

N.S.I: Numérique et Sciences Informatiques

DEVOIR BILAN

Bac Blanc

Ce sujet, noté sur 20, comporte deux exercices notés respectivement sur 8 et 12 points. Les deux exercices sont à traiter en intégralité. Ce sujet n'est pas à rendre avec votre copie.

Lors de la correction, la plus grande attention sera portée à la clarté de vos réponses.

Le fait de répondre sans faire de phrases sera sanctionné. Lorsque vous écrirez du code, pensez à bien marquer de manière visible les indentations éventuelles.

EXERCICE 1 8 points Thèmes: SQL

L'énoncé de cet exercice utilise la convention suivante : les clés primaires seront soulignées et les clés étrangères seront précédées d'un #.

Le satellite GAIA a pour mission de cartographier un très grand nombre d'objets autour du Système Solaire. Régulièrement un catalogue est produit pour publier les données obtenues. Il est disponible sous différents formats dont par exemple sous forme de fichier csv.

N_Obj identifie chaque objet cartographié de manière unique.

Voici un extrait du catalogue :

N_Obj	N_Syst	Nom_Syst	Type	Nom_Obj	Asc_Droite	Decl	Parallaxe	Nom_SIMB
1	1	alf Cen	LM	Proxima Cen	217 392	-62 676	768 067	alf Cen C
2	1	alf Cen	Planet	Proxima Cen b	217 392	-62 676	768 067	
3	1	alf Cen	*	alf Cen A	219 902	-60 834	743 000	alf Cen A
4	1	alf Cen	*	alf Cen B	219 896	-60 838	743 000	alf Cen B
5	2	Barnard's Star	LM	Barnard's Star	269 449	4 739	546 976	Barnard's Star
6	3	Luhman 16	BD	Luhman 16 A	162 309	-53 318	501 557	Luhman 16A
7	3	Luhman 16	BD	Luhman 16 B	162 308	-53 318	501 557	Luhman 16B
9	5	Wolf 359	LM	Wolf 359	164 103	7 003	415 179	Wolf 359
10	6	HD 95735	LM	HD 95735	165 831	35 949	392 753	HD 95735
11	6	HD 95735	Planet	Lalande 21185 b	165 831	35 949	392 753	
12	7	alf CMa	*	alf CMa A	101 287	-16 716	379 210	alf CMa A
13	7	alf CMa	WD	alf CMa B	101 287	-16 721	374 490	alf CMa B
14	8	G 272-61	LM	G 272-61 A	24 772	-17 948	367 712	G 272-61A
15	8	G 272-61	LM	G 272-61 B	24 772	-17 948	373 844	G 272-61B
16	9	V1216 Sgr	LM	Ross 154	282 459	-23 837	336 027	Ross 154
17	10	HH And	LM	Ross 248	355 480	44 170	316 481	Ross 248

Pour manipuler plus facilement les données, un chercheur utilise un système de base de données relationnelle, dans lequel il crée le schéma relationnel de la table Gaia :

```
Gaia(N_Obj : Int, N_Syst : Int, Nom_Syst : String, #Type : String ,
   Nom_Obj : String,   Asc_Droite : Real, Decl : Real, Parallaxe : Real,
   Nom_SIMB : String)
```

Partie A: Schéma relationnel

Justifier pourquoi l'attribut N_Obj a été choisi comme clé primaire de la table Gaia.
 Le type de l'objet (attribut Type) n'est pas une information directement compréhensible et le chercheur décide de créer une nouvelle table appelée Typologie.
 La clé primaire est Type.

Soit la table Typologie contenant les informations suivantes :

Type	Libelle_Type			
LM	Etoile de faible masse			
Planet	Planète			
*	Etoile			
BD	Naine Brune			
WD	Naine Blanche			

- 2. Proposer le schéma relationnel de la table Typologie.
- **3**. Parmi les 4 commandes suivantes, une seule ne provoque pas d'erreur. Pour chacune de ces commandes, indiquer si elle provoque une erreur ou pas. En cas d'erreur, expliquer la cause de cette erreur.
 - a) .

```
INSERT INTO Gaia VALUES ('8', 4, 'WISEA J085510', 'Naine Brune', '
WISEA J085510', 133.781,-7.244, 439.000, 'WISEA J085510');
```

b) .

```
INSERT INTO Gaia VALUES (9, 4, 'WISEA J085510', 'Naine Brune', '
WISEA J085510', 133.781,-7.244, 439.000, 'WISEA J085510');
```

c) .

```
INSERT INTO Gaia VALUES (8, 4, 'WISEA J085510', 'Naine Brune', 'WISEA J085510', 133.781,-7.244, 439.000, 'WISEA J085510');
```

d) .

```
INSERT INTO Gaia VALUES (8, 4, 'WISEA J085510', 'Naine Brune', '
WISEA J085510', '133.781',-7.244, 439.000, 'WISEA J085510');
```

4. Expliquer pourquoi le code SQL suivant ne fonctionne pas :

```
INSERT INTO Typologie VALUES (BD, Trou Noir);
```

5. Indiquer le résultat de la requête suivante exécutée sur l'extrait présenté :

```
SELECT N_Obj, Parallaxe
FROM Gaia
WHERE Type = Planet;
```

6. Écrire la requête qui permet de récupérer le nom du système, le nom de l'objet et le libellé du type pour des objets ayant une parallaxe supérieure à 400 000 et étant des 'Etoile de faible masse'. La requête proposée utilisera obligatoirement une jointure.

EXERCICE 2 7 points Thème: Probabilités

Une urne contient des jetons blancs et noirs tous indiscernables au toucher.

Une partie consiste à prélever au hasard successivement et avec remise deux jetons de cette urne. On établit la règle de jeu suivante:

- un joueur perd 9 euros si les deux jetons tirés sont de couleur blanche ;
- un joueur perd 1 euro si les deux jetons tirés sont de couleur noire ;
- un joueur gagne 5 euros si les deux jetons tirés sont de couleurs différentes.
- 1. On considère que l'urne contient 2 jetons noirs et 3 jetons blancs.
 - a) Modéliser la situation à l'aide d'un arbre pondéré.
 - b) Calculer la probabilité de perdre 9 € sur une partie.
- **2**. On considère maintenant que l'urne contient 3 jetons blancs et au moins deux jetons noirs mais on ne connait pas le nombre exact de jetons noirs. On appellera *N* le nombre de jetons noirs.
 - a) Soit *X* la variable aléatoire donnant le gain du jeu pour une partie. Déterminer la loi de probabilité de cette variable aléatoire.
 - b) Résoudre l'inéquation pour *x* réel:

$$-x^2 + 30x - 81 > 0$$

- c) En utilisant le résultat de la question précédente, déterminer le nombre de jetons noirs que l'urne doit contenir afin que ce jeu soit favorable au joueur.
- d) Combien de jetons noirs le joueur doit-il demander afin d'obtenir un gain moyen maximal?
- **3**. On observe 10 joueurs qui tentent leur chance en effectuant une partie de ce jeu, indépendamment les uns des autres. On suppose que 7 jetons noirs ont été placés dans l'urne (avec 3 jetons blancs). Quelle est la probabilité d'avoir au moins 1 joueur gagnant 5 euros?

EXERCICE 3 7 points

Principaux domaines abordés: Probabilités conditionnelles et indépendance. Variables aléatoires.

Lors d'une kermesse, un organisateur de jeux dispose, d'une part, d'une roue comportant quatre cases blanches et huit cases rouges et, d'autre part, d'un sac contenant cinq jetons portant les numéros 1, 2, 3, 4 et 5.

Le jeu consiste à faire tourner la roue, chaque case ayant la même probabilité d'être obtenue, puis à extraire un ou deux jetons du sac selon la règle suivante :

- si la case obtenue par la roue est blanche, alors le joueur extrait un jeton du sac ;
- si la case obtenue par la roue est rouge, alors le joueur extrait successivement et sans remise deux jetons du sac.

Le joueur gagne si le ou les jetons tirés portent tous un numéro impair.

- 1. Un joueur fait une partie et on note *B* l'évènement "la case obtenue est blanche", *R* l'évènement "la case obtenue est rouge" et *G* l'évènement "le joueur gagne la partie".
 - a) Donner la valeur de la probabilité conditionnelle $P_B(G)$.
 - b) On admettra que la probabilité de tirer successivement et sans remise deux jetons impairs est égale à 0,3.

Recopier et compléter l'arbre de probabilité suivant:

- **2**. a) Montrer que P(G) = 0, 4.
 - b) Un joueur gagne la partie.
 Quelle est la probabilité qu'il ait obtenu une case blanche en lançant la roue?
- **3**. Les évènements *B* et *G* sont-ils indépendants ? Justifier.
- **4.** Un même joueur fait dix parties. Les jetons tirés sont remis dans le sac après chaque partie. On note *X* la variable aléatoire égale au nombre de parties gagnées.
 - a) Expliquer pourquoi X suit une loi binomiale et préciser ses paramètres.
 - b) Calculer la probabilité, arrondie à 10^{-3} près, que le joueur gagne exactement trois parties sur les dix parties jouées.
 - c) Calculer $P(X \ge 4)$ arrondie à 10^{-3} près. Donner une interprétation du résultat obtenu.
- **5**. Un joueur fait n parties et on note p_n la probabilité de l'évènement "le joueur gagne au moins une partie".
 - a) Montrer que $p_n = 1 0.6^n$.
 - b) Déterminer la plus petite valeur de l'entier *n* pour laquelle la probabilité de gagner au moins une partie est supérieure ou égale à 0,99.