Physics Formulae II

Quantity	Formulae
Wave Number (K)	
	$K = \frac{\omega}{v}$
	$K = \frac{2\pi}{\lambda}$
	λ
Period(T)	$T = \frac{1}{f}$
Eroguangy(E)	† 1
Frequency(F)	$f = \frac{1}{T}$
Wave Speed(v)	$v = f\lambda$
Progressive Wave Equation	$Y = Asin(\theta + \emptyset)$
	$y = A \sin \frac{2\pi}{\lambda} (vt \pm x)$
	Λ
	$y = Asin(\frac{2\pi x}{\lambda}) \pm \omega t$
C	2.4
Speed of Sound	$V = \frac{2d}{t}$
	ι
	$\frac{V1}{\sqrt{T}1} = \frac{V2}{\sqrt{T}2}$
	$\sqrt{T} 1 - \sqrt{T} 2$
	v = speed
	T = Temprature in kelvin
Depth of the sea	$d=\frac{vt}{2}$
Intensity	
interiorey	$I = \frac{P}{A}$
	P = power
	A = area
Closed Pipe	$F_0 = \frac{V}{4L}$
	4L F1 = 3F ₀ F2 = 5F ₀ F3=7F ₀
Open pipe	
o post pop	$F_0 = \frac{V}{2L}$
	$F1 = 2F_0$ $F2 = 3F_0$ $F3=4F_0$
A string	$_{\Gamma}$ V
S	$F_0 = \frac{V}{2L}$
	$F1 = 2F_0$ $F2 = 3F_0$ $F3=4F_0$
Fundamental Frequency(f ₀)	$F_0 = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$
	- υ 2 L V μ

Magnification
$$m = \frac{image \ height}{object \ height}$$

$$m = \frac{v}{u}$$

$$u = object \ distance$$

$$v = image \ distance$$

$$v = u + at$$

$$s = \frac{u + v}{2} x t$$

$$s = ut + \frac{1}{2} at^2$$

$$s = vt - \frac{1}{2} at^2$$

$$v^2 = u^2 + 2 as$$
Simple Harmonic Motion
$$\omega = \frac{\theta}{t}$$

$$v = \omega r \text{ or } v = \omega A$$

$$\omega = 2 \pi f$$

$$T = \frac{2\pi}{\omega}$$

$$a = \omega^2 r \text{ or } a = \omega^2 a$$

$$a = \alpha r$$

$$\alpha = -\omega^2 A$$

$$360^\circ = 2\pi \ rad$$

$$\omega = \text{angular velocity}$$

$$r = \text{radius}$$

$$A = \text{amplitude}$$

$$\alpha = \text{angular acceleration}$$

$$T = \text{period}$$

"I am proud of myself"

t = time $\theta = angle turned by body$

-Awwal