pf for <u>Lemma</u> gcd(a,b) = gcd(rem(b,a),a)
Emia a mib]⇒Emib-qa=rem(b,a) a mia]
If remcb,a)≠0 then [m1remcb,a)=b-qa and m1a]⇒[m1a ∧ m1b](because b-qa+axq=b(con be obtained by linear combination))
IF remcb, a)=0=b-qa⇒b=qa, m1a⇒m1b because b=qa is linear combination of a.
Thm.gcd(a,b) is a linear combination of a and b.
pf.(by induction). Invariant: $P(n) = xf$ Euclid's Algorithm reaches $g(x) = xf$ for $x = xf$ both $x = xf$ and $y = xf$ for $x = xf$
of a and b. and gcd(a,b)=gcd(x,y)
Basecase: P(o) is true because we have taken 0 step, a and b are linear combination of a and b, gcd(a,b)=gcd(a,b)
<u>Inductive Step</u> : Assume Pon) to Show Pon+1)
Notice that $\exists q$, $tem(q,x) = q-qx \rightarrow tinear$ combination of a and b because x and y are linear combination of a and b .
Therefore, we know that after extra step, what we have reached is still a linear combination of a and b. And the Lemma
has shown that the god of what we have reached equals to god of what we have started with. ⇒PCn+1) v
In a very last step of Euclid's Algorithm we achive something of this form gcdco, 41) = 41
·

Thm. gcd(a,b) is the smallest positive linear combination of a and b.

encryption:m'=E"keys"(m) decryption: m=D"keys"(m')

Turing's code VI. ex) Victory \Rightarrow M= 2209032015182513 the whole digit into prime number

Beforehand: exchange secret prime k,

Enc: m'=mk

Dec: m=m/k

Encryption

beforehand: "keys" are exchanged

It's hard to factor a product of 2 large primes.
$M_1' = M_1 \cdot K \cdot M_2' = M_2 \cdot K$
gcd(m,',m2')=k because m, and m2 are prime number.
Turing's code V2.
Beforehand: exchange a public prime p and secret prime k
Encryption: message as a number me 20,1,,p-13
compute m'= remcmk,p)
\pm reminder: a,b are relative prime iff $\gcd(a,b)=1$ iff $\exists s,t$ $\exists s+b=1$ because $\gcd(a,b)$ is the smallest linear
combination of a and b
Def. >c is congruent to y modulo n:X≡y(mod n) Tff n1(>c-y)
ex) 31=16 (mod 5) because 51(31-16) 31 is congruent to 16 modulo 5.
· · · · · · · · · · · · · · · · · · ·
Def. The multiplicative inverse of x modulo n is a number x^{-1} , in $z_0,1,\dots,n-1$ 3 s.t $x_0x^{-1} \equiv 1 \pmod{n}$
ex) 2·3=1(mod 5) ~* x=2,x-1=3 5.5=1(mod 6) ~* x=5,x-1=5
2=3 ⁻¹ (mod 5)
3=27cmod 5)
m′
Decruption: remcmk,p) = mkcmod p) $= 1 \qquad e = 0,1,,p-13$
If $kk^{-1} \equiv 1 \pmod{p}$, then $m'k^{-1} \equiv mk \cdot k^{-1} \equiv m \pmod{p}$
M=remcm'k-1, p)
······································
If gcd(n,k)=1, iff k has a multiplicative inverse
pf. gcd(n,k)=1 ⇔ 35,t n5+kt=1 ⇔3t 5.t n1(kt-1) ⇔ kt=1(mod n)
The Appropriate to the control of th

Known-plaintext attack: We know message m and encryption m'=rem(mk,p)
M'≡mk(mad p)
gcdcm,p)=1
Compute m-1 s.t mm-1=1 cmod p)
M'M-1=Km'M-1=Kcmad p)
Compute: K-1cmod p)
Def. (Euler's Totient Function) øcn) denotes the number of integers 21,2,3,,n-13 that are relatively prime to n.
$ex) n = 12 1, 2, 3, 4, 5, 6, n, 8, 9, 10, 11, \phi(12) = 4$
n = 15 1.2.3.4.5.6.7.8.9.10.11.12.13.14.4615 = 8
Ever's Thm: If gcd (n,k)=1 ⇒ k ^{ø(n)} ≡ 1 (mod n)
Lemma1. If gcd(n,k)=1, then ak=bk(mod n) ⇒ a=b(mod n)
Lemma 2. Suppose that gcd(n,k)=1. Let k1,, kr in \$1,2,3, n-13 denote the integets relatively prime to n(r=ø(n))
Then, 3 rem(k,·k,n)··· rem(kr·k,n)3= žk,,···,kr3
⊕#=r ⊕⊆
Pf for ①(by contradiction): Assume remck.v.k.,n)=remck3·k.,n)→ki.vk=k3·kcmod n) (Kv.k=n&+c,k3·k=nb+c)
→ Ki=Kj(mod n) (N1(Ki-Kj))→ this is possible only if Ki=Kj
⇒K=K1
Therefore all the remainders are different from one another, $0 #=r$
pf for @:gcd(n, rem(ki.k,n))=gcd(n,k.ki) because rem(ki.k,n)=ki.k-n.a
·
$\gcd(n,k)=1, \gcd(n,k_k)=1$ by definition $\Rightarrow \gcd(n,k\cdot k_k)=1$
Therefore remcki.k,n) is prime to n therefore it must be in Zki,,kr3 which is the set of integels
relatively prime to n.

```
Pf. (Euler's Thm) Kix K2...x Kr=rem(K·K,n)x...xrem(Kr·K,n)
                               = K1·KXK2·KX··· XKr·K (mod n)
                               = KIXK2X...XKrXKr(mod n)
IXKIXK2X...XKr=KIXK2X...XKrXKr(mod n)
1=Krcmod n) by Lemma 1, r= øcn) [
Fermat's (little) Thm: Suppose p is prime and KEZ1,2 ...,p-13. Then KPT=1 (mod n)
pf. 1,2,...,p-1 are relatively prime to p. \rightarrow \phi(p) = p-1
Koop) = 1 (mod p) by Euler's thm, therefore Kp-1 = 1 (mod p) □
K·KP-2=KP-1=1 (mod p) by Fermat's (little) than and therefore K-1=KP-2 (mod p)
RSA
Beforehand: reciever creates public key and secret key
1. Generate two distinct primes p and a
2. Let n=pa,
3. Select integer e s.t gcd(e,(p-1)(q-1))=1 \Rightarrow public key is the pair(e,n)
4. Compute d S.+ d·e=1 cmod cp-1)(q,-1))
  The secret key is the pair (d,n)
Encryption: m'= rem(me, n)
Decryption: m=rem(cm')d,n)
M'=\text{rem}(me,n) \equiv me \pmod{n} \Rightarrow (m')^d \equiv m^{ed} \pmod{n}
Fr ed=1+rcp-1)cq-1) because we defined die=1cmod cp-1)cq-1))
So, (m')^d \equiv m^{ed} \equiv m m^{r(q-1)(q-1)} \pmod{n}
n=pq,. If m≠o cmod p) then mp-1=1 (mod p) by Fermat's Thm
      If m≠o(mod q) then mq-1 = 1(mod q) by Fermat's Thm
Cm')d=med=m mrcp-12(q-1) (mod p), Cm')d=med=m mrcp-12(q-1) (mod q) because n=pq,
So, Cm') d \equiv m \pmod p, Cm' d \equiv m \pmod q, and when m \equiv p, Cm' d \equiv p \Rightarrow p \mid (Cm')^d = m \Rightarrow p \Rightarrow p \Rightarrow q, are distinct prime this is
                                                                     q1(cm')d-m)-possible iff pq1(cm)d-m) = n1(cm')d-m)
                                                                                                             >cm')d≡mcmod n)
                                                                                                             > m=tem((m)d, n)
```