Paolo PRINETTO

Director
CINI Cybersecurity National
Laboratory
Paolo.Prinetto@polito.it
Mob. +39 335 227529

Security Pillars

License & Disclaimer

License Information

This presentation is licensed under the Creative Commons BY-NC License

To view a copy of the license, visit:

http://creativecommons.org/licenses/by-nc/3.0/legalcode

Disclaimer

- We disclaim any warranties or representations as to the accuracy or completeness of this material.
- Materials are provided "as is" without warranty of any kind, either express or implied, including without limitation, warranties of merchantability, fitness for a particular purpose, and non-infringement.
- Under no circumstances shall we be liable for any loss, damage, liability or expense incurred or suffered which is claimed to have resulted from use of this material.

Acknowledgments

- The presentation includes material from
 - Alessandro ARMANDO
 - Riccardo FOCARDI
 - Nicolò MAUNERO
 - Gianluca ROASCIO

whose valuable contributions are here acknowledged and highly appreciated.

Prerequisites

Lectures:

- > CS_1.1 Security: An Introduction
- > CS_1.2 Cybersecurity: Definition & relevance

Goal

Presenting in details the concepts mostly considered as Security Pillars

Outline

- Secure Systems Basic Pillars:
 - CIA Triad
- Additional pillars

Outline

- Secure Systems Basic Pillars:
 - CIA Triad
- Additional pillars

Cybersecurity

➤ That practice that allows an entity (organization, citizen, nation, ...) to protect its physical assets and *confidentiality*, *integrity* and *availability* of its information from threats that come from *cyberspace*

[standard ISO/IEC 27000:2014 & ISO/IEC 27032:2012]

Secure Systems Basic Pillars

Confidentiality

- Ensuring that information is accessible only to those authorized
- > Integrity
 - Ensuring that information has not been modified
- > Availability
 - Legitimate users have access when they need it

The CIA triad

Confidentiality, Integrity, Availability form what is usually referred to as the CIA triad

Secure Systems Basic Pillars

Confidentiality

- Ensuring that information is accessible only to those authorized
- > Integrity
 - > Ensuring that information has not been modified
- > Availability
 - Legitimate users have access when they need it

Preserving authorized restrictions on information access and disclosure, including means for protecting personal privacy and proprietary information...

[US Federal Information Security Management Act (FISMA) - United States Code, 2006 Edition, Supplement 5, Title 44]

- > Data
- Individuals (Privacy)
- Organizations (Secrecy)

- > Data
- > Individuals (Privacy)
- > Organizations (Secrecy)
- Assures that confidential information is not disclosed to unauthorized individuals

- > Data
- Individuals (Privacy)
- > Organizations (Secrecy)

- Assures that individuals control or influence:
 - what information related to them may be collected and stored
 - by whom and to whom that information may be disclosed

Privacy

Freedom from intrusion into the private life or affairs of an individual when that intrusion results from undue or illegal gathering and use of data about that individual

[NISTIR 8053 (ISO/IEC 2382)]

- > Data
- > Individuals (Privacy)
- Organizations (Secrecy)
- Pertains to
 confidentiality for
 organizations, such as
 commercial companies
 or governments

Secure Systems Basic Pillars

- > Confidentiality
 - Ensuring that information is accessible only to those authorized
- > Integrity
 - > Ensuring that information has not been modified
- > Availability
 - Legitimate users have access when they need it

Integrity

Guarding against improper information modification or destruction, and includes ensuring information non-repudiation and authenticity.

[US Federal Information Security Management Act (FISMA) - United States Code, 2006 Edition, Supplement 5, Title 44]

Integrity

It covers two related concepts:

- Data integrity: Assures that information and programs are changed only in a specified and authorized manner
- > System integrity: Assures that a system performs its operations in unimpaired manner, free from unauthorized manipulation

Secure Systems Basic Pillars

- > Confidentiality
 - Ensuring that information is accessible only to those authorized
- > Integrity
 - > Ensuring that information has not been modified
- > Availability
 - Legitimate users have access when they need it

Availability

Ensuring timely and reliable access to and use of information ...

[US Federal Information Security Management Act (FISMA) - United States Code, 2006 Edition, Supplement 5, Title 44]

Availability

Assures that systems work promptly, and service is not denied to authorized users.

Availability

The probability D(t) that the system will function correctly at a given instant t.

DAD vs CIA

- > Attacks on the CIA are typically referred to as DAD:
 - Disclosure > Confidentiality
 - Alteration > Integrity
 - Destruction > Availability

A practical example of CIA attack

- Let's assume an information (or service) move from a source to a destination
- The attacker could subvert this pattern in several ways
- Let's analyse some of them

Stealing: attack to Confidentiality

- The attacker gets unauthorized access to information
- So, he breaks confidentiality
- Examples:
 - S is a vulnerable database
 - S sends a credit card number to D "in clear"

Corrupting: attack to Integrity

- The attacker maliciously modifies the transmitted information
- So, he breaks integrity
- Example:
 - A redirects S's bank transfer
 - NOTE: The attacker A can be either in the browser or on the network (Man-in-the-middle)

Inhibiting: attack to Availability

- > The attacker *stops* the information flow
- > So, he breaks availability
- Examples:
 - DoS on a server
 - Attack to the Ukrainian Power supply network

Countermeasures

- Attacks on the CIA can be taken to any level, from hardware to software to communications.
- To be effective, each application domain has developed and adopts its own specific countermeasures

Examples of possible countermeasures

- In the sequel we focus on just two examples of possible countermeasures in the field of protection of transmitted messages
 - > Hash functions
 - > Encryption

Hash Functions

- > A Hash function:
 - gets in input a set of data M (of variable length)
 - > returns a hash value h (of fixed length):

$$h = H(M)$$

Hash Functions usage

Hash functions can be used to demonstrate the *integrity* of a message M.

,

Hash Functions usage

- Hash functions can be used to demonstrate the *integrity* of a message M.
- If M is sent together with h (i.e., the result of the hash function applied to it) and an attacker modifies M in M', the receiver, calculating the hash function on M', will get a value h' most likely different from the value h originally sent together with the message M.

Encryption

Operation that, resorting to an encryption algorithm and a key, renders a message "blurred", so that it is not comprehensible/intelligible to persons not authorised to read it.

Encryption & Decryption

Can be exploited to guarantee confidentiality.

Outline

- Secure Systems Basic Pillars:
 - CIA Triad
- Additional pillars

- > Resilience
- Non-repudiation
- > Authenticity
- Access control

[https://www.itgovernance.co.uk/cyber-resilience]

- Resilience
 - Non-repudiation
 - Authenticity
 - Access control

[NIST SP 800-53 Rev. 4 under Information System Resilience NIST SP 800-39 under Information System Resilience]

- The ability of an information system to continue to:
 - operate under adverse conditions or stress, even if in a degraded or debilitated state, while maintaining essential operational capabilities;
 - recover to an effective operational posture in a time frame consistent with mission needs.

- Resilience
- Non-repudiation
- Authenticity
- Access control

The ability of an information system to continue to operate while under attack, even if in a degraded or debilitated state, and to rapidly recover operational capabilities for essential functions after a successful attack

[NIST SP 800-30 Rev. 1 under Information System Resilience]

- Resilience
 - Non-repudiation
 - Authenticity
 - Access control

Cyber resilience is a measure of how well an organization can manage (i.e., prepare for, respond to and recover form) a cyberattack or data breach, while continuing to operate its business effectively.

Resilience effects

It helps an organisation protect against cyber risks, defend against and limit the severity of attacks, and ensure its continued survival despite an attack.

[https://www.itgovernance.co.uk/cyber-resilience]

Risk

The possibility that human actions or events lead to consequences that have an impact on what humans value

[O. Renn, "The role of risk perception for risk management," Reliability Engineering & System Safety, vol. 59, no. 1, pp. 49 – 62, 1998, http://www.sciencedirect.com/science/article/pii/S0951832097001191]

- Manage and protect
- Identify and detect
- Respond and recover
- Govern and assure

- Being able to identify, assess and manage the risks associated with network and information systems, including those across the supply chain.
- It also requires the protection of information and systems from cyber attacks, system failures, and unauthorised access.

- Manage and protect
- Identify and detect
- Respond and recover
- Govern and assure

Continual monitoring of network and information systems to detect anomalies and potential cyber security incidents before they can cause any significant damage.

- Manage and protect
- Identify and detect
- Respond and recover
- Govern and assure

Implementing an incident response management programme and measures to ensure business continuity will help you continue to operate even if you have been hit by a cyber attack, and get back to business as usual as quickly and efficiently as possible.

- Manage and protect
- Identify and detect
- Respond and recover
- Govern and assure

- Ensure that your programme is overseen from the top of the organisation and built into business as usual.
- Over time, it should align more and more closely with your wider business objectives.

- > Resilience
- Non-repudiation
- > Authenticity
- Access control

[CNSSI 4009-2015 (NIST SP 800-53 Rev. 4) NIST SP 800-53 Rev. 4 under Non-repudiation]

- Protection against an individual falsely denying having performed a particular action.
- Provides the capability to determine whether a given individual took a particular action such as creating information, sending a message, approving information, and receiving a message.

- Resilience
- Non-repudiation
- Authenticity
- Access control

- The property of being genuine and being able to be verified and trusted
- Confidence in the validity of a transmission, a message, or message originator.

[NIST SP 800-137 under Authenticity (CNSSI 4009) NIST SP 800-30 Rev. 1 under Authenticity (CNSSI 4009) NIST SP 800-39 under Authenticity NIST SP 800-53 Rev. 4 under Authenticity NIST SP 800-53A Rev. 4 under Authenticity]

Authenticity and Trust

"An entity can be trusted if it always behaves in the expected manner for the intended purpose."

[D. Grawrock, Dynamics of a Trusted Platform: A building block approach. Intel Press, 2008]

Forging: attack to Authenticity

- The attacker creates a new information item
- > So, he breaks *authenticity*
- Examples:
 - Falsifying a signature through a cryptographic vulnerability (e.g., the collisions present in the MD5 protocol)

- Resilience
- Non-repudiation
- Authenticity
- Access control

- The process of granting or denying specific requests:
 - for obtaining and using information and related information processing services;
 - to enter specific physical facilities (e.g., Federal buildings, military establishments, and border crossing entrances)

[CNSSI 4009-2015 (FIPS 201-1 - Adapted]

Paolo PRINETTO

Director
CINI Cybersecurity National
Laboratory
Paolo.Prinetto@polito.it
Mob. +39 335 227529

https://cybersecnatlab.it