Машинное обучение Компьютерное зрение

Задачи компьютерного зрения

• Классификация:

- распознавание лиц, объектов, жестов
- распознавание рукописного текста
- поиск по изображению

• Регрессия:

- определение положения и ориентации объекта в пространстве
- стерео-реконструкция
- восстановление зашумленных изображений

• Выбросы:

- выявление аномалий
- реферирование видео

• Кластеризация:

- сегментация изображений
- поиск дубликатов (фотоподделки)

Распознавание лиц

Patch Model

Распознавание жестов

Стерео реконструкция

Стерео реконструкция

Восстановлление зашумленных изображений

noisy

denoised

Выявление аномалий

Реферирование видео (video summarization)

Реферирование видео (video summarization)

Subshot Segmentation

with Gaze

Building Subshot Representation

Compute covariance matrix for subshots

Constrained Submoudlar

Maximization

Aggregate fixation counts for each subshot

1:00PM

2:00PM

3:00PM

4:00PM

Data Representation Final Summary Input Subshots

Сегментация изображений

Поиск дубликатов

Признаки изображений

- Глобальные:
 - полноцветные гистограммы
 - контекст формы
 - GIST
- Локальные:
 - Детекторы: LoG, DoG, DoH, MSER, Hessian Affine, KAZE, FAST
 - Дескрипторы: SIFT, GLOH, SURF, LIOP, BRIEF, ORB, FREAK, BRISK, CARD
- Свертки с ядрами

Полноцветная гистограмма

Обычная RGB-гистограмма

Полноцветная гистограмма

Контекст формы

GIST (суть)

$$g_k = \sum_{x,y} w_k(x,y) \times |I(x,y) \otimes h_k(x,y)|^2$$

- ⊗ свертка
- I(x,y) яркость
- h_k(x,y) фильтр Габора (6 ориентаций, 4 масштаба)
- w_k(x,y) окно (делит изображение на 16 частей)
- Итого: 16х6х4 = 384 признака

Детектирование особых точек (Blob detection)

Детектирование особых точек (Blob detection)

LoG - Laplacian of Gaussian

$$g(x, y, t) = \frac{1}{2\pi t^2} e^{\frac{x^2 + y^2}{2t^2}} \qquad G = g(x, y, t) * \text{image}(x, y)$$

$$LG = \Delta G = G_{xx} + G_{yy}$$

DoG – Difference of Gaussians

$$G_t = \Delta G \qquad LG \approx \frac{G(x, y, t_2) - G(x, y, t_1)}{t_2 - t_1}$$

• DoH - Determinant of Hessian – инвариантен относительно аффинных преобразований

$$\det H = G_{xx}G_{yy} - G_{xy}^2$$

 $\det \mathcal{H} L$

-H where $H \geq 0$

local extrema of $\nabla^2 L$

local extrema of $\det \mathcal{H}L$

local extrema of H

Детектирование угловых точек

- Моравек сравнивал окрестность каждой точки изображения, смещенную в разных направлениях.
 - Если не отличается, тогда это внутренняя точка
 - Если отличается только в одном направлении (и противоположном) – это кусок прямой границы
 - Если отличается по всем направлениям это угол
- Обобщение структурный тензор:

$$A = \sum_{u} \sum_{v} w(u,v) egin{bmatrix} I_x^2 & I_x I_y \ I_x I_y & I_y^2 \end{bmatrix} = egin{bmatrix} \langle I_x I_y
angle \ \langle I_x I_y
angle & \langle I_x I_y
angle \end{bmatrix}$$

точка угловая ттт, когда оба с.з. велики

$$M_c = \lambda_1 \lambda_2 - \kappa \, (\lambda_1 + \lambda_2)^2 = \det(A) - \kappa \, \operatorname{trace}^2(A)$$

MSER - Maximally stable extremal regions

(a) Gray scale input image

(b) Detected MSERs

(a) Input Image

(b) Image histogram

(c) MSER result

SIFT – Scale Invariant Feature Transform

SIFT – Scale Invariant Feature Transform

Поиск аффинного преобразования конфигураций особых точек — решаем СЛАУ методом наименьших квадратов: $_{\lceil m1 \rceil}$

$$\left[egin{array}{c} u \ v \end{array}
ight] = \left[egin{array}{cc} m1 & m2 \ m3 & m4 \end{array}
ight] \left[egin{array}{c} x \ y \end{array}
ight] + \left[egin{array}{c} tx \ ty \end{array}
ight]$$

$$\begin{bmatrix} x & y & 0 & 0 & 1 & 0 \\ 0 & 0 & x & y & 0 & 1 \\ \dots & & & & & \end{bmatrix} \begin{bmatrix} m2 \\ m3 \\ m4 \\ tx \end{bmatrix} = \begin{bmatrix} u \\ v \\ \vdots \end{bmatrix}$$

26

Сверточные нейронные сети

