KORTLÆGNING VE TIL PROCES

Delrapport 4 - Varmepumpe- og fjernvarmepotentialer

Marts 2013

Version 3, 1. marts 2013 Udarbejdet af: PMP, SJN, CRI Kvalitetssikret af: PMP

Viegand Maagøe Nr. Farimagsgade 37 1364 København K. Telefon 33 34 90 00

Indholdsfortegnelse

1	Introduktion				
	1.1	Sammenfatning4			
	1.2	Beregningsforudsætninger			
2	Erhve	rvslivets energiforbrug	7		
	2.1	Energiforbrug fordelt på energiformer			
	2.2	Varmebehov fordelt på temperaturniveau			
3	Varme	epumper	. 12		
	3.1	Tidligere potentialeopgørelser12			
	3.2	Teknisk/økonomiske problemstillinger14			
4	Fjernv	varme	. 18		
	4.1	Prisforhold fjernvarme/naturgas18			
	4.2	Teknisk/økonomiske problemstillinger19			
5	Refere	encer	. 21		

1 Introduktion

Nærværende rapport er udarbejdet som led i Viegand Maagøes assistance til Energistyrelsen i forberedelsen af den kommende tilskudsordning "VE til proces" – en ordning der tager sigte på at konvertere en væsentlig del af erhvervslivets fossile brændselsforbrug til vedvarende energikilder og fjernvarme.

Rapporten udgør delrapport 4 af 4:

- Delrapport 1: Kortlægning af potentialer
- Delrapport 2: Danske styrkepositioner
- Delrapport 3: Business cases
- Delrapport 4: Varmepumpe- og fjernvarmepotentialer

Formålet med nærværende delrapport 4 er at vurdere potentialerne for:

- omstilling af erhvervslivets procesenergiforbrug til fjernvarme
- at anvende varmepumper til erhvervslivets procesenergiforbrug

Disse vurderinger tager i vid udstrækning afsæt i tidligere potentialevurderinger udarbejdet for hhv. Energistyrelsen og Go'Energi /1/ - /3/.

Desuden angår potentialevurderingen mere principielle sammenhænge ift. andre indsatsområder, det vil sige etablering af biomassekedel, udnyttelse af overskudsvarme m.m.

1.1 Sammenfatning

Det vurderes sammenfattende, at der er et vist potentiale for anvendelse af varmepumper til procesvarmeformål i erhvervslivet – af størrelsesordnen 3-4 PJ/år såfremt der accepteres tilbagebetalingstider op til 4 år.

Der pågår således en del aktiviteter på dette område, men overordnet set er potentialet for at anvende varmepumper til procesformål begrænset af:

- At højtemperatur opvarmningsformål enten er damp-baserede eller kræver relativt dyre varmepumpeinstallationer, hvilket med relativt høje driftsomkostninger (lav COP) og høje investeringer (2-trins-løsninger) "udhuler" det tekniske potentiale betydeligt.
- Det er begrænset hvad der er af muligheder for at afsætte lavtemperatur varme fra varmepumpeanlæg i større skala. Potentialet for at anvende varmepumper til procesformål ved lavere temperaturer vurderes således typisk at angå enkeltanvendelser med lille volumen og ikke bredere forsyningsstrukturer med større volumen.

Det skal hertil nævnes, at der vurderes at være et interessant potentiale for at anvende MVRvarmepumper (Mechanical Vapour Recompression) i udvalgte sektorer. Anvendelse af MVRteknologi kan for eksempel i fiske- og kødbenmel-industrien kunne frigøre overskudvarme, der kan anvendes til fjernvarmeformål.

Ift. anvendelse af fjernvarme til procesformål vurderes det, at potentialet er ret begrænset. Det skyldes flere forhold:

- At forsyningstemperaturen typisk er for lav til at dække større procesformål, og at en mere udbredt forsyning af fjernvarme til den enkelte virksomhed vil kræve etablering af relativt investeringstunge nye forsyningssystemer.
- At afregningspriser og tilslutningsomkostninger i mange tilfælde vil føre frem til en dyrere energiforsyning end hvad virksomhederne har i dag
- At geografiske forhold (udbredning af fjernvarmenet i erhvervsområder) i de fleste tilfælde ikke muliggør anvendelse af fjernvarme.

Det skal understreges, at det i kortlægningsarbejdet specielt har været vanskeligt at indsamle data om sammenhængende fjernvarmepriser og tilslutningsomkostninger ved overgang til fjernvarmeforsyning.

Det anbefales, at der gennemføres en mere detaljeret kortlægning af disse forhold såvel som i hvilke områder der pågår en udbygning af fjernvarmenet i erhvervskvarterer. Herigennem kan potentialerne gøres mere konkrete.

Det anbefales ligeledes at se en udbredelse af fjernvarmeanvendelse i erhvervslivet som tæt forbundet med rumvarmeområdet – kun kombinationsløsninger vil i sidste ende kunne medvirke til realisering af de potentialer, der samfunds- og privatøkonomisk er attraktive.

For varmepumpepotentialerne bør det overvejes om der skal gennemføres mere sektor- og teknologispecifikke kortlægninger af anvendelsesmulighederne. Det har inden for rammerne af nærværende projekt ikke været muligt at arbejde med så detaljerede opgørelsesmetoder.

1.2 Beregningsforudsætninger

Det opstilles i denne delrapport enkelte steder prisvurderinger af alternative forsyningsformer. Der tages i disse vurderinger udgangspunkt i Energistyrelsens priser for naturgas som gengivet i tabel 1 nedenfor.

	Naturgas						
Pris fordelt på anvendelses kategori 2012	El	Proces	Rumvarme	Overskudsv. > 572 kr/MWh	Overskudsv. 170 kr/MWh		
	[kr./GJ]	[kr./GJ]	[kr./GJ]	[kr./GJ]	[kr./GJ]		
SO2	-	1	1	-	-		
CO2/kvote	9,2	9,2	9,2	ı	-		
NOx	1,0	1,0	1,0	ı	-		
Energiafgift (Naturgasafgift)	-	7,8	59,4	ı	-		
Forsyningssikkerhedsafgift				ı	-		
Overskudsvarme afgift (max)	-	1	1	51,6	15,3		
Total afgift	10,2	18,0	69,6	51,6	15,3		
Brændselsomkostning (An værk)	63,1	63,1	63,1	-	-		
Total pris	73,3	81,1	132,7	51,6	15,3		

Tabel 1. Energistyrelsens naturgaspriser til forskellige anvendelsesformål (elproduktion hhv. procesvarme hhv. rumvarme).

En række af de anvendte cases bygger herudover på afsnit i øvrige delrapporter under dette projekt.

Viegand Maagøe

København

Marts 2013

2 Erhvervslivets energiforbrug

Potentialet for at anvende fjernvarme og varmepumper til procesenergiformål i erhvervslivet bunder i det forhold at en stor del af varmebehovet ligger ved relativt lave temperaturer (<100°C).

Ved lave temperaturer kan fjernvarmen "være med", såvel som at varmepumper i større eller mindre grad kan finde anvendelse. Traditionelle varmepumpeløsninger (ammoniak) kan levere varme op til ca. 60°C, medens nyere typer kan gå højere op i temperatur (op til over 100°C).

2.1 Energiforbrug fordelt på energiformer

Det er i Go'Energis kortlægning af potentialer for udnyttelse af overskudsvarme /1/ opgjort hvor meget af energiforbruget der ligger på brændsler, elektricitet, fjernvarme m.m. - se tabel 2 nedenfor.

Branche	Energiforbrug	Brændsel	EL	Fjernvarme	Transport (+special)	Rumvarmeforbrug
[-]	[GJ]	[GJ]	[GJ]	[GJ]	[GJ]	[GJ]
Slagterier	4.246.412	2.487.286	1.599.86	130.961	28.300	424.641
Fiskeindustri	2.849.394	2.292.697	482.03	67.250	7.409	256.445
Mejerier	5.381.894	4.443.704	907.95	945	29.295	184.599
Bagerier, brødfabrikker mv.	2.993.845	1.756.030	1.008.76	187.460	41.592	524.617
Anden fødevareindustri	11.458.517	8.333.897	2.522.54	530.864	71.212	1.375.022
Drikkevareindustri	3.700.467	2.706.018	725.21	239.853	29.384	257.936
Tobaksindustri	258.795	150.627	89.83	17.947	387	64.813
Tekstil- og læderindustri	1.395.360	717.751	509.08	103.685	64.837	147.675
Træindustri	3.523.959	2.519.060	733.55	236.016	35.324	921.670
Papirindustri	4.772.583	3.743.310	950.59	48.863	29.816	203.289
Trykkerier mv.	1.329.277	404.999	680.35	162,601	81.322	450.311
Kemisk industri	7.605.411	4.786.692	2.637.05	121.720	59.940	544.732
Medicinalindustri	3.350.419	1.293.903	1.342.35	669.352	44.812	1.022.109
Plast- og gummiindustri	3.134.066	1.080.780	1.860.34	128.568	64.376	641.308
Glas- og betonindustri	17.065.416	14.784.793	2.151.86	88.638	40.118	664.381
Metalindustri	8.696.988	5.263.503	2.672.31	596.151	165.015	410.689
Elektronikindustri	1.112.978	480.466	447.55	130.094	54.865	541.879
Fremst. af elektrisk udstyr	973.886	401.474	411.81	133.017	27.578	450.178
Maskinindustri	6.114.198	2.986.041	2.229.84	735.911	162.401	2.707.859
Transportmiddelindustri	1.637.638	838.692	659.669	118.004	21.273	522.961
Møbel og anden industri mv.	4.020.641	2.069.558	1.358.85	416.240	175.993	1.488.777
Byggeri og anlæg	20.250.849	18.170.457	856.29	-	1.224.095	.
Handel og Service	72.625.538	23.955.439	25.033.64	19.058.263	4.578.192	35.993.315
Total	188.498.531	105.667.177	51.871.41	23.922.403	7.037.536	49.799.208

Tabel 2: Erhvervslivets totale energiforbrug fordelt på brancher samt forbrugstyper/-områder (Danmarks statistik år 2010).

Denne opgørelse har ikke taget højde for at en del af brændselsforbruget i flere brancher ligger på "arbejdskørsel", det vil sige anvendelse af motorbenzin og diesel til lastvogne, trucks og arbejdsmaskiner.

Dette har specielt indflydelse på energiforbruget i brancherne "Bygge og anlæg" samt "Handel og service", medens en række øvrige sektorer også er påvirket af dette forhold.

Tabel 3 nedenfor viser således en opgørelse af energiforbruget per branche, hvor kolonnen "transport" er opdateret med "motorbenzin" og "diesel".

Branche	Energiforbrug	Brændsel	EL	Fjernvarme	Transport (+special)	Rumvarmeforbrug
[-]	[GJ]	[GJ]	[GJ]	[GJ]	[GJ]	[GJ]
Slagterier	4.246.412	2.340.510	1.599.865	130.961	175.076	409.964
Fiskeindustri	2.849.394	2.246.337	482.038	67.250	53.769	252.273
Mejerier	5.381.894	4.157.706	907.950	945	315.293	174.789
Bagerier, brødfabrikker mv.	2.993.845	1.523.752	1.008.763	187.460	273.870	483.915
Anden fødevareindustri	11.458.517	7.966.158	2.522.544	530.864	438.951	1.330.893
Drikkevareindustri	3.700.467	2.248.328	725.212	239.853	487.074	226.033
Tobaksindustri	258.795	145.512	89.834	17.947	5.502	63.532
Tekstil- og læderindustri	1.395.360	524.943	509.087	103.685	257.645	127.270
Træindustri	3.523.959	2.327.988	733.559	236.016	226.396	871.697
Papirindustri	4.772.583	3.711.074	950.594	48.863	62.052	201.916
Trykkerier mv.	1.329.277	295.855	680.355	162.601	190.466	413.337
Kemisk industri	7.605.411	4.656.504	2.637.059	121.720	190.128	535.408
Medicinalindustri	3.350.419	1.279.967	1.342.352	669.352	58.748	1.017.858
Plast- og gummiindustri	3.134.066	901.345	1.860.342	128.568	243.811	604.591
Glas- og betonindustri	17.065.416	13.990.146	2.151.867	88.638	834.765	633.445
Metalindustri	8.696.988	4.338.981	2.672.319	596.151	1.089.537	367.031
Elektronikindustri	1.112.978	372.949	447.553	130.094	162.382	489.532
Fremst. af elektrisk udstyr	973.886	299.804	411.817	133.017	129.248	403.181
Maskinindustri	6.114.198	2.239.033	2.229.845	735.911	909.409	2.377.024
Transportmiddelindustri	1.637.638	761.930	659.669	118.004	98.035	498.448
Møbel og anden industri mv.	4.020.641	1.284.537	1.358.850	416.240	961.014	1.198.097
Byggeri og anlæg	20.250.849	5.826.002	856.297	-	13.568.550	-
Handel og Service	72.625.538	9.382.162	25.033.644	19.058.263	19.151.469	28.770.780
Total	188.498.531	72.821.523	51.871.415	23.922.403	39.883.190	41.451.011

Tabel 3. Energiforbrug per branche korrigeret for "arbejdskørsel".

Det ses, at det samlede varmeforbrug til processer og rumvarme (brændsel plus fjernvarme) udgør af størrelsesordenen 96 PJ/år, hvoraf rumvarmeforbruget udgør ca. 41 PJ/år. Procesenergiforbruget i ovenstående brancher kan således opgøres til at være af størrelsesordenen 55 PJ/år.

En neddeling af fjernvarmeforbruget er sket i Energistyrelsens kortlægning af erhvervslivets energiforbrug i 2009 /2/, se tabel 4 nedenfor.

	Landbrug o	g fiskeri	Indus	tri	Privat han servi	_	l alt	
Slutanvendelser	TJ	%	TJ	%	TJ	%	TJ	%
Opvarmning / kogning	0	0	655	9	93	1	748	3
Tørring	0	0	293	4	286	2	580	2
Inddampning	0	0	674	9	0	0	674	3
Anden varme op til 150°C	1.965	99	65	1	0	0	2.030	8
Rumvarme	19	1	5.460	76	16.279	98	21.759	84
l alt	1.985	100	7.149	100	16.659	100	25.793	100
Fjernvarmes %-andel af samlet varmeforbrug	5,4	-	7,8	-	65,5	-	16,8	-

Tabel 4. Anvendelse af fjernvarme i hovedsektorer /2/ (opgjort for 2006).

Data i tabel 4 er opgjort for 2006, hvilket dog vurderes at være nogenlunde retvisende ift. at konkludere, at anvendelsen af fjernvarme til procesformål er ret begrænset.

Dog skal det bemærkes, at energiforbruget i handels- og servicesektoren generelt er stigende (specielt elforbrug), hvilket peger i retning af at fjernvarmemængden leveret til handels- og servicesektoren nok er højere i dag end i 2006.

Det ses, at fjernvarmeforbruget til "proces" er minimalt af størrelsesordenen 1,5 PJ/år, medens fjernvarme til rumvarmeformål udgør op mod 22 PJ/år, specielt i handels- og servicesektoren (butikker, kontorer m.m.).

Sammenholdt med tabel 4 ovenfor ses det desuden, at fjernvarme dækker under halvdelen af rumvarmeforbruget uden for handel og servicesektoren – ca. 5,5 PJ/år ud af ca. 14 PJ/år. Der er altså et stort rumvarmebehov i industrien, som kunne dækkes med fjernvarme, såfremt fjernvarmenet var etableret i nærheden af virksomhederne. "Anden varme op til 150C" under landbrug og fiskeri i tabel 4 er gartnerier.

2.2 Varmebehov fordelt på temperaturniveau

I tabel 5 nedenfor er temperaturniveauet for procesenergiforbruget i de enkelte sektorer vurderet.

Vurderingerne er baseret på tidligere opgørelser /2/, idet disse dog er detaljeret yderligere på enkelte sektorer ift. en vurdering af hvilke enhedsoperationer og energiforbrug, der finder sted i hver enkelt af disse.

Enkelte brancher af brancherne i tabel 4 er dog meget sammensatte og burde detaljeres yderligere. For eksempel dækker mejerier over såvel "mælkepulverfabrikker" og "ostemejerier", hvilket energimæssigt set er 2 meget forskellige fabrikstyper med vidt forskellige temperaturprofiler for varmebehovet.

Branche	Energiforbrug	Andel af proces	Andel af proces
[-]	[GJ]	<100 °C (%)	<60 ℃ (%)
Slagterier	4.246.412	80	40
Fiskeindustri	2.849.394	80	40
Mejerier	5.381.894	70	35
Bagerier, brødfabrikker mv.	2.993.845	40	20
Anden fødevareindustri	11.458.517	70	35
Drikkevareindustri	3.700.467	70	35
Tobaksindustri	258.795	90	45
Tekstil- og læderindustri	1.395.360	70	35
Træindustri	3.523.959	90	45
Papirindustri	4.772.583	40	20
Trykkerier mv.	1.329.277	80	40
Kemisk industri	7.605.411	40	20
Medicinalindustri	3.350.419	60	30
Plast- og gummiindustri	3.134.066	50	25
Glas- og betonindustri	17.065.416	10	5
Metalindustri	8.696.988	10	5
Elektronikindustri	1.112.978	80	40
Fremst. af elektrisk udstyr	973.886	80	40
Maskinindustri	6.114.198	50	25
Transportmiddelindustri	1.637.638	50	25
Møbel og anden industri mv.	4.020.641	70	35
Byggeri og anlæg	20.250.849	50	25
Handel og Service	72.625.538	50	25

Tabel 5: Skønnet (af Viegand Maagøe) fordeling af procesenergiforbruget på temperaturniveau (bemærk at "energiforbrug" er branchens samlede energiforbrug og at procentsatser kun angår procesdelen af dette).

Data i tabel 5 angiver således for eksempel, at af størrelsesordenen 70% af procesenergiforbruget i mejerisektoren ligger under 100°C, medens af størrelsesordenen 35% ligger under 60°C.

Denne vurdering er baseret på, at der i mejerisektoren anvendes store mængder energi til flere lav-temperatur enhedsoperationer:

- Pasteurisering
- Rengøring (inkl. automatiske rengøringsanlæg CIP Cleaning In Place)
- Opvarmning af luft til tørreprocesser (spraytørring)
- Opvarmning af produkt
- Varmholdelse af produkt

I /2/ kan der findes en detaljeret opgørelse af procesenergiforbruget i 71 delsektorer inkl. beskrivelse af de procestrin og enhedsoperationer der anvendes i hver enkelt delsektor.

I tabel 6 nedenfor er procentsatserne i ovenstående tabel 4 omregnet til energiforbrug branche for branche og sammen med data fra tabel 2 fordelt på samlet varmeforbrug, rumvarmeforbrug, samlet procesvarmebehov og dettes opdeling på temperaturniveauer.

Branche	Varmeforbrug	Rumvarmeforbrug	Procesvarme	Proces (T < 99 °C)	Proces (T < 60 °C)
[-]	[GJ]	[GJ]	[GJ]	[GJ]	[GJ]
Slagterier	2.471.471	409.964	2.061.507	1.649.206	824.603
Fiskeindustri	2.313.587	252.273	2.061.314	1.649.051	824.526
Mejerier	4.158.651	174.789	3.983.862	2.788.703	1.394.352
Bagerier, brødfabrikker mv.	1.711.212	483.915	1.227.297	490.919	245.459
Anden fødevareindustri	8.497.022	1.330.893	7.166.129	5.016.290	2.508.145
Drikkevareindustri	2.488.181	226.033	2.262.148	1.583.504	791.752
Tobaksindustri	163.459	63.532	99.927	89.934	44.967
Tekstil- og læderindustri	628.628	127.270	501.358	350.951	175.475
Træindustri	2.564.004	871.697	1.692.307	1.523.077	761.538
Papirindustri	3.759.937	201.916	3.558.021	1.423.208	711.604
Trykkerier mv.	458.456	413.337	45.119	36.095	18.048
Kemisk industri	4.778.224	535.408	4.242.816	1.697.127	848.563
Medicinalindustri	1.949.319	1.017.858	931.461	558.877	279.438
Plast- og gummiindustri	1.029.913	604.591	425.322	212.661	106.330
Glas- og betonindustri	14.078.784	633.445	13.445.339	1.344.534	672.267
Metalindustri	4.935.132	367.031	4.568.101	456.810	228.405
Elektronikindustri	503.043	489.532	13.511	10.809	5.404
Fremst, af elektrisk udstyr	432.821	403.181	29.640	23.712	11.856
Maskinindustri	2.974.944	2.377.024	597.920	298.960	149.480
Transportmiddelindustri	879.934	498.448	381.486	190.743	95.371
Møbel og anden industri mv.	1.700.777	1.198.097	502.680	351.876	175.938
Byggeri og anlæg	5.826.002	?	?	?	?
Handel og Service	28.440.425	28.770.780	-330.355	-165.177	-82.589
Total	96.743.926	41.451.011	49.466.913	21.747.047	10.873.523

Tabel 6: Erhvervslivets totale varmeforbrug fordelt på brancher og anvendelsesformål.

Det ses, at af størrelsesordenen halvdelen af procesvarmebehovet ligger under 100°C, hvoraf igen halvdelen ligger under 60°C – hhv. 21,7 PJ/år og 10,8 PJ/år.

Af dette lavtemperatur procesenergibehov ligger en meget stor andel i de fødevarerelaterede brancher, dvs. slagterier, mejerier, fiskeri, anden fødevareindustri osv., altså brancher med relativt ensartede behov for rengøring/CIP, pasteurisering, opvarmning af luft til tørring, produktopvarmning, varmholdelse af produkt m.m.

I "byggeri og anlæg" er der ikke tilgængelige data om fordelingen af procesenergiforbruget på anvendelsesformål. Det negative procesvarmeforbrug i "handel og service" skyldes forskelle i datakilder.

Samlet set er der dog et betydeligt teknisk potentiale for at anvende "lavtemperatur" varmeforsyningsformer – af størrelsesordenen 50 PJ/år eller godt 25% af erhvervslivets energiforbrug kan dækkes med fjernvarme eller varmepumper, såfremt alene behov under 60°C betragtes (både rumvarme og procesenergi).

3 Varmepumper

Der har været en betydelig udvikling i el/varmeprisforholdet de seneste 10 år, hvilket har været til gavn for varmepumpeløsninger /2/.

Der pågår således specielt i fødevareindustrien en lang række aktiviteter, hvor varmepumper integreres i energiforsyningen /6/, /7/ – enten ved at udnytte overskudsvarme til opvarmningsformål eller i visse tilfælde kombinerede "køle/varme"-løsninger, hvor visse processer køles og andre opvarmes med samme varmepumpekreds.

En stærkt medvirkende årsag til denne udvikling er, at energiselskabernes tilskud til energieffektivisering kan medfinansiere investeringerne i energibesparelser. Projekter for udnyttelse af overskudsvarme udløser relativt store tilskud på grund af mange "kWh" (til forskel fra elspareprojekter).

Det skal desuden bemærkes, at der pågår betydelige udviklingsprojekter på varmepumpeområdet således at nye teknologier (hybridvarmepumper, CO2-varmepumper) kan levere varme ved betydeligt højere temperaturer (>100°C) end traditionelle varmepumper. Ofte opnås også relativt bedre virkningsgrad (COP) end det muligt med traditionel varmepumpeteknologi.

3.1 Tidligere potentialeopgørelser

Det er i Go'Energis potentialeopgørelse /1/ for anvendelse af overskudsvarme opgjort at varmepumpeløsninger i betydeligt omfang kan medvirke til at udnytte overskudsvarme.

Denne potentialeopgørelse er baseret på en systematisk gennemgang af mængden af overskudsvarme fordelt på enhedsoperationer i de enkelte brancher:

- Kedelanlæg
- Tørring
- Inddampning
- Smelteprocesser
- Køleanlæg
- Trykluftanlæg
- Ventilation

For visse teknologier er det opgjort hvad der ender i køletårne (køleanlæg og inddampere) og hvilke muligheder der er for at anvende denne spildvarme til opvarmningsformål via varmepumper.

Der er i /1/ vurderet, at der samlet er et potentiale for at udnytte overskudsvarme svarende til 20 PJ/år eller ca. 10% af erhvervslivets energiforbrug såfremt der accepteres tilbagebetalingstider op til 10 år og såfremt at der anvendes varmepumper til at udnytte lav-værdig overskudsvarme (<40°C).

Dette potentiale er måske i overkanten set ift. de korrektioner der er givet ovenfor omkring tabel 2 og 3. Omvendt er der i Go'Energis potentiale opgørelse /1/ om udnyttelse af overskudsvarme ikke medtaget besparelser ved intern optimering af overskudsvarme i processer, for eksempel ved etablering af varmegenvinding i tørreprocesser, pasteuriseringsenheder m.m.

I figur 1 nedenfor er potentialets fordeling på sektorer vist.

Figur 1. Fordeling af potentiale for udnyttelse af overskudsvarme på brancher /1/.

Det ses, at det først og fremmest er i fødevarebranchen at potentialet for at udnytte overskudsvarme forefindes. Det skyldes som angivet ovenfor dels at der er et stort samlet energiforbrug i denne branche, dels at temperaturkrav i fødevarebranchen er relativt lave set i forhold til udnyttelse af varmepumper.

Figur 2 nedenfor viser overskudsvarmepotentialets fordeling på "teknologier".

Teknologi oversigt 80,0% 67,8% 70,0% 60,0% 50,0% 40,0% 30,0% 22.7% 20,0% 10,0% 0,9% 0,05% 0,01% 0,0% Anden varne over 150°C littre te Torring DE Owne Litre ME

Figur 2. Fordeling af potentiale for udnyttelse af overskudsvarme på teknologier /1/.

Det ses, at 2/3 af potentialet i vid udstrækning ligger på varmepumper. Der er i denne potentialeopgørelse ikke taget stilling til om overskudsvarme fra varmepumper skal anvendes til rumvarmeformål eller procesenergiformål – alene på den mængde overskudsvarme der er tilgængelig.

Sammenlignet med behovet under 60°C på 50 PJ/år som opgjort i forrige afsnit kan varmepumper ud fra de tilgængelige mængder overskudsvarme altså kun dække af størrelsesordenen en fjerdedel af behovet eller ca. 12 PJ/år.

Det er på grund af forskelle i opgørelsesmetoder nødvendigt at tage forbehold for nøjagtigheden af disse opgørelser. Dog er konklusionen stadig at der er betydeligt teknisk potentiale for at integrere varmepumper i procesenergiforsyningen, som med fordel kan opgøres mere detaljeret branche for branche såvel som at de økonomiske forhold skal vurderes.

3.2 Teknisk/økonomiske problemstillinger

Det ovenfor angivne tekniske potentiale for at anvende varmepumper skal skaleres ift. erhvervslivets økonomiske krav til tilbagebetalingstider.

Betydning af COP

Der er i delrapport 3 opstillet en business case, der viser, at en større varmepumpeløsning ("hybridvarmepumpe"), der leverer 1.200 kW procesvarme med en COP på 4,6 med en samlet investering på 13 mio. kr. har en tilbagebetaling på 4,1 år.

Denne løsning er illustreret i figur 3 nedenfor.

Figur 3. Varmepumpeløsning der udnytter overskudsvarme til procesvarme

Varmepumpen i figur 3 udmærker sig ved at have en relativ høj COP, da overskudsvarme opsamles ved en høj temperatur (45°C) og afsættes ved en relativt lav temperatur (63°C). Med en høj COP er driftsomkostningen til elektricitet relativt lav – og tilbagebetalingstiden dermed kort.

Tabel 7 nedenfor viser tilsvarende forholdet i COP-værdier for varmepumper med forskellige temperatursæt og for hhv. konventionelle varmepumper og hybridvarmepumper (ovenstående eksempel regnes for "100").

СОР	Traditionel varmepumpe	Hybridvarmepumpe
Fordampertemperatur 40°C Kondensatortemperatur 70°C	"61"	"100"
Fordampertemperatur 30°C Kondensatortemperatur 100°C	″38″	"56"

Tabel 7. COP-forhold for forskellige varmepumpeløsninger /8/ (det skal bemærkes, at temperaturforhold i "100" måske kan optimeres, hvilket vil forskyde indbyrdes COP-forhold i tabellen noget i forhold til de angivne værdier).

Det ses, at eksemplet i figur 3 har langt den højeste COP (laveste elforbrug), og at der i de andre tilfælde må påregnes højere driftsomkostninger og dermed længere tilbagebetalingstider.

Ift. dette skal det bemærkes, at et 30 til 100°C-løft anses for "ekstremt" i varmepumpebranchen og nødvendiggør etablering af 2-trins varmepumpeløsninger. Disse er betydeligt dyrere (investeringstillæg på 30% eller mere), hvilket forøger tilbagebetalingstiden til op mod det dobbelte.

Da industriel overskudsvarme kun sjældent er mere end 30°C varm, er COP- og trykforhold stærkt begrænsende i forhold til hvor stort potentialet er for at anvende industrielle varmepumper.

Muligheden for at anvende højtemperatur varmepumper til varmeforsyning over 100°C er derfor begrænset af at de tilgængelige spildvarmekilder nok mere rentabelt (lavere investeringer) kan udnyttes direkte til opvarmningsformål (opvarmning af produkt, rengøringsvand og bygninger m.m.).

Barrierer

Eksemplet illustreret i figur 3 ovenfor er karakteristisk for mange af de varmepumpeløsninger, der pt. er under vurdering i erhvervslivet – der er tale om at forbinde lav-værdi spildvarme fra typisk køletårne med forvarmning af enkelt-processer.

Det samme gør sig gældende ved opvarmning af vand til rengøringsformål /8/, /9/, altså at varme typisk afsættes i enkeltprocesser frem for at indgå i et bredere forsyningsstruktur.

Netop dette forhold skyldes en væsentlig barriere ift. anvendelse af varmepumper til procesenergiformål, nemlig at forsyningssystemer til processer stort set altid er baseret på damp/hedtvand, og at det er forbundet med større omkostninger at etablere ny rørføringer og varmevekslere/varmespiraler for anvendelse af varmt vand i stedet for damp. Dette gælder uanset om opvarmningsformålet er let- eller tung proces.

Som anført ovenfor er der ift. et økonomisk realistisk potentiale desuden den barriere, at industriel overskudsvarme i langt størstedelen af tilfældene er maksimalt 30-35°C. Det er forbundet med enten store driftsomkostninger at hæve temperaturen til meget mere end 60-70°C, eller store omkostninger til etablering af rørføringer for at opnå en bredere anvendelse af varmepumpen (eks. til rumvarmeformål).

Ift. det tekniske potentiale af størrelsesordenen 12 PJ/år opgjort ovenfor vil det af økonomiske årsager nok kun være en begrænset del af det tekniske potentiale der kan realiseres, måske af størrelsesordenen 3-4 PJ/år såfremt der accepteres tilbagebetalingstider op til 4 år.

Kombinationsløsninger

Det er værd at undersøge hvordan en evt. anbefaling af varmepumpeløsninger til procesenergiformål er i konflikt med eller spiller sammen med etablering af træflis-, træpille og biogasløsninger.

Rent samfundsøkonomisk må det vurderes, at samtidig etablering af 2 nye forsyningsløsninger vil have dårligere rentabilitet en at investere i én stor forsyningsløsning.

Dette kan i et vist omfang opvejes af en højere samlet effektivitet af energiforsyningen såfremt en kWh elektricitet til varmepumpedrift sidestilles med en kWh brændværdi af for eksempel træflis.

Øvrige forhold

Det skal ift. potentialevurderingerne nævnes, at specielle varmepumpeløsninger (MVR - Mechanical Vapour Recompression) til inddampnings- og kogeprocesser har stort teknisk og økonomisk potentiale i en række sektorer:

- Fødevareingredienser
- Mælkepulver
- Fiske- og kød/ben-mel (dog spildvarmedrevne)
- Kemisk industri

Bryggerier (kogeproces)

En omlægning fra traditionelt termisk energiforbrug (damp) til eldrevne kompressorer i varmepumpelignende varmeforsyning har i mange tilfælde meget attraktiv økonomi /2/.

I visse sektorer (fiskemel og kød/benmel) vil MVR-løsninger desuden frigøre overskudsvarme, der kan anvendes til fjernvarmeformål. Det skyldes, at inddamperanlæg i dag delvist opvarmes med varme fra tørreprocesserne på sådanne virksomheder, og at disse varmemængder frigøres ved omlægning af inddampningsanlæggene.

4 Fjernvarme

Potentialerne for at anvende fjernvarme i erhvervslivet er interessant at vurdere i det lys, at der pågår en betydelig udbygning af fjernvarmenettene i mange områder i Danmark.

I flere områder – for eksempel i Københavnsområdet – sker der en udbygning af fjernvarmen i blandt andet større erhvervsområder (Gladsaxe, Høje Tåstrup, Glostrup m.m.).

4.1 Prisforhold fjernvarme/naturgas

Ift. anvendelse af fjernvarme til procesenergiformål er priser for afregning og tilslutning altafgørende ift. at sikre attraktive konverteringsprojekter.

Det er erfaringen, at fjernvarmeselskaberne anvender vidt forskellig mix af faste og variable omkostninger ved tilslutning til fjernvarme.

Dette kompliceres yderligere af at forskellige i brændselsmix i forskellige områder (og heraf følgende forskellige afgiftsbelægninger) også giver store variationer i afregningspriser.

Figur 4 nedenfor viser konsekvensen af disse forhold, det vil sige at den variable del af fjernvarmeprisen varierer betydeligt på tværs af de ca. 450 fjernvarmeværker i Danmark.

Figuren viser således den variable varmepris sorteret i stigende orden for de ca. 450 fjernvarmeværker (y-aksen angiver fjernvarmepris i kr per MWh ekskl. moms, x-aksen nummer fjernvarmeværk).

Figur 4. Variabel fjernvarmepris ekskl. moms (rumvarme).

Det skal ift. figur 4 bemærkes, at rumvarmeprisen på 132 kr./GJ for naturgas angivet i tabel 1 i indledningen af denne delrapport svarer til 478 kr./MWh.

Set alene ift. variable varmepris vil det være attraktivt at anvende fjernvarme til rumvarmeformål i ca. halvdelen af fjernvarmesystemerne.

Det samme må forventes at være gældende ift. procesenergi – figur 4 angiver priser inkl. rumvarmeafgift, hvilket betyder at priserne angivet i figur 4 falder betydeligt ved anvendelse af fjernvarmen til procesformål.

Men som angivet kan også tilslutningsomkostninger/faste omkostninger være betydelige i fjernvarmesystemer.

Nedenstående figur 5 viser således variationen i fast omkostning /4/ ved anvendelse af fjernvarme til rumvarmeformål i erhvervsejendomme (kontorer).

Figur 5. Fast fjernvarmeomkostning (kr/kW) i udvalgte fjernvarmeselskaber.

Ved en pris på godt 600 kr./kW i fast omkostning vil en virksomhed med et rumvarmebehov svarende til 200.000 m3 naturgas per år (knap 2.200.000 kWh med et spidslastbehov på ca. 1000 kW) årligt skulle betale godt kr. 600.000 i fast omkostning, svarende til at en ekstra omkostning på kr. 273 kr./MWh.

Set ift. prisforholdende gengivet i figur 4 vil en sådan fast omkostning gøre fjernvarmen ikkekonkurrencedygtig til både rumvarme- som procesenergiformål i langt størstedelen af fjernvarmenettene.

Det må konkluderes, at det vil være helt individuelle pris- og afregningsforhold der vil gøre sig gældende for om fjernvarme kan anvendes i erhvervslivets energiforsyning, herunder om det lokale fjernvarmeselskab i udbygningsøjemed giver rabatter, der gør det attraktivt at anvende fjernvarme.

4.2 Teknisk/økonomiske problemstillinger

Som for varmepumpeanlæg ovenfor er de interne distributionssystemer en altafgørende barriere ift. om fjernvarme kan anvendes til procesenergiformål. Det vil være dyrt at omlægge varmeforsyning til varmt vand, hvis prisfordelen ikke er betydelig.

Øget anvendelse af fjernvarme til rumvarmeformål er absolut en mulighed i de fjernvarmenet, hvor prisforhold er attraktive, for eksempel er dette tilfældet i Gladsaxe Fjernvarmes forsyningsområde.

Men samlet må det vurderes, at potentialet for at anvende fjernvarme til procesformål må være stærkt begrænset.

Det er forsøgt at indhente mere nuancerede prisinformationer hos Dansk Fjernvarme, men det er ikke umiddelbart muligt at få uddybet prissammensætningen i de enkelte fjernvarmeområder. Således kan en lav fjernvarmepris (figur 4) dække over at der anvendes afgiftsfritaget biomasse i energiforsyningen eller det kan dække over andre forhold.

Årsagen til en lav fjernvarmepris vil være helt afgørende at kende ift. at vurdere, om fjernvarmen vil være attraktiv til procesvarmeformål. Det anbefales på denne baggrund, at der gennemføres en mere detaljeret kortlægning af dels, hvor der pågår udbygninger af fjernvarme i erhvervsområder, dels om fjernvarmepris og tilslutningsvilkår i disse områder gør det muligt også at anvende fjernvarme til procesformål.

5 Referencer

- /1/ Go'Energis kortlægningsarbejder om anvendelse af overskudsvarme gennemført someren 2012.
- Energistyrelsens kortlægning af energiforbrug og energisparepotentialer i erhvervsli-/2/ vet, 2008
- /3/ Energistyrelsens rapport "Virksomhedsrentabel udnytelse af overskudsvarme, samt afdækning af evt. potentiale", januar 2009.
- /4/ Dansk Fjernvarmes notat om tilslutningsomkostninger for fjernvarme, fremsendt af John Tang, Dansk Fjernvarme, oktober 2012.
- /5/ COP-beregninger udført af Industrimontage for hybridvarmepumper.
- /6/ Go'Energis case om udnyttelse af overskudsvarme hos Jensens Bøfhus, 2012.
- /7/ Demonstrationsprojekt om energibevidst projektering af Danish Crowns slagteri i Horsens