Sorensen 01.01.43LaTeX Companion

Simona Panunzi, Marcello Pompa, Andrea De Gaetano¹
1 CNR-IASI BioMatLab (National Research Council of Italy - Institute of Analysis, Systems and Computer Science - Biomathematics Laboratory), UCSC Largo A. Gemelli 8, 00168 Rome, Italy

Annotated Variable formulas (the updated MoSpec rules)

[Variable 0] —

t time in minutes (min)

Time is considered an algebraic variable, correctly unassigned

Definition: Time =

undefined

Initial value: Time(t0) =

Tzero

[Variable 1]

 G_{BV} Glucose concentration in Brain Vascular space (mM)

Glucose concentration in Brain Vascular space

$$\frac{dG_{BV}}{dt} = \frac{Q_B^G}{V_{BV}^G} (G_H - G_{BV}) - \frac{V_{BI}}{T_B V_{BV}^G} (G_{BV} - G_{BI}), \quad G_{BV}(0) = G_{BV0}$$

Definition: d GlucBV /dt =

(GlucH - GlucBV) * QfloGB / VolGBV - VolBI / (TdifB * VolGBV) * (GlucBV - GlucBI)

Initial value: GlucBV(t0) =

GlucBV0

[Variable 2]

 G_{BI} Glucose concentration in Brain Interstitial space ($\,$ mM $\,$)

Glucose concentration in Brain Interstitial space

$$\frac{dG_{BI}}{dt} = \frac{1}{T_B}(G_{BV}-G_{BI}) - \frac{\Gamma_{\rm BGU}}{V_{BI}}, \quad G_{BI}(0) = G_{BI0} \label{eq:gbis}$$

BGU: Brain Glucose Uptake.

Definition: d GlucBI /dt =

1 / TdifB * (GlucBV - GlucBI) - GammaBGU / VolBI

Initial value: GlucBI(t0) =

GlucBI0

[Variable 3] —

 G_H Glucose concentration in Heart-Lung space (mM)

Glucose concentration in Heart-Lung space

$$\frac{dG_H}{dt} = \frac{Q_B^G G_{BV} + Q_L^G G_L + Q_K^G G_K + Q_P^G G_{PV} - Q_H^G G_H - \Gamma_{\text{RBCU}}}{V_H^G}, \quad G_H(0) = G_{H0}$$

Definition: d GlucH /dt =
(QfloGB * GlucBV + QfloGL * GlucL + QfloGK * GlucK + QfloGP * GlucPV +
- QfloGH * GlucH - GammaRBCU + GammaIVG) / VolGH

Initial value: GlucH(t0) =
GlucH0

[Variable 4] ——

 G_H^N Normalized Glucose concentration in Heart-Lung space (#)

Normalized Glucose concentration in Liver space

$$G_H^N = \frac{G_H}{G_{H0}}, \quad G_H^N(0) = 1$$

Definition: GlucNH =
GlucH / GlucH0

Initial value: GlucNH(t0) =

[Variable 5] ——

 G_J Glucose concentration in gut (Jejunal) space (mM)

Glucose conrecntration in gut (Jejunal) space

$$\frac{dG_J}{dt} = \frac{Q_J^G}{V_J^G} (G_H - G_J) - \frac{\Gamma_{\text{JGU}} + R_{oga}}{V_J^G}, \quad G_J(0) = G_{J0}$$

JGU: Jejunal (Gut) Glucose Uptake or Utilization

Note: we have substituted the original "G" suffix in Chee&Fernando with "J" (Jejunum) for legibility.

Definition: d GlucJ /dt =
(GlucH - GlucJ) * QfloGJ / VolGJ - GammaJGU / VolGJ

Initial value: GlucJ(t0) =

GlucJ0

[Variable 6]

G_L Glucose concentration in Liver space (mM)

Glucose concentration in Liver space

$$\frac{dG_L}{dt} = \frac{Q_A^G G_H + Q_J^G G_J - Q_L^G G_L + \Gamma_{\rm HGP} - \Gamma_{\rm HGU}}{V_L^G}, \quad G_L(0) = G_{L0}$$

HGP: Hepatic Glucose Production HGU: Hepatic Glucose Uptake

Definition: d GlucL /dt =

(QfloGA * GlucH + QfloGJ * GlucJ - QfloGL * GlucL + GammaHGP - GammaHGU) / VolGL

Initial value: GlucL(t0) =

GlucL0

[Variable 7

G_L^N Normalized Glucose concentration in Liver space (#)

Normalized Glucose concentration in Liver space

$$G_L^N = \frac{G_L}{G_{L0}}, \quad G_L^N(0) = 1$$

Definition: GlucNL =

GlucL / GlucLO

Initial value: GlucNL(t0) =

1

[Variable 8] ——

G_K Glucose concentration in Kidney space (mM)

Glucose concentration in Kidney space

$$\frac{dG_K}{dt} = \frac{Q_K^G}{V_K^G} \left(G_H - G_K \right) - \frac{\Gamma_{\text{KGE}}}{V_K^G}, \quad G_K(0) = G_{K0}$$

KGE: Kidney Glucose Excretion

Definition: d GlucK /dt =
(GlucH - GlucK) * QfloGK / VolGK - GammaKGE / VolGK

Initial value: GlucK(t0) =

GlucK0

[Variable 9] —

 G_{PV} Glucose concentration in Peripheral Vascular space (mM)

Glucose concentration in Peripheral Vascular space

$$\frac{dG_{PV}}{dt} = \frac{Q_P^G}{V_{PV}^G} (G_H - G_{PV}) - \frac{V_{PI}}{T_P^G V_{PV}^G} (G_{PV} - G_{PI}), \quad G_{PV}(0) = G_{PV0}$$

Definition: d GlucPV /dt = QfloGP / VolGPV * (GlucH - GlucPV) - VolPI / (TdifGP * VolGPV) * (GlucPV - GlucPI)

Initial value: GlucPV(t0) =
GlucPV0

[Variable 10]

 G_{PI} Glucose concentration in Peripheral Interstitial space (mM) Glucose concentration in Peripheral Interstitial space

$$\frac{dG_{PI}}{dt} = \frac{1}{T_P^G}(G_{PV}-G_{PI}) - \frac{\Gamma_{\rm PGU}}{V_{PI}}, \quad G_{PI}(0) = G_{PI0} \label{eq:GPI}$$

PGU: Peripheral Glucose Uptake

Definition: d GlucPI /dt =
(GlucPV - GlucPI) / TdifGP - GammaPGU / VolPI

Initial value: GlucPI(t0) =
GlucPI0

[Variable 11] ———

 G_{PI}^N Normalized Glucose concentration in Peripheral Interstitial space (#) Normalized Glucose concentration in Peripheral Interstitial space

$$G_{PI}^{N} = \frac{G_{PI}}{G_{PI0}}, \quad G_{PI}^{N}(0) = 1$$

Definition: GlucNPI =
GlucPI / GlucPIO

Initial value: GlucNPI(t0) =
1

[Variable 12] —

 Γ_{PGU} Rate of Peripheral Glucose Uptake (mmol/min)

Rate of (insulinemia- and glycemia-dependent) Peripheral Glucose Uptake:

$$\Gamma_{\text{PGU}} = \Gamma^{B}_{\text{PGU}} \cdot M^{G}_{PGU} \cdot M^{I}_{PGU}, \quad \Gamma_{\text{PGU}}(0) = \Gamma_{\text{PGUO}}$$

Definition: GammaPGU =
GammaBPGU * GlucNPI * MIPGU

Initial value: GammaPGU(t0) =

 ${\tt GammaBPGU}$

[Variable 13] -

 $M_{ t HGP}^{I}$ Insulin Action on glucose uptake (#)

Insulin Action on glucose uptake:

$$M_{\rm PGU}^I = \beta_{\rm PGU}^0 + \beta_{\rm PGU}^1 \tanh \left[\beta_{\rm PGU}^2 \cdot (I_{PI}^N - \beta_{\rm PGU}^3)\right] \tag{1}$$

Definition: MIPGU =

betaOPGU + beta1PGU * tanh(beta2PGU * (InsuNPI - beta3PGU))

Initial value: MIPGU(t0) =

MIPGUO

[Variable 14] —

 Γ_{HGP} Hepatic Glucose Production (mmol/min)

Rate of (glycemia-dependent) Hepatic Glucose Production

$$\Gamma_{\text{HGP}} = \Gamma^B_{\text{HGP}} \cdot M^I_{\text{HGP}} \cdot M^C_{\text{HGP}} \cdot M^G_{\text{HGP}}, \quad \Gamma_{\text{HGP}}(0) = \Gamma_{\text{HGPO}}$$

Definition: GammaHGP =

GammaHGPO * MIHGP * MCHGP * MGHGP

Initial value: GammaHGP(t0) =

GammaHGP0

[Variable 15] -

 $M_{
m HGP}^I$ Insulin suppression of Hepatic Glucose Production (#)

Insulin suppression of Hepatic Glucose Production

$$\frac{dM_{\rm HGP}^I}{dt} = \frac{M_{\rm HGP\,inf}^I - M_{\rm HGP}^I}{\tau_I}, \quad M_{\rm HGP}^I(0) = M_{\rm HGPO}^I$$

Definition: d MIHGP /dt =
(MIHGPinf - MIHGP) / tauInsu

Initial value: MIHGP(t0) =

MIHGPO

[Variable 16] —

 $M_{ t HGPinf}^I$ Steady State Insulin suppression of Hepatic Glucose Production (#) Steady State Insulin suppression of Hepatic Glucose Production

$$M^I_{\texttt{HGP}\texttt{inf}} = \beta^2_{\texttt{HGP}} - \beta^3_{\texttt{HGP}} \tanh \left[\beta^4_{\texttt{HGP}} (I^N_L - \beta^5_{\texttt{HGP}}) \right], \quad M^I_{\texttt{HGP}\texttt{inf}}(0) = M^I_{\texttt{HGP}\texttt{inf}}(0)$$

Definition: MIHGPinf =

beta2HGP - beta3HGP * tanh(beta4HGP*(InsuNL - beta5HGP))

Initial value: MIHGPinf(t0) =

MIHGPinf0

[Variable 17] —

 $M_{\rm HGP}^C$ gluCagon contribution to Hepatic Glucose Production (#) gluCagon contribution to Hepatic Glucose Production

$$M_{\text{HGP}}^C = M_{\text{HGP}}^{C0} - f_2, \quad M_{\text{HGP}}^C(0) = M_{\text{HGP}0}^C = 1$$

Definition: MCHGP =
MCOHGP - Fun2

Initial value: MCHGP(t0) =

MCHGPO

[Variable 18] -

 $M_{\rm HGP}^{C0}$ gluCagon contribution to Hepatic Glucose Production at baseline (#) gluCagon contribution to Hepatic Glucose Production at baseline

$$M_{\text{HGP}}^{C0} = \beta_{\text{HGP}}^{0} \tanh(\beta_{\text{HGP}}^{1} C^{N}), \quad M_{\text{HGP}}^{C0}(0) = M_{\text{HGPO}}^{C0}$$

Definition: MCOHGP =

betaOHGP * tanh(beta1HGP * CgonN)

Initial value: MCOHGP(t0) =

MCOHGPO

[Variable 19] —

 f_2 Damping of gluCagon contribution to Hepatic Glucose Production (#) Damping of gluCagon contribution to Hepatic Glucose Production

$$\frac{df_2}{dt} = \frac{1}{\tau_C} \left[\left(\frac{M_{\text{HGP}}^{C0} - 1}{2} \right) - f_2 \right], \quad f_2(0) = f_{20} = 0$$

Definition: d Fun2 /dt =

((MCOHGP - 1.0) / 2.0 - Fun2) / tauCgon

Initial value: Fun2(t0) =

Func20

[Variable 20] -

 M_{HGP}^{G} Glucose contribution to Hepatic Glucose Production (#)

Glucose contribution to Hepatic Glucose Production

$$M_{\mathrm{HGP}}^G = \left\{\beta_{\mathrm{HGP}}^6 - \beta_{\mathrm{HGP}}^7 \, \tanh\left[\beta_{\mathrm{HGP}}^8 \left(G_L^N - \beta_{\mathrm{HGP}}^9\right)\right]\right\}, \quad M_{\mathrm{HGP}}^G(0) = M_{\mathrm{HGP0}}^G = 1$$

Definition: MGHGP =

(beta6HGP - beta7HGP * tanh(beta8HGP * (GlucNL - beta9HGP)))

Initial value: MGHGP(t0) =

MGHGPO

[Variable 21] —

Hepatic Glucose Uptake (mmol/min)

Hepatic Glucose Uptake

$$\Gamma_{ ext{HGU}} = \Gamma^B_{ ext{HGU}} \cdot M^I_{ ext{HGU}} \cdot M^G_{ ext{HGU}}, \quad \Gamma_{ ext{HGU}}(0) = \Gamma_{ ext{HGUO}}$$

Definition: GammaHGU = GammaHGUO * MIHGU * MGHGU

Initial value: GammaHGU(t0) =

GammaHGU0

Insulin acceleration of Hepatic Glucose Uptake

Insulin acceleration of Hepatic Glucose Uptake

$$\frac{dM_{\rm HGU}^I}{dt} = \frac{M_{\rm HGU\,inf}^I - M_{\rm HGU}^I}{\tau_I}, \quad M_{\rm HGU}^I(0) = M_{\rm HGU0}^I$$

Definition: d MIHGU /dt = (MIHGUinf - MIHGU) / tauInsu

Initial value: MIHGU(t0) =

MIHGUO

[Variable 23] -

Steady State Insulin acceleration of Hepatic Glucose Uptake (#) Steady State Insulin acceleration of Hepatic Glucose Uptake

$$M_{\mathtt{HGUinf}}^{I} = \beta_{\mathtt{HGU}}^{0} \tanh(\beta_{\mathtt{HGU}}^{1} I_{L}^{N}), \quad M_{\mathtt{HGUinf}}^{I}(0) = M_{\mathtt{HGUinf}0}^{I}$$

Definition: MIHGUinf =

betaOHGU * tanh(beta1HGU * InsuNL)

Initial value: MIHGUinf(t0) =

MIHGUinf0

[Variable 24] —

 $M_{ t HGU}^G$ Glucose acceleration of Hepatic Glucose Uptake (#)

Glucose acceleration of Hepatic Glucose Uptake

$$M_{\text{HGU}}^G = \beta_{\text{HGU}}^2 + \beta_{\text{HGU}}^3 \tanh \left[\beta_{\text{HGU}}^4 \left(G_L^N - \beta_{\text{HGU}}^5 \right) \right], \quad M_{\text{HGU}}^G(0) = M_{\text{HGUO}}^G$$

Definition: MGHGU =

beta2HGU + beta3HGU * tanh(beta4HGU * (GlucNL - beta5HGU))

Initial value: MGHGU(t0) =

MGHGUO

[Variable 25] —

 Γ_{KGE} Kidney Glucose Excretion (mmol/min)

Kidney Glucose Excretion

$$\begin{split} \Gamma_{\text{KGE}} &= \begin{cases} \beta_{\text{KGE}}^0 + \beta_{\text{KGE}}^1 \tanh \left[\beta_{\text{KGE}}^2 \left(G_K - \beta_{\text{KGE}}^3\right)\right] &, & 0 \leq G_K < \beta_{\text{KGE}}^3 \\ -\beta_{\text{KGE}}^4 + \beta_{\text{KGE}}^5 G_K &, & G_K \geq \beta_{\text{KGE}}^3 \end{cases} \\ \Gamma_{\text{KGE}}(0) &= \Gamma_{\text{KGEO}} \end{split}$$

Definition: GammaKGE =

(GlucK < beta3KGE) * (beta0KGE + beta1KGE * tanh(beta2KGE*(GlucK - beta3KGE)))

+ (GlucK >= beta3KGE) * (- beta4KGE + beta5KGE * GlucK)

Initial value: GammaKGE(t0) =

GammaKGE0

[Variable 26] ————

 I_B Insulin concentration in Brain space (pM)

Insulin concentration in Brain space

$$\frac{dI_B}{dt} = \frac{Q_B^I}{V_B^I} (I_H - I_B), \quad I_B(0) = I_{B0}$$

Definition: d InsuB /dt =

QfloIB / VolIB * (InsuH - InsuB)

Initial value: InsuB(t0) =

InsuB0

[Variable 27] —

 I_H Insulin concentration in Heart/lung space (pM)

Insulin concentration in Heart/lung space

$$\frac{dI_H}{dt} = \frac{Q_B^I I_B + Q_L^I I_L + Q_K^I I_K + Q_P^I I_{PV} - Q_H^I I_H}{V_H^I}, \quad I_H(0) = I_{H0}$$

Definition: d InsuH /dt =

(QfloIB * InsuB + QfloIL * InsuL + QfloIK * InsuK + QfloIP * InsuPV +

- QfloIH * InsuH +GammaIVI) / VolIH

Initial value: InsuH(t0) =

InsuH0

[Variable 28]

 I_H^N Normalized Insulin concentration in Heart/lung space (#)

Normalized Insulin concentration in Liver space

$$I_H^N = \frac{I_H}{I_{H0}}, \quad I_H^N(0) = 1$$

Definition: InsuNH =

InsuH / InsuHO

Initial value: InsuNH(t0) =

[Variable 29] -

 I_J Insulin concentration in gut (Jejunal) space (pM)

Insulin concentration in gut (Jejunal) space

$$\frac{dI_{J}}{dt} = \frac{Q_{J}^{I}}{V_{I}^{I}} (I_{H} - I_{J}), \quad I_{J}(0) = I_{J0}$$

Note: we have substituted the original "G" suffix in Chee&Fernando with "J" (Jejunum) for legibility.

Definition: d InsuJ /dt =

QfloIJ / VolIJ * (InsuH - InsuJ)

Initial value: InsuJ(t0) =

InsuJ0

[Variable 30] —

 I_L Insulin concentration in Liver space (pM)

Insulin concentration in Liver space

$$\frac{dI_L}{dt} = \frac{Q_A^I I_H + Q_J^I I_J - Q_L^I I_L + \Gamma_{\text{PIR}} - \Gamma_{\text{LIC}}}{V_L^I}, \quad I_L(0) = I_{L0}$$

PIR: Peripheral Insulin Release, Pancreatic Insulin Release

LIC: Liver Insulin Clearance

Definition: d InsuL /dt =

 $(\texttt{QfloIA} \, * \, \texttt{InsuH} \, + \, \texttt{QfloIJ} \, * \, \texttt{InsuJ} \, - \, \texttt{QfloIL} \, * \, \texttt{InsuL} \, + \, \texttt{GammaPIR} \, - \, \texttt{GammaLIC}) \, \, / \, \, \texttt{VolIL}$

Initial value: InsuL(t0) =

InsuL0

[Variable 31]

 I_K Insulin concentration in Kidney space (pM)

Insulin concentration in Kidney space

$$\frac{dI_K}{dt} = \frac{Q_K^I}{V_K^I} \left(I_H - I_K\right) - \frac{\Gamma_{\rm KIC}}{V_K^I}, \quad I_K(0) = I_{K0} \label{eq:dIK}$$

Definition: d InsuK /dt =

(QfloIK / VolIK) * (InsuH - InsuK) - GammaKIC / VolIK

Initial value: InsuK(t0) =

InsuKO

[Variable 32] -

 I_{PV} Insulin concentration in Peripheral Vascular space (pM)

Insulin concentration in Peripheral Vascular space

$$\frac{dI_{PV}}{dt} = \frac{Q_P^I}{V_{PV}^I} (I_H - I_{PV}) - \frac{V_{PI}}{V_{PV}^I T_P^I} (I_{PV} - I_{PI}), \quad I_{PV}(0) = I_{PV0}$$

Definition: d InsuPV /dt =

(QfloIP/VolIPV) * (InsuH - InsuPV) - VolPI / (VolIPV * TdifIP) * (InsuPV - InsuPI)

Initial value: InsuPV(t0) =

InsuPV0

[Variable 33] -

 I_{PI} Insulin concentration in Peripheral Interstitial space (pM) Insulin concentration in Peripheral Interstitial space

$$\frac{dI_{PI}}{dt} = \frac{1}{T_P^I} (I_{PV} - I_{PI}) - \frac{\Gamma_{\text{PIC}}}{V_{PI}}, \quad I_{PI}(0) = I_{PI0}$$

PIC: Peripheral Insulin Clearance

Definition: d InsuPI /dt =

(1 / TdifIP) * (InsuPV - InsuPI) - GammaPIC / VolPI

Initial value: InsuPI(t0) =

InsuPI0

[Variable 34] -

 I_{PI}^N Normalized Insulin concentration in Peripheral Interstitial space (#) Normalized Insulin concentration in Peripheral Interstitial space

$$I_{PI}^{N} = \frac{I_{PI}}{I_{PI0}}, \quad I_{PI}^{N}(0) = 1$$

Definition: InsuNPI =
InsuPI / InsuPI0

Initial value: InsuNPI(t0) =

1

[Variable 35] —

 I_L^N Normalized Insulin concentration in Liver space (#)

Normalized Insulin concentration in Liver space

$$I_L^N = \frac{I_L}{I_{L0}}, \quad I_L^N(0) = 1$$

Definition: InsuNL =

InsuL / InsuL0

Initial value: InsuNL(t0) =

[Variable 36] —

 Γ_{LIC} Liver Insulin Clearance (pmol/min)

Liver Insulin Clearance

$$\Gamma_{\text{LIC}} = F_{\text{LIC}} \left\{ Q_A^I I_H + Q_J^I I_J + \Gamma_{\text{PIR}} \right\}, \quad \Gamma_{\text{LIC}}(0) = \Gamma_{\text{LIC0}}$$

Definition: GammaLIC =

FracLIC * (QfloIA * InsuH + QfloIJ * InsuJ + GammaPIR)

Initial value: GammaLIC(t0) =

 ${\tt GammaLICO}$

[Variable 37] ————

 $\Gamma_{\tt KIC}$ Kidney Insulin Clearance (pmol/min)

Kidney Insulin Clearance

$$\Gamma_{\mathtt{KIC}} = F_{\mathtt{KIC}}(Q_K^I I_H)$$

with $F_{\rm KIC} = 0.30$

Definition: GammaKIC =
FracKIC * (QfloIK * InsuH)

Initial value: GammaKIC(t0) =

GammaKICO

[Variable 38] -

 $\Gamma_{\mathtt{PIC}_{\mathtt{MC}}}$ Peripheral Insulin Clearance (pmol/min)

Peripheral Insulin Clearance

$$\Gamma_{ t PIC} = rac{I_{PI}}{\left[\left(rac{1-F_{ t PIC}}{F_{ t PIC}}
ight)\left(rac{1}{Q_P^I}
ight) - \left(rac{T_P^I}{V_{PI}}
ight)
ight]}$$

with $F_{\text{PIC}} = 0.15$

Definition: GammaPIC =

InsuPI / (((1.0 - FracPIC) / FracPIC) * (1 / QfloIP) - (TdifIP / VolPI))

Initial value: GammaPIC(t0) =

GammaPIC0

[Variable 39] -

 $\Gamma_{\mathtt{SerPIR}}$ Pancreatic Insulin Release according to Sorensen (pmol/min)

Pancreatic Insulin Release according to Sorensen

$$\Gamma_{PIR} = \frac{S_{ecr}}{S_{ecr}^B} \Gamma_{PIR}^B = S_{ecr}^N \Gamma_{PIR}^B, \quad \Gamma_{PIR}(0) = \Gamma_{PIR}^B$$

Definition: GammaPIR =
SecrN * GammaBPIR

Initial value: GammaPIR(t0) =

GammaBPIR

[Variable 40] —

 P_{otn} Potentiator (#)

Potentiator

$$\frac{dP_{otn}}{dt} = \alpha(P_{tgt} - P_{otn}), \quad P_{otn}(0) = P_{otn0}$$

Definition: d Potn /dt =

KappaPotnPtgt * (Ptgt - Potn)

Initial value: Potn(t0) =

Potn0

[Variable 41] -

Inhibitor (#) P_{inh}

Inhibitor

$$\frac{dP_{inh}}{dt} = K_{PinhPprp}(P_{prp} - P_{inh}), \quad P_{inh}(0) = P_{inh0} = P_{prp0}$$

Definition: d Pinh /dt = KappaPinhPrp * (Pprp - Pinh)

Initial value: Pinh(t0) =

Pinh0

[Variable 42] —

(pmol) R_{insu} Labile or granular insulin

Labile or granular insulin

$$\frac{dR_{insu}}{dt} = K_{Rinsu}(R_{insu0} - R_{insu}) + K_{RinsuPotn}P_{otn} - S_{ecr}, \quad R_{insu}(0) = InitialR_{insu0}$$

Definition: d Rinsu /dt =

KappaRinsu * (Rinsu0 - Rinsu) + KappaRinsuPotn * Potn - Secr

Initial value: Rinsu(t0) =

InitialRinsu0

[Variable 43] -

Secretion rate (pmol/min) S_{ecr}

Secretion rate

$$S_{ecr} = [M1P_{tqt} + M2(P_{prp} - P_{inh})^{+}]R_{insu}, \quad S_{ecr}(0) = S_{ecr0}$$

Definition: Secr =

(Pprp > Pinh) * ((EMME1 * Ptgt + EMME2 * (Pprp - Pinh)) * Rinsu)

+ (Pprp <= Pinh) * (EMME1 * Ptgt * Rinsu)

Initial value: Secr(t0) =

Secr0

[Variable 44] ———

 S_{ecr}^{N} Normalized secretion rate (#)

Normalized Insulin secretion rate

$$S_{ecr}^{N} = \frac{S_{ecr}}{S_{ecr0}}, \quad S_{ecr}^{N}(0) = 1$$

Definition: SecrN =

Secr / Secr0

Initial value: SecrN(t0) =

1

[Variable 45] ———

 P_{prp} Potentiator glucose proportional factor (#)

Potentiator glucose proportional factor

$$P_{prp} = \frac{G_{PIR}^{\beta_{PIR}^1}}{(\beta_{PIR}^2)^{\beta_{PIR}^1} + \beta_{PIR}^3 G_H^{\beta_{PIR}^4}}, \quad P_{prp}(0) = P_{prp0} = \frac{G_{H0}^{\beta_{PIR}^1}}{(\beta_{PIR}^2)^{\beta_{PIR}^1} + \beta_{PIR}^3 G_{H0}^{\beta_{PIR}^4}}$$

Definition: Pprp =

pow(GlucH, beta1PIR)/(pow(beta2PIR, beta1PIR)+beta3PIR*pow(GlucH, beta4PIR))

Initial value: Pprp(t0) =

Pprp0

[Variable 46] ————

 P_{tgt} Potentiator target (#)

Potentiator target

$$P_{tgt} = P_{prp}^{\beta_{PIR}^5}, \quad P_{tgt}(0) = P_{tgt0} = P_{prp0}^{\beta_{PIR}^5}$$

Definition: Ptgt =
pow(Pprp,beta5PIR)

Initial value: Ptgt(t0) =

Ptgt0

[Variable 47] —

C gluCagon plasma concentration (pM)

GluCagon plasma concentration

$$\frac{dC}{dt} = \frac{\Gamma_{\rm PCR} - \Gamma_{\rm PCC}}{V_C}, \quad C(0) = C_0$$

d Cgon /dt = GammaPCR - GammaPCC) / VolC;

Cgon (Tzero) = Cgon0;

Definition: d Cgon /dt =
(GammaPCR - GammaPCC) / VolC

Initial value: Cgon(t0) =

 ${\tt Cgon0}$

[Variable 48] —

 C^N Normalized gluCagon plasma concentration (#)

Normalized gluCagon plasma concentration

$$C^N = \frac{C}{C_0}, \quad C^N(0) = 1$$

Definition: CgonN =

Cgon / Cgon0

Initial value: CgonN(t0) =

[Variable 49] ———

 Γ_{PCC} Peripheral gluCagon Clearance (pmol/min)

Peripheral gluCagon Clearance

 $\Gamma_{\mathtt{PCC}} = \Gamma_{\mathtt{MCC}} C$

with $\Gamma_{MCC} = 910 \, ml/min$

MCC: Metabolic gluCagon Clearance

Definition: GammaPCC =
GammaMCC * Cgon

Initial value: GammaPCC(t0) =

 ${\tt GammaPCCO}$

[Variable 50] —

 Γ_{PCR} Pancreatic gluCagon Release (pmol/min)

Pancreatic gluCagon Release

$$\Gamma_{\text{PCR}} = \Gamma^B_{\text{PCR}} M^G_{PCR} M^I_{PCR}, \quad \Gamma_{\text{PCR}}(0) = \Gamma_{\text{PCRO}}$$

with $V_C = 11.310 \, L$

Definition: GammaPCR =
GammaBPCR * MGPCR * MIPCR

Initial value: GammaPCR(t0) =

GammaBPCR

[Variable 51] —

 $M_{\mathtt{PCR}}^{G}$ Glucose effect on gluCagon clearance (#)

Glucose effect on Glucagone clearance

$$M_{\text{PCR}}^G = \beta_{\text{PCR}}^0 - \beta_{\text{PCR}}^1 \tanh(\beta_{\text{PCR}}^2(G_H^N - \beta_{\text{PCR}}^3)), \quad M_{\text{PCR}}^G(0) = M_{\text{PCR}0}^G$$

Definition: MGPCR =

betaOPCR - beta1PCR * tanh(beta2PCR * (GlucNH - beta3PCR))

Initial value: MGPCR(t0) =

MGPCRO

[Variable 52] -

 M_{PCR}^{I} Insulin effect on gluCagon clearance (#)

Insulin effect on Glucagone clearance

$$M_{\mathrm{PCR}}^{I} = \beta_{\mathrm{PCR}}^{4} - \beta_{\mathrm{PCR}}^{5} \, \tanh \left[\beta_{\mathrm{PCR}}^{6} \left(I_{H}^{N} - \beta_{\mathrm{PCR}}^{7} \right) \right], \quad M_{\mathrm{PCR}}^{I}(0) = M_{\mathrm{PCR}0}^{I}$$

Definition: MIPCR =

beta4PCR - beta5PCR * tanh(beta6PCR * (InsuNH - beta7PCR))

Initial value: MIPCR(t0) =

MIPCRO

[Variable 53] ————

 Γ_{IVG} Intravenous Glucose Infusion (mmol/min)

Intravenous Glucose infusion

$$\Gamma_{\text{IVG}} = \begin{cases} 0 & t < Time_{\text{IVG}} \\ GammaIVGin & Time_{\text{IVG}} \le t < Time_{\text{IVGend}} \\ 0 & t \ge Time_{\text{IVGend}} \end{cases}$$
 (2)

Definition: GammaIVG =

GammaIVGO+(GammaIVGin)*(Time>=TimeIVG)*(Time<=TimeIVGend)</pre>

Initial value: GammaIVG(t0) =

GammaIVG0

[Variable 54] ————

 Γ_{IVI} Intravenous Insulin Infusion (pmol/min)

Intravenous Insulin infusion

$$\Gamma_{\text{IVI}} = \begin{cases} 0 & t < Time_{\text{IVI}} \\ GammaIVIin & Time_{\text{IVI}} \le t < Time_{\text{IVIend}} \\ 0 & t \ge Time_{\text{IVIend}} \end{cases}$$
(3)

Definition: GammaIVI =

GammaIVIO+(GammaIVIin)*(Time>=TimeIVI)*(Time<=TimeIVIend)</pre>

Initial value: GammaIVI(t0) =

 ${\tt GammaIVIO}$

Annotated Parameter formulas (the updated MoSpec rules)

$[Parameter \ 0] \$
t_0 Starting time for numerical integration (-30 min)
MUST be present and MASKED: Gemini reserved keyword
[Parameter 1] —
t_{end} Final time for numerical integration ($200 $
MUST be present and MASKED: Gemini reserved keyword
[Parameter 2] —
t_{Δ} Time integration step
(0.1 min)
MUST be present and MASKED: Gemini reserved keyword
[Parameter 3] —
Q_B^G Vascular blood water flow rate for Brain (glucose-related) (0.59 L/min)
[Parameter 4] ———————————————————————————————————
V_{BV}^G Distribution Volume of Glucose in Brain Vascular space
$(egin{array}{ccc} 0.35 & { m L} \end{array})$
[Parameter 5] —
V_{BI} Volume of Brain Interstitial space
$(\ \ 0.45 \ \ \ \mathrm{L} \ \)$

[Parameter 6] ———————————————————————————————————
T_B Trans-capillary diffusion rate for Brain
(2.1 min)
[Parameter 7] —
G_{H0} Baseline value of G_H at initial time (t_0)
(5.07333 $$ mM $)$
(
r
[Parameter 8] —
Γ_{BGU} Brain Glucose Uptake rate
(0.388889 mmol/min)
[Parameter 9] —
Q_L^G Vascular blood water flow rate for Liver (glucose-related)
(1.26 L/min)
[Danamatan 10]
[Parameter 10]
Q_K^G Vascular blood water flow rate for Kidney (glucose-related)
$(1.01~{ m L/min})$
[Parameter 11] ——————————————————————————————————
Q_P^G Vascular blood water flow rate for Peripheral tissues (glucose-related)
$(1.51 ext{L/min})$
[Parameter 12] —
Q_H^G Vascular blood water flow rate for Heart/lung (glucose-related)
Q_H vascular blood water now rate for Heart/fung (glucose-related) (4.37 L/min)
· · · · · · · · · · · · · · · · · · ·

[Parameter 13] ———————————————————————————————————
$\Gamma_{ ext{RBCU}} = ext{Red Blood cell Glucose Uptake rate} \ egin{pmatrix} 0.0555556 & ext{mmol/min} \end{pmatrix}$
[Parameter 14] ———————————————————————————————————
(1.38 L)
[Parameter 15] ———————————————————————————————————
Q_J^G Vascular blood water flow rate for Gut/Jejunum (glucose-related) ($1.01~{ m L/min}$)
[Parameter 16] — V_J^G — Distribution Volume of Glucose in Gut/Jejunum Vascular space (1.12 L)
[Parameter 17] ———————————————————————————————————
$\Gamma_{ t JCU} = {f Gut/Jejunal~Glucose~Uptake~or~utilization~rate} \ (egin{array}{c} {f 0.111111} & {f mmol/min} \end{array})$
[D
$[ext{Parameter } 18]$ Q_A^G Vascular blood water flow rate in hepatic Artery (glucose-related) (0.25 L/min)
[Parameter 19] ———————————————————————————————————
V_L^G Distribution Volume of Glucose in Liver space $(egin{array}{cc} 2.51 & { m L} \end{array})$

Parameter 20 ———————————————————————————————————
V_K^G Distribution Volume of Glucose in Kidney space ($f 0.66$ L)
[Parameter 21] ———————————————————————————————————
V_{PV}^G Distribution Volume of Glucose in Peripheral Vascular space (${f 1.04}$ L)
[D
$[ext{Parameter } 22]$ Volume of Peripheral Interstitial space (6.74 L)
[Parameter 23] — $T_P^G \text{Trans-capillary diffusion rate for Peripheral tissues (glucose-related)} \\ (\ 5 \text{min} \)$
[Parameter 24] ———————————————————————————————————
$\Gamma^B_{ ext{PGU}}$ Baseline rate of Peripheral Glucose Uptake $(egin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
[Parameter 26] ———————————————————————————————————
$eta_{ t PGU}^1$ PGU Insulin effect half-amplitude (6.52 $\#$)

[Parameter 27] ———————————————————————————————————
$eta_{ t PGU}^2$ PGU Insulin effect steepness
(0.338 #)
[Parameter 28] ———————————————————————————————————
$eta^3_{ t PGU}$ PGU Insulin effect shift
$(5.82 ext{ } \#)$
[Darameter 20]
[Parameter 29]
β_{HGP}^{0} HGP gluCagon effect scale
(2.7 #)
[Parameter 30] ———————————————————————————————————
$eta_{ t HGP}^1$ HGP gluCagon scale
$(\ \ 0.388852 \ \ \ \# \ \)$
[Parameter 31] ———————————————————————————————————
$ au_C$ Inverse of the decay rate for the glucagon-driven intensification of f_2 Hepatic Gluco
Uptake suppression
(65 min)
[Parameter 32] ———————————————————————————————————
$eta_{ exttt{HGP}}^2$ HGP Insulin effect midpoint (1.21 $\#$)
(1.21 #)
[Danamatan 22]
[Parameter 33]
$eta_{ ext{HGP}}^3$ HGP Insulin effect half-amplitude
(1.14 #)

[Parameter 34] ———————————————————————————————————	
$eta_{ ext{ iny HGP}}^4$ HGP Insulin effect steepness (1.66 $\#$)	
[Parameter 35] ———————————————————————————————————	
$eta_{ ext{HGP}}^5$ HGP Insulin effect shift ($0.887748~\#$)	
[Parameter 36] —	
τ_I . Inverse of the decay rate for the insulin-driven intensification of $M_{\rm HGP}^I$ and $M_{\rm HGU}^I$ (sam both) (25 $$ min)	e for
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(1.42 #)	
[Parameter 38] ———————————————————————————————————	
$eta_{ ext{ iny HGP}}^7$ HGP Glucose effect half-amplitude (1.41 $\#$)	
[Parameter 39] ———————————————————————————————————	
$eta_{ ext{ iny HGP}}^{8}$ HGP Glucose effect steepness (0.62 $\#$)	
[Parameter 40] — β_{HGP}^{9} HGP Glucose effect shift	
(0.504543 $#$ $)$	

```
[Parameter 41] ———
\Gamma_{\text{HGPO}} Baseline value of \Gamma_{\text{HGP}} at initial time (t_0)
(0.861111 \text{ mmol/min})
[Parameter 42] —
      HGU Insulin effect half-amplitude
( 2 # )
[Parameter 43] ————
\beta_{\tt HGU}^1 HGU Insulin effect steepness
(0.549306 \#)
[Parameter 44] ————
\beta_{\mathtt{HGU}}^2 HGP Glucose effect midpoint
(5.66 \#)
[Parameter 45] ————
(5.66 \#)
[Parameter 46] ————
\beta_{	ext{	t HGU}}^4 HGP Glucose effect steepness
(2.44 \#)
[Parameter 47] ————
\beta_{\tt HGU}^5 \quad \  \, \textbf{HGP Glucose effect shift}
( 1.4783 # )
```

[Parameter 48] ———————————————————————————————————
$\Gamma_{ ext{ iny HGU}0}$ Baseline value of $\Gamma_{ ext{ iny HGU}}$ at initial time (t_0) $($ 0.111111 mmol/min $)$
[Parameter 49] ———————————————————————————————————
$eta_{ t ext{ t KGE}}^0 = ext{ t KGE Glucose effect midpoint} \ (egin{array}{cccc} 0.394444 & ext{mmol/min} \end{array})$
[Parameter 50] ———————————————————————————————————
$eta_{ t KGE}^1$ KGE Glucose effect half-amplitude $(0.394444 ext{mmol/min})$
[Parameter 51] ———————————————————————————————————
$eta_{ ext{KGE}}^2 ext{KGE Glucose effect steepness} \ (0.198 / ext{mM})$
[Parameter 52] ———————————————————————————————————
$eta_{ t KGE}^3$ KGE Glucose effect shift, point of transition between $ anh$ and linear regime (25.5556 mM)
[Parameter 53]
$eta_{ t KGE}^4 - t KGE \; ext{Glucose linear effect intercept} \ (egin{array}{cccccccccccccccccccccccccccccccccccc$
[Parameter 54] ———————————————————————————————————
$eta_{ ext{KGE}}^5$ KGE Glucose linear effect slope
$ ho_{ ext{KGE}}$ KGE Glucose linear elect slope $(0.0872 ext{mmol/min/mM})$

[Parameter 55] ——————————————————————————————————
Q_B^I Vascular blood water flow rate for Brain (insulin-related) (${f 0.45}$ L/min)
[Parameter 56] ———————————————————————————————————
V_B^I Distribution Volume of Insulin in Brain vascular space ($f 0.26 L$)
[Parameter 57]
V_H^I Distribution Volume of Insulin in Heart/lung vascular space ($f 0.99 \;\;\; L$)
$ \begin{array}{ll} \hbox{[Parameter 58]} & \\ Q_L^I & \hbox{Vascular blood water flow rate for Liver (insulin-related)} \\ \hbox{(0.9 L/min)} \end{array} $
[Parameter 59] ———————————————————————————————————
Q_K^I Vascular blood water flow rate for Kidney (insulin-related) (${f 0.72}$ L/min)
[Parameter 60] ———————————————————————————————————
Q_P^I Vascular blood water flow rate for Periphery (insulin-related) $(egin{array}{ccc} 1.05 & { m L/min} \end{array})$
$ \begin{array}{ll} [\text{Parameter 61}] & \\ Q_H^I & \textbf{Vascular blood water flow rate for Heart and Lungs (insulin-related)} \\ (\ \textbf{3.12} \textbf{L/min} \) \end{array} $

[Parameter 62] ———————————————————————————————————
V_J^I Distribution Volume of Insulin in Gut Vascular space $egin{pmatrix} 0.94 & { m L} \end{pmatrix}$
[Parameter 63] ———————————————————————————————————
Q_J^I Vascular blood water flow rate for Gut (insulin-related) $(egin{array}{ccc} oldsymbol{0.72} & oldsymbol{ ext{L/min}} \end{array})$
$[Parameter 64]$ V_L^I Distribution Volume of Insulin in Liver Vascular space
v_L — Distribution volume of Histanii in Liver vascular space $($ 1.14 $$ $$ $$ $$ $$ $$
$[ext{Parameter } 65]$ — Q_A^I Vascular blood water flow rate in hepatic Artery (insulin-related) (0.18 L/min)
[Parameter 66] ——————————————————————————————————
F_LIC Fraction of insulin Liver clearance ($oldsymbol{0.4}$ $\#$)
[Parameter 67] ———————————————————————————————————
F_KIC Fraction of insulin Kidney clearance (0.3 #)
$ \begin{array}{ll} [\text{Parameter } 68] & \\ V_K^I & \textbf{Distribution Volume of Insulin in Kidney Vascular space} \\ (\ \textbf{0.51} \ \ \textbf{L} \ \) \end{array} $

Parameter 69 ———————————————————————————————————
V_{PV}^{I} Distribution Volume of Insulin in Peripheral Vascular space ($f 0.74$ L)
[Parameter 70]
T_P^I Trans-capillary diffusion rate for Peripheral tissues (insulin-related) (${f 20}$ min)
[Parameter 71] — F_PIC Fraction of insulin Periphery clearance (0.15 #)
$egin{align*} \left[ext{Parameter 72} ight] & & & & & & & & \\ eta_{ ext{PIR}}^1 & ext{PIR Glucose effect parameter 1} \ egin{align*} \left(& 3.27 & \# \end{array} ight) \end{aligned}$
[Parameter 73] ———————————————————————————————————
$eta^2_{ t PIR}$ PIR Glucose effect parameter 2 (7.33333 mmol/l)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$
$ \begin{array}{ll} \text{[Parameter 75]} & \\ \beta_{\text{PIR}}^4 & \text{PIR Glucose effect parameter 4} \\ (\ 3.02 \ \ \# \) \end{array} $

Parameter 76] ———————————————————————————————————
$eta_{ t PIR}^5$ Potentiator parameter
$(\ \ 1.11 \ \ \# \ \)$
[Parameter 77] ——————————————————————————————————
$K_{\mathtt{Rinsu}}$ Rate of labile Insulin secretion
$(0.00794/\mathrm{min})$
[Parameter 78] ———————————————————————————————————
$R_{\text{insu}0}$ Labile Insulin for Glucose=0
$(44310\mathrm{pmol})$
[Parameter 79] ———————————————————————————————————
$K_{\tt RinsuPotr}$ Rate of Potentiator effect on labile insulin
$(4025\mathrm{pmol/min})$
[Parameter 80] ———————————————————————————————————
K _{RinsuPtgt} Rate at which Potentiator reachs its target value
$(0.0482/\mathrm{min})$
[Parameter 81] ———————————————————————————————————
K_{pinhPrp} Rate at which Inhibitor reaches the proportional insulin response function
$(0.931/\mathrm{min})$
[Parameter 82] —
M_1 Late rate of increase in insulin secretion
$(\ \ 0.00747 \ \ / \mathrm{min} \ \)$

Parameter 83 ———————————————————————————————————
M_2 Rate of insulin response
$(\begin{array}{cc} 0.0958 & /\mathrm{min} \end{array})$
[Parameter 84] ———————————————————————————————————
I_{PV0} Baseline value of I_{PV} at initial time (t_0) $($ 91 $$ pM $)$
(31 pivi)
[Parameter 85] ———————————————————————————————————
Γ_{MCC} Starting value for gluCagon (11.48 pM)
(11.46 pivi)
[Parameter 86] ———————————————————————————————————
Γ_{MCC} Rate constant of gluCagon clearance
$(0.91\mathrm{L/min})$
[Parameter 87] ———————————————————————————————————
V_C gluCagon distribution volume
$(\ \ 11.31 \ \ \ L \ \)$
[Parameter 88] ——————————————————————————————————
β_{PCR}^0 PCR Glucose effect midpoint
(2.93#)
[Darameter 90]
[Parameter 89]
eta_{PCR}^1 PCR Glucose effect half-amplitude
$(\hspace{.1cm} \boldsymbol{2.1} \hspace{.1cm} \# \hspace{.1cm})$

```
[Parameter 90] ——
\beta_{\tt PCR}^2 PCR Glucose effect steepness
(4.18 \#)
[Parameter 91] ————
\beta_{\mathtt{PCR}}^3 PCR Glucose effect shift
(0.621325 \#)
[Parameter 92] ————
\beta_{\text{PCR}}^4 PCR Insulin effect midpoint
( 1.31 # )
[Parameter 93] ————
\beta_{\tt PCR}^5 — PCR Insulin effect half-amplitude
(0.61 \#)
\beta_{\mathtt{PCR}}^{5} PCR Insulin effect steepness
( 1.06 # )
[Parameter 95] —
\beta_{\mathtt{PCR}}^{5} PCR Insulin effect shift
(0.471419 \#)
[Parameter 96] ———
f_{20} Baseline value of f_2 at initial time (t_0)
( 0 # )
```

Parameter 97
$\Gamma_{ exttt{IVG}}$ Intravenous Glucose Infusion starting value (0 mmol/min)
[Parameter 98] ———————————————————————————————————
$\Gamma_{ t IVGin}$ Intravenous Glucose Infusion (64.81 mmol/min)
[Parameter 99]
$Time_{ exttt{IVG}}$ Start time of intravenous Glucose Infusion (-3 min)
[Parameter 100] ———————————————————————————————————
(0 min)
[Parameter 101] ——————————————————————————————————
$\Gamma_{ ext{IVI}}$ Intravenous Insulin Infusion starting value (0 pmol/min)
[Parameter 102] ————————————————————————————————————
$\Gamma_{ ext{IVIin}}$ Intravenous Insulin Infusion (0 pmol/min)
[Parameter 103]

[Parameter 104] $time_{ t IVIend}$ End time of Instravenous Insulin Infusion $(0 \min)$ [Parameter 105] — I_{H0} Baseline value of I_H at initial time (t_0) (107.059)pM) Baseline value for I_H at time 0: $I_{H0} = \frac{I_{PV0}}{1 - F_{PIC}}$ Definition: InsuH0 = InsuPVO/(1-FracPIC) [Parameter 106] —— Baseline value of I_K at initial time (t_0) (74.9412 pM) Baseline value for I_K at time 0: $I_{K0} = I_{H0}(1 - F_{KIC})$ Definition: InsuKO = InsuH0*(1-FracKIC) [Parameter 107] ——— I_{B0} Baseline value of I_B at initial time (t_0) (107.059)pM)

Baseline value for I_B at time 0:

$$I_{B0} = I_{H0}$$

Definition: InsuB0 =

InsuH0

[Parameter 108] -

 I_{G0} Baseline value of I_{G} at initial time (t_{0}) (107.059 $\,$ pM)

Baseline value for I_J at time 0:

$$I_{J0} = I_{H0}$$

Definition: InsuJ0 =

InsuH0

[Parameter 109] -

 I_{PI0} Baseline value of I_{PI} at initial time (t_0) (40.9651 $\,$ pM)

Baseline value for i_{pi} at time 0:

$$I_{PI0} = I_{PV0} - (I_{H0} - I_{PV0}) \frac{Q_P^I T_P}{V_P^I}$$

Definition: InsuPIO =

InsuPVO-((QfloIP*TdifIP/VolPI)*(InsuHO-InsuPVO))

[Parameter 110] —

 I_{L0} Baseline value of I_L at initial time (t_0) (151.488 pM)

Baseline value for I_L at time 0:

$$I_{L0} = \frac{1}{Q_L^I} (Q_H^I I_{H0} - Q_B^I I_{B0} - Q_K^I I_{K0} - Q_P^I I_{PV0})$$

Definition: InsuL0 =

1/QfloIL*(QfloIH*InsuHO-QfloIB*InsuBO-QfloIK*InsuKO-QfloIP*InsuPVO)

[Parameter 111] -

 $\Gamma_{\text{PIR}0}$ Baseline value of Γ_{PIR} at initial time (t_0)

(130.879 pmol/min)

Baseline value for Γ_{BPIR} at time 0:

$$\Gamma_{BPIR} = \frac{Q_L^I}{1 - F_{LIC}} I_{L0} - Q_J^I I_{J0} - Q_A^I I_{H0}$$

Definition: GammaBPIR =

QfloIL/(1-FracLIC)*InsuLO - QfloIJ*InsuJO-QfloIA*InsuHO

[Parameter 112] —

 $\Gamma_{ t PICO}$ Baseline value of $\Gamma_{ t PIC}$ at initial time (t_0) (16.8618 pmol/min)

Baseline value for Γ_{PIC} at time 0:

$$\Gamma_{PIC0} = \frac{I_{PI0}}{\frac{1 - F_{PIC}}{F_{PIC}}} - \frac{T_{IP}}{V_{PI}}$$

Definition: GammaPICO =

InsuPIO/(((1-FracPIC)/FracPIC)*(1/QfloIP)-TdifIP/VolPI)

[Parameter 113] ————

 $P_{
m prp0}$ Baseline value of $P_{
m prp}$ at initial time (t_0) (0.19032 #)

Baseline value for P_{prp} at time 0:

$$P_{prp0} = \frac{(G_{H0})^{\beta_{PIR}^1}}{(\beta_{PIR}^2)^{\beta_{PIR}^1} + \beta_{PIR}^3 (G_{H0})^{\beta_{PIR}^4}}$$

Definition: Pprp0 =

pow((GlucHO),beta1PIR) /(pow((beta2PIR),beta1PIR)+beta3PIR*pow((GlucHO),beta4PIR))

[Parameter 114] ————

 $P_{
m tgt0}$ Baseline value of $P_{
m tgt}$ at initial time (t_0) (0.158572 #)

Baseline value for P_{tqt} at time 0:

$$P_{tgt0} = P_{prp0}^{\beta_{5PIR}}$$

Definition: Ptgt0 =
pow(Pprp0,beta5PIR)

[Parameter 115] — $P_{\text{inh}0}$ Baseline value of P_{inh} at initial time (t_0) (0.19032)#) Baseline value for P_{inh} at time 0: $P_{inh0} = P_{prp0}$ Definition: Pinh0 = Pprp0 [Parameter 116] — $P_{\text{otn}0}$ Baseline value of P_{otn} at initial time (t_0) (0.158572)#) Baseline value for P_{otn} at time 0: $P_{otn0} = P_{tat0}$ Definition: Potn0 = Ptgt0 [Parameter 117] Baseline value of Rinsu at initial time (t_0) $InitialRinsu_0$ (108507 pmol) Baseline value for $Initial_{Rinsu}$ at time 0: $Initial_{Rinsu0} = \frac{K_{Rinsu}R_{insu0} + K_{RinsuPotn}P_{otn0}}{K_{Rinsu} + M_1P_{otn0}}$ Definition: InitialRinsu0 = ((KappaRinsu*Rinsu0)+ KappaRinsuPotn * Potn0)/(KappaRinsu+EMME1* Potn0) [Parameter 118] — S_{ecr0} Baseline value of S_{ecr} at initial time (t_0) (128.53 pmol/min) Baseline value for S_{ecr} at time 0:

 $S_{ecr0} = M_1 P_{tgt0} Initial_{Rinsu0}$

Definition: Secr0 =
EMME1*Ptgt0*InitialRinsu0

[Parameter 119] —

 G_{PV0} Baseline value of G_{PV} at initial time (t_0) (4.94456 mM)

Baseline value for G_{PV} at time 0:

$$G_{PV0} = G_{H0} - \frac{\Gamma_{BPGU}}{Q_P^G}$$

Definition: GlucPV0 =
GlucH0 - GammaBPGU/QfloGP

[Parameter 120] ————

 G_{K0} Baseline value of G_{K} at initial time (t_{0}) (5.07333 mM)

Baseline value for G_K at time 0:

$$G_{K0} = G_{H0}$$

Definition: GlucKO =

GlucH0

[Parameter 121] —

 G_{BV0} Baseline value of G_{BV} at initial time (t_0) (4.4142 mM)

Baseline value for G_{BV} at time 0:

$$G_{BV0} = G_{H0} - \frac{\Gamma BPGU}{Q_B^G}$$

Definition: GlucBV0 =
GlucH0 - GammaBGU/QfloGB

[Parameter 122] —

 G_{J0} Baseline value of G_J at initial time (t_0)

(4.96332 mM)

Baseline value for G_J at time 0:

$$G_{J0} = G_{H0} - \frac{\Gamma JGU}{Q_J^G}$$

Definition: GlucJ0 =
GlucHO-GammaJGU/QfloGJ

[Parameter 123] —

 G_{L0} Baseline value of G_L at initial time (t_0)

(5.58039 mM)

Baseline value for G_L at time 0:

$$G_{L0} = \frac{Q_A^G G_{H0} + Q_J^G G_{J0} + \Gamma_{HGP0} - \Gamma HGU0}{Q_L^G} \label{eq:GL0}$$

Definition: GlucL0 =

(QfloGA*GlucHO+QfloGJ*GlucJO+GammaHGPO-GammaHGUO)/QfloGL

[Parameter 124] —

 G_{BI0} Baseline value of G_{BI} at initial time (t_0)

(2.59938 mM)

Baseline value for G_{BI} at time 0:

$$G_{BI0} = G_{BV0} - \frac{\Gamma_{BPGU} T_B}{V_{BI}}$$

Definition: GlucBIO =

GlucBVO-(GammaBGU*TdifB)/VolBI

[Parameter 125]

 G_{PI0} Baseline value of G_{PI} at initial time (t_0)

(4.80032 mM)

Baseline value for G_{PI} at time 0:

$$G_{PI0} = G_{PV0} - \frac{\Gamma_{BPGU}T_{GP}}{V_{PI}}$$

Definition: GlucPIO =

GlucPVO-GammaBPGU*TdifGP/VolPI

[Parameter 126] —

 M_{PGU0} Baseline value of M_{PGU} at initial time (t_0) (0.992859)#)

Baseline value for M_{PGU}^{I} at time 0:

$$M_{PGU0}^{I} = \beta_{PGU}^{0} + \beta_{PGU}^{1} tanh[\beta_{PGU}^{2}(1 - \beta_{PGU}^{3})]$$

Definition: MIPGUO =

beta0PGU+beta1PGU*tanh(beta2PGU*(1-beta3PGU))

[Parameter 127] —

 $M_{\mathtt{HGP0}}^{C}$ Baseline value of $M_{\mathtt{HGP}}^{C}$ at initial time (t_0) (1 #)

Baseline value for ${\cal M}^C_{HGP}$ at time 0:

$$M_{HGP0}^C = \beta_{HGP}^0 tanh(\beta_{HGP}^1) - F_{20}$$

Definition: MCHGP0 =

betaOHGP * tanh(beta1HGP * 1) - Func20

[Parameter 128] —

Baseline value of $M_{\mathtt{HGP}}^{C0}$ at initial time (t_0) $M_{\rm HGP0}^{C0}$

(1 #)

Baseline value for M_{HGP}^{C0} at time 0:

$$M_{HGP0}^{C0} = \beta_{HGP}^0 tanh(\beta_{HGP}^1)$$

Definition: MCOHGPO =

betaOHGP * tanh(beta1HGP * 1)

[Parameter 129] -

 $M_{\tt HGP0}^I$ Baseline value of $M_{\tt HGP}^I$ at initial time (t_0) (1 #)

Baseline value for ${\cal M}_{HGP}^I$ at time 0:

$$M_{HGP0}^{I} = \beta_{HGP}^{2} - \beta_{HGP}^{3} tanh[\beta_{HGP}^{4}(1 - \beta_{HGP}^{5})]$$

Definition: MIHGPO =

beta2HGP - beta3HGP * tanh(beta4HGP * (1-beta5HGP))

[Parameter 130] -

Baseline value for ${\cal M}_{HGPinf}^I$ at time 0:

$${\cal M}^I_{HGPinf0} = {\cal M}^I_{HGP0}$$

Definition: MIHGPinf0 =

MIHGPO

[Parameter 131] -

 $M_{\tt HGP0}^G$ Baseline value of $M_{\tt HGP}^G$ at initial time (t_0) $(\ 1 \ \# \)$

Baseline value for ${\cal M}_{HGP}^G$ at time 0:

$$M_{HGP0}^{G} = \beta_{HGP}^{6} - \beta_{HGP}^{7} tanh[\beta_{HGP}^{8}(1 - \beta_{HGP}^{9})]$$

Definition: MGHGPO =

beta6HGP-beta7HGP*tanh(beta8HGP*(1-beta9HGP))

[Parameter 132] -

 M_{HGUO}^{I} Baseline value of M_{HGU}^{I} at initial time (t_0)

Baseline value for M_{HGU}^{I} at time 0:

$$M^I_{HGU0} = \beta^0_{HGU} tanh(\beta^1_{HGU})$$

Definition: MIHGU0 =
beta0HGU * tanh(beta1HGU)

[Parameter 133] ———

 $\begin{array}{ccc} M^I_{\tt HGUinf0} & \textbf{Steady state of} \ M^I_{\tt HGU} \\ (\ 1 & \# \) \end{array}$

Baseline value for M^{I}_{HGUinf} at time 0:

$$M^{I}_{HGUinf0} = M^{I}_{HGU0}$$

Definition: MIHGUinf0 =

MIHGUO

[Parameter 134] —

 $M_{ t HGU0}^G$ Baseline value of $M_{ t HGU}^G$ at initial time (t_0) (1 #)

Baseline value for ${\cal M}_{HGU}^G$ at time 0:

$$M_{HGU0}^{G} = \beta_{HGU}^{2} + \beta_{HGU}^{3} tanh[\beta_{HGU}^{4}(1 - \beta_{HGU}^{5})]$$

Definition: MGHGUO =

beta2HGU+beta3HGU*tanh(beta4HGU*(1-beta5HGU))

[Parameter 135]

 $\Gamma_{ exttt{KGE}0}$ Baseline value of $\Gamma_{ exttt{KGE}}$ at initial time (t_0) (0.000236777 $ext{mmol/min}$)

Baseline value for Γ_{KGE} at time 0:

$$\Gamma_{KGE0} = \begin{cases} \beta_{KGE}^{0} + \beta_{KGE}^{1} \tanh[\beta_{KGE}^{2}(G_{K0} - \beta_{KGE}^{3})] & 0 \le G_{K} < \beta_{KGE}^{3} \\ -\beta_{KGE}^{4} + \beta_{KGE}^{5}G_{K0} & G_{K0} \ge \beta_{KGE}^{3} \end{cases}$$
(4)

(5)

Definition: GammaKGEO =

(GlucKO<beta3KGE) * (beta0KGE+beta1KGE*tanh(beta2KGE*(GlucKO-beta3KGE)))

+ (GlucKO >= beta3KGE) * (-beta4KGE+beta5KGE*GlucKO)

[Parameter 136] -

 $\Gamma_{\text{LIC}0}$ Baseline value of Γ_{LIC} at initial time (t_0) (90.8929 pmol/min)

Baseline value for Γ_{LIC} at time 0:

$$\Gamma_{LIC0} = F_{LIC}(Q_A^I I_{H0} + Q_J^I I_{J0} + \Gamma BPIR)$$

Definition: GammaLICO =

FracLIC*(QfloIA*InsuHO+QfloIJ*InsuJO+GammaBPIR)

[Parameter 137] —

 $\Gamma_{ exttt{KICO}}$ Baseline value of $\Gamma_{ exttt{KIC}}$ at initial time (t_0) (23.1247 pmol/min)

Baseline value for Γ_{KIC} at time 0:

$$\Gamma_{KIC0} = F_{KIC} Q_K^I I_{H0}$$

Definition: GammaKICO =
FracKIC*(QfloIK*InsuHO)

[Parameter 138] -

 $M_{\text{PCR}0}^G$ Baseline value of M_{PCR}^G at initial time (t_0) (1 #)

Baseline value for ${\cal M}_{PCR}^G$ at time 0:

$$M_{PCR0}^{G} = \beta_{PCR}^{0} - \beta_{PCR}^{1} tanh[\beta_{PCR}^{2}(1 - \beta_{PCR}^{3})]$$

Definition: MGPCRO =

betaOPCR - beta1PCR * tanh(beta2PCR * (1-beta3PCR))

[Parameter 139] -

 $M^{I}_{ t PCR0}$ Baseline value of $M^{I}_{ t PCR}$ at initial time (t_0) (1 #)

Baseline value for M_{PCR}^{I} at time 0:

$$M^I_{PCR0} = \beta^4_{PCR} - \beta^5_{PCR} tanh [\beta^6_{PCR} (1-\beta^7_{PCR})]$$

Definition: MIPCRO = beta4PCR - beta5PCR * tanh(beta6PCR * (1-beta7PCR)) [Parameter 140] —— $\Gamma_{ t PCC0}$ Baseline value of $\Gamma_{ t PCC}$ at initial time (t_0) (10.4468 pM) Baseline value for Γ_{PCC} at time 0: $\Gamma_{PCC0} = C_0 \Gamma_{MCC}$ Definition: GammaPCCO = Cgon0*GammaMCC [Parameter 141] —— $\Gamma^B_{ t PCR0}$ Baseline value of $\Gamma^B_{ t PCR}$ at initial time (t_0) (f 10.4468 f pM) Baseline value for Γ_{BPCR} at time 0: $\Gamma_{BPCR0} = \Gamma_{PCC0}$ Definition: GammaBPCR = ${\tt GammaPCCO}$

Dynamic	constraints	on the Par	rameters	(the updated	d MoSpec ru	ules)

Figure 1. Block Diagram

Table 1. Model Variables

VarID	Variable	Units	Meaning
0	t	min	time in minutes
1	G_{BV}	${ m mM}$	Glucose concentration in Brain Vascular space
2	G_{BI}	mM	Glucose concentration in Brain Interstitial space
3	G_H	mM	Glucose concentration in Heart-Lung space
4	G_H^N	#	Normalized Glucose concentration in Heart-Lung space
5	G_J	mM	Glucose concentration in gut (Jejunal) space
6	G_L	mM	Glucose concentration in Liver space
7	G_L^N	#	Normalized Glucose concentration in Liver space
8	G_K	mM	Glucose concentration in Kidney space
9	G_{PV}	mM	Glucose concentration in Peripheral Vascular space
10	G_{PI}	mM	Glucose concentration in Peripheral Interstitial space
11	G_{PI}^N	#	Normalized Glucose concentration in Peripheral Interstitial space
12	$\Gamma_{ t PGU}$	$\mathrm{mmol/min}$	Rate of Peripheral Glucose Uptake
13	$M_{\mathtt{HGP}}^{I}$	#	Insulin Action on glucose uptake
14	$\Gamma_{ t HGP}$	$\mathrm{mmol/min}$	Hepatic Glucose Production
15	$M_{\mathtt{HGP}}^{I}$	#	Insulin suppression of Hepatic Glucose Production
16	$M_{ t t HGPinf}^I$	#	Steady State Insulin suppression of Hepatic Glucose Production
17	$M^C_{\mathtt{HGP}}$	#	gluCagon contribution to Hepatic Glucose Production
18	$M_{ t HGP}^{C0}$	#	gluCagon contribution to Hepatic Glucose Production at baseline
19	f_2	#	Damping of gluCagon contribution to Hepatic Glucose Production
20	$M_{\mathtt{HGP}}^G$	#	Glucose contribution to Hepatic Glucose Production
21	$\Gamma_{ t HGU}$	$\mathrm{mmol/min}$	Hepatic Glucose Uptake
22	$M_{\mathtt{HGU}}^{I}$	#	Insulin acceleration of Hepatic Glucose Uptake
23	$M_{ t t HGUinf}^{I}$	#	Steady State Insulin acceleration of Hepatic Glucose Uptake
24	$M_{ t HGU}^G$	#	Glucose acceleration of Hepatic Glucose Uptake
25	$\Gamma_{ t KGE}$	$\mathrm{mmol/min}$	Kidney Glucose Excretion
26	I_B	pM	Insulin concentration in Brain space
27	I_H	pM	Insulin concentration in Heart/lung space
28	I_H^N	#	Normalized Insulin concentration in Heart/lung space
29	I_J	pM	Insulin concentration in gut (Jejunal) space
30	I_L	pM	Insulin concentration in Liver space
31	I_K	pM	Insulin concentration in Kidney space

Table 1. Model Variables

VarID	Variable	Units	Meaning
32	I_{PV}	pM	Insulin concentration in Peripheral Vascular space
33	I_{PI}	pM	Insulin concentration in Peripheral Interstitial space
34	$I_{PI}^N \ I_L^N$	#	Normalized Insulin concentration in Peripheral Interstitial space
35	I_L^N	#	Normalized Insulin concentration in Liver space
36	$\Gamma_{ t LIC}$	pmol/min	Liver Insulin Clearance
37	$\Gamma_{ t KIC}$	pmol/min	Kidney Insulin Clearance
38	$\Gamma_{ t PIC_{NC}}$	pmol/min	Peripheral Insulin Clearance
39	$\Gamma_{ t SerPIR}$	pmol/min	Pancreatic Insulin Release according to Sorensen
40	P_{otn}	#	Potentiator
41	P_{inh}	#	Inhibitor
42	R_{insu}	pmol	Labile or granular insulin
43	S_{ecr}	pmol/min	Secretion rate
44	S_{ecr}^N	#	Normalized secretion rate
45	P_{prp}	#	Potentiator glucose proportional factor
46	P_{tgt}	#	Potentiator target
47	C^{-}	pM	gluCagon plasma concentration
48	C^N	#	Normalized gluCagon plasma concentration
49	$\Gamma_{ t PCC}$	pmol/min	Peripheral gluCagon Clearance
50	$\Gamma_{ t PCR}$	pmol/min	Pancreatic gluCagon Release
51	$M_{\mathtt{PCR}}^G$	#	Glucose effect on gluCagon clearance
52	$M_{\mathtt{PCR}}^{I}$	#	Insulin effect on gluCagon clearance
53	$\Gamma_{ t IVG}$	$\mathrm{mmol/min}$	Intravenous Glucose Infusion
54	$\Gamma_{ t IVI}$	pmol/min	Intravenous Insulin Infusion

Table 2. Model Parameters

ParID	Parameter	Units	Meaning
1	t_0	min	Starting time for numerical integration
2	t_{end}	\min	Final time for numerical integration
3	t_{Δ}	\min	Time integration step
4	$Q_B^G \ V_{BV}^G$	L/\min	Vascular blood water flow rate for Brain (glucose-related)
5	V_{BV}^G	${ m L}$	Distribution Volume of Glucose in Brain Vascular space
6	V_{BI}	L	Volume of Brain Interstitial space
7	T_B	\min	Trans-capillary diffusion rate for Brain
8	G_{H0}	mM	Baseline value of G_H at initial time (t_0)
9	$\Gamma_{ t BGU}$	$\mathrm{mmol/min}$	Brain Glucose Uptake rate
10	Q_L^G	L/\min	Vascular blood water flow rate for Liver (glucose-related)
11	$Q_K^{\overline{G}}$	L/\min	Vascular blood water flow rate for Kidney (glucose-related)
12	$\Gamma_{ m BGU} \ Q_L^G \ Q_P^G$	L/\min	Vascular blood water flow rate for Peripheral tissues (glucose-related)
13	Q_H^G	L/\min	Vascular blood water flow rate for Heart/lung (glucose-related)
14	$\Gamma_{ ext{RBCU}}$	$\stackrel{'}{\mathrm{mmol}}/\mathrm{min}$	Red Blood cell Glucose Uptake rate
15	$\Gamma_{ ext{RBCU}}$ V_H^G Q_J^G V_J^G	L	Distribution Volume of Glucose in Heart/lung Vascular space
16	Q_I^G	L/\min	Vascular blood water flow rate for Gut/Jejunum (glucose-related)
17	V_I^G	$ m L^{'}$	Distribution Volume of Glucose in Gut/Jejunum Vascular space
18	$\Gamma_{ t JGU}$	$\mathrm{mmol/min}$	Gut/Jejunal Glucose Uptake or utilization rate
19	$\Gamma_{ m JGU} \ Q_A^G \ V_L^G \ V_K^G \ V_{PV}^G$	L/\min	Vascular blood water flow rate in hepatic Artery (glucose-related)
20	$V_L^{\widehat{G}}$	L	Distribution Volume of Glucose in Liver space
21	V_K^G	${f L}$	Distribution Volume of Glucose in Kidney space
22	V_{PV}^{G}	${ m L}$	Distribution Volume of Glucose in Peripheral Vascular space
23	V_{PI}	${ m L}$	Volume of Peripheral Interstitial space
24	T_P^G	min	Trans-capillary diffusion rate for Peripheral tissues (glucose-related)
25	$\Gamma^B_{ t PGU}$	$\mathrm{mmol/min}$	Baseline rate of Peripheral Glucose Uptake
26	$eta_{ t PGU}^0$	#	PGU Insulin effect midpoint
27	$eta_{ t PGU}^1$	#	PGU Insulin effect half-amplitude
28	β_{part}^2	#	PGU Insulin effect steepness
29	β3 βgu	#	PGU Insulin effect shift
30	β_{HGP}^0	#	HGP gluCagon effect scale

Table 2. Model Parameters

ParID	Parameter	Units	Meaning
31	$eta_{ t HGP}^1$	#	HGP gluCagon scale
32	$ au_C$	\min	Inverse of the decay rate for the glucagon-driven intensification
	-		of f_2 Hepatic Glucose Uptake suppression
33	$eta_{\mathtt{HGP}}^2$	#	HGP Insulin effect midpoint
34	β_{HGP}^3	#	HGP Insulin effect half-amplitude
35	β_{HGP}^4	#	HGP Insulin effect steepness
36	$eta_{ ext{HGP}}^5$	#	HGP Insulin effect shift
37	$ au_I$	min	Inverse of the decay rate for the insulin-driven intensification of
			$M_{\rm HGP}^{I}$ and $M_{\rm HGU}^{I}$ (same for both)
38	$eta_{ t HGP}^6$	#	HGP Glucose effect midpoint
39	β_{HGP}^7	#	HGP Glucose effect half-amplitude
40	β_{HGP}^{8}	#	HGP Glucose effect steepness
41	$eta_{ ext{HGP}}^{ ext{8}}$ $eta_{ ext{HGP}}^{ ext{9}}$	#	HGP Glucose effect shift
42	$\Gamma_{\texttt{HGP}0}$	$\mathrm{mmol/min}$	Baseline value of Γ_{HGP} at initial time (t_0)
43	$eta_{ t hgu}^0$	#	HGU Insulin effect half-amplitude
44	$eta_{ t HGU}^1$	#	HGU Insulin effect steepness
45	$eta_{ t hgu}^2$	#	HGP Glucose effect midpoint
46	$eta_{ t HGU}^3$	#	HGP Glucose effect half-amplitude
47	$eta_{ t hgu}^4$	#	HGP Glucose effect steepness
48	$eta_{ t hgu}^5$	#	HGP Glucose effect shift
49	$\Gamma_{ t HGUO}$	$\mathrm{mmol/min}$	Baseline value of $\Gamma_{\tt HGU}$ at initial time (t_0)
50	$eta_{ t KGE}^0$	$\mathrm{mmol/min}$	KGE Glucose effect midpoint
51	$\beta^1_{ t KGE}$	$\mathrm{mmol/min}$	KGE Glucose effect half-amplitude
52	$eta_{ t KGE}^2$	$/\mathrm{mM}$	KGE Glucose effect steepness
53	$eta_{ t KGE}^3$	mM	KGE Glucose effect shift, point of transition between tanh and linear regime
54	$eta_{ t KGE}^4$	$\mathrm{mmol/min}$	KGE Glucose linear effect intercept
55	β_{KGE}^{5}	$\operatorname{mmol}' = \operatorname{min/mM}$	KGE Glucose linear effect slope
56	Q_B^{I}	${ m L/min}$	Vascular blood water flow rate for Brain (insulin-related)
57	$V_B^{\widetilde{I}}$	$ m L^{'}$	Distribution Volume of Insulin in Brain vascular space
58	$V_H^{\widetilde{I}}$	${f L}$	Distribution Volume of Insulin in Heart/lung vascular space
59	$eta_{ ext{KGE}}^{ ilde{5}}$ $Q_{B}^{ ilde{5}}$ V_{B}^{I} V_{H}^{I} Q_{L}^{I} Q_{K}^{I}	L/\min	Vascular blood water flow rate for Liver (insulin-related)
60	$Q_{\nu}^{\widetilde{I}}$	m L/min	Vascular blood water flow rate for Kidney (insulin-related)

Table 2. Model Parameters

ParID	Parameter	Units	Meaning
61	$Q_{\scriptscriptstyle P}^I$	${ m L/min}$	Vascular blood water flow rate for Periphery (insulin-related)
62	$Q_P^I \ Q_H^I$	L/\min	Vascular blood water flow rate for Heart and Lungs (insulin- related)
63	V_I^I	${ m L}$	Distribution Volume of Insulin in Gut Vascular space
64	$egin{array}{c} V^I_J \ Q^I_{\c J} \end{array}$	$_{ m L/min}$	Vascular blood water flow rate for Gut (insulin-related)
65	$egin{array}{c} V_L^I \ Q_A^I \end{array}$	$\stackrel{'}{ m L}$	Distribution Volume of Insulin in Liver Vascular space
66	Q^{I}_{A}	$_{ m L/min}$	Vascular blood water flow rate in hepatic Artery (insulin-related)
67	F_LIC	#	Fraction of insulin Liver clearance
68	$\overline{F_K}IC$	 #	Fraction of insulin Kidney clearance
69	V_K^I	Ĺ	Distribution Volume of Insulin in Kidney Vascular space
70	V_{PV}^{I}	L	Distribution Volume of Insulin in Peripheral Vascular space
71	$F_K IC$ V_K^I V_{PV}^I T_P^I	min	Trans-capillary diffusion rate for Peripheral tissues (insulin- related)
72	F_PIC	#	Fraction of insulin Periphery clearance
73	$eta_{ t PIR}^1 \ eta_{ t PIR}^2$	#	PIR Glucose effect parameter 1
74	$\beta_{\mathtt{PIR}}^2$	mmol/l	PIR Glucose effect parameter 2
75	β_{ptp}^3	#	PIR Glucose effect parameter 3
76	$eta_{ t PIR}^4 \ eta_{ t PIR}^5 \ eta_{ t PIR}^5$	#	PIR Glucose effect parameter 4
77	$\beta_{\mathtt{PIR}}^{5}$	#	Potentiator parameter
78	$K_{ t Rinsu}$	/min	Rate of labile Insulin secretion
79	$R_{\mathtt{insu0}}$	pmol	Labile Insulin for Glucose=0
80	$K_{ t RinsuPotr}$	$\mathrm{pmol/min}$	Rate of Potentiator effect on labile insulin
81	$K_{\mathtt{RinsuPtgt}}$	$/\mathrm{min}$	Rate at which Potentiator reachs its target value
82	$K_{\mathtt{pinhPrp}}$	/min	Rate at which Inhibitor reaches the proportional insulin response function
83	M_1	$/\mathrm{min}$	Late rate of increase in insulin secretion
84	M_2	/min	Rate of insulin response
85	I_{PV0}	pM	Baseline value of I_{PV} at initial time (t_0)
86	Γ_{MCC}	pM	Starting value for gluCagon
87	Γ_{MCC}	L/\min	Rate constant of gluCagon clearance
88	V_C	${ m L}$	gluCagon distribution volume
89	$eta_{\mathtt{PCR}}^0$	#	PCR Glucose effect midpoint
90	$eta_{\mathtt{PCR}}^1$	#	PCR Glucose effect half-amplitude

Table 2. Model Parameters

ParID	Parameter	Units	Meaning
91	$eta_{\mathtt{PCR}}^2$	#	PCR Glucose effect steepness
92	$\beta_{\mathtt{PCR}}^3$	#	PCR Glucose effect shift
93	$\beta_{\mathtt{PCR}}^4$	#	PCR Insulin effect midpoint
94	$eta_{\mathtt{PCR}}^5$	#	PCR Insulin effect half-amplitude
95	$eta_{\mathtt{PCR}}^{5}$	#	PCR Insulin effect steepness
96	$eta_{\mathtt{PCR}}^5$	#	PCR Insulin effect shift
97	f_{20}	#	Baseline value of f_2 at initial time (t_0)
98	$\Gamma_{ t IVG}$	mmol/min	Intravenous Glucose Infusion starting value
99	$\Gamma_{ t IVGin}$	$\overline{\mathrm{mmol/min}}$	Intravenous Glucose Infusion
100	$Time_{ t IVG}$	min	Start time of intravenous Glucose Infusion
101	$Time_{\mathtt{IVGend}}$	\min	End time of intravenous Glucose Infusion
102	$\Gamma_{ exttt{IVI}}$	$\mathrm{pmol/min}$	Intravenous Insulin Infusion starting value
103	$\Gamma_{ t IVIin}$	pmol/min	Intravenous Insulin Infusion
104	$time_{\mathtt{IVI}}$	\min	Starting time of Instravenous Insulin Infusion
105	$time_{ t IVIend}$	\min	End time of Instravenous Insulin Infusion
106	I_{H0}	pM	Baseline value of I_H at initial time (t_0)
107	I_{K0}	pM	Baseline value of I_K at initial time (t_0)
108	I_{B0}	pM	Baseline value of I_B at initial time (t_0)
109	I_{G0}	pM	Baseline value of I_G at initial time (t_0)
110	I_{PI0}	pM	Baseline value of I_{PI} at initial time (t_0)
111	I_{L0}	pM	Baseline value of I_L at initial time (t_0)
112	$\Gamma_{\mathtt{PIR}0}$	pmol/min	Baseline value of Γ_{PIR} at initial time (t_0)
113	$\Gamma_{ t PIC0}$	pmol/min	Baseline value of Γ_{PIC} at initial time (t_0)
114	$P_{\mathtt{prp}0}$	#	Baseline value of P_{prp} at initial time (t_0)
115	$P_{\sf tgt0}$	#	Baseline value of P_{tgt} at initial time (t_0)
116	$P_{\mathtt{inh}0}$	#	Baseline value of P_{inh} at initial time (t_0)
117	$P_{\mathtt{otn}0}$	#	Baseline value of $P_{\tt otn}$ at initial time (t_0)
118	$InitialRinsu_0$	pmol	Baseline value of $Rinsu$ at initial time (t_0)
119	S_{ecr0}	pmol/min	Baseline value of S_{ecr} at initial time (t_0)
120	G_{PV0}	mM	Baseline value of G_{PV} at initial time (t_0)
121	G_{K0}	mM	Baseline value of G_K at initial time (t_0)
122	G_{BV0}	mM	Baseline value of G_{BV} at initial time (t_0)
123	G_{J0}	mM	Baseline value of G_J at initial time (t_0)

Table 2. Model Parameters

ParID	Parameter	Units	Meaning
124	G_{L0}	mM	Baseline value of G_L at initial time (t_0)
125	G_{BI0}	mM	Baseline value of G_{BI} at initial time (t_0)
126	G_{PI0}	mM	Baseline value of G_{PI} at initial time (t_0)
127	$M_{ t PGU0}$	#	Baseline value of M_{PGU} at initial time (t_0)
128	$M^{C}_{ t HGPO}$	#	Baseline value of M_{HGP}^{C} at initial time (t_0)
129	M_{HGPO}^{C0}	#	Baseline value of M_{HGP}^{C0} at initial time (t_0)
130	$M_{ t HGPO}^{I}$	#	Baseline value of M_{HGP}^{I} at initial time (t_0)
131	$M_{\mathtt{HGPinf}0}^{I}$	#	Steady state of MIHGP
132	$M_{ t HGPO}^G$	#	Baseline value of M_{HGP}^G at initial time (t_0)
133	$M_{ t HGUO}^{I}$	#	Baseline value of M_{HGU}^{I} at initial time (t_0)
134	$M_{ t HGUinf0}^{I}$	#	Steady state of $M_{\tt HGU}^I$
135	$M_{ t HGUO}^G$	#	Baseline value of M_{HGU}^G at initial time (t_0)
136	$\Gamma_{ t KGE0}$	$\mathrm{mmol/min}$	Baseline value of $\Gamma_{\texttt{KGE}}$ at initial time (t_0)
137	$\Gamma_{ t LICO}$	pmol/min	Baseline value of Γ_{LIC} at initial time (t_0)
138	$\Gamma_{ t KICO}$	pmol/min	Baseline value of $\Gamma_{\tt KIC}$ at initial time (t_0)
139	$M_{\mathtt{PCR0}}^G$	#	Baseline value of M_{PCR}^G at initial time (t_0)
140	$M_{\mathtt{PCR0}}^{I}$	#	Baseline value of M_{PCR}^{I} at initial time (t_0)
141	$\Gamma_{ t PCC0}$	pM	Baseline value of Γ_{PCC} at initial time (t_0)
142	$\Gamma^B_{ t PCR0}$	m pM	Baseline value of Γ_{PCR}^B at initial time (t_0)

Table 3. Model Parameter Configurations

ParID	Parameter	Units	Intravenous Glucose Tol- erance Test: Variable Dose 0.05g/kg	Intravenous Glucose Tolerance Test: Variable Dose 0.2g/kg	Intravenous Glucose Tol- erance Test: Variable Dose 0.75g/kg	$\begin{array}{ll} {\rm Intravenous} \\ {\rm Insulin} & {\rm Tolerance} \\ {\rm Test} \\ {\rm 0.04U/kg} \end{array}$	Continuous Intravenous Insulin Infusion 0.4mU/kg/min
1	t_0	min	-10	-10	-10	-30	-20
2	t_{end}	min	60	60	60	120	150
3	t_{Δ}	min	0.1	0.1	0.1	0.1	0.1
4	$Q_{\mathbf{G}}^{\mathbf{G}}$	L/min	0.59	0.59	0.59	0.59	0.59
5	Q_B^G V_{BV}^G	 L	0.35	0.35	0.35	0.35	0.35
6	V_{BI}	$_{ m L}^{-}$	0.45	0.45	0.45	0.45	0.45
7	T_B	min	2.1	2.1	2.1	2.1	2.1
8	G_{H0}	${ m mM}$	5.12889	5.24	4.90667	5.73333	5.40667
9	[PCII	$\mathrm{mmol/min}$	0.388889	0.388889	0.388889	0.388889	0.388889
10	Q_L^G Q_L^G Q_H^G	${ m L/min}^{'}$	1.26	1.26	1.26	1.26	1.26
11	Q_{K}^{L}	m L'/min	1.01	1.01	1.01	1.01	1.01
12	Q_{R}^{R}	m L'/min	1.51	1.51	1.51	1.51	1.51
13	Q_{H}^{G}	m L'/min	4.37	4.37	4.37	4.37	4.37
14	$\Gamma_{\mathtt{RRCII}}$	$\stackrel{'}{\mathrm{mmol}}/\mathrm{min}$	0.0555556	0.0555556	0.0555556	0.0555556	0.0555556
15	$V_H^G \ Q_J^G \ V_J^G$	\mathbf{L}	1.38	1.38	1.38	1.38	1.38
16	Q_I^{IG}	$_{ m L/min}$	1.01	1.01	1.01	1.01	1.01
17	V_I^G	$\mathbf{L}^{'}$	1.12	1.12	1.12	1.12	1.12
18	Γ_{TCII}	$\mathrm{mmol/min}$	0.111111	0.111111	0.111111	0.111111	0.111111
19	Q_A^G V_L^G V_{PV}^G	${ m L/min}$	0.25	0.25	0.25	0.25	0.25
20	V_L^{G}	$\mathbf{L}^{'}$	2.51	2.51	2.51	2.51	2.51
21	V_K^G	${f L}$	0.66	0.66	0.66	0.66	0.66
22	V_{PV}^{G}	${ m L}$	1.04	1.04	1.04	1.04	1.04
23	V_{PI}	${ m L}$	6.74	6.74	6.74	6.74	6.74
24	T_P^G	\min	5	5	5	5	5
25	$T_P^G = \Gamma_{ t PGU}^B$	$\mathrm{mmol/min}$	0.194444	0.194444	0.194444	0.194444	0.194444
26	$eta_{ t PGU}^0$	#	7.03	7.03	7.03	7.03	7.03
27	β_{PGII}^1	#	6.52	6.52	6.52	6.52	6.52
28	$\beta_{\tt PGU}^2$	#	0.338	0.338	0.338	0.338	0.338

Table 3. Model Parameter Configurations

ParI	D Parameter	Units	Intravenous Glucose Tolerance Test: Variable Dose 0.05g/kg	Intravenous Glucose Tol- erance Test: Variable Dose 0.2g/kg	Intravenous Glucose Tolerance Test: Variable Dose 0.75g/kg	Intravenous Insulin Tol- erance Test 0.04U/kg	Continuous Intravenous Insulin Infusion 0.4mU/kg/min
29	$eta_{ t PGU}^3$	#	5.82	5.82	5.82	5.82	5.82
30	$eta_{ ext{ hgp}}^{ ext{ hgp}}$	# # #	2.7	2.7	2.7	2.7	2.7
31	$eta_{ ext{ hgp}}^1$	π #	0.388852	0.388852	0.388852	0.388852	0.388852
32		$\min^{\prime\prime}$	65	65	65	65	65
33	$ au_C eta_{ t HGP}^2$	#	1.21	1.21	1.21	1.21	1.21
34	$eta_{ ext{HGP}}^3$	#	1.14	1.14	1.14	1.14	1.14
35	$eta_{ ext{ t HGP}}^4$	#	1.66	1.66	1.66	1.66	1.66
36	$eta_{ ext{HGP}}^{ ext{nGF}}$	#	0.887748	0.887748	0.887748	0.887748	0.887748
37	$ au_I$	min	25	25	25	25	25
38	$eta_{ t HGP}^6$	#	1.42	1.42	1.42	1.42	1.42
39	β_{HGP}^{7}	#	1.41	1.41	1.41	1.41	1.41
40	$eta_{ ext{HGP}}^{8}$	# #	0.62	0.62	0.62	0.62	0.62
41	$eta_{ ext{HGP}}^9$	#	0.504543	0.504543	0.504543	0.504543	0.504543
42	$\Gamma_{ t HGP0}$	$\mathrm{mmol/min}$	0.861111	0.861111	0.861111	0.861111	0.861111
43	$eta_{ t HGU}^0$	#	2	2	2	2	2
44	$eta_{ t HGU}^1$	# #	0.549306	0.549306	0.549306	0.549306	0.549306
45	$eta_{ t t t t t t t t t t t t t $	#	5.66	5.66	5.66	5.66	5.66
46	$eta_{ t HGU}^3$	#	5.66	5.66	5.66	5.66	5.66
47	$eta_{ t hgu}^4$	#	2.44	2.44	2.44	2.44	2.44
48	$eta_{ t hgu}^5$	#	1.4783	1.4783	1.4783	1.4783	1.4783
49	$\Gamma_{ t HGUO}$	$\mathrm{mmol/min}$	0.111111	0.111111	0.111111	0.111111	0.111111
50	$eta_{ t t t t t t t t t t t t t $	$\mathrm{mmol/min}$	0.394444	0.394444	0.394444	0.394444	0.394444
51	$eta_{\mathtt{KGE}}^1$	$\mathrm{mmol/min}$	0.394444	0.394444	0.394444	0.394444	0.394444
52	$eta_{\mathtt{KGE}}^2$	$/\mathrm{mM}$	0.198	0.198	0.198	0.198	0.198
53	$\beta_{\mathtt{KGE}}^{3}$	mM	25.5556	25.5556	25.5556	25.5556	25.5556
54	$eta_{ t KGE}^4$ $eta_{ t KGE}^5$	$\mathrm{mmol/min}$	1.834	1.834	1.834	1.834	1.834
55	$eta_{ extsf{KGE}}^{ ext{o}}$	m mmol/min/mM		0.0872	0.0872	0.0872	0.0872
56	Q_B^I	m L/min	0.45	0.45	0.45	0.45	0.45
57	$V_B^{ar{I}}$	$\mathbf L$	0.26	0.26	0.26	0.26	0.26

Table 3. Model Parameter Configurations

ParII	O Parameter	Units	Intravenous Glucose Tolerance Test: Variable Dose	Intravenous Glucose Tol- erance Test: Variable Dose	Intravenous Glucose Tol- erance Test: Variable Dose	Intravenous Insulin Tol- erance Test 0.04U/kg	Continuous Intravenous Insulin Infusion
			$0.05 \mathrm{g/kg}$	$0.2\mathrm{g/kg}$	$0.75 \mathrm{g/kg}$		$0.4 \mathrm{mU/kg/min}$
58	V_{H}^{I}	L	0.99	0.99	0.99	0.99	0.99
59	$egin{array}{l} V_H^I \ Q_L^I \ Q_K^I \ Q_P^I \ Q_H^I \end{array}$	$_{ m L/min}$	0.9	0.9	0.9	0.9	0.9
60	Q_L^I	L/\min	0.72	0.72	0.72	0.72	0.72
61	Q_{D}^{I}	L/\min	1.05	1.05	1.05	1.05	1.05
62	Q_{II}^{I}	$_{ m L/min}^{-/}$	3.12	3.12	3.12	3.12	3.12
63	V_I^I	$\operatorname{L}^{'}$	0.94	0.94	0.94	0.94	0.94
64	$egin{array}{c} V_J^I \ Q_J^I \ V_L^I \ Q_A^I \end{array}$	L/\min	0.72	0.72	0.72	0.72	0.72
65	V_I^I	$\operatorname{L}^{'}$	1.14	1.14	1.14	1.14	1.14
66	Q^{I}_{Λ}	L/\min	0.18	0.18	0.18	0.18	0.18
67	$F_L IC$	#	0.4	0.4	0.4	0.4	0.4
68	$F_{\kappa}IC$	#	0.3	0.3	0.3	0.3	0.3
69	$V_K^I \ V_{PV}^I \ T_P^I$	Ĺ	0.51	0.51	0.51	0.51	0.51
70	V_{PV}^{I}	${ m L}$	0.74	0.74	0.74	0.74	0.74
71	T_P^{I}	\min	20	20	20	20	20
72	F_PIC	#	0.15	0.15	0.15	0.15	0.15
73	$eta_{ t PIR}^1$	#	3.27	3.27	3.27	3.27	3.27
74	$eta_{\mathtt{PIR}}^2$	mmol/l	7.33333	7.33333	7.33333	7.33333	7.33333
75	$\beta_{\mathtt{ptp}}^3$	#	2.879	2.879	2.879	2.879	2.879
76	$eta_{\mathtt{PIR}}^4$	#	3.02	3.02	3.02	3.02	3.02
77	$eta_{ t PIR}^4 \ eta_{ t PIR}^5 \ eta_{ t PIR}^5$	#	1.11	1.11	1.11	1.11	1.11
78	$K_{\mathtt{Rinsu}}$	$/\mathrm{min}$	0.00794	0.00794	0.00794	0.00794	0.00794
79	$R_{\mathtt{insu0}}$	pmol	44310	44310	44310	44310	44310
80	$K_{\mathtt{RinsuPotr}}$	$\mathrm{pmol/min}$	4025	4025	4025	4025	4025
81	$K_{\mathtt{RinsuPtgt}}$	/min	0.0482	0.0482	0.0482	0.0482	0.0482
82	$K_{\mathtt{pinhPrp}}$	$/\mathrm{min}$	0.931	0.931	0.931	0.931	0.931
83	M_1	$/\mathrm{min}$	0.00747	0.00747	0.00747	0.00747	0.00747
84	M_2	$/\mathrm{min}$	0.0958	0.0958	0.0958	0.0958	0.0958
85	I_{PV0}	pM	126	133	147	91	56
86	Γ_{MCC}	pM	11.48	11.48	11.48	34.44	31.57

Table 3. Model Parameter Configurations

ParII	O Parameter	Units	Intravenous Glucose Tol- erance Test: Variable Dose 0.05g/kg	Intravenous Glucose Tolerance Test: Variable Dose 0.2g/kg	Intravenous Glucose Tolerance Test: Variable Dose 0.75g/kg	$\begin{array}{ll} {\rm Intravenous} \\ {\rm Insulin} & {\rm Tolerance} \\ {\rm Colorance} & {\rm Test} \\ {\rm 0.04U/kg} \end{array}$	Continuous Intravenous Insulin Infusion 0.4mU/kg/min
87	Γ_{MCC}	L/min	0.91	0.91	0.91	0.91	0.91
88	V_C	 L	11.31	11.31	11.31	11.31	11.31
89	$eta_{\mathtt{PCR}}^0$	#	2.93	2.93	2.93	2.93	2.93
90	$\beta_{\mathtt{PCR}}^1$	#	2.1	2.1	2.1	2.1	2.1
91	$\beta_{\mathtt{PCR}}^2$	#	4.18	4.18	4.18	4.18	4.18
92	$\beta_{\rm pop}^3$	#	0.621325	0.621325	0.621325	0.621325	0.621325
93	β_{pcr}^4	#	1.31	1.31	1.31	1.31	1.31
94	$eta_{ m pcr}^{ m 44}$ $eta_{ m pcr}^{ m 44}$ $eta_{ m pcr}^{ m 5}$	#	0.61	0.61	0.61	0.61	0.61
95	β_{PCR}^{5}	#	1.06	1.06	1.06	1.06	1.06
96	β_{PCR}^{5}	#	0.471419	0.471419	0.471419	0.471419	0.471419
97	f_{20}	#	0	0	0	0	0
98	$\Gamma_{ t IVG}$	$\mathrm{mmol/min}$	0	0	0	0	0
99	$\Gamma_{ t IVGin}$	mmol/min	6.481	25.926	97.222	0	0
100	$Time_{ t IVG}$	\min	-3	-3	-3	0	0
101	$Time_{\mathtt{IVGend}}$	\min	0	0	0	0	0
102	$\Gamma_{ t IVI}$	$\mathrm{pmol/min}$	0	0	0	0	0
103	$\Gamma_{ t IVIin}$	$\mathrm{pmol/min}$	0	0	0	6533.33	196
104	$time_{ t IVI}$	\min	0	0	0	0	0
105	$time_{ t IVIend}$	\min	0	0	0	3	150
106	I_{H0}	pM	148.235	156.471	172.941	107.059	65.8824
107	I_{K0}	pM	103.765	109.529	121.059	74.9412	46.1176
108	I_{B0}	pM	148.235	156.471	172.941	107.059	65.8824
109	I_{G0}	pM	148.235	156.471	172.941	107.059	65.8824
110	I_{PI0}	pM	56.7209	59.8721	66.1744	40.9651	25.2093
111	I_{L0}	$_{ m pM}$	209.753	221.406	244.712	151.488	93.2235
112	$\Gamma_{ t PIR0}$	pmol/min	181.218	191.285	211.421	130.879	80.5412
113	$\Gamma_{ t PIC0}$	pmol/min	23.3471	24.6441	27.2382	16.8618	10.3765
114	$P_{\mathtt{prp}0}$	# #	0.194841	0.203904	0.176821	0.244086	0.217518
115	$P_{ t tgt0}$	#	0.16276	0.171184	0.146138	0.209013	0.183916

Table 3. Model Parameter Configurations

ParII) Parameter	Units	Intravenous Glucose Tol- erance Test: Variable Dose 0.05g/kg	Intravenous Glucose Tolerance Test: Variable Dose 0.2g/kg	Intravenous Glucose Tolerance Test: Variable Dose 0.75g/kg	$\begin{array}{ll} {\rm Intravenous} \\ {\rm Insulin} & {\rm Tolerance} \\ {\rm Colorance} & {\rm Test} \\ {\rm 0.04U/kg} \end{array}$	Continuous Intravenous Insulin Infusion 0.4mU/kg/min
116	$P_{\mathtt{inh}0}$	#	0.194841	0.203904	0.176821	0.244086	0.217518
117	$P_{\mathtt{otn}0}$	#	0.158572	0.158572	0.158572	0.158572	0.158572
118	$InitialRinsu_0$	pmol	108507	108507	108507	108507	108507
119	S_{ecr0}	pmol/min	131.924	138.753	118.452	169.415	149.072
120	G_{PV0}	mM	5.00012	5.11123	4.7779	5.60456	5.2779
121	G_{K0}	mM	5.12889	5.24	4.90667	5.73333	5.40667
122	G_{BV0}	mM	4.46976	4.58087	4.24753	5.0742	4.74753
123	G_{J0}	mM	5.01888	5.12999	4.79666	5.62332	5.29666
124	G_{L0}	mM	5.63594	5.74705	5.41372	6.24039	5.91372
125	G_{BI0}	mM	2.65494	2.76605	2.43272	3.25938	2.93272
126	G_{PI0}	mM	4.85587	4.96698	4.63365	5.46032	5.13365
127	$M_{ t PGU0}$	#	0.992859	0.992859	0.992859	0.992859	0.992859
128	$M_{ t HGP0}^C$	# # #	1	1	1	1	1
129	$M_{ t HGP0}^{C0}$	#	1	1	1	1	1
130	$M_{\mathtt{HGPO}}^{I}$	#	1	1	1	1	1
131	$M_{\mathtt{HGPinf}0}^{I}$	#	1	1	1	1	1
132	$M_{\mathtt{HGP0}}^G$	#	1	1	1	1	1
133	$M_{ t HGUO}^{I}$	#	1	1	1	1	1
134	$M_{ t t t t t t t t t t t t t $	#	1	1	1	1	1
135	$M_{ t HGU0}^{G}$	#	1	1	1	1	1
136	$\Gamma_{ t KGE0}$	$\mathrm{mmol/min}$	0.000242043	0.000252927	0.000221659	0.000307474	0.000270177
137	$\Gamma_{ t LICO}$	pmol/min	105.716	108.681	114.611	90.8929	76.0694
138	$\Gamma_{ t KICO}$	pmol/min	32.0188	33.7976	37.3553	23.1247	14.2306
139	$M_{\mathtt{PCRO}}^G$	#	1	1	1	1	1
140	$M_{\mathtt{PCRO}}^{I}$	#	1	1	1	1	1
141	$\Gamma_{\texttt{PCC0}}$	pM	10.4468	10.4468	10.4468	31.3404	28.7287
142	$\Gamma^B_{ t PCR0}$	pM	10.4468	10.4468	10.4468	10.4468	10.4468