Lógica Computacional

Aula Teórica 4: Tabelas de verdade, Consequência semântica

Ricardo Gonçalves

Departamento de Informática

22 de setembro de 2023

Análise combinatória de fórmulas

- A satisfação de uma fórmula φ ∈ F_P por uma valoração V depende apenas do valor que V atribui a cada p ∈ sProp(φ).
- Pode-se determinar a natureza de dada fórmula (possível, contraditória ou válida) analisando todas as possíveis atribuições de valor aos seus símbolos proposicionais.
- Apesar de V ser uma aplicação com domínio infinito (o conjunto P pode ser infinito), cada fórmula é uma sequência finitas de símbolos e portanto só tem de um número finito de símbolos proposicionais
- Duas valorações V_1 e V_2 que atribuam os mesmos valores aos símbolos proposicionais de uma fórmula φ , atribuem o mesmo valor de verdade a φ .
- Logo, a análise exaustiva das possíveis valorações para os símbolos de uma dada fórmula permite decidir a sua natureza.

Lema dos símbolos omissos

Lema dos símbolos omissos

Seja $\varphi \in F_P$ e considerem-se duas valorações V_1 e V_2 . Se para cada $p \in \operatorname{sProp}(\varphi)$ se tem $V_1(p) = V_2(p)$, então $V_1(\varphi) = V_2(\varphi)$.

Prova por indução estrutural

- Casos base: φ é uma fórmula atómica. Se $\varphi = \bot$, então $V_1(\bot) = V_2(\bot) = 0$. Se $\varphi = p$, com $p \in P$. Por hipótese, temos $V_1(p) = V_2(p)$, pois $p \in \operatorname{sProp}(\varphi)$.
- Passo: φ é uma fórmula não atómica.
 Caso φ = φ₁ ∨ φ₂ (os outros são semelhantes).

$$egin{array}{lll} V_1(arphi) &= V_1(arphi_1 ee arphi_2) &=& (ext{por definição}) \ V_1(arphi_1) \oplus V_1(arphi_2) &=& (ext{por hipótese de indução}) \ V_2(arphi_1) \oplus V_2(arphi_2) &=& (ext{por definição}) \ V_2(arphi_1 ee arphi_2) &=& V_2(arphi) \end{array}$$

Tabelas de verdade

Construção da tabela de verdade para φ

Linhas: todas as possíveis combinações de valores para os símbolos proposicionais de φ ;

Colunas: uma coluna para cada subfórmula de φ .

Disjunção, conjunção e implicação

Disjunção:

p	q	$p \lor q$
0	0	0
1	0	1
0	1	1
1	1	1

Conjunção:

p	q	$p \wedge q$
0	0	0
1	0	0
0	1	0
1	1	1

Implicação:

p	q	p o q
0	0	1
1	0	0
0	1	1
1	1	1

Negação e Equivalência

Negação:

$$\begin{array}{c|c}
p & \neg p \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Equivalência:

$$p \leftrightarrow q \stackrel{\mathsf{abv}}{=} (p \to q) \land (q \to p)$$

p	q	$p \leftrightarrow q$
0	0	1
1	0	0
0	1	0
1	1	1

Análise de fórmulas

Análise da natureza de fórmulas usando Tabelas de Verdade

- Fórmula **possível**: alguma linha da tabela tem 1.
- Fórmula contraditória: todas as linhas da tabela têm 0.
- Fórmula válida: todas as linhas da tabela têm 1.

Análise da validade de fórmulas

Tabela de $(p \land q) \rightarrow \bot$						
р	q	_	$p \wedge q$	$(p \wedge q) ightarrow ot$		
0	0	0	0	1		
1	0	0	0	1		
0	1	0	0	1		
1	1	0	1	0		

Fórmula possível (não válida)

Coluna da fórmula tem 0's e 1's: há valorações que a satisfazem (possível), mas há uma que não a satisfaz (não é válida).

Na verdade não é necessário apresentar todas as linhas: basta uma com a coluna da fórmula a 1, para mostrar que é possível, e outra linha com 0 nessa coluna, para mostrar que não é válida.

Análise da validade de fórmulas

Tabela de $\varphi = (p \lor \neg p) \to \bot$

p	上	$\neg p$	$p \lor \neg p$	φ
0	0	1	1	0
1	0	0	1	0

Fórmula contraditória

Como a coluna da fórmula (a da direita) só tem 0's, nenhuma valoração a satisfaz.

Análise da validade de fórmulas

Tabel	a de	e⊥	\rightarrow (p /	$\langle a \rangle$
				(- '	. 7)

р	q	_	$p \wedge q$	$ig oxdot o (p \wedge q)$
0	0	0	0	1
1 0	0	0	0	1
0	1	0	0	1
1	1	0	1	1

Fórmula válida

Como a coluna da fórmula (a da direita) só tem 1's, todas as valorações a satisfazem.

Construção da tabela de verdade

Para pensar...

- Se uma fórmula φ tem n símbolos proposicionais, quantas linhas terá a sua tabela de verdade?
- Como construir as possíveis combinações de valores sem enganar?

Exemplo

$$\varphi = ((p \land (q \lor r)) \to q)$$

Intuição

- Quer-se efectuar raciocínio entre asserções, de forma a retirar conclusões válidas a partir de hipóteses.
- Exemplo: se o metro se atrasar e não houver táxis na estação, o Pedro chega tarde. O Pedro não chegou tarde, mas o metro atrasou-se. Logo, havia táxis na estação.
- Formalização:
 - p: metro atrasa; q: taxis na estação; r: Pedro chega tarde
 - Hipótese 1: se p e não q então r, i.e., $(p \land \neg q) \rightarrow r$.
 - Hipótese 2: não r e p, i.e., $\neg r \land p$.
 - Tese: *q*.
- Porque é que a Tese é consequência das Hipóteses?

Definição

Sejam $\Phi \subseteq F_P$ e $\varphi \in F_P$. Diz-se que φ é consequência semântica de Φ , o que se denota por $\Phi \models \varphi$, se para cada valoração V sobre P, se $V \Vdash \Phi$ então $V \Vdash \varphi$.

Exemplo

Quer-se provar que é válido o raciocínio:

"Se o metro se atrasar e não houver táxis na estação, o Pedro chega tarde. O Pedro não chegou tarde, mas o metro atrasou-se. Logo, havia táxis na estação."

Em lógica proposicional, trata-se de provar que $\{(p \land \neg q) \rightarrow r, \neg r \land p\} \models q.$

Exemplo

Quer-se mostrar que $\{(p \land \neg q) \to r, \neg r \land p\} \models q \text{ isto \'e, para todo}$ o V tal que $V \Vdash \{(p \land \neg q) \to r, \neg r \land p\}$ também $V \Vdash q$.

Seja V uma qualquer valoração tal que:

$$V \Vdash (p \land \neg q) \rightarrow r \in V \Vdash \neg r \land p.$$

De $V \Vdash \neg r \land p$ temos que:

$$egin{aligned} V(
eg r \wedge p) &= \ V(
eg r) \otimes V(p) &= \ (\ominus V(r)) \otimes V(p) &= 1 \end{aligned}$$

que se verifica se ambos os argumentos da multiplicação são 1, ou seja, se V(r)=0 e V(p)=1.

Continuação do exemplo

Como
$$V \Vdash (p \land \neg q) \rightarrow r$$
, temos que $V((p \land \neg q) \rightarrow r) = 1$

$$V((p \land \neg q) \rightarrow r) = (\ominus V(p \land \neg q)) \oplus V(r) = (\ominus (V(p) \otimes V(\neg q))) \oplus V(r) = (\ominus (1 \otimes V(\neg q))) \oplus 0 = (\ominus V(\neg q)) \oplus 0 = (\ominus V(\neg q)) = (\ominus (O(\neg q))) = (O(\neg q)) = V(q) = 1$$

Logo $\{(p \land \neg q) \rightarrow r, \neg r \land p\} \models q$.

Consequência semântica: o caso da contradição

Conjuntos contraditórios permitem qualquer conclusão

Se nenhuma valoração V satisfaz Φ , vacuosamente $\Phi \models \varphi$.

Proposição

Se um conjunto de fórmulas Φ é contraditório então, para qualquer fórmula φ , tem-se que $\Phi \models \varphi$.

Exemplo: $\{p, \neg p\} \models \bot$

Não existe nenhum V que satisfaça simultaneamente p e $\neg p$ (porque V é uma função).

Logo, para qualquer V tal que $V \Vdash \{p, \neg p\}$ (que não existe) também $V \Vdash \bot$, portanto $\{p, \neg p\} \models \bot$

Provar ou refutar?

Estratégia

Quer-se provar ou refutar uma afirmação de consequência semântica. Como fazer?

- Verifica-se primeiro se é falsa: existe valoração que satisfaz o antecedente mas não satisfaz o consequente? Se existir temos um contra-exemplo, e não há consequência semântica.
- 2 Se não se encontra um contra-exemplo, faz-se a prova.

$\{p \to q, r \to s, r \lor s\} \models p \lor q$?

Considere-se V tal que V(p) = 0 = V(q) = V(r) e V(s) = 1.

Então $V \Vdash p \rightarrow q$, $V \Vdash r \rightarrow s$ e $V \Vdash r \lor s$, ou seja, $V \Vdash \{p \rightarrow q, r \rightarrow s, r \lor s\}$.

No entanto, $V \not\Vdash p \lor q$, logo $\{p \to q, r \to s, r \lor s\} \not\models p \lor q$.

Provar por absurdo

$\{(\varphi \wedge \psi) \to \delta, \gamma \to \varphi\} \models \psi \to (\gamma \to \delta)$?

Considera-se por hipótese que para algum V se tem que

- $V \Vdash \{(\varphi \land \psi) \rightarrow \delta, \gamma \rightarrow \varphi\}$, mas que
- 2 $V \not\Vdash \psi \to (\gamma \to \delta)$. De 1 obtém-se:
- \bullet $V \Vdash \gamma \rightarrow \varphi$. De 2 obtém-se:
- $lackbox{0} V \Vdash \psi$ e $V \not\Vdash \gamma \rightarrow \delta$, ou seja
- **o** V ⊩ γ e
- $0 V \not\Vdash \delta$. De 4 e de 6 obtém-se:
- **3** $V \Vdash \varphi$. De 3, 5 e de 8 obtém-se:
- $V \Vdash \delta$, o que está em contradição com 7. Logo, $\{(\varphi \land \psi) \to \delta, \gamma \to \varphi\} \models \psi \to (\gamma \to \delta)$.

Consequência semântica VS implicação

Metateorema da Dedução

$$\{\varphi\} \models \psi \text{ se e s\'o se } \models \varphi \to \psi$$

Prova

Mostra-se primeiro que se $\{\varphi\} \models \psi$ então $\models \varphi \rightarrow \psi$.

Hipótese: $\{\varphi\} \models \psi$ — para qualquer V se $V \Vdash \varphi$ então $V \Vdash \psi$;

Mostrar: $\models \varphi \rightarrow \psi$ — qualquer V é tal que $V(\varphi \rightarrow \psi) = 1$.

Seja V qualquer valoração. Há dois casos possíveis:

Se $V(\varphi)=0$, então $V(\varphi \to \psi)=(\ominus V(\varphi)) \oplus V(\psi)=1$.

Se $V(\varphi)=1$, então $V\Vdash \varphi$ e por hipótese temos que $V\Vdash \psi.$

Logo $V(\psi)=1$, e portanto $V(\varphi \to \psi)=(\ominus V(\varphi)) \oplus V(\psi)=1$.

Nos dois casos concluímos $V(\varphi \to \psi) = 1$, logo $\models \varphi \to \psi$.

Mostra-se que $\models \varphi \rightarrow \psi$ implica $\{\varphi\} \models \psi$ de forma semelhante.

Consequência semântica VS implicação

Metateorema da dedução generalizado

Seja
$$n \in \mathbb{N}$$
. $\{\varphi_1, \dots, \varphi_n\} \models \psi$ se e só se $\models (\varphi_1 \wedge \dots \wedge \varphi_n) \to \psi$

Exercício

Adaptar a prova no slide anterior a este caso.

Algumas leis da lógica proposicional

Mais algumas propriedades da consequência semântica

Prova

- **1** $\{\bot\} \models \varphi$ vacuosamente, pois $\{\bot\}$ é um conjunto contraditório
- ② Seja V tal que $V \Vdash \{\varphi \land \psi\}$, ou seja, $V(\varphi \land \psi) = 1$. Mas, $V(\varphi \land \psi) = V(\varphi) \otimes V(\psi) = 1$. Logo $V(\varphi) = V(\psi) = 1$. Temos então que $V \Vdash \varphi$ e $V \Vdash \psi$; Logo $\{\varphi \land \psi\} \models \varphi$ e $\{\varphi \land \psi\} \models \psi$
- **③** Seja V tal que $V \Vdash \{\varphi\}$; logo $V \Vdash \varphi$, ou seja, $V(\varphi) = 1$, e tem-se também que $V(\varphi \lor \psi) = V(\varphi) \oplus V(\psi) = 1$, i.e., $V \Vdash \varphi \lor \psi$; então $\{\varphi\} \models \varphi \lor \psi$ O outro caso prova-se de forma semelhante.

A consequência semântica é uma pré-ordem

Pré-ordem

Uma relação é uma *pré-ordem* se for reflexiva e transitiva.

Reflexividade da consequência semântica

Trivialmente, a consequência semântica é reflexiva, isto é, $\{\varphi\} \models \varphi$.

Transitividade da consequência semântica

Se $\{\varphi\} \models \psi$ e $\{\psi\} \models \gamma$ então $\{\varphi\} \models \gamma$

Prova:

Por hipótese, $\{\varphi\} \models \psi$ e $\{\psi\} \models \gamma$. Queremos mostrar $\{\varphi\} \models \gamma$.

Seja V tal que $V \Vdash \varphi$.

Como por hipótese $\{\varphi\} \models \psi$, temos também que $V \Vdash \psi$; como por hipótese $\{\psi\} \models \gamma$, temos também $V \Vdash \gamma$.

Logo, sempre que $V \Vdash \varphi$ também $V \Vdash \gamma$, ou seja, $\{\varphi\} \models \gamma$.