Formálně je deterministický konečný automat definován jako pětice

$$(Q, \Sigma, \delta, q_0, F)$$

kde:

- Q je konečná množina stavů
- Σ je konečná abeceda
- $\delta: Q \times \Sigma \rightarrow Q$ je přechodová funkce
- $q_0 \in Q$ je počáteční stav
- F ⊆ Q je množina přijímajících stavů

Specifikace konečného automatu grafem:

Specifikace konečného automatu výčtem parametrů:

•
$$Q = \{1, 2, 3, 4, 5\}$$

$$\Sigma = \{\mathtt{a},\mathtt{b}\}$$

•
$$q_0 = 1$$

•
$$F = \{1, 4, 5\}$$

$$\delta(\mathtt{1},\mathtt{a})=\mathtt{2}\qquad \delta(\mathtt{1},\mathtt{b})=\mathtt{1}$$

$$\delta(2, a) = 4$$
 $\delta(2, b) = 5$ $\delta(3, a) = 1$ $\delta(3, b) = 4$

$$\delta(3, a) = 1$$
 $\delta(3, b) = 4$

$$\delta(4, a) = 1$$
 $\delta(4, b) = 3$

$$\delta(5, a) = 4$$
 $\delta(5, b) = 5$

Místo zápisu

$$\delta(1, a) = 2$$
 $\delta(1, b) = 1$
 $\delta(2, a) = 4$ $\delta(2, b) = 5$
 $\delta(3, a) = 1$ $\delta(3, b) = 4$
 $\delta(4, a) = 1$ $\delta(4, b) = 3$
 $\delta(5, a) = 4$ $\delta(5, b) = 5$

budeme raději používat stručnější tabulku nebo grafické znázornění:

δ	a	b
1	2	1
2	4	5
3	1	4
4	1	3
5	4	5

$$\begin{array}{lll} \delta(1, \mathbf{a}) = 2 & & \delta(1, \mathbf{b}) = 1 \\ \delta(2, \mathbf{a}) = 4 & & \delta(2, \mathbf{b}) = 5 \\ \delta(3, \mathbf{a}) = 1 & & \delta(3, \mathbf{b}) = 4 \\ \delta(4, \mathbf{a}) = 1 & & \delta(4, \mathbf{b}) = 3 \\ \delta(5, \mathbf{a}) = 4 & & \delta(5, \mathbf{b}) = 5 \end{array}$$

δ	a	b
\leftrightarrow 1	2	1
2	4	5
3	1	4
←4	1	3
←5	4	5

Tabulku můžeme doplnit, aby úplně specifikovala konečný automat:

- Počáteční stavy označujeme →
- Koncové stavy označujeme ←
- Počáteční a současně koncové stavy označujeme ↔

Konfigurace konečného automatu je dána stavem jeho řídící jednotky a dosud nepřečteným obsahem pásky.

Konfigurace konečného automatu je dána stavem jeho řídící jednotky a dosud nepřečteným obsahem pásky.

Formálně můžeme konfiguraci definovat jako dvojici z množiny $Q \times \Sigma^*.$

Příklad: (2, babb) je konfigurace

Konfigurace konečného automatu je dána stavem jeho řídící jednotky a dosud nepřečteným obsahem pásky.

Formálně můžeme konfiguraci definovat jako dvojici z množiny $Q \times \Sigma^*.$

Příklad: (2, babb) je konfigurace

Na množině všech konfigurací můžeme definovat binární relaci \vdash s následujícím významem: $C_1 \vdash C_2$ znamená, že automat může přejít jedním krokem z konfigurace C_1 do konfigurace C_2 .

Příklad:

$$(2, babb) \vdash (5, abb)$$

Konfigurace konečného automatu je dána stavem jeho řídící jednotky a dosud nepřečteným obsahem pásky.

Formálně můžeme konfiguraci definovat jako dvojici z množiny $Q \times \Sigma^*.$

Příklad: (2, babb) je konfigurace

Na množině všech konfigurací můžeme definovat binární relaci \vdash s následujícím významem: $C_1 \vdash C_2$ znamená, že automat může přejít jedním krokem z konfigurace C_1 do konfigurace C_2 .

Příklad:

$$(2, babb) \vdash (5, abb)$$

Formálně platí, že $(q, w) \vdash (q', w')$ právě když w = aw' a $q' = \delta(q, a)$ pro nějaké $a \in \Sigma$.

Konfigurace (q, w) se nazývá **počáteční konfigurace**, jestliže $q = q_0$.

Příklad: (1, ababb) je počáteční konfigurace.

Konfigurace (q, w) se nazývá **počáteční konfigurace**, jestliže $q = q_0$.

Příklad: (1, ababb) je počáteční konfigurace.

Konfigurace (q, w) se nazývá koncová konfigurace, jestliže $w = \varepsilon$.

Příklad: $(4, \varepsilon)$ je koncová konfigurace.

Konfigurace (q, w) se nazývá **počáteční konfigurace**, jestliže $q = q_0$.

Příklad: (1, ababb) je počáteční konfigurace.

Konfigurace (q, w) se nazývá koncová konfigurace, jestliže $w = \varepsilon$.

Příklad: $(4, \varepsilon)$ je koncová konfigurace.

Definice

Výpočet automatu je posloupnost konfigurací

$$C_0, C_1, C_2, \cdots, C_k$$

kde C_i jsou konfigurace, C_0 je počáteční konfigurace, C_k je koncová konfigurace a pro všechna $i \in \{1, 2, \dots, k\}$ platí, že $C_{i-1} \vdash C_i$.

Definice

Koncová konfigurace (q, ε) je **přijímající**, jestliže $q \in F$.

Definice

Koncová konfigurace (q, ε) je **přijímající**, jestliže $q \in F$.

Definice

Automat **přijímá** slovo $w \in \Sigma^*$ právě tehdy, jestliže výpočet začínající v počáteční konfiguraci (q_0, w) skončí v přijímající koncové konfiguraci.

 $(1, ababb) \vdash (2, babb) \vdash (5, abb)$

$$(1, ababb) \vdash (2, babb) \vdash (5, abb) \vdash (4, bb)$$

$$\begin{aligned} &(\mathtt{1},\mathtt{ababb}) \vdash (\mathtt{2},\mathtt{babb}) \vdash \\ &(\mathtt{5},\mathtt{abb}) \vdash (\mathtt{4},\mathtt{bb}) \vdash \\ &(\mathtt{3},\mathtt{b}) \end{aligned}$$

$$egin{aligned} (1, \mathsf{ababb}) &\vdash (2, \mathsf{babb}) \vdash \ (5, \mathsf{abb}) &\vdash (4, \mathsf{bb}) \vdash \ (3, \mathsf{b}) &\vdash (4, arepsilon) \end{aligned}$$

 $(1, ababb) \vdash (2, babb) \vdash$ $(5, abb) \vdash (4, bb) \vdash$ $(3, b) \vdash (4, \varepsilon)$ Konfigurace $(4, \varepsilon)$ je příjímající, tedy automat slovo ababb přijal.

 $(1,\mathtt{babab}) \vdash (1,\mathtt{abab})$

 $(1, \mathtt{babab}) \vdash (1, \mathtt{abab}) \vdash (2, \mathtt{bab})$

$$(1, babab) \vdash (1, abab) \vdash (2, bab) \vdash (5, ab)$$

$$(1, babab) \vdash (1, abab) \vdash$$

 $(2, bab) \vdash (5, ab) \vdash$
 $(4, b)$

$$(1, \mathsf{babab}) \vdash (1, \mathsf{abab}) \vdash (2, \mathsf{bab}) \vdash (5, \mathsf{ab}) \vdash (4, \mathsf{b}) \vdash (3, \varepsilon)$$

 $\begin{array}{l} (1,\mathsf{babab}) \vdash (1,\mathsf{abab}) \vdash \\ (2,\mathsf{bab}) \vdash (5,\mathsf{ab}) \vdash \\ (4,\mathsf{b}) \vdash (3,\varepsilon) \\ \mathsf{Konfigurace}\ (3,\varepsilon)\ \mathsf{neni} \\ \mathsf{p\check{r}'ijimajici},\ \mathsf{tedy\ automat\ slovo} \\ \mathsf{babab\ nep\check{r}ijal}. \end{array}$