Q1. A diffraction grating used at normal incidence gives a yellow line $(\lambda = 6000A^0)$ in a certain spectral order superimposed on a blue line $(\lambda = 4800A^0)$ of next higher order. If the angle of diffraction is $\sin^{-1}(3/4)$ calculate the grating element.

Given:-
$$\lambda_1$$
=6000A⁰=6x10⁻⁵ cm; λ_2 =4800A⁰=4.8 x 10⁻⁵ cm; $\theta = \sin^{-1}\left(\frac{3}{4}\right)$

Formula:-
$$(a + b)\sin \theta = n \lambda$$
; $n=1,2,3,4...$

Solution: for given
$$(a + b)$$
 and θ ; $n \alpha 1/\lambda$

$$(a + b)\sin \theta = n \lambda_1$$

$$(a + b)\sin \theta = (n + 1) \lambda_2$$

$$n \lambda_1 = (n + 1) \lambda_2$$

$$\frac{\lambda_1}{\lambda_2} = 1 + \frac{1}{n}$$

Therefore, n=4

$$(a + b) = \frac{n\lambda_1}{\sin\theta} = \frac{4 \times 6 \times 10^{-5}}{\frac{3}{4}} = 32 \times 10^{-5} \text{ cm}$$

Ans:- The grating element is 3.2 x 10⁻⁴ cm.