UNIVERSITY OF NEW SOUTH WALES School of Mathematics and Statistics

MATH2089 Numerical Methods and Statistics Term 2, 2019

Numerical Methods Laboratory – Week 3

- 1. The easiest way to define a simple function in Matlab is to use an anonymous function.
 - (a) Write an anonymous function myf to evaluate $f(x) = e^{-x^2}$.
 - (b) Create a vector \mathbf{x} of 21 equally spaced points on [-3,3] (Hint: linspace).
 - (c) Use your anonymous function to plot f on [-3,3]. Does it look correct?
 - (d) Repeat using 101 points.
 - (e) Zoom in (Magnifying glass with a + at the top of the figure window) around x = 0.
- 2. Write a Matlab script to calculate the forward difference approximation

$$f'(x) \approx \frac{f(x+h) - f(x)}{h} \tag{1}$$

to the first derivative of $f(x) = e^{x^2/2}$ at the point x = 1.

Figure 1: Error in forward difference estimate of the derivative of $f(x) = e^{x^2/2}$ at x = 1

- (a) What is the smallest sensible stepsize h > 0?
- (b) Write anonymous functions for f(x) and the exact derivative f'(x).
- (c) Calculate the finite difference approximation (1) for $h = 1, 10^{-1}, 10^{-2}, 10^{-3}, \dots$
- (d) Calculate the error between the approximation and the exact derivative.
- (e) Plot the absolute error against the stepsize h on a log-log scale, as in Figure 1.

- (f) i. Find the value of h that gives the smallest error in this example.
 - ii. Theoretically the best value of h is approximately $e^{\frac{1}{2}}$. Does this agree with your answer to the previous part?
- (g) The error in Figure 1 is constant for $h = 10^{-16}, 10^{-17}, 10^{-18}$. Why?
- (h) Print out your results as a table, similar to the one below. Hint: fprintf.

h	f'(x)	forward difference	error
1.00e+00	1.648721	5.740335	4.0916e+00
1.00e-01	1.648721	1.825309	1.7659e-01
1.00e-02	1.648721	1.665319	1.6598e-02
1.00e-03	1.648721	1.650371	1.6498e-03
1.00e-04	1.648721	1.648886	1.6488e-04
1.00e-05	1.648721	1.648738	1.6487e-05
1.00e-06	1.648721	1.648723	1.6486e-06
1.00e-07	1.648721	1.648721	1.6423e-07
1.00e-08	1.648721	1.648721	-8.0582e-11
1.00e-09	1.648721	1.648721	1.1094e-07
1.00e-10	1.648721	1.648721	-1.1110e-07
1.00e-11	1.648721	1.648726	4.3298e-06
1.00e-12	1.648721	1.648903	1.8197e-04
1.00e-13	1.648721	1.647571	-1.1503e-03
1.00e-14	1.648721	1.643130	-5.5912e-03
1.00e-15	1.648721	1.776357	1.2764e-01
1.00e-16	1.648721	0.000000	-1.6487e+00
1.00e-17	1.648721	0.000000	-1.6487e+00
1.00e-18	1.648721	0.000000	-1.6487e+00

3. The standard expressions for the solutions of the quadratic equation $ax^2 + bx + c = 0$ are

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, \quad r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
 (2)

(a) Show that equivalent expressions are

$$r_1 = \frac{2c}{-b - \sqrt{b^2 - 4ac}}, \quad r_2 = \frac{2c}{-b + \sqrt{b^2 - 4ac}}$$
 (3)

- (b) Which expression avoids catastrophic cancellation when
 - i. b > 0
 - ii. b < 0
- (c) Write and test a MATLAB function quadsolve to solve the quadratic in a numerically stable way.
 - i. The MATLAB function quadsolve must be in the file quadsolve.m
 - ii. The specifications are

$$[r1, r2] = quadsolve(a, b, c)$$

- iii. Include comments at the beginning of your function giving the calling sequence and the purpose of the function
- iv. Write a Matlab M-file to test your function quadsolve on a range of examples, including
 - A. $x^2 + 3x + 2 = 0$ (this quadratic factors)
 - B. $0.01x^2 + 2000x 0.001 = 0$
 - C. $x^2 1 = 0$
 - D. a = 1, b = 200, c = -0.000015 (example in Wikipedia)
 - E. Any other cases you can think of?