命题逻辑

离散数学一逻辑和证明

南京大学计算机科学与技术系

什么是逻辑

命题逻辑的语法

命题

- 命题是一个陈述语句,即一个陈述事实的句子
 - 要么真,要么假
 - 不能既真又假
- 判断下列句子是否为命题
- ✓ 税收下降了
- 我的收入上升了
- ✓ 今天是星期五
- 🗴 你会说英语吗?
- \times 3-x=5
- ★ 我们走吧!
- ✓ 任一足够大的偶数一定可以表示为两个素数之和。
- ★ 他是个多好的人呀!
- × "蓝色的命题为假。"

命题变元

- 常用小写字母表示命题变元,如: p,q,r
- 命题变元的取值范围为: {T,F}, {1,0}
- 命题也可以表示为命题变元的形式,可以理解为 该变元"已赋值"
 - p: 今天是周五 (p=0)
 - $q: 2+2=4 \quad (q=1)$

- 复合命题
 - 并非外面在下雨。
- 复合命题是否为真,取决于: 作为复合成分的子命题的真假 逻辑运算符(联接词)的语义
- 张挥与王丽都是三好学生。
- 张晓静不是江西人就是安徽人。
- 如果2+3=6,则π是有理数。
- √3 是无理数当且仅当加拿大位于亚洲。

¬p: "非p"

¬p的真值表

p所有可能的取值

p\q: "p 并且 q"

p	q	$p \wedge q$	$p \land q = 1 \text{ iff}$
0	0	0	p∧q=1 iff p和q均为1
	1	0	
1	0	0	
1	1	1	

(p,q) 所有可能的取值

p∨*q*: "*p* 或 *q*"

p∨q=0 iff p和q均为0

 p	q	p∨ q	- '
0	0	0	
0	1	1	
1	0	1	
1	1	1	

 $p \rightarrow q$: "若 p ,则 q" (条件语句) p称为假设,q称为结论

p	\boldsymbol{q}	$p{ ightarrow}q$		
0	0	1		
0	1	1		<u> </u>
1	0	0		
1	1	1		
			_	

p→q =0 iff *p*为1而*q*为0

 $p \leftrightarrow q$: "p当且仅当q" (双条件语句)

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

p↔*q* =1 iff *p*和*q*有相同的真值

- 命题变元是命题表达式;
- 若p 是命题表达式,则(¬ p)也是;
- 若p和q是命题表达式,则 $(p \land q), (p \lor q), (p \to q), (p \leftrightarrow q)$ 也是;
- 别无其他
 - $(p \rightarrow q) \land (q \leftrightarrow r), p \rightarrow (q \rightarrow r)$ 是命题公式(省略了外层括号)。
 - pq→r以及p→ $\wedge q$ 都不是命题公式。
 - $p \lor q \rightarrow r$, $\neg p \land q$, $(\neg p) \land q$ 是命题公式
- 运算符的优先级: ¬, ∧, ∨, →, ↔

反直觉的"蕴涵"运算:

Vacuous Truth

将自然语言翻译成命题表达式

只有你主修计算机科学或不是新生,才可以从校园网访问因特网.

a: 你可以从校园网访问因特网

c: 你主修计算机科学

f: 你是新生

$$a \rightarrow (c \lor \neg f);$$

将自然语言翻译成命题表达式 (续)

除非你满16周岁, 否则只要你身高不足4英尺就不能乘滑行游乐车.

q: 你能乘滑行游乐车

r: 你身高不足4英尺

s: 你满16周岁

$$s \lor (r \rightarrow \neg q)$$

$$(\neg s \land r) \rightarrow \neg q$$

命题表达式的真值表 $(\neg p \land q) \rightarrow \neg r$

	1	1	1	1
p q r	$\neg p$	$\neg p \land q$	¬ r	$(\neg p \land q) \rightarrow \neg r$
0 0 0	1	0	1	1
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0	0	1
0 1 0	1	1	1	1
0 1 1	1	1	0	0
1 0 0	0	一种"成化	段"指派	1
1 0 1	0	0	0	1
1 1 0	0	0	1	1
1 1 1/	0	0	0	1
		1		

16

$$(p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \rightarrow p))$$

p	q	$p{ ightarrow}q$	$q \rightarrow p$	$(p \rightarrow q) \land (q \rightarrow p)$	$p \leftrightarrow q$	$(p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \rightarrow p))$
0	0	1	1	1	/1	1
0	1	1	0	0	0	1
1	0	0	1	0	0	1
1	1	1	1	1	1	1

$$\phi ::= p \mid (\neg \phi_1) \mid (\phi_1 \land \phi_2) \mid (\phi_1 \lor \phi_2) \mid (\phi_1 \to \phi_2) \mid \phi_1 \to \phi_2$$

或者

$$\phi ::= p \mid (\neg \phi_1) \mid (\phi_1 \land \phi_2) \mid (\phi_1 \lor \phi_2) \mid (\phi_1 \to \phi_2)$$

•
$$\phi_1 \leftrightarrow \phi_2 \triangleq (\phi_1 \rightarrow \phi_2) \land (\phi_2 \rightarrow \phi_1)$$

命题逻辑的语义

什么是真?

永真式、矛盾式与可能式

- 永真式(重言式): 总是真的,无论其中出现的命题变元如何取值。比如: $p \lor \neg p$ Tautology
- 矛盾式: 总是假的,无论其中出现的命题变元如何取值。 比如: $p \land \neg p$ Contradiction
- 可能式: 既不是永真式又不是矛盾式。比如: ¬p

p	$\neg p$	$p \lor \neg p$	$p \land \neg p$
1	0	1	0
0	1	1	0

Contingency

语义蕴涵

p	$\neg p$	$p \lor \neg p$
1	0	1
0	1	1

语义蕴涵(Semantic Entailment)

• $\varphi_1 \vDash \varphi_2$: 对于 φ_1 的任意一个成真指派, φ_2 均为真

p q	$\neg p$	$\neg p \wedge q$	$p{ ightarrow}q$
0 0	1	0	1
0 1	1	1	1
1 0	0	0	0
1 1	0	0	1

$$\neg p \land q \vDash p \rightarrow q$$
$$\neg p \land q \vDash \neg p$$

语义蕴涵

- 一般情形
- $\varphi_1, ..., \varphi_n \models \varphi \text{ iff } (\varphi_1 \land ... \land \varphi_n \rightarrow \varphi) \land \exists$
- 语义蕴涵可归结为"判断某个命题是否永真"

- 命题逻辑公式 p 和 q 逻辑等价: 在所有可能情况下 p 和 q 都有相同的真值,因此也叫重言等价。
 - 也就是说, $p\leftrightarrow q$ 是永真式 (亦即 $\models p\leftrightarrow q$)
 - 记法: p ≡ q

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

$$\mathbf{T} \equiv p \vee \neg p \qquad \mathbf{F} \equiv p \wedge \neg p$$

命题逻辑公式的证明

命题逻辑的推理问题

- 给定两个命题,它们是否有语义蕴涵关系? $\varphi_1 \vDash \varphi_2 \text{ iff } \varphi_1 \rightarrow \varphi_2$ 永真
- 给定两个命题,它们是否逻辑等价? φ_1 与 φ_2 等价(记为 φ_1 = φ_2) iff $\varphi_1 \leftrightarrow \varphi_2$ 永真
- 给定命题表达式,它是否可满足? φ 可满足 iff $\neg \varphi$ 不是永真式
- 上述问题,均可归结为"判断某个命题是否永真"

• 一个论证(argument)是一个命题序列。 序列中除了最后一个命题之外的其它命题都称为前提(premises),最后一个命题称为结论(conclusion)。 若所有前提为真则蕴含结论为真则称改论证是成立的(valid)。

"如果我是马云,那么我给各位每人发一辆法拉利。"

"我是马云。"

二"我给各位每人发一辆法拉利。"

 命题逻辑中的一个论证形式(argument form) 是一系列 包含命题变元的命题公式。一个论证形式成立(valid), 则不管用什么命题替换其中变元,只要替换后各前提命题 都为真则结论命题也为真。

$$\begin{array}{c}
p \to q \\
p \\
\vdots \quad q
\end{array}$$

所以,你现在能理解什么叫做"形式化(formalization)"。

命题逻辑推理(举例)

$$p \land q \to p \lor q \equiv \neg (p \land q) \lor (p \lor q)$$

$$\equiv (\neg p \lor \neg q) \lor (p \lor q)$$

$$\equiv \neg p \lor p \lor \neg q \lor q$$

$$\equiv T$$

• $\neg (p \rightarrow q)$ 和 $p \land \neg q$ 是否逻辑等价?

$$\neg(p \rightarrow q) \equiv \neg(\neg p \lor q)$$

$$\equiv \neg(\neg p) \land \neg q$$

$$\equiv p \land \neg q$$

SAT (The Satisfiability Problem)

(p∨q) ∧ (¬p∨¬q) 是否可满足?若可满足,求成真指派。

$$(p \lor q) \land (\neg p \lor \neg q) \equiv ((p \lor q) \land \neg p) \lor ((p \lor q) \land \neg q)$$

 $\equiv (\neg p \land q) \lor (p \land \neg q)$ //析取范式

答案: 可满足,当p=0, q=1;或p=1, q=0时,该命题为真

- 给定命题 φ ,它是否可满足(i.e., has a model)?
 - 可以暴力求解: 列举所有赋值, 检查命题是否可满足
 - 复杂度: 指数时间
 - 该问题是NPC问题
 - 给定一个赋值,可在多项式时间内验证
 - 但是尚未发现多项式内时间求解的算法

名称	等价
双重否定律	$p \equiv \neg \neg p$
幂等律	$p \equiv p \lor p, p \equiv p \land p$
交换律	$p \lor q \equiv q \lor p, p \land q \equiv q \land p$
结合律	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
	$(p \land q) \land r \equiv p \land (q \land r)$
分配律	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
德摩根律	$\neg (p \lor q) \equiv \neg p \land \neg q$
	$\neg (p \land q) \equiv \neg p \lor \neg q$
吸收律	$p \lor (p \land q) \equiv p$
	$p \land (p \lor q) \equiv p$

不	学	律
台	朼	17

名称	等价
支配律	$p \lor T \equiv T, \ p \land F \equiv F$
恒等律	$p \lor F \equiv p, \ p \land T \equiv p$
排中律	$p \lor \neg p \equiv T$
矛盾律	$p \land \neg p \equiv F$
	$p \rightarrow q \equiv \neg p \lor q$
	$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
假言易位	$p \rightarrow q \equiv \neg q \rightarrow \neg p$
	$p \longleftrightarrow q \equiv \neg q \longleftrightarrow \neg p$
归缪论	$(p \rightarrow q) \land (p \rightarrow \neg q) \equiv \neg p$

逻辑等价的判定

$$\neg(p \rightarrow q) \equiv \neg(\neg p \lor q)$$
$$\equiv \neg(\neg p) \land \neg q$$
$$\equiv p \land \neg q$$

• $p \land q \rightarrow p \lor q$ 是否永真?

$$p \land q \to p \lor q \equiv \neg (p \land q) \lor (p \lor q)$$

$$\equiv (\neg p \lor \neg q) \lor (p \lor q)$$

$$\equiv \neg p \lor p \lor \neg q \lor q$$

$$\equiv T$$

- 32×32的网格, 32个3×3的子网格。
- 每行、每列及每宫填入数字1-9且不能重复。

9

Sudoku谜题(命题可满足问题)

• \mathbf{s}_{xyz} : 第x行第y列的格子里填上数字z.

There are $9 \times 9 \times 9 =$ 729 such propositions

$$\bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \bigvee_{z=1}^{9} s_{xyz}$$

?????

$$\bigwedge_{x=1}^{9} \bigwedge_{y=1}^{9} \bigwedge_{z=1}^{8} \bigwedge_{i=z+1}^{9} (\neg s_{xyz} \vee \neg s_{xyi})$$

?????

$$\bigwedge_{y=1}^{9} \bigwedge_{z=1}^{9} \bigvee_{x=1}^{9} s_{xyz}$$

every column contains every number

$$\bigwedge_{x=1}^{9} \bigwedge_{z=1}^{9} \bigvee_{y=1}^{9} s_{xyz}$$

every row contains every number

$$\bigwedge_{i=0}^{2} \bigwedge_{j=0}^{2} \bigvee_{z=1}^{9} \bigwedge_{x=1}^{3} \bigwedge_{y=1}^{3} {}^{S}_{(3i+x)(3j+y)z}$$

each of the nine 3×3 blocks contains every number

• • • • •

命题的表达能力

- n个变元的函数/命题表达式(假设变元有顺序)
 - 成真指派,按自然顺序排列,e.g. 001,011,100,111
 - 指派的个数为 $(2^{\uparrow}n)$,其子集有 $2^{\uparrow}(2^{\uparrow}n)$ 个
 - 命题的DNF, e.g. $(\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land \neg r) \lor (p \land q \land r)$

● 任何一个 $B^n \rightarrow B$ 的函数,都可以用命题表达式来表示

命题逻辑

- 命题表达式
 - 运算符(¬, ∧, ∨, →, ↔)
 - 还可以定义其他运算符,比如, 异或
 - 可以表达 $B^n \to B$ 中任何一个函数 (足够强大)
 - 基本运算符可以裁剪、{¬, ∧, ∨}, {¬, ∧}
- 基于真值表的推理
 - 永真、可满足、语义蕴涵、逻辑等价
- 基于规则的推理?

命题逻辑的判定性

- 命题逻辑的推理问题可归结为: "判定命题的永真性"
- 是否有通用的算法,对任一命题,都能够判断其是否永真?
 - 有的√
- 命题逻辑是可判定的(decidable)

• 为何要"范式"?

对于给定公式的判定问题,可用真值表方法加以解释,但当公式中命题变元的数目较大时,计算量较大,每增加一个命题变元,真值表的行数要翻倍,计算量加倍,此外,对于同一问题,可以从不同的角度去考虑,产生不同的但又等价的命题公式,即同一个命题可以有不同的表达形式。这样给命题演算带来了一定的困难,因此有必要使命题公式规范化。

- 一些术语:
 - 命题变元或命题变元的否定称为文字;
 - 有限个文字的析取式称为简单析取式(基本和), 有限个文字的合取式称为简单合取式(基本积);
 - 由有限个简单合取式构成的析取式称为析取范式 (DNF, Disjunctive Normal From), 由有限个简单析取式构成的合取式称为合取范式 (CNF, Conjunctive Normal From)。

例如,

①: p, $\neg p$;

②: $p \lor q \lor \neg r$;

 $3: \neg p \land q \land r;$

4: $(p \land q) \lor (\neg p \land q)$;

5: $(p \lor q) \land (\neg p \lor q)$;

• 性质:

- 一个文字既是一个析取范式又是一个合取范式;
- 一个析取范式为矛盾式,当且仅当它的每个简单合 取式是矛盾式;
- 一个合取范式为重言式,当且仅当它的每个简单析 取式是重言式。

析取(合取)范式的存在性

- 求 $(p \rightarrow q) \leftrightarrow r$ 的析取范式
 - $(\neg p \lor q) \leftrightarrow r$ (消去 \rightarrow)
 - $((\neg p \lor q) \land r) \lor (\neg (\neg p \lor q) \land \neg r)$ (消去 \leftrightarrow)
 - ((¬p∨q)∧r)∨((p∧¬q)∧¬r)
 (否定号内移)
 - (¬p∧ r) ∨ (q∧ r) ∨ (p∧¬q∧¬r)
 (分配律、结合律)

• 有通用的方法,把任一命题转化与之等价的CNF

• 析取范式和合取范式的存在性

定理:任何命题公式都有一个与之等价的合取范式和析取范式。

• 主析取范式和主合取范式

范式不唯一。如公式 $(p \lor q) \land (p \lor r)$ 与之等价的公式有: $p \lor (q \land r)$, $(p \land p) \lor (q \land r)$, $p \lor (q \land \neg q) \lor (q \land r)$, $p \lor (p \land r) \lor (q \land r)$,等。

- 包含所有命题变元或其否定一次仅一次的简单合取式,称 为极小项;
- 包含所有命题变元或其否定一次仅一次的简单析取式,称 为极大项;
- 由有限个极小项组成的析取范式称为主析取范式;
- 由有限个极大项组成的合取范式称为主合取范式。

• 1. 极小项和极大项的性质

对于两个命题变元P,Q来说,由于每个P,Q可以取命题变元自身和其否定,所以其对应的极小项和极大项分别有四项: $P \land Q$, $\neg P \land Q$, $P \land \neg Q$, $P \land \neg Q$, $P \lor Q$, $\neg P \lor Q$, $\neg P \lor Q$, $\neg P \lor Q$ 。其真值表如下:

P	Q	P∧Q	¬P∧Q	P∧¬Q	¬Р∧¬Q	$\neg P \lor \neg Q$	$\neg P \lor Q$	P∨¬Q	PVQ
0	0	0	0	0	1	1	1	1	0
0	1	0	1	0	0	1	1	0	1
1	0	0	0	1	0	1	0	1	1
1	1	1	0	0	0	0	1	1	1

一般来说,对于n个命题变元,则应有2°个不同的极小项和2°个不同的极大项。

• 性质:

- (1):没有两个不同的极小项是等价的,且每个极小项只有一组真值指派使该极小项的真值为真,因此可给极小项编码,使极小项为"T"和那组真值指派为对应的极小项编码;如极小项¬P \land ¬Q \land ¬R只有在P,Q,R分别取真值0,0,0时才为真,所以有时又可用 m_{000} (m_0)来表示,又如¬P \land Q \land ¬R也可用 m_{010} (m_2)来表示。
- (2):没有两个不同的极大项是等价的,且每个极大项只有一组真值指派,使该极大项的真值为假。因此可给极大项编码,使极大项为"F"的那组真值指派为对应的极大项的编码,如极大项¬P \ ¬Q \ ¬R 只有在P,Q,R 分别取真值1,1,1时才为假,所以有时又可用 M_{III}(M₇) 来表示。

P	Q	R	极小项	极大项
0	0	0	$m0 = \neg P \land \neg Q \land \neg R$	$M0 = P \lor Q \lor R$
0	0	1	$m1 = \neg P \land \neg Q \land R$	$M1 = P \vee Q \vee \neg R$
0	1	0	$m2 = \neg P \land Q \land \neg R$	$M2 = P \lor \neg Q \lor R$
0	1	1	$m3 = \neg P \land Q \land R$	$M3 = P \lor \neg Q \lor \neg R$
1	0	0	$m4 = P \land \neg Q \land \neg R$	$M4 = \neg P \lor Q \lor R$
1	0	1	$m5=P \land \neg Q \land R$	$M5 = \neg P \lor Q \lor \neg R$
1	1	0	$m6 = P \wedge Q \wedge \neg R$	$M6 = \neg P \lor \neg Q \lor R$
1	1	1	$m7 = P \wedge Q \wedge R$	$M7 = \neg P \lor \neg Q \lor \neg R$

三个命题变元的真值取值与极小项和极大项的对应对位关系表

(3): 任意两极小项的合取必假,任意两个极大项的析取必为真。极大项的否定是极小项,极小项的否定是极大项,即

$$M_i \lor M_j \Leftrightarrow T, \quad m_i \land m_j \Leftrightarrow F(i \neq j.i, j \in [0, 2^n - 1]);$$

 $m_i \Leftrightarrow \neg M_i, \quad M_i \Leftrightarrow \neg m_i$

(4): 所有极小项的析取为永真公式,所有极大项的 合取是永假公式,即

$$\bigvee_{i=0}^{2^{n}-1} m_{i} = 1, \bigwedge_{i=0}^{2^{n}-1} M_{i} = 0$$

• 主析取范式和主合取范式的存在性和唯一性

定理:任何命题公式的主析取范式和主合取范式存在 且唯一,即任何命题公式都有且仅有一个与之等价 的主合取范式和主析取范式。

- 利用真值表技术求主析取范式和主合取范式的方法:
- ①:选出公式的真值结果为真的所有行,在这样的行中,找到其每一个解释所对应的极小项,将这些极小项析取即可得到相应的主析取范式;
- ②: 选出公式的真值结果为假的所有行,在这样的行中,找到其每一个解释所对应的极大项,将这些极大项合取即可得到相应的主合取范式。

主析取(合取)范式的唯一性

- 求 $(p \rightarrow q) \leftrightarrow r$ 的主析取范式
 - $(\neg p \land r) \lor (q \land r) \lor (p \land \neg q \land \neg r)$ (析取范式)

- $(\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (p \land q \land r) \lor (p \land \neg q \land \neg r)$
- $(\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land \neg r) \lor (p \land q \land r)$
- 001 011 100 111

CNF的命题,其永真性是可判定的

- 命题逻辑公式的合取范式(CNF)
 - $\dots \wedge (L_1 \vee L_2 \vee \dots \vee L_n) \wedge \dots$
 - L_i 是原子命题、或原子命题的否定
- $L_1 \vee L_2 \vee ... \vee L_n$ 的永真性是可判定的
 - $\models L_1 \lor L_2 \lor ... \lor L_n$ *iff* 存在*i*和*j*, L_i 是 L_j 的否定
- ⇒命题的永真性是可判定的⇒命题逻辑是可判定的

命题逻辑的自然演绎

	introduction	elimination
^	$rac{\phi \psi}{\phi \wedge \psi}$ $\wedge \mathrm{i}$	$\frac{\phi \wedge \psi}{\phi} \wedge e_1 \qquad \frac{\phi \wedge \psi}{\psi} \wedge e_2$
V	$\frac{\phi}{\phi \vee \psi} \vee_{i_1} \frac{\psi}{\phi \vee \psi} \vee_{i_2}$	$\frac{\phi \lor \psi \qquad \begin{array}{c} \begin{array}{c} \phi \\ \vdots \\ \chi \end{array} \begin{array}{c} \psi \\ \vdots \\ \chi \end{array}}{\chi} \lor e$
\rightarrow	$\frac{\begin{bmatrix} \overline{\phi} \\ \vdots \\ \psi \end{bmatrix}}{\overline{\phi \to \psi}} \to \mathrm{i}$	$rac{\phi \phi ightarrow \psi}{\psi} ightarrow { m e}$
П	$\frac{\begin{bmatrix} \phi \\ \vdots \\ \bot \end{bmatrix}}{\neg \phi} \neg \mathbf{i}$	$\frac{\phi \neg \phi}{\perp} \neg e$
	(no introduction rule for \perp)	$\frac{\perp}{\phi}$ \perp e
77		$\frac{\neg \neg \phi}{\phi} \neg \neg e$

Some useful derived rules:

$$\frac{\phi \to \psi \quad \neg \psi}{\neg \phi} \text{ MT}$$

$$\frac{\phi}{\neg \neg \phi} \neg \neg i$$

$$\frac{1}{\phi \vee \neg \phi}$$
 LEM

参考资料(见课程主页):

Michael Huth and Mark Ryan, LOGIC IN COMPUTER SCIENCE: Modelling and Reasoning about Systems, pp. 27, Cambridge Press.

论证中的谬误(举例)

•
$$p \rightarrow q$$
, $q \vdash p$

•
$$p \rightarrow q$$
, $\neg p \vdash \neg q \times$

$$p \rightarrow q, p \vdash q$$

$$p \rightarrow q, \neg q \vdash \neg p$$

例子:用自然演绎证明Aristotle的三段论

命题逻辑的正确性与完备性

• 自然演绎规则是正确的,完备的

$$\phi_1, \dots, \phi_n \vdash \phi$$
 is valid iff $\phi_1, \dots, \phi_n \models \phi$ holds

基于自然演绎规则的推导

基于真值表的语义蕴涵

用推理规则及逻辑等价建立论证

- 已知 $(p \land q) \lor r$ 和 $r \rightarrow s$, $p \lor s$ 是否为真?
 - $(p \land q) \lor r \equiv (p \lor r) \land (q \lor r)$
 - $r \rightarrow s \equiv \neg r \lor s$

$$(p \lor r) \land (q \lor r) \vdash p \lor r$$
 化简 $p \lor r, \neg r \lor s \vdash p \lor s$ 消解

So
$$(p \lor r) \land (q \lor r), \neg r \lor s \vdash p \lor s$$

So
$$(p \land q) \lor r, r \rightarrow s \vdash p \lor s$$

用语义蕴涵进行推理

• 已知 $(p \land q) \lor r \land r \rightarrow s, p \lor s$ 是否为真?

$$(p \land q) \lor r, r \rightarrow s \models p \lor s$$

问题转化为:

$$((p \land q) \lor r) \land (r \rightarrow s) \rightarrow (p \lor s)$$
 是否永真?

把这个命题表达式转化为CNF(合取范式),即可判断

用推理规则建立论证

- "今天下午不出太阳并且比昨天冷", "只有今天下午出太阳,我们才去游泳", "若我们不去游泳,则我们将乘独木舟游览", "若我们乘独木舟游览,则我们将在黄昏时回家",结论"我们将在黄昏时回家"。
- p: 今天下午出太阳, q: 今天比昨天冷, r: 我们将去游泳,
- s: 我们将乘独木舟游览, t: 我们将在黄昏时回家。
 - ¬*p* ∧ q
 - $r \rightarrow p$
 - $\neg r \rightarrow s$
 - $s \rightarrow t$

Jaśkowski style

Example 1.11 Here is an example of a theorem whose proof utilises most of the rules introduced so far:

