练习2 (2021春)

一. 填空

- 1. 在 R^3 中, $\alpha_1 = (2, -3, 1)^T$, $\alpha_2 = (1, 4, 2)^T$, $\alpha_3 = (5, -2, 4)^T$,则 $\dim(L(\alpha_1, \alpha_2, \alpha_3)) =$ ______. $L(\alpha_1, \alpha_2, \alpha_3)$ 的基是_____.
- 2. 在 R^3 中, $V_1=\{(x_1,x_2,x_3)|x_1+x_2-2x_3=0\}$, $V_2=\{(x_1,x_2,x_3)|2x_1+x_2=0,x_1+2x_3=0\},$ dim $(V_1+V_2)=$ _____.
- 3. 设 $\mathbf{U} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} | a, b \in R \right\}$, U是(否)_yes_____ $R^{2 \times 2}$ 的子空间, 若是, dim $\mathbf{U} =$ ____.
- 4. 设 $U = \{f(x_1, x_2, ..., x_n) | f = X^T A X 是 R 上 n 个 变元的二次型 \},$ U是(否)_____ R上的线性空间,若是,dim U =_____.
- 5. 在R³中的两组向量分别是

$$\alpha_1 = (1, 0, 1)^T, \alpha_2 = (1, 1, 0)^T, \alpha_3 = (0, 1, 1)^T$$
 (1)

$$\boldsymbol{\beta}_1 = (1, 0, 3)^T, \boldsymbol{\beta}_2 = (2, 2, 2)^T, \boldsymbol{\beta}_3 = (-1, 1, 4)^T$$
 (2)

γ在基(1)下的坐标为 $(1,2,3)^T$. 则基(1)到基(2)的过度矩阵为

_____, γ在基(2)下的坐标为____.

- **6.** 设 $\alpha_1, \alpha_2, ..., \alpha_n$ 是线性空间V的一组基, $\beta_1 = \alpha_1, \beta_2 = \alpha_1 + \alpha_2, ..., \beta_n = \alpha_1 + \alpha_2 + ... + \alpha_n$. $\beta_1, \beta_2, ..., \beta_n$ 是否是V的一个基_____,若γ在基 $\alpha_1, \alpha_2, ..., \alpha_n$ 下的坐标为 $(n, n-1, ..., 2, 1)^T$,则γ在基 $\beta_1, \beta_2, ..., \beta_n$ 下的坐标为_____.
- **7.** 若 3×3 矩阵 A 的特征值为**1**,**2**,-**1**, $B = A^3 5A^2$.则 B 有特征值_____.

- 8. 令 $A = R + N \times n$ 矩 阵 且 $|A| \neq 0$, $\lambda = A$ 的 一 特 征 值 . 则 $(2A^*)^3 + A^{-1}$ 必有特征值
- 9. 若4 × 4矩阵A有特征值1, -2, 3,和-3. 则A的行列式等于 : tr(A) = .

$$10.\lambda -$$
 矩阵 $\begin{pmatrix} \lambda - 1 & -2 & 1 \\ 0 & \lambda - 1 & -1 \\ 0 & 0 & \lambda + 2 \end{pmatrix}$ 的法式为_____.

- 11.在复数域上n阶方阵A的特征值全为 1,且只有一个线性 无关的特征向量,则A的 Jordan 标准形为_____.
- **12.**矩阵 $A = \begin{pmatrix} 0 & -1 & 2 & 0 \\ 1 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & -2 & 1 \end{pmatrix}$ 的法式为

有理标准形为____.

二. 选择题

13.设
$$B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
,在 $R^{2\times 2}$ 中定义一个变换 $\sigma: A \to BA$,则()

- (A) σ 是 $R^{2\times2}$ 的线性变换, 但不是满射;
- (B) σ 是 $R^{2\times2}$ 的线性变换, 但不是单射;
- (C) σ 是 $R^{2\times2}$ 的可逆线性变换;
- (D) σ不是线性变换.
- 14.三维几何空间*R*³的全体线性变换所成线性空间维数为()
 - (A)3; (B) 6; (C) 9; (D)27

- 15. 设 $\sigma \in L(V)$, W_1 , W_2 是的任意两个子空间,则 $\sigma(W_1 \cap W_2)$ 与 $\sigma(W_1) \cap \sigma(W_2)$ 的关系是()
 - $(A)\sigma(W_1)\cap\sigma(W_2)=\sigma(W_1\cap W_2);$
 - (B) $\sigma(W_1 \cap W_2) \subseteq \sigma(W_1) \cap \sigma(W_2)$;
 - (C) $\sigma(W_1 \cap W_2) \supseteq \sigma(W_1) \cap \sigma(W_2)$;
 - (D)无法确定.
- 16. 设 $\sigma \in L(V)$, W_1 , ..., W_n 都是 σ 的一维不变子空间,且 $V = W_1 \oplus W_2 \oplus ... \oplus W_n$,则在中存在一组基使 σ 在该基下的表示矩阵为()
 - (A)对角矩阵; (B) 反对称矩阵;
 - (A)非对角上三角矩阵; (D) 可逆矩阵.
- 17.设 $\sigma \in L(V)$, W_1 , ..., $W_s(s < n)$ 都是 σ 的不变子空间,且 $V = W_1 \oplus W_2 \oplus ... \oplus W_s$,则在中存在一组基使 σ 在该基下的表示矩阵为()
 - (A)对角矩阵; (B)准对角矩阵;
 - (C) 反对称矩阵; (D) 可逆矩阵.
- 18. 设 $\alpha_1, \alpha_3, \alpha_3$ 是线性空间V的一组基, $\sigma \in L(V)$,

$$\sigma(\alpha_1) = \alpha_1 + \alpha_3, \sigma(\alpha_2) = \alpha_2 + \alpha_3, \sigma(\alpha_3) = \alpha_1 + \alpha_2 + 2\alpha_3.$$
 则dim(σ)⁻¹(σ)为()

- (A) 3; (B) 2; (C) 1; (D)0
- 19.设矩阵 $B = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.已知矩阵A相似于 B,则r(A 2E)

与r(A-E)之和为()

19.令 λ_1 , λ_2 是矩阵A的两个不同特征值,它们对应的两个特征向量分别是 α_1 , α_2 .则 α_1 , $A(\alpha_1 + \alpha_2)$ 线性无关的条件是

(A)
$$\lambda_1 \neq 0$$
, (B) $\lambda_2 \neq 0$, (C) $\lambda_1 = 0$, (D) $\lambda_2 = 0$.

20.. 令 $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$,则在实数域上与 A 合同的矩阵为()

(A)
$$\begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$$
, (B) $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ (C) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ (D) $\begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$

- 21. 设V是复数域上的线性空间, $\sigma, \tau \in L(V)$ 且 $\sigma\tau = \tau \sigma$, 则().
- $(A) \sigma$, τ 的特征向量完全相同; $(B) \sigma$, τ 有有限多个公共特征向量;
- $(C)\sigma$, τ 有无限多个公共特征向量; $(D)\sigma$, τ 未必有公共特征向量.
- **22.** 设V是实数域上的线性空间, $\sigma, \tau \in L(V)$ 且 $\sigma\tau = \tau \sigma$, 则().
- $(A) \sigma$, τ 的特征向量完全相同; $(B) \sigma$, τ 有有限多个公共特征向量;
- $(C)\sigma$, τ 有无限多个公共特征向量; $(D)\sigma$, τ 未必有公共特征向量.

三. 计算与证明题

23. 在F^{2×2}中,求从基

$$\alpha_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix},$$
$$\alpha_3 = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}, \alpha_4 = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

到基

$$\boldsymbol{\beta}_1 = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, \boldsymbol{\beta}_2 = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \boldsymbol{\beta}_3 = \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix}, \boldsymbol{\beta}_4 = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}$$

的过渡矩阵,并分别求 $\gamma = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ 在上面两个基下的矩阵.

24. 在
$$F^4$$
中, 令 $\alpha_1 = (1, 2, -1, -2)^T$, $\alpha_2 = (3, 1, 1, 1)^T$, $\alpha_3 = (-1, 0, 1, -1)^T$,

$$\beta_1 = (2, 5, -6, -5)^T$$
, $\beta_2 = (1, 2, -7, 3)^T$,

求 $L(\alpha_1, \alpha_2, \alpha_3) + L(\beta_1, \beta_2)$ 与 $L(\alpha_1, \alpha_2, \alpha_3) \cap L(\beta_1, \beta_2)$ 的一个基.

- 25. 在 \mathbf{F}^2 中, $\sigma(\mathbf{x}, \mathbf{y}) = (\mathbf{x}, \mathbf{y}) \begin{pmatrix} \mathbf{1} & -\mathbf{1} \\ \mathbf{2} & \mathbf{2} \end{pmatrix}$ 是 \mathbf{F}^2 的一个线性变换.
 - (1) 求证: 当F = R时, R^2 中没有 σ 的真不变子空间;
 - (2)当F = C时,求出 σ 的所有不变子空间.
- **26.** 设V是4维线性空间, φ 在基 ε_1 ,…, ε_4 下的矩阵为

$$\begin{pmatrix}
1 & 0 & 2 & -1 \\
0 & 1 & 4 & -2 \\
2 & -1 & 0 & 1 \\
2 & -1 & -1 & 2
\end{pmatrix}$$

验证: $U = L(\varepsilon_1 + 2\varepsilon_2, \varepsilon_2 + \varepsilon_3 + 2\varepsilon_4)$ 是否为 ϕ -子空间.

的特征值与所属的特征向量.

28. 设

$$A = \begin{pmatrix} 1 & -1 & 1 \\ x & 4 & y \\ -3 & -3 & 5 \end{pmatrix}$$

有 3 个线性无关的特征向量, $\lambda = 2$ 是 A 的 2 重根, 求可逆矩

阵 P 使得 $\Lambda = P^{-1}AP$ 是一对角矩阵 Λ .

- **29.** 证明:有理数域Q上的线性空间定义中八条规则的第八条: $k(\alpha + \beta) = k\alpha + k\beta$ 可由其他七条推出.
- **30.** 设 V_1 , V_2 是V的两个子空间,求证 $V_1 \cup V_2 = V_1 + V_2 \Leftrightarrow V_1 \subseteq V_2$,或 $V_1 \supseteq V_2$.
- 31. 设 V_1 , V_2 是n维线性空间V的两个子空间,且满足 $\dim(V_1 + V_2) = \dim(V_1 \cap V_2) + 1$, 求证: $V_1 \subseteq V_2$ 或 $V_1 \supseteq V_2$.
- 32. 设 $A \in F^{n \times n}$, $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$, $V_1 = \{X | A_1 X = \mathbf{0}\}, V_2 = \{X | A_2 X = \mathbf{0}\}$ 求证A可逆 $\Leftrightarrow F^n = V_1 \oplus V_2$.
- 33. 设 $\sigma \in L(V)$, A为 σ 在V的一组基下的表示矩阵,求证 $r(A^2) = r(A) \Leftrightarrow V = \sigma(V) \oplus \sigma^{-1}(0)$.
- 34. 设 $A \in F^{n \times n}$,且 $W = \{f(A) | f(x) \in F[x]\}$,求W的一个基和维数.
- 35. 设V是n维线性空间, 求证V的r维子空间有无穷多个, 其中 0 < r < n.
- 36. 设 σ , $\tau \in L(V_n)$,并且 σ 在数域中F有n个互异的特征根,求证:
- (1) σ 有2ⁿ个不变子空间,
- (2) σ 的特征向量都是 τ 的特征向量当且仅当 $\sigma\tau = \tau\sigma$.
- 37. 设 $\alpha_1, ..., \alpha_s, \beta_1, ..., \beta_t$ 是 F^n 的两组线性无关的列向量, 令

 $V_1 = \mathbf{L}(\alpha_1, \dots, \alpha_s), V_2 = \mathbf{L}(\beta_1, \dots, \beta_t),$

求证 $\dim(V_1 \cap V_2)$ 等于齐次线性方程组

 $(\alpha_1, ..., \alpha_s, \beta_1, ..., \beta_t)X = 0$ 的解空间维数.

- 38. 设A的特征值为0, 1, 对应的特征向量为(1, 2) T , (2, -1) T , 问A是否为对称矩阵?求A的迹, 行列式与A.
- 39. 设A,B为n阶矩阵,且AB有n个不同的特征值,证明 AB与BA相似于同一个对角矩阵.
- 40. 设A, B分别为4×3和3×4的矩阵, 满足

$$BA = \begin{pmatrix} -9 & -20 & -35 \\ 2 & 5 & 7 \\ 2 & 4 & 8 \end{pmatrix}, AB = \begin{pmatrix} 9a - 14 & 0 & 9a - 15 & 18a - 32 \\ 6a + 2b - 9 & 1 & 6a + 3b - 9 & 12a + 4b - 19 \\ -2a + 2 & 0 & -2a + 3 & -4a + 4 \\ -3a + 6 & 0 & -3a + 6 & -6a + 14 \end{pmatrix}$$

求a,b的值.