Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Группа	P3217	К работе допущен	_
Студент	Григорьев Георгий	Работа выполнена	_
Преподаватель	ь Самопётов В. А	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 23

ПОЛЯРИЗАЦИЯ СВЕТА. ЗАКОНЫ МАЛЮСА И БРЮСТЕРА

1. Цель работы.

Исследование характера поляризации лазерного излучения и экспериментальная проверка законов Малюса и Брюстера.

- 2. Задачи, решаемые при выполнении работы.
 - Снятие эксперимент. данных показателей интенсивности прошедшего света при различных условиях и эксперимент. измерение угла Брюстера
 - Обработка полученных данных, проверка законов Малюса и Брюстера
- 3. Объект исследования.

Лазерное излучение.

- 4. Метод экспериментального исследования. Эмпирический: снятие показаний, их обработка, формулировка выводов

5. Рабочие формулы и исходные данные
$$I_{\rm OTH} = \frac{I}{I_{max}} \qquad P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \qquad I_{\rm пp} = k I_{\rm п} cos^2 \phi$$

$$k_{\parallel} = \frac{I_{max}}{I_{\rm II}} \qquad P = \frac{(n^2-1)^2}{2(n^2+1)^2 - (n^2-1)^2}$$

$$k_{\perp} = \frac{I_{min}}{I_{\rm II}} \qquad {\rm tg} \alpha_{\it Bp} = \frac{n_2}{n_1} = n_{21}$$

6. Измерительные приборы.

Nº п/ п	Наименование	Тип прибора	Используемые диапозон	Погрешность прибора	
1	Модульный комплекс МУК-ОВ		-150°150°	0.5°	
2	Транспортир		-180°180°	1°	
3					
4					

- 7. Схема установки (перечень схем, которые составляют *Приложение 1*). [1] описание лабораторной установки МУК-ОВ
- 8. Результаты прямых измерений и их обработки.

Упражнение 1. Проверка закона Малюса

		Угол			1	· ·	1/1'			
изм.		(положение юляроида), °	Изм. 1 (I ₁)	Изм. 2 (I ₂)	Изм.З (I ₃)	Усредн. (I _{ср})	Изм. 1 (l' ₁)	Изм. 2 (l' ₂)	Изм.З (l' ₃)	Усредн. (I' _{ср})
1		150	1,250	1,250	1,250	1,250	0,485	0,486	0,484	0,485
2		140	1,046	1,033	1,030	1,036	0,459	0,460	0,460	0,460
3		130	0,783	0,783	0,780	0,782	0,422	0,425	0,426	0,424
4		120	0,502	0,504	0,510	0,505	0,396	0,394	0,396	0,395
5		110	0,291	0,290	0,289	0,290	0,371	0,370	0,365	0,369
6		100	0,102	0,101	0,102	0,102	0,356	0,357	0,358	0,357
7	С П	90	0,025	0,025	0,025	0,025	0,360	0,354	0,360	0,358
8	р а	80	0,012	0,011	0,011	0,011	0,380	0,368	0,367	0,372
9	в a	70	0,123	0,122	0,125	0,123	0,384	0,386	0,380	0,383
10		60	0,300	0,300	0,300	0,300	0,400	0,402	0,401	0,401
11		50	0,532	0,534	0,532	0,533	0,433	0,432	0,436	0,434
12		40	0,852	0,851	0,852	0,852	0,462	0,461	0,461	0,461
13		30	1,143	1,140	1,144	1,142	0,487	0,485	0,486	0,486
14		20	1,363	1,380	1,340	1,361	0,509	0,510	0,509	0,509
15		10	1,546	1,533	1,562	1,547	0,524	0,525	0,525	0,525
16		0	1,660	1,650	1,660	1,657	0,543	0,547	0,550	0,547
17		10	1,637	1,626	1,635	1,633	0,521	0,519	0,520	0,520
18		20	1,475	1,476	1,473	1,475	0,510	0,509	0,509	0,509
19		30	1,337	1,336	1,335	1,336	0,484	0,484	0,484	0,484
20		40	1,063	1,066	1,061	1,063	0,442	0,443	0,443	0,443
21		50	0,799	0,801	0,799	0,800	0,414	0,411	0,410	0,412
22		60	0,500	0,499	0,499	0,499	0,387	0,388	0,389	0,388
23	С	70	0,273	0,272	0,273	0,273	0,368	0,368	0,367	0,368
24	л e	80	0,091	0,091	0,091	0,091	0,359	0,359	0,360	0,359
25	в a	90	0,016	0,017	0,016	0,016	0,354	0,353	0,352	0,353
26		100	0,024	0,023	0,024	0,024	0,373	0,371	0,375	0,373

No	№ Угол			1				1/1'			
изм.	(положение поляроида), °		Изм. 1 (I ₁)	Изм. 2 (I ₂)	Изм.3 (I ₃)	Усредн. (I _{ср})	Изм. 1 (l' ₁)	Изм. 2 (l' ₂)	Изм.З (l' ₃)	Усредн. (I' _{ср})	
27		110	0,121	0,120	0,121	0,121	0,399	0,400	0,400	0,400	
28		120	0,292	0,293	0,292	0,292	0,425	0,424	0,425	0,425	
29		130	0,543	0,544	0,543	0,543	0,466	0,462	0,460	0,463	
30		140	0,813	0,814	0,813	0,813	0,490	0,490	0,489	0,490	
31		150	1,050	1,053	1,055	1,053	0,521	0,520	0,518	0,520	
I_0										1,632	
I_0'										0,838	
7/										0.550	

 I_0 0,838 I' 0,550 I_{max} 1,657 I_{min} 0,011

Расчет усредненного значения интенсивности луча $I_{\rm cp}$ лазера в п. 1.3 упражнения 1 производился по формуле:

$$I_{\rm cp} = \frac{I_1 + I_2 + I_3}{3}$$

Расчет усредненного значения интенсивности $(\frac{I}{I'})_{\text{ср}}$ белого света в п. 1.8 упражнения 1 производился по аналогичной формуле:

$$(\frac{I}{I'})_{cp} = \frac{(\frac{I}{I'})_1 + (\frac{I}{I'})_2 + (\frac{I}{I'})_3}{3}$$

9. Расчет результатов косвенных измерений

Найдено максимальное значение интенсивности излучения I_{max} , прошедшего сквозь поляризатор, советующее углу ϕ_{max} :

$$I_{max} = 1,657$$
 $\phi_{max} = 0^{\circ}$

По следующей формуле вычислены нормированные значения относительной интенсивности, а также значения $(\frac{I}{I'})_{\text{cp}}$:

$$I_{\text{OTH}} = \frac{I}{I_{max}}$$
 $(\frac{I}{I'})_{\text{cp}} = \frac{(\frac{I_1}{I'_1} + \frac{I_2}{I'_2} + \frac{I_3}{I'_3})}{3}$

Результаты представлены в таблице 9.1 ($I_{\rm cp}$ в таблице 9.1 — это значение $I_{\rm cp}$ из таблицы "Упражнения 1. Проверка закона Малюса").

Таблица 9.1

№ изм.	Угол (положение поляроида), °		I _{cp}	Іотн	$I_{ extsf{cp}}'$	$(\frac{I}{I'})_{cp}$					
1		150	1,250	0,754	0,485	2,577					
2		140	1,036	0,625	0,460	2,255					
3		130	0,782	0,472	0,424	1,843					
4		120	0,505	0,305	0,395	1,278					
5		110	0,290	0,175	0,369	0,787					
6		100	0,102	0,061	0,357	0,285					
7	С П		0,025	0,015	0,358	0,070					
8	р а	80	0,011	0,007	0,372	0,030					
9	в a		0,123	0,074	0,383	0,322					
10		60	0,300	0,181	0,401	0,748					
11		50	0,533	0,321	0,434	1,228					
12		40	0,852	0,514	0,461	1,846					
13		30	1,142	0,689	0,486	2,350					
14		20	1,361	0,821	0,509	2,672					
15		10	1,547	0,934	0,525	2,949					
16		0	1,657	1,000	0,547	3,030					
17		10	1,633	0,985	0,520	3,140					
18		20	1,475	0,890	0,509	2,895					
19							30	1,336	0,806	0,484	2,760
20		40	1,063	0,642	0,443	2,402					
21		50	0,800	0,483	0,412	1,943					
22		60	0,499	0,301	0,388	1,287					
23	С	70	0,273	0,165	0,368	0,742					
24	л e		0,091	0,055	0,359	0,253					
25	в a		0,016	0,010	0,353	0,046					
26		100	0,024	0,014	0,373	0,063					
27		110	0,121	0,073	0,400	0,302					

№ изм.	Угол (положение поляроида), °	I _{cp}	I _{отн}	I_{cp}'	$(\frac{I}{I'})_{\sf cp}$
28	120	0,292	0,176	0,425	0,688
29	130	0,543	0,328	0,463	1,174
30	140	0,813	0,491	0,490	1,661
31	150	1,053	0,641	0,520	2,026

Найдены коэффициенты пропускания использованного поляроида для параллельной и перпендикулярной ориентации его плоскости пропускания по отношению к направлению колебаний вектора $\stackrel{\rightarrow}{E}$ в излучении лазера:

$$k_{\parallel} = \frac{I_{max}}{I_{\Pi}} = \frac{0.838}{1.632} = 0.513$$

$$k_{\perp} = \frac{I_{min}}{I_{\text{II}}} = \frac{0.011}{1.632} = 0,007$$

где $I_{\Pi}=I_{0}$, установленной в п. 1.2 упражнения 1.

Найден коэффициент поляризации лазера P_1, P_2

$$P1 = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{1,660 - 0,010}{1,660 + 0,010} = 0,988$$

$$P2 = \frac{I'_{max} - I'_{min}}{I'_{max} + I'_{min}} = \frac{0,547 - 0,354}{0,547 + 0,354} = 0,214$$

10. Расчет погрешностей измерений

Расчет погрешностей прямых измерений

$$t = \frac{|\overline{x} - \mu|}{se}, \quad se = \frac{\sigma_I}{\sqrt{n}} \quad \Rightarrow \quad |\overline{x} - \mu| = \Delta x = t \frac{\sigma_I}{\sqrt{n}} = \sum_{i=1}^{31} \sqrt{\frac{(I_i - \overline{I})^2}{n(n-1)}} t$$

t-значение берется из таблицы значений T-распределения, но в нашем конкретном случае при кол-ве измерений более 30 считаем его за 1.

$$\Delta x = \sum_{i=1}^{31} \sqrt{\frac{(I_i - 0.70)^2}{30 \times 29}} \approx 0.097$$

$$\Delta x' = \sum_{i=1}^{31} \sqrt{\frac{(I_i - 0.43)^2}{30 \times 29}} \approx 0.010$$

В результате однократных измерений получены значения:

$$\overline{I_0} = 1.570$$
 $\overline{I'_0} = 1,545$
 $\overline{I'} = 0.838$

Расчет погрешностей косвенных измерений

- 11. Графики (перечень графиков, которые составляют Приложение 2)
 - график $I_{\text{отн}}(\phi)$

 - график $cos^2(\phi-\phi_{max})$ график $\frac{I}{I'}(\phi)$

6

- 12. Окончательные результаты
- 13. Выводы и анализ результатов работы.

На графиках заметна похожая форма трех зависимостей, а также вычислена степень поляризации лазера, которая составила 0,988 и степень поляризации белого света – 0,214. Заметно большое различие в характере поляризации лазера и белого света. Проверен закон Малюса.

[1] Описание лабораторной установки МУК-ОВ

Приложение 1

Механический блок состоит из основания 10, на котором установлены и закреплены электронный блок 11, стойка 8, служащая вертикальной оптической скамьей и блок осветителей 1. Источниками освещения служат полупроводниковый лазер и лампа накаливания. На стойке смонтированы следующие оптические узлы:

Турель 2, на которой смонтированы объекты исследования для работ по интерференции и дифракции.

Защитный экран 3 предназначен для защиты от отраженного от дифракционного элемента лазерного луча.

Поляризатор 4 закреплен на турели во вращающейся обойме со стрелкой-указателем и транспортиром.

Анализатор 7, выполнен аналогично 4.

Двулучепреломляющий одноосный образец 5, используемый в работах по поляризации света, конструктивно выполнен аналогично 4.

Блок 6 для измерения угла Брюстера состоит из стеклянной пластинки с поворотным устройством и отсчетной вертикальной шкалой 9, закрепленной на стойке 8.

Электронный блок содержит следующие органы управления, коммутации и индикации:

- 12 индикатор измерений блока амперметра-вольтметра
- 13 индикатор режима измерений блока амперметра-вольтметра
- 14 индикаторы включенного источника;
- 15 регулятор накала белого осветителя;
- 16 кнопка переключения режима измерений блока амперметра-вольтметра; 17 кнопка включения лазера;
- 18 ручка установки относительной интенсивности «J/J0»;
- 19 кнопка переключения фотоприемников;
- 20 индикатор относительной интенсивности излучения;
- 21 индикаторы включенного фотоприемника;
- 22 кнопка «Сеть»;
- 23 окно фотоприемников белого осветителя;
- 24 окно фотоприемника лазерного излучения;
- 25 кнопка включения лампы.