

Derivative Delay Embedding: Online Modeling of Streaming Time Series

Zhifei Zhang (PhD student), Yang Song, Wei Wang, and Hairong Qi

Department of Electrical Engineering & Computer Science

Outline

- 1. Challenges of Online Modeling
- 2. Derivative Delay Embedding (DDE)
- 3. Markov Geographic Model (MGM)
- 4. Experimental Results

Most modeling methods require pre-processing or assumptions:

- Segmentation
- Alignment
- Normalization

However, for the online scenario:

- Infinite time series
- Misalignment
- Real-time
- Computationally efficient

Pre-processing and unrealistic assumptions are not allowed, thus misalignment challenges the online modeling

Misalignment in Online Modeling

Misalignment mainly refers to the variation in phase and repeat rate of streaming time series.

The Proposed Approach

Streaming time series

Derivative Delay Embedding (DDE)

Markov Geographic Model (MGM)

- Misaligned
- Non-periodic

- Invariant to misalignment
- Real-time
- Incremental manner

- Online modeling
- Online testing

Delay Embedding (DE)

Reconstruct a latent dynamical system which generates the time series regardless of misalignment.

$$\Phi(x_t; s, d) = (y_t, y_{t+s}, \dots, y_{t+(d-1)s})$$

 Φ --- estimate of x

s --- delay step

d --- embedding dimension

 x_t --- state of the latent dynamical system at the time t

 y_t --- observation (time series) at the time t

A Toy Examples of Delay Embedding

 Φ --- estimate of x

s --- delay step

d --- embedding dimension

 x_t --- state of the latent dynamical system at the time t

 y_t --- observation (time series) at the time t

The infinite time series becomes a trajectory in a bounded embedding space. It performs in real time.

Invariance to Misalignment

Misalignment in phase

Misaligned streaming time series generate the same trajectory in the embedding space

DE -> Derivative Delay Embedding (DDE)

Invariant to misalignment of baseline

Markov Geographic Model

Trajectory Modeling

In the embedding space, location of the states, and transition from one state to another carry the pattern of a trajectory.

Non-parametric model

- Probability the a state appear at certain location $P(x_t)$
- Transition probability $P(x_t | x_{t-1})$
- Discretized embedding space

$$S_{\text{MGM}}(X) = \sum_{j=1}^{t} P(x_j) \prod_{i=2}^{t} P(x_i|x_{i-1})$$
$$= S_{\text{G}}(X) \times S_{\text{M}}(X)$$

Markov Geographic Model (MGM)

Online update the transition and distribution of states.

Markov process

Geographic distribution

Markov Geographic Model

Geographic Distribution

Neighborhood Matching

$$S_{\text{MGM}}(X) = \sum_{j=1}^{t} P(x_j) \prod_{i=2}^{t} P(x_i | x_{i-1})$$
$$= S_{\text{G}}(X) \times S_{\text{M}}(X)$$

Make the transition probability more robust to noise and unseen samples in testing.

$$S_{\mathcal{M}}(X) = \prod_{i=2}^{t} \frac{\sum_{\alpha \in N_r(\Phi'(x_i)), \ \beta \in N_r(\Phi'(x_{i-1}))} |\alpha; \beta|}{\sum_{k} \sum_{\gamma \in N_r(\Phi'(x_{i-1}))} |\Phi'(x_k); \gamma|}$$

 $N_r(\Phi'(x_i))$ --- the set of neighbors within radius r around $\Phi'(x_i)$

Online Modeling and Classification by DDE-MGM

10/13/2016

13

Experimental Results

Datasets:

UCI Character Trajectory --- 2858
 character samples of 20 classes, x
 and y axes were recorded.

Normalized Well aligned

 MSR Action3D --- 567 action samples of 20 classes performed by 10 subjects, human skeleton is recorded.

Misaligned Variant length

Projectron **BPAS**

BOGD

NOGD

Experimental Results --- UCI Character Trajectory

The data is normalized and well aligned

Half-vs-half validation

Algorithm	Accu. (%)	Time (sec)
1NN-DTW	91.37	3.9×10^4
SAX	89.96	128.85
HMM	57.89	7.4×10^3
DDE-MGM	$\boldsymbol{92.07}$	34.21
RBP	92.62	9.44
Projectron	92.62	110.26
BPAS	94.68	22.81
BOGD	90.02	15.24
NOGD	91.65	$\boldsymbol{9.04}$
DDE-MGM	$\boldsymbol{95.45}$	63.92

Online testing

Number of samples

3000

The data is not normalized and misaligned

Half-vs-half validation

Algorithm	Accu. (%)	Time (sec)
1NN-DTW	74.73	7.6×10^4
SAX	61.90	54.68
HMM	60.07	2.1×10^{3}
DDE-MGM	93.04	28.40
RBP	23.41	20.23
Projectron	31.65	205.25
BPAS	30.36	12.25
BOGD	26.19	22.23
NOGD	29.96	10.47
DDE-MGM	79.37	80.38

Online testing

An Example of Action Recognition

The joint of left wrist is plotted for three categories of actions shown in different colors:

- high arm wave
- horizontal arm wave
- hammer

10/13/2016

17

Conclusion

- DDE is introduced to solve misalignment in online modeling
- The non-parametric model MGM is proposed to model the trajectories in an online manner
- Both modeling and classification are achieved in real time.

HANKS

SIGIR Student Travel Grant

Appendix: Parameter Setting of DE

$$\Phi(x_t; s, d) = (y_t, y_{t+s}, \dots, y_{t+(d-1)s})$$

 Φ --- estimate of x

s --- delay step

d --- embedding dimension

 x_t --- state of the latent dynamical system at t

 y_t --- observation (time series) at the time t

d --- False nearest neighbor [M. Kennel et al., 1992]

S ---
$$2\pi \times d \times s \times \frac{f}{f_s} \equiv 0 \mod \pi$$
 [J. A. Perea and J. Harer, 2013]