MMPI

ETH Zurich

Marcel Graetz Annina Lieberherr Janik Schuettler

HS17

Contents

Co	ents	
1	Durierreihen 1 Definition, Darstellungssatz 2 Riemann–Lebesgue-Lemma, Dirichletkern 3 Reellwertige Darstellung der Fourierreihen 4 Poisson'sche Summationsformel 5 Wärmeleitungsgleichung auf einem Ring 6 Satz von Fejér 7 Rechnungen	
2	Duriertransformation1 Definition und elementare Eigenschaften2 Fouriertransformierte der Gauss-Funktion3 Beispiele für Fouriertransformierte4 Umkehrsatz für L^1 -Funktionen5 Der Schwartzraum $\mathcal{S}(\mathbb{R}^n) \subset L^p(\mathbb{R}^n), p \in [1, \infty)$ 6 Fouriertransformation von rotationsinverianten Funktionen7 Regularität und Abfalleigenschaften8 Wellengleichung9 Wärmeleitungsgleichung10 Rechnungen	
3	rthogonale Funktionalsysteme, Hilbertraum 1 Die schwingende Saite 2 Orthogonale Systeme, Hilberträume 3 L²-Theorie der Fourierreihen 4 Hermite-Polynome und harmonischer Oszillator 5 Orthogonale Polynome, Legendre Polynome 6 Kugelfunktionen 7 Schwingungen einer kreisförmigen Membran	
4	istributionen 1 Temperierte Distributionen 2 Operationen auf Distributionen 3 Rechnungen 4 Konvergenz in $\mathscr{S}'(\mathbb{R}^n)$ 5 Fundamentallösungen für den Laplace-Operator 6 Fundamentallösungen und Fouriertransformationen 7 Retardierte Fundamentallösung für den d'Alembert-Operator	
5	irichletproblem 1 Dirichlet und Neumannrandbedingungen	1
6	eweisideen 1 Fourierreihen	,
A	ebesgue-Integrationstheorie 1 Das Lebesguesche Integral 2 Konvergenzsätze 3 Der Satz von Fubini 4 L ^p -Räume	
В	Iisc1 Konvergenz, Mittelwertsatz2 Vertauschungssätze3 Trigonometrie4 Ungleichungen, Abschätzungen und other5 Integrale und Reihen6 Koordinatensysteme7 Ansätze8 PDEs9 Multiple Choice	

1 Fourierreihen

$$f(x) = \sum_{n \in \mathbb{Z}} f_n \exp(\frac{2\pi i n}{L} x) = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} a_n \cos(\frac{2\pi n}{L} x) + b_n \sin(\frac{2\pi n}{L} x)$$

$$f_n = \frac{1}{L} \int_0^L f(x) \exp(-\frac{2\pi i n}{L} x) dx$$

$$a_n = 2\text{Re} f_n = \frac{2}{L} \int_0^L f(x) \cos(\frac{2\pi n}{L} x) dx, b_n = -2\text{Im} f_n = \frac{2}{L} \int_0^L f(x) \sin(\frac{2\pi n}{L} x) dx$$

1.1 Definition, Darstellungssatz

Lemma 1.1 $\frac{1}{L} \int_0^L e^{\frac{2\pi i n}{L}x} dx = 0$ für $n \in \mathbb{Z} \setminus \{0\}$ und = 1 für n = 0.

Satz 1.2 Sei $\{f_n\}_{n\in\mathbb{Z}}$ so, dass $\sum_{n\in\mathbb{Z}}|f_n|<\infty$. Dann konvergiert die Fourierreihe $f(x)=\sum_{n\in\mathbb{Z}}f_n\exp(\frac{2\pi in}{L}x)$ absolut und gleichmässig für alle $x\in\mathbb{R}$ gegen eine periodische, stetige Funktion f der Periode L. Weiter gilt $f_n=\frac{1}{L}\int_0^L f(x)\exp(-\frac{2\pi in}{L}x)\mathrm{d}x$.

1.2 Riemann-Lebesgue-Lemma, Dirichletkern

Satz 2.1 (Riemann-Lebesgue) Sei $f: \mathbb{R} \to \mathbb{C}$ stetig und L-periodisch (bzw. Lebesgueintegrierbar auf [0,1]). Dann gilt $f_n \to 0$ für $|n| \to \infty$.

Korollar 2.2 Sei $f \in C^k(\mathbb{R}/L\mathbb{Z})$. Dann gilt $|n|^k|f_n| \to 0$ für $|n| \to \infty$ und somit $\sum_{n \in \mathbb{Z}} |f_n| \le C \sum_{n \in \mathbb{Z}} \frac{1}{|n|^k} < \infty$.

Definition 2.1 (Dirichlet-Kern) $D_N(t) = \sum_{n=-N}^{N} \exp(2\pi i n t)$. *Es gilt*

$$\begin{array}{ll} \mbox{(i)} \;\; D_N = \begin{cases} \frac{\sin(\pi(2N+1)t)}{\sin(\pi t)} & t \in \mathbb{R} \setminus \mathbb{Z} \\ 2N+1 & t \in \mathbb{Z} \end{cases} \qquad \mbox{(iii)} \;\; \int_0^1 D_N(t) \mathrm{d}t = 1 \end{array}$$

(ii)
$$D_N(t+1) = D_N(t) = D_N(-t)$$
, (iv) $\int_0^1 |D_N(t)| \mathrm{d}t \ge \frac{4}{\pi^2} \log(2(n+1))$

Satz 2.3 (Darstellungssatz I) Sei $f \in C^1(\mathbb{R}/L\mathbb{Z})$. Dann gilt $f(x) \lim_{N \to \infty} \sum_{n=-N}^N f_n \exp(\frac{2\pi i n}{L} x) = \lim_{N \to \infty} (s_N f)(x)$ punktweise $\forall x \in \mathbb{R}$.

Definition (Beschränkte Variation) Eine Funktion $[a,b] \to \mathbb{C}$ heisst von **beschränkter Variation**, falls es eine Konstante V gibt, so dass $\sum_{i=0}^{n-1} |f(x_{i+1}) - f(x_i)| \le V$ für alle Einteilungen $a = x_0 < x_1 < \ldots < x_n = b$. Wir schreiben $f(a \pm 0) = \lim_{x \to a^{\pm}} f(x)$. Stückweise stetig differenzierbare Funktionen sind von beschränkter Variation.

Satz 2.4 (Darstellungssatz II) Sei f L-periodisch und von beschränkter Variation auf [0,L] und $s_N f(x) = \sum_{n=-N}^N f_n \exp\left(\frac{2\pi i n}{l}x\right)$ die N-te Partialsumme ihrer Fourierreihe. Dann gilt

- $\lim_{N\to\infty} s_N f(x) = \frac{1}{2} (f(x+0) + f(x-0))$. Insbesondere konvergiert die Fourierreihe gegen f(x) in allen ihren Punkten x, wo f stetig ist.
- Die Konvergenz ist gleichmässig auf jedem abgeschlossenen Intervall I ⊂ ℝ, auf welchem f stetig ist.

Satz v. Parseval $(f,g) = \int_0^L \bar{f} g dx = \sum_{n \in \mathbb{Z}} \bar{f}_n g_n$. Falls $f = g \to \int_0^L |f|^2 dx = \sum_{n \in \mathbb{Z}} |f_n|^2$

1.3 Reellwertige Darstellung der Fourierreihen

Für f reellwertig mit $f_n = \frac{1}{2}(a_n - ib_n)$, $f_{-n} = \overline{f}_n = \frac{1}{2}(a_n + ib_n)$ gilt $f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(\frac{2\pi n}{L}x) + b_n \sin(\frac{2\pi n}{L}x)$, wobei $a_n = 2\operatorname{Re} f_n = \frac{2}{L}\int_0^L f(x)\cos(\frac{2\pi n}{L}x)$, $b_n = -2\operatorname{Im} f_n = \frac{2}{L}\int_0^L f(x)\sin(\frac{2\pi n}{L}x)$. Es gilt $f_{-n} = \overline{f}_n$ für $n \geq 0$.

Sei $F(x) = \int_0^x f(y) dy$ für $f \in C^2(\mathbb{R}/2\pi\mathbb{Z})$ mit $\int_0^{2\pi} f(x) dx = 0$. Dann ist $F_n = \frac{f_n}{in}$, falls $n \neq 0$, und $F_n = -\sum_{m \neq 0} \frac{f_m}{im}$, falls n = 0.

1.4 Poisson'sche Summationsformel

Sei $f \in C^1(\mathbb{R})$, |f|, $|f'| \le \frac{C}{1+x^2}$ für ein C > 0 und $g(x) = \sum_{k \in \mathbb{Z}} f(x+kL)$, $g \in C^1(\mathbb{R} \setminus \mathbb{Z})$, g(x+L) = g(x). Dann konvergiert diese Reihe gleichmässig auf [0,L], also $g \in C^1(\mathbb{R} \setminus \mathbb{Z})$ und es gilt $g(x) = \sum_{n \in \mathbb{Z}} f(x+nL) = \sum_{n \in \mathbb{Z}} g_n \exp(\frac{2\pi i n}{L}x) = \sum_{n \in \mathbb{Z}} \frac{1}{L} \hat{f}(2\pi n/L) \exp(\frac{2\pi i n}{L}x)$. Insbesondere folgt für x = 0 die Poisson'sche Summationsformel $\sum_{n \in \mathbb{Z}} f(nL) = \frac{1}{L} \sum_{n \in \mathbb{Z}} \hat{f}(\frac{2\pi n}{L})$. Gilt allgemein für f integrierbar, stetig und von beschränkter Variation.

1.5 Wärmeleitungsgleichung auf einem Ring

$$\begin{cases} \frac{\partial}{\partial t}u(x,t)=D\frac{\partial^2}{\partial x^2}u(x,t) & x\in\mathbb{R},\ t>0,\\ u(x,0)=f(x). \end{cases}$$
 (Wärmeleitungsgleichung)

Periode L>0 und Konstante D>0 können durch passende Substitution von x,t als 2π bzw. 1 angenommen werden.

Satz 5.1 (Wärmeleitungsgleichung) Sei $f \in C^{\infty}(\mathbb{R}/2\pi\mathbb{Z})$ und $K(x,t) = \sum_{n \in \mathbb{Z}} \exp(-n^2t + inx)$ (Jacobische Theta-Funktion) für $x \in \mathbb{R}$, t > 0. Dann ist $u(x,t) = \frac{1}{2\pi} \int_0^{2\pi} K(x-y,t) f(y) \mathrm{d}y$ eine $C^{\infty}(\mathbb{R}/2\pi\mathbb{Z} \times (0,\infty))$ Lösung der Wärmeleitungsgleichung die gleichmässig gegen f für $t \downarrow 0$ konvergiert, d.h. $\lim_{t \downarrow 0} u(x,t) = f(x)$. Da $u \in C^{\infty}$, ist u eindeutig.

Bew: Ansatz: $u(x,t) = \sum_{n \in \mathbb{Z}} u_n(t)e^{inx}$, $u_n(0) = f_n$ Mit der Poisson-Formel ist $K(x,t) = \sum_{n \in \mathbb{Z}} \sqrt{\frac{\pi}{t}} \exp(-\frac{(x-2\pi n)^2}{4t}) > 0$.

1.6 Satz von Fejér

Definition 6.1 (Fejerschen-Summen) sind arithmetische Mittel von Fourier-Partialsummen $(\sigma_N f)(x) = \frac{1}{N} \sum_{n=0}^{N-1} (s_n f)(x)$. Also ist $\sigma_N f(x) = \int_0^1 f(y) K_N(x-y) \mathrm{d}y$, wobei der **Fejérsche Kern** K_N durch $K_N(t) = \frac{1}{N} \sum_{n=0}^{N-1} D_n(t)$ gegeben ist.

Satz (Eigenschaften des Fejérsche Kern) Es gilt

(i)
$$K_N(t) = K_N(-t) = K_N(t+1)$$
, (ii) $\int_0^1 K_N(t) dt = 1$,

(iii)
$$K_N(t) = \frac{1}{N} \left(\frac{\sin(N\pi t)}{\sin(\pi t)} \right)^2$$
, $fallst \in \mathbb{R} \setminus \mathbb{Z}$, $K_N(t) = N$, $fallst \in \mathbb{Z}$.

Satz 6.1 (Fejér, Darstellungssatz III) Sei $f: \mathbb{R} \to \mathbb{C}$ stetig, L-periodisch. Sei $\sigma_N f$ die N-te Fejérsche Summe $\sigma_N f(x) = \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=-n}^n f_m \exp(\frac{2\pi i m}{L} x)$. Dann gilt $\lim_{N\to\infty} (\sigma_N f)(x) = f(x)$ mit gleichmässiger Konvergenz.

Definition 6.2 (Trigonometrische Polynome) sind endliche Linearkombinationen $\sum_{n=-N}^{N} c_n \exp(\frac{2\pi i n}{L}x)$

Korollar 6.2 Jede stetige periodische Funktion f kann gleichmässig durch trigonometrische Polynome beliebig gut approximiert werden.

Korollar 6.3 Seien f,g stetig, L-periodiodisch. Dann gilt $f_n = g_n \implies f = g$ und $\sum_{n \in \mathbb{Z}} |f_n| < \infty \implies f(x) = \sum_{n \in \mathbb{Z}} f_n \exp(\frac{2\pi i n}{L} x)$.

1.7 Rechnungen

f gerade $\Rightarrow f_n = f_{-n}$, f ungerade $\Rightarrow f_n = -f_{-n}$

Fourierkoeffizienten Zuerst direkt. Falls Funktion zu hässlich zum Integrieren, e-Darstellungen von sin, cos einsetzen, exp durch Taylorreihe ersetzen

Beispiele $\exp(e^{ix}) = \sum_{n=0}^{\infty} \frac{e^{inx}}{n!}$.

Fourierkoeffizienten mit Residuensatz Sei $f=\frac{1}{3-\cos x}$ 2π -periodisch und reellwertig, deshalb $f_{-n}=\overline{f_n}$. Wir berechnen f_{-n} für $n\geq 0$. Mit der Substitution $z=e^{ix}$, $\mathrm{d} x=\frac{\mathrm{d} z}{iz}$ gilt $f_{-n}=\frac{1}{2\pi}\int_0^{2\pi}\frac{e^{inx}}{3-\frac{1}{2}(e^{ix}+e^{-ix})}\mathrm{d} x=-\frac{1}{\pi i}\int_{|z|=1}\frac{z^n}{z^2-6z+1}\mathrm{d} z$. Finde Nullstellen des Nenners, die innerhalb des Einheitskreises liegen, um mit dem Residuensatz f_{-n} auszurechnen. f_n ergibt sich dann aus f_{-n} , wobei n-Abhängigkeiten in den Absolutbetrag gesetzt werden.

PDE mit Fourierreihen (Wärmeleitungsgl.) *Nehme an, dass* $f \in C^{\infty}(\mathbb{R}/2\pi\mathbb{Z})$ *und sei* $u \in C^{\infty}$ -Lösung mit $u(x,t) = \sum_{n \in \mathbb{Z}} u_n(t)e^{inx}$ und $u_n(t) = \frac{1}{2\pi} \int_0^{2\pi} u(x,t)e^{-inx} dx$.

- Berechne $u_n(0) = \lim_{t\to 0} \frac{1}{2\pi} \int_0^{2\pi} u(x,t) e^{-inx} \mathrm{d}x = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} \mathrm{d}x = f_n$. Falls also $u(x,t) \to f$ gleichmässig für $t \to 0$, ist $u_n(0) = f_n$.
- DGL in u_n über $\partial_t u_n(t) = \frac{1}{2\pi} \int_0^{2\pi} \partial_t u(x,t) e^{-inx} dx \stackrel{DGL}{=} \frac{1}{2\pi} \int_0^{2\pi} \partial_x^2 u(x,t) e^{-inx} dx = \frac{1}{2\pi} \int_0^{2\pi} u(x,t) (-in)^2 e^{-inx} dx = -n^2 u_n(t).$
- Lösung der DGL ist $u_n(t) = e^{-n^2} f_n$, woraus $u(x,t) = \sum_{n \in \mathbb{Z}} f_n e^{-n^2 t + inx}$ folgt.

2 Fouriertransformation

2.1 Definition und elementare Eigenschaften

Fouriertransformation Sei $f \in L^1(\mathbb{R}^n)$. Die Fouriertransformierte von f und die inverse Fouriertransformierte sind gegeben durch die Funktionen auf \mathbb{R}^n

$$\hat{f}(k) = \int_{\mathbb{R}^n} f(x) e^{-ik \cdot x} dx, \quad \check{f}(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} f(k) e^{ik \cdot x} dk.$$

Lemma 1.1 Sei $f \in L^1(\mathbb{R}^n)$. Dann sind die Funktionen \hat{f} , \check{f} gleichmässig stetig und für alle $x, k \in \mathbb{R}^n$ gilt $|\hat{f}(k)| \le ||f||_1$, $|\check{f}(x)| \le (2\pi)^{-n} ||f||_1$.

Elementare Eigenschaften Seien $f, g, h \in L^1$, $h \in C_0^1(\mathbb{R}^n)$, $\alpha, \beta \in \mathbb{C}$, $\lambda \in \mathbb{R} \setminus \{0\}$ und bezeichne $f_y(x) = f(x - y)$.

(i)
$$\alpha \widehat{f + \beta} g = \alpha \widehat{f} + \beta \widehat{g}$$

(v)
$$\int_{\mathbb{R}^n} \hat{f} g dx = \int_{\mathbb{R}^n} f \hat{g} dx$$

(ii)
$$\widehat{f(\lambda \cdot)}(k) = |\lambda|^{-n} \widehat{f}(k/\lambda)$$

(vi)
$$\overline{\hat{f}(k)} = \overline{\hat{f}}(-k)$$

(iii)
$$\hat{f}_y(k) = \hat{f}(k)e^{-iky}$$
.
(iv) $f\hat{g}, \hat{f}g \in L^1$

(vii)
$$\widehat{\partial_i h}(k) = ik_i \hat{h}(k)$$

Satz 2.1 (Vertauschen von Ableitung und Integral) $Sei\ f:(a,b)\times\mathbb{R}^n\to\mathbb{C}$ eine Funktion, so dass

- (i) die Funktion $x \mapsto f(t, x)$ integrierbar für alle $t \in (a, b)$ ist,
- (ii) die partielle Ableitung $f_t(t,x)$ existiert für alle $(t,x) \in (a,b) \times \mathbb{R}^n$,
- (iii) es eine integrierbare Funktion g auf \mathbb{R}^n , sodass $|f_t(t,x)| \leq g(x)$ für alle $(t,x) \in (a,b) \times \mathbb{R}^n$ gibt.

Dann ist $I(t) = \int_{\mathbb{R}^n} f(t, x) dx$ differenzierbar für $t \in (a, b)$ und es gilt $\frac{\partial I(t)}{\partial t} = \int_{\mathbb{R}^n} f_t(t, x) dx$.

2.2 Fouriertransformierte der Gauss-Funktion

Beispiel (Gauss-Funktion) Sei $f(x) = e^{-\frac{1}{2}\langle Ax,x\rangle}$, $A = A^T$ positiv definit. Dann ist $f \in L^1$ und $\hat{f}(k) = \frac{(2\pi)^{n/2}}{(\det A)^{1/2}} e^{-\frac{1}{2}\langle A^{-1}k,k\rangle}$. Im eindimensionalen Fall $f(x) = e^{-|x|^2/2}$ ist $\hat{f}(k) = \sqrt{2\pi}e^{-k^2/2}$.

Allgemein ist $(e^{-\frac{x^2}{a}})^{\wedge}(k)=\sqrt{a\pi}e^{-\frac{ak^2}{4}}$ und $(e^{-\frac{k^2}{a}})^{\vee}(x)=\frac{1}{2}\sqrt{\frac{a}{\pi}}e^{-\frac{ax^2}{4}}$

Beispiele für Fouriertransformierte

Beispiel (Charakteristische Funktion) $\hat{\chi}_{[-1,1]}(k) = \frac{2\sin k}{k}$.

Beispiel (Eigenvektoren der FT, Hermite-Funktionen) Die Hermite-Funktionen $h_n(x) = (-1)^n e^{x^2/2} \partial_x^n e^{-x^2} = H_n(x) e^{-x^2/2}, n = 0,1,2,...$ sind Eigenvektoren der Fouriertransformation $\hat{h}_m(k) = (-i)^m \sqrt{2\pi} h_m(k)$.

Beispiel (Invariante der FT) $\left(\frac{1}{\sqrt{|x|}}\right)^{\wedge}(k) = \frac{1}{\sqrt{|k|}}$

Beispiel (Schranke) $\left(e^{-m|x|}\right) \wedge (k) = \frac{2m}{m^2 + k^2} \in L^1(\mathbb{R}).$

2.4 Umkehrsatz für L¹-Funktionen

Satz 4.1 $f, \hat{f} \in L^1 \implies f^{\wedge \vee} = f \text{ und } f, \check{f} \in L^1 \implies f^{\vee \wedge} = f (f.\ddot{u}.).$

Gleichheit in L^1 , also fast überall. Für stetige Funktionen Gleichheit.

Korollar 4.2 ($^{\wedge}$, $^{\vee}$ injektiv) $^{\wedge}$, $^{\vee}$: $L^1(\mathbb{R}^n) \rightarrow C(\mathbb{R}^n)$ sind injektiv, $f \in L^1(\mathbb{R}^n)$, $\hat{f} =$ $0 \implies f = 0 \text{ (f.ü.), } f \in L^1(\mathbb{R}^n), \check{f} = 0 \implies f = 0 \text{ (f.ü.).}$

Korollar 4.3 $f, \hat{f} \in L^1(\mathbb{R}^n) \implies f^{\wedge \wedge}(x) = (2\pi)^n f(-x)$ (f.ü.).

Korollar 4.4) $f, \hat{f} \in L^1(\mathbb{R}^n) \implies \check{f} \in L^1(\mathbb{R}^n).$

Satz 4.5 (Plancherel-Formel) $f, \hat{f} \in L^1(\mathbb{R}^n) \implies f, \hat{f} \in L^2(\mathbb{R}^n)$ und es gilt

$$||f||_2 = (2\pi)^{-n/2} ||\hat{f}||_2.$$

Definition (Faltung) $(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x-y)dy = (g * f)(x).$

Satz (Faltungssatz) $f,g \in L^1$. Dann gilt $(f * g)^{\wedge}(k) = \hat{f}(k)\hat{g}(k)$.

2.5 Der Schwartzraum $\mathscr{S}(\mathbb{R}^n) \subset L^p(\mathbb{R}^n), p \in [1, \infty)$

Definition 5.1 (Multiindex) ist ein Element $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}_0^n$. $x^{\alpha} = x_1^{\alpha_1} ... x_n^{\alpha_n}$, $|\alpha| = \alpha_1 + \ldots + \alpha_n$, $\alpha! = \alpha_1! \ldots \alpha_n!$, $\partial^{\alpha} = \partial_1^{\alpha_1} \ldots \partial_n^{\alpha_n}$.

Definition (C^k-Raum) Für $X = \mathbb{R}^n$ setze $C(X) = \{f : X \to \mathbb{C} \text{ stetig}\}$. Für $\Omega \subset \mathbb{R}^n$ offen definiere $C^k(\Omega) = \{f : \Omega \to \mathbb{C} : \partial^{\alpha} f \in C(\Omega), \forall \alpha \in \mathbb{N}^n, |\alpha| \leq k\}, C^{\infty} = \bigcap_{k=0}^{\infty} C^k(\Omega).$

Definition 5.2 (\mathscr{S}) Für $\varphi \in C^{\infty}(\mathbb{R}^n)$ und $\alpha, \beta \in \mathbb{N}^n$ definieren wir $\|\varphi\|_{\alpha,\beta} =$ $\sup_{x\in\mathbb{R}^n}|x^{lpha}\partial^{eta}\varphi(x)|$. Der **Schwartzraum** ist der komplexe Vektorraum $\mathscr{S}(\mathbb{R}^n)=\{arphi\in$ $C^{\infty}(\mathbb{R}^n): \|\varphi\|_{\alpha,\beta} < \infty \ \forall \alpha,\beta \in \mathbb{N}^n \}.$

Lemma 5.1 (Norm auf \mathscr{S}) Für alle $k,l \in \mathbb{N}$ ist $\|\varphi\|_{k,l} = \max_{|\alpha| < k, |\beta| < l} \|\varphi\|_{\alpha,\beta}$ ist eine Norm auf dem Vektorraum $\mathcal{S}(\mathbb{R}^n)$.

Beispiele und Eigenschaften

- Beispiele von Schwartz-Funktionen sind glatte Funktionen mit kompaktem Träger $C_0^{\infty}(\mathbb{R}^n)$, $e^{-a|x|^2} \ \forall a > 0$, $e^{-\sqrt{1+|x|^2}}$, $x^{\alpha} \partial^{\beta} \varphi$, $h_n \in \mathscr{S}(\mathbb{R}^n)$.
- ullet Keine Schwartz-Funktionen sind nicht glatte Funktionen, $e^{-a|x|}$, (1+ $|x|^2$)^{-s}, $\frac{\varphi(x)}{x}$, $\int_{-\infty}^x \varphi(x) dx \notin \mathscr{S}(\mathbb{R}^n)$.
- Polynome erhalten $\mathscr S$, also für $\varphi \in \mathscr S(\mathbb R^n)$ ist auch $P(x)Q(x)\varphi \in \mathscr S(\mathbb R^n)$ für alle Polynome P, Q. $\lim_{|x|\to\infty} |P(x)Q(\partial)\varphi(x)| = 0$.
- Für $\varphi, \psi \in \mathscr{S}(\mathbb{R}^n)$ ist auch das punktweise Produkt $\varphi \psi \in \mathscr{S}(\mathbb{R}^n)$ im Schwartzraum (Leibnitz-Formel).

Lemma 5.2 (Majorante in \mathscr{S}) Seien $\varphi \in \mathscr{S}(\mathbb{R}^n)$, $\beta \in \mathbb{N}^n$, $k \in \mathbb{N}$. Dann existiert eine Konstante $c_{\beta,k} = c_{\beta,k}(\varphi)$, so dass $|\partial^{\beta} \varphi(x)| \leq \frac{c_{\beta,k}}{(1+|x|^2)^k}$.

Definition 5.3 (Konvergenz in \mathscr{S}) Eine Folge φ_j in $\mathscr{S}(\mathbb{R}^n)$ konvergiert gegen $\varphi \in$ $\mathscr{S}(\mathbb{R}^n)$, falls $\lim_{j\to\infty} \|\varphi_j - \varphi\|_{k,l} = 0$ für alle $k,l \in \mathbb{N}$. Man schreibt $\varphi_i \overset{\mathscr{S}}{\to} \varphi$ für $j \to \infty$.

Definition 5.4 (Stetigkeit in \mathscr{S}) *Eine lineare Abbildung* $F : \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}(\mathbb{R}^n)$ *ist stetig,* falls für alle konvergenten Folgen gilt $\varphi_i \stackrel{\mathscr{S}}{\to} \varphi \implies F(\varphi_i) \stackrel{\mathscr{S}}{\to} F(\varphi)$.

Lemma 5.4 (Fourier-Eigenschaften) *Sei* $\varphi \in \mathscr{S}(\mathbb{R}^n)$. *Dann gilt*

(i)
$$(\partial_j \varphi)^{\wedge}(k) = ik_j \hat{\varphi}(k)$$
, (iii) $(\partial_j \varphi)^{\vee}(k) = -ik_j \check{\varphi}(k)$,

$$(ii) \ \partial_j \hat{\varphi}(k) = (-ix_j \varphi)^{\wedge}(k), \qquad \qquad (iv) \ \partial_j \check{\varphi}(k) = (ix_j \varphi)^{\vee}(k).$$

S3A4 a) Sei $f \in L^1$ und $k \in \mathbb{N}_0$ s.d. $\forall \alpha \in \mathbb{N}_0^n$ mit $|\alpha| \le k$ gilt $x \mapsto x^{\alpha} f(x) \in L^1$. Dann ist **2.9 Wärmeleitungsgleichung** $\hat{f} \in C^k$ und:

 $\partial^{\alpha} \hat{f} = (-i\hat{x})^{\alpha} f$ und $\sup_{k \in \mathbb{R}^n} |\partial^{\alpha} \hat{f}(k)| < \infty$ b) Sei $f \in C^k(\mathbb{R}^n)$ und $k \in \mathbb{N}_0$ s.d. $\forall \alpha \in \mathbb{N}_0^n$ mit $|\alpha| \leq k$ gilt $f, \partial^{\alpha} f \in L^1$. Dann gilt $\partial^{\hat{\alpha}} f = (ik)^{\alpha} \hat{f} \text{ und } \sup_{k \in \mathbb{R}^n} |k^{\alpha} \hat{f}(k)| < \infty.$

Lemma 5.5 (Abgeschlossenheit) $\varphi \in \mathscr{S}(\mathbb{R}^n) \implies \hat{\varphi}, \check{\varphi} \in \mathscr{S}(\mathbb{R}^n).$

Satz 5.6 (FT als Isomorphismus) Die lineare Abbildung $F: \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}(\mathbb{R}^n): \varphi \mapsto \check{\varphi}$ ist bijektiv und stetig. Ihre Inverse $F^{-1}: \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}(\mathbb{R}^n): \varphi \mapsto \check{\varphi}$ ist ebenfalls stetig.

2.6 Fouriertransformation von rotationsinverianten Funktionen

Definition (Rotationsinvariante Funktion) $g: \mathbb{R}^n \to \mathbb{C}$ ist eine Funktion, sodass g(Rx) = g(x) für alle R orthogonal ($R^TR = 1$).

Lemma 6.1 (Rotationsinvarianz) Eine Funktion g ist genau dann rotationsinv., wenn sie die Form $g(x) = f(|x|), |x| = \sqrt{x_1^2 + \ldots + x_n^2}$ hat.

Wir führen als neue Koordinaten ein $x_1 = \pm r\sqrt{1-y_2^2-\ldots-y_n^2}$, $x_2 = ry_2$, ..., $x_n = ry_n$, wobei x = ry. Das Volumenelement ergibt sich als $dx_1 \dots = dx_n = ry$ $r^{n-1}\mathrm{d}r\frac{\mathrm{d}y_2...\mathrm{d}y_n}{\sqrt{1-y_2^2-...-y_n^2}}\equiv r^{n-1}\mathrm{d}r\mathrm{d}\Omega(y).$

Lemma 6.2 ($|S^{n-1}|$ **)** Die "Oberfläche" der (n-1)-dimensionale Einheitssphäre $S^{n-1}=$ $\{y \in \mathbb{R}^n : |y| = 1\}$ ist gegeben durch

$$|S^{n-1}| = \int_{S^{n-1}} d\Omega(y) = \frac{2\pi^{n/2}}{\Gamma(n/2)} = \begin{cases} \frac{2\pi^k}{(k-1)!} & n=2k \ gerade \\ \frac{2^{2k+1}\pi^k k!}{(2k)!} & n=2k+1 \ ungerade \end{cases}$$

Beispiel $|S^1|=rac{2\pi}{\Gamma(1)}=2\pi,\,|S^2|=rac{2\pi^{3/2}}{\Gamma(3/2)}=4\pi,\,|S^3|=rac{2\pi^2}{\Gamma(2)}=2\pi^2.$

Definition (Gamma-Funktion) $\Gamma(s)=\int_0^\infty t^{s-1}e^{-t}\mathrm{d}t,\ \Gamma(s+1)=s\Gamma(s),\ \Gamma(n+1)=n!$ für $n\in\mathbb{N},\ \Gamma(\frac{1}{2})=\sqrt{\pi},\ \Gamma(x)\Gamma(1-x)=\frac{\pi}{\sin(\pi x)}$

 $g\in L^1$ rotationsinvariant \Longrightarrow \hat{g} rotationsinvariant, da $\hat{g}(k)=\int_{\mathbb{R}^n}g(|x|)e^{-ik\cdot x}\mathrm{d}x=\int_0^\infty g(r)\left(\int_{S^{n-1}}e^{-ik\cdot yr}\mathrm{d}\Omega(y)\right)r^{n-1}\mathrm{d}r=\int_0^\infty g(r)G_n(|k|r)r^{n-1}\mathrm{d}r$, da $\hat{g}(k)=\hat{g}(|k|,0,\ldots,0)$.

Lemma 6.3 (G_n **-Funktion)** $G_n(\rho) = \int_{S^{n-1}} e^{-i\rho y_1} d\Omega(y)$ ist die Einschränkung auf $\mathbb{R}_+ \subset$ $\mathbb C$ einer ganzen holomorphen Funktion. Für alle $k\in\mathbb R^n$ gilt $\int_{S^{n-1}}e^{-ik\cdot y}d\Omega(y)=G_n(|k|)$ (Insbesondere $G_n(0) = |S^{n-1}|$).

Definition 6.1 (Besselfunktion) *Sei* $\alpha \in \mathbb{C} \setminus \{-1, -2, ...\}$. *Die Besselfunktion (er*ster Gattung) der Ordnung α ist die durch die konvergente Potenzreihe $J_{\alpha}(z)$ $\sum_{k=0}^{\infty} \frac{(-1)^k}{k!\Gamma(k+\alpha+1)} \left(\frac{z}{2}\right)^{\alpha+2k}$ definierte Funktion der komplexen Variable z. Es sind $J_{1/2}(z)=$ $\sqrt{\frac{2}{\pi z}}\sin(z)$ und $J_{-1/2}(z)=\sqrt{\frac{2}{\pi z}}\cos(z)$. Weiters gilt $\frac{d}{dz}(z^nJ_n(z))=z^nJ_{n-1}(z)$

Satz 6.4 (FT für rotationsinvarianten Funktionen) Sei $n \ge 2$. Dann gilt $G_n(\rho) =$ $(2\pi)^{n/2}\rho^{1-n/2}J_{n/2-1}(\rho)$. Für integrierbare rotationsinvariant Funktionen g gilt $\hat{g}(k)=(2\pi)^{n/2}|k|^{1-n/2}\int_0^\infty g(r)J_{n/2-1}(|k|r)r^{n/2}\mathrm{d}r$ und $\hat{g}(0)=|S^{n-1}|\int_0^\infty g(r)r^{n-1}\mathrm{d}r$. In drei Dimensionen gilt insbesondere $\hat{g}(k) = \frac{4\pi}{|k|} \int_0^\infty g(r) r \sin(|k|r) dr$.

Bessel DGL Die allgemeine Lösung der Bessel-Diffentialgleichung $J''_{\alpha}(x) + \frac{1}{x}J'_{\alpha}(x) + (1 - \frac{1}{x}J'_{\alpha}(x))$ $\frac{\alpha^2}{r^2} J_{\alpha}(x) = 0$ lautet $C_1 J_{\alpha}(x) + C_2 J_{-\alpha}(x)$ für $\alpha \notin \mathbb{Z}$. Für $\alpha \notin \mathbb{Z}$ sind J_{α} und $J_{-\alpha}$ linear unabhängig, für $-n \in \mathbb{Z}_{<0}$ linear abhängig, da $J_{-n}(x) = (-1)^n J_n(x)$. Die Neumann-Funktion $N_{\alpha} = \frac{\cos(\pi\alpha)J_{\alpha}(x)-J_{-\alpha}(x)}{\sin(\pi\alpha)}$ ist für alle α definiert. Die Funktionen J_{α} , N_{α} bilden somit eine allgemeine Basis des Lösungsraums für alle $\alpha \in \mathbb{C}$.

2.7 Regularität und Abfalleigenschaften

Regularität beinhaltet Stetigkeit, Differenzierbarkeit, Analytizität.

Satz 7.1 (Majorante mit kompakten Träger) Sei $f \in C_0^s(\mathbb{R}^n)$. Dann existiert eine Konstante c mit $|\hat{f}(k)| \leq \frac{c}{(1+|k|)^s}$.

Satz 7.2 (Riemann-Lebesgue) $f \in L^1(\mathbb{R}^n) \implies \lim_{k \to \infty} \hat{f}(k) = 0$.

Satz 7.3 (i) Sei $f: \mathbb{R} \to \mathbb{C}$ messbar, C, m > 0, sodass $|f(x)| \le Ce^{-m|x|}$ für alle $x \in \mathbb{R}$. Dann hat \hat{f} eine holomorphe Fortsetzung auf dem Streifen $\{|\text{Im}k| < m\}$, ebenso \check{f} .

(ii) Sei m > 0, $f : \{z : |\text{Im}z| < m\} \to \mathbb{C}$ holomorph und es gelte für alle $|\eta| < m$ sowohl $f(\cdot + i\eta) \in L^1$ als auch $\max_{|\eta'| \le |\eta|} |f(x + i\eta')| \stackrel{|x| \to \infty}{\to} 0$. Dann existiert zu jedem m' < m eine Konstante C', sodass $|\hat{f}(k)| \le C' e^{-m'|k|}$. Dasselbe gilt für \check{f} .

2.8 Wellengleichung

$$\begin{cases} \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} - \triangle u = 0 & x \in \mathbb{R}^n, \ t \ge 0, \\ u(x,0) = f(x), \\ \partial_t u(x,0) = g(x). \end{cases}$$
 (Wellengleichung)

Die Lösung u(t,x) ist für n = 2,3 gegeben durch u(t,x) =

$$\begin{split} &\frac{1}{2\pi c}\left(\frac{\partial}{\partial t}\left(\frac{1}{t}\int_{|y|\leq ct}\frac{f(x+y)\mathrm{d}y_1\mathrm{d}y_2}{\sqrt{c^2t^2-|y|^2}}\right)+\int_{|y|\leq ct}\frac{g(x+y)\mathrm{d}y_1\mathrm{d}y_2}{\sqrt{c^2t^2-|y|^2}}\right),\\ &\frac{1}{4\pi c^2}\left(\frac{\partial}{\partial t}\left(\frac{1}{t}\int_{|y|=ct}f(x+y)\mathrm{d}\Omega(y)\right)+\frac{1}{t}\int_{|y|=ct}g(x+y)\mathrm{d}\Omega(y)\right). \end{split}$$

$$\begin{cases} \frac{\partial u}{\partial t}-\triangle u=0 & x\in\mathbb{R}^n,\ t>0,\\ u(x,0)=f(x). \end{cases}$$
 (Wärmeleitungsgleichung)

Definition (Wärmeleitungskern) $K_t(x) = (e^{-k^2t})^{\vee}(x) = \frac{1}{(4\pi t)^{n/2}}e^{-|x|^2/(4t)}$.

Satz 9.1 (Lösung) Sei f stetig und beschränkt auf \mathbb{R}^n . Dann ist $u(x,t) = \int_{\mathbb{R}^n} K_t(x-t) dt$ $y)f(y)\mathrm{d}y \ (=K*f)$ eine Lösung der Wärmeleitungsgleichung in $C^\infty(\mathbb{R}^n imes (0,\infty))$ und für alle $x \in \mathbb{R}^n$ gilt $\lim_{t\to 0^+} u(x,t) = f(x)$.

2.10 Rechnungen

f gerade $\Rightarrow \hat{f} \in \mathbb{R}$, f ungerade $\Rightarrow \hat{f} \in i\mathbb{R}$, $f \in \mathbb{R} \Rightarrow \text{Re}(\hat{f})$ gerade und $\text{Im}(\hat{f})$ ungerade.

Fouriertransformierte mit Residuensatz Für reellwertige f ist $\hat{f}(-x) = \overline{\hat{f}(k)}$, deswegen genügt es $\hat{f}(-k)$ für $k \geq 0$ zu berechnen. Dann ist $\hat{f}(-k) = \lim_{R \to \infty} \int_{-R}^{R} f(x) e^{ikx} dx = 2\pi i \sum_{\text{Im} p > 0} \text{Res}(f, p) - \lim_{R \to \infty} \int_{\Gamma_R} f(x) e^{ikx} dx = 2\pi i \sum_{\text{Im} p > 0} \text{Res}(f, p).$ Γ_R in der positiven oder negativen imaginären Ebene wählen, so dass $|\int_{\Gamma_R} f(x) e^{ikx} dx| \leq \pi R \sup_{|x|=R} |f(x) e^{ikx}| \to 0$, wobei $e^{ikx} = e^{ik(a+ib)} = e^{k(ia-b)}$ mit |a+ib| = R. Für Γ_R in der positiven imaginären Ebene ist b > 0, also muss k > 0, für Γ_R in der negativen imaginären Ebene ist b < 0, also muss k < 0. Ist Γ_R negative orientiert (Uhrzeigersinn, negative imaginäre Halbebene), hat $\operatorname{Res}(f,p)$ ein zusätzliches Minus.

Lemma (Berechnung von Residuen)

- (i) $\operatorname{ord}(f, p) \ge -1$, $\operatorname{dann} \operatorname{Res}(f, p) = \lim_{z \to p} (z p) f(z)$,
- (ii) ord(f, p) = -k, dann $\text{Res}(f, p) = \frac{1}{(k-1)!} \partial_z^{k-1} ((z-p)^k f(z))|_{z=p}$,
- (iii) f holomorph an p, g hat eine einfache Nullstelle in p, dann ist $\text{Res}(f,p) = \frac{f(p)}{g'(p)}$, insbesondere für $f \equiv 1$,
- (iv) ord(f, p) = -1, g holomorph auf $B_{\varepsilon}(p)$, dann ist $\operatorname{Res}(f, p) = g(p)\operatorname{Res}(f, p)$.

PDE mit Fouriertransformation Gesucht wird eine Lösung $u \in C^2(\mathbb{R}^n \times \mathbb{R}_+)$. Nehmen wir an, dass $u \stackrel{x \to \infty}{\to} 0$ folgt mit $\hat{u}(k,t) = \int_{\mathbb{R}^n} u(x,t)e^{-ik\cdot x} dx$ bzw. über die Fouriertransformation der PDE die DGL $\frac{1}{c^2} \partial_t^2 \hat{u}(k,t) = -k^2 \hat{u}(k,t)$ mit allgemeiner Lösung $\hat{u}(k,t) = A(k)\cos(|k|ct) + B(k)\sin(|k|ct)$ bei festem k. Aus den Anfangsbedingungen folgt $\hat{u}(k,t) = \hat{f}(k)\cos(|k|ct) + \frac{\hat{g}(k)}{|k|c}\sin(|k|ct)$. Die Rücktransformation liefert $u(x,t) = \int_{\mathbb{R}^n} \left(\hat{f}(k)\cos(|k|ct) + \frac{\hat{g}(k)}{|k|c}\sin(|k|ct)\right)e^{ik\cdot x}dk$. Für $f,g \in C_0^s(\mathbb{R}^n)$ ist $\hat{f}(k),\hat{g}(k) \leq C(1+|k|)^{-s}$ und für s gross genug $(z.B. \geq n+2)$ kann man unter dem Integral ableiten, also ist u eine C^2 -Lösung.

Für $f \notin L^1(\mathbb{R}^n)$ kann ein **konvergenzerzeugender Faktor** eingeführt werden, d.h. $K_\delta(x) = f(x)e^{-\delta|x|^2/2} \in L^1(\mathbb{R}^n)$, sodass z.B. $\hat{f}(k) = \int_{\mathbb{R}^n} \lim_{\delta \to 0} K_\delta(x)e^{-ikx}\mathrm{d}x = \lim_{\delta \to 0} \int_{\mathbb{R}^n} K_\delta(x)e^{-ikx}\mathrm{d}x = \lim_{\delta \to 0} \hat{K}_\delta(k)$.

Beispiel (Konvergenzerzeugender Faktor) $Fiir\ \hat{\psi}(t,k) = \hat{\varphi}(k)\hat{K}_{\delta}(k,t),\ K_0 \notin L^1(\mathbb{R}^n)$ ist $\psi(x,t) = \frac{1}{2\pi}\int_{\mathbb{R}^n}\lim_{\delta\to 0}\hat{K}_{\delta}(k,t)\hat{\varphi}(k)e^{ikx}\mathrm{d}k = \lim_{\delta\to 0}\frac{1}{2\pi}\int_{\mathbb{R}^n}\hat{K}_{\delta}(k,t)\hat{\varphi}(k)e^{ikx}\mathrm{d}k = \lim_{\delta\to 0}\frac{1}{2\pi}\int_{\mathbb{R}^n}\hat{K}_{\delta}(k,t)\hat{\varphi}(k)e^{ikx}\mathrm{d}k = \lim_{\delta\to 0}\frac{1}{2\pi}\int_{\mathbb{R}^n}\hat{K}_{\delta}(k,t)\hat{\varphi}(k)e^{ikx}\mathrm{d}k = \lim_{\delta\to 0}(K_{\delta}(\cdot,t) * \varphi)^{\wedge\vee}(x) = \lim_{\delta\to 0}\int_{\mathbb{R}^n}K_{\delta}(y,t)\varphi(x-y)\mathrm{d}y = \int_{\mathbb{R}^n}\lim_{\delta\to 0}K_{\delta}(y,t)\varphi(x-y)\mathrm{d}y = (K_0(\cdot,t)*\varphi)(x).$

Integrale von **Fouriertransformationen** mit cos und sin kann man zu neuen Funktionen umschreiben und erhält mit **partieller Integration** eine algebraische Gleichung für das Integral.

Beispiel (FT p.I) Fiir $f(x) = e^{-|x|} \cos(x)$: $\hat{f}(k) = \int_0^\infty e^{-x} \cos(x) e^{-ikx} dx + \int_{-\infty}^0 e^x \cos(x) e^{-ikx} dx = g(k) + g(-k)$ und $g(k) \stackrel{p.I}{=} \dots \stackrel{p.I}{=} \frac{1}{1+ik} - \frac{1}{(1+ik)^2} g(k)$

3 Orthogonale Funktionalsysteme, Hilbertraum

3.1 Die schwingende Saite

ist das lineare Problem $\frac{1}{c^2}\partial_t^2u(x,t)=\partial_x^2u(x,t), x\in[0,L], t\geq 0, u(t,0)=u(t,L)=0$ mit Anfangsbedingungen $u(x,0)=v(x), \partial_tu(x,0)=w(x).$

PDE über Separation Wir suchen Lösungen der Form u(x,t) = f(t)g(x). Einsetzen und Separieren nach x, t ergibt $\frac{1}{c^2} \frac{f''(t)}{f(t)} = \frac{g''(x)}{g(x)} = \lambda$.

- $\partial_x^2 g(x) = \lambda g(x)$, $x \in [0, L]$, g(0) = g(L) = 0 wird gelöst durch $g_n(x) = \sin\left(\frac{\pi n}{L}x\right)$, $\lambda_n = -\left(\frac{\pi n}{L}\right)^2$, $n = 1, 2, 3 \dots$,
- $f'' = \lambda c^2 f$ durch $f(t) = a \cos \omega t + b \sin \omega t$ mit $\omega = \sqrt{-c^2 \lambda}$.

Allgemein also $u(x,t)=(a_n\cos\omega_nt+b_n\sin\omega_nt)\sin\left(\frac{\omega_n}{c}x\right),$ wobei $\omega_n=\frac{\pi nc}{L},$ $n=1,2,\ldots$ Da das Problem linear ist, ist auch jede Superposition $\sum_{n=1}^{\infty}(a_n\cos\omega_nt+b_n\sin\omega_nt)\sin\left(\frac{\omega_n}{c}x\right)$ eine Lösungs (falls a_n,b_n schnell genug abfallen für $n\to\infty$). Die Koeffizienten werden aus den Anfangsbedingungen $\sum_{n=1}^{\infty}a_n\sin\left(\frac{\omega_n}{c}x\right)=v(x)$ und $\sum_{n=1}^{\infty}\omega_na_n\sin\left(\frac{\omega_n}{c}x\right)=w(x)$ als $a_n=\frac{2}{L}\int_0^Lv(x)\sin\left(\frac{\pi n}{L}x\right)\mathrm{d}x,$ $b_n=\frac{2}{\omega_nL}\int_0^Lw(x)\sin\left(\frac{\pi n}{L}x\right)\mathrm{d}x.$ Die Eigenfrequenzen sind gegebnen durch $v_n=\omega_n/2\pi$.

Bei linearen DGLs ist die Superposition zweier Lösungen wieder eine Lösung. Insbesondere kann man dann bei einem EW-Problem mit mehreren λ_i s ansetzen.

3.2 Orthogonale Systeme, Hilberträume

 l^2 -Raum $l^2 = \{Folgen (\xi_i)_{i \in \mathbb{N}} \text{ in } \mathbb{C} \text{ mit } \sum_i |\xi_i|^2 < \infty\}, \langle \xi, \nu \rangle = \sum_i \overline{\xi_i} \nu_i.$

Lemma 2.1 (Schwarzsche Ungleichung) Sei V ein Vektorraum mit Skalarprodukt $\langle \cdot \rangle$ und $f,g \in V$. Dann gilt $|\langle f,g \rangle| \leq \|f\| \|g\|$ mit Gleichheit genau dann, wenn f und g linear unabhängig sind.

Definition 2.1 (Konvergenz) Eine Folge $(f_n)_{n=1}^{\infty}$ in einem VR mit Skalarprodukt V konvergiert gegen $f \in V$, falls $||f_n - f|| \to 0$ für $n \to \infty$.

Lemma 2.2 (Stetigkeit von Norm und Skalarprodukt) *Sei* $(f_n)_{n=1}^{\infty} \subset V$ *eine Folge, welche gegen* $f \in V$ *konvergiert. Dann gilt für alle* $g \in V$ $\langle f_n, g \rangle \to \langle f, g \rangle$, $\langle g, f_n \rangle \to \langle g, f \rangle$ *und* $||f_n|| \to ||f||$.

Definition 2.2 Eine (endliche oder unendliche) Familie $(\varphi_j)_{j\in I}$ von nicht-verschwindenden Vektoren in V heisst **orthogonal** (oder **orthogonales System**), falls $\langle \varphi_j, \varphi_k \rangle = 0$ für alle $j \neq k$, **orthonormiert**, falls zusätzlich $\langle \varphi_j, \varphi_j \rangle = 1$ für alle $j \in I$. Ein orthogonales System $(\varphi_j)_{j\in I}$ heisst **vollständig** (oder **maximal**), falls $\langle \varphi_j, f \rangle = 0 \ \forall j \implies f = 0$ für alle $f \in V$. Bei uns ist I meist $\{1, \ldots, n\}$, $\{(0), 1, 2, 3, \ldots\}$ oder \mathbb{Z} .

Beispiel (i) $V = L^2([0,1]), \varphi_j = e^{2\pi i j x}, \langle \varphi_j, \varphi_k \rangle = \int_0^1 \overline{\varphi_j} \varphi_k dx = \delta_{jk}$

(ii)
$$V = \mathbb{C}^n$$
, $\varphi_i = (\delta_{1i}, \dots, \delta_{ni})$

(iii)
$$V = l^2$$
, $\varphi_i = (\delta_{ij})_{i \in \mathbb{N}}$

Satz 2.3 Sei V ein Vektorraum mit Skalarprodukt und $(\varphi_i)_{i=1}^{\infty}$ ein orthogonales System.

- (i) (Pythagoras) $\|\varphi_1 + \ldots + \varphi_n\|^2 = \|\varphi_1\|^2 + \ldots + \|\varphi_n\|^2 \ \forall n \in \mathbb{N}$
- (ii) (Bessel Ungleichung) Ist (φ_j) orthonormiert, so gilt für alle $n \in \mathbb{N}$ die Besselsche Ungleichung $\sum_{j=1}^{n} |\langle \varphi, \varphi_j \rangle|^2 \leq \|\varphi\|^2$ mit Gleichheit genau dann, wenn φ im vom $\varphi_1, \ldots, \varphi_n$ aufgespannten Unterraum liegt.
- (iii) (Funktionsapproximation) Sei (φ_j) orthonormiert, $\varphi \in V$, $n \in \mathbb{N}$. Die Funktion von $\lambda_1, \ldots, \lambda_n \in \mathbb{C} \|\varphi \sum_{j=1}^n \lambda_j \varphi_j\|^2$ nimmt ihr Minimum für $\lambda_j = \langle \varphi_j, \varphi \rangle$ für $j = 1, \ldots, n$ an.

Definition 2.3 (Hilbertraum) Ein \mathbb{C} , \mathbb{R} -Vektorraum H mit Skalarprodukt heisst **Hilbertraum**, wenn er bezüglich der Norm $f \mapsto \|f\| = \sqrt{\langle f, f \rangle}$ ein Banachraum ist, d.h. wenn alle Cauchy-Folgen bezüglich $\|\cdot\|$ in H konv.

Satz 2.4 (Vollständigkeit) Sei H ein Hilbertraum und $(\varphi_j)_{j=1}^{\infty}$ ein orthonormiertes System. Dann sind folgende Aussagen äquivalent

- (i) $(\varphi_j)_{j=1}^{\infty}$ ist vollständig,
- (ii) $\varphi = \sum_{j=1}^{\infty} \langle \varphi_j, \varphi \rangle \varphi_j \quad \forall \varphi \in H$

(Konvergenz in H),

(iii) $\|\varphi\|^2 = \sum_{i=1}^{\infty} |\langle \varphi_i, \varphi \rangle|^2 \quad \forall \varphi \in H$,

(Parseval Identität).

Für $(\varphi_n)_{n=1}^{\infty}$ vollständig $\varphi = \sum_{n=1}^{\infty} \frac{\langle \varphi_n, \varphi \rangle}{\langle \varphi_n, \varphi_n \rangle} \varphi_n$, $\|\varphi\|^2 = \sum_{n=1}^{\infty} \frac{|\langle \varphi_n, \varphi \rangle|^2}{\langle \varphi_n, \varphi_n \rangle}$

Definition 2.5 Ein Hilbertraum heisst **separabel**, falls er eine abzählbare orthonormierte Basis hat.

Satz 2.5 Sei $(\varphi_j)_{j=1}^\infty$ eine orthonormierte Basis eines Hilbertraums H. Dann existiert ein linearer Isomorphismus $i: l^2 \to H, c = (c_j)_{j=1}^\infty \mapsto \sum_{j=1}^\infty c_j \varphi_j$ und es gilt $\langle i(c), i(d) \rangle = \langle c, d \rangle$ für alle $c, d \in l^2$.

Korollar 2.6 Sei $(\varphi_j)_{j=1}^\infty$ eine orthonormierte Basis eines HR H. Dann konv. $\sum_{j=1}^\infty c_j \varphi_j = \lim_{n \to \infty} \sum_{j=1}^n c_j \varphi_j$ in H genau dann, wenn $\sum_{j=1}^\infty |c_j|^2 < \infty$.

3.3 L^2 -Theorie der Fourierreihen

Satz 3.1 (Parseval) Sei $f \in L^2([0,1])$, $\varphi_j(x) = e^{2\pi i j x}$ $(j \in \mathbb{Z})$ und $c_j = \langle \varphi_j, f \rangle$ der j-te Fourierkoeffizient von f. Dann gilt $f = \sum_{j \in \mathbb{Z}} c_j \varphi_j$ und $\int_0^1 |f|^2 dx = \sum_{j \in \mathbb{Z}} |c_j|^2$.

Für allgemeine Perioden L ist $c_j=\frac{\langle \varphi_j,f\rangle}{\|\varphi_j\|}$ und die Parseval-Identität $\frac{1}{L}\int_0^L|f|^2\mathrm{d}x=\sum_{j\in\mathbb{Z}}|c_j|^2$. Für $\varphi_j(x)=\exp(\frac{2\pi ij}{L}x)$ ist $c_j=f_j$ der j-te Fourierkoeffizient.

3.4 Hermite-Polynome und harmonischer Oszillator

Definition 4.1 (Hermite-Polynom) $H_n(x) = (-1)^n e^{x^2} \frac{\partial^n}{\partial x^n} e^{-x^2}$ für $n = 0, 1, 2, \dots$ Die Vernichtungs- und Erzeugungsoperatoren sind definiert als $A = \frac{1}{\sqrt{2}}(x + \frac{\partial}{\partial x})$ und $A^* \frac{1}{\sqrt{2}}(x - \frac{\partial}{\partial x})$.

Lemma 4.2 *Sei* $\varphi_n = 2^{-n/2} H_n(x) e^{-x^2/2}$. *Dann gilt*

- $(i) \ \varphi, \psi \in \mathcal{S}(\mathbb{R}) \implies \langle A^* \varphi, \psi \rangle = \langle \varphi, A \psi \rangle,$
- (ii) $AA^* A^*A = 1$
- (iii) $A\phi_0 = 0$
- (iv) $A^*\phi_n = \phi_{n+1}$.

Satz 4.1 (H_n -Basis) $\Psi_n(x)=\pi^{-1/4}2^{-n/2}(n!)^{-1/2}H_n(x)e^{-x^2/2}$, $n=0,1,2,\ldots$, bilden ein vollständiges orthonormiertes System in $L^2(\mathbb{R})$.

Der Hermitesche-Operator ist $H=A^*A+\frac{1}{2}=-\frac{1}{2}\frac{\partial^2}{\partial x^2}+\frac{1}{2}x^2$. Die zeitunabhängige Schrödingergleichung $H\psi_n=E_n\psi_n$ wird mit Ψ_n wie oben zum Eigenwert $E_n=n+\frac{1}{2}$ gelöst.

Korollar 4.3 ($\mathscr S$ dicht in L^2) $\mathscr S(\mathbb R)$ ist dicht in $L^2(\mathbb R)$, d.h. zu jedem $\varepsilon > 0$ und $f \in L^2(\mathbb R)$ existiert ein $\varphi \in \mathscr S(\mathbb R)$ mit $\|f - \varphi\|_2 < \varepsilon$.

3.5 Orthogonale Polynome, Legendre Polynome

Sei $E \subset \mathbb{R}$ ein Intervall und $\rho: E \to \mathbb{R}$, sodass $\rho(x) \geq 0$ für fast alle $x \in E$ und $\int_E |x|^n \rho(x) \mathrm{d}x < \infty$ für alle $n = 0, 1, 2, \ldots$ Dann definiert $\langle f, g \rangle = \int_E \overline{f}(x) g(x) \rho(x) \mathrm{d}x$, $f, g \in \mathbb{C}[x]$ ein Skalarprodukt auf dem VR $\mathbb{C}[x]$ der Polynome in einer Variable mit komplexen Koeffizienten. Zum Paar (E, ρ) gehört eine Familie eindeutiger orthogon. Polynome.

Definition 5.1 (Legendre Polynom) $P_l(x) = \frac{1}{2^l l!} \frac{\partial^l}{\partial x^l} (x^2 - 1)^l, l \in \mathbb{N}_0.$

Lemma 5.1 P_l hat Grad l, $\int_{-1}^1 P_l(x) P_{l'}(x) dx = \frac{2}{2l+1} \delta_{ll'}$ und $P_l(1) = 1$.

Lemma Der Differentialoperator L mit $u \mapsto L = \frac{\partial}{\partial x} \left((x^2 - 1) \frac{\partial}{\partial x} \right) u$ ist ein Hermitescher Operator, d.h. $\langle Lu, v \rangle = \langle u, Lv \rangle$.

Satz 5.2 Die Legendre Polynome P_l sind Eigenvektoren von L zu den Eigenwerten l(l+1), d.h. sie erfüllen die (spezielle) Legendre-DGl $\frac{\partial}{\partial x}\left((x^2-1)\frac{\partial}{\partial x}\right)P_l(x)=l(l+1)P_l(x)$.

Die orthonormierten Polynome $\sqrt{\frac{2l+1}{2}}P_l$ bilden ein vollständiges orthonormiertes System in $L^2([-1,1])$.

 $(\sqrt{\frac{2l+1}{2}}P_l)_{l=0}^N$ ist eine vollständige orthonormierte Basis für den Vektorraum der Polynome vom Grad $\leq N$. Nach 2.3 ist $P = \sum_{l=0}^{N} \frac{2l+1}{2} \langle P_l, u \rangle P_l(x)$ die beste Approximation

Hermite-Polynome H_n $H_{n+2}(x) - 2xH_{n+1}(x) + 2(n+1)H_n(x) = 0$, $H_n'(x) - 2nH_{n-1}(x) = 0$, $H_n''(x) - 2xH_n'(x) + 2nH_n(x) = 0$ $\forall n \in \mathbb{N}$.

Legendre-Polynome P_l $\sum_{l=0}^{\infty} P_l(t)z^l = (1-2tz+z^2)^{-1/2}$ für $t \in [-1,1], z \in \mathbb{C}$, |z| < 1, $\tfrac{1}{|x-y|} = \textstyle \sum_{l=0}^{\infty} \tfrac{|x|^l}{|y|^{l+1}} P_l\left(\tfrac{x\cdot y}{|x||y|}\right) \mathit{fiir}\ x,y \in \mathbb{R}^3,\ |x|<|y|,\ P_l(\cos\theta) = \tfrac{1}{2\pi} \int_0^{2\pi} (i\sin\theta\cos\varphi + i(x)^2 + i(x)^2 + i(x)^2) dx + i(x)^2 +$ $\cos \theta$)^l d φ . P_{2l} sind gerade, P_{2l+1} ungerade.

Laguerre-Polynome L_n $L_n = \frac{e^x}{n!} \partial_x^n (e^{-x} x^n) = \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{k!} x^k$

Tschebychev-Polynome T_l $T_{l+1}(x) = 2xT_l(x) - T_{l-1}(x)$, $T_1(x) = x$, $l \in \mathbb{N}$, $T_0(x) = 1$, T_l Grad l und Leitkoeffizient 2^{l-1} , $T_l(\cos\theta) = \cos(l\theta)$.

Polynom		Ε, ρ	Leitk	Differentialgleichung
Hermite	H_n	IR	2 ⁿ	y'' - xy' = 2ny
Tiermite	11/1	e^{-x^2}	-	$H_n(x) = (-1)^n e^{x^2} \frac{\partial^n}{\partial x^n} e^{-x^2}$
Legendre	P_l	[-1,1]		$((x^2-1)y')' = l(l+1)y$
		1		$P_l(x) = \frac{1}{2^l l!} \frac{\partial^l}{\partial x^l} (x^2 - 1)^l$
	$P_{l,m}$	[-1, 1]		$((x^2-1)y')' = (l(l+1) - \frac{m^2}{1-x^2})y$
		1		$(1-x^2)^{m/2}\partial_x^m P_l(x) = \frac{(1-x^2)^{m/2}}{2^l l!} \partial_x^{l+m} (x^2-1)^l$
Laguerre	L_n	[0,∞)		xy'' + (1-x)y' + ny = 0
		e^{-x}		$L_n = \frac{e^x}{n!} \partial_x^n (e^{-x} x^n) = \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{k!} x^k$
Bessel	J_{α}			$y'' + \frac{1}{x}y' + (1 - \frac{\alpha^2}{x^2})y = 0$
				$J_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{\frac{(-1)^k}{k!\Gamma(j+\alpha+1)}}{\frac{(-1)^k}{k!\Gamma(j+\alpha+1)}} \left(\frac{z}{2}\right)^{\alpha+2k}$
Chebychev	T_l	[-1, 1]	2^{l-1}	
		$\frac{1}{\sqrt{1-x^2}}$		
Jacobi		[-1, 1]		
		$\frac{(1-x)^a}{(a-x)^{-b}}$		

3.6 Kugelfunktionen

Der Laplace-Operator in 3D lautet $\triangle = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \triangle_{S^2}$, wobei $\triangle_{S^2} u = \frac{\partial^2 u}{\partial \theta^2} +$ $\cot\theta \frac{\partial u}{\partial \theta} + \frac{1}{\sin^2\theta} \frac{\partial^2 u}{\partial \phi^2} = \frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{\sin^2\theta} \frac{\partial^2 u}{\partial \phi^2}. \text{ Der Gradient in Kugelkoordinaten}$ ist grad = $\partial_r \hat{e}_r + \frac{1}{r} \partial_{\vartheta} \hat{e}_{\vartheta} + \frac{1}{r \sin \vartheta} \partial_{\varphi} \hat{e}_{\varphi}$

Definition (Kugelfunktion) ist eine auf der Einheitssphäre definierte glatte Funktion $Y(\theta, \varphi)$, welche ein Eigenvektor zum Laplace Operator \triangle_{S^2} ist, d.h. $\triangle_{S^2}Y = -\lambda Y$.

Lösungen der Form $\triangle u(x) = 0$ für $|x| \le R$ und u(x) = f(x) für |x| = R können durch die Separation $u(x) = U(r)Y(\theta, \varphi)$ und $Y(\theta, \varphi) = P(\cos \theta)V(\varphi)$ mit $U(r) = ar^l$ und $V(arphi)=e^{\pm imarphi}$ gelöst werden. Die DGL für P führt auf die zugeordneten Legendre-Polynome. Dann sind $P_{l,m}(\cos\theta)e^{\pm im\varphi}$ mit $l=0,1,\ldots,m=0,\ldots,l$ Eigenvektoren von \triangle_{S^2} zum Eigenwert -l(l+1).

Definition Die zugeordneten (oder assozierten) Legendre-Funktionen sind $P_{l,m}(x) =$ $(1-x^2)^{m/2}\partial_x^m P_l(x) = \frac{(1-x^2)^{m/2}}{2^l I^l} \partial_x^{l+m} (x^2-1)^l.$

Satz 7.1 (i) (Legendresche DGL) Die zugeordneten Legendre-Funktionen $P_{l,m}$ erfüllen $\frac{\partial}{\partial x}\left((1-x^2)\frac{\partial}{\partial x}P_{l,m}(x)\right) + \left(l(l+1) + \frac{m^2}{1-x^2}\right)P_{l,m}(x) = 0.$

- (ii) (Orthogonalität) Für alle $m=0,1,2,\ldots,m\leq l,l'\in\mathbb{Z}$ gilt $\int_{-1}^1 P_{l,m}(x)P_{l',m}(x)\mathrm{d}x=$ $\frac{(l+m)!}{(l-m)!} \frac{2}{2l+1} \delta_{l,l'}$
- (iii) (Basis) $\left((1-x^2)^{-m/2}P_{l,m}\right)_{l=m,m+1,\dots,m+N}$ ist für alle $m,N\in\{0,1,2,\dots\}$ eine Basis des Raums der Polynome vom Grad $\leq N$.

Satz 7.2 (Kugelfunktionen) Die Kugelfunktionen $Y_{l,m}(\theta,\varphi)=c_{l,m}P_{l,|m|}(\cos\theta)e^{im\varphi}$ mit $l=0,1,2\ldots, \ m=-l,\ldots,l-1,l, \ wobei \ c_{l,m}=\frac{(-1)^m}{\sqrt{2\pi}}\sqrt{\frac{2l+1}{2}\frac{(l-m)!}{(l+m)!}} \ filir \ m\geq 0, \quad c_{l,-m}=1,\ldots,l-1,l$ $(-1)^m c_{l,m}$ bilden eine orthonormierte Basis des Hilbertraums $L^2(S^2)$, die aus EV von \triangle_{S^2} besteht. Es gilt $(Y_{l,m}, Y_{l',m'}) = \delta_{l,l'} \delta_{m,m'}$

Laplace Gegeben eine Laplacegleichung und Hinweise auf Kugelfunktionen, mache den Ansatz $u(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (a_{l,m}r^l + b_{l,m}r^{-l-1}) Y_{l,m}(\theta,\phi)$ bzw. $u(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} (a_{l,m}r^l + b_{l,m}r^{-l-1}) Y_{l,m}(\theta,\phi)$ $\sum_{l=0}^{\infty} \sum_{m=-l}^{l} a_{l,m} r^l Y(\theta, \phi)$, schreibe die Randbedingungen als Linearkombination der Kugelfunktionen und erhalte $a_{k,m}$, $b_{k,m}$ durch das Skalarprodukt von v und $Y_{k,m}$.

Für $u(r,\theta,\varphi)=\sum_{l=0}^{N}\sum_{m=-l}^{l}a_{l,m}r^{l}Y(\theta,\varphi)$ gilt: $\triangle u=0;$ $\int_{\mathbb{R}^{3}}|u(x)|^{2}\mathrm{d}x=\sum_{l=0}^{N}\sum_{m=-l}^{l}|a_{l,m}|^{2};$ $a_{l,m}=\int_{0}^{2\pi}\int_{0}^{\pi}\overline{Y_{l,m}(\theta,\varphi)}u(1,\theta,\varphi)\sin\theta\mathrm{d}\theta\mathrm{d}\varphi;$ wenn $a_{l,m}=0$ für $m\neq 0$, dann ist u invariant unter Rotationen um die z-Achse.

3.7 Schwingungen einer kreisförmigen Membran

Das Problem $\frac{1}{c^2}\partial_t^2 v(t,x) - \triangle v(t,x) = 0$ für |x| < R und v(t,x) = 0 für |x| = Rwird mit $v(t,x) = e^{i\omega t}u(x)$ reduziert auf $\triangle u = -\frac{\omega^2}{c^2}u$ für |x| < R und u(x) = 0für |x| = R. In Polarkoordinaten $(\partial_r^2 + \frac{1}{r}\partial_r + \frac{1}{r^2}\partial_{\varphi}^2)u(r,\varphi) = -\frac{\omega^2}{c^2}u(r,\varphi)$ für r < R. Reelle Lösungen sind von der Form $u - J_m(\omega r/c)(A\cos(m\varphi) + B\sin(m\varphi)) = u J_m(\omega r/c)A\cos(m(\varphi-\varphi_0))$, wobei $J_m(\omega R/c)=0$.

Distributionen

Temperierte Distributionen

Definition 2.1 (Temperierte Distribution) ist eine stetige lineare Abbildung ω $\mathscr{S}(\mathbb{R}^n) \to \mathbb{C}, \ \varphi \mapsto \omega[\varphi]. \ \ \textit{Mit anderen Worten erfüllt} \ \ \omega \ \ \textit{die Eigenschaften} \ \ \omega[\lambda \varphi + \mu \psi] = \lambda \omega[\varphi] + \mu \omega[\psi] \ \textit{fiir} \ \lambda, \mu \in \mathbb{C} \ \textit{und} \ \ \varphi_n \xrightarrow{\mathscr{S}} \varphi \ \implies \omega[\varphi_n] \to \omega[\varphi] \ \textit{bzw.} \ \ \varphi_n \xrightarrow{\mathscr{S}} 0 \ \implies \omega[\varphi_n] \to 0. \ \ \textit{Der Raum der temperierten Distributionen wird mit } \mathscr{S}'(\mathbb{R}^n) \ \textit{bezeichnet und ist}$ der topologische Dualraum zu $\mathscr{S}(\mathbb{R}^n)$.

Für $\mathscr{S}(\mathbb{R}^n)$ aufgefasst als Unterraum von $\mathscr{S}'(\mathbb{R}^n)$ definieren wir für $f\in\mathscr{S}(\mathbb{R}^n)$ eine Distribution ω_f durch $f[\varphi] = \int_{\mathbb{R}^n} f(x) \varphi(x) \mathrm{d}x$ (reguläre Distributionen). Schwächer reicht $f(x)(1+|x|^2)^{-N} \in L^1$ für ein hinreichend grosses N.

Definition (Delta-Funktion) $\delta[\varphi] = \varphi(0), \, \delta_a[\varphi] = (T_a\delta)[\varphi] = \varphi(a).$

4.2 Operationen auf Distributionen

Seien $f,\hat{g}\in\mathscr{S}(\mathbb{R}^n)$ und $\omega\in\mathscr{S}'(\mathbb{R}^n)$ die Distribution von f. Die folgenden Operationen sind stetige lineare Abbildungen.

Definition (Translation) $(T_a\omega)[\varphi] = \omega[T_{-a}\varphi]$, wob. $(T_af)(x) = f(x-a)$, $a \in \mathbb{R}^n$.

Definition 3.1 (Lineare Koordinatentransf.) $U_A\omega[\varphi] = |\det A|\omega[U_{A^{-1}}\varphi]$, wobei $(U_A f)(x) = f(A^{-1}x), A \in GL_n(\mathbb{R}).$

Definition 3.2 (Funktion-Multiplikation) $(g\omega)[\varphi] = \omega[g\varphi].$

Definition 3.3 (Ableitung) $(\partial^{\alpha}\omega)[\varphi] = (-1)^{|\alpha|}\omega[\partial^{\alpha}\varphi].$

Definition 3.4 (FT) $\hat{\omega}[\varphi] = \omega[\hat{\varphi}]$, $\check{\omega}[\varphi] = \omega[\check{\varphi}]$ für alle $\omega \in \mathscr{S}'(\mathbb{R}^n)$.

Definition (Faltung) Für $g \in \mathscr{S}(\mathbb{R}^n)$, $\omega \in \mathscr{S}'(\mathbb{R}^n)$ definieren wir $(g*\omega)[\varphi] = \omega[\tilde{g}*\varphi]$ und analog $(\omega * g)[\varphi] = \omega[\tilde{g} * \varphi]$, wobei $\tilde{g}(x) = g(-x)$.

Definition (Heaviside-Funktion) $\theta(x) = 1$ für $x \ge 0$ und $\theta(x) = 0$ für x < 0.

Lemma 3.1 (\theta und \delta) $\frac{\partial}{\partial x}\theta = \delta$, wobei $\delta[\varphi] = \varphi(0)$.

Lemma 3.2 $U_A \delta = |\det A| \delta \text{ für } A \in GL_n(\mathbb{R}), (\delta(A^{-1}x) = |\det A| \delta(x))$

Satz 3.3 Die FT und die inverse FT sind bijektive lineare Abbildungen $^{\wedge}$, $^{\vee}$: $\mathscr{S}'(\mathbb{R}^n) \rightarrow$ $\mathscr{S}'(\mathbb{R}^n)$ und für alle $\omega \in \mathscr{S}'(\mathbb{R}^n)$ gilt $\omega^{\wedge \vee} = \omega^{\vee \wedge} = \omega$.

Lemma 3.4 (FT von 1, \delta) $\hat{1} = (2\pi)^n \delta$ und $\hat{\delta} = 1$.

Lemma 3.5 (Faltung mit δ **)** *Für alle* $g \in \mathcal{S}(\mathbb{R}^n)$ *gilt* $g * \delta = g$.

Lemma 3.6 (Faltung und Ableitung) Seien $f,g \in \mathscr{S}(\mathbb{R}^n)$, $\omega \in \mathscr{S}'(\mathbb{R}^n)$. Dann gilt für

(i) $\partial^{\alpha}(f * g) = (\partial^{\alpha}f) * g = f * \partial^{\alpha}g$,

(ii) $\partial^{\alpha}(\omega * g) = (\partial^{\alpha}\omega) * g = \omega * \partial^{\alpha}g = \partial^{\alpha}(g * \omega).$

4.3 Rechnungen

Reihenfolge $x^2 \delta'(3x)[\varphi] = (U_{1/3}\delta')[x^2 \varphi(x)] = \delta[\partial_x U_{1/3}(x^2 \varphi(x))].$

$$\widehat{\sin}(k) = \frac{\pi}{i} (\delta(k-1) - \delta(k+1)), \qquad \widehat{\cos}(k) = \frac{1}{2} (\delta(k-1) + \delta(k+1))$$

$$x\delta = x\delta[\varphi] = \delta[x\varphi] = 0,$$
 $\widehat{e^{iax}}[\varphi] = \int \hat{\varphi}e^{iax}dx = 2\pi\check{\phi}(a) = 2\pi\varphi(a) = 2\pi\delta_a[\varphi]$

$$\hat{x}[\varphi] = \int x \hat{\varphi}(x) dx = -i \int (\varphi')^{\wedge}(x) e^{i0x} dx = -2\pi i (\varphi')^{\wedge \vee}(0) = -2\pi i \delta[\varphi'] = 2\pi i \delta'[\varphi]$$

Ableitung Betragsfunktion $\partial_x |x| = \theta - U_{-1}\theta$, $\partial_x^n |x| = 2\partial_x^{n-2}\delta$, $n \ge 2$

4.4 Konvergenz in $\mathcal{S}'(\mathbb{R}^n)$

Definition 4.1 (Konvergenz) Eine Folge $(\omega_j)_{j=1}^{\infty}$ in \mathscr{S}' konvergiert gegen $\omega \in \mathscr{S}'(\mathbb{R}^n)$, falls für alle $\varphi \in \mathscr{S}(\mathbb{R}^n)$ gilt $\omega_j[\varphi] \to \omega[\varphi]$ für $j \to \infty$.

Satz 4.1 (Folge gegen δ) Sei $f \in L^1(\mathbb{R}^n)$, $\int_{\mathbb{R}^n} f(x) dx = 1$ und sei $f_j(x) = f(jx)j^n$ für $j = 1, 2, 3, \ldots$ Dann konvergiert die Folge f_j (als Folge von Distributionen) gegen δ .

 $\lim_{\varepsilon \to 0^+} \int_{-\infty}^{-\varepsilon} \frac{1}{x} \varphi(x) dx + \int_{\varepsilon}^{+\infty} \frac{1}{x} \varphi(x) dx \quad \text{und} \quad \frac{1}{x \pm i0} [\varphi]$ $\lim_{\varepsilon \to 0^+} \int_{\mathbb{R}} \frac{1}{x+i\varepsilon} \varphi(x) dx$.

Satz 4.2 $\frac{1}{x\pm i0} = P(1/x) \mp i\pi\delta$ ist eine temperierte Distribution.

4.5 Fundamentallösungen für den Laplace-Operator

$$\triangle u(x) = f(x), \quad x \in \mathbb{R}^n$$

(Poisson-Gleichung)

Gesucht ist $u \in C^2(\mathbb{R}^n)$ mit $u(x) \to 0$ für $|x| \to \infty$. Im Distributionensinne ist $(\triangle u)[\varphi] = u[\triangle \varphi] = f[\varphi].$

 $\textbf{Definition 5.1 (Fundamentall\"osung)} \ \textit{f\"ur einen Differentialoperator} \ L =$ mit konstanten Koeffizienten a_{α} ist eine Distribution $E \in \mathscr{S}'(\mathbb{R}^n)$, die die Gleichung $LE = \delta$ erfüllt. Eine Lösung des Problems Lu(x) = f(x) ist dann gegeben durch u = E * f, weil $Lu = L(E * f) = (LE) * f = \delta * f = f.$

Lemma 5.1 (Green'sche Identität) Sei D ein beschränktes Gebiet in \mathbb{R}^n mit glattem Rand ∂D und nach aussen weisendem Einheitsvektoren n(x), $x \in \partial D$. Für alle $u, v, \in C^2(D \cup \partial D)$ gilt dann $\int_{D}(\triangle uv - u\triangle v)dx = \int_{\partial D}\left(\frac{\partial u}{\partial n}v - u\frac{\partial v}{\partial n}\right)d\Omega(x)$, wobei $\frac{\partial}{\partial n} = \sum_{i=1}^{n}n_{i}(x)\frac{\partial}{\partial x_{i}}$ die Ableitung in normaler Richtung bezeichnet und $d\Omega(x)$ das Oberflächenmass auf ∂D ist.

$$E(x) = \begin{cases} \frac{\Gamma(n/2)}{2\pi^{n/2}(2-n)} |x|^{-n+2} = \frac{1}{|S^{n-1}|} \frac{|x|^{2-n}}{2-n}, & n \ge 3\\ \frac{1}{2\pi} \ln|x|, & n = 2 \end{cases}$$

ist Fundamentallösung für den n-dimensionalen Laplace-Operator, d.h. sie erfüllt (als Distribution) die Gleichung $\triangle E = \delta$. Eine Lösung der Poisson-Gleichung ist gegeben durch

Beispiel 5.1
$$n = 3$$
: $E(x) = -\frac{1}{4\pi|x|}$, $n = 4$: $E(x) = -\frac{1}{4\pi^2|x|^2}$.

Definition (Glatte Distributionen) Eine Distribution $\omega \in \mathscr{S}'(\mathbb{R}^n)$ heisst **glatt** auf einer offenen Menge $U \subset \mathbb{R}^n$, falls es eine glatte Funktion $f: U \to \mathbb{C}$ gibt mit $\omega[\phi] = \int f \phi dx$ für alle $\phi \in \mathscr{S}(\mathbb{R}^n)$, die ausserhalb U verschwinden. δ und E sind glatt auf $\mathbb{R}^n \setminus \{0\}$.

Definition Ein Differenzialoperator der Ordnung N heisst elliptisch, wenn $\sum_{|\alpha|=N} a_{\alpha} p^{\alpha} \neq 0$ 0 für alle $p \in \mathbb{R}^n \setminus \{0\}$. \triangle ist elliptisch, \square nicht.

Die elliptische Regularität besagt, dass jede Lösung $u \in \mathscr{S}'(\mathbb{R}^n)$ von Lu = f für einen elliptischen Differentialoperator L und einer auf U glatten Funktion $f \in \mathscr{S}^{l}(\mathbb{R}^{n})$ ebenfalls glatt ist.

4.6 Fundamentallösungen und Fouriertransformationen

Die Fouriertransformierte von $LE(x) = \delta(x)$ ergibt $P(k)\hat{E}(k) = 1$, wobei $P(k) = \sum_{\alpha} a_{\alpha}(ik)^{\alpha}$ ein Polynom in k_1, \dots, k_n ist. Hat P(k) keine reellen Nullstellen (bzw. Lägerierbare Singularitäten), definiert 1/P(k) eine Distribution und $E = (1/P(k))^{\vee}$ Lösung des Problems. $P(k) = |k|^2$ für $L = -\triangle$.

Beispiel (Fundamentallösung) Für Distribution $E[\varphi(x_1, x_2)] = \int_0^\infty \varphi(t, t)e^{-t}dt$ $\begin{array}{lll} \text{ and Operator L} & = \partial_{x_1} + \partial_{x_2} + 1 \text{ ist } \widehat{LE}[\varphi(x_1,x_2)] & = (\partial_{x_1} + \partial_{x_2} + 1)E[\hat{\varphi}(k_1,k_2)] = \\ E[(-\partial_{k_1} - \partial_{k_2} + 1) \int_{\mathbb{R}^2} \varphi(x_1,x_2)e^{-ik_1x_1-ik_2x_2}\mathrm{d}x] & = E[\int_{\mathbb{R}^2} (-\partial_{k_1} - \partial_{k_2} + 1)\varphi(x_1,x_2)e^{-ik_1x_1-ik_2x_2}\mathrm{d}x] = \\ 1)\varphi(x_1,x_2)e^{-ik_1x_1-ik_2x_2}\mathrm{d}x] & = E[\int_{\mathbb{R}^2} (ix_1 + ix_2 + 1)\varphi(x_1,x_2)e^{-ik_1x_1-ik_2x_2}\mathrm{d}x] = \\ \int_0^\infty \int_{\mathbb{R}^2} (ix_1 + ix_2 + 1)\varphi(x_1,x_2)e^{-t(ix_1+ix_2+1)}\mathrm{d}x\mathrm{d}t & = \int_{\mathbb{R}^2} \varphi(x_1,x_2) \int_0^\infty (ix_1 + ix_2 + 1)e^{-t(ix_1+ix_2+1)}\mathrm{d}t\mathrm{d}x = -\int_{\mathbb{R}^2} \varphi(x_1,x_2)[e^{-t(ix_1+ix_2+1)}]|_0^\infty \mathrm{d}x = 1[\varphi(x_1,x_2)]. \end{array}$

4.7 Retardierte Fundamentallösung für den d'Alembert-Operator

Lösungen zur inhomogenen Wellengleichung $\frac{1}{c^2}\partial_t^2 u - \triangle u = f$ führen auf den d'Alembert-Operator $L=\frac{\partial^2}{\partial x_0^2}-\sum_{j=1}^3\frac{\partial^2}{\partial x_i^2}$ mit $x_0=ct$, also $(-k_0^2+|\mathbf{k}|^2)\hat{\mathcal{E}}(k)=1$. Eine Lösung ist $u(x_0, \mathbf{x}) = (E * f)(x_0, \mathbf{x}) = \int_{\mathbb{R}^3} \frac{1}{4\pi |\mathbf{x} - \mathbf{x}'|} f(x_0 - |\mathbf{x} - \mathbf{x}'|, \mathbf{x}') d\mathbf{x}'.$

5 Dirichletproblem

Dirichlet und Neumannrandbedingungen

Definition Für $u \in C^2(D)$, $D \subset \mathbb{R}^n$ lautet die **Laplace-Gleichung** $\triangle u(x) = 0$, $x \in D$, Lösungen heissen harmonische Funktionen. Ist D ein beschränktes Gebiet in \mathbb{R}^n mit glattem Rand ∂D . Typische Randwertprobleme sind

(i) Dirichletproblem (D)

(ii) Neumannproblem (N)

$$\begin{cases} \triangle u(x) = 0 & x \in D \\ u(x) = f(x) & x \in \partial D \end{cases} \qquad \begin{cases} \triangle u(x) = 0 & x \in D \\ \frac{\partial u}{\partial n}(x) = g(x) & x \in \partial D \end{cases}.$$

Satz 1.1 (Eindeutigkeit) Seien u_1, u_2 zwei Lösungen von (D). Dann ist $u_1 = u_2$. Seien u_1, u_2 zwei Lösungen von (N). Dann ist $u_1 = u_2 + const.$

Greensche Funktionen

Lemma 2.1 Sei $u \in C^2(\overline{D})$. Dann gilt für $x \in D$ $u(x) = \int_D E(x-y) \triangle u(y) dy =$ $\int_{\partial D} \left(E(x-y) \frac{\partial u}{\partial n_y} - u(y) \frac{\partial}{\partial n_y} E(x-y) \right) d\Omega(y).$

Definition 2.1 (Greensche-Funktion) Sei $D \subset \mathbb{R}^n$ offen mit glattem Rand. Eine stetige Funktion G(x,y) auf $\{(x,y) \in \overline{D} \times D : x \neq y\}$ heisst **Greensche Funktion** des Gebiets D(für den Laplace-Operator), falls

(i)
$$G(x,y) = E(x-y) + v(x,y), v \in C^2(\overline{D} \times D)$$
 und $\triangle_x v(x,y) = 0$,

(ii)
$$G(x,y) = 0, x \in \partial D, y \in D.$$

Insbesondere ist für $x \neq y \ \triangle_x G(x,y) = 0$. Wir schreiben \triangle_x für den Laplace-Operator $\sum \partial^2/\partial x_i^2$ in den Variablen x.

Satz 2.2 (Form der Lösung) Falls u eine Lösung von (D) ist, hat man u(x) = $\int_{\partial D} \frac{\partial G}{\partial n_y}(y, x) f(y) d\Omega(y) \text{ für alle } x \in D.$

5.3 Methode der Spiegelbildladung, Poissonformel

Eine **Spiegelung** um die Sphäre vom Radius *R* ist die Abbildung $y \mapsto y^* = \frac{R^2}{|y|^2} y$. Sie erfüllt $y^{**} = y$, $|y^*| = \frac{R^2}{|y|}$ und $|y||x - y^*| = |x||y - x^*|$.

$$\begin{aligned} & \textbf{Greensche Funktionen} \ \ sind \ gegeben \ durch \\ & G(x,y) = \begin{cases} \frac{1}{|S^{n-1}|(2-n)} \left(|x-y|^{2-n} - \left(\frac{|y|}{R}\right)^{2-n} |x-y^*|^{2-n}\right) & n \geq 3, \\ \frac{1}{2\pi} (\log|x-y| - \log(|x-y^*|\frac{|y|}{R})) & n = 2. \end{cases} \end{aligned}$$

Definition Der **Poisson-Kern** ist definiert durch $H(y,x) = \frac{\partial}{\partial n_y} G(y,x)$ $\langle \nabla_y G(y,x), n(y) \rangle = \frac{1}{|S^{n-1}|R} \frac{R^2 - |x|^2}{|x-y|^n} \text{ für } x,y \in \mathbb{R}^n, \, |y| = R, \, n = 2,3,\dots$

Satz 3.1 (Poisson Formel, Lösung) *Sei D die Kugel* $\{x \in \mathbb{R}^n : |x| < \mathbb{R}\}$, f stetig auf ∂D .

$$u(x) = \int_{|y|=R} f(y)H(y,x)d\Omega(y) = \frac{R^2 - |x|^2}{|S^{n-1}|R} \int_{|y|=R} \frac{f(y)}{|x-y|^n} d\Omega(y), \quad x \in D$$

ist glatt auf $\{x \in \mathbb{R}^n : |x| < R\}$, harmonisch und konvergiert gegen f, wenn $|x| \to R$.

Satz 3.2 (Mittelwertprinzip) Sei u harmonisch auf einer offenen Menge $D \subset \mathbb{R}^n$. Für jede Kugel $B_R(x) \subset D$ gilt $u(x) = \frac{1}{|S_R(x)|} \int_{S_R(x)} u(y) d\Omega(y)$.

Satz 3.3 (Maximum-Prinzip) Ist u harmonisch auf einem Gebiet D und sei $x_0 \in D$ eine Maximalstelle, d.h. $u(x) \le u(x_0)$ für alle $x \in D$. Dann ist u konstant.

Satz 3.4 Sei $D \subset \mathbb{R}^n$ ein Gebiet und u eine stetige Funktion auf dem Abschluss \overline{D} , die harmonisch auf D, sodass u(x) = 0 auf dem Rand ∂D . Dann ist u(x) = 0 für alle $x \in \overleftarrow{D}$.

Satz 3.5 Sei u harmonisch in $B_R(x)$. Dann ist $|\partial_{x_i} u(x)| \leq \frac{n}{R} \max_{|y-x|=R} |u(y)|$.

Korollar 3.6 Jede auf ganz \mathbb{R}^n beschränkte harmonische Funktion ist konstant.

Beweisideen

6.1 Fourierreihen

Satz 1.2 $|f_n e^{\frac{2\pi i n}{L}x}| = |f_n| \Rightarrow absolute Konvergenz, |f(x) - \sum_{|n| \le N} f_n e^{\frac{2\pi i n}{L}x}| \le$ $\sum_{|n|\geq N}|f_n|\Rightarrow glm$. Konv (nicht abh. von x), glm. Konvergenz stetiger Funktionen $\Rightarrow f$ ist stetig. Periodizität einfach durch Einsetzen in die Reihendarstellung. Wir setzen die Reihendarstellung von f in die Formel des Koeffizienten ein, tauschen Reihe und Integral (wegen glm. Konv.) und erhalten mit L1.1 genau den Fourierkoeffizienten.

Satz 2.1 Mit Verschiebung der Integrationsgrenzen und Variablensubst. erhalte f_n $-\frac{1}{L}\int_0^L e^{\frac{-2\pi i m}{L}x}f(x+\frac{L}{2n})dx. \text{ Schreibe } f_n=\frac{1}{2}(f_n+f_n) \text{ mit der normalen und der verschobenen Darst. } f \text{ ist stetig auf einem ausreichend großen kompakten Intervall} \Rightarrow glm. \text{ st. Also wird} \\ \forall x \in [0,L] \forall \varepsilon: |f(x)-f(x+\frac{L}{2n})| < \varepsilon \text{ und somit } |f_n| < \frac{\varepsilon}{2}.$

Lebesgue-Integrationstheorie

A.1 Das Lebesguesche Integral

Lemma 2.5 Sei $f: E \to \mathbb{C}$ messbar. Dann ist |f| messbar und f ist genau dann integrierbar, falls |f| integrierbar ist, d.h. wenn $\int_{E} |f(x)| dx < \infty$.

Satz 2.6 Seien f, g integrierbar, $\alpha, \beta \in \mathbb{C}$. Dann gilt

- (i) $\alpha f + \beta g$ ist integrierbar und $\int_E \alpha f(x) + \beta g(x) dx = \alpha \int_E f(x) dx + \beta \int_E g(x) dx$,
- (ii) $f \leq g \implies \int_E f(x) dx \leq \int_E g(x) dx$,
- (iii) $f(x) = g(x) f.\ddot{u}. \implies \int_{F} f(x) dx = \int_{F} g(x) dx$,
- (iv) $\int_E |f(x)| dx = 0 \iff f(x) = 0 f.\ddot{u}$.
- (v) $\left| \int_{E} f(x) dx \right| \leq \int_{E} |f(x)| dx$,
- (vi) ist $F \subset E$ messbar, so ist die Einschränkung von f auf F ebenfalls integrierbar und es gilt $\int_E f(x) dx = \int_E f(x) \chi_F(x) dx$,
- (vii) ist f Riemann-integrierbar auf $[a,b] \implies f$ Lebesgue-integrierbar und das Lebesguesche Integral stimmt mit dem Riemannschen überein,
- (viii) für alle affinen Transformationen $x \mapsto Ax + b$ von \mathbb{R}^n ist $x \mapsto f(Ax + b)$ integrierbar und es gilt $\int_{\mathbb{R}^n} f(x) dx = |\det A| \int_{\mathbb{R}^n} f(Ax + b) dx$.

A.2 Konvergenzsätze

Satz 3.1 (MCT) Sei f_i eine Folge integrierbarer Funktionen $0 \le f_i(x) \le f_{i+1}(x) \to f(x)$ für $i \to \infty \ \forall x \in E$. Ist die Folge $\int_E f_i(x) dx$ beschränkt, so ist f integrierbar und es gilt $\lim_{i\to\infty}\int_E f_i(x)dx = \int_E f(x)dx.$

Satz 3.2 (DCT) Sei f_i eine Folge integrierbarer Funktionen mit $\lim_{i \to \infty} f_i(x) = f$ und es existiert eine integrierbarer Funktion g mit $|f_i(x)| \le g(x) \ \forall i, x$. Dann ist f integrierbar und es gilt $\lim_{i\to\infty} \int_E f_i(x) dx = \int_E f(x) dx$

A.3 Der Satz von Fubini

Satz 4.1 (Fubini) Seien $E \subset \mathbb{R}^n$ und $F \subset \mathbb{R}^m$ feste messbare Mengen. Sei $f : E \times F \to \mathbb{C}$ messbar. Ist $f(x,\cdot)$ für alle $x\in E$ (bzw. $f(\cdot,y)$ für alle $y\in F$) integrierbar, so ist die Funktion $y\mapsto \int_E f(x,y)\mathrm{d}x$ (bzw. $x\mapsto \int_F f(x,y)\mathrm{d}y$) messbar. Existiert eins der Integrale $\int_{E \times F} |f(x)| dx$, $\int_{F} \left(\int_{E} |f(x,y)| dx \right) dy$ oder $\int_{E} \left(\int_{F} |f(x,y)| dy \right) dx$, so existieren sie alle drei und es gilt $\int_{E\times F} f(x)dx = \int_{F} \left(\int_{E} f(x,y)dx\right)dy = \int_{E} \left(\int_{F} f(x,y)dy\right)dx$.

A.4 L^p -Räume

Lemma 5.1 $L^p(E)$ ist ein Vektorraum über \mathbb{C} .

Satz 5.2 $L^p(E)$ mit Norm $||f||_p = (\int_E |f(x)|^p dx)^{\frac{1}{p}}$ ist ein normierter VR.

Definition 5.3 Eine $(f_i)_{i=1}^{\infty}$ in einem normierten Vektorraum V konvergiert gegen $f \in V$, falls $\lim_{i \in \infty} \|f_i - f\| = 0$. Eine Folge heisst **Cauchy-Folge**, falls $\forall \varepsilon > 0 \ \exists N > 0$ mit $||f_i - f_j|| < \varepsilon$ für alle i, j > N. Ein normierter Vektorraum V heisst **Banachraum**, falls alle Cauchy-Folgen in V konvergieren.

Satz 5.3 (Riesz-Fisher) Für alle $p \ge 1$ ist $L^p(E)$ ein Banachraum.

Definition 5.4 (Träger) von $f: E \to \mathbb{C}$ ist supp $f = \{x \in E: f(x) \neq 0\}$.

Satz 5.4 (C₀ dicht in L^p) Stetige Funktionen mit kompaktem Träger sind dicht in $L^p(E)$, $d.h. \ \forall f \in L^p(E) \ \forall \varepsilon > 0 \ \exists g \in C_0(E) \ mit \ \|f - g\|_p < \varepsilon.$

B Misc

B.1 Konvergenz, Mittelwertsatz

Definition (Konvergenz) Sei $D \subset \mathbb{R}^n$ offen, $f: D \to \mathbb{R}$ eine Funktion und $(f_n)_n$ eine Funktionenfolge mit $f_n: D \to \mathbb{R}$ für alle $n \in \mathbb{N}$. Falls

- $\forall x \in D \ lim_{n \to \infty} f_n(x) = f(x) \ ist \ f_n \ punktweise \ konvergent,$
- $\lim_{n\to\infty} \sup_{x\in D} |f_n(x) f(x)| = 0$ ist f_n gleichmässig konvergent.

Anders ausgedrückt gilt $(f_n)_n$ gleichmässig konvergent $\Leftrightarrow \forall \varepsilon \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} : (n \ge N \Longrightarrow (\forall x \in D: |f_n(x) - f(x)| < \varepsilon)).$

Satz Falls $(f_n)_n$ eine Folge stetiger Funktionen gleichmässig gegen f konvergiert, dann ist f stetig.

Satz (Mittelwertsatz) Sei $f: U \subset \mathbb{R}^n \to \mathbb{R}$ diffb. Falls $x_0 + th \in U \ \forall t \in [0,1]$ und ein $h \in \mathbb{R}^n$, dann existiert ein $t_{\xi} \in (0,1)$, sodass $f(x_0 + h) - f(x_0) = \partial_h f(x_0 + t_{\xi}h)$. Für $f: [a,b] \to \mathbb{R}$, diffbar auf (a,b), existiert ein $\xi \in (a,b)$, sodass $f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

B.2 Vertauschungssätze

Es wird vorrausgesetzt, dass alle Grenzwerte und Ableitungen existieren, Funktionen integrierbar sind und die zu integrierende Gebiet schön sind.

$$\begin{array}{llll} \sum_{n} |\partial_{x} f_{n}(x)| < \infty & \Rightarrow & \partial_{x} \sum_{n} f_{n}(x) = \sum_{n} \partial_{x} f_{n}(x) \\ \lim_{n \to \infty} f_{n} = f \text{ glm.} & \Rightarrow & \int \sum_{n} f_{n}(x) = \sum_{n} \int f_{n}(x) \\ \lim_{n \to \infty} f_{n} = f \text{ glm.} & \Rightarrow & \lim_{n \to \infty} \int f_{n}(x) \text{ d}x = \int f(x) \text{ d}x \\ \partial_{t} f(x,t) \text{ glm. stetig} & \Rightarrow & \partial_{t} \int_{a}^{b} f(x,t) \text{ d}x = \int_{a}^{b} \partial_{t} f(x,t) \text{ d}x \\ 0 \leq f_{n} \leq f_{n+1}, \int f_{n}(x) \text{ d}x \leq c & \Rightarrow & \lim_{n \to \infty} \int f_{n}(x) \text{ d}x = \int f(x) \text{ d}x \\ \exists g \in L^{1} : |f_{n}(t,x)| < g(x) & \Rightarrow & \lim_{n \to \infty} \int f_{n}(x) \text{ d}x = \int f(x) \text{ d}x \\ \exists g \in L^{1} : |\partial_{t} f(t,x)| < g(x) & \Rightarrow & \partial_{t} \int f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in C_{0}, \mathscr{S} & \Rightarrow & \partial_{t} \int f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d}x \\ f \in f(t,x) \text{ d}x = \int \partial_{t} f(t,x) \text{ d$$

B.3 Trigonometrie

$$\sin(ax) = \begin{cases} |\cdot| \max & ax = (2n+1)\frac{\pi}{2} & 0\\ 0 & ax = (2n+0)\frac{\pi}{2} = n\pi & |\cdot| \max \end{cases} = \cos(ax)$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$
, $\cos x = \frac{e^{ix} + e^{-ix}}{2}$, $\sinh x = \frac{e^x - e^{-x}}{2}$, $\cosh x = \frac{e^x + e^{-x}}{2}$

$$A\cos x + B\sin x = \frac{A-iB}{2}e^{ix} + \frac{A+iB}{2}e^{-ix}$$

$$\sin^2 x + \cos^2 x = 1$$
 $\sin x + \cos x = \frac{1}{1+i}e^{ix} + \frac{1}{1-i}e^{-ix}$ $\cosh^2 x - \sinh^2 x = 1$

$$\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y), \quad \sin 2x = 2\sin x\cos x$$

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y), \quad \cos 2x = \cos^2 x - \sin^2 x$$

$$\sin x \sin y = \frac{1}{2}(\cos(x-y) - \cos(x+y)), \qquad \sin^2(x) = \frac{1}{2}(1 - \cos(2x))$$

$$\cos x \cos y = \frac{1}{2}(\cos(x-y) + \cos(x+y)), \qquad \cos^2(x) = \frac{1}{2}(1 + \cos(2x))$$

$$\sin x \cos y = \frac{1}{2}(\sin(x-y) + \sin(x+y)), \qquad \sin x \cos x = \frac{1}{2}\sin(2x)$$

$$1 + \tan^2 x = \frac{1}{\cos^2 x}, \qquad \tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}, \qquad \langle x, y \rangle = \cos(\gamma)|x||y|$$

B.4 Ungleichungen, Abschätzungen und other

$$|\langle u, v \rangle| \le ||u|| ||v||, \qquad 2|ab| \le |a|^2 + |b|^2, \qquad ||x| - |y|| \le |x \pm y| \le |x| + |y|$$

$$\left|\int_{E} f(x) dx\right| \leq \int_{E} \left|f(x)\right| dx$$
, $(1+x)^{n} \geq 1 + nx$, $x \geq -1$, $n \in \mathbb{N}$

Faktorisierung
$$ax^2 + bx = a(x + \frac{b}{2a})^2 - \frac{b^2}{4a}$$

 \mathcal{S} , \mathbb{C}^0_0 (und somit auch C_0 , C^{∞} , C^n $\forall n$, C^0) sind dicht in L^p .

B.5 Integrale und Reihen

$$\sum_{k=0}^{n} q^k = \begin{cases} \frac{1-q^{n+1}}{1-q} & q \neq 1 \\ n+1 & q=1 \end{cases}, \quad \sum_{k=0}^{\infty} q^k = \begin{cases} \frac{1}{1-q} & |q| < 1 \\ \infty & \text{sonst} \end{cases}, \quad \prod_{k=0}^{n} (2k+1) = \frac{(2k)!}{2^k k!}$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $\log(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n$, $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n |x| < 1$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{6} + \dots \quad \cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2} + \dots$$

$$\int \sin(nx)\cos(mx)dx = \begin{cases} -\frac{\cos((n+m)x)}{2(n+m)} - \frac{\cos((n-m)x)}{2(n-m)} + C & n \neq \pm m \\ -\frac{1}{4n}\cos(2nx) + C & n = m \end{cases}$$

$$\int \sin(nx)\sin(mx)dx = \begin{cases} \frac{\sin((n-m)x)}{2(n-m)} - \frac{\sin((n+m)x)}{2(n+m)} + C & n \neq \pm m \\ \pm \frac{x}{2} \mp \frac{1}{3n}\sin(2nx) + C & n = \pm m \end{cases}$$

$$\int \cos(nx)\cos(mx)dx = \begin{cases} \frac{\sin((n+m)x)}{2(n+m)} + \frac{\sin((n-m)x)}{2(n-m)} + C & n \neq \pm m \\ \frac{x}{2} + \frac{1}{4n}\sin(2nx) + C & n = \pm m \end{cases}$$

$$\int_{a}^{a+2\pi l/n}\sin(nx)dx = \int_{a}^{a+(2l+1)\pi/n}\cos(nx)dx = 0, \ a \in \mathbb{R}, \ l \in \mathbb{N}$$

$$\int_0^{l\pi} \sin(nx) \cos(mx) dx = C\delta_{nm}, \ l \in \mathbb{N}$$

$$\int_{-\pi}^{\pi} \sin(nx) \cos(mx) dx = \int_{0}^{2\pi} \sin(nx) \cos(mx) dx = 0$$

$$\int_{\mathbb{R}} e^{-x^2/a} dx = \sqrt{a\pi} \quad \int_0^\infty e^{-x^2/a} dx = \frac{1}{2} \sqrt{a\pi}$$

B.6 Koordinatensysteme

Polarkoordinaten $x = r\cos\varphi$, $y = r\sin\varphi$, $r = \sqrt{x^2 + y^2}$, $\varphi = \arctan(y/x)$ für x > 0, $0 \le r \le \infty$, $0 \le \varphi < 2\pi$. $\triangle = \partial_r^2 + \frac{1}{r}\partial_r + \frac{1}{r^2}\partial_\varphi^2$.

Kugelkoordinaten $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \theta$ $r = \sqrt{x^2 + y^2 + z^2}$, $\theta = \arccos\left(\frac{z}{r}\right)$, $\varphi = \arg(x, y)$, $0 \le r \le \infty$, $0 \le \varphi < 2\pi$, $0 \le \theta \le \pi$. $dV = r^2 dr \sin \theta d\theta d\varphi$. $\triangle = \frac{1}{r^2} \partial_r (r^2 \partial_r) + \frac{1}{r^2 \sin \theta} \partial_\theta (\sin \theta \partial_\theta) + \frac{1}{\sin^2 \theta} \partial_\varphi^2$

B.7 Ansätze

Integral HDI: Zu zeigen $f(x) = \int g(x) dx$, zeige $\frac{d}{dx} f(x) = g(x)$; definiere Integral als neue Funktion, forme um und finde Gleichung fürs Integral; Integral ableiten und mit PI DGL herleiten $\partial I = \int g \partial_x f \stackrel{pl}{=} a \int fg = aI \implies I = I_0 e^{ax}; f \notin L^1 \Rightarrow$ konvergenzerzeugender Faktor $e^{-|x|\delta}$, $e^{-\delta x^2}$; Fubini; Integrand zu Ableitung einer Funktion umformen (z.B. $\cos x \sin x = -\frac{1}{2} \partial_x \cos^2 x$); partielle Integration.

Fourierreihen Reihenansatz gleiches Format wie Reihe der Randbedingung; sin, cos in exp-Darstellungen zerlegen; Reihendarstellung der Randbedingung einsetzen; PZB, Geometrische Reihe; Residuensatz; beachte n=0.

Fouriertransformation Gaussfunktionen; Hermitefunktionen als EV der FT, $(P(x)e^{-x^2/2})^{\wedge}(k)$: P(x) als Linearkombination von Hermitepolynomen schreiben; Residuensatz; Formel für rotationsinvariante Funktionen (beachte k=0); gegeben f, zu zeigen $\hat{f}=g$: zeige alternativ $g^{\vee}=f$; beachte k=0.

Fundamentallösungen Gleichung Fouriertransformieren, für Rücktransformation Residuensatz

PDE Periodische Funktion \rightarrow FR; Separation probieren; Fouriertransformation in der Variable, in der die Anfangsbedinungen gegeben sind.

B.8 PDEs

Schroedinger equation Falls ψ_0 die TISE $\hat{H}\psi_0 = E\psi$ mit Eigenwert E löst, so ist $\psi = e^{-iEt/\hbar}\psi_0$ eine Lösung der TDSE $\hat{H}\psi(x,t) = i\hbar \frac{\partial}{\partial t}\psi(x,t)$.

Heat equation Ring (periodisch): Fourierreihenansatz, sonst allgemein \mathbb{R} : Lösung durch Faltung Wärmeleitungskern und Anfangsbedingung.

Wave equation Fouriertransformation der PDE, um eine DGL für \hat{f} zu bekommen. Rücktransformieren.

Saite Separation der Variablen, Lösung als Superposition schreiben.

Membran Separation der Variablen, Koordinatentransformation zu Polarkoordinaten, Separation der Variablen, Bessel-DGL erkennen, Randbedingungen durch Nullstellen der Besselfunktionen festsetzen.

Elektrostatik Transformation zu Kugelkoordinaten, Separation der Variablen, Kugelfunktionen verwenden.

Dirichlet, Neumann Greensche Funktion aus Kapitel 5.3, Satz 3.1.

B.9 Multiple Choice

 $g(x) = \sin^{2017}(x) = \sum_{n \in \mathbb{Z}} c_n e^{inx}$. Richtig: 1) $\lim_{n \to \pm \infty} n^{2018} |c_n| \to 0$, da $g \in C^{\infty}(\mathbb{R})$. 2) $c_n = 0$ für n gerade. 3) $c_{2017} = -2^{-2017}i$, da $\sin^{2017}(x) = (\frac{-i}{2}(e^{ix} - e^{-ix}))^{2017}$. Falsch: 4) $\sum_{n \in \mathbb{Z}} c_n = 1$, da $\sum_{n \in \mathbb{Z}} c_n = \sin^{2017}(0) = 0$.

Richtig: 1) \hat{f} ist stetig für alle $f \in L^1$. 2) Ist f gerade, so ist auch \hat{f} gerade, da $e^{i(2017-n)x}e^{-inx} = e^{i(2017-2n)x}$. 3) Wenn f(x) = 0 für |x| > 1, dann ist $\hat{f} \in C^{\infty}(\mathbb{R})$. Falsch: 4) \hat{f} ist 2π -periodisch für alle $f \in L^1$.

 $\triangle u = 0$ auf $B_1(\mathbb{R}^3)$ mit $u(x) = x_3^2$ für |x| = 1. Richtig: 1) $0 \le u(x) \le 1$ für alle $x \in B_1$. 2) $\max\{u(x), x \in B_1\} = 1$. Falsch: 3) u(0) = 0 4) $\int_{B_1} u(x) dx = 0$.

 $\partial_x^2 u = \partial_t u,\ u(0,x) = 1/(1+x^2)^2.$ Richtig: 1) $\int_{\mathbb{R}} u(x,t) dx$ ist konstant in $t \geq 0$. 2) $\lim_{t \to \infty} \hat{u}(k,t) = 0$ für alle $k \neq 0$. Falsch: 3) u(x,t) = 0 für alle (x,t), sodass $|x| > 1/\sqrt{t}$. 4) $\hat{u}(-k,t) = -\hat{k}$, t für alle t > 0, $k \in \mathbb{R}$.

Sind zwei jeweilige Lösungen eindeutig? Richtig: 1) $\triangle u(x) = 0, x \in \mathbb{R}^3 \setminus \{0\}$, u rot.inv., u(1,0,1) = 1, $u(x) \to 0$ für $|x| \to \infty$. 2) $\triangle u(x) = 0, \forall x \in \mathbb{R}^n |x| < 1$, $u(x) = 1 \forall x \in \mathbb{R}^n |x| = 1$. Falsch: 3) $\triangle u(x) = 0, x \in \mathbb{R}^n$. 4) $\triangle u(x) = 0 \forall x \in \mathbb{R}^n |x| < 1$, $x \nabla u(x) = 0 \forall x \in \mathbb{R}^n |x| = 1$.

 $f(x) = \sin(x)e^{-x^4}$. Richtig: 1) $\lim_{k \to \pm \infty} \partial_k^n \hat{f}(k) = 0 \, \forall n \in \mathbb{Z}_{\geq 0}$. 2) $\hat{f} \in L^2$, da $f \in \mathscr{S}(\mathbb{R})$. Falsch: 3) $\hat{f}(k) \in \mathbb{R} \, \forall k \in \mathbb{R}$, da f ungerade. 4) \hat{f} ist glatt mit kompaktem Träger, da $\int_{\mathbb{R}} \cos(kx)e^{-x^4} \, \mathrm{d}x > 0 \, \forall k \in \mathbb{R}$.

 $f(x)=e^{-x^4}$. Richtig: 1) $\lim_{k\to\pm\infty}k^n\hat{f}(k)=0$. 2) $\hat{f}\in C^\infty$. 3) Es gibt eine holomorphe Funktion $F:\mathbb{C}\to\mathbb{C}$, so dass $\hat{f}(k)=F(k)\forall k\in\mathbb{R}$. Falsch: 4) $\hat{f}(0)=0$.

 $u(r,\theta,\varphi)=\sum_{l=0}^{N}\sum_{m=-l}^{l}a_{l,m}rlY(\theta,\varphi).$ Richtig: 1) $\triangle u=0.$ 2) $\int_{\mathbb{R}^{3}}|u(x)|^{2}\mathrm{d}x=\sum_{l=0}^{N}\sum_{m=-l}^{l}|a_{l,m}|^{2}.$ 3) $a_{l,m}=\int_{0}^{2\pi}\int_{0}^{\pi}\overline{Y_{l,m}(\theta,\varphi)}u(1,\theta,\varphi)\sin\theta\mathrm{d}\theta\mathrm{d}\varphi.$ 4) Wenn $a_{l,m}=0$ für $m\neq0$, dann ist u invariant unter Rotationen um die z-Achse.

Welche Reihe konvergiert? Richtig: 1) $\sum_{l=0}^{\infty} l^2 2^{-l} P_l(x)$. 2) $\sum_{l=0}^{\infty} P_{n^2}(x)$. 3) $\sum_{l=0}^{\infty} \frac{(-1)^l}{\sqrt{l}} P_l(x)$. Falsch: 4) $\sum_{l=0}^{\infty} (-1)^l P_l(x)$.

Richtig: 1) $\int_{-1}^{1} P_{23}(x) dx = 0$, da $\langle P_0, P_{23} \rangle = 0$. 2) $\langle P_l, P_{l'} \rangle = 0$. Fal.: 3) $\langle P_l, P_l \rangle = 1$.

Was definiert temperierte Distribution? Richtig: 1,2) $\varphi \mapsto \int_{\mathbb{R}} f(x)\varphi(x) dx$ für $f \in L^1(\mathbb{R})$, $L^2(\mathbb{R})$. Falsch: 3) $\varphi \mapsto \int_{\mathbb{R}} e^{x^2} \varphi(x) dx$. 4) $\varphi \mapsto \sup_{x \in \mathbb{R}} \varphi(x)$, da nicht linear.

Richtig: 1) $x\delta'(x) = -\delta(x)$. 2) $\int_{\mathbb{R}} \delta'(x) \varphi(x+a) dx = -\delta'(a)$. 3) $\partial_x^3 |x| = 2\delta'(x)$. 4) $x^2\delta' = 0$. Falsch: 5) $\delta'(2x) = 2\delta'(x)$. 6) $x\delta' = 0$, da z.B. $x\delta'[e^{-x^2}] = \delta[(xe^{-x^2})'] = -1$. 7) $\delta(3x) = 3\delta(x)$, da $\delta(3x) = \frac{1}{3}\delta(x)$. 8) $\hat{\delta}(k) = \sum_{n=-\infty}^{\infty} k^n$, da $\hat{\delta}(k) = 1$.