

4. laboratorijska vježba

Sinteza u frekvencijskom području

Ime i prezime:

JMBAG:

Uvodne napomene

Svrha vježbe

Ovladati sintezom sustava upravljanja u frekvencijskom području primjenom korekcijskih članova.

• Priprema

Proučite poglavlje predavanja: "Sinteza sustava upravljanja u frekvencijskom području".

 Vježba se radi u Matlabu. Matlab toolboxi potrebni za vježbu: Control System Toolbox, Simulink, Symbolic Math Toolbox

• Prikaz rezultata

Tražene slike (Bodeovi dijagrami, odzivi) moraju biti priložene u tražena polja u izvještaju u **png** formatu (za Adobe Reader 9 datoteka se prilaže: Tools->Comment & Markup->Attach a File as a Comment). Grafovi s više krivulja moraju biti označeni **legendom**.

• Korisne Matlab funkcije:

tf, bode, margin, step, stepinfo, bandwidth, dcgain, ltiview, c2d

Rad na vježbi

Zadatak 1 : Sinteza kontinuiranog regulatora

Zadan je model istosmjernog motora:

$$s(Js+b)\theta(s) = KI(s)$$

$$(Ls+R)I(s) = U - Ks\theta(s)$$

$$G(s) = \frac{\theta}{U} = \frac{K}{s((Js+b)(Ls+R) + K^2)},$$

gdje je U napon, a θ kut zakreta osovine motora. Parametri su: $J=0.01~\mathrm{Nm/rad/s^2},\ b=0.1~\mathrm{Nm/rad/s},\ K=0.01~\mathrm{Nm/A},\ R=1~\Omega,\ L=0.5~\mathrm{H}.$ Postavljeni su sljedeći zahtjevi:

- Vrijeme prvog maksimuma prijelazne funkcije zatvorenog kruga mora biti $t_m \leq 1$ s.
- Prijelazna funkcija zatvorenog kruga mora imati nadvišenje $\sigma_m \leq 10 \%$.
- Sustav ne smije imati pogrešku u stacionarnom stanju pri skokovitoj pobudi.

Korištenjem sinteze sustava upravljanja u frekvencijskom području projektirajte kontinuirani regulator koji će zadovoljiti postavljene zahtjeve. Pritom možete koristiti proporcionalno pojačanje i odgovarajući korekcijski član. U sljedećem polju ukratko opišite korake izvoda (napišite i međurezultate):

Pojedine korake sinteze prikažite korištenjem Bodeovog dijagrama tako da na **istom grafu** prikažete **Bodeov dijagram** otvorenog kruga za:

- nekompenzirani sustav,
- sustav kompenziran samo proporcionalnim pojačanjem s obzirom na zadano vrijeme prvog maksimuma,
- konačni kompenzirani sustav.

Bodeov dijagram priložite u izvještaj u sljedeće polje.

Za navedene sustave također priložite odziv **izlazne** (u jednom grafu) i **upravljačke** veličine (u drugom grafu) zatvorenog kruga s obzirom na skokovitu pobudu te dobivene prijenosne funkcije regulatora i pokazatelje kvalitete upravljanja upišite u tablicu 1.

	Nekompenz. sus-	Proporc. pojača-	Konačni sustav
	tav	nje	Konaciii sustav
Prijenosna funkcija regulatora	1		
Presječna frekvencija [rad/s]			
Fazno osiguranje [°]			
Širina pojasa [rad/s]			
Nadvišenje [%]			
Vrijeme porasta (10- 90%) [s]			
Vrijeme prvog maksi- muma [s]			

Tablica 1: Rezultati

Komentirajte izbor korekcijskih članova. Mogu li se ovdje koristiti svi korekcijski članovi? Ako ne, zašto?

Komentirajte dobivene rezultate:

Zadatak 2 : Sinteza diskretnog regulatora

Za sustav i zahtjeve iz 1. zadatka, projektirajte diskretni regulator pomoću metoda EMUL1, EMUL2 i sinteze u diskretnom području opisanih u predavanjima.

Pritom pretpostavite da je regulator implementiran u baterijski napajanom kontroleru, te da bi se smanjilo potrošnju energije potrebno je raditi na čim manjem taktu procesora. Da biste to postigli odaberite **najviše moguće vrijeme uzorkovanja** koje zadovoljava zadane zahtjeve:

 $T_s =$

U sljedećem polju ukratko prikažite korake izvoda za pojedine metode projektiranja diskretnog regulatora.

U jednom grafu priložite **prijelazne funkcije** zatvorenog kruga za:

- kontinuirani regulator,
- EMUL1 regulator,
- EMUL2 regulator,
- retulator dobiven sintezom u diskretnom području.

Za navedene regulatore također u tablicu 2 upišite prijenosne funkcije regulatora i pokazatelje kvalitete upravljanja.

	Kontinuirani regulator	EMUL1	EMUL2	Sinteza u diskr. podr.
Prijenosna funkcija regulatora				
Presječna frekvencija [rad/s]				
Fazno osiguranje [°]				
Širina pojasa [rad/s]				
Nadvišenje [%]				
Vrijeme porasta (10- 90%) [s]				
Vrijeme prvog maksi- muma [s]				

Tablica 2: Usporedba diskretnih regulatora

Koment	iraite	dobivene	rezultate
Romene	μ_{a}	donivene	rezunate

Zaključak

Vaš zaključak nakon vježbe. Također napišite što ste naučili u ovoj vježbi i gdje biste to primijenili u praksi.

Ako ste uočili neku pogrešku u vježbi ili imate komentare, sugestije, kritike, prijedloge za poboljšanja i slično, to upišite ovdje: