

Experiment:- 4

Student Name: Ruchika Raj UID: 20BCS9285

Branch: CSE Section/Group: 20BCS_WM_615/B Semester: 5th Date of Performance: 26/09/2022

Subject Code: 20CSP-317

Subject Name: MACHINE LEARNING LAB

Aim/Overview of the practical:

Classifying data using Support Vector Machines(SVMs) in Python

Task to be done:

To perform Classification using Support Vector Machines(SVMs) on any standard dataset.

Apparatus/Simulator used:

- Jupyter Notebook/Google Collab
- Python
- pandas Library
- seaborn Library
- Standard Dataset

Code and Output:

```
#importing necessary libraries
import numpy as np import
pandas as pd import
matplotlib import
matplotlib.pyplot as plt from
sklearn import svm
#Import
                Dataset
                                 data1
pd.read_csv('Social_Network_Ads.csv')
data1.head()
data1.corr()
X = data1.iloc[:,[2,3]].values y
= data1.iloc[:,4].values
#Splitting dataset to test and train set
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.25,random_state=0)
#Feature Scaling from sklearn.preprocessing
import StandardScaler sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_{\text{test}} = \text{sc.transform}(X_{\text{test}})
#Create a model for SVM from sklearn.svm
                SVC
import
                              classifier
```


SVC(kernel='linear',random_state=0)


```
#classifier = SVC(kernel='poly',degree=5,random_state=0) //Poly kernel will predict less accurate since our data is
linear. We use Linear kernel for SVM classifier.fit(X train,y train)
# get prediction values for train data from sklearn.model_selection
import cross_val_score, cross_val_predict lModel = svm.SVC(kernel =
'linear') lModel.fit(X_train,y_train)
Y_pred = cross_val_predict(lModel,X_train,y_train,cv = 3)
Y_pred
#Prediction of test data set y_pred
= classifier.predict(X_test) y_pred
#Making the confusion matrix from sklearn.metrics import confusion_matrix,
precision_score, recall_score, f1_score cm = confusion_matrix(y_test,y_pred) cm
plt.scatter(X_train[:,0], X_train[:,1],c=y_train) plt.show
plt.scatter(X_test[:,0], X_test[:,1],c=y_test) plt.show
# instantiate model with kernel = 'linear' lModel
= svm.SVC(kernel = 'linear')
lModel.fit(X_train,y_train)
# cross validation to get avg accuracy and std
from sklearn.model selection import train test split, cross val score, cross val predict
score = cross_val_score(lModel,X_train,y_train,cv = 10, scoring = 'accuracy')
print("avg accuracy:\t{0:,.4f}".format(np.mean(score))) print("avg
```


 $std:\t{0:,.4f}$ ".format(np.std(score)))

Learning outcomes (What I have learnt):

- 1. To understand Support Vector Machines(SVMs)
- 2. Learn about pandas', matplotlib and seaborn library/package of python.
- 3. Learn about the different methods/functions that are needed to generate different types of graphs, charts and plots of the given dataset.

Evaluation Grid (To be created as per the SOP and Assessment guidelines by the faculty):

Sr. No.	Parameters	Marks Obtained	Maximum Marks
1.			
2.			
3.			

