Lemma 4.1. Let P be any distribution and consider a selection function g_{θ} with a threshold θ whose coverage is $c(\theta, P)$. Let $0 < \delta < 1$ be given and let $\hat{c}(\theta, S_m)$ be the empirical coverage w.r.t. the set S_m , sampled i.i.d. from P. Let $b^*(m, m \cdot \hat{c}(\theta, S_m), \delta)$ be the solution of the following equation:

$$\arg\min_{b} \left(\sum_{j=0}^{m \cdot \hat{c}(\theta,S_m)} \binom{m}{j} b^j (1-b)^{m-j} \leq 1-\delta \right).$$

Then

$$Pr_{S_m}\{c(\theta, P) < b^*(m, m \cdot \hat{c}(\theta, S_m), \delta)\} < \delta.$$

Proof. We aim to establish an upper bound, b^* , for the coverage, $c(\theta, P)$, that holds with a probability of at most δ . The coverage $c(\theta, P)$ is equivalent to the probability that $g_{\theta}(x) = 1$ for a sample $x \sim P$, we will define this event as a 'success'. Define:

Let E_k be the event that at most $k = m \cdot \hat{c}(\theta, S_m)$ samples x satisfy $g_{\theta}(x) = 1$ (or at most k 'successes'), when considering $c(\theta, P)$ to be the probability of a single success. Thus,

$$Pr\{E_k\} = Bin(m, m \cdot \hat{c}(\theta, S_m), c(\theta, P)). \xrightarrow{\hat{c} \in \mathcal{C}(\theta, P)} \xrightarrow{\text{for } C \in \mathcal{C}(\theta, P)} \xrightarrow{\text{this area}} (3)$$

By definition, there is a probability of at most δ , that $k = m \cdot \hat{c}(\theta, S_m)$ 'successes' would fall into the right tail of size δ of the binomial (where the probability of a single success is $c(\theta, P)$). If this happens, then we get that the probability for at most $k = m \cdot \hat{c}(\theta, S_m)$ 'successes' is greater than $1 - \delta$. Mathematically,

$$Pr\{E_k\} > 1 - \delta.$$

$$\begin{array}{c} & \text{Pr}\{E_k\} \text{ is exactly this area. (A)} \\ & \text{this area. (A)} \\ & \text{is greater then} \end{array}$$

Let \hat{E}_k be the event that at most $k = m \cdot \hat{c}(\theta, S_m)$ samples x satisfy $g_{\theta}(x) = 1$ (or at most k 'successes'), when the probability for a single success is b^* . It holds (2) that,

$$Pr\{\hat{E}_k\} = Bin(m, m \cdot \hat{c}(\theta, S_m), b^*) = 1 - \delta.$$

$$\stackrel{\mathcal{E}:\mathcal{E}(\theta, S_m)}{\longrightarrow} \stackrel{\text{is area, Which is 1-5.}}{\longrightarrow} (5)$$

Therefore,

$$Pr\{E_k\} > Pr\{\hat{E}_k\}. \tag{6}$$

Consider the following statement,

let p_1 , p_2 be two different probabilities for a single success. If the probability of at most k successes (out of n attempts) is more likely when considering p_1 as the probability of a single success, rather than p_2 , we can conclude that $p_1 < p_2$.

Therefore, since the event of E_k occurs with higher probability then the event \hat{E}_k , see Eq. (6), we can conclude that $c(\theta, P) < b^*$. This deduction is only true if we assume that $Pr\{E_k\} > 1 - \delta$, and this assumption is true with probability at most δ . Hence, we get that with probability at most δ , it holds that $c(\theta, P) < b^*$.

