

Cleanse: Uncertainty Estimation Approach Using Clustering-based Semantic Consistency in LLMs

Minsuh Joo, Hyunsoo Cho

{judyjoo21, chohyunsoo}@ewha.ac.kr

Overview

Problem

- Hallucination in LLMs where LLMs generate inaccurate responses
- <u>Mitigating hallucination in QA tasks</u> where precise and verifiable responses are required remains as a critical issue.

Overview

Motivated Approach

- <u>Uncertainty estimation</u> enables users identify potentially unreliable responses (Lin et al., 2022a) which contributes to building safe and reliable LLMs.
- Based on <u>semantic equivalence</u> where responses are consistent as long as their semantics are the same despite their different syntactic forms, we evaluate the uncertainty of the response through its <u>semantic consistency</u>.

Overview

Method

• We propose **Cl**ustering-based Semantic Consistency (Cleanse), which quantifies the uncertainty with the proportion of the intra-cluster consistency (similarity) in the total consistency.

Step 1: Generate multiple responses for a query and extract their hidden embeddings

• We extract the <u>last token embedding in the middle layer of LLM</u> as the hidden embedding of the output, as prior work suggests it captures semantic information effectively (Azaria and Mitchell, 2023).

Step 2: Cluster responses with fine-tuned NLI model

• We <u>clustered outputs based on their semantic information</u> by leveraging bidirectional entailment clustering algorithm (Kuhn et al., 2023) and fine-tuned NLI model.

Step 2: Cluster responses with fine-tuned NLI model

 We chose the clustering model based on intuition that having few clusters for correct case and a few clusters for wrong case is advantageous for clearer hallucination detection.

Step 2: Cluster responses with fine-tuned NLI model

• We utilized <u>nli-deberta-v3-base</u> (He et al., 2021) as a clustering model, which outperforms other models when evaluated with AUROC and the difference between the number of clusters formed for incorrect case and correct case.

Clustering Model		deberta-large-mnli	roberta-large-mnli	nli-deberta-v3-base	nli-deberta-v3-large	
LLaMA-7B	SQuAD	81.3 (2.71)	80.7 (2.54)	81.7 (2.78)	81.2 (2.63)	
	CoQA	79.0 (2.49)	78.5 (2.40)	79.4 (2.55)	79.4 (2.45)	
LLaMA-13B	SQuAD	82.5 (2.96)	82.3 (2.78)	82.8 (3.03)	82.6 (2.88)	
	CoQA	79.3 (2.47)	79.0 (2.36)	79.6 (2.53)	79.5 (2.51)	
LLaMA2-7B	SQuAD	82.7 (2.92)	82.2 (2.73)	83.0 (2.99)	82.7 (2.86)	
	CoQA	79.7 (2.52)	79.4 (2.43)	80.1 (2.60)	80.2 (2.57)	
Mistral-7B	SQuAD	75.2 (1.84)	74.2 (1.59)	75.9 (1.92)	74.9 (1.75)	
	CoQA	80.0 (2.57)	79.4 (2.45)	80.2 (2.63)	79.8 (2.55)	

Step 3: Compute inter/intra-cluster similarity based on the clustering result and quantify the uncertainty with Cleanse Score

Intra-cluster similarity

: the degree of consistency which contributes to the high consistency between outputs.

Inter-cluster similarity

: the penalty for the consistency which indicates the degree of divergence between semantics of outputs.

Cleanse Score =
$$\frac{Intra-cluster\ sim.}{Total\ sim. = Intra-cluster\ sim. + Inter-cluster\ sim.}$$

Step 3: Compute inter/intra-cluster similarity based on the clustering result and quantify the uncertainty with Cleanse Score

Results

Effectiveness of Cleanse

• Our core intuition — clustering multiple outputs and using the inter-cluster similarity as a penalty term — successfully <u>enhances the performance when applied to Cleanse</u>, compared to other baselines.

Model		LLaMA-7B		LLaMA-13B		LLaMA2-7B		Mistral-7B	
Dataset		SQuAD	CoQA	SQuAD	CoQA	SQuAD	CoQA	SQuAD	CoQA
Perplexity	AUC	60.2	66.1	61.4	63.6	63.8	62.2	53.3	57.3
(token-level)	PCC	19.3	27.4	21.8	27.0	25.5	24.3	13.0	21.7
LN-Entropy	AUC	72.3	71.6	74.6	70.8	74.2	70.5	59.3	61.7
(token-level)	PCC	38.9	35.5	43.6	37.1	42.8	34.7	14.8	24.6
Lexical Similarity	AUC	76.9	76.1	78.9	75.6	80.4	76.2	69.0	74.9
(token-level)	PCC	51.2	47.7	54.4	49.1	57.4	48.6	31.4	43.2
Cosine Score	AUC	79.6	78.5	81.1	77.7	82.1	79.3	65.9	74.1
(sentence-level)	PCC	54.7	48.4	57.8	49.3	59.7	50.6	29.1	41.3
Cleanse Score	AUC	81.7	79.4	82.8	79.6	83.0	80.1	75.9	80.2
(sentence-level)	PCC	56.4	47.6	59.6	50.7	61.0	49.7	41.6	47.2

Results

Superior hallucination detection capability under strict settings

• The performance gap between Cleanse Score and lexical similarity increases as the threshold of rouge-L increases, which indicates that the <u>Cleanse Score is robustly</u> applicable in strict environments such as question-answering and translation tasks.

Conclusion

- We propose Cleanse, which clusters the outputs and computes the proportion of the intra-cluster similarity in the total similarity to quantify the consistency.
- We showed that filtering inter-cluster similarity as the inconsistency term helps to classify certain and uncertain generations effectively so that Cleanse perform better than the other existing approaches.

Thank You