Técnicas por absorción de rayos-X: antecedentes y fundamentos.

- Los rayos X: antecedentes
- Interacción entre radiación y materia
- El proceso de absorción

- Características generales de las técnicas por absorción de rayos X.
- La ecuación EXAFS
- Elementos de teoría XANES

Aplicaciones de la radiación X: no solo difracción!

Ernest Orlando Lawrence

USA

University of California Berkeley, CA, USA

b. 1901d. 1958

http://nobelprize.org/physics/laureates/1939/index.html

"for the invention and development of the cyclotron and for results obtained with it, especially with regard to artificial radioactive elements"

Premios Nobel por descubrimientos que emplearon radiación X

Física		Química		Fisiología y I	Medicina
1901	Wilhelm Röntgen	1936	Peter Debye	1946	Hermann Joseph Muller
1914	Max von Laue	1962	Max Perutz and	1962	Francis Crick,
1915	Sir William Henry Bragg and		Sir John Kendrew		James Watson and
	Sir William Lawrence Bragg	1964	Dorothy Hodgkin		Maurice Wilkins
1917	Charles Barkla	1976	William Lipscomb	1979	Alan M. Cormack and
1924	Karl Manne Siegbahn	1985	Herbert Hauptman		Sir Godfrey N. Hounsfield
1927	Arthur Compton		and Jerome Karle		
1981	Kai Siegbahn	1988	Johann Deisenhofer,		
	Robert Huber and				
	Hartmut Michel				
1997	Paul D. Boyer and				
	John E. Walker				

Absorción de rayos X: cronología

Röntgen (1885) Descubrimiento de los rayos X

M. de Bloglie (1913) Primera medida de un espectro de absorción

Fricke (1920) Primera observación de la estructura fina de la absorción

Kossel (1920) Primera teoría del fenómeno

Kronig (1931) Teoría más completa del proceso

Hayasi, Sawada, Shiraiwa Relación entre teoría y experimento de absorción

Kostarev, Kolenkov, Jonhston Primer espectro de absorción medido en un sincrotrón

Lytle (1962) Primera publicación utilizando el acrónimo EXAFS

Sayers, Stern, Lytle (1968-74)Teoría moderna de EXAFS. Transformada de Fourier del espectro EXAFS (SSRL).

Primer espectro de absorción de rayos X tomado en 1920 (Fricke) a través del empleo de emulsiones fotográficas (arriba) y papel (abajo).

El espectro corresponde a una muestra de ún cristal de azúcar medido en el borde K del azufre (borde K) (Fricke H. Physical Review 1920, Vol 16, p 202).

Ref: R. Stumm, Ann. Phys. Fr 14, 377 (1989) - J. Sync. Rad. 6, 123 (1999);5 (1998)

Interacción entre un fotón X y la materia: el proceso de absorción:

Estado final: reglas de selección (mecánica cuántica): regla de oro de Fermi

Interacción entre un fotón X y la materia: el proceso de absorción:

Estado final: reglas de selección (mecánica cuántica): regla de oro de Fermi

Regla de oro de Fermi

La Regla de Oro de Fermi permite calcular la probabilidad de transición (por unidad de tiempo) de un (auto) estado inicial a un estado o combinación de estados finales debido a una perturbación externa.

The Quantum Theory of the Emission and Absorption of Radiation.

By P. A. M. Dirac, St. John's College, Cambridge, and Institute for Theoretical Physics, Copenhagen.

(Communicated by N. Bohr, For. Mem. R.S.-Received February 2, 1927.)

§ 1. Introduction and Summary.

The new quantum theory, based on the assumption that the dynamical variables do not obey the commutative law of multiplication, has by now been developed sufficiently to form a fairly complete theory of dynamics. One can treat mathematically the problem of any dynamical system composed of a number of particles with instantaneous forces acting between them, provided it is describable by a Hamiltonian function, and one can interpret the mathematics physically by a quite definite general method. On the other hand, hardly anything has been done up to the present on quantum electrodynamics. The questions of the correct treatment of a system in which the forces are propagated with the velocity of light instead of instantaneously, of the production of an electromagnetic field by a moving electron, and of the reaction of this field on the electron have not yet been touched. In addition, there is a serious difficulty in making the theory satisfy all the requirements of the restricted

⇒'en un sólido no existe una línea característica de absorción. En su lugar existen numerosas transiciones a diferentes energías.

Se define la **densidad de estados** $\rho(E)$ o DOS con:

 $\rho(E)dE = número de estados por átomos en el rago de energías (E, E+dE)$

La regla de oro de Fermi describe la probabilidad de transición entre niveles en término de la disponibilidad de estados (DOS), la intensidad de la perturbación (intensidad de fotones incidentes) y el acoplamiento entre niveles (elementos de la matriz de transición).

Regla de oro de Fermi

Regla de Oro de Fermi

$$W_{i\to f} = \frac{2\pi}{\mathsf{h}} E_0^2 \left| \varepsilon_{if} \right|^2 \rho (E_i + \mathsf{h}\omega)$$

La probabilidad de transición depende de:

- la intensidad (E₀²)
- la 'intenidad del acoplamiento' o elemento de matriz μ_{kn} y la
- disponibilidad de estados finales (DOS) con energía $E = E_i + E_{fotón}$

Nota: en algunos casos $\varepsilon = 0$ corresponde a una transición prohibida

Es posible describir el proceso de absorción en términos de la oscilación χ

Coeficiente de absorción:

$$\mu(\mathbf{E}) \sim |\langle \mathbf{i}|\mathcal{H}|\mathbf{f}\rangle|^2$$

$$\mu(\mathbf{E}) = \mu_0(\mathbf{E})[1 + \chi(\mathbf{E})] \longrightarrow \chi(\mathbf{E}) \sim \langle \mathbf{i} | \mathcal{H} | \Delta \mathbf{f} \rangle$$
 $|\mathbf{f}\rangle = |\mathbf{f_0} + \Delta \mathbf{f}\rangle$

Aproximación dipolar: la longitud de onda de los fotones debe ser mucho más grande que la asociada al estado inicial de la transición (alternativamente: "multiple scattering"). Reglas de selección

Canales de atenuación de la radiación X:

Cu Z=29 10^{6} Cross section (barns/atom) Absorption Observed data 10^{3} Thomson Pair production Photonuclear Compton absorption 10 eV 1 KeV Energy

Bordes de absorción:

Proceso fotoeléctrico: dominante entre 10-100000 eV

Notación:

				(XPS)	(XAFS)
Números Cuánticos			n	Notación	Notación
n	1	j	2p 3/2 1p 2d 3f	Espectroscópica	Rayos X
1	0	1/2	j=ℓ-s j=ℓ+s	1 s	K
2	0	1/2		2 s	L ₁
2	1	1/2		2p _{1/2}	L ₂
2	1	3/2		2p _{3/2}	L ₃
3	0	1/2		3s	M_1
3	1	1/2		3p _{1/2}	M_2
3	1	3/2		3p _{3/2}	M_3
3	2	3/2		3d _{3/2}	M_4
3	2	5/2		3d _{5/2}	M_5

El proceso de absorción

Dispersión simple

El espectro de absorción de rayos X

Características:

- Decrecimiento general la energía incidente, lo que está de acuerdo con cálculos semi-clásicos simples que predicen un comportamiento del tipo $\mu(E)^{\sim}E^{-3}$
- Presencia de un aumento abrupto de la absorción a determinadas energías denominadas bordes, que semejan funciones escalón
- Por encima de los bordes, una estructura oscilatoria que modula la absorción

El espectro de absorción de rayos X

Características fundamentales:

- Corresponde (en general) a un único elemento (químicamente selectivo)
- Representación promedio

Transiciones al contínuo: Región **EXAFS**

Estados desocupados Contínuo

Este proceso puede ser descripto a través de una sola ecuación:

Existe un modelo

Determinación de parámetros con sentido físico

Transiciones al contínuo: Región **EXAFS**

Este proceso puede ser descripto a través de una sola ecuación:

Existe un modelo

Determinación de parámetros con sentido físico

- Región: desde algunos eV antes del borde de absorción hasta 40-50 eV más allá del mismo.
- Los estados finales son estados desocupados (o metaestables dentro del continuo)

Espectro XANES

"del agua"

(XANES O K-edge)

Aspectos teóricos (interpetaciones alternativas):

A diferencia de EXAFS, para XANES no hay una interpretación teórica única.

Interpretación vía Teoría de Dispersión Múltiple Total (FMS - Full Multiple Scattering)

Interpretación vía Teoría de Orbitales Moleculares

Interpretación vía Teoría de Campo Cristalino/Ligante

Interpretación vía Teoría de Multipletes Atómicos

Región del "pre-borde": coordinación y simetría

El espectro XANES en la región anterior a la "línea blanca" es especialmente sensible a la coordinación del átomo absorbente.

■ Teoría de orbitales moleculares

Transiciones dipolares

Transiciones cuadrupolares

Teoría de orbitales moleculares

Transiciones dipolares

Transiciones cuadrupolares

J. Chaboy et al., J. Phys.: Condens. Matter 2007, 19, 266206.

Teoría de orbitales moleculares

Transiciones dipolares

Transiciones cuadrupolares

J. Chaboy et al., J. Phys.: Condens. Matter 2007, 19, 266206.

Teoría de orbitales moleculares

Transiciones dipolares

Transiciones cuadrupolares

J. Chaboy et al., J. Phys.: Condens. Matter 2007, 19, 266206.

Teoría de orbitales moleculares

Transiciones dipolares

Transiciones cuadrupolares

J. Chaboy et al., J. Phys.: Condens. Matter 2007, 19, 266206.

"Aproximación cualitativa"

A2 Y A3 SON MAS INTENSAS EN TiO₂ AMORFO:

Importante:

Análisis cuantitativo del entorno local del Ti a través de la determinación de la relación $(A2+A3)/A_T$

Región del "pre-borde": coordinación y simetría

El espectro XANES en la región anterior a la "línea blanca" es especialmente sensible a la coordinación del átomo absorbente.

Borde K del Cr

Cr⁶⁺: tetraédrico (se favorece la hibridización de niveles 2p del O con 3d del Cr)

Cr³⁺: octaédrico (sitio de mayor simetría

Región del "pre-borde": coordinación y simetría

Borde K del V

Energía del borde de absorción: estado de oxidación

Energía del borde de absorción: estado de oxidación

La posición del borde esta asociada con el estado de oxidacion del elemento y aumenta con la valencia.

Si se consideran efectos puramente Coulombianos, esta variación es lineal.

Energía del borde de absorción: estado de oxidación

La posición del borde esta asociada con el estado de oxidacion del elemento y aumenta con la valencia.

Si se consideran efectos puramente Coulombianos, esta variación es lineal.

Energía del borde de absorción: estado de oxidación

Borde K del Mo

Borde L3 del Mo

INTENSIDAD del PRE-PICO

dipolar-prohibida

dipolar-permitida

SIMETRIA DEL ORBITAL

Experimentos con luz polarizada:

La información obtenida depende del angulo entre la dirección de polarización de la radiación incidente con la de los enlaces presentes en el átomo absorbente

Información Electrónica que se obtiene

- ☐ Estados de oxidación promedio
- ☐ DOS (estados finales)
- ☐ Geometría / Distorsiones
- ☐ Estados de espin (polarización)
- ☐ Interacciones espin-orbita
- ☐ Transferencia de carga
- efectos de campo cristalino y campo

ligando

☐ Efecto de multipletes atómicos

Información Electrónica que se obtiene

- ☐ Estados de oxidación promedio
- ☐ DOS (estados finales)
- ☐ Geometría / Distorsiones
- ☐ Estados de espin (polarización)
- ☐ Interacciones espin-orbita
- ☐ Transferencia de carga
- efectos de campo cristalino y campo

ligando

☐ Efecto de multipletes atómicos

Información estructural

Por qué XANES?

- Químicamente selectiva
- Versátil (casi todos los elementos de la tabla periódica)
- Buena relación señal/ruido
- Determinaciones directas (cualitativas, "finger print")
- Determinaciones "In situ" (mejor para rayos X-duros)
- Sensible: orden local, energía, altas diluciones
- Determinaciones cuantitativas
- En algunos casos es posible contar con un modelo para interpretar los espectros

No existe una ecuación general simple para describir el proceso XANES

Instrumentación

- Fuentes de radiación
- Laboratorio de absorción:
 - Rayos X blandos
 - Rayos X duros
- Modos de detección

Brillo de las fuentes de luz

Recién a partir de 1970 aparecen sincrotrones dedicados a producir radiación X (2^{da} generación) !! (Darsbury, Inglaterra)

Fuentes de rayos X: laboratorios de sincrotrón

XAFS Beamline @ , SLC, Japan

XAFS Beamline @ DESY

Fuentes de rayos X: laboratorios de sincrotrón

ALS, USA

Diamond, UK.

XAFS Beamline @ , SLC, Japan

XAFS Beamline @ DESY

Fuentes de rayos X: laboratorios "in house"

Radiación de frenado:

R-XAS spectrometer

Laboratorio "In house" de absorción de rayos X, INIFTA, La Plata. ARGENTINA (nano.fisica.unlp.edu.ar)

Fuentes de rayos X: laboratorios "in house"

MONOCROMADORES y REGION EN ENERGÍA

Ge(220): 5.000 eV- 11.000 eV (Ti - As)

Ge(111): 5.000 eV- 7.000 eV (Ti - Mn)

Ge(400): 6.300 eV- 16.000 eV (Mn - Rb)

Ge(311): 5.000 eV- 13.000 eV (Ti - Se)

Ge(840): 14.000 eV- 25.000 eV (Kr - Pd)

Si(400): 6.300 eV- 17.000 eV (Mn - Sr)

Si(620): 10.000 eV- 25.000 eV (Ga - Pd)

Н																	Не
Li	Ве				ŀ	K Ed	lges					В	С	N	О	F	Ne
Na	Mg				I	Ed	lges					A1	Si	P	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Fr	Rn Ac		Ac														
-1		. 10		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb

Laboratorio "In house" de absorción de rayos X, INIFTA, La Plata. ARGENTINA (nano.fisica.unlp.edu.ar)

Regiones de energía:

Sondas: electrones vs. fotones

ELECTRONES

FOTONES

Surface sensitivity → Auger electrons

Energía cinética (eV)

1 monocapa = 0.3 nm

 λ depende de:

- Energía cinética
- Tipo de elemento

Laboratorio XAFS:

Rayos X "duros"

Rayos X "blandos"

Condiciones de ultra alto vacío (UHV)

Experimental

Modos de detección:

Experimental

Modos de detección:

Transmisión

Concentración atómica
(> 1%)

Muestras:

sólidos (polvo) líquidos, gases sustratos livianos HOMOGENEAS

Total electron yield (TEY)

Concentración atómica (> 1%)

Muestras:

elementos livianos películas delgadas análisis de superficies CONDUCTORAS

Fluorescencia

Concentración atómica
(< 1%)

Muestras:

sólidos (polvo) líquidos, gases cualquier sustrato elementos pesados ESTABLES (tiempo de adq.)

Construcción de la señal: modo transmisión

Ley de Lambert:

$$dI = -\mu(E) I dx$$

 $\mu x = \ln \left(\frac{I_0}{I} \right)$

 $\mu(E)$: coeficiente de absorción de rayos X

Construcción de la señal: modo fluorescencia

XAFS dispersivo (DXAFS)

Nanopartículas soportadas: cambios de forma.

Dr+astica disminución de N para las mismas nanopartículas

El origen puede ser atribuido a cambios en la forma (no tamaño!).

LAA	•
	Muestra
	Pt NP en suspensión

 $R_{EYAES} = 0.8 \text{ to } 1.05 \text{ nm}$

N	E ₀ (6
9.3(7)	1(

$2^2 (nm^2) \times 10^{-6}$	$C_3(nm^3) \times 10^{-7}$
25/2)	4.2/7)

Pt NP en SBA	7.4(

0.272	(1)
0.273	(<i>±)</i>

35(3)	-1.3(7)
41(4)	-2(1)

Nanopartículas soportadas: cambios de forma.

Considerando forma esférica

Las únicas posibilidades para configuraciones de secciones esféricas están representadas por hemiesferas de diámetros entre 2.6 y 3 nm y altura *h* entre 0.54 y 0.63 nm.

Nanopartículas soportadas: cambios de forma.

 La estructura local se puede analizar considerando dispersión múltiple.

Estructura de materiales mesoporosos altamente ordenados: Efecto de los tratamientos térmicos y del sustrato

Muestras: películas delgadas de TiO₂ mesoporoso (150 nm)

Muestras:

Galo Soler-Illia Unidad de actividad Química CNEA Buenos Aires, ARGENTINA.

TiO₂/ITO y TiO₂/Si (150 nm)

Fotoactividad (medidas in situ de la fotodegradación de salicilato).

Absorbancia A a 296 nm en función del tiempo t respecto a absorbancia a t = 0: A_0 .

- El sustrato influye sobre el rendimiento fotocatalítico de los materiales.
- La estructura mediante análisis de imágenes o técnicas convencionales no permite indagar sobre el origen de estas diferencias.

"Aproximación cualitativa"

A2 Y A3 SON MAS INTENSAS EN TiO₂ AMORFO:

Importante:

Análisis cuantitativo del entorno local del Ti a través de la determinación de la relación $(A2+A3)/A_T$

 $TiO_2/ITO y TiO_2/Si (150 nm)$

Pretratamiento térmico: 200 ºC 300 ºC 350 ºC 400 ºC 450 ºC (x 1 h en aire)

TiO_2/ITO y TiO_2/Si (150 nm)

P.C. Angelomé; L. Andrini; M.E. Calvo; F.G. Requejo; S.A. Bilmes; G.J.A.A. Soler-Illia, J. Phys. Chem. C 2007, 111, 10886.

Daniel Resasco

Síntesis y aplicación de nanotubos de carbono de paredes simples (SWNT). Forestas verticales de SWNT

Síntesis catalítica de nanotubos:

(CoMoCat® Process: http://www.ou.edu/engineering/nanotube/comocat.html)

Influence of a Top Crust of Entangled Nanotubes on the Structure of Vertically Aligned Forests of Single-Walled Carbon Nanotubes

L. Zhang, Z. Li, Y. Tan, G. Lolli, N. Sakulchaicharoen, B.S. Mun, F.G. Requejo, D.E. Resasco *Chem. Mater.* 18 (2006) 5624.

Angle-resolved x-ray absorption near edge structure study of vertically aligned single-walled carbon nanotubes

Zhongrui Li, Liang Zhang, Daniel E. Resasco, B. Simon Mun, Félix G. Requejo *Applied Physics Letters. 90 (2007) 103115.*

ORIENTACIÓN DE LOS ENLACES EN EL GRAFITO (HOPG)

S. Banerjee, T. Hemraj-Benny, S. Sambasivan, D.A. Fischer, J. A. Misewich, and S. S. Wong *J. Phys. Chem. B* 2005, 109, 8489

ORIENTACIÓN PROMEDIO DE LOS ENLACES EN SWCN

Alineamiento promedio teórico:

ORIENTACIÓN PROMEDIO DE LOS ENLACES EN SWCN

CROSS SECTION

 π * σ

INCIDENCIA NORMAL MAX MIN

INCIDENCE RASANTE MIN MAX

Alineamiento promedio teórico:

$$\sigma^* \sim 0.8 + \cos^2\theta$$

$$\pi^* \sim 2 + \text{sen}^2 \theta$$

L. Zhang, Z. Li, Y. Tan, G. Lolli, N. Sakulchaicharoen, B.S. Mun, F.G. Requejo, D.E. Resasco *Chem. Mater.* 18 (2006) 5624.

ORIENTACIÓN PROMEDIO DE LOS ENLACES EN SWCN

Sección eficaz

π * *

INCIDENCIA NORMAL MAX MIN

INCIDENCIA RASANTE MIN MAX

ACUERDO EXPERIMENTAL:

Ángulos pequeños → efectos de superficie

Efecto del "CRUST" (desorden

Forest

L. Zhang, Z. Li, Y. Tan, G. Lolli, N. Sakulchaicharoen, B.S. Mun, F.G. Requejo, D.E. Resasco *Chem. Mater.* 18 (2006) 5624.

Incidence angle (degree)

Empleo de luz polarizada.
 Estudio de alineación de forestas de SWNT verticales con nanopartículas de Au.

Vista superior de NP de Au en forestas de SWCN: Las NP de Au NP son producidas por "ion sputtering" y aglomeramiento por calentamiento.

Las NP de Au pueden ser espontáneamente soportadas sobre grafito:

Empleo de luz polarizada.
 Estudio de alineación de forestas de SWNT verticales con nanopartículas de Au.

"Dipping" SWNT en solución de NP de Au

Photon energy / eV

con Au NP

Las NP de Au pueden ser espontáneamente soportadas sobre grafito:

Empleo de luz polarizada. Estudio de alineación de forestas de SWNT verticales con nanopartículas de Au.

"Dipping" SWNT en solución de NP de Au

Por calentamientos en aire: la superficie aparece más "limpia" y "alineada" (?)

Empleo de luz polarizada. Estudio de alineación de forestas de SWNT verticales con nanopartículas de Au.

Vista superior de NP de Au en forestas de SWCN: Las NP de Au NP son producidas por "ion sputtering" y aglomeramiento por calentamiento.

Con NP de Au, después del "sputtering"

Con NP de Au, después del "sputtering" y el tratamiento térmico

Mayor alineamiento!