Notes on Spartan

arnaucube

April 2023

Abstract

Notes taken while reading about Spartan [1].

Usually while reading papers I take handwritten notes, this document contains some of them re-written to LaTeX.

The notes are not complete, don't include all the steps neither all the proofs.

Contents

- 1 Encoding R1CS instances as low-degree polynomials

Def 1.1. R1CS $\exists w \in \mathbb{F}^{m-|io|-1}$ such that $(A \cdot z) \circ (B \cdot z) = (C \cdot z)$, where z = (io, 1, w).

Thm 4.1 \forall R1CS instance $x = (\mathbb{F}, A, B, C, io, m, n), \exists$ a degree-3 log m-variate polynomial G such that $\sum_{x \in \{0,1\}^{logm}} G(x) = 0$.

For a RCS instance x, let $s = \lceil log m \rceil$.

We can view matrices $A, B, C \in \mathbb{F}^{m \times m}$ as functions $\{0,1\}^s \times \{0,1\}^s \to \mathbb{F}$. For a given witness w to x, let z = (io, 1, w). View z as a function $\{0,1\}^s \to \mathbb{F}$, so any entry in z can be accessed with a s-bit identifier.

$$F_{io}(x) = \left(\sum_{y \in \{0,1\}^s} A(x,y) \cdot Z(y)\right) \cdot \left(\sum_{y \in \{0,1\}^s} B(x,y) \cdot Z(y)\right) - \left(\sum_{y \in \{0,1\}^s} C(x,y) \cdot Z(y)\right)$$

Lemma 4.1. $\forall x \in \{0,1\}^s$, $F_{io}(x) = 0$ iff $Sat_{R1CS}(x,w) = 1$.

 $F_{io}(\cdot)$ is a function, not a polynomial, so it can not be used in the Sum-check

consider its polynomial extension $\widetilde{F}_{io}(x): \mathbb{F}^s \to \mathbb{F}$,

$$\widetilde{F}_{io}(x) =$$

$$\left(\sum_{y \in \{0,1\}^s} \widetilde{A}(x,y) \cdot \widetilde{Z}(y)\right) \cdot \left(\sum_{y \in \{0,1\}^s} \widetilde{B}(x,y) \cdot \widetilde{Z}(y)\right) - \left(\sum_{y \in \{0,1\}^s} \widetilde{C}(x,y) \cdot \widetilde{Z}(y)\right)$$

Lemma 4.2. $\forall x \in \{0,1\}^s$, $\widetilde{F}_{io}(x) = 0$ iff $Sat_{R1CS}(x,w) = 1$.

(proof: $\forall x \in \{0,1\}^s$, $\widetilde{F}_{io}(x) = F_{io}(x)$, so, result follows from Lemma 4.1.)

 $\widetilde{F}_{io}(\cdot)$: low-degree multivariate polynomial over \mathbb{F} in s variables. Verifier can check if $\sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x) = 0$ using the Sum-check protocol.

But: $\sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x) = 0 \iff F_{io}(x) = 0 \forall x \in \{0,1\}^s$. Bcs: the 2^s terms in the sum might cancel each other even when the individual terms are not zero. Solution: consider

$$Q_{io}(t) = \sum_{x \in \{0,1\}^s} \widetilde{F}_{io}(x) \cdot \widetilde{eq}(t,x)$$

where $\widetilde{eq}(t,x) = \prod_{i=1}^{s} (t_i \cdot x_i + (1-t_i) \cdot (1-x_i))$. Basically $Q_{io}(\cdot)$ is a multivariate polynomial such that

$$Q_{io}(t) = \widetilde{F}_{io}(t) \ \forall t \in \{0, 1\}^s$$

thus, $Q_{io}(\cdot)$ is a zero-polynomial iff $\widetilde{F}_{io}(x) = 0 \ \forall x \in \{0,1\}^s$. \iff iff $\widetilde{F}_{io}(\cdot)$ encodes a witness w such that $Sat_{R1CS}(x, w) = 1$.

To check that $Q_{io}(\cdot)$ is a zero-polynomial: check $Q_{io}(\tau) = 0, \ \tau \in \mathbb{R}^s$ (Schwartz-Zippel-DeMillo-Lipton lemma).

2 NIZKs with succint proofs for R1CS

From Thm 4.1: to check R1CS instance $(\mathbb{F}, A, B, C, io, m, n)$ V can check if

$$\sum_{x \in \{0,1\}^s} G_{io,\tau}(r_x)$$

where $r_x \in \mathbb{F}^s$.

Recall: $G_{io,\tau}(x) = \widetilde{F}_{io}(x) \cdot \widetilde{eq}(\tau, x)$.

To evaluate $\widetilde{F}_{io}(r_x)$, V needs to evaluate

$$\forall y \in \{0,1\}^s : \widetilde{A}(r_x,y), \widetilde{B}(r_x,y), \widetilde{C}(r_x,y), \widetilde{Z}(y)$$

evaluations of $Z(y) \ \forall y \in \{0,1\}^s \iff (io,1,w).$

Solution: combination of 3 protocols:

- Sum-check protocol
- randomized mini protocol
- polynomial commitment scheme

Observation: let $\widetilde{F}_{io}(r_x) = \overline{A}(r_x) \cdot \overline{B}(r_x) - \overline{C}(r_x)$, where

$$\bar{A}(r_x) = \sum_{y \in \{0,1\}} \widetilde{A}(r_x, y) \cdot \widetilde{Z}(y)$$

$$\bar{B}(r_x) = \sum_{y \in \{0,1\}} \tilde{B}(r_x, y) \cdot \tilde{Z}(y)$$

$$\bar{C}(r_x) = \sum_{y \in \{0,1\}} \tilde{C}(r_x, y) \cdot \tilde{Z}(y)$$

Prover makes 3 separate claims: $\bar{A}(r_x)=v_A, \ \bar{B}(r_x)=v_B, \ \bar{C}(r_x)=v_C,$ then V evaluates:

$$G_{io,\tau}(r_x) = (v_A \cdot v_B - v_C) \cdot \widetilde{eq}(r_x, \tau)$$

which could be 3 sum-check protocol instances. Instead: combine 3 claims into a single claim:

V samples $r_A, r_B, r_C \in \mathbb{R}$ F, and computes $c = r_A v_A + r_B v_B + r_C v_C$. V, P use sum-check protocol to check:

$$r_A \cdot \bar{A}(r_x) + r_B \cdot \bar{B}(r_x) + r_C \cdot \bar{C}(r_x) == c$$

Let
$$L(r_x) = r_A \cdot \bar{A}(r_x) + r_B \cdot \bar{B}(r_x) + r_C \cdot \bar{C}(r_x)$$
,

$$L(r_x) = \sum_{y \in \{0,1\}^s} r_A \cdot \widetilde{A}(r_x, y) \cdot \widetilde{Z}(y) + r_B \cdot \widetilde{B}(r_x, y) \cdot \widetilde{Z}(y) + r_C \cdot \widetilde{C}(r_x, y) \cdot \widetilde{Z}(y)$$

$$= \sum_{y \in \{0,1\}^s} M_{r_x}(y)$$

 $M_{r_x}(y)$ is a s-variate polynomial with deg ≤ 2 in each variable ($\iff \mu = s, \ l=2, \ T=c$).

$$\begin{split} M_{r_x}(r_y) &= r_A \cdot \widetilde{A}(r_x, r_y) \cdot \widetilde{Z}(r_y) + r_B \cdot \widetilde{B}(r_x, r_y) \cdot \widetilde{Z}(r_y) + r_C \cdot \widetilde{C}(r_x, r_y) \cdot \widetilde{Z}(r_y) \\ &= (r_A \cdot \widetilde{A}(r_x, r_y) + r_B \cdot \widetilde{B}(r_x, r_y) + r_C \cdot \widetilde{C}(r_x, r_y)) \cdot \widetilde{Z}(r_y) \end{split}$$

only one term in $M_{r_x}(r_y)$ depends on prover's witness: $\widetilde{Z}(r_y)$

P sends a commitment to $\widetilde{w}(\cdot)$ (= MLE of the witness w) to V before the first instance of the sum-check protocol.

2.1 Full protocol

- $pp \leftarrow Setup(1^{\lambda})$: invoke $pp \leftarrow PC.Setup(1^{\lambda}, logm)$; output pp
- $b \leftarrow < P(w), V(r) > (\mathbb{F}, A, B, C, io, m, n)$:
 - 1. P: $(C, S) \leftarrow PC.Commit(pp, \widetilde{w})$ and send C to V
 - 2. V: send $\tau \in \mathbb{R}^{\log m}$ to P
 - 3. let $T_1 = 0$, $\mu_1 = log m$, $l_1 = 3$
 - 4. V: set $r_x \in \mathbb{R}$ \mathbb{F}^{μ_1}
 - 5. Sum-check 1. $e_x \leftarrow < P_{SC}(G_{io,\tau}), V_{SC}(r_x) > (\mu_1, l_1, T_1)$
 - 6. P: compute $v_A = \overline{A}(r_x), \ v_B = \overline{B}(r_x), \ v_C = \overline{C}(r_x), \text{ send } (v_A, v_B, v_C)$ to V
 - 7. V: abort with b = 0 if $e_x \neq (v_A \cdot v_B v_C) \cdot \widetilde{eq}(r_x, \tau)$
 - 8. V: send $r_A, r_B, r_C \in \mathbb{R}$ F to P
 - 9. let $T_2 = r_A \cdot v_A + r_B \cdot v_B + r_C \cdot v_C$, $\mu_2 = log \ m$, $l_2 = 2$
 - 10. V: set $r_y \in \mathbb{R}$ \mathbb{F}^{μ_2}
 - 11. Sum-check 2. $e_y \leftarrow < P_{SC}(M_{r_x}), V_{SC}(r_y) > (\mu_2, l_2, T_2)$
 - 12. P: $v \leftarrow \widetilde{w}(r_n[1..])$, send v to V
 - 13. $b_e \leftarrow < P_{PC.Eval}(\widetilde{w}, S), V_{PC.Eval}(r) > (pp, C, r_y, v, \mu_2)$
 - 14. V: abourt with b = 0 if $b_e == 0$
 - 15. V: $v_z \leftarrow (1 r_y[0]) \cdot \widetilde{w}(r_y[1..]) + r_y[0](io, 1)(r_y[1..])$
 - 16. V: $v_1 \leftarrow \widetilde{A}(r_x, r_y), \ v_2 \leftarrow \widetilde{B}(r_x, r_y), \ v_3 \leftarrow \widetilde{C}(r_x, r_y)$
 - 17. V: abort with b = 0 if $e_y \neq (r_A v_1 + r_B v_2 + r_C v_3) \cdot v_z$
 - 18. V: output b = 1

WIP: covered until sec.6

References

[1] Srinath Setty. Spartan: Efficient and general-purpose zksnarks without trusted setup. Cryptology ePrint Archive, Paper 2019/550, 2019. https://eprint.iacr.org/2019/550.