Structure des taux d'intérêt

Simon-Pierre Boucher 3 Février 2021

Relation risque-rendement

- Un des principes les plus fondamental en finance est qu'un actif qui est perçu comme étant plus risqué, devra forcément offrir un rendement plus élevé.
- Le taux de rendement d'une obligation devrait donc refléter son risque.
- Nous allons nous concentrer sur le risque d'échéance.
 - Si le risque d'un flux monétaire change en fonction de son échéance, alors le taux d'actualisation devrait aussi changer selon l'échéance.

Composantes du taux de rendement

Nous allons maintenant séparer le taux de rendement d'une obligation en deux composantes, soit le taux de rendement de référence et la prime de risque.

- Taux de rendement de référence (base interest rate): Taux que l'on pourrait obtenir sur un titre autrement identique mais sans risque.
 - Marché domestique: Titres du gouvernement du Canada;
 - Marchés internationaux: Bons du Trésor américain;
 - ▶ Peut aussi être choisi pour isoler un risque particulier.
- Prime de risque (risk premium) ou écart de taux (yield spread): Prime de rendement qui reflète le risque de l'obligation.

Mesures de la prime de risque

On peut mesurer la prime de risque de trois façons suivante:

Prime de risque

$$y^{obl} - y^{ref}$$

Prime de risque relative

$$\frac{y^{obl} - y^{ref}}{y^{ref}}$$

Ratio de taux

$$\frac{y^{obl}}{y^{ref}}$$

οù

- y^{obl} = rendement de notre obligation
- y^{ref} = rendement sans risque

Courbe des rendements à l'échéance

- La courbe des rendements à l'échéance est une représentation graphique nous permettant de voir le risque d'une obligation en terme d'échéance.
- Cela nous permet de voir la relation qui existe entre les taux de rendement de plusieurs obligations ayant un risque de crédit similaire et leur échéance.
- Historiquement, la courbe des rendements à l'échéance est croissante plutôt que décroissante.
 - ► Lorsque l'économie se porte bien, la présence d'une courbe des rendements à l'échéance croissante est encore plus probable.
- Plus l'échéance est éloignée, plus l'obligation est volatile et donc plus le taux de rendement exigé devrait être élevé.

Courbe des rendements à l'échéance

- La courbe des rendements à l'échéance est souvent utilisée pour déterminer le taux de rendement permettant d'évaluer la valeur théorique d'une obligation non incluse dans la courbe.
- Il s'agit d'une méthode problématique étant donnée que des obligations ayant la même échéance peuvent avoir des taux de coupons différents.
 - Sachant qu'une obligation ayant un taux de coupon plus élevé est moins volatile.
 - Il s'agit donc d'une obligation avec un risque plus faible et par le fait même une obligaiton qui offre plus petit rendement.
 - On peut donc avoir deux obligations de même échéance, avec des rendements qui diffèrent.
- Une façon de rendre la courbe des rendements à l'échéance robuste, est de construire une courbe basée sur des obligations ayant le même taux de coupon.

Taux de rendement au comptant

- Le taux de rendement au comptant z_t est le taux d'une obligation à escompte pure d'échéance t périodes.
- Le taux est appelé également spot rate.
- Il n'existe pas d'obligations à escompte pure pour toutes les échéances.
 - Les taux de rendement au comptant sont construits à l'aide d'une théorie simplificatrice.

Structure à terme des taux d'intérêt

- La structure à terme des taux d'intérêts représente l'ensemble des taux de rendement au comptant pour différentes échéances (z_t) .
- En utilisant cette stucture, il nous sera possible de construire la courbe théorique des rendements au comptant à l'échéance.
- La représentation des z_t dans la courbe devra utiliser un taux nominale annuel.

Construction des Z_t

- On sait déja qu'une obligation réguilière est composé de flux monétaires (FM).
- Si nous supposons que chaque flux monétare d'une obligations régulières sont prisent individuellement, il est possible de dire qu'une obligation régulière est équivalent à plusieurs obligations zéro-coupon.
- Chaque flux monétaire représentera un obligation zéro-coupon et le flux monétaire en question sera le proxy de la veleur à échéance M.

Construction des Z+

Selon la théorie de l'absence d'arbitrage, la valeur de l'obligation à coupons devrait être égale à la somme de la valeur des obligations à escompte pure:

$$P = \frac{C}{(1+z_1)^1} + \frac{C}{(1+z_2)^2} + \frac{C}{(1+z_3)^3} + \dots + \frac{C}{(1+z_n)^n} + \frac{M}{(1+z_n)^n}$$

- En supposant qu'il y a absence d'arbitrage, il est possible de résoudre l'équation précédente afin de trouver les valeurs de $z_1, z_2, z_3, ..., z_n$.
- Pour trouver les taux au comptant pour toutes les échéances, il faut procéder à l'aide d'une méthode récursive (bootstrapping method).
- S'il manque des échéances, il faut utiliser une technique de lissage, telle que l'interpolation linéaire, pour déterminer les taux manquants.

Courbe des rendements à l'échéance au pair

- Courbe des rendements à l'échéance utilisant des obligations de référence ayant été transformées pour être évaluées au pair.
- Cette courbe est utilisée en pratique à la place de la courbe des rendements à l'échéance pour réduire l'effet du taux de coupon.
- Pour chaque échéance n, cette courbe utilise le taux de coupon correspondant au coupon C déterminé à l'aide de l'équation suivante:

$$M = \sum_{t=1}^{n} \left[\frac{C}{(1+z_t)^t} \right] + \frac{M}{(1+z_n)^n}$$

 On peut donc voir que pour la courbe des rendements à l'échéance au pair on replace dans la formule le prix de l'obligation P par la valeur à l'échéance M.

Taux de rendement à terme

- $f_{t,n}$ représente le taux de rendement à terme pour une échéance de n périodes à compter de la période t.
- Le taux de rendement à terme est le taux de rendement (effectif par période) implicite entre les périodes t et t+n étant donné les taux de rendement au comptant pour les échéances t et t+n périodes, t0 et t1 et t2 et t3 et t4 et t4 et t5 et t6 et t7 et t8 et t9 et t9
- Les taux de rendement à terme représentent les taux de rendement au comptant futurs extraits des taux de rendement au comptant actuels.

Trouver $f_{t,n}$

Le taux de rendement à terme $t_{f,n}$ est le taux qui rend un investisseur indifférent entre les deux situations suivantes:

- Investir de 0 à t + n à z_{t+n}
- Investir de 0 à t à z_t et de t à t+n à $f_{t,n}$

Grâce à cette dernière hypothèse, on peut poser la formule suivante

$$(1+z_{t+n})^{t+n}=(1+z_t)^t\times(1+f_{t,n})^n$$

- L'investisseur se sert de son anticipation du taux au comptant d'échéance n périodes au temps t, $E(z_n)$, par rapport au taux à terme $f_{t,n}$, pour décider s'il doit investir jusqu'à t au taux z_t ou jusqu'à t+n au taux z_{t+n} .
- Il peut, entre autre, se garantir un taux $f_{t,n}$ en empruntant à z_t pour investir à z_{t+n} .

- Investir pendant 4 périodes à un taux au comptant z₄
- La combinaison suivante
 - Investir pendant 1 période à un taux au comptant z₁
 - lacktriangle Investir pendant 1 période dans 1 période au taux à terme $f_{1,1}$
 - ▶ Investir pendant 1 période dans 2 périodes au taux à terme $f_{2,1}$
 - ▶ Investir pendant 1 période dans 3 périodes au taux à terme $f_{3,1}$

$$(1+z_4)^4 = (1+z_1) \times (1+f_{1,1}) \times (1+f_{2,1}) \times (1+f_{3,1})$$

- Investir pendant 4 périodes à un taux au comptant z₄
- La combinaison suivante
 - Investir pendant 1 période à un taux au comptant z₁
 - ▶ Investir pendant 2 périodes dans 1 période au taux à terme f_{2,1}
 - ▶ Investir pendant 1 période dans 3 périodes au taux à terme $f_{3,1}$

$$(1+z_4)^4 = (1+z_1) \times (1+f_{1,2})^2 \times (1+f_{3,1})$$

- Investir pendant 4 périodes à un taux au comptant z₄
- La combinaison suivante
 - Investir pendant 1 période à un taux au comptant z₁
 - ▶ Investir pendant 1 période dans 1 période au taux à terme $f_{1,1}$
 - ▶ Investir pendant 2 périodes dans 2 périodes au taux à terme f_{2,2}

$$(1+z_4)^4 = (1+z_1) \times (1+f_{1,1}) \times (1+f_{2,2})^2$$

- Investir pendant 4 périodes à un taux au comptant z₄
- La combinaison suivante
 - Investir pendant 2 périodes à un taux au comptant z₂
 - ▶ Investir pendant 1 période dans 2 périodes au taux à terme $f_{2,1}$
 - ▶ Investir pendant 1 période dans 3 périodes au taux à terme $f_{3,1}$

$$(1+z_4)^4 = (1+z_2)^2 \times (1+f_{2,1}) \times (1+f_{3,1})$$

Formes de la structure à terme des taux

- Plusieurs théories ont été mit de l'avant pour essayer d'expliquer la forme de la structure à terme des taux à travers le temps.
- Historiquement, les trois formes suivantes ont été observées.
 - Croissante ou normale
 - Décroissante ou inversée
 - Horizontale ou plate

- La théorie des anticipations pures montre que les taux de rendement à terme sont des estimateurs non biaisés des taux au comptant leur étant associés dans le futur.
- De façon simple, on peut imaginer un monde avec 2 périodes. La première période allant de t=0 à t=1 et la deuxième période allant de t=1 à t=2.
- Si on pose l'hypothèse que la structure à terme est croissante, alors le rendement que je vais avoir en achetant une obligation en t=0 et venant à échéance en t=1 sera plus faible que le rendement obtenu avec une obligation achetée en t=0 et venant à échéance en t=2.

- Le taux d'une obligation achetée en t=0 et venant à échéance en t=1 est représenté par z_1 , alors que le taux d'une obligation achetée en t=0 et venant à échéance en t=2 est représenté par z_2 .
- De plus, nous allons représenter le taux future d'une obligation qui serait achetée en t=1 et qui viendrait à échéance en t=2 par $E_0(z_{1,1})$.
- On peut dire que $E_0(z_{1,1})$ représente l'anticipation en t=0 du taux qui sera en vigueur dans une période et ce pour une période.

Afin d'éviter la présence d'arbitrage, il doit y avoir un taux de rendement à terme $f_{1,1}$ qui rend l'équation suivante vrai.

$$(1+z_2)^2 = (1+z_1) \times (1+f_{1,1})$$

On peut donc exprimer $f_{1,1}$ en fonction de z_1 et z_2 de la façon suivante.

$$f_{1,1} = \frac{(1+z_2)^2}{(1+z_1)} - 1$$

En appliquant la définition de la théorie des anticipations pures à notre monde composé de 2 périodes, on arrive à l'énoncé:

La théorie des anticipations pures montre que le taux de rendement à terme $f_{1,1}$ est un estimateur non biaisés du taux au comptant $z_{1,1}$ lui étant associés dans le futur.

Ce dernier énoncé peut être représenté par l'équation suivante:

$$E_0(z_{1,1}) = f_{1,1} = \frac{(1+z_2)^2}{(1+z_1)} - 1$$

- Dans la théorie des anticipations pures, les agents sont neutres face au risque et la structure à terme des taux d'intérêt reflète simplement les anticipations du marché quant aux taux au comptant à venir.
- Voici maintenant, les propriétés de cette théorie.
 - ▶ Forme croissante \rightarrow hausse future de z_t
 - ▶ Forme décroissante \rightarrow baisse future de z_t
 - ▶ Forme horizontale \rightarrow stabilité future de z_t

Théorie de la prime de liquidité

- La théorie de la prime de liquidité nous dit que le taux de rendement à terme est égal au taux de rendement au comptant anticipé pour la période correspondante auquel on ajoute une prime de liquidité qui augmente avec l'échéance.
- Si nous reprenons l'example de la théorie précédente.

$$(1+z_2)^2 > (1+z_1) \times (1+f_{1,1})$$

 Vous aurez remarqué qu'à la place d'une égalité, nous avons une inégalité.

Théorie de la prime de liquidité

Théorie des anticipations pures

• Selon la théorie des anticipations pures il y aura possibilité d'arbitrage en achetant un portefeuille payant un taux z_2 chaque années pendant deux ans et vendant un portefeuille payant un taux z_1 la première année et un taux $f_{1,1}$ la deuxième année.

Théorie de la prime de liquidité

 La théorie de la prime de liquidité dirait qu'il ne s'agit pas nécessairement d'une opportunité d'arbitrage étant donnée que le portefeuille payant un taux z₂ représente un plus grand risque de liquidité.

Théorie de la prime de liquidité

- Sachant que le risque doit être rénuméré, il est normal qu'il offre un rendement supérieur.
- dans cette théorie, les agents sont averses au risque et préfèrent les placements à court terme (plus liquides et moins volatils) aux placements à long terme.
- La structure à terme des taux d'intérêt reflète les anticipations du marché quant aux taux au comptant à venir ainsi que la prime de liquidité.

Théorie de la segmentation du marché

- Dans la théorie de la segmentation du marché la forme de la courbe est déterminée par l'offre et la demande des titres financiers pour chaque échéance.
- Les agents ont des horizons bien définis et n'ont aucune préférence pour les taux d'échéances autres que leurs horizons.
- La détermination des taux à court terme est indépendante de celle des taux à long terme puisque le marché à court terme est segmenté du marché à long terme.

Théorie des habitats préférés

- La théorie des habitats préférés est une combinaison de la théorie de la prime de liquidité et de la théorie de la segmentation du marché.
- Cette théorie suppose qu'il existe des primes de liquidité.
- Puisque le marché est partiellement segmenté, celles-ci ne sont pas nécessairement une fonction croissante de l'échéance.
- Les agents sont prêts à sortir de leur habitat préféré si on leur offre une prime de liquidité suffisante.