Mathématiques Générales TELECOM Nancy - Filière Appprentissage

Sébastien Da Silva

LORIA - UL

2015 - 2016

Chapitre 1 : Fonctions usuelles

I. - Rappels sur l'étude d'une fonction

I.1. - Rappels sur la continuité

Soient I un intervalle de \mathbb{R} , f une application de I dans \mathbb{R} et a un point de I.

Définition

La fonction f est dite **continue au point a** si et seulement elle admet une limite en ce point et cette limite est f(a)

$$\lim_{x \to a} f(x) = f(a).$$

Définition

On dit qu'une fonction f est **continue** sur I si et seulement si elle est continue en tout point a de I.

à noter

La notion de continuité d'une fonction f a pour objet de traduire mathématiquement le fait que sa courbe représentative peut se tracer sans "lever le crayon".

Exemples

Les fonctions usuelles suivantes sont continues sur tout intervalle où elles sont définies : les fonctions **polynômes**, les fonctions **rationnelles**, la fonction **valeur absolue**, la fonction **sinus**, la fonction **cosinus**.

Propriétés

- **③** Si u et v sont deux fonctions continues sur I alors u + v, $u \times v$ et u^n $(n \in \mathbb{N})$ sont continues sur I et $\frac{u}{v}$ est continue sur les intervalles où elle est définie.
- ② Si la fonction f est continue en a et si la fonction g est continue en f(a) alors la fonction composée $g \circ f$ est continue en a.

I. - Rappels sur l'étude d'une fonction

I.2. - Rappels sur la dérivabilité

Définition

- On dit qu'une fonction f est **dérivable en a** si et seulement si l'une des conditions suivantes est realisées :
 - le rapport $\frac{f(a+h)-f(a)}{h}$ admet une limite quand h tend vers 0.
 - le rapport $\frac{f(x) \ddot{f}(a)}{x a}$ admet une limite quand x tend vers a.
- Cette limite est appelée nombre dérivé de f en a et notée f'(a).

Définition

- On dit qu'une fonction f est dérivable sur un intervalle I si et seulement si elle dérivable en tout point de l et la fonction qui à tout point a de l associe le nombre dérivé de f en a sera appelée fonction dérivée de f, notée f'.
- Si la fonction f' est elle même dérivable sur I, la dérivée de f' est appelée la **dérivée seconde de** f **et notée** f''.
- Si la fonction f" est elle même dérivable sur I, la dérivée de f" est appelée la dérivée troisième de f et notée f" ou f⁽³⁾ et ainsi de suite
- supposons que f possède une dérivée (k-1)-ième $f^{(k-1)}$ où k est un entier, $k \geq 2$. Si $f^{(k-1)}$ est dérivable, alors sa dérivée est appelée dérivée k-ième de f et notée $f^{(k)}$ et on a

$$f^{(k)} = \left(f^{(k-1)}\right)'.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ 900

Soit f un fonction dérivable sur un intervalle I et soit C sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

Tangente

Soit a un point de I. La tangente à la courbe représentative $\mathcal C$ de f au point (a,f(a)) a pour équation :

$$y = (x - a)f'(a) + f(a).$$

Une première liste

Les fonctions usuelles suivantes sont dérivables sur l'intervalle donné :

fonction f définie par	fonction f' définie par	Intervalle de dérivabilité
f(x) = k	f'(x)=0	$]-\infty;+\infty[$
$f(x) = x^n, n \in \mathbb{N}^*$	$f'(x) = nx^{n-1}$	$]-\infty;+\infty[$
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	$]-\infty;0[$ et $]0+\infty[$
$f(x) = \frac{1}{x^n} = x^{-n}$	$f'(x) = -nx^{-n-1}$	$]-\infty;0[$ et $]0+\infty[$
$f(x) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$]0 + ∞[

Propriétés

- Soient u et v deux fonctions dérivables sur un intervalle l et k un réel, alors les fonctions u+v, ku et uv sont dérivables sur l
- ② Si, de plus v ne s'annule pas sur I, alors les fonctions $\frac{1}{v}$ et $\frac{u}{v}$ sont dérivables sur I

et nous avons :

fonction	u + v	ku	uv	$\frac{1}{\nu}$	<u>u</u> v
dérivée	u' + v'	ku'	u'v + uv'	$-\frac{v'}{v^2}$	$\frac{u'v-uv'}{v^2}$

Théorème

Si u est une fonction dérivable sur un intervalle I à valeurs dans un intervalle J et si v est une fonction dérivable sur J alors la **fonction composée** $v \circ u$ est dérivable sur I et nous avons

$$(u \circ v)' = v' \times (u' \circ v).$$

Corollaire

- Si u est une fonction dérivable sur un intervalle I alors u^n avec $n \in \mathbb{N}^*$ est dérivable sur I.
- ② Si u est une fonction dérivable sur un intervalle I et si u ne s'annule pas sur I alors les fonctions u^{-n} avec $n \in \mathbb{N}^*$ et \sqrt{u} sont dérivables sur I.

Nous avons:

fonction	u ⁿ	u ⁻ⁿ	\sqrt{u}
dérivée	nu'u ⁿ⁻¹	$-nu'u^{-n-1}$	$\frac{u'}{2\sqrt{u}}$

Théorème

Soit f une fonction dérivable sur un intervalle I.

- si la dérivée f' est nulle sur l alors f est constante sur l.
- si la dérivée f' est strictement positive sur I, sauf en des valeurs isolées où elle s'annule, alors f est strictement croissante sur I.
- si la dérivée f' est strictement négative sur I, sauf en des valeurs isolées où elle s'annule, alors f est strictement décroissante sur I.

I. - Rappels sur l'étude d'une fonction

1.3. - Fonction bijective et fonction réciproque

Théorème de la bijection

- Si f est une fonction **continue** et **strictement monotone** sur l'intervalle [a;b] (a < b), alors pour tout réel y compris entre f(a) et f(b) l'équation f(x) = y admet une **unique solution** dans [a;b].
- On dit que alors que f est une **bijection de** [a;b] **sur** [f(a);f(b)] ou [f(b);f(a)] selon que f est croissante ou décroissante.

Fonction réciproque

Soit f est une fonction bijective de l'intervalle I sur l'intervalle J.

• il existe une unique fonction définie sur J à valeurs dans I appelée fonction réciproque et notée f^{-1} telle que

pour tout
$$x \in I$$
, $f^{-1} \circ f(x) = x$,
pour tout $y \in J$, $f \circ f^{-1}(y) = y$.

• y = f(x) si et seulement si $f^{-1}(y) = x$.

Propriétés de la fonction réciproque

- La fonction réciproque f^{-1} de la fonction f est strictement monotone de même sens de variation que f.
- La fonction f^{-1} est continue.

Tracé de la courbe représentative

La courbe représentative $C_{f^{-1}}$ de f^{-1} se déduit de C_f la courbe représentative de f par une symétrie par rapport à la première bissectrice (y=x).

Théorème

Soit f une fonction strictement monotone et **dérivable** sur un intervalle I et soit J = f(I).

Alors la fonction réciproque f^{-1} est dérivable en tout point de l'ensemble

$$\left\{x\in J, f'(f^{-1}(x))\neq 0\right\}$$

et en un point de cet ensemble

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

I. - Rappels sur l'étude d'une fonction

I.4. - Primitives d'une fonction

Définition

Soit f une fonction définie sur un intervalle I de \mathbb{R} .

On appelle **primitive** de f sur I, toute fonction F définie et dérivable sur I telle que

pour tout
$$x \in I$$
, $F'(x) = f(x)$.

On note $\int f(x)dx$ l'ensemble des primitives de f.

Théorème

Toute fonction **continue** sur un intervalle / admet des primitives.

Proposition

Soient F_1 et F_2 deux primitives sur I de f. Alors il existe une constante $C \in \mathbb{R}$ tel que

pour tout
$$x \in I, F_2(x) = F_1(x) + C$$
.

- ◀ □ ▶ ◀ @ ▶ ◀ 볼 ▶ 《 볼 · 씨 역 (~

II. - Fonctions usuelles

II.1. - Fonction exponentielle

Définition

- Il existe une unique fonction f dérivable sur \mathbb{R} telle que f' = f et f(0) = 1.
- On appelle **exponentielle** cette fonction et on note $f(x) = \exp(x)$.

Propriétés

- La fonction exponentielle est continue sur \mathbb{R} .
- ullet La fonction exponentielle est dérivable sur ${\mathbb R}$ et

pour tout
$$x \in \mathbb{R}$$
, $\exp'(x) = \exp(x)$

Propriété fondamentale

Quels que soient les réels a et b

$$\exp(a+b) = \exp(a) \times \exp(b).$$

Remarque

La fonction exponentielle est l'unique fonction f dérivable sur \mathbb{R} , non nulle telle que

$$f(a + b) = f(a) \times f(b)$$
 et $f'(0) = 1$.

Définition

L'image de 1 par la fonction exponentielle est notée e, i.e. $e = \exp(1)$.

$$e \simeq 2,718$$
.

Propriétés

• Quels que soient les réels a et b

$$\exp(-a) = \frac{1}{\exp(a)}, \quad \exp(a-b) = \frac{\exp(a)}{\exp(b)}.$$

2 Quels que soient le réel a et l'entier n

$$\exp(na) = (\exp(a))^n.$$

Quel que soit le réel a

$$\exp(a) > 0.$$

Limites

- $\lim_{x \to +\infty} \exp(x) = +\infty,$ $\lim_{x \to -\infty} \exp(x) = 0,$

Quelques limites utiles à connaitre

- $\lim_{x \to +\infty} \frac{\exp(x)}{x} = +\infty,$
- $\lim_{x\to-\infty}x\exp\left(x\right)=0.$

Tableau de variation

X	$-\infty$	0	$+\infty$
exp'(x)		+	
exp(x)	0	_1	$+\infty$

II. - Fonctions usuelles

II.2. - Fonction logarithme népérien

La fonction exponentielle est continue strictement croissante sur $\mathbb R$ à valeurs dans $]0;+\infty[$. Elle définit donc une bijection de $\mathbb R$ sur $]0;+\infty[$, c'est-à-dire que quel que soit le réel strictement positif x, l'équation d'inconnue y,

$$\exp(y) = x$$

admet une unique solution dans \mathbb{R} .

Définition

- On appelle **logarithme népérien** la fonction réciproque de la fonction exponentielle.
- Le logarithme népérien du réel strictement positif x est l'unique solution de l'équation d'inconnue y: $\exp(y) = x$. On le note $\ln(x)$.

Remarque

Par définition, nous avons

$$ln(1) = 0$$
 et $ln(e) = 1$.

Propriétés

- La fonction logarithme népérien est définie sur $]0;+\infty[$,
- La fonction logarithme népérien est continue sur $]0; +\infty[$,
- La fonction logarithme népérien est dérivable sur $]0;+\infty[$ et

pour tout
$$x \in]0; +\infty[$$
, $\ln'(x) = \frac{1}{x}$.

Propriété fondamentale

Quels que soient les réels strictement positifs a et b

$$\ln(a \times b) = \ln(a) + \ln(b).$$

Propriétés

• Quels que soient les réels strictement positifs a et b

$$\ln \frac{1}{b} = -\ln (b), \quad \ln \frac{a}{b} = \ln (a) - \ln (b).$$

2 Quels que soient le réel a et l'entier n

$$\ln\left(a^{n}\right)=n\ln\left(a\right).$$

Limites

- $\lim_{x\to 0^+}\ln(x)=-\infty.$

Quelques limites utiles à connaitre

- $\lim_{h\to 0}\frac{\ln{(1+h)}}{h}=1,$
- $\lim_{x\to+\infty}\frac{\ln\left(x\right)}{x}=0,$
- $\lim_{x \to 0^+} x \ln(x) = 0.$

Tableau de variation

х	0	1	$+\infty$
ln'(x)		+	
ln(x)	-(+∞

II. - Fonctions usuelles

II.3. - Fonctions exponentielles de base a

Soit a un réel strictement positif. Lorsque $\frac{p}{q}$ est un nombre rationnel positif $(p\in\mathbb{N} \text{ et } q\in\mathbb{N}^*)$ on a

$$b = a^{\frac{p}{q}} = \sqrt[q]{a^p} \Longleftrightarrow b^q = a^p$$

d'où

$$\ln(b^q) = q \ln(b) = p \ln(a)$$

soit

$$\ln(b) = \ln(a^{\frac{p}{q}}) = \frac{p}{q} \ln(a)$$

et

$$\ln\left(a^{-\frac{p}{q}}\right) = \ln\left(\frac{1}{a^{\frac{p}{q}}}\right) = -\ln\left(a^{\frac{p}{q}}\right) = -\frac{p}{q}\ln\left(a\right)$$

Ainsi, pour tout nombre rationnel x on a

$$\ln\left(a^{x}\right) = x \ln\left(a\right)$$

Soit encore

$$a^{x} = \exp(x \ln(a)).$$

Lorsque x est un nombre réel (et non plus nécessairement un nombre rationnel), le membre de droite de cette dernière égalité garde un sens :

Définition

Soit a un réel strictement positif. Pour tout nombre réel x, on pose

$$a^{x} := \exp(x \ln(a)).$$

Remarque

En particulier pour a = e, on obtient

$$e^x = \exp(x)$$
.

On emploiera donc indifféremment les notations e^x et exp(x).

Propriétés

Soit a un réel strictement positif, $a \neq 1$. Quels que soient les réels x et y

$$a^{x+y} = a^x \times a^y, \quad a^{-x} = \frac{1}{a^x}, \quad a^{x-y} = \frac{a^x}{a^y},$$

 $(a^x)^y = a^{xy}.$

Exponentielle de base a

Définition

Soit a un réel strictement positif, $a \neq 1$.

- la fonction $x \mapsto a^x = \exp(x \ln(a))$ est appelée fonction exponentielle de base a.
- la fonction exponentielle $x \mapsto e^x = \exp(x)$ est donc la fonction exponentielle de base e.

Propriétés

Soit a un réel strictement positif, $a \neq 1$.

- La fonction exponentielle de base a est définie sur \mathbb{R} .
- La fonction exponentielle de base a est continue sur \mathbb{R} .
- ullet La fonction exponentielle de base a est dérivable sur ${\mathbb R}$ et

pour tout
$$x \in \mathbb{R}$$
, $(a^x)' = (\exp(x \ln(a)))' = \ln(a)a^x$

Limites

 \bigcirc si a > 1 alors

$$\lim_{x\to +\infty} a^x = +\infty \quad \text{et} \quad \lim_{x\to -\infty} a^x = 0.$$

② si 0 < a < 1 alors

$$\lim_{x \to +\infty} a^x = 0 \quad \text{et} \quad \lim_{x \to -\infty} a^x = +\infty.$$

Variations

- \bullet si a > 1 alors la fonction exponentielle de base a est croissante.
- 2 si 0 < a < 1 alors la fonction exponentielle de base a est décroissante.

II. - Fonctions usuelles

II.4. - Fonctions puissances

Les fonctions puissances

Définition

Soit *m* un nombre réel donné.

La fonction $x \mapsto x^m = e^{m \ln(x)}$ définie pour tout réel strictement positif x est appelée fonction puissance d'exposant m.

Propriétés

- ullet Les fonctions puissances sont définies sur $]0;+\infty[$,
- \bullet La fonction puissances sont continues sur]0; $+\infty$ [,
- ullet La fonction puissances sont dérivables sur $]0;+\infty[$ et

pour tout
$$x \in]0; +\infty[, (x^m)' = mx^{m-1}.$$

Propriétés

Soit m un nombre réel donné. Quels que soient les réels strictement positifs x et y

$$(xy)^m = x^m.y^m, \quad x^{-m} = \frac{1}{x^m}, \quad \left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}.$$

Soit m et p deux nombres réels donnés. Quel que soit le réel strictement positifs x

$$x^{m+p} = x^m x^p$$
, $(x^m)^p = x^{mp}$.

Tableau de variation

faire les cas m > 1, m = 1, 0 < m < 1, m = 0 et m < 0

Courbe

II. - Fonctions usuelles

II.5. - Fonction sinus

Ensemble de définition

La fonction sinus est définie sur \mathbb{R} à valeurs dans [-1;1].

Continuité

La fonction sinus est continue sur \mathbb{R} .

Périodicité

La fonction sinus est 2π -périodique i.e.

pour tout
$$x \in \mathbb{R}$$
, $\sin(x + 2\pi) = \sin(x)$

On peut donc se borner à étudier la fonction sinus sur un intervalle dont la longueur est égale à cette période, par exemple $[-\pi;\pi]$. En effet pour construire la courbe représentative $\mathcal C$ dans un repère orthonormé $(O,\vec i,\vec j)$, on commence par la tracer sur $[-\pi;\pi]$, puis ensuite on effectue des translations de vecteur $2k\pi \vec i$ $(k\in\mathbb Z)$.

Imparité

La fonction sinus est impaire i.e.

pour tout
$$x \in \mathbb{R}$$
, $\sin(-x) = -\sin(x)$

On peut donc restreindre l'intervalle d'étude de la fonction à l'intervalle $[0; \pi]$.

En effet pour tracer C sur $[-\pi; \pi]$, il suffira de la tracer sur $[0; \pi]$ et d'effectuer ensuite une symétrie par rapport à l'origine 0 du repère.

Quelques valeurs à connaitre

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Dérivabilité

La fonction sinus est dérivable sur $\mathbb R$ et

pour tout
$$x \in \mathbb{R}$$
, $\sin'(x) = \cos(x)$

Tableau de variation

II. - Fonctions usuelles

II.6. - Fonction cosinus

Ensemble de définition

La fonction cosinus est définie sur \mathbb{R} à valeurs dans [-1;1].

Continuité

La fonction cosinus est continue sur \mathbb{R} .

Périodicité

La fonction cosinus est 2π -périodique i.e.

pour tout
$$x \in \mathbb{R}$$
, $\cos(x + 2\pi) = \cos(x)$

On peut donc se borner à étudier la fonction cosinus sur un intervalle dont la longueur est égale à cette période, par exemple $[-\pi;\pi]$.

De nouveau pour construire la courbe représentative $\mathcal C$ dans un repère orthonormé $(O,\vec i,\vec j)$, on commence par la tracer sur $[-\pi;\pi]$, puis ensuite on effectue des translations de vecteur $2k\pi\vec i$ $(k\in\mathbb Z)$.

Parité

La fonction cosinus est paire i.e.

pour tout
$$x \in \mathbb{R}$$
, $\cos(-x) = \cos(x)$

On peut donc restreindre l'intervalle d'étude de la fonction à l'intervalle $[0; \pi]$.

En effet pour tracer C sur $[-\pi; \pi]$, il suffira de la tracer sur $[0; \pi]$ et d'effectuer ensuite une symétrie par rapport à l'axe des ordonnées.

Quelques valeurs à connaitre

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Dérivabilité

La fonction cosinus est dérivable sur \mathbb{R} et

pour tout
$$x \in \mathbb{R}$$
, $\cos'(x) = -\sin(x)$

Tableau de variation

х	0	$\frac{\pi}{2}$	π
$\cos'(x)$		_	
cos(x)	1	0	-1

II. - Fonctions usuelles

II.7. - Fonction tangente

Ensemble de définition

La fonction tangente est définie sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,\ k\in\mathbb{Z}\}$ à valeurs dans $\mathbb{R}.$

Continuité

La fonction tangente est continue sur les intervalles] $-\frac{\pi}{2} + k\pi$; $\frac{\pi}{2} + k\pi$ [, $k \in \mathbb{Z}$.

Périodicité

La fonction tangente est π -périodique i.e.

pour tout
$$x \neq \frac{\pi}{2} + k\pi$$
, $\tan(x + \pi) = \tan(x)$

On peut donc se borner à étudier la fonction tangente sur un intervalle de longueur π , par exemple $]-\frac{\pi}{2};\frac{\pi}{2}[.$

En effet pour construire la courbe représentative $\mathcal C$ dans un repère orthonormé $(O,\vec i,\vec j)$, on commence par la tracer sur $]-\frac{\pi}{2};\frac{\pi}{2}[$, puis ensuite on effectue des translations de vecteur $k\pi\vec i$ $(k\in\mathbb Z)$.

Imparité

La fonction tangente est **impaire** i.e.

pour tout
$$x \neq \frac{\pi}{2} + k\pi$$
, $\tan(-x) = -\tan(x)$

On peut donc restreindre l'intervalle d'étude de la fonction à l'intervalle $[0; \frac{\pi}{2}[$.

En effet pour tracer $\mathcal C$ sur] $-\frac{\pi}{2}$; $\frac{\pi}{2}$ [, il suffira de la tracer sur [0; $\frac{\pi}{2}$ [et d'effectuer ensuite une symétrie par rapport à l'origine 0 du repère.

Quelques valeurs à connaitre

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
tan(x)	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	×

Dérivabilité

La fonction tangente est dérivable sur tout intervalle où elle est définie et

pour tout
$$x \neq \frac{\pi}{2} + k\pi$$
, $\tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$

Tableau de variation

Х	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
tan'(x)		+	
tan(x)	0	1	-∞

II. - Fonctions usuelles

II.8. - Fonctions hyperboliques

Pour la commodité des calculs on introduit les fonctions suivantes

définition

• la fonction cosinus hyperbolique, notée ch, définie par

pour tout
$$x \in \mathbb{R}$$
, $\operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$

ullet la fonction sinus hyperbolique, notée ${
m sh}$, définie par

pour tout
$$x \in \mathbb{R}$$
, $\operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$

• la fonction tangente hyperbolique, notée th, définie par

pour tout
$$x \in \mathbb{R}$$
, $\operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

- 4 □ b 4 ∰ b 4 ≣ b 4 ≣ b 9 Q (°)

Ensemble de définition

Les fonctions hyperboliques sont définies sur \mathbb{R} .

Continuité

Les fonctions hyperboliques sont continues sur \mathbb{R} .

Parité - imparité

• la fonction cosinus hyperbolique est paire i.e.

pour tout
$$x \in \mathbb{R}$$
 $\operatorname{ch}(-x) = \operatorname{ch}(x)$.

• la fonction sinus hyperbolique est impaire i.e.

pour tout
$$x \in \mathbb{R}$$
 $sh(-x) = -sh(x)$.

• la fonction tangente hyperbolique est impaire i.e.

pour tout
$$x \in \mathbb{R}$$
 $\operatorname{th}(-x) = -\operatorname{th}(x)$.

On peut donc restreindre l'intervalle d'étude de ces trois fonctions à l'intervalle $[0; +\infty[$.

Propriété

pour tout
$$x \in \mathbb{R}$$
 $\operatorname{ch}^2(x) - \operatorname{sh}^2(x) = 1$.

Limites

- $\lim_{x \to +\infty} \operatorname{ch}(x) = +\infty,$ $\lim_{x \to +\infty} \operatorname{sh}(x) = +\infty,$
- $\lim_{x\to +\infty} \operatorname{th}(x) = 1.$

Dérivabilité

ullet la fonction cosinus hyperbolique est dérivable sur ${\mathbb R}$ et

pour tout
$$x \in \mathbb{R}$$
 $\operatorname{ch}'(x) = \operatorname{sh}(x)$.

ullet la fonction sinus hyperbolique est dérivable sur ${\mathbb R}$ et

pour tout
$$x \in \mathbb{R}$$
 $sh'(x) = ch(x)$.

ullet la fonction tangente hyperbolique est dérivable sur ${\mathbb R}$ et

pour tout
$$x \in \mathbb{R}$$
 $\operatorname{th}'(x) = \frac{1}{\operatorname{ch}^2(x)} = 1 - \operatorname{th}^2(x)$.

III.1. - Fonction arcsin(us)

La fonction sinus étant périodique, elle ne peut pas être injective et donc n'est pas bijective de $\mathbb R$ dans [-1;1]. Elle ne peut donc pas avoir une fonction récipropque.

Toutefois, la restriction de la fonction sinus à l'intervalle $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ est continue strictement croissante à valeurs dans [-1;1]. Elle définit donc une bijection de $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ sur [-1;1] et elle admet donc une fonction réciproque.

Définition

- On appelle arcsinus et on note arcsin (ou Asin ou sin^{-1}) la fonction réciproque de la restriction de la fonction sinus à l'intervalle $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ à valeurs dans $\left[-1; 1\right]$.
- L'arcsinus du réel $x \in [-1; 1]$ est l'unique solution dans l'intervalle $[-\frac{\pi}{2}; \frac{\pi}{2}]$ de l'équation d'inconnue $y : \sin(y) = x$. On le note arcsin (x).
- On a

pour tout
$$y \in [-1; 1]$$
, $\sin(\arcsin(y)) = y$,
pour tout $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, $\arcsin(\sin(x)) = x$.

Propriétés

- La fonction arcsinus est définie sur [-1;1] à valeurs dans $[-\frac{\pi}{2};\frac{\pi}{2}]$
- ullet La fonction arcsinus est continue, strictement croissante sur [-1;1]
- La fonction arcsinus est impaire
- on a

pour tout
$$x \in [-1; 1]$$
, $\cos(\arcsin(x)) = \sqrt{1 - x^2}$.

ullet La fonction arcsinus est dérivable sur] -1; 1[et

pour tout
$$x \in]-1;1[, \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}.$$

III.2. - Fonction arccos(inus)

De même, la **restriction** de la fonction cosinus à l'intervalle $[0; \pi]$ est continue strictement décroissante à valeurs dans [-1; 1]. Elle définit donc une bijection de $[0; \pi]$ sur [-1; 1] et elle admet donc une fonction réciproque.

Définition

- On appelle arccosinus et on note arccos (ou Acos ou cos⁻¹) la fonction réciproque de la restriction de la fonction cosinus à l'intervalle [0; π] à valeurs dans [-1; 1].
- L'arccosinus du réel $x \in [-1; 1]$ est l'unique solution dans l'intervalle $[0; \pi]$ de l'équation d'inconnue $y : \cos(y) = x$. On le note arccos (x).
- On a

pour tout
$$y \in [-1; 1]$$
, $\cos(\arccos(y)) = y$,
pour tout $x \in [0; \pi]$, $\arccos(\cos(x)) = x$.

Propriétés

- ullet La fonction arccosinus est définie sur [-1;1] à valeurs dans $[0;\pi]$
- La fonction arccosinus est continue, strictement décroissante sur [-1; 1]
- on a

pour tout
$$x \in [-1; 1]$$
, $\sin(\arccos(x)) = \sqrt{1 - x^2}$.

ullet La fonction arccosinus est dérivable sur] -1; 1[et

pour tout
$$x \in]-1; 1[, arccos'(x) = \frac{-1}{\sqrt{1-x^2}}.$$

III.3. - Fonction arctan(gente)

La **restriction** de la fonction tangente à l'intervalle $]-\frac{\pi}{2};\frac{\pi}{2}[$ est continue strictement croissante à valeurs dans \mathbb{R} . Elle définit donc une bijection de $]-\frac{\pi}{2};\frac{\pi}{2}[$ sur \mathbb{R} et elle admet donc une fonction réciproque.

Définition

- On appelle arctangente et on note arctan (ou Atan ou tan^{-1}) la fonction réciproque de la restriction de la fonction tangente à l'intervalle] $-\frac{\pi}{2}$; $\frac{\pi}{2}$ [à valeurs dans \mathbb{R} .
- L'arctangente du réel $x \in \mathbb{R}$ est l'unique solution dans l'intervalle $]-\frac{\pi}{2};\frac{\pi}{2}[$ de l'équation d'inconnue $y:\tan(y)=x.$ On le note $\arctan(x).$
- On a

pour tout
$$y \in \mathbb{R}$$
, $tan(arctan(y)) = y$,
pour tout $x \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, $arctan(tan(x)) = x$.

→□▶→□▶→□▶→□▶ □ ●

Propriétés

- \bullet La fonction arctangente est définie sur $\mathbb R$ à valeurs dans] $\frac{\pi}{2};\frac{\pi}{2}[$
- ullet La fonction arctangente est continue, strictement croissante sur ${\mathbb R}$
- La fonction arctangente est impaire
- ullet La fonction arcsinus est dérivable sur ${\mathbb R}$ et

pour tout
$$x \in \mathbb{R}$$
, $\arctan'(x) = \frac{1}{1+x^2}$.

X	$-\infty$	0	$+\infty$
arctan'(x)		+	
arctan(x)	$-\frac{\pi}{2}$	_0	$\frac{\pi}{2}$

