\mathbb{Z}_p and Arithmetic Functions

Andres Buritica Monroy

1 The integers modulo a prime

Let p be a prime.

We define \mathbb{Z}_p (the integers mod p) using an equivalence relation

$$a \equiv b \pmod{p} \iff p \mid b - a$$

over the integers.

This gives us p equivalence classes corresponding to the least residues mod p:

$$\{0, 1, 2, \dots, p-1\}.$$

• Prove that addition, subtraction, multiplication and exponentiation are consistently defined: that is, if a, b, c, d are integers with $a \equiv b \pmod{p}$ and $c \equiv d \pmod{p}$ then

$$a+c \equiv b+d \pmod{p}, \quad a-c \equiv b-d \pmod{p}, \quad ac \equiv bd \pmod{p}, \quad a^n \equiv b^n \pmod{p}.$$

- Prove that for any integer a with $p \nmid a$ there is an integer b with $0 \le b < p$ such that $ab \equiv 1 \pmod{p}$. We call b the inverse of a in mod p, notated a^{-1} .
- We may define fractions in mod p as

$$\frac{a}{b} \equiv ab^{-1} \pmod{p},$$

assuming $p \nmid b$. Prove that addition, subtraction, multiplication and division by anything nonzero still work as expected.

- Prove that $(p-1)! \equiv -1 \pmod{p}$.
- Find the least residues of

$$\binom{p-1}{k}$$
 and $\frac{1}{p}\binom{p}{k}$

in mod p.

- Let \mathbb{Z}_p^* be the set of nonzero residues mod p, and let a be an element of \mathbb{Z}_p^* . Prove that the function f(x) = ax is a bijection from \mathbb{Z}_p^* to \mathbb{Z}_p^* . Deduce that $p \mid a^{p-1} 1$.
- Prove that if $a^m \equiv 1 \pmod{p}$ and $a^n \equiv 1 \pmod{p}$ then $a^{\gcd(m,n)} \equiv 1 \pmod{p}$.

2 Arithmetic functions

We define:

- The number of positive divisors function d(n).
- The sum of positive divisors function $\sigma(n)$.
- The totient function $\varphi(n)$: the number of positive integers which are at most n and coprime to n.

A function $f: \mathbb{N} \to \mathbb{R}$ is called multiplicative if for any coprime positive integers a and b, we have

$$f(a)f(b) = f(ab).$$

It's called completely multiplicative if this equation holds for any positive integers a and b.

- Prove that the values at the primes of a completely multiplicative function completely define the function (unless these values are all 0, in which case f(1) can be 0 or 1).
- Prove that the values at prime powers of a multiplicative function completely define it.
- Prove that d and σ are multiplicative.
- Find formulae for $d(n), \sigma(n), \varphi(n)$ where $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$.

3 Problems

- 1. For any positive integer n, prove that $\sum_{d|n} \varphi(d) = n$.
- 2. Let $p \ge 7$ be prime. Prove that for any integer n there are integers a and b, both not divisible by p, such that $p \mid a^2 b^2 n$.
- 3. Let x and y be positive integers and let p be prime. Assume there are coprime positive integers m and n such that $x^m \equiv y^n \pmod{p}$. Prove that there is a unique positive integer z with $0 \le z < p$ such that

$$x \equiv z^n \pmod{p}, \qquad y \equiv z^m \pmod{p}.$$

- 4. Let a and b be positive integers such that $a^n + n \mid b^n + n$ for all positive integers n. Prove that a = b.
- 5. Let n and k be positive integers such that $\varphi^k(n) = 1$ (that is, φ iterated k times). Prove that $n \leq 3^k$.
- 6. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^p p$ is not divisible by q.

4 Homework

- 1. Prove that $\sigma(n) < n\sqrt{2d(n)}$ for all positive integers n.
- 2. Given a positive integer k, show that there exists a prime p such that one can choose distinct integers $a_1, a_2, \ldots, a_{k+3} \in \{1, 2, \ldots, p-1\}$ such that p divides $a_i a_{i+1} a_{i+2} a_{i+3} i$ for all $i = 1, 2, \ldots, k$.
- 3. Find all completely multiplicative functions $f: \mathbb{N} \to \mathbb{N}$ such that for all $a, b \in \mathbb{N}$, at least two of f(a), f(b), f(a+b) are equal.