Math 550 Homework 3

Dr. Fuller Solutions

1. Let *A* be the matrix whose entry in row *r*, column *c* is $dx_{i_r}(e_{j_c})$.

If $i_1 = j_1, i_2 = j_2, \dots, i_k = j_k$, then A = I, and det A = 1.

Otherwise, suppose m is the first index with $i_m \neq j_m$ (so $i_1 = j_1, i_2 = j_2, \ldots, i_{m-1} = j_{m-1}$). If $i_m < j_m$, then $i_m \neq j_\ell$ for all $1 \leq \ell \leq k$, so $dx_{i_m}(e_{j_\ell}) = 0$ for all ℓ . Thus the i_m row of A is all zeroes, and det A = 0. If $i_m > j_m$, then $j_m \neq i_\ell$ for all $1 \leq \ell \leq k$, so $dx_{i_\ell}(e_{j_m}) = 0$ for all ℓ . Thus the j_m column of A is all zeroes, and det A = 0.

- 2. (a) -20 and -11.
 - (b) -3
- 3. (a) 20
 - (b) 1
 - (c) v(V) describes the function $(x, y, z) \mapsto 2y^2 + 2yz$ $\omega(V, W)$ describes the function $(x, y, z) \mapsto 2x^2y^2 + xz^2$.
- 4. (a) $a_1b_2 a_2b_1 dx \wedge dy$
 - (b) $x^3 dx \wedge dy \wedge dz$
 - (c) $2 dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4$
- 5. (a) From Proposition 5, we have $\omega \wedge \omega = (-1)^{k^2} \omega \wedge \omega = -\omega \wedge \omega$. This implies $\omega \wedge \omega = 0$.
 - (b) See 4 (c)
- 6. (a) It is routine to confirm that the function $\varphi : \mathbf{R}_p^n \to (\mathbf{R}_p^n)^*$ given by $\varphi(v) = T_v$, where $T_v(w) = \langle v, w \rangle$ is a linear function. If $v \in \ker \varphi$, then $\langle v, w \rangle = 0$ for all $w \in \mathbf{R}_p^n$, which implies v = 0. Thus φ is one-to-one. Since both \mathbf{R}_p^n and $(\mathbf{R}_p^n)^*$ have dimension n, φ is an isomorphism.
 - (b) $\omega_X = f_1 dx_1 \wedge \cdots \wedge f_n dx_n$