

Algorithms: Efficiency, Analysis, and Order

Foundations of Algorithms

Contents

01 Algorithms: Efficiency, Analysis, and Order Order

Definition of 'Big O' Notation

Definition

For a given complexity function f(n), O(f(n)) is the set of complexity functions g(n) for which there exists some positive real constant c and some nonnegative integer N such that for all $n \ge N$,

$$g(n) \le c \times f(n)$$
.

Rigorous Introduction to Order (Big O)

Illustration of 'Big O' Notation

Rigorous Introduction to Order (Big O)

- Big O Function Example 1
 - $n^2 + 10n \in O(n^2)$
 - $n^2 + 10n \le 2n^2$ (N=10, c=2)

• Big O Function Example 2

We show that $5n^2 \in O(n^2)$. Because, for $n \ge 0$,

$$5n^2 \le 5n^2,$$

we can take c = 5 and N = 0 to obtain our desired result.

Rigorous Introduction to Order (Big O)

Big O Function Example 3

Recall that the time complexity of Algorithm 1.3 (Exchange Sort) is given by

$$T\left(n\right) = \frac{n\left(n-1\right)}{2}.$$

Because, for $n \ge 0$,

$$\frac{n(n-1)}{2} \le \frac{n(n)}{2} = \frac{1}{2}n^2,$$

we can take c = 1/2 and N = 0 to conclude that $T(n) \in O(n^2)$.

Rigorous Introduction to Order (Big O)

Big O Function Example 4

We show that $n^2 + 10n \in O(n^2)$. Because, for $n \ge 1$,

$$n^2 + 10n \le n^2 + 10n^2 = 11n^2,$$

we can take c = 11 and N = 1 to obtain our result.

• Definition of 'Omega Ω ' Notation

Definition

For a given complexity function f(n), $\Omega(f(n))$ is the set of complexity functions g(n) for which there exists some positive real constant c and some nonnegative integer N such that, for all $n \ge N$,

$$g(n) \ge c \times f(n)$$
.

Rigorous Introduction to Order (Omega Ω)

Illustration of 'Omega Ω ' Notation

Rigorous Introduction to Order (Omega Ω)

• Ω Function Example 1

We show that $5n^2 \in \Omega(n^2)$. Because, for $n \ge 0$,

$$5n^2 \ge 1 \times n^2$$
,

we can take c = 1 and N = 0 to obtain our result.

Rigorous Introduction to Order (Omega Ω)

• Ω Function Example 2

We show that $n^2 + 10n \in \Omega(n^2)$. Because, for $n \ge 0$, $n^2 + 10n \ge n^2$,

$$n^2 + 10n \ge n^2,$$

we can take c = 1 and N = 0 to obtain our result.

Rigorous Introduction to Order (Omega Ω)

Ω Function Example 3

Consider again the time complexity of Algorithm 1.3 (Exchange Sort). We show that

$$T(n) = \frac{n(n-1)}{2} \in \Omega(n^2)$$
.

For $n \geq 2$,

$$n-1 \ge \frac{n}{2}$$
.

Therefore, for $n \ge 2$,

$$\frac{n(n-1)}{2} \ge \frac{n}{2} \times \frac{n}{2} = \frac{1}{4}n^2,$$

which means we can take c = 1/4 and N = 2 to obtain our result.

Rigorous Introduction to Order (Omega Ω)

• Ω Function Example 4

We show that $n^3 \in \Omega(n^2)$. Because, if $n \ge 1$,

$$n^3 \ge 1 \times n^2$$
,

we can take c = 1 and N = 1 to obtain our result.

• Definition of 'Theta θ ' Notation

Definition

For a given complexity function f(n),

$$\Theta\left(f\left(n\right)\right) = O\left(f\left(n\right)\right) \cap \Omega\left(f\left(n\right)\right).$$

This means that $\Theta(f(n))$ is the set of complexity functions g(n) for which there exists some positive real constants c and d and some nonnegative integer N such that, for all $n \ge N$,

$$c \times f(n) \le g(n) \le d \times f(n)$$
.

Rigorous Introduction to Order (Theta θ)

Illustration of 'Theta θ ' Notation

Rigorous Introduction to Order (Theta θ)

• $O(n^2)$, $\Omega(n^2)$, $\theta(n^2)$

Rigorous Introduction to Order (Theta θ)

- θ Function Example 1
 - $-T(n) \in O(n^2) \cap \Omega(n^2) = \theta(n^2)$

$$T\left(n\right)=\frac{n\left(n-1\right)}{2}\qquad\text{is in both}\qquad O\left(n^{2}\right)\qquad\text{and}\qquad\Omega\left(n^{2}\right).$$

- Is 5n + 7 in $\theta(n^2)$?
 - NO, since 5n + 7 not in $\Omega(n^2)$
- Is $4n^3 + 3n^2$ in $\theta(n^2)$?
 - NO, since $4n^3 + 3n^2$ not in $O(n^2)$