Taller de Microcontroladores y Placas de Desarrollo

Profesor: Kalun José Lau Gan Semestre 2023-2 Sesión 3

Р	reguntas previas	S:	

Agenda:

- Interface a displays de siete segmentos
- Multiplexación en displays de siete segmentos
- El modulo Timer0
- Aplicaciones con el modulo Timer0

3

El display de siete segmentos

- Módulo basado en LEDs distribuidos en una forma en particular que permite mostrar dígitos y caracteres.
- Requiere de un dispositivo decodificador para su funcionamiento.

El display de siete segmentos

- Dos tipos: ánodo común y cátodo común
- Tablas de decodificación diferentes entre ellos.
- Es necesario colocarle resistencias limitadoras de corriente para cada segmento que compone el display (100ohm a 1kohm).
- Evitar usar solo una resistencia en el pin común del display ya que al cambiar de carácter mostrado se tendrá un efecto de cambio de intensidad luminosa.

Observación:

 Los pines denominados "comunes" (Com) son el mismo nodo, la misma conexión!

7

Desarrollo de la tabla de decodificación para display de 7 segmentos cátodo común:

CC	X	SG	SF	SE	SD	SC	SB	SA		
	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	HEX	
0	0	0	1	1	1	1	1	1	0x3F	19
1	0	0	0	0	0	1	1	0	0x06	1 — 1
2	0	1	0	1	1	0	1	1	0x5B	101 191
3	0	1	0	0	1	1	1	1	0x4F	' ' •
4	0	1	1	0	0	1	1	0	0x66	1 - 1
5	0	1	1	0	1	1	0	1	0x6D	e
6	0	1	1	1	1	1	0	1	0x7D	1 ' 2 ' 1
7	0	0	0	0	0	1	1	1	0x07	
8	0	1	1	1	1	1	1	1	0x7F	
9	0	1	1	0	0	1	1	1	0x67	

Ejemplo de decodificador BCD a 7 segmentos

· Implementación en físico del circuito

cátodo común con PC

Ejemplo de decodificador BCD a 7 segmentos cátodo común con PC

· Análisis y diagrama de flujo

11

Ejemplo de decodificador BCD a 7 segmentos cátodo común con PC

Código en XC8

```
//Este es un comentario
#include <xc.h>
#include "cabecera.h"
     #define _XTAL_FREQ 400000UL
     unsigned char dato = 0; //para almacenar temporalmente
     unsigned char tabla[] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x67};
10 void configuro (void) {
          OSCCON1 = 0x60;
                                   //HFINTOSC y 1:1
          OSCFRQ = 0x02;
                                  //HFINTOSC trabajando a 4MHz
                                   //HFINTOSC enabled
                                 //RD6 al RD0 como salidas
//RD6 al RD0 como digitales
//RB3 al RB0 como entradas
          TRISD = 0x80;
          ANSELD = 0x80;
          TRISB = 0xFF;
          ANSELB = 0xF0;
                                   //RB3 al RB0 como digitales
18
20 7 void main (void) {
        configuro();
          while(1){
              dato = PORTB & 0x0F; //lectura de RB y enmascaramiento para RB3-RB0
LATD = tabla[dato]; //tabla de búsqueda y escritura en RD6-RD0
```

Ejercicios adicionales:

- Desarrollar un visualizador de mensaje "SOY FELIZ" a través de un display de siete segmentos del tipo cátodo común a razón de una letra a la vez y con periodo de cambio de 500ms.
- Desarrollar un tablero de score para una cancha deportiva, el cual se tenga dos displays y cuatro pulsadores clasificados en un display y dos pulsadores para cada equipo, un pulsador será para incrementar la cuenta y el otro para decrementar la cuenta.

13

El display de cuatro dígitos de siete segmentos multiplexado:

- Verificar si el display es de cátodo común o ánodo común empleando el multímetro.
- Para la multiplexación se requerirá del uso de transistores para evitar que los pines del microcontrolador trabajen con corrientes excesivas.

Multiplexación en displays de siete segmentos

- Los segmentos de cada dígito se encuentra conectados (Sa-Dig1 esta conectado con Sa-Dig2, con Sa-Dig3 y con Sa-Dig4, y demás segmentos)
- Se visualiza un dígito a la vez en el display multiplexado y en forma cíclica. Un ciclo de refresco involucra haber visualizado la información en todos los dígitos que componen el display.
- Reducimos la cantidad de E/S empleados en el microcontrolador (7 salidas para los segmentos excluyendo el punto decimal y 4 salidas para la selección del dígito)
- Por medio de un refresco a alta frecuencia (>50Hz) podremos ver los cuatro displays encendidos al mismo tiempo por el efecto de "persistencia visual"

15

Caso: Malos diseños electrónicos en la multiplexación de displays de siete segmentos:

- Al igual que en displays de siete segmentos individuales, se deben de colocar resistencias en cada uno de los segmentos para limitar la corriente que pasa por ellos.
- Se recomienda no conectar los habilitadores de frente a los I/O del microcontrolador ya que dichos I/O no soportan entregar/recepcionar corrientes altas.

Circuito implementado con display de cuatro dígitos de siete segmentos cátodo común multiplexados

Circuito implementado

Circuito implementado con display de cuatro dígitos de siete segmentos cátodo común multiplexados

https://jasonacox.github.io/TM1637TinyDisplay/examples/7-segment-animator.html

21

Algoritmo para la multiplexación de los dígitos del display de siete segmentos

- "visualización dinámica"
- Se debe de enviar el dato cuando se encuentren deshabilitados los dígitos (para no tener "ghosting")
- Luego de enviar el dato se hará la habilitación del dígito respectivo, antes de cargar otro dato se deberá de deshabilitar el dígito activo.

Algoritmo para la multiplexación de los dígitos del display de siete segmentos

· Código en XC8

Ejercicios:

- Ampliar la aplicación de visualización de dos mensajes para cuatro mensajes (empleando dos pulsadores para las cuatro combinaciones)
- Modificar la aplicación de visualización de dos mensajes con cambio manual en base a una entrada, hacia una visualización automática de ambos mensajes con periodo de cambio de 2 segundos.
- Realizar un contador 0000-9999 ya sea autoincremental con periodo de cuenta de un segundo aproximadamente como de manera manual a través de una entrada de reloj.
- Elaborar una estrategia para que los mensajes a visualizar tengan un efecto de desplazamiento de derecha a izquierda.

25

Fin de la sesión

 Realizar los ejercicios propuestos pendientes siguiendo el workflow