MBTI-16 Personality Analysis using Emojis

By Wenshuo Qin, You Peng, and Ruipei Huang

Introduction

Source of Energy	Processing of Information	Decision Making	Need for Structure
Extroverts	Sensors	F eelers	Perceivers
ntroverts	I <u>N</u> tuitives	Thinkers	Judgers

- NLP has enhanced our understanding of personality
- Can evaluate the reliability of psychometric measures
- No one has studied if Emojis are indicators of personality

Goal: To determine whether emojis appeared in online communications are reliable predictors of one's personality.

Data

- MBTI-16 dataset from Kaggle [1]
- o Online posts (50 posts form 6800 users, 422,845 total labeled data) with personality labels
- used data duplication and reduction to balance the dataset for 16 and binary classification
- Emoji dataset from Kralj Novak^[2]
- o 1000 Emojis with their unicode encoding, positivity, and textual description
- Self-built Emoticon dataset
- Web scraped data from Wiki, Emoticons, Lifewire
- o 1000 Emoticons with their similar emoji and textual description

*MBTI dataset distribution

- Data labeling
 - o 16 class: 0 to 15 binary classification: 0/1
- Data Preprocessing:
- SVM and DNN:

*Emoji dataset example:

Emoji	Positivity	Unicode name	
	0.704	SMILING FACE	
	0.3431	CRYING FACE	
8	0.6574	OK HAND SIGN	
6	0.6742	TWO HEARTS	

*Emoticon dataset example:

Emoticon	Similar Emojis	Unicode name	
:-)		Smiley, happy	
-D		Laughing	
:-(Frown, Sad	

- BERT:

- [1] MBTI dataset
- [2] Emoji Sentiment Dataset from Kralj Kovak
- [3] For both 16 class and binary class datasets, see conclusion for limitation in this method.

Method

- Feature extraction
- Emoji
- extracting count, position (character position) and positivity as 3 features for SVM and DNN
- the default feature values for the posts that do not have emojis are: 0s
- generate text description of emojis for BERT

SVM and DNN emoji features example:

BERT emoji description example:

- Data Partition:
- 85% for training 15% for testing
- Proposed Models
- SVM, DNN, DistilBERT
- We build two models for each approach: one use emoji info, and one does not use emoji info

Evaluation

	16 class acc	Evsl	J vs P	SvsN	TvsF
random baseline	6%	50%	50%	50%	50%
SVM	9%	55%	53%	50%	58%
SVM with emojis	9%	55%	54%	52%	57%
DNN	9%	55%	55%	55%	59%
DNN with emojis	9%	55%	55%	55%	58%
DistillBERT	27%	62%	60%	60%	61%
DistillBERT with emojis	27%	63%	60%	61%	63%

Conclusion

- Limitations:
 - Because of imbalanced data, we have to use data duplication to augment insufficient class examples, which in turns affect our validation.
 - Occurrences of emojis are too few in the dataset that they barely made any impact in prediction
 - Personality labels are self-reported and biased
- Data are limited to Personality Cafe
- MBTI remains debatable
- Future works
- We can use similarly method to test what are important predictors of personality