Tema 5: Algoritmo back-propagation

- δ para función de activación sigmoide.
- Cálculo de los δ 's en las diferentes capas.
- Cálculo de los pesos, propagación hacia atrás.

• Cálculo de los pesos de la red multicapa, entrenamiento.

- Cálculo de los pesos de la red multicapa, entrenamiento.
 - 1. Aplicamos el algoritmo del descenso de la pendiente en cada neurona de salida. (1) Tenemos m neuronas en la penúltima capa:
 - $f_1 = Loss(w_{11}, \dots, w_{m1}) = (y_d y)^2 \Rightarrow \text{para la neurona } 1^{(k)}$.

- Cálculo de los pesos de la red multicapa, entrenamiento.
 - 1. Aplicamos el algoritmo del descenso de la pendiente en cada neurona de salida. (1) Tenemos m neuronas en la penúltima capa:
 - $f_1 = Loss(w_{11}, \dots, w_{m1}) = (y_d y)^2 \Rightarrow \text{para la neurona } 1^{(k)}$.
 - $\frac{\partial f_1}{\partial \mathbf{W}_1^{(k)}} = \left[\frac{\partial f_1}{\partial w_{11}^{(k)}}, \cdots, \frac{\partial f_1}{\partial w_{m1}^{(k)}} \right].$

- Cálculo de los pesos de la red multicapa, entrenamiento.
 - 1. Aplicamos el algoritmo del descenso de la pendiente en cada neurona de salida. (1) Tenemos m neuronas en la penúltima capa:
 - $f_1 = Loss(w_{11}, \dots, w_{m1}) = (y_d y)^2 \Rightarrow \text{ para la neurona } 1^{(k)}$.

•
$$\frac{\partial f_1}{\partial \mathbf{W}_1^{(k)}} = \left[\frac{\partial f_1}{\partial w_{11}^{(k)}}, \cdots, \frac{\partial f_1}{\partial w_{m1}^{(k)}} \right].$$

•
$$\frac{\partial f_1}{\partial \mathbf{W}_1^{(k)}} = \frac{\partial f_1}{\partial a_1^{(k)}} \frac{\partial a_1^{(k)}}{\partial \mathbf{W}_1^{(k)}} = -2(y_d - y) \frac{\partial y}{\partial a_1^{(k)}} \mathbf{Y}^{(j)}.$$

•
$$\mathbf{W}_{1}^{(k)} = \left[w_{11}^{(k)}, \cdots, w_{m1}^{(k)} \right].$$

$$\bullet \quad \mathbf{Y}^{(j)} = \begin{bmatrix} y_1^{(j)}, \cdots, y_m^{(j)} \end{bmatrix}.$$

- Cálculo de los pesos de la red multicapa, entrenamiento.
 - 1. Aplicamos el algoritmo del descenso de la pendiente en cada neurona de salida. (1) Tenemos m neuronas en la penúltima capa:
 - $f_1 = Loss(w_{11}, \dots, w_{m1}) = (y_d y)^2 \Rightarrow \text{ para la neurona } 1^{(k)}$.

•
$$\frac{\partial f_1}{\partial \mathbf{W}_1^{(k)}} = \left[\frac{\partial f_1}{\partial w_{11}^{(k)}}, \cdots, \frac{\partial f_1}{\partial w_{m1}^{(k)}} \right].$$

•
$$\frac{\partial f_1}{\partial \mathbf{W}_1^{(k)}} = \frac{\partial f_1}{\partial a_1^{(k)}} \frac{\partial a_1^{(k)}}{\partial \mathbf{W}_1^{(k)}} = -2(y_d - y) \frac{\partial y}{\partial a_1^{(k)}} \mathbf{Y}^{(j)}.$$

•
$$\mathbf{W}_{1}^{(k)} = \left[w_{11}^{(k)}, \cdots, w_{m1}^{(k)} \right].$$

•
$$\mathbf{Y}^{(j)} = \begin{bmatrix} y_1^{(j)}, \cdots, y_m^{(j)} \end{bmatrix}$$
.

•
$$\delta_1^k = (y_d - y) \frac{\partial y}{\partial a_1^{(k)}}$$
.

- Cálculo de los pesos de la red multicapa, entrenamiento.
 - 1. Aplicamos el algoritmo del descenso de la pendiente en cada neurona de salida. (1) Tenemos m neuronas en la penúltima capa:
 - $f_1 = Loss(w_{11}, \dots, w_{m1}) = (y_d y)^2 \Rightarrow \text{para la neurona } 1^{(k)}$.

•
$$\frac{\partial f_1}{\partial \mathbf{W}_1^{(k)}} = \left[\frac{\partial f_1}{\partial w_{11}^{(k)}}, \cdots, \frac{\partial f_1}{\partial w_{m1}^{(k)}} \right].$$

•
$$\frac{\partial f_1}{\partial \mathbf{W}_1^{(k)}} = \frac{\partial f_1}{\partial a_1^{(k)}} \frac{\partial a_1^{(k)}}{\partial \mathbf{W}_1^{(k)}} = -2(y_d - y) \frac{\partial y}{\partial a_1^{(k)}} \mathbf{Y}^{(j)}.$$

•
$$\mathbf{W}_{1}^{(k)} = \left[w_{11}^{(k)}, \cdots, w_{m1}^{(k)} \right].$$

•
$$\mathbf{Y}^{(j)} = \begin{bmatrix} y_1^{(j)}, \cdots, y_m^{(j)} \end{bmatrix}$$
.

•
$$\delta_1^k = (y_d - y) \frac{\partial y}{\partial a_1^{(k)}}$$
.

- 2. Actualización de los pesos:
 - $\mathbf{W}_{1}^{(k)} = \mathbf{W}_{1}^{(k)} + c_{1}^{(k)} \delta_{1}^{(k)} \mathbf{Y}^{(j)}$.
 - $c_1^{(k)}$ es el ritmo de aprendizaje para el vector $\mathbf{W}_1^{(k)}$.

- Para $y = \operatorname{sigmoid}\left(a_1^{(k)}\right)$:
 - $\delta_1^k = (y_d y) \frac{\partial y}{\partial a_1^{(k)}} = (y_d y) y (1 y).$ $\mathbf{W}_1^{(k)} = \mathbf{W}_1^{(k)} + c_1^{(k)} (y_d y) y (1 y) \mathbf{Y}^{(j)}.$

- Cálculo de los pesos de las capas intermedias (sigmoide).
 - Tenemos que calcular los $\delta_l^{(j)}$ de las neuronas de la capa intermedia:

•
$$\delta_1^{(k)} = (y_d - y) \frac{\partial y}{\partial a_1^{(k)}} = (y_d - y) y (1 - y) = \varepsilon_k y (1 - y).$$

- El $\delta_2^{(j)} = y_2^{(j)} \left(1 y_2^{(j)} \right) \left(y_{d2} y_2^{(j)} \right)$.
- $y_{d2} y_2^{(j)}$, no lo conocemos.

- Cálculo de los pesos de las capas intermedias (sigmoide).
 - Tenemos que calcular los $\delta_l^{(j)}$ de las neuronas de la capa intermedia:

•
$$\delta_{1}^{(k)} = (y_d - y) \frac{\partial y}{\partial a_1^{(k)}} = (y_d - y) y (1 - y) = \varepsilon_k y (1 - y).$$

- El $\delta_2^{(j)} = y_2^{(j)} \left(1 y_2^{(j)}\right) \left(y_{d2} y_2^{(j)}\right)$.
- $y_{d2} y_2^{(j)}$, no lo conocemos.
- Hacemos una propagación hacia atrás del δ :
 - $\delta_2^{(j)} = y_2^{(j)} \left(1 y_2^{(j)} \right) \sum_{i=1}^n w_{2i}^{(k)} \delta_i^{(k)}$.
 - En la figura solo tenemos una neurona de salida:
 - $\delta_2^{(j)} = y_2^{(j)} \left(1 y_2^{(j)} \right) w_{21}^{(k)} \delta_1^{(k)}$.

- Cálculo de los pesos de las capas intermedias (sigmoide).
 - Tenemos que calcular los $\delta_l^{(j)}$ de las neuronas de la capa intermedia:

•
$$\delta_1^{(k)} = (y_d - y) \frac{\partial y}{\partial a_1^{(k)}} = (y_d - y) y (1 - y) = \varepsilon_k y (1 - y).$$

- El $\delta_2^{(j)} = y_2^{(j)} \left(1 y_2^{(j)} \right) \left(y_{d2} y_2^{(j)} \right)$.
- $y_{d2} y_2^{(j)}$, no lo conocemos.
- Hacemos una propagación hacia atrás del δ :
 - $\delta_2^{(j)} = y_2^{(j)} \left(1 y_2^{(j)} \right) \sum_{i=1}^n w_{2i}^{(k)} \delta_i^{(k)}$.
 - En la figura solo tenemos una neurona de salida:
 - $\delta_2^{(j)} = y_2^{(j)} \left(1 y_2^{(j)} \right) w_{21}^{(k)} \delta_1^{(k)}$.
- Una vez tenemos todos los δ' s:
 - Actualizamos los pesos de la red.

Algoritmo back-propagation (resumen):

- 1. Propagamos hacia adelante.
- 2. Calculamos los δ 's salida.
- 3. Calculamos los δ 's de las neuronas de las capas intermedias.
- 4. Actualizamos pesos.
- 5. Repetimos el proceso para todos los ejemplos.
- 6. Entrenamos a la red con los ejemplos hasta que converja.

 Dada la red neuronal de la figura y los datos de entrenamiento de la tabla, calcular los nuevos valores de los pesos después de una iteración, considerar un ritmo de aprendizaje de 1 y función de activación sigmoide.

x_1	x_2	x_3	y_d
1	0	1	0
0	0	1	1
0	1	1	0
1	1	1	1

$$\frac{1}{1 + e^{-\sum w_i x_i}}$$

1. Propagamos hacia adelante:

- $y_1 = \text{sigmoid}(2 \cdot 1 2 \cdot 0 + 0 \cdot 1) = 0.881$
- $y_2 = \text{sigmoid}(1 \cdot 1 3 \cdot 0 1 \cdot 1) = 0.5$
- $y = \text{sigmoid}(3 \cdot 0.881 2 \cdot 0.5 1) = 0.655$

x_1	x_2	x_3	y_d
1	0	1	0
0	0	1	1
0	1	1	0
1	1	1	1

$$\frac{1}{1 + e^{-\sum w_i x_i}}$$

1. Propagamos hacia adelante:

•
$$y_1 = \text{sigmoid}(2 \cdot 1 - 2 \cdot 0 + 0 \cdot 1) = 0.881$$

•
$$y_2 = \text{sigmoid}(1 \cdot 1 - 3 \cdot 0 - 1 \cdot 1) = 0.5$$

•
$$y = \text{sigmoid}(3 \cdot 0.881 - 2 \cdot 0.5 - 1) = 0.655$$

2. Calculamos el delta de salida:

•
$$\delta_1^k = y(1-y)(y_d - y) =$$

= 0.655(1 - 0.655)(0 - 0.655) = -0.148.

x_1	x_2	x_3	y_d
1	0	1	0
0	0	1	1
0	1	1	0
1	1	1	1

$$\frac{1}{1 + e^{-\sum w_i x_i}}$$

3. Calculamos los δ 's intermedios:

•
$$\delta_1^{(j)} = y_1^{(j)} \left(1 - y_1^{(j)} \right) w_{11}^{(k)} \delta_1^k =$$

$$0.881 \cdot (1 - 0.881) \cdot 3 \cdot (-0.148) = -0.0467$$

•
$$\delta_2^{(j)} = y_2^{(j)} \left(1 - y_2^{(j)} \right) w_{21}^{(k)} \delta_2^k = 0.5 \cdot (1 - 0.5) \cdot (-2) \cdot (-0.148) = 0.074$$

x_1	x_2	x_3	y_d
1	0	1	0
0	0	1	1
0	1	1	0
1	1	1	1

$$\frac{1}{1 + e^{-\sum w_i x_i}}$$

3. Calculamos los δ 's intermedios:

•
$$\delta_1^{(j)} = y_1^{(j)} \left(1 - y_1^{(j)} \right) w_{11}^{(k)} \delta_1^k =$$

$$0.881 \cdot (1 - 0.881) \cdot 3 \cdot (-0.148) = -0.0467$$

•
$$\delta_2^{(j)} = y_2^{(j)} \left(1 - y_2^{(j)} \right) w_{21}^{(k)} \delta_2^k =$$

 $0.5 \cdot (1 - 0.5) \cdot (-2) \cdot (-0.148) = 0.074$

4. Actualizamos pesos:

• Capa de salida (k):

•
$$\mathbf{W}^{(k)} = \mathbf{W}^{(k)} + c^{(k)} \delta_1^k \mathbf{Y}^{(j)} =$$

$$= \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix} + 1 \cdot (-0.148) \cdot \begin{bmatrix} 0.881 \\ 0.5 \\ 1 \end{bmatrix} = \begin{bmatrix} 2.87 \\ -2.074 \\ -1.148 \end{bmatrix}.$$

x_1	x_2	x_3	y_d
1	0	1	0
0	0	1	1
0	1	1	0
1	1	1	1

$$\frac{1}{1 + e^{-\sum w_i x_i}}$$

4. Actualizamos pesos:

• Capa intermedia (*j*):

•
$$\mathbf{W}_{1}^{(j)} = \mathbf{W}_{1}^{(j)} + c^{(j)} \delta_{1}^{j} \mathbf{X}^{(j)} =$$

$$= \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix} + 1 \cdot (-0.0467) \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.953 \\ -2 \\ -0.0467 \end{bmatrix}.$$

x_1	x_2	x_3	y_d
1	0	1	0
0	0	1	1
0	1	1	0
1	1	1	1

$$\frac{1}{1 + e^{-\sum w_i x_i}}$$

4. Actualizamos pesos:

• Capa intermedia (*j*):

•
$$\mathbf{W}_{1}^{(j)} = \mathbf{W}_{1}^{(j)} + c^{(j)} \delta_{1}^{j} \mathbf{X}^{(j)} =$$

$$= \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix} + 1 \cdot (-0.0467) \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.953 \\ -2 \\ -0.0467 \end{bmatrix}.$$

•
$$\mathbf{W}_{2}^{(j)} = \mathbf{W}_{2}^{(j)} + c^{(j)} \delta_{2}^{j} \mathbf{X}^{(j)} =$$

$$= \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} + 1 \cdot (0.074) \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1.074 \\ 3 \\ -0.926 \end{bmatrix}.$$

x_1	x_2	x_3	y_d
1	0	1	0
0	0	1	1
0	1	1	0
1	1	1	1

• Dada la red neuronal de la figura y los datos de entrenamiento de la tabla, calcular los nuevos valores de los pesos después de una iteración, considerar un ritmo de aprendizaje de 1 y función de activación sigmoide.

x_1	x_2	x_3	y_d
1	0	1	0
0	0	1	1
0	1	1	0
1	1	1	1

