SUCESIONES

En el sentido informal, una sucesión es una lista ordenada de objetos o sucesos de modo que uno será el 1º otro el 2º y así sucesivamente.

Para nosotros los objetos son números: $a_1, a_2, a_3, \dots, a_n$

Donde los a_i son los términos de la sucesión. Nótese que por cada entero positivo n hay un término a_n de la sucesión. Por lo tanto se puede definir una sucesión en el sentido formal como:

Una **sucesión** de números es una función cuyo dominio es el conjunto de enteros mayores o iguales que un entero dado n_0 y cuyo conjunto de llegada son los números reales. En símbolos: $f: \{n \in N \mid n \ge n_0\} \to R \mid f(n) = a_n$

Por tal motivo su gráfica es un conjunto de puntos aislados (se pueden graficar los puntos en el plano o las imágenes en la recta numérica). Como el conjunto dominio es un subconjunto de números naturales, la notación que se usa es sólo indicar las imágenes, ya sea las primeras o en forma genérica:

Notación:
$$\{a_1, a_2, a_3,...\}$$
 $\{a_n\}$

Entonces, podemos especificar una sucesión dando:

* Suficientes términos iniciales como para establecer un patrón, como:

- * O dando la fórmula explícita del término n-ésimo: $\{3n-2\}$
- * O mediante una fórmula de recurrencia: $a_n = a_{n-1} + 3$ $n \ge 2$, $a_1 = 1$

Observemos que cada una de las tres formas describe la misma sucesión.

Convergencia

Como estudiamos límite de funciones, también estudiamos límites de sucesiones. ¿Con qué tendencia? Como las sucesiones están definidas en N estudiaremos límite cuando n tiende a infinito (concepto muy similar del límite de variable infinita de funciones). Entonces por definición:

$$\lim_{n \to \infty} a_n = L \quad \Leftrightarrow \quad \forall \varepsilon > 0 \,\exists \, N_0 > 0 \,/ \, \left| a_n - L \right| < \varepsilon \quad \forall n \ge N_0$$

Gráficamente:

Gráficamente interpretamos que para $n > N_0$ los términos de la sucesión convergen a L si están comprendidos entre L- ε y L+ ε .

Si una sucesión tiene límite finito, diremos que es **convergente**. Por ejemplo (notar que la forma de operar con los límites es similar que la que realizamos en límite funcional con variable infinita):

1)
$$\lim_{n\to\infty} \frac{1}{n} = 0$$
 entonces la sucesión $\left\{\frac{1}{n}\right\}$ es convergente

$$\lim_{n \to \infty} \sqrt{2n - 3} \left(\sqrt{n + 1} - \sqrt{n} \right) = \lim_{n \to \infty} \frac{\sqrt{2n - 3} \left(\sqrt{n + 1} - \sqrt{n} \right) \left(\sqrt{n + 1} + \sqrt{n} \right)}{\left(\sqrt{n + 1} + \sqrt{n} \right)} = \\
= \lim_{n \to \infty} \frac{\sqrt{2n - 3} (n + 1 - n)}{\left(\sqrt{n + 1} + \sqrt{n} \right)} = \lim_{n \to \infty} \frac{\sqrt{2n - 3}}{\sqrt{n + 1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{2n - 3}}{\sqrt{n}} = \\
= \lim_{n \to \infty} \frac{\sqrt{2n - 3}}{\sqrt{n + 1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{2n - 3}}{\sqrt{n + 1} + \sqrt{n}} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty} \frac{\sqrt{2 - \frac{3}{n}}}{\sqrt{n + 1} + 1} = \lim_{n \to \infty}$$

Entonces $\{\sqrt{2n-3}(\sqrt{n+1}-\sqrt{n})\}$ es convergente

3)
$$\lim_{n \to \infty} \frac{n-1}{n} = 1$$
 entonces $\left\{ \frac{n-1}{n} \right\}$ es convergente

4)
$$\lim_{n\to\infty} (-1)^{n+1} \frac{1}{n} = 0$$
 (recordar propiedad de infinitésimo por función acotada) entonces $\left\{ (-1)^{n+1} \frac{1}{n} \right\}$ es convergente

Ahora si $\lim_{n\to\infty} a_n = \infty$ entonces diremos que la sucesión $\{a_n\}$ es **divergente** y si el límite no existe diremos que es oscilante. Por ejemplo:

5)
$$\lim_{n \to \infty} \sqrt{n} = \infty$$
 entonces $\{\sqrt{n}\}$ es divergente

6)
$$\left\{ (-1)^{n+1} \frac{n-1}{n} \right\}$$
 los términos tienen signos alternados. Los positivos se aproximan a 1 y los negativos a -1. La sucesión **oscila**.

Las propiedades de los límites dadas para funciones se cumplen también para las sucesiones (siempre y cuando las sucesiones sean convergentes)

También se puede adaptar el teorema de intercalación:

Teorema de intercalación para sucesiones:

Si
$$\lim_{n\to\infty} a_n = L = \lim_{n\to\infty} b_n$$
 y existe un número entero N tal que $a_n \le c_n \le b_n$ \forall $n > N$ \Rightarrow $\lim_{n\to\infty} c_n = L$.

Sucesiones no decrecientes (y no crecientes)

Cuando $a_n \le a_{n+1} \quad \forall n$, decimos también que la sucesión es monótona creciente (o monótona decreciente si $a_n \ge a_{n+1} \quad \forall n$)

Ejemplos:

Averiguar si las sucesiones cuyos términos generales se indican son monótonas: $a)a_n = 3 + (-1)^n$ $b)b_n = \frac{2n}{n+1}$

La primera alterna entre 2 y 4, por lo cual no es monótona. La segunda es monótona, ya que cada término es mayor que el anterior, esto se prueba por ejemplo restando un término y el anterior y averiguando si esa resta es menor o mayor a cero:

$$\begin{aligned} b_{n+1} - b_n &= \frac{2(n+1)}{2+n} - \frac{2n}{1+n} = \frac{2(n+1)(1+n) - 2n(2+n)}{(1+n)(2+n)} = \frac{2n^2 + 4n + 2 - 4n - 2n^2}{(1+n)(2+n)} = \\ &= \frac{2}{(1+n)(2+n)} > 0 \quad \forall n \in \mathbb{N} \quad b_{n+1} - b_n > 0 \quad \Rightarrow b_{n+1} > b_n \end{aligned}$$

Luego la sucesión es creciente.

Diremos que una sucesión $\{a_n\}$ está **acotada superiormente** si existe un número real M tal que

$$a_n \leq M \quad \forall n$$

Diremos que la sucesión está acotada inferiormente si

$$a_n \ge K \quad \forall n$$

siendo K un número real.

Se dice que la sucesión está **acotada** si está acotada superior e inferiormente, es decir si existe K real tal que

$$|a_n| \le K \quad \forall n$$

Propiedad: una sucesión monótona acotada es convergente.

SERIES

Sea una sucesión $\{a_n\} = \{a_1; a_2; a_3; \dots \}$

Si intentamos sumar los términos de esa sucesión, obtendremos una expresión de la forma: $a_1 + a_2 + a_3 + \dots + a_n + \dots$ que se llama **serie infinita** o simplemente **serie**, y que se indica con el símbolo

$$\sum a_n$$
 o $\sum_{n=1}^{\infty} a_n$

¿Qué sentido le damos a la suma de una cantidad infinita de términos? Armamos una **nueva sucesión** llamada **sucesión de sumas parciales** de la siguiente manera:

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
:

$$S_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{i=1}^n a_i$$

Como dijimos anteriormente, estas sumas parciales forman una nueva sucesión $\{S_1; S_2; S_3...\} = \{S_n\}$ que puede o no tener límite.

Si el límite de la sucesión de sumas parciales existe, es decir $\lim_{n\to\infty} S_n = S$, decimos que la **serie converge**, y el resultado del límite es la suma de la serie. Podemos escribir:

$$\sum_{n=1}^{\infty} a_n = S$$

Si el límite de la sucesión de sumas parciales es infinito o no existe entonces la **serie** diverge.

<u>Ejemplo:</u> Dada la sucesión $\{a_n\} = \left\{\frac{1}{n(n+1)}\right\}$. determinar si la serie $\sum_{1}^{\infty} \frac{1}{n(n+1)}$ converge o diverge

A partir de los términos de la sucesión construimos la serie:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \dots$$

Veamos cuál es la sucesión de sumas parciales:

$$S_{1} = \frac{1}{2}$$

$$S_{2} = \frac{1}{2} + \frac{1}{6} = \frac{2}{3}$$

$$S_{3} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} = \frac{3}{4}$$

$$S_{4} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} = \frac{4}{5}$$

$$\vdots$$

$$S_{n} = \frac{n}{12}$$

La sucesión de sumas parciales es $\{S_n\} = \left\{\frac{n}{n+1}\right\}$

Como $\lim_{n\to\infty} \frac{n}{n+1} = 1$ por lo tanto la serie converge y su suma es igual a 1.

Para averiguar el carácter de una serie no es necesario comenzar por el primer término sino que se puede formar la sucesión de sumas parciales a partir de un a_i más avanzado, esto equivale a suprimir los i-1 primeros términos de la sucesión, lo cual no altera el límite. Esto se hace cuando no hay regularidad en la formación de los primeros términos.

Condición necesaria de convergencia

Si la serie
$$\sum_{n=1}^{\infty} a_n$$
 es convergente, entonces $\lim_{n\to\infty} a_n = 0$

Demostración:

Sea
$$S_n = a_1 + a_2 + a_3 + \dots + a_n \implies a_n = S_n - S_{n-1}$$

Si aplicamos límite a esta última igualdad resulta $\lim_{n\to\infty}a_n=\lim_{n\to\infty}S_n-\lim_{n\to\infty}S_{n-1}$.

Si n tiende a infinito, también n-1 tiende a infinito, de modo que, siendo la serie convergente, es

$$\lim_{n\to\infty} S_n = S \quad y \quad \lim_{n\to\infty} S_{n-1} = S \quad \Rightarrow \quad \lim_{n\to\infty} a_n = 0 \, .$$

Con cualquier serie se asocian dos sucesiones: la de las sumas parciales, y la sucesión de los términos que dan origen a la serie. Si la serie converge significa que el límite de la sucesión de sumas parciales es *S*, y el límite de la sucesión de los términos que la originan da cero.

El recíproco de esta propiedad es falso: si $\lim_{n\to\infty} a_n = 0$ no se puede concluir que la serie converge. De modo que en realidad es una prueba de divergencia:

Si $\lim_{n\to\infty} a_n$ no existe, es infinito o es distinto de cero, entonces la serie diverge.

Ejemplos:

a)
$$\sum 2^n$$
 b) $\sum \frac{1}{2^n}$ c) $\sum \frac{n!}{2n!+1}$

a) diverge, ya que
$$\lim_{n\to\infty} 2^n = \infty$$

b) no se sabe, ya que
$$\lim_{n \to \infty} \frac{1}{2^n} = 0$$

c) diverge, ya que
$$\lim_{n\to\infty} \frac{n!}{2n!+1} = 1/2$$

Algunas series especiales

Serie Geométrica

Una serie geométrica es aquella en la que cada término se obtiene a partir del anterior multiplicado por la razón r.

La serie tiene la forma:
$$\sum_{1}^{\infty} a \cdot r^{n-1} = a + a \cdot r + ar^2 + ar^3 + \dots$$

Formemos la sucesión de sumas parciales:

Si multiplicamos por *r* resulta (1):

$$S_n.r = a.r + a.r^2 + + a.r^n(2)$$

Restamos (1)-(2):

$$S_n - S_n \cdot r = a - a \cdot r^n \implies S_n (1 - r) = a(1 - r^n)$$

 $S_n = \frac{a \cdot (1 - r^n)}{1 - r} \quad r \neq 1 \quad (3)$

Si r = 1 entonces

$$S_n = a + a + a + \dots + a = n.a$$
 si $n \to \pm \infty$ $\Rightarrow \lim_{n \to \infty} S_n = \infty$.

Entonces tomemos límite a la sucesión de sumas parciales que obtuvimos en (3)

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a(1 - r^n)}{1 - r} = \frac{a}{1 - r} \lim_{n \to \infty} \frac{r^n}{1 - r}$$

Si
$$|r| < 1$$
 entonces $\lim_{n \to \infty} r^n = 0 \Rightarrow \lim_{n \to \infty} S_n = a \frac{1}{1 - r}$ y la serie converge y su suma es

$$S = \frac{a}{1 - r}$$

Si
$$|r| > 1$$
 $\rightarrow \lim_{n \to \infty} r^n = \infty$ la serie diverge.

Si r = -1 entonces $\lim_{n \to \infty} a \frac{1 - r^n}{1 - r}$ no existe. Si n es par el límite da cero; si es impar da a. La serie diverge.

Serie p

Toma la forma
$$\sum_{1}^{\infty} \frac{1}{n^p}$$

Por demostración se deduce que si p>1 la serie converge y si $p\le 1$ la serie diverge Ejemplos:

$$\sum_{1}^{\infty} \frac{1}{\sqrt{n}} \qquad p = 1/2 \qquad \rightarrow \qquad diverge$$

$$\sum_{1}^{\infty} \frac{1}{n^2} \qquad p = 2 \qquad \rightarrow \qquad converge$$

Series de términos no negativos

Una serie de términos no negativos no es oscilante, o converge o diverge.

Veamos un criterio para series de términos positivos que permite saber si la serie converge o diverge:

Criterio de D'Alembert o de la razón o del cociente

Sea
$$\sum a_n$$
 una serie de términos positivos, y supongamos que

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L, \text{ si L}<1 \text{ la serie converge; si L}>1 \text{ la serie diverge;}$$
 si L =1 el criterio no da conclusión.

Ejemplos:

$$\sum \frac{1}{(n+1)!} \to \lim_{n \to \infty} \frac{\frac{1}{(n+2)!}}{\frac{1}{(n+1)!}} = \lim_{n \to \infty} \frac{(n+1)!}{(n+2)!} = \lim_{n \to \infty} \frac{(n+1)!}{(n+2)(n+1)!} = 0 < 1 \implies converge$$

$$\sum \frac{2^n}{n} \to \lim_{n \to \infty} \frac{\frac{2^{n+1}}{n+1}}{\frac{2^n}{n}} = \lim_{n \to \infty} \frac{n \cdot 2^{n+1}}{(n+1) \cdot 2^n} = \lim_{n \to \infty} \frac{n \cdot 2^n \cdot 2}{(n+1) \cdot 2^n} = 2 > 1 \quad \Rightarrow \quad diverge$$

$$\sum \frac{n}{n+1} \to \lim_{n \to \infty} \frac{\frac{n+1}{n+2}}{\frac{n}{n+1}} = \lim_{n \to \infty} \frac{(n+1)^2}{n(n+2)} = 1$$

Cuando el límite es 1 se puede analizar además del límite, la relación $\frac{a_{n+1}}{a_n}$,

Si
$$\frac{a_{n+1}}{a_n} \ge 1 \implies la \ serie \ diverge \ ; \ \frac{a_{n+1}}{a_n} < 1 \implies la \ serie \ converge$$

Veamos cómo aplicar al último ejemplo:

$$\frac{n^2+2n+1}{n^2+2n} > 1 \rightarrow diverge$$