FGI-2 – Formale Grundlagen der Informatik II

Modellierung und Analyse von Informatiksystemen

Präsenzlösung 3: Produktsysteme, Bisimulation

Präsenzteil am 26./27.10. – Abgabe am 2./3.11.2015

Präsenzaufgabe 3.1:

1. Konstruieren Sie A_4 gemäß Satz 1.21 zu den Büchi-Automaten A_1 und A_2 aus Beispiel 1.20. Bestimmen Sie $L^{\omega}(A_4)$.

Lösung: Es ergibt sich für A_4 : $L^{\omega}(A_4) = (ab)^{\omega}$

 $L^{\omega}(A_4)$ entspricht genau der gesuchten Schnittmenge.

2. Bestimmen Sie zu Beispiel 1.20 $L(A_1)$, $L(A_2)$, $L(A_3)$ und $L(A_4)$. Diskutieren Sie die Übereinstimmung von $L(A_3)$ und $L(A_4)$ mit der Schnittmenge $L(A_1) \cap L(A_2)$.

Lösung: Die Sprachen lauten wie folgt:

$$L(A_1) = (ab)^* L(A_2) = a \cdot (ba)^* L(A_3) = \emptyset L(A_4) = (ab)^* L(A_1) \cap L(A_2) = \emptyset$$

Die Schnittmenge $L(A_1) \cap L(A_2)$ muss leer sein, weil A_1 nur Wörter akzeptiert, die auf b enden, A_2 aber nur solche, die auf a enden. $L(A_4)$ entspricht also *nicht* der gesuchten Schnittmenge.

3. Konstruieren Sie einen Automaten B, der $L(B)=\{w\in a\cdot (a+b)^*\mid \exists n\in\mathbb{N}: |w|=2n\}$ und zugleich $L^\omega(B)=a\cdot (a+b)^\omega$ akzeptiert.

Hinweis: Sie benötigen nur 3 Zustände.

Lösung: Die akzeptierten Wörter müssen mit a beginnen, danach können die Buchstaben a und b in beliebiger Reihung folgen. Akzeptiert wird nach jedem zweiten Buchstaben (aber nicht das leere Wort).

L(B) lässt sich auch umschreiben als: $L(B) = a \cdot (a+b) \cdot [(a+b) \cdot (a+b)]^*$.

4. Konstruieren Sie die beiden Produktautomaten für $L(A_1) \cap L(B)$ und $L^{\omega}(A_1) \cap L^{\omega}(B)$.

Lösung: $L(A_{3.1.4}) = (ab)^+$ und $L^{\omega}(A_{3.1.4}) = (ab)^{\omega}$:

 $L(A'_{3,1,4}) = (abab)^*$ und $L^{\omega}(A'_{3,1,4}) = (ab)^{\omega}$:

Hinweis: Aufgabenteile 5. und 6. sind optional.

5. Wandeln Sie das Verfahren aus Satz 1.8 ab: Vorausgesetzt werden nun zwei vollständige endliche Automaten A_1 und A_2 . Die Endzustandsmenge sei nun $F_3 := \{(s,r) \mid s \in F_1 \lor r \in F_2\}$. Alle anderen Verfahrensschritte bleiben unverändert.

Welche reguläre Sprache wird A_3 akzeptieren (relativ zu $L(A_1)$ und $L(A_2)$ gesehen)? Überlegen Sie sich, wie Sie Ihre Vermutung beweisen könnten.

Lässt sich die Vermutung auf ω -Sprachen übertragen?

Gedächtnisstütze: Def. Vollständigkeit: $\forall q \in Q \ \forall x \in \Sigma \ \exists q' \in Q : (q, x, q') \in \delta$

Lösung: A_3 akzeptiert nun die Vereinigung: $L(A_3) = L(A_1) \cup L(A_2)$.

Beweis: $L(A_1)\subseteq L(A_3)$: Sei $w\in L(A_1)$, d.h. es gibt eine Erfolgsrechnung $s_0\xrightarrow{a_1}s_1\xrightarrow{a_2}s_2\dots s_{n-1}\xrightarrow{a_n}s_n$ mit $s_0\in Q_1^0$ und $s_n\in F_1$. Da A_2 vollständig ist, wird durch das Verfahren immer ein $(s_i,r_i)\xrightarrow{a_{i+1}}(s_{i+1},r_{i+1})$ in A_3 erzeugt werden. Das Paar (s_n,r_n) ist wegen $s_n\in F_1$ ein Endzustand in F_3 . Somit existiert zu w auch eine Erfolgsrechnung in A_3 .

 $L(A_2) \subseteq L(A_3)$: Kann analog zu $L(A_1)$ argumentiert werden.

 $L(A_3)\subseteq L(A_1)\cup L(A_2)$: Sei $w\in L(A_3)$, d.h. es gibt eine Erfolgsrechnung $(s_0,r_0)\xrightarrow{a_1}(s_1,r_1)\xrightarrow{a_2}(s_2,r_2)\dots(s_{n-1},r_{n-1})\xrightarrow{a_n}(s_n,r_n)$ mit $s_0\in Q_1^0$ und $r_0\in Q_2^0$. Der Endzustand (s_n,r_n) geht auf $s_n\in F_1$ oder auf $r_n\in F_2$ zurück. Falls $s_n\in F_1$, können alle Zustandsbezeichner der Rechnung auf die erste Komponente projiziert werden, um eine Erfolgsrechnung in A_1 zu erhalten. Falls $r_n\in F_2$, führt eine Projektion auf die zweite Komponente zu einer Erfolgsrechnung in A_2 . Also wird w von A_1 oder von A_2 akzeptiert.

 ω -Sprachen: Die Vermutung gilt gleichermaßen: $L^{\omega}(A_3) = L^{\omega}(A_1) \cup L^{\omega}(A_2)$. Der Beweis läuft analog zu den Sprachen über endlichen Wörtern.

6. Vervollständigen Sie die Automaten A_1 und A_2 aus Beispiel 1.20 und wenden Sie das Verfahren aus Teilaufgabe 5 darauf an.

Lösung: Die vervollständigten Automaten sehen so aus:

Es gilt
$$L(A_3') = (ab)^* + a \cdot (ba)^*$$
 und $L^{\omega}(A_3') = (ab)^{\omega}$

Präsenzaufgabe 3.2: Prüfen Sie, ob die folgenden Transitionssysteme bisimilar sind. Geben Sie die Bisimulationsrelation explizit an.

Lösung:

1. Es bietet sich die folgende Relation an:

$$\{(p_1,q_1),(p_2,q_2),(p_3,q_3),(p_4,q_4),(p_3,q_5),(p_5,q_8),(p_6,q_9),(p_5,q_6),(p_6,q_7)\}$$

Einziger Nachteil: Das Paar (p_3,q_5) , denn nur einer ist Endzustand. Diese Relation eignet sich also nicht als Bisimulation. Es ist aber zu begründen, dass keine einzige Bisimulationsrelation existiert.

Anderer Ansatz: Die beiden Transitionssysteme sind nicht akzeptanzäquivalent (rechts gibt es die terminale Aktionsfolge ab, links nicht). Gemäß Satz 2.8 können nicht akzeptanzäquivalente TS auch nicht bisimilar sein.

- 2. Dies ist der Klassiker für nicht bisimilare TS. Die Begründung läuft über die Eigenschaften aus Def. 2.4:
 - Aus Bedingung a) folgt, dass das Paar (p_1, q_1) in \mathcal{B} enthalten sein muss (zu jedem Startzustand ist ein Partner erforderlich, der ebenfalls Startzustand ist).
 - Wenn $(p_1,q_1) \in \mathcal{B}$, dann muss gemäß Bedingung b) auch $(p_2,q_2) \in \mathcal{B}$ und $(p_2,q_3) \in \mathcal{B}$ gelten.
 - ullet Beide Paare verletzen jeweils Bedingung b), denn in p_2 ist Aktion b möglich, zu welcher q_2 keine Entsprechung hat. Ebenso ist in p_2 die Aktion c möglich, welche in q_3 keine Entsprechung hat.
- 3. Die beiden TS sind trotz der strukturellen Ähnlichkeit zu Teil 2 bisimilar, da die jeweils 2. Aktion gleich ist. $\mathcal{B}=\{(p_1,q_1),(p_2,q_2),(p_2,q_3),(p_3,q_4),(p_3,q_6),(p_4,q_4),(p_4,q_6)\}$

Übungsaufgabe 3.3: Schnitt von ω -Sprachen.

von

$$A_1: \qquad \qquad A_2: \qquad \qquad A_2: \qquad \qquad A_2: \qquad \qquad A_2: \qquad \qquad A_3: \qquad \qquad A_4: \qquad \qquad A_4: \qquad \qquad A_5: \qquad A_5$$

- 1. Bestimmen Sie $L(A_1)$, $L(A_2)$, $L^{\omega}(A_1)$ und $L^{\omega}(A_2)$.
- 2. Konstruieren Sie den Produktautomaten A_3 im Sinne von Satz 1.8 bzw. Lemma 1.19.
- 3. Bestimmen Sie $L(A_3)$ und $L^{\omega}(A_3)$. Vergleichen Sie $L(A_3)$ mit $L(A_1) \cap L(A_2)$ und $L^{\omega}(A_3)$ mit $L^{\omega}(A_1) \cap L^{\omega}(A_2)$.
- 4. Konstruieren Sie den Produktautomaten A_4 im Sinne von Satz 1.21.
- 5. Bestimmen Sie $L(A_4)$ und $L^{\omega}(A_4)$. Vergleichen Sie $L(A_4)$ mit $L(A_1) \cap L(A_2)$ und $L^{\omega}(A_4)$ mit $L^{\omega}(A_1) \cap L^{\omega}(A_2)$.

Übungsaufgabe 3.4:

von 6

1. Prüfen Sie für alle Zweierkombination der folgenden drei Transitionssysteme, ob diese bisimilar sind. Geben Sie die Bisimulationsrelation explizit an. (Sie können sich Arbeit sparen, wenn sie beachten, dass die Bisimulationsrelation symmetrisch ist, d.h. $TS_1 \leftrightarrow TS_2$ impliziert $TS_2 \leftrightarrow TS_1$.)

2. Vereinigung von Bisimulationen: verdeutlichen Sie die Aussage des Satzes 2.9 an den folgenden Transitionssystemen:

- (a) Geben Sie zwei verschiedene Relationen \mathcal{B}_1 und \mathcal{B}_2 für diese Transitionssysteme an. Begründen Sie, warum beide Relationen die Bedingungen für eine Bisimulation erfüllen.
- (b) Überprüfen Sie am Beispiel, dass $\mathcal{B}_3 := (\mathcal{B}_1 \cup \mathcal{B}_2)$ ebenfalls die Bedingungen für eine Bisimulation erfüllt.
- (c) Bilden Sie nun TS_3 aus TS_2 , indem die Schleife (p_2, y, p_2) entfernt wird. Begründen Sie, dass keine Bisimulationsrelation zwischen TS_1 und TS_3 aufgestellt werden kann.