write-up

Eden Deng, Jane Zhang, Shari Tian

Full Model

For i = 1, ..., n observations, denote each observation's group of scores as \mathbf{Y}_i , where

$$\mathbf{Y}_i = \left(\begin{array}{c} Y_{i,1} \\ Y_{i,2} \\ Y_{i,3} \end{array} \right) = \left(\begin{array}{c} \text{political participation score} \\ \text{political satisfaction score} \\ \text{economic satisfaction score} \end{array} \right)$$

We will assume the likelihood of the data follows a multivariate normal distribution. The full model then becomes:

$$\begin{aligned} \mathbf{Y}_i \mid \boldsymbol{\theta}, \boldsymbol{\Sigma} \sim MVN(\boldsymbol{\theta}, \boldsymbol{\Sigma}). \\ \boldsymbol{\theta} \sim MVN(\boldsymbol{\mu}_0, \boldsymbol{\Lambda}_0) \\ \boldsymbol{\Sigma} \sim \text{inverseWishart}(\nu_o, S_o^{-1}). \end{aligned}$$

Let $\theta = (\theta_1, \theta_2, \theta_3)$ denote the mean scores for 1) political participation, 2) political satisfaction, and 3) economic satisfaction.

Let Σ denote the covariance matrix, where the $(i, j)^{\text{th}}$ component of Σ is the covariance between Y_i and $\sim Y_j$, giving component variances along the diagonal of Σ .

Hyperparameter settings

We will set the prior mean on θ to be the average political participation, political satisfaction, and economic satisfaction scores. Specifically, let $\mu_0 = (.5, .5, .5)^T$.

Since the true mean cannot be below 0 or above 1, we will use a prior variance that puts little probability outside this range. Thus, the prior variances on θ can be set as $\Lambda_0 = (.,.,.)^T$ so that the prior probability that $P(\theta_i \neq [0,1]) = 0.05$. We will also take the prior correlation of 0.5, or rather $\lambda_{1,2} = ./2 = ..$

For setting prior settings for Σ , we will take S_o to be equal to Λ . We will center Σ around S_o by setting $\nu_0 = p + . = ..$