Assoziationsmining Datalab Brown-Bag-Seminar

Thoralf Mildenberger

Institut für Datenanalyse und Prozessdesign School of Engineering Zürcher Hochschule für Angewandte Wissenschaften

09.07.2014

Motivation

- Projekt mit Telekom-Anbieter, Ziel war Quantifizierung von Aufwand bei Supportanfragen
- Viele Daten vorhanden zu Kunden und Supporttickets, nur für Kunden mit Supportanfragen
- Interessant: Gruppen mit hohem Anteil an Supportvolumen oder -kosten
- Nicht möglich: Aussagen über Wahrscheinlichkeiten für Supportanfragen in bestimmten Kundengruppen, da keine Daten für Kunden ohne Anfrage vorliegen
- Kein Prognoseproblem!
- Keine eindeutige Response
- ► Vorgehensweise: Benutzung von Methoden des Frequent Itemset Mining bzw. Mining von Assoziationsregeln

Übersicht

- Frequent Itemset Mining
- Assoziationsregeln
- Erweiterung auf allgemeinere kategorielle Variablen
- Variation: Anwendung auf mit Kosten bewertertete Requests
- Bemerkungen und Fazit

Keine Originaldaten aus dem Projekt!

- ► Software: Algorithmen apriori und eclat, implementiert in R-Paket arules (Vignette lesenswert!)
- Ursprüngliche Anwendung der Methode: Market Basket Analysis (welche Produkte werden häufig zusammen gekauft)
- Variablen ursprünglich nur: Produkt A gekauft / nicht gekauft,
 Produkt B gekauft / nicht gekauft, etc.
- Nur Ja/Nein, keine Mengenangaben!

Typischer Datensatz sieht so aus:

Transaktion 1 | Milch, Brot

Transaktion 2 | Brot, Butter

Transaktion 3 | Bier

Transaktion 4 | Milch, Brot, Butter

Transaktion 5 | Brot, Butter

Zur Analyse Darstellung als **Inzidenzmatrix** bzw. im sog. **horizontalen Layout**:

Transaktion	Milch	Brot	Butter	Bier
1	1	1	0	0
2	0	1	1	0
3	0	0	0	1
4	1	1	1	0
5	0	1	1	0

Alternative ("vertikale") Darstellung:

Item	Transaktionen
Milch	1,4
Brot	1,2,4,5
Butter	2,4
Bier	3

Qualität von Itemsets: Die Interessantheit wird gemessen durch den *Support* eines Itemsets;

$$= \frac{\text{Supp}(\{\text{Item 1, Item 2,...}\})}{\text{Anzahl Transaktionen mit Item 1 und Item 2,...}}$$

$$= \frac{\text{Anzahl Transaktionen insgesamt}}{\text{Anzahl Transaktionen insgesamt}}$$

Durch hinzufügen von Items wird der Support kleiner, da der Warenkorb immer genauer bestimmt wird.

Allgemein entsprechen \cup und \cap bei Itemsets \cap und \cup bei den zugehörigen Transaktionen!

- Von Interesse: Auffinden aller Itemsets mit Mindestsupport (z.B. 10%)
- ► Kombinatorisches Problem: Bei n verschiedenene Items gibt es $2^n 1$ verschiedene nichtleere Kombinationen von Items
- Problem wird handhabbar durch: Obergrenze Anzahl Items pro Itemset (also z.B. nur Itemsets mit 1,2,...,7 Items)
- ► Wichtiger: Man weiss **apriori**, dass durch Hinzufügen eines Items der Support nur kleiner werden kann. Hat also ein Set von 2 Items einen Support kleiner dem Minimalsupport, so muss man Obermengen von Items nicht mehr betrachten
- apriori-Algorithmus fängt mit einelementigen Itemsets an und betrachtet dann grössere Sets, wobei in jedem Schritt Itemsets mit zu geringem Support eliminiert werden
- ► Es existieren effizientere Alternativen wie z.B. eclat, die auf algebraischen Überlegungen oder Bäumen etc. basieren

Beispiel aus arules:

```
> library(arules)
> data(Groceries)
> itemsets<-apriori(Groceries,parameter=list(supp=0.03,target="frequent itemsets"))</pre>
parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen
               0.1 1 none FALSE
                                                      0.03
                                                                      10 frequent itemsets FALSE
                                              TRUE
                                                                1
algorithmic control:
filter tree heap memopt load sort verbose
    O. 1 TRUE TRUE FALSE TRUE
                                      TRUE
apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09)
                                 (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ... [169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [44 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 done [0.00s].
writing ... [63 set(s)] done [0.00s].
creating S4 object ... done [0.00s].
```

> inspect(itemsets)				
items suppor				
1	{specialty chocolate}	0.03040163		
2	{UHT-milk}	0.03345196		
3	{onions}	0.03101169		
4	{berries}	0.03324860		
5	{hamburger meat}	0.03324860		
6	{hygiene articles}	0.03294357		
7	{salty snack}	0.03782410		
8	{sugar}	0.03385867		
9	{waffles}	0.03843416		
10	{long life bakery product}	0.03741739		
11	{dessert}	0.03711235		
12	{canned beer}	0.07768175		
13	{cream cheese }	0.03965430		
14	{chicken}	0.04290798		
15	{white bread}	0.04209456		
16	{chocolate}	0.04961871		
17	{coffee}	0.05805796		
18	{frozen vegetables}	0.04809354		
19	{beef}	0.05246568		
20	{curd}	0.05327911		
21	{napkins}	0.05236401		
22	{pork}	0.05765125		
	{frankfurter}	0.05897306		
24	{bottled beer}	0.08052872		
25	{brown bread}	0.06487036		
26	{margarine}	0.05856634		
27	{butter}	0.05541434		
	{newspapers}	0.07981698		
	{domestic eggs}	0.06344687		
30	{fruit/vegetable juice}	0.07229283		

items 31 {whipped/sour cream}	support 0.07168277
31 (whinned/sour cream) (
(FF,	
32 {pip fruit}	0.07564820
33 {pastry} (0.08896797
34 {citrus fruit} (0.08276563
35 {shopping bags}	0.09852567
36 {sausage}	0.09395018
37 {bottled water}	0.11052364
38 {tropical fruit}	0.10493137
39 {root vegetables} (0.10899847
40 {soda}	0.17437722
41 {yogurt}	0.13950178
42 {rolls/buns}	0.18393493
43 {other vegetables}	0.19349263
44 {whole milk}	0.25551601
45 {whole milk,	
whipped/sour cream} (0.03223183
46 {pip fruit,	
whole milk}	0.03009659
47 {whole milk,	
pastry} (0.03324860
48 {citrus fruit,	
whole milk}	0.03050330
49 {sausage,	
rolls/buns} (0.03060498
50 {whole milk,	
bottled water}	0.03436706
51 {tropical fruit,	
other vegetables}	0.03589222
52 {tropical fruit,	
whole milk}	0.04229792

support	items	
,	{root vegetables,	53
s} 0.04738180	other vegetables}	
,	{root vegetables,	54
0.04890696	whole milk}	
	{rolls/buns,	55
0.03833249	soda}	
3,	{other vegetables,	56
0.03274021	soda}	
	{whole milk,	57
0.04006101	soda}	
	{yogurt,	58
0.03436706	rolls/buns}	
3,	{other vegetables,	59
0.04341637	yogurt}	
	{whole milk,	60
0.05602440	yogurt}	
3,	{other vegetables,	61
0.04260295	rolls/buns}	
	{whole milk,	62
0.05663447	rolls/buns}	
3,	{other vegetables,	63
0.07483477	whole milk}	

<u>Assoziationsreg</u>eln

Idee: Betrachtung von Assoziationsregeln des Typs:

$$\{\text{Item 1, Item 2}\} \Longrightarrow \{\text{item 3}\},\$$

also z.B. "wer Brot und Butter kauft, kauft auch Konfitüre"

Assoziationsregeln

Qualität von Assoziationsregeln: Confidence

und Lift:

$$\mathsf{lift}(\mathsf{linke}\;\mathsf{Seite} \Longrightarrow \mathsf{rechte}\;\mathsf{Seite}) = \frac{\mathsf{conf}(\mathsf{linke}\;\mathsf{Seite} \Longrightarrow \mathsf{rechte}\;\mathsf{Seite})}{\mathsf{supp}(\mathsf{rechte}\;\mathsf{Seite})}$$

Assoziationsregeln

```
> rules<-apriori(Groceries,parameter=list(supp=0.01,conf=0.5,target="rules"))</pre>
parameter specification:
confidence minval smax arem aval original Support support minlen maxlen target
       0.5 0.1 1 none FALSE
                                                     0.01
                                                                  10 rules FALSE
                                             TRUE
algorithmic control:
filter tree heap memopt load sort verbose
   O.1 TRUE TRUE FALSE TRUE 2
                                     TRUE
apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09)
                                (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ... [169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [88 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [15 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
```

Assoziationsregeln

> 1	inspect(rules)						
	lhs		rhs		support	confidence	lift
1	{curd.		1110		Duppor	001111401100	1110
_	yogurt}	=>	{whole	milk}	0.01006609	0.5823529	2.279125
2	{other vegetables, butter}	=>	{whole	milkl	0.01148958	0.5736041	2.244885
3	{other vegetables,		(#11010		0.01110000	0.0.00011	2.211000
•	domestic eggs}	=>	{whole	milk}	0.01230300	0.5525114	2.162336
4	{yogurt,						
5	whipped/sour cream} {other vegetables,	=>	{whole	milk}	0.01087951	0.5245098	2.052747
J	whipped/sour cream}	=>	{whole	milk}	0.01464159	0.5070423	1.984385
6	{pip fruit,						
	other vegetables}	=>	{whole	milk}	0.01352313	0.5175097	2.025351
7	{citrus fruit,						
	root vegetables}	=>	{other	vegetables}	0.01037112	0.5862069	3.029608
8	{tropical fruit,						
	root vegetables}	=>	{other	vegetables}	0.01230300	0.5845411	3.020999
9					0 04400707	0 5700400	0 000000
10	root vegetables} {tropical fruit,	=>	{whole	milk}	0.01199797	0.5700483	2.230969
10	vogurt}		{whole	millel	0.01514997	0.5173611	2 024770
11	{root vegetables,	-/	fwhore	mirk?	0.01514997	0.5175011	2.024110
	yogurt}	=>	fother	vegetables}	0.01291307	0.5000000	2.584078
12	{root vegetables,		(001101	1060100100)	0.0120100.	0.000000	2.0010.0
	yogurt}	=>	{whole	milk}	0.01453991	0.5629921	2.203354
13	{root vegetables,						
	rolls/buns}	=>	{other	vegetables}	0.01220132	0.5020921	2.594890
14	{root vegetables,			0			
	rolls/buns}	=>	{whole	milk}	0.01270971	0.5230126	2.046888
15	{other vegetables,						
	yogurt}	=>	{whole	milk}	0.02226741	0.5128806	2.007235

- Ursprüngliche Anwendung der Methode: Market Basket Analysis (welche Produkte werden häufig zusammen gekauft)
- Variablen ursprünglich nur: Produkt A gekauft / nicht gekauft,
 Produkt B gekauft / nicht gekauft, etc.
- Hier: erweitert auf kategorielle Variablen, wie z.B: Segment, codiert als Segment=KMU, ist dann jeweils "wahr" oder "falsch"
- Algorithmus sucht nun "itemsets", also Kombinationen vom Eigenschaften, die häufig gemeinsam auftreten, zum Beispiel:
 - ▶ {Produkt=A}
 - {Produkt=A, Kundentyp=Bestandskunde}
 - {Produkt=B, Tarif=Classic}
- Es muss nicht vorher festgelegt werden, welche Variablen interessant sind, Gruppen können durch verschiedene Variablen charakterisert sein

- Keine Zerlegung des gesamten Datensatzes wie bei der Cluster-Analyse, sondern suchen von möglichst grossen Teilgruppen, die sich überschneiden dürfen.
- Ein Request kann zu keiner, einer oder mehreren der gefundenen Gruppen gehören
- Nur möglich: Verknüpfung von Eigenschaften mit UND, nicht Verknüpfung mit NICHT und ODER (können notfalls aber mit Tricks codiert werden).

Beispiel:

$$\begin{split} & supp(\{Hotline > 40 \ Min.\}) & = 0.40 \\ & supp(\{Privatkunde, \ Firmware \ V3.9a\}) & = 0.25 \\ & supp(\{Privatkunde, \ Firmware \ V3.9a, \ Hotline > 40 \ Min.\}) & = 0.15 \end{split}$$

Regel {Priv., Fw. 3.9a} \Rightarrow {Hotl > 40} hat Confidence:

$$conf({Priv., Fw. 3.9a} \Rightarrow {Hotl > 40})$$
=\frac{supp({Priv., Fw. V3.9a, Hotl > 40})}{supp({Priv., Fw. V3.9a})}
=\frac{0.15}{0.25} = 0.6

(bei 60% der Requests von Privatkunden mit Firmware V3.9a dauert das Hotline-Gespräch länger als 40 Minuten)

Regel {Priv., Fw. 3.9a}
$$\Rightarrow$$
 {Hotl > 40} hat Lift:
lift({Priv., Fw. 3.9a} \Rightarrow {Hotl > 40})

$$= \frac{\text{conf}(\{\text{Priv., Fw. 3.9a}\} \Rightarrow \{\text{Hotl > 40}\})}{\text{supp}(\{\text{Hotline > 40 Min.}\})}$$

$$= \frac{0.6}{0.3}$$

$$= 2$$

Der Anteil der Requests mit Hotlinegespräch länger als 40 Min. in der durch die Regel identifizierten Gruppe ist doppelt so gross wie über alle Requests gesehen.

Die Regel bringt also eine "Verbesserung" um einen Faktor 2.

Variation: Anwendung auf mit Kosten bewertertete Requests

Mit einigen Modifikationen einfach möglich: Analyse nicht nach Häufigkeit, sondern Kosten:

- ► Berechne für jeden Request (grob) Kosten
- Generiere Frequent Itemsets
- Berechne für jedes Itemset Kosten aller Requests in dieser Gruppe, Anteil an Gesamtkosten, Kosten pro Request und relative Kosten pro Request
- ► Filtriere Itemsets nach relevanten Kennzahlen, z.B. nur solche mit mindestens 10% Anteil an Gesamtkosten

Nachteil: Ursprüngliche Konstruktion der Itemsets nach Häufigkeit, nicht nach Kosten. Gewichte sollten eigentlich einfach in apriori zu implementieren sein!

Bemerkungen und Fazit

Unterschiede gegenüber klassischen Methoden:

- Keine Segmentierung der Daten, Beobachtung kann zu keiner, einer oder mehreren Gruppen gehören
- ► Fischen im Trüben: geeignet bei vielen Variablen ohne eindeutige Response
- Ziel nicht Vorhersage oder Modell für jeden möglichen Fall, sondern Identifikation relevanter Gruppen
- Algorithmisch definiert, Hauptziel: Kombinatorische Explosion in den Griff zu bekommen
- Unklar: Statistische Eigenschaften (massives multiples "Testen" bzw. überhaupt kein Testen; Lift und Confidence bei unterschiedlich grossen Gruppen kaum vergleichbar)
- Kann nur der Hypothesenbildung, nicht der Hypothesenüberprüfung dienen

Zum Weiterlesen:

Hastie, Tibshirani, Friedman (2009), *Elements of Statistical Learning*, 2nd ed., Springer [Kap. 14.2]

Hahsler, Grün, Hornik, Buchta (2014), Introduction to arules - A computational environment for mining association rules and frequent item sets, Vignette zu R-Paket arules

Han, Kamber, Pei (2012), *Data Mining*, 3rd ed, Morgan Kaufmann, Amsterdam [Kap. 6 u. 7]