Exercise 1.43.

If f is a numerical function and n is a positive integer, then we can form the nth repeated application of f, which is defined to be the function whose value at x is f (f (...(f (x))...)). For example, if f is the function $x \mapsto x+1$, then the nth repeated application of f is the function $x \mapsto x+n$. If f is the operation of squaring a number, then the nth repeated application of f is the function that raises its argument to the f th power. Write a procedure that takes as inputs a procedure that computes f and a positive integer f and returns the procedure that computes the f th repeated application of f. Your procedure should be able to be used as follows:

```
((repeated square 2) 5) 625
```

Hint: You may find it convenient to use compose from exercise 1.42.

Answer.

Before setting out to design the procedure, let's first analyze the structure of the expression f(f(...(f(x))...)). Being defined recursively, the function $x \mapsto f(f(...(f(x))...))$ can be evaluated in a way that

- i. If n equals 1, then just return f;
- ii. otherwise, compose the function f with the inner function which bears an identical form.

Now we can write the repeated procedure using the strategy described above:

*. Creative Commons © 000 2013, Lawrence R. Amlord(颜世敏).