0) [Exam/Course Review?]

1) [6.1 Q34, 39] Let $u = (5, -6, 7)^T$. Find all vectors v such that $u \cdot v = 0$. Show that $x \in \text{span}\{u\}$ and $x \in (\text{span}\{u\})^{\perp}$ if and only if x = 0.

2) [6.3 Q3] Verify $\{u_1, u_2\}$ are orthogonal, then find the orthogonal projection of y onto span $\{u_1, u_2\}$, where:

$$u_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, u_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, y = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}$$

3) [6.3 Q31] Let A be an $m \times n$ matrix. Prove that every vector in \mathbb{R}^n can be written as x = p + u, where $p \in \text{Row}(A)$ and $u \in \text{Null}(A)$.

4) [6.4 Q2] Let $\{(0,4,2)^T, (5,0,-7)^T\}$ be a basis for $W \subset \mathbb{R}^3$. Use Graham–Schmidt to find orthonormal basis for W.

$$(0, 1, 2, 0, 2, 1)$$

$$-(0, 0, 1, 1, 2, 2)$$

$$=(0, 1, 1, 2, 0, 2)$$