Adaptive minimax tests for high dimensional covariance matrices with incomplete data

Cristina Butucea

joint work with Rania ZGHEIB

CREST, ENSAE, Université Paris-Saclay

Inverse problems - Heidelberg - 29 October 2016

Overview

Introduction

Problem description

Minimax approach

Bilbiography

Procedure and results

Test statistic

Separation rate

Sketch of proof for lower bounds

Toeplitz matrices

Adaptation

Adaptive procedure

Numerical behavior

Simulation study

1. Introduction

Statistical model

 X_1, \ldots, X_n i.i.d p-dimensional vectors with Gaussian $\mathcal{N}_p(0, \Sigma)$ law, $\Sigma_{ii} = 1$.

We denote by
$$X_k = (X_{k,1}, \dots, X_{k,p})^{\top}$$
, for all $k = 1, \dots, n$.

We observe Y_1, \ldots, Y_n i.i.d p-dimensional vectors such that

$$Y_k = (\varepsilon_{k,1} \cdot X_{k,1}, \dots, \varepsilon_{k,p} \cdot X_{k,p})^{\top}$$
 for all $k = 1, \dots, n$

- $\{\varepsilon_{k,i}\}_{1\leq k\leq n,1\leq i\leq p}$ i.i.d. Bernoulli random variables $\mathcal{B}(a)$; $a\in(0,1)$
- $\{\varepsilon_{k,i}\}_{k,l}$ independent from X_1,\ldots,X_n

 Σ unknown but belongs to an ellipsoid $\mathcal{F}_1(\alpha, L)$, for $\alpha, L > 0$.

We assume that n and $p \to \infty$ and $a \to 0$.

Problem

■ Testing problem:

$$H_0$$
 : $\Sigma = I$

$$H_1 : \Sigma \in \mathcal{F}_1(\alpha, L), \text{ such that } \frac{1}{2p} \|\Sigma - I\|_F^2 \ge \varphi^2$$

where
$$\varphi = \varphi(n,p)$$
 tends to 0 as $n,p \to +\infty$.

Denote by
$$Q(\alpha, L, \varphi) = \left\{ \Sigma : \Sigma \in \mathcal{F}_1(\alpha, L); \frac{1}{2p} \|\Sigma - I\|_F^2 \ge \varphi^2 \right\}$$

Introduction 0000000

Testing problem:

$$H_0$$
 : $\Sigma = I$

$$H_1$$
: $\Sigma \in \mathcal{F}_1(\alpha, L)$, such that $\frac{1}{2p} \|\Sigma - I\|_F^2 \ge \varphi^2$

where $\varphi = \varphi(n, p)$ tends to 0 as $n, p \to +\infty$.

Denote by
$$Q(\alpha,L,\varphi) = \left\{ \Sigma : \Sigma \in \mathcal{F}_1(\alpha,L); \frac{1}{2p} \|\Sigma - I\|_F^2 \geq \varphi^2 \right\}$$

 \blacksquare To make a decision if either H_0 or H_1 is true, we need to construct a test procedure Δ : measurable function with respect to the observations taking values 0 or 1.

Quality of a test procedure and optimality

- \blacksquare For a given test Δ ,
 - ► Type I error probability:

$$\eta(\Delta) := \eta(\Delta, I) = \mathbb{P}_I(\Delta = 1)$$

Maximal type II error probability:

$$\beta(\Delta, \mathcal{F}_1, \varphi) := \sup_{\Sigma \in Q(\alpha, L, \varphi)} \mathbb{P}_{\Sigma}(\Delta = 0)$$

► Total error probability:

$$\gamma(\Delta, \mathcal{F}_1, \varphi) := \eta(\Delta) + \beta(\Delta, \mathcal{F}_1, \varphi)$$

Quality of a test procedure and optimality

- For a given test Δ ,
 - ► Type I error probability:

$$\eta(\Delta) := \eta(\Delta, I) = \mathbb{P}_I(\Delta = 1)$$

Maximal type II error probability:

$$\beta(\Delta, \mathcal{F}_1, \varphi) := \sup_{\Sigma \in Q(\alpha, L, \varphi)} \mathbb{P}_{\Sigma}(\Delta = 0)$$

► Total error probability:

$$\gamma(\Delta, \mathcal{F}_1, \varphi) := \eta(\Delta) + \beta(\Delta, \mathcal{F}_1, \varphi)$$

- Minimax optimality
 - Minimax total error probability:

$$\gamma(\varphi) := \inf_{\Delta} \gamma(\Delta, \mathcal{F}_1, \varphi)$$

where the infimum is taken over all possible tests Δ .

Minimax rate and sharp asymptotic optimality

- $\blacksquare \tilde{\varphi}$ is called minimax separation rate if:
 - ▶ Upper bound: there exists a test procedure Δ^* allowing us to distinguish between the two hypotheses i.e

$$\gamma(\Delta^*, \mathcal{F}_1, \varphi) \to 0$$
 when $\varphi/\tilde{\varphi} \to +\infty$.

▶ Lower bound: there is no test able to distinguish between the two hypotheses i.e

$$\gamma(\varphi) = \inf_{\Delta} \gamma(\Delta, \mathcal{F}_1, \varphi) \to 1 \quad \text{ when } \varphi/\tilde{\varphi} \to 0$$

Minimax rate and sharp asymptotic optimality

- $\blacksquare \tilde{\varphi}$ is called minimax separation rate if:
 - ▶ Upper bound: there exists a test procedure Δ^* allowing us to distinguish between the two hypotheses i.e

$$\gamma(\Delta^*, \mathcal{F}_1, \varphi) \to 0$$
 when $\varphi/\tilde{\varphi} \to +\infty$.

Lower bound: there is no test able to distinguish between the two hypotheses i.e

$$\gamma(\varphi) = \inf_{\Delta} \gamma(\Delta, \mathcal{F}_1, \varphi) \to 1 \quad \text{ when } \varphi/\tilde{\varphi} \to 0$$

- \bullet $\gamma(\varphi)$ has an asymptotic Gaussian shape if, for $\varphi \simeq \tilde{\varphi}$:
 - ▶ there exists a continuous function $u \in]-\infty,0]$ such that:

$$u(\tilde{\varphi})=1 \quad \text{ and } \quad \gamma(\varphi)=\inf_{\Delta}\gamma(\Delta,\mathcal{F}_1,\varphi)=2\Phi(-u(\varphi))+o(1)$$

where Φ is the cumulative distribution function of a standard Gaussian random variable.

Introduction 00000000

Testing the null hypothesis $\Sigma = I$ has been considered first for p fixed.

■ A test based on the likelihood ratio was proposed by Mauchly(1940):

$$LR = \frac{1}{(\det S_n)^{\frac{n}{2}}} \cdot \exp\left(-\frac{n}{2}(tr(S_n - I))\right)$$

where $S_n = (1/n) \sum_{k=1}^n X_k X_k^{\top}$ is the sample covariance matrix.

Testing the null hypothesis $\Sigma = I$ has been considered first for p fixed.

A test based on the likelihood ratio was proposed by Mauchly(1940):

$$LR = \frac{1}{(\det S_n)^{\frac{n}{2}}} \cdot \exp\left(-\frac{n}{2}(tr(S_n - I))\right)$$

where $S_n = (1/n) \sum_{k=1}^n X_k X_k^{\top}$ is the sample covariance matrix.

■ Another test based on the quadratic form was proposed by Nagao(1973):

$$QF = \frac{1}{2}tr(S_n - I)^2.$$

It is shown that $-2\log(LR)$ and nQF converge in law to $\chi^2_{p(p+1)/2}$ under H_0 .

Introduction 00000000

- To cover the case $p \to +\infty$ several modifications of LR and FQ were suggested.
 - Ledoit and Wolf(2002), Srivastava(2005), Chen et al.(2010), Srivastava et al. (2014) introduced new test statistics based on modifications of FQ.
 - ► Srivastava(2006), Bai et al.(2009), Jiang et al.(2012) proposed corrections to the LR.

- To cover the case $p \to +\infty$ several modifications of LR and FQ were suggested.
 - Ledoit and Wolf(2002), Srivastava(2005), Chen et al.(2010), Srivastava et al. (2014) introduced new test statistics based on modifications of FQ.
 - ► Srivastava(2006), Bai et al.(2009), Jiang et al.(2012) proposed corrections to the LR.
- Previous papers show control of the type I error probability. However, Srivastava(2005) and Chen et al.(2010) also studied the test power $\mathbb{P}_{\Sigma}(\Delta=1)$, for an arbitrary fixed Σ under the alternative.

- To cover the case $p \to +\infty$ several modifications of LR and FQ were suggested.
 - Ledoit and Wolf(2002), Srivastava(2005), Chen et al.(2010), Srivastava et al. (2014) introduced new test statistics based on modifications of FQ.
 - ► Srivastava(2006), Bai et al.(2009), Jiang et al.(2012) proposed corrections to the LR.
- Previous papers show control of the type I error probability. However, Srivastava(2005) and Chen et al.(2010) also studied the test power $\mathbb{P}_{\Sigma}(\Delta=1)$, for an arbitrary fixed Σ under the alternative.
- Cai and Ma(2013) are first to give minimax separation rates:
 - H_1 : $\Sigma > 0$ such that $\|\Sigma I\|_F^2 \ge \varphi^2$
 - $\qquad \qquad \textbf{U-statistic of order 2:} \ \ U_n = \frac{1}{n(n-1)} \sum_{\substack{l,k=1\\i\neq j}}^n (X_l^T X_k)^2 \frac{2}{n} \sum_{i=1}^n X_i^T X_i + 1$
 - $\qquad \qquad \mathbf{Minimax} \ \, \mathbf{separation} \ \, \mathbf{rate:} \ \, \tilde{\varphi} = b \sqrt{p/n}. \\$

- B. and Zgheib (2016, EJS)
 - ▶ H_1 : $\Sigma > 0$ such that $\Sigma \in \mathcal{F}_1(\alpha, L)$; $\|\Sigma I\|_F^2 \ge \varphi^2$
 - U-statistic of order 2:

$$\begin{split} \widehat{\mathcal{D}}_n &= \frac{1}{n(n-1)p} \sum_{\substack{l,k=1\\l\neq k}}^n \sum_{\substack{i,j=1\\i< j}}^p w_{ij}^* X_{k,i} X_{k,j} X_{l,i} X_{l,j}, \text{ with optimal weights } w_{ij}^*. \end{split}$$

 \blacktriangleright Minimax sharp separation rate: $\tilde{\varphi}_{n,p}=(C^{1/2}(\alpha,L)n\sqrt{p})^{-\frac{2\alpha}{4\alpha+1}}$.

- B. and Zgheib (2016, EJS)
 - ▶ H_1 : $\Sigma > 0$ such that $\Sigma \in \mathcal{F}_1(\alpha, L)$; $\|\Sigma I\|_F^2 \ge \varphi^2$
 - U-statistic of order 2:

$$\begin{split} \widehat{\mathcal{D}}_n &= \frac{1}{n(n-1)p} \sum_{\substack{l,k=1\\l\neq k}}^n \sum_{\substack{i,j=1\\i< j}}^p w_{ij}^* X_{k,i} X_{k,j} X_{l,i} X_{l,j}, \text{ with optimal weights } w_{ij}^*. \end{split}$$

- Minimax sharp separation rate: $\tilde{\varphi}_{n,p}=(C^{1/2}(\alpha,L)n,\sqrt{p})^{-\frac{2\alpha}{4\alpha+1}}$.
- lacksquare B. Zgheib (2016, JMVA) If moreover Σ is Toeplitz,
 - Minimax sharp separation rate: $\varphi_{n,p} = (C^{1/2}(\alpha,L)np)^{-\frac{2\alpha}{4\alpha+1}}$.

- B. and Zgheib (2016, EJS)
 - ▶ H_1 : $\Sigma > 0$ such that $\Sigma \in \mathcal{F}_1(\alpha, L)$; $\|\Sigma I\|_F^2 \ge \varphi^2$
 - U-statistic of order 2:

$$\begin{split} \widehat{\mathcal{D}}_n &= \frac{1}{n(n-1)p} \sum_{\substack{l,k=1\\l\neq k}}^n \sum_{\substack{i,j=1\\i< j}}^p w_{ij}^* X_{k,i} X_{k,j} X_{l,i} X_{l,j}, \text{ with optimal weights } w_{ij}^*. \end{split}$$

- Minimax sharp separation rate: $\tilde{\varphi}_{n,p}=(C^{1/2}(\alpha,L)n_{\gamma}/p)^{-\frac{2\alpha}{4\alpha+1}}$.
- B. Zgheib (2016, JMVA) If moreover Σ is Toeplitz,
 - Minimax sharp separation rate: $\varphi_{n,p} = (C^{1/2}(\alpha,L)np)^{-\frac{2\alpha}{4\alpha+1}}$.
- Lounici (2014, Bernoulli): Estimation of the covariance matrix with missing data;

- B. and Zgheib (2016, EJS)
 - ▶ H_1 : $\Sigma > 0$ such that $\Sigma \in \mathcal{F}_1(\alpha, L)$; $\|\Sigma I\|_F^2 \ge \varphi^2$
 - ▶ U-statistic of order 2: $\widehat{\mathcal{D}}_n = \frac{1}{n(n-1)p} \sum_{\substack{l,k=1\\l\neq k}}^n \sum_{\substack{i,j=1\\i < i}}^p w_{ij}^* X_{k,i} X_{k,j} X_{l,i} X_{l,j}, \text{ with optimal }$ weights w_{ij}^* .
 - Minimax sharp separation rate: $\tilde{\varphi}_{n,p}=(C^{1/2}(\alpha,L)n_{\gamma}/p)^{-\frac{2\alpha}{4\alpha+1}}$.
- lacksquare B. Zgheib (2016, JMVA) If moreover Σ is Toeplitz,
 - Minimax sharp separation rate: $\varphi_{n,p} = (C^{1/2}(\alpha,L)np)^{-\frac{2\alpha}{4\alpha+1}}$.
- Lounici (2014, Bernoulli): Estimation of the covariance matrix with missing data;
- Jurczak, Rohde (2015): Asymptotic distribution of the spectrum of the empirical covariance matrix with missing data.

2. Procedure and results

Test statistic

■ Ellipsoid: for $\alpha, L > 0$,

$$\begin{array}{lcl} \mathcal{F}_1(\alpha,L) & = & \left\{ \Sigma > 0 \; ; \frac{1}{p} \sum_{1 \leq i < j \leq p} \sigma_{ij}^2 |i-j|^{2\alpha} \leq L \; \text{for all} \; p \right. \\ \\ & \text{and} \; \sigma_{ii} = 1 \; \text{for all} \; i = 1, \ldots, p \right\} \end{array}$$

Test statistic

■ Ellipsoid: for $\alpha, L > 0$,

$$\begin{array}{rcl} \mathcal{F}_1(\alpha,L) & = & \left\{ \Sigma > 0 \right. ; \frac{1}{p} \sum_{1 \leq i < j \leq p} \sigma_{ij}^2 |i-j|^{2\alpha} \leq L \text{ for all } p \\ \\ & \text{and } \sigma_{ii} = 1 \text{ for all } i = 1, \ldots, p \right\} \end{array}$$

Test statistic with constant weights:

$$\widehat{\mathcal{D}}_{n,p,m} = \frac{1}{n(n-1)p} \cdot \frac{1}{\sqrt{2m}} \sum_{\substack{1 \leq k \neq l \leq n \\ |i-j| < m}} Y_{k,i} Y_{k,j} Y_{l,i} Y_{l,j}$$

where $m \asymp \varphi^{-\frac{1}{\alpha}}$ is a large enough integer.

Test statistic

■ Ellipsoid: for $\alpha, L > 0$,

$$\mathcal{F}_1(\alpha,L) = \left\{ \Sigma > 0 ; \frac{1}{p} \sum_{1 \le i < j \le p} \sigma_{ij}^2 |i-j|^{2\alpha} \le L \text{ for all } p \right.$$
 and $\sigma_{ii} = 1 \text{ for all } i = 1, \dots, p \right\}$

Test statistic with constant weights:

$$\widehat{\mathcal{D}}_{n,p,m} = \frac{1}{n(n-1)p} \cdot \frac{1}{\sqrt{2m}} \sum_{\substack{1 \leq k \neq l \leq n \\ |i-j| < m}} Y_{k,i} Y_{k,j} Y_{l,i} Y_{l,j}$$

where $m \asymp \varphi^{-\frac{1}{\alpha}}$ is a large enough integer.

■ Results are obtained as $a \to 0$ such that $a^2 n \sqrt{p} \to +\infty$. Note that $a \to 0$ turns the problem into an ill-posed inverse problem.

Under the null hypothesis:

$$\mathbb{E}_I(\widehat{\mathcal{D}}_n) = 0; \, \mathsf{Var}_I(\widehat{\mathcal{D}}_n) = \frac{a^4}{n(n-1)p} \quad \mathsf{and} \quad \frac{n\sqrt{p}}{a^2} \,\, \widehat{\mathcal{D}}_{n,p,m} \overset{d}{\to} \mathcal{N}(0,1).$$

Test statistic properties

Under the null hypothesis:

$$\mathbb{E}_I(\widehat{\mathcal{D}}_n) = 0; \, \mathsf{Var}_I(\widehat{\mathcal{D}}_n) = \frac{a^4}{n(n-1)p} \quad \text{and} \quad \frac{n\sqrt{p}}{a^2} \,\, \widehat{\mathcal{D}}_{n,p,m} \overset{d}{\to} \mathcal{N}(0,1).$$

■ Under the alternative hypothesis, for all $\Sigma \in Q(\alpha,L,\varphi)$, if $\alpha>1/2$ and $m\to\infty,m/p\to 0$ we have:

$$\mathbb{E}_{\Sigma}(\widehat{\mathcal{D}}_n) = \frac{a^4}{p\sqrt{2m}} \sum_{i < j} \sigma_{ij}^2 \text{ and } \mathsf{Var}_{\Sigma}(\widehat{\mathcal{D}}_n) = \frac{T_1}{n(n-1)p} + \frac{T_2}{np}$$

where,

$$T_{1} \leq a^{4}(1+o(1)) + \mathbb{E}_{\Sigma}(\widehat{\mathcal{D}}_{n,p,m}) \cdot O(a^{2}m\sqrt{m})$$

$$T_{2} \leq \mathbb{E}_{\Sigma}(\widehat{\mathcal{D}}_{n,p,m}) \cdot O(a^{2}\sqrt{m}) + \sqrt{p} \cdot \left(\mathbb{E}_{\Sigma}^{3/2}(\widehat{\mathcal{D}}_{n,p,m}) \cdot O(a^{2}m^{3/4}) + \mathbb{E}_{\Sigma}(\widehat{\mathcal{D}}_{n,p,m}) \cdot o(a^{4})\right)$$

Upper bound theorem

The test procedure $\Delta^* := \Delta^*(t) = \mathbb{1}(\widehat{\mathcal{D}}_{n.v.m} > t), \quad t > 0$ is s.t.:

Type I error probability: if $a^2 n \sqrt{p} \cdot t \to +\infty$ then $\eta(\Delta^*) \to 0$.

Type II error probability : if $\alpha > 1/2$ and if

$$m \to \infty$$
, $m/p \to 0$ and $a^2 n \sqrt{p} \varphi^{2 + \frac{1}{2\alpha}} \to +\infty$

then, uniformly over t such that $t \leq c \cdot a^4 \varphi^{2 + \frac{1}{2\alpha}}$, for some constant c small enough, we have

$$\beta(\Delta^*(t), \mathcal{F}_1, \varphi) \to 0$$

If all previous assumptions are satisfied, then $\Delta^*(t)$ is asymptotically minimax consistent:

$$\gamma(\Delta^*(t), \mathcal{F}_1, \varphi) \to 0$$

Lower bound theorem

Assume that, $\alpha \geq 1/2$. If $m \to \infty$, $m/p \to 0$,

$$a^2 n \to \infty \,, \quad (a^2 n)^{4\alpha - 1}/p \to \infty \quad \text{ and } \quad a^2 n \sqrt{p} \, \varphi^{2 + \frac{1}{2\alpha}} \to 0$$

then

$$\gamma(\varphi) = \inf_{\Delta} \gamma(\Delta, \mathcal{F}_1, \varphi) \to 1$$

where the infimum is taken over all test statistics Δ .

Lower bound theorem

Assume that, $\alpha \geq 1/2$. If $m \to \infty$, $m/p \to 0$,

$$a^2n o \infty$$
, $(a^2n)^{4\alpha-1}/p o \infty$ and $a^2n\sqrt{p}\,\varphi^{2+\frac{1}{2\alpha}} o 0$

then

$$\gamma(\varphi) = \inf_{\Delta} \gamma(\Delta, \mathcal{F}_1, \varphi) \to 1$$

where the infimum is taken over all test statistics Λ .

As a consequence of the upper and lower bound theorems, the minimax separation rate is:

$$\tilde{\varphi} \asymp \left(a^2 n \sqrt{p}\right)^{-\frac{2\alpha}{(4\alpha+1)}}$$

■ Reduce the set $Q(\alpha, L, \varphi)$

$$Q^* = \{ \Sigma_U : [\Sigma_U]_{ij} = I(i=j) + u_{ij} \sigma I(i \neq j), \ U = [u_{ij}]_{1 \leq i, j \leq p} \in \mathcal{U} \}$$
 where $\sigma = \omega^{1 + \frac{1}{2\alpha}}$, $T \approx \omega^{-\frac{1}{\alpha}}$

$$\mathcal{U} = \{U = [u_{ij}]_{i,j} : u_{ii} = 0, \forall i \text{ and } u_{ij} = u_{ji} = \pm 1 \cdot I(1 \le |i - j| < T)\}.$$

If $\alpha > 1/2$, Σ_U is positive definite, for all $U \in \mathcal{U}$.

 \mathbb{P}_U the probability measure when $X_1, \ldots, X_n \overset{i.i.d}{\sim} \mathcal{N}_n(0, \Sigma_U)$.

■ The average measure over Q^* :

$$\mathbb{P}_{\pi} = \frac{1}{2^{(p-\frac{T}{2})(T-1)}} \sum_{U \in \mathcal{U}} \mathbb{P}_{U}$$

 \mathbb{P}_I the probability measure when $X_1, \ldots, X_n \overset{i.i.d}{\sim} \mathcal{N}_n(0, I)$

■ Minimax total error probability

$$\gamma(\varphi) \geq \inf_{\underline{\Delta}} \{ \mathbb{P}_I(\Delta = 1) + \mathbb{P}_{\pi}(\Delta = 0) \} = \underbrace{1 - \frac{1}{2} \| \mathbb{P}_I - \mathbb{P}_{\pi} \|_1}_{\gamma_2}$$

Proof of lower bounds

Minimax total error probability

$$\gamma(\varphi) \geq \inf_{\underline{\Delta}} \{ \mathbb{P}_I(\Delta = 1) + \mathbb{P}_{\pi}(\Delta = 0) \} = \underbrace{1 - \frac{1}{2} \| \mathbb{P}_I - \mathbb{P}_{\pi} \|_1}_{\gamma_2}$$

$$\begin{array}{l} \bullet \quad u_n := n \sqrt{p} b(\varphi) \to 0 \\ \\ \gamma(\varphi) \geq \gamma_2 \quad \text{ and show that } \quad \|\mathbb{P}_I - \mathbb{P}_\pi\|_1^2 \leq -\frac{1}{2} \mathbb{E}_I \log \left(\frac{d\mathbb{P}_\pi}{d\mathbb{P}_I}\right) \longrightarrow 0 \end{array}$$

Proof of lower bounds

Minimax total error probability

$$\gamma(\varphi) \geq \inf_{\underline{\Delta}} \{ \mathbb{P}_I(\Delta = 1) + \mathbb{P}_{\pi}(\Delta = 0) \} = \underbrace{1 - \frac{1}{2} \| \mathbb{P}_I - \mathbb{P}_{\pi} \|_1}_{\gamma_2}$$

$$\gamma(\varphi) \geq \gamma_2$$
 and show that $\|\mathbb{P}_I - \mathbb{P}_{\pi}\|_1^2 \leq -\frac{1}{2}\mathbb{E}_I \log\left(\frac{d\mathbb{P}_{\pi}}{d\mathbb{P}_I}\right) \longrightarrow 0$

 $\triangleright u_n \approx 1$

$$\gamma(\varphi) \ge \gamma_1 =: \inf_{\Delta} \gamma(\Delta, \mathbb{P}_I, \mathbb{P}_{\pi}) \ge 2\Phi(-n\sqrt{p} \frac{b(\varphi)}{2}) + o(1)$$

(Ingster and Suslina(2003)) if we show that

$$L_{n,p}:=\lograc{d\mathbb{P}_{\pi}}{d\mathbb{P}_{I}}(X_{1},...,X_{n})=u_{n}Z_{n}-rac{u_{n}^{2}}{2}+\xi \quad ext{ in } \mathbb{P}_{I} ext{-probability}$$

where
$$u_n = n\sqrt{p}b(\varphi)$$
, $Z_n \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$ and $\xi \stackrel{\mathbb{P}_I}{\longrightarrow} 0$.

■ Conditionally on the random variables ε_k :

$$\widetilde{X}_k := Y_k / \varepsilon_k \sim \mathcal{N}(0, \Sigma_U \star (\varepsilon_k \varepsilon_k^\top))$$

 $are\ independent,\ degenerate\ Gaussian.$

The Kullback-Leibler distance writes

$$-\mathbb{E}_{I}\log\left(\frac{d\mathbb{P}_{\pi}}{d\mathbb{P}_{I}}\right) = -\mathbb{E}_{\varepsilon}\mathbb{E}_{I}^{Y/\varepsilon}\log\frac{d\mathbb{P}_{\pi}^{Y/\varepsilon}}{d\mathbb{P}_{I}^{Y/\varepsilon}}.$$

■ Conditionally on the random variables ε_k :

$$\widetilde{X}_k := Y_k / \varepsilon_k \sim \mathcal{N}(0, \Sigma_U \star (\varepsilon_k \varepsilon_k^\top))$$

are independent, degenerate Gaussian.

The Kullback-Leibler distance writes

$$-\mathbb{E}_{I}\log\left(\frac{d\mathbb{P}_{\pi}}{d\mathbb{P}_{I}}\right) = -\mathbb{E}_{\varepsilon}\mathbb{E}_{I}^{Y/\varepsilon}\log\frac{d\mathbb{P}_{\pi}^{Y/\varepsilon}}{d\mathbb{P}_{I}^{Y/\varepsilon}}.$$

Moreover.

$$L_{n,p} := \log \frac{d\mathbb{P}_{\pi}^{Y/\varepsilon}}{d\mathbb{P}_{I}^{Y/\varepsilon}} = \log \mathbb{E}_{U} \frac{d\mathbb{P}_{\Sigma_{U}}^{Y/\varepsilon}}{d\mathbb{P}_{I}^{Y/\varepsilon}}$$

$$= \log \mathbb{E}_{U} \exp \left(-\frac{1}{2} \sum_{k=1}^{n} (\widetilde{X}_{k}^{\top} ((\Sigma_{U}^{\varepsilon_{k}})^{-1} - I^{\varepsilon_{k}}) \widetilde{X}_{k} + \log \det(\Sigma_{U}^{\varepsilon_{k}}))\right).$$

■ Conditionally on the random variables ε_k :

$$\widetilde{X}_k := Y_k / \varepsilon_k \sim \mathcal{N}(0, \Sigma_U \star (\varepsilon_k \varepsilon_k^\top))$$

are independent, degenerate Gaussian.

The Kullback-Leibler distance writes

$$-\mathbb{E}_{I}\log\left(\frac{d\mathbb{P}_{\pi}}{d\mathbb{P}_{I}}\right) = -\mathbb{E}_{\varepsilon}\mathbb{E}_{I}^{Y/\varepsilon}\log\frac{d\mathbb{P}_{\pi}^{Y/\varepsilon}}{d\mathbb{P}_{I}^{Y/\varepsilon}}.$$

Moreover.

$$L_{n,p} := \log \frac{d\mathbb{P}_{\pi}^{Y/\varepsilon}}{d\mathbb{P}_{I}^{Y/\varepsilon}} = \log \mathbb{E}_{U} \frac{d\mathbb{P}_{\Sigma_{U}}^{Y/\varepsilon}}{d\mathbb{P}_{I}^{Y/\varepsilon}}$$

$$= \log \mathbb{E}_{U} \exp \left(-\frac{1}{2} \sum_{k=1}^{n} (\widetilde{X}_{k}^{\top} ((\Sigma_{U}^{\varepsilon_{k}})^{-1} - I^{\varepsilon_{k}}) \widetilde{X}_{k} + \log \det(\Sigma_{U}^{\varepsilon_{k}}))\right).$$

Note that

$$\Sigma_{II}^{\varepsilon_k} = I^{\varepsilon_k} + \Delta_{II}^{\varepsilon_k}, \text{ with } \|\Delta_{II}^{\varepsilon_k}\| \le 2T\sigma = O(\varphi^{1-\frac{1}{2\alpha}}).$$

We use

$$L_1(\Delta_U^{\varepsilon_k}) \le -(\Sigma_U^{\varepsilon_k})^{-1} - I^{\varepsilon_k} \le U_1(\Delta_U^{\varepsilon_k})$$

$$L_2(\Delta_U^{\varepsilon_k}) \le -\log \det(\Sigma_U^{\varepsilon_k}) \le U_2(\Delta_U^{\varepsilon_k})$$

for φ small enough, such that $\|\Delta_U^{\varepsilon_k}\| \leq 1/2$ where

$$U_1(\Delta) = \Delta - \Delta^2 + \Delta^3,$$
 $L_1(\Delta) = U_1(\Delta) - 2\Delta^4$ $L_2(\Delta) = \frac{1}{2}tr(\Delta^2) - \frac{1}{3}tr(\Delta^3),$ $U_2(\Delta) = L_2(\Delta) + \frac{1}{2}tr(\Delta^4).$

We bound $L_{n,p}$ from above and from below by terms that tend to 0.

In particular,

$$\log \mathbb{E}_{U} \exp \left(\sum_{i < j: 1 < j - i < T} \sigma u_{ij} \sum_{k=1}^{n} \varepsilon_{k,i} \varepsilon_{k,j} X_{k,i} X_{k,j} \right)$$

$$= \sum_{i < j: 1 < j - i < T} \log \cosh \left(\sigma \sum_{k=1}^{n} \varepsilon_{k,i} \varepsilon_{k,j} X_{k,i} X_{k,j} \right)$$

and also use that, for all real number u,

$$\frac{u^2}{2} - \frac{u^4}{12} \le \log \cosh(u) \le \frac{u^2}{2}.$$

Moreover, u_{ij} , $u_{ij}u_{jk}$, $u_{ij}u_{jk}u_{kl}$ are i.i.d. Rademacher distributed for all $i \neq j \neq k \neq l \neq i$.

Toeplitz covariance matrices

 $\blacksquare \ X_1,\dots,X_n \overset{i.i.d}{\sim} \mathcal{N}_p(0,\Sigma)$, with Σ Toeplitz and belongs to

$$\mathcal{T}(\alpha,L)=\{\Sigma>0, \Sigma \text{ is Toeplitz }; \sum_{j\geq 1}\sigma_j^2j^{2\alpha}\leq L \text{ and } \sigma_0=1\},\, \alpha>0,\, L>0.$$

Alternative hypothesis

$$H_1: \Sigma \in \mathcal{T}(lpha,L)$$
 such that $\sum_{j\geq 1} \sigma_j^2 \geq \psi^2$

■ Test statistic: for m large such that $m \asymp \psi^{-\frac{1}{\alpha}}$

$$\widehat{\mathcal{A}}_n = \frac{1}{n(n-1)(p-m)^2} \cdot \frac{1}{\sqrt{2m}} \sum_{1 \le k \ne l \le n} \sum_{j=1}^m \sum_{m+1 \le i_1, i_2 \le p} Y_{k,i_1} Y_{k,i_1-j} Y_{l,i_2} Y_{l,i_2-j}$$

■ Test procedure

$$\chi^* := \chi^*(t) = \mathbb{1}(\widehat{A}_n > t), \quad t > 0$$

Toeplitz matrices v.s non-Toeplitz matrices

Σ	Toeplitz	non-Toeplitz
Minimax separation rate	$\left(a^2 \cdot np\right)^{-\frac{2\alpha}{4\alpha+1}}$	$\left(a^2 \cdot n\sqrt{p}\right)^{-\frac{2\alpha}{4\alpha+1}}$
Upper bound(UB)	$\alpha > 1/4,$ $a^2 np\psi^{2+\frac{1}{2\alpha}} \to +\infty$	$\alpha > 1/2,$ $a^2 n \sqrt{p} \varphi^{2 + \frac{1}{2\alpha}} \to +\infty$
Exact UB: $a = 1$	$\alpha > 1/4$, $np\psi^{2+\frac{1}{2\alpha}} \approx 1$	$\alpha > 1/2$, $n\sqrt{p}\varphi^{2+\frac{1}{2\alpha}} \approx 1$
Lower bound(LB)	$lpha>1/2,\ a^2np o\infty$ and $a^2np\psi^{2+\frac{1}{2lpha}} o0$	$lpha>1/2,$ $(a^2n)^{4lpha-1}/p o\infty$ and $a^2n\sqrt{p}arphi^{2+rac{1}{2lpha}} o0$
Exact LB: $a=1$	$\alpha > 1$, $np\psi^{2+\frac{1}{2\alpha}} \approx 1$	$lpha>1,\; nparphi^4 ightarrow 0$ and $n\sqrt{p}arphi^{2+rac{1}{2lpha}}\; symp 1$

3. Adaptation

Adaptive tests

 \blacksquare Assume that α is unknown and belongs to an interval A.

$$H_0: \Sigma = I \text{ vs. } H_1: \Sigma \in \bigcup_{\alpha \in A} \left\{ \mathcal{F}_1(\alpha,1) \ ; \ \frac{1}{2p} \sum_{i < j} \sigma_{ij}^2 \geq \left(\mathcal{C} \Phi_\alpha \right)^2 \right\}$$

where C>0 is some constant and $\Phi_{\alpha}=(\rho_{n,p}/a^2n\sqrt{p})^{\frac{2\alpha}{4\alpha+1}}$

Adaptive tests

lacktriangle Assume that lpha is unknown and belongs to an interval A.

$$H_0: \Sigma = I \text{ vs. } H_1: \Sigma \in \bigcup_{\alpha \in A} \left\{ \mathcal{F}_1(\alpha, 1) \; ; \; \frac{1}{2p} \sum_{i < j} \sigma_{ij}^2 \ge (\mathcal{C}\Phi_{\alpha})^2 \right\}$$

where C>0 is some constant and $\Phi_{\alpha}=(\rho_{n,p}/a^2n\sqrt{p})^{\frac{2\alpha}{4\alpha+1}}$

■ The goal is to construct a test procedure Δ_{ad} free of α and find the loss $\rho_{n,p}$ and the constant \mathcal{C}_0 such that:

$$\eta(\Delta_{ad}) + \sup_{\alpha \in A} \beta(\Delta_{ad}, \mathcal{F}_1(\alpha, 1), \mathcal{C}\Phi_\alpha) \to 0 \quad \text{when } \mathcal{C} > \mathcal{C}_0$$

Adaptive test procedure

$$\blacksquare \ A:=[\alpha_*,\alpha_{n,p}^*]\subset]1/2,+\infty[\text{, with }\alpha_{n,p}^*\to+\infty \text{ and }\alpha_{n,p}^*=o(\ln(a^2n\sqrt{p}))$$

Adaptive test procedure

 $A := [\alpha_*, \alpha_{n,n}^*] \subset]1/2, +\infty[$, with $\alpha_{n,n}^* \to +\infty$ and $\alpha_{n,n}^* = o(\ln(a^2 n \sqrt{p}))$

Adaptation •00

■ For each $\alpha \in [\alpha_*, \alpha_{n,p}^*]$, there exists $l \in \mathbb{N}^*$ $(m=2^l)$ such that

$$2^{l-1} \leq (\Phi_\alpha)^{-\frac{1}{\alpha}} < 2^l, \quad \text{it suffices to take } l \sim \frac{\frac{2}{4\alpha+1} \ln(a^2 n \sqrt{p})}{\ln(2)}$$

 $L_*.L^* \in \mathbb{N}^*$ such that

$$L_* = \left(\frac{2}{(4\alpha_{n,p}^* + 1)\ln 2}\right) \ln(a^2 n \sqrt{p}) \quad \text{and} \quad L^* = \left(\frac{2}{(4\alpha_* + 1)\ln 2}\right) \ln(a^2 n \sqrt{p})$$

$$l \in \{L_*, \dots, L^*\}:$$

$$\Delta_{2^l}(t_l) = \mathbb{1}(\widehat{\mathcal{D}}_{n,p,2^l} > t_l), \quad t_l > 0.$$

Adaptive test procedure

 $A := [\alpha_*, \alpha_{n,n}^*] \subset]1/2, +\infty[$, with $\alpha_{n,n}^* \to +\infty$ and $\alpha_{n,n}^* = o(\ln(a^2 n \sqrt{p}))$

Adaptation •00

■ For each $\alpha \in [\alpha_*, \alpha_{n,p}^*]$, there exists $l \in \mathbb{N}^*$ $(m=2^l)$ such that

$$2^{l-1} \leq (\Phi_\alpha)^{-\frac{1}{\alpha}} < 2^l, \quad \text{it suffices to take } l \sim \frac{\frac{2}{4\alpha+1} \ln(a^2 n \sqrt{p})}{\ln(2)}$$

 $L_*, L^* \in \mathbb{N}^*$ such that

$$L_* = \left(\frac{2}{(4\alpha_{n,p}^* + 1)\ln 2}\right) \ln(a^2 n \sqrt{p}) \quad \text{and} \quad L^* = \left(\frac{2}{(4\alpha_* + 1)\ln 2}\right) \ln(a^2 n \sqrt{p})$$

$$l \in \{L_*, \dots, L^*\}:$$

$$\Delta_{2^l}(t_l) = \mathbb{1}(\widehat{\mathcal{D}}_{n,p,2^l} > t_l), \quad t_l > 0.$$

Adaptive test

$$\Delta_{ad} = \max_{L_* \le l \le L^*} \Delta_{2^l}(t_l)$$

Adaptivity results

 $\alpha \in A$

non-Toeplitz

Toeplitz

Adaptation 0.00

$$\begin{split} t_l &= a^2 \frac{\sqrt{\mathcal{C}^* \ln l}}{n \sqrt{p}} \\ \rho_{n,p} &= \sqrt{\ln \ln (a^2 n \sqrt{p})} \\ \text{if } \mathcal{C}^* &> 4 \text{ then } \eta(\Delta_{ad}) \to 0 \\ \text{if } \mathcal{C}^2 &> 1 + 4 \sqrt{\mathcal{C}^*} \text{ and if } \\ a^2 n \sqrt{p} \to +\infty \,, \quad 2^{L^*}/p \to 0 \\ \text{and } \ln(a^2 n \sqrt{p})/n \to 0 \text{ then } \end{split}$$

 $\sup \beta(\Delta_{ad}, \mathcal{F}_1(\alpha, 1), \mathcal{C}\Phi_{\alpha}) \to 0$

$$t_l = a^2 \frac{\sqrt{\mathcal{C}^* \ln l}}{np}$$

$$\rho_{n,p} = \sqrt{\ln \ln(a^2 np)}$$
if $\mathcal{C}^* > 4$ then $\eta(\chi_{ad}) \to 0$
if $\mathcal{C}^2 > 1 + 4\sqrt{\mathcal{C}^*}$ and if
$$a^2 np \to +\infty, \quad 2^{L^*}/p \to 0$$
and $\ln(a^2 np)/n \to 0$ then
$$\sup_{\alpha \in A} \beta(\Delta_{ad}, \mathcal{F}_1(\alpha, 1), \mathcal{C}\Psi_\alpha) \to 0$$

4. Numerical behavior

Adaptation 000

Simulation

$$\mathsf{Example}\, \mathbf{1} : \Sigma(M) = [\sigma_{ij}(M)]_{1 \leq i,j \leq p} \ ; \ \sigma_{ij}(M) = \mathbb{1}_{(i=j)} + \frac{u_{ij} \cdot |i-j|^{-2}}{M} \cdot \mathbb{1}_{(i \neq j)}$$

Figure : Distribution of $D(M)=n\sqrt{p}\widehat{\mathcal{D}}_n$, when $\Sigma=\Sigma(M)$ and $\Sigma(0)=I$, for n=50and p = 80, from 1000 repetitions

$$\varphi^2(M) = (\sum_{i \neq j} \sigma_{ij}^4(M))/2p$$

Figure : Power curves of the Δ -test as function of $\varphi(M)$ for n=30 and $p \in \{30, 70, 130\}$

Example 2 :
$$\Sigma(\rho) = [\rho I_{\{|i-j|=1\}}]_{1 \leq i,j \leq p}$$

Figure : Power curves of the BZ-test, Δ -test and CM-test as function of $\varphi(\rho)$ for MA(1) Gaussian processes

Simulation

Example 3 :
$$\Sigma(\rho) = [\rho^{|i-j|}]_{1 \leq i,j \leq p}$$

Figure : Power curves of the BZ-test, Δ -test and CM-test as functions of $\varphi(\rho)$, for AR(1) Gaussian processes

Example 4:
$$\Sigma(M) = [\sigma_{ij}(M)]_{1 \le i,j \le p}$$
; $\sigma_{ij}(M) = \mathbb{1}_{(i=j)} + \frac{|i-j|^{-2}}{M} \cdot \mathbb{1}_{(i \ne j)}$

Figure: Power curves of the test based on the test statistic with constant weights in presence of missing data as function of $\varphi(M)$