离散数学复习题

命题逻辑和一阶逻辑部分

1、将下列语句用谓词公式形式化:

- 1)没有不犯错误的人。
- 2) 凡是实数,或者大于零,或者等于零,或者小于零。
- 3) 实数的加运算满足交换律。
- 4)每人都有自己喜欢的水果,有人喜欢所有的水果。
- 5) 一个数是偶数当且仅当它可被2整除。
- 6) 并不是火车都比汽车跑得快,有的汽车比有的火车跑得快。

2、给定解释如下:

(1)
$$D=\{2, 3\}$$
 (2) $a=2$ (3) $f(2)=3, f(3)=2$

(4)
$$F(x)$$
: $F(2)$ =0, $F(3)$ =1; $G(x)$: $G(2)$ =1, $G(3)$ =0
 $G(x,y)$: $G(i,j)$ =1, i,j =2,3
 $L(x,y)$: $L(2,2)$ = $L(3,3)$ =1,
 $L(2,3)$ = $L(3,2)$ =0

求下列各式的值,并说明理由(即给出求解过程):

- (1). $\forall x (F(x) \land G(x))$
- (2). $\exists x \ (F(x) \land G(x, f(x)))$
- (3). $\forall x \exists y L(x,y)$

- 3、求下列公式的主范式
 - $(1) (p \lor q) \rightarrow (p \leftrightarrow q)$
 - $(2) q\Lambda(pV_{7} q)$
 - $(3) pV(p \rightarrow (qV(q \rightarrow r)))$
 - $(4) (p \rightarrow (q \land r)) \land (\neg p \rightarrow (\neg q \land \neg r))$
 - $(5) p \rightarrow (p \land (q \rightarrow r))$

4、证明{7, V}是最小联结词组。

5、根据真值表求公式M,要求联 结词个数最少。

P	Q	R	M
F	F	F	${f F}$
F	${f F}$	T	T
F	T	F	F
F	T	T	F
T	F	F	F
T	F	T	T
T	T	F	F
T	T	T	T

6、求以下两式的前束范式:

- $(1) \ \forall x A(x) \rightarrow \exists x \ B(x)$
- (2) $\forall x \forall y (\exists z (P(x,z) \land P(y,z)) \rightarrow \exists u Q(x,y,z))$
- (3) $\{(\forall x)[P(x)\rightarrow(R(x)\lor(\forall z)Q(x))]\rightarrow$ $(\exists x)R(x)\}\rightarrow(\exists z)S(x,z)$

7、用三种不同方法证明下列逻辑等价式:

- (1) $A \leftrightarrow B \Leftrightarrow (A \land B) \lor (\neg A \land \neg B)$
- (2) $A \rightarrow (B \rightarrow C) \Leftrightarrow B \rightarrow (A \rightarrow C)$
- $(3) A \rightarrow (A \rightarrow B) \Leftrightarrow A \rightarrow B$
- $(4) A \rightarrow (B \rightarrow C) \Leftrightarrow (A \rightarrow B) \rightarrow (A \rightarrow C)$

8、用推理理论证明:

(1) 用直接证法证明: $\neg P \lor Q, R \lor \neg Q, R \to S \Rightarrow \neg S \to \neg P$

- (2) 用反证法证明: $S \rightarrow \neg Q$, $S \vee R$, $\neg R$, $\neg P \circ Q \Rightarrow P$
- (3) 用CP规则证明:

$$A \to B$$
, $\neg (B \to C) \to \neg A \Longrightarrow A \to C$

8、试完成如下推理(续):

(4) 如果今天下大雨,则马路上不好行走; 如果马路难走,则我不去逛书店; 如果我不去逛书店,则在家学习。 所以,如果今天下大雨,则我在家学习。

8、试完成如下推理(续):

(5) 四位体操运动员A、B、C、D应邀参加表演 赛。

今知,如果A参加,则若B参加,C一定参加;如果D参加,则A一定参加,B也一定参加。可以推得:如果D参加,则C一定参加。

9、设S、T、M为任意集合,判断下列命题正误: (正√,误×)

- Ø是P(Ø)的子集.
 如果S∪T=S∪M,则T=M.
 如果S-T=Ø,则S=T.
 S⊕S=S.
- (5) 非空集合A上的恒等关系既是A上的等价关系 也是A上的偏序关系。 ()
- (6) 在命运题逻辑中,任何命题公式的主合取范式都是存在的,并且是唯一的。()

答案 (1)

```
1、略
2、(1)0(2)1(3)1
3、(1)\sum(1,2,3),\prod(0)。
(2)\sum(3),\prod(0,1,2)。
(3)\sum(1,2,3,4,5,6,7),\prod(0)。
4、略
```

5、主范式的方式求解,最后化简为:

$$S \Leftrightarrow (\neg P \land \neg Q \land R) \lor (P \land \neg Q \land R) \lor (P \land Q \land R)$$

$$\Leftrightarrow ((\neg P \lor P) \land \neg Q \land R) \lor (P \land (\neg Q \lor Q) \land R)$$

$$\Leftrightarrow (\neg Q \land R) \lor (P \land R) \Leftrightarrow (\neg Q \lor P) \land R \Leftrightarrow (Q \to P) \land R$$

答案 (2)

- 6. (1) $\exists x \exists y (A(x) \rightarrow B(y))$
- (2) $\forall x \forall y \ \forall z \ ((P(x,z) \land P(y,z)) \rightarrow Q(x,y,a))$
- (3) $\forall x \ \forall y \ \exists z ((P(x) \rightarrow (R(x) \lor Q(x))) \rightarrow R(y) \rightarrow S(a, z))$
- 7、真值表法、等值演算法、主范式法
- 8、(1)(2)(3)略
 - (4) (5) 详见下页
- 9, (1) $\sqrt{(2)} \times (3) \times (4) \times (5) \sqrt{(6)} \sqrt{(6)}$

答案 (3)

8、(4)证明:设P:今天下大雨;Q:马路 难走;R:我去逛书店;S:我在家学习。

前提: $P \rightarrow Q$, $Q \rightarrow \neg R$, $\neg R \rightarrow S$

结论: P→S

证明过程略

答案 (4)

8、(5)设A、B、C、D为相应的运动员去参加比赛。

前提: $A \rightarrow (B \rightarrow C)$, $D \rightarrow (A \land B)$

结论: D→C

证明: $D \rightarrow (A \land B) \Leftrightarrow \neg D \lor (A \land B)$

 $\Leftrightarrow (\neg DVA) \land (\neg DVB)$

 \Leftrightarrow (D \rightarrow A) \land (D \rightarrow B)

即证

前提: $A \rightarrow (B \rightarrow C)$, $D \rightarrow A$, $D \rightarrow B$

结论: D→C

答案 (5)