Пример применения локальной формулы Маклорена для вычисления предела

$$\lim_{x \to 0} \frac{\cos x - e^{-x^2/2}}{x^4} = \lim_{x \to 0} \frac{1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4) - (1 - \frac{x^2}{2} + \frac{x^4}{8} + o(x^4))}{x^4} = \lim_{x \to 0} \frac{-\frac{x^4}{12} + o(x^4)}{x^4} = -\frac{1}{12}.$$

Приложения производной функции

Правило Лопиталя

(Правило раскрытия неопределенностей $\frac{0}{0}$ и $\frac{\infty}{\infty}$).

Пусть требуется вычислить предел $\lim_{x\to a} \frac{f(x)}{g(x)}$, причем функции в числителе и знаменателе дифференцируемы в окрестности точки a и имеет место одна из неопределенностей $\frac{0}{0}$ или $\frac{\infty}{\infty}$, тогда если существует предел $\lim_{x\to a} \frac{f'(x)}{g'(x)}$,

возможно, равный бесконечности, то $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$.

Доказательство (для неопределенности $\frac{0}{0}$). Поскольку f(a) = g(a) = 0, (иначе не будет указанной неопределенности), из теоремы Коши имеем

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{f'(c)}{g'(c)} = \lim_{c \to a} \frac{f'(c)}{g'(c)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Здесь использовалось, что c находится между a и x, следовательно, при $x \to a$ и $c \to a$.

Примеры.

1)
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4} = \left\{ \frac{0}{0} \right\} = \lim_{x \to 2} \frac{2x - 3}{2x} = \frac{1}{4}$$
.

Раньше это пример решался с помощью тождественного преобразования

$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4} = \lim_{x \to 2} \frac{(x - 2)(x - 1)}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{(x - 1)}{(x + 2)} = \frac{1}{4}.$$

2)
$$\lim_{x\to 0} \frac{\sin x}{x} = \left\{ \frac{0}{0} \right\} = \lim_{x\to 0} \frac{\cos x}{1} = 1$$
 (первый замечательный предел).

возрастании (убывании) функции y = f(x)Теорема о интервале

Необходимое условие возрастания (убывания) функции на интервале: Если функция y = f(x), имеющая производную на интервале (a,b), возрастает (убывает) на этом интервале, то ее производная $f'(x) \ge 0$ ($f'(x) \le 0$) на этом Доказательство следует отрезке. ИЗ формулы ДЛЯ производной $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$, где знаки числителя и знаменателя совпадают (противоположны), а при предельном переходе знак неравенства становится

нестрогим.

Достаточное условие возрастания (убывания) функции на интервале: Если функция y = f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b), причем f'(x) > 0 (f'(x) < 0) для a < x < b, то эта функция возрастает (убывает) на этом отрезке.

Доказательство легко получается применением теоремы Лагранжа.

Определение 1. Функция y = f(x) в точке x_1 имеет максимум, если для всех х из некоторой δ -окрестности точки выполняется χ_1 неравенство $f(x) < f(x_1)$ при $x \neq x_1$.

Определение 2. Функция y = f(x) в точке x_2 имеет минимум, если для всех х из некоторой δ -окрестности точки x_2 выполняется неравенство $f(x) > f(x_2)$ при $x \neq x_2$.

Определение 3. Точки максимума и минимума функции называются точками экстремума.

Теорема о необходимом условии экстремума дифференцируемой функции. Необходимым условием экстремума дифференцируемой в точке c функции является f'(c) = 0.

Доказательство. Пусть точка c — точка максимума, тогда $\frac{f(c+\Delta x)-f(c)}{\Delta x} < 0$

при
$$\Delta x > 0$$
 и $\frac{f(c + \Delta x) - f(c)}{\Delta x} > 0$ при

 $\Delta x < 0$. Поскольку при вычислении производной пределы слева и справа должны совпадать, то есть f'(c) = 0.

Точки, в которых производная функции

обращается в ноль, называются **критическими точками**. Критические точки функции не обязательно являются точками экстремума. Например, если $f(x)=x^3$, то $f'(x)=3x^2=0$ при x=0, но точка x=0 не является точкой экстремума, что видно из рисунка.

Теорема 1 о достаточном условии существования максимума и минимума функции.

Если производная функции при переходе через точку c меняет знак c+ на -, это точка максимума. Если знак производной меняется c- на +, имеем точку минимума. Доказательство следует из теоремы о возрастании (убывании) функции.

Теорема 2 о достаточном условии существования максимума и минимума функции. Пусть $f'(x_0) = 0$, тогда при $x = x_0$ функция имеет максимум, если $f''(x_0) < 0$ и минимум, если $f''(x_0) > 0$.

Доказательство.

Из формулы Тейлора в окрестности точки экстремума x_0 , в которой удержано три первых члена, имеем

$$\Delta y = f(x) - f(x_0) = f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2).$$

Поскольку $f'(x_0)=0$, что следует из условия теоремы, а остаточный член r по определению меньше предыдущего члена формулы, знак приращения функции независимо от того, точка x находится левее, или правее x_0 , определяется знаком второй производной. Когда $f''(x_0)>0$, получаем $f(x)-f(x_0)>0$, следовательно, x_0 точка минимума функции, если $f''(x_0)<0$, значит $f(x)-f(x_0)<0$, тогда x_0 - точка максимума функции.

Пример 1. $y = \frac{1}{4}x^4 - x^3$. Найдем критические точки этой функции. Так как $y' = x^3 - 3x^2 = x^2(x-3)$, то критическими точками являются $x_1 = 0$, $x_2 = 3$. Применим первую теорему о достаточном условии. Очевидно, что y'(x) < 0 при x < 0 и при 0 < x < 3, следовательно, в точке 0 экстремума нет. y'(x) > 0 при x > 3, следовательно, в точке 3 минимум функции.

Пример 2. $y = \cos^2 x$. Найдем критические точки этой функции. Так как $y' = -\sin 2x$, то критическими точками этой функции являются точки $x_k = \frac{\pi k}{2}$. Применим вторую теорему о достаточном условии. Очевидно, что $y''(x_k) = -2\cos \pi k$, поэтому $x_k = \frac{\pi k}{2}$ является точкой локального максимума при k четном и точкой локального минимума при k нечетном.

Наибольшее и наименьшее значения функции на отрезке

Следует отличать минимумы и максимумы функций от наибольшего и наименьшего ее значений на заданном отрезке. Функция может не иметь экстремумов в исследуемой области, а наименьшее и наибольшее в этой области значения она имеет всегда.

Чтобы определить наибольшее и наименьшее значения функции на заданном отрезке, необходимо подсчитать значения функции в точках экстремума, входящих в исследуемую область, а также в граничных ее точках и выбрать среди них наименьшее и наибольшее значения.

Пример.

Определить наибольшее и наименьшее значения функции $y = x^3 - 3x^2 + 1$ на отрезке [1;4].

Находим точки, в которых производная обращается в нуль:

 $y'=3x^2-6x=3x(x-2)=0$, получаем две точки, одна из которых x=0 не входит в исследуемую область, добавляем к ним граничные точки, тогда $x_1=1$, $x_2=2$, $x_3=4$.

Определяем в этих точках значения функции $y_1 = -1$, $y_2 = -3$, $y_3 = 17$.

Таким образом, наименьшее в заданной области значение функции (-3) реализуется при x = 2, наибольшее (17) при x = 3.

Выпуклость и вогнутость кривой

Определение 1. Кривая называется **выпуклой** в точке, если в некоторой окрестности данной точки график касательной к кривой в этой точке находится **выше** графика самой функции.

Определение 2. Кривая называется **вогнутой** в точке, если в некоторой окрестности данной точки график касательной к кривой в этой точке находится **ниже** графика самой функции.

Возникает вопрос: как найти точки выпуклости и вогнутости кривой? *Теорема* об условии выпуклости (вогнутости) кривой в точке. Если для кривой, задаваемой уравнением y = f(x), справедливо $f''(x_0) < 0$ ($f''(x_0) > 0$), то кривая в точке x_0 выпукла (вогнута).

Доказательство. Уравнение касательной к кривой в точке $(x_0, f(x_0))$ имеет вид $Y = f(x_0) + f'(x_0)(x - x_0)$. Рассмотрим представление заданной функции в окрестности точки x_0 по формуле Тейлора:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + o((x - x_0)^2).$$

В окрестности точки x_0 (то есть при малых по модулю значениях $(x-x_0)$ знак разности Y-f(x) противоположен знаку $f''(x_0)$. Следовательно, если $f''(x_0)<0$ знак Y-f(x) положителен, и касательная выше кривой, если $f''(x_0)>0$ знак Y-f(x) отрицателен, и касательная ниже кривой.

В случае, если при переходе с одной стороны от точки x_0 на другую сторону знак разности Y - f(x) меняет знак, такая точка называется **точкой перегиба**. В случае непрерывности второй производной в точке перегиба она обращается в ноль в этой точке.

Упражнение. Исследовать направление выпуклости графика функции $y = x^3 - x$ в точках x = -1, x = 1. Чем для графика является точка x = 0?

Асимптоты кривой

Определение. Прямая называется асимптотой кривой, если расстояние δ от переменной точки M кривой до этой прямой при удалении точки M в бесконечность стремится к нулю.

На двух следующих рисунках асимптоты окрашены в красный цвет

Асимптоты бывают **вертикальными**, они показывают поведение функции в окрестности особой точки, когда $y \to \pm \infty$, и **наклонными**, дающими представление о поведении функции при $x \to \pm \infty$.

Если x_0 – особая точка, то уравнение вертикальной асимптоты $x = x_0$.

Теорема. Кривая y = f(x) имеет наклонную асимптоту при $x \to \infty$, уравнение которой y = kx + b, если существуют пределы: $\lim_{x \to \infty} \frac{f(x)}{x} = k$ и $\lim_{x \to \infty} \left\lceil f(x) - kx \right\rceil = b$.

Доказательство. Из определения асимптоты следует $f(x)-(kx+b)=\alpha(x)$, где $\alpha(x)-$ бесконечно малая при $x\to\infty$, то есть $\lim_{x\to\infty}\alpha(x)=0$. Остается определить параметры уравнения асимптоты. Для этого вычислим

$$\lim_{x\to\infty}\frac{f\left(x\right)}{x}=\lim_{x\to\infty}\left[k+\frac{b}{x}+\frac{\alpha(x)}{x}\right]=k\;,\quad \lim_{x\to\infty}\left[f\left(x\right)-kx\right]=\lim_{x\to\infty}\left[b+\alpha(x)\right]=b\;.\quad \text{Итак},$$

если оба предела существуют и конечны, параметры прямой k и b определены, причем точки этой прямой бесконечно сближаются с точками кривой при $x \to \infty$.

 Π р и м е р. $y = \frac{x^2}{x-1}$. Очевидно, что x = 1 – уравнение вертикальной

асимптоты. Определим
$$k = \lim_{x \to \infty} \frac{x^2}{(x-1)x} = \lim_{x \to \infty} \frac{x}{(x-1)} = \lim_{x \to \infty} \frac{1}{\left(1 - \frac{1}{x}\right)} = 1,$$

$$b = \lim_{x \to \infty} \left[\frac{x^2}{(x-1)} - x \right] = \lim_{x \to \infty} \frac{x^2 - x^2 + x}{(x-1)} = \lim_{x \to \infty} \frac{x}{(x-1)} = \lim_{x \to \infty} \frac{1}{\left(1 - \frac{1}{x}\right)} = 1.$$
 Итак,

наклонная асимптота имеет уравнение y = x + 1.

Упражнение. Найдите асимптоты гиперболы $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.