

Teoría de Grafos

Juan David Rojas Gacha

2020 - II

Emparejamiento

 Un emparejamiento M en un grafo G es un conjunto de aristas (no bucles) sin extremos comunes.

Emparejamiento

- Un emparejamiento M en un grafo G es un conjunto de aristas (no bucles) sin extremos comunes.
- Los vértices incidentes a las aristas de un emparejamiento M son saturados por M, los demás vértices son insaturados. (M-saturado, M-insaturado).

Emparejamiento

- Un emparejamiento M en un grafo G es un conjunto de aristas (no bucles) sin extremos comunes.
- Los vértices incidentes a las aristas de un emparejamiento M son saturados por M, los demás vértices son insaturados. (M-saturado, M-insaturado).
- Un emparejamiento perfecto en un grafo G es un emparejamiento que satura cada vértice de G.

Emparejamiento

- Un emparejamiento M en un grafo G es un conjunto de aristas (no bucles) sin extremos comunes.
- Los vértices incidentes a las aristas de un emparejamiento M son saturados por M, los demás vértices son insaturados. (M-saturado, M-insaturado).
- Un emparejamiento perfecto en un grafo G es un emparejamiento que satura cada vértice de G.
- El **tamaño** de un emparejamiento *M* es el número de aristas en *M*.

Sea $K_{n,n}$ con conjuntos partitos $X = \{x_1, \dots, x_n\}$ y $Y_n = \{y_1, \dots, y_n\}$.

• Un emparejamiento perfecto define una biyeción de X a Y.

Sea $K_{n,n}$ con conjuntos partitos $X = \{x_1, \dots, x_n\}$ y $Y_n = \{y_1, \dots, y_n\}$.

- Un emparejamiento perfecto define una biyeción de X a Y.
- Hay n! emparejamientos perfectos de tamaño n.

Sea $K_{n,n}$ con conjuntos partitos $X = \{x_1, \dots, x_n\}$ y $Y_n = \{y_1, \dots, y_n\}$.

- Un emparejamiento perfecto define una biyeción de X a Y.
- Hay n! emparejamientos perfectos de tamaño n.
- Cada emparejamiento perfecto es una permutación del conjunto
 [n] = {1,...,n}.

Sea $K_{n,n}$ con conjuntos partitos $X = \{x_1, \dots, x_n\}$ y $Y_n = \{y_1, \dots, y_n\}$.

- Un emparejamiento perfecto define una biyeción de X a Y.
- Hay n! emparejamientos perfectos de tamaño n.
- Cada emparejamiento perfecto es una permutación del conjunto
 [n] = {1,...,n}.

- Los emparejamientos se pueden representar como matrices: sean X y
 Y los índices de las filas y las columnas respectivamente. La entrada
 (i, j) es 1 para cada arista x_iy_j en M.
- Nótese que hay un 1 en cada fila y en cada columna.

- Los emparejamientos se pueden representar como matrices: sean X y
 Y los índices de las filas y las columnas respectivamente. La entrada
 (i, j) es 1 para cada arista x_iy_j en M.
- Nótese que hay un 1 en cada fila y en cada columna.

$$\begin{array}{c|cccc}
 & y_1 & y_2 & y_3 \\
 x_1 & 0 & 1 & 0 \\
 x_2 & 0 & 0 & 1 \\
 x_3 & 1 & 0 & 0
\end{array}$$

• K_{2n+1} no tiene emparejamientos perfectos.

- K_{2n+1} no tiene emparejamientos perfectos.
- K_{2n} tiene $\frac{(2n)!}{2^n n!}$ emparejamientos perfectos de tamaño n.

- K_{2n+1} no tiene emparejamientos perfectos.
- K_{2n} tiene $\frac{(2n)!}{2^n n!}$ emparejamientos perfectos de tamaño n.

- K_{2n+1} no tiene emparejamientos perfectos.
- K_{2n} tiene $\frac{(2n)!}{2^n n!}$ emparejamientos perfectos de tamaño n.

 K_6 tiene 15 emparejamientos perfectos. K_{12} tiene 10395 emparejamientos perfectos.

• Sea f_n el número de emparejamientos perfectos de K_{2n} .

- Sea f_n el número de emparejamientos perfectos de K_{2n} .
- Nótese que f_n es el número de formas de hacer parejas (de distintos elementos) con 2n elementos.

- Sea f_n el número de emparejamientos perfectos de K_{2n} .
- Nótese que f_n es el número de formas de hacer parejas (de distintos elementos) con 2n elementos.
- Hay 2n-1 posibles compañeros para el vértice v_{2n} y para cada una de éstas selecciones hay f_{n-1} maneras de completar el emparejamiento.

- Sea f_n el número de emparejamientos perfectos de K_{2n} .
- Nótese que f_n es el número de formas de hacer parejas (de distintos elementos) con 2n elementos.
- Hay 2n-1 posibles compañeros para el vértice v_{2n} y para cada una de éstas selecciones hay f_{n-1} maneras de completar el emparejamiento.
- Luego,

$$f_n = \begin{cases} (2n-1)f_{n-1} & \text{si } n \ge 1\\ 1 & \text{si } n = 0 \end{cases}$$

• Por lo tanto, si $n \ge 1$:

$$f_n = (2n-1)(2n-3)\cdots(1)$$

• Por lo tanto, si $n \ge 1$:

$$f_n = (2n-1)(2n-3)\cdots(1)$$

Se puede demostrar por inducción que:

$$(1)\cdots(2n-3)(2n-1)=\frac{(2n)!}{2^n n!}, \ \forall n\geq 1.$$

Argumento por conteo:

• De un ordenamiento de 2n elementos (de los cuales hay (2n)!), se forma un emparejamiento perfecto al tomar los primeros dos, los siguientes dos y así sucesivamente.

Argumento por conteo:

- De un ordenamiento de 2n elementos (de los cuales hay (2n)!), se forma un emparejamiento perfecto al tomar los primeros dos, los siguientes dos y así sucesivamente.
- Cada emparejamiento perfecto es generado por 2ⁿn!
 ordenamientos, ya que el cambio de orden en la parejas (n!)
 o el orden dentro de las parejas (2ⁿ) no cambia el
 emparejamiento.

Argumento por conteo:

- De un ordenamiento de 2n elementos (de los cuales hay (2n)!), se forma un emparejamiento perfecto al tomar los primeros dos, los siguientes dos y así sucesivamente.
- Cada emparejamiento perfecto es generado por 2ⁿn!
 ordenamientos, ya que el cambio de orden en la parejas (n!)
 o el orden dentro de las parejas (2ⁿ) no cambia el
 emparejamiento.
- Así,

$$f_n = \frac{(2n)!}{2^n n!}$$

Emparejamiento maximal

Un emparejamiento maximal es un emparejamiento que no puede aumentar su tamaño al agregar una arista.

Emparejamiento maximal

Un emparejamiento maximal es un emparejamiento que no puede aumentar su tamaño al agregar una arista.

Emparejamiento máximo

Un emparejamiento máximo es un emparejamiento de tamaño máximo entre todos los emparejamientos del grafo.

• Un emparejamiento M es maximal si cada arista $e \notin M$ es incidente a una arista $e' \in M$.

- Un emparejamiento M es maximal si cada arista $e \notin M$ es incidente a una arista $e' \in M$.
- Todo emparejamiento máximo es maximal.

- Un emparejamiento M es maximal si cada arista $e \notin M$ es incidente a una arista $e' \in M$.
- Todo emparejamiento máximo es maximal.

Ejemplo

- $M_1 = \{bc, de\}$ es un emparejamiento maximal.
- $M_2 = \{ab, cd, ef\}$ es un emparejamiento máximo.

M-camino alternante

Dado un emparejamiento M, un M-camino alternante es un camino que alterna entre aristas $e \in M$ y aristas $e' \notin M$.

M-camino alternante

Dado un emparejamiento M, un M-camino alternante es un camino que alterna entre aristas $e \in M$ y aristas $e' \notin M$.

M-camino de aumento

Un M-camino de aumento es un M-camino alternante cuyos extremos son insaturados por M.

Ejemplo

- En $M_1 = \{bc, de\}$, P_6 es un M_1 -camino alternante. Los extremos son insaturados por M_1 , luego P_6 es un M_1 -camino de aumento.
- En $M_2 = \{ab, cd, ef\}$, P_6 es un M_2 -camino alternante. Los extremos son saturados por M_2 , luego P_6 no es un M_2 -camino de aumento.

Dado P un M-camino de aumento, si se reemplazan las aristas de M en P con las otras aristas de P se obtiene un nuevo emparejamiento M' con una arista adicional.

Dado P un M-camino de aumento, si se reemplazan las aristas de M en P con las otras aristas de P se obtiene un nuevo emparejamiento M' con una arista adicional.

Teorema (Berge)

Un emparejamiento M en un grafo G es un emparejamiento máximo en G sii G no tiene un M-camino de aumento.

Diferencia simétrica

 Si G y H son grafos con conjunto de vértices V, entonces la diferencia simétrica G△H es el grafo con conjunto de vértices V y aristas E(G)△E(H).

Diferencia simétrica

- Si G y H son grafos con conjunto de vértices V, entonces la diferencia simétrica G△H es el grafo con conjunto de vértices V y aristas E(G)△E(H).
- Si M y M' son emparejamientos entonces

$$M\triangle M'=(M-M')\cup (M'-M)$$

Ejemplo

Si $M = \{ae, ij, bf, cd, gh, kl\}$ y $M' = \{ab, ei, jf, kh, cd\}$ entonces

$$M\triangle M' = \{ae, ij, bf, gh, kl, ab, ei, jf, kh\}$$

Cada componente de la diferencia simétrica de dos emparejamientos es un camino o un ciclo.

Definición

Sea M un emparejamiento en un grafo G. Si S es un conjunto de vértices, $S\subseteq V(G)$, entonces N(S) es el conjunto de vértices que tienen un vecino en S.

Definición

Sea M un emparejamiento en un grafo G. Si S es un conjunto de vértices, $S \subseteq V(G)$, entonces N(S) es el conjunto de vértices que tienen un vecino en S.

Teorema (Condición de Hall)

Un X, Y-bigrafo G tiene un emparejamiento que satura a X (emparejamiento completo) sii

$$|N(S)| \ge |S|, \ \forall S \subseteq X.$$

Ejemplo

Sean $S = \{x_1, x_2, x_3\}$ y $N(S) = \{y_1, y_3\}$. Como |N(S)| < |S|, entonces no existe un emparejamiento que sature a X.

Ejemplo

Como $|N(S)| \ge |S|, \ \forall S \subseteq X$, entonces existe un emparejamiento que satura a X.

S	N(S)	S	N(S)
Ø	Ø	0	0
$\{x_1\}$	$\{y_1, y_2, y_3\}$	1	3
{x ₂ }	{y ₂ }	1	1
$\{x_3\}$	$\{y_2, y_3, y_5\}$	1	3
{ <i>x</i> ₄ }	$\{y_4, y_5\}$	1	2
$\{x_1, x_2\}$	$\{y_1, y_2, y_3\}$	2	3
$\{x_1, x_3\}$	$\{y_1, y_2, y_3, y_4\}$	2	4
$\{x_1, x_4\}$	Y	2	5
$\{x_2, x_3\}$	$\{y_2, y_3, y_5\}$	2	3
$\{x_2, x_4\}$	$\{y_2, y_4, y_5\}$	2	3
$\{x_3, x_4\}$	$\{y_2, y_3, y_4, y_5\}$	2	4
$\{x_1, x_2, x_3\}$	$\{y_1, y_2, y_3, y_5\}$	3	4
$\{x_1, x_2, x_4\}$	Y	3	5
$\{x_1, x_3, x_4\}$	Y	3	5
$\{x_2, x_3, x_4\}$	$\{y_2, y_3, y_4, y_5\}$	3	4
X	Y	4	5

Para k > 0, todo grafo bipartito regular tiene un emparejamiento perfecto.

Para k > 0, todo grafo bipartito regular tiene un emparejamiento perfecto.

Corolario

Un X,Y-bigrafo G tiene un emparejamiento completo si para algún k>0, $d(x)\geq k\geq d(y)$ para todos los vértices $x\in X$ y $y\in Y$.

Deficiencia

• Sea G un X, Y-bigrafo. Si $A \subseteq X$ la **deficiencia** de A está definida por def(A) = |A| - |N(A)|.

Deficiencia

- Sea G un X, Y-bigrafo. Si $A \subseteq X$ la **deficiencia** de A está definida por def(A) = |A| |N(A)|.
- La **deficiencia** de G, es $def(G) = máx\{def(A)|A \subseteq X\}$.

Sea G un X,Y-bigrafo, si def(G)>0 entonces G no tiene un emparejamiento completo.

Sea G un X, Y-bigrafo, si def(G) > 0 entonces G no tiene un emparejamiento completo.

Corolario (Fórmula de König - Ore)

Sea G un X, Y-bigrafo, el número máximo de vértices en X que pueden emparejarse con vértices en Y es |X| - def(G).

Sea G un X, Y-bigrafo, si def(G) > 0 entonces G no tiene un emparejamiento completo.

Corolario (Fórmula de König - Ore)

Sea G un X, Y-bigrafo, el número máximo de vértices en X que pueden emparejarse con vértices en Y es |X| - def(G).

Corolario

Sea G un X, Y-bigrafo, si def(G) = 0 entonces G tiene un emparejamiento completo.

Cubrimiento por vértices

Un cubrimiento por vértices de un grafo G es un subconjunto $Q \subseteq V(G)$ que contiene al menos un extremo de cada arista. En este caso se dice que los vértices en Q cubren las aristas de G.

Cubrimiento minimal

Un cubrimiento es un **cubrimiento minimal** si ninguno de sus subconjuntos propios es un cubrimiento.

Cubrimiento minimal

Un cubrimiento es un **cubrimiento minimal** si ninguno de sus subconjuntos propios es un cubrimiento.

Cubrimiento mínimo

Un cubrimiento mínimo es un cubrimiento de tamaño mínimo entre todos los cubrimientos del grafo.

Cubrimiento minimal

Un cubrimiento es un **cubrimiento minimal** si ninguno de sus subconjuntos propios es un cubrimiento.

Cubrimiento mínimo

Un cubrimiento mínimo es un cubrimiento de tamaño mínimo entre todos los cubrimientos del grafo.

Cubrimiento minimal

Cubrimiento mínimo

Nota

Si M es un emparejamiento de un grafo G y K es un cubrimiento de G, entonces al menos un extremo de cada arista de M pertence a K. Como todos los extremos son distintos, $|M| \leq |K|$

Nota

Si M es un emparejamiento de un grafo G y K es un cubrimiento de G, entonces al menos un extremo de cada arista de M pertence a K. Como todos los extremos son distintos, $|M| \leq |K|$

Sea M es un emparejamiento de un grafo G y K un cubrimiento de G tales que |M| = |K|. Entonces M es un emparejamiento máximo y K es un cubrimiento mínimo.

Sea M es un emparejamiento de un grafo G y K un cubrimiento de G tales que |M|=|K|. Entonces M es un emparejamiento máximo y K es un cubrimiento mínimo.

Teorema (König - Egerváry)

Si G es un grafo bipartito, entonces el tamaño máximo de un emparejamiento en G es igual al tamaño mínimo de un cubrimiento de G.

Sea M es un emparejamiento de un grafo G y K un cubrimiento de G tales que |M|=|K|. Entonces M es un emparejamiento máximo y K es un cubrimiento mínimo.

Teorema (König - Egerváry)

Si G es un grafo bipartito, entonces el tamaño máximo de un emparejamiento en G es igual al tamaño mínimo de un cubrimiento de G.

Emparejamientos y cubrimientos

Cubrimiento por aristas

Un **cubrimiento por aristas** de un grafo G es un subconjunto $L\subseteq E(G)$ tal que cada vértice en G es incidente a alguna arista en L. En este caso se dice que las aristas de L **cubren** los vértices de G.

Nota

- Sólo los grafos sin vértices aislados tienen cubrimientos por aristas.
- Un emparejamiento perfecto forma un cubrimiento por aristas con n(G)/2 aristas.
- En general, se puede obtener un cubrimiento por aristas al agregar aristas a un emparejamiento máximo.

Nota

- Sólo los grafos sin vértices aislados tienen cubrimientos por aristas.
- Un emparejamiento perfecto forma un cubrimiento por aristas con n(G)/2 aristas.
- En general, se puede obtener un cubrimiento por aristas al agregar aristas a un emparejamiento máximo.

Emparejamiento máximo + aristas que completan el cubrimiento

Número de independencia

El número de independencia de un grafo ${\it G}$ es el tamaño máximo de un conjunto independiente de vértices.

Número de independencia

El número de independencia de un grafo G es el tamaño máximo de un conjunto independiente de vértices.

Conjunto independiente: $\{x_1, x_2, x_3, y_2, y_4, y_5\}$

Definición

Los tamaños óptimos de los conjuntos en los problemas de independencia y cubrimientos usan la siguiente notación:

 $\alpha(G)$: tamaño máximo de un conjunto independiente.

lpha'(G) : tamaño máximo de un emparejamiento.

 $\beta(G)$: tamaño mínimo de un cubrimiento por vértices.

 $\beta'(G)$: tamaño mínimo de un cubrimiento por aristas.

Definición

Los tamaños óptimos de los conjuntos en los problemas de independencia y cubrimientos usan la siguiente notación:

 $\alpha(G)$: tamaño máximo de un conjunto independiente.

 $lpha'({\it G})$: tamaño máximo de un emparejamiento.

 $\beta(G)$: tamaño mínimo de un cubrimiento por vértices.

 $\beta'(G)$: tamaño mínimo de un cubrimiento por aristas.

Teorema (König - Egerváry)

Si G es un grafo bipartito, entonces $\alpha'(G) = \beta(G)$.

En un grafo G, $S \subseteq V(G)$ es un conjunto independiente sii \overline{S} es un cubrimiento por vértices, y así $\alpha(G) + \beta(G) = n(G)$.

En un grafo G, $S \subseteq V(G)$ es un conjunto independiente sii \overline{S} es un cubrimiento por vértices, y así $\alpha(G) + \beta(G) = n(G)$.

• Si S es un conjunto independiente, cada arista es incidente en al menos un vértice de \overline{S} , es decir, \overline{S} es un cubrimiento por vértices.

En un grafo G, $S \subseteq V(G)$ es un conjunto independiente sii \overline{S} es un cubrimiento por vértices, y así $\alpha(G) + \beta(G) = n(G)$.

- Si S es un conjunto independiente, cada arista es incidente en al menos un vértice de \overline{S} , es decir, \overline{S} es un cubrimiento por vértices.
- Si \overline{S} cubre todas las aristas de G, entonces no hay aristas que conecten vértices de S, de decir, S es un conjunto independiente.

En un grafo G, $S \subseteq V(G)$ es un conjunto independiente sii \overline{S} es un cubrimiento por vértices, y así $\alpha(G) + \beta(G) = n(G)$.

- Si S es un conjunto independiente, cada arista es incidente en al menos un vértice de \overline{S} , es decir, \overline{S} es un cubrimiento por vértices.
- Si \overline{S} cubre todas las aristas de G, entonces no hay aristas que conecten vértices de S, de decir, S es un conjunto independiente.
- Luego, cada conjunto independiente maximal es el complemento de un cubrimiento por vértices minimal, y así $\alpha(G) + \beta(G) = n(G)$.

Teorema (Gallai)

Si G es un grafo sin vértices aislados entonces $\alpha'(G) + \beta'(G) = n(G)$.

Teorema (Gallai)

Si G es un grafo sin vértices aislados entonces $\alpha'(G) + \beta'(G) = n(G)$.

Corolario (König)

Si G es un grafo bipartito sin vértices aislados entonces $\alpha(G) = \beta'(G)$.

$$\alpha(G) + \beta(G) = n(G) = \alpha'(G) + \beta'(G)$$

Factor

• Un factor de un grafo G es un subgrafo de expansión de G.

Factor

- Un factor de un grafo G es un subgrafo de expansión de G.
- Un k-factor es un subgrafo de expansión k-regular.

Factor

- Un factor de un grafo G es un subgrafo de expansión de G.
- Un k-factor es un subgrafo de expansión k-regular.

Componente impar

 Una componente impar de un grafo G es una componente de orden impar.

Factor

- Un factor de un grafo G es un subgrafo de expansión de G.
- Un *k*-factor es un subgrafo de expansión *k*-regular.

Componente impar

- Una componente impar de un grafo G es una componente de orden impar.
- El número de componentes de orden impar de G es $\circ(G)$.

Existe una relación entre un 1-factor y un emparejamiento perfecto:

• Un 1-factor de un grafo G es un subgrafo de expansión 1-regular de G.

Existe una relación entre un 1-factor y un emparejamiento perfecto:

- Un 1-factor de un grafo G es un subgrafo de expansión 1-regular de G.
- El emparejamiento perfecto sería el conjunto de aristas de este subgrafo.

Existe una relación entre un 1-factor y un emparejamiento perfecto:

- Un 1-factor de un grafo G es un subgrafo de expansión 1-regular de G.
- El emparejamiento perfecto sería el conjunto de aristas de este subgrafo.

Un grafo 3-regular que tenga un emparejamiento perfecto se descompone en un 1-factor y un 2-factor.

Un grafo 3-regular que tenga un emparejamiento perfecto se descompone en un 1-factor y un 2-factor.

Un grafo 3-regular que tenga un emparejamiento perfecto se descompone en un 1-factor y un 2-factor.

1-factor 2-factor

Teorema (Tutte)

Un grafo G tiene un 1-factor sii $\circ (G - S) \leq |S|, \ \forall S \subseteq V(G)$.

Teorema (Tutte)

Un grafo G tiene un 1-factor sii $\circ (G - S) \leq |S|, \ \forall S \subseteq V(G)$.

Corolario (Fórmula de Berge - Tutte)

El número máximo de vértices saturados por un emparejamiento en G es

$$\min_{S\subseteq V(G)}\{n(G)-(\circ(G-S)-|S|)\}$$

Corolario (Fórmula de Berge - Tutte)

El número máximo de vértices saturados por un emparejamiento en G es

$$\min_{S\subseteq V(G)}\{n(G)-(\circ(G-S)-|S|)\}$$

Corolario (Petersen)

Todo grafo 3-regular sin aristas de corte tiene un 1-factor.

Corolario (Fórmula de Berge - Tutte)

El número máximo de vértices saturados por un emparejamiento en G es

$$\min_{S\subseteq V(G)}\{n(G)-(\circ(G-S)-|S|)\}$$

Corolario (Petersen)

Todo grafo 3-regular sin aristas de corte tiene un 1-factor.

Corolario (Petersen)

Todo grafo 2k-regular tiene un 2-factor.

Bibliografía

Douglas B. West Introduction to graph theory. Pearson. (2005).

Kenneth Rosen

Discrete Mathematics and its Applications McGraw Hill. (2012).

Bibliografía 89