IST108 OLASILIK VE İSTATİSTİK

HIPOTEZ TESTI - 2

Varyansın Bilinmediği Durum - t Testi

Önceki sunuda varyansın bilindiği, fakat beklentinin bilinmediği durumlar incelendi.

Hem beklentinin hem de varyansın bilinmediği durumlarda **t testi** uygulanır.

Hem beklentinin hem de varyansın bilinmediği durumda aşağıdaki sıfır hipotezini (H_0), alternatif hipotezine (H_1) karşı test edelim.

 $^{\circ} H_0: \mu = \mu_0$

 ${}^{\bullet}H_1\!\!:\!\mu\neq\mu_0$

Burada σ^2 bilinmediği için sıfır hipotezi artık basit hipotez değildir.

İçerik

Varyansın Bilinmediği Durum - t Testi

t Dağılımı

Varyansın Bilinmediği Durum - Çift Yanlı t Testi

Varyansın Bilinmediği Durum - Tek Yanlı t Testi

t Dağılımı Özet

İki Normal Yığının Ortalamalarının Eşitlik Testi

02.05.2018

Varyansın Bilinmediği Durum - t Testi

Önceki gibi sıfır hipotezini, örnek ortalaması (\bar{X}) , μ_0 'dan çok uzakta olduğunda reddetmek anlamlıdır.

Fakat varyansın bilinmediği durumda örnek ortalamasının μ_0 'dan ne kadar uzakta olabileceği ise örnekten hesaplanacak varyansa bağlıdır.

02.05.2018

1

Varyansın Bilinmediği Durum - t Testi

Artık varyans da bir bilinmeyen olduğu için, varyansı aşağıdaki örnek varyansı ile tahmin edebiliriz.

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}$$

Bu durumda H_0 'ı aşağıdaki T değeri büyük olduğunda reddetmek anlamlı olur.

$$T = \frac{\sqrt{n}}{S}(\bar{X} - \mu_0)$$

02.05.2018

t Dağılımı

Serbestlik derecesi n olan bir t dağılımı, sıfır etrafında simetrik ve standart normal dağılıma benzeyen bir eğriye sahiptir.

$$P(T_n \ge t_{\alpha,n}) = \alpha$$

Farklı α ve n değerleri için $t_{\alpha,n}$ değerlerini gösteren tablolar mevcuttur.

0.15

Varyansın Bilinmediği Durum - t Testi

Hipotezi reddetmek için T'nin ne kadar büyük olacağını belirlemek gerek.

 T^\prime nin ne kadar büyük olacağını belirlemek için H_0 doğru iken T^\prime nin dağılımına bakmalıyız.

T istatistiği, $\mu=\mu_0$ olduğunda serbestlik derecesi n-1 olan bir ${f t}$ dağılımına sahiptir.

02.05.2018

Varyansın Bilinmediği Durum - Çift Yanlı t Testi

$$P\big((T<-c)\cup(T>c)\big)=2\times P(T>c)=\alpha\to P(T>c)=\alpha/2$$

$$c=t_{\alpha/2,n-1}$$

02.05.2018

Varyansın Bilinmediği Durum - Çift Yanlı t Testi

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

- $\circ \frac{\alpha}{2}$ değerini kullanarak
- \circ t tablosunda $t_{\frac{\alpha}{2},n-1}$ 'i bul. \circ T'yi bul. $T = \frac{\sqrt{n}}{S}(\bar{X} \mu_0)$

Daha sonra H_0 'ı;

- kabul et, eğer $-t_{\alpha/2,n-1} \le T \le t_{\alpha/2,n-1}$ ise
- \circ reddet, eğer $T > t_{\alpha/2,n-1}$ veya $T < -t_{\alpha/2,n-1}$ ise

Örnek 1

Bir kliniğin, kolesterol seviyesi orta ve yüksek seviye olan hastalar arasından kolesterolü düşüren yeni bir ilacı test etmek için gönüllüler seçiliyor. 50 gönüllüye 1 ay boyunca ilaç veriliyor ve kolesterol değişimi gözleniyor. Eğer kolesterol düşümü ortalama 14,8 ve örnek standart sapması 6,4 ise bundan nasıl bir sonuç çıkartırız? 0,05 önem seviyesi için hesaplayarak inceleyiniz.

t Tablosu

Örneğin, 10 elemanlı bir örnekte $\alpha=0.05$ önem seviyesine karşılık gelen $t_{\alpha/2,n-1} = t_{0,025,9} = 2,262$ olur.

		α												
n	0.25	0.2	0.15	0.1	0.05	0.025	0.02	0.01	0.005	0.0025	0.001	0.0005		
1	1.000	1.376	1.963	3.078	6.314	12.710	15.890	31.820	63.660	127.300	318.300	636.600		
2	0.816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.090	22.330	31.600		
3	0.765	0.978	1.250	1.638	2.353	3.182	3.482	4.541	5.841	7.453	10.210	12.920		
4	0.741	0.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610		
5	0.727	0.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869		
6	0.718	0.906	1.134	1.440	1.943	2.447	2.612	3.143	3.707	4.317	5.208	5.959		
7	0.711	0.896	1.119	1.415	1.895	2.365	2.517	2.998	3.499	4.029	4.785	5.408		
8	0.706	0.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5.041		
9	0.703	0.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781		

Örnek 1

Kolesterol düşümü olup olmadığını test edelim.

- $\bullet H_0$: $\mu = 0$
- $\bullet H_1: \mu \neq 0$

 $t_{\alpha/2,n-1} = t_{0.025,49} \cong 2,009$

$$T = \frac{\sqrt{n}}{S}(\bar{X} - \mu_0) = \frac{\sqrt{50}}{6.4}(14.8 - 0) = 16.352$$

16,352 > 2,009 olduğu için sıfır hipotezi reddedilir. Karşı hipotez kabul edilir yani kolesterol düşümü olduğu söylenir.

Fakat hastaların kolesterol seviyelerinde meydana gelen düşmenin ilaç kaynaklı olup olmadığı kanıtlanmış değildir.

Örnek 2

Halk sağlığı müdürlüğü ortalama musluk suyu kullanımının ev başına günlük 350 litre olduğunu iddia etmektedir. Bu iddiayı doğrulamak için 20 ev rastgele seçilmiş ve günlük su kullanımları aşağıdaki gibi kaydedilmiştir.

340	344	362	375	318
356	386	354	364	360
332	402	340	355	338
362	322	372	324	370

Bu veri iddia ile tutarlı mıdır?

02.05.2018

13

Örnek 2

Önem seviyesi $\alpha=0.1$ olsun (Hata Tipi I olasılığı %10 olsun).

$$^{\circ} H_0: \mu = 350$$

$$^{\circ}$$
 *H*₁: $\mu \neq 350$

$$t_{\alpha/2,n-1} = t_{0,05,19} = 1,73$$

$$T = \frac{\sqrt{n}}{S}(\bar{X} - \mu_0) = \frac{\sqrt{20}}{21,8478}(353,8 - 350) = 0,7778$$

- 1,730 < 0,7778 < 1,730 olduğu için sıfır hipotezi kabul edilir.

Veriler yetkilinin iddiası ile tutarlıdır.

Örnek 2

340	344	362	375	318
356	386	354	364	360
332	402	340	355	338
362	322	372	324	370

Verilerin ortalaması 353,8 ve standart sapması 21,8478

02.05.2018

Varyansın Bilinmediği Durum - Tek Yanlı t Testi

Hipotez test problemi:

$$H_0$$
: $\mu = \mu_0$ (veya $\mu \le \mu_0$)

$$^{\circ} H_1: \mu > \mu_0$$

Bu hipotez testi, varyans bilindiğindeki tek yanlı teste benzer.

- α değerini kullanarak
- $^{\circ}$ t tablosunda $\ t_{lpha,n-1}{'}$ i bul.

$$\circ$$
 T'yi bul. $T = \frac{\sqrt{n}}{S}(\bar{X} - \mu_0)$

Daha sonra H_0 'ı;

- \circ kabul et, eğer $T \leq t_{\alpha,n-1}$ ise
- $^{\circ}$ reddet, eğer $T>t_{lpha,n-1}$ ise

15

/

Varyansın Bilinmediği Durum - Tek Yanlı t Testi

Hipotez test problemi:

- ${}^{\bullet}H_0$: $\mu = \mu_0$ (veya $\mu \ge \mu_0$)
- $^{\circ} H_1: \mu < \mu_0$
- $\circ \alpha$ değerini kullanarak
- $^{\circ}$ t tablosunda $t_{lpha,n-1}$ ' i bul.
- \circ T'yi bul. $T = \frac{\sqrt{n}}{S}(\bar{X} \mu_0)$

Daha sonra H_0 'ı;

- kabul et, eğer $T \ge -t_{\alpha,n-1}$ ise
- $^{\circ}$ reddet, eğer $T < -t_{lpha,n-1}$ ise

02.05.2018

Örnek 3

Lastik	1	2	3	4	5	6	7	8	9	10	11	12
Yaşam Süresi	36,1	40,2	33,8	38,5	42	35,8	37	41	36,8	37,2	33	36

Bu verilerin ortalaması 37,2833 ve standart sapması 2,7319.

Örnek 3

Bir lastik üreticisi, ürettiği lastiklerin ortalama ömrünün 40000km'den fazla olduğunu iddia etmektedir. Bu iddiayı doğrulamak için 12 adet lastik test edilmiş ve yaşam süreleri aşağıdaki gibi kaydedilmiştir. (Birim x1000km).

Lastik	1	2	3	4	5	6	7	8	9	10	11	12
Yaşam Süresi	36,1	40,2	33,8	38,5	42	35,8	37	41	36,8	37,2	33	36

Üreticinin iddiasını %5 önem seviyesine göre test edin.

Örnek 3

 H_0 : $\mu \le 40$

 $H_1: \mu > 40$

 $t_{\alpha,n-1} = t_{0,05,11} = 1,796$

 $T = \frac{\sqrt{n}}{S}(\bar{X} - \mu_0) = \frac{\sqrt{12}}{2,7319}(37,2833 - 40) = -3,4448$

-3,4448 < 1,796 olduğundan sıfır hipotezi kabul edilir.

Veriler üreticinin iddiası ile tutarsızdır.

02.05.2018

Özet

Özet

Varyansın Bilinmediği Durum - t Testi									
$S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$ $T = \frac{\sqrt{n}}{S} (\bar{X} - \mu_0)$									
Çift Yanlı t Testi $H_0\colon \mu=\mu_0 \\ H_1\colon \mu\neq\mu_0$	Tek Yanlı t Testi H_0 : $\mu=\mu_0$ veya $(\mu\leq\mu_0)$ H_1 : $\mu>\mu_0$	Tek Yanlı t Testi $H_0\colon \mu=\mu_0 \text{ veya } (\mu\geq\mu_0)$ $H_1\colon \mu<\mu_0$							
H_0 kabul: $-t_{lpha/2,n-1} \le T \le t_{lpha/2,n-1}$	H_0 kabul: $T \leq t_{\alpha,n-1}$	H_0 kabul: $T \ge -t_{\alpha,n-1}$							
H_0 red: $T > t_{lpha/2,n-1}$ veya $T < -t_{lpha/2,n-1}$	H_0 red: $T > t_{\alpha,n-1}$	H_0 red: $T < -t_{\alpha,n-1}$							

02.05.2018

21

İki Normal Yığının Ortalamalarının Eşitlik Testi

X değerlerinin örnek ortalaması, μ_x 'i tahmin etmek için kullanılabilir. Y değerlerinin örnek ortalaması, μ_y 'yi tahmin etmek için kullanılabilir. Bu ortalamaların farkı ise, μ_x – μ_y 'yi tahmin etmek için kullanılabilir. Bu durumda H_0 : μ_x – μ_y = 0 yazılabilir.

İki Normal Yığının Ortalamalarının Eşitlik Testi

Bazen iki farklı yaklaşımın aynı sonucu verip vermediğine karar vermek isteriz.

Bu durumda iki normal yığının aynı ortalama değere sahip olması hipotezini test ederiz.

 X_1,X_1,\dots,X_n ortalaması (μ_χ) bilinmeyen ama varyansı (σ_χ^2) bilinen bir yığından n elemanlı rastgele seçilen örnek olsun.

 Y_1,Y_1,\ldots,Y_n ortalaması $(\mu_{\mathcal{Y}})$ bilinmeyen ama varyansı $(\sigma_{\mathcal{Y}}^2)$ bilinen başka bir yığından m elemanlı rastgele seçilen örnek olsun.

02.05.2018

22

İki Normal Yığının Ortalamalarının Eşitlik Testi

Hipotez test problemi:

$$\bullet H_0$$
: $\mu_x = \mu_y \ veya \ \mu_x - \mu_y = 0$

$${}^{\circ}\,H_1{:}\,\mu_x\neq\mu_y\;veya\;\mu_x-\mu_y\neq0$$

Bu durumda H_0 'ı;

$$^{\circ}$$
 kabul et, eğer $-c \leq (\bar{X} - \bar{Y}) \leq c$ ise

$$\circ$$
 reddet, eğer $(\bar{X} - \bar{Y}) \ < -c$ veya $(\bar{X} - \bar{Y}) \ > c$ ise

02.05.201

3

02.05.2018

İki Normal Yığının Ortalamalarının Eşitlik Testi

 α önem seviyesinde c değerini belirlemek için örnek ortalamalarının birbirlerinden uzaklığının hipotez doğru iken dağılımına bakmalıyız.

$$\bar{X} - \bar{Y} \sim \mathcal{N}\left(\mu_{x} - \mu_{y}, \frac{\sigma_{x}^{2}}{n} + \frac{\sigma_{y}^{2}}{m}\right)$$

$$\begin{split} P\left((\bar{X} - \bar{Y} < -c) \cup (\bar{X} - \bar{Y} > c)\right) \\ &= P\left(\left(Z < \frac{-c - (\mu_X - \mu_Y)}{\left[\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}\right]}\right) \cup \left(Z > \frac{c - (\mu_X - \mu_Y)}{\left[\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}\right]}\right)\right) = \alpha \end{split}$$

İki Normal Yığının Ortalamalarının Eşitlik Testi

Hipotez test problemi (Çift Yanlı):

$$H_0$$
: $\mu_x = \mu_y$

$$H_1: \mu_{x_{\alpha}} \neq \mu_1$$

 $H_1: \mu_{\mathcal{X}} \neq \mu_{\mathcal{Y}}$ • $1 - \frac{\alpha}{2}$ değerini kullanarak

 \circ Standart Normal Pağılım tablosunda $z_{\alpha/2}$ 'yi bul. \circ Z'yi bul. $Z=\frac{1}{\sqrt{2}}$

• Z'yı bul.
$$Z = \frac{\sigma_X^2 + \frac{\sigma_X^2}{n}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_X^2}{n}}}$$

Daha sonra H_0 'ı;

• kabul et, eğer $-z_{\alpha/2} \le Z \le z_{\alpha/2}$ ise

• reddet, eğer $Z > z_{\alpha/2}$ veya $Z < -z_{\alpha/2}$ ise

İki Normal Yığının Ortalamalarının Eşitlik Testi

Eğer H_0 doğru ise ($\mu_x - \mu_y = 0$);

$$P\left(\left(Z < \frac{-c}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}}\right) \cup \left(Z > \frac{c}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}}\right)\right) = 2 \times P\left(Z > \frac{c}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}}\right) = \alpha$$

$$P\left(Z > \frac{c}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}}\right) = \alpha/2 \Rightarrow c = z_{\alpha/2} \sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}$$

İki Normal Yığının Ortalamalarının Eşitlik Testi

Hipotez test problemi (Tek Yanlı):

$$H_0: \mu_x = \mu_y \ (\mu_x \le \mu_y)$$

$$H_1: \mu_x > \mu_y$$

• $1 - \alpha$ değerini kullanarak

 \circ Standart Normal Dağılım tablosunda z_{lpha} ' yi bul. \circ Z'yi bul. $Z=\frac{\bar{X}-\bar{Y}}{\bar{Y}}$

• Z'yi bul.
$$Z = \frac{X-Y}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Z^2}{n}}}$$

Daha sonra H_0 'ı;

• kabul et, eğer $Z \leq z_{\alpha}$ ise

• reddet, eğer $Z > z_{\alpha}$ ise

Örnek 4

Araç lastiği üretmek için iki yeni metot geliştirilmiştir. Hangisinin daha iyi olduğuna karar vermek için bir lastik üreticisi birinci metodu kullanarak 10 lastik ve ikinci metodu kullanarak 8 lastik üretmiştir.

Birinci metotla üretilen lastikler test edilmiş ve ömür ortalamaları 61550 km olarak hesaplanmıştır. Yaşam sürelerinin standart sapması 4000 km olan bir Normal dağılımla ifade edildiği biliniyor.

İkinci metotla üretilen lastikler ise test edildiğinde ömür ortalamaları 60025 km olarak hesaplanmıştır. Yaşam sürelerinin standart sapması 6000 km olan bir Normal dağılımla ifade edildiği biliniyor.

Üretici bu testler sonucunda iki metodun eşdeğer olduğunu düşünüyorsa, üreticinin bu iddiasını %5 önem seviyesi için test edin?

Örnek 4

1000km birim ile;

Birinci metotla ortalama yaşam süresi 61,55 ve standart sapma 4.

İkinci metotla ortalama yaşam süresi 60,025 ve standart sapma 6.

Önem seviyesi %5.

$$\begin{array}{ll} \circ H_0 \colon \mu_{\chi} = \mu_{y} & z_{\alpha/2} = z_{0.025} = 1,96 \\ \circ H_1 \colon \mu_{\chi} \neq \mu_{y} & z = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_{\chi}^2}{n} + \frac{\sigma_{y}^2}{m}}} = \frac{61,55 - 60,025}{\sqrt{\frac{16}{10} + \frac{36}{8}}} = 0,6175 \\ \end{array}$$

 \circ -1,96 < 0,6175 < 1,96 için sıfır hipotezi kabul edilir.