Text Mining and Machine Learning techniques for job reports analysis

Master Candidate: Luca Dal Zotto

Supervisor: Prof. Bruno Scarpa

Department of Mathematics "Tullio Levi-Civita" MASTER THESIS IN DATA SCIENCE

15th December 2021

Contents

- 1 Introduction
 - Hosting company
 - Presentation of the internship project
 - Data Collection: company bot web portal
- 2 Data Exploration and Pre-processing
 - Dataset overview
 - Text Mining
- 3 Experiments and results
 - Learning methods
 - Implementation
 - Results and comparisons
- 4 Conclusion
 - Final remarks

Università degli Stud di Padova

Hosting company

- IT consulting company with 20 years of experience in the field of Data Engineering, Data Science and Cloud Strategy
- offices in Thiene (VI), Padova and Mestre (VE)
- clients in North-Eastern Italy, both in private and public sector

Introduction

Presentation of the internship project

Job reports

- recording of each employee's daily activities
- goal 1: monitor working processes
- goal 2: generate bills and invoices
- manually checked monthly by project managers

Problem

- 90 employees ⇒ thousands of job reports to be checked
- long and tedious activity

Introduction

Presentation of the internship project

Project's purpose

- insert a tool inside the company intranet which automatically verifies the correctness of job reports, highlighting those which are likely to be wrong
- achieved by using text mining to extract information from the descriptions provided and constructing a learning model able to classify job reports

Introduction

Data Collection: company bot web portal

Data stored in a Postgres database

Dataset overview

Dataset of 21,802 recordings

Variable name	Description	
tipo_update	approved or rejected job report	
jobid	project id	
jobtaskid	activity id	
resid	resource id	
custid	customer id	
jobtaskdt	activity date	
data_ins	insertion date	
qty	activity duration	
sede	workplace	
flg_trasferta	True if at customer site	
pay	True if used for billing	
flg_prepagato	True if prepaid activity	
flg_straordinario	True if overtime	
workdesc	activity description	

Relevant observations

Imbalanced dataset

90% job reports are approved

- resampling approaches
- different classification metrics

Manual feature engineering

- resources with very different error rates
 - area
 - date of recruitment
- time related variables:
 - month
 - day
 - delay = insertion date activity date

Text Mining

Examples:

- modifiche ansible mongodb per integrazione icinga. Supporto replicaset/single server. Creazione automatica utente monitoring
- Gestione ticket SDCS-3420, Controllo VPN + accesso ai server per prolab, nicelabel e sintesi
- Call con Mosaico Group per possibile collaborazione su progetto IoT per inventario GDO (Unicomm)
- Ticket 10214850 BI:MIR Vendite di gruppo su tabella Oracle Ticket 10334006 - BI: KAFKA - Vendite da Webshop a Me.R.sy. Wiki Ticket 10344351 - BI: ICT ID MGMT - DQ anagrafica dipendenti mensile Ticket 10302804 - BI:MIR:KONCENTRO - Aggiornamento omniadoc

Observations

- schematic language, many acronyms and ticket numbers
- interested in individual classification, no global description

Text Mining

Text cleaning: remove punctuation, stop words, URLs, email addresses, numbers, links and apply stemming.

Analysis of cleaned text:

- 6674 distinct stems
- low average frequency (14 samples)
- many frequent terms shared by the two classes
- ⇒ Apply minimum and maximum document frequency thresholds

Encoding approaches

BoW representation (*n*-grams)

- terms frequency matrix
- TF-IDF feature matrix

Learning methods

- Logistic Regression
- Support Vector Machine
- K-Nearest Neighbours
- Random Forest
- Gradient Boosting
- Feed-forward Neural Network
- lacktriangle Recurrent Neural Network + fully connected layers
- Recurrent Neural Network + Gradient Boosting
- PCA + Gradient Boosting

Implementation and model selection

- Consider 2 datasets:
 - only textual variable
 - textual variable + other process-related variables
- Optimization of tuning parameters using random search
- For each model, keep 2 configurations:
 - highest accuracy in the validation set
 - highest balanced accuracy in the validation set
- Evaluate in the test set.

Results and comparisons - only textual variable

Results and comparisons - complete dataset

Results and comparisons - model selection

■ At insertion time: need for high accuracy, few false positives and fast predictions

Models with the highest validation accuracy (complete dataset)

	LR	SVM	KNN	RF	GB	FFNN	RNN	RNN+GB	PCA+GB
accuracy	0.923	0.908	0.911	0.948	0.946	0.912	0.925	0.946	0.935
balanced accuracy	0.721	0.502	0.565	0.783	0.789	0.586	0.659	0.794	0.72
specificity	0.969	0.995	0.989	0.986	0.982	0.986	0.985	0.981	0.983
sensitivity	0.474	0.005	0.141	0.581	0.596	0.186	0.333	0.608	0.457
fitting time	295.0	195.0	0.2	44.9	388.4	581.1	202.9	452.8	461.5
predict time	0.5	102.0	100.0	3.1	1.3	15.2	16.5	1.6	3.6

■ At checking time: need for high balanced accuracy, and few false negatives

Models with highest balanced validation accuracy (complete dataset)

	LR	SVM	KNN	RF	GB	FFNN	RNN	RNN + GB	PCA + GB
accuracy	0.873	0.843	0.855	0.933	0.906	0.775	0.903	0.831	0.908
balanced	0.813	0.84	0.722	0.828	0.861	0.716	0.862	0.849	0.518
accuracy	0.013	0.04	0.122	0.020	0.001	0.710	0.002	0.049	0.516
specificity	0.887	0.843	0.885	0.957	0.916	0.789	0.912	0.827	0.996
sensitivity	0.739	0.836	0.558	0.7	0.806	0.643	0.811	0.871	0.040

Conclusion

Final remarks

Main results

- the inclusion of other process-related variables in addition to the textual one sensibly improves the results
- advanced forms of text encoding are not justified
- best results are obtained with tree-based models
- two gradient boosting models have been selected: one to be used at insertion time, the other to be used at checking time

Future developments

- larger dataset may justify more complex models
- create a model suggesting how to correct wrong job reports

Thank you for the attention

TF-IDF

$$\mathsf{TF}(t,d) = \frac{\mathsf{number of times term } t \mathsf{ appears in document } d}{\mathsf{number of terms in document } d}$$

$$\mathsf{IDF}(t) = \log \left(\frac{\mathsf{total\ number\ of\ documents}}{\mathsf{number\ of\ documents\ containing\ stem\ } t} \right)$$

Figure: The repeating module in a LSTM (adapted from: Christopher, 2015).

Figure: Frequency of the 25 most common project identifiers.

Università degli Studi di Padova

Exploration

Figure: Error rate for each resource.

Exploration

Figure: Error rate for each area.

Exploration

Università DI PADOVA

Figure: Distribution of the description length.

Exploration

Figure: Distribution of the stem frequency.

Exploration

Figure: Most frequent stems of the two classes.

Exploration

Figure: Word clouds of the two classes.

$$accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$precision = \frac{TP}{TP + FP}$$

$$sensitivity/recall = \frac{TP}{TP + FN}$$

$$specificity = \frac{TN}{TN + FP}$$

$$balanced\ accuracy = \frac{sensitivity + specificity}{2}$$

$$F_{1}\text{-score} = 2 \times \frac{precision \times sensitivity}{precision + sensitivity}$$

$$Matthews\ Correlation\ Coefficient = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

Tuning parameters

model	tuning parameter		
Logistic Regression	inverse of the regularization coefficient		
Logistic Regression	maximum number of iterations		
	regularization coefficient		
SVM	kernel type		
	the kernel parameter γ		
KNN	number of neighbors to use		
TXININ	distance metric to use		
	number of trees in the forest		
	criterion used for the information gain		
Random Forest	maximum depth of the tree		
	minimum number of samples required to split an internal node		
	minimum information gain to allow the split of a node		
	number of boosting stages to perform		
Gradient Boosting	the maximum depth of the individual estimators		
	fraction of samples to be used		

Table: List of model-specific tuning parameters.

Tuning parameters

model	tuning-parameter	value
	number of stems considered	3725
	n-gram range	1 - 3
Logistic Regression	word vectorizer	countVectorized
Logistic Regression	resampling approach	none
	inverse of the regularization coefficient	10
	maximum number of iterations	2048
	number of stems considered	250
	n-gram range	1 - 1
SVM	word vectorizer	TfidfVectorizer
SVIVI	resampling approach	none
	regularization coefficient	0.01
	kernel type	linear
	number of stems considered	2703
	n-gram range	1 – 3
KNN	word vectorizer	countVectorizer
IXIVIV	resampling approach	none
	number of neighbors to use	5
	distance metric to use	minkowski

Table: List of tuning parameters and values used by the models with the highest validation accuracy.

Appendix **Appendix**

Tuning parameters

model	tuning-parameter	value
	number of stems considered	500
	n-gram range	1 – 2
	word vectorizer	TfidfVectorizer
	resampling approach	over
Random Forest	number of trees in the forest	200
	criterion used for the information gain	Gini
	maximum depth of the tree	100
	min number of samples to split an internal node	2
	min information gain to allow the split of a node	0
	number of stems considered	2703
	n-gram range	1 – 2
	word vectorizer	countVectorizer
Gradient Boosting	resampling approach	none
	number of boosting stages to perform	50
	the maximum depth of the individual estimators	50
	fraction of samples to be used	1

Table: List of tuning parameters and values used by the models with the highest validation accuracy.

Tuning parameters

model	tuning-parameter	value
	number of stems considered	4935
	n-gram range	1 - 2
Logistic Regression	word vectorizer	countVectorized
Logistic Regression	resampling approach	mid strategy
	inverse of the regularization coefficient	1
	maximum number of iterations	8192
	number of stems considered	2703
	n-gram range	1 – 2
SVM	word vectorizer	TfidfVectorizer
3 4 141	resampling approach	mid strategy
	regularization coefficient	0.1
	kernel type	linear
	number of stems considered	4935
	n-gram range	1 – 3
KNN	word vectorizer	TfidfVectorizer
IXIVIV	resampling approach	oversampling
	number of neighbors to use	3
	distance metric to use	minkowski

Table: List of tuning parameters and values used by the models with the highest balanced validation accuracy.

Tuning parameters

model	tuning-parameter	value
	number of stems considered	3725
	n-gram range	1 – 2
	word vectorizer	TfidfVectorizer
	resampling approach	mid strategy
Random Forest	number of trees in the forest	200
	criterion used for the information gain	Gini
	maximum depth of the tree	200
	min number of samples to split an internal node	2
	min information gain to allow the split of a node	0
	number of stems considered	4935
	n-gram range	1 - 3
	word vectorizer	countVectorizer
Gradient Boosting	resampling approach	mid strategy
	number of boosting stages to perform	100
	the maximum depth of the individual estimators	10
	fraction of samples to be used	1

Table: List of tuning parameters and values used by the models with the highest balanced validation accuracy.

Tuning parameters

model	tuning-parameter	value
	number of stems considered	4935
	n-gram range	1 - 1
	word vectorizer	countVectorized
	resampling approach	none
FENN	number of hidden layers	2
(highest accuracy)	hidden neurons	2048 — 2048
(mgnest accuracy)	activation	GELU
	optimizer	RMSprop
	learning rate	1e - 6
	regularization	none
	number of training epoch	75

Table: List of the tuning parameters and values used by the best neural network architectures.

Tuning parameters

model	tuning-parameter	value
	number of stems considered	4935
	n-gram range	1 - 1
	word vectorizer	TfidfVectorized
	resampling approach	mid strategy
FFNN	number of hidden layers	2
(highest	hidden neurons	256 — 256
balanced accuracy)	activation	GELU
	optimizer	RMSprop
	learning rate	1e - 4
	regularization	none
	number of training epoch	15

Table: List of the tuning parameters and values used by the best neural network architectures.

Tuning parameters

model	tuning-parameter	value
	number of recurrent layers	3
	number of fully connected layers	3
RNN	number of feature in the hidden state of the LSTM	128
(best architecture)	hidden neurons	1024 — 1024 — 1024
(best architecture)	activation	GELU
	optimizer	Adam
	learning rate	1e - 4
	regularization	dropout
	number of training epoch	30

Table: List of the tuning parameters and values used by the best neural network architectures.

Universită degli Studi di Padova

Results and comparisons

Highest accuracy (only textual variable)

	LR	SVM	KNN	RF	GB	FFNN
accuracy	0.91	0.913	0.903	0.915	0.907	0.912
balanced accuracy	0.587	0.603	0.599	0.574	0.607	0.586

Highest balanced accuracy (only textual variable)

	LR	SVM	KNN	RF	GB	FFNN
accuracy	0.82	0.804	0.831	0.86	0.836	0.781
balanced	0.722	0.745	0.699	0.694	0.71	0.721
accuracy	0.722	0.743	0.099	0.094	0.71	0.721

Highest accuracy (complete dataset)

		LR	SVM	KNN	RF	GB	FFNN	RNN	RNN + GB	PCA + GB
Г	accuracy	0.923	0.908	0.911	0.948	0.946	0.912	0.925	0.946	0.935
Г	balanced	0.721	0.502	0.565	0.783	0.789	0.586	0.659	0.794	0.72
	accuracy	0.721	0.302	0.303	0.763	0.709	0.560	0.039	0.794	0.72

Highest balanced accuracy (complete dataset)

	LR	SVM	KNN	RF	GB	FFNN	RNN	RNN + GB	PCA + GB
accuracy	0.873	0.843	0.855	0.933	0.906	0.775	0.903	0.831	0.908
balanced accuracy	0.813	0.84	0.722	0.828	0.861	0.716	0.862	0.849	0.518

Results and comparisons

	accuracy	balanced accuracy	precision	sensitivity	specificity	МСС	F ₁ -score
LR	0.923	0.721	0.606	0.474	0.969	0.495	0.532
SVM	0.908	0.502	0.995	0.005	0.995	0.067	0.010
KNN	0.911	0.565	0.564	0.141	0.989	0.251	0.226
RF	0.948	0.783	0.807	0.581	0.986	0.658	0.675
GB	0.946	0.789	0.767	0.596	0.982	0.648	0.67
FFNN	0.912	0.586	0.581	0.186	0.986	0.295	0.282
RNN	0.925	0.659	0.694	0.333	0.985	0.447	0.45
RNN + GB	0.946	0.794	0.763	0.608	0.981	0.653	0.677
PCA + GB	0.935	0.72	0.736	0.457	0.983	0.548	0.677

Table: Classification metrics of the models with the highest validation accuracy.

Results and comparisons

	accuracy	balanced accuracy	precision	sensitivity	specificity	МСС	F ₁ -score
LR	0.873	0.813	0.4	0.739	0.887	0.482	0.519
SVM	0.843	0.84	0.352	0.836	0.843	0.476	0.496
KNN	0.855	0.722	0.33	0.558	0.885	0.354	0.415
RF	0.933	0.828	0.624	0.7	0.957	0.624	0.66
GB	0.906	0.861	0.495	0.806	0.916	0.585	0.613
FFNN	0.775	0.716	0.237	0.643	0.789	0.288	0.346
RNN	0.925	0.659	0.694	0.333	0.985	0.447	0.45
RNN + GB	0.903	0.862	0.485	0.811	0.912	0.58	0.607
PCA + GB	0.831	0.849	0.339	0.871	0.827	0.476	0.489

Table: Classification metrics of the models with the highest balanced validation accuracy.

Running time

	Fitting time (s)	Predicting time (s)	Total time (s)	
Logistic Regression	295.0	0.5	295.5	
SVM	195.0	102.0	297.0	
KNN	0.2	100.0	100.2	
Random Forest	44.9	3.1	48.0	
Gradient Boosting	388.4	1.3	389.7	
FFNN	581.1	15.2	596.3	
RNN	202.9	16.5	219.4	
RNN + GB	452.8	1.6	454.4	

Table: Running time comparison among the versions of the models with the highest validation accuracy. This is done in terms of fitting time, predicting time and total time. The unit of measurement is the second.

	accuracy	balanced accuracy
Gradient Boosting (highest accuracy)	0.952	0.648
Gradient Boosting (highest balanced accuracy)	0.864	0.680

Table: Final results in the new test set.