PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY ARKUSZ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron (zadania 1 3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

STYCZEŃ 2014

WYBR	ANE:
------	------

•••••	(środowisko)
•••••	(kompilator)
(1	orogram użytkowy)

Czas pracy: 90 minut Liczba punktów do uzyskania: 20

P	ESEI	_		

Zadanie 1. Test (5 pkt)

W podpunktach a) – e) zaznacz znakiem X w odpowiedniej kolumnie **PRAWDA** lub **FAŁSZ**, która odpowiedź jest prawdziwa, a która fałszywa. Uwaga! W poszczególnych zadaniach może być więcej niż jedna odpowiedź prawdziwa i więcej niż jedna odpowiedź fałszywa.

a) OSI to:	PRAWDA	FAŁSZ
system plików wprowadzony po raz pierwszy w rodzinie systemów operacyjnych Windows.		
standard definiujący sposób przepływu danych między aplikacjami uruchomionymi na różnych komputerach.		
protokół do obsługi odległych terminali.		
siedmiowarstwowy Model Wzorcowy Połączeń w Systemach Otwartych.		

b) Określenie, że algorytm sortowania jest <i>in situ</i> (w miejscu) oznacza, że:	PRAWDA	FAŁSZ
w czasie procesu sortowania tylko stała liczba elementów tablicy wejściowej jest przechowywana poza nią.		
realizacja algorytmu wymaga dodatkowego czasu.		
realizacja algorytmu nie wymaga dodatkowej pamięci na porządkowane elementy.		
algorytm taki jest zawsze szybszy, niż algorytmy sortowania nie mające tej cechy.		

c) 0,2345600000E+02 to:	PRAWDA	FAŁSZ
23,3456		
$0,23456*10^{2}$		
0,23456 * 2 ²		
0,0023456		

 d) Wartość wyrażenia 7 5 + 6 4 – /, które jest zapisane w Odwrotnej Notacji Polskiej (ONP) wynosi (liczby są jednocyfrowe): 	PRAWDA	FAŁSZ
4		
2		
3/11		
6		

e) Metoda bisekcji znajduje zastosowanie w algorytmie:	PRAWDA	FAŁSZ
Hornera.		
wyznaczania miejsc zerowych funkcji.		
wyszukiwania liczb pierwszych za pomocą Sita Eratostenesa.		
poszukiwania elementu w zbiorze uporządkowanym.		

Punktacja:

	Podpunkt:	a)	b)	c)	d)	e)	Razem	1
Wypełnia egzaminator	Maksymalna liczba punktów:	1	1	1	1	1	5	1
cg2diiiiidtoi	Uzyskana liczba punktów:							1

Zadanie 2. Sortowanie (8 pkt)

Sortowanie ciągu liczbowego polega na uporządkowaniu jego wyrazów w pewnej kolejności. Rozważamy uporządkowanie od najmniejszej do największej liczby. Istnieje wiele metod sortowania i wykorzystują one różne techniki algorytmiczne, takie jak: iterację, rekurencję, dziel i zwyciężaj.

a) Dana jest 5-elementowa tablica T zawierająca cyfry.

T	6	5	1	Ω	4
-	U	3	1	U	4

Poniżej przedstawiono przebieg porządkowania elementów tablicy T:

6	5	1	0	4
0	5	1	6	4
0	1	5	6	4
0	1	4	6	5
0	1	4	5	6

Podaj nazwę zastosowanej w tym punkcie metody sortowania.
Podaj złożoność czasową wykorzystanej w tym punkcie metody sortowania. Przyjmij, że operacją dominującą jest porównanie.

b) Poniżej przedstawiono algorytm porządkowania ciągu liczb w postaci listy kroków:

Specyfikacja

Dane: Ciąg liczb $T_l, T_{l+1}, ..., T_p$.

Wynik: Posortowany niemalejąco ciąg liczb.

Algorytm	porządkowania	(T,	l, p
	por Equito " wille	\- ,	*, P

Krok 1: Jeśli l < p, przypisz $w = T_{\frac{l+p}{2}}$, w przeciwnym wypadku zakończ algorytm.

Krok 2: Przegrupuj wyrazy ciągu T[l, p] w dwa podciągi, wykorzystując wyznaczony wyraz w. Po podziale wyraz w znajdzie się na pozycji elementu T[k], dla k spełniającego warunek $l \le k \le p$; elementy zawarte w podciągu T[l, k] będą od niego nie większe, a w podciągu T[k, p] - nie mniejsze.

Krok 3: Uruchom ten algorytm z parametrami (T, l, k-1).

Krok 4: Uruchom ten algorytm z parametrami (T, k+1, p).

Odpowiedz na pytania dotyczące algorytmu sortowania przedstawionego w tym punkcie:

1.	Podaj nazwę zastosowanej metody sortowania ciągu liczbowego.				
2.	Czy w przedstawionej w tym punkcie metodzie wykorzystano technikę dziel i zwyciężaj? Odpowiedź uzasadnij.				

c) Zaproponuj algorytm zgodny z podaną poniżej specyfikacją (w postaci listy kroków, schematu blokowego lub w wybranym języku programowania) realizujący **nierosnące porządkowanie ciągu liczbowego**.

Wybierz metodę, która stosuje iterację, ale nie wykorzystuje techniki dziel i zwyciężaj.

Specyfikacja

Dane:

n – liczba naturalna większa od 0 równa liczbie elementów tablicy T

T[0..n-1] – n-elementowa tablica jednowymiarowa zawierająca liczby rzeczywiste (ciąg liczb do posortowania)

Wynik:

T[0..n-1] – posortowana nierosnąco n-elementowa tablica jednowymiarowa zawierająca liczby rzeczywiste (posortowany nierosnąco ciąg liczb) metodą, która stosuje iterację, ale nie wykorzystuje techniki dziel i zwyciężaj

Algorytm

Podaj nazwę i punkcie metody			wraz z	określeniem	operacji	dominującej	zaproponowan	ej w tyn
Zapisz postać punkcie algoryt	_	poniżej c	iągu licz	zbowego w l	xolejnych	iteracjach z	aproponowaneg	go w tym
1	<i>r</i>	6	5	1	0	4		

Punktacja:

Wypełnia egzaminator	Podpunkt:	a)	b)	c)	Razem
	Maksymalna liczba punktów:	2	2	4	8
	Uzyskana liczba punktów:				

Zadanie 3. IP i sieci komputerowe (7 pkt)

Cztery ciągi po 8 bitów reprezentujące adresy IPv4 (wersja czwarta protokołu IP) są przedstawione jako cztery liczby dziesiętne oddzielone kropkami - jest to tzw. notacja z kropkami. Na przykład adres: 1010110000010000000010000001111 w tej notacji ma postać: 172.16.4.15. Adres sieci jest definiowany jako grupa adresów dla urządzeń - z identycznym wzorem bitów w części sieciowej ich adresów IP.

a)	sieciowe (1) który nosi	np. komputer) i nazwę:	- w celu wyoo	należący do sie Irębnienia z tego 	adresu IP - ad	•
b)		11 5 1 5		i: 172.16.192. .16.4.15 w konte		
iii						

c) Długość części sieciowej adresu IP wynosi osiemnaście bitów, co oznacza, że binarnie zapisana maska sieciowa zawiera osiemnaście jedynek. Przyjmijmy, że adresem IP pierwszego możliwego do zaadresowania w sieci komputera jest 172.16.192.1. Jaki będzie adres IP ostatniego możliwego do zaadresowania urządzenia w tej sieci ? (odpowiedź uzasadnij)

d) Wskaż adres, pod który będą wysyłane (rozgłoszone) dane, jeśli te dane mają dotrzeć do wszystkich komputerów w sieci o adresie 200.100.100.32. Przyjmij, że na adres tej sieci przeznaczono 27 bitów.(odpowiedź uzasadnij)

Punktacja:

	Podpunkt:	a)	b)	c)	d)	Razem
Wypełnia egzaminator	Maksymalna liczba punktów:	2	1	2	2	7
	Uzyskana liczba punktów:					