K.L.N COLLEGE OF ENGINEERING, POTTAPALAYAM

(An Autonomous institution, affiliated to Anna University, Chennai)

Problem statement: Smart Waste ManagementSystem for Metropolitan Cities

Team ID: PNT2022TMID11512

Team Leader: N.NAVEEN KUMAR

Team Members:

1. R.MUKESH KUMAR

2. T.PRAVEEN RAJ

3. P.GNANA SEKAR

Faculty Mentor: T.R.MUTHU

Evaluator: S. SUBHA

Industry Mentor:1. DINESH

ANNA UNIVERSITY: CHENNAI 600025

BONAFIDE CERTIFICATE

Certified that this project report "SMART WASTE MANAGEMENT

SYSTEM FOR METROPOLITAN CITIES" is the bonafide work of

"NAVEEN KUMAR N (910619106034),

MUKESH KUMAR R (910619106032),

GNANASEKAR P (910619106016),

PRAVEEN RAJ T (910619106303)",

Who carried out the project work under our supervision.

SIGNATURE FACULTY MENTOR

Name

Designation

ELECTRONICS AND COMMUNICATION ENGINEERING

SIGNATURE FACULTY EVALUATOR

Name

Designation

ELECTRONICS AND COMMUNICATION ENGINEERING K.L.N COLLEGE OF ENGINEERING K.L.N COLLEGE OF ENGINEERING

SIGNATURE DR.V.KEJALAKSHMI HEAD OF THE DEPARTMENT ELECTRONICS AND COMMUNICATION ENGINEERING K.L.N COLLEGE OF ENGINEERING TABLE OF CONTENTS

S.NO	CONTENTS	PAGE NO
1.	INTRODUCTION	1
1.1.	Project Overview	
1.2.	Purpose	
2.	LITERATURE SURVEY	2
2.1.	Existing problem	
2.2.	References	
2.3.	Problem Statement Definition	
3.	IDEATION & PROPOSED SOLUTION	4
3.1.	Empathy Map Canvas	
3.2.	Ideation & Brainstorming	
3.3.	Proposed Solution	
3.4.	Problem Solution fit	
4.	REQUIREMENT ANALYSIS	8
4.1.	Functional requirement	
4.2.	Non-Functional requirements	
5.	PROJECT DESIGN	11
5.1.	Data Flow Diagrams	

5.2.	Solution & Technical Architecture	
5.3.	User Stories	
6.	PROJECT PLANNING & SCHEDULING	15
6.1.	Sprint Planning & Estimation	
6.2.	Sprint Delivery Schedule	
6.3.	Reports from JIRA	
7.	CODING & SOLUTIONING (Explain the features added in the project along with code)	20
7.1.	Feature 1	
7.2.	Feature 2	
7.3.	Database Schema (if Applicable)	
8.	TESTING	33
8.1.	Test Cases	
8.2.	User Acceptance Testing	
9.	RESULTS	35
9.1.	Performance Metrics	
10.	ADVANTAGES & DISADVANTAGES	36
11.	CONCLUSION	37

12.	FUTURE SCOPE	37
13.	APPENDIX	38
13.1.	Source Code	
13.2.	GitHub & Project Demo Link	

LIST OF TABLES:

CHAPTER NO.	CONTENTS	PAGE NO
Chapter - 3	Proposed solutions	6
Chapter - 4	Functional Requirements	9
Chapter - 4	Non-Functional Requirements	9
Chapter - 5	User Stories	13
Chapter - 6	Sprint Planning & Estimation	15
Chapter - 7	Sprint Delivery Schedule	17
Chapter - 8	Defect analysis	34
Chapter - 8	Test Case Analysis	35

LIST OF FIGURES:

CHAPTER NO.	CONTENTS	PAGE NO.
Chapter - 3	Empathy Map Canvas	4
Chapter - 3	Ideation & Brainstorming	5
Chapter - 5	Data Flow Diagrams	11
Chapter - 5	Solution & Technical Architecture	12
Chapter - 6	Jira Software	19
Chapter - 7	Python output	23
Chapter - 8	Wokki output	33

1.INTRODUCTION:

1.1.PROJECT OVERVIEW:

With increasing population and also changes in lifestyle municipal solid waste generation is increasing significantly. Hence waste management is a challenge in urban cities. The overall waste management involves three main types of entities, they are people who generate waste, waste collectors/city admin, stakeholders. Most of the waste is of organic matter, comprising 44.4%. These data of contents in the waste management is sent to stakeholder using cloud and also in order to have a complete waste management mechanism, and it is very important to have a smart way of notifying the quantity of each type of waste and involves the stakeholders effectively.

1.2.PURPOSE:

So a proper waste management system is necessary to avoid spreading some deadly diseases. Managing the smart bins by monitoring the status of it and accordingly taking the decision. This waste is further picked up by the municipal corporations to finally dump it in dumping areas and landfills. But due to lack of resources, ineffective groundwork, some waste is not collected which poses serious health hazardto the surrounding environment. Proper cleaning intervals may provide a solution to this problem. But keeping a track of the status of the bin manually is a very difficult job. These dustbins are interfaced with raspberry pi based system with ultrasonic sensors. Where the ultrasonic sensor detects the level of the dust in dustbin and sends the signals to raspberry pi the same signal are encoded and send to the application and it is received. 4 The data has been received, analyzed and processed in the database, which displays the status of the Garbage in the dustbin on the application of authoritized person mobile. The concerned authority get alert about dustbin is full and informs person whoever is responsible for collecting garbage from the particular areas. The garbage trucks collect the garbage from the completely full dustbin and dispose it.

2.LITERATURE SURVEY:

2.1. Existing problem:

Seven reports were reviewed in detail for the literature review, with the majority of these providing some evidence to support the theory that the introduction of waste collections is associated with a reduction in waste arising. The following text should be reviewed with consideration given to the fact that these studies were not specifically designed to assess the impact of waste collections on at source food waste reduction. Therefore, evidence is taken from these reports to be used in different context from that in which it was collected. Overall the reports demonstrate that while there is some evidence to support the theory that implementing a waste collection can lead to an overall reduction in collected waste, there is currently no significant evidence to demonstrate to what extent this is due to prevention at source as opposed to diversion to home composting. A number of the reports support the need for further research in this area.

2.2.References:

1.Cloud based smart waste management for

smart cities

https://ieeexplore.ieee.org/document/864557

6

Authors: Mohammad Aazam, Marc St-Hilaire, Chung- Horng Lung, Ioannis Lambadaris 2. An Internet of Things Based Smart Waste Management

System

https://ieeexplore.ieee.org/document/9165744

Authors: Teoh Ji Sheng, Mohammad Shahidul Islam, Norbahiah

Misran3.IOT Based Smart Waste Management System' 2021

https://ieeexplore.ieee.org/document/9528293

Authors: Gayathri N, Divagaran AR, Akhilesh CD, Aswiin VM, Charan N

2.3. Problem Statement Definition:

In the present day scenario, many times we see that the garbage bins or Dust bin are placed at public places in the cities are overflowing due to increase in the waste every day. It creates unhygienic condition for the people and creates bad smell around the surroundings this leads in spreading some deadly diseases & human illness, to avoid such a situation we are planning to design "Smart Waste Management System using IoT". In this proposed System there are multiple dustbins located throughout the city or the Campus, these dustbins are provided with low cost embedded device which helps in tracking the level of the garbage bins and an unique ID will be provided for every dustbin in the city so that it is easy to identify which garbage bin is full. When the level reaches the threshold limit, the device will transmit the level along with the unique ID provided. These details can be accessed by the concern authorities from their place with the help of Internet and an immediate action can be made to clean the dustbins.

IDEATION & PROPOSED SOLUTION:

3.1. Empathy Map Canvas:

Empathy Map Canvas

Gain insight and understanding on solving customer problems.

Build empathy and keep your focus on the user by putting yourself in their shoes.

Figure 3.1

3.2.Ideation & Brainstorming:

Figure 3.2

3.3.Proposed Solution:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	 The manual monitoring of wastes in waste bins is a cumbersome process and utilizes more human effort, time and cost. Irregular disposal of wastes causing
		trouble to people. • Foul smell around the place with uncollected wastes or garbage.
2.	Idea / Solution description	 Creating an app, there by the corporation of a particular locality inside a metropolitan city can check the garbage bins whether they are filled or not. This process is achieved by using an ultrasonic sensor to know the levels of garbage bin through cloud connection.
3.	Novelty / Uniqueness	 To reduce the human-effort and difficulty in monitoring the garbage bins. Unlike the conventional methods for collecting garbage bins, this method tells us to use the transport only in required places.

4.	Social Impact / Customer	People can experience a clean
	Satisfaction	environment.
		Reduces the human effort involving
		inthe garbage disposal process.
		This idea will be very much beneficial
		for
		A city corporation for monitoring
		the cleanliness of various parts of the
		city.
5.	Business Model (Revenue Model)	This project aims to support
		themunicipal corporations.
		Provide a clean environment.
		This reduces a huge fuel cost to the
		city corporations by reducing the
		unwanted transport expenses to
		unnecessary places.
6.	Scalability of the Solution	There is no need of new establishment
		ofthings.
		Already present garbage bins
		aremodified slightly.
		It can be updated to automated
		garbage collection through vehicles.

3.4.Problem Solution fit:

Figure 3.3

CHAPTER – 4

4.REQUIREMENT ANALYSIS:

4.1.Functional requirement:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Gmail
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	GPS Access	GPS access to know the location
FR-4	Bin level Analyzing	Acquire the levels of Waste bins in
		A regular interval of time.
FR-5	Transport Router	To make a efficient route for the
		Collection of garbages around an area.

4.2.Non-Functional requirements:

Following are the non-functional requirements of the proposed solution.

FR	Non-	Description
No.	Functional	
	Requirement	
NF	Usability	> A smart solution has been proposed to make the waste
R-1		sorting more simple and accurate, and improve the user
		experience, usability, and satisfaction.
		> It aims to optimize ease of use while offering maximum
		functionality.
NF	Security	> The information of the users will be highly secured; the
R-2		accounts are verified with Gmail.

		> If the products are misplaced then the GPS driven sensor
		gives an alert.
NFR	Reliability	> Operates in a defined environment without failure
-		resulting in lessmanpower, emissions, and fuel use and
3		traffic congestion.
NF	Performance	> The system will provide accurate reports, thus increasing the
R-4		efficiency of the system.
		> The real-time monitoring of the garbage level with the help
		of sensors and wireless communication will reduce the total
		number of trips required of Garbage collecting truck.
		> This will reduce the total expenditure associated with the
		garbagecollection.
NF	Availability	> The smart waste bins are available in Convention centers,
R-5		buildings, stadiums, and transportation facilities and captures
		high-quality waste data and informs staff when it gets full.
NF	Scalability	> A versatile scalable smart waste-bin system based on limited
R-6		waste management could potentially lead to great
		improvements.
		> Once these smart bins are implemented on a large scale by
		replacing the traditional bins, the waste can be quickly
		managed to its efficient level as it avoids unnecessary
		lumping of wastes on roadside.

5.PROJECT DESIGN:

5.1.Data Flow Diagrams:

Figure 5.1

5.2.Solution & Technical Architecture:

Figure 5.2

5.3.User Stories:

User Type	Functional	User	User Story /	Acceptance	Priority	Release
	Requirement	Story	Task	criteria		
	(Epic)	no				
Customer (Mobile User)	Registration	USN-1	As a user, I created an account in the application provided.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I registered using my Gmail.	I can receive confirmation email.	High	Sprint-1
	Login	USN-3	As a user, I successfully installed the app and login to see the bin level in my Area As a user, I login using my Gmail andpassword	I can register & access the dashboard The login process was easy and simple toaccess the dashboard.	Low	Sprint-2 Sprint-1
Customer (Web user)		WUSN-1	andpassword easily. As a web user I can see whether the bins in thelocality are filled or not only after	The website must work properly so that no error occurs in the info.	High	Sprint-2

	using my Gmail account.		

6.PROJECT PLANNING & SCHEDULING:

6.1.Sprint Planning & Estimation:

Sprint	t Functional User		User Story / Task	Story	Priority	Team
	Requiremen	Story		Points		Membe
	t (Epic)	Number				rs
Sprint-1	Login	USN-1	As Administrator, I need to	10	High	Naveen
			give user id and			
			pass code for ever			
			workers over there in			
			municipality			
Sprint-1	Login	USN-2	As Co-Admin, I'll control	10	High	Mukesh
			the waste level by			
			monitoring them real time			
			web portal. I'll notify			
			trash truck with location			
			of bin with bin ID			
Sprint-2	Dashboard	USN-3	As Truck Driver, I'll	20	Low	Praveen
			follow Admin's			
			Instruction to reach the			
			filling bin in short roots			
			and save time			
Sprint-3	Dashboard	USN-4	As a Local Garbage	20	Medium	Sekar
			Collector, I'II gather all			
			the waste from the			
			garbage, load it onto a			
			garbage			
			truck, and deliver it to			

			Landfills			
Sprint-4	Dashboard	USN-5	As a Municipality officer,	20	High	Naveen
			I'll make sure			
			everything is			
			proceeding as planned			
			and without any			
			problems			

Sprint	Total Story Points	Durat ion	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022

6.2.Sprint Delivery Schedule:

TITLE	DESCRIPTION	DATE
Literature Survey	Literature survey on	28 SEPTEMBER 2022
& Information	theselected project	
Gathering	& gathering	
	information by	
	referring the,	
	technical papers,	
	research	
	publications etc.	
Prepare Empathy Map	Prepare Empathy Map	24 SEPTEMBER 2022
	Canvas to capture the	
	user Pains & Gains,	
	Prepare listof problem	
	statements	
Ideation	List the by organizing	25 SEPTEMBER 2022
	thebrainstorming	
	session and prioritize	
	the top 3 ideas based	
	on the feasibility &	
	importance.	
Proposed Solution	Prepare the proposed	23 SEPTEMBER 2022
	solution document, which	
	includes the novelty,	
	feasibility of idea,	
	business model, social	
	impact, scalability of	
	solution, etc.	

	Prepare problem -	30 SEPTEMBER 2022
Problem Solution Fit	solution fitdocument.	
	Prepare solution	28 SEPTEMBER 2022
Solution Architecture	architecturedocument.	

Customer Journey	Prepare the customer journey	20 OCTOBER 2022
	maps to understand the user	
	interactions & experiences	
	withthe application	
	Prepare the functional	8 OCTOBER 2022
Functional Requirement	requirement document.	
Data Flow Diagrams	Draw the data flow	9 OCTOBER 2022
	diagrams and submit	
	forreview.	
	Prepare the technology	10 OCTOBER 2022
Technology Architecture	Architecture diagram	
	Prepare the milestones	22 OCTOBER 2022
Prepare Milestone &	&activity list of the	
ActivityList	project.	
	Develop & submit the	14 NOVEMBER
Project Development -	developed code by testing it.	
Delivery of Sprint-1, 2,		
3 &4		

6.3.JIRA SOFTWARE:

Figure 6.1

7.CODING & SOLUTIONING:

7.1.PYTHON CODE:

import

```
time
import
sys
import
ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device
Credentialsorganization = "cbseji"
deviceType = "abcd"
deviceId = "1234"
authMethod =
"token" authToken =
"12345678"
# Initialize GPIO
def myCommandCallback(cmd):
  print("Command received: %s" %
  cmd.data['command'])
  status=cmd.data['command']
```

```
if
    status=="lighto"
    n":print ("led
    is on")
  else:
    print ("led is
 off")#print(cmd)
try:
      deviceOptions = {"org": organization, "type": deviceType, "id":
deviceId, "auth-method": authMethod, "auth-token": authToken}
      deviceCli =
      ibmiotf.device.Client(deviceOptions)
      #.....
except Exception as e:
      print("Caught exception connecting device: %s"
      % str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type"greeting" 10 times
deviceCli.connect()
while True:
    #Get Sensor Data from
    DHT11
    level=random.randint(0,10
    0)
    weight=random.randint(0,100)
```

```
data = { 'level' : level, 'weight':
    weight }#print data
    def myOnPublishCallback():
      print ("Published level = %s C" % level, "weight = %s %%" %
weight, "to IBMWatson")
    success = deviceCli.publishEvent("IoTSensor", "json",
data, qos=0,on_publish=myOnPublishCallback)
    if not success:
      print("Not connected to
    IoTF")time.sleep(1)
    deviceCli.commandCallback =
myCommandCallbackif (level>=75):
      print("Full LED ON")
# Disconnect the device and application from
the clouddeviceCli.disconnect()
```


Figure 7.1

7.2.WOWKI CODE:

#include <wifi.h></wifi.h>	// library for wifi
#include <pubsubclient.h></pubsubclient.h>	// library for
MQTT#include <liquidcrysta< td=""><td>l_I2C.h></td></liquidcrysta<>	l_I2C.h>
LiquidCrystal_I2C lcd(0x27, 2	0, 4);
// credentials o	f IBM Accounts
#define ORG "cbseji"	// IBM organisation id
#define DEVICE_TYPE "abcd	" // Device type mentioned in ibm watson iot
platform#define DEVICE_ID '	"1234" // Device ID mentioned in ibm
watson iot platform #define TC	OKEN "12345678" // Token
//customise ab	ove values
	23

```
char server[] = ORG ".messaging.internetofthings.ibmcloud.com";
name char publishTopic[] = "iot-2/evt/data/fmt/json"; // topic name and
type of event perform and format in which data to be send
char topic[] = "iot-2/cmd/led/fmt/String";
                                              // cmd Represent type
and command is test format of strings
char authMethod[] = "use-token-auth";
                                               // authentication
methodchar token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID; //Client id
//_____
WiFiClient wifiClient;
                                         // creating instance for
wificlientPubSubClient client(server, 1883, wifiClient);
#define ECHO_PIN 12
#define TRIG PIN
13float dist;
void setup()
 Serial.begin(115200);
pinMode(LED_BUILTIN,
 OUTPUT);pinMode(TRIG_PIN,
 OUTPUT);
```

```
pinMode(ECHO_PIN, INPUT);
 //pir pin
 pinMode(34, INPUT);
 //ledpins
 pinMode(23,
 OUTPUT);
 pinMode(2,
 OUTPUT);
 pinMode(4,
 OUTPUT);
 pinMode(15,OUTPU
 T);
lcd.init();
lcd.backlight();
lcd.setCursor(1,
0);lcd.print("");
wifiConnect();
mqttConnect();
 }
float readcmCM()
 {
 digitalWrite(TRIG_PIN,
 LOW);
 delayMicroseconds(2);
 digitalWrite(TRIG_PIN,
```

```
HIGH);
delayMicroseconds(10);
digitalWrite(TRIG_PIN,
LOW);
int duration = pulseIn(ECHO_PIN,
HIGH); return duration * 0.034 / 2;
}
void loop()
{
lcd.clear();
publishData
();
delay(500);
if (!client.loop())
                              // function call to connect to IBM
  mqttConnect();
  }
/*____retrieving to cloud
*/void wifiConnect()
Serial.print("Connecting to ");
Serial.print("Wifi");
WiFi.begin("Wokwi-GUEST",
 "", 6);
while (WiFi.status() != WL_CONNECTED)
  {
```

```
delay(500);
   Serial.print(".
   ");
Serial.print("WiFi connected, IP
address: ");
Serial.println(WiFi.localIP());
void mqttConnect()
 {
  if (!client.connected())
   {
    Serial.print("Reconnecting MQTT
    client to ");Serial.println(server);
    while (!client.connect(clientId, authMethod, token))
      Serial.print(".
      ");
      delay(500);
    in it Managed Devic\\
    e();Serial.println();
   }
void initManagedDevice()
 {
  if (client.subscribe(topic))
```

```
Serial.println("IBM subscribe to cmd OK");
  else
   {
    Serial.println("subscribe to cmd FAILED");
void publishData()
float cm = readcmCM();
if(digitalRead(34))
                                  //pir motion detection
  Serial.println("Motion Detected");
  Serial.println("Lid
  Opened");
  digitalWrite(15, HIGH);
if(digitalRead(34)== true)
if(cm \le 60)
                                     //Bin level detection
 {
  digitalWrite(2, HIGH);
  Serial.println("High Alert!!!,Trash bin is about to
  be full");Serial.println("Lid Closed");
  lcd.print("Full! Don't
```

```
use");delay(2000);
 lcd.clear();
 digitalWrite(4,
 LOW);
 digitalWrite(23,
 LOW);
else if(cm > 60 \&\& cm < 120)
 digitalWrite(4, HIGH);
 Serial.println("Warning!!, Trash is about to cross 50% of
 bin level");digitalWrite(2, LOW);
 digitalWrite(23, LOW);
else if(cm > 120)
{
 digitalWrite(23, HIGH);
 Serial.println("Bin is
 available");
 digitalWrite(2,LOW);
 digitalWrite(4, LOW);
 delay(10000);
 Serial.println("Lid
 Closed");
```

```
}
else
 Serial.println("No motion
  detected");digitalWrite(2,
  LOW); digitalWrite(15,
  LOW); digitalWrite(4, LOW);
  digitalWrite(23, LOW);
 else
  digitalWrite(15, LOW);
 }
 if(cm \le 60)
digitalWrite(21,HIGH);
String payload =
"{\"High_Alert\":";payload +=
cm;
payload += " }";
Serial.print("\n");
Serial.print("Sending
payload: ");
Serial.println(payload);
if (client.publish(publishTopic, (char*) payload.c_str())) // if data is uploaded
to cloudsuccessfully, prints publish ok else prints publish failed
```

```
Serial.println("Publish OK");
else if(cm <= 120)
{
digitalWrite(22,HIGH);
String payload =
"{\"Warning\":";payload +=
cm;
payload += " }";
Serial.print("\n");
Serial.print("Sending
payload: ");
Serial.println(payload);
if(client.publish(publishTopic, (char*) payload.c_str()))
{
Serial.println("Publish OK");
}
else
Serial.println("Publish FAILED");
}
else
Serial.println();
```

```
float inches = (cm / 2.54);
                                            //print on
lcdlcd.setCursor(0,0);
lcd.print("Inches
");
lcd.setCursor(4,
0);
lcd.setCursor(12,
0);
lcd.print("cm");
lcd.setCursor(1,
1);
lcd.print(inches,
1);
lcd.setCursor(11,
1);
lcd.print(cm, 1);
lcd.setCursor(14,
1);delay(1000);
lcd.clear();
}
```

}

8.TESTING:

8.1.TEST CASES:

Figure 8.1

8.1.User Acceptance Testing:

Date	10 November 2022
Team ID	PNT2022TMID11512
Project Name	Smart Waste Management System for Metropolitan Cities - IOT
Maximum Marks	4 Marks

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the Smart Waste Management System project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	10	4	3	3	20
Duplicate	1	0	3	0	4
External	2	3	0	1	6
Fixed	11	2	4	20	37
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	24	14	13	26	78

3.Test Case Analysis

This report shows the number of test cases that have passed ,failed ,and untested.

Section	Total Cases	Not Tested	Fail	Pass
Python installation	7	0	0	7
Launch IBM Watson	45	0	5	40
IBM Watson and python integration	2	0	0	2
Install Node red	13	0	7	6
Interconnecting IBM Watson and Node red	19	0	10	9
Web UI dashboard	14	0	0	14
MIT app design	30	1	4	25
To View the Values in mobile Application	20	0	7	13
Totals	150	1	33	116

9.1.RESULTS:

We have implemented real time waste management system by using smart dustbins to check the fill level of smart dustbins whether the dustbin are full or not. In this system the information of all smart dustbins can be accessed from anywhere and anytime by the concern person and he/she can take a decision accordingly.

9.1.1.ADVANTAGES:

- > Real time information on the fill level of the dustbin.
- > Deployment of dustbin based on the actual needs.
- > Cost Reduction and resource optimization.
- > Improves Environment quality
- > Fewer smells
- Cleaner cities
- > Intelligent management of the server.
- > Effective usage of dustbins.

9.1.2.DISADVANTAGES:

- > Time consuming and less effective: trucks go and empty containers whether they are full or not.
- > High costs.
- > Unhygienic Environment and look of the city.
- > Bad smell spreads and may cause illness to human beings.

9.2.CONCLUSION:

By implementing this proposed system the cost reduction, resource optimization, effective usage of smart dustbins can be done. This system indirectly reducing traffic in the city. In major cities the garbage collection vehicle visit the area's everyday twice or thrice depends on the population of the particular area and sometimes these dustbins may not be full. Our System will inform the status of each and every dust bin in real time so that the concerned authority can send the garbage collection vehicle only when the dustbin is full. The scope for the future work is this system can be implemented with time stamp in which real-time clock shown to the concern person at what time dust bin is full and at what time the waste is collected from the smart dustbins.

9.3.FUTURE SCOPE:

The key motivation is in achieving efficiency in the waste management sector at the national level. Issues in the waste management Waste truck drivers need a navigation system and reporting problem system. Citizens want to have better service, lower cost and having easily accessible reports. Inorder to maintain a clean and hygienic environment in the area around us, we are using the technology for the better garbage monitoring system. In big institutions or a city under a municipal corporation where there are extensive quantities of garbage bins deployed and workers are kept specifically for this task, the antiquated technique for physically hunting down filled garbage bins is wasteful and does not run well with the technological era we are in. Routine checks for cleaning the garbage bins which depend on time crevices are wasteful in light of the fact that a dustbin may get filled early or may get tampered and might require prompt consideration or there might not be any need of a routine check for a drawn out stretch of time. Likewise, to save fuel and time and make the entire

process more effective and convenient, the workers going on routine check should know the shortest route consisting of all the filled garbage bins.

GITHUB: <u>IBM-EPBL/IBM-Project-27469-1660057502</u>: <u>Smart Waste</u>

Management System For Metropolitan Cities (github.com)

WOWKI : ESP32-IBM NK - Wokwi Arduino and ESP32 Simulator