機械学習エンジニアコース Week2 Session

- 機械学習のための数学 -

2019年7月17日(水) 鈴木 達哉

今日の流れ

- 1. チェックイン・KPT(担当:鈴木・冨永)
- 2. 講義(担当:鈴木)
- 3. お昼休み
- 4. ペアプログラミング(担当:遠藤)
- 5. KPT·チェックアウト(担当: 冨永)

構成

- 1. 提言
- 2. 導入
- 3. 今日の目的
- 4. 授業前課題の確認
- 5. 授業課題
- 6. 質疑応答

地球は俺の遊園地だ

三浦 雄一郎

ゴールから逆算して設計されたカリキュラムになっています。数歩先を 見据え、走りながら考えてください。

就職

機械学習エンジニアになる。

Term3(10月)

問題を定義して、時間内に解決できる。

Term2(9月)

現在の問題を認識し、既存の解決策を適用できる。

Term1(8月)

古典的理論を知り、定石を身につける。

事前学習(7月)

道具を活かす思考を身につける。

5

Term3(10月)

問題を定義して、時間内に解決できる。

- 調査
- 仮説を立てる
- 条件を知る
- SQL
- データセット作成
- Docker
- Raspberry Pi
- 公開

Term2(9月)

現在の問題を認識し、既存の解決策を適用できる。

- 深層学習
- 画像認識
- 自然言語処理
- 論文読解
- コードリーディング
- OSS
- フレームワーク

Term1(8月)

古典的理論を知り、定石を身につける。

- 教師あり学習
- 教師なし学習
- スクラッチ
- Kaggle

事前学習(7月) 道具を活かす思考を身につける。

- プログラミング(Python)
- 機械学習のための数学
- 探索的データ分析
- 機械学習の基礎
- オブジェクト指向

導入 - 大切な考え方

今月は、道具を活かす思考を身につける。

	© Good	× Not Good
1	「何があればできるだろう」と自分に問う	「まだ習ってないからなあ」と立ち止まる
2	「本当にあっているのか」と疑う	「○○に書いてあったから」と信じ込む
3	「まずはやってみよう」と手を動かす	「もっと分かってからやろう」と慎重になる

今日の目的

学びの目的。目的が、人の役割と必要な学びを明確にする。明確な学びは、成長実感と自信につながる。

	目的とすること	目的としないこと
1	仲間とプログラムの考え方を学ぶ	関数をたくさん覚える
2	プログラムの基本要素を使いこな す	課題を早く完成させる
3	登山家の気持ちになる	

目的としないこととその理由。

	目的としないこと	その理由
1	関数をたくさん覚える	関数を 組み合わせて問題を解決すること が大切です。基本的な要素だけで十分に扱える内容になっています。
2	課題を早く完成させる	ある程度のレベルの人にはとりあえずの完成は簡単です。しかし、プログラミングに 正解はありません 。時間を目一杯使い、 自分なりに最大限学びを得て ください。

今日の目的:登山家の気持ちになる

「登山家の気持ちになる。」

今日は山下りを題材に勾配降下法を学ぶ。以下のようなイメージを持ってみよう。

	概念	現実世界での例え
1	登山家	自分
2	勾配	自分の足元の傾き
3	関数	未知の山
4	変数	現在の場所(地点)
5	パラメータ	下り方(速度、歩幅)

授業前課題の確認

授業前課題の解説を行います。

DIVER 授業前課題の発展と関連した話 2つが登場。話の中の小さな疑問を解決するようなプログラムを作成しよう。

- 1. 二次元配列と勾配問題
- 2. 富士下山問題

似た内容が繰り返され、だんだんヒントが少なくなる。

機械学習では関数の最小値を求めたい。その時、探索的に計算する勾配降下法が使われる。

勾配とは、山の斜面に例えられる。標高が低いところを目指す。

ルートの標高断面図 (中央道 富士吉田線)より

http://www.bekkoame.ne.jp/~moonbase/kousoku2006/cyuoh/cyuoh_fujiyosida_hightGraph.htm

授業課題

山の斜面を二次元の座標上の任意の点AとBを結ぶ線としてイメージしてみよう。

授業課題

地点と傾き、歩幅から新地点を算出してみよう。

1歩目の地点x1 = 0歩目の地点 $x0 - (傾き<math>y' \times 歩幅 \alpha)$

歩数	0歩目 x0	1歩目 x1	2歩目 x2	3歩目 x3	4歩目 x4
地点×	^{初期値} 136	119	113	108	?
傾き y'	168.35	55.28	53.28	26.92	?-

以下の値(ハイパーパラメータ)を決め、下山していく。

歩幅 α =0.1、0歩目の地点=136

授業課題

- ・登山を題材に勾配降下法を体験するが、これはあくまでたとえ話であることに留意する。
- ・後の課題で実際の勾配降下法とこの登山の例を対応させることで 学びをより深める。

(再掲)今日の目的

学びの目的。目的が、人の役割と必要な学びを明確にする。明確な学びは、成長実感と自信につながる。

	目的とすること	目的としないこと
1	仲間とプログラムの考え方を学ぶ	関数をたくさん覚える
2	プログラムの基本要素を使いこな す	課題を早く完成させる
3	登山家の気持ちになる	

(再掲)今日の目的

目的としないこととその理由。

	目的としないこと	その理由
1	関数をたくさん覚える	関数を 組み合わせて問題を解決すること が大切です。基本的な要素だけで十分に扱える内容になっています。
2	課題を早く完成させる	ある程度のレベルの人にはとりあえずの完成は簡単です。しかし、プログラミングに 正解はありません 。時間を目一杯使い、 自分なりに最大限学びを得て ください。

地球は俺の遊園地だ

三浦 雄一郎

講義は以上です。

ここまでで疑問に思った点はありますか?