PRÁCTICA No. 11

CONVERTIDORES DIGITAL A ANALÓGICO

Objetivos

- El alumno realizará un circuito que le ayuden a comprender mejor los conceptos básicos de un convertidor digital a analógico implementado con un arreglo R/2R.
- El alumno realizará un circuito que le ayude a trabajar con los convertidores digitales a analógicos en circuitos integrados.
- El alumno diferenciará la implementación de un convertidor digital a analógico con el arreglo R/2R y el implementado en un circuito integrado.
- Interpretar los resultados obtenidos por los circuitos realizados.

Material

- 2 Tablilla de experimentación (Proto Board)
- 1 TL081
- 1 LM741
- 1 DAC08 o DAC0800
- 16 LEDs
- 2 DIP Switch de 8 posiciones
- 16 Resistencia de 220 Ω
- 24 Resistencia de 470 Ω
- 4 Resistencia de $4.7 \text{ k}\Omega$
- 10 Resistencias de 1 k Ω
- 1 Capacitor de 0.01 uF
- 2 Capacitor de 0.1 uF

Equipo

- 1 Fuente de alimentación triple
- 1 Multímetro Digital

Desarrollo Experimental

Convertidor Digital a Analógico de 8 bits con arreglo R/2R

Armar el siguiente circuito que permite convertir una señal digital a analógica.

Nota.- Recuerde que se debe de alimentar el amplificador operacional con ± 12 V.

Variar los bits de entrada según la tabla y medir el voltaje de salida, anotando el voltaje medido en la tabla.

D_0	D_1	D_2	$_{2}$ D_{3}	D_4	D ₅	D _c	D_7	V_0 (Volts)	
								Práctico	Teórico
0	0	0	0	0	0	0	0		
1	0	0	0	0	0	0	0		
1	0	1	0	0	0	0	0		
0	1	0	1	0	0	0	0		
1	0	1	0	1	0	0	0		
0	0	1	1	0	1	0	0		
1	0	0	0	1	1	1	0		
1	1	1	1	1	1	1	0		
0	0	0	0	0	0	0	1		

D_0	D_0 D_1 D_2		D_2	D_4	D۶	D _c	D_7	V ₀ (Volts)	
20								Práctico	Teórico
0	1	0	0	0	0	0	1		
0	1	1	0	0	0	0	1		
1	0	1	1	0	0	0	1		
0	1	1	0	1	0	0	1		
0	1	0	1	1	1	0	1		
1	0	1	1	0	1	0	1		
1	1	1	1	1	1	1	1		

Determinar el valor del Bit Menos Significativo (LSB)

$$LSB = \underline{\hspace{1cm}} V$$

Convertidor Digital a Analógico de 8 bits con circuito integrado

Armar el siguiente circuito que permite convertir una señal digital a analógica.

Nota. - Recuerde que se debe de alimentar el amplificador operacional con ± 12 V.

Variar los bits de entrada según la tabla y medir el voltaje de salida, anotando el voltaje medido en la tabla.

D_0	D₁	D_2	D_2	D_4	Dε	D_6	D_7	$V_0(V_0)$	V ₀ (Volts)	
								Práctico	Teórico	
0	0	0	0	0	0	0	0			
1	0	0	0	0	0	0	0			
1	0	1	0	0	0	0	0			
0	1	0	1	0	0	0	0			
1	0	1	0	1	0	0	0			
0	0	1	1	0	1	0	0			
1	0	0	0	1	1	1	0			
1	1	1	1	1	1	1	0			
0	0	0	0	0	0	0	1			
0	1	0	0	0	0	0	1			
0	1	1	0	0	0	0	1			
1	0	1	1	0	0	0	1			
0	1	1	0	1	0	0	1			
0	1	0	1	1	1	0	1			
1	0	1	1	0	1	0	1			
1	1	1	1	1	1	1	1			

Determinar el valor del Bit Menos Significativo (LSB)

$$LSB = V$$

ANÁLISIS TÉORICO

Realizar el análisis teórico de todos los circuitos anteriores.

COMPARACIÓN DE LOS RESULTADOS TEÓRICOS Y PRÁCTICOS.

Analizar todos los valores y dar una explicación de las variaciones ó diferencias que existan en los valores obtenidos tanto en lo teórico y práctico.

CUESTIONARIO

- 1. ¿Qué diferencia existe entre un convertidor digital a analógico con resistencia ponderadas y uno R/2R?
- 2. ¿Qué ventaja tiene el DAC armado con resistencias y el armado con circuito integrado?
- 3. ¿Qué es el tiempo de establecimiento en un convertidor digital a analógico?
- 4. ¿A qué se deben las diferencias generadas entre los valores de los dos circuitos realizados en la práctica?

CONCLUSIONES

Dar las conclusiones al realizar los experimentos y el análisis teórico de los circuitos anteriores (conclusiones individuales).