COMP9020 Week 8 Lecture 2 Notes

Relations, Equivalence Relations, Partial Orders, and Multiply-Quantified Statements

1 Equivalence Relations

Definition

A relation R on a set A is an **equivalence relation** if it satisfies:

• Reflexivity: $\forall x \in A, (x, x) \in R$

• Symmetry: $\forall x, y \in A, (x, y) \in R \Rightarrow (y, x) \in R$

• Transitivity: $\forall x, y, z \in A, (x, y), (y, z) \in R \Rightarrow (x, z) \in R$

Example

Let $A = \{0, 1, 2, 3, 4\}$ and the partition be $\{\{0, 3, 4\}, \{1\}, \{2\}\}\}$. The relation induced by this partition includes all pairs within each subset:

$$R = \{(0,0), (0,3), (0,4), (3,0), (3,3), (3,4), (4,0), (4,3), (4,4), (1,1), (2,2)\}$$

This relation is reflexive, symmetric, and transitive.

Equivalence Classes

Given $a \in A$, the equivalence class of a under R is:

$$[a] = \{x \in A \mid xRa\}$$

These equivalence classes form a partition of A.

Theorem

A relation on A is an equivalence relation if and only if it is induced by a partition of A.

2 Partial Orders

Definition

A relation R on a set A is a **partial order** if it satisfies:

- Reflexivity: $\forall x \in A, (x, x) \in R$
- Antisymmetry: $\forall x, y \in A, (x, y) \in R \land (y, x) \in R \Rightarrow x = y$
- Transitivity: $\forall x, y, z \in A, (x, y), (y, z) \in R \Rightarrow (x, z) \in R$

Examples

- Subset relation \subseteq on sets
- Divides relation $a \mid b$ on positive integers
- Less than or equal to \leq on real numbers

Total Orders

A **total order** is a partial order in which every pair of elements is comparable:

$$\forall x, y \in A, xRy \text{ or } yRx$$

3 Multiply-Quantified Relations

Key Quantified Statements

Let $R \subseteq A \times A$:

- 1. $\forall x \forall y \ xRy$: all nodes relate to all others
- 2. $\exists x \exists y \ xRy$: at least one relation exists
- 3. $\forall x \exists y \ xRy$: every node has at least one outgoing edge
- 4. $\exists y \forall x \ xRy$: one node receives from all others
- 5. $\forall y \exists x \ xRy$: every node has at least one incoming edge
- 6. $\exists x \forall y \ xRy$: one node points to all others

Examples

- $A = \{1, 2, 3\}, R = \{(1, 2), (2, 3), (3, 1)\}$ satisfies $\forall x \exists y \ xRy \ \text{and} \ \forall y \exists x \ xRy$
- $R = \{(1,2), (2,2), (3,2)\}$ satisfies $\exists y \forall x \ xRy$

4 Logical Relationships Between Statements

Valid Implications

- $\forall x \forall y \ xRy \iff \forall y \forall x \ xRy \ (commutativity of universal quantifiers)$
- $\exists x \exists y \ xRy \iff \exists y \exists x \ xRy \ (\text{commutativity of existential quantifiers})$
- $\exists y \forall x \ xRy \Rightarrow \forall x \exists y \ xRy$ (single target implies every source has a target)
- $\exists x \forall y \ xRy \Rightarrow \forall y \exists x \ xRy$ (single source implies every target has a source)

Non-Implications and Counterexamples

- $\forall x \exists y \ xRy \Rightarrow \exists y \forall x \ xRy$
- $\forall y \exists x \ xRy \Rightarrow \exists x \forall y \ xRy$

Counterexample: Let $A = \{1, 2, 3\}$ and:

$$R = \{(1, 2), (2, 3), (3, 1)\}$$

This satisfies:

- $\forall x \exists y \ xRy$: each node has an outgoing edge
- $\forall y \exists x \ xRy$: each node has an incoming edge

But it does not satisfy:

- $\exists y \forall x \ xRy$: no single node is the target of all others
- $\exists x \forall y \ xRy$: no single node has edges to all others

Diagrammatic Insight

- Statements like $\forall x \exists y \ xRy \text{ imply an } out\text{-}degree \text{ of at least 1 for every node.}$
- $\exists y \forall x \ xRy \text{ implies a } universal \ sink \text{ node (in-degree equal to set size)}.$
- Similarly, $\exists x \forall y \ xRy \text{ implies a } universal \ source.$
- Graph structure plays a key role in understanding these logical implications.