$\mathbf{L}\!\!\!/ \mathbf{T}_{\!\mathbf{E}}\!\mathbf{X} \; \mathbf{TEMPLATE}$

XIAOXIANG ZHOU

Contents

 A small toolkit A Short List of Applications 	1 1
References	3
1. A small toolkit	
$f: Y \longrightarrow \operatorname{pt} f: p \hookrightarrow X$	
f^* constant sheaf \mathcal{F}_p Rf_* cohomology $\mathrm{sky}_p(\mathbb{Q})$	
$Rf_!$ continuously $\mathrm{sky}_p(\mathbb{Q})$ $Rf_!$ cpt supp cohomology $\mathrm{sky}_p(\mathbb{Q})$	
$f!$ orientation sheaf $[n]$ $\mathcal{F}_p[-n]$	
For $f^!$, assume Y, X are manifolds of dimension n .	
$j_!j^*\mathcal{F} \ \mathcal{F} \ i_!i^*\mathcal{F}$	
Certainly! Here is the corrected version of your list:	
_	
2. A SHORT LIST OF APPLICATIONS	
Assuming the six-functor formalism (and everything derived), let X be a smooth manifold	old of
dimension n .	
1. Define four types of cohomology:	
Verify that:	
Also, define the cup and cap product structures.	
2. Using the projection formula, show Poincaré duality:	
3. Define the relative cohomology (using only six functors) so that:	
4. Derive the Gysin sequence for any oriented S^k -bundle $\pi: E \longrightarrow B$:	
Derive the Mayer-Vietoris sequence and the relative cohomology sequence, and verify the e	oniv-
alence of different cohomology groups.	quiv-
5. Compute the upper shriek for singular spaces.	

—

Let me know if you need further adjustments!

Date: September 3, 2024.

1

$$\begin{array}{lll} \mathrm{H}^{i}(Y,\mathbb{Q}) & = \mathrm{H}^{i}(Y,\underline{\mathbb{Q}}_{Y}) & = f_{*}\underline{\mathbb{Q}}_{Y} & = f_{*}f^{*}\mathbb{Q} \\ \mathrm{H}^{i}_{c}(Y,\mathbb{Q}) & = \mathrm{H}^{i}_{c}(Y,\underline{\mathbb{Q}}_{Y}) & = f_{!}\underline{\mathbb{Q}}_{Y} & = f_{!}f^{*}\mathbb{Q} \\ \mathrm{H}_{-i}(Y,\mathbb{Q}) & = \mathrm{H}^{n+i}_{c}(Y,\mathrm{Or}_{Y}) & = f_{!}\,\mathrm{Or}_{Y}[n] & = f_{!}f^{!}\mathbb{Q} \\ \mathrm{H}^{\mathrm{BM}}_{-i}(Y,\mathbb{Q}) & = \mathrm{H}^{n+i}(Y,\mathrm{Or}_{Y}) & = f_{*}\,\mathrm{Or}_{Y}[n] & = f_{*}f^{!}\mathbb{Q} \end{array}$$

six functor formalism \approx cohomology theory

References

School of Mathematical Sciences, University of Bonn, Bonn, 53115, Germany, $Email\ address:$ email:xx352229@mail.ustc.edu.cn