BTS OPTICIEN LUNETIER

Mathématiques SESSION 2012

Note : ce corrigé n'a pas de valeur officielle et n'est donné qu'à titre informatif sous la responsabilité de son auteur par Acuité.

Proposition de corrigé par Laurent Deshayes, Professeur au Lycée Technique Privé d'Optométrie de Bures-sur-Yvette

EXERCICE 1 (10 points)

A.

1°a) $(E_1): x'(t) + 2x(t) = 0$ ce qui correspond à : x'(t) = -2x(t).

Les solutions de (E_1) sont les fonctions f définies sur l'intervalle [0; 5] par : $f(t) = ke^{-2t}$ où $k \in IR$.

b) $f(0) = ke^0 = 5$ donc k = 5

La solution particulière de (E_1) recherchée est la fonction f définie sur [0;5] par : $f(t)=5e^{-2t}$.

2°a) $(E_0): y'(t) + y(t) = 0$ ce qui correspond à : y'(t) = -y(t).

Les solutions de (E_0) sont les fonctions g définies sur l'intervalle [0; 5] par $g(t) = ke^{-t}$ où $k \in IR$.

b)h est définie sur [0 ; 5] par $h(t) = -10e^{-2t}$.

La fonction *h* est dérivable sur [0; 5] et $h'(t) = -10 \times (-2)e^{-2t} = 20e^{-2t}$.

 $h'(t) + h(t) = 20e^{-2t} + (-10e^{-2t}) = 10e^{-2t}$, pour tout réel t de l'intervalle [0; 5], ce qui prouve que la fonction h est solution particulière de l'équation (E₂).

c) Les solutions de (E_2) sont les fonctions g définies sur l'intervalle [0; 5] par : $g(t) = ke^{-t} + h(t)$ où $k \in IR$; c'est-à-dire par $g(t) = ke^{-t} - 10e^{-2t}$ où $k \in IR$.

d) $g(0) = k - 10e^0 = k - 10 = 0$ donc k = 10.

La solution particulière de (E_2) recherchée est la fonction g définie sur [0;5] par : $g(t) = 10e^{-t} - 10e^{-2t}$ Ou, en factorisant, $g(t) = 10(e^{-t} - e^{-2t})$.

В.

On peut remarquer qu'il s'agit des fonctions f et g de la partie A.

1°

Signe de f'(t):

La fonction f est dérivable sur l'intervalle [0; 5] et f'(t) = $-10e^{-2t}$.

La fonction exponentielle est strictement positive, donc f'(t) < 0 sur l'intervalle [0; 5], comme on le voit dans le tableau de variation donné.

Signe de g'(t):
$$g(t) = 10(e^{-t} - e^{-2t})$$
 $g \text{ est dérivable sur } [0; 5] \text{ et } g'(t) = 10(-e^{-t} - (-2e^{-2t})) = 10(2e^{-2t} - e^{-t})$

$$g'(t) = 10e^{-t} (2e^{-t} - 1), \text{ qui est du signe de } (2e^{-t} - 1)$$

$$2e^{-t} - 1 \ge 0$$

$$2e^{-t} \ge 1$$

$$e^{-t} \ge \frac{1}{2}$$

$$-t \ge \ln(\frac{1}{2}) \quad \text{avec } \ln(\frac{1}{2}) = -\ln 2$$

$$t \le \ln 2.$$

On retrouve donc bien le signe de g'(t) du tableau donné :

t	0		ln2		5
g'(t)		+	0	_	·

 2°

3°

Traçons la tangente T_0 à la courbe au point A obtenu pour t=0: Il s'agit de la droite passant par le point A et de vecteur directeur $\vec{V}(0)$: (différent du vecteur nul)

Le point A a pour coordonnées: $\begin{pmatrix} f(0) = 5 \\ g(0) = 0 \end{pmatrix}$

Et le vecteur $\overrightarrow{V}(0)$ a pour coordonnées : $\begin{pmatrix} f'(0) = -10 \\ g'(0) = 10 \end{pmatrix}$ colinéaire au vecteur de coordonnées : $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$

La droite T_0 passe donc par le point $A \begin{pmatrix} 5 \\ 0 \end{pmatrix}$ et par le point A' de coordonnées : $\begin{pmatrix} 5-1=4 \\ 0+1=1 \end{pmatrix}$

Traçons de la même façon la tangente T_5 à la courbe au point B obtenu pour t = 5: Il s'agit de la droite passant par le point B et de vecteur directeur $\vec{V}(5)$: (différent du vecteur nul)

La droite T_5 passe donc par le point B et est très proche de la droite d'équation x = 0.

C.

$$I = \int_{0}^{5} -10(e^{-2t} - e^{-t}) dt = -10 \int_{0}^{5} (e^{-2t} - e^{-t}) dt = -10 \left[\frac{e^{-2t}}{-2} - \frac{e^{-t}}{-1} \right]_{0}^{5} = -10 \left[\frac{e^{-2t}}{-2} + e^{-t} \right]_{0}^{5}$$

$$I = -10 \left(-\frac{e^{-10}}{2} + e^{-5} - \left(-\frac{1}{2} + 1 \right) \right) = 5 \left(e^{-10} - 2 e^{-5} + 1 \right).$$

La valeur approchée à 10⁻² de l'intégrale I est : 4,93.

EXERCICE 2

(10 points)

A. 1°

a) La probabilité que la pièce possède au moins un défaut est : 0,09

b) La probabilité que la pièce possède un seul défaut est : 0,07

c) Les évènements L et E ne sont ni indépendants ni incompatibles.

d) On prélève maintenant une pièce qui présente le défaut L. La probabilité que cette pièce présente aussi le défaut E est : 0,5

 2°

a) On considère une épreuve élémentaire (qui consiste à prélever une seule pièce du premier modèle) qui a exactement 2 issues : la pièce prélevée présente le défaut de longueur de probabilité p(L) = 0.04 ou non.

On répète 10 fois cette épreuve élémentaire de façon indépendante (car le tirage est assimilé à un tirage avec remise).

Donc la variable aléatoire X qui, à tout prélèvement de 10 pièces, associe le nombre de pièces présentant le défaut de longueur suit la loi binomiale de paramètres 10 et 0,04.

b)
$$P(X = 3) = \binom{10}{3} 0.04^3 0.96^7 \cong 6.10^{-3}$$
.

B.

La variable aléatoire R suit la loi normale de paramètres 15 et 0,75

donc la variable aléatoire T définie par $T = \frac{R-15}{0.75}$ suit la loi normale centrée réduite $\mathcal{N}(0; 1)$.

$$1^{\circ} \ P(\ R \le 16\) = P(\ R \le \frac{16 \text{ -} 15}{0{,}75}\) \cong \ P(\ T \le 1{,}33\) = \ \Pi(\ 1{,}33\) \cong \ 0{,}9082.$$

$$2^{\circ} P(13,5 \le R \le 16,5) = P(-2 \le T \le 2) \cong 2\Pi(2) - 1 \cong 2 \times 0,9772 - 1 \cong 0,9544.$$

C.

 Γ optimization μ , σ

Sur l'échantillon d'effectif n = 100 :
$$\bar{x} = 19,972 \text{ g et } \sigma_e = 0,4979 \text{ g}$$

1° L'estimation ponctuelle de l'écart type σ des masses des pièces du troisième modèle est :

$$\sigma = \sigma_e \cdot \sqrt{\frac{100}{99}} \cong 0,500 \text{ g.}$$

2°

a) Sous l'hypothèse nulle, la variable aléatoire \overline{Y} suit la loi normale $\mathscr{W}(20;0,05)$ donc la variable aléatoire T définie par $T=\frac{\overline{Y}-20}{0.05}$ suit la loi normale $\mathscr{W}(0;1)$.

$$P(\,\overline{Y}\,\geq 20-h\,\,) = 0.95 = P(\,T\,\geq \,-\,\frac{h}{0.05}\,\,) = 1\,-\,\Pi\,(\,\,-\,\frac{h}{0.05}\,\,) \,= 1\,-\,\left(1\,-\,\Pi\,(\,\,\frac{h}{0.05}\,\,\right) \,=\,\Pi\,(\,\,\frac{h}{0.05}\,\,) \,.$$

Finalement: $\Pi(\frac{h}{0.05}) = 0.95$.

La lecture inverse de la table de la loi normale centrée réduite donne: $\frac{h}{0.05} = 1.64$ (ou 1.65) On obtient ensuite la valeur du réel h : $h = 1.64 \times 0.05 = 0.082 \text{ g}$ (ou 0.0825 g)

$$20 - 0.082 = 19.918 \text{ g}$$

On a donc P($\overline{Y} \ge 19,918$) = 0,95.

b) Énoncé de la règle de décision :

On prélève un échantillon de 100 pièces et on calcule la masse moyenne \bar{x} des pièces de cet échantillon.

Si $\bar{x} > 19,918$ g, alors on accepte H₀ Sinon on rejette Ho.

c) $\bar{x} = 19,972$ g donc $\bar{x} > 19,918$ g donc on accepte H₀, donc on ne peut pas, au seuil de 5%, conclure que la masse moyenne des pièces fabriquées le 7 mars 2012 est inférieure à 20 g.

3° Il y a deux façons de répondre :

3°a) On peut répondre à la question sans effectuer de calcul:

Avec un seuil de signification de seulement 1%, la région d'acceptation de l'hypothèse H_0 est plus grande :

Donc la moyenne \bar{x} , qui est supérieure à 19,918 g, appartient obligatoirement à la nouvelle région d'acceptation de l'hypothèse H_0 , ce qui permet d'affirmer que la décision serait la même que précédemment, en fixant le seuil de signification du test à 1 %.

3°b) On peut aussi répondre en réécrivant le test comme à la question 2°) avec le nouveau seuil, c'està-dire en remplaçant la valeur 0,95 par 0,99.

Déterminons le réel h' tel que $P(\overline{Y} \ge 20 - h') = 0.99 = P(T \ge -\frac{h'}{0.05}) = 1 - \Pi(-\frac{h'}{0.05})$

$$= 1 - \left(1 - \Pi \left(\frac{h'}{0.05} \right) = \Pi \left(\frac{h'}{0.05} \right).$$

Finalement: $\Pi(\frac{h'}{0.05}) = 0.99$.

La lecture inverse de la table de la loi normale centrée réduite donne maintenant: $\frac{h'}{0.05} = 2.33$

On obtient ensuite la valeur du réel h' : $h' = 2,33 \times 0,05 = 0,1165 \text{ g}.$

$$20 - 0.1165 = 19.8835 g$$
 On a donc $P(\overline{Y} \ge 19.8835) = 0.95.$

L'énoncé de la règle de décision est alors la suivante :

On prélève un échantillon de 100 pièces et on calcule la masse moyenne \bar{x} des pièces de cet échantillon.

Si $\bar{x} > 19,8835$ g, alors on accepte H₀ Sinon on rejette H₀.

Et son utilisation est:

 $\bar{x} = 19,972 \text{ g donc } \bar{x} > 19,8835 \text{ g donc on accepte H}_0,$

donc on ne peut pas, au seuil de 1%, conclure que la masse moyenne des pièces fabriquées le 7 mars 2012 est inférieure à 20 g ; ce qui est bien la même décision qu'au seuil de 5%.