Dr. Ambedkar Institute of Technology, Bengaluru-560056

Department of Computer Science & Engineering Scheme and Syllabus - NEP - 2024 -2025

Course Title	INTERNET OF THINGS (IOT)							
Course Code	21CST702 Professional Core Course (PCC)							
Category								
Scheme and	No. of Hours/Week					Total teaching	Credits	
Credits	L	T	P	SS	Total	hours		
	02	00	00	00	02	26	02	
CIE Marks: 50	SEE Mai 50	rks:	Total Ma marks=10		Duration of SEE: 02 Hours			

COURSE OBJECTIVES

- 1. Understand the building blocks of IOT, its characteristics and Application area.
- 2. Realize the difference between M2M and IOT
- 3. Explore the architecture, components and working of IOT with the help of Microcontroller.
- 4. Elaborate the need for Data Analytics mechanism & tools in IoT.

UNIT-1 CHAPTER 1: Introduction & Concepts 05 Hours

Introduction to Internet of Things, Definitions and Characteristics of IoT, Physical Design of IoT, Logical Design of IoT, IoT Enabling Technologies, IoT levels and Development Templates.

UNIT-2

CHAPTER 2: IoT and M2M Communication

05 Hours

Introduction, M2M, Difference between IoT and M2M, SDN & NFV for IoT.

CHAPTER 3: IoT Platform Design Methodology

Introduction, IoT Design Methodology, Case Study: Weather Monitoring.

UNIT-3

CHAPTER 4: Domain Specific IOTs

05 Hours

Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry, Health & Life Style - Applications and Case-studies

UNIT-4

CHAPTER 5: IoT Physical Devices and Endpoints

06 Hours

Basic Building blocks - Boards - Raspberry Pi, Arduino, Tiva. Working with Sensors and Actuators

UNIT-5

CHAPTER 6: Data Analytics for IoT

05 Hours

Introduction to Apache Hadoop, Hadoop MapReduce for Batch Data Analysis, Apache oozie, Apache Spark, Apache Storm.

TEACHING LEARNING PROCESS: Chalk and Talk, power point presentation, animations, videos

COURSE OUTCOMES: On completion of the course, student should be able to,

CO1	Apply the knowledge of the internet and computer network on to IoT paradigm.
CO2	Adequately learn and demonstrate the IoT communication.
COZ	Adequatery learn and demonstrate the 101 communication.
CO3	Apply the knowledge of python in Raspberry PI programming.
CO4	Analyze different configuration setups for connecting different types of sensors and upload the code on
	the board and communicate to the cloud.
CO5	Apply the knowledge of data analytics for IoT development

СО-РО	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12
Mapping												
CO1	3				1							1
CO2	3	2	3	1	2							1
CO3	3	2	2	1	2					1		1
CO4	3	3	1	2	2					1		1
CO5	3	2	1	2	3				1	1		1

Strong -3 Medium -2 Weak -1

TEXT BOOKS:

1. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)", First Edition, VPT, 2014.

REFERENCE BOOKS:

- 1. Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill Education, 2017
- 2. Ovidiu Vermesan, PeterFriess, "Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems". River Publishers Series in Communication.
- **3.** David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", 1st Edition, Pearson Education

SELF STUDY REFERENCES/WEBLINKS:

1. Designing the Internet of Things – Adrian McEwen & Hakim Cassimality Wiley India, ISBN: 9788126556861

COURSE COORDINATOR:		Dr. Smitha Shekar B
		Lavanya Santhosh