202 Quantitative Research

Agenda
Announcements
Statistics review

Announcements

Need to put together a 'notebook' that includes:

- Lecture slides/anything posted on class website
- Labs
- Can be a folder on your computer or hard copy
- Will count toward 5% of your lab grade

Types of Analyses

v Descriptive

Multiple variables within a single group

Group Differences (Chapter 13)

Statistics

- The purpose of **descriptive** statistics is to simplify the organization and presentation of data
 - V Central Tendency
 - Variability
 - Distribution or shape of the data
- The purpose of **inferential** statistics is to make inferences about a population based on a sample

You describe your sample and infer what it says about the population

Descriptive Statistics and Levels of Measurement

Nominal

- Percentages
- Counts
- v Mode
- Bar Graph
- √ Chi-Square (X²)

Interval/ratio

- v Mean
- v Median
- v Mode
- Variability (SD)
- Frequency distributions (tables and graphs)

Frequency Distributions

Pie charts

- Bar graphs
- Frequency polygons

V Histograms

Bar Graph—Nominal Data

Chi-Square test of independence

Chi-Square (χ^2) Test (Usually done with two nominal variables)

Contingency Tables

Men Women

Dem. Repub.

2 X 2 most common, but doesn't have to be

To calculate a p value, you need degrees of freedom.

Df=(r-1)*(c-1)

Descriptive Statistics

- Central Tendency
 - Average annual rainfall in California
 - Mean
 - Median
 - Mode
- Variability
 - ^v Range
 - Percentiles
 - Standard Deviation

Characteristics

- 1. The graph has a single peak at the center, this peak occurs at (the mean).
- ².The graph is symmetrical about (the mean).
- 4. The area under the graph is equal to 1.

Figure 5-6. Standard normal (z) distribution.

Not so normal distribution

Not so normal distribution con't. (or why do we care?)

Standard deviation revisited

Variance is SD squared

Standard error is SD/sqrt(n)

Descriptive Statistics--tips

If data are nominal, use count, proportion, percent

Reaction time data is usually median rather than mean

Might use median to control for outliers

Sampling distribution of the mean

- Statisticians assume normal distribution and infinite set of samples
- Compare experimental samples to this fictitious perfect distribution

T-test: comparing means

Interval and ratio data

Three main types of t-test:

- 1. One sample t-test
 - Compare one mean to chance level
- 2. Independent samples t-test
 - Compare means of two separate groups (between group comparison)
- 3. Paired samples t-test
 - Compare means within the same group (within group comparison)

1-Sample t-test

2-Sample t-test

Types of Analyses

- V Descriptive
 - The purpose of descriptive statistics is to simplify the organization and presentation of data
- Group differences and Multiple variables within a single group
 - The purpose of inferential statistics is to use the limited data from a sample as the basis for making general conclusions about the population

Multiple Variables w/in a single group

- Y Two variables—Correlation
 - v Direction
 - v Degree
 - Shape (linear vs. other)
- Pearson Product Moment
 - r = .31, n = 50, p < .05
 - ∨ Bidirectional (iv ∫ dv)
- Nestriction of Range

Effect size

- The strength of association between variables
- Pearson r correlation coefficient
- Effect sizes
 - √ Small ~ .15
 - √ Medium ~ .30
 - v Large ~ .40
- v r² or percent of shared variance between two variables

Multiple Variables w/in a single group

Scatterplots

Multiple Variables w/in a single group

2 or more variables

- Correlations—two variables
- Correlations—more than two variables
 - Partial correlations
 - Part correlations
- V Regression

Two Variables w/in a single group

- 2 or more variables
 - Correlations—two variables

Three or more Variables w/in a single group

Correlations—more than two variables

Partial correlations

Multiple Variables w/in a single group Multiple correlation

- Simple Regression
 - Y = a + bX
 - where a = intercept; b = slope
- Multiple Regression
 - Y = a + bX + bX + bX
 - $^{\vee}$ R R^2 beta

Intercept and Slope

Simple Regression

- $_{V}$ Y = a + bX, where
- √ a = intercept
- $_{v}$ b = slope
- $_{\text{V}}$ β = beta weight

Multiple Variables w/in a single group

- Y Types of Regression
 - Stepwise hierarchical regression
 - Can determine which variables best predict outcome
 - Factor analysis
 - v data reduction
 - Discriminant analysis
 - How well do variables predict clinical vs. normal s's
 - Structural Equation Modeling
 - Weights, path coefficients
 - Path analysis

Multiple Variables w/in a single group (also see pg. 262 Cozby)

Know your way around a results section

- Dependent variable
- v Independent variable
- Y Type of statistical test
- Report test statistic and descriptive stats $X^2(2, n = 200) = 282.66, p < .01$

$$r = -.64$$
, $n = 45$, p < .05

$$t(48) = 3.58, p < .05$$

$$F(2,298) = 20.45, p < .01$$

Resources

- v www.statsoft.com
 - Statistic online Statistics Textbook
- www.google.com + any statistical term
- Andy Fields
 - V Books
 - Youtube