Student Number: Name: Bryan Hoang

6. (15 points)

(a) Answer:

Let \mathcal{S} and \mathcal{U} denote the set of all suffix and UD first-order binary VLCs, respectively.

First, note that since $S \subseteq \mathcal{U}$, then

$$\min_{C \in \mathcal{U}} \bar{L} \le \min_{C \in \mathcal{S}} \bar{L}$$

$$\Rightarrow \bar{L}_{UD} \le \bar{L}_{S} \tag{1}$$

Now let \mathcal{C}^* , with codeword lengths l_1^*, \ldots, l_n^* , be the optimal UD code $(\mathcal{C}^* \in \mathcal{U})$:

$$ar{L}(\mathcal{C}^*) = ar{L}_{ ext{UD}}$$

where $\bar{L}(\mathcal{C})$ is the expected cost function, \bar{L} , of \mathcal{C} .

Then the codeword lengths $\{l_i^*\}_{i=1}^M$ of \mathcal{C}^* must satisfy the Kraft inequality (in base D) since \mathcal{C}^* is UD.

Then by the Theorem in class on the "Kraft Inequality for Prefix codes", \exists prefix code \mathcal{C}' with the same codeword lengths as C^* : $l_i' = l_i^*$, i = 1, ..., M. We can reverse the codewords of \mathcal{C}' to obtain a suffix code $\mathcal{C}'' \in \mathcal{S}$, with the same codeword lengths as C^* : $l_i'' = l_i^*$, i = 1, ..., M.

$$egin{aligned} dots ar{L}(\mathcal{C}^{''}) &= \sum_{i=1}^M p_i c(l_i^{''}) \ &= \sum_{i=1}^M p_i c(l_i^*) \ &= ar{L}_{ ext{UD}} \end{aligned}$$

<u>But</u>, $\bar{L}(C'') \geq \bar{L}_S$ by the definition of \bar{L}_S .

$$\therefore \bar{L}_{\rm UD} \ge \bar{L}_{\rm S}.\tag{2}$$

Then by (1) and (2), we have $\bar{L}_{\mathrm{UD}} = \bar{L}_{\mathrm{S}}$

(b) Answer:

Compression efficiency is one appropriate metric, where we want to choose a code alphabet size D and maximize order n so that the code's average code rate, \overline{R} , is as close as possible to the DMSs source entropy, $H_D(X)$.

Encoding delay is another metric, where we want to minimize order n and design a code with minimal variance in length to minimize the delay.

Storage and computational complexity is a third metric, where we want to minimize the size of the source alphabet by minimizing the order n.

Student Number: Name: Bryan Hoang

Due to these considerations, we need to balance the metrics and evluate the trade-offs between different solutions depending on the design application.