Ficha de exercícios III

Rachid Muleia & Mauro Langa

- 1. Demonstre que a krigagem (simples ou normal) é um interpolador exacto, isto é, a interpolação em locais amostrados produz exactamente os valores observados.
- 2. Considere os pontos da figura abaixo. Os pontos s_1 , s_2 , s_3 são os pontos observados e o ponto s_0 para qual se pretende fazer a previsão. Considere um semivariograma esférico com efeito pepita igual a zero e soleira igual a 1 e amplitude igual a 50. Se d=10 componha o sistema de equações para krigagem ordinária e calcule:
 - a) Os pesos $\lambda_1, \lambda_2, \lambda_3$
 - b) A variância da krigagem ordinária

- 3. Considere o conjunto de dados Z[0,4]=5, Z[4,0]=10, Z[0,8]=15 e Z[4,8]=6. Suponha que o objectivo é fazer previsões em quatro pontos (2,4), (3,2), (4,0) e (5,-2)
 - a) Represente as obsevações num mapa juntamente com os pontos que serão previstos.
 - c) Considere dois semivariogramas exponenciais isotrópicos: (A) Com amplitude prática igual a 8.5, patamar igual 1 e sem efeito pepita. (B) Com amplitude prática igual a 8.5, patamar igual 0.5 e efeito pepita igual a 0.5
 - i. Calcule os valores previstos para os quatro pontos usando o modelo A e B.
 - ii. Obtenha a variância dos valores previstos nos quatro pontos usando o modelo A e B.

4. Considere a figura abaixo

Tabela 1: Coordenadas dos pontos amostrados

	X	у	Z(s)
1	10	20	40
2	30	280	130
3	250	130	90
4	360	120	160

para um atributo com média 110 e com função de covariância $C(\mathbf{h}) = 2000 \exp(\frac{-\mathbf{h}}{250})$, se o ponto a ser estimado for $s_0(180, 120)$, então:

- (a) Calcule os pesos para estimação do ponto s_0 usando krigagem ordinária e simples.
- (b) Ache a estimativa do ponto não amostrado usado krigagem oridnária e simples. Compare os resultados.
- (c) Calcule a variância do ponto estimado.

Para o exercício 4 considere a seguinte matriz das distância.

$$\begin{pmatrix}
0 \\
260.8 & 0 \\
264.0 & 266.3 & 0 \\
364.0 & 366.7 & 110.4 & 0
\end{pmatrix}$$