Kapitola 3

Kvadratické a mocninné funkce.

V této kapitole se budeme zabývat mocninnými funkcemi a jejími speciálními případy - konstatní a kvadratická funkce. Mocnninné funkce jsou dány předpisem $f(x) = x^{\alpha}$, $\alpha \in \mathbb{R}$. Koeficientu α říkáme mocnina, mocnitel nebo také exponent. V obecném případě definičním oborem i oborem hodnot bývá \mathbb{R} . Pro $\alpha = 0$ jsou to konstantní funkce, $\alpha = 1$ lineární funkce a $\alpha = 2$ kvadratická funkce. U mocninných funkcí se zaměříme na situace, kdy je mocnina celočíselná kladná, kladná racionální, záporná a iracionální.

M Konstantní funkce.

Definice 3.0.1. *Konstantní funkcí* budeme rozumět funkci $f(x) = k, k \in \mathbb{R}$.

Pro konstantní funkci platí, že vše se zobrazí na jediné reálné číslo $k \in \mathbb{R}$. Definiční obor konstantní funkce jsou reálná čísla a obor hodnot je k. Grafem konstantní funkce je přímka, která je rovnoběžná s osou x. Každou z konstantních funkcí můžeme chápat tak, že vznikla posunem grafu základní funkce $g(x) = x^0 = 1$.

Obrázek 3.1: Části grafů konstantních funkcí f(x) = 3 a $g(x) = -\frac{3}{2}$.

Lineární funkce.

Definice 3.0.2. *Lineární funkcí* budeme rozumět funkci $f(x) = px + q, p, q \in \mathbb{R}$ a $p \neq 0$.

Definiční obor i obor hodnot lineární funkce jsou reálná čísla. Pro lineární funkci platí, že vše se zobrazí na přímku. Tedy grafem lineární funkce je přímka.

Lineární funkci f(x) = px + q můžeme chápat jako funkci, která vznikla posunem grafu funkce g(x) = x o q a změnou jejího "měřítka" pkrát.

Obrázek 3.2: Posun grafu lineární funkce g(x) = x.

Kvadratická funkce.

Definice 3.0.3. *Kvadratickou funkci* budeme rozumět funkci $f(x) = ax^2 + bx + c$, $a, b, c \in \mathbb{R}$ a $a \neq 0$.

Definiční obor kvadratické funkce jsou reálná čísla, obor hodnot je otevřený interval v reálných číslech. Grafem kvadratické funkce je parabola.

Opět můžeme kvadratickou funkci chápat tak, že vznikla změnou grafu funkce $g(x) = x^2$.

Obrázek 3.3: Části grafů kvadratických funkcí.

Mocninné funkce s celočíselnými kladnými mocninami.

Definice 3.0.4. *Mocninnou funkcí s celočíselnou kladnou mocninou* budeme rozumět funkci $f(x) = x^n, n \in \mathbb{N}$.

Definiční obor pro tyto typy funkcí je celá množina reálných čísel. Obor hodnot pro sudé n je interval $[0,\infty)$ a pro liché n je \mathbb{R} . Mezi tyto typy funkcí funkcí patří i funkce lineární a kvadratické. Pro n=3 budeme hovořit o funkcích kubických.

Pro n sudé je funkce sudá na $\mathbb R$ a na intervalu $(-\infty,0)$ klesající, na $(0,\infty)$ rostoucí. Pro n liché je funkce lichá na $\mathbb R$ a také je na celém definičním oboru $\mathbb R$ rostoucí.

Mocninné funkce s kladnými racionálními mocninami.

Obrázek 3.4: Části grafů mocninných funkcí s mocninami 3 a 4.

Definice 3.0.5. Mocninnou funkcí s kladnou racionální mocninou budeme rozumět funkci

$$f(x) = x^{\frac{m}{n}} = \sqrt[n]{x^m}, m, n \in \mathbb{N},$$

přičemž čísla m, n jsou nesoudělná.

Pro m, n obě lichá je definiční obor \mathbb{R} , obor hodnot \mathbb{R} a funkce je rostoucí na celém definičním oboru a je lichá. *Pro* m liché a n sudé je definiční obor $[0,\infty)$, obor hodnot $[0,\infty)$ a funkce je rostoucí na celém definičním oboru *Pro* m sudé a n liché je definiční obor \mathbb{R} , obor hodnot $[0,\infty)$ a funkce je klesající na $(-\infty,0)$, rostoucí na $(0,\infty)$ a je sudá.

Obrázek 3.5: Části grafů funkcí $f(x) = x^{\frac{4}{3}}$, $g(x) = x^{\frac{9}{2}}$ a $h(x) = x^{\frac{5}{3}}$.

Poznámka 3.0.1 (Mocninné funkce se zápornými mocninami). Pro mocninné funkce se zápornými racionálními mocninami platí $x^{\frac{m}{n}}=\frac{1}{x^{m/n}},\ m,n\in\mathbb{N},m$ a n jsou nesoudělná. U těchto funkcí do definičního oboru nepatří 0 a závisí na tom, zda m a n jsou sudá, lichá. Pozorný čtenář si snadno rozmyslí, jaké jsou definiční obory a obory hodnot v případech m, n obě lichá, m liché a n sudé a m sudé a n liché. Mezi tento typ funkcí patří i funkce $f(x) = x^{-1} = \frac{1}{x}$. Tato funkce popisuje nepřímou úměru.

Věta 3.0.1 (Pravidla pro počítání s mocninami). *Nechť* ab jsou kladná reálná čísla, rs jsou racionální čísla. Pak platí

- 1. $a^r.a^s = a^{r+s}$,
- $2. \ \frac{a^r}{a^s} = a^{r-s},$
- $3. \ (a^r)^s = a^{rs},$
- 4. $(ab)^s = a^s.b^s$

Poznámka 3.0.2 (Mocninné funkce s iracionálním exponentem). Mocninné funkce s iracionálním koeficientem jsou tvaru $f(x)=x^{\alpha},\ \alpha\in\mathbb{I}$. K jejich definování se využívá přirozené exponenciální a přirozené logaritmické funkce (viz. další kapitola) následujícím způsobem $x^{\alpha}=e^{\alpha\ln x}$. Definiční obor i obor hodnot jsou $(0,\infty)$. Pro $\alpha>0$ je funkce rostoucí, $\alpha<0$ je funkce klesající na celém definičním oboru.