Linear Algebra

주재걸 고려대학교 컴퓨터학과

Lecture Overview

- Elements in linear algebra
- Linear system
- Linear combination, vector equation, Four views of matrix multiplication
- Linear independence, span, and subspace
- Linear transformation (spm , spm , spm)
- Least squares
- Eigendecomposition
- Singular value decomposition

Recall: Linear System = 似蜿点,如如 粉珠

Recall the matrix equation of a linear system:

Person ID Weight Height Is_smoking Life-span				
1	60kg	5.5ft	Yes (=1)	66
2	65kg	5.0ft	No (=0)	74
3	55kg	6.0ft	Yes (=1)	78

Or, a vector equation is written as

Uniqueness of Solution for Ax = b

• The solution exists only when $\mathbf{b} \in \text{Span } \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}.$

$$\begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$$

$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

- If the solution exists for Ax = b, when is it unique?
- It is unique when a_1 , a_2 , and a_3 are linearly independent
- Infinitely many solutions exist when a_1 , a_2 , and a_3 are linearly dependent.

r Independence (1853) of the test of the tites 更为5/2 和的

V,···V3은 心苦. efinition:

of vectors $\mathbf{v}_1, \cdots, \mathbf{v}_p \in \mathbb{R}^n$, check if $\overline{\mathbf{v}_i}$ can be as a linear combination of the previous vectors

$$\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{j-1}\}$$
 for $j = 1, \dots, p$, e.g.,

$$\mathbf{v}_j \in \text{Span}\left\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{j-1}\right\}$$
 for some $j=1,\dots,p$?

- If at least one such \mathbf{v}_j is found, then $\{\mathbf{v}_1,\cdots,\mathbf{v}_p\}$ is linearly dependent.
- If no such v_j is found, then $\{v_1, \dots, v_p\}$ is linearly independent. ने अन्यान संग्रास सम्बद्ध

Linear Independence

(Formal) Definition: / homogeneous equation

• Consider
$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

• Consider
$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

• Obviously, one solution is $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, which we call a trivial solution.

which we call a trivial solution.

- $\mathbf{v}_1, \cdots, \mathbf{v}_p$ are linearly independent if this is the only solution.
- v₁, ···, v_p are linearly dependent if this system also has (other nontrivial solutions, e.g., at least one x_i being nonzero.

Two Definitions are Equivalent

- If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are linearly dependent, consider a nontrivial solution.
- In the solution, let's denote j as the last index such that $x_i \neq 0$.
- Then, one can write $x_i \mathbf{v}_i = -x_1 \mathbf{v}_1 \cdots x_{j-1} \mathbf{v}_{j-1}$, and safely divide it by x_i , resulting in

$$\mathbf{v}_j = -\frac{x_1}{x_j} \mathbf{v}_1 - \dots - \frac{x_{j-1}}{x_j} \mathbf{v}_{j-1} \in \operatorname{Span} \left\{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{j-1} \right\}$$
 which means \mathbf{v}_j can be represented as a linear combination of

the previous vectors.

Geometric Understanding of Linear Dependence

- Given two vectors \mathbf{v}_1 and \mathbf{v}_2 , Suppose Span $\{v_1, v_2\}$ is the plane on the right.
- When is the third vector \mathbf{v}_3 linearly dependent of \mathbf{v}_1 and \mathbf{v}_2 ?
- That is, $\mathbf{v}_3 \in \text{Span } \{\mathbf{v}_1, \mathbf{v}_2\}$?

Linear Dependence

- A linearly dependent vector does not increase Span!
- If $\mathbf{v}_3 \in \text{Span } \{\mathbf{v}_1, \mathbf{v}_2\}$, then

Span
$$\{v_1, v_2\}$$
 = Span $\{v_1, v_2, v_3\}$,

- Why?
- Suppose $\mathbf{v}_3 = d_1\mathbf{v}_1 + d_2\mathbf{v}_2$, then the linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 can be written as

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 = (c_1 + d_1)\mathbf{v}_1 + (c_1 + d_1)\mathbf{v}_2$$

which is also a linear combination of v_1, v_2 .

Linear Dependence and Linear System Solution

- (U1, U2, U3) * 代度を言いなら の1 (Inear systemを かか 学行 でかる。
- Also, a linearly dependent set produces multiple possible unique to a given vector.
- Given a vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{b}$, suppose the solution is $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, i.e., $3\mathbf{v}_1 + 2\mathbf{v}_2 + 1\mathbf{v}_3 = \mathbf{b}$.
- Suppose also $\mathbf{v}_3 = 2\mathbf{v}_1 + 3\mathbf{v}_2$, a linearly dependent case.
- Then, $3\mathbf{v}_1 + 2\mathbf{v}_2 + 1\mathbf{v}_3 = 3\mathbf{v}_1 + 2\mathbf{v}_2 + (2\mathbf{v}_1 + 3\mathbf{v}_2) = 5\mathbf{v}_1 + 5\mathbf{v}_2$, so $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}$ is another solution. Many more solutions exist.

Linear Dependence and Linear System Solution

Actually, many more solutions exist.

• e.g.,
$$3\mathbf{v}_1 + 2\mathbf{v}_2 + 1\mathbf{v}_3 = 3\mathbf{v}_1 + 2\mathbf{v}_2 + (2\mathbf{v}_3 - 1\mathbf{v}_3)$$

= $3\mathbf{v}_1 + 2\mathbf{v}_2 + 2(2\mathbf{v}_1 + 3\mathbf{v}_2) - 1\mathbf{v}_3 = 7\mathbf{v}_1 + 8\mathbf{v}_2 - 1\mathbf{v}_3$,

thus
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ 8 \\ -1 \end{bmatrix}$$
 is another solution.

况圣

niqueness of Solution for Ax = b

The solution exists only when b ∈ Span {a₁, a₂, a₃}.

$$\begin{bmatrix} 60 \\ 65 \\ 55 \end{bmatrix} x_1 + \begin{bmatrix} 5.5 \\ 5.0 \\ 6.0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3 = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$$
$$\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \mathbf{a}_3 x_3 = \mathbf{b}$$

- If the solution exists for Ax = b, when is it unique?
- It is unique when a_1 , a_2 , and a_3 are linearly independent.
- Infinitely many solutions exist when a_1 , a_2 , and a_3 are linearly dependent.