Stream Temperature Model Application - NRSA/NAWQA

Libraries & Directories

```
library(StreamCatTools)
library(tidyverse)
library(data.table)
library(sf)
library(prism)
library(lubridate)
library(knitr)
library(spmodel)
library(readr)

# NHDPlus directory
nhd_dir <- 'C:/Users/RHill04/WorkFolder/GIS/NHDPlusV21/'</pre>
```

Prep data for Powell Center analysis

NHDPlus flow metrics

Modeled monthly (July and August) flow estimates for each site (source: USGS)

```
as.integer()) %>%
dplyr::select(-tmpcol)
```

Reading layer `NHDFlowline_Network' from data source

```
`C:\Users\RHill04\WorkFolder\GIS\NHDPlusV21\NHDPlusNationalData\NHDPlusV21_National_Seamless_Flat
tened_Lower48.gdb'
using driver `OpenFileGDB'
Simple feature collection with 2691339 features and 137 fields
Geometry type: MULTILINESTRING
Dimension: XYZM
Bounding box: xmin: -124.7332 ymin: 24.63052 xmax: -66.94983 ymax: 49.37661
z_range: zmin: 0 zmax: 0
m_range: mmin: -2.35e-05 mmax: 100
Geodetic CRS: NAD83
```

StreamCat (sc) static metrics

Static watershed/local catchment metrics:

- Elevation (Cat)
- Calcium oxide content of underlying lithology (Ws)
- Base flow index (Ws)
- Water table depth (Ws)
- Watershed area (Ws)
- Runoff (ws)
- Sand soil content (Ws)
- Topographic wetness index (Ws)
- National Anthropogenic Barriers dam normal storage (screened dams of NID) (Ws)

StreamCat Year-Specific NLCD data

Riparian forest cover (catchment)

```
riparian_forest <-
sc_nlcd(year = '2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019',
```

Crop cover (watershed)

Urban cover (watershed)

Lake/Reservoir (open water) in watershed (watershed)

Variable added to interact with reservoir size to account for stations that occur below natural lakes or man made reservoirs.

```
pivot_longer(!COMID, names_to = 'tmpcol', values_to = 'PCTOWXXXXWS') %>%
mutate(year = as.integer(
    str_replace_all(tmpcol, 'PCTOW|WS', ''))) %>%
group_by(COMID, year) %>%
summarise(PCTOWXXXXWS = sum(PCTOWXXXXWS))
```

PRISM Climate Data

Air temperature

 ======	I	11%
 	I	13%
 =======	I	15%
 ========	I	16%
	I	18%
	I	19%
	I	21%
	I	23%
	I	24%
	I	26%
	I	27%
	I	29%
	I	31%

	I	32%
	I	34%
	I	35%
 	I	37%
	I	39%
	I	40%
	I	42%
	I	44%
 	I	45%
	I	47%
	I	48%
	1	50%
	I	52%

	I	53%
	I	55%
	I	56%
	I	58%
	I	60%
	I	61%
	I	63%
	I	65%
	I	66%
	I	68%
	I	69%
	I	71%
	I	73%

	I	74%
	I	76%
	I	77%
	I	79%
	I	81%
	1	82%
	I	84%
	I	85%
	I	87%
	I	89%
	1	90%
	I	92%
 	1	94%

```
95%
   ______
 tmn <- pd_stack((prism_archive_subset("tmean", "monthly",</pre>
                              years = years,
                              mon = 7:8)))
# Extract tmean at sample points and massage data
tmn <- terra::extract(tmn,</pre>
                 # Transform pts to CRS of PRISM on the fly
                 pts %>%
                   st_transform(crs = st_crs(tmn))) %>%
 # Add site IDs to extracted values
 data.frame(COMID = pts$COMID, .) %>%
 # Remove front and back text from PRISM year/month in names
 rename_with( ~ stringr::str_replace_all(., 'PRISM_tmean_stable_4kmM3_|_bil', '')) %>%
 # Pivot to long table and calle column tmeanPRISM
 pivot_longer(!COMID, names_to = 'year_month',
           values_to = 'tmeanPRISM') %>%
 # Create new column of year
 mutate(year = year(ym(year_month)),
       month = month(ym(year_month))) %>%
 dplyr::select(-year_month)
```

Precipitation

 	I	0%
 =	I	2%
 ==	I	3%
 ===	I	5%
 =====	I	6%
 =====	I	8%
 ======	I	10%
 ======	I	11%
 =======	I	13%
 =======	I	15%
 =======	I	16%
 =======	I	18%
 =======	I	19%

 =========	I	21%
 	I	23%
 ===========	1	24%
 	I	26%
 ====================================	I	27%
 ====================================	I	29%
 	I	31%
 ====================================	1	32%
 ====================================	I	34%
	I	35%
 	I	37%
 =======	I	39%
 	I	40%

	I	42%
	I	44%
	I	45%
	I	47%
	l	48%
	I	50%
	I	52%
	I	53%
	I	55%
	I	56%
	I	58%
	I	60%
	I	61%

 	I	63%
 ========	I	65%
 	I	66%
 	I	68%
 ====================================	I	69%
 ====================================	I	71%
 ====================================	I	73%
 	I	74%
 	I	76%
 	I	77%
 ===================================	I	79%
 	I	81%
 	I	82%

```
84%
                                   85%
-----
                                   87%
|-----
                                   89%
                                   90%
                                   92%
                                   94%
|-----
|-----
ppt <- pd_stack((prism_archive_subset("ppt","monthly",</pre>
                  years = years,
                  mon = 7:8)))
ppt <- terra::extract(ppt,</pre>
          pts %>%
           st_transform(crs = st_crs(ppt))) %>%
```

Combine data for modeling

```
nlcd years <-
 data.table(year = c(2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019)) %>%
 mutate(merge = year) %>%
 setkeyv('merge')
st_years <-
 data.table(year = 1990:2020) %>%
 mutate(merge = year) %>%
  setkeyv('merge')
nearest <-
  nlcd_years[st_years, roll = 'nearest'] %>%
 dplyr::select(year, i.year) %>%
  rename(nlcd_year = year,
        year = i.year)
powell.data <- tmn %>%
 left_join(nearest, join_by(year)) %>%
 left_join(ppt,
            join_by(COMID, year, month)) %>%
 left_join(sc, join_by(COMID)) %>%
 left_join(riparian_forest,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(crop,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left join(urban,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(nhd_flow,
            join_by(COMID == COMID,
                    month == month)) %>%
 left_join(water,
            join_by(COMID == COMID,
                    nlcd_year == year)) %>%
 left_join(pts,
            join_by(COMID == COMID)) %>%
 mutate(month = as.character(month),
```

```
COMID = as.character(COMID)) %>%
 st_as_sf(crs = 4269) %>%
 st_transform(crs = 5070)
# Grab values from nearest site for WTDEP NA value
ptna <- powell.data %>%
 filter(is.na(WTDEPWS)) %>%
 dplyr::select(COMID) %>%
 distinct()
dist matrix <- st distance(pts)</pre>
names(dist_matrix) <- pts$COMID</pre>
rownames(dist_matrix) <- pts$COMID</pre>
nearest <- dist_matrix[, grep(ptna$COMID, names(dist_matrix))]</pre>
nearest <- data.frame(nearest) %>%
 distinct() %>%
 arrange(nearest) %>%
 slice_head(n=6) %>%
 row.names()
powell.data$WTDEPWS[powell.data$COMID == ptna$COMID] <- mean(powell.data$WTDEPWS[powell.data$COMII</pre>
# Write output file for modeling
write_rds(powell.data,
          file = '../data/powell_data.2024.07.31.rds',
          compress = "xz")
```

Predict stream temperatures

```
pull(COMID) %>%
na.omit() %>% unique()
```

Write output file