

# Fully-Passive UHF RFID Humidity Sensor

#### ツ Features

- ✓ EPC<sup>TM</sup> Class1 Gen2 compliant
- ✓ Embedded Temperature & Humidity Sensor
- ✓ Extended Temperature Range -40 to +125 °C
- ✓ Fully passive
- ✓ Sensitivity < -15 dBm (up to 7 meters reading range)
- ✓ Battery assistance as an option for increased reading range
- ✓ 512 bits of non-volatile memory (EEPROM) organized in 4 banks (UII/EPC, User, TID, Reserved)
- ✓ Forward link data rates: 26.7 to 128 kbps assuming equiprobable data
- ✓ Return link data rates: 40 to 640 kbps with subcarrier modulated data rates of 0.625 to 320 kbps



## **どApplications**

- ✓ Condition monitoring (RH, water presence, isolation...)
- ✓ Supply chain management, tracking and tracing
- ✓ Agriculture sensing

## ッTypical Setup Configuration



### ツ Description

AS321x is a family of passive UHF RFID chips embedding an analog sensor interface and internal sensors. AS321x chips are fully compliant with EPC<sup>TM</sup> Class-1 Generation-2 for UHF RFID applications and RAIN-RFID standards, so they can be interfaced by any standard reader, with no need for any custom command or pre-charge sequence, and achieve state-of-the-art sensitivity performance, including sensor biasing and readout.

In a Passive mode, the harvested energy from the RF field is enough to enable all tag functionality, including sensor measurements. A battery can be added to increase the reading range (BatteryAssisted-Passive configuration, BAP).

Each chip embeds 512 bits of low-power non-volatile memory (EEPROM) organized in 4 banks supporting the EPC data structure, and delivered with a Unique Identifier (UID) to ensure full traceability. Sensor data are available on demand by a simple read command in the memory.

AS3213RH is the product variant embedding both an internal humidity and an internal temperature sensor along with their acquisition channel, including an amplifier and a 10-bits Analog to Digital Converter (ADC).



## ッ Package Description



Figure 1: BGA16 package drawings

**Ball alloy:** SAC305 (96.5% Sn / 3% Ag / 0.5% Cu)

It is recommended to electrically connect RF\_VSS pins with VBAT and VDD\_SPI together. All other pins except RFIN should be mechanically connected, not electrically.

| Pin        | Name    | Type | I/O | Description                                            |
|------------|---------|------|-----|--------------------------------------------------------|
| A1         | RF_VSS  | RF   | 1   | For antenna connection only (RF ground)                |
| A2         | RF_VSS  | RF   | 1   | For antenna connection only (RF ground)                |
| А3         | VBAT    | Α    | 1   | External Power Supply in BAP operation [1.8V;2.5V] *   |
| AS         | VDAT    | A    | '   | Connect to RF_VSS in passive operation                 |
| A4         | VDD_SPI | А    | 1   | SPI 1.8 V Power supply                                 |
| B1         | NC      |      |     | Not Connected                                          |
| B2         | NC      |      |     | Not Connected                                          |
| В3         | NC      |      |     | Not Connected                                          |
| B4         | CLK_EXT | D    | I   | External clock for digital part in SPI mode (SPI_EN=1) |
| C1         | RFIN    | RF   | I   | Antenna input                                          |
| C2         | MISO    | D    | 0   | 1.8V SPI MISO signal                                   |
| C3         | SPI_EN  | D    | I   | 1.8V SPI SPI enable signal                             |
| C4         | NRESET  | D    | 1   | 1.8 V external reset for digital part in SPI mode      |
| C4 INRESET |         |      | l l | (SPI_EN=1)                                             |
| D1         | RFIN    | RF   | 1   | Antenna input                                          |
| D2         | MOSI    | D    | -   | 1.8 V SPI MOSI signal                                  |
| D3         | NCS     | D    | 1   | 1.8 V SPI Chip Select                                  |
| D4         | SCK     | D    | 1   | SPI 1.8V Clock signal                                  |

Table 1: BGA pinout table. A: Analog, D: Digital

<sup>\*</sup> For write operation in the NVM, power supply should be higher than 2.2V.





Figure 2: BGA16 pinout (left, TOP VIEW) and recommended landing pattern (right, TOP VIEW)



Figure 3: Bare die pinout, active area (pads side) view

| Package  | Body size                 | Shipment condition | Comment      |
|----------|---------------------------|--------------------|--------------|
| BGA      | 2.5 x 2.5 x 1 mm          | Tape & reel        | See Figure 4 |
| Bare die | 1.68 x 1.44 x 0.254<br>mm | Waffle box         | For R&D only |

Table 2: Delivery format



## ッSpecifications

#### ツ Absolute Maximum Ratings

| Parameter                                       | Min.  | Max. | Unit |
|-------------------------------------------------|-------|------|------|
| Storage Temperature                             | -50   | 150  | °C   |
| Voltage on all pads/pins (except GND)           | 0     | 3.3  | V    |
| RF power into pad/pin RFIN                      |       | 15   | dBm  |
| Electrostatic discharge on all pads except RFIN | -1000 | 1000 | V    |
| Electrostatic discharge on RFIN                 | -500  | 500  | V    |

Table 3: Absolute maximum ratings

ESD are Human Body Model (HBM) values.

Stresses above these listed maximum ratings may cause device permanent damages. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

#### **Y** Performances Specifications

| Parameter                         | Conditions            | Min. | Тур.     | Max. | Unit |
|-----------------------------------|-----------------------|------|----------|------|------|
| Operating conditions              |                       |      |          |      |      |
| Operating temperature             |                       | -40  |          | +125 | °C   |
| Max RF power at RFIN              |                       |      |          | 15   | dBm  |
| RF carrier frequency              |                       | 860  |          | 960  | MHz  |
| Electrical Characteristics @25 °  | C                     |      |          |      |      |
| Battery voltage for EEPROM read   |                       | 0.9  |          | 3.3  | V    |
| operation                         |                       | 0.9  |          | 3.3  | V    |
| Battery voltage for EEPROM        |                       |      |          |      |      |
| power check, erase, and write     |                       | 1.8  |          | 3.3  | V    |
| operations                        |                       |      |          |      |      |
| Average battery current in Sleep  |                       |      |          |      |      |
| mode (No RF applied to the        |                       |      | 3.8      |      | uA   |
| antenna)                          |                       |      |          |      |      |
| RF Characteristics @25 °C         |                       |      |          |      |      |
|                                   | Die form @ Pin=-10dBm |      |          |      |      |
|                                   | Fcarrier = 866MHz     |      | 7-j406   |      | Ω    |
| *                                 | Fcarrier = 915MHz     |      | 8.5-j383 |      | Ω    |
| nput Impedance *                  | QFN24 @ Pin=-10dBm    |      |          |      |      |
|                                   | Fcarrier = 866MHz     |      | 23-j213  |      | Ω    |
|                                   | Fcarrier = 915MHz     |      | 30-j195  |      | Ω    |
| Write sensitivity in passive mode |                       |      | -12      |      | dBm  |
| Read sensitivity in passive mode  |                       |      | -13      |      | dBm  |
| Write sensitivity in BAP          | VBAT=2.2V             |      | -16      |      | dBm  |
| Read sensitivity in BAP           | VBAT=2.2V             |      | -16      |      | dBm  |

Table 4: Specifications table

<sup>\*</sup> Curves giving the impedance according to the carrier frequency can be provided on request.



### ツDelivery information

#### Tape & Reel data





| Ao | 3.30  | +/- | 0.1 |
|----|-------|-----|-----|
| Bo | 3,30  | +/- | 0.1 |
| Ko | 1.10  | +/- | 0.1 |
| F  | 5.50  | +/- | 0.1 |
| P1 | 8.00  | +/- | 0.1 |
| W  | 12.00 | +/- | 0.3 |

- (11)
- Measured from centrelline of sprodest to centrelline of pocket.

  Cumulative tolerance of 10 sprodest holes is ± 0.20.

  Measured from centrelline of sprodest hole to centrelline of pocket.

  Other meterial available:
- (V) Typical 5R value 10<sup>0</sup> to 10<sup>1</sup>0HM/50 ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Figure 4: Tape & Reel drawings.

## ツ Product Support

Application Notes can be found on ASYGN support site: <a href="https://as321x.asygn.com/">https://as321x.asygn.com/</a>

General company information: www.asygn.com

Customer support mail: <a href="mailto:support@asygn.com">support@asygn.com</a>

### ップ Revision History

| Revision | Date       | Comment                                                        |
|----------|------------|----------------------------------------------------------------|
| 0.1      | 2023-06-22 | Creation                                                       |
| 0.2      | 2023-06-23 | Corrections of: Head & Footer titles, legends of figures 1 & 2 |
| 0.3      | 2023-10-18 | Addition of tape & reel informations + ball alloy              |
| 0.4      | 2024-01-24 | Addition of bare die informations                              |

### ツ Disclaimer

Information furnished by ASYGN is believed to be accurate and reliable. However, no responsibility is assumed by ASYGN for its use, nor for any infringements of patents or other rights of third parties that may result from its use.

Specification subject to change without notice.

No license is granted by implication or otherwise under any patent or patent rights of ASYGN. Trademarks and registered trademarks are the property of their respective owners.