

Exploring Binarization and Pruning of Convolutional Neural Networks

Ameya Prabhu

Work under the guidance of:

Prof. Anoop Namboodiri
Center for Visual Information Technology (CVIT)
IIIT Hyderabad

Thesis Panel:

Prof. Anoop Namboodiri & Prof. Avinash Sharma
Center for Visual Information Technology (CVIT)
IIIT Hyderabad

BACKGROUND

Neural Network (MLP)

What we will mostly be dealing with:

- (a) All neurons in layer are connected to all other neurons in that layer.
- (b) The non-linear function has **floating point** weights (**w**) and activations (**a**).

NDEX

1. Introduction

- Motivation: Quantization & Pruning
- Applications
- Related Work

3. Hybrid Binary Networks

- Motivation for the Hypothesis
- Metric for quantifying "where"?
- Experiments & Results

2. Distribution-aware Binarization

- Motivation for the Hypothesis
- Representational Power
- "General" Binary Representations
- Experiments & Results

4. Deep Expander Networks

- Motivation for the Hypothesis
- What are expander graphs?
- What guarantees do we get?
- Experiments & Results

MOTIVATION

Biological Perspective

Practical Perspective

Intuition: Brain is amazingly efficient in compute, memory & power, current ANNs are far worse.

Hodgkin-Huxley Model (Leaky Integrate-and-Fire) ≈> Spiking Neural Networks (SNNs)

Binary Networks: When we contrast SNNs with current MLP models, we can observe^[1]:

- SNNs have $\{0,1\}$ activations (a_i) (fire or not), MLPs have activations (a_i) in \mathbb{R}
- SNNs have $\{0,1\}$ weights (w_i) (exciting and inhibiting), MLPs have weights (w_i) in \mathbb{R}

Pruning: (Mocanu et. al)^[2] argue that:

- SNNs: Sparse edges, MLPs: Fully connected edges.
- Why connect all neurons to all other neurons?

^[1] Whetstone: A Method for Training Deep Artificial Neural Networks for Binary Communication, Nature, Machine Intelligence, 2019

^[2] Scalable training of artificial neural network with adaptive sparse connectivity inspired by network science, Nature Communications, 2018

MOTIVATION

Biological Perspective

Practical Perspective

Binarization

If 32-bit/64-bit float valued matrix W and I => boolean matrix B and I_B , we get 64x compression by bit-stuffing!

We similarly obtain 64x speedup by matrix multiplication (convolution) with bitwise XNOR-Popcount ops parallely.

Pruning

We greatly reduce the dimensions of the weight matrix by selectively connecting important edges.

$$\mathbf{W}_{\text{orig}} \in \mathbb{R}^{n \times m} \longrightarrow \mathbf{W}_{\text{pruned}} \in \mathbb{R}^{n \times k}$$
 where $k \leq m$.

APPLICATIONS

Practical Power

- 32x smaller memory (32GB VRAM models in 1GB for GPU)
- Forward-pass a month's worth data in 1 day (on a GPU)
- Consume $\sim 100x$ less electricity

Applications

Eg: Mobiles × 12GB GPU, × 64GB RAM, × High battery => "Al-powered apps"?

NDEX

1. Introduction

- Biological & practical purpose.
- Applications: Low memory, compute and power usage.

3. Hybrid Binary Networks

- Motivation for the Hypothesis
- Metric for quantifying "where"?
- Experiments & Results

2. Distribution-aware Binarization

- Related Works: Use 2-bit w and/or a
- Representational Power
- "General" Binary Representations
- Experiments & Results

4. Deep Expander Networks

- Motivation for the Hypothesis
- What are expander graphs?
- What guarantees do we get?
- Experiments & Results

BINARY NETS: SURVEY

First modern binarization works: Hubara et. al.^[1] and Rastegari et. al.^[2]: Proposed "how to binarize".

Achievements: 1) Same accuracy at 64x = > Binary weights & activations (on CIFAR10 using VGG7)

2) Same accuracy => Binary weights (on Imagenet using AlexNet)

<u>Failures</u>: 1) 12% drop in accuracy => Binary weights & activations (on Imagenet using AlexNet)

2) CIFAR10 results do not scale to subsequent networks (Resnets, etc)

Later works^[3] state "binary weights and activations are insufficient" & move to 2-bit representations.

Our chance: 2-bit representations lose all speedups and compression (bool => int8)

What do we do?

- Are binary representations sufficient?
- Can we improve the binary approximation or make "clever" modifications to improve the accuracies?

^[1] Hubara et. al. Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations, JMLR 2018

^[2] Rastegari et. al. XNOR-Net: ImageNet Classification Using BinaryConvolutional Neural Networks, ECCV 2016

^[3] Zhu et. al. Trained Ternary Quantization, ICLR 2017

BINARY NETS: ENOUGH?

Problem: (Lin et al.)^[1] consider the no. of neurons required $p(\mathbf{x})$, a multivariate monomial, expressed as the product of n variables: $\prod_{i=1}^{n} x_i = \frac{1}{2^n} \sum_{\{s\}} s_1 ... s_n \sigma(s_1 x_1 + ... + s_n x_n)$

Result 1: Using a single hidden layer network requires exactly 2ⁿ infinite precision neurons.

Our Result: There exists a construction of binary weighted network which requires exactly the same number (2ⁿ) neurons.

Result 2: A k layered deep network, (Rolnick et. al.)^[2] set an upper bound of #neurons as: $\mathcal{O}\left(n^{(k-1)/k}\cdot 2^{n^{1/k}}\right)$ and show experimental evidence for tightness of this upper bound.

Our Result: There exists a construction of binary weighted network which requires the same order of neurons. This is interesting because we reduce the infinite precision to a finite precision, which is *not a* constant factor.

Assumptions: The activation σ has nonzero Taylor coefficients up to degree n. Eg: ELU.

Summary: Binary weight networks could be as expressible as infinitely precise ones.

DISTRIBUTION-AWARE BINARY NETS

- Current Approaches: Binarize $\mathbf{x} \in \mathbb{R}^n$ are as follows:
 - -> $\mathbf{b} \in \{-1,+1\}^n$ where binarization function is $\operatorname{sign}(\mathbf{x})$. -> $\mathbf{b} \in \{-\alpha,+\alpha\}^n$ where binarization function is $\operatorname{sign}(\mathbf{x})$ and $\alpha = |\mathbf{x}|_1/n$ is a scaling factor
- Our proposal: A given $\alpha, \beta \in \mathbb{R}$ to form a 1 bit representation: binarized weight vector $\mathbf{b} \in \{\alpha, \beta\}^n$
- Questions: Some questions immediately arise about a "general" binary representation:
 - 1) Is there a optimal solution to this? **Ans**: Yes!
 - 2) Is it efficiently computable a.k.a. in O(n)? **Ans**: Yes, with dynamic programming!
 - 3) Does it improve results when trained? **Ans**: Yes, albeit it needs some stabilization.

OPTIMAL A, B AND **e**

Given weight vector **W**, binarize to get $\widetilde{\mathbf{W}} \in \{\alpha,\beta\}^n$ represented as $\alpha^*(\mathbf{e}) + \beta^*(\mathbf{1}-\mathbf{e})$ where $\mathbf{e} \in \{0,1\}^n$, $(\mathbf{e} != 0 \text{ and } \mathbf{e} != 1)$

$$(\widetilde{\mathbf{W}}: [\alpha \alpha \beta \beta \alpha ... \beta \alpha \beta] \text{ and } \mathbf{e}: [1 1 0 0 1 ... 0 1 0])$$

We formulate it as an optimization problem: $\widetilde{\mathbf{W}}^* = \underset{\widetilde{W}}{argmin} || \mathbf{W} - \widetilde{\mathbf{W}} ||^2$

The optimal α , β and **e** we obtain are as follows:

$$\alpha = \frac{\mathbf{W}^T \mathbf{e}}{K}, \ \beta = \frac{\mathbf{W}^T (\mathbf{1} - \mathbf{e})}{n - K} \qquad \mathbf{e}^* = \underset{e}{argmax} (\frac{|| \ \mathbf{W}^T \mathbf{e} \ ||^2}{K} + \frac{|| \ \mathbf{W}^T (\mathbf{1} - \mathbf{e}) \ ||^2}{n - K})$$

where $K = e^{T}e$ (K counts 1^s in e)

Beauty: Projecting **W** onto two vectors **e** and (1-**e**).

Problem: Picking the optimal **e** among all K requires $O(n^2)$ time.

Solution: We propose a prefix-sum based dynamic programming subroutine which computes it in $O(n \log n)$ time. (Details in the thesis)

Datasets & Models

- **TU-Berlin**: A popular large sketch recognition benchmark consisting of 20,000 sketches over 250 classes.
- **Sketchy**: A popular SBIR benchmark consisting of 75,471 sketches over 125 classes.

We tested the following models:

• Sketch-A-Net: (A popular Alexnet-like network), ResNet-18 & GoogleNet

RESULTS

Improvements on TU-Berlin and Sketchy respectively:

• Sketch-A-Net: 0.8% and <u>2%</u> improvement

• ResNet-18: 2.5% and 1.4% improvement

• GoogleNet: <u>1.5%</u> and 0.6% improvement

Models	Method	Accuracies		
Models	Metriod	TU-Berlin	Sketchy	
	FPrec	72.9%	85.9%	
	WBin (BWN)	73.0%	85.6%	
Sketch-A-Net	FBin (XNOR-Net)	59.6%	68.6%	
	WBin DAB-Net	72.4%	84%	
	FBin DAB-Net	60.4%	70.6%	
Improvement	XNOR-Net s DAB-Net	+0.8%	+2.0%	
	FPrec	74.1%	88.7%	
	WBin (BWN)	73.4%	89.3%	
ResNet-18	FBin (XNOR-Net)	68.8%	82.8%	
	WBin DAB-Net	73.5%	88.8%	
	FBin DAB-Net	71.3%	84.2%	
Improvement	XNOR-Net s DAB-Net	+2.5%	+1.4%	
	FPrec	75.0%	90.0%	
	WBin (BWN)	74.8%	89.8%	
GoogleNet	FBin (XNOR-Net)	72.2%	86.8%	
	WBin DAB-Net	75.7%	90.1%	
	FBin DAB-Net	73.7%	87.4%	
Improvement	XNOR-Net s DAB-Net	+1.5%	+0.6%	

Additional Ablation Studies

Variation of α and β across a filter's weights during training: $(T_1 < T_2 < T_3 < T_4)$

Future Directions

Code: Implementation available on github. Links provided in the thesis.

Nice Directions

• Stabilization techniques: Bayesian Binary Networks (ICCV 2019)

INDEX

1. Introduction

- Biological & practical purpose.
- Practical apps: Low memory, compute & power use.
- Related Works: Use 2-bit w and/or a

3. Hybrid Binary Networks

- Motivation for the Hypothesis
- Metric for quantifying "where"?
- Experiments & Results

2. Distribution-aware Binarization

- As expressive as infinite precision.
- Projects to 2 weighted || vectors.
- "Optimal" binary rep., efficiently computable, trainable via SGD.

4. Deep Expander Networks

- Motivation for the Hypothesis
- What are expander graphs?
- What guarantees do we get?
- Experiments & Results

THE NOVEL QUESTION

Recent works: "How" to binarize and (recently) more "binarizable" architectures.

We ask: "Where" to binarize?

"Intelligently" *not* binarizing some activations (a) recovers accuracy drops with minimal increase in FLOPs.

Intuitions:

- Low-computations layers are amenable to hybridization. Layers with high binarization errors ($\mathbf{E} = \frac{\parallel \mathbf{I} \mathbf{I_B} \parallel^2}{n}$) are amenable

Discovery: Layers with low-computational cost (NF) turn out to have high binarization errors (E) on layerwise analysis.

We optimize a metric $M = E + \gamma \cdot \frac{1}{NE}$ to create our "hybrid" binary network!

How to "Hybridize" Network?

RESULTS: CAN WE TRADE-OFF EFFECTIVELY?

Recover most of the accuracy with minimal addition in #FLOPs

Comparisons: Tu-Berlin and Sketchy datasets

Improvements on TU-Berlin and Sketchy:

- Sketch-A-Net improves 13.5% and 15%.
 - ResNet-18 improves 5% and 5.1%.
 - Squeezenet improves 8% and 13%.

	Method	Accuracy		Management	5 1.05
Model		TU-Berlin	Sketchy	Memory Savings	FLOPs (in M)
	FPrec	72.9%	85.9%	1x	608 (7.8x)
Sketch-A-Net	WBin (BWN)	73%	85.6%	29.2x	406 (5.2x)
SkelCH-A-Net	FBin (XNOR)	59.6%	68.6%	19.7x	78 (1x)
	Hybrid	73.1%	83.6%	29.2x	85 (1.1x)
Increase	Hybrid vs FBin	+13.5%	+15.0%	+9.5%	+7 (+0.1x)
ResNet-18	FPrec	74.1%	88.7%	1x	1814 (13.5x)
	WBin (BWN)	73.4%	89.3%	31.2x	1030 (7.7x)
	FBin (XNOR)	68.8%	82.8%	31.2x	134 (1x)
	Hybrid	73.8%	87.9%	31.2x	359 (2.7x)
Increase	Hybrid vs FBin	+5.0%	+5.1%	-	+225 (+1.7x)
Sketch-A-Net	FPrec	72.9%	85.9%	1x	1135 (12.3x)
Squeezenet	FPrec	71.2%	86.5%	8x	610 (6.6x)
Squeezenet	WBin	66.7%	81.1%	23.7x	412 (4.5x)
Squeezenet	FBin	56.8%	66.0%	23.7x	92 (1x)
Squeezenet	Hybrid	64.8%	79.6%	23.7x	164 (1.8x)
Improvement	Hybrid vs FBin	+8.0%	+13.6%	-	+72 (+0.8x)

Comparisons: Imagenet

Imagenet: Accuracy improvements

• Hybrid AlexNet: 4.9%

• Hybrid ResNet-18: 3.6%

Model	Method	Accuracy		Mem.	FLOPs
		Top-1	Тор-5	Savings	FLOFS
	FPrec	57.1%	80.2%	1x	1135 (9.4x)
	WBin (BWN)	56.8%	79.4%	10.4x	780 (6.4x)
AlexNet	FBin (XNOR)	43.3%	68.4%	10.4x	121 (1x)
	Hybrid-1	48.6%	72.1%	10.4x	174 (1.4x)
	Hybrid-2	48.2%	71.9%	31.6x	174 (1.4x)
Increase	Hyb. vs FBin	+4.9%	+3.5%	+21.2x	+53 (+0.4x)
	FPrec	69.3%	89.2%	1x	1814 (13.5x)
	WBin (BWN)	60.8%	83.0%	13.4x	1030 (7.7x)
ResNet-18	FBin (XNOR)	51.2%	73.2%	13.4x	134 (1x)
	Hybrid-1	54.9%	77.9%	13.4x	359 (2.7x)
	Hybrid-2	54.8%	77.7%	31.2x	359 (2.7x)
Increase	Hyb. vs FBin	+3.6%	+4.5%	+17.8x	+225(+1.7x)

Comparison with other approaches: Imagenet

Outperforms all binary/ternary networks, while preserving maximal compression.

AlexNet

- 1.2% increase over DoReFa-Net (2-bit a)
 - 1.6% higher accuracy than HTCBN

ResNet-18

• 1.2% higher than HTCBN

While preserving maximal compression & speedup rates!

Technique	Acc-Top1	Acc-Top5	W/I	Mem	FLOPs
	AlexNet				
BNN	39.5%	63.6%	1/1	32x	121 (1x)
XNOR	43.3%	68.4%	1/1	10.4x	121 (1x)
Hybrid-1	48.6%	71.7%	1/1	10.4x	174 (1.4x)
Hybrid-2	48.2%	71.5%	1/1	31.6x	174 (1.4x)
HTCBN	46.6%	71.1%	1/2	31.6x	780 (6.4x)
DoReFa-Net	47.7%	-	1/2	10.4x	780 (6.4x)
		Res-Net 1	8		
BNN	42.1%	67.1%	1/1	32x	134 (1x)
XNOR	51.2%	73.2%	1/1	13.4x	134 (1x)
Hybrid-1	54.9%	77.9%	1/1	13.4x	359 (2.7x)
Hybrid-2	54.8%	77.7%	1/1	31.2x	359 (2.7x)
HTCBN	53.6%	-	1/2	31.2×	1030 (7.7x)

OTHER EXPERIMENTS

Last Layer Binarization (For maximal compression)

On Sketch-A-Net and ResNet-18:

XNOR-Net: 11% and 1%

Ours: 1% and 0.1%

Model	BinType	Last Bin?	Acc	Mem
Sketch-A-Net	FBin (XNOR)	No	59.6%	19.7x
SKEICH-A-NEI	FDIII (ANOR)	Yes	48.3%	29.2x
Clatab A Nat	ام نور جار ا	No	73.1%	19.7x
Sketch-A-Net	Hybrid	Yes	72.0%	29.2x
D + 10	FR:- (VNOR)	No	69.9%	13.4x
Resnet-18	FBin (XNOR)	Yes	68.8%	31.2x
. 10	Hybrid	No	73.9%	13.4x
Resnet-18		Yes	73.8%	31.2x

INDEX

1. Introduction

- Biological & practical purpose.
- Practical apps: Low memory, compute & power use.
- Related Works: Use 2-bit w and/or a

3. Hybrid Binary Networks

- Asked a nice question: "Where to quantize"
- Badly quantized layers <=> low compute layers!
- Hence, greatly reduce acc. drops at minimal cost

2. Distribution-aware Binarization

- As expressive as infinite precision.
- Projects to 2 weighted || vectors.
- "Optimal" binary rep., efficiently computable, trainable via SGD.

4. Deep Expander Networks

- Motivation for the Hypothesis
- What are expander graphs?
- What guarantees do we get?
- Experiments & Results

Approaches towards Efficiency

Better Network Design

- Inception Net NAS Net
- ResNetP-NAS Net

Efficient Layer Modification

- Group Convolutions
- Pruning

Connectivity

↓ Size

CRATTARE LAYREBUCEONNE TRAIN -> PRUNE

Train → Prune

- Need to train full network
- Need Multiple trainings
- Layer structure specific to given data

Not Transferrable

Prune → Train

- ✓ Train a compact network
- ✓ Single training
- ✓ Generic layer structure, independent of data

 Transferrable

Pruning Without Data

- Need to sparsify connections
- •Need to ensure multi-layer connectivity

Regular Pruning

- Not well connected
- Retraining does not help

All this to be done without data!!

EXPANDER GRAPHS

Combinatorics: Highly connected; Sever many edges to disconnect any large part of the graph

Probability: Random walk on these converges to its limiting distribution as rapidly as possible.

Algebra: First positive eigenvalue of their laplace operator is bounded away from zero.

Large expansion →Large spectral gap

Expander Graph are are simultaneously sparse and highly connected.

Constructing Expander Layers

- Pick an input node
- Connect it to *D* random outputs
- Repeat for every input node
- Repeat for every layer

GUARANTEES ABOUT X-NETS

Theorem 1 (Sensitivity):

Let n be the number of input as well as output nodes in the network and G1, G2,..., Gt be D-regular bipartite expander graphs with n nodes on both sides. Then every output neuron is sensitive to every input in a Deep X-Net defined by G i 's with depth $t = O(\log_D n)$.

Theorem 2 (Rich Connectivity):

Let n be the number of input as well as output nodes in the network and G be D regular bipartite expander graph with n nodes on both sides. Let S,T be subsets of input and output nodes in the X-Net layer defined by G. The number of edges between S and T $|E| \approx \frac{D|S||T|}{|E|}$

Lots of paths between any S and T

Note: Connectivity Graph of Convolutions

Connectivity Graph

Note: Connectivity Graph of Convolutions

Connectivity Graph

Our Convolutional Layer

Red and green represent the subsets that are connected

Expander vs. Full Convolution

EXPERIMENTAL RESULTS

Comparisons with:

- Layer Connectivity Graphs: Group Convolution
- Network Compression: Pruning
- Efficient Architectures: ResNet and DenseNet

Benchmarking with Group Convolution

X-Conv beats G-Conv by ~ 4-5% on a compact MobileNet-0.5 on Imagenet

Compression	G-Conv	X-Conv (Ours)	Err. Red.
2x	42.55%	41.78%	0.8%
4x	50.59%	46.00%	4.6%
8x	54.87%	50.77%	4.1%
16x	60.97%	55.37%	5.6%

Comparison with Pruning

VGG-16 on CIFAR-10

Method	Accuracy	# Params
Li et al.	93.4 %	5.4 M (2.8x)
NW Slimming	93.8 %	2.3 M (6.5x)
X-VGG 16-1	93.4 %	1.65 M (9x)
X-VGG 16-2	93.0 %	1.15 M (13x)
VGG-16 Orig	94.0 %	15.0 M (1.0x)

X-Nets are as compressible as the best pruning techniques

AlexNet on ImageNet

Method	Accuracy	# Params
Collins et al.	55.1 %	15.2 M (4x)
Zhou et al.	54.4 %	14.1 M (4.3x)
Han et al.	57.2 %	6.7 M (9.1x)
Srinivas et al.	56.9 %	5.9 M (10.3x)
Guo et al.	56.9 %	3.4 M (18x)
X-AlexNet-1	55.2 %	7.6 M (8x)
X-AlexNet-2	56.2 %	9.7 M (6.3x)
AlexNet-Orig	57.2 %	61 M (1.0x)

Failure Case?

Advantages over Pruning

Transferable Architectures

Going Wider and Deeper

Wider/Deeper networks with higher compression achieves same error rate with fewer parameters

RESNET VS X-RESNET ON IMAGENET

RESNET VS X-RESNET ON IMAGENET

DenseNet vs X-DenseNet on CIFAR-10

DenseNet vs X-DenseNet on CIFAR-10

SUMMARY

1. Introduction

- Biological & practical purpose.
- Practical apps: Low memory, compute & power use.
- Related Works: Use 2-bit w and/or a

3. Hybrid Binary Networks

- Asked a nice question: "Where to quantize"
- Badly quantized layers <=> low compute layers!
- Greatly reduce acc. drops at minimal cost.

2. Distribution-aware Binarization

- As expressive as infinite precision.
- Projects to 2 weighted || vectors.
- "Optimal" binary rep., efficiently computable, trainable via SGD.

4. Deep Expander Networks

- Principled way to prune deep networks.
- Allows training of wider and deeper networks.
- Highlights the use of global connectivity analysis in network architecture design

THANK YOU

Using our pytorch code to reproduce all results:

```
from layers import WBinConv2d, WBinLinear, ..., ExpanderLinear, ExpanderConv2d
```

```
nn.Conv2d(...) \rightarrow WBinConv2d(...) nn.Linear(...) \rightarrow WBinLinear(...) nn.Conv2d(...) \rightarrow FBinConv2d(...) nn.Linear(...) \rightarrow FBinLinear(...)
```

 $nn.Conv2d(...) \rightarrow ExpanderConv2d(...)$ $nn.Linear(...) \rightarrow ExpanderLinear(...)$

GitHub Repos: https://github.com/DrImpossible/Deep-Expander-Networks

https://github.com/Einsteino/Binary-Compression (Coming very soon)