# Improved Dropout for Shallow and Deep Learning

<sup>1</sup>Zhe Li, <sup>2</sup>Boqing Gong, <sup>1</sup>Tianbao Yang

<sup>1</sup>The University of Iowa, <sup>2</sup>University of Central Florida

#### Main contribution

- Proposed a multinomial dropout for shallow learning.
- Demonstrated that this proposed distribution-dependent dropout leads to a faster convergence and a smaller generalization error through the risk bound analysis.
- Proposed an efficient evolutional dropout for deep learning.
- Justified the proposed dropouts for both shallow and deep learning empirically.

# **Problem Setup**

- Let  $(\mathbf{x}, y)$  denote a feature vector and a label, where  $\mathbf{x} \in \mathbb{R}^d$  and  $y \in \mathcal{Y}$ .
- Denote by  $\mathcal{P}$  the joint distribution of  $(\mathbf{x}, y)$  and by  $\mathcal{D}$  the marginal distribution of  $\mathbf{x}$ .
- The goal is to learn a linear prediction function  $(f(x) = \mathbf{w}^{\mathsf{T}}\mathbf{x})$  that minimizes the expected risk (considering loss function  $\ell(\cdot, y)$ ):

$$\min_{\mathbf{w} \in \mathbb{R}^d} \mathcal{L}(\mathbf{w}) \triangleq \mathrm{E}_{\mathcal{P}}[\ell(\mathbf{w}^\mathsf{T}\mathbf{x}, y)] \tag{1}$$

- Denote by  $\epsilon \sim \mathcal{M}$  a dropout noise vector of dimension d.
- The corrupted feature vector is given by  $\hat{\mathbf{x}} = \mathbf{x} \circ \boldsymbol{\epsilon}$ , where the operator  $\circ$  represents the element-wise multiplication.
- Denote by  $\widehat{\mathcal{P}}$  the joint distribution of the new data  $(\widehat{\mathbf{x}}, y)$  and by  $\widehat{\mathcal{D}}$  the marginal distribution of  $\widehat{\mathbf{x}}$ .
- With the corrupted data, the risk minimization becomes

$$\min_{\mathbf{w} \in \mathbb{R}^d} \widehat{\mathcal{L}}(\mathbf{w}) \triangleq \mathrm{E}_{\widehat{\mathcal{P}}}[\ell(\mathbf{w}^{\mathsf{T}}(\mathbf{x} \circ \boldsymbol{\epsilon}), y)] \tag{2}$$

# Learning with Multinomial Dropout

**Definition 1.** A multinomial dropout is defined as  $\widehat{\mathbf{x}} = \mathbf{x} \circ \boldsymbol{\epsilon}$ , where  $\epsilon_i = \frac{m_i}{kp_i}, i \in [d]$  and  $\{m_1, \dots, m_d\}$  follow a multinomial distribution  $Mult(p_1, \dots, p_d; k)$  with  $\sum_{i=1}^d p_i = 1$  and  $p_i \geq 0$ .

**Proposition 1.** f 
$$\ell(z,y) = \log(1 + \exp(-yz))$$
, then

$$\mathrm{E}_{\widehat{\mathcal{D}}}[\ell(\mathbf{w}^{\mathsf{T}}\widehat{\mathbf{x}},y)] = \mathrm{E}_{\mathcal{P}}[\ell(\mathbf{w}^{\mathsf{T}}\mathbf{x},y)] + R_{\mathcal{D},\mathcal{M}}(\mathbf{w})$$

where  $\mathcal{M}$  denotes the distribution of  $\epsilon$  and  $R_{\mathcal{D},\mathcal{M}}(\mathbf{w}) = \mathbb{E}_{\mathcal{D},\mathcal{M}} \Big[ \log \frac{\exp(\mathbf{w}^{\mathsf{T}} \frac{\mathbf{x} \circ \epsilon}{2}) + \exp(-\mathbf{w}^{\mathsf{T}} \frac{\mathbf{x} \circ \epsilon}{2})}{\exp(\mathbf{w}^{\mathsf{T}} \mathbf{x}/2) + \exp(-\mathbf{w}^{\mathsf{T}} \mathbf{x}/2)} \Big]$ . Dropout is a data-dependent regularizer

#### Learning with Multinomial Dropout:

- Give the initial solution  $w_1$ .
- Update the model at  $t^{th}$  iteration:  $\mathbf{w}_{t+1} = \mathbf{w}_t \eta_t \nabla \ell(\mathbf{w}_t^{\mathsf{T}}(\mathbf{x}_t \circ \boldsymbol{\epsilon}_t), y_t)$
- Output the final solution:  $\widehat{\mathbf{w}}_n = \frac{1}{n} \sum_{t=1}^n \mathbf{w}_t$

## Improved Dropout for Shallow Learning

#### Risk Bound of $\widehat{\mathbf{w}}_n$ in Expectation

**Theorem 1:** Let  $\mathcal{L}(\mathbf{w})$  be the expected risk of  $\mathbf{w}$  defined in (1). Assume  $E_{\widehat{\mathcal{D}}}[\|\mathbf{x} \circ \boldsymbol{\epsilon}\|_2^2] \leq B^2$  and  $\ell(z,y)$  is convex and G-Lipschitz continuous. For any  $\|\mathbf{w}_*\|_2 \leq r$ , by appropriately choosing  $\eta$ , we can have

$$E[\mathcal{L}(\widehat{\mathbf{w}}_n) + R_{\mathcal{D},\mathcal{M}}(\widehat{\mathbf{w}}_n)] \leq \mathcal{L}(\mathbf{w}_*) + R_{\mathcal{D},\mathcal{M}}(\mathbf{w}_*) + \frac{GBr}{\sqrt{n}}$$

Theoretically, minimizing the term  $E_{\widehat{D}}[\|\mathbf{x} \circ \boldsymbol{\epsilon}\|_2^2]$  and the relaxed upper bound of term  $R_{\mathcal{D},\mathcal{M}}(\mathbf{w}_*)$  yields the optimal sampling probabilities:

$$p_i^* = \frac{\sqrt{\mathrm{E}_{\mathcal{D}}[x_i^2]}}{\sum_{j=1}^d \sqrt{\mathrm{E}_{\mathcal{D}}[x_j^2]}}, i = 1, \dots, d$$
(3)

Practically, we use the empirical second-order statistics to compute the probabilities:

$$p_{i} = \frac{\sqrt{\frac{1}{n} \sum_{j=1}^{n} [[\mathbf{x}_{j}]_{i}^{2}]}}{\sum_{i'=1}^{d} \sqrt{\frac{1}{n} \sum_{j=1}^{n} [[\mathbf{x}_{j}]_{i'}^{2}]}}, i = 1, \dots, d$$
(4)

# Improved Dropout for Deep Learning

Let  $X^l = (\mathbf{x}_1^l, \dots, \mathbf{x}_m^l)$  denote the outputs of the  $l^{th}$  layer for a minibatch of m examples, calculate the probabilities for dropout by

$$p_i^l = \frac{\sqrt{\frac{1}{m} \sum_{j=1}^m [[\mathbf{x}_j^l]_i^2]}}{\sum_{i'=1}^d \sqrt{\frac{1}{m} \sum_{j=1}^m [[\mathbf{x}_j^l]_{i'}^2]}}, i = 1, \dots, d$$
 (5)

# **Evolutional Dropout for Deep Learning**

**Input:** a batch of outputs of a layer:  $X^l = (\mathbf{x}_1^l, \dots, \mathbf{x}_m^l)$  and dropout level parameter  $k \in [0, d]$ 

Output:  $\widehat{X}^l = X^l \circ \Sigma^l$ 

Compute sampling probabilities by (5)

For  $j = 1, \ldots, m$ 

Sample  $\mathbf{m}_j^l \sim Mult(p_1^l, \dots, p_d^l; k)$ 

Construct  $\boldsymbol{\epsilon}_j^l = \frac{\mathbf{m}_j^l}{k\mathbf{p}^l} \in \mathbb{R}^d$ , where  $\mathbf{p}^l = (p_1^l, \dots, p_d^l)^{\mathsf{T}}$ Let  $\Sigma^l = (\boldsymbol{\epsilon}_1^l, \dots, \boldsymbol{\epsilon}_m^l)$  and compute  $\widehat{X}^l = X^l \circ \Sigma^l$ 

Figure 1: Evolutional Dropout applied to a layer over a mini-batch

**Remark 1.** Similar to Batch Normalization, evolutional dropout can also address the internal covariace shift issue by adapting the sampling probabilities to the evolving distribution of layers' output.

## **Experimental Results**



Figure 2: data-dependent dropout vs. standard dropout on three datasets (real-sim, news20 and RCV1) for logistic regression; Lower Right Corner: Evolutional dropout vs BN on CIFAR-10.



Figure 3: Evolutional dropout vs. standard dropout on four benchmark datasets (MNIST, SVHN, CIFAR-10 and CIFAR-100) for deep learning