Pizzaseminar zur Kategorientheorie

4. Übungsblatt

Aufgabe 1: Sei $\mathrm{Id}_{\mathrm{Set}}: \mathrm{Set} \to \mathrm{Set}$ der Identitätsfunktor auf $\mathrm{Set}, P: \mathrm{Set} \to \mathrm{Set}$ der (kovariante) Potenzmengenfunktor und $K: \mathrm{Set} \to \mathrm{Set}$ der Funktor

$$\begin{array}{ccc} X & \longmapsto & X \times X \\ f & \longmapsto & f \times f := ((a,b) \mapsto (f(a),f(b))). \end{array}$$

a) Zeige: Es gibt nur eine einzige natürliche Transformation $\eta: \mathrm{Id}_{\mathrm{Set}} \Rightarrow \mathrm{Id}_{\mathrm{Set}}$, nämlich

$$\eta_X: X \to X, \ x \mapsto x.$$

b) Zeige: Es gibt nur eine einzige natürliche Transformation $\omega: \mathrm{Id}_{\mathrm{Set}} \Rightarrow K$, nämlich

$$\omega_X: X \to X \times X, \ x \mapsto (x, x).$$

Tipp für a) und b): Betrachte geeignete Abbildungen $1 \to X, \star \mapsto x$.

- c) Zeige: Es gibt keine natürliche Transformation $P \Rightarrow \mathrm{Id}_{\mathrm{Set}}$, wohl aber eine in die andere Richtung.
- d) Wir nehmen an, dass wir für jede nichtleere Menge X ein bestimmtes Element $a_X \in X$ gegeben haben. Zeige: Die Setzung $\tau_X : X \to X$, $x \mapsto a_X$ definiert nicht eine natürliche Transformation $\mathrm{Id}_{\mathcal{C}} \Rightarrow \mathrm{Id}_{\mathcal{C}}$, wobei \mathcal{C} die Kategorie der nichtleeren Mengen und beliebigen Abbildungen bezeichnet.
- e) Welche natürlichen Transformationen $\mathrm{Id}_{\mathcal{C}} \Rightarrow \mathrm{Id}_{\mathcal{C}}$ gibt es, wenn \mathcal{C} die Kategorie der reellen Vektorräume bezeichnet?

Aufgabe 2:

- a) Sei $F: \mathcal{C} \to \mathcal{D}$ eine Äquivalenz von Kategorien, mit Quasi-Inversem $G: \mathcal{D} \to \mathcal{C}$. Sei X ein Objekt von \mathcal{C} . Zeige: X initial in $\mathcal{C} \iff F(X)$ initial in \mathcal{D} .
- b) Seien nun X und Y Objekte einer Kategorie \mathcal{E} . Zeige, dass die Kategorie der Möchtegern-Produkte von X und Y äquivalent zur Kategorie der Möchtegern-Produkte von Y und X ist. Welche bekannte Aussage folgt daher mit a)?

Aufgabe 3: Sei C die Kategorie mit

$$\mathrm{Ob}\,\mathcal{C}:=\{\mathbb{R}^n\,|\,n\geq 0\},$$

$$\mathrm{Hom}_{\mathcal{C}}(\mathbb{R}^n,\mathbb{R}^m):=\mathbb{R}^{m\times n},$$

wobei die Morphismenverkettung durch die Matrixmultiplikation gegeben ist. Zeige: Die Kategorie \mathcal{C} ist äquivalent zur Kategorie der endlich-dimensionalen \mathbb{R} -Vektorräume.

Tipp: Wähle für jeden endlich-dimensionalen Vektorraum V einen Iso $\eta_V : \mathbb{R}^{\dim V} \to V$.

Projektaufgabe: Sei $\varphi:A\to B$ ein Morphismus in einer lokal kleinen Kategorie \mathcal{C} . Bastele daraus eine natürliche Transformation der Hom-Funktoren

$$\operatorname{Hom}_{\mathcal{C}}(\underline{\hspace{0.1cm}},A) \Longrightarrow \operatorname{Hom}_{\mathcal{C}}(\underline{\hspace{0.1cm}},B).$$