

Neural Semantic Parsing

Pradeep Dasigi, Srini Iyer, Alane Suhr, Matt Gardner, Luke Zettlemoyer

Semantic Parsing

Semantic Parsing: QA

How many people live in Seattle?

[Zettlemoyer & Collins 2005, 2007], [Kwiatkowski et.al 2010, 2011], [Liang et.al. 2011],[Berant et.al. 2013,2014],[Reddy et.al, 2014,2016], [Dong and Lapata, 2016]

Semantic Parsing: Instructions

Go to the third junction and take a left


```
(do-seq(do-n-times 3
  (move-to forward-loc
      (do-until
          (junction current-loc
                (move-to forward-loc))))
  (turn-right))
```

[Chen & Mooney 2011]
[Matuszek et al 2012]
[Artzi & Zettlemoyer 2013]
[Mei et.al. 2015][Andreas et al, 2015]
[Fried at al, 2018]

More informative

Information Extraction

Recover information about pre-specified relations and entities

More informative

Example Task

Relation Extraction

 $is_a(OBAMA, PRESIDENT)$

Broad-coverage Semantics

Focus on specific phenomena (e.g., AMR)

More informative

Example Task

Summarization

Obama wins election. Big party in Chicago. Romney a bit down, asks for some tea.

Semantic Parsing

Recover **complete** meaning representation

More informative

Example Task

Database Query

What states border Texas?

Oklahoma
New Mexico
Arkansas
Louisiana

Parsing

Recover complete

meaning
representation

More informative

Example Task

Instructing a Robot

at the chair, turn right

Semantic Parsing

Recover **complete**meaning
representation

More informative

Complete meaning is sufficient to complete the task

- Convert to database query to get the answer
- Allow a robot to do planning

at the chair, move forward three steps past the sofa $\lambda a.pre(a, \iota x.chair(x)) \wedge move(a) \wedge len(a, 3) \wedge dir(a, forward) \wedge past(a, \iota y.sofa(y))$

Parsing

Recover complete

meaning
representation

More informative

at the chair, move forward three steps past the sofa $\lambda a.pre(a, \iota x.chair(x)) \wedge move(a) \wedge len(a,3) \wedge \\ dir(a,forward) \wedge past(a,\iota y.sofa(y))$

at the chair, move forward three steps past the sofa

$$\lambda a.pre(a, \iota x.chair(x)) \land move(a) \land len(a, 3) \land dir(a, forward) \land past(a, \iota y.sofa(y))$$

 $f: sentence \rightarrow logical form$

at the chair, move forward three steps past the sofa

 $f: sentence \rightarrow logical form$

Semantic Parsing: Complex Structure

CCG Semantic Parsing

CCG Semantic Parsing

move to the chair

"The classic approach"

-Mark Johnson (~2016)

 $\lambda a.move(a) \wedge to(a, \iota x.chair(x))$

CCG Semantic Parsing

move to the chair

- Complex discrete learning algorithms
- But, grammars hopefully generalize to unseen data well!
- Difficult to engineer: few people can do it and it takes a lot of time

 $\lambda a.move(a) \wedge \iota o(a, \iota x.cna \iota r(x))$

Enter seq2seq... (Dong & Lapata, 2016)

- Treat meaning as a string...
- Apply NMT
- Close to SOTA performance!!!
- Much easier to build (with toolkits)

Figure 1: Input utterances and their logical forms are encoded and decoded with neural networks. An attention layer is used to learn soft alignments.

Enter seq2seq... (Dong & Lapata, 2016)

Treat meaning as a

• A We will talk about lots of fancier models
throughout this tutorial, but this was a *very*unexpected result... (at least for me...)

 Much easier to build (with toolkits)

An attention layer is used to learn soft alignments.

And, this wasn't an isolated event...

- CCGbank parsers for SRL (Lewis, He, Lee, et al ~2015)
 - Deep BIO Taggers work better! (Zhou and Xu, 2015)
 - CCG AMR parsing (Artzi et al, 2015)
 - seq2seq performs better!
 (Konstas et al 2017)

Obama was elected and his voters celebrated

And, this wasn't an isolated event...

This Tutorial: Neural Semantic Parsing

... or, carefully adding structure into seq2seq...

...while also studying lots of new problems...

