Objectif. Révisions.

Exercice 1. Soit
$$\vec{u} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$

- 1. Calculer $\vec{u} + \vec{v}$
- 2. Calculer $3\vec{u}$
- 3. Calculer $2\vec{u} 5\vec{v}$

Exercice 2.

1. Donner les coordonnées des vecteurs \vec{u} , \vec{v} , \vec{w} , \vec{r} , \vec{CD} et \vec{KL} .

2. Soit
$$A = (1; 2)$$
, $B = (-2; 5)$, $C = (-3; -3)$. Calculer les coordonnées de \overrightarrow{AB} et \overrightarrow{CA}

Exercice 3.

1. Calculer la norme des vecteurs suivants

a)
$$\vec{u} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$$

b)
$$\vec{v} = \begin{pmatrix} -3 \\ 7 \end{pmatrix}$$

Exercice 4.

Soit A = (4; 3), B = (8; 10), O = (0,0)

- 1. Déterminer le milieu M de A et B
- 2. AMON est un parallélogramme ssi $\overline{AM} = \dots$?
- 3. Déterminer le point inconnu *N* tel que *AMON* soit un parallélogramme.

Objectif. Etudier la colinéarité de vecteurs

Exercice 5. Soit
$$\vec{u} = \begin{pmatrix} 2 \\ 8 \end{pmatrix}$$
, $\vec{v} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} -0.5 \\ -2 \end{pmatrix}$ et $\vec{r} = \begin{pmatrix} -2 \\ 8 \end{pmatrix}$.

- 1. Calculer les déterminants des vecteurs suivants :
- a) \vec{u} et \vec{v}
- b) \vec{v} et \vec{w}
- c) \vec{w} et \vec{r}
- Quels sont les vecteurs colinéaires entre eux ?

Exercice 6.

1. Si $\vec{u}=4\vec{v}$ et $\vec{v}=\frac{1}{2}\vec{w}$, montrer que \vec{u} et \vec{w} sont colinéaires.

2. Si $\vec{u} = 5\vec{v}$ et $\vec{v} = \frac{1}{3}\vec{w}$, montrer que \vec{u} et \vec{w} sont colinéaires.

Exercice 7. Soit A = (1; 2), B = (3; 1), C = (-4; 4) et D = (6; -1).

- 1. Montrer que (AB) et (CD) sont parallèles
- 2. Les points A, B et C sont ils alignés ?

Exercice 8. Soit K = (-3, 3), L = (3, -6) et M = (2, 0).

- 1. Calculer les coordonnées de \overrightarrow{KL} et \overrightarrow{KM} .
- 2. Calculer leur déterminant.
- 3. Le point K appartient-il à la droite (LM)?

Exercice 9. Soit P = (-3; -1), N = (0; 1) et R = (3; 3). Les points P, N, et R sont-ils alignés ?

Exercice 10. Dans chaque cas, dire si les droites (AB) et (CD) sont parallèles.

1.
$$A = (-2, 1), B = (3, 4), C = (2, 2), D = (5, 4)$$

2.
$$A = (2; 2), B = (5; 4), C = (1; 4), D = (-2; 2)$$

3.
$$A = (3, 4), B = (5, 0), C = (0, 5), D = (3, 0)$$

Exercice 11. Dans chaque cas, dire si le point C appartient à la droite (AB)

1.
$$A = (2; 3), B = (2; -1), C = (2; 7)$$

2.
$$A = (1; 4), B = (-5; -4), C = (4; 8)$$

3.
$$A = (-3, 0), B = (2, 3), C = (4, 4)$$

Exercice 12. Soit trois points A, B, C distincts et non alignés. Les points M et N sont tels que $\overrightarrow{AM} = \overrightarrow{AB} - 2\overrightarrow{AC}$ et $\overrightarrow{AN} = \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}$

- 1. A l'aide d'un repère judicieusement choisi, montrer que \overrightarrow{AM} et \overrightarrow{AN} sont colinéaires.
- 2. Que peut-on en déduire sur A, M et N?

Exercice 13. Dans un repère orthonormé, soit deux vecteurs $\vec{u} = \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} x' \\ y' \end{pmatrix}$.

- 1. Montrer que l'aire du parallélogramme formé par \vec{u} et \vec{v} est $|\det(\vec{u};\vec{v})|$
- 2. Montrer que \vec{u} et \vec{v} sont colinéaires si et seulement si $\det(\vec{u}; \vec{v}) = 0$