Abstract

Concurrency bugs are difficult to detect due to variations in thread interleavings (order of execution). Eclipticon is a tool used to expose concurrency bugs in Java programs, by inserting noise into the source code so that the threads will change their interleavings.

Problem Statement

Eclipticon is an open-source tool, implemented as an Eclipse plug-in, that allows concurrent Java code to be instrumented, and allows the tester to control the granularity of instrumentation with the final goal of exposing concurrency bugs.

Background

- Concurrency is increasing in popularity
- Java offers many concurrency features
- Concurrency bugs appear intermittently which makes detection and testing difficult
- Fine-grained control potentially helps localize concurrency bugs to speed error correction
- Eclipticon was inspired by IBM's ConTest testing tool which is a closed-source command line tool to instrument Java code

ECLIPTICON

Chris Forbes, Kevin Jalbert, Cody LeBlanc

Faculty of Engineering and Applied Science, Capstone Project, April 2010

Supervisors: Dr. Ramiro Liscano, Dr. Jeremy S. Bradbury

Design

GUI

- Starts the plug-in
- Creates the sidebar in Eclipse
- Handles user interaction

Parsers

- Finds Interest Points
- Pre-Parser finds syncronized methods
- File Parser finds
 Interest Points
- Annotation Parser –
 creates and reads
 annotation comments,
 if comment is present:
 Interest Point becomes
 Instrumentation Point.
- Method Call Validator

 verifies if
 synchronized method
 call is valid based on
 import statements

Test

 JUnit test cases for all important Eclipticon classes

Data

- Contains the data structures
- Internal data representations
- Source File each file
 has a name, path,
 import statements, and
 Interest Points
- Interest Point a concurrency construct found in a source file
- Instrumentation Point –
 an Interest Point that
 will have noise added
 to the source code
- Configuations –
 settings used for
 Automatic
 Instrumentation

Instrumentation

- Performs

 instrumentation and
 backup files
- Noise Maker creates noise (sleep, yield)
- Instrumentor places noise in front of Instrumentation Points in source code

Figure 1: Eclipticon's Automatic Instrumention with Noise Inserted

Figure 2: Eclipticon's Manual Instrumention with Annotation Comment Inserted

Analysis

- Preliminary tests using Allocation Vector program from IBM's Concurrency Benchmark
 - No instrumentation: 234 bugs / 10 000 executions
 - Yield noise:
- 530 bugs / 10 000 executions
- Sleep noise: 1036 bugs / 10 000 executions

Future Enhancements

- Utilize object types to improve accuracy of Interest Point detection
- Parse source code using logical instead of physical lines
- Integrate automated JUnit testing of instrumented code