

Combining Proprioceptive-Data-Driven Algorithms with Physical Modeling for Contact Detection and Reaction of Safe Parallel Robots

Aran Mohammad, Thomas Seel and Moritz Schappler

Research Question & Contributions

- Parallel robots are characterized by drives mounted fixed to the base. Reduced moving masses allow higher speeds while maintaining the same energy thresholds regarding human-robot collaboration. Due to the parallel kinematic chains, the risk of collision and clamping contact increases. → How do collisions and clamping contacts affect the dynamics of a parallel robot? Does this insight allow us to estimate the type and location on the entire structure of a parallel robot?
- Physically modeled features allow classification and generalization to contacts over the entire robot body in unknown joint-angle configurations.
- Multiple reaction strategies based on the previously obtained information are introduced in a redundancy-resolution scheme to incorporate the collision point and clamping joint explicitly.

Classification via Combined Physical and Data-Driven Modeling

Approach for Safe Parallel Robots

Hypothesis Formulation

- ullet Platform and chain contacts differ by minimal distance $d_{\min,i}$
- ullet Link collisions differ by angle $lpha_i$

Hyperparamter Optimization

- Approach: hyperparameter are regularization factor (λ), number of hidden layers ($n_{\rm hl}$) and neurons per layer ($n_{\rm neu}$)
- Heatmap with cross-validation results for network structure
- Result: 4 layers with 17 neurons in each layer

Neural Networks & Particle Filter for Contact Reaction

Collided-Body Classification

- Feature engineering and classification at $1\,\mathrm{kHz}$
- Confusion matrix with test data of collisions in unknown contact scenarios
- Classification's output decides on the collision isolation and identification

Isolation and Identification

Transient and Quasi-Static Contacts

72 contacts with maximum velocities of $1.5 \,\mathrm{m/s}$

