THUNDER: Le <u>Transporteur Humain de l'UN</u>iversité <u>D</u>e Sh<u>ER</u>brooke

Question de recherche

• Une personne pourra-t-elle embarquer sur le THUNDER de façon sécuritaire?

Objectifs (smart)

- Angle critique absolu < 25 deg
- Temps de stabilisation < 7 sec
 - Est stabilisé si angle atteint +/- 2 deg et n'atteint jamais de valeur plus haute pour le reste du test
- 95% de l'échantillon passe ces deux tests combinés (ET)

• Figure d'un essai type (avec identification des métriques ciblées)

• Analyses La distribution des variables sur l'ensemble des essais (graphique)

• Analyses Tendances (graphique)

• Analyses Tendances suite (graphique)

o Analyse des données aberrantes (graphique)

Aucune donnée aberrante

- Tableau de résultats.
 - La répartition des essais selon l'atteinte ou non des critères (1 tableau pour l'ensemble des critères)

	A) Angle maximum < 27	B) Temps stabilisation < 7	A et B
Pourcentage	0.6666667	0.6666667	0.5277778

 Tests statistiques avec justification : le modèle satisfait-il les critères?

$$pi0 = 90\%$$

pi = le nbr de tests concluants = 52.8%

$$H0 = pi = pi0$$

$$H1 = p < pi0$$

z-test dichotomique (prop test)

$$z = -12.89$$

$$p = 1 - P(z >= 12.89) = hors du tableau = 1 - 1 = 0$$

0 < 0.05 donc rejette H0, donc statistiquement le modèle ne satisfait pas les critères.

Puissance = 1 donc peut faire confiance

Exemple:

Au Québec, on estime que 35% des étudiants au BAC en génie poursuivent à la maîtrise. Dans une cohorte spécifique de 49 étudiants, on rapporte que 60% poursuivront à la maîtrise. Cette cohorte est-elle différente? Note. Considérez que les données sont normalement distribuées

Étape 1 : Définir l'hypothèse nulle (H0) et l'hypothèse alternative (H1) :

H0
$$\pi = \pi_0$$
 Ici, précisément $\pi_0 = 0.35$, $p = 0.60$

H1 $\pi \neq \pi_0$ (hypothèse bilatérale) ou $p > \pi_0$ (hypothèse unilatérale) lci, l'hypothèse unilatérale a plus de sens...

Étape 2 : Déterminer la statistique appropriée. On veut tester si la proportion d'étudiants qui poursuivent à la maîtrise dans la cohorte d'intérêt est différente de la moyenne provinciale. On a donc 1 groupe, une variable catégorique dichotomique et une distribution normale; le test-Z est approprié.

Étape 3: Préciser le niveau de signification du test : $\alpha = 0.05$.

Étape 4 : Calcul de la statistique

$$z = \frac{p - \pi_0}{\sqrt{\pi_0 (1 - \pi_0)/n}} = \frac{0.60 - 0.35}{\sqrt{0.35(1 - 0.35)/49}} = 3.669$$

Étape 5 : Établir une conclusion : En se référant à la table normale (Annexe A)

 $P(Z \ge 3.669) = 1 - 0.99988 = 0.00012$. p < 0.05 donc on rejette l'hypothèse nulle. La cohorte en question peut donc être considérée statistiquement significativement différente des étudiants en génie du Québec.

Interprétation des résultats et conclusion

• 52% des gens sont stables, alors qu'on voulait 90%. C'est statistiquement impossible (p = 0) que notre résultat soit compatible avec celui attendu.

Il faudrait soit revoir à la baisse le résultat attendu, mais pas vraiment une option dans notre cas car notre segway devient dangereux.

Sinon, il faudrait revoir les critères du test à la baisse, pour le rendre plus facile à atteindre (ex: $25 \rightarrow 27 \& 7 \rightarrow 8$) en espérant que ça soit encore sécuritaire dans la vraie vie.

• En conclusion, vaudrait mieux améliorer le modèle du prototype ou modifier le test avant de passer à la prochaine étape de maturation technologique (trl-3)

• À quel niveau de maturation technologique vous trouvez-vous actuellement?

Phase	Niveau	Détails	
*	Niveau 1 (TRL-1): Observation et consignation des principes de base du concept.	C'est le début de la recherche appliquée. Ce niveau inclut, par exemple, des études liées aux propriétés de base d'une nouvelle technologie.	Technologie existe déjà (Segway)
recherche	Niveau 2 (TRL-2): Concept technologique ou application déterminé.	Début de l'invention proprement dit. Les principes observés sont maintenant analysés dans un contexte pratique. À ce stade, on parle toujours d'études analytiques.	
totype « r	Niveau 3 (TRL-3): Fonction critique et analytique expérimentale ou validation de principe.	Ce niveau symbolise le début de la R&D active. Le niveau TRL-3 fait donc référence soit à des études analytiques (plus poussée qu'au niveau précédent) ou à des études en laboratoire de certains éléments critiques de l'invention.	Les test sont seulement théoriques

Quelle est la probabilité qu'une personne HN ait un essai concluant au niveau de la stabilité?

```
HN \rightarrow186.27+ cm OU 115.81+ kg STABLE \rightarrow a passé les 2 tests
HN ET STABLE \rightarrow SUBSET
probabilité = count(SUBSET) / count(HN)
probabilité = 0.5
```

De façon similaire, quelle est la probabilité qu'un essai concluant provienne d'une personne HN?

```
probabilité = count(SUBSET) / count(STABLE)
probabilité = 0.1929
```

Que pensez-vous du protocole actuel? Auriez-vous pu l'améliorer?

- La distribution des paires de poids et grandeurs ne représente pas la vie réelle. Le but est d'imiter la vraie vie.
- Trouver une distribution normale 2D poids-taille et sélectionner au hasard dans cette distribution (mvrnorm dans R)