Algebra

A1 (IMO 1). Given any set $A = \{a_1, a_2, a_3, a_4\}$ of four distinct positive integers, we denote the sum $a_1 + a_2 + a_3 + a_4$ by s_A . Let n_A denote the number of pairs (i, j) with $1 \le i < j \le 4$ for which $a_i + a_j$ divides s_A . Find all sets A of four distinct positive integers which achieve the largest possible value of n_A .

Answer. All sets in the form $\{d, 5d, 7d, 11d\}$ and $\{d, 11d, 19d, 29d\}$ with $d \in \mathbb{N}$.

Solution. We first show that $n_A \leq 4$. Since the numbers are distinct, we can order them as $a_1 < a_2 < a_3 < a_4$ and we have $a_3 + a_4 < s_A = a_1 + a_2 + a_3 + a_4 < a_3 + a_4 + a_3 + a_4 = 2(a_3 + a_4)$ we have $a_3 + a_4 \nmid s_A$. Similarly $a_2 + a_4 < s_A = a_1 + a_2 + a_3 + a_4 < a_2 + a_2 + a_4 + a_4 = 2(a_2 + a_4)$ we also have $a_2 + a_4 \nmid s_A$. Therefore to achieve the maximum we need $n_A = 4$ (as we will show later that this is attainable), we need all $a_1 + a_2$, $a_1 + a_3$, $a_1 + a_4$, $a_2 + a_3$ to divide s_A . We can also see that this condition forces $a_1 + a_4$ and $a_2 + a_3$ to divide each other, and therefore these two sums must be equal, i.e. $a_1 + a_4 = a_2 + a_3 = s_A$.

Now there must exist integers k and ℓ such that $s_A = k(a_1 + a_2) = \ell(a_1 + a_3)$, so $a_1 + a_2 = \frac{1}{k}s_A$ and $a_1 + a_3 = \frac{1}{\ell}s_A$. Adding these up gives $\frac{s_A}{2} = a_2 + a_3 < 2a_1 + a_2 + a_3 = s_A(\frac{1}{k} + \frac{1}{\ell})$ and we have both $a_1 + a_2 < a_2 + a_3$ and $a_1 + a_2 < a_2 + a_3$, so $k, \ell > 2$. However $\frac{1}{k} + \frac{1}{\ell} > \frac{1}{2}$ we can easily see the the smaller of them, i.e. ℓ , must be equal to 3, and k must be equal to 4 or 5.

If k = 4 then we can solve $a_1, a_2, a_3, a_4 = (d, 5d, 7d, 11d)$ and if k = 5 we can solve $a_1, a_2, a_3, a_4 = (d, 11d, 19d, 29d)$. It's not hard to show that these answers work.

Remark 1: my solution in the real contest is way messier than this, where I wrote $a_4 = a_2 + a_3 - a_1$ and solve the other variables in terms of k and ℓ (though it worked in the end).

Remark 2: the relation $\frac{1}{k} + \frac{1}{\ell} > \frac{1}{2}$ also (kind of) resembles the reason why there are only 5 platonic solids.

A2 Determine all sequences $(x_1, x_2, \dots, x_{2011})$ of positive integers, such that for every positive integer n there exists an integer a with

$$\sum_{j=1}^{2011} j x_j^n = a^{n+1} + 1$$

Answer. The only possible sequence is $x_1 = 1$ and $a = x_2 = \cdots = x_{2011} = 2 + 3 + \cdots + 2011$.

Solution. First, for each j we have $\sum_{j=1}^{2011} jx_j^n - 1 \ge jx_j^n$ since each term is positive. Also using the notion of limits $\lim_{n\to\infty} (jx_j^n)^{\frac{1}{n+1}} = \lim_{n\to\infty} j^{\frac{1}{n+1}} x_j^{\frac{n}{n+1}} = j^0 x_j^1 = x_j$, so we can conclude that $a \ge x_j$ for n sufficiently large. In other words, for n sufficiently large we have $a \ge X = \max\{x_1, x_2, \cdots, x_{2011}\}$. On the other hand we have $\sum_{j=1}^{2011} jx_j^n - 1 \le X^n(1+\cdots+2011) - 1 < CX^n$ where $C=1+\cdots+2011$. As usual $\lim_{n\to\infty} (CX^n)^{\frac{1}{n+1}} = C^{\frac{1}{n+1}}X^{\frac{n}{n+1}} = C^0X^1 = X$ so we have $a \le X$ too for n sufficiently large, too. Hence we have a = X for all sufficiently large n.

Now we have $X^{n+1} = \sum_{j=1}^{2011} j x_j^n - 1$, and dividing each side by X^n we have $X = \sum_{j=1}^{2011} j \left(\frac{x_j}{X}\right)^n - \left(\frac{1}{X}\right)^n$ for all sufficiently large n. Since each $x_j \leq X$, $j \left(\frac{x_j}{X}\right)^n$ converges to j if $x_j = X$ and 0 if $x_j < X$ (when $n \to \infty$). Thus it's not hard to see that

$$X = \lim_{n \to \infty} \sum_{j=1}^{2011} j \left(\frac{x_j}{X}\right)^n - \left(\frac{1}{X}\right)^n = \sum_{1 \le j \le 2011, x_j = X} j$$

1

and therefore for n sufficiently large we have

$$\begin{split} \sum_{1 \leq j \leq 2011, x_j = X} j &= \sum_{j=1}^{2011} j \left(\frac{x_j}{X}\right)^n - \left(\frac{1}{X}\right)^n \\ &= \sum_{1 \leq j \leq 2011, x_j = X} j \left(\frac{x_j}{X}\right)^n + \sum_{1 \leq j \leq 2011, x_j < X} j \left(\frac{x_j}{X}\right)^n - \left(\frac{1}{X}\right)^n \\ &= \sum_{1 \leq j \leq 2011, x_j = X} j + \sum_{1 \leq j \leq 2011, x_j < X} j \left(\frac{x_j}{X}\right)^n - \left(\frac{1}{X}\right)^n \end{split}$$

which we can conclude that $\sum_{1 \le j \le 2011, x_j < X} j \left(\frac{x_j}{X}\right)^n - \left(\frac{1}{X}\right)^n = 0 \text{ for all sufficiently large}$

n. Multiplying by X^n again we get $1 = \sum_{1 \le j \le 2011, x_j < X} jx_j^n$ for all sufficiently large n. Thus the only j that can have $x_j < X$ is j = 1, in which $x_1 = 1$. The other j has

Thus the only j that can have $x_j < X$ is j = 1, in which $x_1 = 1$. The other j has $x_j = X = \sum_{1 \le j \le 2011, x_j = X} j = 2 + \cdots + 2011$, as desired.

A5 Prove that for every positive integer n, the set $\{2, 3, 4, ..., 3n+1\}$ can be partitioned into n triples in such a way that the numbers from each triple are the lengths of the sides of some obtuse triangle.

Solution. The idea is to form the triples (a,b,c) such that, if a < b < c then $c-b \in \Theta(a)$ as compared to other a (and when n grows big). We form the n triples in the following way: all the n smallest numbers $2, \dots, n+1$ will be in different triples as the smallest element in the triple. For the remaining 2n numbers, we need the following: let k be the greatest number such that $2^0 + 2^1 + \dots + 2^k \le n$, then $n = 2^0 + 2^1 + \dots + 2^k + \ell$ with $\ell < 2^{k+1}$. We now sort $2^0, \dots, 2^k, \ell$ in nondecreasing order a_1, a_2, \dots, a_{k+1} (ℓ could be 0 for degenerate case, and we shall omit it for time being). For each $i = 1, 2, \dots, n$, let j be the minimal index with $a_1 + a_2 + \dots + a_j \le i$. We now name the i-th triple as follow: let $a_1 + \dots + a_{j-1} = p$, then the i-th triple is $(i+1, n+1+2p+(i-p), n+1+2p+a_j+(i-p))$.

To show that this triple works, we first need to see that it's disjoint and all within the range $\{2, 3, \dots, 3n+1\}$. Observe that the first element i+1 corresponds to the i-th triple, so they are in the range $\{2, \dots, n+1\}$. Then, the partition of a_1, a_2, \dots, a_{k+1} puts them into k+1 different "buckets". In the explanation above, i is in the j-th bucket and the middle elements in this j-th bucket are in between n+1+2p+1 to $n+1+2p+a_j+1$ and $n+1+2p+2a_j$, so recall that $p=a_1+\dots+a_{j-1}$ we infer that the numbers are all distinct from $n+1+2(a_1+\dots+a_{j-1})+1$ too $n+1+2(a_1+\dots+a_j)$. The largest possible number (considering all j's) is then $n+1+2(a_1+\dots+a_{k+1})=n+1+2n=3n+1$, completing the claim.

We now show that the resulting triples are the side lengths of obtuse triangles. To this end, if a < b < c are the elements of the triples then we need c - b < a but then $(c - b)(c + b) = c^2 - b^2 > a^2$. Let's use the example from above, i.e. our description. In the triple $(i + 1, n + 1 + 2p + (i - p), n + 1 + 2p + a_j + (i - p))$ we have a = i + 1, b = n + 1 + 2p + (i - p) and $c = n + 1 + 2p + a_j + (i - p)$. We have $c - b = a_j$. Recall also that, $a_1 + a_2 + \cdots + a_{j-1} < i \le a_1 + a_2 + \cdots + a_j$. For $a_j > 1$, m is the biggest number such that $2^m < a_j$ then the numbers $1, 2, \cdots, 2^m$ must all appear before a_j so $a_1 + \cdots + a_{j-1} \ge 1 + \cdots + 2^m = 2^{m+1} - 1$. By the maximality of m we also have $a_j \le 2^{m+1}$, and since $i > a_1 + \cdots + a_{j-1} \ge 2^{m+1} - 1$, $i \ge 2^{m+1}$ and so $a = i + 1 > 2^{m+1} \ge a_j = c - b$, so (a, b, c) is indeed side of a triangle.

To see from above that (a, b, c) is indeed obtuse, we have $c^2 - b^2 = (c - b)(c + b) = a_j(a_j + 2(n + 1 + 2p + (i - p)))$ and we need to show that this is strictly greater than

 $a^2 = (i+1)^2$. We first notice that i is at most $a_1 + a_2 + \cdots + a_j$, therefore:

$$\frac{i+1}{a_j} \le \frac{a_1 + a_2 + \dots + a_j + 1}{a_j}$$
$$= \frac{a_1 + a_2 + \dots + a_{j-1} + 1}{a_j} + 1$$

If a_j is not in the form 2^m then $a_j=2^{j-2}+c$ with $a_\ell=2^{\ell-1}$ for $\ell < j$ so $a_1+a_2+\cdots + a_{j-1}+1=1+2+\cdots +2^{j-2}+1=2^{j-1}$ so $\frac{a_1+a_2+\cdots +a_{j-1}+1}{a_j}+1=\frac{2^{j-1}}{2^{j-2}}+1\leq 2+1=3;$ otherwise $a_j=2^m$ and $a_1+\cdots +a_j\leq 1+2+\cdots +2^m=2^{m+1}-1$ so in this case we also have $\frac{a_1+a_2+\cdots +a_{j-1}+1}{a_j}+1\leq 3$, too. This means, $i+1\leq 3a_j$. Next, we investigate the number $a_j+2(n+1+2p+(i-p))=a_j+2(n+1)+4p+2(i-p)\geq a_j+2i+4p+2(i-p).$ We have $i-p\geq 1$ since $p=a_1+\cdots +a_{j-1}< i$. Also, recall that $i+1\leq a_1+a_2+\cdots +a_j+1$ so $a_j+4p=a_j+4(a_1+\cdots +a_{j-1})\geq a_j+a_1+\cdots a_{j-1},$ with equality only if $a_1+\cdots +a_{j-1}=p=0$. This only happens when i=1, in which case we have (2,n+2,n+3) which is obtuse since $(n+3)^2-(n+2)^2=2n+5>4$. For i>1 we have $p\geq 1$ so $a_j+4(a_1+\cdots +a_{j-1})\geq a_j+a_1+\cdots a_{j-1}+3>i+1,$ so $a_j+4p>i+1$ and $2(n+1)+2(i-p)\geq 2i+2,$ resulting in $a_j+2(n+1+2p+(i-p))>3(i+1).$ Summarizing above, we have $c-b=a_j\geq \frac{i+1}{3}=\frac{a}{3}$ and c+b>3(i+1)=3a. Thus $c^2-b^2=(c-b)(c+b)>\frac{a}{3}\times 3a=a^2,$ as desired.

A6 Let $f: \mathbb{R} \to \mathbb{R}$ be a real-valued function defined on the set of real numbers that satisfies

$$f(x+y) \le yf(x) + f(f(x))$$

for all real numbers x and y. Prove that f(x) = 0 for all $x \le 0$.

Solution. As per the official solution, we need to first show that $f(x) \leq 0$ for all x. Let x_0 be a number such that $f(x_0) > 0$. Then $f(x_0 + y) \leq y f(x_0) + f(f(x_0))$. This means, for each threshold M, for all $y < \frac{M - f(f(x_0))}{f(x_0)}$ we have $f(x_0 + y) \leq y f(x_0) + f(f(x_0)) < M$. This means, for all sufficiently small x we have f(x) < M. Now, if $x + y = x_0$ then $y f(x) + f(f(x)) \geq f(x_0) > 0$. Choose x such that $y = x_0 - x > 0$ (i.e. $x < x_0$) and x small enough such that f(x), f(f(x)) < 0. (That is, if m_0 is such that f(x) < 0 for all $x < m_0$ and m_1 is such that $f(x) < m_0$ for all $x < m_1$ then we choose $x < \min\{m_0, m_1, x_0\}$ so f(x) < 0 and f(f(x)) < 0, too. Now, $y = x_0 - x > 0$, f(x) < 0 and f(f(x)) < 0 so y f(x) + f(f(x)) < 0 but then $f(x + y) = f(x_0) > 0$, contradiction.

Having established this, we need to show that 0 is a value of f. Suppose not, then f(x) < 0 for all x. We notice that f(f(x)) < 0 so $f(x+y) \le yf(x) + f(f(x)) < yf(x)$. This means f(x+y) < yf(x) < f(x) if $y \ge 1$, or equivalently f(x-1) > f(x). Consider, for now, the number f(-1). Then for all $x \le -2$ we have f(x) > f(-1). So by choosing $x < \min\{f(-1), -2\}$ we have f(x) > f(-1) > x, i.e. f(x) > x. Consider one such x_2 and by the lemma above, $f(x_2-1) > f(x_2) > x_2$. Plugging y = 0 gives $f(x_2-1) \le f(f(x_2-1))$. But since $f(x_2-1) > x_2$, $f(f(x_2-1)) < f(x_2-1)$, which is a contradiction. Thus f cannot be all negative.

Now that $f(x_1) = 0$ for some x_1 , by plugging y = 0 we get $f(x_1) \le f(f(x_1))$, i.e. $f(0) \ge 0$ so f(0) = 0 by the first lemma. Now for all x > 0 we have $0 = f(0) = f(x - x) \le xf(-x) + f(f(x)) \le xf(-x)$ since $f(f(x)) \le 0$. Since x is positive, f(-x) must be nonnegative. Since f(-x) is also nonpositive, we have f(-x) = 0 for all x > 0, so f(x) = 0 for all x < 0.

Combinatorics

C1 (IMO 4) Let n > 0 be an integer. We are given a balance and n weights of weight $2^0, 2^1, \dots, 2^{n-1}$. We are to place each of the n weights on the balance, one after another,

in such a way that the right pan is never heavier than the left pan. At each step we choose one of the weights that has not yet been placed on the balance, and place it on either the left pan or the right pan, until all of the weights have been placed. Determine the number of ways in which this can be done.

Answer. $1 \times 3 \times \cdots \times (2n-1)$.

Solution. The key to the problem is to notice that if a_1, a_2, \dots, a_k are distinct nonnegative integers and $M = \max\{a_1, \dots, a_k\}$ then $2^M \leq 2^{a_1} + \dots + 2^{a_k} \leq 2^{M+1} - 1 < 2^{M+1}$. Therefore, a sequence is valid if and only if at each time, either the right pan is empty, or both pans are nonempty and the heaviest weight on the left pan is heavier than the heaviest weight on the right pan. We can also see that the pans can never be of the same weight for this reason, unless both pans are empty.

Having known these, we can use induction to show that if f(n) is the number of ways when n is the number weights, then f(1) = 1 and f(n) = (2n-1)f(n-1). Base case n = 1 is simple: the only weight can only be added on the left. Now consider a sequence of n weights $n \geq 2$ and consider the lightest of the weights (i.e. 1). By removing this weight from the sequence, we see that both pans contain weights in the set $\{2^1, \dots, 2^{n-1}\}$, and moreover the pans have a weight difference of at least 2. Therefore, adding the weight 1 on either side will never change the validity of the pans (i.e. the left pan is heavier before the addition of 1 iff the left pan becomes heavier after that). We then infer that a valid sequence of n weights comes from the valid sequence of n - 1 weights, with 1 inserted. This 1 can be inserted anywhere in the sequence and on any pan, except that if it's the first to be placed it has to be on the left pan. This gives 2n - 1 ways, making f(n) = (2n-1)f(n-1).

It's also technically possible to induct on the heaviest weight, i.e. the one with weight 2^{n-1} . For each $1 \le k \le n$, suppose that this weight is the k-th weight to be placed onto the pans. We notice the following:

- This heaviest weight must be on the left.
- The k-1 previous weights must follow the rule of "max of left > max of right", so within the k-1 weights themselves, there are f(k-1) ways to arrange them. Notice that we also have $\binom{n-1}{k-1}$ to choose those k-1 weights from the n-1 remaining weights.
- Finally, the n-k subsequent weights can be placed arbitrarily. This gives (n-k)! permutations of the n-k weights, each with 2 possible choices, left or right.

Thus considering all these we have the summation $\sum_{k=1}^{n} f(k-1) \binom{n-1}{k-1} (n-k)! 2^{n-k} =$

$$\sum_{k=1}^{n} f(k-1)2^{n-k} \frac{(n-1)!}{(k-1)!}, \text{ with } f(0) = 1 \text{ by convention (we used the fact that } \binom{n-1}{k-1} = 1$$

 $\frac{(n-1)!}{(k-1)!(n-k)!}$). If we look at the term $f(k-1)2^{n-k}\frac{(n-1)!}{(k-1)!}$ more carefully, by the assumption $f(k-1) = 1 \times 3 \times \cdots \times (2k-3)$ we have

$$f(k-1)2^{n-k} \frac{(n-1)!}{(k-1)!} = 1 \times 3 \times \dots \times (2k-3)2^{n-k} k \times (k+1) \times \dots \times (n-1)$$
$$= 1 \times 3 \times \dots \times (2k-3) \times 2k \times (2k+2) \times \dots \times (2n-2)$$

The final (and ultimate) computation requires us to do some telescoping sum. Fixing n, let $g(k) = 1 \times 3 \times \cdots (2k-3) \times 2k \times (2k+2) \times \cdots \times (2n-2)$, then we show that $g(1) + \cdots + g(k) = 1 \times 3 \times \cdots \times (2k-1) \times 2k \times (2k+2) \times \cdots \times (2n-2)$. Again we can

do induction on k: $g(1) = 2 \times \cdots \times (2n-2) = 1 \times 2 \times \cdots \times (2n-2)$ and

$$g(0) + \dots + g(k) + g(k+1) = 1 \times 3 \times \dots \times (2k-1) \times 2k \times (2k+2) \times \dots \times (2n-2)$$

$$+ 1 \times 3 \times \dots \times (2k-1) \times (2k+2) \times (2k+2) \times \dots \times (2n-2)$$

$$= 1 \times 3 \times \dots \times (2k-1) \times (2k+1) \times (2k+2) \times \dots \times (2n-2)$$

as desired. Thus letting k = n we have $f(n) = g(1) + \cdots + g(n) = 1 \times 3 \times \cdots \times (2n - 1)$, as desired.

C7 On a square table of 2011 by 2011 cells we place a finite number of napkins that each cover a square of 52 by 52 cells. In each cell we write the number of napkins covering it, and we record the maximal number k of cells that all contain the same nonzero number. Considering all possible napkin configurations, what is the largest value of k?

Answer. $2011^2 - 2 \times 17 \times 2011 + 38 \times 17^2 = 3986729$.

Solution. An example has been shown in the official solution, whereby a total of 39^2 napkins is used: label the napkins as (i,j) with $1 \le i,j \le 39$ (notice that $2011 = 38 \times 52 + 35$). If $i+j \le 39$ then (i,j) covers row from 52(i-1)+1 to 52i and 52(j-1)+1 to 52j, inclusive; if i+j = 40 (i,j) covers row from 52(i-1)+1 to 52i and 52(j-1)-16 to 52j-17, inclusive (except (39,1) which covers the bottom left corner, as in the next case); finally if $i+j \ge 41$ then (i,j) covers fow from 52(i-1)-16 to 52i-17 and 52(j-1)-16 to 52j-17. This way, all squares have frequency 1 except the following cells: those in the form 52(i-1)+k, $52(39-i)+\ell$ and $52(i-1)+\ell$, 52(39-i)+k for $1 \le i \le 39$, $1 \le k \le 52$ (but $52(i-1)+k \le 2011$) and $36 \le k \le 52$. The first case corresponds to 2011×17 of the cells; same goes to the second case. But then for the case $k \ge 36$ we double-counted so the number of cells not with frequency 1 is $2 \times 17 \times 2011 - 38 \times 17^2$.

To show that this is indeed an upper bound, for each row, now, we investigate those cells with frequency the same frequency k > 0. Also we classify the cells into four categories: for a cell (i,j) with remainder (i',j') when divided by 52 $(1 \le i',j' \le 52)$ we have category 1: $1 \le i', j' \le 35$, category 2: $1 \le i' \le 35$, $36 \le j' \le 52$, category 3: $36 \le i' \le 52$, $1 \le j' \le 35$ and category 4: $36 \le i', j' \le 52$. Consider each row r with cells (r, j), $1 \le j \le 2011$. We notice that for each $1 \le j' \le 52$, there are 38 cells congruent to j' mod 52 if $36 \le j' \le 52$ and 39 cells congruent to j' otherwise. We also notice that, consider each cell with coordinates modulo 52, for each $(i',j') \in \mathbb{Z}_{52}^2$, each napkin covers (i',j')exactly once. This means that if the number of napkins covering row r is strictly less than 39k, then for each $1 \le j' \le 35$ there is at least one cell congruent to $j' \mod 52$ that has frequency strictly less than k; call those cells deficient. Analogously, if the number of napkins covering row r is strictly more than 38k, then for each $36 \le j' \le 52$ there is at least one cell congruent to $j' \mod 52$ that has frequency strictly more than k; call those cells excessive. Since at least one of the scenarios above happen, we infer that for each row either there's at least 35 deficient cells or 17 excessive cells; moreover the 35 deficient cells are of category 1 if $1 \le r' \pmod{52} \le 35$ and category 3 otherwise; the 17 excessive cells are of category 2 if $1 \le r' \pmod{52} \le 35$ and category 4 otherwise. In a similar way, for each column c there's also either at least 35 deficient cells (category 1 or 2 depending on c), or at least 17 excessive cells (category 3 or 4 depending on c).

Now let d and e be rational numbers such that there are exactly 35d deficient type 1 cells and 17e excessive type 4 cells. Since there are 35×39 rows (and respectively columns) that are of remainder $1 \le r \le 35$, there must be at least $17(35 \times 39 - d)$ excessive type 2 cells (by considering the rows) and similarly $17(35 \times 39 - d)$ excessive type 3 cells. Likewise, since there are 17×38 rows (and respectively columns), there must be at least $\max\{35(17 \times 38 - e), 0\}$ deficient type 2 cells and similarly $\max\{35(17 \times 38 - e), 0\}$ deficient type 3 cells. The cells in the two scnearios are mutually disjoint: the deficient and excessive cells of same category can't overlap since we cannot have the frequency of some cell to be

> k an < k simultaneously The cells with frquency not k induced by d in category 1 is at least

$$35d + 2 \times 17(35 \times 39 - d) = 2 \times 17 \times 35 \times 39 + d$$

> $2 \times 17 \times 35 \times 39$

The cells with frequency not k induced by e in category 4 is lower-bounded by $17e + 2 \max\{35(17 \times 38 - e), 0\}$. When $e \le 17 \times 38$ we have $17e + 2 \times 35 \times 17 \times 38 - 70e = 2 \times 35 \times 17 \times 38 - 53e \ge 2 \times 35 \times 17 \times 38 - 53(17 \times 38) = 17^2 \times 38$; when $e \ge 17 \times 38$ this count is simply $17(17 \times 38)$. Hence the lower bound here is 38×17^2 .

Summing up, a lower bound of the cells with frequency not k is $2 \times 17 \times 35 \times 39 + 38 \times 17^2 = 17(2 \times 35 \times 39 + 38 \times 17) = 17(2011 - 38 \times 17)$, as desired.

Geometry

G2 Let $A_1A_2A_3A_4$ be a non-cyclic quadrilateral. Let O_1 and r_1 be the circumcentre and the circumradius of the triangle $A_2A_3A_4$. Define O_2, O_3, O_4 and r_2, r_3, r_4 in a similar way. Prove that

$$\frac{1}{O_1 A_1^2 - r_1^2} + \frac{1}{O_2 A_2^2 - r_2^2} + \frac{1}{O_3 A_3^2 - r_3^2} + \frac{1}{O_4 A_4^2 - r_4^2} = 0.$$

Solution. Let diagonals A_1A_3 and A_2A_4 meet at point P. Notice that the quantity $O_iA_i - r_i^2$ is actually the power of point from A_i to the circumcircle of triangle not containing A_i . To meaningfully compute these power of points, we need to consider the "signed lengths" of PA_1, PA_2, PA_3, PA_4 : if for some angle, $\angle A_i > 180^\circ$ (i.e. noncovex) then we let $PA_i < 0$.

Now consider PA_1 . We have $A_1A_3 = PA_1 + PA_3$, and if Y is the second intersection of the circle $A_2A_3A_4$ and A_1A_3 then power of point theorm (on point P) says $PA_2PA_4 = PA_3PY$. Consequently, the power of point of A_1 to this circle is $A_1A_3 \cdot (PA_1 - PY) = (PA_1 + PA_3) \cdot (PA_1 - \frac{PA_2PA_4}{PA_3}) = (PA_1 + PA_3)(\frac{PA_1PA_3 - PA_2PA_4}{PA_3})$. This gives $\frac{1}{O_1A_1^2 - r_1^2} = \frac{PA_3}{(PA_1 + PA_3)(PA_1PA_3 - PA_2PA_4)}$. Similarly, $\frac{1}{O_2A_2^2 - r_2^2} = \frac{PA_4}{(PA_2 + PA_4)(PA_2PA_4 - PA_1PA_3)}$, $\frac{1}{O_3A_3^2 - r_3^2} = \frac{PA_1}{(PA_1 + PA_3)(PA_1PA_3 - PA_2PA_4)}$ and $\frac{1}{O_4A_4^2 - r_4^2} = \frac{PA_2}{(PA_2 + PA_4)(PA_2PA_4 - PA_1PA_3)}$. Thus the desired sum becomes

$$\begin{split} \frac{1}{O_1A_1^2-r_1^2} + \frac{1}{O_2A_2^2-r_2^2} + \frac{1}{O_3A_3^2-r_3^2} + \frac{1}{O_4A_4^2-r_4^2} &= \frac{PA_1 + PA_3}{(PA_1 + PA_3)(PA_1PA_3 - PA_2PA_4)} \\ &+ \frac{PA_2 + PA_4}{(PA_2 + PA_4)(PA_2PA_4 - PA_1PA_3)} \\ &= \frac{1}{PA_1PA_3 - PA_2PA_4} + \frac{1}{PA_2PA_4 - PA_1PA_3} \\ &= \frac{1}{PA_1PA_3 - PA_2PA_4} - \frac{1}{PA_1PA_3 - PA_2PA_4} \\ &= 0 \end{split}$$

as desired.

G6 Let ABC be a triangle with AB = AC and let D be the midpoint of AC. The angle bisector of $\angle BAC$ intersects the circle through D, B and C at the point E inside the triangle ABC. The line BD intersects the circle through A, E and B in two points B and E. The lines E and E meet at a point E and the lines E and E meet at a point E. Show that E is the incentre of triangle E and E and E meet at a point E and E meet at a point E.

Solution. To show that BI bisects $\angle ABK$ is the same as showing that BE bisects $\angle ABD$. If D' is the second intersection of AB and the circle BEDC then D and D' are symmetric to each other in the line AE, hence ED = ED' and so $\angle ABE = \angle D'BE = \angle EBD$, establishing the claim.

To finish the rest, we consider a third circle centered at D and passes through C and A. We claim that F is on this circle too by showing that DA = DF. Now by angle chasing we have $\angle ADB = 180^{\circ} - \angle BDC = 180^{\circ} - \angle BEC = refl \angle BEC - 180^{\circ} = 2\angle AEB - 180^{\circ} = 2\angle AFB - 180^{\circ} = 2(180^{\circ} - \angle AFD) - 180^{\circ} = 180^{\circ} - 2\angle AFD$ (the refl notation means reflex angle). Thus, $\angle ADB = 180^{\circ} - 2\angle AFD$ and we have $\angle AFD + \angle FAD = 2\angle AFD$, so $\angle AFD = \angle FAD$ so DA = DF, as claimed.

Now, we consider the three circles: BEDC, AEFB and AFC, with the first two given in the problem and third defined on our own. The first two circles have BE as the radical axis, and the last two has AF as the radical axis. Hence, the intersection, I, is the radical center of the three circles. Since C is on both circles BEDC and AFC, CI is the radical axis of these two circles. This means, if O is the center of the circle BEDC then $DO \perp CI$. Since O is the center of BDC we have $\angle CDO + \angle DBC = 90^{\circ}$; since $DO \perp CI$ we have $\angle CDO + \angle DCI = 90^{\circ}$. Therefore $\angle DBC = \angle DCI = \angle DCK$, and equivalently, $\angle DKC = \angle DCB$. Knowing this, the last part is to observe the following:

$$\angle ABI + \angle FIK = \frac{\angle ABF}{2} + (180^{\circ} - \angle IFK - \angle IKF)$$

$$= \frac{\angle ABC - \angle DBC}{2} + (180^{\circ} - \angle AFD - \angle DKC)$$

$$= \frac{\angle ABC - \angle DBC}{2} + (180^{\circ} - \frac{180^{\circ} - \angle ADF}{2} - \angle DCB)$$

$$= \frac{\angle ABC - (180^{\circ} - \angle BDC - \angle DCB)}{2} + (180^{\circ} - \frac{\angle BDC}{2} - \angle DCB)$$

$$= 90^{\circ} - \frac{\angle DCB}{2} + \frac{\angle ABC}{2}$$

$$= 90^{\circ}$$

which shows that the line KI passes through the circumcenter O' of the triangle AIB. Thus considering the circumcircle of triangle AO'B, we see that, if K' is the second intersection of the line KI with this circle (other then O') then I is the incenter of triangle K'AB, and therefore $\angle ABI = \angle IBK'$ but as shown before, $\angle ABI = \angle IBK$, so $\angle IBK = \angle IBK'$ and since both K and K' are on KI, we have K = K', showing that I is indeed the incenter of KAB.

- **G7** Let ABCDEF be a convex hexagon all of whose sides are tangent to a circle ω with centre O. Suppose that the circumcircle of triangle ACE is concentric with ω . Let J be the foot of the perpendicular from B to CD. Suppose that the perpendicular from B to DF intersects the line EO at a point K. Let L be the foot of the perpendicular from K to DE. Prove that DJ = DL.
- **G8** (IMO 6) Let ABC be an acute triangle with circumcircle Γ. Let ℓ be a tangent line to Γ, and let ℓ_a, ℓ_b and ℓ_c be the lines obtained by reflecting ℓ in the lines BC, CA and AB, respectively. Show that the circumcircle of the triangle determined by the lines ℓ_a, ℓ_b and ℓ_c is tangent to the circle Γ.

Solution. (cited directly from my notes for the IMO training camp).

Because we are using Casey's theorem, please expect some ratio bashing (including the notorious trigonometry!) Denote A_1 , B_1 , C_1 as $\ell_b \cap \ell_c$, $\ell_a \cap \ell_c$, $\ell_a \cap \ell_b$, respectively. We claim that AA_1 , BB_1 , CC_1 concur on Γ .

Now denote the intersection of BC, CA, AB with ℓ as A', B' and C', respectively. let us consider triangle $B_1A'C'$. Since A'B bisects $\angle B_1A'C'$ and C'B bisects $\angle B_1C'A'$, we know that B is either the incenter or excenter of $B_1A'C'$ and it follows that B_1B bisects angle $A'B_1C'$, which then follows that (well known: verify it yourself!) BB_1 passes through the circumentre of BA'C'. Using th notation of directed angles it follows that $\angle(BB_1,AB) = \angle(BB_1,BC') = 90^{\circ} - \angle(A'C',A'B) = 90^{\circ} - \angle(\ell,BC)$ and $\angle(BB_1,BC) = \angle(BB_1,BA') = 90^{\circ} - \angle(\ell',A'C') = 90^{\circ} - \angle(\ell',A'C') = 90^{\circ} - \angle(\ell',AC') = 90^{\circ} - 20^{\circ} -$

Now we need the fact that I is the incenter (not excentre opposite to any of the sides), given that ABC is an acute triangle. Now let's investigate the relationship between $\angle A$, $\angle B$, $\angle C$ (of $\triangle ABC$) and $\angle A_1$, $\angle B_1$, $\angle C_1$ (of $\triangle A_1B_1C_1$). Take B again. If $\angle A'BC' < 90^\circ$ then $\angle B = \angle A'BC'$, and it can be verified that B is now the excentre of $\triangle B_1A'C'$ and $\angle B_1A'C' = 180^\circ - 2\angle A'BC = 180^\circ - 2\angle B$. On the other hand, if $\angle A'BC$ is obtuse then $\angle B = 180^\circ - \angle A'BC$ and B is the incenter of $\triangle B_1A'C'$ so $\angle B_1A'C' = 2\angle A'BC - 360^\circ = 2(180^\circ - \angle B) - 180^\circ = 180^\circ - 2\angle B$. So $\angle B_1$ is either $2\angle B$ or $180^\circ - 2\angle B$, depending whether BB_1 is the external or internal angle bisector of angle B_1 , respectively. Same goes for line angles A_1 and C_1 . If I is the excentre, then exactly two of the lines AA_1 , BB_1 , CC_1 are the external angle bisectors of the respective angles. So let say AA_1 and BB_1 are the external angle bisectors of angles A_1 and A_1 , then angles A_1 , A_1 , A_2 , and A_3 and A_4 and A_5 an

Now let's proceed to the solving of the main problem. Denote T as the tangent point of ℓ and Γ , and a, b, c as $\angle(TA, \ell), \angle(TB, \ell), \angle(TC, \ell)$. Speaking in modulo 180°, $\angle A$ is congruent to b-c, so $\sin \angle A = |\sin(b-c)|$. Similarly $\sin \angle B = |\sin(c-a)|$ and $\sin \angle C = |\sin(a-b)|$. (we can change the \pm sign to modulus, though). By applying Casey's theorem to degenerate circles A_1, B_1, C_1 and circle Γ we need one of $A_1B_1 \cdot t(C_1), C_1A_1 \cdot t(B_1), B_1C_1 \cdot t(A_1)$ to be the sum of the other two, which is evident, if, by changing some of the terms into

its negative, the resulting three terms add up to 0. (t(K)) is the length of tangent from point K to Γ .) Notice that it is the ratio $A_1B_1 \cdot t(C_1) : C_1A_1 \cdot t(B_1) : B_1C_1 \cdot t(A_1)$ that matters, so we can divide each of them by a constant whenever necessary.

By power of point theorem we have $t(A_1) = \sqrt{A_1 I \cdot A_1 A}$. Define r as the inradius of triangle $A_1B_1C_1$ and r_A the distance from A to lines A_1B' , A_1C' and B'C' (or ℓ) (the distance to the three lines are the same because A is the incentre or excentre of $A_1B'C'$.) Now $A_1A = \frac{r_A}{\sin AA_1B'} = \frac{r_A}{\sin(90^\circ - \angle A)} = \frac{r_A}{\cos \angle A}$ as $\angle A_1 = 180^\circ - 2\angle A$. Similarly $\angle A_1I = \frac{r}{\cos \angle A}$ so $t(A_1) = \sqrt{A_1I \cdot A_1A} = \frac{r_A}{\cos \angle A}$. Now $B_1C_1 = D\sin \angle A_1 = D\sin \angle (180^\circ - 2\angle A) = D\sin 2\angle A$, where D is the diameter of circumcircle $A_1B_1C_1$ so $B_1C_1 \cdot t(A_1) = D\sin 2\angle A \cdot \frac{r_1 \cdot r_2}{\cos \angle A} = 2D\sin \angle A \cdot \sqrt{r_1 \cdot r_2}$. The original ratio now becomes $\sin \angle A \cdot \sqrt{r_1} : \sin \angle B \cdot \sqrt{r_B} : \sin \angle C \cdot \sqrt{r_C}$ by eliminating constants D and r. Now if d is the diameter of Γ then it is not hard to notice that r_A =distance from A to $\ell = TA\sin \angle (TA,\ell) = (d\sin a) \cdot \sin a = d\sin^2 a$. Meanwhile $\sin \angle A = |\sin(b-c)|$. So our original ratio becomes $\sin a \cdot |\sin(b-c)| : \sin a \cdot |\sin(c-a)| : \sin c \cdot |\sin(a-b)|$. But $\sin a \cdot \sin(b-c) + \sin a \cdot \sin(c-a) + \sin c \cdot \sin(a-b) = 0$, which confirms the identity we want to prove. \blacksquare

Errata: when we did the power of point theorem we ignored the sign convention: the power of points ("square of length of tangents") could be negative (inside the circle ABC) and that could potentially jeopardize our argument. We show that this can be ruled out given that ABC is acute: that is, A_1, B_1, C_1 will always be outside circle ABC. (To be continued:)

Number Theory

N1 For any integer d > 0, let f(d) be the smallest possible integer that has exactly d positive divisors (so for example we have f(1) = 1, f(5) = 16, and f(6) = 12). Prove that for every integer $k \ge 0$ the number $f(2^k)$ divides $f(2^{k+1})$.

Solution. Recall that each positive integer can be written as a nonnegative but finite length of product of primes, i.e. each $n \in \mathbb{N}$ can be written uniquely (up to reordering)

as
$$\prod_{i=1}^k p_i^{\alpha_i}$$
, and we also know that in this case the number of divisors of n is $\prod_{i=1}^k (\alpha_i + 1)$.

Thus, if n has 2^k positive divisors then each $\alpha_i + 1$ must be a power of 2.

In view of this, for each k, we can write $f(2^k)$ as $\prod_{i=1}^m p_i^{2^{d_i}-1}$ with $\sum_{i=1}^m d_i = k$. Now let

$$f(2^{k+1}) = \prod_{i=\ell}^m q_i^{2^{e_i}-1}$$
 with $\sum_{i=1}^\ell e_i = k+1$. By inserting "trivial factors" into each $f(2^k)$

and $f(2^{k+1})$ (i.e. multiply by $1 = p^0 = p^{2^0-1}$ for arbitrary p) we may assume that they have the following form: $f(2^k) = \prod_{i=1}^m p_i^{2^{d_i}-1}$ and $f(2^{k+1}) = \prod_{i=1}^m p_i^{2^{e_i}-1}$, with $\sum_{i=1}^m d_i = k$ and

$$\sum_{i=1}^{m} e_i = k + 1.$$

Since $\sum e_i > \sum d_i$, there exists an index j such that $e_j > d_j$. In particular, since $d_j \geq 0$, $e_j \geq 1$. Now let $d'_i = d_i$ if $i \neq j$, and $d'_j = d_j + 1$. Then $\sum_{i=1}^m d'_i = k + 1$ and

 $\prod_{i=1}^m p_i^{2^{d_i'}-1} = p_j^{2^{d_j}} \prod_{i=1}^m p_i^{2^{d_i}-1} = p_j^{2^{d_j}} f(2^k) \text{ has } 2^{k+1} \text{ positive divisors. By the definition of } f \text{ we have } p_j^{2^{d_j}} f(2^k) \geq f(2^{k+1}), \text{ i.e. } p_j^{2^{d_j}} \geq \frac{f(2^{k+1})}{f(2^k)}. \text{ Similarly, define } e_i' \text{ as } e_i' = e_i \text{ if } i \neq j, \text{ and } e_j' = e_j - 1. \text{ Then } \sum_{i=1}^m e_i' = k \text{ and } \prod_{i=1}^m p_i^{2^{e_i'}-1} = p_j^{2^{-e_j'}} \prod_{i=1}^m p_i^{2^{e_i'}-1} = p_j^{2^{-e_j'}} f(2^{k+1}) \text{ has } 2^k \text{ positive divisors (recall that } e_j \geq 1 \text{ so } e_j' \geq 0). \text{ Again by the definition of } f \text{ we have } p_j^{2^{-e_j'}} f(2^{k+1}) \geq f(2^k), \text{ or } \frac{f(2^{k+1})}{f(2^k)} \geq p_j^{2^{e_j'}}. \text{ Combining these two inequalities we have } p_j^{2^{e_j'}} \leq \frac{f(2^{k+1})}{f(2^k)} \leq p_j^{2^{d_j}}, \text{ so } e_j' \leq d_j. \text{ However, we have } e_j > d_j, \text{ so } e_j' = e_j - 1 \geq d_j, \text{ and therefore } p_j^{2^{e_j'}} = p_j^{2^{d_j}}. \text{ Thus all inequalities above become equality and thus } \frac{f(2^{k+1})}{f(2^k)} = p_j^{2^{d_j}}, \text{ i.e. } f(2^k) \mid f(2^{k+1}).$

N2 Consider a polynomial $P(x) = \prod_{j=1}^{9} (x+d_j)$, where $d_1, d_2, \dots d_9$ are nine distinct integers. Prove that there exists an integer N, such that for all integers $x \geq N$ the number P(x) is divisible by a prime number greater than 20.

N4 For each positive integer k, let t(k) be the largest odd divisor of k. Determine all positive integers a for which there exists a positive integer n, such that all the differences

20).

$$t(n+a) - t(n); t(n+a+1) - t(n+1), \dots, t(n+2a-1) - t(n+a-1)$$
 are divisible by 4.

so one of them must be greater than 20 (since there are exactly 8 prime numbers less than

Answer. a=1,3,5. For each of those we can choose the pairs (a,n)=(1,1),(3,1),(5,4). **Solution.** It now remains to show that these are all the possible a's. If a is even, then among the numbers $n,n+1,\cdots,n+a-1$, exactly one of them, say $ka+\frac{a}{2}$, must be congruent to $\frac{a}{2}$ modulo a. Now consider $t(ka+\frac{a}{2}+a)-t(ka+\frac{a}{2})$. Now $ka+\frac{a}{2}=\frac{a}{2}(1+2k)$ and $ka+\frac{a}{2}+a=\frac{a}{2}(3+2k)$ so $t(ka+\frac{a}{2}+a)=t(\frac{a}{2})(3+2k)$ and $t(ka+\frac{a}{2})=t(\frac{a}{2})(1+2k)$ and therefore $t(ka+\frac{a}{2}+a)-t(ka+\frac{a}{2})=2t(\frac{a}{2})$ and since $t(\frac{a}{2})$ is odd, $4 \nmid 2t(\frac{a}{2})$. Hence a cannot be even.

Next, let $a \ge 7$ be odd. Now one of n and n+a is odd, while the other is even. W.l.o.g. let n be odd, then n, n+2, n+4, n+6 are all odd, and therefore t(n+k) = n+k for

all k = 0, 2, 4, 6. Now n + a, n + 2 + a, n + 4 + a, n + 6 + a are all even, and since $4 \mid t(n+a+k)-t(n+k) = t(n+a+k)-(n+k)$ for k = 0, 2, 4, 6. Since $n \equiv n+4$ and $n+2 \equiv n+6$, we have $t(n+a) \equiv t(n+a+4) \pmod 4$ and $t(n+a+2) \equiv t(n+a+6) \pmod 4$. If $n+a \equiv 2 \pmod 4$ then so is n+a+4, and therefore $t(n+a+4)-t(n+a) = (\frac{n+a+4}{2})-(\frac{n+a}{2}) = 2 \not\equiv 0 \pmod 4$, contradiction. If $n+a \equiv 0 \pmod 4$, then $n+a+2 \equiv n+a+6 \equiv 2 \pmod 4$, so $t(n+a+6)-t(n+a+2) = \frac{n+a+6}{2} - \frac{n+a+2}{2} = 2 \not\equiv 0 \pmod 4$, another contradiction. Therefore a < 7 is necessary.

N5 (IMO 5) Let f be a function from the set of integers to the set of positive integers. Suppose that, for any two integers m and n, the difference f(m) - f(n) is divisible by f(m - n). Prove that, for all integers m and n with $f(m) \leq f(n)$, the number f(n) is divisible by f(m).

Solution. We first notice that $f(m-0) \mid f(m) - f(0)$ so f(0) is divisible by f(m) for all integers m. Also, $f(-n) = f(0-n) \mid f(0) - f(n)$ and since f(0) is divisible by f(n) from just now we have $f(-n) \mid f(n)$. Similarly $f(n) \mid f(-n)$ and since both are positive, we have f(n) = f(-n) for all n. Notice also that for all $k \geq 0$ we have $f((k+1)n-kn) = f(n) \mid f((k+1)n) - f(kn)$ and by considering k=1 as base case and perform induction from there, we have $f(n) \mid f(kn)$ for all $k \geq 1$. But since f is an even function with f(n) = f(-n) for all n, we have $f(n) \mid f(kn)$ for all k.

Now consider m, n arbitrary, and let gcd(m, n) = d. By Euclidean algorithm there exist integers a and b such that am + bn = d. We know by above, $f(d) \mid f(am)$ and $f(d) \mid f(bn)$. This gives us the following relation:

$$f(am) = f(d - bn) | f(d) - f(bn);$$
 $f(bn) = f(d - am) | f(d) - f(am)$

W.L.O.G. let $f(bn) \leq f(am)$, then since f(d) and f(am) are both positive, we have $|f(d) - f(am)| < \max\{f(d), f(am)\} \leq f(bn)$ (we have $f(d) \mid f(bn)$ so $f(d) \leq f(bn)$, too. This means that the only possibility is f(d) - f(am) = 0, so f(d) = f(am). But then $f(d) \mid f(m) \mid f(am) = f(d)$ so we also have f(d) = f(m). Finally, $f(m) = f(d) \mid f(n)$ since $d \mid n$, completing the problem solution.