Ejercicios Teoría Cuántica de Campos. Capítulo 63

Autor del curso: Javier García

Problemas resueltos por: Roger Balsach

3 de octubre de 2021

1. Demostrar que el campo magnético es invariante bajo transformaciones de Gauge.

Usando la definición de campo magnético:

$$B^{i} = (\vec{\nabla} \times \vec{A})^{i} = \varepsilon_{ijk} \partial_{j} A^{k} \tag{1}$$

Y la transformación de Gauge

$$A'_{\mu} = A_{\mu} - \frac{1}{g} \partial_{\mu} \theta$$

Obtenemos que el campo magnético transforma como

$$B_i' = \varepsilon_{ijk} \partial_j A_k' = \varepsilon_{ijk} \partial_j \left(A_k - \frac{1}{g} \partial_k \theta \right) = \varepsilon_{ijk} \partial_j A_k - \frac{1}{g} \varepsilon_{ijk} \partial_j \partial_k \theta \tag{2}$$

Asumiendo que θ es una función suficientemente suave, el orden de las derivadas no afecta el resultado, i.e. $\partial_j \partial_k \theta = \partial_k \partial_j \theta$. Debido a que ε es antisimétrico bajo intercambio de cualquiera de sus índices obtenemos que

$$\varepsilon_{ijk}\partial_i\partial_k\theta = 0$$

Por lo que el resultado final es

$$B_i' = \varepsilon_{ijk} \partial_j A_k = B_i$$
(3)

Demostrando la invariancia de B bajo transformaciones de Gauge.