Mole Concept

DPP-2 Solutions

Ashish Bibyan B.Tech (IIT Delhi)

Referral Code: ABSIRLIVE

1. 10 mol NH₃.

- Sol. 1 mol Cu (NH₃)₄ SO₄ is produced from = 4 mol NH₂ 2.5 mol Cu (NH₃)₄ SO₄ is produced from $= 4/1 \times 2.5$ = 10 mol NH₂
- **Sol.** Ba $(OH)_2 + 2HClO_3 \rightarrow Ba (ClO_3)_2 + 2H_2O$ 0.25

1 mole of Ba (OH), reacts with 2 moles of HClO,

0.1 mole of Ba(OH)2 reacts with 0.2 moles

:. Ba (OH)2 is the limiting reagent & HClO3 is the excess reagent.

 \therefore Moles of H₂O formed = 0.2

- 823.53g 3.
- **Sol.** $2C_8H_{18} + 17O_2 \rightarrow 16CO + 18H_2O$ wt. of $C_8H_{18} = 1000g \Rightarrow \text{moles of } C_8H_{18} = 8.77$ wt. of $O_2 = 1000g \Rightarrow \text{moles of } O_2 = 31.25$ 2 moles of octane reacts with = 17 moles of O2 8.77 moles of octane reacts with

= 74.545 moles of O₂

: O_2 is the Limiting reagent. 17 moles of O_2 forms = 16 moles of CO 31.25 moles of O_2 forms = 29.41 moles of CO Wt. of CO produced = 29.41×28 = 823.52g

264g

- **Sol.** $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$ wt. of ethane = 90g
 - \therefore moles of ethane = $\frac{90}{30}$ = 3
 - \therefore moles of CO₂ produced = $3 \times \frac{4}{2}$ = 6 moles.
 - \therefore wt. of CO₂ produced = 6×44g = 264g

5. 5.55g

- **Sol.** $CaCl_2 + 2Ag NO_3 \rightarrow Ca (NO_3)_2 + 2AgCl.$ wt. of AgCl = 14.3g.
 - \therefore Moles of AgCl = $\frac{14.3}{143.5} \approx 0.1$.

Moles of $CaCl_2 = \frac{0.1}{2} = 0.05$ moles

2 moles of AgCl is produced from = 1 mol of CaCl₂

- 0.1 mole of AgCl is produced from = 0.05 moles \therefore wt. of CaCl₂ required = 0.05×111 = 5.55g
- 6. 6.38g
- **Sol.** $2KClO_3 \xrightarrow{\Delta} 2KCl + 3O_2$ wt. of O_2 produced = 2.5g.
 - \therefore Moles of O₂ produced = $\frac{2.5}{32}$
 - \therefore Moles of KClO₃ required = $\frac{2}{3} \times \frac{2.5}{32}$
 - \therefore wt. of KClO₃ required = $\frac{2}{3} \times \frac{2.5}{32} \times 122.5$ = 6.38 g
- 7. 132.8g
- **Sol.** $8KI + 5H_2SO_4 \rightarrow 4K_2SO_4 + 4I_2 + H_2S + 4H_2O$ Moles of $K_2SO_4 = \frac{69.6}{174} = 0.4 \text{ Moles}$

4 Moles of K₂SO₄ is produced from = 8 Moles KI 0.4 Moles of K2SO4 is produced from

= 0.8 moles KI

Mass of KI = 0.8×166 = 132.8 g

- 59.2g
- **Sol.** $2Al + 3 MnO \rightarrow Al_2O_3 + 3Mn$ Weight of Al taken = 110g \Rightarrow Moles of Al taken = 110/27 = 4.074 moles Weight of MnO taken = 200g ⇒ Moles of MnO taken = 2.817 moles 3 Moles of MnO reacts with = 2 moles of Al So, 2.817 moles of MnO reacts with
 - = $\frac{2}{3} \times 2.817$ moles of Al
 - = 1.878 moles of Al

Therefore,

MnO is the limiting reagent and Al is the excess reagent.

Amount of Al in excess = 4.074 - 1.878 $= 2.196 \text{ moles} = 2.196 \times 27g$ = 59.2g

- (i) 44g, (ii) 22g, (iii) 22g
- **Sol.** (i) $C + O_2 \rightarrow CO_2$

1 mol carbon produces = 44g CO₂

- (ii) 12g carbon requires = 32g O₂ $L.R. = O_2$ 32g O₂ produces = 44g CO₂ 16g O₂ produces = 22g CO₂
- (iii) 12g carbon requires = 32g O2

24g (2 mol) carbon requires = 64g O₂ $L.R. = O_2$ 16g O₂ will produce = 22g CO₂

10. $A + B_2 \rightarrow AB_2$

- Sol. (i) 1 atom of A reacts with = 1 molecule 300 atoms of A reacts with = 300 molecules of B₂ $L.R. = B_2$
 - (ii) 1 mol of A reacts with = 1 mol of B₂ 2 mol A reacts with = 2 mol of B_2
 - .. L.R. = A
 - (iii) 1 atom of A reacts with = 2 atoms of B 100 atoms of A reacts with = 200 atoms of B
 - (iv) 1 mol A reacts with = 1 mol of B₂ 5 mol A reacts with = 5 mol of B_2 $L.R. = B_2$
 - (v) 1 mol of A reacts with = 1 mol of B_2 2.5 mol of A reacts with = $2.5 \text{ mol of } B_2$ L.R. = A

N_2 (g) + $3H_2$ (g) \rightarrow 2 NH_3

- **Sol.** (i) $28g N_2$ reacts with = $6g H_2$ 2000g N_2 reacts with = 428.56g H_2 $L.R. = N_2$
 - \therefore 28g N₂ forms = 34g NH₃ $2000g N_2 \text{ forms} = 2428.57g NH_3$
 - (ii) Yes, H2
 - (iii)H₂ left = 1000 428.56 = 571.43g
- 12.
- **Sol.** 4HCl (aq) + MnO₂(s) \rightarrow 2 H₂O (l) + MnCl₂ (aq) + M.M. of $MnO_2 = 87g/mol$

 $87g \text{ MnO}_2$ reacts with = 146g HCl5g MnO_2 reacts with = 8.40g HCl

- 13. (a)
- No solution Sol.
- 14. (c)

- (a) $28g N_2 = N_A \text{ molecules}$ Sol. $7g N_2 = N_A/4$ molecules
 - **(b)** $32g O_2 \equiv N_A \text{ molecules}$ $16g O_2 \equiv N_A/2 \text{ molecules}$
 - (c) $2g H_2 \equiv N_A \text{ molecules}$
 - (d) $46g \text{ NO}_2 \equiv N_A \text{ molecules}$ $16g \text{ NO}_2 \equiv 0.34 \text{ N}_A \text{ molecules}.$
- 15. (b)
- Sol. 24 g Mg \equiv N_A atoms \Rightarrow 12 g Mg = N_A/2 atoms Also, $28g N_2 = 2N_A \text{ atoms}$ $7g N_2 = N_A/2 \text{ atoms}$
- 16. (a)
- Sol. (a) $18g H_2O \equiv N_A \text{ molecules}$ $36g H_2O \equiv 2N_A \text{ molecules}$
 - **(b)** 44g $CO_2 = N_A$ molecules $28g CO_2 \equiv 0.64 N_{\Delta}$ molecules
 - (c) $42g CH_3OH = N_A molecules$ $46g CH_3OH \equiv 1.4375 N_A molecules$
 - (d) $108g N_2O_5 = N_A$ molecules $58g N_2O_5 \equiv 0.54 N_A \text{ molecules}$
- 17. (b)
- Sol. $2Al + 3/2 O_2 \rightarrow Al_2O_3$ 3/2 moles of O_2 combine with Al = 2 mol mass of Al = $2 \times 27 = 54g$
- 18. (c)
- Sol. No solution
- 19. (d)
- Sol. $3 \operatorname{BaCl}_{2} + 2\operatorname{Na}_{3}\operatorname{PO}_{4} \rightarrow \operatorname{Ba}_{3}(\operatorname{PO}_{4})_{2} + 6 \operatorname{NaCl}$ 0.5 mol $3 \text{ mol BaCl}_2 \equiv 2 \text{ mol Na}_3 \text{PO}_4$ 0.5 mol BaCl₂ = $\frac{2}{3} \times 0.5 = 0.33$ mol Na₃PO₄
- $Na_3PO_4 = L.R.$ \Rightarrow $2 \text{ mol } \text{Na}_3\text{PO}_4 \equiv 1 \text{ mol } \text{Ba}_3(\text{PO}_4)_2$ $0.2 \text{ mol } \text{Na}_3 \text{PO}_4 \equiv 0.1 \text{ mol } \text{Ba}_3 (\text{PO}_4)_2$
- 20.
- Sol. (a) mass of Fe = 50g
 - (b) mass of $N_2 = 5 \times 28 = 140 \text{ g}$
 - (c) mass of Ag = $0.1 \times 108 = 10.8 \text{ g}$
 - (d) mass of carbon = 6g.
- 21. (b)
- Sol. $CaCO_3 \longrightarrow CaO + CO_3$ 100g CaCO₃ produces = 56g CaO 25g CaCO₃ produces = 14g CaO.