Algorithm Design & Analysis

Wei-Che Chien(簡暐哲)

Department of Computer Science and Information Engineering

National Dong Hwa University

Examples of Problems

- Problem 1.1: Sort a list S of n numbers in nondecreasing order. (sorting problem)
 - The solution is a sorted list of all elements in S.
 - The parameters are S and n.
 - □ S=[10,7,11,5,13,8], n=6 is an instance. The solution is [5, 7, 8, 10, 11, 13].
- Problem 1.2: Determine whether the number x is in the list S of n numbers. (search problem)
 - The solution is YES(TRUE) or NO(FALSE).
 - The parameters are x, S and n.
 - x=5, S=[10,7,11,5,13,8], n=6 is an instance. The solution is TRUE.

Algorithm and Representation

- An algorithm for Problem 1.2 can be as follows:
 - 1. Starting with the first item in S.
 - 2. Compare x with each item in S in sequence.
 - 3. If x is found then the answer is YES.
 - 4. If S is exhausted w/o finding x, the answer is NO.
- English representation of an algorithm is verbose and not precise.
- We use C++-like pseudocode to describe an algorithm. (next slide)
- Do remember that algorithms are language independent!!

Sequential Search

```
void segsearch (int n, const keytype S[],
               keytype x, index& location)
  location = 1;
  while (location <=n && S[location] != x)</pre>
     location ++;
  if (location > n)
     location =0;
                   x=5, S=[10,7,11,5,13,8], n=6
```

Binary Search

```
void binsearch(int n, const keytype S[], keytype x, index& location)
  index low, high, mid;
  low = 1; high = n; location = 0;
  while (low <= high && location == 0) {
     mid = \lfloor (low + high)/2 \rfloor;
     if (x == S[mid])
        location = mid;
     else if (x < S[mid])
        high = mid - 1;
     else
        low = mid + 1;
```

x=5, S=[10,7,11,5,13,8], n=6

x=5, S=[5, 7, 8, 10, 11, 13] <math>n=6

Sequential vs Binary Search

- For a search problem with parameters x, S, n, the worst case occurs when x ∉ S.
- Sequential Search: n operations
- Binary Search: $\lg n + 1 (\log_2 n + 1)$ operations

Array Size	Number of Comparisons by Sequential Search	Number of Comparisons by Binary Search	
128	128	8	
1,024	1,024	11	
1,048,576	1,048,576	21	
4,294,967,296	4,294,967,296	33	

Sequential vs Binary Search

- Even with a computer that can complete one pass through the while loop in a nanosecond, Sequential Search would take 4 seconds while Binary Search would be instantaneous.
- Different algorithms in solving the same problem may differ significantly on performance.

- 4 seconds execution time seems tolerable.
- Let's take the computation of Fibonacci sequence as another example.

Fibonacci Sequence

Consider another problem of computing the nth term of the Fibonacci sequence:

$$f_0 = 0$$

 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for $n >= 2$

- It is only nature to use a recursive solution.
- We also use an iterative version as comparison.

nth Fibonacci Term (Recursive)

The definition of Fibonacci sequence naturally leads to a recursive algorithm.

```
int fib(int n)
  if (n \le 1)
      return n;
   else
      return fib(n - 1) + fib(n-2);
```

n	f(n)	Number of Terms computed
0	0	1
1	1	1
2	1	3
3	2	5
4	3	9
5	5	15
6	8	25

nth Fibonacci Term (Iterative)

It is also common to have an iterative solution.

```
int fib2 (int n)
  index i;
  int f[0 .. n];
 f[0] = 0;
 if (n > 0) {
   f[1] = 1;
    for (i=2; i<=n; i++)
      f[i] = f[i-1] + f[i-2];
  return f[n];
```

Fibonacci: Recursive vs Iterative

- In Fibonacci, the most important factor of performance is the number of Fibonacci terms we need to calculate.
- It is easy to see that to calculate the nth Fibonacci term:
 - Recursive algorithm calculates 2^{n/2} terms
 - Iterative algorithm calculates n+1 terms
- It is a good exercise to figure out why it is the case.
- But how significant is the difference between them?

Recursive vs Iterative Fibonacci

This time it is indeed significantly different !!

n	n+1	$2^{n/2}$	Execution Time Using Iterative	Lower Bound on Execution Time Using Recursive
40	41	1,048,576	$41 \mathrm{ns^*}$	$1048~\mu s^{\dagger}$
60	61	1.1×10^9	$61 \mathrm{\ ns}$	1 s
80	81	1.1×10^{12}	81 ns	18 min
100	101	1.1×10^{15}	101 ns	13 days
120	121	1.2×10^{18}	121 ns	36 years
160	161	1.2×10^{24}	161 ns	$3.8 \times 10^7 \text{ years}$
200	201	1.3×10^{30}	201 ns	$4 \times 10^{13} \text{ years}$

 $^{*1 \}text{ ns} = 10^{-9} \text{ second.}$

^{†1} $\mu s = 10^{-6}$ second.

Algorithms are NOT created equal

- From examples above, we can see that the performance of different algorithms for solving the same problem can vary significantly.
- It is essential to choose the best algorithm for the problem at hand.
- After designing an algorithm, we need to be able to analyze its performance, especially in terms of problem size.
- We also need a standard way to compare the efficiency of algorithms.

Proper Algorithm Analysis

- The computer run time of an algorithm(program) depends on CPUs, programing languages, systems, etc. which is hard to compare.
- We want a measure of algorithm efficiency independent of computers, languages, programmers, and tiny mingy details such as index increments, pointer setting, etc.
- The measure must also be general enough to be used to compare the relative efficiency between algorithms.

Complexity Analysis Approach

- In general, the run time increases with the input size.
- The total running time is proportional to how many time some basic operation is done.
- We analyze algorithm efficiency by determining the number of time some basic operation is done as a function of the input size.
- This is independent of the CPU, language, ... etc. and can be easily compared.

How to Analyze?

- Determine the most important operation(or group of operations) as the Basic Operation.
- Count the number of times the basic operation executes for each value of the input size.
- For an algorithm, if the basic operation is always done the same number of times for a given input size n, it is a function of n.
- Define T(n) to be such a function.
- T(n) is called the every-case time complexity of the algorithm.

| Every-Case Example: Array Sum

Problem: Add all the numbers in the array S of n numbers.

```
number sum (int n, const number S[])
 index i;
 number result; _________0
 result = 0; ______ 1
 for (i = 1; i <= n; i++)
   result = result + S[i];
 return result; ______ 1
```

Every-Case Analysis of Sum

- Baisc operation: addition of an item in S
- Input size: n, the number of items in S
- Analysis:
 - For an instance of size n, the for loop is executed n times. Therefore the basic operation is done n times.
 - \square We have T(n) = n.

- Note that this is true for any instance of the problem.
- This is the every-case time complexity of sum.

Every-Case Example: Exchange Sort

Problem: Sort S of n keys in nondecreasing order void exchangesort (int n, keytype S[]) index i, j; for (i=1;i<= n; i++) for (j=i+1; j<= n; j++) if (S[j] < S[i])exchange S[i] and S[j];

Every-Case Analysis of exchangesort

- Baisc operation: comparison of S[i] and S[j].
- Input size: n, the number of items in S.
- Analysis:
 - □ For i=1, the inner loop executes n-1 times. For i=2, the inner loop execute n-2 times.
 - Therefore the total number of times is:

$$T(n) = (n-1)+(n-2)+...+1 = n(n-1)/2.$$

This is also the every-case time complexity of exchangesort.

| Complexity Analysis – Large n

- Every Case
 - T(n): every-case time complexity
- *Worst Case
 - W(n): worst-case time complexity
- Average Case
 - A(n): average-case time complexity
- Best Case
 - B(n): best-case time complexity

Worst-Case Analysis

- In seqsearch discussed earlier, the basic operation (what is it?) is not done the same number of times for all instances of size n.
- The algorithm does not have a every-case time complexity.
- We can still measure it by considering the maximum number of times the basic op is done.
- Define W(n) to be the maximum number of times the algorithm will ever do its basic operation for instances of size n.
- W(n) is called the worst-case time complexity.
- If T(n) exists, then W(n)=T(n). (Why?)

Worst-Case Analysis of seqsearch

- Baisc operation: comparison of x with an S[i].
- **Input size**: *n*, the number of items in *S*.
- Analysis:
 - The basic operation is done at most n times when x is not in S.
 - Therefore the total number of times is:W(n) = n.
- This is the worst-case time complexity of seqsearch.

x=8, S=[10,7,11,5,13,8], n=6

Best-Case Complexity

- For a given algorithm, B(n) is defined as the minimum number of times the basic operation is done.
- B(n) is called the best-case time complexity.
- If T(n) exists, B(n)=T(n). (Why?)
- **Example**: the best-case time complexity of seqsearch is B(n) = 1. (Why?)

B(n) is not as useful as W(n) and A(n). (Why?)

Best-Case Complexity

- Baisc operation: comparison of x with an S[i].
- **Input size**: *n*, the number of items in *S*.
- Analysis:
 - The basic operation is done at most n times when x is not in S.
 - Therefore the total number of times is:B(n) = 1.
- This is the Borst-case time complexity of seqsearch.

x=10, S=[10,7,11,5,13,8], n=6

Average-Case Complexity

- Worst-case analysis seems too conservative and cannot reflect the performance on the average.
- A(n) is defined as the average (expected value) number of times the basic operation is done.
- A(n) is called the average-case time complexity of the algorithm.
- If T(n) exists, then A(n)=T(n). (Why?)
- To computer A(n), we need to assign probabilities to all possible inputs of size n.
- Average-case is usually harder to analyze.

Average-Case Analysis of seqsearch

- First assume that x is in S and items in S are all distinct.
- The probability of x in any slot of S is 1/n.
- If x == S[k], the basic operation is done k times.
- The average time complexity is:

$$A\left(n\right) = \sum_{k=1}^{n} \left(k \times \frac{1}{n}\right) = \frac{1}{n} \times \sum_{k=1}^{n} k = \frac{1}{n} \times \frac{n\left(n+1\right)}{2} = \frac{n+1}{2}$$

Then we consider the case in which x may not be in S.

Average-Case Analysis of seqsearch

- We assume the probability p for $x \in S$. Then, the probability of x in any slot k is p/n.
- The probability of $x \notin S$ is 1-p.
- If x == S[k], the basic operation is done k times.
- If $x \notin S$, the basic operation is done n times.
- The average time complexity is:

$$A(n) = \sum_{k=1}^{n} \left(k \times \frac{p}{n}\right) + n(1-p)$$

$$= \frac{p}{n} \times \frac{n(n+1)}{2} + n(1-p) = n\left(1 - \frac{p}{2}\right) + \frac{p}{2}$$

Memory Complexity

- Similar to time complexity, we can also analyze how efficient an algorithm is in terms of memory.
- This is known as memory complexity.
- Memory complexity can be analyzed in similar ways as time complexity analysis.
- We will focus more on time complexity analysis.
- For embedded systems, memory complexity is of equal importance as time complexity.

Order(量級): Motivation

```
For i = 1 to n do
                        For i = 1 to n do
   a=(b+c)/d+e;
                            x=(b+c)
                            y=x/d;
                            a=y+e;
                                T(n)?
      T(n)?
     T(n)=n
                              T(n)=3n
```

1 (constant) $< \log n < n < n \log n < n^2 < n^3 < 2^n < 3^n \le n!$

Order: Motivation

- Once we have the complexity analysis of algorithms, we can compare.
- For example, algorithm A1 with T1(n)=n (linear-time) is more efficient than algorithm A2 with T2(n)=n² (quadratic-time).
- How about $T1(n)=0.01n^2$ and T2(n)=100n?
- A1 will be more efficient if 0.01n² > 100n which can be simplified as n > 10,000.
- Any linear-time algorithm is eventually more efficient than any quadratic-time algorithm.
- Order help us characterize the eventual behavior.

Intuitive Introduction of Order

- Back to 0.01n² and100n, the constants are much less important than the n² and n terms.
- When n gets larger, the quadratic term eventually dominates.

n	$0.1n^{2}$	$0.1n^2 + n + 100$
10	10	120
20	40	160
50	250	400
100	1,000	1,200
1,000	100,000	101,100

Intuitive Introduction of Order

- In general, the highest order term eventually dominates.
- The set of complexity functions with n² as the highest term is called θ(n²) or Θ(n²)
- If a function is a member of $\theta(n^2)$, the order of the function is n^2 .
- Example: $g(n) = 5n^2 + 100n + 20 \in \theta(n^2)$.
- When an algorithm's complexity is in θ(n²), it is called a quadratic-time algorithm or θ(n²) algorithm.

Complexity Categories (Classes)

- Similarly, we can have θ(n³) or cubic-time algorithms, and so on.
- These are known as complexity categories.
- Common categories:
 θ(lg n), θ(n), θ(n lg n),
 θ(n²), θ(n³), θ(2n)
- The growth rates determine the superiority.

Execution Time of Different Classes

Growth rates characterize the eventual behavior.

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n) = n^2$	$f(n) = n^{3}$	$f(n) = 2^n$
10	$0.003 \mu s^*$	$0.01~\mu s$	$0.033~\mu s$	$0.10 \ \mu s$	$1.0~\mu s$	$1 \mu s$
20	$0.004~\mu s$	$0.02~\mu s$	$0.086~\mu s$	$0.40~\mu s$	$8.0~\mu s$	$1~\mathrm{ms}^\dagger$
30	$0.005~\mu s$	$0.03~\mu s$	$0.147~\mu s$	$0.90~\mu s$	$27.0~\mu s$	1 s
40	$0.005~\mu \mathrm{s}$	$0.04~\mu s$	$0.213~\mu s$	$1.60~\mu s$	$64.0~\mu s$	18.3 min
50	$0.006~\mu s$	$0.05~\mu s$	$0.282~\mu s$	$2.50~\mu s$	$125.0~\mu s$	13 days
10^{2}	$0.007~\mu s$	$0.10~\mu s$	$0.664~\mu s$	$10.00 \ \mu s$	$1.0 \; \mathrm{ms}$	4×10^{13} years
10^{3}	$0.010~\mu s$	$1.00~\mu s$	$9.966~\mu s$	1.00 ms	1.0 s	ı
10^{4}	$0.013~\mu s$	$10.00~\mu s$	$130.000~\mu s$	100.00 ms	16.7 min	
10^{5}	$0.017~\mu s$	$0.10 \; \mathrm{ms}$	$1.670~\mathrm{ms}$	10.00 s	11.6 days	i
10^{6}	$0.020~\mu s$	$1.00~\mathrm{ms}$	$19.930 \; \mathrm{ms}$	16.70 min	31.7 years	
107	$0.023~\mu s$	0.01 s	$2.660 \ s$	1.16 days	31,709 years	
10^{8}	$0.027~\mu s$	$0.10 \mathrm{\ s}$	2.660 s	115.70 days	3.17×10^7 years	l
10^{9}	$0.030~\mu s$	1.00 s	29.900 s	31.70 years	marget (1972) 106 July 1870 1870 18	

^{*1} $\mu s = 10^{-6}$ second.

 $^{^{\}dagger}1 \text{ ms} = 10^{-3} \text{ second.}$

^{*:} With the assumption of 1 ns (10⁻⁹) per basic function.

Big O

- We need a formal concept to characterize complexity classes.
- Given a complexity function f(n), O(f(n)) is the set of complexity function g(n) s.t. there exists some positive real constant c and some nonnegative integer N such that for all n ≥ N, g(n) ≤ c × f(n).
- Note that c and N may not be unique.
- If $g(n) \in O(f(n))$, we say that g(n) is big O of f(n).
- The condition "for all n ≥ N" is exactly to focus on eventual behavior.
- The complexity class of g(n) is f(n).

Illustrating Big O.

$$g(n) = O(f(n)) \leftrightarrow \exists c, N > 0, \exists g(n) \leq cf(n), \forall n \geq N$$

g(n) = O(f(n)) if and only if there are two positive numbers c and N, and g(n) < cf(n), for all $n \ge N$

Example: Given g(n)=n²+10n,

for
$$n >= 10$$
,
 $n^2+10n <= 2n^2$.

Therefore

$$g(n) \in O(n^2)$$

with c=2 and N=10.

$$g(n) = O(f(n)) \leftrightarrow \exists c, N > 0, \exists g(n) \leq cf(n), \forall n \geq N$$

Example:

g(n)=
$$5n^2+3$$
 $n+2$, g(n) = O(f(n)) = O(n^2)
c=6
 $5n^2+3$ $n+2 < 6$ $n^2 => 3$ $n+2 < n^2 => N=4$

$$g(n) = O(f(n)) \leftrightarrow \exists c, N > 0, \exists g(n) \leq cf(n), \forall n \geq N$$

Asymptotic Upper Bound

- If g(n)∈O(f(n)), then eventually g(n) lies beneath f(n) and stay there.
- If g(n) is the time complexity of an algorithm A, this means that eventually the runtime of A will be at least as fast as f(n).
- For comparison, the time complexity of A is eventually at least as good as f(n).
- "Big O" describes the asymptotic behavior of a function. It puts an asymptotic upper bound on a function.

More Examples of Big O

- 5n²∈O(n²) since for n≥0,
 5n² ≤ 5n², we can take c=5 and N=0.
- $T(n) = \frac{n(n-1)}{2}$. Since for $n \ge 0$, $\frac{n(n-1)}{2} \le \frac{n^2}{2}$, we can take c=1/2 and N=0.
- T(n)= n^2 +10 n . Since for n≥1, n^2 +10 $n \le 11n^2$, we can take c=11 and N=1. n^2 +10 $n \le 2n^2$ => 10 ≤ n , we can take c=2 and N=10.

More Examples of Big O

- We can show that $n \in O(n^2)$. (how?)
- Since Big O is to denote upper bound, we prefer lowest upper bound which is the smallest possible function.

$$g(n) = O(f(n)) \text{ V.S. } g(n) \in O(f(n))$$

Note

- "=" is not "equality", it is like "ε (belong to)"
 The equality is {g(n)} ⊆ O(f(n))
- O(f(n)) = g(n) X
- Ex: $g(n) = O(n^2)$ and $g(n) = O(n^3)$, so $O(n^2) = O(n^3)$?
- In order to compare using asymptotic notation O, both have to be non-negative for sufficiently large n

Big O

The following statements hold for any real-valued functions f(n) and g(n), where there is a constant n_0 such that f(n) and g(n) are nonnegative for any integer $n \geq n_0$.

- Rule 1: f(n) = O(f(n)).
- Rule 2: If c is a positive constant, then $c \cdot O(f(n)) = O(f(n))$.
- Rule 3: If f(n) = O(g(n)), then O(f(n)) = O(g(n)).
- Rule 4: $O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n))$.
- Rule 5: $O(f(n) \cdot g(n)) = f(n) \cdot O(g(n))$.

Review

```
1. int i, j

2. j = 1

3. for (i =2; i<=n; i++)

4. if (A[i]>A[j])

5. j=i;

6. return j
```

The worst-case time complexity is

$$O(1) + O(1) + O(n) \cdot (O(1) + O(1)) + O(1)$$

= $3 \cdot O(1) + O(n) \cdot (2O(1))$
= $O(1) + O(n) = O(1) + O(n) = O(n)$

Asymptotic Lower Bound

- Given a complexity function f(n), Ω(f(n)) is the set of complexity function g(n) s.t. there exists some positive real constant c and some nonnegative integer N s.t., for all n ≥ N, g(n) ≥ c × f(n).
- If $g(n) \in \Omega(f(n))$, we say that g(n) is omega of f(n).
- Eventually g(n) will be above cf(n) and stay there.
- Omega puts an asymptotic lower bound on g(n).
- Prefer highest lower bound.

Omega (Ω) Illustrated

Example:

- $g(n) = 5n^2 + 3n + 2$
- $g(n) = \Omega(f(n)) = \Omega(n^2)$

c=5
$$5n^2+3 n+2 \ge 5 n^2$$
=> $3n-2 \ge 0$
=> $N=1$

 $g(n) = \Omega(f(n)) \leftrightarrow \exists c, N > 0, \exists g(n) \ge cf(n), \forall n \ge N$

Example:

$$g(n)=5n^2+3 n+2$$
, $g(n)=O(f(n))=O(n^2)$
 $c=6$
 $5n^2+3 n+2 \le 6 n^2 => 3 n + 2 < n^2 => N=4$
 $g(n)=O(f(n)) \leftrightarrow \exists c, N>0, \exists g(n) \le cf(n), \forall n \ge N$

•
$$g(n) = 5n^2 + 3 n + 2$$
, $g(n) = \Omega(f(n)) = \Omega(n^2)$
c=5
 $5n^2 + 3 n + 2 \ge 5 n^2 => 3n - 2 \ge 0 => N= 1$

$$g(n) = \Omega(f(n)) \leftrightarrow \exists c, N > 0, \exists g(n) \ge cf(n), \forall n \ge N$$

Review

```
1. int i, j \Omega(1)

2. j = 1 \Omega(1)

3. for (i = 2; i <= n ; i++) \Omega(n)

4. if (A[i]>A[j]) \Omega(1)

5. j=i; \Omega(1)

6. return j
```

The worst-case time complexity is

$$\Omega(1) + \Omega(1) + \Omega(n) \cdot (\Omega(1) + \Omega(1)) + \Omega(1)$$

$$= 3 \cdot \Omega(1) + \Omega(n) \cdot (2\Omega(1))$$

$$= \Omega(1) + \Omega(n) = \Omega(1) + \Omega(n) = \Omega(n)$$

Review

```
int i, j
                                                             \Omega(1)
                                                             \Omega(1)
    int m = A[1]
   for (i = 2; i <= n; i++){
                                                             \Omega(n)
     if (A[i]>m)
                                                             \Omega(1)
   m=A[i];
                                                             \Omega(1)
                                                             \Omega(1)
6. if (i ==n)
                                                             \Omega(n)
        do i++ n times
     return m;
                                                             \Omega(1)
```

The worst-case time complexity is

$$3 \cdot \Omega(1) + \Omega(n) \cdot (3\Omega(1) + \Omega(n))$$

= $\Omega(1) + \Omega(n) \cdot \Omega(n) = \Omega(1) + \Omega(n^2) = \Omega(n^2)$

Order

- For a complexity function f(n), $\Theta(f(n)) = O(f(n)) \cap \Omega(f(n))$.
- Φ(f(n)) is the set of complexity function g(n) for which there exists some positive real constants c and d and some nonnegative integer N s.t., for all all n ≥ N, c × f(n) ≤ g(n) ≤ d × f(n).
- If g(n)∈Φ(f(n)), we say that g(n) is order of f(n).
- Eventually the growth of g(n) is similar to that of f(n) which can be used to characterize all such g(n)

Order

Example:

■
$$g(n) = 5n^2 + 3 n + 2$$
, $g(n) = \Theta(f(n)) = \Theta(n^2)$

d=6, c=5

$$5n^2+3 n+2 \le 6 n^2$$

 $5n^2+3 n+2 \le 6 n^2 =>$
 $3 n + 2 < n^2 => N=4$

$$g(n) = \Theta(f(n)) \leftrightarrow \exists c, d, N > 0, \ni cf(n) \leq g(n) \leq df(n), \forall n \geq N$$

Small O

- Given a complexity function f(n), o(f(n)) is the set of complexity function g(n) s.t. for every positive real constant c there exists a nonnegative integer N such that for all n ≥ N, g(n) ≤ c × f(n).
- If $g(n) \in o(f(n))$, we say that g(n) is small o of f(n).
- This means that g(n) becomes much smaller than f(n) as n becomes large, independent of the constant c.
- For complexity comparison, g(n) is much better than f(n). $g(n) = O(f(n)) \leftrightarrow \exists c, N > 0, \exists g(n) < cf(n), \forall n \ge N$
- **Example**: $n \in o(n^2)$. (why?)

Review

```
g(n) = O(f(n))
                                             g(n) \le f(n) in rate of growth
\leftrightarrow 3 c, N> 0, 3 g(n) \leq cf(n), \forall n\geq N
g(n) = \Omega(f(n))
                                            g(n) \ge f(n) in rate of growth
\leftrightarrow 3 c, N> 0, 3 g(n) \geq cf(n), \forall n\geq N
g(n) = o(f(n))
                                            g(n) < f(n) in rate of growth
\leftrightarrow 3 c, N> 0, 3 g(n) < cf(n), \forall n \geq N
g(n) = \omega(f(n))
                                           |g(n)>f(n) in rate of growth
\leftrightarrow 3 c, N> 0, 3 g(n) > cf(n), \forall n \geq N
g(n) = \Theta(f(n)) or \theta(f(n)) g(n) = f(n) in rate of growth
\leftrightarrow \exists c, d, N > 0, \exists cf(n) \leq g(n) \leq df(n), \forall n \geq N
```

Review

O(f(n))o(f(n))Big-O **Small-O** $\Theta(f(n))$ **Theta** $\Omega(f(n))$ $\omega(f(n))$ Omega Small-Omega

Review (Order)

how to analyze / measure the effort an algorithm needs

- Time complexity
- Space complexity
- Every Case
 - □ T(n): every-case time complexity
- *Worst Case
 - W(n): worst-case time complexity
- Average Case
 - A(n): average-case time complexity
- Best Case
 - B(n): best-case time complexity

Properties of Order 1/2

- 1. $g(n) \in O(f(n))$ if and only if $f(n) \in \Omega(g(n))$.
- 2. $g(n) \in \Theta(f(n))$ if and only if $f(n) \in \Theta(g(n))$.
- If b > 1 and a > 1, then $\log_a n \in \Theta(\log_b n)$. (All logarithmic complexity functions are in the same class which is represented by $\Theta(\lg n)$.)
- 4. If b > a > 0, then $a^n \in o(b^n)$. (All exponential complexity functions are NOT in the same class.)
- 5. For all a > 0, $a^n \in o(n!)$. (n! is worse than any exponential complexity.)

Properties of Order 2/2

- 6. With k > j > 2, b > a > 1, and the class ordering: $\Theta(\lg n) \ \Theta(n) \ \Theta(n \lg n) \ \Theta(n^2) \ \Theta(n^j) \ \Theta(n^k) \ \Theta(a^n)$ $\Theta(b^n) \ \Theta(n!)$, if g(n) is in class to the left of class f(n), then $g(n) \in o(f(n))$. (Classes differ in order-of-magnitude scale.)
- 7. If $c \ge 0$, d > 0, $g(n) \in O(f(n))$, and $h(n) \in \Theta(f(n))$, then $c \times g(n) + d \times h(n) \in \Theta(f(n))$. (What does this property means?)

Properties of Order 3/3

Big-Oh 函數	名稱		
O(1)	常數時間(constant)		
$O(log_2n)$	次線性時間(sub-linear)		
	或對數時間(logarithm)		
O(n)	線性時間(linear)		
$O(nlog_2n)$	次平方時間(sub-quadratic)		
$O(n^2)$	平方時間(quadratic)		
$O(n^3)$	立方時間(cubic)		
$O(2^n)$	指數時間(exponential)		
O(n!)	階乘時間(factorial)		

- Design an algorithm to find all palindromes(迴文)
 of length ≥ 2. It does not need to be an optimal
 algorithm, as long as it can solve the problem.
- Analyze the every-case (if exists), worst-case, average-case, and best-case time complexities of your algorithm.
- 3. Textbook exercises 1-15~18, 1-22.

Due date: two weeks.

1-15 Show directly that $f(n) = n^2 + 3n^3 \in (n^3)$. That is, use the definitions of O and Ω to show that f(n) is in both $O(n^3)$ and $\Omega(n^3)$.

1-16 Using the definitions of O and Ω , show that

$$6n^2 + 20n \in O(n^3)$$
, but $6n^2 + 20n \notin \Omega(n^3)$.

1-17 Using the Properties of Order in Section 1.4.2, show that

$$5n^5 + 4n^4 + 6n^3 + 2n^2 + n + 7 \in \Theta(n^5)$$

1-18 Let $p(n) = a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0$, where $a_k > 0$. Using the Properties of Order in Section 1.4.2, show that $p(n) \in \Theta(n^k)$.

1-22 Group the following functions by complexity category.

$$n \ln n$$
 $(\lg n)^2$ $5n^2 + 7n$ $n^{5/2}$
 $n!$ $2^{n!}$ 4^n n^n $n^n + \ln n$
 $5^{\lg n}$ $\lg (n!)$ $(\lg n)!$ \sqrt{n} e^n $8n + 12$ $10^n + n^{20}$

1 (constant) $< \log n < n < n \log n < n^2 < n^3 < 2^n < 3^n \le n!$

名稱	公式	證明
和差	$\log_{lpha} MN = \log_{lpha} M + \log_{lpha} N$	$\begin{split} & \stackrel{\text{\tiny \boxtimes}}{\boxtimes} M = \beta^m \cdot N = \beta^n \\ & \log_\alpha \ MN = \log_\alpha \ \beta^m \beta^n \\ & = \log_\alpha \ \beta^{m+n} \\ & = (m+n)\log_\alpha \beta \\ & = m\log_\alpha \beta + n\log_\alpha \beta \\ & = \log_\alpha \beta^m + \log_\alpha \beta^n \\ & = \log_\alpha M + \log_\alpha N \\ & \log_\alpha \frac{M}{N} = \log_\alpha M + \log_\alpha \frac{1}{N} \\ & = \log_\alpha M - \log_\alpha N \end{split}$
基變換(換底公式)	$\mathrm{log}_{lpha}x=rac{\mathrm{log}_{eta}x}{\mathrm{log}_{eta}lpha}$	設 $\log_{\alpha} x = t$ $\therefore x = \alpha^t$ 兩邊取對數,則有 $\log_{\beta} x = \log_{\beta} \alpha^t$ 即 $\log_{\beta} x = t \log_{\beta} \alpha$ 又: $\log_{\alpha} x = t$ $\therefore \log_{\alpha} x = \frac{\log_{\beta} x}{\log_{\beta} \alpha}$
指係(次方公式)	$\log_{lpha^n} x^m = rac{m}{n} \log_lpha x$	$egin{aligned} \log_{lpha^n} \ x^m &= rac{\ln \ x^m}{\ln \ lpha^n} \ &= rac{m \ln x}{n \ln lpha} \ &= rac{m}{n} \log_lpha x \end{aligned}$

Source:wiki

還原	$\alpha^{\log_{\alpha} x} = x$ $= \log_{\alpha} \alpha^{x}$	
互換	$M^{\log_lpha N} = N^{\log_lpha M}$	設 $b=\log_{\alpha}N$, $c=\log_{\alpha}M$ 則有 $lpha^c=M$ and $lpha^b=N$. 公式左側是 $(lpha^c)^b$ 公式右側是 $(lpha^b)^c$
倒數	$\log_lpha heta = rac{\ln heta}{\ln lpha} = rac{1}{rac{\ln lpha}{\ln heta}} = rac{1}{\log_ heta lpha}$	
鏈式	$\begin{split} \log_{\gamma}\beta\log_{\beta}\alpha &= \frac{\ln\alpha}{\ln\beta}\;\frac{\ln\beta}{\ln\gamma} \\ &= \frac{\ln\alpha}{\ln\gamma} \\ &= \log_{\gamma}\alpha \end{split}$	

 $\log \log n = \log (\log n)$

 $log^k n = (log n)^k$

Source:wiki