1.

Use of compounds having matrix metalloprotease inhibitory activity and the generalized formula:

(T)_XA-B-D-E-CO₂H

5

، کم ر

wherein

10

(a) (T) A represents a substituted or unsubstituted aromatic or heteroaromatic moiety selected from the group consisting of:

15

wherein R¹ represents H or alkyl of 1 - 3 carbons; and

each T represents a substituent group, independently selected from the group consisting of:

- * the halogens -F, -Cl, -Br, and -I;
- * alkyl of 1 10 carbons;

SON COMBUST OF STATES

15

10

20

25

30

\	haloalkyl of 1 - 10 carbons;
	haloalkoxy of 1 - 10 carbons;

- alkenyl of 2 10 carbons;
- * \alkynyl of 2 10 carbons;
- * -(CH₂)_pQ, wherein
 p is 0 or an integer 1 4,
- * -alkenyl-Q, wherein
 said alkenyl moiety comprises 2 4 carbons, and
- * -alkynyl-Q, wherein said alkynyl moiety comprises 2 7 carbons; and
 - is selected from the group consisting of aryl of 6 10 carbons, heteroaryl comprising 4 9 carbons and at least one N, O, or S heteroatom, -CN, -CHO, -NO₂, -CO₂R², -OCOR², -SOR³, -SO₂R³, -CON(R⁴)₂, -SO₂N(R⁴)₂, -C(O)R², -N(R⁴)₂, -N(R²)COR², -N(R²)CO₂R³, -N(R²)CON(R⁴)₂, -CHN₄, -OR⁴, and -SR⁴;

wherein

R² represents H; alkyl of 1 - 6 carbons;

aryl of 6 - 10 carbons;

heteroaryl comprising 4 - 9 carbons and at least one N, O, or S

heteroatom; or

arylalkyl in which the aryl portion contains 6 - 10 carbons and

the alkyl portion contains 1 - 4 carbons; or

heteroaryl-alkyl in which the heteroaryl portion comprises 4 - 9 carbons and at least one N, O, or S heteroatom and the alkyl

portion contains 1 - 4 carbons;

20

25

30

```
represents alkyl of 1 - 4 carbons;
```

aryl of 6 - 10 carbons;

heteroaryl comprising 4 - 9 carbons and at least one N, O, or S heteroatom; or

arylalkyl in which the aryl portion contains 6 - 10 carbons and the alkyl portion contains 1 - 4 carbons; or

heteroaryl-alkyl in which the heteroaryl portion comprises 4 - 9 carbons and at least one N, O, or S heteroatom and the alkyl portion contains 1 - 4 carbons;

R⁴ represents H;

 \mathbb{R}^3

alkyl of 1 -\12 carbons;

aryl of 6 - 10 carbons;

heteroaryl comprising 4 - 9 carbons and at least one N, O, or S heteroatom;

arylalkyl in which the aryl portion contains 6 - 10 carbons and the alkyl portion contains 1 - 4 carbons;

heteroaryl-alkyl in which the heteroaryl portion comprises 4 - 9 carbons and at least one N, O, or S heteroatom and the alkyl portion contains 1 - 4 carbons;

alkenyl of 2 - 12 carbons;

alkynyl of 2 - 12 carbons;

 $-(C_0H_{20}O)_rR^5$ wherein q is 1-3; r is 1 - 3; and R^5 is H provided q is greater than 1, or alkyl of 1 - 4 carbons, or phenyl;

alkylenethio terminated with H, alkyl of 1-4 Carbons, or phenyl;

alkyleneamino terminated with H, alkyl of 1-4 carbons, or phenyl;

-(CH2)_SX wherein s is 1 - 3 and X is halogen;

 $-C(O)OR^2$; or

50 V

 $-C(O)R^{2};$

and with the provisos that a) when two R⁴ groups are situated on a nitrogen, they may be joined by a bond to form a heterocycle, and b) unsaturation in a moiety which is attached to Q or which is part of Q is separated from any N, O, or S of Q by at least one carbon atom, and

x is 0, 1, or 2;

10

(b) B represents a bond or an optionally substituted aromatic or heteroaromatic ring containing 0-2 substituents T, which substituents T may independently have the meaning specified under (a), the B rings being selected from the group consisting of:

wherein R¹ is as defined above; (c) D represents =NN(R ^à)₂ in which R² is defined as above and each R² may be the same or different;

10

5

15

20

25

E represents a chain of n carbon atoms bearing m substituents R⁶, wherein said R⁶ groups are independent substituents, or constitute spiro or nonspiro rings in which a) two groups R⁶ are joined, and taken together with the chain atom(s) to which said two R⁶ group(s) are attached, and any intervening chain atoms, constitute a 3 - 7 membered ring, or b) one group R⁶ is joined to the chain on which said one group R⁶ resides, and taken together with the chain atom(s) to which said R⁶ group is attached, and any intervening chain atoms, constitutes a 3 - 7 membered ring; and wherein n is 2 or 3;

each group R⁶ is independently selected from the group consisting of:

* fluorine;

m is an integer of 1 - 3;

- * hydroxyl, with the proviso that a single carbon may bear no more than one hydroxyl substituent
- * alkyl of 1 10 carbons;
- * aryl of 6 10 carbons;
- * heteroaryl comprising 4 9 carbons and at least one N, O, or S heteroatom;
- * arylalkyl wherein the aryl portion contains 6 10 carbons and the alkyl portion contains 1 8 carbons;
- * heteroaryl-alkyl wherein the heteroaryl portion comprises 4 9 carbons and at least one N, O, or S heteroatom, and the alkyl portion contains 1 8 carbons;
- * alkenyl of 2 10 carbons;
- * aryl-alkenyl wherein the aryl portion contains 6 10 carbons and the alkenyl portion contains 2 5 carbons;

Sub A

5

10

heteroaryl-alkenyl wherein the heteroaryl portion comprises 4 - 9 carbons and at least one N, O, or S heteroatom and the alkenyl portion contains 2 -5 carbons;

- * alkynyl of 2 10 carbons;
- * aryl-alkynyl wherein the aryl portion contains 6 10 carbons and the alkynyl portion contains 2 5 carbons;
- * heteroaryl-alkynyl wherein the heteroaryl portion comprises 4 9 carbons and at least one N, O, or S heteroatom and the alkynyl portion contains 2 5 carbons;
- * -(CH₂)_tR⁷ wherein

 t is 0 or an integer of 1 5; and

 R⁷ is selected from the group consisting of

and corresponding heteroaryl moieties in which the aryl portion of an aryl-containing R⁷ group comprises 4 - 9 carbons and at least one N, O, or S heteroatom;

wherein

Y represents O or S;

 R^{1} , R^{2} , and R^{3} are as defined above; and

u is 0, 1, or 2; and

-(CH₂)_vZR⁸ wherein

v is 0 or an integer of 1 to 4; and

Z represents

R8 is selected from the group consisting of:

alkyl of 1 to 12 carbons;

aryl of 6 to 10 carbons;

heteroaryl comprising 4 \(\frac{1}{2} \) carbons and at least one N, O, or S heteroatom;

arylalkyl wherein the aryl portion contains 6 to 12 carbons and the alkyl portion contains 1 to 4 carbons;

heteroaryl-alkyl wherein the aryl portion comprises 4 - 9 carbons and at least one N, O, or S heteroatom and the alkyl portion contains 1 - 4 carbons;

-C(O)R⁹ wherein R⁹ represents alkyl of 2 - 6 carbons, aryl of 6 - 10 carbons, heteroaryl comprising 4 - 9 carbons and at least one N, O, or S heteroatom, or arylalkyl in which the aryl portion contains 6 - 10 carbons or is heteroaryl comprising 4 -

10

15

20

5 / 5

10

15

20

25

9 carbons and at least one N, O, or S heteroatom, and the alkyl portion contains 1 - 4 carbons;

and with the provisos that

- when \mathbb{R}^8 is $-C(O)\mathbb{R}^9$, Z is S or O;
- when Z is O, R^8 may also be $-(C_qH_{2q}O)_rR^5$ wherein q, r, and R^5 are as defined above; and
- * -(CH₂)_wSiR¹⁰₃ wherein
 w is an integer of 1 to 3; and
 R¹⁰ represents alkyl of 1 to 2 carbons;

and with the proviso that

- aryl or heteroaryl portions of any of said T or R^6 groups optionally may bear up to two substituents selected from the group consisting of $-(CH_2)_yC(R^4)(R^3)OH$, $-(CH_2)_yOR^4$, $-(CH_2)_ySR^4$, $-(CH_2)_yS(O)R^4$, $-(CH_2)_yCOR^4$, $-(CH_2$

y is 0 - 4; and

R³ and R⁴ are defined as above, and any two R⁴ which are attached to one nitrogen may be joined to form a heterocycle;

and pharmaceutically acceptable salts and prodrugs thereof for the manufacturing of drugs for the treatment and prevention of respiratory diseases.

2. Use of compounds according to claim 1 having matrix metalloprotease inhibitory activity and the generalized formula:

(T)_XA-B-D-E-CO₂H

ogates olece

M

10

15

20

(a) \backslash (T)_XA represents a substituted or unsubstituted aromatic or heteroaromatic moiety selected from the group consisting of:

and

wherein

wherein

each T represents a substituent group, independently selected from the group consisting of:

- * the halogens -F, -Cl, -Br, and -I;
- * alkyl of 1 10 carbons;
- * haloalkyl of 1 10 carbons;
- * alkenyl of 2 10 carbons;
- * alkynyl of 2 10 carbons;
- * -(CH₂)_pQ, wherein p is 0 or an integer 1 4,
- * -alkenyl-Q, wherein said alkenyl moiety comprises 2 4 carbons, and
- * -alkynyl-Q, wherein said alkynyl moiety comprises 2 7 carbons; and

Q is selected from the group consisting of -OR4 and -SR4;

25 wherein

R⁴ represents H; alkyl of 1 - 12 carbons; aryl of 6 - 10 carbons; 5 Jy 5

heteroaryl comprising 4 - 9 carbons and at least one N, O, or S heteroatom;

arylalkyl in which the aryl portion contains 6 - 10 carbons and the alkyl portion contains 1 - 4 carbons;

heteroaryl-alkyl in which the heteroaryl portion comprises 4 - 9 carbons and at least one N, O, or S heteroatom and the alkyl portion contains 1 - 4 carbons;

 $-C(O)OR^2$; or

 $\C(O)R^2$;

and with the proviso that unsaturation in a moiety which is attached to Q or which is part of Q is separated from any N, O, or S of Q by at least one carbon atom, and

x is 0, 1, or 2;

15

10

(b) B represents an optionally substituted phenyl or thienyl ring containing 0-2 substituents T, which substituents T may independently have the meaning specified under (a).

20

(c) D represents

25

(d) E represents a chain of n carbon atoms bearing m substituents R⁶, wherein said R⁶ groups are independent substituents, or constitute nonspiro rings in which two groups R⁶ are joined, and taken together with the chain atom(s) to which said two R⁶ group(s) are attached, and any intervening chain atoms, constitute a 5 or 6-membered ring; and wherein

15

20

n is 2 or 3; m is an integer of 1 or 2;

each group R⁶ is independently selected from the group consisting of:

- * arylalkyl wherein the aryl portion contains 6 10 carbons and the alkyl portion contains 1 8 carbons;
- * $\sqrt{-(CH_2)_t R^7}$ wherein \(\text{is 0 or an integer of 1 - 5; and }\)

- R² is independently selected from the group consisting of: H; aryl of 6-10 carbons
 - * -(CH₂)_VZR⁸ wherein
 v is 0 or an integer of 1 to 4; and
 Z represents

50/8 K'

R⁸ is selected from the group consisting of:

alkyl of 1 to 12 carbons;

aryl of 6 to 10 carbons;

heteroaryl comprising 4 - 9 carbons and at least one N, O, or S heteroatom;

arylalkyl wherein the aryl portion contains 6 to 12 carbons and the alkyl portion contains 1 to 4 carbons;

heteroaryl-alkyl wherein the aryl portion comprises 4 - 9 carbons and at least one N, O, or S heteroatom and the alkyl portion contains 1 - 4 carbons;

-C(O)R⁹ wherein R⁹ represents alkyl of 2 - 6 carbons, aryl of 6 - 10 carbons, heteroaryl comprising 4 - 9 carbons and at least one N, O, or S heteroatom, or arylalkyl in which the aryl portion contains 6 - 10 carbons or is heteroaryl comprising 4 - 9 carbons and at least one N, O, or S heteroatom, and the alkyl portion contains 1 -4 carbons;

and with the provisos that

- when \mathbb{R}^8 is $-\mathbb{C}(0)\mathbb{R}^3$, Z is S or O;
- when Z is O, R^8 may also be $-(C_qH_{2q}O)_rR^5$ wherein q, r, and R^5 are as defined above; and

25

-(CH₂)_wSiR¹⁰₃ wherein
w is an integer of 1 to 3; and
R¹⁰ represents alkyl of 1 to 2 carbons;

and with the proviso that

15

10

15

20

25

aryl or heteroaryl portions of any of said T or R⁶ groups optionally may bear up to two substituents selected from the group consisting of OR⁴, N(R⁴)₂, -OC(R⁴)₂O- in which both oxygen atoms are connected to the aryl ring, CON(R⁴)₂, OCOR⁴, -halogen, -NO₂, and alkyl with up to 6 carbon atome

wherein

R4 is defined as above;

and pharmaceutically acceptable salts and prodrugs thereof for the manufacturing of drugs for the treatment and prevention of respiratory diseases.

- 3. Use of a compound of claim 1 or 2, wherein at least one of the units A, B, T, and R⁶ comprises a heteroaromatic ring for the manufacturing of drugs for the treatment and prevention of respiratory diseases.
- 4. Use of a compound of claim 1 or 2, wherein in said E unit, n is 2 and m is 1 for the manufacturing of drugs for the treatment and prevention of respiratory diseases.

5. Use of a compound of claim 1 or 2, wherein A is

- B is p-phenylene and D is a carbonyl group for the manufacturing of drugs for the treatment and prevention of respiratory diseases.
 - 6. Use of a compound of claim 1 or 2, wherein the compound is selected from the following group:

- 129 -НО, _ОН

overen open

- 133 -

for the manufacturing of drugs for the treatment and prevention of respiratory diseases.

5 .

7. Compounds of the general formula (I')

wherein CO-E-CO₂H represents a 3-carboxyl-5-R⁷-pentan-1-on-1-yl- residue and the substituents T and R⁷ have the meaning indicated in the following table:

T	R ⁷	racemate, (+)- or (-)- enantiomer	
OEt	-N	(+)	;
OEt	->->	(-)	,
OAc		rac	;
ОН	-N	rac	;

8. A compound (+)-2-[2-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl]-4-(4'-ethoxy[1,1'-biphenyl]-4-yl)-4-oxobutanoic acid

10

OH

9. Use of compounds of the general formula (I')

T is (C_1-C_4) -alkoxy, chloride, bromide, fluoride, acetoxy, hydroxy, cyano, trifluoromethyl or trifluoromethoxy,

CO-E-CO₂H represents a 3-carboxyl-5-R⁷-pentan-1-on-1-yl- or a 2-carboxyl-3-(R⁷-methyl)-cyclopentan-1-yl)carbonyl-residue, and

R⁷ represents a group of the formula

10

and their salts, for the manufacturing of drugs for the treatment and prevention of respiratory diseases.

Use of the compound 10.

> (+)-2-[2-(1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl]-4-(4'-ethoxy[1,1'biphenyl]-4-yl)-4-oxobutanoic acid,

for the manufacturing of drugs for the treatment and prevention of respiratory diseases.

n

5

10

15

for the manufacturing of drugs for the treatment and prevention of respiratory diseases.

- 12. The use of a compound according to any one of claims 1 to 6 or 9 to 11 in the manufacture of a medicament for the treatment of a condition mediated by MMP-2, MMP-3, MMP-9, MMP-12 and/or MMP-13.
- 13. A method of treating or preventing a condition mediated by MMP-2, MMP-3, MMP-9, MMP-12 and/or MMP-13, which comprises administration of an effective amount of a substance according to any one of claims 1 to 6 or 9 to 11.
- Use of a compound according to any one of claims 1 to 6 or 9 to 11 for the treatment and prevention of asthma; chronic obstructive pulmonary diseases including chronic bronchitis and emphysema; cystic fibrosis; bronchiectasis; adult respiratory distress syndrome (ARDS); allergic respiratory disease including allergic rhinitis; diseases linked to TNF_α production including acute pulmonary fibrotic diseases, pulmonary sarcoidosis, silicosis, coal worker's

S N A

5

pneumoconiosis, alveolar injury in mammals, such as human, a farm animal or a domestic pet.

15. Use of a composition kaving matrix metalloprotease inhibitory activity, comprising a compound of any one of claims 1 to 12 and a pharmaceutically acceptable carrier for the manufacturing of drugs for the treatment and prevention of respiratory diseases.

56 Ad 10

- 16. Composition containing compounds according to Claim 7 or 8.
- 17. Composition according to Claim 16 for the treatment and prevention of acute and chronic inflammatory processes.