- 5.1 પ્રસ્તાવના
- 5.2 દબાણ અને ઘનતા
- 5.3 પાસ્કલનો નિયમ અને તેના ઉપયોગો
- 5.4 તરલ સ્તંભને કારણે દબાણ
- 5.5 આર્કિમિડિઝનો સિદ્ધાંત
- 5.6 તરલ ડાઇનેમિક્સ
- 5.7 સાતત્ય સમીકરણ
- 5.8 બર્નુલીનું સમીકરણ અને તેના ઉપયોગો
- **5.9** શ્યાનતા
- 5.10 સ્ટૉક્સનો નિયમ
- 5.11 રેનોલ્ડ્ઝ-અંક અને ક્રાંતિવેગ
- 5.12 પૃષ્ઠ-ઊર્જા અને પૃષ્ઠતાણ
- 5.13 સંપર્કકોણ
- 5.14 કેશાકર્પણ
 - સારાંશ
 - સ્વાધ્યાય

5.1 પ્રસ્તાવના (Introduction)

વહી શકે તેવા દ્રવ્યને તરલ કહે છે. પ્રવાહીઓ અને વાયુઓ વહી શકે છે, તેથી તેઓને તરલ કહે છે. પીગળેલ કાચ અને ડામર પણ ધીમેથી વહી શકે છે. તેથી તેઓનો પણ સમાવેશ તરલમાં થાય છે.

તરલ મિકેનિક્સ એ તરલ સ્ટેટીક્સ અને તરલ ડાઇનેમિક્સનું બનેલું છે. તરલ સ્ટેટીક્સમાં સ્થિર તરલ પર લાગતાં બળો અને દબાશનો અભ્યાસ કરવામાં આવે છે. તરલ ડાઇનેમિક્સમાં તરલના ગુણધર્મો અને તરલની ગતિનો અભ્યાસ કરવામાં આવે છે. તરલ ડાઇનેમિક્સનો અભ્યાસ બે ભાગમાં કરવામાં આવે છે. હાઇડ્રોડાઇનેમિક્સ અને ઍરોડાઇનેમિક્સ.

આપણે દબાણ અને પાસ્કલના નિયમનો અભ્યાસ તરલ સ્ટેટીક્સનો કરીશું. તરલ ડાઇનેમિક્સમાં પ્રવાહની લાક્ષણિકતાઓ, બર્નુલીનું સમીકરણ અને તેના ઉપયોગો અને શ્યાનતાનો અભ્યાસ કરીશું, અને છેલ્લે સ્થિર પ્રવાહીના પૃષ્ઠતાણની ચર્ચા પણ કરીશું. તો ચાલો શરૂઆત તરલ સ્ટેટીક્સથી કરીએ.

5.2 દબાણ અને ઘનતા

"પદાર્થની સપાટી પર એકમક્ષેત્રફળ દીઠ સપાટીને લંબરૂપે લાગતા બળને સપાટી પર લાગતું દબાશ કહે છે."

દબાણ
$$(P) = \frac{\text{બળ}(F)}{\text{ક્ષેત્રફળ}(A)}$$
 (5.2.1)

જો બળ સપાટીને લંબ ન હોય, તો બળનો સપાટીને લંબઘટક આ સપાટી પર લાગતા દબાણ માટે ધ્યાનમાં લેવામાં છે. (જુઓ આકૃતિ 5.1)

સપાટી પરનું દબાણ આકૃતિ 5.1

92

જો બળ (\overrightarrow{F}) , સપાટીને દોરેલા લંબ સાથે θ ખૂશો બનાવે તો $Fcos\theta$ જેટલું બળ સપાટીને લંબ દિશામાં લાગે. તેથી દબાશની વ્યાખ્યા અનુસાર, દબાશ

$$P = \frac{Fcos\theta}{A}$$
 (5.2.2)

દબાણનો એકમ newton/(metre) 2 , (N/m 2) છે, જે પ્રસિદ્ધ ફ્રેન્ચ ભૌતિકવિજ્ઞાની બ્લેઇસ પાસ્કલ (1623—1662)ના માનમાં pascal (P_a) પણ ઓળખાય છે. દબાણ અદિશ રાશિ છે.

પાસ્કલ સિવાયના દબાશના એકમો બાર, વાતાવરણ (atm) અને ટોર (torr) છે.

$$1 P_a = 1 N m^{-2}$$

1 bar =
$$10^5 P_a$$

અને 1 વાતાવરણ (atm) = $1.013 \times 10^5 P_a$

1 torr =
$$133.28 P_a$$

1 atm દબાણ દરિયાની સપાટીએ વાતાવરણ દ્વારા ઉત્પન્ન થતું દબાણ છે. તેને પારાના સ્તંભની ઊંચાઈના સ્વરૂપમાં cm — Hg કે mm — Hgમાં પણ દર્શાવાય છે.

$$1 \text{ atm} = 76 \text{ cm} - \text{Hg} = 760 \text{ mm} - \text{Hg}$$

ઘનતા : કોઈ પણ પદાર્થના દળ અને કદના ગુણોત્તરને તે પદાર્થની ઘનતા કહે છે. જો m દળના પદાર્થનું કદ V હોય, તો ઘનતા (ρ) નીચેના સૂત્રથી મળે.

$$\rho = \frac{m}{V} \tag{5.2.3}$$

સ્પષ્ટ છે કે ઘનતાનો એકમ kg m⁻³ થાય. સામાન્ય રીતે પ્રવાહીઓ અદબનીય હોય છે. (મોટા ભાગના પ્રવાહી કદમાં થતા પ્રતિશત ફેરફાર 0.005 ટકાના ક્રમનો હોય છે.) તેથી આપેલ તાપમાને તેમની ઘનતા અચળ હોય છે. વાયુઓની ઘનતા તેમના દબાણ પર આધારિત હોય છે. ટેબલ 5.1 માં કેટલાક તરલની ઘનતા આપેલ છે.

ટેબલ 5.1 : સામાન્ય તાપમાને અને દબાણે તરણોની ઘનતા (માત્ર જાણકારી માટે)

પ્રવાહી	ધનતા (kg m ⁻³)	વાયુ	ધનતા (kg m ⁻³)
પાણી	1×10^{3}	હવા	1.29
દરિયાનું પાણી	1.03×10^{3}	ઑક્સિજન	1.43
પારો	13.6×10^{3}	હાઇડ્રોજન	9.0×10^{-2}
ઇથાઇલ	0.806×10^{3}	ઇન્ટર	$10^{-18} - 10^{-21}$
આલ્કોહૉલ		સ્ટેલર	
		સ્પેસ	
રુધિર	1.06×10^{3}		

કેટલીક વાર, આપેલ પદાર્થની ઘનતાને તેની વિશિષ્ટ ઘનતાનું મૂલ્ય આપી વર્ણવવામાં આવે છે. "કોઈ પણ પદાર્થની વિશિષ્ટ ઘનતા એ પદાર્થની ઘનતા અને પાણીની 277 K તાપમાને ઘનતાનો ગુણોત્તર છે." આમ,

વિશિષ્ટ ધનતા =
$$\frac{\text{પદાર્થની ધનતા}}{277 \text{ K તાપમાને પાણીની ધનતા}}$$

વિશિષ્ટ ઘનતા પરિમાણરહિત છે. તેને સાપેક્ષ ઘનતા કે વિશિષ્ટ ગુરુત્વ પણ કહે છે. ઘનતાના વ્યસ્તને વિશિષ્ટ કદ કહે છે.

જો આપણે આપેલા પદાર્થના કદ જેટલું જ પાણી લઈએ, તો વિશિષ્ટ ઘનતા નીચે મુજબ મેળવી શકાય.

પદાર્થની વિશિષ્ટ ઘનતા =

277 K तापभाने तेटला ४ डहना पाष्ट्रीनुं हण

પદાર્થની વિશિષ્ટ ઘનતા શોધવા માટે ઉપર્યુક્ત સમીકરણ ખૂબ ઉપયોગી છે. આ રીતે પદાર્થની વિશિષ્ટ ઘનતા માટે પદાર્થની ઘનતા મેળવવાની જરૂરી રહેતી નથી.

5.3 પાસ્કલનો નિયમ અને તેના ઉપયોગો

પાસ્કલનો નિયમ : ''જો ગુરુત્વાકર્ષણની અસરોને અવગણવામાં આવે તો સંતુલન-અવસ્થામાં રહેલા અદબનીય તરલમાં પ્રત્યેક બિં<u>દ</u>એ દબાણ સમાન હોય છે.'

આ વિધાનને સહેલાઈથી નીચે મુજબ ચકાસી શકાય : સ્થિર અવસ્થામાં રહેલા પ્રવાહીના અંદરના ભાગમાં એક પ્રવાહી ખંડ વિચારો. આ ખંડ એક કાટકોણ ત્રિકોણની બનેલી બે બાજુ ધરાવતો એક પ્રિઝમ છે. આ ખંડની સપાટીઓ ADEB, CFEB અને ADFC ના ક્ષેત્રફળ અનુક્રમે A_1 , A_2 અને A_3 .

પાસ્કલના નિયમની ચકાસણી આકૃતિ 5.2

આકૃતિ 5.2 પરથી સ્પષ્ટ છે કે, $\mathbf{A}_2 = \mathbf{A}_1 cos\theta \text{ and } \mathbf{A}_3 = \mathbf{A}_1 sin\theta$ વળી, પ્રવાહી ખંડ સંતુલનમાં હોવાથી,

 $F_2 = F_1 cos\theta$ અને $F_3 = F_1 sin\theta$ હવે સપાટી ADEB પરનું દબાણ $P_1 = \frac{F_1}{A}$. સપાટી CFEB પરનું દબાણ

$$P_2 = \frac{F_2}{A_2} = \frac{F_1 cos\theta}{A_1 cos\theta} = \frac{F_1}{A_1}$$

અને સપાટી ADFC પરનું દબાણ

$$P_3=rac{F_3}{A_3}=rac{F_1cos heta}{A_1cos heta}=rac{F_1}{A_1}$$

આમ, $P_1=P_2=P_3$

વળી, θ ખૂશો યાદેચ્છિક હોવાથી આ પરિણામ કોઈ પણ સપાટી માટે સાચું છે. આમ, પાસ્કલનો નિયમ સાબિત થયો.

પાસ્કલના નિયમની એક સીધી અસર એ છે કે, ''બંધ પાત્રમાં ભરેલા અદબનીય તરલ પરના દબાણમાં કરેલો ફેરફાર, તરલના પ્રત્યેક ભાગમાં અને પાત્રની દીવાલ પર એક સરખી રીતે પ્રસરે છે.'' આ દબાણ પાત્રની દીવાલને લંબ રૂપે હોય છે. આ વિધાનને પાસ્કલના તરલ-દબાણના પ્રસરણનો નિયમ કહે છે.

આકૃતિ 5.3

આ પરિશામનું નિદર્શન એક કાચના ફ્લાસ્કની મદદથી કરી શકાય. આ ફ્લાસ્કમાંથી બધી બાજુએ નાની નળીઓ બહાર નીકળે છે (આકૃતિ 5.3). આ પાત્રમાં થોડું રંગીન પાણી ભરો. આ ફ્લાસ્કના ઉપરના ભાગમાં જોડાયેલા પિસ્ટનને થોડો નીચે તરફ ધકેલો. પાત્ર સાથે જોડાયેલ દરેક નળીમાં પાણી સમાન ઊંચાઈએ ઉપર ચઢશે. આ દર્શાવે છે કે પ્રવાહીના કોઈ પણ ભાગમાં દબાણમાં કરેલો ફેરફાર પ્રવાહીમાં દરેક દિશામાં સમાન રીતે પ્રસરે છે.

હાઇડ્રોલિક લિફ્ટ : હાઇડ્રોલિક લિફ્ટ પાસ્કલના નિયમ પર કાર્ય કરે છે. તે A_1 અને A_2 , $(A_1 << A_2)$ જેટલા આડછેદના ક્ષેત્રફળ ધરાવતા બે નળાકારનું બનેલું સાધન છે (આકૃતિ 5.4). આ બે નળાકારમાં ઘર્ષણરહિત રીતે સરકી શકે તેવા હવાચુસ્ત પિસ્ટન પર ફ્રીટ કરેલા છે. આ સાધનમાં દર્શાવ્યા મુજબ આકૃતિમાં પ્રવાહી ભરવામાં આવે છે.

હાઇડ્રોલિક જેક આકૃતિ 5.4

ધારો કે A_1 જેટલો આડછેદ ધરાવતા પિસ્ટન પર F_1 જેટલું બળ લગાડવામાં આવે છે. તેને કારણે આ આડછેદ પર દબાણ.

$$P = \frac{F_1}{A_1}$$

આ દબાશ પ્રવાહીમાં સમાન રીતે પ્રસરિત થતું હોવાથી મોટા આડછેદવાળા પિસ્ટન પર પણ આટલું જ દબાણ લાગશે. આમ, બીજા પિસ્ટન પરનું દબાણ, આમ,

$$P = \frac{F_2}{A_2}$$

$$\therefore \frac{F_2}{A_2} = \frac{F_1}{A_1}$$

$$\therefore F_2 = F_1 \left(\frac{A_2}{A_1}\right)$$

અત્રે, $A_1 << A_2$ હોવાથી $F_1 << F_2$. આમ, ઓછા પ્રયત્નબળ (F1) વડે ભારે પદાર્થને ઊંચકી શકાય છે.

હાઇડ્રોલિક બ્રેક: મોટા ભાગનાં ઑટોમોબાઇલ્સ આ નિયમ પર કામ કરતી હાઇડ્રોલિક બ્રેક ધરાવે છે. જ્યારે વાહનચાલક બ્રેક-પેડલ પર થોડું બળ લગાડે છે. ત્યારે માસ્ટર પિસ્ટન એ માસ્ટર સિલિન્ડરમાં ધકેલાય છે. આથી ઉદ્ભવતું દબાણ બ્રેકઑઇલ મારફતે ઘટ્યા વિના મોટા ક્ષેત્રફળવાળા પિસ્ટન પર લાગુ પડે છે. આથી પિસ્ટન પર મોટું બળ લાગે છે. જે બ્રેકશુઝને ધકેલીને બ્રેક લાઇનરના સંપર્કમાં લાગે છે. આમ, પેડલ પર લગાડેલા નાના બળ વડે પૈડાં પર મોટું અવરોધક બળ લાગે છે.

ડોર ક્લોઝર અને વાહનોના શૉક ઍબ્સોર્બર પણ પાસ્કલના નિયમ પર કાર્ય કરે છે.

(આકૃતિ 5.5 માત્ર જાણકારી માટે છે.)

5.4 તરલસ્તંભને કારણે ઉત્પન્ન થતું દબાણ (Pressure Due to Fluid Column)

ધારો કે કોઈ પાત્રમાં ρ ઘનતાવાળું પ્રવાહી સ્થિત સંતુલનમાં છે. આ પ્રવાહીમાં y ઊંડાઈએ રહેલા dy જાડાઈનો અને A જેટલા આડછેદવાળો નળાકાર તરલ-ખંડ વિચારો. આકૃતિ 5.6માં દર્શાવ્યા મુજબ આ તરલ-ખંડનું કદ Ady છે, અને તેના દળ અને વજન અનુક્રમે $\rho \cdot A \cdot dy$ અને $dW = \rho g \cdot Ady$ થશે.

તરલસ્તંભ વડે ઉદ્ભવતું દબાશ **આકૃતિ 5.6**

ધારો કે આકૃતિ 5.6માં દર્શાવ્યા મુજબ આ નળાકાર ખંડની ઉપરની અને નીચેની સપાટી પર દબાણ અનુક્રમે P અને P+dp છે. તેથી ઉપરની સપાટી પર અધોદિશામાં લાગતું બળ PA થશે અને નીચેની સપાટી પર ઊર્ધ્વદિશામાં લાગતું બળ (P+dp)A થશે.

$$PA + dW = (P + dp)A$$

 $\therefore PA + \rho gAdy = PA + Adp$

$$\therefore \rho g A dy = A dp.$$

$$\therefore \frac{dp}{dy} = \rho g \tag{5.4.1}$$

આ સમીકરણ દર્શાવે છે કે દબાણમાં ઊંડાઈ (કે ઊંચાઈ) સાથે થતો ફેરફાર ભૌતિક રાશિ ρg પર આધારિત છે. ρgને વજનઘનતા (એકમકદવાળા પદાર્થનું વજન) કહે છે. મોટા ભાગના પ્રવાહીઓ અદબનીય હોવાથી ρg ઓછી ઊંચાઈના તરલસ્તંભ માટે અચળ રહે છે. હવા જેવા તરલ માટે ઘનતા ρ પૃથ્વીની ઊંચાઈ, તાપમાન વગેરે પર આધારિત છે. તેથી હવા માટે વજન ઘનતાનું મૂલ્ય અચળ ગણી ન શકાય.

આકૃતિ 5.6માં દર્શાવ્યા મુજબ પાત્ર ખુલ્લું હોવાથી પ્રવાહીની મુક્ત સપાટી પર વાતાવરણનું દબાણ હોય છે. તેથી y=0 માટે $P=P_a$ અને y=h ઊંડાઈએ દબાણ P સમીકરણ 5.4.1નું સંકલન કરીને મેળવી શકાય.

$$\int_{Pa}^{P} dP = \int_{0}^{h} \rho g dy$$

$$\therefore P - P_{a} = \rho g h$$

$$\therefore P = P_{a} + \rho g h$$
(5.4.2)

અહીં, $\mathbf{P}=\mathbf{P}_a+\rho gh$ એ નિરપેક્ષ દબાણ છે, જ્યારે $\mathbf{P}-\mathbf{P}_a$ તે બિન્દુને ગેજદબાશ અથવા હાઇડ્રોસ્ટેટિક દબાણ કહેવાય છે.

પ્રવાહીમાં કોઈ પણ બિન્દુએ દબાણ પાત્રના આકાર કે ક્ષેત્રફળ પર આધારિત નથી. આ હકીકતને હાઇડ્રોસ્ટેટિક પેરાડોક્સ કહે છે. (જુઓ આકૃતિ 5.7) જુદા-જુદા આકાર ધરાવતાં પણ એકબીજાં સાથે જોડાયેલાં પાત્રોમાં જ્યારે પ્રવાહી ભરવામાં આવે છે, ત્યારે દરેક પાત્રમાં પ્રવાહીની ઊંચાઈ સમાન હોય છે.

હાઇડ્રોસ્ટેટિક પેરોડોક્સ આકૃતિ 5.7

સમીકરણ (5.4.2) સૂચવે છે કે જો બે બિંદુઓ સ્થિર પ્રવાહીમાં એક જ સમક્ષિતિજ સમતલમાં આવેલાં હોય, તો આ બંને બિંદુ આગળ દબાણ સમાન હોય છે.

5.5 આર્કિમિડિઝનો સિદ્ધાંત : જ્યારે કોઈ પદાર્થને પ્રવાહીમાં આંશિક કે સંપૂર્શપણે ડુબાડવામાં આવે, ત્યારે તેના પર લાગતું ઉત્પ્લાવક બળ તેણે વિસ્થાપિત કરેલ પ્રવાહીના વજન જેટલું હોય છે અને તે વિસ્થાપિત કરેલા પ્રવાહીના દ્રવ્યમાનકેન્દ્ર પર ઊર્ધ્વ દિશામાં લાગે છે.

જો પ્રવાહીની ઘનતા ho_f અને ડુબાડેલ પદાર્થનું કદ V હોય, તો ઉત્પ્લાવક બળ $\mathbf{F}_b =
ho_f \mathbf{V} g$ થાય.

જે પદાર્થના વજનમાં થતા ઘટાડા જેટલું છે.

ફ્લોટેશનનો નિયમ : જ્યારે પદાર્થનું વજન (W) એ તરતા પદાર્થના આંશિક ડૂબેલા ભાગ દ્વારા વિસ્થાપિત પ્રવાહીના વજન જેટલું હોય, ત્યારે પદાર્થ પ્રવાહીની સપાટી પર તરે છે.

- (i) જો $W > F_h$ હોય, તો પદાર્થ પ્રવાહીમાં ડૂબે છે.
- (ii) જો $\mathbf{W} = \mathbf{F}_b$ હોય, તો પદાર્થ પ્રવાહીમાં કોઈ પણ ઊંડાઈએ સમતોલ રહે છે.
- (iii) જો ${\bf W} < {\bf F}_b$ હોય, તો પદાર્થ પ્રવાહીની સપાટી પર તરે છે.

ઉદાહરણ 1: આકૃતિ 5.8માં દર્શાવ્યા મુજબ બે નળાકાર પાત્રો A અને B એકબીજાં સાથે જોડાયેલાં છે. પાત્ર Aમાં 2 mની ઊંચાઈ સુધી પાણી ભરેલ છે. પાત્ર Bમાં કેરોસીન ભરેલું છે. આ બે પ્રવાહી હવાચુસ્ત તકતી C દ્વારા જુદા પાડેલાં છે. જો કેરોસીનના સ્તંભની ઊંચાઈ 2 m રાખવી હોય, તો પાત્ર Bમાં રહેલા પિસ્ટન પર કેટલું દળ મૂકવું પડે. આ દળ વડે તકતી C પર લાગતું બળ પણ શોધો. પિસ્ટનનું ક્ષેત્રફળ = 100 cm², તકતીનું ક્ષેત્રફળ 10 cm² પાણીની ઘનતા 10³ kg m³ અને કેરોસીનની વિશિષ્ટ ઘનતા = 0.8 છે.

આકૃતિ 5.8

ઉકેલ : પિસ્ટનનું ક્ષેત્રફળ $A_1=100~{\rm cm}^2=10^{-2}~{\rm m}^2$ તકતીનું ક્ષેત્રફળ $A_2=10~{\rm cm}^2=10^{-3}~{\rm m}^2$

પાણીની ઘનતા
$$ho_{\omega}=10^3~{
m kg}~{
m m}^{-3}$$
 હવે $\dfrac{\dot{s}\,\imath\,i\,\imath l\,l\, - l\,\, u\, e\, l\,\, l}{u\, l\, l\, l\,\, l\,\, l\,\, l\,\, l\,\, l\,\, l}=0.8$

 \therefore કેરોસીનની ઘનતા $ho_k=0.8 imes$ પાણીની ઘનતા $=0.8 imes10^3=800~{
m kg~m}^{-3}$ કેરોસીનની ઊંચાઈ $2~{
m m}$ છે.

પાણીના સ્તંભનું દબાણ $=rac{mg}{\mathrm{A}_1}$ + કેરોસીન સ્તંભનું દબાણ

$$\therefore h\rho_{\omega}g = h\rho_kg + \frac{mg}{A_1}$$

$$\therefore 2 \times 10^3 = 2 \times 800 + \frac{m}{10^{-2}}$$

$$\therefore 2000 - 1600 = \frac{m}{10^{-2}}$$

$$\therefore 400 \times 10^{-2} = m$$

$$\therefore$$
 m = 4 kg

હવે દળ m દ્વારા ઉત્પન્ન થતું દબાણ કોઈ ફેરફાર વિના તકતી C પર પણ લાગે છે, તેથી

$$4 \text{ kg દળને કારણે દબાણ} = \frac{\text{dsdl } C પર બળ}{\text{dsdl } C નું ક્ષેત્રફળ}$$

$$\therefore \frac{mg}{A_1} = \frac{F_C}{A_2}$$

$$\therefore F_C = mg \frac{A_2}{A_1}$$

$$= \frac{4 \times 9.8 \times 10^{-3}}{10^{-2}}$$

$$= 3.92 \text{ N}$$

ઉદાહરણ 2 : આકૃતિ 5.9માં દર્શાવ્યા મુજબ મેનોમીટરના નીચેના ભાગમાં ρ_2 ઘનતાવાળું તરલ અને ઉપરના ભાગમાં ρ_1 ઘનતાવાળું તરલ ભરેલું છે. મેનોમીટરના બે ભુજની ટોચ પરના દબાણ P_1 અને P_2 હોય તો, દબાણનો તફાવત $P_1 - P_2$ ગણો.

આકૃતિ 5.9

ઉકેલ : આકૃતિમાં દર્શાવ્યા મુજબ તળીયેથી સમાન ઊંચાઈ ધરાવતાં બે બિંદુઓ A અને B વિચારો.

આ બિંદુઓ માટે,

$$P_A = P_B$$

:.
$$P_1 + (h + x)\rho_1 g = x\rho_1 g + h\rho_2 g + P_2$$

$$\therefore P_1 - P_2 = x\rho_1 g + h\rho_2 g - h\rho_1 g - x\rho_1 g$$

$$\therefore P_1 - P_2 = (\rho_2 - \rho_1)gh$$

5.6 તરલ ડાઇનેમિક્સ

કણની ગતિનો અભ્યાસ કરતી વખતે આપણે કોઈ એક જ કણની ગતિ પર ધ્યાન કેન્દ્રિત કરવાનું હતું, તેથી ખાસ મુશ્કેલી પડતી ન હતી. પરંતુ તરલની ગતિમાં તો તરલના 'જથ્થાબંધ' કણો એકસાથે ગતિ કરતાં હોય, તો તે દરેકની ગતિ પર એકસાથે ધ્યાન કેવી રીતે આપી શકાય ? જે. એલ. લાગ્રાન્જે કણના ગતિવિજ્ઞાનના ખ્યાલોને વ્યાપક બનાવી તરલના દરેક કણ સાથે કેવી રીતે કામ પાર પાડવું તે સમજાવ્યું છે. જોકે અત્યારે આપણે આ અભિગમની ચિંતા કરીશું નહિ. વિજ્ઞાની ઑઇલરે વિકસાવેલો બીજો અભિગમ સગવડભર્યો છે. આ અભિગમમાં આપણે તરલના દરેક કણની ચિંતા કરતાં નથી, તેને બદલે તરલમાં દરેક બિંદુએ દરેક ક્ષણે તરલની ઘનતા, દબાણ અને વેગનો વિચાર કરવાનો હોય છે. આમ છતાં, તરલના ક્યોને સર્વથા ભૂલી જવાનું તો પોસાય નિહ, કારણ કે છેવટે તો તરલની ગતિ તેના ક્યોની ગતિને જ આભારી છે.

અહીં, આપણે તરલની ગતિના અભ્યાસમાં ઘણી આદર્શ અને સરળ પરિસ્થિતિઓનો જ વિચાર કરીશું. આ માટે સૌપ્રથમ તરલ વહનની કેટલીક લાક્ષણિકતાઓ જાણી લઈએ.

તરલ વહનની લાક્ષણિકતાઓ (Characteristics of Fluid Flow) :

(1) સ્થાયી વહન (Steady flow) : જો તરલ વહનમાં દરેક બિંદુ પાસે તરલનો વેગ સમય સાથે અફર (અચળ) રહેતો હોય, તો તેવા વહનને સ્થાયી વહન કહે છે. આનો અર્થ એવો થયો કે આવા વહનમાં કોઈ એક આપેલા બિંદુ પાસેથી પસાર થતા તરલ ક્ષ્મોનો વેગ એકસરખો જ રહે છે. આ બાબત સમજવા માટે આકૃતિ 5.10 માં દર્શાવ્યા પ્રમાણે નમૂના તરીકે ત્રણ બિંદુઓ P, Q અને R ધ્યાનમાં લો. આ બિંદુઓ પરથી પસાર થતા દરેક ક્ષ્મના વેગ અનુક્રમે $\stackrel{\rightarrow}{v_P}$, $\stackrel{\rightarrow}{v_Q}$ અને $\stackrel{\rightarrow}{v_R}$ છે. વળી, આ વેગો સમય સાથે અચળ રહે છે. યાદ રાખો કે સ્થાયી વહનમાં જુદાંજુદાં બિંદુઓ પરથી પસાર થતા ક્ષ્મના વેગ એકસરખા હોવા જરૂરી નથી, પરંતુ જે-તે બિંદુ પરથી પસાર થતા ક્ષ્મોના વેગ સમય સાથે બદલાતા નથી. એટલે કે $\stackrel{\rightarrow}{v_P}$ $\stackrel{\rightarrow}{v_Q}$ $\stackrel{\rightarrow}{v_R}$ હોવું જરૂરી નથી. પરંતુ $\stackrel{\rightarrow}{v_P}$, $\stackrel{\rightarrow}{v_Q}$

અને $\overrightarrow{v_R}$ સમય સાથે અચળ રહે તે જરૂરી છે. બહુ જ ઓછા વેગથી ગતિ કરતા તરલની ગતિને સ્થાયી વહન કહી શકાય. જેમકે ખૂબ ધીમે વહેતું ઝરણું.

સ્થાયી વહનની લાક્ષણિકતાઓ આકૃતિ 5.10

- (2) અસ્થાયી વહન (Unsteady flow): જો તરલ વહનમાં દરેક બિંદુ પાસે તરલનો વેગ સમય સાથે બદલાતો રહેતો હોય, તો તેવા વહનને અસ્થાયી વહન કહે છે. જેમકે ભરતી અને ઓટ વખતે દરિયાના પાણીની ગતિ.
- (3) પ્રક્ષુબ્ધ વહન (Turbulent flow) : જો તરલ વહનમાં દરેક બિંદુ પાસે તરલના વેગમાં સમય સાથે અનિયમિત તેમજ ઝડપી ફેરફાર થતો હોય, તો તેવા વહનને પ્રક્ષુબ્ધ વહન કહે છે. આવા વહનમાં એક બિંદુએથી બીજા બિંદુએ જતાં કણના વેગમાં અનિયમિત અને ઝડપી ફેરફાર થતો હોય છે. જેમકે ધોધ રૂપે પડતા પાણીની ગતિ, કિનારા પરના ખડકો સાથે અફળાતાં દરિયાનાં મોજામાંના પાણીની ગતિ.
- (4) અચક્રીય વહન (Irrotational flow): તરલ વહનમાં દરેક બિંદુ પાસે જો તરલના અંશને (તરલના નાના ભાગને) તે બિંદુને અનુલક્ષીને કોઈ પરિશામી કોણીય વેગ ન હોય, તો તરલનું વહન અચક્રીય વહન કહેવાય છે.

વહેણમાં નાના હળવા ચક્રની ગતિ આકૃતિ 5.11

જો તરલ વહન અચક્રીય હોય, તો આકૃતિ 5.11માં દર્શાવ્યા મુજબ વહેણમાં એક નાનું હળવું પાંખિયાંવાળું ચક્ર મૂકીએ, તો તે ચક્રીય ગતિ કર્યા સિવાય ફક્ત રેખીય ગતિ જ કરશે.

- (5) ચકીય વહન (Rotational—flow): જો તરલ વહનમાં દરેક બિંદુ પાસે તરલના નાના અંશને તે બિંદુને અનુલક્ષીને કંઈક ચોખ્ખો કોશીય વેગ હોય, તો વહન ચકીય કહેવાય છે. આવા વહનમાં મૂકેલ પાંખિયાંવાળું ચક ગોળ-ગોળ ફરતું-ફરતું રેખીય ગતિ કરે છે. ચકીય વહન વમળયુક્ત હોય છે. જેમકે ઘૂમરીવાળા પાણીના પ્રવાહો, એગ્ઝોસ્ટ ફેનમાંથી બહાર આવતી હવાની ગતિ.
- (6) અંદબનીય વહેન (Incompressible flow) : જો તરલ વહનમાં દરેક બિંદુ પાસે દરેક ક્ષણ તરલની ઘનતા અચળ રહેતી હોય, તો તેવા વહનને અંદબનીય

વહન કહે છે. આમ, અદબનીય વહનમાં સમય કે સ્થાન સાથે તરલની ઘનતામાં કોઈ ફેરફાર થતો નથી. સામાન્ય રીતે પ્રવાહીરૂપ તરલ અદબનીય વહન કરે છે. વાયુરૂપ તરલ માટે અમુક પરિસ્થિતિમાં ઘનતામાં થતા ફેરફારો બહુ અગત્યના હોતા નથી. આવા કિસ્સાઓમાં વાયુરૂપ તરલ અદબનીય વહન કરે છે તેમ કહી શકાય. જેમકે ધ્વનિની ઝડપ કરતાં ઘણી ઓછી ઝડપે ઊડતા વિમાનની પાંખોની સાપેક્ષે હવાની ગતિ લગભગ અદબનીય ગણી શકાય.

- (7) દબનીય વહન (Compressible flow) : જો તરલ વહનમાં સ્થાન અને સમય સાથે તરલની ઘનતા બદલાતી રહેતી હોય, તો તેવા વહનને દબનીય વહન કહે છે.
- (8) અશ્યાન વહન (Non-viscous flow) : જે તરલ માટે શ્યાનતા-ગુણાંક (co-efficient of viscosity) નું મૂલ્ય ઓછું હોય, તેવા તરલના વહનને અશ્યાન વહન કહે છે. સામાન્ય શબ્દોમાં કહીએ તો સહેલાઈથી વહેતા વહનને અશ્યાન વહન કહે છે. જેમકે સામાન્ય સ્થિતિમાં પાણીનું વહન.
- (9) શ્યાન વહન (Viscous flow) : જે તરલ માટે શ્યાનતા-ગુણાંકનું મૂલ્ય વધારે હોય, તેવા તરલના વહનને શ્યાન વહન કહે છે. સામાન્ય શબ્દોમાં કહીએ તો સહેલાઈથી ન વહી શકતા તરલના વહનને શ્યાન વહન કહે છે. જેમકે દિવેલનું, મધનું વહન.

અહીં પ્રારંભમાં, આપણે સ્થાયી, અચક્રીય, અદબનીય અને અશ્યાન વાહનનો જ વિચાર કરીશું. જોકે વાસ્તવિક પરિસ્થિતિ કરતાં આપણી ધારણા વધારે પડતી આદર્શ છે. શું આપશી આ ધારશા પ્રમાશેનું તરલ પ્રવાહી મળે ખરું ?

5.6.1 ધારારેખાઓ (Streamlines), વહનનળી (Tube of flow):

તરણકણના ગતિમાર્ગને પ્રવાહરેખા (line of flow) કહેવામાં આવે છે. સામાન્ય રીતે પોતાના ગતિમાર્ગ પર ક્શના વેગનું મૂલ્ય અને દિશા બદલાતી જતી હોય છે, અને એક જ બિંદુ પાસેથી પસાર થતા બધા કશો એક જ માર્ગ ગતિ કરતા ન પણ હોય. આમ છતાં, સ્થાયી વહનમાં પરિસ્થિતિ રસપ્રદ છે.

સ્થાયી વહનમાં, દરેક બિંદુ પાસેથી પસાર થતા ક્શનો વેગ સમય સાથે અફર હોય છે. આકૃતિ 5.10 માં, સ્થાયી વહનમાં, ધારો કે P પાસેથી પસાર થતા કણનો વેગ $\overset{
ightarrow}{
u_{
m P}}$ છે. તે સમય સાથે બદલાતો નથી. આમ, P પાસેથી પસાર થતા દરેક કણનો વેગ $v_{
m P}^{'}$ છે અને આ દરેક કણ ${
m P}$ પાસેથી એકસરખી દિશામાં જ આગળ વધે છે. જ્યારે P પાસેથી પસાર થતો દરેક ક્ર Q પાસે જાય છે, ત્યાં તેનો વેગ $v_{Q}^{'}$ પણ સમય સાથે અફર છે અને ત્યાંથી તે આગળ વધીને R પાસે જાય છે. ત્યાં પણ તેનો વેગ $\stackrel{
ightarrow}{v_{
m R}}$ સમય સાથે અફર હોય છે. આમ, P પાસેથી પસાર થતા દરેક કણનો ગતિમાર્ગ PQR બને છે. સમય જતાં આ માર્ગ બદલાતો નથી. સ્થાયી વહનમાંના આવા સ્થિર ગતિમાર્ગને ધારારેખા કહે છે. અહીં સ્પષ્ટ છે કે સ્થાયી વહનમાં પ્રવાહ રેખા અને ધારારેખા એકાકાર બની જાય છે. આ ચર્ચા પરથી ધારારેખાની વ્યાખ્યા બીજી રીતે પણ આપી શકાય. જે વક્ર પરના દરેક બિંદુ પાસેનો સ્પર્શક તે બિંદુ પાસેથી પસાર થતા કણના વેગની દિશામાં હોય તેવા વક્રને ધારારેખા કહે છે. જે વહન માટે આવી ધારારેખાઓ વ્યાખ્યાયિત કરી શકાય છે, તેવા વહનને ધારારેખી વહન (Streamline flow) પણ કહેવાય છે. અસ્થાયી વહનમાં પ્રવાહરેખાઓ વ્યાખ્યાયિત કરી શકાય પણ ધારારેખાઓ વ્યાખ્યાયિત કરી શકાય નહિ.

સ્થાયી વહનમાં ધારારેખાઓ એકબીજીને છેદી શકે નહિ. જો તેઓ છેદે તો છેદનબિંદુ પાસેના બે સ્પર્શકોમાંના કોઈ પણ સ્પર્શકની દિશામાં કણ ગતિ કરે, જે સ્થાયી વહનમાં શક્ય નથી..

વહનનળી (પ્રવાહનળી) (Tube of flow) : સૈદ્ધાંતિક રીતે દરેક બિંદુમાંથી પસાર થતી ધારારેખા દોરી શકાય. આકૃતિ 5.12માં દર્શાવ્યા પ્રમાણે કોઈ પૃષ્ઠની પરિસીમામાંથી પસાર થતી ધારારેખાઓનું બંડલ વિચારીએ, તો આ બંડલ વડે ઘેરાતા નળી જેવા ભાગને વહનનળી કહે છે. વહનનળીની દીવાલ ધારારેખાઓની બનેલી હોય છે. સ્થાયી વહનમાં બે ધારારેખાઓ છેદી શકતી ન હોવાથી કોઈ તરલ કણ વહન નળીની દીવાલમાંથી પસાર થઈ શકતો નથી અને વહનનળીને ખરેખર નળી ગણવામાં વાંધો આવતો નથી.

વહનનળી આકૃતિ 5.12

5.7 સાતત્ય-સમીકરણ (Equation of Continuity)

આકૃતિ 5.13માં દર્શાવ્યા મુજબ એક પ્રવાહનળી વિચારો. \mathbf{P} બિંદુ આગળ તરલનો વેગ \mathbf{v}_1 છે. \mathbf{P} આગળ પ્રવાહનળી આડછેદનું ક્ષેત્રફળ \mathbf{A}_1 છે, તથા બિંદુ $\mathbf{Q},$ આગળ વેગ _{V2} છે. Q આગળ પ્રવાહનળીના આડછેદનું ક્ષેત્રફળ A, છે.

આકૃતિ 5.13

આમ, P આગળના આડછેદમાંથી પસાર થતું તરલ એકમ સમયમાં v_1 જેટલું અંતર કાપશે. તેથી P આગળના

આડછેદમાંથી પસાર થતા તરલનું કદ $A_1 v_1$ થશે. જો અદબનીય તરલની ઘનતા ρ હોય તો P આગળના આડછેદમાંથી એકમસમયમાં પસાર થતું તરલનું દળ $\rho A_1 v_1$.

કોઈ આડછેદમાંથી એકમસમયમાં પસાર થતા તરલનું દળ દળ-ફલક્સ કહેવાય છે. આમ,

P આગળ દળ કલક્સ =
$$\rho A_1 v_1$$
. (5.7.1)

આ જ રીતે Q આગળ દળ ફલક્સ = $\rho A_2 v_2$ (5.7.2)

તરલ પ્રવાહનળીની દીવાલમાંથી પસાર થઈ શકતું નથી વળી તરલનો નાશ કે નવા તરલનું સર્જન પ્રવાહનળીમાં શક્ય નથી. તેથી P અને Q આગળના આડછેદ માટે દળ ફલક્સ સમાન હોવાં જોઈએ. આમ, સમીકરણ 5.7.1 અને 5.7.2 પરથી,

$$\rho A_1 v_1 = \rho A_2 v_2$$

$$\therefore A_1 v_1 = A_2 v_2$$
(5.7.3)

અથવા પ્રવાહનળીના કોઈ પણ આડછેદ માટે

$$Av = અચળ \tag{5.7.4}$$

સમીકરણ 5.7.3 અથવા 5.7.4 સાતત્યનું સમીકરણ કહેવાય છે. કોઈ પણ આડછેદ પાસેના વેગ અને ક્ષેત્રફળના ગુણાકારને કદ ફલક્સ (volume—flux) કહે છે. સમીકરણ 5.7.4 દર્શાવે છે કે વહનનળીના સાંકડા વિભાગમાં ધારા રેખાઓ ગીચોગીચ થઈ જાય છે. જે દર્શાવે છે કે જ્યાં ધારા રેખાઓ ગીચ હોય ત્યાં વેગ વધારે હોય છે. પહોળા વિભાગમાં આથી ઊલટું હોય છે. આમ, ગીચ ધારારેખાઓ વધારે વેગનો અને છુટ્ટીછુટ્ટી ધારાઓ ઓછા વેગનો નિર્દેશ કરે છે.

5.8 બર્નુલીનું સમીકરણ અને તેના ઉપયોગો (Bernoulli's Equations and its Applications)

બર્નુલીનું સમીકરણ તરલ-મિકેનિક્સમાં પાયાનું સમીકરણ છે. આ સમીકરણ તરલ-મિકેનિક્સમાં કોઈ નવો સિદ્ધાંત રજૂ નથી કરતું. આ સમીકરણ કાર્ય-ઊર્જાપ્રમેયથી મેળવી શકાય છે.

આપશે અહીં ધારારેખી, સ્થાયી, અચક્રીય અદબનીય અને અશ્યાન પ્રવાહ ધ્યાનમાં લઈશું. આ પ્રવાહ આકૃતિમાં દર્શાવ્યા મુજબ વહનનળીમાંથી પસાર થઈ રહ્યો છે. A ક્ષેત્રફળ અને dl લંબાઈનો નાનો તરલખંડ વિચારો. આ તરલખંડના મધ્યમાંથી પસાર થતી મધ્યમાન ધારારેખા સંદર્ભસપાટીને સાપેક્ષ y_1 અને y_2 ઊંચાઈએથી પસાર થાય છે. y_1 ઊંચાઈએ દબાણ \mathbf{P}_1 અને તરલનો વેગ v_1 જ્યારે y_2 ઊંચાઈએ દબાશ P₂ અને વેગ v₂ છે. આ તરલખંડ પર બે બળો લાગે છે : (1) દબાશના તફાવતને કારણે લાગતું બળ (AdP) અને (2) ગુરૂત્વાકર્ષણ બળ mg ધારો કે આ તરલ-ખંડ dl જેટલું અંતર કાપે છે. આ દરમિયાન પ્રથમ બળ દ્વારા થતું કાર્ય Adl dP છે અને ગુરૂત્વાકર્ષણ બળ વિરુદ્ધ થતું કાર્ય (સ્થિતિ-ઊર્જામાં થતો ફેરફાર)-mgdy છે. જ્યાં dy તરલખંડની ઊંચાઈમાં થતો ફેરફાર છે. જો શરૂઆતમાં તેની ગતિ-ઊર્જા $\frac{1}{2}mv^2$ હોય, તો આ સ્થાનાંતર dyદરમિયાન ગતિ-ઊર્જામાં થતો ફેરફાર $d(\frac{1}{2}mv^2) = mvdv$

Adl તરલખંડનું કદ હોવાથી સમીકરણ 5.8.1 નીચે મુજબ લખી શકાય.

$$\frac{m}{A dl} v dv = dP - \frac{m}{A dl} g dy$$
 (5.8.2)

અહીં *m/Adl* તરલની ઘનતા છે અને તરલ અદબનીય હોવાથી તે અચળ છે. આમ, સમીકરણ 5.8.2 નીચે મુજબ લખી શકાય :

$$\rho v dv = dp - \rho g dy$$

$$\therefore \rho \int_{v_1}^{v_2} v dv = \int_{P_1}^{P_2} dP - \rho g \int_{y_1}^{y_2} dy$$

$$\therefore \rho \left[\begin{array}{c} \frac{v^2}{2} \end{array} \right]_{v_1}^{v_2} \ = \left[\begin{array}{c} P \end{array} \right]_{P_1}^{P_2} \ - \rho g \left[\begin{array}{c} y \end{array} \right]_{y_1}^{y_2}$$

$$\therefore \frac{1}{2}\rho(v_2^2 - v_1^2) = P_2 - P_1 + (y_2 - y_1)$$

$$P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$$
(5.8.3)

$$\therefore P + \rho g y + \frac{1}{2} \rho v^2 = અચળ$$
 (5.8.4)

સમીકરણ 5.8.3 અથવા 5.8.4 બર્નુલીના સમીકરણ તરીકે ઓળખાય છે. અત્રે નોંધવું જરૂરી છે. આ સમીકરણના બધાં પદો એક જ ધારારેખા પર ગણવાં જોઈએ. જો વહન અચક્રીય હોય તો એવું સાબિત કરી શકાય કે સમીકરણ 5.8.4માં આવતો અચળાંક બધી જ ધારારેખાઓ માટે સમાન છે.

સમીકર5.8.4ને ρg વડે ભાગતાં

$$\frac{P}{\rho g} + \frac{v^2}{2g} + y = અચળ$$
 (5.8.5)

આ સમીકરણ બર્નુલીના સમીકરણનું વૈકલ્પિક સ્વરૂપ છે. આ સમીકરણમાં પ્રથમ પદ પ્રેસરહેડ, બીજું પદ વેલોસિટી હેડ અને ત્રીજું પદ એલિવેશન હેડ તરીકે ઓળખાય છે.

બર્નુલીના સમીકરણના ઉપયોગો

(1) વેન્યુરીમીટર : આ સાધનનો ઉપયોગ તરલનો વેગ જાણવા માટે થાય છે. વેન્યુરીમીટરની રચના આકૃતિ 5.15માં દર્શાવી છે. વેન્યુરીમીટરમાં ખાસ પ્રકારની વેન્યુરી-ટ્યુબ સાથે મેનોમીટર જોડેલું છે. વેન્યુરી ટ્યૂબનો સાંકડો ભાગ થ્રોટ તરીકે ઓળખાય છે.

પહોળા ભાગના આડછેદનું ક્ષેત્રફળ 'A' અને થ્રોટના આડછેદનું ક્ષેત્રફળ 'a' છે. પહોળા ભાગ આગળ તરલનો વેગ v_1 અને થ્રોટ પાસે તેનો વેગ v_2 છે. આ સ્થાનો પર દબાણ P_1 અને P_2 છે. મેનોમીટરમાં રહેલા પ્રવાહીની ઘનતા ρ_2 અને જેનો વેગ માપવાનો છે, તે તરલની ઘનતા ρ_1 છે.

બિન્દુ '1' અને '2' માટે બર્નુલીનું સમીકરણ વાપરતાં,

$$P_1 + \frac{1}{2}\rho_1 v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho_1 g y_2^2 + \rho g y_2$$

બિન્દુ '1' અને '2'ની સંદર્ભસપાટીથી ઊંચાઈ સરખી હોવાથી $\boldsymbol{y}_1 = \boldsymbol{y}_2$

$$P_1 + \frac{1}{2}\rho_1 v_1^2 = P_2 + \frac{1}{2}\rho_1 g y_2^2$$

$$P_1 - P_2 = \frac{1}{2}\rho_1 (v_2^2 - v_1^2) \qquad (5.8.6)$$

અહીં મેનોમીટર માટે $\mathbf{P}_1 - \mathbf{P}_2 = (\mathbf{\rho}_2 - \mathbf{\rho}_1)gh$ (ઉદાહરણ 2 જુઓ)

 ${\bf P}_1 - \, {\bf P}_2$ ની આ કિંમત સમીકરણ 5.8.6માં મૂકતાં,

$$(\rho_2 - \rho_1) gh = \frac{1}{2} \rho_1 (v_2^2 - v_1^2)$$
 (5.8.7)

પણ, $Av_1 = av_2$ (: સાતત્ય સમીકરણ)

$$\therefore v_2 = \frac{Av_1}{a}$$

 v_2 ની કિંમત સમીકરણ 5.8.7માં મૂકતાં,

$$(\rho_2 - \rho_1)gh = \frac{1}{2}\rho_1(\frac{A^2}{a^2} v_1^2 - v_1^2)$$

$$\therefore v_1^2 = \frac{2(\rho_2 - \rho_1)gh}{\rho_1} \cdot \frac{a^2}{\Delta^2 - a^2}$$

$$\therefore v_1 = a\sqrt{\frac{2(\rho_2 - \rho_1)gh}{\rho_1(A^2 - a^2)}}$$
 (5.8.8)

કદ-ફ્લક્સ અથવા પ્રવાહદર શોધવા માટે $\mathbf{R}=\mathbf{v_1}\mathbf{A}$ અથવા $\mathbf{v_2}a$ શોધવું જોઈએ.

વાહનોનો કાર્બ્યુરેટરમાં રહેલ વેન્ચુરી ચેનલમાંથી હવાનું વહન થાય છે. થ્રોટ પાસે દબાણ ઓછું હોવાથી બળતણ અંદર ખેંચાઈ આવે છે અને દહન માટે આવશ્યક પ્રમાણમાં હવા અને બળતણ પૂરાં પાડે છે.

સ્પ્રેપંપ આકૃતિ 5.16

આકૃતિ 5.16માં દર્શાવેલ સ્પ્રેપંપમાં પણ આજ સિદ્ધાંતનો ઉપયોગ થાય છે. પિસ્ટનને ધક્કો મારતાં પંપના નાના કાણામાંથી વધુ ઝડપે હવા બહાર આવે છે. પરિણામે કાણા પાસે દબાણ ઓછું થાય છે. અને તેથી પ્રવાહી સાંકડી નળીમાંથી ઉપર તરફ ખેંચાઈ આવે છે અને હવા સાથે તેનો છંટકાવ થાય છે.

(2) ઊંડાઈ સાથે દબાશમાં થતો ફેરફાર : અગાઉ આપણે $P-P_a=h\rho g$ સમીકરણ મેળવ્યું છે. આ સમીકરણ બર્નુલીના સમીકરણની મદદથી પણ મેળવી શકાય. જો તરલ સ્થિર હોય તો $v_1=v_2=0$, $P_2=P_a$ (પ્રવાહીની મુક્ત સપાટી પરનું દબાણ, જુઓ આકૃતિ 5.6) જો ઊંચાઈનો તફાવત $y_2-y_1=h$ લેવામાં આવે, તો બર્નુલીના સમીકરણ પરથી $P_1=P_a+\rho gh$.

(3) ડાયનેમિક લિફ્ટ (Dynamic Lift) અને સ્વિંગ-બૉલિંગ (Swing Bowling): આપણે શીખી ગયાં કે જ્યારે કોઈ વસ્તુને તરલમાં મૂકવામાં આવે છે ત્યારે આર્કિમિડિઝના સિદ્ધાંત અનુસાર તેના પર ઉત્પ્લાવક બળ લાગે છે. આ બળને સ્ટેટીક લિફ્ટ (static lift) પણ કહે છે. હવે, જ્યારે વસ્તુ તરલની સાપેક્ષે ગતિ કરે ત્યારે એક બીજું બળ ઉદ્ભવે છે, જેને ડાયનેમિક લિફ્ટ કહે છે.

આ હકીકત સમજવા માટે આકૃતિ 5.17(a) ધ્યાનમાં લો. આકૃતિમાં હવામાં ગતિ કરતો એક દડો બતાવ્યો છે. આ દડાની સાપેક્ષમાં હવાની ધારારેખાઓ દડાને અનુલક્ષીને સંમિત છે. (કારણ કે દડો પોતે જ સંમિત છે.) બિંદુ 1 અને 2 પાસે હવાના વેગ એકસમાન છે. બર્નુલીના સમીકરણ અનુસાર 1 અને 2 પાસે દબાણ સરખાં થાય છે અને દડા પરનો ડાયનેમિક લિફ્ટ શુન્ય બને છે.

હવે, આકૃતિ 5.17(b)માં દર્શાવ્યા પ્રમાણે ધારો કે પુસ્તકના પાનને લંબ અને દડાના કેન્દ્રમાંથી પસાર થતી અક્ષને અનુલક્ષીને દડો સ્પિનગતિ કરે છે. દડો સંપૂર્ણ રીતે લીસો ન હોતાં તેની સાથે થોડી હવાને ઘસડે છે, જેને લીધે મળતી ધારારેખાઓ આકૃતિમાં દર્શાવેલ છે.

આકૃતિ 5.17(c)માં દડો જ્યારે સ્પિનગતિ અને રેખીય ગિત એમ બંને ગિત કરે ત્યારે તેની આસપાસ હવાની ધારારેખાઓ કેવી હોય તે દર્શાવ્યું છે. અહીં બિંદુ 1 પાસે ગીચ થઈ જતી ધારારેખાઓ વધારે વેગ અને ઓછું દબાશ સૂચવે છે, જ્યારે 2 પાસે ઓછો વેગ અને વધારે દબાશ હોય છે. પરિશામે દડા પર ઊર્ધ્વ દિશામાં ધક્કો લાગે છે. એટલે કે દડાને ડાયનેમિક લિફ્ટ મળે છે. આમ, આ રીતે સ્પિન કરી ફેંકેલો દડો તેના ગિત પથ પર ધારણા કરતાં ઊંચો રહી જાય છે. (બૉલરે દડો સાથે છેડછાડ કરવા કેમ લલચાય છે તે હવે તમને સમજાયું હશે.)

હવે, જો પુસ્તકના પાનના સમતલમાં રહેલી અને દડાની રેખીય ગતિને લંબ એવી અક્ષની સાપેક્ષે દડાને સ્પિન કરતો ફેંકવામાં આવે, તો દડો ઑફ કે લેગ સ્ટમ્પ બાજુ વળે છે. ઝડપી બૉલિંગમાં સ્વિંગનું મુખ્ય કારણ આ છે.

(4) ઍરોફૉઇલ: આકૃતિ 5.18માં દર્શાવ્યા મુજબના વિશિષ્ટ આકારના ઘન ટુકડાને ઍરોફૉઈલ કહે છે. તેના આ વિશિષ્ટ આકારના કારણે જ્યારે ઍરોફૉઇલ હવામાં સમિલિતિજ દિશામાં ગતિ કરતો હોય ત્યારે પણ ઊર્ધ્વ દિશામાં બળ લાગે છે. પરિણામે તે હવામાં તરી શકે છે.

વિમાનની પાંખનો આકાર (પાંખની લંબાઈને લંબ આડછેદનો આકાર) ઍરોફોઇલ જેવો રાખવામાં આવે છે. આકૃતિમાં દર્શાવ્યા મુજબ પાંખની આસપાસ હવાનું ધારારેખીય વહન થતું હોય છે. (જોકે વિમાનની પાંખ અને ગતિની દિશા વચ્ચેનો ખૂશો-angle of attack નાનો હોય ત્યારે જ ધારારેખી વહન શક્ય છે.) આકૃતિ 5.18માં પાંખની આસપાસની ધારારેખાઓ દર્શાવેલ છે. પાંખના ઉપરના ભાગની ગીચ ધારારેખાઓ વધારે વેગ અને ઓછું દબાશ દર્શાવે છે, જ્યારે પાંખની નીચેના ભાગની છૂટી ધારારેખાઓ ઓછો વેગ અને વધારે દબાશ દર્શાવે છે. દબાશના આ તફાવતના કારણે ઊર્ધ્વ દિશામાં બળ લાગે છે. આથી ગતિ કરતા વિમાન પરની ડાયનેમિક લિફ્ટને કારણે તે હવામાં તરી શકે છે.

ઉદાહરણ 3: પાણીનું વહન કરતી નળીના એક છેડાનો વ્યાસ 2 cm અને બીજા છેડાનો વ્યાસ 3 cm છે. સાંકડા છેડા પાસે પાણીનો વેગ 2 ms^{-1} અને દબાણ $1.5 \times 10^5 \text{ Nm}^{-2}$ છે. જો નળીના પહોળા અને સાંકડા છેડા વચ્ચેનો ઊંચાઈનો તફાવત 2.5 m હોય, તો નળીના પહોળા છેડા પાસે પાણીનો વેગ અને દબાણ શોધો. (પાણીના ઘનતા $1 \times 10^3 \text{ kg m}^{-3}$ લો.) નળીનો સાંકડો છેડો વધુ ઊંચાઈએ લો.

G}4 :

વહનનળીનો સાંકડો છેડો

$$d_1 = 2 \text{ cm}$$

 $\therefore r_1 = 1 \text{ cm} = 1 \times 10^{-2} \text{ m}$
 $v_1 = 2 \text{ ms}^{-1}$
 $P_1 = 1.5 \times 10^5 \text{ Nm}^{-2}$

વહનનળીનો પહોળો છેડો

$$d_2 = 3 \text{ cm}$$

 $\therefore r_2 = 1.5 \text{ cm} = 1.5 \times 10^{-2} \text{ m}$
 $v_2 = ?$
 $P_2 = ?$
 $A_1v_1 = A_2v_2$

ઉદાહરણ 4: આકૃતિ 5.19માં દર્શાવ્યા પ્રમાણે મોટો આડછેદ A_1 ધરાવતા એક નળાકાર પાત્રમાં ρ જેટલી ઘનતા ધરાવતું પ્રવાહી ભરેલ છે. પાત્રના તળિયે A_2 જેટલા આડછેદનું ક્ષેત્રફળ ધરાવતું નાનું હોલ (છિદ્ર) છે. જ્યારે આડછેદ A_2 થી પ્રવાહીના સ્તંભની ઊંચાઈ h હોય ત્યારે તેમાંથી બહાર આવતા પ્રવાહીનો વેગ શોધો. (અહીં, $A_1 >> A_2$)

 $P_2 = 1.76 \times 10^5 \text{ Nm}^{-2}$

આકૃતિ 5.19

ઉકેલ ધારો કે A_1 અને A_2 આડછેદો પાસે પ્રવાહીનો વેગ અનુક્રમે v_1 અને v_2 છે. બંને આડછેદ વાતાવરણમાં ખુલ્લા હોવાથી ત્યાં વાતાવરણના દબાણ P_a જેટલું જ દબાણ પ્રવર્તે છે. બંને આડછેદો માટે બર્નુલીનું સમીકરણ લાગુ પાડતાં,

$$\therefore P_a + \frac{1}{2}\rho v_1^2 + \rho g h = P_a + \frac{1}{2}\rho v_2^2$$
 (1)

102 ભૌતિકવિશાન

સાતત્યના સમીકરણ અનુસાર,

$$A_1 v_1 = A_2 v_2$$

$$\therefore v_1 = \frac{A_2 v_2}{A_1} \tag{2}$$

સમીકરણ (2)માંથી સમીકરણ (1)માં v_1 નું મૂલ્ય મૂકતાં,

$$\frac{1}{2} \left(\frac{A_2}{A_1} \right)^2 v_2^2 + gh = \frac{1}{2} v_2^2$$

$$\therefore v_2^2 = \frac{2gh}{\left[1 - \left(\frac{A_2}{A_1}\right)^2\right]} \cong 2gh$$

 $(::A_2 << A_1)$

$$\therefore v_2 = \sqrt{2gh}$$

નોંધ : પ્રવાહીની મુક્ત સપાટીથી h ઊંડાઈએ રહેલા હોલમાંથી બહાર આવતા પ્રવાહીનો વેગ, તેટલી જ ઊંચાઈ પરથી મુક્તપતન કરતા કણના અંતિમ વેગ જેટલો હોય છે. આ વિધાનને ટોરીસિલિ(Torriceli)નો નિયમ કહે છે.

ઉદાહરણ 5: આકૃતિ 5.20માં દર્શાવેલ એક પાત્રમાં H જેટલી ઊંચાઈ સુધી પાણી ભરેલ છે. પાણીની સપાટીથી h જેટલી ઊંડાઈએ પાત્રની દીવાલમાં એક હોલ પાડવામાં આવે છે. તો હોલમાંથી બહાર આવતી પાણીની ધાર જમીન પર દીવાલથી કેટલા સમક્ષિતિજ અંતરે પડતી હશે ? hના કયા મૂલ્ય માટે આ અંતર મહત્તમ થશે ? આ મહત્તમ અંતર શોધો.

આકૃતિ 5.20

ઉકેલ : પાણીની સપાટીથી - ઊંડાઈ પર રહેલા હોલમાંથી બહાર આવતા પાણીનો સમક્ષિતિજ દિશામાં વેગ

$$v = \sqrt{2gh} \tag{1}$$

અહીં, બહાર આવતા પાણી પર માત્ર અધોદિશામાં પ્રવેગ (ગુરુત્વપ્રવેગ g) લાગતો હોવાથી સમક્ષિતિજ દિશામાં તે અચળ વેગથી ગતિ કરે છે અને અધોદિશામાં અચળ પ્રવેગી ગતિ કરે છે. (પ્રક્ષિપ્ત ગતિ જેવું)

ગતિનાં સમીકરણો પરથી,

અધોદિશામાં કપાયેલ અંતર, $H - h = \frac{1}{2}gt^2$ (2)

જ્યાં, t = હોલમાંથી બહાર નીકળતા પાણીએ જમીન પર પહોંચવા લીધેલ સમય.

સમક્ષિતિજ દિશામાં કપાયેલ અંતર x = vt (3) સમીકરણ (1) અને (2)માંથી v અને tનાં મૂલ્યો

$$x = \sqrt{2gh} \left(\frac{2(H-h)}{g} \right)^{\frac{1}{2}}$$

$$= (4hH - 4h^2)^{\frac{1}{2}}$$

$$= [H^2 - (H - 2h)^2]^{\frac{1}{2}}$$
 (4)

સમીકરણ (4) દર્શાવે છે કે $\mathbf{H}=2h$ માટે x મહત્તમ થાય.

$$\therefore h = \frac{H}{2}$$

સમીકરણ (3)માં મુકતાં,

આ માટે $h = \frac{H}{2}$ સમીકરણ (4)માં મૂકતાં,

$$\therefore x = H$$

5.9 શ્યાનતા

આપણે જાણીએ છીએ કે પાણી કે કેરોસીન જેવાં પ્રવાહીઓ આસાનીથી વહી શકે છે, જ્યારે મધ કે દિવેલ (castor oil) જેવાં પ્રવાહીઓનું વહન આસાનીથી થતું નથી. જો બર્નુલીના સમીકરણમાં સમક્ષિતિજ પ્રવાહ માટે $y_1=y_2$ મૂકીએ,

$$\hat{H} P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2$$

આ સમીકરણ દર્શાવે છે કે સમક્ષિતિજ તરલ-વહન માટે અચળ ઝડપથી $(v_1 = v_2)$ તરલના વહન માટે દબાણનો તફાવત જરૂરી નથી એટલે કે $P_1 = P_2$. પરંતુ વાસ્તવમાં આવું બનતું નથી. અચળ ઝડપથી તરલનું વહન શક્ય બનાવવા માટે દબાણનો તફાવત જરૂરી બને છે. આ દર્શાવે છે કે તરલના વહનનો વિરોધ કરતું બળ હોવું જ જોઈએ.

આ બાબત સમજવા માટે કોઈ સ્થિર સમક્ષિતિજ સપાટી પર તરલનો સ્થાયી પ્રવાહ ધ્યાનમાં લો.

અહીં સપાટી અને પ્રવાહીના અશુઓ વચ્ચે લાગતાં આસક્તિ બળોને કારણે સપાટીના સંસર્ગમાં રહેલો પ્રવાહીનું સ્તર સપાટીને ચીટકી રહે છે. સૌથી ઉપરના સ્તરનો વેગ સૌથી વધુ હોય છે.

આકૃતિ 5.21માં પ્રવાહીના કેટલાક સ્તર અને તેમના વેગસદિશો દર્શાવ્યા છે. આમ, સ્થાયી પ્રવાહમાં પ્રવાહીના જુદા જુદા સ્તર એકબીજામાં ભળી ગયા સિવાય એકબીજા પર સરકે છે. આવા વહનને સ્તરીય વહન (laminar flow) કહે છે.

સ્તરીય વહનમાં તરલના કોઈ પણ બે ક્રમિક સ્તરો વચ્ચે સાપેક્ષ ગિત હોય છે. પરિણામે તેમની સંપર્કસપાટી પર સ્પર્શીય અવરોધક બળ ઉદ્ભવે છે. આવા આંતરિક અવરોધક બળને શ્યાનતાબળ (viscous force) કહે છે. તરલના જે ગુણધર્મને કારણે બે ક્રમિક સ્તરો વચ્ચેની સાપેક્ષ ગિત અવરોધાય છે, તેને તરલની શ્યાનતા કહે છે. આથી જો સ્તરો વચ્ચેની સાપેક્ષ ગિત જાળવી રાખવી હોય તો શ્યાનતાબળોને સમતોલે તેટલું ઓછામાં ઓછું બળ લગાડવું જરૂરી છે. આવાં બાહ્ય બળોની ગેરહાજરીમાં શ્યાનતા બળોને લીધે સ્તરો વચ્ચેની સાપેક્ષ ગિત સમય જતાં મંદ પડે છે અને તરલ સ્થિર થઈ જાય છે. આ કારણને લીધે પ્યાલામાં રાખેલ દૂધ ચમચીથી હલાવ્યા પછી થોડી વારમાં સ્થિર થઈ જાય છે.

વેગપ્રચલન (Velocity gradient) : સ્તરીય વહનમાં વહનની દિશાને લંબ એવી દિશામાં એકબીજાથી એકમ અંતરે રહેલા બે સ્તરોના વેગના તફાવતને વેગપ્રચલન કહે છે.

આકૃતિ 5.21માં દર્શાવ્યા મુજબ એકબીજાથી Δx જેટલા અંતરે આવેલા બે સ્તરોના વેગમાં તફાવત Δv છે. આમ,

 $\frac{\Delta v}{\Delta x}$ વેગપ્રચલન થાય. જો Δx નું મૂલ્ય ખૂબ જ નાનું હોય

તો વેગપ્રચલન
$$\lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = \frac{dv}{dx}$$
 થાય.

સ્તરીય વહન માટે વેગપ્રચલન કોઈ પણ સ્તરો માટે સમાન હોય છે. તેનો એકમ s^{-1} છે.

હવે શ્યાનતા પર આપશું ધ્યાન ફરીથી કેન્દ્રિત કરીએ. અહીં શ્યાનતાબળ ગતિનો વિરોધ કરતું બળ છે. ન્યૂટનના પ્રાયોગિક કાર્ય અનુસાર અચળ તાપમાને શ્યાનતાબળનું મૂલ્ય નીચેના સૂત્રથી મળે.

$$F = \eta A \frac{dv}{dx}$$
 (5.9.1)

અહીં F શ્યાનતાબળ અને A બે સ્તર વચ્ચેની સંપર્ક સપાટીનું ક્ષેત્રફળ છે. η સપ્રમાણતાનો અચળાંક છે. જે શ્યાનતા-ગુણાંક તરીકે પણ ઓળખાય છે. ηનું મૂલ્ય તરલના પ્રકાર અને તાપમાન પર આધાર રાખે છે.

આમ, ηનું મૂલ્ય વધુ હોય તો શ્યાનતાબળનું મૂલ્ય વધુ હોય છે, અને તેને કારણે તરણનું વહન ધીમું થાય છે. આમ, શ્યાનતા-ગુણાંક તરલની શ્યાનતાનું માપ છે. વળી, η નું મૂલ્ય પ્રવાહીમાં તાપમાન સાથે ઘટે છે જ્યારે વાયુમાં તેનું મૂલ્ય તાપમાન સાથે વધે છે. સમીકરણ 5.9.1 પરથી,

$$\eta = \frac{F}{A \frac{dv}{dx}}$$

જો ${
m A}=1$ એકમ અને ${dv\over dx}=1$ એકમ લેવામાં આવે તો, ${
m \eta}={
m F}$

આમ, "સ્તરીય વહનમાં તરલના કોઈ પણ બે ક્રમિક સ્તરો વચ્ચે એકમ વેગપ્રચલન અને એકમ સંપર્ક-ક્ષેત્રફળ દીઠ ઉદ્ભવતા શ્યાનતાબળને તરલનો શ્યાનતા-ગુણાંક કહે છે."

શ્યાનતા-ગુણાંકનો CGS એકમ dyne s cm $^{-2}$, છે અને તે તબીબ અને ભૌતિકવિજ્ઞાની Jean Lois Poiseuilleની સ્મૃતિમાં 'poise' તરીકે ઓળખાય છે. તેનો SI એકમ N s m $^{-2}$ અથવા Pa s છે. તેનું પારિમાણિક સૂત્ર $\mathbf{M}^1\mathbf{L}^{-1}\mathbf{T}^{-1}$.

કેટલાક તરલ માટે શ્યાનતા-ગુણાંકનાં મૂલ્યો નીચે ટેબલ 5.2માં આપ્યા છે.

ટેબલ 5.2 તરલના શ્યાનતા-ગણાંક (માત્ર જાણકારી મારે)

તરલના શ્યાનતા-ગુણાક (માત્ર જાણકારા માટ)					
તરલ	તાપમાન	શ્યાનતા-ગુણાંક			
		(N s m ⁻²)			
પાણી	20°C	1×10^{-3}			
	100°C	2.8×10^{-4}			
હવા	0°C	1.71×10^{-5}			
	340°C	1.9×10^{-5}			
લોહી	38°C	1.5×10^{-3}			
તલનું તેલ		4.0×10^{-2}			
એન્જિન ઑઇલ	16°C	1.13×10^{-1}			
	38°C	3.4×10^{-2}			
મધ		2.0×10^{-1}			
પાણીની બાષ્ય	100°C	1.25×10^{-5}			
િલસરીન	20°C	8.30×10^{-1}			
એસિટોન	25°C	3.6×10^{-4}			

ઉદાહરણ 6: 10⁻² m² ક્ષેત્રફળ ધરાવતી ધાતુની એક તકતી 2×10^{-3} m જાડાઈના તેલના સ્તર પર મૂકી છે. તેલનો શ્યાનતા-ગુણાંક 1.55 N s m^{-2} હોય, તો તકતીને $3 \times 10^{-2} \text{ ms}^{-1}$ ના વેગથી ગતિ કરાવવા માટે જરૂરી સમક્ષિતિજ (સ્પર્શીય) બળની ગણતરી કરો.

G34 :

A =
$$10^{-2} \text{ m}^2$$

 $\Delta v = 3 \times 10^{-2} \text{ ms}^{-1}$
 $\Delta x = 2 \times 10^{-3} \text{ m}$
 $\eta = 1.55 \text{ N s m}^{-2}$
 $F = \eta A \frac{\Delta v}{\Delta x}$

$$= 1.55 \times 10^{-2} \times \frac{3 \times 10^{-2}}{2 \times 10^{-3}}$$

$$\therefore F = 2.32 \times 10^{-1} \text{ N}$$

ઉદાહરણ 7 : એક નળીમાં વહેતા પ્રવાહીના અક્ષથી 0.8 cm અને 0.82 cm અંતરે રહેલા બે નળાકાર સ્તરોના વેગ અનુક્રમે 3 cm s^{-1} અને 2.5 cm s^{-1} છે. જો નળીની લંબાઈ 10 cm હોય અને પ્રવાહીનો શ્યાનતા-ગુણાંક 8 પોઇસ હોય, તો આ બે સ્તરો વચ્ચે લાગતું શ્યાનતાબળ શોધો.

ઉકેલ :

1864:
$$r_{1} = 0.8 \text{ cm}$$

$$r_{1} = 0.82 \text{ cm}$$

$$\Delta v = 3 - 2.5 = 0.5 \text{ cm s}^{-1}$$

$$\Delta x = \dot{\Theta} \text{ સ્તરો વચ્ચેનું અંતર}$$

$$= 0.02 \text{ cm}$$

$$L = 10 \text{ cm}$$

$$A = સ્તરોનું સંપર્ક ક્ષેત્રફળ$$

$$= 2\left(\frac{r_{1} + r_{2}}{2}\right)L$$

$$\eta = 8 \text{ પોઇસ}$$

$$F_{v} = \eta A \frac{\Delta v}{\Delta x}$$

$$= \eta \left[2\pi\left(\frac{r_{1} + r_{2}}{2}\right)L\right] \frac{\Delta v}{\Delta x}$$

$$= 8\left[2 \times 3.14\left(\frac{0.8 + 0.82}{2}\right)10\right] \frac{0.5}{0.02}$$

$$= 16 \times 3.14 \times 0.81 \times 10 \times \frac{0.5}{0.02}$$

5.10 स्टोક्सनो नियम (Stokes' Law)

= 10173.6 dyne

જ્યારે કોઈ વસ્તુ શ્યાન માધ્યમમાં ગતિ કરે ત્યારે વસ્તુના સંપર્કમાં રહેલા માધ્યમના સ્તર તેની સાથે ઘસડાય છે. તેથી આ સ્તર વસ્તુના વેગ જેટલા જ વેગથી ગતિ કરે છે. પરંતુ વસ્તુથી અતિ દૂરનો સ્તર સ્થિર રહે છે. આમ, વસ્તુ અને અતિ દૂરના સ્થિર સ્તર વચ્ચેના વિસ્તારમાં સ્તરીય વહન ઉદ્દભવે છે. અહીં પણ માધ્યમના બે ક્રમિક સ્તરો વચ્ચે શ્યાનતાબળ ઉદ્ભવે છે, જે આખરે માધ્યમમાં ગતિ કરતાં પદાર્થ પરના અવરોધક બળમાં પરિણમે છે. સ્ટોક્સ નામના વિજ્ઞાનીએ દર્શાવ્યું કે,

η જેટલો શ્યાનતા-ગુણાંક ધરાવતા મોટા વિસ્તારવાળા શ્યાન માધ્યમમાં ν જેટલા વેગથી ગતિ કરતી r ત્રિજ્યાવાળી નાની લીસી ગોળાકાર ઘન વસ્તુ પર લાગતું ગતિ અવરોધક બળ, (શ્યાનતાબળ)

$$F(v) = 6\pi\eta v \tag{5.10.1}$$

હોય છે. આ સૂત્રને સ્ટોક્સનો નિયમ કહે છે.

સ્ટોક્સનો નિયમ વેગ આધારિક બળનું એક રસપ્રદ ઉદાહરણ છે. માધ્યમમાં ગતિ કરતી વસ્તુ પર વસ્તુના વેગને સમપ્રમાણમાં ગતિ વિરુદ્ધ બળ લાગે છે.

તરલમાં ગોળાની ગતિ અને ટર્મિનલ વેગ (Motion of the sphere in a fluid and terminal velocity):

આકૃતિ 5.22માં દર્શાવ્યા મુજબ ધારો કે r ત્રિજ્યા ધરાવતો, ρ જેટલી દ્રવ્યની ઘનતા ધરાવતો એક નાનો લીસો ઘન ગોળો તરલમાં ધારો કે તરલનો શ્યાનતા-ગુણાંક η તથા ઘનતા $\rho_{_{\mathrm{o}}}$ છે. અહીં $\rho > \rho_{_{\mathrm{o}}}$ છે.

આકૃતિ 5.22માં ગતિ દરમિયાન ત્રણ જુદી-જુદી ક્ષણે ગોળા પર લાગતાં બળો દર્શાવ્યાં છે. આ બળો નીચે પ્રમાણે છે : (1) ગોળાનું વજન F_1 (અધોદિશામાં) (2) તરલ ઉત્પ્લાવક બળ, F_2 (ઊર્ધ્વ દિશામાં) (3) ગતિ-અવરોધક બળ $F(\nu)$ (ઊર્ધ્વ દિશામાં).

શ્યાન-માધ્યમમાં નાની લીસી ગોળાકાર વસ્તુનું પતન

આકૃતિ 5.22

(1) ગોળાનું કદ
$${
m V}=rac{4}{3}\pi r^3$$

$$\therefore$$
 ગોળાનું કદ $m=\mathrm{V}
ho=rac{4}{3}\pi r^3
ho$

$$\therefore$$
 ગોળાનું વજન $F_1=mg=rac{4}{3}\pi r^3
ho g$

(2) તરલનું ઉત્પ્લાવક બળ ગોળા વડે વિસ્થાપિત થયેલા તરલના વજન જેટલું હોય છે. ગોળા વડે વિસ્થાપિત થયેલા તરલનું કદ,

$$V = \frac{4}{3}\pi r^3$$

 \cdot ગોળા વડે વિસ્થાપિત થયેલા તરલનું દળ $m_{
m o}={
m V}{
m p}_{
m o}=rac{4}{3}\pi r^3{
m p}_{
m o}$

 \therefore ગોળા વડે વિસ્થાપિત થયેલા તરલનું વજન = $m_{o}g$

$$= \frac{4}{3}\pi r^3 \rho_{\rm o} g.$$

$$\therefore$$
 ઉત્પ્લાવક બળ $F_2=rac{4}{3}\pi r^3
ho_o g$

(5.10.3)

(3) સ્ટોક્સના નિયમ પ્રમાણે ગતિ અવરોધક બળ F(v)= $6\pi\eta rv$ (5.10.4)

∴ ગોળા પર લાગતું પરિણામી બળ

$$F = F_1 - F_2 - F(v)$$

$$\therefore F = \frac{4}{3}\pi r^3 \rho g - \frac{4}{3}\pi r^3 \rho_o g - 6\pi \eta r v$$

(5.10.5)

સમીકરણ 5.10.5 ગોળાની ગતિનું સમીકરણ દર્શાવે છે. t=0 સમયે તરલમાં ગોળાની ગતિ શરૂ થાય ત્યારે ગોળાનો વેગ v=0 છે. તેથી આ વખતે ગતિ-અવરોધક બળ F(v)=0 થશે.

$$\therefore F = \frac{4}{3}\pi r^{3}\rho g - \frac{4}{3}\pi r^{3}\rho_{o}g = \frac{4}{3}\pi r^{3}g(\rho - \rho_{o})$$
(5.10.6)

જો t=0 સમયે ગોળાનો પ્રવેગ a_0 હોય, તો

$$F = ma_{o} = \frac{4}{3}\pi r^{3}\rho a_{o}$$
 (5.10.7)

(5.10.6) અને (5.10.7) સરખાવતાં,

$$\frac{4}{3}\pi r^3 \rho a_o = \frac{4}{3}\pi r^3 g(\rho - \rho_o)$$

$$a_{o} = \frac{\rho - \rho_{o}}{\rho} \tag{5.10.8}$$

ગોળો તરલમાં પ્રવેગી ગિત શરૂ કરે છે. સમય જતાં ગોળાનો વેગ જેમજેમ વધતો જાય છે, તેમતેમ તેના પર ઊર્ધ્વ દિશામાં લાગતું ગિત-અવરોધક બળ વધતું જાય છે. F_1 અને F_2 બળો અચળ છે. તેથી પરિણામી બળ અને તેથી પ્રવેગ ઘટતો જાય છે. આમ, ગોળાનો વેગ વધતો જાય છે અને પ્રવેગ ઘટતો જાય છે. જ્યારે $F_1=F_2+F(\nu)$ થાય ત્યારે ગોળા પર લાગતું પરિણામી બળ શૂન્ય બને છે અને તેથી પ્રવેગ પણ શૂન્ય થાય છે. આ ક્ષણથી ગોળો અચળ વેગથી ગિત શરૂ કરે છે. આ વેગને ગોળાનો ટર્મિનલ વેગ (terminal velocity) ν_i કહે છે. હવે પછીની સમગ્ર ગિત દરમિયાન ગોળાનો વેગ અચળ જળવાઈ રહે છે. ગોળો ટર્મિનલ વેગ પ્રાપ્ત કરે ત્યારે સમીકરણ (5.10.8) F=0 અને $\nu=\nu_i$ થશે.

106 ભૌતિકવિશાન

$$\therefore 0 = \frac{4}{3}\pi r^3 \rho g - \frac{4}{3}\pi r^3 \rho_o g - 6\pi \eta r v_t$$

$$\therefore 6\pi \eta r v_t = \frac{4}{3}\pi r^3 g (\rho - \rho_o)$$

$$\therefore v_t = \frac{2}{9} \frac{r^2 g}{\eta} (\rho - \rho_o) \qquad (5.10.9)$$

ગોળાને તરલમાં મુક્ત પતન કરાવી તેનો ટર્મિનલ વેગ પ્રાયોગિક રીતે માપી લેવામાં આવે, તો સમીકરણ (5.10.9)નો ઉપયોગ કરી તરલનો શ્યાનતા-ગુણાંક શોધી શકાય છે.

પ્રવાહીમાં રચાતા હવાના પરપોટાને હવાનો ગોળો ગણી શકાય. આ કિસ્સામાં $\rho_{\rm o} > \rho$ થાય છે. પરિણામે પ્રારંભથી જ $F_1 < F_2$ થતા પરપોટાને ઊર્ધ્વ દિશામાં પ્રવેગ મળે છે. પરિણામે તે પ્રવાહીમાં ઊંચે ચડે છે અને અમુક સમય પછી ટર્મિનલ વેગ પ્રાપ્ત કરે છે. આ અંતિમ વેગ સમીકરણ (5.10.9)નો ઉપયોગ કરી શોધી શકાય છે. અહીં $v_{\rm f}$ ઋણ મળે છે જે સૂચવે છે કે પરપોટાનો ટર્મિનલ વેગ ઊર્ધ્વ દિશામાં છે. સોડાવૉટરની બૉટલમાં ઊંચે ચઢતા પરપોટા તમે જોયાં હશે.

ઉદાહરણ 8 : સમાન કદના વરસાદનાં બે ટીપાં હવામાં 10 cm s⁻¹ના અંતિમ વેગથી ગતિ કરતાં-કરતાં એકબીજાંમાં ભળી જઈ એક મોટું ટીપું બનાવે છે, તો આ મોટા ટીપાનો અંતિમ વેગ શોધો.

ઉકેલ :

બંને ટીપાંની ત્રિજ્યા ધારો કે r અને કદ V છે. જ્યારે તે બંને એકત્ર થઈ એક ટીપું બનાવે ત્યારે (કુલ દળ અને ઘનતા અચળ હોવાથી) તે નવા ટીપાનું કદ V' તે દરેકના કદ કરતાં બમણું થશે.

ધારો કે નવા ટીપાની ત્રિજ્યા R છે.

હવે,
$$V' = 2V$$

$$\frac{4}{3}\pi R^3 = 2\left(\frac{4}{3}\pi r^3\right)$$

$$R^3 = 2r^3$$

$$\therefore R = (2^{\frac{1}{3}})r$$

નાના ટીપાનો ટર્મિનલ વેગ v અને મોટા ટીપાનો ટર્મિનલ વેગ v' કહીએ, તો

$$v = \frac{2}{9} \frac{r^2 g}{\eta} (\rho - \rho_0)$$
 અને

$$v' = \frac{2}{9} \frac{R^2 g}{\eta} (\rho - \rho_0)$$

 $\therefore \frac{v'}{v} = \frac{R^2}{r^2}$
 $\therefore v' = v \frac{R^2}{r^2} = 10(2^{\frac{1}{3}})^2 = 15.87 \text{ cm s}^{-1}$

5.11 રેનોલ્ડ્-અંક અને ક્રાંતિવેગ (Reynold's Number and Critical Velocity)

નળીમાંથી વહેતા તરલનું વહન ધારારેખી કે વમળયુક્ત કે મિશ્ર પ્રકારનું હોઈ શકે. શ્યાનતા-ગુજ્ઞાંકના લગભગ બધા જ પ્રયોગો વહન ધારારેખી હોવું જરૂરી છે. આથી કયા સંજોગોમાં ધારારેખી વહન મળે તે જાણવું જરૂરી છે.

બ્રિટિશ ગણિતશાસ્ત્રી અને ભૌતિકવિજ્ઞાની ઓસબોર્ન રેનોલ્ડ્ઝે દર્શાવ્યું કે નળીમાંથી વહેતા તરલના વહનનો પ્રકાર નીચેની બાબતો પર આધારિત છે : (1) તરલનો શ્યાનતા-ગુશાંક (η) (2) તરલની ઘનતા (ρ) (3) તરલનો સરેરાશ વેગ (ν) (4) નળીનો વ્યાસ (D)

આ ચાર ભૌતિક રાશિના સમન્વયથી બનતા અંકને N_p ને રેનોલ્ડ્ઝ-અંક કહે છે.

રેનોલ્ડ્ઝ અંક
$$N_R = \frac{\rho \nu D}{\eta}$$
 (5.11.1)

 N_R નું મૂલ્ય તરલ વહનના પ્રકાર પર આધાર રાખે છે. N_R પરિમાણરહિત અંક છે. પ્રયોગો દર્શાવે છે કે જો $N_R < 2000$ હોય, તો વહન ધારારેખી વહન હોય છે. જો $N_R > 3000$ તો તરલ વહન વમળયુક્ત હોય છે અને જે $2000 < N_R < 3000$ હોય, તો તરલ વહન અસ્થિર હોય છે અને વહનનો પ્રકાર બદલાતો જાય છે.

કાંતિ વેગ (Critical Velocity): સમીકરણ 5.11.1 પરથી સ્પષ્ટ છે કે વેગ વધવા સાથે રેનોલ્ડ્ઝ-અંકનું મૂલ્ય વધે છે. વેગના જે મહત્તમ મૂલ્ય સુધી તરલ વહન ધારા રેખી રહે તે વેગના મૂલ્યને કાંતિવેગ કહે છે. કાંતિવેગને અનુસંગત રેનોલ્ડ્ઝ અંકના મૂલ્યને ક્રિટીકલ રેનોલ્ડ્ઝ-અંક કહે છે.

એ સ્પષ્ટ છે કે જો $\eta=0$ (એટલે કે અશ્યાન તરલ માટે) N_R નું મૂલ્ય અનંત બને. આમ અશ્યાન તરલનું વહન કદી ધારારેખીય ન હોઈ શકે.

ઉદાહરણ 9: આકૃતિ 5.23માં દર્શાવ્યા પ્રમાણે, નિયમિત આંતરિક ત્રિજ્યા r ધરાવતી l લંબાઈની એક નળીમાં η જેટલો શ્યાનતા-ગુણાંક ધરાવતા એક તરલનું સ્તરીય વહન થઈ રહ્યું છે. નળીમાં આવું વહન જાળવી

રાખવા માટે શ્યાનતાબળને સમતોલતું બળ, નળીના બે છેડે દબાશનો તફાવત (p) ઉત્પન્ન કરીને મેળવવા આવે છે. તો નળીના અક્ષથી 'x' અંતરે રહેલા સ્તરના વેગનું

સૂત્ર
$$v = \frac{p}{4 \eta l} (r^2 - x^2)$$
 મેળવો.

આકૃતિ 5.23

6કેલ : આકૃતિ 5.23માં દર્શાવ્યા પ્રમાણે x જેટલી ત્રિજ્યાવાળો અક્ષ પરનો પ્રવાહીનો નળાકાર ધ્યાનમાં લો. તેના પર લાગતાં બળો નીચે મુજબ છે :

(1) દબાણાના તફાવત p વડે ઉદ્ભવતું બળ, $\mathbf{F}_{\scriptscriptstyle 1} = \pi x^2 p$

(2) શ્યાનતાબળ,
$$\mathbf{F}_2=\eta\mathbf{A}\frac{dv}{dx}$$

$$=\eta(2\pi x l)\Big(-\frac{dv}{dx}\Big)$$

જ્યાં, $\mathbf{A}=$ વિચારેલ નળાકારની વક્કસપાટીનું ક્ષેત્રફળ $=2\pi x l$

અત્રે, x વધતાં v ઘટતો હોવાથી વેગ-પ્રચલન ઋણ લીધેલ છે. અહીં, નળાકારના અચળવેગી વહન માટે

$$F_1 = F_2$$

$$\therefore \pi x^2 p = -\eta \cdot 2\pi x l \cdot \frac{dv}{dx}$$

$$\therefore -dv = \frac{p}{2\eta l} x dx$$

x=r પર વેગ v=0 છે અને $x=x,\,v=v$ હોવાથી આ limitsમાં સંકલન કરતાં

$$-\int_{v}^{0} dv = \int_{x}^{r} \frac{p}{2\eta l} x dx$$

$$\therefore -[v]_v^0 = \frac{p}{4\eta l} \left[x^2 \right]_x^r$$

$$\therefore -[0 - v] = \frac{p}{4\eta l} [r^2 - x^2]$$

$$\therefore v = \frac{p}{4\eta l} (r^2 - x^2)$$

ઉદાહરણ 10 : ઉપર્યુક્ત ઉદાહરણમાં નળીમાંથી દર સેકન્ડે વહેતા પ્રવાહીનું કદ શોધો. [Hint : નળીમાંથી વહેતા પ્રવાહીનો વેગ તેની અક્ષ અને દીવાલ પાસેના વેગોના સરેરાશ જેટલો લો.]

ઉકેલ :

$$v = \frac{p}{4nl}(r^2 - x^2)$$

$$\therefore$$
 અક્ષ ($x=0$), પર વેગ $v=rac{pr^2}{4\eta l}$

દીવાલ (x = r), પર વેગ v = 0

$$\therefore$$
 સરેરાશ વેગ = $\frac{pr^2}{8\eta l}$

હવે, નળીમાંથી દર સેકન્ડે વહેતા પ્રવાહીનું કદ

$$= \left(\frac{pr^2}{8\eta l}\right)(\pi r^2)$$

$$\therefore V = \frac{\pi p r^4}{8nl}$$

[નોંધ : આ સમીકરણને Poiseiulleનો નિયમ કહે છે.]

ઉદાહરણ 11 : એક પાઇપલાઇનના આડછેદની ત્રિજયા $r=r_0e^{-\alpha x}$; સૂત્ર પ્રમાણે ઘટતી જાય છે, જ્યાં $\alpha=0.50~\mathrm{m}^{-1}$ અને x એ પાઇપલાઇનના પ્રથમ છેડાથી (x=0)થી આડછેદનું અંતર છે, તો એકબીજાથી $2~\mathrm{m}$ જેટલા અંતરે રહેલા બે આડછેદ માટે રેનોલ્ડ્ઝ-અંકનો ગુણોત્તર શોધો. $(e=2.718~\mathrm{eh}.)$

ઉકેલ : રેનોલ્ડ્ઝ-અંક
$$N_R = \frac{\rho \nu D}{n}$$

 \therefore આપેલ પ્રવાહી માટે $N_{_{
m R}} lpha \, v {
m D}$

$$\therefore \frac{(N_R)_1}{(N_R)_2} = \frac{v_1}{v_2} \times \frac{D_1}{D_2}$$
 (1)

સાતત્યના સમીકરણ પરથી,

$$\mathbf{A}_1 \mathbf{v}_1 = \mathbf{A}_2 \mathbf{v}_2$$

$$\therefore \pi r_1^2 v_1 = \pi r_2^2 v_2$$

$$\therefore \frac{v_1}{v_2} = \left(\frac{r_2}{r_1}\right)^2 = \left(\frac{D_2}{D_1}\right)^2$$

108 ભૌતિકવિશાન

સમીકરણ (1) અને (2) પરથી,

$$\frac{(N_R)_1}{(N_R)_2} = \left(\frac{D_2}{D_1}\right)^2 \times \frac{D_1}{D_2} = \frac{D_2}{D_1} = \frac{r_2}{r_1} = \frac{r_0 e^{-\alpha x_2}}{r_0 e^{-\alpha x_1}}$$

$$\frac{(N_R)_1}{(N_R)_2} = e^{-\alpha(x_2 - x_1)} = e^{-(0.5)(2)} = e^{-1}$$

= 0.368

5.12 પૃષ્ઠ-ઊર્જા અને પૃષ્ઠતાણ (Surface Energy and Surface Tension)

આપ સૌએ એક બાબતની નોંધ લીધી હશે કે પાણીથી કાચ ભીંજાય છે, પણ કમળ કે તેનું પર્ણ નહીં. દીવામાં તેલ ગુરુત્વાકર્ષણ વિરુદ્ધ ઉપર ચઢે છે. પાણી પર અમુક કિટકો ચાલી શકે છે. જો પૂરતી કાળજી લેવામાં આવે, તો પાણી પર સમક્ષિતિજ મૂકેલ સોય પાણી પર તરે છે. આવી ઘટનાઓ માટે પ્રવાહીનો પૃષ્ઠતાણ નામનો ગુણધર્મ જવાબદાર છે. પૃષ્ઠતાણને કારણે પ્રવાહી એક ખેંચી રાખેલા પડની જેમ વર્તે છે. પૃષ્ઠતાણ માત્ર પ્રવાહીનો ગુણધર્મ છે.

5.12.1 પૃષ્ઠ-ઊર્જા (Surface energy) :

એક જ દ્રવ્યના અશુઓ વચ્ચે લાગતા આકર્ષણબળને સંસક્તિ (cohesive) બળ અને જુદાં-જુદાં દ્રવ્યના અશુઓ વચ્ચે લાગતા આકર્ષણબળને આસક્તિ (adhesive) બળ કહે છે.

જે ગુરુતમ અંતર સુધી બે અશુઓ એકબીજા પર આકર્ષણબળ લગાડી શકે તે અંતરને અશુઓની અશુક્રિયા-અવિ કહે છે. અશુને કેન્દ્ર તરીકે લઈ અશુક્રિયા-અવિ જેટલી ત્રિજ્યાનો ગોળો વિચારીએ, તો તેને તે અશુનો અશુક્રિયા-ગોળો કહે છે. આવા ગોળાની અંદર રહેલા અશુઓ જ કેન્દ્ર પર રહેલા અશુઓ કેન્દ્ર પર રહેલા અશુ પર આકર્ષણબળ લગાડી શકે છે. ગોળાની બહાર રહેલા અશુઓ કેન્દ્ર પર રહેલા અશુ પર આકર્ષણબળ લગાડી શકતા નથી.

અશુક્રિયા-ગોળાઓ આકૃતિ 5.24

આંતર-અશુબળોને લીધે ઉદ્ભવતી પૃષ્ઠ-અસર સમજવા માટે આકૃતિ 5.23માં દર્શાવ્યા પ્રમાણે એક પ્રવાહીમાંના ત્રણ અશુઓ P, Q, અને R તેમના અશુક્રિયા ગોળાઓ સાથે ધ્યાનમાં લો.

ધારો કે અશુક્રિયા-અવિ r_0 છે. AB પ્રવાહીની મુક્ત સપાટી દર્શાવે છે. P અશુનો અશુક્રિયા-ગોળો પ્રવાહીમાં સંપૂર્શપણે ડૂબેલો છે. તેથી તે સમાન રીતે પ્રવાહીના અશુઓથી ભરાયેલો છે. પરિણામે P અશુ પર બધી જ દિશાઓમાંથી એકસરખું આકર્ષણબળ લાગે છે. તેથી તેના પર લાગતું પરિણામી બળ શૂન્ય થાય છે અને તે સંતુલનમાં રહે છે. પ્રવાહીની મુક્ત સપાટીથી r_0 કરતાં વધારે ઊંડાઈએ આવેલા બધા જ અશુઓની પરિસ્થિતિ આવી હોય છે.

હવે r_0 કરતાં ઓછી ઊંડાઈએ આવેલા અશુ ${f Q}$ અને તેના અણુક્રિયા-ગોળાને ધ્યાન પર લો. આ અણુક્રિયા-ગોળાનો FOEF ભાગ પ્રવાહીની બહાર છે. આ ભાગમાં હવા અને બાષ્યના અશુઓ રહેલા હોય છે. હવા અને પ્રવાહીની બાષ્યની ઘનતા પ્રવાહીની ઘનતાં કરતાં ઘણી ઓછી હોય છે. ઉપરાંત હવા અને પ્રવાહીના અણુઓ વચ્ચેનાં આસક્તિબળો પ્રમાણમાં નબળાં હોય છે. આથી GNHG ભાગમાંના પ્રવાહીના અશુઓ વડે Q પર લાગતું અધોદિશામાંનું સમાસબળ પ્રવાહીની બહાર રહેલા તેના જેવા જ FOEF ભાગમાંના હવા અને બાષ્યના અશુઓ વડે લાગતા ઊર્ધ્વ દિશામાંના સમાસબળ કરતાં વધારે હોય છે. અણક્રિયા-ગોળાના CDHG અને CDEF ભાગોમાં તો પ્રવાહીના અશુઓની સંખ્યા સમાન છે. પરિશામે તે ભાગોમાંના અશુઓ વડે Q પર લાગતું સમાસબળ શૂન્ય હોય છે. આમ, Q અશુ પર સમાસ આંતર-અશુબળ અધોદિશામાં લાગે છે. મુક્ત સપાટીથી 🕝 જેટલી જાડાઈના સ્તરને પ્રવાહીનું પૃષ્ઠ કહે છે. આમ, પ્રવાહીના પૃષ્ઠમાં રહેલા અણુઓ પર અધોદિશામાં સમાસબળ લાગે છે. પૃષ્ઠમાં જેમ-જેમ ઉપર આવતાં જઈએ તેમ આ સમાસબળનું મૂલ્ય વધતું જાય છે. મુક્ત સપાટી AB પરના અશુઓ માટે તે મહત્તમ હોય છે. આથી પ્રવાહીના પૃષ્ઠમાં રહેલા અશુઓ પ્રવાહીની અંદર જવાનું વલણ ધરાવે છે.

આ સંજોગોમાં કેટલાક અશુઓ પ્રવાહીની અંદર (પૃષ્ઠ નીચે) જવા શક્તિમાન પશ બને છે. આમ થતાં પૃષ્ઠની નીચે પ્રવાહીની ઘનતા વધી જાય છે અને અમુક કરતાં વધારે અશુઓ પૃષ્ઠની નીચે જઈ શકતા નથી. પરિણામે પ્રવાહીના પૃષ્ઠ નીચે પ્રવાહીની ઘનતા વધારે હોય છે. જ્યારે

પૃષ્ઠમાં ઉપર જઈ એ તેમ ક્રમશઃ તે ઘટતી જાય છે. બીજી રીતે કહીએ, તો પ્રવાહીમાં તેના પૃષ્ઠની નીચે આંતર-અશુ-અંતરો ઓછાં હોય છે. જ્યારે પૃષ્ઠમાં તે વધારે હોય છે. હવે આંતર-અશુબળોને આંતર-અશુ-અંતરોના વિધેય તરીકે લઈને સાબિત કરી શકાય છે કે, પૃષ્ઠમાં આંતર-અશુ-અંતરો વધારે હોવાથી તેમાં રહેલા પ્રવાહીના અશુઓ વચ્ચે પૃષ્ઠને સમાંતર ખેંચાશબળ ઉદ્ભવે છે.

આથી પ્રવાહીનું પૃષ્ઠ ખેંચાયેલી સ્થિતિસ્થાપક કપોટી (film)ની માફક સંકોચાવાનું વલશ ધરાવે છે. તેમાં પૃષ્ઠને સમાંતર તજ્ઞાવબળ પ્રવર્તતું હોય છે. આ તજ્ઞાવબળનું માપ પૃષ્ઠતાશ નામની ભૌતિક રાશિ વડે આપવામાં આવે છે.

પ્રવાહીની મુક્ત સપાટી પર કલ્પેલી એકમલંબાઈની રેખાની એક બાજુ પર રહેલા પ્રવાહીના અશુઓ રેખાની બીજી બાજુ પર રહેલા અશુઓ પર, રેખાને લંબ અને સપાટીને સમાંતર જે બળ લગાડે છે તેને પ્રવાહીનું પૃષ્ઠતાશ કહે છે.

$$\therefore \text{ yeals } T = \frac{F}{L} \tag{5.12.1}$$

$$\therefore F = TL \tag{5.12.2}$$

પૃષ્ઠતાણનો એકમ N m⁻¹ છે.

યાદ રાખો કે પૃષ્ઠતાશનું બળ પ્રવાહીની સપાટી પરના અશુઓ વચ્ચે લાગતું સમાસ-આંતર-અશુબળ નથી. સપાટી પર રહેલા અશુઓ પર લાગતાં સમાસ-આંતર-અશુબળો તો સપાટીને લંબરૂપે પ્રવાહીની અંદર તરફ હોય છે. જ્યારે પૃષ્ઠતાશનું બળ સપાટીને સમાંતર હોય છે.

જો એકમલંબાઈની રેખા સપાટીના મધ્ય ભાગમાં કલ્પવામાં આવે, તો તેની બંને બાજુના અશુઓ એકબીજા પર સમાન મૂલ્યના પરંતુ પરસ્પર વિરુદ્ધ દિશાનાં બળો લગાડતાં હોવાથી સપાટીના મધ્ય ભાગમાં પૃષ્ઠતાશનું બળ અસરકારક જશાતું નથી. સપાટીના કિનારીની બીજી બાજુ પ્રવાહીના અશુઓ ન હોવાથી કિનારી પર પૃષ્ઠતાશનું બળ સપાટીને સમાંતર અને કિનારીને લંબ અંદર તરફનું અનુભવાય છે.

સ્થિતિ-ઊર્જાના સંદર્ભમાં પૃષ્ઠતાણ

આપણે જોયું કે પ્રવાહીના પૃષ્ઠમાં રહેલા અશુઓ પ્રવાહીની અંદર જવાનું વલણ ધરાવે છે. આ વલણ અશુઓની સ્થિતિ-ઊર્જાના સંદર્ભમાં પણ સમજી શકાય છે. આકૃતિ 5.24માં જો P જેવા અશુને પૃષ્ઠમાં લાવવો હોય તો તે પૃષ્ઠમાં જેટલું અંતર (ઊર્ધ્વ દિશામાં) કાપે તે દરમિયાન તેના પર અધોદિશામાં લાગતા બળની વિરુદ્ધ કાર્ય કરવું પડે છે. આથી આવો અશુ પૃષ્ઠમાં આવે ત્યારે સ્થિતિ-ઊર્જા પ્રાપ્ત કરે છે. આ હકીકત દર્શાવે છે કે પૃષ્ઠમાં રહેલા અશુઓની સ્થિતિ-ઊર્જા પૃષ્ઠની નીચે રહેલા અશુઓની સ્થિતિ-ઊર્જા કરતાં વધારે હોય છે. હવે, કોઈ પણ તંત્ર પોતાની સ્થિતિ-ઊર્જા લઘુતમ રહે તેવી સ્થિતિમાં રહેવા હંમેશાં પ્રયત્ન કરે છે. આથી, પૃષ્ઠમાંના અશુઓ પોતાની સ્થિતિ-ઊર્જા ઘટાડવાનું વલશ ધરાવે છે અને પ્રવાહીનું પૃષ્ઠ પોતાનું ક્ષેત્રફળ લઘુતમ બને તે રીતે સંકોચાવાનું વલશ ધરાવે છે.

પૃષ્ઠતાણનું મૂલ્ય અણુઓની સ્થિતિ-ઊર્જાના સંદર્ભમાં પણ માપી શકાય છે. આપણે જોયું કે અણુઓને પ્રવાહીની અંદરની સપાટી પર લાવવા માટે કાર્ય કરવું પડે છે જે તેમાં સ્થિતિ-ઊર્જાના રૂપમાં સંગ્રહ પામે છે. નોંધનીય વાત તો એ છે કે આ રીતે સપાટી પર આવતો અણુ સપાટી પર રહેલા મૂળ બે અણુઓની વચ્ચે ગોઠવાતો હોતો નથી. સપાટી પર આવતા અણુઓ નવી સપાટીનું નિર્માણ કરે છે. અર્થાત્ સપાટીનું વિસ્તરણ થાય છે. પ્રવાહીની સમગ્ર સપાટી આ રીતે જ નિર્માણ પામેલી ગણી શકાય. આમ, પ્રવાહીની સપાટીમાંના અણુઓ, તેમને સપાટી પર લાવતાં તેમના પર થયેલ કાર્ય જેટલી સ્થિતિ-ઊર્જા મેળવતા હોય છે.

''પ્રવાહીની મુક્ત સપાટીના એકમ ક્ષેત્રફળ દીઠ રહેલી સ્થિતિ-ઊર્જાને પ્રવાહીનું પૃષ્ઠતાણ (T) કહે છે.''

આ વ્યાખ્યા મુજબ, પૃષ્ઠતાણ $T=rac{E}{A}$ આ સંદર્ભમાં પૃષ્ઠતાણનો એકમ J m^{-2} થશે.

હવે,
$$\frac{\text{જૂલ}}{\text{મીટર}^2} = \frac{\text{-યૂટન મીટર}}{\text{મીટર}^2} \frac{\text{-યૂટન}}{\text{મીટર}}$$
 છે.

આથી બંને વ્યાખ્યાઓથી મળતા એકમો સમાન જ છે. પ્રવાહીનું પૃષ્ઠતાણ પ્રવાહીની જાત તેમજ તાપમાન પર આધાર રાખે છે. તાપમાન વધતાં પૃષ્ઠતાણ ઘટે છે અને ક્રાંતિ તાપમાને તે શૂન્ય બને છે. વળી, પ્રવાહીનું પૃષ્ઠતાણ પ્રવાહી જે માધ્યમનાં સંપર્કમાં હોય તે માધ્યમ પર પણ આધાર રાખે છે.

પૃષ્ઠ-ઊર્જા (Surface energy): ધારો કે એક પ્રવાહીનું આપેલા તાપમાને પૃષ્ઠતાણ T છે. અચળ તાપમાને પ્રવાહીની સપાટીના ક્ષેત્રફળમાં એકમવધારો કરવો હોય તો T જેટલું કાર્ય કરવું પડે. આપણે જાણીએ છીએ કે સપાટીનું વિસ્તરણ થતાં તેનું તાપમાન ઘટે છે. આથી તાપમાન અચળ

રાખવું હોય, તો વિસ્તરણ દરમિયાન તેને બહારથી ઉષ્મા-ઊર્જા આપવી પડે છે. આમ, પ્રવાહીની સપાટીના ક્ષેત્રફળમાં એક એકમ જેટલો વધારો થતાં આ એક એકમ જેટલી નવી સપાટીને સ્થિતિ-ઊર્જા (=T) ઊર્જા ઉપરાંત ઉષ્મા-ઊર્જા પણ મળે છે.

∴ એકમક્ષેત્રફળ દીઠ કુલ પૃષ્ઠ-ઊર્જા = સ્થિતિ-ઊર્જા (પૃષ્ઠતાણ) + ઉષ્મા-ઊર્જા

આમ, આપેલા તાપમાને પૃષ્ઠ-ઊર્જાનું મૂલ્ય પૃષ્ઠતાણ કરતાં વધારે હોય છે. તાપમાન વધારતાં પૃષ્ઠતાણ અને પૃષ્ઠ-ઊર્જા ઘટે છે અને ક્રાંતિ-તાપમાને તેઓ શૂન્ય બને છે.

અત્યાર સુધીની આપણી ચર્ચા ઘટનાત્મક પ્રકારની (phenomenological) છે. હવે આ ચર્ચાના નિષ્કર્ષોને આપણે પ્રયોગની એરણ પર ચઢાવીને ચકાસીએ. આ માટે આકૃતિ 5.25માં દર્શાવ્યા મુજબની તારમાંથી બનાવેલી એક લંબચોરસ ફ્રેમ ABCD પર ધ્યાન કેન્દ્રિત કરો. તાર PQ આ ફ્રેમની AD અને BC ભુજાઓ પર ઘર્ષણરહિત સરકી શકે છે. તાર PQ સાથે એક પાતળી દોરી બાંધેલી છે.

લંબચોરસ ક્રેમ પર રચેલ પ્રવાહીની ફિલ્મ

જો ફ્રેમને સાબુના દ્રાવણમાં બોળીને, દોરી વડે તાર PQ ને યોગ્ય રીતે ખેંચી રાખીને, ફ્રેમને દ્રાવણમાંથી બહાર કાઢીએ, તો ફ્રેમ પર દ્રાવણની ફિલ્મ (film) ABQP મેળવી શકાય છે. જો દોરી છોડી દઈએ, તો PQ તાર AB બાજુ તરફ સરકી જતો જણાય છે, એટલે કે ફિલ્મ સંકોચાય છે. આ પ્રયોગ દર્શાવે છે કે પ્રવાહીની મુક્ત સપાટીની કિનારી પર, કિનારીને લંબ અને સપાટીને સમાંતર પૃષ્ઠતાણનું બળ લાગે છે.

હવે ફિલ્મ ABQP ફરીથી તૈયાર કરી, દોરીને તાર PQ પર લાગતાં બળ કરતાં સહેજ વધારે બળથી ખેંચીને તાર PQને આકૃતિ 5.25(b)માં દર્શાવ્યા મુજબ x જેટલું સ્થાનાંતર કરાવીએ, તો થતું કાર્ય નીચે પ્રમાણે ગણી શકાય :

ધારો કે દ્રાવશનું પૃષ્ઠતાશ T અને તાર PQની લંબાઈ I છે.

તેથી તાર પર લાગતું પૃષ્ઠતાણનું બળ 2Tl; અહીં ફિલ્મને બે મુક્ત સપાટીઓ હોવાથી બળના સૂત્રમાં 2 આવે છે. (5.12.4)

 \therefore લગાડેલું બાહ્ય બળ $ext{F}=2 ext{T}l$

કાર્ય = બાહ્ય બળ × સ્થાનાંતર

W = 2Tlx

પણ, ફિલ્મની સપાટીના ક્ષેત્રફળમાં થતો વધારો = $\Delta A = 2lx$ (5.12.5)

 \therefore W = T Δ A

જો $\Delta A = 1$ એકમ થાય, તો W = T

∴ સપાટીના ક્ષેત્રફળમાં એક એકમ જેટલો વધારો કરવા માટે કરવું પડતું કાર્ય પૃષ્ઠતાણના માપ જેટલું હોય છે.

5.13 બુંદ અને પરપોટાઓ (Drops and Bubbles)

પ્રવાહીનાં નાનાં બુંદ કે પરપોટા હંમેશાં ગોળાકાર હોય છે. તમને સ્વાભાવિક રીતે જ પ્રશ્ન થાય કે આમ શા કારણે થતું હશે ? પૃષ્ઠતાણને કારણે પ્રવાહીની મુક્ત સપાટી તેનું ક્ષેત્રફળ લઘુતમ રહે તેવી સ્થિતિમાં રહે છે. આપેલા કદ માટે ગોળાકાર સપાટીનું ક્ષેત્રફળ લઘુતમ હોય છે. આથી પ્રવાહીનાં નાનાં બુંદ હંમેશાં ગોળાકાર હોય છે.

બુંદ કે પરપોટાની સપાટીઓ વકાકાર હોય છે. પ્રવાહીની આ વકાકાર સપાટીના અંતર્ગોળ ભાગ પર લાગતું દબાણ, બહિર્ગોળ ભાગ પર લાગતા દબાણ કરતાં વધારે હોય છે. આથી જ પ્રવાહીનાં બુંદ કે પરપોટાની અંદરનું દબાણ બહારના દબાણ કરતાં વધારે હોય છે.

આકૃતિ 5.26a માં દર્શાવ્યા મુજબ R ત્રિજ્યા ધરાવતા હવામાં રહેલા કોઈ એક પરપોટાને ધ્યાનમાં લો. તેની અંદર અને બહારના દબાણ અનુક્રમે P_i અને P_0 છે. અહીં $P_i > P_0$ છે. પરપોટાની દીવાલ રચતા પ્રવાહી (દ્રાવણ)નું પૃષ્ઠતાણ ધારો કે T છે.

હવે, ધારો કે પરપોટાને ફુલાવતાં તેની ત્રિજ્યા Rથી વધીને (R + dR) થાય છે. (જુઓ આકૃતિ 5.26b) અને આમ કરવાથી તેની મુક્ત સપાટીનું ક્ષેત્રફળ ધારો કે S થી વધીને S + dS થાય છે. આ માટેનું કાર્ય બે રીતે ગણી શકાય.

(1) પરપોટાની ફૂલવાની પ્રક્રિયામાં તેની $4\pi R^2$ ક્ષેત્રફળની સપાટી પર દબાણના તફાવત (P_i-P_0) ના લીધે (P_i-P_0) $4\pi R^2$ બળ લાગે છે અને આ બળની અસર હેઠળ સપાટી dR અંતર ખસે છે. આથી સપાટી પર થતું કાર્ય,

(2) પરપોટાની ત્રિજ્યા R હોય ત્યારે સપાટીનું ક્ષેત્રફળ $S = 4\pi R^2$.

હવે, પરપોટાની ત્રિજ્યા (R + dR) થાય, ત્યારે ક્ષેત્રફળમાં થતો વધારો.

 $dS = 8\pi R dR$

પરંતુ હવામાં રહેલા પરપોટાને બે મુક્ત સપાટીઓ હોય છે.

 \therefore ક્ષેત્રફળમાં થતો કુલ વધારો = $2 \times 8\pi RdR$ = $16\pi RdR$

તેથી, આ માટે જરૂરી કાર્ય,

 $\mathbf{W} = \mathbf{y}$ ષ્ઠતાણ \mathbf{x} ક્ષેત્રફળમાં થતો કુલ વધારો

$$\therefore W = 16\pi R dR \qquad (5.13.2)$$

(5.13.1) અને (5.13.2) સરખાવતાં,

$$4\pi(P_i - P_0)R^2 dR = 16\pi TR dR$$

$$P_i - P_0 = \frac{4T}{R}$$
 (5.13.3)

જો પરપોટો પ્રવાહીની અંદર રહેલો હોય, તો તેને એક જ મુક્ત સપાટી હોય છે.

$$\therefore P_i - P_0 = \frac{2T}{R} \tag{5.13.4}$$

નોંધ : પ્રવાહીના બુંદને પણ એક જ મુક્ત સપાટી હોવાથી દબાણનો તફાવત સમીકરણ (5.13.4) ની મદદથી શોધી શકાય.

ઉદાહરણ 12 : પાણીમાં તેની મુક્ત સપાટીથી 5 cm ઊંડાઈએ બનતા 0.2 cm ત્રિજ્યાના પરપોટાની અંદરનું દબાણ શોધો. પાણીનું પૃષ્ઠતાણ 70 dyne cm^{-1} અને ઘનતા 1 g cm^{-3} છે. વાતાવરણનું દબાણ $10^6 \text{ dyne cm}^{-2}$ લો. ગુરુત્વપ્રવેગનું મૂલ્ય 980 cm s^{-2} છે.

ઉકેલ:

h = 5 cm

R = 0.2 cm

 $T = 70 \text{ dyne cm}^{-1}$

 $\rho = 1 \text{ g cm}^{-3}$

P = વાતાવરણનું દબાશ

 $= 10^6 \text{ dyne cm}^{-2}$

 $g = 980 \text{ cm s}^{-2}$

પાણીમાં બનતા હવાના પરપોટાનું અંદરનું અને બહારનું દબાણ અનુક્રમે \mathbf{P}_i અને \mathbf{P}_0 હોય, તો

$$P_i - P_0 = rac{2T}{R}$$
 (પરપોટો પાણીમાં બનતો હોવાથી તેને એક જ મુક્ત સપાટી છે.)

112 ભૌતિકવિશાન

$$\therefore P_i = P_0 + \frac{2T}{R}$$
 (1)

પરંતુ $\mathbf{P}_0 =$ વાતાવરણનું દબાણ + h ઊંડાઈના પાણીના સ્તંભનું દબાણ

$$\therefore$$
 P₀ = P + $h\rho g$ (2)
સમીકરણ (I) અને (2) પરથી,

$$P_i = P + h\rho g + \frac{2T}{R}$$

$$= 10^6 + (5 \times 1 \times 980) + \frac{2 \times 70}{0.2}$$

$$= 10^6 + 4900 + 700$$

 $P_i = 1.0056 \times 10^6 \text{ dyne cm}^{-2}$

ઉદાહરણ 13: એક છિદ્રવાળો પોલો ગોળો જ્યારે પાણીની સપાટીની નીચે 40 cm ઊંડાઈએ લઈ જવામાં આવે છે, ત્યારે જ છિદ્રમાંથી પાણી દાખલ થવા લાગે છે. જો પાણીનું પૃષ્ઠતાણ 70 dyne cm $^{-1}$ હોય, તો છિદ્રની ત્રિજયા શોધો. $g=10~{\rm ms}^{-2}$.

ઉંકેલ ધારો કે કાણાની ત્રિજ્યા r છે. અહીં ગોળાની ઊંડાઈ $h=40~\mathrm{cm}$ છે. આ ઊંડાઈએ પાણીનું દબાણ $=hdg=40\times1\times1000=40000~\mathrm{dyne}~\mathrm{cm}^{-2}.$

જ્યારે પાણી ગોળામાં પ્રવેશશે, ત્યારે ગોળાના છિદ્રમાંથી છિદ્રની ત્રિજ્યા જેટલી જ ત્રિજ્યા ધરાવતો હવાનો પરપોટો ગોળામાંથી બહાર આવશે. આ પરપોટાની અંદરનું વધારાનું દબાણ $=rac{2T}{r}=rac{2 imes 70}{r}$.

$$\therefore$$
 સમતોલન સ્થિતિમાં $hdg = \frac{2T}{r}$

$$\therefore 40000 = \frac{2 \times 70}{r}$$

$$\therefore r = 3.5 \times 10^{-3} \text{ cm}$$

ઉદાહરણ 14 : r ત્રિજ્યાવાળાં એકસરખાં n ટીપાં એકત્ર થઈ R ત્રિજ્યાનું એક મોટું ટીપું રચે છે. જો પ્રવાહીનું પૃષ્ઠતાણ T હોય, તો વિમુક્ત થતી ઊર્જા શોધો.

6કેલ : r ત્રિજયાવાળાં n ટીપાનું કુલ કદ = R ત્રિજયાનાં ટીપાનું કદ

$$\therefore \left(n\frac{4}{3}\pi r^3\right) = \frac{4}{3}\pi R^3$$

$$\therefore nr^3 = \mathbb{R}^3 \tag{1}$$

n ટીપાની સપાટીનું ક્ષેત્રફળ $\mathbf{A}_{_1}=n(4\pi r^2)$

અને એક મોટા ટીપાનું ક્ષેત્રફળ ${
m A}_{_2}=4\pi {
m R}^2$

$$= A_1 - A_2 = n \cdot 4\pi r^2 - 4\pi R^2$$

$$=4\pi(nr^2-R^2)$$

 \therefore વિમુક્ત થતી ઊર્જા $W=T\Delta A=4\pi T$

$$(nr^2 - R^2) (2)$$

(પરિણામ (2) મેળવવા માટે પરિણામ (1) મેળવવાની જરૂર નથી, પરંતુ પરિણામ (2) ને નીચે જણાવેલ વિશિષ્ટ સ્વરૂપમાં દર્શાવવા માટે પરિણામ (1) જરૂરી છે.)

$$W = T\Delta A = 4\pi TR^3 \left(\frac{nr^2 - R^2}{R^3}\right)$$
$$= 4\pi TR^3 \left(\frac{nr^2}{nr^3} - \frac{R^2}{R^3}\right)$$
$$= 4\pi TR^3 \left(\frac{1}{r} - \frac{1}{R}\right)$$
...(3)

ઉદાહરણ $15: R_1$ અને R_2 ત્રિજ્યાવાળા સાબુના બે પરપોટા એકત્રિત થઈને R ત્રિજ્યાવાળો એક પરપોટો રચે છે. જો વાતાવરણનું દબાણ P અને સાબુના દ્રાવણનું પૃષ્ઠતાણ T હોય, તો સાબિત કરો કે,

 $P(R_1^3 + R_2^3 - R^3) = 4T(R^2 - R_1^2 - R_2^2)$ આ ક્રિયા દરમિયાન તાપમાન અચળ રહે છે, તેમ ધારો.

(विदेख :

પહેલા પરપોટાની અંદરનું દબાણ = P,

$$= P + \frac{4T}{R_1}$$

બીજા પરપોટાની અંદરનું દબાણ = P_2

$$= P + \frac{4T}{R_2}$$

અને સંયુક્ત પરપોટાની અંદરનું દબાણ = P_3 = P + $\frac{4T}{R}$.

અત્રે P =દરેક માટે બહારનું દબા=વાતાવર=દબા=વાતાવર=દબા=

જો આ ત્રણ પરપોટાનાં કદ અનુક્રમે $\mathbf{V}_{_1},~\mathbf{V}_{_2}$ અને $\mathbf{V}_{_3}$ હોય તો,

અત્રે તાપમાન અચળ છે. બોઇલના નિયમ મુજબ,
$$P_1V_1 + P_2V_2 = P_3V_3$$

$$\therefore \left(P + \frac{4T}{R_1}\right) \left(\frac{4}{3}\pi R_1^3\right) + \left(P + \frac{4T}{R_2}\right) \left(\frac{4}{3}\pi R_2^3\right)$$

$$= \left(P + \frac{4T}{R}\right) \left(\frac{4}{3}\pi R^3\right)$$

 $V_1 = \frac{4}{3}\pi R_1^3$; $V_2 = \frac{4}{3}\pi R_2^3$; $V_3 = \frac{4}{3}\pi R^3$

$$\therefore \frac{4}{3}\pi P(R_1^3 + R_2^3 - R^3) = \frac{4}{3}\pi \times 4T$$

$$(R^2 - R_1^2 - R_2^2)$$

$$P(R_1^3 + R_2^3 - R^3) = 4T(R^2 - R_1^2 - R_2^2)$$

5.14 સંપર્કકોણ (Angle of Contact)

આપ સૌએ ઝાકળનાં બિંદુઓ જોયાં હશે. તેઓ ગોળાકાર હોય છે. જ્યારે પ્રવાહી ઘન પદાર્થના સંપર્કમાં આવે ત્યારે તેની સપાટી વક્ર બને છે. આ બાબત વધુ સારી રીતે સમજવા આકૃતિ 5.27(a) અને 5.27(b)માં દર્શાવેલા પ્રવાહીનાં ટીપાં ધ્યાનમાં લો.

સંપર્કકોણ

આકૃતિ 5.27

પ્રવાહી અને ઘન પદાર્થના સંપર્કબિંદુએ પ્રવાહીની સપાટીને દોરેલો સ્પર્શક અને પ્રવાહીમાં રહેલા ઘન સપાટી વચ્ચેનો ખુણો સંપર્કકોણ કહેવાય છે. સંપર્કકોણ સંપર્કમાં રહેલ પ્રવાહી અને ઘન પદાર્થ પર આધાર રાખે છે. જો સંપર્કકોણ 90°થી ઓછો હોય, તો પ્રવાહી ઘન પદાર્થને ભીંજવે છે, ઘન પદાર્થ સાથે ચોંટી જાય છે, અને આપેલ ઘન પદાર્થની બનલી કેશનળીમાં ઉપર ચઢે છે. જો સંપર્ક કોણ 90°થી વધુ હોય તો પ્રવાહી ઘન પદાર્થને ભીંજવતું નથી, ઘન પદાર્થ સાથે ચોંટી જતું નથી અને પદાર્થની બનેલી કેશનળીમાં નીચે ઉતરે છે. ઉદાહરણ તરીકે જો પાણીનું ટીપું કમળના પાન પર હોય તો (આકૃતિ 5.27a) સંપર્કકોણ ગુરુકોણ છે. પણ જો પાણીનું ટીપું કાચના સંપર્કમાં હોય તો (આકૃતિ 5.27b) સંપર્કકોણ લઘુકોણ છે.

5.15 કેશાકર્ષણ (Capillarity)

પ્રવાહીમાં ઊભી રાખવામાં આવેલી કેશનળીમાં પ્રવાહીની ઊંચે ચડવાની કે નીચે ઊતરવાની ઘટનાને કેશાકર્ષણ કહે છે. આ ઘટનામાં પ્રવાહીનું પૃષ્ઠતાણ મુખ્ય ભાગ ભજવે છે.

કાચની કેશનળીમાં કેશાકર્ષણની ઘટના

આકૃતિ 5.28

આકૃતિ 5.28(a)માં દર્શાવ્યા મુજબ પાણીમાં કાચની કેશનળી (નાના વેહવાળી નળી) ઊભી રાખતાં કેશનળીમાં પાણી ઊંચે ચઢે છે. જ્યારે આકૃતિ 5.28(b)માં દર્શાવ્યા મુજબ પારામાં કાચની કેશનળી ઊભી રાખતાં કેશનળીમાં પારો નીચે ઊતરે છે. વળી, એ પણ અહીં નોંધો કે પાણી કાચને ભીંજવે છે, જ્યારે પારો કાચને ભીંજવતો નથી. અહીં તમે ધ્યાનથી જોશો તો ખ્યાલ આવશે કે કેશનળીમાં ઉપર ચડેલા પાણીની મુક્ત સપાટી (મેનિસ્ક્સ - meniscus) અંતર્ગોળ હોય છે, જ્યારે કેશનળીમાં નીચે ઊતરેલા પારાની મુક્ત સપાટી બહિર્ગોળ હોય છે.

કેશનળીમાં પ્રવાહીનો સ્તંભ આકૃતિ 5.29

આકૃતિ 5.29માં દર્શાવ્યા મુજબ ધારો કે r ત્રિજ્યાની એક કેશનળીને પ્રવાહીમાં ઊભી ગોઠવતાં પ્રવાહી કેશનળીમાં h ઊંચાઈ સુધી ઉપર ચડે છે. આ સ્થિતિમાં કેશનળીમાં પ્રવાહીના અંતર્ગોળ મેનિસ્ક્સની વક્કતા ત્રિજ્યા ધારો કે R છે.

મેનિસ્કસની ત્રિજ્યા $\mathbf R$ અને કેશનળીની ત્રિજ્યા r વચ્ચેનો સંબંધ નીચે મુજબ મેળવી શકાય :

આકૃતિ 5.29 ની ભૂમિતિ પરથી $\angle \mathrm{OPQ} = \theta$ માં $\Delta \mathrm{OPQ},$

$$∴ cosθ = \frac{OP}{PQ}$$

$$= \frac{\$શનળીની ત્રિજ્યા (r)}{1$

$$+ (R) + (R)$$

$$\therefore R = \frac{r}{\cos \theta}$$
 (5.15.1)

હવે, આકૃતિમાં દર્શાવેલ સ્થિતિમાં પ્રવાહી સમતોલનમાં છે. અહીં મેનિસ્કસની અંતર્ગોળ બાજુ પર દબાણ ધારો કે \mathbf{P}_i એને બહિર્ગોળ બાજુ પર દબાણ ધારો કે \mathbf{P}_i છે. આ

કિસ્સામાં
$$P_o > P_i$$
 તેમજ $P_o - P_i = \frac{2T}{R}$ (: અહીં પ્રવાહીની એક જ મુક્ત સપાટી છે.) (5.15.2)

નોંધો કે P_o એ વાતાવરણનું દબાણ છે. આટલું જ દબાણ પ્રવાહીની સમતલ સપાટી પર A બિંદુએ અને સમક્ષિતિજ એવા B બિંદુએ પણ લાગે છે.

$$\frac{2T}{R} = h\rho g$$

$$\therefore T = \frac{Rh\rho g}{2}$$

(5.15.1) માંથી Rનું મૂલ્ય કરતાં,

$$T = \frac{2T\cos\theta}{r\rho g} \tag{5.15.4}$$

ઉપરોક્ત સમીકરણ પરથી પ્રવાહીનું પૃષ્ઠતાણ શોધી શકાય છે. આ સમીકરણ પરથી,

$$h = \frac{2Tcos\theta}{r\rho g}$$

- (i) જો $\theta < 90^{\circ}$ હશે, તો $\cos\theta$ ધન થશે અને આ સમીકરણ પરથી h ધન મળશે. આથી, પ્રવાહી કેશનળીમાં ઊંચે ચઢે છે. (દા.ત., કાચ-પાણી).
- (ii) જો $\theta > 90^{\circ}$ હશે તો $\cos\theta$ ૠણ થશે અને આ સમીકરણ પરથી h ૠણ મળશે. આથી, પ્રવાહી કેશનળીમાં નીચે ઊતરે છે. (દા.ત., કાચ-પારો).

આ કિસ્સામાં મેનિસ્ક્સ બહિર્ગાળ હોય છે. વળી, $P_i>P_o.$ હોય છે, તેથી (5.15.2)માં $P_i-P_o=\frac{2T}{R}$ લેવું જોઈએ. વળી, $P_i-P_o=h\rho g$ મળશે. તેથી અંતિમ પરિશામ (5.15.4) માં કશો ફેર પડતો નથી.

ડિટરજન્ટ કે સાબુ પાણીમાં ઓગાળતાં દ્રાવશનું પૃષ્ઠતાશ પાણીના પૃષ્ઠતાણથી ઓછું થાય છે. પરિણામે પ્રક્ષાલન ક્ષમતામાં વધારો થાય છે.

ઉદાહરણ 16: કાચની એક કેશનળીની ત્રિજ્યા 0.5 mm છે. તેને પાણીમાં ઊભી ગોઠવતાં કેશનળીમાં પાણીના સ્તંભની ઊંચાઈ શોધો. પાણીની ઘનતા 10^3 kg m^{-3} તથા પાણીનો કાચ સાથેનો સંપર્કકોણ 0° છે. ગુરુત્વપ્રવેગ $g=9.8 \text{ ms}^{-2}$ લો. પાણીનું પૃષ્ઠતાણ $T=0.0727 \text{ Nm}^{-1}$.

ઉકેલ :

$$r = 0.5 \text{ mm} = 5 \times 10^{-4} \text{ m}$$

 $\rho = 103 \text{ kg m}^{-3}$
 $\theta = 0^{\circ} \therefore \cos 0^{\circ} = 1$
 $g = 9.8 \text{ ms}^{-2}$
 $T = 0.0727 \text{ Nm}^{-1}$

$$T = \frac{rh\rho g}{2cos\theta}$$

$$\therefore h = \frac{2Tcos\theta}{2\rho g}$$

$$= \frac{2 \times 0.0727 \times 1}{5 \times 10^{-4} \times 10^{3} \times 9.8}$$

$$\therefore h = 0.0296 \text{ m} = 2.96 \text{ cm}$$

ઉદાહરણ 17: બે લંબચોરસ કાચની તકતીઓને એકબીજાથી 1 mm દૂર રાખેલી છે. આકૃતિ 5.30માં દર્શાવ્યા પ્રમાણે તેમને પાણીમાં અંશતઃ ડુબાડી છે કે જેથી તેમની વચ્ચેનો હવા (તથા પાણી)નો સ્તંભ ઊર્ધ્વ રહે, તો તેમની વચ્ચેની જગ્યામાં પાણી કેટલું ઊંચે ચડશે ?

 $T = 70 \text{ dyn cm}^{-1}$.

ઉકેલ : ધારો કે પ્લેટની પહોળાઈ l છે. આ સ્થિતિમાં બંને પ્લેટની મળીને 2l જેટલી લંબાઈ પર પાણી અને કાચ એકબીજાના સંપર્કમાં હશે. પાણીનો કાચના સંદર્ભમાં સંપર્કકોણ શૂન્ય છે. ધારો કે પાણી h cm ઊંચે ચઢે છે.

આકૃતિ 5.30

 \therefore પાણીના ઉપર ચઢેલા સ્તંભનું કદ = Idh. જ્યાં $d = \Theta$ પ્લેટ વચ્ચેનું અંતર

પાણીની ઘનતા ρ હોય અને ગુરુત્વપ્રવેગ g હોય, તો પાણીના આ સ્તંભનું નીચે તરફ લાગતું વજનબળ =(Idh) ρg . આ બળ 2l લંબાઈ પર લાગતા પૃષ્ઠતાણના બળ જેટલું હોવું જોઈએ.

$$\therefore 2Tl = (ldg)h\rho$$

$$h = \frac{2T}{dg\rho} = 1.43 \text{ cm}$$

સારાંશ

- 1. વહી શકે તેવા પદાર્થને તરલ કહે છે.
- 2. પદાર્થની એકમક્ષેત્રફળવાળી સપાટીને લંબ રૂપે લાગતા બળના મૂલ્યને દબાણ કહે છે. દબાણ અદિશ રાશિ છે. તેનો એકમ ${
 m Nm}^{-2}$ અથવા ${
 m P}_a$ છે.
- 3. જો બળ સપાટીને દોરેલા લંબ સાથે θ ખૂશો બનાવે તેમ લાગતું હોય, તો બળના $Fcos\theta$ ઘટકને કારણે દબાશ પેદા થાય છે અને તેથી દબાશ

$$P = \frac{F cos\theta}{A}$$

- 4. પદાર્થ દળ અને કદના ગુણોત્તરને ઘનતા કહે છે. ઘનતાને એકમ $kg m^{-3}$ છે.
- 5. પદાર્થની ઘનતા અને 277K તાપમાને પાણીની ઘનતાના ગુણોત્તરને વિશિષ્ટ ઘનતા કહે છે. વિશિષ્ટ ઘનતા પરિમાણ રહિત છે.
- પાસ્કલનો નિયમ : જો ગુરુત્વાકર્ષણની અસરો અવગણવામાં આવે, તો તરલમાં સર્વત્ર દબાણ સમાન હોય છે.
- 7. પાસ્કલનો દબાણ-પ્રસરણનો નિયમ : બંધ પાત્રમાં ભરેલા અદબનીય તરલ પરના દબાણમાં કરેલો ફેરફાર, તરલના પ્રત્યેક ભાગમાં અને પાત્રની દીવાલ પર એકસરખી રીતે પ્રસરે છે. આ દબાણ પાત્રની દીવાલને લંબ હોય છે.
- 8. હાઇડ્રોલિક લિફ્ટ, હાઇડ્રોલિક બ્રેક, ડોર-ક્લોઝર અને વાહનોના શૉક એબ્સોર્બર પાસ્કલના નિયમ પર કાર્ય કરે છે.
- 9. તરલમાં ઊંડાઈ સાથે દબાણમાં થતો ફેરફારનો દર ho g જેટલો છે.

- 10. અદબનીય તરલ સ્તંભને કારણે તળિયે ઉદ્દભવતું h
 ho g જેટલું હોય છે.
- 1 તરલ સ્તંભને કારણે ઉદ્ભવતું દબાણ પાત્રના આકાર કે ક્ષેત્રફળ પર આધારિત નથી.
- 12. આર્કિમિડિઝનો સિદ્ધાંત : જ્યારે કોઈ પદાર્થને પ્રવાહીમાં આંશિક કે સંપૂર્ણપણે ડુબાડવામાં આવે ત્યારે તેના પર લાગતું ઉત્લાવક બળ તેશે વિસ્થાપિત કરેલા પ્રવાહીના વજન જેટલું હોય છે અને વિસ્થાપિત પ્રવાહીના દ્રવ્યમાન કેન્દ્ર પર ઊર્ધ્વ દિશામાં લાગે છે.
- 13. ફ્લોટેશનનો નિયમ : જ્યારે પદાર્થનું વજન એ તરતા પદાર્થના ડૂબેલા ભાગ દ્વારા વિસ્થાપિત કરાયેલા પ્રવાહીના વજન જેટલું હોય ત્યારે તે પદાર્થ પ્રવાહીમાં તરે છે.
- 14. સ્થાયી વહેન : જે તરલ વહનમાં દરેક બિંદુ પાસે તરલનો વેગ સમય સાથે અચળ રહેતો હોય તેવા વહનને સ્થાયી વહન કહે છે.
- 15. પ્રશુબ્ધ વહન : જો તરલ વહનમાં દરેક બિન્દુ પાસે તરલના વેગમાં સમય સાથે અનિયમિત તેમજ ઝડપી ફેરફાર થાય, તો તેવા વહનને પ્રશુબ્ધ વહન કહે છે.
- 16. અચકીય વહન : જો તરલ વહનમાં દરેક બિંદુ પાસે તરલના અંશને તે બિંદુને અનુલક્ષીને કોઈ પરિણામી કોણીય વેગ ન હોય, તો તરલનું વહન અચકીય વહન કહેવાય.
- 17. અદબનીય વહન : જો તરલ વહનમાં દરેક બિંદુ પાસે તરલની ઘનતા અચળ રહેતી હોય, તો તેવા વહનને અદબનીય વહન કહે છે.
- **18. અશ્યાન વહેન :** જે તરલ માટે શ્યાનતા-ગુણાંક મૂલ્ય ઓછું હોય તેવા તરલના વહનને અશ્યાન વહન કહે છે.
- 19. આદર્શ તરલનું વહન સ્થાયી, અચક્રિય, અદબનીય અને અશ્યાન પ્રકારનું હોય છે.
- **20. પ્રવાહરેખા** : વહેતા તરલમાં તરલકશના ગતિમાર્ગને પ્રવાહરેખા કહે છે.
- 21. ધારારેખા : જે વક્ર પરના દરેક બિંદુ પાસેનો સ્પર્શક તે બિંદુ પાસેથી પસાર થતા ક્શના વેગની દિશામાં હોય, તેવા વક્રને ધારારેખા કહે છે.
- 22. ધારારેખાના સમૂહથી બનતી કાલ્પનિક નળીને વહનનળી કહે છે.
- 23. કંદ ફ્લક્સ : કોઈ પણ આડછેદમાંથી એકમસમયમાં પસાર થતા તરલના કદને કદ ફ્લક્સ કહે છે. તેનું મૂલ્ય આડછેદના ક્ષેત્રફળ અને વેગના ગુણાકાર જેટલું હોય છે.
- 24. ડાયનેમિક લિફ્ટ : જ્યારે કોઈ વસ્તુ તરલને સાપેક્ષ ગતિ કરે ત્યારે એક બીજું બળ ઉદ્દભવે છે. જે વસ્તુને તેના મૂળ માર્ગ પરથી વિચલિત કરે છે. આ ઘટનાને ડાયનેમિક લિફ્ટ કહે છે.
- 25. ઍરોફોઇલ : જે ઘન પદાર્થ હવામાં સમક્ષિતિજ દિશામાં ગતિ કરતો, ત્યારે તેના પર તેના આકારને કારણે ઊર્ધ્વ દિશામાં બળ લાગે તેવા પદાર્થને ઍરોફોઇલ કહે છે.
- 26. સ્તરીય વહન : સ્થાયી પ્રવાહમાં તરલના જુદા-જુદા સ્તર એકબીજામાં ભળી ગયા વિના એકબીજા પર સરકે છે. આવા વહનને સ્તરીય વહન કહે છે.
- 27. શ્યાનતાબળ : સ્તરીય વહનમાં તરલના કોઈ પણ બે ક્રમિક સ્તરો વચ્ચે સાપેક્ષ ગતિ હોય છે. પરિણામે તેમની સંપર્કસપાટી પર સ્પર્શીય અવરોધક બળ ઉત્પન્ન થાય છે. આવા અવરોધક બળને શ્યાનતાબળ કહે છે.

28. વેગ-પ્રચલન : તરલમાં સ્તરીય વહન દરમિયાન વહનને લંબ દિશામાં એકબીજાથી એકમઅંતરે રહેલા બે સ્તરોના વેગના તફાવતને વેગ-પ્રચલન કહે છે. તેનો એકમ s^{-1} છે.

- 29. શ્યાનતા-ગુણાંક : તરલના સ્તરીય વહનમાં કોઈ પણ બે ક્રમિક સ્તરો વચ્ચે એકમ વેગ-પ્રચલન અને એકમ ક્ષેત્રફળ દીઠ ઉદ્દભવતા શ્યાનતાબળને તરલનો શ્યાનતા-ગુણાંક કહે છે.
- 30. સ્ટોક્સનો નિયમ : મોટા વિસ્તારવાળા અને η જેટલો શ્યાનતા-ગુણાંક ધરાવતા શ્યાન માધ્યમમાં ν જેટલા વેગથી ગતિ કરતા r ત્રિજ્યાવાળા ગોળાકાર પદાર્થ પર લાગતું શ્યાનતાબળ $6\pi\eta rv$ જેટલું હોય છે.
- 31. જ્યારે નળીમાંથી તરલનું વહન થતું હોય ત્યારે વહનનો પ્રકાર તરલની ઘનતા ρ , વેગ ν , નળીના વ્યાસ D અને તરલની શ્યાનતા η પર આધારિત છે. જે રેનોલ્ડ્ઝ-અંકથી નક્કી કરી શકાય છે.

રેનોલ્ડ્ઝ-અંક
$$N_{R}=rac{
ho D
u}{\eta}$$

જો $N_{\rm R} < 2000$ તો પ્રવાહ, ધારારેખી $N_{\rm R} > 3000$ તે પ્રક્ષુબ્ધ પ્રવાહ અને $2000 < N_{\rm R} < 3000$ તો પ્રવાહ અનિશ્ચિત હોય છે.

- 32. વેગના જે મહત્તમ મૂલ્ય સુધી પ્રવાહ ધારારેખી રહે છે તે વેગને ક્રાંતિ વેગ કહે છે.
- 33. આસક્તિ બળ : જુદા-જુદા પ્રવાહના અશુઓ વચ્ચે લાગતાં આકર્ષણબળોને આસક્તિ બળ કહે છે.
- **34. સંસક્તિ બળ ઃ** એક જ દ્રવ્યના અણુઓ વચ્ચે લાગતા આકર્ષણબળને સંસક્તિ બળ કહે છે.
- 35. અશુ જે મહત્તમ અંતર સુધી રહેલા બીજા અશુ પર બળ લગાડી શકે તે અંતરને અશુક્રિયા અવિધ કહે છે. અશુક્રિયા અવિધ જેટલી ત્રિજયાવાળો ગોળા કે જેના કેન્દ્ર પર અશુ હોય તેવા ગોળાને અશુનો અશુક્રિયા-ગોળા કહે છે.
- 36. અચળ તાપમાને પ્રવાહીની સપાટીના ક્ષેત્રફળમાં એક એકમ જેટલો વધારો કરવા માટે કરવા પડતા કાર્યને પૃષ્ઠતાણ કહે છે. વળી, પ્રવાહીની મુક્ત સપાટી પર એકમલંબાઈની કાલ્પનિક રેખાની એક બાજુ રહેલા પ્રવાહીના અશુઓ રેખાની બીજી બાજુ પર રહેલા અશુઓ પર રેખાને લંબ અને સપાટીને સમાંતર જે બળ લગાડે છે, તેને પ્રવાહીનું પૃષ્ઠતાણ કહે છે. પૃષ્ઠતાણનો એકમ N/m અથવા J/m² છે.
- 37. પ્રવાહીની મુક્ત સપાટીનો આકાર તેની બે બાજુ લાગતાં દબાશ પર આધારિત છે. જો ઉપરની દિશામાં દબાશ વધુ હોય તો સપાટી અંતર્ગોળ હોય છે અને જો નીચેની દિશાનું દબાશ વધુ હોય તો સપાટી બહિર્ગોળ હોય છે.
- **38.** પરપોટાની અંદરનું દબાશ P_i અને બહારનું દબાશ $P_{
 m o}$ હોય, તો હવામાં રહેલા પરપોટા માટે $P_i-P_{
 m o}=rac{4T}{R}$.

જ્યાં T પૃષ્ઠતાણ અને R પરપોટાની ત્રિજ્યા છે.

પ્રવાહીના બુંદ કે પ્રવાહીમાં રહેલા પરપોટા માટે $\mathbf{P}_i - \mathbf{P}_{\mathbf{o}} = \frac{2\mathrm{T}}{\mathrm{R}}$

- 39. પ્રવાહી અને ઘન પદાર્થ એકબીજાના સંપર્કમાં આવતા પ્રવાહીની સપાટી વક બને છે. પ્રવાહી ઘન પદાર્થને જ્યાં સ્પર્શે ત્યાં પ્રવાહીની સપાટીને દોરેલો સ્પર્શક અને પ્રવાહીમાં રહેલી ઘનસપાટી વચ્ચેનો ખૂશો સંપર્કકોશ કહેવાય છે.
- 40. પ્રવાહીમાં ઊભી રાખવામાં આવેલી કેશનળીમાં પ્રવાહીની ઊંચે ચઢવાની કે નીચે ઊતરવાની ઘટનાને કેશાકર્ષણ કહે છે.
- 41. પાણીમાં સાબુ કે ડિટરજન્ટ ઓગાળતાં પ્રવાહીની પૃષ્ઠતાણ ઘટે છે અને પ્રક્ષાલન-ક્ષમતા વધે છે.

स्वाध्याय						
નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :						
1.	ઍરોપ્લેનની સમક્ષિતિજ સમતલમાં રહેલી પાંખ ઉપર હવાની ઝડપ $120~\mathrm{ms}^{-1}$ અને ની					
	તે 90 $\mathrm{ms^{-1}}$ છે. જો હવાની ઘનતા 1.3 $\mathrm{kgm^{-3}}$ હોય તો પાંખ ઉપર અને નીચે દબાણ					
	તફાવત છે. (પાંખની જાડાઈ અવગણો	•				
			4095 Pa (D) 6300 Pa			
2.	m દળ અને r ત્રિજ્યાવાળી એક ગોળી શ્યાન		મમા પતન કરે છે, તો તેનો અતિમ			
	વેગ (ટર્મિનલ વેગ)ના સમપ્રમાણમાં છે.					
	(A) માત્ર $\frac{1}{r}$ (B) માત્ર m	(C)	$\sqrt{\frac{m}{r}}$ (D) $\frac{m}{r}$			
3.	10 cm² ક્ષેત્રફળ ધરાવતી એક પ્લેટ બીજી મોર્ટ		•			
	જાડું ગ્લિસરિનનું પાતળું સ્તર છે. ઉપરની પ્લેટ					
	માટે જરૂરી બાહ્ય બળ છે. (η ગ્લિસર					
	(A) 80 dyne		200×10^3 dyne			
	(C) 800 dyne	(D)	2000×10^3 dyne			
4.	શ્યાન માધ્યમમાં એક નાની ગોળી પતન કરે	•	A			
	છે, તો આકૃતિ 5.31માંનો વક તેની		A			
	ગતિનું નિરૂપણ કરે છે.		В			
	(A) A	ا د				
	(A) A (B) B	۲	C			
	(C) C	/				
	(D) D		D			
			અંતર			
			આકૃતિ 5.31			
5.	રેનોલ્ડ્ઝ-અંકનું મૂલ્ય ધરાવતા તરલ મ					
	(A) ઓછા વેગ (B) ઓછી ધનતા (C) વધુ શ્યાનતા (D) આપેલા ત્રણે					
	વિકલ્પ					
6.	રેનોલ્ડ્ઝ અંકના સંદર્ભમાં નીચેનામાંથી કયા	માટે	ધારારેખી વહનની શક્યતા સૌથી			
	વધુ છે ?					
	(A) ઓછી ρ		ઊંચી ρ, ઊંચી η			
	(C) ઊંચી ρ, ઓછી η	(D)	ઓછી ρ, ઊંચી η			
7.	9 9	છે, તે	ો 2.0 cm વ્યાસનો પરપોટો ફુલાવવા			
	માટે કરવું પડતું કાર્ય છે.					
	(A) $17.6 \times 10^{-6} \pi$ J	(B)	$15.2 \times 10^{-6} \pi$ J			
	(C) $19 \times 16^{-6} \pi J$	(D)	$10^{-4} \pi J$			
8.	બે પરપોટા માટે અંદરના દબાશના મૂલ્ય 1.0	01 at	m અને 1.02 atm છે, તો તેમની			
	સપાટીનાં ક્ષેત્રફળોનો ગુણોત્તર છે.					
	(A) 4:1 (B) 1:26	(C)	8:1 (D) 1:8			
9.	એક કેશનળીમાં h ઊંચાઈ સુધી પ્રવાહી ઉપર ચ					
	60.46 1 00 044 13 2					

- ઊંચાઈ h થી વધુ હશે ?
 - (A) અધોદિશામાં પ્રવેગિત લિફ્ટમાં
 - (B) ઊર્ધ્વ-દિશામાં પ્રવેગિત લિફ્ટમાં
 - (C) ધ્રુવો પર
 - (D) અચળ રહેશે

 $10.~0.5~{
m cm}$ ત્રિજ્યાની નળીમાંથી $10~{
m cm}~{
m s}^{-1}$ ના સરેરાશ વેગથી ગતિ કરતા પાણીનું વહન

	પ્રકારનું હશે. (η _{water} = 0.1 poise, ρ _{water} = 1g cm ⁻³)					
	(A) ધારારેખી		(B) અસ્થિર			
	(C) પ્રક્ષુબ્ધ		(D) આપેલ વિકલ્પ	પૈકી એક પણ નથી.		
11.	4 cm ત્રિજ્યાની એક બોળીને સપાટી પર સ ^ર ગ્લિસરીનની સપાટીથી દ્ લગાડવું પડે.	મક્ષિતિજ રહે તે રીતે	િલસરીનમાંથી બહાર	. કાઢવામાં આવે, તો		
	(A) 63 π	(B) 504π	(C) 1008π	(D) 1512 π		
12.	10 cm લાંબી અને 4 લ છે, તો ફ્રેમની નાની ધ = 30 dyne cm ⁻¹ છે.	ાર પર પૃષ્ઠતાણનું બળ	. •			
	(A) 60	(B) 120	(C) 300	(D) 240		
13.	ઉપરના પ્રશ્નમાં વર્જાવેલ કાર્ય થાય.	. ફિલ્મ રચવા માટે પૃ	ષ્ઠતાણનાં બળો વિરુ	દ્ર erg યાંત્રિક		
	(A) 1200	(B) 2400	(C) 2600	(D) 4800		
14.	જ્યારે હવા ધરાવતો પર બમણી થાય છે. જો 1 તળાવની ઊંડાઈ	0 <i>m</i> પાણીનો સ્તંભ	વાતાવરણનું દબાણ			
	(A) 10	(B) 20	(C) 70	(D) 80		
15.	અદબનીય પ્રવાહી એક	સમક્ષિતિજ નળીમાં વહે	છે. બિંદુ A પાસે •	નળીની ત્રિજ્યા x અને		
	$f B$ પાસે તેની ત્રિજ્યા $rac{x}{2}$ છે. તો બિંદુ $f A$ અને બિંદુ $f B$ પાસે તરલના વેગનો ગુણોત્તર છે.					
	(A) 2 : 1	(R) 1 · 2	(C) 1 · 4	(D) 4 ·1		
16	એક ટાંકીમાં રહેલા છિ					
10.	(A) ટોચ પાસે		(B) તળિયા પાસે	St., (t. 1g St.		
	(C) મધ્યમાં			માંથી એક પણ નહીં.		
17.	, ,	ુ અને R અનક્રમે પ્રવા				
	7. પ્રવાહીના અશુઓ P, Q અને R અનુક્રમે પ્રવાહીની મુક્ત સપાટી પર, પૃષ્ઠમાં અને પૃષ્ઠ નીચે આવેલ છે. જો તેમની સ્થિતિ-ઊર્જા $\mathrm{U_p}$, $\mathrm{U_O}$ અને $\mathrm{U_R}$ હોય તો,					
	(A) $U_P < U_Q < U_R$		(B) $U_p < U_R <$	U_{0}		
	(C) $U_R < U_P < U_C$		(D) $U_R < U_O <$	•		
18.	શ્યાન પ્રવાહીમાં એક ન			_		
	(A) વધ્યા કરે.		(B) ઘટ્યા કરે.			
	(C) અચળ રહે.		(D) વહેલા વધે પ	છી અચળ રહે.		
જવાબો						
	1. (C) 2. (D)	3. (D) 4. ((C) 5. (D)	6. (D)		
		9. (A) 10. (
	13. (B) 14. (C)					

નીચે આપેલ પ્રશ્નોનો જવાબ ટૂંકમાં આપો :

- 1. પાસ્કલના દબાશ પ્રસરણનો નિયમ લખો.
- 2. કોને કારણે વધુ દબાણ ઉત્પન્ન થાય ? 75 cm ઊંચાઈવાળા પારાના સ્તંભથી કે 10 m ઊંચાઈવાળા પાણીના સ્તંભથી ? (પારાની વિશિષ્ટ ઘનતા = 13.6)
- પાણીના છંટકાવ માટે વપરાતા 'સ્પ્રિંકલર'ના સિદ્ધાંત જણાવો.
- 'તરલના વહન માટે બર્નુલીનું સમીકર\ ઊર્જા-સંરક્ષ\ના નિયમનું એક સ્વરૂપ છે.' વિધાન સાચું છે કે ખોટું ?
- પ્રેસરહેડ, વેલોસિટી હેડ અને એલિવેશન હેડના એકમો જણાવો.
- 6. રેલ્વે-પ્લેટફૉર્મ પર પાટાની નજીક ઊભા હોઈએ ત્યારે ઝડપથી પસાર થતી ટ્રેન તરફ ખેંચાણ કેમ અનુભવાય છે ?
- 7. ઍરોફોઇલ શું છે ?
- 8. તરલની શ્યાનતામાં તાપમાન સાથે શું ફેરફાર થાય છે ?
- પહોળી નળીમાંથી વહેતું તરલ સાંકડી નળીમાં પ્રવેશતાં રેનોલ્ડ્ઝ-અંકના મૂલ્યમાં શું ફેરફાર થશે ? (નળી સમક્ષિતિજ છે.)
- 10. અમુક કિટકો પાણી પર ચાલી શકે છે. કારણ આપો.
- 11. પાણીનાં ટીપાં અને રેઇનકોટના મટીરિયલ વચ્ચે સંપર્કકોણ લઘુકોણ હશે કે ગુરૂકોણ ?
- 12. પૃષ્ઠતાણની વ્યાખ્યા આપો અને તેનાં એકમો અને પરિમાણ જણાવો.
- 13. એક પાતળી નળીના બે છેડાઓ પર એક નાનો અને એક મોટો એમ બે પરપોટા છે. આ સ્થિતિમાં પરપોટાઓનું શું થશે ?

નીચેના પ્રશ્નોના જવાબ આપો :

- પાસ્કલનો નિયમ લખો અને સાબિત કરો.
- 2. h ઊંચાઈવાળા અને ρ ઘનતાવાળા તરલ સ્તંભને કારણે ઉદ્ભવતા દબાણનું સૂત્ર મેળવો.
- <u> 3</u> ધારારેખી પ્રવાહ એટલે શું ? સ્થાયી અદબનીય પ્રવાહ માટે સાતત્ય-સમીકરણ મેળવો.
- સ્થાયી, અદબનીય, અચક્રીય, અશ્યાન તરલ પ્રવાહ માટે બર્નુલીનું સમીકરણ મેળવો.
- 5. યોગ્ય આકૃતિ અને સમીકરણની મદદથી વેન્ચુરીમીટરનું કાર્ય સમજાવો.
- 6 સ્તરીય પ્રવાહ એટલે શું ? આવા પ્રવાહ માટે શ્યાનતાબળની સમજૂતી આપો.
- સ્ટોક્સનો નિયમ લખો અને તેનો ઉપયોગ કરીને શ્યાન પ્રવાહીમાં પતન કરતાં નાના લીસા ગોળાનો પ્રારંભિક પ્રવેગનું સૂત્ર મેળવો.
- 8. રેનોલ્ડ્ઝ-અંક પર ટૂંક નોંધ લખો.
- 횤 હવામાં રહેલા પરપોટા માટે પરપોટાની અંદરના વધારાના દબાશનું સૂત્ર મેળવો.
- કેશાકર્ષણ એટલે શું ? કેશનળીને પ્રવાહીમાં ઊભી રાખતાં કેશનળીમાં ઉપર ચઢતા પ્રવાહીની ઊંચાઈ માટે સમીકરણ મેળવો.

નીચેના દાખલા ગણો :

1. સમિક્ષિતિજ દિશામાં રાખેલ એક સિરિંજના પિસ્ટન અને નોઝલના વ્યાસ અનુક્રમે 5 mm અને 1 mm છે. પિસ્ટનને $0.2~{\rm m~s^{-2}}$ ના અચળ વેગથી અંદર તરફ ધકેલવામાં આવે છે. નોઝલમાંથી બહાર આવતા પાણી દ્વારા જમીનને સ્પર્શ તે પહેલાં કપાતું સમિક્ષિતિજ અંતર ગણો. $(g=10~{\rm m~s^{-1}})$ સિરિંજ જમીનથી $1~{\rm m}$ ઊંચાઈએ છે. [જવાબ: $\sqrt{5}~{\rm m}$]