

Introduction to CUDA

(7) Application: ML and CNN

Reference

- CUDA C Programming Guide,
 - https://docs.nvidia.com/cuda/cuda-c-programmingguide/index.html
- Programming Massively Parallel Processors,
 - A Hands-on Approach
 - Third Edition
 - Chapter 16

Content

- Background
- Convolutional Neural Networks
- Convolutional Layer: A Basic CUDA Implementation of Forward Propagation
- Reduction of Convolutional Layer to Matrix Multiplication

Machine Learning

- An important way of building applications whose logic is not fully understood.
 - Use labeled data data that come with the input values and their desired output values – to learn what the logic should be
 - Capture each labeled data item by adjusting the program logic
 - Learn by example!

Training Phase

The system learns the logic for the application from labeled data.

Deployment (inference) Phase

The system applies the learned program logic in processing data

Deep Learning in Computer Vision

Traditional Computer Vision Experts + Time Deep Learning Object Detection **DNN + Data + HPC**

Deep Learning Achieves "Superhuman" Results

ConvNet

- One type of deep learning procedure is based on ConvNet:
 - Easy to train
 - Better generalization

Multilayer Feedforward Network

ConvNet

- ConvNet was invented in late 1980s.
- By earlier 1990s, ConvNet has been successfully applied to:
 - Speech recognition
 - Optical character recognition
 - Handwriting recognition
 - Face recognition
- But data insufficient/computationally infeasible.

ConvNet

- Hinton, etc., 2006
 - Introduced unsupervised learning methods that could create multilayer, hierarchical feature detectors without requiring labeled data.
 - First use in speech recognition.
- But in computer vision ConvNets were largely ignored until 2012.
 - Driven by GPUs and massive online data.

Behind the Scenes

- In 2010 University of Toronto:
 - Programming Massively Parallel Programming
 - Prof. Andreas Moshovos
- Prof. Geoffrey Hinton's students took the course.
 - Developed the GPU implementation of the DNN.
 - Trained 10 more times faster than CPU.

Deep ConvNet

- Alex Krizhevsky, etc., 2012
 - AlexNet (extend the LeNet)
 - 60 million parameters
 - 650,000 neurons.

• Training:

- Trained on 1.2 million images from ImageNet database.
- One week on two GPUs. (GTX580, 3GB)
- Breakthrough results
 - Error of 15.3%
 - Second place 26.2%

Recent Explosion of DNN

 GPU with CUDA has enabled very fast research cycle of deep neural net training:

Content

- Background
- Convolutional Neural Networks
- Convolutional Layer: A Basic CUDA Implementation of Forward Propagation
- Reduction of Convolutional Layer to Matrix Multiplication

LeNet-5

• Yann LeCun, 1998, a convolutional neural network for hand-written digit recognition.

Three types of layers:

convolutional layers, subsampling layers, and full connection layers.

60,840 parameters and 340,908 connections

LeNet-5

Forward: Convolution Layer

- All input feature maps contribute to all output feature maps.
- One convolution mask is provided for each input-output combination.

Forward: Convolution Layer

- LeNet C1
 - X[C, H, W]
 - Y[M, H-K+1, H-K+1]
 - W[C, M, K, K]

- -- X[1, 32, 32]
- -- Y[6, 28, 28]
- -- W[1, 6, 5, 5]

Sequential Code for the Forward Path of a Convolution Layer

```
void convLayer forward(int M, int C, int H, int W, int K, float* X, float* W, float* Y)
  int H out = H - K + 1;
  int W_{out} = W - K + 1;
                                         // for each output feature map
  for(int m = 0; m < M; m++)
   for(int h = 0; h < H_out; h++) // for each output element
     for(int w = 0; w < W_out; w++) {
       Y[m, h, w] = 0;
       for(int c = 0; c < C; c++) // sum over all input feature maps
        for(int p = 0; p < K; p++) // KxK filter
          for(int q = 0; q < K; q++)
             Y[m, h, w] += X[c, h + p, w + q] * W[m, c, p, q];
```

Subsampling Layer

 A subsampling layer reduces the size of image maps by combining pixels.

LeNet S2:

- Takes six input feature maps of size 28 × 28.
- Generates six feature maps of size 14×14 .
- Each pixel in a subsampling feature map is the average from a 2 × 2 neighborhood.
- A bias value b[m] that is specific to each output feature map is then added to each output feature map;
- The sum goes through a nonlinear function such as the tanh, sigmoid, or ReLU functions.

Sequential code for the Forward Path of a Sub-sampling Layer

```
void poolingLayer forward(int M, int H, int W, int K, float* Y, float* S)
 for(int m = 0; m < M; m++)
                                             // for each output feature maps
   for(int h = 0; h < H/K; h++)
                                             // for each output element
    for(int w = 0; w < W/K; w++) {
     S[m, x, y] = 0.;
     for(int p = 0; p < K; p++) {
                                              // loop over KxK input samples
       for(int q = 0; q < K; q++)
         S[m, h, w] += Y[m, K*h + p, K*w + q] /(K*K);
     // add bias and apply non-linear activation
                                                            K=2 for LeNet S2
     S[m, h, w] = sigmoid(S[m, h, w] + b[m])
```

LeNet layers

- C3:
 - 16 output feature maps (10 × 10 image for each)
 - 6×16 filter banks (5 \times 5 weights for each)
- S4:
 - 16 output feature maps (5 × 5 image for each)
- C5:
 - 120 one-pixel output
 - $16 \times 120 = 1920$ filter banks (5 × 5 weights for each)
- F6:
 - 84 output units Y6 = sigmoid (W*X + b)
 - fully connected from C5
- Final Output
 - 10 elements generated from Gaussian filters
 - Compute loss function

Back-Propagation

- ConvNets training:
 - Labeled data or correct
 - Loss function or error
 - Through a procedure gradient backpropagation

Back-Propagation of dE/dX

- Each layer receives as its input ∂E/∂Y
 - —gradient with respect to its output feature maps
- and calculates ∂E/∂X
 - — gradient with respect to its input feature maps

Back-Propagation of ∂E/∂W

- If a layer has learned parameters ("weights") W,
- then it also calculates ∂E/∂W
 - —gradient of loss with respect to weights

Back-Propagation

• For the fully connected layer is given as:

$$Y = W*X$$

 The backpropagation of gradient δE/δY is expressed by two equations:

$$\frac{\partial E}{\partial X} = W^T * \frac{\partial E}{\partial Y} \qquad \qquad \frac{\partial E}{\partial W} = \frac{\partial E}{\partial Y} * X^T$$

Calculation of $\partial E/\partial X$

- The gradient ∂E/∂X:
 - with respect to the <u>channel c</u> of input X is given as
 - sum of "backward convolution" with corresponding W^T(c,m) over all layer outputs m:

$$\frac{\partial E}{\partial X}(c,h,w)$$

$$= \sum_{m=1}^{M} \sum_{p=1}^{k} \sum_{q=1}^{k} \left[W(p,q) * \frac{\partial E}{\partial Y}(h-p,w-q) \right]$$

Calculation of $\partial E/\partial X$

```
void convLayer backward xgrad(int M, int C, int H in, int W in, int K,
                                   float* dE dY, float* W, float* dE dX) {
  int m, c, h, w, p, q;
  int H out = H in -K + 1;
  int W out = W in -K + 1;
                                                assumes \partial E/\partial Y has been calculated;
  for(c = 0; c < C; c++)
                                                dE dX has been allocated in device.
     for(h = 0; h < H_in; h++)
        for(w = 0; w < W in; w++)
          dE dX[c, h, w] = 0.;
  for(m = 0; m < M; m++)
    for(h = 0; h < H out; h++)
       for(w = 0; w < W out; w++)
         for(c = 0; c < C; c++)
           for(p = 0; p < K; p++)
              for(a = 0; a < K; a++)
                 dE dX[c, h + p, w + q] += dE dY[m, h, w] * W[m, c, p, q];
```

Calculation of $\partial E/\partial W$

- The gradient ∂E/∂W:
 - Since each W(c,m) affects all elements of the output Y(m),
 - we accumulate gradients over all pixels in the corresponding output feature map:

$$\frac{\partial E}{\partial W}(c,m;p,q)$$

$$= \sum_{h=1}^{H_{out}} \sum_{w=1}^{W_{out}} \left[X(h+p,w+q) * \frac{\partial E}{\partial Y}(h,w) \right]$$

Calculation of ∂E/∂W

```
void convLayer_backward_wgrad(int M, int C, int H, int W, int K,
                                     float* dE dY, float* X, float* dE dW) {
  int m, c, h, w, p, q;
  int H out = H - K + 1;
  int W out = W - K + 1;
                                                  assumes \partial E/\partial Y has been calculated;
  for(m = 0; m < M; m++)
                                                  dE dW has been allocated in device.
    for(c = 0; c < C; c++)
       for(p = 0; p < K; p++)
         for(q = 0; q < K; q++)
                                                        W(t+1) = W(t) - \lambda^* \partial E / \partial W
            dE \ dW[m, c, p, q] = 0.;
  for(m = 0; m < M; m++)
    for(h = 0; h < H_out; h++)
       for(w = 0; w < W out; w++)
         for(c = 0; c < C; c++)
            for(p = 0; p < K; p++)
              for(q = 0; q < K; q++)
                 dE \ dW[m, c, p, q] += X[c, h + p, w + q] * dE \ dY[m, c, h, w];
```

Stochastic Gradient Descent

- Training:
 - The training data sets are usually large.
- Instead of forward–backward for the whole training data set:
 - one randomly selects a small subset ("mini-batch") of N images;
 - computes the gradient only for this subset;
 - subsequently selects another subset and so on.
- This procedure adds one additional dimension n
 - —the index of the sample in the mini-batch

Training with mini-batch

```
void convLayer_forward(int N, int M, int C, int H, int W, int K, float* X, float* W, float* Y)
 int n, m, c, h, w, p, q;
 int H out = H-K+1:
 int W out = W - K + 1:
 for(n = 0; n < N; n++) // for each sample in the mini-batch
  for(m = 0; m < M; m++) // for each output feature maps
   for(h = 0; h < H_out; h++) // for each output element
    for(w = 0; w < W out; w++) {
     Y[n, m, h, w] = 0;
     for (c = 0; c < C; c++) // sum over all input feature maps
      for (p = 0; p < K; p++) // KxK filter
       for (q = 0; q < K; q++)
         Y[n, m, h, w] += X[n, c, h + p, w + q] * W[m, c, p, q];
```

Content

- Background
- Convolutional Neural Networks
- Convolutional Layer: A Basic CUDA Implementation of Forward Propagation
- Reduction of Convolutional Layer to Matrix Multiplication

Parallel forward path

```
void convLayer_forward(int N, int M, int C, int H, int W, int K, float* X, float* W, float* Y)
  int n, m, c, h, w, p, q;
  int H_{out} = H - K + 1;
  int W_{out} = W - K + 1;
  parallel_for(n = 0; n < N; n++)
                                                        N*M*H_out*W_out
   parallel_for (m = 0; m < M; m++)
    parallel_for(h = 0; h < H_out; h++)
     parallel_for(w = 0; w < W_out; w++)
      Y[n, m, h, w] = 0;
      for (c = 0; c < C; c++)
       for (p = 0; p < K; p++)
        for (q = 0; q < K; q++)
         Y[n, m, h, w] += X[n, c, h + p, w + q] * W[m, c, p, q];
```

Different parallel samples in a mini-batch, different output feature maps for the same sample, and different elements for each output feature map. In Parallel.

Parallel forward path

Threads Organization:

- Assume that each thread will compute one element of one output feature map.
- use 2D thread blocks and each block for a tile of (TILE_WIDTH x TILE_WIDTH) elements.
- e.g. TILE_WIDTH=16, then 256 threads per block.

Blocks are organized into a 3D grid:

- 1. The first dimension (X) of the grid corresponds to samples (N) in the batch;
- 2. The second dimension (Y) corresponds to the (M) output features maps; and
- 3. The last dimension (Z) will define the location of the output tile inside the output feature map.

Parallel forward path

 Assume for simplicity that H_out (height of the output image) and W_out (width of the output image) are multiples of the tile width (set to 16 below):

```
# define TILE_WIDTH 16
// number of horizontal tiles per output map
W_grid = W_out/TILE_WIDTH;
// number of vertical tiles per output map
H_grid = H_out/TILE_WIDTH;
Z = H_grid * W_grid;

dim3 blockDim(TILE_WIDTH, TILE_WIDTH, 1);
dim3 gridDim(N, M, Z);
ConvLayerForward_Kernel<<< gridDim, blockDim>>>(...);
```

Parallel forward path -- Kernel

```
global void
ConvLayerForward Kernel(int C, int W grid, intK, float* X, float* W, float* Y)
 int n, m, h, w, c, p, q;
                                                   High degree of parallelism;
 n = blockld.x;
                                                   but excessive global
 m = blockld.y;
                                                   memory bandwidth.
 h = blockld.z / W grid + threadld.y;
 w = blockld.z % W_grid + threadld.x;
 float acc = 0.:
 for (c = 0; c < C; c++) { // sum over all input channels
  for (p = 0; p < K; p++) // loop over KxK filter
   for (q = 0; q < K; q++)
    acc = acc + X[n, c, h + p, w + q] * W[m, c, p, q];
  Y[n, m, h, w] = acc;
                                                               pseudo-code
```

Parallel forward -- improvement

use shared memory tiling:

- 1. Load the filter W[m, c] into the shared memory.
- 2. All threads collaborate to copy the portion of the input X[n,c,.,.] that is required to compute the output tile into the shared memory array X_shared.
- 3. Compute for the partial sum of output Y_shared[n, m,.,.].
- 4. Move to the next input channel c.

• shared memory allocation:

- input block X_tile_width * X_tile_width, where X_tile_width = TILE_WIDTH + K-1.
- K*K filter coefficients.

Kernel using shared memory

```
global void
ConvLayerForward_Kernel(int C, int W_grid, int K, float* X, float* W, float* Y)
 int n, m, h0, w0, h_base, w_base, h, w;
 int X tile width = TILE WIDTH + K-1;
 extern __shared__ float shmem[];
 float* X_shared = &shmem[0];
 float* W_shared = &shmem[X_tile_width * X_tile_width];
 n = blockldx.x;
 m = blockldx.y;
 h0 = threadIdx.x; // h0 and w0 used as shorthand for threadIdx.x and threadIdx.y
 w0 = threadIdx.y;
 h_base = (blockldx.z / W_grid) * TILE_SIZE; // vertical base out data index for the block
 w_base = (blockldx.z % W_grid) * TILE_SIZE; // horizontal base out data index for the block
 h = h base+ h0;
 w = w base+ w0:
 float acc = 0.;
 int c, i, j, p, q;
 for (c = 0; c < C; c++) {
                                          // sum over all input channels
   if ((h0 < K) \&\& (w0 < K))
    W_shared[h0, w0]= W [m, c, h0, w0]; // load weights for W [m, c,..],
   __syncthreads()
                                          // h0 and w0 used as shorthand for threadIdx.x
                                          // and threadIdx.y
   for (i = h; i < h_base+ X_tile_width; i += TILE_WIDTH) {
    for (j = w; j < w_base + X_tile_width; j += TILE_WIDTH)
     X_shared[i -h_base, j -w_base] = X[n, c, h, w]
                                          // load tile from X[n, c,...]into shared memory
   syncthreads();
  for (p = 0; p < K; p++) {
   for (q = 0; q < K; q++)
     acc = acc + X_shared[h + p, w + q] * W_shared[p, q];
   __syncthreads();
 Y[n, m, h, w] = acc;
```

Content

- Background
- Convolutional Neural Networks
- Convolutional Layer: A Basic CUDA Implementation of Forward Propagation
- Reduction of Convolutional Layer to Matrix Multiplication

GEMM

- Build an even faster convolutional layer:
 - Reducing to highly efficient matrix multiplication;
 - Using <u>GEneral Matrix to Matrix Multiplication (GEMM)</u>, from CUDA linear algebra library (cuBLAS).
 - Introduced in 2006 by CPS.

Main idea:

- unfolding and replicating the inputs to the convolutional kernel such that all elements needed to compute one output element will be stored as one sequential block.
- reduce the forward operation of the convolutional layer to one large matrix—matrix multiplication.
- https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Example of the Forward Path of a Convolution Layer

GEMM-example

- Rearrange all input elements :
 - Since the results of the convolutions are summed across input features, the input features can be concatenated into one large matrix.
 - <u>Each row</u> of this matrix contains all input values necessary to compute <u>one element</u> of an output feature.
- This process means that each input element will be replicated multiple times.
 - In example 4*1 + 2*4 + 1*4 = 16.

Size of the unrolled input matrix

• The height:

- Is the number of input feature elements contributing to each output feature map element.
- The number is C*K*K

• The width:

- Is the number of elements in each output feature map.
- The number is H_out*W_out

Expansion ratio:

• (K*K*H_out*W_out)/(H_in*W_in) -- > K*K

Size of the unrolled <u>filter-bank</u> matrix

• The height:

is the number of output feature maps (M).

• The width:

- Is the number of weight values needed to generate each output feature map element.
- The number is C*K*K

• Expansion ratio:

no duplication occurs


```
void convLayer_forward(int N, int M, int C, int H, int W, int K, float* X, float* W_unroll, float* Y)
{
  int W_out = W_ K + 1;
  int H_out = H_ K + 1;
  int W_unroll = C * K * K;
  int H_unroll = H_out * W_out;
  float* X_unrolled = malloc(W_unroll * H_unroll * sizeof(float));
  for (int n=0; n < N; n++) {
    unroll(C, H, W, K, n,X, X_unrolled);
    gemm(H_unroll, M, W_unroll, X_unrolled, W, Y[n]);
  }
}</pre>
```

the sequential implementation of the forward path of a convolutional layer with matrix multiplication.

```
void unroll(int C, int H, int W, int K, float* X, float* X_unroll)
  int c, h, w, p, q, w_base, w_unroll, h_unroll;
  int H out = H-K+1;
  int W out = W-K+1;
  for(c = 0; c < C; c++) 
  w_base = c * (K*K);
  for(p = 0; p < K; p++)
    for(q = 0; q < K; q++) {
     for(h = 0; h < H out; h++)
      for(w = 0; w < W_out; w++){
       w_unroll = w_base + p * K + q;
       h unroll = h * W out + w:
       X_{unroll}(h_{unroll}, w_{unroll}) = X(c, h + p, w + q);
```

sequential function that produces the X_unroll array.

```
void unroll_gpu(int C, int H, int W, int K, float* X, float* X_unroll)
{
  int H_out = H - K + 1;
  int W_out = W- K + 1;
  int num_threads = C * H_out * W_out;
  int num_blocks = ceil((C * H_out * W_out) / CUDA MAX_NUM_THREADS);
  unroll_Kernel<<<num_blocks, CUDA MAX_NUM_THREADS>>>();
}
```

Host code for invoking the unroll kernel.

```
global__ void unroll_Kernel(int C, int H, int W, int K, float* X, float* X_unroll)
int c, s, h_out, w-out, h_unroll, w_base, p, q;
int t = blockId.x * CUDA MAX_NUM_THREADS + threadId.x;
int H out = H-K+1;
int W out = W-K+1;
int W_unroll = H_out * W_out;
if (t < C * W_unroll) {
 c = t / W_unroll;
 s = t % W unroll;
 h out = s/W out;
 w \text{ out} = s \% W \text{ out};
 h unroll = h out * W out + w out;
 w_base = c * K * K;
 for(p = 0; p < K; p++)
  for(q = 0; q < K; q++) {
   w unroll = w base + p * K + q;
   X_{unroll}(h_{unroll}, w_{unroll}) = X(c, h_{out} + p, w_{out} + q);
```

Some Observations

- The amount of parallelism is quite high as long as the total number of pixels across all output feature maps is large
 - This matches the CNN architecture well
 - C*H_out*W_out is usually fairly large for all layers
- Each input tile is loaded multiple times, once for each block that calculates the output tile that requires the input tile
 - Not very efficient in global memory bandwith

CuDNN

- C-language deep learning API for implementing deep learning primitives routines:
 - D is a four-dimensional N x C x H x W tensor which forms the input data;
 - F is a four-dimensional K x C x R x S tensor, which forms the convolutional filters;
- cuDNN supports multiple algorithms:
 - matrix multiplication-based(GEMM & Winograd)
 - fast-Fouriertransform-based