UNIVERSIDAD DE LA REPÚBLICA, URUGI

GOLPE DE ARIETE EN CONDUCCIONES

- > Descripción del fenómeno
- > Ecuaciones de cálculo

Eventos Transitorios de Alta Frecuencia

Golpe de Ariete: Incremento de presión debido a la desaceleración o detención brusca del fluido contra un obstáculo.

Cavitación: formación de cavidades de vapor dentro del líquido debido a la caída de la presión estática hasta el valor de la presión de vapor, y el posterior colapso violento de esas cavidades al recuperarse la presión.

Eventos Transitorios de Alta Frecuencia

Se producen durante el transporte de fluidos por bombeo y por gravedad.

Alternancia de sobrepresiones y depresiones bruscas

Originadas por variaciones rápidas de la velocidad debidas a:

- Cierre y apertura de válvulas.
- Encendido y apagado de bombas.

¿Tiempo de detención por cierre instantáneo?

Onda de presión: velocidad del sonido (us)

$$\Delta t = L / us$$

En un medio homogéneo infinito

$$u_s = \sqrt{\epsilon/\rho}$$

 ϵ es el módulo de compresibilidad del fluido ρ es su densidad.

¿Sobrepresión máxima?

Balance macroscópico de cantidad de movimiento dentro de la tubería, en la dirección del flujo.

Variación de la cantidad de movimiento es igual al impulso.

$$\Delta(m.u) = F.\Delta t$$

 $\rho.L.A.\Delta u = \Delta P.A.\Delta t$

 ρ .L. Δ u = Δ P. Δ t

 $\Delta u = u_0$ $\Delta t = L / u_s$

 ρ .L.uo = Δ P.L / us

 $\rho.uo = \Delta P / us$

m es la masa de fluido
u es su velocidad
F es la fuerza neta sobre el fluido
Δt es el tiempo de detención

ρ es la densidad del fluido
L es la longitud de la tubería
A es el área de flujo

ΔP es la diferencia de presión entre la válvula y la entrada

 $\Delta Pmáx = \rho.uo.us$

¿Sobrepresión máxima?

Balance macroscópico de cantidad de movimiento dentro de la tubería, en la dirección del flujo.

Variación de la cantidad de movimiento es igual al impulso.

$$\Delta$$
(m.u) = F. Δ t

 $-\rho.L.A.\Delta u = \Delta P.A.\Delta t$ $-\rho.L.\Delta u = \Delta P.\Delta t$

 $\Delta u = -uo$ $\Delta t = L / us$

 ρ .L.uo = Δ P.L / us

 $\rho.uo = \Delta P / us$

 ${f m}$ es la masa de fluido ${f u}$ es su velocidad (${f uo}$ la inicial) ${f F}$ es la fuerza neta sobre el fluido ${f \Delta t}$ es el tiempo de detención ${f
ho}$ es la densidad del fluido ${f L}$ es la longitud de la tubería ${f A}$ es el área de flujo ${f \Delta P}$ es la sobrepresión sobre la válvula

 $\Delta Pm\acute{a}x = \rho.u_o.u_s$

Cierre de válvulas en tiempo finito

Una serie infinita de ondas de presión infinitesimales desaceleran el fluido hasta detenerlo.

(Sistema de EDDP sin solución analítica)

Hipótesis de Allievi:

- 1) Pérdida de energía despreciable.
- 2) Las derivadas espaciales son despreciables frente a las derivadas temporales.
- 3) La válvula termina de cerrarse antes de que llegue a ella la primera onda de descompresión ($\Delta t_{\text{Cierre Total}}$ < 2.L / us)

 Δ Pmáx = $\rho.uo.us$ Cierre rápido (ALLIEVI)

Se verifica entre la válvula y la sección en la cual interfieren la primera onda de descompresión con la última onda de compresión por el cierre de la válvula.

Cierre de válvulas en tiempo finito

Hipótesis de Michaud:

- 1) Pérdida de energía despreciable.
- 2) Las derivadas espaciales son despreciables frente a las derivadas temporales.
- 3) La válvula NO termina de cerrarse antes de que llegue a ella la primera onda de descompresión. $\Delta t_{CierreTotal} > 2.L / us$
- 4) El cierre de la válvula produce una desaceleración constante: $-\Delta u / t = u_0 / \Delta t_{CierreTotal}$ siendo t el tiempo p/reducir la velocidad un Δu

 Δ Pmáx = ρ u₀ (2.L Δ t_{CT}) Cierre lento (MICHAUD)

Este valor se verifica sobre la válvula. En el resto de la tubería $\Delta Pm\acute{a}x = \rho \ u_0 \ (2.\varkappa \ /\Delta t_{CT})$ siendo \varkappa la distancia al depósito

PARA PROFUNDIZAR:

¿Cuáles son las parámetros operativos y de diseño más relevantes para prevenir el golpe de ariete?

¿Cómo podemos determinar el tiempo límite entre un cierre lento y un cierre rápido?

¿Cómo incide el material de la tubería en la máxima sobrepresión?

¿Por qué en edificaciones con instalaciones sanitarias viejas suele ser más notorio el golpe de ariete?

¿ Qué diferencia cualitativa encontraríamos al analizar lo que ocurre con la presión pasando la válvula, cuando esta se cierra?

¿Y si el fluido era impulsado por una bomba y esta se detiene abruptamente?

Averigua que accesorios se emplean para mitigar el golpe de ariete.