Sprout 2020 Algorithm - Week 5

Author: 陳楚融

Problem 1

(a)

若有一組解,其性質不滿足以貪心法構造出之解,其中必有一面額 C_i ,能用所有面額小於 C_i 之硬幣組出不小於 C_i 之值可先選擇小於 C_i 中最大之面額,若該面額總和 $S \geq C_i$,可剛好組出一個 C_i

當 $S < C_i$ 時,剩餘的 $C_i - S$ 可再使用次小之面額嘗試組出,因為 $\forall j,\ C_j < C_i:\ C_i - S \mid C_j$,且面額小於 C_i 之硬幣總和不小於 C_i ,因此最後一定能剛好將部份硬幣替換為 C_i

故性質與以貪心法構造出之解不同的解必可透過替換得到更好的解,得證以貪心法夠出之解為最佳解

(b)

不行

若欲用 1, 4, 5 組出 12 ,貪心法之解為 5*2, 1*2 ,共 4 個,然而存在更佳解 4*3 ,共 3 個

(c)

不一定

當面額為 1, 2, 3 時,依照貪心法選擇後, 1, 2 面額數量可能為 (0,0), (0,1), (1,0) ,由於三種情況皆無法

盡量選擇 3 面額後,對於任意解,令 n_1 , n_2 分別為面額 1, 2 之數量

當 $n_1 \ge n_2$ 時,可將 n_2 , n_2 個 1,2 面額組成 n_2 個 3 面額,總數減少 n_2 ,剩下的 1 面額再盡量替換成 3 面額,再剩下的 1 面額若有兩個則換成 2 面額

最後 $1*n_1'+2*n_2'<3,\ 1*n_1'<2$,無法再使總數變小,為最佳解且與貪心法結果相同 ··· (1)

當 $n_1 \le n_2$ 時,可將 n_1 , n_1 個 1,2 面額組成 n_1 個 3 面額,總數減少 n_1 ,令剩下的 2 面額總和為 S ,若最多可替換成 k 個 3 面額,則 S=3*k+m, $0\le m\le 2$

m=0,2 時, $k=rac{S-m}{2}<rac{S}{2}=n_2-n_1\Longrightarrow k+1\leq n_2-n_1$,總數必不增加

m=1 時, $2*k=(S-1)*rac{2}{3} < S$,得 $k < rac{S}{2} = n_2 - n_1 \Longrightarrow k+1 \le n_2 - n_1$,總數必不增加

最後 $1*{n_1}'+2*{n_2}'=m<3,\ 1*{n_1}'<2$,無法再使總數變小,為最佳解且與貪心法結果相同 · · · · (2)

由(1),(2)得證1,2,3為貪心適用之一組面額

Problem 2

欲證題目之貪心法可得出最佳解,可證該方法一定不會比最佳解差

將最佳解依右界排序,得區間 $A_1,\ A_2\ \cdots\ A_a$, a 為最佳解區間數,設透過貪心法得出之解為 $B_1,\ B_2\ \cdots\ B_b$, $b\le a$ 為所得區間數

假設 $B_n^r \leq A_n^r$, $1 \leq n \leq b$ (左右界以上標表示)

已知 n=1 時, ${B_1}^r \leq {A_1}^r \quad \cdots \quad (1)$

當 $n=k+1,\ k>0$ 時, $A_{k+1}{}^l>A_k{}^r$, B_{k+1} 為左界大於 $B_{k+1}{}^r$ 的區間中右界最小者,且 $B_k{}^r\leq A_k$,得 $B_{k+1}{}^r\leq A_{k+1}{}^r$ \cdots (2)

根據 (1), (2), 以數學歸納法得證 $B_n^r \leq A_n^r$, $1 \leq n \leq b$

若 b < a ,因 $B_b{}^r \le A_b{}^r$,故 $B_b{}^r \le A_b{}^r < A_{k+1}{}^l$,仍有區間可加入序列 B ,與貪心法挑選結束之條件矛盾,故 b=a

得證貪心法必可得最佳解