Высшая школа общей и прикладной физики

Отчет по лабораторной работе

Низкочастотные процессы в многомодовом твердотельном лазере

Работу выполнили студенты

Поляков Андрей, Козлов Александр

Содержание

1	Основные элементы теории			
2	Cxe	Схема установки		
3	Про	отокол измерений	4	
4	Резу	ультаты эксперимента с оценкой погрешности и их сравнение с теорией	4	
	4.1	Определение пороговой мощности	۷	
	4.2	Расчёт параметра G	۷	
	4.3	Графики зависимости мощности излучения и релаксационной частоты от пара-		
		метра накачки	6	
	4.4	Оценка полосы резонатора лазера	7	
	4.5	Сравнение оценочной величины полосы резонатора с теоретической	7	

Рис. 1: Схема установки.

1 Основные элементы теории

2 Схема установки

Схема экспериментальной установки представлена на Рис. 1. В качестве источника накачки используется полупроводниковый лазер (2) со следующими характеристиками

- 1. длина волны генерации 810 нм;
- 2. пороговый ток питания 200 мА;
- 3. максимальная мощность излучения 0.5 Вт;
- 4. поляризация излучения линейная, вектор электрического поля лежит в вертикальной плоскости.

Короткофокусная линза (3) используется для формирования параллельного пучка из сильно расходящегося у торца лазера излучения накачки. Линза (4) закреплена в поворотном устройстве, позволяющем перемещать луч накачки в горизонтальной и вертикальной плоскостях. Резонатор твердотельного лазера (5–7) установлен на платформе, передвигающейся в продольном и поперечном направлениях. В качестве активной среды лазера используется кристалл алюмоиттриевого граната YAG, легированный ионами Nd^{3+} с концентрацией 1%. Кристалл Nd:YAG (6) имеет форму цилиндра длинной 1 см и диаметром 0.6 см. Он закреплён в юстировочном устройстве, позволяющем плавно изменять положение оси кристалла относительно оси резонатора. Торцы кристалла имеют дихроичное покрытие. Один формирует входное зеркало резонатора (5), обеспечивая пропускание света $T\approx 1$ на длине волны $\lambda=810$ нм и отражение

 $R_1 \approx 1$ на длине волны $\lambda = 1064$ нм, другой просветлен на длине волны $\lambda = 1064$ нм. Выходное зеркало резонатора (7), имеющее коэффициент отражения $R_2 = 0.98\dots0.995$ на длине волны $\lambda = 1064$ нм, закреплено в юстировочном устройстве, позволяющем плавно поворачивать его относительно входного зеркала резонатора. Установка позволяет менять длину резонатора от 5 до 7.5 см. Для отсекания излучения накачки на выходе резонатора используется фильтр (8). Излучение Nd:YAG лазера подается через поворотное зеркало (9) на фотодиод (10), выход которого подключен к микроамперметру (12) и анализатору спектра CK4-58 (11). Последний предназначен для наблюдения низкочастотных шумов лазера в диапазоне $0\dots600$ кГц. Не-Ne лазер (15) используется для юстировки резонатора. Для визуального наблюдения генерации Nd:YAG лазера используется карточка-визуализатор инфракрасного диапазона.

3 Протокол измерений

Измерили зависимость релаксационной частоты $f_{\rm pen}$ и мощности излучения $P_{\rm изл}$ от мощности накачки $P_{\rm нак}$. Результаты измерений приведены в Табл. 1.

4 Результаты эксперимента с оценкой погрешности и их сравнение с теорией

4.1 Определение пороговой мощности

Для дальнейшей работы важно определить пороговую мощность $P_{\text{пор}}$, ведь ниже будет часто использоваться параметр накачки A, который определяется как $P_{\text{нак}}/P_{\text{пор}}$ ($P_{\text{нак}}$ измеряется напрямую). Чтобы определить пороговую мощность $P_{\text{пор}}$, надо найти такую мощность накачки, что при мощностях накачки меньше данной мощность излучения равна нулю, а при больших мощностях накачки мощность излучения отлична от нуля.

На Рис. 2 показана снятая зависимость мощности излучения от мощности накачки с учётом фоновой засветки. Видно, что при $P_{\rm нак} < 210\,{\rm mBt}$ излучения нет. Снятые данные дискретны и поэтому точно определить порог нам не удастся, мы лишь знаем, что при $P_{\rm нак} = 210 \pm 5\,{\rm mBt}$ излучение есть, а при $P_{\rm нак} = 205 \pm 5\,{\rm mBt}$ излучения нет. Порог находится где-то между $200\,{\rm mBt}$ и $210\,{\rm mBt}$. Значит, $P_{\rm nop} = 205 \pm 5\,{\rm mBt}$.

4.2 Расчёт параметра G

Расчёт параметра G проводился для каждого из экспериментальных значений параметра накачки A. Связь параметра накачки A и параметра G с измеренными значениями мощности накачки $P_{\text{нак}}$ и релаксационной частоты $f_{\text{рел}}$ даётся выражениями

$$A = \frac{P_{\text{\tiny HAK}}}{P_{\text{\tiny nop}}}, \quad \Omega = 2\pi f_{\text{\tiny pen}} T_1, \quad \Omega^2 = G \left(A - 1 \right), \tag{1}$$

		$P_{ m Hak}$, м B т	$P_{\scriptscriptstyle exttt{MЗЛ}}$, м B т
$P_{ m Hak}$, м B т	f v[u	420	9
	$f_{ m pen}$, к Γ ц	410	8.37
216	112	400	7.85
225	212	391	7.6
235	276	381	7.3
245	336	371	6.8
255	392	361	6.1
265	432		
270	448	350	5.5
275	458	340	4.6
280	476	330	4
285	491	320	3.76
296	508	290	3.3
304	532	280	2.9
		270	2.5
345	551	260	2.1
385	600	250	1.7
390	616	239	1.2
395	627	230	0.9
405	639	220	0.5
420	672	210	0.19
		200	0.14

Таблица 1: Результаты измерений.

где $T_1 = 0.23\,\mathrm{Mc}$ — время релаксации насыщения.

Конечная формула для G и погрешности ΔG

$$G = \frac{(2\pi f_{\text{pen}}T_1)^2}{A-1}, \quad \Delta_{\text{изм}}G = \frac{2(2\pi T_1)^2 f_{\text{pen}} \Delta_{\text{изм}} f_{\text{pen}}}{A-1} + \frac{(2\pi f_{\text{pen}}T_1)^2}{(A-1)^2} \Delta_{\text{изм}}A,$$

$$\Delta_{\text{изм}}A = \frac{\Delta_{\text{изм}}P_{\text{нак}}}{P_{\text{пор}}} + P_{\text{нак}}\frac{\Delta_{\text{изм}}P_{\text{пор}}}{P_{\text{nop}}^2},$$
(2)

где $\Delta_{\text{изм}}f_{\text{рел}}=10\,\text{к}\Gamma$ ц — измерительная погрешность измерения релаксационной частоты.

На Рис. 3 представлена зависимость параметра G от параметра накачки A. Среднее значение $\langle G \rangle = 1.07 \times 10^6$. Найдём погрешность для параметра G

$$\Delta G = \sqrt{\left(\Delta_{\text{изм}}G\right)^2 + \left(\Delta_{\text{случ}}G\right)^2},\tag{3}$$

где случайная погрешность считается как стандартное отклонение. Тогда можно записать для среднего значения параметра G

$$\langle G \rangle = (1.07 \pm 0.35) \times 10^6.$$
 (4)

Рис. 2: Зависимость мощности излучения от мощности накачки. Фоновая засветка учтена и вычтена из мощности излучения.

Рис. 3: Зависимость параметра G от параметра накачки.

4.3 Графики зависимости мощности излучения и релаксационной частоты от параметра накачки

На Рис. 4а представлена зависимость мощности излучения $P_{\text{изл}}$ от параметра накачки A. Линейный тренд находился в виде $p\cdot (A-1)$, где p — параметр, то есть линейный тренд проходит при A=1 через 0.

На Рис. 4b представлена зависимость мощности излучения $P_{\rm изл}$ от параметра накачки A. Экспериментальные данные сопоставляются с результатами теоретическими, которые были построены по формуле $\Omega = \sqrt{\langle G \rangle (A-1)}$. Ошибки вычисления среднего значения $\langle G \rangle$ учтены синей областью на графике. Видно, что с учётом ошибок определения среднего значения $\langle G \rangle$ экспериментальные данные сходятся с теоретическими результатами.

Рис. 4: (а) Зависимость мощности излучения $P_{\text{изл}}$ от параметра накачки A. (b) Зависимость частоты релаксационных колебаний Ω от параметра накачки A. Теоретическая кривая построена для среднего значения $\langle G \rangle$. Синяя область около теоретической кривой учитывает ошибку вычисления среднего значения $\langle G \rangle$.

4.4 Оценка полосы резонатора лазера

Оценим по среднему значению $\langle G \rangle$ полосу резонатора лазера $\delta f_{
m эксп} = 1/(2\pi T_{
m c}).$ По определению $G = T_1/T_{
m c}$, тогда для $\delta f_{
m эксп}$ получаем выражение

$$\delta f_{\text{эксп}} = \frac{\langle G \rangle}{2\pi T_1}.\tag{5}$$

Подставляем числа и с учетом погрешности получаем $\delta f_{
m scn} = (7.44 \pm 2.43) imes 10^8$ Гц.

4.5 Сравнение оценочной величины полосы резонатора с теоретической

Теоретическое значение

$$\delta f_{\rm reop} = -\frac{c \ln \sqrt{R_1 R_2}}{2\pi L} \approx -3 \times 10^8 \ln \sqrt{1 \times 0.98} \; / \; (6.28 \times 0.01) = 4.83 \times 10^8 \, \mathrm{Гц}.$$

Взяли L=1 мм. Теоретическое значение не совпадает в оценочной величиной даже с учётом погрешности. Стоит отметить, что если взять один из коэффициентов отражения хоть на одну сотую поменьше, то теоретическое значение будет совпадать с оценочным.