

PF Hadron Cluster Calibration for 12_0_0 (MC for Run 3)

Bhumika Kansal (IISER Pune)
Shubham Pandey
Seema Sharma

PPD meeting, 18 Nov 2021

<u>Outline</u>

- Technical Details
- Calibration Procedure
 - Energy dependent corrections
 - Eta dependent corrections
- Comparisons between old calibration parameters and new parameters.
 - 1D response plots
 - Summary response plots
- Summary

Technical Details:

- Centrally generated and reconstructed Single Pion samples
 - In CMSSW version: CMSSW_12_0_0
 - GT: 120X_mcRun3_2021_realistic_v6
 - Energy range: 2 500 GeV (using FlatRandomEGunProducer)
 - \circ $|\eta| < 3.0, |\phi| < 3.14$
 - Particle ID: -211 (charged hadron: π -)
 - It is referred as "Run3" sample in this presentation.
 - o Das link : link

Motivation for offline calibration

Simple block diagram

E = 0 to 500 GeV

EH hadrons : hadrons which start showering in ECAL.

H hadrons : hadrons which start showering in HCAL

- The total raw energy deposited by hadron : E_{total} = E_{RawEcal} +
 E_{RawHcal}
- Energy response = $(E_{total} E_{true})/E_{true}$ & resolution = $\sigma(E)/E$
- Plot 1D response distribution and obtain gaus mean & sigma
- Using above mean & sigma, plot response & resolution as a

function of true energy

Response is non-linear

1D-response

Energy dependent calibrations

To get c parameter

For EH Hadrons:

$$E_{corrected} = a(E_t) * E_{rawEcal} + b(E_t) * E_{rawHcal} + o_{EH}$$
 To get a & b parameter

For H Hadrons:

$$E_{\text{corrected}} = c(E_{\ell})^* E_{\text{rawHcal}} + o_{\text{H}}$$

- o_{EH} & o_{H} : offsets o_{EH} = 3.5 GeV o_{H} = 2.5 GeV
- These parameters are derived separately for Barrel region $(|\eta| < 1.5)$, and EndCap region $(1.5 < |\eta| < 3.0)$
- a(E_{true}), b(E_{true}) & c(E_{true}) curves are then parameterized as f(E_{true}).
- Then we recalculate the a(E_{true}), b(E_{true}) & c(E_{true}) values using parameterization formula.
- Apply these corrections on the raw ECAL & HCAL energies

 χ^2 minimization for EH hadrons

$$\chi_{EH}^2 = \sum_{hadrons} \left[\frac{E_{true} - E_{corr}}{\sigma(E_e + E_h)} \right]^2$$

 χ^2 minimization for H hadrons

$$\chi_H^2 = \sum_{hadrons} \left[\frac{E_{true} - E_{corr}}{\sigma(E_h)} \right]^2$$

A vs True Energy

Need for Pseudorapidity dependent Calibration

- After Energy correction, response linearity is restored but still it was reasonably off from zero response or having incomplete closure.
- There will be residual eta dependency in the response after applying energy dependent corrections which is due to non-uniform detector response in η. (next slide)
- We have divided calibrations into three categories : Barrel($|\eta| < 1.5$), endcap within tracker(1.5< $|\eta| < 2.5$) & endcap outside tracker (2.5< $|\eta| < 2.75$) regions.

Longitudinal view of CMS

Pseudorapidity dependent Calibrations

- Separately parametrize the eta dependence for barrel, encap (inside & outside tracker regions).
- For example, for EH hadrons in barrel,

$$\begin{split} \mathbf{E}_{\text{ corr}}^{\eta} &= (\mathbf{1} + \alpha(\mathbf{\textit{E}}_{\ell}) + \beta(\mathbf{\textit{E}}_{\ell})^*\mathbf{f}(|\boldsymbol{\eta}|)) * \mathbf{\textit{E}}^{\textit{Ecal}}_{\textit{E-corr}} + \mathbf{\textit{E}}^{\textit{Hcal}}_{\textit{E-corr}} \\ \text{Where, } f(|\boldsymbol{\eta}|) &= p_3 * (|\boldsymbol{\eta}| - p_0)^{p_1} + p_2 \text{ , that made} \\ \text{PF hadron calibration much easier for Ultra legacy. } \underline{\text{link}} \end{split}$$

- Then use same chi square minimisation strategy for α(E_t)
 & β(E_t).
- Apply these corrections on the top of Energy corrections
- We follow the same procedure as used in UL rounds. (<u>UL2016</u>, <u>UL2017</u> & <u>UL2018</u>)

We restrict ourself to $|\eta|$ < 2.75, don't correct after that because we start losing clusters outside ECAL/HCAL boundaries and don't want to over-correct it.

1D Response: EH-hadrons

Response (Mean) is getting improved

Red - Using Old calib parameters
Blue - Using New calib parameters

- Most probable value closer to zero residual.
- To get summary plot, Gaussian fit is used (which doesn't always work).
- For more details : barrel (<u>link</u>), endcap in tracker (<u>link</u>) & endcap out tracker (<u>link</u>)

EH-hadrons (Response as a function of E_{true})

Improvements for EH Hadrons

Red - old calibration parameters (UL2018) Blue - New calibration parameters (Run 3)

1D Response: H-hadrons

Response (Mean) is getting improved

Red - Using Old calib parameters
Blue - Using New calib parameters

- Most probable value closer to zero residual.
- To get summary plot, Gaussian fit is used (which doesn't always work).
- For more details : barrel (<u>link</u>), endcap in tracker (<u>link</u>) & endcap out tracker (<u>link</u>)

H-hadrons (Response as a function of E_{true})

Response as a function of |n|

Improvements for EH & H Hadrons in encap region (within few %).

EH-hadrons (Response as a function of pT_{true})

H-hadrons (Response as a function of pT_{true})

Summary

- Updated the PF hadron calibration parameters for Run 3.
 - o Parameter plots : https://bkansal.web.cern.ch/bkansal/Run3/param/
- Payload can be provided as soon as possible.
- Run2 UL presentations:
 - o 2016 (<u>link</u>)
 - o 2017 (<u>link</u>)
 - o 2018 (<u>link</u>)

Back up

EH-hadrons (Response as a function of |η|)

H-hadrons (Response as a function of $|\eta|$)

Need for Pseudorapidity dependent Calibration

- After Energy correction, response linearity is restored but still it was reasonably off from zero response or having incomplete closure.
- There is a residual eta dependency in the response after applying energy dependent corrections which is due to non-uniform detector response in η.
- We have divided calibrations into three categories : Barrel($|\eta|$ < 1.5), endcap within tracker(1.5< $|\eta|$ < 2.5) & endcap outside tracker (2.5< $|\eta|$ < 2.75) regions.
- We restrict ourself to $|\eta|$ < 2.75, don't correct after that because we start losing clusters outside ECAL/HCAL boundaries and don't want to over-correct it.

Longitudinal view of CMS

Calibration parameters in encap for H hadrons

X axis is extended to 1000 GeV

Parameters are constant in higher energy region

