SRS Završni ispit

Sigurnost web aplikacija

• Dvije strane sigurnosti web aplikacija

- 1. Preglednik (na klijentu)
 - o Napadi koji iskorištavaju ranjivosti preglednika
 - Posljedice
 - Instalacija malwarea
 - Krađa dokumenata u korporativnim mrežama
 - Gubitak privatnih podataka
- 2. Aplikacija (na poslužitelju)
 - o Potencijalne rupe: XSS, XSRF, SQL injection
 - Posljedice
 - Ukradeni brojevi kreditnih kartica
 - Krađa podataka

• Lokot u pregledniku

- o Autentifikacija poslužitelja sve treba biti zaključano
- Kada koristimo HTTPS, svaki poslužitelj weba treba imati važeći certifikat
- o Preglednik provjerava taj certifikat i zaključava lokot ako je sve u redu

• IDN Homographic Attack

- o IDN internationalized domain name
- URL može sadržavati unicode znakove
- Važno -> certifikat/lokot su zeleni
- o Korisno za phishing napade

HTTP protokol

- Stateless ne održava stanje
- o Problem -> web-aplikacija mora održavati takve podatke
- o Rješenja
 - postavljanje i slanje cookieja
 - korisničke sjednice (sessions)
 - skrivene varijable (unutar obrazaca)
 - parametri kao dio URL-a
- o komunikacija nije šifrirana!

HTTP autentifikacija

- Razine
 - Basic (plaintext nesigurno)
 - Digest (hash lozinke replay napad)
 - NTLM (sigurnije, ali upitna podržanost u preglednicima)
- o Preglednik klijenta pamti ime i lozinku (ne cookie!)

Slika 1 URL struktura

Ranjivost web aplikacija

1. Umetanje (injection)

- Uključuje tekst (zapravo naredbe, SQL upite i slično) i prosljeđuje ih aplikaciji
- Aplikacija uzima takve ulazne podatke i interpretira ih kao naredbe ili upite
- Jednostavno za izbjeći
- Opasan moguća je kompromitacija ili promjena cijele baze podataka
- Vrste
 - Tautologija
 - Iskaz koji je u svakom slučaju istinit
 - Primjer naredbe SELECT first_name, last_name FROM users WHERE user_id = 'any' OR '1'='1'
 - Ilegalni upiti
 - Različitim SQL naredbama pokušavamo vidjeti što prolazi, a što ne
 - Saznajemo strukturu tablica, upita koje napadamo
 - Injekcija "na slijepo"
 - Koji izrazi su legitimni, a koji ne?
 - Učimo o bazi
 - Upit Union
 - Kombinacija upita kako bi dobili više podataka
 - SELECT column_name(s) FROM table1 UNION SELECT column_name(s)
 FROM table2;
- Izbjegavanje napada umetanjem
 - o Izbjeći interpretiranje naredaba
 - o Koristiti pripremljene ili pohranjene procedure u SQL upitima
 - Validirati sve što korisnik upiše
 - Filteri

- Uvijek minimizirati ovlasti nad bazom podataka kako bi se spriječio pristup neželjenim podacima
- Ne prikazivati greške

2. Loša autentifikacija

- Cilj pogoditi ime i lozinku korisnika ili ukrasti identifikator sjednice i lažno se predstaviti
- Podaci o sesiji ili korisniku moraju putovati u svakom zahtjevu
- Stanje se prati putem varijable SESSION ID (nalazi se u cookieu)
- Vrste
 - Brute force
 - Automatizirani alati
 - o Lozinke iz rječnika
 - Slabe lozinke qwert123, password123...
 - Ključna je duljina lozinke, ne nužno i kompleksnost
 - o Vertikalni napadi
 - Cijeli rječnik za jednog korisnika
 - Tipično administrator
 - Pogađanje CMS-a i standardnog imena administratora
 - o Horizontalni napadi
 - Jedna lozinka za sve korisnike
 - Kako pogoditi ime korisnika?
- Zaštita od pogađanja lozinke
 - o CAPTCHA
 - Limit login attempts
 - o Filtriranje po IP adresama i rasponima adresa
- Loše poruke o greškama
 - o Ne javljati "Korisničko ime nije ispravno"
 - Javljati "Podaci za pristup su pogrešni"
- Dupliciranje lozinki
 - o Korištenje istih podataka za prijavu na više web aplikacija
 - Provalom na jednoj web-aplikaciji napadač dobiva podatke za pristup drugim aplikacijama
- Identifikator sjednice (sessionID)
 - (Idealno) nasumičan niz znakova
 - 1. Poslužitelj ga generira nakon uspješne prijave korisnika
 - 2. Poslužitelj ga pohranjuje na svojoj strani
 - 3. Poslužitelj ga šalje korisniku
 - 4. Korisnik (preglednik) kod svakog sljedećeg zahtjeva na poslužitelj šalje dobiveni identifikator sjednice
 - Nekada kao parametar metode GET ili POST, danas najčešće u cookie-u
 - Alternativa/nadopuna identifikatorima sjednica tokeni
 - kraće trajanje!
 - privremeni (access) i dugotrajniji (refresh) tokeni
 - o Duljina barem 128 bitova
 - Sadržaj treba biti potpuno nasumičan i neovisan o korisniku
- Sigurni cookie

- Zastavica HTTPOnly
- Govori pregledniku da cookie-u može pristupiti isključivo poslužitelj kroz protokol HTTP
- Ne smije mu pristupiti niti preglednik kroz javascript (sprečavamo krađu cookie-a putem XSS-a)
- Dodatno osiguranje
 - Slati ih isključivo putem TLS-a (omogućiti zastavicu HTTPS only)
 - Odrediti domenu i putanju za koju vrijedi
 - Definirati vrijeme trajanja

Izbjegavanje

- o Višefaktorska autentifikacija
- Novi sessionID kod svakog zahtjeva -> tokeni
- Dodatna autentifikacija kod osjetljivih akcija
- Čuvanje lozinki hash i SALT
- Minimalne ovlasti po ulogama

3. Nesigurna pohrana osjetljivih podataka

- Ne identificiraju se svi osjetljivi podaci
- Napadači pristupe osjetljivim podacima i mijenjaju ih
- Problemi
 - o Podaci se pohranjuju kao običan tekst
 - o Podaci se prenose kao običan tekst
 - Korištenje zastarjelih algoritama za šifriranje
 - o Korištenje slabih ključeva
 - Zaglavlja ne navode tip šifriranja podataka
- Rješenja
 - o Verifikacija arhitekture
 - identificirati sve osjetljive podatke i mjesta na kojima se pohranjuju
 - o Zaštita prikladnim mehanizmima
 - šifriranje podataka, baze podataka
 - o Prikladna upotreba mehanizama zaštite
 - Koristiti snažne algoritme zaštite
 - Ne pohranjivati podatke koji nisu potrebni
 - o Pratiti ranjivosti i nove preporuke za kriptoalgoritme i duljine ključeva

4. Vanjski XML entiteti (XXE)

- Potencijalno ranjive su aplikacije koje parsiraju XML datoteke
- Pogotovo ako se ne provjerava od kuda dolazi XML
- XML injection
 - Poslužitelj ili klijenti podatke šalju u XML-u
 - Manipuliranje podatcima
- Rješavanje problema
 - o Izbjegavati korištenje složenijih XML struktura ako ne treba
 - Proučiti i ažurirati postavke XML parsera vezano uz učitavanje ili interpretiranja vanjskih entiteta

Napraviti validaciju/sanitizaciju XML dokumenata prije parsiranja

5. Loša kontrola pristupa

- Kako se štiti pristup URL-ovima (stranicama)?
 - o Ispravnom autorizacijom i sigurnim referencama na objekte
- Napadač krivotvori pristup stranicama kojima nema pristup
- Primjeri napada
 - Napadač vidi da URL naznačuje njegovu ulogu (user/getAccounts, mijenja u admin/getAccounts)
 - Napadač vidi da je njegov broj ?acct=6065 i mijenja ga u bliski broj
- Izbjegavanje
 - o Izbjegavati reference
 - Zamjena s privremenim vrijednostima koje se na poslužitelju preslikavaju u prave
 - Provjeriti valjanost reference na objekt
 - o Dopustiti pristup samo autentificiranim korisnicima
 - o Provjeriti ovlasti za pristup i postupiti u skladu s njima
 - o Verificirati arhitekturu
 - Verificirati implementaciju

6. Loše sigurnosne postavke

- Web-aplikacije očekuju da je sustav na kojem se nalaze siguran
- autentifikacijski podaci moraju se promijeniti u produkcijskoj verziji
- Učinci
 - Instalacija backdoor aplikacija ako OS ili APPserv nisu patchani
 - Nedostaci s iskorištavanjem XSS-a ako ne postoje patchevi za razvojni framework
 - o Moguć pristup funkcionalnosti aplikacije zbog loše konfiguracije
- Primjeri
 - Ovlasti nad direktorijima
 - Omogućen je pregled direktorija u datoteci .htaccess
 - Napadač ima pregled strukture što mu olakšava napad ili preuzimanja datoteke i dekompajliranje
 - Wordpress
 - Tema koju koristite preporuča dodatak koji ima sigurnosne ranjivosti
 - Ili dodaci nisu ažurirani na najnovije verzije
 - o Komprimirana pohrana web-aplikacije na poslužitelju
 - Napadač je preuzima i analizira
- Izbjegavanje
 - Proces integracija i postavljanja aplikacije
 - Periodičko skeniranje i/ili audit
 - o Puno toga se može postići kontrolom putem datoteke .htaccess
 - htaccess konfiguracijska datoteka za web poslužitelj (Apache)

7. Cross-site scripting (XSS)

- Same Origin Policy
 - Politika istog izvorišta
 - Odnosi se na kod koji se izvršava u pregledniku klijenta
 - Skripte koje se izvode na jednoj stranici smiju međusobno dijeliti pristup podacima
 - o Problem Sjedišta s više poddomena
 - o Rješenje Cross-Origin Resource Sharing
- Cross-site scripting (XSS) podaci od napadača šalju se korisniku u preglednik
- Primjerice u javascriptu -> alert(document.cookie)
- Vrste
 - Reflektirani
 - XSS je dio URL-a i dovoljna je samo poveznica da se XSS izvede
 - Najjednostavniji i najčešći
 - Dobar je za preusmjeravanje i npr. krađu login podataka

Slika 2 XSS Reflected

- Pohranjeni
 - XSS se pohranjuje na poslužitelju (tipično kao unos forme)
 - Pohranjuje se u bazu
 - Svi korisnici koji posjete stranicu učitavaju XSS
- Zaštita
- Tipično se filtriraju <script> tagovi i znakovi
- Eliminacija uzroka
 - Ne uključivati ono što unese korisnik u izlaz aplikacije ili u povratni ispis
- Obrana
 - o Prvo: kodirati sve što unese korisnik i izbjeći znakove <, >, {, }, ", ' i slične
 - Napraviti whitelisting onoga što korisnik može unijeti
- POST umjesto GET-a
- HTTPOnly Cookie-i

8. Nesigurna deserijalizacija

- Web aplikacije prenose i čuvaju podatke u serijaliziranom obliku
- Problem ako web aplikacija "vjeruje" serijaliziranom objektu i ne provjerava ga
- Izbjegavanje

- Ne vjerovati svemu što nam stiže od korisnika (preglednika) iako smo mi to poslali -> napadač je to mogao promijeniti!
- o Isto vrijedi i za JS kod
- o Koristiti JSON
- Potpisivati osjetljive podatke (digitalni potpis)
- Ne slati osjetljive podatke ako nije nužno
- o Provjeravati očekivane tipove i dobivene tipove podataka

9. Ranjive komponente

- Gotove komponente za različite namjene
- Npr. Apache, NodeJS
- Izbjegavanje
 - o Identificirati korištene komponente
 - o Provjeriti korištene komponente
 - o Pratiti sigurnosne zakrpe i novootkrivene ranjivosti
 - o Nadzor rada sustava i cjelokupne sigurnosti
 - Koristiti sigurnosne politike
 - o Koristiti sigurnosne omotače izolirati komponente i pratiti ulaz, izlaz

10. Nedovoljan nadzor

- Većina napada podrazumijeva puno propalih pokušaja, "probe" poslužitelja i sličnih specifičnih radnji koje će u pravilu uzrokovati greške u dnevničkim zapisima
- Moguće je prepoznati "vektore" napada i pretpostaviti na što napadači ciljaju
- Rješenje
 - Log monitoring i alerting rješenja
 - Olakšati pregled dnevničkih zapisa administratorima
 - Obavijestiti ga o sumnjivim aktivnostima u stvarnom vremenu
 - o Application Level Firewall
 - "zna" prepoznati legitiman promet kod uobičajenih web aplikacija
 - "zna" prepoznati maliciozan promet kod uobičajenih web aplikacija

Mrežna sigurnost 1.dio

Komunikacijska sigurnost

- Pretpostavljamo da moraju biti ispunjeni svi sigurnosni zahtjevi na podatke koji se razmjenjuju između A i B kako bi se te informacije smatrale sigurnima
- Svi zahtjevi su: tajnost, raspoloživost, cjelovitost, autentičnost i neporecivost
- Presretanje, prisluškivanje
 - Network Sniffing
 - o Elektronička komunikacija se presreće i preuzima informacija
 - Postoji i zakonski regulirano presretanje (lawfull interception)

- Napadač postavlja svoju mrežnu karticu u promiskuitetni način rada vidi sav promet na tom segmentu
- o Mrežna kartica predaje sve pristigle pakete IP sloju
- Mnogi protokoli prenose autentifikacijske podatke u obliku čistog teksta -> username/password...
- o Alati: Wireshark, tcpdump

• Prekidanje, uskraćivanje

- o Prekidanje prekidanje normalnog tijeka komunikacije, usluge ili aplikacije
- Uskraćivanje usluge onemogućavanje usluge izazivanjem preopterećenja mreže ili umreženog sustava

Promjena, kašnjenje

- o Promjena promjena ili uništenje informacije
- o Kašnjenje može izazvati isti učinak podatak postaje nevažan

• Umetanje, ponavljanje

- Umetanje, ubacivanje ubacivanje zlonamjerne informacije
- o Ponavljanje ubacivanje informacije prethodno preuzete presretanjem

Slika 3 Umetanje, ponavljanje

Lažno predstavljanje

- o Maskiranje
- Lažno predstavljanje
- o Preuzimanje identiteta i uloge korisnika

• "Čovjek u sredini" (Man in the Middle)

- o To je situacija u kojoj su prisutne sve prethodno spomenute prijetnje
- Kako bi sve navedene prijetnje bile ostvarive napadač se mora nalaziti negdje na putu kojim se prenose podaci

Slika 4 MITM

Gdje se nalaze ranjivosti?

- Fizička ranjivost
- Ranjivosti u protokolima
- Ranjivosti u implementacijama
- Ranjivosti u konfiguraciji i korištenju
- Ranjivost koja je specifična za pojedinu okolinu

Ranjivosti protokola

- Dosta protokola Interneta je nastalo u vrijeme kada sigurnost nije bila visoko na listi prioriteta
- Primjeri ranjivih protokola: ARP, Ethernet, IP, TCP, UDP, niz aplikacijskih protokola

Protokol ARP

- ARP protokol za pretvaranje 32 bitnih IP adresa u 48 bitne Ethernet (MAC) adrese
- Da bi računalo A poslalo poruku računalu B, mora znati njegovu MAC adresu
 - o A šalje broadcast ARP zahtjev na mrežu (uključujući svoje preslikavanje)
 - B odgovara računalu A, porukom ARP odziv
 - preslikavanje se lokalno pohranjuje u svakom računalu u ARP
- ARP nema ugrađene mehanizme autentifikacije
- Moguće je poslati odgovor prije pravog računala te vratiti lažno preslikavanje adresa
- ARP poruke mogu se slati kontinuirano kako bi se (lažni) podaci zadržali u cacheu
- Cilj
- Prisluškivanje prometa switch prosljeđuje ethernet okvire između mrežnih sučelja na temelju ethernet adrese odredišta
- o Prekidanje lažno preslikavanje IP adrese usmjeritelja na nepostojeću MAC adresu
- DoS napad

- o Promjena
- o Ometanje
- Alati: arpoison, parasite
- Otkrivanje
 - Najjednostavniji način ispis ARP cachea
 - Može se detektirati s nekog trećeg računala, na kojem se njuška mreža i traže lažni ARP odzivi
 - U slučaju DoS napada, lagano je ustanoviti da nešto nije u redu
- Zaštita
 - o Ako postoji neobično ponašanje u mreži korisno je pogledati ARP cache
 - Korištenje hardvera koji će učiniti takve napade nemogućima ili više vidljivima (komutator)
 - o onemogućavanje ARP-a i njegova ručna konfiguracija

Protokol IPv4

- Podaci koji se prenose nisu ni na koji način zaštićeni
- Laka izmjena pojedinih polja paketa
- Najčešće lažiranje izvorišnih IP adresa
- IP zavaravanje (engl. IP spoofing)
 - Slanje IP datagrama s lažnom adresom pošiljatelja
 - o Najčešće se zloupotrebljava u DoS napadima
 - o Rješenje
 - o Filtriranje neispravnih izvorišnih adresa
 - Problem paketa s neispravnim izvorišnim adresama bi se djelomično riješio ispravnim podešavanjem usmjernika

• IP fragmentacija

- Fragmentacija je obavezan dio IP protokola; kad je potrebno datagram podijeliti na manje dijelove prije učahurivanja u okvir podatkovne veze
- Svaki fragment se dostavlja nezavisno
- o Može zavarati neke vatrozide i sustave za detekciju uljeza
- Svi fragmenti imaju isti identifikacijski broj (IP ID)
- o Pomak (fragment offset) određuje smještaj fragmenta u sastavljenom datagramu
- o Zastavica "more fragments" postavljena je u svim fragmentima osim u zadnjem
- Ping of Death
 - DoS napad koji prekoračuje maksimalnu veličinu IP datagrama
 - Kreira se i šalje fragmentirani IP datagram ukupne duljine veće od 65535 okteta
- Teardrop
 - Napadač šalje dva fragmenta koji se djelomično prekrivaju "crash" kernela nakon sastavljanja fragmenata
- TCP overwrite
 - varijacija napada Teardrop
 - IP datagram se fragmentira, TCP zaglavlje sadrži dozvoljeni port, na primjer
 80, pa ga vatrozid propušta

 neki sljedeći fragment ima "pomak" postavljen na 1 što znači da će port biti prepisan (npr. novi port će biti 23), sastavljeni paket preusmjerava se na novi port

Protokol ICMP

- DoS napadi
- Iskorištavanje tipa "ICMP redirect" za zlonamjerno preusmjeravanja prometa
- Uskraćivanje usluge slanjem lažiranih ICMP poruka o nedostižnom odredištu
- Implementacija prikrivenih kanala (engl. covert channel) korištenjem ICMP poruka
- Napad "smurf"
 - Započinje slanjem echo zahtjeva na sveodredišnu ("broadcast") adresu posredničke mreže s lažiranom izvorišnom adresom jednakom adresi ciljne mreže (žrtve)
 - o Računala u posredničkoj mreži odgovaraju slanjem echo odziva
 - o Odgovori idu na adresu žrtve
 - o Posrednička mreža i ciljna mreža zagušene prometom

Protokol DHCP

- Služi za automatsku dodjelu adresa i mrežnih parametara
 - o Klijent šalje svima na mreži poruku DHCPDISCOVER
 - o Poslužitelji odgovaraju klijentu s porukom DHCPOFFER
 - o Klijent odabire poslužitelj i šalje svima DHCPREQUEST
 - Poslužitelj odgovara s DHCPACK
- Fiksiranje adresa na temelju MAC adrese radi kontrole pristupa
- Problemi
 - o Nema nikakve zaštite poruka
 - Lažni DHCP poslužitelji na mreži
 - o Bilo koji klijent može zatražiti parametre

Protokol IPv6

- Na razini RIR-ova IPv4 adrese su iscrpljene te je neminovno uvođenje IPv6
- Adrese su 128 bita
- Pojednostavljeno zaglavlje
- Fragmentacija se više ne provodi u mrežnom sloju
- Zaglavlje protokola IPv6 i dalje nema zaštite!
- Ranjivosti kojih više nema u IPv6
 - Skeniranje IPv6 mreža je otežano
 - Ne koriste se više broadcast adrese
 - Onemogućena je fragmentacija u usmjernicima
- Ranjivosti zajedničke protokolima IPv4 i IPv6
 - o Skeniranje jedne adrese je i dalje moguće
 - o Razrješavanje IP adresa u MAC adresu
 - O Ne koristi se više ARP već ICMPv6, ali sve je ostalo isto

- o Protokoli ICMPv4 i ICMPv6 i dalje ranjivi
- o Protokol DHCP se i dalje koristi u obje mreže
- o Protokol IPsec se koristi za zaštitu oba protokola
- Ranjivosti specifične za protokol IPv6
 - Samostalno podešavanje IPv6 adrese
 - Problem velikog adresnog prostora
 - Višeodredišne adrese
 - o Zloupotreba mehanizma DAD (Duplicate address detection) radi uskraćivanja usluge
 - o Objava usmjerničkih podataka
 - Automatsko tuneliranje
 - o Sigurnosni uređaji još nisu dovoljno sazreli

Protokol ICMPv6

- Vrlo značajan za ispravan rad protokola IPv6
- Posljedično, nije moguće filtrirati sav ICMPv6 promet

Poboljšanje sigurnosti na mrežnom sloju

- Protokol IP ne nudi nikakvu zaštitu
- Kriptiranje i zaštita integriteta
- VPN
- Za potpunu zaštitu preporučljivo je koristiti i (komplementarna) rješenja na višim slojevima -HTTPS/TLS

Protokol UDP

- Nespojni transportni protokol
- Nema ugrađene mehanizme za pouzdan prijenos
- Nema kontrole toka
- Duljina UDP zaglavlja: 8 okteta
- Napadi na UDP
- UDP obmana (UDP spoofing)
 - o mijenjanjem izvorišne IP adrese predstavljamo se kao drugo računalo
 - o IP adresa je jedini način identifikacije računala u protokolu UDP
 - Ne šalju se potvrde
- UDP otimanje (UDP hijacking)
 - o napadač sluša vezu
 - odgovara na klijentov UDP zahtjev prije poslužitelja slanjem paketa s promijenjenom izvorišnim adresom
 - o klijent misli da je primio paket od poslužitelja
- UDP oluje (UDP storms)
 - Jedan paket je dovoljan za pokretanje napada!
 - Obično se pošalje nekoliko paketa kako bi se pojačalo djelovanje
 - o Petlja se izvodi dok jedno računalo ne završi

- Koriste se echo (7), chargen (19), daytime (13), time (37)
- UDP reflection
 - Servisu koji koristi UDP (bez autentifikacije) pošalje se upit s lažiranom izvorišnom adresom a njegov odziv sadrži više podataka od upita
 - o DNS amplification 28 do 54 puta
 - o NTP amplification 556.9 puta

Protokol TCP

- Konekcijski (spojno) orijentirani transportni protokol
- Pouzdan, obostrana veza
- SEQ
 - Slijedni broj ("Sequence number")
 - o Označava redni broj prvog okteta koji se prenosi u korisničkim podacima
- ACK
 - Broj potvrde ("Acknowledgment number")
 - o Označava redni broj okteta koji pošiljatelj ove potvrde očekuje primiti
 - o Ujedno potvrđuje da su svi podaci do tog okteta primljeni
- U paketu se šalje potvrda o zadnjim ispravno primljenim podacima
- Paket se prihvaća samo ako je unutar veličine predajnog prozora
- Za potvrdu se može koristiti i prazni segment
- Paketi sa zastavicama SYN ili FIN povećavaju slijedni broj iako ne sadrže podatke
- Za napad je bitan položaj napadača (za napad SYN flood nije!)
- Jedina potpuna zaštita je IPsec

Slika 5 Primjer TCP veze

Napad TCP SYN flood

- o Poslužitelj po primitku SYN segmenta rezervira resurse
- Veza je u poluotvorenom stanju koje traje neko vrijeme
- Problem za napadača
 - Računalo koje primi SYN+ACK, a nije poslalo SYN, odgovara s RST
 - Napadač mora koristiti adresu s koje neće stići odgovor!
- Ne postoji standardizirana niti potpuna zaštita

- Neke metode zaštite su:
- o Povećanje broja dozvoljenih poluotvorenih veza
- Skraćenje trajanja poluotvorene veze
- Smanjenje količine stanja poluotvorene veze (SYN cache)
- Zaštita uz pomoć kolačića (SYN cookies) za inicijalni SYN se uopće ne čuva stanje

RST napad

- Slanje segmenta s postavljenom RST zastavicom
- o Problem je pogoditi parametre TCP veze

FIN napad

o Sličan RST napadu jedino se zatvara pojedini kraj veze

Mrežna sigurnost 2.dio

VPN

- Pojam koji označava stvaranje privatnih mreža nad javnom infrastrukturom Interneta
- Rješenja za ostvarenje virtualnih privatnih mreža
- OpenVPN, WireGuard, IPsec, Clientless VPN TLS
- PTTP
 - o Microsoft razvio 1999.
 - Na Internetu postoji usluga probijanja šifre za bilo koju PPTP konekciju unutar jednog dana - Ne koristiti!

Vrste VPN-a

- Od točke do točke (Site-to-site)
 - Između dva mrežna entiteta (na primjer usmjeritelja)
 - Privatne i zaštićene mreže iza oba entiteta
- udaljeni pristup (Remote Access)
 - Između uređaja i usmjeritelja
 - Na udaljenoj lokaciji se ne nalazi zaštićena mreža

IPSec

- Služi za povezivanje dviju ili više mreža (VPN), povezivanje osobnih računala na korporativnu mrežu, povezivanje dva računala međusobno
- Autentifikacija putem certifikata, dijeljene tajne ili EAP-a
- Protokol definira ponašanje krajnjih točaka i protokole za razmjenu upravljačkih informacija i podataka
- o Ponašanje krajnjih točaka definirano bazama SPD i SAD
- o SPD (Security Policy Database) definira što se treba zaštititi
 - Navodi što treba učiniti s paketom koji odgovara
- SAD (Security Association Database) definira kako treba štiti
 - Sadrži odabrane kriptografske algoritme i ključeve

 Osnovni protokoli: ESP (Zaštita tajnost, integriteta i autentičnosti), AH (Zaštita integriteta i autentičnosti), IKE (Uspostava ključeva)

Protokol ESP

Struktura zaglavlja paketa ESP (Encapsulating Security Payload) u prijenosnom
 (lijevo) i tunelirajućem (desno) načinu rada

Slika 6 Protokol ESP

Protokol AH

 Struktura zaglavlja paketa AH (Authentication Header) u prijenosnom (lijevo) i tunelirajućem (desno) načinu rada

Slika 7 Protokol AH

• Protokol IKEv1 i IKEv2

- Zadaće protokola su
 - Autentifikacija partnera
 - Dogovor oko sigurnosnih asocijacija
 - Periodička razmjena ključeva
- o Razlike IKEv2 u odnosu na IKEv1
 - IKEv2 pojednostavljen
 - Potrebno je manje razmjena paketa kako bi se uspostavila prva sigurnosna asocijacija
 - Uklonjena i jedna ranjivost u posebnom načinu rada

Slika 8 Primjer rada protokola IKE i ESP/AH

• Nekriptirani VPN sustavi

- Ponekad se pod nazivom VPN-a nudi neka nezaštićena usluga
- o MPLS je tehnologija slična na ATM-u koja IP adrese mijenja labelama
- o U toj usluzi nema nikakvog kriptiranja te je IPsec ili sličan mehanizam i dalje nužan

Digitalni certifikati

- Certifikat digitalni objekt
- Sadrži javni ključ i ostale informacije o subjektu, izdavatelju i valjanosti
- Certifikat izdaje i digitalno potpisuje izdavatelj certifikata

Slika 9 Sadržaj osobnog certifikata

• CA certifikati

- Certifikati svih poznatih izdavatelja ugrađeni su u preglednike ili operacijski sustav
- Unutar organizacije je moguće kreirati vlastito certifikacijsko tijelo koje izdaje samopotpisani certifikat
- Datoteke certifikata
 - .CER/.CRT/.DER binarni, DER kodirani certifikat
 - .PEM dodatno kodiran po Base64
 - .PFX PKCS#12, javni i privatni ključ (zaštićen lozinkom)

- Valjanost certifikata
 - Polja u certifikatu: "not valid before" i "not valid after"
 - Za vrijeme roka valjanosti certifikat može biti opozvan

Protokol TLS

- Protokol TLS služi za zaštitu komunikacije
- Model prijetnje
 - o Krajnje točke komunikacije su sigurne
 - Ostali sustavi mogu biti pod kontrolom napadača
 - o Napadač ima potpunu kontrolu nad komunikacijskim kanalom
 - o Eksplicitno ne brinemo o napadima uskraćivanja usluge
- Najčešća upotreba TLS-a: HTTPS
 - Korisnik na klijentskoj strani (u pregledniku) zahtijeva dokument s URL koji sadrži https umjesto http
 - Preglednik prepoznaje SSL/TLS zahtjev i uspostavlja konekciju s poslužiteljem na TCP portu 443
- Osnovna funkcionalnost protokola potvrda identiteta poslužitelja i zaštita tajnosti i autentičnosti komunikacije
- Izvršava se nad protokolom TCP
- Protokol također omogućava autentifikaciju klijenta korištenjem certifikata
- Presretanje protokola
 - Za tvrtke je kriptirani mrežni promet problematičan
 - Narušavanje politika i pravila korištenja intraneta i Interneta, skidanje zloćudnog koda
 - U slučaju presretanja komunikacije zaštićene TLS-om klijenti dobivaju upozorenje
- Napadi na protokol Heartbleed, BEAST, POODLE
- TLS 1.3
 - o TLS 1.3 je brži i sigurniji protokol od verzije 1.2
 - o Uklonjene su zastarjele i nesigurne komponente protokola
- Preporuke za korištenje TLS protokola
 - o Koristiti ključeve od minimalno 2048 bita za RSA ili 256 bita za ECDSA
 - Samostalno generirati privatni ključ na sigurnom računalu
 - Izbjegavati slabe algoritme kao što je RC4
 - o Onemogućiti kompresiju, pregovaranje koje inicira klijent

Napadi uskraćivanja usluge (DoS/DDoS)

- Nisu specifični za mrežni sloj
- Obrana vrlo teška i ovisi o konkretnom napadu i specifičnostima samog napada
- Vrste mrežnih (D)DoS napada
 - Napadi preplavljivanja (Lažirani i legitimni UDP promet, ICMP i DNS preplavljivanje)
 - Preplavljivanje koje iskorištava karakteristike protokola (TCP SYN preplavljivanje, RST/FIN preplavljivanje)
 - o Reflektirajući napadi preplavljivanja (Smurf attack)
 - Napadi preplavljivanja s pojačanjem (DNS amplification, NTP amplification)

• Vrste aplikacijskih (D)DoS napada

- Reflektirajući/amplifikacijski napadi (vrlo slični mrežnim DDoS napadima, ali ciljaju protokole viših slojeva)
- HTTP napadi (Slow request/response attacks, asimetrični napadi)

Zaštita

- o Zaštita na strani žrtve
 - Zaštita od napada vrlo specifična o konkretnoj situaciji
 - Npr. ako je napad temeljen na UDP-u moguće je blokirati UDP
- o Zaštita na komunikacijskom putu do žrtve (suradnja s ISP-om)
- Djelovanje na strani napadača i C&C poslužitelja

Mrežna sigurnost 3.dio

Aplikacijski sloj

- Poslužiteljske aplikacije osluškuju zahtjeve na dobro poznatim pristupima
- Administrator (ili običan korisnik) na nekom računalu korištenjem odgovarajućih alata može dobiti popis:
 - Pristupa na kojima čeka neka aplikacija
 - o Poslužiteljskih aplikacija koje osluškuju zahtjeve
 - o Statusa veza
- Jedan od alata koji daje te informacije je netstat

• Udaljeno otkrivanje aplikacija

- Temeljni način udaljenog otkrivanja aplikacija je skeniranje pristupa kako bi se utvrdilo koji su otvoreni
- Otvoren pristup znači da je neka aplikacija prisutna
- Potrebno je dodatno prikupljanje informacija kako bi napadač otkrio aplikaciju, i njenu verziju

• Otkrivanje aktivnih TCP aplikacija

- Pokušaj uspostave veze (najjednostavnija metoda koja uspostavlja u potpunosti vezu te ju odmah prekida)
- o TCP SYN skeniranje (šalje se SYN te gleda odgovor)
- U oba slučaja, ako nema odgovora tada negdje na putu postoji nekakav filter i ne znamo kakva je situacija
- TCP FIN skeniranje (šalje se segment s FIN zastavicom. U slučaju da nema ničega na pristupu, vraća se RST, u suprotnom se zahtjev ignorira)
- Skeniranje s fragmentacijom (Nije posebna vrsta skeniranja već mehanizam izbjegavanja detekcije)

Skeniranje UDP porta

- o Slanje (praznog) UDP datagrama
- o Za zatvoren pristup pristižu poruke "ICMP port unreachable"
- Kada je pristup otvoren ne šalje se nikakav odgovor
- o Potencijalni problemi za napadača
 - UDP je nepouzdan te je potrebno pokušati nekoliko puta kako bi bili sigurni da nije došlo do gubitaka
- Vrlo spora tehnika skeniranja

• Poteškoće sa skeniranjem za napadača

- Relativno velik broj pristupa po čvoru
- Potencijalno velik broj čvorova koje je potrebno skenirati
- Ako je neki port otvoren ne znači da se tamo nalazi očekivana aplikacija

Detekcija aplikacije

- Napadač se spaja na port
- Koristeći očekivani protokol pokušava komunicirati s aplikacijom
- Problemi za napadača
 - Ako aplikacija ne objavljuje svoju verziju/tip ili objavljuje neku generičku ili lažnu verziju
 - Na aplikacije se stavlja zakrpa koja ne mijenja prijavljenu verziju aplikacije

• Otkrivanje vrste i verzije operacijskog sustava

- Detekcija OS-a temelji se snimanju ponašanja njegova mrežnog stoga te usporedbi s bazom poznatih operacijskih sustava
- o Detekcija nije u potpunosti pouzdana, tj. uvijek postoji mogućnost pogreške

Napadi pogađanja grubom silom

- o Pokušaj otkrivanja nepoznate ili tajne informacije upotrebom pogađanja
- o Sve usluge koje omogućavaju prijavu putem mreže ranjive su na pogađanje
- Napad pogađanja može biti:
 - "on-line" uključuje interakciju s uslugom
 - "off-line" radi na ukradenim podacima
- Zaštita
 - Ograničavanje pristupa usluzi
 - Kvalitetne, jake lozinke (dobra entropija!)
 - Ograničavanje broja pokušaja, zaključavanje
 - 2F∆
 - Pohrana lozinki u šifriranom obliku ili u obliku sažetka

Poslužitelji elektroničke pošte

- Elektronička pošta koristi barem dva poslužitelja
 - MTA Mail Transfer Agent
 - MUA Mail User Agent
- o Danas je uobičajeno integrirano rješenje (tzv. groupware)
- Poslužitelj elektroničke pošte direktno izložen na Internetu
- Obavezna redovita nadogradnja

Usluga prijenosa datoteka

- Originalno za tu namjenu bio je predviđen protokol FTP (File Transfer Protocol)
- Nema zaštitu komunikacije, prijenos lozinke preko mreže
- o Protokol uključuje otvaranje zasebnih TCP veza!
- Povećava kompleksnost uređaja vatrozid/NAT
- Preporuka: izbjegavati i koristiti alternativu SFTP/SCP

Udaljeni rad

- Najpoznatiji protokol: SSH
- SSH Transport Layer Protocol
 - Dogovara način razmjene ključeva, asimetrični algoritam šifriranja, simetrični algoritam šifriranja, algoritam za autentifikaciju poruka i algoritam kriptografskog sažetka
 - Autentifikacija poslužitelja korištenjem para ključeva (javni/privatni)

- Prilikom prvog spajanja klijentski program korisniku prikazuje sažetak poslužiteljskog ključa
- Usluge temeljene na protokolu SSH
 - Udaljen rad (ssh klijent)
 - Prijenos datoteka (SFTP i SCP klijenti)
 - Tuneliranje Ethernet okvira ili IP datagrama
 - Prosljeđivanje lokalnih i udaljenih pristupa
- o Mogući problemi sa SSH
 - Korisnik nije zaštitio tajni ključ lozinkom
 - Popis računala i javnih ključeva
 - Zamjena i povlačenje ključeva je zahtjevna

DNS

Svrha napada na sustav DNS

- Sprečavanje pristup određenoj usluzi
- o MITM napad ili podmetanje lažnih sjedišta
- o Preuzimanje domena

• Prijetnje sustavu DNS

- Presretanje paketa (MITM)
- Primjena IPsec/TLS i sličnih rješenja nije odgovarajuća (štiti samo pojedine korake, ne s kraja na kraj)
- o Pogađanje ID vrijednosti i predviđanje upita
 - Napadač nije na putu i mora pogoditi ID u paketu te izvorišni pristup
- Name chaining
 - Podskup napada trovanja priručne memorije (engl. cache poisoning)
 - U odgovoru se šalje informacija koja uzrokuje da žrtva šalje DNS upit prema napadačevom poslužitelju
 - Djelomična zaštita sprečavanja trovanja priručne memorije je provjera relevantnosti dobivenih informacija s obzirom na poslani upit
- Manipulacija upotrebom poslužiteljima
 - Klijent vjeruje nekom poslužitelju koji je pod kontrolom napadača
- Uskraćivanje usluge
 - Rješava se višestrukim DNS poslužiteljima po domeni razmještenima u različitim mrežama
 - Ponekad rješava se upotrebom ANYCAST adresa

• Zaštita sustava DNS

- Zaštita od DNS Cache Poisoning
 - TXID (16 bita) + random source port (16 bita)
- Mehanizam TSIG
 - Temelji se na dijeljenom ključu uz pomoć kojega se generira potpis
 - Koristi se za dinamička osvježavanja zone te za prijenos zone na sekundarne poslužitelje
- o DNSSEC
 - Osigurava kriptografski dokaz ispravnosti primljenih podataka

- Klijenti korištenjem resolvera koji provjeravaju valjanost dobivaju zajamčeno sigurne podatke
- Za podatke koje ne može provjeriti resolver vraća SERVFAIL
- Za zaštitu se koristi asimetrična kriptografija
- Podaci, zapisi na poslužitelju (RR Resource Records), potpisuju se privatnim kliučem
- Potpisom se osigurava valjanost zapisa s kraja na kraj -> između autoritativnog poslužitelja i resolvera
- Možemo li tim podacima vjerovati? -> Da ako je root (".") potpisan!
- Problemi sustava DNSSEC
 - DNSSEC ne osigurava povjerljivost podataka
 - DNSSEC ne štiti od DDoS napada
 - Utjecaj na mrežu i vatrozide

Slika 10 DNS cache poisoning

Vatrozid

- Uređaj koji radi na mrežnom sloju
- Smješten između dvije ili više mreža
- Princip rada
 - Provodi sigurnosnu politiku kontrolom pristupa
 - Svaki paket koji prolazi provjerava se sa bazom pravila koja određuje što treba učiniti s paketom

• Elementi arhitektura mreža s vatrozidom

- Segmentacija mreže na razne razine povjerljivosti
- Demilitarizirana zona (DMZ)
- Perimetar granica mreže (danas nije toliko jasan!)
- o Konfiguracije s jednim i dva vatrozida

NAT

- o Zasebna funkcionalnost, često integrirana s vatrozidom, nije za sigurnost
- Poslužiteljska mreža može biti zaštićena dodatnim vatrozidom
- Poslužitelji kojima se pristupa iz Interneta smještaju se u posebnu mrežu: Demilitarizirana zona (DMZ)
- Primjeri vatrozida

Netfilter / iptables

- iptables se koristi za postavljanje, održavanje i provjeru pravila IP vatrozida ugrađenog u Linux kernel
- pravila su organizirana u lance

Packet filter

- Packet filter usmjerava i filtrira pakete između unutarnjih i vanjskih sučelja
- o Selektivno propušta ili blokira određene tipove paketa na temelju:
 - Protokola
 - IP adresa izvora / odredišta
 - TCP zastavica
 - TCP ili UDP izvorišni/odredišni port
- Prednosti jednostavna implementacija i dobre performanse
- Ograničenja ograničena provjera, složena konfiguracija, nije dovoljno fleksibilno i proširivo

• Statefull Inspection

- o Radi kao paket filter (pristupne liste) + održavanje stanja
- o Dohvaća i informacije iz protokola na višim slojevima
- Provjera svakog paketa

• Iptables chains

- Vrste
 - input ulazni
 - output izlazni
 - forward prosljeđivački
 - prerouting, postrouting, korisnički specificirani lanci, masquerading, port forwarding
- Lanac se sastoji od niza pravila koja se obrađuju slijedno
- Obrada završava ako se "skače" na lance: ACCEPT paket se prihvaća, DROP paket se odbacuje, REJECT – kao DROP ali šalje ICMP poruku ili TCP reset

Naredbe

-A, --append dodaj pravilo na kraj -L, --list ispiši pravila lanca iptables -L INPUT -n -v iptables -A INPUT --dport 22 -j ACCEPT -F, --flush obriši sva pravila iz -D, --delete obriši pravilo definiranog lanca iptables -D INPUT --dport 80 -j DROP iptables -F INPUT iptables -D INPUT 1 defaultna politika -P, --policy -I, --insert ubaci pravilo pod (implicitno zadnje pravilo) definiranim rednim brojem iptables -P INPUT DROP iptables -I INPUT 1 --dport 80 -j ACCEPT

Uzorci u filterima

generički uzorci

-p --protocol na primjer tcp, udp, icmp -s --src izvorišna IP adresa

-d --dst odredišna IP adresa, na primjer 10.1.2.3 ili 10.2.3.0/24

-i --in-interface dolazno sučelje, na primjer eth0

-o --out-interface odlazno sučelje

uzorci za protokole UDP i TCP (-p udp ili -p tcp)

--sport --source-port izvorišni port --dport --destination-port odredišni port

uzorci za protokol ICMP (-p icmp)

--icmp-type tip icmp poruke, na primjer "echo request": --icmp-type 8

stanje konekcije:

-m state ESTABLISHED, RELATED

-m conntrack --ctstate ESTABLISHED, RELATED

Slika 12 Iptables uzorci u filterima

- Vatrozid nije rješenje svih problema sigurnosti
- Posrednički poslužitelji
 - O Vatrozid radi na 3. sloju ISO/OSI RM-a (i 4. sloju)
 - Posrednički poslužitelji omogućavaju bolji nadzor mrežnog prometa
 - ALI: Bez vatrozida nije moguće dosljedno provoditi politiku korištenja posredničkog poslužitelja

<u>IDS</u>

- Sustavi za detekciju upada (Intrusion Detection Systems)
- Temelje se na ideji da se praćenjem ponašanja sustava ili prometa na mreži može detektirati incident
- Podjele prema načinu rada
 - o Bazirane na pravilima
 - Na detekciji ponašanja ili anomalijama
- Podjele prema mjestu nadzora
 - Mrežni (NIDS) uzimaju podatke s mreže
 - o Računalni sustavi (HIDS) uzimaju podatke s računala
- Mrežni sustavi
 - o Postavljaju se na neke ključne točke na kojima snimaju promet
 - o Problem je i šifrirana komunikacija
- Sustavi za prevenciju upada (Intrusion Prevention Systems)
 - Osim detekcije rade i prevenciju
 - o Prevencija može biti postavljanje dodatnih pravila na vatrozidu
 - Ako nisu dobro podešeni mogu onemogućiti ispravan rad mreže
- Otkrivanje ranjivosti u mreži
 - Otkrivanje ranjivosti može se obaviti na dva temelja načina:
 - Skeniranje mrežnih raspona
 - Penetracijska ispitivanja

Sigurnost bežičnih mreža

- Bežične mreže koriste elektromagnetske valove za prijenos podataka
- Mogu biti 802.11, mobilne mreže, Bluetooth
- Dva osnovna načina rada 802.11:
 - o Ad-hoc omogućava direktnu komunikaciju stanica
 - o Infrastrukturni koristi se pristupna točka (AP) preko koje svi komuniciraju

Protokoli za sigurnost bežičnih mreža

- Za sigurnost bežičnih mreža definirani su WEP, WPA, WPA2 i WPA3
- WEP primjer kako ne upotrebljavati kriptografiju
- o WPA uveden kao privremena mjera, baziran na draftu 802.11i specifikacije
- o WPA2 definiran 2004. godine
- WPA3 definiran 2018. godine poboljšana zaštita prilikom korištenja nedovoljno kompleksnih lozinki, uklonjeni kripto algoritmi koji se smatraju nesigurnima, uvedena zaštita upravljačkih okvira

• Kontrola pristupa bežičnoj mreži

- WPA/WPA2/WPA3 PSK (pre-shared key, dijeljena tajna)
 - Jednostavno postavljanje
 - Efektivno se radi o lozinci što znači da se mogu provoditi napadi koji se provode na njih
- o WPA/WPA2/WPA3 Enterprise
 - Centralizirana autentifikacija koju obavlja poseban poslužitelj

Fizički sloj

- Na fizičkom sloju definiraju se radio karakteristike
- o Koristi se nelicencirani spektar centriran na 2.4 GHz i 5 GHz
- Oblikom i razmještajem antena te snagom može se utjecati na pokrivenost

• Vrste okvira i njihova zaštita

- U 802.11 bežičnim mrežama upotrebljavaju se tri vrste okvira
 - Podatkovni okviri prenose korisničke podatke
 - Upravljački okvir upravljanje MAC-om
 - Kontrolni okviri upravljanje pristupom mediju
- Samo podatkovni okviri su kriptografski zaštićeni

Napadi uskraćivanjem usluge

- o RF ometanje
- Virtualno ometanje
- o Lažiran zahtjev za odspajanjem
- Connection request flooding

• Napadi na kriptografiju

- o WEP uz pomoć gotovih alata vrlo jednostavno je moguće doći do dijeljene tajne
- WPA ima određenih problema korišteni algoritam za zaštitu integriteta nije dovoljno jak te je u prosjeku nakon 2²⁸ pokušaja moguće lažirati sadržaj poruke
- WPA2 ima ranjivost KRACK

Nekriptografski napadi na WPA i WPA2

- o WPA PSK ranjiv na pogađanje dijeljene tajne
- o PSK je moguće otkriti i kompromitiranjem klijenata

o PSK omogućava spajanje na mrežu, ali ne i dešifriranje snimljenog prometa

Napad na sustav WPS

- WPS (engl. Wi-Fi Protected Setup) napravljen kako bi se olakšalo podešavanje WPA PSK zaštite
 - Korisnik na računalu ukuca 8-znamenkasti PIN zapisan na kućnom usmjerniku
 - Usmjernik pošalje dobru dijeljenu tajnu računalu i na dalje se upotrebljava WPA PSK

Problem

- Radi se o samo 8 znamenkastom broju, a zadnja znamenka je kontrolna
- Znamenke se prenose u grupama 4+3, pri čemu AP daje odgovor već nakon prve grupe
- Dakle, potrebno je samo 11000 (104+103) pokušaja (od početnih 108!)

Neovlaštene i otvorene pristupne točke

- Neovlaštene pristupne točke (engl. Rogue access points)
 - Pristupne točke dolaze u raznim formama postoje USB verzije koje se mogu priključiti na prijenosna/stolna računala
 - Napadač koji se pokušava ubaciW u komunikaciju ili dohvaWW inicijalnu razmjenu radi vjerodajnica
- Otvorene pristupne točke na javnim mjestima ili u kafićima
 - Problematične jer mogu biti namjerno podmetnute
 - Ako nisu podmetnute, na tim otvorenim mrežama može se nalaziti napadač vrebajući žrtve