Q1: Homomorphic Encryption (10 points)

(a) (5 points) Show that the above Elgamal encryption scheme is homomorphic with respect to multiplication.

$$E(m_1) * E(m_2) = (g^{y_1}, m_1 * h^{y_1}) * (g^{y_2}, m_2 * h^{y_2}) = (g^{y_1 + y_2}, (m_1 * m_2) * h^{y_1 + y_2})$$

= $(g^y, (m_1 * m_2) * h^y) = E(m_1 * m_2)$

(b) (5 points) Show that the above Elgamal encryption scheme is not homomorphic with respect to addition.

Assume: $m_1 = 1$, $m_2 = 3$, q = 5, G = < q >, g = 3, x = 2, $h = g^x \mod q = 9 \mod 5 = 4$

Show that: $E(m_1) * E(m_2) = E(m_1 + m_2)$

Recall due to (a): $E(m_1) * E(m_2) = E(m_1 * m_2)$, hence show: $E(m_1 * m_2) = E(m_1 + m_2)$, or specifically show: E(1 * 3) = E(1 + 3), E(3) = E(4)

$$E(3) = (c_1, c_2) = (3^{y_3}, 3 * 4^{y_3})$$

$$E(4) = (c_1, c_2) = (3^{y_4}, 4 * 4^{y_4}) = (3^{y_4}, 4^{1+y_4})$$

To equate them, Let $y_4 = y_3$ and show that c_1 of $E(3) = c_1$ of E(4), and show that c_2 of $E(3) = c_2$ of E(4)

 $3^{y_3} = 3^{y_3} \rightarrow \text{True for } c_1$

$$4^{y_3} = 4^{1+y_3}$$
, then $1 = 4^1$, which is False for c_2 !

Hence, Elgamal Encryption scheme is not homomorphic with respect to addition.

Q2: Homomorphic-Based Yao Millionaire Problem (15 points)

(a) (5 points) Explain why does the Homomorphic based protocol for Yao's millionaire problem (in Lecture 11 slides 22-23) fail when using unpadded RSA?

Because it is insecure, as unpadded RSA produces the same plaintext for the same ciphertext. Furthermore, the matrix T will produce the same encryption for 1 since it is calculated using $C = M^e \mod N$, which will reveal Sender information to the Receiver.

(b) (10 points) Design a protocol that uses unpadded RSA. Verify that your protocol works by implementing your proposed protocol using the notebook file ("Yao RSA.ipnyb").

Done.

Q3: Oblivious Transfer (OT) (10 pts)

(a) (10 points) Design a simple protocol for 1-out-of-n OT starting from 1-out-of-2 OT. Assume that both Alice and Bob are honest-but-curious. i.e., they follow the protocol but from time to time they collect extra information looking for exposing private data about each other. In your protocol, Alice and Bob can access the 1-out-of-2 functionality n times. Explain your protocol n details (Hint: Think of how to extend 1-out-of-2 to 1-out-of-3 and then generalize it to 1-out-of-n)

The sender will have *n* messages, and the receiver has an index *i*, and the receiver wishes to receive the *i*-th message among the sender's messages, without the sender learning *i*. Furthermore, the sender wants to ensure that the receiver receive only one of the *n* messages.

Step 1 Alice	1- Generates an RSA key paid PK = (N,e) and SK = (d)
	2- Generate n random values, r0, r1, r2 r_n , and she sends them to Bob
	along with PK
Step 2 Bob	Bob picks a value (v) between 0 and n, and select r_{v}
Step 3 Bob	Bob generates a random value k and blinds it with $r_{\!v}$ by computing:
	$x = r_v + k^e \mod N$ and sends it to Alice
Step 4 Alice	Alice does not know which of $r_{\!n}$ Bob did choose. Alice computes
	$k_0 = (x - r_0)^d \mod N, k_1 = (x - r_1)^d \mod N, \dots k_n = (x - r_n)^d \mod N$
Step 5 Alice	Alice combines the n secret messages with each of the possible keys, i.e.
	$m_0'=m_0+k_0$, $m_1'=m_1+k_1$, $m_n'=m_n+k_n$, and she sends them to Bob
Step 6 Bob	Bob knows which of the n messages can be unblinded with k , so he is able to
	compute exactly one of the messages $m_v = m_v^\prime - k$