Chapter 3 Growth of Functions

C.K. Huang

Overview

- A way to describe behavior of functions in the limit.
 We're studying asymptotic(漸近) efficiency.
- Describe growth of functions.
- Focus on what's important by abstracting away loworder terms and constant factors.
- How we indicate running times of algorithms.
- A way to compare "sizes" of functions:

```
O ≈ ≤
```

$$\Omega$$
 \approx \geq

$$\Theta \approx =$$

$$\omega \approx >$$

Graphic Examples

Figure 3.1 Graphic examples of the Θ , O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that to the right of n_0 , the value of f(n) always lies on or above cg(n).

Θ-notation

$$\Theta(g(n)) = \left\{ f(n) \middle| \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \\ \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \right\}$$

$$f(n) \in \Theta(g(n)) \text{ or } f(n) = \Theta(g(n))$$

- g(n) is an asymptotically tight bound for f(n)
- f(n) is asymptotically nonnegative

$$f(n) = an^2 + bn + c = \Theta(n^2)$$
, where $a > 0$
 $f(n) = \sum_{i=0}^{d} a_i n^i = \Theta(n^d)$
 $\Theta(n^0) = \Theta(1)$, a constantor a constant function.

O-notation

$$O(g(n)) = \begin{cases} f(n) & \text{there exist positive constants} c \text{ and } n_0 \\ \text{such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \end{cases}$$

$$f(n) = \Theta(g(n)) \xrightarrow{implies} f(n) = O(g(n))$$

$$\Theta(g(n)) \subset O(g(n))$$

- "big-oh of g of n"
- Asymptotically upper bound → worst-case running time
- Θ-notation is a stronger notion than O-notation
- Using O-notation, we ca often describe the running time of an algorithm merely by inspecting the algorithm's overall structure.
 - Insertion-sort $an^2 + bn + c = O(n^2)$ $an + b = O(n^2)$

Ω -notation

$$\Omega(g(n)) = \left\{ f(n) \middle| \text{ there exist positive constants } c \text{ and } n_0 \right\}$$

$$\text{such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \right\}$$

- "big-omega of g of n"
- Asymptotically lower bound → best-case running time
- Theorem:

$$f(n) = \Theta(g(n))$$
 if and only if $f(n) = \Omega(g(n))$ and $f(n) = O(g(n))$

Asymptotic Notation in Equations

On right-hand side:

$$- 2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

$$-2n^2+3n+1=2n^2+f(n)$$
 for some $f(n) \in \Theta(n)$ in this case, $f(n)=3n+1$

$$\sum_{i=1}^{n} O(i) \qquad \text{OK}$$

$$O(1) + O(2) + \dots + O(2) \quad \text{not OK}$$

On left-hand side:

 No matter how the anonymous functions are chosen on the left-hand side, there is a way to choose the anonymous functions on the right-hand side to make the equation valid.

$$-2n^2 + \Theta(n) = \Theta(n^2)$$

-
$$2n^2 + f(n) = g(n)$$

for any function $f(n) \in \Theta(n)$,
there exists a function $g(n) \in \Theta(n^2)$

$$2n^{2} + 3n + 1 = 2n^{2} + \Theta(n)$$
$$= \Theta(n^{2})$$

o-notation

$$o(g(n)) = \left\{ f(n) \middle| \text{for any constant } c > 0, \text{ there exist a constants } n_0 > 0 \right\}$$

$$\text{such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0$$

$$2n = o(n^2)$$
, but $2n^2 \neq o(n^2)$

- "little-oh of g of n"
- An upper bound that is not asymptotically tight.

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$$

ω-notation

$$\omega(g(n)) = \begin{cases} f(n) & \text{for any constant } c > 0, \text{ there exist a constant } sn_0 > 0 \\ & \text{such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \end{cases}$$

$$f(n) \in \omega(g(n)) \text{ if and only if } g(n) \in o(f(n))$$

$$\frac{n^2}{2} = \omega(n), \text{ but } \frac{n^2}{2} \ne \omega(n^2)$$

- "little-omega of g of n"
- A lower bound that is not asymptotically tight.

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

Comparison of FunctionsRelational Properties

Transitivity

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$
(same for O, Ω, o, ω)

Reflexivity

$$f(n) = \Theta(f(n))$$
 (same for O, Ω)

Symmetry

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$

Transpose symmetry

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$
 $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$

Comparison of Functions - Comparisons

$$f(n) = O(g(n)) \approx a \leq b$$

$$f(n) = \Omega(g(n)) \approx a \geq b$$

$$f(n) = \Theta(g(n)) \approx a = b$$

$$f(n) = o(g(n)) \approx a < b$$

$$f(n) = \omega(g(n)) \approx a > b$$

- f(n) is asymptotically smaller than g(n) g(n) is asymptotically larger than f(n)
- No trichotomy(三一律)

$$a < b, a = b, a > b$$

Standard Notations - Monotonicity

- f(n) is monotonically increasing if $m \le n \Rightarrow f(m) \le f(n)$.
- f(n) is monotonically decreasing if $m \ge n \Rightarrow f(m) \ge f(n)$.
- f(n) is strictly increasing if $m < n \Rightarrow f(n) < f(n)$.
- f(n) is strictly decreasing if $m > n \Rightarrow f(n) > f(n)$.

Standard NotationsFloors and Ceilings

For all real
$$x$$
, $x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$

For any integer
$$n$$
, $\left\lceil \frac{n}{2} \right\rceil + \left\lfloor \frac{n}{2} \right\rfloor = n$

For any real number $n \ge 0$, and integers a, b > 0,

$$\begin{bmatrix} n/a \\ b \end{bmatrix} = \begin{bmatrix} n/ab \\ \lfloor n/a \\ b \end{bmatrix} = \lfloor n/ab \end{bmatrix}
 \begin{bmatrix} a/b \\ d + (b-1) \\ \lfloor a/b \\ d - (b-1) \end{pmatrix} / b
 \begin{bmatrix} a/b \\ d - (b-1) \\ d - (b-1) \end{bmatrix}$$

 $f(x) = \lfloor x \rfloor$ and $f(x) = \lceil x \rceil$ are monotonically increasing.

Standard Notations – Modular Arithmetic

Remainder or residue

For any integers a, and any positive integer n,

$$a \mod n = a - \lfloor a/n \rfloor n$$

$$(a \bmod n) = (b \bmod n) \Rightarrow a \equiv b (\bmod n)$$

$$a \equiv b \pmod{n} \Leftrightarrow n \text{ is a divisor of } |b-a|$$

Standard Notations - Polynomials

Given a nonnegative integer d, a polynomial in n of degree d,

$$p(n) = \sum_{i=0}^{d} a_i n^i$$
, where a_1, a_2, \dots, a_d are the coefficients.

 $a_d > 0 \Leftrightarrow$ A polynomial is asymptotically positive.

$$p(n) = \Theta(n^d)$$

 $a \ge 0$, n^a is monotonically increasing.

 $a \le 0$, n^a is monotonically decreasing.

f(n) is polynomially bounded if $f(n) = O(n^k)$ for some constant k.

Standard Notations - Exponentials

For all real a > 0, m, and n,

$$a^{0} = 1$$

$$a^{1} = a$$

$$a^{-1} = 1/a$$

$$(a^{m})^{n} = a^{mn} = (a^{n})^{m}$$

$$a^{m}a^{n} = a^{m+n}$$

For all real constantsa > 1 and b,

$$\lim_{n\to\infty}\frac{n^b}{a^n}=0\Rightarrow n^b=o(a^n)$$

- For all real x,

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{i=0}^{\infty} \frac{x^{i}}{i!}$$

$$e^x > 1 + x$$

- When $|x| \le 1$,

$$1 + x \le e^x \le 1 + x + x^2$$

- When $x \to 0$,

$$e^x = 1 + x + \Theta(x^2)$$

$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$$

Standard Notations - Logarithms

$$\lg n = \log_2 n$$

$$\ln n = \log_e n$$

$$\lg^k n = (\lg n)^k$$

$$\lg \lg n = \lg(\lg n)$$

For b > 1, n > 0, $\log_b n$ is strictly increasing

For all real
$$a > 0, b > 0, c > 0$$
, and $a = b^{\log_b a}$

$$\log_c(ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b \frac{1}{a} = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

Standard Notations – Logarithms (2)

- When
$$|x| < 1$$
,

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots$$

- For x > -1,

$$\frac{x}{1+x} \le \ln(1+x) \le x$$

f(n) is polylogarithmically bounded if $f(n) = O(\lg^k n)$.

- For a > 0,

$$\lim_{n \to \infty} \frac{\lg^b n}{\left(2^a\right)^{\lg n}} = \lim_{n \to \infty} \frac{\lg^b n}{n^a} = 0$$

$$\lg^b n = o(n^a).$$

Standard Notations - Factorials

$$n! = \begin{cases} 1 & \text{if } n = 0, \\ n \cdot (n-1)! & \text{if } n > 0. \end{cases}$$

$$n! = o(n^n)$$

$$n! = \omega(2^n)$$

$$\lg(n!) = \Theta(n \lg n)$$

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right), \text{ Stirling's Approximation}$$

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\alpha_n}, \text{ where } \frac{1}{12n+1} < \alpha_n < \frac{1}{12n}$$

Standard Notations – etc...

- Functional iteration
- Iterated logarithm function
- Fibonacci numbers