Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Телекоммуникационные технологии

Отчет по лабораторной работе №12 ${\rm GNU\ radio}$

Работу выполнил: Махонько Я. В. Группа: 3530901/90202 **Преподаватель:** Богач Н.В.

1 Цели работы

- Посмотреть на результаты искажения сигнала, разобраться с проблемой искажения.
- Разобрать этапы, необходимые для восстановления канала:
 - добавление канала;
 - восстановление синхронизации;
 - многолучевые каналы;
 - фазовая и частотная коррекции;

, такие как восстановление синхронизации, многолучевые примеры, фазовая и частотная коррекции, декодирование символов, упорядочивание битовой информации.

2 Ход работы

2.1 Передача сигнала

На представленном ниже рисунке продемонстрированы сгенерированные избыточные полосы пропускания с различными значениями α , где α - коэффициент спада фильтра:

Рис. 1: Избыточные полосы пропускания при различных α

Генератор случайной выборки передаёт значения (0-255) в модулятор сигнальных созвездий, который использует фильтр формирования импульсов корневого косинуса (RRC) с параметром $\alpha, 4$:

- Data0 = 0.1 = 100m
- Data1 = 0.22 = 220m
- Data2 = 0.35 = 350m
- Data3 = 0.5 = 500m
- Data4 = 1 = 1000m

Используя данный блок, построим несколько графиков:

- График сигнальных созвездий, на котором можно увидеть эффект увеличения разрешения и сам процесс фильтрации. При этом RRC-фильтр тоже генерирует особый тип помех межсимвольные (ISI).
- Частотный график демонстрирует форму сигнала, который в конце превращается в шум.
- QPSK-график показывает передаваемый и получаемый (отфильтрованный) QPSK-сигнал.

Рис. 2: Набор графиков при RRC-фильтре

На следующем графике можем наблюдать возникновение межсимвольных помех (ISI). Как было сказано ранее, данный тип помех возникает из-за использования RRC-фильтра:

Рис. 3: Значения сигнала при возникающих ISI-помехах

При добавлении второго аналогичного фильтра получаем фильтр с повышенным косинусом (форма фильтра Найквиста). Другое преимущество - отсутствие рассеивающего эффекта из-за использования согласованного фильтра на приёмнике.

Сигнал на приёмнике имеет три отдельных значения: -1, 0 и 1, что заметно на следующем изображении:

Рис. 4: Значения сигнала на приёмнике

2.2 Добавление канала

Добавим блок Channel model. С его помощью можем посмотреть на несколько наиболее типовых проблем:

- влияние шумов;
- отклонения в тактовых сигналах;
- проблема нахождения идеальной выборки.

Выполним симуляцию, получим следующий набор графиков:

Рис. 5: Графики блока channel model

Ползунки сверху отвечают за шум, частотное и временное смещения. Сигнальное созвездие выглядит хуже, чем в прошлый раз. Отменим все эффекты, поставим максимальное значение параметра шума:

Рис. 6: Графики блока channel model, максимальное значение шума

Сигнальное созвездие стало практически неразличимо.

2.3 Восстановление синхронизации

Для демонстрации проблем, связанных с проявлением ISI, создадим 4 символа и отфильтруем их RRC-фильтром:

Рис. 7: Графики после фильтрации RRC

Видно, что после первого этапа всё равносохраняется часть энергии.

Используем фильтр Найквиста с повышенным косинусом, после которого энергия почти полностью теряется:

Рис. 8: Графики после фильтрации фильтром Найквиста

При снимаемой в разные моменты времени выборке идеальный период выборки неизвестен и будет страдать пок ачеству из-за ISI.

Необходимо каким-то образом синхронизировать сигналы приёмника и передатчика, используя только информацию из сигнала.

2.4 Детали блока многофазной фильтрации тактовых сигналов

Для восстановления тактового сигнала воспользуемся блоком многофазных фильтров. этот блок выполняет несколько функций:

- Выполняет восстановление тактового сигнала;
- Выполняет функцию фильтра, согласованного с приёмником, для больбы с ISI;
- Понижает частоту сигнала, производит выборку.

Симуляция работы этого блока:

Рис. 9: Графики после блока многофазной фильтрации

При этом значение rate =1, а выход фильтра в нужной точке равен 0, что означает, что мы находимся в оптимальной точке выборки.

Несколько сместимся для выхода из "зоны комфорта":

Рис. 10: Графики после блока многофазной фильтрации со сдвигом

Также, вместо использования одного фильтра мы можем использовать несколько фильтров с разными фазами.

Посмотрим на результат симуляции с 5 фильтрами:

Рис. 11: Графики после блока многофазной фильтрации с пятью фильтрами

Можно заметить, что сигнал $d(sym0)/dt+\phi 3$ имеет точку выборки в 0 - значит, это фазовый сдвиг идеальной фазы.

Таким образом, настроив фазу RRC на $\phi 3$, можно корректировать рассинхронизацию и выбирать идеальную точку выборки.

При увеличении объема фильтров до 32 можно добиться максимального коэффициента ISI:

Рис. 12: Графики после блока многофазной фильтрации с 32 фильтрами

Цикл управления переключается между фильтрами в зависимости от ошибки и останавливается на наиболее оптимальном - с наиболее близкой к 0 ошибкой.

2.5 Использование блока многофазной синхронизации на приёмнике

Включим данный блок в нашу модель. Блок имеет 32 фильта и пропускную способность в $2\pi/100$. Блок может адаптироваться к значению на основе частоты входного сигнала.

Посмотрим на результаты восстановления сигнального созвездия:

Рис. 13: Принятое и восстановленное сигнальное созвездие

Шумы всё ещё присутствуют как следствие ISI, но при этом почти не заметны. При добавлении смещения частоты созвездие становится круглым:

Рис. 14: Принятое и восстановленное сигнальное созвездие с сдвигом

2.6 Многолучевое распространение

Феномен многолучевого распространения - результат того, что в большей части коммуникационных сред нет единого пути передачи данных. Например, распространение радиоволн в воздухе - в результате многократного отражения сигнала от зданий, растений, еtc. каждый из этих сигналов будет поступать на приёмник в разное время. Суммирование этих сигналов в итоге способно вызывать деструктивные помехи.

ISI может проявлятьсяя в том числе из-за описанного выше явления. Такая проблема исправляется эквалайзерами - с их помощью мы можем усилить нужные нам частоты и ослабить вредные.

Следующая модель - модель с пятью ручками эквалайзера, четыре из которых мы способны контроллировать. При значении 1 во всех эквалайзерах сигнал проходит беспрепятственно.

Рис. 15: Модель эквалайзера

В идеале нам надо сделать так, чтобы выход эквалайзера был максимально "плоским для этого есть специальные алгоритмы.

2.7 Эквалайзеры

Вместо ранее использованного "слепого" эквалайзера, который не знает сигнал при принятии решения, LMS-DD эквалайзеру необходимо знание о принятом сигнале для корректной работы. Он использует решения о выборках для исправления taps в эквалайзере.

Этот эквалайзер хорошо работает с модуляциями типа QAM (квадратурной амплитудной модуляцией). Если сигнал слишком плохого качества, эквалайзер сделает только хуже, поэтому распространённая модель - использование "слепого" эквалайзера дял получения сигнала достаточного качества для работы LMS-DD.

Продемонстрируем работу LMS-DD эквалайзера:

Рис. 16: Модель эквалайзера LMS-DD

Рис. 17: Модель эквалайзера LMS-DD при смещении частот

2.8 Фазовая и точная частотная коррекция

Канал выровнен, но проблема сдвига фазы и частоты при этом осталась.

Для решения этой проблемы воспользуемся модулем Costas Loop, который поддерживает синхронизацию BPSK, QPSK И 8PSK.

Этот блок использует циклы второго порядка, и ему необходимо знать порядок модуляции PSK (2, 4 или 8 соответственно).

Установим небольшой шум, смеение частоты и синхронизации, а также простой многолучевой канал:

Рис. 18: Симуляция Costas Loop

На выходе блока мы видим, что все символы находятся на единичной окружности созвездия, а так же немного зашумлены, но с этим шумом мы ничего не можем сделать.

2.9 Декодирование

Осталась последняя часть передачи данных - их декодирование.

Сейчас мы должны максимально верно интерпретировать некий символ, основываясь на том, что мы получили. Используем блок Мар для преобразования символов в исходные. Таким образом, мы получим символы от 0 до 3. Эти два бита данных необходимо распаковать, для этого используем блок распаковки битов. Таким образом, мы получаем оригинальный поток данных. Распакуем значения не в формате 8 бит на байт, а 1 бит на байт, преобразуем эти потоки в значения с плавающей точкой. Принятый сигнал отстаёт на некоторое количество битов относительно передаваемого, поэтому необходимо задержать биты, используя блок Delay:

Рис. 19: Результирующий сигнал

3 Выводы

В этой лабораторной работе я поближе познакомился с приёмниками сигнала. Они оказались устроены гораздо сложнее, чем передатчики, а также вынуждены решать гораздо более широкий круг проблем: рассинхронизацию, сдвиг частоты, подавление шумов, etc.