

Chapter 04. 자연어처리 (Natural Language Processing)

단어를 숫자로 표현하기

단어를 숫자로 표현하기

컴퓨터가 보는 문자

ASCII TABLE

Decimal	Hex C	Char	Decimal	Hex C	Char	Decima	l Hex C	har	Decimal	Hex C	har
0	0	[NULL]	32	20	[SPACE]	64	40	@	96 60 `		`
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	100	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	Α	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	-	77	4D	M	109	6D	m
14	Е	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Υ	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	z
27	1B	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	Ň	124	7C	Ĩ
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F		127	7F	[DEL]
		-	•					_			

컴퓨터는 ASCII, 유니코드, UTF-8 encoding 등으로 문자를 표현하고 저장한다.

컴퓨터가 보는 단어

단어	1	2	3	4
love	0x6C	0x6F	0x76	0x65
live	0x6C	0x69	0x76	0x65
like	0x6C	0x69	0x6B	0x65

love는 live보다 like와 더 유사하다. 하지만 컴퓨터가 보기에는 love는 live와 더 비슷해 보인다.

One-Hot Encoding

Code	Word	
0	NOT USED	
1	i	
2	you	\$
3	study	
4	fast	
5	campus	
	•••	
N-1	ZZZ	

N개의 단어를 좌측의 코드로 표현하면 희소 표현(Sparse representation)이라고 하며, 우측의 벡터로 표현할 경우 One-Hot Encoding이라고 한다.

밀집 표현 Dense Representation

희소 표현된 단어를 임의의 길이의 실수 벡터로 표현할 경우, 이를 <mark>밀집 표현(Dense Representation)</mark>이라고 한다. 이 과정을 Word Embedding이라고 하며, 밀집 표현된 결과를 <mark>임베딩 벡터(Embedding Vector</mark>)라고 부른다.

말뭉치 Corpus

특정 목적을 가진 언어의 표본. 분석의 용이성을 위해 형태소 분석이 포함되기도 한다. 언어학 연구에 쓰이는 확률/통계적인 자료이며, 딥러닝에도 유용하게 쓰인다.

Word2Vec

Word2Vec은 가장 많이 사용되는 Word Enbedding 방법이다.

Word2Vec은 유사한 의미를 가진 단어는 유사한 벡터가 되는 특징이 있다.

CBOW Continuous Bag-of-Words

CBOW 모델은 주변의 단어로 현재 단어를 추정하는 방법이다(Window size=2).

CBOW의 수식

$$\boldsymbol{v} = \frac{\sum_{i=1}^{|n|} W \boldsymbol{x}_{t+i}}{2n}$$

$$y = \operatorname{softmax}(W'v)$$

크게 Projection layer와 Output layer로 구분된다.

Projection Layer

$$\boldsymbol{v} = \frac{\sum_{i=1}^{|n|} W \boldsymbol{x}_{t+i}}{2n}$$

$$\frac{\left(\begin{bmatrix} 0.4\\0.2\\-0.5\end{bmatrix} + \begin{bmatrix} -0.1\\0.6\\-0.3\end{bmatrix}\right)}{2} = \begin{bmatrix} 0.15\\0.4\\-0.4\end{bmatrix}$$

Projection Layer는 One-Hot Vector의 특성상, LUT(Look-Up Table)의 형태로 구현된다.

Output Layer

$$y = \operatorname{softmax}(W'v)$$

$$\begin{bmatrix} 0.5 & 0.2 & 0.4 \\ -0.5 & 0.4 & 0.2 \\ 0.1 & 0.0 & 0.7 \end{bmatrix} \begin{bmatrix} 0.15 \\ 0.4 \\ -0.4 \end{bmatrix} = \begin{bmatrix} -0.005 \\ 0.005 \\ -0.265 \end{bmatrix}$$

$$y = \operatorname{softmax} \left(\begin{bmatrix} -0.005 \\ 0.005 \\ -0.265 \end{bmatrix} \right) = \begin{bmatrix} 0.360 \\ 0.363 \\ 0.28 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
Cross Entropy

Loss Function은 정답인 One-Hot Vector와 Cross-Entropy Loss를 이용한다.

Skip-Gram

Skip-Gram 모델은 CBOW와 반대로, Window 중앙에서 주변 단어를 추정하는 방식이다. 일반적으로 CBOW보다 Skip-Gram 모델의 성능이 좋은 것으로 알려져 있다.

