ÖVEGES JÓZSEF Fizikaverseny 2014. február 24.

Öveges József (1895-1979) a jeles kísérletező fizikatanár, természettudományos kultúránk igaz ápolója.

VII. osztály

I. feladat

A.) Tárgyald a nyomást (kísérleteket és következtetéseit is magyarázd).

4 p

- B.) Három *m* tömegű pontszerű test egy ABC egyenlő szárú háromszög csúcsaiban van elhelyezve. (A három test csak egymással van kölcsönhatásban, a Földdel nincs!) Az alapon fekvő két egyenlő szög A szög = B szög = 30°-os. Jelöld F-el az A és C pontban levő *m* tömegű testek között fellépő gravitációs erő nagyságát. Legyen pl. az F nagysága a rajzban 2 *cm*.
 - a.) Szerkeszd meg a három *m* tömegű testre, a testek között fellépő gravitációs kölcsönhatásból származó erők eredőjét.
 - b.) Határozd meg csak a C pontban levő, *m* tömegű testre ható eredő erő nagyságát (F-el kifejezve, F függvényében), irányát és irányítását is.

6 p

II. feladat

Egy fémalkatrész két m_1 , illetve m_2 tömegű és R_1 , illetve R_2 sugarú fémgömbből áll. Ezeket a gömböket egy d hosszúságú és m_3 tömegű vasrúd köti össze.

- a.) Számítsd ki a fémalkatrész súlypontját! Alkalmazás: m_1 = 3 kg, R_1 = 0,06 m, m_2 = 1500 g, R_2 = 45 mm, d = 10 cm, m_3 = 0,5 kg.
- b.) Hogyan határoznád meg gyakorlatilag, kísérlettel ennek a (súlyzóhoz hasonló) fémalkaltrésznek a súlypontját?

10 p

III. feladat

A.) Magyarázd meg a bélyegcsipesz működését. Készíts rajzot is.

2 p

B.) A differenciális hengerkerék (lásd ábra) hengereinek sugara R, illetve *r*, a hajtókar hossza *k*.

Mekkora erővel kell hatni a hajtókarra, ha egyenletes forgatással M tömegű testet akarunk felemelni a differenciális hengerkerékkel. Alkalmazás: R = 0,25 *m*, *r* = 50 *mm*, *k* = 70 *cm*, M = 150 *kg*. (A teher emelésekor a kötél a kisebb átmérőjű dobról (hengerről) a nagyobbra tekeredik fel.)

