第六章 基因及其表达与调控

- 一、基因的本质
- 二、DNA分子的结构
- 三、DNA的复制
- 四、RNA的结构与功能
- 五、遗传信息的表达
- 六、基因表达的调控
- 七、基因突变与修复
- 八、基因与人类疾病

一、基因的本质

在20世纪的前40年,困扰科学家的两个最基本的问题依然 没有解决:

- (1) 基因是由什么物质组成的?
- (2) 基因是如何工作的?

在Mendel和Morgan时代,使用的实验材料主要是豌豆和果蝇等,它们都是一些非常复杂的多细胞生物。

后来,在对细菌和病毒这些极其简单的生命形式的研究中,科学家才发现了遗传物质的蛛丝马迹。

基因:具有功能的DNA片断。

(一) 肺炎球菌转化实验

格里费斯(Griffith F., 1928)

- ❖ S型肺炎球菌: 有荚膜,菌落表 面光滑,有毒
- ❖ R型肺炎球菌: 没有荚膜,菌落 表面粗糙,无毒

实验内容

- ①有毒S型 小鼠死亡 —— 重现S型
- ②无毒R型 小鼠成活 —— 重现R型
- ③有毒S型(65℃杀死) → 小鼠成活 无细菌
- ④无毒R型 + 有毒S型(65℃杀死) → 小鼠死亡 → 重现S型

实验结论

加热杀死的S型肺炎球菌中一定有某种特殊的生物分子或遗传物质,可以使无毒的R型肺炎球菌转化为有毒的S型肺炎球菌。

这种生物分子或遗传物质是什么呢?

阿委瑞(Avery O. T., 1944) 用生物化学方法证明这种 活性物质是DNA。

- ●从加热杀死的S型肺炎球菌将蛋白质、核酸、多糖、脂 类分离出来,分别加入到无毒的R型肺炎球菌中
- ●结果发现,惟独只有核酸可以使无毒的R型肺炎球菌转 化为有毒的S型肺炎球菌。
- ●结论: DNA是生命的遗传物质

泰目总

(二) 噬菌体感染实验

赫尔歇(Hershey A., 1952)等用同位素32P和35S验证DNA是遗传物质。

- ●35S标记病毒的蛋白质外 壳,³²P标记病毒的DNA内 核、感染细菌。
- ●新复制的病毒,检测到了 32P标记的DNA,没有检测 到35S标记的蛋白质。

结论:进入菌内的是DNA; DNA在病毒和生物体复制或 繁殖中的关键作用。

泉目录

(三) 烟草花叶病毒感染实验

- ●Singer(1956)烟草花叶病毒(简称TMV)实验。
- ◆TMV的蛋白质外壳和单螺旋RNA接种:
- ◆TMV蛋白质 → 烟草 → 不发病;
- ◆TMV RNA —— 烟草 —— 发病 —— 新的TMV;
- ◆TMV RNA+ RNA酶 ---- 烟草 ----- 不发病。

结论

不含DNA病毒 的RNA是遗传 物质。

二、DNA分子的结构

(一) DNA分子的化学组成

以脱氧核苷酸为单元的多聚体。

脱氧核糖

脱氧核苷酸-磷酸

含氮碱基

△ 鸟嘌呤(G)、腺嘌呤(A)

胞嘧啶(C)、胸腺嘧啶(T)

四种脱氧核苷酸: dCMP、dGMP、dTMP、dAMP

核苷酸的脱氧核糖的3'位和5'位的碳原子通过

磷酸二酯键连接起来,形成DNA分子。

(二) DNA分子的双螺旋结构

1953年, 沃森 (Watson J. D.) 和克里克 (CrickF. H.

C.) 提出DNA双螺旋结构模型。

主要依据:

碱基互补配对的规律以及DNA分子的X射线衍射结果。

DNA双螺旋结构特点:

- (1) DNA分子是由两条互相平行的脱氧核苷酸长链螺旋而 成的,两条链在同一轴上互相盘旋:
 - (2) 双链具有反向平行的特点:
 - (3) 两条链上的碱基通过氢键相结合,形成碱基对;
 - (4) 碱基配对原则为: A=T、G=C;
 - (5) 双螺旋直径约2 nm, 螺距为3.4 nm(10个碱基对)。

(三) DNA分子的功能单位

DNA分子中的功能单位平均大小却只有1000个碱基对, 这些功能单位相当于经典遗传学中的基因。

如果一段DNA含有1 000对碱基,那么就能形成4¹⁰⁰⁰种可能的序列,就可能有4¹⁰⁰⁰种不同性质的基因。

分子遗传学中,通常就把某个生物所具有的所有基因叫做基因组。

基因组除了含有遗传信息的编码序列以外,在编码序列的两端还接有调节基因活性的侧翼序列。

三、DNA的复制

(一) 半保留复制的证明

- ▶1958,Meselson和Stahl同位素示 踪实验
- ▶大肠杆菌 ¹⁵NH₄CI 为唯一氮源的培养液中生长12代
- ▶转入¹⁴NH₄CI培养液中
- >完成第一代和第二代繁殖时, 分离DNA,密度梯度超速离心
- ▶ ¹5N/¹5N密度大,在下部; ¹4N/¹4N密度小,在上部; ¹5N/¹4N在¹5N/¹5N和 ¹4N/¹4N之间

DNA的复制是以亲代 的一条DNA为模板,按照 碱基互补的原则,合成另一 条具有互补碱基的新链,因 此,细胞中DNA 的复制被 称为半保留复制。

DNA的半保留复制方 式对保持生物遗传的稳定性 是非常重要的。

生命科学院普通生物学课程组

泉目录

(二) DNA的复制过程

1. DNA双链解旋

DNA的复制发生在细胞周期的S期, 在解旋酶的作用下, 首先双螺旋的DNA可以同时在许多DNA复制的起始位点局部 解螺旋并拆开为两条单链,如此在一条双链上可形成许多 "复制泡",解链的叉口处称为复制叉。

总目录

2. DNA复制需要RNA片段作为引物

在DNA复制开始前需要一小段RNA作引物。在引物合成酶 的作用下,以DNA为模板合成RNA引物,其一般长为10碱基对, 在以后的合成中引物将被顺序相同的DNA片段所代替。

3. 复制叉处形成的两条新链是不对称的

先导链:以3'→5'链为模板复制5'→3',新链可以连续进行。

滞后链:以5'→3'链为模板复制3'→5',合成冈崎片段,冈崎片段 在酶的作用下成为一条新链。

在形成先导链时只有一个引物,在形成滞后链时则需要多个引物。

泰目总

普通生物学课件

上一页)(下一页

本章目录

总目录

生命科学院普通生物学课程组

4. DNA复制是双向进行的

在每个复制单元内,复制过程都是由起始点开始向左右两侧双向进行的。

每个单元内复制形成的先导链及冈崎片段,都带有引物。在DNA聚合酶 I 的作用下,首先将引物去掉并以相应的 DNA片段替代,再在DNA连接酶的作用下将DNA片段连接 为一条完整的DNA新链。

生命科学院普通生物学课程组

5. 原核生物滚环复制

绝大多数细菌和病毒的DNA复制只有一个复制起点, 控制整个DNA的复制,且为双向复制。

泉目录

四、RNA的结构与功能

(一) RNA分子的结构

同DNA相似,RNA由AMP、GMP、CMP、UMP4种核苷酸组成。这4种核苷酸也是通过—3'和—5'磷酸二酯键连接在一起。

RNA与DNA的结构主要差别

- ① RNA大多是单链分子;
- ②含核糖而不是脱氧核糖;
- ③4种碱基中,由尿嘧啶(U)代替胸腺嘧啶(T)。

(二)细胞中主要的RNA

黑信使RNA (mRNA)

遗传信息的携带者

※ 转移RNA (tRNA)

转运氨基酸;70-90个核

尿嘧啶等; 反密码子识别密码子和

※ 核糖体RNA (rRNA)

●原核生物3种rRNA: 5S: 120bp; 16S: 15

23S: 2900bp.

●真核生物4种rRNA: 5S: 120bp; 5.8S: 1

18S: 1900bp; 28S: 4700bp.

溪 其它RNA

rRNA与核糖体的组装

总目录

五、遗传信息的表达

(一) 中心法则与基因表达

1. 遗传信息传递的中心法则

中心法则总结了生物体内遗传信息的流动规律,揭示遗传的分子基础,不仅使人们对细胞的生长、发育、遗传、变异等生命现象有了更深刻的认识,而且以这方面的理论和技术为基础发展了基因工程,给人类的生产和生活带来了深刻的革命。

2. 基因与基因表达

基因:具有功能的DNA片断

外显子: 编码蛋白质的核苷酸片段

内含子: 不能编码蛋白质的核苷酸片段

基因表达:遗传信息从基因流向RNA又流向蛋白质的过程。

(二) 转录

1. 转录的基本过程

发生在细胞核中,以 DNA分子为模板,按照碱 基互补的原则,合成一条 单链的RNA即mRNA,DNA分 子携带的遗传信息被转移 到RNA分子中。其过程与 DNA的复制基本相同。

2. 转录产物的加工

真核生物的mRNA 转录后进行加工,然后运送到细胞质中进行翻译;原核生物无需进行加工,边转录边翻译。

真核生物RNA转录后的加工

- ●加帽
- 5'端+7-甲基鸟嘌呤核苷酸;
- ●加尾
- 3'端+多聚A,大约为200bp;
- ●拼接

切除内含子,衔接外显子。

(三)翻译

1. 遗传密码的特性

- ❖起始密码
- ❖终止密码
- ❖简并性
 - 一个氨基酸由二个或二个以上的
- 三联体密码所决定的现象。
- ❖通用性

在整个生物界中,从病毒到人类,遗传密码通用。

2. 翻译

(1) 翻译起始

是核糖体、mRNA及tRNA三者结合的阶段。

上一页 下一页 本章目录 总目录

(2) 肽链延伸

mRNA上的遗传信息被准确地翻译成特定的氨基酸序列。

(3) 翻译终止

遇到mRNA终止密码子(UAG, UGA, UAA) ,翻译即自行停止。

上一页

下一页

本章目录

总目录

生命科学院普通生物学课程组

- (4) 蛋白质的转运和加工
 - ●蛋白质的转运

信号肽对蛋白质在细胞中的定向运输和定位具有重要作用。

●蛋白质的加工 剪切、化学修饰

六、基因表达的调控

(一) 原核生物的基因调控

大肠杆菌乳糖操纵子 调节基因一 → 阻遏蛋白 启动子 操纵基因 结构基因

乳糖

(二) 真核生物的基因调控

真核生物基因表达调控特点

- ①基因的转录发生在细胞核中,而翻译则发生在细胞质中。
- ②真核生物大多数基因有内含子、调节基因,所转录的前体 mRNA必须经过加工成熟后才能进入表达阶段。
- ③真核生物染色质处于更开放、解折叠的常染色质状态更有 利于基因的转录。
- ④化学信号(激素)对基因表达起重要的诱导控制作用。
- ⑤基因组内DNA的化学修饰(如甲基化和去甲基化)也可改变基因的表达。
- ⑥真核生物细胞在发育过程中具有高度分化的机制,这种细胞分化特别需要对基因表达进行选择性地控制。

2. 调控的水平

- (1) 转录调控 血红蛋白基因
- (2) 转录后调控

对前体mRNA的加工; mRNA穿过核膜的控制; mRNA的稳定性调节; 不同的剪切方式。

- (3)翻译调控 mRNA的选择性翻译;
 - (4) 翻译后调控
 - (5) 蛋白质活性调控

蛋白质产物的修饰、折叠与活化。

七、基因突变与修复

(一) 基因突变

基因突变: 在一定外界因素影响下, 基因的结构(核苷酸顺序 或数目)发生改变。

基因突变可以是DNA序列中个别核苷酸或碱基发生改变 (点突变), 也可以是一段核酸序列的改变(大突变)。

同义突变 突 变

错义突变 移码突变

无义突变

泉目录

1. 点突变

- (1) 同义突变:指碱基替换后,一个密码子变成了另一个密码子,但所编码的氨基酸还是同一种,实际上并不发生突变效应。
- (2) 错义突变: 指碱基替换后的密码子与替换前的密码子编码不同的氨基酸。
- (3) 移码突变: DNA链上插入或丢失1个或多个碱基,导致插入或丢失碱基部位之后的密码都依序发生改变,造成多肽链延长或缩短,称为移码突变。
- (4) 无义突变:替换后的密码子为终止密码子,使得翻译提前终止,产生的蛋白质或酶大都失去活性或丧失正常功能。

2. 基因突变的原因

除了DNA复制错误造成碱基的替换、插入或缺失等自发 突变外,一些外界因素如某些化学物质(又称为诱变剂)、 紫外线、电离辐射等也可能诱导基因突变的发生。

诱变剂: 使DNA发生突变的理化因子。诱变剂都是致癌剂。

Uv、X、v、烟碱、亚硝酸盐(熏制、烧烤、霉变)

泰目总

(二) DNA的修复

1. 复制错误的校对修正

DNA聚合酶和许多参与DNA复制的酶具有保证复制的 精确度的功能。原核生物(如大肠杆菌)的复制错误发生 率仅约为百亿分之一, 真核生物(如哺乳动物等) 复制错 误发生率约为十亿分之一。

复制的新链必须经DNA聚合酶进行校对,如发现错误, 则可在外切核酸酶作用下切除错配核苷酸,再换上正确的 核苷酸。校对遗漏的错误还可以通过相应的DNA修复机制 进行修复。

泰目总

2. DNA损伤的修复

(1)直接修复:直接修复损伤或变异的碱基。细菌的细胞在可见光下比在黑暗中存活数高,因为有光复合酶帮助修复UV损伤的DNA。这种光复活过程在原核和真核生物普遍存在,但在有胎盘的哺乳动物(包括人)中不具备光复活

途径。

(2) 切除修复: 也称暗复活。是指修复过程不需要光。

(3) 错配修复: DNA多聚酶在工作时会出错, 生成错配的 DNA链。这时错配修复系统就会启动,确定错配的位置并 重新放入正确的碱基。

(4) SOS反应: 多种酶参与DNA严重损伤的复杂应急抢救 机制。双链均被破坏,随即采用一些碱基重新连接。

生命科学院普通生物学课程组

泉目录

八、基因与人类疾病

(一) 癌症的发生机制

癌症(恶性肿瘤):在致癌因素作用下,细胞在基因水平上失去对其生长的正常调控,导致异常增生,生长迅速并具有迁移性。

癌细胞的形态特征:核质比显著高于正常细胞,可达1:1;出现巨核、双核或多核;线粒体表现为不同的多型性、肿胀、增生;细胞骨架紊乱;细胞表面特征改变,产生肿瘤相关抗体。

癌细胞的生理特征:

- ●细胞周期失控;
- ●具有迁移性;
- ●接触抑制丧失;
- ●定着依赖性丧失;
- ●去分化现象;
- ●对生长因子需要量降低;
- ●代谢旺盛;
- ●线粒体功能障碍;
- ●可移植性,如人的癌细胞可移植到鼠体,形成移植瘤。

1. 原癌基因

癌细胞的形成往往涉及多个

- 原癌基因是细胞内与细胞 高等保守。
- 当原癌基因的结构或调控或活性增强时,使细胞过
- 原癌基因的产物主要包括
 - 约①生长因子,如sis;
 - cs②生长因子受体,如fms、
 - ∞③信号转导组分,如src、
 - ∞ ④细胞周期蛋白,如cyclii
 - ∞⑤细胞凋亡调控因子,如k
 - ☞⑥转录因子,如myc、fos

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

2. 原癌基因的激活

- ⑩ 基因本身或其调控区发生变异,导致基因的过表达, 或产物蛋白活性增强,使细胞过度增殖,形成肿瘤。
 - (1) 点突变: ras基因家族,如膀胱癌中的c-Ha-ras基 因仅有一个核苷酸的变异。
 - (2) 基因扩增:存在于某些造血系统恶性肿瘤中,如前 髓细胞性白血病中,c-myc扩增8~32倍。

- (3) DNA重排: 染色体的易位, 使原癌基因处于活跃转 录基因强启动子的下游,将产生过度表达。如Burkitt 淋巴瘤细胞的染色体易位,使c-myc与IG重链基因的 调控区为邻。
- (4) 插入激活:某些不含v-onc的弱转化逆转录病毒, 具有冗长末端重复序列(LTR),含有启动子、增强子, 插入基因组后引起下游基因过表达。

3. 癌细胞形成的外因

根据其性质分为: 化学、生物和物理致癌物三大类。

- 化学致癌物
- ①亚硝胺类,能引起消化系统肿瘤;
- ②多环芳香烃类,如苯并芘。
- ③芳香胺类,如乙萘胺、诱发泌尿系统的癌症;
- ④烷化剂类,如芥子气、环磷酰胺等;
- ⑤氨基偶氮类,如奶油黄,可引起肝癌;
- ⑥碱基类似物,如5-溴尿嘧啶、5-氟尿嘧啶;
- ⑦氯乙烯,与塑料工人的肝血管肉瘤有关。
- ⑧元素,如铬、镍、砷。

泰目总

普通生物学课件

- 生物性致癌因素
- ①肿瘤病毒
- ●逆转录病毒,如:人T淋巴细胞白血病病毒(HTLV)、 ATLV、HIV、RSV等病毒;
- ●乙型肝炎病毒(HBV): 原发性肝癌(PLC)。
- ●人乳头瘤状病毒(HPV): 生殖道肿瘤。
- ●Epstein Bars病毒(EBV);与儿童的 Burkitt淋巴瘤和 成人的鼻咽癌发生有关。
- ②霉菌 目前已知有数十种霉菌毒素对动物有致癌性。
- ●黄曲霉菌广泛存在于污染的食品中,尤以霉变的花生、 玉米及谷类含量最多。产生黄曲霉毒素,其中黄曲霉毒素 B₁是已知最强的化学致癌物之一,可引起肝癌。

泰目总

● 物理致癌因素

(1) 电离辐射

● 辐射致癌的机制: ①染色体或基因的突变; ②基因表达 改变: ③激活潜伏的致癌病毒。

(2) 紫外线

⑩ 可引起细胞DNA断裂、交联和染色体畸变,抑制皮肤的 免疫功能,诱发皮肤癌、基底细胞癌和黑色素瘤。

总目录

(二) HIV的结构与分子遗传机制

艾滋病的全称为获得性免疫缺陷综合症 (AIDS) ,引起艾滋病的元凶是一种人类 免疫缺陷病毒(HIV)。

1. HIV的结构

HIV是一种RNA病毒, 呈圆球形,病毒粒子的 直径为100~140 nm, 其外层是类脂为主的包 膜,包膜上镶嵌着许多 糖蛋白。

2. 遗传机制

HIV外包膜上的糖蛋白可专门识别白细胞(T淋巴细胞) 表面的受体并与之结合。经胞吞作用,HIV基因组(RNA) 进入T淋巴细胞。在逆转录酶的作用下,以HIV的RNA为模 板,一条与RNA互补的DNA单链被合成。接着,新合成的 DNA单链又成为另一条互补DNA链的合成模板,如此便产 生了互补的双链DNA。

该双链DNA片段进入细胞核,与宿主细胞的染色体 基因组整合在一起,成为前病毒DNA,感染进入潜伏期。

当被感染的细胞激活时,前 病毒DNA便开始转录生成新 的RNA片段,同时合成外壳 蛋白等。在宿主细胞中,新合 成的RNA、逆转录酶及蛋白 质等又装配生成更多的病毒颗 粒,它们以出芽的方式从宿主 细胞中释放出来,又去攻击其 他的T淋巴细胞。

HIV侵袭免疫细胞

上一页 下一页 本章目录 总目录 生命科学院普通生物学课程组

四 种 脱 氧 核 苷 酸

上一页

下一页 本章目录

总目录

生命科学院普通生物学课程组

上一页

下一页 本章目录

总目录

生命科学院普通生物学课程组

中国录画

精确的复制

DNA分子的复制

播放