Rachel C. Kurchin

 $Assistant\ Research\ Professor\cdot Carnegie\ Mellon\ University\cdot Materials\ Science\ and\ Engineering$

★ rkurchin.github.io
☑ rkurchin@cmu.edu
☎ google scholar
♠ github

EDUCATION

2014 – 2019	Ph.D. Materials Science and Engineering (GPA: 4.6/5.0) MASSACHUSETTS INSTITUTE OF TECHNOLOG Thesis title: "Computational Frameworks to Enable Accelerated Development of Defect-Tolerant Photovoltaic Materials"			
2013 – 2014	MPhil Materials Science & Metallurgy (research-based)	University of Cambridge		
2009 – 2013	BS Physics (Intensive) (GPA 3.9/4.0, magna cum laude)	YALE UNIVERSITY		
	Past Research Positions			
2019 – 2022	Postdoctoral Fellow, Mechanical Engineering, advised by V. Viswar	nathan Carnegie Mellon University		
2014 – 2019	PhD student, Materials Science and Engineering Advised by T. Buonassisi (Mechanical Engineering) (committee members V	nce and Engineering Massachusetts Institute of Technology anical Engineering) (committee members V. Stevanović, B. Yildiz, J. Grossman)		
2016 – 2018	Visiting student , Solar Energy Research Facility Summer stays advised by V. Stevanović	National Renewable Energy Laboratory		
2013 – 2014	MPhil student, Materials Science & Metallurgy Supervised by S. Smoukov, advised by Dame A. Donald (Physics)	University of Cambridge		
2012 – 2013	Undergraduate researcher , Physics (senior thesis) Advised by M. L. Lee (Electrical Engineering)	Yale University		
Summer 2012	REU Student , Renewable Energy MRSEC, advised by T. Furtak (P	hysics) Colorado School of Mines		
2012	Undergraduate researcher, Physics, advised by C. Osuji (Chemical	Engineeing) YALE UNIVERSITY		
Summer 2011	Undergraduate researcher , Earth and Planetary Sciences Advised by I. Koren	Weizmann Insistute of Science		
Summer 2008	High school summer researcher , Laboratory for Laser Energetics Advised by R. S. Craxton and M. Wittman	University of Rochester		
	TEACHING EXPERIENCE, PREPARATION, AND RECOGNIT	TION		
2023	Instructor 27-100: Engineering the Materials of the Future 27-210: Materials Engineering Essentials	Carnegie Mellon University		
	Guest Lecturer 27-537/27-737: Data Analytics for Materials Science	Carnegie Mellon University		
2022	Guest Lecturer 27-100: Engineering the Materials of the Future	Carnegie Mellon University		
2021	Guest Lecturer 24-643/27-700: Energy Storage Materials and Systems 12-216: Introduction to Research Skills in CEE	Carnegie Mellon University		
2020 - 2023	Guest Lecturer 12-623/24-623: Molecular Simulation of Materials 24-786: Bayesian Machine Learning	Carnegie Mellon University		
	Future Faculty Program Alum, Eberly Center for Teaching Excelle	nce Carnegie Mellon University		
2019	Graduate Student Teaching Award, Mat. Sci. and Eng. Graduate Student Teaching Award, School of Engineering	MASSACHUSETTS INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY		

Rachel C. Kurchin Curriculum Vitæ

2018	Teaching Assistant	Massachusetts Institute of Technology	
	3.23: Electronic, Optical, and Magnetic Properties of Ma	terials	
2011 – 2013	Science and Quantitative Reasoning Tutor, Dean's	Office Yale University	
	Honors		
2023	Best Oral Presentation, Symposium EN10	Materials Research Society Fall Meeting	
2020	MolSSI Software Fellowship	Molecular Sciences Software Institute	
	Rising Star in Computational and Data Sciences	Oden Institute at UT Austin	
2019	MFI Postdoctoral Fellowship	CMU Manufacturing Futures Institute	
	Graduate Student Teaching Award	MIT DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING	
	Graduate Student Teaching Award	MIT School of Engineering	
	CCE Symposium Poster Prize	MIT CENTER FOR COMPUTATIONAL ENGINEERING	
2018	Materials Day Best Poster Award	MIT Materials Research Laboratory	
2017	Blue Waters Graduate Fellowship	NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS	
2016	Total Energy Fellowship	MIT Energy Initiative	
2013	Gates Cambridge Scholarship	Cambridge Gates Trust	
	Howard L. Schulz Prize	YALE PHYSICS DEPARTMENT	
	RESEARCH SOFTWARE DEVELOPMENT		
2021 – present	Co-Developer, AtomsBase	GitHub link	
2020 – present	Lead Developer, ElectrochemicalKinetics	GitHub link	
2020 – present	Lead Developer, Chemellia	GitHub link	
2017 – present	Lead Developer, Bayesim	GitHub link	

PUBLICATIONS

Authors who equally contributed to a publication are marked with a †.

- 21. M. Babar, Z. Zhu, **R. C. Kurchin**, E. Kaxiras, and V. Viswanathan. "Twisto-Electrochemical Activity Volcanoes in Trilayer Graphene" *J. Am. Chem. Soc.* (2024)
- 20. X. Wang, J. Musielewicz, R. Tran, S. K. Ethirajan, X. Fu, H. Mera, J. R. Kitchin, R. C. Kurchin, and Z. W. Ulissi. "Generalization of graph-based active learning relaxation strategies across materials" *Mach. learn.: sci. technol.* (2024)
- R. C. Kurchin, "Using Bayesian parameter estimation to learn more from data without black boxes" Nat. Rev. Phys. (2024)
- 18. **R. C. Kurchin**, D. Gandhi, and V. Viswanathan. "Nonequilibrium Electrochemical Phase Maps: Beyond Butler-Volmer Kinetics" *J. Phys. Chem. Lett.* 14, 7802–7807 (2023)
- 17. E. Annevelink[†], **R. C. Kurchin**[†], et al. "AutoMat: Automated Materials Discovery for Electrochemical systems." *MRS Bulletin* 47, (2022)
- 16. A. Mistry, ..., **R. C. Kurchin**, et al. "A minimal information set to enable verifiable theoretical battery research." *ACS Energy Lett.* 6, 11, 3831–3835 (2021)
- R. C. Kurchin and V. Viswanathan. "Marcus-Hush-Chidsey kinetics at electrode-electrolyte interfaces."
 J. Chem. Phys. 153, 134706 (2020)
- 14. **R. C. Kurchin** et al. "How much physics is in a current-voltage curve? Inferring defect properties from photovoltaic device measurements." *IEEE JPV* 10, 1532–1537 (2020)
- 13. **R. C. Kurchin**, G. Romano, T. Buonassisi. "Bayesim: a tool for adaptive grid model fitting with Bayesian inference." *Comp. Phys. Comm.* 239, 161-165 (2019)

Rachel C. Kurchin Curriculum Vitæ

12. **R. C. Kurchin**[†], P. Gorai[†], Tonio Buonassisi, Vladan Stevanović. "Structural and chemical features giving rise to defect tolerance of binary semiconductors." *Chem. Mater.* 30, 5583–5592 (2018)

- II. J. Correa-Baena, L. Nienhaus, R. C. Kurchin, et al. "A-site cation in inorganic A₃Sb₂I₉ perovskite influences structural dimensionality, exciton binding energy, and solar cell performance." Chem. Mater. 30, 3734–3742 (2018)
- 10. S. S. Shin, J. Correa-Baena, **R. C. Kurchin**, et al. "Solvent-engineering method to deposit compact bismuth-based thin films: mechanism and application to photovoltaics." *Chem. Mater.* 30, 336–343 (2017)
- 9. R. E. Brandt, **R. C. Kurchin**, et al. "Rapid semiconductor device characterization through Bayesian parameter estimation." *Joule* 1, 843–856 (2017)
- 8. R. Hoye, L. C. Lee, **R. C. Kurchin**, et al. "Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide (BiOI)" *Adv. Mater.* 29, 1702176 (2017)
- 7. R. E. Brandt, J. R. Poindexter, P. Gorai, **R. C. Kurchin**, et al. "Searching for "defect-tolerant" photovoltaic materials: combined theoretical and experimental screening." *Chem. Mater.* 29, 4667–4674 (2017)
- 6. J. R. Poindexter, R. Hoye, L. Nienhaus, **R. C. Kurchin**, et al. "High tolerance to iron contamination in lead halide perovskite solar cells." *ACS Nano* 11, 7101–7109 (2017)
- 5. R. Hoye, ..., R. C. Kurchin, et al. "Perovskite-inspired photovoltaics: best practices in materials characterization and calculations." *Chem. Mater.* 29, 1964–1988 (2016)
- 4. D. B. Needleman, J. R. Poindexter, **R. C. Kurchin**, et al. "Economically sustainable scaling of photovoltaics to meet climate targets." *Energy Environ. Sci.* 9, 2122–2129 (2016)
- 3. A. Gufan, ..., R. C. Kurchin, et al. "Segmentation and tracking of marine cellular clouds observed by geostationary satellites." *Int. J. Remote Sens.* 37, 1055–1068 (2016)
- 2. R. Hoye, ..., R. C. Kurchin, et al. "Methylammonium bismuth iodide as a lead-free, stable hybrid organic-inorganic solar absorber." *Chem. Eur. J.* 22, 2605–2610 (2015)
- 1. R. E. Brandt, R. C. Kurchin, R. Hoye, et al. "Investigation of bismuth triiodide (Bil₃) for photovoltaic applications." *J. Phys. Chem. Lett.* 6, 4297–4302 (2015)

	SELECTED INVITED TALKS			
2024	Materials Modeling: Bonding across Atoms, Code, and People JuliaCon (keynote)		EINDHOVEN, THE NETHERLANDS	
	Using Computation to Accelerate Materials Engineering, from the Atomistic to Device IEEE Photovoltaic Specialists Conference (plenary)	Scale	Seattle, WA	
	Learning from Data and Distributions to Accelerate Engineering of Energy Materials a MRS Spring Meeting	and Devices	Seattle, WA	
2023	It's All About That Bayes: Data-Driven Insights into Energy Devices without the Black American Physical Society March Meeting	k Box	Las Vegas, NV	
2022	Design of Defect-Tolerant Materials for Photovoltaic Applications American Physical Society March Meeting		Chicago, IL	
2021	Accelerating Energy Materials Discovery with Computation Georgia Institute of Technology Department of Materials Science and Engineering		Atlanta, GA	
	Accelerating Energy Materials Discovery with Computation University of Illinois at Urbana-Champaign Department of Electrical & Computer Eng	gineering	Urbana, IL	
2019	Bayesim Workshop Helmholtz Institute for Renewable Energy	Nuremberg,	Germany (virtual)	
2018	Semiconductor Parameter Extraction (and more!) with Bayesian Inference		Cambridge, MA	

MIT Society of Industrial and Applied Mathematics