<u>Useful and not so useful formulas and constants (not all are necessary for solving the problems):</u>

The speed of light = $3 \cdot 10^8$ m/s

Gravitational acceleration at sea level = 9.81m/s²

$$\mu = 3.986 \cdot 10^5 \text{ km}^3/\text{s}^2$$

Force: $F = m \cdot a$

$$F = \Delta p/\Delta t$$

$$F = GMm/r^2$$

$$F = mv^2/r$$

$$G = 6.67 \cdot 10^{-11} \text{Nm}^2/\text{kg}^2$$

$$M = 5.98 \cdot 10^{24} \text{kg}$$

The classic orbital elements: a, e, i, Ω , ω , υ

X in deciBel (dB): $X_{dB} = 10log_{10}(X_{lin})$

The semi major axis in an ellipsoid = $\frac{1}{2}$ (R_a+R_p)

$$e = (R_a - R_p) / (R_a + R_p)$$

$$\Delta v = v_{eff} \cdot \ln \left(M_{initial} / M_{final} \right)$$

Boltzmann's constant $k = 1.38 \times 10^{-23} \text{ J/K}$