

Computer Fundamentals

Lecture 9 : Logic & Control - Part III

Objectives

- After completing this module you will be able to:
 - Understand Combinational Circuits
 - Decoder, Multiplexer, Comparator, Arithmetic Circuits
 - Understand Sequential Circuits
 - SR, JK, D, T Flip-flops
 - Understand the arrangement of the ALU

Lecture Outline

- Integrated Circuits
- Combinational Circuits
 - Half adder & Full adder
 - The use of the Decoder, Multiplexer, De-multiplexer.
 - Enable input of a digital device.
- Sequential Circuits (Fundamental Building Blocks of Memory)
 - Introduction to SR Latch (Level triggered Flip-flops).
 - Concept of the Flip-flop (Edge Triggered Flip-flops).

Integrated Circuits (ICs)

- An Integrated Circuit is a small silicon semiconductor crystal(chip), containing the electronic components for digital gates.
- Various gates are interconnected inside the chip to form the required circuits.
- Chip is mounted in a ceramic or plastic container and connections are welded by thin gold wires to the external pins to form the integrated circuit.

Integrated Circuits

Integrated Circuits (ICs)

The IC pins provide access to the input and output terminals of individual gates as well as power supply to the whole device.

Figure 4-17. An SSI chip containing four gates.

Integrated Circuits (Contd.)

- ICs are roughly classified based on the number of gates they contain:
 - SSI (Small Scale Integrated) circuit: contain several independent gates in a single package (1 to 10 gates.)
 - MS I (Medium Scale Integrated) circuit: 10 to 200 gates are in a single package. Usually perform specific elementary digital functions such as adders, decoders and registers.

Integrated Circuits (Contd.)

- LSI (Large Scale Integrated) circuit: has 200 to few thousand gates in a single package. They include digital systems such as processors, memory chips and programmable modules.
- VLSI (Very Large Scale Integrated) circuit:
 - >100,000 gates. Examples: large memory arrays and complex microcomputer chips.
 - characteristics size is small and low cost and this is revolutionized the computer system design technology by designing economical computers.

Combinational Circuits

- A connected arrangement of logic gates with a set of inputs and outputs
- At any given time, the binary values of the outputs are a function of the binary combination of the inputs.
- This circuits are employed in digital computers for generating binary control decisions and for providing digital components required for data processing.

Combinational Circuits

Fig. 4-1 Block Diagram of Combinational Circuit

Designing Combinational Circuits

In general we have to do following steps:

- Problem description
- Input/output of the circuit
- 3. Define truth table
- Simplification for each output
- Draw the circuit

Combinational Circuits

- To demonstrate the design of combinational circuits, two simple arithmetic circuits can be given
 - Half-Adder
 - Full-Adder
 - Half-Adder
 - A combinational circuit that performs the arithmetic addition of two bits is called half adder.

Combinational Circuits Half-Adder

- Input variables of the Half-Adder
 - Augend and addend bits.
- The Output variables
 - sum and carry
- It is necessary to specify the two output variables because sum of 1 +1 is binary 10. which is two digits.

Exclusive-OR

- □ The XOR (exclusive-OR) gate acts in the same way as the logical "either/or."
- The output is "true" if either, but not both, of the inputs are "true."
- The output is "false" if both inputs are "false" or if both inputs are "true."
- Another way of looking at this circuit is to observe that the output is 1 if the inputs are different, but 0 if the inputs are the same.

Exclusive-OR

Truth table for XOR gate		
INPUT		OUTPUT
0	0	0
0	1	1
1	0	1
1	1	0

AND Gate

INPUT		OUTPUT	
A	В	F=A.B	
0	0	0	False as one or more
0	1	0	inputs are false
1	0	0	
1	1	1	True as all inputs are true

Combinational Circuits: Half Adder

Half Adder: The sum is XOR operation and the carry an AND

Figure 4-23 (a) Truth table for 1 bit addition. (b) A circuit for a half adder

Combinational Circuits – Full Adder

- A full adder is a combinational circuit that forms the arithmetic sum of three input bits.
- It consists three inputs and two outputs.
- Define a truth table.

	Inpu ⁻	t	Out	tput
X	У	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Combinational Circuits - Full Adder

4. Simplification for each output

	Inpu ¹	t	Out	tput
Χ	У	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C = xy'z + x'yz + xy$$

$$= z(xy' + x'y) + xy$$

$$= z(x \oplus y) + xy$$

$$S=xy'z' + x'y'z + xyz + x'yz'$$

$$= z'(xy' + x'y) + z(x'y' + xy)$$

$$= z'(x \oplus y) + z(x \oplus y)'$$

$$= a'b' + ab' \text{ (let } a=z, b=x \oplus y)$$

$$= x \oplus y \oplus z$$

$$(x \oplus y)' = (xy' + x'y)'$$

$$= x'y'' + x''y'$$

$$= x'y + xy'$$

$$= (x'+y)(x+y') Duality$$

$$= x'x + x'y' + xy + yy' Identity$$

$$= x'y' + xy$$

Combinational Circuits: Full Adder

5. Draw a diagram

	I npu	t	Out	tput
Х	У	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Maps of Full-Adder

Fig. 4-6 Maps for Full Adder

General Digital System Diagram

Synchronous and Asynchronous Sequential Logic

Synchronous

- the timing of all state transitions is controlled by a common clock
- changes in all variables occur simultaneously

Asynchronous

- state transitions occur independently of any clock and normally dependent on the timing of transitions in the input variables
- changes in more than one output do not necessarily occur simultaneously

Synchronous and Asynchronous Sequential Logic (Contd.)

Clock

- A clock signal is a square wave of fixed frequency Often, transitions will occur on one of the edges of clock pulses
- Clock signals are used to maintain the desired timing in the circuits.
- Clock circuits emit pulse trains of precise repetition interval and width.
- Sometimes it is necessary to have one clock pulse train trail another by a fixed time.
- A circuit with the appropriate delay may be inserted to achieve the desired phase shift

Clock Signals

Clock circuit and the clock waveforms

Flip-Flops (Latch)

- A flip-flop or latch is a circuit that has two stable states and can be used to store state information.
- This circuit can be made to change state by signals applied to one or more control inputs and will have one or two outputs
- Flip-flops are the fundamental element of sequential circuits.
 - (gates are the fundamental element for combinational circuits)
- Flip-flops is a binary cell capable of storing one bit information and basic storage element in sequential logic

Flip-Flops

Computer Fundamentals (101)

- Flip-flops have two outputs
 - One for the normal value (Q)
 - One for the complement value the bit stored it (Q).
- Flip-flops can be either simple (transparent or asynchronous) or clocked (synchronous)
- the transparent ones are commonly called latches.
- The word *latch* is mainly used for storage elements
- The clocked devices are described as flip-flops.

Flip-Flops(Contd.)

Usage: Flip-flops and latches are a fundamental building block of digital electronics systems used in computers, communications, and many other types of systems.

Main types of flip-flops

- S-R(Set-Reset) Flip-Flop
- D (Data or Delay) Flip Flop
- J-K Flip-Flop

- A RS-flip-flop is the simplest possible memory element.
- It is constructed by feeding the outputs of two NOR gates back to the other NOR gates input.

S	R	Action
0	0	Keep state
0	1	Q=0
1	0	Q=1
1	1	Restricted Combination

S	R	Action
0	0	Keep state
0	1	Q=0
1	0	Q=1
1	1	Restricted Combination

- S=0 and R=0: Assume the flip flop is set (Q=0 and \overline{Q} =1), then the output of the top NOR gate remains at Q=1 and the bottom NOR gate stays at \overline{Q} =0.
- Similarly, when the flip flop is in a reset state (Q=1 and $\overline{Q}=0$), it will remain there with this input combination.
- Therefore, with inputs S=0 and R=0, the flip flop remains in its state.

S	R	Action
0	0	Keep state
0	1	Q=0
1	0	Q=1
1	1	Restricted Combination

- S=0 and R=1: Similar to the arguments above, the outputs become Q=0 and $\overline{Q}=1$.
- We say that the flip flop is reset.

S	R	Action
0	0	Keep state
0	1	Q=0
1	0	Q=1
1	1	Restricted Combination

- S=0 and R=0: Assume the flip flop is set (Q=0 and \overline{Q} =1), then the output of the top NOR gate remains at Q=1 and the bottom NOR gate stays at \overline{Q} '=0.
- Similarly, when the flipflop is in a reset state (Q=1) and $\overline{Q}=0$, it will remain there with this input combination.
- Therefore, with inputs S=0 and R=0, the flipflop remains in its state.
- S=1 and R=1: This input combination must be avoided.