Data Mining Classification: Alternative Techniques

Imbalanced Class Problem

Introduction to Data Mining, 2nd Edition by Tan, Steinbach, Karpatne, Kumar

1

Class Imbalance Problem

- Lots of classification problems where the classes are skewed (more records from one class than another)
 - Credit card fraud
 - Intrusion detection
 - Defective products in manufacturing assembly line
 - COVID-19 test results on a random sample

Key Challenge:

 Evaluation measures such as accuracy are not wellsuited for imbalanced class

2/15/2021

Introduction to Data Mining, 2nd Edition

Confusion Matrix

Confusion Matrix:

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	а	b	
CLASS	Class=No	С	d	

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

2/15/2021

Introduction to Data Mining, 2nd Edition

3

3

Accuracy

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	a (TP)	b (FN)	
CLASS	Class=No	c (FP)	d (TN)	

• Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

2/15/2021

Introduction to Data Mining, 2nd Edition

Δ

Problem with Accuracy

- Consider a 2-class problem
 - Number of Class NO examples = 990
 - Number of Class YES examples = 10
- If a model predicts everything to be class NO, accuracy is 990/1000 = 99 %
 - This is misleading because this trivial model does not detect any class YES example
 - Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc)

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	0	10	
CLASS	Class=No	0	990	
	Data Mining, 2 nd E	dition	5	

2/15/2021

5

Which model is better?

10 yes 1000 No

Accuracy: 99%

 PREDICTED

 ACTUAL
 Class=Yes
 Class=No

 Class=No
 500
 490

10 yes 1000 no

Accuracy: 50%

2/15/2021 Introduction to Data Mining, 2nd Edition

6

Which model is better?

misclassifies 50% of yes. Is that important or not? Yes is much rarer than no

Α

		PREDICTED		
1			Class=Yes	Class=No
	ACTUAL	Class=Yes	5	5
		Class=No	0	990

10 samples 990 samples

accuracy; 0.5

accuracy: 0.995

В		PREDICTED		
			Class=Yes	Class=No
	ACTUAL	Class=Yes	10	0
		Class=No	500	490

10 samples
990 samples

2/15/2021

Introduction to Data Mining, 2nd Edition

7

7

Alternative Measures

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	а	b	
CLASS	Class=No	С	d	

Precision (p) =
$$\frac{a}{a+c}$$
 Jaccard: a / (a + b + c + d)

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

2/15/2021

Introduction to Data Mining, 2nd Edition

if r == p,

F = 1

8

$$F = 2/(1/r + 1/p)$$

If r << p, F = 2r

if p << r, F = 2p

High F implies that both r and p are high!

if p == r, F = r

Alternative Measures

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	10	0	
CLASS	Class=No	10	980	

Precision (p) =
$$\frac{10}{10+10}$$
 = 0.5

Recall (r) =
$$\frac{10}{10+0}$$
 = 1

F - measure (F) =
$$\frac{2*1*0.5}{1+0.5}$$
 = 0.62

Accuracy =
$$\frac{990}{1000}$$
 = 0.99

Recall: 1 : all actual "yes" predicted correctly

Precision: 1 : all "yes" predictions are correct

2/15/2021 Introduction to Data Mining, 2nd Edition

9

9

Alternative Measures

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	10	0	
CLASS	Class=No	10	980	

Precision (p) =
$$\frac{10}{10+10}$$
 = 0.5

Recall (r) =
$$\frac{10}{10+0}$$
 = 1

F-measure (F) =
$$\frac{2*1*0.5}{1+0.5}$$
 = 0.62

Accuracy =
$$\frac{990}{1000}$$
 = 0.99

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	1	9	
CLASS	Class=No	0	990	

Precision (p) =
$$\frac{1}{1+0}$$
 = 1

Recall (r) =
$$\frac{1}{1+9}$$
 = 0.1

F - measure (F) =
$$\frac{2*0.1*1}{1+0.1}$$
 = 0.18

$$Accuracy = \frac{991}{1000} = 0.991$$

2/15/2021

Introduction to Data Mining, 2nd Edition

Which of these classifiers is better?

Same accuracy for both models

A

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	40	10	
CLASS	Class=No	10	40	

Precision (p) = 0.8Recall (r) = 0.8F - measure (F) = 0.8Accuracy = 0.8

Balanced class.

В

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	40	10
CLASS	Class=No	1000	4000

Precision (p) = ~ 0.04 Recall (r) = 0.8 F - measure (F) = ~ 0.08 Accuracy = ~ 0.8 Imbalanced.

Concentrate on smaller class

2/15/2021

Introduction to Data Mining, 2nd Edition

4% of 'yes' predictions correct.

11
80% of 'yes' predicted correctly

11

Measures of Classification Performance

	PREDICTED CLASS			
ACTUAL CLASS		Yes	No	
	Yes	TP	FN	
	No	FP	TN	

 α is the probability that we reject the null hypothesis when it is true. This is a Type I error or a false positive (FP).

 β is the probability that we accept the null hypothesis when it is false. This is a Type II error or a false negative (FN).

Accuracy	_			TP	+	TN		
Accuracy	_	TP	+	FN	+	FP	+	TN

ErrorRate = 1 - accuracy

$$Precision = Positive \ Predictive \ Value = \frac{TP}{TP + FP}$$

$$Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$$

$$Specificity = TN \ Rate = \frac{TN}{TN + FP}$$

$$A \qquad PREDICTED CLASS \\ Class=Vos \qquad Class=Vos \qquad$$

$$FN\ Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity$$
 (type II error)

$$Power = sensitivity = 1 - \beta$$

Introduction to Data Mining, 2nd Edition

12

2/15/2021

Recall: fraction of actual "yes" predicted correctly

Precision: fraction of "yes" predictions that are correct

Alternative Measures

Α	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	10	40		

 $\begin{aligned} & \text{Precision (p)} &= 0.8 \\ & \text{TPR} &= \text{Recall (r)} &= 0.8 \\ & \text{FPR} &= 0.2 \\ & \text{F-measure (F)} &= 0.8 \\ & \text{Accuracy} &= 0.8 \end{aligned}$

$$\frac{TPR}{FPR} = 4$$

В	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	1000	4000		

Precision (p) = 0.038TPR = Recall (r) = 0.8FPR = 0.2F-measure (F) = 0.07Accuracy = 0.8

 $\frac{TPR}{FPR} = 4$

Introduction to Data Mining, 2nd Edition

13

Recall: TP / (TP + FN)

A	PREDICTED CLASS			
		Ouss=Yes	Class=No	
ACTUAL	Class=Yes	40	10	
CLASS	Class=No	10	40	

Precision: TP / (TP + TN)

Α	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	10	40		

13

2/15/2021

Recall: fraction of actual "yes" predicted correctly

Precision: fraction of "yes" predictions that are correct

Which of these classifiers is better?

4	PREDICTED CLASS				
		Guss=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	10	40		

Recall: TP / (TP + FN)

Precision: TP / (TP + TN)

Α	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	40	10		
CLASS	Class=No	10	40		

TPR = Recall (r) = 0.2FPR = 0.2F - measure = 0.28

Precision (p) = 0.5

В	PREDICTED CLASS				
		Class=Yes	Class=No		
	Class=Yes	25	25		
ACTUAL CLASS	Class=No	25	25		

Precision (p) = 0.5TPR = Recall (r) = 0.5FPR = 0.5F - measure = 0.5

С	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	40	10	
CLASS	Class=No	40	10	

2/15/2021 Introduction to Data Mining, 2nd Edition

Precision (p) = 0.5TPR = Recall (r) = 0.8FPR = 0.8F - measure = 0.61 No better than random

Classes are balanced: each class has 50 samples

Highest FPR.

False Positive Rate is high (false positive predictions)

$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$ ErrorRate = 1 - accuracy $Precision = Positive Predictive Value = \frac{TP}{TP + FP}$ $Recall = Sensitivity = TP Rate = \frac{TP}{TP + FN}$ $Specificity = TN Rate = \frac{TN}{TN + FP}$ $FP Rate = \alpha = \frac{FP}{TN + FP} = 1 - specificity \text{ (type I error)}$ $FN Rate = \beta = \frac{FN}{FN + TP} = 1 - sensitivity \text{ (type II error)}$ $Power = sensitivity = 1 - \beta$

(0,0): all predictions are "no"

(1,1): all predictions are "yes"

(the confusion matrix

(1,0): FN = 0FP = 0

is diagonal)

ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
 - Performance of a model represented as a point in an ROC curve
 - Recall vs Type I error

FP/(FP + TN)

2/15/2021

Introduction to Data Mining, 2nd Edition

15

Recall: TP / (TP + FN)

15

Recall: fraction of actual "yes" predicted correctly

FPR

Recall: TP / (TP + FN)

FPR: FP / (FP + TN)

ROC (Receiver Operating Characteristic)

- To draw ROC curve, classifier must produce continuous-valued output
 - Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record
 - By using different thresholds on this value, we can create different variations of the classifier with TPR/FPR tradeoffs
- Many classifiers produce only discrete outputs (i.e., predicted class)
 - How to get continuous-valued outputs?
 - Decision trees, rule-based classifiers, neural networks, Bayesian classifiers, k-nearest neighbors, SVM

2/15/2021

Introduction to Data Mining, 2nd Edition

17

How to Construct an ROC curve

Instance	Score	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use a classifier that produces a continuous-valued score for each instance
 - The more likely it is for the instance to be in the + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
 - TPR = TP/(TP+FN)
 - FPR = FP/(FP + TN)

2/15/2021 Introduction to Data Mining, 2nd Edition

2

23

Dealing with Imbalanced Classes - Summary

- Many measures exists, but none of them may be ideal in all situations
 - Random classifiers can have high value for many of these measures
 - TPR/FPR provides important information but may not be sufficient by itself in many practical scenarios
 - Given two classifiers, sometimes you can tell that one of them is strictly better than the other
 - ◆C1 is strictly better than C2 if C1 has strictly better TPR and FPR relative to C2 (or same TPR and better FPR, and vice versa)
 - Even if C1 is strictly better than C2, C1's F-value can be worse than
 C2's if they are evaluated on data sets with different imbalances
 - Classifier C1 can be better or worse than C2 depending on the scenario at hand (class imbalance, importance of TP vs FP, cost/time tradeoffs)

2/15/2021

Introduction to Data Mining, 2nd Edition

Which Classifer is better?

T1	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	50	50		
CLASS	Class=No	1	99		

T2	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	99	1		
ACTUAL CLASS	Class=No	10	90		

Т3	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	99	1
	Class=No	1	99

2/15/2021 Introduction to Data Mining, 2nd Edition

Precision (p) = 0.98TPR = Recall (r) = 0.5FPR = 0.01TPR/FPR = 50

F - measure = 0.66

F – measure = 0.94

Precision (p) = 0.9 TPR = Recall (r) = 0.99 FPR = 0.1 TPR/FPR = 9.9

Precision (p) = 0.99 TPR = Recall (r) = 0.99 FPR = 0.01 TPR/FPR = 99

F – measure = 0.99

25

Which Classifer is better? Medium Skew case

T1	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	50	50
	Class=No	10	990

T2	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	99	1
	Class=No	100	900

T3	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	99	1
	Class=No	10	990

2/15/2021 Introduction to Data Mining, 2nd Edition

Precision (p) = 0.83TPR = Recall (r) = 0.5FPR = 0.01TPR/FPR = 50F - measure = 0.62

 $\begin{aligned} & \text{Precision} & & & (p) = 0.5 \\ & & \text{TPR} & = \text{Recall} & (r) = 0.99 \\ & & \text{FPR} & = 0.1 \\ & & \text{TPR/FPR} = 9.9 \end{aligned}$

F-measure = 0.66

Precision (p) = 0.9 TPR = Recall (r) = 0.99 FPR = 0.01 TPR/FPR = 99

F – measure = 0.94

Which Classifer is better? High Skew case

T1	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	50	50
	Class=No	100	9900

T2	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	99	1
	Class=No	1000	9000

T3	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	99	1
	Class=No	100	9900
		•	•

2/15/2021 Introduction to Data Mining, 2nd Edition

Precision (p) = 0.3TPR = Recall (r) = 0.5FPR = 0.01TPR/FPR = 50F - measure = 0.375

Precision (p) = 0.09 TPR = Recall (r) = 0.99 FPR = 0.1 TPR/FPR = 9.9

F – measure = 0.165

Precision (p) = 0.5TPR = Recall (r) = 0.99FPR = 0.01TPR/FPR = 99

F – measure = 0.66

27

Building Classifiers with Imbalanced Training Set

- Modify the distribution of training data so that rare class is well-represented in training set
 - Undersample the majority class
 - Oversample the rare class

2/15/2021

Introduction to Data Mining, 2nd Edition