Prøveeksamen i MAT 1100, H-03 Løsningsforslag

1. Integralet $\int \frac{\cos x}{1+\sin^2 x} dx$ er lik: Riktig svar: c) $\arctan(\sin x) + C$. Begrunnelse: Sett $u = \sin x$, da er $du = \cos x \, dx$ og vi får:

$$\int \frac{\cos x}{1+\sin^2 x} dx = \int \frac{du}{1+u^2} du = \arctan u + C = \arctan(\sin x) + C$$

2. Hvis a>0 er en konstant, så er $\int_0^2 x^{a-1} \ e^{x^a} \ dx$ lik: **Riktig svar:** a) $\frac{1}{a} \left(e^{2^a}-1\right)$. Begrunnelse: Sett $u=x^a$, da er $du=x^a$ $ax^{a-1} dx$, og de nye grensene blir $u(0) = 0^a = 0$ og $u(2) = 2^a$. Dermed får vi:

$$\int_0^2 x^{a-1} e^{x^a} dx = \int_0^{2^a} \frac{1}{a} e^u du = \left[\frac{1}{a} e^u \right]_0^{2^a} = \frac{1}{a} \left(e^{2^a} - 1 \right)$$

3. Dersom vi skal bruke delbrøkoppspalting på uttrykket $\frac{x^2+4x+5}{(x+1)(x^2+2x+5)^2}$, bør vi sette det lik:

Riktig svar: e) $\frac{A}{x+1} + \frac{Bx+C}{x^2+2x+5} + \frac{Dx+E}{(x^2+2x+5)^2}$. Begrunnelse: Se Kalkulus side

4. Når vi substituerer $u=\sqrt{x}+1$ i integralet $\int_1^9\arctan(\sqrt{x}+1)\ dx$, får vi: Riktig svar: c) $\int_2^4 2(u-1) \arctan u \ du$. Begrunnelse: Løser vi ligningen $u=\sqrt{x}+1$ for x, får vi $x=(u-1)^2$. Dermed er dx=2(u-1) du. De nye grensene er $u(1) = \sqrt{1} + 1 = 2$ og $u(9) = \sqrt{9} + 1 = 4$. Dermed er:

$$\int_{1}^{9} \arctan(\sqrt{x} + 1) \ dx = \int_{2}^{4} 2(u - 1) \arctan u \ du$$

5. Det uegentlige integralet $\int_{e}^{\infty} \frac{1}{x \ln x} dx$:

Riktig svar: a) divergerer. Begrunnelse: Vi løser det ubestemte integralet $\int \frac{1}{x \ln x} dx$ ved å substituere $u = \ln x$. Da er $du = \frac{1}{x} dx$ og vi får $\int \frac{1}{x \ln x} dx = \int \frac{du}{u} = \ln u + C = \ln(\ln(x)) + C$. Dermed er

$$\int_{e}^{b} \frac{1}{x \ln x} \, dx = \ln(\ln(b)) \to \infty$$

når $b \to \infty$. (Kommentar: Integralet divergerer uhyre langsomt og det er derfor lett å bli lurt om man prøver å løse oppgaven på lommeregnereren.)

6. Den deriverte til funksjonen $F(x) = \int_0^{\sqrt{x}} e^{t^2} dt$, x > 0, er lik:

Riktig svar: e) $\frac{e^x}{2\sqrt{x}}$ Begrunnelse: Setter vi $G(x) = \int_0^x e^{t^2} dt$, er $G'(x) = e^{x^2}$ ifølge analysens fundamentalteorem. Siden $F(x) = G(\sqrt{x})$, gir kjerneregelen:

$$F'(x) = G'(\sqrt{x})\frac{1}{2\sqrt{x}} = \frac{e^x}{2\sqrt{x}}$$

7. Gradienten til $f(x,y)=x^2e^{-xy}$ er: Riktig svar: d) $(2xe^{-xy}-x^2ye^{-xy},-x^3e^{-xy})$. Begrunnelse:

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2xe^{-xy} + x^2e^{-xy}(-y), x^2e^{-xy}(-x)) =$$
$$= (2xe^{-xy} - x^2ye^{-xy}, -x^3e^{-xy})$$

8. Når $f(x,y) = 2xy + y^2$, $\mathbf{a} = (1,2)$ og $\mathbf{r} = (3,-1)$ er den retningsderiverte

Riktig svar: d) 6. Begrunnelse: Regner først ut:

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2y, 2x + 2y)$$

som gir $\nabla f(1,2) = (2 \cdot 2, 2 \cdot 1 + 2 \cdot 2) = (4,6)$. Dermed er

$$f'(\mathbf{a}, \mathbf{r}) = \nabla f(\mathbf{a}) \cdot \mathbf{r} = (4, 6) \cdot (3, -1) = 4 \cdot 3 + 6 \cdot (-1) = 6$$

9. Når vi står i punktet (1,-3), stiger funksjonen $f(x,y) = 3x^2y + xy$ raskest i retningen:

Riktig svar: d) (-21,4). Begrunnelse: Funksjonen vokser hurtigst i den retningen gradienten peker. Siden

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (6xy + y, 3x^2 + x)$$

er
$$\nabla f(1, -3) = (6 \cdot 1 \cdot (-3) + (-3), 3 \cdot 1^2 + 1) = (-21, 4).$$

10. Grenseverdien $\lim_{(x,y)\to(0,0)} \frac{x^2+3xy}{\sqrt{x^2+y^2}}$ er lik:

Riktig svar: a) 0. Begrunnelse: Skifter vi til polarkoordinater, får vi

$$\frac{x^2 + 3xy}{\sqrt{x^2 + y^2}} = \frac{r^2 \cos \theta + 3r^2 \cos \theta \sin \theta}{r} = r \cos \theta + 3r \cos \theta \sin \theta$$

som går mot null når r går mot null.

DEL 2

Oppgave I. Finn kvadratrøttene til det komplekse tallet $z = -2 + 2i\sqrt{3}$.

Løsning: Vi finner først polarkoordinatene til z:

$$r = \sqrt{(-2)^2 + (2\sqrt{3})^2} = 4 \text{ og } \cos \theta = -\frac{2}{4} = -\frac{1}{2}$$

Siden z ligger i annen kvadrant, betyr dette at $\theta = \frac{2\pi}{3}$. Den ene kvadratroten w_0 har polarkoordinater (ρ, ϕ) gitt ved: $\rho = \sqrt{r} = \sqrt{4} = 2$ og $\phi = \frac{\theta}{2} = \frac{\pi}{3}$. Dermed er

$$w_0 = \rho e^{i\phi} = 2 \cdot e^{i\frac{\pi}{3}} = 1 + i\sqrt{3}$$

Den andre kvadratroten er

$$w_1 = -w_0 = -1 - i\sqrt{3}$$

Oppgave II. Løs integralet $\int x \ln(x+1) dx$.

Løsning: Vi bruker først delvis integrasjon med $u = \ln(x+1)$ og v' = x. Da er $u' = \frac{1}{x+1}$ og $v = \frac{x^2}{2}$, og vi får:

$$I = \int x \ln(x+1) \ dx = \frac{x^2}{2} \ln(x+1) - \frac{1}{2} \int \frac{x^2}{x+1} \ dx$$

Det er nå to naturlige måter å komme videre på. Den ene er å forenkle nevneren ved å sette u=x+1, den andre (som er mer i tråd med "oppskriften" for hvordan man løser slike oppgaver) er å polynomdividere. Vi velger den siste metoden her (husk at $x^2 = x^2 + 0x + 0$ og at det er lurt å sette av litt plass for de leddene som ikke er der):

$$x^{2} : x + 1 = x - 1$$

$$-(x^{2} + x)$$

$$- x$$

$$-(-x - 1)$$
1

Dette betyr at $\frac{x^2}{x+1} = x - 1 + \frac{1}{x+1}$. Dermed har vi:

$$I = \frac{x^2}{2}\ln(x+1) - \frac{1}{2}\int \frac{x^2}{x+1} dx = \frac{x^2}{2}\ln(x+1) - \frac{1}{2}\int \left(x-1+\frac{1}{x+1}\right) dx =$$
$$= \frac{x^2}{2}\ln(x+1) - \frac{x^2}{4} + \frac{x}{2} - \frac{1}{2}\ln(x+1) + C$$

Oppgave III. Funksjonen f er gitt ved $f(x,y) = x^3 + 5x^2 + 3y^2 - 6xy$. a) Finn de stasjonære punktene til f.

Løsning: Vi regner først ut de partiellderiverte til f:

$$\frac{\partial f}{\partial x} = 3x^2 + 10x - 6y$$
$$\frac{\partial f}{\partial y} = 6y - 6x$$

For å finne de stasjonre punktene til f, må vi derfor løse ligningssystemet:

$$3x^2 + 10x - 6y = 0$$
$$6y - 6x = 0$$

Fra den siste ligningen ser vi at y=x. Setter vi dette inn i den første (og trekker sammen), får vi $3x^2+4x=0$. Denne ligningen har løsningene x=0 og $x=-\frac{4}{3}$. Siden vi har y=x, ser vi at x=0 gir y=0 og at $x=-\frac{4}{3}$ gir $y=-\frac{4}{3}$. De stasjonære punktene er dermed: (0,0) og $(-\frac{4}{3},-\frac{4}{3})$.

b) Avgjør om de stasjonære punktene er lokale maksimumspunkter, lokale minimumspunkter eller sadelpunkter.

Løsning: Vi skal bruke annenderiverttesten. Regner først ut de annenordens deriverte:

$$\frac{\partial^2 f}{\partial^2 x} = 6x + 10$$
$$\frac{\partial^2 f}{\partial y \partial x} = -6$$
$$\frac{\partial^2 f}{\partial^2 y} = 6$$

I punktet (0,0) får vi: $A = \frac{\partial^2 f}{\partial^2 x}(0,0) = 10, B = \frac{\partial^2 f}{\partial y \partial x}(0,0) = -6$ og $C = \frac{\partial^2 f}{\partial^2 y}(0,0) = 6$. Dette gir $D = AC - B^2 = 10 \cdot 6 - (-6)^2 = 24$. Siden D > 0 og A > 0 er (0,0) et lokalt minimumspunkt. I punktet $(-\frac{4}{3}, -\frac{4}{3})$ får vi: $A = \frac{\partial^2 f}{\partial^2 x}(-\frac{4}{3}, -\frac{4}{3}) = 2, B = \frac{\partial^2 f}{\partial y \partial x}(-\frac{4}{3}, -\frac{4}{3}) = 2$

I punktet $\left(-\frac{4}{3}, -\frac{4}{3}\right)$ får vi: $A = \frac{\partial^2 f}{\partial^2 x} \left(-\frac{4}{3}, -\frac{4}{3}\right) = 2$, $B = \frac{\partial^2 f}{\partial y \partial x} \left(-\frac{4}{3}, -\frac{4}{3}\right) = -6$ og $C = \frac{\partial^2 f}{\partial^2 y} \left(-\frac{4}{3}, -\frac{4}{3}\right) = 6$. Dette gir $D = AC - B^2 = 2 \cdot 6 - (-6)^2 = -24$. Siden D < 0, er $\left(-\frac{4}{3}, -\frac{4}{3}\right)$ et sadelpunkt.

Oppgave IV.

a) La a være et tall mellom 0 og 5. Området avgrenset av x-aksen, y-aksen, grafen til funksjonen $f(x) = \sqrt{25 - x^2}$ og linjen x = a dreies om x-aksen. Finn volumet til omdreiningslegemet uttrykt ved a.

Løsning: Formelen for et omdreiningslegeme om x-aksen er

$$V = \pi \int_a^b f(x)^2 dx$$

. I vårt tilfelle gir dette

$$V = \int_0^a (25 - x^2) dx = \pi \left[25x - \frac{x^3}{3} \right]_0^a = \pi \left(25a - \frac{a^3}{3} \right)$$

b) En kuleformet tank med radius 5 meter tømmes for vann. Når vanndybden i tanken er 2 meter, tømmes tanken med en fart på 0.5 kubikkmeter i minuttet. Hvor fort avtar vanndybden ved dette tidspunktet?

Løsning: Hva er sammenhengen mellom dette spørsmålet og det foregående? Siden grafen til funksjonen $f(x) = \sqrt{25 - x^2}$ i forrige spørsmål er en halvsirkel er det volumet vi regnet ut i a) del av en kule. Dreier vi kulen 90° slik at x-aksen peker nedover, ser vi at det volumet vi har regnet ut, er volumet av luften fra midt i tanken og ned til vannoverflaten. Dette volumet øker selvfølgelig like fort som volumet av vannet avtar, så i det øyeblikket vi er interessert i, øker volumet V med 0.5 kubikkmeter i minuttet. Lengden a er avstanden fra tankens midtpunkt ned til vannoverflaten, og den øker selvfølgelig like fort som vanndybden avtar. Kan vi finne hvor fort a øker, vet vi derfor hvor fort dybden avtar.

Vi tenker oss nå at både V og a avhenger av tiden t, og deriverer uttrykket $V=\pi\left(25a-\frac{a^3}{3}\right)$ mhp. t. Da får vi

$$V' = \pi(25 - a^2)a'$$

Løser vi med hensyn på a', får vi

$$a' = \frac{V'}{\pi(25 - a^2)}$$

I det tidspunktet vi er interessert i, er V'=0.5 og a=5-2=3, og vi får

$$a' = \frac{0.5}{\pi(25 - 3^2)} = \frac{0.5}{16\pi} \approx 0.01$$

Vanndybden avtar altså med omtrent en centimeter i minuttet.

Kommentar: Det er noe underlig med løsningen ovenfor — først integrerer vi funksjonen $25-x^2$ for å finne volumet til omdreiningslegemet, og deretter deriverer det integrerte uttrykket $25a-\frac{a^3}{3}$ for å finne a'. Burde det ikke være mulig å unngå denne "frem-og-tilbake-regningen"? La oss tenke litt mer praktisk: Tenk deg at a er avstanden fra tankens midtpunkt ned til vannoverflaten ved tiden t. og tenk deg at at V er volumet til luften over vannet ved samme tidspunkt. I løpet av en kort tid Δt øker avstanden med Δa , mens volumet øker med ΔV . Siden arealet til vannspeilet er $\pi(25-a^2)$, vil $\Delta V \approx \pi(25-a^2)\Delta a$. Deler vi på Δt , får vi

$$\frac{\Delta V}{\Delta t} \approx \pi (25 - a^2) \frac{\Delta a}{\Delta t}$$

med bedre tilnærming dess mindre Δt er. Lar vi Δt gå mot null, sitter vi igjen med

$$V' = \pi(25 - a^2)a'$$

akkurat som ovenfor.

Oppgave V. En funksjon f av én variabel kalles en Lipschitz-funksjon på intervallet I dersom det finnes et tall K slik at $|f(x) - f(y)| \le K|x - y|$ for alle $x, y \in I$. Vis først at dersom f er en Lipschitz-funksjon på intervallet I, så er f kontinuerlig på I. Vis deretter følgende påstand:

"Dersom den deriverte g' er kontinuerlig på et lukket, begrenset intervall I, så er g en Lipschitz-funksjon på I."

Løsning: For å vise at f er kontinuerlig i et (vilkårlig) punkt x, bruker vi definisjonen av kontinuitet: Gitt en $\epsilon > 0$, må vi finne en $\delta > 0$ slik at $|f(y) - f(x)| < \epsilon$ når $|x - y| < \delta$. Vi velger $\delta = \frac{\epsilon}{K}$. Hvis $|y - x| < \delta$, er da

$$|f(y) - f(x)| \le K|y - x| < K \cdot \delta = K \cdot \frac{\epsilon}{K} = \epsilon$$

For å vise påstanden observerer vi først at siden g' er kontinuerlig på et lukket, begrenset intervall I, finnes det ifølge ekstremalverdisetningen en konstant K slik at $|g'(x)| \leq K$ for alle $x \in I$. Ifølge middelverdisetningen finnes det for alle $x, y \in I$, en $c \in I$ slik at

$$g(x) - g(y) = g'(c)(x - y)$$

Siden $|g'(c)| \leq K$, får vi

$$|g(x) - g(y)| = |g'(c)||x - y| \le K|x - y|$$

og påstanden er bevist.