

مرور مباحث قبل

دانشگاه صنعتی امیر کبیر

روش تقسیم و حل

The divide-and-conquer approach:

Divide the problem into a number of subproblemsConquer the subproblems by solving them recursivelyCombine subproblems and solve the original problem

بدترین و بهترین حالت

Best case The array is already sorted

Worst case The array is in reverse sorted order

فصل سوم: رشد توابع

- تعریف نمادهای رشد مجانبی
- نمادهای رشد مجانبی در معادلات
- ویژگیهای مقایسه توابع با نمادهای رشد مجانبی
 - توابع مرسوم و نمادهای استاندارد

رشد توابع و نمادهای تقریب مرتبه زمانی

• زمان اجرای دقیق الگوریتم اطلاعات اضافی ← نیاز به زمان اجرای تقریبی یا مرتبه زمانی

Name	Notation
Big	$\mathcal O$ or O
Big Omega	Ω
Big Theta	Θ
Small O	o
Small Omega	ω

• نمادهای تقریب مرتبه زمانی

- كاربرد اين نمادها در طرح طراحي الگوريتم: مقايسه الگورتيمها بر حسب زمان اجرا
- کاربردهای دیگر: تحلیل دیگر ویژگیهای الگوریتم بر حسب تعداد ورودی ← حجم حافظه
- مهم: کدام زمان اجرا؟ بهترین بدترین متوسط؟ o در نماد Θ اهمیت این موضوع بیشتر

The Θ -Notation

د اشکاه صفعی امر کبر (پلی تکنیک تبران)

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2 > 0, n_0 > 0 \text{ s.t. } \forall n \ge n_0 : c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}$$

The Θ -Notation

دانشگاه صنعتی امیر کبیر (پلی تکنیک نهران)

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2 > 0, n_0 > 0 \text{ s.t. } \forall n \ge n_0 : c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}$$

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

$$6n^3 \neq \Theta(n^2)$$

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

for all $n \ge n_0$. Dividing by n^2 yields

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2 \ .$$

$$c_1 = 1/14$$
 $c_2 = 1/2$ $n_0 = 7$

The O-Notation

دانشگاه صنعتی امیر کبیر (پلی تکنیک نهران)

$$O(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ s.t. } \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

 n_0 : minimum possible

The O-Notation

$$O(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ s.t. } \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$$

- در برخی منابع از نماد Ω معادل نماد Θ استفاده می شود \bullet
 - نماد O : تخمین زمان اجرا از روی ساختار برنامه بر اساس بدترین زمان اجرا

```
INSERTION-SORT (A)

1 for j=2 to A.length

2 key=A[j]

3 // Insert A[j] into the sorted sequence A[1..j-1].

4 i=j-1

5 while i>0 and A[i]>key

6 A[i+1]=A[i]

7 i=i-1

8 A[i+1]=key

O(n^2)
```

The Ω -Notation

$$\Omega(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ s.t. } \forall n \ge n_0 : f(n) \ge c \cdot g(n) \}$$

The Ω -Notation

$$\Omega(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ s.t. } \forall n \ge n_0 : f(n) \ge c \cdot g(n) \}$$

نماد Ω : تخمین زمان اجرا از روی ساختار برنامه بر اساس بهترین زمان اجرا

```
INSERTION-SORT (A)
```

```
for j = 2 to A.length

key = A[j]

// Insert A[j] into the sorted sequence A[1..j-1].

i = j-1

while i > 0 and A[i] > key

A[i+1] = A[i]

i = i-1

A[i+1] = key
```

 $\Omega(n)$

The Θ , O and Ω -Notation

Theorem

 $f(n) = \Theta(g(n))$ if and only if f = O(g(n)) and $f = \Omega(g(n))$

نمادهای رشد مجانبی در معادلات

• حضور نماد رشد مجانبی در سمت راست معادلات

$$2n^2+3n+1=2n^2+f(n)$$
وجود دارد $f(n)\in\Theta(n)$ که معادله صادق باشد $f(n)=3n+1$

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

• حضور نماد رشد مجانبی در سمت چپ معادلات

$$f(n)\in\Theta(n)$$
 برای همه توابع $g(n)\in\Theta(n^2)$ وجود دارد تابع $2n^2+f(n)=g(n)$ بطوریکه

$$2n^2 + \Theta(n) = \Theta(n^2)$$

The o-Notation

 $O(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ s.t. } \forall n \ge n_0 : f(n) \le c \cdot g(n) \}$

$$o(g(n)) = \{ f(n) : \forall c > 0 \ \exists n_0 > 0 \ \text{s.t.} \ \forall n \ge n_0 : f(n) < c \cdot g(n) \}$$

$$\lim_{x o\infty}rac{f(x)}{g(x)}=0$$

$$n^{1.9999} = o(n^2)$$

 $n^2 / \lg n = o(n^2)$
 $n^2 \neq o(n^2)$ (just like $2 \neq 2$)
 $n^2 / 1000 \neq o(n^2)$

The o-Notation

$$o(g(n)) = \{ f(n) : \forall c > 0 \ \exists n_0 > 0 \ \text{s.t.} \ \forall n \ge n_0 : f(n) < c \cdot g(n) \}$$

$$T_A(n) = o(T_B(n))$$

The ω -Notation

 $\Omega(g(n)) = \{ f(n) : \exists c > 0, n_0 > 0 \text{ s.t. } \forall n \ge n_0 : f(n) \ge c \cdot g(n) \}$

$$\omega(g(n)) = \{ f(n) : \forall c > 0 \ \exists n_0 > 0 \ \text{s.t.} \ \forall n \ge n_0 : f(n) > c \cdot g(n) \}$$

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\infty$$

$$n^{2.0001} = \omega(n^2)$$

$$n^2 \lg n = \omega(n^2)$$

$$n^2 \neq \omega(n^2)$$

معادل سازی نمادهای رشد مجانبی

$$f(n) = O(g(n)) \approx a \leq b$$
,

$$f(n) = \Omega(g(n)) \approx a \ge b$$
,

$$f(n) = \Theta(g(n)) \approx a = b,$$

$$f(n) = o(g(n)) \approx a < b$$
,

$$f(n) = \omega(g(n)) \approx a > b.$$

مرسومترین بدترین زمانهای اجرا

مقايسه خواص توابع

•
$$f(n) = O(g(n))$$
 and $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$

•
$$f(n) = \Omega(g(n))$$
 and $g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$

•
$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$

تراگذری

Transitivity

•
$$f(n) = O(f(n))$$

•
$$f(n) = \Omega(f(n))$$

•
$$f(n) = \Theta(f(n))$$

بازتابي

Reflexivity

اNTRODUCTION TO ALGORITHM | (۱۴۰۱ ول ۲۰۰۱) ا

مقایسه خواص توابع

•
$$f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$$

$$f(n) = O(g(n)) \iff g(n) = O(f(n))$$

لزوما برقرار نيست

تقارني

Symmetry

•
$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$$

•
$$f(n) = o(g(n)) \iff g(n) = \omega(f(n))$$

ضد تقارنی

Transpose Symmetry