Welcome!

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Dr. Jamsheed ShorishComputational Economist

About Me

- Computational Economist
- Specializing in:
 - asset pricing
 - financial technologies ("FinTech")
 - computer applications to economics and finance
- Co-instructor, "Economic Analysis of the Digital Economy" at the ANU
- Shorish Research (Belgium): computational business applications

What is Quantitative Risk Management?

- Quantitative Risk Management: Study of quantifiable uncertainty
- Uncertainty:
 - Future outcomes are unknown
 - Outcomes impact planning decisions
- Risk management: mitigate (reduce effects of) adverse outcomes
- Quantifiable uncertainty: identify factors to measure risk
 - Example: Fire insurance. What factors make fire more likely?
- This course: focus upon risk associated with a financial portfolio

Risk management and the Global Financial Crisis

- Great Recession (2007 2010)
 - Global growth loss more than \$2 trillion
 - United States: nearly \$10 trillion lost in household wealth
 - U.S. stock markets lost c. \$8 trillion in value
- Global Financial Crisis (2007-2009)
 - Large-scale changes in fundamental asset values
 - Massive uncertainty about future returns
 - High asset returns volatility
 - Risk management critical to success or failure

Quick recap: financial portfolios

- Financial portfolio
 - Collection of assets with uncertain future returns
 - Stocks
 - Bonds
 - Foreign exchange holdings ('forex')
 - Stock options
- Challenge: quantify risk to manage uncertainty
 - Make optimal investment decisions
 - Maximize portfolio return, conditional on risk appetite

Quantifying return

- Portfolio return: weighted sum of individual asset returns
 - Pandas data analysis library
 - DataFrame prices
 - .pct_change() method
 - o .dot() method of returns

```
prices = pandas.read_csv("portfolio.csv")
returns = prices.pct_change()
weights = (weight_1, weight_2, ...)
portfolio_returns = returns.dot(weights)
```

Quantifying risk

- Portfolio return volatility = **risk**
- Calculate volatility via covariance matrix
- returns and annualize

```
0.406477 0.503497
                                                         1.010823
                                                                                    0.573644
                                                 Asset 1
                                                 Asset 2 0.406477
                                                                 0.373898
                                                                           0.308224
                                                                                    0.472868
Use .cov() DataFrame method of
                                                 Asset 3 0.503497 0.308224 0.480904
                                                                                    0.398519
                                                 Asset 4 0.573644 0.472868 0.398519
                                                                                    0.917529
```

Asset 1

Asset 2

Asset 3

Asset 4

```
covariance = returns.cov()*252
print(covariance)
```


Quantifying risk

- Portfolio return volatility = risk
- Calculate volatility via covariance matrix
- Use .cov() DataFrame method of returns and annualize
- Diagonal of covariance is individual asset

```
variances
```

```
covariance = returns.cov()*252
print(covariance)
```

	Asset 1	Asset 2	Asset 3	Asset 4
Asset 1	1.01082	0.406477	0.503497	0.573644
Asset 2	0.406477	0.373898	0.308224	0.472868
Asset 3	0.503497	0.308224	0.480904	0.398519
Asset 4	0.573644	0.472868	0.398519	0.917529

Quantifying risk

- Portfolio return volatility = risk
- Calculate volatility via covariance matrix
- Use .cov() DataFrame method of returns and annualize
- *Diagonal* of covariance is individual asset variances
- Off-diagonals of covariance are covariances between assets

```
covariance = returns.cov()*252
print(covariance)
```

	Asset 1	Asset 2	Asset 3	Asset 4
Asset 1	1.01082	0.406477	0.503497	0.573644
Asset 2	0.406477	0.373898	0.308224	0.472868
Asset 3	0.503497	0.308224	0.480904	0.398519
Asset 4	0.573644	0.472868	0.398519	0.917529

Portfolio risk

- Depends upon asset weights in portfolio
- Portfolio variance σ_p^2 is

$$\sigma_p^2 := w^T \cdot \operatorname{Cov}_p \cdot w$$

- Matrix multiplication can be computed using @ operator in Python
- Standard deviation is usually used instead of variance

```
weights = [0.25, 0.25, 0.25, 0.25] # Assumes four assets in portfolio
portfolio_variance = np.transpose(weights) @ covariance @ weights
portfolio_volatility = np.sqrt(portfolio_variance)
```

Volatility time series

- Can also calculate portfolio volatility over time
- Use a 'window' to compute volatility over a fixed time period (e.g. week, 30-day 'month')
- Series.rolling() creates a window
- Observe volatility trend and possible extreme events

Let's practice!

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Risk factors and the financial crisis

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Jamsheed Shorish
Computational Economist

Risk factors

- Volatility: measure of dispersion of returns around expected value
- Time series: expected value = sample average
- What drives expectation and dispersion?
- Risk factors: variables or events driving portfolio return and volatility

Risk exposure

- Risk exposure: measure of possible portfolio loss
 - Risk factors determine risk exposure
- **Example:** Flood Insurance
 - Deductible: out-of-pocket payment regardless of loss
 - 100% coverage still leaves deductible to be paid
 - So deductible is risk exposure
 - Frequent flooding => more volatile flood outcome
 - Frequent flooding => higher risk exposure

Systematic risk

- Systematic risk: risk factor(s) affecting volatility of all portfolio assets
 - Market risk: systematic risk from general financial market movements
- Airplane engine failure: systematic risk!
- Examples of financial systematic risk factors:
 - Price level changes, i.e. inflation
 - Interest rate changes
 - Economic climate changes

Idiosyncratic risk

- Idiosyncratic risk: risk specific to a particular asset/asset class.
- Turbulence and the unfastened seatbelt: idiosyncratic risk!
- Examples of idiosyncratic risk:
 - Bond portfolio: issuer risk of default
 - Firm/sector characteristics
 - Firm size (market capitalization)
 - Book-to-market ratio
 - Sector shocks

Factor models

- Factor model: assessment of risk factors affecting portfolio return
- Statistical regression, e.g. Ordinary Least Squares (OLS):
 - dependent variable: returns (or volatility)
 - independent variable(s): systemic and/or idiosyncratic risk factors
- Fama-French factor model: combination of
 - market risk and
 - idiosyncratic risk (firm size, firm value)

Crisis risk factor: mortgage-backed securities

- Investment banks: borrowed heavily just before the crisis
- Collateral: mortgage-backed securities (MBS)
- MBS: supposed to diversify risk by holding many mortgages of different characteristics
 - Flaw: mortgage default risk in fact was highly correlated
 - Avalanche of delinquencies/default destroyed collateral value
- 90-day mortgage delinquency: risk factor for investment bank portfolio during the

Crisis factor model

- Factor model regression: portfolio returns vs. mortgage delinquency
- Import statsmodels.api library for regression tools
- Fit regression using .OLS() object and its .fit() method
- Display results using regression's .summary() method

```
import statsmodels.api as sm
regression = sm.OLS(returns, delinquencies).fit()
print(regression.summary())
```

Regression .summary() results

Dep. Variable: 0.190 R-squared: Adj. R-squared: Model: OLS 0.154 Least Squares F-statistic: Method: 5.174 Date: Tue, 31 Dec 2019 Prob (F-statistic): 0.0330 Time: 08:13:21 Log-Likelihood: 60.015 No. Observations: AIC: -116.0Df Residuals: -113.7BIC: Df Model: Covariance Type: nonrobust coef std err P>|t| 0.9751 0.194 -0.006 0.026 0.0100 0.007 1.339 const 0.2558 0.112 2.275 0.023 0.489 Mortgage Delinguency Rate Omnibus: 19.324 Durbin-Watson: 0.517 23.053 Prob(Omnibus): 0.000 Jarque-Bera (JB): Skew: 9.87e-06 Prob(JB): 1.814 Cond. No. Kurtosis:

OLS Regression Results

Let's practice!

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Modern portfolio theory

QUANTITATIVE RISK MANAGEMENT IN PYTHON

Jamsheed Shorish
Computational Economist

The risk-return trade-off

- Risk factors: sources of uncertainty affecting return
- Intuitively: greater uncertainty (more risk) compensated by greater return
- Cannot guarantee return: need some measure of expected return
 - o average (mean) historical return: proxy for expected future return

Investor risk appetite

- Investor survey: minimum return required for given level of risk?
- Survey response creates (risk, return) risk profile "data point"
- Vary risk level => set of (risk, return) points
- Investor risk appetite: defines one quantified relationship between risk and return

Choosing portfolio weights

- Vary **portfolio weights** of *given* portfolio => creates set of (risk, return) pairs
- Changing weights = beginning risk management!
- Goal: change weights to maximize expected return, given risk level
 - Equivalently: minimize risk, *given* expected return level
- Changing weights = adjusting investor's risk exposure

Modern portfolio theory

- Efficient portfolio: portfolio with weights generating highest expected return for given level of risk
- Modern Portfolio Theory (MPT), 1952
 - H. M. Markowitz (Nobel Laureate 1990)
- Efficient portfolio weight vector w^\star solves:

$$\max_{w} \mathbb{E}[w^T r]$$

with

$$w^T \Sigma w = \bar{\sigma}^2$$

The efficient frontier

- Compute many efficient portfolios for different levels of risk
- Efficient frontier: locus of (risk, return) pairs created by efficient portfolios
- PyPortfolioOpt library: optimized tools for MPT
 - EfficientFrontier class: generates one optimal portfolio at a time
 - Constrained Line Algorithm (CLA) class: generates the entire efficient frontier
 - Requires covariance matrix of returns
 - Requires proxy for expected future returns: mean historical returns

Investment bank portfolio 2005 - 2010

- Expected returns: historical data
- Covariance matrix: Covariance Shrinkage improves efficiency of estimate
- Constrained Line Algorithm object CLA
- Minimum variance portfolio: cla.min_volatility()
- Efficient frontier: cla.efficient_frontier()

```
expected_returns = mean_historical_return(prices)
efficient_cov = CovarianceShrinkage(prices).ledoit_wolf()
cla = CLA(expected_returns, efficient_cov)
minimum_variance = cla.min_volatility()
(ret, vol, weights) = cla.efficient_frontier()
```

Visualizing the efficient frontier

Scatter plot of (vol, ret) pairs

Visualizing the efficient frontier

- Scatter plot of (vol, ret) pairs
- Minimum variance portfolio: smallest volatility of all possible efficient portfolios

Visualizing the efficient frontier

- Scatter plot of (vol, ret) pairs
- Minimum variance portfolio: smallest volatility of all possible efficient portfolios
- Increasing risk appetite: move along the frontier

Let's practice!

QUANTITATIVE RISK MANAGEMENT IN PYTHON

