

STUDENT ID NO										

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2016/2017

EEE1026 - ELECTRONICS II

(All Sections / Groups)

02 MARCH 2017 02:30 p.m. - 04:30 p.m. (2 Hours)

INSTRUCTION TO STUDENTS

- 1. This Question paper consists of 8 pages including cover page and List of Equations with 4 Questions only.
- 2. Attempt ALL FOUR questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please print all your answers in the answer Booklet provided.

QUESTION 1

- (a) The Junction Field-Effect Transistor (JFET) is a fundamental electronic device that can be used as an electronic switch, which can also be constructed into amplifier.
 - (i) Describe TWO methods to control the current flow in the operation of the JFET. [4 marks]
 - (ii) Describe FOUR advantages of the JFET compared to Bipolar Junction Transistors (BJTs). [8 marks]
- (b) Refer to the circuit shown in Figure Q1(b), where the circuit output voltage has a 1V loss.

Figure Q1(b)

(i) Compute the voltage value of the upper trigger point (UTP).

[4 marks]

(ii) Compute the voltage value of the lower trigger point (LTP).

[4 marks].

(iii) If the input voltage, V_{in} is a sinusoidal signal with peak-to-peak voltage, V_{pp} = 30V. Sketch the output voltage, V_{out} waveform with respect to its input voltage, V_{in} waveform.

[5 marks]

Continued ...

QUESTION 2

(a) The junction Field Effect Transistor (JFET) Small signal model is shown in Figure Q2(a), with $R_G=20k\Omega$, $r_d=30k\Omega$, $R_D=3k\Omega$, $R_L=1k\Omega$, $C_{gs}=2.5\,pF$, $C_{gd}=2\,pF$, $C_{ds}=1\,pF$, $A_V=-8$ and $g_m=2mA/V$.

Figure Q2(a)

(i) Compute the values of CA and CB.

[4 marks]

(ii) Compute the values of the total input resistance R_{Ti} , total input capacitance C_{ti} , total output resistance R_{To} and total output capacitance C_{to} .

[5 marks]

- (iii) Compute the values of the upper cutoff frequencies at the input and output circuits, f_{Hi} and f_{Ho}. [3 marks]
- (b) The input of the amplifier circuit is fed with an 2mV 10kHz square wave. The resultant output waveform is shown in Figure Q2 (b). Find the following:
 - (i) Rise time (t_r) [1 mark]
 - (ii) The bandwidth of the amplifier [2 marks]
 - (iii) Tilt (P)% [2 marks]
 - (iv) The low cut-off frequency [2 marks]

Figure Q2 (b)

(c) A Common-Emitter BJT amplifier circuit is shown in Figure Q2 (c). Given values: $R_1 = 100 k\Omega$, $R_2 = 33 k\Omega$, $R_C = 2.2 k\Omega$, $R_E = 1 k\Omega$, $r_e = 10\Omega$ $R_S = 10 k\Omega$, $V_{CC} = 15 V$, $\beta ac = 120$ and $R_{th} = 7.127 k\Omega$, determine the cut-off frequency of the bypass RC circuit.

[6 marks]

Continued ...

QUESTION 3

- (a) An RC-coupled class-A power amplifier is shown in Figure Q3. The BJT amplifier has an amplification factor, $\beta = 150$. Calculate the DC load line values of $V_{CE(cutoff)}$ and $I_{C(sat)}$. [8 marks]
- (b) Calculate the following, based on Figure Q3:

(i)	The base voltage V_{B_i}	[3 marks]
(ii)	The voltage across emitter resistance V_E	[3 marks]
(iii)	The collector current at the Q-point I_{CQ}	[2 marks]
(iv)	The collector-emitter voltage at Q-point, V_{CEQ} ,	[3 marks]
(v)	The effective AC resistance of the load r_{ϕ}	[2 marks]
(vi)	$v_{ce(off)}$ and $i_{c(sat)}$,	[4 marks]

QUESTION 4

For an n-channel Junction Field-Effect Transistor (JFET), the gate-source cut-off voltage, $V_{GS(OFF)}$, is -4 V and the drain saturation current, I_{DSS} is 50 mA. The drain current I_D , is 12 mA. Determine the gate-to-source voltage, V_{GS} , of the JFET.

[4 marks]

7. 7. 5.

Continued ...

(a) For an n-channel JFET amplifier circuit given in Figure Q4(b), the $V_{GS(OFF)} = -5$ V, the $I_{DSS} = 4$ mA, and the $V_{GS} = 0$ V. The drain supply voltage, V_{DD} , = 20 V, is larger than the pinch-off voltage, $V_P(|V_{GS(OFF)}| = |V_P|)$, so that the transistor operates in the saturation region. Determine the following:

(i) the drain current, ID,

[2 marks]

(ii) the drain-source voltage, V_{DS},

[3 marks]

(iii) the drain voltage, V_D, and

[2 marks]

(iv) the source voltage, V_S.

[2 marks]

(c) Refer to the circuit of the astable multivibrator shown in Figure Q4(c), with the $V_{CC} = 12V$, $R_A = 5k\Omega$, $R_B = 2k\Omega$ and $C_1 = 0.02\mu F$.

EEE1026		ELECTRONICS II	MARCH 2017
	(i)	Compute the value of pulse width, T1.	[2 marks]
	(ii)	Compute the value of space width, T2.	[2 marks]
	(iii)	Compute the value of free running frequency, fo.	[3 marks]
	(iv)	Compute the value of the duty cycle, D.	[3 marks]
	(v)	Design the multivibrator by computing the new value the ratio of space width/pulse width, T2/T1 = 0.9.	of resistor, R _A , if [2 marks]

End of Questions

Appendix

List of Equations

$$\begin{split} I_D &= I_{DSS} \Biggl(1 - \frac{V_{GS}}{V_{GS(OFF)}}\Biggr)^2 \\ &\text{UTP} = \frac{-Ri}{Rf} V_{out} - \qquad \text{LTP} = \frac{-Ri}{Rf} V_{out} + \\ &\text{C}_A = \text{Cgd (1-Av)}, \ \ \text{C}_B = \text{Cgd (1-1/Av)} \\ &f_{Hi} = \frac{1}{2\pi R_{Ti} C_{ti}} \qquad f_{Ho} = \frac{1}{2\pi R_{To} C_{to}} \\ &\text{Tilt\%(P)} = \frac{V - V'}{V}, \quad f_L = \frac{P}{\pi} f_s \\ &f_{c(bypass)} = \frac{1}{2\pi (R_{iin(emitter)} \parallel R_E) C_2} \end{split}$$

$$V_{CC} = I_C R_C + V_{CE} + I_E R_E$$

$$V_{\text{CC}} = I_{\text{C}}R_{\text{C}} + V_{\text{CE}} + I_{\text{E}}R_{\text{E}}$$

$$V_{B} = \frac{R_{2}}{R_{1} + R_{2}}V_{CC}$$

$$PW=T_1 = 0.693 (R_A + R_B) C_I$$
, $SW=T_2 = 0.693 R_B C_I$

$$f_o = \frac{1.44}{(R_A + 2R_B)C_1}$$

End of Paper