UNIVERSITY of WASHINGTON

Introduction to Machine Learning MLEARN 510A – Lesson 9

Recap of Lesson 8

- Shrinkage Methods
- Polynomial Regression
- Step Functions
- Basis Functions
- Regression Splines
- Local Regression
- Generalized Additive Models

Course Outline

- 1. Introduction to Statistical Learning
- 2. Linear Regression
- 3. Classification
- 4. Model Building, Part 1
- 5. Model Building, Part 2
- 6. Resampling Methods
- 7. Linear Model Selection and Regularization
- 8. Moving Beyond Linearity
- 9. Bayesian Analysis
- 10. Dimensionality Reduction

Outline of Lesson 9

- Review of Probability
- Conditional Probability
- Bayes Theorem
- Application of Bayes Theorem
- Bayesian Networks
- Reasoning with BN
- Naïve Bayes

Probability: Intuition

- Probability theory is used to model systems where the outcomes are either inherently random, or simply too complex to be completely known
- For e.g., result from rolling a fair die is uncertain
- Probability of an event encodes the fraction of the times that outcome would occur with repeated experiments

Probability: Intuition

- Outcome: Result/realization of an experiment
- Sample space: the set of all possible outcomes of the experiment
- Event: a subset of the sample space
- Discrete random variable: a random variable which can only take a countable number of values
- Probability: this is the fraction of the times that you see the event occurring

Probability: Example

Suppose I flip three coins, what is the probability I get exactly two heads?

$$P(A) = \frac{\text{No. of outcomes favourable to the occurrence of } A}{\text{Total number of equally likely outcomes}} = \frac{\text{n}(A)}{\text{n}(S)}$$

Probability Distribution

- ➤ A probability distribution is a function that links each outcome of a statistical experiment with its probability of occurrence
- Probability distribution from a fair die

$\overline{}$		1	2	3	4	5	6	
$\mathbb{P}\{i\}$	0	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	0

Probability distribution from an unfair die

$\mathbb{P}\{i\}$	0	0.1	0.2	0.1	0.3	0.2	0.1	0

Conditional Probability

- Conditional probability is a measure of the probability of occurrence of an event given that another event has occurred
- Motivation: Partial information

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Fundamental importance in probability theory

Conditional Probability: Examples

When rolling a fair die what is:

- $\triangleright \mathbb{P}\{X \ odd\}$
- $ightharpoonup \mathbb{P}\{X \ odd \mid X \ge 4\}$
- $ightharpoonup \mathbb{P}\{X \ odd \mid X \leq 3\}$
- $ightharpoonup \mathbb{P}\{X \ odd \mid X \geq 3\}$

Bayes Rule

- ightharpoonup Conditional probability $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$ can be expressed as $\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \times \mathbb{P}(B)$
- ightharpoonup Conditional probability $\mathbb{P}(B|A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}$ can be expressed as $\mathbb{P}(B \cap A) = \mathbb{P}(B|A) \times \mathbb{P}(A)$
- ightharpoonup This implies $\mathbb{P}(A|B) \times \mathbb{P}(B) = \mathbb{P}(B|A) \times \mathbb{P}(A)$
- \triangleright Dividing both side by $\mathbb{P}(B)$ we obtain

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) \times \mathbb{P}(A)}{\mathbb{P}(B)}$$

Bayes Inference

Bayesian inference is the process of confronting alternative hypotheses with new data and using Bayes' Theorem to update your beliefs in each hypothesis

> Bayes' theorem:
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) \times \mathbb{P}(A)}{\mathbb{P}(B)}$$

 \triangleright To use Bayes' theorem for scientific inference, it's essential to replace the marginal denominator $\mathbb{P}(B)$ as the sum of the joint probabilities that make it up:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) \times \mathbb{P}(A)}{\mathbb{P}(A \cap B) + \mathbb{P}(\sim A \cap B)}$$

Bayes Inference

	Α	~A	Marginal
В	$\mathbb{P}(A \cap B)$	$\mathbb{P}(\sim\!\!A\cap B)$	$\mathbb{P}(B)$
~B	$\mathbb{P}(A\cap \sim B)$	$\mathbb{P}(\sim\!\!A\cap\sim\!\!B)$	$\mathbb{P}(\sim B)$
Marginal	$\mathbb{P}(A)$	$\mathbb{P}(\sim A)$	Total: 1.0

Quiz: The Seattle Rain Problem

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) \times \mathbb{P}(A)}{\mathbb{P}(A \cap B) + \mathbb{P}(\sim A \cap B)}$$

➤ "You're about to get on a plane to Seattle. You want to know if you should bring an umbrella. You call 3 random friends of yours who live there and ask each independently if it's raining. Each of your friends has a 2/3 chance of telling you the truth and a 1/3 chance of messing with you by lying. All 3 friends tell you that "Yes" it is raining. What is the probability that it's actually raining in Seattle?

Quiz: Bayesian Inference

One percent of women at age forty who participate in routine screening have breast cancer; 80% of women with breast cancer will have a positive mammogram (test), while 9.5% of women without breast cancer will also get a positive result. A woman in this age group had a positive mammogram in a routine screening. What is the probability that she actually has breast cancer?

Applications to Models and Data

Suppose we have H_1, \ldots, H_k competing hypotheses, and we observe some data D that helps us decide

$$\mathbb{P}\{H_i|D\} = \frac{\mathbb{P}\{D|H_i\}.\,\mathbb{P}\{Hi\}}{\sum_{j=1}^n \mathbb{P}\{D|Hj\}.\,P\{Hj\}}$$

- Start with a problem (scientific question)
- Set forth two or more alternative hypotheses
- > Assign a prior probability that each alternative hypothesis is true
- Next, collect data
- Use Bayes' theorem to update the probability for each hypothesis considered

Example

➤ Suppose I have a bag with 2 dice. The red one is fair, the blue one is only ones. I draw a random die, roll it, and get a one. What is the probability I drew the fair die?

We can rephrase that example into the machine learning scheme: Given the observations (i.e. the training data), predict whether the die is fair or unfair (i.e. binary classification)

Bayesian Networks

➤ A Bayesian Network is a probabilistic graphical model for depicting probabilistic relationships among a set of variables and their conditional dependencies via a directed acyclic graph (DAG)

The direction of the link arrows roughly corresponds to causality

Conditional Probability Table

		GRASS WET		
SPRINKLER	Т	F		
F	F	0.0	1.0	
F	Т	0.8	0.2	
Т	F	0.9	0.1	
T	Т	0.99	0.01	

Conditional Probability Table

- A Bayesian network requires tables that hold conditional probabilities
- Nodes with no arrows leading to them have tables that provide marginal probabilities
- Nodes with arrows leading to them have tables that provide conditional probabilities

Directed Acyclic Graph

➤ A directed acyclic graph (DAG) is a graph that is directed and without cycles connecting the other edges

- We can use the network to answer all kind of questions
 - If the grass is wet, what are the chances it was caused by rain?
 - ➤ If the chance of rain increases, how does that affect the amount of time I'll need to spend watering the lawn?
- To use the network, the relevant underlying conjoint tables must be computed

			GRASS WET	
SPRII	NKLER	RAIN	Т	F
1	False	False		
2	False	True		
3	True	False		
4	True	True		

We compute each joint probability using the chain rule in probability

$$p(A_4 \cap A_3 \cap A_2 \cap A_1) = p(A_4 | A_3 \cap A_2 \cap A_1) \times p(A_3 | A_2 \cap A_1) \times p(A_2 | A_1) \times p(A_1)$$

We can use the chain rule to compute the joint probability that the grass is wet, the sprinkler is on and it's raining

> Compute the joint probabilities using the chain rule

		GRASS WET			
SPRIN	NKLER	RAIN	Т	F	Sum
1	False	False	0.00000	0.48000	0.480
2	False	True	0.15840	0.03960	0.198
3	True	False	0.28800	0.03200	0.320
4	True	True	0.00198	0.00002	0.002
Sum	\rightarrow		0.44838	0.55162	1.000

- Bayesian network simplifies the number of calculations dramatically by computing only the required joint probabilities
- The network size grows linearly, with each new node doubling number of parameters to estimate

Quiz

- Given the Bayesian network
- What is the joint probability distribution P(C, S, R, W)?
- > It is cloudy, what's the probability that the grass
- > is wet?

- Bayesian network is a probabilistic graphical model that represents a set of random variables and their conditional dependencies via a directed acyclic graph (DAG)
- > Each node in the graph is a variable that has alternative states
- Each state occurs with some probability
- The nodes are linked with arrows, and the direction of the link roughly corresponds to causality.
- Bayes' theorem is at the heart of these connections

Bayesian Parameter Estimation

 \triangleright Assume that a set of probability distribution parameters, θ , best explains the dataset D

$$p(heta|D) = rac{p(D| heta)*p(heta)}{p(D)}$$

$$posterior = rac{likelihood*prior}{evidence}$$

- \triangleright MLE maximized the likelihood function $p(D|\theta)$
- \triangleright MLE does not allow us to inject any prior belief $p(\theta)$ about any likely values of θ
- This is the frequentist approach

Bayesian Parameter Estimation

 \triangleright What if we have reason to believe θ takes on a certain distribution?

$$p(heta|D) = rac{p(D| heta)*p(heta)}{p(D)}$$
 $posterior = rac{likelihood*prior}{evidence}$

- \triangleright Bayesian Estimation treats θ as a random variable
- \triangleright Fully calculates posterior $p(\theta|D)$
- Maximize posterior distribution to get Maximum a-posteriori Estimate (MAP)

Bayesian Estimation vs. MLE

Naïve Bayes

- Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes' theorem
- Make "naive" assumption of conditional independence between every pair of features given the value of the class variable
- \triangleright Bayes' theorem states the following relationship, given class variable y and dependent feature vector x_1 through x_n ,:

$$P(y \mid x_1, \ldots, x_n) = rac{P(y)P(x_1, \ldots, x_n \mid y)}{P(x_1, \ldots, x_n)}$$

Naïve Bayes - Conditional Independence

Using the naive conditional independence assumption

$$P(x_i|y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i|y),$$

This relationship simplifies to

$$P(y \mid x_1, \ldots, x_n) = rac{P(y) \prod_{i=1}^n P(x_i \mid y)}{P(x_1, \ldots, x_n)}$$

 \triangleright Since P(x₁,...,x_n) is constant given the input, we can use the following classification rule:

Naïve Bayes – Pros and Cons

- Surprisingly powerful in some scenarios for e.g., document classification and spam filtering
- Can be extremely fast compared to more sophisticated methods
- Each distribution can be independently estimated as a onedimensional distribution
- Performs poorly if features are not independent given class
- Feature independence assumption leads to poor estimation of class probabilities

Different Flavors of Naïve Bayes

- Several different types of Naïve Bayes depending on how we define P(x_i|y)
- Gaussian Naïve Bayes
- Multinomial Naïve Bayes
- Bernoulli Naïve Bayes

Gaussian Naïve Bayes

- Used when dealing with continuous data
- The likelihood of the features is assumed to be Gaussian.

$$P(x_i \mid y) = rac{1}{\sqrt{2\pi\sigma_y^2}} \mathrm{exp}\left(-rac{(x_i - \mu_y)^2}{2\sigma_y^2}
ight)$$

 \triangleright The parameters σ_v and μ_v are estimated using maximum likelihood

```
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.naive_bayes import GaussianNB
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)
>>> gnb = GaussianNB()
>>> y_pred = gnb.fit(X_train, y_train).predict(X_test)
>>> print("Number of mislabeled points out of a total %d points : %d"
... % (X_test.shape[0], (y_test != y_pred).sum()))
Number of mislabeled points out of a total 75 points : 4
```

Multinomial Naïve Bayes

- Used when dealing with discrete data
- Features represent the frequencies with which certain events have been generated by a multinomial distribution
- Feature vector $\mathbf{x} = [x_1, x_2, ..., x_n]$ is a histogram with x_i counting the number of times event i was observed in a particular instance
- Typically used for document classification, with events representing the occurrence of a word in a single document

$$p(\mathbf{x} \mid C_k) = rac{(\sum_i x_i)!}{\prod_i x_i!} \prod_i p_{ki}{}^{x_i}$$

Bernoulli Naïve Bayes

- > Features are independent binary variables describing inputs
- Binary term occurrence features are used rather than term frequencies
- Elements x_i represent the presence or absence of the ith term in the vocabulary
- Especially popular for classifying short text

$$p(\mathbf{x} \mid C_k) = \prod_{i=1}^n p_{ki}^{x_i} (1-p_{ki})^{(1-x_i)}$$

Jupyter Notebook

Case Study

ON-BRAND STATEMENT

FOR GENERAL USE

> What defines the students and faculty of the University of Washington? Above all, it's our belief in possibility and our unshakable optimism. It's a connection to others, both near and far. It's a hunger that pushes us to tackle challenges and pursue progress. It's the conviction that together we can create a world of good. And it's our determination to Be Boundless. Join the journey at **uw.edu**.

