

考研数学---微积分 LATEX 笔记

作者: Gabriel Liu

时间: March 19, 2020

版本: 0.1

邮箱:jsrglsq@outlook.com: jsrglsq@outlook.com

目录

1	极限与连续		
	1.1	极限的有关定义 1	1
	1.2	极限的性质	

第一章 极限与连续

1.1 极限的有关定义

定义 1.1. 数列极限

数列 $\{a_n\}$, 若对于 $\forall \varepsilon > 0$, $\exists N > 0$, 当 n > N 时, 有

$$|a_n - A| < \varepsilon \tag{1.1}$$

则称数列 $\{a_n\}$ 的极限为 A (或:收敛于 A),记作

$$\lim_{n \to \infty} a_n = A \tag{1.2}$$

定义 1.2. 函数极限-1

函数 f(x), 若对于 $\forall \varepsilon > 0$, $\exists \delta > 0$, 当 $0 < |x - a| < \delta$ 时, 有

$$|f(x) - A| < \varepsilon \tag{1.3}$$

则称函数 f(x) 的极限为 A, 记作

$$\lim_{x \to a} f(x) = A \tag{1.4}$$

笔记

- 1. 若 $x \to a$, 则 $x \ne a$. 如: $\lim_{x \to 0} \frac{0}{x^3} = 0$;
- 2. $\lim_{x \to a} f(x)$ 与 f(a) 无关。如: $\lim_{x \to 1} \frac{x^2 1}{x 1} = \lim_{x \to 1} (x + 1) = 2$;
- 3. $x \rightarrow a$ 分为 $x \rightarrow a^+$ 和 $x \rightarrow a^-$
- 4. 我们称 $0 < |x a| < \delta$ 为 a 的去心邻域;
- 5. $\lim_{x\to a^-} \triangleq f(a-0)$ (左极限); $\lim_{x\to a^+} \triangleq f(a+0)$ (右极限)。 ★ $\lim f(x)$ 存在 $\iff f(a-0), f(a+0)$ 都存在且相等。

定义 1.3. 函数极限-2

函数 f(x), 若对于 $\forall \varepsilon > 0$, $\exists X > (<)0$, 当 x > X(<-X) 时, 有

$$|f(x) - A| < \varepsilon \tag{1.5}$$

则称函数 f(x) 的极限为 A, 记作

$$\lim_{x \to +\infty(-\infty)} f(x) = A \tag{1.6}$$

如,对于函数
$$f(x) = \arctan x$$
 有: $\lim_{x \to +\infty} f(x) = \frac{\pi}{2}$, $\lim_{x \to -\infty} f(x) = -\frac{\pi}{2}$

1.2 极限的性质 -2-

定义 1.4. 无穷小

若 $\lim \alpha(x) = 0$, 则称 $\alpha(x)$ 当 $x \to a$ 时为无穷小。

\$ 笔记

- 1. 0 是无穷小、但无穷小不一定为 0:
- 2. $\alpha(x) \neq 0$, $\alpha(x)$ 是否为无穷小与 x 的趋向有关; 如, $\alpha = 3(x-1)^2$, 而 $\lim_{x \to 1} \alpha = 0$, 则 $3(x-1)^2$ 当 $x \to 1$ 时是无穷小。
- 3. $\mathfrak{F}^{\alpha} \rightarrow 0, \beta \rightarrow 0, \beta \rightarrow 0, \beta \rightarrow 0$ (a) $\lim \frac{\beta}{\alpha} = 0$, 称 β 为 α 的高阶无穷小,记作 $\beta = o(\alpha)$; (b) $\lim \frac{\beta}{\alpha} = k(\neq \infty, 0)$, 称 β 为 α 的同阶无穷小,记作 $\beta = O(\alpha)$ (特例: $\lim_{\alpha \to 0} \frac{\beta}{\alpha} = 1$, 则称 $\beta = \alpha$ 为等价无穷小, 记作 $\beta \sim \alpha$)。

1.2 极限的性质

下面我们开始介绍极限的有关性质,并给出相关的证明。主要有:唯一性、 保号性(重点)两个性质。

1. 唯一性

性质 极限存在必唯一。

证明 设 $\lim_{x\to a}f(x)=A$ 又 $\lim_{x\to a}f(x)=B$,并不妨设 A>B。我们采用反证法来完成相关的证明。

取 $\varepsilon = \frac{A - B}{2} > 0$ 。因为 $\lim_{x \to a} f(x) = A$,所以存在 $\delta_1 > 0$,当 $0 < |x - a| < \delta_1$ 时,有 $|f(x) - A| < \frac{A - B}{2}$,也即 $\frac{A + B}{2} < f(x) < \frac{3A - B}{2}(*)$;同理,由第二个极限可以得出 $\frac{3B - A}{2} < f(x) < \frac{A + B}{2}(**)$ 。从而,若我

们取 $\delta = \min(\delta_1, \delta_2)$, 当 $0 < |x - a| < \delta$ 时, 就有 (*) 与 (**) 同时成立。但

1.2 极限的性质 -3-

 $f(x) > \frac{A+B}{2}$ 与 $f(x) < \frac{A+B}{2}$ 显然不可能同时成立,矛盾,从而假设不成立。

同理, 我们可以得到 A < B 也不成立。故 A = B。

2. ★ 保号性

性质 设 $\lim_{x\to a} f(x) = A > (<)0$, 则存在 $\delta > 0$, 当 $0 < |x-a| < \delta$ 时,有 f(x) > (<)0。

证明 设 A>0。 取 $\varepsilon=\frac{1}{2}A>0$ 。 因为 $\lim_{x\to a}f(x)=A$,故存在 $\delta>0$,当 $0<|x-a|<\delta$ 时,有 $|f(x)-A|<\varepsilon=\frac{A}{2}$ 。展开可得 $\frac{A}{2}< f(x)<\frac{3}{2}A$ 。从 而 f(x)>0。

例 1.1

3.
$$f(1) = 0$$
, $\lim_{x \to 1} \frac{f'(x)}{(x-1)^3} = -2$, $x = 1$ 为什么点?