LAB 3: Combinational Logic Design

A. Objectives

- Become familiarized with the analysis of combinational logic networks.
- Learn the implementation of networks using the two canonical forms.

B. Theory

Min terms and max terms Analysis of combinational logic design Canonical Forms

C. Apparatus

- Trainer Board
- 1 x IC 4073 Triple 3-input AND gates
- 2 x IC 4075 Triple 3-input OR gates
- 1 x IC 7404 Hex Inverters (NOT gates)

D. Procedure

- 1. Write down all the min terms and max terms of three inputs ABC in Table F.1.
- 2. Write down the function F in 1st and 2nd Canonical Forms in Table F.2
- 3. Draw the circuits for the 1st and 2nd canonical forms of function in Figure F.1, clearly indicating the pin numbers corresponding to the relevant ICs.
- 4. Construct the 1st canonical form of the circuit and test it with the truth table.
 - Connect one min term at a time and check its output.
 - Once all min terms have been connected and verified, OR the min terms for the function output.
- 5. Construct the 2nd canonical form of the circuit and test it with the truth table.
 - i. Connect one max term at a time and check its output.
 - ii. Once all max terms have been connected and verified, AND the max terms for the function output.

E. Report

- 1. Draw the IC diagram for the 1st canonical form of the circuit in Figure F.1
- 2. Simulate the circuit for the 2nd canonical form in Figure F.1 in Logisim. Provide a screenshot of the Logisim circuit schematic and truth table with your report.

F. Experimental Data

Experiment conducted by:

Name	ID

Input Reference	A B C	F	Min term	Max term
0	000	0		
1	0 0 1	1		
2	010	1		
3	011	0		
4	100	0		
5	101	0		
6	110	1		
7	111	0		

Table F.1 Truth table to a combinational circuit

	Shorthand Notation	Function
1 st Canonical Form	$F = \Sigma$	F =
2 nd Canonical Form	$F = \Pi$	F =

Table F.2 1st and 2ndcanonical forms of the combinational circuit of Table F.1

2 | Page

Figure F.1 1st and 2nd canonical circuit diagrams of the combinational circuit of Table F.1