05.07.2024

Homologische Algebra Blatt 13

1 | Stehgreiffragen: Injektiv und projektiv

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Ist das Nullobejekt injektiv/projektiv?
- (b) Was ist ein Beispiel für einen projektiven, aber nicht freien Modul?
- (c) Was ist ein Beispiel für einen projektiven, aber nicht injektiven Modul?
- (d) Was ist ein Beispiel für einen injektiven, aber nicht projektiven Modul?
- (e) Wie sieht die injektive Auflösung eines injektiven Objekts aus?
- (f) Was ist ein Beispiel für eine abelsche Kategorie, die nicht genügend injektive Objekte besitzt?
- (g) Wahr oder falsch: Für $0 \to M \to C_0 \to C_{-1} \to \dots$ exakt, ist $M[0] \to C_*$ ein Quasiisomorphismus.
- (h) Ist \mathbf{Ab} äquivalent zu \mathbf{Ab}^{op} ?

2 | Die Kategorie \mathbf{Mod}_R hat genügend injektive Objekte

Sei A ein R-Modul. Wir zeigen die Aussage zuerst für $R = \mathbb{Z}$.

- (a) Zeigen Sie für $A \neq 0$, dass $\operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q}/\mathbb{Z}) \neq 0$.
- (b) Sei $I_{\mathbb{Z}}(A) := \prod_{f \in \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q}/\mathbb{Z})} \mathbb{Q}/\mathbb{Z}$. Zeigen Sie, dass $I_{\mathbb{Z}}(A)$ injektiv ist.
- (c) Zeigen Sie, dass die kanonische Abbildung $e_A : A \to I_{\mathbb{Z}}(A)$ injektiv ist.
- (d) Zeigen Sie, dass jedes \mathbb{Z} -Modul A eine injektive Auflösung besitzt.

Wir zeigen die Aussage nun für allgemeine Ringe R.

- (e) Sei $F: \mathcal{A} \rightleftharpoons \mathcal{B}: G$ ein Paar von additiven adjungierten Funktoren $(F \dashv G)$, mit F exakt. Zeigen Sie, dass G injektive Objekte erhält.
- (f) Formulieren Sie die duale Aussage.
- (g) Zeigen Sie für eine injektive abelsche Gruppe I, dass $\operatorname{Hom}_{\mathbb{Z}}(R,I)$ ein injektiver R-Modul ist.
- (h) Zeigen Sie, dass \mathbf{Mod}_R genügend injektive Objekte besitzt.
- (i) Zeigen Sie, dass jeder R-Modul eine injektive Auflösung besitzt.

3 | Nicht so kurze injektive Auflösungen

Sei $R = \mathbb{Z}/m\mathbb{Z}$.

- (a) Zeigen Sie, dass $\mathbb{Z}/m\mathbb{Z}$ ein injektiver $\mathbb{Z}/m\mathbb{Z}$ -Modul ist. (Gilt die Aussage, R/rR ist injektiv über R/rR für $r \in R$, allgemein für Hauptidealringe?)
- (b) Angenommen es gibt $p \in \mathbb{Z} \setminus \{0\}$ mit p|d und $p|\frac{m}{d}$. Zeigen Sie, dass $\mathbb{Z}/d\mathbb{Z}$ kein injektiver $\mathbb{Z}/m\mathbb{Z}$ -Modul ist.
 - (Erweiterung: Zeigen Sie für $R = \mathbb{Z}/m\mathbb{Z}$, dass projektive und injektive Objekte übereinstimmen. Gilt die Aussage für beliebige Hauptidealringquotienten R/rR für $r \in R \setminus \{0\}$ bzw. r = 0?)
- (c) Finden Sie eine injektive Auflösung von $\mathbb{Z}/2\mathbb{Z}$ als $\mathbb{Z}/4\mathbb{Z}$ -Modul. (Hinweis: Der Titel ist nicht willkürlich gewählt)