

planetmath.org

Math for the people, by the people.

vector field along a curve

Canonical name VectorFieldAlongACurve

Date of creation 2013-03-22 13:58:55 Last modified on 2013-03-22 13:58:55

Owner bwebste (988) Last modified by bwebste (988)

Numerical id 4

Author bwebste (988) Entry type Definition Classification msc 53B05 Let M be a differentiable manifold and $\gamma:[a,b]\to M$ be a differentiable curve in M. Then a vector field along γ is a differentiable map $\Gamma:[a,b]\to TM$, the tangent bundle of M, which projects to γ under the natural projection $\pi:TM\to M$. That is, it assigns to each point $t_0\in[a,b]$ a vector tangent to M at the point $\gamma(t)$, in a continuous manner. A good example of a vector field along a curve is the speed vector $\dot{\gamma}$. This is the pushforward of the constant vector field $\frac{d}{dt}$ by γ , i.e., at t_0 , it is the derivation $\dot{\gamma}(f)=\frac{d}{dt}(f\circ\gamma)|_{t=t_0}$.