

Ayudantía 2 - Método de análisis de nodos

Pedro Morales Nadal

pedro.morales1@mail.udp.cl

© +56 9 30915977

Edicson Solar Salinas

edicson.solar@mail.udp.cl

© +56 9 92763279

Shi Hao Zhang shi.zhang@mail.udp.cl

© +56 9 90787770

Ingeniería Civil en Informática y Telecomunicaciones

¿Qué veremos?

- Pincelada de Ley de Ohm y KVL
- KCL y el método de análisis de nodos
- Ejercicios de método de análisis de nodos

Ley de Ohm y Leyes de Kirchoff

Ley de Ohm

$$V = I \cdot R$$

Ley de Corrientes (KCL)

"La suma de corrientes que entran a un nodo es igual a la que sale"

Ley de Voltajes (KVL)

"La suma de voltajes en una malla cerrada es cero"

Ley de Corrientes de Kirchhoff (KCL)

"La suma de corrientes que entran a un nodo es igual a la que sale"

Equivalente a "La suma de todas las corrientes que entran y salen de un nodo es igual a cero"

$$\sum I=0$$

Método de análisis de nodos

Método que usa álgebra matricial y la ley de Kirchoff de corrientes para encontrar las tensiones (voltajes) nodales usando los voltajes de las fuentes y las caídas de voltaje en los elementos.

Método de análisis de nodos: Pasos

- 1. Identificar todos los nodos del circuito.
- 2. **Elegir el nodo de referencia** (tierra). A este nodo se le asigna 0 V.
- 3. Asignar variables de voltaje a los nodos restantes.
- 4. Aplicar la Ley de Corrientes de Kirchhoff a cada nodo excepto al de referencia.
- 5. Formar un sistema de ecuaciones con las expresiones obtenidas.
- 6. **Resolver el sistema** para obtener los voltajes nodales.

Ejercicio 1

Algebraico

Plantee el sistema de ecuaciones para encontrar las tensiones nodales del siguiente circuito y expreselo en su forma matricial.

Ejercicio 2

Determinar las tensiones nodales en los nodos A, B y C del siguiente circuito.

Ejercicio 3

Encuentre la caída de tensión en R_8 y la potencia que disipa usando método de nodos.

¿DUDAS?

CHAO GENTE

