LECTURE 4 MIRROR SYMMETRY

LECTURE: PROFESSOR BERND SIEBERT NOTES: JACKSON VAN DYKE

Recall we have

$$X_{\psi} \xrightarrow{/G} \bar{Y}_{\psi}$$

where $G = (\mathbb{Z}/5\mathbb{Z})^3$. Recall last time we discussed:

- (1) Vanishing cycle T^3 , $\beta_0 = \in H_3(Y_{\psi}, \mathbb{Z})$,
- (2) Holomorphic 3-form,
- (3) Normalization,
- (4) Further periods, and
- (5) Canonical coordinate/mirror map.

1. Holomorphic 3-form

We will construct the holomorphic 3-form as the residue of a meromorphic/rational 4-form on \mathbb{P}^4 with zeros along X_{ψ} :

$$\Omega\left(\psi\right) = 5\psi \operatorname{Res}_{X_{\psi}} \frac{\tilde{\Omega}}{f_{\psi}} \in \Gamma\left(X_{\psi}, \Omega_{X_{\psi}}^{3}\right)$$

where

$$\widetilde{\Omega} = \sum x_i \, dx_0 \, \wedge \ldots \wedge \, \widehat{dx_i} \, \wedge \ldots \wedge \, dx_4 \, .$$

Locally $x_4 = 1$, $\partial_{x_3} f \neq 0$,

$$\Omega\left(\psi\right) = 5\psi \left. \frac{dx_0 \wedge dx_1 \wedge dx_2}{\partial_{x_3} f_{\psi}} \right|_{X_{\psi}}.$$

2. Normalization

Now we deal with normalization. We have $\varphi_0 \coloneqq \int_{\beta_0} \Omega\left(\psi\right)$, then

$$\tilde{\Omega} = \varphi_0^{-1} \Omega \left(\psi \right)$$

Date: September 10, 2019.

is normalized with resides

$$2\pi i \int_{\beta_0} \Omega(\psi) = \int_{T^4} 5\psi \, dx_0 \, dx_1 \, dx_2 \, dx_3$$

$$= \int_{T^4} \frac{dx_0 \dots dx_3}{x_0 \dots x_3} \frac{1}{\frac{(1+x_0^5 + \dots + x_3^5)}{5\psi x_0 \dots x_3} - 1}$$

$$= -\sum_{n \ge 0} \int_{T^4} \frac{dx_0 \dots dx_3}{x_0 \dots x_3} \frac{(1+x_0^5 + \dots + x_3^5)^n}{(5\psi)^n (x_0 \dots x_3)^n}$$

$$= -\sum_{n \ge 0} \int_{T^4} \frac{dx_0 \dots dx_3}{x_0 \dots x_3} \frac{(1+x_0^5 + \dots + x_3^5)^{5n}}{(5\psi)^{5n} (x_0 \dots x_3)^{5n}}$$

where all summands in both the numerator and denominator must be 5th powers to contribute. So from some combinatorics we have

$$2\pi i \int_{\beta_0} \Omega(\psi) = -(2\pi i)^4 \sum \frac{(5n)!}{(n!)^5 (5\psi)^{5n}} =: \varphi_0(z)$$

where $z = (1/5\psi)^5$. The number $(5n)!/(n!)^5$ is the number of terms

$$x_0^{5n} \dots x_3^{5n} \left(1 + x_0^5 + \dots + x_3^5\right)^{5n}$$
.

3. Further periods

There is a procedure called Griffith's reduction of pole order. This involves the Picard-Fucks equation.

Locally $H^3(Y_{\psi}, \mathbb{C})$ is constant with dimension 4. This gives a trivial holomorphic vector bundle

$$E = \mathcal{U} \times \mathbb{C}^4$$

$$\downarrow$$

$$\mathcal{M}_Y \longleftrightarrow \mathcal{U}$$

This has a flat connection ∇^{GM} called the Gauß-Manin connection. Pointwise

$$E_{\psi} = \bigoplus_{p+q=3} H^{p,q} \left(X_{\psi} \right)$$

and we have seen $\Omega(\psi) \in H^{3,0}$. Now consider:

$$\Omega(z)$$
 $\partial_z \Omega(z)$ $\partial_z^2 \Omega(z)$ $\partial_z^3 \Omega(z)$ $\partial_z^4 \Omega(z)$

which are related by a fourth order ODE with holomorphic coefficients called the Picard-Fuchs equation.

3.1. **Derivation of the equation.** Take $X = Z(f_{\psi}) \subset \mathbb{P}^4$. We can produce more 3-forms from forms with higher-order poles. Consider the long-exact sequence:

$$H^{4}\left(\mathbb{P}^{4},\mathbb{C}\right)\longrightarrow H^{4}\left(\mathbb{P}^{4}\setminus X,\mathbb{C}\right)\longrightarrow H^{5}\left(\mathbb{P}^{4},\mathbb{P}^{4}\setminus X;\mathbb{C},\right)\longrightarrow H^{5}\left(\mathbb{P}^{4},\mathbb{C}\right)$$

$$\left.\begin{array}{c}\text{excision}\\H^{5}\left(\mathcal{U},\mathcal{U}\setminus X;\mathbb{C}\right)\end{array}\right.$$

$$\left.\begin{array}{c}H^{5}\left(\mathcal{U},\partial\mathcal{U};\mathbb{C}\right)\\LD\\H_{3}\left(\mathcal{U}\setminus\partial\mathcal{U};\mathbb{C}\right)\end{array}\right.$$

$$\left.\begin{array}{c}H_{3}\left(\mathcal{X}\setminus\mathcal{C}\right)=H^{3}\left(X,\mathbb{C}\right)\end{array}\right.$$

where $X \subset \mathcal{U}$ is a tubular neighborhood and we are using the form of Lefschetz duality which states that $H^q(M, \partial M) = H_{n-q}(M \setminus \partial M)$ and in the last step we use Poincare duality. So we start with things of high pole order, this gives us some class in H^3 , then in our case we take derivatives, and for certain classes we know they should be zero and this gives us some equations.

3.2. Griffiths' reduction of pole order. If we have

$$\frac{g\tilde{\Omega}}{f^l} \in H^0\left(\mathbb{P}^4, \Omega^4_{\mathbb{P}^4 \setminus X}\right)$$

then we must have $\deg g = 5l - 5$ (l = 0 earlier so we had no g). The exact forms look like

$$d\left(\frac{1}{f^{l}}\left(\sum_{i< j}\left(-1\right)^{i+j}\left(x_{i}g_{j}-x_{j}g_{i}\right)dx_{0}\wedge\ldots\wedge\widehat{dx_{i}}\wedge\ldots\wedge\widehat{dx_{j}}\wedge\ldots dx_{4}\right)\right)$$

$$=\left(l\sum g_{j}\partial_{x_{j}}f-f\sum\partial_{x_{j}}g_{j}\right)\frac{\tilde{\Omega}}{f^{l+1}}.$$

If $l \sum g_j \partial_{x_j} f \in \mathcal{J}(f) = (\partial_{x_i} f)$ then up to an exact form, it is of lower order since one copy of f cancels. I.e. the first term over f^{l+1} is of order l+1, and the second term over f^{l+1} is order l. The upshot is that the numerator $g \in \mathcal{J}(f)$ can reduce

So the algorithm is as follows: Compute $\Omega(z)$, $\partial_z \Omega(z)$, $\partial_z^2 \Omega(z)$, ..., $\partial_z^4 \Omega(z) = g\tilde{\Omega}/f_{\psi}^5$ where $g \in \mathcal{J}(f_{\psi})$. Then we express g modulo (1) as a linear combination of the $\partial_z^i \Omega(z)$.

Proposition 1. Any period

$$\varphi = \int_{\Omega} \Omega\left(\psi\right)$$

fulfills the ODE

(2)
$$\left[\theta^4 - 5z\left(5\theta + 1\right)\left(5\theta + 2\right)\left(5\theta + 3\right)\left(5\theta + 4\right)\right]\varphi\left(z\right) = 0$$
 where $\theta = z\partial_z$.

Remark 1. This is easy to check for

$$\varphi = \varphi_0 = \sum_{n>0} \frac{(5n)!}{(n!)^5} z^n .$$

(2) is an ODE with a regular singular pole:

(3)
$$\theta \varphi (z) = A(z) \varphi (z)$$

for $\psi(z) \in \mathbb{C}^s$.

Theorem 1. (3) has a fundamental system of equations of the form

$$\Phi\left(z\right) = S\left(z\right)z^{R}$$

with $S(z) \in M(s, \mathcal{O}_0)$, $R \in M(S, \mathbb{C})$, and

$$z^{R} = I + (\log z) R + (\log z)^{2} R^{2} + \dots$$

If the eigenvalues do not differ by integers, we may take R = A(0).

For (2)

$$A(0) \simeq \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}$$

and $S = (\psi_0, \dots, \psi_3)$ where $\psi_i \in \mathcal{O}_{\mathbb{C},0}^4$. This gives us a fundamental system of solutions:

$$\varphi_{0}(z) = \psi_{0} \text{ (single-valued)}$$

$$\varphi_{1}(z) = \psi_{0}(z) \log z + \psi_{1}(z)$$

$$\varphi_{2}(z) = \psi_{0}(z) (\log z)^{2} + \psi_{1}(z) \log z + \psi_{2}(z)$$

$$\varphi_{3}(z) = \psi_{0}(z) (\log z)^{4} + \ldots + \psi_{3}(z) .$$

This has something to do with monodromy. In particular, the monodromy of $z^{A(0)}$ reflects the monodromy T of $H^3(Y_z,\mathbb{C})$ about z=0 (or $\psi=\infty$). In fact, one can show that there exists a symplectic basis β_0 , β_1 , α_1 , $\alpha_0 \in H_3(Y_z,\mathbb{Q})$ with N=T-I. Then we have

$$\alpha_0 \mapsto \alpha_1 \mapsto \beta_1 \mapsto \beta_0 \mapsto 0$$

which means

$$\varphi_{0} = \int_{\beta_{0}} \Omega(z), \varphi_{1} = \int_{\beta_{1}} \Omega(z), \varphi_{2} = \int_{\alpha_{1}} \Omega(z), \varphi_{3} = \int_{\alpha_{0}} \Omega(z).$$

4. Canonical Coordinate/Mirror Map

Looking at the solution set, we don't have much choice. The solution, when exponentiated should behave like z. Indeed, the canonical coordinate is

$$q = e^{2\pi i w}$$

where

$$w = \frac{\int_{\beta_{1}} \Omega\left(z\right)}{\int_{\beta_{0}} \Omega\left(z\right)} = \int_{\beta_{1}} \tilde{\Omega}\left(z\right) .$$

Then $\varphi_{1}\left(z\right)=\varphi_{0}\left(z\right)\log z+\psi_{1}\left(z\right)$ which is easy to obtain as series solution of (2).

$$\psi_1(z) = 5 \sum_{n \ge 1} \frac{(5n)!}{(n!)^5} \left(\sum_{j=n+1}^{5n} \frac{1}{j} \right) z^n$$

(up to constant c_2).