Modified gravity theories Metric-Affine framework and instabilities

Alejandro Jiménez Cano

Lab. of Theoretical Physics. Institute of Physics University of Tartu – Tartu, Estonia

- ™ alejandro.jimenez.cano@ut.ee
- https://kodu.ut.ee/~alejandj/

Structure of this presentation

- Introduction to modified gravity
- The landscape of modified gravity theories
- A particular framework: Metric-Affine gravity
- The dark side: instabilities
- Previous projects
- 6 Ideas to remember

1. Introduction to modified gravity

What to modify?

General Relativity (GR) is...

Geometrical point of view

Einstein equations

$$\underbrace{R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R}_{\text{geometry}} = \kappa \underbrace{\mathcal{T}_{\mu\nu}}_{\text{matter}}, \qquad \kappa \coloneqq 8\pi G_{\text{N}}, \qquad (1.1)$$

where

 $\mathcal{T}_{\mu\nu}$ is the energy-momentum tensor of the matter

 $R_{\mu\nu}$ and R are the Ricci tensor and Ricci scalar of the metric $g_{\mu\nu}$

 \square Lagrangian formulation: matter action S_{matt} plus the Einstein-Hilbert action

$$S_{\rm EH}[g_{\mu\nu}] = \frac{1}{2\kappa} \int \mathrm{d}^4 x \sqrt{|g|} \, R(g, \partial g, \partial^2 g) \tag{1.2}$$

 \Rightarrow 1 fundamental tensor: the metric $g_{\mu\nu}$

What to modify?

General Relativity (GR) is...

Geometrical point of view

Einstein equations

$$\underbrace{R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R}_{\text{geometry}} = \kappa \underbrace{\mathcal{T}_{\mu\nu}}_{\text{matter}}, \qquad \kappa := 8\pi G_{\text{N}}, \qquad (1.1)$$

where

 $\mathcal{T}_{\mu\nu}$ is the energy-momentum tensor of the matter

 $R_{\mu\nu}$ and R are the Ricci tensor and Ricci scalar of the metric $g_{\mu\nu}$

 \square Lagrangian formulation: matter action S_{matt} plus the Einstein-Hilbert action

$$S_{\rm EH}[g_{\mu\nu}] = \frac{1}{2\kappa} \int \mathrm{d}^4 x \sqrt{|g|} \, R(g, \partial g, \partial^2 g) \tag{1.2}$$

 \Rightarrow 1 fundamental tensor: the metric $g_{\mu\nu}$

Particle physics point of view

- ☐ The fundamental "thing" is the graviton, a massless spin-2 particle.
- \blacksquare This can be described by a symmetric field $h_{\mu\nu}$, via the (Massless) Fierz-Pauli Lagrangian

$$\mathcal{L}_{\text{FP}} = \frac{1}{2} \partial_{\mu} h_{\nu\rho} \partial^{\mu} h^{\nu\rho} - \partial_{\rho} h^{\rho\mu} \partial_{\sigma} h^{\sigma}{}_{\mu} + \partial_{\sigma} h^{\sigma}{}_{\mu} \partial^{\mu} h^{\lambda}{}_{\lambda} - \frac{1}{2} \partial_{\mu} h^{\sigma}{}_{\sigma} \partial^{\mu} h^{\lambda}{}_{\lambda} , \qquad (1.3)$$

(this admits the Einstein Lagrangian as non-linear completion).

What to modify?

General Relativity (GR) is...

Geometrical point of view

Einstein equations

$$\underbrace{R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R}_{\text{geometry}} = \kappa \underbrace{\mathcal{T}_{\mu\nu}}_{\text{matter}}, \qquad \kappa := 8\pi G_{\text{N}}, \qquad (1.1)$$

where

 $\mathcal{T}_{\mu\nu}$ is the energy-momentum tensor of the matter

 $R_{\mu\nu}$ and R are the Ricci tensor and Ricci scalar of the metric $g_{\mu\nu}$

 \square Lagrangian formulation: matter action S_{matt} plus the Einstein-Hilbert action

$$S_{\rm EH}[g_{\mu\nu}] = \frac{1}{2\kappa} \int \mathrm{d}^4 x \sqrt{|g|} \, R(g, \partial g, \partial^2 g) \tag{1.2}$$

 \Rightarrow 1 fundamental tensor: the metric $g_{\mu\nu}$

Particle physics point of view

- ☐ The fundamental "thing" is the graviton, a massless spin-2 particle.
- \blacksquare This can be described by a symmetric field $h_{\mu\nu}$, via the (Massless) Fierz-Pauli Lagrangian

$$\mathcal{L}_{\text{FP}} = \frac{1}{2} \partial_{\mu} h_{\nu\rho} \partial^{\mu} h^{\nu\rho} - \partial_{\rho} h^{\rho\mu} \partial_{\sigma} h^{\sigma}{}_{\mu} + \partial_{\sigma} h^{\sigma}{}_{\mu} \partial^{\mu} h^{\lambda}{}_{\lambda} - \frac{1}{2} \partial_{\mu} h^{\sigma}{}_{\sigma} \partial^{\mu} h^{\lambda}{}_{\lambda} , \qquad (1.3)$$

(this admits the Einstein Lagrangian as non-linear completion).

But why?

... and why? (1) Observational problems

☐ CMB, galaxy rotation curves, Bullet cluster, gravitational lenses...

Hubble tension

Disagreement between:

- Density parameter:

Dark matter problem

$$\Omega_{\rm DM} = 0.265(7)$$

[Planck C. et al 2020]

(1.4)

(1.5)

(1.6)

[Planck C. et al 2020]

Dark energy problem

☐ Expansion of the universe is accelerating (!!)

Compatible with a cosmological constant (w = -1).

Value from Cosmic Microwave Background (CMB) and ΛCDM

 \square Barotropic fluid behavior ($p = w\rho$) with

 $w = -1.03 \pm 0.03$.

 $H_0 = (67.4 \pm 0.5) \text{ km/s/Mpc}$

Alejandro Jiménez Cano

□ Value from late-time cosmological observations

 $H_0 = (73.52 \pm 1.62) \text{ km/s/Mpc}.$

(1.7)

[Planck C. et al 2020]

[Riess et al 2018]

Institute of Physics (University of Tartu)

... and why? (2) Theoretical problems

Singularities

- □ Black holes, cosmology...
- □ Solutions without singularities (?)

The cosmological constant problem

 \square Quantum corrections are many orders of magnitude greater than Λ

$$\Lambda = \Lambda_0 + \underbrace{\text{(quantum corrections)}}_{\propto (M_P)^4 \sim 10^{76} \text{GeV}^4}.$$
 (1.8)

Naturalness problem (!)

(is it really a problem?...)

Renormalizability and unitarity

☐ GR is non renormalizable. Fixed by adding quadratic gravitational terms:

$$R^2, \qquad R_{\mu\nu}R^{\mu\nu} \tag{1.9}$$

But... it violates unitarity (because a ghost propagates).

2. The landscape of modified gravity theories

Modifications: relaxing conditions

Massive graviton			
☐ Problems of the original formulations: vDVZ discontinuity, Boulwer-Deser ghost			
☐ Solution: dRGT massive gravity (non-linear completion)	[de Rham, Gabadadze, Tolley 2011]		
☐ Very constrained by GW observations.			
Violation of Lorentz symmetry			
Examples:			
☐ Einstein-Aether	[Gasperini 1987]		
☐ Hořava-Lifshitz gravity	[Hořava 2009]		
More that 4 dimensions			
Examples:			
□ Randall-Sundrum model	[Randall, Sundrum 1999]		
□ DGP model	[Dvali, Gabadadze, Porrati 2000]		

Modifications: new field content

+ extra scalars

☐ Starting point: Brans-Dicke

[Brans, Dicke 1961]

$$S_{\rm BD}[g_{\mu\nu}, \phi] = \frac{1}{2\kappa} \int d^4x \sqrt{|g|} \left(\phi R - \frac{\omega_{\rm BD}}{\phi} \partial_{\mu} \phi \partial^{\mu} \phi \right) + \text{matter} \,. \tag{2.1}$$

- → point-dependent gravitational coupling
- More general \rightsquigarrow Horndeski gravity ($\mathcal{L}(\phi, \partial \phi, \partial^2 \phi)$ with 2nd order EoM)

[Horndeski 1974]

■ More general ~ Beyond Horndeski gravity

+ extra vectors

- \square U(1) gauge vector \rightarrow no cosmology
 - \Rightarrow Solution 1: non-abelian groups
 - \Rightarrow Solution 2: massive vector \rightarrow Generalized Proca theory

[Heisenberg 2014]

☐ More general: multi-Proca gravity...

+ extra metrics

 \blacksquare Example: bigravity $\{g_{\mu\nu}, f_{\mu\nu}\}$

[Hassan, Rosen 2012]

More general: multi-gravity...

+ several fields of different kinds

Later \rightarrow metric-affine framework (which contains different tensors of these and other types)

Other ways of generalizing the Einstein-Hilbert action

f(R) gravity

[De Felice, Tsujikawa 2010] [Sotiriou, Faraoni 2010]

$$S_{f(R)}[g_{\mu\nu}] = \frac{1}{2\kappa} \int d^4x \sqrt{|g|} f(R) + \text{matter.}$$
 (2.2)

Under an appropriate field redefinition:

$$\bar{S}_{f(R)}[g_{\mu\nu},\phi] = \frac{1}{2\kappa} \int d^4x \sqrt{|g|} \Big(\phi R - V(\phi)\Big) + \text{matter}.$$
 (2.3)

(Brans-Dicke with $\omega_{\mathrm{BD}}=0$ and a potential).

Unimodular gravity

[Alvarez, Herrero-Valea 2013]

- \square GR under the constraint $\sqrt{|g|} = 1$.
- Cosmological constant is an integration constant and solves its naturalness problem.

Promote the metric to a Finsler metric

[Lämmerzahl, Perlick 2018]

Intrinsic anisotropies in the microscopic behavior of the metric.

Promote the Christoffel symbols to a general connection

Let us see this in more detail...

3. A particular framework: Metric-Affine gravity

Metric-affine geometry: the metric

Geometric gravity (Einstein 1915) \longrightarrow The spacetime is modelled as a *differentiable manifold* \mathcal{M} .

Metric-affine geometry: the metric

Geometric gravity (Einstein 1915) \rightsquigarrow The spacetime is modelled as a differentiable manifold \mathcal{M} .

Geometric structures

- \square *Metric tensor:* $g_{\mu\nu}$
 - ⇒ Measuring (length, volume...)

$$s[\gamma](\sigma) = \int_0^\sigma \sqrt{|g_{\mu\nu}(\sigma')\dot{x}^{\mu}(\sigma')\dot{x}^{\nu}(\sigma')|} \,d\sigma'.$$
(3.1)

$$\operatorname{vol}(\mathcal{U}) = \int_{\mathcal{U}} \boldsymbol{\omega}_{\operatorname{vol}}, \qquad \boldsymbol{\omega}_{\operatorname{vol}} := \sqrt{|g|} \, \mathrm{d}x^{1} \wedge \dots \wedge \mathrm{d}x^{D} \qquad D := \dim(\mathcal{U}). \tag{3.2}$$

 \Rightarrow Module of a vector (not necessarily non-negative) \Rightarrow light cones \Rightarrow causality.

⇒ Notion of scale (conformal transformations...)

$$g_{\mu\nu} \to e^{2\Omega} g_{\mu\nu} \,. \tag{3.3}$$

Metric-affine geometry: the connection

Geometric gravity (Einstein 1915) \leadsto The spacetime is modelled as a differentiable manifold \mathcal{M} .

Geometric structures

- \Box Connection: $\Gamma_{\mu\nu}^{\rho}$
 - \Rightarrow Notion of parallel in $\mathcal{M} \Rightarrow$ Covariant derivative ∇_{μ}

Metric-affine geometry: the connection

Geometric gravity (Einstein 1915) \leadsto The spacetime is modelled as a differentiable manifold \mathcal{M} .

Geometric structures

- \Box Connection: $\Gamma_{\mu\nu}^{\ \rho}$
 - Geometrical objects:

Curvature:
$$R_{\mu\nu\lambda}{}^{\rho} := \partial_{\mu}\Gamma_{\nu\lambda}{}^{\rho} - \partial_{\nu}\Gamma_{\mu\lambda}{}^{\rho} + \Gamma_{\mu\sigma}{}^{\rho}\Gamma_{\nu\lambda}{}^{\sigma} - \Gamma_{\nu\sigma}{}^{\rho}\Gamma_{\mu\lambda}{}^{\sigma}, \tag{3.4}$$

Torsion: $T_{\mu\nu}{}^{\rho} := \Gamma_{\mu\nu}{}^{\rho} - \Gamma_{\nu\mu}{}^{\rho}. \tag{3.5}$

Metric-affine geometry: the connection

Geometric gravity (Einstein 1915) \leadsto The spacetime is modelled as a differentiable manifold \mathcal{M} .

Geometric structures

- \Box Connection: $\Gamma_{\mu\nu}^{\ \rho}$
 - Geometrical objects:

Curvature:
$$R_{\mu\nu\lambda}{}^{\rho} := \partial_{\mu}\Gamma_{\nu\lambda}{}^{\rho} - \partial_{\nu}\Gamma_{\mu\lambda}{}^{\rho} + \Gamma_{\mu\sigma}{}^{\rho}\Gamma_{\nu\lambda}{}^{\sigma} - \Gamma_{\nu\sigma}{}^{\rho}\Gamma_{\mu\lambda}{}^{\sigma}, \tag{3.4}$$

Torsion: $T_{\mu\nu}{}^{\rho} := \Gamma_{\mu\nu}{}^{\rho} - \Gamma_{\nu\mu}{}^{\rho}. \tag{3.5}$

Nonmetricity and Levi-Civita connection

Def.: In the presence of metric and connection we define the *nonmetricity tensor*:

$$Q_{\mu\nu\rho} := -\nabla_{\mu} g_{\nu\rho} \,. \tag{3.6}$$

Nonmetricity and Levi-Civita connection

Def.: In the presence of metric and connection we define the *nonmetricity tensor*:

$$Q_{\mu\nu\rho} := -\nabla_{\mu} g_{\nu\rho} \,. \tag{3.6}$$

Theorem. Given $g_{\mu\nu}$, there is only one connection that satisfies

$$T_{\mu\nu}^{\ \rho} = 0$$
 (torsionless condition), (3.7)

$$Q_{\mu\nu\rho} = 0$$
 (compatibility condition), (3.8)

the Levi-Civita connection:

$$\mathring{\Gamma}_{\mu\nu}{}^{\rho} = \frac{1}{2} g^{\rho\sigma} \left(\partial_{\mu} g_{\sigma\nu} + \partial_{\nu} g_{\mu\sigma} - \partial_{\sigma} g_{\mu\nu} \right). \tag{3.9}$$

Metric-affine theories

Instead of choosing $\mathring{\Gamma}$, they consider the metric and the (general) connection as independent fields.

Metric-affine gauge gravity

Metric-Affine Gauge (MAG) gravity ☐ Gauge theory of Affine group (translations + linear transformations) gives two non-linear

- connections e_{μ}^{a} (translations) $\omega_{\mu a}^{b}$ (linear transformations)
- (Resp.) Torsion and curvature are the field strengths.
- This description is equivalent to

$$g_{\mu\nu} = e_{\mu}{}^{a}$$

$$g_{\mu\nu} = e_{\mu}{}^a e_{\nu}{}^b g_{ab}$$
, $g_{ab} = \eta_{ab}$ (fixing the gauge)

$$\Gamma_{\mu\nu}{}^{\rho} = e_{\nu}{}^{a}e^{\rho}{}_{b}\omega_{\mu a}{}^{b} + e^{\rho}{}_{c}\partial_{\mu}e_{\nu}{}^{c},$$

$$S_{\text{qMAG}}[g_{\mu\nu}, \Gamma_{\mu\nu}{}^{\rho}] = \int \mathcal{L}_{\text{qMAG}} \sqrt{|g|} d^D x,$$

$$\mathcal{L}_{\text{qMAG}} := \frac{1}{2\kappa} \Big(-2\kappa\Lambda + a_0 R$$

$$\mathcal{L}_{\mathsf{qMAG}} = \frac{2\kappa}{2\kappa} \left(\frac{2\kappa\Pi + a_0\Pi}{T_{\mu\nu}} + T_{\mu\nu}^{\rho} \mathcal{G}^{(\mathsf{TT})\mu\nu} \right)$$

$$+ T_{\mu\nu}{}^{\rho} \mathcal{G}^{(\text{TT})\mu\nu}{}_{\rho}{}^{\alpha\beta}{}_{\gamma} T_{\alpha\beta}{}^{\gamma}$$

$$+T_{\mu\nu}{}^{\rho}\mathcal{G}^{(\mathrm{TT})\mu\nu}$$

$$+ T_{\mu\nu}{}^{
ho}\mathcal{G}^{(11)\mu\nu}{}_{
ho}{}^{lphaeta}{}_{\gamma}T_{lphaeta}{}_{\gamma}^{\gamma} + T_{\mu\nu}{}^{
ho}\mathcal{G}^{(\mathrm{TQ})\mu\nu}{}_{
ho}{}^{lphaeta\gamma}Q_{lphaeta\gamma}$$

$$+ T_{\mu\nu}{}^{\rho}\mathcal{G}^{(TQ)}$$

 $+ Q_{\mu\nu\sigma}\mathcal{G}^{(Q)}$

$$+ Q_{\mu\nu\rho} \mathcal{G}^{(\mathrm{QQ})\mu\nu\rho\alpha\beta\gamma} Q_{\alpha\beta\gamma} \Big)$$

$$+ \frac{1}{2\alpha} R_{\mu\nu\rho}{}^{\lambda} \mathcal{G}^{(\mathrm{RR})\mu\nu\rho}{}_{\lambda}{}^{\alpha\beta\gamma}{}_{\delta} R_{\alpha\beta\gamma}{}^{\delta}$$

$$2\varrho^{1t\mu\nu\rho}$$
 g χ $\delta^{1t}\alpha\beta\gamma$

□ Complicated theory with many couplings and 10+64 a priori degrees of freedom!! (Allowing parity violation, there are even more terms in
$$D = 4$$
 prop. to $\epsilon_{\mu\nu\rho\lambda}$).

15

2 terms

3 terms

3 terms

5 terms

16 terms

(3.10)

(3.11)

(3.12)

(3.13)

(3.17)

(3.18)

Teleparallel theories and the *trinity*

Teleparallel: constructed under the assumption of vanishing curvature, $R_{\mu\nu\rho}^{\lambda} = 0$.

Teleparallel theories and the trinity

Teleparallel: constructed under the assumption of vanishing curvature, $R_{\mu\nu\rho}^{\ \lambda} = 0$.

Trinity: equiv. theories (up to boundary terms)

□ Teleparallel Equivalent of General Relativity

$$\mathcal{L}_{\text{TEGR}} := \frac{1}{2\nu} \mathbb{T}, \qquad \qquad \mathbb{T} := \frac{1}{4} T_{\mu\nu\rho} T^{\mu\nu\rho} + \frac{1}{2} T_{\mu\nu\rho} T^{\mu\rho\nu} - T_{\mu\rho}{}^{\rho} T^{\mu\lambda}{}_{\lambda}, \qquad (3.19)$$

□ Symmetric Teleparallel Equivalent of General Relativity $(R_{\mu\nu\rho}{}^{\lambda} = T_{\mu\nu}{}^{\lambda} = 0)$

$$\mathcal{L}_{\text{STEGR}} := \frac{1}{2\kappa} \mathbb{Q}, \qquad \mathbb{Q} := \frac{1}{4} Q_{\mu\nu\rho} Q^{\mu\nu\rho} - \frac{1}{2} Q_{\mu\nu\rho} Q^{\nu\mu\rho} - \frac{1}{4} Q^{\rho}{}_{\rho\mu} Q_{\lambda}{}^{\lambda\mu} + \frac{1}{2} Q^{\rho}{}_{\rho\mu} Q^{\mu\lambda}{}_{\lambda}, \quad (3.20)$$

Einstein-Hilbert Lagrangian

$$\mathcal{L}_{\text{EH}} := \frac{1}{2\kappa} \mathring{R}. \tag{3.21}$$

Other teleparallel theories: $f(\mathbb{T})$, $f(\mathbb{Q})$, new GR, newer GR, General Teleparallel Equivalent,...

 $(R_{\mu\nu\rho}{}^{\lambda} = Q_{\mu\nu\rho} = 0)$

 $(T_{\mu\nu}{}^{\lambda} = Q_{\mu\nu\rho} = 0)$

4. The dark side: instabilities

Background-dependent instabilities in field theory

Example: perturbation $\Phi = \Phi_0 + \phi$ around the background solution Φ_0 ,

$$\mathcal{L} = F_1(\Phi_0)\dot{\phi}^2 - F_2(\Phi_0)|\vec{\nabla}\phi|^2 - F_3(\Phi_0)\phi^2.$$
(4.1)

Slow-varying background approx.

so

$$\mathcal{L} = \frac{1}{2a}\dot{\phi}^2 - \frac{1}{2}b|\vec{\nabla}\phi|^2 - \frac{1}{2}m^2\phi^2 \quad \text{where} \quad b, m^2 \in \mathbb{R}, \quad a \in \mathbb{R} \setminus \{0\}.$$
 (4.2)

EoM in Fourier space

$$\boxed{\omega^2 = a(b|\vec{k}|^2 + m^2)}.$$

 ω imaginary \rightsquigarrow $e^{\pm |\omega|t}$ allowed

- **Tachyons** (wrong sign of the mass term $m^2 < 0$)
- \Box **Gradient instabilities** (wrong sign of the gradient term b < 0)
- **Ghosts** (wrong sign of the kinetic term a < 0)
 - \Rightarrow Unbounded H.
 - \Rightarrow Certain sectors become highly excited (no viol. of E conservation).
 - ⇒ Quantum-m.: couplings (healthy)+(ghost) make the vacuum unstable.

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \psi \partial^{\mu} \psi - \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \alpha \phi^{2} \psi^{2} \qquad \rightsquigarrow \qquad \psi$$

(4.3)

Strong coupling problem

Strong coupling

- Discontinuity in the number of dynamical degrees of freedom at different orders.
- ☐ Singular surface in phase space.
- ☐ Perturbation expansion does not capture the full solution.

Particular case of (cosmological) Einsteinian Cubic gravity

From [Beltrán, AJC 2021]

Numerical result around the solution dominated by $\boldsymbol{\Lambda}$ and by radiation, respectively.

Background-independent instabilities in field theory: Ostrogradski ghosts

Ostrogradski Theorem.

Let a Lagrangian involve n-th order finite time derivatives of variables. If $n \geq 2$ and the Lagrangian is non-degenerate with respect to the highest-order derivatives, the Hamiltonian of this system linearly depends on a canonical momentum.

→ Ghost instability

Theory

Taken from [Joyce et al 2015]

$$\mathcal{L}_{A} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{\lambda}{2} (\Box \phi)^{2}, \qquad \Box := \eta^{\mu \nu} \partial_{\mu} \partial_{\nu}. \tag{4.4}$$

 $\lambda \neq 0 \quad \Rightarrow \quad \text{non-degenerate.}$

Explicit ghost

Consider

$$\mathcal{L}_{B} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \chi \Box \phi - \frac{1}{2\lambda} \chi^{2} . \tag{4.5}$$

On-shell $[EoM(\chi) : \chi = \lambda \Box \phi]$ equivalent to \mathcal{L}_A .

$$\mathcal{L}_{B} \qquad \xrightarrow{\text{field redef.}} \qquad \frac{1}{2} \partial_{\mu} \alpha \partial^{\mu} \alpha \stackrel{\triangle}{=} \frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi - \frac{1}{2\lambda} \chi^{2} \,. \tag{4.6}$$

- $\Rightarrow \chi$ is the Ostrogradski ghost.
- ☐ Gauge symmetries usually introduce degeneracy and help to eliminate the ghosts.

Instabilities in modified gravity

Healthy theories

Theory	Field content
Lovelock (GR, GB,)	Graviton
$f(\mathring{R}), f(GB)$	Graviton + scalar
f(R)	Graviton [+ non-dynamical scalar]
Horndeski gravity	Graviton + scalar
Generalized Proca	Graviton + (massive) vector
Ricci-Based Gravity	Graviton + scalar

Pathological theories

Theory	Some known pathologies
Massive gravity (original formulation)	Boulware-Deser ghost
Ricci-Based Gravity with $R_{[\mu\nu]}$	Ghost (projective mode)
Generic higher curvature gravity	Potential ghosts (massive spin-2, scalar)
f(T)	FLRW are strongly coupled
f(Q)	Max. Sym. are strongly coupled
qMAG with $Q_{\mu\nu\rho} = 0$ (Quadratic Poincaré gravity)	Ghosts and tachyons (and strong c.)

General quadratic MAG gravity → Same problems as in the Poincaré case (or even worse)

5. Previous projects

Some of the projects in which I participated

Metric-affine Lovelock is not a boundary term in critical dimension Example: Gauss-Bonnet in 4 dimensions

$$\sqrt{|g|} \delta^{\alpha}_{[\mu} \delta^{\beta}_{\nu} \delta^{\gamma}_{\rho} \delta^{\delta}_{\lambda]} R^{\mu\nu}{}_{\alpha\beta} R^{\rho\lambda}{}_{\gamma\delta} \qquad \neq \partial_{\mu} (...)^{\mu} .$$

(5.1)

(5.2)

23

[AJC, Obukhov 2021]

[Beltrán et al 2020]

[Beltrán, AJC 2021]

[Arrechea, Delhom, AJC 2021]

[Janssen, AJC 2019]

Exact solutions in qMAG

We studied pp-wave solutions of S_{gMAG}

$$ds^{2} = 2dudv + H(u, x, y,)du^{2} - dx^{2} - dy^{2},$$

with non-trivial connection with both torsion and nonmetricity.

General quadratic teleparallel gravity

☐ Trinity as gauge fixed versions of a "general" equivalent.

Check spectrum in flat space (+ gauge symmetries to avoid ghosts)

Strong coupling in Einsteinian Cubic Gravity and extensions

Cosmological flat solutions are strongly coupled in (cosmological) ECG.

 \square At higher orders in the generalized quasi-topological theories \rightarrow Ghosts (potentially) propagate in cosmologies.

Shown that 4DEGB is not viable

Among others:

Equations of motion not well-defined.

The problem is absent at first order but not at higher orders in perturbation theory.

6. Ideas to remember

Ideas to remember

- ☐ In GR there are several phenomenological and theoretical problems.
- One way of tackling them is by modifying GR (there are MANY ways to do it!).
- ☐ One particular framework in modified gravity is metric-affine gravity (metric+connection).
- ☐ The construction of modified gravity theories is plagued with instabilities (be aware of them!).

Ideas to remember

- ☐ In GR there are several phenomenological and theoretical problems.
- One way of tackling them is by modifying GR (there are MANY ways to do it!).
- ☐ One particular framework in modified gravity is metric-affine gravity (metric+connection).
- ☐ The construction of modified gravity theories is plagued with instabilities (be aware of them!).

Now it is your turn to contribute ;P

Ideas to remember

- ☐ In GR there are several phenomenological and theoretical problems.
- One way of tackling them is by modifying GR (there are MANY ways to do it!).
- ☐ One particular framework in modified gravity is metric-affine gravity (metric+connection).
- ☐ The construction of modified gravity theories is plagued with instabilities (be aware of them!).

Now it is your turn to contribute ;P

Thanks for your attention!