计算机体系结构 Exercise 02

邱一航, Yihang Qiu, 2021/10/03

3.5. Solution:

The truth table is as follows.

A	В	С	OUT
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

3.7. Solution:

When A = 1, B = 0, the high voltage is directly linked to low voltage and the voltage of OUT is ambiguous. The ambiguity of OUT under this circumstance is a fatal error.

3.21. Solution: There are 2^{14} =16384 units. Thus, memory contains 16384 Bytes = 32768 Nibbles.

3.24. Solution:

a) X acts as a control that decides whether B or C is the operand. When X = 0, the result is A + B; when X = 1, the result is A + C.

b) Let $C = \overline{B}$. Also, let X be the carry-in of the 0-th adder (shown in the following figure).

When X = 0, the circuit in the figure above acts as an adder.

When X = 1, the circuit acts as subtracter.

$A_i B_i C_i$ 3.26. Solution: 000 $-S_i$ 001 A -0 1 0 0 1 1 B_i -译码器 100 101 C_i -1 1 0 C_{i+1} 111

3.30. Solution:

a) The truth	table is as	follows.

a) The truth table is as follows.					c)		
	A	В	G	Е	L		A(2)
	0	0	0	1	0		A[3] ————————————————————————————————————
	0	1	0	0	1		B[3]
	1	0	1	0	0		
	1	1	0	1	0		A[2] G
b)							B[2] L
А В -	\		000	 		— G – E – L	$A[1] \qquad G \qquad E$ $B[1] \qquad L$ $A[0] \qquad G \qquad E$ $B[0] \qquad L$

c)

图3-41 习题3.30的结构框图

4.5 Solution:

- a) 地址 3 存放的数值是 <u>0000 0000 0000 0000</u>; 地址 6 存放的数值是 <u>1111 1110 1101 0011</u>。
- **b) (1)** 地址 0 对应的补码数: (0001 1110 0100 0011)₂ = <u>7747</u>; 地址 1 对应的补码数: (1111 0000 0010 0101)₂ = <u>-4059</u>
 - (2) 地址 4 对应的数值为(0000 0000 0110 0101)2 = (101)10。 ASCII 码 101 对应的字符为 e。
- (3) 地址 6 和 7 对应的二进制数值为 <u>1 111 1110 1 101 0011 0000 0110 1101 1001</u>, IEEE 标准下指数部分为+126,尾数为(0.10100110000011011011001)₂ = (0.6486464739)₁₀,故对应的浮点数为<u>-</u>1.6486464739×10¹²⁶。
 - (4) 地址 0 对应的无符号数: 7747, 地址 1 对应的无符号数为 61477。

- c) 地址 0 对应的数值为 0001 111 001 000 011, 对应的 LC3 标准下指令为 R7←R1+R3。

4.7 Solution:

Since there exist 60 opcodes, we need at least 6 bits to represent these opcodes (since $2^6 = 64 > 60$). Since there exist 32 registers, we need at least 5 bits and 5 bits to represent SR and DR respectively (since $2^5 = 32$).

Thus, in a 32-bit instruction, there are at most 32-6-5-5=16 bits to represent immediate number. Since the immediate number is represented as 2's complement, $-2^{16} \le IMM \le 2^{16}-1$, i.e. the range of the immediate number is $-2^{16} \sim 2^{16}-1$.

4.13 Solution:

1) For Intel x86 instruction "ADD [eax], edx":

FETCH – 1, DECODE – 1; EVALUATE ADDRESS – 1; FETCH OPERAND – 100; EXECUTE

- 1; STORE RESULT - 100. Thus, it takes **204 periods** in total.

2) For LC-3 instruction "ADD R6,R2,R6":

FETCH – 1, DECODE – 1; FETCH OPERAND (from register files) – 1; EXECUTE – 1; STORE

RESULT (into register files) -1. Thus, it takes $\underline{5 \text{ periods}}$ in total.