Chapter 2

Factors: How Time and Interest Affect Money

LEARNING OUTCOMES

- 1. F/P and P/F Factors
- 2. P/A and A/P Factors
- 3. F/A and A/F Factors
- 4. Factor Values
- 5. Arithmetic Gradient
- **6.** Geometric Gradient
- 7. Find i or n

Single Payment Factors (F/P and P/F)

Single payment factors involve only P and F.

Cash flow diagrams are as follows:

Formulas are as follows:

$$F = P(1+i)^{n}$$

$$P = F[1/(1+i)^n]$$

Terms in parentheses or brackets are called factors. Values are in tables for i and n values

Factors are represented in standard factor notation such as (F/P,i,n),

where letter to left of slash is what is sought; letter to right represents what is given

$$F_1 = P + Pi$$
$$= P(1+i)$$

Derive (F/P and P/F)

$$F_2 = F_1 + F_1 i$$

= $P(1+i) + P(1+i)i$

$$F_2 = P(1 + i + i + i^2)$$

$$= P(1 + 2i + i^2)$$

$$= P(1 + i)^2$$

$$= P(1 + i)^2$$

$$F_3 = F_2 + F_2 i$$

$$F_3 = P(1 + i)^3$$

$$F = P(1+i)^n$$

P - F	_ 1_	I = F	$(1 + i)^{-a}$
g - r	(1+i))" [- I	(1.70)

Factor			Standard Notation	Equation	Excel
Notation	Name	Find/Given	Equation	with Factor Formula	Function
(F/P,i,n)	Single-payment compound amount	F/P	F = P(F/P,i,n)	$F = P(1+i)^n$	= FV(i%,n,P)
(P/F,i,n)	Single-payment present worth	P/F	P = F(P/F,i,n)	$P = F(1+i)^{-n}$	= PV(i%,n,F)

F/P and P/F for Spreadsheets

Future value F is calculated using FV function:

$$= FV(i\%,n,P)$$

Present value P is calculated using PV function:

$$= PV(i\%,n,F)$$

Note the use of double commas in each function

Example: Finding Future Value

A person deposits \$5000 into an account which pays interest at a rate of 8% per year. The amount in the account after 10 years is closest to:

The cash flow diagram is:

Solution:

Answer is (C)

Example: Finding Present Value

A small company wants to make a single deposit now so it will have enough money to purchase a backhoe costing \$50,000 five years from now. If the account will earn interest of 10% per year, the amount that must be deposited now is nearest to:

(A) \$10,000 (B) \$31,050 (C) \$33,250 (D) \$319,160

The cash flow diagram is:

Solution:

Answer is (B)

Uniform Series Involving P/A and A/P

The uniform series factors that involve P and A are derived as follows:

- (1) Cash flow occurs in *consecutive* interest periods
- (2) Cash flow amount is *same* in each interest period

The cash flow diagrams are:

$$P = A(P/A,i,n)$$
 Standard Factor Notation \longrightarrow $A = P(A/P,i,n)$

Note: P is one period *Ahead* of first A value

Derive P/A and A/P

 $P = A \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] \qquad i \neq 0$

$$P = A \left[\frac{1}{(1+i)^{1}} \right] + A \left[\frac{1}{(1+i)^{2}} \right] + A \left[\frac{1}{(1+i)^{3}} \right] + \cdots$$

$$+ A \left[\frac{1}{(1+i)^{n-1}} \right] + A \left[\frac{1}{(1+i)^{n}} \right]$$

$$P = A \left[\frac{1}{(1+i)^{1}} + \frac{1}{(1+i)^{2}} + \frac{1}{(1+i)^{3}} + \cdots + \frac{1}{(1+i)^{n-1}} + \frac{1}{(1+i)^{n}} \right]$$

$$\frac{P}{1+i} = A \left[\frac{1}{(1+i)^{2}} + \frac{1}{(1+i)^{3}} + \frac{1}{(1+i)^{4}} + \cdots + \frac{1}{(1+i)^{n}} + \frac{1}{(1+i)^{n+1}} \right]$$

$$\frac{1}{1+i} P = A \left[\frac{1}{(1+i)^{2}} + \frac{1}{(1+i)^{3}} + \cdots + \frac{1}{(1+i)^{n}} + \frac{1}{(1+i)^{n+1}} \right]$$

$$- P = A \left[\frac{1}{(1+i)^{1}} + \frac{1}{(1+i)^{2}} + \cdots + \frac{1}{(1+i)^{n-1}} + \frac{1}{(1+i)^{n}} \right]$$

$$\frac{-i}{1+i} P = A \left[\frac{1}{(1+i)^{n+1}} - \frac{1}{(1+i)^{1}} \right]$$

$$P = \frac{A}{-i} \left[\frac{1}{(1+i)^{n}} - 1 \right]$$

Factor			Factor	Standard	Excel	
Notation	Name	Find/Given	Formula	Notation Equation	Function	
(P/A,i,n)	Uniform series present worth	P/A	$\frac{(1+i)^{n}-1}{i(1+i)^{n}}$	P = A(P/A,i,n)	= PV(i%,n,A)	
(A/P,i,n)	Capital recovery	A/P	$\frac{i(1+i)^n}{(1+i)^n-1}$	A = P(A/P, i, n)	$= \mathrm{PMT}(i\%, n, P)$	

Example: Uniform Series Involving P/A

A chemical engineer believes that by modifying the structure of a certain water treatment polymer, his company would earn an extra \$5000 per year. At an interest rate of 10% per year, how much could the company afford to spend now to just break even over a 5 year project period?

(A) \$11,170

(B) 13,640

(C) \$15,300

(D) \$18,950

The cash flow diagram is as follows:

Solution:

$$P = 5000(P/A, 10\%, 5)$$

= 5000(3.7908)
= \$18,954

Answer is (D)

Uniform Series Involving F/A and A/F

The uniform series factors that involve **F** and **A** are derived as follows:

- (1) Cash flow occurs in *consecutive* interest periods
 - (2) Last cash flow occurs in *same* period as F

Cash flow diagrams are:

$$F = A(F/A,i,n)$$
 Standard Factor Notation \longrightarrow $A = F(A/F,i,n)$

Note: F takes place in the *same* period as last A

Derive F/A and A/F

$$A = F\left[\frac{1}{(1+i)^n}\right] \left[\frac{i(1+i)^n}{(1+i)^n - 1}\right]$$

$$A = F\left[\frac{i}{(1+i)^n - 1}\right]$$

$$F = A \left[\frac{(1+i)^n - 1}{i} \right]$$

$$(F/A,i,n) = [(1+i)^n] \left[\frac{(1+i)^n - 1}{i(1+i)^n} \right] = \frac{(1+i)^n - 1}{i}$$

	Factor		Factor	Standard Notation	Excel
Notation	Name	Find/Given	Formula	Equation	Functions
(F/A,i,n)	Uniform series compound amount	F/A	$\frac{(1+i)^n-1}{i}$	F = A(F/A,i,n)	$= \mathrm{FV}(i\%, n, A)$
(A/F,i,n)	Sinking fund	A/F	$\frac{i}{(1+i)^n-1}$	A = F(A/F, i, n)	= PMT(i%, n, F)

Example: Uniform Series Involving F/A

An industrial engineer made a modification to a chip manufacturing process that will save her company \$10,000 per year. At an interest rate of 8% per year, how much will the savings amount to in 7 years?

(A) \$45,300

(B) \$68,500

(C) \$89,228

(D) \$151,500

The cash flow diagram is:

Solution:

$$F = 10,000(F/A,8\%,7)$$
$$= 10,000(8.9228)$$
$$= $89,228$$

Answer is (C)

Factor Values for Untabulated i or n

3 ways to find factor values for untabulated i or n values

- 1. Use formula
- 2. Use spreadsheet function with corresponding P, F, or A value set to 1
- 3. Linearly interpolate in interest tables

Formula or spreadsheet function is fast and a ccurate Interpolation is only approximate

Example: Untabulated i

Determine the value for (F/P, 8.3%,10)

Formula:
$$F = (1 + 0.083)^{10} = 2.2197$$
 OK

Spreadsheet: $= FV(8.3\%, 10, 1) = 2.2197$ OK

Interpolation: 8% ----- 2.1589
 8.3% ----- x
 9% ----- 2.3674
 $x = 2.1589 + [(8.3 - 8.0)/(9.0 - 8.0)][2.3674 - 2.1589]$
 $= 2.2215$ (Too high)

Absolute Error = 2.2215 - 2.2197 = 0.0018

out.	A	- B	C D
1	1=	n=	Later Company of the Company
2	3.25%	25.00	Enter requested i and n
3			Value obtained
4	Factor	Value	with this function
5	P/F	0.44952	'= -PV(\$A\$2,\$B\$2,,1)
6	P/A	16.93786	'= -PV(\$A\$2,\$B\$2,1)
7		- Autorosayoro	
8	F/P	2.22460	"= -FV(\$A\$2,\$B\$2,.1)
9	F/A	37.67993	I TO THE CONTRACT OF CONTRACT AND ADDRESS OF THE PARTY OF
10		220000000000000000000000000000000000000	
11	A/F	0.02654	= -PMT(\$A\$2,\$B\$2,.1)
12	A/P	0.05904	'= -PMT(\$A\$2,\$B\$2,1)
13			I LE CONTRACTOR DE LA C

etermine the P/A factor value for i = 7.75% and n = 10 years, using the three methods deribed previously.

olution

ector formula: Apply the P/A factor relation in Equation [2.8] or from the summary page a front of the text. Showing 5-decimal accuracy,

$$(P/A,7.75\%,10) = \frac{(1+i)^n - 1}{i(1+i)^n} = \frac{(1.0775)^{10} - 1}{0.0775(1.0775)^{10}} = \frac{1.10947}{0.16348}$$
$$= 6.78641$$

readsheet: Utilize the spreadsheet function in Figure 2–9, that is, = -PV(7.75%,10,1), to splay 6.78641.

near interpolation: Use Figure 2–10 as a reference for this solution. Apply the Equa on [2.16] and [2.17] sequence, where x is the interest rate i, the bounding interest rates are i = 7% and $i_2 = 8\%$, and the corresponding P/A factor values are $f_1 = (P/A, 7\%, 10) = 7.0230$ d $f_2 = (P/A, 8\%, 10) = 6.7101$. With 4-place accuracy,

$$f = f_1 + \frac{(i - i_1)}{(i_2 - i_1)}(f_2 - f_1) = 7.0236 + \frac{(7.75 - 7)}{(8 - 7)}(6.7101 - 7.0236)$$
$$= 7.0236 + (0.75)(-0.3135) = 7.0236 - 0.2351$$
$$= 6.7885$$

Arithmetic Gradients

Arithmetic gradients change by the same amount each period

The cash flow diagram for the P_G of an arithmetic gradient is:

Standard factor notation is

$$P_G = G(P/G, i, n)$$

G starts between periods 1 and 2

(not between 0 and 1)

This is because cash flow in year 1 is usually not equal to G and is handled separately as a base amount (shown on next slide)

Note that P_G is located Two Periods

Ahead of the first change that is equal

to G

$$CF_n = base amount + (n-1)G$$

Example

A local university has initiated a logo-licensing program with the clothier Holister, Inc. Estimated fees (revenues) are \$80,000 for the first year with uniform increases to a total of \$200,000 by the end of year 9. Determine the gradient and construct a cash flow diagram that identifies the base amount and the gradient series.

Solution

The year 1 base amount is $CF_1 = $80,000$, and the total increase over 9 years is

$$CF_9 - CF_1 = 200,000 - 80,000 = $120,000$$

Equation [2.18], solved for G, determines the arithmetic gradient.

$$G = \frac{(CF_9 - CF_1)}{n - 1} = \frac{120,000}{9 - 1}$$

= \$15,000 per year

$$P = G(P/F,i,2) + 2G(P/F,i,3) + 3G(P/F,i,4) + \cdots + [(n-2)G](P/F,i,n-1) + [(n-1)G](P/F,i,n)$$

$$P = G\left[\frac{1}{(1+i)^2} + \frac{2}{(1+i)^3} + \frac{3}{(1+i)^4} + \cdots + \frac{n-2}{(1+i)^{n-1}} + \frac{n-1}{(1+i)^n}\right]$$

$$P(1+i)^1 = G\left[\frac{1}{(1+i)^1} + \frac{2}{(1+i)^2} + \frac{3}{(1+i)^3} + \cdots + \frac{n-2}{(1+i)^{n-2}} + \frac{n-1}{(1+i)^{n-1}}\right]$$

$$iP = G\left[\frac{1}{(1+i)^1} + \frac{1}{(1+i)^2} + \dots + \frac{1}{(1+i)^{n-1}} + \frac{1}{(1+i)^n}\right] - G\left[\frac{n}{(1+i)^n}\right]$$

$$P_G = \frac{G}{i} \left[\frac{(1+i)^n - 1}{i(1+i)^n} - \frac{n}{(1+i)^n} \right]$$

Typical Arithmetic Gradient Cash Flow

This diagram = this base amount plus this gradient

 $P_T = PA + PG = 400(P/A, 10\%, 5) + 50(P/G, 10\%, 5)$

The equivalent uniform annual series AG for an arithmetic gradient G is found by multiplying the present worth in Equation by the (A/P,i,n) formula

$$A_G = G(P/G,i,n)(A/P,i,n)$$

= $G(A/G,i,n)$

$$A_G = \frac{G}{i} \left[\frac{(1+i)^n - 1}{i(1+i)^n} - \frac{n}{(1+i)^n} \right] \left[\frac{i(1+i)^n}{(1+i)^n - 1} \right]$$

$$A_G = G \left[\frac{1}{i} - \frac{n}{(1+i)^n - 1} \right]$$

An **F/G factor** (arithmetic gradient future worth factor) to calculate the future worth FG of a gradient series can be derived by multiplying the P/G and F/P factors

$$F_G = G\left(\frac{1}{i}\right) \left[\left(\frac{(1+i)^n - 1}{i}\right) - n \right]$$

Converting Arithmetic Gradient to A

Arithmetic gradient can be converted into equivalent A value using G(A/G,i,n)

General equation when base amount is involved is A = base amount + G(A/G, i, n)

There is no direct, single-cell spreadsheet function to calculate *PG* or *AG* for an arithmetic gradient. Use the NPV function to display *PG* and the PMT function to display *AG* after entering all cash flows (base and gradient amounts) into contiguous cells. General formats for these functions are

```
= NPV(i%, second_cell:last_cell) + first_cell
= PMT(i%, n, cell_with_P<sub>G</sub>)
```

Example: Arithmetic Gradient

The present worth of \$400 in year 1 and amounts increasing by \$30 per year through year 5 at an interest rate of 12% per year is closest to:

(A) \$1532

(B) \$1,634

(C) \$1,744

(D) \$1,829

Solution:

$$P_T = 400(P/A,12\%,5) + 30(P/G,12\%,5)$$

= $400(3.6048) + 30(6.3970)$
= \$1,633.83

Answer is (B)

The cash flow could also be converted into an **A** value as follows:

$$A = 400 + 30(A/G,12\%,5)$$

= $400 + 30(1.7746)$
= \$453.24

Example

Neighboring parishes in Louisiana have agreed to pool road tax resources already designated for bridge refurbishment. At a recent meeting, the engineers estimated that a total of \$500,000 will be deposited at the end of next year into an account for the repair of old and safety-questionable bridges throughout the area. Further, they estimated that the deposits will increase by \$100,000 per year for only 9 years thereafter, then cease. Determine the equivalent (a) present worth, and (b) annual series amounts, if public funds earn at a rate of 5% per year.

(a) The cash flow diagram of this conventional arithmetic gradient series from the perspective of the parishes is shown in Figure 2–16. According to Equation [2.19], two computations must be made and added: the first for the present worth of the base amount P_A and the second for the present worth of the gradient P_G. The total present worth P_T occurs in year 0. This is illustrated by the partitioned cash flow diagram in Figure 2–17. In \$1000 units, the total present worth is

$$P_T = 500(P/A,5\%,10) + 100(P/G,5\%,10)$$

= $500(7.7217) + 100(31.6520)$
= $$7026.05$ (\$7,026,050)

Here, too, it is necessary to consider the gradient and the base amount separately. The total annual series A_τ is found by Equation [2.20] and occurs in years 1 through 10.

$$A_T = 500 + 100(A/G,5\%,10) = 500 + 100(4.0991)$$

= \$909.91 per year (\$909,910)

Geometric Gradients

Geometric gradients change by the same percentage each period

Cash flow diagram for present worth of geometric gradient

There are *no tables* for geometric factors

Use following equation for $g \neq i$:

$$P_g = A_1\{1-[(1+g)/(1+i)]^n\}/(i-g)$$

where: $A_1 = cash$ flow in period 1 g = rate of increase

If
$$g = i$$
, $P_g = A_1 n/(1+i)$

Note: If g is negative, change signs in front of both g values

A geometric gradient series is a cash flow series that either increases or decreases by a constant percentage each period. The uniform change is called the rate of change.

g =constant rate of change, in decimal form, by which cash flow values increase or decrease from one period to the next. The gradient g can be + or -.

 $A_1 =$ initial cash flow in period 1 of the geometric series

 $P_g = \mathbf{present}$ worth of the entire geometric gradient series, including the initial amount A_1

$$\begin{split} P_g &= \frac{A_1}{(1+i)^1} + \frac{A_1(1+g)}{(1+i)^2} + \frac{A_1(1+g)^2}{(1+i)^3} + \dots + \frac{A_1(1+g)^{n-1}}{(1+i)^n} \\ &= A_1 \left[\frac{1}{1+i} + \frac{1+g}{(1+i)^2} + \frac{(1+g)^2}{(1+i)^3} + \dots + \frac{(1+g)^{n-1}}{(1+i)^n} \right] \\ P_g \left(\frac{1+g}{1+i} - 1 \right) &= A_1 \left[\frac{(1+g)^n}{(1+i)^{n+1}} - \frac{1}{1+i} \right] \end{split}$$

$$P_g = A_1 \left[\frac{1 - \left(\frac{1+g}{1+i}\right)^n}{i - g} \right] \qquad g \neq i$$

The (P/A,g,i,n) factor calculates P_g in period t=0 for a geometric gradient series **starting in period 1** in the amount A_1 and increasing by a constant rate of g each period.

$$P_g = A_1(P/A, g, i, n)$$

$$(P/A, g, i, n) = \begin{cases} \frac{1 - \left(\frac{1+g}{1+i}\right)^n}{i-g} & g \neq i \\ \frac{n}{1+i} & g = i \end{cases}$$

A coal-fired power plant has upgraded an emission control valve. The modification costs only \$8000 and is expected to last 6 years with a \$200 salvage value. The maintenance cost is expected to be high at \$1700 the first year, increasing by 11% per year thereafter. Determine the equivalent present worth of the modification and maintenance cost by hand and by spreadsheet at 8% per year.

The cash flow diagram (Figure 2–22) shows the salvage value as a positive cash flow and all costs as negative. Use Equation [2.35] for $g \neq i$ to calculate P_g . Total P_T is the sum of three present worth components.

$$\begin{split} P_T &= -8000 - P_g + 200(P/F, 8\%, 6) \\ &= -8000 - 1700 \left[\frac{1 - (1.11/1.08)^6}{0.08 - 0.11} \right] + 200(P/F, 8\%, 6) \\ &= -8000 - 1700(5.9559) + 126 = \$-17,999 \end{split}$$

 $P_T = 2$

Figure 2-22

Cash flow diagram of a geometric gradient, Example 2.11.

Solution by Spreadsheet

Figure 2–23 details the spreadsheet operations to find the geometric gradient present worth P_g and total present worth P_T . To obtain $P_T = S-17,999$, three components are summed—first cost, present worth of estimated salvage in year 6, and P_g . Cell tags detail the relations for the second and third components; the first cost occurs at time 0.

Comment

The relation that calculates the (P/A, g, i%, n) factor is rather complex, as shown in the cell tag and formula bar for C9. If this factor is used repeatedly, it is worthwhile using cell reference formatting so that A_1 , i, g, and n values can be changed and the correct value is always obtained. Try to write the relation for cell C9 in this format,

	ES SENSETE ELIO	CONTRACTOR OF THE	13.	Harrist and State Co.		I a de la composição			
	Across	8		D	E	F	- 6	н.	
1	ant secondary production of the bill	and the second	Consequence and	0-21-1	-2:				
7	Information provided	Estimates	P value, 5						
F	Interest rate, i%	8%							
1	First cost, \$	-8000	-8000	Present worth of salvage					
6				1					
6	Life, n, years	6		==PV(8%,6,,200)					
Ŧ.	Salvage, \$	200	126						
8	REMINISTER								
77	Maintenance cost, year 1, 5	-1,700	-10,125	Present worth of maintenance or				non-third	2 551
10	Cost gradient, g%	11%							
11	Total, \$		-17,999	==1700 ((1-((1.11)/(1.08))*6)/(0.				SW(0.08-0	3110
镁									

Example: Geometric Gradient

Find the present worth of \$1,000 in year 1 and amounts increasing by 7% per year through year 10. Use an interest rate of 12% per year.

- (a) \$5,670
- (b) \$7,333 (c) \$12,670
- (d) \$13,550

Solution:

$$P_g = 1000[1-(1+0.07/1+0.12)^{10}]/(0.12-0.07)$$

= \$7,333

Answer is (b)

To find A, multiply P_a by (A/P,12%,10)

Unknown Interest Rate i

Unknown interest rate problems involve solving for i, given n and 2 other values (P, F, or A)

(Usually requires a trial and error solution or interpolation in interest tables)

Procedure: Set up equation with all symbols involved and solve for i

A contractor purchased equipment for \$60,000 which provided income of \$16,000 per year for 10 years. The annual rate of return of the investment was closest to:

(a) 15%

(b) 18%

(c) 20%

(d) 23%

Solution:

Can use either the P/A or A/P factor. Using A/P:

$$60,000(A/P,i\%,10) = 16,000$$

 $(A/P,i\%,10) = 0.26667$

Unknown Recovery Period n

Unknown recovery period problems involve solving for n, given i and 2 other values (P, F, or A)

(Like interest rate problems, they usually require a trial & error solution or interpolation in interest tables)

Procedure: Set up equation with all symbols involved and solve for n

A contractor purchased equipment for \$60,000 that provided income of \$8,000 per year. At an interest rate of 10% per year, the length of time required to recover the investment was closest to:

(a) 10 years (b) 12 years (c) 15 years (d) 18 years

Solution: Can use either the P/A or A/P factor. Using A/P:

60,000(A/P,10%,n) = 8,000(A/P,10%,n) = 0.13333

From A/P column in i = 10% interest tables, n is between 14 and 15 years Answer is (c)

Summary of Important Points

In P/A and A/P factors, P is one period ahead of first A

In F/A and A/F factors, F is in same period as last A

To find untabulated factor values, best way is to use formula or spreadsheet

For arithmetic gradients, gradient G starts between *periods 1 and 2*

Arithmetic gradients have 2 parts, base amount (year 1) and gradient amount

For geometric gradients, gradient g starts been periods 1 and 2

In geometric gradient formula, A₁ is amount in *period 1*

To find unknown i or n, set up equation involving all terms and solve for i or n