Data Science and Artificial Intelligence

Machine Learning

Classification

Lecture No. 1

Topics to be Covered

dineve classification

Logistic negnession

- AIR 1 GATE 2021, 2023 (ECE).
- AIR 3 ESE 2015 ECE.
- M.Tech from IIT Delhi in VLSI.
- Published 2 papers in field of Al-ML.
- Paper 1: Feature Selection through Minimization of the VC dimension.
- Paper 2: Learning a hyperplane regressor through a tight bound on the VC dimension.

Join Our Telegram Channel!

Stay updated, get instant alerts & connect with the community

https://t.me/siddharthsirPW

My Rule

* Moning

Paoduct

day Phoductive YOUR MORNING SETS UP THE SUCCESS OF YOUR DAY

Fazil Azmaan

having Category

Linear Classification:

What is classification >>

Categorical data => label is Categonical

what is classification >>

Categorical data > labelis
Categorical
Categorical

Zlabelis having Category

In negnession me mark point using x, y. •4,10

1D data

Regnession

74 5 10.

Toplot dat a we need yaxis

1D, Categorical data

we donot need y axis to show dota

Simple Line in a 2 D plane

2D data

メユ	χ ² 2	y -1
2457	ന പ 60	- 선 선 선 선

· any point above the line, Bzx2+Bix1+Bo>0 B2x2+B1x1+B0=0. any point on line \beta_x2+\beta_1x'+\beta_00 0 any point below the line \$2x2+Bix1+Bo(0

We want aline

(Bex2+Bix1+Bo)

Such that all

Class+1-points above the line

Class-1-points below the

we want aline
Bex2+Bix1+Bo

Such that all

Class+1points > above the

line

Class-1points > below the

line

Then point she be about the line $\beta_2 x_1^2 + \beta_1 x_1^2 + \beta_0 > 0$ If yi for a point - 1,

then point she below the line $\beta_2 x_1^2 + \beta_1 x_1^2 + \beta_0 < 0$

So we want that Classifier shd

So
$$(y_i(x_\beta)>0)^{\sqrt{2}}$$

$$X = \{\pm x^i x^2 - - \} \beta = \{\beta_0\}$$

USA OUSA Kahai

- · yi(xiB)<0 point misclassify
 · yi(xiB)>0 point
 Sahiclassify

(Kip) (O

Ndata points Classifier which has maxyalved Zyi(xip) is Best.

Raining and Testing of Clossifier

Classifier $\beta_0+\beta_1x^2+\beta_2x^2+\ldots-\beta_0x^0=0$.

1 dimension data

• dimensionel classifier > Classifier isa hyperplane hyperplane (No. of voriables D+1) of D dimension.

we need to find B's that give best classifier

Best classifier > yi (xiB) is maximum

i=1

4data point

max (y=(Bo+B1x1+B2x2)+ y2 (Bo+B1x2+B2x2)---)

quadient-descent nahi lagega.

-than to do Testing

· we have the classifier C Bo+Bixi+Bixi+ - - BoxD=0

we have a new test point $\chi_t = (\chi_t, \chi_t^2, -- \chi_t^2)$

Howtofind the class for > we have to check that test

Point is above on below the

Classifier Classifier Find Bo+BIXt+BIXt2+-- BDXt 12/0 point above classifier \Rightarrow 7+1
12/0 y below y \Rightarrow -1

Linear Regression of an Indicator Matrix

But this loss function has 2 problems 1. outlier and 2. value of predicted Y

Linear class.

You are given a trained Linguistic Regression model with the following numerical weight

vector and bias:

You need to classify four points (A, B, C, D) using this model. The data points and their

respective feature vectors are as follows:

Point B: [-2, 4] [1-24] [-5] [-5] Point C: [1, -1] [1-4-3] [-4-4-3] [-4-4model?

Dataset of 4 points:

$$(1,2):+1, \quad (2,1):-1, \quad (3,2):+1, \quad (0,0):-1$$

Classifier:

$$f(x_1,x_2) = x_1 - x_2$$

Predict class as +1 if $f \geq 0$, else -1.

How many points are misclassified?

$$(3,1) \Rightarrow 2(3)+3(3)-6 \Rightarrow (3) \Rightarrow 2(3)+3(3)-6 \Rightarrow 0 \text{ on the line}$$

For the hyperplane

$$f(x_1,x_2) = 2x_1 + 3x_2 - 6$$

check whether the points (1,1) and (3,0) lie on the same side or on opposite sides of the boundary.

Classifier:

$$f(x_1,x_2) = x_1 + 2x_2 + b$$

For point (1,1), classification changes from +1 to -1 when bias b is decreased.

Find the critical value of b at which the point lies exactly on the boundary.

$$f(1,1) = 0$$
 H2+b=0 $b=-3$

Which is a better Classifier

Z yi(xiB) for both Cases

$$\frac{1}{1+(-3)+4}+1\left(1+(-12)+2\right)+(-1)\left(1-9+6\right)-1\left(1-18+4\right)=8$$

Classifier with max (ZyilxiB)
is Better.

Linear Classification

Problem of outliers

Linear Classification

To solve the problem of outlier we will not use the distance in the analysis rather we will use the probability.

Linear Classification

To solve the problem of outlier we will not use the distance in the analysis rather we will use the probability.

Linear Classification

Why linear regression was not good in case of classification problem

 because Y was either 0/1 but the line that we learn was giving very large values also.

Hence in logistic regression we are doing regression but we are using sigmoid function here for perfect regression.

Logistic Regression

Let us have a data with some classes 1 and 0, these are the Y values of the input, In logistic Regression we actually try to fit a S curve on the data.

Logistic Regression

Now we have the concept of the threshold, how to find the best coefficients?

Logistic Regression

The concept of threshold

Logistic Regression

Comparison of the linear classification and logistic Regression

In linear classification we find a line and say value <>0 but here we say value <> some threshold

This is called sigmoid...

This can be used when the data is linearly seperable...

Logistic regression cannot solve XOR problem...

Logistic Regression

2 class case

The loss function...

Logistic Regression

2 class case

We find the parameters by rule ...

Now calculation Probability is easy....

Simple decision rule in 2 class case

THANK - YOU