LC 14 : Molécules d'intérêt biologique

Niveau: lycée

<u>Prérequis</u>:

- Chiralité
- Fonctions usuelles, nomenclature
- Structure spatiale des molécules

 <u>Polypeptide</u>: espèce chimique contenant plusieurs liaisons peptidiques, une fonction amine et une fonction acide carboxylique

 <u>Polypeptide</u>: espèce chimique contenant plusieurs liaisons peptidiques, une fonction amine et une fonction acide carboxylique

 <u>Polypeptide</u>: espèce chimique contenant plusieurs liaisons peptidiques, une fonction amine et une fonction acide carboxylique

$$(H_{2}N) - CH - (C - N) - CH_{2} - (C - N) - CH - (C - N) - CH_{2} - (C - N) - CH_{2} - (C - N) - CH_{3} - (C - N) - CH_{4} - (C - N) - CH_{5} -$$

• Protéine : long polypeptide

 <u>Polypeptide</u>: espèce chimique contenant plusieurs liaisons peptidiques, une fonction amine et une fonction acide carboxylique

• Protéine : long polypeptide

Structure tridimensionnelle des protéines

Structure primaire:

enchaînement d'acides α

-aminés

Structure secondaire : enroulement des chaînes peptidiques

Structure tertiaire : repli de la structure

secondaire

Contenance du lait

DOC. 1 Étiquette d'une bouteille de lait entier

Valeurs nutritionnelles moyennes			
	Pour 100 ml	Valeurs moyennes 250 ml (portion)	
Valeur énergétique :	269 kJ/64 kcal	673 kJ/161 kcal	
Matières grasses : dont acides gras saturés :	3,6 g 2,2 g	9,0 g 5,5 g	
Glucides : dont sucres :	4,8 g 4,8 g	12,0 g 12,0 g	
Protéines :	3,2 g	8,0 g	
Sel:	0,11 g	0,28 g	
Calcium:	120 mg = 15 % des AQR*	300 mg = 37 % des AQI	

Source : <u>Nathan</u>, 1ere ST2S

Contenance du lait

DOC. 1 Étiquette d'une bouteille de lait entier

Valeurs nutritionnelles moyennes			
	Pour 100 ml	Valeurs moyennes 250 ml (portion)	
Valeur énergétique :	269 kJ/64 kcal	673 kJ/161 kcal	
Matières grasses : dont acides gras saturés :	3,6 g 2,2 g	9,0 g 5,5 g	
Glucides : dont sucres :	4,8 g 4,8 g	12,0 g 12,0 g	
Protéines :	3,2 g	8,0 g	
Sel:	0,11 g	0,28 g	
Calcium:	120 mg = 15 % des AQR*	300 mg = 37 % des AQF	

Source : <u>Nathan</u>, 1ere ST2S

<u>Glucides</u>

Glucides

Glucides simples = oses

Ex : glucose, fructose C₆H₁₂O₆

Glucides complexes = osides Assemblage d'oses ou d'autres molécules

Ex: saccharose

Conditionnement du glucose

Combustion du glucose

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + E$$

La combustion complète d'une mole de glucose libère une énergie de 2 840 kJ.

Équation de réaction de glycolyse: $C_6H_{12}O_6 + 2 \text{ NAD}^+ \rightarrow 2 C_3H_4O_3 + 2 \text{ NADH} + 2 H^+ + \text{Énergie (ATP)}$

Hydrolyse du saccharose

Hydrolyse du saccharose

Montage à reflux

50 mL de saccharose à 30g/L 5 mL d'acide chlorhydrique à 2 mol/L

Test à la liqueur de Fehling

Test à la liqueur de Fehling

Test à la liqueur de Fehling

Glycérol

Lipides: éléments constitutifs

Glycérol

Acide gras insaturé :
(acide oléique)

Triglycéride : oléine

Triglycéride : oléine

Lipides: réactions impliquées

Source : <u>Nathan</u>, Terminale ST2S

Dans l'organisme, les triglycérides sont hydrolysés ce qui produit des acides gras et du glycérol.

L'hydrolyse d'un triglycéride est la réaction inverse de l'estérification.

<u>Dans le corps : saponification de l'ester</u> (hydrolyse)

$$C_{17}H_{33}$$
 — $C_{17}H_{33}$ — C_{1

<u>Dans le corps : saponification de l'ester</u> (hydrolyse)

Saponification de l'ester : Protocole

- 20mL de **soude** (10mol/L, <u>attention</u>)
- 10g d'huile d'olive
- 20mL d'éthanol

Source: Nathan, Terminale ST2S

Saponification de l'ester : Protocole

Source : <u>Nathan</u>, Terminale ST2S

Un lipide particulier : le cholestérol

Un lipide particulier : le cholestérol

