	TCATTTTCAT	СТСТААТААА	AGTACTGCTT	AAAACGTCAG	44460
AATACATGCC	CCCCTCTCTA	GTCATTATTC	TCTCAGCTCT	AACTTCCATT	TTAGCATAAA	44520
GATATATTTT	TAAATCAGCA	CTCTTAGAAA	TCCAAATAGC	AAGACGAGAT	GCAAGCACTG	44580
TATTATTTT	TCTAGAAAGC	ACAGACAATC	TATTATCAAG	GTATTTATCC	СААТААТААТ	44640
CATTTCTGCC	TATTATCTCT	TTTTCATAAA	ACTCTGAAAA	AGGAATATTA	TGCTCTCTTG	44700
CAATATCATG	AAAAGTATAA	ттаатаааст	CAAGACCGTA	ATGTTTGGCA	ATCATCCCGC	44760
TTACAGTAGT	ATTGCCACAA	CCACTCTTAC	CAGAAAGTGC	TATTTTCATT	CAACATTCCT	44820
TATTTGCTCT	TTTATTTTTT	СТАААТТТАА	CTTCATATTC	ААААТСАААТ	TCTTAATATC	44880
AAGATCAACC	GCCTTATTAC	TCATGGTTGT	TATTTCTCTG	TGCATTTCTT	GAGAAATAAA	44940
TTCAAGAGCT	TTACCACATA	TCTCATATTC	AAGATTTTTA	TAAAAAGTTT	CTATATGAGA	45000
ATCTAAGCGC	ATGATCTCTT	CATTAATGTC	TAGACGAATT	GCCATTTTAG	CTGCCTCTTC	45060
TGCAATATTT	АААТСТСТАА	ATTCATCCAT	TAATTTAGAA	ATATTTTCTT	TAATACTTGC	45120
AAATAATTTG	ACATTTATAT	CACTGCAAGC	ATCTTTAACA	ATTTTAAGGT	CCCGCTCTAT	45180

			183			
TAACACAAGG G						45240
ATTGTAATGT A						45300
ATGTTCACTA T	CCTCATCAA	TTATCAAAGO	TCCTTTTAAT	GATAAAAAAT	CGCCCAAACT	45360
TAGTTCGTTT T	ТААТАТТАА	GATTGGTATG	TGCCAAAGAA	TCTCTAAGCC	TAGAAATAGC	45420
СТСААТАТАА Т	TGGGATTAA	TCGTAAAATT	' CACACTAGGA	ACCAATTCTT	TATATCCTAC	45480
ATTTAAAAAA A	CATTGCCTC	TGCTAATATA	TTTTGAAATC	AAATTTCTTA	TATCAAGATC	45540
ATAGCCAGAA A	AAATTTCTG	GTAACCTAAA	ТТТАААТТСТ	AAAAACTTTC	CATTATAAGA	45600
ТТТСАААТТА А	CACTAAACA	TATAGTTACC	AATTATCTTT	ТССАААТААА	AAAATCCCGT	45660
CATGCTTTTC A	АТАТААСАС	CCTTACAGAA	AATCGTGTAA	AATAAAATTA	TTTCCAGCGC	45720
CCATTGTAAT A	AACAAGTCT	CCAGATATTA	ATAAACTTTT	ТАТААААТТА	ATAGAGTCTT	45780
TAACATCCTT A	ААААААТАА	GTATTCTTAT	TTATTTTTT	AATATTTAAA	AACAATTTAA	45840
CAGAAAGTTC A	TCTGGATTA	AAATTTTCCC	TATTTGAAAG	ATATATATTG	TGCAAAATTA	45900
ATATATCGGC A	GCACTTAGA	ACTTCAACAA	AATCGGCAAA	AAATTCTTTT	GTTCTTGTAA	45960
AGGTATGAGG C	ATAAAATCC	ААААТТАТАС	GTTTATTCTT	ATAAAAATTT	TTAATACCAA	46020
AAAGAGTATT T	PTAATTTCC	CTAGGATGAT	GAGCATAATC	GTCCATGTAA	ATCACTCCAT	46080
TTTCCTCTTT A	ACAACTTCA .	ACCCTTCTTT	TTATACCGCT	ATAATTTTTT	GCAATTCTCT	46140
TTATTGCTTC T	ГСААААТСА	AAAATTGATT	TCCCATTACT	TTCTAAGAAA	AGATTTAAAG	46200
CCAAAAGCGC TO	GCTGAAAAA '	ТТТААТАСАТ	TATGAAATAA	AACAGTCTTA	AGCTCAACAT	46260
TTAACAAGCC TA	AAAAAAGAA	AAACAAAAT	ATTCACTCCT	AACTGCAATA	TTACTTATTT	46320
GAAAATCAGA TA	AATCTCCA	GACCCATAGC	ТАААААТАСТ	TATATCTTTT	CTGTTGATTT	46380
GCCTTTTAAT TI	TTAAGCAAA '	TTATTATCAT	CGGAATTAAT	TATCAATATT	CCATTTTTCT	46440
TTAAATTATT AA	ATATACTGT A	AAAAAAGCCT	CTTCAAGAGC	CTCATAATTT	TAAAAAATT	46500
CAACATGCTC GT	CAGTCAACA	TTGGTTAAAA	TAAGCATATT	AGGGCTAAAA	ТТСААААААТ	46560
GTTTCTTATA TT	CACAAGTT !	TCAACAATAA	AAATATTGCT	AATACCTGCT	ATTGCAGAAT	46620
TATCTTTAAA AT	CTTTAACA (CTTGACCCCA	СААТААСАТТ	GGGATTTAAT	ССТААТТТАТ	46680
TAAAAAGAAC AC	CTAAAAAC (GCCGTAGTGG	TAGTTTTACC	ATGAGAACCT	GCAATTCCAA	46740
TGCTATAGTA CT	TTCTAGAA 1	AGCTCTCCAA	GAGCCTCAGG	ATAAGATAAA	ATAGGTATAT	46800
TTAATTCTTT TG	CCTCAAGT A	AAAACTTGCA	AACCATCCTT	ATTATAGGCT	GAAGAATATA	46860
СТАТТАААТС АА	AAGACCTA 1	TCAAGCTGTT	TTAATGAAAA	СТСАТАААТА	ТТАТСАТААТ	46920
AAGATATTTT AT	TATTACTT A	AAATTTCAT	CGGTATAAAA	TTTATCAGAA	ACATCTACCC	46980

			T 8 2			
TTCAAATTTT	GGGCTAAAGA	TTTGTACAAA	TAAATTTTAT	' CACCTTTGCA	AACTCTGCAT	48780
					TTTTATTATA	48840
CTCGCTTTAG	AAAAATTTAA	AATTTTAATT	AAAATTGAAT	CTAGTCGCTT	GCCATTATCA	48900
TTAGCAAGCA	СТТСТАААА	AATATATTTA	TCCAAACGCA	AAAAATACCC	CTAACAAACC	48960
TTACTATTTT	TTTTACAAAA	AAAATTAACT	' АСТАААААТС	TAAATATAGA	AACAAAAAAT	49020
GATGGAAAAA	CGGGGTGAAA	AAACCAAATA	TTTAAACCAA	AGAATAAAAT	GGACAAATAA	49080
AATATTAACC	СТАААААСАТ	AGAAGCAAAA	GCCGCTATTT	TGCTTACAAA	ATTTAAATAA	49140
AGTCCAAAAA	CAATAATAGG	GAAAAACGAA	ACTTCCAAAG	CTCCAAAGGC	AAAAATATTA	49200
ATAAAGAATA	AAAAATTGGG	AGGAAAGAGA	GAAAATATAA	GTATTATTAA	AAAAAAAAA	49260
ATATTAGAAA	ТСАТТАТТАТ	TCTGCCAATC	TTTACATCTT	CTTTTAAATC	TTCTTTATAA	49320
ATAAATATTG	ACTTTATTAA	AACAGATGTT	ATTAATAGCA	AATTTGAATC	CACTGTAGAC	49380
ATTATTGCAG	ATAAAAGACC	ТАТААААААС	ATAAAACAAG	AAAAAGGATT	TAAAACTTTT	49440
AAAGCCACAT	TTAAAACAAC	TTTATCATTT	GGACTTAAAT	CTGGAAAAAG	AATAATAGCA	49500
АААААСССТА	TTAAATGCAT	CAAAACAATT	AAAAAGCTAA	TAATAAAAGT	AGAAATGGGA	49560
AGAGAAAATT	TTATAGCATT	CTCATCTTTA	AATGCTATAA	ААТТАТТААТ	AATCTGAGGC	49620
TGCCCTAGTA	TTCCTATTCC	ТАТТААТАТС	CAAAAAGAAA	TTATATATTG	TGGCTTTAAG	49680
TCAGCATTTG	AAGGAAGTAA	AAGGCTTTTA	TCTAAGCTAG	ACGTTGCTGT	TTTGAATAAA	49740
TTATTAATAC	CCCCTCCCAA	ATCTAGCATC	TTGGAAAACA	AAATAACGGA	TGAAACTAGC	49800
ATTAAAAATC	CTTGAATCAA	ATCCGTATAA	GCTACTGCCT	TAAAGCCGCC	ААААААТАСА	49860
ТАААТАААА	CCAAGAAGGC	AAAAAAAGTA	AGACCAACTA	CGTAATCAAT	ACCCCAAAAA	49920
ACTTCTATAA	GTTTGGCACC	ACCTATTAAT	TGGGCAGAAA	TCAAAAACAT	TGAAAAAAA	49980
ATCAATACAA	ATCCACTCAT	TAACGCCAAA	AAATCACTTT	CATATCTATG	ССТААТАТАА	50040
TCAATAATAT	TAATTGCATT	AATTTTTTT	GATTCGCGAT	TTAATCTCTG	ACCAACAATA	50100
ATAAAAACAA	TTAAAGTTGT	AGGAATTTGT	ATGGTAGCTA	АТААТАТААА	AGATAATCCA	50160
TACTTATAAA	CAGCAGAGGG	ACCGGAAATA	AAACTACTAG	САСТААТАТА	GCTAGAAGAA	50220
AATAACAAAG	CCATAACAAT	ААААТТААТА	TTTCGATTTG	СААGААААТА	ТТТАТТТААТ	50280
AACAAAAACC	TACCTCTATT	TCTTTTTTA	AGAAAATCTA	ААААТАААА	ААТАТСААТА	50340
ATGTATCAAG '	ГТТТАСТААТ	ТАСТААААТА	АААААСААА	ССААААААА	ATTATACTGG	50400
GGAATAAAAT '	TCCTGACAAA	AAAAACCACA	AAGGAATATT	AAATATAGTA	GTTGATGTGT	50460
CAATAAAATA (GGCAAAACAA	AACCACAATA	САААСАТААА	AACATACAAT	AATATAGCGT	50520

			187			
TCCTTTGCAG	AAGAGTCCCT	ATGTCCTTTC	ATTGCATTAA	TAGCTTTAAA	CCTAATATTA	52320
TCATCAGAAT	СТСТТААААА	TCCTTGTAAA	A ATCTCTTTAG	ACTTTAAAGA	AGGATCTTTG	52380
GACAAAGAAG	CAATAATAGC	TAATTTAACA	TATTAAATTT A	TGTTATTACT	CTGAAGATAC	52440
AAATCAGCAT	TTTCAGTTAC	TTTATCTGAA	GCAAGATATG	ACAACGCTTC	GATTGCAGCA	52500
GCCTTAATTG	ATGGGCCCTC	GTAATTATCT	AGCGAAATTT	САТАААТТСТ	ATCCTGATAA	52560
TCAACAGCGG	ACATTTTTCC	AAGAGCAATA	AGTATTTCTC	TTCTAGCCCC	ATCATTTCCA	52620
GAATATTTTT	CAAAAACTTC	CATCATGTTT	TTAGAATACT	CAAGAGAATT	AAGCTCTCCT	52680
AAATAATAAG	CTGCAATAGA	TACCACATTG	CCCTCTTTAT	TTTCAAGAAT	GTCAATAAGA	52740
GTTTTTTTTA	ATTTTTCTTT	ATCATCAAAC	TCCTTAAGAT	ACGAAATTGC	CAAGCCAAAT	52800
AAAGCGTTTG	AATATCTTTT	ACTCTCATAA	TTTTCAAGAA	TATAATTTGC	TGTATCAATG	52860
CCCCCGAAT	ACTTAAGAGA	ААТАААСААТ	TCAAGTATTT	CCCTTTTAAG	CTCAGCATTA	52920
AAAGTTTTCT	CAAGTCTTTT	TTTAAGAGAA	AAATTATATT	GACTATCGCT	TGATTTTTTA	52980
AGAGCTTTTA	TAATGCTTGT	CACTTGACTA	TCAAGCCCAT	AAAGAATTGT	ATCGTTAACA	53040
TACTTACCAT	CTAAACCAAC	ATTAGAAAAA	TTCTCTCCCT	TAGAAGAATT	TTCTCTCTCA	53100
ACAGGCTTAT	TTTCTGTAAT	TTCGGGCAAC	AAAGGCGGAC	TAGGAAGAGC	TGGAGAATTA	53160
ACATTTTGAG	CATACACATT	AAAAATAAGT	АААААААТА	ААААТАААА	GTATTTCATA	53220
AAGCATCCCT	ТСТААТАТАТ	CTAAAAAGCT	TATTTATTCC	TAAAACAGAA	ТААСАААТАА	53280
ACAAAACAAA	AATACTAACA	ATTCCAGCTG	ССАТТААААА	ATAAAGATTT	ТТААААСТАА	53340
ACCCCACATC	CCACTGAAAC	TTTTCAAAAA	AGAAATAAAT	TGCATATAAA	GGAAAAAGTG	53400
TAATAATTGA	CTTTAAAAGA	АСАААТАААА	ТТТСААТТАА	ATCAATTTTA	ACTCCTCTTT	53460
TCAATATTAT	AAAATAAAA	ACAATTACAC	AAATCATAAA	AGAAATAGAT	TGAGCTAATG	53520
CTAAAGCGTT	CAAACCATAA	TAATTAATAC	CAAAAACAGA	TATTGCAATA	TCAAGAATAG	53580
ААААТААААС	ACTCAAATAA	AACGGTGTTT	TTGCATCACG	AATAGAAAAA	TAATATTTT	53640
GGAAAAAACC	AAACATTGAA	TAAAAAAGCA	GACCTAAAAG	AAAACATTTC	AAAACACTCG	53700
CTGTTTTTTG	AGTATCATAA	ATAGAAAACT	TGCCTCCCAT	AAGAAATAAA	ТТТААААТАТ	53760
AATCAGACCA	AATAAACATT	AAAAAAGACA	CTGGAATAAA	AATTAACAAT	AAATTTTAA	53820
TTCCATCTAC	TAAAAGGGCA	TTTAATTTTA	TATTATTCCC	CAAAACAGCA	TGCTCTGCCA	53880
TTTTGGGGAA	AATCACTGTT	GCAATAGAAA	ТАТААААААТ	TCCTACAGGA	AGCTGATAAT	53940
AAACTACAGC	ATTACTAAGG	ATAGAAACAC	TTCCTATCTC	AAGAGTAGAT	GCTAATGCAA	54000
ATGAAATCTG	CTGAGTAATA	ATTGAAATGG	GAAAATCCAA	GAATCATACG	AAGCCATCTG	54060

	*					
GTTAAAAATT	TAAAACCTTT	TCTCTGAAAT	' AAAATGTTGG	CTTCCAGGCA	AAACCAATCA	54120
TAAGGCAATT	TGCAAACGGA	TTAAAAATTA	GTAAAAACCC	CCCAAAAATT	ACGCCAATAA	54180
CAGCACTATA	TATTCCAAAA	CGACCATAAA	ATAAGAATAT	GCTCAATATT	ATTCCAAAAG	54240
AAAGCATAAT	GGGCGAAAAC	GAAGGAATGA	AAAAAATTTT	ATATGAATTT	AGAACAGACA	54300
CGAAGATTGA	TGATAGGCTT	ATTAGTAAAA	TATATAATAC	САААТААССА	AATACAGAAC	54360
TTGCAAAAAT	TAAGTTTTCT	CCCCTATAAT	AAGATATAAA	АТАСАТААТА	GGCTTTGCAA	54420
AAATAATCAT	AACTAAAACA	ATTAACCCAA	TAGAAATAAT	GTTAAAGGTT	ATGACAGTTC	54480
TGAAAAAAGA	AACAGCTTTT	TCGTGCGATT	TGTTTTTTC	ATGTGTAAAT	TCAGGCAAAA	54540
AAGCCGAGGT	CATCGCGCCC	TCTGAAAGAA	TTTTGCGCAA	ATTATTAGGA	ATATTGAAAA	54600
CATAGTTAAA	AATATCAGCA	TCAAGATTTG	САССААААТА	ATAAGAGAAA	ATCTTTATCT	54660
TTACAAAGCC	CATTATTCTT	GAAAAAAAAG	TGGAAATCAT	GACCAAAATT	GTAGAAACAA	54720
CATATTTATT	CATCGAAATT	TTCCTCTTCA	TACTTTTTTA	AATATGAAGT	TCTAAAATTT	54780
AAAAAATCAT	CATTTAGAAT	TGCGGCTCTG	ATCTTTGAAA	TCAATCGAAA	CATATAGTGG	54840
ATATTATGTT	CACTTGCCAA	AACTATTCCA	AAAAGCTCTT	TCGATTTTAT	TAAATGTCTT	54900
AAATATCCTC	TTGAATACCT	TTTACATAAA	GTACAGATGC	AATTTTTCTC	TACCTTAGAA	54960
GTATCATCCT	TATACTCCTT	TCTACCAATG	CACATAATCC	CATTATCTGT	CAAAAGAGAC	55020
CCATGCCTAG	TAATTCTTGC	GGGATTAAAG	CAATCAAAAA	TATCAATGCC	ATAATATATG	55080
GCATTAAGTA	TGTAATGGGG	AGTGCCAATA	CCCATTACAT	ACCTTGGTTT	TTCTTTTGGT	55140
ATCAACAAAA	AACTATATTC	AAGGATTTCT	AAATATTTCT	CCCTTGGTTC	TCCAACAGAA	55200
ATGCCTCCAA	TGGCAATACC	TGGGCTGTCT	AATTCCAATA	TATCATTGAT	ACTTCTTTTC	55260
CTTAAATCTT	TAAAAAAATT	TCCTTGAGTT	АТТАААААТА	AAAGCCCGTT	GTATCCCTCT	55320
TTTCTGTTTT	TAGAAGATTT	GAACGTGCTG	CTAGCCCAAT	TGGTTGTAAT	ATTTGTATAT	55380
AAATTGGCTT	CATTATAATC	AATCCCATAA	GAACTGCAAA	TGTCAAGTGG	САТААТААТА	55440
TCACTGCCAA	AAATTTCTTG	CATAGCAAAT	ATTCCCTCGG	AAGTAAAATA	ATGGTACGAT	55500
CCATCTATAT	GAGATTTAAA	ATGCACACCT	TTTAGATCAA	TTTTTCTCAG	ATCAGAAAAA	55560
GAAAACACCC	GAAATCCGCC	CGAATCGGTT	AAAAAATTTT	TATTCCAAAT	TGTAAAATTA	55620
TGAAGACCAA	CATATTTTTC	AACAGTTTTA	ATTCCCAGCC	ТТАААТАТАА	ATGATAAGTA	55680
TTTGCAAGCA	TCAAATTACA	TTCTAACTTC	TCAAGAACAG	CATGTTTTAA	CCCTTTCATT	55740
GCCCCAAAG	TACCAACTGG	CATAAAACAA	GGAATATCTA	CTCTACCATG	AGGAAGATTT	55800

AAAAATCCAA	CCCTTGCATT	AAAATGCTTA	TCATTCTTGA	TTACACTAAA	САТАТАААТА	55860
ТСССАААТАА	ТАТАТАТАТАТ	ТАТТТССТАА	СААТССТАТА	AACAAAAAA	TTGATAATCA	55920
TATAAAAAA	' AGTTGTAAAA	GAACTTGCTA	TATATATATG	CAAATAGCCT	AGATCCGCTA	55980
AAAATTAAA	AATTACAATA	GAAATAACAT	AAACAACAGC	AAAAGCAATG	СТАТТТААТА	56040
GGCTGAGTAT	AAAAATATTT	TTTTTAAGAG	CAAGAGCAAT	AAACCCAACA	GTAAAGCTAA	56100
GAAGAATCAA	TCTAAATGAA	AAGAATATCC	ТАТТТААТАА	АТСААААААТ	GCATCAGAAT	56160
AATTTAAACG	TTCAGCTTTG	AGAAAACTTA	TCCAATTAAT	AAGTTTAGTA	AAATTTAACG	56220
CCTTTGATGA	GAGCATCACA	GTTCTTATGT	AATCGGGCGC	CAGCTTAATA	ATTCCTGTCC	56280
CATCAAGAAC	ATCGTAGGCG	TTCTCCTTAA	TTTTTTTACC	AACCTTAACA	AACTCTCTAA	56340
TACCATAAAG	CCTCCATTTA	TTATCTTTCC	ATTCGGCTTT	ATTTATATCG	TACCTTGTTT	56400
GAAACTCATC	TTTATTGTCT	AATAATTA	TCATCAAGTT	AGCAAAAGTA	TTCTCATCAA	56460
TATCATAAGA	TTTGATATTA	TAAATTTCTC	TAGCAAAATC	CCTTATTATT	ATAGTTTTAT	56520
CCCCAGATCT	ACTGTCGCCA	ATGCTATTCT	TAATAAGAAC	ATCTCTTCTT	GCTATAGTAT	56580
CTATTACCAA	ATAATTATCA	AAAAAGAAAA	GAACAACTGA	ААТАААТАТА	СТААТТАААА	56640
TAATTGGTTT	TAATATCCTG	GTAAGTGGAA	CTCCACAACT	AAAAAGACCT	ATTATTTCAT	56700
TTCTCATAGA	AAGATTGCCA	ATAAGATTCG	AAATAGCAAA	AAGAAAAGAT	AAAGCCACCC	56760
CATCTGAGAA	TGCCTTTGGC	АААТАТАААТ	ААТАААТАТА	AAGAATATCC	TTAAGGCCAA	56820
TATTCTTTTC	AAGATAGTTA	AGAAGATTAA	CAAACAAATC	ACCAAGCATA	ATTAAAATCA	56880
TGAAAAGCAG	GTTCATGGAC	AAAAAAGTAA	GAATGATGCT	ТТТТАТАААА	AGCTTATCTA	56940
TTTTCATTTT	TTTAACAATC	TCAAAAAGAG	AATTGCTCCT	GCAATAATTA	АААТТАААТТ	57000
AGGCAAAATA	GTAACAATAA	TAGGACTTGG	TGCATACTGC	ACAGTATAAA	CTTTTCCACC	57060
AATAAACATT	ACCCAATAAA	AAACACAAAC	AATAATTGAA	ATTACAAGTT	CAAGAATAAT	57120
GGAATATTTT	CTATTAGAAT	ACATTCCCAT	TGAAAAAGCT	AAAAAAAAA	AAAATAAAAC	57180
TGAAAGTGGT	AAACTAATTT	TTTGATAAAA	TTCAAGATTA	AACAGAGCCA	AATTTTGCTT	57240
CATGCTTCTA	TCTTGATAAG	GTTTGAAATT	AAATTTAAA	TTATACATAT	AGTTTAAATT	57300
TTCAAAAACA	TAAGATTCAT	CCACATAATA	GTTTTGATTG	TAAAATAAT	TTAAATAAAG	57360
ATTTGAAAAA	TTTAAACTTA	AAAAGTCTCC	TTCTAGATTA	TATATTTTTT	TTGAATCTGC	57420
AATTAAATTA	TTTTGCTTTT	TAATTAATTT	TATAACATCT	CTCATGCTCA	TTTGTGAAGG	57480
AGTTACATAA	ТТТААТАААА	AACTATCACT	AAATGTAACC	TGATCGATTG	AATATTTCAT	57540
CTTATCTGCA	TAAAAATAAT	CATAAAATCC	ACTCTCACTG	TCTGTTAAGG	CAATAGATAG	57600

	`			•		
AAAACAAATT	CGCTTTAGCT	AGCAATTCT	191 C TGCTGTGCTC	3 АТТСТСАТТА	GTTACTATTT	59400
TATTCAAATA	ATAATTTGTC	AAGCCAATA	TTTTTTTAGO	ATAACTTTCC	CTGGCTTTTT	59460
ТААААТААА	ATTATTTTCT	TTTAAAAAA	CATCACTAAG	AAAAAAAGAT	TCATTATCTT	59520
TTAATCCTAT	CAAATAGTCT	CTTTTAAATT	TACCCTCATI	ACTCCCAAGA	ACAACATTAT	59580
TATCATCAAT	AATGACTGCT	TCTTTTTCT	TCTCTACAAT	° АТСАСТААТА	TGAGAATCTT	59640
GAATAGATCT	ATCTGTAGTA	AGGCAGGAAA	AAAACAAGAA	AAAACATATA	AGACAACCTT	59700
ТАААТАААТТ	ATTCAAAACA	AATTTCATAT	TATTTTAATA	. АТСТТТАТСТ	CTAACAATTT	59760
CAAGATCAAT	TTTTCCAAAC	TTGTCTATAT	СААТТАТТТ	GACCTTAATT	CGCTGACCTT	59820
CTTCTAATTT	TGGGGGTCGA	ACTAACCCCG	CATTACCTCT	TATATTCTCT	CCACCGCCAC	59880
CAAATCTAGA	ATATCTATTA	CTATTCCCAA	ATCTTCCAGA	ACCATACTTA	CTGTCTCTGG	59940
GTTTCAAACG	AGTACTTAAA	AATCCTTCCT	TTGCAGGAGT	AAGTTCAATA	AAAGCCCCAA	60000
AGCTATTAAT	CTTTTTGACA	GTTCCTTCAT	AAATTTCGCC	TACCTTTGGC	TCTCTTACAA	60060
TACTCTCTAT	TCTTTCTTTA	GCTTTTTGCA	TCTTAAAATC	ATCATCCCCG	AAAAGAATGA	60120
TTTTTCCATT	CTGCTCAATT	TGAACCTTAA	CTTCAAATTC	ATCTGTTATA	GCCTTAACAG	60180
TTTTTCCAGT	AGATCCTATC	ACAAGAGATA	TCTTGTCAAT	GTCAATTTGA	AGTTGAACAA	60240
TTTTAGGAGC	ATACTTAGAT	ATACCAACTC	TTGAATTAGA	AATTACAGTA	TTCATAATAG	60300
ATAATATATG	ТАТТСТАССТ	ATTCTTGCTT	GCTCAAGAGC	ATCTCTCATT	AAATCTTTAG	60360
TAACATTTTC	ААТСТТААТА	TCCATTTGAA	ATCCAGTAAT	TCCATTTTTT	GTACCGGCCA	60420
CTTTAAAGTC	CATATCACCT	AGATGATCTT	CTTCTCCAAG	AATATCACTT	ААААСТАСАТ	60480
ATTTATCCCC	TTCGCTAATA	AGCCCCATGG	CTATCCCCGC	AACCTGCCCT	TTAACAGGAA	60540
CCCCTGCTGA	CATTAAAGAC	ATGCTCCCAG	CACAAACAGT	AGCCATTGAA	GAAGATCCGT	60600
TAGACTCTAA	AACCTCAGAA	ACTACCCTAA	TGGTATAAGG	AAAATCATTT	TTTCCAGGAA	60660
CCATTGATTC	TAAAGCTCTT	TGAGCTAAAT	GACCATGGCC	AATCTCGCGC	CTGCCAGTCA	60720
TTAGTCTACC	GGTCTCACCA	ACTGAAAATG	GGGGAAAATT	GTAGTGGAGC	АТААААТТАА	60780
GGCGTTTATC (GCCATCAATA	TCATCCATTA	TTTGTTCATC	AATGCTTGTA	CCAAGAGTAG	60840
TTACCGCTAA	AGCTTGCGTC	TCTCCCCTTG	TAAAAAGCGC	AGATCCATGC	GTTCTACTTA	60900
AAATATCAAC '	ITCTGAGATA	ATATCTCTTA	TCTCATTAGG	AGTTCTGCCA	TCTGTTCTAA	60960
TATTATCGTT A	AAGAATAGAG	CTTCTAACAA	TCTCCTTCTC	AAAATCATCA	AAAGCCTTAT	61020
GAAAAAGAGA :	PTCATTGCTA	TCAGTCAATT	TCTCAAGAGA	AGAAAAGTAC	ТСАТААGАТТ	61080
TATTTCGCAG (CAAAGTTATG	GCTTTATCTC	TATTAAGCTT	TCCCTTAACA	AAACAAGCTT	61140

CTTTAAGATC AGCA	ТАААСА АААТСССТА	A GCTCATCTTT	' AAATTCAAAT	ATTTTTTCTT	61200
CAAAAGCTAA AGGAA	AGTTTT TCCTTCTTG	C CTACAATATC	ТАААААТТСТ	TTTTGAGCAT	61260
TACAAATTTG CTTAA	ATATAT TCATGAGCA	C CATCTATTGC	TGAGAGCAAA	ATATCCTCAC	61320
CAACCTCATT AGCAC	CCACCT TCTACCATA	G ТААТТССАТТ	TAAACTTCCG	GCAACAACAA	61380
TATCAAGATC AGAAT	TCATGA ATCTCTTCA	A ACGAAGGGTT	ТАСТАТАААС	TTACCATTCA	61440
AATAAACCAT TCTAA	ACAGCT GCAATTGGA	C CATTAAACGG	AATATCTGAC	AAAAAAACTG	61500
CCGTAAAAGC AGCAI	TTCATT CCAACAATA	T CAGGAGGATT	AAGCTGATCT	GTAGCTAAAG	61560
TTGTAGGAAT TACTT	TGAATT TCTCGACCA	A ATCTTTTATC	AAAAAGAGGT	CTCATCGGCC	61620
TGTCTATTAG TCTGG	GAAACA AGTATTTCT	T TATCCTTTGG	CTTTCCTTCT	CTTTTGATAA	61680
ATCCTCCCGG AATTT	TTACCG GCTGCATAA	T ATTTCTCATT	ATATTCAACA	GAAAGCGGAA	61740
СААААТСТАА АТСТТ	PCTCTC ACGTTACTC	G AGCAACAAAC	AGTTGCAAGA	ACCGAAGATC	61800
CACCATAAGT TGCAA	AGAACC GATCCATTA	G CCTGTTTAGC	CATAAATCCG	GTCTCAAACA	61860
CTAACTCGTC TCTGC	CCTATT TTCAACTTT	A ATATTTTCCT	СААААТТСАА	CCTCTTTTTA	61920
TTTTCTAAGA CCAAG	STTTAG ATATCAACA	r cctataagct	TCTAAATCTT	TTTTCTGGTA	61980
ATACCGCAAT AAACT	TTCGCC TTTGCCCTA	TAACTTTAAC	AAGCCTCTTT	TTGAACTATG	62040
ATCTTTTTTA TTTAT	CTTTA AATGTTCAG	TAAATACTTT	ATTCTACCTG	TAATAAGTGC	62100
AATCTGAACC CCAAC	CAGAAC CAGTATCAC	TTCATTTTTT	CCAAATTCAG	AAACTATTTT	62160
TTGCTTTTGC TTTTT	PATCTA TCATAAAGC	A ACTCCTATAC	CATTATAGCA	AAGCTCTAAC	62220
AAACCTCTTG CCATA	ATTTA AAATAACTAG	TACGATAGAT	ТАТААТАТТТ	TTTCTTAAAA	62280
ATAACAAAAG CAATT	TATCC TTTTCGGGT	ATAATTTTTAATA	ATAAATTATT	AAATTGTTTA	62340
ААААААСААА ТАТАА	AAATTA AAATGTCATA	TATTTATATA	AATTAAAATA	TAATGACATA	62400
TTTATATTTA TTCAA	ACCCA CTCCTTGAAT	TACTGCTAAT	ATTTTCTCTT	CTCTGGATTT	62460
TAAAATTTTA AATTC	ATTAA TATTGATTTO	AATTTCAAAA	TAAACACCAT	TTTTAACAAG	62520
ATTTATCTTA TTAGA	ATCAA TGTAAACCTT	TTCAAAACTT	TTTAAAGATT	CTAGACTAAT	62580
TAAGGAAGCT TTACT	CAAAT TTTCACACAA	TGTGGAATCT	ТТТААТСТАА	ACATACCTAC	62640
TTTAGTCCTT TTTAA	ATTAC TAACATACGO	GCAAGAATTT	AGAGAATATG	CCAAATCTCT	62700
TGCAATACTC CTAAT	ATAAG TACCTTTTGA	ACAGCTAATT	TTCAAACTAA	GCAAAGAAGA	62760
ACTAAAATCA TAACT	ТААТС ТТТБААТАТТ	' ATAAACAGTG	ACTTTTCGTT	ТТТТААТТТС	62820
AAAAAACTTT CCATT	CAAAG CAAGTTTATA	GGCTCTGCTG	ССАТСААТАТ	GAACAGAAGA	62880

AAATCTAGGA	GGACTTTGAT	AAATCTCTCC	TACAAAATCT	TTAAGCTTTA	AATCTATATC	62940
CTCTACATTA	GGAATATAAT	CTGTTTTACT	AACTATTCTT	CCATTCGGAT	CAAGGGTATC	63000
TGTTTCTAAT	CCAAATCTGA	ATTCTGCTAC	ATACTCTTTA	TCTAAAGAAG	ТААААТААСС	63060
TGAAAGCTTT	GTGTATTTTC	CCACAAGACA	AACCAAAATT	CCACTTGCAA	ATTTATCAAG	63120
TGTGCCAGCA	TGCCCAACAC	GATTTGTATT	AAAATATTTT	TTTATAGGGA	AAAGAGTTTC	63180
AAAAGAAGTT	TTACCTTGTT	CTTTATTAAT	TAAAAGGAAT	CCATTTTCCA	AATTTAATTC	63240
TCTCTTGTAG	TATTTAATCC	TTCAATTAAC	TTATTAACAT	AAAATGATTT	GGAAAGAGAA	63300
ТСАТССТТАА	САААТААТАА	TTTGGGAGTG	CTTCTAACTT	TAATTCGCTT	AATAATTTGA	63360
CTTTGAATAA	ATCCCTTAGC	ATTATTTAAA	GCTTTAACTG	CATTGTCCAA	AGAAGCACCT	63420
TCCTTAATAG	AGCCCATAAA	CACTTTAGCA	ТТТАТТАААТ	CTTTTGAAAA	ТТСТАСТТТА	63480
ACCACGGTTA	AAAATGAATG	AATTCTGGGA	TCTTTAATCC	CCCCACTTAC	TATTAAATTG	63540
CCGATTTCTT	GAGCAATAAA	ACTTTCAAGT	TTAAACTTTT	TAATATTCTT	ATACATAAAC	63600
ACATATAAAT	AAAACAATAC	TAAGTTTTAA	AAGATTTTT	AACCTTTTTT	ACCTCAAATG	63660
CTTCAATTAT	ATCTCCTTCT	TTAATATTAG	CATAATTATC	AATCATAATA	CCACACTCAT	63720
ATTGCTCAGC	AACTTCTTTA	ACATCATCTT	TAAATCGCTT	TAAAGATGAA	ATTTTGCCGG	63780
AATGAATCTG	TAAACCATCT	CTCATTACAT	TAGTAATCGC	ATCTCGCTTT	ATTAGCCCCC	63840
GAGAAACATA	ACAACCGGCT	ATTACCCCTA	TTTTAGGAAC	ATTTATTACA	GCTCTCACTT	63900
CAGCAAAGCC	AATAAACTGC	TGCTCAACAT	CTGGCTCAAG	CATTCCTTCA	AGAACTGACC	63960
TAACATCATT	TATAGCATCA	TAAATAACAT	TGTACTTTCT	AATCTCAACT	TTTTCCTGAT	64020
CTGCTAGTAC	CTGAGCTTTT	GCAGTAGGCC	TTACATGAAA	TCCAATAACA	ATAGCATCGC	64080
TTGCTGAAGC	AAAGCTAATA	TCTGTTTCGG	TTATTACCCC	TGCTGATGAA	TGCACAACTC	64140
TTACTCGAAC	CTCATCGTTT	GTTAATTTTT	CAAGAGAATT	CTTTAAAGCT	TCCACTGAGC	64200
CTTGAACATC	TGCTTTTAAA	ATTATTTAA	GCTCTTTAAG	CGCTCCTTCT	TTAATTGAAT	64260
CATAAAGATT	CAACATAGTA	ACTTTCTTTA	CATTTTTGGA	AGATTCATAT	TTTTTAAGAT	64320
CTTGTCTTTT	AGAACTGATC	AATTTTGCTT	CTTTTTCAGT	TTTAGTTACT	TGAAAAGGAT	64380
CCCCGGCTTG	AGGCATTGAA	GAAAATCCTA	AAACACTAAT	GGCTTTAGCG	GGTCCAACGC	64440
TCTTAACAGA	AACACCCTTT	TCGCTAATTA	ATGCCTTAAC	TTTACCATAG	CACGCTCCAC	64500
CCACAAAAGA	ATCTCCCACA	TAAAGCGTTC	САТССТСААТ	AATAACAGAA	CAAACTATTC	64560
CGCGCCCCAA	ATCAATCTTG	GCATCAAGCA	CTTTTCCAAT	AGCTCTTTTG	GATGGATTTG	64620
CCTTTAACAA	CATCATATCT	GACTGTAAAA	GAATCATATC	AAGTAGTTCA	GAAATTCCTA	64680

TATTTTTAAG	AGCAGAAATC	ATCACAAAAA	TAGTATCTCC	CCCCCAATCC	TCAGATACTA	64740
AACCGTATTC	TGAAAGCTGG	TGTTTAATCT	TATCGGGATT	TGAATCTGGT	AAATCAATCT	64800
TATTTATAGC	AACAATAATT	GGAACATTTG	CCTCTTTTGC	ATGATTGATA	GCCTCAATGG	64860
TTTGGGGCAT	AACACCATCA	ATTGCTGACA	CAACAAGAAC	AACAATATCT	GTAACTTGAG	64920
CCCCACGACT	TCTCATCATA	GTAAAAGCTT	CATGACCAGG	AGTATCTAAA	AATGTTATTT	64980
CTCGATCATT	АТАААСААТА	GTATAAGCTC	CAATATGCTG	AGTAATACCA	CCGGACTCTG	65040
TTTGATTTAT	ATCTATATTT	TGAAGCACAG	AAAGTAGTTT	GGTTTTGCCA	TGATCAACAT	65100
GACCCATTAT	TGTAATAACA	GGAGGCTTTT	CAACTCTTTT	GCTTTGATCT	TCCACTTCTT	65160
CTTCTATAAC	CGTTTCATCA	TAAATAGAGA	CAACATTAAC	TTTTGAACCA	TATTCTTCAA	65220
CTAAAATAGT	TGCAGTATCA	GAATCTATCT	TTTCATTAAT	AGTAACCATT	ACGCCCAAAG	65280
CCATTAATTT	AGCAATCAAA	TCAGAAGATT	TTAAATTCAT	CTTTCTTGCA	AGATCAGAAA	65340
CAGTAATGCT	ACCCATAATG	TCAATTGACT	TTGGAATAGG	GTTGGCTAAA	TTTTCTCTCT	65400
TCTTTTTCTG	AAGTTGTTCA	AAAACTTTTT	GTTCAATTGT	TTTGCTCTCA	GTTTCTGCTT	65460
TTTTTCTCTT	ATAGCTTTTT	TGACTCTCTT	GTTGCTGTTT	TTTTTTCTCG	CCAAGCTTAC	65520
GATTTAACTC	TTTACTATTC	TCAGAATCCG	CTGCAGGTGT	GCTGCTAACA	ATAGCGGGAA	65580
CTTTAGTTTT	TATAAGTCTT	CTAAAAGACA	TAGAAGTAGT	AGTATATTTA	TTTTGAGAAT	65640
TATTTTTGGC	AACATATGTT	TTCTTTACTG	AACCTTGATA	TTGAAAGGAT	AAGCTGTCTC	65700
TGTTTTGTGA	ATATCCACCA	GTTCTGTTAT	CTCTGTTTTG	TGAATATCCA	CCAGTTCTAT	65760
TGTCTCTGTT	TTGTGAATAT	CCACCAGTTC	TATTGTCCCT	GTTTTGTGAA	TATCCACCAG	65820
TTCTATTGTC	CCTGCTTTGT	GAATATCCAC	CAGTTCTGTT	GTCTCTGCCT	TGTGAATATC	65880
CACCTCTATT	ATCCCTATTT	TGTGAATACC	CACCAGTTCT	GTTGTCTCTG	TTTTGTGAAT	65940
ACCCACCAGT	TCTGTTGTCT	CTGTTTTGTG	AATACCCACC	AGTTCTGTTG	TCTCTGTTTT	66000
GGGAATATCC	ACCAGCTCTA	TTGTCCCTAT	TTTGTGAATA	TCCACCAGCT	CTATTGTCCC	66060
TATTTTGTGA	ATACCCGCCA	GTTCTATTGT	CTCTACTTTG	CGAATATTCA	GCCTTATTGC	66120
TGTTATTATG	CAAATCAACA	AAGCTATTTG	AATCATTTTT	AACGCTTAAA	TCATTATATG	66180
TTACAATTTT	TACTACCTTC	TTTTTCAACT	ТААТААТСТТ	AACTTTTTTG	CCATCTTCAT	66240
TTTTAATATC	ATCAATATTT	TTCGACAAAC	CTACTCCTCC	ТСАААСТСАА	AACTAAGCCC	66300
TATTTTACAA	CCCGGACAGG	AGGTCATATT	TTCATTAATA	ACAACACCGC	ATTCAGGACA	66360
AAGAAGCTCT	TCATCTTCTT	CTACCTTTTC	CATAGACTCA	TCATTGTCAT	TAGCAATTAT	66420

TAAACTAAAC	CTTAAGTCAA	GGTTAACACT	TAGCAAAAAT	AATGTCAACA	TTAAACCAAA	68280
TTATAAGATT	TGGCCAAAGA	AAGCTTTATC	ACCTTATAAG	CTCCCAATTG	CATAATAAGA	68340
TCTTCACAAA	TGCACATAGA	TGCTCCTGTG	GTAACAATAT	CATCAAGTAA	AACAATCTTT	68400
TTAAACTGAA	AATTTTTATA	TTTTGATCTT	AATTTAATCT	TATTTTCAAG	TAAATTTTTTA	68460
CTAAGATTCC	CTTTCATTAA	CTTCTGGCTT	TTTCCATACT	TTCTTGAAAA	AATATTTATA	68520
TAATTAAAAC	CAAAACGGCT	TAACAAAATA	CCAATGTATT	CCATATGATC	AAAACCATAA	68580
AATAATTTTC	ТТТТААААСТ	ACAAGGAACA	GTTACTATTT	GATCAAAATC	AATATTATTT	68640
AAACATTCAG	CAATTCCACT	TGCCAAAAAT	CTACCAATTG	ACTTTTGAGC	ATCCCTTTTA	68700
TAAGACAAAA	TTAAAGATTT	GTAATGCTCT	ТТАТАТТСАА	ТААААТАААА	CAAATTCTCA	68760
ТСАААТТТАА	TGTTAAAATT	AAAAAGTGAC	TTACATTGGT	CACAAAGAGC	ATTAGAAGAT	68820
ACATACCTTT	TTCCACAAAA	GACACAAAAA	GGCAAAAATA	TACTCTTTAA	AACATTTAAA	68880
TAGCTCATAC	TAACTGGACT	GAGAAATAAC	CTTTAAAACA	ATTTGATTTA	ACAGCTCAAT	68940
TGATTGAAAA	GGAGTAATAT	TATTAATATC	TATGTTAGAA	ATAAAATTT	TTAACTCTAA	69000
ATACTCATTT	ААТТТААТАТ	GAATATCAGT	GTCATTTTTC	AAGATCTCTT	TATCATTACC	69060
ATCAGAAGAA	ACATGGGGAA	GAAACTCTAA	ACAAGAGTTG	CCCTCTCGGC	CCACCAAACT	69120
TTCTAGAATA	ACATTAGCTC	TATCTATTAC	CCTTAAGGGA	AGTCCTGCTA	TGCGAGCAAC	69180
АТАААТАССА	TAAGAATTAA	GAGATGGCTT	TTCTTCAACT	TCTCTTAAGA	AAACAAGATC	69240
GTTGCCCTGC	TTTTCAATTT	TCATTGAAAG	АТТААТАААА	GCCTGATGAT	TAATAGACGA	69300
CAATTCATGA	AAATGTGTGG	CAAACAAACT	TCTAGCTTTA	АТАТАСТСТА	АААТАТАСТС	69360
TATAATAGAA	TAAGCAATAG	CAAGCCCATC	ATTTGTGCTA	GTACCTCTTC	CAACTTCATC	69420
CATAATTATT	AAACTCTTTT	CTGTTGCATT	CCTTAAAATG	TTGGCTGTTT	CATTCATTTC	69480
ААСТААААА	GTGGATTCCC	CTTTGGCAAT	GTTATCACTT	GCTCCAATCC	TGCAAAAAAT	69540
TTTATCTGTA	ATACCTATTA	AAGCTTTAGA	AGCTGGCACA	AAAGAGCCTA	TATGCGCCAT	69600
TAAAGTAATT	AAAGCCACCT	GACGCAAATA	GGTTGATTTA	CCTGCCATAT	TAGGTCCAGT	69660
AATTAAACAA	AAATACTTTT	СТТТАТТААТ	TCTTACAAAA	TTTTCAGTAA	AGATTTCAGT	69720
ATTTTTAGTG	TAGTGCTCAA	CAACAGGATG	CCGAGACTTT	TCAAGAAGAA	TTTCTTTACC	69780
AGATGTCAAT	ACAGGCCTTT	TATATTCATT	TTTTTTTGCC	АААТААССАА	AGTTAACAAC	69840
ТАААТСААТА	TATGCAAAAA	ATTCTGCAAC	CTTTTTAAGA	ACTTTATTAT	GCATAACAAC	69900
ATTTGATGCT	ATTTCATCAA	AAATTTCCTG	TTCAAAAGCA	ACCACATTAT	CTTCAGCATT	69960

ATTAATATCC ACCTCAAGAG AAATAAGTTT TTCTGTTTTA TATCTTTTTG AAG	GAATTTAA 70020
AGCTTGGCTT TCCATAAAAT GTGGTGGCAC TTGAGCATAA TTACTCTTTG TAA	ACTTCAAA 70080
AAATAACCCC CTATTATTAG TTTTTCTAAT CTTTAGGTTA TTAATCTTGC TAA	AGCAATCT 70140
CTCTGATTCA AGATATTGAT CAATATATTT ATTTGCATTA ATCTTTAAAT CTT	TTTAAGTT 70200
ATCAAGCTTT AAGTCATAAC CTCTTTTAAT AAGTTCATCA GGTGCACTTG AAA	ATTGCACT 70260
ATTTATCAAA AAATAAACTT TAGAAATACT ATCCTCTTCA AATTTATCAA AAT	ITCCAATA 70320
ATCAAAATTA TGCTTGTCAA ATAACTTTTT TACCGTAAAA AATACAGAAA GAG	GCTTTTC 70380
AATAAATAAA AAATCTTTTT TAATATATCT TTTCATTTGA ATCCTAGATA TT	ATTCTCTC 70440
AATATCCCAT ATATTAATAA AAGTTTCTCT TAAAGTCACA GTCAAGCTAA TA	TTTTGCA 70500
AAAAAATTCA ACATGATCTA GCCTGGTATT AATCTCAGAA ATATTTAAAA TTG	GGATTTAA 70560
AATAAATTCT CTTAAAAGTC TCTTTCCCAT TGCAGTTTTG CAATCATTTA AC	ACAGAATA 70620
TAATGAATAT TGAGAAGAAA AATCATTATT ATTTTTTACA AGTTCAAGAT TA	ACTTGAGT 70680
TACGTCATCA AGAAACATGT ACGAAGAATC ATTATTGATA TCTATTTAT CA	ататтаст 70740
TAATAAATTT TTTAAATTAT TTTTTATATG ATTTATAATA AGAAAAATTG AA	ATGTAATA 70800
GGGCTTTTCC TCATCAAATC CAAGAGAGCT CAATCCAAGT ATGTTAAAAT GC	ТССТТТАТ 70860
TGTTTTTATT GCAATATCCT TATCAAGATG CCAAGTAGGA ACTCTGTTAA TT	АААААТСТ 70920
ACTAAGATTA AGCTTCTCTG AGTATTCATA ATAAAAATTT TCAGAAACTA TT	ATCTCTTT 70980
AGGAGAGTAT TTCTCAAGAT CCCTTTTAAG TTTTTCAAAA AAACCATTCT CA	TAAAACAT 71040
TATTCCAAGA CTGGAAGTAG ATAAATCTAT ATAAGAAAAC GAATAATAAT CT	TTATAATC 71100
ACTAATAGCA ACTAAATAGT TATTAATATC ATCATTTAAA AAATCTTCAT CA	ATAATAAC 71160
GCCTGGGGTT ATTACCTCAA CAACCTCTCT TTCTAAAGGC CCCCCAGAAG TA	GAATTGGA 71220
CGCTTGTTCA CAAATTGCAA CCTTTTTATC AAATAAAATT AATTTCCTTA TA	TATTCTTT 71280
ACTGGTATGA TAAGGAACCC CACACATTGG AACATTTTCT CTTTTTGTCA AC	CGTTAAATT 71340
AAGAAGCTTG CTTACCTCAA TTGCATCATC AAAAAACATT TCATAAAAAC TT	CCTACTCT 71400
GAAAAAAGA ACAGCATCTT TATATTTTTT CTTGATATCT AAATACTGCC TT	CATCATTGG 71460
GGTAACATTT TTTTCCATAT GCTTCCTAAA TAATATTGAA TTACAATTGA TA	ATTATAAA A 71520
TAAATATAAT TCAATTAAAA AGAAAGAATA TAAAATAATA AAAAGACCAT AA	AAAAAAATA 71580
TTTTACGCAA TTAAACGCTA TTTAATTATT AAAAAGCCTA ATGTTTTAAA TT	TTAATTAAC 71640
TTTAAGGGTT TTTATTGTCC TTTTCTAAAA GATGCTTAAC AACATCGTTT GT	ттататсаа 71700
CAGTGCTATT GTGGTAAAGA ATATATGGAT TATTTTTTT CATAATCAAA GA	AAAACCCAT 71760

TAATTTCTGC	AACATATTGA	ATACCACGAA	GTATTTTACT	TAAAGATTCA	СТАТТАТТАТ	71820
TTAAACTATT	AATATTGGCC	AATCTCTGCT	GTTCTAAATT	ATTCTTTGCT	AAACTAGACA	71880
CTCTCTTTAG	CTCATCAACT	TTCAAATTAT	ATTGATTTCC	AAAAGATCTT	GCATTATCTA	71940
AATCATTATC	AGCAATCGAT	TTATCATACA	TATGTTTTAA	ATTCTTAAGC	TCTAAATTTA	72000
ACGTATTTAT	TTGTTCTTGA	TACCGATTTT	TTATTTGATC	AAGATTAGCT	TTCAATTGAG	72060
GATTTAAAAC	TTCAATCACA	ATTCTATCAA	AATCAACAAT	TCCTATCTTA	ATAACATCTA	72120
TCGAAAAAAC	ATTAAAAGAT	AATAAAAAAA	ACAATGGTAA	ААТСАААААА	AACACAAATT	72180
TCTCCATAGC	ATTAATCAAT	ATCTCATCTC	AATTCCTAAG	AAAAATTTAA	ATCCAGAATA	72240
ATATTTGTAA	TAGCTGTTAA	CTTTATCATT	GTCAAAATAA	AAAGGATAAG	CTATTACAAA	72300
AGACAGCGGC	AATTGAGGTA	AAAGACTTCT	AATTCCAGTT	CCCCAGCTAA	AAGCAAAACT	72360
ACTAAAAGGT	CTAAACAAAG	AATTTTCTTG	CCCTTCTAAA	GAATAGGAAG	СААААТСТАТ	72420
AAAAAAAGCA	TCCCAAACTA	AAATATTTTT	TAACAAAGGA	ATAGATATCT	GCACAGTATT	72480
TACAAAAGAA	CTGTAAATAT	TTTTCAAAAT	CCCCCAACCT	CTAGCCTGCA	TAAAATTTTC	72540
ACTAAGAATT	ATGTGGTGAT	GGGGTTGAAT	TTCAATTTCA	AAACCATTAC	CAAGAGGAGG	72600
ТААТАТАТТ	GAATAGACAC	TCCTTAAGGT	СААААТААТА	TCAAAATAAG	GAGTAAACAC	72660
ATCCTCATAT	CCCAAAAGAG	AAAAATATCT	CTCAAAAGTT	GTAGAAGATT	TAATAAAATG	72720
GCTCTGACCA	AATAAAAATC	САССААААА	ATCAAACTGT	TGCTTAAGTA	AAAATCCATT	72780
ATTAGATAAA	GAGGTAGAAT	TTCTTGTATC	CCAAGCCGCG	СТСАААСТАА	GAGAATTTTC	72840
AAATCTAAAA	GTTTTATAAT	TGTCTCTTAA	ATAATAATTT	GAAGGTCTGT	TAACCTCATT	72900
АТСАТАААА	ACATATTTTA	AAGCAGTTTG	CAAAGTGCCA	AGAAGGGTTT	GTTTGCCAAG	72960
ATAATTAGAA	AAAGTATACC	CGGTAAACGC	тссааааста	AGTTTaAGCA	AAGAATAATT	73020
CATAGCATTA	AAATCGGAAA	AGCTTTTAGC	ATCTCGATAT	TCTTCCCAAC	TTGTAAATGG	73080
ATCAGGAACT	TCCCTCTTGC	CAGAAAAAT	AGGCCCATTA	ATATCCTGAT	AAGCAGTATT	73140
AACGGAATGT	GAAAAATCTA	TAAATCCACC	TACGGTCCAT	CTTTTTTGAA	AAAACCAATT	73200
ATCTCTAAAT	GTCAAACTAA	GACTTTGCTC	TAAAAAAGAT	AAATTTAGTC	TTGCTGCAAA	73260
ATAATAGCCT	TCGCCTAAAA	AATTAGAAAG	CTCCCACTGC	CCAAATACTG	AGAATGGAAA	73320
TGAAGAATTT	GAATTGCCTC	CAAAATTCAT	ACCAAATCCA	AAATTACTTG	TTGCTCGCTC	73380
CTCAATGTTT	AAATTTATT	TCATAAGCCC	TTCTGTATTG	CCTGGAACAA	TATCAGGAAT	73440
TACATTTGAA	AAATAACCAA	GCTGCTGTAA	ATTTGCCATA	CCCATCTTAA	ACTTGTCCAA	73500

ACTAAAAACA TCTCCCTCTT	GAAGAGGAAT	CTCTCTAAGT	ATTACATGCG	AAGCTGTATT	73560
TTTATTTTTA GAAACAGTAA	TAGACTCAAT	ATGAGCTTTA	TCCTTTTCTA	AAATTTTAAT	73620
TAACAAATCA ACAAATTCCC	CTCTTATCTT	TTGCGAAGGA	ATAATTTCTG	TAAAAATATA	73680
CCCTTCTCTA AAATAACTTT	CCTTAATTTT	GACAAAATCC	TGCTCAAATT	TAGAATCATT	73740
AAAAATATCA CCTTCGCTAA	AGGTAATAAA	ACTTTTTAAT	TCTTCCAAAC	TAAAAACTGA	73800
ATTACCAGAA ATTTCAAGCT	TTCCAAATCT	AAAAACATTG	CCTTCTGAAA	GAAAATATTT	73860
CAAAAAACT TCCTTTTCTA	GTCTTTTAGA	ATCTTTAAGG	GAATCTTTAA	TATCAACAGT	73920
GCTATTGATA ATCTTAACAT	СААТАТАТСС	ATTATTTTTA	TAAAAAGACT	CTAATTGACG	73980
CTTGTCTTTA TCAACATTAC	TTTTTAAATA	TTTACCATCT	GAGAAAAGAG	ACACTACTCT	74040
TGATGCTAAA GATTTCCTCA	AGGTACTGCT	TTTAAAGCTT	AAATTTCCTT	CAAAGTCAAT	74100
CCCCTTAACA ACATATTTGG	GTCCAGCTAC	ТАТАТТАААА	АТААТАТСАА	CTAAATTTCC	74160
TTCTTCTTTG ATTTCAAAAT	TTGCAGAAAC	CTCAAGATAT	CCCATGTCTT	TATACATCTC	74220
TTCAAGCTTG CCAATACCTT	TATTAACACT	TGCAAGATTT	AAAGGCTCAT	TGGTTTTAAT	74280
ATTCACCTTC TCAACAAGTT	CGCTATTCCA	AAAAACTCTA	CTGCTATCAG	AAAAAACAAC	74340
AGAATTAACT AAAGATTTTT	CTTTTACAAT	AAATGTAATA	AAAAGATCCT	CACCATCTAT	74400
TTTAAATATA GGCTTAATAA	GCCCAGAAAA	ATAATCAAGA	GAATAAAGAT	CAATTTGCAA	74460
TTTATCAAAA ATTTCATTAG	AATATGACAC	GCCAATGTAA	GGTTTTAAAA	TATTAATAAA	74520
ATCTCTCTC TTCTTATTCT	TAAGTCCTTC	AAAATTAATA	СССТТТАТТА	TTTTCCCCTT	74580
GTAATTTCA ACTTGACCAA	AACTAAAAAC	ААСАААААТ	ATTAAAAAAC	TTACAAAAAA	74640
CAAACCTCTA ATTGAACCCA	TCTTAACCTC	TTAACAATTT	AATATTTAAA	TTTCCAAGAA	74700
ATGCCTATAT TATTTCCTAT	TCCATCTAAA	CCTTTTTCA	TAAAATTGTA	ATCAAACTCA	74760
TAATTAACCA AAAAAAATGG	G AGAATCAAAC	TCAATACCCa	AATTGACAAC	аАААТТТААА	74820
TCTTTTGAAA AAGGAGACAT	TTGTTCTTTC	: AAAAAACCAA	AGCCCCCACT	AATAAAAACA	74880
CCCTCAACAA GATATTTGCC	TACCTTAACA	CTTGTATTGT	CAAGAACATC	AACAAAAGTA	74940
GGATTCCCGA TTTTGAAAAA	ATTACTATTA	ATAGAATTTT	TCAATATATC	TGTCTTTATA	75000
CTCAACAAGT CTAAGTTTAA	TACAGAACGO	ATATAATCTT	CAATGGGTTG	AAAAAAAAA	75060
TCAAGAGCAA TGTCACTTAG	TATTCCAATT	GCCATTTCAG	CAGCATTAGT	CCCTGCCGAT	75120
CGCAATCCTC CCTCATACCC	TCCTATTGT	GAGCCTGAAA	GCAAATATTT	AATTTCCTGC	75180
TCATTTCTAG AAGGATAAGA	A CATAAACTC	A ATTTTCCATA	AACTTAAAGO	G ACTATCAATG	75240
CTTATTGTAA CAAGCAGTT	r atcatttct/	A TCCTTAATAC	TATTTGTAGO	CTCCGCTTTT	75300

ATCCATGGAT CAAATTTAGC CCTACTCTCA TTAAAGGATA TATAAGAGCC GCTTTTAAAA	75360
ATAAATTTTT TATTATTATA ATTAACAAAA CCACTTGCAA TATTCAAATC TCCCTTAATA	75420
ATAAAATCAT CTGTTTTTGT GTCAGATTTT ATTACAAGTT TATCCCCTCT TGAAATAGTA	75480
GCTTGTAAAA AAGAAATATT ACTATCTGGC CAALGAAAAG TAACACCGCT GTCAAAATTT	75540
ATCTCAAGAT CAGTTAAAAT ATCAAAATCT AGAAGATTAA TATCAGTTTG CAATCTTTTT	75600
GCTCGTTTGA AAGGATTTAT TAATAAATCA ACAACAGAAC TTTCAAGAGA ATAAACCCAA	75660
GCATTTGAAA TATTTAAAAT GCCTTTAAAC ATAATTTCAT CAGCATTTCC TTCAATTGAA	75720
AAATCGCCTA AAGCATAGCC TGTAAAGCTT AAGGCAATTT TTTCAAATTT AATAGGAACT	75780
CCCGTTCTAC CAGTCACATT AATATCTATT TTGTAATAAT CAATAATAGT ATCACTTAAA	75840
AAATTTAAAT TTAAACTAGT AGAAACAAAA ATCTTGGAAT ATCGATCTAG GTTAAACTCA	75900
TTACTAAAAA TGATTTTATT ATCCTGAATT GCAACTGGCA TATCAAATAT TTCTAAAGCT	75960
CTATCACCAC CAAATTTTCT AGAAGCTCTT AAATACTCAG TGCTAATTGA TCCTTTTTGA	76020
ATATTTAAAC TTCCATTAAT ATTAGGATTA TACAAATCCC CATCAATATC GAATTCACCA	76080
TTTAAAACAA GATCGTAAAG AATAAAATGA TTGTCAACAT TAAATAAAGA ATGTGAATCC	76140
AAAAAATCTT TGGTGATTAT TTTTGAATCA AATTTAATAT CTCTCACATT TCCAAGAATT	76200
TTATTTTTAA TTATTTTGCC TGACGAATTA AAACTAAGGG GCAAATAATC TTTTAAAATA	76260
AAGCTATATT CCCCACTGCC ATAATGATAT AAAACATTAA CAAGGTCATA ATCAATTGAA	76320
GCCATATTAA ATTTTTCAAA ATCATTGCTA AATTCAATCG TAAGATTGGA TAAAGATTCA	76380
TTTTTATACT TAATGTCTCT AAAGAAAAAT TCGCCCTCTG TTTTGGTTTT CAAAACTCCA	76440
AATTGCTCTT CAACTCCACT TTGGAAATTT CTAAAATTTG CATTAAACCT GTAAGAAAAC	76500
AAGTCGCTAT TAAAAACTAT ATTAGATACC CCTATAGAAC TGCTTAGGTC ATATCTTAAG	76560
CTTCCGGTAA GAAACTCTTT TTTATTGCGC TTGGCTTTTA TGTCATATAT GTTAAGCTTA	76620
TTATCCAATA ATCCTAAATT CATAGAAAAC TGAACGGGAA CGCCCAAAAA AGTTAATTTA	76680
TmTGCCTCAA GATATCCACT CAAAGAATAA TTTTTAAAAT CATTCTTTTT AAAATTTAGC	76740
AAAAAATTAC CATTAACCTT TCCCTCTAAA AGGGAGAAAG AATTAAAATT GTAAAAATCT	76800
AAGTCTTGAA ATTTAAGCAA AAAATAACTT CCATATTCAT CGGAATTAAC CCCTAAAAAA	76860
TATCTCTCTG AATTTAAGCT AGAAAATAGA TTCAAACTTC CATTAAAATT ATCTTTTAAA	76920
TTAAATTGTC CATATCCTTG CAAATTTGAA AGTTTGTTTA TAAGTTTAAC ATCAGAAATG	76980
TACAATTTAT CATATTCATA TAAGCCCTTA AAACCAAAGT TGAAATTATA GGCAGGTGTT	77040

			201	*		
TTAGAAACTT	TTATTATATT	AAACTCGTCT	ATTTTAAATT	TCAAATCTTC	ATTAAGGCCT	77100
AAATAGTTCC	САТТААААТТ	' ТАТАТТТАТТ	AAAAGATCAG	AGGTTTTATT	GTAAACCTTA	77160
AAATCATTAA	A CATTAAGGGT	` АТАААСТАСТ	TTAGAATCAA	AATAATTAAA	ATCTAATTTA	77220
ATACCAAGAG	GAGATTCGGC	AACAATAAAC	TTATCTTTAA	GATTAACATT	AAAATGCAAA	77280
GGATAAACTI	ТАТТСАААТА	AGAAAATTC	GTGCTAATAT	TAAACCCACT	TTCAAATAGT	77340
TCAACAAACA	AGTTAGAATG	CAAATTGTGA	TCATTGTACT	GCAAATCAAA	ATTGTTTGAT	77400
TTGTAAAAAT	TTTTTTCTCC	ACTGGCATCA	AGCACAAATT	TGAAATTGTC	TAACTTTGAA	77460
AATACCATGA	AATTGAATTT	TTTTAATTTA	TTTTTATGAT	AATTAAATTT	АТТААААТТА	77520
AAATCAGAAA	ССАААТТТАА	ATATTTACCT	GAAAATAAAG	TCTTGGGAAA	AAAATTTATC	77580
AAGTGAGAAC	TGGGAATAAC	TTCTTTTAAA	AAAAGCAAAG	GAAATTCTTT	AATACCTAAG	77640
CTTAAAGAAA	ATTCTTCATC	ATTAAGATCT	CCTTTTAAAG	AAATTTGAGA	GTTTTTATTT	77700
TCTAAATAAA	TCAAATAGTC	ААСАААААТТ	TTATCCTTTA	AAAAATAAGT	TTAAAATT	77760
AAATTTTGAA	AACTAAGATT	TCCAAGACTA	AAATTATCAG	ACTTAACCGA	АААААТАТСТ	77820
TTATCTTTAT	ТААААТСТАА	ATACCCATTT	AGGTCGTTAA	AGTTTAAAAT	TTTTGCAGAC	77880
TTAAAGTTAA	GACGTCCCAT	TGGAAGCAAA	TCTTTCAAAG	AATAATAACC	TTTATAGTTT	77940
ACAACCCCCC	TTTTAAGCTT	TAAAAAAGCA	TTCTTAACAC	TTACAATTCT	ATCATCCCCC	78000
TTGATTTCAA	GCTGCAAGCC	TTGAACTTCT	TTTCCTATAG	TATCTACATT	TAAAGATGAA	78060
TCTATTATTC	CTGCATATCT	TAAATCTTTG	ТССТТААААТ	CATAAGAAAA	TGCCAATTGC	78120
CCATTTAAAC	TTATATCAAA	ATAATCTTTA	TAAATTTCAA	AGCCTTTGTT	TAGCTTAATC	78180
СААТСТАААА	GACTAACATT	GAAAAATAAA	GCATCTAATC	GAACAAAACC	ATTAGCCTTG	78240
TCATAACTTA	AATTAAAATC	AAAATTCTCT	CTTCGTAAAT	TAAAAATTTT	ТАААТТТССТ	78300
TTTGAATAAT	TTATTTGGAA	CCCCTGCTCA	AGTAAAGAAA	AATAACTTGT	ТТТАААТТСА	78360
AAAAAGCTAA	AATTAACATA	GCCATCTTCA	AAGCCTTTTT	TGAATTTCCC	CTCAAAATAG	78420
AAAGTTGAAT	CCAAAATTCC	ATCATCAACT	CTTTCAAAGG	GTAAATTAAT	ТТСТАААТТТ	78480
TTAACAGCAC	TAAAATCAAC	TACAGAGCTA	ТАААААТАА	CTTCATCTAC	GGTACTTAAG	78540
GAAAAATTTT	TAACTTGAAA	ATTAAGCCAA	СТАТТАТСАТ	TAAGCTTGAT	ATTAATATTG	78600
ATATTTTCTA	AATTAATATT	TAATCTATAA	AGGTAGTTTA	AAATTTTATT	AAAAACTGTA	78660
TTTTCATTGT	CAGAATAGGC	ATTGCTAGGA	TTTAAATCGC	CAGATAAACT .	AAAGTCGTTT	78720
АТАТСААААТ	TGAAATTACT	TCCTTTAACA	TAAACATTTA	АААТААТАТТ '	TTCATCACCC	78780
TTAATTAAAA	TAAACAGATT	TAAATCTATC	CTAACAATAT	CTATTAATAT	ГТТАТСТТТТ	78840

CCATCCAAGO	ттаастстаа	ACCGTCTATC	TTGATTGATG	ATAAGAAATA	CGGTGAAATT	78900
TTATCATATI	ТААТСТТААА	GCCAAATTTT	GATTCAAGAT	ATTTTATAGC	AAAAAACTTT	78960
GCAGAATAA	TTTGAGCTTG	AACAAATAGA	TTAATGGAAA	AAATTATTAA	ААСАААААТА	79020
AAAAATGGCA	AAATCAACAA	TATAAATGTC	TTACTTCTCA	AAAACAACAA	ATTCATACAC	79080
TCTATCGATA	ATTATTATTA	ТАТААТААТТ	ATCGATAACC	TAATTATTGA	CACCAAAAGA	79140
AAGGAAGAAA	AAATATTTGT	GATTAAAATA	TTGAAAAACT	TTTATTGCAT	AGAAGGAATT	79200
GATGGAAGCG	GGAAAACAAG	CATCACTAAT	AAACTAAAAG	CTCTTTGCAA	CGATGAATCA	79260
AGGTATTATT	TTACAAAAGA	ACCATCAAGT	GGAATAATTG	GAGAAATGAT	AAGAAAGCAA	79320
TTAATGAATT	TTGAAAATCC	TTTAGAAGAA	TCAACATTTG	CATATCTTTA	TGCTGCAGAC	79380
CGACACGATC	ATTTATATAA	AAAAGGTGGA	ATACTGGAAA	TTTTAAACAC	AAAATCTAGA	79440
ААТААТАА	CTGATCGCTA	TTTATTCTCA	TCGATTGCAT	ATCAAGGAAA	ATTAGGATAT	79500
GAATTAAATA	AAAATTTCCC	ATTGCCTGAA	AAAGTATTCT	TTATCGAAAC	AGACCCAAAC	79560
ATAGCTTATG	AAAGAATACA	GAAAAATAGA	ACACAAAGTG	ATCTTTTTGA	ACTTGAAAAA	79620
TATAAAACTT	TTGAACAAAT	TGCTCTAAAA	TATTTAAAAA	TATTTAAAAA	ACTAGAAAAA	79680
AAAATTAATG	TGATTTACAT	CAACAATTCA	ATAAAAGATA	ATTTAGATAA	AAACGCAAAA	79740
AAAATTTTCA	АТСТААТААА	ATTCTAATAT	AATTAATCAT	ATGCATATTT	TCAAAAATGT	79800
CCCCTTCCAA	ATAAATTTAA	TTTTATTTCT	TTTAGTATCA	GTTGCAAAGA	TAAATGCATC	79860
GTCCAAATTT	TATTACGCAG	AACAATGGTA	TGTAATTTTT	AATTCTCAAA	TGAAAAAAA	79920
ACCTGAAAAC	ТАТААААААА	ATATATTTTT	TCTTCAAAAA	GCCTTAAAAT	ACCCATTTGG	79980
AAATCCAAAA	TATTCTCTAA	CTAAAATAGA	AACCAAAGAA	CAGTGGGAAA	ААТАТАААСТ	80040
TCTTTTCAAA	ATGCATGTAA	ACTTGCTTCT	AGTTAGGCAA	AATTTACATT	TAGGAGATTT	80100
ATTCGACACA	AGAAATTTAT	ATTTTTTCAA	AACTCCAGAA	AAAGATGGAA	TTATTTCCAA	80160
TCTAGAAAAA	TCAAAAAAAT	TATATAAACT	AGCTATTAAT	TACTACAGCG	AAGCACTAAA	80220
ATACCACAAA	AAACTTGAAA	ATTACACAAC	TGTTAAACTA	GAAAACGATG	GAATAACAAA	80280
CTGGGAAGAT	GAATATCATA	AAATTTCTCT	TAAAGAGCTT	AATTACTATG	ACATTATTAA	80340
AAAAGAACTA	CTAAGAATTG	ACGAAACTAA	AGCATTTTTT	GAACAAGGGC	САААСТАТТА	80400
ТТАААААААС	TCTTTGCCCT	CTTTGGAAAA	AAAAATTTTA	TAATATTT	CCTTATTTAA	80460
AGAAAACTTA	AAAACAAGAT	СТТТААААТТ	ATCCTTACTC	ААААТАСТАТ	ATTCTGAGAA	80520
AAGAGTTATT	AAGGCTCTTT	CTGCTAAAAA	AGGCAATTCT	AAAATATTTC	ТТААААТТТС	80580

PCT/US98/12764 203 GGCTCTAAAT TCACGCGCTT TTTCACTATC TAAAGAATTT ACAAAATTAG AATTTTCAAC 80640 ATCAGTGCTT AGTGCTACAA TTTCATTTTC AAGAAATTTT TTATCTCCTT GTGAATATAG 80700 CAAAGCAAAT GGCTTTAAAA AAGAAAAAAA ATATTCCTTA CCTATAAGAT AATGGTGCAT 80760 TGAACATCTT GTAGAGTAAT TTGGGTAAAT AGCAGATTCA ATCTCTTCAT CGCCACCAAC 80820 80880 AATAAGCAAA GGATCAAAAT AAGGAGCTGG AATTTCTTTA TTGTTGTAAA AATAATACCT ATACGAAAAA AAAGATTCTT CCATGCAATC AATGTGCCCA CAATAAGCTC CAAGCTTATA 80940 AATCTTATCT GAATATTCTA CTAAAAGTTT GGCAGTATCA TTGAAAGATT CTTTTCTAAA 81000 81060 ATTATAAAGC AGTGTAGGTA ATATAAATAA AATATTCTCA TTTGATGAAA TTTTATTTAA AACAAAATT AAACGTTCAT CATAAAAACA TGCCTCATCA ATAATAAAAG TGCCACAACT 81120 AGGATTAGAG GCTATTAAAT TTTCAATATC AAAAGAGTTG CTAGCATAAC CAATCTCATC 81180 AATTTTATCT TTTCCACCGC CTCTATATGG TATTACGTTT TCTGGATAAT CTTGAAACCT 81240 CCTCTTGTCG AGAAAATTTC TAATAAAAA TACATTAACC CTACTTCTAT TTCCTTTAAT 81300 AATATTGCCC AATACCTTGA AAGATTTTTT TCTTACAACA AGCGAATCTT TATAAATTTT 81360 TGCAGCATAT TCTGTTTTTC CACTTCCCAT GGGTCCAACT ACAAGAATTA AGTTTATTTT 81420 TACCCTAAAA TCAAAATGAC TAACAGAGAC AATGTTATTT AATTTAGTAT CTTCTTTATT 81480 AGCAAAGTCT AAACAAAAAC CCAAAAATCC TCCCTAAAGT AAATCAAATT CAATTATATA 81540 AATAAAACA ACAAAAAACA TTAACATTAA AAGCCTAAAA ATTAATAATT TAGGATCTTA 81600 TTAAAGCTAT TATTCAAAAG AATAATAGCT TTCAAAACTA TCATCATCTA ACAAAGCTTT 81660 CTTTATTTTT AGTTTATTCT TCTCATAAAT TTCAATATAA TTAAATTTTT TAGAACTATT 81720 81780 AACTTTTTTA TAAATTGAAA CCAAACTTCC AACCACATAA TTTTTAATTT CTACCAAATT 81840 AGATCCAAAA TATTTTTTT TACTTATCAA GCTTGATCTA ATATCCAAAA CAGAAGTTTT 81900 TTCAAAAAAT AAATTTAAAG CATTTGGAAT AAAAAAATCC CTAATATCAA TCAAGAACAA CTCTCTGATC CCAAAACTAT TAAAATTGCA GCCCAAATTG TTAAAAAGAT TAAACTTAAA 81960 AGCATGTAAA GCAAAGGTAT AAACATCTCT TTTATCAGGA TATTGAACCT CAATCATATC 82020 AACATAAGGA TAAACAGAAT AATTTATTTT ATAACCAAGC AAACTATTCT CATAATAAAC 82080 TGGAGACTTA TCTTTAAAAT AAATTTTATT AAAATATTTG CTATTTAAAC TAAATTTGCT 82140

GTCAAAATCT ACTATTCCTG AAAAAATGCC TACTAAAACT CCATCTTTTA GTATGGCAAC

ATTATTTTTA TTATCAATGC AATAAATTCC TGACAAACTT TTATAATCTT CTAAAAATTT

ACTCTTCATG TCGGGATCCT CTAAAAGATC ATAAAACATT TTATATTCAT TTATTGTCTC

AGGAGGAAAT TTTTTAAAAA TCCTATAAGC TTCATCAGGA TCTAAAAGTT TGTATTTTAA

82200

82260

82320

			205			
CAACTAACAG	CTGATTAAGA	GTTTGCTCTC	TTTCATCATG	ACCACCGCCA	AGCCCCGCAC	84180
CACGACTTCG	ACCAACAGCA	TCAAGCTCAT	' СААТАААААТ	AATACATGGA	GAATTTTTTC	84240
TAGCATTATC	АААТАААТСТ	CTAACACGAC	TTGCTCCAAC	CCCAACAAAC	ATTTCAACAA	84300
AATCTGAGCC	TGACATGTGA	AAGAAACTAA	CCCCAGCCTC	ACCGGCAACG	GCTTTGGCAA	84360
GCAAAGTCTT	GCCAGTACCC	GGAGAGCCCA	CTAAAAGCAC	TCCTTTGGGG	ATTTTTGCAC	84420
CTATTTTTC	AAATTTTTTT	GGATTTTTAA	GAAATTCGAC	AACTTCTCGA	AGCTCTTGCT	84480
TAACCTCTTC	TTGACCAGCC	ACATCTTTAA	AGGTGATTTT	ATTCTTTCCA	GCTTCATACT	84540
TTTGAGCATT	ACTTTTCCCA	AATGTAAAAA	CCTTCCCACC	GCCACCTTGA	GTTTGACGAA	84600
ATATAAAGAA	AAAGAAAATA	AAAAACAAAA	TCCATGGCAA	AGTTTGTAAT	AAAACCCCAA	84660
TCAGAGAAGC	TTGACTTTTC	CCTGAGCTAA	GCTCAACTTT	TTTATTTTT	AGTTCTGAAA	84720
GTAAATTTAT	ATCAAGATAG	GGAATGCTGG	TAGAAAAATA	AGACTTTGCA	AAGTTAGAAC	84780
CCTTGACGAC	AAATTGAATC	AAATTTTTAT	CAATTATTAC	TACAGACTCA	ACTAGACCAT	84840
TGTCTAAATA	ACTCTGAAAA	GTGCTATAAG	GAACATTTTT	ATAGCTTTCC	CCCCCCTTA	84900
TAAAATATGA	CATAAATATT	GCTGAAATTA	GAAAAACAAC	AACAAGTCCT	AAAATCCAAT	84960
TTTTATTCTT	TTTTTTTGTTG	TTAGATTTTC	CATTGTTATT	САТАТТАТТА	TTGCCATTCA	85020
TTCCTTTAAA	AGCCCTCCAA	TCAAAGATAT	ATTAATTTTT	TTAAGAATGC	TTTTTTCACT	85080
CCATACTAAG	TTTAAAGTAT	TTAAATCAAT	AATCCCAATT	AACCTGTTAT	CTAATGCTAA	85140
CAACATTAAA	TAAGCCGGAT	TACACCTTAT	AAACTTAGAA	AAAAATTTTT	TTGCTTTCAA	85200
ТСТАТССТТА	AAAAATTTAT	ACCTAAACTC	ATAAGAACAA	CATTTTAATC	TTGATACAGA	85260
AGCTGCATTA	CACTCTAAAT	ATTTTAGCAA	AATCTTACCT	AAAGATAAAC	TATGCCATTT	85320
ACCAACTTCC	ТААААТААААТ	CAAAAGGTTT	GTAAAATTTT	TCATCCCTTT	ТАААААТТАА	85380
ATTAATTTTA	TTATGCCTTT	TTTCTAAAAA	AAAATCATTG	GTTTTTAACA	AAACATTATT	85440
TTTTTTCCTA	TTAATCTCTA	CTTTAAACGC	TTCATTAAGA	GCTTTATAAG	AAACTTTGGC	85500
TGCAATTCCT	TCTGAATTTA	AAATTTTAAA	AATCAATCTA	AATACCAAAT	ACTTAGGAAA	85560
ATCTAAGAAA	GTTTTCAGAT	CAAAAGAATA	ATAATATTTA	CCTTTCTCAA	CAGGAAAAA	85620
TTCATCTTTT	CCAAAATAAT	CCGCAAATTC	CTTTGAAAAT	TCAGATATTC	TTTTAAGACA	85680
TTTTTCATAT	ССТТТААААА	CCTTTTTTAT	AGCGGGTAGC	AAATTATTTC	TAACCCTATT	85740
TCTTAGATAT	AAATTTTGAG	CATTTGTACT	ATCAACAAAA	AACCCAATAT	TATTCAAAGA	85800
TAAAAAATTT	TCAATTTCTA	GTCTTGAAAC	CTCAAGCAAG	GGCCTTATAA	TGTTTCTATT	85860
GACACTAGGA	ATACCTGAAA	GACCATCCAA	AAAAGATCCT	TGAAAAAATC	ТСАТААТТАТ	85920

			207			
TATATATTCC	TTAAAAATAG	AAGTTTGCAA	AGCTTTTCTA	AAATCCTGAC	TAATAGGATG	87720
TACAATGTCT	TTATATTCAC	CGACTCTAGT	TCTTCTGTTA	GGCATCGCAA	TAAATACTCC	87780
CTTTTGCCCT	ТТААТААСТС	TAATATTGTG	AAGAACCAAA	CAGTTATCAA	AAGTAACTGC	87840
AACATATGCT	AATAATTTAG	AACCAGAATT	TTTACTATCA	ACTTTCTTAA	TCCTTATGTC	87900
TGTAATATCC	ACTTATAAGC	CTCCCGCAAA	AAGTACATAA	CTTAAATCTA	AAATATTTTC	87960
TATTTTTTGT	AAACACGTTT	TTATGATATT	TTTAGTTTTT	TTAATTAATT	ТТААТТАААС	88020
TAAGTAATTA	GGGATAAATA	ATGGTTCCTT	TGGACCATAT	TTTTTCAAGC	TCATAGTATT	88080
CCCTAGATTT	TTCACTCATT	AAATGAATTA	CCAAATTTGC	ACCAGAAACA	ACAGTCCAGT	88140
CATAAACCAA	CCCTTTTCCT	TCAGCATTAA	GATTAATTTT	ТТТТТСТТТА	AAGAATTTAA	88200
TTATCTTGTC	AATATATAAA	GCTTCCATTT	GCTTAAATGA	TACAAAAGTG	GCTATTATAA	88260
AAAAATCAGT	CCAATTACAA	ATATCGCTAA	CATTAATGCC	TATAACATCA	ATTCCATTAA	88320
AATCACTTAT	TATTTTACAT	AAATCATTAA	TATCATTTAC	TTTTAACATA	CCTTCCATCA	88380
AAATCATCTC	СТААААТААС	TATTACATCA	GGATTAATAT	CAAGATTATC	AAGCTCTAAC	88440
AATCTTTTAG	CTTGAACCTC	AGAAATTGGC	TTAATATTTG	AAGTTTTAAT	TACCTCTCCA	88500
ACCCTAACAG	ССАТТТСТАА	ATTATCCGAA	TTATTTATAA	TCAGGGTATT	TTTATAAGAA	88560
TTTTTATCTG	CATTACCAAA	ттттааааст	TTAAATTTTA	AAGAATTAAA	AATATTTGCT	88620
GTTTTTTTG	CAAGCCCAAC	AACTTTTGTT	CCATTTAAAA	CAACAATCTT	TACTATCTCT	88680
TCTGCACCTT	CATTAACCAA	CTCTTTGTTT	AATTTATCCA	CCGATTCTTT	TAAAATAGCA	88740
CCCCCATAAT	AAGGAAAAAC	CACCTTTATC	AAATTATTAT	CATTATCCTT	AAAAATCTCT	88800
TCTTGTCCTT	TAATATTAAT	AGAAATAATT	TTATCATTAT	ТТАТТТТАТА	ATTTTTAACA	88860
ATATACTTAA	AAACAACCTC	TGAAAGGTTA	GTATCTAACA	TGGAATATAT	ТТТААААААА	88920
CTGTCATTTT	CAATGCCAAA	ATCTGAAATT	TGAAAAAGAA	GTCTTTTAAA	AAATTCTTTA	88980
AAAAATTCAA	CTCTCTCTTC	AAACTGATTA	ACATCATTAA	AATATCTCAA	ATAATCATAA	89040
GCCTTATCAC	CATCAAAATT	AGAAGTGCCA	GAGGGTATTA	AAATAGAATC	CTCGAAACTA	89100
TAAACTTTCA	CTGGGTTTTT	AACAAGAAGT	CTAACTCCCC	CTAAGTAATC	AATAAGCCTA	89160
ACAAAATTTT	CTTTTTGAAA	ACGAATATAA	TAATCTGATT	CATGAGATAA	TTGTGTATAA	89220
ATTTTAGATA	AAAATTTATT	AAAAGAATTT	TTTTTATAAA	GATCTTTAAA	CCAAGATATA	89280
TTCCCTTTTA	AATCTTCATA	TCCAGTATGA	ATTGGAATAT	CAAAAAACCC	AATATTTCCT	89340
GTTTTCATAT	ТААТААААТ	TTCTTGCATA	CTTACAAGGT	TTTTGTTAAG	ATCTTCTATT	89400
AGAAACAAAA	AACTAATATT	ACTCTTTGTA	TTAAGCTCGA	AGTAAACCAA	CTCTTTTTTC	89460

GAACTTCTAA	ТАААААААТ	TACTACACTT	GCTATTATTA	АААСААТТАА	AAAAAAAA	89520
ATTAAATCCT	TTCTCAAACA	TTTACCTTTT	TAACATATAA	ATTATTATCT	TTAATGTATT	89580
TTAACACACC	AAAAGGCAAT	AAATAGCTGA	CGGGCAATCC	ATTTACAATT	СТАТТТСТАА	89640
TCTCTGATGA	GGAAATCGGT	ATTATTTTAT	ТАТСТАТАТА	AATATGCTTA	AAAGAACTTT	89700
TAAGTCTCTC	TTTGTAGATT	CTATGAGCAA	CAACAAGTTC	AACAGAACTT	ACAATACTTT	89760
GAGGATCTTT	CCATGAATCA	AAATTTTGAA	AAAGATCATC	GCCAATAATT	АААААААСТТ	89820
TATCGTTTTT	GTATTTTTT	TTAACACAAG	AAATAGTATC	AACAGTATAA	GTTATACCAC	89880
САТТТАТТАТ	GTCGCAATCA	TCTATGAACA	TTTTATCTTC	ATTCTCTAAT	GCAAGCTTGA	89940
GCATATCTAT	TCTATTGCTA	ACACTAACAT	TCTCATCAAT	CAATTTATGA	GCTGGATTGC	90000
AAGTAGGAAT	AAATATTACT	CTATCAATAT	ТТААТАААТА	CTCTATTTCT	TTAGCCAAAA	90060
AAATATGTCC	AATATGAACT	GGATTATAAG	TGCCCCCTAA	TATTGCAATT	CTCACGATTT	90120
CTTTCCTAAA	TAAAATCTGA	TATCCAAAAA	CCAAGTCTTA	AAAATAAAA	GCCCACAATA	90180
AAAATCAATT	ТТАТТААААА	GTTTTAGCCA	AAATAAAAA	TTCTTTAATA	AGTTCATCAA	90240
TTCCTCTATT	СТСАТАААТА	GAGATGCCAA	CAACCTTTTC	TTTTCCTAAG	GCTTTTATCA	90300
GGCAATCAAA	ATTTTTCTCA	GAACCGTCCA	AATCAAGCTT	GTTGGCAATA	ATAATTTTTT	90360
ТТТТАТТААА	AAGCTTATGG	CTATAAGATT	TTAATTCATT	TAAAAGAATG	TTATATGACT	90420
ССАААААТТ	TGCTTCAGAA	ATATCAATAA	CCAAAGCTAA	AATTTTAGTT	TTAGCAATAT	90480
GCTTTAAAAA	TTTAGTCCCG	AGCCCTACTC	CAAAACTAGC	ACCTTTAATT	ATTCCGGGAA	90540
TATCTGCAAT	AATCAAATCA	TCATAAGAAC	GCCTGAGCAT	ACCAAGATGA	GGAATCTTTG	90600
TTGTAAAAGG	ATAATTTGCG	ACCCTAGATT	TTGCTGAGGT	TATCCTATTA	AGAAGAGAAG	90660
ATTTACCAGC	ATTGGGTAAT	CCAACAAGCC	CAATATCCGC	CACCAAAAAA	AGTTCAAGAC	90720
GCACGCTCAA	ACTATTACCC	GATTCTCCAG	GTTGAGCAAA	CCTTGGAACC	CTTCTAACTG	90780
AAGTTTTAAA	ATTCCAATTA	CCAAGACCCC	CTCTGCCACC	TTTTAAAACA	ACAAATTCGT	90840
CATTTAAATT	TTTAAGCCTA	TACAAAAGAG	TTCCATCATT	TTCATTATAA	ACTTCTGTAT	90900
TTGGAGGAAC	AAAAAGAGTT	AAATCTTTAC	CATTAGCACC	ACTTCTTTTA	AAACCCATTC	90960
CAGGTTTACC	ATTTTCAGCA	CAAAGCACAT	GACCATTTTT	GTAAAAAGAT	AAAGTGCTAA	91020
GATTTTCCCT	CACCTTGAAA	ATTACACTCC	CACCACTCCC	ACCGTTTCCG	CCATCTGGAC	91080
CACCTTTTGC	ATTAAACTTT	TCTCTTAAAA	AAGAAACACA	CCCAGAACCA	CCATTGCCCG	91140
AAACTACCGT	TATATTTACA	GAGTCCTTAA	AGTTATACAA	ACTTTCTCCA	ATTTTTCAAT	91200

			209			
	AATCTCCAAT					91260
CCTTTAAAGT	TTTAAACTCT	ACCTTACCAG	ATGAAAGCGC	AAATATTGTA	TAATCTCTTC	91320
CAAGACCAAC	GTTTTTACCT	TTATGAAACT	TTGTACCTCT	TTGTCTAACA	ATTATCTCTC	91380
CAGCTTTAAC	AAACTGACCA	CCACTTCTTT	TAACTCCAAG	TCGCTTGGAT	ATAGAATCTC	91440
GTCCATTTTT	TGAACTACCA	CCACTTTTAC	TTGTTGCCAT	TAATTTTCCT	ССААААСТАА	91500
ТТТААТАТСА	TTAGGATACT	CAAAGCACAA	ATCATTTATG	CCTCTAATTA	AAAACCTACT	91560
ATAGTAAAAA	AGACTTTCTT	TGTTCAAATC	CTTAAAAAAG	GGCTTAAATT	СТАААТААСС	91620
TCTTTTTGAA	TTTTTCACAA	CAAAAGCCTC	ACCCTCAAGA	TCAAGAACAC	TAAAAAAGGT	91680
TCTCAAAATA	AAAGAAAAAG	AAGAACAGAC	AACGTTAACA	TTATTCTTAC	CTATAGCATG	91740
ACCATTGGCT	AAAAGATAAA	TAATTACATC	GTCTTTTACT	TTTACCAAAA	САТТААТСАА	91800
ТАТАСТТААА	AAACTATTTC	ATCAACCAAA	ATATAAGAAT	AGGTTTGCCT	GTGCCCAACT	91860
TTTCTCTCAC	TTGATTTTCT	TCTTCTGTAT	CTGTAAGAAA	CAACCTTTTT	ATCTTTTTTA	91920
TCTTCTTTAT	AGGTACATCT	AATAAGAGAA	TTTACGACAT	AAGGCTTTCC	TATTTTAACC	91980
TCTCCGTCTT	TATTAATAAG	CAAAACACTA	TTAAATTCCA	ACTTATCTTT	TTCAACAGGA	92040
GAAATTTTGT	CTATTTTTAA	AAATTCACCC	TCAATAGCCT	TATATTGCTT	GCCATTTATT	92100
TCTACCAGTG	CATACATATA	TTACCTCAAC	TAAACATTGT	AAATTTAATA	AAAAAGAAAA	92160
GTCAAGCATT	AAATTAATTA	TACCTTACAA	GGGAATTGAC	TTCATAACTT	TCAAGACTTT	92220
GTCTACCATT	AATAGCGCAA	AGCTCAATAA	AACAAAAAAT	ATCCTTAACC	TTGCCCCCGG	92280
CTCTCTCTAG	CAAAATTGCA	GACGACTTTA	AAGTTCCACC	GGTAGCTAAT	ATGTCATCTA	92340
TTAAAAGAAT	ATTGGAATAC	GTCCTAACAT	CGTCTTTGTG	CACCTCTATT	CTCCCAAAAC	92400
CATATTCAAG	CTCATACTCT	TCACTAAAAA	CCTCTCTGGG	CAATTTACCC	TCTTTTCGAA	92460
TTAAAACAAG	GGGTAGCTGC	ATTTTTAAAG	ACAAAGGAGC	ACCTATTAAA	TATCCCCTAG	92520
ACTCAACAAC	TGCAATGCAA	TCGATCTTTT	TAAAATTATA	AAAAGAATAT	ACTTCATTTA	92580
TTAATGAACT	ATAAACTTCG	GGTTTTAGCA	AAACGCTAGT	AATATCATAA	AAAAGAACAC	92640
CCTTTTTAGG	AAAATTGGGT	ATTTTTGAAA	TAAACTGATC	АТААТАСТСТ	GTCTTATTTT	92700
TCATAACCTA	CTTATCCCAT	CTATATGTTT	ATATATTTT	САААТАТСАА	GACCAAAAGC	92760
CAAATTTATT	TTTTCACAGG	GGGCGCTGGA	ACAAGATTAT	GCAAATCTAA	TTTTGGTATT	92820
TCATCATCTT	TAGCTCTTGT	CCAAATTTTA	CTTCTACCAA	AAATCCAAAC	TTTCCCCTTG	92880
GTAATAAGAT	TTCCGGTTTT	ACTATCAACA	CGCATCTCAG	ААТТАТАААТ	TTTACCGTTT	92940
TTAGGATCTA	TTATTTTGCC	CCTATCCCAC	TTTTTAGAAG	AAGAAGAATA	CTTAAGACCC	93000

CACATAAAAT CAAGACCCTC	TATTGCAAGA	TTTTCAAACC	CAACTACAGT	ATCTCCTGAA	93060
GGATTTTTAG CATCATACTT	TTTGCCATCT	TTTATTATAG	TTAAAATTCG	GCCATAAACT	93120
TCCCCATTAT ATTTATAAAT	ATAGATAATA	GAATTCTTTA	TGTTACTTAC	ATCATTATAA	93180
CCAACCCAAT ATCCTAAAAC	TTCATTTTCA	AAAACAGGGT	TTTCATCCTT	GCTAACAATG	93240
TCCTTTTCAT TTGAATCTTC	TGAATTTGCA	AATAAAAGCA	TTGAAAAACA	AAAAAAAAGA	93300
AAAAACTTTG AAAAAACTCT	AGTCATCAAT	CCTCCTTAAA	ACCAAATTAT	AGCTCTTTTT	93360
TTAAATTACT CATGTAAGGC	AGCTAATTTA	AAAATTAGCC	ACAAACATCA	TTATACAACT	93420
ТАТТТАТАА ТТТТААТТАТ	TAAGATAAAA	ACCTAGACAA	AAAAATATAA	AATTAAGCAA	93480
AAACACAACA GGCCAATTAA	TTGTTATATG	GGACAATTAA	TGCTAATATT	AATAAAGTTA	93540
ATTGTCTTTA AGGATTTAAC	CGTGGTAAGA	GGAATTTATA	CAGCTGCCAG	CGGAATGATG	93600
GCAGAAAGGC GCAAGCTTGA	TACCGTGTCA	AATAATTTGG	CAAACATAGA	TCTTATTGGA	93660
TACAAAAAG ATTTGTCTAT	TCAAAAAGCA	TTTCCAGAAA	TGCTAATAAG	AAGACTAAAT	93720
GATGATGGTC TTTATAAATT	TCCCAAAGGA	CATCTTGAAA	CAGCTCCGGT	TGTGGGCAAA	93780
ATAGGAACAG GGGTTGAAGA	AAATGAGATA	TACACAGTAT	TTGAACAGGG	СССАТТАААА	93840
ACTACTGGCA ATCCATTAGA	TTTAGCACTC	ACCGATCAAG	GATTTTTCGT	AATACAAACT	93900
TCAGATGGAG AAAGATATAC	AAGAAACGGT	TCTTTTACTA	TTGGAAAAGA	AGGAATCCTT	93960
GTTACAAAAA GCGGATTTCC	CGTTCTAGGA	GAAAAAGGAT	ACATATATCT	TAAGAAAAAT	94020
AATTTTAAAA TAACACCTCA	AGGACAAGTC	TTTCACAATT	CAAACTTTGA	ATCAGACCCC	94080
AAAAGACTTG TTAGCGAGTA	TGAAAATTCT	TGGGAAAATT	ATGAGCTGCT	TGATACCATT	94140
AGAATTGTAA ATTTTGAAAA	TCCCAGATTT	СТСААААААС	AGGGAAATTC	TTTATGGATC	94200
GATACAAAAA CATCTGGCAA	AGCACAAGAA	ATTGATATAT	CATTAAGGCC	TAAAATAGAA	94260
ACAGAAACAC TTGAGGCTTC	CAATGTTAAT	GCTGTTAAAG	AAATGGTTTT	AATGATTGAA	94320
ATTAACAGAG CTTATGAAGC	ТААТСААААА	ACAATACAGA	CTGAAGATAG	TCTATTGGGA	94380
AAATTAATAA ATGAAATTGG	AAAATATTAA	GGAGCATGTT	TTATGATGAG	AGCATTATGG	94440
ACAGCAGCAA GTGGAATGAC	TGCACAACAA	TACAATGTAG	ATACAATTGC	CAATAACCTT	94500
TCAAATGTAA ATACTACAGG	ATTTAAAAAA	ATAAGAGCAG	AATTTGAGGA	TCTAATTTAT	94560
CAAACCCATA ACAGAGCAGG	AACCCCTGCA	ACTGAAAATA	CTTTAAGACC	ACTTGGAAAT	94620
CAAGTTGGTC ACGGAACAAA	AATTGCTGCC	ACCCAGAGAA	TATTTGAACA	AGGAAAAATG	94680
CAATCCACAA ATTTACTCAC	TGACGTTGCC	ATTGAAGGAG	ATGGATTTTA	СААААТТСТТ	94740

CTACCTGATG GAACTTATGC ATATACTAGA GATGGGTCAT TTAAAATCGA TTCTAATCGA 94800 GAGCTTGTAA CAAGCCAAGG ATACAAAGTA TTGCCTAATA TACTCTTCCC AGAAGAATAT 94860 ATCCAAAACT CAATTACAAT ATCTGAAGAG GGAATAGTAT CGGTAAAAAT TGATACCAGC 94920 AACGAACCAA TAGAGCTTGG GCAAATTGAA ATATCAAGAT TTATCAATCC TGCAGGACTA 94980 AGTGCCATTG GAAGCAATTT ATTTAAAGAA ACAGCTGGAT CAGGCCAAGA AATAGCAGGA 95040 95100 TCTATTGCTG AAGAAATGGT AACAATGATA GTAGCTCAAA GGGCTTATGA AATAAACTCA 95160 AAAGCTATTC AAACTTCTGA CAATATGTTA GGAATTGCAA ATAACTTAAA AAGGCAATAA 95220 AATAAAAAA AGATTATTTA TTTTTATTTT ATTTTTCACA ACAAGCTCAA TTATAAGAGC 95280 TTCTCATGAT TTATGTTTCA ACATTGCGCC TAGTAAAACA TATTTCTTTT CAAAGAAGTA 95340 TTCAAAAATA TGTAACAATC AAAGCTTATC AAAAATATAT ATCCCCCCAC ATTTAACAAA 95400 AAAATCAATA ATTTTTGAAA TGATTTATTA CATTACAAAA AATTTATCAA ATGAAAATAT 95460 CTATATACTT CAATTTAACT TTGATGAATC TGAAATAAAC ATAGAAGATA AATTTTTCAA 95520 AAAAGTAAAA TTTAAGGTAA AAAGCAACAA TTCATACAAA AATATTCCAA TTGAAAAAAC 95580 TCTTGTTTAT TATGCAAAAA ACTTTGAAAG CTACAAAAGA CACAATTACA TCAATATGTA 95640 CATTGATGTA ATCGAGCCAA TTGTATTTGC AAAAGAAAAT CTAAAAAAAA ATGAAATCCT 95700 TAATGAGTAC AATACATACT TTAAATACAA AATTAACACA ACAAGAATAA ATGATGTTTT 95760 AAGTCTAAAT GAATTAAACA ATAGCAAATA CAAAGTTATA CGCAACACAA TCAAAAATGA 95820 AGAGATAAGA TTAAATAAGG TGCAAAAAGA ATAATACCTA ATTTTATCTT CCTTTTCTAA 95880 AAATTATTAT TTTAATCTCC CTTAATGCAG CTAATATTTA ACAAATCAAG GATTAATTAG 95940 TAATTTAACG AAAAAAGTTT CATTAATTGC AATAATTGAT ATAAAATAAT AGATATTAAA 96000 GAAATACAAT AAATAAGGTA AAGAATGAAC AAACTAATGT TGATGTTAAT TACATTTGCA 96060 ACGAGTCTAT TAGCCCAAAC AAACAAAGCT TCAACAGGAC TAAAAACAGA TCAATCATTT 96120 AACAATAGCC TATCTGAAAG CGTAAAATTA AAAGAAATTG CGGATATTTA TCCCACAAAT 96180 ACAAATTTT TAACAGGTAT TGGAATAGTA GCGGGACTTG CTGGAAAAGG AGACTCTATA 96240 AAACAAAAG ACCTTATAAT TAAAATTTTA GAAGAAAACA ATATAATAAA TGAAATAGGC 96300 TCTAATAACA TAGAAAGTAA AAATATTGCA CTAGTAAATG TCAGTCTCCA AGTAAAAGGT 96360 AATACAATCA AAGGTTCAAA ACATAAAGCT TGCGTTGCAT CAATACTGGA CTCAAAAGAT 96420 TTAACAAATG GAATACTTTT AAAAACAAAT CTTAAAAATA AAGAGGGGGA AATAATAGCA 96480 ATTGCATCAG GAATTACACA GCCCAATAAT AAATTAAAAG GATCTGGATA TACTATAGAT 96540

AGTGTAATAA	TAAATGAGAA	TCAAAATATT	AACCACAGTT	АТААТАТААТ	TCTTAAAAAA	96600
GGAAATTATA	САТТААТААА	TAGAATTCAT	AAAATATTAA	CCTCTAAAAA	AATCAACAAC	96660
AAAATTAAAT	CAGACAGCAC	AATAGAAATA	GAAGCAAAAA	ACATAAGCCT	ATTAGAAGAG	96720
ATTGAAAATA	TTAAAATAGA	AACCAACCCC	AAGATATTAA	TAGACAAAAA	AAATGGTATT	96780
ATTTTAGCAA	GTGAAAATGC	AAAAATAGGA	ACTTTTACAT	TTTCCATTGA	AAAAGACAAT	96840
CAAAACATTT	TTTTAAGTAA	АААТААСААА	ACAACAATTC	AAGTAAACTC	AATGAAATTA	96900
AATGAATTTA	TATTAAAAAA	TTCCAACAAT	CTTAGCAATA	AAGAATTAAT	TCAAATAATT	96960
CAAGCTGCGC	AAAAAATTAA	TAAATTAAAT	GGGGAACTTA	TCTTGGAGGA	AATTGATGGA	97020
AACCAAAATT	AATTCACAAA	ATCTAAAATT	TAAAAATCAA	ATAAATAATT	TTAAAAATTC	97080
TGTAGAAATA	AAAAAATCCT	TTCAAAAAA	CGAAGATCTT	CGAAAAGCTT	CTTTAGAATT	97140
TGAAGCTATG	TTTATCAAGC	AAATGCTTGA	AAGCATGAAA	AAAACTCTTA	ACAAAGATCA	97200
AAATTTGCTA	AACGGAGGCC	AAGTAGAAGA	AATTTTTGAA	GATATGCTTT	GCGAACAAAG	97260
AGCAAAACAA	ATGGCACAAG	CTCAAAGCTT	TGGCCTTGCC	GATTTAATTT	ACAATCAATT	97320
ACAAAAAAGT	AAATAATTCA	AAAAATACTC	CCCCTAAACT	СААААТТАТА	TCCTATTTAG	97380
TTTAAAACCA	ТТТТТАААТТ	AAATTGGCAC	AGTTTTTGCA	TGGAAATTAA	GTAGTAAAAA	97440
CTTAATCACA	ATATTCAAGA	AAGGGGAGAA	AATATAATAA	CTATGAACAT	ATTTAGTAAT	97500
GAGGATTTAA	ACATATATTT	AAAATCAGTA	AGAGAACACA	AGCTAATTAC	TCACGAAGAA	97560
GAAATCAAAC	TTGCAGGACA	AATACAAAGA	GGCAATGCAA	AAGCAAAAAA	CAAGATGATA	97620
AATGCAAACT	TGCGACTTGT	TTTAAAAATA	ATAAAAAGAT	ATGCGGGTAA	AGGGTTAAAA	97680
ATTGAAGACT	TAATTCAAGA	AGGCAACTTG	GGATTAATAA	GAGCTGCTGA	AAAATATGAC	97740
CCGAATAAAA	ATACCAAATT	TTCAACTTAT	GCATCATTTT	GGATTAAGCA	ATCACTACAA	97800
AGAGCATTAA	ACACTAAAAC	CAGATTGGTA	AAAGTCCCAT	ACAGAAAAGA	AAATCTAATA	97860
СТАСАААТАА	ATAAATATTT	AACAGAAGAA	GAAAAATCGC	CCAAAAAAGA	AGAAATAATG	97920
AAAAGATTCA	ACCTATCTCC	TGCTCAGTAT	ATAAAAATTA	TTCCCTATCT	TGAAAAAGAA	97980
TATTCTCTGG	ACAAAGAAAT	AGAGGGATCT	GAAAATTCAA	CACTCTTGAA	TCTATACGAG	98040
GATAATTCTT	TTAACCCTGA	AATTACCCTT	GAACAAGATT	CAACTCTAAA	ACATTTGAAT	98100
TATATACTTG	AAACAAAATT	AAATGAAAAG	GAAAGATACA	ТААТТААААА	AAGATATAAC	98160
CTGGACAATA	GTCCCAAAAA	AAGCACCTTA	AAAGATATTT	CAACAGAACT	TGGAATATCA	98220
TCAGAAACTG	TAAGACAGAT	TGAAAAAAGA	GTTCTTAAAA	AATTAAAAGA	AGAAATAAAT	98280

TAACATTGAC ATTCATGACA	TGTTCTGGTC	TACTTGTAAG	TCAGTGGTCA	TGAATGTTTG	98340
ТАТТТАТАТ ТААААААААС	AAGTTTATTA	TTGTAATTTT	ТАТТАТААТТ	TCTATTGTTA	98400
TTGCAATAAC TCAGGCATTT	GCAAGTTTTT	ТАТАТТТТАА	TGACAATTCA	AAAATTGCAA	98460
ATGCCCCACT TAAAAATAGG	TTTGAAAAAA	CACAAAAAGA	AAGCTTAATA	АТААААААСА	98520
ACAACGAGGA TAAAAAAGCC	AAAAGCAAAC	CTAAGTTTTA	CTTAATCATT	GACGACGTGG	98580
GCTATGATGA ATTTATGTTA	GAACAATTTA	TAAAACTTAA	TCTTAAAATA	ACTTATGCTA	98640
TTATTCCATT TTTACCAAAA	TCAATGAGTT	TATACAAAAA	АСТАААААТ	GCTAACAAAA	98700
CAGTAATAAT ACATTTCCCA	ATGCAATCAA	AACATAGAAA	TTCAATAGAA	AAATTTCATA	98760
ТАААСАТААА АGATAAAAA	GAAGAAATAC	АСААААААТ	CGAAAAAGCA	TTTAAAAAGT	98820
ATCCTGATGC AAAAATAATG	AATAACCATA	TGGGAAGTTT	AATCACTTCA	AATAAAGATT	98880
TGATGAAAAT CATTTTAGAA	AAGCTTAAAG	AGATTGACAG	ATATTTTTC	GACAGCGTAA	98940
CTATTGCAGG AAGCGTACCA	GAAATAATAG	GCAAAGAAAT	TGGAGTTAAA	GTAGAAAAA	99000
GAGACGTATT TCTTGATAGC	AAAGACACAG	AAGAGTCCGT	AACAAAGGAG	CTTGAAAAAG	99060
CAAAAAATAT TGCTAGAAAA	AATGGAATGG	TAAAAGTAAT	AGGACACATT	TGGTCTAAAA	99120
ATACGCTAAA AGTCCTTAAA	AAAGAAGGAC	CTGATTTAAA	CCAGGAATTC	GAATTCGACA	99180
ACTTATTAAA TCTTTACGAG	GAAACAATCA	GATGAAAGTG	CTTGGAATAG	AAACCTCTTG	99240
TGACGACTGT TGCGTAGCTG	TAGTAGAAAA	TGGAATTCAT	ATTTTAAGCA	ATATAAAATT	99300
AAATCAAACC GAACACAAAA	AATATTACGG	CATAGTGCCT	GAGATTGCCT	CAAGACTTCA	99360
TACGGAAGCT ATTATGTCTG	TTTGTATAAA	AGCACTAAAA	AAGGCAAATA	СТААААТАТС	99420
TGAAATTGAC TTAATAGCTG	TAACATCTAG	ACCTGGACTT	ATTGGATCTT	TAATAGTTGG	99480
ATTAAACTTT GCCAAAGGTC	TAGCAATTTC	ATTAAAAAAG	CCCATTATTT	GCATTGATCA	99540
CATCTTGGGT CATCTTTACG	CCCCTTTAAT	GCACTCAAAA	ATAGAATATC	CATTTATATC	99600
ATTATTATTA AGTGGTGGAC	ATACATTGAT	TGCTAAACAA	AAAAATTTCG	ATGATGTTGA	99660
AATACTTGGA AGAACTCTAG	ATGATGCTTG	TGGAGAGGCT	TTTGATAAAG	TGGCAAAACA	99720
TTATGATATG GGATTTCCGG	GAGGTCCAAA	CATCGAACAA	АТАТСТАААА	ATGGAGATGA	99780
AAATACATTT CAATTTCCAG	TTACCACCTT	TAAAAAAAA	GAAAACTGGT	ATGATTTTTC	99840
ATACTCTGGA CTAAAAACAG	CTTGCATACA	CCAACTCGAA	AAATTCAAAA	GCAAAGATAA	99900
CCCAACAACA AAAAATAATA	TAGCTGCAAG	CTTCCAAAAA	GCTGCCTTTG	ААААТСТААТ	99960
CACCCCACTA AAAAGGGCAA	TAAAAGATAC	TCAAATCAAC	AAATTGGTAA	TAGCAGGAGG	100020
TGTTGCAAGC AATTTATATT	TAAGAGAAAA	AATAGATAAG	СТТААААТАС	AAACTTACTA	100080

PCT/US98/12764 WO 98/58943

CCCTCCTCTT	GACCTTTGCA	CAGACAATGG	AGCAATGATT	GCGGGACTTG	GATTTAATAT	100140
GTATTTAAAA	TATGGAGAAA	GTCCAATTGA	AATTGATGCA	AATTCAAGAA	TAGAAAATTA	100200
TAAAAACCAG	TATAGGGGGA	AAAATAATGA	AAAGAATTTT	AGCAATGCAT	GATATTTCAA	100260
GCATGGGAAG	AACATCTCTT	ACAATATGCA	TACCAGTAAT	ATCTTCGTTT	AATATGCAAG	100320
TTTGTCCTTT	TGTGACAGCT	GTCCTTTCTG	CTTCCACAGC	ТТАТАААААА	TTTGAAATAG	100380
TGGATTTAAC	CGATCATTTA	GAAAAATTTA	TCAATATATG	GAAAGAACAA	AATGAGCACT	100440
TTGACATACT	CTATACCGGA	TTTCTGGGAA	GCGAAAAACA	ACAAATAACA	ATAGAGAAAA	100500
TAATTAAATT	AATAAAATTT	GAAAAAATTG	TAATTGATCC	TGTGTTTGCT	GACGATGGAG	100560
AAATTTACCC	TATATTTGAT	AATAAAATAA	TTAGTGGATT	TAGAAAAATC	ATAAAGTACG	100620
САААСАТААТ	AACACCCAAT	ATCACAGAAC	TTGAAATGCT	AAGCAAAAGC	TCAAAACTTA	100680
ACAACAAAGA	TGATATCATA	AAAGCAATAT	TAAATCTTGA	TACAAAAGCG	ACGGTAGTTG	100740
TTACAAGCGT	TAAAAGGGGA	AATCTCTTGG	GAAACATTTG	CTACAATCCT	AAAAACAAAG	100800
AATACTCGGA	GTTTTTTTA	GAAGGATTAG	AACAAAATTT	CAGTGGAACA	GGAGATTTAT	100860
TTACCAGCTT	ACTTATAGGA	TATTTGGAAA	AATTTGAAAC	AGAGCAAGCC	TTAGAAAAA	100920
CAACAAAGGC	TATTCACCTA	ATAATAAAAG	AGTCAATTAA	AGAAAATGTT	TCAAAAAAAG	100980
AAGGGGTCCG	AATTGAAAAT	TTCTTAAAAA	ATACATTTTG	AATTTAAATT	ССАТТАААТТ	101040
CAATTTTTAA	GATTGAATCA	ATTTCTTGGT	ACAAAGGAAA	TACTGATATT	GCAATATATT	101100
ATTAAAATAA	AATGTGAAAA	AATTTATTAC	AAAGTAAATG	CTTTATTGTT	TTCATGAGTA	101160
ATAAAAATA	TGTCAAATAA	АААААТААТА	TTTTTTACAG	GGGGAGGAAC	TGGGGGTCAC	101220
GTATTTCCAG	GAATTTCCAT	CATACAAAAA	TTAAAAGAAT	TTGATAATGA	AATTGAATTT	101280
TTTTGGATAG	GTAAAAAAAA	TTCTATAGAA	GAAAAACTAA	TAAAAGAACA	AGATAATATT	101340
AAATTTATTT	CGATTCCATG	CGGAAAACTT	AGACGCTATT	TTTCTTTTAA	AAATTTTACT	101400
GACTTTTTCA	AAGTAATACT	TGGAATAATA	AAAAGCTTTT	ACGTTTTAAA	AAAATATAAA	101460
CCTCAGCTTA	TTTACGCAAC	CGGAGGATTT	GTTTCAACTC	CTGCAATTAT	TGCATCCAGC	101520
TTGCTAAAAA	TAAAAAGCAT	AACCCATGAA	ATGGATCTAG	ATCCCGGACT	TGCAACAAAA	101580
ATTAACTCTA	AATTCGCAAA	TAACATACAC	ATAAGCTTTA	AAGAAAGTGA	AAAATACTTC	101640
AAAAATTACA	AAAACATTAT	TTACACAGGA	TCTCCTATAA	GAAGAGAATT	TTTAAATCCA	101700
GATCCCAAAA	TAATCAAACA	ATTGACACAA	AACACTAACA	AACCAATTAT	TAGCATACTT	101760
GGGGGATCTC	TTGGCGCTAA	TGCTTTAAAC	AACCTTGCAC	TCTGCATTAA	AAAGGATGCT	101820

WO 98/58943

215 GAAATCTACT TCATCCATCA ATCGGGGAAA AATTTAAATG ACCTAAGCGA AAAGAATTAC 101880 CTTAGAAGGC AATTTTTTAA CGCAGAAGAA ATGGCAAGTA TAGTTAAATT TTCTAATCTA 101940 ATAATAAGCA GAGCCGGAGC TGGAGCAATA AAGGAATTTG CAAATGCTGG TGCATGTGCA 102000 ATTTTGATTC CATTTAAAAA AGGCTCTAGA GGAGATCAAA TTAAAAATGC AAAATTACTA 102060 ACAAATCAAA ATGCCTGCAT TTATATAGAT GAAGATGAAA TTTTAAATAT AAATATTTTA 102120 AAAATTATAA AAAAAACTTT AAAAGATAGA GAAAAAATCA ACTCTCTCAA AGAAAATATC 102180 AAAAAATTCA ATAATAAGCA TTCTTCAACT TTAATAGCCA AATTGCTAAT AAAAGATATT 102240 AAGGAGACAA AATCTAAATG ATAATAAACG ATCCTGTAAA AATAACTGGA ATAGTAGACA 102300 TATTAATAAT AATAATTTTT ACATCTTTGG GATTTAGAGG ATTTTTAAGA GGATTTATTA 102360 AAGAAATTAG CGGATTTGCT GAAGTTTTTG TTTTAATCCT ACTGCTTTAC AAAAAAACTG 102420 AAGAATTTAG AAGGTTTGTT GAACCTATTA TTGAGCTATC CTACATTCAA GCACTACTTG 102480 TATTTTTTT GCTTATACAT ATAGGATTTT TAATACTACA ATCCCTAATA GAATCAATAA 102540 102600 TAAGTCAACT TAAATTGCTA TTCTTCAATA GAATACTAGG CTTAGTGCTT GGCCTACTTG AAGCTTTTGG AATAATTGCA ATCGTGGTTT ACATAATACA CTCACAACAA ATATTTAAAC 102660 CTGAATATTT CCTAAAAGAA AGCAAACTAC TTGATTATTT AAATCCTGGA ATAAACTATC 102720 TCTTTAAAAT TTCAAAAACA AAATAAGGGC CAGCAATGAC AATGCTTCCA AAAATTGCAA 102780 AAGAGATAAT AAACGAATAT GATCAAAAAA TACTGCCAAA TGCAATTCTT TTACTAGGAG 102840 AAAAATTTTC TTCAAAAAAG ATTAGCGCAA TTGAGCTTGC AAAAAAAATA TTAAACGGAA 102900 AAAACTTAAC AAACCCTAAT TTGCTCATTT TCTCAAATCT TGACACAGTA GAAGCAAAAG 102960 CACATCTTTC TACAAATTCG CAAAAGATAG CAAATAAATA CCTAGAATAT ATTAAAACTG 103020 TAATTTTTAC CAAATGTTAT TTCAGCAATG AAAAAAATTT AAAAAAAATA GAAAAAAATA 103080 103140 TCAACTACAT TAATTCTGTT TATTATGAAA AAGAATACAA TGAAAACATA AAAAATGAGC TTATAAAAA TATAGAAAAT ATAAACAAAG AATTAAATCA TAGCATTACT GTTTATGATG 103200 TAAAAAAAT TCAAACTTGG ATTTTTTCTG AAAAAGAAAA ACCAAAGGTA ATCTACATAA 103260 ACGAAATCGA AAATTTATCA TTTAATGTCC ATAACTCACT TTTAAAAAATA TTGGAAGAGC 103320 CTCCCTCAAA TATTTACTTT ATCTTGGCAG CAAGAAATAA AAACAAAATA CCAAAAACAA 103380 TACTTTCAAG ACTTAGAGTC TACAATTTCG CAAAACTAGA CAGAAGCTTA GAAATTCAAA 103440 GATTTAAAGA AAGCTTTCTA ATAAATAAAG ATATAACAAT TGAAGAGTAT TTCGCCTCAT 103500 TTTACAAAGA AGAAAGCAAA AAAATAAAAA AAGAATTGGC AAAAATTCTA AATATAATAA 103560 AAGAAAAAA ATCCATATTT AATCTTGAAG AAGTCGACTT TATAAAAGAT GAGCAAAGCT 103620

TTAAAATATT TTTAAACGAA CTTACAATTA ACATTAGAAA AGATTTTTTA GAAAACAAAA 103680 TAGATATTAA TCAATATCTA AAGTACACAG AGCATTTGAA AAATATTTAC AAATATCGCC 103740 CCTATAATCA AAATAAAAAA TTAATAATAG AAAACTTAAT GCTAAATTAT GAGGAGATAT 103800 GAATAATTTT TTCAAAAAAG CTTTAACAAA GCTAAACAAA TTATCTAACG AACAAAAAAC 103860 TAAATTTATT GAACAAATTT ACAAAAAAT AGAAATATAT GACGGAATAT TTGCATCAAT 103920 TAATGAAGGA ATCATTGTAC TTGACAAACA AAACAATATA ATCTATGCAA ACAAGATTTT 103980 ATACCAAATT TTAGCTTTAA CATCTAAATC AAAAATAGAA ATTCTTGATG ACATTCAAAT 104040 TCCAAACTTA ATAAATTTAA TAAAAGAACT AGTTAGAACA GAAGATAAAA TAATAGGATT 104100 AGAAGTTCCA ATCTCAAACG GCATATATAT TAAAATCTCA TTTATGCCTT ATGTAAAAGA 104160 AAAAAAACTT GAAGGCAACA TTATTTTAAT CGAAGACATT AAAGAGAAAA AAAAGAAAGA 104220 GGAACTATTT AGAAGAGTTG AGGCTTTGGC CTCTTTTACA AGGCATGCAA GAAATATTGC 104280 CCATGAAATC AAAAACCCAC TTGGAGCAAT CGATATAAAT TTACAACTGC TAAAAAAAGGA 104340 AATTGAAAAA CAAAAATGA AAAATGGTAA AGCTGAAAAT TATTTTAAAG TAATAAAAGA 104400 AGAAATAAAC AGAGTAGATA AAATAGTAAC AGAATTTTTA CTAACTGTCA GACCAATAAA 104460 AATTAACTTA CAAGAAAAAG ATATTAAACA AGTAATAGGC AGCGTATGTG AATTGTTAAA 104520 TCCTGGATTA GAAAATAAAC ACATAAAACT ATTGCTTAAT TTAAACAAAA TAAGCAATAT 104580 TCTCATTGAT GAAAAACTAT TAAAACAAGT TATTATAAAC ATCGTTAAAA ACGCAGAAGA 104640 AGCACTGCTT GAAACAAAAA AAGAAATAAA AAAAATAGAA ATTTTTCTCT TCGAAAAAGA 104700 104760 CAATAAAATA CATATCAACA TAAAAGATAA CGGAAACGGA ATAAAAGATG GGGTAAAAGA GGAAATATTT AAGCCTCAAT TTAGCACAAA AGAAAAAGGA AGTGGAATAG GACTTACTAT 104820 TTCTTATAAA ATAATAAAAG AGCTTGGAGG TGAAATTTTT GTGGAAAGCA AAGAGGGCAA 104880 AGGCACTATT TTTACAATTA CGCTGCCTAA ACTAAATAAA AAAAATATTT TAATTGAAGG 104940 GTATTGAAAA TGAGCAAAAT ACTTGTAGCT GATGATGAAA AGAATATTAG AGAAGGAATT 105000 GCTACTTATC TTGAGGATGA AGGATATTTT GTTTTCACTG CTAGTGACGG AGAAGAAGCT 105060 CTTGAAACAA TTGAAAATGA AAATCTTGAT GTAATAATAT CTGACCTGAG AATGCCCCAG 105120 ATATCTGGAG AAAAATTGCT CAAAATAGTT AAAGAAAAA ACTTGGGAAT ACCTTTTATT 105180 ATTCTAACAG CCCACGGAAC AGTTGATTCT GCTGTAGATG CCATGAGAGA GGGTGCTTAT 105240 GATTTTTTAA CAAAGCCCTT AGACCTTGAA AGACTTTTGC TAATAATAAA AAGATCACTA 105300 AATAAAAAG AAAATAACGA TAATGAAAAT GCTAATTTAG AAAATATACT AATAAGAAAA 105360 GATCTAAAAT ACTATGAAAA AATCATGGGA AAATCCCTAT TAATGCAAAA AATTTTTGAA 105420 CTTGTAATAA AAATAGCAAA ATCAAATGCA TCTATTCTTA TAACGGGCGA AAGCGGTGTT 105480 GGTAAAGAAA TAATAGCAGA TGCTATTTTT GATCTTTCAA ATAGAAATGA CAAACCATTT 105540 ATAAAAGTAA ATTGCGCAGC ACTTTCTGAA AGCATTCTTG AAAGTGAACT TTTTGGCCAT 105600 GAAAAAGGAG CATTCACTGG AGCAATTTCC AAAAAAAAAG GCAGATTTGA ACTTGCAAAC 105660 AAAGGCACAA TTTTTCTTGA TGAGATAGCA GAAATTTCAC CTGAAATTCA AGTCAAGCTT 105720 TTAAGAGTAC TGCAAAACAA AACTTTTGAA CGTGTTGGGG GAGAAGCTAC AATTAAAGTT 105780 GATATCAGGC TTCTGGCTGC AACAACAAA AACATTGAAG AGGAAATTAA AAAGGAAAAA 105840 TTTAGAGAAG ATTTATTTA TAGATTAAAT ATCATTAATA TAAACATACC GCCTTTAAGA 105900 GAAAGAAAG ATGATATATC TTATTTAACA AACATACTAA TAAAAGACGT CGCAAAGGAA 105960 AACAATAGAG AAGAAAAAAC TCTTTCTAAT GATGCAATGA AAGCTCTCTA TTATTACGAT 106020 TGGCCAGGAA ATATTAGAGA ATTAAAAAAT GTGCTTGAAA GTGCATTAAT ATTATCAAAA 106080 GGCAAACAA TCACTAAAGA AGATTTGCCA GCAAAAATCA AAAATAATGA AAATCTTATA 106140 TTTAAAATAA CACTACCAAT AGGAATTAGC CTAAAAGAAG CTGAAAAAGA AATAATAAAA 106200 CAAACACTTT TTCATTCCAA AAACAACAAA AGCAAATGCG CCGAAATACT AAAAATAGGA 106260 AGAAAAACTT TACACAATAA AATAATCGAA TATAATATTG ATTAATAGGA TTTATTTTAA 106320 ATTATTAAAT TATAATGGGT ACAAAAAAT AATACTGCTT TAAATTCCAT GTATATTTTT 106380 GAAACCAAAA AATTTTTTAA TGCCAATAAT TATATTAAAA TGAAACACTT TCTTTTAAAA 106440 TCATGGCGCA AAAGTGTAAA AATATTTTTA TCAAACAAAT AATTATACAC CATTATTTGT 106500 TAATAATCAA TACAATTTGA TAATTTAATA TATTTAGCTG GCTACAGAGC CTGACCTTAC 106560 TTTAAAAACT TTAAAGGGTT AATAGGAATA TTTTTTTTTA ATATTTCAAA GTGCAAATGA 106620 GGACCAGTTG CGCGACCCGT TTGCCCAACC nTTCCAAGAA ATTCTCCCGA TTTAACAAAA 106680 TCACCTATCT TTACAGAATA TAAATTTAAA TGCCCATAAA GAGATTTAAT ATTATTTTTG 106740 TGACCAACCA CAACAAAATT CCCATAAAGA TCATTGTATC CAGCTTCAAT AACTATTCCA 106800 GAAGAAGA ATACACTTCA GCATTCATTG GAGCTGCAAG ATCTATTCCT GTATGGAAAC 106860 TTTTGTTGCC AGTGAAAGGG TCATTTCTAA ATCCAAAATC AGAACTAACA ATAAATTTTT 106920 TTAAAGGAAA AATAAAATTG GCATTTAAGA AAAAAAGCAA TTCTGTGCCT GAAAAAAGTC 106980 CAAAATCTGG ATTCTTAACA AAATCAAAAA AATAAAATTC ATAAACTCTG TCGTTCCTTT 107040 TAATTTTTAC CTTTTCAGCT TTAGCAAGAT CCCTTGTTGC TAAAAGCAAA TTATTAAATC 107100 TATAATCTTT ACTATCAAAA ACAAAAACTC CTTTTTTACT GGGAATAAGA ATCTCTTGCC 107160

PCT/US98/12764

ATATTGCAAT	GTCAAGTTAA	ATAAGAAAAT	AAATATAAAA	ACTCAATTGA	ТААСТАТТТТ	108960
TTGAGGAAAA	TTCTCAACAA	САТААТТССТ	ATGCAAATAA	TCTGCAATTA	CAAACATAAA	109020
TGAATATAAA	GAAACCCTAG	СААААААТТ	AGAAAAAACT	СТААААТСАА	TTTTATTTGC	109080
TAACATTGAA	GTGTAGTTTG	AATCATTTAT	TAAGCTAAAA	AATCCATTTT	TGATTAATAA	109140
АТСАААААТА	ACAAATTCAG	ATTCATCTAA	AATAAACATC	AATTTATCCA	TTTGGGCTTT	109200
ТАААТАТААА	ATTTGTTCAC	TAATTTGCAA	ATTGGCAATA	СТТТТААТАА	AATCCTTGCT	109260
ТАААТТАТАА	ATAACAATAC	CATAGTGATT	ATTCTCAAAT	TTAAAATCCA	CAAGCAATCC	109320
ТААТТТТААА	TCGCAAGAAT	CTTGCATTAC	ACTTAAAACT	TTAATATTTA	TTTTGCGCTT	109380
AGAAAGAATG	CTAACAGAAA	GGCCACTACC	TTGATCAATA	AAATAAGCAT	TCTTAAAAGC	109440
ТСТАААТААА	ACTCTATTAT	ТААТТАААТС	AAGAACATTT	ТТАТТСТТАА	GATTCTTAAT	109500
AATTATTAAA	TCAAAACTTC	GATTTAGAAT	ATTATAAGCA	GAATCAAGTA	ACCCTTGAGA	109560
AAAATCATCA	ТТТАААТТАА	AATTTGCAAC	CTTAAACTCC	AAAACACTAA	AATCTGTATC	109620
TACAACATTA	CAGGAAAAAA	ATAAAACACT	AAGCGGAAAT	AAACTCTTCA	AGTTGATACT	109680
TTGTCTCAAC	AACTTCAAAT	ACAAGCCCAT	ACTTTTTTGC	AGCACTACTA	TCCAACCAAA	109740
AATCTCTATC	AGTATCCTTT	TCTATTTTAG	AAATTTTTTG	ACCCGTTTCT	TTTGAAATAA	109800
TATTATTAAG	TTCTTTTTTA	ACTTTATTTA	ACTCATTAGT	GTAAATCTCA	ATATCTGTAG	109860
CAACTCCCTT	AAATCCACTC	AAGGGCTGGT	GCAATAAATA	TCTGGCAAAG	GGCAGTGAAA	109920
ATCTATTTTC	TAATTTTGCA	GCCAAAAAAA	TTAAAGCAGC	AGCGCTAGCA	ACAAGCCCTA	109980
CTCCAACTGT	AAAAACTTTA	GGCTTAACAA	AGCGAATCAT	АТТАААААТА	GCAAATCCAG	110040
CATCAATGTC	GCCTCCTTCT	GAATCAATAT	АСАСАААТАТ	AGGCTTTTTA	AAATCTAGAG	110100
CCTCTAGCAA	TAATATTTT	TCCTGAAAAA	GCCTGGAAAC	ATCCTTGGTA	ATCTCACCAG	110160
CAATAACTAT	TGATCTGCTC	TTTAAAACTA	ACTTCAATGA	TTTATCATGC	AAAACACAAG	110220
CATCATTATC	TTCTTTCCCG	GTCATAAAAC	ATCCCTTATA	САААААСАТА	ATGATATATT	110280
ATAATTGAAA	ATAAAAGGTT	TTTAAATGAT	AAAAAAGCAC	AAAAATTAAA	CAATTGCACT	110340
TAATTTCTGA	AAAGCAAAAG	ACTAATAAAT	CTTTAATCAA	GCTTCATTAA	AGTTAAAAAA	110400
ТАСТСТАААТ	TTTACAAATT	AAGTAAAATT	AAAAAGGAGT	TTATAATGCA	CCATGAATTT	110460
GCGGTTATCG	GAGGGGGAAT	AGCGGGAAGC	ACCGTTGCTT	ACGAACTGCT	TAAAAGAAAT	110520
AAAAAAGTAA	TTCTTTTTGA	TAATGAAGAT	ACAAAAGCAA	CAATGGTAGC	GGGCGGCTT	110580
ATTAATCCTA	TTATGGGTAG	AAAAATGAAC	ATTGCCTGGA	AAGAACCACA	TATTTTTGAA	110640
TTTGCAAAAA	ACTACTATCA	AGAAATTGAA	AAAACCATTA	AATCCAAATT	TTTTATAGAA	110700

АААААТАТСТ	TTAGACCCTT	TACTACTGAA	ААТСААААА	ATGAACTGAT	TGATAAACTT	110760
GAAAATAATA	AAAACATAAC	AAACTTTATT	TTAAAAATAC	AAGATGGAAA	AACTTACAAT	110820
TTCTCAAACG	ACTCTAACGG	CGGAATGATA	ATAAAAGGCG	CCAGGGTTAA	TACAAAAACA	110880
ТАТАТААААА	ATATTAAAAA	ATACTTAATC	GAAAAAAATT	CTTACATAAG	САААААТАТА	110940
AACGAAAATA	AAATTAAACT	TGGAGAAAGT	TTTTTCAAAA	TAGAAGATTT	TAAATTTGAA	111000
АААТТААТАТ	TTGCAAAAGG	GTATAAAGAA	AAACTCAAAG	GATTTTTTTC	TTATCTCCCA	111060
TTTGAGCCTG	CAAAAGGCGA	AATCATTATA	TTAGAATGCA	АААААТТААА	CTTTAAAGAG	111120
ATTTACAATA	GACACATATC	TTTAATTCAC	TTAAAAGGCA	ATAAATTTTA	CCTTGGAGGC	111180
ACTTACGAAT	GGAACACTTG	GAATACACTT	ACAAATGAAT	GGGCAAAATT	AGAGCTATTG	111240
AAAAAATTTA	AAAAAATAAC	AAATCTAAAA	TGCAAGGTCA	TTGCTCAAAA	AGCACATATA	111300
AGGCCTTCAA	CTCTTGATAG	AGAACCTTTC	TTGGGAGAAC	ATCCTAAGCA	TAAAAATATC	111360
TTTATATTAA	ATGGTTTTGG	AACAAGGGGC	GTATCTATGG	CTCCATACTT	ATCTAATTTA	111420
TTAGTTAATA	ATATTGAAAA	AATTGACAAA	ATTCCAAATC	ATTACAATAT	TAAAAGATAT	111480
GCAAAATATT	ACAATATTTT	GGATCATTCT	ТААААТСААА	ATTTTTAAAT	CCATACATAC	111540
TGACAAACGA	CTACTATTAA	TATTTCTAAA	TTCATAAAAA	AATAATATAA	TGTTTAAGTT	111600
AAGCTAAAAT	AATTCTTATC	CAAAGAGAAA	CTAAGAGTGA	AACAAGATTT	AACAAAGCAA	111660
ATAAAATTAA	TTGACACTTA	CAAAACAAAC	CAGGAGAATA	ATCTTTGGGA	ТТТААТАТТА	111720
ATATCATAGG	AACTGGAGGA	ACAAGGCCAC	TCCACAATAG	ATATTTGTCA	TCCGTACTAA	111780
TCGAATACGA	TGGAGATAAC	TTTTTGTTCG	ATTGTGGTGA	AGGAACCCAA	ATGTCTTTAA	111840
GGAAACAAAA	AATATCCTGG	СААААААТАА	AAATGATTTG	CATTACACAC	TTACATGCTG	111900
ACCACATCAC	GGGACTACTT	GGAATAGTAA	TGCTAATGTC	ACAAAGTGGA	GAAACAAGAA	111960
AAGAACCATT	AATAATCGCT	GGACCTGTTG	GAATAAAAA	CTATACACAA	GCTAATATAA	112020
ATATGCTTAA	AATATATAAA	AACTATGAAA	TAATTTATAA	AGAAATAATC	ATAGATAAAA	112080
CCGAAAAAAT	AATATATGAA	GATAAAACAA	AAAAAATTGA	ATACACTAAA	CTAAAACATT	112140
CAATAGAATG	TGTTGGATAT	TTATTTATAG	AAAAAGATAA	ACCCGGCAAA	TTCAACACAG	112200
AAAAAGCAGA	AGAGCTAAAT	ATTCCTAAAG	GGCCTATTAG	AAAAGCCCTA	CAAGATGGAA	112260
AAGAAATATT	GGTAAACGGA	AAAATTATAA	AGCCATCAGA	AATACTTGGA	AAATCTAAAA	112320
AAGGACTAAA	AGTTGCATAC	ATTACAGATA	CTGGTTATTT	TAAAGAACTC	ATACAGCAAA	112380
TCAAAAATTT	TAACCTTGTA	ATAATTGAGA	GCACATTTAA	AAATGAGCTA	AAAAAAGAAG	112440

WO 98/58943

221 CCGATAAAAA ACTTCACTTA ACAGCTGGCG GGGCTGCAAA TATTGTCAAG CAAGCAAAAG 112500 TTTTACAAAC AGGACTTATC CATTTTAGTG AAAGATATAC ATTAAGAAAA GATCTTGAAA 112560 ACTTACTAAA GGAGGCAAAA TTGGAACATC CAGACGGAGA AATTTTTTTA ACAAGAGATG 112620 GAATGAGGCT TGAAGCAAAC AAAAATAACT TTATTATTAA ATAGGAGGGT ATATGATAAA 112680 TGTAGAAAAA GTTACTAAAA TGTATGGGCC ATTTACAGCA CTATTTAATG TTAGCTTTAA 112740 GGTTGAAGAA GGCGAAGTAC TTGGTATACT TGGCCCAAAC GGAGCCGGAA AGTCCACATT 112800 AATCAAAATC TTAACATCAT TTCATTATCC AAGCAAAGGT AATGTAAAAA TTTTTGGAAA 112860 AGACATTGTA GAGCATTCGA AAGAAATACT ACAGCAAATA GGATATGTTC CTGAAAAACT 112920 AGCTCTTTAT CCAGAGCTTT CTGTTAAAGA ATATTTAAAG TTTATATCAG AAATAAAAGG 112980 TGTTAAAAAA TTAAAAAAAG AAATTGACAG AGTAATAAGC ATATTCAAAT TAAAAGAGGT 113040 TGAAGATAAG CTGATTTCTC AACTTTCAAA AGGATTTAGA CAAAGAGTAG GAATAGCTGG 113100 CGCTTTAATA AACAATCCTA AACTTGTAAT ACTTGATGAG CCAACAAACG GTCTTGATCC 113160 AAATCAAATA ATTGAATTTA AAGAATTTTT AAGAGAACTT GCAAAAGAAA GTACAATATT 113220 ATTCTCTTCG CACATACTAA GCGAAGTAGA ATCTATTTGT AAAAGAATAA TTATTGTCAA 113280 CAACGGAGTA ATTGTTGCTG ATGACACAAA AGAAAATATT ATTAAAAATA AACTTAAAGA 113340 GATTGAAATA GAATTAATAG TTTCAAAAAA ATCTGAAAAT GAGAAAAAAA TTTTCAACAG 113400 CAAAAATGAT ATTTTTCAT TAATAAAGCT TGAAGAACAC GAAAAAGACT TAAATATTTC 113460 ATTAAAACTA TCTCAAGGCA AAACAGAAGA AGATCTCTTT AGCTACATAG TAAAAAATAA 113520 TATAATCTTA AAAGCAATGA TTCCAAAACA TGAAAGCCTT GAAAAGATAT TTAGCAAATT 113580 AACCAAGGAG AGAGAAAAAT GAAAATAGAT TTAAAGCAAT CTTTATCGCT TTCTAAAAAA 113640 GAACTAAAAA TATTATTTGG AACCCCAACT GCATACGTTG TGATGCTATT TTTTTTAATA 113700 TTCATAAACT TTTCATTAT TTTTTTATCA GGATTTTTTA TTAAAGACAA TGCATCTCTT 113760 ACCTCTTATT TCTCTTCAAT GCCTATTATT TTAATGTTGG TACTGCCAGC ACTTAGCATG 113820 GGAGTATTCT CAGAAGAACA CAAAACAGGA AGCATTGAAC TTCTTTATGC TCTACCGCTA 113880 AGTCCTCAAG AGATAGTCTT GGGCAAATTT ATTACGCTTA AAATATTTAC CTTAATACTA 113940 TTCTCACTTA CCCTACCTCT TACAATAATG ACAATTTTCA TGGGCGAATT TGATCTTGGG 114000 ATAATATTGC TTCAATATCT AGGAATAATT CTTTATTCTC TTTCTGTGCT AAGCATGGGA 114060 ACATTTATAT CCTCCATTAC AAAAAGCCAA ATAGTCTCTT ACATTCTTAC CGTATTTACA 114120 CTGATATTAA TACTATTTTC TGGGAAATTG GTTATGATCT TTGGAAAAGA AAATATAATA 114180 GGAGAAATAC TTAATTTTGT TTCAATAACC AATCACTTTA GCTATTTTAA TATGGGTATA 114240

TTAAACTTAT CAGACT	ידראד דראדדדאדיז	ACATTCACAG	TCACATTTCT	AATACTAAGC	114300
ACACACAGCA TAACAC	TAAA AAAATGGAGA	A TAAATTTATG	AAAAACAAAG	AAAATGAAGT	114360
TTTAAACCTA ACTTTG	AACC TTACAATAA1	CTTTTTGATT	TTTTGTAATA	ТАТСТАТТТу	114420
CATTTTTAAA ATAGAC	TTTA CAAAACACA	A AGCTTTTACA	ATATCTAAAG	TTACAAAAAA	114480
TTTGTTCTCA AGTGCA	AATG AAACAATATA	А ТАТААСАТАТ	TACAATTCAG	GAAGCCTTGA	114540
AAACTATTTT GCTTTT	CCAA ACCAAATAA	A AAATTTTTAA	ATAAGTTTTT	CTGATGCTTC	114600
AAAATGTAAG GTAATT	TATA AAGAAATTGA	A CGCTGATAAA	ATTTCAACAC	CATTAGAGCA	114660
CATTGGTATT CCCTCT	CAGC AAATCGACT	T AAGAGATATT	AATCAGCTTT	СААТАСТСАА	114720
AATATACTCA GGAATT	GAGA TTATTTACGA	A GGGAAAAAGA	GAAGTAATAC	CGGTTGTAAC	114780
AGAAATCAGC AATCTA	GAAT ATGACCTTG	C AAATGGACTT	GACAAACTAA	TAAATAATAC	114840
CAAAAAAGTT TTAGGA	ACTTG CTTTTGGAGA	A CAGCACTTTA	AAAGAAGCAC	ATAAAAACTT	114900
TTCCGAAATA ATGAAA	AAAAG CATTTGGAA	T TGAAATAAAA	GAAATAGATT	TAAAAACTGA	114960
AAAATTAGAA GACATT	RAGAA AAGATATAA	A TGGATTATTC	ATTATTGGCG	CTAAAGAAAT	115020
TGACGAAGAA ATTGCA	AAAAA AAATTGACGA	A TTTTATTGTT	AATGATGGAA	AAATATTTGT	115080
TGCAACAAGC ACAATT	GACT ACAATCCTC	A AAATCCATAT	GGCATAACTC	CTATTAAATC	115140
CAGCCTATTT GATCTA	ATTTG AAAGTTATG	G GATAAAATAC	AACGATAATA	TTATTCTTGA	115200
TAAAAGAGCG CCCACA	AATCT TTTTGGGTG	G CAATTTCCAA	ACTTACTATC	CATGGATCTT	115260
AATAGACAAA AGCAAT	FATTG TAAAAAAAG	A CATGCCATTG	CTTAAAAATT	TTTATACCGC	115320
TACAATTCCT TGGAGO	CAGCT CATTAGAAC	татааааааа	GATGAAACAG	AAGTAAAATT	115380
TTTACCTCTA TTTGC	AAGTT CCAAACAAT	C ATGGCAAGTT	AAAGAACCTA	ACCTTTCAAA	115440
CATATCTTTG AATGCA	ATTTG AAGTTCCAA	A TAAATTTGAA	GAGAATAAAA	СТААААТАСТ	115500
AGGATATGCA ATTGA	AGGAA AAATTAAAA	G TCCTTATAAA	GATCAATATT	CCAAAAATTC	115560
талалталтс стался	AGGAT CAAGCATGA	T ATTTAGCGAT	TATATGTACA	ACGGGTCTCC	115620
ATCAAACTTT GAACTA	ATCAG GAAGAATTT	C GGATTATTTA	ATGCAAAAGG	AAGAATTTTT	115680
TAATATTAAG TCCAGA	AGAGG TACGAGCTA	А АТТААААТТТ	GCAAGCTCTT	CAAACGAAAT	115740
GGTCAATGCA AAGTT	TTCAT TAATAATTG	Т ТААСТТААТТ	ATTCTTCCAA	СААТААТАТТ	115800
AATATTTGGA CTTGT	TAGAT TTACTAGAA	A AAGAAAAGCA	AATTAATAAG	AACAAAGGAG	115860
TGTTTATGAC AAAACC	CAAAA ATATTCTCA	a tcaataaaga	AAAATAAAA	ATATTGATAA	115920
TAGTAGTGTT AACAT	CTACA TTCTTATTG	G GAATAATTTT	TTCAAATGAA	AATAAAGTAG	115980

CAAGGATCCT TGAAGAAAAA TTTTTTGATT TTGACTTTAA TTTAATTTCT AAAATTGAAA 116040 CAGAGCTTGA AGGAACGCTA ACAAAACTTG GCAAAGATTG GATTTTAACA TACAATAAAC 116100 AAAATATTCC TGTTGATAAC AAAAAAGTCA ACTCTCTAAT CAAAGCATTA GACGAGCTTC 116160 AAAAAAACAA GCTTGTAAGT AGAGATCAAA AAAAACACAA GGAACTAGGA ATTGGAGAAA 116220 ATCCAAGCTT TAAATTATTT GACAATAATA ATAAGCTGTT AACAGAAATT TTTGTTGGAA 116280 AATCAGGAGA AGGCGATTCA AGACTGGCAT ACATTAAAGG TAGTGACGAA AATGTTTACT 116340 TAACAAAAA CATTTCTTA TCATACAAAG GAAATTCTTA CAATACATTT TCAGATACTA 116400 CATTGTTCCA AGAAAAAAAC ACAAAATTAG AAAATTTATC ATTCAAAATA ATAAGAAAAT 116460 TAAACAAGGA AAATGAAAAT AACATAAATA ATAACTATGA GATTATCAGT AAAGATGGCC 116520 TTTATTTTT AAATAACCAA AAAATGACAA AAGAAAGGCC TTTAAATATT ATTGCTGAAT 116580 TTAAAGCTGA CGGACTTGAA ATTGATAAAT CTAAAATAGA TGATTATAAT CTTCAATACA 116640 AAATTGAAGT CAAATGGAGC AATAAAAGTG TCAATAATAT TGAAGTTTAT TTTAATAAAA 116700 ACGAAGAAA TGACAAAGAC ATATTAATCA AAAAAGATAA AGATGAATAT TACTACACGA 116760 CTAGCAAATG GACTTTTTT GATGTATTCG ACTTAGAAAA AAAATTAACA GAAAAAGATG 116820 ATATTTCTAG CAACGATAAT CAAGAAGATC ATCATGAACA TCACAACAAT GCAGATTAAT 116880 CTTGCTATAT ATAAAAAGCA TTAAAAGAAA AACATATAAA AATAAATATA ATTAAAATAT 116940 ACCATGACAA AGACAACATT TTATCAAAAG ATAAGATGTT GTTTGGCTTT ACTGATATAT 117000 CTTTTAAATT AAAATTAATA TCAAACAAAC CGCTCAGTTA TCAAATATTA ATTTTAAGAA 117060 TTTTTATAAA AAATAGAACT TAAACGAATG GATTTTCAAC CTTTAGTAAG TAAAAATTTA 117120 ACTTTTTTTA AAACTTCATA CTCTTGTTTA ATTTTAAAAA TATTTCTATT AGGATTTAAC 117180 TCAAGTTCAC TTTCTACCCT ATCAATAAAA TTTATTAATA TGGCTTTTTC ATCGCTATTT 117240 AGCACAACAT TACTTAAAGA TTCTTCAGCA TTAAATTTGC TTACAACCTT TTCAACATCA 117300 TTAAAATTAA AATTAGAAGG AAAAGGGTCC TTAGTTATGC TTTGAGAGCT GGGCTTTTCA 117360 TAATTAGCAA CATCATTACT TTGGTCTTGA TCTGATTTAT CTCTCAAATT ATCATGCAAA 117420 TTTTTCTCTC CAGCATTAGA AAAAGAGCCT TCGGCAACCG TAGAATCCAG ATCCTCTTTT 117480 AAAATATTTT CAAAATCATC AAATTCTTTT GACTCAAAAC GTTCACCAAA GCTTTTAAGA 117540 ATCGCACAAT TATCACCATT CTCATGCTCA ATGTTTTCAT TCTCATTAAT TAAATCCAAA 117600 CGTTGTTTAT TATTATCTAC AAAGCTCTCC AATTTTCGAG AGTTATCGCA ATTAGCAATA 117660 GAATAGGGAT CTTCTGCTCC CACTTCATGT TCCAAAGAAG AACTATTATC CAAATTTTTA 117720 117780 TTAACAGAAT CTAACAGTTT ATCTGGCTCT GTAGTAAAAC TTTCCAATTT TTTACTGTGA

WO 98/58943

TCGTTATTAT	TATTTAACTC	CATATTTCCT	ATGGACACAT	TATCACTGTC	AACATTAATA	117840
TCCTCTTTTT	TAAGAATATT	ATTAGAAAAA	TTATCAGCCA	CATGTAAATT	GTTAGTCAAA	117900
TTCAAATCTT	TATCTCTATT	AAATTTAACA	TCGTGCTGAA	CTTCTTCATT	TTCTTTTGGG	117960
GTATAATTGA	TACCTTCAAG	CAGCGCATCT	AATTCTTCTT	GACCAATAGA	AATATTAGGC	118020
AAATTATCTT	CTTTTTTTGA	AAATGAATCA	TCCGTCTCGG	ATGATTTTTT	TTCAAAATCC	118080
TTCGAATCAT	AAGAAATAAA	ATCCCTTTGA	ACAAACTTAA	GACTATTATC	AAGCATTTCT	118140
TTTTCAACTC	TCTCAACACG	AAGCTCAACA	CCCTTTAAAC	AATTAATCAG	CTCGCCGTGC	118200
CTTTCTTTTA	AGATGTTATC	GAGTTTTAAC	AGCTTTTCAT	CCAAAAAAGT	TTTAAGATTA	118260
TCTGGGGCTA	TAGAAACAAT	ATCAACAGAC	TCACTTCTTA	AAAATACCTT	TTCAATATCA	118320
AAATTAACTT	CCTTGGGACC	TTCTTTGATA	AAAAAAACAC	TTTCCTTCAT	GCCAAACTTG	118380
CTCTCCAAAA	CTACTCAATA	AAACTACAAT	CTAAAGCAAT	TTTAACTACT	TGTAAATATA	118440
GTATATTAAG	AATATAATTA	CAAGCTATAT	GACTATTTAT	AAAAAAATTG	CAATGTCTTT	118500
TTACTCAGGA	ATACTAAGCT	ACTTTATAAT	AGCTCCCATA	TTTGGAGAGA	GAGGATTTGT	118560
TAATTATCAA	AAATTGGATA	ACAACTTAAC	ATTAATAAAA	AATCACATCG	АААААСТААА	118620
AGAAATTCAA	AAAGAATTAA	AAGCAAGATA	TATTAACCTA	CAAGTATCTA	AATCGGAAAT	118680
TCTAAAAGAA	GCTAAAAAAT	TGGGCTACTA	CCCAAAAAAC	TCAACAGTAA	TAAAAACCAA	118740
СААТААТААА	GATCAATATA	ACCAAGGGCA	AATATTAACC	TTACAAAAAC	CCCTTTCCAA	118800
GAATCAAAAT	TTTTACCTTA	TATCAATAGC	AATAGGTTTA	ATTTATTATT	TTTTATCAAG	118860
CTGCATTATC	CAAACCAAGA	АААТТАСААА	AATCAATAAA	CTTGCTTCCA	ACAACTCTAA	118920
GGATTAGTCT	TTATTGAAAA	TATTTATTT	TAAAAATACA	ATATATTTAT	ТААТТААТТТ	118980
AATTTGTGCA	TCATTTTTT	GCGTATCGTT	AGTAAATCTT	TTTTCAAATG	AACAACAGTA	119040
TACTCCTTTT	GTTAAAACAA	ATGTCATAAA	AAATTACTTA	CAATACATTG	GAGTATATAA	119100
AAGTATAGAA	AGATATGCCC	TGATACATGA	CTTTAACCCT	АААТСААААТ	TAGAAAAAGA	119160
TTGCTTTTTG	AAGCATATAG	CTGGCAATTC	АТАТАТААТА	ТАСААААСАА	AAAATGAAGG	119220
AATGCTGTGG	GGCGATCATC	GATACTCTCT	GCTGAGCAAA	GGAAAGCCAA	СТАСТААААТ	119280
AATTTTTCAA	AAAATATTTA	ATACTTTAAA	AATCTCAATT	CCAGGCGCCC	TACTCTCTTA	119340
TATTGCGGCA	ATAATCCTTA	TTATAATTTG	GAAAATTTAC	АТАААААТА	ATCTAATAAA	119400
ТААТАТТСТА	GAATATTTAA	TGCTATTGCT	CCACTCCATG	CCAAGAAACT	TAACAGTATT	119460
TTTAATACTG	TCTTTAATAT	ATTACCTTAA	TTTAAATCCA	AAAAATTTAA	TAATGGGTGG	119520

	4.	· · · · · ·	225			110500
	TTTTTTTCAT					119580
CAAAACTTTA	TCAGAATTTT	ACATAAAAGC	TGCAAAATCA	AGAGGAATAA	ATAAATTGCA	119640
ААТААТСТТА	AAACATGCAT	TAATTCCATC	AATAACACCA	TTACTCACAA	ACATGAGACC	119700
TATTATTACA	ACAGCTTTTT	TTGGAGCATC	AATGATTGAA	TCAATGTTTG	AAATTGATGG	119760
AATTGGGGCC	ТТАТАТТТАА	ATGCTTTGAA	ATTTAACGAT	TATGCTATTT	CTAAAGATTT	119820
GATTTTTATT	GGCGTTTTCA	TTATGCTTAT	TCCAAATATA	ATAACAGATA	TACTAATTTA	119880
CAAAATTAAC	CCATATAAGG	ACACTCTAAA	CTAATGAAAA	CAGATACAAT	AATAAAAAAA	119940
ATTTATATCG	TACTCTTTAA	TATATTTATT	GTGTTGCTAA	TTATTACTCC	GTCATTGGTT	120000
AATGAAAATT	CAAAAATTGC	AATCTATAAA	AAAGATCCAA	ATAAAGTCTA	ТТТААААТСТ	120060
ATTAAAAATG	TACCTATGCC	ACCCACAAAA	GACAACCCAT	TAGGAATCGA	CAAAATGGGA	120120
AGAGATATTA	TGGCAAGATT	AATAATTGCA	ACCAGAAACT	CTATTTTACT	TTCACTAAGC	120180
TACGCAACAA	TTTCTGCAAT	AATTGGAATC	TTTATTGGAA	CAATCATTGG	CATGTTTAGT	120240
TTTGAAATTT	GCATGCTGAT	TTCAAAACCA	ATTGAAACAT	TGCAAACATT	ACCTTTTTTT	120300
TACGTTGTGT	CTTTAGTTTT	TTATTACTTT	ТТААААСААА	AAACTTACAA	TATGCTTCAA	120360
ACAGCAACAC	TATTAGCATT	GATTCATGGA	TGGATTAGAT	TTGCTTTTAT	TGCAAGAAAC	120420
AATACATTAA	ТААТААААА	TTTAGATTAT	ATTAAAGCCA	GCGAAGCTAT	GGGAGCAAGC	120480
AAAATTAGAA	TAATATTGTA	TCATATTTT	CCAGAAGTAT	TCTCATCAAT	ATCATCTATA	120540
ATCCCATTAC	AAATGGGAAG	AAGTCTTACT	ACTTTTGAAG	TAGTAAGTTT	TTTACAAAAA	120600
CAAGATAAAA	ATCTATATCC	CAGTCTTGGA	GAACTGCTCA	ACTATATGCA	AATGGGCAAT	120660
AAATATCTAT	GGATATGGAT	CAATCCCTTA	СТСАТАТТАА	TAGGCATAAA	САТААТАСТА	120720
GCAATTATAA	ATTTTAAGCT	AAGAAAAAA	ATGAAACATT	TAATATCATC	ТТАААТАААТ	120780
AATTAACAAA	CTCTTGGAGC	AAATTTTTCT	AAAAAACAAT	TATCACAATT	TACATTTCTA	120840
GAAGTACAAA	TTTCTCTTGC	ATGCTTATTA	ATAGCCATAG	ААААТСТАТА	CTGCTTACAA	120900
GGCTTTATTC	TTCTTTTAG	ATCCAATTCA	. АТСТТААТАС	GAGAACTTTC	CAAAGAAAGA	120960
GCATGTCTTG	з таатаастст	' ACTAAAATGA	GTATCTACAA	TAATTGCGGG	TTTATTGTAA	121020
ACAGATCCAA	GAATAACATI	TGCCGTTTTT	CGACCTACTC	CAGGTAGCTT	AATAAGATCA	121080
AAAATATTAT	TTGGAATAAC	ACCATTAAAT	TTTTCTAAAA	TATCAATAGA	GCAATTCACA	121140
ATATTTTAC	CCTTTCTTGA	ATAAAAACCA	GTCTTATAAA	. TTAATTTTTC	AACATCTCTC	121200
ACATTTGCTC	TTGATAAACI	TTCAAAATTC	TCGTACCTT	CAAAAAGGTA	TGGAGAAATT	121260
TTATTCACC	A AATTATCTGI	TGTTCTTGCA	CTTAAAATAA	CCATTATTA	AAGTTCATAA	121320

TTGTTTTTAT	AAATTTAAAA	AGGTTTAACA	TCAGGATATC	TAAATAAAGT	TTCATCAACA	121380
ATCAAATCAA	GATTAATCAT	AAAAAAATTA	ТААААСАТТА	TAAACACAAA	АСАААААТАА	121440
AAAATATACA	AAGTAAAGGT	ATCTAGACTT	TATTGACAAG	GATTTTTCAA	AATGATATAC	121500
TCATCATTAG	AATTTTAAAT	GCACCAATAG	CTCAATTGGA	TAGAGCAACA	GACTTCTAAT	121560
CTGTAGGTTT	TAGGTTCGAG	TCCTAATTGG	TGCGCTTCAT	TCGGGATGTG	GCCTAGTGGC	121620
TAAGGCACCT	GCTTTGGGAG	CAGGGGATCG	TGAGTTCGAA	TCCCACCATC	CCGAAAAAAT	121680
ATTAAAAAAG	CTAAAAACTT	TTGTTTTTAG	CTTTTTTGGT	TTTTTAACGA	TTTATACAAA	121740
ТТАААТСТАА	CTGTAAAGTT	ACTTAACTTT	CTTTAAAGTA	TTTACATCTA	AAATAACTAG	121800
ACTTTTAAAC	TCATCTTGCA	AATAAATAAA	ATTTTTTCTC	ACAGAAAAGC	TAGTAAAAGG	121860
CATAATTTTA	TTCTCTGAAA	GAATAAACTC	ATCTAAATTT	TTAGGAGAAA	ATTTGGCCAA	121920
TCTCCAATCA	TTACTACTAT	CTTTATCCCT	AACAGCTACT	AAAATCATTT	TAGAATCAAC	121980
ATAAAGAGAT	GAATTTTTAT	TAATCTCAAA	ATTAGACTCT	GATACCACTT	TTAAATTTTC	122040
AAGTTTATCA	AGTATCTGAA	GCTTAGCTTT	TCCTGAATCC	ATTTTAATAA	CAACCAAATC	122100
TTTTTCACGT	TCATAAATTC	CATACCGCTG	AATGCCTTGC	TGAGTGCTTT	CTTTAAGCCT	122160
AACACCAGTA	TTTAAATCAA	TAAGTTGAAG	AGTTCCTAAA	TTTGTAATTG	GATCAATAAC	122220
СТСТАААААТ	ACAGGACTAC	TGGAATCTAT	AGACATAGTA	GTCAAATCTT	CATTCAAAGA	122280
AGTAACTTGG	TCTTTAACCT	GAGGCTTAGT	CTTTTGCAAA	TTAACATCTT	TATTAACTGT	122340
CTCCTCTTTT	GAATCAATGT	CTTTATAAGA	AGATTTATCT	AACGGTGATA	ATTCTCCAAC	122400
ATTGTTATTA	GACTTGAAAA	TCTTATCTAA	TTTCTCAACC	TCAGAAACAG	GTTTAAATTC	122460
TTTTTTGCTA	TCTAATTTTT	TAACCTCAGG	TAATTTTTGA	TCTTCTGGCA	TCATAAGATT	122520
TTCATCATTA	TTCAAATCGC	CTAAGCTTTT	CTGTGACTTA	CCCTTGGTTA	TTTCTTCTTC	122580
CTTGGCTTTA	CTTTTTTCTT	TGCTAGAAGC	TTTAGAATTT	AATTCTCGAT	CAAGATCCAA	122640
GGCTTTACCA	TCTTTACTTG	CTTTATCATC	TTTACTTTTT	AAAAGCTTTT	CATCACTTTT	122700
TTTGATTTCA	ATTTGCTTTT	CAATTTCTCT	TTTCTGATTT	TCATCACCAG	TTTCTTTAAG	122760
CTGCTCCTGC	AAATCTTCCA	GGCTCTCTTT	TATTTGTAGT	TGCTTATCAA	CTTTAGGAGA	122820
ACTTACATCA	CCAGGCTTTG	GTAAATTCTT	TTCCTTGTTA	ATTTCGTTAA	TATCCTCTTG	122880
AATTTTCTCT	CTAACAGTAT	TTCTTTGAAC	ATCTAAATTA	TCTTCAGCAG	AATCTAATTT	122940
TTGCTGAGCT	TTATCAAGAT	TTATTGCCTT	TTTATCTAGC	TCTTCCTTTT	GTTTCTTTTT	123000
AGCATCAACC	TGACTTTCAA	TCTCTTTTTT	ATGCTCTTCA	TCTGTAGCTT	TTTCAAGCTG	123060

ATCCCTTAAA	TTTTCAATAG	TTTCTGTTAT	ATTGGAATCA	CTTTCATGAA	TATTGTCTAA	123120
TTCAATATCA	ATTTTATCTT	GATCTGCCTT	ATGAGTTTCG	CCTTGAATAT	CTGTAATATC	123180
TCTTGCAAAG	TTAACACCTG	CTTCATTTTC	ACTTAAAAGA	GCTGCCACCA	CCTTATCTGT	123240
AACTAAACTG	TCAATATCAA	TGTCAGACTC	AATATTTCCA	GACAAAATAT	CCTTTTTAAG	123300
AGGAATAAAT	ATTTGTGTCT	TTCCAGCCCA	CTGACTATAA	ACCCTAGAAA	GACCTGCATT	123360
TTCTTTACTT	AAAGACTTTA	AAGCAGCCTC	ААТАТААААС	ССТТТАТААТ	AATCCAAATC	123420
TCCTCTATAA	ACAGCATTAT	ATATTGTAAT	AACCTTAGCA	ATTAATTCTG	CACTAGACCT	123480
GTCATAATCG	AAAGACTTTA	ттааатассс	TGTAAGAATT	СТТСТТАААТ	TCAATATACT	123540
GTCAAGCTCT	GACTTACTAC	СААТАGAAAA	AACATCAACG	CTTGCTTTTT	TATCTTGATC	123600
АТСААТАААТ	СТАТТААТАА	AATATTTACC	ATAATAACTT	GAGTTGCTAT	TGGAATTGGT	123660
CAACGGTCTT	GCTAAAAACT	CCCCAATACC	CACTATTTGT	TCATATGTAT	TTGTAGAATC	123720
ATAAGGGCCT	ТТАТААТТТА	CAAACTCAAG	ATCCATATTA	ACAAAGTCCT	ТТААТТТТТС	123780
CCTATCAACT	TCTCTTGCAC	TAACAGGAAA	TCCATTCAAG	AAAATAAGAA	АААААСТААА	123840
GATTAGTAAC	ATTTTTTCA	TAAAAGAAAT	ТСТССТАТАА	ATTTAATTAT	AATCTACCTT	123900
ACCAACTAAA	TTCACCAATT	ТАААССТААТ	TTTAACACAA	TCGGATTTAT	ATGCAAAACA	123960
GCTAATTCAA	TCTTGGGGAC	TTGAAATATC	TTGAATGCTT	GAAATAATTT	CATTAATGTG	124020
CTTGTTAATA	TTTTCAGAAA	AATTTTGACG	CCTCATAAAC	АТТААТААСТ	TTATATACTT	124080
ATGCTTACAA	AGTTTAAGAA	GTTCGGCTGT	TGAATTTAAA	ATTATATTTC	TCAAATTTAA	124140
AATCACAGAA	TAAGCTATTT	ССАААТТАСС	CTGATAATTT	AACACTATAT	TTTGGATGTA	124200
ATTGTATATA	ATACAATCTT	GCCCATAATA	ACTTTCAAAT	TTAGTAATAG	TTTTGACTAT	124260
GGTAATTATA	ТТАТТААТАТ	СТСТСТСТСТ	AATTGCCAAA	ттаатаааас	TCTTAATTGC	124320
AGCTTTATCA	ТТААСАТАТА	СААААТАТСТ	ATAAAGCTTG	CCTCTTGAAG	CAATTCTATC	124380
AAACCTCTTT	TCTGACAAAA	GCCACACATT	AAAAGCTTTT	тсататааат	TTAAATATTT	124440
TGCGGGAAAA	TTTCCATGTT	CAGCTGCAAG	ААААТСТААА	АТСТСТАААА	ATTTATTATA	124500
AGCAGCATCA	CTATAATTAG	AATTAAGGAT	CTCTTCAAGA	AGTAAATAAT	TTTTATCATA	124560
АТСТАСАААА	CGCTTTTCTT	ТТАААТСТАТ	TCTGCCTTGA	ТТАТАТТТАТ	TACCTCCAAA	124620
ATGGTTCCAA	ACGCTAACAT	CAAGCTCTCT	GTCGTATTCG	ТААТААТААС	TACTAAGAAC	124680
ССААТСАТСТ	CCCCTAAGA	СААТААТАСС	TGAATTAGCA	CTAAGTCCTG	ACAAGCCCTT	124740
AAGTTTAGCA	TCTGAAAAAG	ATATATCAAA	ATCCTCTTCA	AAAGACAAAA	TTCCATTTGA	124800
TTTGGTTGA	ATTAAAAGAT	ттстаттатт	' ATAAAGAACA	GCTTTCTCAA	TCTCAAAGTT	124860

CATTTTTTTT TTAAATTTAA GCTTAAAGTT TCTATTCAAA TCAAAAAACA TACCAACATT	124920
TGAAATTGCG ACATATTCAC CATTAAACTT TTCAAACAAA AAATTAATAG GAAAATCCAA	124980
CTTAATAGAG CTAATAACTT CCCCAAAATC TCTTCCATAA GCAACAATAT GCCCTGACTT	125040
ATGTCCAACA ACTACCTCTT TTTTTGTATT TATCATTAAC AAAAAAGGGA AAGCAACTAA	125100
TCTGAAAAAC CATTTCTTAT TACCCAAAGA ATCAAACAAA AATATTTCAT CATTTTCACT	125160
TGCAATACAA AAATCCCCAT TATCAAAAAC TACAGGAGAA GTAGCAGGCC TACCACCTAT	125220
GTCAACCTCA AACATTTTTT TACCGCTATT TAAATCAATA GAAACAACCT TTTCATTAGC	125280
AAGAGGAATT AGGATGTTAA CATTTCCTAT TGCAGGAGAG CTCAAAGGTG AAAAATCAAG	125340
CTTATACTTC CAAACGAGTT TTCCTCTTCT GATCTTTTGA ACTTCATTTC TAACTGTAAT	125400
AACATAATAC CCATTATCAA AATCTTTCAA AAGAAAAGGA TATGGCATTC TATTTAATCT	125460
ATAAGAATAT TTCTTCTCAA ATGACATTGT ATAAGTAGTC AACCATCTAT CTTTTGTTAA	125520
AACTGTAATA GTGTCACGTT TTTCATCAAT AATTGGATTG CCTGCAACTT TGCCAGTTAA	125580
TGCTTTTTGA AAATATAAAT TAATATCAGA ATAAAGCCTT AAAAAAGAAG CTGAAAACAC	125640
AAATATGAAA AGTAGACCTC TCAAAATAAA AAACCTTTTG AGTTTCTAAA AAACTGCTAC	125700
TAAAGCCTAA AACCAGCATT ATTGCCATAA AGATTATTTC TCAGATCCCT AATCTTAGCA	125760
TCATCAACAT ACTCAGAAAA AGTCATATAT CGATCAATTA TTCCGTTAGG AGTAAACTCT	125820
ATAATCCTAT TAGCAACAGT ATCTATAAAT TGATGATCAT GTGATGTAAA AAGAACAACT	125880
CCTTTAAACT CTTTAAGCCC GGAATTTAAA GATGTAATTG CCTCAAGATC TAAGTGATTT	125940
GTGGGTTGGT CCAGTATTAA AACATTAGCT CCGCTAAGCA TAGCCTTAGC AAGCATGCAT	126000
CTTACTTTTT CTCCCCCTGA GAGAACATTT ACCTTTTTTA AAGCTTCATC TTGGCTGAAA	126060
AGCATTCGAC CTAAAAATCC TCTAATATAA GTTTCATCTT GTTCTTTTGA ATACTGACGT	126120
AACCAATCGA CTAAATTTAA ATCTAAATCA AAATATTTTC CATTATCTTT ATTAAAATAC	126180
GAAAAATTAA CGGTAGATCC CCATTCATAA TGACCTTTAT AATTTCTATC TTCATTTGTA	126240
ATAATATCAA ACAAAAAGT TGCAAACATG GGATTTCCCA AAAAAACAAT CTTTTGCTGA	126300
GGTTCAACAA TAATACTAAA TTTATTTAAA ATTAAATTCC CTTCAAATTC TTTTATTAAA	126360
TTTTTAATTG TAAGAACATT CTTGCCAAGT TCTCTTTCGC TTTTGAAATT AACATAAGGG	126420
AACTTCCTTG AAGAAGGCTT TAAATCTTCA ACCTTTATTT TTTCAATCAA CTTTTTCCTT	126480
GATGTTGCTT GCTTAGACTT AGATGCATTA CTAGAAAATC TTTGAATAAA TGTCTTAAGT	126540
TCAGCAATTT TATCTTCAGA TCGCTTTTTA GCATCTTTTA GTTGCTTGTT TAAAATCTGA	126600

CTTGTTTCAT	ACCAAAAATC	ATAATTTCCA	AGATACACTT	GAATCTTGCC	ATAATCAATG	126660
ТСААСААТАТ	GAGTACAAAC	TTGATTTAAA	AAATGTCTAT	CGTGAGATAC	AACAATAACT	126720
GTATTTTCAA	AATTAATTAA	AAACTCTTCT	AACCATTTAA	TAGATTGTAG	ATCAAGGTTA	126780
TTAGTAGGCT	CATCAAGAAG	TAATACATCG	GGATCACCAA	AAAGTGCTTG	AGCCAAAAGA	126840
ACCCTAACTT	TTAAAGCCCC	TTCAACATCA	CCCATTAAAT	TATTATGAAT	TGCCTCATCT	126900
ATTCCAAGAC	CTTTAAGAAG	AACCGCTGCA	TCAGATTCAG	CCTCGTATCC	TCCAAGCTCT	126960
GAAAATTCTG	CTTCAAGCTC	TCCAGCTCTA	ATTCCATCCT	CATCAGTAAA	ATCAAGCTTA	127020
СТАТАААТТТ	CATCTTTTC	TTTTTGAACA	GAATAAAGTC	TTTTGTGACC	CATAATAACA	127080
GTATCGATAA	CCTTATATCC	ATCATAAGCA	AATTGATCTT	GTTCAAGAGC	TGCTACTCTT	127140
TGATTTTTGG	GGATAGATAT	TTCACCCTTA	CTAGCTTCAA	TCATTCCCCC	TAATACTTTT	127200
AAAAAAGTGC	TTTTTCCTGC	CCCATTAGCA	CCAATTATTC	CATAGCAATT	TCCAGGAGAA	127260
AATTTAATAT	TTACATCTTT	GAATAAAACT	CTCTCTCCAA	ATGCAACTTC	CAAATTACTT	127320
ACAGTTATCA	AACCATTACC	CTGCCTAAAT	TGATATTCTA	АТААСААААТ	TATCTTGAAA	127380
ATTAATTTAA	. TTTTCAAGCA	CCATATAAAT	ATATTGACTC	AACTCTCAGT	TTTTTCGTAT	127440
ATTTAATATT	T ATTATATAAG	GAGATGTTTG	AGATGAAAAA	TATTAAGCCG	TTAGCTGATA	127500
GAGTTTTAAT	· AAAAATCAAA	GAAGCTGAGA	GTAAAACAAT	CTCAGGACTT	TACATACCAG	127560
AAAATGCAAA	A AGAAAAAACA	AATATTGGGA	CAGTTATAGC	TGTTGGTTCT	AACAAAGAAG	127620
AGATCACTGT	r aaaagttggt	GATACTGTGC	TTTATGAAAA	ATACGCAGGA	GCTGCTGTAA	127680
AAATCGAGA	A TAAAGAACAI	TTAATACTAA	AAGCAAAAGA	AATAGTTGCA	ATAATAGAAG	127740
AGTAAAAAGG	C TAAGTTTAGC	TACTTAGCT	TATTTTTAT	TAAATATTTA	ATAAAAATTA	127800
САААТТТАТ	A CATAAAAACT	TATTATTCTC	ATCAATCAA	TTAAAAATT	CAAGCTTACA	127860
AAATTCTGT	A AGCTTGAAAA	ATTAAAATTA	A AATGAAAAA	G CCAATTTTA	AAGAAAATAC	127920
CATATATTC	A AGCAAATTCO	ATGACATCT	A TTACAATCC	A AAGCAGGGAA	TTGAAGAGAG	127980
TTTTTATAC.	A TTTATTAAA	GTTGCAATT	r agatttaga	A TTAAAAACAA	TATAAAAAA A	128040
TTTAATAGC.	A GAGTTGGGA	TTGGAACAG	G ATTAAACTT	r ATATGTCTT	тааааттсат	128100
AAAAGAAAA	C AACATAACC	r CAAAAATTA	A TTATTATTC	r atagaaaaa	TTCCACTCGA	128160
АААААААС	A ATAATGCAA	A TTTCAAAGT	r ctttgctaa	A GAAACCGCT	T ATTTTAAATT	128220
AATGTTGAA	А ААТТАТТСТ	A AAATTCCAA	A AAAAAATTT	A AAACTAAAA	A TAACAGAAAA	128280
TGTTAATTT	A AAAATTTTA	A TTGGAGACG	С СААААТААА	A ATCAAAGAA	A TTCCTGAAAA	128340
TGTAGAATA	C TGGTTTTTA	G ACGGATTTA	A TCCCAAAAA	A AATCCTGAA	A TGTGGAGCAA	128400

231 AGCAGCCATT TGTCAATGTC GTTAAATTTC AAATCATTTA ATATTTTTCT ATTTTTTAAA 130200 130260 TTTAAAAGAA TAAATTTGGA AGCATTAAAA ACTTTGTTTG CAAATTTAGC CCCAAACATA AAATCTTTAG CGTCAATATT TAAATCTTGA CCCTGAACAG ACAAAAAGGA TAAAGTAAAC 130320 130380 CGCAAAGAAT CACTTCCATA CTCATTAATA ATATCAAGAG GGTCTATTCC ATTGCCTAAA GACTTTGACA TTTTTTTACC TTGTTTGTCA CGCAAAAGAG GTGTTATATA AACATCTTTG 130440 AAAGGAACTT GCCCTGTAAA TTCTAATCCT GCCATCACCA TTCTTGCAAC CCAAAAAAAT 130500 ATTATATCGT AAGCTGTTAT CAAGGTATTT GTTGGATAAT AATTTTTAAA ATCAACATCA 130560 ACATTGGGCC ATCCAAGCGA AGAAAAGGGC CATAGCCAAG AAGAAAACCA AGTATCAAGA 130620 ACATCTGGAT CTTGAACAAA CCTCTTCCCC ATATTCTTTT CATCTAAAGA AGGATCAGTA 130680 TCACTAACAA TAAGTTCAGA TGTATCAACA TTGTACCAAA CCGGTATTCT ATGTCCCCAA 130740 ACAAGCTGTC TTGATATACA CCAATCTCTA ATATTTGATA ACCAATATTT ATATGTATTT 130800 TCCCACTTTT TAGGATAAAA TTTTAATTCG CCATTCTCTA AAGCCTTTAA AGCTTTGTCT 130860 GCTAAAGGCT TCATTCTCAC AAACCACTGA GTAGACAAAT AAGGTTCAAT AACCTCACCT 130920 GACCGATAAC AATGCCCAAC CTGTTGTTTA TGCTTCTTAA CATCTTGCAA AAAACCCTTT 130980 TCCATTAATT CTGTTTCAAT TTTAAATCTT GCATCTTTCG CACTTAATCC TTGGTATTGC 131040 131100 AAAGGAACAT TTTTATTAAG TTTTCCATCT TGAGTTAAAA TATTGACCTT AGAAATATTG TGCCTTTTTG AAATTTCAAA ATCATTAGGA TCGTGTGCAG GAGTAACTTT TAAAGCCCCA 131160 GTGCCAAAAG CGCTGTCAAC ATAAAAATCT GCAATAACTT TTATCTTTTT AGTTGTCAAA 131220 GGAATTGTAA CTTCTTTGCC AACTAAAGAC TTATATCTCT CATCATTAGG ATTAACAGCA 131280 ATAGCAGTAT CCCCAAACAT TGTCTCAGGC CTAGTTGTTG CAACCTCAAT AAAAGAAGAG 131340 TTATCAATAA AATACTTAAC AAAATAAAGC TTACCATCAA CTTCTTTGTA TTCAATCTCT 131400 131460 TCATCGCTAA CAACACTCCC AGATCCAGGA TCAAGATTAA CAAGATACTC ACCCCTATAA ATCAACCCCT TAAAATACAA GTCCTTAAAA ACCTTGTTAA CAGCCTTACA AAGATTCTCA 131520 TCAAGAGTAA ACCTTTCTCT TGAGTGATCA TAAGACGCCC CAAGTTTGTT TATCTGATTA 131580 131640 TCAAAATCAT CTTTGCTTTT ACCAATCTTT TTAAGATGTC TTTCAAAAAC AGCCTGCGTT 131700 GCTATTCCTG CATGATCTGT GCCAAAAAGC CACAAAGTAT TGTGTCTTTT CATTCTTTTA 131760 TACCTTACAA GAACATCTTG CAAAACAAAA TTAAGAGCAT GCCCCATGTG CAACACGCCA 131820 GTAACATTAG GAGGAGGCGC AACCATACTA AATTTTTCAA ATAAAGAATT ATCTGGCAAA 131880 AAAACATTGT TTTTAAGCCA CTTAGTGTAA ATTTCATCTT CAAATGCCTT AGGATCATAT 131940 TTTTCAAGAG GTCTACAATT CATCGTTTAA AAATCTCCTA CCATGTCAAT AACTTTTAAA 132000 TTTTCAAAAA GCTCTTCATA AGTTTTTGAA TTTATAAGAT TTGAGAAATA CTTACTCTGT 132060 CTTTCCTTCT CAGTAAAATA TATCTTAAAA TATTTTTTAA GTTTATTAAA ATCTTTTTCA 132120 132180 AGTCCCCAAG TAGCATGAAA ATCCTTTATA TGGAATTTTA ATATATTTAA CCTAAAATTT AAATTACTAT CTAAAAAGTG TTTTGAAAAG GGCTTAAATA AATTCAAATT ATCAAAAATT 132240 CCACGACCAA ACATAATTCC ATCAATTAAA TATTTATCAA CATAATATCT AGCTTCCTTG 132300 AGACTCAAAA CATCCCCATT TCCAATAATC AGAGTAGAAG GACTAAGATT ATTTCGTAAT 132360 TTAACAAGTT CATAAAAAAT ATCAAAATTA ACAGGACCTT TGCTCTGATT AACAGCAAGT 132420 CTTGGATAAA CCGTTAACAT ATCAATTTCA AGGCCTAACA AAAACCCCAG CCAATCATCA 132480 ACTTCTGGAT ATGAAAATCC ATGCCTGGTC TTAACACTAA GAGGCAAATT AAATCTCGCA 132540 CAAGCTTCTT TGCTTGCAAG AATTATCTCT TTAGCTAAAG ATTTATTATT AATTAAAGCT 132600 GAACAACTC CTTTTTTAAT TATTTTACTC TTAGGACAAC CCATATTAAT ATCAATTCCC 132660 CAAAACCCCA TGCTCCCTAA TATTTCTATT GCTCTATAAA ATTGCTCAGG AACATTGCCC 132720 CAAATCTGAG CAATTAAAGG CCTATTAAGT TCATTGGGTT TTAAAAAAAC ATGTTGAACA 132780 GATTGTTTTG ATCCATTTAA AATTCCTTTT GTAGAAATAA ATTCGGTAAA ATAAATATGA 132840 132900 GGTTCTCCTT CTGCAGATCC TATTAAATGA ATTAAATTTC TAAAAACAGT ATCGGTAACA TCTTCCATTG GAGCTAAAAT CATAATTGGA AGAGGAATAT CAAATAAAAA CTTCATAAAA 132960 TAACTACATA ACAATAAAAT ACAAATTTAA ACAAAGTAAA ACAGTCGTTT AATAAATTTA 133020 AATTTCCAAA AATAACATTG AAATTTTTAA AATAAAGAAA TACCACAAAA GGACCGGCAA 133080 TAAAGGACAT AATCATAAAA TTTTAAAAAG TTAATAAATA ATTTTAATAA AAAAATAATT 133140 TAAAAAATCA ATCCATAATA 'AGGCTCTCGC CTGGAACCTT GGTTTTTCTT ATTAAAGTAT 133200 133260 CTTTATATCC AGCAGATTTA ATAAGTTCTA TATTTTTTTG AACATCATCG GCATTAGTAG GAATAAAAC GGTATAAAAC GGCCCATGAG AATTTACTAC AACAAAAAGA CCCGCTTTTT 133320 TTAATATTCG ATAAGCCCTA TCAGCGTAAT CTTTTTTCCT ATAAGATCCA ACTTGTATGT 133380 133440 AAAAATCTGT TTCTTTGTCA GCAGAAACTG AGTAATCTGC CAATAAATCT TTGGATTTAT TTTTAACAGA AATATTTTCG TCTGATTGCT TGGTTTTCTT TTCTTCTTTA ACCCCAGGAA 133500 133560 TATTAAATGT TTTTTTAAAG TCACTAGATT TTGATACAGA AGGTCTTTTT TCATTCGAAC TTTCAATCAC TTCAATTTTT ACAGGAGCAA CCCCTATTCC TAAAAAATCA AGCTTCTCAG 133620 CGGCATATTT TGACAAATCG ATTATTCTAT CCTTCCTAAA AGGACCTCTA TCATTAATTC 133680

233 TTACAACAAC TGATCTATTA TTTAAAAGAT TTGTAACCTT TACGGTAGTA TTAAAGGGCA 133740 ATTCTTTGTG AGCAGCAGTA AGCGCCATCA TATCAAATTT TTCGCCATTA GCAGTAGTTT 133800 TGCCGTGAAA AGCTTCGCCA TACCATGAAG CAAGACCCAC TGTGGCAGAA TTTAAATGAG 133860 AAGCAATAAA AAAAAATACA AAGAGAAAAA CAAAGTTTTT ATTATCTCTT AAGATGGCAT 133920 CAATTAAATT TCTCATAATG TTTATTATAA TATAAAAACA TATTTCAATA AACAATTAAG 133980 CTTGCAAATT GCTTATTTAC ATTTTTTTTG ATTTAATTAT AAAAAGAAAA AAGTCTAAAA 134040 AATGATATCA ACAGAAATAA TTAGCAGCAG CCAAATACAA AAAGCAGCAA AACTTATCAA 134100 AATGGGAGAA CTTGTAGTAT TCCCAACAGA AACAGTTTAC GGAATTGGCG CAAATGCTTA 134160 CAATGAAGAT GCTGTAAAAA TGATTTTTTT AGTAAAAAAA AGGCCCATCA ACAATCCTTT 134220 134280 AATAGTACAT GTTGATACGG TAAAAAAAAT AAAAGAATTA TCAGAATATA TTCCCAAAAG TGCCCTCATG CTAATCAAAA AATTTAGTCC AGGCCCTTTA ACTTATGTTC TTAAAAAATC 134340 AATAAAAATA TCTAGATTTG TAAGTGGAAA CCTAGACACA GTGGCAATAA GAATTCCTGC 134400 AAATAAAACA GCTTTAAGCC TAATAAAAGC ATCTAAAGTC CCCATAGTAG CACCGTCTGC 134460 AAACATATCA AAAAGACCAA GCTCAACAAA TTTCGAAATG GCCTTAAAAG AATTAAATGG 134520 134580 134640 AACTGTGGTT GGGTTTGACC TAAAAGATAA CGTACTGATA TTAAGACCAG GCGCAATAAC AAAAAAAATG ATAGAAAATG AACTTCAAGG AAAATATACA GTAAATTACG CAGAAACAAA 134700 134760 AATGGAACTA GAAAAATCAC CTGGAAACAT AATTGAACAT TATAAGCCAA AAATTCCCGT TTATTTATTT AAAAGTCAAG ATAACATAAG AAGATACTTA AACAAAGATA CGAAAATACT 134820 TATCACAAAA GCTACTCTAA AATCCTATTT ATTCAATTTT TTTTGGAATA AAAAAAATAT 134880 TACAGTATTT AACACTCTTG AAGAATATGC ACAAAACCTT TACAAAGAGT TGGTAAATTC 134940 135000 TGAAAACAAC TACAAACAAA TACTTAGCGA ATTCTTAAAA GACGAAGAAC TTGGACATTC 135060 AATAAACAAT AGAATCAAAA AAGCTAGTTC AAATAGATTC ATTAACAAAA AATGACGCTA 135120 AATTGTTATT TAAAATAATT CAAAAAGCAT AAATATTCAT TAATAAAATA ATGCTAAAGC TAAAAGCAAA AGTCTAAAAC ACGCCACACC TCTCCTCCCA ACCCGAGCAA AACCAGCAAA 135180 TACAACCAAG AAGACTTAAA CTTAAATATT ACAAGTAAAT TTTCGCATAA TCACATAAGA 135240 AAAATTTCAA TCCTTTGATT AATTGAAATA ATCATGGATC AACATAGTAT ACTCAAGTGG 135300 TATTTTATCT TCATCAAAAG CAATACCAAG CGCAAAAACC TTTCCGCTGG GAGTCTGAAT 135360 AACGCTTAAG CTTTTTGATT TACCTTCAAT AAAAATTTCT CCATCTATAA ATTCAAAACT 135420 AAAAATCAAA TCAATTGCAT CTTCCTCGAC ATCCCCATAA TCAAAAGAAG AAATTACTAA 135480

AGCACCCCA TAAGATAAAT CTTTTATTAA GCATTTATGT TTTGCTCCAT TAAACTTGAT	135540
AAAAGCTTTA TCAGAATCAA TTTTTAGCTT TCTAATAGAA TCTTTATCGA TAATAATCCT	135600
CTCATGAATT CTCTGATTTT GCCCAAGCTT TAAATCAAGA AGCTTTCCAA CTTTAATAGC	135660
AATCTCTTCT GGTGCAGGAG ATAAAAATTC TAATGTTAAT AAATTGTATT CTTTATTCAA	135720
AGAAGAATAA GCAGAAGCAC TCAATAGTTT TACAGACAAA AAAGGGAAAA AAGCTGCACT	135780
ACTCTTAGAA TCTGAATTTT TCTTAAGTTG AATAGAGCCT AAATTTTTAT TTTTAGCCAA	135840
AGCGGGCAAT ACTGTATCTT CTTGAAAAAT AAGCTTAAGA GAATCCATAG AAATAGAATA	135900
AATTACTCCA AAAGCGGTAT AAGAGCCTAT TCTCATCTCA	135960
AAAACTATTT ATCTCTGTGC TCATTTTAAT CTCTTTACCC CTATACTTAG CCCCATAATC	136020
TCTTATTTTT CTAGATAAAA GCATAAACCT CTCCTTTCTC CTTTTTTTGA ATATAAAAAT	136080
ACTAAACAAA GCTTCAAATT GTTTTAAACA GTTTTACACA AATAAAAAAG TTTAAAACAA	136140
TTAAGCTATA AACACGCTTA GCCAAAAATC AATAAATCTA CCCTTAAAAT CAAAAACATA	136200
CCATCATCCA CCTCTCACAG CATCTTTCAA TTAACAAAAC TTACAAAATG CTGTTTACAT	136260
AGTGTAAAAT TATAACAATA ATTTTACACT ATAACAATCA ACCCATAACA TTATTAATTC	136320
TTATGCACTT ATAGTATACT TTAGTAAAAA GTATGAAATT GAATAGCCCT AATTTGAAAA	136380
AAATAAATAC GCATAAGCTG CTTATATATT TAACATATTT CGCAGTTAGC TTTTCTATTA	136440
TCACACTCTC ATTAGCAGTA TCTAAGACTA TAAACATACA AAAAGATAAA AATTTCGGAT	136500
ATGTAAATCC AGCAGTTCCT TCAAGACTTT TAGATATTAA TGGAAAACAA ATAACTCAAT	136560
TTATATCTGA TGAGAACAGA GAATTAATGC CTTTGAGAAA AATGCCTGAC AATCTAATTA	136620
ATACGCTTTT GATACGGGAA GATATTGGTT TTTTTTCTCA TCGAGGTTTT TCCTTGATAG	136680
GAATATTTAG AGCCGCATTT AATATTGTTC TTGGCAGATA TTTTTCAGGC GGCAGCACAT	136740
TAACCCAACA ACTTGCAAAG CTTCTCTACA CAAATCAAGC AAGAAGATCT ATTTTGAGAA	136800
AATTACATGA AATATGGTGG GCAATTCAAC TTGAAAAAAA ACTCTCAAAA TACGAAATAC	136860
TAGAGAAGTA CCTTAATAAA GTTTATTTTG GAAACGGAAA CTATGGAATA GTTGCAGCAT	136920
CAAAATTCTT TTTTGGCAAA AGTGTAAATA AAATCAATAC AGCAGAATCA GTAATGATGA	136980
TAATCCAGCT TCCAAATGCA AAACTTTATT CACCTCTTTA CAATCCAGAA TTTTCAAAAA	137040
AAATACAACG TGCAGTTTTA AACCAAGTTG TATCAAATGG AATAGTCAAG GCTGAAATTG	137100
CTGAAAAAGA ATTTAATGAA TACTGGCAAA ATTATGATTG GACTAGAATG GCTGACACAT	137160
CTGCAATTTC AAACAAAAA GACCAAGCTC CTTATTTCTC TGAATATATA AGGCAAAAAA	137220

235 TACTAAAATA TTTACCAGAT GGCGCAAACA TATATAAAGA TGGGTACTCA ATATATTCAA 137280 137340 CCCTTGATCT TGAAGCACAA AAATATGCAG ATAAAGTTAC AAACGACATG ATTAATAAAG CAAGAACAAT GCACAATTTA AATAGATCAT CTGAAACAAT AATCATTAAT TCAGAAATTG 137400 TCCCTGTAGT AGATGCGATA TCAGATTTAT TGGGAATTAA AAATTTAAGA ATAAATGGAA 137460 GACAATATAA AAAACTGAGA AAAAGAAAAT TTTACGAAGA CAATATTGAT CTAATTGCAA 137520 GTTTTGGAGC TATACTTGGA ATTGATAAAA TAGATAAGGC GACAAAAGAA TATATTATCA 137580 AAAATAAATT AACACCGAAA CTTATTGCAC AGCCTGAAGG AGCAATGATA GCAATAGATA 137640 CAACAAGTGG AGCAATAAGA GCCATGGTTG GGGGAAGTGG ACACACTAAA GACAATGAAT 137700 TTAATCGAGC CACACAAGCA AAAGTTCAGC CTGGAAGTGC ATTCAAAGCA TTATATTTTG 137760 CAGCCGCAAT TGATCTAAAA AAAATAACAG CTGCGACAAT GTTTTCAGAC TCTCCAGTAG 137820 CATTTCTAAA TAAAAATGGA GAAGTTTATG CTCCGGGAAA TTATGGCGGC AAATGGAGAG 137880 GCAACGTTTT AACGCGCCAA GCATTAGCTT TGTCCTTAAA TATTCCGGCA TTAAGAATAT 137940 TAGACCGGCT AGGCTTTGAC TCTGCAATTA GCTACTCCTC AAAACTACTA GGAATAACAG 138000 ATCCAAAAGA AATAGAAAAA ACGTTTCCAA AAGTTTATCC ACTAGCGCTA GGTGTAATAT 138060 CAGTTTCTCC AATCCAAATG GCAAGAGCCT TTGCAATTTT AGGAAATAGT GGTAGCGAAA 138120 TCGAACCTTA TGGGATAAGA TACATTGAAG ACAGAGCTGG AAGAATAATA ACAAATGAAG 138180 AAGCAAGCAT ATTGGCTAAA ATAAAAAACA AAGAACACCA AACTCAAATA GTATCTCCTC 138240 AAACCGCTTA CATAATCACA GATATGATGA AATCAACAAT TCAATACGGA ACCCTAGCAA 138300 ATCAAAGATA TACAAATCTC AAAAATTTTA AATCAGACAT TGCTGGAAAA TCGGGAACAA 138360 138420 CACAAAATTG GGCAGACGGA TGGGCAATAG GATACTCTCC TTATATAACA ACAGCATTTT GGGTTGGATT TGACAAAAA GGATATTCAC TGGGAATATC TGGAACAGGA ACAGGATTGG 138480 CAGGGCCTAG TTGGGGAGAA TTTATGGCAG AATATCACAA AAACTTACCC AAAAAAGTTT 138540 138600 TTGTAAAACC TGCAGGAATA ATTAGCATCC CCGTACAAGC AGAAACGGGT CTACTACCGG AAGAAATTGC TGATGAAAAA ATAATAAATG AACTATTTAT TTCCGGCACC CAGCCAGTTG 138660 AAAAATCAAA ATATTATGAA AATAAACAAG AATTTAAAAA TACAATAGAA TTTAACATAT 138720 ATGGAATTGA TGAGATTAAT AATAACGATG AAATAAATTT TGACACTCCT GAATTTGAAT 138780 ATCTTGATAA TAATCTTGAA AGCTTTAATA ACAATAGTAA TAATGATAAT AATCTTGAAA 138840 GCTTTAACAA TAATAACAAT GATCTTGAAA GCATTAATGA TAATGAAGAA AATAAAAATG 138900 AAGATGAAAT AGAAATGAAC ATTGAAGAAC CCTTAAATGA AATAGAAAAT AAAAATCCAC 138960 AACAAGATCT AGTTAATAAC AATAATAACC AGGAAATGCT TATTGAAAAC ACCAAAGAAA 139020

TTAAAGACGA	AGTCATTGTT	AATGAAACAA	ACATAGAAAC	ACAAAGCACA	AAAGAATTAA	139080
ATTCAAACAA	CAATGAAAAT	GAAAAATTA	ACAACAAAGA	CGTCAACGGA	GAAGATATCC	139140
AATTGGATTA	AAACAATATG	TTAATAGATA	TCGATCAAAT	ААААТАААА	AAAAGAATTA	139200
GAAAAAATAT	AGGAGACATT	GAAACTCTTA	AAAACAGTAT	TATAAAACAT	GGATTAATTT	139260
ATCCAATAAT	AATAGATAAA	ААТАААААСТ	TGATAGCAGG	ACTTAGAAGA	TATCAGGCCT	139320
TAAAAGAAAT	AGGCTATAAA	GAAATTGAAG	TAAAGGTAAT	CTCAATTGAA	ААСАААААА	139380
CTTTACTTGA	AATTGAACTT	GATGAGAATA	ATGTTAGAAA	ATCATTCACA	AGAAGCGAGG	139440
CAAACGAAGG	AGAAGCTTAC	TTAAAAATTT	ATTCTGAAAG	СААТАТААТА	ATAAGATTCC	139500
ТТАААТТТАТ	ТАТСТТАААА	ATTAAAAACA	TGTGTAAAAT	AAGAAATAGA	AAAATTTAAA	139560
тсатаатааа	GAGGTGTGTT	TATGTTAAAT	ТАСАААААТС	TTAATGAACT	TGAAAATTTT	139620
AAAATCCTTG	AAGGTATTGC	TCCAGAAGTG	CTCAAAACGG	CATTAACTGG	AAAAAGGATA	139680
AAAGAATACG	ACATTACAAT	AGAAGGAGAT	AGTGTACATT	ATAACTATGC	TTCAAAACAA	139740
ATTAATGAAA	CCCACCTTAA	AATTTTTCAA	AATTTAAGCG	ATGAAGCAAA	TTTAATAGAA	139800
AAATATAAAG	AAGTGCTTGA	TGGGGAAAAG	ATCAATATTA	GTGAAAATAG	AAAAGTCCTG	139860
CATCACCTTA	CAAGAGGCA	AATTGGTAAG	GACGTAATAG	AAGACAATAA	AGAAAATATG	139920
AGAGAGTTTT	TCCAATCAGA	ACTTGAAAAA	ТТААТАТАТА	TTGCAAAGCA	AATTCATTCT	139980
GGGAACATTA	AAAGTTCAAA	TGGCAAAAAG	TTTAAAAATG	TAGTTCAAAT	AGGAATTGGT	140040
GGATCTAGCC	TGGGGCCAAA	AGCTCTTTAC	AGCTCAATAA	AAAATTATGC	AAAAAAACAC	140100
AATCTAGCCC	TAATGAATGG	TTATTTTATT	TCAAACATTG	ATCCAGACGA	ATCAGAAGAA	140160
GTATTAAGC	A GCATTAATGT	TGATGAAACG	CTTTTTATTA	TTGTCTCAAA	AAGTGGAAAT	140220
ACATTAGAA	A CTAAAGCTAA	TATGCAATTC	ттаатаааса	AATTAAAATT	AAATGGCATA	140280
AAAGAATATA	A AAAAACAAAT	GGTCATTATA	ACACTAAAAG	ATAGCATGTT	GGCAATAGAA	140340
GAAAAAGGA	r atcttgaata	A TTTCTTCATC	G CATGACTCAA	TAGGTGGAAG	ATTTTCTCCA	140400
ACATCAGCAG	G TTGGACTTAC	ACTACTTACT	CTTTGCTTCA	CAGAAAAAGI	'TGCAAAAGAA	140460
ATTCTAAAA	G GAGCCAATG	GGCTGACAA	AAATCATTAA	ACAAAAACGI	AAAAGACAAT	140520
GCATCTCTC'	r TGGCAGCAC	T AATTAGCAT!	A TATGAAAGAA	ATGTTCTAAA	TTACAGTAGC	140580
AACTGCATC	A TTGCTTATT	TAAAGCAAT	GAAAATTTT	ATCTTCATT1	ACAACAACTT	140640
GAAATGGAG.	A GTAATGGAA	A AAGTGTAAA	CAGATTTAATO	AAACAATAA	CTACAAAACT	140700
GTAAGAATA	A TTTGGGGAG	G CATTGGAAC	A GATGTTCAAC	ACTCATTCT	TCAAATGCTT	140760

CACCAAGGAA	CGGATATAGT	TCCAATGGAT	TTCATAGGTT	TTAATGAAAC	ACAACTTAAA	140820
GAAGATGTAA	TATCTGATAA	CAGCTCAAGC	AATGATAAAT	TAAAAGCAAA	TTTAATAGCC	140880
CAAATAATAG	CATTTTCAAA	AGGTAAAGAA	AATAGCAATA	ААААТАААА	TTTCCAAGGC	140940
GAGAGACCTT	CTGCACTAAT	ATATTCAAAA	GAATTAACAC	CTTATGCAAT	AGGAGCAATA	141000
CTCTCCCATT	ATGAAAATAA	AGTAATGTTT	GAGGGATTTT	TATTAAATTAT	AAACTCATTC	141060
GACCAAGAAG	GAGTTCAGCT	AGGAAAAATT	ATTGCAAATC	AAATTTTAAA	AAATGACAAT	141120
TTTAAAGATG	AAGTAATAGA	ATCTTATTCT	AAAAAATTC	TTAAAAAATT	TTAAAACAAG	141180
ATTAATTAAT	TTTTGAATAT	ACCCCCTTAA	GTTTAAAAAA	GAATGCACTA	AGCTTATATA	141240
AGAGGTAATA	ATGGATAAAA	TAAGTATATT	ATATACATTA	ATCAATATTA	TAATAATGCT	141300
ТАТТСТААТА	AGCATAGTTT	ATCTTTGTAA	AAGAAAAAAT	GTTTCTTTTA	CAAAAAGAGT	141360
GTTTATAGCG	TTAGCAATCG	GAATAGTATT	TGGAATGACC	ATTCAATATT	TTTATGGAAC	141420
AAATTCAGAA	ATAACAAACG	AAACTATAAA	TTGGATAAGT	ATTTTGGGCG	ATGGATACGT	141480
AAGGCTCCTT	AAAATGATTA	TAATCCCCTT	ААТААТААСА	TCAATAATCT	CTGCAATAAT	141540
AAAACTAACC	AATAGTAAAG	ATGTTGGGAA	AATGAGCCTA	CTTGTAATAT	TAACACTAGT	141600
ATTTACAGCA	GGTATTGCTG	CCATAATTGG	CATTTTCACT	GCTTTAGCAT	TGGGATTAAC	141660
AGCCGAAGGA	CTACAAGCGG	GAACCATCGA	AATTTTACAA	AGTGAAAAAT	TGCAAAAAGG	141720
CCTTGAAATA	ТТАААТСААА	CAACAATCAC	AAAAAAAATC	ACAGATCTTA	TTCCACAAAA	141780
TATATTTGAA	GATTTTGCAG	GGCTTAGAAA	AAACTCAACC	ATCGGGGTCG	TGATATTTTC	141840
AGCTATCATA	GGAATAGCCG	CCCTTAAAAC	ATCTATCAAA	AAGCCAGAAT	CAATAGAATT	141900
TTTTAAAAAA	ATAATATTAA	CACTCCAAGA	САТААТАТТА	GGTGTAGTAA	CTTTGATTTT	141960
AAAACTAACO	G CCTTATGCTA	TATTAGCTTT	AATGACAAAA	ATTACAGCAA	CCAGCGAAAT	142020
CAAAAGCATA	A ATAAAGCTTC	GAGAATTTGT	AATTGCTTCC	TACATTGCCA	TAGGTCTTAC	142080
ATTTCTTATO	G CATATGACAT	TAATTGCAAT	ATTAAATAAA '	AACCCAATTA	CTTTTATAAA	142140
TTATAAAAA	C CCAGCACTAT	CATTTGCATT	CATATCTAGG	TCGAGTGCTG	CAACCATACC	142200
CATTAATAT	A GAAATTCAAA	A CTAAAAATCT	GGGAGTAAGC	GAAGGAATAG	CAAATTTATC	142260
AAGCTCCTT'	r GGAACATCA	A TTGGGCAAAA	TGGTTGTGCA	GCACTACACC	CCGCTATGCT	142320
TGCAATAAT	G ATAGCACCA	A CTCAGGGAAT	AAACCCCACA	GATATTTCAT	TTATACTCAC	142380
ACTTATTGG	A TTAATAATA	A TAACTTCATT	TGGAGCTGCT	GGCGCTGGTG	GAGGCGCAAC	142440
AACAGCCTC.	A CTAATGGTG	C TCTCAGCAA	r GAACTTTCCA	GTGGGATTGG	TAGGACTTGT	142500
AATATCTGT	T GAGCCTATA	A TTGACATGG	AAGAACAGCT	GTTAATGTAG	GCGGCTCAAT	142560

GCTTGCAGGC	GTTATATCTG	CTAAACAGCT	CAAACAATTC	AACCATAATA	TATACAACCA	142620
AAAAGAGCTT	GTAAACAAAT	AAATAGGAAA	ACAATGATGA	TAATAATAAA	TATTGGGGGC	142680
ACATCAGCAG	GAACTAGTGC	CGCAGCTAAA	GCAAACCGCT	TAAACAAAAA	GCTAGACATT	142740
ACTATCTATG	AAAAAACAAA	TATTGTATCT	TTTGGAACCT	GTGGCCTGCC	TTACTTTGTG	142800
GGGGGATTCT	TTGACAACCC	CAATACAATG	ATCTCAAGAA	CACAAGAAGA	ATTCGAAAAA	142860
ACTGGAATCT	CTGTTAAAAC	TAACCACGAA	GTTATCAAAG	TAGATGCAAA	AAACAATACA	142920
ATTGTAATAA	AAAATCAAAA	AACAGGAACC	ATTTTTAACA	ATACTTACGA	TCAACTTATG	142980
ATAGCAACTG	GTGCAAAACC	TATTATTCCA	CCAATCAATA	ATATCAATCT	AGAAAATTTT	143040
CATACTCTGA	AAAATTTAGA	AGACGGTCAA	ААААТААААА	AATTAATGGA	TAGAGAAGAG	143100
АТТАААААТТА	TAGTGATAAT	TGGTGGTGGA	TACATTGGAA	TTGAAATGGT	AGAAGCAGCA	143160
AAAATAAAA	GAAAAAATGT	AAGATTAATT	CAACTAGATA	AGCACATACT	CATAGATTCC	143220
TTTGACGAAG	AAATAGTCAC	AATAATGGAA	GAAGAACTAA	CAAAAAAGGG	GGTTAATCTT	143280
CATACAAATG	G AGTTTGTAAA	AAGTTTAATA	GGAGAAAAA	AGGCAGAAGG	AGTAGTAACA	143340
AACAAAAATA	CTTATCAAGC	TGACGCTGTT	ATACTTGCTA	CCGGAATAAA	ACCTGACACT	143400
GAATTTTTAG	AAAACCAGCT	TAAAACTACT	AAAAATGGAG	CAATAATTGT	AAATGAGTAT	143460
GGCGAAACTA	GCATAAAAAA	ТАТТТТТТСТ	GCAGGAGATT	GTGCAACTAT	ТТАТААТАТА	143520
GTAAGTAAAA	AAAATGAATA	CATACCCTTG	GCAACAACAG	CCAACAAACT	TGGAAGAATA	143580
GTTGGTGAAA	A ATTTAGCTGG	GAATCATACA	GCATTTAAAG	GCACATTGGG	CTCAGCTTCA	143640
ATTAAAATAG	C TATCTTTAGA	AGCTGCAAGA	ACAGGACTTA	CAGAAAAAGA	TGCAAAAAAG	143700
CTCCAAATAA	AATATAAAAC	GATTTTTGTA	AAGGACAAAA	ATCATACAAA	TTATTATCCA	143760
GGCCAAGAAG	G ATCTTTATAT	TAAATTAAAT	TATGAGGAAA	ATACCAAAAT	AATCCTTGGG	143820
GCACAAGCA	A TAGGAAAAA	TGGAGCCGTA	A TAAGAATTO	ATGCTTTATC	AATTGCAATC	143880
TATTCAAAA	C TTACAACAA?	AGAGCTAGGG	S ATGATGGATI	TCTCATATTC	CCCACCCTTC	143940
TCAAGAACT"	r gggatatati	· AAATATTGC1	GGCAATGCTC	CCAAATAGA	A AGAATTAAAT	144000
TAATTTAAT'	T CTTCATGCT	ATTGGTTGC	C CCGTACTTGA	A AAGAACATCT	CTCCAAAAAG	144060
AACCATTTG	G ATTAACCTT	A TTTCTGTCA	A TTACTGCCAT	CTTAATAGG	r ATATGAACAA	144120
ATTTTGTAC	T CCATAAACT	A ATCAACATT	r TTGTCTTACO	AGCCATTGC	A GCATGCACAG	144180
CATTCGACC	C AAGCCTAGC	A CAATAAAGC	AATCACTGG	C ATTAGCAGG	r GAACTTCTAA	144240
TAATATAGC	T GGGATCAAT	G TATTTAAGA	G TAAATTGTA	r ATTTTTTGC	TTAAAATTT	144300

PCT/US98/12764

		7		239			
C'	TGTAATTTT	ATCTTTAATA	TAAAGCCCAA	татсстсата	AAGCAAATTC	CCAGAATCGT	144360
C'	TTTCTTCTT	AGGAAAATGA	TCAAAATATT	TTTGGCCTGC	TCCTTCTGCT	ATCAATATTA	144420
C	TGCATGGGG	AATCTCTTCT	AAGCTTTCTT	TCTCTAAAAG	TCGTCTTTCA	AGATGAACAA	144480
G	AAATCCATT	AGGACCTTCT	ATGTCAAAAT	CAAGTTCTGG	GATTAAACAA	AAATTAACAT	144540
С	ATTAGAAGA	AAGTGCGGTA	TGAGCAGCAA	TAAAGCCAGA	ATCCCGTCCC	ATAACTTTAA	144600
С	AAGTCCAAT	GCCATTATAA	GCACTATTAG	CTTCAAAATG	AGCACCAGCA	ACAGCTGCAA	144660
C	AGCTTGTTC	TACAGCAGTC	TCAAATCCAA	AAGATTTTTG	AACAAACATA	AAATCATTGT	144720
C	TACGGTTTT	AGGAATGCCC	ACAACTGCTA	TTTTTAAATT	TCTTTTTCT	ATCTCCTCAG	144780
C	AATAAGAAG	AGACCCCTTT	TGAGTACCAT	CCCCGCCAAT	GTTAAAAATC	ATATTAATGT	144840
T	CATTCTCTC	TAAAGTATCA	ACTATTTCCA	CAGGCTTAAT	ACCACCCCTT	GAAGAACCAA	144900
c	SAATAGTACC	тссаалтта	TTAATATCAT	CAACAACATC	TGGATTAAGA	ттаатаааа	144960
C	GTGAATTTGA	CTCAGGAAGA	AGCCCTTGAT	ATCCAAATTT	TACTCCATAA	ATATTGCGAA	145020
C	CCCCATATAT	TTTCCATAAA	GTTCGCACAA	TAGAGCGAAT	· AACATCGTTA	AAACCAGGAC	145080
1	AAAGCCCACC	CACAAGTAGTA	ATAGCAGCTI	TAACATGCCI	GGGCACAAAA	TAAATTTTTT	145140
(CTCTAGGCCC	C AGCTTTTTCT	AAAAGAACAT	CTTCATACCI	ATCTCCCTTA	A TCCTCATTCC	145200
,	гататасас	r aaacttgatt	TTATTTTTT	CATTAACAAA	A ATGGGAAGA	A CCCTCACTAG	145260
(CATAAAAAT(C AATCAAAGGA	A TTGTTTTGCT	TGCATTCTCC	CAAGCTATC	TAAAATTTTA 1	145320
,	СТАААТТТТ	C ATTTTTAAT	CTATACACC	A AATACTCCTT	r TATAGAATT	A TAACCTAATT	145380
	АТТТТСТАА'	T AAATCGACT	T TGATCTTTA	A TCATATCGT	A TATGTCATC	G TAAATATAAG	145440
	GAGACCCTT	C AATAGGAGA	AAATTAATT 1	TACCAGCTA	r GAATTCAAA	А ТАТТТАТТСА	145500
	ACTTTGAAT	т тттстсааа	A TCAATAAAT	G GAACTCTAT	r ATTAATAGC	C TCTCTGAAAC	145560
	TTTTTGCAA	A AGGCACAAA	A CCTATAAAC	r ctattggta	T ATTAATATT	A TTCTTAACAA	145620
	САТТААТСА	A ATTTTCACA	C ATAGCAATC	T CTTCACTAG	T TTCTATTCT	A TTTAGCACCA	145680
	CTCTAGGAT	ТТАТТАААА А	C ATCATCCTC	т таастттса	A AGAGGAACT	C AAAGAAATAA	145740
	GTTCAATCC	C AACAACCAA	а тстттааат	C CAAGGTTTG	T CCCCTCAAT	C TTATCTTTAA	145800
	AAAAATTAC	C AATATAATC	C CGTTCGGGG	C TTTTTTGCG	G AAATCCTAA	A TATAAAAGAC	145860
	GATAAAGAG	GC ATTCTTAA	A AAAGAATAA	.G САТТААСТА	T GGAAGGGGT	T TCTGGTATTG	145920
	TAACAATTA	AC ACCGCTGTA	A GATGCCAAA	т ааааатста	TGTATTATA	A GAAGTTCCAG	145980
	ATCCCAAAT	гу тааааат үт	'A AAATCAGCA	A TAAGATCTI	T TTGAATGG	т тстатаатст	146040
	TTTTCTTA	AT AGAAAAAGG	GA AGATTAGCI	G TTCCCGTAT	AAGAGCATO	CA CCTGGAATAA	146100

GATAAAGCTT ATCATAAGAT GTTTTACATA CTAAATCTGA AAAACTTTTA CTCTTTTAT	146160
TAATAAAAGA ACCAATGCCC ACACCCTTAT TTTTAACCCC CAAACACGTA TGTAGATTAG	146220
AGCCACCAAG ATCAAGGTCA ACAAGTATTA CAGTTTTACC CAAACTAGAA AGCTTATAAC	146280
CAACATTTGC AACAAAAGAT GTTTTTCCAA CACCGCCTTT GCCACTTGCC ACAGGAATAA	146340
TTTTAGTCAT TCTTAAATCC TAATTATCCT TACGATCTTT TTGAAAAATT TTCATAAAAT	146400
TGAAAATCCC TAAAAATCTA GATTTTTTCT CAGCATCTTT ATTTAAATTT TCATCCTCTT	146460
TAGAGCCTGA AATTAAATCT TTAATTAAAT CTTTATTATT TGTAAAATTT TCAATGCTAT	146520
CTGGTTTACC ACAAATTACA ATTTTATCAT CTTTTAAAAA AAAATAATCG CCATCAACAA	146580
ATTCATACCT AGAATTACTT AAATTTCTAA CAGCAATAAC TGTAATCCCA CATTCTCTTC	146640
TAAGATCGGC TTCAAAAAGA GTTTTACCAA CATATTCTTT GGGAATAACA GTTTCAGCAA	146700
CAATAATATC ATACCCAATA ATATTATAAG TTGAAAGATT TGGAGATACT AATAATGGAG	146760
TTAATCTTCT TGCAGCATCT TTACTTGGAA ATATAATTTT TGTTGCCCCA AGAGTTTTTA	146820
AGATTTCAGC ATCATCTCTA TTTTCTGTCT TAACGCATAT TTCTTTCAAA CCTAAAAGAT	146880
TACAATAGTG AGTAACAAGA GCACTTTTGC CAAGATCATC ATCAAAATCA ATAACAACAG	146940
CGTCTGTATC TACTGGAATT ATTCTTTTCA AAGCATTTTT AGTGAATTGC TCAACAACAA	147000
AGCTTTCTGT AGATATCACA TCATATTCTT CAATAAGCTC TTTAGATGTA TCTATAATAA	147060
TAATTTGACA ATCAAGCCTG CTTAAATCTT CAAGTAAGTG AATGCCTAAA TTACTAAGTC	147120
CAATAATAAC AAATGTTTTC ATATGCTTCA ACCAACCAAA ATATCTTGCC TTGGCCTTGT	147180
AAATTCTTCA AAACGCGACT TTCTTGAAAC AAAAACAGCC ATTGAAAAAA GCCCTATTCG	147240
TCCTGCAAAC ATAGTAAAAA TTATAATGAC TTTCCCCCAA AATGACAAAT CCTGAGTTAC	147300
TCCAACTGAA AGACCAACCG TTCCAAAAGC AGAAAATACT TCATAACCTA AATCAATAAC	147360
CTTCCAATTG CCAGATCCTC CCTCAAAAAA AAGAAGCATG AAAAAAGAAA AACTTAAAAT	147420
AAAAATAGCT CTTGCAAAAA ATAAAAGTGC AAATCTTATA CTATCTATTG AAACCTTGTA	147480
AGAACCAATA ATATATCCAT TGCCGTTTTG ATTTTTAACA ACAGCCAATA CAATTAAAAA	147540
AAATGTTGTA ATCTTAATCC CTCCTGCAGT TGATCCGGGT GCACCACCAA TAAACATGAA	147600
TGGTAGAGAA ATTATTTGAG TTCTTCCGCT TATTAAAGAA TTATCAAGAT AATTAAAACC	147660
AGCTGTTCTG GTACTAATCG AATAAAAAAT TGAATTAAAT ATTAAAGTGC TCATTGAATA	147720
ACCAGCTTTT AATTTATGCA TCTCTGTAAA AAAAAATAAA ATTGCACCAA TTATAATTAA	147780
AAAGAAGCTT AAAGAAAAAA CTATCTTGGC ATGAAGCGAT AGTTTTTTTT TGTTTTAAT	147840

PCT/US98/12764 WO 98/58943 241 AGTGTTATTT ACATCTCTAT AGACCATAAA CCCAAGCCCA CCACAAATTA TTAAAATAGA 147900 147960 GACCACAACT ATAGCTTCAG GAACATCTCG CCATGCATAA ATACTCTCAG AATGCATGGA AAAACCTGCA TTGCAAAAAG CAGAAATTGT CGTAAACAAA GCCTCTAAGA ATGAAATATT 148020 CACTCCCCTA AGTTTAAAAC AAATAAGTAT TAATATTAAA CCTATCATTT CAATTGAAAA 148080 AGTTATAAAC AATATGCTTT TTAAAATTCT AATAGGATTA TATTCTATAT TTGAAAGGGA 148140 ATACTGCTTT ATTATTCTTG CATCTGTTAA ATTCATTTTC TTTTTAGGTA TAAGCAAATA 148200 AAAAGTAGTA ATACTTATAA ATCCAAGTCC CCCAAGCTGG ATTAGCAACA TTATCAAAAT 148260 AAATCCAAAA GTAGAAAAGC CTTCCATTTT AACCGTTGTA AGGCCCGTAA TACTTACAGC 148320 AGAAACAGCA GTAAAAAGAG CATCAATGTA TGCTAATTTG CCATCACCTT CCCAGGAAAT 148380 AGGCAACATC AACAAAAGAG AGCCTATAAA CATAATTAAA ACAAAATAAC TAAAAAGTAA 148440 AAACCTGTCG CTAAATTCAA ATTTCAACAT ATCATACAAA AAGTTGTTTA AATTATTAAA 148500 AATTTATCTT ATATAGCATA ATATTTTAAC ATTGAAATAT TATCATAATT ACATTATTTT 148560 TAATATGT TTGAAATAGA ATCAAAAGCA TTTATTCCTA CAAAAGAGTT AAAAAGAATT 148620 ATCAAGCTAG CAAATAAAAA ATTTAAGTTT ATTAAAGAAG AAATAAAAAC TGACATYTAT 148680 TACTCAAACC AAAAAAAAT TATAAGAATA AGAAAATTAA ATACTCTAGA AAAAATTGTC 148740 ACATTCAAAA AAAAAATATT AGACAACAAC AATACTGTAG AAATTAATAA AGAGATAGAA 148800 TTCAAAATAG ATAGTATTAA TAATTTTTTA ACCCTTATAA AAGAGCTTAA ATTTAAAAAG 148860 CTATACAAAA AGATAAAAAA AAGTTTAATT TATCAAACTA ACAATTTAAA TGTAGAGATA 148920 AACGAAATAA AAAATCTTGG GTTTTTTTTA GAAATAGAAA AAATAATTAA CAATCAAAAT 148980 149040 GATATAGACT TGGCAAAAAA AGAAATTGAC AACATAATCA ACCAATTTGG ATTAAAAGAA AACATTGAAA CTAGACCTTA CTCTGAATTA CTTTCATTGG CAAATCAAAG TAAAAAATAA 149100 TTCATTGGAA TTAGAGCTTA AAGTAGAGAT TACAAGCCCT TGATTGCCAT AAATTCCAAT 149160 CTGAGGGCTT TTAACATTAC TCTTAAAATT CTCAAGCTTA TTTAAAAAAT ACCAATTTTT 149220 ATTCTTAAAA TAAATTAATC TCACATTATT ATTGTCCTCA AAAGCTAAAA ACAAATTATT 149280 TTTATAAAGC CCAATGTCAG CACTTAAACC TTCCATTTCA ACATTAGGAC TTATATAAT 149340 CCATCTACTA CTTTTCAAAG GACAAATGTT TACAATAGGT CTATTTTCAG AAACAAAACT 149400

CATAATTATT TGATTAAAAT TAGAATCAAA AAAGCCTTTA ATAAAATTGG CCATATAAAC

AGAAGGAATA TTTGCATTTA CCCAAGCATT TTCATTGTTT ACAATAAATT CAGATTTAAT

CTCATTATTT GACTTATAAT TATAAAAAAT GCCCAAAAAA GGTTCAGATA TTAAACCAAT

GTTTGATGAA TTAACATTAG AATCACCTTT ACTTAAATAA GCATGTATTA CATCGGTCCA

149460

149520

149580

AATACTTCCG	TAACCCATAT	TCGAGATTAA	ATTAATTTA	TATTCACCCC	TAATTTCCCT	149700
TAAATATGCT	AAATACAACC	TATCTTTTAA	ATCAATGCTA	ATATTTAATA	AAGATCCAAA	149760
ATTTTCTATG	TGACCAGGAC	TAATATCAAT	CCATTTTCTA	СТАТТАААТТ	TTTTAACTAT	149820
AAGCTCGCTG	GCAAAATCAG	CCCCTGATTT	CGTAACAAAA	GCAATATATA	AATTTCCTTT	149880
AGAATTAATT	GAAAAATCAA	AATTAACTAT	ATTAGTAATA	TTTCTATTAA	CAGATGAATC	149940
AAGATTAAAC	CAACCAACAT	CCTCAATAAA	TTCAGCAACT	TTAATATCAT	CGCTATTTTC	150000
TAGCTGATAA	GCAATATAAA	TATTGCTTTT	ATAAATCCTT	AATACATATT	TTTTAAGCTT	150060
GGCAGTTAAA	TTTAAAACAG	GCAAATCTTT	TAAAGTAAAA	AATAAATCTT	CTTTTTCAAT	150120
CTTAGATGTT	TTAGCTTTCA	GGGAATCGCT	ACTTAAAATT	GAAAAATCTA	AATCTGTAAG	150180
CGAAAACTTT	ATGTTTTCAT	TTTTAGTACC	AACATATATT	ATTGCATAAA	GAGAATTTTT	150240
ATCTAATCTT	ATTTTAAAAT	CTCTTCTTTT	TACTTTATCG	GTTATATATT	TTTTATTAGA	150300
AATGTCATAA	AAAAATTTTA	CAAAATCGGA	ATTTGAACTC	TTATCTAGGG	ATAAAATATA	150360
ATCGGAAGAT	TTGCTAACTT	TTAAGTAAAC	ACTTCCTTTC	CCATTTTTGC	TTAAAATACT	150420
TAAAGGACTA	ATTTCTGTTA	ATATTTGATT	TGCTTGAGCT	TGAACAAAAG	AAAATTTTGT	150480
AAATAAAAT	AGCAAAATGA	ATGTCTTATT	TATTTTCATA	TTTTTTTACA	TTCAAAAATA	150540
TTAACACATA	ТТСТАААААТ	GATAAAATTG	CAAAAAAAGC	AGCACAAACA	TATGTCATTT	150600
GAACAATAAA	TAAAAATTTA	AATTTAAAAG	TTAAAATGTA	ACTAATAAAA	TTTTGAACAG	150660
ACTCTGTAAA	GTTGAGTTGA	TTTAAAGTAT	AAAATAAAAG	GCTTGCAAAA	GTGCAAACAG	150720
CATAAAGAAG	TGACTTTAAT	TTCCCCAAAA	AATTTGCTTG	TTGAACTACA	TTAAACTGAA	150780
TAATTAAATT	TCTAACAAAC	CCAATAGAAA	TTTCACGATA	AATAAATAT	АСАААААААТ	150840
AATAGGGGGT	TATACCTTTG	TAAAAGAAAA	АААСААААТА	TGTTAAATGC	TGCAAAACAT	150900
CCGCATAAGG	ATCTAAAATT	TTACCTACAT	TGCTAACAAG	ACCATATTT	CTTGCAAGAT	150960
AACCATCAAT	AAAATCAGTA	AATTCATTAA	. ААТТААТТАА	AAACCAAATA	ATTCCAAAAA	151020
ACAAATACGA	ААААААТАСА	ТТТТССАААА	TAAAATAAAA	TAATATGATA	AAGGAAAGTG	151080
CAATTCTAAC	TAATGTTATT	TTATTAGGGG	TAATGACCTT	GATTAAATTA	TTCAATTTAT	151140
CAAATCTCCT	ТАТСТСТТАТ	' TTTAAATAA	AATTTAAATTA	GAGCTTCATC	AAGTTTCATT	151200
ССАТТТАТТТ	GCTCATTTGT	TCTTGTTCTA	ATAGATATTC	TCTCTTCTGT	TGCTTCTCTC	151260
TCACCAATTA	ТАААСАТАТА	AGGTATTTT	TTAGCCTGAT	ATTCTCTAAT	TTTAGCATTC	151320
ATTCTTGAGG	AACTATTATC	AAGCTTTATT	CTAATCCCCT	CATTTTAAA	A TTTATTAAAA	151380

WO 98/58943 PCT/US98/12764

እ <i>ርር</i> መሞ አ አሞአር	ር እ ጥ እ እ መርመመር	CACAAMAMMC	243	mc a mm a cm a c	TTGAACAGGA	151440
						-
GATAACCATA	AAGGAAAAGC	ACCACCATAG	TGCTCTACAA	GAATTCCAAA	AAATCTTTCA	151500
ATAGATCCCA	ACAAAGCTCT	ATGAATCATA	AATGGTCTTT	TTTCTTTACC	ATCCTCAGCG	151560
GTATAAGTCA	TATTAAATCT	CTCAGGGAGA	ТТААААТСАА	ATTGAATTGT	ACTCATCTGC	151620
CACTCTCTCT	CAAGCGAATC	AACTATCTTA	AGATCAATTT	TAGGCCCATA	AAAAGCACCT	151680
CCACCCTTAT	CAATTTCATA	AGGAACTTCA	AAATCGCTTA	AAGTCTCTTC	AAGAACTTTT	151740
AAAGACATTT	CCCAATCAGA	ATCATTGCCA	ACAGATTTGT	CAGGCTTTGT	AGAAAGATAT	151800
GCCTTTGGGT	TGCTAAAGCC	AAATTTACTC	CACATATAAA	TAGCAAACCT	AAGAACTTCT	151860
TTAATCTCAT	CTAAAACCTG	AGAATGGGTG	САТАТААТАТ	GAGCATCATC	CTGAGTAAAC	151920
CCTCTGGCTC	TCATCATACC	ATGCAAAGCA	CCTATCTTTT	CATAACGATA	CACAGTGCCA	151980
AGTTCGGCCC	ATCTAAATGG	CAAATCTCTA	TAAGAATGCT	TACCTGTATT	GTAAATTGCA	152040
ATATGAAAAG	GACAATTCAT	GGGTTTAAGA	TAATAATCAC	TTTTATCCAT	ТТСТАТТТТТ	152100
TCAAACATGC	TATCCTTATA	AAAGTCTAAA	TGACCAGAAG	TTTGCCAAAG	CCAAGATTTG	152160
CCAATATGAG	GAGTAAAAAG	AATATCATAC	CCATTTTTGG	AGTGCTCTTC	TCTCCAAAAA	152220
TCTTCTATTA	AAGCTCTTAT	TTTGGCACCA	TTGGGATGAA	AAAAAACAAG	TCCTGGTCCA	152280
ATCTCTTCAT	GTATAGAAAA	TAAATCAAGC	TCTTTTCCAA	GCTTTCTATG	ATCTCTTTTT	152340
TTTATTTCCT	CTCTCAAATT	AAGATAAGAT	CTCAGTTCTT	TTTCATTATT	CCATAAAGTT	152400
CCATAAATTC	TGGTAAGCAT	TGGGTTTTTT	TCACTGCCCC	GCCAATAAGC	CCCAGCAATA	152460
CTAGTAAGCT	TAAATGCCTT	TGGATCAATT	ТТАТТСАТАТ	TCTCAACATG	AGGACCTCTA	152520
CAAAGATCAA	CAAAATTGTG	ACTCTTGTAA	ATAGAAACTT	CATTTTGTAA	ATCAAAATTT	152580
TTAATCAAAT	CAATCTTATA	AGGTTCATCT	ТТАААААТТ	CAAGAGCCTG	TTCTACGCTT	152640
ATTATCTCTT	TTTCAAAAGA	ACTTCCGGTC	TTTAAAATTT	CTCTCATTCT	ATTTTCTATG	152700
TCTAAAAGAG	AATCTTCTGT	AATCTGCTTT	TTAAATTCAA	ААТСАТААТА	AAAACCATCT	152760
TTAATAGGAG	GACCTATTGC	AATCTTGGTA	TTTGGAAATA	AATCAAGAAC	AGCTTCTGCC	152820
ATAACATGAG	CTATTGAGTG	TCTTTTTTTG	TAAAGAATAT	CTTCTTTATC	TAAATCTTTG	152880
CTCACAACAA	TACCTTTTGC	CTTTCGCTTT	ТТАТТААААА	ATTAAAATTC	ACACTCATCA	152940
CTTTTACGTA	AAAATACGCA	CCTCAAATAT	TTATAATTAC	TAAATTAAAA	ТАТАСААААА	153000
AATTTTCTAA	AAAAATAGAG	ATAAGAAAAC	AAAAACCTGA	АААТАААТТТ	TCAATCCATA	153060
GCAACTATTG	ATTCAATATT	ААААТАААА	GACATTGCTA	AAAAAAATGT	AATAGTAGAA	153120
GAACCTCCAT	AAGAGAGAAA	AGGAAAGGGA	ATCCCGGTAA	TAGGAAGAAC	TCCTAAAGAC	153180

ATTCCAACAT	TAAAAGAAGT	ATGAAAAAAT	AAAAGTCCCA	AAATTCCAGA	TATTACTAAG	153240
GCCATATATC	TATCTTGACT	TTTATTCATT	ATTATCAAAA	ATTTAAAAAA	AAGGAAAAA	153300
AATAATATTA	AAATAGTGCT	AACACCCAAA	AACCCAAACT	CTTCGGCAAG	AATAGAAAAA	153360
ATAAAATCTG	TGCTTTGAGA	TGGCACATAA	TTAGCGTGGG	TATAAGGTCC	СТТТАААААТ	153420
CCTTTGCCCA	AAAGACCGCC	AGAACCAATT	GCTATTTTAA	CCTGATTTAA	ATTCCAACCA	153480
GCACCCTTAG	CATCAATAGC	CGGATCTAAG	ААТАССАААА	ACCGTTTAAT	CTGATAAGTC	153540
TTCATTAACT	TTGAAAGAAC	CTTTGAAAAC	ACTATTGAAA	СТААТААААТ	AGAACTTGCA	153600
АААААТАСАТ	ААААТАААТ	ТАТТТТААТА	CTCAAACCAT	ATTTAGAAAT	GAAAAATCCT	153660
AAAACAGAAA	TCAAAAGAAT	TAAAAGCAGC	ACTCCCATTA	ТТАСТСТААА	ATAAAAAGGA	153720
TTTGAGAAAA	TAAGATAAAA	TACATTACCC	ATATTCACCT	TATATTCATA	CCAAACCGGT	153780
AAAATTGCAA	AAACAAAAGA	AAAAAACCCT	ATCAACGCAA	ATGCTAAAAC	ATAGTGCAAA	153840
TCTATTCCTG	CAAAAAAAGA	AATAAATATA	AAAATGGTTA	ААТАТАСТАТ	TGCTGTACCA	153900
AAATCAGGTT	GCAATAATAT	AAGAATTACC	GATGGAAAAA	ТТААТААААА	TGCAGTAATA	153960
AAGGTAAAAA	ATTCATTATA	ACCCTTTTTT	TCAGTGTAAA	ATTTTGAAAG	GGTTAAAATA	154020
ATAACAACTT	TACCAAATTC	AGAAGGCTGT	CCTCCAAGTT	TCCATATGCC	AATCCAAGAT	154080
CTTGCTCCAT	TTACTGTCAT	TCCAAAAAAT	GCAGTAAAAA	TTAAAGCCAA	ТАТТААТААА	154140
AAATATAAAG	GATATACCAT	GCTATAAACA	AATTTTAAAT	CATATTTGCC	CACTATAAAA	154200
ATTAGAAAAA	ATCCAATAAT	TACCCAAAAG	GTTTGTTTTA	TATATTCATT	CTTGGTTAAA	154260
GATCCACTAA	ТАТТАТААТС	GCTAGAATAA	ATCAACAATA	TACCAACAAA	AGAAACTATA	154320
AGTAAGCTTA	TCAAAGCCAA	ATAATCATAA	TTTTTTCTAA	AAACCATTAA	TCTACCTAAT	154380
ATACCACGGC	CTATAACCTT	TAAGAATATC	TTCATAACTT	TGATTTGCAA	AAATGCCTTG	154440
САТТАТТААА	TCTGTAGATT	TTGCAGGCCA	CCAATCCACA	TTACTTTTTG	CCTCAACCAA	154500
ACTAAAAACA	ATAATTTGAT	TATCAGCTGA	ACCGTTATAA	GGGGCAAGTC	CAATAAAAGA	154560
ACTATTTTCA	AAACCATCTA	TTCCAGTTTG	ACCAGTACCT	GTTTTTCCTC	CAACCTCAAC	154620
AGCTTTGGTA	AGAACTGCAT	ATCTTGCTGT	ACCATAAGTT	ATAACACTTC	TCATATATTT	154680
TTTCAGAAGT	TTAAATGTGT	ТТТТАСТААТ	AAGATTTGTC	TTTCTTAATA	TTTCTGGTTT	154740
ATTTTCAAGA	ACAACCTTAT	TAGTACCACC	ТТТТААААТТ	TTATTTACAA	TTCTAGGTTT	154800
ATATACAACA	CCTTCATTTG	CAATCATAGC	AACCATATTA	ACAATCTGCA	TAGGAGTAGC	154860
АТТТАААААТ	CCTTGACCTA	TTGAAAAATT	TACAGTATCT	CCTCCTACCC	AAGGCTGATT	154920

PCT/US98/12764

	7		245			
AAAAGTTTTT	TCTTTCCACT	CAGGACTAGG	AAGAAGGCCA	GCTACTTCAT	TTGGCAAATC	154980
AATTCCTGTT	TTTTCTCCAA	ACCCAAATTC	TTTTGCATAT	TTTCTAATTC	TATCAACTCC	155040
AAGATACTTA	AGCCCAAGTG	ТАТАААААТА	AACATTAGAA	GAATGTGCAA	TCGCCTCTTC	155100
ТАААТТААСА	TACCCATGAC	CTCCGGGCTT	CCAGCAATGA	AAAATTCTAT	TTCCAACTTT	155160
AAAATATCCA	GGACAATAAA	TTTTACGATC	TTTGTCTATA	ACTCTTTCTT	CAAGAATGGC	155220
AGCAGCAACA	ACTAATTTAA	AAATAGACGC	AGGCGGGTAA	ACAGATTGAA	TTGCTTTATT	155280
TAAAAAAGAG	TAATCTTCCT	TATTATCTTT	ATTGTAAACA	TCTTTCATAG	AATAATAAGG	155340
ATAATTGTGA	AGAGCAAGAA	CAGCACCTGT	TGATGGTTTT	AATACTACAA	CAGAACCATA	155400
CCTTTTGCCT	AAAGCATTCT	TAGCAAGATC	TTGAATATCT	TTATTGATAT	TAAGCACAAC	155460
ATCATTACCG	GGCACCATAT	TTTTTATAAT	AGAACCATCG	TCTATTCTTC	TCTCCTTAGA	155520
ATCTACCTTG	TATTTTATTA	ATCCCTCTTG	CCCTCTAATG	TAATTATCAT	AAACTTGTTC	155580
AACGCCCAAC	TTTCCAATCG	TAGAAGTATT	ATCATACCCA	CTAACATTGT	AAAACGTCCT	155640
AAGTTCTCTT	TGATTTATTT	GCCCAACATA	ACCGATTGAA	TGAGAATATG	AATCGTCAAC	155700
TAAATAGTTA	CGCTTAAAAG	AATAGGTCCA	CAAAAGAGCA	GGATAATAAA	ACTTTTTTC	155760
AGAAATTTTG	AAAAGCATCT	TTGGGGTAAG	ТТСААТТАТТ	TCAACATCTT	TAAGATATCC	155820
ACCAGGCTCT	TGAAGTTTAG	ACAAAATAAT	TGATTTATCA	ATATCTAGAG	TGCTTGATAA	155880
AAAATCTATC	ATCTCAATTC	TAGTAGCAGC	AGGCATATTG	TAATACTGTT	GTAAGCTTAT	155940
CTTTAAGATA	AACATAGTTA	AATTATTTGC	CAAAACATTG	GAATTAGAAT	CCAAAATTTC	156000
ACCTCTTGAG	GCATTGATTT	TTTCCAATCT	TGATAAAAA	ACATTGGCTT	CTCTGTCATA	156060
AAACAAATGC	TTACCAATTT	GCATTTGGAA	TAAAATCGCC	AAATAAAGCA	CCATAATTAC	156120
TATTAAAAAA	AATATGCCGA	ACTTGTATCT	AAAATTTGTT	ATAACACCCA	СТААТААТСС	156180
TCTTTAAAAG	TTAAAAATAA	TCTAGTAAAA	TAATTTTGAA	TTGGATATAA	AAAGTTAATA	156240
GACATTATAT	TTACAAAAAG	ATCAAGGTTG	AAAATTGAAT	AATTAAAAGA	TTTTAAGTCT	156300
ACAAAATCAT	AAAACACAAT	AGCTAAAAAC	САТААТАТАА	TTTTTGAAAG	ТААААААТ	156360
ATTGTCATGC	TAAGCATATT	TTTGGGCATG	AATAATTTTA	TTTTATTGTT	ТААААТАААА	156420
ATTATCGTAT	ACCCAAAAAC	AAAAAATCCA	AGTGGTAATC	CTGTAAAATA	ATCCATAAGA	156480
AGACCATATA	AAATGCTAGA	TAATAATCCC	АСАТТААААА	TAAAATTCAA	AGAATTAAAA	156540
ACTAGAAAAA	TTAAAAAAAT	ATCTATTGAA	АААТАААААТ	AAGTTGCAAA	ATAGTGTTGA	156600
AAAATTTTGC	CTAAAAATGC	GCTGGAAATA	AAATATGTAA	AAAATGTTGC	CATTATTCAC	156660
CAATCTCTTT	GTTGTTTTTA	ACAAGAAAAA	CATACTCAAG	СТТАТСТААА	ACTATAGCTG	156720

			•			
GCTCTACTTC	TATTTTTAA	A AGAGAATTAT	T AATCAAGAA1	ATGAAAATTI	GTAATCTTTC	156780
СААТАТАААТ	ACCAACTGGA	TATTCACTA	ATCCAGCAGT	AACAATAGAA	TCCCCTATTT	156840
TTAAATCTTT	TTCAGCAAGT	CTATTAACGT	· AATTCATTTC	AAGTTTTTA	CCATAACCAT	156900
TGCCTTCTAT	AAGGCCTATA	AACCTACTAC	TTTGAATCCT	TGCGGACACA	AAATTTTCAT	156960
AATTAGTTAA	AGGCAAAATT	TTAGCAGTAT	TAGAATAAAC	CTTTACAACT	TTGCCTACAA	157020
GGCCACTAAA	TCCATCCTGA	TATGCAACTG	CTATCATATC	TTTTTCTATC	CCATCATTGA	157080
ATCCTTTATT	AATAGCCATT	' AAAGTCGATA	TGTTTGAATA	GTTTAGATAT	ATAATCTCTG	157140
CCGAAATAAA	ATCGCTAGAG	CTTGACGAAT	° АААААТТТАА	TTGCTCTTTA	AGACGAACAT	157200
TCTCTTGCCT	TAGTGACTGT	ATATTCTGAG	TGACTATTTC	AAGCTGTTGT	ATCCTTTTTT	157260
TATAAAATTC	TATCTTGTCC	TTGTAATTTT	TGTATTCATT	TACAGTTTTA	AAAACATTGG	157320
AAATAAAACT	AAAAACCCCA	TGCATTCTGC	TTTGAATATA	AGAATTAAGA	GTAAAAAACA	157380
AAAAATTATC	TGATCTTCTC	TTTTGAATGC	TGCTTGAATC	ATGAATCATA	AAAACAAGAG	157440
					AAATTCATAA	157500
CTTATTCATT	GATAAAACTG	TAAATATTTT	ТАСТААТАТС	TATTCTATTG	GCATAATCAT	157560
				GTCTGCAACA		157620
CTCCAGTCTC	TTTTGAAAGA	AGTCTATTTA	AACCCTTAAG	AAGAGCCCCT	CCCCTGTCA	157680
				GGGAGTTGCA		157740
				AGACTCTCTT		157800
				TGTACCCTTA		157860
				TATCTTAATT		157920
					ATTATGCTCT	
					CCAAGAGAAA	
					GTAGGTTCAA	158100
					TTAACTTCTC	158160
				CTCAACCTCT		158220
				TTTACGAGAA		158280
					CCATCTCTAA	158340
GTGGGCGTAC						158400
CAACCGCAAC .	AACTTTATTA	CCTTTGGTTA	TATCTATTGC	AACAACAGAA	GGCTCGCTCA	158460

		~	247		_	
TAACCACGCC	ATAATCTTTA	ATATAAACCA	ATGTATTACA	TGTTCCAAGA	TCAATGCCAA	158520
TATCTATCAA	AAAAGACTTA	AACAAATTCA	AAACAACCTC	CCTAAAAGTC	TTCCAAAGTA	158580
ATTCCAAGCC	TCTCTCTTGC	TGCTTCTAAA	TAAGGATTAA	GATTGAGAGC	TTCTCTCCAG	158640
TATTTTCTAG	CTTTAGGATA	ATCTTTATCT	TTCTTTCTAT	ATATATCTCC	TATTTTAACA	158700
TAAACGCTAG	AATTTGAACT	ATTAATTTCT	AGAACTTTAT	TATAGTAATT	AAAAGCACTG	158760
TCATAATCGC	СТТТАТСТАА	TAGAATGTCT	CCATAAAGCA	AATATACCTT	TTGAATTAAA	158820
TTTTCATCCG	TTTTCTCACC	CTTTGATAAT	TTTCTTTTCT	CTTCTTCTAT	TATTTTTTT	158880
ATATACTCAA	TGCTTTTGTT	TATATCATTC	AACTTATAAT	TAACATAAGC	CAAACTCCAA	158940
AGCACTAAAT	CAGATTTATT	TTCATTAAAA	GCTTTTTCAA	AAAACTTCAA	ACTAGATTTG	159000
TAATCTCTTA	AAAGCTGATA	CGAATATCCC	AAATATTCAA	AAATATCTTC	TCTAATGTTC	159060
ATGAAATCAA	AATTATCGGC	ATTTAAGGCC	TTCTTTAAAA	ATTTTACAGC	AAGCTCGCTA	159120
TAAAACTCTC	CTTTATGAGA	ATATGCCTTT	CCCAATATGT	AATACAAAGG	GCTTATGGAG	159180
ACTCCATCAT	TTATAGAAAT	ТАААААТСТТ	AGTCTTTCTA	TGGATTTATC	ТАААААСТСТ	159240
CCTTTTAAAT	ACCCTTCATT	TACTATTAAA	GAATAATAAA	AATATGAAAA	TCCTAAAAGT	159300
AAATTCAAAT	ТААААТСААА	TCTATGATTT	TTAATGTCAT	TCTCAGCATA	ATCTATTATT	159360
TCTTTATATT	CTTTTTTATC	CCAGAGTAAA	AGCAAATCAA	CTTCTGTTGG	ACCTGCCTTT	159420
AAATAAGAAC	TAGAAAAAGA	ТТТААААТАТ	GATAAAATGT	AATAAATTAA	AAAAATGAAA	159480
ATGAAAATCA	TAAATGAGTA	АААААТАТАТ	CTTAAATATC	TTATTTCCAT	TTAAAACTCT	159540
CTTTTAGGTC	AATGAAATTA	AGCTGACACC	CATAAGCCGA	GTTCTGTACT	ATGCCATCAT	159600
CTCTCTTATT	TTTTTATCGC	TAAAAAAATC	GTGCGATCTA	CCCGTAAGCA	TGTCCTCAAG	159660
AACAAAGGGT	GCTTACATAC	TTGATCTTGC	TCCTAATGAG	GTTTATCTTG	CCTGTATTTA	159720
TTGCTAAATA	AGCGGTGAGC	TCTTACCTCA	CCTTTTCACC	CTTACCTTTT	ACGGCGGTAA	159780
TTTTCTGCGA	CACTTTCTTA	GGTTTAAAAC	CCCTAGGCAT	TACCTAGCAT	TATGTTCTTA	159840
TTGGAGCTCG	GACTTTCCTC	TTAAGCTTTA	ATTATAAAAC	TAAGCGATGG	CTGACTGCCA	159900
GCTTAAATAA	AAAGTATCAA	АТТААТАААТ	TTTATTCAAC	AAGATCTGCT	AAACTACCAG	159960
GAATTATTTC	ATCGCTTATC	TGAACTTTAT	CCTGATAATA	AAGTATTCTG	CTGCAATAAG	160020
GACAAAATTT	AATATCGTTG	GGCTCACGTC	TTACTTTATT	TGCAAATTCA	ATAGGAAGTA	160080
TCATATGACA	ACCTTTGCAA	ACATTGTTAA	CCAAAGGCAC	AACTCCATTT	GATTTATTTC	160140
TTATTATTCT	TTGAAATTTA	ААТАААААТ	CTTCATTCAT	TTTAGAAGCA	CAATTTAACT	160200
CTTCACTCTC	ТАТТТСТААА	AGTTTCTTTT	СААТТТСТАА	AAGCTCCAGC	TCAAAACTAC	160260

TGCTTTCAGC	TCTAAAACAT	TCCTCTTCTT	TGATGTGCTT	CTCGTTGACA	ТСТААТАТТТ	160320
CCTTTTCTAT	TTTAGTTTTA	AGCCCATTAA	CATGTGTCAT	CTTTTTTCTA	ATTGTAACTT	160380
CATCGTCAAT	AATAACCTGA	AGTTCTTTT	CAAGAGCCTC	ATATTCTCTT	TGCGTTTTAA	160440
TGCTATCAAT	TTTTTCTTCA	GCCTTGCTCT	TTCTTGAATT	AATATCTTGA	АТАТСТААСТ	160500
TTAAAGCAGA	GTCTTCTTTT	TGATACTCCT	' TAAACTTTTG	TTGCAAATCA	ACAAGAACTT	160560
TCGACAATTC	TTCAATCTGA	TTTTTTTCG	CCTCCAAATA	CTTGGGAATA	CTTTTTCGCC	160620
TTTCTTCAAG	CTCAAACTTA	GATTTATATA	TAACTTCAAG	ТТТТТТТТАТ	GTATCAATAT	160680
TGTTTTCCAT	CAATCCTCCT	GTTCAATTTA	AATCTTCAAG	ATAATCTTTT	AATTTTTGAG	160740
TTTTTTTGGG	ATTTTTAAGC	CGCCTTAATG	CTTTAGATTC	AATTTGCCTA	ATTCTTTCTC	160800
TTGTAACATT	AAAATGAAGT	CCAACCTCTT	CAAGAGTTAA	AGAATAGCCA	TCTTCAAGTC	160860
CAAATCTCAT	TTTTACAACT	TCTTGTTCTC	TTTCAGGAAG	AGTTCCAAGA	ATTGCTCTTA	160920
TTTGATCTTG	CAAAACTACA	AAAGATGTGT	GATTTGCAGG	ATTTTTTATT	GCCTTATCCT	160980
СААТААААТС	GCTAAGAACA	GAATCTTCCT	CTTCTCCAAT	TGGTGTTTCA	AGAGAAACAG	161040
GTTCTCTTGA	AACACTCTTT	ACAGTTTTAA	CCTTTTTAAG	TTCCCATCCA	AGCCTGTCTG	161100
AAAGCTCTTC	ATCTGTGGGA	TCTTTGCCTA	AAACTTGAAT	TAAATATCTA	GTTTCTCTAT	161160
TAAGCCTATT	TATTTGCTCA	ATCATGTGCA	CAGGAACTCT	AATTGTGCGA	GCTTGATCAG	161220
AAATAGATCT	TGTTATGGCT	TGTCTAATCC	ACCAAGTAGC	ATAGGTTGAA	AACTTAAAAC	161280
СТСТСТТАТА	TTCGAACTTT	TCAACAGCCT	TAATCAATCC	AATATTGCCT	TCTTGAACAA	161340
GATCAAAAAA	ATGAAGACCT	CTATTTGCAT	ATTTTTTAGC	AATGCTTACA	ACAAGCCTTA	161400
AATTAGCCTT	AATCAACTGA	TCTTTAGCAT	GCTGCATCAT	TTGCTTCCCT	TTAGCAATCT	161460
CTTCTGACAT	GCTTATTATT	TTATCAGTTG	GATATTCATA	ATACATCTCA	ATTCTCTCAA	161520
GTTCTTTTTG	GGCAAGCTGA	GCCTCTGTAA	TCTGCTCTTT	AATAGCATCT	TCTTTAAGCT	161580
TGAGAGATTT	ТТСТАТСТСТ	ATTTTTTTTT	CAGCAATAGT	CAAATCTCTT	CCAAGCACCC	161640
TCAAATCTCT	ТАТТТТТТСА	ATTTTCAGCC	TGCTTAGAAT	TATTCTTTGT	TGTCTTTGTA	161700
AATCTTTTAT	TTTGTTAGCA	GAGTCAATAT	AATCATCTGA	GAAAATCCTT	AATTCCTCTT	161760
GATACAAAGG	AATGTCTCTC	AAAAGCTCTT	TTAGGGCCAA	TCTTTCCTTT	TTTAAATTCT	161820
ТТТСАААААТ	ATCCCCCCA	AGATCATACA	CCCTATGCTT	ATTATCTACA	TAACTTATTA	161880
AACGATCTTG	AATTGGCTTT	AAAGGAATTT	TGTAAAAAGA	GGCAATTCTT	TTTTTTTAT	161940
TATAATAATC	CGGACTACTC	TCTTTATCCT	TATCTTTTC	ТСТТТТАААА	AACTCTTCTC	162000

- 1

	`	•	249			
TTTCCATTCT	TGAGTAAATA	GTATTCACAA	GATTATAATA	ATTTTCTATA	ACAAGTCCCT	162060
CATTCTTAAG	AATATTCTCA	ATTATACTCT	CTCCAGAATC	CATTTGCTTT	GCAAGTTCAA	162120
CTTCTTGATT	TCCCGTTAAT	AAAAACTCTT	TTCCTATTTC	CTTTAAATAA	AGCTTGATTG	162180
GATCTTCTGA	GTGACTATCT	TTTAAAACAT	TGCCTTTAAT	ATACCCTGAA	CCTAAATCAT	162240
CCTTAACAGA	AATATCTTCT	TCATCACAAT	CATCCAGCTT	AACATCAATG	TCAATATCTT	162300
CCTCATCACT	TTGAAAACCA	TCATCTAAAA	TCATAAAATT	TCTATCAGAT	TCAATCTCAA	162360
CCTCTTCCTC	TTCATCATTT	CCATCTTCAC	TGACAACCAG	ATCTAATTCC	GAAATTTTAT	162420
TAACCAACCT	TATTCCCCTA	TCCTCAAGTA	CCGAACAAAT	ACAATCAAGA	ATCTCTGGTT	162480
CTAATATATC	ATCGGGAAGC	AAATTTGATA	ATTCACTAAA	ACTAAGAGAT	TTTCTATCTC	162540
CCAAATGAGT	AATAATACCC	TCTATCAGCT	TCGAATATTT	CTTTTCCAAA	TCCGACAAAA	162600
CCTAACTCCC	TGGAACATCA	TCTATGTAGA	ТТТТАААТТ	TTTTCTCTGC	ATATTTAAAA	162660
ACATTAACTC	ATTTATTTGA	ATCTTAGCAT	TTACCAAAGA	GTCCCCATCA	TATCTTTTT	162720
TGCAAAGCAA	AACACGAGAA	TCTAATTTTC	TTCTCTTGAT	TGCAAGTAAA	ATATGAATGA	162780
GCATCTCATC	ATCCACTTCA	AATTCAGAAT	TTAAAATTTC	ТТСАААААА	ATTCACTAAC	162840
TTTATAGGTA	TCCTTTAAAT	AATTTTTTTT	ATCCATTAAT	GAAAAATCTT	ТАТТАТТТТС	162900
AAATAAATTT	TCAAAGCACA	TAAAAACTTT	TCTGGCATCG	ACATTAATTA	AATCACTATC	162960
AATAATATTG	CGCCTTACTA	TGCTAAAATA	ACTAAAATTT	TTCAACAAAG	CTACTATTAG	163020
ATACCTCTCA	TAAGAATCAT	CATTATGAGC	ATACAAATTT	СТТТТАТТАТ	TGTCAACTAC	163080
AAATCTTTCT	TTTATTCTGT	AATAATCTTT	CAATAAAGTT	GTCACACCAA	TACCAAGTTT	163140
ATTGCTTAGC	TTGTCTAAAA	AAATTTTTTT	CTGAGTATCT	ACTTTTGATA	ААТТТАТСАА	163200
АТТТАААААТ	АААТТААТСА	TGGCATTTAA	ATCTACAGTT	ТТАТТТАААТ	ТАТАТТТАТТ	163260
AGAATAAACA	TCCAAAAGAT	ATTCAAAAGC	ATCACATCTA	ТТАТТТАААА	TTTTTTGCAA	163320
GGAGTCTACA	CCCTCACTTT	TAAGAACATC	TGCAGGATCA	GTACCAAAAT	CCATTCGAAC	163380
AACACTAACA	TTGATATTAA	ACGGCAAACA	AATTTGATAA	GCTTTTAAAG	TTGCAGAAAG	163440
TCCAGCATCA	TCCCCATCAA	AAGAAAATAT	TATCTCATCA	GCATATCTTT	GAATTAAAGC	163500
TAAATGCTCT	TTTGAAAAAG	CAGTGCCAAG	AGTAGATACG	GCTCTCTTAA	TCCCAGATGT	163560
AAAAAAAGCA	AGAACATCTA	TATACCCTTC	TACCAATATA	ACTGATTTTG	TAGATTTAAT	163620
СТССТСАААА	СССТСАТААА	ATCCATAAAG	AAGCTCCCTT	ТТТТТААААА	CTTCAGTTTC	163680
ACCTAAATTA	ATATACTTAG	AACCTTTCCC	ATCTAAATCT	CGACCTCCAA	AACCAACAAC	163740
GTTTCCTTTA	AAGTCTTTAA	TTGGAAAAAT	TAATCTTTGA	AATAAAATAG	AAACTTTGGG	163800

AMBOCIMENTO CARANTES TO A CARA	
ATTGGTTTTC GAGAACAAAC CACTTTTTCT AAGTACTTCA GAAGAGTATC CTTTTGAAAC	
TAAAAAATCA TGAAGCTCTA AACCATTTTT AAAGTTAAAT GGCAAATAAC CAAGTTCAAA	
TAAATCAACA ATTTCCTTAG ATATTGCTCT ACTCTTTAAA ACATAATCTA AAGCTTTTTT	163980
GTTTTTACTT AAAAAAATT TAATGGTATT AATTAACCGA GAATTCAAAG AGTAAATTTT	164040
TGAAACCATG TCTTTATTT CATTTTTATT TTCACTTCCT CGACTTATTT TTAAATCATC	164100
ATAATGAATA CCGGATTTTT CGCATAAAAT CTTAAGAGCA TCATTGTAAT TGATTTTTTC	164160
CATATCCATT AAAAATCCAA TAACATCTCC ACCCTTTTTG CATCCAAAAC AATAAAAATA	164220
TCCTTGCAAA GGATTTACAA AAAAAGAGGG AGTCTTCTCA GCATGAAAAG GACAAAGACC	164280
TTTGTAAGCA GATCCCGATT TAACAAGCTT AATATATTGC TCCACAATAG CTACAATATC	164340
AAATTTGCTT TTCATTGAAG CTACAGTTTG TAAATACTTC ATACTTCTTA ATCCTTAGTA	164400
ATAAAATTTT TAATATAATC TTTTGCCCCT AAAAGATGTG AAGAATATTC TGATGAAAAT	164460
TGATGTGTGC CCAACTTAGA GTCTTTTACA ACAAAAATA AATATTGCGT ATTTTTTGGG	164520
AAAAAAGCTG CTTGCAGCGA AATAATACCA GCATTTGAAA TTGGAGTAGG AGGATATCCT	164580
TTATTAATAT ATGTATTATA AGGAGAATCT ATCTCTAAAT CTGAAAAATA AATTCTCTTA	164640
GGATGGCTTC GTCCTAGCTC CTCTGTAATA ACATATTCAA TAGTAGCACA GGATTGTAAT	164700
GCCATACCAG ATTTTATTCT ATTATAAAAA ACCGAAGACA TTATTGGGGC TTCACTTTTA	164760
ACCCTATATT CACGTTCAAC AATAGATGCT ATTATTACCC TATTGTAAAG CTCCTTACTT	164820
GAATAATCGC TAAGAACAAC GCCTATAGAC TTAAGCTTAT TCAAAAAATT ATCAACAAAC	164880
ATGCGAACTA CATTCTTTAT TTCTATACCC TTATAAAATT TATAAGTATC TGGAAATAAA	164940
AATCCTTCAA GAGAGTCATA ATCAAGCCCA AGCTCATAAA TAAATGATTT TTTGTTGATT	
AAAAAAAGAA AATCTTGAAC ATCATCAATA ACAGAAAATT CCTTAAGCTT TAAAGCAATT	165000
CTTCTGCTAG TATACCCTTC GGGTATTGTA ACATCAATAT TTACGTTAGA AGATCCCTTT	165060
AAAAACTCTT TATATATTTC AAATGTAGAA AGATCGCCAT TTATTAAATA TTTCCCCTCT	165120
TTAAATTGTT TATCACTACC TAAAATATAT GAAATAAAAA CAAGAAGCAG CTCGGATTTA	165180
ATTAATTTT GTTTTTCAA TTCTTTAGCT ATTTTTTTTAA CTCCCCAACC TTTTTCAATA	165240
TTAAATTCAT AAACTAAGCC ATTTGCCAAA GAAGATAAAT TTAAAAAATA TATAAAAATT	165300
	165360
GACAAATAG ATCCCAAAAA GAAAAAAAGA ATAAACACTT TCCCAATTTT AATAAGCACA	165420
AGAATCTCCT AGCTAAACAA AAGTCTTTGC TAATTACACT TTAGCTATCA ATTAAAATTT	165480
TTAATTGATA GCTAACATCA TATTTTATAA CCAATAATAA CTTTTCTAAA TAGACAAAAA	165540

			251			
TAAAAGCACC A	AAATGAAAC	GACATAACA	Z ATTTAAAAGA	A TCACAATAAA	AAATTATAAAA	165600
AGGCAAACGC T	TATAATTTC	ACTAAATTG	G GGAGGGTGGC	G ATTCGAACCC	ACGTAGGCAA	165660
AGCCAACAGA T	TTACAGTCT	GCCCCGGTT	A ACCACTTCGC	TACCGCCCCA	TAAAAGCCGA	165720
CTGTCGGATT CO	GAACCGACG	ACTGCGGTTT	R ACAAGACCCG	CTGCTCTGGC	CAGCTGAGCT	165780
AAGTCGGCAA AG	CAAAAACTA	ATAGTTAGTT	TATAAAAATA	AAATTCATTA	GTCAATAGAA	165840
TAATGATAAA TA	TATAATTA	AATCTTCCTA	A TTAATCTATT	TATTACCAGA	AAGAAAAATT	165900
TTAAAAACAA GA	AGCAATAAA	AAAAATTATA	АААСТАААА	TTAAAATTAA	АТААТАСТТА	165960
ATTTTTTTAT TI	TTCAAAAA	PAAAAAATA	ATCAGTCTAG	TAGATTCAAG	TCCAAAAGAA	166020
ACAGAGCTTA AA	ATAATAGC	AAGATCAAGA	TAAAATTTCT	GAAAATTGTA	ААСААААТА	166080
TTGTAAGAAC CA						166140
ACCAAAATTC TA	TTAAAATT	TGAAAAACGT	CTTAGATTTT	ТТАСТТТААА	AGCTTTCATG	166200
AAATTTAAA AT						166260
TAACATCGGC TA						166320
AAGATTTTCG AA	TAAAAACA	TTATGATTT	CCAACAAAGA	CAAGCACCTC	TTTTTAAGCT	166380
СААТААААТА АТ						166440
ACCACTTCAA AA						166500
CAAACTCTTC AT	AATATTTT	ТСААТСТСАА	AGTAAATATT	ATAAATTTCT	TTTTTCAAAG	166560
CAGTAATATT AT						166620
CGACATTATT TA						166680
AATCATTAAG AA						166740
TCTCGCCTTT TA						166800
TAACAAGAAC TT						166860
ATAAAATGTT CT						166920
CAACAGGATT TT						166980
CAACAATCTT AGA	•					167040
GATCTTCTCT TGA						167100
ATATAATGCT TTT						167160
CAAAAAAAGA ATT						167220
AGTCAACAAT GCT						167280
AAGATTTGTA AGG	GAAAAAC G	CCAAACTAT	ТАААААСАТА	ATAAAACTCA A	AACATATCCG	167340

AGACGATTTT GTAAGTACT	A GATGGAATA	G AATTAATAT	Y TTCATTTATC	TTGACCTTAA	167400
GAGATTCTTC TAAATCGTT	T TGGGTTTTT	r ctttttta <i>i</i>	A AAAAAGCTCA	TATTCACCTT	167460
CATCTAAAAA ATCTTCCAAA	A TTGTTCTTA	G AGTTAAGAA(TTTGCTTTGA	ATAATTTCTA	167520
AAATAGTTTG CTCAACAACA	A ATACCACCT	г тттстааттт	ССТААААААТ	TCTTTCAATT	167580
CCATTGAATA TCGGCAAACA	A CTAAAAAAC	A TTTCCACAA	ACCAACATGC	AAACATTCTC	167640
TCTTAAAATC TATTACTGGA	TTTTTACAC	A TTTCATTAAT	TTGATTTTCC	AGGTTTTTTA	167700
TAACATAAGC TTTATATATA	TCTTCTTTG(TTTTATCTTT	CTGAAAAAAA	TTTAAAATAG	167760
TTAACCACAT TCTAATAAGA	AATGATTCTT	CCATTAAGCG	CCCCGAAAGA	AATTTTTCAA	167820
GCTGAGAATC AACATAAGGC	TCATTACTAC	TATTGGGCAA	AACAAAATCG	GAAGAATTCA	167880
AACCTAAGCT TTTTCTTATA	TCATTCATCA	ACCTATCTTT	AGTCTCTTTT	GAAAGTTGAC	167940
CTATAGAGTT GTATACGCTA	TTGTTATTAC	CACTCATAAA	ACCCCAATAA	AACCATTTAA	168000
AAAATAAAGT ACTACTTACA	ACATACTTCA	AATAAATTAA	AATTGTAAAT	CAATTTTAGA	168060
АААААТТАТ ТТАСАСТАТА	ATATAATTTT	ATATGAATCT	AGGGAAAAAC	ААТССАААТА	168120
ТААТТААААТ ТССТААААТА	ТТТААААААА	ATAACTACGA	ATTTTATTTA	GTTGGAGGCG	168180
CTTTAAGAGA CTTACTGCTT	AATAAACAGC	CTTACGATTT	TGATTTTGCA	ACAAATGCAA	168240
CTCCTGAAGA AATAATAACA	TTATTTCCAA	ATAACATCAA	AACAGGAATA	AAACATGGCA	168300
CAATTGGTAT TATTTTAAT	ААААААТСТ	TTGAAATCAC	CACATACAGA	ATAGAAAAAG	168360
AATATGAAAA CAACAGAGCC	CCCAAACAAG	TAGAATATAC	ТАААААТТТА	CTTAAAGATC	168420
TTGAAAGAAG AGATTTTACA	ATTAATGCAA	TTGCAATGGA	TATTTTCAAC	TTCAACATAA	168480
TAGATTGCTA TAATGGGAAA	AAAGACCTTA	ATAAGAAAAT	AATAAGATGC	ATAGGAAATC	168540
CAAACAAAAG ACTTGAAGAA	GACGCCCTTA	GAATACTTAG	AGCAGCAAGA	TTTTCATCCA	168600
CACTTAATTT TAACATTGAA	AAAAATACTT	TAATTTCAAT	GAAATATAAA	AAAGAAAATA	168660
TTTTAATGAT TTCAAAAGAA	AGAATAAAAA	ATGAATTTCA	CAAATTGTTA	GAAGGCATAA	168720
ATATACAAAA AGGAATTTAT	TATCTTAAAA	AAGTTGATTT	TTAAAAAT	TTTTTTAATC	168780
TAGAAATAAA AACAAAAGTA	ATCAAAAAA	TTGCTCTACT	TGATAAAAAC .	AAATTTTATC	168840
TAAAGGCAAT CACAATATTG					168900
СТТТАСТТАА АТТСТСАААТ	AAAGAAATTA	AGCTGATTTT	ATTTTATAGA	GGCATAATCG	168960
ATAATAACAA TATTTTTAAT					169020
GCACAAGAGA ACATTATAAA	GAAATAATTG	ATATATACAA	AGCACTCAAA (GGAAAAAATA	169080

WO 98/58943 T/US98/12764

253	.,, .
AAAGATATTT ATTTATAATA AAAAACATAA AAAGAAAAAA ATTGCTAAAA AATCCTCTCT	
CTTTAAAAGA TTTAAAAATA AACGGAAAAG ATATTCAAAA TCTAGAACAA ATAGAAAACA	
AAAATATAGG TAAAATTTTA AATATGCTAC TAAGATGTGT AATTGAAAAT CCCAAGCTTA	169260
ATACTAAAAA TTATCTTATA AAAAAAATCA AAACCTTAAA GGTTAATGTT TTCCATAGCT	169320
TTTAAAGCTA CTTCAGCCGC TCTCATTTCG GCTTCTTTTT TAGATTTGCC CTTTCCATTT	169380
GATATAAAAT TTTCTCCAAC ATAAAGTTCC ACACAAAAA CTTTATCATG GTCTGGACCT	169440
ATTTCCTTGT CTAGCTTATA ACTTGGCGAG ATTTTATATT TCTTTTGAAC ATATTCTTGC	169500
AACAAACTCT TATAATCTTT AAAATCCCCC CTATTAAACA TCAATCTTAT ATACATATCA	169560
AAAAGTCCAA CCACAAATTC TGTTGCTCTT GAAAACCCAC TATCAAGATA AATAGCGCCT	169620
ACAAAAGCTT CAATAGCATC TGCAAGAATG CCTTTTTTAT TTCGACCATC ATTACTCTCC	169680
TCCCCTCTAC CTAGCAAAAT ATAAGAACCA AGATTAATCT CTCTAGCAAT ATTAGATAGG	169740
GAATCTTCAC TAACAATATA AGATCTGGCC TTACTGAGCT CTCCTTCACT TTTATTTGGA	169800
TAAGTTTTAT AAAGATGATC TGTAATAATC AAATTAAGCA CAGAATCTCC CAAAAATTCT	169860
AATCTCTCAT TATTACTAGA TTTTTGATCC AACTCATTAG AATACGACGA ATGACACAAT	169920
GCTGTATTCA ATAAATCAAA ATTACTAAAG TCAATGCTCA AATTTTCCAA AAATTTACTC	169980
AATTGAGATT TTCTTTCATT ACACAAACAA AAATCAGAAG ATTTTTTTTT CATCAACCCT	170040
TTCTCTTTTT AATAAAATTA ACAACATCGC CTACCGTCTC AAATTCATTG GCTTCATTCT	170100
CTGGAATCTT ATCATCAAAG GCCTCTTCAA GCAAATACAA AAGCTCATAA ATATCTAGAC	170160
TATCTGCATT AAGATCTTCA ACAAATCTAG AGTCTGTGGT AATTTCATCT TCTTTTTTAT	170220
CAAGTTGCTC AGATATAATA GACCTAACCT TGCTAAAAAT TTCATCATTA TCCATGAATA	170280
CACCTTCCTT ACTACAAGCT ACAAACCTAT TTCTAGATAT TGGTTATTCC TATAATATCC	170340
ACATTTTAAA CAAATCCTAT GTCTCACGCC AAGATTACCA CAATTAGAAC ATTCTTGAAA	170400
TTGTGGAATT TTTTTTCTCA TATTTATACT CCGCCTTGTT CTACTTCTAG ATTTTGAAGG	170460
CTTAAATTTT GGAACAGCCA TTACTTTCTC CTAACTACTT TTAAACTACA TTAAATTATC	170520
TTAATAATAT ATATATTAAC CAAGTCATTT GTCAATAAAC TTAGATTTTA ATCTATTAAA	170580
CACCAATTCT GGAACAAAT TAGAAAGATC AACATCCTTT TTCAACATCA ATTCCTTTAC	170640
AAAATCCGAC CTTACATATA AATGTTCTGC ACTACTTGGT AAAAATATAG TATCAATTTC	170700
AAAATTTAAC TTATTATTAA CAAGATATCT TTCAAACTCT ATATCAAAAT CATTAAAAGC	170760
CCTAATTCCT CTAACAATAA ATTTAATAGA ATTAATTAAT GCATAATCAA CAATAAACCC	170820
GCTATACCTA TCTACAAGCA CATTTGAAAA ATTTAAAGAC GAAATAACAT CTTTTGTAAG	170880

	C TTAGGAAATA TTTTTTTGAT TTATTTTTAG CTACT	
	G CCAACGATCT TTTAATTAAA TCAATATGAC CCCAA	
	A AAACTGCCAC CCTCATATCA AGAAAGCCTA AACCC	
	T TTACGCCATA GTGGTTGTTC TTCTAAATTT TCAAA	
TTTCTTTAAT AATTTTGAA	A TATAAATATT CTCCTCTAGA AGATGTATCC ACAAT	AAAAA 171180
ATTTACCAGC ACCTTTATA	A ACTACTTTTT CATTACTTGA AAGATTATTT TCAGA	TGTTA 171240
ATTTATTGAT AACACAATC	A AAATGAACAG GTTTATCTTC ATTTTCAACC TTTAA	AGACA 171300
TGCTATAAAC AATATCATT	T ATTTTTTTT CACAAATAGC ACAAGCAACA TCAAG	ATTTA 171360
TTCTTGTTTT AAATTTTAT.	A CTTTTTCTTC TAAATTTACC TTTAAAAACA TTTTG	TTTAT 171420
CTGTATTCAA GACAGTCGA	I TTATTATTAA AACTGTTTAG CGGGGCAACA TTTTG.	ACTTT 171480
TGCTCTCAGA ATTTAATCT	I TTATTCTTAA AACCATAAAA ACGCTTATTG TGTTT	CTGAA 171540
AATTACTACT CTTGAACTT	A CTTTGAGTAT ATTTCAAAAT TAACTCTCCT TAACT	ATAAA 171600
AAATAAATAT TTACTCTTC	A AAAAAATAAA AACAAATATT TAAGAACAAA ATCAC	TCACA 171660
TAGCCTGAAA GTTTTTCAAA	A AAATCAAAAC TTTAAATCTT CAGCTTTTTA AAGACA	AAAAG 171720
CACAATTAAA CCCTCATTGA	A AATTTAATAA GAATGGTTAA TTAATGCTCT CAATTA	ATAAT 171780
AAATACACAA CCAAGCTTGO	CAAAATTATT TCCCAAAACA GCAAAAACTC TACTAA	AATCT 171840
TGAATAAAAA TTTACAAAAC	C AAAAGATCAA TCAAAAACAA TTTTTAACCT CAATCI	TAATT 171900
TGATTCATCT TATGACCTA	TTTGCTAAAA TATTTAAAAT AATTAAAAAC TAATGO	TTAA 171960
CTTTTTTAAT AGTAAGGCGC	TCCTTTATCT TCATAGCAGC CTTACCGATT CTATTC	CTCA 172020
TATAATAAAG CTTTGCCCTT	CTAACTTTTC CCCTTCTTAA AACTTCAACC TTTTCT	'ATAA 172080
TAGGAGAATA TACTGGGAAA	ATTTTTTCAA CACCTATTCC TGAAGAAATT TTTCTA	ATCA 172140
AAAATGTTTT GCCAATTCCC	TTGTTTTGGA AAGAAATAAC AATCCCTTCA AAACTC	TGCA 172200
ACCTTTCATT ACTACCCTCA	ATAATTTGT AAACAACCCT CACAGTATCT CCCACA	TTAA 172260
AAACAAAAGC CTCATTTTC	TTATTCTGAG CTTCAATTTT TCTTATCAAA TCCATT	ATCT 172320
ТСТССТАТТА ТСТСТАААТА	TTTAAGGTAT AAATCATATC TATTTTTCTT AGTTTT	TTCT 172380
CTAGCTTTAA CAAGCCTCCA	ATTCTTTATA TTTGCATGAT GTCCCGAAAG AAGAAC	TTCT 172440
GGGACCTTTA TCCCCTTAAA	ATCATAGGGC CTGGTATAAT GAGGATATTC AAGCAA	TCCA 172500
TTTTTTACAC CAAATGATTC	TTCTAATAAA GAATTGGGAT TTATTACTCC ATCTAG	CAAC 172560
СТАТАТАСАС ТАТСТАТТАА	AACAAGAGCT GCAATCTCTC CTGAAGATAA AACATA	ATCT 172620

255	
CCAATAGAAA TCTCAAAATC AACATACAAA TCTATAATAC GTTGATCAAT TCCTTCAT	
CTTCCACAAA TTATAACAAT TTCTTCTCTT TTTGACAAGG AATACGCCAA CTCTTGGC	
TACTTTATCC CAGAAGGACT TAAAAATATT GTCGTTTTCT TGGCAGACTC TACATGCT	CA 172800
AGAGCAAAAG AAATCGGTTC GGCCTTCAAT ACCATCCCAG CACCGCCTCC ATAAGGCA	AA 172860
TCATCACATC TTTTATGCTT ATCTTTTGAA AAATCTCTAA CATCAACAAG CTCAAAAC	TT 172920
ACTATTCCCT TATTAATAGC TTTTTTCATT ATTGAATTTT CAAAAAATGG CTTAATTA	тт 172980
GCTGGAAAAA GGGATAAAAC CGTAAATTTC ATTTTAAAAG ATCTAGAACC TTAAGCTC	AA 173040
TTGTTTTTTC TTGAGTATTT ATATCTCCAA TATATATACT TAAAAAGGGA ATAAAGAAA	AA 173100
ATTTAATACC CACTCTGACC TCAAGAAATA CACTATTTAA ATATTCAAAG AAAGCTACA	AA 173160
CTTCTCCTAG TTTTTTATTA TTATTAACAA TGGCATAGCC AATAAGCTTT CCTAAATAA	AT 173220
ATTCGCCTTC TTTTAAACTC GATGCAAGCG AATCATCAAC CCACAATTCA AAACCAATC	CA 173280
GCGGCCTAAC TGCCTCTGGA GTATCAATCT CTTCAAACTT CAAAAATAAG GAATTACCC	T 173340
TTATATTAAC ATCTACAACT TTAACTTCAA CACTGGAACT ATTGCTTTTT TTTAAAAGA	A 173400
CTTTATTGTT TTTTAGATTA ATAAAATCAC AAAAATTATT GGATATGCTT TTAACCCTA	G 173460
CATACCCATT AACTCCATAA GACGATAATA TAACGCCTTT AATAAACATA GATTAATCT	A 173520
AAATTTCCAA TTGCACTCGC CTATTGGTTT TGGCAGCACA AGCTCCAAGC AAAGTTCTA	A 173580
TAGCCCGCGC AATACGACCC CGTCTTCCGA TTATCTTGCC CACATCACTT TGAGAAACC	C 173640
TTAATTCCAA AATAGTTGAT TTTTCCCCTT CAATTACATT TAACTTTACT TCATCTTCT	T 173700
TATCTACAAG AGACTTTACT ATAAACTCTA TAAGTTCAAT CTCATTCCCA TACTCTTTC	A 173760
TTTAAACCTC CTGACTTTTC GCATTCAAGT TGTTTTTATT TAAAAGCATT TTCACTGTA	Г 173820
CACTTAAAAT TGCTCCCTTG CTTATCCAAT CTTTCATTCT ATCTTCCTTA ATTTTTATT	г 173880
GGTTTTGCTT TTCAACAGGA TGATAATAAC CAAGTTCTTC AATTGCTCTA CCATCTCTAC	G 173940
GAGACGTAGA ATTCATAACT ACAACCCTAT AATAAGGTCT TTTTTTAGCT CCCATTCTT	174000
TCAATCTTAT CTTAACGCTC AAATTTATTC CTCCTTATTT TCCCAAAAGG GATGCAATCT	174060
TATTTTGAAA ATCTTTATTT TTCATTTTTT TCATAATCAA AGTTGCTTGA CTAAACTTTT	174120
TTATGAGCTT ATTAACATCA AAAACAGTTG TTCCACTTCC CATGGCTATT CTTTTTTTTC	174180
TTGAGGGATT ATTCAAAATC ACTGGATTTA TTCTTTCTTT TTTAGTCATA GAAAGAATAA	174240
TAGCTTCTTC TTTATTAAAA CTTTCTTCAT TTAAATTATT GCTATTCAGC ATTGATTTTG	174300
AAACACCTGG TAAAAAACTT ACAAAATTAG AAAACCCTCC TACTTGTCTA ATGCGCCTAA	174360
ATTGACTCAG ATAATCTTCA AAATTAAAAC TGGCTTTATT AATTTTTTCT TCAAGCTTAA	174420

TAGCCTCTTC TTTGTCAAC	A ACACTTTGAA CCTTCTCTAC AAGACTAACA ACATCCCC	CCA 174480
TGCCAAGAAT TCTAGAAGC	A ATTCTTTCTG GGTAAAAGGA ATCAAGATCT TCGATTT	CT 174540
CTCCAACACC AATAAATTT	A ATGGGAACTG CACAAATACT TTTAAAAGAT AATACAGC	TC 174600
CCCCCTAGT ATCTGAATC	A AACTTAGAAA ATATTGCACC GGTAAGTCCA ACATTCTC	'AT 174660
TAAATTCCTT AGCAATATT	T ACAGCAACTT GCCCCATCAT AGAGTCTACT ACTAAAAT	GG 174720
TTTCTGCGGG TCGCAAAAT	C CCCTTTATTT TTTTTATCTC TTCAACCAAC AAAGATTC	AA 174780
TTTCAAGTCG TCCTCTAGT	A TCAACTATTA CAGAATCAAA AAAATTAGAT TCAGCAAA	CT 174840
TCATAGACGC TTTAACAAT	I TTAATAGGAT CTTTTTCCCC TTCAATTGAA AATACTGG	AA 174900
CACCTACTTG ACCACCCAA	I ATTTTTAACT GTTCTACGGC CGCCGCTCTA AAAGTATC	AG 174960
CAGCTACAAG AAGTACTTTT	I CTATTTTCCT TTTTAAGCTT TAAAGAAAGC TTGGCGCA	TG 175020
TCGTGGTCTT GCCAGAACCT	T TGAAGTCCCA ACATAAGAAT ATAAGATTGC TTATTGGC.	AG 175080
GATGTAAACT AAGCTCATAA	A TTTTTGCCTC CCAAAAATTT AACAAGATTA TCATTGAC	AA 175140
TTTTAATAAA CTGAGATTTA	A GGATCAATGC CCCTTAAAAC TTTTACTCCC TTGGATTC	TT 175200
CAATTATAGA ATTTAAAAAA	CGCCTTATAA CTCTTAAGTT AACATCAGCA TCAACTAAA	AG 175260
AATTTTTAAT AATCTCAATA	GCCTCTGCAA TGTTTTTATC ATTTATCGTA GATTTTCCA	AG 175320
AAAGATAGTT TATAAAATTT	CTAAAATTTG ACCCCAAACT TTCAAGCATT AAAAACAAC	CC 175380
СТТАТТСТСА ААААТААТСТ	TGTCAAATAT AAGATACAAA AAAAGGCAAT ATTAATCAA	AT 175440
ATCTCCTCCA GTCAAATAAA	ATTTATTAAA AATAACACTG GAAGCGGGCC CAACAACAG	GA 175500
AACTTCAGTA TCTAATGAAC	TAAGCTTTAA TACTATATTC TCTTTATTGA GCTTTTTAA	T 175560
CTCTTCTTTT AACAAATCAA	AAAAAGCTTT TAATTTAAAA CTTTGACCAT AGAGTACTA	A 175620
ATAATTAAAA TCAAGCATTC	TTTGAATATT AATAATAATT ATTGCCAAAT ATTTAACAG	T 175680
ATCTTGCATA ATTTTATTTA	TAAAATCATA TTTTTCATAA AGAGAAAAAA TGTCATATA	T 175740
TGTAACCTTT TTCAATCTGC	CCTCATACTT TTCATAAAGC TCAGGAATCT CACCATTCA	T 175800
AAATTCTTTG GAAATCAATC	TCTGCAAAGC AAAATTAGAT ATTAGCATAT TGACACAAC	C 175860
CTTATTACCA CAAGTTGGAC	AATTTTTTC TCCCTCATAA TCAATTATCA TGTGACTAA	C 175920
CATACCTGAT TTATTATTAA	AACCAGGGTA AACATTGCCG CCTGACCAAA TCGAAAGTT	C 175980
AGCAGTATCT GTGTAGTCAA	AAAACATAAT ATTATCTATA TTTTTACCCA TAAATTCAG	2 176040
AAGAGATAAA TTTTTAACAT	AACTTTCAAG ATAAACTGTT AGTGAAAAGT ATTCCTCAAG	G 176100
TATTCTCTTA ACAGGAACAT	CTTTTTCAAT CCACGATCCA TAGCTATCAT TAACAATGC	176160

		257			
CAATTCTTTA TCCTTTAT		ACTAAAGCC			176220
TGAGAAATTA TGTTTCCAA					176280
ATAAGCGCTA ACTGGGGGG					176340
ATTGGCAATA CCTATTTGA					176400
ATCTTTATTA ATATCGAGA	A GTATTTCTTT	TCGTCCATGT	TTTTTAACAT	CAGACACCCT	176460
AGAGCCAACT TCAATCAA	A GATTTTCTTT	TATCATTTGA	TTAGTCAAAA	TAGTAACTGC	176520
AGCATTTGTC AAGCTTAAC	T TACGAGCCAG	GTCTGTTCTT	' GAATATTGCA	TATTTTTCAA	176580
ACTAAGAAGA ATTTTTCTT	C TATTTCCGCC	TCTAATTGAA	ACCATATTT	CACCCTGCAT	176640
AATACACCTC CTTTATTTT	т аааатаааа т	AAATATTATA	AAATATCATA	TCAAAAAAAC	176700
СААТАСААТА ТТТТАТСТА	T TCTTAAAAGA	CAAACATGCC	TTTATAAGGC	TAAAAAACAT	176760
TTTACATCAT AATATCACA	Т ТСАТААААТА	TCAAAAACTT	AAAGCTTAAC	AAAAAAGGGA	176820
ATAAAATCAT TTTTACATA	A AAACTCATCA	ATAAAATTAA	TTGGATTTAA	АААТААТААА	176880
TACAAGAAAA GCCATTTTG	С СТТАААААСС	ACTAACTTTA	ACTTAATTTT	ТССТТААААТ	176940
AAGAAAATTC CATAGTAAA	A CTGCCCCTTC	CTTTAGTAGA	ACTTCTCAAA	ATAGAAGCAT	177000
ACCCAAAAAG TTTCTCAAA	C GCCGCCTCTG	ATTTTATCAA	GTCATACTCT	CCAATATTGC	177060
TAACTGAATG AATAACACC	C CCCATAACAT	TTAATGTAGA	AATAATTTCG	CCTGTATGCT	177120
CAATGGGTGT TCTAATTTC	Г ААТААСАТТА	TTGGCTCAAG	TCTAATAGGA	TCTGATTTTT	177180
GAAAAATACT ATGAAAAGC	A AATCCTGAAA	TTGACTCAAA	AGCACTCTCG	СТААТСТТАТ	177240
TGGCCCCACA AACAATAGAA	A AAAATACTAA	САТТААТАТС	AATAATGGGA	ТАТССААААА	177300
TTCCACTTAC AAATGCAGAT	GTAATTCCCC	TCAATATTGC	AGACTTAATT	ACAGGTTCAA	177360
TGCCACATTC AAAATCAATT	TTATTTCCCG	CACCCCGCGA	CAAAGGTTTA	ATGATCATTC	177420
CAATTTTAAA ATCAATATTT	TTGCCAGCAA	AAATATTGTT	AAACTCAAAA	ACTTCTTTTA	177480
CAATTTTGCC AGCACTTTCT	CTGTAACTTA	CTTGAGGCTT	TCCTGTATAA	ACATTAAGAT	177540
TAAATTCATC TTTAATTCTT	GTTAAAATAA	TCTCAAGATG	TAATTCACCC	ATTCCAGATA	177600
TAATTAATTG CCCTGTTTCT	TTACTCTCAG	ААТААСТААА	GGTAGGATCT	TCTTTAGATA	177660
ТТАТТТСААА ААТТТССТТА	AGCCTAACCT	CATCTGATGA	TCTTTCAGGC	TCAACAGACA	177720
TTAAAACAAC CGGCTCTGGA	AACATAACAG (CCTCAAGTAA	AACATTATTA	TTCTCTTCAA	177780
CAAGAGTATC TCCTGTAACA	GAAAACTTTA Z	ATCCCAAAAC .	AGCACCAATA	TCGCCTGTTT	177840
TTACAAAATC TATTTGTTCA	TTTTTATTTG 2	AAAAAACTCT .	AAAAATTTTT (GTAAACTTTT	177900
CACGCTTACC ATTTGAAGCA	TTGATAATTT :	TTTTATTAGG	ATTAATCTCG (CCAGAATAAA	177960

CTCTAACAAA ATAAAGATGA GAAGCAATCA CGCTTGAATA TTGAACTTTA AAAACAAGGG	
CTGACAATTT TTTATTTTCA TTAGGATCAA CTAAAATTTT TTTATTTGTG TCTAAAGAAA	178080
AAGCGCTAAA ACTTTTTTCA AAAGGACTTG GCAAGTAATC TACAATCGAA TCAATCAAAG	178140
GTTCTATTCC AATATTTTTT AAACTAGTTC CCATTAAAAC AGGAATAATA AATCTAGAAA	178200
· TAGTGCCTCT TCTAATCTCT CTTTTAATAA TATCTAAACC AATCTCTTTG TCTTCAAGAA	178260
ATAATTGAGT AATTTCTTCA CTAAATTGGC TAAGAATGTC TATTAATTTT TTTTTAAAAA	178320
GAATCACTTT TTCAATAAAT TCTTCTCTAA TTTGACTATA AGTTAATTTT GGAATTCCAT	178380
TTTCCATTGA AAAATGAAGC TCTTTATTTA AAATAATATC AACTACTCCT TCAAAATTGC	178440
TTTCATTTCC AATTGGAATT TGCAAAACCA AAGGAATAGT TTTAAATTTA TTTTCAATAT	178500
CTCCCACAAC TTTAAAAAAA TCAGCACCTA TTCTATCCAT CTTATTAACA TAAGCAAGTC	178560
GTGGGATTTC GTATTTTCT GCCTGTTTCC ATACAGTTTC TGTTTGGGCC TGAATTCCAT	178620
CAACAGCGCT AAAAATAACA ATACCCCCAT CAAGAACTCG AAGAGATCTT TCAACTTCTG	178680
CTGTAAAATC CACATGCCCA GGAGTATCAA TAATGTTTAT TTGGCAATCC TTCCAATGAC	178740
AAGTAATGGC AGCTGAACTA ATAGTAATTC CTCTTTCTTG CTCTTGAGGC ATCCAGTCAG	178800
TAATAGTGTT TCCTGAATCT ACATCCCCCA TTTTATGACT TTTGCCAGTA TAATAAATAA	178860
TTCTTTCTGT GGTAGTAGTT TTTCCAGCGT CAATATGAGC CATAATTCCA ATATTTCTAA	178920
TACTCATAAA TCCCCAACAA CTACCACAGC CTCAATGCAG ATAAATTCAT TAGCACAGGT	178980
TAAACCTTTT AATAAAATTG CTATTTTGCA TCACACTCGC AACATTTGCT TTCATTCTCA	179040
TCGTGACAAA AACAATCGCA ATTTTCAAGC AATGCCTTAT GCATCCATAA ATGTTTCTCA	179100
AGATCACTCA TGATATCATC CATAATATTA GCAGTACCAT AATCACCAGC AGTATCAATT	179160
AATTTTCTCA TTCCAAAAAT ATTCTTCAAA ATCTCAGTAA GACTGCAAAC AATGCTTTCC	179220
ATTGAGGGCA AAAAATTAGA AGTTGATTCA ATATCAAGCT CCTTAATAAA GGATTTTTTC	179280
ATAAACTCAG AATATCTAAA TTCAGAATCA TATCCAAGCA TTCTTGAGCG TTCTGCAACA	179340
ATATCAATAA TTTTTTCAAT ATATTCATAA AGTTTTTGAG TTTTTTTGTG AATAACAAAG	179400
AAATTGGTAT CTTTTATATT CCAATGAATA CCTCTTAAAT TAGAATAAAA AATATGCAAA	179460
CTTGCTAACA ATTCTTGTAA TTTTAATTGT ATTGCGTCTA AATCATCCTT TTTTATATAG	179520
CTTAAATACT TTTCCATAAC TATCTCCTTT ATATAATTAT TATAATACAT AATGAGATAT	179580
AATTATGGTT TTAATACCAT AATAAATAAA AAGGATATTT AATGAAAAAA TTGATTATAA	179640
TTTTTACACT GTTTTTATCT CAAGCATGCA ATTTAAGTAC AATGCATAAA ATAGATACAA	179700

		259			
AAGAAGATAT GAAAATTCI					179760
ACCATCTAGA AATAGATGA	T ACCCTTGAA	A AAGTTGCAA	A AGAATATGCC	CATTAAACTGG	179820
GAGAAAATAG AACAATAAC	T CACACCCTT	T TTGGCACAAC	CCCAATGCAA	AGAATACATA	179880
AATACGATCA ATCCTTTAA	T TTAACAAGA	G AAATACTGGC	CATCAGGAATI	GAACTTAACA	179940
GAGTAGTTAA TGCATGGCT	T AATAGTCCA	A GCCACAAAGA	A AGCTCTTATI	' AATACAGATA	180000
CCGATAAAAT AGGTGGCTA	T AGATTAAAA	A CGACTGACAA	A TATAGATATA	TTTGTAGTTC	180060
TTTTTGGAAA AAGAAAATA	T AAGAATTGA	C ACCATTAAAG	CTTATACTGT	ATACTACTTA	180120
TTAGTAATAA AAGGGCTCA	T AGCTCAGTT	G GTCAGAGCGC	CTGCCTTACA	AGCAGGATGT	180180
CGGGAGTTCG AATCTCTCT	G GGCCCAAAA	A TAATCTAAGT	СТСААТТАСС	TTTAGCTTTA	180240
AAAGCAAATC TATTTTAGA	A TCTTTAAGC	A TGTTATTTAA	TTCTTTTTGC	ACTATATTAG	180300
CTTTTATTAG GCTTTCAAA	A AGAAAAATA	A ATGCTCCTCC	TTTACCAGCG	ССАСТТААСТ	180360
TACCAGAAAG AGCGCCCAA	TTGATTCCCT	CACTTATCAG	CCAATCAAGA	GTATCATTAG	180420
ACAACCCCAA ACGCTTTAAA	A CAACATTGTO	CAATATTCAT	TTCATTAGCT	AAAGAATACA	180480
CATCCTTATT CTGAAAAGA	GCATAAGAA1	TGCTTACGGC	AAGGCCAAGC	ТТТТСААТАА	180540
AAACAAATAA ATAAGCATTT	GATAATAGAT	CTTTTTTCAA	ATTAACAACT	ATTTCTTTAG	180600
TTGTTAAATC TCTTTTATT	GCTCCTATTA	GAAAATAAAA	ACCAGAATCT	ТТТАТТТТСТ	180660
TTGAATGTAA AACATTTTC1	TTTTTCTCTA	AATAAAAAGT	TCCATTAAGA	TCGATTAGTC	180720
TAATATCCAT TCCAGAAGAT	TTGCCATGAA	AAATGTTTTC	AATTTGATTT	GCCAACAAAA	180780
TTTTATTACA ATCCTTATAT	TCAAAATGAC	TTGTAATATA	TTCTGCAAAG	САТАААСТАА	180840
GACTAGCAGA AGAACCAAGA	CCAACTCCAA	TAGGAATTTC	AGAAATTATA	TCAAACTCAA	180900
TAGGATTAAC TTTGCTATAA	TTTGAAACAA	ТААААСТТАТ	AAGGCTATTT	AATCTTGTAC	180960
TGGGTTTTCC TAAATATTTC	CAATTTTTAG	ATACACTATA	AATCAGATCC	ATATAAATTG	181020
GAACTGTAGC GCCAATAACT	GGGAACCCAT	AAACAGCGCT	ATGTTCGCCT	AAGAACAATA	181080
TTTTAGCAGG CTTTCTTATT	CTTAGCATTT	ATCGCTTTCA	AACTTAATGC	CTTCATTCTC	181140
ТААААСААТТ GAAATAATTT	TTGACAAATT	AAAAGCTTCA	ATATTGGGCC	TGTAAACTAA	181200
AAAAGTTTCG TTTCCGGCTC	CCAAAGCTTT	AATCAAATCA	CATTGACCTA	AAAGGTGATC	181260
AAAACTTGAA GGCAAAGCTG	CCGAAACTCC	TATTGCCTCT	CCAATTGCCA	ATCCCAATTC	181320
TTTAGCCCTT CTTAAACTAG	AAATTAATGC	GGATTTGGAA	TTGCTAGCAT	TTAAAACAAG	181380
CTTTTTCATC TCCAAATTGC	ATTTCAATAT	AAAATCTAAA	ATAGAATTTC	TATGTTTATT	181440
GTATTCACAA ATAGACGTAG	TAGTTTTAAT	TGCTTGCAAA	CCCTGCATCA .	AATAAAAATC	181500

ATTAAACTCT	ACAGCACCCA	GCTGCCTGCA	TTTAGGATTA	AAGCCGCCTT	CAAACTCAAT	181560
AACACCCCCA	AAAATACTAG	TAGCAATATC	ATATCCACTG	CCTATTCCTC	CTTGAGAATA	181620
CCTGTAAGCT	TCCAAACAAT	TAAAAAT	TTCACCTTTC	TCAACAACAT	TGGTAGCATT	181680
GTGAATTAAA	AAAAGCCCAC	ACACTATGCC	AATAGCAACG	ACAGCACTTG	AACCAAATCC	181740
CTTTTTAGTT	CCATCATTAA	AGAAAAAATT	ACTTGTATCA	ATATATACAT	CATACGCAAA	181800
ATTCTCTAGA	ТТАААААААС	AATTTTGACT	CAAGTAAGCA	AACATTTTAA	AAACAAAATC	181860
GCTTCTATTT	TCTATTAAAG	AAAAATCGTC	TATTTTTTC	TTTTTACTAA	AAAAGCGCCA	181920
AGAATCGCTC	TTTTTAAAAG	AAAAAAATGC	TCTCTTGTTG	ATGGCAATTG	CCAACCCCAA	181980
TCCCTTTTCC	TCTAAAATAG	TATACTCCCC	CATTAAAAGT	AAATTTCCGG	GTACAGAAAA	182040
ACTAATCAAA	TCCATTCTAA	GTCACACCCA	ACCTTTGAAA	CAATAAAATC	AATGCCAGTA	182100
AAATTTTGCT	TAAGTCCTTT	TAAAATAGTA	TTTAAATTTT	CCTCCAAACA	AAGAAACTTT	182160
ACTTGGGGGC	CTGCATCCAT	CGTCTCAAAT	ACAAAAATCC	CCTCATTTCT	CAAATCAGCA	182220
GCATACCTAA	TTAAATCTAT	TGTACTATTT	ТТААААТААА	AAATAGAAGA	TGCAAACATT	182280
AAGGCAAACA	TATTCTGATA	ACTTTTTACA	ATAGTTGCTC	CAAAATGTAT	AAAATCCTTT	182340
TTTTAAAAAA	AAATATAAAG	CGTCTTTAAA	AATCTTTTTA	CTAGAGGCAA	TCCAAGCATC	182400
АТААТАААТ	TTATGCCGTT	TGCAAATATT	CATTGCGGCT	CTTGAAGACA	ATTCTTTTTC	182460
ATTACTATCA	ATTATGGCAA	ATATTATTCG	CAAATCATTA	AAATAAGATT	GATCTCTTAA	182520
TTGAAAAGAT	TCTTTTGAAC	CCTCTTTTAA	AATAGTAAAC	CCCCCGTAAA	TAGCCCTTGC	182580
CGCAGAAGCC	GATCCTACTC	TTGCAAGATT	AGATGCGCTA	TTACAAGAAT	ATTTATTAAA	182640
ATATTTCAAA	ATACAAGCAG	CAATAGAAGC	AAAACCTGAA	CTTGAACTTG	CAAGGCCTGC	182700
TGCTGTCGGG	AAATTGTTTT	TACTTTTAAT	ТТТАААТСТА	ACATTTGGTT	CATTAAGAAT	182760
TTTTCTTGCA	TAATCAAAAA	ACACCTTTTC	TCTATTTTTT	AATATAACTG	GCTTTGAATT	182820
ТААААТТАТТ	TCATCTCGAT	TTGAAAGTTC	AAGCTCACTT	ATTGAATAAA	ACTTGTCAAC	182880
ACTAACAGCA	AGACTGGAAG	TAGCTGGAAT	GTTTAAAAAA	ACATCCTTTT	TCCCCCAATA	182940
TTTAATTAAA	GCTAAGCTTG	CATGAACTTT	ACACTTTATT	TTCATTCTCT	AACCTTATTT	183000
TCTTCAAAAT	TTTAAAAGCA	AAATCAAAAG	AATAAATATT	CATTCTTTCC	АТТТССААТА	183060
ATAATTTGTC	TTTTTCAAAA	TCAGAAATAT	TATATTTTGT	CTTTAAAAGA	TGGAGTATTT	183120
TATTAACATG	CAATCTCATA	TGACCCTTTT	GAATCCCATT	AAATGCAAGA	GCCCTTAATG	183180
CTGCAAAATT	ACTAGCAAGT	CCAACACAAG	AGAGAATACC	AATAAATTCG	CTCTTACTAT	183240

			261			
TTACATTCAT	AAATTTTAAA	CTTAAAATTG	AAGCTTCATT	ААААСАТАТА	ACCCCACCTT	183300
TAGTTCCAAC	TTGCAAAGGA	ATTTCAATTT	' СТССААСТАА	AGCATTGTCA	GTAGTATAAA	183360
ATTTACTAAC	GGGAAAATA1	TTGCCGCTTT	TTGAAGCAAA	TTTATGAACA	GAGGCCTCAA	183420
GAGCTCTTGT	GTCATTAAAA	GTTGCAAGAC	ACACCCCTGT	AATTCCATTC	ATAATACCTT	183480
TATTATTAGT	AACAGCTCGC	TCCTCTTCGT	AAAAACCTAT	ACTAGAAATA	AGTTCAATTT	183540
TTTTAGCCAA	ATTCCAAGAA	TCCTCTTTAC	CCGGTAGCAA	ATGCTTAAAA	TCTAAAACAA	183600
AACGGGCTTI	GGCTGTAAAT	TCACTAATAT	CATTGCTTAA	AACTTTTAAA	ACACACTCAT	183660
ATCCGAATTC	ТААААААТА	AATTCTGCTA	CACGCTCTGC	AATTGAGTTT	AGCAAATTAG	183720
CACCCATAGO	ATCACAAGTA	TCCACATAAA	TATTTAATTT	TTGAATACCT	AATTCTTTAA	183780
TGTGCCTAGT	TGACAACCTT	CTAAATCCAC	CCCCCTTTG	ATTCATATTG	GTTAAAAGAG	183840
GTTCAATCCA	AGTCTTAATT	TTATCACCAA	GGTCAACAAA	AATTTTACTT	AAATCTTTTT	183900
CCGATTTTAT	ATAAATTTGC	GAAATTCCCA	ACACTTCACC	CAAAGAATAC	CTTAAATCAG	183960
CATTTTCAAG	AATCTTTGCC	GCAAAATTTA	GGGCAGCAAC	AACAGAAGAT	TCTTCTGTTG	184020
CAATTGGCAA	AGAATAGTAT	TTGCCATTTA	ТТТТСАААТТ	TTTTACAATT	CCAATAGGAA	184080
AAGATAAATA	TCCAATATAA	TTTTCTATCA	TATTAAAAAG	AAAATCTTCA	TTGGCATTAT	184140
ТАТАААААА	ATCTTTATAA	GATAATTCCA	AAAAACTTTT	TATCTCTTGC	СТТТТТТСТА	184200
AAACGCTTTT	ATGTCTAAAA	ТТТТТАСТАА	GTTCCATAAA	ACTGCTTAAA	GACTCCAAGT	184260
TCATCAAGCA	AATAACTACT	TAAAAAATAC	TTATTATTTC	TAAACTCTAA	TAAACTTTTG	184320
CTTCCACTTA	AAAACATAGA	CATTTTTAAA	ATATGTTCAT	AATCAGAAAA	AAGACCAAAT	184380
ACAGCATCTT	CTCCTGAATC	ATAAAAAGCC	CTAAGAACAA	CTGCTGCAAC	ACCTATAAGC	184440
CTGGCTCCAA	GGGCAATGCC	TTTAGCAATA	TCCATGCCCG	TCTCATATCC	ACCAGATGCA	184500
AAAATATTAG	CCTTTAGAGA	ATCATCAATA	CTAAGTAAAG	TAAAAACCGA	AGGTATACCC	184560
CAATCAGAAA	AACAAGATGC	AATGTTTAGA	ТТАТТАСТСТ	TCATGCCTTC	ТАСТААААТС	184620
CAATTAGTTC	CACCACTCCC	TGCAAGATCA	ACATAAGAAG	CACCAAGGCT	GAACAATTCC	184680
TTAACGTCTT	TTGGCGAAAT	TCCAAAACCT	GTCTCTTTAA	CAATCAATGG	AACACTTAAA	184740
AAGTCTGACA	ATTTGGCTAT	TGACTCTCTT	ATTCCTTTAA	AATTTCTATC	TCCATCAACC	184800
TTCATCAATT	CTTGTCCTGC	ATTAAGATGA	ACAATAATTG	CATCAACTTC	ТААТСТТТТА	184860
ATCATTTCAG	CTATTTTAGA	AATACCAAAT	TCAACAATCT	GAACAGCACC	AACATTGGCA	184920
AACAAAGGAA	TATTATGAGC	ATACCTTTTA	AGAGTAAAGT	CTCTTATGTA	CTCGGGATAC	184980
ТТАААСАААА	GCTTAAAAGA	ACCTAGCCCT	ATAGGAATTT	TTAAATAATT	TGCAATTCTA	185040

ACTAAAGA'	TT TATTAAAGTO	C ATTCCCCTC	TTACTGCCC	CTGTCATGG	AGAAATAAAA	185100
ACAGGCATA	AC TAATATTGT	A TCCAAATATO	C TCTTCTTTT	A TGTTTATCTC	GGAAAAATTA	185160
AAATCACT	AA GAGCATTGTO	G TTTTAGCTT	A ATAAACTTT#	A AGAAATTACA	GCCACCTTTA	185220
ACATCGTT	TATTTAAAC	A AATCTCAAT	A TGCCTTTTTT	TATTTTCTAA	TATATTAGGC	185280
TCGATACCO	CA TAAACTCGGT	T ATCCATCATT	CCTTAGTTCT	TTTAAATAA	ATCCTCTGGA	185340
TTCACCAGO	GA ATTATTTAT	TTTGAAAAA	ATCTTTATAT	TCTTCAAAAT	TTGCATTATT	185400
TCTATTTT	T ATAAGACCTI	CAAGATCCCA	ATAATTTAAT	ACATCAAAAG	CACTCTTTTC	185460
GATGGTAAC	ЭТ ТСАТАА <u>А</u> ТАА	TCATAATATI	GCCAGATCCA	TAAGAGCAAA	ACAATATCTT	185520
TTCCCCTGT	АТАТСТТТСТ	TGGAAAATAC	TCTTTTTAAA	TAAAATGCTA	AAGATAGAAA	185580
AATTGAACC	т статасааат	TTCCCACTTC	CATAGCAGCT	TCAACTCCAT	CGTAAAAATC	185640
TATTGATTC	т ааатаассат	' TTCTAACAGA	TTCGTCATCG	СТАТААТАТТ	ТТТТСААААТ	185700
ATAATGCAT	T GAATCTATTG	GCATTTTAGC	AAAAGGAACA	TGCAAAACAA	ACCTATAATT	185760
AGAAAATAA	A TCTTTCATAC	TAAGTTGCTT	TTTGAAAGCA	AAATCTCTTA	AAGCATTTTC	185820
GTTTGCATT	A TTGTAACATT	CAACTGAATA	CTGACCTCGC	ACCTTAGCCT	CAACACTTCC	185880
AAAAGGCCT	A AAAAAATCGT	CAACATCATC	AGTATAAACT	CCAAATTCAG	ATAAATTGAT	185940
CGAAAGTAG	C TTTGGATTTT	TTTCAATCAA	AATTGCAGTT	GCGCCGGCTC	CTTGGGTAAT	186000
CTCAGCCGT	A GTAAGATTGC	TATAATGTGC	AATATCTGAA	GAAAAAACTA	TGCCGTATTC	186060
AGAATTATT	G GAATGGCTTA	AAACACTTGC	CACAGTGTGC	AAAGACATAG	CAGCACCAGC	186120
ACACGCATG	T TGAACCTGGA	AAGTTAGAAA	ATTATTTCCC	AGACAAATAC	CAGATTGCTT	186180
TAAGGCTCC.	A AAAACATAAG	AAGAAATGGC	CTTTGAATGA	TCAACGCCTG	TTTCAGTTCC	186240
ACCCAAAAG	Г АТТСТААТТТ	TGCTTAAATC	AAGATTATTG	TTGTCAAAAA	TAAGCTTAAC	186300
AGCCGAACT	r GCCATGGTTA	CACTATCCTC	ATTAGGACTG	GTAAACCTAA	AACCTTTTTG	186360
CAAGGTTGC	A TCTATTGCTC	TATTGATTTT	TTTAAAAAAA	ACTTCATTAG	AAAAAAAA	186420
AGGATTTTC	C AAAAGAACAG	АААААТСТАА	ATAATTTAAA	GGTAAAAAAA	TTCTAATATC	186480
ACTAATACC	T ATTCTCATAT	ACTCCTCAAT	GAATTAATGG	CCTTAAGTAT	TATATTATAA	186540
TTTACAAAA	A TTAGCAAAAT	СТТАТАТААТ	ААААССТААА	AATGGAAGTT	TATGAAAATA	186600
GCCGTGCTT	TATCTGGAGG	AGTCGACAGT	TCTGTTGCCC	TTTATAGAAT	TATAAACAAA	186660
GGATATTCA	A ATATAAAATG	СТАСТАТТТА	AAAATCTGGG	TTGAAGATGA	ACTGTCTTAT	186720
ATTGGAAACT	GCCCTTGGCA	AGAAGATTTA	AATTATGTTG	AAGCTATATG	CAACAAATTT	186780

			263			
AATGTACCGT	T ATGAAATAA1	· AAACTTTCAA	AAAGAATATT	ATAACAAAGT	AGTAAGCTAT	186840
				ATATTTTTTG		186900
ATAAAGTTTC	GAGCATTTT	TGAGAAAATC	AATAGCCAAT	ATGATTTGGT	TGTAACGGGA	186960
CATTACGCTA	АААТАСАААТ	' AAAAGAAAGT	AAATTTTTAT	TAAAACAGGC	AAAAGATAAA	187020
ATTAAAGACC	AAAGCTACTT	TTTATCTCAT	CTCTCTCAAA	AACAAATGTC	AAAACTATAC	187080
TTTCCCTTAG	GCACATTACT	' TAAAAGCGAA	GTAAGACAAA	TAGCTAAAAA	САТАААТТТА	187140
CCCAACAAAG	ATAGAAAAGA	TAGTCAGGGT	ATTTGCTTTT	TAGGAAAAAT	ТАААТАТААС	187200
GAATTTATCA	AATACCATCT	TGGAGAGAAA	AAGGGAAATA	TAATTGAAAA	AGAAACGGGA	187260
AAAATAATAG	GAATTCACAA	CGGATATTGG	TTTTTTACAG	TTGGACAAAG	AAGAGGAATA	187320
AAACTTAGCA	ACGGGCCATG	GTTCGTCATA	GAAAAAGATC	TGGAAAAAA	TATTATATAC	187380
ATATCCCATA	ACGAGAATTA	TTTAAAACAA	GCAAAACGCA	AATTTTTAGT	TCACGAAATA	187440
CATTGGATAA	ACGACACACC	TACGAACTTT	GAAAATTTCA	AAATTAAAT	AAGACATGGC	187500
GAAAAGAAAT	ACTCATGCAA	АТТААААСТТ	ATTACAAATA	ACTTAATGGA	AATTTCTTTA	187560
AACAAAAAG	ATCAAGGAAT	CTCCCCAGGA	CAATTTGCAA	TTTTTTATAA	AAACACAGAA	187620
TGCCTGGGGG	GTGCTAAAAT	ТТТТААААТС	ATAGAATAAT	AATCCGCCCA	AAAAGTTAGA	187680
GAAGATTTTT	СААТСТТСТА	CTTACTTTTC	GATCTTAAAA	TAATCAACAG	ATTCTTTTAA	187740
ATCTTTTACA	СТСТСТААСА	TCTTTTCAGA	CATTGCAGAA	AGCTCTTCAC	TGCTTGAGGC	187800
TGTAGTTTGG	ACTAACTGAC	TAACCTGCTC	TATTGCATTT	TTAAATTGCT	CTATTTGAAC	187860
ACTTTGCTTA	TAACTTTCAT	TAGAAATATT	TTTTACAAGT	CTGGCTGTTT	GTTCCATACC	187920
AGGAACTATT	TGTTCAAAAT	TTTCCCCAGC	ACGACTTGCA	ACAGTTAAAC	TTCTGTTTGC	187980
AATATCAATA	ATCTCTCTTG	CTGATTCTTT	GCTTTGATCT	GCAAGCTTTC	TAACCTCAGC	188040
AGCTACCACT	TCAAATCCCT	TGCCCTTTTC	TCCCACTCGT	GCAGCTTCAA	TCGAGGCATT	188100
TAAAGCAAGC	AAATTGGTTT	GCCTTGTTAT	СТСАТСААТА	ATTCCAATTT	TTTCAGTAAT	188160
TACAGTCATT	GCCTCAATAG	CCTTAACAAC	AGATTTATGC	CCCTCTTTAG	TCCTTTCATT	188220
AGTATTAACA	GCAATTTTTT	CAGTAGTAGC	TGCATTTTCA	GTATTCTCAG	AAACACCTTG	188280
TGAAATTTGC	TCAATATTTG	CTGTCATTTG	CTCTAAAGTA	GAAGCCTGCT	CAACAGCGCC	188340
AGAACTTAAA	TTCTGGCTTG	CATTTGCTAT	TTGAATTGCA	TTTTCATAAA	GATAATCTAG	188400
АТТТТСААТА	ACTCCTTTTG	CAACTGAAGA	AAAATTGGTT	CTCAACTGCT	CAAGCCCTTC	188460
GTACAAACTG	TAAAGCTCTA	CAGTATCCCA	TTTGCCAAAA	TTAATATCAG	CAGTAAAATT	188520
ACCAGAAGCA	AGTCTCTCAG	AATATTCCAG	TATCTTATTC	AAAGAAGAGC '	ГТААСТТТТТ	188580

CACAAGATAA	AGAGTTGCAA	TAGCAAGCAT	AAGTAATGTA	AATACAAAAC	TAATTGCTAA	188640
GATTATAGTT	GTAGCTCGTG	ACATGTAATA	AAAATCGTCC	TCTGAAGTTC	TCATTAAAAG	188700
AATAAATTTA	TTATTAGACA	AGTTTAATAA	CACCTTTTGA	CTAATTCCCA	CATATTTCTT	188760
ATTGCTTTTA	GGATCATAAT	AATAAACAGT	TGAAATTTCT	TTATTCTTT	GCAACAAATC	188820
TTCAGATGTT	ТТСТТААТАА	TATTGGAATA	AGAAGCACTA	ATATCAGTCA	AAATATCACC	188880
TGGCAATACT	ACATGATGAA	CCAACAATCT	' ACCCGTAGTA	TCATAAGCTA	GCGCACGACC	188940
GCTAGAGAGT	ATTCCAAAAT	TAATCCCTCT	' AAAAGACCTA	ТАТАТАТАТ	CCATTGAATA	189000
AAGAAACATA	AAATAACCAA	AAATGTTATC	TGTTTCAAAA	TCTCTTAATG	GCATACCTAT	189060
TAATATGTAA	GGAATCTGAC	CTTTTTTATT	TTTTATCTTG	GAAATATCTT	TAAGTAAAGA	189120
CTCCTCAATA	GACCCGGGAT	CTGCCAACAT	GACAAAGGAA	TTGTAAACAA	TACTATTAGA	189180
CTCCTTAAGT	TTTGTAAAAT	ATTCTCTATC	CCCAATAGAT	TTGCCAAAAT	CACTATTATC	189240
CTTAACCGCC	GTAGTAAACA	СТАТТТТАСС	TTCTTTGTCT	GTAACCATCA	TATTACTACC	189300
GGTTTGAATA	AGAATTTCAG	ATTGATCTGA	AATAAAGCTC	AACCTTTTGG	ATTTAATTTT	189360
ACTAGCCTCA	TTTAAATTT	CAGCAGAGTT	GAAATACATG	GAACTAACCC	TAACTTTCTC	189420
TTCCATTGAA	GAGATGTAAA	GATTAAAAGA	ACTTTTAATG	CTTTCAATAA	GATTTATCAT	189480
AAGATTAAAC	TGTTGATCCA	CCAATTTACT	ATTAATAAGC	ATTCCAAAAG	CAAAAAACAA	189540
AATTGATATA	AAGAATGCTA	TCAGAATAAG	AACAAGTAGC	AACATCCTAG	CTTTAAGCTT	189600
CATACTAACC	ACCTCTTTTA	САААААТАА	ATTCTAAAAC	TCTGAAAAAT	CATCATCAAA	189660
ATTTAAATCC	TTATCAGCAA	TATCGATAGC	TTTTTTAGGA	TCAACTCGCT	TATTAATAGT	189720
TCTTACAGAA	GATTCGCTCT	СААТАТСТАА	AGAATAATTA	TTATGCCCAC	TGGCATTTGA	189780
AGTAGAAATT	CCATTGCTTT	TCAAATTTTG	ATTTTCATCT	TTAAAAGAAT	TTTCAGGACA	189840
ATCTATTAAC	CTGAAATCAT	AATCATCATT	TTCTGGATTT	TCAATTTTAG	ААТСТТТААТ	189900
TTTGAAAAAT	AATACAGATT	TTCTAAGTTC	CTTAGACTTT	TCTAACATTT	TATCGGACAT	189960
ACTAGAAAGC	TGCTCACTGC	TTGAAGCTGA	AGATTGAACA	ACTTCTCCAA	CCTGATCTAA	190020
AGCCATTTTA	AATTGAGCAA	TCTGATCGCT	TTGCTTAGAG	CTACCTTCTG	AAATCTTCTT	190080
AACAAGATTA	GCCGTTTCTT	CAATTTCGGG	TAGCATTTCT	TTAAAGATCA	CTCCCGCTTC	190140
AGTTGCTACC '	TTAGAGTTAT	CTTCAACTAA	CTCTCCAATC	TCAAGAGCAG	АААТТТТАСТ	190200
CAAATCAGCC	AACTTTCTAA	TCTCACTGGC	CACAACAGCA	AATCCCTTTC	CCTCATCTCC	190260
TGCTCTTGCA	GCTTCAATAG	CCGCATTCAA	AGCAAGTAAA	TTGGTTTTTC	TAGCTATCTC	190320

			265			
TTCAATAACA	A CTAACTTTCT	CCACAATGTC		ATAACAGATT	CTTCAACGGC	190380
CCTACCACC	T ATCTGAGAA1	TTTCATTCGT	CTTTAAAGCT	' ATTTGTTCTG	TTTCATAAGA	190440
ATTATTGGCC	G CTCATGTTGA	CACCTGAGGC	TATTTGCTCA	ACATTAGCTG	ACATTTCTTC	190500
AAGAGCAGAT	GCCTGTTGC#	ATGCACTAGA	. GCTTAAATTT	TGACTTGAAC	TGGCAACTTC	190560
TAAACTTGCC	TTATTTACAT	' AGCTAATATT	TCTCAAAACA	CTAGAAATTG	CTACAGAAAT	190620
AGCTTTTTTC	ATTTTAACAA	CCTGAAGACT	TAACATGCCA	AGTTCATCAA	GAGTATTTTC	190680
ATCATCATCA	AGAGCATAAT	СТТТАТСТАА	ATTGCCCTTA	ACCATATCTT	GAACTAGAAC	190740
TCTAATTGCG	TTTAAACGAA	AACTAATAAT	CCTGTCTATT	CTAATTGAAA	GAACAATACT	190800
TAATGCTATA	ATGCCTAAGA	CTGAATATAA	AATATACTGA	AATCTTAGAC	TAGATATTAC	190860
TCCGTAAATA	TCCTTATAAG	GAAGCCTAGC	AATAAGTACT	CCACTCTTTT	CTCCCAATTT	190920
ACTACTTATG	GGCAACATTG	САТААТААСА	ATCTTCTCCC	ATTTCGGACA	AAAGTATTCT	190980
ATCAATAGTG	TAAACCGACA	CTTCACTGGC	AATGTTTGAT	GGAAAAGGGG	GCTTAGAGAA	191040
AACATCTTTA	AGAACATTCA	AAAATTTAGA	ACTAACCCTG	CTGGTTTCAT	TATATTCTTC	191100
AAAAGGATTA	ACTGCTATAT	TGTTGGGATC	CACATAAATA	AAATTGCCTC	ТТТТАТАААА	191160
ACCGAATCTA	AATCTATCAA	AACTATCTGC	CACAATATCA	TTAAGCAAAT	ATCCGGCCAA	191220
ATACCCACAA	ACAAGTTTAT	CTTCTGGGGA	ATATACAGGT	ACAATTATTG	CAAAAGCCTT	191280
TTTTTCGCTT	TGTTTAGACC	TAATAGCAAC	TTCTGCGGAT	ATTCCTTCAG	AAAGATTTGA	191340
ATACCAACCT	ATAAATTTTA	ATTGGTTTTG	CCTATAATCC	TCAACAGCTT	ТТТТААААТА	191400
ATTGGTATTA	GCCTCAGAAT	GACCAAAATC	CATATTATTC	TCATGTCTTG	TGCTAACAAT	191460
TACTCTCCCT	TCAAAATCAA	AAAAAGCGAA	TTCTTCAAAA	AGGGTATCAT	TTTTAAGATT	191520
GGCCATAAAA	TTGTATAAGT	ATTGTCGATA	TTTTTTGCTC	ACCTTTACAG	AGTCAATAAC	191580
AAATTTTGGA	TTTTTTTTTA	AATCTATCAA	TTCCGACTCA	GAGAAATCTT	TTCCTCTATT	191640
CTCAGACATT	GCAAATTCTG	ATATGGTTTC	AAGTGCCAAA	TTAGAAGCTG	CACCATTGAT	191700
TATGACATGC	AGGGTGTCTA	AAAAAGATTG	CAAAGAAAAA	GCTGCTCTTC	TTACTTGCGC	191760
CCTTGTAAGC	TGCTTATAAT	AATCTTCTAA	ATAACCGCAT	ААААСААААТ	TAAAAATCGT	191820
GGAAAAAAGT	AGCAGTATAA	AAATTAAAA	СААТААТААА	AATCCAACAA	ACCTGTATTT	191880
AAGCTTCAAT	AACATAATAA	ACTACCTCAC	AAATCACCTA	СТТАТТТААТ	САААТАААСТ	191940
CAAGACCAAA	GGGTATCAAA	ATTTAAAAAA	CAGCAAAAAA	TCAAAAACTC	ТСАААААА	192000
AAAAGAATTT	TCACAACATG	АААААСАААТ	ТАТАААСТАТ	ТАТТАТТААС	TGCTAATGCT	192060
TTTTATAGGT	TATTCCTAAG	AACTTAGGCG	САТААТТТТТ	TTTTGAAAAA .	AAGATAAGAC	192120

TTAGAATAAT	AATTAAATAT	GGGGTAATCA	CTAACATTTT	GGGAGGCATT	ATTAAAGAAA	192180
AAAAGGGTAA	TTGAGCCAAA	ACAATTGCCA	AAGTTTTCAC	AAATGAAAAC	AAAAAACTGC	192240
СТАТТААААС	TCCCAAAGGC	GTCCATTTTC	САААААТСАА	CATTACAATA	GCAATAAAAC	192300
CTTGTCCACC	TGTAACCCCT	TGCACATAAC	TTGATGCAAC	CACCGTTGTA	AGAACAGCAC	192360
CTGAAACCCC	TGCTAAAAAA	CCACTCAAAA	GAACGCAAAA	AAATCTAATT	TTATTTACAC	192420
TAACTCCAAC	AGACTCTAAT	ACCTCTGGAT	TTTCACCACT	TGCATTAATT	CTAAGCCCAA	192480
TTTTAGTGTA	TTTGAAAACA	ATATGAAACA	AAACCACACT	TAGGATTGCA	ATGTATACAG	192540
AATATCTTTT	GCCAAAAATT	TGAAAAATAA	AAGATGTTTT	GTTTAAAATT	CCATCAAAAA	192600
GTATCGGCAA	CTTTATTTCT	ATAGGCGGAG	TTGAAATAGA	AGAAAAATC	AAAGTGCTTA	192660
TAAAAACAGC	AATAGCGGGT	ССТАААААТ	TAAGTGCCAT	TCCGGTTATA	ATTTGATCTG	192720
ATTTTAAAAA	AATTGTAAAA	ACAGCGTGCA	AAATAGCAAG	AACAAGCCCT	GCTAGCCCAC	192780
CAGCAAAAAT	TGAAAACAAT	GGATCATTTG	TAAAATATGC	AACTGTAGCT	CCTGAAAATG	192840
CTCCTATTGT	CATTATTCCT	TCAAGTCCAA	ТАТТААТААТ	TCCACTTTTC	TCGCTTATAA	192900
GACCCCCAAG	ACCAGCTAAA	ATTAAGGTTT	GAGAATTTAT	TAAAGTTTCA	CTAATCAAGA	192960
ATATTATTAT	ATTTGACACG	CTTAACACCT	TTTAAAACAA	TTTTATTTAA	AAAATAGCTA	193020
GCAGAAATTA	CAAGAACAAT	TATTCCCATC	ATCAAAGATA	CAATTGAAGA	TGGAAGGCCC	193080
ATTAAACTTT	GAACTCTACT	GCTTCCATAA	AGCAATATAG	AAAAAAGAAT	GCTAGAAAAT	193140
ATTATGCCAA	TTGGCGAATT	GTTTCCCATA	AGAGAAGCAG	CTATCCCATT	AAAACCAATT	193200
CCTTGCATAT	AAGAAAGCTT	AAATATAGCT	TTATTAACAC	CCATAAGTTG	AATAGCACCA	193260
GCAAGACCTG	CAACAGCTGC	TGAGAGAAAC	ATTGAAAAAA	TTAGCACAGC	TTTTACATTA	193320
ATACCCATAC	ATCTTGAAGC	TTCAATATTA	CTTCCTGTGG	CATTTATTTT	AAATCCAATA	193380
ATAGTTTTAT	TAAGTAAAA	ССАТАТТААА	ATAGCAAAAA	TTATACCTAA	AATTATTCCA	193440
AAATGAAGAG	GTGCTTTTAA	AAGCTCATTA	ACAAAAGGAT	GAGAAGATCT	ATAAGCAAGA	193500
CCTTCTGGTG	AGAGCTTCCA	AGAAGCTAAA	AAATCAATAT	ATGCGCTTTC	TTTAATGGGT	193560
TTTGAAAAAT	CACTATTATC	TCTTTTAATA	AAACTAAAAT	СТААААТТАТ	AAATTTATTA	193620
TGAAATAATA	TCCAATTAAA	CATTATTCCT	GAAATCACTT	CGCTAATATT	GAATTTGGCT	193680
TTTAAATATC	CGATTAAAAT	TCCTAAACTG	CCTGAAGCTA	AAAAAGTAAT	ААТААААТА	193740
GTAATTACAT	GTAAAATTGG	AGGCAAATCA	AGTAAAACTG	ATGCTATTAA	AGCAACAATA	193800
GATCCTAGTA	TAAACTGGCC	TTCAACCCCA	АТАТТААААА	GACCCGCTTT	TAAAGAAATA	193860

			267			
CCAATAGAAA	GACCTGTAAA	AATCAAAGGA	GCTGAATAAC	ТТААААСАТА	ACCTAAATGT	193920
TTGGGAGAAG	PAATAAAAA 3	TTCTAATATI	' АТААААТАСА	TTCTAAAAGG	AGAATGACCA	193980
AGCCCCATCA	CCACTAGCCC	AACAATTAAA	AATCCAACAA	ATAGAGCAAA	TACACTAACA	194040
AATGCTGAAG	AATTTAAAAA	ТТТСАДАДТА	ААТТТАСТАА	ATACGTTTTT	ACTAATTGTC	194100
ATTTAGCTTA	AGCCTATCAT	' CATTTTACCA	ATAACATCAA	TATCAAAATT	АТССТСТААА	194160
ATGCCCACTA	TTCTTCCACC	ATGCATTACA	GCTATCCTGT	CACAAACATT	AACAAGCTCA	194220
TCAAGTTCAA	GAGAAACCAA	TAAAACAGAT	CTACCCGCAT	CTCTTTGCTC	TATTATTCTT	194280
TTGTAAATAT	TCTCAACAGC	TCCAACATCA	AGGCCTCTTG	TAGGCTGAAT	AGCCAAAAGA	194340
ATATCTGGCT	СТАААСТААТ	CTCACGAGCA	ACAATAACTT	TTTGTTGATT	ACCTCCGGAT	194400
AAATGCTTTA	CCTTGCTTAA	AATATCTCTT	GGTCTAATAT	CAAAATGACT	TACAAGTTGA	194460
TTGCTCAATT	TTCTTAAAAT	ATTAAGATCA	AACCCCACAA	ATTGTTTTTT	AAACTTATTG	194520
AATTGTCTTT	ТААТАААТТ	GAAAAATTG	AATTTTAAAT	СААААТТАСТ	CTTCAAATGA	194580
ATTGTTTTTA	ATCTCAAATA	ATCAGGATTA	TCAAAGCTCT	TAAGTCCAAT	ATTTTGCATA	194640
ACATTGAATT	CTAAAATAAG	GCCGTGTTTT	TGCCTGTCCG	AAGAATATTG	ССААТТТТТТ	194700
TATCTATTCT	TTGTTTAATA	GTTAAACCTT	TTAAAGATTC	CAAATTCCCC	GAAGAATTTT	194760
TTTTCAAAAT	ATCGCCCTTA	AATATGCTTT	TCAAACCCAA	AATTGCATCA	ACTAAATCCT	194820
CCTGACCACT	CCCCTCAATA	CCTGATATTC	CAAGAATTTC	TCCATTTCTC	AGATCAAGAT	194880
TAACGTCTTT	AACTTTTAAA	ACTCCTCTCT	CATCTTTAAC	ACTTAAATTC	ТТТАТТТСАА	194940
GAATATTAAA	ATGATTTTCA	AATTTAATTT	TAGATGAGCG	AAGTGCAACT	ТСТТТТССТА	195000
TCATTAATTT	TGTAAGATCT	TTGTCATCAA	TATCAGCAAT	ATTAACAGTT	TTTACAACCT	195060
TCCCAAGACG	CATAATTGTA	CATTTCTTTG	CAATAGATCT	AATTTCTTTT	ATTTTATGGG	195120
TAATAAGTAT	TACAGTATGA	CCCTCTTGGG	CGAGTACCTT	ТААААТАТТТ	АТААААТСАТ	195180
CAACTTCACT	TGGAGCAAGC	ACTGCTGTAG	GTTCATCAAA	ААТААТААТА	TCTGCATTTC	195240
GATAAAGAAC	TTTCAATATC	TCTATTTTTT	GTTCCATGCC	AACACTCAAG	TCTTCAACCC	195300
TTTTTTCTAA	ATCTATCTTT	AAACCATACT	TTTCCGAAAG	AGAACTTATC	TTTTTTCTAG	195360
CTTGTTTGTA	ATCAAGAAAA	CCAAATTTTG	AATTTTCATA	ТСССААААТА	ATGTTTTGAA	195420
CAGCAGTAAA	TTGCGGAATT	AACATAAAGT	GTTGGAAAAC	CATTCCAATC	CCATTTCGAA	195480
TAGTTCGCTT	GAATCCTTAA	AGTTTATTTC	TTGACCTTTT	ААААТААТТС	GACCACTATT	195540
TACTTGATGA	ATCCCATAAA	TAGTTTTCAT	TAAGGTAGTC	TTTCCAGCAC	CATTTTCTCC	195600
AAGAATAGCA	TGAACTTCGC	CTGCCTTAAA	TTTAATAGAA	ACATTATCAT	TGGCAACAAA	195660

ATCACCATAC TI	TTTTTGTAA	TATTTTCTAA	TACTAGTACA	TCTTCTTTCA	TCAAGCTTTA	195720
ATCCTAATAT AA	ATATCAAA	CATAAATGAC	TTACAATATT	CTATTCTAAT	GAAATATAAT	195780
AAAGCTTAAA AT	TTATATTT	TCAATAGCAT	TTTAAATTTT	ААТАААСААА	ATAAATTATC	195840
ТАТАААААТТ АА	TTGCTAAT	ТАААААТ	GCTTAAAATA	TAAAAACCTT	AATAAAGAGA	195900
GCAAATTAAT GT	ТААААТА	AAGAATAAAT	AAATTATTAC	AAAAGAGAGT	ATTATGAAAA	195960
TCAAAGCCTG CA	TTTTTGAT	ATGGATGGAA	CACTGGTAAA	TAGTATAATG	GATATTGCAT	196020
TCTCAATGAA TT	CTGCTCTT	TCAAACTTAG	GATACAGTAA	AATAGAACTA	AGCAAATTCA	196080
ATGCCCTTGT TG	GCAGAGGA	TTTAACAAGT	TTGTAATAGA	CACTCTAAAG	CTATTATCTC	196140
TTGAACATGA TA	ATCCTAAT	TTACAAGAAA	AACTTTACAA	AGAATTTGTT	AAAGAATACA	196200
АТАААААССТ ТТ	CATTCCAA	ACAAAACCAT	ATGAAAATAT	AAAACCCCTT	TTAGAAACTA	196260
TGAATAAGCT TA	ACATTCCA	ATTGGAATTT	TAAGCAATAA	GAACCACGAA	GAATTAATAA	196320
ATTTGGTGAA AA	ATATTTTT	GGAAATATAT	TGTTTTTTGA	AATCAGGGGT	TATTCAAAAA	196380
ATTTTCCACC AA	AGCCAGAT	CCTGAAAATG	CCCTTGATAT	GATATTAGAA	TTAAATGCCC	196440
AAAAAGAAGA AA	TTGCATAT	ATTGGAGACA	GCGATGTGGA	TATGCTAACC	GCACTAAACG	196500
CTGGATTTAT GC	CAATAGGG	GTTTCTTGGG	GATTTAGAAG	TGTTCAAGAA	TTAAAAGAAA	196560
GTGGAGCAAA AC	АТАТААТА	CACAATCCAC	TTGAACTATT	GGACCTAATA	AAATGAATAC	196620
AAAACCATAT TT	TCCTTATT	ТАТАТСАТТА	TCTATTCAAT	CATGAAAGTA	TAAAAAGTTT	196680
ATCTGCCATA GAZ	AAAAGAAA	TTGAAATACT	CAACTATTTA	AAAGAAAACA	AAAAAACAAT	196740
TGCTACATTT ATO	CAAAAATG	ATTTTGAATC	AGAAATAAAA	GACCTAATTC	AATACGTCAA	196800
GGATAAAACA GA	TATAATGA	TTACCCCATT	TGTTTTATCT	GGCATTGAAG	CTATTGATTT	196860
TAACATTGTA AAG	GCCTCTTT	TTAGTAAAGA	ATTGACAAAA	AACGACTTAA	ATTTGATATT	196920
TAACTTTGTC AAA	AGTCAACT	CATCTTTAAG	AAAAGAATTC	TTTTATAATT	ТТААТАССАТ	196980
AAGCAATGGA TAG	САТТАСТТ	АААТАТАТТТ	CAAACTATTT	GAAGGAAAAA	ACTCTTATAC	197040
AATATACTTA ATA	ACAAAAGG .	AAAATAAAGC	ACTTTATTCA	TCAGACATCA	TAAAAAATTA	197100
TATAAAGATA CTA	ACTTCTCT	TAAAAGTATT	GGTAATTAAA	TACTGCTTTG	AAAAAGGAAT	197160
AGAGCTTACT ACT	raaaaaca '	TTGAATCCAC	TTCAAAAGCA	ATAAGCAATG	ATACCGACTT	197220
TCTAGACGAA AAC	GACAGCTA A	AGCTTATAAT	TGAAAGCTTT	TTCAAATATG	AGACCTTACA	197280
AACAATGTCT CCA	AATTTCAA (CATTAATTGC	CATTTTTTCA	GCCAGAGCAA	GAACTCCAAA	197340
ATACAAAAAC AAT	rccggtta i	AAGGTTTTAT	TGGGTATGAT	GAAAGTTGGT	ТТТСААТАДА	197400

US98/12764

2	_	Λ.
4	O	9

ACAGTCGGGC TCTAGAGAAT	ATGATTCAAG	AATAATTAAA	GAATTATCAG	АААТАСССАА	197460
GGTAAATAAA TGGTAAAAAA	ATTTTCAATT	TTCTTAAAAG	СААТААТААТ	ТТТТТСААТА	197520
TTTGAACTTT TAATCGAAGA	ACTCTCAATA	ATTCTTTTTT	TACCATACAA	AATACGATTT	197580
GCACTAATAT TTCTTGGGTT	TCTATTTGAC	ACAATTTTTA	TTTTCATTTT	ТТТАТАСААА	197640
ATAACCAAGG CCTACCTTTC	CCAAAGATTA	GAAATCTACG	TCAGAAACAA	TCTATTCTTC	197700
GATATAATCC ACTGCCTTAT	TCCTTTAGCG	TTTTATAGCT	CATATCAGCT	ТАААААСАТА	197760
ATTGTCGCCC ATGAAACAAT	АТТАААТССА	ATAATGCTAT	CACTTTTCAA	GTTAAGATTT	197820
TTAAGACTTC TTAGGTTTAA	TGACCTAATA	ATAGAAATAT	ATTACAATTC	AAAAGAAAAG	197880
AACCTAATAC TAATAGCATT	TGCTAGGACA	TTTTCAATGA	GCTTATTAAT	ACCATTTACA	197940
TTTTTTATAA TAATATCAAG	СТСАААААТТ	GTAAATTCAA	TACCAGAAAA	ACAAGAATTT	198000
AATATCATTA AAAATATATC	ААТААТАААТ	GAAAAAGCTT	ACATTAAAGA	AAAATATCCC	198060
TTCATCTTAA TAATCAAGGA	AAAAGATGAC	ATAATATACT	CAAAATCAGA	CGAAATATTT	198120
GTTTACTACA GTCCCAGTGA	ATATAGAGTA	ATAGAAATGG	AGAAAACAAA	ATTTTTATATA	198180
GATAAATATT TGCAAAGAAA	AAGCGATTCT	ATTCTTGGAA	TTTTTCTATT	TACATTGTTT	198240
GCATCATTTA CTATTTTTTT	AATGAATTTT	TATAAATTTT	TTAAAGCAAG	СТТТТТАААТ	198300
CCTATTATTT TAATGACAAA	AATTTTACAA	GACCCATTAG	AATATCGAAA	AATTCAAATT	198360
CCTTTTACTT TAAGCGAAGA	AAAAGTATAT	GAACTTGCAA	AATCATTTAA	CAATCTCTTG	198420
CTAAAAGAAA AACTAAACTC	AAAGCGAAAA	AGCAAAATAC	CTTTAGAAAT	TGAAAAAGTA	198480
AAAAAAATA TTAATAAAAA	CCAGGAAATA	АААТСААААТ	TCAAATAATT	ATAATGCTGC	198540
TTGCATTGTT AGATTTTCCA	CTTAATGCCA	GACTTTTGGA	CATTTCAATT	GAAAAAGAG	198600
CAGATGAAGA AATAAAAAAA	TATTCGTCTT	ATAATTTAAT	TTTAGAAAAA	GAATACTATA	198660
CCAATTTTCC AACAAGCGAA	ATAGAAAAA	ATATTTATAA	ACTAACAGAA	CATTTTGTAA	198720
AAAGCATAAT GCTCAATAAA	ACTAACTACA	GCTTATTAAA	TTCAAACTAC	AAAGAAGCAA	198780
ATAAATATCT AATTCAAAGC	GAACTCATTG	АТААААААТТ	ТТТААААТТТ	AAAATATTTA	198840
AAATCAAAAA TATAAATGGA	AAAATTTTTAAAA	GCCATTCACT	ААТАТАТАСА	AAAAAAGGAT	198900
TTTACAAATT AGAACTTTAC	ATAGAAAATA	ATGCAGAACC	тстааааата	TTTAACCTTA	198960
ACATTACTTA TTTTTTAAAG	AATTTAGATA	AAATAAGTAA	TGAAATGATT	TTTTTCCCAA	199020
GGGAATGAAA ATAATAAAAT	TAAAGCTTGA	ACTTTTTTA	ТАААТААТТТ	ATTTAACAAA	199080
TACAGACATT ACTCTTTGAA	GAACCTTTGC	ССТАТСТААТ	GGTTTAACAA	TAAATGTTTT	199140
TGCTCCTTTT ATTAAGCAAT	ССТТААСТАА	TTGTTCCTTG	CCTAAAGCAG	АТАТСАТТАТ	199200

CACTCTAGCA	TTTTTATCAA	ATTCCATAAT	ATTAGAAAGA	CAAGTTATTC	CATCCATTTT	199260
GGGCATAGTA	ATATCAAGAG	TGACAATATC	AATATTAGGA	TAATGATTCT	TGTATTTTAT	199320
CACAGCCTCT	TCTCCATCAG	CTGCCGTATC	AATAATATTA	AAGCCCTCTG	АТСТАААААТ	199380
TTGAGTAAGC	TGCTTTACGG	TAAAAACAGA	GTCATCAACA	АТТААААСАТ	TAAAAGGAAT	199440
GCCTGTATCA	TAATTGATTC	CTCTAGGCTT	AGATGAAGAA	TCTGCAGCAA	TTGTAGTCTT	199500
TTGAATCATA	TTAACCTCTC	TCTTCTAATA	AAAAGAATTT	TTTTCATATC	AAACCCTCTC	199560
TCTTATTGCA	ATATTAACTT	СТАТААТТТ	ACCATCAGGC	AAAGAAAAAG	GAACAATTAA	199620
AGCCTCAGAA	CCTTTATTAC	TTATTTTCAT	ATTTTCTCCA	TAAATAAAAG	CTGGGGGGGT	199680
TATATCAAAT	ACAAAACCCT	TGGCATGCAA	AGTGGTAACA	AAATTTCCAG	СААТААТАТТ	199740
GCCAACCTCA	GTTAGAGTTG	CAGCAACCAT	CTCTTTTGTT	TCTTCATCGT	CAAAATCATC	199800
ATACTCTTCA	AAATTTAATT	TAGAAGCAAC	AAAAAGAGCT	GTTTCTATGT	ССАТАТСААТ	199860
AATTATACTG	CCCTCAACAG	ACCCAGCAAG	CCCTACTATT	ACAGAAACAC	СТТТТАТСТТ	199920
TTGATTTATC	GACTTAAGCC	CGGGCTTACC	CATTTCTATA	TTCTCAACAA	GCAACATATC	199980
TCTTAAAACC	GAAGAAGCAG	CATCCAAAAA	TGGCTCTATA	TAATCTATTC	TCATTAATTT	200040
CTCCTTTAGA	CTTTCCTGTA	CAAGTTAAAA	TATTTTGTGG	ATTTCTCTTT	TATAAAAACA	200100
TCATTATTTT	TAAGCTCTTC	GTTATCTCCC	AAAACCAAAA	GAGCCCCTTT	AATAGCTTTG	200160
GAAGCAATGA	TAAAATTTAT	TAAAATCTGA	TCTTTACTAT	CCAAGAAACA	ТААААСАТСТ	200220
TTTAAAAAAA	CCATTCCCAA	ATTATCAGGC	AAATCTGAAA	AAAGAGCATC	GGAATATTCA	200280
AACAAAACAT	TACTTAGGAT	TTCTGACTTA	AATTTATAAA	CTCCGGGACT	TTGTTCAAAA	200340
GAATTCCTAC	TATAAATTTC	ACTAATGCCA	ATTTCTGACT	CTGAAAACAC	CAACCTAGAA	200400
GTTTCAACAA	CTTTTGATAA	ATCATTATCA	ATGGCCGTCA	ACTTAAAAGG	TTTTACATAA	200460
TATTCAGACA	AAGCATTGGC	TAAAGCCATA	GTCTCCTTTC	CACTACCACA	ACCAATTTCC	200520
AATACATTGA	AAATAGAATT	TAAGTTATTC	АТААААСТТА	AGCGACTCTC	AACAATTTCA	200580
TTTTTAAATT	CTTCCAAACA	ATCAGCTCCC	CACAAATTTC	CCGATGATTT	TGAATAAAAT	200640
TCATTTAAAA	AACTATCGCA	AGGCAAGTAA	TCAGTATCAA	ССАТАТТААА	TTTTACTCCA	200700
ACTTTTTCCA	AAAACACATC	ATTTACCAAA	GAAGCATTAA	ACGAGTATTT	CAAAAGATTT	200760
TTTTTAATAT	TTTCCAAATT	AAAAGCTGCA	GTATTGTTTA	GAGTTGAATT	TTCATTGTTA	200820
CCATCATTTT	TTGAAGAAAC	CTTATTGGAA	AAATCATTCT	TAGAATTTTC	TAGTATATCT	200880
AAATTATCAC	AATCGCTTAC	AAAGTCGCTT	TTTTCAACAA	AATTTTGACC	AGGTTTTAAT	200940

WU 36/36343					0898/	12/04
			271		_	
AACTTTTCTT	CTTCACCATA	ATTAAAAATT	TTAAAAACAT	TAAGAAGTAT	ATAAAGCTTT	201000
TCGTTATAAT	CTACAACGCC	TTTTATATAG	TTTATTAAAG	AATCCTGAGA	TAAAACTGGA	201060
TGTGGATCTT	GAATAAGGCT	AGAATCTATT	GAAAAAACAT	TATTAATTTT	ATCAACAATT	201120
ACCCCTATAA	GAAGGTCTTC	GTTTTTTAAA	ACCATAATAT	CTTCAATATC	TTTTTTTTA	201180
AATTCTAAAT	TAAACATTAT	TCTAAGATCT	ATAATAGGAA	TTATTTCACC	CCGTAAATTA	201240
TCAAGCCCAG	CAACATACTT	TTTGGCATTT	GGAACATAAG	TAAAATTACT	AGATTTTCTA	201300
ATTTCTTTAA	CCTGCATAAT	GTCTACTAAA	TAATGATCCG	ACCCAAGCTC	AAAAGAAACA	201360
ACTTTAAAAT	CAAAATTGGT	CAATTTAGAA	TTAGAATTTT	TATCATCTAA	AATTTTGGGT	201420
ССААААТААА	TTTCTTTTAT	CTGCACAAGA	GATCACTCCT	TAGTATCCTT	TTGTAAATCA	201480
AAAAGTTTAA	AAACATCAAT	TATCAATACA	ACCTTACCAT	TGCCAAGCGT	AGTAGCCCCA	201540
ACTATACCCG	CGCTTGATGA	AAATTTATCC	TTAATAGGCT	TTACTACAAA	ATCTTCCTCA	201600
CCAAGAATAG	AGTCTACAAC	AATTGCTATC	TTCATGTTGC	TAGTATTAAC	AACTATTAAA	201660
AATTTTTCTA	TTAATGAATC	ATCCCTTGTT	ATGTTAAAAA	GTTTATCAAG	CCTGAGAACA	201720
GAAATGACTT	CATCTCTTAA	ATTATAAACT	TCATGATAAT	TTTCAAGCAA	ТТТТАТАТСА	201780
TGTTCAGTTA	TTCTATGAGT	TTCAAGAACA	TTATTTAAAG	GAATAACATA	AGTCTCAGAC	201840
CCCGACTTTA	CTAAAAGACC	TTGTATAATC	ACTAACGTCA	ATGGTAGTTT	AATTTTAAAA	201900
ATTGTTCCAA	GACCAATTTC	TGATTCCACC	AAAATAGTTC	CATTAAGCTT	TTCAATGCTT	201960
TTTTTCACAA	CGTCAAGACC	AACTCCTCTA	CCTGAAAGGT	CTGTCACTTG	AACTGCTGTT	202020
GAAAACCCAG	GAGCAAAAAT	TAAGTTAATA	AGTTCAAAAT	CAGAGTAAAT	TGCATCTTCT	202080
TTTATTGTTC	CCTTTTCAAT	TAATTTGCGC	CTAATGACCT	TTGGATCTAT	ACCAATCCCA	202140
TCATCTTCAA	TCTCAATTGA	TATTACATTA	CCTTCATTCT	TGGCACGCAA	AATTATAGTA	202200
CCTGCTTTGC	TCTTTCCCCT	TTTAACTCTC	TCTTCAACTG	TTTCAAGGCC	ATGATCCATT	202260
GAATTTCTAA	CACAATGCAT	CAAAGGATCT	ACAAGGTCAT	CTATAACAGA	CTTATCAAGC	202320
TCAGTTTCTT	CCCCTTCCAT	TTTAAGATTC	ACAATCTTAT	ТТААТТТСТТ	TGAAAGATCT	202380
CTTACGACTC	TTGTAAACCT	TGAAAATATA	TTAGATATTG	GTAACATTCT	GGTTTTTAAA	202440
ACACTCTCAT	GCAAATCTGT	AATTATTCTT	GACAGCCGCC	CAGAGGTCAT	TTTAAAATTT	202500
TGAAGAAGTC	TGAAAAAAGA	ATTTCTCAAT	TCAGATATAT	CCTTAAGAGC	CTTTTCCATT	202560
TTAAAACTCA	TCAAAGAATT	AATATGTGAT	TCGATCTCAT	CTTCTAATGT	TAAGCCTGCA	202620
TCTTTGAAAA	СТАТСТТТАА	АТСААТТААА	AAGTTTCTCT	GAAAACTTTC	TTGATAATCA	202680

TAAAAATAAT TAAAATTATA AAATAATGTA ATCATTTCTG AATTTATTTG ATTATAAGAT

GATTTACTT	A TTACAGCCTC	C ACTGACAAGA	ТТТААТАТСТ	AATCTATTT	TTTGCTATCT	202800
ATTCTAATTA	A AATTAACACI	P AATTGGACTA	ТТТТТСТТАА	TATTTTTATT	TTCCTTAAAA	202860
GGTGCTTCAT	CATCTTCTT	TAGCCTTACG	CTCTTTAAAG	ATTCTAAATT	AACATTTTTG	202920
ATTTCAAAA1	GACTAACAAC	ATCTGGTAAA	TTAATCTTTT	TAGCAATACT	TTCTTCACTG	202980
GTATTTGATA	TTAAGTAATA	TATTACAAAA	TCAAAAAACT	TATCTGCCAA	TAATTCGCTA	203040
GAATCTGGGA	TAGACTTGAA	AATTTTACCA	AGACTTTTTA	ATGCTTGAAG	CATTTGAAGC	203100
CCACTAATAG	TAGCCATAGG	ATTGTCTTTT	ACAAAATCCA	ATCTAACTTT	AAATAACTTT	203160
TGATTTTCAA	CCTCAAGTAA	TAAATCAGAA	ATCTCATCCT	СТСТААААТС	AAAATTATCA	203220
ТТТААААСАА	AATTGGAATC	TAAATCAACA	TCTTTAATCT	CTTCATCTGC	AAGCTTTTTT	203280
AATTCTTCTT	TTACGTTAAA	TTCATCAACC	AAATAGCTTT	СААТТАААТТ	TAAAGAATCT	203340
AAACTTTTTT	TCACGCCTTC	TATATCTGAA	TATATCAGAT	AATAATCAAC	CCTTTTTAAA	203400
AATTTATCCT	CTATGATTTG	СТСАТАТТТА	GGAATTGTAT	GAAGTACAGA	ТССТАААТТТ	203460
TTTAAAATAT	ТАААТАТТТ	TAGCCCACTA	TTTTCAACTT	CAGAATTGCT	ATTTGAATTA	203520
AAAACAACAC	TGATCCTTAA	AACCTTTTGT	CCAATTCCTA	GCCCTTCTCT	ТАТСТССТСА	203580
AGATCTGATT	CTGAAAGACA	AAAATTGTTT	TTAATTGAAT	TTCCATCAAA	TCTCTTAATA	203640
AAAGTCTGAT	CATCAATTAC	TAAAAATTGC	TTTAATTTGC	TTTTAAGATC	ACTTATGTCA	203700
TTTAAATAAA	CCTTGCCATC	AATACGAAGC	GCAAGCATTT	CCTTGATAAC	ATCTAATGAA	203760
CTTAAAAGCA	GATCAACAAG	ATCATTATTT	ATATTTACCT	TACCATCTCT	AATAGCATCA	203820
AAAACATCTT	CGACAATATG	GGTAAAATCA	GATAACTCCA	TCATATCAAG	AGAAGCAGAG	203880
CTTCCTTTTA	AAGTATGAGC	TGCCCTGAAT	ATTTCATCAA	TAGTATCAGA	ATTATTAGGA	203940
TCATCCTCTA	ATGACATAAT	ATTCTCTTCA	AGGATATCTA	CAAGATTTTG	AGCTTCTTCA	204000
АААААААСТС	CTAAAAGCTC	TTCATTTTCC	AAATCTAATA	TTTCCATATA	СТАТТТССТА	204060
ТТАТТТТААТ	ATGTAAAGCA	AACCTTTTAG	GTAGCTTTAC	TTTAATTATA	AAACCTAATT	204120
TTTCGGAGAT	GATTCTTCAG	GTTTTTCACT	CTCAATCTTT	TCTACAAAGT	TTTGGAAAGA	204180
GCCTTCAGGC	ATAGAAATTT	TTTCTCTAAG	СТТТААААСТ	CTTTTAAAAG	TTTCGTGTGC	204240
CTTTAATTTA	CGAAGGGATT	CAGTTCCGCT	AGTCTCATAA	АСТТТАААТА	CAGACTCACT	204300
GTCAATATCA	GAATCTATTG	AAACACTCAA	СТТАТСАТАА	AGAACTCTTA .	AATCTTTAAC	204360
ATAAAAGATG	AAATTTTGCT	CTTTTGAACT	GTGTGACTTT (GAAACTCTAA .	AAGCCTTAAA	204420
TCTCATTTTA	CTTGAAGCAA	GAGGATAATT	TGGAACATCG '	ТСТТТААТАА '	TTCTGGATGA	204480

US98/12764

			272			
TATATTAGGA	ATATAGTTAG	GATTTGACCA	273 ААТТАААТСА	GCCCACCCTT	ТАААСТТТАА	204540
AGTACCCATA	GAATAAGCAT	ATTCCATGCC	ATTCATATCT	тсааатаааа	CCTCAAGATC	204600
TATCTCATAC	ССТАААСТАТ	AAACAGATAC	CTTAATTTCT	TTCATGGTTT	TAATGTTATC	204660
AATAAGACCT	TTGCCTAAAA	ATTGATTGCC	ACTTTCCCCT	GAATAAAAAG	GAATTTTAAA	204720
TGGTGGCATA	ATCATAGCAG	ATGATTGAGA	ATAGCTTGGA	AACAAAACTC	TTACCCCTAA	204780
AATAGTATCA	CCTGCGTACC	TTTTTGACTC	ACTCTTAACA	ACAGCGGGCG	CAACAACTGA	204840
ATTTTTAACG	TAAGCCTGCA	ACCTTGCAGA	AGGAGTAAGT	AAAACGCTCC	AATTATTTAT	204900
CCCAAGATCT	ACAACCATAT	CTTCCGGCTT	AACAATACCA	GAAGCGCCCG	AATATACATA	204960
ATCAACATAA	TTTGTAAGAT	CAAGTCTAGT	TGAACTTGGA	TCTCTTGCAA	GCTCGGCAAA	205020
ATCTAAAACT	AATTCTCCAG	GCTCTGCCCT	TTTAGAACCC	TCTGCTAATC	CATCAGTCTC	205080
TTGAGCAAAA	AGAACAGTGG	АТААТАААА	AAATAAAATA	CTTTTAGCTT	TCCTTTTCAT	205140
GTAAACCAAC	TCCTTATATA	TATAAATCTT	TTATAAAATT	TTCGTTTTT	AATTATTTT	205200
ATTAGTAAAA	TTTAATTTAT	CAACTTTGCT	CCTTTAAGAT	ACACCCTTCA	ACAAGAATAA	205260
CAATCTTTTT	TATCTTACCA	GGATAGTTAA	AGCGCATTGT	ТТТТАТТААА	GACATAGCAA	205320
AAAGATTGAC	CTTAACATCA	AAAGATTCAT	TAGATTCATT	ATAATCACCA	TTATTAAAAG	205380
AATCATAAAA	TTCTCTTGAA	AGATTTACAT	AATAAACTCC	ATTCTTTAAA	AAAGAATATA	205440
AAAATCTTGA	ATCACTTAAT	AAAAACCCAA	AAGAAAACCC	TTCATTGCTT	CCTAAAAGAA	205500
AATCTTTTAC	TAAAAGATCT	AAATTATCTT	TCAAATTTTG	TTCATCTCTT	AAATATCTTA	205560
AATTAGCAAC	AAATCCCTTG	CTAGAATGAA	AATAAAAAAC	CTTTTTTGAA	AAAAGATTAT	205620
САТААТТТАА	AAAAACCATA	CAAATAGAAA	ACAAAAAGCT	TACTGCCAAA	GACCCCAAAA	205680
GCACCCTAAT	CATATGCTCT	TTTTTTGAAT	ТТАААААТТТ	ATAAATCACT	ACATTATATT	205740
TAAAAAATAT	ATCCGAAATA	TTATTTTCA	TAAAAATTTA	TAAATTCCAT	TAAAGCTTTA	205800
AGTATTAGAA	TATTAAACTT	GCTCATGTAA	TTATAATCCA	AAATTAATTT	AGCATCTAAA	205860
ATATTGGATA	AAAACCCCAT	TTCAATCAAC	ACAGCAGGCA	TACTGCTGTT	TTTTATTACA	205920
AACCATTGCT	CTTTTCTGAT	TGGCCTAATA	TTAGTTTCGC	TTAACTCATT	TTTAAACACT	205980
ТТАТАСАААА	TTTCAGCCAA	TCTTTTTGAT	TCATATTTAT	ATTTAATATC	TAGTATATCA	206040
TTAAGCTCGC	TTAAGTATCT	ATTACCTTTA	ATATCATATC	ССТТААААТС	ТТТААТААСТ	206100
TCTCTTTTTG	AATCCTTAGG	AAGATACCAA	AACTCAACTC	CTCTAGCTTC	ACCGTTTGGA	206160
GCATCATTAG	CATGTATAGA	ТАААААТАТА	ACATTATTGG	GGAAATTTGG	CTTTATTGCA	206220
TTTGCAAATT	CCGACCGTTC	TTTTAAAGTT	АААТАААСАТ	CATTTATACG	AGTTAACAAA	206280

ATATTTTTAT TTA	CAAAATA ATTACTTAA	A ATTTTAGACA	AATATATAGA	ATAGGTTAAT	206340
GCAAAATCTT TTT	CCTGAAG CACAACGTC	А ТААССАТТТА	TCTTTAAAGT	CACAACAGCA	206400
CCAGTATCAT GCC	CGCCATG TCCAGGATC	A ATGATTATTG	AAGTAATTCT	GGGTTTATTA	206460
TAGTCTTTAA GAG	AACTAAA ATAATTTTC	A ATTTGTTTTA	ATACCTTTTG	ACTTATT <u>AA</u> A	206520
ATTTCTCCAC GAA	TGTCAAT AATTGGGTC	г асааасатат	AATAACCAGA	AGATGTAAGC	206580
GCATATTCAA AGC	CTACCCT AAACTTCAA	А ТАТСССТТАТ	CATTTTCAAT	TGTAAAAACA	206640
TCATTTTCAA TGT	TAAAATC AAACCTAAA	A ACATTAGTAT	САААААААТС	AAGAACATTT	206700
AAATAATCGG GGG	TCTTAGA ATACAAGCT	Г АААТАТGААА	ACAAAATCAA	ATCAATCAAT	206760
AATATCATTT TCC	CAAAGCT CAATGGCAC	r cttaagtct	CCTTTGAATC	TTAAGCTATT	206820
TTTAGTAATC TCA	CCTTTTA TCTCCTTAA	A CTCTTTTTGG	AAGAGAAAAG	GATTAATTTT	206880
GTATTTTAAA CAA	ATTTTGC AAAACCTTA	A AAAAGAAAAA	ACAACGCCAT	TTCCAACAAA	206940
AATTGGGACA TAA	ТТСТТАА ССАААААА	CAAAAACTT	TTGCTTTTGG	TTAAATTTTC	207000
TGGCGAATTT AATG	GCAGTAT ACTGGATTCT	CAGCTTTCTA	ТАААТАТААА	CATGCTCCCC	207060
AAAATAAATA GCTO	CTTAGTC CAAAATCTAT	TCTTTGAAAA	TATTCATTTT	GAATTCTTGC	207120
GTCAAAACCT CCAA	AGCTGTA AAAATTTCTC	TTTAGAATAA	AGTCCGCAAT	AATCCATGGT	207180
AATCAAAGTT TTTT	PCATAGT CTTTCTCAGA	ATTTACTAAA	ATTACCTTAA	ACTTTTGCTT	207240
TTTATCTATG CTG	GGAAGAA AAATTGAAGG	AATCATTTCC	TCTTCTTTAT	СААААААСТС	207300
CCCACCAACA AGAA	AGAACAT TTTTTTTAC	TATTTCATCG	AATATATTTG	GAATCCAAAA	207360
GGGATTTAAC AAGT	FACATAT CACTTTGCAA	AACAAAAACA	AAATCACAGC	TGGATTCTTT	207420
CATTGCTAAA TTAA	ACCTTTT CCCCAGAATT	' CAAATCGTCA	GAAAGTAAAA	ТАААТТТТАА	207480
CTTACCATAA CTTT	rctgaaa taaactgcaa	AGAACTTCTA	TTGCTCTGTT	TTTCAATTGA	207540
AATTATTTCT CTT	ATAAAGT CAAAATTTGA	ТАААААТТСА	AACAAATCTT	СТСТАААААТ	207600
TTTTGTTCCT CTGC	CTTAATA TTACAAAAGA	AATTCCAAAA	GAAGATTTTT	GTGAATAATT	207660
ATTTTTAGAT TGAA	ATAACAG TATATGAATA	GCCACTACCT	GGAAGACGCA	ТАААТТАСТТ	207720
TTAAAATCCT TATA	TAATAATATT AAATTAA	CATATGTTAC	АТААТАСААТ	GCTAATTGCA	207780
AGAATAATGA ATAT	ТТААТАС АТТАТТСТАС	GGCATGATCA	ТТАТСАТТТТ	TGCACTCATT	207840
	AGAATAT ACAGTACGAC				207900
AAAATTGAAT ATAA	AAATAGA CTCAGAAAAT	GACTTTATAG	CATTTAAAGA	ТАТАААСААТ	207960
AACGAAAAAG AAGA	AGTAAT CATCAGATCA	AGACTAAACT	CATATAAAAA	TTCAAAGATA	208020
					•

AGAGAAARAT TIGGAATTGT TAAAGTATTT GATATAAACA CACCARAART AAAAGAAATA 208080 TCTGACTCGC TTATGAGGGA TAGTTATAAT AACAGAGTAT TIGGATCGTG GAGATTATT 208140 CATAATGCAG AAAGAGGAAT CAACTCTTTG GTATATATTG TAAAAGCAGA AGAATTTGCA 208200 AATGATACAT TITTGCTTGA TGCAATTGAT GAGATTGCT CAACAATAAG TATTTTCAAA 208260 AAAATAATAA CAACCAACAA CGAAAACATT GATAATAATG AAGAAAATAA CAATACAAAT 208320 GAATCAAATG AACAGCCCCC CTTAAAGCAA GAAAACAA ATTCAACAAA AGAATCTAAT 208380 AACGAACTTA AAGAAGATCA AATAGAAGAA GAACTTCAAG AAATGAACCTT GTCACCTATT 208440 CAAAATCATT CTACTAATAA AGAATTAACA TCAAAGCACAA AATGAACCTT GCCCCTATT 208560 TTTATTTGAA ATTTGCCCT AGAGTACGC TGAAGCTCAA GAGCATACCT TACCTTATAA 208620 CTTGAATCAA TATAAGCTAT TCCAAGGGC TCTAAATCAT AAATCTTT TTGAGCACC 208740 CTTGAATCAA TATAAGCTAT TCCAAGCAGC AAAGGTGTAT TTCCATCCA AAAAGCAAAA 208740 ATTATACATAA TATTTTACCCCTA AAGACCATT CCATTGCCAT ATTCAACATT TTGAGCACCA 208800 TTTTACATAA TTTCTTTAC GTAAAAATGA TCCATTATT TAAAAAAAGA CATCAACAAA 208920 ACTAAAAACA AAAACCGTTT TAAAATTTTT TTCAATTATA AATTTTTATT TTAAAACAAA 209920 ATTATATATT GAAATATATAA ATTTTTATAAATTTA AATTTTTTAT TAAAACAAAA 209100 CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGGTATT ACTAGGTTAT CAACTTCTT CAACACACAAA 209100 AGTGATAAAT			2/5			
CATAATGCAG AAAGAGGAAT CAACTCTTTG GTATATATTG TAAAAGCAGA AGAATTTGCA 208200 AATGATACAT TITTGCTTGA TGCAATTGAT GAGATTGCT CAACAATAAG TATTTTCAAA 208320 AAAATAATAA CAACCAACAA CGAAAACATT GATAATAATG AAGAAAATAA CAATACAAAT 208320 GAATCAAATG AACAGCCCAC CTTAAAGCAA GAAATAACAA ATTCAACAAA AGAATCTAAT 208380 AACGAACTTA AAGAAGATCA AATAGAAGAA GAAATACAAA ATTCAACAAA AGAATCTATT 208440 CAAAAATCATT CTACTAATAA AGAATTAACA TCAAAGCAAA AATGAACCTT GTCACCTATT 208500 TTTATTTGAA ATTTAGAAAA TGAGCCCCTT GGAAGCTCAA GAGCATACCT TACCTATAAA 208620 CTTGAATCAA TATAAGCTAT TTCAAGCAGC AAAGGTGTAT TTTCCATCCA AAAAGACAAA 208680 TTTTGATCTT TTTTAAAACA AAAAAGCATT CCATTGCCAT ATCAACTTT TTGAGCACCC 208740 ATTATCATAA TTTCTTTAC GTAAAAATGA TCACCAAAAG ATAAAAAAAA CTTAACCCCA 208800 ACTAAAAACA AAAACCGTTT TAAAATTTTT TTCAATTATC AGCCTTATTA AAAATCATTT 208920 ACTAAAAACA AAAACCGTTT TAAAATTTTT TTCAATTATC AGCCTTATTA AAAATCATT 208980 ACTATTTTTTTTT GAAAATTATT TACATTATA ATTTTTTAT TAAAAACAAA 209100 ACTATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT						208080
AAATAATAA TATTOCTTGA TGCAATTGAT GAGATTGCCT CAACAATAAG TATTTTCAAA 208320 GAATCAAATA CAACCAACAA CGAAAACATT GATAATAATG AAGAAATAA CAATACAAAT 208320 GAATCAAATG AACAGCCCAC CTTAAAGCAA GAAAAAACAA ATTCAACAAA AGAATCTAAT 208380 AACGAACTTA AAGAAGATCA AATAGAAGAA GAACTTCAAG AAATCAAAG CCAATAATTT 208440 CAAAATCATT CTACTAATAA AGAATTAACA TCAAAGCAAA AATGCACTT GTCACCTATT 208500 TTTATTTGAA ATTTAGAAAA TGAGCCCCTT GGAAGCTCAA GAGCATACCT TACCTTATAA 208560 AGAGAATTAA CATTTGCCCT AGAGTACGC TCTAAATCAT AAATCTCTT AATAATTCCA 208620 CTTGAATCAA TATAAGCTAT TTCAAGCAGC AAAGGTGTAT TTCCATCCA AAAAGACAAA 208680 TTTTGATCTT TTTTTAAAAAC AAAAAGCATT CCATTGCCAT ATTCAACTTT TTGAGCACCC 208800 TTTATCATAAA TTTCTTTATC GTAAAAATGA TCAGCAAAAA ATAATTTTTT TTAAAACAAA 208860 ACTAAAAACA AAAACCGTTT TAAAATTTT TTCAATTAAC ACCTTATTA AAAATCATTT 208920 ATTATAATTT GAAATATAAG ATTTTAAAGT AATTCTTAAA ATATTTTTAT TTAAAACAAT 208980 AATAGAAACA AAAACCGTTT TAAAATTTT TACAATAAA ATATTTTTAT TTAAAACAAT 2099040 CTTTTTCTTT ACCTCAATAA AAATGCATA CTGAGAATAT AATTTTTTAT TAAAACAAA 209100 AGTGTACGAA AACATTTTAT TTTTGTCAAA ATTAAAAACA GCATTATTTA AATGGGTTTT 209160 AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGAAAAT TCAACGTCTT CAACAACAAA 209220 ATAAAAAAAT GTGCTCTTGA GAACATTCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC 209280 AAAAGATCCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA ACCCTTATGCC 209340 ATAAAAAAAT GTGCTCTTGA GAACATTCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC 209280 AAAAGATCCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA ACCCTTAGCC 209340 ATAAAAAAATA GTGCTCTTGA GAACATTCTC TTTAACAGAA TCCATGCTAG ACCCCAGAAC 209280 AAAAGATCCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA ACCCTTAGCC 209340 ATAAAAAAATA TAAAGAAAAA GTATAACAAA TAAAAAAACTT GAAAAACATA AAGGAAAAT CAAAAACAAA CCCTTTAGCC 209340 ATAAAAAATA TAAAGAAAAA GTATAACAAA TAAAAAAACTT GAAAAACAT GAAAAACAAA 209000 ATCAATTATA ATCCCAAAAT GGAAAACCCT TACAAAGGAC TTAAAGAAC GCCTTATCACT 209460 TGCACTTCTT GCCTTTCTT TTCTTTTAAA AACTATTA TAAAAAAAAT AAAGGAAAAT 209500 TGGACATTCG CTCTTTCCCAAA AGCAGAAAC TTCAAAATTT AAAAAAAAAT AAAGGAAAATT 209560 TGGACATTCG ATATCACCAA GCTTACACAA ACGAAAACT TAAAAAAAATT AAAAAA						208140
AAAATAATAA CAACCAACAA CGAAAACATT GATAATAATG AAGAAAATAA CAATACAAAT GAATCAAATG AACAGCCCAC CTTAAAGCAA GAAAAAACAA ATTCAACAAA AGAATCTAAT 208380 AACGAACTTA AAGAAGATCA AATAGAAGAA GAAAAAACAA ATTCAACAAA AGAATCTAAT 208440 CAAAATCATT CTACTAATAA AGAATTAACA TCAAAGCAAA AATGAACCTT GTCACCTATT 208500 TTTATTTGAA ATTTAGAAAA TGAGCCCCTT GGAAGCTCAA GAGCATACCTT GCCCCTATT 208560 AGAGAATTAA CATTTGCCCT AGAGTACGGC TCTAAATCAT AAATCCTTT AATAATTCCA 208620 CTTGAATCAA TATAAGCTAT TTCAAGCAGC AAAAGGTGTAT TTCCATCCA AAAAGACAAA 208680 TTTTGATCTT TTTTAAAAAC AAAAAGCATT CCATTGCCAT ATTCAACTTT TTGAGCACCC 208800 TTTATCATAAA TTTCTTTATC GTAAAAATGA TCAGCAAAAG ATAAAAAAAA CTTAACCCCA AGCAAAAAACA AAAACCGTTT TAAAATTTT TTCAATTATC AGCCTTATTA AAAATCATTT 208920 ATTATAAATTT GAAAATCAAG ATTTTAAAGT AATTCTTAAAA ATATTTTTAT TTAAAACAAT AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGGTGTAG CCTCGCCAAA AGGGTTACGAA AACACTTTTAT TTTTTCTCAAA ATATTTTTAT CAAAAACAAA AGGGAATAAAA TGCACAAAAA AAAATCGATA CTGAGAAAAG GCATATTTA AAATCATTT ACCTCAAATAA AAAATCGATA CTGAGAAAAT TAACTTTTTAT CAAAAACAAA AGGGAATAAAAT TGTAAAGTCT GCTTCCTAGC ATAAAGAAAT TCAACTTCTT CAACAATCATA AGGCAATAAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTTCTT CAACAACCAAA ATAAAAAAATA TGTAAAAGTA ATAAATAAAA AACTGTAATA CCCATACCAAA GCCTTTAGCC AAAAGAATAA TAAAGAAAAA ATAAATAAAA AACTGTAATA CCCATACCAAA GCCTTTAGCC AAAAGAATAA TAAAGAAAAA ATAAATAAAA AACTGTAATA CCCATACCAAA GCCTTTAGCC 209340 ATAAAAAAATA TAAAGAAAAAA TAAAAAACAT GAAAATAAAAT	CATAATGCAG AAAGAGGAA	T CAACTCTTTG	GTATATATTC	TAAAAGCAGA	AGAATTTGCA	208200
AACGAACTTA AACAGCCCAC CTTAAAGCAA GAAAAAACAA ATTCAACAAA AGAATCTAAT AACGAACTTA AAGAAGATCA AATAGAAGAA GAACTTCAAG AAATCAAAGC CCAATAATTT CAAAATCATT CTACTAATAA AGAATTAACA TCAAAGCAAA AATGAACCTT GTCACCTATT CAAAATCATT CTACTAATAA AGAATTAACA TCAAAGCAAA AATGAACCTT GCCACCTATT TTTATTTGAA ATTTAGAAAA TGAGCCCCTT GGAAGCTCAA GAGCATACCTT TACCTTATAA AGAGGAACTTAA CATTTGCCCT AGAGTACGGC TCTAAATCAT AAATCCTTT AATAATTCCA AGAGAATTAA CATTTGCCCT AGAGTACGGC TCTAAATCAT AAATCCTTT AATAATTCCA CTTGAATCAA TATAAGCTAT TTCAAGCAGC AAAGGTGTAT TTTCCATCCA AAAAGACAAA CTTTGAACCTT TTGCCCTATC AAGCTCATTA GATGCTATTT TTACAAAAAA CTTAACCCCA ATGTAACCTT TTGCCCTATC AAGCTCATTA GATGCTATTT TTACAAAAAA CTTAACCCCA ATGTAACCTT TTGCCCTATC CAAGCTCATTA GATGCTATTT TTACAAAAAA CTTAACCCCA ACTAAAAACA AAAACCGTTT TAAAATTTT TTCAATTATC AGCCTTATTA AAAATCATTT AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGCGGTT ACTAGTGTAG CCTCGCCAAA AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGTGTAG CCTCGCCAAA AGTGTACGAA AACATTTTAT TTTTGCAAA ATTAAAAACA GCATATTTTA AATGGGTTTT AGCAATAAAAT TGTAAAGCTC GCTTCCTAGC ATAAAGAAAA CACCAGAAC 209200 AGCAATAAAAT GTGACTTGA GAACATTCC TTTAACAGAA TCCATCCTT CAACATCATA AGAAAAAAAATA TGTAAAACAC GCATACTATA CCCATACAAA GCCTTTAGCC ATAAAAAAAAA GTGCTCTTGA GAACATTCC TTTAACAGAA TCCATGCTAG AACCCAGAAC AAAAGAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAA AAAGCCAAAAT ATAAAAAAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAA AAAGCCAAGAAC ATAAAAAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAA AAAGCCAAGAAC ATAAAAAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAA AAAGCCAAGAAC ATAAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAA AAAGCCAAGACC CTCTATCACT ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAAGGTC TTAGAGCTC CTCTATCACT COTGAATTTT TACTTCTTT TTCTTTTAAA GGCCTTTCTT TTAAAATATT TACAAAACTT GAAAATAAAT CCCATCAATT COGGACATTCG CTCTTTCTT TTCTTTTAAA AGCAAAACTT GAAAATAAAT AAAGCAAAATT COGGACATTCG CCACATTGCT CGCAAAAAAC TTCAAAAATTA TACTTTCCCA AACGAAAATT COCTCAAATTT TACATAAAA TAAGGAATCT TAAAAACTT TACTTTCCCA AACGAAAATT COCTCAAATTT TACATAATATT AAAGAATATTA AAATCATTA TAATTAAAAAA COOTAGATT TACA	AATGATACAT TTTTGCTTG	A TGCAATTGAT	GAGATTGCCT	CAACAATAAG	TATTTTCAAA	208260
AACGAACTTA AAGAAGATCA AATAGAAGAA GAACTTCAAG AAATCAAAGC CCAATAATTT CAAAATCATT CTACTAATAA AGAATTAACA TCAAAGCAAA AATGAACCTT GTCACCTATT 208500 TTTATTTGAA ATTTAGAAAA TGAGCCCCTT GGAAGCTCAA GAGCATACCT TACCTTATAA 208560 AGAGAATTAA CATTTGCCCT AGAGTACGGC TCTAAATCAT AAATCTCTT AATAATCCA 208620 CTTGAATCAA TATAAGCTAT TTCAAGCAGC AAAGGTGTAT TTTCCATCCA AAAAGACAAA 208680 TTTTGATCTT TTTTAAAAAC AAAAAGCATT CCATTGCCAT ATTCAACTTT TTGAGCACCC ATGTAACCTT TTGCCCTATC AAGCTCATTA GATGCTATTT TTACAAAAAA CTTAACCCCA ATGTAACCTT TTGCCCTATC AAGCTCATTA GATGCTATTT TTCAATAAAA CTTAACCCCA ATGTAACCTT TTGCCCTATC AAGCTCATTA GATGCTATTT TTCAATAAAA CTTAACCCCA 208800 TTTATCATAA TTTCTTTATC GTAAAAATGAT TCAACAAAGA ATAAAAAAGC CATCGACAAA ACTAAAAACA AAAACCGTTT TAAAAATTTT TTCAATTATC AGCCTTATTA AAAATCAATTT 208920 ATTATAATTT GAAATATAAG ATTTTAAAGT AATTCTTAAA ATTTTTTAT TTAAAACAAT 208980 AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGTGTAG CCTCGCCAAA 209100 CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGATATT AATTTTTAT CAAAAACAAA 209100 AGTGTACGAA AACATTTTAT TTTTGTCAAA ATTAAAAACA GCATATTTTA AATGGGTTTT AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTTCTT CAACATCATA AGCAATAAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTTCTT CAACATCATA ATAAAAAATA GTGCTCTTGA GAACATCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC AAAAGAATA TAAAGAAAAA GTATAAAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC ATAAAAAAATA TAAAGAAAAA GTATAAAAAA TAAAAAACTT GAAAATAAAT AAAGCAAAAT ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAACTGAT GCCTACAATT TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT CTGGACATTCG ATATCACCAA GCTTAGCAG CAGGTGGGA CAAACAGATC GACTACATT COGACATTCG ATATCACCAA GCTTAGCAG CAGGTTGGGA CAAACAGATC GATTAAGTCC AACCTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT CCCTCAAAATTT TACTTAAAAA TAAGTATTTA AAATACTATA TAATTAAATA TAATAAAAAA 209760 CCCTCAAAATTT TACTTAAAAA TAAGTATTTA AAATACTATA TAATTAATTA TAATAAAAAA 209760	ААААТААТАА СААССААСА	A CGAAAACATT	GATAATAATG	AAGAAAATAA	CAATACAAAT	208320
CAAAATCATT CTACTAATAA AGAATTAACA TCAAAGCAAA AATGAACCTT GTCACCTATT 208500 TTTATTTGAA ATTTAGAAAA TGAGCCCCTT GGAAGCTCAA GAGCATACCT TACCTTATAA 208560 AGAGAATTAA CATTTGCCCT AGAGTACGGC TCTAAATCAT AAATCTCTTT AATAATTCCA 208620 CTTGAATCAA TATAAGCTAT TTCAAGCAGC AAAGGTGTAT TTTCCATCCA AAAAGACAAA 208680 TTTTGATCTT TTTTAAAAAC AAAAAGCATT CCATTGCCAT ATTCAACTTT TTGAGCACCC 208740 ATGTAACCTT TTGCCCTATC AAGCTCATTA GATGCTATTT TTACAAAAAA CATCAACCCA 208860 ACTAAAAACA AAAACCGTTT TAAAAATTTT TTCAATTATC AGCCTTATTA AAAATCATTT 208920 ATTATAATTT GAAATATAAG ATTTTAAAGT AATTCTTAAA ATATTTTAT TTAAAACAAT 208980 AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGTGTAG CCTCGCCAAA 209040 CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGATATT AATTTTTTAT CAAAAACAAA 209100 AGCAATAAAAT TGTAAAGTC GCTTCCTAGC ATAAGGAAAT TCAACTTCTT CAACATCATA 209220 ATAAAAAAATA GTGCTCTTGA GAACATTCT TTTAACAGAA TCCATGCTGA AACCCAGAAC AAAAGAATAA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAAAAAATA GTGCTCTTGA GAACATCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC ATAAACAATA TAAAGAAAAA GTATAAAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAAAAATA TAAAGAAAAA GTATAAAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAT AAAGCAAAAT 209400 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAAAGTCC TCCTACCT TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGACTTTCT TTAAAGTACT GCAAAACAAAT 209520 GTAGTGACAA TTAGGACAAC CTTCCCAAAA GCAGAAACT GGACCTACAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAG ACAGTTGGGA CAAACAGATC GATTAAGTCC 209540 AACCTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT AACTTAATA TAATAAAAAA 209700 CCTCAAAATTT TACTTAAAAA TAAGTATTTA AAAGAAAATT TAATTAAAAAA 209700 CCTCAAAATTT TACTTAAAAA TAAGGAATCTTA AAATACTATA TAATTAAATAA TAATAAAAAA 209700 CCTCAAAATTT TACTTAAAAA TAAGTATTTA AAATACTATA TAATTAAATAA TAATAAAAAA 209760	GAATCAAATG AACAGCCCA	C CTTAAAGCAA	GAAAAAACAA	ATTCAACAAA	AGAATCTAAT	208380
AGAGAATTAA CATTTAGAAAA TGAGCCCCTT GGAAGCTCAA GAGCATACCT TACCTTATAA 208600 AGAGAATTAA CATTTGCCCT AGAGTACGC TCTAAATCAT AAATCTCTTT AATAATTCCA 208600 CTTGAATCAA TATAAGCTAT TTCAAGCAGC AAAGGTGTAT TTTCCATCCA AAAAGACAAA 2086800 TTTTGATCTT TTTTAAAAAC AAAAAGCATT CCATTGCCAT ATTCAACTTT TTGAGCACCC 2087400 ATGTAACCTT TTGCCCTATC AAGCCATTA GATGCTATTT TTACAAAAAA CTTAACCCCA 208800 ATGTAACACTT TTGCCCTATC AGGCTCATTA GATGCTATTT TTACAAAAAA CTTAACCCCA 208800 ACTAAAAAACA AAAACCGTTT TAAAAATTTT TCAAGTATAC AGCCTTATTA AAAATCATTT 208920 ATTATAATTT GAAATATAAG ATTTTAAAATTT TAAAAACAAT 2089800 ACTAAAAAACA AAAACCGTTT TAAAATTTT TAAAATTATC AGCCTTATTA AAAATCATTT 2089800 ACTATATAATTT GAAATATAAG ATTTTAAAAT AATTTTTATT TTAAAAACAAT 2099040 ACTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGGATATT AATTTTTATT CAAAAAACAAA 2091000 AGTGTACGAA AACATTTTAT TTTTGTCAAA ATTAAAAAACA GCATATTTTA AATGGGTTTT 2091600 AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGAAAAC GCATATTTTA AATGGGTTTT AAAAAAAAAA	AACGAACTTA AAGAAGATC	A AATAGAAGAA	GAACTTCAAG	AAATCAAAGC	ССААТААТТТ	208440
CTTGAATCAA TATAAGCTAT TTCAAGCAGC TCTAAATCAT AAATCTCTTT AATAATTCCA CTTGAATCAA TATAAGCTAT TTCAAGCAGC AAAGGTGTAT TTTCCATCCA AAAAGACAAA CTTGAACCTT TTTTAAAAAC AAAAAGCATT CCATTGCCAT ATTCAACTTT TTGAGCACCC ATGTAACCTT TTGCCCTATC AAGCTCATTA GATGCTATTT TTACAAAAAA CTTAACCCCA ATGTAACCTT TTGCCCTATC AAGCTCATTA GATGCTATTT TTACAAAAAA CTTAACCCCA CTTATCATAA TTTCTTTATC GTAAAAATGA TCAGCAAAAG ATAAAAAAGA CATCGACAAA CCTAAAAACA AAAACCGTTT TAAAATTTTT TTCAATTATC AGCCTTATTA AAAATCATTT CAAAAACA AAAACCGTTT TAAAATTTTT TCAATTATC AGCCTTATTA AAAATCATTT CAAAGAACA AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGTGTAG CCTCGCCAAA CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGATATT AATTTTTAT CAAAAACAAA CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGATATT AATTTTTAT CAAAAACAAA AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGAGAAT TCAACTTCTT CAACATCATA AGCAATAAAT GTGCTCTTGA GAACATTCT TTTAACAGAA TCCATGCTAG AACCCAGAAC AAAAGATGCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC ATAAAAAAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC ATAAAAAAAA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAT AAAGCAAAAT ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAT AAAGCAAAAT ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACCTT GAAAATAAATA AAAGCAAAAT ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACCTT TTAAGCTCTT GAAAAGGACT CTCATACCAT GCCTACCAAA GCCTACCAAA GGCCTTTCCTT TAACCATCTT GCCTACCATT COOPSEO GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAAT GCCTACAATT COOPSEO GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAT GCCTACAATT COOPSEO CCTCAAAATTT AACCTAATTT AAGGAATACTT AAAAAACTTA TAATTAAATTA	CAAAATCATT CTACTAATA	A AGAATTAACA	TCAAAGCAAA	AATGAACCTT	GTCACCTATT	208500
CTTGAATCAA TATAAGCTAT TTCAAGCAGC AAAGGTGTAT TTTCCATCCA AAAAGACAAA 208800 TTTTGATCTT TTTTAAAAAC AAAAAGCATT CCATTGCCAT ATTCAACTTT TTGAGCACCC 208740 ATGTAACCTT TTGCCCTATC AAGCTCATTA GATGCTATTT TTACAAAAAA CTTAACCCCA 208800 TTTATCATAA TTTCTTTATC GTAAAAATGA TCAGCAAAAG ATAAAAAAGA CATCGACAAA 208860 ACTAAAAACA AAAACCGTTT TAAAATTTTT TTCAATTATC AGCCTTATTA AAAATCATTT 208920 ATTATAATTT GAAATATAAG ATTTTAAAGT AATTCTTAAA ATATTTTAT TTAAAACAAT 208980 AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGTGTAG CCTCGCCAAA 209040 CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGATATT AATTTTTTAT CAAAAACAAA 209100 AGGGTACGAA AACATTTTAT TTTTGTCAAA ATTAAAAACA GCATATTTA AATGGGTTTT 209160 AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTTCTT CAACATCATA 209220 ATAAAAAAATA GTGCTCTTGA GAACATTCT TTTAACAGAA TCCATGCTAG AACCCAGAAC 209340 ATAAACAATA TAAAGAAAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAT AAAGCAAAAT 209400 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GAACATACAT GAAAAGAAT 209580 TGGACATTCG CTCTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCCCAAA AGCAGAAACT GGACCTACAAT 209580 TGGACATTCG ATATCACCAA GCTTAGCAG ACAGTTCGGA CAAACAGATC GATTAAGTCC 209540 AACTTTTTCG CCACATTGCT CGCAAAAAAC TACAAATTT ACCTTTCCCA AACGAAAATT 209500 CCTCAAAATTT TACCTAAAAA TAAGTATTA AAAAAACTT AAATAAATAA AACTTTCCCA AACGAAAATT 209700 CCTCAAAATTT TACCTAAAAA TAAGTATTTA AAAAAACTT TAATTAATTA TAATAAAAAAA 209760	TTTATTTGAA ATTTAGAAA	A TGAGCCCCTT	GGAAGCTCAA	GAGCATACCT	ТАССТТАТАА	208560
ATGRANCET TTTTAAAAAC AAAAAGCATT CCATTGCCAT ATTCAACTTT TTGAGCACCC 208800 ATGRAACCTT TTGCCCTATC AAGCTCATTA GATGCTATTT TTACAAAAAA CTTAACCCCA 208800 TTTATCATAA TTTCTTTATC GTAAAAATGA TCAGCAAAAG ATAAAAAAGA CATCGACAAA 208860 ACTAAAAACA AAAACCGTTT TAAAATTTTT TTCAATTATC AGCCTTATTA AAAATCATTT 208920 ATTATAATTT GAAATATAAG ATTTTAAAGT AATTCTTAAA ATATTTTTAT TTAAAACAAT 208980 AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGTGTAG CCTCGCCAAA 209040 CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGATATT AATTTTTAT CAAAAACAAA 209100 AGTGTACGAA AACATTTTAT TTTTGTCAAA ATTAAAAACA GCATATTTTA AATGGGTTTT 209160 AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCCATGCTAG AACCCAGAAC 209280 AAAAGATGCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAA AAAGCAAAAT 209400 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGGCTTTTCT TTAGAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAAATTT TACTTAAAAA TAAGGAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAAATTT TACTTAAAAA TAAGGTATTA AAAAAAACTT AAATTAATTA TAATAAAAAAA 209760	AGAGAATTAA CATTTGCCC	P AGAGTACGGC	TCTAAATCAT	AAATCTCTTT	ААТААТТССА	208620
ATGTAACCTT TTGCCCTATC AAGCTCATTA GATGCTATTT TTACAAAAAA CTTAACCCCA 208860 TTTATCATAA TTTCTTTATC GTAAAAATGA TCAGCAAAAG ATAAAAAAG CATCGACAAA 208860 ACTAAAAACA AAAACCGTTT TAAAATTTTT TTCAATTATC AGCCTTATTA AAAATCATTT 208920 ATTATAATTT GAAATATAAG ATTTTAAAGT AATTCTTAAA ATATTTTAT TTAAAACAAT 208980 AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGTGTAG CCTCGCCAAA 209040 CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGATATT AATTTTTAT CAAAAACAAA 209100 AGTGTACGAA AACATTTAT TTTTGTCAAA ATTAAAAACA GCATATTTTA AATGGGTTTT 209160 AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTCTT CAACATCATA 209220 ATAAAAAAATA GTGCTCTTGA GAACATTCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC 209280 AAAAGATGCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAT AAAGCAAAAT 209400 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAG ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAAATTT TACTTAAAAA TAAGGTATTA AAAATACTTA TAATTAATTA TAATAAAAAAA 209760	CTTGAATCAA TATAAGCTA	TTCAAGCAGC	AAAGGTGTAT	TTTCCATCCA	AAAAGACAAA	208680
TTTATCATAA TTTCTTTATC GTAAAAATGA TCAGCAAAAG ATAAAAAAGA CATCGACAAA 208860 ACTAAAAACA AAAACCGTTT TAAAATTTT TTCAATTATC AGCCTTATTA AAAATCATTT 208920 ATTATAATTT GAAATATAAG ATTTTAAAGT AATTCTTAAA ATATTTTAT TTAAAACAAT 208980 AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGTGTAG CCTCGCCAAA 209040 CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGATATT AATTTTTAT CAAAAACAAA 209100 AGTGTACGAA AACATTTTAT TTTTGTCAAA ATTAAAAACA GCATATTTA AATGGGTTTT 209160 AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTTCTT CAACATCATA 209220 ATAAAAAAATA GTGCTCTTGA GAACATCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC 209340 AAAAGATGCA AAAATGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAAATT TACTTAAAAA TAAGTATTT AAAGAAAAAC TTCAAAATTT TACTTAAAAAA TAAGTATTT AAAGAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAAATT TACTTAAAAA TAAGTATTT AAAGAATATA TAATTAAATAA TAAATAAA	TTTTGATCTT TTTTAAAAA	AAAAAGCATT	CCATTGCCAT	ATTCAACTTT	TTGAGCACCC	208740
ACTAAAAACA AAAACCGTTT TAAAATTTTT TTCAATTATC AGCCTTATTA AAAATCATTT 208920 ATTATAATTT GAAATATAAG ATTTTAAAGT AATTCTTAAA ATATTTTAT TTAAAACAAT 208980 AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGTGTAG CCTCGCCAAA 209040 CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGATATT AATTTTTAT CAAAAACAAA 209100 AGTGTACGAA AACATTTTAT TTTTGTCAAA ATTAAAAACA GCATATTTTA AATGGGTTTT 209160 AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTCTT CAACATCATA 209220 ATAAAAAAATA GTGCTCTTGA GAACATTCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC 209280 AAAAGATGCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAACT GGACCTACAAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAAATT TACCTAAAAAA TAAGTATTTA AAAAAAACT TAAATAAATA TAAATAAAAAA TAAATATTA AACGAAAAA TAAGTATTTA AAAAAAACT TAAATAAATA TAAATAAAAAA TAAAACAATT TACCTAAAAAA TAAGTATTTA AAAAAAACT TAAATAAATA TAAATAAAAAA TAAAACAATT TACCTAAAAAA TAAGTATTTA AAAAAAACT TAAATAAATA TAAATAAAAAA CCCTCAAAATTT TACCTTAAAAAA TAAGTATTTA AAAAAAACTT TAAATAAAAAAA TAAAAAAAAATTTA AAAGAAAAAA TAAAAAAACTT AAATAAATTA TAAATAAAAAAA CCCTCAAAATTT TACCATAAAAA TAAGTATTTA AAAAAAACTTA TAAATAAATTA TAAATAAAAAAAA	ATGTAACCTT TTGCCCTATO	AAGCTCATTA	GATGCTATTT	ТТАСААААА	CTTAACCCCA	208800
ATTATAATT GAAATATAAG ATTTTAAAGT AATTCTTAAA ATATTTTAT TTAAAACAAT 208980 AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGTGTAG CCTCGCCAAA 209040 CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGATATT AATTTTTAT CAAAAACAAA 209100 AGTGTACGAA AACATTTTAT TTTTGTCAAA ATTAAAAACA GCATATTTTA AATGGGTTTT 209160 AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTTCTT CAACATCATA 209220 ATAAAAAAATA GTGCTCTTGA GAACATTCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC 209280 AAAAGATGCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAAATT TACATAATATT AAGGAATACTT AAAGAATAT TAATTAAAAAAA 209760	TTTATCATAA TTTCTTTATC	GTAAAAATGA	TCAGCAAAAG	ATAAAAAAGA	CATCGACAAA	208860
AATAGAATCA CCAAGATCCC ATAAATAATT CAAAGGCGTT ACTAGTGTAG CCTCGCCAAA 209040 CTTTTTCTTT ACCTCAATAA AAATTGCATA CTGAGATATT AATTTTTAT CAAAAACAAA 209100 AGTGTACGAA AACATTTTAT TTTTGTCAAA ATTAAAAACA GCATATTTTA AATGGGTTTT 209160 AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTTCTT CAACATCATA 209220 ATAAAAAAATA GTGCTCTTGA GAACATTCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC 209280 AAAAGATGCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAT AAAGCAAAAT 209400 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAAATTT TACTTAAAAA TAAGTATTTA AAAGTAATTA TAAATAAAAAA 209760	ACTAAAAACA AAAACCGTTT	TTTTAAAAT	TTCAATTATC	AGCCTTATTA	AAAATCATTT	208920
AGTOTACGAA AAATTGCATA CTGAGATATT AATTTTTAT CAAAAACAAA 209100 AGTGTACGAA AACATTTTAT TTTTGTCAAA ATTAAAAACA GCATATTTTA AATGGGTTTT 209160 AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTTCTT CAACATCATA 209220 ATAAAAAAATA GTGCTCTTGA GAACATTCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC 209280 AAAAGATGCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAT AAAGCAAAAT 209400 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAAATTT TACTTAAAAAA TAAGTATTTA AAAGAATATA TAATTAAATAA TAATAAAAAAA 209760	ATTATAATTT GAAATATAAG	ATTTTAAAGT	AATTCTTAAA	ATATTTTTAT	ТТААААСААТ	208980
AGTGTACGAA AACATTTAT TTTTGTCAAA ATTAAAAACA GCATATTTA AATGGGTTTT 209160 AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTTCTT CAACATCATA 209220 ATAAAAAAATA GTGCTCTTGA GAACATCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC 209280 AAAAGATGCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAT AAAGCAAAAT 209400 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAAATTT TACCATATTT AAGGAATACT AAAACAGATA TAAATAAAAAA 209760	AATAGAATCA CCAAGATCCC	TTAAATAATT	CAAAGGCGTT	ACTAGTGTAG	CCTCGCCAAA	209040
AGCAATAAAT TGTAAAGTCT GCTTCCTAGC ATAAGGAAAT TCAACTTCTT CAACATCATA 209220 ATAAAAAAATA GTGCTCTTGA GAACATTCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC 209280 AAAAGATGCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAAACTT GAAAATAAAA AAAGCAAAAT 209400 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAATTT TACTTAAAAA TAAGTATTTA AAATACTATA TAATTAATTA TAATAAAAAA 209760	CTTTTTCTTT ACCTCAATAA	AAATTGCATA	CTGAGATATT	AATTTTTTAT	САААААСААА	209100
ATAAAAAATA GTGCTCTTGA GAACATTCTC TTTAACAGAA TCCATGCTAG AACCCAGAAC 209280 AAAAGATGCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAT AAAGCAAAAT 209400 ATCAATATTA ATCCCAAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAATTT TACTTAAAAA TAAGTATTTA AAATACTATA TAATTAATTA TAATAAAAAAA 209760	AGTGTACGAA AACATTTTAT	TTTTGTCAAA	ATTAAAAACA	GCATATTTTA	AATGGGTTTT	209160
AAAAGATGCA AAAATAGAAA ATAAATAAAA AACTGTAATA CCCATACAAA GCCTTTAGCC 209340 ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAAACTT GAAAATAAAT AAAGCAAAAT 209400 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAATTT TACTTAAAAA TAAGTATTTA AAATACTATA TAATTAATTA TAATAAAAAA 209760	AGCAATAAAT TGTAAAGTCT	GCTTCCTAGC	ATAAGGAAAT	TCAACTTCTT	CAACATCATA	209220
ATAAACAATA TAAAGAAAAA GTATAACAAA TAAAAAACTT GAAAATAAAT AAAGCAAAAT 209400 ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAATTT TACTTAAAAA TAAGTATTTA AAATACTATA TAATTAATTA TAATAAAAAA 209760	ATAAAAAATA GTGCTCTTGA	GAACATTCTC	TTTAACAGAA	TCCATGCTAG	AACCCAGAAC	209280
ATCAATATTA ATCCCAAAAT GGAAAAGCCT TACAAAGGTC TTAGAAGCTG CTCTATCACT 209460 TACCATTCTT GCTCTTTCTT TTCTTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAAATTT TACTTAAAAAA TAAGTATTTA AAACTATTA TAATTAATTA TAATAAAAAAA 209760	AAAAGATGCA AAAATAGAAA	ATAAATAAAA	AACTGTAATA	CCCATACAAA	GCCTTTAGCC	209340
TACCATTCTT GCTCTTTCTT TTCTTTAAA GGGCTTTTCT TTAAGTTCTT GAAAAGGACT 209520 GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAATTT TACTTAAAAA TAAGTATTTA AAAGTATTA TAATTAATTA TAATAAAAAA 209760	АТАААСААТА ТАААGААААА	GTATAACAAA	TAAAAAACTT	GAAAATAAAT	AAAGCAAAAT	209400
GTAGTGACAA TTAGGACAAC CTTCTCCAAA AGCAGAAACT GGACCTACAT GCCTACAATT 209580 TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAATTT TACTTAAAAA TAAGTATTTA AAAGTATTA TAATTAATTA TAATAAAAAA 209760 TATATGAATA TTACATATTT AAGGAATACT AAAACATGAA ATGAATACTATA TAATAAAAAAA	АТСААТАТТА АТСССААААТ	GGAAAAGCCT	TACAAAGGTC	TTAGAAGCTG	СТСТАТСАСТ	209460
TGGACATTCG ATATCACCAA GCTTAGCAGC ACAGTTGGGA CAAACAGATC GATTAAGTCC 209640 AACTTTTTCG CCACATTGCT CGCAAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAATTT TACTTAAAAA TAAGTATTTA AAACATATA TAATTAATTA TAATAAAAAA 209760 TATATGAATA TTACATATTT AAGGAATACT AAAACATGAA ATGAATA TAATAAAAAA	TACCATTCTT GCTCTTTCTT	ТТСТТТТААА	GGGCTTTTCT	TTAAGTTCTT	GAAAAGGACT	209520
AACTTTTCG CCACATTGCT CGCAAAAAC TTCAAAATTT ACCTTTGCCA AACGAAAATT 209700 CCTCAAATTT TACTTAAAAA TAAGTATTTA AAATACTATA TAATTAATTA TAATAAAAAA 209760 TATATGAATA TTACATATTT AAGGAATACT AAAACATGAA ATTACATATA TAATAAAAAA	GTAGTGACAA TTAGGACAAC	CTTCTCCAAA	AGCAGAAACT	GGACCTACAT	GCCTACAATT	209580
CCTCAAATTT TACTTAAAAA TAAGTATTTA AAATACTATA TAATTAATTA TAATAAAAAA 209760	TGGACATTCG ATATCACCAA	GCTTAGCAGC	ACAGTTGGGA	CAAACAGATC	GATTAAGTCC	209640
TATATGAATA TTACATATTT AAGGAATACT AAAAGATGA ATTACAT	AACTTTTTCG CCACATTGCT	CGCAAAAAAC	ТТСААААТТТ	ACCTTTGCCA	AACGAAAATT	209700
TATATGAATA TTACATATTT AAGGAATACT AAAACATGAA ATCGGGATTT GCAGCAATAC 209820	ССТСАААТТТ ТАСТТААААА	TAAGTATTTA	AAATACTATA	ТААТТААТТА	AAAAAAA	209760
	TATATGAATA TTACATATTT	AAGGAATACT	AAAACATGAA	ATCGGGATTT (GCAGCAATAC	209820

-	•					
TTGGTAGACC	ATCAACTGGA	AAATCTACC	C TTTTAAATTO	C AATATGCGG	A CATAAAATAT	209880
СААТААТАТС	CCCTATTCCG	CAAACAACT	A GAAATAATAT	C AAAAGGAATO	TTTACGGACG	209940
ACAGAGGACA	AATTATTTT	` ATAGACACA	C CGGGATTTC	A TCTGAGTAAA	AAAAAGTTTA	210000
ATATTGCAAT	GATGAAAAAT	ATCCACTCT	r caataggag <i>a</i>	AGTTGAACTC	ATTTTATACA	210060
TAATAGACAT	TCAAGACAAA	CCTGGAGAA	G AAGAAAATAA	AATGTTAGAA	ATAATTAAAA	210120
ACTCTAAAAT	ТАААТТТТТА	GTAATACTT	ATAAAATTGA	CCTTAAAAAC	ACAAAAATAA	210180
AAGAAATAAC	GCAATTTCTA	AAAGAAAAA	GAATAGAAGA	TAGTAATATA	TATAAAATTA	210240
CTGCTGAAAA	AAAAATTAAC	ACAGAAGAAC	ТАААААТА	AATTTATGAA	AATTTTTCAG	210300
AAGGCCCACT	ТТАТТАТССА	CAAGAATACT	ACACCGATCA	AGAAATAAAT	TTTAGAATTA	210360
GTGAAATAAT	AAGGGAAAAA	GCTATTGAAA	ACCTAAAAGA	AGAACTCCCC	TATTCTTTGT	210420
ATGTGGATAT	TGATACCTTA	GAAAATAAAA	AAGGAAGTCT	TTTTATCAGA	GCAAATATTT	210480
TTGTAGCCAA	TGAAAGTCAA	AAAGGAATAA	TTGTAGGAAA	AAACGGAAAA	GAAATAAAAT	210540
CAATAGGAGA	AAGGGCAAGA	AAAACAATTG	CAAAAATTTT	TGAAACAAAA	TGCAACCTAT	210600
TCTTACAGGT	ААААСТТААА	AAAAATTGGA	ACAAAGAAGA	TAAGCTAATA	AAAAGACTTA	210660
ТАААТТААСА	AACATTAAAC	TGCATTTTTT	TAAATTCTTG	AAACTTGAAA	AACAAAATGC	210720
TAAAATTTAC	СТАААТТТАА	ATTAGGAATA	AAATGTGAAA	ACAGCACACT	GGGCAGATTT	210780
TTACGCAGAA	ААААТАААА	AAGAAAAAGG	TCCAAAAAAC	TTATACACAG	TAGCATCGGG	210840
AATTACTCCA	TCTGGAACTG	TGCACATTGG	CAATTTTAGA	GAAGTTATTT	CGGTAGACCT	210900
			AAAAGTAAGG			210960
			TATGCCAGAA			211020
					GTTATGCAAG	211080
					CTGAATTCAT	211140
					TTGCACTTGA	211200
					TTGAAGAAAA	211260
TTGGTATCCA .	ATCAGTGTAT	TTTGTACAAA	ATGCAATAGA	GACACAACAA	CTGTAAATAA	211320
TTATGACAAT						211380
CATAAGAACC						211440
ATATGAAAAA (GTTGACTTTG	AGCCTGCAGG	AAAAGACCAC	CACAGCAGTG	GCGGCAGTTT	211500
TGATACATCT A	AAAAATATTG	ТАААААТТТТ	TCAAGGTAGC	CCTCCTGTAA	CATTTCAATA	211560

WO 98/58943 /US98/12764

			277			
TGACTTTATT	TCAATAAAAG	GACGTGGTGG		TCCTCATCGG	GAGATGTCAT	211620
ATCGCTCAAA	GATGTTCTTG	AGGTCTATAC	ACCCGAAGTC	ACAAGGTTTT	TATTTGCTGC	211680
TACTAAACCA	AATACTGAAT	TTTCAATCTC	ATTTGATCTT	GATGTAATTA	AAATATACGA	211740
AGATTACGAC	AAATTTGAGA	GAATCTACTA	TGGAGTAGAA	GATGTAAAAG	AAGAAAAAA	211800
AAGAGCATTT	AAAAGAATTT	ACGAACTATC	TCAACCATAC	ATGCCAAGCA	AAAGAATCCC	211860
TTATCAGGTC	GGATTCAGAC	ATTTAAGTGT	AATCAGTCAA	ATATTTGAAA	АТААТАТААА	211920
TAAAATTTTA	AATTACTTGA	AAAACGTTCA	AGAAGATCAA	AAAGACAAAC	ТААТАААТАА	211980
AATAAATTGC	GCAATTAATT	GGATAAGAGa	TTTTGCACCC	GAAGATTTCA	AATTTTCATT	212040
AAGATCTAAA	TTTGATAATA	TGGAAATACT	AGAAGAAAAT	AGCAAAAAAG	CAATTAATGA	212100
ACTTTTGGAT	TTTTTAAAGA	AAAATTTTGA	AGTTGCCACA	GAACAAGACA	TTCAAAACGA	212160
ААТАТАТАА	ATTTCAAGAG	TATAATAAAA	AGAACCTGCT	TTATTTTTA	AACAAATTTA	212220
TAAAATTTTA	ATTGACAAAG	AAAAAGGGCC	CAAATTAGCT	GGATTTATCA	AAATAATTGG	212280
TATTGATCGC	TTTGAAAAGA	TTACAAGCAA	ATACGTTTAA	GCCTTAAAAT	ТААТААААА	212340
TAAGTCATAA	TTATATGACT	TATTTACACT	TTAATACAAA	TAAATCGTTA	CTTTAACTTT	212400
CCTTGACTAG	CAACAGATTC	CATTGCCTTT	TTAATTTTGC	TCTCATCACC	TAGATAGTAA	212460
TGTTTAATGG	GATTTAAATC	TTTATCTAAT	TCGTAAACTA	AAGGAATGCC	TGTGGGAATG	212520
TTAAGCTTTA	AAACATCTTC	TTCACTTAAA	TTGTCAAAAT	ATTTAACAAG	CGCTCTTAAA	212580
GAATTACCGT	GAGCAGCAAC	AATAACTTTT	TTACCTTCAA	GAACTTCTTT	TGCAATCTCA	212640
TCAGTCCAAT	AAGGAATAAC	TCTTGCAACA	GTATCTTTAA	GGCACTCTGT	TGAAGGAAGT	212700
TCCCTTTTGG	GGATATGTTT	ATATCTTGGA	TCTTTTATGG	GATGACGATC	ATCAGACTCA	212760
TCCAAAGACA	TTGGGGGCAC	ATCATAACTA	CGTCTCCAAA	TTAAAACCTT	ATCTTCCCCA	212820
TATTTTGCAG	CTGTTTCTGA	CTTATTTAAA	CCTTGCAAAG	CTCCATAGTG	CCTTTCATTT	212880
AATCTCCAGG	TTTTTTTTAC	АСТААТАТАА	GATTGCCCTA	ATTCTCGCAA	AATAATATTT	212940
AAAGTGTCAT	TAGCTCTTGA	CAACAAAGAA	CTAAAAGCAA	TATCAAAAGA	ATAGCCTTCT	213000
TGTTTGAGAA	GCAAACCCGC	CTCAACAGCC	TCATCGATAC	CCTTGTCAGA	AAGTTTAACA	213060
TCTGTCCAAC	CAGTAAAAAG	ATTTTCTTTA	TTCCACTCAC	TCTCTCCGTG	TCTTACTAAA	213120
ACTAATTTAT	ACATAAAATC	TCCTAGCATA	TTATTTTATT	TACCAATACT	ААТААТТАТА	213180
AATTAGCATA	AAATCTAGTC	AAGATTTAAA	CCTTAGTAAT	TAAATAATGA	ТАТАСТТТАА	213240
AATACATTAA	GCTTTAAGTT	TATCAAGCAA	GGAAAAGAAT	TTATGGAAAA	ТСАААААТТ	213300
TTGGTAGCAA	AACATGCAAT	TGATCACTAT	ATCAAAAGCA	ATATGAACCT	TGGAATCGGA	213360

ACAGGTACA	A CTATTTATTA	TGCAATAAAA	TATCTAAGCG	AAAAGATAAA	ATCGGGTAGC	213420
TTAAAAAATT	r taaaattcta	A CACAACAAGI	' AGTGATACAA	AATATTTACT	CTCAAAAGAA	213480
CAAATTCCT'	r atgaatcaaa	TTTTTCAAAA	CTTAATAAAA	ATCTAGACAT	TGCAATTGAT	213540
GGAGCTGAT	G AAATTTTATT	' AGAAAAAAA	AGCTTAATAA	AGGGAATGGG	GGGTGCTCAT	213600
CTAATGGAGA	A AAGTAATAGO	СТАСААТТСА	GAAACATTGC	TAATAATAGC	AGATGAAACC	213660
AAAATTGTT	A AAAAATTAGG	AACAAAAATG	CCTATTCCCA	TAGAAGTTGC	CCAAAATGCT	213720
GTTGGATTT	A TTATGACTAG	ACTTGAAGAA	ATGAATTTAG	AGGCAACCTT	GAGAATTTGT	213780
AAAGAAAAGA	A AAGGCCCCAC	TATAACTGAT	AACAATAATT	ATATCTTAGA	TGTAAAAATG	213840
CATGTGGAAZ	ATCCTGAAGG	AACAGAAAAA	TACTTCAAAC	TATTTCCAGG	TATACTTGAG	213900
ATTGGAATAT	TCAACCATAA	AAACACAAGA	ATAGTTTATT	ACCAAGACAA	ACAAATCAAG	213960
GAAGCCTAAG	CTTAACTTTA	AAAAGTTAT	CATTAAAATG	GTTTATAATT	ТТТАСТАААТ	214020
AAAAATTTAA	CTTAAACCTT	TCTCTCCCTT	TTAATAGCAT	AATATTATCA	TCAAAAACAA	214080
ACTTTTTACT	' TAAAGTTGAG	CAGTAATTAA	TAAACTGAAA	AAATTGTTTT	TCATTATACT	214140
CAAATCTAAG	CCTAAGAGCC	CTCAAGCTGA	CACCTTGAAT	GGTTCCAAGC	CCTTGAATAA	214200
AATGATAAAC	AAAAAACTCC	AAATCCTCTA	ACAATTCAAA	CGTTACTAAG	TGATTATTTG	214260
CTTTGACAAA	ACTACCAGTT	TTTCTAATCA	AAGCTCTTAC	ATTATTATTC	TTGTCATTAC	214320
AAAAAAGCAA	ACTTACAGCA	TACAATCCTA	ATCCTAAATG	CGGCTTTAAC	TCCCAATTTA	214380
GCTTATTGTG	CCTGCTCTCA	TGCCCCTTTA	ATGCAAAATT	AGTAATTTCA	TAATTAATGT	214440
AGCCATTGGA	TTCTAGACAC	TCCAGAGCAC	AAAACCACAG	TTTTTCCGAA	TCAATACTGT	214500
TATCAAAATC	TCTCAAGACA	AAGCCTTCCT	CTTCACATAT	AAAATCGCTA	АААСАААТАТ	214560
GCTCAGGCAT	ATATGAAAGC	AATTCTTTgc	AAATCTCGCT	TGAGATGAGA	TTTTTTTTGC	214620
AAAGGCATAT	TGACAGTCAT	GTCAATATTC	AAATCAAAAG	GAAACTTTCT	AATATTGTTA	214680
ATCAAAATAT	TCAATTTTTT	ATAAGAAATT	TCGGGTATCC	CCACAATCTT	TCTAAACTCT	214740
AAAGAAAAAC	TTTGAACATT	AAGATTAATT	CTAGTAATAC	AAAATTCATC	CAAAAGTTTG	214800
AATTTTTCAA	AATCAACATA	ACCCGGAATA	ATTTCTAAAG	TAAATTCTTC	TAATAACTCC	214860
АААТТААТАТ	ACTTGGACAA	AGAAGTGAAA	ATAAATTTTA	AATTATCTTG	ССТАGАТААА	214920
САААААТСТА	CGTGCTTAAT	GTAAAGTGTT	TTTATAATTG	GATGACCCAG	CAAGATTAAA	214980
TGACATTTTA	ATTCCTCTAA	AATTCTATTA	AAAATGCTAA	AATCTTTACA	ACAAAATGAC	215040
АААТТААТАТ	AAAGACTTAA	CTCGACAAGA	GGTAAAAGAT	CTACTCTCAT	AATTGGTCTT	215100

			279			
TTAAAAATTT	T AGGTTTAATT	' АТААСАТАТА	TAAAGTATAA	АТАТТАААТ	' ATATTTAAAA	215160
AATACAATA	A ATAAGGTAGA	TTGAAGGAGA	TTTTTTAATG	ACCAAAGACT	' АСТАСААТАТ	215220
ACTTGGAATA	А СААААААТС	CTAGTAATGA	GGAAATAAAA	AAAGCTTACA	AAAAATTGGC	215280
AATAAAATAI	CACCCAGACA	AAAACAAGGG	AAACAAAATA	GCTGAAGAAA	AGTTTAAAGA	215340
AATAAATGAG	GCTTATGAAA	TTTTATCTTC	TCCTGATAAA	AAAAGAAATT	ATGACTCTTT	215400
GGGTAACACA	AATTTTAATG	GCAACAACGA	CCATTTTGAA	AGAGAATTTA	GCAGCACAAG	215460
ATTTGGCAAT	TTTGAAGATT	TAGATTTTT	TTCCAAAATC	TTTGGCGGAT	CCTCAAGAAA	215520
AACAGCAGAC	AGAGAAATAA	ТТАТАААТАТ	TTCACTTTAT	GATGCTTATA	TGGGAAGTAA	215580
AAAAATAATA	CTTATAAACA	ACAAAAAAT	CGAGGTAATA	ATTCCAAAAG	GAACATTAGA	215640
AACAACTACA	АТААААТА	ACAACAAAGG	TCCCATTAAT	CCAATTTCTG	GAATAAAAGG	215700
AAGCTTAATA	GTCAAATTTA	ATATATCAAG	ТАДАДАТТ	TTTAAACTGA	ATGGAAAAAC	215760
CTTAGAAACA	ACAATAGAAG	TTTACCCCTG	GGAAATAGCT	TTGGGTTGCG	AAAAGCTATT	215820
TGAAACAATT	GAAGGGAAAA	AAATAAAACT	TAAAATCCCA	TCAGATGCAA	AAAATGGAGA	215880
AATTCTAAAC	TTAAAAGGAT	TGGGGATGCC	TATAATTGGA	AGCAGCTCAA	AAAGGGATCT	215940
TAAAGTCACT	TTGATAGTAA	AAATTCCAAA	AATAATAAAT	AATGAAGTAA	AAACTATTTA	216000
CGAAAGATTA	AAAGAGATAT	ACAGCTAAAG	TGTTTCTGAA	AATAAATGAC	СААААТТТТТ	216060
TAAATTTGCC	TCCCAACCCG	ACCTATATTC	ATTAAATTTA	TTTATTTTAG	ATTCATATTC	216120
TTTGATTCCA	TCCTCAATAT	TATCAAAATT	TTTAGCAATA	TCCACTGAAA	ACTGAAAAAC	216180
ATCCCCTTGT	CTGGGAGCAA	GAGTAAAAA	AGCAAATTTC	CAATTTCCAG	AATTTATAGT	216240
. AGATACAATC	CTTTTTTGGA	AAACATAATC	GGAGATTAAA	ACAAATTTTT	GAAACTCTTT	216300
TCTTCGCAAA	TAAATAAGCT	CATTCCACTC	АТТАААААТА	GCATCCGGTA	ATTCGTTTAA	216360
ACCAATCTCA	ATTATATTAT	TAATAGATAA	AAGAATTTGT	AAAATTTCTA	ATAAATTTAA	216420
ATAATAGCTA	TCAAAACATT	GAATTGTAAT	TTCAAGCAAa	GCAATTTTTA	TAAGTAGTTT	216480
AGAAATGTCA	AGACTATGAT	CTTTCATAAT	TTTATCAATT	CTCTCTTTTG	TGTGATCTAT	216540
AATAAATTTT	TTATGAGTTT	CTTTAATATT	GCTACTTTTT	TTAATTTGCT	CTACTTTTTC	216600
АТААТААТСА	TTAATTTCTT	TATTAATTAC	ATCTAAATTA	TTACTATTGG	CCTCATTGGA	216660
AAAAAAATCC	AATGAATTAC	TAAGTCGATC	TAAAAATTCT	TCTTGAATAA	AAAATGTGGC	216720
AATTCTTATG	CAAGAAAATG	GAGCCTTGCT	СТТТТТТТСА	AAATTTTCAA	ТТТТТТСТТТ	216780
AAGATCTACT	CTAAAATTTA	AATATTTAAG	CTTGTCTAAA	AATTTATTAA	AACAGGAAAC	216840
ATCTTCTAAC	AATTCATCTT	CATGAATGTC	TAAAAATTGG	GAATTAGGAT	GATATTTTCT	216900

TATCAAATTT	ТТААТААТАА	GTAAAGTATC	ТААААААТ	GCTTTATTGG	CACCCCAAGA	216960
TTTATTGATA	CTGGGATTAA	AATCCCTATA	AATCTTATCC	AAAAACAAAA	GTTTATCTTT	217020
TAGCAAATTA	GCATCGTTAA	TAAGGCTTGA	CTGTTCTCGA	TAAGAATAAT	AATTTATTAA	217080
ACTATACCTA	AAAATGCTAA	AATTAAGATA	TTTTTGAAAA	TCAAAAAATC	TATAAAATCC	217140
TAATGAACCA	АААТСААААА	ACTTCATGCC	ACAATATCAT	CTTATTTAAG	ATCTACTTTA	217200
TCTTTTTATA	CAGGTTTAAA	AGTATTGGAG	ACGCTATGAA	TACAGAAGAA	TAAGTTCCAA	217260
CAATTACCCC	TACCATAAAT	ACCAAAGAAA	AATCTTTTAT	AGATCCTTCA	GTAAACACAT	217320
AAATAGAAAA	TACTGCAACA	AATGTTGTAA	CTGACGTCAA	AACAGTTCTT	GATAAAGTTT	217380
GACTAATACT	TATGTTTAAT	ACATTTAAAA	ATGTGTTATC	GGTTAATCGC	TTAACATTAT	217440
CTCTAATCCT	АТСАААААТА	ATTATTGTGT	CGTTTAAAGA	АТАТССААТА	ATGGTAAGTA	217500
TTGCCACAAT	AATATAGCTA	ТТААТСТСТА	TTCTAAATAC	СССТААААА	GCAACTATAA	217560
AAAATATATC	ATGAAATATT	GAAAGTATGG	AAGCAATAGC	ATAACTTAGT	ТТАААТСТТА	217620
AAGTTATATA	AATCAAAATC	AGGATAAATG	TTCCTAATAC	СААААААТТ	GACCTAATTC	217680
TCAAAGTAGA	AGAAAACTT	GAATCAATAA	AATAAGAATC	CAAAACTTCA	ATATTAGCAT	217740
CAAATGTTTC	TTTAAGTTTA	TCTAATATTG	TTTTTTGAAC	TTCTGTTTTA	AAAGCATAAT	217800
CAATCACATC	AGACTTTACC	ATAATAGAGA	ATTCACTTTT	ATTCTGATCT	GGTGAAAAA	217860
TACTATTAAC	ATCTAAAGTC	TTATAAATCG	GAGAGAATAT	ТТТТТТААТТ	TCATTTTCTT	217920
TAATATTTGA	TTTTTCTATT	GAAAGATTAA	TATTAACCCT	AGAAGAAAA	TCTATTCCCC	217980
AATTGTATCC	ACCATGATAA	AAAAAGTAT	AAATAAGCCC	AACCAAAATC	AAAACGGCAC	218040
TAACAATTAA	AACATTGCTT	CCATATTTTG	АААААТТААТ	TACTCTTTGC	ATATTTTGAA	218100
CTCCAAGATA	ТАСТТАТААА	TTTGCTTTTT	CTAACAGATA	TGATAAATTC	СААААТАААТ	218160
CTTGAAAAA	TCAAACTACT	AAAAAGGGAT	GCCACAATTC	CAACAGAAAG	AGACCAAGCA	218220
AAACCTTGAA	TAACTCCTGT	CCCAAGAAGA	GTTAAAAAAA	GCACCGCAAT	AAATGTTGTT	218280
ATATTTGCAT	CCATAATTGA	TAAAAATGCC	TTTTTAAAAC	CAGCTTCAAA	AGCATTTTCA	218340
AATCTTCTGC	CTTCTCTAAT	TTCTTCTTTA	ATTCTCTCAT	АААТААСТАТ	ATTTATGTCA	218400
ACGGCCATAC	CCATTGTCAA	AATAAGACCT	GCAATGCTTG	TTAAAGTTAA	AGTAAAATTA	218460
AAGGCCGACA	ATATCGCTAA	TAAAAATTAA	АСАТТАТААА	TAACAAGTGA	AAATCCAGCT	218520
ACAACACCAC	TCAAACCATA	ATAAACACAT	АТАААСАААА	АААСТАААСА	AAGAGCAAGC	218580
GCAGAAGCTT	TAATGCCAAG	ATCAATAGTC	CTAGCACCAA	GAGTAGGCCC	TATTATTCTC	218640

WO 98/58943 US98/12764

			281			
AAATCATCTA	TTTTAATATC	AACTGGAAAA	-	TAAACACTAA	AGCAAGATCT	218700
TGAGCCTCTT	TTTTATCAAA	AGAGTCACCT	TGAATTGAAA	CATTGCCCCC	AGTGATAGCA	218760
TATCCAATTC	CTGCCACAGA	CTTAATTTTA	CCTTCCATAA	CAACGGCCAA	AGACTTTCCA	218820
ACATTTTTT	GAGTAAATTT	ААААААТТТТ	TCACTTCCAT	CAACATCAAG	GCTAAAAGCA	218880
ACAGTATCTC	GGCCTGTTCT	AGGATCGTTA	GAAACCCCAG	CATCTTTAAT	GTGAGCACCA	218940
TCAAATGAAT	TTTCAGGGCT	TGCATCAACT	ACATAATAAC	GAACTGATGA	CTCATCATCC	219000
ACACCATAAG	AATCTTTAAC	ATACCAAGGA	AAAATTTGTT	TACTATCTGG	AAGGTTCATA	219060
CTTGCCTGAA	TTTCAGGAAT	AGAAAAAAGA	GAGCCCGCTT	CTAATATTTT	TCTATGCAAA	219120
AGAGATGTAG	ACTCATCATC	AACCACATAA	AAAGTCAAAT	TGCCTTTACC	GCTCAAAAGA	219180
GTGCTTACTC	TACTCTCATC	TTTTTCTCCA	GGAATATCTA	AGAAAATTTT	ATTTCCCCCG	219240
GCTTCTCTTA	CAATTTTAGG	CTCTGTAAGC	CCGAACCTAT	YTACCCTATC	TTTAAGAATT	219300
TGCATTATTC	GATAAATGGC	ATCCTCTCTC	TCAGCAAAAG	TCAAAGAACG	ACCTAATTTT	219360
TTTTCAACAC	TTGAATAATC	AAGAGAAATG	GTAACACTCA	TCCCTCCAGA	CAAATCAAGC	219420
CCAAGATGTA	TTATTCTGCT	TTTGCCCTTC	TTTATGTTCT	CATAATATCT	ATAAATCTCT	219480
AAGCTTACTT	CTCCCATATC	CGAATCAGTC	AAAAATCCTT	CACGCAAGGT	TTTAGCAGTA	219540
AAAATATTAG	GTGGAATTTT	CATTGAAGAC	СТАТААТТАТ	TTTTTGCTAT	TGGAATTAAA	219600
TAAGACAAAC	TAGCTGGAAT	ACTGCTATTG	GGATCTTTAT	TATACAGTTC	CTTAAGCTTA	219660
ACAAGATCAT	TCAGGGCTTT	TTTCTTTGAA	TAATCCCTTA	AGGCCTCTTG	TGAATATGAG	219720
CTTATTTTTT	TATCCTCAAC	GCTCATTAAA	AAATACCATT	TTAAAGTCGG	AAATTATAAA	219780
AGACATGCAA	AAAACGTCAC	CAACAATATC	AATATAAGCT	TAGATCCTTT	ТТТСАТТАТА	219840
CAAATCCTTA	AAATTTTTAA	AAAATACCAT	TATTAGCTAA	CAGTTCTAAT	TTTACCTTTA	219900
AACAATACCT	TTTTTTTAAC	TTCATTTTTT	TTCAGACAAA	ACTTTATCAA	TAGAGTTTTT	219960
ТАТАААТАСТ	GCTTCGTTAT	TTGGACTTAA	ТТСТААААТА	ACATCCGTAT	CGCCTAATTT	220020
TTTCACAACT	CCAAAAATTC	CACCTATTGT	ТААТАССТТА	TCGCCCTTTT	TTAGATTTTT	220080
TATCATTTCT	TTTTTATTCT	TCTCTTCCTT	ACGCTGAGGA	GATATCACTA	AAAACCAAAA	220140
TATAGCAATA	ACAGGCACAA	АААСТААТАА	ACTTCGTAAA	AAGCTACTAT	TGCCGCTAAA	220200
TTCTTGCAAT	AAAAACACAA	AACCTCCCAT	АСТАТАСАТА	TGTCACTTTT	АТСТТАТТАА	220260
TATCATCAGG	АТАААСТАСТ	ССАААТАААА	GCTTAAAATC	ATCTTTTTG	GTATAATTAG	220320
AGTTACTTAT	TTTATTATAC	TCTTCAATTA	AATAATTAAT	AAGACCATCG	TCATTCCTAT	220380
AAAGAGCTTT	GCTAAAGGCA	CTTCTGTAAA	GTCCAAGTTC	AAAAAGTTCC	TTAGCACTTT	220440

TACCCTTATT	' TTCTCTTAAA	AGCTGCCTAT	CTACTATTGC	CTTTGAACAA	TCATAGCCTA	220500
ТАСААААААС	AAATTCATCC	TCACTCAAAA	TAATTCCTTT	GAATAATAAA	ATATTCACCG	220560
GCAAAAACAC	AAGCTTGCCG	GTGAAACTTT	AATTTACATC	ATTCCCATTC	CTGGGTCCAT	220620
AGGATAACCA	CCACCACCAG	AAGTATTTT	CTCTTCTTTA	ATATCTGTGA	TTGCACATTC	220680
TGTTGTTAAT	AAAAGTCCAG	CAATTGAAGC	AGCATTTTGA	AGCGCGCTTC	TTGTAACCTT	220740
AGCAGGATCA	ATTATTCCAC	TCTCAATCAT	ATTTACCCAC	TTAAAGCTGG	AAGCATCAAA	220800
CCCAAGCCCT	TTTTTTTCTG	TTTTAATTTG	ATGAATATAA	ATAGATCCTT	CAAAACCAGC	220860
ATTTGAAATA	ATCTGTCTCA	TTGGCTCTTC	AAGACTTCTT	TTTACAATCT	CAAAACCTTG	220920
CTTTTCCTCA	TAGCTTAATT	TACTTGTATC	TATTGTATCT	AAATACATAG	CAACTTCAAT	220980
AAGAGTTGAT	CCACCGCCAG	GCACAACACC	CTCTTCAACA	GCAGCACGAG	TTGCAGAAAG	221040
AGCGTCCTCA	ACTCTATGCT	TTTTCTCCTT	AAGCTCTACC	TCAGTAACAG	CTCCAACATT	221100
AATAACAGCA	ACTCCGCCAA	CAAGTTTTGC	AAGACGCTCT	TGAAGTTTTT	СТТТАТСАТА	221160
TTCAGATGTT	GAATCTTCAA	TTTGCTTTTT	AATAAGCTCT	GAACGCTCCT	TTATTTGCTC	221220
TTTATTGCCG	GTATTAATAA	TAGTGGTATT	GTCTTTATCA	ACCTTAATAG	TTTTAGCCTG	221280
TCCAAGTTGC	TCAATTTCAA	CTGTCTCAAG	AGTAAGGCCT	AGCTCCTCAC	TGATTAAAAC	221340
ACCGCCGGTA	AGCACTGCAA	TATCCTCAAG	CATTGCTTTT	CGTCTATCAC	CAAAACCAGG	221400
AGATTTAATT	GCACATACCT	TTAAAGCTCC	TCTAACGCTG	TTTAAAACAA	GAGCAGCAAG	221460
AGCATCCCCC	TCAATATCCT	CAGCAATAAT	TAATAAAGGT	TTATTTGTCC	CTAAAACTTT	221520
CTCAAGAACT	GGTAAAAGCT	CTTTAATAGA	ACTAATCTTT	ТТСТСАТАТА	TCAATATGAA	221580
AGCATCGTCA	AAATTAACAC	TCATATTTTC	TTTATTGGTA	GAAAAATAAG	GAGAAAGATA	221640
TCCTCTATCA	AATTGCATAC	CCTCAACATA	AGAAATCGTA	GTATCAAAGG	TTTTTGACTC	221700
TTCAACTGTT	ATAACACCAT	CTTTTCCAAC	TTTATCCATT	GCCTCAGCAA	TTTTTTCACC	221760
TATATAACTG	TCATTATTAG	CAGAAATTGA	AGCTACTTGT	GCAATCTCTT	CTTTTGTTGT	221820
AATCTTTTTT	GCAGACTGAC	GAATTTTCTC	AGCAGCCAAA	TTTACAGCGT	GATCTATTCC	221880
CTTTTTTATT	CCAATAGGAT	TGATTCCTGA	AGACACATTC	TTAAGGCCTT	CTCTTGCAAT	221940
AGCATAAGCA	AGAACAGTAG	CAGTTGTTGT	TCCATCACCA	GCAACATCAT	TTGTTTTAAT	222000
AGCAACTTCC	TTTAAAAGCT	GTGCCCCAT	GTTTTCAAAC	GGATTTTCAA	GCTCAATCTC	222060
ACGAGCAACG	CTAACCCCAT	CCTTTGTAAC	CGTTGGAGAG	CCGAACTTTT	TATCAATAAG	222120
GACATTTCTC	CCTTTTGGCC	CAAGAGTTAC	TTTTACAGCA	TTGGATAATT	TTTCAACGCC	222180

ACTAAGTAAG CTTTTTCTAG CATCCTCATT AAAATATATG TCTTTAGCCA TAAAAATTTT	222240
ACCCCTTTCT ATAAATAAAA ATAATTTACA TATAACAATA TAAGATTAAC ATAAACTTAA	222300
TACATTCGCT ATAGTAGCGT ATTACTTCTA TGCATCAAAA AATACAAAAT ATACAAAACC	222360
AGTAAAAATT TTTATTATAT AATGTAAATA TTGACTAATC TTTAAATTAT AAAGACAAAG	222420
AATTTATGTT TAGAAAACTA AAAAAATTGA AAACTTATAT TATTATTATT TCAATAACTA	222480
AATTTTCAGA AGATAACCTG TTATTAATAA TATCAAATAT AAAATATTTG ATTGAACACA	222540
AACAGCTAGC TTACAAAATA CATTGGACAT TTCCAATATA CTTTTTTGAA ATTCTAAGAG	222600
AACATGAGGA ATTAAATAAA TGGCTATTTG AAAGATTCAA AACCAATACA GATATATATA	222660
TGCCTGGAAC TTACAGTGGA AGCCCTCATG AATACATGCT ACACGATGAA ATACATTTAG	222720
ATTTGTATTG GGCACTAAAA AATCCATTCA AAAGTGGATA CAAAGACATA TTTCAAAATA	222780
CGCCTATTAT GTTTTATATA TACAACATAG AAAAGTTTAG AAAAAAGGTG ACTGAGCTTT	222840
ACAGAAAGCT TAATTTCAAT TATACAGAAG GAATAAGGCA GAGTAAAAAT AATAAAAATT	222900
ATTTAATTTT TTATAAAAAT AACTGCCAAT ATTTATATGA AGTACAAAAA ATAGATTCTC	222960
CAAAAAGCAA CGTAGAAACT CTTATTTATT TTTATGAGAT CAAAGAAACT TATGATAATC	223020
AAGAACTAAA AAATTTTTTA CTTTATTTAA AAGCCCTAGA AAACAACTTA CACAGCATTA	223080
AAATACAAAA TCTAGAAGGA TCCAAACTTA CCACCGAACT ACTAGAGATT CCAAAATTTA	223140
ACTCCCTTAA AGAGCAAGAG CCAATAATAA ATTTTCAAAA CAAAAGACTC AAAGATTATC	223200
AAATCAACGA AAAAAGCTTA AGAGAATTTT TAATAAATAA ACACCAAGAT GAAATCATTA	223260
AAAATTCAGA ATCAATTGTG CCTAAAAATT TAGAATACAA TATGGAAGGA AATTTCACGC	223320
TATCTCACGA TCAATACAAC ATCAAATTCG AAAATGGAAA ATTAAATAAA ATAAAATTTA	223380
AAGATAAAAA AGTTGAATTT TTAAACACAT CTAGAACCTA TTTTAAAGTT TCATCAAAAA	223440
AAGAACTAAT AAAAGAAGCA TCTATTGAAA GTTCATTTTC ATTCTCAAAT GAAAAAATTT	223500
TAGGAATAAA ACAATATTTA GCTTTTAACT CTGCCAAAAA ATCAACAATT GATTTTTTTA	223560
TAGATGAGAC TATCTCTAGC TTCTTTATAT CGATTAAAAT AAAATGGCCT TCTAAAATAG	223620
ATCTAGATAA AAAAACATTA AAAAAATGCA ATCCTGATTA TCTTCTTGAA TATTCAGCTC	223680
TTGAAATACC TGTTTTTGAA ATTACAAAAG GCACTAATTT AAAAATAACA GCAAAATACA	223740
GCGATCTTGA TACTTATGAA AAAATAATAA TAACTAAAAA CAATCCCAAA GGCTACATTA	223800
ATGGCACAGA ATTTTTGATA TCTAAAGGAA ATGATAAAAA CAGCAACTTT TTTATAAGCT	223860
TTTTAAATGT TGAAAAACAT ATCATTCATA CAATTAATTA TAAAATTGAA AAAATAAATT	223920
CTAAGAAATG GTTAATTTTA AATATAGGGG GTTCTTATAA CACAGTTAAG ATCCAAGATG	223980

ТААТАААТТА СТСТСАААСА СТА	AATTTAA TGATACTAC	С АТТАААТААТ	AATTTTGATA	224040
ACAAAATAAA ACTGAATTCA AAA	АТААААА АТТТААТТТ	г ттатастаат	' АТАААААААТ	224100
ATGAAAATAA ATAAATAATA AGT	АСТАААА ТАТТААТААС	C TGGGTATAAA	ATTATCCTAA	224160
GAAGAACATA AAAAGTATTT AAT	СТТТААТ ТТАААСААА	A AAGGTATAAT	CATATGAACG	224220
ACAACATAAT AGACGTACAT TCC	GCATTGG AAAAAGTCGO	G CATTACAAAC	GATCCTGTAT	224280
TATTGAAAAA TTTAACATCA GAA	TTAGGAA TGAAAGCATO	TCATTCGAGA	AACAGAATCA	224340
TTTTATACAT AGCATCAAAC CCA	AAAGAAT ACTTTACGGC	AAAAGAAGTT	ТАТААСАААС	224400
TTATAAAAGA AATTCCAAGC CTA	rcaaaag caacagtata	TAACACATTA	AATATTCTAA	224460
AAGAAAGAAA TATACTAAAA GATA	АТААААА СТАСТGАТСА	AAAAGAAACA	AAATTTTATC	224520
TAAGCTTGGC TTCCACAATA GCTC	CACTTTA AATGCAATAA	ATGCAATCAA	GTCCACCCTA	224580
TTCAACTTGA CGATATTAAA GATA	ATTTTGA AAGACAAACT	'TGGAGAAAAC	TGGGAAACAA	224640
AATCTATTGA AATCATTTAC TCAC	GGGCATT GCAATAATTG	СТАСААААА	GATACCCATA	224700
ATAACAATAA TGTCCCAGAT GAGA	AACAAGG AAATCACTTT	ATGAATATAA	ААААТАТСАТ	224760
TTTTATACTT ATATTCTTAT TACT	CTTAAT ACTGGTTAGT	CCGAGGATAA	АААТТТАААДА	224820
TGAATTTTCA AAAAAACTGA TTCC	TAAAAA CATAGAAGAA	ATTGACAATT	ACTTATTAAA	224880
AGAAGAATTG CAATTTAATT TAGA	AAGCAA TACAAAAAAA	GAAATAATCT	GGTATAAAGA	224940
AAAAGCACAA AAAACAAATT ATTC	TGTGGT CTATATTCAT	GGATTTGGAG	САТСАААААА	225000
TGAAATTTAT CCGGTTCCAA ATAA	TATTGC AAAAGCTCTT	AATGCAAATA	ТТТТТТТТАС	225060
AAGACTTAAA GGACACGGAA TTAA	CAATAA AAATGCATTT	CGGGGAATAA	CTACCCAAGA	225120
TTGGCTGAGA GACATTGATG AGGC	TATTAA CATTGGCAAA	TTAATAGGTG	ATAAATTAGT	225180
ATTAATTGGA ACCTCTAATG GGGG	CACTGC CAGCATCTGG	GCCTTGGCAA	ACTATCCAAA	225240
TGAAATAAAC TCGGCGGTAT TAAT	TTCTCC TAATATATTC	CCTTATGACA	AGAGAACAAA	225300
TATCGTTTAC TATCCTTGGG GGCG	ACAAAT TGCATATCTT	ATAACAGGTG	GCTACAATAA	225360
ATTCGAAACA AAAGAGTATA AACG	AAAAGA ACACCCGACT	ATAAAAAGCC .	ACTCTTCAAG	225420
AGTACAGCAT GTAGACGCAA TTAT	IGCAAT GATGGGCCTT	GTCACATTAT '	ГАААТТСАТА	225480
TAATTTCAAC GAAATCAAAA TACC	TTTAAT AATAACCCAC	ACACCAAATG	ATCATACAGT	225540
AGACCCAATA AAAATAAACG AATT	PATAAA AAATTATGGG	GGTGAAAAA A	AGGATATTCC	225600
CATCATACTT CTTGAAAATT CACAG	CGCTCA CTTACCTATT	GGAAACCAAA (GCTACAAAAG	225660
CGCCCAAAAC ACATCATACT TCACA	AAAGTA TGTATTTGAT	TTCATAAACA A	AGATTAATAA	225720

285	
GTAATAGCCT TAAGCTATTA CTTATTAAAA AAATCAAGCC TCTAGCAATT CTTCTATTTC	
ATTCTTAAGA ACACTAACAC CTGGTCCGTA AACTACCTGA ACCCCATTGC CTTTAATAAT	
TACTCCTTTA GAACCAGTTT TTTTTAAAAT TTTTTCAGAA ACTTTAAGAA CATCCCTTAC	
TGTAATTCTA AGCCTAGTTG CACAACAATC AAGCTCAACA ATATTTGAAG CACCACCAAG	
CCCAATAATA ACCTTAGTGG CATAATTTTC TTCAAATTCA CTACTCTTAG AACTTGGAGA	226020
ATCTTCAGAA TTTAAATCTT GCGTTCTACC CGGAGTTTTA AAATCAAACT TATTTATTAA	226080
AAATATAAAA GTAAAGTAGT AAAGAAAAAA CCAAACAATG CCTATAACTG GCACCAAAAG	226140
CCAATTAGTT CTTGAATTTC CCTGCAAAAT GCCAAAAAGA ATAAAATCGA CAAACCCTCC	226200
AGAAAACGTT TGACCTATTG TAATTTGCAA AATATGCGCT AGCATGAAAG CAAATCCATC	226260
AAATGTAGCA TGAACAACAT AAAGAATAGG GGCTACAAAA AGAAAAGAAA	226320
TTCTGTTATA CCTGTTAAAA ATGACGTTAG CGCTGAAGAC ATCAAAAGAC CAAAAACTTT	226380
TGTTCTCTCC TCGCGCTTTG CAGTGTAATA TAGAGCAAGT GCAGCTCCGG GCAAACCAAA	226440
CATCATGGTA ATAAATCGTC CACTCATAAA ACGGCTAGTT CCGATAAAAA ATCTATCTGT	226500
ACCTTGGGCA GCAAGTTCTG CAAAGAAAAT ATTCTGAGTT CCTTCAATTA ACTTTCCATC	226560
AATAATAACA GATCCCCCAA GGCCTGTTGT CCAAAATGGC AAATAAAATA	226620
ACCAAAAGGT CCAAGCATCC TTAAAAAAAT CCCATAAATA AGTGTTCCAA TATAACCGGT	226680
TGAATCTACT AAGCCCCCTA CTTTATTAAT TCCACTTTGT ACAAATGGCC AAACAAGAAA	226740
CATAATAACA GCAAGAAAAA TACTAGAAAA AGAAACAATG ATCGGAACAA ATCTAGATCC	226800
AGAAAAAAT CCAAGAACCT TAGGTAAATC TACTTTGTTA AATCTAGAAT GAAGATAATA	226860
AGTCAAAATA CCAACTACAA CCCCGCCAAA AACCCCCGTT TCTAAAGTCT TAATTCCAAG	226920
AACAAAACCC ACAGCACCAC TAGAGAAAGA CTCCGCTCTG CCTGACACAT CAATTAAAAC	226980
TCCAATAGTA GCATTCATTA CAAGGTAGCC AATAAATGCT GCGATTCCAG ATGTGCCTTT	227040
ATCTGATTTT GCAAGTCCAA CAGCAATTCC AATAGAAAAT ATTGGCGCTA AATTTGAAAA	227100
AATAATAGAA CCCGACGCAC TCATTATTTT GAAAACTGAT TGTAAGAAGA ATATATTCAA	227160
AAAAGAATAC GTCCTAACGG TTTCTGGATT AGAAAGAGAG CCTCCAATTC CTAAAAGCAG	227220
CCCCGCTGCT GGCAAAATAG CAATTGGAAG CATAAAAGAA CGTCCAAATT TCTGAGCTTG	227280
TTCAAAACCC TTTAACATAA AACCCTCCTA AAATAAAAAA TAAATTAACC CTTAAGTTTA	227340
AAATTATTTT TTAATCTGAT TTATTTTTTC TACAAATTTT TTAGTAATCT CAGCGGCCT	227400
TGTAATAGCA CCCCCTACAA CCACTAAATC AACCCCCATT TCAAAGCATT TTTGAGCTTT	227460
TAAAGGGGTG TCTATTTTC CTTCCACTAT TAAAGTAGAT TTCAAATTAG AATTAAGCAA	227520
	= -

GGTTCTTAAA AAATTAAAA	T CATTGTCTGC	AATATTCAAA	CCATTGGTAT	TTTTTGTATA	227580
GCCATACAAA GTTGTTCCA	A TAAAATCAAA	ТСССААТТТА	TCGGCATTAA	TAGCTTCATC	227640
TAAAGAAGAA ATATCTGCC	A TCAAACACTG	CTTTGGATAT	AATTTTTTT	TATTTTCAAA	227700
AAAATCATCA AGTAGCACG	C CATCAGGCCT	АТТТСТАААА	GTGGCATCAA	GGGCAATTAT	227760
ATCTACCCCC TCATTACAA	A GCTCATCAAT	CTCTTTCATG	GTAGGAGTAA	TAAATACGTC	227820
GCAATTATTA TAATTTTTT	T TAATAATACC	TATTATTGGC	AAATCAACTT	ССААСТТААТ	227880
CTGGCTAATA TCATTAACT	C CGTTGGCTCT	TATTCCAATA	GCTCCACCTA	TTTTGGCTGC	227940
CAAAGCCATC TTAGACATA	A TAAAACTACT	ATGTAAAGGC	TCGTTCTCAA	GAGCTTGACA	228000
AGATACTATT AACCCTCTT	T TGATTTTAC A	AATAATAATC	AAACCTCCTG	ТААААТТТАТ	228060
ТТТСТТАААА ААТАТАААА	А СТТАААТАСА (ЗАТТАТАТТТ	TTTATTTAAA	AAAAAACAAT	228120
ТСТТТТАААС ААААСТААС	A TAAACTAAAA <i>I</i>	ACAAAAACAA	TTTATCATTC	AATACACATT	228180
AAGCTATAAT TTAGGCATG	Э САААТААААТ С	CAACTGGTTT	CCTGGACATA	TGAAAAGGGC	228240
CTTAGATCTG ATAAAGAAT	A ATTTACAAAA A	AGCTAATATT	GTGCTAGAAA	TACTTGATGC	228300
TAGAGCTCCA TTTAGCAGT	A AAAATCCATT A	ACTGAAAAA	ATTACTAAAA	ATCAAGCTAA	228360
AATAATTCTT CTACACAAA	CAGATGTTGC T	CAAATAAAT	GAAATTATAA	AATGGAAAAA	228420
ATATTTTGAA AATCTTGGC	ATACTGTAAT A	ATAAGCAAT	ATTTACAAAA	AAGGAATGCG	228480
TAAGCAGATA ATAGATATTA	. ТТААААААТТ G	GCCATTGTT	AAAAAGATAA	ААААСТАТАА	228540
AGAAAAAATA AAGGTTTTGA	TTATTGGAGT T	CCAAATGTT	GGAAAATCTT	СААТААТААА	228600
TCTATTATCC GGCAAAAAGA	GCGCAAAAGT T	GCCAATAAA	CCTGGATATA	СТАААААТАТ	228660
ACAAATAGTA AAAATAAATO	AAGAAATAAA T	CTTTTTGAT	ATGCCAGGGA	TTTTATGGCA	228720
TAATCTAGTA GACCAATCGA	TTGCAAAAA A	CTTGCAATA	TTGGATATGA	TCAAAAATGA	228780
AATAGTAGAT AACACAGATC	TTGCATTGTA T	TTACTTGAA	ATAATGGATC	AAAATAATAA	228840
АААТАТТТТА СТААААААТ	ACGAAATATA TO	САТАААААТ	TCACTTGATA	ТТСТАСАААА	228900
TTTTGCAAAA GCAAGAAAAT	TAATCGGTAA A	AAAAATGAA	CTTAACCTTG .	AAAAAGCATC	228960
AAAAATATTA ATCAAAGAAT	TTAGAGAGGG T	AAATTTGGC .	AAAATAATTC '	TTGATAAGAA	229020
ТТАТААТGCC ТТТТАААААА	GGCATTTACA TA	AATAATAA	TATTAAGTAT	AATCTTGATT	229080
TGTATTAATA CAGCCATAAG	GAGGTTGGAA TT	PAGTTGGAT	AATTGTATCC	TAGAGATTAA	229140
AAATCTAAGT CATTATTATG	ATAACAATGG AA	AACAAAACT 1	TTAGATAACA	PAAATTTAAA	229200
AATTAAAAAA AATGAGTTTA	TCACACTACT AC	GCCCATCC (GGATGTGGAA 1	AAACAACATT	229260

287		
GATAAAAATA TTGGGTGGTT TTTTAAGCCA AAAAAATGG		0 0
AGAAATATCT AAAACCAGTC CAAACAAAAG AGAAATTAI		80
ACTTTTCCCA CATATGAATG TTTTTGACAA TATTTCATT		0
GCCAAAAGAT ATAATCAAAG AAAAAGTAAA AACATCGCT		0
ATACGCATAC AGAAATATTA ACGAACTATC GGGGGGGCA		0
AAGAGCAATG GTAATGGAAC CTAAGCTTTT ACTCCTAGA	AT GAACCACTTT CCGCGCTTGA 22962	0
TTTGAAAATG CGACAAGAGA TGCAAAAAGA ATTAAAAAA	AA ATACAGCGTC AGCTTGGAAT 22968	0
CACATTCATA TATGTTACTC ACGATCAAGA AGAGGCATT	G ACAATGAGTG ACAGAATCGT 22974	0
TGTAATGAAT GAAGGAATAA TTCTGCAAAT AGGAACACC	T GAGGAAATTT ACAATGAGCC 22980	0
TAAAACAAAG TTTGTAGCCG ATTTTATTGG AGAAAGCAA	T ATTTTTGATG GAACATATAA 229860	0
AAAAGAGCTG GTTGTAAGTT TGCTTGGTCA TGAATTTGA	A TGCCTTGACA AAGGATTTGA 229920	0
AGCTGAAGAA GCAGTTGACC TTGTAATACG CCCAGAAGA	T GTAAAACTAC TTCCAAAAGG 229980	0
AAAAGGACAT TTAAGCGGAA CTATAACATC AGCAATTTT	T CAAGGAGTTC ATTACGAAAT 230040)
GACTCTAGAA ATCCAAAAAA CAAATTGGAT AGTTCAAAG	C ACAAGACTTA CAAAAGTTGG 230100)
AGAAGAAGTT GATATATTT TAGAACCTGA TGATATTCA	T GTTATGCATA AGGAATAATG 230160)
GTTTTGAAAA AGTTGATATT AATCATATAC TCCATATTC	C TACTAACATT TAGTATTCTT 230220)
CCCTTACTAA TAATAATATT GCTTGGATTT TTAAATGAAA	A AAAACGAATT TACCATCTAT 230280)
AATTTCATTG GACTTTTAAA TCCAAGCTAT CTTAATATTT	r TTTCAAGAAG TCTAAAACTC 230340)
GCAACAATAG CAACAATTTT TTGCATTTTA ATAGGCTATC	C CTGCCGCTTG GCTAATTTCA 230400	ı
TTATCAAAAA AAAGTGCTCA AAACAAATTA ATAATCATGA	A TAATACTTCC TATGTGGATA 230460	
AATACATTAC TTAGAACTTA TGCCTGGATG AGAATACTTG	GAAAAAACGG ATTCATCAAC 230520	
AACTTATTTG AAAAGATCGG AATTGGAACT TTAGATCTTC	TTTATAATGA ACAGGCTGTT 230580	
ACAATAGGCA TGATATACAA TTTTTTGCCT TTTATGATCT	TGCCAATATA CACGGGGCTT 230640	
TTAAAAATTA AGCCAGAATA TATTGAAGCA TCACAAGATC	TTGGAGCAAG AATGTGGCAA 230700	
ATATTACTTT ATATAAAAAT ACCACTAACA CTCTCTTACC	TGGCAACAGG AATAATTATG 230760	
GTATTTATTC CTTCAATTAC GGTATTTATC ATTTCAGATT	TGCTAGGAGG CTCTAAACAA 230820	
ATTTTAATAG GAAATCTAAT AAGCAAACAG TTTCTCTTTA	TAGAAGACTG GAATACTGGG 230880	
GCTGCAATTT CATTTATTTT AATGTTAGTA ATATTAATTT	ТТААТТТААТ ААТААТАААА 230940	
TTAATGCGAA AAAATAATGG GGAGTAAAAT ATGTTTAGAG	CCTTTAAAAA CATTTTCTTA 231000	
TTTCTAATAC TCAGCTTTAT TTACCTTCCA ATAATAATCT	TAATAATTTA TTCCTTTAAC 231060	

TCTGGTGACA GTGGATTTA	T ATGGCAAGG	TTTAGTCTA	AATGGTATAA	AGAAATTTTT	231120
GCCTCAAGTC AAATCAAAT	C AGCAATATTT	TTTASSASAA	TAATAGCCAT	AATCTCATCT	231180
TTGACTTCTG TTGTTATTG	G AATTATTGGT	GCTTATGCA	TTTATAAATC	AGAAAACAAA	231240
АААТТААААА СААТАСТАТ	T ATCAGTAAA1	AAAATAACAA	TAATTAATCC	TGACATTGTA	231300
ACAGGAATAA GCTTAATGA	C ATTTTATTCT	' GCAАТАААА	TGCAATTGGG	ATTTTCTACA	231360
АТССТААТАТ САСАТАТАА	T TTTTTCAACA	CCATACGTAG	ТААТААТААТ	TTTACCCAAA	231420
TTATATTCTC TTCCCAAAA	A TATTATTGAT	GCTGCCAAAG	ATCTTGGAGC	CTCAGAAATT	231480
CAAATATTCT TCAATATAA	T TTATCCGGAA	ATCGCAGGAA	GCATAGCAAC	TGGGGCCCTT	231540
ATTGCCTTTA CATTATCAA	T AGATGATTTT	TTGATATCAT	TTTTCACCAC	TGGACAGGGA	231600
TTTAATAATT TATCTATCC	r aataaactcg	СТААСАААА	GAGGCATCAA	ACCCGTAATA	231660
AATGCTATTT CTGCAATAT	r gttttttaca	ATATTGAGCC	TTTTGTTTAT	ТАТТААТААА	231720
TTTATAGGAA TTAAAAAAT	r GACAACAGAT	GCTGAGCTTT	AAAATGAAAA	AAAGGAGTAC	231780
TTATGAAAAA AATTTTATA	A TTAATAGTAA	TTCTTACAAC	TTTTGCTTGC	ACTAACAAAG	231840
ACACAATAAC TTTAAACGTA	A TTTAATTGGG	CAGAATATAT	TGACAAAACT	TTATTAGATC	231900
AATTTGAAAA GGAAAACAAT	ATAAAAATA	ATTATGAAAT	CTTTCACAAT	AATGAAGAAA	231960
TGATGGCTAA ATTTAACAAC	ACAAAGAATT	ACTACGATAT	AATAGTCCCA	TCAGAATATT	232020
TAATCCAAGA ATTAATCGAT	' GAAGGCAAAA	TTGAAAAATT	AGACTACTCA	AAATTGCCAA	232080
ATGTAACAAA AAATATTACC	CAAAATCTTA	CAAACTTGGA	ACATGATCCT	GGCAATCTTT	232140
ATTCAGTGCC AGCCTACTGG	GGATTAATGG	GCATACTTTA	СААТААААСТ	AAAATAGATT	232200
TAAATGACAT GCAAGGTTTT	GACATATTAT	ТТААТАААА	АТАТАААААА	GAGATTACAA	232260
TGCTAGATTC CCCTAAAGAC	AATATTGGGG	TTGCTTTAAA	AAAACTTGGA	ТАСТСААТАА	232320
ATGAGCATGA TACAGATAAA	ATTAAAGAAG	CTGGGGAACT	ТТТАААААТС	CAAAATCCAC	232380
ТАТТААТСGG АТАТТТТСА	GATGTGCCTG	СААААТСАТТ	AATGCTAAAT	GGAGAAGCAT	232440
CTATTCAACT CACATGGAGC	GGCGAAGCAC	AAAGCGCTAT	GCTAAAAGAC	AAAAATTTAG	232500
ATTTTTATGC ACCTGAAAAC	ACCAATCTAT	GGATAGACGC	ATTTGTAATT	CCTATTGATG	232560
CTCCAAATAA AAACTTGGCT	TACAAATTCA	TAAACTTTTT	ATACGAGAAT	GAACCATCTT	232620
АТАААААТТТ САААGAAACT	AGATATAATT	CTCCAAACAA	AAACGTAATA	AAAAGAATAG	232680
AAGAAGAGGC AAAAAATAAC	CCCGAAATGA	AATTATATTT	AGAAGAAAA	TTTTTACCAA	232740
AAGATTTTTC CAAATTTGAA	ATTTTTAAAA	AAATACCTAA	ААААТАААА	GAAGAAATCC	232800

		289			
ТТААААТАТА ТТТАААТСТ					232860
TTAAAATTTA AAGCTTTT#			·		232920
AATATCAAGT CCAATTATA					232980
AAATGGAAAA ATGTCAAAA	G GAGAAAGCTT	GCCTTTTGT	AAATCTACAA	GAGCTATAAC	233040
ATGCATACTA TGGGGCAAA	А ТАСТТААААА	AAAGCACGAA	GACATACAAA	GTAAAGCCGC	233100
AATACGCTTT GAGTTTAAA	T TATTTTCCTT	' AGTTATTGAT	' CTTACAACAG	AACCACTCAT	233160
TAAAATAGCA AGCCCATTA	T TTGCAAGAAA	CATGGTCAAA	ATGCCAACTA	AGACAACAAT	233220
GACAAATTCC GAAGTTCTT	T TAGACTTTGA	CATTTTTTGC	AATTTTAAGA	GCAACCAATC	233280
AAACCCCCCA TACTTAATT	G TCATATAAGA	AATTCCACCA	GTAGAAATAA	CAAGAATAAA	233340
CATTTCCCCT AGGCCTAAA	A ATCCTTCATT	GATTTTTTA	GCCAGCAATA	AAAAAGTAAT	233400
ATCTGAATAA TAAATTCCA	A TAATACCAGC	AACAACAATG	ССТАААААСА	AGGCTAAAAA	233460
TACATCAAAG CCTGAGATT	G CAAAAACCAT	ААСАААААТА	TACGGAATAA	TTTTGAAAAA	233520
ATTTATCTCA CCAGGCTCA	А ТААТАААСТ	ATCGACCTTG	CAATAATAAG	AACCTAAAAA	233580
TGCAAAAGCA ATGCTTGCT	A AAATTGCTGC	TGGAAACGTA	TAAAAAGCTC	CATTTTTGAA	233640
AACATCAACA ATATTAACC	TTTGAGTATG	ACTTGAAATA	ATAGGAGTAT	CTGATATCAA	233700
AGACATGTTG TCCCCAAATC	G CACCAGCGCT	AAGAATAGCA	CCAGCAATCA	ATGGAAGGG	233760
GATGTTTACC TTATCTGCGA	GCTCCAAAGC	AATAGGAGCA	ACAGCAACAA	TAGTCCCCAT	233820
AAAACTTCCA GTGGAAAAAC	ACAAAAAAAG	AGTAATTAAA	AAAATGCCAC	АТАСТАТТАА	233880
ATTCAATGGA ACATATTTAA	GACCAATATT	TACTACAGCA	TCAACACTTC	CTATTTCTTT	233940
ACAAACAGCA GAAAAAGCAC	CGGATAACAT	AAATATTAAA	GАТАТААААА	TAACATCTTG	234000
CTGAGCGCAT CCCTCAATGA	ATTTATTCAT	TTTTGCTAAA	AAAGATCCTC	ТАААААТ	234060
AAATGTCAAA ACAATAGCAA	TAAACATAGC	AACTACGGGA	GGCATTTGAT	AAAATGCCCT	234120
ТТСТАСАССА ТТААААТААА	GAACGAGTCC	TGTGCCAATA	ТАААТСССТА	TAAAAAGAAA	234180
AAAAGGCATA AGCCCCCAAA	AATTTGGAAC	CACATTAGTT	ТСТСТТТСТА	ATTTCAAATC	234240
TCTTTCCAAT TTTAACCCTC	СТАААТСАТА	TAATTAAGAA	СААТТТАТТС	ТАААТАААТ	234300
СААААААТТ АААСААТССА	AATCTTAAAA	TTTTTAAAAT	TTTTATTTT	TTAAAAAAA	234360
ТАААААААСТ ТТТТТТАТАТ	CAAGGCCCAA	AATAGATAAA	ATAACAAAAA .	АСААТАААА	234420
TCCAAAATAA ACTAAAAATG	GCAAAATACT .	AATTGGCGAC	ACAAGTCCAT '	TTGAAAAATT	234480
CACTAAAATA ATCATTTGCG	CACCATAAGG .	AATAATGCCT	TGAAAAATAC	AAGAGAACAT	234540
ATCTAAAATA GAAGCACTTC	TTTGAACACT (GATGTTATTT	TCAAAAGCTA :	PCTTTTTTGC	234600

TACTTTGCCG CAAATAAGTA TGGCAATTGT GTTATTAGCA AGAAAAACAT CAACTATTGA	
AACAAAAGCC CCAATAGAAA ATTCCGCTGA ACTTTTCCT CTAATCAAGG ATTTTAATTT	234660
	234720
AATAAGTAGC CATTTAAAGC CTCCATTATG AATCACGGCA AAAGAAACTC CCCCTGTTAA	234780
AATTGAAAGA AAAATCAAAT CCGCCATATT TAAAAACCCT TTATTAATGT TTTTCATTAC	234840
ATCTAGAAAG TATAAATTAC CATACAAAAC GCTAATAAGA CATATAGAAA GAATACCTAA	234900
AAAAAGAACT ATAAAAACAT TCATTCCAGC TAAAGAGAAA AATATAATCA TTAAATAAGG	234960
CACAGTTTTC ACTAAATCTA TTGAACTTTC GTGTAAAAAG TTTGTGGCAT TGGACAAATT	235020
TTCAGAAAGA AAGAAAAAAG AAAAAAAAGT TAGTATGGCG GATGGAAAAG CATAAAAACT	235080
GCTACTAATA AAAACATCTA AGATGCTACT ACCTTGAGTT CGACTAGAAA CAATAGTTGT	235140
ATCTGATATT AAAGAAAGAT TATCTCCAAA CATAGCTCCA CACATTACAG ATGCTGCTAT	235200
TAAATTCGGA TTAATGCCGC TTTTAACAGC AATATTAAAA GCAATAGGAG CAATTGCAAC	235260
GATAGATCCA ACAGAAGTGC CGGCAGAAAA AGAAAGAAAG CAGGTTACAA AAAATATACC	235320
AGAAACAATC CAATTAGGAT TAATATATTT AATTCCCAAA TTTGCTACAG TTTCAACGCA	235380
GCCTATTTCT TTACAAAGAG AAGAGAAAGC TCCCGAAAGC ATAAAAATAA GACACATTAG	235440
TATAATATCG TACTGAGCTG CTCCTTTAAT AAATATGTGA ATTTTGTCGG AAAATTTTCC	235500
TTTAAATACC AAAAAACAAA CAATGGAAGC AAAAAACATT GCAACACTAG CCGGCAGTTG	235560
ATAAAAGGCC ATTTCTACAC CAATAACTCC CAAATAAATC CCCGTGCCTA AATAGATAAT	235620
AATAAAAACA AAAAAAGGAA TAAGCCCAAA AAAATTTGGC TGCCCTCTTA CTTCAATATT	235680
TTCCATATAC ATCCTTTAAA TATAAGCATT GTTTTTATAA AAAAATTACT TATATCTTTT	235740
AATCATAACG CAAATTATTA ATCGATGCAT AAATTTGCAA TCAAATCAAG AATAAAAATC	235800
CTTAAAACTC TTAGCTAGAT TAAAATAATA GAACACAGAG TTGGGGTTGG GGGCTCAAGT	235860
ATTAAAAAGG GATAGGAATA AATTATATAA AAATTCTATC TCATTTATCT ATTTAAAAAA	235920
TATCTTTTAA AAAACTAGAA AATTAAATTT TACGCCAAAA ATGATCTTTT TCTAAAATAG	
AGTCTATCTC TTTTGGTCCT TCAGAGCCAT AAAAATAATT ACAAATTTCA ATATCTGCCC	235980
ATTTATTTGC AATATCTGAA ACAAATTCCC AAGAACTTTC AATCTCATCA CTTGTCGCAT	236040
	236100
ATAAAGTACC ATCTCCTAAA AAAGCGTCTA ACAATAAACG CTCATAAGCC TCATCAAACA	236160
ATCTTTTAAA TGCTCCGTGA TATGAAAACT CCATATTAGC AGTTTGAATT TCATAATTAT	236220
ATCCGGGCTT CTTGGTATTG AATTTGATTT CAATTCCATC CCTTGGCTGA ATTCTAAATA	236280
TCAAAGCATT AGAAAAATCA ACAGAACTAT TGTTAAAAAG AGTAAAGCTC GGTTTTTTAA	236340

/US98/12764

ATTGAATATA TATTTCTGAA AATTTCCTAG CAAGACCTTT CCCAGTTCTA AGATAAAAAG	236400
GAACCCCAGA CCAACGCCAA TTATTAATAA ACACTTTCAT AGCTAAATAA GTTTCGGTAT	236460
TTGAATTTCC CAAAAATTCT GTTTCATCTT TATAGCCTTT TTTAAAAACC CCTTGAACTT	236520
GTGAGCCTAT ATATTGACCC TTAACAATGT AATTCTTAAT ATCTTCTTTG CTAATTTTCC	236580
TCAAACTTTT TAAAACTTTT ACTTTTTCAT CATGAATAAA CTCAGAATCA AATTTAATAG	236640
GAGACTCCAT TGCAACAAGG CTTAACAATT GTAAAATATG ATTTTGAACC ATATCCTTCA	236700
AAGCGCCAAC AGAATCGTAA TACTCTACTC TTCCATCAAG ACCTAATTCT TCTGCTACCG	236760
TAATCTGAAC AAAATCTACA TAACGATTAT TCCAAATATT TTCAAAAATA GAATTGCCGA	236820
ATCTAAATGT AAAAATATTT TGAACCGTTT CTTTACCCAA ATAGTGATCT ATTCTATAAA	236880
TTTGATCTTC TTTAAAAGCA GAATAAAGCA AACTATTTAA TTTTTTTGCT GTCTCAAGAC	236940
TAGAGCCAAA AGGCTTCTCA AGAACTATTT TTGACAAAGT CAATTTTTCG CTTAAAAAAT	237000
ACTTTTTCAA ATGATTAATT ATAGGTCCAT AAAATGCAGG AGACGTCGAA AGATAATATA	237060
TCGTTTCTCG ACTTCTATCT AAAAATTTAA ATAAATTTTT ATAAGACTCC TTTTCATTAA	237120
AATCGCCAAA TACATAAACA AAAAAATTTA AAAAAATCTC AATCAACGAA TCGGTCTCTT	237180
CCTGCCATAA AGAATCTTTA ATATACAATC TAAATTCTTT ATCTGTAAAA ATCTTACGAG	237240
AAAAACCAAT AACCCTAAAA TTGCTAATAC ATTTATTTTT AAATAAATTA AAAAGTGAAG	237300
GAATAAGCTT TTTTCTAGAC AAATTCCCGG TAACCCCAAA AATTACAATA TCAAAATTAG	237360
AAACACTTCT TTCTTTCATA GAATTTAGTC CAATCTGGTC AATTTATTAT ATATCACAAA	237420
AAACATATTC ATAAAGATTA GCAGACAAAA ATTAAGCTCA AATTAAATAT CATTTTTTTA	237480
TAAACAAAAC TAGTATATAA TAAGGAGAAT GAAAAATCTA TCACTATTTA CAGATTTTTA	237540
TGAAATTTCA ATGATGAACG CTTATTTTAC AAAAGGAATT AATCCTAAAG CAAAATTTGA	237600
AGTGTTTTTT AGAAAAACAC CCTTTAAAAA TGGCTATATT GTTTTAGCTG GAATGCATAC	237660
ATTGATTAAT GAATTAAAAA ATATTCGTTT TGGAGAAAAT GAACTTAAAT ATTTAAAAAG	237720
CTTTAATATA TTAGATAAAC AATTTTTAAA CTTTCTAAGA GAATTCAAAC TAAACGTAAA	237780
AATAAGCTCA ATAGAAGAGG GTCGAATAGT TTTCCCCCAA GCACCAGTAG TTGTGATTGA	237840
AGGACACTTA ATAGAATTAT TATTAATAGA AGGGTTAGTG TTAAATATAA TAAACTTCGA	237900
AAGTTTGATA GCAACAAAAA CCGCTAGAAT AAAAGAATCT GGTGCAAAAA TTTTAGCAGA	237960
ACTTGGGCTA AGAAGAGCTC AAGGAATAAA TGGAGCACTT TCTGCCAGCA AAGCCGCCTA	238020
CATAGGGGGA GCAGATTTCA CAAGCAATAT GCTTGCTGGA TATAAATACA ATATACCAGT	238080
TACAGGAACA ATGGCTCATA GTTGGATAAT GAGCTTTGAA ACCGAAGAGC AAGCATTCAG	238140

3.003.000.000.000					
AGAATATGCA AAAACATAT					
TAACAGTGGA TTAAAAAAT	G CCATTAAAA:	r attcaaaga <i>i</i>	TTAAAACAT	G AAGAAAAAA	238260
TAATTTTTCA ATAAGAATT	G ACAGTGGAGA	A TCTTGAATAT	TTAAGTAAA	G CAGCAAGAAA	238320
AGAATTAAAC CGAAATGGA	T TAAATCATGT	TTATTAAAAA T	GCATCTAATO	G AGCTTGACGA	238380
AAATATTATC ATGTACTTA	A ATTCAATAA	TGCTCCAATI	GATATTTGGG	GCGTTGGAAC	238440
AAATTTAGTT ACAGCAAAA	G GAGATCCAAG	G CCTTTCAGGA	GTATATAAAA	TGATCTCTAT	238500
AGAAAAAAT GGAAAATTT	А ТАССАААААТ	АААААТАТСА	AATAACGCAG	AAAAATCCAC	238560
ATTACCTGAC CAAAAAGAA	G TTGCAAGAAT	СТАТТТАААТ	GACCAAATGA	TCCTTGATTT	238620
TATATTTTTA AAAGAAGAA	A AAGATAAAAT	CAAAGATCAT	CTGAATTCAA	GAAAAGAATT	238680
TACCGTTTTT CATCCAATA	C AAGATAACAT	TTTCAAAATC	ATCAAACAAT	ATGACGATTT	238740
TGAATTTCTA ACGCACACTO	G TCTTAGAAAA	TGGAAAACTT	CGCAAAGGCT	ACGAGTCTAG	238800
CTTAACCAAT ATTAGAAAT	AAACCAAACT	CGACTTAAGC	AAACTTGAAC	ATACGTACAA	238860
AAGAATAATT AATCCCCACA	TATATAAAGT	AAGTATCAGT	АААААСТТАА	GAAAGTTAAA	238920
AAACAAACTC ACAAAAGATA	м тсааааасаа	TTAATATATG	ТАТАТАТАТА	AAACTAACAA	238980
AGTAAATAAA ATTTATAATA	AAATTAAAGA	ACTAACTCAA	AAAGACAATA	ТТТТААААА	239040
AGAAACACTC ATCATAGTAA	AAAATGATCT	CTTAAGAGAA	GAAATTAAAA	AAACCATAGC	239100
AAAACTAAAT GGGATTTCTT	° АТААТСТААА	TATTAAAAAA	AATGCCGCAA	AAAGCATATA	239160
TGAAATTTCT TTTAAAAATC	ССААТАТААА	ААААТАСАТА	GAAGAGAATA	CTTTTTCATT	239220
TTACTTGGAA ACAGAAAAAT	ТТАТТТТАТА	CAACATATTG	AAAACTGAAA	ААСТААААТА	239280
CATAAAAGAT TTCAAATCCA	CAAAGAATAG	GTACTTTTTT	GCATCAAAAA	TAATAGATTT	239340
ATTCCACCAT TATTACTCAA	AATTTTCAAA	ATTAATTGAA	ACTTGGGAAG	ATAATGGATT	239400
TTTATTCCAA GAAGAAAATT	ТААААСССТА	CGAAAATATG	CAAAAAGAAC	TATTTAAAAA	239460
GCTCTTTGAA AAACAAAAAA	ATATTTTAAA	СТТАСАТААА	ААААТААТТС	AGGAAAAACC	239520
AACAAAAAA ATAGAAATTG	AAATTAAAA	AATAATATTT	ATTGGCAACA	ACAGAGAGAT	239580
TGAGAAAAA ATTCTCAACT					239640
TTTTGAAGAT TTACTAAACT					239700
AAAAATCAAC CCAATAAAAT			•		239760
TGAAAATTTT TTAACAAGCA					239820
AGACGATAGC TTTAAAATAA					239880

			293			
			A TAACCTAAAA		TAGCAATAAC	239940
TTGTTTGCAA	GAAAAATTT1	A ATGAATATT	T GCCATATATA	A GAAGAATGTC	TAAATAAATA	240000
TGAAATCGAA	TATAGCGTTC	TATGTTATA	A CAATTTGTCA	AGAGGAGAAA	GTATAATAGC	240060
TTTAAAAAGG	CTAATGGATC	TTTTCGTAT	C AAAAAACGGA	ACAATTAGTA	ATTTTAGCAG	240120
AAAAGAAGTA	TTTGACCTAC	TAAGTAACA	A CAAAGTAATG	AAAAAATTTA	ATATATCAAC	240180
ATCTGAATTA	AACTATTTAA	TAGAATTTAG	G CGATACGATG	AACATTAGTT	TTGGTGCAAA	240240
CAAAACTCAC	AAAGAAAATO	TAAACTATG	A TCAAAACTTT	TTAAACTCAT	GGGAAGATGG	240300
ATTTAATCGA	TTTTTAATGT	° CTGAAATAT	TGACGAAAAA	TACGAAGAGG	AAACCCAAAA	240360
AGAAAGCACA	AGATTTCAAG	ATCAAGAGTO	AATAATGAAA	CTTATAACAA	TAGTAAAAAG	240420
TTTGTATGAA	GATATAAACT	ATTTTAAAA	TAAAGCATAC	AAAGTATATG	AATGGGCAGA	240480
AATCATAGAA	ATTTTTATTC	TATATAAAA	TGATCTTGAA	GATTTTAATA	CAACCGATGA	240540
ATATTTACAA	AATAAGATAA	AATCCTTTAA	AAATTTCCCC	AAAGATTTAA	ATGACAATCT	240600
TTACAAAAAC	TATTTAAAAG	AAATTAATGA	TTAAAAATA	GAATTTTATC	TTTTTAAGAT	240660
TATGCTTGAA	GAAAGTCTTG	AAAAAGAAAA	ATACGGAGTA	ATGTATAAAA	AAAATGGGAT	240720
ATTGATTGCC	AATTACAAAG	AAATAGAATA	ТСТТСААААА	AAAGAAATTC	ATTTTTTGGG	240780
ATTTCAAAAA	TTCAACTCTA	AGATAAATTA	TGATAATATG	AATTTATTAA	ATGAATACTA	240840
TGAACATGAG	AATACTGAAA	AAGAGGAAAT	AACGGCTCTT	TTTAATTTGA	TTTTTGCAAC	240900
ATCAGAAAAA	ТТТТАТСТТТ	ACTGCTCCTT	TCAAGACAAC	TTAAGCCCAG	AAATTAATAC	240960
ATCAAAAACA	ATAAACAAAA	TACTTGAACA	CATACAAAAG	TATGAAAAA	АТТТТСАААТ	241020
AGAAAAGCAT	CCAAATGAAA	ACCACGACCC	AGTATATTTT	AAAGATGCAA	AAGAAAATTA	241080
ТТТААТАААС	TATGATCCAG	AAGCCTATAA	TATCGCAAAA	ATACTACAAA	ATTCTAAACC	241140
AATTGGATTC	AAGCAAAATA	AAATTAAACT	AGAAAGCCCA	ATTAAGCTAA	ATTTATACGA	241200
ATTAAAAAAC	GCCCTTTCCA	ATCCTTACAA	GCACTTTTAC	GAAAAAACTT	TAAACGTTAA	241260
AATACAAGAC	ATAAGATTGG	AAAATGAAAT	CAAAGAAAAA	CAAGAAGAAC	AAATTTTCAG	241320
TGTTATTGAA .	ATTATTTACA	GACTTATAAA	AAATTCAACA	CTACTGCATG	ААТАСАТААТ	241380
GGGGAAAAA	GATGATGTAA	GAAAAGCAAT	AGAAATTATT	AAAAACCACA	TTAGATATGA	241440
AATACAACAA	GGAAGCATTC	CTTTCAACAT	AGATCAAAAA	ACGACTGTAA .	ATGAAATCTT	241500
AAAAAAATA 2	AATAAATTAA	AATATAATGC	TGCTGAAAGC	TTAAAAAAGC '	TTTCAGCAAT	241560
GACAAAAAGC A	TAAATTAAAA	TTTGCAAAAA	AATAAAACTA	AATTTTCAAA A	АТАААААТАТ	241620
AGAATTTGAA	TTAAAAAAAG	ATATCGAGAA	TGTATATAAG	GTCGAAAACA A	ATTATTTTTA	241680

ТТТАААТТТТ	GTAAAAAAAG	ACTATTGCA	G TATCCCAGA	ААААТАААА Т	ATGAAATAGA	241740
ТТТАТАТАТА	ACAGGACTGC	ТААТАААА	A AGAAATACAA	A AACTTCAATT	CATTAACAGA	241800
AGTAAAAATT	GATCTTGAAA	GCTTAACTG	C AAAAAACAAC	TATTTGCTAT	CATCACAAAG	241860
TAATAATAAA	TGATGACATT	GAAAATATGO	TTATGCAATT	TGCATACATA	TCAAGCTATC	241920
CAACTCCAAT	TTACCAAAGC	TTGATAATT	AAATTTTAAC	TAAAATAAAT	' СААААТААТТ	241980
TTTCAAATTG	TTTTAAGAAT	TTAATAAAA	TGCAGATAAA	AAATCCTTCC	AAAGCTTATT	242040
TCACAAGCAA	AGCACACGAG	AGATTTTTA	AAACTAGCGA	AATAACACTC	TGCGATTACT	242100
ATAACAGATT	TAAAGACACT	CATGATTTCA	AGTTAGACAA	AAATTTATTA	ATATTGATAG	242160
AAAAATTTTA	CATTAAATTC	GTAAGGACAA	AAAATTAAAA <i>i</i>	TTCATGAACA	AAATCCTAGA	242220
AAAAATTCAA	AATAACACAA	СААТАТТААТ	AGAAGCATCG	GCGGGCACCG	GAAAAACTCA	242280
CATACTGGAA	AATGTGGTTA	ТАААТТТААТ	' AAAAACCAAG	CTATACTCCA	TAAATGAAAT	242340
CTTGGTATTA	ACTTTTACAA	AAAAAGCCAC	AGAAGAAATG	CACACAAGAA	TACTAAAAGT	242400
AATAGAAAAT	GCTTATTCTA	ACTCAAAAAC	AAATGAAATC	TTAAAAGAAG	CTTATGAGCA	242460
АТСАААААА	СТСТТТАТАТ	CAACAATCAA	TAAATTTGCA	TTACATGCCT	TAAATAATTT	242520
TCAAATTGAA	ACAGAAAATT	ACTCCAAATA	ТАААССТААА	GAAAAATTTT	CAAAAGAAAT	242580
AGATGAAATA	GTTTATGACT	TTTTAAGAAA	ATCAGATAGC	TTGATTCAAG	CTCTTGATAT	242640
TAAAGACTAC	GAACTTAAAG	TGTTTAAATC	TGATGCTAAA	AAAACAGAAG	AGATTGTTTT	242700
AAAATAAAA	AAAGCTTACG	AAAGAGATAC	GACTCAAGAG	CTTGGAGATT	GGCTTAAAAC	242760
CCAAACGGCT	TTTGAAAACA	ТТСТТСТТАА	AAAGGAAGAG	CTGATCAAAG	ATTACAACAA	242820
AATAATAGAA	GACTTAGATA	AAATGACAAA	AGATGAAATA	TTAAGTTTTT	АТААТАААСА	242880
TATTCAAACT	GGCAAACTTG	AAATAGAATA	CTCTAAAGAA	AACGACATAT	TCAAAATAGC	242940
AGAAACATTA '	ATAAAAATT	AATTTTTTC	AACTCTAATA	GAAAAAGAAA	СТААААААА	243000
TTCTAAATTA	TCGCCTAAAG	AACTTAAGAT	TAAAAATGAT	TTAATCTGTT	TGGGAATTAA	243060
TATTAAACAT (GAAAAATATA	AATCAGAAGA	CAATAGAAAT	AAAAATAGAA	ACAATTTAAA	243120
GCAATATGTC A	ATTTTAAAAG	TTGAATACAA	ААТАСТАААА	TATATAGAAA	AAGAACTAAA	243180
GAAAACTATT A	AAATCAACAA	ACACAATAGA	TCAAAATTAC	ATAATTTCAA	AAAAATTTA	243240
TTACTTAAAA 1	rcagaagaca .	AAAAGCTTCT	AAATGCAATC	AAAAATCGGT	АСААААТСАТ	243300
TTTAATTGAT (GAAGCGCAAG	ATTTAAGCCT	ААТАСАААТТ	GAGATATTTA .	AAATATTAAA	243360
AACAGCAGGA A	ATAAAATTGA	TATTCATAGC	CGATCCAAAA	CAGATAATAT .	ATTCCTTTAG	243420

		295			
AAAAGCAGAC ATTTCATTTT		A AATAAAAA			243480
AATTGTACTA AAAATAAATC					243540
ТТТТААТААТ АТАТАСААТА					243600
TTCACTTCCA AATCAAAAA	ACGACAATA	A TAAAATTGTO	ATCAACGGAC	AAGAAATAGA	243660
AGGAATCAAT ATAATAACCA	CAAATACAGA	A AAGCGAAGAA	GACATTTACC	AAAAAACAGC	243720
ATTAACAATA AAATATTTGC	TTGCATATG	3 AAAAATTGCT	GAGAACAATA	AAATTAGAAA	243780
TATTAAAATG CAAGACATTA	AAGTACTTTC	G CAGAGGAAAA	AATGAAATCA	ATTTAATAGA	243840
TAAAGCATTA AAAAAAGAGC	AAATCCAAAC	AAACAAAACT	CAAGAAAAT	TTTTAAAAAC	243900
CAAAGAATTT AGCGAAATTT	TTTATATTAT	TAAGTGCTTA	GACCGAAAGC	AAAGTTTTAA	243960
ААСТСТАААТ ТАТАТТСТАА	GCAGCAAAA1	· ATTAAATGTG	CCGTGGAATT	TACAAAGAAT	244020
TTTAATCAAA CAAGACAAAA	TTTGCCTTAT	AGAAGAATTT	ATTGAAAATA	TAATAGTTTT	244080
GCTTGAAAAA AATGAAATAA	САТТААТААА	TGCAATTAAC	AAAATTACAT	TCGAAAAAA	244140
CCTGTGGATC AAAATTGCAA	ATATCACCAA	AGATCAAAA	ATTATTGAAT	GGGCAAAAA	244200
TAAAATAAAT TACAAAGGTC	ТТСТТАТТАА	AGAAGGTAAG	CTTGAAAATT	ТАААААССТА	244260
TGAAACAACA CTTGAGATCA	ТСТСТААААТ	АТАТСАТААА	GAACAAAACA	TACAATCTCT	244320
AATCTCTACT TTAGAAAGCC	AAATAATA	CGAAGAACCT	GAAGAAATAG	AAGAAAAAT	244380
AAATAATATA AATAATGATA	ATGAATCTAT	AGAACTCATG	ACAATACACA	AATCAAAAGG	244440
GCTTGGCATG AATATTGTAT	ТСТТАСТААА	TACAACTCCA	ATAGAAAATA	GCAATTTTTT	244500
ТТСААААААА ААТСААТТТТ	ACAAATTTTA	TCAAGACGGA	AAAATTGAAT	ATGATTTTTT	244560
TAAATTGGAA GAAAATAAAA	AATACGCAAG	АСТАААААТА	CTAAGCGAAG	ААААААТАТ	244620
ATTTTATGTG GGAGCAACAA	GAGCTAAATT	TGCTCTTTTT	АТТАТААААА	TAAATAGCAT	244680
AACTAGCAAA TTACTAGAAA	TAGCAAAAAT	TTTTACTATC	GATGATATTA	AACATGACTT	244740
TAACATACAT GAATTTATTG	GCCAAAAGAG	ATTCAATAAA	AAAAAATACA	ATACAAATGT	244800
AAATACAAAA TTAATTCCGC (CAAAACCAAT	AATTAAAAAC	ATGTTTAAAA	AAGAATATAC	244860
ATCTAGTTTT TCAAGTTTAA	CAGCGCAAGC	TCATCATAAA	GAATTTTACG	AAAACTATGA	244920
TTTTAAAAAT ATTAACTACG	AAAAAGAAAC	AGAACTTGAT	TATGAGCCTG	GATTAGAAGA	244980
GACTCTGCCC AAAGGAAAAG A	ACATCGGAAA	CATTTTACAT	GCAGCAATGG .	AGGAAATAAT	245040
CTTTAGCACA GCAAAAGATA (CATTTGATAA	TTTTAAAAAA	AATAACATTG	AAATTATTGA	245100
ААААСАААТА САААААТТА А	ACTCAAATCT	CAATACAATA	GAAATACAAA 2	ATTCATTAGC	245160
TAAAATGATT TATAATATAC 1	AACTTATAA	TATAAGAGCA	ATTAATACTC (GTCTGTGTGA	245220

TATTGAAGA	A TTACAAAAA	AAATGGAATT	' TTTAATAAA	ATAAATCCTC	AATTTCAAAA	245280
ACAAAAATA'	r cttttttgac <i>i</i>	AACACTTTGA	AGATCTTCAC	З АТААААСТА	A GTGATGGATA	245340
TTTAAAGGG	A ATAGTAGATO	TTATATTTAA	AGCTAATAAT	' AAAATATATA	1 TCCTAGATTA	245400
CAAAACAAA	C TATCTTGGAA	AAAATAAGGA	AGATTATAAT	' ATAACAAATT	TAGAAAATAC	245460
GATAAAAAA	A GAATATTATG	ATTTGCAATA	TAAAATATAT	GCCCTTGGAA	TAAAAAAAAT	245520
AATTATTAAA	A AACAAAAAG	AATATAATCA	AAAATTTGGT	GGAATAATAT	ATCTTTTAC	245580
AAGAGCATTT	Г GAAGACAATA	TTGAATGCTT	ААААТСАААА	TTTGAAAATG	GTATTTATTT	245640
TAATCTTCCA	A AAATTTAACG	ACGTGGATTT	AGATAAAATC	ATCTTAGAGT	TAGGCATTAA	245700
AAGACACTTA	TGAGAGATTT	TTTAGTATTA	AGAGAATTTT	TAAAAGATAA	АААСААААА	245760
TTCTTAACCC	CCGAGCTTAA	ACTTTATGAA	ATAATTGAAC	TTTTAAATAT	СААТААААА	245820
AATTGTTATA	AAGCACAAAC	ACTTGCAAGA	TCCACAAACA	ATGAAAATAT	TGTAATATTT	245880
ТТААТАТТТ	' ТАТТТААСТА	CTTTGATAAA	GGCCATTTAA	GAGCTGACAT	АААТСТАТТА	245940
GCAAAAGATA	TTCAAAATAC	AATAATATTC	ACAAAAGACA	ACCTAGAAAA	ААССААТААА	246000
AGTTACAACA	AATTAATAAA	ААТАСТАААА	GGGCTAGAAA	CATTTGGAAA	TCTAGAAACT	246060
ATTAAGAATA	TAGTTTTACT	TTTAAAGAAA	AACAACATAC	TAATGGAATT	TAACAAGCTT	246120
AAAATTACAA	CTCCCCTAAT	CCTGGAAAAC	AATATTTACA	TTTATACTCA	AAAAAACTAC	246180
AGAGAAGAAG	AAGAATTAAT	AAAACAAATT	ATAAAAAGAT	TAGAAAACCA	TAAAAGCGAA	246240
TTAAATGACA	ATAAAATACA	AAATATAATA	TCAAATTTAA	АТАССААТАА	TTTAAATAAA	246300
GAGCAAATTA	CATCAGTGAG	AAAGGCATTA	AAAAGCAACT	TCTTTCTATT	AAGCGGAGGC	246360
CCGGGAACAG	GCAAAACAAC	AACTGTTAAC	ТАТАТСТТАА	AAGCAATTAA	ТААААСАТТА	246420
AACAATAAAA	AAAAAGGATT	AGTAGCCATT	ACAGCACCTA	CAGGAAAAGC	TAGCCTAAGG	246480
CTGCAAACAA	GTATCGACTA	TTCATTCAAA	AATTTAGAAA	TAGAATGTAA	ТАСААТССАА	246540
AAACTATTGG	GAATCAAATT	CATAAACAAA	АААААТСТАТ	ATGATGAAGA	АААТСААТТА	246600
AATTTTGACG	TAATAATAAT	TGACGAAGCT	TCAATGGTAG	ATGCACATAC	TTTTTTAAAA	246660
CTACTGAAAG	CAACTCCAAT	AACCACTAAG	TTAATAATGG	TAGGAGATAA	AAATCAACTC	246720
CCGTCAGTAA	ACGAAGGAAA	TGTATATTCA	AGTCTTTTGG	GAATACAAAA	AATAAATAGC	246780
GATAATGTAG	AAGATCTTAA	AGAAAATTTC A	AGAAGCAACA	AAGAAATAAA	TTTACTCTCA	246840
AAGGCAATAT	ACAAAGAAGA	TAGTACTTTG A	ATTTGCAAAT	ACATTAATAA	ТАААААТААТ	246900
ATTCAACTGA	AAGAAATAGA	AAAAATAAAC :	TTAAAAAAAG	ATCTAATAGA	АТАТАСАААС	246960

			297			
					C AAAAATTGAA	247020
					T TGGCAAATTT	247080
GGAACTAAAA	CACTAAATGA	AATAATAAA	A ACTTACCTG	A AAAAGACCT	A TGGAAGCTTT	247140
ATTGGCCAAA	ТААТААТСАТ	AACTAAAAC	T GACTATAAA	A ATAAATTAT	TAATGGAGAA	247200
CGGGGTGTTA '	TTTTTAATGA	AAATTCTAA	A TTTTATGCT	TATTCCAAA	G AAAAGATGAA	247260
AAATATAAAA	TTTAAATAAA	AGATTTACT	A ACAAATTATO	AATTCAGCTT	TGCCACAACA	247320
ATACATAAAA (GCCAAGGATC	TGAATACAA	A CATATAAAA	TAATATTAG <i>i</i>	AAATAACCCT	247380
TTTTTGACAA A	AAGAACTTAT	GTATACTGC	A ATAACAAGAG	G CCAAGGATAC	CTTAGAAATA	247440
ATTTCTAACA	AGAGACTAT	TATTAAGTT	AGCAAAAA1	CTAGCAAAAG	GAGATTCAAAA	247500
ATACTAGAAC A	ACGTAAACTC	ATTTAAAGA	ATTGACAAAT	AAATTAAAA	СТАСТАТААТ	247560
СТТТТТАААА С	SAATGGCTTT	GGGGGCGTAG	TTCAGGTGGT	TAGAACGCCT	GCCTGTCACG	247620
CAGGAGGTCG C	GGGTTCGAG	ACCCGTCGCT	CCCGATGATG	AATTTTACAT	TTTATTGTGT	247680
CAGCAGCTTT T	CTTAGAGAA	TCTATTGATG	CTCTAGCAAA	ТТТТТААТАТ	AAAAATTACA	247740
AATCTTTAAT T	TAAAGGTTA	ТААТТТААТ	ААТТАААААА	ААААТСТАТА	AGGAGAATGT	247800
AAAATGAATC T	АСАААААТА	ТСТАТТТТА	ACTGCTTTAC	TATTAATTTC	AACATCTGTT	247860
TTCGCACAAA C	CAACACAAT .	AGCAAAAGAA	AATGTAATTC	CAAATGGGAA	CTTAAGCCAA	247920
TTTGGAGTAG A	AGAGATCTG	CCCAATATGC	GGATATGTTA	ACTGTATTTG	CGATGAACAA	247980
AGTACAGAAA T	CGCTGCAAA 2	AGTCTCTCAA	TCAAATACAA	CAGGCTTTTT	TACAAGCATG	248040
GCTATACTTG C	ATTGCTAGT A	AATTACAGGA	TTAGCTCTAG	CAAAAAAGAA	ATTATATAAA	248100
TCAAAATTAA A	AATTTAAGC A	АААСТАААТА	CTGTAGCTTT	TAAAAGCTAC	AGTAAAGTTT	248160
CAAAATCAAT C	CTTCAGCTC C	TAAAATTTAT	ATTAAGAAGT	GTAAATATCC	TCAACCCTAA	248220
TCTGACAAAG C	ATCTTTTTA 1	ACATCTTGAA	ATTCACAAAG	ATTGCCTTTT	AATGCCGTAG	248280
CTGTACCAGC TO	GCAACACCA A	AATTTAAATG	AATCCTCTAA	AGTACTTCCA	TTATCAAAAG	248340
CATATACAAA CO	CCGGCAATC A	ACAGAGTCTC	CTGCTCCAAT	GGTGCTAACA	АААТТААТСТ	248400
TAGGAACAAA GO	GCCCTAAAA G	CAACATTTT	TGCCGCCAAT	AAAAATAGCT	CCGTCACTTC	248460
CCATGGAAAT TA	ATAATGTTT I	GAACCCCAC	TTTCTACAAG	ATTTTTTCCG	ATTTTAATCA	248520
ATTCTTTTGT AG	ЗААТСАААТ Т	TAGCATTAA	AAAGATCTTC	AAGTTCATAA	ATATTAGGCT	248580
ТТАТТААААА GG	GATTTAAT C	TAAGAATTT	TTCGCAAAGG	TTTGCCACTG	GTATCAATGA	248640
TAAGCTTAAC AT	CATTAGAA A	TGCTATTAG	CTATTTCATT	GTATGCATCC	TCACCAAGAG	248700
CTGCGGGAAC AC	TTCCTGAC A	TCACTAATG	TACTATTATT	TGCTAAATTT	TTAAGTTTAT	248760

MMMMC2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
TTTTCAAAAG TTCAAATTC					248820
CTCTGCCATT TGCTATCATT					248880
CGTTTTTTAT GCCCCTAGA	Y TCAAGAGAA	A ATCTTATATA	ATCACCCGT	AAACCTCCCA	248940
AAAATCCCAA AGCCGTACTA	GGTTTTCCT	A AATTTTTAA(AACGGTGCT	ACATTTATTC	249000
CCTTACCGCC AGCAAAAAA	TTGTTATTT	A AAGCATAATI	AAGACTTTC1	TCCTGAAATT	249060
CTTTTAAAAC TATTTTATAA	TCCACAGAA	G GATTGAGTG1	TAGAGTATAT	ATCAAGATAA	249120
TCTCCTTTGA TTTATAAAAT	' CAATTAAAT <i>i</i>	A AATAGTAAAA	TTTAATAAAT	GTATATACAC	249180
TATATAATAT ATAAAGGTGA	TTATTATGC	TTTATTTAAA A	' TCAAAAAACT	' TGATTGTTTT	249240
AAATTACAAT GCAACTAGTA	AAGAAGATGT	Г ААТТАСАААА	ATGGCTAGCA	TGTTCAATGA	249300
AAATGGATAC TTAAATGACA	TGGAAGCATT	TATAAAAGAA	АДДАДДДТА	GAGAAGAAAC	249360
TAACGGAACA GGCATTGAAG	AGCATATAGO	TATGCCTCAT	GCAAAAGGCA	ATTTCATTAA	249420
AAAACACGGA ATTGCTATTT	TAAGAGTTGT	TGGCAATGGT	TTTGACTTCA	ACTCTTCTGA	249480
TCAAAAGCTT TCAAAACTGT	TTTTCATGAT	GGCCCTACCC	GAAGAAACTC	CAAGCAATGC	249540
ACACATAAAA GCTATATCAT	ACCTAAGTAA	TACTTTTAGC	AACAACCTAT	TAAGACATGA	249600
ACTTATGAGC ACAAATAATG	AAGATAGATT	TTTAGAAATA	ATATTGAATA	ATGACAATAT	249660
AAATGAATCT AACAATTTAA	АТАСААААА	AGATTTCATT	CTTGCCGTAA	CAGCATGTCC	249720
TGTGGGAATA GCTCACACCT	ATATGGCAGC	AGAAAGCCTT	AAAAAAGCAG	CTTTAGAATT	249780
AAACATAAAT ATAAAAGTAG	AAACAAATGG	ATCTAGTGGA	ACCGAAAATC	CAATAACAGA	249840
AGAAGAAATA AAAAAAGCAA	AAGGAGTCAT	TATTGCATCT	GGCAAAACTA	TCGATAAAGA	249900
AAGATTTAGC GGAAAACCTT	TAATCGAAGT	GGGAGTAAAA	GACGGCATAC	ACAAAGCAAA	249960
AGAGCTTATC CAAACAATTC	TTAAAAACGA	AGCACCAATT	TACAAAAAA	GCAACACAAA	250020
CAAAACCACC GAAACCCTCC	АААААСАААА	CAAAAAAACG	GGGATTTATA	AACATCTAAT	250080
GAATGGGGTC TCATTTATGC	TTCCATTTGT	AGTCTCAGGA	GGAATAATAA	TAGCAATATC	250140
ATTCATGTTT GGAATCAAAG	CATTTGACAT	AAACGATCCA	AGCTACAATA	AAATAGCAGA	250200
TATTCTAATG CAAATCGGCG	GTGGAAGCGC	ATTTGCTTTA	ATGATCCCAA	TACTTGCTGG	250260
CTATATTTCA TTTAGCATAG	CAGAAAGACC	AGGACTTGCA	CCTGGAATGA	TTACAGGATT	250320
AATGATGAAC AATGGAAATG	CAGGATTTTT	GGGAGGCATC	TTAGCAGGAT	TTATTTCAGG	250380
CTACGTTACA CTAACTGTAA	AAAAAATATC	TGACAAAATA	ATTCCTAGCA .	ATTTAAGAGG	250440
AATAAATCCG GTATTAACTT	ATCCTTTTTT	ATCAGTTATA	ATTTCAGGAA	TTTTGATATA	250500

		299			
TGGAATGCTT AGTCCAATA					250560
TAGCGGTACT AATATGGC					250620
GGGAGGGCCT GTAAATAAI					250680
TTATATTCCT CACGCAAGO	CA TAATGGCAGG	AGGAATGATA	CCTCCCATAG	GAATTGCTCT	250740
TGCTACAAGT TTATTTAAA	A ATAGATTCTC	AAAAGAAGAA	AGAGAATCTG	GAAAAGTTTG	250800
TTATTTTTTG GGAGCATGC	T TTATTACAGA	AGGAGTAATT	CCATTTGCAG	CAGCAGATCC	250860
TTTAAGGGTA ATACCCGCA	T GTATACTAGG	CTCATCTGTA	GGAGGATTTA	TTTCTGCACT	250920
TTTCAAGGTA GAGGTTATA	G CACCACACGG	CGGAATATTT	ATTCTACCAA	TAGTAGTAAA	250980
CCCATTAATG TGGATAACA	T CTATCCTGGT	AGGATCTATT	ATAACAGCTG	TTTTAATAGG	251040
AATCCTTAAA AAAGAATAC	A AGAATATAAA	CGATTAAGTT	TATATTCTTG	AACCCAGTCA	251100
ATAAACTAAT CTAAGTTTT	A TTGGTGTTTC	AAGACTTAAT	CCTTTAACCA	TATCCATCTC	251160
AAACCGCAGT GTGTTTGAG	T TAATTTGTTT	GAATCCAAAT	TGTTCTTGAA	CATTTCTAGA	251220
AGTCTTAACT ACAAGATTA	A GTTTGGAATT	GTCAATAAGT	TCACTTGCTT	TGGAAGTAAA	251280
АТССGАТААА АААТАААСС	A AAACATCTTT .	ATATTCTTTG	GCAGACATTG	GGATCTCATC	251340
CGATGGCAAA AGAGCAGCA	A GTGCATCACT	AATATATTCT	TTATTTTCAT	ТААТАТТСТТ	251400
AGTAGCGTTT TCCAAATTA	A TATTAAGTTC	AATAATATTT	TTACCATCTT	TTTTTTCTAT	251460
CTTAAACACA GATATATCG	GTTTTTTCAT A	ATAATCGCCT	AAAATTTTAA	ТТАААТТАТС	251520
AAACTTAACA ACTAAATTAA	A TAGAATCTCC	TTGGGTTTTA	ATACTCAAAA	GCTTAAGCCC	251580
AAGCTTTTCC TCTCCATTTT	TAAAGTATTT 1	PTTTATTTCA	TCTACAGGAA	AAAGAGGCAT	251640
ATTTGCAATT TCTTCTCCC	CCAAAGTTGT 1	FAAGAGTTCT	TTTCTAATTT	ТТТСАААТТС	251700
TCTATTAACA TTAACAAATA	TTGAAACAAT A	ACCACTAATA	TCATCATTTA	ACTCAATTTC	251760
AACATTAGAG CTACAAGCAA	AAAAAATCAA C	CAATAAACTC	AaGCTAACAA	AACACTTTCT	251820
CATAACAAAC TCCTAACTAA	CAGTTAAAAA C	TATTATAAT	AGAATATATA	GCTATAAAGC	251880
AATAAAACTA AAGGAGAACA	CCTATGGTGA m	TGmTAAAAC .	ACTAGAACCA	AAATTTTTTC	251940
AAAGTCTGCT AGACAATAGC	CCTACCCCTT A	TCACTTAGT	AAACTATATT	GAAGAGAAAT	252000
ТААТАААТТА ТТТТААТGCA	CAACAATTAA A	ACTTAATGA	AAAATGGAAA	ATTAAAACAG	252060
GATCATATTA САТАААААА	GAAGGAACTA G	CCTTATTGC (CTTTAATATT (GATGTCAAAA	252120
AAAAATATGA ACCGTTTCTA	ATAGCAGCAG C	ACATACAGA (CAGTCCGGGA	ТТААААТТА	252180
AAATAGACGC AACAGAAAAA	GTAAGTGGTG T	GTTTTATAA (CCATATTGAA (GTTTATGGTA	252240
GTCCAATAAT TTCTACTTGG	ATTGACAGAG A	CTTAAGCTT A	AGCAGGAATT (GTATATTTCA	252300

AAAAAAATGA GAATATTGAA TCAAAATTAA TCAACATTGA AAACATAGGA ATTATTCCAA	050060
ACCTTGCAAT CCATTTAAAC CGACAAATTA ACGAAGGATT TAAATACAAT GCTCATGACA	
	252420
ATTTAACAGT AATCAGTAGC ACTAAAAAAG CAATAAAAGA TAATATCTTA GAACAACTTG	252480
GAATAGAGTG TGAAAATTTT CTATCTTGTG ATTTAATATT CACAGAATCA CAACCTTCTA	252540
AAATAATAGG AACTGAAGGA GAATTTTTGG CTTCTAAAAA TCTTGACAAC AAATCGGGAT	252600
GCCATGCAAT CATGAATTCT TATGTTCATA CAAGCAATGA TAAAAATAAA ATAGCTGTAT	252660
TTTTTGATAA CGAAGAAGTA GGTTCTTTAA CATCAAGAGG CGCTGATTCA AATTTTTTAT	252720
CAGAAGTTTT AGAAAGAATC GATATTGCTC TTGATTTAAC CAGAGAAGAG CATTTAATAA	252780
AAACAAACAA ATCATTTAAT ATCTCAATTG ACAGCGTTCA CGGCATTCAT CCGGGTTATA	252840
CATCTAAACA TGATCCAAAC TATCAAGCAA ATCTAGGTAA GGGCGTAGTT GTAAAAAATA	252900
GTGCTAATTT CAGATATGCA ACAACTTCAA CAGGATTTGC AAAATTAAAA AATTTGGCTA	252960
TTAAAAACAA TATTAAGATT CAAGAAATAA TAATGAAAGC AAATGTTCCT TCAGGCACAA	253020
CAATTGGTCC AATCTCAAAT GCAAGAACAG GAATAGAAAC TATTGACATT GGAACACCAA	253080
TGTGGGCAAT GCATTCCCTG CGCGAAACAG TATCAATAGC TGACCACATA GAAGCAATTA	253140
AATTGCTAAG GGCTTTCTTT GAAAAAGGAA TTTAAAATTG GAAAAAATAA AAGAAATAAT	253200
TGTAGTTGAG GGAAAAGATG ATCTTAAAAG AATCAAAGAA TCTTTTGACT GCACAGTAAT	253260
AGAAACAAAA GGATTTGCTT TAAAAATTGA AACTATTAAG TTGTTAAAAA AAGCCTTAAA	253320
ATACAAAGGA ATAATAATCT TAACAGACAG CGATAAATCT GGAAATATTA TTAGACAAAA	253380
AATAGTCAAA TATCTGGGAG AAAATAATAA AATCAAACAT GCATATCTTA ATACTAAAGA	253440
CACTGAGGTT GAATCAGTAA ATAAAACAGA AATAATAAAA ATACTTAAGG GGGTTGGAAC	253500
TTTATCTAAA GATAATCAAA AAGATTTATT AAAATTAAGC GATTTGTTAG AACTTGGCAT	253560
AATAGGAGAA AACTCAAAAG AAAATAGACA AAAAATACAA AAACACTTTT GTTTGGGGGA	253620
TGGAAATAGT AAAAAACTCT TAGAAAGGCT GAATTACTTT AAAATAAAAA AAACAGACCT	253680
AAAAAACCAA TTGGCTTTAA CTAACTCCCC CAGAAGGACT TGAACCTCCG ACCTAGTGGT	253740
TAACAGCCAC CCGCTCTACC ACTGAGCTAT AGGGGAAATT GAACACTAAA AATATTATCT	253800
TAAATTTAAA AATTTTTGTC AATTATTTTC CAATATTTTT AAAATCCCAT TAGCAAGAAT	253860
TTTAGAATCT TGATCTCTAA GCTTAGAAGA TCTAATAGCC CAAGCTTCCT CTGGAAATGC	253920
CAAATTTCTA ACTTCTACTA AAAGCTTAGT CATTACTATA TTATTTCTTA AAACATGAAG	253980
ATTTTGACCC TTAATATAAA AACTTCTTTT CATTCCTTCT GTAATTTTTT CTGCTGCAGA	254040

		30T			
CTTTGAATGA ATATCATAT					
AGGCGCTCCA ACACTATTA					254160
ATGTTTATAT TTATTAACA					254220
AGTGCCGCTT ATCCAAGAA					254280
CTCGTTTTTA ACATTAACA					254340
GGGGGCTAAA ATAGTAAAT	T CAACATTGG	CCCCTCTTCT	TTAAGGTATA	CATAAAGCCT	254400
TAAGGCAATA TCATATACA	T ATTCATCTT(C AACAACAAAA	ACTTCATTTC	CAAGACCATC	254460
TCTAGATTTA ACAATAGCT	C CAGGATCAAC	ACCACCGTGA	CCTGGATCAA	GAATTATTAA	254520
TTTATCCTTA AGTCTTGAT	С СТТТАТТАА	A CCTAGAATTI	' ACCAACTTTT	CAAAACTTTT	254580
GAAAAGCTGG GTTGCCTTT	T TATAAGAATI	CAAAGGAGAA	TGCCAATCTT	CTGAATAAAA	254640
CTCACTTGGC TGACTTATC	r ttcttggtct	ATACCAATAA	TAGAAATCAC	CAACAACCTC	254700
AAATATTGGT ATTTTGGAG	Г СТААААТААС	CAAAGAGCTA	ATATCAAAAA	GATCTTGATT	254760
GGCAGTAATT CCAAAAGTA	TTAAATTTAG	TTTTTTATTT	TTACTTGAGG	GAAGATTAAC	254820
TATTGTTTGC ACTTTATTA	G AAGAATTAGA	GCCAGAATCA	ACCTTTTTTT	ТААТАТАТАА	254880
ATCGTTTTTA GTTTTAATT	A TAGAAGAATC	AATTGAAAGT	TTTTTATCAA	AAATTTTCAA	254940
TTTTTGATCG TGCATAATAT	TATTGCTGCT	ТАААТТАТТС	CAATTTTTAA	GATCCTCGAT	255000
TAAAACACCG TAATGTCTGC	CAATGCTATA	CAAAGTCTCC	CCTACAGCAA	CTGAATGATA	255060
GATAAACTTA TTATCTATTI	TTTTCTCAAT	TTTTAAATCT	CTCTCAACAG	GTTTTTCTAA	255120
ATCATTATTT ACAATCTTTA	AAACATTTAA	CAATGAACCT	GCTTTAAGAT	TAATAGCCCG	255180
ATTGCCATTA AGGGCTACAA	GATCCTTAGC	AGTAACGCCA	TAAATATAAG	CTATTCTGCC	255240
AAGAGTTTCC CCTCTTTTAA	CATAATGAAA	ATTAACATTC	TTAGTGGCTT	ТСТТТААААА	255300
AAGTTGCTGG CCAATCTTTA	ATTTATCATC	ATTAAGAAAA	ТТАААТТТТА	AAATATCCTT	255360
AGAACTAATA TCAAAATCCT	GAGAAAGTTT	TGAAAGTGAA	TCACCTTTCC	ТААССАТАТА	255420
AGGCTTTAAA AAATCAGGCT	CGGTTAATAC	AAGCTTCATT	ССААССТТАА	GATCTTTAGA	255480
ACGCAAATCA TTCCAAGCAA	TTATCTCTTC	TTGACTTAGT	CCAACAAGCT	TTGAGATGCT	255540
CTCAATGGTG TCGCCTTCTT	TTGCGGTGTA	AAAAACTCCC	ССТТТАСТАС	ATTCTAGCAA	255600
ACTAAAAGAA TGATTGACTT	TGTGGGTAAT	GTTTTGACCT	AAATTAGAAT	CACTTGGAAT	255660
AATTAATATT TGACCCGCCT	TAATATTGTC	AACATTAAGT	ТТАТТААТСС	TTTTAAGATC	255720
GCTTACTTTG ACTTTATATT	TAATTGCAAT	TGAAAAAAGA	GTATCTCCCT	TGACAACCTT	255780
ATACTCAAAA TCGGCATTAA	GATTTACAGG	ACCTATTATT	AAAAAAAAA	АТААТАТААТ	255840

AAGATCTATA ATTTGCAAA					
CAATGTAATC ATAAATTAT					
TGGAAATATA AAATTGCCC					
CAGAATAAGT AGTTTCAATA	A ATAGAAAATI	TATTTGGTGC	TTTTGAAAT	A TCCGAATTAT	256080
TAGAATTCCA CAAATATTCT	TTATACTCTT	CAACTACATT	TTTATTGGG!	ATAGGTGATA	256140
ACTTTTGCTT ATAAAGGTAT	GCCTTGCCCT	TGTCATTTAA	TAACAAACCI	TCAATATCAA	256200
GATATAAAAA GAACTTTTC1	TTTTTCCCAA	GCTGCAATGC	CTTTAACAA	TATTTAACAA	256260
TTTCATCGGG AGATAATTTT	TTCTTTTTCA	AGATATCTTG	AATATCATTA	TTTTCAGACA	256320
AATTAACAAG GTCTATGCTA	CCTGGATTTT	' CATCAAAACC	ATCATTCAAA	AAAAGCGTAA	256380
TAATATTGGA TTCTTTTTC	TTAGATGGAT	CTGAAATGTC	TGGGAAAAA	ATACCCTTAA	256440
CAAAATAAAC TCCATCTTTA	CTAAACTTAA	CAAATTGATT	TAAGTTAATA	ACTACAGAAA	256500
ATTTTTCATT AGGTCTCAAG	CTCATATTTC	TAACAGGAAT	TGCAACATTT	TTAGATCTCT	256560
TTTTAACATA TTCAATAGGT	CTTTTAACTT	TAATATTGGT	GGTATCAGTA	АСАТСААААТ	256620
CAAAGCCAAA AGAATTAATA	TCGCCTATTT	CTAAAGTTAA	AACACTCTCA	GACGCATTAC	256680
TAAGAGAAAC TTCAATAAAA	ACATTACTAT	TGACACGATA	AATAGATTGA	ТТААААААСТ	256740
TGATTTTAAA ATCAAGGCCC	TTGTAATCTC	CCGCAAACAA	AAGAAAAGAA	ATATTCATAA	256800
AAAAGATACA AAAAAGCAAT	TTTCTAATAT	TCATAAGCTC	CCCTCAAAAC	СТАААСАСАТ	256860
ТАТАТАТААА GAAAGTAATA	ATACCTATAG	TATATTATTA	TACTAAATTA	ATTAAACAAA	256920
AAGGTAAAAA ATGAATATAG					256980
AAAAAAAATG AAAGAATTTT	TAGAACAAAA	TATATTTTTT	TCATTAACAG	GATATGAAGG	257040
ATTTTTCAAG GCTTTTTTAA	ТТААААААТ	САААGААТАТ	AGCAAAACCG	GGAAAATAAT	257100
ATTAATAGTT AAAGACGAGC	ACACATTAGA	ТААААТСААА	AACGATTTAC	AAGTAATTAC	257160
AAATCAAATC TTTGAGCTTA	ACTATTTTAG	CCCCCTTGTA	TACAAGGGCA	TTGGCTCAAA	257220
AAGTACGATC TTTAACGAAA	GAATCAAATT	СТТАТТСААТ	ТТТТАТАААА	AAAATCCTGG	257280
AATATATT ACAGTCTTGA	AATCATTGCT	TAGCAAAATA	CCCGATAAAA	ATACATTACT	257340
AAAGAATATA TATAAAATTG	AAAAAAATAC	СААТАТТААТ	ACAGCAGACA	TTGAAAAAAC	257400
TCTTATAACA TTGGGATATG	AAAAAACATT .	AAGAGTAACA	ATTCCAGGAG	AATTTACAGT	257460
AAAAGGAGAA ATTATAGATA	TATACCCTTT	TGGAGAACAA	AATCCAATAA	GAATTGCACT	257520
AAACTTTGAC AAAATAGAAG	AAAAAAAAA	ATTTAATCCC	TTAACCCAAT	TAAAACACGA	257580

			303			
TAATGAAATT	TTAGAATTCC	AAATTCTTCC	AAAAAAAGAA	ATTATTTGGG	ACGATAAAAC	257640
TATTAACACC	TTAAAAACAA	AAATTAAATC	TGTTGAATAT	AAAAAGATTC	TTGAAGAGTT	257700
GGATTTTAAA	AAAGAAACAA	AAACAGAAGA	AATGTTTAT	CCACTAGTAG	CAAATACTTA	257760
CTTAGGTGAT	GAGATTGAAA	AACACACAC	TATTGTAAAC	TTTGAAATTA	ACAATTTCGA	257820
AAAAGAAATT	GAAAAAATAC	ACCAAGAATA	TGAAAAGCTT	' TACAAAGAAG	CAGAAGAAGC	257880
CGGTAAAAAT	ATAATTGATC	CAAAAAGAAT	TCTCTTAAAT	TATAAAACCT	TCAATCTAAA	257940
AAGCGATGTT	TTATTTTCAA	AAATTAAAAG	CCTTAAATCC	AAAGAAACTA	TAGAGTTTAA	258000
AATCGAAAGT	GAGAGAAACT	TTTTTTCAAA	TATAGCACTT	ACAAAAGAAG	AATTTGAAAA	258060
TTGGCTGAAA	AATGGATTTA	AAATCATTAT	TGCAGCAGAA	TCTGAATCAC	AAAAAGAAAA	258120
ACTTAAATAT	ATTTTCAAAG	AATTGCCAAA	AGTATCAATT	GAGGTTTTAA	AAATATCTAG	258180
СТСТТТААТА	ATAGAAAAAG	AAAAAATTGC	CATTATTCTT	GAATCAAACA	TTTTCAATAC	258240
GGGCAAAAA	ATAAACAAAG	CCTTTGAATC	TTCAAAAACA	AAAGCTATTG	ACTCTTTTGT	258300
TGAGATTGAG	AAAAATAGTC	ACGTAGTTCA	CATAAACCAT	GGAATTGGTA	TATTTAGGCA	258360
AATAAAGAGA	АТАААААСАА	GCTCTCTTGA	AAAGGATTAT	ATTGAAATTG	AATACGCTGA	258420
AGGAGAAAA	CTATTTATTC	CAATTGAACA	AACAAATTTA	ATCCAAAAAT	ACATTGGAAG	258480
TGATCCTAAA	AATATCAAAT	TAGATAAAAT	AAGTTCTAAA	ACATGGATAA	AAAACAAAGC	258540
AAACGCAAAA	AAAAGAATCG	AGGAGATTGC	AGACAAATTA	ATAGAACTTT	ATTCAAAAAG	258600
AGAAAGCATT	AAGGGTATTA	AATACCCAGA	AGATAATGAA	TTACAATTGT	TGTTTGAATC	258660
TGAATTTCCA	TACGATGAAA	CTCCAGATCA	AATAAGAGCA	ATAAAGAAA	TAAAAGAAGA	258720
TATGATGAGC	TTTAAAGTAA	TGGATCGCCT	TCTTTGTGGA	GATGTTGGAT	TTGGAAAAAC	258780
TGAAGTTGCC	ATGAGAGCTG	CTTTTAAAGC	CGTAATGGGA	AACAAACAGG	TTATTGTACT	258840
CTCACCAACA	ACTATCTTAG	CAGAACAGCA	ТТТСААТАСА	TTTAAAAAAA	GATTTAAAAA	258900
TTTTCCAATC	AAAATCGAAG	TATTAAGCAG	ATTTATAAAA	AATAACGCAG	AAAGCCGGAT	258960
CTTAAAAGAA	CTTAAAAGTG	GAAAAATTGA	TATAATCATA	GGAACGCACA	AAATTCTTTC	259020
AAAAAAATTC	ACCTGCAAAA	ATTTAGGGTT	AATAATAATT	GATGAAGAAC	AAAGATTTGG	259080
TGTAAAAGAA	AAAGAAAAAC	TTAAAGAAAT	AAGAATTTCG	GTTGATTGCC	TTGCTCTTTC	259140
TGCAACACCA	ATTCCCAGGT	CTCTTCACAT	GTCACTAATT	AAGCTTAGAG	ATATTTCCGT	259200
ТТАААААТТ	CCGCCTCAAA	ACAGAGTAAA	AATAGAAGCT	TATTTAGAAT	CATTTAGCGA	259260
ACTTTTAATA	AAACATGCAA	TTGAGAGTGA	ACTGTCTCGA	GATGGTCAAG	TTTTTTAGT	259320
AAATCATAAT	ATTGAAGAAC	TGTATTATTT	АААААСАСТА	ATTGAAAGAT	TAACCCCTTA	259380

TGCAAGAATT	GCAATAATTC	: ATGGAAAAC	ቦ ልልሮልሮርልሮአን		ATATAATGCA	0-0111
						259440
					AAAATGGAAT	259500
AGATATTCCA	AATGCAAATA	СААТААТААТ	T AAATAATGCA	AACAAGTTTG	GACTTGCACA	259560
GCTATATCAA	CTAAAAGGAA	GAGTTGGAAC	AGGATCTCAG	AAAGCTTATG	СТТАТТТТТТ	259620
GTACCAAGAC	AGCGAAAAGC	TAAATGAACG	CTCTATTGAA	AGATTAAGAG	CAATAACAGA	259680
ATTTTCAGAG	CTAGGAGCAG	GATTTAAAAT	AGCAATGAAA	GATATGGAAA	TAAGAGGTGT	259740
TGGCAATTTA	CTTGGTAGAG	AACAACATGG	GGAGATTGAG	TCGATTGGAC	TAGATTACTA	259800
TCTAACAATG	CTAAATAAAG	CAATTGAAAA	GAAAATGGGA	AAAATCTCAT	CAGATGAAGA	259860
AGAGGTTGAT	ATTAAAATTA	ACTATAGTGG	АТТТАТТССТ	GAAAATTATG	CAAAAAATGA	259920
GCAGGATAAA	ATACTAATCT	ACAAAAAAAT	СТТТААААТТ	CAAACTGAAG	AGGAAAGTAA	259980
AAAAATAAGA	TCAGAGCTCC	ACAACGACTT	TGGCCCAATA	CCCGAAGAAA	TAAACAGTCT	260040
ATTAATGTTA	GCTGAACTTA	AAATTCTAGC	AAAAGATTTA	AACATAACAA	AATTAAAAGA	260100
AAAAAACAGG	GCTTTGGAAA	TAGAATACAA	AAATATAGAA	AGCATTCCTA	TGGAAAAAT	260160
AATAGAAATA	CTTCAAAAAC	ATCCTAATTT	АТТААТАТТА	AATCCCTCAT	ATCAAAAATC	260220
AATATTTTTA	AGCTTTAAAA	ATATTGAAAA	ATCTGAAAAA	ATAAATTACA	ТАТАТАААА	260280
TATTAACTTA	CTAAAAACAA	GCACATAACT	TGTCAAATAC	AAAAGGAAAA	AAAATGAAAA	260340
TATTAATCAT	AAACACAGGA	AGTTCTTCAT	TAAAATTTGC	ТАТТТАТСАА	ТАТСААААТТ	260400
САААААААТ	AATATCTGGA	ATTGTTGAAA	AAATAAAATC	ACAAAAATCA	АТСАТААААА	260460
TTGTAAATAC	TGACGGATCA	ACAACAGAAA	GATTTGAAAA	AGGAATTGAA	AATCACCAAA	260520
AAGCAATAGA	AAAAATGTTT	AAAATACTCA	CAAACAGCGA	ТТТАААААТС	СТТААААСТС	260580
TTAGCGAAAT	ТААААТААТА	GGACACAGGG	TTGTACATGG	AGGATCAAGC	СТТАААААТТ	260640
CAGTAATTCT	TAATAATAGT	ATTTTAAATA	AATTAAAACA	AATTTCTGAA	CTTGCTCCAC	260700
TTCATAACCC	AAATGCAATC	ACCGCAATAG	AAGCGGTGCT	ТААААТТТТА	CCACACGCAA	260760
AGCAAGTTTT	ATGCTTCGAT	ACATCCTGGC	ATCAAACTAT	AAAAGAACAT	GCCTTTCTTT	260820
ATGCAATTCC	ATATTCTTGG	TATAAAAACC	ACAATATTAG	AAAATATGGC	TTTCATGGCC	260880
TTTCTTATTC (GTACATAACA	AAAAGATCCT	CAGAAATTTT	AAATAAAAA	ATAGATAGTC	260940
TAAATTTAAT	AATATTGCAT	CTTGGTAACG	GAGCAAGTAT	TAATGCTGTT	AAAAATGGAA	261000
AATCTTATGA (CACAAGCATG	GGAATTACTC	CGCTTGAAGG	CCTTGCAATG	GGAACAAGAA	261060
GCGGTGATAT A	AGACCCATCA	ATTATTAATT	TGATGAGCAC	ТАТАТТАААС	AAAACCACCA	261120

~	\sim	~

AACAAATTGA AGAAATATTA AATAAAGAAA GTGGCATACT GGGAATTTCT GAAAAATC	AA 261180
ATGACATGCG GGATATTTGG AACAAAATTG AAGAAGGAGA ATATCAATCA AAACTTGC	AG 261240
TAGAAATAAT GACATATAGA ATAAAAAAAT ATATTGGATC TTACATTGCC GCTCTTGA	TT 261300
TTAATGTCGA TGCAATAGTT TTTACAGGCG GAATTGGTGT TACTGATTAT GGAATAAG	AG 261360
CTCTTGCACT AAAGGGGTTT GAAAAAATTG GAATAGAACT GGACCTTGAA AAAAATGAA	AA 261420
TGGCCCAAAG TAAGTATTTA GAATCTGAAA TATCAACCAT TAATAGCAAA CTAAAAATA	AC 261480
TGGCAATACC AACAAACGAA GAATCAACCA TTCTTGAAGA CATTTATAAT TTAATTCCA	AA 261540
AAAATTTATA ATTTACAATT TTAAAAACTA AAATCTGGTT TATTTATTAT AATCATTTA	A 261600
AATAGATTTA TATTTAACTC TTGCAAAGCA AAGTTGCTTT TTTAACATCT TCCATTATT	T 261660
GTTTTCCTTT TACCATTTCA AGAAGAGTAA AAGCAAATTC AAATGAAGTT CCAACTCCT	T 261720
TAGAAGTAAT AAAATTATTG CTTCTAACAA CATTTTCATC TACAAACTCA CCATCAAGC	'A 261780
CATTTTTCTC CAAACCTGGA TAACATGTAA ACTTATTGAA TCCTAGAAGA CCTTTAGCA	G 261840
CAAGCACTAC TACCGGAGAA GCACAAATAG CTGCAATAAA CTTACCTTTG GAATTCATA	т 261900
CTTTTAAAAT CAAATCCAAT TCTTTTGAAT TAAAAAGATT AGTAGCTCCA GGCATACCT	C 261960
CCGGGAGAAT TATTAGATCA AAACAATTTT CCTTACAGTT TGATATTATA TCATCTGCT	A 262020
AAAAAGAAAC GCCTTTTGAA CTTATCACAA CATTGCTATC ATTTGTGCTG ATAATTTGA	A 262080
TATTAACATT ACCCCGTCTT AAAATATCAA TCGGGATTAT GGCCTCAATA TCTTCAAAG	C 262140
CATTTGCAAG AATAATTCCT ACTACCATTT ACAACCTCTA ATGCTGATGG AGGGACTTG	A 262200
ACCCACGACA ACTCGGATAT GAGCCGAGTG CTCTAACCAA CTGAGCTACA TCAGCTTAA	A 262260
CTTTTATTAA GTGTATAAAT TCAATAATGC TTTGTCAATG TTATTATTCA AAAGTATTA	r 262320
TATAAAGTAT AATACAAAAT GGCTTGCTAA TAAATATAAA TTACTAAATT AGCATTTAT	r 262380
ATTTATATGG TTAAATGAAA AGAAATTTTT ATCTCATTGT CCTTTTTATA GCTAATAACT	262440
GCTTTTCTAT TGATTTTTGG GATACGATGG AAAGAGAAAA ATTAATAAAT GAAATGGTAA	262500
GCAAAATGCA AGATCATGAA TTACTGGGGC AAATGTTCAT GATAAGCTAC CCAAATCAAT	262560
CAATCACAAA TTTTGTTCTT GATTTTATAA GTAAAAAAA TCTTGGGGGA ATTAAAATTT	262620
TTGGATGGAA CGCAAAAGAT TTAAAAAATT TAACAGAAAG TATTCATAAA GCTCAAAAAA	262680
CATCTCAAAA TAATAAATTT AAAATTCCTT TATTTGTAGC AACAGATCAA GAAGGGGGAT	262740
TGGCGCAGCA CATAAAATTA AATACATCAG AAACAATTGG CAATCTTGGA ATTGCAGCAT	262800
CGCTTTCTCC AAAAGATTCT TATAATACAG GATATTACAT AGCACAAGAG CTAAGGCAAC	262860
TTGGAATAAA TCTAAACTTT GCGCCCATAG TAGATATATA CAGCCATGAA AATAATTTTG	262920

CAATAGGACC AAGAACAT	AT TCGGATAACC	CCAAAATAG	T ATCACTTCT	TCTCTGGCCT	262980
TTTATAAAGG ACAAAAGC					263040
GCAATACCAC TCTTGACT					
TAAGCTTAAA TGAACTTT					
TGACAGGTCA TTTAGCATA					
СААТАААААТ ААТТАААС					263280
CTGATGACCT ATTAATGAA	C GCAGTAAACT	ACAATAATGA	GAGCATTTAT	AATACGATTG	263340
AAAGAATAGT TAGAACCAA	A AGTGACATTT	TTTTAATATC	TTTAAATGAA	AATATACAAC	263400
AAAATGCTTA CAACATGCT	A TTAAATTTAA	TGAAAAAAGA	TTCAGAAATA	АААААСААТА	263460
TTATTGAATC TAATAAAAG	A ATATTAAGAA	ТААААТТААТ	GTACTTAAAA	GAAAATAAAA	263520
ATAAATCTGA TCTTTATCC	Т ААТТТАААСА	AAAATGAGAA	AATATATTCA	AAAGAAGGTG	263580
AAAAATTTTT TGAACAAAA	C ACATTAAGGA	GTATTACAAA	AGTAAGAATA	GAAAAAGAAA	263640
ТАТСТААААС САААААААС	А СТТАТААТАТ	CTCCTTACTA	CAAAATGATT	GTAGAGGGTA	263700
AAAAAATATT TCAAAATAC	A TACGCTTATT	АТТАСААСТА	TTATCCCTTA	AACGGAATTA	263760
ATCCCCAAAA ACTCGACGA	TAAAAAATTA A	ТААТТААТАА	ATTTGAACAA	GTAATATTTA	263820
ATTTATCCAC ACCTGGAAG	C TTGAAATATT	TAGAAAATTT	GAAAGAATAC	AAAGACAAAA	263880
TAAGCGTAAT TGTATCTCT	r actcctcacc	АТАТТААААА	ATTAAATTGG	АТААААААСА	263940
TAGTAATTAT TTATGGAAC	A ACACCCTTGG	CATTTAAATC	TGGATTTTTA	ACACTCACTA	264000
AAGATTTTGA TCCAAAAGG	A ACCATCCCTT	ТАААААТАТ	ТАТАААТАА	TATTATCCTT	264060
AATGTATGCT AGCATTCGA	TTTTTACAAT	CTCTAGAGAA	CCTTGTTTGA	TTCTAAACCC	264120
ACTGGCATTT TTATGCCCAC	C CGCCTCCAAA	ATCTTCTGCC	AATTTTCCAA	CATCAAAAGA	264180
ATCTTTAGAT CTTAGCCCA	CTATAATCGA	ACCATCCTCC	ATTTCCTTTA	AAATGCCTAA	264240
AATTTCATTA TTCTCAACAT	TGCTTAAAAT (САТАТААААА	AGCTCATTAA	CCCCACTAAC	264300
TCCACCATCT TTGCCAGAGC	TAGAAGAAGA	TAAAAATGTA	AACAAAACCT	TTCCATTCCA	264360
ATAAGATTCA AGACTGTTAA	GCATTAACTT A	AAGAGTTTCT	ATTGATTTTA	GGCTTTTGGT	264420
GGTTTCTATA TAGCTATAAA	CTTCTTTAAG (GCTTATTCCT	TTTGAAACCA	GTCTTGCAAC	264480
CATTTCAAAA GGCTCTGGAT	CACTTCTTGA A	ATTAAATTTA .	AAAAAACCAG	TATCAGTACA	264540
AAATCCTACT AAAATATACC	AAGCTTCTTC 1	TTTTGTAAGA	TCATGTCCAA	АСТСТСТТАТ	264600
СААТТТТТСА АТТАААААА	TAGTAGAAGG 1	rgcaaaagga '	TCAATATAGC	CCTCACATTC	264660

ТААТТТТТСА	CCAGACATAT	GATGATCGAT	TACTAAAGTA	GGCATATTCT	TTACATAAAA	264720
GATAAATTCA	TCACCTATCC	ТАТСТААААТ	CGAGCAATCT	ААААТААТАА	CTGAATACTC	264780
TGAAATCTCA	ATATTGGGCC	ATTCAGATAA	AAACTTATCC	TTAAAAGGAA	CTATTTCTTT	264840
ТСТААТАААА	GGACCTTCAT	TTAACAAAAT	AGAATTTTTA	CCAATTCTTG	AGAGAAAAGA	264900
GGATAAAGCT	AAAGAAGAAC	CTATACAATC	AAAATCAGGA	TCTTTGTGCC	CAATAATAAC	264960
AAAATTATTA	ТАТТТТТТАА	ТААААТТААТ	AACATCTCTC	ATAATAAAGT	TCGCAAACCT	265020
TCCGCAAAAC	AAGTTTTTAG	СТТАТТТТАС	ATTGACTATA	TTACAATATT	ТСААТААААТ	265080
AAACCACAAT	GGCTAATAAA	ATATAACAGG	TGGGAAATTT	TGGAAAAACT	AAAACAAGAA	265140
GATATAGATA	AAGCATTTTA	TATGGCAGAA	AAAGCACGAA	ATAATTCATA	TTCTCCATAT	265200
TCAAAATTCA	AAGTAGGTGC	CTGCATTAAG	ACCAAAACAA	ACGATTTTTT	TATTGGAACA	265260
AATGTTGAGA	ATGCAAGCTT	TGGAGCAACT	TGTTGTGCAG	AAAGAAGTGC	GATTTTAAAT	265320
ATGATTGCAA	AAATTGGCGT	ACAAGAAATA	GATTTTTTAT	TACTTAATAC	AAGTCCTGAA	265380
TGTATTCCGT	GCGCTATATG	CCTGCAAGTA	ATGGCAGAAT	TTTTTAATCA	AGATACAAAA	265440
АТААТААТАА	CAGAATCTAA	ATCATTTAGT	GAAAACAAAA	CACCAATAAA	ААТТТАТАСА	265500
TTAAAAGATT	TACTTAAATC	TCCTTTTGAT	AAAAAAGAAC	TACGAAGAGT	AACATACTCT	265560
GAGCTTGAAA	TAATTAAAA	TTAATTTAAT	ATCTTTAGAG	AAACCAAAGC	ACTTGCAAAC	265620
TTATTTAATT	TGTTGCTTTC	AAGAGTATGA	GCAGATAAAT	CAAATACATT	TAAAATAAGC	265680
TTTTTCTCAT	CAGAATTAAA	ATTATATTCC	AAATCTTCAA	АТААТАААА	АТТААТААТТ	265740
GGAACAAATT	ТТТСТАТААА	GCTGTATAAA	CTATTATTAA	TATCATGGGT	TTCATAATAA	265800
ТААТСАААТА	TATCTTCTAA	TGACCTTCTG	TCAAACTCTT	TTAAAATCTC	GTAAAAAATA	265860
ТТТТТААТАТ	TATCAATTAA	ACTGTGCAAA	TCATTATTAT	ТТААААТААТ	ТТТТТАСАТ	265920
TTTTTCACAA	AAAAATCTGC	TTGCCGCATA	AAATATCCCT	CACTTTTGCC	CCCAACAAAC	265980
TAAGATTGAG	CTTAAATTTA	ATAAATGATA	AAATTTAACA	TTACTGCTAA	TATAGTAAAA	266040
TTATGCAACA	ACTAGGAGAA	TGTTACAATT	ATGGTCAAGG	TAATAAGCTT	AAAAAACATT	266100
CATAAATTTG	CTTATTTAAA	ACTGGATCCT	TTAAAAAAAG	AGGATATCTA	CATTGTTTAT	266160
ATTGAAACTA	ATTCAAAATT	AATTGCAAAT	CTTAAAGCAA	AAACAAAAGT	TGATCAAATT	266220
GAAATAATTA	ATTTTTATAT	TGATGATGAT	TTTAAATCGG	AAGGCATAGA	AAGAATAATG	266280
ATTAGCAATT	ТААТТСАСТА	CGGCAAAAAA	AATAAGTTTA	AAACAATTTC	ATGCCAAATT	266340
GCTGAAATAC	AAGAAGAGCT	TTTAAGCTTG	GGATTTGAAT	ATAACGATTC	ТАААТАТААА	266400
AAAGAATTAG	CATCTGAAAT	AGAAGAAGAT	AAATTTGTAA	TGGGAATAGG	AATAATCTCT	266460

ATATTTACCG	AAGTAGCATO	AATATCTTC	I AAGCTTACTO	G TTGGAATACT	GTTTAATTCA	266520
TTTGCACTTA	TTGCTGATGO	TTTCCACGT	A ATGGCCGACT	T TTGTTTTATC	TACAATAACT	266580
TATTTTAGTT	TGAAAATTAC	: AAGCAAGCC	r gaaaccatto	ATTATCCCTA	TGGACACAAA	266640
CTAATGGAAA	GCTTAATAGC	TTTTATCATO	GGAATAATTA	A TACTTATGAC	AGGATTTACA	266700
СТАТТТСТАА	ATACAACCGG	ATTAAATAA	A TTTATCACTO	TTGGGGGAGA	GTCTGGATTT	266760
AATCTACACA	TACACCAGAA	САААААТАА	AATGATACTA	TATATGAACA	TGACCATTGC	266820
CATTCACACG	ATCACGATCA	CGATCATAAC	CACGACCACA	ACGAAGAAGA	САААААААА	266880
ATACTAGAAA	TATTTTCAAA	ТАААТСТСТТ	AAAAAAAGCT	' TGTGGATACC	ATTAACCCCC	266940
TTCATTTTTT	TTATAGTGAA	AATAATAGAA	1 TATTTGACAA	AATTTCAAAT	AGGAAAAAGA	267000
TACAACAATC	AACTTCTCTT	AGCACTAGCT	TCTGCTGATA	AAAACTGTAT	ATTCTCACAT	267060
GGTGGGATTA	CACTAAGTTT	ACTGCTTGCA	ACCTACATGT	GGAGTGGCTT	TGACAAAATT	267120
ATGTCTATAT	TTATTGGCTT	ТАТСАТААТА	AAAGAAGGC	TTAACGTAAT	AATAAATAAC	267180
GCAAACAATT	TGCTATCAAA	АСААААТАТА	GATCTTAAAA	GAAGCGTAAA	AGACACGTTA	267240
AAAAATTCAA	АТАТАААСТТ	TAAAACACTC	AATTTTCATA	ATCAAGGCAA	CAAACTTGTG	267300
СТТТАТАТСА	АААТАААТТТ	AAATTCAGAA	AATGACTTTA	AAAATTTTAT	AAATAAAACA	267360
CAAGATATTA	AAAAAATCAT	AAAACAAGAA	TATAAAGAAA	TAAATGATAT	ATATTTTTTA	267420
GTCTAATTAA	АТТААТААТА	ААСАААТААТ	TGACACTCAT	AATAAAGTTG	TGTTAACATT	267480
TTAAATTGTA	AGACGCAGGG	TAGAGCAGTT	GGTAGCTCGT	CGGGCTCATA	ACCCGAAGGT	267540
CATAGGTTCG	AGTCCTATCC	CTGCTATGCT	TTATTTTTAA	TATGTGAGGA	ATTGATGAAT	267600
AGAAAACAAA	TAGCTAAAGG	CAAGCTGGTA	AGGAGATTTG	GTATCAACAT	TTTTGAGCAG	267660
CCAAAATATG	ACAAAATCCT	CAAAAAAAAG	CCGCATCCTC	CCGGAATGCA	CGGAAAAGCC	267720
AGAAAAGCTA .	AAATCACAGA	ATATGGAAAA	CAATTAATAG	AAAAACAAAA	GATAAAGTTT	267780
ACTTATGGTG	TAAGTGAAAG	ACAGCTAACC	AACACTTTTA	AAGAAGCAAA	AAAACATCAC	267840
GGTGTTACTG	GAGACAACTT	GCTCTCAATA	CTTGAAAGAA	GAATTGACAA	TGTTGTATAT	267900
AGGGCTGGAT	TTGCCATCTC	AAGAGCACAC	GCAAGACAAA	TAGTTTCTCA	CGGTATTATT	267960
ATATTAAATG (GAAGAAGAGT	TACAATCCCT	TCAATAATAC	TAAGAGCAAA	TGATCAAATT	268020
CAAATAAAAG 2	AAAAAGACAG	ССТАААААА	TTAATAAGAT	CAAATATAGA	AAAAACTTCG	268080
TCTCTTAGAA A	ATTTGCCAAC	TTGGATAGAA	GTAAATGCTG	ATGATTTAAA	CATAAAAGTA	268140
AAGCATGCTC (CATCAAGGGA	CGAGATACCT	ACGCTTGCTA	ATGAACAAAT	GGTTGTAGAA	268200

US98/12764

			309	•	_	
ТАТТАТТСТА	AGAGAGCATA	AAATATCTTT		ТТАТТАААТА	AAAAAAGTGG	268260
CTAATTAAAG	CCACTTTTTT	TATTTACCCC	TTTTTTTACC	CTTTGAAAAA	CTTTTACCCA	268320
AATTATTCTT	AGCAAAACAA	GAAAAACTAT	TATTCTTTCT	CAAGCCCTTA	ACATTAGGCT	268380
GAGCGCTAAA	AGACGCTCTA	TTGCCCGAAG	GCTTTCTAAC	TCCATCTTTC	ATAGATCTAC	268440
ТССТААААТА	ТАААТТТААА	TATGTAAATT	ТТТАААТААТ	ATTCAAATAA	TCAAAAACTT	268500
CTTCCAAGCT	GGAGACAAAC	TTAACATCTA	TATTGTCCTT	AACTTCTTCT	GGAAGCTTAG	268560
AATAATCTTT	TTTATTATCT	TTGGGCAAAA	TAACTTTACT	TATACCGTTT	CTATAGGCTG	268620
CTAAAACTTT	TTCTTTAATG	CCGCCCACAG	GAAGAACAAA	GCCCTTTAAA	GTCACCTCAC	268680
CAGTCATTGC	AAGATCCAAA	GGAACTTTCT	TGTCAGACAA	TATCGAAGCA	ATTGCCGTTG	268740
CAATGGTAAT	ACCTGCAGAA	GGCCCATCTT	TTGGTGTTGC	TCCTTCTGGA	AAGTGCAAAT	268800
GAATTTCAGG	ACTTTCCTTC	ACATCAAAAT	TAAGCTTAGA	AGAATAGGTC	TTAACTATAG	268860
AATATGCAAG	CTGTGCACTC	TCTTTCATAA	TAGCTCCAAG	ACTACCTGTT	AGAATAATGT	268920
CTCCCTTTTT	СТСАААСТТА	GTTGCCTCAA	CAGGAAGAAC	TGTACCACCA	TAATTTGTCC	268980
AAGCAAGCCC	ATAAACAAAC	CCCGAAGAAT	СААТСТТААТ	TAAATCCAAG	TTATCCTCAG	269040
TATCAACATA	ATTATAATAA	ТТАТТААТАТ	TGATTATTTT	ATAAATACCT	GGAATATCAG	269100
GATCATGAGT	AAAAAGCGAA	TTATTCCCAT	GTATCAAAGA	ACTTGGTGAA	TAAAAGTTGC	269160
CTTTGATGAT	TTGATCTTTA	GAATACTCAT	AAAGCAGCTC	CCTTACAAGT	CTCCTAATCA	269220
AATTAGTCAA	AACTCTCTTT	AGCCCCCTTA	CACCAGATTC	CATAGTATAG	TTTCTAATCA	269280
ААТТААААТ	AACATCATCT	TCTATTCTTA	TATAAACTTT	GTCCAAAAAA	CTCTCTTTAA	269340
TTATGCTTGG	AATCAGAAAA	ATCTTAGCAA	TCTCTAACTT	TTCAATATAA	GAATAACCCT	269400
CAACCTTAAT	TATTTCCATT	СТАТСТАААА	GCGGCTTTGA	CATACCATTA	AGAGAATTGG	269460
CTGTTGTAAC	AAATAAAACA	TTGGAAAGAT	CATAAGGAAT	ТТСТАААТАА	TGATCTATAA	269520
ACTTATAATT	TTGCTCCGGA	TCTAAAACTT	CCAAAAGGGC	AGATTCGGGA	TTTCCCTTAT	269580
AACTACTATT	AATTTTATCT	ATTTCATCAA	GAAGAATAAC	GGGATTGGAT	TTACCTGATC	269640
TTTTCATTGC	GCTAATAAAA	ACACCCGGAA	GAGAACCAAC	ATAAGTTCTT	CTATGCCCCC	269700
TAATTTCTGC	CTCATCTCTT	AAGCCACCAA	GAGATATTTT	AACAAATTCT	CTAGACAGTG	269760
ATCTTGCAAT	AGACTCCACA	AGAGATGTTT	TGCCAATACC	AGGAGGCCCC	ACAAGACATA	269820
AAATAGGAGC	TTTGACCTTA	GAATTAATCT	GATAAACAGC	СААААААТТТ	ATTATCTTTT	269880
CTTTTGCTTC	ATCCATACCA	TAATGAGAAT	TTCTTAAGAT	AAATTCAATC	TCGCTTAAAT	269940
GATTTTTCAT	AACAGTATTT	TCATTCCATG	GAAGATCTAA	ТАТТААТТСТ	ATATAACTTC	270000

TAATAATATT AGCATCAGGT GAATTCATCT GCATTTTAGA CAATCTAGAA ATTTCTTTTT	270060
CAATCTTAGA TTTAACATCT TCTGGAATAT CTTTAGAGTT TAATCTATCA ATATAATCGT	270120
TTTCATCTTT ACCTAATCTT TTTTGTATCT CTTTAACTTG TTCAGAAAGA AAATAATCCC	270180
TTTGCCCCTT ATCCAACTTA GCTCTAACTT TAGAATTAAT ATCTTTTTTA AGATCTAAAA	270240
GATCAATTTC AATGCTTAAA TTAACAATCA ACTTTTCTAT TCTGGTTTTA ACATTTAGCT	270300
CTTGTAAAAG TTCTAATTTT ATGCTATTTT CCAAATTTGA ATTAGAAGCT ATAATATCGA	270360
CAAGCTTACT TGGATTCTCA AAATAATTAA TTGGTTCATT ATCCGCATCA TAAGATTTTA	270420
AAGATAAGGA ATTTCTATAA GCTTCATAGG TTTCTTTTAA AAATTTAGAA TAGGTAAAAA	270480
GCTCTCTGTT TAATCCACTA GAATCAGGCA CAAAAGTAAC TTTAGCTCTC AAATAATCAT	270540
TTTTTTTAGA AACACTGTCT ATAAGAACCC TACTTTGACA CTCAACTAAA ACTTTTATTA	270600
CGTCTTTACT AATCTTTATA ACCTGAATAA GTTTAGAATA AGTACCCACA GAGCATAGGT	270660
TTTTAACTAC TCCCCTATCA GATTCATCAC AATTAGGCTC ATTTGAATAA GCAAATAAAA	270720
TCAATCTTTC CTCTAACATG GATTGCGCTA TGGAATTAAT TACATATTCA TTATCAAAGG	270780
TTACCCACAA TGTAATATTG GGAAAAAGAA CATTTTCTTT TAAAATAACA ATTGGAAGAT	270840
CTTCTTTTCT ATTTTTATC ATATTTAAGA TTGATTTCAT ATAACTCTTT TGCCCAAGGT	270900
TTTTTAATTG CATTTCCCAC TAAAATTAAT GGGTTAACAT CTGCATTTAA AACAGATTCT	270960
TTTGTAACAA CAACCTTCTT AGCCTTACTA ATAGAAGGAA CCTCGAACAT AACATCTTTA	271020
AGAAGACCCT CTAAAATAGA TCTAAGACCT CTTGCTCCAG TATTTTTTAA AATGGCTTCA	271080
TCTACAATTG ATTCTAAAGC ATCTTTTTCA AATACCAATT CAACATTGTC CATTTTAAAC	271140
ATATGATAAT ACTGCTTAAC AATAGAATTT TGAGGATCAA CCAATATTCT CAACAAATCT	271200
TCTTTATTCA ACTTTTCAAG ATACGAATGC ACAGGAAGTC TGCCAACAAA TTCTGGTATT	271260
AAGCCAAATT TAATCAAATC TTCCATTTCT AAATACTTTA ATGAAGTATC TTCTCTTATA	271320
TTCTTTTTTT CAATTGCTGA AAACCCAATA GAACTTTTAT TTATTCGATT CTTAACAATG	271380
TTTTCAAGCC CAACAAAAGC ACCGCCACAT ATAAAGAGTA TATTTTGAGT ATTAATTTCA	271440
ATAGTATCCT CATAAGGATG CTTTCTACCG CCTCTTGGAG GAACATTGGC AACCGTGCCT	271500
TCAATTATCT TTAACAAAGC CTGTTGAACC CCTTCCCCAG AAACATCTCT TGTTATTGAG	271560
ACGTTTTCAT TTTTTTTAGC AATTTTATCT ATCTCGTCTA TATAGATAAT CCCTTTTTCA	271620
GCTAAGCTAA CATCCCCATG AGCAGCATGT ATCAATTTAA GCAAAATATT TTCTACATCC	271680
TCGCCAACAT ATCCTGCTTC TGTCAAAGTT GTAGCATCTG CTATTGCAAA TGGCACATTC	271740

			311			
ATCTCTGCA	G CCAACGTTTI	TGCAAGCAAA	GTTTTACCAC	TGCCTGTAGG	ACCAACCAAA	271800
AGTATATTAC	ATTTTTCAAT	CTCAATACCA	TTGTCATATT	TATTATTTT	CAATATTCTT	271860
TTATAATGAT	TATAAACAGO	CACAGATAAG	ACTTTTTAG	CATCTTCTTG	CCCAACAACA	271920
TACATGTCTA	A AATGATCTTI	· AAGTTGTTTG	GGAGTTGGCA	AACCGTTGGA	CTTAGAATCT	271980
AGCGGCTTAC	ACAACTTTTC	TTTAAAAAGA	TTGTGACATA	TTTTAGAACA	TTCCGGACAA	272040
ATCGCTACCC	CATTAGATAT	' ААСААСАТТА	CCACCAAGCT	CAGCGACACT	AAGTCCACAA	272100
AAAGAACACI	CTTTTACTTT	TTGACCTTTT	ACTCTTGCCA	TAAAAACTTT	TACCGAAAAT	272160
AAAACTACTC	CCTTACTAAG	ATACTATCAA	TAAGACCATA	TTTAAGAGCA	TCGCTTGAAG	272220
ТСАТААААТА	ATCTCTTTCC	ATATCAAGAG	CCAGTTTTTC	СТТАТСААСТ	CCTATCTGAT	272280
TAGACATAAT	` АТСТАТТАТТ	AATTTTTAA	GTCTTAAAAT	TTCATTAGCT	TGTATATTAA	272340
TATCACTAGO	CTGACCACTT	ATTCCACCCC	AAGGCTGGTG	AATCATTATT	CTAGAATAAG	272400
TTAGAGATTC	TCTTTTACCT	TTAGCGCCAC	CAGCAAGTAA	AAAAGCACCC	ATTGAAGCGG	272460
CTTGCCCAAT	GCAAATTGTC	CTTACATCAG	GCTTTATATA	TTGCATAGTA	TCATAAATCG	272520
CAAGACCTGC	AGTAATACTG	CCGCCTGGAG	AATTTAAATA	AAGATAAATG	TCTTTGCTTG	272580
AATCTTCTGA	TTCTAAGAAC	AAAAGTTGCG	CAATCACGGT	ATCTGCCTTA	GGATCATTAA	272640
TTTCACCACT	САААААТАТТ	ATACGCTCCC	TAAGTAATCT	TGAATATATA	TCAAATACTC	272700
TCTCATAATT	TCCCGTATTC	TCTATTACAG	TGGGTATTAA	ATTATGCATA	AACTCCATTT	272760
TTCTTACTCA	CAAATTTTAT	AATTAACAAA	ATCTCTAAAA	TTTAGTTTTT	TACCCTTTAC	272820
CTCTTTAAGA	TTTTCCAAAA	TTTTTTTTTTT	AGCTCTTTCC	СТТТТААТАТ	CATCCTTTAA	272880
ATAAGAAATC	AAATTTTGAT	СТТСАТАААА	ТТТТТТААТС	TCCTCATAAC	TTACACCTAA	272940
ATTCTTAGAC	TGCCTGGCCA	TTTCATCTTC	AACATCGCTT	TCAGTAACTT	TAATTGGGTC	273000
TAAATCTACC	ATTTTTTGCA	TTATCAGTTT	AGATTTCAAA	TTCCCAAGAA	TCTCATCTTT	273060
TAAATTATCA	CCACCAATAT	ATCCTGAAGA	АТААААААТА	СТТТТАААСТ	CTTCAAGGCT	273120
CATATTATTT	TTATTTTGCC	TTTTAGCATC	CTTAAAAGCA	ATTTCAATTT	CAGCCTCAAT	273180
CATTGAATGG	GGAATATCTA	TTTCTAATTT	TTCAGAAATA	GTAGAAAAA	ATTTATTTAG	273240
CTTTAAAGTT	TCTTTTTTT	CTTCAACAAT	GTTTAAAAGA	CTAGATCTTA	ТААААТТТТТ	273300
AAGATCATCT	AGTGTATTAT	ATTTATCACT	AATATCCTGT	GCAAACTCAT	САТСТАТТАА	273360
GGGGAGATCT	СТТТТТТТАА	ТАСТСТТААТ	СТТААТСТТС	AATTTTCTTG	AAGAACCCGC	273420
AAGTTCTTCA	AATTTGTAAT	CTGCAATATA	AGATTTTTCT	ATAACTCTCT	СТТСАТТТАТ	273480
TCTCATACCA	ATTACATCTT	TGTCAAAATC	ATAATAGGTC	TCAGATTTTC	CAACCGTAAA	273540

AACAAAGCCT	TGTCTTTTTG	TTGATACTAT	CTCATTTGAA	AGGTCATCAA	GCTCAACAAA	273600
ATCCACTTTA	ACAATGCTAT	CTTCCTTGAC	AACTCCTTCC	TCATCTTCAA	TGATAATTGA	273660
ATTTTCTATT	TGAAGATTCT	TAATCTCATC	ATCAATATCA	GAATCATCAA	TAAAAACTTC	273720
AGGGATCTCC	ACTTTAATAT	CAATCTCATC	AAAACTTGGA	ATTTTAAATT	CAGGATAAGT	273780
CTCATATGTA	AAAGTAAATT	CAAAATCTTT	GTCAAGATTT	AATTTTAAAT	TTTTTTCCTT	273840
TACAGTAGGA	GTAGCATAAC	TTAAAGGTAT	TTTGGACTCT	TCTTTGAAAA	ATTCTTTAAA	273900
AGAATTATTA	ATCACTTCTT	CTAAAACGGT	AGCTTTTAAA	CCCTCAGAAT	ATTTATTCTC	273960
AATAACATTA	ATAGGAACTT	TTCCAATTCT	AAAGCCTTGA	ATCTTAAGTC	GGGAAGAATA	274020
ATCTTGCAAT	AATGAATTGT	ATTTTTCCTG	AATAACGTTT	TTTGAAACTC	TAATGACAAC	274080
CTCAACTTTT	GAACCTGGAA	GAAGCTTAAT	ATCTTTACTC	AAAATCACTG	TTAATGCCTC	274140
AATTAAATTT	TATTGATAAT	TATTAAAAAG	CGAAAGACGG	GATTTGAACC	CGCGACTTCC	274200
ACCTTGGCAA	GGTGACACTC	TACCCCTGAG	TTACTTTCGC	ATTTTTACAG	AAGGTGGGAG	274260
TCGAACCCAC	ACGCCAAAGG	CACTAGATCC	TAAGTCTAGC	GTGTCTGCCA	ATTCCACCAC	274320
TCCTGGCATA	CTTCATACTC	AAAATAGTAT	ACAAAAACTT	AAAAGCTTTT	GCAAGTATGC	274380
CTAATCTACT	АААТАААТАА	TAATTTCGCA	CTCAGCAGGA	GTCGAACCTG	CAACCTTCGG	274440
ATTCGAAGTC	CGCCGCTCTA	TCCAATTGAG	CTATGAATGC	AGTTAAAAAT	AAAATTGATT	274500
AAAGGGTGAT	TGACGGGGCT	TGAACCCGCG	ACATTCGGAA	CCACAACCCG	ACGCTCTACC	274560
AACTGAGCTA	CAACCACCAA	TAACTAGTGA	CTATGATTAT	ТАТААТАТТТ	ТАТАААТАТТ	274620
ТААТТССТАА	GTCAATAAAA	GATAAAAATA	ATAAAAGCCA	TAAGACTTTT	ТАААААТТА	274680
ТТАТААТААА	ATATTAATTT	TTTTCAAAAC	TAAAATTTTT	GAAATCTTTC	TAAGCTTTTT	274740
ТТСААААААТ	CATAAACTCT	AATAGTTGAA	GAAATATTTA	CTCTTTCCCT	AGTAGTATGA	274800
GGCCATTCAA	TCCAAGGCCC	AAGGGTAACA	GATTCTATAC	CTCCCAATCT	AGAAGATATT	274860
ATGCCTGTTT	CAAGACCTGC	ATGTATTGTG	GAAACATTAG	CATCTTCAAG	ATACATCTCT	274920
TTATACACTT	CTTGAAGATG	TTTTAAAAGA	TTGCTATTCT	TATCAGGCTG	CCAAGAAGGA	274980
TCATCATAAA	TTACACGCAA	ATTAGCTCCC	GACAAATCAC	TTATTGATTG	TAAATGATTG	275040
CAAACATACT	CTTTGTCTAA	АТССААТААА	GATCTTATTA	AAAAAGTAAA	AATATAATCG	275100
TCTTGCATTC	TCAAAAGACT	TGAAAAATTT	AAAGAGGTCT	TTATAAGCTT	ATTTTCATAA	275160
TTTTCTACTT	TTTGAACTCC	ATGTAAAAAT	CCCATTCCCA	TATTTAAAAG	CTTATTTTTG	275220
CTATTTTCAT	CAAGAACTTT	AACTGATGAA	AATTCTCTTT	TATTAACAAT	AATATCAAAT	275280

			313			
TCATCTTCAA G						275340
AATAAATCAT A						275400
TTGCTACTAT T						275460
AAAAGAGCAA A	AAACATTAA	TTTTAAAGA	TTTGCCAAAT	CTAAATGAAT	ATCTGCCCCA	275520
GAATGGCCAC C	TTAAGCCC	TTTAAACAAA	ATTTCTACCT	TTGTTTTTT	CGTTACAAGG	275580
CTATACTTAG G	AGAAAAAAC	AATTTCTACA	AGTCTTGATC	CCGCACAACC	ААСТААААА	275640
TAACCCTCTT CO	CTCTCCATC	AAGATTAATO	AGGCTTTTAC	CACTACATAA	ATTAGAATCA	275700
AGACCAAGAG CA	АССТАТТАА	ACCTATTTCT	' TCATCAACGG	TAAATAGAAG	TTCTAAATCG	275760
GGATGAGGAA AA	ATTATTGGC	TTCACTCATA	ATCCCCAACA	TCATAGCTAC	TCCAATCCCA	275820
TTATCAGCTC CO	SAGGGTGGT	CCCTACTGCT	TTAAGATATC	CATCCTCTTC	AACAATTTCA	275880
ATTGGATCTG TT	TCAAAATT	ATGCAAACTG	GATTCATTCT	TTTCGCAAAC	CATATCAACA	275940
TGAGATTGTA AA	ATAATAGG	ATGCATATCA	ATATTATTAT	TTGATTTTAT	CTGCACTACA	276000
ATATTACCAA CA	ACGATCTTC	TTTAAAAGAA	TAACCAAATT	TTTTGGCTCT	CTGCTTAATA	276060
AAATTAATAA TI	CCTTTAAT	ATTTTTTGAA	CATCTTGGAA	TTTTTGATAT	СТСТТТАААА	276120
GAATCAATTA CA	ATACTCAT	AATAACTTTC	CTTTGATTAA	ATTAAATCCA	ТАААТАТАСТ	276180
TGGATTTAAT TI	'ATTAATTA'	ТААТАТААТА	ТАСТАААТТА	ATCTTTAAAT	ТСАТТСААТА	276240
ААТТСААТАА ТА	TTGGTTAA	GCTTTGTTTT	CAACAAAATC	TGCATAATAA	TTAAAATTTA	276300
AAAATTCTTT AG	GAATTTCT	GAAATAAATC	TTGAAGGCAA	CTGATCAAAA	ATTTGCCTAT	276360
CTTTTTTACG CT	TATTAGCC	АТАСТААТАА	CAAGAGAATC	TTTTGCGCGA	GTTAACGCAA	276420
САТААААААС ТС	GCCTCTCT	TCTTCTAAGT	CAACCTCACT	ATCTTCAATG	ATTCTATGAT	276480
GAGGAATAAT AT	TGTCTTCA	ACAGCAATAA	AAAATACATA	ATCAAATTCT	AAACCTTTAG	276540
CAGAATGTAC TG	TCATTAAA	ТТААТАТТАА	TATTTTCAGC	TTCCTCACTT	ACTTCGTTAG	276600
ATTGAAGAAC TA	TGTAATTT .	AAAAAGCTAC	TTAAATCTCT	CAACTCACCA	AATTGTTTGG	276660
ATTCCCAATT TT	TAATTATG (СТТАААААСС	CTTCTATATT	TTGATACTTA	TATTCAGCCA	276720
CTTTGATTGA AT	TGGGATTT '	ТСАСТААСТА	AAAATCCCCA	ATATTCAATA	СТТТСТАТСА	276780
TTTCTTTGAT TA	TATTGGAA '	TACGTGTTTT	TTGTTATACT	AAACTTATAT	TGATACTCTT	276840
CAATAAAAGA TAG	CAAAATCT 1	PCTATGCTTT	CAATGACCTG	CTTATTTAAA	GCCTTGTCAT	276900
AACTAGAAAT AT	TTGTAAAA (GAAAAAGTAA	TGTCACAAAG	AGCATCATAA	ATGCAACAAC	276960
CCTTCTTGTC TG	CTATATCT (CTAATTTTTT	ТСАААТАТТС	CTTGCCAATC	CCCCTTCTTG	277020
GAACATTAAT. GAT	TTCTAAGA A	AGATCATAAT	CACTTTTAGG	ATTTATTATT	ACATTCAAAT	277080

AAGAAATAAT	ATCTTTTATT	TCTTTTCTCT	r ggaaaaag <i>a</i>	TGTTCCCCCT	GAAACTTTAT	277140
ATTTTATGCC	TTGTCTTCT	AAAATCATTI	CAACGTTTT	AAAAAGAGCA	TTGGTTCTCA	277200
TAAGAACCCC	TATCTTTTT	GACTTAAAA1	CCTCTAGCCT	TGAAAGCTGC	ATGATTCTAT	277260
TTGCAACAAA	CTCAGATTCT	TGAATTTCAT	CCTCAAATAT	AAAAACATCT	ATAACTTTGC	277320
TACACATCTT	TGAGGACCAC	AAGGTCTTT	CTTTTCTATT	TTTATTATTT	AAAATCACAG	277380
AATTGGCAAC	ATCTAAAATA	TTTTTTGCAG	AACGATAATT	' TTGTTCAAGC	TTTATTTCTT	277440
TAACGTTGTA	ATCTTTTTCA	AATTGCAACA	TGTTGTTATA	ATTAGCCCCG	CGCCAAGAAT	277500
ATATCGACTG	ATCATCATCC	CCAACACAAC	ACAAATTACT	ATGATTTATC	AAAAGGCGAA	277560
ТААААТТАТА	TTGAATCAAA	GAAGTATCTT	GAAACTCGTC	AATCAAAACA	TATTTATATC	277620
TTTTAGAATA	ТТТАТТТСТА	ATATCAGAAT	TATTACTTAA	CAATTCTTTT	GGCTTTAAAA	277680
TCAAATCATC	AAAATCAAAA	GAATTATAAA	GCCTTAACCT	CTCTTCATAA	AGCCTGTAAA	277740
TATTTATATC	TTCTTCCTTT	AAATCATTAA	GAGTGAGAAT	ACCGTTTTTT	AAAAGTGAAA	277800
TAACATTGCT	AAGCGAATTT	AAAGAAACTT	TTTTATTAAA	AAGACCCTCA	TCAAGTAAAA	277860
TCTCTTTAAG	AAGAGAGATT	CTATCATTGT	САТСАТАААТ	ACTAAAGTTT	TTTCTATATC	277920
CTAACAATTT	ATAATTTTCT	TTTAAAAAGT	AAAGCCCAAA	AGCATGGAAA	GTTGAAACCA	277980
TAAGATTACT	AAGAGGACTT	TTTAAAATTT	TTTTAATTCT	GTCTTTCATT	TCATTAGCAG	278040
CCTTGTTGGT	AAAAGTCAAG	GCTAAAATTT	CCCTCTGAGC	AATGCCTTTT	AAAAGCAAAT	278100
ACGCTATTCT	GTGAGTAACA	ACCCTTGTTT	TTCCACTACC	AGCACCAGCA	AAAATTAAAA	278160
GAGCGCCTTC	AATAGTAGTA	ACTGCTTCAT	ATTGAAATTG	ATTGAGAGAA	AAAATTTTTT	278220
AATCATCATT	AGACAAAATT	AAAAAACCTT	TGTTCCGTCT	GGATATTCCA	CAATAACCTT	278280
					CTTTAGCTAA	
					CAAGCCCCAC	278400
					TAAGATTACT	278460
					AAATCCCATA	278520
TCTTCCCCTT	TGATCAGGAG	ATATGTCAAG	ATCTGACTTA	ACTAGAACAT	AATGATTCAT	278580
TCCAATTAAA						278640
AGAAATCACT						278700
TTTTAATTTA						278760
TAAAACTCTT A	ATAAAGACCT	TGCCAAAACC	CTAATCTTTT	TACCTTGCCA	CTAAACAAAG	278820

US98/12764

				0000	/12/04
CAACATCCCC TATTTTTT	СА ТТТТСТААА	315 A AAATCATAG	C CCTCCCAAC	A GGCATATCCC	278880
CACTAAGTGG AGCAACCA	АТ ТТАТСААСА	G TATAACTTA	I ATTAATTTI	A TCAAATTCAT	278940
CTTTAGTTAA AATATAATA	AA AAAGGCTCT	T TAGAAAAA	G AGCAACTGT	A TCCACTGTAC	279000
CATTATAGAC TTTTTCTT	TT AATTTTACT.	A TTAAAGGAAA	A TTTAGAATAT	TTATTAAATC	279060
CATATTCAAA TAAATTTT	TT GCAATCGAA	G ATCTCATTT	r ctctccaaa	CCATTAATTC	279120
СТТТТТСААС ССССААТАС	CA ACTGCTATT	A ATCTTCTCTC	C ACCCTTTTTA	GCAGTAGCAA	279180
CAAGATTTAA GCCTGATTC	C TTAATATAT	C CCGTTTTAA1	GCCATCTGAA	TAAGGGTAAT	279240
САТАТАТТАА ТАААТТАСО	A TTTCTTTGT	T TTAAGTTTAA	AAATTTTGAT	GACAAAGCAG	279300
TTCCTAAATT TCTACTCTT	T GGATAAATA	A AATACTTTAA	AGAATGAATA	TTAAGCATAA	279360
ATTTAAACTT TTCTATATA	A GATTTCACA	A AAAAAGCCAT	ATCTAGTGCT	GTAATCTTAT	279420
TCTCGCTGCT ATATCCAGA	A GGTTCAACAA	A AATGCATATT	' AAAAAGCCCT	AAATTTAAAA	279480
САТТААТАТТ САТТАААТТ	A ACAAAGCTA1	T TTAAATTGCC	TACTACAAAC	TCAGCAATTG	279540
CAATAGAAGA ATCATTACC	C GAAGAAACTC	AAAGTCCTTT	ТААААТСТСТ	ТСААААТТАА	279600
CAATTTGACC TTTTTCTAA	A AACATCAAAG	AAGAATTGGG	GGGTGCATTA	TAATATGAAG	279660
CAGAATCGCT AATAGGAAC	T ATGCTTTTTA	TTATATTTA	TCGCTTTTCA	GCTTCAATTA	279720
AAGCTGTATA AATTGTAAC	A ATCTTTGTAA	GAGATGCTGG	AGGAAAAACC	AAATTGGGCT	279780
TCTTAGAATA AAGTATTCG	C TTAGTATCAA	AATCTATTAA	AACTATTGAC	TTTGCATACT	279840
CTGATAATTT ATTAATCTC	A GCTAAATTAA	CTGCAAAAAG	ATTATAACAA	AACGGGAAAA	279900
AAATTAAAAA TAAAGTTAA	r aacaatttcc	СААТААСАТА	GATACTATTC	ATGTTGTAAT	279960
ATTAAAATTA TATATTATT	T ATTGATTGTT	ААТТАСААТА	СААТТААААА	GGAGCCATTT	280020
TTATGAATTC TTATGATTT	T ATAACAGCTT	TGGTACCAAT	ААТССТААТА	ATTATTGGAC	280080
TTGGCATAAT AAAAAAGCCA	GCTTACTATG	TAATACCCAT	ATCATTAATA	GCCACCGTTG	280140
CTATAGTTAT ATTTTATAAA	AACTTGGGAA	TAGTAAACAC	AAGTCTTGCA	ATGCTTGAGG	280200
GCGCCTTAAT GGGGATATGG	CCAATAGCAA	CTGTAATTAT	TGCTGCCATA	TTTACATACA	280260
AAATGTCAGA AGATCAAAAA	GATATAGAAA	СТАТТААААА	TATTTTATCA	AACGTATCTT	280320
CTGATAGAAG AATTATAGTA	TTACTAGTTG	CATGGGGATT	TGGAAATTTT	TTAGAAGGAG	280380
TTGCTGGATA TGGAACTGCT	GTTGCAATTC	CTGTATCAAT	ATTAATAGCA	ATGGGATTTG	280440
AACCATTTTT TGCCTGCTTA	ATCTGTTTAA	TAATGAACAC	CTCATCAACC	GCCTACGGAT	280500
CTGTGGGAAT CCCTATAACA	TCTTTAGCTC	AAGCAACTAA	CTTGGATGTT .	AACATTGTTT	280560
CATCTGAGAT TGCATTCCAA	CTAATACTTC	CAACCTTAAC	AATACCTTTT (GTACTGGTAA	280620

			•			
TTCTTACAGG	AGGGGGCATT	AAAGGATTAA	AAGGAGTATT	CCTTCTTACC	TTACTCTCAG	280680
GAATGTCAAT	GGCAATATCT	CAAGTATTTA	TATCAAAAAC	TTTGGGTCCA	GAACTTCCTG	280740
CAATCCTTGG	AAGCATTCTT	TCTATGACAA	TAACAATAGT	TTATGCAAGG	TTTTTTGGAA	280800
ATAAAGAAAC	TACTGAGCGC	CAAAGCAAAA	ACACAATATC	CTTATCAAAA	GGAATTATTG	280860
CCTGCTCACC	CTACATTTTA	ATAGTAACTT	TTATAGTGCT	TGTATCTCCT	CTTTTTAACA	280920
AAATTCATGA	ATACCTAAAA	ACTTTTCAAA	GCACTATTAG	САТТТАТССА	GAAGCAAATC	280980
CCTTACACTT	TAAATGGATT	ATCTCTCCGG	GCTTCTTGAT	TATACTTGCA	ACAACAATAT	281040
CCTATTCAAT	ACGGGGAGTT	CCAATGTTAA	AACAGCTAAA	AATATTTACA	TTAACCTTGA	281100
AAAAAATGGC	ATTATCTTCC	TTTATAATCA	TATGCATTGT	TGCAATATCA	AGATTAATGA	281160
CACATAGTGG	AATGATAAGA	GATCTTGCTA	ATGGAATCTC	ААТААТААСА	GGTAAATTTG	281220
GACCATTATT	TAGCCCACTA	ATTGGAGCTA	TTGGGACATT	TTTAACAGGA	AGTGATACGG	281280
TTTCAAATGT	TCTTTTTGGA	CCTTTACAAA	CACAAATGGC	AGAAAATATT	GGAGCAAATC	281340
CTTAcTGGCT	TGCAGCAGCA	AATACAACAG	GAGCAACTGG	AGGGAAAATG	ATTTCTCCCC	281400
AAAACATCAC	AATAGCAACA	ACAACTGCTG	GATTAATTGG	ACAAGAAGGC	AAGCTTTTAT	281460
CAAAAACAAT	AATTTATGCT	TTATACTACA	TTTTAGCAAC	AGGATTGCTA	GTTTATTTAG	281520
ТАТАААТТАА	TCATTTAAAA	TAAATAAGAT	TAATTTATAC	TAAAATTAAT	СТТАТТТАТА	281580
GATTTGAATA	ATACAAAAAT	САСААААТАА	TAATATGGCC	TTGAATTTTT	ACCTAATATT	281640
ТТААТАТТАТ	ATACATGTTA	TATATATGTT	ААТАТАТТАТ	ACATAATAAC	АТАТСТАТАА	281700
TATATTTATT	AATACGTTTA	ATTAAAAACT	AAAACTAATA	AAAGTTTATA	ATTACAACAG	281760
GAAGGTATAA	TTATGAAAAG	CCATATTTTA	ТАТАААТТАА	TCATATTTT	AACCACATCT	281820
GCAGCAATAT	TTGCAGCAGA	CGCATTAAAG	GAAAAAGATA	ТАТТТААААТ	AAACCCATGG	281880
ATGCCAACAT	TTGGATTTGA	AAACACAAGT	GAATTCAGAT	TAGATATGGA	CGAGCTTGTT	281940
CCTGGGTTTG	AAAACAAAAG	CAAAATTACC	ATTAAGCTTA	AACCATTTGA	AGCTAATCCC	282000
GAATTAGGCA	AAGACGATCC	ATTCTCAGCT	TACATTAAGG	TAGAAGATCT	TGCACTAAAA	282060
GCGGAAGGCA	AAAAAGGCGA	TCAATTTAAA	ATTGACGTGG	GAGATATTAC	AGCCCAAATC	282120
AATATGTACG	ATTTTTTAT	TAAAATAAGT	ACTATGACAG	ATTTTGACTT	TAATAAAGAG	282180
TCTTTATTTA	GTTTTGCACC	TATGACTGGA	TTTAAAAGCA	CTTACTATGG	ATTCCCAAGC	282240
AATGATAGGG	CAGTAAGAGG	GACAATTCTT	GCAAGAGGTA	СТТСТААААА	CATAGGAACA	282300
ATTCAGCTGG	GATACAAACT	CCCAAAACTC	GACCTTACAT	TTGCAATAGG	GGGAACAGGC	282360

WO 98/58943 US98/12764

			317			
ACGGGTAACA	GAAATCAAGA	GAATGACAAA	GACACTCCAT	ACAATAAAAC	ATATCAAGGA	282420
ATCCTTTATG	GAATTCAAGC	AACATGGAAA	ССААТАААА	ATCTACTTGA	TCAAAACGAA	282480
GATACTAAAT	CTGTAATTGC	AGAAACACCT	TTTGAATTAA	ATTTTGGCTT	GTCAGGAGCC	282540
TATGGAAACG	AGACATTCAA	TAATTCATCA	ATAACATACT	CTTTAAAAGA	TAAATCCGTA	282600
GTTGGCAACG	ATTTATTGAG	CCCAACTTTA	TCAAATTCTG	CAATTTTAGC	ATCTTTTGGA	282660
GCTAAATATA	AGCTTGGATT	ААСАААААТА	AACGATAAAA	ATACCTATCT	TATTTTGCAA	282720
ATGGGAACTG	ATTTTGGAAT	AGATCCTTTT	GCAAGCGATT	TTTCTATATT	TGGACACATC	282780
TCAAAAGCAG	CGAATTTCAA	AAAAGAAACA	CCCTCAGATC	СТААСААААА	AGCTGAAATA	282840
TTTGATCCAA	ATGGCAATGC	TCTTAATTTC	AGCAAAAACA	CAGAATTGGG	CATTGCATTT	282900
TCAACAGGAG	CAAGTATAGG	TTTTGCTTGG	AATAAAGATA	CCGGTGAAAA	AGAATCCTGG	282960
GCGATTAAAG	GATCTGATTC	CTACAGTACA	AGACTCTTTG	GAGAACAAGA	СААААААТСТ	283020
GGAGTTGCAT	TGGGAATAAG	CTATGGACAA	AACCTTTACA	GATCTAAAGA	TACAGAAAAA	283080
AGATTAAAAA	CCATATCTGA	AAATGCATTT	CAAAGCTTAA	ATGTTGAAAT	TTCAAGCTAT	283140
GAAGACAACA	AAAAAGGGAT	TATAAATGGA	TTAGGATGGA	TAACATCTAT	CGGTCTTTAC	283200
GATATTTTAA	GACAAAAATC	TGTAGAAAAC	TATCCTACAA	CAATTTCAAG	CACCACTGAA	283260
AACAATCAAA	CTGAACAAAG	TTCAACAAGC	ACAAAGACCA	CAACCCCTAA	TCTGACATTT	283320
GAAGATGCAA	TGAAACTCGG	CTTGGCCTTA	TATCTTGATT	ATGCAATTCC	AATAGCATCC	283380
ATTTCAACAG	AAGCATATGT	AGTACCTTAC	ATTGGAGCAT	ACATTTTAGG	ACCTTCTAAT	283440
AAACTCTCAA	GCGATGCTAC	AAAAATTTAT	TTAAAAACAG	GACTTAGCCT	TGAAAAACTA	283500
ATAAGATTTA	CAACAATTTC	TCTTGGATGG	GATTCAAATA	ACATTATAGA	ACTTGCTAAT	283560
AAAAACACAA	ATAATGCTGC	TATTGGAAGT	GCTTTCTTGC	AATTCAAAAT	AGCCTACAGC	283620
GGAAGCTAAC	AGCAAAAGAA	GGGCTTTGGC	CCTTCTTTTT	TATCTTTAAA	AACAATTGAG	283680
GATTACCTTA	TATTTCTTTC	CTTGCAAATT	TTTTCATAAG	CATCTTGAAT	ТТТТАТАААТ	283740
TTATCATTTG	CATCTTTTTG	TCTTACAGGA	TCATTTGCAA	ACTTATCAGG	ATGATATTTT	283800
ATAACAAGGC	TTTTATACGC	CTTTTTAACC	TCATCATCGC	TAGCACTATA	TGTTAACCCC	283860
AAAACACTAT	AAGGATTTAC	AATTTTAATA	TTAATATCTT	TATAAGCTTC	ATAACCATCA	283920
GATTCAAGTT	СТАААААААС	ACCAACATAA	GAAATAAATT	TTTCAGCTTC	TAAATTTTTA	283980
TACCTAGAAA	GCCTGTTAAT	TTCTTTAAGA	GTGGCAAAAA	GCCATATAAA	AAGATCTTTG	284040
TGCTGAAAAT	AACCAAGCTT	AAGGGTATAT	AAAATTTTAT	CAGCATTATT	ATTTTTAGTA	284100
ATAGCAGAAT	GAAAAATGGT	ATACAATTCT	GATTTACCAC	GTTCAGACAA	ATTCAAAGAA	284160

TTGATAATAA	AATTGACATA	ATTTAGCTGC	TCCCCAGTTA	CAGTTCCTAA	AATAGATAGC	284220
AATTTAGCCA	ТТААТАААДА	AGAAAGTTTA	ТААААТТСАА	ACTCTCTAGA	TCTAGAATAT	284280
GAGTAATCCC	TTGTAAAGTA	ТАТТСТАААА	ACACCTAAAA	ААСТАААТАА	ТАТСААААТА	284340
AAAGGAAATA	AAATAAAAG	CATTGCTATT	AAAACGGGAT	ТАААААТААА	AATAAACAAC	284400
AACACTAAAA	AAAACACTCT	AATTGGGCTT	GGCATTTATT	GATCATAACC	TCCAGCGTAA	284460
TCAAGGCATG	TCAAAATCTC	ТААТАААТСТ	TACAACTTCC	TTTTTTATTT	GTTTTAATTC	284520
AATATCAGAC	TTTGCCTTTA	AAGCTCTAAC	AATAAATTTA	GCAACATTTA	AAGAATCGCT	284580
TTCATTTAGG	CCTCTAGAAG	TAATAGCAGC	GCCCCCAATT	CTAATACCAG	AAGCCAAAGA	284640
AGGGCTTTTT	TTATCAAAAG	GAATAGCATT	TTTATTTAAA	GTAATATTTA	CGCTCTCAAG	284700
TAATTTCTCA	GCATCAGCAC	CGGTGAGATC	CGAACTACTA	AGATCAACCA	AAAACAAATG	284760
ATTGTCTGTG	CCCCCACTAA	CAATACGAAA	TCCTTCCGAT	TTGAAATATT	CAGCCATAAC	284820
TTTAGTATTT	TTTATTACGT	TAGCAATGTA	ТТСТТТАААА	CTTTCTTGAA	GAGCTTCTTT	284880
GAATGCAATA	GCCTTACCCG	CAATAACATG	AACTAAAGGA	CCCCTTGAG	TTCCAGGAAA	284940
AACTGTAGAA	TTTACAGCAT	TAAACAAAGG	CTTCTCTTTT	CCATTAAAGT	ТТАСТААТТТ	285000
GTCAAAATCC	TTTCCAGAAA	GTATTATTCC	ACCTCTTGGC	CCTCTTAAAG	TTTTATGCGT	285060
AGTACTTGTA	GTAAGATGCG	CCACATCAAT	TGAGGAATTA	TGAAAACCGG	CAACAATAAG	285120
GCCTGCAATA	TGAGCAATAT	CACACAAAAG	ATAAGCAGAA	ACATCATCTG	CTATTTCTCT	285180
AAATTTTTTA	AAATCAATTT	CTCTTGAATA	AGAAGAAGCT	CCAGCTATTA	TTAAATTTGG	285240
CCTGCAATCT	TTAGCTATTT	TAAGAACTTC	ATCATAATCA	ATTAGCTCAG	AATCTCTAGA	285300
AACACCATAA	AAATAAGTGT	TAAAAAATAT	ACCAGAAAAA	TTTACCCTGC	TGCCGTGAGT	285360
TAAATGCCCT	CCATGAGATA	ATTGCATACC	AAGAATCCTG	TCACCCGGGC	TAATAAGAGC	285420
CATTATGGCA	GCCATATTGG	CCTGAGATCC	GCTATGAGGT	TGAACATTGG	CATACTTTGC	285480
GCCAAAAAGC	TCTTTTGCTC	TCGAAATTGC	CAGAGTTTCA	ATCTCATCAA	TAAAAGAACA	285540
ACCACCGTAG	TATCGATTCA	AAGGATATCC	TTCGGCATAC	TTATTAGTTA	AAATACTACC	285600
AACAGCCTGC	CTTATCTCTA	AAGATGTAAA	ATTTTCAGAA	GCAATAAGTT	CAATATGCTC	285660
TCTTTCTCTT	AATTTTTCCT	TTTCAATTAA	ATTAAATATT	TGATCATCTC	ТСАТТААААА	285720
TTATCCTCCA	AAACAAACCT	ATGCATTAAA	GAATACGATC	CGTTTGTCAA	GCTTTTATAC	285780
TTTAAAAACC	CAGAATCTAA	ATATCCATCA	AAAAATTCAT	ТТТТАТСАТА	GTCCTCTTTG	285840
CATCCATATT	GAATATAGTT	ATCAGATATA	ТТСААААААТ	ACTTAGAGCT	ATCCTTAAAT	285900

AATACTGCAT	TTATTATATC	AAAATATACA	AAACCAACCC	CAGCTAAAAA	AAACTCAAAC	285960
CAAAAATGCT	CTTTTAATTT	AAGAGAATTA	GAATCATAG1	AAAGCCCAAC	TATATTTCTC	286020
AGCGGAATAT	CATACTTTAA	AAATAATAAA	TTAGTAAGAA	CTATTAAATT	GCCAGATGAA	286080
ATTTTTTTT	CTTCAATAGA	ATCCTTTAAA	CTTAAATTAT	TCTCAACAAT	ТТТААААТТТ	286140
GAAGTCAAAA	CATCAATAAT	TGCTTTAGCT	' ААСТТАТААА	CTGAATTACT	GCCAGAGGTT	286200
TTAGATAAAA	TTAAAGAATC	TAAAGACATT	' AAATCAACAT	' AGCTGTAAGA	ТАААТААТСТ	286260
TTTTTTTTGT	CTTGAACATA	CTTTTTGTAC	TCTTGATTGT	ТААТАТСТСТ	ATTAACTTCA	286320
ATACTTTCTA	AATATTTCGC	АТСТАААААТ	ТССАААТТАА	GTTTATAAGT	ТТТТАСССТА	286380
GTCTTAAAAA	TAAATTTATT	TGTCTTCAGG	TTTTCAAAAA	ATAAATTATC	ААТАТТАААА	286440
TCAAGATGCT	CACTATTGCG	CTCTGTAATT	TTTTGACGCT	CATTCTCAAT	TGGTCTTAAA	286500
TAGAAGATAT	TAAAATTAAT	ATCTTGGGGG	TTTGAATCAA	AATTACTACT	AACATCTTGA	286560
СТААААТААА	TCTCTTCAAT	TATTACAAAC	ТСТТТААААТ	CGCTCAAAGT	CCACTTAAAA	286620
AAATCATTTT	TAACAGAAAA	CGGAACTTTA	TTGCTTTGAA	TATTGTCCAA	TAAAACATAA	286680
AGCTTCCCAC	TAGAATTTAA	AGTTTTAGGA	GAAACAAATT	CCACTCTATT	CTCAGAAACA	286740
TTTAAAATAT	TTTGAGGTAA	AATTGTATAA	AGCTTATCCT	TAGTTTCAAG	AAAAATTGTA	286800
ATAGTACTAA	AAGGTGAAAA	CAAATTCATA	CCCTGCAATA	AAGTTGAAGA	ATTTGCATTT	286860
AAAATTATTT	TATCCTCTGA	AAAAATAAAA	GGTATATTT	TCCTATTAAG	CTTAACAGGA	286920
ACTTGCCTAC	TAATAACAAG	AAAAAGTTCG	TTGCTAGTGC	CCCTTTCGCC	TTTTACAAAA	286980
ATAAGTCCAG	AATTCACTTC	ATCTGTAATT	ТТАААААСТА	TTTCCGTGTT	ATTCCAGCTA	287040
ATAATGCTAC	TTTTAACCAA	ATAATTATTG	TTGATATTAA	TCTCCCCTGT	ACTGTACCCC	287100
AAATTATTTC	CTTTAATAAC	AATAATATCC	TTGTGCGAAG	TGGGAATTGG	AGATATATCA	287160
TAAATAATTG	GCTTTGAATA	АААТААААТ	CCAGAAAAA	САААТААААА	ТААААААТА	287220
АТАААААТСА	GGCTTAAATA	AAAATATTTG	ТТТТТТАААА	AAATAGCCAA	ATGTTAGCCT	287280
CTTTTAACCT	TAGTTCCTTC	CTTAGTATCA	ACCAAAACAA	AACCTTTTTT	GGCAAAAAA	287340
TCTCTGATTT	CATCAGCACG	СТТААААТТТ	TTTTCACATT	TAGCTATTCT	TCTCTCTTCA	287400
ATCAAAGCTT	TCATATTCTC	ATCAATAACT	ACGTCATGGT	TTTGTAAATT	ТТТААААТТ	287460
TCTTCTCTCA	GATTAAGTGA	CATAATCTCA	TCAAAAATAA	AAGCTAATCT	AAGCTTTGAA	287520
ACAAAGCTTA	GATTGTCAGA	TTTAATTATC	TCCCAAAGCA	AAGCCAATCC	TTGAGCAACA	287580
TTTAAATCAA	AAGAAATTTT	ТТСТАСАААА	GAGTCATAAT	ATTCTTTTTC	ТАСАСТАААА	287640
CCAAAATTTT	ГТАААТССТТ	ATTAAGTGTA	ТТТАААТСАА	CTGGATCTAA	AGATTCATAA	287700

AAATAACTTA GCTTGTT	TAT CAAATTTTC	T CTAGCAATC	TGCTTGCTTG	AAGATTATCT	287760
AATGAAAATT TTAATTG	GTT CCTGTAGTG	C GATGTCAAA	C ATAAATATCT	AAAATCAAGA	287820
GGGGAAAAAT TTTGATC	TTC TAAATCTTT	A ACTGTAATA	A AATTTCCACG	TGACTTTGAC	287880
ATCTTATTAT AATCCAT	AAT CAAAAATTC	r ccatgaaca?	A AGACATCACA	CCATTTTTTA	287940
TTCAAAAAAC ACTCTGC	TAT TGCTATTTC	A TTTATGTGGT	GAACTCCAAT	ATGATCAACT	288000
CCTCCCAAAT GAATATC	AAG AGCATCTTT	AAATACTCCA	AATTCATCGC	AGCGCACTCC	288060
AAATGCCAAC TTGGATA	ACC AAATCCCCA	GGAGAATCCC	ATTTCATCTC	CTGATCTTTA	288120
AACTTAGAAT TAGTAAA	CCA CAAAACAAA	TCGGTTTTAT	' ТССТТТТА <u>А</u> А	ТТТАТСААСА	288180
TCAACTCTGG GTAAAGT	CAT ATCTTTATCA	ATAAGATCAA	TGCCGGCCAT	CTCACCATAG	288240
CTTTTAAAAC AAGAAGT	ATC AAAATACACA	TTACCATTAG	AAAAATAAGT	AATTTTTTTT	288300
TCTTCAAGAA TTTTAACA	AAC CTCTATCATI	ATGGGAATAT	GTTTACTTGC	AACAAGAACT	288360
TTGTCGGGAT ATACAATO	STT TAATTTTCTA	CAATCGTTAA	AAAAAGCCTC	TGTGAAAAAT	288420
TCACTAATCT CATAAACT	GT AAGGCCCTTC	TCTCTTGCGG	TCTTAGCAAC	CTTATCTTCT	288480
CCATCATCAA GATCACCT	GT TAAATGTCCA	ATATCTGTAA	TATTCATCGC	АТААТТААСТ	288540
TTATACCCCA AAAACCTT	'AA AGTTTTAATT	AACAAATCTC	САААААТАТА	AGTTCTAAAA	288600
TTCCCGATGT GAGCATA	ATT ATAAACAGTA	GGCCCGCAAG	CATACACTTT	AACATTTTCA	288660
AAATTTGTTA ATTCTGAA	AA ATCCTTTGTT	CTAGTATTAT	ATAACTTTAA	AATCATACAT	288720
TTCTCAAAAT TGAAAAAA	ТА АААААТСТАА	TTTATTATTA	AGTACGTATG	CCTAAAAGCC	288780
TAAATAATTT TCTTAAAA	АА АТСААТАТТА	AGCCTCAAAC	ААААААТСТА	GCTAACTATA	288840
CAACATATAA AATTGGAA	AC ATTTCGAAAT	TATTTCTCAC	СССТАААААТ	ATTAAAGAGG	288900
CTGAAAATAT TTTTAAAG	CA GCAATAGAAG	AAAAAATTAA	ACTATTTATT	CTTGGGGGAG	288960
GATCAAATAT TTTAGTCA	AT GACGAGAGAG	AGATTGATTT	TCCAATAATA	TACACCGGAT	289020
ATCTAAACAA AATAGAAA	TT CACGAAAATA	AAATTGTCGG	CGAATGTGGT	GCAGATTTTG	289080
AAAGTTTATG TAAAATTG	CA CTTGATAACA	GCTTAAGTGG	CCTAGAATTT	ATCTATGGAC	289140
TACCCGGAAC ACTAGGGG	GC GCTGTGTGGA	TGAATGCTAG	ATGTTTCGGG	AATGAAATCT	289200
CTGAGATACT AAAAAAA	TT ACATTTATAG	ATGATAAAGG	AAAAACTATT	TGCAAAGAAT	289260
TTAAAAAAGA AGACTTTA	AG ТАТААААТАТ	CGCCTTTTCA	AAATAAAAAC	TTTTTCATAT	289320
TAAAAATTGA ATTAAATT	TA AAAAAAGACA	ATAAGAAAAT	TATTGAAGAA	AAAATGAATA	289380
AAAATAAACA AGCAAGAA	TA AATAGAGGTC	ATTATTTATT	TCCAAGTGGT	GGAAGCACTT	289440

321 TTAAAAACAA TAAAGCATTT CTCAAGCCTA GTGGACAAAT AATTGAAGAG TGCAAGCTCA 289500 AAGGATTAAG CATTGGAGGC GCCACAGTAT CTAAATATCA TGGAAACTTT ATTATCAATA 289560 TTAACAATGC CACTTCTAAA GACATAAAAA GCTTAATTGA AAAAGTAAAA GCTGAGGTCT 289620 ACTTGAAAAC TGGACTTTTA CTAGAAGAAG AAGTTCTTTA CATAGGATTC AAATAATCAA 289680 AAAAACTAAA AAAGAATATC TTTAATCTCA TCATTAATCT TTTGAATCAA TTCCTTTGTC 289740 TTTAATATCT TATCCTTAGA AGACTTTACT AAAGATGAAT ATTCTTGAAG AGAACTTACC 289800 GCATCTAAAT TCATCTTAGA AACTTTAAAC TCTTTAAAT CTTGACTAAA GTTGTTAAAC 289860 TTGCCACTAA TAAAATAATG ATTATTAAAT ATTTCTTTAT ACATATTCTT AGCATCTCTG 289920 ATCTTAGTAT CGTGAGACAA ATACCTTTCT TTAAACTCGC CAATTTCTTT AAAATGCTTA 289980 GCAAGAGTAA GATCTACTTT CTCGTGTCTT GAAAAATTGT TGTCCACATT ATCTTGAATG 290040 TCTATGAAAT TTTTATAAAT TGTATCAATC TCTGAATTAA TTACTGCAAT AATGCTGTCG 290100 ACCGTTTTAA GTTCATCTTT AATGGTTTTA GAATATTTTC CAGAATTAAT AGCAAGCTTT 290160 CTAATCTCCT CAGCAACAAC TGCAAAACTT TTACCTGCAT CACCTGCTTT TGCTGCTTCA 290220 ATTGCTGCAT TCATAGCAAG CATATTGGTC TGAGCTGAAA TTGAAACTAA AAGTTTATTT 290280 ACACTTTGCA AACTATTTGT TTGAGACAAA AGATCTGCAA AATTTTTATT CACATTTTCA 290340 AAAACAATAT TTAAATCAAA AACCTTACTT TTAATATTTT CAATATCAGT AGAATTTATA 290400 GTAGCAACCT TATTAAAAAT TTCTAAATTT TTATCTATAC TATAGAAAAA ACTAACACTC 290460 TCTTCAAAAT TTGAAGAGAT TTCTGATATA TATTTATTGT GATCATTAAT CGGATCAGCA 290520 ATAGATTCAA AGCCTTTTAA AATATCAACA ATTGATTTTT CAAATCTAGA AAAAGTATCT 290580 CTTAGTTGTT CGTAAACTAA AATGCTAGAA TCTATACTCT CAGTATTTGA TATAGCAGTT 290640 TCTATTTGTT CCAAATATTC ATTCAAATCT TCAGAATAAA ATTTTATCTT CTCAAAAGAT 290700 TCATTACTCT TAGAAGACAG ATTATCTAGC TTTGAACTAA TATAAGAAAT AATAGATGAA 290760 GAATACTTAA CCTCTAAGGG AGATTCAAGA CTAAAAGGAT CGCTTTTTGA TTTTTGATAG 290820 TCAACAATTC TGTTAAAATC ATTAATTAAT GAAAAAACAA AAGTATTGCA TAAATAAAAA 290880 ATAATTGCAA AAGACAATAA TAAAAATGCA ACAAATATAA CCCAATTTGA TTTAAACATA 290940 ATAGGAATGG AATTGACATT TAAAATAAGC CCCTGAGTCA AAAAATCATC GGTTTTTACA 291000 AAGTTTAAAG AATAAAAATC TCTTTCATAA TTAAAAGTGT ACTGAGAGCT AGAAGAATCT 291060 TTTTTAGCAT AAGCTATAAC TTTACTCAAA AAATTCTCAC TATAAGCTGT AGAAAAAGAT 291120 TTGGCCTGAA GATTATTAAG GTTTGAAAAA ATGGGCATGT AATTTCTGTC AAGCATAAAA 291180 AAATTATAAT TTTTACTACC AAATTTAAGA GAAGAATACA ACTGATTTTC AATAATATCT 291240

AACGACTCAT	CAAAGCATAT	TAAAATCCCT	ATCACACCCA	ATGTTGAAAC	AGAATCTCTA	291300
ACTGGAAAAC	TTATTATAGA	ATAAATTTTC	CCATCTATTT	GCATATATCT	TGAATAATAC	291360
TTAGAATTTT	TTTCTACAGG	AACAGAATAA	ATTGGATCCA	ATCTAACATC	TTTTAAGCCT	291420
AAAGATGAAA	AATTTGAATT	TGATATTAAA	ACATTTTTCC	CTATAGGAAT	АТААААТАТА	291480
CCTTCAAGTG	AATCTTCTGC	TAAAGGAATA	GTTTTAAAAA	TTTTATCTAT	AGAGTTAAAT	291540
TCCCTTGACC	TTAAAAACAA	ATCACTATTT	TCATCCAAAC	TATCACCTAA	TTTTAAACTT	291600
GAAGACAAAA	GAAAGCTTTT	TGAAGAATTC	ACCAATATCC	САААССТАТА	GCTATCTCTT	291660
ATAAGCTCCT	CAAGAAACCT	AGAGGATTCC	GAATATTTGG	СТТТААТААС	AGCAGACACA	291720
CTGTTTAAAA	ACAACTTAGA	ATCAAATTTA	AAGCGATCCA	AATATTCATT	TTTATGATTC	291780
ATATAAGCAT	AGCCTATGAA	TAAAAAATTT	AAAAAAAGGA	АТССАААТАА	AACTAGATAA	291840
AGAAATCGTT	TAGTATTTTT	CAGATTAACA	ТСААТТАААТ	TCTCATCTGT	CATAAAAGCT	291900
CTCCAAACAT	AAATATTAGT	ATGATTAAAA	TCTTAAAACA	AAACTTTCAC	СТТСАТАААТ	291960
САТАТАТААА	TAATTACTAA	TAACAATTGG	CAAATTAGAC	TTTTCTTTCT	AAATCTTAAA	292020
GATTAAATCC	TTCAAATATT	TGCAAATAAT	TATTTTATTA	TTTAGCTACA	TGCATATATA	292080
ATTATATAAT	AAAACATGTA	GAATACTAAA	AATTTAATGT	ТТТАААААТТ	TTATGAAAAA	292140
ACAAAATTTT	GAGGAGACTT	AGTGAAAAGA	AAGAAACTTA	ACTCCAACCT	TTTTTTATAAA	292200
TTCAATTTTA	TAATTCTGGC	ATATACAATA	ATAATTATTG	CAACAACCTT	TTTGCTACTA	292260
GATCAAGGCT	TAAAAAAAT	CATAACAAAA	GAACTTCAAG	ACTTTACAAA	ATTCATTAAC	292320
CAGGCAATGA	TTAAAAGCTT	TTCTGATGAA	TCTAAAGAAA	TAATAAAAGC	TTTAAGCATA	292380
TTAACGACTA	GGTACGACTA	TCGGTCTGCA	ATCCTAAATA	ATAAAAATGA	AGAACACTTA	292440
GTATCTGATA	AGATTTTAAT	TACACTCCCC	TCCTTTATTA	AAATAATAGA	GTATACAAAC	292500
AAAGATGGAT	ACATAATCGC	ATCAAGCGAA	AAAAAAGAA	CCAGTCAGTA	CATAAGTTTA	292560
AAAGAATTGC	TATTGGGCAA	AGCTTTAACT	GCATTTCAAA	TTTCAATTCT	TCACAACAGT	292620
CTAGCAAAGA	TAAATAACAA	TTTTTACATT	CCAATAGCAT	ATAAAATAAC	AGATTCAAAA	292680
AAATCTAATG	TTGGATATAT	TATTTTATAT	GCTGACATTT	CAGAAAAAAT	CGCTGAGCTA	292740
AAAGAATATC	TTTTACTACT	TTTGGAAAAC	TCATTGCTAG	AACAAAATGC	AAGCACCGAA	292800
AACTCATCAA	AATACTTTAA	TGTATACATA	ATAAACAGTA	GTGGTGATGC	ATTTGGAGGA	292860
AAAGATGAAA	TTTTAAAGAA	CATAAAGCAT	ATATTTGGAT	TTAACCCAAA	AACATTAACT	292920
GAAATACTAA	ATACATTATC	TCAAGGAAAA	GCAAATTACA	ATACAAGCAA	TTCAAATGAA	292980

			323			
					AATAGATTAT	293040
AACAACATAT	TTTCAAAAGA	ATTTAAAAAT	ATGAGATTGG	TTTCGCTTTC	CATTATATTT	293100
ATCTTAGTAA	TAATTTTTAT	' АТТААТААТС	З АТАТСААССА	TAAAAACTTT	· ААТААТАТСА	293160
AAAATAGATA	AACTCAATGT	TGTCATTCCA	AAAGTTAAAA	ACGGTGACTT	AACATTTAAA	293220
ATCGAATCAA	AAGGCAAAGA	TTCAATAAGC	TCAACAATAA	ATCTTTTTGG	TCATTTTATT	293280
GAAAATCTAA	AAAATGTAAT	TAATTCACTG	CAAGAACGAG	TAAAGCTGCT	TAAAGAAAAT	293340
GGAGACCATT	TATTCAGCGA	GATAAATAAA	ACACATAATA	СААТААААА	ТТСАААТСАА	293400
TACATAGAAA	AAACACAAGA	AGAAGTAGAA	AAGCAGGTAG	AATTCATCTC	TAATACAACA	293460
AATATAATTG	AAAGCCTATC	AAAAAATATT	TCATCTCTTG	ACAATTCAAT	TGAAACTCAA	293520
GCCGCAAGCG	TTGAACAGTC	CTCATCGGCT	ATAGAAGAAA	TGATAGGAGG	AATACAATCA	293580
ATAACAGAAA	ТААСТСАААА	AGCTGCAAAA	AGCACAGAAG	AACTAAAAAG	GTTCTCTGAT	293640
GATGGGCGAA .	AAAAACAAGA	AGAAGTTATT	ACTCAAATTA	AAGAGATTTT	ТАААААСТСА	293700
ACAAGATTAC .	AAGAAGCAAA	CTCTTTAATT	TCATCTATAG	CAAGTCAAAC	CAACCTACTC	293760
TCAATGAACG	CTGCAATTGA	AGCATCTCAT	GCTGGTGAAG	CCGGAAAAGG	ATTTGCAATT	293820
GTTGCAGAAG	AAATAAAAGA	CCTAGCAGAA	CAAGTAACAT	CACAATCAGA	ATCTGTTGCT	293880
TCATCAATTA A	ACGAAATAAT	GGATTCAATA	ACCAAAACCG	TAAACACCTC	TGAATTAACA	293940
AATAAAGCTT '	TCAATCAAAT	ATTCGATTCA	ATCAATTTAG	TTGTTCAAGT	AATAGAAGAA	294000
ATAAATCATA (CAATGCAAGA	GCAATCAATA	GGTAGCCAAG	AAATTTTAAA	GGCTTTAAAT	294060
ACAATGCGGG A	АААТААСАТА	TGAAGTAAAA	ATTGGTTCAA	ATGATATGTT	TAGAGGCAAT	294120
AAAGAAATCA :	PTAGCACTAT	CAAACTGTTA	GGAGAAATTA	ATATTACGGT	CTCAAACTCA	294180
ATGAAAGGTT :	TAAAAGAAGA	GATTAATACG	CTAGTAGAAG	CAATTGAGCG	TATTAAAGTT	294240
TTAGGAACTA (CAAACTCAAG	CCATATTTCT	GGGATTAGCG	AAAGTATAAA	TCAATTTAAA	294300
ACCAAATAAA (CTAGATTAAA	AGGAAATAAT	ATGCAAAAA	AGACATTTTA	TAATACTGAA	294360
AAATATCTTA A	AAAGCCATTT	AATGTTATTT	CCTATTTTTG	СТТАТАСААА	AAACTTTTTA	294420
GATGCTAGTA 1	TCGCATCTGT	TTGGATTTCA	ATATGCATTA	TACTTCCTGC	ССТААТААТС	294480
AATCAAATAG A	\ATTGAAAAA	GCAAAAAAGC	CATATATTAG	GGATATATCT	АТТААТААТА	294540
GGAATTTTTA (CCAGCCTAAC	TTACTTAGTT	ATGCTCTACT	TAACACCAAC	ТТТАТАТААА	294600
GAATTTAAAT T	TTTCAATACC	САТТТТААТА	GCCATAATAA	TATCATTTCA	TAAAAACGAA	294660
CCCTTTAAAA T	TTCTAAAAAA	CCCATCAATG	ATAATTAAAT	АТТСТААААТ	TCCAATTTTA	294720
ATTTTCATTA C	CCTAAGCTC	AACAACCTCA	CTTATTAGAG	AAATTATAAA	CACGGGCAAT	294780

ТТААААСТТТ	TTAACAACGA	AATACCTATA	ATAAAGGGAC	ТТАТАААТАТ	AAAAATGTCG	294840
GCCCATAGCT	CAAACATTTT	TATTGTAGCG	TCTTTATTT	ТАСТАТТААТ	CAATATGCTA	294900
АСАААААТТА	AAGAGAAAA	AATGAATAAA	AGTGTTAAAG	AGGAAAAAA	TGAATAAAAG	294960
TGTTAAAAAA	AAGATTAAAG	ACGAAATTAA	TGTTATAGTT	ACTAATCTAG	CATTATCAAA	295020
TAACATAAAG	СТАСАТААТА	ТСААТАТААА	TATTCAAAAA	CCTCCAAAAA	GTGATCTGGG	295080
AGATATTTCC	ATATTAATGT	TTGAAATTGG	TAAAACCTTA	AAACTCCCTA	TTGAAATCAT	295140
CTCCGAAGAA	АТААТАААА	ATCTTAAAAC	TAAATATGAA	ATTAAAGCTG	TGGGGCCTTA	295200
CTTAAACATC	AAAATTTCTA	GAAAAGAATA	ТАТАААТААТ	ACAATACAAA	TGGTAAATAC	295260
TCAAAAAGAT	ACCTATGGAA	CAAGTAAATA	TCTAGACAAT	ААААААТАА	TATTAGAATT	295320
TTCATCACCA	AATACAAACA	AACCACTGCA	TGTAGGACAT	CTTAGAAATG	ACGTAATAGG	295380
AGAAAGTCTG	TCAAGAATAT	TAAAGGCTGT	GGGTGCAAAA	АТТАСААААА	ТАААСТТААТ	295440
AAATGACCGA	GGGGTTCATA	TCTGCAAATC	AATGCTTGCA	TACAAAAAT	TTGGAAATGG	295500
CATTACCCCT	GAAAAAGCTT	TTAAAAAAGG	AGATCATTTA	ATTGGCGATT	TTTATGTTAA	295560
ATACAACAAA	TACTCACAAG	AAAATGAAAA	TGCTGAAAAA	GAAATTCAAG	ATCTACTTTT	295620
ACTCTGGGAG	CAAAAAGATG	TAAGCACAAT	TGAACTTTGG	AAAAAGTTAA	ATAAATGGGC	295680
AATTGAAGGA	ATAAAAGAAA	CATACGAAAT	TACAAACACC	TCATTTGATA	AAATTTACCT	295740
TGAAAGTGAA	ATTTTTAAAA	TTGGAAAAA	TGTCGTATTA	GAAGGGCTTG	AAAAAGGATT	295800
TTGTTACAAA	CGAGAAGATG	GCGCAATATG	CATTGACTTA	CCTTCAGACT	CAGATGAAAA	295860
AGCAGACACC	AAGGTAAAAC	AAAAAGTACT	CATAAGATCA	AACGGAACAT	СТАТСТАТСТ	295920
TACCCAAGAT	TTAGGAAATA	TAGCAGTTAG	AACAAAAGAA	TTTAATTTTG	AAGAAATGAT	295980
TTATGTGGTT	GGAAGCGAAC	AAATTCAGCA	CTTCAAAAGC	TTGTTTTTTG	TAGCAGAAAA	296040
ATTAGGCCTT	TCTAAAAACA	AGAAACTTAT	TCATTTGTCA	CACGGAATGG	TTAATCTTGT	296100
TGATGGAAAA	ATGAAATCAA	GAGAAGGCAA	TGTAATTGAT	GCGGATAACC	TAATCTCAAA	296160
CTTAATAGAA	TTAATAATAC	CTGAAATGAC	ACAAAAATT	GAAAATAAAG	AGAGCGCTAA	296220
AAAAAATGCT	TTAAATATTG	CATTGGGAGC	AATTCACTAT	TATCTGCTAA	AATCAGCTAT	296280
ACATAAAGAT	ATTGTATTTA	ATAAAAAAGA	AAGCCTGTCT	TTTACGGGAA	ATTCTGGACC	296340
ATATATCCAA	TATGTTGGAG	CAAGAATTAA	TAGCATTCTT	GAAAAAТАТА	AAGCACTTTC	296400
TATTCCTGTA	ATGGAAAAA	TTGACTTTGA	ACTTTTAAAA	CATGAAAAAG	AGTGGGAAAT	296460
TATTAAAATT	ATATCGGAAT	TAGAAGAAAA	ТАТААТСААТ	GCGGCAAAAG	ATTTAAACCC	296520

TTCAATACTT	ACCAGCTATT	CATACTCGCT	TGCAAAGCAT	TTTAGCACGT	ACTATCAAGA	296580
						250500
					AATTTTTAAA	296640
AGCCATATTA	САААСААТАА	AAAATTGCAT	GTACCTGCTC	AATATTCCCT	ATATGTTAAA	296700
AATGTAGGCA	AGAAAATTTT	ACAAAATTTT	CTTGCCTAAT	ATCCGTTTAA	ATCTAAGTCA	296760
CTTTTGCTAA	AAATTAATTT	TATTTTATCT	TCATACTTTT	TGGATATATA	ATATCTTTTT	296820
AACTTAAGAG	TATTGGTAAG	CTCTTCTCCA	ATTGTAAAAG	GATCCTGAAG	CAAAACAAAG	296880
CCTACTATTT	TTTCAAAATT	TTTAAAACCT	AATTTAGTAT	TAATAGTGTC	TGAAATATGC	296940
TTAGAATAAA	GTTTATTGAC	GTCCTCATTG	GCTAACAAAT	CACTTCTGGA	AGAAAAGAA	297000
ACTCCACTAG	AATTTGCCCA	TTTTTCAAGA	TTATCAAAAT	TAGGCACAAT	AACAGCCCCC	297060
AAAAATTTTT	GATCCTGACC	AACGATCATA	ATATTTTCAA	TAAACAAAGA	TTTACCCAAA	297120
ACTCTCTCAA	GGGGCTCAGG	CTCAATATTT	TCCCCGCCCC	TCAGAACAAT	TGTATCCTTG	297180
СТТСТАССАА	CAATTGAAAT	TTCATTATTA	ATTGTTAATC	TAACCAAGTC	CCCAGTGTTA	297240
AACCAACCAT	CTTCTGTTAA	AACTTCACTT	GTCTTAGCCT	TATCCTTAAA	GTAGCCACTC	297300
ATTATTTGTG	GCGACCTGAC	CCAAAGCTCG	CCTTTTTCTC	CATAAGGCAA	AACTCTCCCA	297360
TCAATTCCAA	CTACTTTGTA	TTCAACATCT	GGCAAAATAG	GGCCGACAGT	TTTTGCTACA	297420
GGGCCTTTAA	GACGCCTAAC	GCTCAAAATA	GGGCCCGTTT	CAGTAAGACC	GTAACCTTCA	297480
AGCACTTTAA	TTCCTACGGC	СТТАААААА	TAATCAACAT	AATCAACCAA	TGCCCCACCA	297540
CCAGAAACTC	CAAATTCAAA	ATTTTGCCCA	AGAGCATTTT	TTATTTTTTT	AAATACTAAA	297600
ATATCGCCCA	ATAATTTAAT	AGGAAAAATT	AAAACAATCC	СААТАААТАА	AAATAATTTT	297660
GAAAAAAGCG	AAATAAGAAA	ATTAGTTTTT	TTATAAATAG	GAGAAAGCCC	ТАААААТСТС	297720
TCCTTAAGCT	TTGCATAAAT	AATCCCAACT	TTTAAAAACC	CTCCAAACAC	AAACTTCTTA	297780
ATAAAAGATT	CTGATACCTT	ТТТААТААТА	ССТАТТСТТА	TACCTTCCCA	AATTCTGGGT	297840
ACAGAAACAA	TCATTTGAGG	ATTTAAAAGT	AAAAAGTCTT	ТТААСААААС	AGGACCTATG	297900
GGCTTTGAAT	ATGCAATTGC	TATGCCTTTT	AAAGCAACTA	TATATTCACA	AGCCCGCTCA	297960
AAAGAATGCC	AAAGAGGAAG	AATAGAAATC	ATTATCTTGC	CGGGTTTAAG	TGTTGGAAGA	298020
ТААТСАТААА	GTCTATCTAA	TTGAAAAATA	AAAGATTCAT	GCCTCAACAT	TACTCCCTTT	298080
GGCATACCTG	TTGTACCAGA	AGTATATATT	ATAGTTGCAA	TGTCTTTTGA	AGAACCTTTT	298140
TCAATCTCCA	TATCAAATGA	TTTTGGATTA	GCTCTTAAAT	ACTCAGTTCC	AAGTTCTAGT	298200
AATTTTTTAT	AAGAAAATAC	AGTAATATTT	CCTATTTTTT	CTTCATAAGA	TTTATCATCA	298260
TCAATAACAA	СААТАСАТСТ	ТАССААТСТА	AGATCATGCT	TTTTGGATAA	AACCTTGTGA	298320

AGTTGCTTAT	TGTTTTCAAC	AAAATAAAA	GTAGATTCAG	AATGGTTAAT	AATATAAGCT	298380
AATTCATCCT	CAGAAGAATC	ATTTCCCCTG	GGAACATCAA	CGCAGCCTAA	CCCCAAAGTA	298440
GCAACGTCGA	TTATTATCCA	TTCTCTTCTA	GAATCAGAAA	TAATTACAAC	CTTTTCTCCC	298500
CTTTTAATGC	CACAATGCAA	AAGCCCAGAA	GCCACTCTTT	TTGTCTCATT	CCAAAAATCA	298560
GCGTATATTT	GCTTCTTAAA	ACTTTTTGAT	TCCCCCTCCT	ТАТАСАТААА	AATATCAAGC	298620
TCACTATAAA	GAGCTACCAC	ATCTTTAAAA	CGCTTAGGCA	CAGTATCACT	CATAAATCCC	298680
CCTCAAAACA	ATTTAAAATT	AATTCAAAAA	AAGCAACAAG	CTGCTAACAA	ТААТАТТАТА	298740
AAAACTATGT	АТАААААТСА	САТААТАТАС	ATTTTTATAC	CTTAAATAAG	TAAAAGCAAA	298800
AAATATCCCT	AATATAAATG	TAACCAAAAA	ТССТААААТТ	ССАТААТАТА	AATGCCCATA	298860
AGCAAAAAAC	ATACTACTAA	GAATGGCGGT	AGCTACAACA	GGAAATCCCA	TTTGTGTAAA	298920
CTTAGTAATA	ACAAAAGCCC	TGTAAAAAAG	TTCTTCAAAA	GCTCCTGTAA	AAAAAGAGGT	298980
AAAAGTCATT	AAAAAAAATG	CTTTTTTACT	GCTAATCTTC	CAATTAAATC	CAGCATTGTT	299040
TTGAAAATAA	TAGACAAGTA	CCGATTCTGG	CAACAAATAT	TCAAGCAAAA	AAGCTATTAA	299100
AAAAATGACT	ATCATTGCAA	TCAATATTGT	TTTAATAAAA	ATTAAAACAG	AATCCCAAAG	299160
ТАААТАААА	TTAAATTTAG	GAATAAAAA	СТСТАСТСТА	AAATCATCAT	AAGAACTGGT	299220
AAGTTTAAAA	AAATAAATTA	ТАААААТААТ	TAAAAAAGAT	CTTGAAATCC	AAAAATAAAA	299280
ATGATTTTCA	TCAACATTCC	AAAATTCTGA	ATTAACATTT	ACAAAAGGAG	ATGCCAAATA	299340
AACAATAGCA	TAGACCAAAA	AAAGATCAAG	CAAAGCCCGC	TTGAATGGAT	ATTTATTTT	299400
TAACAATTGC	ATAAAGTATT	GTAATTAAAT	AATTATTAAT	TGTCAACGAA	TGATTATTGA	299460
TTGATTAATC	AAAACAAATT	AAAATTCAAA	ATATAATTAT	ТТАТАААТАА	AAATAAGAAT	299520
ATTATAAATG	ATTTTAATAT	TTGTCCTTAT	TTCACTTAAT	TTATTAATTC	AATATTATTT	299580
AAAACTCAAT	TTAATTTATT	TTAACACAAT	GCTAGCATTA	TTTTTTTTA	ТААААААСАА	299640
CAAACACTTA	GCACTTAGTT	TTATTTTTTG	CACAATATTG	CTATTAAGTT	TTCAAGCGAG	299700
ATTAAATTTT	AAAACATTAA	AAAAAAATAT	TTATCAAATA	ACAAACATTA	AAAATTTTAA	299760
AAAAGATTCA	AAAACCATTG	TAGAAGTAAT	TGACAATAAA	TCAAATATGT	ACAAATATAG	299820
СТТСАААААТ	ATTGAAAATA	TTTACAAAAT	AGGAGATATC	ATTAAAATTG	ААААТСАААА	299880
AATAAAACTT	ATTAAAAGGC	CCTTTTTTGC	CAAGCTTAGA	GAAAAATATA	CAAACGCCTT	299940
AAACAATTTT	TTCACTACAC	TAAATCCCAG	CTATTCCCAT	TTTTCAAAAG	CAATAATTTT	300000
GAATATCAAA	TCAGAAATAA	CAAAATATGA	АААААСАТТА	TTTCAAAATG	CGGGGATTGC	300060

<u>-</u>	327
CCACATTTTG GTAGTATCTG GACTGCATTT TTAT	
CCTTTTAATA ATCACTAATG AAAAATTAAA ATAC	
TTATCTAATA TTAACTGGAT TTGCACCTTC AACG	
ТСТТАТААТА ТАСАААСТАА ТТТАСGGCAA AATT	
TTTTATAATA AATGCTCTTG CATTCCCCGA AACG	CTAAAT TCAATAGGAT TTCAGCTCTC 300360
CTATCTTGCA ACAATAGGAA TATCAGCATC GGTT	CATCTA AAAAATAGAT ACGGTCTTAA 300420
CAGGCTAGAA TCATCAATGC TTACAACATT TTTT	ATTCAA ATATTCACCT CGCCAGTAAT 300480
TTATATCAAT AATTTTGATC TAGCACCAAT CTCA	ATACTG TCAAATTTAA TAGCTATTCC 300540
ATTAATATCA ATTTTCTTAG CAATAACAAT ATTA	AGCTTA ATAACTTACT TTTCAAGTTT 300600
AAATTTATTT TTTCCCCTTG ACCTTATAAA TGCC	TACATA TTTCAAGCAA TAAAAATTAC 300660
AGCAGCATTT TTTAGCAAAT TCTTTATAGT CAAG	CACCAT CAAATACCTA TATTTTTAAT 300720
ATTAAGTATT TTTCTTATAA CTTACATTAT TTAT.	AATAAC GAAACTAAAA AAAATTAAAA 300780
TAATTTTAAA ATATCTGTCA TTATTAAGAA TAAT	ATGATA CTATCTCTTT TATCTATGAA 300840
TATCAACTAT AACAGTATAA CTAGCATAAA ACAA	ACATTA AAAGAAAGAA AAATCGCTCC 300900
AAGAAAATTA TGGGGACAAA ACTATTTAAT CAAC	SAAAGC ATAAGGCAAA AAATAATAGA 300960
AAGCTTAGAT ATAAAAGAAA ATGAAAAAAT CTGGG	GAAATT GGCCCAGGCC TTGGCGCAAT 301020
GACTGAGATT TTATTAAAAA AAACTAATCT TTTAA	ACCGCA TTTGAAATTG ACTTAAAATA 301080
TTCAGAAATA TTAAATGAAA AATTTGGAAA ATTAA	AAAAAC TTTAAATTGA TAAAAGGGGA 301140
TTTTTTAAAA AAATACAAAA ACGAAAATCA AAACA	ATTGAT AAAATATTTT CAAATTTGCC 301200
ATACAATATT GCATCAAAAG TAATATCTAA ATTAA	TTGAA GAAAACTTTT TAAAAGAAAT 301260
GGTATTCACA GTGCAAAAAG AATTGGCCGA CAGAA	TAACT GCAAAAATAA ACAGCAAAAA 301320
CTATTCTTCA TTTACGGTCT TAGTACAATC ACACT	TCAAG GTAATTAAAA TATTAGACAT 301380
AGGAGAAAAC AATTTTTATC CTGCACCTAA GGTTA	AGTCC ACAACACTAA AATTAATTCC 301440
TAAAAAAAAC AACATAAAAA ACTTCAAAGA ATTCA	ATAAA TTGGTTAGAA CTGTATTTTC 301500
AAACAGAAGA AAGAAATTAA AAAACACTAT TATTA	ATTTC ATTACCAATA AAGCTACTCT 301560
GAGAGAAAAT TTTTTAAAAG AATATTTAGA CAAAA	GACCT GAAAACATTT CTGTTGAAGA 301620
ATTTATACAA ATTTCCAACA CTTTAAATGC TTATC	ATTAA AGCACTTGCA AATACAATTT 301680
CATCAACAGA ACAGCCCCTT GAAAGATCGC TAATG	GGCTT GGAAAAACCT TGTAAAAAGG 301740
GACCGTAGGC CTTGGCAAAA GCAAATCTCT CTACT	AATTT ATAACCAATA TTCCCCGCAT 301800
CTAAATTGGG AAATATTAAA ACATTAGCAG AACCT	GCTAC TAAAGATTCT CTACATTTTT 301860

TCTCTGCAAC ATCTTTAT	TT ATGGCTGAA	T CAAGCTGCA	G CTCACCATCA	A ATAAGTAAAT	301920
CACTCTCTTT ATTCCTAAC	AAATTTAAA	G CATTCTTA	TTTTTCAGT	TCTTTAGCAC	301980
TAGAAGACCC TTTTGTTGA	A AAACTCAAA	A GAGCAACCT	r gggctttgc <i>i</i>	TATAAAATTT	302040
CTTTAAAAGA TTTAGCACT	T TGCAATGCA	A TTTCTGCAAC	G CTCTAAAGA	A TTGGGATTGA	302100
CCACTACAGA ACAATCTGC	А АААААТААС.	A TTCCATTATO	TCCAAAACAA	AAATCAACAT	302160
TACGAGCAGT GCATAAAGT	A TCCATAATC	A TAAAAGATGA	A TATAATCTTA	ACACCTTCCA	302220
ACTTAGGGAT TATTCTTAA	A GCATTAGAC	A AAACTTTAGO	AGAAGTTGAG	ACAGCCCCAC	302280
AAACACAAGA TTTAGCATA	A CCAAATCTT	A CCATAAGCAT	AGCAAAAGTA	ATTTCATCTA	302340
AAACTTGAGT CTTTAAACT	T TGCTTCGTA	A CTCCCTTTAA	CTTTTGTAAA	СТССААТАТТ	302400
САТССАААТА САТТТСААТ	A TCTGGGAAAG	G AATTAGGATC	AACAACTTCT	ATTCTTCCTA	302460
AAATATCATT GCAATTAGA	A AATTCTTTT	AAGAATTAAT	AACAGTATCT	TTTTTGCCTA	302520
ТСААААТААТ СGААТСТGС	A AGATTTTTT	GCAAAATAAC	AATAGCTGCC	TTTAAAACTC	302580
TAGAATCACT ACTTTCGGG.	А ААААСТАТАТ	TGGCCTTAAG	CTTATTCTCT	ТТТАСАААТА	302640
TTCTTGCCTT CTTAAAAAC	A TAATCTTTA	AACAAAACAC	СТТАТАААА	GAATACAACA	302700
CAATTGATAA TGCATAAAA	A AAGACATTTI	AAAATAAAA	ATCTTTTTC	ATACATGATT	302760
TTCAATTATA AAAATTAAA	r atttcttaaa	GTTTTCTTAA	AATTTCTTGT	ACAACTTTGG	302820
CTGAATTGAA AGCAGCTAT	TTAGAAAATT	TACTATATTC	AACCTCATTC	CCTTCTTTAT	302880
TTACAATGTC AGATATTGAG	С СТААТААСТА	TAAAAGGTAT	ATTAAACATA	TGAGAAACAT	302940
GCCCTATTGC TGCACCTTCC	ATCTCAACAG	CTATTACATC	TTTAAAGTTT	ССТАТААТТТ	303000
TGTTAATATA AGTTGGATCA	ATAAACTGAT	CTCCTGAAAC	TATTAATCCT	GAATATGCAT	303060
TAGAACCTCC AACCTTTGAT	TTAATGGCCT	CTATGGCATT	СТТААТТААА	TTTTTATTGG	303120
CATTAAATTT TTGAGGCAAT	CCTCCTGTAA	GCTGTCCTAC	CTTGTATCCA	AATTTAGTCA	303180
AATCAACATC ATGATATGCA	ACCTCTGAAG	ACACCACCAC	ATCTCCCACT	TTAATATCTT	303240
TGTATTTAGC ACTAACAACG	CCACCAGCAA	CGCCAGAATT	AATGACATGA	CTTATGTTGT	303300
ATTTTGACAA AATGTAGCTA	GTCCACACAC	CAGCATTAAC	CTTACCAACC	CCACAAATAA	303360
TAACCATAAC ATTGCGATTA	GACAACTTCC	ССТТТААААТ	СТТТТТАТТА	AGACCATACT	303420
CCTTAAGAAC TATTTCTTCC	TTATTAGACA	TAAGCTTATT	TATCTGATCA	AACTCAGAGT	303480
CCATAGCAGT TACTATTAAA	ACATTGACAT	TTTTAGAAAA	AGCAACATAA	CTGTTTGAAA	303540
АААСТААТАА АААААТАААА	AACTTTATTA	AACAATTATT	САТААААТСА	CACTCCTTAT	303600

329 303660 AATTTTTGTA AAAGATATTG AAAAAAAATA TCCTATCCAT ATTACAATAT TAATAGCATA 303720 AAAAAAGGGA AAACTGAATG AAAAAAATGA ATCTAGTTAC AGCTGCTCTA CCCTATGTTA 303780 ATAACATACC TCATCTTGGG AATTTAGTTC AAGTGCTATC AGCTGATGCT TTTGCAAGAT 303840 ATTCGAAAAT GTCAGGAATT GAAACTCTTT ACGTCTGCGG AACAGATGAA TATGGAACAG 303900 CTACAGAAAC CAAAGCCTTA ATTGAAAATA CTACCCCTTT AGAACTTTGC AATAAATATT 303960 ATGAAATACA TAAATCAATT TACAAATGGT TCAATATTGA ATTTGACATC TTTGGTCGCA 304020 CAACCAACAA GAACCATCAA GACATTGTAC AAAATTTTTT CCTACAATTA GAAAAAAACG 304080 GCTATATAAA AGAGAGAGAA ACTGAACAGT TTTATTGCAA TAAAGATTCA ATGTTCTTGG 304140 CTGATAGATA TGTAATAGGA GAATGCCCAG AATGCCAAAG CATGGCTAAA GGAGATCAGT 304200 GCGACAACTG TTCTAAACTT CTAAATCCAA CAGACCTAAT AAATCCAAAA TGCATAATTT 304260 GTAAAAACAA GCCTATTTTA AAAAAAACCA ATCATCTTTA TTTAGATCTT CCCAAAATAA 304320 AAACAAAACT TGAAAAAATGG ATAAAAAATC CAGATACTAG CAAGAATTGG AATACCAATG 304380 CCCTTAAAAT GACAAAGGCT TTTTTAAGAG ATGGCCTTAA AGAAAGGGCA ATTACAAGAG 304440 ACCTGAAATG GGGAATTCCT GTGCCTAAAA AAGGTTTTGA AAATAAAGTA TTTTATGTGT 304500 GGTTTGATGC TCCAATAGGA TACATTTCAA TTACCAAAAA CATTATCAAA AATTGGGAAT 304560 CTTGGTGGAA AAACAATGAT CAAGTAAATC TTGTACAATT TATTGGGAAA GACAATATAT 304620 TGTTTCATAC AATTATATTC CCTTGCATAG AAATTGGAAG TGAAGAAAAT TGGACAATAT 304680 TAAATCAACT CTCATCAAGC GAATACTTAA ATTACGAAAA TCTTAAATTT TCAAAATCAG 304740 AAGGAACAGG AATTTTTGGA AACGATGCTA TTACTACAGG AATCCCCTCT GATATTTGGC 304800 GATTTTATAT TTATTATAAC AGGCCTGAAA AATCTGATTT TCAATTTATG TGGCAAGATC 304860 TCATGGAAAG AGTAAATACA GAACTTATTG ATAATTTTTC AAACCTTGTA AACAGAGTAT 304920 TAACATTTCA AAGAAAATTC TTTGGAGATG TAATAGAAAC AATAGAAATT CAAAATAAGT 304980 TTTGGAAACA AATAACACCA AAATATAATA AAATACTAAA TCTTTTTAAA AAGACAGAAC 305040 TAAAATCTGC TCTCAAAGAA ATACTTAAAA TTTCTTCCCT TGGAAATAAA ATATTTCAAG 305100 ATAACGAACC CTGGAAAAGA AAAAACAACT CTCCACAAGA AACAAAAGAA CTAATCTCAA 305160 ACTTAATATA CCTAATCAGA GACTTATCTA TTTTAATGAT GCCATTCATT CCCGAAACAA 305220 GCAAAAAGAT ACAACAATTC TTTGGCAACA GTTATCAATT TTCAACCAAA ATTCTTGGAA 305280 CTAAATCGGG AATTAAAAAA ATTGAATTCA CAGAAATATT ATTCAATAAA CTAGAGCAAA 305340 AAAAAATTAA TAATTTAAAG CTAAAATATT CAGGAGATAA AAACATGAAA GAAAACGAAC 305400

		•				
AAGCAGAAAA	CTTGCCTATA	GCAAAAGAGC	AACCGGAAAA	CTTGTTTAGA	GAAAAAGTGC	305460
TCTTAAGAGT	TGTAAAAATA	AATAAAATAG	AAAGAAATCC	CGAGGCTAAA	AACTTATTTA	305520
TATTAAAACT	AGATGACGGA	ACTAACAAGG	ATAAACAAAT	AGTAAGCGGC	CTTGAAGGAT	305580
ATTACACAGA	AGAAGAACTT	TTAGGAAAAC	ТААТААТАТА	AGTAGACAAT	TTAAAGCCTG	305640
CAAAGTTTAG	GGGAATAAAA	TCTGAAGGAA	TGCTAATAGC	TGCTGAGGAC	AAAATAAAA	305700
ATTTTAAAGT	TATAATTGTA	GAAGATTCAA	TTCAAAATCC	TATTGCTGGA	GAGAGAATAA	305760
TACTTGAAAA	CGATCAGAAT	AAAGATCTTG	CCTGCCCACC	TAAAATTGAC	ATAAATAAGT	305820
TTTTAAAAGC	CAATATAGTA	GCAGAAAACG	GAGAGCTTAA	AATAAACGGA	АТАААТТТАА	305880
TATTAGAAAA	TTCTAAGAAC	AAAATTTTAT	CTAAAGATAT	TCCAAACGGA	ACAGTTTGCT	305940
AAGAGCTATT	AATGACTATT	AAAAAAATAA	AAACAAAAGA	AATGGAAGAA	AATTATCTTC	306000
AAAGCGAACT	GTGGGCATTA	АТАААААСАА	CAAAAAACAG	TTATTGGAAA	GCCATAGCAT	306060
TTGAGAGCGA	TGTTCTTGGC	AAAATTGTTG	TAATGCAAAG	AAGACTATTT	AAAAATTTTT	306120
ACTTAGCATA	TATTCCGCAT	CCAGAATTCT	CAAACAAAAC	TCTTGAAAAC	ATTAATATTG	306180
ATAAAATCAG	TAAAAGTATT	AAAGAATTTA	GCATAAAAAT	AAAACCCTAC	ТТАСАТАААА	306240
ATACAATCTT	TTTAAGATTC	GATTTAATGT	ATTACTACCA	AAGAACACTG	AATGACAAAT	306300
ACTCTCCATT	AAAAACTAAA	ATCAAATATC	TAAAAAAATC	CTTTGATGAC	ATACAACCCG	306360
CAAACACAAC	AATATTAAAC	TTAAATAATT	CTCTTGAAGA	GATTTTGCTT	AACATGAAAA	306420
AAAAAACAAG	ATATAACATA	AAGCTCAGCA	САААААААА	ТСТАААТАТА	ATAATAGATG	306480
ATAAATTTAA	ACATTTAAGT	GAATTTTACA	AGCTATACAA	AGAAACTAGC	AAAAGAGATA	306540
AATTTACTAT	TCACTCAGAA	GAATATATAC	AAAACCTAAT	TCAAATATTC	AAACAAGACA	306600
AAAATGCTCA	AATAAAATTG	ATAATTGCAT	TTTACAATAA	САТААТТАТТ	TCTGGCATAA	306660
TAGTGGGAAT	TTACAAAGAA	AAAGCAGTCT	ATCTTTATGG	GGCTTCAAGC	AAGGAATATA	306720
GAAATTTAAT	GCCCAATTAC	GCTGTACAAT	TTAAAGCAAT	AGAAATGTTA	AAAAATTAG	306780
AAATAAAAGA	ATATGATTTA	TTAGGAATTC	CCCCAATTGC	АААТАААААС	CACCCCTTAT	306840
ATGGTCTTTT	TAGTTTTAAA	ACAGGATTTG	GAGGCAATAT	TATTCATAGA	ATTGGTTGTT	306900
ATGATTTTAC	TTACAAAAAT	TTTATTTATA	AGATTTATGC	AAATCTTGAA	AAACTTAGAT	306960
ACTTCTATTA	CAAAGTAATA	AGGAAAAAA	TTTAACCAAG	ATTATTAACT	AAATTTTTAA	307020
ATTGCAAACC	TCTATCAAAC	ТСАТТАТТАА	AAAGCTCAAA	AGAAGCACTA	GCAGGAGAAA	307080
ATAACACAAT	GTCACCCGGA	CTTGAAATCT	TGAAAGCATA	ATTTACTGCA	TCTCTTAAAG	307140

			331			
AATCAAATAG	AAAATATTGT	ATGCTACTTT	TTTCTAAAAT	CTTAATAATT	TTTACAGTTG	307200
CACTACCTCT	TATTAAAATC	CAAGTTCTCA	CAATATCTGC	AATCTTGCTA	АААСТТАААА	307260
AATCAAGCTC	TTTATCGGTT	CCCCCAACAA	TTAAGTTGAT	ACGGTTATCT	TTTGTTTTCA	307320
AACTTTTAAC	AGATAAAACA	GTAGACTCAG	GAATAGTTGA	AGCTGTATCA	TTATAAAACA	307380
TTACATTTTG	AACTGATTTA	АСАААСТСТА	ATCTGTGCTC	AATACCTTTA	AAATTACTTA	307440
AAATCTGACC	CGTGCGATTA	AGGTCTATGT	ТТАААТААТА	CGAAACAAAA	AAAGTAATAA	307500
CTTTAGGAAT	ТАТАААААСА	GCTCGTGAAT	TAGAAAAACT	TCCAATCAAG	CTGTCATTAA	307560
AATATACTTT	GCCTTCATTG	СААТААААА	TATCTTGATC	AAAATCACAA	GGATTAAATT	307620
CGGAAAATAA	AATAACTCTG	ACTTTTGATT	TAAATTTTGA	AAAATATTTG	CAATAAGCCT	307680
GATCCTGAAT	AATCACAATT	CCTGAAGTTT	GATTTACAAA	AATTTTTGAC	ТТАТСААТАА	307740
TATAATCATC	AAAATTTAAA	TAATAGTTTT	GATGATCGTT	GTAAACATTT	GTAATAATAC	307800
TAATAATAGG	ATTAAAATTC	TCTAAAGATT	GCAACTGCCA	AGAAGAGAGC	тсталалтса	307860
AAGGAGATTT	TCCATCAAGT	TGATCAAAAA	AACTTAAAGG	AGATACACCA	ATATTGCCTC	307920
CAAGCTTTAC	CCCCGGATAT	TTTTCTTTCA	AAGCTTGATA	CAAAAGAGAT	ACAAGAGTAG	307980
ATTTTCCTTT	AGTGCCTGTT	ACTGCAACTA	TAGGGTTCTT	GTTAAACATT	AAAAATAAGC	308040
TAATATCTGT	CTCAATTCGT	TTTGCAAACT	ТТАААТАТТТ	ATTATTGGGT	TTCACACCGG	308100
GATTTTTTAC	AACAATGTCA	GCATTTTTAA	AATCGTTTAC	ATCGTGTTTG	ССТААААСАТ	308160
ACCTAATTTG	ATCCTCAAAA	TCTCTTAAAG	CATCAATACT	TAAAGCTAAT	TCCGTCTCGC	308220
TTTTAAGATC	AGTAATTACT	AATTTTGCCC	CACGCTTTAA	тааааатста	GAAAGAGCTA	308280
CTCCTCCTCC	ATTAAGGCCT	AAACCCATGA	ТТААААААТТ	TAAATTTTTA	ATTTCGTCTA	308340
AAAGCACAAT	AAAATTATAT	CAAACCTGCC	AACTGTTTAA	ACGGATTTAA	TCCACCTTTC	308400
АСТАТААААА	TAAGGAAGTG	AAACAACAAG	TTTGATTGCG	TCCTCAAGAG	ATGGAATAAA	308460
AACAATAATT	TCAAAAGGCA	AATTTGTATA	ATTTGCTAAA	ACAAAAGCAA	TAGGAATGGT	308520
ATAAACAAAA	GTCACAGAGC	CTTCCATAAT	AGCGCCAAAA	CTTGGAGATG	CTCCTGCACG	308580
AAAAAATCCA	AAAAGATACT	GAAAAGCAAG	AGCCATGAAA	AAGGCAGAAA	CAGAAGAATA	308640
ТСТТААААТА	ATTCCTATAA	GGTGCGAATA	CTTTAATGTA	ТАААААТАТ	AAGGAGCAAA	308700
AAATGAAAAT	ATAAACAATA	CAAAAGATGT	TAAAAAAGCA	AGCTTAAGGC	СААТТТТАСТ	308760
САААТАТАТТ	GCAACTTTCA	TGATTTCTTT	TTTACTATTA	TGCATTTCAT	AGCCCATCAT	308820
AATATTTAAA	GAAATACAAA	AGGAATGAAT	TATATTAAAG	ТАААТААТА	AAATAGAAAA	308880
AGATATGCTG	TAAGCAGCAT	ATTTATGAGT	ATCAATTCCT	АТАААААТСС	ATGTCAATAC	308940

				•		
AAGATAGCCA	AAAAACCAAG	CAAACTCATT	TAAAAGAATT	GGAATAAAAA	ATTTAATTAG	309000
CTGAGCAAAC	GGCTTAATAT	TAATATTCAA	ATCATCTAAC	TTAAAGTGCA	AAATTGAATT	309060
TTTGTTAAAA	GCTGTACAAA	CAAGATAAAC	AATAAGCTCT	AAAGTACGAA	TAACTGTTGT	309120
TGCAATAGCA	GCTCCAACTA	CTCCCATATG	AAAAACAAAA	АТААААТАТ	AATTAAATAC	309180
AAAATTCAAA	AGCACTGAAA	AAACAGAAAT	GTAAACTTGA	AATTTAACAA	TTTCAACAAC	309240
CTTAAGAGCA	TTAGCAATAA	GTCCTTTTAT	GATTGCAAAT	ACGAAAGAAA	AAATAGCTAT	309300
ATTTAAGTAA	GCTGCTCCAT	AGTAAACCGC	CCGCTCATCA	TTAGAAATCA	ATCTAAGTAA	309360
AAAAAAAGGA	TTCACTATGG	АААТСААААТ	AAACGGAAAA	GAAAATAAAA	TAATAGTTAA	309420
TATACTAATA	AAAAACGTAT	TTCTAAAGCT	CTTAAAATCA	CCCTGATTGT	ATTGTCTTGT	309480
AGCAATTATA	TTATAAGCTC	CTGCCATGGA	AAACCCAATA	GTAACAAACA	GTTCAAAAA	309540
TTTATTTGCA	AGAGAAACTC	CTGCAACAGG	ATAGTCACCA	AGATATGCAA	CCATAGCATT	309600
ATCTGTAAGG	GAAATAAAAT	ТАААТАААА	AAACTCAATA	GCAGTTGGAA	TCGCAATTTT	309660
TAAAAGATCT	ТТАТАААТТТ	TATCCTTTTT	CGATACACCC	AATGAATACA	TAAATTTCTC	309720
САААТАААА	AATTAAGATT	TTTGTAAAGA	CAAATACCGG	AACCTACAAT	AAAGCAAAAG	309780
GAATTGCTTT	CAAATTAGTA	TAATCAGAAT	GAATTCTAGA	TCCACCAAGA	ТТАТТААААТ	309840
CTTTATTAAC	ACTAAATATA	TCACGCTATC	CCATACTCAA	GCAAGTTCTT	CATACTCAAT	309900
CTCTCGTATC	CAATCATCGT	GAAAAAATTC	ААТТАТААТА	AATATATTT	TAATAATCTC	309960
TTCCAGATTT	ACAATAAAAA	CAACTATTGG	TAAACTTAAA	TTTGTATAAA	ACACCAATAA	310020
ATAAGCAACT	GGAAGGGTAT	AAAAAACAAT	TACTCCCGAT	TCAATAAAAA	AACAAACATT	310080
TGGTATACCG	CTAGCCCTAA	AAACCCCAAC	AAGAACTTGT	GCCGTAAAAG	CTTTAAAAAT	310140
TACAATACTT	GCAAAAACAT	AAATAAACAC	GCTAACAAGT	TCGGGAGAAT	CTAATTTACT	310200
AAAAATATAA	GGTGCAAAGC	TCGATATTCC	AATAAGCAAA	ATAACTACAA	AAATGCCCAA	310260
AAGAAATCCT	AAAAAGATA	AAAAAAATCC	AACTGATCTA	ACATGTTTCT	TATCGTAAAT	310320
CATTAAATGG	CCAATAACAA	CCCCTGTTGC	AAGTCCCATA	CCATGAAGCA	ATACAAAACA	310380
AATATCAAAA	AGATTTGATG	CAACAGCAAA	TGAAGCGTAT	TCAATGCTCC	CAACACGAGC	310440
ATAAAATGCA	TGCAAAATAG	ТТАТАСТТАА	AACCCAAAAA	ATCTCGTGAG	ACAAAACAGG	310500
TATAATTAGT	TTCAAATTAG	CCCTAGTAAC	TACCTTTGGA	GCAAAAAAAT	CGCCAAACTT	310560
AATCCGATAA	TATGAATTAC	TGCTTATCAA	ACTATATAAA	AAATAGAAAA	CAAACTCAAC	310620
AATTCTAGCA	AGCACAGTAG	CATATGCGGC	ACCTTTTATT	CCCATGCTAA	AGCCAAAAAT	310680

AGGATATAA TTAAAAACAA TATTTATTAA AACAACAATA GAAGTAACAT ATAAGGGTAT 310740 TTTTACTTCT TTAGCACTCT TAAATCCCAT AGCAGATAA AAAGAATATG CCATTAGCAC 310800 ATAAGACAAT GAAATAATTT TTAAATACTC TGATCCAAAA TTTAAAGAAT CCTGATTAGCAC 310860 TGTAAATAGC TTATAATGT TCTTGGAAA AAGAATGAA AATATAAAAA AAATTATCC 310920 TATTGTAGTT CCAATTAATA ATATATAAGC AAAGAATGAA CATAGCAAA AAAATATT 310980 TTTTGCAATT GCTGGGAAA CGTAAGGGCT TAAAGCCGTA CCAAGTCCAA ACACAATAAT 311040 AAAAAAAGA AAAGTTACCC TATTTGCCAA AGAAACTCCC GTAACACTGAA AAGAGCCCAA 311100 ATAGGAGATC ATAAAATATT CAAAAAAAGT TACCATTTGA AATAAAAGCG ATTCAAACTTTT 311220 GATCATATTC CTTATATACA GCCCTTT ATTATTACTG TCATAATTTT TAAACTTTTT 311280 CTAGAATATA CATATATTA GAATTAACTA TTAATTACT TAAATTATAT TATAATTAAA 311400 TAAATATGAAA TCAATTATTA GAATTAACTA TTAATTATAC TAAATTATAT TATAATTAAA 311400 CAACATTTCA AAAAAAAATT TAGAAGTACT GCTAAAGATT GCCCAAGCAA TGAATAAGGA 311520 AAGACGAAAAA TTATTTTAGAA AAAATCCTAT TCAGTCTTA AAAGAAATAA AACCCTTAGCT 311580 TTATAAAATA CCTGATCTGG TAAATATTGA TGATTTTTGAA AAATTAAAA AAAATACCAA TTCCTGAAAA 311700 AAAAAAAATTAT GGGATTGAAA TTAAAATATA TGACGACTAA ATTCGACCAAAAATTA TACCACACAAAAA AAATATTAAA AATTCGACCAAAAAATAA AAATATCAAA ACCCCACAACAAAAAAAA			333			
ATAMGACAAT GAAATAATTT TTAAATACTC TGATCCAAAA TTTAAAGAAT CCTGATTAGC 310920 TGTAAATAGC TTATAATGT TTCTTGGAAA AAGAAATGAA AATATAAAAA AAATTATTCC 310920 TATTGTAGTT CCAATTAATA ATATATAAGC AAAAGAATGT CTTACTGAA GAAACTTCTT 310980 TTTTGCAATT GCTTGGGAAA CCTAAGCGCT TAAAGCCGTA CCAAGTCCAA ACACAATAAT 311040 AAAAAAAGA AAAGTTACTC TATTTGCCAA AGAAACTCCC GTAACATGAA AAGAGCCCAA 311100 ATAGGAGATC ATAAAATTAT CAAAAAAAGT TACCATTTGA AATAAAAGCG ATTCAAAAGC 311160 TGTAGGAATA GCTATAACAA ATAGCTCTTT TATTATCTGG TCATAATTT TAAACTTTT 311280 CTAGAATATA CATATATTA GAATTAACTA TTAATTACC TAAAATATAT TATAATTAAAA 311400 CAACATTCC CTTATATACA GTCTCCTTTA TTTATTATCT TAAATTAAT TATTAATTA						310740
TOTAMATAGE TITATAATGT TICTTOGAAA AAGAAATGAA AAATATAAAA AAATTATTCC 310920 TATTGTAGTT CCAATTAATA ATATATAAGE AAAAGATTGT CTTACTTGAA GAAACTTCTT 310980 TTTTGCAATT GCTTGGGAAA CGTAAGCGCT TAAAGCCGTA CCAAGTCCAA ACACAATAAT 311040 AAAAAAAGA AAAGTTACTC TATTTGCCAA AGAAACTCCC GTAACATGAA AGAGCCCAA 311100 ATAGGAGATC ATAAAATTAT CAAAAAAAGT TACCATTTGA AATAAAAGGG ATTCAAAAGC 311160 TGTAGGAATA GCTATAACAA ATAGCTCTTT TATTATCTG TCATAATTTT TAAACTTTTT 311220 GATCATATC CTTATATACA GTCTCCTTTA TTTATTACTT TTAACATAAT TTAAACTAAA 311340 CTAGAATATA CATATATTA GAATTAACTA TTAATTATCT TAAAATTAAT TATAACTTAAAA 311400 CAACATTCA AAAAAAGATT TAGAAGTACT GCTAAAGATT GCCCAAGCAA TGAATAAGGA 311400 CAACATTCA AAAAAAGATT TAGAAGTACT GCTAAAGATT GCCCAAGCAA TGAATAAGGA 311400 AAGACATATCA AAAAAAAAAAAAAAAACC TCTTAACTCT AATAAATA						310800
TATTGTAGTT CCAATTAATA ATATATAAGC AAAAGATTGT CTTACTTGAA GAACTTCTT TTTTGCAATT GCTTGGGAAA CGTAAGCGCT TAAAGCCGTA CCAAGTCCAA ACACAATAAT 311040 AAAAAAAAGA AAAGTTACTC TATTTGCCAA AGAAACTCCC GTAACATGAA AAGAGCCCAA 311100 ATAGGAGATC ATAAAATTAT CAAAAAAAGT TACCATTTGA AATAAAAGGG ATTCAAAAGC 311160 TGTAGGAATA GCTATAACAA ATAGCTCTTT TATTATCTGG TCATAATTTT TAAACTTTTT 311220 GATCATATTC CTTATATACA GTCTCCTTTA TTTATTACTT TTAACTAAAT TTAATCCAAT 311480 CTAGAATATA CATATATTTA GAATTAACTA TTAATTATAC TAAAATATAT TATAACTAAA 3111400 CAACATTTCA AAAAAAAGATT TAGAAGTACT GCTAAAGATT GCCCAAGCAA TGAATAAGGA 311460 ATGCAAAAAAT TTTATTGAAA AAAATCCTAT TCAGTTCTTA AAAATAAAA AACCCTTAGT 311520 AGATGCAGAA AAAAAATAACC TCTTAACTCT AATAAAATAA						310860
TTTTGCANT GCTTGGGAAA CGTAAGCGCT CAAGCTCAA ACACAATAAT 311100 AAAAAAAAGA AAAAAAAAGA AAGAACCCCC GTAACATGAA AAGAGCCCAA 311100 ATAGGAGATC ATAAAATTAT CAAAAAAAGT TACCATTGA AATAAAAGCC ATTCAAAAGC 311160 TGTAGGAATA GCTATAACAA ATAGCTCTTT TATTATCTG TCATAATTTT TAAAATTATT TAAAATTAT 311280 CTAGAATATA CATATAACTA GTTTATTATC TTAACTTATAT TATAATTATA 311400 CTAGAATATA CATATAATTTA GAATTAACTA TTAATTATATA TATAAATTATA 311400 CAACATTCA AAAAAAAATTATTATG GCTAAAGATT AAAAAAAAAAAA 311400 CAACAATTCA AAAAAAAAAAAACC TCTTAACCTA AATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA						310920
AAAAAAAAAA AAAGTTACTC TATTTGCCAA AGAAACTCCC GTAACATGAA AAGAGCCCAA ATAGGAGATC ATAAAAATTAT CAAAAAAAGT TACCATTTGA AATAAAAGCG ATTCAAAAGC TGTAGGAATA GCTATAACAA ATAGCTCTTT TATTATCTGG TCATAATTTT TAAACTTTTT 311220 GATCATATCC CTTATATACA GTCTCCTTTA TTTATTACTT TTAACTAAAT TTAAACTAAT 311280 CTAGAATATC CATATATTTA GAATTAACTA TTAAATTACC TAAAATATAT TATAATTAAA 311340 CTAGAATATA CATATATTTA GAATTAACTA TTAAATTATC TAAAATATAT TATAATTAAA 311400 CAACATTTCA AAAAAAGATT TAGAAGTACT GCTAAAGATT GCCCAAGCAA TGAATAAGGA 311460 ATGCAAAAAT TTTATTGAAA AAAATCCTAT TCAGTTCTTA AAAGAAATAA AACCCTTAGT 311520 AGATGCAGAA AAAAATAACC TCTTAACTCT AATAAATAAA AAAATACCAA TTCCTGAAAA 311580 TTATAAAAATA CCTGATCTGG TAAATATTGA TGATTTGAA GATCTAAAAA ATCTTGGACC 311640 AAAAAAAATTT GAGATCAGAA AAATATTAAT CGAAGATTTA ATTCGACTAA TAAAAGATGC 311700 AAAAAAAATTT GAGATCAAAA TCAAAATCAA ATCTGCTTAC AGAACGCAAG AATATCAAAA 311760 ATTTTTATTT GATTACAATG TCAAAACTTA TGGCAGAAAA GTTGCAGAAA CCCAATCAGC 311820 AATTCCAGGC CATTCTCAAC ATCATATGGG AACAGCAATA GATTTTATAA ATAATAGATGA 311940 TTACGTTTCA AACACAAAAG AAGCAATAGAAC GGACCTGGA TATAAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAAAC ATATGGAAAA 312120 ATATGCAAAC TAAATACTTC TCCGGCATT CAAATAAGAA CAAAAAAGAT TGTCTAGATAA 312180 ATATGCAAAC TAAATACTTC TCCGGCATT CAAATAAGAA CAAAAAAAAT TTCATAAAAC GCCCTTCCCG 312240 AACCAAGACT ATGATTCCT AAGCAGAATT ACAAAAAAAAAA						310980
TGTAGGAGATC ATAAAATTAT CAAAAAAAGT TACCATTIGA AATAAAAGCG ATTCAAAAGC TGTAGGAATA GCTATAACAA ATAGCTCTTT TATTATCTGG TCATAATTTT TAAACTTTTT 311220 GATCATATTC CTTATATACA GTCTCCTTTA TTTATTACTT TTAACTAAAT TTAAACTAAT 311280 CTAGAATATA CATATATTTA GAATTAACTA TAAATTATC TAAAATATAT TATAATTAAA 311340 TAATATGAAA TCAATTTATG CTTTATTATT TCTATTTATT AATTTATCTT TGTTGGCTAA 311460 CAACATTTCA AAAAAAGATT TAGAAGTACT GCTAAAGATT GCCCAAGCAA TGAATAAGGA 311460 ATGCAAAAAT TTTATTGAAA AAAATCCTAT TCAGTTCTTA AAAGAAATAA AACCCTTAGT 311520 AGATGCAAAAAT TTTATTGAAA AAAATCCTAT TCAGTTCTTA AAAGAAATAA AACCCTTAGAAA 311580 TTATAAAAATA CCTGATCTGG TAAATATGA TGATTTGAA GATCTTAAAA ATCTTGGACC 311640 AAAAAAATTT GGGATTGAAA TTAAAATCAA ATCTGCTTAC AGAACGCAAG AATATCAAAA 311760 AAAAAAAATTT GGGATTGAAA TTAAAATCAA ATCTGCTTAC AGAACGCAAG AATATCAAAA 311760 AATTTTATTT GATTACAATG TCAAAACTTA TGGCAGAAAA GTTGCAGAAA CCCAATCAGC 311820 AATTCCAGGC CATTCTCAAC ATCATATGGG AACAGCAATA GATTTTAAAA ATATAGATGA 311940 TTCCGTTTCA TACCCAAAAG GATATGAAAC GGACACTGGA TATAAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAAC TAATATTACA 312100 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAAAT TTCTTAGATA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAAAAT TTCCTAGATAA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAAAAT TTCATAAAACA GCCCTTCCCG 312240 AACTAAAGACT ATGATTCCT AAGCAGAAAT ACAAAAAAAAAA						
TGTAGGAATA GCTATAACAA ATAGCTCTTT TATTATCTG TCATAATTT TAAACTTTT 311220 GATCATATTC CTTATATACA GTCTCCTTTA TTTATTACTT TTAACTAAAT TTAATCAAAT TTAAACTAATT 311240 CTAGAATATA CATATATTTA GAATTAACTA TTAATATACT TAAAATATAT TATAAATAAA 311400 CAACATTTCA AAAAAAGATT TCTTATTATT ACTATTATATT TGTATATATT AATTAATATAA 311400 CAACATTTCA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA						311100
CATCATATTC CTTATATACA GTCTCCTTTA TTTATTACTT TTAACTAAAT TTAATCCAAT 311280 CTAGAATATA CATATATTA GAATTAACTA TTAATTATAC TAAAATATAT TATAATTAAA 311340 TAATATGAAA TCAATTTATG CTTTATTATT TCTATTTATT TAATTTATCTT TGTTGGCTAA 311400 CAACATTTCA AAAAAAGATT TAGAAGTACT GCTAAAGATT GCCCAAGCAA TGAATAAGGA 311460 ATGCAAAAAT TTTATTGAAA AAAATCCTAT TCAGTTCTTA AAAGAAATAA AACCCTTAGT 311520 AGATGCAGAA AAAAAATAACC TCTTAACTCT AATAAATAAA AAAATCCAA TTCCTGAAAA 311580 TTATAAAAATA CCTGATCTGG TAAATATTGA TGATTTTGAA GATCTTAAAA ATCTGGAGC 311640 AAAGACTATT AAAGTAAGAA AAATATTGA TGATTTTGAA GATCTTAAAA ATCTGGAGC 311700 AAAAAAAATTT GGGATTGAAA TTAAAATCAA ATCTGCTTAC AGAACGCAAG AATATCAAAA 311760 ATTTTTATTT GATTACAATG TCAAAACTTA TGGCAGAAAA GTTGCAGAAA CCCAATCAGC 311820 AATTCCAGGC CATTCTCAAC ATCATATGGG AACAGCAATA GATTTTATAA ATATAGATGA 311880 TTACTTTATA AACACAAAAG AAGGAAAATG GCTTTATGAA AACTCTCTAA AATACGGATT 311940 TTCCGTTTCA TACCCAAAAG GATATGAAAC GGACACTGGA TATAAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTC TTCCGGCATT CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTC TTCCGGCATT CAAAAAAAAAA						311160
CTAGAATATA CATATATTTA GAATTAACTA TTAATTATAC TAAAATATAT TATAATTAAA 311340 TAATATGAAA TCAATTTATG CTTTATTATT TCTATTTATT AATTTACTT TGTTGGCTAA 311400 CAACATTCA AAAAAAGATT TAGAAGTACT GCCAAAGATT GCCCAAGCAA TGAATAAGGA 311460 ATGCAAAAAT TTTATTGAAA AAAATCCTAT TCAGTTCTTA AAAGAAATAA AACCCTTAGT 311520 AGATGCAGAA AAAAATAACC TCTTAACTCT AATAAATAAA AAAATACCAA TTCCTGAAAA 311580 TTATAAAAATA CCTGATCTGG TAAATATTGA TGATTTGAA GATCTTAAAA ATCTTGGAGC 311640 AAAGACTATT AAAGTAAGAA AAATATTAAT CGAAGATTTA ATTCGACTAA TAAAAGATGC 311700 AAAAAAATTT GGGATTGAAA TTAAAATCAA ATCTGCTTAC AGAACGCAAG AATATCAAAA 311820 AATTCCAGGC CATTCTCAAC ATCATATGGG AACAGCAATA GATTTTATAA ATATAGATGA 311880 TAATTTACTA AACACAAAAG AAGGAAAAT GCTTTATGAA AACTCTCTAA AATACGGATT 311940 TTCCGTTTCA TACCCAAAAG GATATGAAAC GGACACTGGA TATAAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAAATTACAA 312120 ATATGCAAAC TAAATACTC TTCCGGCATT CAAATAAGAA CAAAAAAGAT TGTCTAGTAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAAT AAAACAAAAT CTTATTAACC TAAATTGAAAA 312120 ATCAATATCA AGCTTATCGT AAGCAGAAT AAAACAAAAT CTTATTAACC TAAATTGAAAA 312120 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAAATCAA GCTCTTCCG 312240 AACTAAAGACT ATGATTTCC TATCATCAAC AAAATTAGCT ATTTTTAATT TCAAAATATCC 312360 TGCTTGTTCA AGTCCAAAAT AATTACCAG CCCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360	TGTAGGAATA GCTATAACA	A ATAGCTCTT	r tattatctgg	ТСАТААТТТ	TAAACTTTTT	311220
TAATATGAAA TCAATTTATG CTTTATTATT TCTATTTATT AATTTATCTT TGTTGGCTAA 311400 CAACATTCA AAAAAAGATT TAGAAGTACT GCTAAAGATT GCCCAAGCAA TGAATAAGGA 311460 ATGCAAAAAT TTTATTGAAA AAAATCCTAT TCAGTTCTTA AAAGAAATAA AACCCTTAGT 311520 AGATGCAGAA AAAAATAACC TCTTAACTCT AATAAATAAA AAAATACCAA TTCCTGAAAA 311580 TTATAAAAATA CCTGATCTGG TAAATATTGA TGATTTTGAA GATCTTAAAA ATCTTGGACC 311640 AAAGACTATT AAAGTAAGAA AAATATTAAT CGAAGATTTA ATTCGACTAA TAAAAGATGC 311700 AAAAAAAATTT GGGATTGAAA TTAAAATCAA ATCTGCTTAC AGAACGCAAG AATATCAAAA 311760 ATTTTTATTT GATTACAATG TCAAAACTTA TGGCAGAAAA GTTGCAGAAA CCCAATCAGC 311880 TAATTTACTA AACACAAAAG AAGGAAAAT GCTTTATGAA AACTCTAAA AATACGGATT 311940 TTCCGTTTCA TACCCAAAAG GATATGAAAC GGACACTGGA TATAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAGAAT TGTCTAGTAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCTCG 312240 AACTAAAGACT ATGATTCCT TATCATCAAC AAAATTAAGCT ATTTTTAATTT TCAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAAATCTT CTTCTGCTAT 312360 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAAATCTT CTTCTGCTAT 312360	GATCATATTC CTTATATAC	A GTCTCCTTT	A TTTATTACTT	ТТААСТАААТ	TTAATCCAAT	311280
CAACATTICA AAAAAAGATI TAGAAGTACT GCTAAAGATI GCCCAAGCAA TGAATAAGGA 311460 ATGCAAAAAAT TITATTGAAA AAAATCCTAT TCAGTTCTTA AAAGAAATAA AACCCTTAGT 311520 AGATGCAGAA AAAAATAACC TCTTAACTCT AATAAATAAA AAAATACCAA TTCCTGAAAA 311580 TTATAAAATA CCTGATCTGG TAAATATTGA TGATTTTGAA GATCTTAAAA ATCTTGGAGC 311640 AAAGACTATT AAAGTAAGAA AAATATAAT CGAAGATTTA ATTCGACTAA TAAAAGATGC 311700 AAAAAAATTT GGGATTGAAA TTAAAAATCAA ATCTGCTTAC AGAACGCAAG AATATCAAAA 311760 ATTTTTATTT GATTACAATG TCAAAACTTA TGGCAGAAAA GTTGCAGAAA CCCAATCAGC 311820 AATTCCAGGC CATTCTCAAC ATCATATGGG AACAGCAATA GATTTTATAA ATATAGATGA 311880 TAATTTACTA AACACAAAAG AAGGAAAATG GCTTTATGAA AACTCTCTAA AATACGGATT 311940 TTCCGTTTCA TACCCAAAAG GATATGAAAC GGACACTGGA TATAAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAGAT TGTCTAGTAAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCCG 312240 AACTAAAGACT ATGATTCCT TATCATCAAC AAAATTAGCT ATTTTAATT TCAAATTACC 312300 TGCTTGTTCA AGCCAAATA AATTACCAGG CCCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360	СТАGААТАТА САТАТАТТ	A GAATTAACTA	A TTAATTATAC	ТААААТАТАТ	AAATTAATAT	311340
ATGCAAAAAT TTTATTGAAA AAAATCCTAT TCAGTTCTTA AAAGAAATAA AACCCTTAGT 311520 AGATGCAGAA AAAAATAACC TCTTAACTCT AATAAATAAA AAAATACCAA TTCCTGAAAA 311580 TTATAAAATA CCTGATCTGG TAAATATTGA TGATTTTGAA GATCTTAAAA ATCTTGGAGC 311640 AAAGACTATT AAAGTAAGAA AAAATATAAT CGAAGATTTA ATTCGACTAA TAAAAGATGC 311700 AAAAAAAATTT GGGATTGAAA TTAAAATCAA ATCTGCTTAC AGAACGCAAG AATATCAAAA 311760 ATTTTATTT GATTACAATG TCAAAACTTA TGGCAGAAAA GTTGCAGAAA CCCAATCAGC 311820 AATTCCAGGC CATTCTCAAC ATCATATGGG AACAGCAATA GATTTTATAA ATATAGATGA 311940 TTCCGTTTCA TACCCAAAAG GATATGAAAC GGCACTGGA TATAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312160 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTC TCCGGCATT CAAATAAGAA CAAAAAAGAT TGTCTAGTAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCTCG 312240 AACTAAGACT ATGATTCCT TATCACACA AAAATAAGCT ATTTTTAATT TCAAATATCC 312300 TGCTTGTTCA AGCCCAAATA AATTACCAGG CCCCCTTAGC CTTAAAATCTT CTTCTGCTAT 312360	ТААТАТСААА ТСААТТТАТ	G CTTTATTAT	TCTATTTATT	AATTTATCTT	TGTTGGCTAA	311400
AGATECAGAA AAAAATAACC TCTTAACTCT AATAAATAAA AAAATACCAA TTCCTGAAAA 311580 TTATAAAAATA CCTGATCTGG TAAATATTGA TGATTTTGAA GATCTTAAAA ATCTTGGAGC 311640 AAAGACTATT AAAGTAAGAA AAATATTAAT CGAAGATTTA ATTCGACTAA TAAAAGATGC 311700 AAAAAAAATTT GGGATTGAAA TTAAAATCAA ATCTGCTTAC AGAACGCAAG AATATCAAAA 311760 ATTTTTATTT GATTACAATG TCAAAACTTA TGGCAGAAAA GTTGCAGAAA CCCAATCAGC 311820 AATTCCAGGC CATTCTCAAC ATCATATGGG AACAGCAATA GATTTTATAA ATATAGATGA 311880 TAATTTACTA AACACAAAAG AAGGAAAATG GCTTTATGAA AACTCTCTAA AATACGGATT 311940 TTCCGTTTCA TACCCAAAAG GATATGAAAC GGACACTGGA TATAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312160 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCTCG 312240 AACTAAGACT ATGATTTCTC TATCATCAAC AAAATTAGCT ATTTTTAATT TCAAATATCC 312300 TGCTTGTTCA AGCCCAAATA AATTACCAGG CCCCCTTAGC CTTAAAATCT CTTCTGCTAT 312360 TGCTTGTTCA AGCCCAAATA AATTACCAGG CCCCCTTAGC CTTAAAATCT CTTCTGCTAT 312360	СААСАТТТСА ААААААСАТ	T TAGAAGTACT	GCTAAAGATT	GCCCAAGCAA	TGAATAAGGA	311460
TTATAAAATA CCTGATCTGG TAAATATTGA TGATTTTGAA GATCTTAAAA ATCTTGGAGC 311640 AAAGACTATT AAAGTAAGAA AAATATTAAT CGAAGATTTA ATTCGACTAA TAAAAGATGC 311700 AAAAAAATTT GGGATTGAAA TTAAAATCAA ATCTGCTTAC AGAACGCAAG AATATCAAAA 311760 ATTTTATTT GATTACAATG TCAAAACTTA TGGCAGAAAA GTTGCAGAAA CCCAATCAGC 311820 AATTCCAGGC CATTCTCAAC ATCATATGGG AACAGCAATA GATTTTATAA ATATAGATGA 311940 TAATTTACTA AACACAAAAG AAGGAAAATG GCTTTATGAA AACTCTCTAA AATACGGATT 311940 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312000 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCTCG 312240 AACTAAGACT ATGATTTCTC TATCATCAAC AAAATTAGCT ATTTTTAATT TCAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360 TGCTTGTTCA AGTCCAAATT CTTTTATAGT TTTTAATCGA AATTTGCCAG CACTTGTCAA 312420	ATGCAAAAAT TTTATTGAA	А ААААТССТАТ	TCAGTTCTTA	AAAGAAATAA	AACCCTTAGT	311520
AAAGACTATT AAAGTAAGAA AAATATTAAT CGAAGATTTA ATTCGACTAA TAAAAGATGC 311700 AAAAAAAATTT GGGATTGAAA TTAAAATCAA ATCTGCTTAC AGAACGCAAG AATATCAAAA 311760 ATTTTATTT GATTACAATG TCAAAACTTA TGGCAGAAAA GTTGCAGAAA CCCAATCAGC 311820 AATTCCAGGC CATTCTCAAC ATCATATGGG AACAGCAATA GATTTTATAA ATATAGATGA 311880 TAATTTACTA AACACAAAAG AAGGAAAATG GCTTTATGAA AACTCTCTAA AATACGGATT 311940 TTCCGTTTCA TACCCAAAAG GATATGAAAC GGACACTGGA TATAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAAGAT TGTCTAGTAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCTCG 312240 AACTAAGACT ATGATTTCTC TATCATCAAC AAAATTAGCT ATTTTTAATT TCAAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAAATCTT CTTCTGCTAT 312360	AGATGCAGAA AAAAATAAC	C TCTTAACTCT	ААТАААТАА	AAAATACCAA	TTCCTGAAAA	311580
AAAAAAATTT GGGATTGAAA TTAAAATCAA ATCTGCTTAC AGAACGCAAG AATATCAAAA 311760 ATTTTATTT GATTACAATG TCAAAACTTA TGGCAGAAAA GTTGCAGAAA CCCAATCAGC 311820 AAATTCCAGGC CATTCTCAAC ATCATATGGG AACAGCAATA GATTTTATAA ATATAGATGA 311880 TAATTTACTA AACACAAAAG AAGGAAAATG GCTTTATGAA AACTCTCTAA AATACGGATT 311940 TTCCGTTTCA TACCCAAAAG GATATGAAAC GGACACTGGA TATAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAAGAT TGTCTAGTAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCTCG 312240 AACTAAGACT ATGATTTCTC TATCATCAAC AAAATTAGCT ATTTTAATT TCAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360	TTATAAAATA CCTGATCTG	G TAAATATTGA	TGATTTTGAA	GATCTTAAAA	ATCTTGGAGC	311640
ATTTTATTT GATTACAATG TCAAAACTTA TGGCAGAAAA GTTGCAGAAA CCCAATCAGC 311820 AATTCCAGGC CATTCTCAAC ATCATATGGG AACAGCAATA GATTTTATAA ATATAGATGA 311880 TAATTTACTA AACACAAAAG AAGGAAAATG GCTTTATGAA AACTCTCTAA AATACGGATT 311940 TTCCGTTTCA TACCCAAAAG GATATGAAAC GGACACTGGA TATAAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAGAT TGTCTAGTAA 312240 AACTAAGACT ATGATTTCC TATCATCAAC AAAATTAGCT ATTTTTAATT TCAAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAAATCTT CTTCTGCTAT 312360 TTTTAAAATCCA TCCAAATTT CTTTTATAGT TTTTAATCGA AATTTGCCAG CACTTGTCAA 312420	AAAGACTATT AAAGTAAGA	ТААТТАТТААА А	CGAAGATTTA	ATTCGACTAA	TAAAAGATGC	311700
AATTCCAGGC CATTCTCAAC ATCATATGGG AACAGCAATA GATTTTATAA ATATAGATGA 311880 TAATTTACTA AACACAAAAG AAGGAAAATG GCTTTATGAA AACTCCTCTAA AATACGGATT 311940 TTCCGTTTCA TACCCAAAAG GATATGAAAC GGACACTGGA TATAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAGAT TGTCTAGTAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCTCG 312240 AACTAAGACT ATGATTTCTC TATCATCAAC AAAATTAGCT ATTTTTAATT TCAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360 TTTTAAATCCA TCCAAATTTT CTTTTATAGT TTTTAATCGA AATTTGCCAG CACTTGTCAA 312420	AAAAAATTT GGGATTGAA	А ТТААААТСАА	ATCTGCTTAC	AGAACGCAAG	AATATCAAAA	311760
TAATTTACTA AACACAAAG AAGGAAAAT GCTTTATGAA AACTCTCTAA AATACGGATT 311940 TTCCGTTTCA TACCCAAAAG GATATGAAAC GGACACTGGA TATAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAGAT TGTCTAGTAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCTG 312240 AACTAAGACT ATGATTTCTC TATCATCAAC AAAATTAGCT ATTTTAAATT TCAAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360 TTTTAAATCCA TCCAAATTTT CTTTTATAGT TTTTAATTGCCAG CACTTGTCAA 312420	ATTTTTATTT GATTACAATO	G ТСААААСТТА	TGGCAGAAAA	GTTGCAGAAA	CCCAATCAGC	311820
TTCCGTTTCA TACCCAAAAG GATATGAAAC GGACACTGGA TATAAAGCAG AGCCTTGGCA 312000 CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAGAT TGTCTAGTAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCTCG 312240 AACTAAGACT ATGATTTCTC TATCATCAAC AAAATTAGCT ATTTTAATT TCAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360 TTTAAAATCCA TCCAAATTTT CTTTTATAGT TTTTAATCGA AATTTGCCAG CACTTGTCAA 312420	AATTCCAGGC CATTCTCAAG	ATCATATGGG	AACAGCAATA	GATTTTATAA	ATATAGATGA	311880
CTACTTATAC ATAGGACCTA AGCCATGCTT TATTCAGAAA AAATATTTTA ATAATTTACA 312060 ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAGAT TGTCTAGTAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCTCG 312240 AACTAAGACT ATGATTCTC TATCATCAAC AAAATTAGCT ATTTTAATT TCAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360 TTTAAATCCA TCCAAATTT CTTTTATAGT TTTTAATCGA AATTTGCCAG CACTTGTCAA 312420	TAATTTACTA AACACAAAA	AAGGAAAATG	GCTTTATGAA	AACTCTCTAA	AATACGGATT	311940
ACATAAGCTT CTTGAATTTT GGAACCAGAA CAAAACAAAT CTTATTAACC TAATTGAAAA 312120 ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAGAAT TGTCTAGTAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAAATCAA GCTCTTCTCG 312240 AACTAAGACT ATGATTCTC TATCATCAAC AAAATTAGCT ATTTTAATT TCAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360 TTTAAAATCCA TCCAAATTTT CTTTTATAGT TTTTAATCGA AATTTGCCAG CACTTGTCAA 312420	TTCCGTTTCA TACCCAAAAC	GATATGAAAC	GGACACTGGA	TATAAAGCAG	AGCCTTGGCA	312000
ATATGCAAAC TAAATACTTC TTCCGGCATT CAAATAAGAA CAAAAAAGAT TGTCTAGTAA 312180 ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCTCG 312240 AACTAAGACT ATGATTCTC TATCATCAAC AAAATTAGCT ATTTTTAATT TCAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360 TTTAAAATCCA TCCAAATTT CTTTTATAGT TTTTAATCGA AATTTGCCAG CACTTGTCAA 312420	CTACTTATAC ATAGGACCTA	AGCCATGCTT	TATTCAGAAA	AAATATTTTA	ATAATTTACA	312060
ATCAATATCA AGCTTATCGT AAGCAGAATT ATCATAAAAA AATAAATCAA GCTCTTCTCG 312240 AACTAAGACT ATGATTTCTC TATCATCAAC AAAATTAGCT ATTTTTAATT TCAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360 TTTAAAATCCA TCCAAATTT CTTTTATAGT TTTTAATCGA AATTTGCCAG CACTTGTCAA 312420	ACATAAGCTT CTTGAATTTT	GGAACCAGAA	СААААСАААТ	CTTATTAACC	TAATTGAAAA	312120
AACTAAGACT ATGATTCTC TATCATCAAC AAAATTAGCT ATTTTTAATT TCAAATATCC 312300 TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360 TTTAAAATCCA TCCAAATTTT CTTTTATAGT TTTTAATCGA AATTTGCCAG CACTTGTCAA 312420	ATATGCAAAC TAAATACTTC	TTCCGGCATT	CAAATAAGAA	CAAAAAAGAT	TGTCTAGTAA	312180
TGCTTGTTCA AGTCCAAATA AATTACCAGG CCCCCTTAGC CTTAAATCTT CTTCTGCTAT 312360 TTTAAAATCCA TCCAAATTTT CTTTTATAGT TTTTAATCGA AATTTGCCAG CACTTGTCAA 312420	ATCAATATCA AGCTTATCGT	' AAGCAGAATT	ATCATAAAAA	ААТАААТСАА	GCTCTTCTCG	312240
TTTAAATCCA TCCAAATTTT CTTTTATAGT TTTTAATCGA AATTTGCCAG CACTTGTCAA 312420	AACTAAGACT ATGATTTCTC	TATCATCAAC	AAAATTAGCT	АТТТТТААТТ	TCAAATATCC	312300
	TGCTTGTTCA AGTCCAAATA	AATTACCAGG	CCCCCTTAGC	СТТАААТСТТ	CTTCTGCTAT	312360
AGGCTCTTTA TATAGCAAAA AGAAAAAAGA TTGTAAATTG CTTCTACCAA CACGACCTCT 312480	TTTAAATCCA TCCAAATTTT	CTTTTATAGT	TTTTAATCGA	AATTTGCCAG	CACTTGTCAA	312420
	AGGCTCTTTA TATAGCAAAA	AGAAAAAGA	TTGTAAATTG	СТТСТАССАА	CACGACCTCT	312480

AATTTGATGC AAAGTAGAAA	GTCCAAAACG	CTCAGCATGC	TCTACTACCA	TACAAGTTGC	312540
ATTTGGACAA TCAATTCCAA	CCTCAATAAC	ACTAGTCGCC	ACCAAAATAT	CTACTTTTTT	312600
СGAATAAAAA TTTTTCATAA	TTTCTTCTTT	CAAATCAGAT	GGCAACTTAG	AATGAAGCAT	312660
GTCCACAACA TATTCGCCAA	AAACTTCTTT	TAATTTCAAA	САСАТАТТАТ	TAACATCTTT	312720
TAATTCAAAT TTTTCTGAAG	ATGAAATTAA	TGGATAAACA	АААТАААССТ	GATGACCCTT	312780
TAAGAGCTCT TTTCTTAAAA	ACTCATAAAC	TTTATCTTCA	TTTCCATGCC	TTGCTAAATA	312840
AGTAGTAATA GGCAAACGAC	CCTTAGGCAA	GGTTTTAATA	AACGAAACTT	CAAGATCACC	312900
AAAAAGTGTT AATGCAAAAC	TTCTAGGAAT	AGGTGTTGCA	GACATTAAAA	GCATATCCAC	312960
СССТТСТССТ ТТСТТТТАА	GCTCTTCTCT	TTGAACAACT	CCAAATTTGT	GCTGTTCGTC	313020
AATGATAACA TACGCCAATC	TTTTAAATTC	TGTACTTTCG	TAAAAAATAG	CATGTGTTCC	313080
AACTATTAAA CCAGAAGTAC	CATTTCTAAT	GCTTTCTAGA	GCTTGTTCCT	TATCCTTCTT	313140
TCTTAAACTA CCAGTCAAAA	GAGTCATTGA	AATGTTAAAA	GGTGCTAATA	TGTTAGATAA	313200
ATTATCATAA TGTTGACGAG	CCAAAAGATC	TGTAGGGGCC	ATAAATGCTA	CCTGATATCC	313260
AGCTTCAATT AAAGGAAGTC	CTGAAAGCAA	GGCAACAAGG	GTTTTACCAC	TTCCAACATC	313320
ACCTTGAAGC AATCTATTCA	TTGGCTTAGA	AGAGTTAAGA	TCAAAGAATA	TCTCATCAAT	313380
AGAAATTTTT TGATCTTCTG	TAAGCTCAAA	GGGCAAGCTC	GAGACAACCT	TTTCAAGCAA	313440
ATCTTTTGAT AAATCTTTTT	TTTCTCGAAA	AAGAATCTTA	GAAGATCTAT	ACCTGAAAAA	313500
AACTGAAGCA AAAAAATTTC	TCTGTAAATT	AATGTCTTTT	TTGCCTTTTC	AAGCATTTCT	313560
AATGAACTTG GAAAGTGAAT	CTCTTTTAAA	GCATCACTTA	ACGATAATAA	AGAATACTTT	313620
TCTATTAAAA ATCTAGGAAT	GTCTGTTTGC	CCAAACTTAA	AAAAATATTC	AAGAGCTTCT	313680
ТТТАСАТАТА АТБАААТТТТ	CTTGGACGTT	AATCCCTCTG	TCAAAGAATA	AACCGGAAGA	313740
ATTTTTTAA ACCTTTCAGG	CTTGTCGCTG	TAAACTTCGC	TGTCAAAATT	AGAACAACTC	313800
CATAAACCAC TATAATCGTT	ATAGGTAAAT	TTAGAATAAA	ТАТААААТТТ	TTTATCTATT	313860
ттааааасат тстстааааа	AGCCCTATTG	AAAAGCAGAA	TTTCGAAAGG	TTCCTCATTT	313920
ATACTTTTAA CTGTTAACTT	TAAATTTTTT	TTAGAACTAT	CCCCAAATTT	TTTATGCCCA	313980
AGAACTGTGA ACACCGTCAT	CATATCACAA	CTTTTTACCT	TAGAAAAATC	TGGAAAAGTT	314040
TGTATATTTT GACGATCTTC	ATATTTTACA	GGAAAAAACT	CAATAAGATC	TTTAACATTA	314100
AAAATTTGCA GATTATTTAA	CCTTTCAACC	CCTTTCTCAC	CAAGACCACC	TATACCTTTA	314160
AGCTCATATT CAAACTCATG	TAAAAACATT	TTAATCTCCT	AAAAAGGCAA	ATATGTTCCT	314220

			22=			
AAAGCTCTAA	TAGCAAATAC	AACTTGTTCA	335 ATAATAATTA	TAAATGCTAC	CATTAAAGCA	314280
CTCCCAACAA	TCAAACGTAA	AGTATAAGAC	ATGTGTTTGT	CAGTAATCAC	ACCACTTATC	314340
TTAGTGGACA	AAGGAAGTAA	AAATGAATCG	ACTGTTTTAA	AAAAGTCTGA	GCCTTGGAAC	314400
AAATTCAAAA	GCAATAATAA	TAATCTCAAC	AATAAAAAGA	AAACTATAGC	AATAAAAATG	314460
СТТСТАААТА	TCTCCCAAAC	TTCAACAATG	ААТААААТАА	TAAATGTAGA	AAGCTTATAA	314520
TTCCCATAAG	CCAACATTCT	ТТСАААААТА	GTTAAAGTTA	TTAAAGCTGC	AATTGGAGAA	314580
AAATCAAACA	TACCAAATGT	AAAAAGAGGA	ATTTTTCTAA	AAAAAGATAA	AAATGGTTCT	314640
GTGACAACAT	GTATAAATCT	GAAAAATACA	TTGGTATTAA	TCCCTGAAGA	CACAAGCCAG	314700
CTAAGAAGAA	ТССТААТТАА	AATTAAAATC	CTATAAATCT	GCAAAAATAC	САТТААААТТ	314760
TGTATTAAAA	CAACCAAAAC	AGCACCTCCT	AATCAACCCA	AACATCTTCA	ACTATCACAC	314820
ACTTTCTCAA	CTTATCAAGC	TTATCTTCAT	CTGGCACAAA	ATTTAAAATT	GAATTCATTT	314880
TTAATTTCAA	ATCTTTACCA	TTTTCCCTTA	ААТАААААТА	AACATTTGAA	AATCCAGAAT	314940
TGTCCTCAAA	ATTACTTATA	СТТТССТТТА	AAGAATTAAG	TAATTGTAGG	TCATTTAATT	315000
ТАТТАТТТАА	AAACTTAATA	TGAATATTAT	ТТАТТТТАТА	TTCGGAAAGT	CTCTCAATAT	315060
TTACAACTTT	TTCAACCACA	ATTGAAAATT	TATCTCTGTT	AAACGTAAGC	CTACCTACAA	315120
CCCCAATAAC	ATTGCCTTCA	AGTAAAAAAT	TTCTATATCT	TTCATAGCTT	TCTGTAAAAA	315180
CTACAATATC	TATTGCGCCT	TTAAAATCTT	CTATAACGCC	GAAAGCCATT	TTTGCATTAT	315240
TTCTTTTAGT	TTGAATAACT	TTTACTGAAT	TTAAAATTCC	AGAAAATTGA	ACAATGCTAT	315300
CTTTTTTGGC	AGCAAGATCT	GTTAAAACAT	TTAAACTGGA	AAAACTGTCA	ATTGCCTTTT	315360
TATAAGGATC	AAGAGGATGA	CCCGACACAT	AAAATCCTAA	AAGCTCTTTT	тсааатсста	315420
AAAGCTCAGA	ATAAGAATAC	TCTTTAAAAG	TTTGATAATT	AAAACTTTGC	TGAATTGGAT	315480
CTTGACTTTC	AAGAGCACCA	AATAAGCTGT	TTTGACCAAG	TTTTTTATTA	TTTTTATCTT	315540
CTGAAACAAC	TTCAATCAAA	TGATCAAGAT	ТТТСАААТАА	AGTTTTTCTA	TTTTGATCCA	315600
AACTATCAAA	AAGTCCAGAT	TTTATTGCAG	АТТСТААААА	TTTCTTATTA	ATTACTTTAT	315660
CATCTACACG	TCTTATAAAA	TCTTCAAAAG	AACTATATTT	GCCGTTTTTT	TCTCTCTCAT	315720
СААТТАТТАА	ATCAACAACA	ATTCCTCCAA	GATTTTTAAT	CCCATTAAGC	CCATAAGAAA	315780
TCCCAGAATC	AGTTACACGA	AATTCCCTAA	ATGATCGATT	TATATCGGGC	TTGAGAACGT	315840
TTATGCCTAT	AGCTTTTGAC	TCTTCGATGT	AATAAGAAAG	CTTATCATTA	TTATTAATTT	315900
CATTGGTCAA	ATTGGCAGCC	АТААААТАТТ	CAGGATAATT	AGCCTTAAGA	TAAGCGGTTT	315960
GATATGCTAT	TAAAGAATAC	GCCGCTGCAT	GCGATTTGTT	AAATCCATAC	CCAGAAAAGG	316020

GCTTTAAAAG TTCAAAA	ATT TCACTAGCAA TTTCTTTGTC ATATCCTTTC TCAATAGCGC	316080
CTCTTAAGAA GTCGACTT	TTC ATTTCATTCA TCTCGTCTTC TTTCTTTTTA CCCATAGCAC	316140
GTCTTAAAAT ATCGGCCT	TTG CCAAGAGAAA AGCCTCCAAT TATTTTTGCA ACTTCCATTA	316200
CTTGTTCTTG ATAAACAA	ATA ACCCCATAAG TTGGTCTTAA AACTTCCTTT AAATCGGGAT	316260
GAGGATATTT AATTCTCT	TTA ACACCTTTTT TAGCAGCAAT AAATTGAGGA ATAAATTGCA	316320
TAGGACCTGG CCTATAAA	AGA GCATTTAAAG CTATTAAATC TTCAATGCTA TCGGGCTTTG	316380
CGTCTTTTAG AATTTGCT	IGC ATTCCTTCAG ATTCAAACTG AAAAACAGAC GCACTTCTTC	316440
CTTCTCCTAG CATATTAA	AAA GTCTTAACAT CATTATCTGG AATATTTTTT ATTTTAAAAT	316500
CTGGATTTAC ACTTCTAA	ATA AGATTTTCTG CATTTTTTAT TAACGTCAAT GTTTTCAAAC	316560
CAAGAAAATC CATCTTAA	ACA AGCCCACATT CTTCAAGCAA ATCCATTGTG TATTGAGTAG	316620
AAACAGAACC TTGCTTAT	TAA TCCTTATAAA GAGGCACATA GTCGGTTAAA GGGGTTTTAG	316680
AAATCACAAT TCCTGCAG	GCA TGAGTTGAAG CATGTCTATT CATTCCCTCA AGAACCAATG	316740
CGGCATTCAT TAATTCTT	TA TAAACAGGCT TGCTAGTAAA ACACTCTTTC AAAGAATTGT	316800
CATCTAAAAC CTCTTTTA	AAA GAAACTTTAG GACCATCAGG AATAAACTTA GTAAGTTCAT	316860
TTGATTCAGC AAATGGAA'	TA TCTAAAACCC TAGCCACATC CTTAACTACA GCCTTAGGCT	316920
TTAAGGTTCC AAAAGTAA	TT ATTTGAGCTA CCTTATCTTC TCCATATTTG TTGGTAACAT	316980
ATTTTATAAT CTCATCTC	TG CCTTCAAAAC AAAAATCAAT ATCAAAATCA GGCATAGAAA	317040
TACGCTCAGG ATTTAAAA	AT CTCTCAAAAA GCAAATTATA CTTTAAAGGA TCAATATCAG	317100
TAATCCTAAG AGCATAAGC	CC ACAATTGAAC CAGCACCAGA ACCACGCCCA GCTCCAACAG	317160
GAATATCGTT ATCATGAGO	CA AATTTAATAA AATCCCAAAC AATCAAAAAA TAGCCTTCAA	317220
AGCCCATTCC AATTATTAC	CG CTCAATTCAT AAAAAGCTCT ATCTTTTATT TTGCTTGTCA	317280
AATTTTTATA TCTAAATTT	TC AACCCCTCAA GTGTGAGATG TTCCAAATAT TCACCAAGAG	317340
TATTAAATTC AACAGGAAT	TT TGATAATCAG GCAAAATAGG ACCTGGAAAA GTTATTTTAA	317400
AGTCATCACA CTTTTCTGC	CA ATCCTTACAG TATTTTCTAA AGCTTCGGGC AAATCATTAA	317460
AAAGTTCACA CATTTCCTC	OT TGAGATTTAA TATAAAATTC ATTGGTTTCC ATTTTTAATC	317520
TATTCTCATC GCTTTTCTT	TA GCACCAGTAC CAATACAAAC AATGATGTCT TGAGCAGTTG	317580
CATCTTCTCT GTTAACATA	AA TGAGAATCAT TAGCTGCTGT TAAAGGAACT CCAAGTTCTC	317640
TAGAATACTT AACCAGCCT	TT TCATTTACAA TGTCTTGATC TTTAATACCA TGCCTTTGAA	317700
GCTCAAGATA AAAATCATT	TG CCAAAAACTT TTTTAAACCA AAGAATTTCA TTCTTGGCAT	317760

JS98/12764

337	
CTTCAAATCT ATTGGCCAAA ATAAGTCTTG GAATGAGCCC CCCAATGCAA GCTGAAGTAC	
AAATCAAACC TTCTGAATAT TTTTCAAGGT CATCTTTATC TATCCTTGGA CGATAATAAA	
ACCCTTCAAG ATAAGAAATA CTTGTTAACT TTAATAGGTT TTTATAACCC AACTCATTCT	_
TGGCAAGCAA AATTAAATGG TAAGACATTT TTCCAAGATC ATCCTGTTTT TTTAAAAACT	
TAGAAGTTTT TGCCATATAG GCTTCAATGC CAATTATTGG CTTAATTCCT GCTTTTTTAG	
CTTCTTTGTA AAATTTAATA GCTCCAAAAA GATTGCCATG ATCTGTTAAT GCAATATGCG	318120
ACATATTGCA TTTTTTTGCT TTTGATATAA TATCTGATAT TTTTGCAGCT CCATCCAAAA	318180
GAGAATAATC TGAATGAACA TGAAGATGAA TAAACCTAGA CCTAAAACTC ATACCTAAAA	318240
ТТАТТТТАТС ААААТААААС ТТGАТТТТТА ACAAACCTTA ATCAAATAAA ТАААААТТАА	318300
AAAAGTCATA ATAATTTTTA AATCTCTAAT TTAAATTATT GCAACAAATC TTATCAAAAT	318360
AATCAAGAAA AAATACTAAT TCCTTGATTA TCCAATTCAA TTACCATCTT TTTAATGTGC	318420
TCAAGTTTTC TAACAATTTC TTCAGATAAA CTCTCAGCTT GAGACAAAAA ATCTTTGGCT	318480
TGCCTTAAAC CGCTATCACT ACGATTCTCT ACCCTAAATA TAATCAAAAT TTCAGCTGCA	318540
AACTTATTAA TATTTAAATA AGGAATGTAT ACTTCTTCCC ACAACTGCCT GATAGCATCA	318600
TTCTTGGGAG ACAATCCTTT ATAAAACAAT CCAAACCCAT GCTTGGAAGC ATCTGTCTGA	318660
ATGAATATTG TCCTTTGCCC CTCAACAAGT AGTCTCAAAT TATTAATCCA AGAAAATTGG	318720
TCTGAGATAA TAAATTCTAG CTCTTTTAAA AATTCATCAT TAGACAGCAT AAAAGTATCA	318780
GAGCCAATCA AAGAATCACA GTTTCTTGAA TAATAAGCCA TATTAGCATC TATACTCTCA	318840
AGACTTTCAA TCAAAGAAGA AAATTCCTCT TGACTTCTTG AAAAGCGCTT AAATATGCTC	318900
TCAAGATAAT TAAGCTGTTC AAGAATCTCG GCAAAGAACT TATCAATATC AATCTGCAAA	318960
TCCTTAAGGT TATGAGAAAT CAAATCTTTA GAAACCTCCT CAATTTCCTT TACAGAAATC	319020
ATATTCATAA CACCTTTTGC CTGATCAGAA AGTCGCTTGA TCTCATCTGC AACAACAGAA	319080
AATCCTTTAC CATATTCTTT AGCTCTTGCA GCCTCAAGCT TTGCATTAAG AGAAATCATA	319140
TTGGTAGCAC CTAAAAAATT ACTTATTGTT TCTAAGCTGC CTTGAATTCC AACAATAACA	319200
GAAGATATTT GATTTAATTT TTCCTTATTA TTTTTACCAA GATCACTAAA AATAACGCTT	319260
ATCTGATTAC GAGCATTATT TGTCATCTCA ACAAAAGTAG AAAATATCTG ATCAAAATCT	319320
TCTATTTCAG AAAACAAAAT CCTTTGTAAT GACTCAAATC CTACTTTTAA AGTAGAAATG	319380
GAAGCTTTGG TATGATAAAA TCCCTTTAGC ATTTCCTTAA CAGGAGCCTT ATATTCGTAA	319440
GTACTCAAAT CTTTTTTGTC ATTACCAACA ACATTTAAAA GATTTAAATC AACAGCTTTT	319500
TTCTTTTTTT TAAAAAACGA AAATTTTTTC ATAAAGGGAT TCTATCATAA AAACTTTTTT	319560

TTGAATAGGG	TCACCAGTAC	TTAATTTGAC	ACATTATTTC	AACTTTTAAT	ATCAAATCAA	319620
ATACATCAAT	АААСАААААА	TATTTTTACA	TTTAAATGGT	АААААТТААТ	TACTTTGAAA	319680
TAAATTTAAG	CTTTCATCTT	AAACCATAAA	ACCATCTAAA	GATACAAATC	ATTCTCCTCA	319740
ТТТААТТТАА	TTTAATTTAA	ТТТААААСТА	ATTTTAAATT	AAATTTACTT	TCTTTTTACC	319800
CAAGAGTAAC	GCCCACTAAC	TTCATTATAC	TCAAAAAGAA	CATCTCTGTA	AGAAAAAAA	319860
САТАААААА	ТАТСААТААА	CTCTTCTAAT	TTAGCTTTAA	CTTTTGGCAA	GTTAAAATCG	319920
TTGTCAAAAT	TAAAAATATC	GTCTGATTCT	ACTGTAAATA	ATTTATCATC	TTGCTTGAGG	319980
ATAACTTTTT	TGGGTTGCCA	AAAAAGAACG	TTGATTTTTT	TGTCCTGAAG	ААААААТСТА	320040
TTAAATTCAT	AATCAAGATC	AACTTGATCC	GTTTTTGCCT	CAACAATCCC	AACAATAACA	320100
CATCGTTCAT	GATCAATTCT	ТТТААТСААА	ACAGCATCTG	TAAGCACAAC	TCTCTCGCCA	320160
ACTTCAAGAG	CAAACTGCTC	TTCTATTTCA	TATTGCTTAT	TAAAAGGAAG	ATTTGCAATT	320220
ТТССТААААА	GATTGAGAAG	TATGTACTTA	GTGCTCACCT	CTTTATTGCT	TATTCTAAGA	320280
CAACGAATCT	TCATTCTATA	CTTAAGCTCA	ТСААААААТ	ATTTAACTAG	CCTTTTCATT	320340
AAAATTGTTT	TTCTAATGTC	TTCTTCCTTC	ATTCAATCCT	CCTGATAAAA	ATTGCCAAAA	320400
ATTAAAGCTA	ТТАТАТАААТ	ТААААТАААТ	ACAAATTTTA	TTAAAGAAAT	СААААТАТТТ	320460
ТАТТАТАТАС	TAATTATAAT	TAAATCATTG	CCGAAAATGA	AAGGGAAAAT	TATGTTAATC	320520
AAATTCATGT	TCTCAAATAT	TAATTTAATA	TTAATAGTCA	GCATGACTTT	ATTTAAAATA	320580
TTATTAGAAA	TAATATACCG	АААААТАТТА	ТТААААААА	TAATTACCAG	TACCGAAACA	320640
TTAAATGCTG	AAAAAAAACA	ATAAAAATA	ATTGTTATCT	TTGTTTTAGC	TTTAAATCAT	320700
ТТАТТАСААА	GTTTTTTAAT	AAATGCTCTT	ATCAATTTAT	TCAACAATCT	AATAACTCTT	320760
ACTAACAACT	CTCTTGGAAG	CTTAATAGAC	TTAAATTATA	ATATATTATC	TGCAATACTA	320820
ATATCTAGCA	TAACTTGGCT	TGCCTTTAGC	TTACCCAAAG	TAATAAACGA	ТАТААТСТАТ	320880
GAAAAAAGAC	CGTTTAATTT	AACAATAGCT	AATGCTTTTT	TTGACCTTTT	ААСААТААТА	320940
TTACTAACCA	TATTCTCTAA	ATTATTTTTA	AGCTATAAAA	TATTGCAATT	TGAGAACACT	321000
ACAAACATTA	ATTTTGGAAA	CCTGCCTACT	САСТААААА	CCAAATAGAC	ACTCAAATAC	321060
AAGCTTTAAT	TAATCCTAGA	AAAAGCTTGG	CTGGATTTTC	TATTCTTGTA	ATAAGTTCTG	321120
GATGAAACTG	GCAAGCTACG	AAAAATTTAT	TTTCAGGAAT	TTCTATTAAT	TTTGCCATTT	321180
ТААААТСАСТ	TGAAAATCCA	GATACTATAA	GCCCATTTTT	TGCAAATAAA	ТСТАТАТААТ	321240
CATTATTGAC	TTCATACCTA	TGTCTAAATC	TTTCAATTAT	CCGATCTTGG	CCATAAAGTT	321300

WO 98/58943 US98/12764

			339			
TAAAAGCTAT	TGTATTCTTT	TTAAGAATCA	CAGGATATCC	ACCAAGCCTC	ATTGTAGCGC	321360
CCTTATCTTT	AATTCCCTTT	TGCTCAGGAA	GTAAATGGAT	AACAGGACTT	TTTAAGGGCT	321420
TGTCTCTTGC	TAAATTTTCC	TCCGTATCAG	CATCAAGTAT	TCCACAAACA	TTACGAGCAA	321480
ATTCTATTAC	AGCAAGCTGC	AAACCAAGAC	AAATTCCAAG	AAAGGGAATA	TTATTCTCAC	321540
GAGCATATTT	AATAGCCATA	ATTTTACCTT	CATATCCTTT	GCCTCCAAAG	CCGCCAGGAA	321600
CAATAATGCC	GTCAAACTCT	TTTAAACAGC	TCTCATTTAA	ATCATTAGAA	TCAATTAAAG	321660
TGCTTTTAAT	AAGCAAATCC	AAATGGGCTG	CAACATGAAC	CAAAGACTCT	CTAATTGATG	321720
CATAAGAATC	ATCAAGTTCA	GCATATTTAC	CACAAATAGC	ААТАТТААТА	ATTTTTTAG	321780
GCACAAAAAA	ATTAGATTTT	АТААСТССТА	CAAGCTTTGA	AAGCTCTTCT	ATTTTTGGAT	321840
CAACCTTAAT	ATTTAACTTA	GAGCTTAAAA	TCTCATGTAC	ACCCTGCTTA	TAAAAAGATA	321900
TAGGAATTTC	ATAAATAGTA	GAAACATCAA	CATTGTCAAT	AATAGAAGTG	CTCTCAACAT	321960
TGCAAAACAT	TGCCACTTTT	TTTCTGATTT	GGTCTGTCAA	TACTTGTGAA	CTTCTAGCAA	322020
TAATTAAATC	GGGGAAAATA	CCTGCTTTAT	TTAAGGTTTT	AACACTTTGT	TGAGTAGGTT	322080
TAGATTTTTG	CTCATTAATT	CCAGCTGGAC	TTGGCACATA	TGTTAAATGA	ATAAAAGAAA	322140
TATTACCACT	CCCAATCTCC	TGTCTTATTT	GTCTTACTGT	СТСААТАААТ	AAAATATTTT	322200
CCATATCTCC	TACGGTTCCA	CCAATTTCAA	TTATCAACAT	ATCACTATTC	TCAGAACTTG	322260
CAATCTGAAA	AATTGTAGAT	TTGATCTCAT	CAGTAACATG	GGGAATAAGC	TGAACTGTTC	322320
TTCCCAAATA	TTTACCCTTT	CGCTCATTTT	CAAGTATCTT	TTTGTATATT	TTGCCCATTG	322380
TAATGTTCCA	ACTAGACTTG	GCATTAAGAT	ттааааасст	CTCGTAATGA	CCAAAGTCCA	322440
TATCAACCTC	TCCTCCATCA	TCAAGCACAA	AAACTTCTCC	GTGCTCAACA	GGATTAATAG	322500
TACCAGGATC	AGTATTTAAA	TACCCATCAC	ATTTAATTGG	AGTAACTCTA	AAATCATATC	322560
TAAACAACCT	TGCAATACTT	GCCGATGTAA	CTCCTTTACC	AATTCCAGAG	ATCACGCCTC	322620
CTGTTATTAC	TAAAATCTTT	AAGTTTTTTT	TCATGTATAC	CCCAAAATTA	AAACTTTAAA	322680
TTTCAATCCA	ATTAAGCTTA	TGCTTAAAAA	GAATTCACAA	АТСАТААТАА	AATATACTTG	322740
CATTAAAACA	AACAAAAACA	ТТАААТТААА	АТАААААТТА	TTAATGCTTA	GCTAAAAAGC	322800
TATTTCTAAG	CCATTGTTTT	AAATCTTTTA	AACTATTTTA	АТТАТААТТА	ACAAAACAAT	322860
ATAATGAACC	TTTGGTTAAA	TAGTAATAAT	TAAACATTGC	САААААААСТ	AAAAACCCAA	322920
GAATAGCAAA	CAAATTGCTT	TTTTTTCTAA	TACTTCCAAA	GTCTACTATC	TTAAAATATG	322980
AAGCCAAATA	ТАААААААТ	СССАААСТАТ	AAACTATTTT	AAAAAATAGG	TCGCCTAAAA	323040
ATCTGTCAAA	AGAAAAAATT	AAATCCGAAG	AACATGGCAC	AAAATTTAAAA	CCCAAATAAA	323100

GAAAAGACGT AGAAAAAAC AATAACACAA TGGTCCCTAA AAAGAATATC AA)	
		323160
CAAAAGGATG CGTTTTAAAA GTTATTCTAA AAAACATAAA GATTGGAAAA AT		323220
AATTAAAATA ACGAACAAAT AAAAAATCAT AAAAATATCT TAATTCTAAG AA		323280
CCTCGCCTCT TAAAAAGAAT GCATTATCTA GGAATAAAAA AATATTAACC CC	TAAATAAT!	323340
AAATAAATAT TAAAATTAAA GGTAGTGCAA ATAAATATTT AATTAAATTG AA	AAAATAAT	323400
GCTCAAAAGT TGAAACAGGC AAAGATAAAT AAAGAATATT TCTGAACGGA TC	GTGAATTA	323460
CTTTGTAATA ATCACACATG GTAAAAATCG ATATAATCAA GGTTAAAATA AA	AATTTTAG	323520
GAGCAAAAA TTTTAAAAAA TCAGTTGCTG AAAAATTAAA ATAAAATCTA AC	AAGCAAAT	323580
AAGATATAAA TATCATTCCT AAAACTTGAA TTATTAATAA AGTATAGAAT TT	TTTATTGT	323640
AAATAAAATC AAAATAAAAT AAATTCAAAA ATCTTTTTAA GCTAAACATC TT	TTATTACC	323700
TCTTCTTTTT ATTTTCAGTA ACATATAAAA AGAAAAACTC AATATCAACA AC	TTCAGCGC	323760
CATTGCTACT CTCAAAATAA AGCGCCTTAA ATCCATCCTT ATTTTTTCA TAA	ATATAATT	323820
CATTTCCATT CAGCTCGCTG ATAATTTTAA TCTTATAATT TTTATTAATA TAA	AGATACTG	323880
AATTGGAAAA AAGAATTGAC TTTTCCCCAA CAATGATTAA ATAATCCACA ACC	CCTGCCA	323940
AATCTCTTAC ATTGTGGCCT GTAATAAAAA TGATTCTATC CTTTAAATTA GAA	\AGCATGT	324000
TTCTAAAAAC ATTTTTTGAA ACAATATCAA GACTATTTGT TGGCTCGTCA AAC	CAATAAAC	324060
AAGAAACATT TGCAGCTAGA GAGAATGCAA TAATACTTTT TTTCTTCTGT CCA		324120
CTGAAGATAA GTCAAGAGAA ATATCAAGAT CAAAATCCGA TAAATATTTT TTA	AAATCTG	324180
CCTCATTGAA ATTTGGATAA AATATAGATA AAGCCTTGCT GTATTCGGCT AAA		324240
TGGGAAGTGA AAATTCTTCA GGAATAAAAA ACAAATTCAC TAAATTCAAG GGA		324300
GAAAAGsTGC TAAAGAGTTA AACAAAATTT TCCCTTTTAA GGGCTCCAAA AGT		324360
CAAGTTTAAG TAAAGTTGTT TTTCCAACTC CATTTTTGCC AAGAAGCAAA TAG		324420
GGGTCTCAAT GTTTAAATTT AAATCCGAAT AGACTTCTTT TCTCTTATAG GAA		
CATTAACAGC CTCAATAGCC ATAAACACTC CTTAATATAT TAAAAGTTAA AAC		324480
ATAATTAAAT CAAAAATATA AATTCAATTT TTTATGAAAA ACTTATAAAT AAA		324540
		324600
AAATTTACAT AAAGTCTTGA GCTAAAATTC CAAATTTTTA GCATAATTCT AGG		324660
TGAATTTCAT TAAATCCAAA ACTTTTTGCA TATTCATAAC AATCTTGAAA TTCA		324720
CCTTTAATCT CATCAAGAAC AGAAATAAGC TTTTCTTTAT AAGCCCTATA AACA		324780
TCAGAGATAT TCCAACTAAT AATATAAATT TGCTTAAAAG AAATAAAATA	\AATTGC :	324840

341	
AAGAAAAATT TTTTATACAA ATTTTGACAT TCGTTAAAAA TACCTTCTCT TTTTAATAAA	· · · ·
GTTTCCATTG TATTAAGAGA TAATTTAGAT TTATGTAAAA CACTAATAGA AGAACTCATG	
CTTCCCATTC TTTGGAAATT AGTATAAAAA TAATTATTTA CAAAAGAAAC TTTAGAAGCT	
TTTAAAAAA TTTGCATAAC AAAAACTATA TCTTCAAATA CTACATTTTG CTGACGAATA	
TTATTCTTTA AAATTAATTC CCGTCTAATC AATTTATCCC ATAACGTTCC AACAACAAAA	
TTTTTCCTTC CAAAAGTCGC ATAAACAGTA AAAAGCAAAT TTTTAAACGC CTCCTTGCCT	
GTTAATGGAT AATTAGGAAA AGGAAGTAGA GATTTTCTTT TTACATTTAT TGCAAGAAAA	325260
TAAATATAAA ATTGAGAACA AACAATATCA GAATTATCTG CTTTTGCTCT GTTATATAGA	325320
ACTTCAAGCA TGGTGCTCTC TACAGAATCA TCACCATCCC AATAAATAAC ATATTCCCCT	325380
TGAGCCTCAG AAAGTCCCTT GTCTCTAGAA GCAGAAAGAC CCATATTTTT TTGACTAAAA	325440
ATCTTAATAA AGCTATACTT ATTGGCATAT TTTTCTGCTA TCTCTAAACT ACCATCATAA	325500
GAACCATCAT CAATTAATAT AATTTCTTTA TCTTTTAATG TTTGATTAAC AGCATCCTTT	325560
ATCATTGCAT CAAGAGTTTC AGCCGAATTA AAAAAACAAA TAATAACAGA AACTTTATAC	325620
TTATGCACAA TATCCTCCAA AATAAAAACT GCTAAGCAAA ATCAACGCTA AAACACTTCA	325680
CAACAAATTC TTTTAATTTT TTGCATAACA ATTAAATTGT AATATATAAT TAACAAGTTT	325740
GTATTGTTTC AAACTTATTT TAATGAAAAG TTTAGCAGAA ATTGCTATAT TATTAAAAGT	325800
AAAAAATTTA AAAAACATCA ACCCAAATAA GGAGCTTGAA TGCTTGAAAT AATAAGTCTT	325860
GGAGGAGGAG TAATAAATTC AAACCAAATC AACATAGAAT TCATTAAAAA CTTTAAAAAC	325920
TTTGTTTTTA AATGGCTACT AGAAAATGAA AAAAGAAAAA TCATTTTAAT AGTTGGTGGA	325980
GGAAGAGTTG CAAGAGAATA CCAAGATGCT TATAAAAAAA TCAATCCTGA TTTTAAAGTT	326040
CATGAACTTG ATGAGATTGG AATAATATCA ACAAGACTAA ACGCAGAATT TCTGAGTAAA	326100
GTAATGAATC CCTTTTGTAA AGACAAAATT GTCACTAATC CCTTAAAAAA TTTTTCTTTT	326160
AAAGGAAAAA TATTAATTGC TTCCGGATGG AAATCAGGAT TCTCAACAGA TTACATTGCC	326220
GTAAAATTTG CAGAAAATT ТААТААААА GATATCATAA ATATAACAAA CGTAAATCAA	326280
GTTTATGATA AAGACCCAAA AAAATTTAAA AACGCAACAG CTTTTAAAAA ATTAAATTGG	326340
AAACAATTAC AAAACATTGT GGGCCAAAAG TGGAATCCAG GCTTAAATTT ACCTTTTGAC	326400
CCAATAGCAA CAAAACTCTC TTCAAAACTT GGACTTACCC TTTACATAGT AAATGGAAAT	326460
AATATTGAAA ACTTAGAAAA AGTTTTTAAC AAAAATAATG ATTTTTTTGG CACTATTATA	326520
GTAAAATAAA AGTTAATGCC GGTATGGCGG AATTGGTAGA CGCGCCAGAC TCAAAATCTG	326580
GTGAGGGCAA CTTCATGTCG GTTCGACTCC GACTACCGGT ATTTTGATTG CTTTTTTAGA	326640

AGCTTCAAA	A TTATCAAGCA	ТТАСТААТАА	AATAATTGCT	TCTTTTAAGA	AAAATTTTCT	326700
TTCATAAAT	r acttgttat	С АСТААТААА	ATTTAATATA	AACCTTATGA	TAATAAAAT	326760
TTAATACTA	TAAAATAAGG	ATAAAGCACC	TCTTTCAATA	GGTTGTCCTI	° АТТСТААААТ	326820
AACATATTGA	A AAATCATTTI	АТТАТААТА	AAACTTTAAA	GTCTACAAAT	' TAATTGCAAA	326880
TATAAACTTA	A AAATATCTTT	' GAGATTGTCT	TCATTAAAGC	TTCAGGATTA	AAAGGTTTAA	326940
CAAGCCAACC	AGTAGCGCCC	GCTTTACGAC	CCTCATCAAC	CTTAGATTGC	TCAGATTCAG	327000
TGGTAAGAAC	AAGTATAGGA	ACAAAGCTGC	CAAATTCTCT	TATCTGCTTA	ATAACCCCAA	327060
TGCCGTCTAA	ATTAGGCATG	TTGATATCTG	TAATAACAAG	GTCAAAATCT	TTATCTCCTT	327120
GCCCAACTGC	TTCTTTAAAC	CTTAAAACCC	CTTCTAAACC	ATCTTTTGCT	TCTGAGACTC	327180
CAAAACCGTT	TTGTTCTAAA	ATATAAGCAA	CGCTTTGCCT	TATTGCCCTA	TTGTCATCAA	327240
TAACCAAAAT	TCTTTTTTC	ATCTAATTTT	СТССТААААС	ССТССТАААА	AGTATATAAA	327300
AATTAAAACA	AAATTACACT	ACCCTCATCA	AAGGAATGAA	CATCCTCGGC	TTCCTCTATC	327360
AAAGATAATA	AGTGTTTTT	ATGAACAAAT	AAAGTAAATC	GATTAGCAAT	TCTATTAACA	327420
AATTCTTTAT	CTTCAATCTC	AACAGATTGA	ATTCCAACCT	TAGATAATTC	TAAATTAAGA	327480
TTGAAATTTA	TTTTGCTTTC	CATATTGCTT	AAAAAGTTAT	CTATATCTAA	AAGAGAATTT	327540
TTTAAATTTC	TAACATTGTA	GACTTCTAAT	TTAATCTCTT	CAAATATTTC	САТАААТТСА	327600
ATTGAAAAAA	CTTCATAAGA	СААААТАТТА	TCAATAGCTA	ТАТТСТТААТ	GTCAAGAATA	327660
TCATTTTTAA	TTTCTATGAA	TAATTTTTTA	AATTTATTAA	AATAATTCTT	TTCAAGATAA	327720
AATCTATTGT	CATAATCCTT	AACAACTTTT	TCAAGAAAA	AGATTATTTG	АТССАААААТ	327780
TCTATTCCCT	TGGTAATGTT	AGAATCAATT	TCTTTGATAA	TCTTAGACAT	TTCTGAAATA	327840
TTGCCCTCCA	TGGCTTTAAG	TTCAGATCTT	TTGACAACTT	CTATCTTTGA	GGCTATATTA	327900
ATATTTTGAA	ACCTAGCAGA	AATAGCTGAA	ATATTTGAAA	ACATTAATTC	TAATGATTTT	327960
ATAAGCTTGA	CCTGTTCATA	АТАТАААТТС	AAAAAATTAG	AATTATTCTT	CTCAACATCA	328020
TCAATTCTTC	TAAGCAGATC	AGACAAAATA	CTAGAAAATT	GTTCTATTAT	TTTAGGAATA	328080
TCTATGTATA	AAGAATTATC	AGACCTTAAA	TCGTTAATGG	TTTGAATAGA	ACTAAGAGAG	328140
GAATCAATAA	ATTTCTCAAA	AACAGTATAA	ТТТТТТСАА	GCTTTTCAAG	AACATCTTTT	328200
ACTATAACTT	TTGATGTATC	CGTAAAAACT	GATAAAATTT	TTAATTTTTG	GATCTCACTT	328260
АТАТСТСТАА	ATTTAAAAAC	ATCAATATTA	GAATACATAA	TATTTAAATG	TTGCAAAGAT	328320
TGAGTTAGCC	TGTCTTGAAA	CTGAAGATAA	GAAATAGAAT	TTACAAGTTT	AAACTTAAAT	328380

		343			
TCAGATAAAA CTTTTAAAA					328440
AAAGCATCTA TTTTTTTC					328500
GTATTGCTTT CATATACTT					328560
TTGCTTGTAA GTTGATCTC					328620
GTAATATAAG AAAAGGCTC					328680
ATAGACATTA TTTCCATAT	'C AAGAGAGCT'	T TTTTTCATTC	TTTCAATAAC	ATCTTCAAGT	328740
АТТТСТАТАТ СТТТААССТ	T ACTCCGTAT	r atgetaaati	GAGATTCAAG	AGAAGTTGTT	328800
GAAGAATTAA AGTAAGCAA	C AAAATCATC	T AATGCTCCTA	1 TAATTTTGGC	TATAAAATTA	328860
TTCAAAGAAG AATCATTAT	C AAGATCAAGA	A TTGGAAATCA	AATCAATACT	AAAAGATAAA	328920
TCCTTAGAAT CTTTAGAAA	T TTTTTCTATI	· AATTTAGGAA	TTGATTTGCT	TAAATTTGAA	328980
TAAATATGCC TTGTGCTTT	C ATCAAAAGCI	TCAAGTTTGT	GAAATAAGGT	TGCCAAACAA	329040
TCGTTGGCAT CAAAACCAT	T ATTGTCATTA	ТССАТТТТАА	GATCTCCTTA	GAACATGATC	329100
TGCTATTTCG CTTAAAGGA	A GGATTTTGTC	TACAGCCCCT	ATTTTTATAG	CTTCCATTGG	329160
CATACCAAAA ACAACAGAG	G TTTCTTGATC	TTGGGCAATA	GTATAAGCGC	CATTTTTTT	329220
CATTTCAAGC ATACAAACA	G CACCATCATC	TCCCATACCT	GTAAGGATAA	CTCCAATAGC	329280
ATTAGAGCCT GCATACATTO	G CAGCAGACCT	AAAAAGTACA	TTCACAGAAG	GCTTATGTCT	329340
ACTAACAAGA GGTCCATCTA	A ATAGGTTTAC	AAAATAATTT	CCGCTACTAT	АТТТТАСААТ	329400
CAAATGATAA CTTCCATTAC	G CAATTATTAC	AAGACCTGGA	CGAAGAATGT	CTCCATCCTC	329460
AGCTTCTTTA ATATCAATAT	TAAACTCATT	GTTTAGGTTT	TTTGCAAAAG	ATTTTGTAAA	329520
TCCTCCAGGC ATATGCTGAA	СААТААТААТ	TGGGGGAGAA	TCTTTTTTAA	AAGACCTTAA	329580
AAAAATTCTT AAAGCCTCTC	TACCGCCCGT	TGAAGAGCCT	ACAACAATAA	TTTTACCAGT	329640
TTTGTGCTTA TTGATAAGGC	CTTGATATTT	AATAATAACA	TCCGGATCAT	TTTTGGGAGC	329700
AAAATTAATA ACATCAGAAA	CTCTATAACT	TTTTCTTATA	CTTGAATCAT	ТТАААТТ А ТТ	329760
TTCCCTCAGC TCTACTTTAG	AATTACTAGA	AAAATCGGGT	GCTTGAATCC	TTTTAACTTC	329820
AAAAGAAGAT ATTAATTTAT	TTTTGCCTAG	ATTTTTCAAC	TCCAGCTTTA	TTAAAGCTAA	329880
ATACTTACTG CGAAATAAAT	CAACTGTAAG	СТТААААТТА	AGCTTATTTA	TTATTAATTT	329940
AACCTTTTCC TTGCTTTGCT	CAAGACATCC	AAAATTTGGT	AACATTTCAT '	ГТТGAGCAAT	330000
AAATACAACC GGAAGAGATA	TATTATTAAG	GACATTGTTT	AAAGAATTCC (CAAAATTAGA	330060
TCTTGCTGTA TTCTCATCAA	ТААТААСТАА	ATCTGGAAAC	TTTTGTAAAA A	АТАСАТТААТ	330120
AAGATTTAAA GAATTAAAAC	CAGCATTTAA	TATCTCAACA	TCATTATCTT :	ragaaaaagc	330180

·	
TCTAACAAAA ACCTGCTTTA TAAGACCTTG AATATCAATT ACTAATATCT TCATTATTAT	330240
ATTTTAATAT TTTTAACCTT TAAAACCAAA AAGCTGCATT TTCTATTTTC TATTTTCTTT	· -
ATTTTATAAG TTTAGTTATT GCATCTATGT CAACAACCAA AGCCAAACTT CCATCACCAA	
GTATAGTAGC TCCAGAAACC CCTTCTACTC GAGAATAAAT TTTACCCAAA GCCTTTATGA	330420
CAGTTTGATG TTGACCCAAA ACTTCGTCAA CCACAATGCC CATTTTCCCA CTATTTGTAT	330480
TTACAACAAC AACTTGCTCA CTTAAACTCT TCTCGCTAGA AACCTGAAAA AACTCTCTAA	330540
GCCTAATATA ACTAATCATG CTGCCCCTAT AATTCATTAC ATTGCTTTTA GTCTCAATTC	330600
CATCTATTTG AGAAATTAAC TTATTAGATT CTAAACAAGA TTCAACATTA GAAAGAGGAA	330660
CAATAAAATG CTCATCTTTT ACTCTAACAA GCCAACCCTC AATAATAGCC AAAGTCAATG	330720
GAAAAATTAA CTTGATTCTA GTATATTTAC CAAATTCACT TTCAAGTACA ACATGCCCCC	330780
TTAAAGATTC AACCTGTTTT TTGACAACAT CCATGCCAAC TCCACGACCT GATATATCAG	330840
TAACAGAACT TGCAGTTGAA AATCCAGGCT CAAAAATCAA ATTATAAACA TCAATCTCTG	330900
ATAAGGTTTT GGCAACTGAA TCAGAAATTA TATTGCGCTC TATAGCTTTT TTAAGTATTT	330960
TATTCTTATC AAGCCCTCTT CCGTCATCCT CAATAATAAC AATAACAGAA TCCCCAGATT	331020
GACACGCTGA AAGCTTAATA ATACCTTTGG GATCTTTACC TAAACTTTCT CTCTCTTGAG	331080
CCGATTCAAT TCCATGATCT ATTGAGTTGC GAATTAAATG AACTAAAGGT TCATTTAGCT	331140
TTTCAATAAT ACTTTTGTCA AGAACAGTGT CGCCTCCAGA AGCATGATAA AGAATTGACT	331200
TACCAAGGCT AGTAGATAGA TCTTTTACTA TCCTTTGAAA TTTTACAAAC AAAATCTCAA	331260
TAGGAACTGT TCTAAGCCCT GTTGTATAAT CCCTAAGCTC ATTAATAAGC AAAGAAAATT	331320
CTGCTGATAT TGAATTTAAA ATATTACTAT TCCTATTTTC AGCTTCTTTT GAAAGTTTTG	331380
ATTGTATTGT AACAAGTTCT CCAACAAGAT TTACCAAATG ATCAAGCTTT TTAGAATCCA	331440
CCTTAATACT AGCAATATTA ACCTTGCTTC TAGCAGTATC ATCTTGAATA TTAGATCTAT	331500
TTTTATCTCC ATTGAAAAAG GATTTCCCAA CAAATGCCGA TTTTTCAAAT GAAGAATTAG	331560
TCAAGTCTTT GCTGTTTCTG TCCAAGTGCA ACAAATTAAA ATTTTTAGAC TCTACATTAT	331620
CACCTTCATT TGCCTCTAAA CATTTATCCA ATTCTTGAAT ATCAATTTTT GATTGAGAAT	331680
CTAAAAATGT AAAAATATCT TCAATGCTCT CTCTACTCTC TTCTGTATCT AACCTTATCT	331740
CCCAATCAAC ATAAACATTA TCAGGAGAGA TAAGCTCTAA ATCAGGAATG TTATCTACTT	331800
TGGCCCTAAC ATAACCACTA CCCAAATTAA TCAACTTGCT CAATAAATTT ATAGGCTTGT	331860
GCCCATGAAA CAAAATACCC TTAGCCGGAG AAAAAAGAAT TTTGTAACTC TTAAATTCAG	331920

345 ACTGCAAAGC CTCATCATCA AATTTATTCT CTGAATTTAC TTTAACAGAC TCTTCCAAAA	331980
CCGAACTGTT ATCAGACTTT GAAAAATCAT TTTCTAAAGC TTCTTGAAAA GCTCCCTTAA	332040
CATCATTAGA AATATCAAGA ACCTTTCTAA TTTCATTTAC CAAAAACTGT TTACGCTTAT	332100
CAAAGTCGAT CTCAGAAATT ACTTCATCGC CTTCAATAAG CTCTCTAATA AAATCAACAG	332160
ACATTAAGGT AGCATCAATA GCCGCCTGAT TAAAAGCAGC CTTACCATTT TTTACAACAT	332220
CAAGAACTGT TTCTATTTCG TGGACAAGCG ATGCTGTAAA ATTAAAGCCA AACATACCAG	332280
AACTTCCCTT TATGGTATGT AAATTTCTAA AAATAGAATT AACAATATCT TGATCTGAGC	332340
TTACCTCAAG ATTAAGAAGC GCTTGCTCAA TATCTGAAAT ATTTTCTATT GATTCTTCCT	332400
TAAAGGAATT CTTAAATTTA TCAATAACAT CACTACTATC CATAAGCTTT CCTTAAATCT	332460
AAAATCCAAC TAAATTAAGT CCTAAATCAA AGCTATCAAC ATCTTCAATA TCTACTAAAA	332520
ACCCGCCATA TATTAATGAA CTTAAAACCT CATCGGATGG ATACTCAATT TTTACAAACA	332580
AATTTCTATT CTTAGCATAT TTATTAGATG CATACAAAAT TTGTATAAAA GTAATATCTA	332640
TTTTTTCAAC ATTTGAAAGG TCAATAATAA GAGTATCCCC TTCTTTCATT TTCTTAAAAA	332700
TATGCAACAA ATCTTCTTTT ACCTTAAAAA TACTATTTAT TACAAGCTCT CCTTCAGGCC	332760
TATAAATCAT GACTAAAAAC TCCTATTGCT GCTGATATTC AGGATCATAT ATTGTTGTAT	332820
TTCTAAATTT AGAAAGCTCT CTAACGTCAA ACAAATTTTC TACATTTAAA ATAATAATAA	332880
ACTTATCATT ACTCTTGCCA ATTCCTGAAA TAAATTTTGA ATTAAACCCT GATCCAATCT	332940
TAGGAGCATC ATCAATACTA AATGGATCTA ATTCAAGAAC TTCATTGACA TAATCTACTA	333000
AAATTCCAAG ATTAAATTCA TCCCCCTCGT AAACCAAATT CAATATAATA ATATTTGAAA	333060
TGTTAACTCC CTTATTCCTC TTTTTATCAT CCTCATCAAC AGCACGATCG CTCATTCCAA	333120
ATTGTTTTCG AATATCAATT ATTGGAACGA TTTTGCCCCT ATTATTTATT ATTCCTGCCA	333180
TGTAATTGGG AGTCCTTGGG ATTTTTGATA TCTTAGTATA TTCTAAAACC TCAACAACAT	333240
ATTTAATCTC AATAGCATAA AGTTCGTCCA AACTAAATAA AAGATACTGA CTTAAAGAAT	333300
CTTGCACATC TGAATCTGTG CTCATAAACG CCCCTTTGAA TGTAATTTAA ATCGCAAATA	333360
GAATGCTAAT ATCAAGATTA ATATTACCTC ATATATTGAT AAATACAAAT TAGAAGTTAA	333420
TAAAATTTAA TTTACCAAAA ACAATAAAAA ACATAATTTT AACAGAATTC TATCTTATAA	333480
TTTAAGGTAG AAAGTTGTAG GTTAAATTAA ATTTAATATA AAAAAGTTAA CAATGCAAAG	333540
TAAAAACAAA CTAATCAGAT TATTAATAAT TATTATCACA TTATTTTTCA ATGTTGAAAA	333600
TATTTTTACA AACGAAAAAT CTAAAAACAA TATAACTGGA CAAAACAGTA CAACTGATCC	333660
AAAAATAGAA AGCTTAAAAG CAAAAACTAA AATAAAATTT GGTTTTATTC TACCTTACCC	333720

TACTGCAATA GAATTCAGCA TTAATAACTT TGATATTGGA GTAGGGGTAA CAATATTGAG	200
TGTCTCGGAA TTTTTTCCAA AATCACCAAT AGCATTGTTA TTTAAAATAT ATTGTGACTA	
	•
TATATTTTTA AATTTAAAAT TTAAAGATTC AAATTTTATC TTTTTCTTGG GATCTAGCCT	
ATTTTTTGAA ATAGGCAAAA TTACAAGCTC AGATTTAACA AATGTTTCTT CTGGGATTAC	
CTATAAAATC GGAGTGGGTT TGCCCTTGGG AATAATATAT GAAGCTTATT ATGACATTAT	
TGAAATTATA ATAAAAACAA CACCATCAAT TTTTATTGGC CAAATGCCTA ACGGAAATTT	334080
AATATTTCCA ATAAAAGGTA ACTTTTCTAT TGGAATAAAA GGCTCTCTTA AGATATAGTT	334140
TTCACTTTTT AGATAAAAA AATTATTGGA CTAAAATTCT TTTAAAGGCT AGAATGCTAT	334200
ACTTAGGAGA TAATAAAGCA ATGAGAACAA AAATAATTAT TATGACAATT ATTATTTAT	334260
TAGCCCCAAT CTCAGGATTT TCTAATTCAA AAGAATCTGC AAGGGGTAAA TTTGGAGCAG	334320
GAATTATACT TCCATTACCA ATTGCTCTAC AGATTAATAT AGGAAACTTT GATCTTGACA	334380
TTGGTCTTTA CAGCGGAGTA AATAATTTGT TTTCAGACTG GAAAACATTA TTTATAGCAT	334440
TAGACTATAT TTTCTACATA TACACATTCC CGGGAGCTGC TAATATTTTG GATTTTTCAG	334500
TTGGCGCAGG GGGATATGGA ACAATATGGT TTTCAAGATT TGGAGGCAGT AAGTCAGGCT	334560
CAGGACCAAT GAGCATTGGA GCAAGATTGC CTTTGGCCTT AAATATTGCA GTATTTAGGA	334620
AGAAATTCGA CATATTTTTA CGAATAGCAC CCGGACTTGG AATGAATGTT TGGAGTAATG	334680
GCGTTGGATT TAGATGGGAA GTATTCGCAG GATTGGGACT AAGATTCTGG TTTACTTAAT	334740
AATAAAATTC TTTTTTAAAA AGTTTTAAAA AAGAACAATT GTTGAAAAAT CAAACCGAGC	_
TCCCAAAAAC TTAAACATAA GATTTTAAGG GCAAGGTCTT GTTTTATTG TTTTAAAATT	334800
CAAAAATAAA ATATAATAAT AAGACAAAAT TTGGGAGACA ACGGTGAAAA AAATTTTTAT	334860
	334920
ATTGTTTATC ATGATTGCAA ACATATCTAC AAATGGTTTT ACAAAAGATT CATATTTAAA	334980
TAGAGGAATT GGCTTTGGAG CAAGCATTGG AAATCCAATT ATTAACTTAA TAATGTCATT	335040
TCCTTTCATT GATTTTGAAA TTGGCTATGG TGGTAGTAAT GGAATAAATC TATCAGGCCC	335100
CAAACTTGAA TCAAAATTTT ATGATTTTAA TTTATTAGCA ATAGCAGCAC TTGATTTCAT	335160
TTTTACAATA TCTTTGATAA AAAATTTAAA TTTAGGAATT GGAATAGGAG GAAATATAAG	335220
CATATCGTCT CACACATCTA AATTAATAAA TGTAGAATTA GGATTTGGAA TGAGAATTCC	335280
ATTGGTTATT TTTTACGACA TTACAGAAAA TTTAGAAATA GGTATGAAAA TAGCACCTTC	335340
AATAGAATTC ATCTCAAATA CAAGGTCTCT TGCTCAACAT AGAACCTATT CGGGCATAAA	335400
ATCAAACTTT GCTGGGGGAA TATTTGCTAA GTACTATATC TTTTAACACC AATTCATTCT	335460

3	4	7	

AATTTATTAA ATTTATTGCC AACCCCTATG AACCCCTATG	
AATTTATTAA ATTTATTGCC AAGCGCTATG AAAAAATTCA CCTCGTTTTG AGTCTAATCT	335520
TTCAAAAGAA TGAGCACCAA AAAAATCTCT TTGTGCTTGA ATTAGATTAG	335580
ATTAGTAGAA TAAGAATCTA AAAACGAAAG GCTGGCATAA AATGCTGGCA AAGGAATCCC	335640
AATTTCACTA GCCTTTGAAA TTATTCTTCT TAAAGATTTG TGATTATTTT TTAGTAAATC	335700
TAAAAAATAA TCATCAAAAA GCAAATTAAT AAGATGAGGA TTTTTATCAT AAGCCAATTT	335760
AATTTTATCT AAAAAACTGC TACGAATAAT ACAGCCTTCT CTCCAAACCA AAGAAATTTT	335820
ACCTAAATTC AAATCCCAAC CATAATTCAC AGACGCGGTC TTAAGCATCA TAAAACCTTG	335880
AGCATAAGCT ACTATTTTTG AAACTAAAAG AGCATAATAA AGATCTAAAA TCCAATCACT	335940
AAGCTCAAAC TCAAAAGAAG AAGTATCCAT CTTAAGTAAA TCGCTAGCAA TAATCCTTTC	336000
GTGTTTTAAC CCCGACATAA ATCTTGAAAA AACAGATTCA ACAATTAAAT TTACAGGCAC	336060
ACCAGATTCA AGAGCATCAA TAGCTGTCCA AACACCAGTG CCTTTTTGAT TTGCAATATC	336120
TAAAATCTTA TCAACTAAAT ATTCATTATT TTCTTTATAT TTAAGAATCT TAGAAGTTAT	336180
TTCTAGTAAA TACCCTGAAA GATCGCCTTC ATTCCATTTT TCAAAAACTT CAGAAATTTT	336240
CAAATTATCT AAATTGAAAG CTTTTTTCaT GAAAAAATAA ACCTCGCTGA TAAGCTGCaT	336300
ATCAGCGTAT TCCACTCCAT TATGTATCAT TTTAACATAG TGCCCAGAAC CGTTCTCCCC	336360
AATATAAGTC GAACAAATAT CATTATTTTT AGTTTTAGCT GCAATTTTAT TTAACATGGG	336420
CTCAAGAATT TCATAGGCTG ATTTACTTCC TCCATACATT AGCGCAGGAC CAAATCTTGC	336480
TCCTCTCTCC CCTCCAGAAA TTCCAAGTCC TACAAAATAA ATGTCTTTAG CAAACAATTC	
TTTTTCCAAT CTCATTGTGC TCTTATAATG AGAATTTCCA CCATCAATAA TTATGTCTGA	336540
TTTATTCATA AAGGGTAAAA TTTGCTCAAT AACCTTTTCT ATAGCAGAGC TTGTCACCAT	336600
TAAGATGATT TTTTTTGGAG TTTTTAAGCT TTTAACAAAA GATTCAATAT CTTTAAAACC	336660
	336720
	336780
	336840
	336900
	336960
	337020
	337080
· ·	337140
	337200
TAATGGAATC GGAATGGATG AACAAGATTT AACTAATCAT CTTGGCGTAA TTGCAAAATC	337260

AGGAACTAAA	GAATTTATTA	ACAATTTAAA	ACAAGATGAA	AAAAAATCTG	CAAGCCTAAT	337320
TGGCCAGTTT	GGAGTTGGAT	TTTACAGCGC	ATTCATAGTA	TCAGAAAAAG	TAGAAGTTAC	337380
АТСАААААА	GCATTAGAAA	GCGACGCATA	TATTTGGTCT	AGCGACGGCA	AAACAGGATA	337440
TGAAATAGAA	AAAGCAAAAA	AAGAAGAGTC	AGGTACAGAA	ATAAAGTTAT	ATCTTAATAA	337500
AGAAGGCCTT	GAATATGCTA	ATAAATGGAA	AATTCAAGAA	ATTATCAAAA	AATATTCAAA	337560
TCACATAAAT	TATCCCATTT	АТАТТАААТА	CAGCGAACCT	ATAATGAAGG	ACGGGAAACA	337620
AGAGGGAATA	GAAGAAAAAG	AAGAAAAATT	AAATGAAACT	ACTGCTCTTT	GGACAAAAA	337680
TAAAAGCGAA	ATTAAAGCAG	AAGAATACAA	TGAATTTTAT	AAAAATACAA	CCTTTGATTA	337740
TGAAAATCCA	TTAATGCATA	TTCATACAAA	AGCCGAAGGA	AATTTGGAAT	ATACTAATTT	337800
ATTTTACGTC	CCAAGCAAAG	CTCCCTATGA	TTTATATTAC	CCAAACACTA	AGCCTGGGGT	337860
AAAGCTATTT	ATAAATAGAA	TCTTTATTAC	AGATTCTGAA	GGCAGCTTGC	TTCCAAACTA	337920
TCTAAGATTT	ATAAAAGGAA	TTATAGACTG	CCAAGATTTG	CCACTCAATG	TAAGTAGAGA	337980
AATTTTACAG	СААААТАААА	TTTTGTCTAA	AATAAAATCA	TCTTCTGTAA	ААААААТАСТ	338040
AAGCGAGCTT	GAAAAGCTAA	GTAAAAAAAA	TCCTGAAAAA	TTTTCAGAGT	TTTCTAAAGA	338100
ATTTGGGAGA	TGCATTAAAG	AAGGTGTTTA	TTCTGACTTT	GAAAACAGAG	AAAAGCTTAT	338160
ATCATTAATA	AGGTTTAAAT	CCTCAAGTGT	AGATGGGTTT	GTGTCTTTTA	AAGAGTATAA	338220
AGAAAGAATG	AATGAGAGTC	AAAAAAGCAT	TTACTACATA	ACAGGCGGTA	AAGAAATAT	338280
ATTAAAAGAA	AACCCAATAG	TAGCTGCTTA	TAAAGAAAAA	GGATTTGAAA	TCTTAATCAT	338340
GGACGATGAA	CTCGATGAAG	CTATTTTAAA	TCTAATTCCA	GAATACGAAG	GATTAAAACT	338400
AAAGGCAATA	AATAAAAACG	AAACCAGCAA	TGAATTAAAA	GATGAAAATT	ТСААААААТ	338460
TGAAGAAGAA	TTCAAAGATA	CCCTTACAAA	AGTAAAAGAA	ATCCTCAAGG	АТСАТАТААА	338520
AGAAGTCAAT	CTATCAGCAA	CATTGATAAA	AGAGCCTTCA	GCAATAATAA	TTGATAGCAA	338580
TGATCCAACT	TACCAAATGC	AAAAATCAT	GCTGTCAATG	GGACAAGAAG	TAAAAGAAAT	338640
AAAACCAATA	CTTGAATTAA	ACCCTAATAA	TAAAATAGTC	СААААТТТАА	AAAATCTAGA	338700
GCCTGAAAAA	TTAGAAAAA	TAAGCATTCT	CCTTTTTGAA	GAAGCTATGT	TAACTTCAGG	338760
AATGCCCAGC	AAAAATCCAG	GAAAATTTAT	АААТАТААТА	AACGAATTTA	TAGAAAAAGA	338820
CTTCTTATAA	TTAAAAGTAA	AAAGAGAGAG	TTTTAAGCTC	TCTCTTTTTA	CTTTTTAACT	338880
CGCAACACCA	AATCTTTGCC	CGCTATAACA	GGCTTTGTTT	GAGATATTTT	ATGCCTAATT	338940
TCTTCTGTCA	AGACAGTTGA	AGATGATAAA	ATATATTCAG	AATCATTTTC	AAGCCTTCCA	339000

			349			
AAAGAATATT	CTATACTTGA	AACTTCATCA	GAATTTGCAA	TAACAACCGG	AGTAATAACG	339060
GATTCTGAAT	GCTCTTTTAA	ATATTCAAGA	TCAAGCCTAA	TAATAACTTC	ACCTTGTTTA	339120
ACATTAATGC	CCTCTTCAGC	AACTCTTGTA	AAACCCTTAC	CATTTAAATT	AAGAGTATTA	339180
ATTCCAAAAT	GGACAAAAAT	TTCAACGCCC	TCTTTAGTTT	CAAGGCTAAA	GGCATGATTG	339240
GTTTTAAAAA	TTTTACCTAT	TTTCCCATCA	CAAGGCGCCA	ACAACTCATT	GCTTGTTGGA	339300
AGAATTGCAA	TTCCATCGCC	AACTATTTT	TCAGCAAAAG	CTTCATCGGG	AACCTTATCA	339360
ATTGACATAA	CTTTTCCACT	AATCGGAGCA	ATCAAATCCA	ATGTAGCGGT	TTTTTTAAAA	339420
АААТСТАААА	ACCCCATAAC	ТААТСТССТА	TAAATTTATC	AAAATAACTT	AAAGTTTCTT	339480
GCTTGGAATC	ACTATTTAAA	ACCTTATTTG	CCAATTCTTC	TAATTCCATT	ATTGTATACT	339540
TTTTAAGCAA	ATATTTAATT	CTAAGCGTAG	CACTAGGAAT	CATGCTTAAA	GACCTAAACC	339600
CAAGGCCTAC	AAGAAGCAGT	GCTCCAGCAT	CATCTCCTCC	AAGCTCACCA	CAAACAGACA	339660
CATCAATTCC	AGAACTAACC	CCATCATCAA	GAACCTTTTT	GATTAATTTC	AACACAGCAG	339720
GATTATACTT	GTCATATAAA	TTTGATATCT	TTTGATTACC	ACGATCAACA	GCTAAAACAT	339780
ATTGGGTTAA	ATCGTTAGTC	CCTATGCTAA	AAAATTTCAA	TTTATTGGCA	AGTTTAGAGG	339840
AAATTAAAGC	TGCAGAAGGG	ACTTCTATCA	TGCAACCCAC	TTCCAAATTT	TCATCAAAAG	339900
GCAAGCCTCT	AGACTTTAAG	TTGATTTTTG	CATTATTAAC	AAAATATTCT	ATCGTTTCGA	339960
TCTCTTCATA	TATGGTAAGC	ATAGGAACCA	TTACCCTTAT	CTTACCATAA	TGACTGGCCC	340020
TAAAAATAGC	ATTAAACTGC	GCCTGGATTA	ATTCCTCATA	TTCCTTATAC	ATCCTAAGTG	340080
CCCGAAAGCC	CAAAAAGGGA	TTTTCCTCTT	TCTTAAAATT	AAGATAAGGA	ATTTCTTTAT	340140
CACCACCAAC	ATCAAGAGTA	CGAATCGTAA	CAACCCCTTT	CTTTTCCATT	GTTTCTATAA	340200
CTCTCTTATA	AGTTTCAAAC	TGCTCATCTT	CTGTTGGAGG	TTGTAAAGAT	СТСАТАТАТА	340260
AGAACTCTGT	TCTAAAAAGA	CCTATTCCCT	CAACACCATA	TTTATTAACA	TAGGTAATAT	340320
CAACAGGTGT	TCCAATATTT	GCCTTTAAAA	ACACCTTTGT	GCCATCTTTT	GTTTCAGCAT	340380
CTTTATCTTT	TAAAGAAAAA	AGCTCTTTTT	CTAACTCTAC	TTGTCGCAAA	ATCTTACCTT	340440
CATAAAGATT	AATCTCATCA	GAAGAAGGAT	TTTTAATAAC	AATAGAAGAC	ATTGCATCAA	340500
TTACTATTTT	ATCACCATCC	TTTAACGCAT	CAATATCTGA	CAAAGTCATA	ACAAGCGCTG	340560
GAAGCCCCAT	TGTTCTTGCT	AAAATAGCAG	CATGAGAGGT	TTCTCCTCCA	ACAGCAGTTA	340620
AAAACCCTTT	AACATAATTT	AAGTCAAATT	GCATGGTATC	AGATGGGGTT	AATTcCTCGG	340680
TAACAAGAAT	AATATCTTTA	TTAATCTCAG	AAAAATCGGA	TACTTGGCCT	AAAATGATAG	340740
AAATTAATCT	ATTTCTAATG	TCCTTATAAT	CAGACGCTCT	ТТСТТТТААА	TAAGGATCTT	340800

ТАТААТСТТС	TACACTTTTA	ACCAAATTTT	CAAACGCTAA	ATAAATAGAA	TAAGCAGCGC	340860
TATAATTTTC	CTTTACAATA	AGCTCAATAA	CAAGCTCATC	AAGTTCATCG	TCTTCAACGA	340920
TCAACACCTG	ACCTTCAAAA	ATACCTTTTT	TATCATCTCC	AAATTGAAGC	ATAGCTTTTC	340980
TCTCAAGATC	CCTAAGCGCT	TCAATTGCTT	TTGACTTCGC	TTTATTGAAT	TTTGATATCT	341040
CGCTATCAAC	CTGAGAAAAG	TCTATTTTTT	СТСТАСТТАТ	AATTTTATCA	AAATTTTTCC	341100
TAATACAAAG	AACTTCCCCA	ATGCCTATCC	CTTTGGATAT	TCTTTTGCCC	GATAAAGTCA	341160
TAACTTAAAT	CCTTCTAAAA	TTCATTCCTT	AAAAGATTCG	ATAAGCTCTG	CAAGCTCTGA	341220
AGCAGCAATC	TCTTCATCCT	CACCCTCAGC	ACATATCAAA	AGCTTTTTAC	CTGATGATAA	341280
TTCCAAAGTT	TGAAGCCTGA	ACAAACTTTT	TCCGCTAACA	GACTTTCCAT	CAGATTCTAT	341340
TGTTATCTCG	CTAGAATACT	CTTTAGCTTT	TTTTACAAAA	GTTGATGCAG	GCCTAACATG	341400
CAAACCGTTT	ACAGCCTTAA	TAATTGCTTC	TTTTTTTACC	ATAAGTACAG	AAACCCCTCA	341460
TTATGAATAT	TGTTTTTTT	GATTAACTTT	ТТАСАТТАТА	АТАСАТАААА	АТАААТТАТА	341520
TATTCCCTTT	ACATAAGAAA	TATAGCATAA	TAAAGATAGT	AATTAAACTT	ATTCTAACAA	341580
TTAAAAATTA	AAACTCATTA	ATATGTCTAA	ATAAAAATTC	TTTATTAGCT	TTAAATTTCT	341640
CTCTCCTATG	TTGAAATTTT	TAGAATCTCT	TATATTTTTA	TCCAACATTT	TAAGAGAATT	341700
TTCTATCTCA	GAAAATGAAA	GCGGCAAAGA	TTTGTTTAAA	AGTAAAATCT	GGAAATCCTT	341760
TATGACTATC	ACCTTGTCAT	САТААААТАТ	CTTTAACAAA	AAATCATTTA	TAATGTCTCT	341820
TTTTATGTTT	AAAAGAATAC	АТАТАААААТ	AATGTCCGAT	TCTTCTAAAA	TGTCAAAAGA	341880
CAAAGTATTG	AAAAATATTT	TATGATAAAA	GCTTCTGTTC	CATAAATTCA	TCATTGGAAA	341940
TTTAAATTTA	GTAATAAGAA	CAGTGTTTCG	ATTTGCAATA	TATTCAGCTC	ТАТТТАААТТ	342000
ATAAGCACTA	AAAACATAAG	TTTTTTTGGT	TAAAACATTT	TTAAACTCAA	TTTGAGCATC	342060
AAGACTTATC	AACAAAGGAT	AAATATCAAA	AACGGTGTTT	ТТАТААТААА	ACCCATTTGC	342120
AAGGTTAATA	СТАТТТАААТ	ATATTTTATC	ATTAAATTTT	GAAATAAATT	САТААААСАА	342180
ACTTGGAATA	TTTTTCTTAC	CAATCCGAAG	TATCTCGTTG	TAAGTCACAC	AAGGCCCCAT	342240
CTCAAGAAAA	TTACCCCTTA	AAGATACCTT	ATTAAATTTT	TCAAAATTAC	СААСААТААА	342300
AAAATTATCA	ATGGGTGTTT	СТСТАТТААА	CAAATCAGGA	ТТТТТТТТАА	AATCCAGCTC	342360
ATTATAAATG	АТАТААТТАТ	TTAAATTTTT	GTTAAATAAA	TTAGATAGTA	ТАТТААААСТ	342420
TTCAGGATAA	TAAACCTTAA	CATTAGCCAT	TTTTTCTATA	CAATTCTTCA	GCTTTCAAAT	342480
AAAGAGATAA	AAAAGTATTA	ACATCCATAC	AATTACATTT	TAATGACTTT	CTATAGCCTA	342540

		351			
AAATATCTGA TTTGCTTA					342600
ATTCAAAACA ATTGCTAC					342660
TATAAAAACT TTTTTTCT	PA AGTCCTTCA	A GGGTAACTAC	ATTCCGACCA	AATAAAATTT A	342720
AAGCGGGAAT TAAATCAG	AA TAAACAAGT	T TGAAATCCA	A TAAAATTAAA	AAAAATCTGT	342780
TATTAACAAT GTACTCCAA	AA CTATTGCTC	T TAGCAAAAA	A AATAGAATCO	AAAAGATTTC	342840
TGGTCCCCAA AGAAAGAC	TA ATCTTTTTT	G AAATACTCTC	TCCATTTAAG	TTGAAATTAA	342900
TTAATGTCAA TTTTTATAC	CT CCAACTATT	г аааатттстт	CAAAATCAAG	GGGCGTTTTG	342960
CTTGCATTAA AATCAAATA	CTGAATCAA	A GCAGTTCGAA	TTGCAGAAAC	AGAAACAATA	343020
AAAACACTTC TAAAAGAAA	A AATAAACTC	G CCATCTTCAA	ТАААСТСТАА	GCTTAAACAA	343080
TCTTTAATAT CGCAACTTA	C ATTAGCACGA	A CAAAATACAT	AATCAACCGC	ТААТССАААТ	343140
ATTGTGCGAA TTCTCTTGT	T ATTTAACTT	A AGCTTAGTAA	ATTTGCCTTG	TTCTACAAAA	343200
AAGCTCACAT TGCTAAAAA	C AGCGCTAAGA	. GААТААААТТ	CAAATTTAAG	CTCAACAGAA	343260
CACCCAAGCA CACAATCAT	T AACATCGCTA	ATAGCTATTT	TTTCCTTAAA	AACTACAGGA	343320
ТАТТСАТТТА ТААААТСТС	A ATCTATCAAA	GAAGAAAAT	TGTCCTTAAT	АСТТААААТТ	343380
GCTTTTTCAA TTAAATAAG	G ATCTTTAAAA	AGAAGGTTAT	AAAAATTACC	AAAATCTAAT	343440
ACACTCTCGC CTATCAAAA	A ATTTACACTG	CTATAAGGCA	AGCCCAGTGT	TTTAGCCAAA	343500
CTATTTTTCA AATAATTGC	T TAAATTGTTG	TCAATAATAC	TGTAGGGCAA	AAATACATTT	343560
AATCCATCCT TGTATAAGA	A AGCAACAACA	TATTGCTCTT	CGCTTAAAAA	ATAAGCACTT	343620
GAATTCAAAT AAGCAAAAC	C AACTCCCCTT	CGACTAGTAT	CAAAAATGTC	АТААТССТТА	343680
TTAACACTTA AAACGGCAG	A TTTCTTTATT	AAAGAATTTT	TTAAATCTAG	TTTTTTAAAA	343740
ATTTTTAAAA AACTAGCATA	A ATCACCTTTA	ATCTGTGTAA	GCAAATAACC	TATTGGCTCA	343800
CAAGACATCG ACAAAGCAA	AAAAATATTA E	TTGGAATAAA	ТААААТТАТА	AACAGAAGTC	343860
TCAAATGCCA AAAGATTGT	CATAAAAAAAG	ATAAAATCGC	TTTTATTCTC	ААСАААААА	343920
ATTTCTAAAA ACCCATCAAA	A AAACAAATTT	TTGAAAATAT	TATTAATAAA	ТТТААААТАА	343980
AACTTATATA AAAAATTTAA	A AGGTCTATTT	ATTATAATTT	СТААААТААТ	TTTTGAGAGC	344040
TTATTATCCG CCACTAAACA	ATTAGAAACT	GAAAAAGTTA	ААТТТАААТТ	АТСТААААТТ	344100
CCAAAATGTC TTTTGTAGTA	AACAATATTA	ACCCTTTTAT	ТААТСТТТТТ	TGAAATTACA	344160
ATGCCTTGTA AAATTGCATT	` AAAAGAAATA	GGGAAAATAG	AGCTAGACCA	GТААТТАТСА	344220
AGAGAATTTA TTTTTATTTT	GTCTTTACTT	ACACCAAAAT	TTTCACTAAT .	AAAAAATTTT	344280
AAAAAAGAAA TATTGTCTAC	ATTAGCATCA	ТАДАТТАДТ	TTTCAGAATC .	ТТАТААААА	344340

ТТААСТАААА	TAAAATCATC	TGAAAAACTA	TTGTAATCGC	TAAATTCATA	ACAAGCATTC	344400
AAAACATTGC	AAGTTCCAGA	CTCTTTCTTT	GTAAATCCAG	AAGAATAACT	ACTATTCGCA	344460
TÇACCAACTC	TTAGATTAAA	AAGAACACTT	TTTTCTGCTT	TTAGTAAATA	ATCCAAATTG	344520
TCTGAATACA	AAACCAAAGG	AATTTGACCT	TCAAAGCTTA	TTTTATTGTC	AAAAAGCTTC	344580
AAGTTAAATT	CATTAGAATC	AACAAAATCT	СТАААСТТТА	AAGTTATATT	АТСТТТАТАА	344640
CTGATGCTAA	AAATTGAATT	TACATGTTCA	TCTACAAAAC	TAAAATCTTC	AATAAAAGAA	344700
TCTTTAACAT	TGCAGCAAAC	TGGCAAAGCC	CAAAATTCAT	GCGCATCCAC	ATTTGTTAAA	344760
СТСАААААСТ	CCACCAAACA	AAAAAATTAA	ATTAGTAAAA	ACCTAACATT	GCATAAATAA	344820
AAAGGATTAA	AAAATAAAAC	CTCAAAAACA	TCCGACCCTA	СССААТАСАТ	GCAACAATCT	344880
ТААААТАААТ	TAATAAAAA	TTCACTTAAA	ACTAATTTGA	AAACAGCACT	ATTTGTCAAT	344940
AAAAATAGCC	CCCGGCTATT	TTTATCTCTT	TTGATAAATG	GACAAATTAT	GCTAACATTA	345000
TAAATTATAG	ATGTTTTCTG	AATAAAAACA	AGGACCTTAT	GAATAAAACA	AAAAATCGAA	345060
GCCTTACGTA	ТТТТАТААТА	CTTTCATGTA	TATCATTATT	TGGGGCTAAT	AATAATACAA	345120
TAAGCTACTC	TAGCATTGAA	ATTCCTCTAG	AAGACTTAAG	TGAAGAATTT	AAAAGTTCTG	345180
GGAATAAAAG	CGATCAAATA	AATACCTCAA	AACATTTAAA	САААААСАТА	GTTTCTTATG	345240
AAGACCCAAA	AAAGGGTAAA	GATCTAAAAT	TGCCAGAAAA	TATAAGAGAC	AAAAAACTAC	345300
CCCAAAAAAG	AATGGACGAA	AATGATCTAA	AATCTGTAAT	TGAAAATTAT	GAAAATAAAA	345360
TTAAAAACAT	AGAAAAGCTT	TTAAAAACCA	ААААТСАААА	AACATCGGAA	AATGAAAATA	345420
AAAAAATAGA	ATCAATCGAA	AAAAAAGCAA	AAAAATATGA	AATTTTAACC	AATTAAATTAA	345480
AAAACGAAAT	AGTAGAAATA	AAAAAGCTCC	TTAACAAAAA	AATCAAGCCT	AAAGAAGATG	345540
AAAATTACGA	ТАААТАААТ	ATTGAAAACA	TTGAAGAAGA	AACTGATGAT	GATTTTGAAG	345600
ACAATTATGA	ATATAATGAT	GAAATTGAAG	mAACAAATGA	GGACAATTAC	CCTTCTAATG	345660
AAGGAATAAT	AAACAATCTA	AAAGAAAATC	TTAATGAAAA	CGAAAAATAT	TATGCTATTA	345720
ATGAAAAAA	AATCGATGAA	CTTGAAGACA	GAATCAACGA	GAATGAAAAC	ACTATTTTAG	345780
ACTTGCAAAG	AGAATTAAGG	AATTTTAAAA	AAAAAGATAA	CTCAGATAAA	AACTTAGAAG	345840
AAATTGAGGA	AAATTTATCT	TCAATAGGAA	GAATAATTAA	TGATCTAAAA	AGAAAAATCA	345900
GCGCAAATGA	AGCAATAAAC	AAAGAAAATC	TAAAAAAA	AAGAACTGAT	AAACACAAAC	345960
TCAAAGAATT	AGAAGATAAA	ATAAAGGAAA	ATGAAGAGAC	ТАТТТТАААА	CTTCAAAAAG	346020
AATTAAACAA	TTTTAAAAAA	AAAGAAATTT	ATCAAAAACC	CTTAAATGAA	GAAACTTTCA	346080

			353			
CTCCAAGCAT	TACAAGTAAA	AATGACGACT	TAGAAGAAAA	TAAGAAATTA	AAAAAGGAAT	346140
ATTTAAAGCC	CATAGAAAAA	AAAGAAAGCC	GAGATCTAGA	AGAAAATACT	AAAAGCACCC	346200
CAAAAACAAC	TATGATAAAA	ACAGCAGATT	TTCAAATCTA	CCCTGACATA	ТАТСТТААТА	346260
АТТАТАААТТ	TAAAGAAAAG	GGAGATCAAT	TTGCATTTAA	AAAAGAAAAC	ACATACTATA	346320
TTGAAATAGA	TCCCACTAAC	AATTTAAATG	AGGCTTTAAA	AAATCATGAA	ATAATCTCAA	346380
AATATAAATT	TGAAAAATAT	TTCATTAACC	CTATTCTAAA	AAATAAAGAA	GAATTTTTTA	346440
GAAACTTAAT	AGAAGTCAAA	AATATCCACG	AACTAGGAAT	TATGTATAAA	AATCTAAAGC	346500
CTGAATTTAA	GCAAATAAAA	TAAATTAATA	AAAAATAAAC	ACTTTTATCC	AACTAATCTA	346560
AGTAACTTTT	TATGTCTTCA	AAAGACATAA	TTTTTATATT	ТАААСТСААА	GCTTTTTTAA	346620
GCTTTGATCC	AGCTTTTTCT	CCTACAATAA	GAAAATCTAA	ACTCCCAGTC	ACACAAGTAT	346680
TAAAAATTGC	TCCTTTATTT	TTTAGCTTAT	СААТААТААТ	AGACCTGGAA	TAACCATTAA	346740
AAGTTCCAGT	AATGCAAAAC	TTTTTACCGG	ССААТААСТТ	ATTCTCACCA	TCAATCGCAA	346800
CAACCTCTTC	CATTTTAAAT	TCCAAATTTT	СААААААТТТ	AAACTTATTA	AGCATTACTG	346860
AATCATTAAA	AGCTTCAATA	ATATTTAAAG	CAATTTTTC	TCCTATGCCT	TTAATTTTCA	346920
ACAATGTTGA	AAATGCAAAA	TATCTGTCTT	GACAAAGCTT	AAAAAGCTTT	GAAAATGAAT	346980
TTAAATTATT	AAGAAACAAC	AACCTTATTG	TATTTTCCCC	TAAATCTTTA	ATTCCCATAC	347040
TAAGAAGTAA	TTTACTAAAT	GGTTTTTTT	TGCTAGCTTC	AATTGAATTT	ATCAAATTAT	347100
TTATCTTTCT	ATCTTTAAAC	CCTTTAAATT	CAAGAAGCTT	ATAAAAATCA	AAAGTATAAA	347160
GATCAATTTC	TGAAAAAATA	AATTTTTTTT	CAAAAAGAAA	AGAAATTATC	TTGTCGGAAA	347220
ACCCTTCAAT	ATCCATACAA	TTTTTACTAC	AAAAATATTT	TATTCTCTCA	ACTGCTACTG	347280
AAGGACAATT	ATTATTTGGA	СААААААААТ	GTGCCCCCTC	TTTTACTACA	GCCGTTTTAC	347340
AAGCTGGGCA	ATTATCAGGA	ACTTTGAAAA	ATCCTGTTGA	AAATTTATTT	ATCACCATTT	347400
CAACAGCAGG	AATTACATCT	CCTCTTCTTG	AAACTTTAAC	AACATCACCA	ACATTCAACC	347460
CAATAGACCT	TATATAATCT	TGATTGTGTA	ACGTTGCACT	AGTAATAAAA	GCTCCTGAAA	347520
CAAAAACTTT	ATCAATATTA	GCAACCGGAG	TAATTTTACC	ACTACGTCCA	ACCTGAACAA	347580
CAATGCTATT	TACCCTACTA	AAACCCGAAA	GCGCTTCAAA	TTTGTAAGCC	ATTGCCCATT	347640
TGGGATGATG	TGCAGTATAC	CCCAATCTTT	CTCTTAAAGC	ААААТСАСТА	ACCTTAAGAA	347700
CAACACCATC	TATTTCATAT	TCAAAAGAAT	CTCTTTTTTT	ТСТТАТАТСТ	GCTATGTAAT	347760
TTAAAACTTC	TCCAATTGAA	TTTTTTAGAT	CAAAAAACCT	AATCAAGGGA	TTGACTTTAA	347820
AACCCAATTT	CTTAAGTCTT	GCAGTAGCTA	AATCATTGGT	ТТТАААТТСТ	AATCCAGCAT	347880

TCAAAAAATC	ATAAATGAAA	ATATTTAAAG	GAAAATTAGC	GACTTCTCTA	CTATCAACCC	347940
TTCTAAGTAT	TCCCGAAGCC	AAATTTCTAG	AATTCGTATA	AGGCTTTTCC	AAAAATTTAT	348000
TTATTTTCAA	AAAATTTTCT	TTAGTAATAT	AAACCTCACC	CCTTAATACT	AAATCAACCT	348060
TTTCATCAAG	AAATAAAGGT	АТАТАТСТАА	TGGTTCTAAC	GTTTATAGTA	ACATCATTAC	348120
CAAATTTTCC	ATTACCTCTA	GTAAGAGCTT	TTTCAAGAAC	GCCATCTTTA	TAATAAAGAA	348180
CGATAGAACA	TCCATCAATC	TTTGGCTCAA	CAGAAATGTT	AAAAGAATTA	ТТААААТСАА	348240
TCTTATCTAT	CCATGATTTT	AGCAAATCAA	GATCATAAAC	CTTATCAAGA	CTTAATATAG	348300
GTGCAGAATG	TTCAACCTCT	TTAAAATCAT	TTAAAAGATC	GCTGCCAAAT	TTAAGAGTAG	348360
GAGAATCTAA	GGTCTTATAT	TCAGGGTACT	TACTTTCTAG	CTCTTGAAGC	СТТААААТАТ	348420
GCTTATCATA	TACAAAATCT	TCAACACTAG	GCAAAGAATC	GACATAATAT	TCTTTATCCC	348480
ACTTTCTAAT	CAACTTCTTC	AAGTCTGCAA	TTTCTTGCTG	TACTTTGCTG	CTCATAGGGT	348540
AAAATTTAAC	ATATTCTTTA	TTATTTTATC	AAACAATTCT	AACAAGCAAA	AACCGACTTT	348600
ACTATACAAA	CTGTAAAATA	CCACCAAAAA	TACATGCTAT	TTTATTTATG	ТТСАААТТАА	348660
AATAATCTTT	AAAGAAAAAT	ATCAATCAAA	AAGACAATAT	TATAAAAATG	TGAATTATAT	348720
TTTAATTGTC	GTTAAAGATA	TTTTAATATG	CTAGAATGGA	TAAAAGGAGT	GCTAGTTTGG	348780
AAGAAAGCAA	AAAAGCTTTA	ATAGCTGATG	ACTCACTTTT	TATGAGAAAA	AACCTAATAA	348840
AAATCTTAAG	TCAATTGGGA	TTTAAAGAAT	TTTTAGAAGC	CGAAGATGGC	ATTCAGGCTG	348900
TTAAAGAATT	TGAAAAACAA	AATAATATTG	ATTTAATAAC	ACTCGATATA	ACAATGATGG	348960
GAATGGATGG	AATCACAGCT	CTTGAGAGAA	TGTATGAAAT	ТААТААААА	TTGCTTAAAA	349020
AAGTTAATAT	ATTAATGGTT	ACAGCTATTG	GAAAACAAGA	ATTAATACAA	AAAGCTTTAT	349080
CTCTTGGAGC	TAGAGGATAT	ATTACAAAAC	СТТТТААААА	AGAACAAATA	ATAGAGCAAA	349140
TTAAACTTTT	GGATTAGAGG	AAATTTTGAT	AGCAAAAGAA	AAAATATACA	AACAAACACA	349200
AGTAAACACA	TCAAATCCCC	TATCAATATT	GATAATGCTT	TATGAGAAAG	CAATACAGGA	349260
TTTAAAAGTT	GCAAAAGAGC	TTATAAAAGA	TGAAAATTGG	CAAAATGCAG	TTAAAGCTAA	349320
TGAAAAAATC	TTTCATGCAC	AAGAAATCAT	TACTGAATTA	ATGTCAACCT	TAAATTTTGA	349380
GCAAGGCGGA	AACATTTCTA	CAAATTTACT	CTCAATATAC	TTGTTTCTAA	ATAAAGAGCT	349440
AGAAAATGTT	CTTTTGAAAA	AAGAAATACA	CAAAATTGAC	AATGTCATAA	AACAACTGCA	349500
AATATTAAGC	TTTGCCTGGA	AAAAATTAAG	CAAAAAAGAA	ААТААТАТТА	CTCAAAGTAA	349560
TAATGTTACT	CAAAGTAAAT	TAGGAATCAA	TATTGTCGGC	TAATGAAATT	ТТАААААААС	349620

ATTTTAGAAA	ATTATTATTA	GAATTAAAAG	AATTGAAATT	ААТАТТААСА	ATAGAAAGTA	349680
ATGAATTGCA	AAGAGAAGAA	ATAGAAATAT	TAAGTATAAC	CAATCCTAAG	AAAGATTTAA	349740
TATTAGAATO	AATCAAAAAC	ТАТТАТААА	CAATAAATGC	ATGGTTAAAA	TTTAAAAAACC	349800
AAAAATTGGA	TAATTTTGAT	ТАСТТААТТА	AAGAAATTAA	ТСТАСТАААА	GAAGAAATAT	349860
АСАТТАААТА	TCAAATTTGT	TGTGAAATCT	ТАСААСАААТ	TGCAAATGCA	AAAAGAAAAA	349920
ТТССАААААТ	TAAAAAGCTC	CAAAACCTTG	CAGTAAACAA	TTCACCCATA	ATGTTAGATA	349980
TTAAAATATG	AAAGAACTTT	ACCTAATTGA	TGCACTAAAC	ATAATATTTA	GAAATTATCA	350040
CGTAATGAAA	AATTATCCAC	TTTTAAACAC	ACAAGGAGAA	AATGTAAACG	CATTTATTGG	350100
СТТТТТСААА	ACATTATTTT	ТСАТААТААА	AGAAAAAAT	CCTGAACATT	TGATTATCAC	350160
CTTTGACTCA	GAGGTACCAA	CTTTTAGAAA	АСАААААТАТ	CCAAGCTACA	AGGCAACAAG	350220
AGATTTACCT	CCGGACGATT	TAATACCTCA	AATAGGATGG	ATAAAAGAAG	GCCTTTTAAA	350280
GGCAAAAATA	CCAATCTTTG	AGATGGAAGG	CTACGAAGCT	GACGATCTTT	TAGCTAGTTT	350340
TGCCAAAAAG	GCTGCAAAGA	ATAACTATTT	AACTTACATT	ATTTCTCCAG	ATAAAGACTT	350400
GCTGCAAACA	ATGTCAGAGT	ACGTAAAAAT	ACTTAAAATT	GAAAACAACA	GCTTTATTGA	350460
AATGGATAAT	GAGTACGTAA	САААААААТТ	TGGAGTAAAT	AGCTTTCAAA	TAAAAGATTA	350520
TTTAGCTATT	GTTGGAGACA	GGTCTGACAA	TATACCTGGA	ATAAAAGGCA	TTGGCGCAAA	350580
AGGAGCAGCA	AATTTATTAA	GAGAATTTAA	AACCTTAGAC	GGGATATATT	CAAATTTAGA	350640
ААТААТАААТ	AAAAAACACC	GAGAACTTTT	AATCAAAGAA	AAAGAAAATG	CTTTTTTAAG	350700
CTATGAACTT	GTAAGTCTTG	AAGAAAATTT	AAAAATTCCA	GAAATTGAAA	ACTTCGCCTT	350760
AAAAAATTTT	AGCGAAGAGA	TAATATCTTT	GTTTGAAAAG	CACTCAGCAA	TTGCCCTAAT	350820
AAAAACTTAT	AAAAAGGATA	TCTTAAAACA	AGAAAAGAA	AATGCAGACC	AAAAAAGTCT	350880
ATTTAAGCAA	GAACCTACTA	CCAACAGCTT	AGATGACATA	AATACAATTG	ACACAGAAAA	350940
TGTTAAATAC	CGCTCAATAA	CAACAAAAAT	AGAGCTTGAT	GATTTAATAG	AAAGCCTTAA	351000
AAAGGCTAAA	TACATATCAA	TAGACACAGA	AACGTCTTCG	CTTGATACTT	ACACAGCAAA	351060
ATTAATTGGG	ATTTCTATTT	CATTTAAAGA	ATTTGAAGGT	TACTATATTC	CAATCGAAGC	351120
CAAAGGAAAA	ATTTACATAG	ААААААСТА	ТАТААТАСАА	AAATTTAACA	ATCTTTTTGA	351180
ATCAAATCCA	AAAATAATTG	GTCAAAATTA	TAAATTTGAC	ТАТААААТАС	ТТАААААСАА	351240
TGGATTTAAC	CCTATACCAC	CTTATTTTGA	CACAATGATT	GCTGCATACC	TTATCGACAC	351300
AAACTCAAAA	GTATCGCTTG	ATTTTCTTGC	AGAAAAATAT	TTAATGCATA	AAAACATTAA	351360
ATATGAAGAT	GTGATACAAA	AAAATGACAA	CTTCGCAAAT	ATATCTTTAG .	AAATGGCAAC	351420

AAGCTATTCA	TCCGAAGATG	CTGATATTAC	ATTTAGATTA	TTTAATATAT	TTACCAAAAA	351480
ATTAAAAGAA	GACAAACTCG	ACAAGTTAAT	GCACGAAATA	GAAATGCCTT	TTAACAAGGT	351540
GATTATAGAA	ATGGAAGAAA	ATGGAATTTA	CCTTGATAAA	GAATATTTAA	AAGAATATGG	351600
AAAAGAACTT	GGAAAAGAAT	TAGAAGCAAT	CGAAAACGAA	ATAATAAAA	GCATAGGAAT	351660
TGATTTTAAT	CTAAATTCTC	СААААСАААТ	GCATGAAATT	TTATTTGAAA	ААТТАААТСТ	351720
AAAATTACCA	GAAAAAATGA	AAAAAGATTC	AACTGATATA	AAAGTGCTTG	AATCTCTCAG	351780
AGAACAGCAT	GAATCAATTG	AAAATCTAAT	AAAATACAGA	CAAATTGCAA	AATTGAAGAG	351840
TACTTACACA	GATAATTTGA	TAGAACTAAT	АААСТАТААА	ACAAACAGAC	TGCACACAAG	351900
CTTTATACAA	ACAAAAACAG	CAACTGGTAG	AATCACTAGC	АТАААСССТА	ACTTGCAAAA	351960
CATACCAATA	AAAGATGAAA	AAGGGCGAAA	AATAAGAAAA	GCATTTAAAC	CAGAAAATGG	352020
AAATATTTTT	ATTTCAGCTG	ATTATTCTCA	AATTGAGCTT	GCTATACTTG	CTCATTTATC	352080
ACAAGATGAA	GTCCTTATTA	AAGCATTTGA	АААТААТААА	GACATTCATA	CAGAAACTGC	352140
TTCTAAGCTT	TTCAAAATAG	AAGAAAAAGA	AATTACTCCT	AACTTGAGAA	GAATAGCAAA	352200
АТСТАТТААТ	TTTGGAATAA	TTTATAGAAT	GTCAGATTTT	AGACTTGCAA	AAGAACTGGG	352260
AATTACAAAA	GAAGAGGCAA	AAGGATTTAT	AAACTCTTAC	TTTGATTCTT	ATCCAAAAAT	352320
CAAAGAGTTT	ATAATAAATC	AAATAAACTT	CGTAAGAAAT	GCTGGATATA	GCGAAACCAT	352380
CTTAAAAAGA	AGAAGATATA	TAAAAGAAAT	TAATAGCAAT	AATTATCTGG	AAAGATCTGC	352440
CGCTGAAAGA	ATAGCAATAA	ATAGCATAAT	TCAGGGAAGT	GCCGCCGATA	TCATGAAAAT	352500
TGCAATGGTC	AAAGTATTTA	ATGAATTTAA	AAGTAAAAA	ATGGAATCAA	AAATATTGCT	352560
ACAGGTGCAC	GATGAAATGC	TCATTGAATC	TCCTATTGAA	GAAGAAAATG	AAGTGAAAAA	352620
AATATTAAAA	ATTATGATGG	AAACTGCTTA	CACATTAAAT	CTGCCTTTAA	GAGCAAATAT	352680
TGAAACGGGT	AAATCGTGGG	GAGAAATCCA	TTAATCATTG	GAGTAACAGG	AAGAATTGCA	352740
TCTGGCAAAG	ATACTGTTTC	AAAAATAATT	AGCAATAAAT	ATGGATTTTA	CGAAATAAAT	352800
GCAGACAAGC	TTGGACATTC	AGTATTACAT	GAAAAAAAAG	AAGAAATAGT	ТААААТАТТТ	352860
GGTCAAAAAA	TATTAAATAC	TAAAAATGAA	ATAGACAAAC	TCTTACTAAG	AAATCTTGTA	352920
TTTAATGACA	ATAAAGAATT	AAAAAAGCTT	GAAAGCGTAT	CACACCCAGT	CATACTCAGC	352980
AAAATAAAA	AAATCCTAAT	CCAAAACCAA	ТСТАСААААА	ТААТААТТАА	TGCTGCTTTA	353040
СТТТТТАААА	TGAATTTGGA	AAAACTTTGC	GACTACATAA	TTGTGCTTAA	GGCAAAGAAT	353100
ТСТАТААТАА	AAAATAGATT	АТСАТАТТСТ	АТАССАААСА	TTGATTCAAA	TATGATTAAT	353160

\neg	_	_
٠.	_	•

357		
AAAATACTCA AAATCCAAAA AGATATTTTT TTTGAAAAAA ATATTAT	'ААА СТТАААААТА	353220
АТСААТАТАА ТТААТААСАА GAATTATGCA ТАТСТАGAAA AAGAAAT	TGA AAAAAAATG	353280
CAGGGGATAA TTAACTATGA AAGATTTGAA TGAAAACAAT GATAATA	ATA AAGGATTTTT	353340
TGTAGCATTA ACATCAATTG CAACAGTTTG TATCATAATA TTTCTTG	GGA CAATTATTT	353400
CTTTCCAAAC AAAAATTTGG CTTCAGACAT TGCAGAAAAA AATATTG	TTT TAGAAGAAGA	353460
TAAAGATCCA AACACCTTAG AAAAGGTTGA CCAAAATGAA AAATCTT	TAA AGGTATCTGA	353520
AACTCAAAAT GAAATAATTA TAGATTTAAC ACAAGATTTA AATAAAG	AAA AAAAACCTAC	353580
AAACAAAATA CCTAATACTC AGAAATCAAA AATCATCGAA AAGCCTCA	AAC CCACAACTCA	353640
AAAAATATCT AATACTTCTC AGAAATCAAA AACCATCGAA AAGCCTCA	AAC CCACAACTCA	353700
AAAAATATCT AATACTTCTC AGAAATCAAA AACCATCGAA AAGCCTCA	AAC CCACAACTCA	353760
AAAAATATCT AATACTTCTC AGAAATCAAA AACCATCGAA AAGCCTCA	AC CCACAACTCA	353820
AAAAATATCT AATACTTCTC AGAAATCAAA AACCATCGAA AAGCCTCA	AC CCATAGCCCA	353880
AAAAACTTTA AATACTGATA ACATTTATGA TCCTAATATA GAATATTA	CA TACAATTTGT	353940
ATCACTCTCA GACCCAATCA ATGCAGACAA CTATATTCAA AAATTACT	СА ААТАТААТАТ	354000
AATTGCTAGA ATATATTCTG CAACAGTAGA TAATAAAGAT ATTTACAG	AG TAAGATCTGG	354060
TCCTTATAAA ACAAAATCAG AAGCAAAAGC AGACTTTAAA AAAATAGC	AG GAATAGGTGA	354120
ATTTAAAGAA ACTTATATAT TACCCGTTAA CAAATAGACT ATAATTAT	ТА АТАТАТТТТ	354180
GATATTTTC TAAATATTCT TCATGAACCT CAATAATAGG CGAAACAA	CA TGCTTAATCT	354240
TTGTAAGTTT TAAAAAAGAA TCATTTAAGC TGCCAAATTC TCTTAAAG	AA TAGAATGCTT	354300
GAATTGCTCC CCCAATAATC TCTGAATGCT TAAAATCAAA AATTTTTA	AA TCTTTGCCAA	354360
GAATATTTGC CTTTATTTGA TTTAAAAGCA AATTATCAGA ATTAGACCO	CA CTAACAAAAA	354420
TGCTCAAAAT TTCTTTATTG CAGGCTTTTA GCTCTACCAA TCTGTTGT	AA AAAGCAAAAC	354480
ATACAAACTC AAGTATTGAT AAACCAATCT CTAATGGATT TTTAATAC	ГА ССААААТТС	354540
CTTTACTTAG ATCTTTGCAA AGACAAGGAT CTAAAACAAA TAAATCATT	FA AAAAGTTTAA	354600
TTTTGCTTGG ATAAAAGTAT ACATTATTTA AAGTGACACT TTTAACAAT	TT TTTTTAAGA	354660
GCAACTCAAA AGTTAAACTT TTTTTATAAA AACTGTCTTT TAATAATTC	ATCAAATATC	354720
CAAAAGGAAC AATTCTCCCA ATAATAAAAA ATCCTTCTAA AAAATAAGG	GA TATTCTAGAG	354780
AAAATCCTGG TAAATATGTA CTTGAAACAA AATTAAACCC TTCACTTGT	A CCCATTCTAT	354840
TTGACACAAT TCCTTCTTGA AAAGCACCAC TTCCCACCAA AGCATTCAA	A TAATCTGATC	354900
CCGCATTAAT TACGCTAATT CCACTATTTA GCCCAAATTC AATTCCTGC	T TTATAAGTTA	354960

CAACGCCAAT ATTTTCTCCC ATTTTTACAA ATGGAGGAAA TTTATTCTTG TCAAGCCCAT	355020
ATTTTTTAT CTCTATATCA TCCCAAATAA AAGGAATATA CTCCATGCTT GGAAAGCTTG	355080
TAAAAAGCTT TCCTGTAAGC AAATAAATAA AATACTCAAA ACAAGAAACA AAATAGCTTA	355140
TTTTAGAATA TGTTCCTCTT TCAACCGTAC TAAGTACATA GGGCAAAAAT ACAGACTTAC	355200
CCTTAAAATA AGACTTAATT TTAAAGGAAT TCCAATGCAA CACTTCCAAA GGAATTAAAT	355260
TTGAATTTAA AGCAATTAAA CATGGCGAAA TGCCGCCAAC AGAAATGCAA TCTATTTTGC	355320
TAGGCTTAAA ATTGGATATG GCTTTCTTAA AAGAAAAAAG CCATATATTA AAGTCAAAAT	355380
TTTCGAAATC AACATCAAAA TAATCTGAGT AACTAACATC AATATAACTT AAAACTCCAT	355440
TTTTAGAACT AACTAATGCT GCCTTTAAAA CACTGGTACC AATATCAATA CTAAGAGCAT	355500
TCATAAATTA ACCCTTGGTA ATCAATTTTT GAATATCATC CTTTCTATCA AGAATTTTTT	355560
GCAAACCAAC TTTATTATAA ATTGCAAATA TTGCCTCCGC AAAAAGAGGC GCAACATTAG	355620
CCTCATGATA CCAAGGTTTA TTTATTAATT CATCATTATG ACAAACAGCA TTTGTTCCAA	355680
TTATTTTATA AAAAAATCCC TCCTCATAAG CTTTATCAAA ATATTTAATA GCATCTCCAT	355740
TGAAAAACGG CAAACTAATC CCACATATAA TCTTCTTAGC ACCCATGCTT TTAAGTAATT	355800
TCATTGCCTT AATTAGAGTG CCCCCAGTAG CTAACATGTC GTCACTCATA AAAACATTCT	355860
TGCCTTCGAC ATCTCCTAAA AGCTTGGTTA CAGAAATATT TGAATCAGCA ACATCATTTG	355920
AAACTCTTGA ATAATCTCTC TCCTTATAAA GCAAAGCAAG AGGGCTCTTA AGGCTTGATG	355980
CAAAAATTT ATTTCTACTT ACAGCACCTG TATCGGGTGA AACAATAACT AAATTAGAAT	356040
CTCTAATGTC GATTAAATCC TTAAGAGAAT TAAAGATTTC ATAAGAAACA TTTAAATTTT	356100
CAAAATAAAC TTTCCTAAAG ACATTCTCAA TAGCCTTTGA GTGAATATCT AGGGTTAAAA	356160
TATGTCTAAT GCCCAACTCT TCTAAAAATC TTCCAATAAG ACTTGCTGTT AAGCATTCTC	356220
	356280
	356340
CCGTCATAAT TATTTTTTCG CTACTGTTTA TCTCAACTTC ATAAGCATTA GCAACATCTT	356400
GAACAATAAA AATATCCTTA TTTCTGATTG TTTTTAAAAT TTCTGTTTTA AATTCACCAT	356460
	356520
	356580
	356640
TGTCAAGCTC TTCTATTATT TTACTAGCAA AAACCCTACC CCCAGGACAA GCAATAATTC	356700

CTATTGATTT CTTTTTAAGT AAATTCACCC AGCTCCTCGT TCTTTTTTAG AAAATCTTAA	
CAATCTTAAT TTACTAATTA ATAAAACTTA TACACAAAA TATGACTAAA ATTTTTTAAA	
GCAAGGTCAT TAAAATATTT TAGCTTTAAT AATAAAAATA AAAATCTAAA AATTCTATTA	356880
АТАССААААА САААТАСТАТ ААСАТААТСС ТАААААТААА АТТАААТААА	356940
CCAAATTCAA AACCTATTCC AAACTTGAAA TCAGAAAATT TAGGGTTTTT AATATTCCAA	357000
ACATAGTACC CTTCAAGAAT TAAAAAAGAA AATGAAAGTC TAGCACCAAT ATCCCAGCCC	357060
ATTGTTCCCA GTTCTGCTAA AACAGAATCC GCAGAAGAAG TCGCTATATT GATCTTAGGA	357120
CCTGTGAAAA ACGCTAAAGC TAAAACAAAA AAATCTAATT TTGTATAAAA TCTTGGTGTT	357180
ATTGCCATAA TAAACGAGAA ATTTTCATTT GCAGTTCCAT CCGAACGCTT TATTGCTTTA	357240
AGAAGATTAA TGTTAAACAA AAGCTCAAAT CCAATAGAAA CAAAATCATC AAATTTAGCG	357300
CCAAATTGAG CGTAAGTTCC ATATCTTATT CCAGCTTTAG CAATATTGGC TAAATCGGAA	357360
AAATTTTGGA CTATCTCTTC TTTTTCTATT GGGGATAAAT CTGAAGGCAA ATTTTGCTTA	357420
AGCTTTGCAT TAATCTCTAA AGCCTCATTG TAAAAGCTTG AAAAGGGACT AACAGGAAAA	357480
GCAACCCCAC CACCAAAATT GAATTCAAAA TTAGTATCTG CAAAACCATT TAACACAAAA	357540
ATCCCAAATA AACACAAAAT TAAAACTTTA AGCCTAATCA TATACAAACT CTCCTACAAA	357600
AATTTATGAA AAATAAAACA GGGTTTATAT TGCACACCTT ATTATATAAT AATTACCATA	357660
AAGATTACCA CAAGCAAAAA GTAAACAAAA AAACTTAAAA ATTAACTCTT AAGAATAGAA	357720
GAAACTATTT CTTCCGCACC ACTTGGTATA GGATGATTTA GCTCTTTATA TTTTGAGATA	357780
TATTTTTTTG CATTTTTTTT GTCACTCTTT AAATGATAAA TGTAAAAAAT ATTAAATAGA	357840
GCCTCTTTAT TTGCAGGCGC AAATTCTAGA GTTTTCAAAT AATAAATCAA AGCATTGTCC	357900
AAATCATTTT TTTTAAATAG CAAATATCCC TTAAGATTGA TTAACAAAAT ATTTTCTGGA	357960
TCTTCTTTTA TAATAGAATT AAGTTTCAAC TCAGCCTCAA CATATTTTTT CAAATTAATG	358020
CAAGCTAAAA TAAAATTGTA ACTTGAATCA TCACCAGCAT TAATATTAAA TTTAATAGAT	358080
TTTTCATAAA GCAAAACAGA AGTCTCATCA TTACCAAGCT CTTCATTTAA TTTAGCAAGC	358140
TTATAGTATT CACCTGATAT GTTCTGATAT TCCTTAAAAA TAGAGCTACA AGACAAAACA	358200
AAAACAATAA TAAACAACAA TTTATACATA AAAAATTTAC TTAAATCCTT AATACTATTT	358260
ATACTATTTA AATTATCCAA AGCAGCAAAA TAACACTAAA TCTAATAATA ATCAAAATAC	358320
AAAACTTCAA TGCTGTTGAA TTTTAAAATT AAATAAACCA TCTTGATGAT TATAAAACAA	358380
AATTTATTAC TCTAAAAGCT AGTCATAAAC ATAAATAAGC CCTCCTGCTT TAAAAGCAAA	
AGGGCTTTTA ATACTATCTA AAAAACAAAT TAAAGCTTTT CTTGGTCATA TTTGTTAAAT	358440
TARACTITI CITGGICATA TITGTTAAAT	358500

ASGTTTTGCT GTTAAATATT TACCAACTGA TCTTCTGTCC TCAACAAGTT TAGATATTGC	358560
GCTAAAATGT CTTGGTTCAA TCTTAAAATA CTTATAAGCT CTTCCATCCT TAAAAAACAC	
AGAAAGCTCA GACACAGAAG AATCGTAATC TACTTGTGAT ATTTTGCTCA ACTCATTAGA	
TATTGTTAAA GTTTCCAACT CAAATTCCTC CAAATAATTA TCTTAGGAGT ATAATAATAA	
AGTAAGAGTT AATTCACTAA ATAAAAAGTT TTAATCAATA AAATCAAAAT CTACTAAATG	
ATATATTCCC TAATATAAGG ATATACATTA ATGCAAATTT AATCAAGCAA ACTGTCAAAT	358800
TTCATATAAA ATAGTTTAAA CTTCCAAATA TTTAATAATA TAAAACGATA TAAGATAGAT	358860
TTTTAAAAAA AAATTTTGTA AAATTACTAA GATAGTTAAT CTTCTACCCA CATATCATCA	358920
GGAGGGACAA AGTCTAATGG ACTATAATAA ATTACGAAAC ATAGGTATTA GCGCACACAT	358980
	359040
CGACTCAGGA AAAACCACTC TTACAGAACG TATTCTTTTT TATTGTAATA AAATTCATGC	359100
AATTCACGAA GTAAAAGGCA AAGATGGGGT TGGTGCAACA ATGGACTCAA TGGAACTTGA	359160
AAGAGAAAGA GGAATCACAA TAGCATCAGC TGCAACTCAC GTTGAATGGA AAGATTTTCC	359220
GATAAATATT ATTGATACAC CCGGACACGT AGATTTTACA ATTGAAGTTG AAAGATCTCT	359280
TAGAGTGCTT GACGGGGCAA TATTGGTTCT TGATTCTGTT GCAGGAGTTC AATCCCAATC	359340
AATAACTGTT GATCGACAGC TTAAAAGATA TAGCGTGCCG CGCCTTGCAT TTGTAAACAA	359400
GTGTGATAAA ACCGGAGCAA ATCCCTACAA TGTAAAAGAT CAACTAAGAT CAAAACTTGA	359460
CTTAAACTCC GTTTTAATGC AAATTCCAAT TGGATTAGAA GACAAACATA TTGGAGTTAT	359520
AGACCTTGTA TTAATGAAAG CCTACTATTT TGAAGGAAAA GATGGAACAG AAATAATAGA	359580
AAAAGAAATA CCCTCAGATC TCTTAGAAGA AGCAAAAAGC AAACGAGAAA TAATGcTtGA	359640
TACTCTTGCT GACTTTAATG ATGAACTTAT GGAATTACAC ATGGAAGGAA AAGAAGTTCC	359700
TACTGAAATA ATATACAATG CAACTAGAAC AGGAACATTG GCTTTAAAAT TATGCCCLGT	359760
ATTTATGGGA TCTGCTTATA AAAACAAAGG AGTGCAATTG CTCTTAGATG CTGTAACCAG	359820
ATTTTTGCCA TCCCCTCATG ATATAAAAAA CACCGCTCTT GACCTAAATA ATAATGAAAA	359880
AGAAATCGAT CTTAAAATTG ACAACGAGCT CCCAACTGTT GCTCTTGCAT TTAAACTTGA	359940
AGACGGACAA TACGGACAGT TGACTTATGT GAGAATCTAT CAAGGAATTT TAAAAAAAGG	360000
ACAAGAACTT ATCAACTCAA GAACTTCTAA AAAATTCAAA GTTGGAAGGC TTATCAGAAT	360060
GCATGCCAAT AATACAGAAG ACATTGAATT TGGAGGAAGT GGTGACATTG TTGCTTTATT	360120
TGGAATAGAA TGTGCATCAG GAGATACGTT TTGTGATCCA TCGATCAACT ATTCAATGAC	
ATCAATGTTT ATTCCAGATC CAGTAATTTC TCTTTCTCTA AAACCAAAGC	360180
TOTAL TOTAL TOTAL ANALUMANG ATAAAAATC	360240

361	
TGCTGATAAT ATGGCCAAAG CCCTTGGAAG ATTTACAAAA GAAGATCCAA CATTTAAAAC	
TTATGTTGAC ATTGAATCAA ATGAAACAAT AATTCAAGGA ATGGGAGAGC TACACTTAGA	
AGTTTACATT GAAAGAATGA AAAGAGAGTT CAAGGCAGAA GTTGAAACCG GAATGCCGCA	_
AGTAGCCTAT AGAGAAACGA TTACAAGAAA AGCTGAATTT AATTATACTC ACAAAAAGCA	
ATCTGGAGGA GCTGGTCAGT TTGGACGAGT TGCAGGGTTT ATGGAACCTC TTGACAAAGA	
AGGAGAAACA TACGAATTTG TCAATCTAAT AAAAGGAGGA GTAATCCCAA CAGAATATAT	
CCCATCATGT GATAAAGGGT TCCAAAAAGC AATGGAAAGG GGAACATTAA TTGGCTTTCC	
AATAGTTGAC ATAAAAATTA CAATCAATGA TGGCCAATAT CACATTGTTG ACTCATCTGA	360720
TATTGCATTC CAATTAGCAG CAATTGGAGC TTTTAGAGAG GCTTATGAAA AAGCAAAGCC	360780
TACAATCCTT GAGCCAATAA TGAAAGTTAC CCTTGAAGGA CCTACTGAAT TCCAAGGCAA	360840
TATGTTTGGA CTTTTAAATC AAAGAAGAGG AATAATAACA GGTTCCCTAG AAGATGGAAG	360900
TTTTTCAAAA GTTGAGGCTG AGGTGCCTTT AAGCGAAATG TTTGGATTTT CAACAGTCCT	360960
TAGATCCTCT ACCCAAGGAA AAGCAGAATT CTCAATGGAA TTCTTAAGGT ATGGAAAAGT	361020
TCCAAGCACT ATATTTGATG AACTTCGCAA AAAATTTAAC GATCAAAACA AATCTTAATA	361080
AAATAATAAG GAGGCTTTAT TATGATCGAT TTAACACAAG AAAAACAAGA AATACTAATA	361140
AAAAACAAGT TTTTAGCCAA AGTTTTCGGG CTTATGTCAA TTGGACTTTT AATCTCAGCA	361200
GTATTTGCAT ATGCAACCTC AGAAAATCAA ACAATCAAAG CAATAATATT CTCAAATTCA	361260
ATGTCATTTA TGGCTATGAT ACTTATACAA TTTGGACTTG TATATGCAAT AAGTGGTGCT	361320
CTTAATAAAA TATCAAGCAA TACTGCAACA GCTCTTTTCT TGCTCTACTC AGCACTAACA	361380
GGAGTAACAT TATCTTCTAT ATTTATGATT TACACACAAG GATCAATAGT ATTCACATTC	361440
GGAATTACTG CTGGAACATT TCTTGGAATG TCTGTTTATG GATACACTAC AACAACAGAT	361500
CTAACAAAAA TGGGAAGCTA TTTAATAATG GGCTTATGGG GAATCATTAT TGCATCTCTT	361560
GTTAATATGT TTTTTAGAAG CTCAGGTCTT AATTTCCTTA TATCTATTTT GGGCGTAGTT	361620
ATATTTACAG GCTTAACAGC TTATGATGTT CAAAATATTT CTAAAATGGA CAAAATGCTA	361680
CAAGACGACA CTGAAATAAA AAACAGAATG GCGGTTGTAG CCTCACTTAA ACTTTATTTA	361740
GATTTTATAA ATTTATTCTT ATATCTTCTA AGATTTTTGG GCCAAAGAAG AAACGATTAA	361800
AATAATAAAA AAATCATAAA AAATTCAATC AAAAATGAAT GCTTTAACTT TAAAGCATTC	361860
ATTTTTAGAG GTTTCAATGA GTATAGATAG CTTAGAATTC GAAGAAAGTA GTACTCAAAA	361920
TGTAATAAAA AAAAATTTTG AGTTTGAAGG ATATATTGAA AGTAATAAGC CAATAATAAT	361980
AGAAGGAAAG CTTAAGGGTT TAATAAACTC ATCAAACTCA ATCTATCTAA GGGAAAAAGC	362040

TGATGTTGAZ	A GCTGAAATAA	AATGTCAACA	TTTGCTAAAT	' CATGGCAAAA	TAAAAGGAAA	362100
TATTGAGGCT	TTAAAAACA	ТТААААТСТА	CAAAACCGGC	AAATTAATAG	GAAACATTAA	362160
AACCAAAGAZ	A CTCTTTATAG	ATTCTGGAGC	AATGTTTAAA	GGGAATTGTG	AAATGGAGGA	362220
TTTAGAAGAA	A TGAAATTTT1	TTTTCTATTA	CAAATAGCTT	TAATTCTACT	ATCCAATTCA	362280
AGCTTGTTAT	TTGGACAATC	ACCGCCTAAA	GAAAAAGAAG	ACTCTCTTCT	TCTATATAAA	362340
GAAGGAAAAT	TTAAAGAAGC	TATTTTAAAC	ACGTTAGAAG	AAATTCGACT	AAATCCTAGT	362400
AACTTAGATO	CTAGGACAAT	ATTGATATGG	AGCTTAATAG	CCATAGGAGA	ATACAAGAGA	362460
GCTGAAAAAG	AGGCGATTAT	AGGACTTGGC	АТТААААААС	ATGACATAAG	AATTATTCAA	362520
GCACTAGGAG	AAGCTTATTT	СТТТСААААА	AATTATGACA	ATGCATTAAA	ATACTTTCAA	362580
GAATACATTA	GCCTTGATTC	TAAAGGAGCA	AGAATAATAA	AAGTTTATAA	TTTAATTGCA	362640
GATTCTTTTT	ATGAGCTAAA	AAGATATAAT	GAAGCCGATT	TTGCATACGA	ACATGCATTA	362700
CGTTTTTCTC	СТААТААССА	AAATCTATTA	ATAAAATTAG	CAAGATCAAG	AATAAATGCA	362760
AAAATAAAA	TATTAGCAGA	AGAAGCACTA	ATTAAAATTC	TTACAATCTC	ТССТААТААТ	362820
CTAGAGGCAA	AAAATTTACT	AGAAGAATTA	AAAAAAAGCA	ACAACAAACC	TTGACATTCA	362880
ATTTATAAAA	ACTTATTCTT	ATTGTTAGCA	AATTAATAAA	CTGGGCTGCT	AGCTCAAGTG	362940
GTAGAGCATC	GGACTCTTAA	TCCGCTGGTT	ACAGGTTCAA	GTCCTGTGCA	GCTCAAATTG	363000
ТТАААТАСАТ	TTTGGTATAA	ATTATTAATT	TTATGCCAAT	TTAACTTGAC	ATTATTGGAA	363060
ААТАААТАТА	TTATTACTTT	CGATGGTCAT	AAAATGACTT	TTGGGCTCAT	AGCTCAGGTG	363120
GTAGAGCAGC	GCCCTTTTAA	GGCGTTTGTC	GTAGGTTCGA	GTCCTACTGA	GCTCACTTTT	363180
GTCCTCTTCG	TCTATCGGTT	AGGACTCCAG	GTTTTCATCC	TGGCAAGAGG	GGTTCGATTC	363240
CCCTAGAGGA	TGTCTTGCTA	ATAAAAATAG	ACTAAACATT	CTTGCCTTCT	AGCAAACCCA	363300
GAAAACAAGA	ATGTTTTTTA	AGCAAACACA	AACTATTCAG	GTATTAGCAA	TATTTCTGCT	363360
TTTTCATCAA	GATTAATTTT	СТТААААААТ	TCATTTATTA	AATCTTTGTT	TAAGTTTGTC	363420
ТСТАТАААСТ	TAACACCAAA	ATTATTTTTA	AATACTCCAT	ACCAGGATAA	TGACGCCAAT	363480
ATATTTGAAA	TCCAATAACC	ATTCTTCTCT	GAATTTATTT	TTGTATTTTT	AATATAATTC	363540
TTCTTAACAT	AAGAAAAATC	TTTATCATTA	АААТСТАТТТ	TTTGCCTTTC	GATCATATAG	363600
CGATTAATAG	AATTTAAGAC	ATTGTCCAGC	TCCTTAGGCT	CGGTAGTAAA .	AAAAATAGAC	363660
AAAATACCAT	CGGAATCTAC	ATTTTTTTTT	AAATTGGAGT	CAAAAGAGGC	TTGAATTGCA	363720
TAAACACTAG	ACATTTTTC	ТуТААТАТТТ	TTTATAAGCC	CATCCGTTAA .	AAGATCCGCT	363780

			303			
					З АТАААТТАСА	363840
TAGGCAAAA	C TAGTTGAATT	TTTTCCCTTC	CTTACAACTA	TTTTATTAAA	ATTTTTACTG	363900
TAAGAGTAA	r ctaaatctti	ATACTCGTTT	ATTTCTTTAA	AGTTAAGATT	GCCCAAATAT	363960
TTCTTTGAA	r aagcctttai	TGTCTGAATA	TCTGAGTCTC	CAGCAAGACA	AACTTAAAAT	364020
TATTTGCAT	A AGTAAACCTT	ТТСТТАТААА	AAGACAAAAT	ATTTTCTTT	GTAAAATATT	364080
GCAAATCACT	T ATCTTTTGTA	TCTTCAAATC	TAGGATCATT	ATTGTTTAAA	AATTTACTAA	364140
TGGCTTTATC	G AAAATGATAA	TCAGAACTAT	TTTCATTGCT	CTTTATTAAT	GCTTTTATAT	364200
TATTAATAGO	ATTTTGCAAA	GAAACATCAT	CAATTTTGGG	TTCCTTAAAA	GTAAAATATA	364260
TAAGCTGAAA	A AAGAGTTTCA	AGATCTTTTT	TATCTGAACT	TCCAGAAATA	TATGATTCTT	364320
GAGCTCCAAC	CCCAACTCTT	AAAGAAACAG	CTTTATCTGA	TAAATATTTT	TCAATCTGTA	364380
ATGCAGAATA	ATCACCATAA	CCCGAACCAG	ATACTACTCC	GGGAGCAAAA	GATAAAACAG	364440
GAATAAGTTT	TAAATCTTCA	ТТААТТАААС	CTCCCCAAGA	AGTTGCACTA	AAATCAATTA	364500
CACCTTTTTT	TTGATCATTA	TATTTAAAAT	AAACTTCAAC	CCCATTTTCA	AGAACAAATG	364560
ACGAAATTTC	ATTTTCAAAC	TCATTTTCTC	ТААТААТАТС	TTTATCATCT	AAAGACTTCT	364620
TAAAAATTT	ACCTTCAATT	AAAGAATTCT	CATAAGGCTT	TAACTCTCTT	TTTAAAGCTA	364680
TCTTTTGAAG	ATTGTCAATA	TCTTCAAGAG	TTAAAACAGG	ATGTGCTCTT	CCATGGTAAG	364740
ААТАААААТ	TGCACAATTT	TTTACATCAA	ACTCTCTTCC	TACAAGATTG	TTTATTGTTT	364800
ТТАААТСААТ	CTTTTCCAAA	TATTGAAAAG	AAAGATCGCA	ATATTCATTC	АТАТСАААТТ	364860
TATTAGAACC	ATTAATAGCA	ATTTCTATTA	AATCCTGAAA	AATAGCCCAT	GAATTTGTTT	364920
TATTTATATT	CTTTTTCCTT	AATTCTAAAG	ATTTGTAAAA	TTGAGATCTA	ACTTTTTCAA	364980
GCTCACCTTG	GGTAAATCCA	AATTTTCTTA	TCCTCTCAAG	СТСАТААААА	AAGTCTTGTA	365040
TTCCTTCGTT	CAAATGATCT	GGATTAAAGT	TTAAAGAAAT	CGATTTTGCA	ACAATGGTAT	365100
TGTTATCTGA	TTTAAATGAG	AAAAAATCTT	TATTTGAAAC	TAAATTTTTA	TGCTTTACCC	365160
CAGCAGTCTT	TAATTCAGAA	AATCTATTTT	CAAAAAGAGC	GGCTAATAAA	GACTTTTTAA	365220
TAGCATTTAA	AAGGTCATCT	TTGGTCTTTA	CAAAGTTAAT	AATTTCCTTT	TTAAAGAACA	365280
TTAAACTAGG	CTCTCCAACT	TCCAAATCTT	CTAAAAGTAA	AAATTTATCC	TTAAGCTCTA	365340
CGTCTAAACT	TACTTTTACT	TCTTTAATTT	TATCGGTTGG	ATTTTTCCAA	GAAACAAATT	365400
GCTTCTTTAT	CTTCTCTTCA	ATTTCTATAG	GATCAATATC	TCCTACCACA .	ATAACACTTG	365460
CAAGTTCTGG	CCTATACCAC	TTTCTATAAA	ATTTTTTAAA	ATCTTCTGGC	TGAAAAGATA	365520
AAATTTGCTC	TTCAAGTCCA	ATAGGACTTC	ТАААТТСАТА	AAGACTTCCG (CTTGTCAAAA	365580

ACTTATCCAT TTTCTCATAA	ATTCTTCCAG	GATAAGTCTC	ACCAAGCTTT	TTTTCCTCAA	365640
TAATAATATT TCGCTCTAGA	TCTATTTCTT	CTTTCATGAA	ACTGATTTGA	GAAGCCCAGT	365700
TTCTCAAAAT ATTTATAGAT	TCATCAATTT	CATCTTTATT	ATTACCATCT	GACAAATCAA	365760
GTCTATAATA AGTGAAATCA	AAACTAGTAG	CAGCATTAAT	GTCAGCACCA	AATTGCATTC	365820
CAAATTTTTT AAGAACATCA	ACTATAGAAT	TCCCTGGATA	ATCTTTTGTA	CCATTAAAAG	365880
CCATATGTTC AAGATAATGC	GCTATTCCCC	TCTCATTATC	TTCTTCATTA	AGTGAGCCCA	365940
CATTAAAAAC AATTCCCATA	TTAACGGCAT	TCTTTGGGGT	TTGATTTTTA	ТАААТАТААТ	366000
ACCTTAGCCC ATTGACAAGT	TTTCCTTTTA	CCAAACTTTG	ATCTAACTTT	AACTCATTAG	366060
AAACACAGGA AAACAAAAAA	AATAGAAAAA	CGCTTGTAAA	ТТТАСААТАА	TTCTTAATTC	366120
TTTGATAATT CATTTGCACT	CCTCTTTATT	GAATTTATTT	TTTCAGAATA	AATTTTATTC	366180
AATGCTTTTG AAATAGATGA	AAATCCAAAA	TCATTCCAAT	СТТТТАААСТ	CTTTAGCTTA	366240
GAAACTGGAA ATAGTTCATA	АААТАААААС	AATAACTCTT	CTTTGCTTAA	TTTTGGAATA	366300
TCATTTAAGT AAACGTTTTT	ATTAAAATCT	TCAAGATAAA	TAAAAGGATT	TAAGCGCTTA	366360
TCTAGAAGAA ATTTATTTAA	ATTGGGCATT	AAAATGCTTT	ТАТТАТАААТ	TTCAATAGTA	366420
GTATATTCAC TTGGAACATC	АТСАТААААА	TCGTTATTCA	AAAAAGAATC	ТААААТААТА	366480
AATTTATTAT CCTTAACCCC	TACATTTCTC	CCATCTAAAG	TCTTTAAAAG	ACCATCTTTG	366540
ССААТАТGAA ССАААGТАТТ	TAAATCCTTT	GTAGCATTAA	AGATAAGCCT	TGCATTGTTA	366600
TATGCCTTGG ATTGCACTAA	GTGCTCAGTA	ТТАТТАТСТА	CTGCTAATTC	TTTGTCATTT	366660
ТТТААТААТА ААТТТАТАТТ	TTTTTCTTTT	AATGCCTTAT	AGGCTAATTC	ААТАТАСТСТ	366720
AAAGCGCAAC TATTTTCCAA	AACAAGTTGC	TCCCTCTTTA	ATAAGTTAAT	АААААТАТС	366780
AATTCTTCCT TTTCAAGACT	ACGGTAAAAA	TCAAAATCAT	TTAAATCAAT	тссааааста	366840
АААТТААСАА ТАААТАТТАА	ATAAAAAATT	GCAATGTTTT	TTTTCAATCT	AGCCTCCTCC	366900
CTTTAGCTAA CTACATCAGC	CAACTCTAAA	AAAACAGGGC	AATGATCACT	TCCCATTACT	366960
TTGTCTAAAA TTAGAGATTT	TTCAACATTT	CTCTTGAAAA	ATTCATTAAC	AATAAAATAA	367020
TCAATTCTCC ACCCCATATT	TCTCTCTCTA	GCTCTTGTTC	TATAGCTCCA	CCAAGTATAA	367080
TAACCAGGAT CCTTATTAAA	TATCCTAAAT	GTATCCACAT	ATCCTTTGTT	ТАААААТСА	367140
TCTAACCAAG TAGTCTCTTC	AATATAATAT	CCCGGAGAGT	CTCTATTAGA	ATCGGGACTT	367200
ATAAGGTCAA TCTCGGTATG	AGCAATATTA	AAATCACCAC	AAATTACTAC	ATTTTTACCA	367260
TCACATACAA GAGAATCTGC	AAGATTTTCA	ACATAAGATA	AAAAATCAAG	TTTATACCCA	367320

AGTCTTCTTC	ттаааасттс	AGAATTGGGG	AAATAACCGT	TAACCAATAT	AAAATCGTCG	367380
TAGCATGCTA	CAAGCCCCCT	ACCCTCATTG	TCAAAAATTT	CTTCTCCAAG	CAGCCTTACA	367440
GAGATAGGCT	CAACTTTTGA	. ATAAATGCAA	ACACCACTAT	AACCTTTAAT	CTTTGAATTT	367500
GAAAAATAAG	ААТААТААТТ	TTCAAGAATT	AAATCCTTTG	GCAACTGTTC	TCTTAAGGCT	367560
TTAGTTTCTT	GAATACATAA	AATATCTGGA	GTATATTCTT	TTACAAACTC	AAGAAAACCT	367620
ТТСТТТАААА	CAGCTCTAAT	TCCATTTACA	TTCCATGAAA	TTAATTTCAT	AAATCCTCTC	367680
TAACTAAAGT	TAAATCAAAT	ATAAATCTTT	AATCCATCAT	AAGCTAAATA	GATATTATCT	367740
TTTTCTAAAT	AATCAAATTC	TTCATGCATT	ATATCGTGTG	CAATATGTGT	AAAGTAAGAA	367800
ATTTTAGGAT	TGATCTTTTT	AATTACACAA	AAAGCCTCTG	AAAAATTTAA	ATGCGCAGGA	367860
TGAGGCTTAA	TCCTCATAGC	ATCTATTATG	AGTAGATCTA	AATTTTTTAA	АТААТСАТАА	367920
GACGCTTCGG	GAATAAATTT	AACATCAGTA	AGATACGCTA	AATTGCCTAC	CCTATAACCT	367980
AAACTAATTA	TATCCCCATG	AATCAAAGGA	ATTGGCACTA	TCTTTAGACT	TTTAAAAAAA	368040
AAGGGCTCAA	AATCCCTAAT	AACATTGGCA	ATAATGTCTG	CCTTTCCACT	TAAAGAGGGT	368100
TTGGATGTAA	AATTATACGG	AAAAGCATTC	CTTATGTGAG	CCATGGCAGT	ATCTCTAGCA	368160
TAAATGTTTA	AAGGGGCACA	TCGTGTATAG	AACTTAATAT	CATCAAAACC	CATAATATGA	368220
TCATAATGTT	CATGCGTGTA	AAGCACTAAA	TCAAGCCTAT	CTATTTTCTC	TCTTAAAAGT	368280
TGCTGTCTAA	TATCAGGACC	TGTATCAATC	AACAATTTGA	TGCCAGAAGA	TGACTCAAGA	368340
AAAAAAGAAC	TTCTCAATCT	TTTATTTTTA	CTATAACTTG	AAGTACAGAC	TTTACAGCTA	368400
CAATTTAACA	TAGGAACACC	ACTTGAAGCC	CCCGTTCCCA	AAAAGGTTCC	AACCATATGT	368460
TACTACCTTT	CGCCTGTAAA	CATAATCTAT	TTTAACACAA	CATTTTATAT	TAAACAAAAA	368520
TAAACTTTCT	TAATCAAACA	ACTCTTATTA	AATCTAAAAT	TAGATTAACA	СТАТТТААТА	368580
ATCAATTCTG	TAAACTATTT	TGGAAAAATT	GCTTTTATGC	ТТАТААТТАТ	TTAAGGAAAA	368640
ATTATTTTTA	TGGATACGCA	AATTTATGAA	CTCATTTTCT	TAACCAGTTT	TAGCATATTT	368700
TTAATAGTAA	ATTTATTTAA	ТТТТААДАДА	GAATTTACTT	ATGAAGACTA	СТТСАТААТА	368760
TTTCCAGGTA	CGTTTTTTGT	AATAACTTTA	TACTTTACAG	AAATCAGACC	GTTAATGTTA	368820
TATATTGGCA	GTATATTCTT	AATCTTTATG	ATAATCATCT	TCTTTAAAAA	CATCAAAACA	368880
ATAGTAAATA	GTAGAAGAAG	AATCAACAAT	AGGTCTACAA	AACAATCAAA	AGGAATATTT	368940
CTTTCAATTT	TGCTAAAAAC	AATACTTGTA	ATGCCTGCTA	TTTTAACTGT	TATTATTGCA	369000
ACTATTTTTT	CATACTTAGC	ACTTTTTATA	AATTATCCCA	AAGATGAAAA	CAATAGCTAT	369060
CAACTTGGAT	TCGCAAGAAt	TAAAGATCAC	AAAAATGATT	TAAACTTATC	GATTTGGTAC	369120

CCTGtAAGCT	CAACATTGGG	CCTTAAAAA	CAAAATCCAT	TTCTTTTGTA	CGAATTTAAT	369180
CCTTTTTTCA	TAAACGAAAT	GAATTACTTA	TCAAAACAGA	ATAACATATA	TAAAAAAGCC	369240
CTTATTAGCA	ATAACCAAAA	ACTATATGAT	TCTGTTTTAC	TTATACTTCC	TTATTATTCT	369300
CACGATTCAA	TGTTCAAATC	TCTAGTTAGC	AGGATTGTTA	AGAAAGGAAA	AATTGTTTAT	369360
TTATATTCGC	СААААТАТАА	ACATATGAAA	AGCTACGATT	' ТТАТТА <u>А</u> АА	TAGCCATAAA	369420
AGTATATTTA	GCTATGTAAT	CAATAAAAGC	ATTAGCTATT	TAATTGAGCC	TGCCAATATC	369480
CTTAATGAAA	AAGCTGATAT	TGCATCTACT	GAAACTGATA	ТТСААААТАТ	GTATTGAACT	369540
AGCAAAATCA	AGCCAAAATT	TGGAATTTTT	AAATTCAAAA	ATGAACCTTA	ATAAACTAAC	369600
GTTAATTACA	CTAGGAAATC	AAGCAAATAT	TGTTAATTTT	ATCCTTGCAA	AAAACACAAA	369660
CATAGCAAAA	TATATCAATA	TAGGGGGAGA	ACCGCAAACA	ATAAGAAATT	ТААААААСТТ	369720
ACAACTAATT	CTAAAAGAAA	ATGAAAAGAA	CCTCCACACA	AAAGTTGCTA	АТАСААААТС	369780
TATAAAGCTA	ACAGGCATAA	GCAATATTGC	AGAAATTTCT	GATCTTATTT	TTAGCAGAAA	369840
CTATTTAAAA	AGTTTTAATT	ТСТТААААА	CAAAAAATCA	ATGTTATCAA	GATTTAATTC	369900
TATAGTTAAT	GAAATTAATA	AATTTATTGA	AGAGGAAAAA	TAATAATGAT	AAAAAAATTC	369960
TTGCTATTTG	CAATGCTCAA	CATCTTTTTA	ACAAATAAAG	CTCATAGTAA	TGAAGAGATA	370020
ATCGAAATAA	GTACTGAAAT	ACAAAAGGAA	AAATATATTC	CCTTTTTAAT	AAGTAGAGGA	370080
AAAACTCAAC	TAGAAGACCT	TGTAAAATAT	ACTCTAGAAA	TAAATCCAGA	GCTTGACAAA	370140
AACTATGTAA	ATACTGTTGC	TAAAACCTAT	ATAGACGAAT	CTTTGATTGA	AGGGGTTAAT	370200
TATGACATTG	CCTATGCTCA	AATGTTACTA	GAAACAGGAG	CTCTAAAATT	CAATGGAATA	370260
GTTTCAAAAG	AACAACACAA	TTTTTCAGGA	ATAGGCGCTA	СТААТААТСТ	TACAAAAGGA	370320
AATTCTTTTT	CCAATATTAC	AGAAGGAATT	AAAGCTCATA	TTCAACATTT	AAAAGCTTAT	370380
GCTTCAAAAC	ААААТАТСАА	ATCAAATATG	GTTGATCCTA	GATTTTACCT	TGTTAAAAGA	370440
GGATCTGCTC	СААСААТАТА	TGATTTGACT	GGGAAATGGG	CAAAAGACAA	ACTTTACGAC	370500
AAAAAACTTA	TTATAAAAAA	ATTAGAACTA	TTAGAATATA	ATAATGCAAA	TAAAAGCTAA	370560
AAGCTCGCTA	TATGATTTTC	TAGAAAAGAT	ATATTCAAAA	ТАСААТАААА	AAAAATTTAT	370620
ACATCCTGAT	CCTTTAGAAT	TTCTATACAG	GTATAAAGAA	AAAGAAGACA	TTGAACTTGt	370680
AGGCCyAatt	aGTTCTTCAT	TGTCGCTTGG	AAGAGTAGAA	AGAATTTTAG	AAGCAATCGA	370740
GACAATACTT	AAACCACTTG	GCAAATCCCC	TTCTGAGAGC	CTTAAGCTGG	CAAATGAAAA	370800
GGACTTAAAA	GAAATATTTA	AAGGATTCGT	TTATAGATTT	TTCAAAGGAG	AAGATATTGT	370860

			36/			
AAGGCTACTG	TGCACCCTTA	AGATAATAAA	AGAACAGCAC	CATACGCTTG	AAAATCTTCT	370920
TTACAGTATT	AAAATATTAT '	ACCAAGATTT	TATACTTAGC	ATAGATGAAT	TAATAAAGCA	370980
TATGGAAAAA	ATAAATGGGA	GAGAATTTGG	CATGCTACTT	CCAAAGCCTT	CAAAGGGAAG	371040
TTCTTGCAAA	AGGCTTTTTT	TATTCTTAAG	ATGGATGATA	CGCAAAGATG	AGGTCGATTT	371100
AGGCATTTGG	AATAAATTCA	ATCCCAATAA	GCTTATAGTG	CCAATGGATA	CTCACATGAC	371160
AAGCATTGCT	' ТСААААСТАТ	ТТААААТСАА	AGAAATAAAA	AACGTAAATC	TTAAACAAGC	371220
TTAAAAATAA	ACAAGCTATT	TTTCAAAAGA	AAATAATGAA	GATCCTGTAA	AATACGATTT	371280
CTCTTTAACC	AGATTTGGAA	TAAATAGAGA	TTTTAATAAA	GAAAAATTGC	ТАААААТАТ	371340
ТААСАААСТА	ТААААТТТТА	TTTATAAAAC	TTTTAAAATA	AGACATACTT	AAATCATCAT	371400
TAAAACAAAA	ATACCAATTT	ATCGTAAAAT	AAAAAGGAGA	ATCTGTGAAT	AATCTTAAAG	371460
ACAAGATAAA	TACTTATAGC	AAATTAATTT	TAGGGTCTTG	GCAATTCGGA	GGAGGATATT	371520
TTAAGCAAGT	CGAAAAAGAA	ACTGCTAAAA	AAATATTAAA	AAAAGCATAT	GATCACGGGA	371580
TCAGAAATAT	TGATACTGCA	AGAGCTTATG	GAAATGGAAT	TTCGGAAAAA	ATAATTGGCG	371640
AAATAATAGA	AAAAGATCCA	ACAATAAGAG	AAAATATTTT	AATTGCAAGT	AAATGCTACC	371700
CAATGGAAAT	TTCAGAATAT	AGAGAGAACT	TTAATGAAAG	TCTTAAAAAT	TTAAAAACTG	371760
ATTATATAGA	TATTTACTAT	ATACACTGGC	CTAAAGCCGA	TTTTGACCTA	AGACCAATCG	371820
CATCATTTCT	TGAAGAAATG	AGAGTAAAAG	GAAGAATAAA	ATATGTAGGC	GTAAGTAATT	371880
TTGAAATATC	ACACATGGAA	AGCATAAAAA	AAGTTTGCAA	AATTGACGTA	AACCAAATAG	371940
GATACAACCC	CTTATTTAGA	AATAAAGAAA	AAGATGTAAT	TCCTTACTGT	GAAGACAACA	372000
ATATTGCCAC	CATATCATAT	TCAACAATTG	CTCAAGGACT	ТТТАТСТААА	GCTAATATAA	372060
AAGACAAAAA	САААТТТААТ	GATATTAGAA	CAGAAAAATT	GATACTTTTC	AAAAAAGAAA	372120
TTTGGCCTTA	TACTTTGAAA	ACCATAAATA	AACTTGAAGA	GATAGCAAAG	АТАААТААСТ	372180
TAACAATTTT	AGAATTAACA	TATTCATGGC	TTAAAAAAAC	AAAATTAAGT	GGATTTATAG	372240
TGGGCTTTAG	CAAGGAAAAT	TATGTAGAAT	CAAACGTAAA	ТТСАТТТААА	GCAGAAATTA	372300
ATGATAAAGT	ATATGAAGAG	ATTACATCAA	TTTTAGATAA	TTTCAATCAC	САААСААААА	372360
ACTTCCCAAA	TTTATTTAAC	AAAAAATTT	AAAACTTTAA	АААСАААТАТ	ТТСААТТААС	372420
AAACTTAAAG	TCAATAGAAT	ТТССТААААТ	TCTAACGCCT	TCTACAGTTA	AATGAATATT	372480
AAAAATAAAC	TCTATCTCAA	TTAATGACAA	AATTAGGTCC	GCATTACCCC	CAGTAATTAT	372540
TAAATTAAAT	TTTTTTTTAT	ACATCTGCTT	AATATCACGA	TAAACACCTT	СТАТТАААТА	372600
CTTATATTGA	ТААААТАААС	CGCTGTTTAC	ACTCCCAGAT	GTCGTTCTCT	СТААААСАТТ	372660

ATTTGGAGTG	CTAATGGGGA	ATTTTTTGAT	· AAGATAGGCA	. ТТАТСТААТА	AAGAATTAAA	372720
ATTTATCAAA	GGACCAGAAT	ТТАТААТАСС	ACCGAGTATT	CCATCTTGCC	TGCTAACAGC	372780
AAAAATGGTG	CAAGCAGTTC	CAAGGTCTAC	TACTAAAACA	TTTTCAAATG	AATAATTTTC	372840
AATGGCTGCA	ACAAGATTGG	CAAAAACGTC	TGAACCTAGC	TATTAAAAA	CGCTTTTGTA	372900
AGGATTAAAT	GTCAAATCAT	AATTCAAATC	AAAACCAATA	AACAAAGGCT	TTATCTTAAA	372960
AAAAGAAAAA	ATGACATTTT	TAAATGTTTC	ATTAAGAATA	GGAACAACGC	TGCTTATAAA	373020
AACTTTATTT	ACATTAAAAT	CAAAATTTTC	TTCAAAAAAG	СТАТАААССТ	CATCATACCT	373080
TAACATAAGA	TTTGTTTTCA	ТТТТААТААА	ТАААТТААСТ	TGATTATCTT	TAAATAAGGC	373140
AAAAGCAATG	CTGGTATTTC	СААТАТСААТ	TATCAATTCT	GATAATAAAG	GTTTATTCAT	373200
AAATATTTAT	TTTTTTTGCA	ATTTTGTCAA	АТСТСААТАА	AAGATTAAAA	GTTCTCTTTT	373260
TCTTGGGCGT	TGCTTTAATA	ACCAAAATTT	TGTTTAAAGG	ATAATACTTC	CAACCATCAG	373320
AATATACGTA	AAACTTATAA	TCTGTAAACC	AATCAATTTC	тстааатста	ACTAAAGTTG	373380
GATTTAAAAT	GTTTCCAAAA	AATATATAGC	TTGAATAATT	AATCTCTTGA	ТСААААТСАА	373440
TTGCAACTTT	AGTATCAGTA	ATTTCACGAT	TTAAAACCCC	AGAAGCAGCA	TATATCCACC	373500
TGATAGATCT	ATAGCTAGAA	ATAAAGATAA	ATTGGGGCAT	ATATTGATTA	ТСААТААТАТ	373560
CAGAATAATA	GCTTTCATAA	GGAATTCCTT	TGGCATAATC	ACTCATTAAA	GAATAATAAA	373620
TTGCATTCAA	TGAAAGCTTT	AATATTAAGC	TATCTTTTAA	ATAAGATGCC	ATTCTTTTAA	373680
GAACCCCAGA	AATCTTTAAT	GCATGCTCAA	CAACATCAGA	TGAATTAATA	ТТАТТАТТТА	373740
AAATATACAT	TTTTCCTTCA	TCTGTAACGC	CAAATAAAGT	AAATACAAAT	TTATAAAGCT	373800
CCTTTTTAAA .	ACTTAAATAA	AAAGAATCGT	CAACTCTAAT	CTTAAGAAAA	GTAAGATAAT	373860
TAGATAAAAT	GTTGTAGGCT	TGGTTAAAAT	TAAAATTAGA	ACTTAATATT	TTTTTAGGAT	373920
CTTTGAGAAG	ATTTAAAGCA	CCATTTAATT	TAGAACCGTT	TTCTGATAAA	AAAATTTTTT	373980
CCAAAAGACG 2	AGGATCTTCC	TTTAAATAAA	CCATAAGCCT	GTCTTCTTCA	AGAGAATCAA	374040
TAAAAGTTTT 2	ATTCCTTGAT	AAATAAGAAA	AAAATTTATC	AAATTGATCT	GAATTAGCGT	374100
AATAACATAA A	АСТТАААТАА	GTCAACTTAT	GTTCATTTTT	GGCTAATAAA	GAATCTAATT	374160
TTAAAAATAT 1	rgactcgtga	TCCCCTCTGA	TTAAAGATTC	TGCTAAAAAA	CAAACCATTA	374220
AATTTTCATC A	AAAGCTATAA	ACACCGTATT	TAAGCCATCC	TCCCTTTGAA	GCATTAAAAT	374280
TAACAGAATT (GTTCCAAGAA	TCATAAGCAT	TTTGTCTAAA	ATTGCTTAAA	ACATCATTAA	374340
AAATCTTATT A	ATCCACCTCT	TTAATTTTTG	AATGCACAAT	AGAATAATCT	AATACATTAC	374400

			369			
TTTTATTAGT	TTGGTTGCCC	TCCATAATAG	AATTTGGAAT	ATTTTTCTTT	GGTGAATCGA	374460
TATAAATAGO	ATTGCCAATT	CTAAATGCTG	CTTGAGGAGA	ААТСААААТА	TCTTTCTCTC	374520
TTATCTTTAC	ATTTTCTCCT	` AAAAAGATTT	ТАТАТТССАА	ATTCTCCCCT	TGTCTTATTG	374580
AAATAGTAGG	СТТАТСТАА Т	' ААААСТСТАТ	AATGATCTTC	AACTTCATAA	CTTAACAAAA	374640
AGCTCTTAGA	GAGATTTGAT	TCAATGCTAA	AATTATTTTC	CGAATCAAGC	AAAAATCCGA	374700
GAAAAATATT	ATTCTCAAAA	ТАААСАТААА	TACCCATGTC	TTGCACTTTA	TAAGAGATGG	374760
GGAAAAGATI	' TAAACCAGTT	TCTAAAACAA	CAAGTGGATT	AAGCTTGGAC	AAAAATATCC	374820
TAAGTCCCCT	' AACATTAACA	ACCAGATCAT	TTAAAGTATA	TTCACTATTT	AAAACCTTAT	374880
TATTTACTTC	ТААТТТТАТА	TCTTTTAAAA	AAAATATATT	TAAGTTTAAA	TTTCTAAATT	374940
GTAAAAAAAT	AACAACAAAC	AATATTAAAG	CACCAAGCAA	TAAATTAAAA	GCCCCTACCC	375000
TTAAAAACTC	CTTCATATGA	TGATTCTAAT	САТАААААТ	СААААТАТСА	ATATTGATTG	375060
CATAAAAACA	AAAAAAAAA	TAGAATTATA	GGTTAGCTAG	TTAAATAGGA	GTAAAATATA	375120
TGAAAATTCC	ТАААААТТАТ	ATTCCAGGAA	CAAACCCTTA	CAAGTCTCTA	ССТААААААС	375180
CTATCATTGA	AAACAAGAAA	AAAATTACTA	AAAAACAAGA	ACAAATTAAT	TCAGAAATCA	375240
TGAAATCTCA	AGAGCGTATT	TTGAAGCTAT	ATATGAGGCG	ССТАСААААА	AAAGATCAAA	375300
TAACTCTTCA	AAATTTCATT	CTAGAAGGAC	ATAAAATAGG	СТССААААТТ	ТТСААТААТТ	375360
TACCAAAAAC	ACTAAAAGAA	ATAATAGCTT	TAATGAATAT	AGAATCGTTA	AAAGTGCTAA	375420
AGAAAAATAC	AAAAAATCCA	TTTAAAATGC	TTTACATAAA	ATTTTCAAGC	TGGACCTTAA	375480
ACAAGCTAAT	CAAAACACTC	GACATTGAAT	СТААТААСАА	CAAAACCGCA	АААСАТАААТ	375540
AACAATTTTC	AAGTTTTTTA	TACCTTACTT	ATTGATTTTT	TTATTTGCAT	CTTTTCTTAT	375600
AATGTCTATT	GTTGATTTAT	TATCAGAATA	AATAAAAAA	TCTTTCAAGG	ACCATCTTTT	375660
ATGATTATTA	GGCTCTAAAA	TATACATTGA	ATCTAAGATA	TCTAATGTCA	TTTTATTACC	375720
ACAATAAAAT	TCGCCAACCA	TGCCCAATTT	ATTACCAATA	GCTAAACACG	CTGCAATATC	375780
CCAAAGTCCT	ACAAAAGAAA	AGTAGGCCTT	ATAAGAACCT	GTAAAAAGTT	TAGCAAAAGA	375840
ATATACACAA	GAACCATTAA	TATGAATATG	AGAAGAAATA	TCAAGATTAA	ATAACCTTAT	375900
AATAGACCTT	GAAACTGCAA	GTAAACTATG	AATATTGTAA	CATTTAGAAT	ТАТСАААААТ	375960
AAATTTATTA	AAATCCTTTT	TTAAAGGATA	GCTACCAATG	TTTTTTTTAG	САТААААТАС	376020
ATTATCTTTA	GAAGTAATAA	AAAACTCTCC	GCTTAAAGGA	AGAGAAATGG	СТССТТСААТ	376080
AATTTTGCCG	CCACTAGCAT	ACGCTAGCGA	TATTCCATAT	GAAGGAAGGC	CTGCTGCAAA	376140
AGAAGAAGTT	CCATCAATAG	GATCAATAAT	AAAAGTACTC	TCTGATATTA	AAGCATCTTT	376200

GATATACTCT TCTTTATAAG TAGATATTGT CTCTTCTCCA AGAACAAAAT TTCCAGGCTT	376260
TTTGATCTCT TTGAATAAGA ATTGCTCAAT TTGCTTATCA ACCTGAGTTA CAATAGACCC	376320
ATCAGATTTA AAATCTAAAA TTAATTTAGC ACAACCACTT AATGCAAGCC TAGTTGATTC	376380
ATTTAATAAA AATATAATTT TTTCAAAATC CCAATCCATT TTTATCTTAA TTCTCTTATT	376440
AATAATAAAT TCTAAAATTG AAAAATCATC TTTAAAAGCA TTATACTTTG ATAAATTAAA	376500
TATTTTTCAA TAAAGCACCT CTAAAAAATG CACCAAATTA GAATAACTTT TACTAAACAT	376560
AGTATAAAAA TCATAAATAT CTATACTTAC ATTTTTTTAT TTTCAATCTC AAAGATTCTA	376620
TTAAATATCA AAAGCTAAGA AAATTTATCA AACACAAACT CTTTCTTCTA ATAGAAATAC	376680
ATAAATCCCA ATTAAAAACG ATGTCCTTTG TTTAAGTGCC AAAATCCCAT TAAATCCCAT	376740
TAAAATTAAA AAACTGAAGT TAAAGCATTA GAACAAATCT CATTTTTATA ATTTTTACAT	376800
TCAAAATTCT ATACAACAAT GGAATACACA TATCACTTAT AAATTCAATA AATAATTATT	376860
GACATGATTT AACACTTAAA AAGGACTTGT GTTATTTAAG CTGTCACAAC ATAAAAATTA	376920
ATAATATTAA TACACTAAGA AATAAAAAAG CAGATCCTAT ACTATGACCA GATATGTCTA	376980
TTAAACAGAT TTAAAGGTAT AAAAACTTAA TTTTAACTTA AAAAGCTATT TTTCAATTTT	377040
TCCAGCAAAA AATATTATTA ATAAAATTTA AAAAAAGAAA AGAATTTCAA AATCTCAAGC	377100
TCCAATCATA ATTTCAAATT ATATTATTTA AAATAGGCAT TGAAAGCTCA AAACCAAAGG	377160
TTTTTTCAGA AACTTTAACT ATAGGAGCTC CCTGTCTTCT TTTGTATTCA TTTTTAAAAT	377220
AAAGATTTAA AACTTTATCA ACTATACCTT TTTCAAAATT AAGATAAATT GAATCTACAG	377280
ATTCATTGCC AATCAAATAT CTATTTAAAA TAACATCAAG AACTTCATAT TTTGGAAGAT	377340
AATCACTATC TTTTTGATCA AACCTTAACT CAGCTGAAGG CTCCTTTAAA ATAATATTAA	377400
CAGGAATAAT ACATTGGTCA AATTTTGCAT TAATATAATT TACAAGATCA TAAACCTCAG	377460
TCTTAAAAAG ATCTCCGATC AAAGCAAGCC CTCCGCAAGT ATCCCCATAA AGGGTACAAT	377520
AACCAACTGC AATTTCGCTT TTGTTACCAG TATTTAAAAG CAAAGAATTT TGAGAATTAC	377580
TATAAGACAT TAATAAAAGC CCTCTTAACC GAGCTTGCAA ATTTTCTCCA GTAACACCTT	377640
TAATATCAAA ATATCCTTCA AAAAATCTAC TGCTTACCTG AAATAAATCT TTTATTGGCA	377700
TTTCAATCAA TTTAAAACCT AATTTTCTAG AAAGTTCTTT AGCATCAGAA ATAGAACCTG	377760
CTGATGAAAA TTTACTAGGC ATAGAAATCC CAACAACATT CTCAGCGCCC AAAGCAAAAC	377820
ATGCAAGATA CGCAATAAGA GCAGAATCAA CACCCCCAGA TACTCCCAAA TGAACTTTGG	377880
AAAATCCTGA AAAAGAAACA TATTTTCTTA AAACAAGAGA TATTGCTAAA ATAATTTTTT	377940

			371			
CAAAAAGCT	C ATTACATGTA	. ТСАААТТТТА	AATCTTGAAA	TGTATCATTA	GATATAAAAT	378000
CAAATTCAA	A TCCTTTGGCT	' TGCTTTACCT	TGCCAAAACT	ATTAATAAA	AGCTACACCC	378060
ATCATAAAC'	T GCAGAATCTT	CAACTCCATA	AAAATTCGAA	ТАААТААСАТ	CTAGATTATT	378120
CTCAATAGC	A ACTCTTTGAA	AGAATTTTAA	CCTAAGATTA	TTCTTCTCCT	TAGTGAAGTA	378180
AGATTTGGA	C GGTATTATTA	AATACTGTGC	TTCTTTAAAT	CCTCGCCAAA	TTTGGGAATT	378240
ACTTCTTTA	A ATAACAAAGC	ATCCTCAAAA	TTTAATACAG	САААТАААТТ	GTCCTTATAC	378300
CTAAAAAAC	C CAGGCAAATT	GCATTGTGAT	ACAGTTAGAA	TAGCTTTATG	ATTACTGATG	378360
ACAGAAATAA	A CATCTACAAA	TTTACCACCC	TCATAAACAC	TATGACCAAA	AACAATTAAA	378420
GTGTTATCAT	TAACCTGTTC	TTTCATAAAT	TCAATGAACT	ТАСАТАТАТТ	TTGAGAATAT	378480
TTAGAAAGCC	СААААААСТС	ACCATACTTA	GTATTGCCTA	AAAACATAGA	AGGAAAAACT	378540
AAAACGTCTG	ATCCCCTTAG	CAAAGCTTCA	TAATAATTAA	ТТТТААААТС	AGCAATACAT	378600
ТТАТСААААТ	CTAAAGCTCT	GTATTTTGCT	TGAGCAATGC	TTATTTTCAT	AGGTAAATAA	378660
TAAGCAATAA	TACATTAAAT	TACAACAAAA	AAATTAATAG	CTTGGCAAAA	АТААТАСТСА	378720
CCCATATTTT	' AAAAATACCC	TAATATTAAA	GATGTCTAAA	AGCACTAAAA	ACACAACAAA	378780
АТСААААААТ	GATACCAAAA	ATATTCTTAT	AAAAAAAA	ATAAAATTTT	TTATTTTGAC	378840
AAAAAAATAC	ACACGAACAT	TTTACTAAAT	AACAATATGT	АТСААТАТАА	CACTATTACT	378900
GAAAGCTTAA	GAAAAATATA	CATCTTACAA	ATGCTCAAAA	TGAATCAATT	ТТАТТАААТТ	378960
TCAAGAAAGA	AAAAAATTTG	TAAAATATTT	TTTTTAAAGA	TAAAATGCTT	TATCAAAGGA	379020
GGAAAAATGG	AAAAAAAAGA	AACTAAAAGC	GAATCTGAAA	AAACCAACAA	ACAAGATAAT	379080
AAAAATACAA	AATCTCAAAA	AAAAGAAAAC	TTAAATTTAG	TAAATTCTGA	ТААААААТТ	379140
GCTGAACTTG	AAAATGAAAT	CTCCAATCTT	AAAGATTTGT	ATTTAAGAAA	ACAAGCAGAA	379200
TTTGAAAACT	TCAGAAAAAG	ATTAGAAAAA	GAAAAAGACA	ATTTTGTTAA	ATTTGCAAAT	379260
GAAACCATAA	TGAAAGATGT	CGTTAATTTT	CTTGATAACT	TAGAACGAGC	ТАТТААСТСТ	379320
ТСАААААААТ	CTAAAGATTT	TGATAACTTA	TTAACAGGAA	TCAGTATGAT	TGAAAATGAA	379380
ATACTATCAA	TCTTTGATAA	ТААТАТААА	ТТААААААТ	TTGGAGAAAA	TGGCGAGAAC	379440
TTTGATCCAA	GTCGTCATGA	AGCAATAAGC .	ATTGAAGAGA	AAGAGGGTCT	ТАААААТССА	379500
GAAATAGTAG	AAGTATACCA .	AAAAGGATAT '	TGCTACAACG	ACAGAATATT	AAGAACAGCG	379560
AAAGTTAAAG	TTGCTCAAAG	CAAAAATTAA 1	TTAGAAAAA (GGAGGTTTAT	AATATGGGCA	379620
AAATAATAGG	TATTGACCTA	GGAACAACAA	ACTCATGCGT	AGCTATAATG	GAGCATGGAA	379680
AACCAGTTGT	AATACAAAAT	TCAGAAGGGG (GAAGAACTAC	ICCATCTATT	GTTGCTTACA	379740

			•			
CAAATAAAGG	CGAAAGACTT	GTGGGGCAA	G TTGCAAAAA	A CCAAATGGTT	ACAAACCCTG	379800
AAAACACAAT	ТТАТТСТАТТ	AAAAGATTT	A TGGGAAGAA	3 ATTTGAAGAG	GTTGCAAGCG	379860
ТААААТААА	GGTTCCTTAT	AAAATAGAA	A AAGGACTAA	A TGGCGATGCG	CGAGTAAACA	379920
TTTCAAATAT	AAAAAAGCAA	ATGTCACCG	CTGAGATCTC	C AGCAGCAACI	CTTACAAAAA	379980
TGAAAGAAAC	AGCAGAGGCT	TATTTAGGTO	G AAAAAGTTAC	AGAGGCTGTT	' ATCACAGTTC	380040
CTGCTTACTT	TAATGATGCT	CAAAGACAAC	G CCACAAAAGA	TGCTGGAAAA	ATAGCAGGTC	380100
TTGAGGTAAA	AAGAATTGTT	AACGAGCCAA	A CTGCTGCTGC	TCTTGCTTAT	GGAATTGAAA	380160
AAAAACACGA	AGAGATCGTT	GCTGTTTACC	ATCTTGGTGG	GGGAACATTT	GACATTTCAA	380220
TATTGGAACT	TGGAGATGGT	GTTTTTGAAG	TAAAGTCAAC	CAACGGAGAC	ACACATCTTG	380280
GTGGTGACAA	TTTTGACGAC	GAAATAATAA	AACATTTAAT	' TTCAGAATTC	AAAAAAGAAA	380340
GCGCTATTGA	TTTATCAAAC	GACAAAATGG	CTCTTCAAAG	ACTCAAAGAA	GCAGCTGAAA	380400
AAGCTAAAAT	AGAACTCTCA	GGCGCTCAAG	AAGCTTCAAT	AAATCTTCCA	TTTATTACAG	380460
CAGATGCAAA	TGGTCCAAAA	CACTTACAAT	ATACTCTAAC	AAGAGCAAAA	TTCGAACAAA	380520
TGGTAGACCA	CTTAGTTCAA	AAAACAAAAG	AACCATGCCT	TAAGGCTATT	AAAGATGCTG	380580
GGCTTAAAGC	TTCTGATATT	AATGAAGTAA	TACTTGTAGG	TGGATCAACA	AGAATTCCTG	380640
СТАТТСАААА	AATTGTAAAA	GATATATTTG	GACAAGATCC	TAACAAAGGA	GTAAATCCAG	380700
ATGAAGCTGT	AGCAATTGGA	GCTGCTATTC	AGGGTGGCAT	TCTAACAGGA	GAAACTAAAG	380760
ACATGGTACT	CCTTGACGTT	ACTCCACTCT	CACTAGGAAT	AGAAACACTA	GGCGGGGTTA	380820
TGACTAAACT	TATTGAACGA	AACACCACAA	TTCCTACAAA	AAAAAGTCAA	GTATTCTCAA	380880
CAGCTGCTGA	CAATCAAACC	TCTGTTGATA	TTAAAGTCCT	TCAAGGTGAA	CGTGAAATGG	380940
CAGCACAAAA	CAGAATACTT	GGTAATTTTA	TACTTGATGG	AATACCAGCA	GCACCAAGAG	381000
GAGTGCCTCA	AATTGAAGTT	AGCTTTGACA	TTGATGCTAA	TGGAATAGTT	CATGTGTCTG	381060
CAAAAGATAT	GGGAACGGGC	AAAGAACAAA	AAATTAGAAT	TGAATCATCA	TCAGGACTCT	381120
CTGAATCAGA	AATAGATCGA	ATGGTAAAAG	ATGCAGAAGC	TCATGCGGAA	GAAGATAAAA	381180
AATTAAAAGA	AAATATTGAA	GCAAAAAATA	CAGCTAATTC	TTTAATTTAT	CAAACAGAAA	381240
AATCATTAAA	AGAATATTCT	GAAAAAATTT	CAAGCGAAGA	CAAAGAAGCT	ATTGAAAGTA	381300
AAATAAAAGA .	ATTAAAAGAA	AGTCTTGAAA	AAGAAGACAT	TTCACTTATA	AAATCTAGAA	381360
CAGAAGAACT	TCAAAAAGCT	TCTTACAAAA	TAGCTGAGAT	GATGTATAAA	GATTCTTCCC	381420
AGCAAAATGC	AAACAGCCAA	CAAGAAAATG	GCCCACAAAG	CAATACAAGC	GAAGAGGGTA	381480

ANCAGGECTGA TTATGGGGTT GITGACGAGG ATAAAAAATA GTGAAAAAGA ATTATTATGA 381540 AATTITIGGG CICTCAAAAA GAGCCTCAAA AGATGAGATA AAAAAGCTT ATAGAAAAAT 381600 AGCAATTAAA TATCACCCAG ACAGAAATCA AGGGAATGAA GAACCCCCC CTATCTTTAA 381660 AGAACCCACT CAGGCTTACG AAATTITAAT AGATGACAAT AAAAAAGCTA AATACGACAG 381720 ATTITIGGCAT TCCGCTTTTG AAGGAGGAGG ATTTGAAGGA TTTTCAGGTG GATTTAGTGG 381780 ATTITCAGAC ATCTTTGAAG ATTTTGGCGA TATTTTTGAT TCATTTTTCA CTGGAAACAA 381840 AGGACAAGAA AGAAATGAA AACACCCAAA AGGTGAAGAC TTAGGATACA ACATAGAAAT 381900 ATCTCTTGAAA AGACCACAA AGGTGAAGAC TTAGGATACA ACATAGAAAT 381900 ATCTCTTGAAA AATGCCATAC TTTGGGTACA AAAAATAACA TAAACATAAC AAGACAAATG 382020 ATGTGTAACG GCAGCGGAAG AGTAGTGCAA GGCGGAGGAT TTTTCAGAGT TACAACAACA 382080 TGTTCTAAAAT GITACGGAGA AGATAACAA TAAACATAAC CTGTAAAAGAA 382200 AAAGGAAATC TTACAAAGCA AGAAACCATT CAATTAAACA TCCCCCCAGG CATTGAAAAGA AAAACAACAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAAACA AGAAAAATAGA 382200 AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAAACA AGAAATAAGAT 382200 GATCTTTAGG TAAAAAATATT GATAAGAATC CAAAAAGAAA TGGAAAAATA 382200 CTCTATGCAAA TAAAAAATATA AGCCTTTAC CATAAAAGTAT TCAAAAGAAA TGGTAAAAGAT 382200 CTCTATGCCAA TGCTTCCAAT AAGCTTTACT CAAGCACCGC TTGGAAAAGA AGGAAAAATA 382280 CTCTATGCCAA TGCTTCCAAT AAGCTTTACT CAAGCACCGC TTGGAAAAGAA AGGAAAATAA 382280 CAAAACAATC CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAAA CAATGAAGAA 382240 CAAAATTTAA TTAAAAAATGC AGGGATGCCA ATTCTTCAAA CCGAAAAGTT TGGAAATTTA 382500 CAAAATTTAA TTAAAAAATGC AGGGATGCCA ATTCTTCAAA CCGAAAAGTT TGGAAATTTA 382500 CAAAACTTGG GCAAAAATAA AACACCTAAA AATTAAATA CCACATACAAA AGCAAAACACAA 38220 CAAAATTAAAC CCAAAAATAA AACACCTAAA AATTAAAAAA AATTAACAAAG GATTTAAACT TTAAACCAA CAAAAAAAAAA	373	
AGCARTTARA TATCACCCAG ACAGAARTCA AGGGARTGAA GAAGCCGCCT CTATCTTTAA 381660 AGAAGCCACT CAGGCTTACG AAATTTTAAT AGATGACAAT AAAAAAGCTA AATACGACAG 381720 ATTTGGGCAT TCCGCTTTTG AAGGAGGAG ATTTGAAGGA TTTTCAGGTG GATTTACTGG 381780 ATTTTCAGAC ATCTTGAAG ATTTTGGCGA TATTTTGAT TCATTTTTCA CTGGAAACAA 381840 AGGACAAGAA AGAAATAGAA AACACCCAAA AGGTGAAGAC TTAGGATACA ACATAGAAAT 381900 ATCTCTTGAA AATGCCATAC TTTGGGTACA AAAAATAACA TAAACATAAC AAGACAAATG 382020 ATGTGTAACG GCAGCGGAAG AGTAGTGCAA GGCGGAGGAT TTTTCAGAGT TACAACAACA 382080 TGTTCTAAAAT GTTACGGAGA AGGTAAAATA ATATCAAACC CTTGTAAATC CTGTAAAGGA 382140 AAAGGAAGTC TTACAAAGCA AGAAACCATT CAATTAAACA TTCACCCCAGG CATTGATATA 382200 AACCAACAAA TAAAAATGAA AGGCAAGGGA AATTTAAACA TTCACACCAG CATTGATAAT 382200 AACCAACAAA TAAAAATGAA AGGCAAGGGA AATTTTAATC CAGATAATCA AGAATATGGT 382260 GATCTTTATG TAAAAAATTT GATAAAACTT CATAAAGTAT TCAAAAGAAA TGGTAAAGGA 382320 CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGCGC TTGGAAAGAA TGGTAAAGAT 382280 AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382380 AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382280 ATATTAAATCA CCAAAATAAA AACACCTAAA AATTCCAA AAGGAATAAA CAATGAAGAA 382500 ATATTAATCA CCAAAATAAA AACACCTAAA AATTCCAAA AATTACCATA TAAAACTTTTT 382660 GAAAACTTGG GCAAAAGAAT AAAAAATGA AATTCCAAA AATTACAAAG GATTATATA 382600 GTATATAACA CAAAAAAAA AACACCTAAA AATTTCAAAAAAA AATAACAAAG GATTTGAACT 382600 GTATATAACA CAAAGAATT AAAAAATGA AAGAAATGA AATTCAAAAAAAAAA	AAGAGGCTGA TTATGAGGTT GTTGACGAGG ATAAAAAATA GTGAAAAAAG ATTATTATGA	381540
AGAAGCCACT CAGGCTTACG AAATTTTAAT AGATGACAAT AAAAAAGCTA AATACGACAG 381780 ATTTGGGCAT TCCGCTTTTE AAGGAGGAGG ATTTGAAGGA TTTTCAGGTG GATTTAGTGG 381780 ATTTTCAGAC ATCTTTGAAG ATTTTGCGCA TATTTTTGAT TCATTTTTCA CTGGAAACAA 381840 AGGACAAGAA AGAAATAGAA AACACGCAAA AGGTGAAACA TAAACATACA ACATAGAAAT 381900 ATCTCTTGAA AATGCCATAC TTTGGGTACA AAAAATAACA TAAACATAAC AAGACAAATG 382020 CTCTGTGATT CTTGTCTCCG GAAAAAATCC GAAAAAGGTA CAAGTCCTTC GATATGTAAC 382020 ATGGGTAAAC GTACGGAAA AGGTAAATAA ATATCAAACC CTTGTAAATC CTGTAAAGGA 382140 AAAGGAAGTC TTACGAAGCA AGAACCATT CAATTAAACA TTCCCCCAGG CATTGATAAT 382200 AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT 382260 GATCTTTATG TAAAAATTAT GATAAGATCT CATAAAGTAT TCAAAAGAAA TGGTAAAGGA 382320 CTCTATGCAA TGCTCCCAT AAGCTTTACT CAGACGACAA AGGAATAAAC AGAATATGGT 382380 AAAACAATCG CTTCAAAAG AACCTTTACT CAAGCACGCC TTGGAAAAGA AGGTAAAATA 382380 CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCACGCC TTGGAAAAGAA AGTGAAAATA 382380 AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382440 CAAATTTAA TTAAAAATGC AGGGATGCCA ATTCTTCAAA ACGGAATAAA CAATGAAGAA 382500 ATATTAATCA CCAAAATAAA AACCCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT 382560 GAAACTTGG GCAAGAATT AAAAGATGG GATGAAATAG ATTTCCAA AGCATAATAT 382620 GTATATAACC CCAAAATAAA AACACCTAAA AATTTAAAAT CACATCCAA AGCATAAAC GATTTGAACT 382680 TTATATATCA CACAAAATAAA AACACCTAAA AATTTAAAAT CAACCAAAC GATTTGAACT 382680 TTATATATCA CACAAAATAAA AATACAAATG AACCAAAAC GATTTGAACC 382800 ATATAAAAAA AAAAAAAAGT CAAAACTA AAGAAATTAA AACACAAAA AATCTTTAA AACAAAGACC 382800 ACAGAGGATT TGCAATTAAAA TAAAAAATG AACTTGACAA AATTCTTAAAA AACACAAAA 382740 ATATAAAAAAA AAAAAAAATG AACACTAAA AATTCTAAAA AATTCTAAAA AACACAAAA 382920 ACAGAGGATT TGCAATTAAAA TAAAAAATG AACTTGACAA AATTCTTAAA AACACAAAC 382920 TTATATATCA AAAAAATAC CAAACTTTA AAAAAATAAA AAATGCAAAC AAAACTTTA AAAAAATTAA AAAAAATAAA AAAAAATAAAAAA		
ATTTGGGCAT TCCGCTTTG AAGGAGGAG ATTTGAAGGA TTTTCAGGTG GATTTAGTGG 381780 ATTTTCAGAC ATCTTTGAAG ATTTTGGCGA TATTTTTGAT TCATTTTTCA CTGGAAACAA 381840 AGGACAAGAA AGAAATAGAA AACACGCAAA AGGTGAAGAC TTAGGATACA ACATAGAAAT 381900 ATCTCTTGAA AATGCCATAC TTTGGGTACA AAAAATAACA TAAACATAAC AAGACAAATG 381960 CTCTGTGATT CTTGTCTCGG GAAAAAATCC GAAAAAGGTA CAAGTCCTTC GATATGTAAC 382020 ATGTGTAACG GCAGCGGAAG AGTAGTGCAA GCCGGAGGAT TTTTCAGAGT TACAACAACA 382080 TGTTCTAAAT GTTACGAGGA AGGTAAAATA ATATCAAACC CTTGTAAATC CTGTAAAGGA 382140 AAAGGAAGTC TTACAAAGCA AGAAACCATT CAATTAAACC TTCCCCCAGG CATTGATAAT 382200 AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT 382260 GATCTTTAG TAAAAATATT GATAAGATCT CATAAAGTAT TCCACAGAG AGTGAAAATA 382320 CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGCGC TTGGAAAAGA AGGGAAAATA 382380 AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382440 CAAATTTTAA TTAAAAATGC AGGGATGCCA ATTCTCCAAA AAGGAATATA TGAAAAATTT 382500 ATATTAATCA CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT 382560 GAAAACTTG GCAAAAGATT CAATAATTGA AAGCATAAA AATTTAAATT CTAATGCTAT TAAACATTTT 382620 GTATATAACC CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTTT 382660 GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATTAACAAAG GATTTGAACT 382680 TTATATATCA AAAAAAAAACT CAAAACTA AAGAAATGA ACACCAAAA 382740 ATATTAAAAAT AATAAGAAAT CAAAACTA AAGAAATGA AATTCTCAAA AGCATAAATAT 382660 AAGATTTTGA AAAAAAAAAAT CAAACTA AAGAAATTAA AACACAAAA AATTCTTAAAA AACAAAACA AATAACAAAA AATTCTAAAAA AATAACAAAAG GATTTTAACTC AAAAAAAAAA	AGCAATTAAA TATCACCCAG ACAGAAATCA AGGGAATGAA GAAGCCGCCT CTATCTTTAA	381660
ATTTTCAGAC ATCTTTGAAG ATTTTGGCGA TATTTTGAT TCATTTTCA CTGGAAACAA AGGACAAGAA AGAAATAGAA AACACGCAAA AGGTGAAGAC TTAGGATACA ACATAGAAAT AGGACAAGAA AGAAATAGAA AACACGCAAA AGGTGAAGAC TTAGGATACA ACATAGAAAT ATCTCTTGAA AATGCCATAC TTTGGGTACA AAAAATAACA TAAACATAAC AAGACAAATG CTCTGTGATT CTTGTCTCGG GAAAAAATCC GAAAAAGGTA CAAGTCCTTC GATATGTAAC ATGTGTAACG GCAGCGGAAG AGTAGTGCAA GGCGGAGGAT TTTTCAGAGT TACAACAACA ATGTGTAAAG GTTACCAAGACA AGGACACATT CAATTAAACA TTCCCCCAGG CATTGATAAGA AAAGGAAGTC TTACAAAGCA AGAAACCATT CAATTAAACA TTCCCCCAGG CATTGATAAT AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT AACCAACAAA TAAAAATATT GATAAGATCT CATAAAGGAT TCAAAAGAAA TGGTAAAGAT CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAAGCC TTGGAAAAGA AGTGAAAATA AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA ATATTAAAC CCAAAATAAA AACACCTAAA AATTTCAAAC ACCGAAAAGTT TGGAAATTTA 382500 ATATTAAATCA CCAAAATAAA AACACCTAAA AATTTCAAAA CACAAAGGT TAAACCTTTTT 382660 GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAAATAG ATTTACTCAA AGCATAATAT 382660 GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT AATAAAAAAAAAACT CAAAAACTA AAGCATAAAA AATAACAAAG GATTTGAACC AATATTAAAAAAAAAAAACT CAAAAACTA AAGAAATTGA ACAGCTAACA AATTCTTAAA AACAAAAGACC AAGAGGATT TGCATTAAAA TAAAAAAATG AACTTGACAA AATTCTTAAAA AACAAAACCA 382800 ACAGAGGATT TGCATTAAAA TAAAAAATG AACTTGACAA AATTCTTAAA AACAAAACCA 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAAA ACACAAACCA 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAA ACACAAACCA 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAA ACACAAACCA 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTATAA AAAAAAAAAA	AGAAGCCACT CAGGCTTACG AAATTTTAAT AGATGACAAT AAAAAAGCTA AATACGACAG	381720
AGGACAAGAA AGAAATAGAA AACACGCAAA AGGTGAAGAC TTAGGATACA ACATAGAAAT 381960 ATCTCTTGAA AATGCCATAC TTTGGGTACA AAAAATAACA TAAACATAAC AAGACAAATG 381960 CTCTGTGATT CTTGTCTCGG GAAAAAACC GAAAAAGGTA CAAGTCCTTC GATATGTAAC 382020 ATGTGTAACG GCAGCGGAAG AGTAGTGCAA GGCGGAGGAT TTTTCAGAGT TACAACAACA 382080 TGTTCTAAAT GTTACGGAGA AGAACCATT CAATTAAACC CTTGTAAATC CTGTAAAGGA 382140 AAAGGAAGTC TTACAAAGCA AGAAACCATT CAATTAAACA TTCCCCCAGG CATTGATAAT 382200 AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT 382260 GATCTTTATG TAAAAATATT GATAAGATCT CATAAAGTAT TCAAAAGAAA TGGTAAAGAT 382320 CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGGCC TTGGAAAAGA AGGAAAATAA 382380 AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382440 CAAATTTAAA TTAAAAATGC AGGGATGCCA ATTCTCAAA AAGGAATAAA CAATGAAGAA 382500 ATATTAATCA CCAAAATAAA AACACCTAAA AATTTAAAATT CTAATGCTAT TAAACTTTTT 382560 GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAATAA AATTACAAAG GATTTGAACT 382620 GTATATAACT CATGCCAAT CAATAATTGA AAGCATAAAA AATTACAAAG GATTTGAACT 382680 TTATATATCA AAAAAAAAAC CCAAAAACTA AAGCATAAAAA AATTACTTAAA AACAAAAGACC 382800 ACAGAGGATT TGCATTAAAA TAAACAAATG AACTTGACAA AATTCTTAAA AACAAAAGACC 382800 ACAGAGGATT TGCATTAAAA TAAAACATTG AACAAAATAA AAATCAAAAA AACACAAAA 382920 ACAGAGGATT TGCATTAAAA TAAAACATTA AAAAAAAATAA AAATCTTAAAA ACCACAAAA CCA 382920 TAGATGAAAT AATAAGAATA AATACAAATG AACTTTTA AAAACAAAC AAAACCAAA 382920 TAGATGAAAT AACACTACTA GAAACATTA AAAAAAAATAA AAATCTTAAAA ACCACAAACCA 382920 TAGATGAAAT TGCATTAAAA TAAAACATTA AAAAAAAAAA	ATTTGGGCAT TCCGCTTTTG AAGGAGGAGG ATTTGAAGGA TTTTCAGGTG GATTTAGTGG	381780
ATCTCTTGAA AATGCCATAC TTTGGGTACA AAAAATAACA TAAACATAAC AAGACAAATG 381960 CTCTGTGATT CTTGTCTCGG GAAAAAATC GAAAAAGGTA CAAGTCCTTC GATATGTAAC 382020 ATGTGTAACG GCAGCGGAAG AGTAGTGCAA GGCGGAGGAT TTTTCAGAGT TACAACAACA 382080 TGTTCTAAAT GTTACGGAGA AGGTAAAATA ATATCAAACC CTTGTAAATC CTGTAAAGGA 382140 AAAGGAAGTC TTACAAAGCA AGAAACCATT CAATTAAACA TTCCCCCAGG CATTGATAAT 382200 AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT 382260 GATCTTTATG TAAAAATATT GATAAGATC CATAAAGTAT TCAAAAGAAA TGGTAAAGAT 382320 CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGCGC TTGGAAAAGA AGTGAAAATA 382380 AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382440 CAAATTTTAA TTAAAAATGC AGGGATGCCA ATTCTCCAA AAGGAATAAA CAATGAAGAA 382500 ATATTAATCA CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT 382560 GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAATAA AATAACAAAG GATTTGAACT 382680 TTATATATCA CAAAAAAAAAA AACACCTAAA AAGAAATGA AATAACAAAG GATTTGAACT 382680 TTATATATCA AAAAAAAAAT AAAAAACTA AAGAAATTGA ACAGCTAAAA AATTCTAAAA AACACAAAA 382740 ATATAAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACACAAA 382740 ATATAAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACACAAAC 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAAAAA	ATTTTCAGAC ATCTTTGAAG ATTTTGGCGA TATTTTTGAT TCATTTTTCA CTGGAAACAA	381840
ATGTGTATC CTGGTCTCG GAAAAAATCC GAAAAAGGTA CAAGTCCTTC GATATGTAAC ATGTGTAACG GCAGCGGAAG AGTAGTGCAA GGCGGAGGAT TTTTCAGAGT TACAACAACA AGCAACAACA GGCAGCGGAGA AGGTAAAATA ATATCAAACC CTTGTAAATC CTGTAAAGGA 382140 AAAGGAAGTC TTACAAAGCA AGAAACCATT CAATTAAACA TTCCCCCAGG CATTGATAAT 382200 AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT 382260 GATCTTTATG TAAAAATATT GATAAGATCT CATAAAGTAT TCAAAAGAAA TGGTAAAGAT 382320 CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGCCC TTGGAAAAGA AGTGAAAATA 382380 AAAACAATCG CTTCAAAAGG GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382440 CAAATTTTAA TTAAAAATGC AGGGATGCCA ATTCTTCAAA CCGAAAAGTT TGGAAATTTA 382560 GAAACCTTGG GCAAAGAATT AAAAGATGGT GATGAAATAG ATTTACTCAA AGCATAATAT 382620 GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATTACCAAA GGATTAGAACT 382680 TTATATATCA CAAAAAAAAAAAGT CCAAAAACTA AAGAAATTGA ACACTAAAA AATTACAAAG GATTTGAACT 382680 TTATATATCA AAAAAAAAAGT CCAAAAACTA AAGAAATTGA ACACTAAAA AATTCTAAA AACACAAA 382740 ATATAAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACACAAAA 382740 ATATAAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACACAAAA 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTTAAAA ACCAAAACCA 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTTAAAA ACCACAAACCA 382920 TAGATGAAAT AAAAAAAAAC TACAAACTTTG GAGCAAATCCT TAGAACAGCA GAACAGTTTA 382920 GTATAGATCT TGCATTACTA GAAACATTTA AAAAAAAAAA	AGGACAAGAA AGAAATAGAA AACACGCAAA AGGTGAAGAC TTAGGATACA ACATAGAAAT	381900
TGTTCTAAAT GTTACGGGAA AGTAGTGCAA GGCGGAGGAT TTTTCAGAGT TACAACAACA 382140 AAAGGAAGTC TTACAAAGCA AGAAACCATT CAATTAAACA TTCCCCCAGG CATTGATAAT 382200 AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT 382260 GATCTTTATG TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT 382320 CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGCGC TTGGAAAAGA TGGTAAAGAT 382380 AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382440 CAAATTTAA TTAAAAATGC AGGGATGCCA ATTCTCAAA ACGAATATA CAATGAAGAA 382500 ATATTAAACA CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT 382500 GAAAACTTGG GCAAAGAATT AAAAGATGG GATGAAAATA AATAACAAAG GATTTGAACT 382600 GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATTACCAAAACAAAG GATTTGAACT 382600 GTATATAACA AAAAAAAAGT CCAAAAACTA AAGCATAAAA AATACCAAGA GATTTGAACT 382600 ACAGAGGATT TGCATTAAAA TATAAACTG AAAAAAATAA AAAAAAACAA AATTCTTAAA AACAAAGACC 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAA ACACAAAACCA 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAA ACACAAAACCA 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGCTTTC ATTTTACTTC 382920 TAGATGAAAT AGAAGATCC CAAAACTTTA AAAAAAAAAA	ATCTCTTGAA AATGCCATAC TTTGGGTACA AAAAATAACA TAAACATAAC AAGACAAATG	381960
TGTTCTAAAT GTTACGGAGA AGGTAAAATA ATATCAAACC CTTGTAAATC CTGTAAAGGA 382140 AAAGGAAGTC TTACAAAGCA AGAAACCATT CAATTAAACA TTCCCCCAGG CATTGATAAT 382200 AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT 382260 GATCTTTATG TAAAAATATT GATAAGATC CATAAAGTAT TCAAAAGAAA TGGTAAAGAT 382320 CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGCGC TTGGAAAAGA AGTGAAAATA 382380 AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382440 CAAATTTTAA TTAAAAATGC AGGGATGCCA ATTCTTCAAA CCGAAAAGTT TGGAAATTTA 382500 ATATTAATCA CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT 382560 GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAATAG ATTTACTCAA AGCATAATAT 382620 GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT 382680 ATATTAAAAAA AATAAAAAAGT CCAAAAACTA AAGAAATTGA ACAGCTAGCT AAAACACAAA 362740 ATATAAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACAAAAGACC 382800 ACAGAGGATT TGCATTAAAA TTAAAACTT AAAAAAATAA AAATGTAAAA ACACAAAACCA 382920 AAGATTTTGA AAACTTACTA GAAACATTTA AAAAAAATAA AAATGCTAAAA ACACAAACCA 382920 TAGATGAAAT AGAAGATCC CAAAACTTTA GAGCAATCCT TAGAACAGCA GAACAGTTTAC 382920 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATTCA ACAGTTTTGC 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGC AGGTAATAT AAAGCAAAC 383100 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGC AGTGACAAAC ATAAACAAA 383100 CAATAAAATCT TTTAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG 383160 CAATAAAATC TTTAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG 3831100	CTCTGTGATT CTTGTCTCGG GAAAAAATCC GAAAAAGGTA CAAGTCCTTC GATATGTAAC	382020
AAAGGAAGTC TTACAAAGCA AGAAACCATT CAATTAAACA TTCCCCCAGG CATTGATAAT 382200 AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT 382260 GATCTTTATG TAAAAATATT GATAAGATCT CATAAAGTAT TCAAAAGAAA TGGTAAAGAT 382320 CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGCGC TTGGAAAAGA AGTGAAAATA 382380 AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382440 CAAATTTTAA TTAAAAATGC AGGGATGCCA ATTCTTCAAA CCGAAAAGTT TGGAAATTTA 382500 ATATTAATCA CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT 382560 GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAATAG ATTTACTCAA AGCATAATAT 382680 GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT 382680 TTATATATCA AAAAAAAAGT CCAAAAACTA AAGCATAAAA AATTCTTAAA AACAAAAGACC 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAAA ACACAAACCA 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAAA ACACAAACCA 382920 TAGATGAAAT AGAAGATCC CAAAACTTA AAAAAAAAGA AAATGTAAAAA ACACAAACCA 382920 TAGATGAAAT AGAAGATCC CAAAACTTTA AAAAAAAAGA AAATGTAAAAA ACACAAACCA 382980 GTATAGATGAAT AGAAGATCC CAAAACTTTG GAGCAATCCT TAGAACAGCA GAACAGTTTA 382980 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATCCA ACAGTTTTGC 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGA AGGACAAAC ATAAACAACA AAGATTTTGA AAACTTACT ACTCAAAAAC GCAGCGCAAA AGACAATCCA ACAGTTTTGC 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGA AGGACAAAC ATAAACAACA 383100 CAATAAAATCT TTTAAAAAC TATGGCTTTT GGATATTAC TGGTGATATT AAAGGACAAG 3831160 CAATAAAATCT TTTAAAAAATA AACCGATAAAA AAAATTAC TGGTGATATT AAAGGACAAG 3831160	ATGTGTAACG GCAGCGGAAG AGTAGTGCAA GGCGGAGGAT TTTTCAGAGT TACAACAACA	382080
AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT 382320 GATCTTTATG TAAAAATATT GATAAGATCT CATAAAGTAT TCAAAAGAAA TGGTAAAGAT 382320 CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGCGC TTGGAAAAGA AGTGAAAATA 382380 AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382440 CAAATTTTAA TTAAAAATGC AGGGATGCCA ATTCTTCAAA CCGAAAAGTT TGGAAAATTTA 382560 ATATTAATCA CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT 382560 GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAATAG ATTTACTCAA AGCATAATAT 382620 GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT 382680 ATATAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACAAAGACC 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAA ACACAAACCA 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAA ACACAAACCA 382920 TAGATGAAAT AGAAGATCC CAAAACTTA AAAAAAAAGA AAATGCTTTC ATTTTACTTC 382920 TAGATGAAAT AGAAGATCC CAAAACTTT GAGCACAAACCA GAACCATTTC ATTTTACTTC 382980 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATTCA ACAGTTTTG 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAAATGA CAGTGACAAAC ATAAACAACA 383100 CAATAAAACCT TTTAAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG 383160 CAATAAAACCA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 3831200	TGTTCTAAAT GTTACGGAGA AGGTAAAATA ATATCAAACC CTTGTAAATC CTGTAAAGGA	382140
GATCTTTATG TAAAAATATI GATAAGATCI CATAAAGTAI TCAAAAGAAA TGGTAAAGAI 382320 CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGCGC TTGGAAAAGA AGTGAAAATA 382380 AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382440 CAAATTTAA TTAAAAATGC AGGGATGCCA ATTCTCAAA CCGAAAAGTT TGGAAATTTA 382500 ATATTAATCA CCAAAATAAA AACACCTAAA AATTAAAATT CTAATGCTAI TAAACTTTTT 382560 GAAAACTTGG GCAAAGAATT AAAAGATGG GATGAAATAG ATTTACTCAA AGCATAATAT 382620 GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT 382680 ATATAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACAAAGACC 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAA ACACAAACCA 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGCTAAA ACCAAAACCA 382920 TAGATGAAAT AGAAGATCC CAAAAACTTA AAAAAAAAGA AAATGCTTTC ATTTTACTTC 382920 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATCA ACAGTTTTA 383040 GCACTAGCTC TGGCGCAAG CAATATGTAA AAAAAAATGC AGTGACAAAC ATAAACAACA 383100 CAATAAAACC TTTAAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG 383160 CAATAAAACCA AATCAAAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 3831220	AAAGGAAGTC TTACAAAGCA AGAAACCATT CAATTAAACA TTCCCCCAGG CATTGATAAT	382200
CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGCGC TTGGAAAAGA AGTGAAAATA 382380 AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382440 CAAATTTTAA TTAAAAATGC AGGGATGCCA ATTCTTCAAA CCGAAAAGTT TGGAAATTTA 382500 ATATTAATCA CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT 382560 GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAATAG ATTTACTCAA AGCATAATAT 382620 GTATATAACC CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT 382680 TTATATATCA AAAAAAAAGT CCAAAAACTA AAGAAATTGA ACAGCTAGCT AAAACACAAA 382740 ACAGAGGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AATTCTTAAA ACCAAAACCA 382800 ACAGAGGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAAA ACACAAACCA 382860 AAGATTTTGA AAACTTACTA GAAACATTTA AAAAAAAAAA	AACCAACAAA TAAAAATGAA AGGCAAGGGA AATGTTAATC CAGATAATCA AGAATATGGT	382260
AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA 382440 CAAATTTTAA TTAAAAATGC AGGGATGCCA ATTCTTCAAA CCGAAAAGTT TGGAAATTTA 382500 ATATTAATCA CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT 382560 GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAATAG ATTTACTCAA AGCATAATAT 382620 GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT 382680 TTATATATCA AAAAAAAAGT CCAAAAACTA AAGAAATTGA ACAGCTAGCT AAAACACAAA 382740 ATATAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACAAAGACC 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAAATAA AAATGTAAAA ACAAAACCA 382860 AAGATTTTGA AAACTTACTA GAAACATTTA AAAAAAAAGA AAATGCTTTC ATTTTACTTC 382920 TAGATGAAAT AGAAGATCC CAAAACTTTG GAGCAATCCT TAGAACAGCA GAACAGTTTA 382980 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATTCA ACAGTTTTGC 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAAATGAC AGTGACAAAC ATAAACAACA 383100 CAATAAAACT TTTAAAAAAC TATGGCTTTT GGATATTAC TGGTGATATT AAAAGGACAAG 383160 ATATAAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383120	GATCTTTATG TAAAAATATT GATAAGATCT CATAAAGTAT TCAAAAGAAA TGGTAAAGAT	382320
CAAAATTTAA TTAAAAATGC AGGGATGCCA ATTCTTCAAA CCGAAAAGTT TGGAAATTTA 382500 ATATTAATCA CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT 382560 GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAATAG ATTTACTCAA AGCATAATAT 382620 GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT 382680 TTATATATCA AAAAAAAAGT CCAAAAACTA AAGAAATTGA ACAGCTAGCT AAAACACAAA 382740 ATATAAAAAA AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACAAAGACC 382800 ACAGAGGGATT TGCATTAAAA TTAAAACTTG AAAAAAAATAA AAATGTTAAAA ACAAAACCA 382860 AAGATTTTGA AAACTTACTA GAAACATTTA AAAAAAAAAA	CTCTATGCAA TGCTTCCAAT AAGCTTTACT CAAGCAGCGC TTGGAAAAGA AGTGAAAATA	382380
ATATTAATCA CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT 382560 GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAATAG ATTTACTCAA AGCATAATAT 382620 GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT 382680 TTATATATCA AAAAAAAAGT CCAAAAACTA AAGAAATTGA ACAGCTAGCT AAAACACAAA 382740 ATATAAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACAAAGACC 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAAATAA AAATGTAAAAA ACACAAACCA 382860 AAGATTTTGA AAACTTACTA GAAACATTTA AAAAAAAAGA AAATGCTTTC ATTTTACTTC 382920 TAGAATGAAAT AGAAGATCC CAAAACTTTG GAGCAAATCCT TAGAACAGCA GAACAGTTTA 382980 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATTCA ACAGTTTTGC 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAAATGAC AGTGACAAAC ATAAACAACA 383100 CAATAAAATCT TTTAAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG 383160 ATATAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383220	AAAACAATCG CTTCAAAAGA GATTAAAATA CACATTCCAA AAGGAATAAA CAATGAAGAA	382440
GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAATAG ATTTACTCAA AGCATAATAT 382620 GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT 382680 TTATATATCA AAAAAAAAGT CCAAAAACTA AAGAAATTGA ACAGCTAGCT AAAACACAAA 382740 ATATAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACAAAGACC 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAA ACACAAACCA 382860 AAGATTTTGA AAACTTACTA GAAACATTTA AAAAAAAAAGA AAATGCTTTC ATTTTACTTC 382920 TAGATGAAAT AGAAGATCCC CAAAACTTTG GAGCAATCCT TAGAACAGCA GAACAGTTTA 382980 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATTCA ACAGTTTTGC 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAAATGAC AGTGACAAAC ATAAACAACA 383100 CAATAAAATCT TTTAAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG 383160 ATATAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383220	CAAATTTTAA TTAAAAATGC AGGGATGCCA ATTCTTCAAA CCGAAAAGTT TGGAAATTTA	382500
GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT 382680 TTATATATCA AAAAAAAAGT CCAAAAACTA AAGAAATTGA ACAGCTAGCT AAAACACAAA 382740 ATATAAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACAAAGACC 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAAATAA AAATGTAAAA ACACAAACCA 382860 AAGATTTTGA AAACTTACTA GAAACATTTA AAAAAAAAGA AAATGCTTTC ATTTTACTTC 382920 TAGATGAAAT AGAAGATCCC CAAAACTTTG GAGCAATCCT TAGAACAGCA GAACAGTTTA 382980 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATTCA ACAGTTTTGC 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGAC AGTGACAAAC ATAAACAACA 383100 CAATAAATCT TTTAAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG 383160 ATATAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383220	ATATTAATCA CCAAAATAAA AACACCTAAA AATTTAAATT CTAATGCTAT TAAACTTTTT	382560
TTATATATCA AAAAAAAGT CCAAAAACTA AAGAAATTGA ACAGCTAGCT AAAACACAAA 382740 ATATAAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACAAAGACC 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAAATAA AAATGTAAAAA ACACAAACCA 382860 AAGATTTTGA AAACTTACTA GAAACATTTA AAAAAAAAGA AAATGCTTTC ATTTTACTTC 382920 TAGATGAAAT AGAAGATCCC CAAAACTTTG GAGCAATCCT TAGAACAGCA GAACAGTTTA 382980 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATTCA ACAGTTTTGC 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGAC AGTGACAAAC ATAAACAACA 383100 CAATAAAATCT TTTAAAAAAC TATGGCTTTT GGATATTACC TGGTGATATT AAAGGACAAG 383160 ATATAAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383220	GAAAACTTGG GCAAAGAATT AAAAGATGGT GATGAAATAG ATTTACTCAA AGCATAATAT	382620
ATATAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACAAAGACC 382800 ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAAA ACACAAACCA 382860 AAGATTTTGA AAACTTACTA GAAACATTTA AAAAAAAAGA AAATGCTTTC ATTTTACTTC 382920 TAGATGAAAT AGAAGATCCC CAAAACTTTG GAGCAATCCT TAGAACAGCA GAACAGTTTA 382980 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATTCA ACAGTTTTGC 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGAC AGTGACAAAC ATAAACAACA 383100 CAATAAATCT TTTAAAAAAC TATGGCTTTT GGATATTAC TGGTGATATT AAAGGACAAG 383160 ATATAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 3833220	GTATATAACT CATGCCAATT CAATAATTGA AAGCATAAAA AATAACAAAG GATTTGAACT	382680
ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAA ACACAAACCA 382860 AAGATTTGA AAACTTACTA GAAACATTTA AAAAAAAAGA AAATGCTTTC ATTTTACTTC 382920 TAGATGAAAT AGAAGATCCC CAAAACTTTG GAGCAATCCT TAGAACAGCA GAACAGTTTA 382980 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATTCA ACAGTTTTGC 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGAC AGTGACAAAC ATAAACAACA 383100 CAATAAAATCT TTTAAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG 383160 ATATAAACAA AATCAAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383220	TTATATATCA AAAAAAAGT CCAAAAACTA AAGAAATTGA ACAGCTAGCT AAAACACAAA	382740
AAGATTTTGA AAACTTACTA GAAACATTTA AAAAAAAGA AAATGCTTTC ATTTTACTTC 382920 TAGATGAAAT AGAAGATCCC CAAAACTTTG GAGCAATCCT TAGAACAGCA GAACAGTTTA 382980 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATTCA ACAGTTTTGC 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGAC AGTGACAAAC ATAAACAACA 383100 CAATAAAATCT TTTAAAAAAC TATGGCTTTT GGATATTAC TGGTGATATT AAAGGACAAG 383160 ATATAAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383220	ATATAAAAAT AATAAGAATA AATACAAATG AACTTGACAA AATTCTTAAA AACAAAGACC	382800
TAGATGAAAT AGAAGATCCC CAAAACTTTG GAGCAATCCT TAGAACAGCA GAACAGTTTA 382980 GTATAGATCT TGTAATTACT ACTCAAAAAC GCAGCGCAAA AGACAATTCA ACAGTTTTGC 383040 GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGAC AGTGACAAAC ATAAACAACA 383100 CAATAAATCT TTTAAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG 383160 ATATAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383220	ACAGAGGATT TGCATTAAAA TTAAAACTTG AAAAAAATAA AAATGTAAAA ACACAAACCA	382860
GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGAC AGGCGCAAA AGACAATTCA ACAGTTTTGC 383040 CCAATAAATCT TTTAAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG 383160 ATATAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383220	AAGATTTTGA AAACTTACTA GAAACATTTA AAAAAAAAGA AAATGCTTTC ATTTTACTTC	382920
GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGAC AGTGACAAAC ATAAACAACA 383100 CAATAAATCT TTTAAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG 383160 ATATAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383220	TAGATGAAAT AGAAGATCCC CAAAACTTTG GAGCAATCCT TAGAACAGCA GAACAGTTTA	382980
GCACTAGCTC TGGCGCAAGT CAATATGTAA AAAAAATGAC AGTGACAAAC ATAAACAACA 383100 CAATAAATCT TTTAAAAAAC TATGGCTTTT GGATATATAC TGGTGATATT AAAGGACAAG 383160 ATATAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383220		
CAATAAATCT TTTAAAAAAC TATGGCTTTT GGATATATC TGGTGATATT AAAGGACAAG 383160 ATATAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383220		383100
ATATAAACAA AATCAAAATA AACGATAAAA AAATTGCACT TATTTTAGGA AATGAAGGAA 383220		
		383220
		383280

GAAAATACA CTGACTTTAA CTGACTTTAA CTGACTTAA CTGACTTAA CTGACTTTAA CTGACTTAA CTGACTTTAA CTGACTTTAA CTGACTTTAA CTGACTTTAA CTGACTTTAA CTGACTTTAA CTGACTTTAA CTGACTTTAA CTGACTTTAA CTGACTTAA CTGACTTTAA CTGACTTTAA CTGACTTTAA CTGACTTTAA CTGACTTAA CTGACT	
GAAAAATAGA CTCACTTAAT GTCTCTGTAT CTACAGGCAT TTTAATTTTT GAAATCAAAA	
GACAATTAAA TCTACTCTAA AGCATTAAAT TATATAAAAA CTTCATTTAA AAAAACAAAA	
ACATCTTAAT AAAAACTATT TTAAAAAATT TCCTAACTCA ACAGATGCAA TAAACCCCTC	·
AGCAGCAGCA GTAATGGCTT GAGCATAAAG TTTATTGCTA ACATCTCCAC ATGAAAAAAC	
ACCATCAACG CTTGTTTTAA CAACATCTTT AGTGACAATA AATCCCTCTT CGTCCAAATC	
CAAAAATCCC TTTAAAAATT CTGTATTTGG CTTATAGCCA ACAGCCATAA ATACAGCACT	383640
CACTTCTAAT TCATAAACAA CATTATCTTT TTTATTAAAA ATCTTAACCG AAGAAACAGA	383700
AGATTTACCA TCTACTTCTA TGGCTTCTGA ATTATACAAA ATTTCAATAT TAGGTAACTT	383760
AGCAACACTA TCTCTTAACA TAGCAATAGC TCTAAGATTA TTTTTTTTTA CAATAAGATA	383820
AACCTTGTCC ACCAATTTGC TTAAATAAAT TGATTCTGAA AGGGCAGTGT TGCCTCCACC	383880
AATTACTGCA ACCCTTTTCC CTTTAAAAAG ATGTCCATCA CAAATAGCAC AAACAGAAAT	383940
ACCTTTATTC CAAAATAAAC CCGAATTTTT AAGAGTTTCA AGTTTTTTGG GTTTTGATCC	384000
CACAGCAATA ATAACAGCTT TACTTTTATA AATATAATTT TCTGTATAAA GGTAAAAAAT	384060
ATTACCCTTC CTTTTTATAG AAAAAACGGT TTCGGGAAAA GTTTTAGCCC CAAGATTTAC	384120
TACTTGCTCC CTCATATTTA ACATCAAATT TCTACCACTT ATTCCATTTT TAAAGCCAGG	384180
ATAATTGTAA ACTTCTGTGG TTGTAGTAAG CTGTCCCCCG GGTTCAGGAC CTTCCAAAAT	384240
AGCAGCCTTA TAATTACTCA TAACAGAATA AATCCCAGCT GTTAGTCCAG CCGGGCCAGA	384300
TCCTACAATT ATTACATCTT CAATAAAATC TACCTCTTTT TGAGATAGAT TTTTCTTCTT	384360
GGTTAGATTT ATATCAATAG TTTCAAATTC CAACATATCT AAACTTCAGG CCTCTCTTAA	384420
AAATTTGAAT ATTAATCTTA ACATTGCTAA AACTAATATT CAATGCTTAA GATCGACTCA	
TAAGTTTGTT TATATTAACC TCAAAAACAG AACATGGAAT AAAAATACCA AAATTATTTA	384480
ACACATAAGG TGAAATTTCG CCAAAACCAC CTATATTAAA ACCTTCAATT ACAATATCCG	384540
CTCCCCTGCC ATTAATATAA AAAGTGGTTT TTGATTCTAT TAAATTAATC TCAATATTTA	384600
AATAATAAAA AAGTGTTGCA ACAATTGAAT TAATCTCATT AAAAGAAATT TCTTTACCAG	384660
ACATTAAAAA AGCTAAATTA GTAAAAGTAC TTGTTCTTCG GTAGTATCCA GATTCTTTAA	384720
	384780
AGCCACCTTG CCAATTTCAA AAATTTATG TGGATAGGGA AAATTAGAAC TAACACTTTC	384840
TGATTTTAAT AAATTAGGAA TTATTGATGC TCTAATATAT TCATAATTCT CTGTCATTGG	384900
ATTAGATACT TTTAAAAAAT TTTGATCATT AATATTCATT CTGTCAATAA AATCTTTCTT	384960
AGAACCCATA TAATTATAAA TCATCTCTTG AAATCCCATA CCCACCATTA AATTTCTAAC	385020

WO 98/58943				US98	8/12764
АТТССТТСАА	ΔΔCΦCΦΦCΦΑ	375			
	AACTCTTCTA AAGGACTAAG				
	CTTGAAAGAC CCTCCCTAT				
	ITTCTATAAA AAGGTGGAAC				
ATTTACTCCC A	ATTTTTTTA AACTAAGGCA	AATACGCTCT	AATGTTAAAT	'TGCTTCCAAG	385260
CAGTCTATTA A	АТАТТТТСАА САТТАААСТС	CACTTCTTCT	TGAAAATAAT	AAGGACATAC	385320
CAATTCTTTA A	AAATCTAAAT TAAAAGGCTC	TCTAAACACA	GTTTTTACGG	GCAAAATTTC	385380
AAAACCCATA T	CATAAAAAT CACAGGCTGC	TATAGATAAC	GCTAACAAAG	TTGCTTCAAA	
	ТААССТСАА САААТАААТС				385500
	TTATTGGAG GATAAGAGAC				385560
	AATTTTTAA TAATATGTGA				_
	GAGAAAGCT CATAATCCAT				385620
	AACTTATTG GGAATTTAAT				385680
	TTTGTCCAT AATTCTGACA				385740
	CATTAATAA TCAATCCTTT 1				385800
					385860
	TGCCATCAA CTAAAATTTC A				385920
	CATAATAGG GCATTTCTCC A				385980
	CCACAAAT CTGGCCTATT T				386040
	AAACCCAT CAAATTCTGC C				386100
	АТТТТТТС СТАТТТТАТС Т				386160
	TTCCTCGT CTTAAAATAA C				386220
	GACCTAAG TGCATTAAAG C				386280
	CAATGCCT AAAGGCTTTG T				386340
	AACCAAGA ACAGGATGCT T				386400
AGGGAAAATA TGG	CGGGAACA TATTTAATTT C	TGTAGCGCC CC	GCAAGCTCT T	TGGCAAAAA	386460
TTTCAAGAAG GCC	CTAGCAAA GTTTTAATGC TA	ACACCATC CT	CAATAACA A	TCCCTTCGG	386520
	CTACTCCG TGAGTTGCAT CT				386580
	GCTTGGA TTTTTGGCAT TA				386640
	AACCAAT CTCTTAGAGA GA				386700
	ATATCCT GTTTCATGGG CT				
CCAAACATTC mma				5001010	386760

GCAAAGATTC TTGCATGCTA GGATCTGAAA TGTAATAAAC ATCTTTAATA TCACGAGAAG

GATGAAATTG GGGCATAAAA AGAGCATCGT TGTTAAAAAA TTCTGTTTCT ACCAAAGGAC	306000
CATCAAACTC TTGAAAGCCA AGACCTACTA ATTTATCTTT AATTTTAGAA ATATAATCTA	
AATAAGAATT GGCACGCCCA ATAAAAGTCT TAGCTGATGG AATATGAATA TTGTAAGCTC	386940
TAAATTTTTT GTTCTCATAC GTTTTATTTT TTAAAATTTC GGGAGTAAGC TTAGTAAGCT	387000
CATCTCCAGT CAATTTGCTT TTCATTAAAA AATTTTTAAC TTCCAATCCA AAACTAGATA	387060
ATCTAAACT TAAATCAAGT TTTTCTATTA TTTTAAAAAA TACAGAGTCT GCTCCTTTTT	387120
	387180
TCTTAGCAAA ATTTGATATT AATAAAAGCT CTTCGGTTGT CAAACTTTCT CTAAGAAGAT	387240
CGCTATTTTT TGCTCTTTCC AACAAAACAC GTACTTTTTG ATAATTAGTC TCTGTGCCAT	387300
CTAAACAATT TATAATAATC TGTTTATCTA AATCAAGAGA AAGAATGCCC TCTTTTAACA	387360
AATTACCAAA GGCTTTTCTT ACTTCTTTAA CATCAATATC AAGCTCTAAG GCTAAATTTG	387420
AAGCCAACAC TGCCTTTTGA GATACTAAAT TTATTATTTT TTCTTCAACA AAACCATCTC	387480
TTAAAGCACC AAGACCCCTT TCTGTTGCTT TATAAAATAC ATTTAATTTC CTATAAATCT	387540
CTTCAATAAT CCCTTTAGAA TTTAACCATT CAATTGTTTT ATTTGCTTGA CCTTCATTAA	387600
ACCCCAATTT TTCAATAATA ATTGAAGCAG AAATATCATC CTCTTCTTCA TTATTTACAA	387660
TTACTTTTAT CTCAAGAGGG TGCAATGTTT TTATTAAATT TAAATCTGCC TTCATAAATA	387720
TAACCTTCAA TCACCTTTAT TACTTATACC AAGCTCTAAA ATAAGCTCAA CTTCCCCAAT	387780
AGATAATTTG GTAGCTCTAG AAATTTCTTC AGCACTCCAT CCCTGCCTCA TTAATTTTAT	387840
TACAGAATTC CTAACAGTTT CATTATTAAG ACCAACATTA TCTTGATATT TAGAATCAGT	387900
TTTGACAAGA ATACCAAGAG TTTTTATTCT CTCTTCTGCT GCAATATTTA AATTCTCCAA	387960
CCTTGTCTCA GATTTCACCA CCCTCTCTCT CATAGTCAAA GTATTTTTCA ACTTATTTTC	388020
AATATCTAAT AGCATTTCCT TTAAATTTTG AGCATTAATC AACACTTCTT CTGACAACCC	_
TTTGTTTAAT AAGAGACTTG AAACAACATT TTCCATATCC TTGAGATTGT CTTGAATCTT	388080
AGCACTCTCT TTGCTTAAAT TATTAAATCT TTTCTCCACT TCATTTATTA AATCAAAATT	388140
TTTATCAACA GACTCTATAG TACTCTTTAA TATGCTCTCT TTATTGCTAA TTCTTTCATA	388200
ATTATCAAGA ATAGTTCTCT GCTCGTCAGC TATCTCTTT ATTTTAGCTT TATATATCTG	388260
CATTTCATCA TAAGATTCAA TTAAACTCTT ATATCTACTA TCAAATGAAG AGTAAAATTC	388320
	388380
	388440
	388500
GTTTTCAAAA TTATTTTTAT ATTCCTGAGC AAGCCCTATC TCATTTTTTA AAGTTTCCCA	388560

377	
TAATTTTTCC AACTTGTCCT TAAGAGAATA AGCCTCCAAA AATATTGAAT TATTCTTTTC	
AAGTTCAGAA TCTAATTTTT TAAAATTTTC AATTTGATTT TCGATTTGAA AATTTATTTT	388680
ATCATAACTA TCTTCAAATT CTGCTCTCAA ATCAGATTTG TATTCAACTA AATTGTCTTT	388740
AATCTCACTA ATAAATTTGT TAAATTGAAC ATCACAATTT AATATTTTAG ATTCAAGTTC	388800
TAAAATATTA TTATCAACTT CTTTTAATAA TTCTTTATGA TTTTTCTTAA ATTCAACCTC	388860
AAATTTATCA ATTTGTTCTT GCAAACCACT CTTTATGGTT TCAATCTCTG ATGTTGAATG	388920
TTTTAAACTT TTTTTAAGCT CATCTTCAAG TAAGCCGAGA TCTGATTTTA TAGATTTAGA	388980
AAACGAATTA TATTCATTCT CAATTGATGT CTCAATATTA TTTCTGTATA AACTAATTTT	389040
CTCAGAAAAT TCTGAAATAT TTTTATTAAT TAATTCAATT TGCCCTTCAA AGCTTTCTTT	389100
ATCACTAGAA ATTACATCAA CCATTTCCCG CCTTACTTTA TCAAGATTAG AAGACAAGGT	389160
TGTAAATTCA TGCTCTAATT TCTGATTAAG CTCAAAGATC TTATCTTCAA GATCCTTTTG	389220
CTGAGTTAAA AATTTCACTT CTGCTTGAAT TAAGATGTCT TCTGTTTTTT TATTAACCTT	389280
TTCATCTATC TTTTCTAATT TAAAATCAAC AAATTTTTCA AGATCTAAAA CTTTAAGATT	389340
TAATGATTCG CCAATATTTT TAAAATCAAG ATGAACTGAT TGTTCAATTT TTTTAGCCTC	389400
GTTTTGCAAA TTGCTAAAAA TCTCCTCAGC CTTAATCTCA AAACCATCTT TAAAAGATTC	389460
TAAACCAATC TTAACATTAA AAATATCATT CTCAAATGAT TTAATTCCAA GCTCAGCAAG	389520
ATTTATTCTC TTCTCTATTG TGCTATAAGA TTTTTCTTGC CAATCTTTTA CATCATCTTT	389580
AATATTCAAA AACCAAGAAT CAATAATACT TTGCTTATTA TTTACAAAAT CAACAAATTC	389640
ATCTACTTTT CCGGTAATAT TGGTTTCCAT TAAAGCTATC TCGCTCTGCA TATCTTTTTT	389700
TTTAGAAGAA AATTCTTTAG TAAAATCTAA ATAAAAATTC TCTTTATCAT CTTTCATTTT	389760
TTGTTCAATA TCTAAACGGA AACTTTGAAT AAGTTCTGTT TTGTTTTCCA AATTTTTAGA	389820
CAAATCATAT TCTAAATTTT GAATTTTATC ATTATATGAG GCAATAAAGT TTTCTAAAGA	389880
ATATTTAAGC TCTTCGCCTC TAATTTTTAA ATCTTTAAAA AAGTCTTCTT CTAATAATTT	389940
AAGATGTGAT GAAACATTGT GATAAGACTC TTCTTTTAAT CTAATAACAT CCTTTTCAAC	390000
ATTATTTAAA TCAGATTCAA GATTTTTAAG ATTTTTCAGT TGAGATTCAA GTTCAAAAAT	390060
CATCTCTTTA TTTGAACTCT TAAACTCTTC ACTTAAAGTT GCAATATAAG AATTTAATCT	390120
CTCTGAAAAC TCATCGTACA TATCAGCATA CTTTTTCTCA AGTCCATCAT ATTGACTTAA	390180
AGCTAAATTA TCAATGGCTT TAATTTTGTT GTCAATTTTA TTCTCTAAAT TTAATTGCCC	390240
TTCATTACAC CTTTCTTCAA GTTCAATATA CTTAAGATTA AAATCATTAG CTATTTTATC	390300
AATACACCCA CTCACCTTAT CATTTAAATT TTTCTCTATG CTATCAAAAG TACTCTCAAT	390360

CGATTTTAAA	GAATCAATTC	TCTTGTGAAT	TTCATTTTCA	A TACTTTACAA	TGTCATCATC	390420
AATCAAGGTA	ТТТАССТТТТ	ТТАТАСАААС	ATCAAAATGA	TATATTTTTT 1	TCTCTTCAAC	390480
ACCTGCCTTA	ATCTCTCCAA	ATTGAGAATT	TATAAAACCG	TAACAATCTT	TAATTTTATC	390540
TTGCAATTCT	ТТТТСАААТТ	СТААААТАТС	TTTTGATCTT	' TGCTCTATTA	TCTCAAAATT	390600
TTGATCCATT	TCAGAAATCT	TAATTTGCAA	ATTTTCATCA	TTACTTGTAA	GTGTTTTATA	390660
GATTTCATCT	CTAATTTTTG	AAATAGCTCC	CTCGCTTTCA	ATTAAAAATG	TAGAATATCT	390720
СТСТТСАААА	TTACTCTCAA	TAAGTTTAAA	ТСТТТССТТА	TAAAGATCGT	ТТАААААСТС	390780
AGACTTACTC	TCAATATTAT	TTTTAAGCTC	ATTTGTTATC	TCCCCAAATC	TCTCTTTTGC	390840
TTGCATAATA	TCGTTATCAA	TCGTTCTTCT	ATAATCAATT	GCTTCTTCTA	ATCTAGATTT	390900
ATAATACTGT	TCGATCTCTT	TAACAAGCTT	GTTAATTTTT	GCTTCTCCAT	CATCTGTTAA	390960
ATCTTTAACT '	TTCAATTCAA	ATTTTTCAAC	TTGATATTT	GATACATCAA	AAGATTCCTT	391020
AAGTTTTTGA A	AGATTTTCAT	CCATACCTTT	ACTAAGACTA	TCTATTCTAT	CTGTCAATCT	391080
TCTGCTTAGA	ГТТТСААТСТ	CATGCATTAT	TTCATTTTCA	AGTTTACTAG	AAATATTCTC	391140
TGAATACCCC (CTATAATTAG	ATATCACCTC	ATTGTATTTT	ССАТТААТТТ	CTTTGTTTAT	391200
ATCATTAAAC 1	ГТСАСАТТАА	GAGAATCAAG	AGTAATATCT	ATGTTAGCCT	GAAAAGAAGC	391260
AATATCGGTT (CTTTTGTCCT	GCAATAAACT	ATCAACCTCT	ТТААСАААТТ	CCTCTGAATT	391320
ATTTAAAACC (GCAGCAAATT	TTTTTGATAA	ATTTTCTTCA	AGTTCTCTAG	TCTCTTTATT	391380
AAAATGGTTC A	ATTATGTCTT	GCAAAAGCTC	ATCAGAGTAT	ATGGCACCTT	GATTTCTAAA	391440
CTCATCTATT 1	TTCTCAAGAT	AATAACTCTC	AAGGCTTTCT	ATAGAAAATT	TAAGCTCTTT	391500
AATTTTTGTA C	STCACCTCAG	AATCTATTAA	ATCCAGATCA	ACTTTACCTG	AAGACAATAA	391560
АТТТТСААТТ Т	TAACAGTTA	TTTCATTTAA	TTTACTTTGC	CAATCACTAA	GCTTGCTATC	391620
TACTTCATTG T	TAATTGAAT	CTTTCCTGTT	ТААААТАТСТ	TTAGAAATTC	ТАТСТААААА	391680
ATCATCAATT I	GCTTTTGAT	TATCCGATTT	TATATTAGAG	ACAATTTGTA	GTTTTGACTC	391740
AATAAATTCA T	TAAGATCAG	ACTTAAAATT	ATTTAAAATA	TCTTCTGATT	CAATCTTGAA	391800
ATCTTTTAAT T	ТАТААТСАС	ATTCTTCAAT	CTTGCTTATA	АСААААТТАТ	TCTTATCATC	391860
AAATTTTTTA T	TCAAATCCT	CAAGCATAAA	CACGCTTTTA	TCTTTAATTA	TTTCTGTTTG	391920
ТСТАТТААТА А	ACTCTTTAA	ТТССТААТАТ	AGCCTCATCA	CTTTGTGAAT	ATGACATATC	391980
TTTTAATTCT T	TGTATTTTT	СТАТСАСТАА	ACTCTCAATA	TCGCCTGTTT	ТТААТААААС	392040
ATATTCCATT C	TATCGTTAA	CATCTTTTTC	TAAACTTTCT	ATTTTTAAAG	TAGCAGATGA	392100

			379			
					G CAATAAGCTC	392160
ATCTTTCCAA	CTGCCATGC	A TATCAATAG	C TTTTTTTTG	A ATATGATCTO	G ACAGATCATT	392220
AAAAACGCTC	TCACTAAGCT	CTATTCCTT	T GTCTTTTGA	A ATCTGAATTA	AACTTAAAAA	392280
TTCTTCATTT	GTTTTATTTA	TTTGAGATT	C AATATTCTT	r aaattagaat	CCATTTCACC	392340
TTGCCACTTT	GAATATTGAA	GCTTGCTTT	C TTCTAGCTG!	GTAACAAAA	TATTTACCTC	392400
ATCGTAATAA	CGATCCCTAA	ACTCTACTA	r Atttttacca	ATTTCATCTT	ТААТАТТААТ	392460
TAAACTAGTA	ТТААААТСТА	CCTTTAAAG	r ctcttgggti	TTTTCAAACA	ТАТТАТАААА	392520
AGATTCAATT	TCATTTTCTA	ATTTTTTGT	T TAAATCTTGA	AATTCTTGAT	AATTATTAGT	392580
CGCCTCTTGA	GAGAGTGTCT	CAAATTTCT	C ACCATACATT	' AAAGAAAATT	CATCCATTCC	392640
TGCTGTTAAT	TTATCTGTAA	AGCTCTTATA	A TTTAGATTCC	ATTTGATTTT	CAAATTTAGA	392700
GCTGCTAGAA	TCCAAAGATT	CAAAAAGAG	TGTGTACTTG	GCATTTATAT	TATCATTTAA	392760
ATTTGAGTAA	TTATTATTAA	ACCTACCATT	AATTTCTTCA	AAATTAGAAA	TCAAATTATC	392820
ATTAAGCTTA	ATAAGCTTTT	CTTGAATATT	TGAATCAACA	TCTAAGAGTT	GGGATTCTAA	392880
CTGCATCTTA	AGTTGATTAA	TATCACCTTI	AAAACTTTCA	СТАААААСТТ	CAATATCTGC	392940
CCCAAACTTA	CCTTTAAATT	CAAGATATAT	' TCCATTAGAA	TCATCTTCAA	GCCTCTTTAT	393000
AAAATCAATA	GCACCAGACT	GAACACTTTC	CATTTTAGAA	ТТСАААТСТА	ACAAACTAAG	393060
CTCTACCCTT	TCTCTAATGT	TATTATCAAC	TTGACTTATT	TTATCTTCAT	AATCCTCATA	393120
AATATTTTTA	AGATTCAACT	CAACTTGAGA	TCTAAATTTA	ТСАААААСАТ	CATCAACTTG	393180
CTCTTCATAC	TTTCCCATCT	CTATTCGCAT	TGACTCCTCA	AGTGAATTAA	TTCTTGAATA	393240
AACATTGTCT '	TTAAAGGAAG	AACTCATAGA	AGAAATTTCA	TTGTCCACCA	AAACCAATTT	393300
ATCTTCAAGC	ТТАТСТТТАА	TTTCCTTAGA	GCGATCATCA	ACATATACTA	AGATATCCTT	393360
AAATTTATTT	TGCAATTCTT	CATTCAGTCT	АТТТААААТА	AAATCTTCTT	ТТТСАТТААТ	393420
TTTATTCTTC A	ACACTCTCCA	TAATAAGCTC	TATAGAATTT	ТСТАТТААСТ	TATATTTGTT	393480
TTCATAAAAA 1	rtaaaagaac	TTTCAATCTC	TTTGCTGTAT	TTGCCAATAT	TAAATTCGAC	393540
CTTTTCAAGA A	AAATCGCTAA	ATTCTAAATC	ТААТТТСТСА	TTACCCTTAA	СТААААТАТС	393600
ATTTTTTCTC T	TCTTCAATAT	TTGCTAAATC	ТТТТТСАТАА	AGACTAATCT	СТТТАТТТАА	393660
ATTATCTATT 1	ГТАААААСАА	GТТСС ТТ ААТ	ATTAGTGTCA	AACTTTTCCC .	AACTAGCAAT	393720
TTTAATAGAC T	CCGAGATTTT	CTTTATTAGC	СТТСТСАААТ	TTTTCTAACA	CTGAATTCAA	393780
ATTTGATTCA A	ACCGAATCAA	TCTGAGTATT	AAATCCTTTT	AAAGTTTTTG A	AAAGTTTATC	393840
TACTATTTTC C	CATCAACTT (GCAATCTTTG	ТАТАТТСТСТ	TGAACTTTAA 2	AAGTCATTTC	393900

ATCAAGATCC	TTAAGCATAG	AATCATGATA	GGCTATCTTT	TTTTCAACCT	CTGCAAAATC	393960
ATTGCTTTTA	ТТТТТАА ТСТ	TTTGCTGAAC	TTCCTCAATC	TTTTTTATTA	ТТТСТАТАСТ	394020
AGATCTTTGA	TAAGCTTCCA	TATCAACAGC	AAGATCATTA	ATCTCTTTTG	TCTTATCTTC	394080
ААТААААТСТ	TCAAGATTAA	CCTTTGTAAG	ATCAACGAAC	TTTTTAATTT	TATCTAATGC	394140
TCTAGAACGT	TTATCGTATT	GCCTATAAAC	AAATAAAACT	ATTGAAACCA	AAAAAAGGTT	394200
ААСТААААТА	GTCGCAAAAT	СТАТСАТААА	ATATTTTACC	CATATTCTAT	ATATTCAAAC	394260
GTATATATTC	TCTTAAGTCT	TTATAATCAT	GAAAAATAAA	GTCAATCATT	CCCTTGTAAT	394320
TTATATTCTT	TTTTGTTGAA	AAAAAAGCTG	CTTTCATTGA	AACATTTCTA	GCACCTAAAA	394380
TGTCATATTC	ATAAGAATTC	CCTACATACA	AAATATTATT	ACTCCTTAAA	TTTAAATCCT	394440
CAATAACTTT	TAAAAAAGGT	GCTTTATGGG	GCTTTAAATA	TCCAGTATCT	TCTGAAGAAT	394500
AAAGAATATC	CCAAAAACTG	TCTTGAATGC	CCAATAAATT	TTTGACACGA	CCTAAAATAG	394560
GAAAGTCTGA	CATTACACCT	AATTTTATTC	CCTTGAATTT	AAGCCAATAG	ATTAAATCTT	394620
GCAACTCCAA	GATATGGCTT	GAGTTTTTTA	AACTTATCGC	TAAAAATTTG	АСТАТААТАТ	394680
ATTTTATTTA	ACAAAAAAGC	ACACCGATTC	TCATCAAGGA	TTTAAATACT	CAGAAAGCAT	394740
TTTGAACCTG	CAAGGTAAAA	GAGTTCATCC	CTATTTGAGG	GTGAAAATTG	ATTGCTTTGT	394800
AAAATTCGTA	TTTTTTTCCT	AATCTGTTTA	AAAGCTAAAA	AAAACTTAAC	ATTAGTTAAA	394860
ААТТСААААА	ACATTAGCTT	ATTTCTATCC	GCCTCAGGAT	ACAAGGTGCC	ATCTAAATCA	394920
AATACTACAG	CTTTAATCAT	GATGATTGAT	TATTTGCCTT	TATAGGTATA	GGCACTATTG	394980
GTAAATTTTC	AGGAACTTTA	ACTCTAACTA	AATGAATATA	AGATTTTGGA	TATCTTTTCT.	395040
GGAGAGACTT	GATTGAAGTT	TCAGCATTAA	CTTCGTTAAC	AGAAACCCTA	AAAATCCTAT	395100
TTTCATCAAG	AAATGGAAGA	AACAAAACAA	CATGTTTATG	AAGCACCATG	CTTGATAAAT	395160
TGTTAACACC	CGTGCTAATA	GATCCTAAAT	AAATATATCC	AGGCTCATCT	AAAGCCAGAC	395220
ТАТАТААТАА	AAACTCTAAA	TTTTCAATTT	TATAACCACG	ATTGTCAATA	TAATCAAAAA	395280
ACTTAATATT	ATTGACATCA	TTTTCCTTGA	TTTTAGATAA	ATTTAAATCT	ACATTAATAT	395340
TATTTATCCT	ATAAGCAATA	TTACGAATCC	AATCAAGACC	AAAAAAAGGA	TCCTTATTAA	395400
ATTCCTGACT	TCTAGTAAAA	CCACTGCCTC	TAACGCCAAT	ATGTCTAAGC	TTAAGATCAT	395460
CAATTTTTAA	AAGTCTTCCC	GTCATTGATT	TATAAATCGA	ATCCGCTACC	CATTTAACAA	395520
ATCCTGAGCA	ATTAAACCCT	ACAGGATCTT	TTTGCAACAG	CCCAGTTTCT	ATATGCACCA	395580
TTTTACCATA	TTCATTCATT	GCACCATCAG	CAACCTCAGC	AATGGGAAAA	GATCTAAGAG	395640

US98/12764

2	0	4
3	Ö	1

			381			
					TATTCAGGAA	395700
					AGAGAAATTA	395760
					GTATTTACTA	395820
OTAAAAATAA	AGCAATAGAA	GAAAATTTTC	AAGACTTTAT	ТСТААТАААС	GTATCCCCTC	395880
TGTTTATAA	AAATATTTT	ATCTGCTCAA	TACCCTCTTT	GCCCACTTTA	ATCACGTAAG	395940
ACCCTGGAAA	AATATAACCT	' ACATTCTTTI	AAATTATTTT T	AAAAGAATAA	ТАААСАТАСТ	396000
CAGAAGAAAT	TTCACTTGAA	ACTTCAATGT	' AACAATCTTC	TGTAATAAAA	TGTTTTATTG	396060
GGCTTATTT	TTTTTGCGCA	TAGCTTGAAT	ТТААААТ	TAAATATTTA	GTCCTTACAT	396120
СААААТСАТА	AAAAAAACTC	TCAAGCGCAA	AAAGATTTAG	ACTCTTAAAT	ATTAAGAATA	396180
ААААТАТАТА	TCTCACTTTA	AATCTCTTAT	TTTTTCCTTT	AATTCTACTA	AAATTGGAAT	396240
ATTTTTATAT	CCAATTTTAC	GCAAATTATT	ТАСТАААТАА	TTATAGTAAG	AATTTGGAAA	396300
ATTCTTTATT	TTATTTGCAA	AAAGAATAAA	CTTAACAGGA	TTAGTACTAA	CTTGTGTAAT	396360
ATATTTGATT	TTATGAGAAA	TATTTAAATG	ATAATCTTTG	ATCCATAAAT	TTAACATTTT	396420
ATTTAGATCT	GGAGTACTGG	TTTTAAGCTC	AAGCTGATCT	TTTAACTTAA	AAGATTCTTT	396480
AAAAAGAGAA	TCTAAACCTA	TCCTTTTATG	AACAGAAATT	CTAAATATAG	GAGCAAAATT	396540
TAAAATAGGA	AAAAAAAACT	TCACATGGCT	CTTTAAGGCT	TCAAAATAAC	CTTTAGACTC	396600
ATCCACAAGA	TCCCATTTGC	TAAACACAAT	AACAATTCCT	TTCCCCTTTT	TAGTAACATA	396660
ATGAGCAATT	TTTTTATCCT	GAGAAGTCAA	TTTTTCTTGA	ACATCAATCA	ATAAAAACAC	396720
AATATCTACC	ATGTCAATTA	CTTTTAGGGC	CCTATTAACA	GAATAATATT	CAACAATTTC	396780
ATTTACTCTT	GCCCTTCGCC	TTATCCCAGC	TGTATCAACA	ACCTCAAAAA	CTTTCCCATT	396840
TCTAGTAAAC	TTAGTTTTAA	TAAAATCTCT	AGTAGTACCA	GGTTGATCAG	AAACAATTGC	396900
AATTTCATTT	CCAGATAAAT	AATTAATAAG	GGTAGATTTG	CCTGAATTAG	GCTTGCCTAT	396960
AATCCCAACC	TTAATATCAG	CGCCACTCTC	AATGCCAACT	TCACCAACTT	СТАСТТТТАА	397020
AAAATCTCTA	AGCTTAGTAA	TGCCTCGACA	ATGGGCTGCA	CTAACCAGAA	AATAGCGCTT	397080
GAATCCTAAA	TTATGAAATT	CGTGAGCTAA	ACATTCCTTA	TCCTTAGTAT	CTACTTTGTT	397140
TAAAACCAAA	ACCACCTTAC	TACTATATTT	TCTCAGTCTT	ТСААТААТСТ	GATAATCTTC	397200
AAGTAAAATT	TCATTAATAT	СТААААССАА	TAAAATTAAA	ТСААСТТТТТ	CTAAAGAGCT	397260
TAAAACCTTT	TGCACAACAA	TTTTGCTAAT	CTCATCTTTC	AAGATAGTAA	ACCCACCAGT	397320
ATCGATTAAT	TTAAACTTAA	AAGAATCAAC	СТТАСАААСТ	TCTTCAACTA	AATCTCTAGT	397380
AACACCGTAA	GTACTCTCAG	TAATACTTCT	TTTTGTATCT	AAAATTCGAT	TAAATAAAGC	397440

AGATTTACCA ACATTTGGTC	TACCAACAAT	' AAGAACCTTT	ТТАТААСТАА	GCAAAGCAAA	397500
TACACCTCTT TATTTATTCC	GATATTTCCA	ттатаатадс	AAATATTAGT	ATTTATGCCA	397560
ATTACACATG AGTGTTTATA	TTGAAAAGAA	AAAAAAGTTC	AAGCTCAACC	AAATCAGACA	397620
TACTTTTAAT TTTAATTGCT	ATTGTTTAA	CAATAATTAG	TGTGCTATTA	АТААТТАААА	397680
ATTCACTTAT TATACATATT	TTTAAAGAAA	AAAATTATGA	TAACAGTTTA	TTCGAATCAA	397740
GTCAAACACA AGATAATAAA	TTAATTGAAG	СТААААААА	САССААТААА	AATACAAATG	397800
ТАААААТАСТ ТАААААТGAA	AGTTTTTAA	TCCAGCCACC	AGAAATAAAA	AAACTTGAAG	397860
AAGAGCTCAA GCAAAACCAA	AGAAATAATA	ACCTTAAAAA	САААААТТТ	ATTAAACTTT	397920
ATTTTATAAA AGTAACCCCA	GAAGGTTATT	TTTTAAGACA	AACTGTAAAA	AGAGCTATAT	397980
ATTACGACAA AAATATTCTT	GAAGAAACAC	TAAAATCTTT	AATCAAAGGA	CCAAATGAAT	398040
ACGAGCTAAA AAATAATTTT	TTAAGTTTAA	TCCCTATAAA	AACCAAGCTT	TTAAATTTAA	398100
GCCTAAGCGA AGGAATTGCC	AAAATAAACT	TATCTAAAGA	ATTTTATGAA	AATAGTTTTG	398160
GAATTGAAGG AATAATTAAT	CAAATCGCTC	AAATAACCTT	AACATGTCTT	GAAATTAAAG	398220
GAATTGATGG AATAATTTTA	ACAATAGAAA	ATAATCCAAT	AATACTTGAA	GAATTAAACT	398280
TAAATTTCTC AGGAATATTA	AACAAAAAGG	CTCTGGACAA	ATATTAAAAT	TCAATATTGC	398340
TAAGCAATTG CATAGAGCTT	GCAATTCTTA	AAACACTTGA	CTTAACAACT	AAAAACATGA	398400
ATTCTTGATT GCCTTTTTTA	CCTTTAGTTT	TTAACTTTAA	TATCTTTTTA	ACTTGTAATT	398460
TATTTTTATA GAACTTTTCA	ATTACGCTTT	GCAAAATTAT	CTTCAAATAC	TCACCACTCA	398520
CAACACCATT AAAATTTTTT	АТАТСТАААТ	TTAAACTTTT	AAACTCAAAC	TGAGGTTTAA	398580
ТСААААСТАТ ААТААААТТА	TCAGAAAGTT	TATCTATTAA	ATTTACACAT	ATACTTATTG	398640
ATGATCTAAA AGAAACATCT	ACAACGGCAA	AATTGGGAAC	AATCTTAAAT	TCTGTAACAT	398700
CAAAAATATT AGTTCTCTCT	AAAACTTTAA	CTCTTGGATC	AATTCTTAAT	TTATAAGAGA	398760
GTTGATTAAT GCCTACATCA	ATTGAATAAA	CAAAATTGGC	GCCACACTGC	AATAGACAAT	398820
CGGTAAAACC ACCAGTTGAA	GAGCCAACAT	CAACACAAAT	TTTATTTTTA	ACTTCGATTT	398880
CAAAATCTTT AAGAGCCTCT	AAAAGCTTGT	AACCTCCTCT	TGATACAAAT	GTTTGACAAG	398940
TATTCTCAAC TAAATCTATT	TTACTTGTTT	TGTTTATTAA	TATTTTAGGA	тттттутстт	399000
TATGAGAATT TACATATATA	TTGCCTTTTA	GAATTAAGAT	CATTAATTCT	TTTCGTGTTT	399060
TTTCTGGATA CCTTTTACAA	AGTATATTTA	ATAAATTATT	TCTGAATCCT	TTCAATTTTT	399120
AAAGCGCGGC CTGTCTTTAA	ATTAGAAGTA	АТААТААСТС	CTTGTAAAAT	TGTGTCATCT	399180

TCTACAACTT CAGCTCTCAA	GGGGGTATA	TCAAGTAAGC	C CCTTAAGAG	AATGTCGGGA	399240
TTAAATCCTA TTACAGAATT	TAATCCACC	T GTCATCCCA	A TATCACTAAT	TATAGGCTGTC	399300
CCCTTTGACA ATATTCTTTC	ATCTTGAGT	C ATAACATGGG	TATGAGTACO	AACCACACCT	399360
GTTACAAAAC CATTTAAAAA	ATATCCAAA	A CTTTCTTTT	CATAATTACT	TTCAGCATGA	399420
AAATCTACAA AAATGGTTTT	GGCTTTATTA	A CTCAGCATAT	TAACCAATTI	TTTTGTATTA	399480
TCAAAAGGAT TTTTAACAAT	AAAATTCATA	TTTAAAACCC	CTTGAACATT	' AACAACAGCA	399540
ACTTTTTCAT CTCTAATAGT	ТААААААСАА	TAACCATGCC	CATCTAACAA	ATCTGAAAAA	399600
TTATTTGGCC TTAAGATATA	TGTTTGCTTA	TTTAGGTAAT	CATTTATTT	GCAATTAGAA	399660
TACACATGAT TACCGGTAGT	AATAACATTA	ACCCCCGATC	TAAAAAGATT	ATTTGCTATT	399720
TCTGGAGTTA TTCCAAAACC	ATTTGAAGAA	TTTTCTCCAT	TAGCAATTAC	ТАААТСТАТТ	399780
CTATATTTAT TCTTAATGTT	TTTAAGATTA	AAAAAAACTT	TTTTTAATCC	ACTCTCGCCT	399840
ATTATATCCC CAATTATCAA	GGTTTTAATA	GTGCTATCTT	GCATATTCAA	TAACTCTGGT	399900
TTCGCGAATA ATTGTAACTT	TAATTTTTCC	AGGATATCTC	ATTTCAGCTT	CTATCTTCTT	399960
AGCAATATCT CTTGCAAGTA	AAATTGACTT	TTCATCATTA	ATTAAAGCAT	TGTCAACAAT	400020
AATTCTAACT TCACGACCTG	CCTGAATAGC	ATAACATTTT	TGAACACCCT	CAAAACTATA	400080
CGCAATGTCT TCAAGTCTTT	TAAGTCTATT	TATATAGTTA	TTTAAACTTT	CCCTTCTTGC	400140
TCCAGGACGA GATGCTGAAA	TGGCATCTGC	TATTTGAACC	ACAATAGCCT	CAAGACTCTC	400200
GGGTTTCACC TCATTGTGAT	GCGCAGCAAT	AGCATTAACA	ACAATTTCGC	TCTCTCCGCA	400260
ACTTTGAGCA AGTTCAGCAC	CAGTAATAGC	ATGTCCCTCG	CTATTATCAG	AAATACTTTC	400320
CATCCCTTTC CCAATATCAT	GCAAAAGGCA	TGCTCTTTTT	ACTACAACAG	GATCTAATTT	400380
CATCTCTTTA GCCAAAATTT	СТССТАТТАТ	AGCCGTTTCT	TTAGAGTGGC	TTAAAACATT	400440
TTGACCATAA CTGCTTCTAA	AGTAAAGCCT	TCCCAACCCC	CTAATAAGTC	TCTTATCAAG	400500
CCCATGTATA TTAAGGTCAA	AAACCACCTT	CTCACCCTCT	TCTTGAATAA	TGCTATTTAT	400560
CTCATTGGTA ACATTATACA	CAACTTCTTC	AATCCTAGCA	GGATGAATTC	TGCCATCTGT	400620
AACAAGCCTT TCTAAAGTCC	TCTTGGCAAG	CTCTTTTCTT	ATTGGATCAA	AGCAAGATAT	400680
AACAACAGCT TCAGGCGTAT	САТСААТААТ	GATATCTGCT	CCTATTAAAG	TCTCAAGAGC	400740
CCTAATATTG CGCCCTTCTT	TACCTATAAT	CCTACCTTTC	ATCTCATCAT	TAGGTAGCTC	400800
AACAGAAGCC ACTGTAAACT	CAGAACTCAC	CTCCGTAACA	ATACGCTGCA	TAGTAGATAC	400860
TAAAATATCT TTTGCAACCT	TATCTGCTAA	TAGCTGTGCT	TCCTGCTCAC	TTTTATTGAT	400920
AATAACTTGA GCATCTCTTT	TGGACTCATG	CTCAACTTTT	ТСААТТАСАА	TTTTTCTTGC	400980

ATCTTCTCTT	GTAAGACCAC	AAATATTTT	C CAATCTTTT	A ACAAGATCGO	G CCTCTTTTTC	401040
ТСТТАТТАСТ	TTTTCTTTT	GTTCAAATT(TTTAATTTT	A AAATCAACTO	TAGACTGCTG	401100
TTTGTCAAGA	GCAGATATTC	C TCTTATCTA	AGTTTCTTC1	CTTTGTAATA	ATCTTTTTC	401160
ТАААТТААСА	ATCTCATTTT	TCCGATCTCT	TATATCCCT	TCTTGCTGGT	TTTTTTCTTT	401220
AAGCATTTGA	GATTTTGCAT	TAGCAATAA	TTGCCTTCTT	TCATTTTCTA	TCTCTAATTG	401280
TGATTCTACT	CTTACTTTTT	TCAGATTTT	TTCTAAATCT	· AATAAAGACA	ATCTACCTAA	401340
AAAAACTCTT	ACTAAAAATC	CTAATATAA	GCCAGCAAAA	ATAGAAGAAA	AAATAATATA	401400
TATCATATCA	TTTAACTCCT	' ATGCTGTTTA	AAAGCAATTI	' AAATTTAAA	CTTTAAAACA	401460
GTGCCCTCAA	ATTATTAATT	ATTCAACTTI	TAAAGGCTTT	' TCAACTAATT	CTAGGATAGC	401520
CATTTCAGCC	GCATCTCCAT	ATCTTTTCC	TAATTTAATC	ATCCGAGTAT	ACCCACCACT	401580
TCTTTGTCTA	AAAACAGGAG	AAATTTTGGT	' AAATAGCTTA	ТТТААААТАТ	GCTTATCATG	401640
TATAAATTTT	GATAATTCTC	GCCTATTATG	CACAGTATCA	ACTTTTGCCC	TTGTAATCAA	401700
TCTTTCAGCA	ААТСТТТТАА	CTTCGAACAA	TTTTGTCTTA	GTGGAAGAAA	TTTTTTCATG	401760
СТТАААААА	GAAATTACCA	TATTTTTAA	AAGCGCTCTC	CTGTGACTAG	ACTTCCTACT	401820
ТААТСТАТТА	AAACCCAATT	TTGTTTTCAT	GAAATAGCCT	AAACTCTCCT	TTTATTCAGA	401880
ТАТТТТААСА	TTCTTACTCA	ATACAGATAG	AGCATCTTCT	TTAGACATTC	СТАААТАТАА	401940
TCGATAAGAA	CCAAGTTTTT	CGATTATCTC	TTCCAAACTT	TTTTTCCCAA	AATTTCTAGC	402000
TTTAGAAAGC	TCTTCTGCGT	TTTTACTAAT	AAGTTCTCCT	AAAGTCCTAA	CATTTTCTTT	402060
GGCCAAACAA	TTTAAAGATC	TGACTGACAA	ATTCAATTTC	TCAATACTCA	TATCAAGCAA	402120
GTTAGAACTT	TCTGATTTTG	ATTTCTCAAA	AGATGTATTA	ACATTGTCTT	CAAAATCAAC	402180
AAGAGGAAAC	AAAAACTCTC	TTACTATTGA	TGCAGCCTTT	TTTATTGCAT	CTTTGGCAGA	402240
AATCACACCT	GTAGTCCAAA	TTTCCATTAC	AAGCTTGTCA	TAATCTGACC	TTTGACCAAC	402300
CCTAGTATCT	TCTACAGAAT	ACGAAACTTT	CTCTATAGGA	GAAAATATAG	AATCTAAAGC	402360
AATAACATTA	ACCTCTTCTA	AATACTTAGA	ATTTTGCTCA	GAAGACACAT	AGCCCCTACC	402420
ATAATTAATT	TGAAATTCAA	GATCTAAATT	AACATCATGT	GATAAAGTAG	СТАТААСТАА	402480
АТСТТТАТТА	AAAACCTCAA	CTCCATCTCT	TTCAAAATGA	GAAGCTTTTA	AAACATTGGT	402540
GTCTTTACCG	CTAACACTAA	AGCTTATTGT	CTTTCTTTGC	TCTCCTTCTC	CAAGTTTCAA	402600
ATGAATATTT '	TTAATATTAG	CAATAATCTC	AAGAGTATCT	TCAGAAACTC	CAGGAATCAA	402660
ATCAAATTCA (CTTGAAACAA	CCTTTGACGA	AGAGTCTTTA	TTGTTAGACT	GAACTCTCAT	402720

385	
AGCAGTAATC GCATACCCTT CAATAGAAGA AAGTAACACA CGTCTTAAAG TATTACCTA	
AGTAATTCCA AAGCCTCTTT CAAAAGGATA TATCGTAAAT TTACCATAAG ACCCATCACC	
TTGGCTTTTC AAAAATTCAA TTTTTTCAGG TATAGTGAAA TCTTTCAAAA ATTTTTCCAG	
AAGCATCATA ACTCCTTCTA GCTAAACTCG TCTGGTTTTT TTCGGTCTGC ATCCATTATC	
AGGAATGGGA GTAATATCTG AAATTGATTT TACAGTCATA CCAATCGAAC CAATAGCTCT	
TATTGCAGAT TCTCTGCCAA TGCCTGGCCC TTTTATATAC ACATGAACAT AATTAATTCC	
AAAATCTCTC ACTTTATTTA AAGCAGACTC TGCTGTTATT TGAGCAGCAT ATGGGGTCGA	-
CTTTTTAGCA CCTTTAAAAC CCATACCACC AGCACTTGCC CAAGCTAAAG CATTTCCCTT	
TATATCAGAT ACAGTAACTA TGGTATTATT AAAAGTAGCT TGTATATAAA CGTTTCCTTC	403260
TCCGATATTT CTTTTAATTT TTTTTTTACT ATTAGTTGAT AATTTTGCGC TCAACTTGCC	403320
CTCCAAATCT TAAAAACTAT TTATTTGCTA GCTATTTTCT TGTTAGCTAC AGTCTTTCTT	403380
TTTCCTTTTC TAGTTCTTGC ATTCGTTTTA GTTCTCTGTC CTCTCAAAGG CAATCCTTTT	403440
CTATGCCTAA CGCCCCTATA ACACGCTATA TCCATAAGTC TTTTAATAGA CATTGCAACT	403500
TCACTTCTAA GTTTTCCTTC TACAATATAA TCGCTCTCAA TTACCTTCCT AAGTCGATTA	403560
ACTTCATCAT TATCTAAATC TTTAGCAATT TTGCTTGGAG AAATACTTGA TTTATTGCAA	403620
ACTTCCAAAG CTCTTGTTCT ACCTATACCA TAAATAGAAG TAAGAGCTAT TTTTAATTGT	403680
TTATTATTTG GTAAATCTAT TCCCGATATT CTAGCCATTT TATTTCCTCT AATTTTTACT	403740
TTTGTCTTTG TTTATGCTTT AAATTATCAC AAATAATTCT TAATACACCT TTTCTTTTTA	403800
TAACCTTACA TTTTTCACAA ATTGGCTTTA CACTTACTCT AACTTTCATA ATCAAACACT	403860
CCTAAATTTT TTGCAAAAAT GCATAATTCT TTTTATTTCC ATGAGAAAAT CCTTGAGTTT	403920
TCAAATAAGC ATCAATATGA ATTAATGTAT CAAGAGCAAC CCCTACCATA ATAAGCAAAG	403980
AAGACCCCCC CATTATTCTA GAAACATCGT GTGGAAATCT AAAAATATTT TGCACTAAAA	404040
ATGGAATAAT TGCAATAATT GACAAAAAA TAGATCCTGA AAATAAAGTT TTATTCATAA	404100
TTTCATCTAA ATATTTTCC ATCTCATCAG ACTTTATTCC TGGAATAGTG CCCCCATTCT	404160
TACGAATATT ATTACTTATG TCTTTAGGGC TTAACTGAAT CTTAGAATAA AAATACGTAA	404220
ATCCAATTAT CAAAATTACA TTCAAAAAAG TATAATAAAA ACCATTAGGC CTTAAATAAG	404280
ATAAAATTTG CCTGGCTATG GAAGAAGTTT CTGCGAAGCC ACTTAAAATT TGTAAAGGCA	404340
GAGTAATTAA AACAGAGGCA AAAATAACAG GCAAAACGCC CGATGGATTC AACTTGATTG	404400
GCAAATATGA ACTAACTGTA TTATTAGAAT TTGCTCTAGC ATAATGAATG GCAATTCGCA	404460
TTTGAGCCTT ATATTCATAT ATAATCAATA TAACAACTAA AATAAATA	404520
	=

GTATAACAAA AACAGGATTA ACATTTTGAG AAGGATCCTG CATGCTTTGG AATAAGTTAA	404580
ACAAAGCTGC TTGAAGTCTA ACCACTATGC CAGAAAAAAT TATCAAAGAT GTTCCATTAC	404640
CTACACCTCT TTGATTAATT TGCTCTCCAA ACCACAAAAG GATAAATGTC CCCGTAGTAA	404700
CCGTTAAAAT AGCAACAAAT ATATATCTAT AAAAGGGAAT GGTAACAGCA CCCGGAATAC	404760
CTTTAGCATA AAGGCTTGTT GCGTATCCTT GAACTACAGC TGCAACTATT GTTAAATATT	404820
TTGTATATTT TTTAGTCTTT TGTCTTCCGC CGTCACCTTC TTGCATTTTT TTCAAAGAAG	404880
GAAAAGAATA AACAAGAAGC TGAACAATAA TAGATGCCGA AATGTAAGGC CCTATACTAA	404940
GCATAAATAT AGAAAAATTA CTAAAAGCTC CCCCTGAAAA AAAATCAAAA TAATTAGCAA	405000
TTGAAAAATC TGATTGCGAC TTGAAATAAC TTTTAAGAGC TACAGAATCT ATTCCTGGTA	405060
TCGGCAAATA TGAACCAACT CTAAAAAGAA AAAGAACAAA TAAAGTAAAC AAGAACTTAT	405120
TTCTCAAATC CTTAACGGTA AATAAACTTA AAAACAATTC TTTCATCTTT ATTCCACTTT	405180
AAACTAATTG AATAGTACAA CCAATTTTTA TTACAAGGCT TTCGGCAGAT TTAGAAATTT	405240
TAGAAACCTC AAAAGAAACT TTTTTTGTAA GCTTACCATT AGACAAAATC TTAATTTTTT	405300
TATTTTTCTT TTTTATAAGT TTATTTTCAA GCAAAGTATC ATAATTGACA ACTTGTCCAT	405360
CCTTAAATTT TTTATCTATA TCTCCAAGAT TAACAATTGC ATATTCCAAT TTATAATCAC	405420
TATTAGAAAA ACCTTTCCTT GGCAATCTTC TATAAAGAGG AGTCTGCCCA CCTTCAAATC	405480
CAAGTCTTGG CGAAGTATTT CTTGCTTTTTT GCCCTTTTTG ACCTCTCCCA GAAGTTTTGC	405540
CAAGTCCTGA ACCTGGACCT CTGCCAACAA TTTTACGTCG CTTGCTCGCT CCCTTAGGCT	405600
TTAACAAGTT AAACATTACA TTACCTCGCT TAATAAAATC ATATTAATAG TCTCGTTAAG	405660
CATACCCTTA ATAGATTCAT TTAAAAAATG AACCTTTTTA TCGCCTATTT TATTTAAACC	405720
TAATGCTTTT AAAACTTTGA CCTTTTTATT TAATTTCCCA ATAAGACTTC TTACAAGAAA	405780
AACTTGCACA TTAATATTGT TTTTAGAAAT AATTTTTCTA TTATTTTCCA TTCTTTTAAT	405840
AAAACATTTA TTCTTAGATC TAGACCTTGA AGCATTAAAC CTAGCTTTCT TTAGTTGTAA	405900
TCTTAATTTC CTTTTAATCA TACATTAACC CCATAAAGTT TTCAAAGTTT TTCCTCGCAT	405960
TTCTGCTACT TTTTCAGCAT TCAAAACTAA ATCAAATGCC TTAAAAGTCG CCTTTACTAC	406020
ATTCATAGAA TTATTAGAAC CAAGAGATTT GCTCAAAATA TCATGCACTC CTAAAGCCTC	406080
CATTACAGCA CGAACAGGGC CCCCTGCAAT AACACCAGTA CCATGAGTAG CTGGTTTGAT	406140
TAAAACCTTA GCTTTTTTAA AGCAGCCAAT AACCTCATGT GGCAATGTTC CTTTTCGAAT	406200
AGGAACAAAT CTTAAATTCT TCCTAGCACT TGTTAAACTT TTTTTTATTG CATCACTAGC	406260

ATCATTAGCT TTACCAAAGC CCCAACCAAC ATG	CCCTTCT CCATCTCCAA CAACCATGAA 406320
AGCAGCAAAA GAGAATCTTC TTCCGCCCTT AACA	ACCTTA GTAACTCTGT TGAGTGATAT 406380
TAATTTTTCT ATCTGCTTTC TTTGAGCATG AACA	ATCTACC ATAAATACAC TCCCTTAAAT 406440
ATTAATACCA AACTCTCTCA AAGAAGTTGC AAAA	ACTTGCA ATAAGTCCAT GATACTTATA 406500
ACCATTTCTG TCAAAAATAA GATTATTTAT ATTT	TTCTCC TTAAGCCTTT TAGCAAGAAC 406560
TTCTCCAAGT TTTTTTACAT CATCAATATT TTTG	CCTAAA TTAAGACTTT TTTCAATAGT 406620
AGAAATACTT GCAATAGTAT GTCCCTTACT ATCA	TCTATA ACTTGCGCAT AAAAATACCT 406680
ATTAGATTTA AATACAGTAA TTCGTGGCCT ACTA	GCTACT CCGCGCCCTA TTTTGTCCTT 406740
TATTCTTTTT TTACGTCTAA GCTTTCTCTG TTCT	GCTTCT TTTATTTTTT TCATAATTAT 406800
TAACCTAAAA TTTATTTTTT TACACCAGAT TTTC	CAACTT TTCTTCTAAT AACTTCATTA 406860
TCATACTTAA TACCCTTTCC TTTATACGGC TCTG	GTTTTT TTAAACTTCT AATCTCAGCA 406920
GCAACCTGAC CAACCTTAAA CTTGTCTATT CCTT	CAACTG AAATTTTAGT ATTCCCATCA 406980
AGCTTTACGC TAATACCATC TGGAATAACA TATT	CAAACT GAGTTGAATA ACCAAGGCTT 407040
AAAAAAAGGC TATTGCCTTG TTGCTCTACC CTAT	ATCCTA TACCATTTAT AGTAAGAGAC 407100
TTAGAAAATC CTTCAGTCAC TCCTTTTACC ATGT	TAAAAA TTAAACTTCT GTAAAGACCA 407160
TGGTAGGCTT TTGCTTTTTT ATCATTTAAA ACTC	GATCAA CAATAACGCT GCCATTCTCA 407220
ACTTTAACAT TAATACTGTC TTTTATATCT TGAA	CTAATC TTCCCCTAAT ACCTTCAACT 407280
ATCACTAAGT TGTCTTTAAC ATCAACCTTA ACAG	CATCTG GAATCTTTAT CGGAAGTCTT 407340
CCAATACGTG ACATACATCC CCCTATTAAA CTACC	CAAACT GAGCAAATCA ACTCACCACC 407400
TATTTTTTTA TCTTTAGCTT CCTTACCAGT AATA	ACACCT TGAGAAGAAG ATATAATTAA 407460
TATTCCATAT CCATTCTTTA TTCTTGGCAT ATTTC	CTATAT GAAGAATAAA TTTTTTCTACC 407520
AGGAGTAGAA ATGGCATCTA TTTTATTTAT AACAC	GGATTT CTTTTGTTGT CATACTTTAG 407580
CAAAACCCTA ATAAAAGCAA TTCCTTTCTT TTCT	AAAAA TTAAAATCCT TAATATAACC 407640
CTCTTCTTTA AGAATGTTTA ATATTGATTT ATTC	ATATTA GACATCTTTA AATCTACAGA 407700
TCCATGCCCA ACTCTGCTTG CATTTCTTAA TTTAG	STTAGC ATGTCTCCTA TTGAATAAGT 407760
AATCGCCATA AAATTCCCTT ACCAACTTGA TTTTC	GAAACG CCAGGAATTA ATCCTTCAGA 407820
CGCATACTTT CTAAAACATA TTCGACACAT ACAAA	AATCT CTTAAATATC CTCTTGGACG 407880
ACCACATAAT TTACATCTAT TATTTTGCCT TGTTT	TATAC TTAGGCTTTC TTAAAGCCCT 407940
AATAATCATT GATTTTTTTG CCATATACCT TATAA	ATCCC CTAATTACTA AACGGCATTC 408000
CAAATTTCAA AAGCAAAGCT TTACTTTCTT TATCA	TTTGA AGCTGTTGTC ACAATTGTAA 408060

TATTCAAACC	AGATATTCTC	TCTATTTTAT	CATAGTCTAT	TTCAGAAAAT	ATTATTTGTT	408120
CCGTTATCCC	AAAAGAGTAA	TTTCCATTGC	CATCAAAAGC	ATCCCCATTG	ATTCCCCTAA	408180
AATCCTTAAC	TCTTGGCAAT	GCTAAATGAA	TAAGCTTATA	TAAAAATTCA	TACATTGCAT	408240
TGCCCCTAAG	TGTAACTTTA	GCACCTATTI	CTTGTCCTTG	TCTAATTTTA	AACCCGGCTA	408300
TTGCTTTTTT	TGCTTTTGTC	TTTACAGCTT	TCTGACCAGT	GATCTGAGCA	AGCTCTAAAA	408360
CAGCAGAATC	TAATAACTTC	ТТАТТССТАА	CAGCCTCCCC	AACACCTACA	GAAATCACTA	408420
TCTTCTCAAG	CTTGGGAACT	TGCATTATAG	ATTTATATTC	AAATTCCTTA	ACAAGCTCTT	408480
TTATAACACT	GTCTTTATAA	TATTTCTTCA	ATTCAGGAAC	ATAATTCATA	AACTCTATAT	408540
CCTCTGTCCA	TTTTTTTTAA	GATACCTTAT	TTTTTCATTA	TTTTCAAATC	TAATGCCCAA	408600
TCTTGAAGAA	GTTCCCTTGA	САААТАТСАТ	CACATTTGAA	ATATCTATAG	CGGCCTCCTT	408660
ATCTATTATT	CTGCCTTTTT	CTTGGGGTGT	CCTAGCTTTA	ATGACTTTTT	TAACCATATT	408720
GCAAGATTCA	ACAATAACTT	TATTTTTTT	ТСТАТТТАТА	CTAGCAATCT	TACCTATTCT	408780
ACCCCTATCT	TTTCCAGAAA	GAATTTTTAC	GCTATCACCT	ATCTTCAACT	TTGTCTTCAC	408840
AAAACCCCCT	TTTGCTATAT	AACCTCTGAA	GCCAATGATA	CTACTTTCAT	AAAATTAGCA	408900
TCCCTAAGTT	CTCTTGCAAC	AGGCCCAAAT	ACCCTTTTGC	CCCTAGGACT	TAAATTAGCA	408960
TCAAGTATCA	CACAAGCATT	ATCATCAAAC	CTAACATAAG	TTCCGTTTTT	ACGTCTTACT	409020
TCTTTAGAAG	TCCTAACAAT	TACGGCTTTA	TAAACATCTC	CTTTTTTAAC	AGAAGAATTA	409080
GGAATTGCTT	GTTTTACTAC	AATGGTTATT	ATATCCCCAA	TTTTGGCATA	ACGCCTTTTA	409140
CTGCCACCAA	GCACCTTAAT	ACATTGAGCC	ACCTTGCCAC	CAGTATTATC	CGCAATTGTT	409200
AAATAAGTTT	GCATCTGAAT	CACAATCAAC	CTCCTTTAGA	ААААТСАААА	СТАТТТТААТ	409260
TTTTCTAAAA	CCTCAACAAG	AGACCATCTT	TTATCTTTAC	TAATAGGTCG	AACTTCAATA	409320
ATTTTTACCT	TATCGCCAAC	CTTTGAAACT	TCTTTTTCAT	CATGTGCTTT	AACTTT TTTA	409380
CTAACCTTTA	AATACTTATG	ATAAATTGGA	TGCATCTTTC	TTTGAACAAT	ТТСТАСТАСТ	409440
ATAGTCTTAG	ACATTTTATC	ACTAACAACT	TTACCAATTA	ATTCTTTTTT	ATTTTCTCTT	409500
GCCATATCTA	AACCTTTCTA	ATACCTAATT	CATATTCACA	AATCATTGTA	TTAAGCCTTG	409560
CAATAyCACG	TCTAATCTCT	CTTTTCTTTA	AAGGATTTTC	AACATGACCA	ACAACAGATT	409620
TAAATCTTAA	АТСТАААТАТ	TCTTTCTTTA	ATTCTAGCCT	TTTAGCCTTC	ATGTCCTCAA	409680
GAGTAAAATT '	TTTGAAATTT	TTCAACATAA	TTACCTCAAA	TCTCGCCTTA	СААСАААСАТ	409740
GGTTTTTACT	GGAAGCTTAG	AGCTTGCAAG	CGACATAGCC	TCTTGAGCAA	GTTCCTCAAC	409800

US98/12764

		389			
AACCCCTGAC ATTTCAAAC	A TAACAGTGC		GGAGCATTCC	AATGATCAAC	409860
ACCCCCTTTG CCCTTACCC	A TTCTAGTTT	C AGCTGGTTT1	TTAGTATAAG	GAATATCAGG	409920
AAATATTCTT ATCCAAACC	C TTCCGCCTC1	TTTTATTTT	CGAGTCATTG	CAATACGAGC	409980
AGCCTCAATT TGACGAGCA	G ТААТААААТ	TGTTTCCAAA	GAAACAAGTC	CATATTCACC	410040
AAAAGAAATT TTATTGCCC	T TCTGGGCCTC	TCCAGACAA1	CTTCCTCTCT	GCTTCTTTCT	410100
ATATTTAACC TTTTTTGGA	C TTAACATCTA	ATTATCCTCC	AATATCCTGC	TCATTAGAAT	410160
CGTCTCTTTC TTTAGAAAA	A GACGCACTAA	ATTTTTTTT	GTTTAAAAGA	TCTACTTCAT	410220
CTTTAGACAG CCCATCTTT	T TTATCCAAAA	GCCTAGTTTG	CTTTTCATTA	GCCTTTTCTC	410280
TATTATTTAA AGTTTTATC	A AAATTTTTAA	CAGCATCGCC	TCTTTCCCTA	AAAGGCTTTT	410340
TATTTATTAC CTGGCCAGC	A TCAGAATTAG	TTTGTCTCCC	CAAAACTTCA	ССТТТАААТА	410400
ACCAAACCTT AACTCCAAT	A ATGCCATAAG	TAGTTTGAGC	CTCAGAAAAT	ССАТААТСТА	410460
TATTGGCTCT AAGAGTGTG	C AAAGGAACCC	GACCTTCCTT	AACCTCAAAG	CTTCGAGCAA	410520
TTTCCGCCCC ACCAAGTCTA	A CCAGCAATTT	ТААТТТТТАА	CCCTTGAGCA	CCTTTTAACA	410580
TAGAGGTAGA AAGAGATGA	TTTAAAACTT	TTCTATAAGA	CGCCCTATTT	TCTACTTGCT	410640
TTGCAATCCC ATTAGCAATA	A ATTTGAGCAT	CAAGCTCAGG	TCTTTTAACC	TCTTTAATCT	410700
TAATGCTAAT CTTTTTAGA	A ATTTTTTAG	TTAACAATTG	ACCAATCTTT	TCAAGATTAG	410760
AACCTTTAAG CCCTATCACA	GAACCAGGCC	TTGGAGTAAC	AATTACTACT	GTTACTTTTT	410820
GGGGATTATT TCTAATTATT	TCTATATCAG	AAATATCAAA	TTTAATCCCT	TTAAGAAATT	410880
TCATAATTTC TCGCCTTATT	ААААААТСТТ	CATGAAGAAT	TGCAGAATAC	AATTTTTTAT	410940
CAAAATACCA TTTTGACTTC	CAATCCTTAT	TAATTTTTAC	CCTTAAGCTA	TATGGATGTA	411000
CTTTTTGGCC CATGCTTTAT	CCTTTAATAT	CTTTTTTTC	ATCAACTTCA	АСАААААТАТ	411060
GACAATTTCT ATTAACAAGC	CTATCAGCTC	TACCCCTAGC	TCTAGGCCAA	ATCTTTTTAC	411120
GACGACGCCC ATCATCAACC	ATAACTGTTT	TAACAAATAT	CATGTCCTCG	GAAAGATTTT	411180
TATTGTGATA CATAGCATTT	GATGCTGCTG	ACTTAACAAC	TTTTTCTAAA	AGCTTAGCTC	411240
CTTTATTAGG CATAGAACAA	AGCACTGCAA	TAGCCTTAAT	ATAAGACTCT	CCCCGGATAT	411300
TGTCAGCTAT TGGCCTAACT	TTTTTTGGAG	AAGAGGGTAA	ATTTTTGCCC	TTTGCCGTAT	411360
ATCTTCTATT TACCAACATA	ACTACTTACT	TCCTTCCCTT	TTTATCTGAC	TTAGCATGCC	411420
CTCTAAAAAT CCTTGTAGGT	GAAAACTCGC	CAAGCTTATG	TCCCACAAGA	TCCTCGGTAA	411480
TATAAATAGG TATAAAAGTT	TTGCCATTGT	AAACAGATAT	AGTAAGGCTT	ACCATTTCAG	411540
GAATTATTGT TGAAGATCTG	GAGTAGGTTT	ТААТААСААС	CCTCTTCTCA	CTTCCAAAAG	411600

ACGATAAAAC TTTTTGATAA AGACTCTTTT CTATAAAAGG TCCTTTTTTA ATAGATCTTG	
	-
CCACTATACT CTCCTATTTA TTTCTTCTTT TAATAATAAA TTTATCTGAA TATCTCTTTT	411720
TCTTGCGAGT CTTATAACCT TTAGTAGGCT GTCCCCAAGG AGACACAGGA TGACGACCTC	411780
CAGAAGTTTT TCCTTCACCC CCACCATGTG GATGGTCAAC AGGATTCATA GCAACACCTC	411840
TAACCTTGGG TCTTCTACCA AGCCACCTAC TTTTACCAGC TTTCCCTATA GAAATATTGG	411900
CATAATCTTC ATTTCCAATT TCACCAATTG TTGCAATACA TTTTTTAAAA ATCAATCTCA	411960
TCTCGCCAGA TGATAATTTT ACAGTGACAT AATTCCCGTC AGAAGCAAGT ATCATAGCAT	412020
ATCCACCAGC ACTTCTTATA AGCTGTCCAC CCTTTCCAAC ATTAAGCTCA ATATTGTGAA	412080
CGGTTCTTCC AATAGGAATA TTTTCAAGAG GTAAGGCATT GCCAATTTTA ATTGGAGCAT	412140
TAGGACCACT TTCCAAAACA TCTCCAACCT TAATGCCTTT AGGAGAAATA ATATACCTTT	412200
TTTCTCCATC TTTATAAACA AGCAAAGCTA TATTAGCACT TCTATTAGGA TCATATTCAA	412260
TAGAAGCAAC TCGAGCAGGA ATGCTAAATT TATCTCTTCG ATTAAAATCA ATCAACCTAT	412320
ACTTTCTCTT ATGCCCACCA CCTCTTCTTC TAATACTAAT CCTACCAGAA GAATCTCTGC	412380
CCGATTTAAA TTTTTTACCT TTTGTTAAAG ATTTCAAAGG ATCATTACCT TTGCTCAAAT	412440
CATCAAAAGA TAAAGTCGTC TTATAGCGCA AAGAAGAAGT TTTTGGCTTA TAAGTCTTAA	412500
TACCCATATT TATTTTCTC CAAAACCACT AAAAAATATC TATTTTATCT TCCTTTTTGA	412560
GATAAACATA TGCCTTCTTC CATGAAGAAG TTTTTCCCTT ACCTATAGGG TACCCTTTTC	412620
TAGACACCAC AACCTTGGCT TTACTTTTAA TATTGAGCAA ATTACACGAT ACTGGAGTAA	412680
CATTGAAAAG TTCTTTATT GCTGCACCAA CCTCTTTTTT ATTTGCTCTC TTATTAACTT	412740
TAAAAACATA AACATTAATA CTTTCCCTTT GAGTATTAGT TTTTTCAGTA AGCATAGGTG	412800
AAACTATTAT ATCATAAGCC TTCATACTTA TCCTCAACAT CCTTTTTATT TAATGTAAAA	412860
CTCATTGAGC TTGTTAACAG CGGATTCTAG AGCTATTAAA TTCTTAGCAT AAAATAAATC	412920
AACAACCCTA AGTTTATCAA AAGATAAAAT CTTTAAATCT CTTATATTTT TACCAGCCCT	412980
TTTTATCATC TGATCATCAT TGCCCAAAAG AATAACCACC TTACCATTAA AACTTGCAAA	413040
ATTTTTTATT ATTAAAGCAA GATCTTTCGT TTTTCCAGAT TCAACATTAA AATTCTCAAT	413100
AACTTTAAAA CTATTTCAT CAGCAGCACG CAAACTTAAT ACAGACTTAA ATGCAAGCTT	413160
TTTTACCTTT TTAGGCAATC TATAGCTATA ATCCCTAGGC TTTGGCCCTA ATGCTATACC	413220
TCCGCCAATC CAAACTGGAT TTCGCTTTGT ACCAACCCTA GCTCTACCGG TTCCTTTTTG	413280
CTTCCAAGGC TTTTTAGAAC TACCCCTAAC CTCTGATCTG GTTTTAGTTG AAGATGTTCC	
TOTAL MANIGITE	413340

US98/12764

391	
AACCCTAAGA TTAGACAACT CGTTTTTTAT AGCATTATAA ATAGACCCAT GACTAATTTC	
TATATTAAAA ACTCTATCAT CCAAATTTAT AGTTCCAATC TCTTTCCCAT CTTTAGAAAA	
AACTTTTCTT TCCATACTAA ATACCTACTT TTTAGATTTC TTAACAACAA CAAAAGAACG	
CTTAGCACCA GGCACAGCCC CTTTTACTAG AAGGGCTCTT TTTTCTTCAT CGATTAAAAC	_
AACTTCAAGA TTTTGAATAG TTTGTTGATT TCCGCCCATT CTACCAGCCA TTTTGGTCCC	-
TTTAAATGTT CTTGCAGGAG TAGTAGCTTG TCCTGTTCCA CCAAGATGTC TATGGAATTT	413700
TGATCCATGA GAAGATGGAC CACCACTAAA ATTATGCCTT TTCATAGCCC CTTGAAAACC	
CTTGCCTTTA GTAGTCCCTG TAACATCTAC ATACTTAACT GACTTAAAAA CATCAACCTT	413820
AATCTCATCG CCAGCATCAT ACCCGTCAAG CCCCTTAAGC TCTATCACAT ATCTTTTAGG	413880
TTCAATATCT TTTAAACTTT TATATTGACC TTTTATGGGC TTTGAAACTT TAGAACTCTT	413940
AAGATCAACA GAACCTGCTA TAAGAGCACT ATAACCATCT CTATCGACTG TCTTCTTCCC	414000
TATAATATAA TTGGGCTGAA ACTCTATAAC AGTAACAGGA ACCACAATGC CATTTTTCTG	414060
AAATATCTGA GTCATGCCAA CTTTTTTTCC AATCAATCCC AACATTAAAA TACCTCAAAT	414120
TCATATACTT AAAATATCAT TTACTGTTTA ATATCTACCT CAACACCTGC TGGAAGCTCT	414180
AATTTCATTA AAGAGTCCAT TAAAGCAGAA GTAGGTTCTA AGATATCAAT AAGCCTTTTA	414240
TGAGTTCTCA TCTCAAATTG CTCTCTTGAT TTTTTATTGA CATGAGGAGA ACGTAAAACA	414300
GTATATTTT TTATTTTTGT CGGCAAAGGG ATTGGACCCT TAATCTGAGC CTTAGCCTTC	414360
TGAACAGCTT TAACAATAGA TTCGGCACTC TGGTCTAATA TTTTAACATC AAAACTAAAC	414420
AATCTTACGC GTATCTTATC TTTAGCAATC AATTTATTCT CCTAAACTTT AGAGAGTATT	414480
AATATATCCT TAAAGTCTTA ACCTATTCCA ATATCTCAAG AATTCTTCCT GAAGCAACGG	414540
TTCTTCCACC TTCTCGAACA GCAAATTCTA CATTCTTATC CATAGCTATT GAAGAGATCA	414600
GCTCAACAAT AATATCAACA TTATCACCAG GCATAACCAT TTCTTTGCCC TCTAAAGCAA	414660
CAACTCCAGT AACATCGGTT GTTCTAAAAA AGAACTGTGG TCTATACCCT GGGAAAAATG	414720
GCTTGTGCCT ACCGCCTTCT TCTTTAGTCA AACAATAAAT TGAAGCTTTA AATTTCTTGT	414780
GTGGAGTAAT TGTACCTGGA GCTGACAAAA CTTGCCCCCT CTCAATGTCT TTTTTATCAA	414840
CGCCTCTCAA AAGAAGACCA ACATTATCCC CTGCTTGACC TTgCTCAAGA ATTTTCTGGA	414900
ACATTTCAAC ACCAGTAACA GTAGTTTTTC TGGTTTCTTT AATTCCAACT ATTTCAACTT	414960
CTTGACCAAC TTTAATAATA CCTCTTTCAA TACGCCCAGT AGCAACAGTG CCTCTTCCTG	415020
AAATAGAAAA TACATCTTCA ACAGCAAGCA AAAATGGCTT GTCAATATCT CTTTCTGGAA	415080
GATCAAAATA ATTATCCATA GATTCAAGAA GTTCTTTAAC GCATTTTGTA GATTCAGGAT	415140

CTTCTGGATT TGACATA	GCC CCAAAAGCTO	G AACCTTTGAT	' TATTGGAGTA	TCAGCTGAAA	415200
AGCCATATTT TTCAACA	AGT TCTAAAACTT	r caacttcaac	AAGCTCAACA	AGTTCAGGAT	415260
CTGCTAAGTC CAATTTA	ТТТ АААААААСТА	A TTATTTTCTT	TATTCCCATT	CTTTGAGCAA	415320
GAAGCAAATG CTCTTTT	GTT TGAGGCTCAG	G CACCACTATC	AGCAGCAACT	AAAAGTATCG	415380
CTGCATCCAT TTGAGCT	GCT CCTGTAATCA	TATTTTTTAT	ATAATCGGCA	TGGCCTGGAC	415440
AATCTACATG AGCATAA	TGT CTATTAGCTO	TTTCGTACTC	AATATGCCTA	GCATTAATTG	415500
TTATTCCTCT TGCTTTC	TCT TCAGGTGCAT	ТАТСААТАТС	TTCATACTTT	AATGCTTTTG	415560
CATCTTTATT TAATTTT	GAA CAATAAATAC	TAATAGCCGC	TGTTAGTGTT	GTTTTACCAT	415620
GATCAACATG ACCTATT	GTT CCAACATTCA	TGTGCGGCTT	TGTTCTTTGA	AAAACTTCTT	415680
TTGCCATGAC TAACCTC	СТА ААТТТСАТАТ	TCTAAATAGC	TACTTACATT	ТААТСТСТТТ	415740
AAAAAATTTT TAACAAA	ТТТ АТТСТТАТТА	AAATAAGAAA	ATAGCTACAA	ATAATCAAAA	415800
AAATAAAAAA ATCAATT	TTT TAGAAATTGA	CCCGCACTAC	GTGTTTTTCT	AAAAAATTTT	415860
AATAGCTTTA AAATTCT	ACA CATTTTACAA	AATATAGTCA	ATACGCTTAA	ACTTTTAAAC	415920
TCAATTCACT ACACATA	TAA TAGCATTAAA	AATTAATATA	AACTTTACAT	TAATTAAAGA	415980
AAAGCACAAA ATATTAA	AAA ATAAAGCTTT	AAAAGCAACC	ACTTAAAATA	AGCAATGCTC	416040
AACTAATACA TTTAAAA	ACA TGAAATTTAA	AACAATAGTA	AATACTTTTT	GAAATCTAGT	416100
CACTATTTAA AATTGATO	CAA AAACCTTTAT	TTTATCAAAA	AGGTTAACAC	TTTCCCCGGT	416160
AAAAAAAAAAAAAAA	ATG ATGAAAGCTC	AAAAATTTAA	GCTTAAATTA	TTACCAATAC	416220
TTGTAATTTC TGGCATT	TTA ATTGTTTTTA	TGTCTTGCAT	GAAAACAAGC	АСААТААААТ	416280
CAAAAGAAAA TGCAAAA	GAA ATTACCTATC	TTATTAGCAC	TATAAAAATC	AACCAAAAAG	416340
TAGAAATAGT AAACTACA	AAA TCCGACAGCA	AAAATAATCT	AATAATTACT	CTTAAAAACA	416400
AAAGCACAGA AGATATAA	AAT GCAAATTCAT	TGGCAATTTT	TAAAGAAGGT	AGCAAAACAG	416460
GTGAATTAAT AAGAGAAA	AAA CTTAATGGGC	TTGAAACAAA	AACTTTTCAT	ТТАААААСТА	416520
AAATCAATAC TAAAAGAA	AAA ACCACATTAT	ACATTTTTGA	AAAACAATAA	CAAATAGAAA	416580
ТСАТТТАААА ССТААААТ	TA TTAAAATTAA	ТТСТАСТТАА	ATAAGCTTTA	TTGCAAACAA	416640
ACAATTACAC TTAGAAAT	AG ATTAACAAAG	AATCTAAAAT	CTATTTTTAA	GGCCAAAAAC	416700
АТТАААТТТА ТТАААААС	CAA ATAAGCCATT	TTTTGGCAAA	ATGTAAATAT	AAAATAAATC	416760
ТТААТТАСТА ТТТСТАТТ	TTAATTAAAA	TAGGCTTAAC	CCAATAACGA	GTGCAAGTAA	416820
AAGCAATTAA AATTATAA	TT GCCAAATAAT	TTGAAATTAT	AAAAGCATAA	ССТАААСААТ	416880

			393			
TTTCCATTAT	GCCAAAATAT	TGAAAAATAA	AAACTACTGG	AAGACGAATA	AGCCACAGCC	416940
TAAAAAAT	AACAATCATT	GCAATTTTTG	TCCTGCCAGA	CCCAATAAGT	CCCCCAAAAA	417000
ATACTTGTTG	GAGTCCATAT	CCAAAAGTAC	CAATAGTTGT	ТААСААТААА	TAATTATTAG	417060
САТААТТТАА	AACTTCTAAA	TCATTTGTAA	ATAACCTTAG	TATAAACTGT	ТТАТТААААА	417120
TAACAATCGA	ATTTATTATC	AATAAAATTG	CCAAAGAAAT	AAAAAAACCT	TTTTTCAAAA	417180
CTTCTTCCAC	CCTATTGACT	TTCTTAGCGC	CAAGATTTTG	ACCAACAATT	GAAATAATTC	417240
CAGTACCAAT	TCCCATAGCA	GGAAGAAATA	AAAAAGAAAT	AATGGTGTTT	GTAAGTCCAT	417300
AAGCCGCCAA	AAATTTTGGA	CTAATCTCAA	ТААСТАТАТА	ATTGAAAATA	AAAAAAGACA	417360
ACGAAACCAT	TATTTGCCCA	AAAGTTGAAG	GCAATCCCAG	ATTAACAATT	TCTTTAATGG	417420
ATCTTATATC	TATCACTAAA	TCCTTCAGAT	GAATTTTTAA	TCCATAATTT	AGCCTGTAAG	417480
ТСАААААТАА	ATAAAAGACA	ACGGTTAACA	ATTTTGAAAA	TAAAGTGGCC	CAAGCAGCTC	417540
CAGTAATGCC	САТАТТАААА	СТАААТАТТА	AAATTGGATC	AAGAATAAAA	ТТААСААТАТ	417600
TGGCAAATAA	AACTATTGTC	ATTGAAAGGA	TAGTTTCTCC	TTGAGCATTT	AAAATATATG	417660
TAATTGAAAT	ACTTAAAAAC	ATGATAGGTA	TTGCAAAAAT	TGTCACATAA	AAATAAACTC	417720
TTGAGAGTTC	TTTAAGCTCC	CCTTTTACAC	CCAACAAATC	TAAAAGATGA	ТСААТАААА	417780
AAAAAGCACA	AATAGTAACA	AATAAGGATA	AAACAAAGTT	ТААААСААТА	AGTTGCCCTG	417840
CATATCTTGA	AAAACGAGAA	AAATTTCCCT	CTCCTATGCA	TTTTGACATC	AAAGAAATGC	417900
TTCCCGTAGC	CATTCCCATA	GCAATAGCTA	ТААТААААА	ATTTACAGGA	CCAGCAAGTG	417960
AAAGCGCTGA	CAAAGGCATG	GCTCCAAGTT	TACCAACATA	AAACATATCA	GTAAGATCAT	418020
AAAAAGCTTG	AATAATATTG	GTTATAACAA	TAGGAAAACT	ТАТТАААААА	AGAACCTTGT	418080
ATAAATTGCC	АТТТААТАТТ	AATTCCCTAG	TCTTACTCTT	ATCTGTAGAC	ATAAAATTTT	418140
ATCCTCATCT	AAAACATTTT	ТТАТАААААА	TTTAAAATCA	AATTTATTCA	TCAGTAATAA	418200
ACAAGTATTT	AATTTTTAAT	TTCAAAAATT	AAAAATTAAT	ATACAATATC	AAAACAATTA	418260
ACAGTCAACA	TGTTATGCAT	TAAATGACCA	AGATATAAAT	AAAATCTATT	AATCTGCCAC	418320
AACAAAAAA	TCATAACCAA	AAACAGAAAA	ATTAAAACCA	GATATAATAA	АТААТАААА	418380
ТТТАТААТТС	ТААТАСТААТ	САТАААТААА	CAGTAATTAA	ТААААТТААА	ACCATTCTAC	418440
GAATTAAAGC	AGAGAAATAA	ATACTTTATT	TAAAAGAATA	АТТААТАТТА	ТАААААТААА	418500
ААТТСААААТ	CAGAAATACC	TCTCTGCAAA	ТТТТТАТСАА	TCTTTCAATA	ТТАТТТТТТА	418560
CACTAAGATC	ТТТАААСТАТ	ААААТАААА	ААТТААТААТ	ATTAGATAAA	ААТАСТАААА	418620
СССТААТААТ	ACTTCAAATT	ACAGACTAAC	ТАААТАААТ	AACAAAAAGT	СССААСААТА	418680

AAAATTAATG	TAATATATT	TCATTCACAA	TTCAACCTCT	TAATACCTTA	TCCTTACCTT	418740
СТАТТАААА	CATTTTCCAC	AAATCATACA	TATAATAAAG	CCCAACAACA	AGCTATTGAC	418800
TTTTAACTTT	CTTGATTTTT	GCACCCAAAT	TAATCAATTT	GTTAACTACA	TCTTCGTATC	418860
CTCTTTCAAT	TTGATAAACA	TTTTGAATCT	CGCTGCGACC	TTCAGCAACA	AAAGCAGCAA	418920
TAAGAAGAGA	CATTCCCGCT	CGTACATCCG	GAGAAGACAA	AACATTGCCT	TTAAGAGAAG	418980
ATTTGCCCGT	AACTACTACG	CGGTGTGGAT	CACAAAGCAC	AATTCGAGCA	СССАТТТТТА	419040
ТТААТТТАТС	ТАСААААААС	ATCCTAGATT	CAAACATCTT	CTCAAAAACT	AAAACTGTGC	419100
CTTCTACTTG	CGTTGCAGTA	ACTACAATAA	TACTCATAAG	GTCTGTTGGA	AAGGCTGGCC	419160
ATGGGCCATC	ATCAATTTTT	GGAATGTGCC	CACCAAAATC	TAACTTAACT	TTTAATTCTT	419220
GTTTATTTCT	TACATATACA	TTTTCCCTGT	CATATTCAAA	ATTAATGCCA	AGTCTTGAAT	419280
ATACATGCCT	AATTAATCTG	AAATGTTGGG	GATCTGCTTT	TTTAATTTCC	AACTCACCCC	419340
CTGTTAATGC	AGCAAGGCTA	ATTAAAGAAC	CAACTTGCAT	GAAATCGGCT	ССТАТТСТАА	419400
ATACGGTCCC	ACTTAATTTT	TTTACACCTT	ТТАТТТСТАА	AACATTTGAA	ССААТТССТА	419460
AAATATTAGC	GCCCATTGAA	TTTAACATAT	TACACAAATC	TTGAACATGT	GGCTCACAAG	419520
CAGCGTTCAT	AATAACAGTA	TTTCCTTCAG	CAAGAACTGC	AGCCATAATG	ATATTTTCTG	419580
TGGCTGTAAC	AGAAGCTTCA	TCTAAAAACA	TTTCAGCGCC	AACAAGCTTG	TTAGCCTTTA	419640
AAACAATCCT	TCTATCTTTT	GTGCTTAACT	TGGCCCCCAG	CTTGCAAAGC	CCGTAAAAAT	419700
GAGTATCAAG	CCTCCTCTT	CCAATCACAT	CTCCTCCTGG	AAGCGCCATA	TCTATTTTTC	419760
CAAACCTAGA	AACAAAAGGC	ССТААТАААА	GTATGGAAGC	ССТААТТААА	TCTGTAAAAG	419820
AAGAATCTAT	TTCTGTTTTC	ACAATATTTA	AAACTTTTAT	TTTTAAAGTA	TTTCCCTCTC	419880
TTGCAATATC	TGCTCCTATG	TCATTTAAAA	TATCTAAAAC	AACTTTTACA	ТСАТТААТАТ	419940
TAGGAATATT	ТТСТААААТА	ACCTCTTCAT	CGGTAAGTAA	AGCAGCCAAA	ATACAGGGTA	420000
AAGCAGCGTT	CTTATTCCCA	CTAGCTGTAA	TTTGACCACC	TATCTTATAG	CCGCCTTCTA	420060
CAATATAACT	ATGCATAATC	CATCCTCCTA	ТАТАТАААА	СТТААТАААА	TTAAATCGCA	420120
CAGATAAGAT	ТАТТААААТТ	TAAAGAATAT	CTAAAGATAT	GAATATCAAA	CAATATCCAT	420180
ATCTTTTAAA	CTTGATTTAC	AATCTATATA	TTCTCTAACA	ATCTCTACAG	AAAAAGAATG	420240
GCCATTCTCA	TCGATATCAA	TTAAAACACC	GTTAAAACCA	AGGCCTTCCC	AAGATTCATT	420300
AAATTTCTGA	TTTAAAAATC	CTTTCAAAAA	TTTATCCACC	TCTAAATCAG	GAGAATATCC	420360
AATAACACTG	TCCAAACTCC	CAACTCTGCC	CAAATCAGTT	ATAATAGCAG	ТАТТАТСТАА	420420

			205	•		
AATTCTCAAA	\ TCAGCTGTTA	AAATCCTTTT	395 CCCGGTTCCA	AGACAAGCAC	TAACTCTTGA	420480
TTTTAGATAA	AAAAACAAAG	CATTAACTTC	GGCTGTAGTA	TTTGAATCAA	AAAGAACAAT	420540
AATATTATTI	GTTTGCATCT	' TGATTCTTTG	АТААААААА	TCAAAACTAT	AAAAAGGATG	420600
ATTAAATTTA	TATTTAGTTA	TTCCTGTTTG	ACCTACAATT	CTAATCACAG	CCAATTTTTT	420660
GCCATTAATA	AATAAATAT	AATAAGAATA	TCCCTTTAAT	TTTGCAGGAC	AATTTAAAGG	420720
СТТТААААТА	AAATTATACT	TATCAAGATC	ATCAGATAAA	TCAGGCCTTG	CAAAAGCATT	420780
TTCACCTAAA	GTTACACATC	AATTCCATAC	ТТТТТТААТА	AAAAGGCATG	CTTTTTGCCA	420840
AGACCTCTTA	AACCTGTAGT	AAAATTATTG	CCAGATATTA	СААААТСААТ	CTTTTTTTCC	420900
ACCTTAAAGG	ATGATAAAA	AGATTTTATA	ACAATAATCC	CAGCTTTGCC	GACAACCTCG	420960
CCAGTAATTA	AAATCCTTAA	AGACACAAAG	CCTCTCTTTT	TATTGATCTA	GTTCAAACAA	421020
CTTAATAAGT	AAACTTTTTA	СААТААААТ	TGACACAAAA	TACCCCACCA	AAACAGCGAA	421080
AACAATCATC	ATAAAAATCA	ATATAAATTG	CAAATAGGGC	TTTACAATAA	TGCTAAATTT	421140
ААСААСТААА	AAAAACTCTA	AAAAGAAAAC	TAGAAACATT	AATGATAAGT	TCATTAACAT	421200
АСАТААААТА	AAACTCAAAA	TCTTCATTTA	TTAAGCACTT	TTCTTTTTAT	ААААААТСА	421260
TAAACCAAAA	АТААААТСАТ	ACCTATAACA	ACATAGCTAT	CTGCAAAATT	AAAAGTAGGC	421320
CATCTATCAA	GTCCAAAAAT	TCCATAAAAT	TTCAAATCTA	AAAAATCTAC	AACTCCAGAA	421380
GGTCTAAACA	АТСТАТСААТ	AACATTTCCT	ACTCCTCCTG	AAAAAATTAA	TAAAAGTGAA	421440
ATTCTGGCAA	TACAATTTCT	TTCTTTCAAA	GAAAGATAAA	AAACAAATAT	TAAAATGAAA	421500
ATAGGCATTG	CAAGAAAAA	AATTTTTTC	AAGCTATAAT	GGATATTAGA	GCCCATAGAA	421560
AATAAAATAC	CTGTGTTTCT	TACATGTATT	АТССТААААА	AATCATCAAA	AAAGGAAAAA	421620
TATATTGAAC	CTAATTTAAC	ATACTTTGCA	ACCAAATACT	TAGAAAGTTG	АТСАААААА	421680
ATCAAACTAA	ТААТАААТАС	AAAAATATTG	AAATATTGCT	TACTTTTAGC	GCTCATACAA	421740
AAATCCTTAT	AAATTAGTAT	TTTTACAAAT	AAATTTAACC	TCTAAATCTT	CTTGAATTTT	421800
GAAATCTTCC	ATTAATTTAA	TTAAACCAAA	AGTTTCAGTA	AAATAATGAC	CTGCAAAAAT	421860
CAAATTCACA	CCGAATTCTT	CTGCCAAAGA	ATATATTTGA	TGAGAAGTGT	CGCCGGTTAT	421920
AAACAAATCT	ACATCATGAC	ATAAAGCTTC	ТТСАААААА	GAGTATCCAG	AACCACTAAC	421980
AATTGCAACC	TTATTCACCG	ATTCTTTGAA	CTTTTTCGAA	AAAAGAATAT	GTTTATTTTC	422040
CTTTTTGATT	TTTTCTAAAA	TTTCAGAAAA	GCTAAAAACA	GAATCAGCAA	TAATCCCTAG	422100
ATTAACTCCG	CCATAATTTG	CAAAAGCAAA	AGAATTTTTT	AATCCTAAAA	AATCTGAGAA	422160
CACTTTGCTG	TGĊGAATAAA	CAGAATGAGC	ATCCATAGGC	AAGTGCACCG	AATAAAGAGC	422220

ТАААТТАТТТ	ТСААТТАААА	ATTTCGTTTT	T ATCATACATA	A TTAGAAACAA	A TGCGCTCTTT	422280
TTTTGACCAA	AAAATACCGT	GATGAGTAAT	TAAAAAATC	A TTTCCTTTTC	G CTTCTTTTAA	422340
AGTTGAAAAG	CTAGCATCAA	CAGCAAAGGC	AACCTTGTT	ACCTTAGCAT	TAATATTCCC	422400
CACTTGAAGC	ССАТТТАААТ	TTTTATCAAT	ATGCTCATAC	TATTTTATAT	' CAAAAATTGA	422460
ATTAAGCTTA	AAAGACAAAT	CTCTTACATT	САААТТАААТ	TCTCCAAATT	' AAAGCATAAC	422520
TTTGACTTTC	TCTTAATCTT	CTATAAGAAT	AAAGATTTTI	CAAACAATAC	GTACAAAGCT	422580
TTGAATTATA	AATATTTAAA	TTAAAACTAG	AAAGTAAATT	AAAATTAAAT '	CTAGCATTAT	422640
CAAAGTATAT	TTTACCATCT	CTTGTAACAA	AAGAAGCATT	· ТААТАААТСТ	TTGCTAAATT	422700
TATTACTTAC	TTCTTTTAAG	AAAATTTCAG	AAACTTCATA	ACAACAAGAT	CTGTTATAAG	422760
GCCCAAAAAC	AATTTTCAAA	TCCTTCAAAG	CTGATCCCAT	TTTTTCAAAC	АТАААТААСА	422820
TTTTTAAAAT	AATCAAATTA	AAGCTTCCTT	TGTATCCACT	GTGAATAAGC	ССТАТААТТТ	422880
TTTTCACCGA	ATCATAAAAG	TATATTGGAA	GACAATCTGC	AAAGTAAGCA	ACAAGGGCTA	422940
CATCTAAAGA	GCTAGATATA	AGACCATCTC	CTTCTTGAAA	АТТААТААА	TCATCTTCAA	423000
СТТТАТАААТ	AATATCTGTA	TGCAATTGCT	TTAAATATTT	TATTTTCTTA	GACCTAGGAA	423060
CAAAGTTAAA	ATTATCATTA	CTAAGTTCTT	TTAATTTTAG	ATTAAAAGGC	TTTTTAGTAT	423120
AAATCATTTT	AACATCATCA	GCTATCCTAA	АТТСАТААТА	AAGTTCGTGC	TCTATTGTTT	423180
TCATAATCTA	AATTCTTCTC	CCAAATAAAG	CTTTTTGGCT	TTTTCACTGC	ТТАТТАТАТА	423240
ATCAACATCA	CCCTCATCAA	GCACTTGCCC	CTGATAAACA	ATATAAGCTC	TGTCTATTAT	423300
ATCAAAAGCA	TCTCTTACAT	TATGATCGGT	AATAAGAACT	CCTATGTTTT	TCTCTTTTAA	423360
AATTTTTATT	АТАТТСТТТА	TATCCCCAAT	CGCAATAGGA	TCAATACCAG	CAAAAGGTTC	423420
ATCTAAGAGT	AAAAAATAAG	GATTTACAGC	CAAAGCTCTT	GCTATCTCTG	CTCGCCTTCT	423480
CTCTCCACCA	GAAAGAGTAT	ACGCTTTTTG	GCTTTGTATT	CTTTTTATCT	CAAATTCTTT	423540
AAGCAAATTC	ACAAGCTCTA	TTTTGCGCTC	AGCTTTAGAT	AGATCTTCTC	ТТСТСТСТАА	423600
AGCAACCATG	ATATTCTCTT	CAACTGTAAG	TTCTCTAAAA	ATTGAAGCAT	CTTGGGGAAG	423660
ATATACAATT	CCTATTCGTG	CACGCTCATA	CATATTAAGA	GATGAAATGT	ТАТААТСАТТ	423720
TATTAAAACT	TTGCCTGCAT	TAGGCTTAAT	AAAACCTACA	ATAGTATAAA	ATGTTGTTGT	423780
TTTGCCAGCT	CCATTTGGAC	CAAGAAGCCC	CACAACCTCA	ССТТТАТААА	TGTTAATTGT	423840
AATACCGTTA A	ACAGCAAGCT	TTTCGCCATA	СТТТТТААТА	ATGTTGTCTG	CTTTTAAGAC	423900
AACATTATTG	ACAGAATCAA	GGTTAAGGCT	TTCCTTAATC	TCTTTTATTT	TATTTTTTT	423960

WO 98/58943 US98/12764

CTTCAGAAGC	ATCATTTTCA	ACTTGAGTAA	397 ATTCTCCCTC	AACACTTCCC	TCAAGTTTAT	424020
ACCTATTAGT	TTTTGTATTG	AAAATTATTC	TTGAAGCAGA	ATAATAGTTG	TCTTTCTGGT	424080
AAATTACTGG	AACCCCCTCA	AGAATCATTT	CTTTTTCTTC	TTTATTATAA	GTCCCATTTT	424140
CAGCTCTTGC	AAAAGTATCA	TCCTTATATA	TTTTAACAGA	ATATTGCATA	ATATAAACAT	424200
TAGTTTTATT	GCTGCCTTCA	ATTCTTTCTG	CTTTAACAAG	CATATTGTTT	TCTAAGTCTT	424260
CAAGCTCAAC	CCCTTTTTGA	AGATAAAAAT	TATCCAGCTT	ТСТАТТАААА	AACAAAAACT	424320
GAGCTTTAAC	ATTCATTTTA	ТТСТТАТААТ	СТТТАТАААА	AACATTGCCT	CTAGCTTCAA	424380
GATAAGAGCC	ATTTTCTCCA	TAAATTTCAA	TTTCATCTGC	TCTAAGATTA	AAATCCGAGG	424440
AAATAACCTC	TGAATTCCCT	ТТТААААСАА	TTTTTTTATA	AAAAGAAGAC	ACTACTCCTT	424500
GTGCAAAATC	TGACTTAAAA	GTAAAATTAG	TGCTTTTCTC	ATCACTTCCC	TTAATCCTTT	424560
CAGATTTAAG	GCTGGATTCT	ATTTGTGTTG	CTTGAATATT	GTTAATAAAA	АТААТАААА	424620
ТССАТАТТАА	AATTAAATCC	CTCAATTCAT	GATTCCTTCA	ACTCCAGAAT	СААААТАААА	424680
AACATTGCTC	TAAAAATTT	AAGAAAATCC	TTTTCCGTTT	ATTTTGCTAT	CATTAAATCT	424740
AATTAATACT	AGCTCATTTG	GGGGGGATTG	CAACTTCTTG	TCTTTATTCT	TCCATAAAAG	424800
CCTATTTGAA	TTAAGCAAAT	AATAATTATT	TTTATCTTCT	АТТТТАААТТ	CTACAGAATC	424860
TCTCATATCC	AAATCCTTTG	TAATATAAGA	ACCTTCCAAA	ттаттаааст	TCCCTGAAAT	424920
TTCATTATCT	AGGGAATGAT	ATAAAAACCT	TCCATTCTCT	GCCTTATAAA	TTTTATAGTC	424980
ATTGAAATAA	CTAAAGCTTA	AAGAATTTAA	AACGGTTTGC	TCTTTATTGT	ATACAACATC	425040
ATAATACTTG	ATTCCTAATA	TTTGTATTGA	AGGAAACTTT	TTGGCCACAT	CAGATCTACT	425100
AGAATACTCA	TCATAATCAA	AAGTACAAGC	AAAAAACAAA	AACAACAAAC	AAAGTCTAAG	425160
TATTTTCATA	AATATTTTC	ACAAGACTAA	AAATTTTTTC	TATTTCAATT	GACAATCTAT	425220
AAAACATAAC	AACACAACAT	TAAAAACTTT	ATCAAATAAA	ATTTATTTAC	ATAACCAATT	425280
ATAATGTAAA	ACACAAAATC	AAGGTAAAAA	CACTGCTCTT	AAGAACAATC	TTCTATACAA	425340
GAATTCTCCT	AAAATGCAAA	AATTCAAACA	AAAGTACAAA	AATTGCTCTT	ATTTCAGAAT	425400
AACATAAGGG	TAATTTACAA	CTTATTCCTT	TTAAGAGATA	GACTTATAAA	AATTAACAAT	425460
AATAATGCTC	ACATTCATCA	TCTCTTTTAT	AGTTTAAAAT	TTCATTGTCT	TTAAACCAAA	425520
TTGGTATTTC	GCGCATCGCA	TCTGCCTCAT	TTGCAGATGC	ATGAATCACA	TTGTAAATTG	425580
AAAAACCTTT	TTCATTTGAA	TACTTAAAAC	TATGATAAGA	AAAATCTCCC	CGTATTGTTC	425640
CAGGAATAGC	CAATTTTGGC	TCAGTAGCAC	CACAAAGCTT	CCTCACAACC	TCAATGCTTT	425700
CAACCCCTTC	AACAACAAAT	GTAAAAACAG	GGGAATTTGA	ААТАААТТТА	ATTAAAGAAT	425760

TCCAAACAGC	CTCACTATGT	CTAAAGACAA	ТАТСАТСАТА	ТАААТААТСТ	TTTTTTGCCA	425820
AACTCTCATC	AACAATAAGC	ATTTTAGCAG	CTACCATCTT	TAAACCTACT	CTTTCAAATC	425880
TAGAAACTAC	ATCGCCAATT	AAACCTCTCC	TAACTCCATC	TGGCTTAACA	ATACATAAAG	425940
TTTTTTGCAA	TAACATTGAC	ATAAATCCTC	СТААААТТТА	GGATATATAT	TTAAAAATAA	426000
ТТАААТАААТ	AAAAATACTT	ATTCAATACA	AAAATTATAT	CTGATTAATT	ACATTTATAT	426060
GGAATAATAC	AAATTATAAA	GCACTTAACA	TTGTATTGAA	AAATCAAAAT	ATAACTTTTA	426120
СААААТТААА	AACTACATTC	CAAAAGGAAG	AACTCCCATG	GTTTTTAATT	TTATCTCTTC	426180
TTTAACCTTA	GAGACAGCAT	CATTTAAAGC	AGATTTAATC	ATTTGTTCAA	AAGCATCATT	426240
GTCTAAATCA	ТСААААААТТ	CCTTATTGAT	TGAAACTTTT	ТТААСАТТАА	ATTCGCCATC	426300
CATCTCAATA	GTAACAATAT	TGCTACCTGC	TTTACCACAA	ACCGTAATTT	TAGAAATTTC	426360
СТТТТТААТА	TTGTCAATAT	TATTCTTAAC	GCTAGACATA	TTTTTCAAAA	AATCTAACGG	426420
ATTTACTGCC	ATATTTTTAT	CCCTCCAGAA	CTTCACTTGC	ТССАААААТА	TTTTTTACAG	426480
TTTCTAGTTT	TTCAAAATCC	TTTTCAAGGT	ТТТТААААТТ	TTTCTGAAAC	ACAATGCTTA	426540
AATTGGGGAA	TTCTTTGTAA	AATTCAGATC	TTATCTCACC	ТТТАТААТТТ	TGAAGCTCAT	426600
TATATTCAAA	CTCACTAAAC	ACCTTATAAT	AAAGAACATT	GTCATCAATA	GCAACCTCTC	426660
CCGAATGAAC	TAAAGTTTGA	ACATATCTTG	AAACAATATA	AATAAATTTA	TCTCTTATAT	426720
CAATAAAATC	ATTTGAATTA	CTCGCATTAT	CATCTTCAAT	AAAAATCTCA	TCAATCTCGT	426780
CAATACTATT	GGTCTCTAAA	ATATTTTTAT	CAATTTTTGT	TGATAAATTT	TCATCACGAT	426840
CAGCCTCCTC	TTTTTCTAAA	GATTTGATTT	CGGGAAATTC	ACATTTTAAA	CTAGATTTTG	426900
ATGGAATAAA	AGCCAAATCA	TCTTCGCTCT	TATTATTTGA	TAAAACATCA	AAATTGTTTG	426960
AATCTGTAGC	AATATTTTCT	AACAGATTGT	CTTCAAGATT	TTGAATTTGC	TTTATTAAAA	427020
CATGATTTGG	AACATAACTT	TTAAGTCTTA	AAATTTTAAT	AAAATTAATC	TCAAGCTCAT	427080
ATCTTGGATT	AACCGAAAAT	TGCAAATCCC	TGTAAGTTTC	AAGCAAAACA	ACAATAATTC	427140
TTTCAAGATA	GTTCAAATCA	AACTCAATTA	ATTTCTTTCT	CAAATCCTCA	GATTTAATTC	427200
CAATAAACTC	AAAATTTTTA	ATACCTATCT	ТТАААААТАА	TGCCTCTCTA	AAAAATTCGA	427260
TTGAATCTAA	AAGAAATTGC	TCATAAGACA	CTCCAGATAA	AAAAATAGAA	TCAAGAACAC	427320
AAATTAACTC	TTTCACATCT	TCACCAAGAA	TGCTAACTGA	CAACTTTTCT	AAAAATTCAT	427380
CATTGGTTAA	GCCCATCTTG	GATCTTATTT	GATCTAATTT	AATGTTAGAA	TCAGTAAAAG	427440
AAACTATCTG	ATCAAAAAGA	GTATAAGCAT	CTCTTACGCT	ACCACTACTT	TTATATGCAA	427500

			399			
TCCATTTTAA	AGCTTCATCT	ТСАТАТТТАА	TATCATCCTC	TAAACAAACT	TTCTTAAGCA	427560
TATTGTAAAT	СТТАТСТААА	GATAAAAGTT	ТААААСТААА	ATGTTGACAT	CTGCTTTTTA	427620
TTGTCTCTGG	AAGCTTGTGT	GACTCTGTAG	TGGCAAAAAT	AAAAACAATA	TAATTTGGAG	427680
GCTCTTCAAT	TGTCTTTAAA	AGAGCATTAA	AAGCAGAATT	GGAAAGCATA	TGAACTTCGT	427740
СААТААТАТА	ТАТТСТАТАТ	TTAGAAATTG	CAGGAGGAAA	CATTATCTCT	TCTTTAATTT	427800
GCCTAATATC	TTGAACCGAA	GTGTTTGAGG	CACCATCAAT	TTCAACAACA	TCAAGGCTGC	427860
TATCATTCTC	AATAGATTTA	CAATTGCTGC	ACTCCCCACA	TGGCATAACT	GTTGGACCAT	427920
TCCTGCAATT	TAAGCATCTG	GCAAAAGCCC	TGGCTGATGA	AGTTTTACCA	ACGCCTCTTG	427980
GCCCTGAAAA	GATATAAGCA	TTAGCTATTT	TATTTTTCTC	TATAGAATGC	TTTAGAGTTT	428040
CAACAACAAA	GTCTTGCCCT	TCAAGAGAGT	TGAAATCTCT	GGGGCGTTTC	TTAAGAGCAG	428100
TGCCTCTTGA	AGACGCCATT	AACTTTTTAC	CTCCCTATGC	TTTAATAAGT	AAAATATTAG	428160
ТАААТАТАТА	CTATACAACA	TATTTATATC	TCAGAGCTAT	TACTTTAAAA	GAATTTTATG	428220
AAACATAAAA	AATATAATAA	AATTGAAAGT	TACAAAAAGA	CAAATCCATA	TCTTAACATA	428280
AAGCAAAACA	TTGCATTTGG	GTTCAAAATT	AAACCTAAGA	CTTACGTACT	САТСААААА	428340
ATCGCTTACC	GCTGCTACCT	TCCAGTCCTG	ACGGGATTCA	GCAATACTTG	ATAGTACGGG	428400
TCCTAGGAAT	CGGAGAGAAT	GGGATTCGAA	CCCATGATAC	ATTTTACTGT	ATACACGCTT	428460
TCCAAGCGTG	CGCCTTAAGC	CACTCGGCCA	TCTCTCCAAA	СТААСАААСТ	TTTCGTGTCC	428520
AAGAGGACTT	GAACCTCCGA	CCTTAAGAAT	CGCAATCTAA	CGCTCTATCC	AACTGAGCTA	428580
TGGACACAAA	TAATTAGTTT	TTATTGTAAT	AAAAATTACT	ATTTATTACA	ATAAAAACAT	428640
TCAATAGAAA	ATGGAGAAAT	TGTGAAAACT	AGAATAATCA	TTTTTCTTTC	AATATTATCT	428700
ATTCTATCAT	GCTCTAAATC	AGTCTCAAGT	AAAGTTAATT	CCGAATTTGA	ААТТААААСТ	428760
АААААТАТСА	AAGAAAATGA	AATACTGCAA	AACAATAATA	TTCTCCATAT	AGATGCAAAA	428820
ATTCCTTTTA	TGGAAAATGC	AAACTTTGAA	TTTGAAAATC	ТТАТАААААА	ATGGAAAAAA	428880
GACATCGAAA	ATAAAATATC	AAACCCCGAA	ААСТСААААА	ATGAATATTT	TTATTTTCC	428940
AATTTTACAA	TATTTAAAAA	TGAAAATATT	GGCATTACAT	СТАТТТТАТА	CAAAGAATCT	429000
TTCAGAGAAA	AAGAATCAAG	CACTTTCTTG	AAATATTATT	СТТТАААССТ	AAAAGGAAAC	429060
AAAAAATAG	AAATTTCAGA	ААТААТАТСА	AAAGATCAGC	TAGACTCTCT	AATAAACGTA	429120
TTAAAAGAAC	AGCTAAATAG	TAGAATTAAA	GATTTTTATG	TTAAAGGAAA	ACACAGTCAA	429180
AAAGAATTGG	AAAAAAATT	CACAACAATC	TTTCCAAGAT	АТАААТАТТА	TAAAAATTTT	429240
AACCAAATTA	TAGTTTTTTA	TAATCCATTC	TCAAATGATT	GTAATGGCTG	CGATAAAATT	429300

·	
GAGTTTCAAT TCCCCATACA TGAAAACACA GAAAATGAAT ATCAACCAAA CAAAAAC	
CACTCTCAGT CTTAATCTTA ATACTTAAAA TTAAATGATA ATTACGGAGA GGGTGAG.	ATT 429420
CGAACTCACG GTAGGCTTAC ACCTACAACG GTTTTCAAGA CCGTAGCATT AAACCAC	ICT 429480
GCCACCTCTC CAGAGTTAAA ACAAATTTTA ATAAATAAAA TACACGCTGT CAATATT	TAA 429540
ATAATTACGG AGAGAATGGG ATTCGAACCC ATGGTCCCCT TTTAAAAGGA CAACTTC	TTA 429600
GCAGGAAGCC CCATTCGGCC ACTCTGGCAT CTCTCCTATA ACATTAATAC ATATTATC	CTT 429660
AGAGATATTA TTATTGTCAA CCAAATAAAT TATAAATTAT TAGTAATTTA TTCTAAAC	CTC 429720
TTTATAAGCT TCTATTAAAT TTTGAAAaTC CCCAATAGAA ATGTCAATTT CGGGCAAA	AT 429780
ACATTCTTCA TGCAAGATTT CTTGAACCAT TTTTTCCTCA TTGTTGCTAA ATTTTAAT	TC 429840
AATGCACTCA TCTTTAATTC TCCAAATATA CGTATTTACT CTTATATTGT GATCAAAA	AC 429900
AAAAATAGGA TCTCTCAAAT TTAAAGAATT GTCAATAAAA AATAAATACT CTAAATAC	CA 429960
ATTTACTCTT AAAGATACTG CAAATTCTTC AAGCAGAGTT TCAATTAACA TATCCTCG	CT 430020
GGACTCAAGC AATTTTAAAA ATTTTGAATA AGGCTCTGGA TTAAGCTCAC AAAGTTTT	TT 430080
CATATAAAAA TAGGCATCCT CAAGATCACG ATTTCTAAGA AAAAATAAGG TTGCATAT	AA 430140
ATATATCAAA TCTAAGTTAG AATAATCATT AACCATTCTC TCAATAGACT TTTTAGGA	GA 430200
AAATTTTAAA AGCTCAACTG TTGCAATATG CATATTGTAG ATCGTATAAA TATTAGGA	AA 430260
ATTTAAAATA GCTTTAACAT AAGATGTTGT GGCTTGAGTC ATGTTGCCTA TTTTATGA	AA 430320
AATAGTTGCC CTATTGTGCC AAATATATTT AGAATAATGA GAGTCTGTTA AAAATTTC	rc 430380
AGAAAGCCTA ATTGCTCTGC TTATTTCCCC AATAGAATAA AAATAATACA TTAAATAA	TT 430440
AACAACAAGA GCAAGATTGG CATCAAAAAA AATTTTATCT ACTTTTAAAA AGCTTGCTC	GC 430500
TTGAAGAGAT GCACTATTTT TTAAAATCCA AATATTAAGC TTAACTAGAG AATTGTTT	G 430560
ATCCAAATCT CTAGCCTCAA AAAATAATTT TAAAGCCTCG TCTTTGTTAT CCAACATTT	C 430620
GAATAAGACA GCACTATTGT TTAAAGCTTG TACAAAATCA GATTTTTGCT CTTTAGCTT	T 430680
TAAAAAACAA CTTAAAGCAA GTTTATATTC TTTTAAATTA AAATAAAAAA CACCTAAAT	T 430740
ATAATTCTCA AAAGGACCTA AATCATCTTT ATTTTTTCA ATTTTGCCAT AATCTATAA	.G 430800
TTTAACTAAA AAATTATATT CGCTCAAAAC AACAGGATAA GTATTTAAAA CATATAAAA	G 430860
AGCCTTATAA TCCTTTTTCT TGAAATAAAT AAGCGCTTTA AGTGCAAGAG AATCAAAAT	т 430920
CTCATCAAAA ACATCTAAAT TATCAAGAGA GCTTTTAAAA TCACCATTTT TATAAAAAT	T 430980
TAAAGCCTTC TCAAAACTAA AGTTATTCAT ATTTTTTAAA AATCTCCATA GGCCTTACA	G 431040

401	
AAATTTCCTT TGAAAAAGAA GTCTTATTAA CACTTTTATC CAAATTGTAA GCGGCAATAC	
TAATATAGTA AAGTCTTCCG TCTTCAAGTC CTGTAATCTT AAAAGAAGTT TGATTTCCAA	-
CATCAATAGG AGAAGTTAAA ACACCGCCGC CGGTTTTTCC ATGATAATTA CCAGAAACAA	-
CACCAATATA AATGTAATAC CCCTCAACAC TGCTATTAAC AACAGGAATC CATTCAATAA	431280
AAACTTCTCT GGAACCTGGA ATAACTTTTG TTATCACAGG AGGAAATGGA GCTGCTTCAG	431340
GAACGTAAGT AATTGACATA CTATAAAGAG AAGGACTACT TACAGAATCT CCACTAGGAT	431400
AAAATTCAAC TTTTATTTGA ATATATTTTG ATATCTTTGA ATCTGGAAAA TCTTTTTTAG	431460
GATCAAAATG AATCCATGCC CCAGTTAAAT TTTTTTTAAT ATTCCCATGA CTATCTGTAT	431520
CATAAAATAC CTTATTATCT AATCTGTAAT AATAAACAAT CTCTGTATCC TTAGGAACAT	431580
TAGAATCAAC ATCAAAGGAT AACACTTGAG AATAATATTT AGAAAGCTTA ATAGGGCTCT	431640
GTAATAATGT ATCCCATATT CTTTGAGAAA AAAGCACTAC TAACCTCTTC AAAGCTTTTA	431700
TGTATTTCCA AATTCTCAAC CGCACCAGTA AAATAAGTTC CTAAGGTAAA ATCAATAAAA	431760
TTACCAATAC TTAATAAATA TCCTGATCCT TCCTTCTTAT CATCTGTTAT ATATTCTATT	431820
GCCTGAGGTT TAGAATCTAT CAAATATTCA AGTATGCCGT CCTTTTGCCT ATATCTTAAA	431880
GTATGCAAAT GCCATTTCTT TGGAATAAAA TCATCATTAC TTTTCATTCT AATTTTGATA	431940
GGATTTTTAT TGTCTTTTAA AAATACATTG TTTAAAACCC AAACAAAATT TCCCTCATCG	432000
CTTTCTAATC TAATAGACTG ATCTACCCAC GAATTATTAA TCTTTTTATA ACCATCCCAA	432060
CTAAAAATAA TTTCTCCTGT AACAGACGTT GTTCGATATA CCCAAAACTT AATAGTAAAA	432120
TCAGACACAG TATTGCCTGA AAAAAAGAAC GCTTTCTTTG TAAGTGGCTT AAACTTAACA	432180
GGATTTTGAT TTGAATAAAA AATTAAAGAG CCATTAGAAA CATTACGAAA TTCATTTGAA	432240
ACTCTCAAAC TTTTTGCACT AACTAAATAA TTTGAAGATG TGTCTTTTAA TTTATTATCC	432300
CTTCCTATTT CTAAGCGCAA ATCAATATTA TTCAAATCTA AAACAGCTTT ATATCTATCC	432360
AAATAAATAC CAAGCAAACC CCTCATATCC CTTTCAAAAG TAACATTGCT AAAATCTTGA	432420
ATAAATTTAA AATTTTTTTT CGAATCAAGT ATCAACTTCA ATTCTTGAGA TAACAGAGTA	432480
GAAAAGCACA AAAAAGrTAG CAAGAGCATT AAAATTAATC TCATTTTTGA CCTTTTATTT	432540
GTTATTACCC ATATTTTTAA ATACCTCAAA ACATAAAACA AACTGCCTTA TGATACAATA	432600
TTATATCATA AGATGATTTT TAAAATCTAA AAACTGCCTA ACATTATGAA AGAGAACCTA	432660
ACAAATTTAT TCGAAAAAGT AATAAAATTA CCAACCACAA GCGGTTGCTA TAAGATGCTA	432720
AATGAAAATA AAAAAATACT CTATATTGGA AAAGCAAAAA ATCTAAGATC AAGAGTAAAA	432780
AGTTATTTTT TAGAAAAAA TAGTCACAAA ATCAAAATAT TAATGAAAAA TGTAAAATCA	432840

ATAGAAGTTA TTACAACAAA TAGCGAATAC GAAGCATTGC TTCTAGAGTG CAATCTAATT	432900
AAAACCCACA AACCTGATTA CAATGTAAAA TTAAAAGATG GAAAAGGTTA CCCCATGGTG	432960
AGAATAACCC ATGAAAAATA TCCAAGAATT TTCAAAACCA GAAAAATAAT TAATGACAAA	433020
AGCGAATATT TTGGACCATT TACCAATGTA AAAAAATTAG ATCAAGTACT AGATTTTATT	433080
AACAAAACAT TTAAGATTAG AAAGTGTAAA AAAAAATCCA ATGCTCCTLG CCTATALTAC	433140
CALATGGGAC AGTGCCLTGG AGTATGCTAC AAGGAAAACC TTGAAAAAGA ATATCAAAAA	433200
GAGCTAGATA AGGCAAAATC CATACTAAAT GGAAATATAT CCGAAATATC AAGTCAAATT	433260
GATATCAAAT TAAAACATGC CATACAAAAA GAAGATTTTG AAACCGCTAT CAAATTAAAA	433320
GAAATTAGAA ATTCTTTAAT AGAAATTAAT CAAATCCAAA TCGTTACAAA AACCAATAAT	433380
TTAAACATAG ATTATGTCCA TGTTCATCCA GGAGAAAATG TAAATACAAT AATAGTATTA	433440
AAATATAGAA ATGGAAAATT AGTTGAAAGA GATGCAAACT TTGATGAGAG TATATGCAAA	433500
GAAAATGAGC TGATTTTACA ATTTTTGATT CAATATTACA CATCTATTAA TATGATAGTA	433560
CCAGACAAAA TTCATATTTT TCTCAAAGAT ATCGACACTA AAAATGTTGA AAAACTAATA	433620
AATGAAATTA AAAATACAAA AACAGAAATT ATTTACAAAG AAACAGAAGA AATTTTAAAA	433680
ATAATGGAAA TGGCCATATC TAATGCTGAA TTATCTTTAA GAGAATATGA GAATAAAAGC	433740
ACCAAAGCAC TTGAAAGTTT GAAAATTGTT TTAGAAATGG ACAAACTTCC CAAAATAATT	433800
GAAGGATTTG ACATTGCTCA TCTTAAAGGT CAAGAAACAG TAGCTTCTAT GGTTACTTTT	433860
AAAATGGGAA TGCCTTTTAA AGAAAACTAC AGGCTTTACA AACTAAATTC ACTATTAAAA	433920
GGAGAAATTG ACGACTTTAA GGCAATAAAA GAAGTAATAT CAAGAAGATA TTCAGAAATA	433980
ATTAATAACA ACTTAGAACT ACCGAATTTA ATTTTAATTG ACGGGGGCAA AGGACAATTA	434040
AATGCCGCTC TTTCTATCTT AAAGGGCTTA AAAATAGAAA ACAAAGTTAA AGTCTGCTCG	434100
TTGGCAAAAA AACAAGAAAC AATATTCTTA ACAACTAACA AAAAAGGAAT AAATCTACCC	434160
CAAGGACATC CTGCTCTTAG AATACTGCAA AATGTAAGAG ACGAAGCACA CAGAAAGGCC	434220
AACGGATTTA ACAAAAAAG AAGAGAAAAA ATAACCCTAT TGTATACAAA AATACACGGA	434280
	434340
CCTTTAAGTG AAAACGAAAT TTCAGAAAAA ATAAAAGTAA ACGTGCAACT TGCAAAAAGA	434400
ATAAAAGAAT TTGCAATAAA AGAGAACTCC ATAAAAAATA ATAATCAAGA TAAATAAATT	434460
TTAAACTAGA TTATTATTTA TTAATATTTT TTAAAATAAA ACACTATTTT AAATTCCAGG	434520
CGATAAAACC AAAAAAAGAT CATTAATAAG CTTATTTCTA GACTGTATAT TTAAAACATC	434580

		403			
TCCTAAAAGC TCTATTTT					434640
AACTTCAGTG TAATCAAA	T CATCCAACT	C TCCAATAAC	r tcatttatta	A AATTGTCAAA	434700
TATTTTTTTA CGCTCTTT	TTTCTAAAT	T TTTAATATT	T AAAGATCTCC	CTTCAATTTT	434760
ATTTAATTTA GCCAAAAA	TTTCTATAC	C GTTTTGAAA(TTAATATTT	TAATAACAAC	434820
TTCAAATTCA AAGCCCTTA	G AAATATTTT	T TCTACCTATT	ATCTCATATC	TTAGATTATT	434880
AAAAAACAAA GGATAAAAA	A TGAAATCAT	C CTTTGCCTG#	GATTTCAACC	CACGAATTTT	434940
TGCCTTCAGA TCATCATCA	C TTGGAATAT	ТАААТААТТ	AAAAATATTT	CAGGACTGCT	435000
TTGAAAATTT TTAATAGAA	т саааааасто	TATTAAAACA	TTTTCAGCCA	ATCTAGATTC	435060
AGATCTACAA GACAAAAAA	С ААААТААТА	A AATCCAACTI	AATTTTTGCT	TCATACATTA	435120
AAAATTAAAT TTTGATTCT	G TAGAATAATO	CATTAAAAAA	ТТАТТАТТАА	GCTTTAAAAT	435180
TGAGAATATT AAAAAATAT	G ACAAATTTTC	G ATGAATATTT	TTAGAATAAA	TTCTCAAATA	435240
ТАААТСАААС ТТАТАТААА					435300
AATTCCTACT CTATAAATT					435360
CTGCAAGCTC CCATATGCA	г татаатстат	TTGCACCTTT	AATAATCTTT	TAAATTGCCA	435420
AATAAGACTC ATTAAAATA					435480
GATCAAAGAC TGAGTCATA					435540
AAAGCGAATA AAACTAATC					435600
AAAAAGCGCA AAAGAATCTA					435660
AAGCATTAAA TTTATTGCA					435720.
TACAAATGTA AATTTATCAT					435780
CTTATTCTTA AAATCAATGT					435840
GTTAGACTTT AAGATTGAAT					435900
AGACTCATAA ACAATAAAAA					435960
AGCAAATCCT ACAGCTGAGA					436020
AAAAGCATCC ATTTTAATTA	AAAGCTCTTT	TAAATAGGCT	TCTTTTAAAC	CTTGCTCATT	436080
ACCCAACAAT AAATAAACCG					436140
TATACTTAAG CTAGGAGGAG					436200
AAAAAAATGG AGTAGCAACA					436260
ATGAGGTTTA CATATTTTGC					436320
GATGCTCATC TATTCAAATA	AATAAAAAAC	TTGATGCTGT	AATAGCTTTT (CCCAATAAAA	436380

GAAAAATATC CAAAATAATA CAAAGCTATA AACCAGACAT CATTCATACT CACTCTGAAT	436440
TTTCTATGGG AAAAATTGGA AAACAAATTG CATTAAAACA CAACATACCA ATAGTTCATA	
CAAGCCATAC AATGTGGGAT TATTATTTGC ATTACTTAGG AATTTTTAAA TATTTTATCA	
AACCCGACAA AATGATGCGA AAACATTATA ATAAAATAAA	
GTAAAGCAAA AGAGAGATAT TTCCAACTTT CAAATAATTC TTCYAACTAT AAAATAATTC	
CAAATGGGGT TGATAGAAAG CTTTTTATAA AAACTCTAAG CAAAGAAAAA AAAGATGAAA	
TTTTGAAAAA GCACAATATA AAGCAAACAG ACAAAATAAT AATATTTGTT GGAAGAATAA	
ATAAAGAAAA AAATATAAAT TTATTAGTAA CACACTTAAA AGATCTTTTA ATGCAAAACA	
ATAATTATAA GCTTATACTT ATTGGTAAAG GAAGTGAAGA AAAGGAAATA AAAAATTTTA	
GCATCAAACA TGGGCTTGAA AAACAAATAT TGCTAATAGG AACAATTCCA TGGGAAGAAA	436920
TATACTATTA CTACAAAATT TCTGATATCT TTGCTAGCCT ATCAAAAAGC GAAGTATATC	436980
CAATGACAGT AATAGAAGCA TTAACCGCGG GAATACCTGC TATTTTAATA AATGATTATA	437040
TATATAAAGA CGTAATAAAA GAGGGGATAA ACGGATTCTT AATAAAAAA TATGAAAACT	437100
TATCTCGGTA CATAGACAAA GTAATAAAAG ATGATGAAAAT ACTAAAAAAA TTTAAAGAAA	437160
ATGCAAAAAA ACACTCCACT AAATTTTCAA GCTATTTTTT CACAAAAAA ATTAAAAACT	437220
	437280
ATTACTCAGA AATTATTGCA AGAAAAATC ATTAATACAG CTTATCAAAA GGCACAAAAC	437340
AAATTGGAAC CTTAATTTTC ATATCCAATA AAACATTTTG AATAGACTCA CCAACAAAAT	437400
ATTGAAAATC CCAAAAAACC TCTGTATTAA CAAAAAATCG AACTTGCAAA ACTATATAAT	437460
AAGGAGTGTA TTTTTTAACA ATAAGAGTAG GAGCACAAAG CTCAACATTA AATTTCTTAT	437520
TATTGAAAAT CATTAAATCC TCTATTTTAT CCTTTAATAA ACCAATATTC GTATCATAGG	437580
GAACTTGAAA AGAAAACACA ACTCTTCTTC TAGTACATGA CGAAAAATTA ACAACAAAAT	437640
TGGATGTAAG CTTACTGTTT GGAATTTTAA TAATTTCTTT GTTAAATGTT TCAAGTGTAG	437700
TAAAAAAAT TTGGACATCT GCAACCAAAC CTTCAACATC TCCACATTGA ATATGATCTC	437760
CACACTTAAA AAACTTAGAA TTCAAAACAA TAAATCCACT AACAAAATTA GATAGAATAT	437820
TCTGAGCAGC AAGCCCAATG GCAAGCCCTA ATGATCCAAA TACAGCAATA ATAGATGTTG	437880
TAGGCACCCC AAGATATGGC AATATTATTA AAACAATAAC AAAGTCTGTT AATATTTTAA	437940
AAAAAGATTT TAAAAAGTTA AAAACTGTAA CTTCTAACTT TTCCTCTAAT CTGGACTTTT	438000
CTAAAGTTTT AAATAAAATT TTTCCCATTT TACTAACTAT TAACTTTAAA AAATACCATA	438060
GCACTATAGC AATCGAAACT TTTAGACCAT AACCTACCAC GCCCTCAATA ATATAATTAA	438120

US98/12764

		405			
ААТААТСТТС АААТАТААА					438180
TAAATTAATT GAATTATAG					438240
AACAATGACT CAATATTTT					438300
ACAAAATGAA CATTACAAC	A ATATTTGTG	A TAAAATTAGI	T ATCCAAAGGT	TTTTACTAAA	438360
TTTGACAAAA CAAATGTAT	A AAAAGAAAC	А АААААААТ	A TATGAAATTC	TGGACTTGTT	438420
TTTACTTGTC TTTAAAACA	A CAACACTTA	C AATTGGCGGA	GGATTAATAA	TTATATCTGA	438480
GCTTAAAAAA ATATTTGTT	A AAAAAAGAA	А ААТААТАТСТ	GAGGACGATT	TTAACAAAAT	438540
ACTAGCAACA TCAAATGTT.	A TTCCTGGAG	TACAGCGATT	` AATTTTGTGT	TCCTAGTAGG	438600
AAGAAAATTT GGAGGTTTT	C CATGCGCACT	TTTGCTCGTT	GTTGCAGGAA	TTTTGCCTTC	438660
CATTATTGCA ATAATAATG	G TTTTCCTTT?	. ТСТААААТТА	GTACCAGATA	GCATACATGT	438720
TAAAAAATTT CTCGAAGGT	G САААААТАТО	TTCAATTATC	ATAATGATAA	CCGTTGTTTT	438780
AAAATTTTCC AAAAAAATG	C TAAATGATTO	ТАТААТААА	TGGACAATAT	GTTTTCTTGT	438840
AATTTTTGCA ATTTTTAAA	Г ТАААААТАА	AATATCATAC	ATATTGTTAA	TTTTCTTTTT	438900
AGTATACACA TTTAAATATA	TAACAATAAA	ATTATAAAAA	ACTAAATAGA	AAAAGGATAT	438960
CGGTTGATTT TAATAAATTT	ATTCATTACA	ТТСТТААААА	TCGGATTATT	AAATTTCGGA	439020
GGCGGTAATG GAATTGCAGG	AATAATAAAC	AACGAAATAA	ТТААТААТАА	ACATTGGATA	439080
ACAAAAGAAG AATTTGTCAA	TATGATTACA	ATATCAAGAA	TAACCCCTGG	GCCTATTGCA	439140
ACAAACATAG CAACATACGT	TGGAATGAAA	ACTGCAGGAA	TTGCGGGAGC	AATAATTGCT	439200
ACAGTAGCAT TAATAACAGC	СССААТААТА	ATAATGATTA	TAATCCTCCT	AATACTACAT	439260
AAAATCGGCT TTTTAAATTA	TTGCCTAGAA	AATCTAAAAC	CTATTATTGT	TGCGCTGTGG	439320
ATAATTACAA TAATCATTTT	GCTTGAAAAT	ACATATTTAA	AAATAGAAAA	CAACAAAACA	439380
GAACTTTTGA AAACTCTGGC	TATTGTAGGA	ATTAATTTTT	TTATTTTATT	TTTTTATAAT	439440
AAAATAAGTC CAGCATTAGT	AATTATACTT	AGTGGATTTT	TTTATACATT	ААТАТАААТА	439500
TGATTAAACA AAAATTAAAA	ATATCTCAAA	ATTTAAACTC	AATTCAAATA	САААСААТАА	439560
AAATATTAAG CCTTAACCAA	AAAGAATTAA	CAAAGCTTAT	ACTAGAAGAA	AGCGAAAATA	439620
ATGAATGTCT AGAAATAAAC	ТСАААТАААА	TATTTTTGA	AACATTGAAA	ACATATAGGT	439680
ТТААААААСТ ТТТТТАТААА	GAAGATGATA	TGATAAAAA	TCAACACGAC	ATAGCTCTTG	439740
AAAAAACACA AACAAATACT	TCTTTAAAAG	AACACCTTTT	ACTGCAATTA	AGAATTCAAA	439800
GAATAAATGA AGATGAAATT	AAAATAGGCG	AAATACTCAT	AAACAATCTA	AACAGCAAAG	439860
GTTTTCATAT AATAAACCCT	TACGATCTTT	TTAAAAAGGA	AGAAAAAGAA	AAAGTAAAAA	439920

AAATAATTGA ACTTATTCAA AAATTTGATC CAATTGGAAT TTGTGTCCCC AACATAATAG	439980
AATCGTTAAT TTTGCAAGCA AAGCATCATA AATTAGAAAC TAATATTATT AAAATTCTTG	440040
AAAAAGCAGA GCTTCTTGAA AAAACTCAAA AAAAGTTAAA AGAGGAACTT AAAATAAGAA	
GCAAAGAATT TAACACGGCT TTAGAAATTA TCAGACAAAA ACTTAACCCC AACCCAACGC	440100
TCGAATTTAA AGACCCAAAC GACACTAATT TTTATGTTGA TCCAGATATA TTAATAATAA	440160
ATCACAATAA TAAATTAAA ATTAAAATCA AAGAAGTTAA TATCTTTAAA AAAGAACTTA	440220
AAAGGACAAG TGAAAACCCC CAAAAACAAA AAAAAGCAAA GTGGTTAATC GAATCCTAC	440280
	440340
GATATAGAGA CGAAATACTT GCAAAAATAG GAATAGCTAT ATATACATTG CAAAAAGAAT	440400
TTCTAAGAAG AGGATTTAAA AGCTTAAGGC CAATGAACTT GAGCATTTTA TCAGAAAAAA	
TTAGTGTATC AAAATCAACA ATATCAAGAG CAATAAAAAA TAAATACTTA AAATGCGAAT	440520
GGGGTACAAT ATTAATCAAA GAGCTTTTTA GCTCTGTTGG TGGAGCAAAA ACAAATGAAT	440580
TTTCAAAATT AAGCATCAAA ATAACAGTAA AAAAGTTATT AGAAGCAAAT AAAAAGATGT	440640
CAGACAAAGA GATTTCTGTT ATACTAAAGT CCAAAGGAAT CTCTATTTCT AGAAGAACAG	440700
TAAATAAATA CAGAAATGAA TTAAAATCTG AGAAAGGGAG AACATATTAT GGAACCTAAA	440760
ATTCAAACGG TTAATTACAG CTTGAATGAG AATGAAAAA ATTTTATTCT CAAAAAGCTA	440820
GAAAAATTTG ATACTCATAT CAAAAAACAT ATTGATAATT TAAAAATTAC AATTAAAAAA	440880
GAACATGAAC TTTTTAAATT AGACGCACAT ATTCACTTTA ATTGGGGGAA AATAATACAT	440940
ATAAGAGAAG ATGGGAAAAT ACTTCTTAAT CTTATTGATA GTGCAATAGC AAGACTTTAC	441000
AAAACAGCAA CCAAAGAGAA AGAGAAAAAA AACAACAAAT AAGATAAGTA AAAAATGCAA	441060
GAAGTAGAAA TTGAGATAAT AAATAAAGAT GGAATACATT CAAGGTCGGC AAACATCATT	441120
GCTGAATTCG CAAATAAACA TTCTTCGTGC GACATAAAAA TAACAACAAA AGATGGCAGA	
AAAGCTGACG CAAAGTCCAC AATAGAAATT ATCATATTGG GTATAATATA CAAAGAAAAA	441180
ATAAAAATAA CAGTCGTTGG AAAAAAAGAA AAACTAGCAA TTAAAAATTT ATTAAACTTG	441240
	441300
CTAAAATATA ATTTTTCAAA AGAGCTTTAA AAATGAACAA AAAAATTTTT TACATAACAA	441360
TACTGCTGCA CTTACCTAAT CTTCTATTTT CATACTCAAC AAAATACGAC ATTGAAGTAA	441420
AAATGTCGGC TTTTGTCATG AGTCTGGCAA TCATCGTAAT CTCATCTATT TCAATAGGCA	441480
ATCTAGTAGC TAAAATAGGA ATTCCAAAAG TAATAGGGCA AATAACAGCG GGAATAATTC	441540
TAAGTCCGAA TGCCTTTGGA AAAATTCAAA TACCTTTATT ATTCCCATTG GGAATAACTC	441600
AAATTGGAGA AAATTATTTA ATAAATGAAA AAATATTTGC AATCTCTACC ATAGCTTCAA	441660

US98/12764

TAATATTGCT TTTCAC	AGCA GGACTTGAA	407			
CACGCGGAGG AATTAT					441720
					441780
TGGCAAGCAT AATTTT					441840
TTGGAACCCC AACATC					441900
GTACCTCAGA AGGAGT					441960
TTATGCTTAC AAGTGTA	AATA ACTATATCAA	A GATCTATATC	AGATCTTGAT	ATAGCAAGCT	442020
CAATAAAAGC TATAGTT	rcaa aacatagtaa	A TTTGGCTATG	CTTAACTTTC	ТСТТТААТАТ	442080
ATATATCAGA AACACTO	CTCA AGACTGTTGA	AAAATTAAAA	CAGTGTCACC	TTAGCAACCG	442140
TAATAACGCT CTCTCTA	AGCC CTTACTATTC	G CAAGCATTTT	ССААААТТТА	GGAATGTCTT	442200
TTGTTGTTGG GGCTTAT	GTA TTTGGACTTG	CTATGTCAAA	AACAGACATT	GTATACGTAA	442260
TTCAAGACAA ACTAACA	ATC TTTGAAAGAT	TCTTTATCCC	GATCTTTTT	ACATCAATCG	442320
GACTTATGTC AGATATT	ААТ GAAATACTTT	CAAAGGAAGT	TCTTATTTTA	GGATTAGCAA	442380
TTAGCGCAAT AGCAATA	ATT ACTAAAAGTA	TATTTTGCTT	TATCCCAGCA	CTCTTTTTAG	442440
GATTTAATAA ACTTGGA	GCC TTAAAAATTG	CAACCGGAAT	GGTTCCAAGA	GGAGAAGTTT	442500
CACTTATTAT GGCAAAT	GTA GCATTATCTT	CAGGATTTAT	TAGCCAAAAA	ATATTTGGAA	442560
TCATAATAAT AATGGTG	TTT TTGCCAACAA	TCATTGCAAC	ACCCATAATA	AACTTTTTAT	442620
ТТААААТААА ТААААСТ	GGA CTTAAAAAAG	AACTCCCAAT	AGATCAAAAT	ACACACATAT	442680
GCGTATCATT TGAATAT	GAT AATTTAGCCA	AAATTCTTAT	ATGGGACTTT	AAAAATGAGT	442740
TAAGAAAAGA AGGATTT	TTT ACACAACAAA	TTAAAAATGA	TTCTTCACAA	TATATTAATG	442800
CAAGAAAAA CAATATA	TCC TTCTCAATAA	AACGAGAAGG	TAGCAAAATC	ACATTTGAAT	442860
GCCCAAATAA TCATTTA	ATT ATAATACAAG	ATCTTTTTAG	AGAAACAATC	TTAAACCTAG	442920
AAAAAATAAC CAAAGAA	GTT GAAACAGTCT	CTTTAAGAGC	АААААААСТА	GATTACTCAA	442980
TAAATTACGA TAAAATCO	CTT AGTAATATCA	ACCTAAATAA	AAGAATAAAA	AAGGAAAACA	443040
TTATTCTAGA ATTAAAA	TCA AGCAATAAGG	CTGATGTAAT	AAGAGAGCTT	CTAAGCGTAA	443100
TAAACATTGA AATTGATA	AAA GAAAGAATAT	TCCAAGATTT	AATGGAAAGA	GAAAAGTTAA	443160
TTACTACTGC ACTAAAAC	GAA GGCTTTGCCA	TTCCCCATTT	AAAAACAAAT	ТТААТАТСАА	443220
AAATACATAT TGCAATAC	GGA ATAAGCCATG	AGGGAATTGA	CTTTAATGCT	CTTGACAAGA	443280
ACTTAAGTCA TGTTTTTA	ATA TTAATACTGT	GCCCAGCAAA	AGATTACGTT	AGCTACCCTA	443340
GAATTTTAGC ATCTGTTG	STG GGCAAAGTTG	ATCTGTACAA	AAAAGAAATT	TTAAATGCAA	443400
AAACAGATAA AGAAATTI	AT AATATAATAG	TGAGCTAAGT	TATGTTTAAA (GTTATCAAAT	443460

CENARCA ARE CAARCA AND TO THE CONTRACT OF THE		
GTAATGAATT GAATGAAAAA TTGATAGACA AAAAAGTTO		520
AAATTAGACA CCACGGAAAA TTTATCTTTC TAAATATAA		580
AAGTTCTGGT AAATGAAGAA AAGCTTCTAA AGATCGCAG	SA AAAAATAAAA CTTGAATATT 443	640
GCATTAAAAT TCAAGGACTG TTGATCAAAA GACCCCCCA	A CATGATAAAT GCAAATATGA 443	700
AAACAGGACA TTTTGAAATA TTGGCAAAAA ACATTGAAA	T TATCTCAAAG TGCAATGAAT 4437	760
TGCCATTTAT GATAGAAGAT GACAATAATG CCAAGTGAA	A ACTCAAAACT TGAATACAGA 4438	320
TACTTAGATT TAAGAAGAGA TTCCTTGAAA AATAAAATT	A TTTTAAGATG TCAGGCTACT 4438	380
CATCTTATTA GAAATTTTTT AATAAAAAGA AAATTTTTA	G AGCTAGAAAC TCCAACTTTT 4439	940
GTAAAATCAA CGCCAGAAGG TGCAAGAGAT TTTGTAATC	C CATCAAGGAT TCACAAAGGA 4440	000
TCTTTTTATG CACTACCTCA ATCTCCACAA CTTTACAAA	C AACTCATAAT GATAGCAGGA 4440	60
TTTGACAAAT ACTTTCAAAT AGCCCGCTGC TATAGAGAC	G AAGATTCAAG AGGGGACAGA 4441	.20
CAACCAGAGT TCACCCAGCT CGATCTTGAA ATGAGCTTT	G TCAAAAAAGA AAATATTTTT 4441	80
AAATTAATAG AAAATATGCT TTTTTTAATA TTCAAAAAT	F GCATCAATAT TAACCTACCT 4442	40
AAAAAATTCA AAAAAATAAC ATACAAAAAG GCAATGAACA	A AATATGGAAG CGACAAACCA 4443	00
GATACTAGAT TTGAACTTGA ATTACAAGAT ATAAGTCGTA	A ATCTAAAAAA TTCAGAATTT 4443	60
AATATATTCA AAGATACTCT AAAAAACAAA GGTTCAATTA	A AAATTTTAAT AGTAAAAGAT 4444	20
AAAGCTGACA AGTTTTCAAG AGCAAAAATA AACAATTTAC	G AAGAAATTGC AAAGCTTTAC 4444	80
AAAACACAAG GGCTTTATTT TACAAAAATT GAAAACAATA	AATTTTCCGG GGGAATTGCA 44454	40
AAATTTTTAA AAACAGAAGA ACAGGAATTA ATAAAAACCT	ATTCTTTAGA AAATAATGAC 44460	00
ATAATTTTCT TTACAGCTAA TAATAACTGG GAAACTGCAT	GTAAAGCAAT GGGTCAAATT 44466	60
AGAATAAAAA TTGCAAATGA TCTTGGACTA ATAGATGAAA	ATAAATTTGA ATTTCTATGG 44472	20
GTCTATGATT TTCCACTATT TGAATATGAC GAAAATACAA	AAACCTATTC ACCAGCTCAC 44478	30
CACATGTTCT CGCTTCCCAA AAAGCAATAT ATTGCTAATT	ТАСАААААА ТССААААААА 44484	10
ACTATAGGTG AAATTTACGA TCTTGTTTTA AATGGCGTAG	AACTTGGCTC AGGTTCAATT 44490	0
AGAATACATA ACAAAGAGCT TCAACAAAGA ATTTTCAAAA		50
AAATCAGAAG ATAGATTTGG ATTTTTTCTA AAAGCATTAG		:0
GGTGGCATTG CTATTGGCAT TGATAGACTA ATAATGTTGA		
AAAGATGTAA TACTGTTTCC TAAAAATTCT TTTGCAGCAA		
TCTAAAATCT CAAATGAACA ACTCAAAGAA CTGGGAATTA		
		J

			409			
TAATCCATA	A TGCAAGCTC	GCCATATACO	TTTAAAATTA	TAAAAATCAG	CTACTCAACA	445260
TTCCTTGGA	A TTTTTCAAGA	A TACTGCTATI	CTTTCAAGAA	ATTAAGTCTC	AAAATCTAAA	445320
ACAAAATGC:	TAAAATTTTT T	CAAAAAATT T	СТТАТТААТТ	AATTACTTTT	TCAATCAAAA	445380
CAGTCTCATA	A AACACAGCA1	TTAATAATA	TAAAAATTTT 1	AAATTAATCT	ATTATTCAGG	445440
TTTTGAAAA	A ATAAACAAAA	AAATACCCGA	TAAATAGTAA	AAAACTATAT	САААСААТСА	445500
ATAATTTTAT	T AAATATCTAA	AATATAATTA	GAAТAАТAAA	AAAGCCGCTC	AAAAAGCAGC	445560
TTGCAAATAA	AAATTAGTGA	LTTATTTTATTI	' AATTTCTATT	AATATTATTA	AGATTTTTGC	445620
ATGCAATCTT	CACACGGTCT	TTCATAGAAA	CTTCAGCTTC	TCTTAACCAA	ACCCTTGGAT	445680
САТААААТТТ	CTTATTTGGA	ATATCAATAT	CCTTGCCATC	TCCTAATTGA	CCTTGCAAAC	445740
GACTTTCATT	TTTTTTGTAA	AAAATTTAAAA	CACCCTCCCA	GGCAGCCCAC	TGTGTATCTG	445800
TGTCAATATI	CATCTTTACA	ACGCCATAAG	AAAGCGCCTC	ATTAATCTCA	TCAATTGTAG	445860
ATCCAGACCC	TCCATGAAAA	ACATAAGAAA	CTGGCTTAGC	CATATTTACT	CCTGTTTTTG	445920
ATATGACATA	ATCTTGACCA	ТСТТТТАААА	CTTTTGGAGT	AAGCTTAACA	TTCCCCGGTT	445980
TATATACCCC	ATGAACATTT	CCAAAAGCTG	CTGCAATCTG	AAAATTTGGG	СТААСТТТТА	446040
AAAGTTCTGA	ATATCCATAA	TAAATATCCT	CAGGAGTAGA	AAATAGTTCA	TGCAAAGCTC	446100
TATCTGAATT	GTCAACTCCA	TCCTCTTCCC	CACCCGTAAT	TCCAAGCTCT	ATTTCCAAAA	446160
ACATTTCAAT	TTTTGCCATT	CTTTCTAAGA	ATTTTTTAGA	AATTTCAATA	TTTTCTTTAA	446220
TAGGTTCTTC	TGATAAATCT	AACATATGTG	AAGAAAATAA	TGGTTTTTTG	TGCTGACTAT	446280
AGTATTTCTC	TCCATATTCT	AAAAGGCCTT	CAACCCAAGG	AAGCAAATTT	TTAGCACAGT	446340
GATCAGTATG	AAGAACAACA	GGAACACCAT	AATGCTCTGC	CATTAAATGA	ACATGCATAG	446400
CACCAGAAAT	AGCTCCAACT	ATTGAAACTC	CTTGTGGTTT	TTCCATCTTT	AATCCTTTTC	446460
CAGAAATAAA	AGCAGATCCA	CTATTAGAAA	ATTGTATCAT	AATAGGAGAA	TTAATTTCTT	446520
TTGCTGCCTC	CAAAACTGCA	TTAATAGAAT	TTGTTCCTAT	ACAATTAATA	GAAGGAATAG	446580
CAAATCCTTC	CTTTTTACAT	ATTTCATATA	AAAAATGTAG	TTCCTTCCCA	TAAACTACAC	446640
CTGGTTTAAT	СТТАТСТААА	ACACCCATTT	ATATCACTCC	TTTCCATTTT	ATTTTTTCTT	446700
TTATCAAATG	ССТАТААТАА	ATTATACACC	TAAGAAGTTG	AATTGAATTT	AAATCAAAAA	446760
АТАААТААТТ	ATTAAATCAA	AACCAAACAT	AAAATTTAAAA	АААААТТТАТ	TATTTTGCAT	446820
AAAAAGTTT	AAAATCAAGT	CTTCTTGGTA	GACTCTAGCA	TTTTATACCA	CTGTGAAAAT	446880
TCTTTTATTC	СТТСТТТААТ	AGAAACTTTA	GCCTCATACC	CAACATCATT	TTTAAGCTTT	446940
AAAATATCAC	AACAACTTTC	TACAACATCT	GCTTTTTGCA	TAGGCATATA /	ATTTTTAAG	447000

GCCTTTTTAT CAAAATTTC	C TTCAAGCTC	G СТААТАААА	T CTAGCAGTT	P AGTTGCGTGT	447060
CCAGTTCCTA TATTATATA	T TCTGTAAGG	A AAAGAAGAA	TTGATGAAT1	TGGATTTTTA	447120
ACGTCAAAAT TACAATCAC	T CTTAGCCGG	A TTTTTCAAA	A CTTTGTAAAC	CACCGTCTGCA	447180
ATGTCACCCA CATATGTAA	A ATCTCTAGC	C ATATTCCCA1	TAAAAATTAT	ATTAATAGCC	447240
TTGCCATTTT TAATTCCAT	C TGAAAATAA	A TATAAAGCCA	TATCGGGTCT	TCCATAAGTC	447300
CCATAAACTG TGAAAAATC	T AAGCCCTGT	r gtgggaatat	TAAAAGATGO	ACTATAAGCA	447360
TGCGCCATCA TCTCATTAG	A TTTTTTACTA	A GCTGCATATA	AATTTAAAGG	GTGATCCGTA	447420
ATAGAATCTT CACTAGACG	G CATATTTCA	A TTTATGCCAT	AAACCGATGA	CGTTGATGCA	447480
TAAACAAAAT GCTCGATGT	T TTCTTTATA	A ACTCTACATA	CATCCAAAAC	ATTAAAAAAC	447540
CCAACAATAT TTATTGAAA	C ATAGCTATCA	GGATTTTCAA	GACTATCTCT	AATGCCCGCT	447600
TGAGCAGCCA AATGGCAAA	C ATGTGTAAAC	TTATGATCTT	TAAAAAGTTC	TAGCAGTTTA	447660
TCCTTATTTA GTATATCAA	G ATAAGCAAAA	GATAAATTAT	ТАТАТТТТТС	ACTCTTAATA	447720
ATCTTATGCG TTTTAACAT	CTTAGAACAA	AACCCTAAAG	СТТСТААССТ	TTCATGCTTA	447780
AATTTGAGTT CATAATAAT	CATTTAATACG	TCTATTCCCA	AAACTTCATG	CCCTTTTTCC	447840
ACAAGCTTTT TAGCTACATO	AAATCCAATA	AACCCTGCAA	TTCCGGTTAA	AAAAATCTTC	447900
ATACTATTAT TCCTCTTTA	AATTCAATAC	AAAGCAAGCC	САТТААТСТА	TTTTTTAAAA	447960
CCAATATCTC TTTTCTGATA	ACCACGAGAA	TTGTTGATAC	CATACCTATT	ATTTCTAACA	448020
TAAGAGACTC TTATTCTTT	TATATTTCCA	TCTCCCTCAC	TTTCAGTTTT	TATGTCACTA	448080
TAACGATTTA AAGTTGTATO	AACAATCCTT	CTTTCAAAAG	GATTCATTGA	TGGCAACAAA	448140
ATAGAGCGCC TGGTTCTTTT	' GACTTTATGA	AAAGAATTTA	TTGCTAAATT	ААТАААССТА	448200
GATTTAAACC GTTCTCTATA	ATCTCCAATA	ТССААТАТАА	СССТАТТААА	AGCCCCATTT	448260
TCACCAATAA GCTTAGAGGC	ATAAACATTT	GTTAAAAGCT	GCAAAGAATC	TAAATTTTTA	448320
CCCTCTCGTC CAATCAAAAT	ATTTGGACTA	TCTGTTTCAA	TAGAAATCTT	AACATATCCC	448380
CCTTCTTTGG GCTCTATTGT	CAAATGTACA	GAATATCCCA	TTTTAATTAG	CATTTCTTTT	448440
ACAAATTCTA AAATTTTATC	ACAAATTTCA	TCACCAATTT	TAATTTCAAA	ATCGTCTTTT	448500
TTAACCTCCT TTGCATGAGG	AGAAACCCGT	ATTTTAATCA	TTTCTTTCTT	ТАААААТААА	448560
CCAACCCTTT CTTTATCTAA	AATTTCTACA	TCAAACTCGC	СТТСТТТТАА	TTCTAGATCT	448620
CTCATTGCTT TCTTTATTGC	TTCTTGCTCG	GTTTTTCCGT	ААААТТСАТА	GCTCATATTA	448680
TTCCCCCTTT AAGACAAATG	CATCTTTATA	TAGTATTGCT	GCAAAATAGT	АААААТАТТТ	448740

			411			
GTTGTAATCC	AATATATAA	AAGCCCTGAT	GGCATATTGT	· AAAGTATGAA	AAAAAACATA	448800
ATAGGCATTC	СААААТАТАА	AAACTTCTGC	TGCGCCCCAA	GATTTTTAA	ATCCATATTA	448860
GAACTAACAA	TTGTAGATCC	CAATTGAGTA	AACATCATAA	TAAAAGGCAA	AATTCTAATA	448920
TCGGTCCAAG	АААСААААТА	AAGCTTATAT	CCAAAATGAT	ATACACTGTC	ACCGATAGAT	448980
AAATCATCAA	TCCATCCTGG	AATAAAACTA	GCTCCTCTTA	ATAAAATA	ATTATTTACA	449040
AGTGAATAAA	GAGCAAAAA	TATAGGAAGC	TGCAAAATTA	CAGGAAGACA	CCCCCAAGA	449100
GGATTAACTC	CTTCTTCTTT	ATAAAGCCTT	CCCATCTCTT	CATTTAACTT	TTTAGGATCA	449160
TGCTTAAACT	TTGCTTGAAG	CTCTTTCATT	TTAGGTTGAA	GCTTGGAAAG	yTCCGCAGTA	449220
GCTCTAAATC	CCTTAAATGT	CAAAGGAAAG	ATAAGTATTC	ТААСААСААТ	TGTCAAAAAA	449280
ATAATTGAAA	GCCCCCAATT	AGGTATAACA	ТСАТААААА	CTTGCATTAC	CATTTGCATA	449340
GGAACTTGAA	TCAAATACCA	AAAACTCTTT	TCCACTGACA	ТТССАААААА	ААТАТСАААТ	449400
AAACCAAAGG	TATTGTCATC	TCTCTTGTCA	AAAACGTCTA	AATATCTATT	ATCCTTAGGT	449460
CCAGCGTAAA	TAAAAAACTC	ATCGCTAATA	TTTTTTTTAT	TTCTAACATT	АТТААТААТА	449520
AACGATTTAA	GAGTTCCTCT	TTCCTTCTTA	AATTCAACCT	CCATATTTTC	TTTrGAAACT	449580
AACACCCCAA	AATACTTAGT	ACTAGAACCA	ATCCATCTGG	GATTGTTAAT	CCTTAGACCA	449640
TCTTTACCAT	ATTTAAGCTT	ATTATCATAA	TAAATTATTT	GAGACAAATA	АТТАТТАТАТ	449700
TGTAGCTTTG	CTTTATCACT	CAACCTTTCA	ATCTCAGAAC	ТАААААТААТ	TTTATAAGAA	449760
TCAAAATCAA	ATAAGTTATA	ATCCTCAAGA	CCATTTACAG	TAACTTTGAA	TTGCATTAAG	449820
TACTCATCTT	TTTTCGAAAA	TGTATACTTC	TTTACATATT	CATAAGTTTT	ACCATTATTT	449880
TTAAAATAAG	CTTTAAATTC	ATGATTAAAA	TCATCTATCT	TTTTATACAA	AAACAAATCA	449940
TCTACAAAAT	AGTCAAAACT	AATGTCAAAA	AAAGTTTCAT	TTTTGCGATC	AATATTAATC	450000
AAATCTGTAG	GATTTTTTC	САААТТТААА	TGATTTTTAA	GCTTTAATGA	AACCAAATTT	450060
CCTTTAAATG	TAGAAAAAGT	AGCAACATAT	ATCCCTGTCT	СТАСААТААТ	ATCTTGAGAT	450120
ТТАТТААТСА	AATTAAAGCT	ATTACTCTTA	ACTGAAGACA	TCTCATTATC	ATCAAAACTT	450180
TTGTTTAAAT	CAAACTGCAC	TTCCTTATCA	GAAGACTTAG	ААСТТААААТ	GTTTGAAGAA	450240
AAAATATCAT	TAATAAGCAT	GAAAAGACCT	АТТАААААТА	AAGACAAATA	AACTGTTCTT	450300
AAAATTCTTC	TACTTTGATT	CACCTATGCC	CCTTTCACAC	CTTAAAACCA	AACCTTTCAT	450360
GAGAGATTCA	ATGCTAAAAT	AAGTCAAAGT	ТААСТТАССА	TAAGAAACTA	САААААТААТ	450420
ATCTAAAGCA	ATCCCTTCTA	ACAATTCTAA	ТСТТТТТСТА	AAAGCTTCTT	ТАААААСТСТ	450480
TCTAATGCGA	TTCCTTTTAA	CAGATCCCCT	AAAGCCTTTA	GAAAAGGTAA	CAAGAATTCT	450540

AGAATAAACC AAATGATTTG ATTTATAGAA CATTTTAAGA TTAAGATTGC TAAATCTAAT	
CAGCTTGCCT TCTTTGAAAA TTTTTTTGAAT TTCTATTTTT GATTTTAAAC TAATATTTCT	450600
	450660
TTTTCTCATC AGAAACAGTT AATTTCATTC TTCCTTTTGC CCTTCGCCTT GAAAGAATAA	450720
GTCTTCCGCC TTTAGTTTTC ATTCTAGCTC TAAACCCAAA TTTTCTATTT CTTTTAACAC	450780
GACTGGGTTG ATAAGTTCTT TTCAAAACGC TCCTCCATTA AAAACAATTT TATGCTGCCA	450840
AGCTACAAAT TAAACACTAA CATGGTATAG CATATAAATG CAATTGTCAA TAATAATTAC	450900
CTTACCAAAA CCTTTATATC TATTATTTTA ATACCTGTTA ATTCTTTTAC TGAATTTATT	450960
ATCTTCGACT TATTGATTGC TATACTACAC AAAATACTTG AATTGCTTAC CTCAAGAAAA	451020
AGGATCTGCT CATTTTAAA ATCTAAAAAC TTTACATCAT CTGATAAAGC CTCAAATATC	451080
TGATTCCATT TATCGGCAAT CAATAATTTC GAACTTATTT TTTTATTAAC AAGCAAATTG	451140
GATTCTAAAT AATCCTTAAG AACATTGCCT ATTTTTTTAA AAGCAGAATC ATTCATATCA	451200
ATTTTTTATA CCACAATGCA AAAAACAATA TTGAATAAAC CTAGAAAAGC TTATTTTAAT	451260
ATTCAAAATA GCATTAATAA CTCACTTTAA CCCAAAGACA TCGGCATTAT CAAGTGCGTA	451320
AAATTAAAAT TTTCAGGTTC GCTCAATTTT AATACATTGC CCGAATTAAA TTGTATTTCT	451380
ATCTTTGAAG TTTCAAAAAC ACTAATAGCT TCAACAAAAT ATGAAATATT AATAGCCATA	451440
ACCTCATCTG CTCCGTCATA CAGATAATTT GGATCTTTAA TGAAAAATTC ACCTTTTCTT	451500
CCAGTAATCA AATCTTCTCC AAGAAGTTTT AATTGTAACT CAGAGAAAGT TAAAACCAAC	451560
TTTCTTGATT TATCAACATA TAAATTGACT CTTGCAAGTC TATCTTTTAA AATGCCTAGC	451620
GAAACTAAAG ATTTATTTTT CTGTTCTTTA GGTATAATGC TTTTATAATC CGGATAATTA	451680
CCATTAATTA AGCTACAAGC TATTTTATAA TTATCAAATT CAACATAAAA TTTTTTATCC	451740
GAAAACTTTA TTTTAACCAT ACCTTCTCCC GACATAAGAT GTTTTAAGAA ATTAAATATT	451800
TTTACAGGAA CTATAAAATT CACATCTTCT TCAACTATGA CTTCTGTTTT ACAAATAGAC	451860
ATTCTGTGAC CATTAGTAGA AACAAGTAGT AATTTAGAAT CTTCATCTTT TGAAAAATAC	451920
ACACCATTTA ATACATTCTT AGATTCATCA AGATGTGCTG AAAAAGCTAT TCTATTTATT	451980
ACTTTTTTAA AAGATTTTTG TTTTATTTCA ATTCCAAAAG TATAATCTTC ATTAACCATA	452040
TCATAATTGT AATTTTCTAT TTCTTCGTAT GAAAAAGTGG GCTCTTTTAA ATGATCTTCA	452100
TATTCCTCTT TCTCATCATT TAACTCTCCC ATAATTTCTA ATTTACTATT ATTTTCATTA	452160
AAAACTATTT TGATTTTCTT ATAAAACTG AATGCTTTTTA CTGCATGATA	452220
GCATTAATTA ATACCTTAAA ATCTGTTTCT GAAACAATTG AAATTA	
	452280

413	
ATATTTCTGT CTGTTGATTT GATTATGAGA TTAGATTTTT TTACTTCTAT TAACAATGC	_ _
CTCCAAATAT CATTCATATT TCTGTTTAAT ATTATTCCCT TTGCTTTTTC TATCTCATT	
ATAATTTGAT TTGTTTCGCA AATAAAAAT GTGTTGTGTA GCATGATGCC TCCTTATAT	•
TTCTATTACA TTTTATCTTA ATAAGATTTT GTGGATTTTG TATTTTTATT TTTTATAGA	r 452520
ATATAGTAGT AATAGTAGTA AGCTACTGTT TGATTGTTTA ATTGTATTTA ATACTATATG	G 452580
ATGCAAGTAA ATATCTTGTT AAATTGTAGG TTGTTTTTTT GTTGTATTTT TGATAAATTA	452640
TTTGGTTCAA TTGTTTAAAA TAATTTTTGA TTCTTCAATT AAGTTTAATT TTTTTTTATT	3 452700
TTGTTCATAA GTTCTGTGAT TAAATTGTTA ATTTCTTTGT CATTATTTCT GTCTCTATCT	452760
ATTTTATTTA TCGAATAAAG CACTGTTGAA TGGGTTTTCC CTCCAATAAT TTTTCCAATT	452820
TCAACTGTTG ATAGCTCTGT AAAATTTCTC AAAAGGTACG CATAAATATG TCTAGCTTTT	452880
GTTATCTCTG GTTTTTTACT ATGCCCCTCA ATATCTTTGT GTGTGATTTT TAGCTCTCTT	452940
AAGAGTATTT TTTTATATT TTCGATATTA ATTTTATTGT TTGGCTCATT GGTTGTTTCT	453000
TTTTCGTAAA TTATTATTTC TTTGATTATT TTTTCAACAA TTTCAATGTC AATTTCTATA	453060
TTGTCTAAAT CTATATATGC TTTTAGTTTT GTTACAGCAG CTTCAAGGTC TCTTACGTTG	453120
GTTGTAACTT TTTGAGCAAC CAGATTTAGT ATATTTTTAG GGACATTTAT GCCATCTTCT	453180
TCTGCTTTTT TTTCGACAAT AGCTGCTCTG AGTTCAAAAT TGGGCTTTGA TATATCAACA	453240
TTTAATCCCC TTGTGAATCT GCTTTTTAAT CGATCTGTAA AATTTGTAAG TTCAGAAGGA	453300
GATCGGTCAC ATGTGAATAC TAGTTGTTTA TTGTCTTCAT AAAGGGCATT AAATGTGTGA	453360
AAAAGCTCTT CTTGTATACC TTCTTTTTT TGTAAGTCGT GGATATCGTC TATAAGTAGC	453420
ATGTCTAAGT ATCTGTATTT TTTTTTAAAT TTTTTTGTTT CGTGTGTCTT TATGCTTTCT	453480
ACAAATTCAT TTAAAAAATT TTCAGCAGTA ACATATAATA TTTTAAGGTT ATGATGTAAT	453540
TCTTCTGTTT TGTTTCCTAT GCTTTGAAGC AAATGTGTTT TTCCAAGTCC AACTCCACCA	· · ·
TAAATTAAAC ACGGATTATA TTTTTTCCCA GGATTTTTTG AGATTGACAA GCTGGCATTG	453660
TAAGCAAGTT TATTATTTGG CCCGATGATA AAATTTTCAA ATGTATATCT TTTTTTAAGA	
AAGGGGTTTT TAAAATTTGT GGGCTCTTCT TCTTCTTTTT TGATATACAT TTTTATACGA	
TCTTGAATAT TTTGGATTGC TTCTTTGGAA GTTGTTTTTT CTTTGAGCTT GTCGAACTTT	453840
GAAAAAGTTT CGTTAAGAGC CGGGTTTTTA GTTTCTTGTT TGTTAGAATG AGTTTTGGGT	
GGTTGATTTG TAAATACAAT GACTATGTTA TTGTAGCCAT TTTTTATAAG GATTTCTTTA	453900
ATTTTTTTTG TAAATCTTTT TTCTATTTGA TTTTTATGAA ATAAATTTGG AGTAGATATT	453960
TTAATATTGT CACCTATTGA TTCTAAAAAG CACAAATTTT CAAACCAAAC	454020
CHARLEMATTICE CAAACCAAAC ATAAAATTCT	454080

TCTTCTGATA GTTCTTTT	T TATTTCTGT	r aaaatcaago	C TCCATATATI	TTTTGATTTT	454140
TCCATTTTTT TGTCCTTGT	T GGTTTTAGC	A CTATACTTT	r aacattatai	AGTATAATGT	454200
TAAATTAGGA TTCTATCTA	A ATTGTTTGTO	AATTTTTAA	AGTTTTTGG1	ATTTCCTATG	454260
TAATAGATAT TATTTTTTT	T TTAATGTAG	A ATTTATCTGT	GTCTAGATTI	TAATTAAATG	454320
AATGGAAGGT TTATGAATT	A TGTTGCTAGT	T AACATTCAGG	TCTTAAAAGG	ACTTGAGGCT	454380
GTTAGGAAAA GGCCTGGCA	T GTATATAGGC	TCAGTTTCTA	TTAATGGATT	GCACCATTTG	454440
GTTTATGAGG TGGTTGACA	A TAGCATTGAT	GAGGCTTTAG	CTGGGTTTTG	TGATAGAATA	454500
GATGTTATTA TCAATTTAG	А ТААТАСТАТА	ACTGTAATTG	ATAATGGGAG	AGGTATTCCT	454560
ACCGATATTC ATGAAGAGG	A GGGTATTAGT	GCCCTTGAAC	TTGTTTTAAC	ААААТТАСАТ	454620
TCTGGTGGTA AGTTTAATA	A AGGCACGTAT	' AAAGTTTCTG	GGGGACTTCA	TGGCGTTGGA	454680
ATTTCGGTTG TAAATGCTC	P ATCTTCGTTT	TTAGAGGTTT	ATGTTAATAG	AGATGGAAAA	454740
ATTTTTAGGC AAACTTTTT	C AAAAGGTATT	CCGACTTCTA	AAGTAGAAGT	TGTGGGGGAA	454800
TCTTCTGTTA CGGGGACTA	A GGTTACTTTT	TTGGCGGATT	CTGAAATTTT	TGAAACTTTA	454860
GATTATAATT TCGATGTTCT	T TGAAAAAAGG	CTTAAAGAGC	TTGCTTTTTT	AAACGATAAA	454920
ATATACATTT CAATTGAAGA	A TAAAAGAATT	GGTAAAGAAA	AATCTTCAAA	ATTTTATTTT	454980
GAGGGTGGGA TAAAATCTTT	TGTAGATTAT	TTAACTAATG	ACAGCAAAGC	TTTTCAATCA	455040
GAACCTTATT ATATTGATGO	TTTTATTAAT	GATGTTATTG	TTAATGTGGG	GCTTAAATGG	455100
ACTGAAAGCT ATTCTGACAA	CATTCTTTCT	TTTGTTAATA	ACATTAATAC	AAGAGAAGGG	455160
GGAACTCATG TTATGGGATT	' TAGAAGTGGA	CTTACTAAGG	CCATGAATGA	AGCTTTTAAA	455220
AATTCAAAAA TAAGTAAAAA	AGATATTCCA	AATCTTACAG	GAGATGATTT	TAAAGAGGGG	455280
CTTACAGCTG TTATTTCTGT	CAAAGTACCA	GAACCTCAAT	TTGAAGGTCA	AACAAAAAGT	455340
AAGCTTGGTA ATTCTGAGAT	AAGAAAAATA	GTTGAAGTTG	TTGTATATGA	ACATTTATTG	455400
GAAATTATTA ATTTAAATCC	TTTAGAGATA	GACACTATTC	TTGGAAAAGC	AATAAAAGCT	455460
GCTCGTGCTC GTGAAGCTGC	AAGAAAAGCA	AGAGAATCAG	AAAGAAAAA	AAATGCATTT	455520
GAAAGCTTGG CATTGCCTGG	AAAATTGGCT	GATTGTACTT	СТАААААТСС	TTTGGAAAGA	455580
GAAATCTATA TTGTAGAAGG	TGATTCTGCT	GGAGGAAGTG	CTAAAATGGG	TAGAAATAGA	455640
TTTTTTCAGG CCATTTTGCC	ACTGTGGGGG	AAAATGCTTA	ATGTTGAGAA	AACAAGAGAA	455700
GATAAGGTTA TCACCAATGA	TAAGCTTATT	CCCATAATTG	CATCTCTTGG '	TGCAGGAGTT	455760
GGTAAAACTT TTGATATTAC	AAAACTTCGT	TATCACAAGA	TCATTATTAT (GGCAGATGCC	455820

			415			
GATGTTGATG GA						455880
GATTTAATTG AA						455940
GACAATCGTA TT	TATTATTT	TTATGAAGA	G AAAGAAAAA	AAAAATTTTT	AGATTCTATT	456000
GAAACTAAAA AT	CGCAATAG	TATTTCTCT	r cagagatata	AAGGGCTTGG	GGAGATGAAT	456060
CCAACGCAGC TT	TGGGAAAC	AACTATGGA	r cctgctaga <i>a</i>	A GAAAAATGAG	ATTGATGAAT	456120
ATAGATGATG CT	ATTGAAGC	TGAAAAAATT	T TTTGTTACTC	TTATGGGAGA	TTTAGTTGAG	456180
CCCAGAAAAG AA	TTTATTGA	ACAGAATGC	A CTTAATGTAA	TTAATCTTGA	TGTGTAATTG	456240
GAGCGTTAAT GG(CAGTTGGA	GAAAATAAA	З ААСАААТАТТ	' AAATGTTAGG	ATAGAAGATG	456300
AAATAAAAAC TTO	CTTATTTA	AATTATGCAA	TGTCAGTTAT	TGTTTCTAGA	GCTCTTCCAG	456360
ACGTAAGAGA TGC	STCTTAAA	CCAGTTCACA	GGAGAATACT	TTATTCTATG	TATGAGATGG	456420
GACTTCGTTC TG	TAAGGCT	TTTAAAAAAG	CTGGTAGAAT	AGTGGGAGAT	GTTCTTGGGA	456480
AATATCATCC TCA	TGGAGAT	СААТСААТТТ	ATGATGCTCT	TGTAAGACTT	GCTCAGGATT	456540
TTTCGCTTAG ATA	TCCCGTA .	ATACGGGGAC	AGGGAAATTT	TGGATCTATT	GACGGAGATC	456600
CCCCCGCTGC TAT	GAGATAT .	ACTGAAGCTA	AAATGGAAAA	AATAACTGAA	TATATTGTTA	456660
AGGATATAGA CAA	AGAGACT (GTTAATTTTA	AGTCTAATTA	TGACGATTCT	TTAAGTGAGC	456720
CTGAGATTAT GCC	GTCATCA	ГТТССАТТТС	TTTTGGTAAA	TGGCTCTAGT	GGAATTGCTG	456780
TTGGAATGGC TAC	TAATATG (GCACCTCATA	ATTTAAGAGA	AATTTGTGAT	GCCATTGTTT	456840
ACATGCTAGA TAA	TGAGAAT (GCTTCTATAT	TTGATTTGCT	TAAAATAGTT	AAAGGCCTG	456900
ATTTCCCAAC TTT						456960
GCAAGGGAAG TGT	TGTTATT A	AGGGCAAGAT	ATCATATTGA	AGAAAGAGCA	GAAGATAGAA	457020
ATGCTATAAT TGT	TACAGAA A	ATACCTTATA	CGGTAAATAA	ATCTGCACTT	CTTATGAAAG	457080
TTGCGCTTTT AGC	AAAAGAA G	SAAAAGCTAG	AAGGACTTTT	AGATATAAGA	GATGAATCTG	457140
ATCGAGAAGG TAT	PAGGATA G	STTCTTGAAG	TTAAAAGAGG	ATTTGATCCT	CATGTTATTA	457200
TGAATTTGCT TTA	rgaatat a	CTGAATTTA	AAAAGCATTT	TAGTATAAAT	AATTTAGCCC	457260
TTGTTAATGG TATT	rcccaaa c	AGTTAAATT	TAGAAGAATT	GTTATTTGAA	TTTATTGAGC	457320
ATAGAAAAA TATT	TATCGAA A	GACGTATTG	AATTTGACTT	GAGAAAGGCA	AAAGAGAAAG	457380
CACATGTTCT TGAC	GGATTA A	ATATTGCTT	ТАААТАААТ	AGATGAGGTT .	ATTAAGATTA	457440
TTAAATCATC TAAA	ATTAGCA A	AAGATGCAA	GGGAGAGGCT	TGTTTCGAAT '	TTTGGTCTTT	457500
CAGAGATTCA GGCC	CAATTCA G	TTCTTGATA	TGAGGTTACA	AAAACTTACA (GCCCTTGAGA	457560
TTTTTAAGCT TGAA	GAGGAG C	ТТААТАТАС	TGTTAAGCTT .	AATAAAAGAT	TATGAAGATA	457620

THOMOTOMO N. The second	
TTCTCTTGAA TCCAGTAAGG ATTATTAATA TTATAAGAGA AGAAACTATT AATTTAGGTT	_
TGAAATTTGG CGATGAACGT CGAACTAAAA TAATTTATGA TGAGGAGGTT TTAAAAACTA	457740
GTATGTCGGA TTTAATGCAA AAAGAAAATA TTGTTGTTAT GCTTACAAAG AAAGGTTTCC	457800
TTAAAAGACT TTCACAAAAT GAGTATAAAT TGCAAGGTAC GGGAGGAAAA GGACTAAGTT	457860
CGTTTGATCT AAATGATGGA GATGAGATTG TTATTGCTTT GTGTGTCAAT ACTCATGATT	457920
ATTTATTTAT GATTTCAAAT GAAGGAAAGC TTTATTTAAT CAATGCTTAT GAAATAAAAG	457980
ATTCTTCAAG AGCTTCAAAA GGTCAGAATA TTAGTGAGCT TATTAATTTA GGAGATCAAG	458040
AAGAAATATT AACTATTAAG AATAGTAAAG ATTTAACTGA TGATGCTTAT TTATTGCTTA	458100
CAACTGCAAG TGGAAAGATA GCTAGATTCG AATCTACAGA TTTTAAAGCA GTAAAGTCAC	458160
GAGGTGTTAT TGTTATTAAA CTGAATGATA AAGATTTTGT TACAAGTGCA GAGATTGTTT	458220
TTAAGGATGA AAAAGTAATT TGTCTTTCTA AAAAGGGTAG TGCATTTATA TTTAATTCAA	458280
GGGATGTTAG GCTTACTAAT AGAGGTACCC AAGGTGTTTG TGGAATGAAA TTAAAAGAAG	458340
GTGATTTGTT TGTTAAAGTT TTATCGGTTA AAGAAAATCC TTATCTTTTG ATTGTTTCTG	458400
AAAATGGGTA TGGAAAAAGG TTAAACATGT CTAAAATATC TGAGCTTAAA AGAGGAGCCA	458460
CTGGTTATAC TAGTTATAAA AAATCTGATA AAAAAGCGGG TAGTGTTGTT GATGCTATAG	458520
CAGTTTCAGA GGATGATGAA ATCTTGCTTG TAAGTAAACG TTCAAAAGCT TTAAGAACAG	458580
TAGCTGGAAA AGTATCTGAA CAAGGCAAAG ATGCTAGAGG AATTCAAGTA TTATTTCTTG	458640
ATAATGACAG CTTGGTTTCT GTTTCAAAAT TTATTAAATA AAGAATTGGT TTTTCTTGTT	458700
TAAGAATGTT CCACGTGGAA CATTCTTTTT TTTTATTCTT AAATTGTAAT TCAATATTAT	458760
AACCTGGTAA AATTTTGTGT TGTAGGAGGT TTTGACAATA TGGATGGAGT TTTTAAAATG	458820
ATAGATATTC ATCTTTTAGA TATTGATAAT GATCAGCCAA GGAAATCTGT TAGTCTTGTT	458880
GAATTAGAAG AGCTAAGCAT TTCTATAAAA GAAAATGGAA TTTTGCAACC TTTAATTGTT	458940
TGTAAAGCAA ATGATAGATA TAAAATAATA GTAGGAGAAA GAAGGTTTAG GGCTGCTAAA	459000
CTTATTCAGT TGACAAATAT TCCTGTCATA GAGGTTGACA TAAAAGAATC CTGTAAAGAT	459060
TTTATGCCCT TGGTTGAAAA TATTCAAAGA GAAAATTTTA CTCCTGTTGA AGAGGCTTAT	459120
GCCTATAAAA ATATAATGAA TAAATATTCG TTAACTCAAA AGGATTTATC TGAAAAAATT	459180
GGTAAAAGCA GGACCTATAT TTCAAATTTA GTTAGAATTT TAGATCTTGA GCAAGAAATA	459240
TTAAATGCAA TACATAGAAA AGAAATTTCT TTTGGGCATG CTAAAGTTAT TTTATCCTTA	459300
AAAGACAGGC AAGACAGGTA TAATCTTTAT TTAATTATAC TTAAAAAAAA ATTTTCTGTA	459360
	±33300

417	
AGGGATGCAG AAAAATATGT TAAAAATTTT TCCAAATCCA TAGTAAAAAA AAGAGAGCTA	
GAACAAGATC CTTTTTTAAA TAATATAAAA GAATTTCTAT TTGATAAAAT CCAAACAAAA	459480
ATAGATATCA AAGGGAATCA AAATAAAGGC AAAATAGAGA TAGAGTATTT TACTGCTGGC	459540
GATTTAAAAA GGATTGTTTC CCTTTTTGGT CATAGTAGCT AAATTATTTT TATAATTTAA	459600
AGATTGTAAA ATATTTTATG AGAATTTTTA TTTTTTAGGC ATTTGTCACA ATGCATAAAT	459660
TTTTTAAGCT TATTTTAAAA TTGTTTAGTT TTTATAAAGA AATATTGGGC TTTAAAAGAA	459720
GGGCAAAGTT TATATTTTGT TATTTGTAGT TAAATTTAAA AGTAAAAAAA TAATATTTAA	459780
AAAATGAACA ATAAGAATAT ATTTTATATA TTCTTATTAG TGCAGCTGTA AATTTAAATA	459840
GAATTATTTT TAATATATTT TATTTTTTTC TTTATTTCCA AAATAGAATT AAAAAATAAT	459900
TTTAAGTTTT CTTGTCTTAA TTTGTTAAAT TCGATATTTT TAAATTCTTT TATATTTTTT	459960
AATATAAAAT CTAATACTTC TTTTATGTCA TTTTCATATT TTTCGTTTTT CTTAAGTAAT	460020
GGTTTGCGCG TATCCTTTAA ATCAAAACTT TTTTTATAAA CAATTTTAAA TTCTTTTAAA	460080
GAATTTATTT TTCCATTTAG AACTTCGGTT TTTAAAATAG GGGGACAAGA TTTTTTAGAT	460140
ATTTCATATG ATAATGATAA AGGTAATTTT TCTATAGTGA GCTGCTTGTC GGAATTTTCG	460200
ACAAGCAGAT TGTATCTTGA TATTAAGGCG TAAACCTTGT CTTTTTTAAA TCCCATACTT	460260
TTGAACCACT GATAAAAAAG CCCGTTATAT TGATTGTTTC CTTTTAATTT GTCTTGAGCG	460320
TCTTTAAGTA TCTTTCCAAT TTTTGTATAA GTGTTGTTGA AAATATTGAA AATTTCATAT	460380
TGCTTTTTTT TTAAAAAATC AGAAATATCT TTATCTAGCT TATTGTAGTC AAAGTTTTTT	460440
CTTTCAATCG AAATAATTTC TTTTTTTTCA GTATTTTCTG AATTATTTGA AGATGTTTCT	460500
AATTTTTTAC CCATTAGAAA CATTAAAGTT TCTAAATTGT CAGACATAGC TATTCCTTAA	460560
TTTTGTTTAT TATCTCTTTT GAGAGCTCTA AAAAATCTTT TGCAGCATTG CTTTCCTTGT	460620
CATATTCATA TACAGGCATT TTTGCTTCTT GAGATTTTGA GATAGTTATA TTTTTCCTTA	460680
TTTTTGTATT TAAAAGCTTT TCTTTAAAAA CTTTTTTTAG CGAGCTTACA TATTTTTCTT	460740
TACTTTTGTT CCTTATGTCG TATTTATTTA TAAAAACACC CGCAATCTCT AAATTTTTAT	460800
TTATTTGCTT TACAGTAGTT ATTGTATCTA TTAGTTGATT TATGCCTTCA AATGCAAAAA	460860
ATTCCGTTTC AATTGGTATT AACAAGTAAT TGCTTGCAAT AAGTGCATTT ATAGTTAATA	460920
TTGAAAGTGT AGGGGGGCAG TCGATAATAA TAAAATCATA TTTGTCTTTT TCATACAGTG	460980
TTAATGCATT TTTTAAAAAA TTTTCTCTTG AAAGTTCATT TATTAATTCT TTTTCAAGCA	461040
AAGCTAATTT AATGCTAGAA GGAATTATGT CTAATCCAAA ATGATTTAAA GGTTTGACCT	461100
TTATTTTTTT GTTAATAAGT TCATAGCTTG ATTTTTCGGC TATATGCTTT GAGGTATTTG	461160

TGCCGCTAGT AGAGTTTCCT TGCGAATCAA TATCTATTAG AAGAATTTTT TTATTAAGCA	461220
GGGTCATTGA ATAAGAAATA TTAATGGCG€ TTGTGGTTTT TCCTACGCCT CCTTTTTGAT	
TGATTACAGA TATTATTTTC ATATAAATTT CTCTTTTTAT TTGGTTTTGT TTTTATATTT	
TAAAACATAA ATGATAAAAA TAATAATATT TTAAATTAGT TTTTAAATAT TTGATTATTT	
GACATGCATA TTATTCTTTA TTAAACTTTA AGATTTCTTG AATTAAGCCA TTTTCTATAA	
AAAATTCCGA TATTTTTGT TTATTTTTTG TTTTGAATTT AATTGAAGTG TTTATTTTGT	461460
TTGAAAAGTT TGAATCTATT ATTTCTATTT CAAGTTTATT TTTCATTTTT AATAATGAAT	461520
	461580
TGTATTGGTT GTAAGTTAAA TTTAAGCTTA AAATTTCTAA TTCCTCTTTT TCCATTATAG	461640
ATGTATTATT AATAACTTCT TTGGCAGACT TGTAATACGC TTTGATTAAT CCCCCTCTAC	461700
CAAGTAAAGT GCCTCCAAAA TATCGCAATG TGATTATTAA AGTATCGGTT AAATTGTTAT	461760
GTATTATGGC ATCCAATGTG GGCTTTCCAG CTGTTAAATT AGGTTCTCGA TCATCACTCA	461820
TTCCATTTAG AAATGAGTTT TTGTTTCCGA TTCTAAATCC ATAAACCACA TGCGTAGCAT	461880
TTTTAAATTT TATTTTGTAT TTTTTAATAG TTTTATTTA	461940.
TAAAAATATA TGAAACAAAG ATGGATTTCT TTATTTCAAT TTTAGAATTA CTATTGTTTT	462000
TTGGCACAAA CATCATATAA CGTAAGTATA CTATCTTTTT AGATATTGCA GTATTTATTG	462060
TTTATGTATA TTATTAATAG TGTTTGTTTT TATTATTGAT TTTTATAAAT ATCCAGAAAA	462120
GAGGTAAAAA TGATATCAGG CTTGAATCCA ACATTAAGGT TGTTTAAAGA TCATAAAATA	462180
CTTTATTCTA ATATGGAAAG AGGATTGAAG CCTCTTTTAG AAGTAGATAA TTTTATCAAT	462240
AAGTATATCC AGAATAAAGA AGGACTTGAA ATTTATGATA AAGTTGTGGG CAAGGCAGCA	
GCCGTTATTA TTTATAATAT AGGGCTTCAA AATGTTCAAG CTGGGGTTGT TTCTCAACCC	462300
GCAAAGGATT TTTTAGAAAG CAGAGGAATT AAAGTGGCTT ATAAAAAATT GGTAGAAAAA	462360
ATAAATGACA GGGCAGAAAG CTTGATTGAA AGCTTAGAAA ATCCCGAAGA GGTTTATAAG	462420
	462480
TATATGATTA AAAGAGGTAT TATAGTTAAT AATTTATAAA TTATGAAAAT AGTTGAGCCA	462540
TATGTTAGCT AACTATGTGA TTTTGAGTAT ACAGTGATAA TTAGGGCTAT GTTGTATATT	462600
AATATTATTA AATTTCCCCA ATTTAGGTAA AAATTGCTTT TGTCATAGTT AAAGATCCAA	462660
ATTCCAACAT AAACACCTAA AAATCCTCCT ATAGAAGATG TAAACATGAT TAAATTGGGT	462720
TCAATTGTAT GTTGATTAAT TTTGCTTTGA TTTTCTTTAA CATTAGGCTG TTCGGTAAAT	462780
TTGCTGTCAA TAAAAATCAT GGCAAAACCT GCAAGAGTAA TGCATAAAAA ATAGATCATA	462840
AATATTTTTC TAATTAATGC AAACATAAAT TTTCCCTTTC TTTTAACTTT TTAATCATTA	462900

		419			
АТАСТТААТС АТАТААСТА					462960
ATGGCTTATG TCTTATTCT					463020
AAAAATGTTT TTAATATAT					463080
TTATATATTG TTGGTACGC					463140
GTTTTAAAAT CGGTAAATG					463200
TCTCGATATA AAATTAATA					463260
ATAAGCTTGC TATTGGATT					463320
GGTACTCCGG GGCTTAGTG	A TCCGGGTAG	TTATTAGTTG	CTGCTGCTTT	TAGAGAGGGA	463380
TACAAAGTTT GTCCAATTCC	TGGAGTAAG	TCTTTTAATA	CAATTGTAAG	TGTTAATCCT	463440
TTTAGAGATA AATCAGTGTT	TTTTGAGGG	A TTTTTGCCTA	ACAAAGGCCT	TAAAAGATTT	463500
AAAAGAATTG CTGAGCTATA	TAAAAGGGGA	GATGCTTTTG	TTCTGCTTGA	ATCTGGTCAT	463560
AGAATTTTGA AATTGCTTGT	TGAAATTTCT	TCTGTTAGTT	TAGATGCGAA	GGTTCTTATT	463620
GGTCGCGAGA TGACAAAAAT	' TTATGAAGAA	TATCAAATTG	GCAAACCTTT	AGAATTAAAA	463680
AAATATTTTG AATCGAGTAA	GGATAAGGTT	AAAGGAGAGT	TTACTATTCT	AGTCAGCAGA	463740
AGTCGTTCAT AATAAATGTT	TTCTACTTGG	АТТТТААААТ	TTATTTATTC	TTGATTTTGC	463800
TCGATTGATT TATTGTGTTA	TACTTGAATT	TTGATAGGGG	TTTTTATGAA	GATTTATTTA	463860
GCCTCTCCAT TTTTTAAGGA	AGAGGAAATT	AAACTAAGGG	ATGAGGTTTT	GAAATTTCTT	463920
GAAGAGTTTA ATTTAGAAGT	ATTTTCTCCA	GAGCATCATG	CTGTCAAAAA	GATGGGATTG	463980
CTTGAAAAGG TTGATTATAA	GTTTGCAAAT	AGAGATATAA	GGGAGAAGAT	AAGAGAAGTA	464040
GATTTAAAAG AGCTAGTTAG	TAGCGATATT	GTTTTAGCCT	TGGTTAATTA	TGTTGATTCT	464100
GGCACGGCTT ATGAGAGAGG	ATTCGCCTTT	GCCAAGAAAA	TACCAAGTAT	AGATTTTTTT	464160
AAAGATAAAC AAGATTCTGA	TTTTTTATAAT	TTAATGTATA	GCGACTGTGC	TGCTGCTTTT	464220
TCCAATTACA AGGATCTTAG	GGAAGGAATT	TTAACCTTTA	AAGAACTGTG	GATTAAGTTT	464280
AAAGGAGATA ATGAAAATTT	CAGAACCTTT	TTTGATTATT	TAAAAGCTAA	ATTGGGAAAT	464340
AAATTAAAAA AAATTTTTAC	AACTTTGCCT	GCTAATGAAA	AGTGTGGCTG	TTAATGCTTT	464400
TATCACTGTT TATTAATAAA	ATTTATTTTT	TTACATTTTA	TATTAATAA	AATAATGCAA	464460
AGGTATTGAC AATATGATTC	TTATTTTGTT	AAAGTATTAA	AGGTTGAAAT (GATTATTGGA	464520
AGATGAGAGA AGGGAAGAGT	TAAGTAAGGT	TAAAAGCCAA	AAGAATAAAC A	AAAACCTGTT	464580
AATTTTTTTA AATAAAAAA	TAAAATAACG	AAGAGTTTGA	TCCTGGCTTA (GAACTAACGC	464640
TGGCAGTGCG TCTTAAGCAT	GCAAGTCAAA	CGGGATGTAG	CAATACATTC A	AGTGGCGAAC	464700

GGGTGAGTAA C	GCGTGGATG	ATCTACCTAT	GAGATGGGGA	TAACTATTAG	AAATAGTAGC	464760
TAATACCGAA T	'AAGGTCAGT	TAATTTGTTA	ATTGATGAAA	GGAAGCCTTT	AAAGCTTCGC	464820
TTGTAGATGA G	TCTGCGTCT	TATTAGCTAG	TTGGTAGGGT	AAATGCCTAC	CAAGGCAATG	464880
ATAAGTAACC G	GCCTGAGAG	GGTGAACGGT	' CACACTGGAA	CTGAGATACG	GTCCAGACTC	464940
CTACGGGAGG C	AGCAGCTAA	GAATCTTCCG	CAATGGGCGA	AAGCCTGACG	GAGCGACACT	465000
GCGTGAATGA A	GAAGGTCGA	AAGATTGTAA	AATTCTTTTA	TAAATGAGGA	ATAAGCTTTG	465060
TAGGAAATGA C	AAAGTGATG	ACGTTAATTT	ATGAATAAGC	CCCGGCTAAT	TACGTGCCAG	465120
CAGCCGCGGT A	ATACGTAAG	GGGCGAGCGT	TGTTCGGGAT	TATTGGGCGT	AAAGGGTGAG	465180
TAGGCGGATA T	ATAAGTCTA	TGCATAAAAT	ACCACAGCTC	AACTGTGGAC	CTATGTTGGA	465240
AACTATATGT C	TAGAGTCTG	ATAGAGGAAG	TTAGAATTTC	TGGTGTAAGG	GTGGAATCTG	465300
TTGATATCAG A	AAGAATACC	GGAGGCGAAG	GCGAACTTCT	GGGTCAAGAC	TGACGCTGAG	465360
TCACGAAAGC G	TAGGGAGCA	AACAGGATTA	GATACCCTGG	TAGTCTACGC	TGTAAACGAT	465420
GCACACTTGG TO	GTTAACTAA	AAGTTAGTAC	CGAAGCTAAC	GTGTTAAGTG	TGCCGCCTGG	465480
GGAGTATGCT CO	GCAAGAGTG	AAACTCAAAG	GAATTGACGG	GGGCCCGCAC	AAGCGGTGGA	465540
GCATGTGGTT TA	AATTCGATG .	ATACGCGAGG	AACCTTACCA	GGGCTTGACA	TATATAGGAT	465600
ATAGTTAGAG AT	FAATTATTC	CCCGTTTGGG	GTCTATATAC	AGGTGCTGCA	TGGTTGTCGT	465660
CAGCTCGTGC TO	GTGAGGTGT	TGGGTTAAGT	CCCGCAACGA	GCGCAACCCT	TGTTATCTGT	465720
TACCAGCATG TA	ATGGTGGG (GACTCAGATA	AGACTGCCGG	TGATAAGTCG	GAGGAAGGTG	465780
AGGATGACGT CA	AATCATCA '	TGGCCCTTAT	GTCCTGGGCT	ACACACGTGC	TACAATGGCC	465840
TGTACAAAGC GA	AGCGAAAC	AGTGATGTGA	AGCAAAACGC	ATAAAGCAGG	TCTCAGTCCG	465900
GATTGAAGTC TO	SAAACTCGA (CTTCATGAAG	TTGGAATCGC	TAGTAATCGT	ATATCAGAAT	465960
GATACGGTGA AT	ACGTTCTC (GGGCCTTGTA	CACACCGCCC	GTCACACCAC	CCGAGTTGAG	466020
GATACCCGAA GC	TATTATTC :	FAACCCGTAA	GGGAGGAAGG	TATTTAAGGT	ATGTTTAGTG	466080
AGGGGGGTGA AG	TCGTAACA	AGGTAGCCGT	ACTGGAAAGT	GCGGCTGGAT	CACCTCCTTT	466140
CTAAGAGAAA GA	ТАААСТАА (GCTAATTCC	ATTAACTCTT	CCCTACwCTT	TTCTTTTGAT	466200
AAGAGAGTTT TT	'AAAACCAG 1	rgttatttat	GTAAGTTTAA	GAGAAGTTTA	TGTATTAAAT	466260
TATTGATATT AA	ATAGTTTT A	ATTAGGCTTA	GACTTAATTT	TAGGTCATTT	TGGGGGTTTA	466320
GCTCAGTTGG CT	AGAGCATC (GCTTTGCAA	GCCGAGGGTC	AAGGGTTCGA	GTCCCTTAAC	466380
CTCCATTGGG CT	TATGyCCT A	TAATTGTAAL	TAAGTATGTT	TTTAAGTAAC	TTTGTTAAAG	466440

421	
TAATTGTTGG AATGTGAAAC ACAAGAAGTT AAAATTTCTG GGTTAAGTTG AGATCTGTTG	
ATATTAAGAA AAATGTCTAG AAGCAAAAGC AAGCTTTCGA TAAAACCCGA AGTTGTTTCG	
CTAAAGTGCA AGGATTAAAC AGGATTGTAT TTTTCAGCAG CCTATTTTAT AAACGATCTG	466620
CATTTAGTAA ATAGTTTTTA GTTAGGAAAT AATGTAGATT ACTAAGTGTG ATGTCTGAGA	466680
GAAGGACAAG TATTGTAGCG AGCTTAAATC CTTATTATCG TTGCCAGTAT TTAGTGGTAG	466740
GGATTCGGAT AAGATTGCCA GTTATAAGTT GGAGGAAGGC AAAGATTGCA TTAAATCGTT	466800
ATCGCTCTTA TGTTTTAGGT TACAAGTTTG CAACAATAAC TCAAAAAAGC CAAGCAAAAT	466860
ACCATAAAGC AGATTTCAGT TTGGATTTGC CCGACACTCA ATGGCATGAA GTTGTAATTG	466920
TTAGTAATCG TGTATACCTT AATATAGAAA TTGAATAAAT TTTTGTTTTT CTTATTAATT	466980
ATAGCTTAAA ACAGTATTGT CGTAATTAAA ACAATGGAAT ACATTGGGAC CAGGATGAGT	467040
TGAACATCCG ACCTCAGGTT TATCAGACCT GCGCTCTAAC CACCTGAGCT ATGATCCCTT	467100
AAGCATATCA ATTCTTTACA AATTTTATTT AAATCTTATG ATTTTGTCAA TATCTCTTAT	467160
ATCTTTCAA GATGTAAGAG ATATTGCATA TAGTTTATAA TTTTTTATAT ATTTGTCAAT	467220
ATTCGATATT TTGTATTTTA GATTAGCATT TTCATATAAG CTGATTTAAG TTGAACTAGt	467280
TCAACTTTTT AAATTTTTTT GATTAAAAAT CAAAAAAATT TATTAATCAA CCAAGAATTT	467340
ATTTAAAATA TGTATTTACT GGGTGATTAA ATGATTTTAG TTTTTATTTT TATTCTAGGC	467400
AATATGTTTT CATATTTTAC ATGTGTGTTT TGGTAATAAT TTTTATTATT ATTTTGTTTT	467460
AAAATTGAGC TTATGGATCG ATATTTTTTT TTgCAAGATG CLACTACCGT TGCAAAGTTA	467520
TTGCTTGGTA ATTTGTTGAT CAGAAAGATC GACAAAGAGG AAATAGTTAC CAGAATTGTT	467580
GAAACGGAAG CTTATATGGG GATAACAGAT AGCGCTTGTC ATTCTTATGG CGGCAAGATA	467640
ACAAATCGCA CAAGTGCTAT GTATAGAATA GGAGGATATT CTTATGTGTA TATAATATAT	467700
GGTATGCATT ATATGTTTAA CGTTGTGACT GCAGATAAAA ATAATCCTCA AGCTGTTTTA	467760
ATCAGAAGTG TAGAGCCTAT TTCTCCACTA TTGGGAGAGA AGAGCATTCT TACTAATGGT	467820
CCTGGAAAAC TTACAAAATT TTTAAACATT GATTTAACTT TTAATAAAGT TGATCTTATT	467880
GGGAATAATG AGCTTTTTTT ACAAAGAGGT TTGAATCTAG ATTTTAATAT AGTTTGTTCA	467940
AAAAGAATCA ATATTAATTA TGCACAAGAG AGTGATATAA ACAAGCTTTG GAGGTTTTAT	468000
ATCAAAGATA ATAAATKTGT TTCAAGGCGT TGATTTTCAT TTAATTATAT TTTTTTAAAT	468060
TTTTTTAAAA AAATATAATA TTATTAAATT TTATTAT	468120
AAGAATAAAT TATTTGTGAT AGTATATCTT AAÁGAGAGAT TATATATGAT CTAATTATAA	468180
AGATATAATG CTGGCTTTTG ACCTTGATGG CACTTTATTG AATAATAACC ATGAGATTGC	468240
	100240

CTTTTTAACT CTTGAGGTTC TTTTGGCTTT GAAGrAAGAT TTTAAAATAA TTATTGCAAC	468300
CGGTAGAAGA TTGAGTGAAG TTAAAAATAT AAGGAGCCAA TTAAAAGAAA TTrGTATTAA	468360
TGAAAATTAT CTTGTAACGG CGAATGGGGC TGAAGTGTTT TTssAAGAAA ATTTAATTTT	468420
aGATACGCAA TGAATTATGA CYTAGCAAAA GAAATTCTCA AGATAMATAC AGATAATGTT	468480
GATGTTAATC TTTATACTTT TGACACTTGG TATTCTAATG CAGATGTTAA AAGTCCTATT	468540
ATGAAACATT TTATTAAAGA TTTGGGCTTA AATGTTATTA TTGGAGATTT GACCAAACTA	468600
AACGTTGATT CTGTTTCtAA GATTGTTTAT TATTGTGACG ATTTGGCAAT TCTTAATAAA	468660
CTTGACACTG AGATTAAAAG TAAAGATTTC CAGGACACAA GAGTGTTTTT TTCTTCTAAA	468720
GATTTATTAG AGGTTACCAA TATTAATGCT AATAAATATA ATGCTATTAA AAATATTGCT	468780
TTTCTTGAAA GCATTCCATT GTGTGATGTT TTAGCTTTTG GAGATAATAA TAATGATTAT	468840
GAAATGCTCA AAAATCTTGG TAAAGGGGTT TTAATGAAAA ATGCCAATGA ATTTCTTAAA	468900
ATTAATTTAG CAAAGAATGA AATAACAAGA TTTAGTAATA ATGAGGATGG CGTTGCTAGG	468960
TTTTTAAttg atTTTTTTAA GCTTAATATT AAATATTAAT AATTTGTATT TAAATGtTTA	469020
ATCCATTTGA TTTATTTTTA GCAGGATTTT CTATTTAAAA TATAAATTTT TTACTTATAr	469080
TGTATTTTTG AAAATTTATT TATTAAAATA TTGGAATAAG TATTGACATG GATTAAACAA	469140
AGATATATAT TATTTTATGT TGCATAAACA AATTGGCAAA ATAGArATGG AAGATAAAAA	469200
TATGGTCAAA GTAATAAGAG TCTATGGTGA ATGCCTAGGA GCTTTAAGGC GAAGAAGGTC	469260
GTGGTAAGCT GCGAAAAGCT TGGGGGAGAA GCAAACATTT ATTGATCCCA AGATTACCGA	469320
ATGGAGTAAT CCAGCTAGCA AGATGCTAGC TATCTATTAT TTAAATAATA GAGGCGATAC	469380
CAGGGGAAGT GAACCATCTA AGTACCCTGA GGAAAAGAAA TCAArGAGAT TCCCTTAGTA	469440
GTGGCGAGCG AAAAGGGAGT AGCCCAAACT TTAAATGTGT CAAGCTGCAG AGCGTTGCAT	469500
TTATGGGGTT GTAGGACGTT TAGGCTTAGT CTGTAATAAG CAAAAAAGTT ACAAAATATT	469560
TATATAGAAG AATAATCTGG AAAGTTTAAC CAAAGAAGGT GATAGTCCTG TAATTTAAAT	469620
GTAAATATCT TTTTAAAATG TTCCTGAGTA GGACGAGGCA CGAGAAACCT TGTTTGAAGC	469680
TGGGGAGACC ACTCTCCAAG GCTAAATACT AGAAAGCTAC CGATAGAGAA GAGTACCGTG	469740
AGGGAAAGGT GAAAAGAACC CCGGGAGGGG AGTGAAATAG AACTGAAACC GTAGACTTAC	469800
AAGCAGTCAA AGCCGTAATT TATTGCGGTG ATGGCGTGCC TTTTGCATAA TGAACCTGCG	469860
AGTTATCATG TCTAGCAAGA TTAAAGCATA GAAGTGCTGG AGTCGAAGCG AAAGCGAGTC	469920
TTAAAAGGGC GATTTAGTTA GATGTGGTAG ACCCGAAGCC GAGTGATCTA TTTATGGCCA	469980

JS98/12764

423			
GGCTGAAGCT TGGGTAAAAC CAAGTGGAGG GCCGAACTC			
GATGAGCTGT GAATAGGAGT GAAAGGCTAA ACAAACTCG			470100
AATGGATTTA AGTTCAGCCT TATTTTAGTT TAATAGAGG	T AGAGCACTAA	TTGAGCTAGG	470160
GCCTGTCAAA GGGTACCAAA CTCAGTTAAA CTCCGAATG	C TATTAAATGA	TGAATAGGAG	470220
TGAGACTATG GGCGATAAGG TTCATAGTCG AGAGGGAAAG	C AACCCAGACC	AACAGCTAAG	470280
GTCTCAAAAA TGTGTTAAGT GGAAAAGGAG GTTTAGGTAG	C GTAAACAGCC	AGGAGGTTGG	470340
CTTAGAAGCA GCCATACCTT TAAAGAGTGC GTAATAGCTC	CACTGGTCGAG	TACTTAAGCG	470400
CCGATAATGT AACGGGGCTA AACACATTAC CGAAGCTTTC	GATCTTAACG	AAAGTTAAGA	470460
TGGTAGGGGA GCGTTCTGTA AGCCAGAGAA GTTAAACTGG	AAAGTTTGAT	GGAGGTATCA	470520
GAAGTGAGAA TGCAGGTATG AGTAACGAAA AAATGGGTGA	GATTCCCATT	CGCCGAAAAC	470580
CTAAGGTTTC CTGGGTAAAG GTCGTCTTCC CAGGTTAGTC	GGTCCCTAAG	GCAAAGCTGA	470640
AAAGTGTAGT CGATGGGAAA CGGGTTAATA TTCCCGTACC	TCTTATAGTT	TCGATGGAGT	470700
GACGCATGAG GTTAACTACT GCTAGGCGAT GGTTGTCCTA	GTTTAAGCAT	TAAGGTGATG	470760
ATCTTGATAG GAAAATCCGT TAAGAGAGCT AAGATGTGAT	GATGAGTGCT	ATTTAGGTAG	470820
CATGAAATGT AGGTAGTCAA GGTGCCAAGA AATAGCTTCT	AAGGTTAGGC	TATAAGGGAC	470880
CGTACCGCAA ACCGACACAG GTAGGTGGGA TGAAAATTCT	AAGGCGCGCG	AGAGAATCCA	470940
CGTTAAGGAA CTCTGCAAAA TACGTACGTA ACTTCGGGAT	AAGTACGACC	TAAGCAATTA	471000
GGTAGCATAA AAATGGTCCA AACGACTGTT TACCAAAAAC	ACAGGTCTCT	GCAAATCTGT	471060
AAAGAGAAGT ATAGGGACTG ACACCTGCCC GGTGCTGGAA	GGTTAAGAGG	AGATGTTAGT	471120
TTATGCGAAC GTTGAATTTA GCCCAGTAAA CGGCGGCCGT	AACTATAACG (GTCCTAAGGT	471180
AGCGAAATTC CTTGTCGGGT AAGTTCCGAC CCGCACGAAT	GGTGTAACGA	PTTGGACGCT	471240
GTCTCAACGT GGAGCTCGGT GAAATTGAAG TATCGGTGAA	GATGCCGATT A	ACTTGTGGTT	471300
AGACGGAAAG ATCCGTGAAC CTTTTACTAT AGCTTGGTAT	TGAGATTTGA 1	ГТАААТАТСТ	471360
GTAGGATAGG TGGGAGACTT TGAAGCTATC TCGTCAGGGG	TAGTGGAGTC A	\ATCTTGAAA	471420
TACCACCCTT GTTTAATTAG GTTTCTAACT TATAGAAATA	TGAGGAGAGT G	CCAGGTGGG	471480
TAGTTTGACT GGGGCGGTCG CCTCCTAAAG AGTAACGGAG	GTGCGCAAAG G	TTACCTTAG	471540
AGTGGTTGGA AATCACTCTG TAAGTGTAAA GGCATAAGGT	AGCTTAACTG T	'AAGACTGAC	471600
AAGTCGAACA GATACGAAAG TAGGTCTTAG TGATCTGGCG	GTGGCAAGTG G	AAGCGCCGT	471660
CACTTAACGA ATAAAAGGTA CTCCGGGGAT AACAGGCTTA	TCCTTCCCAA G	AGTTCACAT	471720
CGACGGAAGG GTTTGGCACC TCGATGTCGG CTCATCGCAT	CCTAGGGCTG G	AGCAGGTCC	471780

TAAGGGTATG GCTGTTCGCC ATTTAAAGCG GTACGCGAGC TGGGTTCAGA ACGTCGTGAG	471840
ACAGTTTGGT CCCTATCTGC CACAAGCGTT GGATATTTGA GAGGAGCTAT CTTTAGTACG	471900
AGAGGACCGA GATGGACGAA CCTCTAGTGT ACCAGTTATC CTGCCAAGGG TAAGTGCTGG	471960
GTAGCTACGT TCGGAAAGGA TAACCGCTGA AAGCATCTAA GTGGGAAGCC TTCCTCAAGA	472020
TGAGATATCC TTTAAGGGTC CTGGAAGAAT ACCAGGTTGA TAGGTTAGAA GTGTAAGTAT	472080
AGCAATATAT TAAGCTGACT AATACTAATT ACCCGTATCT TTGGCCATAT TTTTGTCTTC	472140
CTTGTAAAAA CCCTGGTGGT TAAAGAAAAG AGGAAACACC TGTTATCATT CCGAACACAG	472200
AAGTTAAGCT CTTATTCGCT GATGGTACTG CGAGTTCGCG GGAGAGTAGG TTATTGCCAG	472260
GGTTTTTATT TTTATACTTT AAACTTTGAT TTTATTTTTA TGTTTTTAA ATATTGGTGT	472320
TTTTGAATGG GTTGTTTAAA TAACATAAAA AATAAAATAT ATATTGACAT GCATTAAACA	472380
AAGATATATA TTATTTTATG TTGTATAAAT AAATTGGCAA AATAGAGATG GAAGATAAAA	472440
ATATGGTCAA AGTAATAAGA GTCTATGGTG AATGCCTAGG AGCTTTAAGG CGAAGAAGGT	472500
CGTGGTAAGC TGCGAAAAGC TTGGGGGAGA AGCAAACATT TATTGATCCC AAGATTACCG	472560
AATGGAGTAA TCCAGCTAGC AAGATGCTAG CTATCTATTA TTTAAATAAT AGAGGCGATA	472620
CCAGGGGGAA GTGAACCATC TAAGTACCCT GAGGAAAAGA AATCAAGGAG ATTCCCTTAG	472680
TAGTGGCGAG CGAAAAGGGA GTAGCCCAAA CTTTAAATGT GTCAAGCTGC AGAGCGTTGC	472740
ATTTATGGGG TTGTAGGACG TTTAGGCTTA GTCTGTAATA AGCAAAAAAG TTACAAAATA	472800
TTTATATAGA AGAATAATCT GGAAAGTTTA ACCAAAGAAG GTGATAGTCC TGTAATTTAA	472860
ATGTAAATAT CTTTTTAAAA TGTTCCTGAG TAGGACGAGG CACGAGAAAC CTTGTTTGAA	472920
GCTGGGGAGA CCACTCTCCA AGGCTAAATA CTAGAAAGCT ACCGATAGAG AAGAGTACCG	472980
TGAGGGAAAG GTGAAAAGAA CCCCGGGAGG GGAGTGAAAT AGAACTGAAA CCGTAGACTT	473040
ACAAGCAGTC AAAGCCGTAA TTTATTGCGG TGATGGCGTG CCTTTTGCAT AATGAACCTG	473100
CGAGTTATCA TGTCTAGCAA GATTAAAGCA TAGAAGTGCT GGAGTCGAAG CGAAAGCGAG	473160
TCTTAAAAGG GCGATTTAGT TAGATGTGGT AGACCCGAAG CCGAGTGATC TATTTATGGC	473220
CAGGCTGAAG CTTGGGTAAA ACCAAGTGGA GGGCCGAACT CTAGTCTGTT TAAAAAGGCA	473280
GGGATGAGCT GTGAATAGGA GTGAAAGGCT AAACAAACTC GGAGATAGCT GGTTCTCCCC	473340
GAAATGGATT TAAGTTCAGC CTTATTTTAG TTTAATAGAG GTAGAGCACT AATTGAGCTA	473400
GGGCCTGTCA AAGGGTACCA AACTCAGTTA AACTCCGAAT GCTATTAAAT GATGAATAGG	473460
AGTGAGACTA TGGGCGATAA GGTTCATAGT CGAGAGGGAA ACAACCCAGA CCAACAGCTA	473520

US98/12764

ACCECTOR A A A A A A A A A A A A A A A A A A A	
AGGTCTCAAA AATGTGTTAA GTGGAAAAGG AGGTTTAGGT ACGTAAACAG CCAGGAGGTT	
GGCTTAGAAG CAGCCATACC TTTAAAGAGT GCGTAATAGC TCACTGGTCG AGTACTTAAG	473640
CGCCGATAAT GTAACGGGGC TAAACACATT ACCGAAGCTT TGGATCTTAA CGAAAGTTAA	473700
GATGGTAGGG GAGCGTTCTG TAAGCCAGAG AAGTTAArCT GGAAAGTTTG ATGGAGGTAT	473760
CAGAAGTGAG AATGCAGGTA TGAGTAACGA AAAAATGGGT GAGATTCCCA TTCGCCGAAA	473820
ACCTAAGGTT TCCTGGGTAA AGGTCGTCTT CCCAGGGTTA GTCGGCCCCT AAGGCAAAGC	473880
TGAAAAGTGT AGTCGATGGG AAACGGGTTA ATATTCCCGT ACCTCTTATA GTTTCGATGG	473940
AGTGACGCAT GAGGTTAACT ACTGCTAGGC GATGGTTGTC CTAGTTTAAG CATTAAGGCG	474000
ATGATCTTAA TAGGAAAATC CGTTAAGAGA GCTAAGATGT GATGATGAGT GCTATTTAGG	474060
TAGCATGAAA TGTAGGTAGT CAAGGTGCCA AGAAATAGCT TCTAAGGTTA GGCTATAAGG	474120
GACCGTACCG CAAACCGACA CAGGTAGGTG GGATGAAAAT TCTAAGGCGC GCGAGAGAAT	474180
CCACGTTAAG GAACTCTGCA AAATACGTAC GTAACTTCGG GATAAGTACG ACCTAAGCAA	474240
TTAGGTAGCA TAAAAATGGT CCAAACGACT GTTTACCAAA AACACAGGTC TCTGCAAATC	474300
TGTAAAGAGA AGTATAGGGA CTGACACCTG CCCGGTGCTG GAAGGTTAAG AGGAGATGTT	474360
AGTTTATGCG AAGCATTGAA TTTAAGCCCC AGTAAACGGC GGCCGTAACT ATAACGGTCC	474420
TAAGGTAGCG AAATTCCTTG TCGGGTAAGT TCCGACCCGC ACGAATGGTG TAACGATTTG	474480
GACGCTGTCT CAACGTGGAG CTCGGTGAAA TTGAAGTATC GGTGAAGATG CCGATTACTT	474540
GTGGTTAGAC GGAAAGACCC CGTGAACCTT TACTATAGCT TGGTATTGAG ATTTGATTAA	474600
ATATGTGTAG GATAGGTGGG AGACTTTGAA GCTATCTCGT CAGGGGTAGT GGAGTCAATC	474660
TTGAAATACC ACCCTTGTTT AATTAGGTTT CTAACTTATA GAAATATGAG GAGAGTGCCA	474720
GGTGGGTAGT TTGACTGGGG CGGTCGCCTC CTAAAGAGTA ACGGAGGTGC GCAAAGGTTA	474780
CCTTAGAGTG GTTGGAAATC ACTCTGTAAG TGTAAAGGCA TAAGGTAGCT TAACTGTAAG	474840
ACTGACAAGT CGAACAGATA CGAAAGTAGG TCTTAGTGAT CTGGCGGTGG CAAGTGGAAG	474900
CGCCGTCACT TAACGAATAA AAGGTACTCC GGGGATAACA GGCTTATCCT TCCCAAGAGT	474960
TCACATCGAC GGAAGGGTTT GGCACCTCGA TGTCGGCTCA TCGCATCCTA GGGCTGGAGC	475020
AGGTCCTAAG GGTATGGCTG TTCGCCATTT AAAGCGGTAC GCGAGCTGGG TTCAGAACGT	475080
CGTGAGACAG TTTGGTCCCT ATCTGCCACA AGCGTTCCAT ATTTTGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	475140
AGTACGAGAG GACCGAGATG GACGAACCTC TAGTGTTCCA GTTATTCGTCC CALAGGETTA	475200
TGCTGGGTAG CTACGTTCGG AAAGGATAAC CGCTGAAAGC ATCTAACTGG GAAGGATAAC	475260
TCAAGATGAG ATATCCTTTA AGGGTCCTGG AACAAMAGGA GGTTCCT	
TOTOMINO TINGANGIGI	475320

AAGTATAGCA ATATATTAAA GOOGA GTAATA	
AAGTATAGCA ATATATAAG CTGACTAATA CTAATTACCC GTATCTTTGG CCATATTTTT	
GTCTTCCTTG TAAAAACCCT GGTGGTTAAA GAAAAGAGGA AACACCTGTT ATCATTCCGA	475440
ACACAGAAGT TAAGCTCTTA TTCGCTGATG GTACTGCGAG TTCGCGGGAG AGTAGGTTAT	475500
TGCCAGGGTT TTTGTTTTTA TACTTTAAAC CTTGAATTTA TTGTGTATAT TTATTTTTAC	475560
ACAGTGGTAA AACTGTTGTT TTTAATAAGG GAATTTTAAA ATAACATGAA AAAAGCAAAC	475620
TTTTTAAGTA CTAATTTTTT AATTTTACTT TTGGTTTGCT TTGTCAACGT CAATTTATTT	475680
TCTAAGGATA TTTTCAAGTT TAAGCTTGTA GATCAATTTT TTCCTTTTTA CTACAAGAAT	475740
AATAAAGGAG AATATGAAGG ACTTATTTTT TCTATTTTAG ATAAATGGGC AAAAGATAAT	475800
AATGCTGATA TTATGGTTGA GCATATTGAT AATTTAAATG AAAGTGAAAT TGAAGACGAA	475860
GCAATATATT TAGGATTAAC TTATAATGTA AAATTAAATG ATTTTTTTTA TTTTAAAAGT	475920
GAGCTTGCTA GGAGTATTTC AATTTTATTT TTTAAAAACT CTAATAAAAA ATATAAAAAT	475980
ACCCATTCAA CATTTTATC CAATTTTAAT ATAGGAGTTA TTAAAAATAC AATATATGAA	476040
GATATCTTAA GGTTAAAAAA CGTTAACACC ATTTTTTTGG CTGATAATTC TCAAGAGTTA	476100
GTATTGGCCT TAAAAAACGA TAAAGTTGAT TATATATATG GTGATTGCAA GACTTTACAT	476160
TATATTGCAA ATAACTTTTT AAGTGAAGAT CTTGTGATTT TTACCGGGGA TGTTTTTTAT	476220
AGTATCAAAA ATAGAGTGGC TATTAGTAGA AATGCTCCTG AGATAGTAAA GAATTTGAAT	476280
TTAGATTTGT TTTCATATTT AATGAAAATG CCTGAGGAAC TTGTTTTTTC TTTTTAGAT	476340
AGCAATGCTA AGGGAAGTTT TGTTGATGTT GGTTTATATA ATGATTATCC TCCTTTAAGT	476400
TTTATTAATT CACAGGGAAA ATTGTCTGGC ATTTTAGTGG ATTTGTGGAA TCTTCTCTCA	476460
AGACAACATA TCTTTAAACC TATTTTTAAG GGATTTTCCA AAGAGGATAT TAAGAAATCA	476520
TTAGATGGAA AATCAGTAGG TATTTTTGGA GGAATTATTA GCAATGATAG TGTGTTGGAA	476580
AATGTTAATT ATGTAGTAAG TAAGCCAATA TATCCTCTTA ATTTTAAATT TTATTCTAAA	476640
GACCTAAGCA ATGATGCTGG TCCAATAAAT TCTCAGTTTA TTGATTTAA TTTTAATAAT	476700
ATTCAATTAA ATAAGAATAA AGATATTGTT AATAACTTTA TAGATATTGT TAATAATTCA	-
TATGGGTTTA TAGAAAATTC AATAACAACA AAATATTTGT TAAAATTAAA TGGATATAAC	476760
GGTAGATTAA AATCTTACGA TTCGATTTTT AATAAAAATA GGTTTTTAGT ATTAGCCATT	476820
GATAATAGGA TTTATAAGGT TATTAAATAT ATTCTCAATT CTATATTTGA TGATATTTCA	476880
	476940
TTTGAATCTT TGCTTCAAAT AGATAAAAAT TGGTTGGATA AAGAAGAGAT TAATAGTTCT	477000
AGAATAAATA GTTATAAAAT TATGAATAAG GTTAAATTTA ATATAGAAGA AAAAATTTGG	477060

427	
TTATCAAAAA ATAATAAATT AAATCTTGCT GTTAAAAATT GGTATCCAAT AGATTATGTT	477120
GAGGCAAATA ATTATAAAGG AATAAATCAA TTTTTGCTTG ATAAGATTAG AATGTTTTCA	477180
GGTTTGAGAT TTAACATAAT TAAAGTACAC AGCAGTTTAG ATCTTAAAAA ATTAATCAAA	477240
TCTGGAAAAA TCGATATGCT AAATACTAAT GCAACCGATT CAAATTTAGA TAATGTTTTC	477300
AACATAAAAT TAAATTCTCG AATTCCACTT TATATTTTTT CAAATAAGAA AAGGGTGCTT	477360
CCATCTAGAT CTTTAGAAAA GTTTGCTATA CTTGATTTTT TATATAGTAA AAATTTGGCT	477420
TCTAATATTA AATCAAAGCT TATTCTGGTA AGCAGTTTTA ATGAAGCGTT GCTTCTTCTT	477480
TATAAGGGAA AGGTAGATGG GATTATTAGC GATGAGTATA CAGCTGCTGC TGTTTTTGAG	477540
GAATTAAATA TTGATGATGT TGAAAAAATT CCTACTTTTA GAGATTTGGC TTTTGATTTG	477600
AGTCTTGCTA TTTATAATCA AGATTATATC TTGAAAGAAA TTATTCAAAA AGTTGTTATG	477660
CGTTCAAATG TTGACAGTCA GATGTATTTA AATGATTGGA AATTTGATAT TTATTAAA	477720
TCCAGAAGTA TCAGGTTTAA AAATTTCAAA TTTTTAGTGA TAACATTCAT TATATTTTAT	477780
TTTACTTTTT TAGGATTTGT AATTATATTT ATGTTCAGAT TATCATTTGA GCAGAAAAGA	477840
AGATATTCTT TTGTGATGAA TGAAAAAAG ATTGCGGAAG CCGCTAATGC TGCTAAAACC	477900
ATTTTTATAG CCAATGTCAG TCATGATATT CGTACCCCTA TTAACGGAAT AATGGCGGCT	477960
ACTGAGCTTT TGGATACAAC TATTCTTACA GATGTTCAAA AAGATTATGT TAGGATGATA	478020
AATTATTCAT CTGATTCTTT GCTTTCTTTA ATTGATGATA TATTGTATTT GTCTAAAATA	478080
GATGTCAATG AATTATATGT TGAGAGTCAA GAGATTGATT TAGAGAGTGA AATGGAAATG	478140
GTTTTAAAAG CTTTTCAATC TCAATGTGCA AAGAAAAATA TTGATTTATT CTCTTATTCT	478200
AAATCTATTT TTAATAATTA TATAAAGGGT GATATTGTAA AAATTAAACA AGTTTTAATT	478260
AATTTAATAG GAAATGCTTT TAAGTTTACA GATGATGGTG TTATTGTTTT AAATTATGAA	478320
GAAGTATGTA GAACAAGAAC TGATGGTAAT AGGGTTTTGG TTACAGTTGA ATTTAAGGTA	478380
ATAGATACAG GCAAAGGGAT TGAAAAAGAA AATTTTTCTA AGATATTTGA AATATTTAAA	478440
CAAGAGGATG ATTCTTCTTC AAGGGTTCAT GAAGGTGCAG GATTGGGATT GTCAATATCT	478500
AGAGAGCTTA TAAGACTAAT GGGTGGTCTT GGTATTGCTG TTGATAGCAA GGTGGGAGAG	478560
GGTACAACTT TTTCATTTAT GTTGCCCTTT TTATTGGGTA GTGAGCTTAA AAGTAAAAAA	478620
TTGTCAATCA ATAGATTTCA ATCAGTAAAT GGTGACAATA AAGTATTAAA TGTGCTTTTA	478680
AGTCAAAAAT CTATTAAAAT TTTTGAGCAC TGTTCGATTT TATTGGGATG CTCTTCTAAT	478740
GTGCGCTATG TAGCGTCTTT TGAGGATGCT TATAAAGTCT TCAACAAANA GGGTTATAAA	478800
AATTTTGTTT ATATAAATGT AAATAACGAT AATATTCAAG AGGGTATTCG ACTTGCCAAT	478860

AATATTGAAA	GACTAAATT	C TGATGTACA	A ATTATTTTT	TATTTTATT	A TTTAGATAAT	478920
AAAGCTCTAA	AAAATTTAA	A ATATGGTTA	T GTTAAAAAG(CTTTAATGG	GCTTGGTATA	478980
TGCTCTATTC	ТТТАТАААА	A AGAGTTTAA	C CCAGAAATGO	ATTTTGAGG	A TTTGGTTCCA	479040
ATAGATAGTG	CTTTAAGGA	r AAAAGAGCC	C ATTAATGTTT	TAATAGCTGA	AGATAATCAG	479100
GTAAATCAAA	AAGTGTTGA	A AGATATTCT	r gttgttatac	GCATTAATGA	TTATTTAAA	479160
GATGTTGTAG	ATGATGGAGT	T AAAGGCTTT	A AAATCTTTAA	AAGATAAAA	ATATACTATC	479220
TCTTTTATTG	ATATACGAAT	GCCAAGATA!	r gatggattti	CGGTGGCTAA	GGAAATTAGA	479280
AAATTTGAAA	AGGCAAAGAA	TTTAAAGCC	TGTGTTTTGG	TTGCTGTAAC	AGCGCATGCT	479340
TTGCAAGAGT	ATAAAGACAA	GTGTCTTGC	AGTGGTATGA	ATGATTATAT	СТСААААССА	479400
ATACACATAA	GTTCAATTAA	AACTATATT	AAAAAATACT	TACAGTTTGA	AGTTGATGAT	479460
ATTGGGGAGA	ATGAAAATTT	GAATCAACTI	GTTAAGTTTC	CTAATTTAGA	TGTTAATAGG	479520
GCTTTAAAAG	ААТТАААТСТ	TTCATATGTA	TCATATTCTG	AATTATGTAG	AGGGCTTGTT	479580
GATTTTATCT	СТАТТААТАТ	TATTGATTTG	GAAAAAGCTT	TTGATGAGGA	AGATTTGTCT	479640
TTAATTAAGG	АТАТАТСТСА	TTCAATATCT	GGAGCTCTTT	CTAATATGCG	TAGCGAATTG	479700
TATAAAGATT	ТТСААААААТ	TGAAACAAGT	AAAGATTCAA	TTTCTGAGTT	GAAAAAATG	479760
TATTCTTTTG	TAAAAGATGA	TTTATTTCAA	CTAATAAGCG	ACATAAAGGA	AAATATTTTG	479820
TTTGAGTCTG	AGATTGTTAG	TGAGAACAAG	СТАТАТТТТА	AAAATAATGA	TCAATTTTTA	479880
AACCTTCTCA	ACAAACTTTT	AATTGGTATT	AAGACTAGAA	AGCCAAGAGA	ATACAAAGAA	479940
ATTCTTGAGA	GCATTAATAA	ATATGTTTTA	GACGATAATA	TTCAGGTATT	ATTTAGTGAT	480000
CTTCGCAGAA	ATTTAAGATT	ATATAGATTT	GCTGAGAGCT	CTAAGATTCT	TGAAGAGATT	480060
ATTGAAATGC	AATAATAA	GAGATATTAG	CAGTGGAAAT	GATAATTAAA	GATAAAGCTT	480120
TTGAAGCAGA (GAATCAGAAG	CTTTTAATTG	TGGATGATTC	TCCCCACAAT	TTAGATTTAT	480180
TGGTAAATAT A	ATTGCAAGGT	GCTTACGAGA	TTGAGGTTGC	AACAAATGGA	CTTGATGCTT	480240
TAAAGCAAGT	TGAAAAAGAT	AGTCCTGATC	TTATACTTCT	TGACATAGGT	CTTCCAGATA	480300
TTAACGGTTA 7	TGAGGTATGC	AGAAAGCTAA	AAAGCGATCC	ССАТАСТААА	GAGATTCCTG	480360
TAATTTTCAT 1	TAGTTCAAGA	AGTTCCACAG	ATGCTCAGCT	TGAAGGATTT	AACGTTGGTG	480420
GAGTAGATTA 7	PATTTTAAAG	ССТТТТААТА	GTCGAATAAT	TGATGCTAGA	GTTAAGACAC	480480
ATCTTGAATT A	AAAAGGTTA	AGAGATTATT	TTAAAAGCTT	GTCTAGAATT	GATGGGCTTA	480540
CTCAAATTCC A	AACAGAAGA	TTTTTTATGG	ATAAATTTTC	TAAGTCGTGG .	ATGAAAGCTT	480600

			429			
TAGAAAGTAA	AGAAATAATA	ATTGTTGGAA	TGTTAGATAT	TGATAATTTT	AAAAATTACA	480660
ATGATAATTA	TGGCCATACC	AATGGTGATG	AATGTCTTAA	ATTGATTGCT	AAAGCCTTAT	480720
ATAAGGTTTC	СТТААААТАТ	AAAATAGATG	TTGCTCGATA	TGGAGGGGAA	GAATTTATTT	480780
TTTTTTCTGT	CAACAAAAGT	CTAAATGAAA	TGGTTAGTAT	TATTAAAACA	ATGATTAATG	480840
ATATAAAACG	CTTAAGAATA	GTTCATGAGC	ACAGTAGTGT	TTCTGGCATT	GTTACTGTTT	480900
CAATTGGGCT	TGCTCAAGAA	GTTCCTATTG	ATAACAATTT	TACCAATATC	ATAAGGCTTG	480960
CTGATCGCAA	GCTTTATGAG	GCTAAAGTTT	CTGGAAGAAA	TCAGTTTAGA	TATTAAATTT	481020
ATATTTAATA	GACTTTAGTA	TTTATAAGTT	ATAGACATTC	CAATAGAATC	GTAATAAAAA	481080
TAAGAATTGC	CAGTTGCTAT	TCTTTTTGAA	ATATCAGCCA	GTCCGGCTGT	GTTACTTGTG	481140
TATGTGGGAT	TTGTAGATAA	TTTAAATTGA	AGGCCAAGTG	TTAAAGGTTT	GATAATTTCA	481200
AAATTAGCAA	CAATAGAAAT	GTTGTGATAA	AAAATATCAC	TTCCCCAGCC	TTTGTTTTTC	481260
CAAGAGCTTA	TGTTTCTTTC	TTTGCCAATT	TGTGTTTTTC	CTTCATAAAG	CAGGCCTATG	481320
GTGTTAAGAG	GTATTGGCAT	TTTGTAAGCC	AAAAGAGCGT	AAGGTTTTAT	TAGCATGCCA	481380
TTTATATTTT	TACCATCATC	TGCTTTATAT	TTCCAAAGTT	GATCTTTTTT	TGCATGGGGA	481440
TTGATTAAGT	ATGTAAAATC	ATTTCCAATA	ACTGTAATAA	TGTGTGTCCA	TTCTCCTTGA	481500
AAAATAGCGT	TTAAGTCAAA	TTGGAATCGT	CCCCCCGCTG	TTATTTCTGA	ATAAAATTCA	481560
ACAGCATTTG	AATATTTCCC	ATTTTCAATG	TGTACGCCTA	CTCCTTTAAA	TCCAAAAGCT	481620
TGCCAACCTA	TGCCAAGTTC	ATTTGATGCA	TATAAATTTA	AAAAAGCAAT	AGGAGTAAAG	481680
CTTACTGTGC	TTTTAAATGA	GACAATTACA	GGAGACAATC	CGATATTTAA	ATCTATATCT	481740
ATACCATTAT	TTTTAAAAAA	TATAGAATTG	GGATTGTTTA	GGGCTTTAAA	ATTTTTATAG	481800
TAGCCCAAAT	ATGATATTAG	TTTTATTCCC	CCCCAATAAT	TGACTGGAAT	TTTTAAACTT	481860
GGGTCAATAT	TTTGGAAGTT	AGGATGTTTA	AAGCTTTGTG	AAAAGCCGCT	TCCATTTGTA	481920
CCCAGCTCGT	GGGGAGGATA	ATAAGCAGAT	TGAAAATTAA	ААТААААТА	TTCATTATTA	481980
AATTCTAAGT	TCTGTTGATC	TTGGGAAAGA	ATTATTTTTG	CTTGCAAAAG	TAACAAACAA	482040
AAGCAAATTT	ТТТТТТТАТТАА	CATTTTATTT	AAAATACCTT	TTCCATTTAA	TTTTTTTTA	482100
ACATTATTTT	AATTATCTTT	TTTTTTTTTT	CATCAATTTT	AACAGATGCA	TCAACATTGT	482160
TAAGTCTAGA	GCATTTTGAG	ТААААТТСТА	TTAGCGGTTT	TGTTTGTAAT	TTATATTCTT	482220
TGAGTCTTGT	TTTTAAGCAT	TCTTCTTTAT	CATCTTCTCG	TTGATAAAGA	TCTCCCCCAC	482280
AAACGTCGCA	AATACCATTT	TTTTTTGTTG	TTAGGGTATA	TATATTGAAA	ATATTATTGC	482340
AAGATTTGCA	AATTCTTCTT	CCCGAGAGTC	TTTTTATCAC	TAACTCTTCA	ТСААТТАААА	482400

AATTTATTAT	TTTTACATT	r ggcaaaaat:	T TGTCAAGAGC	CTCGGCTTGA	CAAATATTGC	482460
GCGGAAATCC	ATCTAAAAT	A AAATCTTTG	r TCTTTTTAA1	AGCTTTAATT	TTATCTTCTA	482520
CTATTTTGAT	TGTAATTAGO	TCGGGGACC	A GTTCTCCCT	TTCAACAATT	TTTTTTATTT	482580
CTTGCCCAAG	AGCCGTAGAA	A TTTAAAATAT	TTTCTCTAAA	TAAGTCTCCT	GTTGAAATGT	482640
GTTGATATTT	AAATTCATTA	GAAATAATTI	TTGAAATAGT	CCCCTTTCCA	GAACCCGGAG	482700
GACCTAAAAA	TACAAGCCCC	ATATATACTO	CTGTTTAAAT	ATTTGTTATT	TTAAGGGTTT	482760
ATTTGAAAAC	ATTTAATAAA	AATTTAAGTO	CTACGATTGT	TCCAATTGTA	GATCCAAGGT	482820
ТТАСААААТ	CACTATTAAT	' AGAATTCTTG	TAACTTTGTT	TTTGAAATAT	CCTTTTATTG	482880
TCGACAATTC	TTCTTGTAGA	TTTTCAAAGT	CTTTGACTTT	TGGTTTGTTT	ATATAAGCTT	482940
CAACAAGCCC	TGCTACCATA	CCTGTTCCTA	TGAATGGTAT	TAAGGAGAAT	ATTGGAGAAC	483000
CTATAATAGC	TGTTAAAATT	GTTAAGGGAT	' GAGATTTTAA	TAAAATCGAT	GCGATGCCTG	483060
AAAAAATAGA	GTTAGATATT	ATCCAAAGCT	TTAAATTTTT	GTAAGCAAAA	TCAAATCCTT	483120
TAAAGTAAAA	AGAGCTTACT	ATTAGTAAAA	TGATTGAAAT	TGCAATCAAG	TAAGATAGCA	483180
CTTTGCTAAA	TGAAAAATGT	TTTTTAGGTA	TTTTCTCGAG	TTCTTCAACG	TTTATTATTT	483240
TTTTATTTTG	ACTTATTTCT	TTTAAAGTTC	TCATTATTCC	GCTTACATGG	CCTGCACCCA	483300
CAATGGCAAG	AATAATGCCC	TCTCCTTCAA	GTATTTTGTT	TGTAATAAAT	TCGTCTCTTT	483360
CGTCAATTAA	AACTTTTTT	ACTTTGGGTA	TTTCTTTGGA	AAGTTCTTCC	ATTATTTTTG	483420
AAAGAGCGTC	CTGTTCTTTG	AGTTTTTCAA	TTTCATCTTT	TGTAATTTTT	GCATCTGTTA	483480
GGGAAAAAAG	GCTTGAGATT	ATTTTTGCTT	TTTCAAATAT	TGGAATAGAT	ATCCAAGCTC	483540
TTTTTAGTGT	TGTTTCAATT	TTTCTGTCAG	CAAGAATTAG	TGGAATATTG	TGTTTTTAG	483600
CTTTTAAAAT	AGCTGTTTTC	ATTTCTTCAC	CAGGTTTTAT	TCCCTGTTCT	TTTGCTAATT	483660
TTTTTTGAAA	ATTACTAAGA	ATTATGTTTA	TTATGAGAAA	GAAAGCTTTT	CCTTGTTTTA	483720
ATGCTTTATC	TATATCTAAG	TTTCTCCATT	TTTCATTTTC	ATTGGTATTT	AAGATCGAAT	483780
GATAGCGAGC	TTCATCAAGT	TCAACGGCAA	TATAGTCTGG	TTTTAAGATT	ТСТАТТАААТ	483840
TTGCAGTATC	TTCTGAGCTT	TTTTTTGACA	CGTGAGCAGT	TCCAAGTATG	TATATTGTTT	483900
TATTGTGTAT .	ATTAAATTTA	CTTACATGAG	AAAAACAGTC	TTCTGTTTCG	GTGTTTTCTT	483960
TTTTATTGTC	СААААААТАТ	TCCTTGTTTA	AAAAAATTTA	GCTATTAATT	AGTATAGCTT	484020
TTAATAATTT 1	TACCATATGG	CTTAGTGGAA	CTATATAGTC	TATATTGTTT	TCCTTTATTG	484080
CTATTTTTGG (CATTCCAAAA	ACCATAGAAC	TTTCTTTATC	TTGCGCAATA (GTTAGTCCTC	484140

			431			
					GTCATTATTA	484200
					CCAATAGATG	484260
GTTTGTGACC	ATTTATATGT	TTACCATCG	A GGGTTTTTAI	TTGATAGTTA	CCATCGATTT	484320
TTTTGATTTT	TGTATGATAT	CCGCCCGAG	CTAATGTATGC	ATATCCTTGC	TTTAATATTT	484380
CGTTATTGGT	GGTTTCTTT	ACGCTTATT	r tacatagati	ATTAAGATTT	' TTGGCAAATT	484440
CTTCTGTAAA	TCCTTTAGGC	ATATGTTGA	A CAATTATTAI	' TGGCGGAAAG	CTTTCAGGTA	484500
TTTCTGGTAA	TATTGATTTC	AAGGCTACAG	GCCCCCCCGC	TGATACTCCA	ATTGGCTATT	484560
ATGTCAAATT	TTCTCAGTTT	AAGTTTTTT	ATTTCTTTT	' CATTTAATGT	TTTTTCTTTT	484620
GCATGTTCTT	CAAGTTGATT	TAATGAAGAA	ATGTCATTT	' TGTGATTTAA	AATAAAATTA	484680
GCTCTTTCGT	AGTTTTTTGT	TTTCATGTCC	TTATTGCAGG	CAATTTTATT	TTTTATAGAT	484740
ATCGATCCAT	AGGCCAAAAG	AGAATTAATA	ATTTGTTCTT	TTTTGATTTC	ATGTGATTTT	484800
TTGTTTTTAG	ATACTAATAT	AAGATCATCG	GCGCCCTTTG	AAGCAGCAAT	ATTTATTAGG	484860
TTTTGATTTG	AAGATGTGAC	GACAATTGGT	ATTGTTTTGT	TTAAACTGTT	TTTTTCCTCC	484920
AAAAATAGAA	TATCTTTAAT	ATTGTTCTCT	ТСТАААТТСА	TTAATATTAC	TTCGGGTTTA	484980
TGTTTTTTAA	GTTTATTTGT	TGCAAATTTG	CTGTTAGAAG	CAGTTGCAAT	GACTTGGAGT	485040
TTTGGAGATG	AATTGATAAG	GTCTGATATA	AGTTTTCTCT	TTACAGCAAA	GTATTCTATG	485100
ATAAGTACAG	AAATTTTTGT	TTCCACCGTT	ACTTTTTTCC	CATTTTATTC	TTGTTAAATT	485160
ATAACTTATA	TTTATTTTGT	GATTTGAATT	TTTCTTTTTG	ACAGCCAGTA	TCTTTTTTT	485220
САТАТАТТАТ	TGCCCAAGGT	GTTTTTAAAA	ATTTAAAAGG	AAGGTTGAGC	CCAAAAAGTG	485280
ATTCTGAGTG	ТССТАТАААТ	AAATAGCTGT	TTTTAGACAT	ATTGTTGTAA	AATTTTTAA	485340
GTACTTTTAT	TTTTGATTTT	TCATCAAAGT	ATATTAAAAC	ATTTCTACAA	AAAACAACAT	485400
CAATTTCCGA	AAAATTACTT	TCAAAGTTTA	AGTTATGATA	ATCAAATCTT	ATGTGATTTT	485460
TAATTTCATT	ТТТААТТТТА	TATCCGTTTG	AATGAGAATA	TATGTAGTGT	CGGTATTCTT	485520
TAGGAATATT	TTCACATTTA	TTTGATGAGT	AATATCCTTC	CTTTGCTATC	ATCAAAGATT	485580
TTAAGCTTAA .	ATCAGAAGCA	АТААТААСАА	AATCTATTTC	TTTTGGAAGC	TTTGATTTGA	485640
GTACAAATGC '	TAATGAATAA	GGCTCTTCTC	CTGTTGAACA	TCCCGCAGAC	CAGATGATAA	485700
TCCTATTTTT '	TTTTTCTATG	ТТТТААТАТ	ТААТТАААТТ	CGGAATTACA	AATTTTTCAA	485760
AAGTTTGAAA 2	ATGTAGCGAA	ТТТСТААААА	ATCTTGTTAA	ATTTGTTGTG	АССАААТСТА	485820
AGAAATATTC 1	TAATTTTTTA	TTTTCACTAA	ТТАТТАААТТ	ATAAAGTTGT	GATGGGTTTT	485880
CAAGAGCAAG A	AGCTCGTACT	GCATCATTCA	CTCTGCTTTG	AAGAACAAAT	TTATTTTTT	485940

CATCAAAACG AATTCCACTO	TTGTTATATA	TAAAATCACA	AAATTTTAAA	AATAGTTTAT	486000
CTTCAATTTC TAGCATTTTT	GGGAACCTGC	TTAATTCTTC	ТСТТТАТААА	TAAGTATTGC	486060
CTATTTATAA TAAATCTCTT	AGGTAAGAAT	ATTTTTTTG	AAAAAAATT	GTAAAATTAA	486120
TATAAGTAAT TTTATTATAA	GACATAGGTT	TATAAAAAGG	TTTTTGTTTA	TTTTAATTTA	486180
TTTGCAGCAA TAAATGAGGA	ATTTAATGAG	TGTTGGAAAA	AATGTTTTCA	AATGTCGATT	486240
TAATATGCAT TTTAAAAAGA	TCAAATGATG	TTTGATGAGT	TTAAAAGAAC	AATTCTTAGA	486300
GAAGATATTA AGTATGAAAT	TTTTAGAAAA	TTTTTTCATA	TTTTTAGCTT	AATAGTTTTA	486360
GTTTTTTATA GAATAAATTT	TTGGATAGGG	CTTTTTTCTA	ATATACTTTT	TATGATTTTA	486420
TACTTAAGTT CTGAAATTTT	TAGAATTACT	GAAAAAAAA	TACTTTTCTT	ТАААААСАТТ	486480
TCAAACATAA TATTAAAATO	AAGAAAAATA	TTGCCCAATA	GAGTATCTTT	TTCTCCTGTC	486540
TTTTTGTTTT TAGGTATATT	GATATCATAT	TGTTTATCTA	TGCATCCTTT	ТААТТАТАТТ	486600
GGAATATTTT CGGTATGTCT	TGGTGATGGA	TTTGCAAGTC	TTATTGGAAA	GTTAATTCCT	486660
TCTTTTAAGC TTGTAAATGG	TAAAACGATT	TCTGGCAGTC	TTGTTGTATT	TTGTGTTACT	486720
TTTTTTTCAT ATTATTATTT	TTTTCCTTAT	TTGACAGTAG	CTTTAATTCT	TGGGATTTTA	486780
GCAGTATTGG TAGAGCTTTT	TGATGCTGCT	AATTATGACA	ATTTATTTT	ACCGCTTGTT	486840
GTTTCAGCTT CGTCCTATTT	TTTAACTTCT	ТТТТТТТАТА	GCCAGTAAAA	GAAAATTTTC	486900
CCTGATTTTT TTAAGTAGAT	TGGTATACCA	ATTGAGATTG	GGAGAAAGGC	ATAAGGCATT	486960
TTTAGCAAAT TCAAGTAAAT	TCCACTTAAT	ATTAAAAGCA	TTGAAACAAA	AAGGAAAAA	487020
TAGTCAAAGC TTTTTTTCT	TAAAAAGGCT	ACTATAAAGT	TTGTTAAAAT	AAGTAGCAAG	487080
AATGCATCTA TGTAAAATTT	TGTATTTTCT	ATTTTAAGAA	TTCCGTGGTT	TTGGCTATTT	487140
TCGTACGAAT TAATAGGCAT	TGTGTAACTA	TATATGCAGG	CAAAGATCAA	AATAATGTAA	487200
ATTGTATAAT GTATTGATTT	TATTTTGAAA	TCGCATATAT	ATAAACTGAG	AAAAAATAAA	487260
TTTAATAATG AAAAAGTGTT	TACAAAAAGG	ATAAATTTTG	TAAACAAATA	ATAACTTGAA	487320
TTTAGATTGT TTTTTAAAAA	AAAATCTTCA	GAGATTAAAA	TAGGGTCTAA	TGTATATGAG	487380
CTAATAAAGC AATAGAAAAA	TATAAATTGT	ATATTGTTGG	TTCTTTTGTA	GTTAATGTAT	487440
GACCACAGCG AGCCTATGAT	CCCAGCAATA	AAGATGGTTA	ATTTATTAAC	СААТАТТАТА	487500
AAATTATTAT TGTAAATTTC	TAGAATATAA	TTTTGATAGT	TTTCATTATA	TTTTATTTTA	487560
TAGGAGAAAG TCAGTATAAC	TATTGTTGCC	ААААТАААА	TTATAAAAAG	AAAGAGATTG	487620
ATAGAAGCGT TTAACTTTGC	AAATATTGAT	TTCATTTAAA	TTTCCAAGAA	TGCGTGTTTT	487680

			433			
TTATTTTTT	TTTTTTATAA	TTAATTTTTG	AATCAAGTTT	TTCAAAAAA	TCTATCTTTG	487740
TTTTTTTTC	AATTAAGTCA	ACGCTAACAA	CATAATTTTC	CAAATCCAAG	TCTTTTGCTT	487800
TTTCATTTGG	GATAATAAAA	GAGATTATGT	CATAATAATT	GTTATTATTA	ATTGCCAGTA	487860
СТАТТТТАТА	AAAATTTTTA	GGTATCAAAA	TTTTGTTTT	ACCAATAAAT	CCTTTATTTT	487920
CTGTTAAAAT	CCCAGCGCTA	АТААТАТАТА	TATATCCTTT	TGAGATTGCC	CATTCTCTTA	487980
CTAATTTTTC	AAGTTTTAGC	CAAATTCCAG	AATTAAATTC	GCTTTTTTGA	GGTGACATAT	488040
TTGATAAAA	ATATGTATCT	TTCATTGCAT	TTTCAGAAAA	AGACATATCT	GCAGAACTTA	488100
CTATGTGTCC	TCTGTCATAA	CCGCTTTTAA	AGTAATCTTC	AAGTTTTGGA	AAAGCGCCCT	488160
TAATGTTGGT	GTCTTCAAAG	AATTTGGTAC	ТТСТТТТААТ	TTTTTTTGAT	TTTAACAAAG	488220
TTAATGCTAG	TTCTACCATT	TCTCTTTTAA	GCGGATAAGC	AGCCCATTCA	GATTGTCTTG	488280
CGCTTTCAGC	ATATCCTAAG	GTATAGTGTT	TTTTGCTTAT	TATTTGAGTA	GTAAGATATC	488340
CTTTTGGTAT	TAATTGGGCT	TCTTTTATTG	GAATAGATTT	TGTAATGTCA	GTGTATTATT	488400
TCTATTATTT	CTAAATAGTC	ATAAATTTGT	GTTTAATTTG	TTTTAGGGCT	TTTGGATTTA	488460
ATGAAAAAA	TAAAAATCCT	GTTAGGCATA	AAATATAGCA	GTAAAGAAAA	AATTTCGACC	488520
TTTTTTCAT	GTTTCCATCT	CGTTTTTGTC	СТТААААТТА	TATCTAATAG	TAAAATTAAA	488580
AGAAATGTTA	AATGTATCTA	AAAATAAAA	ATCAATTTTA	AAGTCTAACC	CCATTAAAGG	488640
AATTGCCTTT	TTAGAAGAAA	TTTCAATAAA	CATATAAGGC	TCTATTACAT	AAGGCAATTT	488700
TTCGTAAAAT	CGAATGTCTT	CTATAAAGTT	TGTAGATAGG	TAAAAACGAC	CACCTATGCC	488760
AATGGTGGCG	GAAAAATATT	TTGTTTTTT	AATTAAGTTT	GCAATGTGCC	AGTTTATTCC	488820
TCCTCCAATA	TAAGATTTAA	AGTATTGCAT	TTTTTTGGGG	ATATTAAGGC	TTTCCCTTGT	488880
ТААТАТСАТА	GCAACGATTA	AAAAATCAAA	AGTATTATTA	GAGAATGTAT	AATAAGGTCT	488940
AAAGATAAGG	TGTTTAATAT	TTGAATTTAG	AAAAAATCCA	ACTCCAATCC	CAATTCCTGT	489000
TGAATATATG	AACCCTCTTT	CTGGGCTAAA	AAAATTAGAG	ATTTGTTTGG	GTTGATCATT	489060
TTTTTCATTA	GTATTGCCTT	CTTCATTTGC	AAGTGCATTT	AAATTGGAAA	TGATAAGCAA	489120
TGTTAAGAAA	ATACAAGTGT	TTGGAGTTTT	TTTCATAAAC	TGATTATTTT	АААТААТАТА	489180
AAAATTGTTT	TACCTTTTCA	ATATTGCGAT	ATGTATTTAG	ATAAAATTTC	CCTGTTTAGT	489240
ТТААААААТА	TTTTTTATAT	TAGGTGGCTG	TGGTATGCTA	TTTTTATTGT	АТАТТАТАСА	489300
ATATGTTTAA	TTACTAGGAG	ACCACAGTTA	TGTTTTTAA	TTTTTTGAAA	AAAGATCTTG	489360
TATTTGTTTT	GCCAGAAGTA	AATTCAAAAG	AAGATGTAAT	TGATTTTTTA	ATTGAAAAAA	489420
TCAATGATAA	GGGATATATA	GATAATAAAA	AAGAGTTTCT	TCAAGGAATT	CTTGATAGAG	489480

AAAAGATAGG TGAC	ACTTCT TGGGAAAA	rg gggttgcaat	TCCTCATTT	ATAGGAGATG	489540
TTGTTAAGAC TAGT	TTTATT TCATTGCT	TT ACATTAAAGG	TTCTGGGGTT	AAGTGGTCTG	489600
AAGAAAACCC CCCT	GTTAAT TTAATATT	TT TGATTTGTAT	GTCAAAAAA	CAACAAGGTA	489660
ATGAACACCT TAAG	GCGATT GCTTTTATA	AG CTAAACTATT	' TGAAGATGAT	GCTTTTCAAA	489720
ATGCTTTACG CGGG	TTTGTT ACTACTGAT	G ACATTTATTA	TTATATTGAA	AATGTTCAAA	489780
GAAAGGCTAA AGAAG	GAGGTT TTTGGAGCT	TA CAAAAGCAGA	AAAAATAGTG	GCCGTAACTG	489840
CTTGTCCTGT TGGA	GTTGCT CATACGTAT	A TTGCAGCTAA	GAAAATTGAA	AATGAAGCTA	489900
AAAAGCAGGG TTATA					489960
TAACAGAAGA GGAAA					490020
ATGAAAAGAG ATTTO					490080
ATACAGAAAA TATTA					490140
GTACTAATAG TGATA					490200
TAATGAGTGG GGTAT					490260
TTAGCATTGC TTTTG					490320
ATAAGCAGAT TGCAG					
GTTTTATTGC AATGG					490380
TAATGTCTGG GAATG					490440
GTTATGTTGC AAGGT					490500
CTATATTTGT AATTC					490560
					490620
GTGTTTATAT TGGAA					490680
ATTCGGAAAC TTTTG				•	
TTACTGTTGA TATGG					
TTCCTCAAGT GCCAG					490860
CTATGGGGCT TGCAA					490920
GTAAAATAGC CTTTT					490980
CTAGTGATCC CGGAC					491040
TTGCCGCTTT TTTAG					491100
TTATTGATAA TAAAT					491160
CTTTGGTAAT TTTTT	TGAAA TCTTTAAAA1	TAAAGGAATC	TGAATGAATA	ATGAAGATAA	491220

1	2	5
3	_	J

435	
TATTTTTTTA ATGAAAAATA ATATTAAAGA ATATGATTGG GGCGGAATTA ATTTTA	
CAATCTTTTG GGTGATAAGA TTGATGGAAA GCCCAAGGCT GAAATGTGGC TTGGAG	
CAAGACATTT TCTAGTAAGA TTTTGTATAA AAATGAATAT GTGCTTTTAA GCGATT	
AGAAGATCAT AAAGAGCTTT TAGGCTGTAA TGACGAATTT CCTTTTTTGC TTAAGG	TATT 491460
GTCTGCAAAT AAGCCCCTGT CTATTCAAAT TCATCCTTCT AAAGATATTG CCTTAA	AAGG 491520
GTATGAATCA GAGAATAATA AAGGGATAGA CATTAATGAT CCCAAAAGGA CATACA	AAGA 491580
CAAAAACCCC AAAATTGAAC TTATTTATGC TCTTAGTGAT TTTTATGCTC TTAAAG	GCTT 491640
TTTACCCTTA GATGAGATTA AAAAAATTTA TGAAATTCTG GAATTAAATT TCGACT	TTCA 491700
ATCACATAAA GATTTTGTAA AGACTATTTT TGATTTACAA ATGTATGAAC TTGAGA	AGAT 491760
TATTGAAAAA ATTTTAAAAA ATTTGGATCT TATTGATAAT TTTAGGGGCT ATTGGT	TTAA 491820
TGAAATTTAC AATATTTATG GTATAGATGT GGGCCTTTTG GTATTTTAG GTATGA	ATAT 491880
TTTAAAACTA AAACCAGGAG AAGTTGTTTA TACAAATAGT CAGGAGGTGC ATGCATA	
TAAGGGAGAT TGCATTGAGC TTATGACCAA TTCCGACAAT GTTATTAGGG CTGGGCT	
TACAAAGTAT ATTGATAAAG ACGAGATGTT AAGAGTTGGT CAATTTGAGG AAGGAAA	AGTT 492060
ATCATTTTTA AATCCCGATT TTCAAGATAA TTTTAGCGTA TTTAGACTTC CAAATAC	TAA 492120
TTTGAAATTG ATTCAAAAAA AAATAAATGA GAACATTTGT ATTAATAGAA ATAGTGC	CAAT 492180
GGTCTTGCTA GTTTTAAATG GGTGCGTGAG TATAAATAAA TCCTTAAATC TTAAGAA	AGG 492240
TGAGAGCATA TTTATAGGTA AAAAAGCAGA AAACTTGTTT ATTGATGGGG ACGGCGA	AGC 492300
TTTTATTGCT GGTTTTAATT AAAATTAAGC TTGCTTATGC GAGCTTAATT TTAATTA	
ATTTAATTAT TTGGTTAATT AAATGCAAAT TTTATGAATC CAAATCCAAA AAAATTG	
TTAATTCCTT CAAATAAAAT GCTTGGTTTT GTTAGTAATA TTGTTGGCCC TACTGCA	
TAAATTTTGA ATCCTATGGA TAAATTTTTT GCAAAATTAT ATTCCATTAT AAAAGGA	
CTTATAACAG CGCCTATTCT CTCATAATCA GTTTCTTCTT CTTCATTAGG GGGTATA	
GATGTTTTTG ACCAATCCGC ACCTATTCCA ATGCCGCCGC CAATTTTCAT ATATTGT	
ATTTGCTTTT TAAAAATAAC GTCTATTCCA CCATTTAGAT AATTTTCAAA ATTGTTTC	
TTAAGGCCAA TAAAACCTCC ATATCCAAAA TCAATATTTA TATAAGGAAT TGTAATCA	
ATATTTGCAA TAGGATCTCC TATTCCAATG CCCATTGAAA ATAAGTCATA ATTTTTC	
TCTTTTATTT CTTTAAGCTT TGCGATACAG GTGGTTGAAT CTTCTTCCTT GCTGCATC	
ACCATATAAT TGTCAGATGC AAAAGAAAGG TGTGCCATAC CTAATACTAA TGTTAAAA	
TATATTTTTT TAAAAATTTT TATCATTTAT TCTCCACTAT ATATATAT	GCC 493020

TGTGCCTAAG A	AATTAAATC	TAGCTCCTTC	AAATGACATT	' GGGCTGCCAA	GTAGCATAGT	493080
TGTTCCAATA G	TAGCAACAG	CTTTAAATCC	AATCACAATA	TTTTTAAGAA	AGCTGTACTC	493140
TATTACCAAA G	GCAATCTTA	TCACAACCCC	TATTCTATTT	TGAAGAGAAG	CTACTTGTTG	493200
TGCTTCATTT T	CTTCCTCTT	CTTCAAGTTT	TTCATTTGAT	TTTTCAGGAC	TTCCTTTTGA	493260
CCAATCTGCA C	CTATTCCAA	TGCCTCCAGA	AATCATAGTG	TTTTTGTGTA	TTTCATCTTT	493320
AAATAGAAGA T	CTACACCCA	TCACAACATA	GGGCAAGAAA	TTGTTGGGTT	TAAGCCCTAC	493380
GAATCCTCCG T	ACCCAAGGT	CTATGTCTAC	ATATGGAACA	GATATTGTAA	TGTTTGCAAG	493440
TGGATATCCA A	CTCCAAAAC	CTATGCCAAA	TAAACGGCGC	ACAGACTCTT	CTTTTGCAAG	493500
AAGTTTATCA A	AATCAAAGT	CATCTTCAGT	CATACTTTTG	CTTTTGGATT	GTGCAGCTAA	493560
TAAACCCGTT G	ТТААТАТАА	GTATTATTGT	TGCTAATAGC	ATTCTCATTG	AAATTCTCCT	493620
TTTTTATTT C	AATTTTAGA	AATTATTTTT	ACAATATTTT	TAATAAAGCA	ТАААААТТА	493680
AAAATATTGA T.	ATTTATTTG	CTTATTTTGA	TAGCAAAACT	TTATTGTTGA	ATTTTTTATC	493740
GCTTTGTTTA TO	CAAGGTTTT	GGTTATCAAA	AAATTTTTAA	TCACAAATAC	AGCTATTATT	493800
ATACTACTTG A	CTGTATATT	GATGTTAATC	TTGTTTGTTT	GTAAAGGATT	TTTGGGAAGA	493860
TATTTTTGTT T	TGATTTTTT	GGCCTTTGAA	AAAAATATAA	ATTTATGAAT	TTGCAATAAA	493920
TAAGTTTTTT TO	GCAATGTTT	ТАТТАТАААА	CTATGGCAAA	AAAACTTTAT	TTGCCTCAAG	493980
CTTTTTGAAG C	PAACTTTAG	GCCATTAATT	CTTTTTTCA	AAAATTTATC	ССАААААТТТ	494040
AAATATTAAG T	TTTTAATCT .	АТАААСАААТ	AGTATATCAA	AGTTTTGAAT	TTGAAATGCT	494100
GTTTTGATAT TA	ATTTTAAGT .	AAGGCTAAAT	TAATTATAAA	TAAGATTTAG	TAGATAATTT	494160
ATTGTTATTA A	ACTTATACA .	AAGCTTATGA	ТТАААСТАТА	TATCGTTTTT	TTTTATTTTT	494220
TTTCTTTTCT G	TTGGGGTTT (CCAGAAAATA	TTTTTTTTAA	AAATTTAGGA	ТТТТСТААТА	494280
ATGATCGGTA T	TTTATGTTT (GGCGAATATG	GTTTTGAAAA	TGGATATTAT	TACTCTGCTG	494340
CATACTTTGT TO	GATGTTGTT A	TTAATAAAAA	TTGCAAACTC	TGGAGTACAT	TCTAAGACTT	494400
TTAAAGAGCA CA	ATTGGGTAT '	TCAGACAGTT	ATGATAAAAG	TCTTTATGAG	CTTTTAAAGA	494460
TGATTAATTT TA	AAGTTAAA (GAATTTAAAA	TTAATCATTT	AAGAAGAGGG	CGTGAAATTT	494520
ATTTTTATGT AA	AAAGTGAA A	ATTCCAGAAA	CAGATTTTTT	AAATTTTGTT	GATTTTAAAA	494580
CAGGAAACGA AT	PATCAAGTT	PTTGTAAATA	AGGATATTAA	TTCCCAAGAA	CTTTCTTCTT	494640
CTTTTAATAT TT	TTTTATCT (GTCAGATATT	GTAATTCAAC	TCTAGAAAAG	CATTTGACTG	494700
TTGGAAGAGG AA	ATTATTAT A	AGAAAGAATG	TTATTGATTA	CAGAATAAGA	GAGATTGTTŢ	494760

437 TATTTCCAAA TGAAGATGGA ATTGTTTTTG TTTTGGAAAA AATCATGTTA AATTCTTATG 494820 GAAATAGGTA TAAACGGTTT ATGGTTGAAG TTAAAAAATA TTGAATATAA TTATTTAGTT 494880 TTTTAAAGAA GTGAAATGCT TTATTGAGGA TAATTTATGA GTGATTTTAT AGCATCAAAA 494940 GAAGATGATT ATTCTAAATG GTATTTAGAT ATAGTCCAGA AAGCAAAACT TGCTGATTAC 495000 AGTCCTGTAA AAGGATGTAT GGTAATTATG CCTTATGGGT ATTCTATTTG GAGTAAAATT 495060 CAGAGTATAC TTGATAAAAA ATTTAAAGAG ACGGGACACG AGAATGCATA TTTCCCTATG 495120 CTTATTCCTT ATAGTTTTTT AGAAAGAGAA AAGGATCATA TTGATGGATT TTCACCCGAG 495180 TTTGCTATTA TTAAGGATGC TGGTGGAGAG AGTTTGGCAG AGCCTTTGGT TTTAAGGCCT 495240 ACCTCTGAGA CAATTATTTG GAATATGTAT AGTAAGTGGA TTAAGTCTTA CAGAGATCTT 495300 CCTCTTAAAA TTAATCAATG GGCAAATGTT GTTCGTTGGG AAAAGAGAAC AAGGCCTTTT 495360 TTGCGCACTA CCGAATTTCT ATGGCAAGAA GGACATACTG CTCATGCTAC CGAAGAGGAG 495420 GCATTAGAAG AAACTTTACT TATTTTAGAT GTATATAAAA GATTCATAGA AGACTATTTG 495480 GCCATTCCGG TGTTTTGTGG TAAAAAATCT GAAAAGGAAA AATTTGCGGG GGCTGTTTCT 495540 ACTTATTCAA TTGAGGCATT AATGCAAGAT AAAAAAGCGC TTCAAGCCGC TACATCCCAT 495600 TATTTAGGTT TAAATTTTGC AAAGGCATTT GATGTAAAAT TTCAAGACAA AGATGGCAAG 495660 ATGCGGCATG TATTTGCTAG TAGCTGGGGT GTTTCTACCA GATTGATTGG TGCTTTGATT 495720 ATGGTTCATT CTGATGAGAA AGGTTTAGTT TTGCCGCCTC GCATTGCTCC AATAGAAATT 495780 ATTGTTATTC CTATTTTTAA AAAAGAAGAT GAGATTAATA AAAAAATTTT AGATTATTCT 495840 GATTGTGTTG TGGATGCTTT AAAAAAAGCA GAATTTAGGG TTGAAATTGA TAAGGACGTT 495900 AGAAGTTCTC CGGGATTTAG ATTTTCATCT GCCGAGTTTA AAGGAATTCC AATACGCCTT 495960 GAAGTGGGGA TAAATGATGT CCTTTTAAAT TCCGTTACTA TTTCAAGAAG AGATAAAGAC 496020 AGAAAATTTA AGTATCAAAT ATCACTTGAT TCTCTTATAA GCAAGGTTAA GGTAGAGCTT 496080 GATTTGATGC AAAAAGATTT ATTTCAAAGA GCATTAAATT TTAGGATCTT GAATACTAAG 496140 GAGATTTTTA GAAGCAGTAA GGATAGTTAT GAGACATTCA AAGCCTATGT GAATGATTAT 496200 TCTGGATTTG TGCTTTCTTG TTGGTGTGGC AGTTTGAATT GTGAAAATAT TATTAAAAAT 496260 GAAACTAAAG CCACAATAAG ATGTATCCCC GATGATTTTA AGGCCAGAGA TTTAACAGGC 496320 ATGACTTGTA TTTATTGTTC ATCTAAAGCT AAATATTTTG TTTTATTTGC CAAATCCTAT 496380 TAATTTGTTT AGCTTTAATT AATTTTTTCT TGATCTTTTA ATTCTTTGAA GTTTATTATA 496440 TGAATGATTG CAATGTTAAA AGCAAAGTCG ATTAGTAAAG CCAAAGAGAT TAATATCGGC 496500 AGCATTGGTG TTATGTTTGA AACATTTAGC TCTATTCCTT TTGTATATGT AGAGCAAAGC 496560

ATTGTAATTA	ТАТАААТТАА	ACTATTTGGT	T ATATGAGGAA	ATGCAAAGAC	AAAAACAAAT	496620
GATAAAGTGC	TCATATAGCT	TATTTCATAA	ATAGAAATGG	GTAAGCTAGA	ATATGATTTT	496680
AAAATTATAA	AAAATGATAT	TACTGAAACA	AAAATAGTGC	CAAATTTAGA	TACAAAATTT	496740
ATTAAAGGTA	TGTTTATAAT	TATGGATTTT	TTTATATTTA	TTCTTTCGTT	ТТТААТАТСТ	496800
TCTATTAATA	TCACATAAGG	GGAATAAGAA	TCTTTTGCAA	GTCCTGAAAA	TATTATGTTT	496860
TGAAATGATA	CAAAAATGCC	TTTATATATC	ATTTTAAAAC	ТТТТТСТТАА	ТСТАТААСТА	496920
ATTGTTGGCA	ATATTACGAA	TAAAATTATA	ATTGTCCATG	CCAAAAAGAA	TGTTATGCTG	496980
TTTGTATAAT	TTGGGTAATC	TTTGAAGTTT	TTTAAGTTTG	CAGCGTAATT	TGCTGTTATA	497040
AAAATGATCC	СТАТАТТТАА	TATGTTTACA	ATAAACCCAT	TTGCATGGTA	AAAAAGATTG	497100
GATGCGCTTA	GCATCAGTTC	TCTAGCTATT	CTGCCTTTTT	GTTTTGCATA	АТАААААСТТ	497160
GTGCCTATTA	TTATTGAAAT	CATGTAAATG	CTTAGTAGAT	TTGGATTGCT	AGATGTAAAT	497220
ATTTTGAAAA	TATTTTTGG	AAAGAATGTT	TCTAGTAAAG	CTTCTTTTTC	AAAAAAACAT	497280
GTATTTTGTA	TTGTTTTTC	TAGTATTGGA	ATTCTTTGCG	GAAGATATAT	TGTTGCAGCT	497340
ATTATTGATA	CAGCAACTCC	AGATAGGTTA	GTTAAAATTC	САТААТАААТ	TGTTTTACCA	497400
AAAAGCTTTT	TAAAGTTTTT	ATTTTCAATA	ATATTTTCAA	TTCCTAATGG	AATTGAAAAT	497460
ATTAAAAAGG	GAATAAGAGA	TAAGTATGAT	AATCTTATAA	AAGCATGTGA	TAAGGAGCTA	497520
TAAATTCCAA	GAGGGAAAAA	CAATCCTAAA	AAGATTCCAA	TAGGCAAAGT	GAAAAAAAA	497580
TTGATTTTTA	TATTCATATG	ACTTCTCCTT	TCAGAGATTT	AAGGTACACT	GTGTATAATA	497640
AATAGTACTA	AATTTTTTG	ТАААТАТААА	CTTTAGAGTT	ACAATTGTAC	TTGTGTCGCT	497700
ATATTGCTTG	TGGGTGTTTT	TGGGGGTAGT	TTGTATAAGT	ATCCTGATTC	TGTAGATACA	497760
GATTTAAATT	CGAGATTGCC	AAATATTTTA	ACTTTAGAGG	AGCATGATAA	GCAATTTTTT	497820
ACTAAAGATT	ТТТАТАААА	TCTTATTTCA	AGCAGTAAAG	AAATTGGCTT	TAAGCTTCAT	497880
AAAGTTTTGG	TAGATTATTT	AAATCCGCAG	TCAGAAGAGG	TTGATAGGGT	ТТТААААТАТ	497940
AATCAAGTGA	TTAACATTTA	TTGGTCTTTT	CTCAGATCAA	TTGCAAAAA	CATTTCAAAA	498000
TTGACCATGG .	AGCAGAAAAT	TTTATTTAGA	TTTGCCGCAC	ТТАТТССААА	TGCACTTGGA	498060
TCTGAAATTC	AGCTATTAAT	TTCAAAAACT	ATTTGGGACA	АТСАТТАТАА	TGAGTCTTTT	498120
ATTTATTTTG 2	ATGAATGGCT	TTATGGGGTT	AATAATTTTA	AGCTTAGTAG	ATTAGCAACC	498180
GATTTGCCAA (CGGATAATTT	TAAAGAAGAA	GATATGGAAA	AAGTTTTACT	TAATAAGAAA	498240
GAAAAACTTT 1	IGGCAAATAT	TGATTTTGCA	AAAAGTAGCC	TTAAGAGAAC	TGATAAGATC	498300

			439			
AGAAAAGAG	G CTCTTAGTAA	GTTAAGAAGO	ATGTTTGAAT	TTTTATTTC	AAATAATAGT	498360
CAAAGCGAT'	r taacttatat	GACTGAATAC	GGAGTGCAGA	GTTCTTATCC	TAATTCGATT	498420
TTAAAGCCT	TAAATTTTGC	TAGTAATTAT	GTTGATGATC	ТТАТТАААТС	AAATCGGGAT	498480
ATTAATGTT	Т ТТАТТААТАА	AATTGAAGAT	ACTAACAGAG	AGCTTTTTGA	AATTCAAAAT	498540
AAAATGAAT	A ATATTGGGAT	GTCTACTGAA	TCAACTATTG	CACATGATGA	AGTTGAAGTT	498600
ATCAGAAGCO	G CCAATAAACT	' TGCGATAGGG	CCAAGAGGCA	ATCATTTTCC	TATTCTTTTG	498660
AAAAATAATO	G TAGTTGCTAA	CCCTCAATTT	TTTGGAAGTA	GAGAAAGAAT	TATGCAGCTT	498720
GTTTGGGAAA	A TCGAAGATAT	TCAGCCTAGA	CTTTTTCAAA	AAGCGTATAG	AGGAGATTTG	498780
CTCAGAGTAG	TTCCTTATTT	ТАТАТТААТА	CCTTCTTATG	GTGATAAAGG	AATTTGTTGG	498840
GAATCAATTO	ATGTTAAAAA	CAGAGCAAAT	GGTAGGGGTA	AAATATTAAT	ACCTATGTAT	498900
GCTAAAAACT	TAAGAAAGGC	GGTTATTTTG	GGTATTGGTG	ATTTTGTTTG	GGAACTTGCA	498960
AAAGAGCAAG	CTTCTTTAG	GTGGATGGAA	ACAGGAATTA	CAGGCCAATA	TTACGATTAT	499020
TATGTTAAAT	TTATTAAAAA	GGGAAATGTT	AAAAAATTTT	TTTTAGAAGA	TTATTTTCTT	499080
TGGATAGAAA	AAGAAAGTAA	AGGAATTCAA	AAACTTGAGA	AATTAGTACG	CGGAATAATG	499140
TGGAGGAATT	TACCCTTTTC	TAAAAATTTA	AAAGAGACGC	TTGCTAAAAA	ATCTTTTATA	499200
TACAAGGATC	TTATTGATAA	AGATAAAAAT	ATCCAAGCAT	CTGATGGGTA	TTGAATTTAT	499260
TTTCTATTTT	ACTAAAATTC	GAACTATTTC	TTTGTTTTTA	AGCTTTTTAA	GTTTTTTTT	499320
GAAATTGTCG	TCAATGTAAA	TTTTTTTTTT	TTCCAGAGAT	TTAATTAGTT	TTATATTTTC	499380
TGTTTCTATT	GCGGCTTGCA	TTGGTGTTTT	TCTATTTTTA	AGTGTGAAAC	TTAAATCAGC	499440
TCCGCTTTCT	ТТТАААААТТ	CAAATATTTT	TTCGTTATTA	GTATATATTG	СССААААТАТ	499500
TGGAGAATAA	CCTGTATCAT	CTATTTGATT	AAGGCTTATT	CCGTAATCTA	TCAATATTTT	499560
TGTGATTTCA	AATTCATTGT	TTATTATTGA	AATTGAAATT	GGAGATATTT	ТАТАТТТААА	499620
GTTTATTTCT	GCTCCAAGAT	TTAGTGCAAT	ТААААТСССТ	TTTTTATTGT	TGAAAAAAAC	499680
AGATATTATA	AAAAGCTCAT	TTTTGATTTT	TTCTAAACTT	TGTAAGATTT	CTTTGTCATT	499740
ТАТАТТТАТТ	GAATTTATAA	ATTCATTTAA	AGTGTCTTTA	TCTTTTTGAT	ATTCTTTGCT	499800
ATTGAAAATA	TATAAATTTT	TTTGCAATTC	TTTTACTATT	GAAGTACTTG	TATTAGTATT	499860
TATTGAGTTT	AAATTCATTA	TTGTTTGCAA	TAACAGTAAA	AGCATAATGA	ATTCTTTTTT	499920
CATGTTTTGT	GAGTTTTGTA	TTCCTTTAAT	AAAGTGTTTA .	ATTTTAGACG	ATTGCTTTTT	499980
AAATAGGTAT	TAAATTAACA	ТТТАТТАТАG	GTCATTATAA (GATTATTTTT (CAACGTTTTT	500040
GTGGTCATAA	TTGTCAGTTA	TGAAATGATT	TTTACTATTT '	TTTTATATTG (GAGTTTTATG	500100

CTAAATTTTA AATTTAGGCT TTAGTTTTGT TGTTTTAATA TTTTTACATT GGTGTTAATG	500160
TAAAATGTGG TGATGTTAAG TTAGTATTTA TAAAAATTTT GACAACTTTT TAAATTGAGG	500220
TGTGCATTTT ATTATGTGTA GTTTATATTG TAAAATACTC TTATGAATCT ATTGGTCAAA	500280
ATTGCTAAAT TTATTTTGAT TTTGTTTTTA TTTACTTCTT GCAACCAAAA GCAAAGCGAG	500340
ATTCAAAATC TTACACATCT TTTAAAATCT TCTAATAAAA ATAGATTAGA TAAATTTCTT	500400
ATTATTGATA GAGTTGTTAA CATATATATT GCAAATAAAA ATTATGAAGA TGCTTTAGAA	500460
ATTGTAAATA ATGGAATTAT TGATGATGAA TCTAGAGAAT ATTATCCTTT GTATCTTTAT	500520
TTAATGGGCA ATATTTATGA TTCCATGGGA GAAGATTTTG TAGCTTTTAA TATTTACAAG	500580
CGTGTTGTTG ATAATTTTGA TGATTATGTT TATGAAAACC ATTCAATGAA AACAAGGGTT	500640
GCTAAAAAGA TTGTCAATTT AAATATTGAT TCAATCGATA AAATCAATTA TTACAAATTT	500700
ATATTAAATA TGGGGATTGA TAATTTAAAT AATGAGGAAA AGGGTAATTA TTTTTATAAT	500760
CTTGCGCTAA GTTTGGAAGA TGTTCAAGAT TACGATGAAT CTTATTTTTA TTATAAAAA	500820
TTTCTTTCAA TTCCAAGGGC ACATTTAAAA ATAGATTCTA GAGACTATTT TAATGTTGTT	500880
ACAAAAATTA ATTACTTTAA TAATCCAGAG TTTGTTGTTT ATAGAAATTT AGGAGATTTA	500940
ATCCAGGATG TTAAAAATTT TGTTCTTTCT GGTAATACTT CTAAATTGCT TAATATAAGA	501000
GATAAGAATA ATTTTTTAT TCAAAGCTGG GATCAAAAGG GTGGAAAGAG TAATTCCATT	501060
AATACTAATA GCTTTTTAAC CACTATGATT AGGCTTGGGG GGAGAAGAAA AAACGGAATA	501120
CAATTTGCAA AGCATCTTGA GGCAGATTCT AGTGACGATA TATCTTATCT	501180
GGCTGGGACC ATATTCATGA ATGGTATTTT GTTTTTAAAA GAATTGTTTA TCCTAAAGAT	501240
CCAGAAATTA ATAATGGCTG GACTTGGATA GGCGTGTATT TAGGTAAAAA ATAATAGGAA	501300
GGAGATAATG CATTTTCTTA AGTTTCTTTT TAGTTATTTA TTTCTACTTT ATTCTAATGT	501360
TTCCATAATA AAGGATGAAG CTGCTGAGAC AAGTGTGCAC AGAATAATCG ATTGGGATAG	501420
GAAGGTTATT TGTTTTGACA TTGTTAAGGA AATTAATGAA AATGAATTTA GACCAGTGGG	501480
TTTAAATACA GCGTCTAAAT TAATAGCAAC CATTAATGAT TTTAAAGACA CGTTAATAAG	501540
AGAATCTCTT TTTAAGATAA TTATGGATTC TGAAAATACT TTTAAGAATT ATTTTGACCT	501600
GAATCCCAGC TTGATACTTA ATTTTTCAGG TCCTAATAGT ATTTTGAAAA GGTCTTATAT	501660
AAAATATTCA GAAGATTTAA GAAGTCTTAC TGTTAGGTAT GAGCTTAGTC TTTTCCCCGA	501720
TTTTATAAAT TTATTTTTTT CACATGAAAC TCCTTATAAA GCTTTTTATC CATTAGTAAA	501780
TTCTGATGTT GATAAAACCG ATTATACAGG AATTGTGATT TATGTAGGCG AAGTCTACAA	501840

CATTAGGCCA TATTTTGATA AGAGAATGGT TTCTTCAGAG GCTTTGAAAA AATGGGGAAT 501960 GCTTGAGTAT AGCAACGATG TTCTTTATAA TAATAAAAAT AGGGTTGGAC ATCGTCCTTT 502020 AAAATTGGTT GCCAAAAGTA TTTATCCTAA AAARAAMACA GATATTATAG				441			
GCTTGAGTAT AGCAACGATG TTCTTTATAA TAATAAAAAT AGGGTTGGAC ATCGTCCTTT 502020 AAAATTGGTT GCCAAAAGTA TTTATGGTAA AAATAATACA GATATTATAC TTGATGAGTA 502080 TTCTATTAAT AAGTTGTTT CAAATAGTAA CAACATTAAA CTCTGCAAG ATGGAAAACT 502140 TGTTGTAATA AAGTAAGAAA ATTAAATTA GTACTTGTTT TTTCTAAAC AATCAACTAA 502200 GATAATAAAG AGTTTTATAG GGAATTAGTG CCCTTATAGC TCAGTTGGTA GAGCACCACC 502260 ATGGTAAGGT GGGGGTCTC GGTTCAAGTC CGATTGAGG CTTTTATTGG TAGTTAGGAG 502320 TTTTGTTATA TGGGTAAAAA GAAGGCAAA GGAGCTGTTG AGCTTATATC TTTGATTTGT 502380 GAAGAAACAG GAATTAGAAA TTATACCACT ACTAAGAATA GACGCAATAA GCAAGAAAAG 502440 TTAGAATTGA TGAAAATATTG TCCAAAATTA CGAAAACACA CTCTTCATAA AGAAGGAAAA 502500 ATGCTGGGGG TTCGAATCCC TCCTGACCTC TTGTTAGAAT TAAAGTGGGC CTAAGATATAAT 502620 TTTAGGTTTA TCAAAGATGG TATCTTAGGG CTTAAGAAGG TAACGTGGCC TAAGTATAAT 502680 GAAGTTGTTG GAAATGGAAA GCAAGTTTTT TGGCTGGTAT TATTTTGTTC AATTTTCTTG 502740 GGTATAGTCG ATTATCTTAT GTTCTTGTT GTAACTTATG TATTTTAGTT TAATTATATAA 502880 AAGGTTAAGC GAAATAAG GCTTGTATA TATTTTAGTT TATTTTATTT	TAATACTTCT	GGTTCTAAAA	AATTAGAAG	A CTCTTTTTT	T ATCAAAATT1	r atgatgaaaa	501900
AAAATTGGTT GCCAAAAGTA TTTATGGTAA AAATAATACA GATATTATAC TTGATGAGTA 502000 TTCTATTAAT AAGTTGTTT CAAATAGTAA CAACATTAAA CTTCTGCAAG ATGGAAAACT 502140 TGTTGTAATA AAGTAGAAA ATTAAATTTA GTACTTGTTT TTTTCTAAAC AATCAACTAA 502200 GATAATAAAG AGTTTTATAG GGAATTAGTG CCCTTATAGC TCAGTTGGTA GAGCACCACC 502260 ATGGTAAGGT GGGGGTCGTC GGTTCAAGTC CGATTGAGGG CTTTTATTGG TAGTTAGGAG 502320 TTTTGTTATA TGGGTAAAAA GAAGGGCAAA GGAGCTGTTG AGCTTATATC TTTGATTTGT 502380 GAAGAAACAG GAATTAGAAA TTATACCACT ACTAAGAATA GACGCAATAA GCAAGAAAAG 502440 TTAGGAATTGA TGAAATATTG TCCAAAATTA CGAAAACCAC CTCTTCATAA AGAAGGAAAA 502560 ATGCTGGGGG TTCGAATCCC TCCTGACCTC TTGTTAGAAT TAAAGTGAGG CTTTAAAGTG 502620 ATGCTGGGGG TTCGAATCCC TCCTGACCTC TTGTTAGAAT TAAAGTGAGG CTTTAAAGTG 502620 TTTAGGTTTA TCAAAGATAG TATCTTAGAG CTTAAGAAG TAACGTGGCC TAAGTATAAT 502680 GAAGTTGTTC GAAATGGAAA GCAAGTTTTT TGGCTGGTAT TATTTGTTTC AATTTTCTTG 502740 GGTATAGTCC ATTACTTAT GTTTCTTGTT GTAACTTATG TATTTTTATATAG 502800 AAGGGTAAAT TATGTCTAGA GCTTGGTATG TAGGTCTAAAAC TTATTCTCAA TATGAGAAAA 502820 AGGAGAAAAAT TATGTCTAGA GCTTGGTATG TAGGTCAAAC TTATTCTCAA TATGAGAAAA 502920 ATGTTAAGGC GGACATAAGG CTTTTAATAA ATGAAGGTGT TTTTGGCTGGT GTGGTATTAG 502920 ATGTTAAGGC TCCTATTGAA AAAGTAGAAG AGATAAGAAA TGGCAAGAAA AGAATAAGGG 502920 ACGAGAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTGTA TCTTCCAGA GTAGGCTGGA 503040 AAGATATAT TGCTAATATT ATCAAAGTTC AAGGCTGTA TATTTTTTT TGGTTGTTT GTGTTTAGTA 503100 AAGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAGCTATA AAGGGTTAT TATTTTTTT TGGTTTAGTA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAGCTATA AAGGGTTTT TATGTTTTT TTGTTTTTT TTGGTTTAGTG 503160 GTGAGAATAA AGGAATAAA TCTATTTTTT TGGCTTTAGA TCTTTAGATCT ATTGATTTAT TGCTTACTG 503140 ATTCCAACA TATAGAAAAA TCTATTTTTT TGAAGAGAC TTATTAGTTCT ATTGATTATG 503340 ATTACAAAGAA AATAAAAAA TCTATTTTTTA TGCTTTATAG CTTTTGAACCCCT GTTGAAGTTG 503340 ATTACAATAAA GGAAATAAA ATTAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503340 ATTTCCAACA TATAGAAAAA ATTAAAAAT TAAAATTT TAATACTAAT TTGGATTAAA TTGCAGGTTC 5033400 ATTCCCAAAAAAAAA ATTAAAAAAAAAAAAAAAAAAAA	CATTAGGCCA	TATTTTGATA	AGAGAATGG	I TTCTTCAGA(G GCTTTGAAA!	AATGGGGAAT	501960
TTCTATTAAT AAGTTGTTTT CAAATAGTAA CAACATTAAA CTTCTGCAAGA AATCAACTAA 502200 GATAATAAAG AAGTAAGAAA ATTAAATTA GTACTTGTTT TTTTCTAAAC AATCAACTAA 502200 GATAATAAAG AGGTTATAGG CCCTTATAGC TCAGTTGGTA GAGCACCACC 502260 ATGGTAAGAG GGGGGTCGTC GGTTCAAGTC CGATTGAGGG CTTTTATTGG TAGGTTAAGAA 502320 TTTTGTTATA TGGGTAAAAA GAAGGCAAA GGAGCTGTTC ACCACAATAA GCAAGAAAAG 502440 TTAGAATTGA TGCAAAATTA CCAAAACACA CTCTCATAAA ACGACAGTCT CCAAAACTG 502500 ATGCTGGGG TTCGAACCC TCCTGACCTC TTGTTAGAAG CTTAAAGAGG CTTTAAAGTG 50260 TTTAGGTTTA TCAAAGATAG TATCTTAGAG CTTAAGAAGG TATATTTTTC 502740 GGTATAGTCG ATTATCTTAT TGGCTGGTAT TATTTTTTTA 502740 GGTATAGTCG ATTATCTTAT TGGTCTGAAA TATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	GCTTGAGTAT	AGCAACGATG	TTCTTTATA	A AAAAATAAT	T AGGGTTGGAC	C ATCGTCCTTT	502020
GATAATAAAG AGTTTATAG GGAATTAGT CCCTTATAGC TCAGTTGGTA GAGCACCACC 502260 ATGGTAAGGT GGGGGTCGTC GGTTCAAGTC CGATTGAGGG CTTTTATTGG TAGTTAGGAG 502320 TTTTGTTATA TGGGTAAAAA GAAGGGCAAA GGAGCTGTTG AGCTATATC TTTGATTTGT 502380 GAAGAAACAG GAATTAGAAA TTATACCACT ACTAAGAATA GACGCAATAA GCAAGAAAAG 502440 TTAGAATTGA TGAAATATTG TCCAAAAATTA CGAAAACACA CTCTTCATAAA AGAAGGAAAA 502500 ATGAAATAAT AAATAATAGG TCAGTAGTTC CAACGGTAGA ACGACAGTCT CCAAAACTGT 502560 ATGCTGGGGG TTCGAATCCC TCCTGACCTC TTGTTAGAAT TAAAGTGAGG CTTTAAAGTG 502620 TTTAGGTTTA TCAAAGATAG TATCTTAGAG CTTAAGAAAG TAACTTCTCTTG 502740 GGAAGTTGTTG GAAATCGAA GCAAGTTTTT TGGCTGGTAT TATTTGTTC AATTTTCTTG 502740 GGTATAGTCG ATTATCTTAT GTTTCTTGTT GTAACTTATG TATTTTAGTT TATTATAAAG 502800 AAGGGTAAAT TATGTCTAGA GCTTGGTATG TAGTTCAAAC TTATTGTTC AATTTTCTTG 502920 ATGTTAAGGC ACCATAAGG CTTTAATAAA ATGAAGGTGT TTTTTGGCGGT GTGGTATTAG 502920 ATGTTAAGGC TCCTATTGAA AAAGTAGAA AGAATAAGAG TCCTCAAAACTGT 502920 AGGAAAAAAT TATGCCAAGG CTTTTAATAA ATGAAGGTGT TTTTTGGCGGT GTGGTATTAG 502920 AGGAAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GAAATAAGGG 502980 AGGAAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTTGA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAGCTTAT TAATTTTTTT GGTGTTAGTA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAGCTTAT TAATTTTTTT GTGTTTAGTA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAGCTTATA CTTTCAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGCAAATAAA TCTATTTTTA TGCTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGCAAATAAA TCTATTTTTA TGCTTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGCAAATAAA TCTATTTTTA TGCTTTATGA CTTTGAAGAA GGAGAAAGAG 503320 TTAGAATTAA AGCAAATAAA TCTATTTTTA TGCTTTATGA CTTTGAAGGAC TTTTGAAGTTG 503340 ATTTCCAACA TATAGAAAAG ATTTAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503400 AATTTCCAACA TATAGAAAAAA ATTAAAAAAAA AAGCAATTC TTGGAGCCT CATGGAGTTA 503340 ATTTCCAACA TATAGAAAAAAAAAAAAAAAAAAAAAAAA	AAAATTGGTT	GCCAAAAGTA	TTTATGGTA	A AAATAATACA	A GATATTATAC	TTGATGAGTA	502080
GATAATAAAG AGTTTTATAG GGAATTAGTG CCCTTATAGC TCAGTTGGTA GAGCACCACC ATGGTAAGGT GGGGGTCGTC GGTTCAAGTC CGATTGAGGG CTTTTATTGG TAGTTAGGAG 502320 TTTTGTTATA TGGGTAAAAA GAAGGGCAAA GGAGCTGTTG AGCTTATATC TTTGATTTGT 502380 GAAGAAACAG GAATTAGAAA TTATACCACT ACTAAGAATA GCACAATAA GCAAGAAAAG 502440 TTAGAATTGA TGAAATATTG TCCAAAAATTA CGAAAACACA CTCTTCATAA AGAAGGAAAA 502500 ATAAAATAAT AAATAATAGG TCAGTAGTTC CAACGGTAGA ACGACACTCT CCAAAACTGT 502560 ATGCTGGGGG TTCGAATCCC TCCTGACCTG TTGTTAGAAT TAAAGTGAGG CTTTAAAGTG GAAGTTGTTA TCAAAGATAG TATCTTAGAG CTTAAGAAG TAACGTGGCC TAAGTATAAT 502680 GAAGTTGTTG GAAATGGAAA GCAAGTTTT TGGCTGGTAT TATTTTGTTTC AATTTTCTTG 502740 GGTATAGCC ATTATCTTAT GTTTCTTGTT GTAACTTATG TATTTTAGTT TTATTATAAG AGGGTAAAT TATGTCTAGA GCTTGGTATG TAGTTCAAAC TTTTTGGCGGT GTGGTATTAG AGATAGAGCA GGACATAAGG CTTTTAATAA ATGAAGGGTT TTTTGGCGGT GTGGTATTAG AGAGAAAAAT TTGGCCAGGC TATATCTTA TTGAGCTAGA TCTCCAGAA GTAGCACGA AGAGAAAAAT TTGGCCAGGC TATATCTTA TTGAGCTAGA TCTCCAGAA GTAGCCTCGA AGAGAAAAAT TTGGCCAGGC TATATCTTA TTGAGCTAGA TCTTCCAGAA GTAGCCTCGA AGAGAAAAAT TGGCCAGGC TATATCTTA TTGAGCTAGA TCTTCCAGAA GTAGCCTCGA AGAGAAAAAT TGGCCAAGAA ACAGTACAA AGAGTAAAA AAGATTAAT GCTAATATT ACCAAAGTTC AAGAGCTTAT TAATTTTTTT TTGTTTTTTTTTT	TTCTATTAAT	AAGTTGTTTT	CAAATAGTA	A CAACATTAAA	CTTCTGCAAG	ATGGAAAACT	502140
TTTTGTTATA TGGGTAAAAA GAAGGCAAA GAAGTATTA GACGCAATAA GCAAGAAAAA GAAGGCAAA GAAGCAATAA GAAGGAAAAA GAAGGCAAA GAAGCAATAA GAAGAAAAAA TTATACCACT ACTAAGAATA GACGCAATAA GCAAGAAAAA 502500 ATAAAATAT AAATAATAG TCCAAAATTA CGAAAACAA CTCTTCATAA AGAAGGAAAA 502500 ATAAAATAAT AAATAATAG TCCAAAACTGT CAACGGTAGA ACGACAGTCT CCAAAACTGT 502560 ATAAAATAAT AAATAATAGG TCCGTGACCTG TTGTTAGAAT TAAAGTGGG CTTTAAAGTG 502620 TTTAGGGTTTA TCAAAGATAG TATCTTAGAG CTTAAGAAG TAACGTGGCC TAAGTATAAT 502680 GAAGTTGTTG GAAATGGAA GCAAGTTTT TGGCTGGTAT TATTTGTTTC AATTTTCTTG 502740 GGTATAGGCG ATTATCTTAT GTTTCTTGTT GTAACTTAG TATTTTAGTT TTATTATAAG 502800 AGGGTAAAT TATGTCTAGA GCTTGATAG TAGTTCAAAC TTATTCTCAA TATGAGAAAA 502800 AGGACATAAGG CTTTAAAAG ACTTTTAGAGAAA AGAATAAGG 502920 ATGTTAAGGC TCCTATTGAA AAAGTAGAAA AGAATAAGAA TGGCAAGAAA AGAATAAGG 502920 AGGACATAAGG CTTTTAATAA ATGAAGGTGT TTTTGGCGGT GTGGTATTAG 503900 AAGATAATAT TTGGCCAGGC TATATCTTA TTGAGCAGAA TCTTCCAGAA GTAGGCTGGA 503040 AGAGAAAAAT TTGGCCAGGC TATATCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGAT AAGAGTAAA AAGTGTTTT TATCTTATTTGT GTGTAACTT 503100 AGGGGCAAAA AGCAAATAAA TCTATTTTTA TGCTTATGA CTTTGAAGAA GAAGAAAAAA AGCAAATAAA TCTATTTTTA TGCTTATGA CTTTGAAGAA GAAGAAAAAA AGCAAATAAA TCTATTTTTA TGCTTAATGA CTTTGAAGAA GAAGAAAAAA AGCAAATAAA TCTATTTTTA TGCTTAATAG CTTTGAAGAA GAAGAAAAAA AGCAAATAAA TCTATTTTTA TGCTTAATAG CTTTGAAGAA GAAGAAAAAA AGCAAATAAA TCTATTTTTA TGCTTAATAG CTTTGAAGAA GAAGAAAAAA AGCAAATAAA TCTATTTTTA TGCTTAATA CGGAGCTTTA AAGGCGTTAC 503340 AAAGAAAAAA ATTAAAAAGTT GCAGTTCAAA TTTTTGGAAGAC TATTAGTTAT ATGCAGGTT CTTGAAGAC TATTAGAAAAAAAAAA	TGTTGTAATA	AAGTAAGAAA	ATTAAATTTA	GTACTTGTT1	TTTTCTAAAC	AATCAACTAA	502200
GAAGAAAAA TATGCTAGAA GAAGGCAAA GGAGCTGTTG AGCTTATATC TTTGATTTGT 502380 GAAGAAACAG GAATTAGAAA TTATACCACT ACTAAGAATA GACGCAATAA GCAAGAAAAG 502440 TTAGAATTGA TGAAATATTG TCCAAAATTA CGAAAACACA CTCTTCATAA AGAAGGAAAA 502500 ATAAAATAAT AAATAATAGG TCAGTAGTTC CAACGGTAGA ACGACAGTCT CCAAAACTGT 502560 ATGCTGGGGG TTCGAATCCC TCCTGACCTG TTGTTAGAAT TAAAGTGAGG CTTTAAAGTG 502660 TTTAGGTTTA TCAAAGATAG TATCTTAGAG CTTAAGAAG TAACGTGGCC TAAGTATAAT 502680 GAAGTTGTTG GAAATGGAAA GCAAGTTTT TGGCTGGTAT TATTTGTTTC AATTTTCTTG 502740 GGTATAGTCG ATTATCTTAT GTTTCTTGTT GTAACTTATT TATTTAGTT TTATTATAAG 502860 AGGGTAAAT TATGTCTAGA GCTTGGTATG TAGTTCAAAC TTATTCTCAA TATGAGAAAA 502860 AGATAGAGCA GGACATAAGG CTTTTAATAA ATGAAGGTGT TTTTGGCGGT GTGGTATTAG 502920 ATGTTAAGGC TCCTATTGAA AAAGTAGAAA AGGATAACAAA TGGCAAGAAA AGAATAAGGG 502980 AGAGAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503100 AGAGGAAAAAT TGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503100 AGAGGAAAAAA TGGCAAGAAA ACGAATAAA TCTATTTTTA TGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAGTAAA AAGTTTTTT ATGCTTACTG 503160 GTGAGATTAA AGCAAATAAA TCTATTTTTA TGCTTATGA CTTTGAAGAA GAGAAAAAAA ACGAAATAAA TCTATTTTTA TGCTTATGA CTTTGAAGAA GAGAAAAAAA AAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAGCT TATTAGTTCT ATTGATTATG 503280 AAAGAAAAAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAGC TTATTAGTTCT ATTGATTATG 503280 ATTCCAACAA TATAGAAAAA ATTAAAATT TAAATATTATA GGGAGCCTTTG AAGGCCTTAC 503400 TACCATAAGG AGATTATAT GCAAAAAAAA AACCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520	GATAATAAAG	AGTTTTATAG	GGAATTAGTO	G CCCTTATAGO	TCAGTTGGTA	GAGCACCACC	502260
GAAGAAACAG GAATTAGAAA TTATACCACT ACTAAGAATA GACGCAATAA GCAAGAAAAG 502440 TTAGAATTGA TGAAATATTG TCCAAAATTA CGAAAACACA CTCTTCATAA AGAAGGAAAA 502500 ATAAAATAAT AAATAATAGG TCAGTAGTTC CAACGGTAGA ACGACAGTCT CCAAAACTGT 502560 ATGCTGGGGG TTCGAATCCC TCCTGACCTG TTGTTAGAAT TAAAGTGAGG CTTTAAAGTG 502620 TTTAGGTTTA TCAAAGATAG TATCTTAGAG CTTAAGAAGG TAACGTGGCC TAAGTATAAT 502680 GAAGTTGTTG GAAATGGAAA GCAAGTTTTT TGGCTGGTAT TATTTGTTTC AATTTTCTTG 502740 GGTATAGTCG ATTATCTTAT GTTTCTTGTT GTAACTTAGT TATTTTAGTT TTATTATAAG 502860 AAGGGTAAAT TATGTCTAGA GCTTGGTATG TAGTTCAAAC TTATTCCAA TATGAGAAAA 502860 AGATAGAGCA GGACATAAGG CTTTTAATAA ATGAAGGTGT TTTTGGCGGT GTGGTATTAG 502920 ATGTTAAGGC TCCTATTGAA AAAGTAGAAA AGGAATAAGAAA TGGCAAGAAA AGAATAAGGG 502980 AGAGAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGAT AAGAAGTAA AAGTGTTTTT ATGCTTACTG 503160 GTGAGATTAA AGCAAATAAA TCTATTTTTA TGCTTTATGA CTTTGAAGAA GGAGAAAGAG AAAGAATAAA TCTATTTTTA TGCTTTATGA CTTTGAAGAA GAGAAAAAAA AAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGAAGCT TATTAGTTCT ATTGATTATG 503280 AAAGAAAAAA ATTAAAAGTT GCAGTTCAAA TTTTTGAAGCT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGAAGGACT TATTAGTTCT ATTGATTATG 503280 ATTTCCAACA TATAGAAAAA ATTAAAATT TAATACTAAT GGGAGCTTTG AAGGCCTTAC 503400 ATTCCAACAA TATAGAAAAA ATTAAAAATA TAATACTAAT GGGAGCTTTG AAGGCCTTAC 503400 TACCATAAGG AGATTATTG GCAAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520	ATGGTAAGGT	GGGGGTCGTC	GGTTCAAGTC	CGATTGAGGG	CTTTTATTGG	TAGTTAGGAG	502320
TTAGAATTGA TGAAATATTG TCCAAAATTA CGAAAACACA CTCTTCATAA AGAAGGAAAA 502500 ATAAAATAAT AAATAATAGG TCAGTAGTTC CAACGGTAGA ACGACAGTCT CCAAAACTGT 502560 ATGCTGGGGG TTCGAATCCC TCCTGACCTG TTGTTAGAAT TAAAGTGAGG CTTTAAAGTG 502620 TTTAGGTTTA TCAAAGATAG TATCTTAGAG CTTAAGAAG TAACGTGGCC TAAGTATAAT 502680 GAAGTTGTTG GAAATGGAAA GCAAGTTTTT TGGCTGGTAT TATTTTGTTC AATTTTCTTG 502740 GGTATAGTCG ATTATCTTAT GTTTCTTGTT GTAACTTATG TATTTTAGTT TATTTATAAG 502800 AAAGGGTAAAT TATGTCTAGA GCTTGGTATG TAGTTCAAAC TTATTCTCAA TATGAGAAAA 502860 AGATAGAGCA GGACATAAGG CTTTTAATAA ATGAAGGTGT TTTTGGCGGT GTGGTATTAG 502920 ATGTTAAGGC TCCTATTGAA AAAGTAGAAG AGATAAGAAA TGGCAAGAAA AGAATAAGGG 502980 AGAGAAAAAT TTGGCCAGGC TATATCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503100 AGAGGAAAAAT TTGCTAATATT ATCAAAGTTC AAGGCGTTAT TAATTTTTTT TGGTTTAGTA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAAGTAAA AAGTGTTTTT ATGCTTACTG 503160 GTGAGATTAA AGCAAATAAA TCTATTTTTA TGCTTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGGCGGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTTGGAAG ATCAACGCCT GTTGAAGTTG 503340 ATTTCCAACA TATAGAAAAG ATTTAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA AAGCAATTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA AAGCAATTTC TTGGATTGAAC TCCGGCATTG 503520	TTTTGTTATA	TGGGTAAAAA	GAAGGGCAAA	GGAGCTGTTG	AGCTTATATC	TTTGATTTGT	502380
ATAAAATAAT AAATAATAGG TCAGTAGTTC CAACGGTAGA ACGACAGTCT CCAAAACTGT 502560 ATGCTGGGGG TTCGAATCCC TCCTGACCTG TTGTTAGAAT TAAAGTGAGG CTTTAAAGTG 502620 TTTAGGTTTA TCAAAGATAG TATCTTAGAG CTTAAGAAGG TAACGTGGCC TAAGTATAAT 502680 GAAGTTGTTG GAAATGGAAA GCAAGTTTT TGGCTGGTAT TATTTGTTTC AATTTTCTTG 502740 GGTATAGTCG ATTATCTTAT GTTTCTTGTT GTAACTTAGT TATTTTAGTT TTATTATAAG 502800 AAGGGTAAAT TATGTCTAGA GCTTGGTATG TAGTTCAAAC TTATTCTCAA TATGAGAAAA 502860 AGATAGAGCA GGACATAAGG CTTTTAATAA ATGAAGGTGT TTTTGGCGGT GTGGTATTAG 502920 ATGTTAAGGC TCCTATTGAA AAAGTAGAAG AGATAAGAAA TGGCAAGAAA AGAATAAGGG 502980 AGAGAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503100 AAGGGGCAAAG GCCTATTCCT ATTAATGAT AAGGCGTTAT TAATTTTGTT GGTGTTAGTA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAAGTAAA AAGTGTTTTT ATGCTTACTG 503160 GTGAGATTAA AGGCAAATAAA TCTATTTTTA TGCTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGGCAGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAAG ATCAACGCCT GTTGAAGTTG 503340 ATTTCCAACA TATAGAAAAG ATTTAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503340 TACCATAAGG AGATTAATG GCAAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTGTAAAG GAATTAAAT TAAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520	GAAGAAACAG	GAATTAGAAA	TTATACCACT	' ACTAAGAATA	GACGCAATAA	GCAAGAAAAG	502440
TTTAGGTTTA TCAAAGATAG TATCTTAGAG CTTAAGAAG TAACGTGGCC TAAGTATAAT 502680 GAAGTTGTTG GAAATGGAAA GCAAGTTTTT TGGCTGGTAT TATTTGTTTC AATTTTCTTG 502740 GGTATAGTCG ATTATCTTAT GTTTCTTGTT GTAACTTAGT TATTTTAGTT TTATTATAAG 502800 AAGGGTAAAT TATGTCTAGA GCTTGGTATG TAGTTCAAAC TTATTCTCAA TATGAGAAAA 502860 AGATAGAGCA GGACATAAGG CTTTTAATAA ATGAAGAGT TTTTGGCGGT GTGGTATTAG 502920 ATGTTAAGGC TCCTATTGAA AAAGTAGAAG AGATAAGAAA TGGCAAGAAA AGAATAAGGG 502980 AGAGAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503040 AAGGAAAAAAT TGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAAGTAAA AAGTTTTTT ATGCTTACTG 503160 GTGAGATTAA AGGCAAATAAA TCTATTTTTA TGCTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGGCGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTTGGAAG ATCAACGCCT GTTGAAGTTG 503340 ATTTCCAACA TATAGAAAG ATTTAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503400 TACCATAAGG AGATTATAT GCAAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTTGAAAG GAATTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTTGTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520	TTAGAATTGA	TGAAATATTG	ТССААААТТА	CGAAAACACA	CTCTTCATAA	AGAAGGAAAA	502500
TTTAGGTTTA TCAAAGATAG TATCTTAGAG CTTAAGAAGG TAACGTGGCC TAAGTATAAT 502680 GAAGTTGTTG GAAATGGAAA GCAAGTTTT TGGCTGGTAT TATTTGTTC AATTTCTTG 502740 GGTATAGTCG ATTATCTTAT GTTTCTTGTT GTAACTTATG TATTTTAGTT TTATTATAAG 502800 AAGGGTAAAT TATGTCTAGA GCTTGGTATG TAGTTCAAAC TTATTCTCAA TATGAGAAAA 502860 AGATAGAGCA GGACATAAGG CTTTTAATAA ATGAAAGATA TGGCAAGAAA AGAATAAGGG 502980 AGAGAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503040 AAGATATTAT TGGCTAATATT ATCAAAGTTC AAGGCGTTAT TAATTTTTTT ATGCTTAGTG 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAAGTAAA AAGTTTTTT ATGCTTACTG 503160 GTGAGATTAA AGCAAATAAA TCTATTTTTA TGCTTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGGCGGCCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAAG ATCAACGCCT GTTGAAGTTG 5033400 ATTTCCAACA TATAGAAAAG ATTTAAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTGTAAAG GAATTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520	ATAAAATAAT	AAATAATAGG	TCAGTAGTTC	CAACGGTAGA	ACGACAGTCT	CCAAAACTGT	502560
GAAGTTGTTG GAAATGGAAA GCAAGTTTT TGGCTGGTAT TATTTGTTC AATTTTCTTG 502800 GGTATAGTCG ATTACTTAT GTTTCTTGTT GTAACTTATG TATTTTAGTT TTATTATAAG 502800 AAGGGTAAAT TATGTCTAGA GCTTGGTATG TAGTTCAAAC TTATTCTCAA TATGAGAAAA 502860 AGATAGAGCA GGACATAAGG CTTTTAATAA ATGAAGGTT TTTTGGCGGT GTGGTATTAG 502920 ATGTTAAGGC TCCTATTGAA AAAGTAGAAG AGATAAGAAA TGGCAAGAAA AGAATAAGGG 502980 AGAGAAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503040 AAGGTAATTAT TGCTAATATT ATCAAAGTTC AAGGCGTTAT TAATTTTTTT AGGCTTAGTA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAAGTAAA AAGTGTTTTT ATGCTTACTG 503160 GTGAGATTAA AGCAAATAAA TCTATTTTTA TGCTTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGGCGGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAAG ATCAACGCCT GTTGAAGTTG 5033400 ATTTCCAACA TATAGAAAAG ATTTAAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 5034600 TACCATAAGG AGATTATATG GCAAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 5034600 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC CCTTGGACCT CATGGAGTTA 5035200 GTGGTCCTCA GTTTGTAAAG GAATTTAATG AGAGAACCGC AAAGATGGAT CCCGGCATTG 5035800	ATGCTGGGGG	TTCGAATCCC	TCCTGACCTG	TTGTTAGAAT	TAAAGTGAGG	CTTTAAAGTG	502620
AGGGTAAAT TATGTCTAGA GCTTGGTATG TAGTTCAAAC TTATTCTCAA TATGAGAAAA 502860 AGATAGAGCA GGACATAAGG CTTTTAATAA ATGAAGGTGT TTTTGGCGGT GTGGTATTAG 502920 ATGTTAAGGC TCCTATTGAA AAAGTAGAAG AGATAAGAAA TGGCAAGAAA AGAATAAGGG 502980 AGAGAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503040 AAGATATTAT TGCTAATATT ATCAAAGTTC AAGGCGTTAT TAATTTTTTT GGTGTTAGTA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAAGTAAA AAGTGTTTTT ATGCTTACTG 503160 GTGAGATTAA AGCAAATAAA TCTATTTTTA TGCTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAAATTAA AGGCGGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAAGA ATCAACGCCT GTTGAAGTTG 503340 ATTTCCAACA TATAGAAAAG ATTTAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTGTAAAG GAATTTAATG AGAGAACCG AAAGATCGACT CATGGAGTTA 503520	TTTAGGTTTA	TCAAAGATAG	TATCTTAGAG	CTTAAGAAGG	TAACGTGGCC	ТААСТАТААТ	502680
AAGGGTAAAT TATGTCTAGA GCTTGGTATG TAGTTCAAAC TTATTCTCAA TATGAGAAAA 502860 AGATAGAGCA GGACATAAGG CTTTTAATAA ATGAAGGTGT TTTTGGCGGT GTGGTATTAG 502920 ATGTTAAGGC TCCTATTGAA AAAGTAGAAG AGATAAGAAA TGGCAAGAAA AGAATAAGGG 502980 AGAGAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503040 AAGATATTAT TGCTAATATT ATCAAAGTTC AAGGCGTTAT TAATTTTTGTT GGTGTTAGTA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAAGTAAA AAGTGTTTTT ATGCTTACTG 503160 GTGAGATTAA AGCAAATAAA TCTATTTTTA TGCTTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAAATAA AGGCGGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAAG ATCAACGCCT GTTGAAGTTG 503340 ATTTCCAACA TATAGAAAAG ATTTAAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503580 GTGGTCCTCA GTTGTAAAG GAATTTAATG AGAGAACCGC AAAGAATGGAT CCCGGCATTG 503580	GAAGTTGTTG	GAAATGGAAA	GCAAGTTTTT	TGGCTGGTAT	TATTTGTTTC	AATTTTCTTG	502740
AGATAGAGCA GGACATAAGG CTTTTAATAA ATGAAGGTGT TTTTGGCGGT GTGGTATTAG 502920 ATGTTAAGGC TCCTATTGAA AAAGTAGAAG AGATAAGAAA TGGCAAGAAA AGAATAAGGG 502980 AGAGAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503040 AAGGATATTAT TGCTAATATT ATCAAAGTTC AAGGCGTTAT TAATTTTGTT GGTGTTAGTA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAAGTAAA AAGTGTTTT ATGCTTACTG 503160 GTGAGATTAA AGCAAATAAA TCTATTTTTA TGCTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGGCGGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAAG ATCAACGCCT GTTGAAGTTG 5033400 ATTTCCAACA TATAGAAAAG ATTTAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503400 CAGCTGCTCA AGCGCTCCA GGAGCTAAAA AAGCAATTTC TTGGATTAAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGCCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520	GGTATAGTCG	ATTATCTTAT	GTTTCTTGTT	GTAACTTATG	TATTTTAGTT	TTATTATAAG	502800
ATGTTAAGGC TCCTATTGAA AAAGTAGAAG AGATAAGAAA TGGCAAGAAA AGAATAAGGG 502980 AGAGAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503040 AAGATATTAT TGCTAATATT ATCAAAGTTC AAGGCGTTAT TAATTTTGTT GGTGTTAGTA 503160 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAAGTAAA AAGTGTTTTT ATGCTTACTG 503160 GTGAGATTAA AGCAAATAAA TCTATTTTTA TGCTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGGCGGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAAG ATCAACGCCT GTTGAAGTTG 503340 TACCATAAGG AGATTATATG GCAAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTTGTAAAG GAATTTAATG AGAGAACCGC AAAGATGGAT CCCGGCATTG 503580	AAGGGTAAAT	TATGTCTAGA	GCTTGGTATG	TAGTTCAAAC	TTATTCTCAA	TATGAGAAAA	502860
AGAGAAAAAT TTGGCCAGGC TATATTCTTA TTGAGCTAGA TCTTCCAGAA GTAGGCTGGA 503040 AAGATATTAT TGCTAATATT ATCAAAGTTC AAGGCGTTAT TAATTTTGTT GGTGTTAGTA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAAGTAAA AAGTGTTTTT ATGCTTACTG 503160 GTGAGATTAA AGCAAATAAA TCTATTTTTA TGCTTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGGCGGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAAGTT GCAGTTCAAA TTTTTGGAAG ATCAACGCCT GTTGAAGTTG 503340 ATTTCCAACA TATAGAAAAG ATTTAAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503400 TACCATAAGG AGATTATATG GCAAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTTGTAAAG GAATTTAATG AGAGAACCGC AAAGATGGAT CCCGGCATTG 503580	AGATAGAGCA	GGACATAAGG	CTTTTAATAA	ATGAAGGTGT	TTTTGGCGGT	GTGGTATTAG	502920
AAGATATTAT TGCTAATATT ATCAAAGTTC AAGGCGTTAT TAATTTTGTT GGTGTTAGTA 503100 AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAAGTAAA AAGTGTTTTT ATGCTTACTG 503160 GTGAGATTAA AGCAAATAAA TCTATTTTTA TGCTTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGGCGGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAAG ATCAACGCCT GTTGAAGTTG 503340 ATTTCCAACA TATAGAAAAG ATTTAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503400 TACCATAAGG AGATTATATG GCAAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTTGTAAAG GAATTTAATG AGAGAACCGC AAAGATGGAT CCCGGCATTG 503580	ATGTTAAGGC	TCCTATTGAA	AAAGTAGAAG	AGATAAGAAA	TGGCAAGAAA	AGAATAAGGG	502980
AGGGGCAAAG GCCTATTCCT ATTAATGATG AAGAAGTAAA AAGTGTTTT ATGCTTACTG 503160 GTGAGATTAA AGCAAATAAA TCTATTTTTA TGCTTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGGCGGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAAG ATCAACGCCT GTTGAAGTTG 503340 ATTTCCAACA TATAGAAAAG ATTTAAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503400 TACCATAAGG AGATTATATG GCAAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTTGTAAAG GAATTTAATG AGAGAACCGC AAAGATGGAT CCCGGCATTG 503580	AGAGAAAAAT	TTGGCCAGGC	TATATTCTTA	TTGAGCTAGA	TCTTCCAGAA	GTAGGCTGGA	503040
GTGAGATTAA AGCAAATAAA TCTATTTTA TGCTTTATGA CTTTGAAGAA GGAGAAAGAG 503220 TTAGAATTAA AGGCGGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAAG ATCAACGCCT GTTGAAGTTG 503340 ATTTCCAACA TATAGAAAAG ATTTAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503400 TACCATAAGG AGATTATATG GCAAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTTGTAAAG GAATTTAATG AGAGAACCGC AAAGATGGAT CCCGGCATTG 503580	AAGATATTAT	TGCTAATATT	ATCAAAGTTC	AAGGCGTTAT	TAATTTTGTT	GGTGTTAGTA	503100
TTAGAATTAA AGGCGGACCT TTTGACTCCT TTGAAGGACT TATTAGTTCT ATTGATTATG 503280 AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAAG ATCAACGCCT GTTGAAGTTG 503340 ATTTCCAACA TATAGAAAAG ATTTAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503400 TACCATAAGG AGATTATATG GCAAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTTGTAAAG GAATTTAATG AGAGAACCGC AAAGATGGAT CCCGGCATTG 503580	AGGGGCAAAG	GCCTATTCCT	ATTAATGATG	AAGAAGTAAA	AAGTGTTTTT	ATGCTTACTG	503160
AAAGAAAGAA ATTAAAAGTT GCAGTTCAAA TTTTTGGAAG ATCAACGCCT GTTGAAGTTG 503340 ATTTCCAACA TATAGAAAAG ATTTAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503400 TACCATAAGG AGATTATATG GCAAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTTGTAAAG GAATTTAATG AGAGAACCGC AAAGATGGAT CCCGGCATTG 503580	GTGAGATTAA	AGCAAATAAA	ТСТАТТТТТА	TGCTTTATGA	CTTTGAAGAA	GGAGAAAGAG	503220
ATTTCCAACA TATAGAAAG ATTTAAAATT TAATACTAAT GGGAGCTTTG AAGGCGTTAC 503400 TACCATAAGG AGATTATATG GCAAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTTGTAAAG GAATTTAATG AGAGAACCGC AAAGATGGAT CCCGGCATTG 503580	TTAGAATTAA	AGGCGGACCT	TTTGACTCCT	TTGAAGGACT	TATTAGTTCT	ATTGATTATG	503280
TACCATAAGG AGATTATATG GCAAAAAAA AAGCAATTTC TTGGATTAAA TTGCAGGTTC 503460 CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTTGTAAAG GAATTTAATG AGAGAACCGC AAAGATGGAT CCCGGCATTG 503580	AAAGAAAGAA	ATTAAAAGTT	GCAGTTCAAA	TTTTTGGAAG	ATCAACGCCT	GTTGAAGTTG	503340
CAGCTGCTCA AGCGGCTCCA GGAGCTAAAA TAGGGCAAGC GCTTGGACCT CATGGAGTTA 503520 GTGGTCCTCA GTTTGTAAAG GAATTTAATG AGAGAACCGC AAAGATGGAT CCCGGCATTG 503580	ATTTCCAACA	TATAGAAAAG	АТТТААААТТ	ТААТАСТААТ	GGGAGCTTTG	AAGGCGTTAC	503400
GTGGTCCTCA GTTTGTAAAG GAATTTAATG AGAGAACCGC AAAGATGGAT CCCGGCATTG 503580	TACCATAAGG	AGATTATATG	GCAAAAAAAA	AAGCAATTTC	TTGGATTAAA	TTGCAGGTTC	503460
	CAGCTGCTCA A	AGCGGCTCCA	GGAGCTAAAA	TAGGGCAAGC	GCTTGGACCT	CATGGAGTTA	503520
	GTGGTCCTCA (GTTTGTAAAG	GAATTTAATG	AGAGAACCGC	AAAGATGGAT	CCCGGCATTG	503580
							503640

CCCCAGCTTC	GATTTTAAT1	AAAAAAGCT	A TTGGGATAGA	ATCAGGATCT	' AAGAAATCTA	503700
ATACAGATAA	AGTTGGAACC	ATATCAAAA	G AAAAGTTGAT	GGAGATAGCA	AGAATTAAAA	503760
TGTCTGATTI	AAATGCAAAG	TCAGAATCAG	G CAGCGTTTAA	AATTATTGCA	GGAAGTGCAC	503820
GTTCAATGGG	TGTTGAGGTG	GAGAAATAA	r gtcaaaaaa	GGTAAAAAAT	ATATTGAAGC	503880
TTTTTCTAAA	GTGGATAAGA	ATAAATTT	A TAACATTGAA	GATGCAATTT	TGCTGTTGAA	503940
AGAAATTAAA	TTTGCCAAAT	TTGATGAAA	TATAGATATA	TCTATTAACC	ТТААТТТААА	504000
AAAAAATCAT	ACTGTTAGAG	ACACTATAG	TTTGCCAAAT	CAGTTTATGA	AGCCAAAAAG	504060
AATACTTGTT	TTTGCAAAAG	GTGATCGAGO	AGATGAAGCT	AGAGCTTTTG	GTGCAACTTA	504120
TGTTGGCGAT	GATGATCTTA	ТАААТААСАТ	TAAAAGCGGT	TGGGATGAAT	TTGATGTTGT	504180
TGTTGCAACT	CCTGATATGA	TGAAAGATGT	TGGAAGACTT	GGTCCTATTT	TAGGGAAAAG	504240
GGGTTTAATG	CCCAATCCAA	AGACTCAAAC	AGTCACAAAT	AATCTTAAAG	ATGCAATCAA	504300
CAGTCTTAAA	AAGGGTCGAA	CAGAATTTAG	GGCAAATAAA	AATGGTGTAA	TAAGCTTTTC	504360
TTTTGGTAAA	TCTTCTATGG	ACAATGAAAA	GATAAAAGAA	AATTATGAGG	AATTTGTCAA	- 504420
GGAAGTTGTT	AAAAAAAGAC	CGAGTGACTT	' AAAGGGAGCT	TTTATAGATA	GTATTTATAT	504480
TTCATCTACT	ATGGGGCCTT	CTATAAAAGT	TAATTTTGTT	TGGAGGTAAC	ATTATGAGCG	504540
CAAAGATAAA	TGCTAAAAAG	TTGGAAATGT	TTGATTTATT	AAAACAGTTT	ATAGATAGCA	504600
AACAAAATCT	TTTTTTCTTA	GATTATAGAG	GTTTAAATGT	AGCTCAGTTA	ACAGAACTTC	504660
GCAATAAAAT	AGAAGGCGAA	CATGGATCAT	TAAAAGTTGT	TAAAAACAAT	ATAATGAAGA	504720
TGGTTTTAAA	AGAAAAGAAT	ATTAATGTTG	TTGATTCTTG	TTTGGTTGGC	CCTACAGTTG	504780
TTGTTACTGC	ATTAGAAGAA	GCTAATGTAA	TAGCAAAAAT	TTTTTATGAT	TTTGTAAAAA	504840
GTAGTACTTT	AAAAGTAAAG	GGCGGTTTTG	TATTAGGAGA	GTTTTATGAT	GAGGCTAAGG	504900
TTCAAGCTTA	CAGCAAGCTT	CCTACCAAAA	AAGAGTCTAT	TTCTTTATTT	GCTAGCGTGT	504960
TAAAAGCGCC	AGTTTCTAAG	CTTGCAAGAA	CATTGAAAGC	TTTGGCTGAT	GTTAAAAATT	505020
AACATGACAG	TGTTAGTCTT	AATTTTTGAG	TGCATGCTAT	CACTGTGAAA	TGAAAATATA	505080
TAAGGAGTTA	ATATGGCACT	AAATAAAGAA	GATATTTTAA	CCTGGCTTGA	AGGTGCAAAA	505140
ACTATGGAAG	TTGTTGACCT	TGTAACAGCT	ATTGAGGAAA	AGTTTGGAGT	AACTGCCGCT	505200
GTTGCTGCTG	GTGTAGGGGG	AGCTGTTTCA	GTAGGTTCGG	CTGATTCTGA	AGAACAAACC	505260
GAATTTGATG	ТААТТСТТАТ	GTCTTTTGGT	GATAGCAAGA	TAAATGTTAT	AAAAGAAGTT	505320
AGAGCTATTA	CAGGACTTGG	TCTTGGAGAA	GCTAAGGCGT	TAGTTGAAGC	CGCTCCTAAA	505380

		443			
GCTATTAAAG AAGGTCTTT					505440
GTTGGCGCAA AAGTTGAAG	тааатааа	A ATTAAAAAT	A TATCAAAGT	T GTTATTCCGC	505500
ATGTCGTTAT GATGTGCGG	C TTGTTATGT	C TTAAAAAAG(G AGTCTTTA	A TGATAAAAAG	505560
AGTTCATCTG GGACAAGGA	A GAGCTGATG	A GATTTTAGA	CTACCTAACO	TGATAGAAAT	505620
ACAATTAAAT TCTTATGAA	A AATTTTTAC	A ACTTGATAAA	TTAAAAAGTA	AAAAACCTTT	505680
ACTTAATGAG GGCCTTGAG	CTGTTTTTA	G AAA TATATTI	CCCATTAAA	GTGGAAATGG	505740
TGATGTTGCT CTTGAGTATC	AAAGATACT	A TATAGAAAAC	GATGCCCTTA	ATTTTACAGA	505800
AAAAGAATGT AAAAGAAAGG	GTCAAAGTT	A TGAGGCTGTT	TTAAAAGTAA	GATTGAATTT	505860
GCAATTTTTG ACTACTGGGG	AAATAAGGC	A AAAAGACGTA	TACATGGGAA	CTATTCCTTT	505920
AATGACAGAA AGAGGCACTT	TTATTATTA	A TGGGGCTGAG	AGGGTTGTTG	TTTCTCAGAT	505980
TCACAGATCC CCAGGAGTTG	TTTTTTTATA	AGAAAAAGAT	TTGTATTCTG	СТАСААТААТ	506040
TCCTTATCGT GGTTCTTGGT	' TAGAATTTGA	GATTGATTCA	AAAAAAGATT	ATCTTTATGT	506100
AAAAATAGAT AGAAAAAAA	GAATACTTAT	· AACTCTTTTT	TTAAGAGCTT	TAGGGTTTGA	506160
TACGAGAGAA AAAATAATAG	AAACTTTTTA	СААТАТТААА	AAAATTAAAG	TTGAAGACGG	506220
TACAAAAAGA GATCTTCCAG	GGCAATATTT	AGCTAAGAGT	АТТААСАТАА	GAGAGAATAT	506280
GTATTATCGT GCAGGAGATA	AAATTACTCT	GCAAGATGTT	GAAGATTTTT	TACAAAATGG	506340
AGTAAATGAA ATAGAGCTTG	TTGATTTTGA	TGGTTATAAT	GATATTTCTG	GAAAGCGCTT	506400
TGTAAGTTCG AATGTTATTC	TAAATTGTCT	TGAAAAAGAG	GATGCTTTCT	TTGCTTTAAA	506460
GGATGGCTCT AAAGAGCTTC	CAAAAGAATC	AGTTATGCTA	GCTGTTTATG	GTTCTCTTTT	506520
TCCCGGTGAG CCAATATCAA	TTGATAATGC	TGAAAACGAT	TTAAAAACCA	TATTCTTTTC	506580
TGAAAGAAGA TATGATCTTG	GACGTGTGGG	GCGGTATAAA	СТТТСТАААА	AATTTGGATT	506640
TGATGATTTA ACTACATCGG	TTTTAACTAT	GGATGATATT	GTTAACACCA	TATCTCATCT	506700
TTTAAGAATA TATGAAGGCC	ATGATATTCT	TGATGATATT	GACCATTTAG	GAAATAGAAG	506760
GGTTCGTTCT GTTGGTGAGC	ТТСТТАСТАА	ТАТАТАТААА	GGCGCGATGT	CAAGAGTTGA	506820
AAAAATTGCT AAAGATAGAA	TGTCTAACAA	GGAAGTTTTT	AATCTAAAGC	CTCAAGAATT	506880
AATAAGCGTT AAGCCTATTG	TATCTGCTGT	TAAAGAATTT	TTTGCAACCA	GTCAGCTTTC	506940
ACAGTTTATG GATCAGGTCA	ATCCTTTGGC	TGAGCTTACT	CACAAAAGGC	GTCTTAATGC	507000
TCTTGGACCA GGAGGACTTT	CAAGAGATAG	GGCAGGATTT	GAAGTAAGAG	ATGTGCATTA	507060
TACTCATTAT GGTAGAATGT	GTCCTATTGA	AACCCCTGAA	GGGCCAAATA	TTGGACTTAT	507120
TGTTTCTTTG GCTACTTATT	CTAGAGTTAA	TGATTATGGT	TTTTTAGAAA	CTCCTTATAG	507180

GAAAGTTGTT	AATGGAGTGG	TGACGGACC	A ATTAGAATAT	TTATCTGCT	TTGACGAAGA	507240
GAAAAAGTGT	ATTGCTCAGG	CTAATGCTGC	TTTTAATTCT	AATGGAAAG1	ATCTTGAAGA	507300
TTTAGTTTCT	GTTAGAATTT	CTGGTGATTA	TACTACAACA	AGTCCCACAA	ATATAGACTA	507360
TATGGACGTT	TCTCCTAGGC	AGCTAATTTC	AGTATCTTCG	GCGTTAATTC	CTTTTCTTGA	507420
GCACAATGAT	GCAAATCGAG	CTCTTATGGG	TTCTAATATG	CAAAGACAAG	CAGTACCTTT	507480
GCTTTTCCCT	AAGCCTCCTA	TTGTTGGTAC	GGGTATGGAA	AGCGTTGTTG	CAAAGGATTC	507540
AGGAGTAGTT	GTTAAGGCTA	AAAGAAGTGG	GGAAGTTATT	' CTTGCAACAA	GTAGTAAGAT	507600
AGTTGTTAAA	CCTTTTGAGG	CAGAGAATGC	TAAAGATTTA	GATGAATATC	ATATTGTTAA	507660
GTATGAAAGG	ACAAATCAAG	ACACTTGTTT	TAATCAATCC	GTTTTAGTTA	AAGAGGGTCA	507720
AAAAGTTGAA	AGGGCGAGA	TAATAGCTGA	CGGTCCTGCT	ACTAGATATG	GAGAACTTGC	507780
TCTTGGTAAT	AATTTATTGC	TAGGAGTTAT	TCCTTGGAAT	GGATTTAATT	ATGAGGATGC	507840
ТАТАТТААТТ	TCTGATAGAA	TTGTAAAGGA	AGATCTTTAT	ACATCTATTC	ATATCAAAGA	507900
ATTTAGCATA	GAGGTAAGAG	AAACTAAACT	TGGTCCTGAG	AAAGTTACAG	GAGATATACC	507960
TAATGTTAGT	GAAAAGATAT	TAAATAAATT	GGATGAAAAT	GGGATTATAC	GGATAGGAAC	508020
TTATGTAAAG	CCCGGTGATA	TTCTGGTTGG	TAAAGTTACT	CCAAAGTCAG	AAGGAGACAT	508080
TACTCCTGAA	TTTAGACTGT	TAACTTCCAT	TTTTGGAGAA	AAAGCAAAAG	ATGTTAAAAA	508140
TAATTCATTA	AAAGTTCCTC	ATGGTACTGA	AGGTACAGTT	ATTGATGTTC	AAAGGATTAC	508200
CAAAGAGGAT	GTTGGTAATC	TTTCTCCTGG	AGTTGAGGAG	ATACTTAAAG	TTTATGTTGC	508260
CAAAAAAAGG	AAGCTTAAAG	AGGGCGATAA	AATGGCTGGA	CGACATGGTA	ATAAGGGTGT	508320
TGTTGCAAAG	ATTCTTCCTG	TTGAAGATAT	GCCTTATCTT	GCAGACGGAA	CCCCTCTTGA	508380
TATATGCTTA	AATCCTTTGG	GAGTTCCATC	TAGAATGAAT	ATCGGACAGT	TAATGGAATC	508440
TCAATTAGGC	CTTGCTGGTA	AATATCTTGG	TGAATCTTAT	AATGTTCCTG	TTTTTGAATC	508500
TGCTACAAAT	GAACAAATTC	AGGAAAAATT	AAAAACTGCT	GGATTTAATC	СААСТТСТАА	508560
AGAAATTTTA	TATGATGGTT	ATACAGGAGA	GCCGTTCGAA	AATGAAGTAA	TGGTTGGGGT	508620
GATTTACATG	CTTAAACTAC .	ACCATCTTGT	TGATGATAAA	ATGCACGCAA	GATCAACAGG	508680
CCCATATTCT	CTTGTTTCTC .	AGCAACCTCT	TGGAGGAAAG	GCTCAATTTG	GTGGGCAAAG	508740
ACTTGGAGAA	ATGGAGGTTT (GGGCTCTTGA	AGCTTATGGT	GCGGCGCACA	CCCTTCAAGA	508800
ACTTTTAACA (GTTAAATCTG	ATGATATGTC	AGGCAGAGTT	AAAATATATG	AAAATATAGT	508860
AAAAGGCGTT (CCTACTAATG	TATCAGGGAT	TCCTGAGTCT	TTTAATGTGC	TAATGCAAGA	508920

			445			
GCTTAGAGGC	CTTGGACTTG	ATTTGTCAAT	TTATGATGAT	GCTGGGAATC	AGGTTCCTTT	508980
GACAGAAAA	GAAGAAGAAT	TGATTAATAA	AAGCTAGGTT	TTTGGAGTTT	TTATGAAAGA	509040
GATAAAAGAT	TTTGAAAGAA	ТАААААТТАА	AATAGCGTCT	CCCGATCAAA	TTAGAAATTG	509100
GTCTTATGGA	GAGGTTAAAA	AGTCCGAAAC	ТАТТААТТАТ	AGAACTTTAA	GACCCGAAAA	509160
AGATGGGCTT	TTTTGTGAAA	GGATTTTTGG	TACTACAAAG	GAATGGGAAT	GTTATTGTGG	509220
TAAATTTAAA	TCGGTCAGAT	ATAAAGGTAT	TATTTGTGAT	CGTTGTAATG	TAGAGGTTAC	509280
CCATTTTAAG	GTTAGACGTG	AAAGAATGGG	GCATATTGAG	CTAGCAGCCC	CAGTTGCTCA	509340
TATTTGGTAT	ТАСАААТАТА	TACCCTCTAG	GATTGGGCTT	TTGCTTGATA	TTACAGCATC	509400
TAGTTTGAAT	TCTATTCTTT	ATTATGAAAA	ATATGTAGTA	ATTGAACCGG	GCGATACTGA	509460
TCTTAAAAAA	ATGCAGCTTT	TAAATGAAGA	TGAGTACATA	GAAGCTAGAG	AGCGATATGG	509520
TATGTCTTTT	AATGCTTCAA	TGGGGGCTGA	GGCTATTAAA	ACTCTTCTTG	AAAATCTTGA	509580
TCTTGATGAG	CTTTCGTCTA	AGCTTAGAAT	TCAAATGATA	GATAAAGATG	ATAAAACTGA	509640
TAAGAAACTC	TTAAGACGTC	TTGAAATTAT	TGAGAATTTT	AAAATTTCTG	GCAATAAGCC	509700
AGAGTGGATG	ATTATGGAAG	TTCTTCCTGT	TATTCCCCCA	GAGATTAGGC	CAATGGTTCA	509760
GCTTGATGGG	GGGCGCTTTG	CAACATCTGA	TCTTAATGAT	CTTTATAGAA	GAGTCATAAA	509820
TAGAAATAAT	CGTTTAAGAA	AGTTGCTTCT	TCTTAATGCG	CCAGAGATTA	TTGTGAGAAA	509880
CGAAAAAAGA	ATGCTTCAAG	AATCAGTAGA	CTCTCTTTTT	GACAATTCTC	ATAAAAGAAA	509940
GGTTGTCAAA	GGTTCATCTA	GTAGGCCTCT	CAAGTCGCTT	TCCGATGCAT	TAAAAGGTAA	510000
GCAGGGAAGG	TTTAGGCAAA	ATCTTCTTGG	TAAAAGAGTA	GATTATTCTG	GTCGTTCTGT	510060
TATTGTTGTT	GGACCTGAGC	TTAAGCTACA	TCAATGTGGA	TTGCCTGCAA	AAATGGCCCT	510120
TGAGCTTTTT	AAGCCTTTTG	TGATAAGAAG	ACTGATTGAG	AGTGAAGCTG	ТТТТТААТАТ	510180
CAAAAGAGCA	AAGAATTTAA	TAGAGCAAGA	AGTAGATGAG	GTGTGGCAAA	TTTTAGATCT	510240
TGTTATCAAA	GAGCATCCTA	TTCTTTTAAA	TAGGGCACCC	ACTCTTCATA	GACTTGGAAT	510300
TCAAGCTTTT	GAACCTGTGT	TAGTTGAGGG	TAAGGCAATA	AAATTACATC	CTCTTGTTTG	510360
TCATGCATAC	AATGCCGATT	TTGATGGTGA	TCAAATGGCG	GTACATGTGC	CTCTTACTCC	510420
GGCAGCACAA	GCTGAAAGTT	GGGCTTTAAT	GCTTTCAACA	AATAATCTTT	TAAATCCTGC	510480
CAATGGGCAT	CCTATTGTTT	TTCCATCCCA	AGATATTGTT	TTGGGCCTAT	ATTATTTAAC	510540
TATGGAAAAA	AAGAATGTTG	TTGGAGAAGG	TAAAAAGTTT	ТТАААСТТТА	ACAATGTTAT	510600
TCTTGCCATA	AATAATAGGA	GTCTGGATTA	CAATGCTTCT	ATTTATGTAA	AAATTCATGG	510660
TGAGTACAAA	AAAACTACGG	CCGGTAGGGT	TATATTTAAT	GAGGCTTTGC	CCAAGGGAAT	510720

TGAATTTGTA	AATAAAACCC	TTAGTGATT	T GGAGCTACA	A ATTTTAATA?	r caaaagttta	510780
TGTAGTTCAT	GGTTCTTCTA	TCGTAATTG	A AATGCTTGAG	C ATCATCAAGO	AACTTGGTTT	510840
TAGGTATGCC	ACTAAGTTTC	GATGCACAA	T TAGTATGAGO	GATATTATT(TTCCTGATGA	510900
AAAAAGAACT	TATGTAGAAA	GGGCCAATA	A AGAGATTGCT	T AAGATTCAA	ATGATTATGC	510960
TAAAGGTGTT	ATTACTGGCG	AAGAGCGTT/	A TAACAATGTA	A GTTTCTGTTT	GGTTAAAGAC	511020
CAATGAAGAA	СТТАСТААТА	AGATGATGG	A AATTTTAAAC	AAAGATAGAG	ATGGATTTAA	511080
TGTTATATAT	ATGATGGCAG	ATTCTGGTGC	TAGGGGTAGT	AGGAATCAAA	TAAGACAGCT	511140
TGCTGGTATG	AGAGGATTGA	TGGCAAAAA	TTCTGGGGAT	` ATTATTGAGC	TTCCAATTAT	511200
TTCTAACTTT	AAAGAAGGTC	TTTCTGTGAT	AGAGTTTTT	' ATATCTACAA	ATGGAGCAAG	511260
AAAAGGTCTA	GCAGATACTG	CTCTTAAGAC	CGCTGATGCT	' GGATATTTAA	CTCGAAGATT	511320
AGTAGACATT	GCTCAAGATG	TTGTTGTTAG	AATAGAGGAT	TGTGGAACTA	TAAATGGAAT	511380
AAAAGTTGAG	ACTGTAAAAA	ATGGTGAAGA	AATATTAGAA	TCTTTGAAAG	AAAAAGCTGT	511440
TGGGAGTTAT	TCTATTGAAA	GAATAAAAA	ТССААТТАСТ	GGCGAGATTG	TTTTAGATGC	511500
AAATGAAGAA	ATCTCAGAAG	CTAAAATAGA	ATTATTAGAG	AAAATTGGTA	TTGAAAAACT	511560
TGTTATTAGA	TCTGTTTTAA	CGTGTGAAGC	TGAGCATGGC	GTTTGTCAAA	AATGTTATGG	511620
TAGAGACTTT	TCTAAGAACA	AACCTGTTAA	TATTGGGGAG	GCTGTGGGAA	TAATTGCTGC	511680
TCAGTCCATA	GGTCAACCGG	GTACTCAATT	AACCATGAGA	ACTTTTCATA	TTGGTGGAGT	511740
TGCTCAGGCT	GGCAGTGAGG	ATGATAAAAT	ATCTTTAAAG	AATGCCTTCA	TACTTAATGG	511800
					AAGGAACTTT	511860
AAAAATAATC .	AATGTTTTT	ATGAGGAAAA	AATTAAGAAC	ATAAAAGAGA	TTAAAGTTTT	511920
					GCTCAGAGAT	511980
TCTCTCTTCT	PACATTGGTT	ATGTTAAATT	AAGAGACGAT	AATTTTTTCA	TAGTGTCAGA	512040
AGAGCAAGAA (512100
TGAATCAGGC A	AAAGTTATTG	GTACATTTGA	TCCATTTGCA	GAGCCTATTA	TTGCAGAGGT	512160
TAAGGGTAAA 1	ATTTAAATTP	AGGATATTAT	TTTAGGAACT	ACTCTTAAAG	AGGAAATAAA	512220
TACTGAAACA (GCAATGTTG	AAAAAAGAAT	TACAGATAAT	GTTTTTGAAT	CTCTTGATCC	512280
TAGAATTTTT A	ATTATTGATA	GTAGTGGTAT	GGAGGTTGCA	TCTTATGTAT	TACCAGGTGA	512340
TGCTTATCTT (CAAGTTGAAG	ATGGCCAGAG	ТАТТААСАТА	GGAGATATTA	TTGCGAAACT	512400
TTCTAAAGGT 1	CTGAAAAAA (CTCAAGATAT	TACAGGGGGA	TTGCCTCGTG	TTAATGATCT	512460

			447			
			C TGAAATGGCT		GAATTGTACA	512520
ATTTAAATCA	ATTCAAAAA	G GTAAAAGGC'	Г ТАТТААТАТТ	TTAGATGAGT	ATGGGGTTGA	512580
ACATAAGCAT	ТАТАТТССАС	G CTGGAAAAC	A TCTTTTGGTT	' AGAGATGGAG	ATGTTGTAAA	512640
AGCAGGAGAT	ATGCTTTGTG	ATGGTAGAA	г таатсстсат	' GATGTGCTTG	AAATTTTAGG	512700
TGGGATTAGT	TTACAAGAAT	TTCTGTTGG	C AGAAATTCAG	GATGTTTATC	GAAAACAGGG	512760
TGTTAGCATT	AATGACAAAC	ATATTGGTG	r gataatcaag	CAAATGATGA	AAAAAGTTAA	512820
GATTGTTGCA	GTTGGTGATA	CTAATTTTG	TTATGGGCAA	AAGGTAGATA	AGCACACTTT	512880
TTATGAGCAA	AATAGAAAAG	TAATCGAACA	A AGGTGGTGAG	CCAGCAATAG	CAAGTCCAAT	512940
TCTTATAGGA	GTAACTAAAA	CGTCTCTTA	A TATAGATTCT	TTTATTTCCG	CAGCTTCTTT	513000
CCAGGAAACA	ACAAAGTAT	TAACAGATGO	TTCTATTGCT	GGAAAAATAG	ATGATCTTAG	513060
GGGATTAAAA	GAAAATGTTG	TAATTGGACA	TTTAATTCCT	ACTGGAACTG	GTATGGGTCT	513120
TTATAAAAA	ATTAAAGTTA	GTGAAAATAT	' CGATTCTGAA	GTTTAACTTG	AAAATAAGTG	513180
ATATATTTGC	TACCATTTTA	TTAATAGTTT	'CAAGAAAAGG	AGAGCGTTGA	TAAATGCCTA	513240
CAATTAATCA	GTTAATTAGA	AAGCCTAGAA	AAAGTCAAAC	GGAGAAGACC	GCATCTCCTG	513300
CGCTTCAAAA	TTGTCCTCAA	AGAAGAGGAA	TTTGTACGCG	TGTAATGACC	GTAACTCCCA	513360
AAAAGCCTAA	TTCAGCTTTA	AGAAAAGTAG	CGCGTGTTAG	ACTTTCAAAT	GGATTTGAAG	513420
TAACAGCATA	TATTCCAGGA	ATTGGACACA	ATTTACAAGA	ACACTCTGTG	GTTCTAATTA	513480
GAGGTGGTCG	AGTTAAAGAT	TTGCCTGGAG	TAAGGTACCA	TATTGTTAGA	GGAGCTAAGG	513540
ATACCCTTGG	CGTTAATAAT	AGGAAAAAGG	GTAGATCTAA	GTATGGAACA	AAAAAGCCTA	513600
AAGCTTAACT	GAAAGGTGGG	TTAATATTAA	ATATGTCAAG	АААААТААА	ААААТСАААА	513660
AGAAAGTTTT	TGTTGATACC	AGATATAATT	CTAGAATTGT	TGCAAAGTTT	GCAAATAGAA	513720
TGATGTATGA	TGGAAAAAA	TCAATAAGCG	AGAGTATACT	TTATAGTTCA	ATTGATTTGC	513780
TTGCCGATAA	GCTTGAAGAA	AGCGACAAGA	TGGCTGTTTT	TTATAAAGCT	TTAGATAATA	513840
TTAAGCCATT	GGTAGAAGTA	AGAAGTAGAC	GAGTGGGTGG	TGCTACATAT	CAAGTTCCTG	513900
TTGAAGTTAG	AGAAGAGAGA	AGAGAAGCCT	TGGCTATGAA	GTGGATTATT	TTTGCTGCTA	513960
GAAAGTCTAG	CGGTAGGTCT	ATGAAAGAAA	AGTTGTCAAA	CGAACTTTTA	AATGCATATA	514020
ATTCTACTGG .	AGCTGCTTTC	AAGAAGAAAG	AAGATACTCA	TAGAATGGCT	GAAGCAAATA	514080
AAGCTTTTAC '	TCATTATAGA	TGGTAAAAAG	ACACCTTTTT	AAGGTGTCTT	TTTTTGTTTA	514140
TATGCCGTGT	ATTATGAGAT	СТАТТТТТТ	ТАТТТТТТТА	TTAAAAGCAA	GGAGGATATT	514200
TTTATGTTAA	AAAAAGTTTA	TTATTTTTA	ATTTTTTTAT	TTATTGTTGC	TTGTTCTAGC	514260

TCTGATGATG GCAAGTCGGA GGCAAAAACA GTTTCGCTTA TAGTTGATGG TGCTTTTGAT	514320
GATAAAGGAT TTAATGAAAG TTCTTCTAAG GCGATAAGAA AATTAAAGGC AGATTTAAAT	514380
ATAAATATAA TTGAAAAAGC ATCTACAGGC AATTCTTATT TAGGAGATAT TGCAAACTTA	514440
GAAGATGGTA ATTCAAATTT GATTTGGGGA ATTGGGTTTA GATTGTCAGA CATTCTTTTT	514500
CAAAGAGCTA GCGAGAATGT TTCTGTTAAT TATGCAATCA TAGAAGGGGT TTATGATGAA	514560
ATTCAAATAC CCAAAAATCT TCTTAATATT AGTTTTAGAT CCGAAGAGGT GGCTTTTTTA	514620
GCAGGATACT TTGCGTCGAA GGCTTCTAAA ACGGGTAAGA TTGGATTTGT TGGAGGAGTG	514680
AGGGGAAAAG TTTTAGAATC TTTTATGTAT GGATATGAAG CTGGTGCTAA GTATGCAAAC	514740
TCTAATATTA AAGTGGTCTC TCAATACGTT GGTACATTTG GAGACTTTGG ACTTGGTCGT	514800
TCAACGGCAT CTAATATGTA TCGAGATGGG GTTGATATCA TATTTGCAGC TGCAGGGCTT	514860
TCTGGTATAG GGGTAATTGA GGCCGCAAAA GAGTTGGGGC CCGATCATTA TATTATTGGA	514920
GTCGATCAGG ATCAATCATA TCTTGCTCCT AACAATGTTA TTGTTTCTGC TGTAAAAAA	514980
GTTGATTCAT TGATGTATAG TTTAACAAAA AAGTATTTAG AAACTGGAGT TTTGGATGGT	515040
GGCAAGACCA TGTTTTTAGG GCTTAAAGAA GATGGTCTTG GTTTAGTTTT AAATGAAAAC	515100
TTAAAATCAA ATTATTCTGA GATTTATAAC AAATCATTGA AAATTGGGCA AAGTATAATG	515160
AATGGTATAA TAAAAGTGCC TTATGACAAG GTATCTTATG ATAACTTTGT TTTGCAAATG	515220
GAAAATTAAT TTGATTTTTA TTGAGCTGAT TTGTGAAAAA TCTTTTTAAT TCTTTAAAGA	515280
TGTTTTAAAG GGTTTTTTAA TTGTTGTAAT TTGAATTTAA ATTAATCTTG CAAAAGGGTT	515340
TAAATTTGGA TATTATGGTG ATGTAGGAAA AATTATTTTT CCTACTACTG TGTTTTTATT	515400
AATGCTAGAA GTATTTTTTT AAAAGGGATT ATTAAAATTT TATTTTATAA ATAAAGAATA	515460
CTACTTGTTA GTAAAATAAA GTTAATATTT TAATTTTTAA AAAATTTAGA ATTTTTAAAA	515520
AAAATATAAG GAGAGGATTA ATTTTGTTTA AAAGATTTAT TTTTATTACT TTATCTTTAT	515580
TAGTATTTGC TTGTTTTAAA TCTAATAAAA AGTCTATTAA ATCTGACAAA GTTGTTGTAG	515640
GTGTTTTGGC TCATGGTAGC TTTTATGATA AAGGCTATAA TCAAAGCGTT CATGATGGTG	515700
TTGTAAAACT TAGGGATAAT TTTGGAATAA AGCTTATAAC TAAATCTTTA AGACCTTATC	515760
CTATTGAGGG TAAAAGACTT CTTACTGTTG ATGAGGCAAT GACTGAGGAT GCTTATGAGG	515820
TTCAAAAAA TCCTTTAAAT CTTTTTTGGT TGATTGGATA CCGATTTTCT GACTTGTCAG	515880
TTAAGCTTTC CTATGAACGT CCAGATATTT ATTATGGTAT TATAGATGCT TTTGATTATG	515940
GTGATATTCA AGTTCCTAAG AATTCCTTGG CTATTAAGTT TAGAAATGAA GAGGCTGCAT	516000

		449			
TTTTAGCTGG GTAT					516060
GTCCTATGAG TGAG	CATGTA AAAGATTT	TA AGTTTGGTT	TAAGGCTGGA	ATTTTTATG	516120
CCAATCCTAA ATTA	AGATTA GTTTCAAA	AA AAGCACCTTC	C TCTTTTTGAT	AAGGAGAAAG	516180
GCAAAGCAAT GGCT	CTATTC ATGTATAA	AG AAGATAAAGI	AGGCGTTATT	TTTCCAATAG	516240
CTGGTATAAC TGGT	CTTGGA GTTTATGA	CG CTGCTAAGGA	GCTTGGACCT	AAATATTATG	516300
TTATTGGTTT AAAT(CAAGAT CAATCATA	TA TTGCGCCTCA	AAATGTTATT	ACTTCAATAA	516360
TTAAGGATAT TGGTA	AAGGTT ATTTATTC	TA TTTCATCAGA	GTATATTAAT	AATAGAGTTT	516420
TTAAGGGTGG AATTA	ATTATT GATCGGGG	GT TAAAGGAAGG	AGTAATAGAA	ATTGTTAAGG	516480
ATCCCGATGT TTTAA	AACAAT AGGTTGGT	IG ATGAAGTTAT	TGATCTAGAA	ААТААААТАА	516540
TAAGTGGAGA AATTA	ATTGTT CCTGATAG	TG AATATGCATT	TGATTTATTT	AAATCAAAGT	516600
TATAAACTAC TTAAA	ATATAG CTTTGTTTC	et aaaggggaaa	TAGTTTATGA	АТААААТАТ	516660
GTTGTTGATT TTGCT	TTGAGA GTATTGTT	TT TTTATCTTGT	AGTGGTAAAG	GTAGTCTTGG	516720
GAGCGAAATT CCTAA	AGGTAT CTTTAATAA	AT TGATGGAACT	TTTGATGATA	AATCTTTTAA	516780
TGAGAGTGCT TTAAA	ATGGCG TAAAAAAA	ST TAAAGAAGAA	TTTAAAATTG	AGCTTGTTTT	516840
AAAAGAATCC TCATC	САААТТ СТТАТТТАТ	C TGATCTTGAA	GGGCTTAAGG	ATGCGGGCTC	516900
AGATTTAATT TGGCT	TATTG GGTATAGAT	T TAGCGATGTG	GCCAAGGTTG	CGGCTCTTCA	516960
AAATCCCGAT ATGAA	ATATG CAATTATTG	A TCCTATTTAT	TCTAACGATC	CTATTCCTGC	517020
AAATTTGGTG GGCAT	GACCT TTAGAGCTC	A AGAGGGTGCA	TTTTTAACGG	GTTATATTGC	517080
TGCAAAACTT TCTAA	AACAG GTAAAATTG	G ATTTTTAGGG	GGAATAGAAG	GCGAGATAGT	517140
AGATGCTTTT AGGTA	TGGGT ATGAAGCTG	G TGCTAAGTAT	GCTAATAAAG	АТАТАААСАТ	517200
ATCTACTCAG TATAT	TGGTA GTTTTGCTG	A CCTTGAAGCT	GGTAGAAGCG	TTGCAACTAG	517260
GATGTATTCT GATGAG	GATAG ACATTATTC	A TCATGCTGCA	GGCCTTGGAG	GAATTGGGGC	517320
TATTGAGGTT GCAAA	AGAAC TTGGTTCTG	G GCATTACATT	ATTGGAGTTG	ATGAAGATCA	517380
AGCATATCTT GCTCCT	TGACA ATGTAATAA	C ATCTACAACT	AAAGATGTTG	GTAGAGCTTT	517440
AAATATTTT ACATCT	TAACC ATTTAAAAA	C TAATACTTTC	GAAGGTGGCA	AATTAATAA	517500
TTATGGCCTT AAAGAA	AGGAG TTGTGGGGT	T TGTAAGAAAT	CCTAAAATGA	TTTCCTTTGA	517560
ACTTGAAAAA GAAATT	rgaca atctttcta	G СААААТААТС	AACAAAGAAA :	TTATTGTTCC	517620
ATCTAATAAA GAAAGT	TTATG AGAAGTTTC	TAAAGAATTT	ATTTAAATAA A	AGAATCAATT	517680
ТАТАТАТТТТ АТТТТ	TAAGT ATAAAAAAC	A CATTGGTTTT	GTTTGAATAA 1	rtgaaatgga	517740
GAAGTGCTTT ATATGA	AGAAT TGTAATTTT	T ATATTCGGTA	TTTTGTTGAC 1	TTCTTGCTTT	517800

AGTAGAAATG GAATAGAA	ATC TAGTTCAAAA AAAATTAAGA TATCCATGTT GGTAGATGGT	
		· -
	TTT TAATTCTAGT GCTAATGAGG CTTTATTACG CTTGAAAAA	
	TGA AGAAGTTTTT TCTTGTGCTA TTTCTGGAGT TTATTCTAGT	•
TATGTTTCAG ATCTTGAT	TAA TTTAAAAAGG AATGGCTCAG ACTTGATTTG GCTTGTAGGG	518040
TACATGCTTA CGGACGCA	ATC TTTATTGGTT TCATCGGAGA ATCCAAAAAT TAGCTATGGA	518100
ATAATAGATC CCATTTAT	TGG TGATGATGTT CAGATTCCTG AAAACTTGAT TGCTGTTGTT	518160
TTCAGAGTAG AGCCAAGG	GTG CTTTTTTGGC TGGCTATATT GCAGCCAAAA AAAGCTTTTC	518220
TGGCAAAATA GGTTTTAT	PAG GGGGAATGAA GGGTAATATA GTAGATGCAT TTCGCTATGG	518280
TTATGAATCT GGAGCAAA	AGT ATGCTAATAA AGATATAGAG ATTATAAGTG AATATTCCAA	518340
TTCTTTTTCC GATGTTGA	ATA TTGGTAGAAC CATAGCTAGT AAAATGTATT CTAAAGGGAT	518400
AGATGTAATT CATTTTGC	AG CTGGTTTAGC AGGAATTGGT GTTATTGAGA CAGCAAAAA	518460
CCTTGGCGAT GGTTACTA	TG TTATTGGAGC CGATCAGGAT CAGTCATATC TTGCTCCTAA	518520
AAATTTTATT ACTTCTGT	TA TAAAAAACAT TGGGGACGCA TTGTATTTGA TTACTGGCGA	518580
AATAATAA AAATTATATA	TG TTTGGGAAGG TGGAAAAGTT GTTCAAATGG GATTAAGAGA	518640
TGGTGTTATT GGGCTGCC	TA ATGCGAATGA ATTTGAATAC ATAAAAGTTC TTGAGAGAAA	518700
AATAATCAAT AAAGAGATO	CA TTGTTCCTTG CAATCAGGAG GAATATGAAA TTTTTATAAA	518760
ACAAATATTA AAGTTATAA	AA CTTTTGAAAT AGAAAGATTT TAATTTTCCA GTTTTTAATT	518820
ТТТТААТТАТ СТТАТАТТТ	TA TTGTGTTATA ATAAATAGAA GTACATTTCT GTTGTTTTAG	518880
AGGATTTAGC ATTGAATAA	AA AAAATGTTTC CCAAAATTTA CTATTATGAT CAAGACTTTA	518940
ТТСАТАТТТА ТААТАААА	GT TTATCTTGGA TTCAAGATAA GGTGATTTTG CAAAAAGTTG	519000
CTGATAGGGG CAAAAAAGA	AT AAAAATTATT ATTCGGAAAA TTGTGATTAT ATAGATCAGA	519060
TGCAAGCTTG TATGTCAAG	GC TTTTTTCTTG TCTATAGTAA TGGGGAATAT TCATCTACAT	519120
CTGCAATTGA TAAATTTTA	AT CAATTGCAGG AAGAATCTGG TGCAATCAGG GCTAGATATG	519180
ACAATAACAA TGCTATTAT	TT GATCTTGATG AGAATGAAGA GAATATTGGA TTTCCTATTT	519240
TTGCATGGGC TGAATACAA	AC TTATATCATA AGACAGGAAA TAAAAAGAGA ATTTCTGAAG	519300
TTTTACCAAT TCTTGATAA	AG TATTATAAAT GGATAGAGAG CAAATTTTTA AAGGAAAATG	519360
GTCTTTATTC AATTGATGT	TA AATAAAATTT TTTATAAGAA CTCCCCAAGA GTAGATGCGT	519420
ACTATCCTAT AGATTTTAA	AT TCATTGCAAG TTCATAATGC ATATTGTATT TCTAAATTGG	519480
CAGACATTTT AAATGATAA	A AATTTATCGC TTGAATACAA AAAACGATTT TTTTCCCTTA	519540

			451			
AGGTCAAAAT	ТААТТСТТТА	ATGTGGAGCG	AAAAAGATGG	ATTTTATTAT	GATCTTGATG	519600
TTAATGAAAA	TATTCTTGAA	ATCAAGACAA	TAGTAGGTTT	TTTCCCAATG	CTTTCTGAGA	519660
TTCCCAGTGA	GGACAGAATA	GAAAGAATGA	TTTTTTATTT	AAAAAGTACT	AATCATTTTG	519720
GGACTCCAAA	TCCTTTTCCA	ACACTTTCTG	TTAGTGAGCC	AGGTTTTAGT	GAGGATGGCA	519780
ATGGATATTA	TGGTTCAGTT	TATACTTATA	TGAATTTTTT	TGTAATCAAA	GGGCTTGAAT	519840
ATTGTGGTCG	TGCAAATATT	GCAAGAGAAT	TTACTATAAG	ACATTTGTAT	TATATATTAG	519900
ACACTTTAAT	GCCTTTTAAT	AAAATTAAGG	GGCACATTTG	GGAAGCTTAT	AGACCTATGC	519960
AAGAAGGACC	TGCATATTTT	GATTCTAATA	ААААААСТТА	TACCGAGAAA	GGTCTTATTT	520020
GTTATCTTGC	ACTTTTTAGT	ATTAGCTTAA	TGATAGAAAA	TATTATTGGG	СТТАСААТТА	520080
GTTTGCCTGA	TAAAACTGTA	TATTGGAATA	TACCCACTCT	TGAGATTATG	GGGATAGAAA	520140
GCTTATCTCT	TAAAAAGAAT	CAAACTACAA	TAATTTGCAA	TAAGGGGAAA	AGAGGTTGGG	520200
АААТААААТ	GGAATCTGAA	AAACTTTATT	ATTTTACAAT	AAATATATTA	AATAAAAAAG	520260
AAAAAACCCT	TCCTATTCCC	TCAGGAAGAT	GTTCTATGTT	ATTGGATAAG	CTTTGATGAA	520320
TTAGATTCAT	TAAATGTCTT	GTAAAATTTA	AATTTTTGGA	GGCCTTTTAA	TGATAGATAT	520380
TGATGAGTTG	AGAATTTTC	TTAAAGAGAA	GAGCTATTCT	AAAATTAAAG	AAAAATTTTT	520440
AAAGCATGAT	TCCTTTGATA	TTGCTGAGGC	TCTTAAAAGA	CTTAATGGAA	CTGAATTGAT	520500
TTTACTCTAC	AGATTTTTGC	СААААААААТ	AGCAGTTGAA	ACTTTTTCTA	ATTTTGACCA	520560
ATCTACAAAA	AATAAATTAG	CAAATTCTTT	ТАССААТААА	GAAATAAGTG	AAATGATTGA	520620
TGAGCTGAAT	CTTGATGATG	TTATTGACCT	TTTGGAAGAG	GTTCCTGCAA	ATGTTGTTCA	520680
GAGATTTTTG	GCAAGTTCTA	CAGAAGAGAA	TAGAGAAATT	АТТААТАААТ	TTTTGTCTTA	520740
CAGTGATGAT	TCTGCAGGTT	CGATCGTAAC	AATTGAGTAT	GTTGAGCTTA	AAGAAGATTT	520800
CACAGTTGGC	AAAGCTCTTG	ATTATATTAG	AAGGGTAGCT	AAAACCAAAG	AAGATATTTA	520860
CACTTATTAT	ATTACAGATG	ATGAAAAGCA	TTTAAAAGGA	GTTATAAAAA	TTGAAGATTT	520920
AATATTGGCT	AAAGATGATG	TTATTCTCTC	GTCAATAATG	AGAAGTAGTG	GGTTTTATAT	520980
TGTGGGGGTT	AATGATGAGA	AAGAAGATGT	TGCACTTCTT	TTTCAAAAAC	ATGATATTAC	521040
CAGTGTTCCT	GTTGTTGATA	ATGAGGGGAG	AATGATAGGG	GTTATTATTA	TTGATGACAT	521100
TTTAGAGGTT	ATTCAATCTG	TAAATACTGA	AGATTTTCAA	ATGATTGCAG	CTGTTAAGCC	521160
TTTAGATACA	TCTTATCTTG	ATACTTCTAT	TTTAGTTATG	АСАААААТА	GAATAATTTG	521220
GCTTTTAGTT	CTTATGGTGT	CTTCTACTTT	TACAGCTACA	ATTATTTCAA	ATTATCAAAA	521280
TTTAATGTTG	TCTTTAGTGG	TTTTAGCTAA	TTTTATTCCC	CTTTTAATGG	ATACTTCAGG	521340

CAATGCCGGC	TCTCAGGCAT	CTGCGCTAAT	AATTCGTGAG	CTTGCTCTTG	GTACTGTCAA	521400
GGTAAAAGAT	TTTTTTAAAG	TGTTTTTAAA	GGAAATATGT	GTTAGCATTC	TAGTGGGAGC	521460
AATTCTTGCT	AGTGTTAATT	TTTTAAGAAT	TGTCTTTTT	GTAGCTCCAC	ACCATTCTGA	521520
TAAGCTGAAA	ATAGCTTTTG	TAGTTTCATC	TTGCTTGATG	GTAAGTTTGA	CAGTAGCAAA	521580
GATATTGGGA	GGTCTTTTAC	CCATTGTTGC	TAAACTTTTA	AAGTTGGATC	CAGCACTTAT	521640
GGCAGGCCCT	TTAATCACTA	CAATTGCAGA	TGCTATTACT	TTAATAGCTT	ATTTTAATAT	521700
AGCAAAATGG	GTTTTAGTTA	GCTATGCTGT	TTAAATTTCA	TTTAAATATG	TTGATTGCTA	521760
TTTTTTTATA	ATAGGATATT	TTTAATGTAT	GATTGTATTT	TTTGTAAAAT	ААТАААСААА	521820
GAGCTTCCTA	GTTATAAAGT	TTATGAGGAC	GATTTAGTTT	TAGCATTTTT	AGATATTAAT	521880
CCTTTAACTG	TTGGGCATAC	TCTTGTTATT	CCCAAAGAAC	ATAGTGAGAG	TTTATTAAAC	521940
ATGGATGATA	AATTTAACGA	GAGAGTTTTA	AAGGTATGTA	AAAAAATTTC	AAATGCTTTA	522000
AAAAGAATAA	ACTCAAGCAT	TTATGGTGGA	ATAAATATTT	ATTCTGCTTT	GGGGGCTGGC	522060
GCAGGGCAAG	AGGTTTTTCA	TACTCATTTT	CATGTAATTC	CAAGATTTAA	AAACGATGGT	522120
TTTGGTTTTA	AGAGAGGCAA	TAAACTTAAT	CTTGAAGTTG	AAAAATTTAA	AGAGTTGTCT	522180
ATGCAAATAA	GTATGAATAT	TTAATTTTAT	TTTGCCCAAA	AGGATTCTTT	ATGAGAAGAA	522240
ACTTTTTATT	CTTTTTTGTT	TTTATGCTTA	ATGCATTTAG	AATTTATTCA	GGAATTCCTA	522300
GCTATCTTAA	TGTATACAGT	GGAGTTGGGC	TTGGTGTTGA	CAATTTTACT	CAAGATTTAT	522360
TCTTTTATGA	AAGACTTAAG	TATCAATTTT	TCAGTGGAGT	TGGTGTTAAT	GTTTCTCAAA	522420
ATTTAGCATT	TGGTGGAGAA	TTTAATTTAG	ATATTAAATT	TTTACCAAGC	CATACTCCTT	522480
ATACCAATGA	GATTATATTT	ATGTTGGATG	ATCAAGCATA	TTTGAAGCAT	TCTCTAAATT	522540
ATTTCATAAT	AAAAGATGTT	TCATTTTCAC	TGAGAATGTA	TGGTAATTAT	TTCTTTTTAT	522600
CCTATACCCC	AATGTTTAGT	TTAATCTTTT	TTACAGGTTT	AAAATTTTCA	TACATTGGTG	522660
CAAAAATTTG	TTTTGTAGAT	TCGCGTGATT	GGGTATTATT	GGATAATTTT	GTTTTGGGAA	522720
TAGACATTGG	AGCTAGAATT	AATGTAGATT	TTATTTTTTT	GGAATATACA	ATCTCTCCAA	522780
TTTTTTACAA	CAAACCTTTA	CTTTTAAATC	AAATGCATAA	AATAACATTA	GGATTTATTT	522840
TTCAGTTTGA	TGTAGCAACA	AAAAATGAAA	GCGAAATACT	TTCTATTTTG	TAAATTTTAT	522900
GAGCTAAGGA	TAAATTTTAT	TTTCTTCTTT	AATATTGTTT	AATATTTGTA	AGTATTTAGA	522960
AGATTCATAT	TTAGCCATAT	CAAGGTTATG	TTCTTTGTAA	TTTCCGCATT	CCTTATCACT	523020
TGCGCCTGGG .	ATAGGTTCTG	AAAAATTTAC	GATTTCGGAA	AAAAGCCATG	AGACTAAGTC	523080

US98/12764

AACAAGATCT TTACTTTCAT AGTCTCCAAA AATTATTAAG TAAAAACCAG TTCTGCATC	CC 523140
CATAGGGCCA AAATATACTA TTTTTTCGGT CCAAACTTCA TTATTTCTAA GTAAAGTAG	SC 523200
TCCTATGTGC TCTATTGTAT GTATTGCTGC GTTTTCAATT ATTGGTTCGA TGTTGGGAG	SC 523260
TTTGATTCTA ATGTCTATTG TAGTAAATAT TACATTTTCA AAGGTATCTT TTCTTGAGA	AC 523320
ATATATGCCA GGGTTGAGTT TTGTATGATC TATTGTAAAG CTTGTTATTT TTTTCATTT	T 523380
TTTAGCGCTG TTTGTATTTT TTTTACAAAA TCTAATTTTT CCCATTCAAA TTCATTTTT	T 523440
CCAAAATGAC CATAAGTGCA AGTTTTAAGA TATATGGGTT GTTTTAGTTT TAATTTTTC	'A 523500
ATTATACCGT TGGGAGTTAA ATCGAAGTTA TTAACAATAA AATTTAATAT TTTGTTTGC	A 523560
TATTTAGGAT CATTTATTCC CCCAGTTATT TGAATAGATA TTGGGTTTTC AATTCCAAT	т 523620
GCATATGCGA GCTGTAGTTC AAATTCTTTA GAAATTCCGG CTGCCACCAT ATTTTTTGC	A 523680
ATATATCTTG CCATGTAGGC AGCTGATCTA TCTACTTTTG TGGCATCTTT TCCGCTGTA	T 523740
GCTCCCCCTC CGTGTCTTGC AAATCCTCCA TAGCTATCTG CAATAATTTT TCTTCCTGT	A 523800
AGCCCAGTGT CTCCGGTAGG GCCTCCAATT ACAAAATTTC CAGAAGGATT AATGCAATA	A 523860
GCAGTATTTT CATCAAGCAT TGACTTGTCT TGAACAGTGG GCTTGATGAT TTCTTCAAT	r 523920
ATTGTTTGTT GTATTAGTTT TTGGGAGATG TTTGGATGGT GTTGATGAGA GACTATAATA	A 523980
TTTTTTATTT TTACAGGGTT TCTGTTTTTA TCGTATTCTA TGGTAACTTG AGATTTTGAG	G 524040
TCAGGCCTTA ACCATTTTAT TGCTCCTGAT TTTCTAAGAT TGCTAGCTTT TTTTAGAATT	r 524100
GAATTGGCTA GTTCATAAGG AGCAGGTAAA AAATTTTTTG TTTCATCGCA GGCATATCCA	A 524160
AATATTATTC CCTGATCCCC TGCTCCAAGG GCATTGGATC CCTTTTTTTC AATTGCGTTT	524220
ATAATGTCAC GTGATTGATT GCCAATAGCG TCTATTACCG TTATTGTTTT GTAATCAAGC	524280
CCATAATCAA TATTTGTATA GCCTATATCT TTGATGATAT TCTTAGCAAC CTCTTTTATA	524340
TCTATGTTTT TTTTTACAGG ACTATTTATT TCTCCTGCTA TTACTACTAA ATTTTGTGCA	524400
ATTATGACCT CGCAAGCTAC TTTTGCATTT TTATCTTCTT TTAGTATTTC ATCAAGGATG	524460
GCATCAGAGA TTTGATCTGC AATTTTGTCT GGATGTCCTT CAGATACAGC CTCAGAAGTT	524520
AAAGTTTGGT TCGCTGCTAT TATTTTATTC ATATTAGCCT AATAAGTTCC TTTGTCATTT	524580
TGCTTGAATT TATTGATGAT GTTTTTAAAA ATTTATTAAA GTCTATATGG TTGTCTTTAT	524640
TGTTTGGTAG ATCAGAAATT GAACGAATTA TTATGAATGG TATTTTAAAT ATGTGTGCTA	524700
CTTGAGCTAT TGCAGCTCCT TCCATATCTA CAGCTAAAGC ATCTTTGAAA TTTTTTTTAA	524760
TTGTTTCAAG ATTTTTTCA TTGTCAACAA ATTGATCTCC TGTTAGTATT AAGCCAATAT	524820
GGATATCAAT GTTTAAAAGC TTGTTGTCAA CAATATTGGC CACTTTTTTA AGTAGCTCTT	524880

CATCTGCTTT	AAACTTTTGT	GGCAAATTAG	GGACTTGTCC	TATTTTGTGT	CCAAACTTAG	524940
TTAAGTCAAA	GTCATAGTAT	GCTGTTTCTG	AGGATACTAT	AATGTCTAAT	ATTTTAAGGT	525000
TAGAGTTTTC	TTTTATCCCC	CCAGAACTTC	CAGAGTTTAT	TATGTGAGTG	ATTTTATACT	525060
TAGAGATAAT	TTGACTACTC	CAAGTTGCTG	CGTTAACTTT	TCCAATTCCT	GTAGTTAAAG	525120
ATATTACATC	TTTTCCTAGA	ATTTTTCCTT	ТАТАААТСТТ	ТТТАТТТТСТ	AAGTAGTCGT	525180
ТТААТАСААТ	TTCTTCTTTG	TTGTCAAGTA	ТТТТТТТТТТТТТТТТТТТТТТТТТТТТТТТТТТТТТТТ	TTCTTCTGAT	TCTTCTTGCA	525240
TAGCTGATAT	TATCAAAATC	ATATTTTTC	TCCTTTTAAG	TGTCTTATAT	AATATCTATT	525300
AAAGAATATT	TATTTTTAAT	TAGCTCTATT	TCATTTTGAT	TGAGTATTTT	ттттаттсст	525360
GTATTTGTAT	TTGGTATAGA	TTGAACACTA	GATTGTTCAT	TTTTGTCTAT	AACTTTTCCA	525420
TTTTTTTATTA	TGTAGTTGAT	GTATGGAAGA	TTTGGGTTAG	ACTCATCTAT	ATCTACTATT	525480
TTGGCTATAG	AATTGTCATT	AAGTTCTACA	ATAAAGTCTA	AGGGACAAGA	AGATATTGCA	525540
TTGATTATTA	GCTTCAAAAC	CCTTTTGTCA	AATTTTTTGT	CAGCATCTTT	GATTAATTCA	525600
ATAATAGATG	CTCCAGAATT	AAAAGATTTT	TTGTATGCCT	ТАТСТААААТ	GATAGCAGAA	525660
TAGGCACTAG	CAGCGCCTAT	TATATTTGAT	TCTATGCTGA	TATTTCACT	TGTTAATCCT	525720
TTAGGATAGC	CAGTTCCGTC	TAGATTTTCT	TTATGTGTTA	AAAGTGTCAA	ACATATTGAT	525780
CGTGATAAGT	TACTCGTTGA	AGCTATTTTG	TAGCTTATTA	TGGGATATTT	TTTTATTATT	525840
TCTAGTTCTT	CCTCAGTTAA	TGCTTCTTTT	TTTTCGCTGA	TTTTTGATGG	AATAAATAAA	525900
AATCCTATTT	TATGTAAAAG	AGCAATACTA	CAAAGCTCTA	CTGTTTTATA	GTTATTTAGT	525960
CCCATTTCAT	TGCCAAGGGC	TACTGTTAGG	ATAGCTGTAT	TTACCGAATG	AATAATGTGA	526020
TAGTTTGCAG	AAAGCTTGGG	AATTCTAAAA	TATTTGATAA	AAATTTTCTT	CTGTTTCTTG	526080
ТААААТТСТА	TTACTTTTTT	TACAGTAGGC	ATAATATCTT	GGTAATATAT	TTTTTTATTT	526140
CTTTTGCAAT	TTTCATAAAT	TTCTTCTAAA	TTGCTTATTA	TTACATGATA	ACTGGAAATA	526200
GCCTCTTCGT	TGAATTTTTT	GTGTATTTCT	TCATATTCTT	TTTTAACAGA	ATCGTCACTG	526260
TTTTAAAAAA	TTCTCTCTTT	AATGTATGAC	TTTAGATTCC	ATTTTTCAAT	AAGCTCAATG	526320
TTTTTGTCTC	CAATAAATGC	ATTCTCAGGC	CAAACTAAAA	ATTCCTTGTC	ТАТТАААТАТ	526380
GATGAATTTT	TTATATTTTT	AATAATGCTT	TCAGAATTTT	GCATTTATTC	CCTTGAAATT	526440
AAGCTCTATT	AACCATGTAT	АТСАТАТТАТ	TTATTAATTG	TCTATCTATT	AGTATAATGT	526500
ATTTATTATA	TCTCAATTTT	TGAATTAAGC	TTTTTTGAAG	AGATTTTTAT	GGTAGAAAA	526560
ATACGCTTAG	GTTTTAATAT	TATTTTTCTT	GGATTATTTA	TTTATTTTCT	GGCAATTTTA	526620

		455			
AGATTTCAAA TGAAATTAI		G TTTAATTAC			526680
TTATTAGTGA TTGTTTTT					526740
ATTTTAAATG GGATGGAAC	SA TGCATTCAC	T TTTTTGAAG(TTAAAATGG	TCGCAAAAAG	526800
CTTAAAAGTG TTTTTGAAA	T ATCTATTCT	T CTTAGGTTT	AATAATTT A	A ACAAGATAAA	526860
AAAAGCCTTG ATGAGCTTT	'A TTTTTATTT.	A AAAGACACTA	A GATTAAGACA	ТААААСААТА	526920
ATAGAGCTTT ATTCTGTTC	T TATTAGCTT	T AGAGAAAAA	AAAAGGCTTC	TAGTTTAATT	526980
TTAAATTACA AGTACAGTA	G AAATAAGTG(G GTGAAATATT	GTGAGGCTCT	TAGTATGTTG	527040
TCATTTGAAG AGCACTCAA	A GCTAAAAGA	G TTGGTAAATT	TTTTAGATAA	GTTTTTTTG	527100
AAAAATGATA TTTTTACTA	TTATTTTAT	r TATTTATTGC	GAAAATCAAA	AACATCTTTT	527160
GATTTGCTTG AAAGCAAGA	A AATTGAGATT	r agaaatcgat	ACTATAAATT	TAAAAACAGG	527220
ATAGATTCTA AGCATACAA	A GCTACTTGG1	T TCGAATTTAT	TTTTTGTTGT	TTTTTATTAT	527280
ATTTATGATT TTTCTAAAA					527340
GTTCGTTATG CGCCTTCTC	C AACGGGTTTA	CAACATATTG	GCGGGATTAG	AACAGCTTTG	527400
TTTAATTATT TTTTTGCAA					527460
GATCAGAGCA GGTATTCTC	C AGAAGCTGAA	AATGATCTTT	ATTCAAGTCT	TAAATGGCTT	527520
GGCATTTCTT TTGATGAAGG					527580
CAAAGAAGTG CAATATATA	GCAATATGCT	AAATATTTGA	TTGAATCTGG	GCATGCTTAT	527640
TATTGTTATT GCAGTCCCGA	A AAGGCTTGAA	AGAATTAAGA	AAATTCAAAA	TATTAATAAG	527700
ATGCCACCTG GATATGATAC					527760
CTAATTAAAA AAATCAAGCO					527820
TTTGATGATA TTTTACTTGG					527880
GTAATTCTTA AGTCAGATGG					527940
TTAATGAAAA TTACCCATGT					528000
GTACTTCTTT ATAAGGCTTT					528060
ATGGGAAATG ATGGTCAAAA					528120
ATTGAAGATG GGTATCTTCC					528180
TACGACGATA AGAGAGAATT					528240
AAGATCAATA AATCTCCTGC					528300
TATATTAGAG AAAAAAAAGA					528360
AAAGGGTATG TTTCTAAGCC	TAGTACTTTG	GAAGAAAATC	AAAATTAAA	GTTATTAATT	528420

CCTCTTATAA	AGAGTAGAAT	TAAAAAATTA	AGTGATGCTT	tAAATATGAC	TAAATTTTTT	528480
TATGAGGACA	TTAAATCTTG	GAATTTAGAT	GAGTTTTTAA	GTAGAAAAA	AACAGCTAAA	528540
GAAGTTTGTT	CTATTTTAGA	ATTAATAAAG	CCTATTTTAG	AAGGGTTTGA	AAAAAGATCA	528600
TCAGAAGAAA	ATGATAAAAT	TTTTTATGAT	TTTGCTGAGA	GTAATGGTTT	TAAATTGGGA	528660
GAAATTCTTC	TTCCTATTAG	AATTGCAGCG	CTTGGTAGCA	AAGTCTCTCC	GCCGCTTTTT	528720
GATTCTTTAA	AATTGATAGG	CAAGTCTAAA	GTTTTTGAAA	GAATAAAATT	AGCACAGGAA	528780
TTTTTAAGAA	TAAATGAATA	GCTATTAAGG	ATATTTTAT	GGTTAGAATG	GAAGATATTA	528840
TTTCTCTTGC	AAAAAGAAAA	GGATTTGTAT	TTCAGTCTTC	AGAGGTTTAC	GGGGCCTTT	528900
CAGGAGCTTG	GGATTATGGT	CCTTTGGGGG	TTGAGCTTAA	AAAGAATATA	AAGAAAGAGT	528960
GGTGGAAGAG	CATGGTGTAC	TTGCATGAAA	ATATTGTAGG	TTTAGATAGT	GCTATTTTTA	529020
TGCGCCCTGA	AATTTGGAGA	GCATCTGGTC	ATGTTGATGG	TTTTTCGGAT	TCTATGGTTG	529080
ATTGCAAAGA	TTGTAAAAGT	AGATTTAGAG	CTGATTTTAT	TGATTTGTCA	AAAAATTGTC	529140
CGAATTGCAA	AGTTGGAAAT	AATTTTACCT	CCCCAAGAAG	TTTTAATTTA	ATGTTTAAGA	529200
CCCACATTGG	AGTAGTGGAG	GATAGTTCTA	GTGAAGTTTA	TTTAAGGCCT	GAGACAGCAC	529260
AAGGAATTTT	TGTTAATTTT	AGAAATGTTT	TGGATTCTTC	AAGGCTTAAG	ATTCCTTTTG	529320
GGATTGCTCA	GGTAGGTAAA	GCGTTTAGAA	ATGAGATAGT	TACTAAAAAT	TTTATATTTA	529380
GAACTTGTGA	GTTTGAGCAA	ATGGAAATGC	AGTTTTTTGT	TCATCCCAAG	CAAATAGACG	529440
AGTGGTTTTG	TTATTGGCAG	CAAAATAGAA	TGAATTTTTT	TATAGAAACT	СТТААААТТА	529500
GTCCCGATAG	ATTAAGATTT	AAGGCGCATG	ATTCAACGCA	GCTTGCTCAT	TATGCAAAAG	529560
CTGCATTTGA	TATTGAGTAT	GAATTTCCGT	TTGGATTTCA	GGAAGTAGAA	GGAATTCACA	529620
ATAGAGGTAA	TTATGATTTA	ACTCAGCACG	CTAAATTTTC	TAATAAGCCC	AAAGTATTTG	529680
AGTATCATGA	TTTGTTGACA	AAAGAGAAAT	ATGTGCCTTA	TGTTATTGAG	ACTTCTGCTG	529740
GTCTTACAAG	GTCTGTTTTA	ATGACTCTTT	GTGATGCTTA	TTCTGAGGAA	GAGCTCTCAG	529800
ATGGAGACAA	GCGTATTGTT	TTACGCTTAC	ATCCCAAGTT	GGCTCCTTAC	AAGATTGCTA	529860
TATTTCCTCT	TGTTAAAAAA	GTtGAGCTtA	CTGAGATTGC	TAGAAGGATT	TATATGGAGC	529920
TTTGCGATGA	ТТТТСАТАТА	TTTTACGATG	ATAGTGGAAC	AATAGGTAAA	AGGTATAGAC	529980
GTCAAGACGA	AATAGGAACT	CCTTATTGCG	TAACAATAGA	TTACAATACG	ATTGAGGATG	530040
AGACAGTTAC `	TGTTAGAGAA	AGAAATAGCA	TGACTCAGAA	GAGAATTTTT	ATTAATGATT	530100
TATATTCATA	CATTAAAACA	GAGATTTTAA	ATTACAAAGA	GGATTTTAAT	AAATGAATCT	530160

JS98/12764

Λ	ς	7
ᅑ	_	,

TGCTTTAAGT	CTTTTACATA	AACGCGGATT	TTTAAAGCAA	TGTACATCTT	TAAAAGTTTT	530220
AAGTGATTTA	ATGGATAGGG	AAAAAATAGT	TTTTTATGCA	GGAGTTGATG	CAACATCTAG	530280
TTCTCTTCAT	ATTGGCCATT	TGATTCCCTT	TTTAGCAATG	ATGCATCTTA	GGCAACACGG	530340
GCACATGCCA	ATTGTTTTGA	TTGGAGATTC	TACAGCAAAA	ATAGGCGATC	CTTCTGGAAA	530400
AAGTGAGATG	AGAAAGATTT	TATCTTCAGA	AGAGATTGGC	AATAATGCTT	TGTTGATAAA	530460
AAATCAACTT	CAAAGAATAA	CTAAGTTTAC	TTCAGAATGT	TTTATTCATA	ATTCAAATTG	530520
GTTAGATAAT	СТСААТТАТА	TTGAATTTTT	AAGAGATGTT	GGCATGCATT	TTTCTGTTAA	530580
TCGTATGTTA	AGCTTTGAAA	CTTATAAAAG	AAGGATGGAT	TTCGGACTTT	CATTTATTGA	530640
GTTTAATTAT	CAACTTTTGC	AGTCTTATGA	TTATTATATG	СТТААТАААА	TTAAAAATTG	530700
CCGACTTCAA	ATTGGTGGTG	ATGATCAATG	GGGGAATATT	ATTTCAGGGG	TTGACCTAAT	530760
TAGAAAAAA	AATGGATCAG	AAACTTTTGG	GCTTACTTTT	ССАТТААТТА	CAAGAAGTGA	530820
TGGAAAAAG	ATGGGTAAAT	CAGAAAAAGG	CGCTGTTTAT	CTTGATTCTA	ATCTTTTTAG	530880
TATTTATGAT	TTTTATCAGT	ATTTTAGAAA	TACTTCAGAT	TCTGATGTGA	AAACTTTTTT	530940
ATATCTTTTT	ACTTTTTTAG	AAGAAGATGA	GATTGAATTA	ATTTCAAATT	TTAAGGGGAA	531000
TTCTTTAAAT	AAGGCCAAAG	AGATTTTGGC	TTTTGAGATA	ACTAAAATTG	TTCACGGAGA	531060
GGCAGAAGCC	TTGAAAGTTC	AAGAGGCATC	TTTTGCCGCA	TTTAGGGGAA	GTGGAGATAG	531120
GAGCAATATT	CCATTTTTTA	AATTTAGCTT	TTCTAGCCTA	AAAGAAGAGA	TATTATTGGT	531180
TGATTTAATG	TTAGATTCAA	AAATTGTGCC	CAGCAAATCA	GAAGGCAGAA	GATTGATTGA	531240
TTCTGGAGGT	GTTTATATTA	ATGGTAAAAG	GGTAGAAAGT	CAGAGTCACC	TTCTTACCAA	531300
AAAGGATTTT	AATAACAATG	AAGTTGAATT	AAGAGTAGGT	ТАААААААА	TTTTACGAAT	531360
TGTTATATAG	TTGATTTTGG	ATGTATGATA	GAAGAGCTTT	AAATTGTTTA	TTTTTTAACA	531420
CCTTTTTGTT	TTTCATGGAA	TCTAGGCACC	TTGTGTTTAC	AGAAGAGCAC	ATTTTTTATG	531480
GGCTTATTAA	AAGTGATAAA	GTTAAAGAAC	TACTTAATTT	GTGTGCAATT	GATTTTTATA	531540
AACTTAATAA	ACAACTAGAA	GAATTTTTTA	GTAAACTTCC	CTTAAGAGGC	AATTATATCC	531600
CAGACTATGT	TTCTAGTATG	GATTATTTGT	ATGACGATAT	AATTAGTGTT	CTTTTTTTTT	531660
ATAAAAAACC	TTATAAAATA	CAAGAAAAAG	ATCTATTGTG	GGTGCTTGTC	AAAAAAAGAA	531720
AAAATAGTAT	TTTAGATGCG	CTGCTTAGCT	CGGGTTTTAA	TTTGACTATT	TTTGATAAAC	531780
TTATTGAAGC	TCATGATTAT	TTAGCTGTAA	ATACTAAATC	TGCCTCAGGC	GACAGTGAAT	531840
TAATTGCAGA	ATATATTCAT	AATAATGCGC	CAAAAAGGAA	AGGAGGCTTT	CATATTTTTG	531900
ATGATAAGCG	TGATGAATTG	GATCAAAATA	ATATTTTCTT	AGAAAGTAAA	GACTCTATTG	531960

GTAATTTTTT	AACAAACGTT	ATTGATACTT	TGGATTTAAA	ATACAATCCT	TTAATTGGTA	532020
GAAGTCAAGA	ATTATCTCGG	TTAATCCAGG	TGATACTTAG	GAAGCATAAA	AGTAATCCTA	532080
TTTTGTTTGG	AGAGCCTGGT	GTTGGAAAAA	CAGTATTAAT	CCAAGGTCTT	GCATATAAAA	532140
TAAAAATAGA	GAATGTTCCA	AAGGATTTAA	TAGGGTATGA	AATCTATTCT	CTTGATATTG	532200
GTAGGCTTGT	TTCGGGTACT	AAATATAGGG	GAGATCTTGA	GAGTAGGGTG	AATAGGGTTT	532260
TAGATTTTTT	AAGCTCAAGA	AAAAAAGTTA	TGCTTTTTAT	TGATGAAATC	CATATGATAG	532320
TAGGGGCAGG	GGCTACTTCA	TTTGGCAGTA	TGGATATTTC	CAATTTGTTA	AAACCCATTC	532380
TCACTTTAGG	AAAAATTAAA	TTTATTGGAG	CTACTACAGA	ATATGAATAT	AGAAAATTTT	532440
TTTTAAAAGA	TAAGGCCTTA	ATGAGAAGGT	TTCAGAGTAT	AGAGCTCAAA	GAGCCTAATT	532500
TTGAAGACGC	TTATAATATT	TTGCAGGAGA	TTAAAAAAGA	TTACGAGAGG	TATCATAATG	532560
TGGAATATAC	AGACGAGGCA	ATACAAGCTT	GCATTCTCAT	GTCTCAAAAA	TATATTAAAG	532620
ATAGATTTCT	TCCAGACAAA	GCTTTTGATA	TTTTAGATGA	ATTAGGCTCT	AAGTTTAAGC	532680
TTGAAAATAT	AAAAAGGATT	ATAACAAAAG	ATGATGTTTG	CGATCTGATT	AAATCTATTG	532740
TTGGTTCTAA	TATTTTTAAT	TTTGAAGAGT	ATGATGGTGA	ATTGCTAATT	AATTTAGAAA	532800
ATAGAATAAA	AAAAGAACTT	ATTATACATG	ATAACTTGGT	ACTTGATTTG	ATATTAAATA	532860
TTAAATTATT	AAAATTCAAT	TTGCTTGCCA	ATAGAAGTAC	TATTGGAATA	TTTGCCTTTA	532920
TTGGTGCTTC	TGGGTCAGGA	AAATGCAAAT	TGATGGATAT	TTTATCAGAA	GAGTTTAAAA	532980
TTCCTAAATT	TAGTCTTAAC	ATGGGTGAGT	ATAATGATTT	TAATTCTCTT	GATAGATTGA	533040
TTGGGCCTGT	TTTAAGTAAT	GAAGGATATT	ATGAATCTAC	CAGATTTTTT	AAATTTTTGA	533100
ACAAATCTTC	TAATTCTATT	ATTTTCCTAT	CAGATTTTGA	TAAATGTAAT	AAAAGGGTTT	533160
TAGATTTTTT	TTTAGAGGGG	TTTAAAACAG	GTAAACTTTT	TGATGGTCTT	GGAAAAAAGG	533220
TAAGCTTATC	AGAAAGTTTA	ATAGTAATAA	GTATCAATGC	TGAGAGCAAA	GAGCTTAATA	533280
GCATTGGTTT	TAGAAATAAA	ATGGCGGGGG	AAAATGATTT	TAACTTTATA	TTAAAGAAGA	533340
GATTGCCCAA	TGAGTTTTTA	GAATTAATAG	ATCATGTGTT	TGTATTTAAA	TCTATTGATG	533400
AGTTAGATTT	TGAAAAAATC	ATTTTTAATG	AACTTAATTA	TTTTGCAAGG	ATATTAAGAG	533460
ATAGAAAATT	TGATGTTTTT	TTTGAAAAAA	GTGTTGTTGA	TTATATTCGA	GAAAAGATTT	533520
ATGGAAAGGG	GTACAGCTTA	AAAAGTGTTA	GAAAATTTAT	ATTCAAAGAA	TTGGGAAAGC	533580
TTTTAATAGA	TGAAATTCTT	TTTAAGAAAA	TTGAAAATTC	TGGTAAAATA	AAAATCTATT	533640
TAGATGAAAC	ААТАААТАТ	GAGTTTTTAT	AAGGTTATAG	GGGGAGTATT	TATGAAAATA	533700

			459			
TCAGTAATAC	G GGGCAGGTGC	TTGGGGAACA	GCTATTTCAA	AGTCTTTGGC	AGATAAATTT	533760
GATTTTAATA	A TTTTTTTATG	GGTCTTTGAA	GAAGATGTTA	AGAATGATAT	TAATAATGAT	533820
AATGTTAATA	A СТАААТАТТТ	' AAAGGGAATT	AAATTGCCAA	AAAATTTAGT	TGCAAGTTCA	533880
GATTTATTTC	AAGTTGTAAC	AATGTCTGAT	TATATTTTCA	TTGCAACACC	TTCTCTTTTT	533940
ACCGTTGATA	AAAAATTTT A	ATTGGATCAA	TTTTTACATT	TTCTGGAGAT	AAAACCAAAG	534000
CTAGCAATAC	TTACAAAAGG	GTTTATTACT	TTTGATGGTA	AAACTCAGAC	AGTTATTGAA	534060
GCTGCTGAGA	GAATTATGAA	AGGATATAAA	GACGAAATTA	CTTATATTGT	TGGTCCAAGT	534120
CATGCTGAGG	AAGTTGGGCT	TGGTGTGATA	ACAGGGCTTG	TTGCGGCTAG	TAATAACAGA	534180
GAAAATGCAT	ATTTGTTTAT	TAATTTATTT	AGTAAAACCC	CAATTTCTTT	ATTTTATAGC	534240
AACGATGTTT	TTGGGGTGCA	AATAGCAGCA	GCTTTAAAAA	ATGTGTTTGC	TATTGCATTT	534300
GGAATTTTGG	ATGCCTATAA	ATTGAATTAT	ССТААТТТАА	TAGGTAATAA	TACAGAATCA	534360
TTTTTATTT	CAATATCCTT	АААТААТАТА	AAAGATATTG	CAATGGAGCT	TGGGGGAAGA	534420
AATATTGAAA	CGTTTTTATT	TTTGTCTGGT	TCTGGCGATT	TAGATGTTAC	TTGTAGAAGC	534480
ATGTTTGGAA	GAAATAGACG	ATTTGGCAAT	GAAATTGTTA	GCAAAAACAT	TTTAGAAAGC	534540
TTTTTAAGTA	TAGATGACTT	GATAAGTAAT	ATTGAAAAA	TTGGATATTT	ACCAGAGGGA	534600
GTTTTGGCTG	СТАААТСААТ	TTTTTTCTTT	ТТТАААСААТ	TAAATCGTGA	TCTCAATCCT	534660
AATAGTTTGT	TAAGCGTTAT	АТАТААААТТ	TTGAATAAAG	AGTTGGAGCC	CAAATCTGTT	534720
ATTGAGTATA	TGAGAGATGT	TAGACAATAA	AATAAAGCCT	CTGCAGAGGC	TTTATTGTTT	534780
TTGCTCATTC	ATCATATATA	AAATTTTATT	ATAAACATCC	TCGATTATTT	СААААТТТАТ	534840.
TACAACTTCT	GTAAGTTCAT	TAGATTTAAT	AGTTCCTATT	ATGTTGTCAT	TTTTTGTTAA	534900
ATCGTCTCTT	TTGACTAAAG	AATTGCTGTC	TACTAAAATT	TTTATTCTTG	TTAGGTCTTT	534960
GTCTATGTTT	TTAATATTT	TAATTCCCCC	GAAGCATTCT	ACAATATGCT	CTGCTACTTT	535020
AATTTTATTT	ATTTTTTCTA	AATCTGCCAT	AGTAATTTTA	TTCTCTGTAG	AAAGCTTTAT	535080
ATGCTAAGTA	AGCATTGTAT	AAATCAAATT	TAGAAGTTAT	TTCCATTGGA	GAATGCATAC	535140
TTATAACAGC	AGGCCCCATG	TCTATTGTTC	TTATTCCATA	GCCAGCTAAG	AATTTAGCAA	535200
CAGTTCCTCC	TCCTCCTTCT	TCTACTTTTC	CGAGTGTTGC	TACTTGCCAG	GCTATATTGT	535260
TTTTATTTAA	TAATTGTCTA	ATATAAGAAA	CAAGCTCAGC	ATCAGCATCG	CTTGCCATAC	535320
TTTTTCCACC	ATGTCCTGTG	TATTTCATTA	TAGGTATTCC	ATAGCCAAGT	TGGGGAGCGT	535380
TTTGTTCGTC	ATGAACTGAA	CTAAATAGTG	GGTTTATTGC	TGCACAAACA	TCAGCAGAAA	535440
TGCTTTTTGA	ATTCCACAAA	GCTTTTTGGA	CGTGAAGATT	GTTGTATTCT	GATTTTTTAA	535500

TTTTGAAGAT CATGTCAGAA ACAAAATATT CAAGATATCT TGAGTCTAGT CCGGTTGAAC	F35560
CTGTTGAACC AATTTCTTCT TTATCTACAA GAAAGCAAAT GGCTGTTTTA TTTGGAGTCT	535560
	535620
CTTCAAGATC AAATATGGAT TCTAGTGAAG TGAAGACGCA TATTTTGTCA TCTTGTCCGT	535680
AAGCCCCAAT TAACGCTTTG TCAAATCCAA CGTCTTTTGC TGTTCCTGCA GGCACTATTT	535740
CAATTTCTGA TGATACAAAG TCCTCTTCTT CTATTTTGTA TTTTTCTTTT ATTAGTTGCA	535800
AAGTTGCCAG TTTAACTTTA TTTTTTTCTT TTGTTTCGAT TGGCAGGCTT CCAATTAAAA	535860
TTTTTAGATT TTCCCCTTCA ACAATTTCAT CTGATTTTTT ATTTCTTTGT ATTTTTCTAT	535920
CAAGATGAGG CAAGATGTCG GGAATTACAA ATACAGGATC GTTTTCATTG TCTCCAATAT	535980
TGATTTCAAC CTTTTCTCCA TTTTTTAAAA ATACCACCCC TCTTATTGAA AGGGGTGTAG	536040
ATAACCACTG ATACTTTTTT ATTCCCCCAT AATAGTTGGT TTTAATAAAT GTAAGTTCAT	536100
TTTCTTCAGA GATTGGTGAG GGTTTTGCAT CAAGTCTTGG TGAATCTGTG TGAGAAACAA	536160
TAAAATTCAT TCCATCTTCA ATGGGATTTT TGCCAATAAT AGCAAAAGCA ACAGATTTTT	536220
CTCTACAGGT ATAAAAAATT TTATCACCTG GCATTAAATT TTTTTTCTCT TCAGCGTTAA	536280
TAAACCCCAA TTTTTTTGCT TTATCTAGGG CATAGGCTGT AACTTCTCTT TCTGTTTTGA	536340
ATTTGCTTAT AAATTTTTTG TAACTTTCAG AAAAATTTAA AATTTGATTT TTTTCTTCTT	536400
CATTTAAATA TATCCATGGA TTTTGTTTTT TCATATTAAT AAGACCTCCT GTTTCATTTT	536460
AACATTTTAA TTGTTTTTAA AGTGTGTACA AAATAAATTA TTTATTGTAA ACTTACTTTT	536520
AATTTTAATA TGATTAATAA ATTATAAGGG AGAATTTTTA TGTATAAAAA TGGTTTTTTT	536580
AAAAACTATT TGTCATTGTT TTTAATTTTT TTAGTAATTG CTTGTACTTC AAAAGATAGC	536640
TCAAATGAAT ATGTTGAGGA GCAAGAAGCG GAGAACTCTT CTAAGCCTGA TGATTCTAAA	536700
ATAGATGAAC ATACTATTGG GCACGTTTTT CACGCTATGG GAGTAGTTCA TTCAAAAAAG	536760
GATCGAAAAA GTTTGGGGAA AAATATAAAG GTTTTTTATT TTTCTGAAGA AGATGGACAT	536820
TTTCAAACAA TACCCTCAAA AGAGAATGCA AAGTTAATAG TTTATTTTTA TGACAATGTT	536880
TATGCAGGAG AGGCTCCAAT TAGTATCTCT GGAAAAGAAG CCTTTATTTT TGTTGGGATT	536940
ACCCCTGACT TTAAAAAGAT TATAAATAGC AATTTACATG GCGCTAAAAG TGATCTTATT	537000
GGTACTTTTA AAGATCTTAA TATTAAAAAT TCAAAATTGG AAATTAG	
AATTCAGATG CCAAGACCTT CCTTGAATCT CTTAATTACA TTTACA	537060
	537120
	537180
AAAGCCTATT TTAAAAAATC AAGCTCTCAA GTCCTTTTAT TAAAATTTCT GCTGTTTTTA	537240

CGTTGGTTGC AAGCGGTATT TTATGTACAT CGCAAAGCCT AATAAGAGCT GACACATG	CTG 537300
GTTCGTGAGG CTGGCTTGTT AGGGGATCCC TAAAGAAAAA TATAGCTAAG ATATTTCC	CTT 537360
CAGCTACTTC AGCTCCAATT TGTTGATCTC CTCCCATAGG GCCTGATTTA TATTTAAA	AAA 537420
TCGTAAGATC GGTAGCTTGT TGGATTTTAG ACCCCGTTGT TCCTGTTGCA ATAAGCTT	rga 537480
ATTTAGATAA GAAGAGATAG TTTTGTTTGA CAAAATTTAC CAAATCTTCC TTTTTTT	TAT 537540
CGTGTGCAAT TAATGCTATT TTTTTTTCCA TTAATTTTAT TCCTTTTTCA ATGTAAA	ATA 537600
ATTTTTGTTG AAATTTAATA AAATTTAGGC ATAAGTATAT TTTTAGATTT CACTTTTT	TA 537660
GAATTTATAT TGGTTCTGGT TTGTGCCATA AAAATCCTTG CCCATAGTCT ATTTCTAG	TT 537720
CAATTATTTT TTTTAATATT TCCTCATTAT ACACAAATTC GGCAATAATT TTTATATT	TT 537780
TTGTATCTGC TATTTTTTA ATAGATTTTA TTATTACAAA ATCTATTTCA CTAGAGTT	TA 537840
TTGCTTTTAT GAAAGATCCG TCTATTTTAA GTAAGTCTAT TGGTAGTGTT TTAATATA	TG 537900
AGAGTGATGT ATGTCCGCTT CCAAAGTCAT CAAGTGCTAG CTTGATTCCA AAACTTTT	TA 537960
ATTCTTGAAA ATATTTGTTT ATTATCTCAA AGTTTTCAAG AATTCCAGTT TCTGTTAT	TT 538020
CCAAGCATAT ATTTTGAAGT GGGATTTGGC TTTTCAATAA AGTATCTCTT AAAAAGAT	TC 538080
GAAAGTTTTG GGATTTTAGT GAATAAGGAG ATATGTTAAT TGAGAAAATG TGAATTCC	AT 538140
TTTTTGATAC AAAGCTTTTG TATTCTCTTA AAGCCTTTTT AACCACCAAT GTATCAAC	CT 538200
CAACAGTTAA ATTATATTTG TCTATTAAGT TAAAAATTTG ATTGTTTGGA ATTGGTTT	GC 538260
CCATGTGGTC AAAAAGTCTT GTCAAGATTT CTATTTTGGG CTTTAAGTTC TTTTTAAG	AG 538320
GATTTATTTT TTGATAATAA AGAGTAAAAA AATCATTTTT TATTGCTTTG AGTATATA	TT 538380
GAAAAATTTT GTTTTGATTT TTTAAAATCA CCGCTTCTGG TAGTTCTTCT TTGTATATA	AG 538440
TGGGATTAGA TTCTTTGTAT TCCGATGATA TTTTTGTAGC CATCATTAAT TTGGGGAT	TT 538500
TGAATTCTAA GTTTTCTTTT AAATTTACCT CTATTATTCC AATGTTGAAC TTGAATATA	AA 538560
TAATATCTTC TTTTTTAAAT GCCAGAGCAA TTGTTTTTTT GATTTTTTTG GCAATTGAC	GA 538620
TTATTCGCTT TTCTCCGCCA CTTGTGCTTA TGATTACTAT TAAATTGTTG TGTTTTAAC	CT 538680
TAAAAATATA TTCAGAGTAT AATGACATTA TTTTTGAATA CATTATTTTA AGTATTTTT	rg 538740
CATTAAGTTT TTCTTGATCT TCTTTGTATT CATATTCTGC TGTTAGGGAT ACGTCTAAA	AT 538800
TAAGTAAATA TATGCTTTTT TTTTTGTAAA TATCCATATG GTTTACTAGT AATTTTTCA	A 538860
TTTCTTTGGC ATTTTGAATC TCGTCTTGCG AATCAATAAT TTCTAGATAT TTATAGTTT	T 538920
CTATTTATT AGAGTTTGAT ATTTCTTTAA TTGTTATTAA TTTATCGATA TTGTTTTGA	AG 538980
CAATTGTGCT AATAAATATA TCCACATGTA GTTTTTTATT ATTTTTTAAA GTTAAAAGA	C 539040

AATCAGTTAT	TAATATATT	TTAAATTCAG	GAATAGAATT	TGTGTGATAA	СТТАААТТТА	539100
TTTTTTCTAG	CTTTTCCCAA	TCTCTGATAT	CTATGTCGGT	TACTTTGATT	ATATTTCCAG	539160
AGGTTTTCAT	TGGAAGATTA	AGATTTTTAC	TACCTTTTTC	ATTGATATAA	ATAATTTCAT	539220
TTTTAGTGTT	TGTGATGATT	ACTATTTCTT	TTATGAGTTC	TGATAAATTT	AAAAAGAAAT	539280
CCAGAGTTGT	GTTTTTATTG	TCGCAAAATA	ATTTTTTTG	ATGTATTAAG	CTTTGCTTAT	539340
ATTCTAATTC	GCTTATATCT	TTTATTATTT	CTATGTGATC	AAGTTTTAAA	ТАТТССТСАТ	539400
CAAATTTTTC	TTTGCTAATT	ATGATAGAAT	GGATTTTGTT	TGCATTTTTT	AATTCGTTTG	539460
CAATGTTTAT	TGAAAAATCT	ATTGGTTTTT	САТААТТАТА	AATAATAGCG	AATTTAATAT	539520
TATTTTGTTT	TACATATTCG	CTGTATAAAG	CTTTTTCAGA	TTTTACGATT	TGAATTAAGT	539580
TAAAAATAGA	TTTAAGCTTT	ATGAGATCTC	TAAGTCCAAC	TTCTTTTTTA	GAGATTATAA	539640
CTGAATTTAT	ATTTTGATAA	TTATTGACTT	TGTTCATTTT	ATTGGCTTGC	TCTTATTTTA	539700
ATTTTTGTAT	GCCAAGTTGG	TGTTATTTTT	TATTTTTTA	TCTGCAATTT	TTTTAGTGAC	539760
TATTATCCAG	ATTAATCCTG	AGAGCATCAG	CGTTAGCGAG	AGAATTTGTC	CCATTGATAT	539820
GTTTAAAAAA	GAAAATTCGG	ACAGGCTTGT	AATTGGCTTG	TAGGTTATTA	TAAATCCAAG	539880
TTCTTTGTCC	GGTTCTCTTA	AATATTCAAT	AAAGAATCTG	AAAAAAGCGT	AAAGCATTAC	539940
ATATACACCA	AAAATAAATC	CATCATATTT	TTTGATTTTT	ТТАААТАААА	ACCATAGTAA	540000
CAGAAAAGTT	ACAGGTCCTT	CGAAAAATCC	TTCAATAAGT	TGAGAAGGTA	TTCTTGGAAG	540060
GTTGATTAGC	AGGTCATGAG	GCGAAATTTC	AAGCCCTACT	GATGATGCAA	ATTCTTTTAC	540120
ACCCGGTATA	TTTGTGTCAA	ATGGTTCTGC	ATTAGGGAAT	ATTATTCCCC	CTTTCATTAC	540180
TCTTCCATAA	AGTTCTGCAT	TTGCGAAATT	AGCAAGTCTT	CCAAGTATGT	AGCCAGAAGA	540240
AAAAGCTATT	GATCCATAGT	CTGTTAGTTT	TAGAAAATAT	TTTTGAACAT	TTGTATTTTT	540300
GAGATTTGTA	TTTATTGTTA	TTAAAGGAGC	AATTATTGCC	CCCAAAAAAC	CACCATGGAT	540360
GGCCATACCT	CTAAAGCCTG	TAAAATTCCA	ATGCTGGTCG	AATGGCAAAA	GGATTAGCCA	540420
GGGATTAGAA	TAATAAATTC	CCGATTTGTC	GTAAACTAAG	GTAGATGCTA	GTCTGCCTCC	540480
TAAAATTGCT	CCAAGTACAA	GTGAGAACAT	GAATATTTCA	TAATCTTCTT	ТТТТААТАТС	540540
AACGTTGTCT	GATTGTATTT	GATACCAAAT	AAACTTATAA	GAGATTAGTA	TGATTAAAAT	540600
ATAAGATAGG	CTATACCATG	TAATTGGTAT	ACCTTGAATT	ACTTCAGGAT	GTAACCAACT	540660
TGGGTAATTT	ATGTAATTTG	GCATTAGACC	TCCTTAGCCT	TTTCAAGCTT	TTCAACAAGC	540720
TTTTTTTAA	ATAACATATT	TTGCTTTCTT	AAGGTTTCGA	TTTCTCTTTT	CTGAGATTTT	540780

ATTATATCAA TAATTTCAC	I ACTTTCTATT	GTTTTGTTT1	TTATCAATGA	TTCAAGGTAT	540840
TCAATTTTTT CAATATATT	CTTCTTGAGCC	C TCTCTTAGTA	СААААТСАТА	ACTTTCATTT	540900
AAATCTTCTT CGTTTAAAA	G CTCGGCATC	TTTGTTAAA1	CTTCAATTTC	GATTAATTTT	540960
TTTGCAATTT TTTTTATAC	TTTAGAAGTT	GAGCTTGTAG	GTTTGTATAT	AGTGATGGGT	541020
ATTTTGCTGT TTAAAGCCTC	ATCAACTATT	TCATCTTAT	' AGATTGCTCC	AATACTTTGT	541080
AAATTTATGC TTAAATAGT	TTTTGCTGAT	TTTATTATTT	TTTCGGTTTT	TTCAATGTCT	541140
TTGGGAGCTT TGAGCATATT	· AAATATCATG	S AAAGGGCTAA	TTGTCCTAAA	CAATTTGTTA	541200
AATTTAGAAT AATTTTCAGO	ATCTTCGCTT	TCAAGTTTTA	ACAACAAATT	AGGTATATAA	541260
ACCCTTTGAA GATCGATTGA	ATTTTGTTTT	ATTGTTCTGA	GAATTTCATT	TCCTTTTGTT	541320
CCTCTTTTAA ACACACTTGA	TAACAATCTA	AATATTATAT	TTTTAAGAAA	TAAATATGCA	541380
TTCATTGTAG CTGTTACTGT	TGGTGTTGTT	ACTATTACTC	CTCTTTTTGA	САТТАААААА	541440
AAGTCTATAA TATTAAAAGC	TGTTCCTGCT	CCAAGATCAA	TCACTAAGTA	ATCATATTTT	541500
AAAGATTTTA AATTTTTTAT	' TATGATTTT	TTTTGGGAAG	CAGCTATATT	AGCAAGTTCT	541560
GGAATGTCAG AATCTCCTGC	AATGAAGTTT	AGATTTTTAA	TTCCAGATTG	AATAATGATG	541620
TCTGAGAAAT TAATCCTTGT	TTTTAAAAAT	GTTCCTATAC	TTTTTTTAGG	TATAATGTTT	541680
AACATTGAGT GCAAATTAGA	TGCTCCGAGG	TCAAGATCAA	CAAGCAATAC	GCTTTTTCCT	541740
TCGTTTGCCA GGCAAATTGC	TATGTTTGTT	GAAAAAAGAG	ATTTGCCAAC	TCCCCCCTTA	541800
CCACTGGCTA CAGGAATAAT	AATCAAGCTT	TACTCCAGGT	TTTTTATTTT	TGCTTTAATT	541860
AGCACTAATA TTGTTACATT	AAATACTAGG	TAAACTACTG	ТААТТССТАА	AATTATGGCT	541920
AGAGAGGTTT GATAGACGTA	TATTTTAAAA	АТАААТСССА	AGATGAATAA	TAATAATGTT	541980
AATATTATTT GGAATAATTT	AGTTATTACT	ATAATGCTGT	GAAGAATTTT	AAATTTTTCG	542040
TAGATAAAGT AATAGGTTGT	TAAATTGGCC	ATGAAAAATT	CAGGTGAGTA	ТААСАТАААТ	542100
GTTAACATAA ACTTTATGGA	GTAATTATTA	ATGAAAATTA	ATTTATTAAT	GGCTTGATAT	542160
AATAAGGCTA AGATTAAAAG	GCTTTCAGTA	ATTTGTAAAA	CAACAAGTCC	TGCTCTGTAA	542220
AGGCTTTGTG TTTTTTTAGG	ATGTGAGTTT	AACATAGTTT	ТААААТАТТА	TATTATGGAA	542280
АТААААТСАА СТТТТААТТТ	TTGCATTAGG	AATGAATAAA	TGAAAAATAA	АТТТТТААТА	542340
TGTGTATATT TTTTATTGAC	TCTGGGTATA	AGCTCTTTAG	TAATTGTTGA	ATCTATTTTT	542400
GCTTTTGATG AATCTAATAA	TAAGTTATCA	AGATCAAATT	ATGAGCAGAT	GATGATTCAA	542460
GCTTTTGAAT TTGTAAAAGA	AAATTATGTT	GATCCTGTAA	GTGATGAAGT	AATTTTTGAA	542520
GGTGCTTTAA AAGGAATATT	TCAATCCCTA	GGCGATCCTT	ATTCTCAATA	TTTGACAAAA	542580

AAAGATTTAG	AAGAAATTTC	AAAAACAACA	GTAGGAGATT	ATGTTGGCAT	TGGAATTTCT	542640
АТААТАААА	AAATGCATTC	CCAAGATAAG	CAAGACAAGG	CAAAAGATTT	TGATCCTAAT	542700
AGTGCTTGTG	TTTCTATTGT	TACGCCTTTT	GAAGGAGGTC	CGGCTTATAA	GGCTGGAATT	542760
AAATCTGGAG	ATTGTATTAC	CGCTGTTGAT	GGCAAGAGTG	TTTATTCTAT	GGAAGTAGAT	542820
CAAGTTGTTG	ATCTTTTAAA	AGGTAAAGAA	GGCACAAAAG	TTAAAGTATC	TATTCTTAGG	542880
GGAAAAAATT	TAACATTGGA	TTTTGAACTT	ACAAGAGAGA	AGATAGAAAT	ACAAACAATC	542940
AAGTATGACG	TTATTAATTC	AGATATTGGC	TATATAAGAA	TAGTAAGCTT	TAATCCACAC	543000
ACCTCTGTAG	ATTTTAGAAA	AGCTTTAGAT	AATCTTAAGA	TATAAAATAT	ТАААТСТТТА	543060
ATTTTAGATT	TAAGGCTTAA	TACCGGAGGA	TATTTTCAGG	CAGCTATAAA	AATGGCGGAT	543120
GATATTTTAT	CTAAAGGAAT	TATTGTTTCC	ACAAAATCAA	GAAATTCTAG	CAAGCCTATT	543180
GATTATAAGG	CAAGCTCAAA	ACAAGTTTTG	CCTTCAAATA	TAAAAATTGT	TGCTTTAATA	543240
GACAGATCAT	CAGCCTCAGC	ATCAGAGGTT	TTTGTAGGAG	CCTTAAAAGA	CAATAAGAGA	543300
GCATACATTA	TAGGGGAAAA	GTCTTATGGC	AAGGGGCTTA	TTCAGCATGT	AGTTCCTTTT	543360
TATACTGGTG	GATTTAAAAT	TACAAGCTCA	AAGTATTATA	CTCCATCTGG	AAAGAGTATT	543420
CATAAGGTTG	GAATTGAGCC	TGATTTGGAA	ATAAAATCTC	CAGATTTTTC	TGAGGAGGAG	543480
GCATTAATAT	ATAAAGAAAT	TTTTGATAAA	AAGCTGATAG	AAGGTTTTTT	GAAGGGTAAA	543540
AAATTCATTA	CCGAACAAGA	GATTGATTTT	TTTGTTGAGA	ATCTTGTAAA	AGAAAATCCA	543600
AAATATAAAA	TTGATAAAGA	ATTTTTAGGC	AAGTATGTGT	ТТТТТААТТА	CTATCAGGAC	543660
AATAATAAAG	AATTGCCAAT	TTATAATCTA	CATTATGACA	AAGTTTTAAA	AACAGCTTGT	543720
GAGTATTTGT	CTAAATTAGG	TAATTAAATT	GTGAAGCAAA	TTGTTTTGGA	TGAGAATTGT	543780
TTAGCAGGTA	ATTTTATTAT	TGTTAAAGAT	GCAAAAATAT	ATCACCATCT	TGTTAATGTA	543840
AGACGACTTA	AAAAGGGTGA	TAAGCTGAAC	ATTCTTTTAA	AAGATAAAGA	ATTAAGGGCC	543900
TCAGAAATAG	TAAAGATTGG	TAGTAATTTT	ATTAAGTTTA	СТАССААТАА	AATAGATAAA	543960
ATTGAAAAAA	ATAATTTTGA	GATAAGTATT	ТТТАТТТСТА	GTTTAAAGGG	CAGAAAAATA	544020
GATTTGGTGT	TAAGACAGGT	TGTTGAGATT	GGAGTTTCAG	АААТСААТАТ	TATTAATGCG	544080
GATCGTTCTG	TGTCGAAAAT	AGATATAAAC	AATGCATCTG	ССААААТТТТ	AAGATTTTCA	544140
AAAATAATAG	ATGAGGCCTT	AAAGCAAAGT	GGTAATAAAA	TTGTTCCTAA	AATTAATTTT	544200
ТАТААТААТТ	TTTTTTTTTT	ACCTTATTCT	TTTTGTACTA	CCAGATATTA	TGTTGCTCAT	544260
CCAAGTGGAA	TGATTTTAAG	CAAGAATGAA	AGTTTTGACA	ATTTTGGCAA	AATTGGAATT	544320

			465			
					GGAGAAAGGC	544380
TTTAATTTTG	TAAGGTTTAA	CACTCCAAT	r ttacgagcac	ATACGGCTAT	TATTTATTCG	544440
CTTGCTTATT	TTAAGGCATT	GTTAGAGGA	TATAATGGCT	PAATTTAAAAG	ACATATATTC	544500
AAAACCAGAC	AGATTTTATT	TTTTAGGTG	r gcctatagai	GTTTTTGATA	GTCGCAGCAG	544560
CTTATAAGCA	GATTTGTCTA	TCTTTCAGG	G CATCCTTATC	ATTCCAATAG	TAATTTTTAT	544620
CGGGCTTAAA	GCTTTTCTAA	AGGCTTTGAT	TTTTAAAAAC	TTTAGAAATC	ACATTAAAAA	544680
TTCTTCTCTT	GTTTTTTAA	ATTCTAAAA1	TGTAAGATTT	' TTTTATAGGA	TTTTTAAAAG	544740
AGTTAATATT	GATTGTTATG	ATTCAAATAC	AGTTCTTCTC	ATTTTAATGG	AAATACTAGA	544800
AAATGCCCAT	AAAACATGTT	ATATTATTGA	CAAGGATAAA	GTGATTTCAA	AGAAAAATT	544860
TTTAAGATTG	AAAGAATCTC	ATAAAGAAAT	TAGTTTTATT	GGGTATTATG	ATTTAAAAGC	544920
TGTAAAGAGA	AATAAAGAAA	TGTTTTTTGC	AAATATTAAT	AAACTTACTC	CTAGTGTAAT	544980
AATAAGCTTT	TGTAATGATA	GATATCTTGA	AAATTTATTT	TATGAAAATA	ААТТТААТАТ	545040
TAGAACCAAT	TTAAGTGTTT	TTTTATGAAC	TTTTAAATTT	ТААСТАТСТА	TATTTTATGA	545100
GGTAAGTATG	GCATTTTTGC	ТАААТСААТС	AGTAGTTTAT	CCAATGCATG	GAGTAGGTAC	545160
GATTAAGGAT	ATTAGGACTA	AAGAGTTTAA	TGGTGAGATT	ATTGATTATT	ATGAAATACA	545220
TTTTCCATTT	AATGATATGA	TTTTTATGGT	TCCTGTTGCT	AAAGTTGATG	ATTTTGGAAT	545280
TAGAGCTTTG	GTTAGCAGGG	AAAAGGTAGA	AGAAGTTTTT	GATGTTATTA	AAGAGTTTGA	545340
AGGGCAAATA	GATTCAAAAA	AAATAAAAGA	TGGTGGTCAT	GAATTTTATA	AAAAAAGCGA	545400
TATTTTAGAT	ACAGCAAAGT	TATATAAGTT	TTTATATAAA	AAATCTACTC	AAAAAGAACT	545460
TCCTTTTTAC	GAAAAAAGGA	TTTTGAATGA	TTTTGAGTTA	ATATTGGAGC	ACGAGATTAG	545520
CTTAGCTTTG	CAAATTAGCT	TTGAAGAGGC	TAAAAAGAAG	АТТАААААТА	TTTTGGTCGA	545580
TAACAAAAAG	GCTTAAAGTT	TTTTCAATTT	TCGAGGGGG	AGGATTTGCT	GTGTTTGATT	545640
CTTTAAGATT	GATCTTTTTA	ATAATTTGTA	GGTTTATCTT	AATATTTTGC	CTTTTTTCTT	545700
TAATGTTTAT	ATGTACATTT	TATTTGAAAT	ATAAGTTTTT	GTATTTTAAT	TTTTCTATTT	545760
TTAGCTATAG	TCTTTATTAC	AATGCTTATA	TTTATTCTTT	TCCTTTGTCC	CTTGTTGTTA	545820
CTTTTATGAG	AATATCTTGT	CCCTTTTATG	GAATAGTTTT	AAATTCATCT	AGAGAGTCTT	545880
TCTATTTTTA 1	PTGTATTATC	TTTGTTCTTA	TTTTATTGTT	ТТСТТАТТТА	GGATTTTTAG	545940
TTAGTCATAG	ГТТТСАТТСТ	ТАСТАТАТТА	ATAGCAATAG	AAATGATAAT	TTTATCCTTA	546000
AAGATGAGAT	TGTGCATTTT '	TTAAATGATA	AGATAATATT	TTCTAGTAAT .	AGGCCTAGAA	546060
TTTATGGTTT 7	TAATGGAGTT '	TTAATCGTTT	CGGAGAATGA	CAAAGGGGAT .	AAAGGTTTTT	546120

CTTACCAATC	AAATATTTCC	AATTCTAGTA	AGATTGATTT	TGTTGAGAAT	AATTTTTTAG	546180
AGCAAAAGAT	ТТАТААТААТ	TTTGTTGATT	TTCTTTTCAG	AGATTTAAAA	ATTTTGAATA	546240
ATTTTCTACT	CTCGCTAAAT	TATTTAAATT	TAATTTTTAA	TATATTGGGA	ATTTCTTTAT	546300
TGTTATTTGC	TTTTTCTTAT	GTTTTTAATC	TTATTTTTC	AAATAGTTTT	GCAATATTTC	546360
TTTATCCTAT	TTTTATTATA	CTTTTTTTAA	AAATTTATAA	TGTTTATTCA	ATTGAGTTTC	546420
CCAAGATTTA	CAATGTAATA	ATAGGAAAGA	GCATGATCTC	TGATTTTATT	CCTTTTATTT	546480
TTTGTGTTTT	AACTTTTTT	TCTACCTATT	TATTTGGTTT	TGTTTCAGAA	ТАТАТТАААА	546540
TCAGCAAAGA	TTTGGATAAT	AATTTATATA	AGGGTAGTTA	ATTCTTAAAG	CTTATGAAAA	546600
GAGAAATATA	TGCATTTTTG	AGCAATTTTA	TTATTTTTAT	GTGTTTTTT	CTAGGTTTGC	546660
TCTTTAGTTA	TTCATATTTT	TTTGGAGAAA	ATTTTTTAGA	AAAGCATAAA	TTAATAGCAA	546720
CTTTTTTTGA	TTCTATTTTG	CTTTTTTATA	AGTATTTTT	TGGGTTTTTT	ATTTTTATTG	546780
TTTGTATTTA	CTTTGCTTTT	TTTGTTCAGC	AAGAAATAAA	GATTCATTTA	AAATCGCATA	546840
ATGGATATTT	ATTTTCCAGG	CTTTATGCAT	TTTTACTATT	ATTTTTTATT	ATAGGACTCT	546900
TTTTTACTTT	TATATTTAAT	TTAATTTTGC	СТТАТАТААТ	TGCTCAGAGA	AATGAGTATA	546960
AGTTTAGTTA	TGATAGATAT	AATCTTCTTG	AAAGTGAAGC	AAATGAAATA	ТСТСТТАААА	547020
TTAAACATAT	AGATATAAGT	TTGGCTGCAA	ATAGATTTTT	TTTATCTTCT	GATTTGACAG	547080
ATTCAATGAA	GCAAAAGAGA	AAGCATCTTG	AAAATTTGAT	TAGAATATAT	GATAAAATGC	547140
GAATTATTTA	TGTAAATAAT	GAAGAGCTTT	TAACAAATTA	TTATTTAGTG	AAATCTGAAT	547200
ATAGTAAAAT	TCCAAGTTAT	GACGTTGATT	TAGAAAAAGT	ТАААААААСТ	ТТТТСААААТ	547260
ATCCTTTGCA	AAGTCTTAAA	AAGCAAGATT	ТТТТТААТАТ	TGTCAATGAA	TTTATTTCTA	547320
AAAATGATTA	TTATACAGCC	AATTATTTTG	CTTATATTGC	TTATGTTGCA	ACAAAAGACG	547380
ATAATTTTGT	TGTGCTTTTA	AATTTGACTT	TAAAGTTTAT	TAATGAAAAC	AGGAATTTTG	547440
AAAAAGAAAA	AATGCAGTTG	ATTTCCGAAG	AAAAGCAAAA	AAATTTTTTG	ТТТСТТААТА	547500
CTGAAAAATT	TAAATTAGCT	TATTACGGGT	TTTCGAATCT	TTATAAGTTA	TTGCCCAGCG	547560
ATAATGAAAT	TTTGAATTAT	AAAAATAAAT	CTCTTGAAAA	GCTTAGGAAA	AGATATCTTT	547620
TTTTTGATGA	GATTGAAAAA	TATTTTGAAT	ATTACGGAAT	AAACGATGTA	TTTTTATTGC	547680
AACCAGATTC	TAAGAGAGGT	TTTTATGATT	ATATTTATAT	GCAAAAAGTT	GTGGCCTTTA	547740
ACAATCATTC	ТААААТААТА	AAAAATTTTG	AACTTATTAG	ATTTAATAAT	ACAGGGAATG	547800
TTATATTACA	TATTAAAATT	CCATTTGCTA	CTTTGAAGGG	TAATTCTGTG	ТАТСААААТА	547860

			467			
TTTTAGATAA	AGACAATGAG	CAGAGCGAAA	TTACTCTTAC	CAAGGTCTTT	GTGTCTACGG	547920
ATAGCTTTGA	TACAAATGTT	TTAGAGGTTG	TCAAAATTAA	TGAGAATGTA	GAAAATTTAG	547980
CTTTATTTTC	AAATTTTACT	GAGTTTGGAT	ТТТТТТТААА	AATTCAAAAT	TTGCCAAGCG	548040
CTTTTCATAG	GGTTGCTATA	TTAAATTTGA	AATTAATTAA	TACTTTTTCC	TTAAGTTTGG	548100
TTTTGCTGAT	TTCTCCTATT	TCGCTAGTTT	TAATAGGGC	ATTTTTTATC	TCTTTGTTTT	548160
CTAAAATAGA	ATTTAATTTC	AATTCCAAGG	CTATGATTTT	TCTAGTTTCA	TTAATGATAG	548220
CTATTTTCTC	AGGGATTACT	TGTCTTTTTG	TAAATTATTT	TCTAATTGTT	TTTACCTCTC	548280
TTCTTATATA	TGTTTTTAAT	AGCGTTTACG	TATCTTTAGC	TATTCTTTCT	GCATTATTGT	548340
TTTTTCTTAT	TTTTAAAATA	ATTACTTTGA	ATTACAAGGA	AAGACTTATT	TAATTTTTAT	548400
TTTTTTTAG	ATTATTAGCT	TTAGAGAAAA	ACCATTCATT	TATTAGTAAG	TTTTCTTTTT	548460
CAATTGTTTT	TTTGCTTAAT	ACATAGGAAT	GGCTATTGAT	TTGAGTTTCG	TCAATAATAA	548520
AAGGAGATAT	TCCATCAATT	GAATGTTTTA	TTTTTAAATT	TAATTCTTTG	TAAGGGGTAA	548580
AACCATTGGC	AAATCCAAAA	CATATATTTG	ATTGGGATTG	ATTGTTAAAT	CCAATTAGGG	548640
TTTTTTGAGT	TTTTTTATAC	AATATCCAGT	TGATAAATTT	TTTAGTTAAA	ACAGATGTTT	548700
CTAAAATGCC	AATAAAATTT	GGGTTTGAGA	TAACAATTTC	ATTGTTATCG	ТТТАТТАААТ	548760
AGGAAAATTT	TATTTGTGAC	TTCTCTTGTT	CGCTTAAGCT	ATTGTAGAAG	GTTATATCGC	548820
TCAATCCTGC	TATTAAAAGA	GATTTTTTAT	TAAGCAATAT	TTTATTTAAC	TTTAGGTAGC	548880
CGTATTTATT	AAAGAAATCT	TTTTGCAAGT	CCATTTGTTT	TGTATTTAAA	AATGATGAGA	548940
AATATTCTAG	CATTTTTAAA	ATTTGATTCT	CATTATAATT	TAATTTATTT	TTTTCAAAAG	549000
AAAATCTCAC	ATTATTTATT	TGAGAAATCA	САТААААТАА	ATTTTCAGAA	ACATAAGGCG	549060
АТАТАААААА	TTTTCCATCT	TTAATGAAAT	TTTCGTATTC	TTCTTTTAGA	TATTTAGTGT	549120
TTATGTATTT	TTTAATATGA	TGTGTATTTT	TATAGATTAA	AATAGGAATG	TCAAAGCCCA	549180
ATGGAATAAT	TTTGTAGTTA	AATTGCTTGA	AAATATGCTT	TAAGATAGGA	TAATCTGGAT	549240
TATAATTGAT	TTTTACAGAT	TTAAAATGGT	TAGCAATATT	TGTGTTACCA	ATGTTTTTAG	549300
AAATAATTAT	TTGTGCATTT	TCTTTTTCTA	TTGTTTGCAG	ATCAATATTA	TTTCTAAACT	549360
ТААТТАТААА	ATTTGCTTTA	TTTTCTATAT	TAAATTGATT	ТАТАТААААТ	GGTATTGTTT	549420
TATTGTCAGT	TAGTACAACG	ATGTTCTTAT	TTGTTGAACA	GCTAGGGCTA	AAAATAATTA	549480
TTGCTATTAG	TATTAAATTT	TTTATTCTCA	ТААААТТАТТ	CAAGTTTTTT	СТТТТАТТТТ	549540
ACAATAAATT	ATGTATAATT	TTTATAGTTA	TATTAATTTC	CATGCTTAAT	TGGAAATTAG	549600
AGTAAGGTGG	CTTAAGAGCT	TTTAGGGGGA	TGATGAATTT	GGGTTTATTT	GATTTTATAC	549660

TTTCTATGTT	TAGTATTAAT	AAAGAACTTA	CTTCTGAGCA	AATAAAGCAA	AAAAGGTTAA	549720
AAGAAGTTAA	AGTTAGTTTA	GGCAGAGTAA	GTAATTTTTT	TAATGCTTCA	AAAATTCAGG	549780
CTTTACCTCA	ATTTTCTAGA	TTTCTTTATA	ATTTTTATAA	AATTTTTTCT	CCCTTAAGGC	549840
CATTTGCACA	AAGATATAAA	AATTCTAATA	AAATTGTTCA	TTTTGTTGTT	GAAAAATACT	549900
TAAATGAAAA	CCAAAAGAAG	TCTTTAGATT	ATATTTATTC	TTTTTCTGCA	AGCGATAACA	549960
TAAATTTTGC	CTCAGATCTT	ССТАААААСТ	ТАСАТААТАА	TTTATCTTAT	TTGTTTAAAA	550020
ACATAACTCA	AGAACAAATT	AAATTGATAG	ATGAAACTTA	TGAAGCTTTG	CATAATTTTT	550080
TTGATTTAGT	СТТАТАТСАА	TATCATTTGG	ТТСТТААААА	TTTTGACAAC	TTGCTTCCAG	550140
AAGATGATTT	TGTGTATAGG	CCTAGATTCA	GCTCTATAGG	TTGTGGAGTT	ATTATAGATG	550200
ATCTTAAAGA	TTTGTTAGAA	TGTATTTCTT	GCATTAAGAA	TATTTCTATT	TGGAAAAACC	550260
TTTATGACAT	TATTTTAGAA	ATTTATGGGA	ATAAAGAAGA	TTTTCCTATT	AAGTCTAATG	550320
TATGGATTAA	GGTTATTTCT	TCTATTTTGG	АТАТАААТАА	GAGTAAAGAA	ATTTTATATC	550380
TAATAAGATA	TGTTAGTGGG	GATCCAGATT	ATTTCCCTAT	TTCTGTTGGG	CAAAAACCCA	550440
ATCCAATAGC	AAGAATGTTT	TTTAATGATC	TTACTAAGCA	TGTTGCCACT	GAAATTGAAA	550500
AGATTAAAGT	TTTGCAAAAA	ААТААТАААТ	СТААААТАТТ	AGCCGAGCAG	CTTTTCCCAG	550560
GAATATCTTT	TTTAAATTTG	GATAATTATA	ATGAAAAAAT	GAATGAAAAG	ATTGTATCTA	550620
AAATTATGAG	CACTACGGGG	TATATTTATT	GCGAACTTTT	AGTTTATTTG	AGAACATATA	550680
CTATTTATTT	TGTTAAAAAA	GATCTTAATG	ATATTATTAA	TTTACTTATT	ATTAAAGGAC	550740
AATGGAAGCT	TATAGAGCTT	TCAAGAGAAA	TGTCTAACGA	CATGCATGCT	TTGATTAATA	550800
TTTATGCAAG	TCTTATTGAT	TTTGATTCTA	ATTTGGGGGA	ACAAGGCGGT	TATGGCAATA	550860
GAATAAATGC	ATTATTGCAC	AGAGCTTCTT	TGGGGGATAA	ATCTTCGGAG	AAATTGTTGT	550920
ТАААТАТААТ	AGCAGATGTT	AATAAAAAGG	CGTTTGCTAT	ATCAAGCGAA	TATTATTCCA	550980
AAATATATTC	TATTGAGCAG	CGTTTGCAAG	ATTGTCTTTC	AGACTATTCA	AAAGTCTCTT	551040
TGGAAAGAGA	GCTGATTTAT	AATTGGAAAG	AGCTTGATAT	GGATCTTGCT	AAAAGCTATG	551100
GAAACAATTT	AAACTTTGGA	GGTATGATGA	AAAATATTTT	GGGTAGTTTA	GCTTTATTTT	551160
TAAAGTTAAT	GGATTTATAT	TTGGAGAAAA	AATCTTAATT	TGAAGGAGTG	TTAAAATGGC	551220
TAGGAAGTGT	GAGATAACAG	GAAAAAAAAC	TATGTTTGGA	AACAATGTTC	CAAGGAAAGG	551280
GCTTGCCAAG	AAAAAAGGTG	GAGCTGGACA	ACATATTGGA	GTAAAAACCA	AAAGAACCTT	551340
TAAGGTTAAT	ТТААТАААТА	AAAAATTTTT	TATTCCAAAT	CTTGGAAGAA	GTGTTAGTAT	551400

TAAGGTTTCT	GCTAATGCGC	TAAGAAGTAT	469 TTCAAAGATA	GGGCTTGATG	СТТТТТТААА	551460
GAAAAACTGC	AAAAAAATAG	AAAACTTTTT	ATAAATTTTA	GTTTTGATAA	ТТТТАТСТТА	551520
TTAGAATACT	GTTTGATATC	AAGTATTCTG	GGGAGTTAAA	TGTTATTTT	GAGTCTGTAA	551580
ATTCGAAATG	TTTAAAAAGG	CTTGAAATGG	TCATGATTGC	ATTTATATTT	TCCGGAAATA	551640
TTTTTTTTGA	TTTATAGTTT	TCTAGTATTA	GGTTAAGATT	AGGCAATTTT	TTTTCAAGAA	551700
GGATATGCTT	TAAATTTTCT	ТСАААСТТТА	AGGCTTTTTT	TATATTTGTA	GATTTTGAAA	551760
TAAAGCAAGA	TAGAAAAATA	AATGAATTTT	CTTCTCTGTT	TATAAAAGGT	ТТТАААААСТ	551820
CGCAAAATTT	TAGTAAATGT	TTATTGCAAG	ТТТТТССААА	AATTATTGGA	ATTTTTTTA	551880
TGTTTTCCTT	TATGTTGCTA	ATAAAATTCA	ATGTAATTTC	AATTTTATGA	TCATTTTCGA	551940
TTAATTTATC	GTCTATATTA	ATAAAATTTA	AGGTTTTTAA	TAATTTTAAT	ATCTTTAGGT	552000
TTACTTTAAT	ATTTTTATTA	AAAATTTTCC	ACACATTGTG	ATTGGATATA	ТТААТТАААА	552060
AATTGCTTTT	GGCCTCAGAG	АТТАТАААТА	CATTATTAGT	TTGATTTGAT	ATTATTTTTT	552120
TAAACAAGCA	TTCATTTTTT	AAAAAAAACT	CATAGCTCCC	ATAACTTGTT	AGGAGGGCTT	552180
TGTGAGTTTT	TTTTTCTTCC	AACTTAAATG	ACAAGTCGTT	TGTATTATCT	GAATAAAATA	552240
TGTTTTCAAC	CAAGGAGTTT	CTAGCTTGCT	TTATATATTT	CGTCCTTTGA	TTGCATCTTC	552300
TACTGTGTTT	ATTTCCATAA	ATTCTGTTCC	TTTTTCAATA	TTTCTATTTG	GATTTCCAGA	552360
AATAATTATT	ACAGTATCTT	TGTCATTAAC	AACACCTTGT	TCTTTTAACA	TTTTAAGAGA	552420
AGTTACTACA	AATTCGGTAG	TTCTTTTGAA	ATTATTGTCT	ACAAGATTAG	AATAAACCCC	552480
GTAAGATAAT	GCTAATTCTC	TTGCTAGTCT	TTCGCTATTT	GTTGTAATGA	ATAATGGAAC	552540
ACTTGCTCTG	TAGGTTGCCA	TTATTCTTGC	GGTTTTGCCT	TTTAGAGAAT	CTACAATAAT	552600
TGCTTTTATG	TCCATAAGTT	TTGTGGCATC	AATTGCACAT	TTGATAATAT	AGTTTCTTGT	552660
GATACTTTTA	TCGTAAAAAA	GTTCATCCTT	ATATAAGGTC	ATTTTTCTGT	GTTTTTCAAC	552720
TTTTTTAGCA	ATGCTTGTCA	TCATTTTTAC	AGCTTCAATT	GGATATTTCC	CGTAGGCGGT	552780
TTCTCCGGAT	AACATAATTG	CGTCTGTGCC	GTTTAAAATA	GCGTTAGCGA	TGTCAGACAC	552840
TTCTGCTCTA	GTAGGTCTTG	GATTTTCAAT	CATTGTATGA	AGCATTTGAG	TTGCTGTAAT	552900
CACGGGTATT	CCATACTTTA	TACAGGTTTG	TGTTATTTTA	AGTTGAGCAA	TGGGTACATC	552960
TTCTGCAGGA	ATTTCAACTC	CCATGTCTCC	CCTTGCAACC	ATTATTCCGT	AAGAAGCTTT	553020
TGCAATTTCT	TCAATGTTGT	CAATTCCCTC	TTGATTTTCG	ATTTTGGATA	TAATTTTTAC	553080
ATCAGGATTT	CCAGAGGCAG	TTAAAATTTC	TTGAACATCT	TGAACGTCTT	TGGAATGTCT	553140
TACAAACGAA	TGGGCAATAA	AATCAACATT	ATATTTTGCT	GCAAGCTCAA	TAAATCCTTT	553200

GTCTTTTTCG	GTTACTGATT	GTAGCTTAAG	AGAAATTCCG	GGGGTATTGA	TTGATTTTTT	553260
ATTTTTAATT	TGGCCGTCAT	TTTTAATTTC	ACAAATTAAT	CTGTCAGGCA	ATTTGGCAAC	553320
AACAGTCATT	TCAAGTTCAC	CGTCATCAAT	' TAGCACTTTA	GATCCTTGGG	GTACTTCTTT	553380
AACAAATCCA	TCATAATTGG	TTTGAAAGTT	ATTAGGCTCA	TTAATAGGCG	AGGTTGAAAT	553440
GATTACCTTG	TCTCCAGTTT	TTACAATAAT	AGGATTTTCA	ATATTTGCTG	TTCTAACTTC	553500
TGGTCCTTTT	GTATCAATCA	TTAAAGCTAT	TTTATTTGAA	ATTTTTCTAA	CATTGTCTAT	553560
TACTTTTATT	GTATCTTCGT	GTGATTGATG	AGCAGTATTT	AGTCTTATAA	CATTTACCCC	553620
TGCATCGTGT	AAATCTTTTA	TATGTTCTGG	TTCGCATCTA	AGATCAGATA	TTGTTGCTAC	553680
AATTTTTGTT	AACTTTGAAA	TCATAAAGTT	CTTCCTCCAC	TTTTATAAAT	TTTATGCTTT	553740
TTGTCATTGA	АТААСААТАТ	TTTGTAAAAA	ATTCAAAACT	TTACTTTGCT	ATAAGCAGTG	553800
TTTAGGTTTG	ATTTTTTATT	TTTTTTATTA	GATTTTCATC	TAGCTTAATA	TGTAAATTTT	553860
TTTCTGCTTT	TGGAATTACA	AGGCCCAGCT	TTTTATTTT	AACTCTTCTT	AAATTTTTAA	553920
CTTGAGTGTA	GTAAAGATCG	GCTTTTCCCG	ATTTTTTTGC	TAATTTTGTG	TAAAATACGC	553980
ATAAATTACC	AGCACCTAAA	AGGACATCAA	GGCTAGGAGT	TTTATTTTT	TGATTTTTAA	554040
ТАААААСАТА	AGCTCCAGGA	TAATCTCTTG	TATGAAGCCA	ATAGTCATTT	CCTTTAACGC	554100
AATGTCTTAA	AAGTTTATCG	TTTTCTTTTG	CGTTTCTTCC	AATAAGAATT	TCAAATCCAC	554160
AATAGGTAAA	ATGCAAGCCT	ATTTTTGGCG	TTTTTTCTTT	TTCTTTAATA	GCAGTTTTTT	554220
CTTGATTATA	TTCTTCTTCC	GGAATTAAAT	TTTCGACTTT	TAACATTGTT	ATTTTTGATT	554280
GAATTAAATT	AAATTTATCT	AGATTATCTT	TTAATTGATT	TTGTATGGTT	TTGAAAGAAT	554340
TTTTGCCCTT	TTTATATGCT	ТТААААТАТТ	GCAAGGCATT	TTCTTTTGGT	GATAATGATT	554400
GGTTTAAGGA	TATTTTAATT	TTTTCTTCTT	TATAATTTAA	GAGGTTTATT	TCTTTAATCC	554460
CTTTTTGTAT	TTTGTTAATA	TTTAATAAAA	TCAATTCGCC	TTTTTCCTTT	TCGTTTTCAA	554520
TGTTTTCAAG	CAGTTTAATT	TGTTGTTTTA	AAGAGTCTAT	TCTTTTTTCT	ААААСААТТА	554580
ACTCTTTTTT	ATATTTTTCA	ATAAGCAATT	CTTTTATATT	GGTTTTTTTA	ATTTGATCAT	554640
TAAGCGATTC	GTAGTAATTT	TCAAGAAATT	CAGAATAAGA	TGTATAGCTG	GTATTATTAT	554700
ATTCTTCCTT	TAGTTCCATA	ATTTTTTTAT	CAGACATTTT	ATTGCTTTCA	TGTATTTCTT	554760
TAGCTTTTAA	AAAGATTTCA	CCTGTTGTTT	CTTTTATTTT	TGGCCTTCTG	ТААТАТССАТ	554820
CTAGTATTTT	AAAGTTTGAA	TTTGTAGCTA	TTATATTGGG	CGAGGATGGC	CACAATTTAA	554880
TAAATAAGAT	AATCATATCT	TTTTGCAAAA	TCTCAAGAGA	AATGATTCTT	TCATTTTTCA	554940

H JS98/12764

4	7	1

TTTGGAAAGC	TTTTATAATT	TTTCCATTTT	GAATTTTTGA	TTTTAAGAAG	TCAGAAAATC	555000
TTAATTTTAA	AGCATTCTTT	TTGAAATTTT	TTTTTGTTAT	ATGGAATCTT	GTAGTGTTTG	555060
GATTTAAGCA	GATTAGTATT	TTAAATTTTT	TATTGTCAAT	TTTATTGTAA	АТСТСТАААА	555120
CCAAACTTTT	GTAATCCGGT	TGTATTATTT	TTGTTATTAA	AGAGTTTGTG	AAAGGAATTT	555180
СТТТААТСАА	AGTATTTATT	TCAGTGTAAT	TCAAAGACAT	TTTTATCAAA	TCCTAATTCT	555240
TTCAAGGTGT	ТТАТАТСТАА	GCTTTAAATT	TTTATTTTAT	GTATTAAACT	AGTACTATTA	555300
ATAATAGTTT	ATTTCCATGA	TATGTAGTAT	TATGGAAATA	AAGTTTATTG	ACAATAAATA	555360
GTTTAAATGT	AGTTTTGTTA	ATAGCTTAAG	СТТААТААТА	AGAGTTCATA	GAATGATAAA	555420
AACAATACTT	TTATTAGTTT	TGTATCCTGT	TGTTGTGTTT	ТСТСАААТАТ	CTGCAAATCA	555480
ATATTTTGAA	GGAATTTATG	СТАААТАТСА	AAATATAGAG	GACATGCAAG	CAACAATTAA	555540
TTTTACTTTA	AAGGGGTTAA	AGCAAACAGG	TGTTTTGCTT	TATAAGTTTC	CAGACAAGTT	555600
ТАТТАТСААТ	TTAGATTCAA	ATAATCAAGT	TTTTGTAAGT	GATGGTGAAT	TTTTGACAGT	555660
TTATGTTCCA	TCTCTTGGGA	СТТСТТТТАА	TCAGCAATTA	TTAAAGGGTA	GTAGTGGGG	555720
AGGTCTTATG	AAAGTTTTAA	ATAGTGAGTA	TAGCGTATCT	TATACCAATT	CTCCAAATTT	555780
AGAAGATCTC	GATTCATCTG	AGCCTGGAAA	ATATATTAAA	TTAACCTTTT	CTAGAAAGCT	555840
TTACAAGGGG	GCTGCTACTA	TTAATTCTTT	TATTATTGCT	TTTGCTCCGG	ATGGAATAAT	555900
TAGAAGAATT	ACTGCTTTTC	CTACTAGTGG	TGGGCGCGAA	ATAGTTATTG	ATTTGACTGC	555960
TGTGAAGTTT	AATGTTGGAA	TTCTTGATAG	CAAATTTAAA	TATGATCCTC	CAAAATCTTC	556020
AAATAAGGTA	GATAATTTTT	TATATGATAT	ТАААААААТ	TAAGGTTTAA	ATCTATGAAA	556080
GAAAATGATT	ТТАТТАААТТ	TGGGAGTTAT	TTGAGAAAAG	TTAGAGATAG	TAAAAATTTG	556140
ACTCTTGAAA	TGGTAGCTGA	GGATATTAAA	ATTTCTATTA	AGTATCTTAA	GGCTCTTGAA	556200
GAATCTAATA	TTGAAATTTT	CCCAAACGAA	GTTTTGGCTG	TTGGATTTTT	AAGAACTTAT	556260
AGCGAATATT	TAGACATTGA	TTCTAGATTG	ATATCAACAC	TTTTTAAGGA	TTATAAAAGT	556320
AGACTTAATA	ATAGTTATAT	TGGGATTAAA	TCTGAAGATA	AAATTTCAAA	TTTAGGATTT	556380
TTAAGCGACA	ATAAAGTTTC	AGAAAAAAA	ATATTTTTTT	TTAGTTTAGA	ATCTTTAAGT	556440
ATTTTTAAAG	TCTTTTTAGG	CATTGTTGGT	GTTCTTTTAT	TATTTGTGTT	TCTCTATTTT	556500
AGAGAAGTGG	AAGGCTATTT	ТАААААТТТ	TTCAATCTTA	GTCAGGATGA	AAAGATAATT	556560
TCAAATATTC	ATGAAGTGTC	TTTTGATAAA	AAGAATTTTT	GGAACGTTTC	TCTTAAAGAG	556620
GGAGATTTTT	TATCTTTAAC	GTATAGTGAT	GATATTGCAA	AATATAGAGC	ATCGTTTATT	556680
GGCGATGATT	TAGTTATTGT	TGATGAGTCT	AAAAAAAGTA	AGAATATTTT	AAATTTAGGA	556740

GAGTTTAAAG	AGATAAATCT	TGATGATAAT	ATTAGAGTCA	AAATTATTTA	TGAGAATTAT	556800
TATTATGATA	AGTTGAAAAT	AGCTCATGTA	AGTTTAGAGT	CTTTTGCTTT	AAATGTTAAA	556860
TATGTATCTG	АААСТААТАТ	TGACAATAGA	ТТТААТАТТТ	TAAATTGGCA	GTTTGATGTT	556920
AAGGGAACTG	AAAAATTGCC	GAGCAGCAAT	TATCTTACCC	TATATTCTTC	TCAAAAACTT	556980
TCAAATGTTG	ATTTGAAAAT	CGATTTTTTA	AATGATACAT	TTTTTAGATA	TGCCGATGAA	557040
AACAATCTTT	ATGGGAAGTC	TCTTTTTGCA	TCCAAAGGTA	TTCCTATTAA	TTTAGCTTTT	557100
GAAAAATCTT	TGATACTATT	TTTTTCAAGA	CTTTCTGATG	TTAATATCAT	TCTTAATGAC	557160
AGAGACATTA	CTCCTTTTT	AAAAGAGCAG	GGAAAAGAAA	TTTTTGCTGT	TCAATTTTTT	557220
TGGGTAAAGA	CCCCTCAGG	GTTTGATCTT	AAGGTTTCTG	AAGTTTATTA	GTGATGGATA	557280
АААТААААА	ATTTTTTCT	AGCTTAAATA	CTTCTCAAGA	AAAAATTGTT	TTTAGTAAAA	557340
GTAAAAATCC	AATGCTTGTT	TTAGCAGGGC	CTGGAAGTGG	TAAAACAAGA	GTTATAATTG	557400
CAAAAATTGT	ттатттаатс	AAATATATGA	ATATAGATCC	CAATGAAATT	TTAGCTTTAA	557460
CTTTTACCAA	TAAAGCTGCA	AATGAAATGA	ATGATAGGAT	AAATGATCTT	TTAAAATTTG	557520
ACAAAAAACT	TCATATTCAA	ACTTTTCATT	CTTTTGGGTC	TTGGCTTTTG	AGAGTTTACT	557580
ATAAGGATTT	' TAACGAAAAT	TACGATTCAA	ATTTTACAAT	TTGGGATACT	AATGATGTTG	557640
TTAAATTTGT	TAAACAAATT	GATCTTGCTC	CAAATCTTGA	AATGGCAAAA	CATATTGCAG	557700
CTTTGATTTI	· AAAAGACAAA	GAAAATTTTT	TCTTAGAAAA	ATTTATTCAA	TTTACAGAAA	557760
AGGAATATGA	GTATATTAAA	ATTTATGAGG	AAGAGAAAGC	ТАААААТААТ	GCTTTTGATT	557820
TCTCAGATCT	TATTATTAAG	CCTATTTTAA	TGCTGAGGCA	ATCTAAATCT	TTAAAAGAGT	557880
CTATTCAATC	TAGATTTAAA	GTTATTTTG	TAGATGAATA	TCAAGATACA	AATTATTCAC	557940
AATTTTTAT	TTTAAAAGAA	CTTTATTTAG	ATGGTATGTA	TTTTATGGTC	GTAGGAGATG	558000
AAGATCAGTO	AATATATTCT	TTTAGGGGAG	CTAGAATTGA	AAATATTCTT	GAATTTGAAA	558060
AAACTTTTG	A CAATGTTATT	' AAATTTTAAA	TAGTGCAAAA	TTATCGTTCA	AATTCAAATA	558120
TAGTGGGCAT	r TGCAAATGAG	GTTATTTCAA	AAAATAAAA	TAGATATGAA	AAGCAAATAA	558180
CAACTCAAA	A TAGTTCTAAI	AAAAGGATGA	AATTTTTAGT	TTTTCAAAGC	ACTTCAGATG	558240
AAGCTGAAT	A TTTTTCTAAT	TTGCTTATTT	CCAATGATAT	' TAAGACAGCA	ATACTTTATA	558300
GATTTAATT	C TCAATCTTTI	CATTTTGAAA	CATCTTTTT	' AAAGAAGAAT	ATCCCATACA	558360
AGGTTTTAGG	G ATCAATTAAA	A TTTTATGATA	GAGAGGAAAT	' AAAAGATATT	ATTTGTTTGC	558420
TTAGGCTTT'	г татааасаас	AAAGATAAAA	TATCTTTCTT	GAGAATGATA	AACAAGCCTT	558480

			473			
CTAGAGGAAT	TGGAAAAACT	' ACTCTAGACA		TTCTTTAAAC	GATAAAGATG	558540
TTAATTTCAA	TTTGTTTTGT	' GCAAGTAAAA	AGACTTTAGG	TTTGCTTAAA	AATAGAGCCA	558600
AAGAGTCTCT	TTTATTATTT	TTAAATGTTT	ATGAGGAGCT	GGGTAAAAA	CTTTTTGAAG	558660
ATAATTATAT	° ТААТТТАТСТ	GCTTTTATTG	AGGATGTAGT	AATTAGGTTT	GGTCTTTTAG	558720
ATTATTATAG	AAAATTTGAT	AAGGACGAAA	AATTAAGAAA	TATTGATGAA	CTTATTAATA	558780
GTGGAATTGA	ATATTCAGGC	ACGTTTGAAG	GTCTTGCTAT	ATTTTTAGAA	AATTCTTCAC	558840
TTTCTCCTTT	AATTTCTGGA	GATTTTAAGT	ССААТАТАСТ	TTTGTCTTCA	ATTCACGGTG	558900
TTAAGGGGCT	TGAATTTGAT	AGAGTTGTGA	TTTCTGGGCT	TGAGAAAGGT	CTTTTACCTG	558960
CTGAAATTGA	AGAATTAACA	GAAGATAGAC	TTGAAGAGGA	GAGAAGGCTT	TTTTATGTkG	559020
CGATCACAAG	AGCTAAATCA	GAGCTTATTG	TTACCTTAAA	CTTAAGGCGA	GCTTTTAGAG	559080
GTTCTTATAA	GGGCACTTTG	CCTTCTGTTT	TTTTCCAAGA	TATTGACAAA	AACTCTTATG	559140
ACATTATCTT	TATCCCTGAG	TATTTAAAAG	AGAATTTTAA	TAATTTTTT	АТТААТААСА	559200
AAAGGGATAT	TGGATTTAAT	ATTGGAGATT	ATATAATTTA	TAATGGAGAA	AAGGGAATAG	559260
TTGTTGATAG	CTGGTACCAA	AGCAACTTGC	AGTTTGTTAA	AATTAGTTTG	AGAAATGGTA	559320
AGAAAGCTAT	TTTGAGTCCT	GAGTATATTA	AAAAAATTGT	CAAAGTTTAG	AGGTTTATTT	559380
TGAAAGATAT	ACATTTAAAA	AATAGCTTAA	AATTAAGCTT	AGTGACACTT	AGTAGAGAGA	559440
GTGAAGATAA	ATTTATTTCA	AAATTTGAGA	AAGTTATTAA	ATTGGTTAAT	AAAATTTCAA	559500
ATTTTGAGGT	TCAAATTAAT	TTTAATGCTA	ATAAGAAAAA	GATTTCTACG	TTGCGCGAGG	559560
ATAAAGTAGA	ATTTTCTCTT	TCTATTGAAG	СААТТААААА	ACTTAGTAAT	TCGTTTTTAG	559620
ATGGATATTT	TTCATCTCCT	AAAATATTGG	AGTAAGGATA	AGGTGTTGGA	CTTAAGTAAT	559680
TTAACTTTAA	CCAAAATTCA	AGAATTAGTT	TTAACTAGAA	AATGTAAAAT	TTATGATATT	559740
TTGCTTGCTT	АТАААААТАА	TTATGAGCTA	AATAAAGATA	TCAATGGATA	TATTGAATTT	559800
TTTGATGATT	CTTTAGAGAT	TGCAAAAAGG	TATGACGATT	GTTTAAAAAA	TTGTGAATTA	559860
GAAGATTTGC	CTTTAATTGG	TATGCTTATT	GCAGTCAAAG	АТААТАТТТС	AATTCAAGAT	559920
AAATCTTTAA	CTTGTGCTTC	TGAGATTTTA	AAAGGTTATA	TTTCTCCTTA	TGATGCGACT	559980
GTTATTAAAA	GGCTTAAGAA	TAAAGGAGCA	ATTTTAATTG	GTAGAACCAA	TATGGATGAA	560040
TTTGCCATGG	GTTCTACTTG	TGAATTTTCT	TATTACGGTG	CAACTTTAAA	TCCTTTAAAT	560100
AGAGAATATG	TTATAGGTGG	TAGTTCTGGA	GGCTCTGCAG	CTGTAGTTGC	AGCTTTTCAA	560160
GCACCTTTTT	CGCTTGGTAG	TGATACTGGA	GGTTCTGTTA	GGCTGCCCGC	ATCTTTTTCA	560220
GGAATTTTGG	GTTTTAAACC	TTCTTATGGA	GGTCTTTCTC	GCTATGGGCT	TGCATCTTAT	560280

GCTTCGTCTT	TTGATCAAAT	AGGATTTTTT	TCTCATTCTA	TTGAAGATAT	ТССТТТААТТ	560340
TTAAAGCATA	CTTGTGGATC	TGATAAAATG	GATTCTACTA	GTGTAGACAT	TTTTGATGAT	560400
TTTTATCCTT	TAAAAATTGA	GTCGTTGCAA	GGTAAAAATT	TAGCTGTAAT	CAAAGAGCTT	560460
AGCGAAGATC	TAATGGACAA	AAATGTTGCA	AATAGTTTTG	CAAAGTTTAA	ATTAGACCTT	560520
TTGTCAAAGG	GTATTAATAT	AAAAGAAGTT	TCAATAGAAG	AGATTAATTT	TATTTTATCA	560580
ATTTATTATA	TAATTTCTCC	TGTTGAAGCA	TCCTCCAATC	TTGCTCGTTA	TACTGGACTT	560640
TGTTACGGCA	AGAGAATCTC	TGAAGGTTTG	AGTCTTAATG	ATTTTTATTT	TAAACATAGG	560700
AGCAATTTCT	TGTCAGAAGA	AGTTAAAAGG	CGTATTGTTC	TTGGAAATTA	TTTGTTATCA	560760
GAAAGGTATG	ATTCTAAATA	TTATGCAAAA	GCTTGTGAAA	TTCTTCAAAA	TTTGATTATT	560820
ССТАААТТТА	ACAAGCTTTT	TGAAAGCTGT	GATTTTATTA	TTACCCCAAC	AAGCTTTGTT	560880
AAACCTTTTA	GACTTGGTTT	GGATTTTGAT	GATCCTGTTA	AAATGTATTA	TTCAGATATT	560940
TGTACTGTTA	TTGCAAATCT	TATTGGAGCC	CCTGCTATTT	CGCTTCCATA	TTCTAAGGAT	561000
GAGGAAGGAT	TGTCAATTGG	GATGCAAATT	ATTGGGCGTA	GCAAAAAGGA	TTTTGAACTT	561060
TTAAGTTTTT	CAAAAAATGT	GATTAGGGAA	TTAGGATTGA	ATGGAATATA	AATTAGTTAT	561120
TGGATTAGAA	ATTCATGTTC	AACTGGGTTT	AAAAACAAAG	GCTTTTTGTG	GATGTAAAAA	561180
TGAGTTTGGA	GGAGTTCCCA	ACTCTCGTGT	TTGTCCAATT	TGTCTTGGAT	TGCCAGGTTC	561240
ATTACCAAGT	GTGAATGTAG	AGCTTATTAA	TAGTGCAATT	TTAGCGGGGC	ATGCCACAAA	561300
TTCAAAGATT	AGAAATGTTG	TTAAATTTGA	TAGAAAGCAT	TATTATTATC	CAGATTTGCC	561360
AAAAGGATAT	CAAATCTCGC	AAAATGATAA	GCCAATTTGT	GAGGGGGGAA	GCTTATTGAT	561420
TGAAACCCCT	TCTGGACCCA	AAAAGATTAA	CATTATTAGA	ATTCATATGG	AAGAAGATTC	561480
TGGCAAGAGT	CTACATTTAC	TGGACAGTGA	AAATCAAAGT	TATGTTGATT	TTAATCGCTC	561540
GGGTGCTCCT	TTGCTTGAGA	TTGTTTCTGC	TCCAGATATT	AACAGTGGAG	ATGAAGCAGT	561600
TGCTTTCCTA	AGCTCTTTAA	GAGAAATTTT	TAGGTATCTT	GATTTGTCCG	AATGTAATAT	561660
GGAGAATGGT	TCTTTTAGAT	GCGATGTAAA	TGTTAATTTA	ATTGTTAAAG	AGAATGGTGT	561720
TGAACATAAA	ACTCCTATAG	CTGAAATAAA	GAATTTAAAT	ТСТТТТАААТ	CTATTAAAGC	561780
GGCCATTGAA	TATGAAGAAT	TAAGGCAGCA	ACAGGAGTGG	ATTCAATTTA	AGAAAACTCT	561840
TAATAGTTGT	GGTAAGCACA	CTAGAGGATT	TGATGATAGG	AGCGGAGTAA	CGGTTATTCA	561900
AAGAAATAAA	GAGACAGTAT	CTGATTATCG	CTATTTTCAA	GAACCCGACC	TGCCTTTAAT	561960
AGAGATTGAT	GATTCTTATA	TTGATAATAT	TAAAAATTTA	AAGTTGATTG	AACTTCCATT	562020

			475			
TCATGCAAGA	ATTAGGCTTA	AGGGCCAATA	475 TGGGCTAAGT	GATTTTGATG	ТТАТТАСТТТ	562080
AACAGCAGAT	AAGCATCTGC	TTAAATATTT	TGAAGAGGCT	GTTATTAATT	CAAGCGATCC	562140
CAAAAAAGTA	GCCAATTGGA	TATTGTCTGA	AGTTTTAAGC	GTTCTTAATG	ATAAAGGAAT	562200
TAGTGTTCTT	GAATTTAATT	TGCTTCCAAG	CTATATTACA	GAGCTTGTTG	AATTTATTGT	562260
TGCTGGCAAA	ATAAGTGGCA	AAATGGCAAA	AAGGGTATTT	TCAGAGATGA	TGACTAGAGG	562320
AGTTTCTGCC	TCTGTTGTTA	TAAGTGAAAA	TCAATTAGAG	CAAGTAAGTG	ATAAGTTTGT	562380
TATTAAGCAG	ATTGTGCTTG	AAGTTTTAGA	TGAAAATCCT	AAATCAATTG	AACTTTACAA	562440
AAAGGGCAAA	GACCATGCTA	TCAAATTTAT	GATGGGGCAA	ATAATGAAAA	AATCTTCAGG	562500
AAAGATTAAT	CCTATACTTG	CAAATGAAAT	TCTTTTAGAA	AGTTTATCAA	ATGTATGATT	562560
TGCCTTTAAT	AGATAATTTA	CCAGTGATTA	AAAGGCCAAG	ATTTTTTAT	CTTTACGATA	562620
TTCATGGTAA	GAGGTATTTG	GATTTATATT	TAAATGGTGG	AAGAAATTTT	TTAGGTTATA	562680
GGGTTCAAGG	TTTAAATCGC	CTTTTTAAAC	AAACTATGTC	AAGGGGTTTG	ATATCCCCTT	562740
ATCCTTCTGT	TAAAAATTTT	CAGTTTATCA	ATTTGGTATT	TACTTTTTT	AAAGAGGCTG	562800
GGTCTGTTTA	TATTTTTAAG	CTAGAAAAAG	ATGCAAAAGA	ATTTTTATTA	TCTTTAACTG	562860
GTAAAAATAA	ATTTTTTATG	CCCTGGGAAA	AAGAAGAAGG	AATATATGAG	TTTAGAGTAG	562920
GATTTAGTAA	ТАТТАААТАТ	CCTATGATTT	TTAATATTCC	TTTGCCTGAT	TTTATGTCTG	562980
TTAGCATTGT	TGTTATGGAT	AATCTTTCTA	GAAAAATAGA	ATTTAAAGAT	AATTTTGATG	563040
CTGTAACTTT	ATCTTTAGCT	AGACATACAT	TAAGCAAGCT	TTTATTTTAT	AAGAAAAATA	563100
TCGATATTGA	TTTTAATTCT	TTTGCCACAC	CTTTATTTAG	AATAGCTGAT	AGGTATATGC	563160
TTCCTCTTTA	TGATGCTTGT	TATCATGCTG	AAATTTTTAA	TGAATTTCTC	AAATTTGGGT	563220
ATTTAATTAG	TCCAAATTTT	AGTATTCCAT	CTATTGTTCC	CCTGAAGTTC	TCTAAAGGAG	563280
ATCTAGATAA	TTTTAAAAAA	CTTTGTTTTG	СТСТТААААА	TAAGTTTATT	GATGGGCTTG	563340
ACAGTGATCC	TTACAAATAA	TACAATGAAT	GAGATTTATG	САТААААТТА	TAAAGGGTAT	563400
AGCGCTATTA	TGAATAAAAT	AACCAATAAT	GATACGATTT	GGATCAAGCC	AAAGACTGTT	563460
GAGAAAAAAT	GGTATGTAAT	TGATGCAGCA	GATAGAATTT	TAGGTAAAGT	TGCTGTGGAT	563520
GTTGTTAAAA	TTTTAAGAGG	САААСАТААА	GCTTATTATA	CTCCCCATCA	AGATTTAGGT	563580
GACAATGTTA	TCATTATTAA	TGCTTCTAAA	GTTAAGCTGA	CGGGGAAAAA	ATATCAACAA	563640
AAACTTTATT	ATAGGCATTC	AAGATATCCT	GGAGGTCTTT	ATTCTGACAC	TTTTAGAACA	563700
TTGTCAGAGA	GAAAGCCTTG	TGCTCCTCTT	GAAATTGCTA	TTAAGGGTAT	GTTGCCAAAA	563760
GGCCCTTTGG	GGCGTAATCT	TTTTAGAAAT	TTAAAAGTCT	TTTCTGGTTC	AGAGCATACT	563820

CTTAAAGCTC	AAAATCCTAT	AAAGCTGTAA	gCTAATTTAG	AGAGGTAAAA	TGAAAAATC	563880
AAATTTTAGC	AATGTTAATT	TATCAATGGG	AACTGGTAGG	AGGAAATCTT	CTGTTGCTAG	563940
AGTTTACATT	AGAGAGGGTA	GTGGCAATAT	CAAAGTAAAT	AATAGAGACT	TTGACTCTTA	564000
CATACAACTT	GAAAATTTAA	GAACAATGGC	TTTATCGCCT	TTGGTTTTGA	CAAATACACT	564060
TGGGAAATAT	GATCTTTATA	TTAATGTTTA	TGGGGGAGGG	ATTTCAGGTC	AATCAGGGC	564120
AATAAGGCAC	GGCATTTCAA	GAGCTCTTTT	TAAACTTGAT	GAATCTAATA	AGATGATTTT	564180
GAGATCTAAT	GGGTTTTTAA	CAAGAGATTC	AAGGAAGGTT	GAACGTAAAA	AATTTGGGCA	564240
GAAAAAAGCA	CGAAAAAGTT	TTCAATTTTC	CAAAAGATAA	TTTTATTTT	ТТАТАСАТТТ	564300
TACATTTTTA	TTTAATTAAA	АААААТСССТ	TTTACAGGGA	TTTGATTTAT	TTTTGTTTAA	564360
TAGAATAAAA	GACGCTCTTA	CCGTGGTATT	CAGCAGTTGT	TTCCAATTCT	TCCTCTATTC	564420
TTATGAGTTG	ATTGTATTTT	GCTATTCTAT	CTGTTCTTGA	GAGTGAACCA	GTTTTGATTT	564480
GTCCTGTTCC	AAGAGCTACT	ACAAGATCAG	CTATTGTTGT	ATCTTCTGTT	TCTCCCGATC	564540
TGTGAGAGAC	TATTGCTGTG	TAACCCGCTT	TTTTAGCCAT	TTCTACAGCC	TCAAATGTTT	564600
CTGTTAGTGT	TCCAATTTGA	TTGACCTTAA	TAAGGATTGA	ATTGGCAACT	CCCATTTCAA	564660
TTCCTTTTTT	AAGAAACGAG	GTATTTGTTA	САААТАААТС	ATCTCCAACA	AGTTGTATTT	564720
TGTTTCCAAT	TTTGTCTGTA	AGTTTTTTCC	ATCCATCCCA	ATCTTCTTCA	GCCATTCCAT	564780
CTTCAATTGA	AATGATTGGA	TATTTTTCTA	CCCACTTTGC	CCAATATTCA	ACCATTTGTT	564840
CGGAAGTAAG	TTTTTCTTT	GTTGACCATT	TAAGTACGTA	TTTTTTTGTT	TTTGGATCAT	564900
AAAGCTCAGA	TGTTGCGGGA	TCAAGAGCTA	TTGCAATGTC	TTTTCCAGGT	TCATATCCTG	564960
CCTTCTTTAT	TGCCTCTATA	ATCACTTCAC	AAGCTTCTTC	ATTTGATTTC	AAATTTGGAG	565020
CAAATCCCCC	TTCATCTCCA	ACAGAAGTTG	CATACCCTTT	GCCACTTAGA	ATGCCCTTTA	565080
GCGTATGAAA	AACCTCTGCT	GCCATTCTTA	TTGCTTCACT	GAATGTTTTT	GCTCCTATTG	565140
GCATTATCAT	GAACTCCTGA	AAGTCAACAG	AGTTGTCAGA	GTGTGCACCG	CCATTAATAA	565200
TATTACACAT	AGGTGTAGGC	AAAATGTTGG	CTTTGTACGC	TCCAAGATAT	TGATAAGGCC	565260
TAAGTCCAAG	GTACTTTGCA	GCAGCTTTAG	CTGTAGCCAT	TGAAACTGCT	AAAATTGCAT	565320
TAGCACCAAG	CTTTTCTTTT	GTAGGGGTGC	CATCAAGTTC	AAGCATTTTT	CTGTCGATTG	565380
CAACCTGATT	TAAGGCACTC	ATACCTTCAA	GTTCTGGGGC	AATTATGTTT	TTTATATTTT	565440
CAATTGCCTT	ТААААССССТ	TTTCCCATAT	ATACAGACTT	ATCACCATCT	CTAAGCTCAA	565500
CAGCCTCGTT	AATTCCTGTT	GATGCACCTG	ATGGTACGGC	AGCTCTTCCG	TAAGTTCCAT	565560

JS98/12764

CTTCTAAAAT GACATCAGCT	TCAACTGTTG	GATTCCCTCT	AGAATCAATG	ATTTGTCTGG	565620
CTTTGATTTC ATAAATGTGA	AAACCCATTT	TTTGTACTCC	TCGTATTATT	TACTTTAATG	565680
TATATTTTTA GTATAATGTT	AAAAAGTTTA	AATGTGTAGT	ATTTTTCCAA	AAGAATTATT	565740
ATTGTGAGCT TTGTGTATAA	TCTATGAAAG	AAAGGTGTTT	GTATTTATTG	GTTTTTGTAG	565800
CTTTATGTGT TAACAATCTT	TTTTCAGATG	ATTATTTAAT	TTATGACTTT	GATTTAAGTT	565860
TAAATGAATT TCTAGAAGTT	TCAACAAGAA	AAGACAATCT	TGAGCCTATG	GTTGATTCCA	565920
ATCGTATATT ATTGTTTTAT	CCTCCTAAAA	AAGAAATTAG	AAAAATTTTT	GCTGCCTTTG	565980
ACTTTGATCA GTATTCTAAG	AAATATTTAT	ТСААААААА	TGAGCATGGA	GTTTTTTTG	566040
TTAAAGTTAA TATTCCTCAT	GGCACAAGCA	GTATAAAATA	TAGGCTTATT	GTAGACGGTG	566100
TTTGGACTAA TGACGAGTAT	AATAAAAATG	TAGTTTATAA	TGAGGATTTA	ATCCCATTTT	566160
CTAAAATTGA GATCGCTAAA	GAGAAGTCCA	GCTATATTTC	TTTGAGAAAT	CCAATACAAT	566220
CATATGATAA CAATGAAATT	GAAATTTTTT	ACATAGGTCG	TCCTGGACAA	ATAGTTACAA	566280
TAGCTGGTAG TTTTAACAAT	TTTAATCCTT	TTTTAAATAG	GCTTATTGAG	AAAGAGGACA	566340
ATAAGGGAAT TTATACTATT	AAGCTTAAAA	ATTTACCCAA	GGATAGAATT	TATTATTATT	566400
TTATTGATTC TGGTAACAAA	GTAATAGATA	AAAATAATGT	TAATAGAATT	AATTTATATT	566460
TTGTTGAGGG AATTGATAAT	AAAATAGATT	TCGAAGTTTC	CTATTTTGAT	CATAAGTAAG	566520
СТТТТААТТА ТТТАТСТСТТ	CATCTCATCA	AAAAGGTATT	TAGATACAAA	GTGATCTTTT	566580
TCTACTTCTT CGAGCTTTGG	ATGTACTTGG	GTTGATAAAT	GAATTTTTCT	AATGTTTGCT	566640
AGAGTTTGCT CGTCTAGTTT	TATATTTTTA	TTTTTTCTTT	TTTCAGGGTT	GATTTCAGGA	566700
ATTGATGCTA TTAGCATTTT	AGTATATGGA	TGAATTGGAT	TTGAAAATAG	CGTTTCTCTA	566760
GGTGCAAGTT CCAGGATAAC	TCCAAGGTAC	ATTACAGCAA	TTTTATCACT	САТАТАТТТТ	566820
ACTACGGCAA GATCGTGAGA	AATAAATAA	TAAGACAAAT	TGAATTCTTT	TTGCAGAGCT	566880
TTTAGAAGAT TTAAAATTTG	AGCTCTGATT	GATACATCAA	GTGCAGAAAC	GGCTTCGTCT	566940
AAAAGCAAAA GCTTAGGATT	TAAAGCTAGT	GCTCTAGCAA	TTCCTATTCT	TTGTCTTTGT	567000
CCTCCTGAAA ATTCATGAGG	ATATCTGGTT	AACATACTTT	TATGTAGTCC	GACAATATCT	567060
GTTAGTTCGT TTACCCTTTG	TTCTATTTCT	TGTTTTGTTT	TTGGAAGAAT	TTTGTTTTCA	567120
TTGTATATTT CTAGTGGTTC	TGCTATTATT	TCTTTTATTG	TCATTCTTGG	GTCAAGCGAA	567180
GTATGGGGAT CTTGGAATAC	CATTTGCATA	TCTTTTTTTG	TTTTTAAGAG	CTCTTTTTTT	567240
GAAAGTTTAG TTATGTTTTT	TCCGTTAAAG	TAAATATTTC	CAGAAGTTGG	CGTGTAAAGT	567300
TGCATTATTG AGCGAAGAGT	AGTAGATTTG	CCGCAACCAG	ATTCTCCTAC	GAGTCCTAAA	567360

GTTTTATTTT	TTTCAACTTC	AAAGCTAACA	TTGTTTACCG	CATTTACTTT	TTGTTTGTTT	567420
ТТССААААТА	AAAAATCTTC	TCCTGTTGTG	AATGTTTGCA	TTAAGTTTTC	TACTTTAAGA	567480
ATTATTTCTT	TTTTACTACT	CATTTAAAAC	TCCTCGGTGC	TGGTTTTTGT	GATCTTCATA	567540
GGGTTTTCTT	TTGTTGAATA	AAGCTTTTTA	TTTGGATCGT	GTTCTAGCGT	AAGAATTGAT	567600
TTTAAAAGCC	CAATGGTGTA	AGGATGCTTA	GGATTGTTAA	ATATTTCCTC	TACTGTTCCT	567660
TCTTCTACAA	TTTTTCCTTG	ATACATTACA	GATACTGTAT	CACAAATTTC	AGCAACAACC	567720
GCAAGATCAT	GAGTTATAAA	TATGGTAGAA	GTATTGAATT	TTTTAGATAG	GTTTTTGATT	567780
АТААТААТА	TTTGCTCTTG	GATTGTAACA	TCAAGGGCTG	TTGTTGGTTC	ATCTGCTATT	567840
AATAAGGATG	GATGACAGCT	AAGAGCCATG	GCAATCATAA	CTCTTTGTCT	CATTCCTCCT	567900
GAAAATTGAT	GTGGGAAATG	TTTTATTCTT	TCTTCTGCGT	TTACAACACC	AACAGTTTTT	567960
AACATTTCTA	TTGCTTTTTC	TTTGGCTTCT	TTTTTCCCTA	ATCCTTGGTG	TAAGATTATT	568020
GTTTCTTCAA	GTTGAGTTGA	ТАТТСТТААА	AATGGGTTTA	ATGAAGTCAT	TGGGTCTTGA	568080
AATATCATTG	ATATTTTATT	CCCTCTGATT	TTTAAAAGTT	CTTTTTCGCT	AAGTTTTAGC	568140
AGATCTTGAT	TTTCAAATAG	TATTTCTCCA	CTTTTATATA	CTGTTGTAAG	TTCTGGTAAT	568200
AATTTTAAAA	TAGCCATACT	TGTTACGGAT	TTTCCGCTTC	CAGATTCTCC	AACAATAGCT	568260
CTAATTTCTC	CTCTTTTTAC	AGATAGGTTA	ACATTGCTTA	CGGGATGAAT	TGTTGTATGT	568320
TTTAATCTAA	ATTCAATTGT	TAAATTTTTT	ATTTCCAATA	TATTTTCTTT	TTCCATTCAA	568380
TTTCTCCTTA	GATGCTATCT	TTTGGATCAA	AAGCATCCCT	TAGCCCATCA	CCTAAAAAGT	568440
ТСАТАААТАА	TAGAAATATT	GTCATAACTA	TAGCTGGAAT	AAAAACTTTC	CATGGATATT	568500
CAACAAATGT	AGCAATTCCA	TTTTGCACTA	ATTCTCCCCA	GCTTGTCATT	GGAGCTGAAA	568560
TTCCAAGTCC	TAAAAAGGAT	AAAAATGCTT	CAGCCATAAT	AAAGCTTGGA	ACCCTTATTG	568620
TTGTGAATAT	AACTATCATT	CCAATGCTAT	TAGGGATCAA	GTGTTTTAAG	ATTATTCTTT	568680
GATTTGTTGC	ACCAAGGGTT	TTGGCTGCTT	GTATAAATTC	CGAACTTGAT	AGTGATTGTA	568740
CTTGGCCTCG	TACAACTCGA	GCTACTGTTA	ACCATGATAC	AAATGCAAGT	GCTATGAATA	568800
AGCCGATTAT	ACTTCTTTCC	ATTATTGCCA	ТТААТАТТАТ	TACAATAAGT	AAATAGGGCA	568860
ATGCATAAAG	AATTTCTATT	GGTTTTAGTT	ATTATTTTGT	CGGGCAATCC	СССААААААТ	568920
CCTGCTATGG	ATCCCAGGAT	AGTTCCTATT	ATCATAGACA	AAAAAGCTCC	ААТАААТССТ	568980
ACAGAAAGAG	AAATTTGACT	ACCTTGTATT	AATCTTGCAA	GCAGATCTCT	TCCAAGATTG	569040
TCTGTGCCAA	GCAAATATAC	TCTTTTATGT	ATTTTTACTT	CCTTTTTATC	TATTATTTGA	569100

WO 98/58943 US98/12764

			479			
ACTTCATTTT	CTATTTTTCT	TTTTATGTCT	TCGAGTTTTT	TTAGTTCTTC	TTCATTTATT	569160
TCTCTTTTTT	CTTTTTTTGC	TAATTTTTCA	ATAAATTTTT	TTTCTTTATT	ATACCAGAGT	569220
TCTCCAGCAG	CCTGGAAAGA	TGGTGGCAAA	TCAGAATGCT	CTACTATTTG	AGTATGGTAT	569280
TTATATATTG	GCAATATTGG	TTGCAAAATG	GCAATTGAGA	TATAAAATCC	AATTACAAAA	569340
AGACTGCCAA	ATGCGAGTTT	ATTTTCTTTA	AATCTTGACC	AAGCTCTTCT	TTCTAGTTTA	569400
GAATTGTTTT	CTTCATTTTG	TTTTTCAAGG	CTATTCATTT	TGATTTCCCC	TTATACTCTT	569460
GGATCTAATA	ТТТТАТАТАТ	AATATCTGAT	ATTAATATAG	AAATAAGCAG	TATTATTGAA	569520
TATACTAACA	ATCCGCCCAT	TAATACTGGG	TAATCTCTGT	TTAGTGCGGA	TTCTGTTATA	569580
AACATTCCCA	TTCCAGCAAT	тстааататт	TTTTCAATAA	CCACGCTTCC	AGATATTATA	569640
GCAGCAAATG	CTGGACCTAT	ATAGCTTACT	ACAGGCAACA	TTGCTCCTCT	TAACATATGC	569700
ТТТАТААСТА	TCTTTTTGAA	GCTTAGCCCT	TTTGCACGCG	CAGTTCTTAT	AAAGTCGCTT	569760
TGTATTATTT	CTAGCATTGA	TCCTCTGATT	ATTCTTGCGA	AAATAGCTAC	GTTGGGCATG	569820
CTAAGAGTTA	TTATGGGTAG	AATTAAATTT	GAAAATCCTC	CTCTTTCTGT	AATCCATCCA	569880
GAGGTATAAA	GCAAACCCCA	TTTAATTGCA	AAAAAATATT	GTAAAATTGG	CCCTATTACG	569940
AATAATGGTA	TTGAAATCCC	CAATATTGCT	ATTGATGTTA	ТТАТАТААТС	CACATAAGTA	570000
TTTTTATAAA	TGGCAGCTAA	TATACCTATT	GGTATTCCTA	TTGATAGTGA	TATAATAAGG	570060
GATATTACTC	CTAGTGTAAG	TGATTTTGGA	AATCCTAATT	TTATGTATTG	ACTAACTGTA	570120
AGGTCTTTCT	TTTTCAAAGA	AGGTCCCAGA	TCTCCCCTGA	GAGCGTTTGT	AATGTAATAA	570180
AAAGCTTGAA	TATAAAAAGG	CTTGTCAAGG	TGATATTTT	CCATCAATCT	TGCTTTTACT	570240
TGAGGATCAA	TAGGTTTTTC	AGAATCAAAT	GGACTTCCAG	GAGCCATTCT	CATTACAAAA	570300
AAGCATAAAA	AAATTATTAC	CAGTAAAGTT	GGTATTATTC	СТААТАТТТ	CTTTAAAGTA	570360
AACTTTAACA	TTTTTGCTCC	TTTGTAAATA	GATATTGATA	ACTTACGTAT	TAGTCAATTA	570420
TATCATATAG	TCTTTATTGT	TTTTCAAGCT	ATAGTTGATA	ATTTTTGATA	GAATAGGAGG	570480
TTTTTTGTAT	TATAATGAGT	AATTTAATTT	TCAATAAAAT	GTATTTTTTG	TTTTAATTT	570540
TTTATTTAAA	ATTTTATTCT	CTTGATTTGA	GAAGAATTTT	TTTGTGTAAG	ATTCTAAGTA	570600
AAATTATCAT	AGAATCTTAC	ACATTATTTA	TGTATTTTTG	TTTTAAATAA	AGCTACTGTC	570660
TTAAGCTTAG	TCAGCTTTGC	TTTTAGACTT	AAATATTGTT	TTTAATTTAT	ATTAAAATCC	570720
TTTAAAATT	AATTATGTTT	TGCATTTTTA	ATTGGTTTTA	ATTCAGAAAG	АТААТАААСС	570780
TCTGATACAT	TAGGATTCCA	TCCAGTCCAT	TTATCGTTTC	TAAAAAGATA	ATGCCCAGAA	570840
TATATGTATA	TTGGTGCAGC	AGGAAAATCT	TTTTCAATTA	TTATTGATTC	TGCTTTTCTG	570900

AGTAATTGTT	ТТСТТТТТАТ	AGGATCTTT	TCAAGATCTG	ATTCTCTGAT	GAGTTTGTCA	570960
AATTCTAGGT	TTGAATATCC	GTATGATGCA	AGTTGTGAAT	TTTCTCTTGT	GAATATAGTA	571020
AAGTATGTGT	GTGGATCTAA	ATATTCCCCA	ATGCGTCCAA	СТСТТАТТАТ	TTCAAAATTG	571080
CCAGTATTTC	TGCTGTTGGT	AAGAACAGGC	CAATTTTCGT	TGGTAAGCAT	AAGATTGATA	571140
TTTAGAATTT	TTTTCCATTG	GTTTTGAATA	AATGCAGCAA	TTTTTTATG	AGTTTCGTTT	571200
GTATTATATT	TTAGTGTTAG	CATTGGGAAT	CCTTTCCCAT	TAGGATACCC	TGCATCTGCC	571260
AAAAGCTTTT	TAGATTTTTC	AGGATCAAAT	AAAGCCAATT	TTTTACCGTA	ATTGTAATTT	571320
TTAAGATCAG	GAGTTATTTC	TCTTGTAGGA	ACTGTGCCAT	CATTTAGCAC	TTTGTAAGTT	571380
AAAGTTTCTC	TGTCAATAGC	TAAGGTTAAA	GCTTCTCTAA	CTCTAGCATC	ATCAAGGGGT	571440
TTTATTTTTG	TATTAAATGA	АТАТАААТАА	ATTGCATTAC	TTTTGTGTTG	GTAATAGTCT	571500
TTTTGTAGTT	TTATTTCATT	TACAATGTCC	GGCGGGATGC	TGTTAAAAAT	AGCATCAATT	571560
TCGTTGTTTT	TGTACATATT	GTACACAGTA	AGATCATTGT	CAGACGTAAT	GTAGACAAGC	571620
TCATCAAGTT	CTACTTCTTT	TGCATTATAA	TAACGTTCGT	TTTTTTCAAA	GATAATTTTT	571680
TCATTAGGTA	ATCTTTTTT	ТААТТТАААА	GGACCGCTAG	TAACCATGTT	TTCAGGGCTT	571740
GTCCAATTTC	CCTTATATTT	TTCAATCACA	TGAATAGGTA	CTGGCATGAA	TGCGTAATGT	571800
AGAAGCAGTT	CAAGAAAATA	TGGCTTTGGG	GCCGTAAGTG	TTATTTCCAG	CGTTTTACTA	571860
TCAATTGCCT	TGATTCCAAG	TTCAGAATCG	GATACTTTCC	CGTCAAAATA	CTCTTGTCCA	571920
TTTTTTATTA	TTGATTTGAG	CATGTCAACA	TTTGTAGATC	CTGTTTCTTT	ATTTAAAATT	571980
CTTAAAAAAG	ATTTTCTTAT	CCCTTCAGCG	GTAATTTCAA	CTCCATCGCT	CCAAAAAAGG	572040
TTGTCCCTTA	GATAAAATTG	ATATGTTTTT	TTATCTTTTG	AGGCTTCCCA	ATTTTTAGCA	572100
AGTCCGGGCT	TTAGCTTTCC	TGTTTTGGTA	TTTAATGTCA	AAAGCCCTGA	GAATATTTGT	572160
TCTAAAATTC	TTGCTCCTAT	TGTCTCATCT	ACCAAATGAG	GGTCAAGCGA	TGAGGGCGCT	572220
CCCCCTATGT	ATACTTTAAA	TGCTAATTTT	TCTTTTTCTG	AATTATTATT	GCATGCAATT	572280
AAAGACACAG	CAAGCATAAG	TAGTGTTACT	ATTTTAATTT	TTTTACCGAT	TTTTTTAGTT	572340
TTATTAAAGC	TCATATTAAC	CTTTCCCCCA	AATTAAAATT	ATTTATAAGT	ТТТАААСТАТ	572400
СТТТТТТТТТА	TAATAAAGTC	rATAAAAACC	GTCCATAAGG	ААТАААТААТ	AGACGATTTT	572460
АТТААТТАТ	TATAATTTAA	TATAAAGTTT	ATTATATTAT	TTATTTTTTA	ATTTTAGCTG	572520
AGATAAATCA	AATCTTTCTA	AAATATTGGT	GTTCCACCCT	GTCCATTTGT	CATTTCTGAA	572580
AAGGTAACTG	TTCCCATATA	TGTATATTGG	TGCTATTGGA	AAATCTTTTT	CAATAATTAT	572640

PS98/12764

CTCTTCTGCT	TGTCTTAAAA	TGTCTTGTCT	TTTTATTGGA	TCAAGCTCAA	GGTCGGATTT	572700
CTTTATAAGT	TCGTTGTATT	CTGGGTTTGA	GTAATTATGA	GATGAGAATT	GTGTGTATCC	572760
TTGTGTGAAT	ATGCTTAAAA	ATGTCAAAGG	ATCAGCATAA	TCGCCTATCC	ATCCTGCTCT	572820
TGCTATTTCA	TAATTTCCAT	TTGCCTTAGT	GTTTAAGTAT	GTTGTCCATT	CTTCGTTTTC	572880
AAGTTCCACA	TCAATATTTA	AATTTTTTTT	CCATTGGTTT	TGAATAAATT	CACAAATTTT	572940
TTTATTTGCT	TCGTTTGTAT	TGTATTTTAA	TTTTAAAATT	GGAAATCCAT	TGCCATTAGG	573000
ATATCCAGCT	TCAGCTAGAA	GGGTTTTTGC	AATTTCAGGA	ТТАААТААТТ	CTAAACTTTT	573060
TGCATAAGAA	TATGAACTAA	AGTTGGGAGT	TGCTCTTCTT	GTAGGGGTAG	TCCCGTTGTC	573120
AAGAACTTTA	TATGTAAGCG	TTTCTCTGTC	AATAGCAAGA	GTTAAGGCTT	ТТСТААТТТТ	573180
AACGTTGTCA	AGTGGTTTGA	TGTGTGTATT	GAACGCGTAA	AAGTATATGG	CATTAACAGC	573240
TGATGAGTAA	TAGTCGCTTC	TTAATTTTAG	ATTTTTGATT	AGATCTGGGG	GTATGGAACC	573300
AAAAATTGCA	TCTAGCTCTT	CATTTTCATA	CATTTTATAC	GCTGTTGAGC	TGTCATTTGT	573360
TGTGTAAAAT	GTAATCTCTT	CTAATTCTAC	TTCATTTGAG	TCGTAGTATT	TGTTATTTTT	573420
TTCAAAGACA	TATTTTCGT	TAGGAATTCT	TTCTTTTAAT	TTAAAAGGAC	CACTTGTCAC	573480
CATGTTTTCG	GGGCTTGTCC	AGTTTTGTCC	ATACTTTTCG	GTAACATGAA	CTGGTACTGG	573540
AATAAATGAT	TGGTGTACTA	ACATATCAAT	AAAATAAGGT	TTTGGTGATT	CCAGTGTTAT	573600
TTCTAATGTT	TTTTCATCAA	TCGCTCTAAT	TCCAAGTTCA	GAGTCAGTCA	CTTGTCCATC	573660
AAAATATTTT	TGACCATTTT	TAATTACCGA	TTTAACCATT	TCAACGTACT	TTGAGCCAGT	573720
TTCTTTATTT	AAAATTCTAA	GATAAGATTT	TCTAATTCCT	TCTGCAGTGA	TTGCAACTCC	573780
GTCACTCCAA	GTGATTTTTT	CTCTTAGGTT	AAATGTGTAA	ACTGTTCCAT	CAGAAGAAAT	573840
ATCCCACCCT	TTTGCAAGTC	CCGGTTTATT	TCCCCCTGTA	TTAGGATCTC	CTGTAACAAT	573900
CCCTCTAAAC	ATTGTGTCAA	TCATTTTTGA	TGCGACATTA	TCCTCTGCTA	ATTGAGGGTC	573960
AAGACTGCTT	GGCTCTGCTC	CCAAGCTTAT	TTTAAATGAT	ACTCCTTCTT	TTCTTTCCTT	574020
GTTATTACAA	CAAAGAAAAG	TTAGAAAAA	ТАТТАТТААА	AATAATGACC	TTTGTAATTT	574080
CATAATTTTT	TATACCTCCA	TTTCAAAGTT	TGTTTTAAAA	ТТТААСТТТА	ATTTCATAAT	574140
TTTCTTTCCG	TAGATATTAA	TTTTAAATCT	ТААТТТТААА	ATTACTTATT	ТТАСТТААТТ	574200
ТТАТТАТТТТ	TTAGTTTTAA	TATCTTCATA	TAAATAGCTT	TCTGCGATAT	TTGGTACCCA	574260
CCCTGTCCAT	TTATCATTTC	TGAAAAGATA	ATGAGATTTG	GGTATATATA	AAGGTGCCAT	574320
AGGAAAGTCT	TTTTCTGCTA	TTATCTCTTC	AGCTTGTCTT	AAAATGTCTT	GTCTTTTTAT	574380
TGGATCAAGT	TCAAAATTAG	ATTTTTTTAT	TAAAGCATCA	TACTCTTTGT	TTGAATATTT	574440

GTACGCTCCT	AAAAAATGAT	TTTCTGTTGT	T AAATAAGCTO	TCTAAGAATG	TTAAGGGATC	574500
				TTTCCAGTTC		574560
•					ТТТТТТТААА	574620
				GAТАТТТАТ		
				AGTTTTTTG		574680
						574740
				AATTTTGGAG		574800
				GTTTCTCTGT		574860
				ATTGTTGTAT		574920
GTATGCCATT	CCGTTTTTTA	ACCCAGAATA	ATAATCATCT	СТТАТТТТАА	TTTCTTCTAA	574980
ATTATTCTTT	TCTGCTCCTT	GTAGAAAATC	GAGTTCACCG	TTTATGTACA	TATTGTAAGC	575040
CACGCTACCT	TCTGTTGGGT	AAAATATTAC	TTCATCAATT	TCTACATTTT	TTGCATTATA	575100
GTATTTTTCA	TTTTTTTCTA	TTACGATTTT	ATCGTTAATT	GATCTTTCTT	TAAGTTTGTA	575160
TGCGCCACTA	ACAACTATAT	TTTCAGGATT	TGTCCAATTT	TCTCCATATT	TTTCAACAAT	575220
ATGCATTGGA	ACTGGTATGT	ATGCTGAGTG	TGTTAGCATA	TCAGGAAAAT	AAGGCTTTGG	575280
AGATGTTAAT	GTTATCTCTA	AGGTTTTGCT	GTCAATAGCC	TTTATGCCAA	GCTCAGATTC	575340
AGGCACTGTC	TCATCGAAAT	ATTCTTGTGC	ATTTTTTTTT	GTAGATTTTA	TTAAATTAGC	575400
ATACATTGCA	GCTGTTTTTT	TATTTAAAAT	TCTTAGGTAT	GATTTTTTA	TCTCCTCGGC	575460
AGTAATGGCA	ACTCCATCGC	тссааастат	ATCTTCTCTT	AGGTTAAATG	TGTAAATAAT	575520
TCCATCTTCA	GAAATATTCC	AACTTTTTGC	AAGTCCTGGT	ТТАТАТТТТС	CAGTTTGAGA	575580
ATCTTTTACC	GCTAGGCCTA	AGAATAGGTT	TGTAATAATG	TTGCTACCGT	AAAGGTCTGT	575640
TGAGAGTTGA	GGATCAAGTG	ATGATGGCTC	GCTTAAGTTT	GATACTCTGA	AAACTATTTT	575700
TTCTTTTTTA	GCATTACTAA	TACATGCTAT	TAAAGAAAA	ATTATTAGCA	TTAAGGCTAT	575760
					GTTCTCATTC	
					AATTTTAAAT	
				GTCTTGTATT		575940
				GTTTTTAGTA		
ATTGTTGCAA						576000
						576060
ATGTTTTCAA						576120
TTTTGTCTTT	AGTAAATAAA	АТААТАТААС	TAATGGTTAG	GTGGCAACAT .	AGAATGCTTT	576180

S98/12764

AAAGGGTGCT	GGTTTTATGT	TTGTACAAAA	483 TGAAAGTTTT	GATAAATATT	TTAAAGACAT	576240
GGAAAGCGAC	TTTGTAAGTC	AATTTAAGTC	TGTTGAAAAT	GTTAATTATT	TGGATAAGTC	576300
TTATCGAAAT	GCAGATTCTA	AGAGTAGAAG	ATTGGCAGAT	AGAATGATAG	AGAGACTTCT	576360
TGAGAGTGGA	TCTACCATTG	TTGGCATACA	AAATATTTTA	GAACTTTACC	AAAAGACTAA	576420
ATCTGGCAAG	TCTTCAATTA	TATTAATGGA	GCATTATAGT	AATTTTGATT	TTCCTTGTTT	576480
ССААТТТТТА	CTTTACAAAA	TGGGTTATCA	TGATATTGCA	GATCATATTA	TTCCAATAGC	576540
TGGAGTTAAG	CTTTTCAGAG	ATAATTTATT	TGTTAAGACC	CTTTCTTTGG	GATACAATGC	576600
AATATTAGTG	TATCCACCGC	ACGCATTTGT	TGGGGTTGGT	TTAGAACATG	CTAGGCAAAG	576660
GCGTGTTTTT	AATACTAATT	CTATGAAGTA	TATTTATGAA	AAGAAAAATA	GTGGGTACAT	576720
TATACTTATT	TTTCCTACTG	CTACTAGGTA	TAGAAAAGGA	AGACCTGAAA	САААААААТ	576780
AATTTTAGAA	ATTGGCAATT	ATTTTAAAAT	TTTTGATTAT	TATTTGATGA	TTGGAGTCAA	576840
TGGAAATGTT	TTAGAAGTTT	CTGAGGATGG	AGATATGTCT	CACGATGTTT	TTAAAAGAGA	576900
TTCACTTATA	TATAATGCTG	ACAAAGTTAT	AAGTATTGCT	GAGTATAGGG	ATGAAATTTT	576960
AAACACCTTG	AAAGATTCTC	AGACAGAGAT	TACAAAGGAA	GTTTTGGGTT	TAAAAATTGC	577020
TGAAGATTTA	GAAAATCGCT	TTAATGTTCT	TCATGCAAAA	GGTCATGAAT	ТТТАТААААА	577080
AAGCTTTTTA	TAAGCTAGGA	ACTTGATTAC	AATATGCCTG	ATGTAGATAA	GATAATACAG	577140
TTTAAAAGAG	AAATATTAGA	TAATCTTTCT	AATGAAAGAT	TATCTAAAGA	ATCTTTTGGC	577200
TTAAGTATGG	ATGTTAAGCT	TCCCGAGCCT	GGAGAGAGTA	TTGTTCCTTG	GATAGGCGAA	577260
GATCTTGCTT	TAGATGAAAC	TGATGATGAA	CTTGATTTAA	ATTTTATGCT	TGATGCTCTT	577320
GAGAATGAGG	ATAAATTATC	CTATTCTGAC	ATTTTTAATG	ACAATTTGCC	TTTAAGTGGT	577380
TCTAACTTAA	GGGTTGATGT	GGATTCAGAG	CTTTCAACTT	TAAATAATGA	TTTTGACGTT	577440
TCTTCTAGCG	ATTCTTTTGA	АААТААТАТТ	GACAAAGTTC	TTGATGATAA	TTCTATTGAT	577500
TTAGAAATTG	CTTCTAAGCT	TGATTTTGAC	AATTTAATCA	ATTCCCCAGA	ATTAAGTTCT	577560
GAGGAGTTGA	ттаасаатса	AGGCAATAAT	AATTTTTTTG	AAGCCAATAA	TGATTCTTCT	577620
GTTTTAGGGG	ATAGTAATTT	TTTACAGTCT	AATGAATTTA	ATATTGATGA	TGCGGTAAAT	577680
GGCAAAAACC	AAACAGATGA	ACAATCAGAG	ATGTTTGTTG	GAGACAGTTT	AAATTTAAGT	577740
GCCGATGAGG	ATGATTTTGA	AAACGTTATA	GATGATTTTA	AATTTTTAGA	GTATGATCAA	577800
AATGCAAATT	TTAAACGTTT	TGAATTTAAG	GTTAATTATC	CATTATTTTT	AAAGCATTTA	577860
AATTCCTATC	CTAGAAATTT	AAGAATTGCA	ATTGCTGAGG	CTTTAACTAA	GGAAAATGTT	577920
TCAAGGTTTA .	AGCTTGAAGC	GCTAATTGAT	CTTGTTGAAA	AAAATAAAA	AAGGTTGAAA	577980

TTTATTGCTA	AATTTGTAGG	AGATATTGTT	GGGCGATCTA	TTAAATTGCC	TGTAATTTAT	578040
TTCAAGGCGG	AAGAATTTAG	CAAGCTTCAG	CAAAAATTGA	GCTACAGGGT	TTCAAGGGCT	578100
TTGCTACCTT	TGATAAAAAT	AGCCTCTTTT	TTTGTTGTTT	TAGTTTTAGT	TTCTTTGTAC	578160
CTTATAGTAG	ATGTAATATT	TTTTTATGTT	GCCTCTGAGA	GCAAGTATAA	AGAGGGCATA	578220
GAATCTATAT	ATGCAAATAA	AAGAGATCTT	GCCAAATCTA	TCTTTAGAGA	TGCTTACTAT	578280
ATTAGGCCTG	ATGATAAATG	GTTTATTAAT	TATGCTAAGG	CGTTTGAAGA	CGTTAGAGAT	578340
TTTGATAGTG	CTGAAGAGAA	GTATGAGGAA	TTGTTTACTA	TTGAGCCTTT	TTCTAAAAAT	578400
TCTACAAACA	GAAGACGAAA	AAAGTTTAAT	AAGGAAGGAT	ATATTTCGTA	TGCTTCCATG	578460
AAAATTGGTC	TTGGAGAGCA	CTCTGAGGCT	AATTCAATAC	TTGATGAGGT	TATATCTTAT	578520
GATCTTTACG	ATTATGATGC	TTTAGTATTA	AAGGGAGATA	ATTATTTTAA	ATGGGCTAAG	578580
ACAAATTCCA	ACTACTATAA	AGATAGTATT	AATAGCTATA	CGGTTGTGCT	ТТСТАААТАТ	578640
GGACAAAAA	AGGAAATTTT	ATTTAAGCTT	TTCAATGCTT	ATATTGAAGC	TAATTTAGAT	578700
ACCGAGTCTG	ATAATGTCAA	ТААТТТТАТТ	AAGTCAAATG	AAATTCTAGA	TATTGATGAA	578760
GTTGTTTACA	CAAAATATGC	TAAAAAGCTT	GTAGATAAGT	ATATTTCTTT	TGTGACTTAT	578820
AATCAAAGAG	CAAATAATCT	TGCTATAAAT	TTAAATTATC	TTAATGGACA	AACAAATTTA	578880
TTGAATAAGG	AATTTTCTGA	TTTTAAAAGA	AATGATGGCA	GAACTATTTT	TAAGCTTGAC	578940
AATAATGTTA	ATATGAATTC	AGAGATTGAA	TACATTCTCA	GAAAAATATT	TAAAAATAAA	579000
CCCAATTACG	ACAAGGCACT	TTTTGAAAGT	GGAAGATATT	CGTATTACAT	AGGAGATTTT	579060
AAGAAGGCCG	AAGTTTATTT	GCTTAAAGCA	TTAAATAGTT	TTAGGCATAA	AAATTCAATT	579120
GAAGATGCTG	GGGACAAGAT	ATTGGCTTAT	AAAATTTTAG	CAGACATTTA	TGAAAAAACT	579180
CGAGATTCTC	TTAGGGCTAG	TAATATTATT	GGTTTAGCCT	TGAGTGATTA	TTCTTTTTAT	579240
AAAAAACACA	ATCTTATAAA	AGGATCTAAG	GAGATTTCTT	CAATTTATGA	AAAGCAAGGC	579300
GATATTCTTA	GATCTTTAAA	TGACTTTAAG	TCTGCGATAT	CTTCTTACAA	ATTGGCAATA	579360
AATGAGGGCG	TTGATTATCC	AGATGTTTAC	TATAAAGTTG	GACTACTTAG	TTATAGAGAA	579420
AATAATTATG	ATGATGCATT	GAAATATTTA	TTTAAAGTAG	AGAGCATGGC	GGGGTTTTCA	579480
AGTAGTAACG	AAGTTTTAAA	TACTATTGCC	CTAACTCTTT	ATAAAATAGG	CGATTTTTTA	579540
GCTTCTAGGA	GCTATTATTT	AAGGGTTATG	CAAAATTTAG	AACTAGAGAA	GGCTAATGTT	579600
TTGAATTTTA	ACCCCAAAGA	AAATGATTAT	CATAAAACTC	ТТТТАТТААА	AGAAATTGAG	579660
АСТТАТААТА	ATCTTGGGGT	TGTAGAAGTG	ATGGCTTCTT	TTTCATCTAT	AAGAGATACT	579720

F VS98/12764

AAACTTTTTA	ATTCTGGAGT	TAGCAATTTA	AGCGAATCAG	CCAAGATTTT	TGATATATTA	579780
AATAGGGATG	AAGATATGGT	AAAAAGTGTT	AAAAAAGATC	TTGCTAGTTT	AAATCTCAGG	579840
AATATTTTTA	AGAATAGTTT	TTCTAAATCT	AATGTTTTAT	TTTATGAAAA	TTTATCCGAA	579900
AAACTTTAAT	TATAGATCTT	ATTCATTGTT	TTTGAGTTAT	TTATGAGGGT	GGTTTCCTTA	579960
TGAAGAAAAT	TTTTTTTTTT	CTTTTTATTA	GTTTTTATTT	GTTTGGATTT	GAAGATAGTT	580020
CTTTGAAAAT	AGGTATTGAT	GATGTTTATG	TTGAGGCTCA	TGAAGAGGGA	TTTCATCTTT	580080
TTATTAGAAA	AAAACCTGCA	ATCAAATCAG	TAATATTGAC	AGAGTCTTTT	GAAATTCCTG	580140
ATAAGAAAAA	AGATGTGGCT	ACTTATTCAT	TTCGTACATT	AAGTTATAAT	AAGGTTAATG	580200
GAGATGAAAT	TCGGATTTTA	AATGGAAGAG	TTATTAAGAA	TAAAGAACTT	TTATCATTGA	580260
CATCTTCCAC	CCCTGTTCCT	AATAAAAAGT	TTGGAGAAGC	ТТТТСАТАТА	TTGATTCCAA	580320
AAAATTAAA	ATATGGATTT	CCAAATTTTT	CAACAAGAAG	TGGTGATATT	GACTTAGAAG	580380
TATTAAAAAG	TAAAAAAGAG	CCCTTTTGGT	TTTCTATAAG	ATCTTTTGAG	AAAAAATATA	580440
ATGATTATTT	GGGCAGATAT	CAAGACAATG	CTTATGAATT	GCTTTTCAAG	GATGATCAAA	580500
ATCAGGGAAA	AATTGAATTT	AATGAATTAA	AAGATACTTT	TACAAAATTT	TCAGATGAGG	580560
TTGTTATTGC	TAATAATGGC	ATTGATATTG	TTGATAAAAT	AAACAAAATT	ттааааааст	580620
CAGAAGATTC	AGTTTATGAT	TTAGATTTAG	TGCTTGTTGT	TGATGTTACT	GATAGTATGA	580680
AAAGCAATAT	TGAGATTCTA	AAAGAGCATT	TGTTTTCAAT	AATAGAACCT	CAACTTCAAA	580740
AGTTTAAATC	CTACAGAATA	GGTCTTGTTT	TTTATAAAGA	CTATCTTGAA	GATTTTTAA	580800
CCAAAGCTTT	TGATTTTAAT	ACTATTCCTT	ATTTAAATAA	TATTCTTAAG	TATGTTAATG	580860
TTGGTGGCGG	TGGGGATTAT	CCAGAAGCTG	TTTTTGAGGG	GATTGATGCT	GCTGTGACCC	580920
AATTTGATTG	GCGGGCAGAA	AGAAGGTTTA	TTATTGTTAT	AGGAGATGCA	CCTCCTCATG	580980
AGTATCCAAG	AGGGTCTATT	GTTTATAAAG	ATGTTATCAA	TTCTGCAAAG	GAAAAAGATA	581040
TTACAATTTA	TGGAATAATA	TTTCAGTAAA	AATTTTTATT	TCTTAAATTA	TTATTTTTA	581100
TTATTTTCTA	TTTTATTTAA	TATTTTTTTA	GCTAAAGGCT	TAATCCATTT	AGGCATTTCC	581160
ATATTATTTC	CTATTAACTC	TTCAAAGATT	TTTTTTGCTT	TTTCTGTTTT	GTTTGTTGTA	581220
TAGTATATGA	ATGCAATTTC	ATATTTACCA	GTAGCAACTA	TATTTGAATT	GTGAGCGAAA	581280
TTTTGAATCA	TTTTTTCGTA	TGCTTTTAAA	GCCGAGTTAT	AATCATTGAC	ATTGACAGCT	581340
TTTTGAGCTT	CTCTAAGATA	AACTCCATAA	GGAGTTTCTT	TTGTTAATTT	TTCTAAGTTA	581400
ATCGTATAGC	AGGAAATAAA	TATTAAGTTT	AGTAATATTA	GCTTTTTCAT	TTCTGCCTCT	581460
TTTAGAATGT	TTTTATTATT	TAATTTTATT	AGATATAAAA	TAAGAAAGCA	AGGCTTTTTA	581520

AAGCCTTGCT	TTATGATTGT	TTTTGCTTAT	TTGGCAGGAA	ТТАТТАТСТТ	CCAGTTAGAA	581580
TGAATTAGAT	CCGGATTTTG	TATTTTTTGT	CTGTTGGCAA	ACCAAATTTT	TGGCCATAAG	581640
TAAGGATCGT	TGTATAATTT	TTTGGAAATG	CCCCATAGGG	TATTGCCTAT	TTTTATTACG	581700
TAAAGCTCGC	TGCTTGCATT	GCTTTGATAA	GCTTCAAGGT	ATCTTGCAGA	ТТСТАААААТ	581760
AATTCATTGG	CAAGTCTAAA	GTTTTTTACA	TTTTTAGCCT	CAACCCCTTT	TTCCCACAAT	581820
GTTCTAGATC	TTTCAATAAG	TTCTAGCGTT	TTGAATTGTT	CTTGAGGTTT	GGAGTTTTTT	581880
GCTATTTCCA	CTTTTTCTTC	GTATGCGAGT	ACTATTGGAA	TTGAAATTTC	TGCTTCTCCA	581940
AGAAGATAAG	TGTCTTTATT	AGTATTTAAA	AGGTTTAAGT	GACTGTTTCT	TTCTTTAATG	582000
AATGCTCTAC	CATTCCATGG	AGATGGCTTT	ATAAGCTTAT	TATTGCTATA	AATTGGTAAG	582060
TTGGAAGCCG	CTTCAAGTGC	TTTTAATTGT	TTGTACATTC	TCTCATCAGT	TTCTTTTAAA	582120
GCTTTAGCTT	CTTTGGCATT	TTTTGCTGCT	TGTTGTGCTC	TGTTAAAGGC	CTTGCTATAC	582180
ATGTCAAGGG	CATTATCAAG	ATCGTAATTT	TTATATTTTC	TTGTTGCTTC	АААТАТААА	582240
TTATTTACTT	CGTCGATTTC	CAGCGGGATC	CATATGTATG	CTTCATTTGC	TTCTGCATCG	582300
TTTAGATACT	TTTCAATATT	TTCTTTAAGG	TAATTTGTTT	TTTCTTTTT	TTCCCTCGTT	582360
TCTCTTATTA	TTGTTTTGTA	TCTTTCAAGT	ACTTTTAGAG	CAATTTCATT	TCCTTCTATT	582420
GCTTTTTTTT	TGGAAAAACT	TTGTTTCATT	GCTTCTTCTA	ATCTTTCAGC	TTCATTAAAC	582480
TCTTTGGAAT	AAAAAGATG	TCCCCGTTCT	CTTATTAGTT	CATTTTTAAT	GTCTTTTATA	582540
TCTCTTAATT	GAAAATTTTT	ATTATCTGGT	TGTGCAATTT	TAGCATTTTT	ACTCTCTCTT	582600
GATTCTGGAG	GCGTTTTGCA	TGCGATAAAA	GAGATTGCTA	CTACAATTAG	CAGCGATATT	582660
AATTTATTCT	TTATATTCAT	AAATACACCC	ТТСТААТААС	TTGGCTTCTA	TTAATCTTTA	582720
AAGTAAGAAC	СТАТАААТАТ	TAAAGTTCTT	ACTTTTACTA	TTTTTATTAG	TATAGCAATT	582780
ATAGTATGTC	ААТАААААСТ	TAATATTTT	AATTCTTAAA	ТТАААТТАТА	CTTCTTTTTC	582840
ATCATTGTTC	AAAGTGTAAT	AAATTTATGT	AAAACAAGGT	АТААТТАААТ	TTATGAGTTT	582900
TTCAAAGATT	AGGAGAACTA	TATTTTTAGA	ATATATCATT	TTATCCTTTT	AATATTGCTT	582960
TCAAGTAGAA	CTTTATTTTC	TCAAGTGGCA	GTTGTAAAAG	AAATAGAAGG	TAGAGTTAGT	583020
GTTGTTAGAA	ATACATTTCC	CGTTAAGTTA	GATTTAGATG	ACGAAATTTT	TGAATATGAT	583080
TTTATTGAGG	TTGGAGAAAA	TTCAAAGCTT	AAAATAAATT	TATATGAAAT	AAATGGTATT	583140
TCTGTAGATT	TAATTTTTTA	TTCCAATACA	AATAGTTTTG	TGTTTTATTC	ТТСТСТТААА	583200
GATTTGCAAG	ACGCAAAAAT	ATATTTATTT	AGAGGAAGTG	TTGATGCTAT	AATTCATAGC	583260

			487			
ATTGTTAAAG	GGTCTTCATT	TTCTGTTATA		ACCTGTTTAA	AGCCGAAAAT	583320
ACTTCAAAAT	TTTATGTCAA	TAGCGATTAT	TTTAATAATT	GTTTTATTAA	TGTTTACAAG	583380
GGTAGCATCA	GACATATTAA	TAAAACCGAA	TATTTAATTT	TTCCCAATAC	CAGTCTTTTG	583440
CTTTTTAATG	GAAATTCTTT	TTTACACAAA	GTTAATGAAG	GCACTTTAAA	GGGTGTTAAT	583500
СААААТТТТА	TAAGGATGGC	TAAAGATAAT	TTTATGTCTT	TAAATAAAAG	GTTTTTATAT	583560
TTTTTTGTTT	ТААААТАТАТ	TGAGGATAGT	TTTAGATTCA	ACTTTATGTA	TAATTATTTA	583620
ATGAAAGATT	ТТАААТТТАА	TTCTATATAT	TCAAAATGGA	GCCTGGAAGA	TAAAAATTAT	583680
AAATTTGGTA	ACAGGGTTGA	TATGATTAAA	AATGTTAATT	ATTTAAAGGG	TAGAATCGGA	583740
GTGCTTTTTA	ATAATTTTGT	TGATTTGGCT	AATAGGTTTT	ATTTTGTAGA	TGATGTTTTG	583800
AAATATTTT	CTACTTTTTT	TGACAATTCA	ACAACTGTTA	ACGGGCCCAT	TTCAAAATTT	583860
TTAAAAGATT	ACAAAGCTAA	ТАААААТСТТ	TTAAAAAATA	AGTTTTTTAA	AACAATCCAT	583920
TCTCTAAAGA	TGTATTTAAG	ACGCTCAAAT	GATGATATTA	CTAGTAATTT	AAATGTTAAT	583980
GAATTGTATT	TATTGCGCCC	TAGAGAGTTT	TGATTTTTAT	ATATTTAGCT	TTATGTTAAA	584040
GCTATTTGTT	AGATGGCATG	GTATATTCTT	TGAAAATTCA	AATTGAAGAA	GAAATTAACA	584100
TATTTGTTTT	TATCAGCTGT	TTGAAACTAT	TAATATCAGC	CATTTTAAAA	AAAATGAAAA	584160
ATTTTCAAGT	TTTATTATAT	TATTCAACGA	AATTTAAAAT	TCACATTCAT	AATTTGCTTA	584220
ATATTTTATT	AAATTTGGGT	TGAGAATTTT	TTGCCAAAAT	TTTATCGTAA	GGGGGAAAAA	584280
TGCGCTCTTC	AGTTGATCGG	ATAATTAATT	TTTTAATTAG	TTTTGGCGGT	TTTATTTTTT	584340
ATAGCTTGTT	ATTGATTTTT	TATTTAACTT	TTATGGCATT	AAAGTGAATT	TAATAATAAT	584400
TAATAAAAGG	ATGTTTTATT	TTTATGAGTA	AAAAGGTGTT	TTTTAAAGGG	TTTTGGATTT	584460
TATTTACGAT	ATTTCATTTA	TATTTATTTG	TTTATTTAAT	TTTTTTCAAG	AAGCGAAAGG	584520
TTGATATTTC	TAACAAAACC	AATATTGCTT	TATTTATTCC	CGGGGTTATT	TCAGGATCTC	584580
САТСТТАТАА	AGAAATGTAT	GATTCTTTGT	TTGAATTTAA	AAAAAATCAT	GAAAATCTTG	584640
AAATTAAAGT	TTTAGAAGCT	GGATTTAATC	AAAGCGAGTG	GATAGAAATG	CTTGAAAAAC	584700
TATTAACTTC	ТАТАААААА	GATTTTTTAA	TAACTACAAA	TAATGCTATG	CAAGATATTG	584760
TTGACAGTGT	TTCAAGTAAT	TATCCTTATA	CTAAGTTTCT	CATTTTTGAT	TCTTTGGTTA	584820
AAAATACCAA	CAAGCAGGTT	TATTCAGTTT	CTTATAATGT	AGCAGAAGAG	GCATATATTT	584880
TAGGATATTA	TGTAGGTCTT	TTTTTAAAGG	AATTTATTAA	ATCTGGCTTT	GGAAATGCTG	584940
CTTTGATTGC	AGGTCAAAAT	TATCCCGTTA	TGAATGATTA	TATTTATCGT	TATTTCAAGA	585000
AAGGCATTCT	TGATACTGGT	ATGAGATCTG	AAGTTTATTA	TCGAGTTTTG	GGCAATTGGC	585060

P	TGATAGCAA	TTTAGCTAAA	TTATTATCAG	ACTCTTTGAT	TAAGGATTCG	GGGGCTTTGG	585120
1	PAATACTTCC	TATTGTGGGG	CCTGCTGTTG	AAGGAGTGCT	TTCTTCTGTT	AGAGAGAATA	585180
F	TATCTCTGC	AGTTCTTTTT	GATAGCGAAG	ATTATTTGGA	TAATAAAGAA	AATATTATTG	585240
C	STTCAGGAAT	ТАСАААТСАА	AAATATTATG	TTTCACATAT	TTTAGATAAG	GCTCTTAAGT	585300
C	CAGAGATTAA	CTATGGAAAT	TCTGATATTT	TTGGCATAAA	ACATAAAGGA	GTTTTGTTTA	585360
P	ATGTTTCGAA	TGTTTTTAT	TTAGAGCGAA	CCAGTCAAAA	GTTAAAAGAA	GATCTTTTAA	585420
P	AAAAATAGA	AGAGGTTAGT	GCAAATGGTA	TAAAAATTAA	TTTGGAACAA	AATTAATGGT	585480
P	\GAGTTTAAA	AACATAGTTA	AGTATTTTCC	AGATATTGAC	AAGCCTATTT	TGGATAGTAT	585540
7	AAATTTAAA	ATTGGGGAAG	ТТААААТТТ	TACAGTAGTT	GGTAAAAATG	GAGAAGGAAA	585600
C	SAGCACTCTA	GCCAAGATTA	TTGCCGGACT	TATTGAATTT	GATGAGGGTG	AAATATTAGT	585660
7	AATGGCATT	AAGCAAAAAA	ATTGGAATGT	AGATAAAGCT	AAAAATAATG	GTATTTATCT	585720
7	PGTTTCTCAA	GTTCCTAATT	TGAAAATGAA	TTTAAGAGTA	TGGGAATATT	TGAGTATCTA	585780
7	TTGGTTTGGT	TATGAATTTT	TCATGCCGAT	GAATAAATCT	AAGACCTACA	AATATTATAG	585840
I	ATGGCTTATG	CAATTTTATA	AAATTTCTTT	TGATTTAGAT	AAGAAAATTA	AAGATTTAAA	585900
7	TATTAAAGAG	ATTTATTTT	TACTTATTAT	TGCTGCTCTT	AAAGAGAATG	САААААТААТ	585960
7	TATTTTTGAT	GAGAGTGCTG	CTTATTTTTC	TCAAAAAGAA	GCACAAGCTT	TTATAAAATT	586020
C	CTTGTATTG	CTTAAGAAAT	CGGGAGTTGC	GTCTCTTTTT	ATTACCCACA	GCGAGATTAC	586080
2	AGATGCTATA	AAATTTAGCG	ATGAGTTTAT	TATTTTAAAA	GATGGAAAGT	GTTTTAGAAC	586140
1	AGTAAACAAA	GAATCAATTT	TGAGCAAGCT	TGAATCCTCT	AGTGACAAAG	TATTTGTTGC	586200
2	TAATTATAAA	TGCAACAAAT	TTGAAAAAGA	ТССТАТТААА	TTTAATTTGT	TTTTTGAAGA	586260
7	FTTTTGGAAG	TATGATGTTA	GTTTTTCTTT	AAATAAAAGG	GGTGTTTTAG	GGATAATTGG	586320
(CGAAGAAGCT	GTAATTAAAA	CTTGGGAAAA	ATTATTCTTA	GGAGAGCTTC	TTTTTGTTGG	586380
(GTGCATAAAA	ATTGATGGCA	TTAGATATGA	GCGAATAAAT	ATTTTTGAGT	GTAAAGCGGG	586440
Ī	ATTTTTACCC	TTAGGTATTG	GTAATTTATT	CCCCGATAAT	AGCAGCATAT	TAGATAATTT	586500
,	PTTGGCCAAA	TTTATGAATT	TTGAAAATAA	AATTTTTATT	AGGCAATCTT	ACATTAATCA	586560
(GATTAAAGAT	TTTTTTAAAA	AAAAAATGGA	ATTTTATAGC	GAAGAGAAAA	TATATAGAAT	586620
,	rctttattca	AAATCTTTGG	CATTTTCTGG	AGGAACTTTG	AAGAAATTTG	CTCTTTACAG	586680
ž	AGAGATGTAT	ATTGCAAAAA	GTTTTTTAAT	TTGTTTTTCT	CCTTTGAGCA	ATTTAGATCA	586740
(CAAAGCTTAT	AATGAAATGT	CTGTTGCTAT	TCGTAATTAT	TCAAAAGAAA	AGCCAGTTCT	586800

		•	489			
					TGGCAATGAA	586860
					AATTAAAGGA	586920
ATTGCTATTT	TTATGATCTT	TTTTAGAAAT	AGCTTTATGG	CATTAATTTT	TTCTTTTCA	586980
ATATTAAGTA	TTAGCTATTT	TTTCGGTGAT	TTTTTTCAAT	TTTCTTATAT	TAAAATGATA	587040
TCTTGGCGCT	TTATTTTATT	TTTAATTATO	GCTACGGGGA	TTGCTACTTG	TGCCAAGAGT	587100
AATTCATTAA	ATCTTGGGAA	TGAAGGTCAG	ATTTATTTTG	GGGCATTTTT	AGTTTATATA	587160
TTTTCAAGTT	TTTTTGGATT	AACCTATTT	' AATTTTGTAT	TTTTGATACT	TTTAAGTTCT	587220
TTTTTTGTAG	GACTTTTGGG	GCTTATCCCC	ТТТТТТТТТТА	CTTTTTTCTT	CGGATTAAAT	587280
AAAGCCTTAA	CAGGTCTTTT	ААТАТСТТАТ	GGAAATCAAA	GATTGGTGGA	TGGATTTATT	587340
TTAAATATGT	TAAAAACAGG	TAGTTTTTCT	AATCAGACAA	AAAGGATTAA	TAGTTTGTTT	587400
GCTTTAGATT	CATCACTTAT	TTACTTGTTT	TTGCTTGGTG	TATCAGTTTG	GCTTTTTTAT	587460
GTTTTTATTC	ACAAAAAAAC	TATTTATGGT	CTTCAGCTTG	AAATATTAAG	СААТААААА	587520
AAGATAGACA	TTTTTTCAA	TATAAATGAA	TTTAAATATA	AGTTTTTCGC	TGTATTTGGC	587580
AGTGCTTTTT	TAAATGGTCT	TGCAGGTTCT	ATGTTTGTAG	TGTTTTTTAG	ACCATATTTG	587640
GTTTTAGGGC	TAACTTCAGG	ACTTGGTTGG	AGTAGTCTAA	TTGTTGCTGT	AATTTCAGGA	587700
TTTAATTATG	ТТТАТСТАТТ	ATTTTTAGC	TTATTGTTTT	СААТАТТААТ	TGAATTTAAT	587760
AATTTTCTTA	АТАТАААТТА	TGACTTTAAG	TATGAATTTA	TTGGGCTTTG	TCAATCAATT	587820
GCTATTTTTA	TCTCTTTATT	TTTGATTAAA	GCTAGGAAAA	AGTAGATGTT	TAGTATTTTT	587880
GAGCAGGCTA	TTGTATTTTC	GTATTTAGCA	CTTGGAGTTC	TTTATACAGA	GAAAATAGGA	587940
TTTTTAAATG	TATCTATTGA	AGGCATTTCG	TATCTTTCAA	TATTTTTAAC	ATCTTTTTC	588000
ATCTATTTGG	GATATGGAAT	TTTTATGTCA	ACCATTTTTA	CCCTTTTTAT	TAGTTTTTTG	588060
TTTGGATTTT	TTTTATCTTT	TGTAGTAAAA	AAAAATTATG	ATATTTTTAT	AGCAGGAATA	588120
GGTATTAATA	TTTTTTGTTA	TTTTTTTGTT	GAWTATTTAA	TGAAGAGTAA	TTTTAATTTT	588180
ATTCCTGGTT	ТТАСТТТААА	TTTATCTGGA	AATTTTGAGA	TTTTTGTTTT	TATTGCTGTT	588240
TTTTTCATTT '	ТТТТАТТТАТ	TACTGTTTAT	GTTATAAGTT	ATTCAAGAAT	TAGAGCAGTG	588300
TTTGAATTTA	TCTCTTCAGG	GAGTTATGAA	GACATTTTGG	GCGAGAAAAT	AAGCAGTCGT	588360
TTCAAATCTT !	PTGCAATTTT	TGTATCAATT	TTCACAGCAA	GTCTTGCTGG	СТСАТТТАТТ	588420
GCGGTAAGTC	PTAATGCTTA	СТСТТАТААТ	TTAGGATTAA	ACAATGGTTG	GCTTGCTATT	588480
TGCATTCTTT A	ATATTGCATT	TTCAAATCCT	TTATTAATTT	TTCCAATTTC	TTTTTTGATA	588540
GTTTTTTTG A	AATATCAATT	TTTTCGCACT	CAAGAGTATG	ТАААТТСТТА	TTTTTCTCTT	588600

TCTTTTCAAT	TTTATGTAGC	ААТААТААТА	AATATATTGG	TTTCGTTGAT	TAAGAGAAAA	588660
GATAGATCTT	AGTTTAAGTT	CTGCACGTTG	TGTTTTGAAT	TGTTTTTAGA	GTGCTGATTT	588720
GTAGATATAA	TTCTTCTAAT	TTTTTTCTAT	TAAAATGATA	GAAGGGTATT	TGTTTTATTA	588780
TTTCTAAATT	ATTTAAAAAA	АТТАТАААСА	ATGTGTCGTC	ATTGAGTGCT	AATTGAAACG	588840
TTGAAGATAA	TATTGCATTG	AATGCTGCAT	TTTCATTGTT	TGTAAAATGA	TAAATACTTT	588900
TTTTAAAAAG	GGCATCAATT	GCTATAAATA	TGTTTTCTCT	GAACAATTCT	TTACCGCTTT	588960
GGAAAAATTT	AATTATATAG	TCCATTGAAT	TTTTAACTTC	TCCTATTAAA	AAGTATGCCC	589020
AAGAGATATC	TAAAAAGTTC	TTTTTATCTT	TAAAGTCTAT	TATTTTTAAG	TAATCTTGAG	589080
ATTTAATAAT	TGCTTTTTTC	CAGTTTTTAT	TTAAATATTC	TAATTCTGAG	AGCAAAAGAT	589140
GAGCATCAGC	TTGATTTTGA	TCCATGTTAA	TTATTTTTGT	TAGACTTTCT	ATTGCTTTAT	589200
TATATTTTTT	TGAATCTTTT	AGTAACATTG	ATTTTTGGTA	AAGTTTTTCT	ATTGTATGTk	589260
TGTTTGCTTT	TTTATTAAGT	TTTAATATTG	ATGTTGTTGT	AGTAGGGCAA	ACATTTATTA	589320
TCAAGCCATA	GAAAAGTATC	ATTATTGTTA	TTTTTCTCAT	TATATTCCTT	CTTTTATTTG	589380
CTCAATAGTA	TCTATTAGTA	GATTTTTATA	TCTATTTGTT	AGTGGGTATA	AATTGAGTTC	589440
GTTTTTAAAC	TCGTTTAAGT	ATTTTAAGGC	AACAATAGTT	GAATTTTTTA	TTGATTTTGA	589500
TGAGTTTATC	ATTTCTGTTa	GTTTAAATAT	TTCTTTTCTT	GCTTTGGTAG	TTTTGGTATT	589560
TTTTATTTGA	TTGAATTTTG	AAATAATTTT	TGGTTCAAAC	тттттттстт	GTAAAAAATA	589620
AATTATTGGC	AAACTTTTTT	TCCCTTCGAG	TAAATCATCT	CCGAATTCTT	TACCATTAAT	589680
TTTATTTTTA	ATGTTTTTAA	TATCGTCTAT	TATTTGGAAA	TAAACACCAA	GCTTTAAAAA	589740
TGTACTGTAA	ATTTTTTAG	CTTTGTCTTC	ATTATTTGTG	AGTATTGCAG	CTAGAAAGCT	589800
GGCCATTCCA	AAAAGTGAAG	CTGTTTTTAA	ТТСТАСТААА	GAGATGTATT	СТТТААТАСТ	589860
TGGGATGTAT	GACTCATTGT	GAAATTTAAT	ATCAATTCCT	TGTCCTAGGT	GGAGATTTGA	589920
AAGAGTTGTA	AAGAAATTTT	САТАААТТАА	TAATTTTTGA	TTTTCTTTTA	AATTTGATTT	589980
TTCTATTAAT	TTTGCAGGTA	АААААТАААТ	TAAATTGCCA	GCATTTATAC	TGTTATCTAT	590040
TCCATAGATT	AAATGTATTG	CTGATGCACC	GCGTCTTTTT	AGTGAATTGT	CTTCAATGTC	590100
ATCAATAATC	AAGCTTCCAG	AATGAGGAAG	TTCAAGCAGC	AAGCTTAATT	TATATATTAG	590160
TTTGGTATTT	TTTTCTTTTA	AACCCAATGC	ATATGCTAAA	AGAATCATTA	TCATTGGTCT	590220
TATTCGTTTT	CCGCCCCTAT	TAACAATTTC	AATTGCTGGT	GCTTTAATAT	AATCAAGGGT	590280
TTCCTTTTTT	ATTTTAAAAG	TAAATTTTAA	ATCGTTATCT	TTGAATAAAT	TTAGAAAATT	590340

P \$98/12764

AGTTGTTGAA AAGATTTTAT TAATATTTTT TTCAATATTT TTTAAAAATA GTTTATTTTG 590400 CATAATAAGA ATTATAATGA AAAAGTATAA TAAAGTGTAT TAAAGGGATT GATGTGTATC 590460 GCTTGGATGA TGAATATTCT AAAAAAGCCA AAAGAGAAGG ATATTTGGCA AGGTCTGTAT 590520 ATAAGTTGAT AGAAATTAAT GAAAAATTTT CTTTATTTTC TTCTGGCAAT GTTTTAGATA 590580 TTGGCGCATC ACCTGGCAGC TTTTCTCAGT ATGCTTATAA AAAGCTTAAA AGAGGAATTC 590640 TAGTATCTGT TGATATTAAT GATATTGGCC TTAGATATGA TGATAATTTT TATTTTATAA 590700 AGGGAGATAT CTTTTTAGAT GATACAGTTT TTAAAATTAA TACGTTTAAA CCTTATAGTC 590760 590820 TTGTAATTAG TGATGTGGCT CCCAAGACTA CTGGAAATAG ACTTGTAGAT ACCAGCAATT CTTTTAATTT AAGCATGAGA ATAATAGATT TATCACTTGA AGTTTTACTT AAAAAAGGGA 590880 ATTTACTTGT TAAAGTTTTT CAGGGAGGAG ACGAGATGCA AATTTTTAAA AAGTTTGAAA 590940 AATATTTAA ATTTGTAAAA AAAATTAGAC CCAAAGCTGT AAGGAAAAAT TCTTTTGAAA 591000 TTTATTTTT AGGCAAAAGT TTTGGCAAGT AGCAAATTAA TCAAATTGTT ATAAACAGAT 591060 TTAAAGGTAT AAAATATGTT TAGAAAAGAA AGTTCTAAAG ACAGCAGATC ACAGCTTCAA 591120 GTTGCAGGTT TTAAAATAGG AAAAGAAAGC TATGGGGTGT CAATAGAGCA CATTAGAGAA 591180 ATTATTAAAG TTCCATCAGA AGGAGTTTAT GCTATACCAA ATGTTCCCGA ATATATTATA 591240 GGTATTTATA ATCTTAGAGG CAGTATTATT CCTTTAATTA ATTTAAATAT TAAATTTGGA 591300 591360 GTTCCTTCTA TTTCGGTAAC AGAAGAAGAC ATGCTTTTAA CAGGATACTT AATAGTTAAG ATTAAAAATA AGCTTTTAGG CATTTTTGTT GATAGAGTTC TTAAAGTTAT TAGCTTTGAT 591420 GATTCTAGGG TTCAAGAACC TCCCGCTACT TTACAAACTT TAGATAGAAA ATATATATCT 591480 GGAGTTGTAA AGCTTGACGA GGCTGATAAT CTTGAGAGTG AATACTTAGT ATTAATTGAT 591540 ATAGCAAAAA TTTTTGATAA ATGCGAATTT GACGACATTC CCTATAAAGA TCAATATGAA 591600 GAATAAAGTT CTTCTTTGCA TTAATACTTT AAAGTCGGGA GCTAGTATTT TAGGCAATGA 591660 TGTTAAAGTT TATTTAGAAA CCAAGTATTT TGTTGAAGTA GTGTTAATAG ATGTTGGCAG 591720 591780 CACAGTTCTT TTGGCTGTTA ATTTGCTTCT TGAAAATGAA AACATTGATA TTCCAATTAT 591840 TTCAATTAAT ATGGGCAATG TGGGATTTTT AGCAGATATT AAGATTGAAG ATTTTAAAAA 591900 AGTCATAGAT AGATTTTTTA ACAATTCTTT GGTTATTAAT AAAAAATTTT TGCTTCATGT 591960 592020 AACAGTTTCT CAACACGGTA AAGATTTAAT TTCTAAATAT GCTTTAAACG ATATTATTAT TCGCTCAAGC GTTCTTAATA AAATGATTTA TGTAGATCTT ATGGTTAATT CTGAGAGTTT 592080 TTTATCATAC AAAAGTGATG GGATAATTGT GTCTACTCCA ACAGGCTCAA CAGGATATTC 592140

593880

TTTCTCAGCA GGGGGTCCTA TTTTAGAAGC AGATCTTGAG GGATTTTYAC TTACGCCTAT 592200 TTCTCCACAT TCTGTTTATA ATCGTTCTTT TGTGTTCTCT AAATTAAGTA AACTTTCCAT 592260 TTCTTTTCA AAGGAATATT TTATAGCAGC AGCATCAATT TTTTTAGATG GAATTAATTT 592320 TGGTTCTTTC GGAGTTGACG TTGTTTTTGA ATTTAAAATT TCTTCTCAAA GCTTGAATTT 592380 TGTTTCATTT TGTACGGATA CTTTTGTTAA GAGATTAAAA AACAAATTAT TGTAAGTTCA 592440 ATGTTTTTT AAACAGTGTT CTTTTTAATA AAAATTTTTC TTGGTTGTTG TTTGAATGTT 592500 TGGTTTAATC TAATCTTTAA TAAGGTTAGA GGATTTTACA TGTTTTATTA TAAGGATTTT 592560 AATGTTTTGT TTATTCGCAG AGTTAATGTT TAAAGGGTGT TTTTTTATAAA TTTATAACTT 592620 GTTAAAATAT TTAATATAT TTTTGCTAAA ATCAATATAT TAGATAGCTG ATAAATCACC 592680 CTTTTATGAG TTTTAGGCAG GTGTTTATGG ATTTAATTGA TAATGAAAAAT TATAAAAAAA 592740 TAGTGTACAT TAATAATCTT GTTTTAAGGA CTTTAAATGA TATAGCAGCT ATAAAAGAGA 592800 CTGGCGAATT TACATCAAAT GCTAAACTTT CATTTAATCT TATTGATTTC AATTTAAATG 592860 TTTTAAGTTA TATTTCTTCT TTAAATTATT TTTATACTAG GCCTAGATTG AAAGTAAATT 592920 592980 TTCTTAGTAT TACTCCAAGA GAGTTGATTG AAATGCCTCA GGCTCTTAAT TTAAATCCAG 593040 AAGAGAGGTT TTTAATTATT AAAAAATTAG GTTATTTAAT TGATTTGGCT AAAATTTTTA 593100 GCAAAAAGA TTCTAAAACA CTTGTTTTC TTGAGGATAT GTATCTCAAA TTTATTGTTT 593160 TTTCTAAAAA TATTATTGAT TTTAGAGATT TTTCTAAGAA TTTAAAAACTT GAGAGTCCTT 593220 ATTATAAATT TCAATTTGAA CACCTTATTA AAGTGTTGGA GCTTTTAGAA GAAGGAGCTT 593280 TTATTTTAAG GGGCAAATAT GAGATTAGTG GATCTCATGA ATTTGGACTG CATTCTCTTG 593340 GTTATCTTGA AGCTGGAAGA GCTTTGGCTA CTATAGCCTC TCAAAAAGAA GCTGCTGAAA 593400 AATTTTCAAG GTTTCATGGA GTTTGGTCTT CAAAGTTTAG TTCAGATTTA ATTAAAGTAA 593460 AATAGATAAA TTAAGGTGGG GAGAAAGTAG TTATATTGAG TTTTAATGTA GAAGAGGGCA 593520 CTATTAAATT CAAAAAATTA AAATTTTTTT TGATTCTAAG CTTGTTTTTA TTATTATAA 593580 TTTTGATTGA TTTTTTTATA AGATCTACTA TGAATGTATC TAATTTTTAT GATTTTAAGA 593640 ATTTTGAAAA TAAATCTGAT TGTAAAAATA TAAATTTAAG TAAGAATGTT TTTGTATCAA 593700 ATAAGGTTTT AAGTCTTAAT TTCGGGGAAT CTTGTTATTC TCTTTTAAGT GATAACTTAA 593760 TAAGTTATTC AGACTATTAT TATGTGCTTT TTAATTCCGG CGAAGATTAT TCTGTTTTTT 593820 CTGTTAAAAA CAATAAATTT TTATTTACAC TCAAGCTAAA GGATTTTGTT TTTGCAATAA

• • • • • • • • • • • • • • • • • • • •		
493 АТААТТТААТ ТТТТАСТТТА ААТААТТТАТ АТААААСТТТ AGAAGTTTAT	GATTCTAGCG	593940
GAAATAATAT ACTAATGCTC AATTTTTTGT CCTCAATTTT AAGTGTGGAC		594000
AAGTTTTGGT TTTGGGACTT TCTAATGGTG AGATTTATAT ATATAAACAG	GGTAAGATAA	594060
TTTATATGGA AAATTTTTTA GAGAGAAAAT TTCCAACATG TTTTGTTAAA	TTAAGCTCCG	594120
ATAATAAATA TTTGGTTTCA CTAAAAGGCA GTTCTGAGTA TTTTTTAGAA	ATAATTGATT	594180
TAGAGAATAA TTATAAAAAA ATTTTAGAAT TAAACAATTT AACCATTAAT	AGTTTTGAGA	594240
CTTTTATAAA AATAGATGAT TATCATAATT TGTTTATTGA AGGCAAAAAT	TCACTTGCGG	594300
TGATAAATAT TAAAAGTGGT AGAATATTTA AGGTTGAAAA TAAAAATTCT	ATTTTAAGAG	594360
CGTCATATGA TTATTTTCAA AATATTTATA GAGTATATTT TTATTCTGAG	AGTGAAAAA	594420
TCATTAATAT AAAAACTTAT TCTGCAAATT CTTTTAAATT GTTTGATAAT	ATTTTTATTA	594480
AAGATGAAAT AAGCTCTTTT GTTGAATTTG GAAAGGGACT TTTGTATTTT	AATAGTAATA	594540
ATGATTTAAA ATACTTGGGA TTGGCTCAGT GATTTTAATT GTTTTTATAT	ТТТТСТТТАА	594600
TATTTTAGAT TTATATTCAT TTTTGGAATT TAGAAATGAT GAAAAGTTTG	CTTTAGTTAA	594660
AGATTTTGGT GTGTTGGATA ATAATAAGTT GAATATTAGC CTAAGGTTAA	GGCCCTTGGA	594720
AAAAACCGTA TCTGTTTTTT CCAATAATTA TAAAATTTTA TATTCAAAAA	ATAGTTTAAA	594780
TAGGGATGGT AGTATTTTAA TTATTTTTGA TAATGATTTA AATCTAAATT		594840
TGGGGGATTT CTTTATAAGC TTGGAAAAAT TTTTTTAAAA GATGAAAAGA		594900
TTTGGTAGTT AATGATCCTA GTGCTAAAAA AATTATCAAT CCTTTGTTTA		594960
TAGGAACAAT GTGGTTGCTG AGACAGTTTA TACATTGGGT AGGGTTTTTT		595020
GGGCGATGAT GAAAGATTGG AATTATCCAA AAATATAAAT TTAAATGTAG		595080
ATACAGTCTT TTGTTGTATT TTCATACTCA AAAAGTAGAA TCTTTTGAAA		595140
AGGAATTTAT TATTTTGAAG CTATTTTGAA TAATAAAAGT ATTCTTCGTT (595200
AAATATTTTT TTGATTAATG ATACACATAC TTTAGCCCAA GAGAAAAATT A		595260
TATTTTGAAC ATTAAAAAAG ATGGGGGATG TCTTAAGATA AATGATCTTA A		595320
GGGTAAGAAT GAGCTTAAAA TAAAATATGG CGATGTTTAT GGAAATGAAA A		595380
TTATAGGTTT AAATTAAATG AATAATAATG CTTTTCATTT TCCAGTACTT C		595440
TTTGTAAGCT TATAGAAGAT TTGCCCGTAA AAAGTGACTT AATATACATT G		595500
TTGGAGAAGG TGTTCATGCA AAGGCTATTC TTGAGAAATA TGACTTTTTA A		595560
GAATTGAAAG AGATCCTCAA ATTTTAGAAA GAGCAAGGCA GTTTCTTTCT A		595620
AGAGAATTAC ATATTTTAAT GATTGGTTTG ATAATTTTTT CGTCAATTAT C	CTTTAAATG	595680

TICANA CICANA TITOTA TOTAL	
TCAAAGCCAA TTTTATTTTA GTTGATCTTG GTATTTCTAT GTTTCATTAC AAGGGTAGTA	
AAAAAGGATT TTCTTTCTT GAAGATGAGC CTTTAGATAT GAGGCTTTGT TCTTCTTCTT	_ -
GCAAAATTAG TGCGGCTGAG ATTGTAAACA CTTATAGTAA ATATGACCTT GAAGCTTTAA	595860
TTTATGATTT AAGTAATGAA CATTATTCTA GAAGAATTTC TAAGGCTATT GTAGAATATA	595920
GAAAAATTAA AAAAATAGAA ACCACAAAAG AGTTGCAATC CATAATAAGC AAAGTTTATC	595980
CTTTTTCAAA AGTTAAAATA AATCCAGCTA CAAAAACTTT TCAAGCGTTA AGAATTTATG	596040
TAAATGATGA GCTTGCTCGG CTTAAAAGGA GCTTGCCTTT TTGGGTAGAA AATTTAGCTA	596100
AAGATGGAAT TTTAGCTATT ATTACGTTTC ATTCAATAGA GGACCGTATT GTAAAAGATT	596160
TTTTTAGAAG CTTGAGCTGT GATTTGTATG CTAAGATCTC AAAAAAGCCC ATTATGCCAA	596220
GTTTTGATGA GATTAAAAA AACAAACCTT CAAGGAGTGC AAAACTTAGA GTTGTAAAAA	596280
AATTATGAAC AGCATAAGTA AGATTGAATT TAAAGTTTAT TGTATTTTAG TTTTGATACT	596340
AACAGTTATA TTGTGTTTTA ATATTTATTT AAATTTCAGA TATGTTGTAA AGCTTAGGGA	596400
ATTTAATCAC TTAGACAATG AACAGGAAAA TATTATTGAT GATAATTTAA GGTTACTGAC	596460
GGTAATATAT GAGCTTGAAA ATATTGATAG AATAGAGAGT TTTTGTTTTG	596520
TTTGGAAAAA AAAGCTAATG AAGATATAAA TATTTTTGTT GAGTAAAAGA TTTTAGAATG	596580
AGGTTTGAGT GCGTATAAAG ATTAAGGATA TTTTAATCTC TTCTAAAGAT GTGAAATTTG	596640
TGGGGAATAT AAAAAATATT GAAAGAGTAG TGTCTTTTTA TTCGTTAGAT AGTCGCGAAA	596700
TAAAGGATGA CAATATCAAT GATAGTCTTT ATTTTGCGTA TAAGGGAAAT AAAGTAGATG	596760
GATTTTCTTT TGTTAAATAT TTAATTGATC TGGGTGTTAA ATGTTTTGCA TGCTCAAGAG	596820
AGCATGAATC TGAGTGTATT AAATATTTAA ATGACAATGA AGGGTTGGTT TTTTTGCTTA	596880
CAAGCAATGT AATAAAACTT CTTCAAGCTT TGGCATCGTT TTTAATTGAA AAAACAAGCT	596940
TTAAAAGAAT TGCTATTACG GGTAGCAATG GCAAAACTAC AACTAAAGAG ATGCTTTACA	597000
GTATACTTTC AAAGAAATAC AAAACTTACA AAACTTGGGG TAATTTAAAT TCTGATATTG	597060
GACTTCCTCT TAGTATTTTA AGGGTAGAGG GTAATGAAGA ATATGCTGTT TTTGAAGTTG	597120
GAGTTAGTTA TGTTGGAGAA ATGGATCTTT TATCTCAAAT TTTAAAACCA GAAATTGTTA	597180
TTATTACGAA TATAAGTTAT GCGCATATGC AAGCCTTCAA GGAGTTGCAA GCTATTGCTT	597240
TTGAAAAAAG CAAAATAATT GGCAAAAACA TTGAAATCTT TGTTGTAAAT GAAATGAATG	597300
ATTATTGTGT TTATCTTGAA AAAAGAGCAA AAATCGCAAA TCCAAATGTT AAAATCGTTT	597360
ATTTTGATTT TGAAAATCTT AGTATTAAGT CATTTTCTTT TTTGGATGGG AAATTTTCTT	597420

495	
TTGATTTTGT TTACAAAGGG TTTGAATACT CTATTTTATT GCTGGGTCGG CATAATATTT	597480
TTAATGCAAT AGGGTGTATT AATTTGGCTT TATTTTTAGG AATGAGAGAA AAAGAAATAA	597540
AAGAGGCCT TATTGAAACT GCTTTTCAAA AGGGTAGAGC AGAAATTTTG ACAAAAAATG	597600
GATATTTGAT TTTAAACGAC TCTTATAATG GCAATATGGG TTCTTTTATG GCCTTAAAAA	597660
ATATGATTTT AGATCTTAAT ATCCAAAACA AAAAGTTTAT AGTTCTTGGG TCTTTTAAAG	597720
AGCTTGGGGA ATTGGCATAC AAAACTCACA AAGATTTAAT TCAAGAGGCT ATTTCAATGA	597780
ATTTTGATAA AATTTTTCTA ATTGGCGAAG AATTTTTAGA TGTTAGGGAT TCTGAGAATT	597840
TAGTTGAAAA GTGTTTATAT TACTTTAGCG AGTTTGATAA ATTTATTGAT TTTTTTTTAA	597900
AAAGCTTGGA ACCTTCAGTT TTTATTGTCA TTAAGGGCTC AAGGTTTAAC AGGCTTGAGA	597960
GAATTTTAAA TATATTTAGA TGATAGTGGG GTTTTTATGT TTTACCTTTT AGGTTTGCGT	598020
TTGCTCAAAT ATATTACCTT TAGAATGGCT TATGCTACAA TTTTTGCATT TTTACTTTCT	598080
TTGATTGTGG GCCCTTATAT TATTTTAAAG TTAAAAAAAT TAAGAGCTGA TCAGATTTTA	598140
AGAGAAGATG GCCCTAAAAG ACATTTAAGT GAAAAAGCAG GAATTCCTAC CATGGGGGGC	598200
ATTCTTATTT TTTTTTGTGT TTTTATCTCT TTAGTATTTT GGAGCAACAT TTTAAATGTT	598260
TATTTTTTGA TTATGGTTTT TGTTATGCTG GGATTTGCTT TTTTGGGCTT TATAGATGAT	598320
TTTTTAAAAA TTAAAAAGAA AACCTCAGAT GGACTTAAAG CTCGATTTAA GATTTATGGA	598380
CAAATAATAT TTTCCTTTTT TTCTGTTGGC ATTTTATATT ATTTTGGTGG TGAGCATGTT	598440
AGTGTAATCT ATTTTCCTTT TATTAAGTCT TTTCAAATAG ATTTGGGGTT ATTTTACATT	598500
CCTTTTGGCA TGTTTATTTT AATTTCTGCT TCTAATTCTT TCAATCTAAC AGATGGGCTT	598560
GATGGACTTG CAATTGGATT GAGTATAGTT ATAACAGGGG CTTTAATAAT AATAGCTTAC	598620
CTTACAAGTA GGGCTGATTT TGCAGCTTAT TTACATATTC CAAATATTAA AGGTTCTGAA	598680
	598740
GCCTATCCTG CTAAAATTAT GATGGGAGAT ACAGGTAGTC TGGCTTTGGG GGCCATTCTT	598800
GGAATGGCAG CTTTGATTTT AAAAAGTGAA ATACTTTTTT CAATTCTTGC GGGTGTTTTT	598860
ATTATTGAAA CTATGTCTGT AATTATTCAA GTTTTGGTTT ACAAAAAAAC TAAAAAAAGA	598920
GTATTTAAAA TGGCTCCACT TCATCATCAT TTTGAAGAAC TTGGGTGGTC TGAAATGCAA	598980
	599040
	599100
	599160
AGCTTAGAAT TGACAGGTAA TCCAAATTTT TTATTTTTCA CAAGACTTAA TTATCTTTTT	599220

TTAAGTTTTA TGGTTTTTCT TGTTTTTGAA AGGATTTCTT TAAATTTTTT AA	AAAAATCA	599280
ATATTTCCTG TATTGATTAT AACTCTTTTT TTAATTATGG CAACTTTTTT AT	'CTCCAAGT	599340
ATTTCTGGAG CAAAGAGATG GATATTCTTT CAAGGTGTTA GCATTCAACC TT	'CTGAGATT	599400
TTTAAAATAT CTTTTACTAT TTATCTTTCA GCTTATTTGA GCAAGTTTGA CC	CAAGAAAA	599460
AACAATGGTA TTTCATACTG GATAAAGCCA ATGTTGATTT TTGCAATTTT TT	GGGTGTTA	599520
ATAATTTTGC AAAACGATTA TTCAACAGCT ATTTATTTTG CCATTCTTTT TT	TTATTGTT	599580
TTGTTTGTTT CTAATATGGC ATTTAGCTAT GTTTTTGCTA TTGTGGTTAC TT	TTTTACCA	599640
GTTTCTGCTA TATTCTTGAT GCTTGAACCT TATAGGGTTT CTAGAATTTT TG	CCTTTCTC	599700
AATCCTTACG ATGATCCTTC TGGCAAAGGT TACCAGATAA TAGCATCTCT TA	ATGCTTTA	599760
AAAAGTGGAG GAATTTTAGG TAAAGGGCTG GGAATGGGAG AGGTAAAACT TGG	ЗААААТТА	599820
CCAGAGGCCA ATTCGGATTT TATTTTTCA GTTCTTGGAG AAGAATTAGG ATT	ltttaggg	599880
GTTTTGTTTG CTATAAGCTT GTTTTTTTTG TTTTTTTACT TTGGTTATTT TAT	PAGCTATT	599940
CATTCTAATA GTAGGTTTAA ATTTTTTATT GCATTTATTT CAAGTCTTGC AAT	TTTTCTT	600000
CAAAGCATGA TGAATATTTT AATTGCAATC GGTCTTTTGC CTCCTACAGG GAT	ATTTAAA	600060
CCATTTTTTT CATCTGGGGG ATCTTCTATT ATTGTTACCA TGGCATTGTC TGG	CCTTATT	600120
TCAAATGTTT CAAAAAATTT AAGTAATAAT TGATTAGATT TTTCTAGTAG TGI	'AAATTGA	600180
GTTAGGTTAT GATTTTTGAG AGAAAATTTT TAATTAAGTA TATATATTTC TTG	ACGTCTT	600240
TAATTTTTTT TGAAATAATA ATTATTATTT TTGCATCTCC TTATTTTTTG ATT	'AGGTATA	600300
TTAGTATCAA TAATGATATT TCTCTTTCTA AAGAGGATAT AATCAAGATT TCA	.GGAATCA	600360
AGCCCAATAC GTATTATCAT AATGCTAATG TTAGAATATA TGAGGAGAAT CTT	AAAAAAG	600420
ATTTAAGGGT AAAGAATGTT AAAGTTGATC TTAAGTTTCC CAATAAAATT AAT	ATTAAAA	600480
TAGAAAAAG AATACCGATT GCTGTTGCTT TAGAAAACGT AAATGGTAAT ATT.	ACTTATT	600540
ATTGTATTGC ATCAGATGGT GTAATTTTGG AAAAAAGTAA GCATTTAATT TATG	GATTTGC (600600
CCGTAATTAG CGGATTAGTT TTGAATGACA ACAATGTAGG AGATTTTCTA GAG	GATAGAA (600660
TGCTTAATAT TGTAAGAGGC CTTGATTATC TTAAAATAAA TCAAAAATAT TTG	TATAATT 6	600720
TAATATCAGA GGTCAATTTT TTAAAATTGA ATTTCTATGA TTATAATGTA ATT	ITGTATA 6	600780
TTAAAAGTAT ATATAATAAA ATATTGATAA CAGTTGATAT GAATTTAATG GATG	GTGATGC 6	500840
ATAAAGTGTT TCTTGCGGTT AATTTGCTTA AAGGAAAACC CGGCGTTATA GATT	TTAAGAA (500900
GTGGTGATAT CATTTTGTTA GGAGAAAGTT AGTGTCTAGG AATTTGATAG TAGG	FTTAGA 6	500960

TGTTGGAACT TCAAA	AATTT GTACTGTTG	T TGCCGAGGTC	AATTTAAATG	ATCAATTAGA	601020
AATAGTTGGA ATAGG	CACTA GTATATCAA	G AGGAGTTAGG	AAGGGAGTTT	ТААТАААТАТ	601080
TGAGGCGGCT CTTGA	ГТСАА ТАТСТААТТ	C TATTGAGGCT	GCAGAGCTCA	TCTCAGGATG	601140
TGACATTACA TCACT	TTCAG TTTCTATGT	C TGGAAGTAG1	GTTGAGGGGA	CTAATTCACG	601200
CGGTGTTGTT GCAATA	AAATT CAAAAACAA	G AGAGATTAAC	GAAGAAGATG	TTGAAAGGGT	601260
AATCGAAGCG GCAAAC	GCAA TTGTTATTC	C AATGGATAGA	GAAATTCTTC	ATGTTATTCC	601320
TCAAGAATTT ATTGTA	AGATG GAATACCCC	TAAAAATAT A	CCAATAGATA	TGATGGGTAT	601380
TCGTCTTGAA GGAGAC	GGTGC ACATTATTA	C GGGCTCTAGT	TCTTCTAGTC	AGAATTTAGT	601440
CAGATGCGTA AATCGA	AGCTG GCTTTGCCG	T TGATGAGGTT	GTTCTTGGAA	GTCTAGCTTC	601500
ATCTTATGCA ACTCTT	TTCTA AAGAAGAGC	G TGAGATGGGG	GTTTTATTTA	TTGATATGGG	601560
CAAAGGGACA ACAGAT	TATTA TTCTTTATA	TGATGGTTCT	ССТТАТТАТА	CGGGTGTAAT	601620
TCCCATTGGT GTTAAT	TAGAG TGACTCTTGA	A TATTGCGCAA	GTTTGGAAGG	TTCCTGAGGA	601680
TGTTGCTGAA AATATT	TAAAA TAACAGCTGO	G CATTGCTCAT	CCGTCTATTC	TTGAGAGTCA	601740
AATGGAAACT GTAATT	ATTC CAAATCTTGO	AACTCGACCC	CCTCAAGAAA	AAAGTAGAAA	601800
AGAGTTGTCT GTAATA	ATTA ATTCAAGACT	GAGAGAAATT	TTTGAAATGA	TGAAAGCGGA	601860
AATACTTAAG CGCGGA	CTTT ATAATAAAA	TAATGGTGGA	ATAGTTTTAA	CAGGCGGAGG	601920
AGCTTTATTC CCAGGC	ATTT CTAATTTAAT	AGAAGAGGTA	TTTAATTATC	CTGCAAGAAT	601980
AGGTTTGCCA ATGAGT	'ATTA ATGGAATTGG	G AGAAGAGCAT	ATAGACCCCA	AGTTTTCTTC	602040
AGCTCTTGGT CTTGTT	CTTT ATAAGCACGA	GCAACAAAA	ТТСААТАААТ	TAAAGAAGGT	602100
AAGCAGTAAA GTTAAA	AGAA AAAATAAAAT	ATCTTCAAAG	TTGAAAGGTT	GGTTTTTGAA	602160
AGAATGGTTT TGACCA	ATCA TGGAGGAAGC	GTTAATGAAA	GATTATAATA	TGATTGATAG	602220
CCATACAAGA AGATTT	GATT CTACTACAAA	TCCTACAATT	CTTAAGGTGA	TTGGTGCGGG	602280
CGGAGGAGGT AGTAAT	GCTG TTAATCGTAT	GATTGAATAT	GGAGTAAGAG	ATGTTGAATT	602340
TATTGTGGCT AATACC	GATC TTCAGGCTCT	CCAAACTTCT	ATTGCTCCCA	TAAAAATTGC	602400
CCTTGGAGCA AAAGTT	ACAG CAGGGCTTGG	TGCTGGGGGA	AAGCCTGAGA	TTGGACAAGC	602460
TGCAGCAGAG GAAGAC	ATAG ATGTTATACG	AAATCATCTT	TCTGGTGCCG	ATATGGTGTT	602520
TATTACTGCT GGTATGO	GGGG GCGGGACAGG	AACCGGAGCA	GCTCCAGTTA	TTGCGCAAGT	602580
TGCAAAAGAG CTTGGT	ATTT TAACAGTTGG	AGTTGTAACA	AAGCCTTTTA	AGTTTGAAGG	602640
TCCTAAGAAG TTGAGAG	CTTG CTGAGCAGGG	ААТАААТААС	TTAAGAAAGT	CTGTAGATAC	602700
ATTGATCATT ATTCCA	AATC AAAAGCTTTT	AACTGTTGTT	GACAAAAGAA	CCACCATTAA	602760

					TTGCAGGGCT	602820
TATTATTGAG	CATGGAGAG	TTAATATTG	A TTTTGCCGA	r gttaaaagc <i>i</i>	TTATGCAAGG	602880
CCAAGGAGAT	GCTTTAATGO	GAATAGGAT	A TGGCAAGGG	C GAAAACAGAG	CTGTTGATGC	602940
CGCAACTTCT	GCTATTAGTA	A ATCCATTAC	r tgaggaagti	CGTATTGAAC	GGTCTAAGGG	603000
GCTTCTTGTT	AATGTTACTO	G GCGGAGATG	A TTTTTCATTC	G CTTGAACTTG	AAGAGATTAT	603060
GGGGATAATC	ACGGTTAGTG	TTGATGATG	A GGCTACTGTA	ATATATGGTC	ATGCTATTAA	603120
TTCGAATCTT	GAAGATGAAA	TTTACGTTAC	AGTTGTTGCT	ACAGGTTTTG	САТСТААААА	603180
GCAAAAAGAA	ATATCTAGCA	CACCAGAAA	A TAATACTTTA	AGTTCCAAAG	AGTTTGATAC	603240
TTTAATGTCT	GGCAATCAAA	ATGCTCCTTC	TGGATCTTAT	' GAGCAACAAG	ATTCTTCTTT	603300
TGCGGCAAAG	TCCAAAAATG	TTAATTATTI	TGATGATGAC	ATTGATGTTC	CAACATTTCT	603360
TAGAAATTTA	AATAAAAAA	GTAGCGATGA	TTAGATGAAA	. ATTTTGTGGT	ТААТААТТСТ	603420
TGTTAATTTA	TTTTTATCTT	GTGGCAATGA	ATCTAAAGAA	AAATCAAATC	TTGGTCTTAG	603480
ATTAAGAGAA	TTGGAAATTT	CAGGTGGTGG	ATCTGAATCT	AAGATTGAAG	TTTATAAAGA	603540
ATTTATTGAA	AAAGAAGATA	AGAATATTT	AAAGATAGTT	AATTCCATTG	ATAAGAAAGC	603600
CAGATTTTTT	AATTTAATTG	GTCTTGAATT	TTTTAAGCTT	GGTCAGTACG	GACCTGCTAT	603660
TGAATATTTT	GCTAAAAATT	TAGAAATCAA	TCCCAATAAT	TATTTATCTC	ATTTTTATAT	603720
AGGTGTTGCT	TCTTATAATT	TAGCTAAAA	TTTAAGAGTA	AAAGATGAAG	TTGAAAAATA	603780
CATAATTCTT	GCTGAAAATT	CTTTTTTAAA	ATCACTTTCA	ATTAGAGATG	ATTTTAAAGA	603840
TTCTCTTTTT	GCCATTTCTA	ATATGTACGT	ATATGATCTT	GATAAACAAC	TTGAAGCTAA	603900
AAATTATTTA	AATAAACTTG	GTGATATGGG	TGAGGACTAT	TTTGAGTTTT	TAATGTTAAG	603960
AGGTGCAAAT	TATTATTCGC	TGGGCGATCT	TGGTAATGCT	ATATTGTTTT	ATGATAAAGC	604020
TAGTAAAAAG	GCTTCAACTG	AAGAGCAAAA	AGAAGGTGTT	TCTAGGATCA	TGAGTAATTT	604080
GAAGTAATTA	TTTATGATGA	AATTGCTTTA	TATTGATAAT	TTGAAATTTT	TAAAAGGCAA	604140
AGAAAATTA	AAACTTTTTA	ATAATTTTGA	TTTTAATAAT	GTTATTAAAT	TGACCCAGAA	604200
AGACATTGAG	TCTTATTTTT	ТААААТСАТТ	TAGAAGATTG	TTTAAGTTGC	CCGATCTAAA	604260
ATTAGTAGAA	TTACAAGAAA	AAGTTATTCA	AAGGACCAAA	GCCAAAGTTG	CTATTCTAGG	604320
GTCTAAGTCT	ГАТССТААТА	AGCTTAAAAG	AATTTATGAC	CCTCCTTTTG	СТАТТТАСТА	604380
CAAGGGCAAT	TTACCAGATT	GTTCTTTATT	ATCTTGGGCT	GTTGTTGGTT	СТАGAAAAAT	604440
TAGTAAAACT (CTTGCTGAGA	GAACAAGGGA	ATTTTCTTCA	CATCTTGCAA .	AGAATGGTGT	604500

			499			
AGAGATTATT	TCTGGATTTG	CAATTGGGGC	AGATATTGAG	GCTCATATAG	CAGCAATAAA	604560
TGAGAATAAG	AGAACATTTG	CTGTTATTCC	AACAGATATT	GACAATATTT	ATCCTAGGCA	604620
AAATCGAAAA	TATGTTTCCA	AGCTTTTAGA	ACAAGGTGGA	GGAATAATTA	CTGAGACTTT	604680
GCCATTTGAT	AAAATTCAAA	ATTATTTTTT	TGCCAAAAGA	AATAGATTGG	TATCAGGTCT	604740
GTCTGATGCT	ATTTTTATAA	CATATGCACC	CTTGAAATCA	GGAGCTTTAA	TTACAGCTGA	604800
GCTTGGTCTT	GACTTAGGAC	TTGATGTTTA	TGTTTATGAT	TTAGATTTTT	GTGGTGATGG	604860
AGCTGTAAAA	TTGCATGATT	TTGGTGCGCA	AGAAATAAAA	ACCGTTAAGG	ATCTTTATGC	604920
ТТТАТТААТТ	ATTAAATATG	TAGATTCCAA	TAATATTGAA	GATGATTCTA	AAGAGTGTTG	604980
TAATTGTAAA	AATGTATCTG	ATGTTCTTAT	TGGGGAACTT	TTAAAAGAGG	TATGTAAATA	605040
GGGGGGTAAT	ATGAGCTTTA	AAGGAACCAC	AGTTATTGCA	ATAAAAAAAA	ATGGTAAGAC	605100
TGTGGTGGCA	GCAGATGGAC	AAGTAACTTT	TGGACATACT	GTTTTAAAGA	GTAATGCTAT	605160
TAAAATACGA	AAATTGCTTA	ATGGGAAAAT	TTTGGCAGGA	TTTGCAGGTT	CAACATCTGA	605220
TGCAATTACT	CTTTTTGAAA	AATTTGAAGA	АААААТСААА	GCAAAAGGTG	ATGGCTTGAT	605280
TGACATTAAA	AGGGCGGCTG	TTGACCTTGC	AAAAGATTGG	CGTTCTGACA	AAATACTGCA	605340
TAAGCTTGAG	GCTATGATGC	TTGTTGCTGA	TTCTAACAAT	ATTCTTTTGA	TTTCTGGTAC	605400
TGGTGATGTT	GTTGAGCCTG	AAGAGGATGT	TATTTCGATT	GGCAGTGGTG	GTAATTATGC	605460
ATATTCAGCA	GCTCTTGCTT	ACATGGAGAA	СААААААТТА	AGCGCTTTTG	AGGTTGCACT	605520
TAGATCTTTA	AAAATAGCAG	CAAGAGTGTG	TATATATACT	AATTCTAATA	TTGTGCTTGA	605580
GGAGATTGAA	AATGAATAAA	TTAGAAGAGC	ACTATATAGT	TCCCAAAGAT	GTAGTTGCAG	605640
AACTTGATAA	АТАТАТААТА	GGTCAAGACG	AAGCTAAAAA	ATTAGTATCA	ATTGCTCTTG	605700
TTAATAGATA	TATAAGGTCT	AGGCTTCCAA	AAGAAATAAA	AGATGAGGTA	ATGCCTAAAA	605760
ACATTATTAT	GATTGGATCA	ACTGGCATTG	GGAAGACCGA	GATTGCAAGA	AGACTTTCTA	605820
AATTAATTAA	AGCTCCTTTT	ATTAAAGTTG	AGGCTACAAA	ATATACTGAG	GTTGGTTATG	605880
TTGGTCGTGA	TGTTGAATCT	ATGGTTAGAG	ATTTAATGAG	CATTGCAGTT	AATATGGTAA	605940
AAGAAGAGAT	GTATAGTACT	GTAAGAGATG	ATGCTTTAGT	AAGAACAGAG	GAGAGAATAG	606000
TTGATAGTCT	TTTTAAGGGA	TCTAGTAATT	CTGAGAATAT	GGATCCAAAT	GAAATAAAGG	606060
CGGAAGAAAA	GGTAAAAGAG	AAGCTTAGAA	AAAAGCTTAG	AGCAGGTGAG	CTTGATGATA	606120
CTACTATTGA	AATACAAATT	TCTAGTAAAA	TGCCATTTTC	TACAATAGAA	ATATTTACGG	606180
GTGGTAATTT	TĠAAGAGATT	GATATGGGAA	TTGGCGGTTT	GCTGGGTAAT	ATATTTGATA	606240
GAAAAAAGAA	AAGAGAATTG	AAGATTAAAA	AAGCAAAGGA	ATTATTA	GCAGAAGAGC	606300