RNAseq Pipeline Construction

Overview:

- Last class:
 - Principles of RNAseq
 - Overview of practice data
- Today:
 - Build and test RNAseq pipeline
 - Preliminary analysis of gene expression

Overview:

- Last class:
 - Principles of RNAseq
 - Overview of practice data
- Today:
 - Build and test RNAseq pipeline
 - Preliminary analysis of gene expression

What students receive from to prep for class:

RNAseq_Pipeline.zip

- conda environment configuration: Demo_ENV.yml
- - PARTIAL STEP2_RNAseq_Pipeline.sh
- Build together in class SampleList.txt

- SET UP a new project:
 - Edit STEP1_RNAseq_config.sh including directories and subdirectories
 - Run STEP1_RNAseq_config.sh
 - Link to Atom
- CREATE and TEST conda environment from Demo ENV.yml:

```
# create environment
conda env create -f Demo_ENV.yml

# activate environment
conda activate Demo_ENV

# test environment
python --version
multiqc --version
fastp --version
salmon --version
```

RNAseq Sample Data

Data from:

Everman et al. 2021: SRA PRJNA633166

20 samples (subset to 10000 reads)

Experiment:

- 10 *D. melanogaster* strains
 - 6 strains are copper resistant
 - 4 strains are copper sensitive
- All females
- 2 treatment conditions
 - Control
 - 50mM CuSO₄

Question:

Does gene expression response to copper vary between high and low copper resistance strains?

Question:

Does gene expression response to copper vary between high and low copper resistance strains?

- Indexing allows the aligner to quickly find potential alignment sites
- Indexing varies by aligner tool
- Indexing only needs to be run once

А	Ν	М	L	\times	Ε	Υ	А	D	U	\subset	К	L	I	Ν	G	S	S	Н	S	М	R	Z	Р	R
Q	\subset	W	0	Υ	S	Ν	\times	Z	V	В	I	D	٧	Ν	\subset	D	D	Υ	L	R	А	R	А	D
S	0	R	Ε	0	Т	D	Ε	Р	Т	Н	0	U	I	0	U	R	Ν	0	Ε	М	В	R	I	I
L	А	S	Υ	L	L	\times	Z	К	0	G	Ε	Т	L	L	0	\times	U	S	Ε	٧	В	R	Ν	S
В	0	V	Ε	L	L	В	D	0	s	I	А	0	L	0	R	В	0	Т	Н	I	I	U	Т	Т
Ν	А	R	Ν	0	I	Υ	\subset	F	J	Ε	R	I	S	F	Р	Т	R	А	W	К	Т	Ν	I	А
Ρ	S	\subset	I	А	Р	\subset	А	F	R	F	Ν	Т	S	R	А	Ε	G	\subset	R	L	S	G	Ν	Ν
C	М	R	К	Κ	\subset	\subset	Υ	\subset	Α	G	Ε	S	Ν	I	Н	\subset	Κ	Q	0	М	Х	Ν	G	\subset
Н	0	К	U	\times	Ε	\subset	I	М	Р	R	Ε	S	S	I	0	Ν	\subset	\subset	L	R	W	I	\subset	Ε
G	Т	L	F	×	А	Ε	I	J	S	R	Ε	×	0	В	К	Υ	А	К	0	S	Т	Н	U	В
Т	Ν	Ν	0	R	D	L	Т	D	I	R	Ε	\subset	Т	I	0	Ν	В	Ν	\subset	В	А	S	L	R
D	\subset	I	U	R	I	Ε	Ε	S	Р	U	\subset	R	Ε	Т	Т	U	В	Ν	F	К	В	U	L	U
Н	Н	\subset	В	Ε	S	Υ	S	R	0	L	0	\subset	×	G	Ν	I	К	C	0	L	В	R	I	S
V	\subset	Н	S	В	J	Н	٧	А	\subset	Υ	G	٧	S	٧	К	Κ	J	R	К	Ρ	Υ	В	Ν	Н
А	S	0	0	L	А	Р	Р	А	Ε	Ν	R	S	R	\subset	\subset	Ν	Ε	Ν	Т	U	Т	Q	G	Ε
R	L	Р	Υ	Т	F	D	G	В	\subset	R	G	D	Ε	Н	0	\times	D	Ε	В	R	0	W	Ν	S
Ε	Т	Υ	Ε	Ε	Н	G	U	Н	S	А	\subset	Υ	D	S	0	L	\subset	L	К	R	А	В	0	Ν
Ε	А	Ε	Ν	Т	W	Ν	Ε	G	В	В	S	I	R	В	R	Н	L	Ν	0	J	D	R	W	I
D	Н	Н	Р	\times	Ν	s	Ν	Н	М	В	М	А	0	0	Ν	0	Z	I	D	\subset	Н	Z	L	К
C	Н	Ε	D	Υ	Т	I	Q	٧	А	Т	А	I	В	I	Ε	\subset	Н	\subset	Ε	М	В	Υ	S	S
М	D	В	Ε	S	Υ	Q	R	0	L	R	0	М	Q	Т	Ν	Н	М	0	G	S	S	Q	Υ	М
×	S	S	0	R	\subset	S	S	I	R	\subset	Ε	U	Q	Ν	0	I	Т	I	S	0	Р	М	0	\subset
Υ	V	F	D	Ε	Т	\subset	0	М	Р	L	Ε	М	Ε	Ν	Т	А	R	Υ	L	\times	W	R	0	D
F	Ε	А	Т	U	R	Ε	S	А	Ν	D	Т	Ε	×	Т	U	R	Ε	S	0	F	W	М	В	Υ
C	L	Ε	Α	Ν	I	Ν	G	Υ	0	U	R	Р	Α	L	Ε	Т	Т	Ε	0	Ε	Z	Q	Z	S

- Indexing allows the aligner to quickly find potential alignment sites
- Indexing varies by aligner tool
- Indexing only needs to be run once

Hash Table:	k _i	[interval)
	CLE	[190, 199)
	COL	[200, 205)
	DEE	[206, 210)

Suffix Array:	С	С	С	С	С	С	С	С	D	D
	L	L	O	O	O	O	O	O	E	E
	E	E	\mathbf{L}	L	L	L	L	\mathbf{L}	E	E
	A	Α	D	O	O	O	L	Т	P	R
	N	N		R	R	R	I			
	E	I		S	F	W	E			
	R	N			A	Н	S			
		G			M	E				
					I	E				
					L	E				
					I	\mathbf{L}				
					E					
					S					

- Groups suffixes alphabetically
- Stores information about position of the characters in the "genome"

- Indexing allows the aligner to quickly find potential alignment sites
- Indexing varies by aligner tool
- Indexing only needs to be run once

- Indexing allows the aligner to quickly find potential alignment sites
- Indexing varies by aligner tool
- Indexing only needs to be run once

Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference. Patro et al. 2017. Nat Methods

Image: RNA-Seq Blog

Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference. Patro et al. 2017. Nat Methods

Image: RNA-Seq Blog

Index the transcriptome:

Very similar to other aligners we have used (BWA, Variant Calling Pipeline)

bwa index PATH/ref_genome/ref_genome.fasta

Add salmon indexing step to STEP2_RNAseq_Pipeline.sh

Index the transcriptome:

```
Check for a DIRECTORY (-f = file)

if [[ ! -d "${REFS_DIR}/dmel_idx" ]]; then
   echo "Indexing Reference Transcriptome"

salmon index -t ${REF_GENOME} -i ${REFS_DIR}/dmel_idx || { echo "indexing failed" ; exit 1; }

else
   echo "Index found; skipping indexing step"
fi
```


Salmon: fast and bia-aware quantification of transcript expression using dual-phase inference. Patro et al. 2017. Nat Methods

Image: RNA-Seq Blog

```
for FQ1 in ${DATA FILT}/*.1.filt.fastq.gz
for loop, iterate
                   do
through all filtered
   samples
                     sample=$(basename ${FQ1} .1.filt.fastq.gz)
                     if [[ ! -d "${SALMON DIR}/${sample} quant" ]]; then
   Assess whether
                      echo "Quantifying sample ${sample}"
alignment has already
  been completed
                      salmon quant -i ${INDEX} \
                                    -1 A \ # automatically determine library type
                                    -1 ${DATA FILT}/${sample}.1.filt.fastq.qz \
                                    -2 ${DATA FILT}/${sample}.2.filt.fastq.gz \
                                    -p 8 \
         Code Chunk
                                    --validateMappings \ # uses selective alignment
                                    -o ${SALMON_DIR}/${sample}_quant
                      else
                            "Quantified file found; skipping quant step"
                      fi
                   done
```


Adapted from Srivastrava et al. 2016

FlyBase Transcript IDs

*	Name	Length	EffectiveLength	TPM	NumReads
	FBtr0070000	3537	3362.801	0.000000	0.000
	FBtr0307554	3546	3371.801	0.000000	0.000
	FBtr0307555	4528	4353.801	0.000000	0.000
	FBtr0070002	1226	1051.801	0.000000	0.000
	FBtr0070003	1164	989.801	0.000000	0.000
	FBtr0301569	2929	2754.801	0.000000	0.000
	FBtr0343166	3140	2965.801	0.000000	0.000
	FBtr0070029	1164	989.801	0.000000	0.000
	FBtr0301572	466	292.728	0.000000	0.000
	FBtr0070032	981	806.801	0.000000	0.000
	FBtr0070035	1129	954.801	0.000000	0.000
	FBtr0070036	611	437.351	0.000000	0.000
	FBtr0070045	2227	2052.801	0.000000	0.000
	FBtr0070046	2844	2669.801	43.896648	1.000
	FBtr0299869	778	604.301	2903.011025	14.969
	FBtr0299870	789	615.247	1910.759741	10.031
	FBtr0333910	1224	1049.801	0.000000	0.000
	FBtr0070063	6538	6363.801	18.415930	1.000
	FBtr0332992	7235	7060.801	0.000000	0.000
				A	

Counts per length of transcript (kb) per million reads mapped

Differential Expression Workflow:

Alignment to Genome and Quantification

sh \${SCRIPTS_DIR}/STEP2_RNAseq_Pipeline.sh

Associate FBtr with FBgn (Gene Names)

Generate a DESeq2
Object

Define factor levels that will be tested

Differential Expression Analysis

Generate Plots and Examine Results

RNAseq_Analysis.R

Differential Expression Workflow:

Alignment to Genome and Quantification

sh \${SCRIPTS_DIR}/STEP2_RNAseq_Pipeline.sh

Associate FBtr with FBgn (Gene Names)

Generate a DESeq2 Object

Define factor levels that will be tested

Differential Expression Analysis

Generate Plots and Examine Results

RNAseq_Analysis.R

Next Steps and Prep for Next Class:

We will use DESeq to normalize the raw count data and run differential expression analysis. Look up the following functions and write code that creates a DESeq object and generates normalized counts:

- DESeqDatasetFromTximport()
- estimateSizeFactors()
- counts()