Recap: Multi-dimensional Gaussian density

 $\mathbf{X} = (X_1, \cdots, X_n)^T$ are said to be jointly Gaussian if

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$

- $E\mathbf{X} = \boldsymbol{\mu}$ and $\Sigma_X = \Sigma$.
- ▶ The moment generating function is given by

$$M_{\mathbf{x}}(\mathbf{s}) = e^{\mathbf{s}^T \boldsymbol{\mu} + \frac{1}{2} \mathbf{s}^T \boldsymbol{\Sigma} \mathbf{s}}$$

 $\qquad \qquad \mathbf{W} \text{hen } X,Y \text{ are jointly Gaussian, the joint density is given by }$

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left(\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right)}$$

- ► The multi-dimensional Gaussian density has some important properties.
- ▶ If X_1, \dots, X_n are jointly Gaussian then they are independent if they are uncorrelated.
- ▶ Suppose X_1, \dots, X_n be jointly Gaussian and have zero means. Then there is an orthogonal transform $\mathbf{Y} = A\mathbf{X}$ such that Y_1, \dots, Y_n are jointly Gaussian and independent.
- ▶ X_1, \dots, X_n are jointly Gaussian if and only if $\mathbf{t}^T \mathbf{X}$ is Gaussian for for all non-zero $\mathbf{t} \in \Re^n$.
- ▶ We will prove this using moment generating functions

- ▶ Suppose $\mathbf{X} = (X_1, \cdots, X_n)^T$ be jointly Gaussian and let $W = \mathbf{t}^T \mathbf{X}$.
- Let μ_X and Σ_X denote the mean vector and covariance matrix of \mathbf{X} . Then

$$\mu_w \triangleq EW = \mathbf{t}^T \mu_X; \quad \sigma_w^2 \triangleq \mathsf{Var}(W) = \mathbf{t}^T \Sigma_X \mathbf{t}$$

ightharpoonup The mgf of W is given by

$$M_W(u) = E\left[e^{uW}\right] = E\left[e^{u\mathbf{t}^T\mathbf{X}}\right]$$
$$= M_X(u\mathbf{t}) = e^{u\mathbf{t}^T\mu_x + \frac{1}{2}u^2\mathbf{t}^T\Sigma_x\mathbf{t}}$$
$$= e^{u\mu_w + \frac{1}{2}u^2\sigma_w^2}$$

showing that \boldsymbol{W} is Gaussian

▶ Shows density of X_i is Gaussian for each i. For example, if we take $\mathbf{t} = (1, 0, 0, \dots, 0)^T$ then W above would be X_1 .

Now suppose $W = \mathbf{t}^T \mathbf{X}$ is Gaussian for all \mathbf{t} .

$$M_W(u) = e^{u\mu_w + \frac{1}{2}u^2\sigma_w^2} = e^{u \mathbf{t}^T \mu_X + \frac{1}{2}u^2 \mathbf{t}^T \Sigma_X \mathbf{t}}$$

▶ This implies

$$E\left[e^{u\,\mathbf{t}^T\mathbf{X}}\right] = e^{u\,\mathbf{t}^T\mu_X + \frac{1}{2}u^2\,\mathbf{t}^T\Sigma_X\mathbf{t}}, \ \forall u \in \Re, \forall \mathbf{t} \in \Re^n, \ \mathbf{t} \neq 0$$

$$E\left[e^{\mathbf{t}^T\mathbf{X}}\right] = e^{\mathbf{t}^T\mu_X + \frac{1}{2}\mathbf{t}^T\Sigma_X\mathbf{t}}, \ \forall \mathbf{t}$$

This implies X is jointly Gaussian.

► This is a defining property of multidimensional Gaussian density

- ▶ Let $\mathbf{X} = (X_1, \dots, X_n)^T$ be jointly Gaussian.
- ▶ Let A be a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.
- ► We will once again show this using the moment generating function.
- Let μ_x and Σ_x denote mean vector and covariance matrix of \mathbf{X} . Similarly μ_y and Σ_y for \mathbf{Y}
- We have $\mu_y = A\mu_x$ and

$$\Sigma_{y} = E \left[(\mathbf{Y} - \mu_{y})(\mathbf{Y} - \mu_{y})^{T} \right]$$

$$= E \left[(A(\mathbf{X} - \mu_{x}))(A(\mathbf{X} - \mu_{x}))^{T} \right]$$

$$= E \left[A(\mathbf{X} - \mu_{x})(\mathbf{X} - \mu_{x})^{T} A^{T} \right]$$

$$= A E \left[(\mathbf{X} - \mu_{x})(\mathbf{X} - \mu_{x})^{T} \right] A^{T} = A \Sigma_{x} A^{T}$$

► The mgf of Y is

$$M_{Y}(\mathbf{s}) = E\left[e^{\mathbf{s}^{T}\mathbf{Y}}\right] \quad (\mathbf{s} \in \Re^{k})$$

$$= E\left[e^{\mathbf{s}^{T}A}\mathbf{X}\right]$$

$$= M_{X}(A^{T}\mathbf{s})$$

$$(\text{Recall } M_{X}(\mathbf{t}) = e^{\mathbf{t}^{T}\mu_{x} + \frac{1}{2}\mathbf{t}^{T}\Sigma_{x}\mathbf{t}})$$

$$= e^{\mathbf{s}^{T}A\mu_{x} + \frac{1}{2}\mathbf{s}^{T}A\Sigma_{x}A^{T}\mathbf{s}}$$

$$= e^{\mathbf{s}^{T}\mu_{y} + \frac{1}{2}\mathbf{s}^{T}\Sigma_{y}\mathbf{s}}$$

This shows Y is jointly Gaussian

- **X** is jointly Gaussian and A is a $k \times n$ matrix with rank k.
- ▶ Then Y = AX is jointly Gaussian.
- ► This shows all marginals of X are gaussian
- \blacktriangleright For example, if you take A to be

$$A = \left[\begin{array}{cccc} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \end{array} \right]$$

then
$$\mathbf{Y} = (X_1, X_2)^T$$

Jensen's Inequality

▶ Let $g: \Re \to \Re$ be a convex function. Then

$$g(EX) \le E[g(X)]$$

- ▶ For example, $(EX)^2 \le E[X^2]$
- ▶ Function *q* is convex if

$$g(\alpha x + (1-\alpha)y) \le \alpha g(x) + (1-\alpha)g(y), \quad \forall x, y, \quad \forall 0 \le \alpha \le 1$$

▶ If g is convex, then, given any x_0 , exists $\lambda(x_0)$ such that

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

Jensen's Inequality: Proof

We have

$$g(x) \ge g(x_0) + \lambda(x_0)(x - x_0), \ \forall x$$

▶ Take $x_0 = EX$ and $x = X(\omega)$. Then

$$g(X(\omega)) \geq g(EX) + \lambda(EX)(X(\omega) - EX), \ \forall \omega$$

- $Y(\omega) \ge Z(\omega), \ \forall \omega \Rightarrow Y \ge Z \Rightarrow EY > EZ$
- Hence we get

$$g(X) \geq g(EX) + \lambda(EX)(X - EX)$$

$$\Rightarrow E[g(X)] \geq g(EX) + \lambda(EX) E[X - EX] = g(EX)$$

This completes the proof

- ▶ Consider the set of all mean-zero random variables.
- It is closed under addition and scalar (real number) multiplication.
- $ightharpoonup \operatorname{Cov}(X,Y) = E[XY]$ satisfies
 - 1. Cov(X,Y) = Cov(Y,X)
 - 2. $Cov(X, X) = Var(X) \ge 0$ and is zero only if X = 03. Cov(aX, Y) = aCov(X, Y)
- 4. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$
- Thus Cov(X,Y) is an inner product here.
- ▶ The Cauchy-Schwartz inequality $(|\mathbf{x}^T\mathbf{y}| \le ||\mathbf{x}|| \ ||\mathbf{y}||)$ gives

$$|\mathsf{Cov}(X,Y)| < \sqrt{\mathsf{Cov}(X,X) \; \mathsf{Cov}(Y,Y)} = \sqrt{\mathsf{Var}(X) \; \mathsf{Var}(Y)}$$

- ▶ This is same as $|\rho_{XY}| < 1$
- A generalization of Cauchy-Schwartz inequality is Holder inequality

Holder Inequality

▶ For all p,q with p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$

$$E[|XY|] \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(We assume all the expectations are finite)

• If we take p = q = 2

$$E[|XY|] \le \sqrt{E[X^2] \ E[Y^2]}$$

► This is same as Cauchy-Schwartz inequality. We once again get

$$\begin{split} \left| \mathsf{Cov}(X,Y) \right| &= \left| E[(X - EX)(Y - EY)] \right| \\ &\leq E\left[\left| (X - EX)(Y - EY) \right| \right] \\ &\leq \sqrt{E[(X - EX)^2]} \; E[(Y - EY)^2] \\ &= \sqrt{\mathsf{Var}(X) \; \mathsf{Var}(Y)} \end{split}$$

Proof

First we will show, for p,q>1 and $\frac{1}{p}+\frac{1}{q}=1$

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y \in \Re$$

- For x > 0, $g(x) = -\log(x)$ is convex because $g''(x) = 1/x^2 \ge 0$, $\forall x$.
- ▶ Hence, for all $x_1, x_2 > 0$ and $0 \le t \le 1$,

$$-\log(tx_1 + (1-t)x_2) \leq -t\log(x_1) - (1-t)\log(x_2)$$

$$\Rightarrow \log(tx_1 + (1-t)x_2) \geq \log\left(x_1^t x_2^{(1-t)}\right)$$

$$\Rightarrow tx_1 + (1-t)x_2 \geq x_1^t x_2^{(1-t)}$$

• We have for all $x_1, x_2 > 0$ and $0 \le t \le 1$,

$$tx_1 + (1-t)x_2 > x_1^t x_2^{(1-t)}$$

▶ Take $x_1 = |x|^p$, $x_2 = |y|^q$, $t = \frac{1}{n}$ (and hence $1 - t = \frac{1}{n}$)

$$(|x|^p)^{\frac{1}{p}} (|y|^q)^{\frac{1}{q}} \le \frac{1}{p} |x|^p + \frac{1}{q} |y|^q$$

$$|x|^p |y|^q$$

$$\Rightarrow |xy| \leq \frac{|x|^p}{n} + \frac{|y|^q}{q}, \ \forall x, y$$

$$|xy| \le \frac{|x|^p}{p} + \frac{|y|^q}{q}, \ \forall x, y$$

$$\begin{array}{l} \text{ Take } x = X(\omega) \, (E|X|^p)^{-\frac{1}{p}}, \, y = Y(\omega) \, (E|Y|^q)^{-\frac{1}{q}} \\ \\ \frac{|X(\omega)Y(\omega)|}{(E|X|^p)^{\frac{1}{p}} \, (E|Y|^q)^{\frac{1}{q}}} \, \leq \, \, \frac{|X(\omega)|^p \, (E|X|^p)^{-1}}{p} \, + \, \frac{|Y(\omega)|^q \, (E|Y|^q)^{-1}}{q} \end{array}$$

$$\frac{|XY|}{(E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}} \le \frac{|X|^p (E|X|^p)^{-1}}{p} + \frac{|Y|^q (E|Y|^q)^{-1}}{q}$$

$$\frac{E|X|^p)^{\frac{p}{p}} (E|Y|^q)^{\frac{q}{q}}}{(E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}} \le \frac{1}{p} + \frac{1}{q} = 1$$

$$\frac{E|XY|}{E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}} \le \frac{1}{p} + \frac{1}{q} = 1$$

$$\Rightarrow E|XY| \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

▶ Jensen's Inequality: If g is convex and EX and E[g(X)] exist

$$g(EX) \le E[g(X)]$$

▶ Holder Inequality: For p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$

$$|E|XY| \le (E|X|^p)^{\frac{1}{p}} (E|Y|^q)^{\frac{1}{q}}$$

(assuming all expectations exist)

- ▶ For p = q = 2, the above is Cauchy-Schwartz inequality
- ▶ This implies $|\rho_{XY}| < 1$
- Minkowski's Inequality:

$$(E|X+Y|^r)^{\frac{1}{r}} \le (E|X|^r)^{\frac{1}{r}} + (E|Y|^r)^{\frac{1}{r}}$$

Chernoff Bounds

► Recall Markov inequality. If *h* is positive, strictly increasing

$$P[X > a] = P[h(X) > h(a)] \le \frac{E[h(X)]}{h(a)}$$

▶ Take $h(x) = e^{sx}$, s > 0. Then

$$P[X > a] \le \frac{E[e^{sX}]}{e^{sa}} = \frac{M_X(s)}{e^{sa}}, \forall s > 0$$

► The RHS is a function of S. We can get a tight bound by using a value of s which minimizes RHS.

Hoeffding Inequality

- Often we need to deal with sums of iid random variables.
- ► Here is a simple version of an inequality very useful in such situations.
- ▶ Let X_i be iid and let $X_i \in [a, b], \forall i$. Let $EX_i = \mu$

$$P\left[\left|\sum_{i=1}^{n} X_i - n\mu\right| \ge \epsilon\right] \le 2e^{-\frac{2\epsilon^2}{n(b-a)}}, \ \epsilon > 0$$

Note we do not need knowledge of any moments of X_i to calculate the bound

PS Sastry, IISc, Bangalore, 2020 19/32

- ▶ Let X_1, X_2, \cdots be iid random variables
- Let $EX_i = \mu$ and let $Var(X_i) = \sigma^2$
- ▶ Define $S_n = \sum_{i=1}^n X_i$. Then

$$ES_n = \sum_{i=1}^n EX_i = n\mu;$$
 and $Var(S_n) = \sum_{i=1}^n Var(X_i) = n\sigma^2$

▶ We are interested in $\frac{S_n}{n}$, average of X_1, \dots, X_n .

$$\begin{split} E\left[\frac{S_n}{n}\right] &= \frac{1}{n}ES_n = \mu, \ \, \forall n \\ \operatorname{Var}\left(\frac{S_n}{n}\right) &= \left(\frac{1}{n}\right)^2\operatorname{Var}(S_n) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}, \ \, \forall n \end{split}$$

Weak Law of large numbers

lacksquare X_i are iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$

$$E\left[\frac{S_n}{n}\right] = \mu; \quad \text{ and } \quad \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$$

- As n becomes large, variance of $\frac{S_n}{n}$ becomes close to zero
- $ightharpoonup rac{S_n}{r}$ 'converges' to its expectation, μ , as $n o \infty$
- By Chebyshev Inequality

$$P\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\mathsf{Var}(\frac{S_n}{n})}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}, \ \forall \epsilon > 0$$

► Thus, we get

$$\lim_{n \to \infty} P \left| \left| \frac{S_n}{n} - \mu \right| \ge \epsilon \right| = 0, \quad \forall \epsilon > 0$$

Known as weak law of large numbers

- Suppose we are tossing a (biased) coin repeatedly
- $X_i = 1$ if i^{th} toss came up head and is zero otherwise.
- ▶ $EX_i = p$ where p is the probability of heads. Variance of X_i is p(1-p)
- $ightharpoonup S_n = \sum_{i=1}^n X_i$ is the number of heads in n tosses
- $ightharpoonup rac{S_n}{n}$ is the fraction of heads in n tosses.
- We are saying $\frac{S_n}{n}$ 'converges' to p
- ► The probability of head is the limiting fraction of heads when you toss the coin infinite times

$$\lim_{n \to \infty} P\left[\left| \frac{S_n}{n} - p \right| \ge \epsilon \right] = 0, \quad \forall \epsilon > 0$$

- This is true of any event.
- ► Consider repeatedly performing a random experiment
- lacksquare X_i be the indicator of event A on i^{th} repetition
- ▶ Then $EX_i = P(A), \forall i$
- $ightharpoonup \frac{S_n}{r}$ is the fraction of times the event A occurred.
- ► The fraction of times an event occurs 'converges' to its probability as you repeat the experiment infinite times

- ▶ X is a random variable and we want to find EX.
- ▶ Make multiple independent observations of X. Call them X_1, \dots, X_n .
- ▶ These are called samples of X. $S_n = \sum_{i=1}^n X_i$
- $ightharpoonup \frac{S_n}{n}$ is the sample mean average of all samples.
- ▶ $\frac{S_n}{n}$ has the same expectation as X but has much smaller variance.
- ► Sample mean 'converges' to expectation ('population mean')
- ► This is the principle of sample surveys
- ▶ In general one can get an approximate value of expectation of *X* through simulations/experiments
- Known as Monte Carlo simulations

lacksquare X_i are iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$

$$E\left[\frac{S_n}{n}\right] = \mu; \quad \text{ and } \quad \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{\sigma^2}{n}$$

- ▶ As n becomes large, variance of $\frac{S_n}{n}$ becomes close to zero
- We would like to say $\frac{S_n}{n} \to \mu$.
- We need to properly define convergence of a sequence of random variables
- ▶ One way of looking at this convergence is

$$\lim_{n \to \infty} P\left[\left| \frac{S_n}{n} - \mu \right| \ge \epsilon \right] = 0, \quad \forall \epsilon > 0$$

► There are other ways of defining convergence of random variables

- Recall convergence of real number sequences.
- A sequence of real numbers x_n is said to converge to x_0 , $x_n \to x_0$, if $\forall \epsilon > 0, \ \exists N < \infty, \ s.t. \ |x_n x_0| < \epsilon, \ \forall n > N$
 - ► To show a sequence converges using this definition, we need to know (or guess) the limit.
- Convergent sequences of real numbers satisfy the Cauchy criterion

$$\forall \epsilon > 0, \ \exists N < \infty, \ s.t. |x_n - x_m| < \epsilon, \ \forall n, m > N$$

- Now consider defining sequence of random variables X_n converging to X_0
- ► These are not numbers. They are, in fact functions.
- We know that $|X_n-X_0|\leq \epsilon$ is an event. We can define convergence in terms of probability of that event
- becoming 1.

 ► Or we can look at different notions of convergence of a sequence of functions to a function.

 PS Sastry, IISC, Bangalore, 2020 26/32

- ▶ Consider a sequence of functions g_n mapping \Re to \Re .
- We can say $g_n \to g_0$ if $g_n(x) \to g_0(x)$, $\forall x$.
- ▶ This is known as point-wise convergence
- ▶ Or we can ask for $\int |g_n(x) g_0(x)|^2 dx \to 0$.
- ► There are multiple notions of convergence that are reasonable for a sequence of functions.
- ► Thus there would be multiple ways to define convergence of sequence of random variables.

Convergence in Probability

▶ A sequence of random variables, X_n , is said to **converge** in **probability** to a random variable X_0 is

$$\lim_{n \to \infty} P[|X_n - X_0| > \epsilon] = 0, \ \forall \epsilon > 0$$

This is denoted as $X_n \stackrel{P}{\rightarrow} X_0$

- We would mostly be considering convergence to a constant.
- ▶ By the definition of limit, the above means

$$\forall \delta > 0, \ \exists N < \infty, \ s.t. \ P[|X_n - X_0| > \epsilon] < \delta, \ \forall n > N$$

• We only need marginal distributions of individual X_n to decide whether a sequence converges to a constant in probability

Example: Partial sums of iid random variables

- $ightharpoonup X_i$ are iid, $EX_i = \mu$, $Var(X_i) = \sigma^2$, $S_n = \sum_{i=1}^n X_i$
- ▶ Then we saw

$$P\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\sigma^2}{n\epsilon^2}, \ \forall \epsilon > 0$$

- ► Hence we have $\frac{S_n}{n} \stackrel{P}{\to} \mu$
- Weak law of large numbers says that sample mean converges in probability to the expectation

Example

- Let $\Omega = [0, 1]$ with the usual probability measure and let $X_n = I_{[0, 1/n]}$.
- $P[X_n = 1] = \frac{1}{n} = 1 P[X_n = 0]$
- lacktriangle The probability of X_n taking value 1 is decreasing with n
- A good guess is that it converges to zero

$$P[|X_n - 0| > \epsilon] = P[X_n = 1] = \frac{1}{n}$$

which goes to zero as $n \to \infty$.

▶ Hence, $X_n \stackrel{P}{\rightarrow} 0$

Example

- Let X_1, X_2, \cdots be a sequence of iid random variable which are uniform over (0, 1).
- $Let M_n = \max(X_1, X_2, \cdots, X_n)$
- ▶ Does M_n converge in probability?
- A reasonable guess for the limit is 1

$$P[|M_n - 1| \ge \epsilon] = P[M_n \le 1 - \epsilon] = (1 - \epsilon)^n$$

- ▶ This implies $M_n \stackrel{P}{\rightarrow} 1$
- Suppose $Z_n = \min(X_1, X_2, \cdots, X_n)$. Then $Z_n \stackrel{P}{\rightarrow} 0$

Some properties of convergence in probability

- $lacksymbol{\lambda} X_n \stackrel{P}{\to} X \text{ and } X_n \stackrel{P}{\to} Y \Rightarrow P[X=Y]=1$
- $lacksquare X_n \stackrel{P}{\to} X \Rightarrow P[|X_n X_m| > \epsilon] \to 0 \text{ as } n, m \to \infty$
- ▶ Suppose $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$ Then the following hold
 - 1. $aX_n \stackrel{P}{\to} aX$
 - 2. $X_n + Y_n \stackrel{P}{\rightarrow} X + Y$
 - 3. $X_n Y_n \stackrel{P}{\to} XY$
- We omit the proofs