ESTATÍSTICA

AULA 1 - POPULAÇÃO, AMOSTRA, ROL e AMPLITUDE

Universo estatístico ou população estatística

Conjunto de todos os elementos que podem oferecer dados pertinentes ao estudo em questão.

Amostra

Subconjunto da população.

Rol

Lista dos elementos de uma amostra organizados de forma crescente ou decrescente.

Amplitude

Amplitude de uma amostra é a diferença entre o valor do maior e do menor elemento da amostra.

AULA 2 – FREQUÊNCIA ABSOLUTA e RELATIVA

Frequência absoluta

Quantidade de vezes que cada elemento aparece.

Frequência relativa

Quantidade de vezes que o elemento aparece dividida pelo total de elementos, normalmente expressa em %.

A frequência relativa será sempre um número entre 0 e 1. Para calcular as frequências relativas em %:

$$F_{Rel}(\%) = \frac{F_{Abs}}{F_{Total}}.100$$

AULA 3 - CLASSE e DISTRIBUIÇÃO DE FREQUÊNCIAS

Classes unitárias

Uma classe para cada elemento, ou seja, dados não agrupados.

Intervalos de classes

Intervalos de valores onde são encaixados os elementos, ou seja, dados agrupados.

Distribuição de frequências

A distribuição de frequências de uma amostra consiste em uma lista de classes com suas respectivas frequências. Se organizarmos estes dados em tabelas, na coluna da esquerda colocamos as CLASSES e na coluna da direita colocamos as FREQUÊNCIAS.

AULA 4 - GRÁFICO DE SETORES

Gráficos de setores ou "de pizza"

Gráficos de setores são gráficos redondos onde o tamanho do setor circular de cada classe é proporcional à frequência relativa da classe. Também são chamados de "gráficos de pizza".

O ângulo de cada setor circular será dado por:

$$\alpha = F_{Rel} \cdot 360^{\circ}$$

AULA 5 - GRÁFICOS DE BARRAS e LINHAS

Gráficos de barras horizontais

Gráficos onde as classes estão no eixo vertical e o tamanho das barras horizontais é proporcional ao valor da grandeza estudada.

Gráficos de barras verticais (colunas) e linhas (poligonal)

Gráficos onde as classes estão no eixo horizontal e o tamanho das barras verticais é proporcional ao valor da grandeza estudada. Se ao invés de representamos cada dado por uma barra, representamos por pontos e os ligarmos, temos o gráfico de linhas.

AULA 6 - HISTOGRAMAS

<u>Histogramas</u>

Gráficos onde as classes ou intervalos estão no eixo horizontal e o tamanho das barras verticais é proporcional à frequência, absoluta ou relativa.

AULA 7 – MEDIDAS DE TENDÊNCIA CENTRAL e DE DISPERSÃO - INTRODUÇÃO

Medidas de tendência central

As medidas de tendência central ilustram em torno de qual elemento está distribuída a amostra, ou seja, em torno de quem estão as maiores frequências. São as mais comuns:

- Média aritmética simples e ponderada
- Mediana
- Moda

Medidas de dispersão

ESTATÍSTICA

Já as medidas de dispersão ilustram o quão "próximos" ou "afastados" estes elementos estão da média do grupo. São as mais comuns:

- Desvio médio
- Variância
- Desvio padrão

AULA 8 – MÉDIA ARITMÉTICA SIMPLES E PONDERADA

Média aritmética simples

A média aritmética simples \bar{x} de um grupo de elementos $x_1, x_2, x_3, \dots, x_n$ é calculado por:

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

Média aritmética ponderada

Para um grupo de elementos x_1,x_2,x_3,\dots,x_n com pesos k_1,k_2,k_3,\dots,k_n calcula-se a média aritmética ponderada por:

$$\bar{x} = \frac{x_1 \cdot k_1 + x_2 \cdot k_2 + x_3 \cdot k_3 + \dots + x_n \cdot k_n}{k_1 + k_2 + k_3 + \dots + k_n}$$

AULA 9 - MEDIANA

<u>Mediana</u>

A mediana é o elemento central do rol, ou seja, é o elemento que está no meio de uma amostra organizada em forma crescente.

Se o número de elementos for:

- Ímpar: a mediana é igual ao elemento central.
- Par: a mediana é igual à média aritmética entre os dois elementos centrais.

AULA 10 - MODA

Moda

A moda é o elemento que mais aparece dentro de uma amostra. A moda pode não existir, pode existir e ser única e pode existir e não ser única.

AULA 11 - DESVIO e DESVIO MÉDIO

Desvio

O desvio de um elemento é a distância entre ele e a média da amostra:

$$d = x_i - \bar{x}$$

Desvio médio

O desvio médio de uma amostra é a média aritmética dos módulos dos desvios de todos os elementos da amostra:

$$d_m = \frac{|x_1 - \bar{x}| + |x_2 - \bar{x}| + \dots + |x_n - \bar{x}|}{n} = \frac{\sum_{i=1}^n |x_i - \bar{x}|}{n}$$

AULA 12 - VARIÂNCIA

Variância

A variância de uma amostra é a soma dos quadrados dos desvios dividida pelo número de elementos:

$$\sigma^2 = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n} = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}$$

AULA 13 - DESVIO PADRÃO

Desvio padrão

O desvio padrão nada mais é que a raiz quadrada da variância:

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2}{n}}$$
$$= \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}}$$