(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 23 December 2004 (23.12.2004)

PCT

(10) International Publication Number WO 2004/111216 A2

(51) International Patent Classification⁷: 15/55, C11D 3/386, A23C 19/04

C12N 9/20,

Thomas, Lykke [DK/DK]; Elmevej 13, DK-3450 Allerød (DK).

(21) International Application Number:

PCT/DK2004/000426

(22) International Filing Date: 18 June 2004 (18.06.2004)

(25) Filing Language:

i,

English

(26) Publication Language:

English

(30) Priority Data: 60/479,647

19 June 2003 (19.06.2003) US

(71) Applicants (for all designated States except US):
NOVOZYMES A/S [DK/DK]; Krogshoejvej 36,
DK-2880 Bagsværd (DK). NOVOZYMES NORTH
AMERICA, INC. [US/US]; 77 Perry Chapel Church
Road, Franklinton, NC 27525 (US). CHR. HANSEN A/S
[DK/DK]; Bøge Allé 10-12, DK-2970 Hoersholm (DK).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PATKAR, Shamkant, Amant [DK/DK]; Christoffers Allé 91, DK-2880 Lyngby (DK). HIGGINS, Don [US/US]; 4060 Ridgeway Drive, Franklinton, NC 27525 (US). FATUM, Tine, Muxoll [DK/DK]; Søvangen 50, DK-3450 Alleroed (DK). VIND, Jesper [DK/DK]; Hejrebakke 20, DK-3500 Vieløsc (DK). MADKOR, Sabry [EG/US]; 4709 Tommans Trail, Raleigh, NC 27616 (US). SØRENSEN,

(74) Common Representative: NOVOZYMES A/S; Patents, Drogshøjvej 36, DK-2880 Bagsværd (DK).

- (81) Designated States (unless otherwise indicated. for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PHOSPHOLIPASE VARIANTS

(57) Abstract: The inventors have used protein engineering to develop variants of fungal phospholipases. Starting from a parent phospholipase, they have modified the amino acid sequence to arrive at variants which have phospholipase activity (generally, at roughly the same level as the parent enzyme) and have a lower lipase activity on triglycerides than the parent enzyme.

PHOSPHOLIPASE VARIANTS

FIELD OF INVENTION

The present invention relates to a method of producing a polypeptide by modifying the amino acid sequence of a polypeptide with phospholipase activity, to a polypeptide having 5 phospholipase activity, and to use of the polypeptide in cheese-making.

BACKGROUND OF THE INVENTION

Lipolytic enzymes are polypeptides with hydrolytic activity for carboxylic ester bonds, e.g., Ilpase and/or phospholipase activity. The substrate specificity (relative activity on different ester bonds) is important for the usefulness of the lipolytic enzyme in various industrial 10 applications.

WO 00/32758 discloses lipolytic enzyme variants having altered substrate specificity. WO 98/26057 discloses a Fusarium oxysporum phospholipase. WO 01/83770 describes lipase variants. WO 00/54601 describes a process for producing cheese from cheese milk treated with a phospholipase.

15 SUMMARY OF THE INVENTION

The inventors have found that when a fungal phospholipase is used in a cheesemaking process, too high lipase activity on triglycerides may lead to a cheese product having changed properties in terms of smell and taste, possibly due to the generation of too many free fatty acids.

To overcome this, the inventors have used protein engineering to develop variants of fungal phospholipases. Starting from a parent phospholipase, they have modified the amino acid sequence to arrive at variants which have phospholipase activity (generally, at roughly the same level as the parent enzyme) and have a lower lipase activity on triglycerides than the parent enzyme. Thus, starting from a parent fungal phospholipase (a polypeptide with 25 phospholipase activity), the inventors have found that the ratio of lipase/phospholipase activity can be decreased by substituting a particular amino acid residue.

The variants are useful in the production of cheese, e.g. in a process or method as described in WO 00/54601, and they result in an increased yield and at the same time avoid the changes in taste and smell, which may result from the generation of too many free fatty 30 acids.

Accordingly, the invention provides a polypeptide which:

- a) has phospholipase activity,
- b) has an amino acid sequence which is at least 50 % identical to SEQ ID NO: 1, and

20

c) has one or more of the following amino acids at a position corresponding to SEQ ID NO: 1: D62Q/E/F/W/V/P/L/G; V60R/S/K; S85Y/T; G91R/E; R125K; V203T; V228A; T231R; N233R; L259R/V/P; a deletion D266*; and/or L269A.

The invention also provides a method of producing a polypeptide, comprising:

- a) selecting a first (parent) polypeptide which has phospholipase activity and has an amino acid sequence which is at least 50 % identical to SEQ NO: 1,
- b) modifying the amino acid sequence by substituting one or more amino acids at a position corresponding to SEQ ID NO: 1: D62Q/E/F/W/V/P/L/G; V60R/S/K; S85Y/T; G91R/E; V203T; V228A; T231R; N233R; L259R/V/P; a deletion D266*; and/or L269A, and
- c) preparing a second (modified) polypeptide having the modified amino acid sequence.

The parent polypeptide may also have lipase activity, and the method may further comprise testing the lipase and phospholipase activities of the two polypeptides and selecting a modified polypeptide having a lower lipase/phospholipase ratio than the parent polypeptide.

Further, the invention provides a polynucleotide encoding the polypeptide and a method for producing cheese, comprising the steps of:

- a) treating cheese milk or a fraction of the cheese milk with the polypeptide; and
- b) producing cheese from the cheese milk during or after step a).

BRIEF DESCRIPTION OF DRAWINGS

Figure 1 shows an alignment of amino acid sequences of known fungal lipolytic enzymes SEQ ID NO: 1 to 14, as follows:

- 1: Thermomyces lanuginosus (SWISSPROT 059952)
- 2: Fusarium oxysporum (US 6,103,505 SEQ ID NO: 2, GENESEQP AAW51767)
- 3: Absidia reflexa (US 5,821,102 SEQ ID # 10, GENESEQP AAW77403)
- 4: Absidia corymbifera (US 5,821,102 SEQ ID # 6, GENESEQP AAW26689)
- 5: Rhizomucor miehei (SWISSPROT P19515)
- 6: Rhizopus oryzae (SWISSPROT P21811)
- 7: Asperaillus niger (SWISSPROT 042807)
- 8: Aspergillus tubingensis (SWISSPROT 042815)
- 9: Fusarium heterosporum (TREMBL Q02351)
- 10: Aspergillus oryzae (TREMBL P78583)
- 11: Penicillium camemberti (SWISSPROT P25234)
- 12: Aspergillus foetidus (US 5,965,422 SEQ ID # 2, GENESEQP AAW33009)
- 13: Aspergillus niger (WO 98/31790 SEQ ID # 2, GENESEQP AAW64449)
- 35 14: Aspergillus oryzae (JP 10-155493 SEQ ID # 2, GENESEQP AAW 58541)

5

15

25

30

DETAILED DESCRIPTION OF THE INVENTION

Parent polypeptide

The polypeptide of the invention may be derived from a parent polypeptide with phospholipase activity, particularly a phospholipase A1, classified as EC 3.1.1.32 according to Enzyme Nomenclature (available at http://www.chem.qmw.ac.uk/iubmb/enzyme). It may be a naturally occurring fungal enzyme with phospholipase activity, e.g. one of SEQ ID NO: 2-14, particularly a phospholipase from *Fusarium oxysporum* which is described in WO 98/26057. Alternatively, the parent may be a fungal lipolytic enzyme variant with phospholipase activity as disclosed in WO 00/32758, e.g. a variant of SEQ ID NO: 1 as described in Example 5 of WO 00/32758.

Lipase and phospholipase activities

Lipase activity is measured by the SLU method described in <u>WO 0032758</u>, and the lipase activity of the pure protein is expressed as SLU per unit of A280 (Absorption at 280 nm).

Phospholipase activity is measured by incubating 0.025-0.07 mg enzyme protein (e.g. 0.05 mg) with cream (standardized to 25 % fat by mixing with skimmed milk) at 35 C for 1.5 hr without shaking and measuring phospholipid depletion (by lipid extraction and HPLC analysis). Phospholipase activity is expressed as % PL depletion.

The variant polypeptides of the invention typically show 15-75 % PL depletion by this method. The lipase activity is typically below 1000 SLU/A280, particularly below 500, below 250, below 100 or below 25. The PL/lipase ratio is typically above 0.05, particularly above 0.1, above 0.2, above 0.3, above 1, above 2 or above 3.

The phospholipase activity can also be determined by known methods, e.g. as described in WO 0032758, by HPLC or by phospholipid depletion in cream. Using the "monolayer phospholipase assay" described in WO 0032758, the parent and the modified polypeptide may have a phospholipase activity of at least 0.25 nmol/min at enzyme dose 60 µg and 25°C; e.g. at least 0.40 nmol/min, at least 0.75 nmol/min, at least 1.0 nmol/min, at least 1.25 nmol/min, or at least 1.5 nmol/min.

Amino acid alteration

The modified polypeptide has one or more of the following amino acids at a position corresponding to the following in SEQ ID NO: 1: D62Q/E/F/W/V/P/L/G; V60R/S/K; R84G/S; S85Y/T; G91R/E; R125K; V203T; V228A; T231R; N233R; L259R/V/P; a deletion D266*; and/or L269A. Corresponding positions in SEQ ID NO: 2-14 are defined by the alignment shown in Figure 1, e.g. position I83 of SEQ ID NO: 2. Corresponding positions in other sequences may be found by an alignment as described below.

PCT/DK2004/000426 WO 2004/111216

Compared to SEQ ID NO: 1, the polypeptide of the invention may further have one or more of the following amino acids at a position corresponding to the following in SEQ ID NO: 1: D57G, V60G/C/K/R/L/S/Q, D62H/A, S83T, R84G/S/W; G91A/V, L93K, D96W/F/G, E99K, R125K, L259S, F262L, G263Q, L264A, I265T, G266D, T267A/E and/or L269N. Also, N- and/or ⁵ C-terminus may be extended, e.g. as described in <u>WO 9704079</u>. Thus, the C-terminal may be extended by adding residues after position 269, e.g. addition of AGGFS or AGGFSWRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS. The N-terminal may br extended by the addition of amino acid residues such as SPIRR. Such C- or N-terminal extensions should not be considered, when calculating the amino acid identity with SEQ ID 10 NO: 1.

Sequences derived from SEQ ID NO: 2 may be C-terminal processed (e.g. during expression in A. oryzae), e.g. with positions 272, 273, 274 or 286 of SEQ ID NO 2 as the Cterminal residue.

The parent and modified polypeptides may be tested for lipase and phospholipase activity, and a variant polypeptide may be selected which has phospholipase activity and a lipase/phospholipase ratio which is lower than the parent polypeptide. Lipase activity can be determined by known methods using a triglyceride as substrate, e.g. as described in WO 00/32758.

Amino acid identity and alignment

The amino acid identity may be suitably determined by means of computer programs known in the art, such as GAP provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, C.D., (1970), Journal of Molecular Biology, 48, 443-45), using GAP with the following settings for polypeptide 25 sequence comparison: GAP creation penalty of 3.0 and GAP extension penalty of 0.1.

The variant polypeptide has an amino acid identity to SEQ ID NO: 1 which is at least 50%, particularly at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 98%.

To find the homologous positions in lipase sequences not shown in the alignment, the sequence of interest is aligned to the sequences shown in Figure 1. The new sequence is aligned to the present alignment in Fig. 1 by using the GAP alignment to the most homologous sequence found by the GAP program. GAP is provided in the GCG program package (Program Manual for the Wisconsin Package, Version 8, August 1994, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711) (Needleman, S.B. and Wunsch, 35 C.D., (1970), Journal of Molecular Biology, 48, 443-45). The following settings are used for

20

polypeptide sequence comparison: GAP creation penalty of 3.0 and GAP extension penalty of 0.1.

EXAMPLES

Example 1. Construction of variants having a increased phospholipase/lipase activity ratio compared to the parent enzyme.

The following variant polypeptides were constructed as described in WO 00/32758. Each polypeptide is described by the amino acid alterations compared to SEQ ID NO: 1.

Amino acid alteration in SEQ ID NO: 1
R84W +D96W +E99K +G263Q +L264A +I265T +G266D +T267A +L269N +270A
+271G +272G +273F +274S
+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
R84W +G91E +D96W +E99K +G263Q +L264A +I265T +G266D +T267A +L269N
+270A +271G +272G +273F +274S
+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
V60G +D62E +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D
+T267A +L269N
R84W +G91R +L93K +D96G +E99K +G263Q +L264A +I265T +G266D +T267A
+L269N +270A +271G +272G +273F +274S
+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
V60G +D62F +R84W +G91A +D96W +E99K +G263Q +L264A +I265T +G266D
+T267A +L269N +270A +271G +272G +273F +274S
+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
R84W +S85Y +G91A +D96W +E99K +G263Q +L264A +I265T +G266D +T267A
+L269N +270A +271G +272G +273F +274S
+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
R84W +G91A +D96W +E99K +L259V +G263Q +L264A +I265T +G266D +T267A
+L269N +270A +271G +272G +273F +274S
+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
V60G +D62W +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D
+T267A +L269N
R84W +G91R +D96F +E99K +G263Q +L264A +I265T +G266D +T267A +L269N
+270A +271G +272G +273F +274S
+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

12	V6OC +D62H +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D
	+T267A +L269N
13	V60G +D62V +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D
	+T267A +L269N
14	V60K +D62L +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D
	+T267A +L269N
15	V60R +D62L +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D
"	+T267A +L269N
	V60G +D62G +R84W +G91A +D96W +V228A +E99K +G263Q +L264A +I265T
16	+G266D +T267A +L269N +270A +271G +272G +273F +274S
	+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
	V60L +D62A +R84W +G91A +D96W +E99K +R125K +G263Q +L264A +I265T
17	+G266D +T267A +L269N +270A +271G +272G +273F +274S
	+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
	D62E +R84W +G91A +D96W +E99K +G263Q +L264A +I265T +G266D +T267A
18	+L269N +270A +271G +272G +273F +274S
	+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
19	V60S +D62L +R84W +G91A +D96F +E99K +F262L +G263Q +L264A +I265T
	+G266D +T267A +L269N
20	D57G +V60Q +D62P +R84W +G91A +D96F +E99K +G263Q +L264A +I265T
20	+G266D +T267A +L269N
	R84W +G91A +D96W +E99K +L259R +G263Q +L264A +I265T +G266D +T267A
21	+L269N +270A +271G +272G +273F +274S
	+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
	D62Q +R84W +G91A +D96W +E99K +G263Q +L264A +I265T +G266D +T267A
23	+L269N +270A +271G +272G +273F +274S
	+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
	R84W +G91A +D96W +E99K +V203T +G263Q +L264A +I265T +G266D +T267A
25	+L269N +270A +271G +272G +273F +274S
	+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS
26	R84S +S85T +G91A +D96S +T231R +N233R +L259P +G263Q +L264S +I265T
20	+G266* +T267E +L269A
t	· ·

Each of the above variant polypeptides showed a phospholipase depletion of 15-75 %, a lipase activity below 250 SLU/A280 and a PL/lipase activity above 0.1. For comparison, a

number of prior-art variants described in Example 5 of WO 0032758 were measured and were found to have a PL/lipase ratio below 0.05.

Example 2. Evaluation of cheese yield using selected variants of the invention

The following variant polypeptides from Example 1 were evaluated in a method of producing cheese with the addition of a phospholipase. The controls were without phospholipase addition.

The method was a bench top cheese yield evaluation test and was performed as described below.

- 1. Standardize 0.5 kg cheese milk w/ pasteurized skim milk and cream.
- Prepare a single starter by adding 0.1 g Rhodia LH100 and 0.3 g Rhodia TA061 starter cultures (for mozzarella) to 50 ml of the skim milk and equilibrate to 35°C w/ gentle, continuous stirring.
- 3. Equilibrate cheese milk to 35°C and add 0.07 mg enzyme protein per g fat, check initial pH and add 5 ml starter to each cheese milk with gentle agitation.
- 4. When pH reaches 6.45 6.50 add 0.5 ml of rennet (10x diluted Chymax, available from Christian Hansen); stir vigorously for three minutes then remove stirrers from milk, cover water bath and allow milk to coagulate.
- 5. Cut curd at the appropriate time (30-45 minutes) wit 25 mm (½") knives. To determine cutting time, make a downward cut into the curd with knife or spatula. The curd is ready for cutting when the cut separates upon lifting and sharp edges are maintained on the top surface at the edge of the cut. Allow the curd to rest for 5 minutes then gently and intermittently stir curd to prevent coalescence of curd particles.
- 6. Increase temperature to 41°C and hold until curd pH reaches 5.65 5.70, then drain and pour curd particles into stainless steel bowls. Float bowls in 41°C water bath to maintain curd temperature. Periodically drain excess whey, leaving only enough to cover curds for maintenance of heat.
 - 7. When curd pH ~ 5.25 5.3, drain all whey and flood curd w/ D.I. water at 57°C for 5 min. Stretch the curd by hand for ~ 1min in 59°C water, then place the curd in ice water for 15 min and dry blot. Record weight of curd and refrigerate until further analysis.

30 Results

10

Variants No. 2, 4, 5, 8, 9, 10, 16, 22 and 24 of Example 1 were tested. All the tested variants resulted in improved yield compared to the control, when calculated as moisture adjusted yield.

CLAIMS

5

- 1. A polypeptide which:
 - a) has phospholipase activity,
 - b) has an amino acid sequence which is at least 50 % identical to SEQ ID NO: 1, and
 - c) has one or more of the following amino acids at a position corresponding to SEQ ID NO: 1: D62Q/E/F/W/V/P/L/G; V60R/S/K; S85Y/T; G91R/E; R125K; V203T; V228A; T231R; N233R; L259R/V/P; a deletion D266*; and/or L269A.
- The polypeptide of claim 1, which has one or more of the following amino acids at a position corresponding to SEQ ID NO: 1: D57G, V60G/C/L/Q, D62H/A, S83T, R84G/S/W;
 G91A/V, L93K, D96W/F/G, E99K, R125K, L259S, F262L, G263Q, L264A, I265T, G266D, T267A/E and/or L269N and/or by a C-terminal extension, particularly AGGFS or AGGFSWRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS.
 - 3. The polypeptide of daim 1 or 2 which has the sequence of SEQ ID NO: 1 with one of the following sets of alterations:

R84W +D96W +E99K +G263Q +L264A +I265T +G266D +T267A +L269N +270A +271G +272G +273F +274S

+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

R84W +G91E +D96W +E99K +G263Q +L264A +I265T +G266D +T267A +L269N +270A +271G +272G +273F +274S

+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

V60G +D62E +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D +T267A +L269N

R84W +G91R +L93K +D96G +E99K +G263Q +L264A +I265T +G266D +T267A +L269N

+270A +271G +272G +273F +274S

+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

V60G +D62F +R84W +G91A +D96W +E99K +G263Q +L264A +I265T +G266D +T267A

+L269N +270A +271G +272G +273F +274S

+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

R84W +S85Y +G91A +D96W +E99K +G263Q +L264A +l265T +G266D +T267A +L269N

+270A +271G +272G +273F +274S

+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

R84W +G91A +D96W +E99K +L259V +G263Q +L264A +I265T +G266D +T267A +L269N

- +270A +271G +272G +273F +274S
- +275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

V60G +D62W +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D +T267A +L269N

R84W +G91R +D96F +E99K +G263Q +L264A +I265T +G266D +T267A +L269N +270A +271G +272G +273F +274S

+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

V6OC +D62H +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D +T267A +I.269N

V60G +D62V +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D +T267A +L269N

V60K +D62L +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D +T267A +L269N

V60R +D62L +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D +T267A +L269N

V60G +D62G +R84W +G91A +D96W +V228A +E99K +G263Q +L264A +I265T +G266D

- +T267A +L269N +270A +271G +272G +273F +274S
- +275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

V60L +D62A +R84W +G91A +D96W +E99K +R125K +G263Q +L264A +I265T +G266D

- +T267A +L269N +270A +271G +272G +273F +274S
- +275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

D62E +R84W +G91A +D96W +E99K +G263Q +L264A +I265T +G266D +T267A +L269N

- +270A +271G +272G +273F +274S
- +275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

V60S +D62L +R84W +G91A +D96F +E99K +F262L +G263Q +L264A +I265T +G266D +T267A +L269N

D57G +V60Q +D62P +R84W +G91A +D96F +E99K +G263Q +L264A +I265T +G266D +T267A +L269N

R84W +G91A +D96W +E99K +L259R +G263Q +L264A +I265T +G266D +T267A +L269N +270A +271G +272G +273F +274S

+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

D62Q +R84W +G91A +D96W +E99K +G263Q +L264A +I265T +G266D +T267A +L269N +270A +271G +272G +273F +274S

+275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

R84W +G91A +D96W +E99K +V203T +G263Q +L264A +I265T +G266D +T267A +L269N

- +270A +271G +272G +273F +274S
- +275WRRYRSAESVDKRATMTDAELEKKLNSYVQMDKEYVKNNQARS

R84S +S85T +G91A +D96S +T231R +N233R +L259P +G263Q +L264S +I265T +G266*

+T267E +L269A

- A polynucleotide encoding the polypeptide of any of claims 1-3.
- 5. A method of producing a polypeptide, comprising:
 - a) selecting a first polypeptide which has phospholipase activity and has an amino acid sequence which is at least 50 % identical to SEQ NO: 1,
- b) altering the amino acid sequence wherein the alteration comprises one or more substitutions or deletion corresponding to the following in SEQ ID NO: 1: D62Q/E/F/W/V/P/L/G; V60R/S/K; S85Y/T; G91R/E; V203T; V228A; T231R; N233R; L259R/V/P; a deletion D266*; and/or L269A, and
 - c) preparing a second polypeptide having the modified amino acid sequence.
- 10 6. The method of claim 5 wherein the selected polypeptide has lipase activity, and the method further comprises testing the lipase and phospholipase activities of the two polypeptides and selecting a second polypeptide having a lower lipase/phospholipase ratio than the first polypeptide.
 - 7. A method for producing cheese, comprising the steps of:
- a) treating cheese milk or a fraction of the cheese milk with the polypeptide of any of claims 1-3 or a polypeptide produced by the method of claim 5 or 6; and
 - b) producing cheese from the cheese milk during or after step a).

Figure 1.
Alignment of fungal lipolytic enzyme sequences

		•				
	1				50	
SEO ID NO: 1		RVSODIFNOF	NLFAOYSAAA	YCG	KNNDAPAGTN	33
~	AV	GVTTTDFSNF	KEYLOHGAAA	yc.	.nseaaagsk	33
SEQ ID NO: 2 SEQ ID NO: 3	SSSSTQDYRI	ASEARTKAHT	FYTALSANA.	YCR	TVIPG	
	.SSSTQDYRI	ASEAETKART	FYTALSANA.	YCR	TVIPG	
SEQ ID NO: 4	SIDGGIRA	ATSORTARIA	YYTTISANS.	YCR	TVIPG	
SEQ ID NO: 5	. SASDGGKVV	ANTOLOGITORE	TKYAGIAATA	YCR	SVVPG	
SEQ ID NO: 6	TAGQAL	AATTAGEGE	DI.VNRI. VEM	ATISOAAYAD	LCNIPST	
SEQ ID NO: 7	TAGHAL	AASIQ.CICE	DIVSRI, VEM	ATTSOAAYAD	LCNIPST	
SEQ ID NO: 8	IAGHAD	THE ICOUPLY	RFYLQHADAA	YC.	.NFNTAVGKP	
SEQ ID NO: 9		DIPTOLEDE	KFWVQYAAAT	YCP	NNYVAKDGEK	
SEQ ID NO: 10		חוופייפון חוד	BFWVQYAAAS	YYR	ADYTAOVGDK	
SEQ ID NO: 11		CASISTINAT	QLFAQWSAAA	YCS	NNID.SKDSN	
SEQ ID NO: 12		CUCTETION.	QLFSQWSAAA	YCS	NNTD. SDDSN	
SEQ ID NO: 13	• • • • • • • • • •	DUCCCI.IMMI.	DLPAQYSAAA	YCD	ENLN STGTK	
SEQ ID NO: 14		DASSEDWER	DELAGIONALI			
					100	
	51 ITCTGNACPE	ע.זישייארו אינימיני	פשש הפמומה	WTCFI.AI.DNT		82
SEQ ID NO: 1	ITCIGNACPE	VECHUATEUI	CE VECKTE	TECTATATA	RKETVVSFRG	81
SEQ ID NO: 2	GRWSCPHCGV	A MI VILLA	שמפת דינות	TMULVAUGRK	EKTTYVVPRG	-
SEQ ID NO: 3	GRWSCPHCGV	ASNLQIIN	עדבנייים עיים או	TINVELVATIONAL TINVELVATIONAL	EKTIVVVERG	
SEQ ID NO: 4	ATWDCIHCDA	APNUNIIK	TriiLil	THATAMILY DGDG	EKTIVIVERG	
SEQ ID NO: 5	NKWDCVQCQK	TE. DEKIIK	TWSILILID	THATANGUS	OKTIVIAG	
SEQ ID NO: 6	NKWDCVQCQK	WVP.DGKIII	GEKIYNAQTD	TMGI VIRBUR	CKETTTVFRG	
SEQ ID NO: 7			GEKIYNSQTD	TMGWIIADDI	SKRITTVFRG	
SEQ ID NO: 8	VHCSAGNCPD	IIK	GEVIINSÕID	TAGMITIKDDS	DKETIVISVEG	
SEQ ID NO: 9	LNCSVGNCPD	1EKDAAIVVG	SVVGIRIG	TOWLANDING	MKVIMVALDG	
SEQ ID NO: 10	LNCSVGNCPD	VEAAGSTVKL	SES. DUILIU	TAGE AWADMI	NCATA ALLO	
SEQ ID NO: 11	LSCSKGNCPE	VEATGATVSY	DES.DSILID	TAGILAVDAI	MADI VALVE LEGI	
SEQ ID NO: 12	LTCTANACPS	VEKASTIMLL	REDUINDE GG	TAGE DAADNI	NKKHVVAPRO	
SEQ ID NO: 13	VTCTADACPS	VERASTRMLL	EFDLINNEGG	TAGEDAADNI	MKKIIV VAERG	
SEQ ID NO: 14	LTCSVGNCPL	VEAASTQSLD	Frnesssion	PAGILIANDEI	DATEMANA	
					150	
	101 SRSIENWIGN	TATEOT POTATO	T CCCCDCU	павтесивеи		130
SEQ ID NO: 1	SINIRNWLTN	TIME DISKETING	I Vegeau	CCEODAMNET	SSOATAAVAS	128
SEQ ID NO: 2	TSSIRNAIAD	TURG. QEDCS	D. VEGCAMI	KGET-DGAMEA	ODKIWARVKA	
SEQ ID NO: 3	TSSIRNALAD	TALABADAMIES	V MGAKVH	KGELDSYNEV	ODKTVABVKA	
SEQ ID NO: 4	TSSIRNAIAD	TALALANIEL	VSGTKVH	KCHI DSYCKV	ONRIVATVID	
SEQ ID NO: 5	SSSIRNWIAD	TILARADIEL	VKGAKVH	AGRI-SSYEOV	VNDYFPVVOE	
SEQ ID NO: 6	INSTRUMIT OF D	TATACATAC	PEOCNDCRAH	GGYYTGWTSV	ODOVESLVKO	
SEQ ID NO: 7	TGSDINLOID	TIVE TO LEED T	LPQCNSCEVH	GGYVTGWTSV	ODOVESTACO	
SEQ ID NO: 8	TGSDINGCOD	INTIDIFEDI	LVAGCGVH	TGFT.DAWREV	AANVKAAVSA	
SEQ ID NO: 9	PIMAKMATIN	ממשת משתה	LCDGCKAE	TGFWTAWKVV	RDRIIKTLDE	
SEQ ID NO: 10	SISTEMMAIN	ATTY UTWO	LCDGCLAB	T.GEWSSWKT.V	RDDITKELKE	
SEQ ID NO: 11	SISVENWVAD	ATEATURE	LCTGCKVH	TGFWKAWESA	ADELTSKIKS	
SEQ ID NO: 12	SSTIENWIAN	PDSITUDD	LCTGCKVH	TCTWICENEAR	ADNITSKIKS	
SEQ ID NO: 13	SSTIKNWIAD	TIDE TO COMPO	LCSGCEVH	SCRWKAWSET	ADTITSKVES	
SEQ ID NO: 14	SADLANWVAN	TIME GUBDASD	D CDGCHVII	DOI WILLIAM		
	151				200	
SEO ID NO: 1	AABEHDUADZ 707	VETCHSLGGA	LATVAGADLR	GNGYD	IDVFSYGAPR	175
SEQ ID NO: 2	VEKTMDCEM!	TSTGHSLGGA	VAVLAAANLR	VGGTP	VDIYTYGSPR	173
SEQ ID NO: 2	UNDERDGAKI	VVTGHSLGGA	TAVLSALDLY	HHGHAN	IBIYTQGQPR	
SEQ ID NO: 4	OI DEHEGAKI	VVTGHSLGGA	TAVLSALDLY	HHGHDN	IEIYTQGQPR	
SEQ ID NO: 5	OBKOADGAKA	AVTGHSLGGA	TALLCALDLY	QREEGLSSSN	LFLYTQGQPR	
SEQ ID NO: 6	UI'APHDAAK!	IVTGHSLGGA	OALLAGMDLY	QREPRLSPKN	LSIFTVGGPR	
SEQ ID NO: 7	OASOVPDYAT	TVTGHSLGAS	MAALTAAOL.	SATYDN	VRLYTFGEPR	
SEO ID NO: 8	OVSORPDYAT	TVTGHSLGAS	LAALTAAOL.	SATYDN	IRLYTFGEPR	
SEQ ID NO: 9	AKTANDTEKT	VVIGHSLGGA	VATIAAAYLR	KDGFP	FDLYTYGSPR	
SEQ ID NO: 10	I'KDERGUAKI WITHE INVE	AAAGHSIUV	IASLAAADLR	TKNYD	AILYAYAAPR	
PEG IN MO: IA	THE THUMEN	campaone			,	

							•	
Fig. 1	cont	Ξ.						
		• •	VVAQNPNYEL	AAD, IPHOWAY	VATLAATDLR	GKGYPS	AKLYAYASPR	
SEQ ID		2.2	MOTVECVIII.	VETCHSLGGA	LATICATVLR	NDGYS	ARPITICCAK	
SEQ ID			AMOTVOCVIII.	VETCHSLGGA	LATLGATVLR	NDGYS	VELYTYGCPR	
SEQ ID			ALSDHSDYSL	VIJGHSYGAA	LAALAATALR	NSGHS	VELYNYGQPR	
SEQ ID	NO:	14	AUSDIEDIE	7,210,101				
			201				250	
SEO ID	MO.	7	TONDA PAPRI.	TVOT	GGTLYRITHT	NDIVPRLPPR	EFGYSHSSPE	219
SEQ ID			TONIACT SAFV	SNO	AGGEYRVTHA	DDbabkpbp	IFGYRHTTPE	216
SEQ ID			TOWDATANVU	TGT	KTPYORLVHE	RDIVPHLPPG	APGFLHAGES	
SEQ ID			TOTOFFANYV	TGT	KIPYORLVNE	RDIVPHLPPG	Afgflhages	
SEQ ID			WEDDAFANYV	VST	GIPYRRTVNE	KDI ABHPBB	AFGFLHAGBB	
SEQ ID			VCNIDTRAVVV	EST	GIPFORTVHK	RDIVPHVPPQ	SECELHPGVE	
SEQ ID			SCNOD FASYM	NDAFOVSSPB	TTOYFRVTHS	NDGIPNLPPA	DEGYAHGGVE	
SEO ID			C MONENCYM	MDAFOASSPD	TTOYFRVTHA	NDGIPNLPPA	DEGYAHGVVK	
SEQ ID			WANDEFANEV	TOO	TGAEYRVTHG	DDPVPRLPPI	ALGAEHIZER	
SEQ II			WANKDI.ARFT	TNO	.GNNYRFTHN	DDPVPKLPLL	TMGYVHISPE	
SEQ II			WIND AT AKYT	TAO	.GNNFRFTHT	NDPVPKLPLL	SMGYVHVSPE	
SEQ II			TCMVALAEHI	TSOG	SGANFRVTHL	NDIVPRVPPM	DEGESOPSER	
SEQ II			MONVALARHI	TSOG	SGANFPVTHL	NDIVPRVPPM	DFGFSQPSPE	
SEQ II			LGNEALATYI	TDQN	KGGNYRVTHT	NDIVPKLPPT	LLGYHHFSPB	
<u>-</u>								•
			251				300	0.50
SEQ II	NO:	1	YWIKSGTL	VPVTRNDIVK	IEGIDATG.G	NNQPNIP	DIPAHLWYF.	262
SEQ II			FWLSGGGGDK	VDYTISDVKV	CEGAANLG.C	NGGTLGL	DIAAHLHYF.	261
SEQ II			FWIMK	DSSLRV	CPNGIETDNC	SNSIVPFT	SAIDHFRATO	
SEQ II			FWIMK	DSSLRV	CPNGIETDNC	SNSIVPFT	SVIDHLSYLD	
SEQ II			YWITD	nspetvqv	CTSDLETSDC	SNSIVPFT	SVLUHLSIFG	
SEQ II			SWIKS	GTSNVQI	CTSEIETKDC	SNSIVPFT	SILDHLSYFD	
SEQ II	OM C	7	YWSVDP	YSAQNTFVCT	GDEVQCCE.A	QGGQGVN	DATILIE.	
SEQ II			YWSVDP	YSAQNTFVCT	GDEVQCCE.A	VCCTTCT	מעיידנוגווו.	
SEQ II			YWLNG.GPLD	KDYTVIEIKV	CEGIANVM.C	NGGIIGE	T.T.V.BRGRAMA	
SEQ II			YYITAPDN	TTVTDNQVTV	DOIVNER.G	MIGISGOLED	LLAFHSHVWY	
SEQ II			YWITSPNN	ATVSTSDIKV	IDGDVSFD.G IEGINSTA.G	MIGIGUEDUI	DIEAHIWII.	
SEQ I			YWITSGNG	ASVTASDIEV	IEGINSTA.G	MAGGAIV	DVI.AHI.WYF.	
SEQ I			YWITSGIG	ASVIASDIBL	VTGIDATG.G	NDGTDGT	STDAHRWYF.	
SEQ I	ONO:	14	YYISSADE	ATVITIDVIE	VIGIDAIG	ADGIDEI	D 2.2.2	
							350	
			301					269
SEQ I			GLIGT.CL					286
SEQ I			QATDA. CNAG	Grs				
SEQ I		_	MNTGL.CL					
SEQ I			MNTGL.CL					
SEQ I			INTGE.CI					
SEQ I			TNEGS.CD					
SEQ I			GMTSGACTW.					
SEQ I			OGMAT CAD	TATPWKR				
SEQ I SEQ I			APPERT - CHE	GLPLR				
SEQ I			AUADAGKGD	LPFKR				
SEQ I			FAISE CLL					
SEQ I			FAISE.CLL					
SEQ I	טאע סאד ה	. 11	TYISE CS.					
SEQ I	טא ע	. 17	TITUE: CO.					

PCT/DK2004/000426

10356-WO.ST25 SEQUENCE LISTING

<110> Novozymes A/S <120> Lipolytic enzyme variants <130> 10470-WO <160> <170> PatentIn version 3.2 <210> 269 <211> <212> PRT Thermomyces lanuginosus <213> Glu Val Ser Gln Asp Leu Phe Asn Gln Phe Asn Leu Phe Ala Gln Tyr
1 10 15 Ser Ala Ala Tyr Cys Gly Lys Asn Asn Asp Ala Pro Ala Gly Thr Asn Ile Thr Cys Thr Gly Asn Ala Cys Pro Glu Val Glu Lys Ala Asp 35 40 45 Ala Thr Phe Leu Tyr Ser Phe Glu Asp Ser Gly Val Gly Asp Val Thr 50 60 Gly Phe Leu Ala Leu Asp Asn Thr Asn Lys Leu Ile Val Leu Ser Phe 65 70 75 80 Arg Gly Ser Arg Ser Ile Glu Asn Trp Ile Gly Asn Leu Asn Phe Asp 85 90 95 Leu Lys Glu Ile Asn Asp Ile Cys Ser Gly Cys Arg Gly His Asp Gly 100 105 Phe Thr Ser Ser Trp Arg Ser Val Ala Asp Thr Leu Arg Gln Lys Val 115 120 125 Glu Asp Ala Val Arg Glu His Pro Asp Tyr Arg Val Val Phe Thr Gly
130 135 140 His Ser Leu Gly Gly Ala Leu Ala Thr Val Ala Gly Ala Asp Leu Arg 145 150 160 Gly Asn Gly Tyr Asp Ile Asp Val Phe Ser Tyr Gly Ala Pro Arg Val 165 170 175 Gly Asn Arg Ala Phe Ala Glu Phe Leu Thr Val Gln Thr Gly Gly Thr 180 185 190

Leu Tyr Arg Ile Thr His Thr Asn Asp Ile Val Pro Arg Leu Pro Pro Page 1 10356-W0.ST25 195 200

Arg Glu Phe Gly Tyr Ser His Ser Ser Pro Glu Tyr Trp Ile Lys Ser 210 220

Gly Thr Leu Val Pro Val Thr Arg Asn Asp Ile Val Lys Ile Glu Gly 225 230 235 240

lle Asp Ala Thr Gly Gly Asn Asn Gln Pro Asn Ile Pro Asp Ile Pro 255

Ala His Leu Trp Tyr Phe Gly Leu Ile Gly Thr Cys Leu 260 265

<210> 2

<211> 286

<212> PRT <213> Fusarium oxysporum

<400> 2

Ala val Gly Val Thr Thr Asp Phe Ser Asn Phe Lys Phe Tyr Ile 1 5 10

Gln His Gly Ala Ala Ala Tyr Cys Asn Ser Glu Ala Ala Ala Gly Ser 20 25 30

Lys Ile Thr Cys Ser Asn Asn Gly Cys Pro Thr Val Gln Gly Asn Gly 45

Ala Thr Ile Val Thr Ser Phe Val Gly Ser Lys Thr Gly Ile Gly Gly 50 60

Tyr Val Ala Thr Asp Ser Ala Arg Lys Glu Ile Val Val Ser Phe Arg 65 70 75 80

Gly Ser Ile Asn Ile Arg Asn Trp Leu Thr Asn Leu Asp Phe Gly Gln 85 90 95

Glu Asp Cys Ser Leu Val Ser Gly Cys Gly Val His Ser Gly Phe Gln 100 105 110

Arg Ala Trp Asn Glu Ile Ser Ser Gln Ala Thr Ala Ala Val Ala Ser 115 120 125

Ala Arg Lys Ala Asn Pro Ser Phe Asn Val Ile Ser Thr Gly His Ser 130 135 140

Leu Gly Gly Ala Val Ala Val Leu Ala Ala Asn Leu Arg Val Gly 155 150 160

Gly Thr Pro Val Asp Ile Tyr Thr Tyr Gly Ser Pro Arg Val Gly Asn 165 170 175 Page 2

Ala Gln Leu Ser Ala Phe Val Ser Asn Gln Ala Gly Gly Glu Tyr Arg 180 185 190 val Thr His Ala Asp Asp Pro Val Pro Arg Leu Pro Pro Leu Ile Phe 195 200 205 Gly Tyr Arg His Thr Thr Pro Glu Phe Trp Leu Ser Gly Gly Gly Gly 210 215 Asp Lys Val Asp Tyr Thr Ile Ser Asp Val Lys Val Cys Glu Gly Ala 225 230 235 240 Ala Asn Leu Gly Cys Asn Gly Gly Thr Leu Gly Leu Asp Ile Ala Ala 245 255 His Leu His Tyr Phe Gln Ala Thr Asp Ala Cys Asn Ala Gly Gly Phe 260 265 270 Ser Trp Arg Arg Tyr Arg Ser Ala Glu Ser Val Asp Lys Arg 275 280 285

<210> <211> <212> 3 265

Absidia reflexa

<400>

Ser Ser Ser Ser Thr Gln Asp Tyr Arg Ile Ala Ser Glu Ala Glu Ile 10 15

Lys Ala His Thr Phe Tyr Thr Ala Leu Ser Ala Asn Ala Tyr Cys Arg 20 25 30

Thr Val Ile Pro Gly Gly Arg Trp Ser Cys Pro His Cys Gly Val Ala 35 40

Ser Asn Leu Gln Ile Thr Lys Thr Phe Ser Thr Leu Ile Thr Asp Thr 50 60

Asn Val Leu Val Ala Val Gly Glu Lys Glu Lys Thr Ile Tyr Val Val 65 70 75 80

Phe Arg Gly Thr Ser Ser Ile Arg Asn Ala Ile Ala Asp Ile Val Phe 85 90 95

Val Pro Val Asn Tyr Pro Pro Val Asn Gly Ala Lys Val His Lys Gly 100 105 110

Phe Leu Asp Ser Tyr Asn Glu Val Gln Asp Lys Leu Val Ala Glu Val 115 120 125

Page 3

Lys Ala Gln Leu Asp Arg His Pro Gly Tyr Lys Ile Val Val Thr Gly 130 135 140

His Ser Leu Gly Gly Ala Thr Ala Val Leu Ser Ala Leu Asp Leu Tyr 145 150 160

His His Gly His Ala Asn Ile Glu Ile Tyr Thr Gln Gly Gln Pro Arg 165 170 175

Ile Gly Thr Pro Ala Phe Ala Asn Tyr Val Ile Gly Thr Lys Ile Pro 180 185 190

Tyr Gln Arg Leu Val His Glu Arg Asp Ile Val Pro His Leu Pro Pro 195 200 205

Gly Ala Phe Gly Phe Leu His Ala Gly Glu Glu Phe Trp Ile Met Lys 210 220

Asp Ser Ser Leu Arg Val Cys Pro Asn Gly Ile Glu Thr Asp Asn Cys 225 230 235

Ser Asn Ser Ile Val Pro Phe Thr Ser Val Ile Asp His Leu Ser Tyr 245 250 255

Leu Asp Met Asn Thr Gly Leu Cys Leu 260 265

<210> 4

<211> 264

<212> PRT

<213> Absidia corymbifera

<400> 4

Ser Ser Ser Thr Gln Asp Tyr Arg Ile Ala Ser Glu Ala Glu Ile Lys 1 10 15

Ala His Thr Phe Tyr Thr Ala Leu Ser Ala Asn Ala Tyr Cys Arg Thr 20 25 30

Val Ile Pro Gly Gly Gln Trp Ser Cys Pro His Cys Asp Val Ala Pro 35 40 45

Asn Leu Asn Ile Thr Lys Thr Phe Thr Thr Leu Ile Thr Asp Thr Asn 50 60

Val Leu Val Ala Val Gly Glu Asn Glu Lys Thr Ile Tyr Val Val Phe 65 70 80

Arg Gly Thr Ser Ser Ile Arg Asn Ala Ile Ala Asp Ile Val Phe Val 85 90 95

Page 4

Pro Val Asn Tyr Pro Pro Val Asn Gly Ala Lys Val His Lys Gly Phe 100 105 110

Leu Asp Ser Tyr Asn Glu Val Gln Asp Lys Leu Val Ala Glu Val Lys 115 120 125

Ala Gln Leu Asp Arg His Pro Gly Tyr Lys Ile Val Val Thr Gly His 130 140

Ser Leu Gly Gly Ala Thr Ala Val Leu Ser Ala Leu Asp Leu Tyr His 145 150 160

His Gly His Asp Asn Ile Glu Ile Tyr Thr Gln Gly Gln Pro Arg Ile 165 170 175

Gly Thr Pro Glu Phe Ala Asn Tyr Val Ile Gly Thr Lys Ile Pro Tyr 180 185

Gln Arg Leu Val Asn Glu Arg Asp Ile Val Pro His Leu Pro Pro Gly 195 200 205

Ala Phe Gly Phe Leu His Ala Gly Glu Glu Phe Trp Ile Met Lys Asp 210 220

Ser Ser Leu Arg Val Cys Pro Asn Gly Ile Glu Thr Asp Asn Cys Ser 225 230 235

Asn Ser Ile Val Pro Phe Thr Ser Val Ile Asp His Leu Ser Tyr Leu 245 250 255

Asp Met Asn Thr Gly Leu Cys Leu

<210> 5

<211> 269 <212> PRT

<213> Rhizomucor miehei

<400> 5

Ser Ile Asp Gly Gly Ile Arg Ala Ala Thr Ser Gln Glu Ile Asn Glu
1 10 15

Leu Thr Tyr Tyr Thr Thr Leu Ser Ala Asn Ser Tyr Cys Arg Thr Val 20 25 30

Ile Pro Gly Ala Thr Trp Asp Cys Ile His Cys Asp Ala Thr Glu Asp 45

Leu Lys Ile Ile Lys Thr Trp Ser Thr Leu Ile Tyr Asp Thr Asn Ala 50 60

Met Val Ala Arg Gly Asp Ser Glu Lys Thr Ile Tyr Ile Val Phe Arg Page 5

80

70

10356-wo.sT25 75

65

Gly Ser Ser Ser Ile Arg Asn Trp Ile Ala Asp Leu Thr Phe Val Pro 90 95

Val Ser Tyr Pro Pro Val Ser Gly Thr Lys Val His Lys Gly Phe Leu $100 \hspace{1cm} 105 \hspace{1cm} 110$

Asp Ser Tyr Gly Glu Val Gln Asn Glu Leu Val Ala Thr Val Leu Asp 115 120 125

Gln Phe Lys Gln Tyr Pro Ser Tyr Lys Val Ala Val Thr Gly His Ser 130 140

Leu Gly Gly Ala Thr Ala Leu Leu Cys Ala Leu Asp Leu Tyr Gln Arg 145 150 160

Glu Glu Gly Leu Ser Ser Ser Asn Leu Phe Leu Tyr Thr Gln Gly Gln
165 170 175

Pro Arg Val Gly Asp Pro Ala Phe Ala Asn Tyr Val Val Ser Thr Gly 180 185 190

Ile Pro Tyr Arg Arg Thr Val Asn Glu Arg Asp Ile Val Pro His Leu
195 200 205

Pro Pro Ala Ala Phe Gly Phe Leu His Ala Gly Glu Glu Tyr Trp Ile 210 215 220

Thr Asp Asn Ser Pro Glu Thr Val Gln Val Cys Thr Ser Asp Leu Glu 225 230 235 240

Thr Ser Asp Cys Ser Asn Ser Ile Val Pro Phe Thr Ser Val Leu Asp 250 255

His Leu Ser Tyr Phe Gly Ile Asn Thr Gly Leu Cys Thr 260 265

<210> 6

<211> 271

<213> Rhizopus oryzae

<400> 6

Ser Ala Ser Asp Gly Gly Lys Val Val Ala Ala Thr Thr Ala Gln Ile 1 10 15

Gln Glu Phe Thr Lys Tyr Ala Gly Ile Ala Ala Thr Ala Tyr Cys Arg 20 25 30

Ser Val Val Pro Gly Asn Lys Trp Asp Cys Val Gln Cys Gln Lys Trp 35 40 45 Page 6

Val Pro Asp Gly Lys Ile Ile Thr Thr Phe Thr Ser Leu Leu Ser Asp 50 60 Thr Asn Gly Tyr Val Leu Arg Ser Asp Lys Gln Lys Thr Ile Tyr Leu 65 70 75 80 Val Phe Arg Gly Thr Asn Ser Phe Arg Ser Ala Ile Thr Asp Ile Val 85 90 95 Phe Asn Phe Ser Asp Tyr Lys Pro Val Lys Gly Ala Lys Val His Ala 100 105 110 Gly Phe Leu Ser Ser Tyr Glu Gln Val Val Asn Asp Tyr Phe Pro Val Val Gln Glu Gln Leu Thr Ala His Pro Thr Tyr Lys Val Ile Val Thr 130 140 Gly His Ser Leu Gly Gly Ala Gln Ala Leu Leu Ala Gly Met Asp Leu 145 150 155 160 Tyr Gln Arg Glu Pro Arg Leu Ser Pro Lys Asn Leu Ser Ile Phe Thr 165 170 175 Val Gly Gly Pro Arg Val Gly Asn Pro Thr Phe Ala Tyr Tyr Val Glu 185 190 Ser Thr Gly Ile Pro Phe Gln Arg Thr Val His Lys Arg Asp Ile Val Pro His Val Pro Pro Gln Ser Phe Gly Phe Leu His Pro Gly Val Glu 210 215 220 Ser Trp Ile Lys Ser Gly Thr Ser Asn Val Gln Ile Cys Thr Ser Glu 225 230 235 240 Ile Glu Thr Lys Asp Cys Ser Asn Ser Ile Val Pro Phe Thr Ser Ile 250 255 Leu Asp His Leu Ser Tyr Phe Asp Ile Asn Glu Gly Ser Cys Leu 260 265 270

Thr Ala Gly Gln Ala Leu Ala Ala Ser Thr Gln Gly Ile Ser Glu Asp
1 10 15

Page 7

<210> <211> 267

Aspergillus niger <213>

<400>

Leu Tyr Asn Arg Leu Val Glu Met Ala Thr Ile Ser Gln Ala Ala Tyr 20 25 30

Ala Asp Leu Cys Asn Ile Pro Ser Thr Ile Ile Lys Gly Glu Lys Ile 35 40 45

Tyr Asn Ala Gln Thr Asp Ile Asn Gly Trp Ile Leu Arg Asp Asp Thr 50 60

Ser Lys Glu Ile Ile Thr Val Phe Arg Gly Thr Gly Ser Asp Thr Asn 65 70 75

Leu Gln Leu Asp Thr Asn Tyr Thr Leu Thr Pro Phe Asp Thr Leu Pro 85 90 95

Gln Cys Asn Asp Cys Glu Val His Gly Gly Tyr Tyr Ile Gly Trp Ile 100 105 110

Ser Val Gln Asp Gln Val Glu Ser Leu Val Lys Gln Gln Ala Ser Gln 115 120 125

Tyr Pro Asp Tyr Ala Leu Thr Val Thr Gly His Ser Leu Gly Ala Ser 130 135 140

Met Ala Ala Leu Thr Ala Ala Gln Leu Ser Ala Thr Tyr Asp Asn Val 145 150 160

Arg Leu Tyr Thr Phe Gly Glu Pro Arg Ser Gly Asn Gln Ala Phe Ala 165 170 175

Ser Tyr Met Asn Asp Ala Phe Gln Val Ser Ser Pro Glu Thr Thr Gln 180 185 190

Tyr Phe Arg Val Thr His Ser Asn Asp Gly Ile Pro Asn Leu Pro Pro 195 200 205

Ala Asp Glu Gly Tyr Ala His Gly Gly Val Glu Tyr Trp Ser Val Asp 210 215 220

Pro Tyr Ser Ala Gln Asn Thr Phe Val Cys Thr Gly Asp Glu Val Gln 225 230 235 240

Cys Cys Glu Ala Gln Gly Gly Gln Gly Val Asn Asp Ala His Thr Thr 245 250 255

Tyr Phe Gly Met Thr Ser Gly Ala Cys Thr Trp 260 265

PRT Page 8

<210> 8 <211> 266

<213> Aspergillus tubingensis

<400> 8

Thr Ala Gly His Ala Leu Ala Ala Ser Thr Gln Gly Ile Ser Glu Asp 1 10 15

Leu Tyr Ser Arg Leu Val Glu Met Ala Thr Ile Ser Gln Ala Ala Tyr 20 25 30

Ala Asp Leu Cys Asn Ile Pro Ser Thr Ile Ile Lys Gly Glu Lys Ile 35 40 45

Tyr Asn Ser Gln Thr Asp Ile Asn Gly Trp Ile Leu Arg Asp Asp Ser 50 60

Ser Lys Glu Ile Ile Thr Val Phe Arg Gly Thr Gly Ser Asp Thr Asn 65 70 75

Leu Gln Leu Asp Thr Asn Tyr Thr Leu Thr Pro Phe Asp Thr Leu Pro 90 95

Gln Cys Asn Ser Cys Glu Val His Gly Gly Tyr Tyr Ile Gly Trp Ile 100 105 110

Ser Val Gln Asp Gln Val Glu Ser Leu Val Gln Gln Gln Val Ser Gln 115 120 125

Phe Pro Asp Tyr Ala Leu Thr Val Thr Gly His Ser Leu Gly Ala Ser 130 135 140

Leu Ala Ala Leu Thr Ala Ala Gln Leu Ser Ala Thr Tyr Asp Asn Ile 145 150 160

Arg Leu Tyr Thr Phe Gly Glu Pro Arg Ser Asn Gln Ala Phe Ala Ser 165 170 175

Tyr Met Asn Asp Ala Phe Gln Ala Ser Ser Pro Asp Thr Thr Gln Tyr 180 185 190

Phe Arg Val Thr His Ala Asn Asp Gly Ile Pro Asn Leu Pro Pro Ala 195 200 205

Asp Glu Gly Tyr Ala His Gly Val Val Glu Tyr Trp Ser Val Asp Pro 210 220

Tyr Ser Ala Gln Asn Thr Phe Val Cys Thr Gly Asp Glu Val Gln Cys 225 230 240

Cys Glu Ala Gln Gly Gln Gly Val Asn Asn Ala His Thr Thr Tyr 245 255

10356-wo.ST25

Phe Gly Met Thr Ser Gly His Cys Thr Trp
260 265

<210> 9 <211> 273

<212> PRT

<213> Fusarium heterosporum

<400> 9

Thr Val Thr Thr Gln Asp Leu Ser Asn Phe Arg Phe Tyr Leu Gln His 1 5 10 15

Ala Asp Ala Ala Tyr Cys Asn Phe Asn Thr Ala Val Gly Lys Pro Val 20 25 30

His Cys Ser Ala Gly Asn Cys Pro Asp Ile Glu Lys Asp Ala Ala Ile 35 40 45

val val Gly Ser val val Gly Thr Lys Thr Gly Ile Gly Ala Tyr val 50 60

Ala Thr Asp Asn Ala Arg Lys Glu Ile Val Val Ser Val Arg Gly Ser 65 70 75 80

Ile Asn Val Arg Asn Trp Ile Thr Asn Phe Asn Phe Gly Gln Lys Thr 85 90 95

Cys Asp Leu Val Ala Gly Cys Gly Val His Thr Gly Phe Leu Asp Ala 100 105 110

Trp Glu Glu Val Ala Ala Asn Val Lys Ala Ala Val Ser Ala Ala Lys 115 120 125

Thr Ala Asn Pro Thr Phe Lys Phe Val Val Thr Gly His Ser Leu Gly 130 135

Gly Ala Val Ala Thr Ile Ala Ala Ala Tyr Leu Arg Lys Asp Gly Phe 145 150 155 160

Pro Phe Asp Leu Tyr Thr Tyr Gly Ser Pro Arg Val Gly Asn Asp Phe 165 170 175

Phe Ala Asn Phe Val Thr Gln Gln Thr Gly Ala Glu Tyr Arg Val Thr 180 185 190

His Gly Asp Asp Pro Val Pro Arg Leu Pro Pro Ile Val Phe Gly Tyr 195 200 205

Arg His Thr Ser Pro Glu Tyr Trp Leu Asn Gly Gly Pro Leu Asp Lys 210 215 220

Asp Tyr Thr Val Thr Glu Ile Lys Val Cys Glu Gly Ile Ala Asn Val Page 10

240

230

10356-WO.ST25 235

Met Cys Asn Gly Gly Thr Ile Gly Leu Asp Ile Leu Ala His Ile Thr 245 250 255

Tyr Phe Gln Ser Met Ala Thr Cys Ala Pro Ile Ala Ile Pro Trp Lys 260 265 270

Arg

225

<210> 10

<211> 278 <212> PRT

<213> Aspergillus oryzae

<400> 10

Asp Ile Pro Thr Thr Gln Leu Glu Asp Phe Lys Phe Trp Val Gln Tyr 1 5 10 15

Ala Ala Ala Thr Tyr Cys Pro Asn Asn Tyr Val Ala Lys Asp Gly Glu
20 25 30

Lys Leu Asn Cys Ser Val Gly Asn Cys Pro Asp Val Glu Ala Ala Gly
35 40 45

Ser Thr Val Lys Leu Ser Phe Ser Asp Asp Thr Ile Thr Asp Thr Ala 50

Gly Phe Val Ala Val Asp Asn Thr Asn Lys Ala Ile Val Val Ala Phe 65 70 75 80

Arg Gly Ser Tyr Ser Ile Arg Asn Trp Val Thr Asp Ala Thr Phe Pro 85 90 95

Gln Thr Asp Pro Gly Leu Cys Asp Gly Cys Lys Ala Glu Leu Gly Phe 100 105 110

Trp Thr Ala Trp Lys Val Val Arg Asp Arg Ile Ile Lys Thr Leu Asp 115 120 125

Glu Leu Lys Pro Glu His Ser Asp Tyr Lys Ile Val Val Gly His 130 135 140

Ser Leu Gly Ala Ala Ile Ala Ser Leu Ala Ala Ala Asp Leu Arg Thr 145 150 155 160

Lys Asn Tyr Asp Ala Ile Leu Tyr Ala Tyr Ala Ala Pro Arg Val Ala 165 170 175

Asn Lys Pro Leu Ala Glu Phe Ile Thr Asn Gln Gly Asn Asn Tyr Arg 180 185 190 Page 11

Phe Thr His Asn Asp Asp Pro Val Pro Lys Leu Pro Leu Leu Thr Met 195 200 205

Gly Tyr Val His Ile Ser Pro Glu Tyr Tyr Ile Thr Ala Pro Asp Asn 210 220

Thr Thr Val Thr Asp Asn Gln Val Thr Val Leu Asp Gly Tyr Val Asn 225 230 235 240

Phe Lys Gly Asn Thr Gly Thr Ser Gly Gly Leu Pro Asp Leu Leu Ala 245 250 255

Phe His Ser His Val Trp Tyr Phe Ile His Ala Asp Ala Cys Lys Gly 260 265 270

Pro Gly Leu Pro Leu Arg

<210> 11

<211> 278

<212> PRT

<213> Penicillium camemberti

<400> 11

Asp Val Ser Thr Ser Glu Leu Asp Gln Phe Glu Phe Trp Val Gln Tyr
1 10 15

Ala Ala Ser Tyr Tyr Glu Ala Asp Tyr Thr Ala Gl
n Val Gly Asp 20 25 30

Lys Leu Ser Cys Ser Lys Gly Asn Cys Pro Glu Val Glu Ala Thr Gly 35 40 45

Ala Thr Val Ser Tyr Asp Phe Ser Asp Ser Thr Ile Thr Asp Thr Ala 50 60

Gly Tyr Ile Ala Val Asp His Thr Asn Ser Ala Val Val Leu Ala Phe 70 75 80

Arg Gly Ser Tyr Ser Val Arg Asn Trp Val Ala Asp Ala Thr Phe Val 85 90 95

His Thr Asn Pro Gly Leu Cys Asp Gly Cys Leu Ala Glu Leu Gly Phe $100 \,\,$ $\,\,$ $110 \,\,$

Trp Ser Ser Trp Lys Leu Val Arg Asp Asp Ile Ile Lys Glu Leu Lys 115 120 125

Glu Val Val Ala Gln Asn Pro Asn Tyr Glu Leu Val Val Val Gly His
130 140

Page 12

Ser Leu Gly Ala Ala Val Ala Thr Leu Ala Ala Thr Asp Leu Arg Gly 145 150 150 160

Lys Gly Tyr Pro Ser Ala Lys Leu Tyr Ala Tyr Ala Ser Pro Arg Val 165 170 175

Gly Asn Ala Ala Leu Ala Lys Tyr Ile Thr Ala Gln Gly Asn Asn Phe 185 190

Arg Phe Thr His Thr Asn Asp Pro Val Pro Lys Leu Pro Leu Leu Ser 195 200 205

Met Gly Tyr Val His Val Ser Pro Glu Tyr Trp Ile Thr Ser Pro Asn 210 215 220

Asn Ala Thr Val Ser Thr Ser Asp Ile Lys Val Ile Asp Gly Asp Val 225 230 240

Ser Phe Asp Gly Asn Thr Gly Thr Gly Leu Pro Leu Leu Thr Asp Phe 245 250 255

Glu Ala His Ile Trp Tyr Phe Val Gln Val Asp Ala Gly Lys Gly Pro 265 270

Gly Leu Pro Phe Lys Arg 275

<210> 12

<211> 270

<213> Aspergillus foetidus

<400> 12

Ser Val Ser Thr Ser Thr Leu Asp Glu Leu Gln Leu Phe Ala Gln Trp $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Ala Ala Tyr Cys Ser Asn Asn Ile Asp Ser Lys Asp Ser Asn 20 25 30

Leu Thr Cys Thr Ala Asn Ala Cys Pro Ser Val Glu Glu Ala Ser Thr 35 40 45

Thr Met Leu Glu Phe Asp Leu Thr Asn Asp Phe Gly Gly Thr Ala 50 60

Gly Phe Leu Ala Ala Asp Asn Thr Asn Lys Arg Leu Val Val Ala Phe 65 70 80

Arg Gly Ser Ser Thr Ile Glu Asn Trp Ile Ala Asn Leu Asp Phe Ile 85 90 95

Page 13

PCT/DK2004/000426 WO 2004/111216

10356-WO.ST25 Leu Glu Asp Asp Asp Leu Cys Thr Gly Cys Lys Val His Thr Gly 100 105

Phe Trp Lys Ala Trp Glu Ser Ala Ala Asp Glu Leu Thr Ser Lys Ile 115 120 125

Lys Ser Ala Met Ser Thr Tyr Ser Gly Tyr Thr Leu Tyr Phe Thr Gly 130 140

His Ser Leu Gly Gly Ala Leu Ala Thr Leu Gly Ala Thr Val Leu Arg 150 155 160

Asn Asp Gly Tyr Ser Val Glu Leu Tyr Thr Tyr Gly Cys Pro Arg Ile 165 170 175

Gly Asn Tyr Ala Leu Ala Glu His Ile Thr Ser Gln Gly Ser Gly Ala 180 185 190

Asn Phe Arg Val Thr His Leu Asn Asp Ile Val Pro Arg Val Pro Pro 200 205

Met Asp Phe Gly Phe Ser Gln Pro Ser Pro Glu Tyr Trp Ile Thr Ser 210 220

Gly Asn Gly Ala Ser Val Thr Ala Ser Asp Ile Glu Val Ile Glu Gly 225 230 235

Ile Asn Ser Thr Ala Gly Asn Ala Gly Glu Ala Thr Val Ser Val Leu 245 250 255

Ala His Leu Trp Tyr Phe Phe Ala Ile Ser Glu Cys Leu Leu 260 270

<210> <211> 13 270

<213> Aspergillus niger

<400>

Ser Val Ser Thr Ser Thr Leu Asp Glu Leu Gln Leu Phe Ser Gln Trp 10 15

Ser Ala Ala Tyr Cys Ser Asn Asn Ile Asp Ser Asp Ser Asn 20 25 30

Val Thr Cys Thr Ala Asp Ala Cys Pro Ser Val Glu Ala Ser Thr 35 40

Lys Met Leu Leu Glu Phe Asp Leu Thr Asn Asn Phe Gly Gly Thr Ala 50 60

Gly Phe Leu Ala Ala Asp Asn Thr Asn Lys Arg Leu Val Val Ala Phe Page 14

65

70

80

Arg Gly Ser Ser Thr Ile Lys Asn Trp Ile Ala Asp Leu Asp Phe Ile 85 90 95

Leu Gln Asp Asp Asp Leu Cys Thr Gly Cys Lys Val His Thr Gly
100 105 110

Phe Trp Lys Ala Trp Glu Ala Ala Ala Asp Asn Leu Thr Ser Lys Ile 115 120 125

Lys Ser Ala Met Ser Thr Tyr Ser Gly Tyr Thr Leu Tyr Phe Thr Gly
130 135 140

His Ser Leu Gly Gly Ala Leu Ala Thr Leu Gly Ala Thr Val Leu Arg 145 150 155 160

Asn Asp Gly Tyr Ser Val Glu Leu Tyr Thr Tyr Gly Cys Pro Arg Val 165 170 175

Gly Asn Tyr Ala Leu Ala Glu His Ile Thr Ser Gln Gly Ser Gly Ala 180 185 190

Asn Phe Pro Val Thr His Leu Asn Asp Ile Val Pro Arg Val Pro Pro 195 200 205

Met Asp Phe Gly Phe Ser Gln Pro Ser Pro Glu Tyr Trp Ile Thr Ser 210 220

Gly Thr Gly Ala Ser Val Thr Ala Ser Asp Ile Glu Leu Ile Glu Gly 225 230 235 240

Ile Asn Ser Thr Ala Gly Asn Ala Gly Glu Ala Thr Val Asp Val Leu 245 250 255

Ala His Leu Trp Tyr Phe Phe Ala Ile Ser Glu Cys Leu Leu 260 265 270

<210> 14

<211> 269

<212> PRT

<213> Aspergillus oryzae

<400> 14

Asp Val Ser Ser Ser Leu Leu Asn Asn Leu Asp Leu Phe Ala Gln Tyr 1 10 15

Ser Ala Ala Tyr Cys Asp Glu Asn Leu Asn Ser Thr Gly Thr Lys

Leu Thr Cys Ser Val Gly Asn Cys Pro Leu Val Glu Ala Ala Ser Thr 35 40 45

Gln Ser Leu Asp Glu Phe Asn Glu Ser Ser Ser Tyr Gly Asn Pro Ala 50 55 60 Gly Tyr Leu Ala Ala Asp Glu Thr Asn Lys Leu Leu Val Leu Ser Phe 70 75 80 Arg Gly Ser Ala Asp Leu Ala Asn Trp Val Ala Asn Leu Asn Phe Gly $85 \hspace{1cm} 90 \hspace{1cm} 95$ Leu Glu Asp Ala Ser Asp Leu Cys Ser Gly Cys Glu Val His Ser Gly 100 105 110Phe Trp Lys Ala Trp Ser Glu Ile Ala Asp Thr Ile Thr Ser Lys Val Glu Ser Ala Leu Ser Asp His Ser Asp Tyr Ser Leu Val Leu Thr Gly 130 135 140 His Ser Tyr Gly Ala Ala Leu Ala Ala Leu Ala Ala Thr Ala Leu Arg 145 150 160 Asn Ser Gly His Ser Val Glu Leu Tyr Asn Tyr Gly Gln Pro Arg Leu 165 170 175 Gly Asn Glu Ala Leu Ala Thr Tyr Ile Thr Asp Gln Asn Lys Gly Gly 180 185 190 Asn Tyr Arg Val Thr His Thr Asn Asp Ile Val Pro Lys Leu Pro Pro 195 200 205 Thr Leu Leu Gly Tyr His His Phe Ser Pro Glu Tyr Tyr Ile Ser Ser 210 220Ala Asp Glu Ala Thr Val Thr Thr Thr Asp Val Thr Glu Val Thr Gly 225 230 240 Ile Asp Ala Thr Gly Gly Asn Asp Gly Thr Asp Gly Thr Ser Ile Asp 255 Ala His Arg Trp Tyr Phe Ile Tyr Ile Ser Glu Cys Ser 260 265

	•					
						· .·
•						•
•						*
-						
			•			
	·					
4						
_						
			-	 ż		
7			•			
	•					
					•	
r,						
#						
,						

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 23 December 2004 (23.12.2004)

PCT

(10) International Publication Number WO 2004/111216 A3

(51) International Patent Classification⁷: 15/55, C11D 3/386, A23C 19/04

C12N 9/20,

(74) Common Representative: NOVOZYMES A/S; Patents, Drogshøjvej 36, DK-2880 Bagsværd (DK).

(21) International Application Number:

PCT/DK2004/000426

(22) International Filing Date:

18 June 2004 (18.06.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/479,647

19 June 2003 (19.06.2003) US

(71) Applicants (for all designated States except US):
NOVOZYMES A/S [DK/DK]; Krogshoejvej 36,
DK-2880 Bagsværd (DK). NOVOZYMES NORTH
AMERICA, INC. [US/US]; 77 Perry Chapel Church
Road, Franklinton, NC 27525 (US). CHR. HANSEN A/S

[DK/DK]; Bøge Allé 10-12, DK-2970 Hoersholm (DK).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PATKAR, Shamkant, Anant [DK/DK]; Christoffers Allé 91, DK-2880 Lyngby (DK). HIGGINS, Don [US/US]; 4060 Ridgeway Drive, Franklinton, NC 27525 (US). FATUM, Tine, Muxoll [DK/DK]; Søvangen 50, DK-3450 Alleroed (DK). VIND, Jesper [DK/DK]; Hejrebakke 20, DK-3500 Væløse (DK). MADKOR, Sabry [EG/US]; 4709 Tommans Trail, Raleigh, NC 27616 (US). SØRENSEN, Thomas, Lykke [DK/DK]; Elmevej 13, DK-3450 Allerød (DK).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TI, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, FI, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 24 February 2005

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PHOSPHOLIPASE VARIANTS

(57) Abstract: The inventors have used protein engineering to develop variants of fungal phospholipases. Starting from a parent phospholipase, they have modified the amino acid sequence to arrive at variants which have phospholipase activity (generally, at roughly the same level as the parent enzyme) and have a lower lipase activity on triglycerides than the parent enzyme.

BNSDOCID: <WO 2004111216A3.1.>

INTERNATIONAL SEARCH REPORT

Irrelional Application No
I 'DK2004/000426

A. CLASSII IPC 7	FICATION OF SUBJECT MATTER C12N9/20 C12N15/55 C11D3/38	6 A23C19/04	
According to	o International Patent Classification (IPC) or to both national classifica	alion and IPC	
	SEARCHED		
	cumentation searched (classification system followed by classification C12N	on symbols)	·
	lion searched other than minimum documentation to the extent that su		
Electronic da	ata base consulted during the international search (name of data bas	se and, where practical, search terms used)
EPO-In	ternal, WPI Data, EMBL, PAJ		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
Χ	WO 00/32758 A (SHAMKANT ANANT PAT BORCH KIM (DK); PETRI ANDREAS (DK JESPE) 8 June 2000 (2000-06-08)		1,2,4-6
Υ	see claims, especially claims 27 for invention 2: see page 10, 1.7 41, p. 46, 1. 6, p. 47, 1. 6-7, c 17, 36, 39	-9, p.	2,7
Υ	WO 00/54601 A (NOVONORDISK AS) 21 September 2000 (2000-09-21) see the whole document		7
Y	WO 02/055679 A (DANIELSEN STEFFEN KIM (DK); VIND JESPER (DK); MINNI () 18 July 2002 (2002-07-18) see claims; for invention 2: see p. 12, 1. 10 10 item (kk)	NG STEFAN	2
		.,	
		/	
X Furth	her documents are listed in the continuation of box C.	Patent family members are listed in	n annex.
° Special ca	legories of cited documents :	T later document published after the inte	
consid	ent defining the general state of the art which is not lered to be of particular relevance	or priority date and not in conflict with cited to understand the principle or the invention	the application but eory underlying the
filing d	late	"X" document of particular relevance; the cannot be considered novel or cannot be an investigation step when the document or cannot be an investigation step.	be considered to
which cilation	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another nor other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	involve an inventive step when the do "Y" document of particular relevance; the cannot be considered to involve an in document is combined with one or mo	talmed invention ventive step when the
other r	means ent published prior to the international filing date but	ments, such combination being obvior in the art. *&* document member of the same patent	us to a person skilled
ļ	actual completion of the international search	Date of mailing of the international sea	
4	November 2004	1 1, 01, 05	
Name and n	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentham 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Grosskopf, R	

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

International Application No
/DK2004/000426

		70K2UU47UUU426
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	i Delawara da
Category •	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
Υ	WO 01/83770 A (ROGGEN ERWIN LUDO ; NOVOZYMES AS (DK)) 8 November 2001 (2001-11-08) see claims	2
Y	WO 95/22615 A (THELLERSEN MARIANNE; NOVONORDISK AS (DK); SVENDSEN ALLAN (DK); CLAUSE) 24 August 1995 (1995-08-24) see claims; for invention 2: see p. 13, 1. 20, p. 20, 1. 15, p. 74, line 18	

emational application No. PCT/DK2004/000426

INTERNATIONAL SEARCH REPORT

Box II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This Inter	national Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
	Claims Nos.: - because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
з. 🗌	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This Inter	mational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not Invite payment of any additional fee.
الما	As only some of the required additional search fees were limely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.: Claims 1 to 7 (all partially)
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2004)

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-7 (all partially)

Polypeptide having phospholipase activity and which has an amino acid sequence which is at least 50% identical to SEQ ID NO: 1 and has a substitution at a position which corrresponds to position D62 in SEQ ID NO:1, polynucleotide encoding it, methods for preapring it and the use of said polypeptide

2. claims: Claims 1-7 (all partially)

Polypeptide having phospholipase activity and which has an imino acid sequence which is at least 50% identical to SEQ ID NO: 1 and has a substitution at a position which corrresponds to position V60 in SEQ ID NO:1, polynucleotide encoding it, methods for preapring it and the use of said polypeptide

3. claims: Claims 1-7 (all partially)

Polypeptide having phospholipase activity and which has an amino acid sequence which is at least 50% identical to SEQ ID NO: 1 and has a substitution at a position which corrresponds to position S85 in SEQ ID NO:1, polynucleotide encoding it, methods for preapring it and the use of said polypeptide

4. claims: Claims 1-7 (all partially)

Polypeptide having phospholipase activity and which has an amino acid sequence which is at least 50% identical to SEQ ID NO: 1 and has a substitution at a position which corrresponds to position G91 in SEQ ID NO:1, polynucleotide encoding it, methods for preapring it and the use of said polypeptide

5. claims: Claims 1-7 (all partially)

Polypeptide having phospholipase activity and which has an amino acid sequence which is at least 50% identical to SEQ ID NO: 1 and has a substitution at a position which corrresponds to position R125 in SEQ ID NO:1, polynucleotide encoding it, methods for preapring it and the use of said polypeptide

6. claims: Claims 1-7 (all partially)

Polypeptide having phospholipase activity and which has an amino acid sequence which is at least 50% identical to SEQ ID NO: 1 and has a substitution at a position which corrresponds to position V203 in SEQ ID NO:1, polynucleotide encoding it, methods for preapring it and the use of said polypeptide

7. claims: Claims 1-7 (all partially)

Polypeptide having phospholipase activity and which has an amino acid sequence which is at least 50% identical to SEQ ID NO: 1 and has a substitution at a position which corrresponds to position V228 in SEQ ID NO:1, polynucleotide encoding it, methods for preapring it and the use of said polypeptide

8. claims: Claims 1-7 (all partially)

Polypeptide having phospholipase activity and which has an amino acid sequence which is at least 50% identical to SEQ ID NO: 1 and has a substitution at a position which corrresponds to position T231 in SEQ ID NO:1, polynucleotide encoding it, methods for preapring it and the use of said polypeptide

9. claims: Claims 1-7 (all partially)

Polypeptide having phospholipase activity and which has an amino acid sequence which is at least 50% identical to SEQ ID NO: 1 and has a substitution at a position which corrresponds to position N233 in SEQ ID NO:1, polynucleotide encoding it, methods for preapring it and the use of said polypeptide

10. claims: Claims 1-7 (all partially)

Polypeptide having phospholipase activity and which has an amino acid sequence which is at least 50% identical to SEQ ID NO: 1 and has a substitution at a position which corrresponds to position L259 in SEQ ID NO:1, polynucleotide encoding it, methods for preapring it and the use of said polypeptide

11. claims: Claims 1-7 (all partially)

Polypeptide having phospholipase activity and which has an amino acid sequence which is at least 50% identical to SEQ ID NO: 1 and has a deletion at a position which corrresponds to position D266 in SEQ ID NO:1, polynucleotide encoding it, methods for preapring it and the use of said polypeptide

12. claims: Claims 1-7 (all partially)

Polypeptide having phospholipase activity and which has an amino acid sequence which is at least 50% identical to SEQ ID NO: 1 and has a substitution at a position which corrresponds to position L269 in SEQ ID NO:1, polynucleotide encoding it, methods for preapring it and the use of said polypeptide

Continuation of Box II.2

Claims Nos.:

On the basis of the Figure 1 shown in the application it may be possible to search mutations in the corresponding positions of the SEQ ID NOs: 2 to 14. However, it is impossible to determine (and consequently to search) the corresponding position in a lipase which is merely characterised by the fact that it is 50% identical to SEQ ID NO:1

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.5), should the problems which led to the Article 17(2) declaration be overcome.

INTERNATIONAL SEARCH REPORT

information on patent family members

International Application No
(/DK 2004/000426

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0032758	A	08-06-2000	AU	1376300 A	19-06-20
			BR	9915711 <i>F</i>	
			CA	2353379 A	
			CN	1331742 1	
			WO	0032758 A	
			EΡ	1131416 A	
			JP	2003524386 1	
			NZ	511340 A	
			TR	200101497 7	
			ZA	200102858 A	
WO 0054601	Α	21-09-2000	AU	766617 B	23-10-20
			AU	3272800 A	
			BR	0009001 A	
			CN	1343094 T	
			WO	0054601 A	
			EP	1162889 A	
			JP	2002538796 T	
			NZ	513959 A	
			US	2002136799 A	
			US	2003215544 A	
			US	6399121 B	1 04-06-20
WO 02055679	Α	18-07-2002	CA	2431972 A	1 18-07-20
			CN	1484693 T	
			WO	02055679 A	
			EP	1352057 A	
			JP	2004522435 T	
			บร	2004152180 A	
WO 0183770	Α	08-11-2001	AU	5462001 A	12-11-20
	• •		AU	5462201 A	
			AU	5462301 A	
			CA	2406621 A	
			MO	0183770 A	
			WO	0183770 A	
			WO	0183559 A	
			EP	1280919 A	
			EP	1280919 A	
			US	2003144165 A	
			US	2003144165 A 2002192792 A	
WO 9522615	A	24-08-1995	AT	222604 T	15-09-20
	••	Z-1 00 1999	AU	1806795 A	04-09-19
			BR	9506861 A	23-09-19
			CA	2183431 A	
•			CN	1147836 A	
			DE		
			DE	69527835 D	
				69527835 T	
			WO	9522615 A	
			EP	0746618 A	
			FI	963266 A	21-08-19
			JP	3553958 B	
			JP	9509058 T	16-09-19
		,	US	5869438 A	09-02-19
			US	5892013 A	06-04-19
			US	5976855 A	02-11-19

Form PCT/ISA/210 (patent family annex) (January 2004)

•				•		,	
•		, e ⁱ				·	ते १ १ १
					•		
	į						
	•						
						·	
	ž s				·		
,							
							•