EE2023 Signals & Systems Quiz Semester 1 AY2015/16

Date: 6 October 2015 Time Allowed: 1.5 hours

1	r	4					
ı	n	CT.	rn	cti	nn	C	•
				.	,,,,	.7	_

- 1. Answer all 4 questions. Each question carries 10 marks.
- 2. This is a closed book quiz.
- 3. Tables of Fourier transforms and trigonometric identities are given on Pages 11 and 12.
- 4. No programmable or graphic calculator is allowed.
- 5. Write your answers in the spaces indicated in this question paper. Attachment is not allowed.
- 6. Write your name, matric number and lecture group in the spaces indicated below.

Name :		 	
Matric #:		 	
Class Grou	p#:		

For your information:

Group 1: A/Prof Loh Ai Poh Group 2: Prof Lawrence Wong Group 3: A/Prof Tan Woei Wan

Question #	Marks
1	
2	
3	
4	
Total Marks	

\sim 1	O 1	.1		
Q1	Consider	the	signals	S

$$x_1(t) = \sin^2(10\pi t) + 2\cos(6\pi t)$$
 and $x_2(t) = 5x_1(t) * \sin(5t)$

where * denotes convolution.

(a) Find the Fourier Transforms of $x_1(t)$ and $x_2(t)$.

(4 marks)

- (b) Sketch both the amplitude spectra of $x_1(t)$ and $x_2(t)$. Show clearly all quantities involved. (3 marks)
- (c) Suppose $x_2(t)$ is sampled at 4Hz. Sketch its sampled spectrum.

(3 marks)

Q.1 ANSWER \sim continued

Q.2	Given that the Fourier Transform of $e^{-\frac{t^2}{\alpha^2}}$ is $\alpha\sqrt{\pi}e^{-\alpha^2\pi^2f^2}$.	
) Find the Fourier Transform of $x_1(t) = 4e^{-4\pi^2 t^2}$.	(2 marks)
) Find the Fourier Transform of $x_2(t) = \int_{-\infty}^{t} e^{-\frac{\tau^2}{4}} d\tau$.	(3 marks)
) Find the Fourier Transform of $x_3(t) = 4\cos(16\pi t)e^{-4\pi^2 t^2}$.) Find the 3dB bandwidth of $x_1(t)$.	(3 marks) (2 marks)
Q.2 A	NSWER	

Q.2 ANSWER \sim continued

O 3	Consider the periodic signal $x(t) = \sum_{n=-\infty}^{\infty} x_g(t-6n)$, where $x_g(t) = \begin{cases} 0 & \text{otherwise} \\ 0 & \text{otherwise} \end{cases}$	t^2	-3 < t < 3
Q.3	Consider the periodic signal $x(t) = \sum_{n=-\infty}^{\infty} x_g(t-0n)$, where $x_g(t) = \sum_{n=-\infty}^{\infty} x_g(t-0n)$	0	otherwise

(a) Sketch x(t), clearly labelling the axes.

(2 marks)

(b) What is the fundamental cyclic frequency (Hz) of the signal x(t)?

(1 marks)

(c) The Fourier Series expansion of x(t) is

$$x(t) = c_0 + \sum_{k=1}^{\infty} \frac{36}{k^2 \pi^2} (-1)^k \cos \frac{k\pi t}{3}.$$

i. Show that the DC value of x(t) is 3 i.e. $c_0 = 3$.

(4 marks)

ii. Suppose the Fourier Series expansion for x(t) is truncated at the 2^{nd} harmonic term i.e.

$$\tilde{x}(t) = 3 + \sum_{k=1}^{2} \frac{36}{k^2 \pi^2} (-1)^k \cos \frac{k\pi t}{3}.$$

Determine the truncation error, $x(t) - \tilde{x}(t)$, at t = 0.

(3 marks)

0.3	A N	CII	$I\mathbf{D}$
いっ	A N	S VI	$I \cap K$

·

Q.3 ANSWER \sim continued

Q.4 (a) Determine the Fourier transform of the periodic signal x(t) shown in Figure Q.4.

(7 marks)

Figure Q.4

(b) Determine the average signal power of x(t).

(3 marks)

O.4	I AN	ISW	ER!

Q.4 ANSWER \sim continued

EE2023 Semester 1 2015/16 Quiz

Numeric Solution

 $X_1(f) = \frac{1}{2}\delta(f) - \frac{1}{4}[\delta(f-10) + \delta(f+10)] + [\delta(f-3) + \delta(f+3)]$ $X_2(f) = \frac{1}{2}\delta(f)$

Q2 (a)
$$X_1(f) = \frac{2}{\sqrt{\pi}}e^{-0.25f^2}$$

(b) $X_2(f) = \frac{1}{j\sqrt{\pi}f}e^{-4\pi^2f^2} + \sqrt{\pi}\delta(f)$

(b)
$$X_2(f) = \frac{1}{j\sqrt{\pi}f}e^{-4\pi^2f^2} + \sqrt{\pi} \delta(f)$$

(c)
$$X_3(f) = \frac{1}{\sqrt{\pi}} \left[e^{-0.25(f-8)^2} + e^{-0.25(f+8)^2} \right]$$

(d) Bandwidth = $\sqrt{2 \ln 2}$

(b)
$$\frac{1}{6}$$
 Hz

(c)
$$\frac{1}{6} \int_{-3}^{3} t^2 dt = 3$$

$$x(0) = 0$$
, $\tilde{x}(0) = 3 + \sum_{k=1}^{2} \frac{36}{k^2 \pi^2} (-1)^k$ and $x(0) - \tilde{x}(0) = -0.26$

Q4 (a)
$$X(f) = \frac{1}{11} \sum_{k=-\infty}^{\infty} 9 \operatorname{sinc}^{2} \left(\frac{3k}{11}\right) \left[\exp\left(-\frac{j4\pi k}{11}\right) + \exp\left(\frac{j4\pi k}{11}\right) \right] \delta\left(f - \frac{k}{11}\right)$$
$$P = \frac{2}{11} \left[\int_{0}^{1} 2^{2} dt + \int_{1}^{2} (t+1)^{2} dt + \int_{2}^{5} (-t+5)^{2} dt \right] = 3.5$$