Seriman Doumbia

ID:202382485

Course: Data Science

Project: Regression Analysis

Contents

Concre	ete Compressive Strength Regression	2
1.	Abstract	2
	Data Characteristics	
	Feature Description	
	Summary Statistics	
5.	Task	3
6.	Conclusion	18

Concrete Compressive Strength Regression

1. Abstract

Concrete is the most important material in civil engineering. The concrete compressive strength is a highly nonlinear function of age and ingredients. These ingredients include cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, and fine aggregate.

2. Data Characteristics

Given is the variable name, variable type, the measurement unit and a brief description. The concrete compressive strength is the regression problem. The order of the listing corresponds to the order of numerals along the rows of the database.

3. Feature Description

Columns Name	Data Type	Description	Measurement
Cement	Quantitative	Input Variable	kg
Blast Furnace Slag	Quantitative	Input Variable	kg
Fly Ash	Quantitative	Input Variable	kg
Water	Quantitative	Input Variable	kg
Superplasticizer	Quantitative	Input Variable	kg
Coarse Aggregate	Quantitative	Input Variable	kg
Fine Aggregate	Quantitative	Input Variable	kg
Age	Quantitative	Input Variable	Date
Concrete compressive	Quantitative	Output Variable	MPa
strength			

Note: kg for kilogram

4. Summary Statistics

Number of instances (observations): 1030

Number of Attributes: 9

Attribute breakdown: 8 quantitative input variables, and 1 quantitative output variable

Missing Attribute Values: None

5. Task

Is there a relationship between the predictors (age and ingredients) and the response variable (compressive strength)?

Given there is a relationship

- Q1. How strong is it?
- Q2. Which predictors contribute to compressive strength?
- Q3. How large is the effect of each predictor on compressive strength?
- Q4. How accurately can I predict compressive strength?
- Q5. Is the relationship linear?
- Q6. Is there synergy/interaction among the predictors?

5.1 Data Overview

```
'data.frame': 1030 obs. of 9 variables:
                                 : num 540 540 332 332 199 ...
$ Cement
$ Blast.Furnace.Slag
                                         0 0 142 142 132 ...
                                  : num
                                 : num 00000000000
$ Fly.Ash
$ Water
                                  : num 162 162 228 228 192 228 228 228 228 228 ...
                                 : num 2.5 2.5 0 0 0 0 0 0 0 0 ...
$ Superplasticizer
                                 : num 1040 1055 932 932 978 ...
$ Coarse.Aggregate
$ Fine.Aggregate
                                  : num 676 676 594 594 826
                                  : int 28 28 270 365 360 90 365 28 28 28 ...
$ Age..day.
$ Concrete.compressive.strength: num 80 61.9 40.3 41.1 44.3 ...
                Blast.Furnace.Slag
                                        Fly.Ash
    Cement
                 Min. : 0.0 Min. : 0.00 Min. :121.8

1st Qu.: 0.0 1st Qu.: 0.00 1st Qu.:164.9

Median : 22.0 Median : 0.00 Median :185.0

Mean : 73.9 Mean : 54.19 Mean :181.6

3rd Qu.:142.9 3rd Qu.:118.27 3rd Qu.:192.0
                                                            Water
                                                                          Superplasticizer
      :102.0
Min.
                                                                          Min.
                                                                                : 0.000
1st Qu.:192.4
                                                                          1st Qu.: 0.000
                                     Median : 0.00 Median :185.0
Median :272.9
                                                                          Median: 6.350
Mean
       :281.2
                                                                          Mean
                                                                                 : 6.203
3rd Qu.:350.0
                                                                          3rd Qu.:10.160
                                      Max.
Max. :540.0
                 Max. :359.4
                                             :200.10 Max.
                                                               :247.0
                                                                          Max. :32.200
                                    Min. : 1.00 Min. : 2.332
1st Qu.: 7.00 1st Qu.: 22 707
Madian : 20
Coarse.Aggregate Fine.Aggregate
                                                      Concrete.compressive.strength
Min. : 801.0 Min. :594.0
1st Qu.: 932.0
                  1st Qu.:731.0
Median : 968.0
                  Median :779.5
                                    Median : 28.00
                                                       Median :34.443
Mean : 972.9
                 Mean :773.6
                                    Mean : 45.66
                                                      Mean :35.818
3rd Qu.:1029.4
                  3rd Qu.:824.0
                                    3rd Qu.: 56.00
                                                      3rd Qu.:46.136
       :1145.0 Max.
                         :992.6
                                    Max.
                                           :365.00
                                                     Max.
                                                              :82.599
Max.
```

5.2 Correlation analysis

Graph shows high positive relationship between Cement and Concrete compressive strength with 0.5 as correlation value.

5.3 Visualize relationships

W see from the visual relationship there's a relationship between some feature of the dataset.

5.4 Mutual Information Scores Graph

The top 3 predictors are: Age, day., Cement, Water, which show that those 3 predictors are the most influential factor for predicting Concrete compressive strength.

5.5 Top Predictors

Overall those 3 predictors show some significant relationship with the response variable.

5.6 OLS Regression Analysis

Mode	l Summar∨

R	0.785	RMSE	10.354
R-Squared	0.615	MSE	107.212
Adj. R-Squared	0.612	Coef. Var	29.035
Pred R-Squared	0.607	AIC	7758.064
MAE	8.215	SBC	7807.437

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error

AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	176744.872 110428.157 287173.028	8 1021 1029 Parameter Es	22093.109 108.157 	204.269	0.0000

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept)	-23.164	26.588		-0.871	0.384	-75.338	29.010
Cement	0.120	0.008	0.749	14.110	0.000	0.103	0.136
Blast.Furnace.Slag	0.104	0.010	0.536	10.245	0.000	0.084	0.124
Fly. Ash	0.088	0.013	0.337	6.988	0.000	0.063	0.113
Water	-0.150	0.040	-0.192	-3.741	0.000	-0.229	-0.071
Superplasticizer	0.291	0.093	0.104	3.110	0.002	0.107	0.474
Coarse.Aggregate	0.018	0.009	0.084	1.919	0.055	0.000	0.036
Fine.Aggregate	0.020	0.011	0.097	1.883	0.060	-0.001	0.041
Ageday.	0.114	0.005	0.432	21.046	0.000	0.104	0.125

^{[1] 3.850583} F0 = 204.269 > F = 3.850583

Q1. Is there a relationship between the predictors (age and ingredients) and the response variable (compressive strength)?

Null hypothesis: coefficients for each predictor is zero.

F0 = 204.3 >> 1 (suggests at least one of the predictors is related to compressive strength)

F-statistic = 3.850583 << F0 (associated to the probability that the null hypothesis is true)

Therefore, there is a relationship between the predictors and the response variable.

Q2. How strong is the relationship?

R-squared = 0.616 (61.6% of variance is explained by the model)

Q3. Which predictors contribute to compressive strength?

Look at the p-values for each t-statistic for each predictor where p-values are the probability of t-statistic given the null hypothesis is true. A probability less than (0.05) is considered sufficient to reject the null hypothesis.

All are less than 0.05 except coarse and fine aggregates. Therefore, the aggregates do not contribute to compressive strength in this model.

Q4. How large is the effect of each predictor on compressive strength?

The only predictor confidence interval to include zero is coarse aggregate. The rest are considered to be statistically significant.

To test whether collinearity is the reason why the confidence interval includes 0 for coarse aggregate, the VIF scores are calculated.

VIF scores for each feature

Cement	Blast.Furnace.Slag	Fly. Ash	Water
7.488657	7.276529	6.171455	7.004663
Superplasticizer	Coarse.Aggregate	Fine.Aggregate	Ageday.
2.965297	5.076044	7.005346	1.118357

The VIF scores exceeding 5 to 10 indicate collinearity (where 1 is the minimum). The variables Aggregate, Blast Furnace Slag, Water, Fly Ash, and Cement have VIF scores ranging from 5 to 10, indicating potential multicollinearity, particularly if a conservative threshold is applied. Superplasticizer, with a VIF score below 5, has the widest confidence interval, which might also suggest the presence of multicollinearity. Consequently, we cannot definitively determine whether Coarse Aggregate is statistically significant, as the inclusion of 0 in confidence interval may be influenced by multicollinearity.

To assess association of each predictor, separate OLS for each predictor is performed

Cement

		Model Summ	ary				
R		0.498		14.48			
R-Squared Adj. R-Square		0.248	MSE Coef. Var	209.710 40.470			
Pred R-Square	ed	0.245	AIC	8435.10	8		
MAE	1	1.852	SBC	8449.920	0		
RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria							
		AN	OVA				
	Sum of Squares		Mean Square	F	Sig.		
Regression	216000.806	1 1028	71172.222 210.118		0.0000	-	
Parameter Estimates							
model	Beta	Std. Error	Std. Beta	t :	Sig	lower	upper
(Intercept) Cement	13.443 0.080	1.297 0.004	0.498	10.365 0 18.405 0	.000 10).898).071	15.988 0.088

Blast.Furnace.Slag

Model Summary

R	0.135	RMSE	16.545
R-Squared	0.018	MSE	273.741
Adj. R-Squared	0.017	Coef. Var	46.237
Pred R-Squared	0.014	AIC	8709.560
MAE	13.435	SBC	8724.372

RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	5220.125 281952.903 287173.028	1 1028 1029	5220.125 274.273	19.033	0.0000

Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept)	33.889	0.680	0.135	49.869	0.000	32.555	35.222
Blast.Furnace.Slag	0.026	0.006		4.363	0.000	0.014	0.038

Fly.Ash

Model	Summary	

R	0.106	RMSE	16.604
R-Squared	0.011	MSE	275.691
Adj. R-Squared	0.010	Coef. Var	46.402
Pred R-Squared	0.007	AIC	8716.871
MAE	13.379	SBC	8731.683

MSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	3211.677 283961.351 287173.028	1 1028 1029	3211.677 276.227	11.627	7e-04

Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept)	37.314	0.679	-0.106	54.978	0.000	35.982	38.646
Fly.Ash	-0.028	0.008		-3.410	0.001	-0.043	-0.012

Water

Mod	Summary

5.982							
5.423							
4.664							
8.224							
3.036							

RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression	24086.915	1	24086.915	94.119	0.0000
Residual	263086.114	1028	255.920		
Total	287173.028	1029			

Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept)	76.952	4.269	-0.290	18.025	0.000	68.575	85.330
Water	-0.227	0.023		-9.701	0.000	-0.272	-0.181

Superplasticizer

Model	Summary

R	0.366	RMSE	15.538
R-Squared	0.134	MSE	241.440
Adj. R-Squared	0.133	Coef. Var	43.424
Pred R-Squared	0.131	AIC	8580.232
MAE	12.615	SBC	8595.044

RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	38490.057 248682.971 287173.028	1 1028 1029	38490.057 241.910	159.109	0.0000

Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept)	29.467	0.699	0.366	42.165	0.000	28.095	30.838
Superplasticizer	1.024	0.081		12.614	0.000	0.865	1.183

Coarse.Aggregate

Model Summary

R	0.165	RMSE	16.469
R-Squared	0.027	MSE	271.225
Adj. R-Squared	0.026	Coef. Var	46.024
Pred R-Squared	0.023	AIC	8700.050
Pred R-Squared	0.023	AIC	8700.050
MAE	13.288	SBC	8714.862

RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria

μ	w	ľ	, ν	\sim

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	7811.447 279361.581 287173.028	1 1028 1029	7811.447 271.753	28.745	0.0000

Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept) Coarse Aggregate	70.294 -0.035	6.451 0.007	-0.165	10.897 -5.361	0.000	57.635 -0.048	82.952 -0.022

Fine.Aggregate

Model Summary

R	0.167	RMSE	16.462
R-Squared	0.028	MSE	271.010
Adj. R-Squared	0.027	Coef. Var	46.006
Pred R-Squared	0.024	AIC	8699.233
MAE	13.195	SBC	8714.045

RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	8032.866 279140.163 287173.028	1 1028 1029	8032.866 271.537	29.583	0.0000

Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept)	62.776	4.983	-0.167	12.598	0.000	52.998	72.554
Fine.Aggregate	-0.035	0.006		-5.439	0.000	-0.047	-0.022

Age..day

Model Summary

R	0.329	RMSE	15.769
R-Squared	0.108	MSE	248.653
Adj. R-Squared	0.107	Coef. Var	44.068
Pred R-Squared	0.104	AIC	8610.553
MAE	12.612	SBC	8625.365

RMSE: Root Mean Square Error MSE: Mean Square Error MAE: Mean Absolute Error AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	31060.653 256112.375 287173.028	1 1028 1029	31060.653 249.137	124.673	0.0000

Parameter Estimates

model	Beta	Std. Error	Std. Beta	t	Sig	lower	upper
(Intercept)	31.846	0.607	0.329	52.470	0.000	30.655	33.037
Ageday.	0.087	0.008		11.166	0.000	0.072	0.102

Looking at the p-value of the t-statistic: all variables have a strong association with compressive strength where **fly ash** has the largest value of 0.001.

Q5. How accurately can this model predict compressive strength?

The accuracy depends on what type of prediction: Individual response (Y = f(X) + ep), the prediction interval is used. Average response (f(X)), the confidence interval is used. Prediction intervals are wider than confidence intervals because the account for the uncertainty associated with the irreducible error (ep).

```
[1] "confidence interval"
fit lwr upr
1 36.29962 33.31548 39.28376
[1] "prediction interval"
fit lwr upr
1 36.29962 15.67507 56.92417
```

Confidence Interval (33, 39): The range where the average compressive strength for the given predictors is expected to lie.

Prediction Interval (15, 56): The range where an individual observation of compressive strength is expected to lie, accounting for random error (ei).

- 1. The Prediction Interval is wider than the Confidence Interval because it accounts for additional variability in individual responses.
- 2. The width of the intervals depends on:
 - The variability of the data (lamba^2).
 - Sample size (n).
 - Distance of the predictors from the mean (further predictors result in wider intervals).

Assessing Model Accuracy

```
R-squared: 0.6154647
[1] "R-MSE"
[1] 10.35431
[1] "MAE"
[1] 8.214899
```

R_square shows that **62%** of the variance in the dependent variable is explained by the predictors.

Q6. Is the relationship linear?

Non-linearity can be determined from residual vs. predicted value plot for each variable (top right plots below). When linearity exists, there should be no clear pattern.

The residual plot with the most non-linear form is for age where for ages 0 to 20, there are negative residuals then the residuals increase from 20 to 100 before decreasing again. Water and fine aggregate have slight non-linear patterns. Transformations of the predictors (e.g., sqrt(X), X^2) could accommodate the nonlinearities.

Residual vs. predicted value plot for each variable

Cement

Blast.Furnace.Slag

Fly.Ash Water

Superplasticizer

Coarse.Aggregate

Fine.Aggregate

Age..day

Let's conduct Breusch-Pagan test to see if constant variance error assumption is valid or not

Predictor	BP	df	p-value
Cement	13.782	1	0.0002052
Blast.Furnace.Slag	17.107	1	3.53e^(-05)
Fly.Ash	28.463	1	9.55e(-08)
Water	6.119	1	0.01
Superplasticizer	5.3428	1	0.02
Coarse.Aggregate	0.22026	1	0.63
Fine.Aggregate	5.2906	1	0.02
Ageday	3.3442	1	0.06

All predictor has p-value < 0.05 except Coarse.Aggregate Age..day so the assumption of constant variance error is valid for these two predictors. As Coarse.Aggregate and Age..day validate constant variance error assumption, we can apply a transformation function to validate the assumption to the remaining features.

Let's conduct lack of fit test to see if SLR is a good fit of the model or not

Perform Lack-of-Fit Test

Predictor	F0	p-value
Cement	139.44	< 2.2e-16
Blast.Furnace.Slag	226.56	< 2.2e-16
Fly.Ash	229.21	< 2.2e-16
Water	201.64	< 2.2e-16
Superplasticizer	182.61	< 2.2e-16
Coarse.Aggregate	223.13	< 2.2e-16
Fine.Aggregate	222.84	< 2.2e-16
Ageday	192.42	< 2.2e-16

With only one predictor which is Simple Linear Regression (SLR), the null hypothesis is not valid means SLR is not a good fit for the data.

Let's combined predictors to check for model selection

The predictor which gives the highest reduction in the uncertainty in predicting response variable is: Cement, Superplasticizer, Age..day., Water, Fine.Aggregate, Coarse.Aggregate, Blast.Furnace.Slag, Fly.Ash respectively. So, we'll insert first Cement in the model.

Multiple Linear Regression with 2 predictors combined, is not a good fit for data and it has R^2 value of 35%. The Two combined predictors which give the highest reduction in the uncertainty in predicting response variable is: **Cement+Superplasticizer**. Hence it will be inserted first in the model.

Multiple Linear Regression with 3 predictors combined, is not a good fit for data and it has R^2 value of 48%. The Three combined predictors which give the highest reduction in the uncertainty in predicting response variable is: **Cement+Superplasticizer+Age..day**. So, it will come first in the model.

Multiple Linear Regression with 4 predictors combined, is not a good fit for data and it has R^2 value of 55%. The fourth combined predictor which gives the highest reduction in the uncertainty in predicting response variable is: Cement+Superplasticizer+Age..day.+Blast.Furnace.Slag. So, it will come first in the model.

Multiple Linear Regression with 5 predictors combined, is not a good fit for data and it has R^2 value of 58%. The fifth combined predictor which gives the highest reduction in the uncertainty in predicting response variable is: Cement+Superplasticizer+Age..day.+Blast.Furnace.Slag+Water. So, it will come first in the model.

Multiple Linear Regression with 6 predictors combined, is a good fit for data and it has R^2 value R^2 of 61%. The sixth combined predictors which give the highest reduction in the uncertainty in predicting response variable is: Cement+Superplasticizer+Age..day.+Blast.Furnace.Slag+Water+Fly.Ash.

As these 6 predictors combined together is a good fit for data with an acceptable R^2 value, so it can be the selected model. Let's conduct Breusch-Pagan to check the constancy variance assumption of the present selected model.

```
Breusch-Pagan test
```

```
data: mdel
BP = 140.53, df = 6, p-value < 2.2e-16
```

Looking at the p-value under Breusch-Pagan test: the non-constancy variance assumption is valid for the selected model.

5.7 Feature Engineering with OLS

Q7. Is there synergy among the predictors?

To evaluate the impact of an interaction term that accounts for non-additive relationships, I created a water-to-cement ratio (water:cement) and re-ran an OLS analysis. Including this interaction term resulted in an increase in the R-squared value from 0.615 to 0.618. However, since adding predictors naturally increases R-squared, the improvement of 0.003 is minimal. Adjusted R-squared, which penalizes for additional predictors, is a better measure in this case. It increased from 0.612 to 0.615, suggesting that some synergy exists between these predictors.

Similarly, AIC and SBC, which penalize models for additional complexity, provide further justification for including the interaction term. The AIC decreased from 7758 to 7752, while the SBC remained constant at 7807. This indicates that the added predictor improves the model without overfitting.

While cross-validation would be the best approach to assess the test set performance, the nonlinearity of compressive strength relative to the predictors suggests that linear regression may not be the most suitable model. More complex non-linear models would likely yield better predictive performance. For inference purposes, however, metrics like adjusted R-squared, SBC, and AIC are sufficient for evaluating the inclusion of this interaction term.

I also tested other interaction terms, including **cement:fine.aggregate**, **cement:coarse.aggregate**, **cement:fine.aggregate:coarse.aggregate**, and **superplasticizer:cement**. However, none of these terms improved the adjusted R-squared, and their p-values for the t-statistics were greater than 0.05, indicating they were not statistically significant.

Added interaction term water:cement:ratio plot against compressive strength

It depicts a negative relationship between water:cement:ratio and compressive strength

Generate OLS regression results with water: cement ratio

R	0.786	RMSE	10.317
R-Squared	0.618	MSE	106.431
Adj. R-Squared	0.615	Coef. Var	28.944
Pred R-Squared	0.609	AIC	7752.536
MAE	8.112	SBC	7806.846

RMSE: Root Mean Square Error

MSE: Mean Square Error MAE: Mean Absolute Error AIC: Akaike Information Criteria SBC: Schwarz Bayesian Criteria

ANOVA

	Sum of Squares	DF	Mean Square	F	Sig.
Regression Residual Total	177549.048 109623.981 287173.028	9 1020 1029	19727.672 107.474	183.557	0.0000

Parameter Estimates

Dota Std Enn					
beta Stu. Ell	or Std. Beta	t t	Sig	lower	upper
.101 0.0 .106 0.0 .088 0.0 .123 0.0 .288 0.0	11 0.633 10 0.548 13 0.338 41 -0.157 93 0.103 09 0.076	10.472 7.023 -2.979 3.090 1.744	0.548 0.000 0.000 0.000 0.003 0.002 0.082 0.057	-68.282 0.080 0.086 0.063 -0.204 0.105 -0.002 -0.001	36.240 0.123 0.126 0.113 -0.042 0.471 0.035 0.041
			0.000 0.006	0.103 -12.681	0.124 -2.087
	.021 26.6 .101 0.0 .106 0.0 .088 0.0 .123 0.0 .288 0.0 .016 0.0 .020 0.0 .113 0.0	.021 26.633 .101 0.011 0.633 .106 0.010 0.548 .088 0.013 0.338 .123 0.041 -0.157 .288 0.093 0.103 .016 0.009 0.076 .020 0.011 0.098 .113 0.005 0.428	.021 26.633 -0.602 .101 0.011 0.633 9.344 .106 0.010 0.548 10.472 .088 0.013 0.338 7.023 .123 0.041 -0.157 -2.979 .288 0.093 0.103 3.090 .016 0.009 0.076 1.744 .020 0.011 0.098 1.905 .113 0.005 0.428 20.884	.021 26.633 -0.602 0.548 .101 0.011 0.633 9.344 0.000 .106 0.010 0.548 10.472 0.000 .088 0.013 0.338 7.023 0.000 .123 0.041 -0.157 -2.979 0.003 .288 0.093 0.103 3.090 0.002 .016 0.009 0.076 1.744 0.082 .020 0.011 0.098 1.905 0.057 .113 0.005 0.428 20.884 0.000	.021 26.633 -0.602 0.548 -68.282 .101 0.011 0.633 9.344 0.000 0.080 .106 0.010 0.548 10.472 0.000 0.086 .088 0.013 0.338 7.023 0.000 0.063 .123 0.041 -0.157 -2.979 0.003 -0.204 .288 0.093 0.103 3.090 0.002 0.105 .016 0.009 0.076 1.744 0.082 -0.002 .020 0.011 0.098 1.905 0.057 -0.001 .113 0.005 0.428 20.884 0.000 0.103

The insertion water:cement ratio in the model provoke an increase of R^2 value from 0.615 to 0.618.

Generate OLS summary with only water: cement ratio

		Mode	1 Summa	ry						2
R R-Squared Adj. R-Squar Pred R-Squar MAE		0.251		Coef. V AIC		14.4! 208.9: 40.39 8431.18 8445.99	11 93 31			
RMSE: Root MSE: Mean S MAE: Mean A AIC: Akaike SBC: Schwar	Square Er Absolute Informa	ror Error tion Crite								
	Squ					F		 ig.		
Regression Residual Total	71994 215178	. 365 . 664	1	71	994.365	343.948		000		
				Para	meter Est	imates				
	model	Beta	Std.	Error	Std. B	eta	t	Sig	lower	upper
(Inte		55.750 -26.638			-o.		7.835 3.546		53.463 -29.457	

Looking at p-value of the t-statistic: water:cement:ratio has a strong association with compressive strength.

Non-linearity can be determined from residual vs. predicted value plot for water_cement_ratio variable

Water:cement:ratio residuals exhibits a near linear relationship.

6. Conclusion

The regression model successfully predicted the compressive strength of concrete based on input variables such as cement, water-cement ratio, Age..day., and other mix components.

Performance metrics such as R^2, Mean Absolute Error (MAE), and Mean Squared Error (MSE) indicate a better predictive capability with R^2 of 65%.

The most significant predictors of compressive strength were identified as Cement, Superplasticizer, Age of curing, and water-cement ratio.

This aligns with the theoretical understanding of concrete mechanics, where higher cement content and prolonged curing typically result in stronger concrete.

The relationship between some predictors and compressive strength was found to be non-linear, particularly for variables water_cement_ratio and age, indicating the need for polynomial or interaction terms to capture their effects.

Certain features, such as aggregate, showed limited impact on the prediction and can be excluded to simplify the model.

The model is based on Concrete Compressive Strength Regression dataset, and its generalizability may be limited for other concrete formulations or environmental conditions.

Advanced machine learning models (e.g., Random Forest, XGBoost) can be explored to capture complex interactions and non-linearities in the data.