Energy Flow Polynomials for Jet Substructure

MIT Jet Workshop Cambridge, MA – January 11, 2018

Patrick T. Komiske III

Center for Theoretical Physics, Massachusetts Institute of Technology

PTK, E.M. Metodiev, J. Thaler - 1712.07124

Part I - Introduction to Energy Flow Polynomials

Energy Flow Polynomials (EFPs)

*Part I based on a talk by Eric Metodiev.

EFP Essentials

$$\mathrm{EFP}_G = \underbrace{\sum_{i_1=1}^{M} \cdots \sum_{i_N=1}^{M} z_{i_1} \cdots z_{i_N}}_{\text{Correlator of } \underbrace{\text{Energies}}_{\text{and } \text{Angles}}} \theta_{i_k i_\ell}$$

Figure by E.M. Metodiev

EFP Essentials

$$\begin{aligned} \text{EFP}_G &= \underbrace{\sum_{i_1=1}^{M} \cdots \sum_{i_N=1}^{M} z_{i_1} \cdots z_{i_N}}_{\text{Correlator of } Energies} \underbrace{\prod_{(k,\ell) \in G} \theta_{i_k i_\ell}}_{\text{Correlator of } Energies} \underbrace{\sum_{k}^{E_i} e_{j_k}}_{\text{Correlator } e^+e^- \text{ measure: }} z_i = \underbrace{\sum_{k}^{E_i} E_k}_{\sum_{k}^{E_k} E_k} \theta_{ij} = \left(\frac{2p_i^{\mu}p_{j\mu}}{E_iE_j}\right)^{\beta/2}}_{\text{Figure by E.M. Metodiev}} \end{aligned}$$
 Hadronic measure:
$$z_i = \underbrace{\sum_{k}^{E_i} E_k}_{p_{T,i}} \theta_{ij} = \left(\Delta y_{ij}^2 + \Delta \phi_{ij}^2\right)^{\beta/2}$$

FFP Essentials

$$\mathrm{EFP}_G = \underbrace{\sum_{i_1=1}^{M} \cdots \sum_{i_N=1}^{M} z_{i_1} \cdots z_{i_N}}_{\text{Correlator of}} \prod_{\substack{(k,\ell) \in G \\ \text{Energies}}} \theta_{i_k i_\ell}$$

$$\begin{array}{ll} e^+e^- \; \text{measure:} & z_i = \frac{E_i}{\sum_k^{} E_k} & \theta_{ij} = \left(\frac{2p_i^\mu p_{j\mu}}{E_i E_j}\right)^{\beta/2} \\ \text{Hadronic measure:} & z_i = \frac{p_{T,i}}{\sum_k^{} p_{T,k}} & \theta_{ij} = (\Delta y_{ij}^2 + \Delta \phi_{ij}^2)^{\beta/2} \end{array}$$

$$= \sum_{i_1=1}^{M} \sum_{i_2=1}^{M} \sum_{i_4=1}^{M} \sum_{i_4=1}^{M} z_{i_1} z_{i_2} z_{i_3} z_{i_4} \theta_{i_1 i_2} \theta_{i_2 i_3} \theta_{i_2 i_4}^2 \theta_{i_3 i_4}$$

"flv-swatter" e.g.

$$=\sum_{i_1=1}^{M}\sum_{i_2=1}^{M}\sum_{i_3=1}^{M}\sum_{i_4=1}^{M}\sum_{i_5=1}^{M}z_{i_1}z_{i_2}z_{i_3}z_{i_4}z_{i_5}\theta_{i_1i_2}\theta_{i_2i_3}\theta_{i_1i_3}\theta_{i_1i_4}\theta_{i_1i_5}\theta_{i_4i_5}^2$$
 "bowtie"

Multigraph/EFP Correspondence

Multigraph \longleftrightarrow **EFP** $\sum \sum \sum \sum z_{i_1} z_{i_2} z_{i_3} z_{i_4} \theta_{i_1 i_2} \theta_{i_1 i_3} \theta_{i_1 i_4}$ N Number of vertices \longleftrightarrow N-particle correlator dNumber of edges ←→ Degree of angular monomial Treewidth $+1 \longleftrightarrow$ Optimal VE Complexity Connected Prime Disconnected Composite

Part I - Introduction to Energy Flow Polynomials

Energy Flow Polynomials (EFPs)

*Part I based on a talk by Eric Metodiev.

Energy Flow Basis from IRC safety

EFPs Linearly Span IRC-safe Observables

 \blacksquare Start with an arbitrary IRC-safe observable $\mathcal{S}(p_1^\mu,\dots,p_M^\mu)$

EFPs Linearly Span IRC-safe Observables

- \blacksquare Start with an arbitrary IRC-safe observable $\mathcal{S}(p_1^\mu,\dots,p_M^\mu)$
 - Energy expansion*: Approx. S with polynomials of z_{i_j}
 - lacktriangleright IR safety: ${\cal S}$ unchanged by addition of infinitesimally soft particles
 - lacktriangleright C safety: ${\cal S}$ unchanged by collinear splittings of particles
 - Relabeling symmetry: Particle indexing is arbitrary

See also F. Tkachov hep-ph/9601308, N. Sveshnikov and F. Tkachov hep-ph/9512370

⇒ Energy correlators linearly span IRC-safe observables

^{*}These expansions generically make use of the Stone-Weierstrass Theorem

EFPs Linearly Span IRC-safe Observables

- \blacksquare Start with an arbitrary IRC-safe observable $\mathcal{S}(p_1^\mu,\dots,p_M^\mu)$
 - Energy expansion*: Approx. S with polynomials of z_{i_i}
 - lacktriangleright IR safety: ${\cal S}$ unchanged by addition of infinitesimally soft particles
 - \blacksquare C safety: $\mathcal S$ unchanged by collinear splittings of particles
 - Relabeling symmetry: Particle indexing is arbitrary

See also F. Tkachov hep-ph/9601308, N. Sveshnikov and F. Tkachov hep-ph/9512370

- ⇒ Energy correlators linearly span IRC-safe observables
 - lacktriangle Angular expansion*: Approx. angular part of ${\cal S}$ with polynomials of $heta_{ij}$
 - \blacksquare Simplify: Identify unique analytic structures that emerge as EFPs

Similar emergent multigraphs in M. Hogervorst et al. 1409.1581 and B. Henning et al. 1706.08520

⇒ EFPs linearly span IRC-safe observables

$$\mathcal{S} \simeq \sum_{G \in \mathcal{G}} s_G \mathrm{EFP}_G$$

^{*}These expansions generically make use of the Stone-Weierstrass Theorem

Organization of the Energy Flow Basis

- Need to select EFP subset \mathcal{G}
 - \blacksquare Determine \mathcal{G} by truncating in d
 - \blacksquare Finite # of EFPs at each d
- OEIS A050535:

of multigraphs with d edges # of EFPs of degree d

■ OEIS A076864:

of connect. multigraphs with d edges # of prime EFPs with degree d

Maximum degree d		0	1	2	3	4	5	6	7	8	9	10
	A076864 Cumul.	1	1	2	5	12	33	103	333	1183	4 442	17 576
All EFPs	A050535 Cumul.	1	1	3	8	23	66	212	686	2389	8 682	33 160
	Cumul.	1	2	5	13	36	102	314	1 000	3389	12071	45231

Part I - Introduction to Energy Flow Polynomials

Energy Flow Polynomials (EFPs)

*Part I based on a talk by Eric Metodiev.

Energy Flow Basis from IRC safety

Taming the (IRC-safe) Substructure Zoo

$$\text{Jet Mass:} \qquad \frac{m_J^2}{p_{TJ}^2} = \sum_{i_1=1}^M \sum_{i_2=1}^M z_{i_1} z_{i_2} (\cosh(\Delta y_{i_1 i_2}) - \cos(\Delta \phi_{i_1 i_2})) = \frac{1}{2} \times \\ \qquad + \cdots$$

Jet Mass:
$$\frac{m_J^2}{p_{TJ}^2} = \sum_{i_1=1}^M \sum_{i_2=1}^M z_{i_1} z_{i_2} (\cosh(\Delta y_{i_1 i_2}) - \cos(\Delta \phi_{i_1 i_2})) = \frac{1}{2} \times \sqrt{+\cdots}$$

Angularities:
$$\lambda^{(\alpha)} = \sum_{i=1}^{M} z_i \theta_i^{\alpha}$$
 using p_T -centroid axis

C.F. Berger, T. Kucs, and G. Sterman, hep-ph/0303051 S.D. Ellis, et al., 1001.0014

A.J. Larkoski, J. Thaler, and W. Waalewiin, 1408,3122

$$\text{Energy Correlation Functions:} \qquad e_N^{(\beta)} = \sum_{i_1}^M \cdots \sum_{i_N=1}^M z_{i_1} \cdots z_{i_N} \prod_{k < \ell \in \{1, \dots, N\}} \theta_{i_k i_\ell}^\beta$$

with measure choice β

A.J. Larkoski, G.P. Salam, J. Thaler, 1305,0007

$$\text{Energy Correlation Functions:} \qquad e_N^{(\beta)} = \sum_{i_1}^M \cdots \sum_{i_N=1}^M z_{i_1} \cdots z_{i_N} \prod_{k < \ell \in \{1, \dots, N\}} \theta_{i_k i_\ell}^\beta$$

$$e_2^{(eta)}=oxedge$$
 , $e_3^{(eta)}=oxedge$, $e_4^{(eta)}=oxedge$

with measure choice β

A.J. Larkoski, G.P. Salam, J. Thaler, 1305,0007

using p_T -centroid axis

L.G. Almeida, et al., 0807,0234

J. Thaler and Lian-Tao Wang, 0806,0023

J. Gallicchio and M. Schwartz, 1211,7038

Part I - Introduction to Energy Flow Polynomials

Energy Flow Polynomials (EFPs)

*Part I based on a talk by Eric Metodiev.

Energy Flow Basis from IRC safety

Taming the (IRC-safe) Substructure Zoo

Spanning Substructure with Linear Regression

Linear Models

$$\mathcal{S} \simeq \sum_{G \in \mathcal{G}} s_G \mathrm{EFP}_G, \quad \mathcal{S}: \ \mathsf{IRC}\text{-safe observable}, \quad \mathcal{G}: \ \mathsf{set of \ EFPs}$$

- Machine learn $\{s_G\}$ with a linear model
- Linear models:
 - Convex with few/no hyperparameters to tune
 - Achieve global optimum via closed form solution or convergent iteration
 - Cannot have a simpler model (1 parm./input) sensitive to all inputs
 - Many potential methods to analyze learned model

See Ch. 3 and 4 of C. Bishop Pattern Recognition and Machine Learning

Confirming Analytic Relationships

Linear Regression and IRC-safety

- \blacksquare $m_J/p_{T,J}$: IRC safe no Taylor expansion due to square root
- $\lambda^{(\alpha=1/2)}$: IRC safe no simple analytic relationship
- \bullet $au_2^{(\beta=1)}$: IRC safe algorithmically defined
- \bullet $\tau_{21}^{(\beta=1)}$: Sudakov safe safe for 2-prong jets and more
- ullet $au_{32}^{(eta=1)}$: Sudakov safe safe for 3-prong jets and more
- Multiplicity: IRC unsafe

Part I Conclusions

■ EFPs:

- Energy correlators with angular structures indexed by multigraphs
- Linearly span the space of IRC-safe observables
- Encompass many existing classes of substructure observables

■ Linear regression:

- Linear models are the easiest and most tractable kind of model
 - Convex with few/no hyperparameters
 - Global optimum via closed form solution or convergent iteration
 - Many potential tools to analyze what's learned
- Works with EFPs to match onto many IRC-safe observables

Part II - Linear Jet Tagging with EFPs

Linear Classification with EFPs

Linear Classification Overview

- lacksquare Fit a decision plane, determined by a vector $oldsymbol{w}$
 - Fisher's linear discriminant (LDA): closed-form solution
 - Logistic regression: Convex, iterative solution
- Decision threshold t is determined by distance from the plane
- lacksquare G is finite set of graphs corresponding to the inputs
 - lacktriangle Organization by d is natural (equivalent to the order of the expansion)
 - lacktriangle Organization by N or χ also possible, (where is the information?)

$$\mathsf{Classifier} = \left\{ \left(t + \sum_{G \in \mathcal{G}} w_G \mathsf{EFP}_G \right) \right. \\ \left. \begin{array}{l} \geq 0, & \mathsf{signal} \\ < 0, & \mathsf{background} \end{array} \right.$$

Linear Classification with EFPs

lacktriangleq W vs. QCD jet classification (quark/gluon and top tagging in backup)

- 300k training samples
- Linear: Fisher's linear discriminant
 - \blacksquare num. params. = num. EFPs < 1000
 - 100k test samples
- DNN: Dense neural net
 - $\blacksquare \ (100 \ {\rm node \ fully-connected \ layer}) \times 3$
 - $\blacksquare \sim 120 \text{k parameters}$
 - 50k validation, 50k test samples

Which EFPs are Important?

- \blacksquare High-N EFPs are important for classification performance
- Great classification performance with just $\chi=2$ EFPs!

Part II - Linear Jet Tagging with EFPs

Linear Classification with EFPs

Comparison with Modern Machine Learning

Modern Machine Learning Comparison

- Linear and DNN same as before
- CNN: Convolutional neural net
 - \blacksquare 33 imes 33 jet images
 - (48 filters) \times 3
 - \blacksquare gray: p_T channel only
 - \blacksquare color: p_T and mult. channels
 - ~ 80 k parameters

(Linear classification with EFPs) \sim (MML) for $\varepsilon_s \gtrsim 0.5!$

N-subjetiness: 1011.2268, N-subjetiness basis: 1704.08249, NN Review: 1709.04464

Modern Machine Learning Comparison

(Linear classification with EFPs) \gtrsim (MML) for $\varepsilon_s \gtrsim 0.5$

Part II - Linear Jet Tagging with EFPs

Linear Classification with EFPs

Comparison with Modern Machine Learning

Fast Computation of EFPs

Computational Complexity of ECF(G)s

$$\sum_{i_1=1}^{M} \cdots \sum_{i_N=1}^{M} E_{i_1} \cdots E_{i_N} \left\{ \begin{array}{ll} \prod\limits_{i < j \in \{i_1, \dots, i_N\}} \theta_{ij}^{\beta}, & \mathsf{ECF}_N^{\beta} & \mathsf{1305.0007} \\ \\ v \\ \prod\limits_{m=1}^{v} \min\limits_{(m)} \{\theta_{ij}^{\beta}\}_{i < j \in \{i_1, \dots, i_N\}}, & v \mathsf{ECFG}_N^{\beta} & \mathsf{1609.07483} \end{array} \right.$$

- lacktriangle Implementation of ECF(G) formula runs in time $\mathcal{O}(M^N)$
- With $M \sim 100$, ECF(G)_{N=4} \sim one hundred million operations
- lacksquare N=4 is barely tractable, $N\geq 5$ is essentially inaccessible

Computational Complexity of ECF(G)s

$$\sum_{i_1=1}^{M} \cdots \sum_{i_N=1}^{M} E_{i_1} \cdots E_{i_N} \left\{ \begin{array}{ll} \prod\limits_{i < j \in \{i_1, \dots, i_N\}} \theta_{ij}^{\beta}, & \mathsf{ECF}_N^{\beta} & \mathsf{1305.0007} \\ \\ v \\ \prod\limits_{m=1}^{v} \min\limits_{(m)} \{\theta_{ij}^{\beta}\}_{i < j \in \{i_1, \dots, i_N\}}, & v \mathsf{ECFG}_N^{\beta} & \mathsf{1609.07483} \end{array} \right.$$

- lacktriangle Implementation of ECF(G) formula runs in time $\mathcal{O}(M^N)$
- With $M \sim 100$, ECF(G) $_{N=4} \sim$ one hundred million operations
- lacksquare N=4 is barely tractable, $N\geq 5$ is essentially inaccessible

```
// if N > 5, then throw error
if (_N > 5) {
    throw Error("EnergyCorrelator is only hard coded for N = 0,1,2,3,4,5");
}
```

ficontrib - EnergyCorrelator 1.2.0

Computational Complexity of EFPs

- lacktriangle Like other energy correlators, EFPs are naively $\mathcal{O}(M^N)$
- Factorability of summand in EFP formula can speed up computation

Composite EFPs are products of prime EFPs

Computational Complexity of EFPs

- lacktriangle Like other energy correlators, EFPs are naively $\mathcal{O}(M^N)$
- Factorability of summand in EFP formula can speed up computation

Composite EFPs are products of prime EFPs

$$=\underbrace{\sum_{i_1=1}^{M}\sum_{i_2=1}^{M}\sum_{i_3=1}^{M}\sum_{i_4=1}^{M}\sum_{i_5=1}^{M}\sum_{i_6=1}^{M}\sum_{i_7=1}^{M}\sum_{i_8=1}^{M}z_{i_1}z_{i_2}z_{i_3}z_{i_4}z_{i_5}z_{i_6}z_{i_7}z_{i_8}\theta_{i_1i_2}\theta_{i_1i_3}\theta_{i_1i_4}\theta_{i_1i_5}\theta_{i_1i_6}\theta_{i_1i_7}\theta_{i_1i_8}}_{\mathcal{O}(M^8)}$$

$$=\underbrace{\sum_{i_1=1}^{M}z_{i_1}\left(\sum_{i_2=1}^{M}z_{i_2}\theta_{i_1i_2}\right)^{7}}$$

Variable Elimination (VE)

- Algorithm for finding optimal parentheses placement in EFP formula
- Reduces EFP computational complexity to $\mathcal{O}(M^{\chi})$:
 - Best case (NP-hard): $\chi = \mathtt{treewidth}(G) + 1$
 - Heuristics can be used which work excellently for our small graphs
 - lacktriangledown $\chi=2$ for all tree graphs, $\chi=3$ for single-cycle graphs, $\chi=N$ for K_N

EnergyFlow Python Package

- A convenient and simple package for efficient implementation of EFPs
- Currently written in pure Python using the NumPy library
 - Need a fast, arbitrary dimension multi-array
 - We're working on a C++ implementation (not simple)

import energyflow as ef
efps = ef.EFPSet('d<=7')
results = efps.compute(event)</pre>

Conclusions

- Linear classification with EFPs very comparable to MML methods
- lacktriangle Linear methods \Longrightarrow very nice both theoretically and experimentally
 - EFP linear structure potentially allows for theoretical calculation
 - Fully differentiable model, uncertainty/error propagation simple
 - Convex, global minimum is guaranteed
 - No/few hyperparameters
 - Interesting methods made possible by linearity
 - Lasso regression for automatic feature selection
 - PCA, orthogonal subspaces, etc.
- Efficient computation of EFPs has been achieved
 - EnergyFlow Python package here, stay tuned for more
- EFPs potentially bridge MML performance & theory understanding

Additional Slides

Quark/Gluon, Top Linear Classification with EFPs

$\operatorname{Quark}/\operatorname{Gluon}$ and Top Tagging N Sweep

Quark/Gluon and Top Tagging χ Sweep

N-Subjettiness Linear/DNN Comparison

VE Timing

- \blacksquare Test our implementation of VE averaged over all EFPs with $d \leq 7$
- \blacksquare This includes prime EFPs up to N=8 ! (Imagine N=8 ECF, OMG)

1 *			3		5		7	8
	2	7	12	33	50	65 80	48	23
χ	3		11	42	82	80	33	
	4			2	1			

Prime EFPs with $d \le 7$