1. Interpolacja

1.1. Sformułowanie zadania

Mamy dane n+1 punktów xi, $(i=0,2,\ldots,n)$ (tzw. węzłów interpolacji). W każdym punkcie znamy wartość pewnej funkcji f(xi). Naszym zadaniem jest obliczenie przybliżonych wartości funkcji f(x) w punktach nie będących węzłami interpolacyjnymi. W praktyce należy zatem wyznaczyć funkcję interpolującą F(x), która przyjmuje w węzłach te same wartości, co dana funkcja f(x).

Dane:

- Węzły interpolacji: x_0, x_1, \ldots, x_n
- Wartości interpolowanej funkcji w węzłach: $f(x_0), f(x_1), \dots, f(x_n)$

Poszukujemy:

• Funkcji interpolującej F(x), takiej by: $f(x_i) = F(x_i)$, $\forall i \in (0, n)$

Przykład:

Xi	f(x _i)
0	150
3	175
7	250

Rys. 1. Interpolacja

1.2. Interpolacja wielomianowa Lagrange'a

Interpolacja wielomianowa Lagrange'a polega na wyznaczeniu funkcji interpolującej w postaci wielomianu stopnia nie wyższego niż n, którego wartości w n+1 punktach x_i są takie same jak wartości interpolowanej funkcji, tzn.: $L_n(x_i) = f(x_i)$, $\forall i \in \langle 0, n \rangle$, przy założeniu że $x_i \neq x_j$, $\forall i \neq j$.

Algorytm poszukiwania wielomianu interpolacyjnego Lagrange'a:

1) Znajdujemy wielomian, który przyjmuje w pierwszym węźle wartość 1, a w pozostałych węzłach przyjmuje wartość 0. Postępujemy tak dla każdego węzła. Wielomian ten napisany dla węzła o indeksie *i* będzie miał postać :

$$l_{i}(x) = \prod_{\substack{j=0\\j\neq i}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$
(1)

2) Suma znalezionych w pierwszym kroku wielomianów pomnożonych przez odpowiednie wartości funkcji interpolowanej w węzłach da nam wielomian, który w węzłach będzie przyjmował interesujące nas wartości. Zatem wzór na wielomian interpolujący Lagrange'a będzie wyglądał następująco:

$$L_n(x) = \sum_{i=0}^n f(x_i) \, l_i(x) = \sum_{i=0}^n f(x_i) \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j} \tag{2}$$

Przykład obliczeń:

W tabeli dane są węzły interpolacji oraz wartości funkcji w danych węzłach. Znajdź wielomian interpolacyjny Lagrange'a.

i	0	1	2	3
x_i	-4	-3	1	2
$f(x_i)$	5	2	5	2

Zgodnie ze wzorem:

$$L_{3}(x) = f(x_{0}) \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} + f(x_{1}) \frac{(x - x_{0})(x - x_{2})(x - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})}$$

$$+ f(x_{2}) \frac{(x - x_{0})(x - x_{1})(x - x_{3})}{(x_{2} - x_{0})(x_{2} - x_{1})(x_{2} - x_{3})} + f(x_{3}) \frac{(x - x_{0})(x - x_{1})(x - x_{2})}{(x_{3} - x_{0})(x_{3} - x_{1})(x_{3} - x_{2})}$$

$$= 5 \frac{(x + 3)(x - 1)(x - 2)}{(-4 + 3)(-4 - 1)(-4 - 2)} + 2 \frac{(x + 4)(x - 1)(x - 2)}{(-3 + 4)(-3 - 1)(-3 - 2)}$$

$$+ 5 \frac{(x + 4)(x + 3)(x - 2)}{(1 + 4)(1 + 3)(1 - 2)} + 2 \frac{(x + 4)(x + 3)(x - 1)}{(2 + 4)(2 + 3)(2 - 1)}$$

$$= -\frac{1}{4}x^{3} - \frac{3}{4}x^{2} + x + 5$$

W punkcie x = -1 wartość wielomianu interpolacyjnego wynosi:

$$L_3(-1) = -\frac{1}{4}(-1)^3 - \frac{3}{4}(-1)^2 + (-1) + 5 = 3.5$$

Rys. 2. Weryfikacja otrzymanej funkcji interpolującej Lagrange'a przy wykorzystaniu programu excel

1.3. Interpolacja wielomianowa Newtona

Zakładamy, że funkcja f(x) dana jest za pomocą tablicy wartości: x_0 , x_1 , ..., x_n (węzłów interpolacji) oraz wartości funkcji w tych punktach: $f(x_0)$, $f(x_1)$, ..., $f(x_n)$. Zakładamy, że $x_i \neq x_j$ dla $i \neq j$. Zakładamy także, że węzły nie są równoodległe.

Ilorazy różnicowe rzędu zerowego i pierwszego:

$$f[x_0] = f(x_0) \tag{3}$$

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \tag{4}$$

Ogólnie:

$$f[x_i] = f(x_i) \tag{5}$$

$$f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}$$
(6)

Ilorazy różnicowe rzędu drugiego są równe:

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$
(7)

$$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$$

...

$$f[x_{n-2}, x_{n-1}, x_n] = \frac{f[x_{n-1}, x_n] - f[x_{n-2}, x_{n-1}]}{x_n - x_{n-2}}$$

Ogólnie iloraz różnicowy rzędu n-1 przyjmuje postać:

$$f[x_i, x_{i+1}, \dots, x_{i+n}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+n}] - f[x_i, x_{i+1}, \dots, x_{i+n-1}]}{x_{i+n} - x_i}$$
(8)

Tablica ilorazów różnicowych jest następująca:

x_i	$f(x_i)$	Ilorazy różnicowe					
		Rzędu	Rzędu 1	Rzędu 2	Rzędu 3	Rzędu 4	Rzędu 5
		0		•	•		·
x_0	$f(x_0)$	$f[x_0]$					
			$f[x_0, x_1]$				
x_1	$f(x_1)$	$f[x_1]$		$f[x_0, x_1, x_2]$			
			$f[x_1,x_2]$		$f[x_0, x_1, x_2, x_3]$		
x_2	$f(x_2)$	$f[x_2]$		$f[x_1, x_2, x_3]$		$f[x_0, x_1, x_2, x_3, x_4]$	
			$f[x_2, x_3]$		$f[x_1, x_2, x_3, x_4]$		$f[x_0, x_1, x_2, x_3, x_4, x_5]$
x_3	$f(x_3)$	$f[x_3]$		$f[x_2, x_3, x_4]$		$f[x_1, x_2, x_3, x_4, x_5]$	
			$f[x_3, x_4]$		$f[x_2, x_3, x_4, x_5]$		
x_4	$f(x_4)$	$f[x_4]$		$f[x_3, x_4, x_5]$			
			$f[x_4, x_5]$	·			
x_5	$f(x_5)$	$f[x_5]$					

Wielomian interpolacyjny w postaci Newtona ma postać:

$$W_n(x) = b_0 p_0 + \sum_{k=1}^{n} b_k p_k(x)$$
(9)

gdzie:

$$p_0 = 1 \tag{10}$$

$$p_k = \prod_{i=0}^{k-1} (x - x_i) = (x - x_0)(x - x_1) \dots (x - x_{k-1}) dla k = 1, 2, \dots, n$$
 (11)

$$b_0 = f(x_0) \tag{12}$$

$$b_k = \sum_{i=0}^k \frac{f(x_i)}{\prod_{j=0, j \neq i}^k (x_i - x_j)}$$
 (13)

gdzie: b_k – ilorazy różnicowe funkcji f (oparte na węzłach $x_0, x_1, ..., x_k$), które w tabeli ilorazów różnicowych znajdują się na przekątnej.

Przykład obliczeń:

Dane są wartości funkcji: f(1) = 1, f(2) = 4, f(3) = 9, f(4) = 16, f(5) = 25

Tablica ilorazów różnicowych wygląda następująco:

	Ilorazy różnicowe						
x_i	Rzędu 0	Rzędu 1	Rzędu 2	Rzędu 3	Rzędu 4		
$x_0 = 1$	$f[x_0] = 1$						
		$f[x_0, x_1] = \frac{4-1}{2-1} = 3$					
$x_1 = 2$	$f[x_1] = 4$		$f[x_0, x_1, x_2] = \frac{5-3}{3-1} = 1$				
		$f[x_1, x_2] = \frac{9-4}{3-2} = 5$		$f[x_0, x_1, x_2, x_3] = \frac{1-1}{4-1} = 0$			
$x_2 = 3$	$f[x_2] = 9$		$f[x_1, x_2, x_3] = \frac{7-5}{4-2} = 1$		$f[x_0, x_1, x_2, x_3, x_4] = 0$		
		$f[x_2, x_3] = \frac{16 - 9}{4 - 3} = 7$		$f[x_1, x_2, x_3, x_4] = \frac{1-1}{5-2} = 0$			
$x_3 = 4$	$f[x_3] = 16$		$f[x_2, x_3, x_4] = \frac{9-7}{5-3} = 1$				
		$f[x_3, x_4] = \frac{25 - 16}{5 - 4} = 9$					
$x_4 = 5$	$f[x_4] = 25$						

Wielomian interpolacyjny dla przykładu powyżej ma postać:

$$W_n(x) = 1 + 3(x - 1) + 1(x - 1)(x - 2) + 0(x - 1)(x - 2)(x - 3) + 0(x - 1)(x - 2)(x - 3)(x - 4)$$

Wartości tego wielomianu w węzłach:

$$W_n(1) = 1$$

$$W_n(2) = 1 + 3(2 - 1) = 4$$

$$W_n(3) = 1 + 3(3 - 1) + 1(3 - 1)(3 - 2) = 1 + 6 + 2 = 9$$

$$W_n(4) = 1 + 3(4 - 1) + 1(4 - 1)(4 - 2) = 1 + 9 + 6 = 16$$

$$W_n(5) = 1 + 3(5 - 1) + 1(5 - 1)(5 - 2) = 1 + 12 + 12 = 25$$

Wartość tego wielomianu w punkcie x = 2.5:

$$W_n(2,5) = 1 + 3(2,5-1) + 1(2,5-1)(2,5-2) = 1 + 4,5 + 0,75 = 6,25$$

Zadanie obowiązkowe:

Zad 1. Napisz program, który będzie obliczał wartość wielomianu interpolacyjnego Lagrange'a i Newtona w dowolnym punkcie. Założenia:

- a) Węzły interpolacji i wartości funkcji w węzłach oraz liczba węzłów są zmiennymi pobieranymi z pliku tekstowego.
- b) Punkt, w którym obliczamy wartość wielomianu jest parametrem podawanym z klawiatury przez użytkownika.
- c) W wyniku działania program wypisuje:
 - Liczbę węzłów
 - Węzły interpolacji
 - Wartości funkcji w węzłach
 - Punkt, w którym liczymy wartość
 - Wartość wielomianu Lagrange'a w danym punkcie
 - Wartość wielomianu Newtona w danym punkcie
 - Współczynniki wielomianu Newtona (b_k)

Na UPEL należy przesłać skompresowany katalog opracowanego programu (10 pkt) oraz wyniki obliczeń z programu (w formie zrzutów ekranu) dla przykładów przedstawionych w niniejszej instrukcji (3 pkt).

Zadania dodatkowe:

Zad 2. Oblicz wartość $\sqrt[3]{50}$ za pomocą wielomianu interpolacyjnego Lagrange'a dla funkcji $y = \sqrt[3]{x}$ i węzłów interpolacji $x_0 = 27$, $x_1 = 64$, $x_2 = 125$, $x_3 = 216$. W sprawozdaniu opisz procedurę obliczania szukanej wartości (2 pkt).

Zad 3. Przeprowadź interpolację funkcji $y = \frac{1}{1+x^4}$ na przedziale [-10, 10] dla równoodległych węzłów interpolacji. Zadaj kolejno 6, 11 i 21 węzłów interpolacji. Czy ze wzrostem liczby węzłów dokładność interpolacji rośnie? Do sprawozdania dołącz wyniki obliczeń – wykresy znalezionych wielomianów na zadanym przedziale i wnioski płynące w tych obliczeń (5 pkt).