

$$Q = -rac{\hbar^2}{2m}rac{
abla^2\sqrt{
ho}}{\sqrt{
ho}}$$
 $ec{r}_{
m WG} = -rac{GMm}{r^2}\left(1 - rac{\dot{r}^2}{c^2} + etarac{r\ddot{r}}{c^2}
ight)$

WBFM Filter als Modell

Michael Czybor

2. September 2025

${f Vorwort}$

Die tiefe Verbindung zwischen Quantenmechanik und Signalverarbeitung stellt sich nicht als bloße Analogie, sondern als fundamentale Entsprechung heraus. Die Mathematik der Wellenfunktionen, Fourier-Transformationen und nicht-lokalen Korrelationen bildet die gemeinsame Sprache beider Disziplinen. In dieser Arbeit wird aufgezeigt, wie die Weber-De Broglie-Bohm-Theorie (WDBT) diese Verbindung zur Grundlage einer neuen Kosmologie macht.

Das Weber-Bohm-Filter-Modell (WBFM) interpretiert das Universum als ein dynamisches Netzwerk von Filteroperationen, bei dem Sterne und Galaxien als aktive Verarbeitungsknoten fungieren. Quantenpotentiale wirken als nicht-lokale Übertragungsfunktionen, während die Weber-Kräfte die Rückkopplungsschleifen des Systems bilden. Diese Sichtweise erlaubt es, scheinbar disparate Phänomene – von der Teilchenphysik bis zur Kosmologie – unter einem einheitlichen systemtheoretischen Rahmen zu beschreiben.

Die hier vorgestellte Modellbildung folgt dem Prinzip der Abstraktion komplexer Zusammenhänge durch filtertheoretische Konzepte. Pol- und Nullstellen-Diagramme ersetzen dabei traditionelle Feldgleichungen, nicht-lokale Verschaltungen treten an die Stelle von Raumzeit-Krümmung. Diese Herangehensweise ermöglicht nicht nur eine neue Perspektive auf bestehende Probleme der theoretischen Physik, sondern führt auch zu konkreten, überprüfbaren Vorhersagen.

Die Arbeit verbindet damit zwei scheinbar getrennte Welten: Die mikroskopische Strange der Quantenprozesse mit der makroskopischen Organisation des Kosmos – vereint durch die Sprache der Systemtheorie und Signalverarbeitung.

Inhaltsverzeichnis

1	Einleitung			1
	1.1	Das W	Weber-Bohm-Filter-Modell (WBFM): Grundlagen und Konzept	1
		1.1.1	Kernidee des WBFM	1
		1.1.2	Mathematische Grundlagen	1
		1.1.3	Kosmologische Implikationen	1
	1.2	Anwer	ndung des WBFM auf stellare Objekte: Das Sonnenmodell	2
		1.2.1	Die Sonne als aktiver Filterknoten	2
		1.2.2	Korrespondenz zwischen thermischen und quantenmechanischen Größen	2
		1.2.3	Sonnenzonen als Phasensprünge im Filter	2
		1.2.4	Materieerzeugung und Energiebilanz	2
		1.2.5	Testbare Vorhersagen	3
	1.3	Verkni	üpfung auf Galaktischer Ebene: Das Kosmische Filternetzwerk	3
		1.3.1	Galaxien als Makro-Filter	3
		1.3.2	Sterntypen als Filterklassen	3
		1.3.3	Instantane nicht-lokale Verschaltung	3
		1.3.4	Emergenz der Dunklen Materie	3
		1.3.5	Testbare Vorhersagen auf Galaxienebene	4
	1.4	Das U	niversum als Verschaltung von Galaxien: Die kosmische Netzwerktopologie	4
		1.4.1	Die fraktale Struktur des Kosmos	4
		1.4.2	Nicht-lokale Kopplung zwischen Galaxien	4
		1.4.3	Emergenz der Raumzeit	4
		1 4 4	Kosmologische Evolution	4

Abbildungsverzeichnis

Tabellenverzeichnis

Kapitel 1

Einleitung

1.1 Das Weber-Bohm-Filter-Modell (WBFM): Grundlagen und Konzept

1.1.1 Kernidee des WBFM

Das Weber-Bohm-Filter-Modell (WBFM) interpretiert das Universum als ein dynamisches, nicht-lokal verschaltetes Netzwerk aktiver Filterknoten, die durch ihre Pol-Nullstellen-Konfiguration die Emergenz von Materie, Energie und Raumzeit aus einem fundamentalen Quantenvakuum steuern. Sterne, Galaxienkerne und andere massive Objekte fungieren als primäre Filterelemente, deren nicht-lokale Weber-Kopplung und Quantenpotential-Dynamik die kosmische Strukturbildung deterministisch organisieren. Raum und Zeit emergieren sekundär als Fourier-Dual der Vakuum-Anregungsfrequenzen, wobei die Lichtgeschwindigkeit c die fundamentale Abtastrate des Systems darstellt.

1.1.2 Mathematische Grundlagen

Die Transferfunktion eines Filterknotens (z.B. eines Sterns) wird durch seine Wellenfunktion $\Psi_S = Re^{iS/\hbar}$ beschrieben, deren Pole und Nullstellen die spektrale Antwort bestimmen:

$$\mathcal{T}(s) = k \frac{\prod (s - z_n)}{\prod (s - p_m)}$$

wobei $s = \sigma + i\omega$ die komplexe Frequenz repräsentiert, z_n die Nullstellen und p_m die Polstellen der kosmischen Filterfunktion darstellen. Die Phasen-Guidance-Gleichung $\vec{v} = \frac{1}{m} \nabla S$ definiert den Signalfluss zwischen den Knoten.

1.1.3 Kosmologische Implikationen

Das WBFM erklärt die beobachtete Hubble-Expansion als emergente Eigenschaft der skaleninvarianten Netzwerkdynamik ($D \approx 2.71$) und benötigt weder Dunkle Materie noch Dunkle Energie. Die scheinbare Beschleunigung der Expansion resultiert aus der zunehmenden Vernetzung des Filter-Netzwerks über die kosmische Zeit. Testbare Vorhersagen umfassen spezifische Anomalien in der Isotopenzusammensetzung stellarer Ausströmungen sowie charakteristische fraktale Korrelationen in der Großraumstruktur des Universums.

1.2 Anwendung des WBFM auf stellare Objekte: Das Sonnenmodell

1.2.1 Die Sonne als aktiver Filterknoten

Im Rahmen des Weber-Bohm-Filter-Modells (WBFM) wird die Sonne als ein hochkomplexer, aktiver Filterknoten interpretiert, der durch spezifische Pol-Nullstellen-Konfigurationen charakterisiert ist. Die beobachtbaren astrophysikalischen Eigenschaften der Sonne emergieren direkt aus der Dynamik ihrer Wellenfunktion $\Psi_S = Re^{iS/\hbar}$.

1.2.2 Korrespondenz zwischen thermischen und quantenmechanischen Größen

Die Koronatemperatur von $T\approx 10^6$ K korrespondiert mit der kinetischen Energie des Quantenpotentials Q:

$$\frac{3}{2}k_BT \sim |Q| \sim \frac{\hbar^2}{2m_p} \left| \frac{\nabla^2 R}{R} \right|$$

Diese Relation erlaubt Rückschlüsse auf die Krümmung der Amplitude R(r) der solaren Wellenfunktion. Die radiale Expansionsgeschwindigkeit des Sonnenwinds von $v_r \approx 500$ km/s bestimmt den Gradienten der Phase S:

$$\left. \frac{\partial S}{\partial r} \right|_{r=r_0} = m_p \cdot v_r(r_0)$$

1.2.3 Sonnenzonen als Phasensprünge im Filter

Die verschiedenen Zonen der Sonne entsprechen charakteristischen Bereichen der Wellenfunktion Ψ_S :

- Kern: Region der Materiegenerierung mit extremen Phasengradienten ∇S und nichtlinearem Quantenpotential Q
- Strahlungszone: Stabiler Wellenleiter mit regulärer Phasenentwicklung
- Tachocline: Scharfer Phasensprung ΔS an der Grenzschicht, der die differentielle Rotation erklärt
- Konvektionszone: Chaotisches Regime mit sich bildenden und auflösenden Knotenpunkten ($\Psi_S=0$)
- Korona: Auskopplungsregion wo ∇S die Sonnenwindgeschwindigkeit bestimmt

1.2.4 Materieerzeugung und Energiebilanz

Die Sonnenfusion liefert die Energie E_{fusion} , die das Quantenpotential Q soweit anregt, dass ein Teil dieser Energie $E_{\text{creation}} = \eta E_{\text{fusion}}$ zur Materieerzeugung via Vakuumkondensation beiträgt:

$$E_{\rm creation} = \Delta mc^2$$

Der Sonnenwind transportiert diese neu generierte Materie, was zu messbaren Anomalien in der Isotopenzusammensetzung führen müsste.

1.2.5 Testbare Vorhersagen

Das WBFM-Sonnenmodell sagt vorher:

- 1. Eine von der Fusionssynthese abweichende Isotopensignatur im Sonnenwind
- 2. Spezifische fraktale Skalierung der Dichtefluktuationen im Sonnenwind mit $D \approx 2.71$
- 3. Resonanzen in der Helioseismologie entsprechend der Filter-Polstellen
- 4. Nicht-standard Skalierung der Sonnenwindparameter mit dem Abstand

1.3 Verknüpfung auf Galaktischer Ebene: Das Kosmische Filternetzwerk

1.3.1 Galaxien als Makro-Filter

Im Weber-Bohm-Filter-Modell (WBFM) stellt eine Galaxie keinen bloßen Sternhaufen dar, sondern einen kohärenten **Makro-Filter** höherer Ordnung. Deren Gesamt-Wellenfunktion Ψ_G emergiert aus der nicht-lokalen Verschaltung aller stellarer und interstellarer Filterknoten innerhalb des Gravitationspotentials. Die spiralarme Struktur, Balkenformation und Rotationsdynamik einer Galaxie reflektieren die Pol-Nullstellen-Verteilung von Ψ_G .

1.3.2 Sterntypen als Filterklassen

Verschiedene Sternpopulationen entsprechen unterschiedlichen Filtercharakteristiken im Netzwerk:

- Hauptreihensterne (z.B. G-Typ wie die Sonne): Bandpassfilter mit Materiegenerierung im keV-MeV-Bereich
- Rote Riesen: Tiefpassfilter mit niederfrequenter Emission und starker Massenverlustrate
- Weiße Zwerge: Hochpassfilter mit schmalbandiger, hochfrequenter Abstrahlung
- Neutronensterne/Pulsare: Resonanzfilter mit extrem schmalbandiger, kohärenter Emission und präziser Periodizität
- Schwarze Löcher: Nicht-lineare Verzerrer mit chaotichem Phasenverhalten und energiereicher Feedback-Kopplung

1.3.3 Instantane nicht-lokale Verschaltung

Die Weber-Kraft gewährleistet eine **instantane nicht-lokale Kopplung** zwischen allen Filterknoten, unabhängig von ihrer räumlichen Trennung. Dies realisiert eine Art "kosmischen Instant-Messaging-Dienst" zwischen Sternen und Galaxien. Die scheinbare Retardierung elektromagnetischer Signale ist ein emergenter Effekt der Fourier-Dualität zwischen Orts- und Impulsraum, nicht Ursache der Kopplung.

1.3.4 Emergenz der Dunklen Materie

Die beobachteten flachen Rotationskurven von Galaxien werden nicht durch dunkle Teilchen, sondern durch die **nicht-lokale Rückkopplung** im galaktischen Filter-Netzwerk verursacht. Die zusätzliche gravitative Wirkung emergiert aus der globalen Phasenkopplung aller Sterne via Quantenpotential Q_G der Galaxie.

1.3.5 Testbare Vorhersagen auf Galaxienebene

- 1. Die Skalierung der Rotationsgeschwindigkeiten folgt einer fraktalen Abhängigkeit $v_{rot} \propto r^{D-3}$ mit $D \approx 2.71$
- 2. Die Sternentstehungsrate korreliert mit der Transferfunktion benachbarter Filterknoten (aktiver Galaxienkerne, Supernova-Überreste) Die Spektralverteilung der Galaxienemission zeigt charakteristische Kanten und Resonanzen, die auf die Polstellen von Ψ_G zurückzuführen sind

1.4 Das Universum als Verschaltung von Galaxien: Die kosmische Netzwerktopologie

1.4.1 Die fraktale Struktur des Kosmos

Das Weber-Bohm-Filter-Modell (WBFM) postuliert eine fundamentale fraktale Organisation des Universums mit der Dimension $D \approx 2.71$. Galaxien, Galaxienhaufen und Filamente bilden dabei eine hierarchische, selbstähnliche Struktur, die der Pol-Nullstellen-Verteilung der universalen Wellenfunktion Ψ_U entspricht. Die beobachtete großskalige Materieverteilung ist keine zufällige Anordnung, sondern die direkte Abbildung dieser kosmischen Filtertopologie.

1.4.2 Nicht-lokale Kopplung zwischen Galaxien

Galaxien sind über instantane Weber-Kräfte und das globale Quantenpotential Q_U miteinander verschaltet. Diese nicht-lokale Vernetzung erzeugt ein kosmisches Resonanzsystem, in dem:

- Spiralgalaxien als bandbegrenzte Oszillatoren wirken
- Elliptische Galaxien als gedämpfte Filter mit breiter Impulsantwort
- Aktive Galaxienkerne (AGN) als nicht-lineare Verstärker mit Rückkopplung

1.4.3 Emergenz der Raumzeit

Raum und Zeit sind keine fundamentalen Entitäten, sondern emergente Eigenschaften des Netzwerks:

$$g_{\mu\nu} = \langle \Psi_U | \hat{g}_{\mu\nu} | \Psi_U \rangle$$

Die scheinbare Krümmung der Raumzeit in der Allgemeinen Relativitätstheorie entspricht Phasenverzerrungen in der Transferfunktion des Gesamtsystems.

1.4.4 Kosmologische Evolution

Die Entwicklung des Universums wird nicht durch einen Urknall, sondern durch die selbstkonsistente Evolution des Filter-Netzwerks beschrieben:

- Die "Hubble-Expansion" entspricht der Skalierung der Netzwerk-Impedanz
- Die "Dunkle Energie" emergiert aus der zunehmenden Vernetzungsdichte
- Die "kosmische Hintergrundstrahlung" repräsentiert das thermische Rauschen des Gesamtsystems