

Curso de Bacharelado em Engenharia de Computação

Disciplina: Internet das Coisas (IoT)
Professor: Alexandre Sales Vasconcelos

Equipe: Ítalo Santos Neves Mateus Barbosa de Moura

RELATÓRIO DO PROJETO

Campina Grande 2023

OBJETIVO

O projeto proposto visa criar um sistema de monitoramento da irrigação por meio de tecnologias de IoT. A ideia é desenvolver um sistema que possa coletar dados de sensores de temperatura e umidade do ar, umidade do solo e a luminosidade, permitindo que os usuários possam monitorar o estado de suas plantas e verificar se estão recebendo a quantidade adequada de água. Para isso, os dados serão enviados para um microcontrolador, que poderá ser acessado remotamente. Essa solução trará benefícios significativos para o meio ambiente, permitindo que os usuários economizem água e reduzam o desperdício, além de garantir a saúde e o desenvolvimento saudável de suas plantas.

ARQUITETURA DO PROJETO

ESPECIFICAÇÕES

QUANTIDADE	NOME DO COMPONENTE	DESCRIÇÃO		
1	ESP32	O ESP32 será utilizado como node para coletar dados dos sensores LDR, DHT11 e Higrometro.		
1	ESP8266	Receberá os dados dos NODES e encaminhará as informações para o banco de dados na nuvem		
1	DHT11	O DHT11 é um sensor de temperatura e umidade. Ele é capaz de medir temperaturas entre 0 e 50 graus Celsius, bem como a umidade relativa do ar entre 20% e 90%		
1	HIGRÔMETRO	O higrômetro que será utilizado para coletar umidade do solo. Ele é composto por dois pinos de metal que são colocados no solo e um circuito eletrônico interno que converte a leitura da resistência elétrica em um valor de umidade.		
1	LDR	O LDR (Resistor Dependente de Luz) é um sensor que vai medir intensidade da luz.		
2	NRF24L01	O NRF24L01 é um transceptor sem fio que permite a comunicação bidirecional em curta distância com baixo consumo de energia. No contexto do projeto, o NRF24L01 será utilizado para transmitir as informações coletadas pelo node para o gateway		

TECNOLOGIAS REDE

O nosso projeto envolve a utilização de várias tecnologias de rede para que os dispositivos possam se comunicar e enviar informações.O node será o ESP32, que utilizará o transceptor sem fio NRF24L01(o NRF24L01 vai utilizar seu próprio protocolo de comunicação para enviar dados entre os dispositivos. O **protocolo Enhanced Shockburst - ESB**)para transmitir as informações para o gateway, que será o ESP8266. Esse gateway irá receber as informações do node por meio do NRF24L01 e em seguida, enviará essas informações para o Firebase por meio do **protocolo de transporte HTTP**.

CRONOGRAMA

Data	Objetivo
23/03	Conectar e realizar leitura dos sensores