Visual Computing -Final Presentation

Lucius Vinicius, 96123 Martinho Tavares, 98262

Idea

- A game prototype where you should navigate a 3D cubic labyrinth;
- The scene will be mostly dark, and the player will have the ability to light it using a flashlight and a lamp that can be placed in the map;
- The inside layout is occluded by walls and windows. The player has to position the camera in order to get a better view;
- The map will be populated with objects and mobs;
- Random events to disorient the player;
- Implemented in Python with Panda3D.

Transformations

Translation

The player's and mobs' movement in the <u>cube</u>;

Rotation

The player is looking to the direction it's heading (rotation around the origin) and an animal rotating around the cube (arbitrary point rotation);

Scale

Scenario mobs with random scale;

View and Projection

Camera

Outside view into the scene and manually rotate and zoom in/out around the map.

Zooming in and out is limited to not collide into geometry, and it affects flashlight intensity.

Random events

Some random events were created to make gameplay more chaotic, and experiment different visual effects.

Orthographic

Camera switches from a perspective lens to an orthographic lens with a similar view

Lightning strike

Brightly illuminate the whole scene, with a lightning texture following the camera behind the scene

Flashlight flicker

Flickering flashlight intensity

Lighting

Spot Light Source

The spotlight object;

Point Light Source

The resource which the player can place on the map;

Lighting

Directional Light Source

The light emitted by the moon*.

Affects top-most roof of the labyrinth;

Ambient Light Source

Default light for objects;

Deferred shading: render the scene into an image (texture), and apply post-processing to that image in a fragment shader.

Base Depth buffer Normal buffer

Flashlight at the mouse position. Take into account normals and depth.

Base X Flashlight mask = Final color

Keep lit geometry on the scene even when unlit by the flashlight: threshold on HSV value (max RGB component).

HSV Value Smoothstep Mix

Flashlight flicker effect: sample Brownian noise over time and use as light intensity.

Noise Value noise Brownian noise

11

Geometric Modelling

Player model, objects' models and mobs' models;

Map mesh dynamically created in rectangular blocks (UVs, normals, binormals, tangents and color);

Textures

The walls: Bump mapping, tiling wrap;

Grass texture with normal mapping;

Challenges and Problems

Problems which persisted:

- Displacement mapping on the terrain;
- Player light performance;

Challenging problems fixed:

- Player model and its materials (model-space coordinates off-center, ambient material);
- Camera and player relative math;
- Flashlight shader (knowing how to apply the flashlight effect, with which techniques);

Attempt at better player light performance

Alterations on the Initial Goal

- Initially, the player would be able to put multiple lights. But due to the performance issues brought by shadow mapping, we limited it to 1;
- The flashlight was supposed to be a Panda3D Spotlight object, but complications with tracking the mouse on the 3D scene led us to consider creating the effect in GLSL the more appropriate approach;
- Flat Shading to the player model instead of the mobs because it was harder to see the effect on them;

Player's flat shading

Future Work

- Fix the grass's displacement map and player light performance problems;
- Insert a walking monster on the labyrinth that slowly follows the player with a pathfinding algorithm, disrupting their lights;
- More variety between mobs and objects;

Questions?

Self-evaluation: 18 Work distribution: 50/50