Modélisation statistique d'évènements extrêmes

Application multivariée dynamique aux catastrophes naturelles de l'Océanie

Marc-Olivier Ricard

Sous la supervision de Marie-Pier Côté

4 décembre 2019

Plan de la présentation

- Mise en contexte
- Notions préliminaires
 - Théorie classique des valeurs extrêmes
 - Méthode par l'approche Peaks over threshold (POT)
- Article étudié
 - Introduction
 - Approche dynamique de la théorie des valeurs extrêmes
- Application à des données réelles
 - Analyse de données
 - Approche classique
 - Approche dynamique à deux variables
 - Approche dynamique à trois variables
- Conclusion

Motivations

- Intérêt recherche
- Stage été 2019
- Maîtrise
- Problématiques de l'industrie

Soit X_1, \ldots, X_n , une séquence de variables indépendantes, identiquement distribuées et avec fonction de répartition marginale F.

Soit X_1, \ldots, X_n , une séquence de variables indépendantes, identiquement distribuées et avec fonction de répartition marginale F.

Soit $M_n = \max\{X_1, \dots, X_n\}$, le maximum des n observations.

Soit X_1, \ldots, X_n , une séquence de variables indépendantes, identiquement distribuées et avec fonction de répartition marginale F.

Soit $M_n = \max\{X_1, \dots, X_n\}$, le maximum des n observations.

S'il existe des séquences de constantes $\{a_n>0\}$ et $\{b_n\}$ tel que

$$P\left\{\frac{M_n-b_n}{a_n}\leq z\right\}
ightarrow G(z), \quad \text{quand} \quad n
ightarrow \infty$$

Soit X_1, \ldots, X_n , une séquence de variables indépendantes, identiquement distribuées et avec fonction de répartition marginale F.

Soit $M_n = \max\{X_1, \dots, X_n\}$, le maximum des n observations.

S'il existe des séquences de constantes $\{a_n > 0\}$ et $\{b_n\}$ tel que

$$P\left\{\frac{M_n-b_n}{a_n}\leq z\right\}
ightarrow G(z), \quad \text{quand} \quad n
ightarrow \infty$$

G appartient à une des distributions de valeur extrême.

Les trois dernières lois sont les seules distributions limites pour M_n^* .

Les trois dernières lois sont les seules distributions limites pour M_n^* .

Une meilleure analyse est possible :

Famille de distributions d'extremum généralisée (GEV)

$$G(z) = \exp \left\{ - \left[1 + \xi \left(rac{z - \mu}{\sigma}
ight)
ight]^{-1/\xi}
ight\}$$

Trois paramètres : μ (position), σ (échelle), ξ (forme).

(1)

• Les données sont groupées en séquence de longueur n.

- Les données sont groupées en séquence de longueur n.
- Le maximum de chaque séquence est calculé.

- Les données sont groupées en séquence de longueur n.
- Le maximum de chaque séquence est calculé.
- Une distribution GEV est calibrée à ces maximums.

- Les données sont groupées en séquence de longueur n.
- Le maximum de chaque séquence est calculé.
- Une distribution GEV est calibrée à ces maximums.
- La distribution peut être manipulée.

Méthode par l'approche POT

Soit X_1, \ldots, X_n . Nous considérons comme évènements extrêmes ceux qui dépassent un certain seuil μ

Nous savons déjà que $\Pr\{\max\{X_1,\ldots,X_n\}\leq z\}\approx G(z)$ (1).

Méthode par l'approche POT

Pour u assez grand, la fonction de répartition de $X - u \mid X > u$ est environ

$$H(y) = 1 - \left(1 + \frac{\xi y}{\tilde{\sigma}}\right)^{-1/\xi},\tag{2}$$

οù

$$\tilde{\sigma} = \sigma + \xi(u - \mu).$$

Méthode par l'approche POT

Pour u assez grand, la fonction de répartition de $X - u \mid X > u$ est environ

$$H(y) = 1 - \left(1 + \frac{\xi y}{\tilde{\sigma}}\right)^{-1/\xi},\tag{2}$$

οù

$$\tilde{\sigma} = \sigma + \xi(\mathbf{u} - \mu).$$

Famille de distributions Pareto généralisée.

Paramètres de H.

• Les données brutes représentent une séquence de valeurs iid x_1, \ldots, x_n .

- Les données brutes représentent une séquence de valeurs iid x_1, \ldots, x_n .
- Les valeurs extrêmes sont identifiées en définissant un seuil u.

- Les données brutes représentent une séquence de valeurs iid x_1, \ldots, x_n .
- Les valeurs extrêmes sont identifiées en définissant un seuil u.
- Les observations qui dépassent u sont définies par $x_{(1)}, \ldots, x_{(k)}$ et les excès de seuil par $y_j = x_{(j)} u$.

- Les données brutes représentent une séquence de valeurs iid x_1, \ldots, x_n .
- Les valeurs extrêmes sont identifiées en définissant un seuil u.
- Les observations qui dépassent u sont définies par $x_{(1)}, \ldots, x_{(k)}$ et les excès de seuil par $y_j = x_{(j)} u$.
- Une distribution Pareto généralisée est calibrée avec les y_i .

- Les données brutes représentent une séquence de valeurs iid x_1, \ldots, x_n .
- Les valeurs extrêmes sont identifiées en définissant un seuil u.
- Les observations qui dépassent u sont définies par $x_{(1)}, \ldots, x_{(k)}$ et les excès de seuil par $y_j = x_{(j)} u$.
- Une distribution Pareto généralisée est calibrée avec les y_j .
- La distribution peut être manipulée.

Défi : choix de la valeur du seuil.

Défi : choix de la valeur du seuil.

Deux méthodes :

- Mean residual plot
- Estimer les paramètres du modèle pour différents seuils.

Article étudié

Article choisi : Chavez-Demoulin et collab. (2016)

- Récent
- Longueur et difficulté convenables
- Sujet spécifique intéressant
- Implémentation en R

L'article choisi présente une nouvelle méthodologie....

L'article choisi présente une nouvelle méthodologie....

• Ce sont les paramètres du modèle choisi qui dépendront des covariables.

L'article choisi présente une nouvelle méthodologie....

- Ce sont les paramètres du modèle choisi qui dépendront des covariables.
- Améliorer la calibration des lois.
- Inférence plus crédible et précise.

• Processus de Poisson non-homogène.

- Processus de Poisson non-homogène.
- Modèles additifs généralisés, splines de lissage et méthode du maximum de vraisemblance pénalisé.

- Processus de Poisson non-homogène.
- Modèles additifs généralisés, splines de lissage et méthode du maximum de vraisemblance pénalisé.
- Pareto généralisée non-stationnaire.

- Processus de Poisson non-homogène.
- Modèles additifs généralisés, splines de lissage et méthode du maximum de vraisemblance pénalisé.
- Pareto généralisée non-stationnaire.
- Coles et collab. (2001).

• Pertes aléatoires encourues à des temps aléatoires.

- Pertes aléatoires encourues à des temps aléatoires.
- But de l'analyse.

- Pertes aléatoires encourues à des temps aléatoires.
- But de l'analyse.
- Nombre suffisant d'observations.

- Pertes aléatoires encourues à des temps aléatoires.
- But de l'analyse.
- Nombre suffisant d'observations.
- Évènement extrêmes.

- Pertes aléatoires encourues à des temps aléatoires.
- But de l'analyse.
- Nombre suffisant d'observations.
- Évènement extrêmes.
- Covariables significatives.

Critères

- Pertes aléatoires encourues à des temps aléatoires.
- But de l'analyse.
- Nombre suffisant d'observations.
- Évènement extrêmes.
- Covariables significatives.
- Notes.

Idée générale du modèle :

$$g_k(\theta_k) = f_k(x) + h_k(t), \quad k \in \{1, \ldots, p\}$$

où:

m heta est le vecteur des m p paramètres du modèle,

Idée générale du modèle :

$$g_k(\theta_k) = f_k(x) + h_k(t), \quad k \in \{1,\ldots,p\}$$

où:

- ullet est le vecteur des p paramètres du modèle,
- g_k est une fonction de lien,

Idée générale du modèle :

$$g_k(\theta_k) = f_k(x) + h_k(t), \quad k \in \{1, \ldots, p\}$$

où :

- θ est le vecteur des p paramètres du modèle,
- g_k est une fonction de lien,
- f_k est la fonction pour les différents niveaux d'une variable catégorique.

Idée générale du modèle :

$$g_k(\theta_k) = f_k(x) + h_k(t), \quad k \in \{1, \ldots, p\}$$

où:

- θ est le vecteur des p paramètres du modèle,
- g_k est une fonction de lien,
- f_k est la fonction pour les différents niveaux d'une variable catégorique,
- h_k est soit une fonction linéaire paramétrique ou bien une fonction lisse non-paramétrique de t.

Fréquence

Le nombre d'excès du seuil u suit un processus de Poisson non-homogène avec comme taux :

$$\lambda = \lambda(x, t) = \exp(f_{\lambda}(x) + h_{\lambda}(t)). \tag{3}$$

Reparamétrisation

S'assurer que les procédures de calibration des paramètres ξ et β aux données convergent.

Reparamétrisation

S'assurer que les procédures de calibration des paramètres ξ et β aux données convergent.

Deux paramètres orthogonaux.

$$u = \log((1+\xi)\beta), \, \xi > -1$$

$$\Rightarrow \beta = \frac{\exp(\nu)}{1+\xi}$$

Sévérité

Comme pour λ , on définit ξ et ν comme suit :

$$\xi = \xi(x, t) = f_{\xi}(x) + h_{\xi}(t)$$
 (4)

$$\nu = \nu(x,t) = f_{\nu}(x) + h_{\nu}(t) \tag{5}$$

$$\Rightarrow \beta = \beta(x, t) = \frac{\exp(\nu(x, t))}{1 + \xi(x, t)}$$

Les équations (4) et (5) sont donc celles qui seront estimées pour être en mesure d'obtenir $\hat{\xi}$ et $\hat{\beta}$.

Les équations (4) et (5) sont donc celles qui seront estimées pour être en mesure d'obtenir $\hat{\xi}$ et $\hat{\beta}$.

Basés sur les estimateurs $\hat{f}_{\xi}, \hat{h}_{\xi}, \hat{f}_{\nu}$ et \hat{h}_{ν} .

Les équations (4) et (5) sont donc celles qui seront estimées pour être en mesure d'obtenir $\hat{\xi}$ et $\hat{\beta}$.

Basés sur les estimateurs \hat{f}_{ξ} , \hat{h}_{ξ} , \hat{f}_{ν} et \hat{h}_{ν} .

•
$$i \in \{1, ..., n\}$$
,

Les équations (4) et (5) sont donc celles qui seront estimées pour être en mesure d'obtenir $\hat{\xi}$ et $\hat{\beta}$.

Basés sur les estimateurs \hat{f}_{ξ} , \hat{h}_{ξ} , \hat{f}_{ν} et \hat{h}_{ν} .

- $i \in \{1, ..., n\}$,
- $0 \le t_1 \le \cdots \le t_n \le T$ représente les temps d'excès de seuil,

Les équations (4) et (5) sont donc celles qui seront estimées pour être en mesure d'obtenir $\hat{\xi}$ et $\hat{\beta}$.

Basés sur les estimateurs $\hat{f}_{\xi}, \hat{h}_{\xi}, \hat{f}_{\nu}$ et \hat{h}_{ν} .

- $i \in \{1, ..., n\}$,
- $0 \le t_1 \le \cdots \le t_n \le T$ représente les temps d'excès de seuil,
- x_i représente le vecteur des covariables,

Les équations (4) et (5) sont donc celles qui seront estimées pour être en mesure d'obtenir $\hat{\xi}$ et $\hat{\beta}$.

Basés sur les estimateurs $\hat{f}_{\xi}, \hat{h}_{\xi}, \hat{f}_{\nu}$ et \hat{h}_{ν} .

- $i \in \{1, ..., n\}$,
- $0 \le t_1 \le \cdots \le t_n \le T$ représente les temps d'excès de seuil,
- x_i représente le vecteur des covariables,
- y_{ti} représente les réalisations Y_{ti} ,

Les équations (4) et (5) sont donc celles qui seront estimées pour être en mesure d'obtenir $\hat{\xi}$ et $\hat{\beta}$.

Basés sur les estimateurs $\hat{f}_{\xi}, \hat{h}_{\xi}, \hat{f}_{\nu}$ et \hat{h}_{ν} .

- $i \in \{1, ..., n\}$,
- $0 \le t_1 \le \cdots \le t_n \le T$ représente les temps d'excès de seuil,
- x_i représente le vecteur des covariables,
- y_{ti} représente les réalisations Y_{ti} ,
- Y_{ti} représente les excès de seuil u.

Mesures de risque

$$\widehat{\mathsf{VaR}_{\alpha}} = u + \frac{\hat{\beta}}{\hat{\xi}} \left(\left(\frac{1 - \alpha}{\hat{\lambda} / n'} \right)^{-\hat{\xi}} - 1 \right) \tag{6}$$

Mesures de risque

$$\widehat{\mathsf{VaR}_{\alpha}} = u + \frac{\hat{\beta}}{\hat{\xi}} \left(\left(\frac{1 - \alpha}{\hat{\lambda}/n'} \right)^{-\hat{\xi}} - 1 \right) \tag{6}$$

$$\widehat{\mathsf{ES}_{\alpha}} = \begin{cases} \frac{\widehat{\mathsf{VaR}_{\alpha}} + \hat{\beta} + u\hat{\xi}}{1 - \hat{\xi}}, & \hat{\xi} \in (0,1) \\ \infty, & \hat{\xi} \ge 1 \end{cases} \tag{7}$$

Mesures de risque

$$\widehat{\mathsf{VaR}_{\alpha}} = u + \frac{\hat{\beta}}{\hat{\xi}} \left(\left(\frac{1 - \alpha}{\hat{\lambda} / n'} \right)^{-\hat{\xi}} - 1 \right) \tag{6}$$

$$\widehat{\mathsf{ES}_{\alpha}} = \begin{cases} \frac{\widehat{\mathsf{VaR}_{\alpha}} + \hat{\beta} + u\hat{\xi}}{1 - \hat{\xi}}, & \hat{\xi} \in (0, 1) \\ \mathbf{\infty}, & \hat{\xi} \ge 1 \end{cases}$$
 (7)

Plus utile de modéliser directement $\rho = \rho(x,t) = \lambda(x,t)/n'(x,t)$ qui représente le taux d'excès de seuil pour x et t.

Analyse de données

Deux jeux de données du paquetage CASdatasets sont utilisés. Soit auscathist et nzcathist.

Analyse de données

Deux jeux de données du paquetage CASdatasets sont utilisés. Soit auscathist et nzcathist.

Historique des catastrophes naturelles pour l'Australie ainsi que pour la Nouvelle-Zélande.

FIGURE – Densité du logarithme du montant des catastrophes

 ${f Figure}$ – Nombre cumulatif de catastrophes par pays

FIGURE – Évolution des catastrophes par pays

Туре	N	Moyenne	Écart	Médiane	Maximum
Bushfire	26	143	259	39	1217
Cyclone	37	325	675	88	3343
Earthquake	9	56	91	25	286
Flood	83	62	230	5	2010
Flood, Storm	36	54	79	24	414
Hailstorm	41	274	606	75	3511
Other	12	121	296	6	1035
Power outage	2	6	6	6	11
Storm	86	97	228	28	1424
Tornado	12	7	13	3	47
Weather	4	11	11	6	27

Tableau – Résumé statistique des montants (M USD) par type

• Résultats pas montrés de façon détaillée.

- Résultats pas montrés de façon détaillée.
- Approche pas tout à fait adéquate dans le cas présent.

- Résultats pas montrés de façon détaillée.
- Approche pas tout à fait adéquate dans le cas présent.
- Viable, rapide et peut être une bonne solution lorsque seulement les montants sont disponibles.

- Résultats pas montrés de façon détaillée.
- Approche pas tout à fait adéquate dans le cas présent.
- Viable, rapide et peut être une bonne solution lorsque seulement les montants sont disponibles.
- Un seuil de 10 M USD fut sélectionné.

Approche dynamique à deux variables

• Année et pays.

Approche dynamique à deux variables

- Année et pays.
- Variable numérique de temps et variable catégorique à deux niveaux.

Paramètre ρ

Le modèle sélectionné pour $\hat{\rho}$ dépend du pays et du temps :

$$\log\left(rac{\hat{
ho}(x,t)}{1-\hat{
ho}(x,t)}
ight)=\hat{f}_{
ho}(\mathit{pays})+\hat{h}_{
ho}^{(2)}(\mathit{annee}),$$

où $h^{(Df)}$ représente une spline naturelle quadratique avec Df degrés de liberté.

FIGURE - Prédictions du taux d'excès de seuil

Paramètres de la loi Pareto généralisée

Le modèle sélectionné pour $\hat{\xi}$ dépend du pays et non du temps :

$$\hat{\xi}(x,t) = \hat{f}_{\xi}(\mathit{pays}).$$

Paramètres de la loi Pareto généralisée

Le modèle sélectionné pour $\hat{\xi}$ dépend du pays et non du temps :

$$\hat{\xi}(x,t) = \hat{f}_{\xi}(pays).$$

Le modèle sélectionné pour $\hat{\beta}$ dépend du pays et du temps :

$$\hat{eta}(x,t) = \hat{f}_{eta}(\mathit{pays}) + \hat{h}_{eta}^{(3)}(\mathit{annee}).$$

 ${
m Figure}$ – Prédictions du paramètre ξ

 ${
m Figure}$ – Prédictions du paramètre eta

Validation du modèle

Mesure VaR

université **LAVAL**

Résumé

- Méthodologie fonctionne.
- Donnent les résultats escomptés pour les variables.
- Amélioration du modèle classique.

Approche dynamique à trois variables

Année, pays et type

Approche dynamique à trois variables

- Année, pays et type
- Regroupement des types.

Туре	Type2
Bushfire	Bushfire
Hailstorm	Hailstorm
Cyclone	Cyclone
Flood	Flood, Storm
Flood, Storm	Flood, Storm
Storm	Flood, Storm
Other	Other
Tornado	Other
Earthquake	Other
Weather	Other
Power outage	Other

Tableau – Regroupement des types de catastrophes

Paramètre ρ

$$\log\left(rac{\hat{
ho}(x,t)}{1-\hat{
ho}(x,t)}
ight)=\hat{f}_{
ho}(extit{pays})+\hat{f}_{
ho}(extit{type})+\hat{h}_{
ho}^{(2)}(extit{annee})$$

 ${
m Figure}$ – Prédictions du paramètre ho pour l'Australie

FIGURE – Prédictions du paramètre ho pour la Nouvelle-Zélande

Paramètres de la loi Pareto généralisée

$$\hat{\xi}(x,t)=\hat{f}_{\xi}(extit{pays})+\hat{f}_{\xi}(extit{type}) \ \hat{eta}(x,t)=\hat{f}_{eta}(extit{pays})+\hat{f}_{\xi}(extit{type})+\hat{h}_{eta}^{(4)}(extit{annee})$$

 ${
m Figure}$ – Prédictions du paramètre ξ

FIGURE – Prédictions du paramètre β pour l'Australie

FIGURE – Prédictions du paramètre β pour la Nouvelle-Zélande

Validation du modèle

FIGURE – Graphique Q-Q de Exp(1)

Mesure VaR

Mesure VaR

Résumé

- Modèle adéquat.
- Aucun gain significatif.
- Paramètres et mesures de risques plus volatiles et moins crédibles.

Conclusion

- Méthode
- Appréciation

Questions?

Bibliographie

- Chavez-Demoulin, V., P. Embrechts et M. Hofert. 2016, «An extreme value approach for modeling operational risk losses depending on covariates», *Journal of Risk and Insurance*, vol. 83, n° 3, p. 735–776.
- Coles, S., J. Bawa, L. Trenner et P. Dorazio. 2001, *An introduction to statistical modeling of extreme values*, vol. 208, Springer.
- Cox, D. R. et N. Reid. 1987, «Parameter orthogonality and approximate conditional inference», *Journal of the Royal Statistical Society : Series B (Methodological)*, vol. 49, n° 1, p. 1–18.
- Green, P. J. et B. W. Silverman. 1993, Nonparametric regression and generalized linear models: a roughness penalty approach, Chapman and Hall/CRC.

Bibliographie (suite)

Thiombiano, A. N., S. El Adlouni, A. St-Hilaire, T. B. Ouarda et N. El-Jabi. 2017, «Nonstationary frequency analysis of extreme daily precipitation amounts in southeastern canada using a peaks-over-threshold approach», *Theoretical and Applied Climatology*, vol. 129, n° 1-2, p. 413–426.

Wood, S. N. 2017, *Generalized additive models : an introduction with R*, Chapman and Hall/CRC.

