

Test 4

Topics: convex sets; convex functions; optimality conditions

Subject: Computational Mathematics Period: 2020.1

- 1. Let $a \in \mathbb{R}^n$, let $d \in \mathbb{R}^n \setminus \{0\}$ and let $c \in \mathbb{R}$. Show that the following sets are convex:
 - (a) (1 pt.) $\mathcal{L}(a,d) := \{a + td \; ; \; t \in \mathbb{R}\};$
 - (b) (2 pts.) $\mathcal{H}(d,c) := \{ v \in \mathbb{R}^n ; \langle v, d \rangle = c \};$
 - (c) (2 pts.) $B(a,r) := \{ v \in \mathbb{R}^n ; |v a| < r \}.$
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f(x) = \ln(1 + e^x)$.
 - (a) (2 pts.) Determine whether f is convex. The assertion must be proven.
 - (b) (2 pts.) Determine whether f has a global minimum. The assertion must be proven.
 - (c) (1 pt.) Sketch the graph of f.
- 3. Let $C := (-\infty, 1]$ and consider the function $f: C \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x^2 - 1 & \text{for } x < 1, \\ 2 & \text{for } x = 1. \end{cases}$$

(a) (2 pts.) Determine whether f is convex. The assertion must be proven.

- (b) (2 pts.) Determine whether f has a unique global minimum over C. The assertion must be proven.
- (c) (1 pt.) Sketch the graph of f.
- 4. Let $C:=(0,\infty)$ and let $f:C\to\mathbb{R}$ be such that $f(x)=x+\frac{4}{x}$.
 - (a) (2 pts.) Determine whether f is convex. The assertion must be proven.
 - (b) (2 pts.) Determine whether f has a unique global minimum over C. The assertion must be proven.
 - (c) (1 pt.) Sketch the graph of f.

August 12, 2020