1

(6)

NCERT 12.10 5Q

EE23BTECH11013 - Avyaaz*

Question: In Young's double-slit experiment using monochromatic light of wavelength λ , the intensity of light at a point on the screen where path difference is λ , is K units. What is the intensity of light at a point where path difference is $\lambda/3$?

Solution:

Parameter	Description	Value
$y_i(t)$	Equation of light from $S_{i^{th}}$	$A\sin(\omega t - kx_i)$
I_{res}	Intensity of light at $\Delta x = \lambda$	K
k	Wave number	$\frac{2\pi}{\lambda}$
I	Intensity of wave	kA^2
$\Delta x = x_1 - x_2$	Path difference	$\frac{\lambda}{\frac{\lambda}{3}}$

TABLE 1
Parameters

The superposition of the two waves is the sum of two individual waves:

From table $(1) \implies$

$$y(t) = A\sin(\omega t - kx_1) + A\sin(\omega t - kx_2)$$

$$y(t) = 2A\cos\left(\frac{k\Delta x}{2}\right)\sin\left(\omega t - \frac{k(x_1 + x_2)}{2}\right)$$
(2)

From table (1) & equation(2) \implies

$$\therefore I_{res} = 4I_o \cos^2\left(\frac{k\Delta x}{2}\right) \tag{3}$$

From table(1)& equation(3) \Longrightarrow

(i) When $\Delta x = \lambda$:

$$K = 4I_1 \cos^2\left(\frac{2\pi}{2}\right) \tag{4}$$

$$\therefore I_1 = \frac{K}{4} \tag{5}$$

(ii) When
$$\Delta x = \frac{\lambda}{3}$$
:
$$I_r = 4I_1 \cos^2\left(\frac{2\pi}{3}\right)$$

From equation $(5) \implies$

$$\therefore I_r = I_1 = \frac{K}{4} \tag{7}$$

Hence, the Intensity of light at a point where path difference is $\frac{\lambda}{3}$ is $\frac{K}{4}$ units.

Parameter	Description	Value
I_1	Intensity of light at individual slits	$\frac{K}{4}$
I_r	Net Intensity of light at $\Delta x = \frac{\lambda}{3}$	$\frac{K}{4}$

TABLE 2
Intensities