## 山有木兮





### Contents

#### 目录

- 1团队介绍
- 2 赛题理解
- 3 特征工程
- 3.1 分层结构
- 3.2 稀疏特性
- 3.3 目标编码

- 4 模型介绍
- 4.1 w2v&层级结构
- 4.2 bert or not bert
- 4.3 LINet

- 5 总结与思考
- 5.1 冷启动问题
- 5.2 模型有效性
- 5.2 其它可能性

# 01

## 01 团队介绍

团队成员简介



林有夕 算法工程师



唐静同济大学计算机硕士



孙泽勇 广州工业大学 计算机硕士



一台2080Ti

2019 & 2020 DCIC 数字中国创新大赛卫冕冠军 2020 PAKDD 天池阿里巴巴智能运维大赛冠军 芒果TV 国际音视频算法大赛冠军

DC厦门国际银行"数创金融杯"数据建模大赛 冠军 KDD CUP、CCF、天池等十余次亚军



# 02

### 寒题理解

序列预测





预测

根据用户点击的广告序列,预测用户的性别、年龄信息



# 03

## 特征工程

分层结构/稀疏特性/目标编码







广告稀疏属性具有层级结构,为一对多的关系。

分层编码:将一对一的词使用同一个id进行编码。可以无损的降低一半词表规模。

低频hash: 词表大小大幅度降低。

| fea_name | advertiser_id    | ad_id    | creative_id |
|----------|------------------|----------|-------------|
| num      | 62965            | 3812202  | 4445720     |
| fea_name | product_category | industry | product_id  |
| num      | 18               | 335      | 44314       |



#### id长尾特性+为现实意义明确的实体的场景下:相似度流派完胜统计流派





用户行为稀疏

广告投放稀疏

id为现实意义明确的实体时,往往具有很丰富的信息,在分布较为稀疏时,往往基于低频特征无法很好的学习到id的具体信息。所以需要稠密化转化。



最直接的做法:构建标签预测解,由模型实现平滑,并结合特征矫正



去一法

|           | click_times | creative_id | time | user_id | ad_id   | advertiser_id | inc |
|-----------|-------------|-------------|------|---------|---------|---------------|-----|
| 0         | 1           | 821396      | 20   | 1       | 724607  | 7293          |     |
| 1         | 1           | 209778      | 20   | 1       | 188507  | 9702          |     |
| 2         | 1           | 877468      | 20   | 1       | 773445  | 29455         |     |
| 3         | 1           | 1683713     | 39   | 1       | 1458878 | 14668         |     |
| 4         | 1           | 122032      | 40   | 1       | 109959  | 11411         |     |
|           |             |             |      |         |         |               |     |
| 133878440 | 1           | 3596158     | 75   | 4000000 | 3096233 | 36668         |     |
| 133878441 | 1           | 3642395     | 75   | 4000000 | 3135640 | 18422         |     |
| 133878442 | 1           | 366858      | 76   | 4000000 | 331268  | 36890         |     |
| 133878443 | 1           | 3333680     | 76   | 4000000 | 2868147 | 32830         |     |
| 133878444 | 1           | 3697105     | 77   | 4000000 | 3181227 | 52421         |     |

将样本划分为k份,对于其中每一份数据,我们都用另外k-1份数据提取标签分布特征,复杂度K\*On

统计全局概率分布,去除当前行样本 复杂度On

# 04 模型介绍

w2v&层级结构/bert or not bert / LINet



#### W2V编码



不分日期训练——小窗口加速

同一个用户的点击商品序列作为word2vec模型的一个 sentence

分日期训练——大窗口增加覆盖面

一天内,同一个用户的点击商品序列作为word2vec模型的一个sentence

#### **Level Layer**

层级模型,降低模型规模,提高提取器覆盖样本规模 Level Target encoding & Level w2v encoding



层级结构数据处理模块

#### 泛化问题

随机采样下,由于稀疏性带来的影响我们会得出以下结论:

- 1、16%的测试集广告,无法获得主体相关泛化信息。
- 2、训练集中45%的广告主体信息,无法泛化至测试集



素材ID 分布

#### 典型场景

Q: 用户点击广告c1至 c9, 其中c1、c9具有强标签相关信息, c2-c8弱相关或无关。如何建模?

A: 一般结构Maxpool 提取强相关信息 预测

- 1、好的模型需要在最坏的情况下提供预测的能力
- 2、无法保证同时学到c1、c9与结果的关系,c1或c9 满足预测能力之后,没有足够的loss供c2-c8学到与结果 的关系。
- 3、c1或c9和标签的关系。只能泛化到c1或c9所在样本
- 4、如果c2-c8存在稀疏问题。则无法从主体上,挖掘和目标的关系。
- 5、如何从训练集分布上,实现信息转移。实现泛化





使用bert的几个明显信号

时间弱相关假设成立

样本信息过载

主体富信息



w2v效果优异

低频词依赖环境注入

当下最牛预训练模型



#### 缺点:

训练时间长,调试成本高需要内存较大,显存OOM

PS: 尝试过embedding size 16 的ELMO需要运行约24hours



我想试试BERT



BERT 可以实现将词级别的完整信息注入,理想情况下可获得单个词的丰富的多维度信息,而针对当前场景,是否可以实现一种只将target 紧密相关的信息注入的方法? 从而大幅度降低模型规模。



#### 2020腾讯广告算法大赛官方交流群

预训练是不是普通机器跑不了 啊?

有个四卡 应该可以跑的

我大概算了一下,跑bert-base 一星期就差不多了

> 把需要的信息注入就可以了。全 空间不见得好。

目标就预测个性别、年龄

看来自己造个针对这个数据集的 玩法了

我想给他取名为, Focus\target bert







模型可以不切换状态连续训练,经测试发现,在标签预测阶段,学习率降低50倍,

效果明显,具有fine-turning的特性。

Mask rate 随epoch逐步降为0



#### BERT与Target Inject对比

|      | BERT                    | Target Inject                                 |  |
|------|-------------------------|-----------------------------------------------|--|
| 目标   | 序列 mask的词<br>完成词级别的信息注入 | 序列 mask 的词的target encoding特征<br>完成target信息的注入 |  |
| 目标类型 | 序列多分类<br>(词粒度)          | soft_label 多分类 / 回归<br>(标签粒度)                 |  |
| 模型结构 | 需要特定结构容纳富信息             | 使用目标模型结构即可,所需参数少                              |  |
| 计算效率 | 低                       | 高 (几乎与目标模型一致的效率)                              |  |
| 适用性  | 一次训练、广泛运用               | 不同目标需要单独训练(可与目标模型同结构训练)                       |  |
| 效果   | 未测试                     | 好                                             |  |



## 05 总结与思考

冷启动问题/模型有效性/其它的可能性/成效表现





#### 处理方法:

- 1、对序列进行采样或计算加权,越往前的广告具有越大的权重。
- 2、序列翻转后入LSTM模块,输出并使用last\_output特征。





启示一: 前期用户点击行为较少, 所以按照用户基础属性进行推荐。后期用户具有点击行为后, 按照 行为进行推荐, 如果基础属性未包含标签, 则说明基础属性之间具有更高的关联性

启示二: 如果前期广告依赖标签进行推荐,则形成了信息穿越。该样本不能用来建模。

启示三:可设计标签修正模型校验此类现象。





多维度信息注入

目标信息注入

Fine-turning 目标模型

#### 样本即特征,特征即标签:

- 1、在信息损失等较坏情况下具有良好预测能力。**每条样本**都应为此付出贡献。
- 2、特征或特征之间应该具有**相互备份容灾**的能力,具有丢失情况下的恢复能力。这个过程中形成的相互记忆的中间态,具有**桥梁**的作用,具有更强的**泛化**能力。

#### 谨防信息孤岛\空岛:

1、稀疏实体富信息现象,容易形成信息孤岛、空岛。 如何将此类信息拆解分发或者注入。 是接下来研究的重点。从而实现由**记忆到泛化**的转变。





- 1、复赛正式参与比赛,从160名左右,一周内进入前三
- 2、分数持续上涨,方案潜力大
- 3、模型效率高是迭代的前提、最终方案所需模型少,单模成绩可达第二。

| 方法                                       | 原理                                           |
|------------------------------------------|----------------------------------------------|
| 分层标签注入                                   | 仿BERT,实现分层次的标签信息注入                           |
| Target encoding                          | 基于标签主体信息的传递                                  |
| Level layer                              | 层级拼接,同质信息共享提取器参数                             |
| 模型参数<br>宽度大: hidden_size<br>2080<br>深度适中 | 越深的模型,适宜越复杂的逻辑越宽的模型,适合记忆越多的信息(词表巨大,且交叉信息不明显) |
| 冷启动处理                                    | 给予前期数据更高的权重                                  |
| Week & holiday                           | 不同年龄的人,具有明显的行为差异<br>广告主投放策略也会有所不同            |
| 动态学习率                                    | 提高收敛效果                                       |
| 性别单独建模                                   | 提高性别预测效果                                     |
| 多模型融合                                    | 提高模型稳定性                                      |



### THANKS