Universidade do Minho

10 de novembro de 2023

1º Teste de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2 horas

Este teste é constituído por 5 perguntas. Todas as respostas devem ser devidamente **justificadas**.

1. Seja $A = \{a, b\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4, 5, 6\}, A, A \cup \{1, \Delta\}, \delta, 0, 6, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	1	Δ
0				$(1, \Delta, D)$
1	(1,1,D)			(2, 1, D)
2	(2, 1, D)	(2, 1, D)		$(3, \Delta, E)$
3			$(4, \Delta, E)$	
4			$(5, \Delta, E)$	
5			(5,1,E)	$(6, \Delta, C)$

A máquina \mathcal{F} calcula uma função parcial $g: A^* \times A^* \to \mathbb{N}_0$.

- a) Represente \mathcal{T} graficamente.
- b) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}aa\Delta babba)$.
- c) Identifique o domínio D da função g.
- d) Para cada elemento $(u, v) \in D$, determine a palavra q(u, v).
- **2**. Seja A o alfabeto $\{a, b, c\}$. Considere a linguagem

$$L = \{a^{2n}(bc)^n : n \in \mathbb{N}_0\}.$$

Construa uma máquina de Turing (usual ou com duas fitas) que reconheça L e descreva informalmente a estratégia dessa máquina.

- 3. Considere os problemas de decisão
 - $Aceita_{\epsilon}$: dada uma máquina de Turing \mathcal{T} , será que \mathcal{T} aceita a palavra ϵ ?
 - AceitaAlgo: dada uma máquina de Turing \mathcal{T} , será que \mathcal{T} aceita alguma palavra?
 - a) Mostre que $Aceita_{\epsilon} \leq AceitaAlgo$.
 - b) Conclua que o problema AceitaAlgo é indecidível.

4. Seja $A = \{a, b\}$ e seja $\mathcal T$ a seguinte máquina de Turing sobre A com duas fitas, onde $x \in \{a, \Delta\}$,

- a) Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \Delta abbbab, \Delta)$ e diga se a palavra abbbab é aceite por \mathcal{T} .
- **b)** Identifique a linguagem L reconhecida por \mathcal{T} .
- c) Diga, justificando, se existe alguma linguagem regular K tal que $K \cup L$ seja não recursiva.
- d) Diga, justificando, se o seguinte problema é decidível: Dada uma linguagem recursivamente enumerável K, será que $K \subseteq L$?
- 5. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) Se L é uma linguagem não recursivamente enumerável, então \overline{L} também não é recursivamente enumerável.
 - b) Se L é uma linguagem recursiva e \mathcal{T} é uma máquina de Turing que reconhece L, então \mathcal{T} é um algoritmo.
 - c) A função característica χ_L da linguagem

$$NAA_2 = \{w \in \{x,y\}^* \mid w \neq \boldsymbol{c}(\mathcal{T}) \text{ para toda a máquina de Turing } \mathcal{T} \}$$

- é Turing-computável.
- d) A linguagem reconhecida pela composição sequencial $\mathcal{T}_1 \longrightarrow \mathcal{T}_2$, de duas máquinas de Turing \mathcal{T}_1 e \mathcal{T}_2 , está contida na linguagem reconhecida pela máquina \mathcal{T}_1 .

(FIM)

$$\text{Cotação:} \left\{ \begin{array}{l} \textbf{1.} & 4,5 \text{ valores } (1+1+1,25+1,25) \\ \textbf{2.} & 2,5 \text{ valores} \\ \textbf{3.} & 3 \text{ valores } (2+1) \\ \textbf{4.} & 5 \text{ valores } (1,25+1,25+1,25+1,25) \\ \textbf{5.} & 5 \text{ valores } (1,25+1,25+1,25+1,25) \end{array} \right.$$