CLAIMS

We Claim:

2

3

1

 $\mathbf{2}$

3

color sensor circuit.

1	1. A color sensor implemented on a single, integrated circuit chip, the
2	color sensor comprising:
3	a plurality of color sensor circuits, each color sensor circuit in the
4	plurality of color sensor circuits including:
5	a light detector,
6	an amplifier connected to the light detector, the amplifier
7	amplifying a signal from the light detector, and
8	a gain selection circuit, connected to the amplifier, the gain
9	selection controlling gain of the amplifier, the gain selection circuit including a
10	variable feedback resistance; and,
11	a gain selection control that selects a separate value of the variable
12	feedback resistance for each color sensor circuit.
1	2. A color sensor as in claim 1 wherein the plurality of color sensor

3. A color sensor as in claim 1 wherein the plurality of color sensor circuits include a red color sensor circuit, a green color sensor circuit, a blue color sensor circuit, and a white color sensor circuit.

circuits include a red color sensor circuit, a green color sensor circuit and a blue

6

1

2

3

4

5

6

1

- 4. A color sensor as in claim 1 wherein for each color sensor circuit in the plurality of color sensor circuits, the variable feedback resistance comprises:

 a plurality of resistors connected in series; and,

 a plurality of switches connected to the plurality of resistors, the gain selection control selecting the value of the variable feedback resistance by
 - 5. A color sensor as in claim 1 wherein the gain selection control selects the separate value of the variable feedback resistance for each color sensor circuit so that for each color sensor circuit any selected range from a selected minimum illuminance to a selected maximum illuminance is guaranteed to utilize at least a predetermined percentage of a full voltage range provided the selected maximum is within a predefined range.
- 6. A color sensor as in claim 1 wherein the amplifier is a multi-stage
 amplifier.
- 7. A color sensor as in claim 1 wherein the amplifier is a multi-stage
 amplifier with separate gain selection at multiple stages.
 - 8. A color sensor as in claim 1:

controlling the plurality of switches.

- wherein the gain selection circuit additionally includes a variable
- 3 compensation capacitance; and,

4	wherein the gain selection control selects a value of the variable
5	compensation capacitance.
1	9. An integrated circuit chip comprising:
2	a light detector;
3	an amplifier connected to the light detector, the amplifier amplifying a
4	signal from the light detector;
5	a gain selection circuit, connected to the amplifier, the gain selection
6	controlling gain of the amplifier, the gain selection circuit including:
7	a variable feedback resistance, and
8	a variable compensation capacitance; and,
9	a gain selection control that selects a value of the variable feedback
LO	resistance and a value of the variable compensation capacitance.
1	10. An integrated circuit chip as in claim 9, additionally comprising:
2	a second light detector;
3	a second amplifier connected to the second light detector, the second
4	amplifier amplifying a signal from the second light detector; and,
5	a second gain selection circuit, connected to the second amplifier, the
6	second gain selection controlling gain of the second amplifier, the second gain
7	selection circuit including:
8	a second variable feedback resistance, and
9	a second variable compensation capacitance; and,

10	wherein the gain selection control selects a value of the second variable
11	feedback resistance and a value of the second variable compensation capacitance.

- 1 11. An integrated circuit chip as in claim 10, additionally comprising:
- 2 a third light detector;
- a third amplifier connected to the third light detector, the third amplifier amplifying a signal from the third light detector; and,
- a third gain selection circuit, connected to the third amplifier, the third gain selection controlling gain of the third amplifier, the third gain selection circuit including:
- 8 a third variable feedback resistance, and
- 9 a third variable compensation capacitance;
- wherein the gain selection control selects a value of the third variable feedback resistance and a value of the third variable compensation capacitance.
 - 1 12. An integrated circuit chip as in claim 11 wherein the light detector includes a red filter, the second light detector includes a green filter and the third light detector includes a blue filter.
 - 13. An integrated circuit chip as in claim 9 wherein the variable feedback
 resistance comprises a plurality of resistors connected in series.

1	14. An integrated circuit chip as in claim 9 wherein the variable feedback
2	resistance comprises:
3	a plurality of resistors connected in series; and,
4	a plurality of switches connected to the plurality of resistors, the gain
5	selection control selecting the value of the variable feedback resistance by
6	controlling the plurality of switches.
1	15. An integrated circuit chip as in claim 14 wherein the variable
2	compensation capacitance comprises:
3	a plurality of capacitors connected to a second plurality of switches,
4	wherein the gain selection control selects the value of the variable compensation
5	capacitance by controlling the second plurality of switches.
1	16. An integrated circuit chip comprising:
2	a light detector;
3	a multi-stage amplifier connected to the light detector, the amplifier
4	amplifying a signal from the light detector;
5	a plurality of gain selection circuits, each of the plurality of gain selection
6	circuits being connected to a separate stage of the multi-stage amplifier, each of
7	the plurality of gain selection circuits including a variable feedback resistance;
8	and,
9	a gain selection control that selects a separate value for the variable
LO	feedback resistance within each of the plurality of gain selection circuits.

1

1

 $\mathbf{2}$

	•
2	feedback resistance comprises a plurality of resistors connected in series.
1	18. An integrated circuit chip as in claim 16 wherein each variable

17. An integrated circuit chip as in claim 16 wherein each variable

- feedback resistance comprises:a plurality of resistors connected in series; and,
- a plurality of switches connected to the plurality of resistors, the gain selection control selecting the value of the variable feedback resistance by controlling the plurality of switches.
- 1 19. An integrated circuit as in claim 16:
- wherein each of the plurality of gain selection circuits includes a variable
 compensation capacitance; and,
- wherein the gain selection control selects a separate value for the variable compensation capacitance within each of the plurality of gain selection circuits.
 - 20. An integrated circuit chip as in claim 19 wherein each of the variable compensation capacitance comprises:
- a plurality of capacitors connected to a plurality of switches, wherein the gain selection control selects the value of the variable compensation capacitance by controlling the plurality of switches.