Want more revision exercises? Get MathsFit - New from projectmaths.

08	2 c	(ii) Evaluate $\int_{0}^{\frac{\pi}{12}} \sec^2 3x \ dx.$	3
		$\int_{0}^{\frac{\pi}{12}} \sec^2 3x = \left[\frac{1}{3} \tan 3x \right]_{0}^{\frac{\pi}{12}}$	
		$= \frac{1}{3} \left[\tan \frac{\pi}{4} - \tan 0 \right]$ $= \frac{1}{3} (1 - 0)$ $= \frac{1}{3} (1 - 0)$	
		$=\frac{1}{3}$	

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

In better responses, candidates set this question out in three steps: finding the primitive, substitution of the limits and then evaluation of the resulting expressions. Candidates are reminded that all steps in a solution need to be shown. Common errors were finding an

incorrect primitive, for example $3\tan(3x)$, $\frac{1}{3}\tan(x)$ or $\tan(\frac{3x^2}{2})$, using $\frac{\pi}{2}$ as the upper

limit instead of $\frac{\pi}{12}$ and using degrees instead of radians.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/