SBML Model Report

Model name: "Palsson2013 - Fully-integrated immune response model (FIRM)"

April 25, 2016

1 General Overview

This is a document in SBML Level 3 Version 1 format. This model was created by the following three authors: Michael Hucka¹, Vijayalakshmi Chelliah² and Mary E Spilker³ at April 19th 2016 at 4:37 p. m. and last time modified at April 19th 2016 at 9:22 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	52
events	0	constraints	0
reactions	140	function definitions	0
global parameters	278	unit definitions	0
rules	111	initial assignments	6

Model Notes

Palsson2013 - Fully-integration immune response model (FIRM)

¹California Institute of Technology, mhucka@caltech.edu

²EMBL-EBI, viji@ebi.ac.uk

³Pfizer, San Diego, CA 92121, Mary.Spilker@pfizer.com

FIRM (The Fully-integrated Immune Response Modeling) is a hybrid construct incorporating multiple existing models of the immune system [De Boer et al., (1985);Bell, (1970); Marino and Kirschner, (2004)]. FIRM used a pharmacokinetic / pharmacodynamic modelling approach to combine previously published individual models of humoral and cellular response with antigen exposure. This integrated model has a potential to simulate a range of responses under a variety of conditions, for example, the immune response against tuberculosis infection, blood borne pathogen infection, Spontaneous tumour rejection and influence of regulatory T cells (Treg) on tumour rejection.

The SBML model provided here was generated from the matlab code (provided by the authors). The matlab to SBML conversion was done using MOCCASIN version 1.1.0. This model describes the immune response against tuberculosis (TB) infection and reproduces figure 7 of the reference publication.

Note: The following minor edit to the original matlab code was done during the conversion to SBML: The model had two parameters named k3 and K3. To avoid case-insensitive issues during the conversion, K3 was changed to K3s in the original matlap code before using the conversion software. The matlab code of the model provided by the authors (with the above change) can be obtained from the curation tab.

This model is described in the article: The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models. Palsson S, Hickling TP, Bradshaw-Pierce EL, Zager M, Jooss K, O'Brien PJ, Spilker ME, Palsson BO, Vicini P.BMC Syst Biol. 2013 Sep 28;7:95.

Abstract:

BACKGROUND: The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. **RESULTS:** A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The results demonstrate how this framework can be used to integrate mathematical models of the immune response from several published sources and describe qualitative predictions of global immune system response arising from the integrated, hybrid model. In addition, we show how the model can be expanded to include novel biological findings. Case studies were carried out to simulate TB infection, tumor rejection, response to a blood borne pathogen and the consequences of accounting for regulatory T-cells. **CONCLUSIONS:** The final result of this work is a postulated and increasingly comprehensive representation of the mammalian immune system, based on physiological knowledge and susceptible to further experimental testing and validation. We believe that the integrated nature of FIRM has the potential to simulate a range of responses under a variety of conditions, from modeling of immune responses after tuberculosis (TB) infection to tumor formation in tissues. FIRM also has the flexibility to be expanded to include both complex and novel immunological response features as our knowledge of the immune system advances.

This model is hosted on BioModels Database and identified by: MODEL1603310000.

To cite BioModels Database, please use: BioModels: Content, Features, Functionality and Use.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartmentOne			3	1	litre	\checkmark	

3.1 Compartment compartment One

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains 52 species. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
x_1	x_1	compartmentOne	$\text{mol} \cdot l^{-1}$		\Box
x_2	x_2	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_3	$x_{-}3$	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_4	x_4	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_5	x_5	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_6	x_6	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_7	$x_{-}7$	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_8	x_8	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_9	x_9	compartmentOne	$\text{mol} \cdot l^{-1}$		
$x_{-}10$	$x_{-}10$	compartmentOne	$\text{mol} \cdot l^{-1}$		
$x_{-}11$	$x_{-}11$	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_12	$x_{-}12$	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_13	x_13	compartmentOne	$\text{mol} \cdot l^{-1}$		
$x_{-}14$	$x_{-}14$	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_15	x_15	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_16	x_16	compartmentOne	$\text{mol} \cdot l^{-1}$	\Box	\Box
$x_{-}17$	$x_{-}17$	compartmentOne	$\text{mol} \cdot l^{-1}$	\Box	\Box
x_18	$x_{-}18$	compartmentOne	$\text{mol} \cdot l^{-1}$	\Box	\Box
x_19	x_19	compartmentOne	$\text{mol} \cdot l^{-1}$	\Box	
x_20	x_20	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_21	x_21	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_22	x_22	compartmentOne	$\text{mol} \cdot l^{-1}$		

roduced
by S
BMĽ

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
x_23	x_23	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_24	x_24	${\tt compartmentOne}$	$\text{mol} \cdot l^{-1}$		\Box
$x_{-}25$	x_25	${\tt compartmentOne}$	$\text{mol} \cdot l^{-1}$		
x_26	x_26	${\tt compartmentOne}$	$\text{mol} \cdot l^{-1}$		
$x_{-}27$	x_27	${\tt compartmentOne}$	$\text{mol} \cdot l^{-1}$		
$x_{-}28$	x_28	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_29	x_29	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_30	x_30	${\tt compartmentOne}$	$\text{mol} \cdot l^{-1}$		
x_31	x_31	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_32	x_32	compartmentOne	$\text{mol} \cdot l^{-1}$		
$x_{-}33$	x_33	compartmentOne	$\text{mol} \cdot l^{-1}$		
$x_{-}34$	x_34	${\tt compartmentOne}$	$\text{mol} \cdot l^{-1}$		
$x_{-}35$	x_35	compartmentOne	$\text{mol} \cdot l^{-1}$		\Box
$x_{-}36$	x_36	compartmentOne	$\text{mol} \cdot l^{-1}$		\Box
x_37	x_37	compartmentOne	$\text{mol} \cdot l^{-1}$		\Box
x_38	x_38	compartmentOne	$\text{mol} \cdot l^{-1}$		\Box
x_39	x_39	compartmentOne	$\text{mol} \cdot l^{-1}$		\Box
$x_{-}40$	x_40	compartmentOne	$\text{mol} \cdot l^{-1}$		\Box
x_41	x_41	compartmentOne	$\text{mol} \cdot l^{-1}$		\Box
$x_{-}42$	x_42	compartmentOne	$\text{mol} \cdot l^{-1}$		\Box
$x_{-}43$	x_43	${\tt compartmentOne}$	$\text{mol} \cdot l^{-1}$		\Box
x_44	x_44	compartmentOne	$\text{mol} \cdot l^{-1}$		\Box
x_45	x_45	${\tt compartmentOne}$	$\text{mol} \cdot 1^{-1}$		\Box
x_46	x_46	${\tt compartmentOne}$	$\text{mol} \cdot 1^{-1}$		
x_47	x_47	${\tt compartmentOne}$	$\text{mol} \cdot 1^{-1}$		
$x_{-}48$	x_48	${\tt compartmentOne}$	$\text{mol} \cdot l^{-1}$		
$x_{-}49$	x_49	compartmentOne	$\operatorname{mol} \cdot 1^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
x_50	x_50	compartmentOne	$\text{mol} \cdot l^{-1}$		
x_51	x_51	compartmentOne	$\text{mol} \cdot l^{-1}$	\Box	
x_52	x_52	compartmentOne	$\text{mol} \cdot l^{-1}$		\Box

5 Parameters

This model contains 278 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
Alpha4	Alpha4	0.500	0	
Alpha5	Alpha5	$1.25 \cdot 10^{-7}$		$\overline{\mathbf{Z}}$
Alpha6	Alpha6	$1.25 \cdot 10^{-8}$	8	
Alpha61	Alpha61	10.000	0	
Alpha62	Alpha62	10.000	0	
Beta90	Beta90	1000.000	0	
c2	c2	1000000.000	0	
c4	c4	0.150	0	
c12	c12	500000.000	0	
c15	c15	150000.000	0	
c17	c17	10000.000	0	
c22	c22	3000.000	0	
c24	c24	15000.000	0	
c25	c25	100000.000	0	$ \overline{\mathscr{A}} $
c52	c52	15000.000	0	
c55	c55	50.000	0	
c72	c72	51.000	0	
c80	c80	5000.000	0	
cF	cF	1000.000	0	
cf11	cf11	100.000	0	
cf12	cf12	150.000	0	
cf27	cf27	30.000	0	$ \overline{\mathbf{Z}} $
cf28	cf28	50.000	0	
cf29	cf29	2.000	0	
cf86	cf86	50.000	0	
cI	cI	50.000	0	
ci12	ci12	1000.000	0	
ci72	ci72	0.050	0	
ci80	ci80	50.000	0	
cii80	cii80	100000.000	0	
Delta11	Delta11	0.360	0	$ \overline{\checkmark} $
Delta12	Delta12	0.400	0	$\overline{\mathbf{Z}}$
Delta21	Delta21	10^{-4}	4	$ \overline{\mathbf{Z}} $
Delta27	Delta27	0.100	0	$\overline{\mathbf{Z}}$
Delta29	Delta29	0.050	0	$\overline{\mathbf{Z}}$
Delta36	Delta36	2.400	0	$\overline{\mathbf{Z}}$
Delta38	Delta38	2.400	0	$\overline{\mathbb{Z}}$

Id	Name	SBO	Value	Unit	Constant
Delta39	Delta39		0.000		
Delta43	Delta43		2.400		
Delta50	Delta50		10^{-4}		
Delta54	Delta54		0.001		$\overline{\mathbf{Z}}$
Delta57	Delta57		0.000		$\overline{\mathbf{Z}}$
Deltai12	Deltai12		0.009		$\overline{\mathbf{Z}}$
Deltai27	Deltai27		0.001		
endpoint	endpoint		400.000		
Eta10	Eta10		0.050		
Eta13	Eta13		1.000		$\overline{\mathbf{Z}}$
Eta14	Eta14		0.000		$\overline{\mathbf{Z}}$
Eta16	Eta16		0.010		
Eta18	Eta18		0.020		$\overline{\mathbf{Z}}$
Eta20	Eta20		0.102		$\overline{\mathbf{Z}}$
Eta26	Eta26		0.333		$\overline{\mathbf{Z}}$
Eta28	Eta28		0.333		$ \overline{\checkmark} $
Eta30	Eta30		0.333		$\overline{\mathbf{Z}}$
Eta33	Eta33		0.333		$\overline{\mathbf{Z}}$
Eta35	Eta35		2.400		$\overline{\mathbf{Z}}$
Eta44	Eta44		1.200		$\overline{\mathbf{Z}}$
Eta47	Eta47		0.002		
Eta48	Eta48		0.024		
Eta49	Eta49		0.048		
Eta53	Eta53		0.020		$\overline{\mathbf{Z}}$
Eta56	Eta56		0.020		$\overline{\mathbf{Z}}$
Eta58	Eta58		0.000		$ \overline{\mathscr{L}} $
Eta60	Eta60		0.001		
Eta69	Eta69		2.770		
Eta73	Eta73		3.697		
Eta75	Eta75		1.188		
Eta79	Eta79		1.000		
Eta81	Eta81		3.000		\checkmark
Eta83	Eta83		0.000		\checkmark
Eta84	Eta84		0.333		
Eta85	Eta85		0.020		
Eta95	Eta95		4.800		
Eta96	Eta96		4.800		
Eta99	Eta99		4.800		$\overline{\mathbf{Z}}$
Eta100	Eta100		4.800		$\overline{\checkmark}$
fi12	fi12		2.333		$\overline{\checkmark}$
fi27	fi27		4.100		$\overline{\checkmark}$
fi29	fi29		0.120		$\overline{\mathscr{A}}$

Id	Name	SBO	Value	Unit	Constant
fii27	fii27		4.800		
Gamma17	Gamma17		0.200		$\overline{\mathbf{Z}}$
Gamma23	Gamma23		0.900		
Gamma24	Gamma24		0.900		$ \overline{\checkmark} $
Gamma31	Gamma31		0.333		$ \overline{\checkmark} $
Gamma32	Gamma32		0.900		$ \overline{\checkmark} $
Gamma37	Gamma37		0.900		
${\tt Gamma40}$	Gamma40		0.900		
Gamma41	Gamma41		0.900		
Gamma51	Gamma51		0.900		$ \overline{\checkmark} $
Gamma52	Gamma52		0.900		$ \overline{\checkmark} $
k2	k2		0.400		
k3	k3		0.110		$ \overline{\checkmark} $
K3s	K3s		50.000		$ \overline{\checkmark} $
k7	k7		10^{-7}		$ \overline{\checkmark} $
k63	k63		2.000		
K90	K90		100.000		$\overline{\checkmark}$
K93	K93		100.000		$\overline{\checkmark}$
Mu1	Mu1		0.005		$\overline{\checkmark}$
Mu8	Mu8		0.100		$ \overline{\checkmark} $
Mu9	Mu9		0.040		
Mu15	Mu15		0.020		
Mu19	Mu19		0.100		
Mu22	Mu22		0.900		$ \overline{\checkmark} $
Mu25	Mu25		0.400		$\overline{\checkmark}$
Mu28	Mu28		1.000		
Mu42	Mu42		2.400		
Mu55	Mu55		1.000		
Mu59	Mu59		1.000		
Mu86	Mu86		1.000		
MuI	MuI		9.000		
Mui9	Mui9		125000.000		
P46	P46		9.000		\checkmark
P87	P87		3.000		
P88	P88		3.000		
P89	P89		100000.000		
q68a	q68a		0.003		
q68b	q68b		0.022		$\overline{\checkmark}$
q72a	q72a		0.006		$\overline{\checkmark}$
q72b	q72b		$5\cdot 10^{-5}$		$\overline{\checkmark}$
q72c	q72c		10^{-4}		$\overline{\checkmark}$
q72d	q72d		10^{-4}		$\overline{\mathbf{Z}}$

Id	Name	SBO Value	Unit	Constant
q72e	q72e	10-	4	✓
q74	q74	0.004	4	$ \overline{\checkmark} $
q78a	q78a	$2.75 \cdot 10^{-}$	6	
q78b	q78b	$8 \cdot 10^{-}$	4	
q80	q80	0.02	0	
q82	q82	0.00	0	
Rho9	Rho9	5000.00	0	
Rho15	Rho15	500.00	0	
Rho19	Rho19	1000.00	0	
Rho21	Rho21	100.00	0	$\overline{\mathbf{Z}}$
Rho34	Rho34	10.00	0	$\overline{\mathbf{Z}}$
Rho50	Rho50	100.00	0	$\overline{\mathbf{Z}}$
Rho80	Rho80	700.00	0	$\overline{\mathbf{Z}}$
v14	v14	0.00	0	$\overline{\mathbf{Z}}$
v30	v30	0.00	0	$\overline{\mathbf{Z}}$
v41	v41	0.00	0	$\overline{\mathbf{Z}}$
v57	v57	0.00		\mathbf{Z}
v58	v58	0.00		\mathbf{Z}
v59	v59	0.00		\mathbf{Z}
v64	v64	0.00		\mathbf{Z}
v65	v65	0.00		\mathbf{Z}
v66	v66	0.00		\mathbf{Z}
v67	v67	0.00		\mathbf{Z}
v70	v70	0.00		\overline{Z}
v71	v71	0.00		\mathbf{Z}
v76	v76	0.00		\mathbf{Z}
v77	v77	0.00		\mathbf{Z}
v82	v82	0.00		\overline{Z}
v83	v83	0.00		\overline{Z}
v87	v87	0.00		\mathbf{Z}
volBlood	volBlood	4500.00		\mathbf{Z}
volLung	volLung	1000.00		\overline{Z}
volLymphB	volLymphB	150.00		\mathbf{Z}
volLymphT	volLymphT	10.00		\mathbf{Z}
volMA	volMA	$1.6 \cdot 10^{-}$		\overline{Z}
volMI	volMI	1.6 · 10-		\overline{Z}
volMR	volMR	8 · 10 -		$ \mathbf{Z} $
volT	volT	$2 \cdot 10^{-}$		\mathbf{Z}
volTB	volTB	10^{-1}		\overline{Z}
w9	w9	0.14		
APC	APC	0.00		☑ ⊟
Beta91	Beta91	0.00		

Id	Name	SBO	Value	Unit	Constant
Beta92	Beta92		0.000	1	
Beta93	Beta93		0.000)	
Beta94	Beta94		0.000)	\Box
Beta97	Beta97		0.000)	
Beta98	Beta98		0.000)	
FACTOR	FACTOR		0.000)	
INFLAM	INFLAM		0.000)	
K91	K91		0.000)	
K92	K92		0.000)	
K94	K94		0.000	1	
K97	K97		0.000	1	
K98	K98		0.000	1	
MA	MA		0.000	1	
MB	MB		0.000	1	
MC	MC		0.000	1	
MD	MD		0.000)	
ME	ME		0.000)	
MF	MF		0.000)	
MG	MG		0.000	1	
MH	MH		0.000	1	
MI	MI		0.000	1	
MJ	MJ		0.000	1	
MK	MK		0.000	1	
q45c	q45c		0.000	1	
v1	v1		0.000	1	
v10	v10		0.000	1	
v100	v100		0.000	1	
v11	v11		0.000)	
v12	v12		0.000)	
v13	v13		0.000	1	
v15	v15		0.000	1	
v16	v16		0.000	1	
v17	v17		0.000	1	
v18	v18		0.000	1	
v19	v19		0.000	1	
v2	v2		0.000	1	
v20	v20		0.000)	
v21	v21		0.000		
v22	v22		0.000		
v23	v23		0.000		
v24	v24		0.000		
v25	v25		0.000		

Id	Name	SBO	Value	Unit	Constant
v26	v26		0.000)	\Box
v27	v27	0.000			
v28	v28		0.000)	\Box
v29	v29		0.000)	
v3	v3		0.000)	\Box
v31	v31		0.000)	\Box
v32	v32		0.000)	
v33	v33		0.000)	\Box
v34	v34		0.000)	
v35	v35		0.000)	\Box
v36	v36		0.000)	
v37	v37		0.000)	
v38	v38		0.000)	
v39	v39		0.000)	\Box
v4	v4		0.000)	\Box
v40	v40		0.000)	
v42	v42		0.000		
v43	v43		0.000		
v44	v44		0.000		
v45	v45		0.000		
v46	v46		0.000		
v47	v47		0.000		
v48	v48		0.000		
v49	v49		0.000		
v5	v5		0.000		
v50	v50		0.000		
v51	v51		0.000		
v52	v52		0.000		
v53	v53		0.000)	
v54	v54		0.000		
v55	v55		0.000		
v56	v56		0.000		
v6	v6		0.000		
v60	v60		0.000		
v61	v61		0.000		
v62	v62		0.000		
v63	v63		0.000		
v68	v68		0.000		
v69	v69		0.000		
v7	v7		0.000		
v72	v72		0.000		
v73	v73		0.000		

Id	Name	SBO Value Unit	Constant
v74	v74	0.000	
v75	v75	0.000	\Box
v78	v78	0.000	\Box
v79	v79	0.000	\Box
v8	v8	0.000	\Box
v80	v80	0.000	\Box
v81	v81	0.000	\Box
v84	v84	0.000	\Box
v85	v85	0.000	\Box
v86	v86	0.000	\Box
v88	v88	0.000	\Box
v89	v89	0.000	\Box
v9	v9	0.000	\Box
v90	v90	0.000	
v91	v91	0.000	\Box
v92	v92	0.000	\Box
v93	v93	0.000	\Box
v94	v94	0.000	\Box
v95	v95	0.000	
v96	v96	0.000	
v97	v97	0.000	
v98	v98	0.000	\Box
v99	v99	0.000	
vMI	vMI	0.000	\Box
volSite	volSite	0.000	\Box
c59	c59	0.000	
c61	c61	0.000	$\overline{\mathbf{Z}}$
c62	c62	0.000	$\overline{\mathbf{Z}}$
cAPC	cAPC	0.000	$\overline{\mathbf{Z}}$
q45a	q45a	0.000	$\overline{\mathbf{Z}}$
q45b	q45b	0.000	$\overline{\mathbf{Z}}$

6 Initialassignments

This is an overview of six initial assignments.

6.1 Initialassignment c59

Derived unit contains undeclared units

 $\textbf{Math} \ 10\widehat{\ }10_{\overline{10}}$

6.2 Initialassignment c61

Derived unit contains undeclared units

 $\textbf{Math} \ \ \tfrac{1000000}{10}$

6.3 Initialassignment c62

Derived unit contains undeclared units

Math $\frac{1000000}{10}$

6.4 Initialassignment cAPC

Derived unit contains undeclared units

Math $\frac{100000000}{10}$

6.5 Initialassignment q45a

Derived unit contains undeclared units

Math $\frac{10000000}{10}$

6.6 Initialassignment q45b

Derived unit contains undeclared units

Math $\frac{100000000}{10}$

7 Rules

This is an overview of 111 rules.

7.1 Rule APC

Rule APC is an assignment rule for parameter APC:

$$APC = \frac{([x_{-}1] + [x_{-}2]) \cdot [x_{-}30]}{cAPC + [x_{-}30]}$$
(1)

7.2 Rule Beta91

Rule Beta91 is an assignment rule for parameter Beta91:

$$Beta 91 = Beta 90 (2)$$

7.3 Rule Beta92

Rule Beta92 is an assignment rule for parameter Beta92:

$$Beta 92 = Beta 90 \tag{3}$$

7.4 Rule Beta93

Rule Beta93 is an assignment rule for parameter Beta93:

$$Beta 93 = Beta 90 (4)$$

7.5 Rule Beta94

Rule Beta94 is an assignment rule for parameter Beta94:

$$Beta 94 = Beta 90 (5)$$

7.6 Rule Beta97

Rule Beta97 is an assignment rule for parameter Beta97:

$$Beta 97 = Beta 93 \tag{6}$$

7.7 Rule Beta98

Rule Beta98 is an assignment rule for parameter Beta98:

$$Beta 98 = Beta 93 \tag{7}$$

7.8 Rule FACTOR

Rule FACTOR is an assignment rule for parameter FACTOR:

FACTOR =
$$[x_-8] \cdot \frac{[x_-29]}{cF + [x_-29]}$$
 (8)

7.9 Rule INFLAM

Rule INFLAM is an assignment rule for parameter INFLAM:

INFLAM =
$$\frac{\text{MuI} \cdot \frac{[x.29]}{\text{cF} + [x.29]}}{\text{cI} + \frac{[x.29]}{\text{cF} + [x.29]}}$$
(9)

7.10 Rule K91

Rule K91 is an assignment rule for parameter K91:

$$K91 = K90 \tag{10}$$

7.11 Rule K92

Rule K92 is an assignment rule for parameter K92:

$$K92 = K90 \tag{11}$$

7.12 Rule K94

Rule K94 is an assignment rule for parameter K94:

$$K94 = K93 \tag{12}$$

7.13 Rule K97

Rule K97 is an assignment rule for parameter K97:

$$K97 = K93 \tag{13}$$

7.14 Rule K98

Rule K98 is an assignment rule for parameter K98:

$$K98 = K93 \tag{14}$$

7.15 Rule MA

Rule MA is an assignment rule for parameter MA:

$$MA = \frac{[x_5]}{[x_3]} \tag{15}$$

Derived unit dimensionless

7.16 Rule MB

Rule MB is an assignment rule for parameter MB:

$$MB = \frac{[x_{-}5]}{[x_{-}3]} \cdot MC \tag{16}$$

7.17 Rule MC

Rule MC is an assignment rule for parameter MC:

$$MC = \frac{\text{volLung}}{\text{vMI}} \tag{17}$$

7.18 Rule MD

Rule MD is an assignment rule for parameter MD:

$$MD = \frac{\text{volLung}}{\text{volLymphT}}$$
 (18)

7.19 Rule ME

Rule ME is an assignment rule for parameter ME:

$$ME = \frac{\text{volLymphT}}{\text{volBlood}}$$
 (19)

7.20 Rule MF

Rule MF is an assignment rule for parameter MF:

$$MF = \frac{\text{volBlood}}{\text{volLung}} \tag{20}$$

7.21 Rule MG

Rule MG is an assignment rule for parameter MG:

$$MG = \frac{\text{volLung}}{\text{volBlood}}$$
 (21)

7.22 Rule MH

Rule MH is an assignment rule for parameter MH:

$$MH = \frac{volBlood}{volLymphB}$$
 (22)

7.23 Rule MI

Rule MI is an assignment rule for parameter MI:

$$MI = \frac{\text{volSite}}{\text{volBlood}}$$
 (23)

7.24 Rule MJ

Rule MJ is an assignment rule for parameter MJ:

$$MJ = \frac{\text{volLymphB}}{\text{volBlood}}$$
 (24)

7.25 Rule MK

Rule MK is an assignment rule for parameter MK:

$$MK = \frac{\text{volBlood}}{\text{volSite}}$$
 (25)

7.26 Rule q45c

Rule q45c is an assignment rule for parameter q45c:

$$q45c = q45b \tag{26}$$

7.27 Rule v1

Rule v1 is an assignment rule for parameter v1:

$$v1 = Mu1 \cdot \frac{[x_4]}{volLung}$$
 (27)

7.28 Rule v10

Rule v10 is an assignment rule for parameter v10:

$$v10 = Eta10 \cdot \frac{[x_1]}{volLung}$$
 (28)

7.29 Rule v100

Rule v100 is an assignment rule for parameter v100:

$$v100 = \text{Eta}100 \cdot \frac{[\text{x}_52]}{\text{volLung}}$$
 (29)

7.30 Rule v11

Rule v11 is an assignment rule for parameter v11:

$$v11 = \frac{\text{Delta}11 \cdot \frac{[\text{x}.2]}{\text{volLung}} \cdot [\text{x}.35]}{[\text{x}.35] + \text{cf}11 \cdot \text{volLung}}$$
(30)

7.31 Rule v12

Rule v12 is an assignment rule for parameter v12:

$$v12 = \frac{\frac{Delta12 \cdot \frac{[x_1]}{volLung} \cdot ([x_4] + [x_5])}{c12 \cdot volLung + [x_4] + [x_5]} \cdot [x_39]}{[x_39] + fi12 \cdot [x_33] + cf12 \cdot volLung} + Deltai12 \cdot \frac{[x_1]}{volLung} \cdot \frac{[x_29]}{ci12 + [x_29]} \quad (31)$$

7.32 Rule v13

Rule v13 is an assignment rule for parameter v13:

$$v13 = Eta13 \cdot \frac{[x.2]}{volLung}$$
 (32)

7.33 Rule v15

Rule v15 is an assignment rule for parameter v15:

$$v15 = Rho15 + \frac{Mu15 \cdot [x_4]}{c15 \cdot volLung + [x_4]} + (Rho21 + Rho50) \cdot INFLAM \tag{33}$$

7.34 Rule v16

Rule v16 is an assignment rule for parameter v16:

$$v16 = Eta16 \cdot \frac{[x_6]}{volLung}$$
 (34)

7.35 Rule v17

Rule v17 is an assignment rule for parameter v17:

$$v17 = \frac{Gamma17 \cdot \frac{[x_6]}{volLung} \cdot [x_4]}{c17 \cdot volLung + [x_4]} + Gamma17 \cdot \frac{[x_6]}{volLung} \cdot 1 \cdot INFLAM$$
 (35)

7.36 Rule v18

Rule v18 is an assignment rule for parameter v18:

$$v18 = Eta18 \cdot \frac{[x_{-}10]}{volLymphT}$$
 (36)

7.37 Rule v19

Rule v19 is an assignment rule for parameter v19:

$$v19 = Rho19 + Mu19 \cdot \frac{[x_{-}10]}{volLymphT}$$
(37)

7.38 Rule v2

Rule v2 is an assignment rule for parameter v2:

$$v2 = \frac{k2 \cdot \frac{[x_1]}{\text{volLung}} \cdot [x_4]}{[x_4] + c2 \cdot \text{volLung}}$$
(38)

7.39 Rule v20

Rule v20 is an assignment rule for parameter v20:

$$v20 = Eta20 \cdot \frac{[x_11]}{volLymphT}$$
 (39)

7.40 Rule v21

Rule v21 is an assignment rule for parameter v21:

$$v21 = Rho21 + Delta21 \cdot \frac{[x_11]}{volLymphT} \cdot \frac{[x_10]}{volLymphT}$$
 (40)

7.41 Rule v22

Rule v22 is an assignment rule for parameter v22:

$$v22 = \frac{\text{Mu}22 \cdot \frac{[x_12]}{\text{volLymphT}}}{\text{c22} + \left(\frac{[x_12]}{\text{volLymphT}}\right)^2}$$
(41)

7.42 Rule v23

Rule v23 is an assignment rule for parameter v23:

$$v23 = Gamma23 \cdot \frac{[x_{-}12]}{volLymphT}$$
 (42)

7.43 Rule v24

Rule v24 is an assignment rule for parameter v24:

$$v24 = \frac{Gamma24 \cdot \frac{[x_13]}{volBlood} \cdot [x_2]}{c24 \cdot volLung + [x_2]}$$

$$(43)$$

7.44 Rule v25

Rule v25 is an assignment rule for parameter v25:

$$v25 = \frac{Mu25 \cdot \frac{[x_7]}{volLung} \cdot [x_2]}{c25 \cdot volLung + [x_2]}$$

$$(44)$$

7.45 Rule v26

Rule v26 is an assignment rule for parameter v26:

$$v26 = Eta26 \cdot \frac{[x_{-}7]}{volLung}$$
 (45)

7.46 Rule v27

Rule v27 is an assignment rule for parameter v27:

$$v27 = Delta27 \cdot \frac{[x_7]}{volLung} \cdot \frac{[x_38]}{volLung} \cdot \frac{[x_36]}{[x_36] + fi27 \cdot [x_33] + fii27 \cdot [x_35] + cf27 \cdot volLung} + Deltai27 \cdot \frac{[x_7]}{volLung} \cdot APC$$

$$(46)$$

7.47 Rule v28

Rule v28 is an assignment rule for parameter v28:

$$v28 = Eta28 \cdot \frac{[x_8]}{volLung}$$
 (47)

7.48 Rule v29

Rule v29 is an assignment rule for parameter v29:

$$v29 = \frac{Delta29 \cdot \frac{[x.7]}{volLung} \cdot [x.33]}{[x.33] + fi29 \cdot [x.39] + cf29 \cdot volLung}$$
(48)

7.49 Rule v3

Rule v3 is an assignment rule for parameter v3:

$$v3 = \frac{k3 \cdot \frac{[x.3]}{\text{volLung}} \cdot \left(\frac{[x.5]}{[x.3]}\right)^2}{\left(\frac{[x.5]}{[x.3]}\right)^2 + K3s^2}$$
(49)

7.50 Rule v31

Rule v31 is an assignment rule for parameter v31:

$$v31 = Gamma31 \cdot \frac{[x_9]}{volLung}$$
 (50)

7.51 Rule v32

Rule v32 is an assignment rule for parameter v32:

$$v32 = Gamma32 \cdot \frac{[x_14]}{volBlood}$$
 (51)

7.52 Rule v33

Rule v33 is an assignment rule for parameter v33:

$$v33 = Eta33 \cdot \frac{[x_{-}15]}{volLymphB}$$
 (52)

7.53 Rule v34

Rule v34 is an assignment rule for parameter v34:

$$v34 = Rho34 \tag{53}$$

7.54 Rule v35

Rule v35 is an assignment rule for parameter v35:

v35 = Eta35 ·
$$\frac{[x_{-}16]}{\text{volSite}}$$
 · $\frac{[x_{-}43]}{[x_{-}43] + [x_{-}44] + 1.0E - 5}$ (54)

7.55 Rule v36

Rule v36 is an assignment rule for parameter v36:

$$v36 = Delta36 \cdot \frac{[x_{-}16]}{volSite} \cdot \frac{[x_{-}44]}{[x_{-}43] + [x_{-}44] + 1.0E - 5}$$
 (55)

7.56 Rule v37

Rule v37 is an assignment rule for parameter v37:

$$v37 = Gamma37 \cdot \frac{[x_{-}17]}{volSite}$$
 (56)

7.57 Rule v38

Rule v38 is an assignment rule for parameter v38:

v38 = Delta38 ·
$$\frac{[x_18]}{\text{volBlood}}$$
 · $\frac{[x_47]}{[x_47] + [x_48] + 1.0E - 5}$ (57)

7.58 Rule v39

Rule v39 is an assignment rule for parameter v39:

$$v39 = Eta47 \cdot \frac{[x_{-}19]}{volBlood}$$
 (58)

7.59 Rule v4

Rule v4 is an assignment rule for parameter v4:

$$v4 = Alpha4 \cdot \frac{[x_3]}{volLung} \cdot \frac{\frac{[x_8]}{[x_3]}}{\frac{[x_8]}{[x_3]} + c4 \cdot volLung}$$
(59)

7.60 Rule v40

Rule v40 is an assignment rule for parameter v40:

$$v40 = Gamma40 \cdot \frac{[x_{-}18]}{volBlood}$$
 (60)

7.61 Rule v42

Rule v42 is an assignment rule for parameter v42:

$$v42 = Mu42 \cdot \frac{[x_20]}{volLymphB} \cdot \frac{[x_48]}{[x_47] + [x_48] + 1.0E - 5}$$
(61)

7.62 Rule v43

Rule v43 is an assignment rule for parameter v43:

v43 = Delta43 ·
$$\frac{\frac{[x_{-}20]}{\text{volLymphB}}}{2}$$
 · $\frac{[x_{-}47]}{[x_{-}47] + [x_{-}48] + 1.0E - 5}$ (62)

7.63 Rule v44

Rule v44 is an assignment rule for parameter v44:

$$v44 = Eta44 \cdot \frac{[x_21]}{\text{volLymphB}}$$
 (63)

7.64 Rule v45

Rule v45 is an assignment rule for parameter v45:

$$v45 = q45a \cdot \frac{[x_{-}18]}{volBlood} + q45b \cdot \frac{[x_{-}20]}{volBlood} + q45c \cdot \frac{[x_{-}21]}{volBlood}$$
(64)

7.65 Rule v46

Rule v46 is an assignment rule for parameter v46:

$$v46 = P46 \cdot \left(\frac{[x_22]}{volBlood} - \frac{[x_23]}{volLung}\right)$$
(65)

7.66 Rule v47

Rule v47 is an assignment rule for parameter v47:

$$v47 = Eta47 \cdot \frac{[x_19]}{volBlood}$$
 (66)

7.67 Rule v48

Rule v48 is an assignment rule for parameter v48:

$$v48 = Eta48 \cdot \frac{[x_20]}{volLymphB}$$
 (67)

7.68 Rule v49

Rule v49 is an assignment rule for parameter v49:

$$v49 = Eta49 \cdot \frac{[x_22]}{volBlood}$$
 (68)

7.69 Rule v5

Rule v5 is an assignment rule for parameter v5:

$$v5 = Alpha5 \cdot \frac{[x_2]}{volLung} \cdot \frac{[x_4]}{volLung}$$
(69)

7.70 Rule v50

Rule v50 is an assignment rule for parameter v50:

$$v50 = Rho50 + Delta50 \cdot \frac{[x_11]}{volLymphT} \cdot \frac{[x_10]}{volLymphT}$$
 (70)

7.71 Rule v51

Rule v51 is an assignment rule for parameter v51:

$$v51 = Gamma51 \cdot \frac{[x_24]}{volLymphT}$$
 (71)

7.72 Rule v52

Rule v52 is an assignment rule for parameter v52:

$$v52 = \frac{Gamma52 \cdot \frac{[x.25]}{volBlood} \cdot [x.2]}{c52 \cdot volLung + [x.2]}$$
(72)

7.73 Rule v53

Rule v53 is an assignment rule for parameter v53:

$$v53 = Eta53 \cdot \frac{[x_26]}{volLung}$$
 (73)

7.74 Rule v54

Rule v54 is an assignment rule for parameter v54:

$$v54 = Delta54 \cdot \frac{[x_26]}{volLung} \cdot \frac{[x_29]}{volLung}$$
 (74)

7.75 Rule v55

Rule v55 is an assignment rule for parameter v55:

$$v55 = Mu55 \cdot \frac{[x.27]}{volLung} \cdot \frac{FACTOR}{cF + FACTOR}$$
 (75)

7.76 Rule v56

Rule v56 is an assignment rule for parameter v56:

$$v56 = Eta56 \cdot \frac{[x_27]}{volLung} \tag{76}$$

7.77 Rule v6

Rule v6 is an assignment rule for parameter v6:

$$v6 = Alpha6 \cdot \frac{[x_{-}1]}{volLung} \cdot \frac{[x_{-}4]}{volLung}$$
(77)

7.78 Rule v60

Rule v60 is an assignment rule for parameter v60:

$$v60 = Eta60 \cdot \frac{[x_29]}{volLung}$$
 (78)

7.79 Rule v61

Rule v61 is an assignment rule for parameter v61:

$$v61 = Alpha61 \cdot \frac{[x_2]}{volLung} \cdot \frac{[x_29]}{c61 + [x_29]}$$
 (79)

7.80 Rule v62

Rule v62 is an assignment rule for parameter v62:

$$v62 = Alpha61 \cdot \frac{[x_27]}{volLung} \cdot \frac{[x_29]}{c61 + [x_29]}$$
(80)

7.81 Rule v63

Rule v63 is an assignment rule for parameter v63:

$$v63 = k63 \cdot \frac{[x_{-}30]}{\text{volLung}} \tag{81}$$

7.82 Rule v68

Rule v68 is an assignment rule for parameter v68:

$$v68 = q68a \cdot \frac{[x_7]}{volLung} + q68b \cdot \frac{[x_9]}{volLung}$$
(82)

7.83 Rule v69

Rule v69 is an assignment rule for parameter v69:

$$v69 = Eta69 \cdot \frac{[x_33]}{volLung}$$
 (83)

7.84 Rule v7

Rule v7 is an assignment rule for parameter v7:

$$v7 = k7 \cdot \frac{[x_6]}{volLung} \cdot \frac{[x_4]}{volLung}$$
(84)

7.85 Rule v72

Rule v72 is an assignment rule for parameter v72:

$$v72 = q72a \cdot \frac{[x_2]}{volLung} \cdot \frac{c72 \cdot volLung}{[x_35] + ci72 \cdot [x_39] + c72 \cdot volLung} + q72b$$

$$\cdot \frac{[x_8]}{volLung} + q72c \cdot \frac{[x_9]}{volLung} + q72d \cdot \frac{[x_7]}{volLung} + q72e \cdot \frac{[x_3]}{volLung}$$
(85)

7.86 Rule v73

Rule v73 is an assignment rule for parameter v73:

$$v73 = Eta73 \cdot \frac{[x_35]}{volLung}$$
 (86)

7.87 Rule v74

Rule v74 is an assignment rule for parameter v74:

$$v74 = q74 \cdot \frac{[x_{-}10]}{\text{volLymphT}} \tag{87}$$

7.88 Rule v75

Rule v75 is an assignment rule for parameter v75:

$$v75 = Eta75 \cdot \frac{[x_36]}{volLymphT}$$
(88)

7.89 Rule v78

Rule v78 is an assignment rule for parameter v78:

$$v78 = q78a \cdot \frac{[x_1]}{\text{volLung}} + q78b \cdot \frac{[x_2]}{\text{volLung}}$$
(89)

7.90 Rule v79

Rule v79 is an assignment rule for parameter v79:

$$v79 = Eta79 \cdot \frac{[x_38]}{volLung}$$
 (90)

7.91 Rule v8

Rule v8 is an assignment rule for parameter v8:

$$v8 = Mu8 \cdot \frac{[x_5]}{vMI} \cdot \left(1 - \frac{\left(\frac{[x_5]}{[x_3]}\right)^2}{\left(\frac{[x_5]}{[x_3]}\right)^2 + K3s^2}\right)$$
(91)

7.92 Rule v80

Rule v80 is an assignment rule for parameter v80:

$$v80 = Rho80 \cdot \frac{[x_4] + [x_5]}{c80 \cdot volLung + [x_4] + [x_5]}$$

$$\cdot \frac{[x_38]}{ci80 \cdot volLung + [x_38]} + q80 \cdot [x_8] \cdot \frac{[x_2]}{cii80 \cdot volLung + [x_2]}$$
 (92)

7.93 Rule v81

Rule v81 is an assignment rule for parameter v81:

$$v81 = Eta81 \cdot \frac{[x_39]}{volLung}$$
 (93)

7.94 Rule v84

Rule v84 is an assignment rule for parameter v84:

$$v84 = Eta84 \cdot \frac{[x_13]}{volBlood}$$
 (94)

7.95 Rule v85

Rule v85 is an assignment rule for parameter v85:

$$v85 = Eta85 \cdot \frac{[x_25]}{volBlood}$$
 (95)

7.96 Rule v86

Rule v86 is an assignment rule for parameter v86:

$$v86 = Mu86 \cdot \frac{[x_8]}{volLung} \cdot \frac{FACTOR}{cf86 + FACTOR}$$
 (96)

7.97 Rule v88

Rule v88 is an assignment rule for parameter v88:

$$v88 = P88 \cdot \left(\frac{[x_30]}{\text{volLung}} - \frac{[x_41]}{\text{volBlood}}\right)$$
(97)

7.98 Rule v89

Rule v89 is an assignment rule for parameter v89:

$$v89 = P89 \cdot \left(\frac{[x_41]}{\text{volBlood}} - \frac{[x_42]}{\text{volSite}}\right)$$
(98)

7.99 Rule v9

Rule v9 is an assignment rule for parameter v9:

$$v9 = Rho9 + Mu9 \cdot \left(\frac{[x_2]}{volLung} + \frac{w9 \cdot [x_3]}{volLung}\right) + Mui9 \cdot INFLAM$$
 (99)

7.100 Rule v90

Rule v90 is an assignment rule for parameter v90:

$$v90 = Beta90 \cdot \left(\frac{[x_42]}{volSite} \cdot \frac{[x_43]}{volSite} - \frac{\frac{[x_44]}{volSite}}{K90} \right)$$
 (100)

7.101 Rule v91

Rule v91 is an assignment rule for parameter v91:

$$v91 = Beta91 \cdot \left(\frac{[x_42]}{volSite} \cdot \frac{[x_45]}{volSite} - \frac{\frac{[x_46]}{volSite}}{K91} \right)$$
(101)

7.102 Rule v92

Rule v92 is an assignment rule for parameter v92:

$$v92 = Beta92 \cdot \left(\frac{[x_41]}{volSite} \cdot \frac{[x_47]}{volSite} - \frac{\frac{[x_48]}{volSite}}{K92}\right)$$
(102)

7.103 Rule v93

Rule v93 is an assignment rule for parameter v93:

$$v93 = Beta93 \cdot \left(\frac{[x_41]}{volBlood} \cdot \frac{[x_22]}{volBlood} - \frac{\frac{[x_49]}{volBlood}}{K93}\right)$$
(103)

7.104 Rule v94

Rule v94 is an assignment rule for parameter v94:

$$v94 = Beta94 \cdot \left(\frac{[x_41]}{volBlood} \cdot \frac{[x_49]}{volBlood} - \frac{\frac{[x_50]}{volBlood}}{K94}\right)$$
(104)

7.105 Rule v95

Rule v95 is an assignment rule for parameter v95:

$$v95 = Eta95 \cdot \frac{[x_49]}{volBlood}$$
 (105)

7.106 Rule v96

Rule v96 is an assignment rule for parameter v96:

$$v96 = Eta96 \cdot \frac{[x_50]}{volBlood}$$
 (106)

7.107 Rule v97

Rule v97 is an assignment rule for parameter v97:

$$v97 = Beta97 \cdot \left(\frac{[x_4]}{volLung} \cdot \frac{[x_23]}{volLung} - \frac{\frac{[x_51]}{volLung}}{K97}\right)$$
(107)

7.108 Rule v98

Rule v98 is an assignment rule for parameter v98:

$$v98 = Beta98 \cdot \left(\frac{[x_4]}{volLung} \cdot \frac{[x_51]}{volLung} - \frac{\frac{[x_52]}{volLung}}{K98}\right)$$
(108)

7.109 Rule v99

Rule v99 is an assignment rule for parameter v99:

$$v99 = Eta99 \cdot \frac{[x_51]}{volLung}$$
 (109)

7.110 Rule vMI

Rule vMI is an assignment rule for parameter vMI:

$$vMI = volMI \cdot [x_3]$$
 (110)

7.111 Rule volSite

Rule volSite is an assignment rule for parameter volSite:

$$volSite = volBlood (111)$$

8 Reactions

This model contains 140 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

No	Id	Name	Reaction Equation SBO)
1	R_1		$x_4 + x_51 \longrightarrow x_52$	
2	R_2		$x_52 \longrightarrow x_4 + x_51$	
3	R_3		$x_{-}52 \longrightarrow \emptyset$	
4	R_4		$x_23 + x_4 \longrightarrow x_51$	
5	R_5		$x_51 \longrightarrow x_23 + x_4$	
6	R_6		$x_51 \longrightarrow \emptyset$	
7	R_7		$x_41 + x_49 \longrightarrow x_50$	
8	R_8		$x_{-}50 \longrightarrow x_{-}41 + x_{-}49$	
9	R_9		$x_{-}50 \longrightarrow \emptyset$	
10	R_10		$x_22 + x_41 \longrightarrow x_49$	
11	R_11		$x_49 \longrightarrow x_22 + x_41$	
12	R_12		$x_49 \longrightarrow \emptyset$	
13	R_13		$x_41 + x_47 \longrightarrow x_48$	
14	R_14		$x_48 \longrightarrow x_41 + x_47$	
15	R_15		$x_17 + 1000 x_45 \longrightarrow x_18 + 1000 x_47$	
16	R_16		$x_2 \longrightarrow x_1 + 1000 x_4 $	
17	R_17		$x_{-}18 + 1000 x_{-}47 \longrightarrow x_{-}20$	
18	R_18		$0.5 x_{-}18 + 500 x_{-}47 + x_{-}48 \longrightarrow 0.5 x_{-}19 + x_{-}48$	
19	R_19		$x_{-}42 + x_{-}45 \longrightarrow x_{-}46$	
20	R_20		$x_{-}46 \longrightarrow x_{-}42 + x_{-}45$	
21	R_21		$x_16 + 1000 x_43 + x_44 \longrightarrow x_17 + x_44 + 1000 x_45$	
22	R_22		$x_42 + x_43 \longrightarrow x_44$	

No_	Id	Name	Reaction Equation	SBO
23	R_23		$x_44 \longrightarrow x_42 + x_43$	
24	R_24		$\emptyset \longrightarrow x_{-}16 + 1000 x_{-}43$	
25	R_25		$2 x_{-}19 \longrightarrow x_{-}16 + 1000 x_{-}43$	
26	R_26		$x_{-}16 + 1000 x_{-}43 + x_{-}44 \longrightarrow x_{-}44$	
27	R_27		$x_41 \longrightarrow x_42$	
28	R_28		$x_42 \longrightarrow x_41$	
29	R_29		$x_4 \longrightarrow x_41$	
30	R_30		$x_{-}30 \longrightarrow x_{-}41$	
31	R_31		$x_41 \longrightarrow x_30$	
32	R_32		$\emptyset \longrightarrow x_40$	
33	R_33		$x_40 \longrightarrow \emptyset$	
34	R_34		$x_38 + x_4 + x_5 \longrightarrow x_38 + x_39 + x_4 + x_5$	
35	R_35		$x_2 + x_8 \longrightarrow x_2 + x_3 + x_8$	
36	R_36		$x_39 \longrightarrow \emptyset$	
37	R_37		$\emptyset \longrightarrow x_{-}38$	
38	R_38		$x1 \longrightarrow x1 + x38$	
39	R_39		$x_2 \longrightarrow x_2 + x_3 = 38$	
40	R_40		$x_3 \longrightarrow \emptyset$	
41	R_41		$\emptyset \longrightarrow x_37$	
42	R_42		$x_37 \longrightarrow \emptyset$	
43	R_43		$x_10 \longrightarrow x_10 + x_36$	
44	R_44		$x_{-}36 \longrightarrow \emptyset$	
45	R_45		$x_2 + x_35 + x_39 \longrightarrow x_2 + 2x_35 + x_39$	
46	R_46		$x8 \longrightarrow x35 + x8$	
47	R_47		$x9 \longrightarrow x35 + x9$	
48	R_48		$x_{-}7 \longrightarrow x_{-}35 + x_{-}7$	
49	R_49		$x_3 \longrightarrow x_3 + x_35$	
50	R_50		$x_{-}35 \longrightarrow \emptyset$	
51	R_51		$\emptyset \longrightarrow x_{-}34$	

_	No	Id	Name	Reaction Equation	SBO
_	52	R_52		$x_34 \longrightarrow \emptyset$	
	53	R_53		$x_{-}7 \longrightarrow x_{-}33 + x_{-}7$	
	54	R_54		$x9 \longrightarrow x33 + x9$	
	55	R_55		$x_3 \longrightarrow \emptyset$	
	56	R_56		$\emptyset \longrightarrow x_32$	
	57	R_57		$x_32 \longrightarrow \emptyset$	
	58	R_58		$\emptyset \longrightarrow x_31$	
	59	R_59		$x_31 \longrightarrow \emptyset$	
	60	R_60		$x_29 \longrightarrow x_30$	
	61	R_61		$x_2 + x_2 = \longrightarrow x_2 + x_3 = 0$	
	62	R_62		$x_27 + x_29 \longrightarrow x_27 + x_30$	
	63	R_63		$x_30 \longrightarrow \emptyset$	
	64	R_64		$\emptyset \longrightarrow x_29$	
	65	R_65		$x_1 \longrightarrow x_2 = 8$	
	66	R_66		$x_2 = \emptyset$	
	67	R_67		$x_{-}26 + x_{-}29 \longrightarrow x_{-}27 + x_{-}29$	
	68	R_68		$x_27 + x_29 + x_8 \longrightarrow 2x_27 + x_29 + x_8$	
	69	R_69		$x_2 \longrightarrow \emptyset$	
	70	R_70		$x_2 + x_2 = 0 \longrightarrow x_2 + x_2 = 0$	
	71	R_71		$x_2 = \emptyset$	
	72	R_72		$x_24 \longrightarrow x_25$	
	73	$R_{-}73$		$x_2 = 0$	
	74	$R_{-}74$		$x_11 \longrightarrow x_24$	
		R_75		$x_{-}10 + x_{-}11 \longrightarrow x_{-}10 + x_{-}24$	
	76	R_76		$x_2 \longrightarrow x_2 \longrightarrow$	
	77	R_77		$x_23 \longrightarrow x_22$	
	78	R_78		$x_{-}18 \longrightarrow x_{-}18 + 10000000 x_{-}22$	
	79	R_79		$x_{-}20 \longrightarrow x_{-}20 + 1000000 x_{-}22$	
	80	R_80		$x_{-}21 \longrightarrow x_{-}21 + 10000000 x_{-}22$	

	No	Id	Name	Reaction Equation	SBO
83 R.83 $x.21 \rightarrow 0$ 84 R.84 $x.20+x.47+x.48 \rightarrow 2x.20+x.47+x.48$ 85 R.86 $x.14 \rightarrow x.15$ 87 R.87 $x.15 \rightarrow 0$ 88 R.88 $x.9 \rightarrow x.14$ 89 R.89 $x.12 \rightarrow x.13$ 90 R.90 $x.13 + x.2 \rightarrow x.2 + x.7$ 91 R.91 $x.13 \rightarrow 0$ 92 R.92 $x.11 \rightarrow x.12$ 93 R.93 $x.10 + x.11 \rightarrow x.10 + x.12$ 94 R.94 $x.12 \rightarrow 2x.12$ 95 R.95 $0 \rightarrow x.11$ 96 R.96 $x.11 \rightarrow 0$ 97 $x.97$ $x.11 \rightarrow 0$ 98 R.99 $x.4 + x.6 \rightarrow x.10 + x.4$ $x.99 \rightarrow 0$ $x.29 + x.6 \rightarrow x.10 + x.29 + x.6$ $x.10 \rightarrow 0$	81	R_81		$x_2 \longrightarrow \emptyset$	
84 R.84 $x.20 + x.47 + x.48 \longrightarrow 2x.20 + x.47 + x.48$ 85 R.85 $x.20 \longrightarrow 0$ 86 R.87 $x.15 \longrightarrow 0$ 87 R.87 $x.15 \longrightarrow 0$ 88 R.88 $x.9 \longrightarrow x.14$ 89 R.89 $x.12 \longrightarrow x.13$ 90 R.90 $x.13 + x.2 \longrightarrow x.2 + x.7$ 91 R.91 $x.13 \longrightarrow 0$ 92 R.92 $x.11 \longrightarrow x.12$ 93 R.93 $x.10 + x.11 \longrightarrow x.10 + x.12$ 94 R.94 $x.12 \longrightarrow 2x.12$ 95 R.95 $0 \longrightarrow x.11$ 96 R.96 $x.10 \longrightarrow x.10 + x.11$ 97 R.97 $x.11 \longrightarrow 0$ 98 R.98 $x.4 + x.6 \longrightarrow x.10 + x.4$ 99 R.99 $x.29 + x.6 \longrightarrow x.10 + x.29 + x.6$ 101 R.101 $x.33 + x.39 + x.7 \longrightarrow x.33 + x.39 + x.9$ 102 $x.9 \longrightarrow 0$ 103 $x.10 \longrightarrow 0$ 104 $x.10 \longrightarrow 0$ 105 $x.29 + x.6 \longrightarrow x.38 + x.7 \longrightarrow x.33 + x.39 + x.9$ 106 $x.102$ $x.30 + x.35 + x.36 + x.38 + x.7 \longrightarrow x.33 + x.35 + x.35 + x.36 + x.38 + x.7 \longrightarrow x.33 + x.35 + x.36 + x.38 + x.7 \longrightarrow x.34 + x.$	82	R_82		$0.5 x_20 + x_47 + x_48 \longrightarrow 0.5 x_21 + x_47 + x_48$	
85 R.85	83	R_83		$x.21 \longrightarrow \emptyset$	
86 R.86 $x.14 \rightarrow x.15$ 87 R.87 $x.15 \rightarrow 0$ 88 R.88 $x.9 \rightarrow x.14$ 89 R.89 $x.13 \rightarrow x.2 \rightarrow x.2 + x.7$ 90 R.90 $x.13 \rightarrow 0$ $x.13 \rightarrow 0$ $x.13 \rightarrow 0$ $x.10 \rightarrow x.10 \rightarrow x.10 \rightarrow x.10 \rightarrow x.10 \rightarrow x.12$ 91 R.91 $x.10 \rightarrow x.10 \rightarrow x.10 \rightarrow x.12$ 92 R.92 $x.10 \rightarrow x.10 \rightarrow x.10 \rightarrow x.12$ 94 R.94 $x.10 \rightarrow x.10 \rightarrow x.10 \rightarrow x.10$ 95 R.95 $0 \rightarrow x.11 \rightarrow 0$ 96 R.96 $x.10 \rightarrow x.10 \rightarrow x.10 \rightarrow x.10$ 97 R.97 $x.11 \rightarrow 0$ 98 R.98 $x.4 + x.6 \rightarrow x.10 + x.29 + x.6$ 99 R.99 $x.29 + x.6 \rightarrow x.10 + x.29 + x.6$ 100 $x.10 \rightarrow 0$ $x.10 \rightarrow 0$ 101 $x.10 \rightarrow 0$ $x.33 + x.39 + x.7 \rightarrow x.33 + x.39 + x.9$ 102 $x.10 \rightarrow 0$ $x.33 + x.35 + x.36 + x.38 + x.7 \rightarrow x.33 + x.35 + x.36 + x.38 + x.8$ 104 $x.10 \rightarrow 0$ $x.33 + x.35 + x.36 + x.38 + x.7 \rightarrow x.33 + x.35 + x.36 + x.38 + x.8$ 105 $x.10 \rightarrow 0$ $x.10 \rightarrow 0$ 107 $x.10 \rightarrow 0$ $x.10 \rightarrow 0$	84	R_84		$x_20 + x_47 + x_48 \longrightarrow 2x_20 + x_47 + x_48$	
87 R.87 $x.9 \rightarrow x.14$ 88 R.89 $x.12 \rightarrow x.13$ 90 R.90 $x.13 + x.2 \rightarrow x.2 + x.7$ 91 R.91 $x.13 \rightarrow \emptyset$ 92 R.92 $x.11 \rightarrow x.12$ 93 R.93 $x.10 + x.11 \rightarrow x.10 + x.12$ 94 R.94 $x.12 \rightarrow 2x.12$ 95 R.95 $\emptyset \rightarrow x.11$ 97 R.97 $x.11 \rightarrow \emptyset$ 98 R.98 $x.4 + x.6 \rightarrow x.10 + x.4$ 99 R.99 $x.29 + x.6 \rightarrow x.10 + x.29 + x.6$ 100 R.100 $x.10 \rightarrow \emptyset$ 101 $x.33 + x.39 + x.7 \rightarrow x.33 + x.39 + x.9$ 102 $x.9 \rightarrow \emptyset$ 103 $x.33 + x.35 + x.36 + x.38 + x.7 \rightarrow x.33 + x.35 + x.36 + x.38 + x.8$ 104 $x.104$ $x.1 + x.30 + x.7 \rightarrow x.1 + x.30 + x.8$ 105 $x.105$ $x.29 + x.8 \rightarrow x.29 + 2x.8$ 106 $x.106$ $x.29 + x.8 \rightarrow x.29 + 2x.8$ 107 $x.106$ $x.29 + x.8 \rightarrow x.29 + 2x.8$	85	R_85		$x_20 \longrightarrow \emptyset$	
88 R.89 $x.12 \longrightarrow x.13$ 90 R.90 $x.13 + x.2 \longrightarrow x.2 + x.7$ 91 R.91 $x.13 \longrightarrow \emptyset$ 92 R.92 $x.11 \longrightarrow x.12$ 93 R.93 $x.10 + x.11 \longrightarrow x.10 + x.12$ 94 R.94 $x.12 \longrightarrow 2x.12$ 95 R.95 $\emptyset \longrightarrow x.11$ 96 R.96 $x.10 \longrightarrow x.10 + x.11$ 97 R.97 $x.11 \longrightarrow \emptyset$ 98 R.98 $x.4 + x.6 \longrightarrow x.10 + x.4$ 99 R.99 $x.29 + x.6 \longrightarrow x.10 + x.29 + x.6$ 100 $x.10 \longrightarrow \emptyset$ $x.10 \longrightarrow \emptyset$ 101 $x.10 \longrightarrow \emptyset$ $x.33 + x.39 + x.7 \longrightarrow x.33 + x.39 + x.9$ 102 $x.10 \longrightarrow \emptyset$ $x.33 + x.35 + x.36 + x.38 + x.7 \longrightarrow x.33 + x.35 + x.36 + x.38 + x.8$ 104 $x.10 \longrightarrow \emptyset$ $x.33 + x.35 + x.36 + x.38 + x.7 \longrightarrow x.33 + x.35 + x.36 + x.38 + x.8$ 105 $x.10 \longrightarrow \emptyset$ $x.29 \longrightarrow \emptyset$ 106 $x.10 \longrightarrow \emptyset$ $x.20 \longrightarrow \emptyset$ 107 $x.10 \longrightarrow \emptyset$ $x.10 \longrightarrow \emptyset$ 108 $x.10 \longrightarrow \emptyset$ $x.10 \longrightarrow \emptyset$ 109 $x.10 \longrightarrow \emptyset$ $x.10 \longrightarrow \emptyset$ 100 $x.10 \longrightarrow \emptyset$ $x.10 \longrightarrow \emptyset$	86	R_86		$x_{-}14 \longrightarrow x_{-}15$	
89 R.89 90 R.90 91 R.91 92 R.92 93 R.93 94 R.94 95 R.95 96 R.96 97 R.97 98 R.98 99 R.99 100 R.100 101 R.101 102 R.102 103 R.103 104 R.104 105 R.105 106 R.106 107 R.107	87	R_87		$x_{-}15 \longrightarrow \emptyset$	
90 R.90 91 R.91 92 R.92 93 R.93 94 R.94 95 R.95 96 R.96 97 R.97 98 R.98 99 R.299 100 R.100 101 R.101 102 R.102 103 R.103 104 R.104 105 R.105 106 R.106 107 R.107	88	R_88		$x9 \longrightarrow x14$	
91 R.91 92 R.92 93 R.93 94 R.94 95 R.95 96 R.96 97 R.97 98 R.98 99 $x.10 \rightarrow x.10 + x.1$ 100 $x.10 \rightarrow 0$ 101 $x.10 \rightarrow 0$ 102 $x.10 \rightarrow 0$ 103 $x.10 \rightarrow 0$ 104 $x.10 \rightarrow 0$ 105 $x.10 \rightarrow 0$ 106 $x.10 \rightarrow 0$ 107 $x.10 \rightarrow 0$ 108 $x.1 \rightarrow 0$ 109 $x.1 \rightarrow 0$ 100 $x.10 \rightarrow 0$ 101 $x.10 \rightarrow 0$ 102 $x.20 \rightarrow 0$ 103 $x.33 + x.35 + x.36 + x.38 + x.7 \rightarrow x.33 + x.35 + x.36 + x.38 + x.7 \rightarrow x.33 + x.35 + x.36 + x.38 + x.8 104 x.1 + x.30 + x.7 \rightarrow x.1 + x.30 + x.8 105 x.20 \rightarrow x.00 106 x.20 \rightarrow x.00 107 x.20 \rightarrow x.00 $	89	R_89		$x_{-}12 \longrightarrow x_{-}13$	
92 R.92 93 R.93 94 R.94 95 R.95 96 R.96 97 R.97 98 R.98 99 R.99 100 R.100 101 R.101 102 R.102 103 R.103 104 R.104 105 R.105 106 R.106 107 R.107	90	R_90		$x13 + x2 \longrightarrow x2 + x7$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	R_91		$x_{-}13 \longrightarrow \emptyset$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	92	R_92		$x_{-}11 \longrightarrow x_{-}12$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	93	R_93		$x_{-}10 + x_{-}11 \longrightarrow x_{-}10 + x_{-}12$	
96 R.96	94	R_94		$x_12 \longrightarrow 2x_12$	
97 R.97 98 R.98 99 R.99 100 R.100 101 R.101 102 R.102 103 R.103 104 R.104 105 R.105 106 R.106 107 R.107	95	R_95			
98 R_98 99 R_99 100 R_100 101 R_101 102 R_102 103 R_103 104 R_104 105 R_105 106 R_106 107 R_107 108 $x_1 + x_2 + x_3 + x_4 + x_4 + x_5 + x_4 + x_5 + $	96	R_96		$x_{-}10 \longrightarrow x_{-}10 + x_{-}11$	
99 R_99 $x_100 = x_100$ $x_10 = x_20 + x_20 = x_10 + x_20 + x_20$ $x_10 = x_20 = x_20 = x_20$ $x_100 = x_20 = x_20 = x_20$ $x_20 = x_20$	97	R_97			
100 R_100 101 R_101 102 R_102 103 R_103 104 R_104 105 R_105 106 R_106 107 R_107 x_10 x_1 x_20 x_2 x_20				·	
101 R_101 $x_13 + x_23 + x_39 + x_4 - 7 \longrightarrow x_133 + x_239 + x_29$ 102 R_102 $x_29 \longrightarrow \emptyset$ 103 R_103 $x_133 + x_235 + x_236 + x_238 + x_47 \longrightarrow x_233 + x_235 + x_236 + x_238 + x_28$ 104 R_104 $x_1 + x_230 + x_47 \longrightarrow x_1 + x_230 + x_48$ 105 R_105 $x_2 + x_230 + x_47 \longrightarrow x_2 + x_230 + x_47 + x_48$ 106 R_106 $x_130 + x_230 + x_47 \longrightarrow x_49 + $				·	
102 R_102 $x_{-9} \rightarrow \emptyset$ 103 R_103 $x_{-33} + x_{-35} + x_{-36} + x_{-38} + x_{-7} \rightarrow x_{-33} + x_{-35} + x_{-36} + x_{-38} + x_{-8}$ 104 R_104 $x_{-1} + x_{-30} + x_{-7} \rightarrow x_{-1} + x_{-30} + x_{-8}$ 105 R_105 $x_{-2} + x_{-30} + x_{-7} \rightarrow x_{-2} + x_{-30} + x_{-7} + x_{-8}$ 106 R_106 $x_{-107} \rightarrow x_{-1} + x_{-1} \rightarrow x_{-1} + x_{-1} \rightarrow x_{-1} + x_{-1} \rightarrow x_{-1} + x_{-1} \rightarrow x$					
103 R_103 $ x_{-33} + x_{-35} + x_{-36} + x_{-38} + x_{-7} \longrightarrow x_{-33} + x_{-35} + x_{-36} + x_{-38} + x_{-8} $ 104 R_104 $ x_{-1} + x_{-30} + x_{-7} \longrightarrow x_{-1} + x_{-30} + x_{-8} $ 105 R_105 $ x_{-2} + x_{-30} + x_{-7} \longrightarrow x_{-2} + x_{-30} + x_{-7} + x_{-8} $ 106 R_106 $ x_{-29} + x_{-8} \longrightarrow x_{-29} + 2x_{-8} $ 107 R_107 $ x_{-8} \longrightarrow \emptyset $					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
104 R_104 $x_1 + x_2 + x_3 + x_4 + x_4 + x_5 + $	103	R_103			
105 R_105 $x_2 + x_3 + x_7 \longrightarrow x_2 + x_3 + x_7 + x_8$ 106 R_106 $x_2 + x_8 \longrightarrow x_2 + x_8 \longrightarrow x_2 + x_8$ 107 R_107 $x_8 \longrightarrow 0$					
106 R_106 $x_29 + x_28 \longrightarrow x_29 + 2x_28$ 107 R_107 $x_29 + x_30 \longrightarrow x_40$					
107 R ₋ 107 $x8 \longrightarrow \emptyset$					
108 R ₋ 108 $x2+x7 \longrightarrow x2+2x7$					
	108	R_108		$x_2 + x_7 \longrightarrow x_2 + 2x_7$	

36	N⁰	Id	Name	Reaction Equation	SBO
	109	R_109		$x_{-}7 \longrightarrow \emptyset$	
	110	R_110		$x_{-}2 + x_{-}30 + x_{-}7 \longrightarrow x_{-}2 + x_{-}30$	
	111	R_111		$\emptyset \longrightarrow x6$	
	112	R_112		$x_4 \longrightarrow x_4 + x_6$	
	113	R_113		$x_29 \longrightarrow x_29 + x_6$	
	114	R_114		$x6 \longrightarrow \emptyset$	
	115	R_115		$x_29 + x_6 \longrightarrow x_29$	
	116	R_116		$x1 + x3 + x4 \longrightarrow x1 + x3 + x4 + x5$	
	117	R_117		$x_3 + x_5 \longrightarrow x_3 + 2x_5$	
	118	R_118		$x_3 + x_5 \longrightarrow x_3$	
Produced by SML2PTEX	119	R_119		$x_3 + x_5 + x_8 \longrightarrow x_3 + x_8$	
duc	120	R_120		$x_4 \longrightarrow 2x_4$	
ed	121	R_121		$x_3 + x_5 \longrightarrow x_3 + x_4 + x_5$	
by	122	R_122		$x_3 + x_5 + x_8 \longrightarrow x_3 + x_4 + x_5 + x_8$	
<u>8</u>	123	R_123		$x_2 + x_4 \longrightarrow x_2$	
<u>≦</u>	124	R_124		$x1 + x4 \longrightarrow x1$	
Ä	125	R_125		$x_4 + x_6 \longrightarrow x_6$	
×	126	R_126		$x_{-}1 + 25 x_{-}4 \longrightarrow x_{-}3$	
	127	R_127		$x_{-}3 \longrightarrow \emptyset$	
	128	R_128		$x_3 + x_5 \longrightarrow x_5$	
		R_129		$x_3 + x_8 \longrightarrow x_8$	
	130	$R_{-}130$		$x_{-1} + x_{-33} + x_{-39} + x_{-4} + x_{-5} \longrightarrow x_{-1} + x_{-2} + x_{-2} + x_{-1} + x_{-2} + x_{-2} + x_{-1} + x_{-2} +$	
				$x_3 + x_3 + x_4 + x_5$	
	131	R_131		$x_1 + x_3 + x_3 + x_4 + x_5 \longrightarrow x_2 + x_3 + x_5$	
				$x_39 + x_4 + x_5$	
		R_132		$x1 + x29 \longrightarrow x2 + x29$	
		R_133		$x_2 \longrightarrow \emptyset$	
		$R_{-}134$		$x_{-}2 + x_{-}35 \longrightarrow x_{-}1 + x_{-}35$	
	135	R_135		$\emptyset \longrightarrow x_{-}1$	

No	Id	Name	Reaction Equation	SBO
136	R_136		$x2 \longrightarrow x1 + x2$	
137	$R_{-}137$		$x_3 \longrightarrow x_1 + x_3$	
138	R_138		$x_29 \longrightarrow x_1 + x_29$	
139	R_139		$x1 \longrightarrow \emptyset$	
140	$R_{-}140$		$x_1 + x_3 + x_3 + x_4 + x_5 \longrightarrow x_3 + x_3 + x_4 + x_5 \longrightarrow x_5 + x_5 $	
			$x_4 + x_5$	

8.1 Reaction R_1

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_{-}4 + x_{-}51 \longrightarrow x_{-}52 \tag{112}$$

Reactants

Table 6: Properties of each reactant.

Id	Name	SBO
x_4	x_4	
x_51	x_51	

Product

Table 7: Properties of each product.

Id	Name	SBO
x_52	x_52	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{Beta} 90 \cdot [x_4] \cdot \frac{[x_51]}{\text{volLung}}$$
 (113)

8.2 Reaction R_2

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_52 \longrightarrow x_4 + x_51 \tag{114}$$

Table 8: Properties of each reactant.

Id	Name	SBO
x_52	x_52	

Table 9: Properties of each product.

ame SBO
4 51

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{Beta}90 \cdot \frac{[\text{x}_52]}{\text{K}93}$$
 (115)

8.3 Reaction R_3

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_{-}52 \longrightarrow \emptyset$$
 (116)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
x_52	x_52	

Kinetic Law

$$v_3 = \text{Eta}100 \cdot [x_52] \tag{117}$$

8.4 Reaction R_4

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_23 + x_4 \longrightarrow x_51 \tag{118}$$

Reactants

Table 11: Properties of each reactant.

Id	Name	SBO
x_23	x_23	
x_4	x_4	

Product

Table 12: Properties of each product.

Id	Name	SBO
x_51	x_51	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{Beta} 90 \cdot [x_4] \cdot \frac{[x_23]}{\text{volLung}}$$
 (119)

8.5 Reaction R_5

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}51 \longrightarrow x_{-}23 + x_{-}4$$
 (120)

Table 13: Properties of each reactant.

Id	Name	SBO
x_51	x_51	

Table 14: Properties of each product.

Id	Name	SBO
x_23 x_4	x_23 x_4	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{Beta}90 \cdot \frac{[\text{x}_51]}{\text{K}93}$$
 (121)

8.6 Reaction R_6

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_{-}51 \longrightarrow \emptyset$$
 (122)

Reactant

Table 15: Properties of each reactant.

Id	Name	SBO
x_51	x_51	

Kinetic Law

$$v_6 = \text{Eta}99 \cdot [x_51] \tag{123}$$

8.7 Reaction R_7

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_41 + x_49 \longrightarrow x_50 \tag{124}$$

Reactants

Table 16: Properties of each reactant.

Id	Name	SBO
x_41	x_41	
x_49	x_49	

Product

Table 17: Properties of each product.

Id	Name	SBO
x_50	x_50	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{Beta}90 \cdot [x_41] \cdot \frac{[x_49]}{\text{volBlood}}$$
 (125)

8.8 Reaction R_8

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}50 \longrightarrow x_{-}41 + x_{-}49 \tag{126}$$

Table 18: Properties of each reactant.

Id	Name	SBO
x_50	x_50	

Table 19: Properties of each product.

Id	Name	SBO
x_41 x_49	x_41 x_49	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{Beta}90 \cdot \frac{[\text{x}_50]}{\text{K93}} \tag{127}$$

8.9 Reaction R_9

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_{-}50 \longrightarrow \emptyset$$
 (128)

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
x_50	x_50	

Kinetic Law

$$v_9 = \text{Eta}96 \cdot [x_50] \tag{129}$$

8.10 Reaction R_10

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_22 + x_41 \longrightarrow x_49 \tag{130}$$

Reactants

Table 21: Properties of each reactant.

Id	Name	SBO
x_22	x_22	
x_41	x_41	

Product

Table 22: Properties of each product.

Id	Name	SBO
x_49	x_49	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{Beta}90 \cdot [x_41] \cdot \frac{[x_22]}{\text{volBlood}}$$
(131)

8.11 Reaction R_11

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}49 \longrightarrow x_{-}22 + x_{-}41 \tag{132}$$

Table 23: Properties of each reactant.

Id	Name	SBO
x_49	x_49	

Table 24: Properties of each product.

Id	Name	SBO
x_22 x_41		

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{Beta}90 \cdot \frac{[\text{x}_49]}{\text{K}93}$$
 (133)

8.12 Reaction R_12

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_49 \longrightarrow \emptyset$$
 (134)

Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
x_49	x_49	

Kinetic Law

$$v_{12} = \text{Eta}95 \cdot [x_49]$$
 (135)

8.13 Reaction R_13

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_41 + x_47 \longrightarrow x_48 \tag{136}$$

Reactants

Table 26: Properties of each reactant.

Id	Name	SBO
x_41	x_41	
x_47	x_47	

Product

Table 27: Properties of each product.

Id	Name	SBO
x_48	x_48	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{Beta}90 \cdot [x_41] \cdot \frac{[x_47]}{\text{volBlood}}$$
 (137)

8.14 Reaction R_14

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}48 \longrightarrow x_{-}41 + x_{-}47 \tag{138}$$

Table 28: Properties of each reactant.

Id	Name	SBO
x_48	x_48	

Table 29: Properties of each product.

Id	Name	SBO
x_41	x_41	
x_47	x_47	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{Beta}90 \cdot \frac{[\text{x}_48]}{\text{K}90}$$
 (139)

8.15 Reaction R_15

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_-17 + 1000 x_-45 \longrightarrow x_-18 + 1000 x_-47$$
 (140)

Reactants

Table 30: Properties of each reactant.

Id	Name	SBO
x_17 x_45		

Products

Table 31: Properties of each product.

Id	Name	SBO
v 18	v 18	

Id	Name	SBO
x_47	x_47	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = Gamma37 \cdot [x_{-}17] \tag{141}$$

8.16 Reaction R_16

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}20 \longrightarrow x_{-}18 + 1000 x_{-}47 \tag{142}$$

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
x_20	x_20	

Products

Table 33: Properties of each product.

Name	SBO
x_18 x_47	

Kinetic Law

Derived unit not available

$$v_{16} = v41 \cdot volLymphB$$
 (143)

8.17 Reaction R_17

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_{-}18 + 1000 x_{-}47 \longrightarrow x_{-}20 \tag{144}$$

Reactants

Table 34: Properties of each reactant.

Id	Name	SBO
x_18	$x_{-}18$	
x_47	x_47	

Product

Table 35: Properties of each product.

Id	Name	SBO
x_20	x_20	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = Gamma40 \cdot [x_{-}18] \tag{145}$$

8.18 Reaction R_18

This is an irreversible reaction of three reactants forming two products.

Reaction equation

$$0.5 x_{-}18 + 500 x_{-}47 + x_{-}48 \longrightarrow 0.5 x_{-}19 + x_{-}48$$
 (146)

Table 36: Properties of each reactant.

Id	Name	SBO
x_18	x_18	
x_47	$x_{-}47$	
x_48	x_48	

Table 37: Properties of each product.

Id	Name	SBO
x_19	x_19	
x_48	x_48	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{Delta38} \cdot [x_{-}18] \cdot \frac{[x_{-}47]}{[x_{-}47] + [x_{-}48] + 1.0E - 5}$$
 (147)

8.19 Reaction R_19

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_{4}2 + x_{4}5 \longrightarrow x_{4}6 \tag{148}$$

Reactants

Table 38: Properties of each reactant.

Id	Name	SBO
	x_42 x_45	

Product

Table 39: Properties of each product.

Id	Name	SBO
x_46	x_46	

Kinetic Law

$$v_{19} = \text{Beta}90 \cdot [x_42] \cdot \frac{[x_45]}{\text{volBlood}}$$
 (149)

8.20 Reaction R_20

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_46 \longrightarrow x_42 + x_45 \tag{150}$$

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
x_46	x_46	

Products

Table 41: Properties of each product.

Id	Name	SBO
	x_42 x_45	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{Beta}90 \cdot \frac{[\text{x}_46]}{\text{K}90} \tag{151}$$

8.21 Reaction R_21

This is an irreversible reaction of three reactants forming three products.

Reaction equation

$$x_{-}16 + 1000 x_{-}43 + x_{-}44 \longrightarrow x_{-}17 + x_{-}44 + 1000 x_{-}45$$
 (152)

Table 42: Properties of each reactant.

Id	Name	SBO
x_16	x_16	
x_43	$x_{-}43$	
x_44	x_44	

Table 43: Properties of each product.

Id	Name	SBO
x_17	x_17	
x_44	x_44	
x_45	x_45	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{Delta}36 \cdot [x_{-}16] \cdot \frac{[x_{-}44]}{[x_{-}43] + [x_{-}44] + 1.0E - 5}$$
 (153)

8.22 Reaction R_22

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_{-}42 + x_{-}43 \longrightarrow x_{-}44 \tag{154}$$

Reactants

Table 44: Properties of each reactant.

Id	Name	SBO
x_42 x_43	x_42 x_43	

Product

Table 45: Properties of each product.

Id	Name	SBO
x_44	x_44	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{Beta}90 \cdot [x_42] \cdot \frac{[x_43]}{\text{volBlood}}$$
 (155)

8.23 Reaction R_23

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}44 \longrightarrow x_{-}42 + x_{-}43 \tag{156}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
x_44	x_44	

Products

Table 47: Properties of each product.

Id	Name	SBO
x_42	x_42	
x_43	x_43	

Kinetic Law

$$v_{23} = \text{Beta}90 \cdot \frac{[\text{x}_44]}{\text{K}90} \tag{157}$$

8.24 Reaction R_24

This is an irreversible reaction of no reactant forming two products.

Reaction equation

$$\emptyset \longrightarrow x_{-}16 + 1000 x_{-}43 \tag{158}$$

Products

Table 48: Properties of each product.

Id	Name	SBO
x_16		
x_43	x_43	

Kinetic Law

Derived unit not available

$$v_{24} = \text{Rho34} \cdot \text{volBlood} \tag{159}$$

8.25 **Reaction R_25**

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$2x_{-}19 \longrightarrow x_{-}16 + 1000x_{-}43$$
 (160)

Reactant

Table 49: Properties of each reactant.

Id	Name	SBO
x_19	x_19	

Products

Table 50: Properties of each product.

Id	Name	SBO
x_16	x_16	

Id	Name	SBO
x_43	x_43	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{Eta}47 \cdot [x_{-}19] \tag{161}$$

8.26 **Reaction R_26**

This is an irreversible reaction of three reactants forming one product.

Reaction equation

$$x_{-}16 + 1000 x_{-}43 + x_{-}44 \longrightarrow x_{-}44$$
 (162)

Reactants

Table 51: Properties of each reactant.

Name	SBO
x_16	
x_43	
x_44	
	x_16 x_43

Product

Table 52: Properties of each product.

Id	Name	SBO
x_44	x_44	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{Eta35} \cdot [x_{-}16] \cdot \frac{[x_{-}43]}{[x_{-}43] + [x_{-}44] + 1.0E - 5}$$
 (163)

8.27 Reaction R_27

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_41 \longrightarrow x_42$$
 (164)

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
x_41	x_41	

Product

Table 54: Properties of each product.

Id	Name	SBO
x_42	x_42	

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = P89 \cdot [x_{-}41] \tag{165}$$

8.28 Reaction R_28

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_42 \longrightarrow x_41$$
 (166)

Reactant

Table 55: Properties of each reactant.

Id	Name	SBO
x_42	x_42	

Product

Table 56: Properties of each product.

Id	Name	SBO
x_41	x_41	

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = P89 \cdot [x_{-}42] \tag{167}$$

8.29 **Reaction** R_29

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_4 \longrightarrow x_41$$
 (168)

Reactant

Table 57: Properties of each reactant.

Id	Name	SBO
x_4	x_4	

Product

Table 58: Properties of each product.

Id	Name	SBO
x_41	x_41	

Kinetic Law

Derived unit not available

$$v_{29} = v87 \cdot volLung \tag{169}$$

8.30 Reaction R_30

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_30 \longrightarrow x_41 \tag{170}$$

Reactant

Table 59: Properties of each reactant.

Id	Name	SBO
x_30	x_30	

Product

Table 60: Properties of each product.

Id	Name	SBO
x_41	x_41	

Kinetic Law

Derived unit contains undeclared units

$$v_{30} = P88 \cdot [x_{-}30] \tag{171}$$

8.31 Reaction R_31

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_41 \longrightarrow x_30 \tag{172}$$

Reactant

Table 61: Properties of each reactant.

Id	Name	SBO
x_41	x_41	

Product

Table 62: Properties of each product.

Id	Name	SBO
x_30	x_30	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \text{volLung} \cdot [x_41] \cdot \frac{P88}{\text{volBlood}}$$
 (173)

8.32 Reaction R_32

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow x_{-}40 \tag{174}$$

Product

Table 63: Properties of each product.

Id	Name	SBO
x_40	x_40	

Kinetic Law

Derived unit not available

$$v_{32} = v82 \cdot volLung \tag{175}$$

8.33 **Reaction R_33**

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_40 \longrightarrow \emptyset$$
 (176)

Table 64: Properties of each reactant.

Id	Name	SBO
x_40	x_40	

Kinetic Law

Derived unit not available

$$v_{33} = v83 \cdot \text{volLung} \tag{177}$$

8.34 Reaction R_34

This is an irreversible reaction of three reactants forming four products.

Reaction equation

$$x_38 + x_4 + x_5 \longrightarrow x_38 + x_39 + x_4 + x_5$$
 (178)

Reactants

Table 65: Properties of each reactant.

x_38	
4	
x_5	
	x_38 x_4 x_5

Products

Table 66: Properties of each product.

Id	Name	SBO
x_38	x_38	
x_39	$x_{-}39$	
x_4	x_4	
x_5	x_5	

Kinetic Law

$$v_{34} = \text{Rho}80 \cdot \text{volLung} \cdot \frac{\frac{[x_38] \cdot [x_4]}{\text{ci}80 \cdot \text{volLung} + [x_38]}}{\text{c}80 \cdot \text{volLung} + [x_4] + [x_5]} + \text{Rho}80 \cdot \text{volLung} \cdot \frac{\frac{[x_38] \cdot [x_5]}{\text{ci}80 \cdot \text{volLung} + [x_38]}}{\text{c}80 \cdot \text{volLung} + [x_4] + [x_5]}$$
(179)

8.35 Reaction R_35

This is an irreversible reaction of two reactants forming three products.

Reaction equation

$$x_2 + x_8 \longrightarrow x_2 + x_3 + x_8$$
 (180)

Reactants

Table 67: Properties of each reactant.

Id	Name	SBO
x_2	x_2	
x_8	x8	

Products

Table 68: Properties of each product.

Id	Name	SBO
x_2 x_39 x_8	x_2 x_39 x_8	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{volLung} \cdot [x_2] \cdot [x_8] \cdot \frac{q80}{\text{cii}80 \cdot \text{volLung} + [x_2]}$$
(181)

8.36 Reaction R_36

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_39 \longrightarrow \emptyset$$
 (182)

Reactant

Table 69: Properties of each reactant.

Id	Name	SBO
x_39	x_39	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{Eta81} \cdot [x_39]$$
 (183)

8.37 Reaction R_37

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow x_{-}38 \tag{184}$$

Product

Table 70: Properties of each product.

Id	Name	SBO
x_38	x_38	

Kinetic Law

Derived unit not available

$$v_{37} = v77 \cdot \text{volLung} \tag{185}$$

8.38 **Reaction R_38**

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-1} \longrightarrow x_{-1} + x_{-3}8 \tag{186}$$

Reactant

Table 71: Properties of each reactant.

Id	Name	SBO
$x_{-}1$	$x_{-}1$	

Products

Table 72: Properties of each product.

Id	Name	SBO
x_1	$x_{-}1$	
x_38	x_38	

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = q78a \cdot [x_{-}1] \tag{187}$$

8.39 Reaction R_39

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}2 \longrightarrow x_{-}2 + x_{-}38 \tag{188}$$

Reactant

Table 73: Properties of each reactant.

Id	Name	SBO
x_2	x_2	

Products

Table 74: Properties of each product.

Id	Name	SBO
x_2 x_38	x_2 x_38	

Kinetic Law

Derived unit contains undeclared units

$$v_{39} = q78b \cdot [x_2] \tag{189}$$

8.40 Reaction R_40

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_{-}38 \longrightarrow \emptyset \tag{190}$$

Reactant

Table 75: Properties of each reactant.

Id	Name	SBO
x_38	x_38	

Kinetic Law

Derived unit contains undeclared units

$$v_{40} = \text{Eta} 79 \cdot [x_38] \tag{191}$$

8.41 Reaction R_41

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow x_{-}37 \tag{192}$$

Product

Table 76: Properties of each product.

Id	Name	SBO
x_37	x_37	

Kinetic Law

Derived unit not available

$$v_{41} = v76 \cdot volBlood \tag{193}$$

8.42 Reaction R_42

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_{-}37 \longrightarrow \emptyset \tag{194}$$

Reactant

Table 77: Properties of each reactant.

Id	Name	SBO
x_37	x_37	

Kinetic Law

Derived unit not available

$$v_{42} = v77 \cdot volBlood \tag{195}$$

8.43 Reaction R_43

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}10 \longrightarrow x_{-}10 + x_{-}36 \tag{196}$$

Table 78: Properties of each reactant.

Id	Name	SBO
x_10	x_10	

Table 79: Properties of each product.

Id	Name	SBO
x_10 x_36	x_10 x_36	

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = q74 \cdot [x_{-}10] \tag{197}$$

8.44 Reaction R_44

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_{-}36 \longrightarrow \emptyset \tag{198}$$

Reactant

Table 80: Properties of each reactant.

Id	Name	SBO
x_36	x_36	

Kinetic Law

Derived unit not available

$$v_{44} = \text{Eta75} \cdot [\text{x}_36] + \text{v76} \cdot \text{volLymphT}$$
 (199)

8.45 Reaction R_45

This is an irreversible reaction of three reactants forming three products.

Reaction equation

$$x_2 + x_3 + x_3 \longrightarrow x_2 + 2x_3 + x_3$$
 (200)

Reactants

Table 81: Properties of each reactant.

Id	Name	SBO
$x_{-}2$	$x_{-}2$	
x_35	$x_{-}35$	
x_39	x_39	

Products

Table 82: Properties of each product.

Id	Name	SBO
x_2	x_2	
x_35	x_35	
x_39	x_39	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = c72 \cdot q72a \cdot [x_2] \cdot \frac{1}{[x_35] + ci72 \cdot [x_39] + c72 \cdot volLung}$$
 (201)

8.46 Reaction R_46

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_8 \longrightarrow x_35 + x_8 \tag{202}$$

Table 83: Properties of each reactant.

Id	Name	SBO
x_8	x_8	

Table 84: Properties of each product.

Id	Name	SBO
x_35 x_8	x_35 x_8	

Kinetic Law

Derived unit contains undeclared units

$$v_{46} = q72b \cdot [x_{-}8] \tag{203}$$

8.47 Reaction R_47

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}9 \longrightarrow x_{-}35 + x_{-}9 \tag{204}$$

Reactant

Table 85: Properties of each reactant.

Id	Name	SBO
x_9	x_9	

Products

Table 86: Properties of each product.

Id	Name	SBO
x_35 x_9	x_35 x_9	

Kinetic Law

Derived unit contains undeclared units

$$v_{47} = q72c \cdot [x_{-}9] \tag{205}$$

8.48 **Reaction R_48**

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}7 \longrightarrow x_{-}35 + x_{-}7 \tag{206}$$

Reactant

Table 87: Properties of each reactant.

Id	Name	SBO
x_7	$x_{-}7$	

Products

Table 88: Properties of each product.

Id	Name	SBO
x_35 x_7	x_35 x_7	

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = q72d \cdot [x_{-}7] \tag{207}$$

8.49 Reaction R_49

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_3 \longrightarrow x_3 + x_35 \tag{208}$$

Reactant

Table 89: Properties of each reactant.

Id	Name	SBO
x_3	x_3	

Products

Table 90: Properties of each product.

Id	Name	SBO
x_3	x_3	
x_35	x_35	

Kinetic Law

Derived unit contains undeclared units

$$v_{49} = q72e \cdot [x_{-}3] \tag{209}$$

8.50 Reaction R_50

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_{-35} \longrightarrow \emptyset$$
 (210)

Reactant

Table 91: Properties of each reactant.

Id	Name	SBO
x_35	x_35	

Kinetic Law

$$v_{50} = \text{Eta73} \cdot [x_35]$$
 (211)

8.51 Reaction R_51

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow x_{-}34 \tag{212}$$

Product

Table 92: Properties of each product.

Id	Name	SBO
x_34	x_34	

Kinetic Law

Derived unit not available

$$v_{51} = v70 \cdot volLymphB$$
 (213)

8.52 Reaction R_52

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_34 \longrightarrow \emptyset$$
 (214)

Reactant

Table 93: Properties of each reactant.

Id	Name	SBO
x_34	x_34	

Kinetic Law

Derived unit not available

$$v_{52} = v71 \cdot volLymphB \tag{215}$$

8.53 Reaction R_53

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}7 \longrightarrow x_{-}33 + x_{-}7 \tag{216}$$

Reactant

Table 94: Properties of each reactant.

Id	Name	SBO
x_7	x_7	

Products

Table 95: Properties of each product.

Id	Name	SBO
x_33	x_33	
$x_{-}7$	$x_{-}7$	

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = q68a \cdot [x_{-}7] \tag{217}$$

8.54 Reaction R_54

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_9 \longrightarrow x_33 + x_9 \tag{218}$$

Table 96: Properties of each reactant.

Id	Name	SBO
x_9	x_9	

Table 97: Properties of each product.

Id	Name	SBO
x_33 x_9	x_33 x_9	

Kinetic Law

Derived unit contains undeclared units

$$v_{54} = q68b \cdot [x_{-}9] \tag{219}$$

8.55 Reaction R_55

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_3 \longrightarrow \emptyset$$
 (220)

Reactant

Table 98: Properties of each reactant.

Id	Name	SBO
x_33	x_33	

Kinetic Law

Derived unit contains undeclared units

$$v_{55} = \text{Eta69} \cdot [x_{-}33]$$
 (221)

8.56 Reaction R_56

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow x_{-}32 \tag{222}$$

Table 99: Properties of each product.

Id	Name	SBO
x_32	x_32	

Kinetic Law

Derived unit not available

$$v_{56} = v66 \cdot volLung \tag{223}$$

8.57 Reaction R_57

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_32 \longrightarrow \emptyset$$
 (224)

Reactant

Table 100: Properties of each reactant.

Id	Name	SBO
x_32	x_32	

Kinetic Law

Derived unit not available

$$v_{57} = v67 \cdot volLung \tag{225}$$

8.58 Reaction R_58

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow x_31$$
 (226)

Product

Table 101: Properties of each product.

Id	Name	SBO
x_31	x_31	

Derived unit not available

$$v_{58} = v64 \cdot volLung \tag{227}$$

8.59 Reaction R_59

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_31 \longrightarrow \emptyset$$
 (228)

Reactant

Table 102: Properties of each reactant.

Id	Name	SBO
x_31	x_31	

Kinetic Law

Derived unit not available

$$v_{59} = v65 \cdot volLung \tag{229}$$

8.60 Reaction R_60

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_{-}29 \longrightarrow x_{-}30 \tag{230}$$

Reactant

Table 103: Properties of each reactant.

Id	Name	SBO
x_29	x_29	

Table 104: Properties of each product.

Id	Name	SBO
x_30	x_30	

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = \text{Eta}60 \cdot [\text{x.29}]$$
 (231)

8.61 Reaction R_61

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_2 + x_2 = \longrightarrow x_2 + x_3$$
 (232)

Reactants

Table 105: Properties of each reactant.

Id	Name	SBO
x_2 x_29	x_2 x_29	

Products

Table 106: Properties of each product.

Id	Name	SBO
	x_2 x_30	

Derived unit contains undeclared units

$$v_{61} = \text{Alpha}61 \cdot [x_2] \cdot \frac{[x_29]}{100000 + [x_29]}$$
 (233)

8.62 **Reaction R_62**

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_27 + x_29 \longrightarrow x_27 + x_30$$
 (234)

Reactants

Table 107: Properties of each reactant.

Id	Name	SBO
x_27	x_27	
x_29	x_29	

Products

Table 108: Properties of each product.

Id	Name	SBO
x_27	x_27	
x_30	x_30	

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = \text{Alpha61} \cdot [x_27] \cdot \frac{[x_29]}{100000 + [x_29]}$$
 (235)

8.63 **Reaction R_63**

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_30 \longrightarrow \emptyset$$
 (236)

Reactant

Table 109: Properties of each reactant.

Id	Name	SBO
x_30	x_30	

Kinetic Law

Derived unit contains undeclared units

$$v_{63} = k63 \cdot [x_{-}30] \tag{237}$$

8.64 Reaction R_64

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow x_{-}29 \tag{238}$$

Product

Table 110: Properties of each product.

Id	Name	SBO
x_29	x_29	

Kinetic Law

Derived unit not available

$$v_{64} = v59 \cdot \text{volLung} \tag{239}$$

8.65 Reaction R_65

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_{-}1 \longrightarrow x_{-}28 \tag{240}$$

Reactant

Table 111: Properties of each reactant.

Id	Name	SBO
$x_{-}1$	$x_{-}1$	

Product

Table 112: Properties of each product.

Id	Name	SBO
x_28	x_28	

Kinetic Law

Derived unit not available

$$v_{65} = v57 \cdot volLung \tag{241}$$

8.66 Reaction R_66

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_2 = \emptyset$$
 (242)

Reactant

Table 113: Properties of each reactant.

Id	Name	SBO
x_28	x_28	

Kinetic Law

Derived unit not available

$$v_{66} = v58 \cdot volLung \tag{243}$$

8.67 Reaction R_67

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_{-}26 + x_{-}29 \longrightarrow x_{-}27 + x_{-}29$$
 (244)

Reactants

Table 114: Properties of each reactant.

Id	Name	SBO
x_26 x_29	x_26 x_29	

Products

Table 115: Properties of each product.

Id	Name	SBO
x_27	x_27	
x_29	x_29	

Kinetic Law

Derived unit contains undeclared units

$$v_{67} = [x_26] \cdot [x_29] \cdot \frac{\text{Delta54}}{\text{volLung}}$$
 (245)

8.68 **Reaction R_68**

This is an irreversible reaction of three reactants forming three products.

Reaction equation

$$x_27 + x_29 + x_8 \longrightarrow 2x_27 + x_29 + x_8$$
 (246)

Reactants

Table 116: Properties of each reactant.

Id	Name	SBO
x_27	x_27	
x_29	$x_{-}29$	
x_8	x_8	

Table 117: Properties of each product.

Id	Name	SBO
x_27	x_27	
x_29	$x_{-}29$	
x_8	x8	

Kinetic Law

Derived unit contains undeclared units

$$v_{68} = \frac{\frac{\frac{[x.8] \cdot [x.27]}{\text{volLung}} \cdot [x.29] \cdot \text{volLung} \cdot \text{Mu55}}{\text{cF} + [x.29]}}{\text{cF} + \text{FACTOR}}$$
(247)

8.69 **Reaction R_69**

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_2 \longrightarrow \emptyset$$
 (248)

Reactant

Table 118: Properties of each reactant.

Id	Name	SBO
x_27	x_27	

Kinetic Law

Derived unit contains undeclared units

$$v_{69} = \text{Eta}56 \cdot [x_27]$$
 (249)

8.70 **Reaction R_70**

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_2 + x_2 = x_2 + x_2 = x_2 + x_2 = x_2$$

Reactants

Table 119: Properties of each reactant.

Id	Name	SBO
x_2 x_25	x_2 x_25	

Products

Table 120: Properties of each product.

ld N	lame	SRO
x_2 x x 26 x	- -	

Kinetic Law

Derived unit contains undeclared units

$$v_{70} = \text{Gamma52} \cdot [x_25] \cdot \frac{[x_2]}{\text{c52} \cdot \text{volLung} + [x_2]}$$
 (251)

8.71 Reaction R_71

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_2 = 0 \longrightarrow \emptyset$$
 (252)

Reactant

Table 121: Properties of each reactant.

Id	Name	SBO
x_26	x_26	

Derived unit contains undeclared units

$$v_{71} = \text{Eta53} \cdot [\text{x}_26]$$
 (253)

8.72 Reaction R_72

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_224 \longrightarrow x_225$$
 (254)

Reactant

Table 122: Properties of each reactant.

Id	Name	SBO
x_24	x_24	

Product

Table 123: Properties of each product.

	•	
Id	Name	SBO
x_25	x_25	

Kinetic Law

Derived unit contains undeclared units

$$v_{72} = \text{Gamma51} \cdot [\text{x.24}]$$
 (255)

8.73 Reaction R_73

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_2 \longrightarrow \emptyset$$
 (256)

Reactant

Table 124: Properties of each reactant.

Id	Name	SBO
x_25	x_25	

Kinetic Law

Derived unit contains undeclared units

$$v_{73} = \text{Eta85} \cdot [x_{-}25]$$
 (257)

8.74 Reaction R_74

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_11 \longrightarrow x_24$$
 (258)

Reactant

Table 125: Properties of each reactant.

Id	Name	SBO
x_11	$x_{-}11$	

Product

Table 126: Properties of each product.

Id	Name	SBO
x_24	x_24	

Kinetic Law

Derived unit not available

$$v_{74} = \text{Rho}50 \cdot \text{volLymphT}$$
 (259)

8.75 Reaction R_75

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_-10 + x_-11 \longrightarrow x_-10 + x_-24$$
 (260)

Reactants

Table 127: Properties of each reactant.

Id	Name	SBO
x_10 x_11		

Products

Table 128: Properties of each product.

Id	Name	SBO
x_10	x_10	
x_24	x_24	

Kinetic Law

Derived unit contains undeclared units

$$v_{75} = [x_{-}10] \cdot [x_{-}11] \cdot \frac{\text{Delta}50}{\text{volLymphT}}$$
 (261)

8.76 Reaction R_76

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_22 \longrightarrow x_23$$
 (262)

Reactant

Table 129: Properties of each reactant.

Id	Name	SBO
x_22	x_22	

Table 130: Properties of each product.

Id	Name	SBO
x_23	x_23	

Kinetic Law

Derived unit contains undeclared units

$$v_{76} = P46 \cdot [x_{-}22] \tag{263}$$

8.77 Reaction R_77

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_-23 \longrightarrow x_-22$$
 (264)

Reactant

Table 131: Properties of each reactant.

Id	Name	SBO
x_23	x_23	

Product

Table 132: Properties of each product.

Id	Name	SBO
x_22	x_22	

Derived unit contains undeclared units

$$v_{77} = \text{volBlood} \cdot [x_23] \cdot \frac{P46}{\text{volLung}}$$
 (265)

8.78 Reaction R_78

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}18 \longrightarrow x_{-}18 + 1000000 x_{-}22$$
 (266)

Reactant

Table 133: Properties of each reactant.

Id	Name	SBO
x_18	$x_{-}18$	

Products

Table 134: Properties of each product.

Id	Name	SBO
x_18	$x_{-}18$	
$x_{-}22$	$x_{-}22$	

Kinetic Law

Derived unit $mol \cdot l^{-1}$

$$v_{78} = [x_{-}18] \tag{267}$$

8.79 Reaction R_79

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_2 = 0 \longrightarrow x_2 = 0 + 1000000 = 0$$
 (268)

Reactant

Table 135: Properties of each reactant.

Id	Name	SBO
x_20	x_20	

Products

Table 136: Properties of each product.

Id	Name	SBO
	x_20 x 22	

Kinetic Law

Derived unit $mol \cdot l^{-1}$

$$v_{79} = [x_{-}20] \tag{269}$$

8.80 Reaction R_80

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_2 = 1 \longrightarrow x_2 = 1 + 1000000 x_2 = 22$$
 (270)

Reactant

Table 137: Properties of each reactant.

Id	Name	SBO
x_21	x_21	

Products

Table 138: Properties of each product.

Id	Name	SBO
x_21 x_22		

Derived unit $mol \cdot l^{-1}$

$$v_{80} = [x_21] \tag{271}$$

8.81 Reaction R_81

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_2 \longrightarrow \emptyset$$
 (272)

Reactant

Table 139: Properties of each reactant.

Id	Name	SBO
x_22	x_22	

Kinetic Law

Derived unit contains undeclared units

$$v_{81} = \text{Eta}49 \cdot [x_22]$$
 (273)

8.82 Reaction R_82

This is an irreversible reaction of three reactants forming three products.

Reaction equation

$$0.5 x_2 + x_4 + x_4 = 0.5 x_2 + x_4 + x_4 = 0.5 x_2 + x_4 = 0.5 x_2 = 0.5 x_4 = 0.5$$

Reactants

Table 140: Properties of each reactant.

Id	Name	SBO
x_20	x_20	
x_47	x_47	
x_48	x_48	

Table 141: Properties of each product.

Id	Name	SBO
x_21	x_21	
x_47	x_47	
x_48	x_48	

Kinetic Law

Derived unit contains undeclared units

$$v_{82} = \text{Delta43} \cdot [x_20] \cdot \frac{[x_47]}{[x_47] + [x_48] + 1.0E - 5}$$
 (275)

8.83 Reaction R_83

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_2 \longrightarrow \emptyset$$
 (276)

Reactant

Table 142: Properties of each reactant.

Id	Name	SBO
x_21	x_21	

Kinetic Law

Derived unit contains undeclared units

$$v_{83} = \text{Eta}44 \cdot [x_21] \tag{277}$$

8.84 Reaction R_84

This is an irreversible reaction of three reactants forming three products.

Reaction equation

$$x_20 + x_47 + x_48 \longrightarrow 2x_20 + x_47 + x_48$$
 (278)

Reactants

Table 143: Properties of each reactant.

Id	Name	SBO
x_20	x_20	
x_47	$x_{-}47$	
$x_{-}48$	x_48	

Products

Table 144: Properties of each product.

Id	Name	SBO
x_20	$x_{-}20$	
x_47	$x_{-}47$	
x_48	x_48	

Kinetic Law

Derived unit contains undeclared units

$$v_{84} = \text{Mu}42 \cdot [\text{x}_20] \cdot \frac{[\text{x}_48]}{[\text{x}_47] + [\text{x}_48] + 1.0E - 5}$$
 (279)

8.85 Reaction R_85

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_2 \longrightarrow \emptyset$$
 (280)

Reactant

Table 145: Properties of each reactant.

Id	Name	SBO
x_20	x_20	

Derived unit contains undeclared units

$$v_{85} = \text{Eta}48 \cdot [x_20] \tag{281}$$

8.86 **Reaction R_86**

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_{-}14 \longrightarrow x_{-}15 \tag{282}$$

Reactant

Table 146: Properties of each reactant.

Id	Name	SBO
x_14	x_14	

Product

Table 147: Properties of each product.

Id	Name	SBO
x_15	x_15	

Kinetic Law

Derived unit contains undeclared units

$$v_{86} = \text{Gamma32} \cdot [x_{-}14]$$
 (283)

8.87 Reaction R_87

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_{-}15 \longrightarrow \emptyset$$
 (284)

Reactant

Table 148: Properties of each reactant.

Id	Name	SBO
x_15	x_15	

Kinetic Law

Derived unit contains undeclared units

$$v_{87} = \text{Eta}33 \cdot [x_{-}15]$$
 (285)

8.88 Reaction R_88

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_-9 \longrightarrow x_-14$$
 (286)

Reactant

Table 149: Properties of each reactant.

Id	Name	SBO
x_9	x_9	

Product

Table 150: Properties of each product.

Id	Name	SBO
$x_{-}14$	$x_{-}14$	

Kinetic Law

Derived unit contains undeclared units

$$v_{88} = \text{Gamma31} \cdot [x_9] \tag{287}$$

8.89 Reaction R_89

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_{-}12 \longrightarrow x_{-}13 \tag{288}$$

Reactant

Table 151: Properties of each reactant.

Id	Name	SBO
x_12	$x_{-}12$	

Product

Table 152: Properties of each product.

Id	Name	SBO
x_13	x_13	

Kinetic Law

Derived unit contains undeclared units

$$v_{89} = \text{Gamma23} \cdot [x_{-}12]$$
 (289)

8.90 Reaction R_90

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_13 + x_2 \longrightarrow x_2 + x_7$$
 (290)

Reactants

Table 153: Properties of each reactant.

Id	Name	SBO
x_13 x_2	x_13 x_2	

Table 154: Properties of each product.

Id	Name	SBO
x_2	x_2	
$x_{-}7$	$x_{-}7$	

Kinetic Law

Derived unit contains undeclared units

$$v_{90} = \text{Gamma24} \cdot [x_{-}13] \cdot \frac{[x_{-}2]}{\text{c24} \cdot \text{volLung} + [x_{-}2]}$$
 (291)

8.91 Reaction R_91

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_1 \longrightarrow \emptyset$$
 (292)

Reactant

Table 1<u>55</u>: Properties of each reactant.

Id	Name	SBO
x_13	x_13	

Kinetic Law

Derived unit contains undeclared units

$$v_{91} = \text{Eta84} \cdot [x_{-}13]$$
 (293)

8.92 Reaction R_92

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_{-}11 \longrightarrow x_{-}12 \tag{294}$$

Reactant

Table 156: Properties of each reactant.

Id	Name	SBO
x_11	x_11	

Product

Table 157: Properties of each product.

Id	Name	SBO
x_12	$x_{-}12$	

Kinetic Law

Derived unit not available

$$v_{92} = \text{Rho21} \cdot \text{volLymphT}$$
 (295)

8.93 Reaction R_93

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_{-}10 + x_{-}11 \longrightarrow x_{-}10 + x_{-}12$$
 (296)

Reactants

Table 158: Properties of each reactant.

Id	Name	SBO
x_10	x_10	
$x_{-}11$	$x_{-}11$	

Table 159: Properties of each product.

Id	Name	SBO
	x_10 x_12	

Kinetic Law

Derived unit contains undeclared units

$$v_{93} = [x_{-}10] \cdot [x_{-}11] \cdot \frac{Delta21}{volLymphT}$$
 (297)

8.94 Reaction R_94

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_-12 \longrightarrow 2x_-12$$
 (298)

Reactant

Table 160: Properties of each reactant.

Id	Name	SBO
x_12	x_12	

Product

Table 161: Properties of each product.

Id	Name	SBO
x_12	x_12	

Kinetic Law

Derived unit contains undeclared units

$$v_{94} = [x_{-}12] \cdot \frac{\text{Mu}22}{\text{c}22 + \left(\frac{[x_{-}12]}{\text{volLymphT}}\right)^2}$$
 (299)

8.95 Reaction R_95

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow x_- 11$$
 (300)

Product

Table 162: Properties of each product.

Id	Name	SBO
x_11	$x_{-}11$	

Kinetic Law

Derived unit not available

$$v_{95} = \text{Rho19} \cdot \text{volLymphT}$$
 (301)

8.96 **Reaction R_96**

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}10 \longrightarrow x_{-}10 + x_{-}11 \tag{302}$$

Reactant

Table 163: Properties of each reactant.

Id	Name	SBO
x_10	$x_{-}10$	

Products

Table 164: Properties of each product.

Id	Name	SBO
x_10 x_11		

Derived unit contains undeclared units

$$v_{96} = \text{Mu}19 \cdot [x_{-}10] \tag{303}$$

8.97 Reaction R_97

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_-11 \longrightarrow \emptyset$$
 (304)

Reactant

Table 165: Properties of each reactant.

Id	Name	SBO
x_11	x_11	

Kinetic Law

Derived unit contains undeclared units

$$v_{97} = \text{Eta}20 \cdot [x_{-}11]$$
 (305)

8.98 **Reaction R_98**

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_4 + x_6 \longrightarrow x_10 + x_4 \tag{306}$$

Reactants

Table 166: Properties of each reactant.

4 6

Table 167: Properties of each product.

Id	Name	SBO
x_10 x_4	x_10 x_4	

Kinetic Law

Derived unit contains undeclared units

$$v_{98} = \text{Gamma17} \cdot [x_6] \cdot \frac{[x_4]}{\text{c17} \cdot \text{volLung} + [x_4]}$$
 (307)

8.99 Reaction R_99

This is an irreversible reaction of two reactants forming three products.

Reaction equation

$$x_29 + x_6 \longrightarrow x_10 + x_29 + x_6$$
 (308)

Reactants

Table 168: Properties of each reactant.

Id	Name	SBO
x_29 x 6	x_29 x_6	
X_0	X_0	

Products

Table 169: Properties of each product.

Id	Name	SBO
x_10	x_10	
x_29	$x_{-}29$	
x_6	x_6	

Derived unit contains undeclared units

$$v_{99} = \frac{\frac{\frac{[\text{x.6}]}{\text{volLymphT}} \cdot [\text{x.29}] \cdot \text{volLymphT} \cdot \text{volLung} \cdot \text{MuI} \cdot \text{Gamma17}}{\text{cF} + [\text{x.29}]}}{\text{cI} + \frac{[\text{x.29}]}{\text{cF} + [\text{x.29}]}}$$
(309)

8.100 Reaction R_100

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_{-}10 \longrightarrow \emptyset$$
 (310)

Reactant

Table 170: Properties of each reactant.

Id	Name	SBO
$x_{-}10$	$x_{-}10$	

Kinetic Law

Derived unit contains undeclared units

$$v_{100} = \text{Eta18} \cdot [x_{-}10] \tag{311}$$

8.101 Reaction R_101

This is an irreversible reaction of three reactants forming three products.

Reaction equation

$$x_3 + x_3 + x_7 \longrightarrow x_3 + x_9 + x_9$$
 (312)

Reactants

Table 171: Properties of each reactant.

Id	Name	SBO
x_33		
x_39	x_39	
$x_{-}7$	$x_{-}7$	

Products

Table 172: Properties of each product.

Id	Name	SBO
x_33	$x_{-}33$	
x_39	$x_{-}39$	
x_9	x_9	

Kinetic Law

Derived unit contains undeclared units

$$v_{101} = Delta29 \cdot [x_{-}7] \cdot \frac{[x_{-}33]}{[x_{-}33] + fi29 \cdot [x_{-}39] + cf29 \cdot volLung}$$
 (313)

8.102 Reaction R_102

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_-9 \longrightarrow \emptyset$$
 (314)

Reactant

Table 173: Properties of each reactant.

Id	Name	SBO
x_9	x_9	

Derived unit not available

$$v_{102} = v30 \cdot volLung \tag{315}$$

8.103 Reaction R_103

This is an irreversible reaction of five reactants forming five products.

Reaction equation

$$x_3 + x_3 + x_3 + x_3 + x_3 + x_4 \longrightarrow x_3 + x_3 + x_3 + x_3 + x_4$$
 (316)

Reactants

Table 174: Properties of each reactant.

Id	Name	SBO
x_33	x_33	
x_35	$x_{-}35$	
x_36	$x_{-}36$	
$x_{-}38$	$x_{-}38$	
x_7	$x_{-}7$	

Products

Table 175: Properties of each product.

Id	Name	SBO
x_33	x_33	
x_35	$x_{-}35$	
x_36	x_36	
x_38	$x_{-}38$	
x_8	x_8	

Kinetic Law

Derived unit contains undeclared units

$$\nu_{103} = [x_36] \cdot [x_38] \cdot \frac{Delta27}{volLung} \cdot \frac{[x_7]}{[x_36] + fi27 \cdot [x_33] + fii27 \cdot [x_35] + cf27 \cdot volLung} \quad (317)$$

8.104 Reaction R_104

This is an irreversible reaction of three reactants forming three products.

Reaction equation

$$x_-1 + x_-30 + x_-7 \longrightarrow x_-1 + x_-30 + x_-8$$
 (318)

Reactants

Table 176: Properties of each reactant.

Id	Name	SBO
x_1	x_1	
x_30	$x_{-}30$	
$x_{-}7$	$x_{-}7$	

Products

Table 177: Properties of each product.

Id	Name	SBO
x_1	x_1	
x_30	$x_{-}30$	
x_8	x8	

Kinetic Law

Derived unit contains undeclared units

$$v_{104} = Deltai27 \cdot [x_{-}1] \cdot [x_{-}30] \cdot \frac{[x_{-}7]}{10^{7} + [x_{-}30]}$$
 (319)

8.105 Reaction R_105

This is an irreversible reaction of three reactants forming four products.

Reaction equation

$$x_2 + x_3 + x_7 \longrightarrow x_2 + x_3 + x_7 + x_8$$
 (320)

Reactants

Table 178: Properties of each reactant.

Id	Name	SBO
x_2	x_2	
x_30	$x_{-}30$	
$x_{-}7$	$x_{-}7$	

Table 179: Properties of each product.

Id	Name	SBO
x_2	x_2	
x_30	$x_{-}30$	
$x_{-}7$	$x_{-}7$	
x_8	x8	

Kinetic Law

Derived unit contains undeclared units

$$v_{105} = Deltai27 \cdot [x_2] \cdot [x_30] \cdot \frac{[x_7]}{10^7} \cdot 10^7 + [x_30]$$
 (321)

8.106 Reaction R_106

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_{-}29 + x_{-}8 \longrightarrow x_{-}29 + 2x_{-}8$$
 (322)

Reactants

Table 180: Properties of each reactant.

Id	Name	SBO
x_29 x_8	x_29 x_8	

Products

Table 181: Properties of each product.

Id	Name	SBO
x_29 x 8	x_29 x 8	

Derived unit contains undeclared units

$$v_{106} = \frac{\frac{\frac{[x.8] \cdot [x.8] \cdot [x.29] \cdot \text{volLung} \cdot \text{Mu86}}{\text{voF} + [x.29]}}{\text{cf86} + \text{FACTOR}}$$
(323)

8.107 Reaction R_107

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_-8 \longrightarrow \emptyset$$
 (324)

Reactant

Table 182: Properties of each reactant.

Id	Name	SBO
x_8	x8	

Kinetic Law

Derived unit contains undeclared units

$$v_{107} = \text{Eta28} \cdot [x_-8]$$
 (325)

8.108 Reaction R_108

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_2 + x_7 \longrightarrow x_2 + 2x_7 \tag{326}$$

Reactants

Table 183: Properties of each reactant.

Id	Name	SBO
x_2	x_2	
$x_{-}7$	x_7	

Table 184: Properties of each product.

Id	Name	SBO
x_2	x_2	
$x_{-}7$	$x_{-}7$	

Kinetic Law

Derived unit contains undeclared units

$$v_{108} = \text{Mu}25 \cdot [x_{-}7] \cdot \frac{[x_{-}2]}{\text{c25} \cdot \text{volLung} + [x_{-}2]}$$
 (327)

8.109 Reaction R_109

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_{-}7 \longrightarrow \emptyset$$
 (328)

Reactant

Table 185: Properties of each reactant.

Id	Name	SBO
x_7	x_7	

Kinetic Law

Derived unit contains undeclared units

$$v_{109} = \text{Eta26} \cdot [x_{-}7]$$
 (329)

8.110 Reaction R_110

This is an irreversible reaction of three reactants forming two products.

Reaction equation

$$x_2 + x_3 + x_7 \longrightarrow x_2 + x_3$$
 (330)

Reactants

Table 186: Properties of each reactant.

Id	Name	SBO
x_2	x_2	
x_30	$x_{-}30$	
$x_{-}7$	$x_{-}7$	

Products

Table 187: Properties of each product.

Id	Name	SBO
x_2	$x_{-}2$	
x_30	x_30	

Kinetic Law

Derived unit contains undeclared units

$$v_{110} = Deltai27 \cdot [x_{-}2] \cdot [x_{-}7] \cdot \frac{[x_{-}30]}{10^{7} + [x_{-}30]}$$
 (331)

8.111 Reaction R_111

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow x_-6$$
 (332)

Product

Table 188: Properties of each product.

Id	Name	SBO
x_6	x_6	

Derived unit not available

$$v_{111} = Rho15 \cdot volLung \tag{333}$$

8.112 Reaction R_112

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-4} \longrightarrow x_{-4} + x_{-6} \tag{334}$$

Reactant

Table 189: Properties of each reactant.

Id	Name	SBO
x_4	x_4	·

Products

Table 190: Properties of each product.

Id	Name	SBO
x_4	x_4	
x_6	x_6	

Kinetic Law

Derived unit contains undeclared units

$$v_{112} = \text{volLung} \cdot [x_4] \cdot \frac{\text{Mu15}}{\text{c15} \cdot \text{volLung} + [x_4]}$$
(335)

8.113 Reaction R_113

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_29 \longrightarrow x_29 + x_6 \tag{336}$$

Reactant

Table 191: Properties of each reactant.

Id	Name	SBO
x_29	x_29	

Products

Table 192: Properties of each product.

Id	Name	SBO
x_29 x_6	x_29 x_6	

Kinetic Law

Derived unit contains undeclared units

$$v_{113} = \frac{\frac{[\text{x.29}] \cdot \text{volLung\cdot Rho21 \cdot MuI}}{\text{cF} + [\text{x.29}]}}{\text{cI} + \frac{[\text{x.29}]}{\text{cF} + [\text{x.29}]}} + \frac{\frac{[\text{x.29}] \cdot \text{volLung\cdot Rho50 \cdot MuI}}{\text{cF} + [\text{x.29}]}}{\text{cI} + \frac{[\text{x.29}]}{\text{cF} + [\text{x.29}]}}$$
(337)

8.114 Reaction R_114

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_-6 \longrightarrow \emptyset$$
 (338)

Reactant

Table 193: Properties of each reactant.

Id	Name	SBO
x_6	x_6	

Derived unit contains undeclared units

$$v_{114} = \text{Eta16} \cdot [x_{-}6]$$
 (339)

8.115 Reaction R_115

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_29 + x_6 \longrightarrow x_29 \tag{340}$$

Reactants

Table 194: Properties of each reactant.

Id	Name	SBO
x_29 x_6	x_29 x_6	

Product

Table 195: Properties of each product.

Id	Name	SBO
x_29	x_29	

Kinetic Law

Derived unit contains undeclared units

$$v_{115} = \frac{\frac{\frac{[\text{x.6}]}{\text{volLung}} \cdot [\text{x.29}] \cdot \text{volLung} \cdot \text{MuI-Gamma17}}{\text{cF+[\text{x.29}]}}}{\text{cI} + \frac{[\text{x.29}]}{\text{cF+[\text{x.29}]}}}$$
(341)

8.116 Reaction R_116

This is an irreversible reaction of three reactants forming four products.

Reaction equation

$$x_{-1} + x_{-3} + x_{-4} \longrightarrow x_{-1} + x_{-3} + x_{-4} + x_{-5}$$
 (342)

Reactants

Table 196: Properties of each reactant.

Id	Name	SBO
x_1	x_1	
x_3	x_3	
x_4	x_4	

Products

Table 197: Properties of each product.

Id	Name	SBO
$x_{-}1$	$x_{-}1$	
x_3	x_3	
x_4	x_4	
x_5	x_5	

Kinetic Law

Derived unit contains undeclared units

$$v_{116} = \frac{\frac{[x.3] \cdot [x.1] \cdot [x.4] \cdot 25 \cdot k2}{[x.4] + c2 \cdot volLung}}{[x.3]}$$
(343)

8.117 Reaction R_117

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_3 + x_5 \longrightarrow x_3 + 2x_5 \tag{344}$$

Reactants

Table 198: Properties of each reactant.

Id	Name	SBO
x_3	x_3	
x_5	x_5	

Products

Table 199: Properties of each product.

Id	Name	SBO
	x_3 x_5	

Kinetic Law

Derived unit contains undeclared units

$$v_{117} = \text{Mu8} \cdot [x_{-3}] \cdot \frac{[x_{-5}]}{[x_{-3}]}$$
 (345)

8.118 Reaction R_118

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_3 + x_5 \longrightarrow x_3 \tag{346}$$

Reactants

Table 200: Properties of each reactant.

Id	Name	SBO
x_3	x_3	
x_5	x_5	

Product

Table 201: Properties of each product.

Id	Name	SBO
x_3	x_3	

Derived unit contains undeclared units

$$v_{118} = \text{Mu8} \cdot \frac{\frac{\left[x_3\right] \cdot \left[x_5\right] \cdot \left(\frac{\left[x_5\right]}{\left[x_3\right]}\right)^{2}}{\left(\frac{\left[x_5\right]}{\left[x_3\right]}\right)^{2} + \text{K3s}^{2}}}{\left[x_3\right]} + \frac{\frac{\left[x_3\right] \cdot \left[x_5\right] \cdot \text{volLung} \cdot \text{v14}}{\left[x_3\right]}}{\left[x_3\right]} + \frac{\frac{\frac{\left[x_3\right] \cdot \left[x_5\right] \cdot \left[x_3\right]}{\left[x_3\right]} \cdot \left(\frac{\left[x_5\right]}{\left[x_3\right]}\right)^{2} \cdot \text{k3}}{\left(\frac{\left[x_5\right]}{\left[x_3\right]}\right)^{2} + \text{K3s}^{2}}}{\left[x_3\right]}$$
(347)

8.119 Reaction R_119

This is an irreversible reaction of three reactants forming two products.

Reaction equation

$$x_{-}3 + x_{-}5 + x_{-}8 \longrightarrow x_{-}3 + x_{-}8$$
 (348)

Reactants

Table 202: Properties of each reactant.

Id	Name	SBO
x_3	x_3	
$x_{-}5$	$x_{-}5$	
x_8	x8	

Products

Table 203: Properties of each product.

Id	Name	SBO
x_3	x_3	
x_8	x8	

Kinetic Law

Derived unit contains undeclared units

$$v_{119} = \frac{\frac{\frac{[x.3] \cdot [x.5] \cdot [x.3]}{[x.3]} \cdot [x.8] \cdot Alpha4}{\frac{[x.3]}{[x.3]} + c4 \cdot volLung}}{[x.3]}$$
(349)

8.120 Reaction R_120

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$x_4 \longrightarrow 2x_4$$
 (350)

Reactant

Table 204: Properties of each reactant.

Id	Name	SBO
x_4	x_4	

Product

Table 205: Properties of each product.

Id	Name	SBO
x_4	x_4	

Kinetic Law

Derived unit contains undeclared units

$$v_{120} = \text{Mu1} \cdot [x_4] \tag{351}$$

8.121 Reaction R_121

This is an irreversible reaction of two reactants forming three products.

Reaction equation

$$x_{-}3 + x_{-}5 \longrightarrow x_{-}3 + x_{-}4 + x_{-}5$$
 (352)

Reactants

Table 206: Properties of each reactant.

Id	Name	SBO
x_3	x_3	
x_5	x_5	

Products

Table 207: Properties of each product.

Id	Name	SBO
x_3	x_3	
x_4	x_4	
$x_{-}5$	x_5	

Kinetic Law

Derived unit contains undeclared units

$$v_{121} = \text{volLung} \cdot [x_5] \cdot \frac{\text{v14}}{[x_3]} + \text{k3} \cdot [x_3] \cdot \frac{1}{\left(\frac{[x_5]}{[x_3]}\right)^2 + \text{K3s}^2} \cdot \frac{[x_5]}{[x_3]} \cdot \left(\frac{[x_5]}{[x_3]}\right)^2 \quad (353)$$

8.122 Reaction R_122

This is an irreversible reaction of three reactants forming four products.

Reaction equation

$$x_3 + x_5 + x_8 \longrightarrow x_3 + x_4 + x_5 + x_8$$
 (354)

Reactants

Table 208: Properties of each reactant.

_	Id	Name	SBO
	x_3	x_3	
	x_5	x_5	
:	8_x	x_8	

Products

Table 209: Properties of each product.

Id	Name	SBO
x_3	x_3	
x_4	x_4	
x_5	x_5	
x_8	x_8	

Derived unit contains undeclared units

$$v_{122} = \frac{\frac{[x.3] \cdot [x.5]}{\text{volLung}} \cdot [x.8] \cdot \text{volLung} \cdot \text{Alpha4}}{\frac{[x.3]}{[x.3]} + c4 \cdot \text{volLung}}$$
(355)

8.123 Reaction R_123

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_2 + x_4 \longrightarrow x_2 \tag{356}$$

Reactants

Table 210: Properties of each reactant.

Name	SBO
x_2	
X_4	

Product

Table 211: Properties of each product.

Id	Name	SBO
x_2	x_2	

Derived unit contains undeclared units

$$v_{123} = [x_2] \cdot [x_4] \cdot \frac{Alpha5}{volLung}$$
 (357)

8.124 Reaction R_124

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_-1 + x_-4 \longrightarrow x_-1 \tag{358}$$

Reactants

Table 212: Properties of each reactant.

Id	Name	SBO
x_{-1}	$x_{-}1$	
x_4	x_4	

Product

Table 213: Properties of each product.

Id	Name	SBO
x_{-1}	x_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{124} = [x_1] \cdot [x_4] \cdot \frac{Alpha6}{volLung}$$
 (359)

8.125 Reaction R_125

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_{-}4 + x_{-}6 \longrightarrow x_{-}6 \tag{360}$$

Reactants

Table 214: Properties of each reactant.

Id	Name	SBO
x_4	x_4	
x_6	x_6	

Product

Table 215: Properties of each product.

Id	Name	SBO
x_6	x_6	

Kinetic Law

Derived unit contains undeclared units

$$v_{125} = [x_4] \cdot [x_6] \cdot \frac{k7}{\text{volLung}}$$
 (361)

8.126 Reaction R_126

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_{-}1 + 25 x_{-}4 \longrightarrow x_{-}3 \tag{362}$$

Reactants

Table 216: Properties of each reactant.

Id	Name	SBO
x_1 x_4	71-1	

Product

Table 217: Properties of each product.

Id	Name	SBO
x_3	x_3	

Derived unit contains undeclared units

$$v_{126} = k2 \cdot [x_1] \cdot \frac{[x_4]}{[x_4] + c2 \cdot \text{volLung}}$$
 (363)

8.127 Reaction R_127

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_{-}3 \longrightarrow \emptyset$$
 (364)

Reactant

Table 218: Properties of each reactant.

Id	Name	SBO
x_3	x_{-3}	

Kinetic Law

Derived unit not available

$$v_{127} = v14 \cdot volLung \tag{365}$$

8.128 Reaction R_128

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_3 + x_5 \longrightarrow x_5 \tag{366}$$

Reactants

Table 219: Properties of each reactant.

Id	Name	SBO
x_3	x_3	
x_5	x_5	

Product

Table 220: Properties of each product.

Id	Name	SBO
x_5	x_5	

Kinetic Law

Derived unit contains undeclared units

$$v_{128} = k3 \cdot \frac{[x_3]}{\left(\frac{[x_5]}{[x_3]}\right)^2 + K3s^2} \cdot \left(\frac{[x_5]}{[x_3]}\right)^2$$
 (367)

8.129 Reaction R_129

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$x_{-}3 + x_{-}8 \longrightarrow x_{-}8 \tag{368}$$

Reactants

Table 221: Properties of each reactant.

Id	Name	SBO
x_3	x_3	
x_8	x8	

Product

Table 222: Properties of each product.

Id	Name	SBO
x_8	x_8	

Derived unit contains undeclared units

$$v_{129} = \frac{\frac{[x.3]}{\text{volLung}} \cdot [x.8] \cdot \text{volLung} \cdot \text{Alpha4}}{\frac{[x.3]}{[x.3]} + \text{c4} \cdot \text{volLung}}$$
(369)

8.130 Reaction R_130

This is an irreversible reaction of five reactants forming six products.

Reaction equation

$$x_1 + x_2 + x_3 + x_4 + x_5 \longrightarrow x_1 + x_2 + x_3 + x_3 + x_4 + x_5$$
 (370)

Reactants

Table 223: Properties of each reactant.

Id	Name	SBO
x_1	x_1	
x_33	$x_{-}33$	
x_39	$x_{-}39$	
x_4	x_4	
x_5	x_5	

Products

Table 224: Properties of each product.

Id	Name	SBO
x_1	$x_{-}1$	
x_2	x_2	
x_33	$x_{-}33$	
x_39	$x_{-}39$	
x_4	x_4	

Id	Name	SBO
x_5	x_5	

Derived unit contains undeclared units

$$v_{130} = Delta12 \cdot [x_1] \cdot \frac{[x_39]}{[x_39] + fi12 \cdot [x_33] + cf12 \cdot volLung} \cdot \frac{[x_4]}{c12 \cdot volLung + [x_4] + [x_5]}$$
(371)

8.131 Reaction R_131

This is an irreversible reaction of five reactants forming five products.

Reaction equation

$$x_1 + x_3 + x_4 + x_5 \longrightarrow x_2 + x_3 + x_4 + x_5$$
 (372)

Reactants

Table 225: Properties of each reactant.

Id	Name	SBO
x_1	x_1	
x_33	$x_{-}33$	
x_39	$x_{-}39$	
$x_{-}4$	x_4	
x_5	x_5	

Products

Table 226: Properties of each product.

Id	Name	SBO
x_2	x_2	
x_33	$x_{-}33$	
x_39	$x_{-}39$	
x_4	x_4	
x_5	x_5	

Derived unit contains undeclared units

$$v_{131} = Delta12 \cdot [x_1] \cdot \frac{[x_39]}{[x_39] + fi12 \cdot [x_33] + cf12 \cdot volLung} \cdot \frac{[x_5]}{c12 \cdot volLung + [x_4] + [x_5]}$$
(373)

8.132 Reaction R_132

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_-1 + x_-29 \longrightarrow x_-2 + x_-29 \tag{374}$$

Reactants

Table 227: Properties of each reactant.

Id	Name	SBO
$x_{-}1$	$x_{-}1$	
x_29	x_29	

Products

Table 228: Properties of each product.

Id	Name	SBO
x_2 x_29	AL	

Kinetic Law

Derived unit contains undeclared units

$$v_{132} = Deltai12 \cdot [x_{-}1] \cdot \frac{[x_{-}29]}{ci12 + [x_{-}29]}$$
 (375)

8.133 Reaction R_133

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_2 \longrightarrow \emptyset$$
 (376)

Reactant

Table 229: Properties of each reactant.

Id	Name	SBO
x_2	x_2	

Kinetic Law

Derived unit contains undeclared units

$$v_{133} = \text{Eta}13 \cdot [x_2]$$
 (377)

8.134 Reaction R_134

This is an irreversible reaction of two reactants forming two products.

Reaction equation

$$x_2 + x_3 = x_1 + x_3 = x_1 + x_3 = x_1 + x_3 = x_1 + x_2 = x_1 + x_2 = x_1 + x_2 = x_1 + x_2 = x_2 = x_2 = x_1 + x_2 = x_2 = x_2 = x_1 + x_2 = x_2 = x_2 = x_2 = x_1 + x_2 = x_2 = x_2 = x_2 = x_1 = x_1 + x_2 = x_2 = x_2 = x_2 = x_1 = x_2 = x_2$$

Reactants

Table 230: Properties of each reactant.

Id	Name	SBO
x_2	$x_{-}2$	
x_35	x_35	

Products

Table 231: Properties of each product.

Id	Name	SBO
x_1 x_35	x_1 x_35	
11_00	N_33	

Derived unit contains undeclared units

$$v_{134} = Delta11 \cdot [x.2] \cdot \frac{[x.35]}{[x.35] + cf11 \cdot volLung}$$
 (379)

8.135 Reaction R_135

This is an irreversible reaction of no reactant forming one product.

Reaction equation

$$\emptyset \longrightarrow x_- 1$$
 (380)

Product

Table 232: Properties of each product.

Id	Name	SBO
x_{-1}	$x_{-}1$	

Kinetic Law

Derived unit not available

$$v_{135} = \text{Rho9} \cdot \text{volLung}$$
 (381)

8.136 Reaction R_136

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-}2 \longrightarrow x_{-}1 + x_{-}2 \tag{382}$$

Reactant

Table 233: Properties of each reactant.

Id	Name	SBO
x_2	x_2	

Products

Table 234: Properties of each product.

Id	Name	SBO
x_1	71_1	
x_2	x_2	

Kinetic Law

Derived unit contains undeclared units

$$v_{136} = Mu9 \cdot [x_{-}2] \tag{383}$$

8.137 Reaction R_137

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{-3} \longrightarrow x_{-1} + x_{-3} \tag{384}$$

Reactant

Table 235: Properties of each reactant.

Id	Name	SBO
x_3	x_3	

Products

Table 236: Properties of each product.

Id	Name	SBO
x_1	x_1	
x_3	$x_{-}3$	

Kinetic Law

Derived unit contains undeclared units

$$v_{137} = \text{Mu9} \cdot \text{w9} \cdot [\text{x}_3] \tag{385}$$

8.138 Reaction R_138

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$x_{2}9 \longrightarrow x_{1} + x_{2}9 \tag{386}$$

Reactant

Table 237: Properties of each reactant.

Id	Name	SBO
x_29	x_29	

Products

Table 238: Properties of each product.

Id	Name	SBO
x_1	$x_{-}1$	
x_29	x_29	

Kinetic Law

Derived unit contains undeclared units

$$v_{138} = \frac{\frac{[x.29] \cdot \text{volLung} \cdot \text{Mui} 9 \cdot \text{MuI}}{\text{cF} + [x.29]}}{\text{cI} + \frac{[x.29]}{\text{cF} + [x.29]}}$$
(387)

8.139 Reaction R_139

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$x_{-}1 \longrightarrow \emptyset$$
 (388)

Reactant

Table 239: Properties of each reactant.

Id	Name	SBO
x_1	x_1	

Derived unit contains undeclared units

$$v_{139} = \text{Eta}10 \cdot [x_{-}1] \tag{389}$$

8.140 Reaction R_140

This is an irreversible reaction of five reactants forming four products.

Reaction equation

$$x_1 + x_2 + x_3 + x_4 + x_5 \longrightarrow x_3 + x_4 + x_5$$
 (390)

Reactants

Table 240: Properties of each reactant.

Id	Name	SBO
x_1	x_1	
x_33	$x_{-}33$	
x_39	$x_{-}39$	
x_4	x_4	
$x_{-}5$	x_5	

Products

Table 241: Properties of each product.

Id	Name	SBO
x_33	x_33	
x_39	$x_{-}39$	
x_4	x_4	
x_5	$x_{-}5$	

Derived unit contains undeclared units

$$v_{140} = Delta12 \cdot [x_39] \cdot \frac{[x_1]}{[x_39] + fi12 \cdot [x_33] + cf12 \cdot volLung} \cdot \frac{[x_4]}{c12 \cdot volLung + [x_4] + [x_5]}$$
(391)

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

9.1 Species x_1

Name x_1

Initial concentration $10^8 \text{ mol} \cdot l^{-1}$

This species takes part in 21 reactions (as a reactant in R_38, R_65, R_104, R_116, R_124, R_126, R_130, R_131, R_132, R_139, R_140 and as a product in R_38, R_104, R_116, R_124, R_130, R_134, R_135, R_136, R_137, R_138).

$$\frac{d}{dt}x_{-1} = v_{38} + v_{104} + v_{116} + v_{124} + v_{130} + v_{134} + v_{135} + v_{136} + v_{137} + v_{138} - v_{38} - v_{65} - v_{104} - v_{116} - v_{124} - v_{126} - v_{130} - v_{131} - v_{132} - v_{139} - v_{140}$$
(392)

9.2 Species x_2

Name x_2

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in 27 reactions (as a reactant in R_35, R_39, R_45, R_61, R_70, R_90, R_105, R_108, R_110, R_123, R_134, R_136 and as a product in R_35, R_39, R_45, R_61, R_70, R_90, R_105, R_108, R_110, R_123, R_130, R_131, R_132, R_136).

$$\frac{d}{dt}x_{-2} = v_{35} + v_{39} + v_{45} + v_{61} + v_{70} + v_{90} + v_{105} + v_{108} + v_{110}
+ v_{123} + v_{130} + v_{131} + v_{132} + v_{136} - v_{35} - v_{39} - v_{45} - v_{61}
- v_{70} - v_{90} - v_{105} - v_{108} - v_{110} - v_{123} - v_{133} - v_{134} - v_{136}$$
(393)

9.3 Species x_3

Name x_3

Initial concentration $10^{-7} \text{ mol} \cdot l^{-1}$

This species takes part in 20 reactions (as a reactant in R_49, R_116, R_117, R_118, R_119, R_121, R_122, R_127, R_128, R_129, R_137 and as a product in R_49, R_116, R_117, R_118, R_119, R_121, R_122, R_126, R_137).

$$\frac{d}{dt}x_{-3} = v_{49} + v_{116} + v_{117} + v_{118} + v_{119} + v_{121} + v_{122} + v_{126} + v_{137} - v_{49} - v_{116} - v_{117} - v_{118} - v_{119} - v_{121} - v_{122} - v_{127} - v_{128} - v_{129} - v_{137}$$
(394)

9.4 Species x_4

Name x_4

Initial concentration 100000 mol·1⁻¹

This species takes part in 27 reactions (as a reactant in R₋1, R₋4, R₋29, R₋34, R₋98, R₋112, R₋116, R₋120, R₋123, R₋124, R₋125, R₋126, R₋130, R₋131, R₋140 and as a product in R₋2, R₋5, R₋34, R₋98, R₋112, R₋116, R₋120, R₋121, R₋122, R₋130, R₋131, R₋140).

$$\frac{d}{dt}x_{-4} = v_{2} + v_{5} + v_{34} + v_{98} + v_{112} + v_{116} + 2v_{120} + v_{121} + v_{122} + v_{130} + v_{131} + v_{140} - v_{1} - v_{4} - v_{29} - v_{34} - v_{98} - v_{112} - v_{116} - v_{120} - v_{123} - v_{124} - v_{125} - 25v_{126} - v_{130} - v_{131} - v_{140}$$

$$(395)$$

9.5 Species x_5

Name x_{-5}

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in 19 reactions (as a reactant in R_34 , R_117 , R_118 , R_119 , R_121 , R_122 , R_128 , R_130 , R_131 , R_140 and as a product in R_34 , R_116 , R_117 , R_121 , R_122 , R_128 , R_130 , R_131 , R_140).

$$\frac{d}{dt}x_{-5} = v_{34} + v_{116} + 2v_{117} + v_{121} + v_{122} + v_{128} + v_{130} + v_{131} + v_{140} - v_{34} - v_{117} - v_{118} - v_{119} - v_{121} - v_{122} - v_{128} - v_{130} - v_{131} - v_{140}$$
(396)

9.6 Species x_6

Name x_6

Initial concentration $5 \cdot 10^7 \text{ mol} \cdot 1^{-1}$

This species takes part in ten reactions (as a reactant in R_98, R_99, R_114, R_115, R_125 and as a product in R_99, R_111, R_112, R_113, R_125).

$$\frac{d}{dt}x_{-}6 = v_{99} + v_{111} + v_{112} + v_{113} + v_{125} - v_{98} - v_{99} - v_{114} - v_{115} - v_{125}$$
 (397)

9.7 Species x_7

Name $x_{-}7$

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in 14 reactions (as a reactant in R_48, R_53, R_101, R_103, R_104, R_105, R_108, R_109, R_110 and as a product in R_48, R_53, R_90, R_105, R_108).

$$\frac{d}{dt}x_{-}7 = v_{48} + v_{53} + v_{90} + v_{105} + 2v_{108} - v_{48} - v_{53} - v_{101} - v_{103} - v_{104} - v_{105} - v_{108} - v_{109} - v_{110}$$
(398)

9.8 Species x_8

Name x₋₈

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in 18 reactions (as a reactant in R_35, R_46, R_68, R_106, R_107, R_119, R_122, R_129 and as a product in R_35, R_46, R_68, R_103, R_104, R_105, R_106, R_119, R_122, R_129).

$$\frac{d}{dt}x_{-8} = v_{35} + v_{46} + v_{68} + v_{103} + v_{104} + v_{105} + 2v_{106} + v_{119} + v_{122} + v_{129} - v_{35} - v_{46} - v_{68} - v_{106} - v_{107} - v_{119} - v_{122} - v_{129}$$
(399)

9.9 Species x_9

Name x_9

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in seven reactions (as a reactant in R_47, R_54, R_88, R_102 and as a product in R_47, R_54, R_101).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x} - 9 = |v_{47}| + |v_{54}| + |v_{101}| - |v_{47}| - |v_{54}| - |v_{88}| - |v_{102}|$$

$$\tag{400}$$

9.10 Species x_10

Name $x_{-}10$

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in eleven reactions (as a reactant in R_43, R_75, R_93, R_96, R_100 and as a product in R_43, R_75, R_93, R_96, R_98, R_99).

$$\frac{d}{dt}x_{-}10 = v_{43} + v_{75} + v_{93} + v_{96} + v_{98} + v_{99} - v_{43} - v_{75} - v_{93} - v_{96} - v_{100}$$
 (401)

9.11 Species x_11

Name x_11

Initial concentration $78431.3726 \text{ mol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in R_74, R_75, R_92, R_93, R_97 and as a product in R_95, R_96).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{-}11 = |v_{95}| + |v_{96}| - |v_{74}| - |v_{75}| - |v_{92}| - |v_{93}| - |v_{97}| \tag{402}$$

9.12 Species x_12

Name x_12

Initial concentration $1111.18351 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R_89, R_94 and as a product in R_92, R_93, R_94).

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{-1}12 = |v_{92}| + |v_{93}| + 2|v_{94}| - |v_{89}| - |v_{94}| \tag{403}$$

9.13 Species x_13

Name $x_{-}13$

Initial concentration $3000.49554 \text{ mol} \cdot 1^{-1}$

This species takes part in three reactions (as a reactant in R_90, R_91 and as a product in R_89).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{-}13 = |v_{89}| - |v_{90}| - |v_{91}| \tag{404}$$

9.14 Species x_14

Name x_14

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R_86 and as a product in R_88).

$$\frac{d}{dt}x_{-}14 = |v_{88}| - |v_{86}| \tag{405}$$

9.15 Species x_15

Name x_15

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R_87 and as a product in R_86).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{-}15 = |v_{86}| - |v_{87}| \tag{406}$$

9.16 Species x_16

Name x_16

Initial concentration $18750 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R_21, R_26 and as a product in R_24, R_25).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{-}16 = |v_{24}| + |v_{25}| - |v_{21}| - |v_{26}| \tag{407}$$

9.17 Species x_17

Name x_17

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R_15 and as a product in R_21).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{-}17 = |v_{21}| - |v_{15}| \tag{408}$$

9.18 Species x_18

Name $x_{-}18$

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R_17, R_18, R_78 and as a product in R_15, R_16, R_78).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{-}18 = |v_{15}| + |v_{16}| + |v_{78}| - |v_{17}| - 0.5|v_{18}| - |v_{78}| \tag{409}$$

9.19 Species x_19

Name x_19

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R_25 and as a product in R_18).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{-}19 = 0.5 \ v_{18} - 2 \ v_{25} \tag{410}$$

9.20 Species x_20

Name x_20

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in R_16, R_79, R_82, R_84, R_85 and as a product in R_17, R_79, R_84).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x} \cdot 20 = v_{17} + v_{79} + 2 v_{84} - v_{16} - v_{79} - 0.5 v_{82} - v_{84} - v_{85} \tag{411}$$

9.21 Species x_21

Name x_21

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R_80, R_83 and as a product in R_80, R_82).

$$\frac{\mathrm{d}}{\mathrm{d}t}x.21 = |v_{80}| + 0.5 |v_{82}| - |v_{80}| - |v_{83}| \tag{412}$$

9.22 Species x_22

Name x_22

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in R_10, R_76, R_81 and as a product in R_11, R_77, R_78, R_79, R_80).

$$\frac{d}{dt}x_{-}22 = v_{11} + v_{77} + 1000000 v_{78} + 1000000 v_{79} + 1000000 v_{80} - v_{10} - v_{76} - v_{81}$$
(413)

9.23 Species x_23

Name x_23

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R_4 , R_77 and as a product in R_5 , R_76).

$$\frac{d}{dt}x.23 = |v_5| + |v_{76}| - |v_4| - |v_{77}| \tag{414}$$

9.24 Species x_24

Name x_24

Initial concentration $1111.11111 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R_72 and as a product in R_74, R_75).

$$\frac{\mathrm{d}}{\mathrm{d}t}x.24 = |v_{74}| + |v_{75}| - |v_{72}| \tag{415}$$

9.25 Species x_25

Name x_25

Initial concentration 50000 mol·l⁻¹

This species takes part in three reactions (as a reactant in R_70, R_73 and as a product in R_72).

$$\frac{\mathrm{d}}{\mathrm{d}t} x.25 = |v_{72}| - |v_{70}| - |v_{73}| \tag{416}$$

9.26 Species x_26

Name x_26

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R_67, R_71 and as a product in R_70).

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{2}6 = |v_{70}| - |v_{67}| - |v_{71}| \tag{417}$$

9.27 Species x_27

Name x_27

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R_62, R_68, R_69 and as a product in R_62, R_67, R_68).

$$\frac{\mathrm{d}}{\mathrm{d}t}x.27 = |v_{62}| + |v_{67}| + 2|v_{68}| - |v_{62}| - |v_{68}| - |v_{69}| \tag{418}$$

9.28 Species x_28

Name x_28

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R_66 and as a product in R_65).

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{.}28 = |v_{65}| - |v_{66}| \tag{419}$$

9.29 Species x_29

Name x_29

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in 20 reactions (as a reactant in R_60, R_61, R_62, R_67, R_68, R_99, R_106, R_113, R_115, R_132, R_138 and as a product in R_64, R_67, R_68, R_99, R_106, R_113, R_115, R_132, R_138).

$$\frac{d}{dt}x - 29 = v_{64} + v_{67} + v_{68} + v_{99} + v_{106} + v_{113} + v_{115} + v_{132} + v_{138} - v_{60} - v_{61} - v_{62} - v_{67} - v_{68} - v_{99} - v_{106} - v_{113} - v_{115} - v_{132} - v_{138}$$

$$(420)$$

9.30 Species x_30

Name x_30

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in R_30, R_63, R_104, R_105, R_110 and as a product in R_31, R_60, R_61, R_62, R_104, R_105, R_110).

$$\frac{d}{dt}x_{-30} = v_{31} + v_{60} + v_{61} + v_{62} + v_{104} + v_{105} + v_{110} - v_{30} - v_{63} - v_{104} - v_{105} - v_{110}$$
(421)

9.31 Species x_31

Name x_31

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in two reactions (as a reactant in R_59 and as a product in R_58).

$$\frac{d}{dt}x_{.}31 = |v_{58}| - |v_{59}| \tag{422}$$

9.32 Species x_32

Name x_32

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R_57 and as a product in R_56).

$$\frac{\mathrm{d}}{\mathrm{d}t}x.32 = |v_{56}| - |v_{57}| \tag{423}$$

9.33 Species x_33

Name $x_{-}33$

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in 13 reactions (as a reactant in R_55, R_101, R_103, R_130, R_131, R_140 and as a product in R_53, R_54, R_101, R_103, R_130, R_131, R_140).

$$\frac{d}{dt}x_{-33} = v_{53} + v_{54} + v_{101} + v_{103} + v_{130} + v_{131} + v_{140} - v_{55} - v_{101} - v_{103} - v_{130} - v_{131} - v_{140}$$
(424)

9.34 Species x_34

Name x_34

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R_52 and as a product in R_51).

$$\frac{\mathrm{d}}{\mathrm{d}t} x_{.} 34 = |v_{51}| - |v_{52}| \tag{425}$$

9.35 Species x_35

Name x_35

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in eleven reactions (as a reactant in R_45, R_50, R_103, R_134 and as a product in R_45, R_46, R_47, R_48, R_49, R_103, R_134).

$$\frac{d}{dt}x_{-35} = 2 v_{45} + v_{46} + v_{47} + v_{48} + v_{49} + v_{103} + v_{134} - v_{45} - v_{50} - v_{103} - v_{134}$$
 (426)

9.36 Species x_36

Name x_36

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R_44, R_103 and as a product in R_43, R_103).

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{.}36 = |v_{43}| + |v_{103}| - |v_{44}| - |v_{103}| \tag{427}$$

9.37 Species x_37

Name x_37

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R_42 and as a product in R_41).

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{.}37 = |v_{41}| - |v_{42}| \tag{428}$$

9.38 Species x_38

Name x_38

Initial concentration $275 \text{ mol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in R_34, R_40, R_103 and as a product in R_34, R_37, R_38, R_39, R_103).

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{-}38 = |v_{34}| + |v_{37}| + |v_{38}| + |v_{39}| + |v_{103}| - |v_{34}| - |v_{40}| - |v_{103}|$$
(429)

9.39 Species x_39

Name x_39

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in 13 reactions (as a reactant in R_36, R_45, R_101, R_130, R_131, R_140 and as a product in R_34, R_35, R_45, R_101, R_130, R_131, R_140).

$$\frac{d}{dt}x_{-39} = v_{34} + v_{35} + v_{45} + v_{101} + v_{130} + v_{131} + v_{140} - v_{36} - v_{45} - v_{101} - v_{130} - v_{131} - v_{140}$$
(430)

9.40 Species x_40

Name x_40

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R_33 and as a product in R_32).

$$\frac{d}{dt}x_{-}40 = v_{32} - v_{33} \tag{431}$$

9.41 Species x_41

Name x_41

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in eleven reactions (as a reactant in R₋7, R₋10, R₋13, R₋27, R₋31 and as a product in R₋8, R₋11, R₋14, R₋28, R₋29, R₋30).

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{-}41 = v_{8} + v_{11} + v_{14} + v_{28} + v_{29} + v_{30} - v_{7} - v_{10} - v_{13} - v_{27} - v_{31}$$
 (432)

9.42 Species x_42

Name x_42

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R_19, R_22, R_28 and as a product in R_20, R_23, R_27).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{-}42 = |v_{20}| + |v_{23}| + |v_{27}| - |v_{19}| - |v_{22}| - |v_{28}| \tag{433}$$

9.43 Species x_43

Name x_43

Initial concentration $1.875 \cdot 10^7 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R_21, R_22, R_26 and as a product in R_23, R_24, R_25).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{-}43 = v_{23} + 1000 v_{24} + 1000 v_{25} - 1000 v_{21} - v_{22} - 1000 v_{26} \tag{434}$$

9.44 Species x_44

Name x_44

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R_21, R_23, R_26 and as a product in R_21, R_22, R_26).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{-}44 = |v_{21}| + |v_{22}| + |v_{26}| - |v_{21}| - |v_{23}| - |v_{26}| \tag{435}$$

9.45 Species x_45

Name x_45

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R_15, R_19 and as a product in R_20, R_21).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{x}_{-}45 = v_{20} + 1000 v_{21} - 1000 v_{15} - v_{19} \tag{436}$$

9.46 Species x_46

Name x_46

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R_20 and as a product in R_19).

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{-}46 = |v_{19}| - |v_{20}| \tag{437}$$

9.47 Species x_47

Name x_47

Initial concentration $0 \text{ mol} \cdot 1^{-1}$

This species takes part in ten reactions (as a reactant in R_13, R_17, R_18, R_82, R_84 and as a product in R_14, R_15, R_16, R_82, R_84).

$$\frac{d}{dt}x_{-47} = v_{14} + 1000 v_{15} + 1000 v_{16} + v_{82} + v_{84} - v_{13} - 1000 v_{17} - 500 v_{18} - v_{82} - v_{84}$$
(438)

9.48 Species x_48

Name x_48

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in eight reactions (as a reactant in R_14, R_18, R_82, R_84 and as a product in R_13, R_18, R_82, R_84).

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{-}48 = |v_{13}| + |v_{18}| + |v_{82}| + |v_{84}| - |v_{14}| - |v_{18}| - |v_{82}| - |v_{84}| \tag{439}$$

9.49 Species x_49

Name x_49

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R_7 , R_1 , R_2 , and as a product in R_8 , R_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{-}49 = |v_{8}| + |v_{10}| - |v_{7}| - |v_{11}| - |v_{12}| \tag{440}$$

9.50 Species x_50

Name x_50

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R_8, R_9 and as a product in R_7).

$$\frac{d}{dt}x_{-}50 = |v_7| - |v_8| - |v_9| \tag{441}$$

9.51 Species x_51

Name x_51

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R_1 , R_5 , R_6 and as a product in R_2 , R_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}x.51 = |v_2| + |v_4| - |v_1| - |v_5| - |v_6| \tag{442}$$

9.52 Species x_52

Name x_52

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R_2, R_3 and as a product in R_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}x.52 = |v_1| - |v_2| - |v_3| \tag{443}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany