Appunti di Geometria e Algebra Lineare

Algebra lineare e Geometria (prof. Borghesi) - CdL Informatica Unimib - 23/24

Federico Zotti

Indice

1	Insi	emi	2
	1.1	Sottoinsieme	2
	1.2	Unione disgiunta	2
	1.3	Complemento	2
	1.4	Prodotto cartesiano	2
		1.4.1 Prodotto cartesiano di tre insiemi	3
2	Funzioni		
	2.1	Notazione	3
3	Cam	pi	4
4	Spa	zi vettoriali	5
	4.1	Sottospazi vettoriali	8

1 Insiemi

Tutto uguale a fondamenti.

1.1 Sottoinsieme

- ⊂ indica un sottoinsieme (quello che precedentemente era definito come ⊆)
- ⊊ indica un sottoinsieme proprio (quello che precedentemente era definito come ⊂)

1.2 Unione disgiunta

$$A = \{ a, b, c \}$$

 $B = \{ x, b, z \}$
 $A \coprod B = \{ a, b_A, c, x, b_B, z \}$

Gli elementi doppi vengono considerati due volte.

1.3 Complemento

$$B \setminus A = \{ x \in B : x \notin A \}$$

1.4 Prodotto cartesiano

$$A \times B = \{ (x, y) : x \in A, y \in B \}$$

 $B \times A = \{ (x, y) : x \in B, y \in A \}$

> Notare che le coppie vengono denotate da parentesi tonde, e non angolate.

Oss: supponendo $x_0 \neq y_0$, si noti che $(x_0, y_0) \neq (y_0, x_0)$.

1.4.1 Prodotto cartesiano di tre insiemi

$$A = \{ 1, 2, 3 \}$$

$$B = \{ 4, 5, 6 \}$$

$$C = \{ 8, 9 \}$$

$$A \times B = \{ (1,4), (1,5), (1,6), (2,4), (2,5), \dots \}$$

$$(A \times B) \times C = \{ ((1,4),8), ((1,4),9), ((1,5),8), ((1,5),9), \dots \}$$

$$A \times (B \times C) = \{ (1,(4,8)), (1,(4,9)), (1,(5,8)), (1,(5,9)), \dots \}$$

$$A \times B \times C = \{ (1,4,8), (1,4,9), (1,5,8), (1,5,9), \dots \}$$

2 Funzioni

Una funzione è una corrispondenza tra un elemento di un insieme ad un elemento di un altro insieme.

Notare che le funzioni non vengono considerate insiemi, a differenza di fondamenti.

Due funzioni $f:A\to B,g:C\to D$ sono uguali (f=g) sse

- 1. A = C, B = D
- 2. $f(x) = g(x), \forall x \in A$

f(x) viene chiamata immagine di x tramite $f \in g(x)$ immagine di x tramite g.

2.1 Notazione

$$f:A\to B$$

- A è il **dominio** di f
- B è il **codominio** di f
- Sia $S \subset A$, allora f(S) è l'immagine di S tramite f

$$f(S) = \{ b \in B : \exists a \in S \text{ con } f(a) = b \}$$

Ovvero f(S) è l'insieme che contiene tutte le immagini degli elementi di S tramite f. Se si restringe il dominio di f da A ad S, si crea una nuova funzione $f|_{S}$.

Attenzione: ⊂ è solo un'inclusione insiemistica. (Più avanti verranno introdotti gli spazi vettoriali).

L'immagine di f = f(A). Non bisogna confondere l'immagine di una funzione con il suo codominio, perché il codominio potrebbe essere più grande della sua immagine.

• Sia $R \subset B$, allora $f^{-1}(R)$ è la controimmagine di R tramite f

$$f^{-1}(R) = \{ a \in A : f(a) \in R \}$$

- f è iniettiva se $a_1 \neq a_2 \in A$, allora $f(a_1) \neq f(a_2)$
- $f \in \mathbf{suriettiva}$ se $\forall b \in B, \exists a_b \in A : f(a_b) = b \ (Imm(f) := f(A) \ deve \ essere$ uguale a B)

Oss: affinché $f: A \rightarrow B$ sia una funzione deve avvenire:

- 1. $\forall x \in A, \exists f(x) \in B$
- 2. f(x) è un solo elemento di B
- f è biiettiva (o biunivoca) se è sia iniettiva che suriettiva
- Siano $f: A \to B, g: B \to D$ due funzioni, $(g \circ f)(x) = g(f(x))$ (composizione)

3 Campi

Def: un **campo** è un insieme dotato di due operazioni $(+, \cdot)$. Deve avere tre proprietà:

- 1. (K, +) è un gruppo abeliano
 - $+ : K \times K \to K$ (l'operazione non esce dal gruppo)
 - a + (b + c) = (a + b) + c $\forall a, b, c \in K$ (proprietà associativa)
 - a + 0 = 0 + a = a $\forall a \in K$ (esistenza del neutro)
 - $\forall a \in K \quad \exists -a \in K \text{ t.c. } -a+a=a+(-a)=0$ (esistenza dell'opposto)
 - a + b = b + a $\forall a, b \in K (proprietà commutativa)$

- 2. $(K \setminus \{0\}, \cdot)$ è un gruppo abeliano
 - \cdot : $K \times K \rightarrow K$ (l'operazione non esce dal gruppo)
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ $\forall a, b, c \in K$ (proprietà associativa)
 - $a \cdot 1 = 1 \cdot a = a$ $\forall a \in K$ (esistenza del neutro)
 - $\forall a \in K \setminus \{0\}$ $\exists a^{-1} = \frac{1}{a} \in K \setminus \{0\}$ t.c. $a \cdot a^{-1} = a^{-1} \cdot a = 1$ (esistenza dell'opposto)
 - $a \cdot b = b \cdot a$ $\forall a, b \in K$ (proprietà commutativa)
- 3. Il prodotto è distributivo rispetto alla somma: $a\cdot(b+c)=(a\cdot b)+(a\cdot c) \quad \forall \, a,b,c\in K$

4 Spazi vettoriali

Siano V un **insieme** e K un **campo** (per es. \mathbb{Q} , \mathbb{R}).

Attenzione a non confondere i due insiemi. Anche se sono lo stesso o uno è sottoinsieme dell'altro, rimangono due insiemi distinti.

Gli elementi di *V* si chiamano **vettori**, mentre gli elementi di *K* si chiamano **scalari**.

Def: Vè uno **spazio vettoriale su un campo** K se esistono due operazioni su V:

1. "+":
$$V \times V \to V$$
 $(\vec{v_1}, \vec{v_2}) \mapsto \vec{v_1} + \vec{v_2}$

Con proprietà:

- $(\vec{v}_1 + \vec{v}_2) + \vec{v}_3 = \vec{v}_1 + (\vec{v}_2 + \vec{v}_3)$ (associatività)
- $\exists \vec{0} \in V : \vec{0} + \vec{v} = \vec{v} + \vec{0} = \vec{v} \quad \forall \vec{v} \in V$ (esistenza dell'elemento neutro)
- $\forall \vec{v} \in V, \exists \vec{w} \in V : \vec{v} + \vec{w} = \vec{w} + \vec{v} = \vec{0}$ (esistenza degli opposti)
- $\vec{v}_1 + \vec{v}_2 = \vec{v}_2 + \vec{v}_1, \forall \vec{v}_1, \vec{v}_2 \in V$ (commutatività)

Ciò vuol dire che (V, +) è un gruppo abeliano.

2. "·" :
$$K \times V \to V$$
 $(\alpha, \vec{v}) \mapsto \alpha \cdot \vec{v}$ (prodotto per scalare)

Attenzione: l'operazione $\vec{v} \cdot \alpha$ non è definita.

Con proprietà:

•
$$(\lambda_1 + \lambda_2) \stackrel{\cdot}{_V} \vec{v} = \lambda_1 \stackrel{\cdot}{_V} \vec{v} + \lambda_2 \stackrel{\cdot}{_V} \vec{v} \quad \forall \ \lambda_1, \lambda_2 \in K, \vec{v} \in V(distributivit\grave{a})$$

$$\bullet \ \lambda \underset{V}{\cdot} (\vec{v}_1 + \vec{v}_2) = \lambda \underset{V}{\cdot} \vec{v}_1 + \lambda \underset{V}{\cdot} \vec{v}_2 \quad \forall \, \lambda \in K, \vec{v}_1, \vec{v}_2 \in V$$

$$\bullet \ (\lambda_1 \underset{K}{\cdot} \lambda_2) \underset{V}{\cdot} \vec{v} = \lambda_1 \underset{V}{\cdot} (\lambda_2 \underset{V}{\cdot} \vec{v}) \quad \forall \ \lambda_1, \lambda_2 \in K, \vec{v} \in V$$

•
$$1_{K_{\overrightarrow{v}}} \vec{v} = \vec{v} \quad \forall \vec{v} \in V$$

Oss: V (come ogni altro spazio vettoriale) non ha un suo prodotto interno, cioè non esiste un vettore " $\vec{v}_1 \cdot \vec{v}_2$ ".

Queste proprietà ne implicano altre (corollari). Si può dimostrare che, se Vè uno spazio vettoriale su K, allora:

- $0 \cdot \vec{v} = \vec{0}$ $\forall \vec{v} \in V$
- $\lambda \cdot \vec{0} = \vec{0}$ $\forall \lambda \in K$
- $-1 \cdot \vec{v} = -\vec{v}$ $\forall \vec{v} \in V$ (in questo caso $-1 \in K$ è l'elemento opposto dell'identità moltiplicativa del campo K)

Es 1:

$$V = \mathbb{R}^n = \mathbb{R} \times ... \times \mathbb{R}$$

$$K = \mathbb{R}$$

Dotiamo \mathbb{R}^n di una struttura di spazio vettoriale su K.

La **somma** è definita come:

$$+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$$

$$\left((x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \right) \mapsto (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

- $\vec{0} = (0, 0, \dots, 0)$ (vettore nullo, elemento neutro additivo) $\vec{v} = (x_1, x_2, \dots, x_n)$ $-\vec{v} = (-x_1, -x_2, \dots, -x_n)$

La moltiplicazione per scalare è definita come:

$$\begin{array}{c} \cdot : \ K \times \mathbb{R}^n \to \mathbb{R}^n \\ \Big(\alpha, \big(x_1, x_2, \dots, x_n\big)\Big) \mapsto \big(\alpha \cdot x_1, \alpha x_2, \dots, \alpha x_n\big) \end{array}$$

Es 2:

$$\begin{split} V &= \mathbb{R}_{[x]} = \{ \text{ polinomi in } x \text{ a coeff reali } \} \\ &= \{ \ \lambda_0 + \lambda_1 x + \lambda_2 x^2 + \dots + \lambda_h x^h \ : \ \lambda_i \in \mathbb{R}, h \in \mathbb{N} \ \} \\ &= \left\{ \sum_{i=0}^h \lambda_i x^i \ : \ \lambda_i \in \mathbb{R}, h \in \mathbb{N} \right\} \end{split}$$

• Dati p(x), q(x) polinomi in x:

$$p(x) + q(x) = \sum_{i=0}^{h} \alpha_i x^i + \sum_{j=0}^{l} \beta_j x^j$$
$$= \sum_{u=0}^{\max(l,h)} (\alpha_u + \beta_u) \cdot x^u$$

- $0(x) = 0 \in \mathbb{R}$ (polinomio nullo, di grado 0) $-p(x) = \sum_{i=0}^{h} -\alpha_i \cdot x^i$
- $\lambda \cdot p(x) = \sum_{i=0}^{h} \lambda \cdot \alpha_i \cdot x^i$

Sia $V=\{$ funzioni : $I=[a,b]\to\mathbb{R} \}$. Dotiamo Vdi una struttura di spazio vettoriale $su \mathbb{R}$.

La somma è definita come

$$+: V \times V \to V$$

$$(f: I \to \mathbb{R}, g: I \to \mathbb{R}) \mapsto "f + g": I \to \mathbb{R}$$

In questo caso f + g è definito come

$$x \mapsto f(x) + g(x)$$

Il prodotto viene definito come

$$\begin{array}{c} \cdot : \mathbb{R} \times V \to V \\ \\ \left(\lambda, f : I \to \mathbb{R}\right) \mapsto \text{``} f \cdot g\text{''} : I \to \mathbb{R} \\ \\ x \mapsto \lambda \cdot f(x) \end{array}$$

4.1 Sottospazi vettoriali

Def: sia V uno spazio vettoriale su K, e $W \subset V$. Diremo che W è un **sottospazio** vettoriale di Vse:

1.
$$\vec{w}_1 + \vec{w}_2 \in W \quad \forall \vec{w}_1, \vec{w}_2 \in W$$

$$\begin{aligned} &1. & \ \vec{w}_1 + \vec{w}_2 \in W & \forall \ \vec{w}_1, \vec{w}_2 \in W \\ &2. & \ \lambda \cdot \vec{w} \in W & \forall \ \lambda \in K, \vec{w} \in W \end{aligned}$$

In tal caso denoteremo la relazione tra We Vcome W < V.

| Oss: se W < V, allora Wè lui stesso uno spazio vettoriale.

Sia $\lambda=0$. Per la proprietà 2., $\lambda\underset{V}{\cdot}\vec{w}\in W$, ma in questo caso $0\underset{V}{\cdot}\vec{w}=\vec{0}\notin W$.

Dunque W non può essere un sottospazio vettoriale di V.

Ciò non vuol dire che non si possa mettere una struttura di uno spazio vettoriale su W, ma essa non sarà quella ereditata da V.

Per la proprietà 2. $\lambda \cdot \vec{p} \in W \quad \forall \, \lambda \in \mathbb{R}$. Sia $\lambda = 2$, $\lambda \cdot \vec{p}$ diventa $2 \cdot \vec{p} = (2x_0, 2y_0)$. Si può notare che $2 \cdot \vec{p} \notin W$.

Dunque W non è un sottospazio vettoriale di V.

Wè un sottospazio vettoriale di $V=\mathbb{R}^2$ perché vengono soddisfatte le due condizioni:

- 1. $\alpha_1 \cdot \vec{p} + \alpha_2 \cdot \vec{p} \in W$. Questo si può riscrivere raccogliendo come $(\alpha_1 + \alpha_2) \cdot \vec{p} \in W$ ed è dimostrato perché la somma di scalari è uno scalare
- 2. Verificata banalmente

Oss: in alternativa alle due proprietà del sottospazio vettoriale (dalla definizione), possiamo controllare che $W \subset V$, con V sp. vett. su campo K, sia un sottospazio vett. verificando che $\forall \, \alpha, \beta \in K, \, \forall \, \vec{w}_1, \vec{w}_2 \in W$ si abbia $\alpha \vec{w}_1 + \beta \vec{w}_2 \in W$.

Quali sono tutti i sottospazi di \mathbb{R}^2 ?

- { $\vec{0}$ }
- { $\alpha \cdot \vec{p}, \alpha \in \mathbb{R}$ } (rette passanti per l'origine)
- \mathbb{R}^2

Oss: ogni sp. vett. V ammette almeno due sottosp. vett. cioè $\{\vec{0}\}$ e V stesso.

Domanda cruciale: dato $S \subset V$ (sottoinsieme di uno spazio vettoriale), esiste il "più piccolo sottospazio vettoriale di Vche contiene S"? La risposta è sì.

Def: $\langle S \rangle < V$ denoterà il più piccolo sottospazio di V che contiene S. Esso si chiama **sottospazio vettoriale generato da** S.

Si dimostra che

$$\langle S \rangle = \left\{ \sum_{i=1}^{n} \lambda_{i} z_{i} : \lambda_{i} \in \mathbb{R}, z_{i} \in S, n \in \mathbb{N} \right\}$$

Quindi $\langle S \rangle$ è l'insieme delle combinazioni lineari dei vettori $\{z_1, z_2, \dots, z_n\}$ con i coefficienti $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ per ogni $n \in \mathbb{N}$ e tutti i vettori in S.

| Oss: $S \subset \langle S \rangle$

Def: sia S < V spazio vettoriale.

I vettori di S sono detti **linearmente dipendenti** se $\exists \ \vec{w} \in S$ e vettori $\vec{z}_1, \dots, \vec{z}_h \in S$ con $\lambda_1, \dots, \lambda_h$ tali che $\vec{w} = \sum_{i=1}^h \lambda_i z_i$.

S sono linearmente indipendenti se non sono dipendenti.