COL750: Foundations of Automatic Verification (Jan-May 2023)

Lectures 25 & 26 (Predicate Abstraction & CEGAR)¹

Kumar Madhukar

madhukar@cse.iitd.ac.in

Apr 17th and 20th

¹Most of the slides in this deck are taken directly from Daniel Kroening's slides from a tutorial on Predicate Abstraction that he gave at SRI. His slides are an excellent resource on this topic, and can be found here: https://fm.csl.sri.com/SSFT12/predabs-SSFT12.pdf

Abstraction

- reduce the size of the model by removing irrelevant details
- predicate abstraction only track predicates on data (remove data variables)
- reduces state-space (from possibly an infinite set of states to a finite set of states given by the 0/1 values of the predicates)
- can be very effective for control-flow dominated properties
- but the question of relevance is a difficult one how does one know what's relevant and what is not!

Sign abstraction

if (x == 0) x = x + 1;

int x;

```
else if (x > 0) x = x * 20;
else // if (x < 0)
  x = x * -10:
assert (x > 0)
  • we can prove the assertion by simply tracking the sign of x
  • i.e., whether x is positive, negative, or zero (which can be thought of as three predicates
    on x)
```


Concrete states over variables x, y:

Concrete states over variables x, y:

Predicates:

$$p_1 \iff x > y$$

 $p_2 \iff y = 0$

Concrete states over variables x, y:

Predicates:

$$p_1 \iff x > y$$
 $p_2 \iff y = 0$

Concrete states over variables x, y:

Predicates:

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & x > y \\ p_2 & \Longleftrightarrow & y = 0 \end{array}$$

Abstract Transitions?

Existential Abstraction¹

Definition (Existential Abstraction)

A model $\hat{M}=(\hat{S},\hat{S}_0,\hat{T})$ is an *existential abstraction* of $M=(S,S_0,T)$ with respect to $\alpha:S\to \hat{S}$ iff

- lacksquare $\exists s \in S_0. \, lpha(s) = \hat{s} \quad \Rightarrow \quad \hat{s} \in \hat{S}_0 \quad \text{ and } \quad$
- $\exists (s, s') \in T. \, \alpha(s) = \hat{s} \land \alpha(s') = \hat{s}' \quad \Rightarrow \quad (\hat{s}, \hat{s}') \in \hat{T}.$

¹Clarke, Grumberg, Long: *Model Checking and Abstraction*, ACM TOPLAS, 1994

Minimal Existential Abstractions

There are obviously many choices for an existential abstraction for a given α .

Definition (Minimal Existential Abstraction)

A model $\hat{M}=(\hat{S},\hat{S}_0,\hat{T})$ is the *minimal existential abstraction* of $M=(S,S_0,T)$ with respect to $\alpha:S\to \hat{S}$ iff

- lacksquare $\exists s \in S_0. \ lpha(s) = \hat{s} \iff \hat{s} \in \hat{S}_0$ and
- $\exists (s, s') \in T. \, \alpha(s) = \hat{s} \land \alpha(s') = \hat{s}' \quad \iff \quad (\hat{s}, \hat{s}') \in \hat{T}.$

This is the most precise existential abstraction.

Existential Abstraction

We write $\alpha(\pi)$ for the abstraction of a path $\pi = s_0, s_1, \ldots$:

$$\alpha(\pi) = \alpha(s_0), \alpha(s_1), \dots$$

Existential Abstraction

We write $\alpha(\pi)$ for the abstraction of a path $\pi = s_0, s_1, \ldots$:

$$\alpha(\pi) = \alpha(s_0), \alpha(s_1), \dots$$

Lemma

Let \hat{M} be an existential abstraction of M. The abstraction of every path (trace) π in M is a path (trace) in \hat{M} .

$$\pi \in M \quad \Rightarrow \quad \alpha(\pi) \in \hat{M}$$

Proof by induction.

We say that \hat{M} overapproximates M.

Abstracting Properties

Reminder: we are using

- ▶ a set of atomic propositions (predicates) *A*, and
- ▶ a state-labelling function $L: S \to \mathscr{P}(A)$

in order to define the meaning of propositions in our properties.

Abstracting Properties

We define an abstract version of it as follows:

First of all, the negations are pushed into the atomic propositions.

E.g., we will have

$$x = 0 \in A$$

and

$$x \neq 0 \in A$$

Abstracting Properties

An abstract state \hat{s} is labelled with $a \in A$ iff all of the corresponding concrete states are labelled with a.

$$a \in \hat{L}(\hat{s}) \iff \forall s | \alpha(s) = \hat{s}. \ a \in L(s)$$

▶ This also means that an abstract state may have neither the label x = 0 nor the label $x \neq 0$ – this may happen if it concretizes to concrete states with different labels!

Conservative Abstraction

The keystone is that existential abstraction is conservative for certain properties:

Theorem (Clarke/Grumberg/Long 1994)

Let ϕ be a \forall CTL* formula where all negations are pushed into the atomic propositions, and let \hat{M} be an existential abstraction of M. If ϕ holds on \hat{M} , then it also holds on M.

$$\hat{M} \models \phi \quad \Rightarrow \quad M \models \phi$$

We say that an existential abstraction is conservative for ∀CTL* properties. The same result can be obtained for LTL properties.

The proof uses the lemma and is by induction on the structure of ϕ . The converse usually does not hold.

Conservative Abstraction

We hope: computing \hat{M} and checking $\hat{M} \models \phi$ is easier than checking $M \models \phi$.

Let's try a Property

$$x > y \lor y \neq 0 \iff p_1 \lor \neg p_2$$

Let's try a Property

$$x > y \lor y \neq 0 \iff p_1 \lor \neg p_2$$

$$x > y \iff p_1$$

$$x > y \iff p_1$$

$$x > y \iff p_1$$

Property:

$$x > y \iff p_1$$

But: the counterexample is spurious

SLIC Example


```
state {
 enum {Locked, Unlocked}
   s = Unlocked:
KeAcquireSpinLock.entry {
  if (s==Locked) abort;
 else s = Locked:
KeReleaseSpinLock.entry {
  if (s==Unlocked) abort;
 else s = Unlocked;
```

SLIC Example


```
state {
 enum {Locked, Unlocked}
   s = Unlocked:
KeAcquireSpinLock.entry {
  if (s==Locked) abort;
  else s = Locked:
KeReleaseSpinLock.entry {
  if (s==Unlocked) abort;
 else s = Unlocked;
```



```
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets:
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++:
} while(nPackets != nPacketsOld);
KeReleaseSpinLock();
```


Does this code obey the locking rule?

```
do {
    KeAcquireSpinLock ();
    nPacketsOld = nPackets;
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++:
} while(nPackets != nPacketsOld);
KeReleaseSpinLock();
```



```
do {
    KeAcquireSpinLock();
    if (*) {
        KeReleaseSpinLock ();
} while(*);
KeReleaseSpinLock();
```



```
do {
    KeAcquireSpinLock();
    if (*) {
        KeReleaseSpinLock();
} while(*);
KeReleaseSpinLock();
```



```
do {
    KeAcquireSpinLock();
    if (*) {
        KeReleaseSpinLock();
} while(*);
KeReleaseSpinLock();
```



```
do {
    KeAcquireSpinLock();
    if (*) {
        KeReleaseSpinLock ();
} while(*);
KeReleaseSpinLock();
```

Is this path concretizable?


```
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets:
    if (request) {
        request = request->Next;
        KeReleaseSpinLock ();
        nPackets++:
} while(nPackets != nPacketsOld);
KeReleaseSpinLock();
```



```
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets:
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++:
} while(nPackets != nPacketsOld);
```

KeReleaseSpinLock ();

This path is spurious!


```
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets:
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++:
} while(nPackets != nPacketsOld);
```

KeReleaseSpinLock ();

Let's add the predicate nPacketsOld==nPackets


```
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets:
                                 b=true:
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
        nPackets++:
} while(nPackets != nPacketsOld);
```

KeReleaseSpinLock ();

Let's add the predicate nPacketsOld==nPackets


```
do {
    KeAcquireSpinLock();
    nPacketsOld = nPackets:
                                 b=true:
    if (request) {
        request = request->Next;
        KeReleaseSpinLock();
                                 b=b?false:*:
        nPackets++:
} while(nPackets != nPacketsOld); !b
                          Let's add the predicate
KeReleaseSpinLock();
                         nPacketsOld==nPackets
```



```
do {
    KeAcquireSpinLock();
    b=true;
    if (*) {
        KeReleaseSpinLock();
         b=b?false:*;
 while( !b );
KeReleaseSpinLock ();
```



```
do {
    KeAcquireSpinLock();
    b=true;
    if (*) {
        KeReleaseSpinLock();
         b=b?false:*;
 while( !b );
KeReleaseSpinLock ();
```



```
do {
    KeAcquireSpinLock();
    b=true;
    if (*) {
        KeReleaseSpinLock();
        b=b?false:*;
 while(!b);
KeReleaseSpinLock ();
```



```
do {
                 KeAcquireSpinLock();
                 b=true;
                 if (*) {
                     KeReleaseSpinLock();
                     b=b?false:*;
!b(t
              while(!b);
            KeReleaseSpinLock ();
```



```
!b(1
```

```
do {
    KeAcquireSpinLock();
    b=true;
    if (*) {
        KeReleaseSpinLock();
        b=b?false:*;
 while( !b );
KeReleaseSpinLock();
```



```
!b(\(\tau\)
```

```
do {
    KeAcquireSpinLock();
    b=true;
    if (*) {
        KeReleaseSpinLock();
        b=b?false:*;
 while( !b );
KeReleaseSpinLock();
                          The property holds!
```

Counterexample-guided Abstraction Refinement

▶ "CEGAR"

 An iterative method to compute a sufficiently precise abstraction

Initially applied in the context of hardware [Kurshan]

CEGAR Overview

Counterexample-guided Abstraction Refinement

Claims:

- 1. This never returns a false error.
- 2. This never returns a false proof.

- 3. This is complete for finite-state models.
- 4. But: no termination guarantee in case of infinite-state systems


```
int main() {
  int i;
  i = 0;
  while (even(i))
    i ++;
}
```

C Program

C Program

Predicates


```
void main() {
                                         bool p1, p2;
int main() {
  int i;
                                         p1=TRUE;
                                         p2=TRUE;
  i = 0;
                                         while (p2) {
  while (even(i))
                                            p1= p1 ? FALSE: *;
    i++;
                                           p2 = !p2;
  C Program
                    Predicates
                                        Boolean Program
```



```
void main() {
                                         bool p1, p2;
int main() {
  int i;
                                         p1=TRUE;
                                         p2=TRUE;
  i = 0;
                                         while (p2) {
  while (even(i))
                                            p1= p1 ? FALSE: *;
    i++;
                                           p2 = !p2;
  C Program
                    Predicates
                                        Boolean Program
```

Minimal?

Predicate Images

Reminder:

$$Image(X) = \{ s' \in S \mid \exists s \in X. T(s, s') \}$$

We need

$$\widehat{Image}(\hat{X}) = \{ \hat{s}' \in \hat{S} \mid \exists \hat{s} \in \hat{X}. \, \hat{T}(\hat{s}, \hat{s}') \}$$

 $\widehat{Image}(\hat{X})$ is equivalent to

$$\{\hat{s}, \hat{s}' \in \hat{S}^2 \mid \exists s, s' \in S^2. \ \alpha(s) = \hat{s} \land \alpha(s') = \hat{s}' \land T(s, s')\}$$

This is called the predicate image of T.

Enumeration

Let's take existential abstraction seriously

▶ Basic idea: with n predicates, there are $2^n \cdot 2^n$ possible abstract transitions

Let's just check them!

Predicates

\iff	i = 1
\iff	i = 2
\iff	even(i)
	\iff

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

Basic Block

Predicates

 $\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$

Basic Block

i++;

T

i' = i + 1

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

p_1	p_2	p_3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

p_1'	p_2'	p_3'
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

Basic Block

T

$$i' = i + 1$$

p_1	p_2	p_3	
0	0	0	?
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

	p_1'	p_2'	p_3'
\rightarrow	0	0	0
	0	0	1
	0	1	0
	0	1	1
	1	0	0
	1	0	1
	1	1	0
	1	1	1

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

p_1	p_2	p_3		p_1'
0	0	0	-? →	0
0	0	1		0
0	1	0		0
0	1	1		0
1	0	0		1
1	0	1		1
1	1	0		1
1	1	1		1

p_1'	p_2'	p_3'
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$$i \neq 1 \land i \neq 2 \land \overline{\mathsf{even}(i)} \land \\ i' = i + 1 \land \\ i' \neq 1 \land i' \neq 2 \land \overline{\mathsf{even}(i')}$$

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

p_1	p_2	p_3		p_1'
0	0	0	─★	0
0	0	1		0
0	1	0		0
0	1	1		0
1	0	0		1
1	0	1		1
1	1	0		1
1	1	1		1

p_1'	p_2'	p_3'
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$$\begin{aligned} i \neq 1 \wedge i \neq 2 \wedge \overline{\mathsf{even}(i)} \wedge \\ i' = i + 1 \wedge \\ i' \neq 1 \wedge i' \neq 2 \wedge \overline{\mathsf{even}(i')} \end{aligned}$$

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

p_1	p_2	p_3	
0	0	0	
0	0	1	, , ,
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

p_1'	p_2'	p_3'
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$$i \neq 1 \land i \neq 2 \land \overline{\operatorname{even}(i)} \land \\ i' = i + 1 \land \\ i' \neq 1 \land i' \neq 2 \land \operatorname{even}(i')$$

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

p_1	p_2	p_3	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

p_1'	p_2'	p_3'
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

$$i \neq 1 \land i \neq 2 \land \operatorname{even}(i) \land i' = i + 1 \land i' \neq 1 \land i' \neq 2 \land \operatorname{even}(i')$$

Predicates

$$\begin{array}{ccc} p_1 & \Longleftrightarrow & i=1 \\ p_2 & \Longleftrightarrow & i=2 \\ p_3 & \Longleftrightarrow & \mathsf{even}(i) \end{array}$$

p_1	p_2	p_3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

p_1'	p_2'	p_3'
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Query to Solver

... and so on ...

Predicate Images

- Computing the minimal existential abstraction can be way too slow
 - Use an over-approximation instead
 - ✓ Fast(er) to compute
 - X But has additional transitions
 - Examples:
 - Cartesian approximation (SLAM)
 - FastAbs (SLAM)
 - Lazy abstraction (Blast)
 - Predicate partitioning (VCEGAR)

Using wp to generate Boolean Programs

- given a set of predicates \mathcal{P} , our aim is to replace the assignments in our program by assignments to boolean variables (corresponding to the predicates)
- given a statement s and a boolean b corresponding to a predicate p
 - if wp(s, p) is true before s, then b should be assigned true
 - if $wp(s, \neg p)$ is true before s, then b should be assigned false
 - otherwise. b should be set to unknown
- but the exact wp may not be expressible as conjunction of (some of) our predicates (or their negations)
- compute the weakest cubes P_t and P_f over $\mathcal P$ such that $P_t \to wp(s,p)$ and $P_f \to wp(s,\neg p)$

Using wp to generate Boolean Programs

Here's how the statement can then be modelled in Boolean Program:

```
if (Pt) b := true
else if (Pf) b := false
else b := *
```

Exercise: Model the statement x:=y as a statement in a Boolean Program using variables b_1,b_2,b_3 corresponding respectively to the predicates x>5, x<5, and y=5.

Checking the Abstract Model

Checking the Abstract Model

No more integers!

- ▶ But:
 - All control flow constructs, including function calls
 - (more) non-determinism

BDD-based model checking now scales

Simulating the Counterexample


```
int main() {
                                       main() {
                                            bool b0; // y>x
    int x, y;
    y=1;
                                            b0=*:
                                            b0=*:
    x=1;
    if (y>x)
                                            if (b0)
                          Predicate:
                                                b0=*;
        y--;
                           y>x
    else
                                            else
        y++;
                                                b0=*;
    assert(y>x);
                                            assert(b0);
```



```
int main() {
                                        main() {
                                            bool b0; // y>x
    int x, y;
    y=1;
                                             b0=*:
                                             b0=*;
    x=1;
    if (y>x)
                                             if (b0)
                          Predicate:
                                                b0=*:
        y--;
                           y>x
    else
                                             else
                                                 b0=*;
        y++;
    assert(y>x);
                                            assert(b0);
```



```
int main() {
    int x, y;
    y=1;
    x=1;
    if (y>x)
    else
    assert(y>x);
```



```
int main() {
    int x, y;
    y=1;
    x=1;
    if (y>x)
    else
    assert(y>x);
```

We now do a path test, so convert to SSA.


```
int main() {
     int x, y;
     y_1 = 1;
     x_1 = 1;
     if (y_1>x_1)
         y_2 = y_1 - 1;
     else
     assert(y_2>x_1);
```



```
int main() {
                                                           y_1 = 1 \wedge
     int x, y;
                                                           x_1 = 1 \wedge
     y_1 = 1;
                                                           y_1 > x_1 \wedge
     x_1 = 1;
                                                          y_2 = y_1 - 1 \quad \wedge
     if (y_1 > x_1)
        y_2 = y_1 - 1;
     else
                                                           \neg (y_2 > x_0)
     assert(y_2>x_1);
```


$$y_1 = 1 \quad \land$$
 $x_1 = 1 \quad \land$
 $y_1 > x_1 \quad \land$
 $y_2 = y_1 - 1 \quad \land$

$$\neg(y_2 > x_0)$$

This is UNSAT, so $\hat{\pi}$ is spurious.

Refining the Abstraction


```
int main() {
     int x, y;
    y=1;
     x=1;
     if (y>x)
        y--;
     else
         y++;
    assert(y>x);
```



```
int main() {
    int x, y;
    y=1;
    {y = 1}
    x=1;
     if (y>x)
        y--;
    else
         y++;
    assert(y>x);
```



```
int main() {
     int x, y;
     y=1;
     {y = 1}
     x=1;
     \{x = 1 \land y = 1\}
     if (y>x)
         y--;
     else
         V++;
     assert(y>x);
```



```
int main() {
     int x, y;
     y=1;
     {y = 1}
     x=1;
     {x = 1 \land y = 1}
     if (y>x)
          y--;
     else
          \{x = 1 \land y = 1 \land \neg y > x\}
          V++;
     assert(y>x);
```



```
int main() {
     int x, y;
     y=1;
     {y = 1}
     x=1;
     {x = 1 \land y = 1}
      if (y>x)
          V--:
     else
          \{x = 1 \land y = 1 \land \neg y > x\}
          V++:
     \{x=1 \land y=2 \land y>x\}
     assert(y>x);
```

This proof uses strongest post-conditions


```
int main() {
     int x, y;
     y=1;
     x=1;
     if (y>x)
        y--;
     else
         y++;
     assert(y>x);
```



```
int main() {
     int x, y;
    y=1;
     x=1;
     if (y>x)
         y--;
    else
         y++;
    \{y > x\}
    assert(y>x);
```



```
int main() {
    int x, y;
    y=1;
    x=1;
     if (y>x)
         y--;
    else
         {y+1 > x}
         y++;
    \{y > x\}
    assert(y>x);
```



```
int main() {
     int x, y;
     y=1;
     x=1;
     \{\neg y > x \Rightarrow y + 1 > x\}
     if (y>x)
          y--;
     else
          {y+1 > x}
          y++;
     \{y > x\}
     assert(y>x);
```



```
int main() {
     int x, y;
     y=1;
     \{\neg y > 1 \Rightarrow y + 1 > 1\}
     x=1;
     \{\neg y > x \Rightarrow y + 1 > x\}
      if (y>x)
          y--;
     else
           {y+1 > x}
           y++;
     \{y > x\}
     assert(y>x);
```



```
int main() {
      int x, y;
      y=1;
      \{\neg y > 1 \Rightarrow y + 1 > 1\}
      x=1;
      \{\neg y > x \Rightarrow y + 1 > x\}
      if (y>x)
           V--:
      else
           \{y+1>x\}
           V++;
      \{y > x\}
      assert(y>x);
```

We are using weakest pre-conditions here

$$\begin{split} wp(x \coloneqq & E, P) = P[x/E] \\ wp(S; T, Q) &= wp(S, wp(T, Q)) \\ wp(\texttt{if}(c) \ A \ \texttt{else} \ B, P) &= \\ & (B \Rightarrow wp(A, P)) \land \\ & (\neg B \Rightarrow wp(B, P)) \end{split}$$

The proof for the "true" branch is missing

Refinement Algorithms

Using WP

- 1. Start with failed guard G
- 2. Compute wp(G) along the path

Using SP

- 1. Start at beginning
- 2. Compute sp(...) along the path

- Both methods eliminate the trace
- Advantages/disadvantages?

$$x_1 = 10$$
 \land $y_1 = x_1 + 10$ \land $y_2 = y_1 + 10$ \land $y_2 \neq 30$

$$x_1 = 10$$
 \land $y_1 = x_1 + 10$ \land $y_2 = y_1 + 10$ \land $y_2 \neq 30$
 $\Rightarrow x_1 = 10$

$$x_1 = 10$$
 \land $y_1 = x_1 + 10$ \land $y_2 = y_1 + 10$ \land $y_2 \neq 30$
 $\Rightarrow x_1 = 10$ $\Rightarrow y_1 = 20$

$$x_1 = 10$$
 \land $y_1 = x_1 + 10$ \land $y_2 = y_1 + 10$ \land $y_2 \neq 30$
 $\Rightarrow x_1 = 10$ $\Rightarrow y_1 = 20$ $\Rightarrow y_2 = 30$

$$x_1 = 10$$
 \wedge $y_1 = x_1 + 10$ \wedge $y_2 = y_1 + 10$ \wedge $y_2 \neq 30$ $\Rightarrow x_1 = 10$ $\Rightarrow y_1 = 20$ $\Rightarrow y_2 = 30$ \Rightarrow false

$$\overbrace{x_1 = 10}^{A_1} \wedge \overbrace{y_1 = x_1 + 10}^{A_2} \wedge \overbrace{y_2 = y_1 + 10}^{A_3} \wedge \overbrace{y_2 \neq 30}^{A_4}$$

$$\Rightarrow \underbrace{x_1 = 10}_{A'_1} \qquad \Rightarrow \underbrace{y_1 = 20}_{A'_2} \qquad \Rightarrow \underbrace{y_2 = 30}_{A'_3} \qquad \Rightarrow \underbrace{\text{false}}_{A'_4}$$

For a path with n steps:

For a path with n steps:

- ▶ Given A_1, \ldots, A_n with $\bigwedge_i A_i = \text{false}$
- A'_0 = true and A'_n = false
- $(A'_{i-1} \wedge A_i) \Rightarrow A'_i \text{ for } i \in \{1, \dots, n\}$

For a path with n steps:

- Given A_1, \ldots, A_n with $\bigwedge_i A_i = \text{false}$
- A'_0 = true and A'_n = false
- $(A'_{i-1} \wedge A_i) \Rightarrow A'_i \text{ for } i \in \{1, \dots, n\}$
- ▶ Finally, $Vars(A'_i) \subseteq (Vars(A_1 ... A_i) \cap Vars(A_{i+1} ... A_n))$

Special case n=2:

- $ightharpoonup A \wedge B =$ false
- $A \Rightarrow A'$
- $ightharpoonup A' \wedge B = \mathsf{false}$
- $ightharpoonup Vars(A') \subseteq (Vars(A) \cap Vars(B))$

Special case n=2:

- $ightharpoonup A \wedge B =$ false
- $A \Rightarrow A'$
- $ightharpoonup A' \wedge B =$ false
- $ightharpoonup Vars(A') \subseteq (Vars(A) \cap Vars(B))$

W. Craig's Interpolation theorem (1957): such an A' exists for any first-order, inconsistent A and B.

Predicate Refinement with Craig Interpolants

- \checkmark For propositional logic, a propositional Craig Interpolant can be extracted from a resolution proof (\rightarrow SAT!) in linear time
- Interpolating solvers available for linear arithmetic over the reals and integer difference logic with uninterpreted functions
- Not possible for every fragment of FOL:

$$x = 2y$$
 and $x = 2z + 1$ with $x, y, z \in \mathbb{Z}$

Predicate Refinement with Craig Interpolants

- ightharpoonup For propositional logic, a propositional Craig Interpolant can be extracted from a resolution proof (ightharpoonup SAT!) in linear time
- Interpolating solvers available for linear arithmetic over the reals and integer difference logic with uninterpreted functions
- Not possible for every fragment of FOL:

$$x = 2y$$
 and $x = 2z + 1$ with $x, y, z \in \mathbb{Z}$

The interpolant is "x is even"

Example

```
x = 0; y = 0;
while (*)
  x++; y++;
while (*)
  x--; y--;
assert (x \ge 0 \mid | y \le 0)
```

Set of predicates \mathcal{P} : $\{x \geq 0, y \leq 0, x \geq 1\}$

Abstract trace

In the following trace, $\langle b_1,b_2,b_3\rangle$ denotes an abstract state corresponding to the boolean values b_1,b_2,b_3 for predicate $x\geq 0,y\leq 0,x\geq 1$ resp.

$$\langle 0,0,0 \rangle - - - (x := 0; y := 0;) - - - > \langle 1,1,0 \rangle$$

 $\langle 1,1,0 \rangle - - - (x++;y++;) - - - > \langle 1,0,1 \rangle$
 $\langle 1,0,1 \rangle - - - (x--;y--;) - - - > \langle 1,0,0 \rangle$
 $\langle 1,0,0 \rangle - - - (x--;y--;) - - - > \langle 0,0,0 \rangle$

The trace leads to a bad (assertion-violating) state: (0,0,0).

Feasibility check

(declare-const x0 Int)
(declare-const x1 Int)
(declare-const x2 Int)

You may collect the assignments and the constraints along the counterexample path, and check feasibility using a SAT solver (e.g. Z3)

```
(declare-const x3 Int)
(declare-const y0 Int)
(declare-const y1 Int)
(declare-const y2 Int)
(declare-const y3 Int)

(assert (and (= 0 x0) (= 0 y0)))
(assert (and (= x1 (+ x0 1)) (= y1 (+ y0 1))))
(assert (and (= x2 (- x1 1)) (= y2 (- y1 1))))
(assert (and (= x3 (- x2 1)) (= y3 (- y2 1))))
(assert (and (< x3 0) (> y3 0)))
(check-sat)
```

Z3 returns unsat showing that the counterexample is infeasible (exercise: use z3 to check that this is indeed the case)

Refinement

• one can obtain (sequence) interpolants from unsatisfiability proofs and use them as predicates (an example shown below in red)

```
true
(assert (and (= 0 x0) (= 0 y0)))
y0 <= 0
(assert (and (= x1 (+ x0 1)) (= y1 (+ y0 1))))
y1 <= 1
(assert (and (= x2 (- x1 1)) (= y2 (- y1 1))))
y2 <= 0
(assert (and (= x3 (- x2 1)) (= y3 (- y2 1))))
y3 <= 0
(assert (and (< x3 0) (> y3 0)))
false
```

suppose we pick y <= 1 as the fourth predicate in our set of predicates

Eliminates Spurious Counterexample

$$\begin{array}{l} \langle 0,0,0,0 \rangle --- (x := 0; y := 0;) --- > \langle 1,1,0,1 \rangle \\ \langle 1,1,0,1 \rangle --- (x ++; y ++;) --- > \langle 1,0,1,1 \rangle \\ \langle 1,0,1,1 \rangle --- (x --; y --;) --- > \langle 1,1,0,1 \rangle \\ \langle 1,1,0,1 \rangle --- (x --; y --;) --- > \langle 0,1,0,1 \rangle \end{array}$$

The same sequence of statements now lead to $\langle 0,1,0,1 \rangle$ which is not an assertion-violating state

Goodness of predicates/refinement

- while adding y <= 1 did eliminate the spurious counterexample that we had, it is not avery useful refinement
- one can get another (spurious) counterexample by going through two iterations of the increment-loop
- we can, again, eliminate that by adding the predicate y <= 2, but longer (spurious) counterexamples will keep coming
- the predicates y <= 1 and y <= 2 they are good enough to eliminate the counterexample at hand, but too specific to eliminate other spurious counterexamples
- a more general predicate, e.g. y <= x, can help refine all spurious counterexamples at once (but obtaining such predicates may be a challenge)

Thank you!