B Sc(Hons.) SEMESTER III, Examination 2016 - 17

COMPUTER SCIENCE

Paper: BCS-301: NUMERICAL COMPUTING

Tir	me: 3 Hours Full Mark	ks: 70
(WRITE YOUR ROLL NO AT THE TOP IMMEDIATELY ON THE RECEIPT OF THIS QUESTION PAPER)		
COM MARI	E: ANSWER FIVE QUESTIONS INCLUDING QUESTION NO 1, WE PULSORY. THE FIGURES IN THE RIGHT HAND MARGIN INIKS. USE OF THE CALCULATOR IS ALLOWED. ALL UNDEFINED SY ETHEIR USUAL MEANINGS.	DICATI
1. a)	Explain different types of errors with an example. 4	
b)	If the first significant figure of a number is k and the number is correct to n significant	grifican
	figures, then prove that the relative error $\leq \frac{1}{kx10^{n-1}}$.	×.
c)	Prove that Newton-Raphson process has a second order convergence.	S
d)	Given that the equation $x^{2.2}$ =69 has a root between 5 and 8. Use the method of	t egulu-
	falsi to determine it.	51
e)	Define Finite differences. Explain Forward, Backward and Central differences	ces with
	examples.	(5)
f)	Evaluate $\Delta \tan^{-1} x$.	
2.	(a) Find a real root of the equation $x^3-2x-5=\theta$ using Bisection Method.	747
	(b) From the following table, estimate the number of students who obtaine	d marks
	between 40 and 45:	1931
	Marks : 30-40 40-50 50-60 60-70 70-80	
	No of Students: 31 42 51 35 31	
3.	(a) Apply Gauss Elimination method to solve the equation correct to three places	cecimal

$$x+4y-z=-5$$

$$x+y-6z=-12$$

$$3x-y-z=4$$

(b) Apply Gauss Jordan method to solve the equation correct to three decimal places 6

$$x+y+z=9$$

$$2x-3y+4z=13$$

$$3x+4y+5z=40$$

4. The table gives the distance in nautical miles of the visible horizon for the given heights

in feet about the earth surface.

2x6=12

Find the values of y when

(a)
$$x - 218$$
 fi

(b)
$$x=410$$
 ft

5. Evaluate
$$\int_0^6 \frac{dx}{1+x^2}$$

by using

3x4 12

- (a) Trapezoidal rule
- (b) Simpsons 1/3 rule
- (c) Simpsons 3/8 rule
- (d) Weddles rule and compare the results with its actual value.

6. Using Runge-Kutta method of fourth order, solve
$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$$
 with y(0)=1 at x=0.2, 0.4.

7. (a) Apply Milnes method, to find a solution of the differential equation $y=x-y^2$ in the range $0 \le x \le 1$ for the boundary condition y=0 at x=0.

(b) Given that
$$\frac{dy}{dx} = x^2(1+y)$$
 and $y(1) = 1$, $y(1.1) = 1.233$, $y(1.2) = 1.548$, $y(1.3) = 1.979$, evaluate $y(1.4)$ by Adams – Basforth method.