DEVOIR MAISON 1

Exercice 1. Soit H un sous-ensemble d'un groupe G. On considère la relation

$$x\mathcal{R}_H y \iff y^{-1}x \in H.$$

- 1. Démontrer que \mathcal{R}_H est réflexive si et seulement si l'unité e de G est dans H.
- 2. Démontrer que \mathcal{R}_H est symétrique si et seulement si pour tout $h \in H$, on a $h^{-1} \in H$.
- 3. Démontrer que \mathcal{R}_H est transitive si et seulement si $\forall h, k \in H$ on a que $h \cdot k \in H$.

En déduire que \mathcal{R}_H est une relation d'équivalence si et seulement si H est un sous-groupe de G.

Exercice 2. Soit n > 1 un entier. On veut donner une formule pour l'ordre d'un élément dans $\mathbb{Z}/n\mathbb{Z}$. On considère donc le groupe $\mathbb{Z}/n\mathbb{Z}$ avec sa loi $\overline{+}$ usuelle. On notera $[i]_n$ la classe d'un entier i dans $\mathbb{Z}/n\mathbb{Z}$. On note ord $([i]_n)$ l'ordre de $[i]_n$ dans $(\mathbb{Z}/n\mathbb{Z}, +)$.

1. Démontrer qu'il existe un entier k tel que

$$i \operatorname{ord}([i]_n) = kn.$$

- 2. En déduire que $\operatorname{ord}([i]_n)$ est divisible par $\frac{n}{i \wedge n}$ (indic: utiliser le lemme de Gauss).
- 3. Démontrer que pour tout $i \in \mathbb{Z}$, on a que

$$\operatorname{ord}([i]_n) = \frac{n}{i \wedge n}$$

Exercice 3. Pour tout $\theta \in \mathbb{R}$, on considère la matrice de 2x2 suivante : $R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$. On identifie \mathbb{R}^2 avec des vecteurs colonnes et on considère l'application $r : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ définie par le produit matriciel $r(\theta, X) = R_{\theta} X$.

- 1. Démontrer que r est une action du groupe $(\mathbb{R}, +)$ sur \mathbb{R}^2 .
- 2. Déterminer le stabilisateur de $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et celui de 0.
- 3. Démontrer que l'orbite de $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ pour cette action est le sous-ensemble $\left\{ \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}^2 \, / \, a^2 + b^2 = 1 \right\}$.
- 4. Démontrer que l'orbite de $\binom{a}{b}$ est $\left\{\sqrt{a^2+b^2}\begin{pmatrix}\cos(\varphi)\\\sin(\varphi)\end{pmatrix}\in\mathbb{R}^2\,/\,\varphi\in\mathbb{R}\right\}$. et en déduire que $\binom{a}{b}$ et $\binom{x}{y}$ sont dans la même orbite si et seulement si $a^2+b^2=x^2+y^2$.
- 5. Décrire géométriquement la collection des orbites de \mathbb{R}^2 pour cette action.