MACCHINE MOTRICI IDRAULICHE

Dalle ruote ad acqua dei mulini ai grandi impianti idroelettrici, nel corso della storia dell'uomo sono sempre stati realizzati meccanismi più o meno complessi per ottenere lavoro utile a partire dall'energia idraulica dei corsi d'acqua, al punto tale da influire sulla collocazione geografica delle attività umane (e del loro sviluppo).

Ad oggi, i principali campi di applicazione delle macchine idrauliche sono la generazione di energia elettrica (impianti idroelettrici) e l'oleodinamica (pompe, accumulatori, ecc...).

Le macchine idrauliche motrici sono costituite quasi esclusivamente da turbomacchine - macchine rotative dinamiche - anche dette turbine idrauliche.

In Italia, l'energia idroelettrica ha rappresentato la principale fonte energetica fino agli anni '50, dal momento che il paese è povero di combustibili fossili.

Attualmente, l'energia prodotta con l'idroelettrico è pari circa alla metà di quella prodotta tramite

Si intuiscono le limitazioni dell'utilizzo dell'energia idraulica dovute a fattori geografici ed orografici. Nei paesi industrializzati tale fonte è in gran parte già utilizzata e vi sono margini di crescita nei Paesi in Via di Sviluppo; in quest'epoca, l'impiego dell'idroelettrico è in qualche modo un indice di sviluppo di una regione geografica.

È vero però anche il contrario: l'energia idroelettrica è limitata anche dai costi elevati spesso connessi alle opere civili necessarie (dighe, centrali, ecc...), e paesi meno sviluppati preferiranno investire su soluzioni più economiche.

IMPIANTO AD ACQUA FLUENTE DEF	INIZIONE: POEN, "POTENZA GEODETICA"			
	Manima potenza ottenilile spruttando			
	tutto il solto geodetico			
1	Por = PQgHor (KW]			
	1000 (KVV)			
DEFINIZIONE: PTOT, "POTENZA TOTALE": M	Panima potenza attenibile struttando			
DEFINIZIONE: PTOT, "POTENZA TOTALE": M	l rolts totale. Pros = PQ9 Has [KW]			
DEFINIZIONE: P.+ "POVENZA VILE". P.+	1000 Tenendo emita			
DEFINIZIONE: Put, "POTENZA UTILE": Potende delle potende delle potende delle potende de condotte de co	resdite di cazica a e Qq 1 17111			
DEFINIZIONE: 1, "RENDIMENTO DI CONDOM	A" 1000 HW (KVV)			
he = Par Hang	les assumere valori elevati (0,95~0,97)			
NEGINIZIONE: D "CONTUENED NI TURO.	are by delle services			
Perinterone. 1/t, Randiffering By Tongs	NA": tiene conto anche della perdite niche, meccaniche e di scaries della turbina.			
TURBINE PEUTON	mera, mecanage e sa mesaas plase construe.			
La struttura delle turbine Pelton richiama quella				
delle antiche ruote ad acqua dei mulini. Il flusso in				
uscita da un ugello investe il rotore tangenzialme	nte.			
Le pale del rotore, illustrate a destra, hanno la				
caratteristica forma "a doppio cucchiaio", di cui al già parlato.	obiamo			
gia pariato.				
LA PALA				
	nte distanziate e scavate per impedire			
l'interferenza tra il getto e la pala successiva.				
Il getto in uscita dall'ugello colpisce il coltello centrale separandosi nelle due parti a forma di cucchiaio che costituiscono la pala.				
	cchina ad azione, in quanto tutta l'energia potenziale			
	gello). Il rotore opera quindi alla pressione atmosferica			
LAVORO E RENDIMENTO				
	EU = 0 - C2 + W2 - W2 W12 - 1			
Se anume: $\begin{cases} \kappa_1 = \kappa_2 \rightarrow \mu_1 = \mu_2(\mu) \\ \kappa = 0 \rightarrow w_1 = w_2 \end{cases}$	2 2 2 2			
(K-0 - WII - 1 - W2	EULERO: $\frac{C_1^2 - C_2^2}{2} + \frac{U_2^2 - U_2^2}{2} + \frac{U_2^2 - U_2^2}{2} = 1 - \frac{C_2^2}{G^2}$ Demque: $17 = \frac{L}{2} = \frac{C_2^2 - C_2^2}{G^2} = 1 - \frac{C_2^2}{G^2}$			
L'unica perdita et rappresentata	dall'energia eineties alla searies.			
TRIANGOU DI VELOCITÀ	8 8 9 9 9 9 9 9 9 9 9 9			
	1 15 hanna Oa Atana disessa			
Il triangolo di ingreno é degener perché				
1 Condisione obtimals:	$\mu/c_1 = 0.5$			
Marrimo rendimento chiaram	per \$2=0, Cz=0,			

UCEUD DOBLE

La regolazione della portata (e quindi della potenza) in una turbina Pelton è effettuata attraverso l'ugello Doble, posto all'uscita della condotta forzata. L'ugello è progettato in modo da assicurare il parallelismo dei filetti fludi nel getto che investe le pale della turbina.

È necessario che le manovre di chiusura avvengano con gradualità per evitare i fenomeni di colpo d'ariete nella condotta: infatti, il "tappo" che regola la sezione d'uscita è mosso avanti e indietro da un pistone azionato idraulicamente direttamente dall'acqua nella condotta, ed è intuitivo che le forze in gioco siano tutto meno che banali; se questo tappo dovesse chiudersi improvvisamente, ne risulterebbe una forte onda d'urto all'interno del fluido (e parliamo

di tonnellate d'acqua, passanti per chilometri di condotta), capace di esercitare sollecitazioni molto elevate sulle pareti interne della condotta - in altre parole, il colpo d'ariete.

TURBINE FRANCIS

Tempo fa, studiando l'equazione di Eulero, abbiamo citato come sia preferibile un flusso centripeto per una macchina motrice al fine di massimizzarne la resa. Le turbine Francis sono turbine a reazione con flusso centripeto, il cui rotore è completamente immerso nel fluido.

compito di permettere un parziale recupero dell'energia potenziale corrispondente alla distanza tra la sezione di scarico della turbina ed il bacino inferiore di raccolta.

TURBINE KAPLAN

Nella turbina Kaplan l'ingresso del fluido è radiale, attraverso la spirale, mentre il flusso attorno al rotore è completamente assiale. Le pale rotoriche possono variare dinamicamente la propria inclinazione per ottimizzare i triangoli di velocità in base alla portata.

NOTA: Il canale Youtube "Learn Engineering" ha caricato alcuni video su questo specifico argomento ("Working of Francis Turbine", "Kaplan Turbine Working and Design", "Comparison of Pelton, Francis & Kaplan Turbine" e altri). I video di tale canale sono accompagnati da visualizzazioni di rendering 3D degli argomenti trattati, e in generale sintetizzano molto bene i concetti di base. Potrebbe essere utile fare un salto lì in caso di dubbi o se si vuole approfondire.

L'adozione del tubo diffusore permette di realizzare una riduzione di pressione nella sezione 2 rispetto alla pressione atmosferica pari alla distanza tra pelo libero e sez. 2, più la variazione di energia cinetica tra le sezioni 2 e 3, meno le perdite di carico.

La riduzione di pressione nella sezione di scarico corrisponde ad un aumento virtuale del salto utile della turbina, rispetto al caso in cui il tubo sia assente (scarico a pressione atmosferica).

Il dimensionamento del tubo deve però tenere conto di alcuni fattori limitativi, quali il rischio di cavitazione e la formazione di vortici. Si elencano le seguenti condizioni:

Al crescere della portata dovrebbero aumentare i prodotti tra le velocità di carico/scarico e le sezioni rispettive. A parità di salto utile, la velocità all'ingresso del rotore non è arbitraria, e non possiamo permetterci di aumentare troppo la velocità di scarico per non ridurre il rendimento della macchina. Vi è però anche un limite al diametro massimo che possiamo adottare, in quanto - fissata la frequenza richiesta dal generatore (50 Hz in Europa) - questo è funzione di u (velocità periferica), che abbiamo visto avere valori massimi ammissibili (supponiamo 450 m/s).

Possiamo aumentare solo la larghezza della sezione rotorica di ingresso (b) e il diametro della sezione di scarico (Ds).

Se la sezione di scarico aumenta troppo, potrebbe raggiungere lo stesso diametro del rotore: il flusso non sarà più radiale assiale - quindi tipico della turbina Francis - ma sarà puramente assiale, ossia caratteristico della turbina Kaplan. Per questo motivo, la Kaplan è impiegata per portate incredibilmente elevate, dell'ordine di 500 mc/s (immaginate una macchina che "assorbe" e contemporaneamente "espelle" circa 500 tonnellate di acqua al secondo...).

La girante della turbina Francis cambia forma in base alla portata nominale di progetto. È in effetti un tipo di turbina molto versatile, che può essere progettato con molte forme diverse in base alla domanda. Notiamo però che con l'aumentare della portata (e quindi di una grandezza che prende il nome di numero di giri specifico) il flusso diviene gradualmente da "prevalentemente radiale" a "prevalentemente assiale".

TIPO	SALTO MAX (m)	PORTATA MAX (m³/s)	POTENZA MAX (MW)
PELTON	2'000	1-10	100
FRANCIS	400	100	900
KAPLAN	40	500	700

IMPIANTI DI ACCUMULO E POMPAGGIO

Nel corso della giornata, la domanda di potenza elettrica manifesta notevoli variazioni.

Per non incombere in ingenti danni sulla rete e nei generatori, la produzione deve soddisfare perfettamente la domanda.

Quando di giorno la domanda raggiunge il picco, si possono azionare gli impianti turbogas per coprire rapidamente il surplus di domanda. Gli impianti ad acqua fluente lavorano a portata e potenza costante durante l'arco dell'intero giorno.

Quando nelle ore notturne la domanda è al minimo, gli impianti devono limitare la produzione quanto più possibile; tuttavia, gli impianti a vapore non possono funzionare a meno del 75% della capacità nominale senza incombere in inaccettabili cali di rendimento. Spesso si viene a creare così un surplus di energia che deve essere smaltito in qualche modo. Qui entrano in gioco gli impianti di accumulo e pompaggio, che durante la notte pompano l'acqua da valle ad un serbatoio a monte, in modo da poter accumulare quel surplus per riutilizzarlo in giornata quando la domanda è alta, come una specie di enorme batteria cinetica.

Macchine idrauliche geometricamente simili che operino con lo stesso valore del numero di giri specifico hanno triangoli di velocità simili, ed operano quindi con gli stessi rendimenti (in prima approssimazione, a meno di effetti secondari).

Volendo realizzare una prova sperimentale in scala su modello di un prototipo, per poter ottenere un funzionamento fluidodinamico e cinematico simile è necessario adottare valori di Q,H,P e n tali che risulti:

Il numero di giri specifico è inoltre un utile strumento per individuare il campo di funzionamento ottimale (con elevati rendimenti) di una macchina, e quindi per guidare la scelta del tipo di macchina in funzione delle condizioni di progetto.

Analizzando gli impianti realizzati, si puà ricavare una precisa correlazione tra il num. di giri specifico, il tipo di macchina, il tipo di flusso ed il grado di reazione R. Infatti:

