Quicksort

Review of insertion sort and merge sort

- Insertion sort
 - Worst case number of comparisons = O(?)
- Selection sort
 - Worst case number of comparisons = O(?)
- Merge sort
 - Worst case number of comparisons = O(?)

Sorting Algorithms

Algorithm	Worst Time	Expected Time	Extra Memory
Insertion sort	$O(n^2)$	$O(n^2)$	O(1)
Selection sort	$O(n^2)$	$O(n^2)$	O(1)
Merge sort	O(n lgn)	O(n lgn)	O(n)
Quick sort	$O(n^2)$	O(n lgn)	O(1)
Heap sort	O(n lgn)	O(n lgn)	O(1)

Quicksort Algorithm

- Input: A[1, ..., n]
- Output: A[1, .., n], where A[1] ≤ A[2]...≤ A[n]
- Quicksort:
 - 1. if($n \le 1$) return;
 - 2. Choose the pivot p = A[n]
 - 3. Put all elements less than p on the left; put all elements lager than p on the right; put p at the middle. (**Partition**)
 - 4. **Quicksort**(the array on the left of p)
 - 5. Quicksort(the array on the right of p)

Partition

Partition example

Partition

Partition example

Partition

```
PARTITION (A, p, r)
   x \leftarrow A[r]
2 \quad i \leftarrow p-1
3 for j \leftarrow p to r-1
          do if A[j] \leq x
                  then i \leftarrow i + 1
6
                        exchange A[i] \leftrightarrow A[j]
    exchange A[i+1] \leftrightarrow A[r]
8
    return i+1
```

$$T(n)=O(n)$$

Quicksort Algorithm

Quicksort example

Quicksort

Quicksort Algorithm

```
Quicksort(A, p, r){
     if(p<r){
                           // if(n<=1) return
           q = partition(A, p, r) //small ones on left
                               //larger ones on right
           Quicksort(A, p, q-1)
           Quicksort(A, q+1, r)
Sorting the entire array: Quicksort(A, 1, length(A))
```

Analysis of Quicksort

Time complexity

- Worst case
- Expected
- Best case

Worst-Case Analysis

- What will be the worst case?
 - Occur when PARTITION produces one subproblem with n-1 elements and one with 0 elements
 - When the input array is already sorted increasingly or decreasingly
 - The pivot is the smallest element, all the time
 - Partition is always unbalanced

$$T(N) = T(N-1) + cN$$
 $T(N-1) = T(N-2) + c(N-1)$
 $T(N-2) = T(N-3) + c(N-2)$
 \vdots
 $T(2) = T(1) + c(2)$
 $T(N) = T(1) + c\sum_{i=2}^{N} i = O(N^2)$

Best-case Analysis

- What will be the best case?
 - Partition is perfectly balanced.
 - Pivot is always in the middle (median of the array)

$$T(N) = 2T(N/2) + cN$$

$$\frac{T(N)}{N} = \frac{T(N/2)}{N/2} + c$$

$$\frac{T(N/2)}{N/2} = \frac{T(N/4)}{N/4} + c$$

$$\frac{T(N/4)}{N/4} = \frac{T(N/8)}{N/8} + c$$

$$\vdots$$

$$\frac{T(2)}{2} = \frac{T(1)}{1} + c$$

$$\frac{T(N)}{N} = \frac{T(1)}{1} + c \log N$$

$$T(N) = cN \log N + N = O(N \log N)$$

Worst-case and Best-case Partitioning

- The behavior of quicksort is determined by the relative ordering of the values in the array
- Worst case
 - Occur when PARTITION produces one subproblem with n-1 elements and one with 0 elements
 - When the input array is already sorted increasingly or decreasingly
 - $T(n) = T(n-1) + T(0) + \Theta(n) = T(n-1) + \Theta(n)$
 - By substitution: $T(n) = \Theta(n^2)$
- Best case one of size ln/2, and one of size [n/2]-1

$$- T(n) \le 2T(n/2) + \Theta(n) \qquad T(n) = O(n \lg n)$$

Balanced Partitioning

- The average-case running time of quicksort is much closer to the best case than to the worst case
 - -Suppose $T(n) \le T(9n/10) + T(n/10) + cn$
 - By recursion tree: O(n lg n)
 - Every level of the tree has cost cn
 - Boundary condition reaches at depth $log_{10}n = \Theta(lg n)$
 - Recursion terminates at depth
 - Even a 99-to-1 split yields an O($n \lg n$) running time $\log_{10/9} n = \theta(\lg n)$
 - Any split of constant proportionality yields a recursion tree of depth $\Theta(\lg n)$, where the cost at each level is O(n)

Figure 7.4 A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-1 split, yielding a running time of $O(n \lg n)$. Nodes show subproblem sizes, with per-level costs on the right. The per-level costs include the constant c implicit in the $\Theta(n)$ term.

Improved Pivot Selection

- > Pick median value of three elements from data array:
 - \rightarrow A[0], A[n/2], and A[n-1]
 - Use this median value as pivot.

Strict proof of the worst-case time complexity

$$T(n) = \max_{0 \le q \le n-1} (T(q) + T(n-q-1)) + \theta(n)$$

Proof that $T(n) = O(n^2)$

- 1. When n=1, $T(1) = T(0) + T(0) + \theta(1) = O(n^2)$
- 2. Hypothesis: when $k \le n$, $T(k) = O(k^2)$; induction statement: when k = n + 1, $T(k) = O(k^2)$:

Strict proof of the worst-case time complexity

•
$$T(k) = T(n+1)$$

 $= \max_{0 \le q \le n} (T(q) + T(n-q)) + \theta(n+1)$
Since $q \le n, n-1 \le n$,
 $T(k) \le \max_{0 \le q \le n} (cq^2 + c(n-q)^2) + \theta(n+1)$
 $= c \max_{0 \le q \le n} (q^2 + (n-q)^2) + \theta(n+1)$
 $\le c(n^2) + \theta(n+1) = c(k-1)^2 + \theta(k)$
 $= O(k^2)$;

Strict proof of the expected time complexity

- Given A[1, ..., n], after sorting them to $A[1] \le A[2] ... \le A[n]$, the chance for 2 elements, A[i] and A[j], to be compared is $\frac{2}{j-i+1}$.
- The total comparison is calculated as:
- $\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = O(nlgn)$

 Slides and figures have been collected from various publicly available Internet sources for preparing the lecture slides of IT2001 course. I acknowledge and thank all the original authors for their contribution to prepare the content.