Колебания линейной системы с одной степенью свободы.

Авторы Ильин М. М., Пожалостин А. А., Тушева Г. М. Издательство МГТУ им. Н. Э. Баумана 2002 год. УСЛОВИЯ ДОМАШНИХ ЗАДАНИЙ

Рассматриваются малые колебания механической системы с одной степенью свободы около положения устойчивого равновесия. Механические системы представляют собой плоские механизмы, расположенные в вертикальной плоскости и состоящие из твёрдых тел, нитей, демпферов и упругих элементов.

Необходимые числовые данные приведены в таблице и, где это необходимо, на схемах задач. Для всех вариантов на схемах задана обобщённая координата q(t), отсчитываемая от положения равновесия в невозмущенном состоянии, а в таблице - соответствующие ей начальные условия. На всех схемах номерами 1,2 обозначены звенья, массу которых необходимо учитывать при составлении дифференциального уравнения, номером 3 - упругий элемент, номером 4 - демпфер.

Силы и моменты воздействия упругих элементов на тела пропорциональны удлинению пружин или углу закручивания спиральных пружин.

Демпфер создает силу линейно-вязкого сопротивления $\overline{R} = -\mu_4 \cdot \overline{v}_n$, пропорциональную скорости движения поршня \overline{v}_n , где $\mu_4 > 0$ - коэффициент сопротивления демпфера.

Там, где это необходимо, на схемах вариантов указан радиус инерции звена относительно центральной оси, в остальных вариантах тела вращения принять за однородные сплошные цилиндры.

В вариантах 1,2,3,4, 9, 21, 27 характеристики упругих элементов заданы через их статические деформации Δ_{cm_2} , (линейные или угловые).

Внешнее воздействие во всех вариантах изменяется во времени по закону *sinpt*. При выполнении домашнего задания "Малые колебания - определение параметров колебательного процесса" необходимо:

- 1. Составить дифференциальное уравнение малых колебаний системы.
- 2. Получить решение этого уравнения и, используя заданные начальные условия, определить постоянные интегрирования.
- 3. Определить период установившихся вынужденных колебаний $T_{\it e}$ и добротность системы Д, а для вариантов с малым линейно-вязким сопротивлением ($\it n < k$) дополнительно: $\it T_{\it l}$ условный период затухающих колебаний, $\it \delta$ логарифмический декремент колебаний, $\it \tau_{\it o}$ постоянную времени затухающих колебаний. При выполнении домашнего задания "Малые колебания исследование колебательного процесса" предполагается, что по истечении времени $\it 4T_{\it e} + 3/n$ ($\it 4T_{\it e} + 3 \tau_{\it o}$) амплитуда внешнего воздействия увеличивается в два раза, а еще через такой же промежуток времени внешнее воздействие прекращается. Необходимо:
 - 1. Исследовать амплитудно-частотную и фазочастотную характеристики системы.
- 2. Исследовать процессы перехода от начального возмущенного состояния к установившимся вынужденным колебаниям, от установившихся вынужденных колебаний при исходной амплитуде внешнего воздействия к установившимся колебаниям при удвоении амплитуды и от последних к состоянию покоя после прекращения внешнего воздействия.
- 3. Построить график q(t), включающий все переходные процессы.

ТАБЛИЦА ИСХОДНЫХ ДАННЫХ.

Ŋo	r	l	m_1	m_2	<i>c</i> ₃	Δ_{cm_3}	μ_4	$F_{\theta}(M_{\theta})$	s_{θ}	p	q(0)	ġ(0)
вар	М	М	кг	кг	$\frac{H}{M}(\frac{H \cdot M}{pa\partial})$	м (рад)	Н•с/м	<i>Н∙с/м</i>	М	рад/с	м(рад)	$\frac{\mathcal{M}}{c}(\frac{pa\partial}{c})$
1	2	3	4	5	6	7	8	9	10	11	12	13
1	0,4	_	50	_	_	0,1	1300	100	_	5	-0,2	1
2	0,25	_	100	_	_	0,1	500	_	0,1	10	0,1	-1
3	_	_	6,8	8	_	0,034	196	_	0,03	11	0,05	-1
4	0,1	_	3,8	4	_	0,019	78,4	3	_	10	0,01	-0,1
5	0,1	_	2	_	_	_	6	_	0,02	4	0,05	0,1
6	_	1	1	_	45,8	_	2	_	0,01	5	0,01	0,5
7	_	0,4	6	_	36,63	-	15	_	0,03	5	0,1	-10
8	0,2	0,4	12	4	1073,5	-	480	10	_	9	0,02	-0,5
9	0,1	_	2	4	_	0,25	67,2	1	_	15	-0,02	-0,5
10	0,1	_	5	-	147	1	210	9	_	10	0,06	0,6
11	_	0,5	3	6	244,1	-	96	20	_	8	0,1	1
12	0,5	_	10	-	6000	1	150	_	0,03	50	0,1	-1
13	0,1	_	4	1	700	_	21	_	0,002	10	0,02	0,5
14	_	0,5	0,5	1	3278,4	-	96	_	0,05	16	0,1	-0,5
15	_	_	4	1	122,5	_	15	_	0,2	5	-0,1	-1
16	0,4	_	100	50	20150	_	500	200	_	10	0,1	-1
17	0,25		200	88	512		1920		0,01	2	0,05	0,3
18	_	1	2	1	384	_	120	36	_	8	0,05	0,5
19	0,2	1	8	2	500	_	400	12	-	11	0,05	-2,0
20	0,2	1	24	6	7605	1	450	ı	0,01	12	0,05	0,5
21	-	1	4	4	-	0,06	120	ı	0,024	10	0,02	0,1
22	0,4	0,8	4	2	549	I	30	20	1	20	0,02	-0,5
23	_	_	3	_	288	-	45	_	0,1	40	0,01	0,1
24	0,2	-	20	10	640	-	320	100	_	20	0,05	0,2
25	_	_	10	5	4500	-	200	120	_	20	0,02	0,1
26	0,2	-	20	1	1080	-	15	_	0,02	5	0,1	0,5
27	_	_	4	16	_	0,12	20	40	_	8	-0,15	-1
28	0,2	-	2	4	6,4	1	40	1,5	-	6	0,1	-0,5
29	0,1	_	6	3	360	-	60	10	_	30	0,1	0
30	0,2	0,5	6	3	1058,8		100		0,02	10	0,06	0,5
31	0,2	_	6	4	625	-	300	_	0,02	19	0,05	-0,5
32	0,2	_	18	8	1600	_	500	500	_	12	0,05	-1

