Chapter 7: Computing scores in a complete search system

- Speedups for cosine scoring
- How to build a complete search engine?
- Vector space model and query operators

7.1 Efficient scoring and ranking

- For the purpose of ranking, we are interested in *relative* scores of the documents in the collection.
- Hence it suffices to compute the cosine similarity from each document unit vector $\vec{v}(d)$ to $\vec{V}(q)$, where all non-zero components of the query vector are set to 1, rather than to the unit vector $\vec{v}(q)$.
 - For any two documents d_1 , d_2 , $\vec{V}(q) \cdot \vec{v}(d_1) > \vec{V}(q) \cdot \vec{v}(d_2) \Leftrightarrow \vec{v}(q) \cdot \vec{v}(d_1) > \vec{v}(q) \cdot \vec{v}(d_2)$.

7.1.1 Inexact top K document retrieval

- Instead of retrieving precisely the top K, let's come up with K documents that are likely to be among the K highest scoring documents.
 - Dramatically lowering the computing costs, without materially altering the user's perceived relevance of the top K results.
 - Cosine similarity is a proxy anyway.
- The principal computing cost comes from calculating similarities between the query and a large number of documents.
- So we need to get many documents out of consideration without calculating their scores, using the heuristics with the two-step scheme:
 - 1. Find a set A of documents that are contenders, where $K < |A| \ll N$. A does not necessarily contain the K top-scoring documents for the query, but is likely to have many documents with scores near those of the top K.
 - 2. Return the K top-scoring documents in A.
- Many of these heuristics will require many parameter tunings.
- These are for free text queries and not for Boolean or phrase queries.

7.1.2 Index elimination

- For a multi-term query q, we already consider only the documents containing at least one of the query terms. We could use more heuristics.
- 1. Only consider documents containing terms with *high enough idf*: The postings lists of low idf terms are generally long. Basically we now consider them as stop words, they end up not contributing anything to the scoring.
 - Cutoff threshold can be adapted in a query-dependent manner.
- 2. Only consider documents containing many (sometimes all) of the query terms.
 - We might end up with fewer than K candidates.

7.1.3 Champion lists

- Champion list: For each term t in the dictionary, precompute the set of r documents with the highest weights for t.
 - -r should be chosen in advance.
- Then make the set A the union of the champion lists for each of the terms comprising q, and restrict cosine computation to only the documents in A.
 - Hence r should be fairly larger than K.
 - One issue is that r would be set during the index construction, while K is application dependent.
- No need to set the same value of r for all terms: we might set it higher for rarer terms.

7.1.4 Static quality scores and ordering

- Static quality score: A measure of quality q(d) for each document d that is query-independent and thus static.
 - A number between 0 and 1
- Then the *net score* for a document d is some combination of g(d) together with the query-dependent score.
- Using these static quality scores, we could create postings lists by decreasing value of g(d) and perform the postings intersection.
 - Note that what we needed for postings intersection was a *single common ordering* between all postings.
- Global champion list: Extension of a regular champion list. Maintain the list with the highest values for $g(d) + \text{tf-idf}_{t,d}$.
- Maintaining two postings lists consisting of disjoint sets of documents
 - High: the list containing the m documents with the highest tf values for t.
 - Low: the list containing all other documents containing t.

- Then we can first try scanning only through high lists of all query terms. We go through low lists only if we don't get K documents.

7.1.5 Impact ordering

- A technique for when the postings are not all ordered by a common ordering, thereby precluding a concurrent traversal (which was possible by traversing all of the query terms' postings lists and scoring each document as we encounter it)
- Term-at-a-time scoring instead of document-at-a-time scoring.
- Idea: Order the documents in the postings list of term t by decreasing order of $tf_{t,d}$.
 - When going through each postings list for a term t, stop after considering a fixed number of documents or after the value of $tf_{t,d}$ has dropped below a threshold.
 - When accumulating scores, we consider each query terms in decreasing order of *idf*, so that the query terms likely to contribute *the most* to the final scores are considered first.
 - When we process a query, we can also determine whether to continue processing the remaining query terms after looking at the changes from the previous query term processed.
- Impact ordering: Ordering by something other than term frequencies

7.1.6 Cluster pruning

- Consider only documents in a small number of clusters as candidates
 - 1. Leaders: Pick \sqrt{N} documents at random from the collection.
 - 2. Followers: For each document that is not a leader, we compute its nearest leader.
 - The expected number of followers for each leader is $\approx N/\sqrt{N} = \sqrt{N}$.
 - 3. Given a query q, find the leader L that is closest to q. This entails computing cosine similarities from q to each of the \sqrt{N} leaders.
 - 4. The candidate set A consists of L together with its followers.
- Using randomly chosen leaders for clustering is fast and more likely to reflect *the distribution of the document vectors in the vector space.
- Variations: additional parameters of positive integers b_1 and b_2 .
 - Attach each follower to b_1 closest leaders instead of a single leader
 - At query time, we consider the b_2 leaders closest to the query q.
 - In the standard version above, $b_1 = b_2 = 1$.
 - Raising b_1 or b_2 higher increases the likelihood of finding K documents that are more likely to be in the set of true top-scoring K documents.

7.2 Components of an information retrieval system

- A rudimentary search system that retrieves and scores documents.
- We do not restrict ourselves to vector space retrievals.

7.2.1 Tiered indexes

- Tiered indexes: If we fail to get K results from tier 1, query processing falls back to tier 2, and so on.
 - For example: Tier 1 have a tf threshold of 20, and 2 have 10, and so on.

7.2.2 Query-term proximity

- Especially for free text queries on the web, users prefer to find documents in which most or all of the query terms appear close to each other.
 - Because this is the evidence that the document has text focused on their query intent.
- Consider a query with 2 or more query terms, t_1, t_2, \dots, t_k .
- Let ω be the width of the smallest window in a document d that contains all the query terms, measured by the number of words in the window.
- The smaller that ω is, the better that d matches the query.
 - In case where the document does not contain all of the query terms, we can set ω to be some enormous number.
 - Also consider variants in which only words that are not stop words are considered in computing ω .
- Such proximity-weighted scoring functions are a departure from pure cosine similarity and closer to the *soft conjunctive* semantics that web search engines use.
- How should we set ω ?
 - Hard coding
 - Machine learning

7.2.3 Designing parsing and scoring functions

- Common search interfaces tend to mask query operators and encourage free text queries
 - Then how should we combine query features?
 - The answer depends on
 - * The user population
 - * The query population
 - * The collection of documents
- Typically, a query parser is used to translate the user-specified keywords into a query with various operators
 - Sometimes, this execution can entail multiple queries against the underlying indexes
 - 1. Run the user-generated query string as a phrase query, rank them with vector space scoring, treating the query as a vector containing all query terms.
 - 2. If the step 1 contained too few documents, run phrase queries of length one term shorter.
 - 3. If we didn't get enough documents in previous steps, then run the vector space query consisting of individual query terms.
- Scores must combine contributions from vector space scoring, static quality, proximity weighting and potentially other factors
 - Particularly since a document may appear in the lists from multiple steps.
 - Need an aggregate scoring function that accumulates evidence of a document's relevance from multiple sources.
 - The answer depends on the setting (enterprise search vs. web search)

7.2.4 Putting it together

• Brief review of how the various pieces fit together into an overall system.

7.3 Vector space scoring and query operator interaction

- How the vector space scoring model relates to the query operators
 - in terms of the *expressiveness* of queries
 - in terms of the index that supports the evaluation
- Classic interpretation of free text queries: At least one of the query terms be present in any retrieved document
- More recently: A set of terms carries the semantics of a *conjunctive* query that only retrieves documents containing *all or most* query terms
- Boolean retrieval: While a vector space index can used to answer Boolean queries, the reverse is not true as a Boolean index does not carry any weight information.
- Wildcard queries: If a search engine allows a user to specify a wildcard operator as part of a free text query, we may interpret the wildcard component query as spawning multiple terms in the vector space.
 - All of those terms would be added to the query vector.
 - A document containing multiple of the terms is likely to be scored higher than another containing fewer of them.
 - The exact score ordering will depend on the relative weights of each term in matching documents
- Phrase queries: An index built for vector space retrieval cannot be used directly for phrase retrieval
 - Even if we model biwords as terms, the weights on different axes wouldn't be independent
 - Notions such as idf would have to be extended to such biwords
 - We could use vector space retrieval to identify documents heavy in individual query terms, but with no way of prescribing that they occur consecutively.
 - * Phrase retrieval can do exactly that, but without any indication of the relative frequency or weight in this phrase.