1. **Assertion (A):** The vectors

$$\vec{a} = 6\hat{i} + 2\hat{j} - 8\hat{k}$$

$$\vec{b} = 10\hat{i} - 2\hat{j} - 6\hat{k}$$

$$\vec{c} = 4\hat{i} - 4\hat{j} + 2\hat{k}$$

represent the sides of a right angled triangle.

Reason (R): Three non-zero vectors of which none of two are collinear forms a triangle if their resultant is zero vector or sum of any two vectors is equal to the third.

- 2. Find the vector equation of the line passing through the point (2, 3, -5) and making equal angles with the co-ordinate axes.
- 3. Find a vector of magnitude 4 units perpendicular to each of the vectors $2\hat{i} \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} \hat{k}$ and hence verify your answer.
- 4. (a) Find the co-ordinates of the perpendicular drawn from the point (2,3,-8) to the line $\frac{4-x}{2}=\frac{y}{6}=\frac{1-z}{3}$. Also, find the perpendicular distance of the given point from the line.
 - (b) Find the shortest distance between the lines L_1 & L_2 given below: L_1 : The line passing through (2,-1,1) and parallel to $\frac{x}{1}=\frac{y}{1}=\frac{z}{3}$ $L_2: \vec{r}=\hat{i}+(2\mu+1)\hat{j}-(\mu+2)\hat{k}$.