



## SEQUENCE LISTING

COPY OF PAPERS  
ORIGINALLY FILEDAS

<110> Wang, <sup>Pavan</sup>  
Xi, Lei <sup>TRADEMARK OFFICE</sup>  
Prosen, Dennis E.  
MJ Bioworks, Inc.

&lt;120&gt; Improved Nucleic Acid Modifying Enzymes

&lt;130&gt; 020130-000111US

&lt;140&gt; US 09/870,353

&lt;141&gt; 2001-05-30

&lt;150&gt; US 60/207,567

&lt;151&gt; 2000-05-26

&lt;150&gt; US 09/640,958

&lt;151&gt; 2000-08-16

&lt;160&gt; 34

&lt;170&gt; PatentIn Ver. 2.1

&lt;210&gt; 1

&lt;211&gt; 189

&lt;212&gt; DNA

&lt;213&gt; Artificial Sequence

&lt;220&gt;

<223> Description of Artificial Sequence:synthetic  
sequence non-specific double-stranded nucleic acid  
binding protein Ssod7d

&lt;220&gt;

&lt;221&gt; CDS

&lt;222&gt; (1)..(189)

&lt;223&gt; Ssod7d

&lt;400&gt; 1

gcaaccgtaa agttcaagta caaaggcgaa gaaaaagagg tagacatctc caagatcaag 60  
aaagtatggc gtgtggcaa gatgatctcc ttacacctacg acgaggcg 120  
ggccgtggc cgtaagcga aaaggacgcg ccgaaggagc tgctgcagat gctggagaag 180  
cagaaaaaag 189

&lt;210&gt; 2

&lt;211&gt; 63

&lt;212&gt; PRT

&lt;213&gt; Artificial Sequence

&lt;220&gt;

<223> Description of Artificial Sequence:synthetic  
sequence non-specific double-stranded nucleic acid  
binding protein Ssod7d

&lt;400&gt; 2

Ala Thr Val Lys Phe Lys Tyr Lys Gly Glu Glu Lys Glu Val Asp Ile  
1 5 10 15  
Ser Lys Ile Lys Lys Val Trp Arg Val Gly Lys Met Ile Ser Phe Thr  
20 25 30

Tyr Asp Glu Gly Gly Lys Thr Gly Arg Gly Ala Val Ser Glu Lys  
35 40 45  
Asp Ala Pro Lys Glu Leu Leu Gln Met Leu Glu Lys Gln Lys Lys  
50 55 60

<210> 3  
<211> 1899  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence:fusion protein  
Ssod7d-deltaTaq

<220>  
<221> CDS  
<222> (1)..(1899)  
<223> Ssod7d-deltaTaq

<400> 3  
atgattacga attcgagcgc aaccgtaaag ttcaagtaca aaggcgaaga aaaagaggta 60  
gacatctcca agatcaagaa agtatggcgt gtgggcaaga ttagtctcctt cacctacgac 120  
gagggcggtg gcaagaccgg ccgtgggtcg gtaagcgaaa aggacgcgcc gaaggagctg 180  
ctgcagatgc tggagaagca gaaaaaggc ggcgggtgtca ctatgtccaa ggcctggag 240  
gaggccccctt ggccccccgc ggaaggggcc ttctgtggct ttgtgttttc cgcgaaggag 300  
cccatgtggg ccgatcttctt ggcctggcc ggcgcagggg gggggcgggtt ccaccgggcc 360  
cccgagcctt ataaaggccctt cagggacccgt aaggaggcgc gggggcttctt cgccaaagac 420  
ctgagcgttc tggccctgag ggaaggccctt ggcctcccgc cggcgcacga cccatgttc 480  
ctcgccctacc tcctggaccc ttccaaacacc acccccgagg ggggtggcccg gcgtacggc 540  
ggggagtgga cggaggaggc gggggagcgg ggcgcctttt ccgagaggctt cttcgccaaac 600  
ctgtggggga ggcttgaggg ggaggagagg ctcccttggc ttaccggga ggtggagagg 660  
ccccttccg ctgtccctggc ccacatggag gccacggggg tgccctggta cgtggcctat 720  
ctcaggggctt tggccctggta ggtggccggag gagatcgccc gcctcgaggc cgaggcttc 780  
cgccctggccg gccacccctt caacctcaac tcccccggacc agctggaaag ggtcctctt 840  
gacgagctag ggctcccgcc catcggaag acggagaaga cggcaagcg ctccaccagc 900  
ggccgcgtcc tggaggccctt ccgcgaggcc caccatcg tggagaagat cctgcagtac 960  
cgggagctca ccaagctgaa gagcacccatc attgaccctt tgccggacccatccaccc 1020  
aggacggggcc gcctccacac ccgcttcaac cagacggcca cggccacggg caggctaagt 1080  
agctccgatc ccaacctcca gaacatcccc gtccgcaccc cgcttggca gaggatccgc 1140  
cgggccttca tcgcccggaa ggggtggta ttgtggccc tggactatacg ccagatagag 1200  
ctcagggtgc tggcccacctt ctccggcgcac gagaacctga tccgggtctt ccaggagggg 1260  
cgggacatcc acacggagac cgccagctgg atttccggcg tccccggga ggcgtggac 1320  
cccctgatgc gcccggccgc caagaccatc aacttcggggg tccctacgg catgtccggc 1380  
caccgcctt cccaggagct agccatccct tacggaggccc cccaggccctt cattgagcgc 1440  
tactttcaga gcttcccaa ggtgcgggccc tggattgaga agaccctgga ggagggcagg 1500  
aggcgggggt acgtggagac cctcttccggc cgccgcgcgt acgtgcaga cctagaggcc 1560  
cggtgtaaaga gcgtgcggga ggcggccggag cgcacatggcct tcaacatgcc cgtccaggc 1620  
accgcgcgcg acctcatgaa gctggctatg gtggactctt tccccaggctt ggaggaaatg 1680  
ggggccagga tgctccctca ggtccacgcac gagctggtcc tcgaggcccc aaaagagagg 1740  
ggcgaggccg tggcccggtt ggccaaggag gtcatggagg ggggtgtatcc cctggccgtg 1800  
cccctggagg tggaggtggg gataggggag gactggctt cgcacaaggaa gggcattgtat 1860  
ggccgcggcg gaggcgggca tcatcatcat catcattaa 1899

<210> 4  
<211> 632  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence:fusion protein  
Ssod7d-deltaTaq

<400> 4  
Met Ile Thr Asn Ser Ser Ala Thr Val Lys Phe Lys Tyr Lys Gly Glu  
1 5 10 15  
Glu Lys Glu Val Asp Ile Ser Lys Ile Lys Lys Val Trp Arg Val Gly  
20 25 30  
Lys Met Ile Ser Phe Thr Tyr Asp Glu Gly Gly Lys Thr Gly Arg  
35 40 45  
Gly Ala Val Ser Glu Lys Asp Ala Pro Lys Glu Leu Leu Gln Met Leu  
50 55 60  
Glu Lys Gln Lys Lys Gly Gly Val Thr Ser Pro Lys Ala Leu Glu  
65 70 75 80  
Glu Ala Pro Trp Pro Pro Glu Gly Ala Phe Val Gly Phe Val Leu  
85 90 95  
Ser Arg Lys Glu Pro Met Trp Ala Asp Leu Leu Ala Leu Ala Ala  
100 105 110  
Arg Gly Arg Val His Arg Ala Pro Glu Pro Tyr Lys Ala Leu Arg  
115 120 125  
Asp Leu Lys Glu Ala Arg Gly Leu Leu Ala Lys Asp Leu Ser Val Leu  
130 135 140  
Ala Leu Arg Glu Gly Leu Gly Leu Pro Pro Gly Asp Asp Pro Met Leu  
145 150 155 160  
Leu Ala Tyr Leu Leu Asp Pro Ser Asn Thr Thr Pro Glu Gly Val Ala  
165 170 175  
Arg Arg Tyr Gly Glu Trp Thr Glu Glu Ala Gly Glu Arg Ala Ala  
180 185 190  
Leu Ser Glu Arg Leu Phe Ala Asn Leu Trp Gly Arg Leu Glu Gly Glu  
195 200 205  
Glu Arg Leu Leu Trp Leu Tyr Arg Glu Val Glu Arg Pro Leu Ser Ala  
210 215 220  
Val Leu Ala His Met Glu Ala Thr Gly Val Arg Leu Asp Val Ala Tyr  
225 230 235 240  
Leu Arg Ala Leu Ser Leu Glu Val Ala Glu Glu Ile Ala Arg Leu Glu  
245 250 255  
Ala Glu Val Phe Arg Leu Ala Gly His Pro Phe Asn Leu Asn Ser Arg  
260 265 270  
Asp Gln Leu Glu Arg Val Leu Phe Asp Glu Leu Gly Leu Pro Ala Ile  
275 280 285  
Gly Lys Thr Glu Lys Thr Gly Lys Arg Ser Thr Ser Ala Ala Val Leu  
290 295 300  
Glu Ala Leu Arg Glu Ala His Pro Ile Val Glu Lys Ile Leu Gln Tyr  
305 310 315 320  
Arg Glu Leu Thr Lys Leu Lys Ser Thr Tyr Ile Asp Pro Leu Pro Asp  
325 330 335  
Leu Ile His Pro Arg Thr Gly Arg Leu His Thr Arg Phe Asn Gln Thr  
340 345 350  
Ala Thr Ala Thr Gly Arg Leu Ser Ser Ser Asp Pro Asn Leu Gln Asn  
355 360 365  
Ile Pro Val Arg Thr Pro Leu Gly Gln Arg Ile Arg Arg Ala Phe Ile  
370 375 380  
Ala Glu Glu Gly Trp Leu Leu Val Ala Leu Asp Tyr Ser Gln Ile Glu  
385 390 395 400  
Leu Arg Val Leu Ala His Leu Ser Gly Asp Glu Asn Leu Ile Arg Val  
405 410 415  
Phe Gln Glu Gly Arg Asp Ile His Thr Glu Thr Ala Ser Trp Met Phe  
420 425 430  
Gly Val Pro Arg Glu Ala Val Asp Pro Leu Met Arg Arg Ala Ala Lys  
435 440 445

Thr Ile Asn Phe Gly Val Leu Tyr Gly Met Ser Ala His Arg Leu Ser  
     450                  455                  460  
 Gln Glu Leu Ala Ile Pro Tyr Glu Glu Ala Gln Ala Phe Ile Glu Arg  
     465                  470                  475                  480  
 Tyr Phe Gln Ser Phe Pro Lys Val Arg Ala Trp Ile Glu Lys Thr Leu  
     485                  490                  495  
 Glu Glu Gly Arg Arg Gly Tyr Val Glu Thr Leu Phe Gly Arg Arg  
     500                  505                  510  
 Arg Tyr Val Pro Asp Leu Glu Ala Arg Val Lys Ser Val Arg Glu Ala  
     515                  520                  525  
 Ala Glu Arg Met Ala Phe Asn Met Pro Val Gln Gly Thr Ala Ala Asp  
     530                  535                  540  
 Leu Met Lys Leu Ala Met Val Lys Leu Phe Pro Arg Leu Glu Glu Met  
     545                  550                  555                  560  
 Gly Ala Arg Met Leu Leu Gln Val His Asp Glu Leu Val Leu Glu Ala  
     565                  570                  575  
 Pro Lys Glu Arg Ala Glu Ala Val Ala Arg Leu Ala Lys Glu Val Met  
     580                  585                  590  
 Glu Gly Val Tyr Pro Leu Ala Val Pro Leu Glu Val Glu Val Gly Ile  
     595                  600                  605  
 Gly Glu Asp Trp Leu Ser Ala Lys Glu Gly Ile Asp Gly Arg Gly Gly  
     610                  615                  620  
 Gly Gly His His His His His His  
     625                  630

<210> 5  
 <211> 2763  
 <212> DNA  
 <213> Artificial Sequence

<220>  
 <223> Description of Artificial Sequence:fusion protein  
 Ssod7d/full-length Taq

<220>  
 <221> CDS  
 <222> (1) .. (2763)  
 <223> Ssod7d/full-length Taq

<400> 5  
 atgattacga attcgagcgc aaccgtaaag ttcaagtaca aaggcgaaga aaaagaggta 60  
 gacatctcca agatcaagaa agtatggcgt gtgggcaaga tcatctccctt cacctacgac 120  
 gagggcggtg gcaagaccgg ccgtggtcg gtaagcgaaa aggacgcgcc gaaggagctg 180  
 ctgcagatgc tggagaagca gaaaaaggcc ggcgggtgtca ctatgtggat gctgcccctc 240  
 tttgagccca agggccgggt cctcctggtg gacggccacc acctggccta ccgcacccctc 300  
 cacgcctctga agggcctcac caccagccgg gggagccgg tgcaggcggt ctacggcttc 360  
 gccaaggagcc tcctcaaggc cctcaaggag gacggggacg cggtgatcgt ggtctttgac 420  
 gccaaggccc cctccttccg ccacgaggcc tacgggggtt acaaggcggtt ccggggcccc 480  
 acgccagagg acttcccccg gcaactcgcc ctcataagg agctgggttga cctcctgggg 540  
 ctggcgcgcc tcgaggtccc gggctacag gcgacgacg tcctggccag cctggccaag 600  
 aaggcggaaa aggagggcta cgaggtccgc atcctcaccg ccgacaaaga cctttaccag 660  
 ctcccttccg accgcatacca cgtcctccac cccgagggtt acctcatcac cccggcctgg 720  
 ctttgggaaa agtacggct gaggcccgac cagtggccg actaccggc cctgaccggg 780  
 gacgagtccg acaaccttcc cggggtaaag ggcatacggtt agaagacggc gaggaagctt 840  
 ctggaggagt gggggagctt ggaaggccctc ctcaagaacc tggaccggct gaagccgc 900  
 atccgggaga agatcctggc ccacatggac gatctgaagc ttcctggga cctggccaag 960  
 gtgcgcaccc acctgcccct ggaggtggac ttcccaaaa ggcgggagcc cgaccggag 1020  
 aggcttaggg ccttcttggg gaggcttggag tttggcagcc tcctccacga gttcggccct 1080  
 ctggaaagcc ccaaggccc ggaggaggcc ccctggcccc cggcggaaagg ggcccttcgtt 1140  
 ggctttgtgc tttcccgaa ggagcccatg tggccgatc ttctggccct ggccggcc 1200

aggggggggccc gggtccaccg ggcccccgag cttataaaag ccctcaggga cctgaaggag 1260  
 gcgcgggggc ttctgccaa agacctgagc gttctggccc tgagggaaagg ccttggctc 1320  
 ccgcccggcg acgaccccat gtcctcgcc tacctctgg acccttccaa caccacccc 1380  
 gaggggggtgg cccggcgta cggcggggag tggacggagg aggcggggga gccccggcc 1440  
 cttdccgaga ggcttcgc caacctgtgg gggaggcttg agggggagga gaggctcctt 1500  
 tggcttacc gggaggtgga gaggccctt tccgtgtcc tggcccacat ggaggccacg 1560  
 ggggtgcgcc tggacgtggc ctatctcagg gccttgtccc tggaggtggc cgaggagatc 1620  
 gccccgctcg aggccgaggt cttdccgctg gccggccacc ccttcaacct caactcccgg 1680  
 gaccagctgg aaagggtcct tttgacgag ctagggcttc cgcgcattcg caagacggag 1740  
 aagaccggca agcgcctccac cagcggccgc gtcctggagg ccctccgcga gcccacccc 1800  
 atcgtggaga agatcctgca gtaccggag ctcaccaagc tgaagagcac ctacattgac 1860  
 cccttgcgg acctcatcca ccccaggacg gcccgcctcc acacccgctt caaccagacg 1920  
 gccacggcca cggcaggct aagtagctcc gatcccaacc tccagaacat ccccgccgc 1980  
 accccgttg ggcagaggat ccggccggcc ttcatcgccg aggaggggtg gctattggtg 2040  
 gcccggact atagccagat agagctcagg gtgtggccc accttcggc cgacgagaac 2100  
 ctgatccggg tcttccagga gggcgggac atccacacgg agaccggcag ctggatgttc 2160  
 ggcgtccccc gggaggccgt ggacccctg atgcgcggg cggcaagac catcaacttc 2220  
 ggggtctct acggcatgtc ggcccaccgc ctctcccagg agctagccat cccttacgag 2280  
 gaggcccagg ctttcatgtc ggcgtacttt cagagttcc ccaagggtgcg ggctggatt 2340  
 gagaagaccc tggaggaggg caggaggcgg gggtaacgtgg agaccctctt cggccgcgc 2400  
 cgctacgtgc cagaccta ga gggccgggtg aagagcgtgc gggaggccgc cgagcgcatg 2460  
 gccttcaaca tgccgtcca gggcaccgc gcccaccta tgaagctggc tatggtaag 2520  
 ctcttccca ggctggagga aatgggggccc aggatgctcc ttcaggtcca cgacgagctg 2580  
 gtcctcgagg ccccaaaaaga gaggggcggag gccgtggccc ggctggccaa ggaggtcatg 2640  
 gaggggggtgt atccctggc cgtccccctg gagggtggagg tggggatagg ggaggactgg 2700  
 ctctccgcca aggagggcat tgatggccgc ggcggaggcg ggcacatcatca tcatcatcat 2760  
 taa  
 2763

<210> 6  
 <211> 920  
 <212> PRT  
 <213> Artificial Sequence

<220>  
 <223> Description of Artificial Sequence:fusion protein  
 Ssod7d/full-length Taq

<400> 6  
 Met Ile Thr Asn Ser Ser Ala Thr Val Lys Phe Lys Tyr Lys Gly Glu  
       1              5              10              15  
 Glu Lys Glu Val Asp Ile Ser Lys Ile Lys Lys Val Trp Arg Val Gly  
       20              25              30  
 Lys Met Ile Ser Phe Thr Tyr Asp Glu Gly Gly Lys Thr Gly Arg  
       35              40              45  
 Gly Ala Val Ser Glu Lys Asp Ala Pro Lys Glu Leu Leu Gln Met Leu  
       50              55              60  
 Glu Lys Gln Lys Lys Gly Gly Val Thr Ser Gly Met Leu Pro Leu  
       65              70              75              80  
 Phe Glu Pro Lys Gly Arg Val Leu Leu Val Asp Gly His His Leu Ala  
       85              90              95  
 Tyr Arg Thr Phe His Ala Leu Lys Gly Leu Thr Thr Ser Arg Gly Glu  
       100            105            110  
 Pro Val Gln Ala Val Tyr Gly Phe Ala Lys Ser Leu Leu Lys Ala Leu  
       115            120            125  
 Lys Glu Asp Gly Asp Ala Val Ile Val Val Phe Asp Ala Lys Ala Pro  
       130            135            140  
 Ser Phe Arg His Glu Ala Tyr Gly Gly Tyr Lys Ala Gly Arg Ala Pro  
       145            150            155            160  
 Thr Pro Glu Asp Phe Pro Arg Gln Leu Ala Leu Ile Lys Glu Leu Val  
       165            170            175

Asp Leu Leu Gly Leu Ala Arg Leu Glu Val Pro Gly Tyr Glu Ala Asp  
                  180                 185                 190  
 Asp Val Leu Ala Ser Leu Ala Lys Lys Ala Glu Lys Glu Gly Tyr Glu  
                  195                 200                 205  
 Val Arg Ile Leu Thr Ala Asp Lys Asp Leu Tyr Gln Leu Leu Ser Asp  
                  210                 215                 220  
 Arg Ile His Val Leu His Pro Glu Gly Tyr Leu Ile Thr Pro Ala Trp  
                  225                 230                 235                 240  
 Leu Trp Glu Lys Tyr Gly Leu Arg Pro Asp Gln Trp Ala Asp Tyr Arg  
                  245                 250                 255  
 Ala Leu Thr Gly Asp Glu Ser Asp Asn Leu Pro Gly Val Lys Gly Ile  
                  260                 265                 270  
 Gly Glu Lys Thr Ala Arg Lys Leu Leu Glu Glu Trp Gly Ser Leu Glu  
                  275                 280                 285  
 Ala Leu Leu Lys Asn Leu Asp Arg Leu Lys Pro Ala Ile Arg Glu Lys  
                  290                 295                 300  
 Ile Leu Ala His Met Asp Asp Leu Lys Leu Ser Trp Asp Leu Ala Lys  
                  305                 310                 315                 320  
 Val Arg Thr Asp Leu Pro Leu Glu Val Asp Phe Ala Lys Arg Arg Glu  
                  325                 330                 335  
 Pro Asp Arg Glu Arg Leu Arg Ala Phe Leu Glu Arg Leu Glu Phe Gly  
                  340                 345                 350  
 Ser Leu Leu His Glu Phe Gly Leu Leu Glu Ser Pro Lys Ala Leu Glu  
                  355                 360                 365  
 Glu Ala Pro Trp Pro Pro Glu Gly Ala Phe Val Gly Phe Val Leu  
                  370                 375                 380  
 Ser Arg Lys Glu Pro Met Trp Ala Asp Leu Leu Ala Leu Ala Ala Ala  
                  385                 390                 395                 400  
 Arg Gly Gly Arg Val His Arg Ala Pro Glu Pro Tyr Lys Ala Leu Arg  
                  405                 410                 415  
 Asp Leu Lys Glu Ala Arg Gly Leu Leu Ala Lys Asp Leu Ser Val Leu  
                  420                 425                 430  
 Ala Leu Arg Glu Gly Leu Gly Leu Pro Pro Gly Asp Asp Pro Met Leu  
                  435                 440                 445  
 Leu Ala Tyr Leu Leu Asp Pro Ser Asn Thr Thr Pro Glu Gly Val Ala  
                  450                 455                 460  
 Arg Arg Tyr Gly Glu Trp Thr Glu Ala Gly Glu Arg Ala Ala  
                  465                 470                 475                 480  
 Leu Ser Glu Arg Leu Phe Ala Asn Leu Trp Gly Arg Leu Glu Gly Glu  
                  485                 490                 495  
 Glu Arg Leu Leu Trp Leu Tyr Arg Glu Val Glu Arg Pro Leu Ser Ala  
                  500                 505                 510  
 Val Leu Ala His Met Glu Ala Thr Gly Val Arg Leu Asp Val Ala Tyr  
                  515                 520                 525  
 Leu Arg Ala Leu Ser Leu Glu Val Ala Glu Glu Ile Ala Arg Leu Glu  
                  530                 535                 540  
 Ala Glu Val Phe Arg Leu Ala Gly His Pro Phe Asn Leu Asn Ser Arg  
                  545                 550                 555                 560  
 Asp Gln Leu Glu Arg Val Leu Phe Asp Glu Leu Gly Leu Pro Ala Ile  
                  565                 570                 575  
 Gly Lys Thr Glu Lys Thr Gly Lys Arg Ser Thr Ser Ala Ala Val Leu  
                  580                 585                 590  
 Glu Ala Leu Arg Glu Ala His Pro Ile Val Glu Lys Ile Leu Gln Tyr  
                  595                 600                 605  
 Arg Glu Leu Thr Lys Leu Lys Ser Thr Tyr Ile Asp Pro Leu Pro Asp  
                  610                 615                 620  
 Leu Ile His Pro Arg Thr Gly Arg Leu His Thr Arg Phe Asn Gln Thr  
                  625                 630                 635                 640  
 Ala Thr Ala Thr Gly Arg Leu Ser Ser Ser Asp Pro Asn Leu Gln Asn  
                  645                 650                 655

Ile Pro Val Arg Thr Pro Leu Gly Gln Arg Ile Arg Arg Ala Phe Ile  
 660 665 670  
 Ala Glu Glu Gly Trp Leu Leu Val Ala Leu Asp Tyr Ser Gln Ile Glu  
 675 680 685  
 Leu Arg Val Leu Ala His Leu Ser Gly Asp Glu Asn Leu Ile Arg Val  
 690 695 700  
 Phe Gln Glu Gly Arg Asp Ile His Thr Glu Thr Ala Ser Trp Met Phe  
 705 710 715 720  
 Gly Val Pro Arg Glu Ala Val Asp Pro Leu Met Arg Arg Ala Ala Lys  
 725 730 735  
 Thr Ile Asn Phe Gly Val Leu Tyr Gly Met Ser Ala His Arg Leu Ser  
 740 745 750  
 Gln Glu Leu Ala Ile Pro Tyr Glu Glu Ala Gln Ala Phe Ile Glu Arg  
 755 760 765  
 Tyr Phe Gln Ser Phe Pro Lys Val Arg Ala Trp Ile Glu Lys Thr Leu  
 770 775 780  
 Glu Glu Gly Arg Arg Gly Tyr Val Glu Thr Leu Phe Gly Arg Arg  
 785 790 795 800  
 Arg Tyr Val Pro Asp Leu Glu Ala Arg Val Lys Ser Val Arg Glu Ala  
 805 810 815  
 Ala Glu Arg Met Ala Phe Asn Met Pro Val Gln Gly Thr Ala Ala Asp  
 820 825 830  
 Leu Met Lys Leu Ala Met Val Lys Leu Phe Pro Arg Leu Glu Glu Met  
 835 840 845  
 Gly Ala Arg Met Leu Leu Gln Val His Asp Glu Leu Val Leu Glu Ala  
 850 855 860  
 Pro Lys Glu Arg Ala Glu Ala Val Ala Arg Leu Ala Lys Glu Val Met  
 865 870 875 880  
 Glu Gly Val Tyr Pro Leu Ala Val Pro Leu Glu Val Glu Val Gly Ile  
 885 890 895  
 Gly Glu Asp Trp Leu Ser Ala Lys Glu Gly Ile Asp Gly Arg Gly Gly  
 900 905 910  
 Gly Gly His His His His His  
 915 920

<210> 7  
 <211> 2535  
 <212> DNA  
 <213> Artificial Sequence

<220>  
 <223> Description of Artificial Sequence:fusion protein  
 Pfu-Ssod7d

<220>  
 <221> CDS  
 <222> (1) .. (2535)  
 <223> Pfu-Ssod7d

<400> 7  
 atgatttttag atgtggatta cataactgaa gaaggaaaac ctgttattag gctattcaaa 60  
 aaagagaacg gaaaatttaa gatagagcat gatagaacct ttagaccata catttacgct 120  
 cttctcaggg atgattcaaa gattgaagaa gttaagaaaa taacggggga aaggcatgga 180  
 aagattgtga gaattgtga tgtagagaag gttgagaaaa agtttctcggt caagcctatt 240  
 accgtgtgga aacttttattt ggaacatccc caagatgttc ccactattag agaaaaaagt 300  
 agagaacatc cagcagttgt ggacatcttc gaatacgata ttccatttgc aaagagatac 360  
 ctcatcgaca aaggcctaattt accaatggag ggggaagaag agctaaagat tcttgccttc 420  
 gatataaaaaa ccctctatca cgaaggagaa gagtttgaa aaggccaaat tataatgatt 480  
 agttatgcag atgaaaatga agcaaagggtg attacttggaa aaaacataga tcttccatac 540  
 gttgaggttg tatcaagcga gagagagatg ataaagagat ttctcaggat tatcagggag 600

aaggatcccg acattatagt tacttataat ggagactcat tcgacttccc atattttagcg 660  
 aaaagggcag aaaaacttgg gattaaatta accattggaa gagatggaag cgagcccaag 720  
 atgcagagaa taggcgatat gacggctgta gaagtcaagg gaagaataca tttcgacttg 780  
 tatcatgtaa taacaaggac aataaaatcc ccaacataca cactagaggc tgtatatgaa 840  
 gcaattttg gaaagccaaa ggagaaggt tacgcccac agatagcaaa agcctggaa 900  
 agtggagaga accttgagag agttgccaaa tactcgatgg aagatgcaaa ggcacttat 960  
 gaactcggga aagaattcct tccaatggaa attcagctt caagattagt tggacaacct 1020  
 ttatggatg ttcaaggc aagcacaggg aacccttgc agtggttctt acttaggaaa 1080  
 gcctacgaaa gaaacgaagt agctccaaac aagccaaatg aagaggagta tcaaagaagg 1140  
 ctcagggaga gctacacagg tgattcgat aaagagccag aaaagggtt gtggaaaac 1200  
 atagtatacc tagattttag agccctatcc ccctcgatcc taattaccca caatgttct 1260  
 cccgatactc taaatcttga gggatgcaag aactatgata tcgctccatc agtaggccac 1320  
 aagttctgca aggacatccc tggtttata ccaagtctt tggacattt gtttagggaa 1380  
 agacaaaaga ttaagacaaa aatgaaggaa actcaagatc ctatagaaaa aatactcctt 1440  
 gactatagac aaaagcgt aaaaactcta gcaaatttctt tctacggata ttatggctat 1500  
 gcaaaagcaa gatgtactg taaggagtgt gctgagagcg ttactgcctg gggaaagaaag 1560  
 tacatcgagt tagtatggaa ggagctcgaa gaaaagttt gatttaaagt cctctacatt 1620  
 gacactgtg gtctctatgc aactatccca ggaggagaaa gtgagggaaat aaagaaaaag 1680  
 gctctagaat ttgtaaaata cataaaattca aagctccctg gactgctaga gcttgaatat 1740  
 gaagggttt ataagagggg attcttcgtt acgaagaaga ggtatgcagt aatagatgaa 1800  
 gaaggaaaag tcattactcg tggttttagag atagtttaga gagattggag tgaattgca 1860  
 aaagaaaactc aagcttagagt ttggagacata aactaaaac acggagatgt tgaagaagct 1920  
 gtgagaatag taaaagaagt aatacaaaaat cttgccaatt atgaaattcc accagagaag 1980  
 ctcgcaatat atgagcagat aacaagacca ttacatgagt ataaggcgat aggtcctcac 2040  
 gtagctgtg caaaagaaact agctgctaaa ggagttaaa taaagccagg aatggtaatt 2100  
 ggatacatag tacttagagg cgatggtcca attagcaata gggcaattct agctgaggaa 2160  
 tacatccccaaaagcacaat gatgacgca gaatattaca ttgagaacca ggttcttcca 2220  
 gcggtactta ggatattgga gggatttgg tacagaaagg aagacctcag atacaaaag 2280  
 acaagacaag tcggcctaac ttccctggctt aacattaaaa aatccggatc cggcggtggc 2340  
 ggtcaacccg taaagttcaa gtacaaaggc gaagaaaaag aggttagacat ctccaagatc 2400  
 aagaaagtat ggcgtgtggg caagatgatc tccttcacct acgacgaggg cggtggcaag 2460  
 accggccgtg gtgcggtaag cgaaaaggac gcggcgaagg agctgctgca gatgctggag 2520  
 aagcagaaaaa agtga 2535

<210> 8  
 <211> 844  
 <212> PRT  
 <213> Artificial Sequence

<220>  
 <223> Description of Artificial Sequence:fusion protein  
 Pfu-Ssod7d

<400> 8  
 Met Ile Leu Asp Val Asp Tyr Ile Thr Glu Glu Gly Lys Pro Val Ile  
 1 5 10 15  
 Arg Leu Phe Lys Lys Glu Asn Gly Lys Phe Lys Ile Glu His Asp Arg  
 20 25 30  
 Thr Phe Arg Pro Tyr Ile Tyr Ala Leu Leu Arg Asp Asp Ser Lys Ile  
 35 40 45  
 Glu Glu Val Lys Lys Ile Thr Gly Glu Arg His Gly Lys Ile Val Arg  
 50 55 60  
 Ile Val Asp Val Glu Lys Val Glu Lys Phe Leu Gly Lys Pro Ile  
 65 70 75 80  
 Thr Val Trp Lys Leu Tyr Leu Glu His Pro Gln Asp Val Pro Thr Ile  
 85 90 95  
 Arg Glu Lys Val Arg Glu His Pro Ala Val Val Asp Ile Phe Glu Tyr  
 100 105 110  
 Asp Ile Pro Phe Ala Lys Arg Tyr Leu Ile Asp Lys Gly Leu Ile Pro  
 115 120 125

Met Glu Gly Glu Glu Glu Leu Lys Ile Leu Ala Phe Asp Ile Glu Thr  
130 135 140  
Leu Tyr His Glu Gly Glu Phe Gly Lys Gly Pro Ile Ile Met Ile  
145 150 155 160  
Ser Tyr Ala Asp Glu Asn Glu Ala Lys Val Ile Thr Trp Lys Asn Ile  
165 170 175  
Asp Leu Pro Tyr Val Glu Val Val Ser Ser Glu Arg Glu Met Ile Lys  
180 185 190  
Arg Phe Leu Arg Ile Ile Arg Glu Lys Asp Pro Asp Ile Ile Val Thr  
195 200 205  
Tyr Asn Gly Asp Ser Phe Asp Phe Pro Tyr Leu Ala Lys Arg Ala Glu  
210 215 220  
Lys Leu Gly Ile Lys Leu Thr Ile Gly Arg Asp Gly Ser Glu Pro Lys  
225 230 235 240  
Met Gln Arg Ile Gly Asp Met Thr Ala Val Glu Val Lys Gly Arg Ile  
245 250 255  
His Phe Asp Leu Tyr His Val Ile Thr Arg Thr Ile Asn Leu Pro Thr  
260 265 270  
Tyr Thr Leu Glu Ala Val Tyr Glu Ala Ile Phe Gly Lys Pro Lys Glu  
275 280 285  
Lys Val Tyr Ala Asp Glu Ile Ala Lys Ala Trp Glu Ser Gly Glu Asn  
290 295 300  
Leu Glu Arg Val Ala Lys Tyr Ser Met Glu Asp Ala Lys Ala Thr Tyr  
305 310 315 320  
Glu Leu Gly Lys Glu Phe Leu Pro Met Glu Ile Gln Leu Ser Arg Leu  
325 330 335  
Val Gly Gln Pro Leu Trp Asp Val Ser Arg Ser Ser Thr Gly Asn Leu  
340 345 350  
Val Glu Trp Phe Leu Leu Arg Lys Ala Tyr Glu Arg Asn Glu Val Ala  
355 360 365  
Pro Asn Lys Pro Ser Glu Glu Tyr Gln Arg Arg Leu Arg Glu Ser  
370 375 380  
Tyr Thr Gly Gly Phe Val Lys Glu Pro Glu Lys Gly Leu Trp Glu Asn  
385 390 395 400  
Ile Val Tyr Leu Asp Phe Arg Ala Leu Tyr Pro Ser Ile Ile Thr  
405 410 415  
His Asn Val Ser Pro Asp Thr Leu Asn Leu Glu Gly Cys Lys Asn Tyr  
420 425 430  
Asp Ile Ala Pro Gln Val Gly His Lys Phe Cys Lys Asp Ile Pro Gly  
435 440 445  
Phe Ile Pro Ser Leu Leu Gly His Leu Leu Glu Glu Arg Gln Lys Ile  
450 455 460  
Lys Thr Lys Met Lys Glu Thr Gln Asp Pro Ile Glu Lys Ile Leu Leu  
465 470 475 480  
Asp Tyr Arg Gln Lys Ala Ile Lys Leu Leu Ala Asn Ser Phe Tyr Gly  
485 490 495  
Tyr Tyr Gly Tyr Ala Lys Ala Arg Trp Tyr Cys Lys Glu Cys Ala Glu  
500 505 510  
Ser Val Thr Ala Trp Gly Arg Lys Tyr Ile Glu Leu Val Trp Lys Glu  
515 520 525  
Leu Glu Glu Lys Phe Gly Phe Lys Val Leu Tyr Ile Asp Thr Asp Gly  
530 535 540  
Leu Tyr Ala Thr Ile Pro Gly Gly Glu Ser Glu Glu Ile Lys Lys Lys  
545 550 555 560  
Ala Leu Glu Phe Val Lys Tyr Ile Asn Ser Lys Leu Pro Gly Leu Leu  
565 570 575  
Glu Leu Glu Tyr Glu Gly Phe Tyr Lys Arg Gly Phe Phe Val Thr Lys  
580 585 590  
Lys Arg Tyr Ala Val Ile Asp Glu Glu Gly Lys Val Ile Thr Arg Gly  
595 600 605

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Glu | Ile | Val | Arg | Arg | Asp | Trp | Ser | Glu | Ile | Ala | Lys | Glu | Thr | Gln |
| 610 |     |     |     |     |     | 615 |     |     |     |     |     | 620 |     |     |     |
| Ala | Arg | Val | Leu | Glu | Thr | Ile | Leu | Lys | His | Gly | Asp | Val | Glu | Glu | Ala |
| 625 |     |     |     |     |     | 630 |     |     |     |     | 635 |     |     |     | 640 |
| Val | Arg | Ile | Val | Lys | Glu | Val | Ile | Gln | Lys | Leu | Ala | Asn | Tyr | Glu | Ile |
|     |     |     |     |     |     | 645 |     |     |     | 650 |     |     |     | 655 |     |
| Pro | Pro | Glu | Lys | Leu | Ala | Ile | Tyr | Glu | Gln | Ile | Thr | Arg | Pro | Leu | His |
|     |     |     |     |     |     | 660 |     |     | 665 |     |     |     | 670 |     |     |
| Glu | Tyr | Lys | Ala | Ile | Gly | Pro | His | Val | Ala | Val | Ala | Lys | Lys | Leu | Ala |
|     |     |     |     |     |     | 675 |     |     | 680 |     |     |     | 685 |     |     |
| Ala | Lys | Gly | Val | Lys | Ile | Lys | Pro | Gly | Met | Val | Ile | Gly | Tyr | Ile | Val |
|     |     |     |     |     |     | 690 |     |     | 695 |     |     | 700 |     |     |     |
| Leu | Arg | Gly | Asp | Gly | Pro | Ile | Ser | Asn | Arg | Ala | Ile | Leu | Ala | Glu | Glu |
| 705 |     |     |     |     |     | 710 |     |     |     |     | 715 |     |     |     | 720 |
| Tyr | Asp | Pro | Lys | Lys | His | Lys | Tyr | Asp | Ala | Glu | Tyr | Tyr | Ile | Glu | Asn |
|     |     |     |     |     |     | 725 |     |     |     | 730 |     |     |     | 735 |     |
| Gln | Val | Leu | Pro | Ala | Val | Leu | Arg | Ile | Leu | Glu | Gly | Phe | Gly | Tyr | Arg |
|     |     |     |     |     |     | 740 |     |     | 745 |     |     |     | 750 |     |     |
| Lys | Glu | Asp | Leu | Arg | Tyr | Gln | Lys | Thr | Arg | Gln | Val | Gly | Leu | Thr | Ser |
|     |     |     |     |     |     | 755 |     |     | 760 |     |     | 765 |     |     |     |
| Trp | Leu | Asn | Ile | Lys | Lys | Ser | Gly | Thr | Gly | Gly | Gly | Ala | Thr | Val |     |
|     |     |     |     |     |     | 770 |     |     | 775 |     |     | 780 |     |     |     |
| Lys | Phe | Lys | Tyr | Lys | Gly | Glu | Glu | Lys | Glu | Val | Asp | Ile | Ser | Lys | Ile |
| 785 |     |     |     |     |     | 790 |     |     |     |     | 795 |     |     |     | 800 |
| Lys | Lys | Val | Trp | Arg | Val | Gly | Lys | Met | Ile | Ser | Phe | Thr | Tyr | Asp | Glu |
|     |     |     |     |     |     | 805 |     |     |     | 810 |     |     |     | 815 |     |
| Gly | Gly | Gly | Lys | Thr | Gly | Arg | Gly | Ala | Val | Ser | Glu | Lys | Asp | Ala | Pro |
|     |     |     |     |     |     | 820 |     |     | 825 |     |     |     | 830 |     |     |
| Lys | Glu | Leu | Leu | Gln | Met | Leu | Glu | Lys | Gln | Lys | Lys |     |     |     |     |
|     |     |     |     |     |     | 835 |     |     | 840 |     |     |     |     |     |     |

<210> 9  
<211> 1904  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence:fusion protein  
Sac7d-deltaTaq

```
<220>
<221> CDS
<222> (1)..(1904)
<223> Sac7d-deltaTaq
```

```
<400> 9
atgattacga attcgacggt gaaggtaaag ttcaagtata agggtgaaga gaaagaagta 60
gacactcaa agataaagaa gggttgaga gtaggcaaaa tggtgtcctt tacctatgac 120
gacaatggta agacaggtag aggagctgta agcgagaaaag atgctccaaa agaattatta 180
gacatgttag caagagcaga aagagagaag aaaggcgccg gtgtcactag tcccaaggcc 240
ctggaggagg ccccctggcc cccgccccaa ggggccttcg tgggctttgt gcttcccgcc 300
aaggagccca tggggccca tcttctggcc ctggccgccc ccaggggggg ccgggtccac 360
cggggcccccgg agccttataa agccctcagg gacctgaagg aggegcgggg gcttctegcc 420
aaagaccta gcttctggc cctgagggaa ggccttggcc tcccgccccg cgacgacccc 480
atgctcctcg cctacctcct ggacccttcc aacaccaccc ccgaggggggt ggcccgccgc 540
tacggccgggg agtggacgga ggaggcgggg gagcgggccc cccttccga gaggctttc 600
gccaaacctgt gggggaggct tgagggggag gagaggctcc ttggcttta ccgggagggtg 660
gagagggccc ttcccgctgt cctggcccac atggaggcca cgggggtgcg cctggacgtg 720
gcctatctca gggcctgtc cctggaggtg gccgaggaga tcgcccgcct cgaggccggg 780
tcttccaccc gggcggccac cccttcaacc tcaactcccc ggaccagctg gaaagggtcc 840
```

tctttgacga gctaggcgctt cccgccatcg gcaagacgga gaagaccggc aagcgctcca 900  
 ccagcgcgcg cgtcctggag gccctccgcg agggccaccc catcgatggag aagatcctgc 960  
 agtaccggga gtcaccaag ctgaagagca cttacattga ccccttgcgc gacctcatcc 1020  
 acccccaggac gggccgcctc cacacccgct tcaaccagac ggccacggcc acgggcaggc 1080  
 taagtagctc cgatccaaac ctccagaaca tccccgtccg caccggcgtt gggcagagga 1140  
 tccgcccggc cttcatcgcc gaggggggt ggctattggt ggccctggac tatagccaga 1200  
 tagagcttag ggtgtcgcc cacctctccg ggcacgagaa cctgatccgg gtctccagg 1260  
 aggggcggga catccacacg gagaccgcca gctggatgtt cggcgtcccc cgggaggccg 1320  
 tggacccctt gatgcgcgg gcggccaaga ccatcaactt cggggtcctc tacggcatgt 1380  
 cggcccacccg cctctccag gagctagcca tcccttacga ggaggccag gccttcattg 1440  
 agcgctactt tcagagcttc cccaagggtgc gggcctggat tgagaagacc ctggaggagg 1500  
 gcaggaggcg ggggtacgtg gagaccctct tcggccgcg cgcgtacgtg ccagacctag 1560  
 aggcccgggt gaagagctg cgggaggcg ccgagcgcac ggccttcaac atgcccgtcc 1620  
 agggcaccgc cgccgacctc atgaagctgg ctatggtaa gctttcccc aggctggagg 1680  
 aaatgggggc caggatgctc cttcagggtcc acgacgagct ggtcctcgag gccccaaaag 1740  
 agagggcgggaa ggccgtggcc cggctggcca aggaggtcat ggaggggggtg tatcccctgg 1800  
 ccgtccccctt ggagggtggag gtggggatag gggaggactg gctctccgccc aaggaggcga 1860  
 ttgatggccg cggcggaggc gggcatcatc atcatcatca ttaa 1904

<210> 10  
 <211> 634  
 <212> PRT  
 <213> Artificial Sequence

<220>  
 <223> Description of Artificial Sequence:fusion protein  
 Sac7d-de<sub>n</sub>Taq

<400> 10  
 Met Ile Thr Asn Ser Thr Val Lys Val Lys Phe Lys Tyr Lys Gly Glu  
       1               5                    10                      15  
 Glu Lys Glu Val Asp Thr Ser Lys Ile Lys Lys Val Trp Arg Val Gly  
       20                       25                      30  
 Lys Met Val Ser Phe Thr Tyr Asp Asp Asn Gly Lys Thr Gly Arg Gly  
       35                       40                      45  
 Ala Val Ser Glu Lys Asp Ala Pro Lys Glu Leu Leu Asp Met Leu Ala  
       50                       55                      60  
 Arg Ala Glu Arg Glu Lys Lys Gly Gly Val Thr Ser Pro Lys Ala  
       65                       70                      75                      80  
 Leu Glu Glu Ala Pro Trp Pro Pro Glu Gly Ala Phe Val Gly Phe  
       85                       90                      95  
 Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp Leu Leu Ala Leu Ala  
       100                      105                      110  
 Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro Glu Pro Tyr Lys Ala  
       115                      120                      125  
 Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu Ala Lys Asp Leu Ser  
       130                      135                      140  
 Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro Pro Gly Asp Asp Pro  
       145                      150                      155                      160  
 Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn Thr Thr Pro Glu Gly  
       165                      170                      175  
 Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu Glu Ala Gly Glu Arg  
       180                      185                      190  
 Ala Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu Trp Gly Arg Leu Glu  
       195                      200                      205  
 Gly Glu Glu Arg Leu Leu Trp Leu Tyr Arg Glu Val Glu Arg Pro Leu  
       210                      215                      220  
 Ser Ala Val Leu Ala His Met Glu Ala Thr Gly Val Arg Leu Asp Val  
       225                      230                      235                      240

Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala Glu Glu Ile Ala Arg  
                  245                 250                 255  
 Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His Pro Phe Asn Leu Asn  
                  260                 265                 270  
 Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp Glu Leu Gly Leu Pro  
                  275                 280                 285  
 Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg Ser Thr Ser Ala Ala  
                  290                 295                 300  
 Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile Val Glu Lys Ile Leu  
                  305                 310                 315                 320  
 Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr Tyr Ile Asp Pro Leu  
                  325                 330                 335  
 Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu His Thr Arg Phe Asn  
                  340                 345                 350  
 Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser Ser Asp Pro Asn Leu  
                  355                 360                 365  
 Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln Arg Ile Arg Arg Ala  
                  370                 375                 380  
 Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala Leu Asp Tyr Ser Gln  
                  385                 390                 395                 400  
 Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly Asp Glu Asn Leu Ile  
                  405                 410                 415  
 Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr Glu Thr Ala Ser Trp  
                  420                 425                 430  
 Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro Leu Met Arg Arg Ala  
                  435                 440                 445  
 Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly Met Ser Ala His Arg  
                  450                 455                 460  
 Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu Ala Gln Ala Phe Ile  
                  465                 470                 475                 480  
 Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg Ala Trp Ile Glu Lys  
                  485                 490                 495  
 Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val Glu Thr Leu Phe Gly  
                  500                 505                 510  
 Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg Val Lys Ser Val Arg  
                  515                 520                 525  
 Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro Val Gln Gly Thr Ala  
                  530                 535                 540  
 Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu Phe Pro Arg Leu Glu  
                  545                 550                 555                 560  
 Glu Met Gly Ala Arg Met Leu Leu Gln Val His Asp Glu Leu Val Leu  
                  565                 570                 575  
 Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala Arg Leu Ala Lys Glu  
                  580                 585                 590  
 Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro Leu Glu Val Glu Val  
                  595                 600                 605  
 Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu Gly Ile Asp Gly Arg  
                  610                 615                 620  
 Gly Gly Gly His His His His His His  
                  625                 630

<210> 11  
 <211> 1965  
 <212> DNA  
 <213> Artificial Sequence

<220>  
 <223> Description of Artificial Sequence:fusion protein  
 PL-deltaTaq

```

<220>
<221> CDS
<222> (1)..(1965)
<223> PL-deltaTaq

<400> 11
atgattacga attcgaagaa aaagaaaaag aaaaagcgta agaaaacgcaa aaagaaaaag 60
aaaggcggcg gtgtcaact gttgcgaacc gtaaagtca agtacaagg cgaagaaaaa 120
gaggttagaca tctccaagat caagaaagta tggcgtgtgg gcaagatgtat ctcccttcacc 180
tacgacgagg gcgggtggcaa gaccggccgt ggtgcggtaa gcgaaaagga cgccgcgaag 240
gagctgctgc agatgctgga gaagcagaaa aaggcggcg gtgtcaccag tcccaaggcc 300
ctggaggagg cccctggcc cccgcccggaa ggggccttcg tgggcttgcgt gcttccgc 360
aaggagcca tggggccca tcttctggcc ctggccggcc ccaggggggg cgggtccac 420
cgggcccccc agcctataa agccctcagg gacctgaagg aggccgggg gtttctcgcc 480
aaagaccta gcttctggc cctgaggaa ggccttggcc tcccgcccg cgacgacccc 540
atgctcctcg cctaccttcg ggacccttcc aacaccaccc ccgagggggt gccccggcgc 600
tacggcgaaa agtggacgga ggaggcgaaa gagcggggccg cccttccga gaggctttc 660
gccaacctgt gggggaggct tgagggggag gagaggctcc ttggcttta cggggagggtg 720
gagaggcccc ttccgctgt cctggccac atggaggcca cgggggtgcg cttggacgtg 780
gcctatctca gggcctgtc cttggagggt gccgaggaga tcgcccgcct cgaggccgag 840
gtcttccgc tggccggca ccccttcaac ctcaactccc gggaccagct gaaaagggtc 900
ctcttgacg agctagggtc tcccgccatc ggcaagacgg agaagacccg caagcgctcc 960
accagcgccg ccgttctggc ggcctccgc gaggcccacc ccategttgcgaa gatccctg 1020
cagtaccggg agctcaccaa gctgaagagc acctacattt accccttgcgaa gacccatc 1080
caccggcaga cggggccct ccacacccgc ttcaaccaga cggccacggc cacgggcagg 1140
ctaagtagct ccgatcccaa cctccagaac atccccgttcc gcaccccgct tggcagagg 1200
atccggccggg ctttcatcgc cgaggagggg ttggctattgg tggcccttgcgatccatc 1260
atagagctca ggggtctggc ccaccttcc ggcgacgaga acctgatccg ggtcttccag 1320
gagggcgaaa acatccacac ggagaccggc agctggatgt tcggcgtccc cggggaggcc 1380
gtggacccccc tggatggccg ggcggccaa accatcaact tcggggcttccatcg 1440
tcggcccccacc gccttccca ggagcttagcc atcccttacg aggaggccca ggccttcatt 1500
gagcgctact ttcaagactt ccccaagggtt cgggccttgcgaa ttgagaagac cctggaggag 1560
ggcaggaggc ggggtacgt ggagaccctt ttccggccgc gccgctacgt gccagaccta 1620
gaggcccggg tgaagagcgt gcccggaggcg gcccggcgtca tggccttcaatcgccgtc 1680
caggccaccc cccggccaccc catgaagctt gctatggatgt agctcttccc caggctggag 1740
gaaatggggg ccaggatgtt ctttccggatc cacgacggc tggcccttgcgaa gggcccaaaa 1800
gagaggccggg aggccgtggc ccggctggcc aaggaggatca tggagggggt gtatccctg 1860
ggcgtgcccc tggaggttggc ggtggggata gggaggact ggcttccgc caaggaggcc 1920
atttatggcc gggccggagg cggccatcatc catcatcatc attaa 1965

<210> 12
<211> 654
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:fusion protein
PL-deltaTaq

<400> 12
Met Ile Thr Asn Ser Lys Lys Lys Lys Lys Arg Lys Lys Arg
1 5 10 15
Lys Lys Lys Lys Lys Gly Gly Val Thr Ser Gly Ala Thr Val Lys
20 25 30
Phe Lys Tyr Lys Gly Glu Glu Lys Glu Val Asp Ile Ser Lys Ile Lys
35 40 45
Lys Val Trp Arg Val Gly Lys Met Ile Ser Phe Thr Tyr Asp Glu Gly
50 55 60
Gly Gly Lys Thr Gly Arg Gly Ala Val Ser Glu Lys Asp Ala Pro Lys
65 70 75 80

```

Glu Leu Leu Gln Met Leu Glu Lys Gln Lys Gly Gly Gly Val Thr  
       85                 90                 95  
 Ser Pro Lys Ala Leu Glu Glu Ala Pro Trp Pro Pro Pro Glu Gly Ala  
       100                105                110  
 Phe Val Gly Phe Val Leu Ser Arg Lys Glu Pro Met Trp Ala Asp Leu  
       115                120                125  
 Leu Ala Leu Ala Ala Ala Arg Gly Gly Arg Val His Arg Ala Pro Glu  
       130                135                140  
 Pro Tyr Lys Ala Leu Arg Asp Leu Lys Glu Ala Arg Gly Leu Leu Ala  
       145                150                155                160  
 Lys Asp Leu Ser Val Leu Ala Leu Arg Glu Gly Leu Gly Leu Pro Pro  
       165                170                175  
 Gly Asp Asp Pro Met Leu Leu Ala Tyr Leu Leu Asp Pro Ser Asn Thr  
       180                185                190  
 Thr Pro Glu Gly Val Ala Arg Arg Tyr Gly Gly Glu Trp Thr Glu Glu  
       195                200                205  
 Ala Gly Glu Arg Ala Ala Leu Ser Glu Arg Leu Phe Ala Asn Leu Trp  
       210                215                220  
 Gly Arg Leu Glu Gly Glu Arg Leu Leu Trp Leu Tyr Arg Glu Val  
       225                230                235                240  
 Glu Arg Pro Leu Ser Ala Val Leu Ala His Met Glu Ala Thr Gly Val  
       245                250                255  
 Arg Leu Asp Val Ala Tyr Leu Arg Ala Leu Ser Leu Glu Val Ala Glu  
       260                265                270  
 Glu Ile Ala Arg Leu Glu Ala Glu Val Phe Arg Leu Ala Gly His Pro  
       275                280                285  
 Phe Asn Leu Asn Ser Arg Asp Gln Leu Glu Arg Val Leu Phe Asp Glu  
       290                295                300  
 Leu Gly Leu Pro Ala Ile Gly Lys Thr Glu Lys Thr Gly Lys Arg Ser  
       305                310                315                320  
 Thr Ser Ala Ala Val Leu Glu Ala Leu Arg Glu Ala His Pro Ile Val  
       325                330                335  
 Glu Lys Ile Leu Gln Tyr Arg Glu Leu Thr Lys Leu Lys Ser Thr Tyr  
       340                345                350  
 Ile Asp Pro Leu Pro Asp Leu Ile His Pro Arg Thr Gly Arg Leu His  
       355                360                365  
 Thr Arg Phe Asn Gln Thr Ala Thr Ala Thr Gly Arg Leu Ser Ser Ser  
       370                375                380  
 Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Thr Pro Leu Gly Gln Arg  
       385                390                395                400  
 Ile Arg Arg Ala Phe Ile Ala Glu Glu Gly Trp Leu Leu Val Ala Leu  
       405                410                415  
 Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His Leu Ser Gly Asp  
       420                425                430  
 Glu Asn Leu Ile Arg Val Phe Gln Glu Gly Arg Asp Ile His Thr Glu  
       435                440                445  
 Thr Ala Ser Trp Met Phe Gly Val Pro Arg Glu Ala Val Asp Pro Leu  
       450                455                460  
 Met Arg Arg Ala Ala Lys Thr Ile Asn Phe Gly Val Leu Tyr Gly Met  
       465                470                475                480  
 Ser Ala His Arg Leu Ser Gln Glu Leu Ala Ile Pro Tyr Glu Glu Ala  
       485                490                495  
 Gln Ala Phe Ile Glu Arg Tyr Phe Gln Ser Phe Pro Lys Val Arg Ala  
       500                505                510  
 Trp Ile Glu Lys Thr Leu Glu Glu Gly Arg Arg Arg Gly Tyr Val Glu  
       515                520                525  
 Thr Leu Phe Gly Arg Arg Arg Tyr Val Pro Asp Leu Glu Ala Arg Val  
       530                535                540  
 Lys Ser Val Arg Glu Ala Ala Glu Arg Met Ala Phe Asn Met Pro Val  
       545                550                555                560

Gln Gly Thr Ala Ala Asp Leu Met Lys Leu Ala Met Val Lys Leu Phe  
565 570 575  
Pro Arg Leu Glu Glu Met Gly Ala Arg Met Leu Leu Gln Val His Asp  
580 585 590  
Glu Leu Val Leu Glu Ala Pro Lys Glu Arg Ala Glu Ala Val Ala Arg  
595 600 605  
Leu Ala Lys Glu Val Met Glu Gly Val Tyr Pro Leu Ala Val Pro Leu  
610 615 620  
Glu Val Glu Val Gly Ile Gly Glu Asp Trp Leu Ser Ala Lys Glu Gly  
625 630 635 640  
Ile Asp Gly Arg Gly Gly His His His His His His His  
645 650

<210> 13  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer L71F  
  
<400> 13  
cctgctctgc cgcttcacgc 20  
  
<210> 14  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer L71R  
  
<400> 14  
gcacagcgcc tggctgagga 20  
  
<210> 15  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer L18015F  
  
<400> 15  
tgacggagga taacgccagc ag 22  
  
<210> 16  
<211> 25  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer L23474R  
  
<400> 16  
gaaagacgat gggtcgctaa tacgc 25

<210> 17  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer L18015F

<400> 17  
tgacggagga taacgccagc ag

22

<210> 18  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer L29930R

<400> 18  
ggggttggag gtcaatgggt tc

22

<210> 19  
<211> 20  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer L30350F

<400> 19  
cctgctctgc cgcttcacgc

20

<210> 20  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer L35121R

<400> 20  
cacatggtagc agcaaggctg gc

22

<210> 21  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer L2089F

<400> 21  
cccgatatctg ctgggatact ggc

23

<210> 22  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer L7112R  
  
<400> 22  
cagcggtgct gactgaatca tgg

23

<210> 23  
<211> 19  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer L30350F  
  
<400> 23  
cctgcctgcc gcttcacgc

19

<210> 24  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer L40547R  
  
<400> 24  
ccaatacccg tttcatcgcg gc

22

<210> 25  
<211> 19  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence:primer  
H-Amelo-Y  
  
<400> 25  
ccacacctatc ctgggcacc

19

<210> 26  
<211> 22  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial  
Sequence:primer H-Amelo-YR  
  
<400> 26  
gcttgaggcc aaccatcaga gc

22

```

<210> 27
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:human
      beta-globin primer Bglbn536F

<400> 27
ggttggccaa tctactccca gg

<210> 28
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:human
      beta-globin primer Bglbn536R

<400> 28
gctcaactcag tgtggcaaag

<210> 29
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:human
      beta-globin primer Bglbn1408R

<400> 29
gattagcaaa agggcctagc ttgg

<210> 30
<211> 6
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:6-His epitope
      tag

<400> 30
His His His His His His
    1           5

<210> 31
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:anti-DYKDDDDK
      epitope tag

```

22

20

24

<400> 31  
Asp Tyr Lys Asp Asp Asp Asp Lys  
1 5

<210> 32  
<211> 4  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence:peptide linker

<400> 32  
Gly Gly Val Thr  
1

<210> 33  
<211> 6  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence:peptide linker

<400> 33  
Gly Thr Gly Gly Gly Gly  
1 5

<210> 34  
<211> 21  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence:lysine-rich peptide

<400> 34  
Asn Ser Lys Lys Lys Lys Lys Lys Arg Lys Lys Arg Lys Lys Lys  
1 5 10 15  
Gly Gly Gly Val Thr  
20