Package 'EpiNow2'

December 14, 2020

```
Type Package
Title Estimate Real-Time Case Counts and Time-Varying Epidemiological
     Parameters
Version 1.3.2
Description Estimates the time-varying reproduction number, rate of spread,
     and doubling time using a range of open-
     source tools (Abbott et al. (2020) <doi:10.12688/wellcomeopenres.16006.1>),
     and current best practices (Gostic et al. (2020) <doi:10.1101/2020.06.18.20134858>).
     It aims to help users avoid some of the limitations of naive implementations in a framework
     that is informed by community feedback and is under active development.
License MIT + file LICENSE
URL https:/epiforecasts.io/EpiNow2/,
     https:/epiforecasts.io/EpiNow2/dev/,
     https://github.com/epiforecasts/EpiNow2
BugReports https://github.com/epiforecasts/EpiNow2/issues
Imports cowplot, data.table, futile.logger (>= 1.4), future,
     future.apply, ggplot2, lubridate, methods, patchwork,
     progressr, purrr, R.utils (\geq 2.0.0), Rcpp (\geq 0.12.0), rlang
     (>= 0.4.7), rstan (>= 2.21.1), runner, scales, stats,
     truncnorm, lifecycle, utils
Suggests countrycode, dplyr, EpiSoon, forecastHybrid, here,
     kableExtra, knitr, magrittr, rmarkdown, rnaturalearth,
     rstantools, spelling, tidyr, testthat, covr
Additional_repositories https://epiforecasts.io/drat/
RoxygenNote 7.1.1
Biarch true
Depends R (>= 3.4.0)
LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
     rstan (>= 2.21.1), StanHeaders (>= 2.21.0-5)
Language en-GB
Encoding UTF-8
```

LazyData true

NeedsCompilation yes

Author Sam Abbott [aut, cre] (https://orcid.org/0000-0001-8057-8037),

Joel Hellewell [aut] (https://orcid.org/0000-0003-2683-0849),

Katharine Sherratt [aut],

Katelyn Gostic [aut],

Joe Hickson [aut],

Hamada S. Badr [aut] (https://orcid.org/0000-0002-9808-2344),

Michael DeWitt [aut] (https://orcid.org/0000-0001-8940-1967),

Robin Thompson [aut],

Sophie Meakin [ctb],

James Munday [ctb],

Nikos Bosse [ctb],

Paul Mee [ctb],

Peter Ellis [ctb],

EpiForecasts [aut],

Sebastian Funk [aut]

Maintainer Sam Abbott <sam.abbott@lshtm.ac.uk>

Repository CRAN

Date/Publication 2020-12-14 09:00:15 UTC

R topics documented:

adjust_infection_to_report)
allocate_delays	5
allocate_empty	7
backcalc_opts	3
bootstrapped_dist_fit)
calc_CrI)
calc_CrIs	1
calc_summary_measures	1
calc_summary_stats	2
clean_nowcasts	3
clean_regions	3
construct_output	1
convert_to_logmean	1
convert_to_logsd	5
copy_results_to_latest	5
country_map	5
create_backcalc_data	3
create_clean_reported_cases)
create_future_rt)
create_gp_data)
create_initial_conditions	Ĺ
create_obs_model	Ĺ
create_rt_data	2

create_shifted_cases	23
create_stan_args	24
create_stan_data	25
delay_opts	26
dist_fit	27
dist_skel	28
epinow	29
estimates_by_report_date	32
estimate_delay	33
estimate_infections	33
estimate_secondary	37
estimate_truncation	40
	42
-	43
	43
	44
	44
•	45
	46
	46
	47
	48
	48
	49
	51
·	52
	53
ç – –	54
6 -	54
e =	55
<i>c </i>	56
& = ———————————————————————————————————	56
	57
	58
$\varepsilon - \varepsilon$	59
	59
C = 1	51
$\mathcal{S}_1 = 1$	52
	52 53
	53
	53 54
8	5 5
	55 55
	55 56
_ 1 _ 5	50 57
- <u>i</u>	57 58
1 -	59
plot.estimate_infections	59

plot.estimate_secondary
plot.estimate_truncation
plot_CrIs
plot_estimates
plot_summary
process_region
process_regions
regional_epinow
regional_runtimes
regional_summary
report_cases
report_plots
report_summary
rstan_opts
rstan_sampling_opts
rstan_vb_opts
rt_opts
run_region
R_to_growth
sample_approx_dist
save_estimate_infections
save_forecast_infections
save_input
secondary_opts
setup_default_logging
setup_dt
setup_future
setup_logging
setup_target_folder
simulate_cases
simulate_infections
stan_opts
summarise_key_measures
summarise_results
summary.epinow
summary.estimate_infections
theme_map
trunc_opts
tune_inv_gamma
update_horizon
update_list

```
adjust_infection_to_report
```

Adjust from Case Counts by Infection Date to Date of Report

Description

Soft-deprecated Maps from cases by date of infection to date of report via date of onset.

Usage

```
adjust_infection_to_report(
  infections,
  delay_defs,
  reporting_model,
  reporting_effect,
  type = "sample",
  truncate_future = TRUE
)
```

Arguments

infections

data.table containing a date variable and a numeric cases variable.

delay_defs

A list of single row data.tables that each defines a delay distribution (model, parameters and maximum delay for each model). See lognorm_dist_def for an example of the structure.

reporting_model

A function that takes a single numeric vector as an argument and returns a single numeric vector. Can be used to apply stochastic reporting effects. See the examples for details.

reporting_effect

A numeric vector of length 7 that allows the scaling of reported cases by the day on which they report (1 = Monday, 7 = Sunday). By default no scaling occurs.

type

Character string indicating the method to use to transform counts. Supports either "sample" which approximates sampling or "median" would shift by the median of the distribution.

truncate_future

Logical, should cases be truncated if they occur after the first date reported in the data. Defaults to TRUE.

Value

A data.table containing a date variable (date of report) and a cases variable. If return_onset = TRUE there will be a third variable reference which indicates what the date variable refers to.

6 allocate_delays

Examples

```
# define example cases
cases <- data.table::copy(example_confirmed)[, cases := as.integer(confirm)]</pre>
# define a single report delay distribution
delay_def <- lognorm_dist_def(mean = 5, mean_sd = 1, sd = 3, sd_sd = 1,</pre>
                              max_value = 30, samples = 1, to_log = TRUE)
# define a single incubation period
incubation_def <- lognorm_dist_def(mean = incubation_periods[1, ]$mean,</pre>
                                    mean_sd = incubation_periods[1, ]$mean_sd,
                                    sd = incubation_periods[1, ]$sd,
                                    sd_sd = incubation_periods[1, ]$sd_sd,
                                    max_value = 30, samples = 1)
# simple mapping
report <- adjust_infection_to_report(cases, delay_defs = list(incubation_def, delay_def))
print(report)
# mapping with a weekly reporting effect
report_weekly <- adjust_infection_to_report(</pre>
                       cases, delay_defs = list(incubation_def, delay_def),
                       reporting_effect = c(1.1, rep(1, 4), 0.95, 0.95))
print(report_weekly)
# map using a deterministic median shift for both delays
report_median <- adjust_infection_to_report(cases, delay_defs = list(incubation_def, delay_def),
                                              type = "median")
print(report_median)
# map with a weekly reporting effect and stochastic reporting model
report_stochastic <- adjust_infection_to_report(</pre>
                       cases, delay_defs = list(incubation_def, delay_def),
                       reporting_effect = c(1.1, rep(1, 4), 0.95, 0.95),
                       reporting_model = function(n) {
                       out <- suppressWarnings(rnbinom(length(n), as.integer(n), 0.5))</pre>
                       out <- ifelse(is.na(out), 0, out)</pre>
print(report_stochastic)
```

allocate_delays

Allocate Delays into Required Stan Format

Description

Stable Allocate delays for stan. Used in delay_opts.

Usage

```
allocate_delays(delay_var, no_delays)
```

allocate_empty 7

Arguments

delay_var List of numeric delays

no_delays Numeric, number of delays

Value

A numeric array

allocate_empty

Allocate Empty Parameters to a List

Description

Stable Allocate missing parameters to be empty two dimensional arrays. Used internally by simulate_infections.

Usage

```
allocate_empty(data, params, n = 0)
```

Arguments

data A list of parameters

params A character vector of parameters to allocate to empty if missing.

n Numeric, number of samples to assign an empty array

Value

A list of parameters some allocated to be empty

```
data <- list(x = 1, y = 2, z = 30)

EpiNow2:::allocate_empty(data, params = c("x", "t"))
```

8 backcalc_opts

hac	kca]	<u>ر</u>	on	t s
vac	nca.	LC	$^{\circ}$	ιc

Back Calculation Options

Description

Stable Defines a list specifying the optional arguments for the back calculation of cases. Only used if rt = NULL.

Usage

```
backcalc_opts(prior = "reports", prior_window = 14, rt_window = 1)
```

Arguments

р	r	1	0	r

A character string defaulting to "reports". Defines the prior to use when deconvolving. Currently implemented options are to use smoothed mean delay shifted reported cases ("reports"), to use the estimated infections from the previous time step seeded for the first time step using mean shifted reported cases ("infections"), or no prior ("none"). Using no prior will result in poor real time performance. No prior and using infections are only supported when a Gaussian process is present. If observed data is not reliable then it a sensible first step is to explore increasing the prior_window with a sensible second step being to no longer use reported cases as a prior (i.e set prior = "none").

prior_window

Integer, defaults to 14 days. The mean centred smoothing window to apply to mean shifted reports (used as a prior during back calculation). 7 days is minimum recommended settings as this smooths day of the week effects but depending on the quality of the data and the amount of information users wish to use as a prior (higher values equalling a less informative prior).

rt_window

Integer, defaults to 1. The size of the centred rolling average to use when estimating Rt. This must be odd so that the central estimate is included.

Value

A list of back calculation settings

```
# default settings
backcalc_opts()
```

bootstrapped_dist_fit 9

bootstrapped_dist_fit Fit a Subsampled Bootstrap to Integer Values and Summarise Distribution Parameters

Description

Stable Fits an integer adjusted distribution to a subsampled bootstrap of data and then integrates the posterior samples into a single set of summary statistics. Can be used to generate a robust reporting delay that accounts for the fact the underlying delay likely varies over time or that the size of the available reporting delay sample may not be representative of the current case load.

Usage

```
bootstrapped_dist_fit(
  values,
  dist = "lognormal",
  samples = 2000,
  bootstraps = 10,
  bootstrap_samples = 250,
  max_value,
  verbose = FALSE
)
```

Arguments

values Integer vector of values.

dist Character string, which distribution to fit. Defaults to lognormal ("lognormal")

but gamma ("gamma") is also supported.

samples Numeric, number of samples to take overall from the bootstrapped posteriors.

bootstraps Numeric, defaults to 1. The number of bootstrap samples (with replacement) of

the delay distribution to take.

bootstrap_samples

Numeric, defaults to 100. The number of samples to take in each bootstrap.

When the sample size of the supplied delay distribution is less than 100 this is

used instead.

max_value Numeric, defaults to the maximum value in the observed data. Maximum delay

to allow (added to output but does impact fitting).

verbose Logical, defaults to FALSE. Should progress messages be printed

Value

A list summarising the bootstrapped distribution

10 calc_CrI

Examples

calc_CrI

Calculate Credible Interval

Description

Stable Adds symmetric a credible interval based on quantiles.

Usage

```
calc_CrI(samples, summarise_by = c(), CrI = 0.9)
```

Arguments

samples A data.table containing at least a value variable
summarise_by A character vector of variables to group by.

CrI Numeric between 0 and 1. The credible interval for which to return values.
Defaults to 0.9.

Value

A data.table containing the upper and lower bounds for the specified credible interval

```
samples <- data.frame(value = 1:10, type = "car")
# add 90% credible interval
calc_CrI(samples)
# add 90% credible interval grouped by type
calc_CrI(samples, summarise_by = "type")</pre>
```

calc_CrIs 11

calc_CrIs

Calculate Credible Intervals

Description

Stable Adds symmetric credible intervals based on quantiles.

Usage

```
calc_CrIs(samples, summarise_by = c(), CrIs = c(0.2, 0.5, 0.9))
```

Arguments

samples A data.table containing at least a value variable summarise_by A character vector of variables to group by.

CrIs Numeric vector of credible intervals to calculate.

Value

A data.table containing the summarise_by variables and the specified lower and upper credible intervals

Examples

```
samples <- data.frame(value = 1:10, type = "car")
# add credible intervals
calc_CrIs(samples)
# add 90% credible interval grouped by type
calc_CrIs(samples, summarise_by = "type")</pre>
```

calc_summary_measures Calculate All Summary Measures

Description

Stable Calculate summary statistics and credible intervals from a data frame by group.

Usage

```
calc_summary_measures(
  samples,
  summarise_by = NULL,
  order_by = NULL,
  CrIs = c(0.2, 0.5, 0.9)
)
```

12 calc_summary_stats

Arguments

samples A data.table containing at least a value variable summarise_by A character vector of variables to group by.

order_by A character vector of parameters to order by, defaults to all summarise_by vari-

ables.

CrIs Numeric vector of credible intervals to calculate.

Value

A data.table containing summary statistics by group.

Examples

```
samples <- data.frame(value = 1:10, type = "car")
# default
calc_summary_measures(samples)
# by type
calc_summary_measures(samples, summarise_by = "type")</pre>
```

calc_summary_stats

Calculate Summary Statistics

Description

Stable Calculate summary statistics from a data frame by group. Currently supports the mean, median and standard deviation.

Usage

```
calc_summary_stats(samples, summarise_by = c())
```

Arguments

samples A data.table containing at least a value variable summarise_by A character vector of variables to group by.

Value

A data.table containing the upper and lower bounds for the specified credible interval

```
samples <- data.frame(value = 1:10, type = "car")
# default
calc_summary_stats(samples)
# by type
calc_summary_stats(samples, summarise_by = "type")</pre>
```

clean_nowcasts 13

Description

Stable This function removes nowcasts in the format produced by EpiNow2 from a target directory for the date supplied.

Usage

```
clean_nowcasts(date = NULL, nowcast_dir = ".")
```

Arguments

date Date object. Defaults to today's date

nowcast_dir Character string giving the filepath to the nowcast results directory. Defaults to

the current directory.

clean_regions Clean Regions

Description

Stable Removes regions with insufficient time points, and provides logging information on the input.

Usage

```
clean_regions(reported_cases, non_zero_points)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date), and region (region). non_zero_points

Numeric, the minimum number of time points with non-zero cases in a region required for that region to be evaluated. Defaults to 7.

Value

A dataframe of cleaned regional data

See Also

regional_epinow

14 convert_to_logmean

construct_output

Construct Output

Description

Stable Combines the output produced internally by epinow into a single list.

Usage

```
construct_output(
  estimates,
  forecast = NULL,
  estimated_reported_cases,
  plots = NULL,
  summary = NULL,
  samples = TRUE
)
```

Arguments

estimates List of data frames as output by estimate_infections forecast A list of data frames as output by forecast_infections

estimated_reported_cases

A list of dataframes as produced by estimates_by_report_date.

plots A list of plots as produced by report_plots

summary A list of summary output as produced by report_summary

samples Logical, defaults to TRUE. Should samples be saved

Value

A list of output as returned by epinow

convert_to_logmean

Convert mean and sd to log mean for a log normal distribution

Description

Stable Convert from mean and standard deviation to the log mean of the lognormal distribution. Useful for defining distributions supported by estimate_infections, epinow, and regional_epinow.

Usage

```
convert_to_logmean(mean, sd)
```

convert_to_logsd 15

Arguments

mean Numeric, mean of a distribution

sd Numeric, standard deviation of a distribution

Value

The log mean of a lognormal distribution

Examples

```
convert_to_logmean(2, 1)
```

convert_to_logsd

Convert mean and sd to log standard deviation for a log normal distribution

Description

Stable Convert from mean and standard deviation to the log standard deviation of the lognormal distribution. Useful for defining distributions supported by estimate_infections, epinow, and regional_epinow.

Usage

```
convert_to_logsd(mean, sd)
```

Arguments

mean Numeric, mean of a distribution

sd Numeric, standard deviation of a distribution

Value

The log standard deviation of a lognormal distribution

```
convert_to_logsd(2, 1)
```

16 country_map

```
copy_results_to_latest
```

Copy Results From Dated Folder to Latest

Description

Questioning Copies output from the dated folder to a latest folder. May be undergo changes in later releases.

Usage

```
copy_results_to_latest(target_folder = NULL, latest_folder = NULL)
```

Arguments

target_folder Character string specifying where to save results (will create if not present).

latest_folder Character string containing the path to the latest target folder. As produced by setup_target_folder.

country_map

Generate a country map for a single variable.

Description

Questioning This general purpose function can be used to generate a country map for a single variable. It has few defaults but the data supplied must contain a region_code variable for linking to mapping data. This function requires the installation of the rnaturalearth package. Status of this function is currently questioning as it is uncertain if it is in use. Future releases may depreciate it.

Usage

```
country_map(
  data = NULL,
  country = NULL,
  variable = NULL,
  variable_label = NULL,
  trans = "identity",
  fill_labels = NULL,
  scale_fill = NULL,
  region_col_ne = "provnum_ne",
  ...
)
```

country_map 17

Arguments

data	Dataframe containing variables to be mapped. Must contain a region_code variable.
country	Character string indicating the name of the country to be mapped.
variable	A character string indicating the variable to map data for. This must be supplied.
variable_label	A character string indicating the variable label to use. If not supplied then the underlying variable name is used.
trans	A character string specifying the transform to use on the specified metric. Defaults to no transform ("identity"). Other options include log scaling ("log") and log base 10 scaling ("log10"). For a complete list of options see ggplot2::continous_scale.
fill_labels	A function to use to allocate legend labels. An example (used below) is scales::percent, which can be used for percentage data.
scale_fill	Function to use for scaling the fill. Defaults to a custom ggplot2::scale_fill_manual, which expects the possible values to be "Increasing", "Likely increasing", "Likely decreasing", "Decreasing" or "Unsure".
region_col_ne	Character string indicating the name of a column in the data returned by rnaturalearth::ne_states() that data\$region_code corresponds to. Possibilities include provnum_ne, name, fips and others and will depend on which country you are mapping.
• • •	Additional arguments passed to the scale_fill function

Value

A ggplot2 object containing a country map.

```
if(requireNamespace("rnaturalearth") & requireNamespace("scales")){
# Example 1
# if you know the provnum_ne codes you can use them directly
eg_data <- data.table::data.table(variable = c("Increasing",</pre>
                                                "Decreasing",
                                                "Unsure",
                                                "Likely decreasing",
                                                "Likely increasing"),
                                   region_code = c(5, 7, 6, 8, 9)
# make variable a factor so the ordering is sensible
eg_data$variable <- factor(eg_data$variable, levels = c("Decreasing", "Likely decreasing",
                                                         "Unsure", "Likely increasing",
                                                         "Increasing"))
country_map(data = eg_data, country = "Australia", variable = "variable")
# Example 2
# sometimes it will be more convenient to join your data by name than provnum_ne code:
us_data <- data.table::data.table(variable = c("Increasing",</pre>
                                                "Decreasing",
```

18 create_backcalc_data

```
"Unsure",

"Likely decreasing",

"Likely increasing"),

region_code = c("California",

"Texas",

"Florida",

"Arizona",

"New York"))

# make variable a factor so the ordering is sensible in the legend

us_data$variable <- factor(us_data$variable, levels = c("Decreasing", "Likely decreasing",

"Unsure", "Likely increasing",

"Increasing"))

country_map(data = us_data, country = "United States of America",

variable = "variable", region_col_ne = "name")
}
```

Description

Stable Takes the output of backcalc_opts() and converts it into a list understood by stan.

Usage

```
create_backcalc_data(backcalc = backcalc_opts)
```

Arguments

backcalc

A list of options as generated by backcalc_opts() to define the back calculation. Defaults to backcalc_opts().

Value

A list of settings defining the Gaussian process

See Also

backcalc_opts

```
# define input data required
data <- list(
    t = 30,
    seeding_time = 7,
horizon = 7)</pre>
```

```
# default gaussian process data
create_gp_data(data = data)

# settings when no gaussian process is desired
create_gp_data(NULL, data)

# custom lengthscale
create_gp_data(gp_opts(ls_mean = 14), data)
```

create_clean_reported_cases

Create Clean Reported Cases

Description

Stable Cleans a data frame of reported cases by replacing missing dates with 0 cases and applies an optional threshold at which point 0 cases are replaced with a moving average of observed cases. See zero_threshold for details.

Usage

```
create_clean_reported_cases(reported_cases, horizon, zero_threshold = 50)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be

integer and date must be in date format.

horizon Numeric, defaults to 7. Number of days into the future to forecast.

zero_threshold Numeric defaults to 50. Indicates if detected zero cases are meaningful by using

a threshold of 50 cases on average over the last 7 days. If the average is above

this thresold then the zero is replaced with the

Value

A cleaned data frame of reported cases

create_future_rt

Construct the Required Future Rt assumption

Description

Stable Converts the future argument from rt_opts() into arguments that can be passed to stan.

Usage

```
create_future_rt(future = "latest", delay = 0)
```

20 create_gp_data

Arguments

future A character string or integer. This argument indicates how to set future Rt val-

ues. Supported options are to project using the Rt model ("project"), to use the latest estimate based on partial data ("latest"), to use the latest estimate based on data that is over 50% complete ("estimate"). If an integer is supplied then the Rt estimate from this many days into the future (or past if negative) past will be

used forwards in time.

delay Numeric mean delay

Value

A list containing a logical called fixed and an integer called from

create_gp_data

Create Gaussian Process Data

Description

Stable Takes the output of gp_opts() and converts it into a list understood by stan.

Usage

```
create_gp_data(gp = gp_opts(), data)
```

Arguments

gp A list of options as generated by gp_opts() to define the Gaussian process.

Defaults to gp_opts().Set to NULL to disable the Gaussian process.

data A list containing the following numeric values: t, seeding_time, horizon.

Value

A list of settings defining the Gaussian process

See Also

```
gp_opts
```

```
# define input data required
data <- list(
    t = 30,
    seeding_time = 7,
    horizon = 7)
# default gaussian process data
create_gp_data(data = data)</pre>
```

create_initial_conditions

```
# settings when no gaussian process is desired
create_gp_data(NULL, data)

# custom lengthscale
create_gp_data(gp_opts(ls_mean = 14), data)
```

create_initial_conditions

Create Initial Conditions Generating Function

Description

Stable Uses the output of create_stan_data to create a function which can be used to sample from the prior distributions (or as close as possible) for parameters. Used in order to initialise each stan chain within a range of plausible values.

Usage

```
create_initial_conditions(data)
```

Arguments

data

A list of data as produced by create_stan_data.

Value

An initial condition generating function

create_obs_model

Create Observation Model Settings

Description

Stable Takes the output of obs_opts() and converts it into a list understood by stan.

Usage

```
create_obs_model(obs = obs_opts())
```

Arguments

obs

A list of options as generated by obs_opts() defining the observation model. Defaults to obs_opts().

22 create_rt_data

Value

A list of settings ready to be passed to stan defining the Observation Model

See Also

```
obs_opts
```

Examples

```
# default observation model data
create_obs_model()

# Poisson observation model
create_obs_model(obs_opts(family = "poisson"))

# Applying a observation scaling to the data
create_obs_model(obs_opts(scale = list(mean = 0.4, sd = 0.01)))
```

create_rt_data

Create Time-varying Reproduction Number Data

Description

Stable Takes the output from rt_opts() and converts it into a list understood by stan.

Usage

```
create_rt_data(rt = rt_opts(), breakpoints = NULL, delay = 0, horizon = 0)
```

Arguments

rt A list of options as generated by rt_opts() defining Rt estimation. Defaults to

rt_opts(). Set to NULL to switch to using back calculation rather than generat-

ing infections using Rt.

breakpoints An integer vector (binary) indicating the location of breakpoints.

delay Numeric mean delay

horizon Numeric, forecast horizon.

Value

A list of settings defining the time-varying reproduction number

See Also

rt_settings

create_shifted_cases 23

Examples

```
# default Rt data
create_rt_data()

# settings when no Rt is desired
create_rt_data(rt = NULL)

# using breakpoints
create_rt_data(rt_opts(use_breakpoints = TRUE), breakpoints = rep(1, 10))
```

Description

Stable This functions creates a data frame of reported cases that has been smoothed using a centred partial rolling average (with a period set by smoothing_window) and shifted back in time by some delay. It is used by estimate_infections to generate the mean shifted prior on which the back calculation method (see backcalc_opts) is based.

Usage

```
create_shifted_cases(reported_cases, shift, smoothing_window, horizon)
```

Arguments

shift

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be integer and date must be in date format.

Numeric, mean delay shift to apply.

smoothing_window

Numeric, the rolling average smoothing window to apply. Must be odd in order

to be defined as a centred average.

horizon Numeric, defaults to 7. Number of days into the future to forecast.

Value

A data frame for shifted reported cases

```
create_shifted_cases(example_confirmed, 7, 14, 7)
```

24 create_stan_args

create_stan_args	Create a List of Stan Arguments
------------------	---------------------------------

Description

Stable Generates a list of arguments as required by rstan::sampling or rstan::vb by combining the required options, with data, and type of initialisation. Initialisation defaults to random but it is expected that create_initial_conditions will be used.

Usage

```
create_stan_args(
   stan = stan_opts(),
   data = NULL,
   init = "random",
   verbose = FALSE
)
```

Arguments

stan	A list of stan options as generated by stan_opts(). Defaults to stan_opts(). Can be used to override data, init, and verbose settings if desired.
data	A list of stan data as created by create_stan_data
init	Initial conditions passed to rstan. Defaults to "random" but can also be a function (as supplied by create_intitial_conditions).
verbose	Logical, defaults to FALSE. Should verbose progress messages be returned.

Value

A list of stan arguments

```
# default settings
create_stan_args()
# increasing warmup
create_stan_args(stan = stan_opts(warmup = 1000))
```

create_stan_data 25

create_stan_data

Create Stan Data Required for estimate_infections

Description

Stable Takes the output of stan_opts() and converts it into a list understood by stan. Internally calls the other create_ family of functions to construct a single list for input into stan with all data required present.

Usage

```
create_stan_data(
  reported_cases,
  generation_time,
  rt,
  gp,
  obs,
  delays,
  horizon,
  backcalc,
  shifted_cases,
  truncation
)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be integer and date must be in date format.

generation_time

A list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum allowed value for the generation time (assuming a gamma distribution).

rt A list of options as generated by rt_opts() defining Rt estimation. Defaults to rt_opts(). Set to NULL to switch to using back calculation rather than generat-

ing infections using Rt.

gp A list of options as generated by gp_opts() to define the Gaussian process.

Defaults to gp_opts().Set to NULL to disable the Gaussian process.

obs A list of options as generated by obs_opts() defining the observation model.

Defaults to obs_opts().

delays A call to delay_opts() defining delay distributions and options. See the docu-

mentation of delay_opts() and the examples below for details.

horizon Numeric, forecast horizon.

backcalc A list of options as generated by backcalc_opts() to define the back calcula-

tion. Defaults to backcalc_opts().

shifted_cases A dataframe of delay shifted cases

26 delay_opts

truncation

Experimental A list of options as generated by trunc_opts() defining the truncation of observed data. Defaults to trunc_opts(). See estimate_truncation() for an approach to estimating truncation from data.

Value

A list of stan data

delay_opts

Delay Distribution Options

Description

Stable Returns delay distributions formatted for usage by downstream functions.

Usage

```
delay_opts(...)
```

Arguments

Delay distributions as a list with the following parameters: "mean", "mean_sd", "sd_mean", "sd_sd", and "max" defining a truncated log normal (with all parameters except for max defined in logged form).

Value

A list summarising the input delay distributions.

See Also

convert_to_logmean convert_to_logsd bootstrapped_dist_fit

```
# no delays
delay_opts()
```

dist_fit 27

dist_fit Fit an Integer Adjusted Exponential, Gamma or Lognormal distribu- tions	<i>t</i> -
---	------------

Description

Stable Fits an integer adjusted exponential, gamma or lognormal distribution using stan.

Usage

```
dist_fit(
  values = NULL,
  samples = NULL,
  cores = 1,
  chains = 2,
  dist = "exp",
  verbose = FALSE
)
```

Arguments

values	Numeric vector of values
samples	Numeric, number of samples to take
cores	Numeric, defaults to 1. Number of CPU cores to use (no effect if greater than the number of chains).
chains	Numeric, defaults to 2. Number of MCMC chains to use. More is better with the minimum being two.
dist	Character string, which distribution to fit. Defaults to exponential ("exp") but gamma ("gamma") and lognormal ("lognorma") are also supported.
verbose	Logical, defaults to FALSE. Should verbose progress messages be printed.

Value

A stan fit of an interval censored distribution

28 dist_skel

dist_skel

Distribution Skeleton

Description

Questioning This function acts as a skeleton for a truncated distribution defined by model type, maximum value and model parameters. It is designed to be used with the output from get_dist.

Usage

```
dist_skel(n, dist = FALSE, cum = TRUE, model, params, max_value = 120)
```

Arguments

n	Numeric vector, number of samples to take (or days for the probability density).
dist	Logical, defaults to FALSE. Should the probability density be returned rather than a number of samples.
cum	Logical, defaults to TRUE. If ${\tt dist}$ = TRUE should the returned distribution be cumulative.
mode1	Character string, defining the model to be used. Supported options are exponential ("exp"), gamma ("gamma"), and log normal ("lognorm")
params	A list of parameters values (by name) required for each model. For the exponential model this is a rate parameter and for the gamma model this is alpha and beta.
max_value	Numeric, the maximum value to allow. Defaults to 120. Samples outside of this range are resampled.

Value

A vector of samples or a probability distribution.

```
## Exponential model
# sample
dist_skel(10, model = "exp", params = list(rate = 1))
# cumulative prob density
dist_skel(1:10, model = "exp", dist = TRUE, params = list(rate = 1))
# probability density
```

epinow 29

```
dist_skel(1:10, model = "exp", dist = TRUE,
          cum = FALSE, params = list(rate = 1))
## Gamma model
# sample
dist_skel(10, model = "gamma", params = list(alpha = 1, beta = 2))
# cumulative prob density
dist_skel(0:10, model = "gamma", dist = TRUE,
          params = list(alpha = 1, beta = 2))
# probability density
dist_skel(0:10, model = "gamma", dist = TRUE,
          cum = FALSE, params = list(alpha = 2, beta = 2))
## Log normal model
# sample
dist_skel(10, model = "lognorm", params = list(mean = log(5), sd = log(2)))
# cumulative prob density
dist_skel(0:10, model = "lognorm", dist = TRUE,
          params = list(mean = log(5), sd = log(2)))
# probability density
dist_skel(0:10, model = "lognorm", dist = TRUE, cum = FALSE,
          params = list(mean = log(5), sd = log(2)))
```

epinow

Real-time Rt Estimation, Forecasting and Reporting

Description

Maturing This function wraps the functionality of estimate_infections() and forecast_infections() in order to estimate Rt and cases by date of infection, forecast into these infections into the future. It also contains additional functionality to convert forecasts to date of report and produce summary output useful for reporting results and interpreting them. See here for an example of using epinow to estimate Rt for Covid-19 in a country from the ECDC data source.

Usage

```
epinow(
  reported_cases,
  generation_time,
  delays = delay_opts(),
  truncation = trunc_opts(),
  rt = rt_opts(),
  backcalc = backcalc_opts(),
  gp = gp_opts(),
```

30 epinow

```
obs = obs_opts(),
stan = stan_opts(),
horizon = 7,
CrIs = c(0.2, 0.5, 0.9),
return_output = FALSE,
output = c("samples", "plots", "latest", "fit", "timing"),
target_folder = NULL,
target_date,
forecast_args = NULL,
logs = tempdir(),
id = "epinow",
verbose = interactive()
)
```

Arguments

 ${\tt reported_cases} \ \ A \ \ data \ \ frame \ \ of \ confirmed \ \ cases \ \ (confirm) \ \ by \ \ date \ \ (date). \ \ confirm \ \ must \ be$

integer and date must be in date format.

generation_time

A list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum

allowed value for the generation time (assuming a gamma distribution).

delays A call to delay_opts() defining delay distributions and options. See the docu-

mentation of delay_opts() and the examples below for details.

truncation **Experimental** A list of options as generated by trunc_opts() defining the

truncation of observed data. Defaults to trunc_opts(). See estimate_truncation()

for an approach to estimating truncation from data.

rt A list of options as generated by rt_opts() defining Rt estimation. Defaults to

rt_opts(). Set to NULL to switch to using back calculation rather than generat-

ing infections using Rt.

backcalc A list of options as generated by backcalc_opts() to define the back calcula-

tion. Defaults to backcalc_opts().

gp A list of options as generated by gp_opts() to define the Gaussian process.

Defaults to gp_opts(). Set to NULL to disable the Gaussian process.

obs A list of options as generated by obs_opts() defining the observation model.

Defaults to obs_opts().

stan A list of stan options as generated by stan_opts(). Defaults to stan_opts().

Can be used to override data, init, and verbose settings if desired.

horizon Numeric, defaults to 7. Number of days into the future to forecast.

CrIs Numeric vector of credible intervals to calculate.

return_output Logical, defaults to FALSE. Should output be returned, this automatically up-

dates to TRUE if no directory for saving is specified.

output A character vector of optional output to return. Supported options are samples

("samples"), plots ("plots"), the run time ("timing"), copying the dated folder into a latest folder (if target_folder is not null, set using "latest"), and the

epinow 31

stan fit ("fit"). The default is to return all options. This argument uses partial matching so for example passing "sam" will lead to samples being reported.

target_folder Character string specifying where to save results (will create if not present).

target_date Date, defaults to maximum found in the data if not specified.

forecast_args A list of arguments to pass to forecast_infections(). Unless at a minimum

a forecast_model is passed then forecast_infections will be bypassed.

logs Character path indicating the target folder in which to store log information.

Defaults to the temporary directory if not specified. Default logging can be disabled if logs is set to NULL. If specifying a custom logging setup then the code for setup_default_logging and the setup_logging function are a sensible

place to start.

id A character string used to assign logging information on error. Used by regional_epinow

to assign errors to regions. Alter the default to run with error catching.

verbose Logical, defaults to TRUE when used interactively and otherwise FALSE. Should

verbose debug progress messages be printed. Corresponds to the "DEBUG" level from futile.logger. See setup_logging for more detailed logging op-

tions.

Value

A list of output from estimate_infections, forecast_infections, report_cases, and report_summary.

See Also

estimate_infections simulate_infections forecast_infections regional_epinow

```
#set number of cores to use
options(mc.cores = ifelse(interactive(), 4, 1))
# construct example distributions
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- list(mean = convert_to_logmean(3, 1),</pre>
                        mean\_sd = 0.1,
                         sd = convert_to_logsd(3, 1),
                         sd_sd = 0.1,
                        max = 10)
# example case data
reported_cases <- example_confirmed[1:40]</pre>
# estimate Rt and nowcast/forecast cases by date of infection
out <- epinow(reported_cases = reported_cases, generation_time = generation_time,
              rt = rt_opts(prior = list(mean = 2, sd = 0.1)),
              delays = delay_opts(incubation_period, reporting_delay))
# summary of the latest estimates
summary(out)
```

```
# plot estimates
plot(out)

# summary of R estimates
summary(out, type = "parameters", params = "R")
```

```
estimates_by_report_date
```

Estimate Cases by Report Date

Description

Questioning Either extracts or converts reported cases from an input data table. For output from estimate_infections this is a simple filtering step but for output from forecast_infection this is currently an approximate convolution. This step is likely to be updated/deprecated in new releases as forecast_infections evolves to be based on stan functionality.

Usage

```
estimates_by_report_date(
  estimates,
  forecast,
  delays,
  CrIs = c(0.2, 0.5, 0.9),
  target_folder = NULL,
  samples = TRUE
)
```

Arguments

estimates List of data frames as output by estimate_infections forecast A list of data frames as output by forecast_infections

delays A call to delay_opts() defining delay distributions and options. See the docu-

mentation of delay_opts() and the examples below for details.

CrIs Numeric vector of credible intervals to calculate.

target_folder Character string specifying where to save results (will create if not present).

samples Logical, defaults to TRUE. Should samples be saved

Value

A list of samples and summarised estimates of estimated cases by date of report

estimate_delay 33

estimate_delay

Estimate a Delay Distribution

Description

Maturing Estimate a log normal delay distribution from a vector of integer delays. Currently this function is a simple wrapper for bootstrapped_dist_fit.

Usage

```
estimate_delay(delays, ...)
```

Arguments

delays Integer vector of delays

. . . Arguments to pass to internal methods.

Value

A list summarising the bootstrapped distribution

See Also

bootstrapped_dist_fit

Examples

```
delays <- rlnorm(500, log(5), 1)
estimate_delay(delays, samples = 1000, bootstraps = 10)</pre>
```

estimate_infections

Estimate Infections, the Time-Varying Reproduction Number and the Rate of Growth

Description

Maturing Uses a non-parametric approach to reconstruct cases by date of infection from reported cases. It uses either a generative Rt model or non-parametric back calculation to estimate underlying latent infections and then maps these infections to observed cases via uncertain reporting delays and a flexible observation model. See the examples and function arguments for the details of all options. The default settings may not be sufficient for your use case so the number of warmup samples (stan_args = list(warmup)) may need to be increased as may the overall number of samples. Follow the links provided by any warnings messages to diagnose issues with the MCMC fit. It is recommended to explore several of the Rt estimation approaches supported as not all of them may be suited to users own use cases. See here for an example of using estimate_infections within the epinow wrapper to estimate Rt for Covid-19 in a country from the ECDC data source.

34 estimate_infections

Usage

```
estimate_infections(
  reported_cases,
  generation_time,
  delays = delay_opts(),
  truncation = trunc_opts(),
  rt = rt_opts(),
  backcalc = backcalc_opts(),
  gp = gp_opts(),
  obs = obs_opts(),
  stan = stan_opts(),
  horizon = 7,
  CrIs = c(0.2, 0.5, 0.9),
  id = "estimate_infections",
  verbose = interactive()
)
```

Arguments

delays

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be

integer and date must be in date format.

generation_time

A list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum allowed value for the generation time (assuming a gamma distribution).

A call to delay_opts() defining delay distributions and options. See the docu-

mentation of delay_opts() and the examples below for details.

truncation **Experimental** A list of options as generated by trunc_opts() defining the

truncation of observed data. Defaults to trunc_opts(). See estimate_truncation()

for an approach to estimating truncation from data.

rt A list of options as generated by rt_opts() defining Rt estimation. Defaults to

rt_opts(). Set to NULL to switch to using back calculation rather than generat-

ing infections using Rt.

backcalc A list of options as generated by backcalc_opts() to define the back calcula-

tion. Defaults to backcalc_opts().

gp A list of options as generated by gp_opts() to define the Gaussian process.

Defaults to gp_opts().Set to NULL to disable the Gaussian process.

obs A list of options as generated by obs_opts() defining the observation model.

Defaults to obs_opts().

stan A list of stan options as generated by stan_opts(). Defaults to stan_opts().

Can be used to override data, init, and verbose settings if desired.

horizon Numeric, defaults to 7. Number of days into the future to forecast.

CrIs Numeric vector of credible intervals to calculate.

id A character string used to assign logging information on error. Used by regional_epinow

to assign errors to regions. Alter the default to run with error catching.

estimate_infections 35

verbose

Logical, defaults to TRUE when used interactively and otherwise FALSE. Should verbose debug progress messages be printed. Corresponds to the "DEBUG" level from futile.logger. See setup_logging for more detailed logging options.

See Also

epinow regional_epinow forecast_infections simulate_infections

```
# set number of cores to use
options(mc.cores = ifelse(interactive(), 4, 1))
# get example case counts
reported_cases <- example_confirmed[1:60]</pre>
# set up example generation time
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
# set delays between infection and case report
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")
reporting_delay <- list(mean = convert_to_logmean(3, 1), mean_sd = 0.1,
                        sd = convert\_to\_logsd(3, 1), sd\_sd = 0.1, max = 10)
# default setting
# here we assume that the observed data is truncated by the same delay as
def <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                           delays = delay_opts(incubation_period, reporting_delay),
                           rt = rt_opts(prior = list(mean = 2, sd = 0.1)),
                           stan = stan_opts(control = list(adapt_delta = 0.95)))
# real time estimates
summary(def)
# summary plot
plot(def)
# decreasing the accuracy of the approximate Gaussian to speed up computation.
# These settings are an area of active research. See ?gp_opts for details.
agp <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                           delays = delay_opts(incubation_period, reporting_delay),
                           rt = rt_opts(prior = list(mean = 2, sd = 0.1)),
                           gp = gp_opts(ls_min = 10, basis_prop = 0.1),
                           stan = stan_opts(control = list(adapt_delta = 0.95)))
summary(agp)
plot(agp)
# Adjusting for future susceptible depletion
dep <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                           delays = delay_opts(incubation_period, reporting_delay),
                           rt = rt_opts(prior = list(mean = 2, sd = 0.1),
                                         pop = 1000000, future = "latest"),
                           gp = gp_opts(ls_min = 10, basis_prop = 0.1), horizon = 21,
                           stan = stan_opts(control = list(adapt_delta = 0.95)))
```

36 estimate_infections

```
plot(dep)
# Adjusting for truncation of the most recent data
# See estimate_truncation for an approach to estimating this from data
trunc_dist <- list(mean = convert_to_logmean(0.5, 0.5), mean_sd = 0.1,
                   sd = convert\_to\_logsd(0.5, 0.5), sd\_sd = 0.1,
                   max = 3)
trunc <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                             delays = delay_opts(incubation_period, reporting_delay),
                             truncation = trunc_opts(trunc_dist),
                             rt = rt_opts(prior = list(mean = 2, sd = 0.1)),
                             gp = gp_opts(ls_min = 10, basis_prop = 0.1),
                              stan = stan_opts(control = list(adapt_delta = 0.95)))
plot(trunc)
# using back calculation (combined here with under reporting)
# this model is in the order of 10 ^{\sim} 100 faster than the gaussian process method
# it is likely robust for retrospective Rt but less reliable for real time estimates
# the width of the prior window controls the reliance on observed data and can be
# optionally switched off using backcalc_opts(prior = "none"), see ?backcalc_opts for
# other options
backcalc <- estimate_infections(reported_cases, generation_time = generation_time,
                                delays = delay_opts(incubation_period, reporting_delay),
                                 rt = NULL, backcalc = backcalc_opts(),
                                 obs = obs_opts(scale = list(mean = 0.4, sd = 0.05)),
                                 horizon = 0)
plot(backcalc)
# Rt projected into the future using the Gaussian process
project_rt <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                                delays = delay_opts(incubation_period, reporting_delay),
                                   rt = rt_opts(prior = list(mean = 2, sd = 0.1),
                                                future = "project"))
plot(project_rt)
# default settings on a later snapshot of data
snapshot_cases <- example_confirmed[80:130]</pre>
snapshot <- estimate_infections(snapshot_cases, generation_time = generation_time,</pre>
                                delays = delay_opts(incubation_period, reporting_delay),
                                 rt = rt_opts(prior = list(mean = 1, sd = 0.1)))
plot(snapshot)
# stationary Rt assumption (likely to provide biased real-time estimates)
stat <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                            delays = delay_opts(incubation_period, reporting_delay),
                           rt = rt_opts(prior = list(mean = 2, sd = 0.1), gp_on = "R0"))
plot(stat)
# no gaussian process (i.e fixed Rt assuming no breakpoints)
fixed <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                             delays = delay_opts(incubation_period, reporting_delay),
                             gp = NULL)
plot(fixed)
```

estimate_secondary 37

```
# no delays
no_delay <- estimate_infections(reported_cases, generation_time = generation_time)</pre>
plot(no_delay)
# break point but otherwise static Rt
bp_cases <- data.table::copy(reported_cases)</pre>
bp_cases <- bp_cases[, breakpoint := ifelse(date == as.Date("2020-03-16"), 1, 0)]</pre>
bkp <- estimate_infections(bp_cases, generation_time = generation_time,</pre>
                            delays = delay_opts(incubation_period, reporting_delay),
                            rt = rt_opts(prior = list(mean = 2, sd = 0.1)),
                            gp = NULL)
# break point effect
summary(bkp, type = "parameters", params = "breakpoints")
plot(bkp)
# weekly random walk
rw <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                           delays = delay_opts(incubation_period, reporting_delay),
                           rt = rt_{opts}(prior = list(mean = 2, sd = 0.1), rw = 7),
                           gp = NULL)
# random walk effects
summary(rw, type = "parameters", params = "breakpoints")
plot(rw)
```

estimate_secondary

Estimate a Secondary Observation from a Primary Observation

Description

Experimental Estimates the relationship between a primary and secondary observation, for example hospital admissions and deaths or hospital admissions and bed occupancy. See secondary_opts() for model structure options. See parameter documentation for model defaults and options. See the examples for case studies using synthetic data and here for an example of forecasting Covid-19 deaths from Covid-19 cases. See here for a prototype function that may be used to estimate and forecast a secondary observation from a primary across multiple regions and here for an application forecasting Covid-19 deaths in Germany and Poland.

Usage

```
estimate_secondary(
  reports,
  secondary = secondary_opts(),
  delays = delay_opts(list(mean = 2.5, mean_sd = 0.5, sd = 0.47, sd_sd = 0.25, max = 30)),
  truncation = trunc_opts(),
  obs = obs_opts(),
```

38 estimate_secondary

```
burn_in = 14,
    CrIs = c(0.2, 0.5, 0.9),
    model = NULL,
    verbose = interactive(),
    ...
)
```

Arguments

reports A data frame containing the date of report and both primary and secondary

reports.

secondary A call to secondary_opts() or a list containing the following binary variables:

cumulative, historic, primary_hist_additive, current, primary_current_additive.

These parameters control the structure of the secondary model, see secondary_opts()

for details.

delays A call to delay_opts() defining delay distributions between primary and sec-

ondary observations See the documentation of delay_opts() for details. BY default a diffuse prior is assumed with a mean of 14 days and standard deviation of 7 days (with a standard deviation of 0.5 and 0.25 respectively on the log

scale).

truncation **Experimental** A list of options as generated by trunc_opts() defining the

truncation of observed data. Defaults to trunc_opts(). See estimate_truncation()

for an approach to estimating truncation from data.

obs A list of options as generated by obs_opts() defining the observation model.

Defaults to obs_opts().

burn_in Integer, defaults to 14 days. The number of data points to use for estimation but

not to fit to at the beginning of the time series. This must be less than the number

of observations.

CrIs Numeric vector of credible intervals to calculate.

model A compiled stan model to override the default model. May be useful for package

developers or those developing extensions.

verbose Logical, should model fitting progress be returned. Defaults to interactive().

... Additional parameters to pass to rstan::sampling.

Value

A list containing: predictions (a data frame ordered by date with the primary, and secondary observations, and a summary of the model estimated secondary observations), data (a list of data used to fit the model), and fit (the stanfit object).

```
#set number of cores to use
options(mc.cores = ifelse(interactive(), 4, 1))
#' # load data.table for manipulation
library(data.table)
```

estimate_secondary 39

```
# load lubridate for dates
library(lubridate)
#### Incidence data example ####
# make some example secondary incidence data
cases <- example_confirmed</pre>
cases <- as.data.table(cases)</pre>
# apply a convolution of a log normal to a vector of observations
weight_cmf <- function(x, ...) {</pre>
   set.seed(x[1])
   meanlog <- rnorm(1, 1.6, 0.2)
   sdlog <- rnorm(1, 0.8, 0.1)
   cmf <- cumsum(dlnorm(1:length(x), meanlog, sdlog)) -</pre>
           cumsum(dlnorm(0:(length(x) - 1), meanlog, sdlog))
   conv <- sum(x * rev(cmf), na.rm = TRUE)</pre>
   conv <- round(conv, 0)</pre>
 return(conv)
}
# roll over observed cases to produce a convolution
cases <- cases[, .(date, primary = confirm, secondary = confirm)]</pre>
cases <- cases[, secondary := frollapply(secondary, 15, weight_cmf, align = "right")]</pre>
cases <- cases[!is.na(secondary)]</pre>
# add a day of the week effect and scale secondary observations at 40% of primary
cases <- cases[lubridate::wday(date) == 1, secondary := round(0.5 * secondary, 0)]</pre>
cases <- cases[, secondary := round(secondary * rnorm(.N, 0.4, 0.025), 0)]</pre>
cases <- cases[secondary < 0, secondary := 0]</pre>
# fit model to example data assuming only a given fraction of primary observations
# become secondary observations
inc <- estimate_secondary(cases[1:60],</pre>
                            obs = obs_opts(scale = list(mean = 0.2, sd = 0.2)))
plot(inc, primary = TRUE)
# forecast future secondary cases from primary
inc_preds <- forecast_secondary(inc, cases[61:.N][, value := primary])</pre>
plot(inc_preds, new_obs = cases, from = "2020-05-01")
#### Prevalence data example ####
# make some example prevalence data
cases <- example_confirmed</pre>
cases <- as.data.table(cases)</pre>
cases <- cases[, .(date, primary = confirm,</pre>
                   scaled_primary = confirm * rnorm(.N, 0.4, 0.05))]
cases$secondary <- 0
cases$secondary[1] <- as.integer(cases$scaled_primary[1])</pre>
for (i in 2:nrow(cases)) {
  meanlog <- rnorm(1, 1.6, 0.1)
  sdlog <- rnorm(1, 0.8, 0.05)
  cmf <- cumsum(dlnorm(1:min(i-1,40), meanlog, sdlog)) -</pre>
            cumsum(dlnorm(0:min(39,i-2), meanlog, sdlog))
```

40 estimate_truncation

estimate_truncation

Estimate Truncation of Observed Data

Description

Experimental Estimates a truncation distribution from multiple snapshots of the same data source over time. This distribution can then be used in regional_epinow, epinow, and estimate_infections to adjust for truncated data. See here for an example of using this approach on Covid-19 data in England.

The model of truncation is as follows:

- 1. The truncation distribution is assumed to be log normal with a mean and standard deviation that is informed by the data.
- 2. The data set with the latest observations is adjusted for truncation using the truncation distribution.
- 3. Earlier data sets are recreated by applying the truncation distribution to the adjusted latest observations in the time period of the earlier data set. These data sets are then compared to the earlier observations assuming a negative binomial observation model.

This model is then fit using stan with standard normal, or half normal, prior for the mean, standard deviation and 1 over the square root of the over dispersion.

This approach assumes that:

- Current truncation is related to past truncation.
- Truncation is a multiplicative scaling of underlying reported cases.
- Truncation is log normally distributed.

estimate_truncation 41

Usage

```
estimate_truncation(
  obs,
  max_truncation = 10,
  model = NULL,
  CrIs = c(0.2, 0.5, 0.9),
  verbose = TRUE,
  ...
)
```

Arguments

Additional parameters to pass to rstan::sampling.

Value

A list containing: the summary parameters of the truncation distribution (dist), the estimated CMF of the truncation distribution (cmf, can be used to adjusted new data), a data frame containing the observed truncated data, latest observed data and the adjusted for truncation observations (obs), a data frame containing the last observed data (last_obs, useful for plotting and validation), the data used for fitting (data) and the fit object (fit).

42 example_confirmed

```
cmf <- cumsum(</pre>
     dlnorm(1:(dist$max + 1),
            rnorm(1, dist$mean, dist$mean_sd),
            rnorm(1, dist$sd, dist$sd_sd)))
  cmf <- cmf / cmf[dist$max + 1]</pre>
  cmf <- rev(cmf)[-1]
  trunc_cases <- data.table::copy(cases)[1:(.N - index)]</pre>
  trunc_cases[(.N - length(cmf) + 1):.N, confirm := as.integer(confirm * cmf)]
  return(trunc_cases)
 }
example_data <- purrr::map(c(20, 15, 10, 0),
                            construct_truncation,
                            cases = reported_cases,
                            dist = trunc_dist)
# fit model to example data
est <- estimate_truncation(example_data, verbose = interactive(),</pre>
                            chains = 2, iter = 2000)
# summary of the distribution
est$dist
# summary of the estimated truncation cmf (can be applied to new data)
print(est$cmf)
# observations linked to truncation adjusted estimates
print(est$obs)
# validation plot of observations vs estimates
plot(est)
```

example_confirmed

Example Confirmed Case Data Set

Description

Stable An example data frame of observed cases

Usage

```
example_confirmed
```

Format

A data frame containing cases reported on each date.

expose_stan_fns 43

expose_stan_fns $Expose internal package stan functions in R$

Description

Stable his function exposes internal stan functions in R from a user supplied list of target files. Allows for testing of stan functions in R and potentially user use in R code.

Usage

```
expose_stan_fns(files, target_dir, ...)
```

Arguments

files A character vector indicating the target files
target_dir A character string indicating the target directory for the file

... Additional arguments passed to rstan::expose_stan_functions.

Examples

```
expose_stan_fns("rt.stan", target_dir = system.file("stan/functions", package = "EpiNow2"))
# test by updating Rt
update_Rt(rep(1, 10), log(1.2), rep(0.1, 9), rep(10, 0), numeric(0), 0)
```

extract_CrIs

Extract Credible Intervals Present

Description

Stable Helper function to extract the credible intervals present in a data frame.

Usage

```
extract_CrIs(summarised)
```

Arguments

summarised

A data frame as processed by calc_CrIs

Value

A numeric vector of credible intervals detected in the data frame.

44 extract_parameter

Examples

extract_inits

Generate initial conditions from a Stan fit

Description

Experimental Extracts posterior samples to use to initialise a full model fit. This may be useful for certain data sets where the sampler gets stuck or cannot easily be initialised. In estimate_infections(), epinow() and regional_epinow() this option can be engaged by setting stan_opts(init_fit = <stanfit>).

This implementation is based on the approach taken in epidemia authored by James Scott.

Usage

```
extract_inits(fit, current_inits, exclude_list = NULL, samples = 50)
```

Arguments

fit A stanfit object

current_inits A function that returns a list of initial conditions (such as create_initial_conditions()).

Only used in exclude_list is specified.

exclude_list A character vector of parameters to not initialise from the fit object, defaulting

to NULL

samples Numeric, defaults to 50. Number of posterior samples.

Value

A function that when called returns a set of initial conditions as a named list.

extract_parameter

Extract Samples for a Parameter from a Stan model

Description

Stable Extracts a single from a list of stan output and returns it as a data. table.

Usage

```
extract_parameter(param, samples, dates)
```

Arguments

param Character string indicating the parameter to extract samples Extracted stan model (using rstan::extract)

dates A vector identifying the dimensionality of the parameter to extract. Generally

this will be a date

Value

A data frame containing the parameter name, date, sample id and sample value

```
extract_parameter_samples
```

Extract Parameter Samples from a Stan Model

Description

Stable Extracts a custom set of parameters from a stan object and adds stratification and dates where appropriate.

Usage

```
extract_parameter_samples(
   stan_fit,
   data,
   reported_dates,
   reported_inf_dates,
   drop_length_1 = FALSE,
   merge = FALSE
)
```

Arguments

stan_fit A fit Stan model as returned by rstan:sampling
data A list of the data supplied to the rstan::sampling call.
reported_dates A vector of dates to report estimates for.

reported_inf_dates

A vector of dates to report infection estimates for.

drop_length_1 Logical; whether the first dimension should be dropped if it is if length 1; this is

necessary when processing simulation results

merge if TRUE, merge samples and data so that parameters can be extracted from data

Value

A list of dataframes each containing the posterior of a parameter

extract_stan_param

Extract a Parameter Summary from a Stan Object

Description

Stable Extracts summarised parameter posteriors from a stanfit object using rstan::summary in a format consistent with other summary functions in EpiNow2.

Usage

```
extract_stan_param(
  fit,
  params = NULL,
  CrIs = c(0.2, 0.5, 0.9),
  var_names = FALSE
)
```

Arguments

fit A stanfit object

params A character vector of parameters to extract. Defaults to all parameters.

CrIs Numeric vector of credible intervals to calculate.

var_names Logical defaults to FALSE. Should variables be named. Automatically set to

TRUE if multiple parameters are to be extracted.

Value

A data.table summarising parameter posteriors. Contains a following variables: variable, mean, mean_se, sd, median, and lower_, upper_ followed by credible interval labels indicating the credible intervals present.

```
extract_static_parameter
```

Extract Samples from a Parameter with a Single Dimension

Description

Extract Samples from a Parameter with a Single Dimension

Usage

```
extract_static_parameter(param, samples)
```

filter_opts 47

Arguments

param Character string indicating the parameter to extract samples Extracted stan model (using rstan::extract)

Value

A data frame containing the parameter name, sample id and sample value

filter_opts

Filter Options for a Target Region

Description

Maturing A helper function that allows the selection of region specific settings if present and otherwise applies the overarching settings

Usage

```
filter_opts(opts, region)
```

Arguments

opts Either a list of calls to an _opts function or a single call to an _opts function.

region A character string indicating a region of interest.

Value

A list of options

```
# uses example case vector
cases <- example_confirmed[1:40]
cases <- data.table::rbindlist(list(
   data.table::copy(cases)[, region := "testland"],
   cases[, region := "realland"]))

# regional options
regional_opts <- opts_list(rt_opts(), cases)
EpiNow2:::filter_opts(regional_opts, "realland")
# default only
EpiNow2:::filter_opts(rt_opts(), "realland")
#settings are NULL in one regions
regional_opts <- update_list(regional_opts, list(realland = NULL))
EpiNow2:::filter_opts(regional_opts, "realland")</pre>
```

48 fit_model_with_vb

fit_model_with_nuts Fit a Stan Model using the NUTs sampler

Description

Maturing Fits a stan model using rstan::sampling. Provides the optional ability to run chains using future with error catching, timeouts and merging of completed chains.

Usage

```
fit_model_with_nuts(
   args,
   future = FALSE,
   max_execution_time = Inf,
   id = "stan"
)
```

Arguments

args List of stan arguments

future Logical, defaults to FALSE. Should future be used to run stan chains in parallel.

max_execution_time

Numeric, defaults to Inf. What is the maximum execution time per chain in seconds. Results will still be returned as long as at least 2 chains complete

successfully within the timelimit.

id A character string used to assign logging information on error. Used by regional_epinow

to assign errors to regions. Alter the default to run with error catching.

Value

A stan model object

fit_model_with_vb

Fit a Stan Model using Variational Inference

Description

Maturing Fits a stan model using variational inference.

Usage

```
fit_model_with_vb(args, future = FALSE, id = "stan")
```

forecast_infections 49

Arguments

List of stan arguments args future Logical, defaults to FALSE. Should future be used to run stan chains in parallel. id

A character string used to assign logging information on error. Used by regional_epinow

to assign errors to regions. Alter the default to run with error catching.

Value

A stan model object

forecast_infections

Forecast Infections and the Time-Varying Reproduction Number

Description

Experimental Provides optional tools for forecasting cases and Rt estimates using the timeseries methods (via the EpiSoon package). It requires the EpiSoon package. Installation instructions for the EpiSoon package are available here.

Usage

```
forecast_infections(
  infections,
  rts,
 gt_mean,
 gt_sd,
 gt_max = 30,
 ensemble_type = "mean",
  forecast_model,
 CrIs = c(0.2, 0.5, 0.9),
 horizon = 14,
  samples = 1000
)
```

Arguments

infections	A data frame of cases by date of infection containing the following variables: date, mean, sd
rts	A data frame of Rt estimates by date of infection containing the following variables: date, mean, sd
gt_mean	Numeric, the mean of the gamma distributed generation time.
gt_sd	Numeric, the standard deviation of the gamma distributed generation time.
gt_max	Numeric, the maximum allowed value of the gamma distributed generation time.
ensemble_type	Character string indicating the type of ensemble to use. By default this is an unweighted ensemble ("mean") with no other types currently supported.

50 forecast_infections

forecast_model An uninitialised forecast model function to be passed to EpiSoon::forecast_rt.

Used for forecasting future Rt and case co An example of the required structure
is: function(ss,y){bsts::AddSemilocalLinearTrend(ss,y = y)}.

CrIs Numeric vector of credible intervals to calculate.

horizon Numeric, defaults to 14. The horizon over which to forecast Rts and cases.

Samples Numeric, the number of forecast samples to take.

Value

A list of data.tables. The first entry ("samples") contains raw forecast samples and the second entry ("summarised") contains summarised forecasts.

```
if(requireNamespace("EpiSoon")){
   if(requireNamespace("forecastHybrid")){
# example case data
reported_cases <- example_confirmed[1:40]</pre>
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- estimate_delay(rlnorm(100, log(6), 1), max_value = 15)
# estimate Rt and infections from data
out <- estimate_infections(reported_cases, generation_time = generation_time,
                           delays = delay_opts(incubation_period, reporting_delay),
                           rt = rt_opts(prior = list(mean = 2, sd = 0.1)))
# forecast Rt and infections from estimates
forecast <- forecast_infections(</pre>
    infections = out$summarised[variable == "infections"],
    rts = out$summarised[variable == "R"],
     gt_mean = out$summarised[variable == "gt_mean"]$mean,
     gt_sd = out$summarised[variable == "gt_sd"]$mean,
     gt_max = 30,
     forecast_model = function(y, ...){
       EpiSoon::forecastHybrid_model(y = y[max(1, length(y) - 21):length(y)],
       model_params = list(models = "aefz", weights = "equal"),
       forecast_params = list(PI.combination = "mean"), ...)},
     horizon = 14,
     samples = 1000)
forecast$summarised
 }
 }
```

forecast_secondary 51

Description

Experimental This function forecasts secondary observations using the output of estimate_secondary() and either observed primary data or a forecast of primary observations. See the examples of estimate_secondary() for one use case. It can also be combined with estimate_infections() to produce a forecast for a secondary observation from a forecast of a primary observation. See the examples of estimate_secondary() for example use cases on synthetic data. See here for an example of forecasting Covid-19 deaths from Covid-19 cases.

Usage

```
forecast_secondary(
  estimate,
  primary,
  primary_variable = "reported_cases",
  model = NULL,
  samples = NULL,
  all_dates = FALSE,
  CrIs = c(0.2, 0.5, 0.9)
)
```

Arguments

estimate An object of class "estimate_secondary" as produced by estimate_secondary().

primary A data.frame containing at least date and value (integer) variables and option-

ally sample. Used as the primary observation used to forecast the secondary observations. Alternatively, this may be an object of class "estimate_infections" as produced by estimate_infections(). If primary is of class "estimate_infections" then the internal samples will be filtered to have a minimum date ahead of those

observed in the estimate object.

primary_variable

A character string indicating the primary variable, defaulting to "reported_cases".

Only used when primary is of class "estimate_infections".

model A compiled stan model as returned by rstan::stan_model.

samples Numeric, number of posterior samples to simulate from. The default is to use

all samples in the primary input when present. If not present the default is to

use 1000 samples.

all_dates Logical, defaults to FALSE. Should a forecast for all dates and not just those in

the forecast horizon be returned.

CrIs Numeric vector of credible intervals to calculate.

52 format_fit

Value

A list containing: predictions (a data frame ordered by date with the primary, and secondary observations, and a summary of the forecast secondary observations. For primary observations in the forecast horizon when uncertainty is present the median is used), samples a data frame of forecast secondary observation posterior samples, and forecast a summary of the forecast secondary observation posterior.

See Also

estimate_secondary

format_fit

Format Posterior Samples

Description

Stable Summaries posterior samples and adds additional custom variables.

Usage

```
format_fit(posterior_samples, horizon, shift, burn_in, start_date, CrIs)
```

Arguments

posterior_samples

A list of posterior samples as returned by extract_parameter_samples

horizon Numeric, forecast horizon

shift Numeric, the shift to apply to estimates

burn_in Numeric, number of days to discard estimates for

start_date Date, earliest date with data

CrIs Numeric vector of credible intervals to calculate.

Value

A list of samples and summarised posterior parameter estimates

gamma_dist_def 53

gamma_dist_def	Generate a Gamma Distribution Definition Based on Parameter Estimates
gamma_dist_def	v

Description

Soft-deprecated Generates a distribution definition when only parameter estimates are available for gamma distributed parameters. See rgamma for distribution information.

Usage

```
gamma_dist_def(
    shape,
    shape_sd,
    scale,
    scale_sd,
    mean,
    mean_sd,
    sd,
    sd_sd,
    max_value,
    samples
)
```

Arguments

shape	Numeric, shape parameter of the gamma distribution.
shape_sd	Numeric, standard deviation of the shape parameter.
scale	Numeric, scale parameter of the gamma distribution.
scale_sd	Numeric, standard deviation of the scale parameter.
mean	Numeric, log mean parameter of the gamma distribution.
mean_sd	Numeric, standard deviation of the log mean parameter.
sd	Numeric, log sd parameter of the gamma distribution.
sd_sd	Numeric, standard deviation of the log sd parameter.
max_value	Numeric, the maximum value to allow. Defaults to 120. Samples outside of this range are resampled.
samples	Numeric, number of sample distributions to generate.

Value

A data.table defining the distribution as used by dist_skel

54 get_dist

Examples

generation_times

Literature Estimates of Generation Times

Description

Stable Generation time estimates. See here for details: https://github.com/epiforecasts/EpiNow2/blob/master/data-raw/generation-time.R

Usage

```
generation_times
```

Format

A data. table of summarising the distribution

get_dist

Get a Literature Distribution

Description

Stable Search a data frame for a distribution and return it in the format expected by delay_opts and the generation_time argument of epinow and estimate_infections.

Usage

```
get_dist(data, disease, source, max_value = 15)
```

get_generation_time 55

Arguments

data A data.table in the format of generation_times.

disease A character string indicating the disease of interest.

source A character string indicating the source of interest.

max_value Numeric, the maximum value to allow. Defaults to 15 days.

Value

A list defining a distribution

Examples

```
get_dist(EpiNow2::generation_times, disease = "SARS-CoV-2", source = "ganyani")
```

get_generation_time

Get a Literature Distribution for the Generation Time

Description

Stable Extracts a literature distribution from generation_times

Usage

```
get_generation_time(disease, source, max_value = 15)
```

Arguments

disease A character string indicating the disease of interest.

Source A character string indicating the source of interest.

max_value Numeric, the maximum value to allow. Defaults to 15 days.

Value

A list defining a distribution

```
get_generation_time(disease = "SARS-CoV-2", source = "ganyani")
```

get_raw_result

get_incubation_period Get a Literature Distribution for the Incubation Period

Description

Stable Extracts a literature distribution from incubation_periods

Usage

```
get_incubation_period(disease, source, max_value = 15)
```

Arguments

disease A character string indicating the disease of interest. source A character string indicating the source of interest.

max_value Numeric, the maximum value to allow. Defaults to 15 days.

Value

A list defining a distribution

Examples

```
get_incubation_period(disease = "SARS-CoV-2", source = "lauer")
```

get_raw_result

Get a Single Raw Result

Description

Stable

Usage

```
get_raw_result(file, region, date, result_dir)
```

Arguments

file Character string giving the result files name.
region Character string giving the region of interest.
date Target date (in the format "yyyy-mm-dd).

result_dir Character string giving the location of the target directory

Value

An R object read in from the targeted .rds file

get_regional_results 57

Description

Stable Summarises results across regions either from input or from disk. See the examples for details.

Usage

```
get_regional_results(
  regional_output,
  results_dir,
  date,
  samples = TRUE,
  forecast = FALSE
)
```

Arguments

regional_output

A list of output as produced by regional_epinow and stored in the regional

list.

results_dir A character string indicating the folder containing the EpiNow2 results to extract.

date A Character string (in the format "yyyy-mm-dd") indicating the date to extract

data for. Defaults to "latest" which finds the latest results available.

samples Logical, defaults to TRUE. Should samples be returned.

forecast Logical, defaults to FALSE. Should forecast results be returned.

Value

A list of estimates, forecasts and estimated cases by date of report.

```
# construct example distributions
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")
reporting_delay <- estimate_delay(rlnorm(100, log(6), 1), max_value = 10)

# example case vector from EpiSoon
cases <- example_confirmed[1:30]
cases <- data.table::rbindlist(list(
   data.table::copy(cases)[, region := "testland"],
   cases[, region := "realland"]))</pre>
```

58 get_regions

```
# save results to tmp folder
dir <- file.path(tempdir(check = TRUE), "results")</pre>
# run multiregion estimates
regional_out <- regional_epinow(reported_cases = cases,</pre>
                                 generation_time = generation_time,
                                 delays = delay_opts(incubation_period, reporting_delay),
                                 rt = rt_opts(rw = 7), gp = NULL,
                                 output = c("regions", "latest"),
                                 target_folder = dir,
                                 return_output = TRUE)
# from output
results <- get_regional_results(regional_out$regional, samples = FALSE)</pre>
names(results)
# from a folder
folder_results <- get_regional_results(results_dir = dir, samples = FALSE)</pre>
names(folder_results)
```

get_regions

Get Folders with Results

Description

Stable

Usage

```
get_regions(results_dir)
```

Arguments

results_dir A character string giving the directory in which results are stored (as produced by regional_rt_pipeline).

Value

A named character vector containing the results to plot.

Description

Stable Extract a vector of regions with the most reported cases in a set time window.

Usage

```
get_regions_with_most_reports(reported_cases, time_window = 7, no_regions = 6)
```

Arguments

```
reported_cases A data frame of confirmed cases (confirm) by date (date), and region (region).

time_window Numeric, number of days to include from latest date in data. Defaults to 7 days.

Numeric, number of regions to return. Defaults to 6.
```

Value

A character vector of regions with the highest reported cases

global_map

Generate a global map for a single variable.

Description

Questioning This general purpose function can be used to generate a global map for a single variable. It has few defaults but the data supplied must contain a country variable for linking to mapping data. This function requires the installation of the rnaturalearth package. Status of this function is currently questioning as it is uncertain if it is in use. Future releases may depreciate it.

Usage

```
global_map(
  data = NULL,
  variable = NULL,
  variable_label = NULL,
  trans = "identity",
  fill_labels = NULL,
  scale_fill = NULL,
  ...
)
```

60 global_map

Arguments

data Dataframe containing variables to be mapped. Must contain a country variable. variable A character string indicating the variable to map data for. This must be supplied. variable_label A character string indicating the variable label to use. If not supplied then the underlying variable name is used. trans A character string specifying the transform to use on the specified metric. Defaults to no transform ("identity"). Other options include log scaling ("log") and log base 10 scaling ("log10"). For a complete list of options see ggplot2::continous_scale. fill labels A function to use to allocate legend labels. An example (used below) is scales::percent, which can be used for percentage data. scale_fill Function to use for scaling the fill. Defaults to a custom ggplot2::scale_fill_manual, which expects the possible values to be "Increasing", "Likely increasing", "Likely decreasing", "Decreasing" or "Unsure". Additional arguments passed to the scale_fill function

Value

A ggplot2 object containing a global map.

```
if(requireNamespace("rnaturalearth") & requireNamespace("scales")){
# Example 1 - categorical data
# If values are "Increasing", "Likely increasing" etc (see ?EpiNow2::theme_map),
# then the default fill scale works
eg_data <- data.table::data.table(variable = c("Increasing",
                                                "Decreasing",
                                                "Unsure",
                                                "Likely decreasing",
                                                "Likely increasing"),
                                   country = c("France".
                                               "Germany"
                                               "United Kingdom",
                                               "Spain",
                                               "Australia") )
# make variable a factor so the ordering is sensible in the legend
eg_data$variable <- factor(eg_data$variable, levels = c("Decreasing", "Likely decreasing",
                                                         "Unsure", "Likely increasing",
                                                         "Increasing"))
global_map(eg_data, variable = "variable", variable_label = "Direction\nof change")
# Example 2 - numeric data
# numeric data requires scale_fill and a global viridis_palette specified
eg_data$second_variable <- runif(nrow(eg_data))</pre>
viridis_palette <- "A"</pre>
global_map(eg_data, variable = "second_variable", scale_fill = scale_fill_viridis_c)
}
```

gp_opts 61

gp_opts

Approximate Gaussian Process Settings

Description

Stable Defines a list specifying the structure of the approximate Gaussian process. Custom settings can be supplied which override the defaults.

Usage

```
gp_opts(
   basis_prop = 0.2,
   boundary_scale = 1.5,
   ls_mean = 21,
   ls_sd = 7,
   ls_min = 3,
   ls_max = 60,
   alpha_sd = 0.1,
   kernel = "matern",
   matern_type = 3/2
)
```

Arguments

basis_prop	Numeric, proportion of time points to use as basis functions. Defaults to 0.1.
	Decreasing this value results in a decrease in accuracy but a faster compute time
	(with increasing it having the first effect). In general smaller posterior length
	scales require a higher proportion of basis functions. See (Riutort-Mayol et
	al. 2020 https://arxiv.org/abs/2004.11408) for advice on updating this

default. This setting is an area of active research.

boundary_scale Numeric, defaults to 1.5. Boundary scale of the approximate Gaussian process.

See (Riutort-Mayol et al. 2020 https://arxiv.org/abs/2004.11408) for ad-

vice on updating this default.

1s_mean Numeric, defaults to 21 days. The mean of the lognormal length scale.

1s_sd Numeric, defaults to 7 days. The standard deviation of the log normal length

scale with..

ls_min Numeric, defaults to 7. The minimum value of the length scale.

1s_max Numeric, defaults to 60. The maximum value of the length scale. Updated in

create_gp_data to be the length of the input data if this is smaller.

alpha_sd Numeric, defaults to 0.2. The standard deviation of the magnitude parameter

of the Gaussian process kernel. Should be approximately the expected standard

deviation of the logged Rt.

kernel Character string, the type of kernel required. Currently supporting the squared

exponential kernel ("se") and the 3 over 2 Matern kernel ("matern", with matern_type = 3/2). Defaulting to the Matern 3 over 2 kernel as discontinuities are expected

in Rt and infections.

growth_to_R

matern_type Numeric, defaults to 3/2. Type of Matern Kernel to use. Currently only the Matern 3/2 kernel is supported.

Value

A list of settings defining the Gaussian process

Examples

```
# default settings
gp_opts()

# add a custom length scale
gp_opts(ls_mean = 4)
```

growth_to_R

Convert Growth Rates to Reproduction numbers.

Description

Questioning See here for justification. Now handled internally by stan so may be removed in future updates if no user demand.

Usage

```
growth_to_R(r, gamma_mean, gamma_sd)
```

Arguments

r Numeric, rate of growth estimates

gamma_mean Numeric, mean of the gamma distribution

gamma_sd Numeric, standard deviation of the gamma distribution

Value

Numeric vector of reproduction number estimates

```
growth_to_R(0.2, 4, 1)
```

incubation_periods 63

Description

Stable Incubation period estimates. See here for details: https://github.com/epiforecasts/EpiNow2/blob/master/data-raw/incubation-period.R

Usage

incubation_periods

Format

A data. table of summarising the distribution

init_cumulative_fit Generate initial conditions by fitting to cumulative cases

Description

Experimental Fits a model to cumulative cases. This may be a useful approach to initialising a full model fit for certain data sets where the sampler gets stuck or cannot easily be initialised as fitting to cumulative cases changes the shape of the posterior distribution. In estimate_infections(), epinow() and regional_epinow() this option can be engaged by setting stan_opts(init_fit = "cumulative").

This implementation is based on the approach taken in epidemia authored by James Scott.

Usage

```
init_cumulative_fit(
  args,
  samples = 50,
  warmup = 50,
  id = "init",
  verbose = FALSE
)
```

Arguments

args	List of stan arguments
samples	Numeric, defaults to 50. Number of posterior samples.
warmup	Numeric, defaults to 50. Number of warmup samples.
id	A character string used to assign logging information on error. Used by regional_epinow to assign errors to regions. Alter the default to run with error catching.
verbose	Logical, should fitting progress be returned. Defaults to FALSE.

64 lognorm_dist_def

Value

A stanfit object

lognorm_dist_def	Generate a Log Normal Distribution Definition Based on Parameter Estimates

Description

Soft-deprecated Generates a distribution definition when only parameter estimates are available for log normal distributed parameters. See rlnorm for distribution information.

Usage

```
lognorm_dist_def(mean, mean_sd, sd, sd_sd, max_value, samples, to_log = FALSE)
```

Arguments

mean	Numeric, log mean parameter of the gamma distribution.
mean_sd	Numeric, standard deviation of the log mean parameter.
sd	Numeric, log sd parameter of the gamma distribution.
sd_sd	Numeric, standard deviation of the log sd parameter.
max_value	Numeric, the maximum value to allow. Defaults to 120. Samples outside of this range are resampled.
samples	Numeric, number of sample distributions to generate.
to_log	Logical, should parameters be logged before use.

Value

A data.table defining the distribution as used by dist_skel

make_conf 65

			_
mak	<i>^</i>	~	nf
IIIar			,,,,

Format Credible Intervals

Description

Stable Combines a list of values into formatted credible intervals.

Usage

```
make_conf(value, CrI = 90, reverse = FALSE)
```

Arguments

value List of value to map into a string. Requires, point, lower, and upper.

CrI Numeric, credible interval to report. Defaults to 90

reverse Logical, defaults to FALSE. Should the reported credible interval be switched.

Value

A character vector formatted for reporting

Examples

```
value <- list(median = 2, lower_90 = 1, upper_90 = 3)
make_conf(value)</pre>
```

map_prob_change

Categorise the Probability of Change for Rt

Description

Stable Categorises a numeric variable into "Increasing" (< 0.05), "Likely increasing" (< 0.2), "Unsure" (< 0.8), "Likely decreasing" (< 0.95), "Decreasing" (< 1)

Usage

```
map_prob_change(var)
```

Arguments

var

Numeric variable to be categorised

Value

A character variable.

Examples

```
var <- seq(0.01, 1, 0.01)
var
map_prob_change(var)</pre>
```

match_output_arguments

Match User Supplied Arguments with Supported Options

Description

Stable Match user supplied arguments with supported options and return a logical list for internal usage

Usage

```
match_output_arguments(
  input_args = c(),
  supported_args = c(),
  logger = NULL,
  level = "info"
)
```

Arguments

input_args A character vector of input arguments (can be partial). supported_args A character vector of supported output arguments.

logger A character vector indicating the logger to target messages at. Defaults to no

logging.

level Character string defaulting to "info". Logging level see documentation of fu-

tile.logger for details. Supported options are "info" and "debug"

Value

A logical vector of named output arguments

```
# select nothing
EpiNow2:::match_output_arguments(supported_args = c("fit", "plots", "samples"))
# select just plots
EpiNow2:::match_output_arguments("plots", supported_args = c("fit", "plots", "samples"))
# select plots and samples
EpiNow2:::match_output_arguments(c("plots", "samples"),
```

obs_opts 67

obs_opts

Observation Model Options

Description

Stable Defines a list specifying the structure of the observation model. Custom settings can be supplied which override the defaults.

Usage

```
obs_opts(family = "negbin", weight = 1, week_effect = TRUE, scale = list())
```

Arguments

family Character string defining the observation model. Options are Negative binomial

("negbin"), the default, and Poisson.

weight Numeric, defaults to 1. Weight to give the observed data in the log density.

week_effect Logical defaulting to TRUE. Should a day of the week effect be used in the ob-

servation model.

scale List, defaulting to an empty list. Should an scaling factor be applied to map

latent infections (convolved to date of report). If none empty a mean (mean) and standard deviation (sd) needs to be supplied defining the normally distributed

scaling factor.

Value

A list of observation model settings.

```
# default settings
obs_opts()

# Turn off day of the week effect
obs_opts(week_effect = TRUE)

# Scale reported data
obs_opts(scale = list(mean = 0.2, sd = 0.02))
```

opts_list

opts_list

Return an _opts List per Region

Description

Maturing Define a list of _opts to pass to regional_epinow _opts accepting arguments. This is useful when different settings are needed between regions within a single regional_epinow call. Using opts_list the defaults can be applied to all regions present with an override passed to regions as necessary (either within opts_list or externally).

Usage

```
opts_list(opts, reported_cases, ...)
```

Arguments

```
opts An _opts function call such as rt_opts()
reported_cases A data frame containing a region variable indicating the target regions
... Optional override for region defaults. See the examples for use case.
```

Value

A named list of options per region which can be passed to the _opt accepting arguments of regional_epinow

See Also

```
regional_epinow rt_opts
```

```
# uses example case vector
cases <- example_confirmed[1:40]
cases <- data.table::rbindlist(list(
    data.table::copy(cases)[, region := "testland"],
    cases[, region := "realland"]))

# default settings
opts_list(rt_opts(), cases)

# add a weekly random walk in realland
opts_list(rt_opts(), cases, realland = rt_opts(rw = 7))

# add a weekly random walk externally
rt <- opts_list(rt_opts(), cases)
rt$realland$rw <- 7
rt</pre>
```

plot.epinow 69

plot.epinow

Plot method for epinow

Description

Maturing plot method for class "epinow".

Usage

```
## S3 method for class 'epinow'
plot(x, type = "summary", ...)
```

Arguments

x A list of output as produced by epinow

type A character vector indicating the name of plots to return. Defaults to "sum-

mary" with supported options being "infections", "reports", "R", "growth_rate",

"summary", "all".

... Pass additional arguments to report_plots

Value

List of plots as produced by report_plots

See Also

plot plot.estimate_infections report_plots estimate_infections

```
plot.estimate_infections
```

Plot method for estimate_infections

Description

Maturing plot method for class "estimate_infections".

Usage

```
## S3 method for class 'estimate_infections'
plot(x, type = "summary", ...)
```

Arguments

x A list of output as produced by estimate_infections

type A character vector indicating the name of plots to return. Defaults to "sum-

mary" with supported options being "infections", "reports", "R", "growth_rate",

"summary", "all".

... Pass additional arguments to report_plots

Value

List of plots as produced by report_plots

See Also

plot report_plots estimate_infections

```
plot.estimate_secondary
```

Plot method for estimate_secondary

Description

Experimental plot method for class "estimate_secondary".

Usage

```
## S3 method for class 'estimate_secondary'
plot(x, primary = FALSE, from = NULL, to = NULL, new_obs = NULL, ...)
```

Arguments

x A list of output as produced by estimate_secondary

primary Logical, defaults to FALSE. Should primary reports also be plot?

from Date object indicating when to plot from. to Date object indicating when to plot up to.

new_obs A data.frame containing the columns date and secondary which replace the

secondary observations stored in the ${\tt estimate_secondary}$ output.

... Pass additional arguments to plot function. Not currently in use.

Value

ggplot2 object

See Also

plot estimate_secondary

plot.estimate_truncation 71

```
plot.estimate_truncation
```

Plot method for estimate_truncation

Description

Experimental plot method for class "estimate_truncation". Returns a plot faceted over each dataset used in fitting with the latest observations as columns, the data observed at the time (and so truncated) as dots and the truncation adjusted estimates as a ribbon.

Usage

```
## S3 method for class 'estimate_truncation' plot(x, ...)
```

Arguments

x A list of output as produced by estimate_truncation

Pass additional arguments to plot function. Not currently in use.

Value

ggplot2 object

See Also

plot estimate_truncation

plot_CrIs

Plot EpiNow2 Credible Intervals

Description

Stable Adds lineranges for user specified credible intervals

Usage

```
plot_CrIs(plot, CrIs, alpha, size)
```

Arguments

plot	A ggplot2 plot
CrIs	Numeric list of credible intervals present in the data. As produced by extract_CrIs
alpha	Numeric, overall alpha of the target line range
size	Numeric, size of the default line range.

72 plot_estimates

Value

A ggplot2 plot.

plot_estimates

Plot Estimates

Description

Questioning Allows users to plot the output from estimate_infections easily. In future releases it may be depreciated in favour of increasing the functionality of the S3 plot methods.

Usage

```
plot_estimates(
   estimate,
   reported,
   ylab = "Cases",
   hline,
   obs_as_col = TRUE,
   max_plot = 10
)
```

Arguments

estimate	A data.table of estimates containing the following variables: date, type (must contain "estimate", "estimate based on partial data" and optionally "forecast"),
reported	A data.table of reported cases with the following variables: date, confirm.
ylab	Character string, defaulting to "Cases". Title for the plot y axis.
hline	Numeric, if supplied gives the horizontal intercept for a indicator line.
obs_as_col	Logical, defaults to TRUE. Should observed data, if supplied, be plotted using columns or as points (linked using a line).
max_plot	Numeric, defaults to 10. A multiplicative upper bound on the number of cases shown on the plot. Based on the maximum number of reported cases.

Value

A ggplot2 object

```
# define example cases
cases <- example_confirmed[1:40]

# set up example delays
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
```

plot_summary 73

```
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- estimate_delay(rlnorm(100, log(6), 1), max_value = 10)</pre>
# run model
out <- estimate_infections(cases, generation_time = generation_time,</pre>
                           delays = delay_opts(incubation_period, reporting_delay))
# plot infections
plot_estimates(
 estimate = out$summarised[variable == "infections"],
 reported = cases,
 ylab = "Cases", max_plot = 2) + ggplot2::facet_wrap(~type, scales = "free_y")
# plot reported cases estimated via Rt
plot_estimates(estimate = out$summarised[variable == "reported_cases"],
               reported = cases,
               ylab = "Cases")
# plot Rt estimates
plot_estimates(estimate = out$summarised[variable == "R"],
               ylab = "Effective Reproduction No.",
               hline = 1)
```

plot_summary

Plot a Summary of the Latest Results

Description

Questioning Used to return a summary plot across regions (using results generated by summarise_results). May be depreciated in later releases in favour of enhanced S3 methods.

Usage

```
plot_summary(summary_results, x_lab = "Region", log_cases = FALSE, max_cases)
```

Arguments

summary_results

A data.table as returned by summarise_results (the data object).

x_lab A character string giving the label for the x axis, defaults to region.

log_cases Logical, should cases be shown on a logged scale. Defaults to FALSE

max_cases Numeric, no default. The maximum number of cases to plot.

Value

A ggplot2 object

74 process_region

process_region

Process regional estimate

Description

Maturing Internal function that removes output that is not required, and returns logging information

Usage

```
process_region(
  out,
  target_region,
  timing,
  return_output = TRUE,
  return_timing = TRUE,
  complete_logger = "EpiNow2.epinow"
)
```

Arguments

out List of output returned by epinow

target_region Character string indicating the region being evaluated

timing Output from Sys.time

return_output Logical, defaults to FALSE. Should output be returned, this automatically up-

dates to TRUE if no directory for saving is specified.

return_timing Logical, should runtime be returned

complete_logger

Character string indicating the logger to output the completion of estimation to.

Value

A list of processed output

See Also

regional_epinow

process_regions 75

process_regions

Process all Region Estimates

Description

Stable Internal function that processes the output from multiple epinow runs, adds summary logging information.

Usage

```
process_regions(regional_out, regions)
```

Arguments

regional_out A list of output from multiple runs of regional_epinow
regions A character vector identifying the regions that have been run

Value

A list of all regional estimates and successful regional estimates

See Also

regional_epinow epinow

regional_epinow

Real-time Rt Estimation, Forecasting and Reporting by Region

Description

Maturing Efficiently runs epinow() across multiple regions in an efficient manner and conducts basic data checks and cleaning such as removing regions with fewer than non_zero_points as these are unlikely to produce reasonable results whilst consuming significant resources. See the documentation for epinow for further information.

By default all arguments supporting input from _opts functions are shared across regions (including delays, truncation, Rt settings, stan settings, and gaussian process settings). Region specific settings are supported by passing a named list of _opts calls (with an entry per region) to the relevant argument. A helper function (opts_list) is available to facilitate building this list.

Regions can be estimated in parallel using the {future} package (see setup_future). The progress of producing estimates across multiple regions is tracked using the progressr package. Modify this behaviour using progressr::handlers and enable it in batch by setting R_PROGRESSR_ENABLE=TRUE as an environment variable.

76 regional_epinow

Usage

```
regional_epinow(
  reported_cases,
  generation_time,
  delays = delay_opts(),
  truncation = trunc_opts(),
  rt = rt_opts(),
  backcalc = backcalc_opts(),
  gp = gp_opts(),
  obs = obs_opts(),
  stan = stan_opts(),
  horizon = 7,
 CrIs = c(0.2, 0.5, 0.9),
  target_folder = NULL,
  target_date,
  non_zero_points = 2,
 output = c("regions", "summary", "samples", "plots", "latest"),
  return_output = FALSE,
  summary_args = list(),
  verbose = FALSE,
  logs = tempdir(check = TRUE),
)
```

Arguments

delays

truncation

reported_cases A data frame of confirmed cases (confirm) by date (date), and region (region). generation_time

A list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum allowed value for the generation time (assuming a gamma distribution).

A call to delay_opts() defining delay distributions and options. See the docu-

mentation of delay_opts() and the examples below for details.

Experimental A list of options as generated by trunc_opts() defining the truncation of observed data. Defaults to trunc_opts(). See estimate_truncation()

for an approach to estimating truncation from data.

rt A list of options as generated by rt_opts() defining Rt estimation. Defaults to rt_opts(). Set to NULL to switch to using back calculation rather than generat-

ing infections using Rt.

backcalc A list of options as generated by backcalc_opts() to define the back calcula-

tion. Defaults to backcalc_opts().

gp A list of options as generated by gp_opts() to define the Gaussian process.

Defaults to gp_opts(). Set to NULL to disable the Gaussian process.

obs A list of options as generated by obs_opts() defining the observation model.

Defaults to obs_opts().

regional_epinow 77

stan A list of stan options as generated by stan_opts(). Defaults to stan_opts().

Can be used to override data, init, and verbose settings if desired.

horizon Numeric, defaults to 7. Number of days into the future to forecast.

CrIs Numeric vector of credible intervals to calculate.

target_folder Character string specifying where to save results (will create if not present).

target_date Date, defaults to maximum found in the data if not specified.

non_zero_points

Numeric, the minimum number of time points with non-zero cases in a region

required for that region to be evaluated. Defaults to 7.

output A character vector of optional output to return. Supported options are the indi-

vidual regional estimates ("regions"), samples ("samples"), plots ("plots"), copying the individual region dated folder into a latest folder (if target_folder is not null, set using "latest"), the stan fit of the underlying model ("fit"), and an overall summary across regions ("summary"). The default is to return samples and plots alongside summarised estimates and summary statistics. If target_folder

is not NULL then the default is also to copy all results into a latest folder.

return_output Logical, defaults to FALSE. Should output be returned, this automatically up-

dates to TRUE if no directory for saving is specified.

summary_args A list of arguments passed to regional_summary. See the regional_summary

documentation for details.

verbose Logical defaults to FALSE. Outputs verbose progress messages to the console

from epinow.

logs Character path indicating the target folder in which to store log information.

Defaults to the temporary directory if not specified. Default logging can be disabled if logs is set to NULL. If specifying a custom logging setup then the code for setup_default_logging and the setup_logging function are a sensible

place to start.

... Pass additional arguments to epinow. See the documentation for epinow for

details.

Value

A list of output stratified at the top level into regional output and across region output summary output

See Also

epinow estimate_infections forecast_infections setup_future regional_summary

```
#set number of cores to use
options(mc.cores = ifelse(interactive(), 4, 1))
# construct example distributions
```

78 regional_runtimes

```
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- list(mean = convert_to_logmean(3,1),</pre>
                         mean\_sd = 0.1,
                         sd = convert_to_logsd(3,1),
                         sd_sd = 0.1, max = 15)
# uses example case vector
cases <- example_confirmed[1:60]</pre>
cases <- data.table::rbindlist(list(</pre>
 data.table::copy(cases)[, region := "testland"],
 cases[, region := "realland"]))
# run epinow across multiple regions and generate summaries
# samples and warmup have been reduced for this example
def <- regional_epinow(reported_cases = cases,</pre>
                        generation_time = generation_time,
                        delays = delay_opts(incubation_period, reporting_delay),
                        rt = rt_opts(prior = list(mean = 2, sd = 0.2)),
                        stan = stan_opts(samples = 100, warmup = 200,
                                         control = list(adapt_delta = 0.95)),
                        verbose = interactive())
# apply a different rt method per region
# (here a gaussian process and a weekly random walk)
gp <- opts_list(gp_opts(), cases)</pre>
gp <- update_list(gp, list(realland = NULL))</pre>
rt <- opts_list(rt_opts(), cases, realland = rt_opts(rw = 7))
region_rt <- regional_epinow(reported_cases = cases,</pre>
                              generation_time = generation_time,
                              delays = delay_opts(incubation_period, reporting_delay),
                              rt = rt, gp = gp,
                              stan = stan_opts(samples = 100, warmup = 200,
                                                control = list(adapt_delta = 0.95)),
                              verbose = interactive())
```

regional_runtimes

Summarise Regional Runtimes

Description

Maturing Used internally by regional_epinow to summarise region run times.

Usage

```
regional_runtimes(
  regional_output = NULL,
  target_folder = NULL,
  target_date = NULL,
```

regional_runtimes 79

```
return_output = FALSE
)
```

Arguments

regional_output

A list of output as produced by regional_epinow and stored in the regional

list.

target_folder Character string specifying where to save results (will create if not present).

target_date A character string giving the target date for which to extract results (in the format

"yyyy-mm-dd"). Defaults to latest available estimates.

return_output Logical, defaults to FALSE. Should output be returned, this automatically up-

dates to TRUE if no directory for saving is specified.

Value

A data.table of region run times

See Also

regional_summary regional_epinow

```
# example delays
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- example_delay(rlnorm(100, log(6), 1), max_value = 15)
# example case vector from EpiSoon
cases <- example_confirmed[1:30]</pre>
cases <- data.table::rbindlist(list(</pre>
 data.table::copy(cases)[, region := "testland"],
 cases[, region := "realland"]))
# run basic nowcasting pipeline
regional_out <- regional_epinow(reported_cases = cases,</pre>
                                 generation_time = generation_time,
                                 delays = delay_opts(incubation_period, reporting_delay),
                                 samples = 100, stan_args = list(warmup = 100),
                                 output = c("region", "timing"))
regional_runtimes(regional_output = regional_out$regional)
```

80 regional_summary

regional_summary

Regional Summary Output

Description

Maturing Used to produce summary output either internally in regional_epinow or externally.

Usage

```
regional_summary(
  regional_output = NULL,
  reported_cases,
  results_dir = NULL,
  summary_dir = NULL,
  target_date = NULL,
  region_scale = "Region",
  all_regions = TRUE,
  return_output = FALSE,
  max_plot = 10
)
```

Arguments

regional_output

A list of output as produced by regional_epinow and stored in the regional list

list.

reported_cases A data frame of confirmed cases (confirm) by date (date), and region (region).

results_dir An optional character string indicating the location of the results directory to

extract results from.

summary_dir A character string giving the directory in which to store summary of results.

target_date A character string giving the target date for which to extract results (in the format

"yyyy-mm-dd"). Defaults to latest available estimates.

region_scale A character string indicating the name to give the regions being summarised.

all_regions Logical, defaults to TRUE. Should summary plots for all regions be returned

rather than just regions of interest.

return_output Logical, defaults to FALSE. Should output be returned, this automatically up-

dates to TRUE if no directory for saving is specified.

max_plot Numeric, defaults to 10. A multiplicative upper bound on the number of cases

shown on the plot. Based on the maximum number of reported cases.

Value

A list of summary measures and plots

report_cases 81

See Also

```
regional_epinow
```

Examples

```
# example delays
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- estimate_delay(rlnorm(100, log(6), 1), max_value = 30)</pre>
# example case vector from EpiSoon
cases <- example_confirmed[1:30]</pre>
cases <- data.table::rbindlist(list(</pre>
 data.table::copy(cases)[, region := "testland"],
 cases[, region := "realland"]))
# run basic nowcasting pipeline
out <- regional_epinow(reported_cases = cases,</pre>
                        generation_time = generation_time,
                        delays = delay_opts(incubation_period, reporting_delay),
                        output = "region",
                        rt = NULL)
regional_summary(regional_output = out$regional,
                  reported_cases = cases)
```

report_cases

Report case counts by date of report

Description

Soft-deprecated Convolves latent infections to reported cases via an observation model. Likely to be removed/replaced in later releases by functionality drawing on the stan implementation.

Usage

```
report_cases(
  case_estimates,
  case_forecast = NULL,
  delays,
  type = "sample",
  reporting_effect,
  CrIs = c(0.2, 0.5, 0.9)
)
```

82 report_cases

Arguments

case_estimates A data.table of case estimates with the following variables: date, sample, cases

case_forecast A data.table of case forecasts with the following variables: date, sample, cases.

If not supplied the default is not to incorporate forecasts.

delays A call to delay_opts() defining delay distributions and options. See the docu-

mentation of delay_opts() and the examples below for details.

type Character string indicating the method to use to transform counts. Supports

either "sample" which approximates sampling or "median" would shift by the

median of the distribution.

reporting_effect

A data.table giving the weekly reporting effect with the following variables: sample (must be the same as in nowcast), effect (numeric scaling factor for each weekday), day (numeric 1 - 7 (1 = Monday and 7 = Sunday)). If not

supplied then no weekly reporting effect is assumed.

CrIs Numeric vector of credible intervals to calculate.

Value

A list of data.tables. The first entry contains the following variables sample, date and cases with the second being summarised across samples.

```
# define example cases
cases <- example_confirmed[1:40]</pre>
# set up example delays
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- bootstrapped_dist_fit(rlnorm(100, log(6), 1), max_value = 30)
# run model
out <- estimate_infections(cases, samples = 100,
                            generation_time = generation_time,
                            delays = delay_opts(incubation_period, reporting_delay),
                            rt = NULL)
reported_cases <- report_cases(case_estimates =</pre>
                                out$samples[variable == "infections"][,
                                cases := as.integer(value)][, value := NULL],
                                delays = delay_opts(incubation_period, reporting_delay),
                                type = "sample")
print(reported_cases)
```

report_plots 83

Description

Questioning Returns key summary plots for estimates. May be depreciated in later releases as current S3 methods are enhanced.

Usage

```
report_plots(
   summarised_estimates,
   reported,
   target_folder = NULL,
   max_plot = 10
)
```

Arguments

summarised_estimates

A data.table of summarised estimates containing the following variables: variable, median, bottom, and top. It should contain the following estimates: R, infections, reported_cases_rt, and r (rate of growth).

infections, reported_cases_rt, and r (rate of growth).

reported A data.table of reported cases with the following variables: date, confirm.

target_folder Character string specifying where to save results (will create if not present).

max_plot Numeric, defaults to 10. A multiplicative upper bound on the number of cases

shown on the plot. Based on the maximum number of reported cases.

Value

A named list of ggplot2 objects, list(infections,reports,R,growth_rate,summary), which correspond to a summary combination (last item) and for the leading items @seealso plot_estimates() of summarised_estimates[variable == "infections"], summarised_estimates[variable == "reported_cases"], summarised_estimates[variable == "R"], and summarised_estimates[variable == "growth_rate"], respectively.

```
# define example cases
cases <- example_confirmed[1:40]

# set up example delays
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")
reporting_delay <- bootstrapped_dist_fit(rlnorm(100, log(6), 1), max_value = 30)</pre>
```

84 report_summary

report_summary

Provide Summary Statistics for Estimated Infections and Rt

Description

Questioning Creates a snapshot summary of estimates. May be removed in later releases as S3 methods are enhanced.

Usage

```
report_summary(
   summarised_estimates,
   rt_samples,
   target_folder = NULL,
   return_numeric = FALSE
)
```

Arguments

summarised_estimates

A data.table of summarised estimates containing the following variables: variable, median, bottom, and top. It should contain the following estimates: R, infections, and r (rate of growth).

rt_samples

A data.table containing Rt samples with the following variables: sample and

value.

target_folder Character string specifying where to save results (will create if not present).

return_numeric Should numeric summary information be returned.

Value

A data.table containing formatted and numeric summary measures

rstan_opts 85

rstan_opts	Rstan Options

Description

Stable Defines a list specifying the arguments passed to underlying rstan functions via rstan_sampling_opts and rstan_vb_opts. Custom settings can be supplied which override the defaults.

Usage

```
rstan_opts(object = NULL, samples = 2000, method = "sampling", ...)
```

Arguments

object	Stan model object. By default uses the compiled package default.
samples	Numeric, default 2000. Overall number of posterior samples. When using multiple chains iterations per chain is samples / chains.
method	A character string, defaulting to sampling. Currently supports $rstan::sampling$ ("sampling") or $rstan:vb$ (" vb ").
	Additional parameters to pass underlying option functions.

Value

A list of arguments to pass to the appropriate rstan functions.

See Also

```
rstan_sampling_opts rstan_vb_opts
```

```
rstan_opts(samples = 1000)
# using vb
rstan_opts(method = "vb")
```

86 rstan_sampling_opts

Description

Stable Defines a list specifying the arguments passed to rstan::sampling. Custom settings can be supplied which override the defaults.

Usage

```
rstan_sampling_opts(
  cores = getOption("mc.cores", 1L),
  warmup = 250,
  samples = 2000,
  chains = 4,
  control = list(),
  save_warmup = FALSE,
  seed = as.integer(runif(1, 1, 1e+08)),
  future = FALSE,
  max_execution_time = Inf,
  ...
)
```

Arguments

cores	Number of cores to use	e when executing	the chains in pa	arallel, which defaults to

1 but it is recommended to set the mc.cores option to be as many processors as

the hardware and RAM allow (up to the number of chains).

warmup Numeric, defaults to 250. Number of warmup samples per chain.

samples Numeric, default 2000. Overall number of posterior samples. When using mul-

tiple chains iterations per chain is samples / chains.

chains Numeric, defaults to 4. Number of MCMC chains to use.

control List, defaults to empty. control parameters to pass to underlying rstan function.

By default adapt_delta = 0.98 and max_treedepth = 15 though these settings

can be overwritten.

save_warmup Logical, defaults to FALSE. Should warmup progress be saved.

seed Numeric, defaults uniform random number between 1 and 1e8. Seed of sam-

pling process.

future Logical, defaults to FALSE. Should stan chains be run in parallel using future.

This allows users to have chains fail gracefully (i.e when combined with max_execution_time).

Should be combined with a call to future::plan

max_execution_time

Numeric, defaults to Inf (seconds). If set will kill off processing of each chain if not finished within the specified timeout. When more than 2 chains finish successfully estimates will still be returned. If less than 2 chains return within the allowed time then estimation will fail with an informative error.

rstan_vb_opts 87

... Additional parameters to pass to rstan::sampling.

Value

A list of arguments to pass to rstan::sampling

Examples

```
rstan_sampling_opts(samples = 2000)
```

rstan_vb_opts

Rstan Variational Bayes Options

Description

Stable Defines a list specifying the arguments passed to rstan::vb. Custom settings can be supplied which override the defaults.

Usage

```
rstan_vb_opts(samples = 2000, trials = 10, iter = 10000, ...)
```

Arguments

samples	Numeric, default 2000. Overall number of approximate posterior samples.
trials	Numeric, defaults to 10. Number of attempts to use rstan::vb before failing.
iter	Numeric, defaulting to 10000. Number of iterations to use in rtan::vb.
	Additional parameters to pass to rstan::vb.

Value

```
A list of arguments to pass to rstan::vb
```

```
rstan_vb_opts(samples = 1000)
```

88 rt_opts

rt_opts

Time-Varying Reproduction Number Options

Description

Stable Defines a list specifying the optional arguments for the time-varying reproduction number. Custom settings can be supplied which override the defaults.

Usage

```
rt_opts(
  prior = list(mean = 1, sd = 1),
  use_rt = TRUE,
  rw = 0,
  use_breakpoints = TRUE,
  future = "latest",
  gp_on = "R_t-1",
  pop = 0
)
```

Arguments

prior

List containing named numeric elements "mean" and "sd". The mean and standard deviation of the log normal Rt prior. Defaults to mean of 1 and standard deviation of 1.

use_rt

Logical, defaults to TRUE. Should Rt be used to generate infections and hence reported cases.

rw

Numeric step size of the random walk, defaults to 0. To specify a weekly random walk set rw = 7. For more custom break point settings consider passing in a breakpoints variable as outlined in the next section.

use_breakpoints

Logical, defaults to TRUE. Should break points be used if present as a breakpoint variable in the input data. Break points should be defined as 1 if present and otherwise 0. By default breakpoints are fit jointly with a global non-parametric effect and so represent a conservative estimate of break point changes (alter this by setting gp = NULL).

future

A character string or integer. This argument indicates how to set future Rt values. Supported options are to project using the Rt model ("project"), to use the latest estimate based on partial data ("latest"), to use the latest estimate based on data that is over 50% complete ("estimate"). If an integer is supplied then the Rt estimate from this many days into the future (or past if negative) past will be used forwards in time.

gp_on

Character string, defaulting to " R_t-1 ". Indicates how the Gaussian process, if in use, should be applied to Rt. Currently supported options are applying the Gaussian process to the last estimated Rt (i.e Rt = Rt-1 * GP), and applying the Gaussian process to a global mean (i.e Rt = R0 * GP). Both should produced

run_region 89

comparable results when data is not sparse but the method relying on a global mean will revert to this for real time estimates, which may not be desirable.

pop

Integer, defaults to 0. Susceptible population initially present. Used to adjust Rt estimates when otherwise fixed based on the proportion of the population that is susceptible. When set to 0 no population adjustment is done.

Value

A list of settings defining the time-varying reproduction number

Examples

```
# default settings
rt_opts()

# add a custom length scale
rt_opts(prior = list(mean = 2, sd = 1))

# add a weekly random walk
rt_opts(rw = 7)
```

run_region

Run epinow with Regional Processing Code

Description

Maturing Internal function that handles calling epinow. Future work will extend this function to better handle stan logs and allow the user to modify settings between regions.

Usage

```
run_region(
  target_region,
  generation_time,
 delays,
  truncation,
  rt,
 backcalc,
  gp,
  obs,
  stan,
 horizon,
 CrIs,
  reported_cases,
  target_folder,
  target_date,
  return_output,
  output,
```

90 run_region

```
complete_logger,
  verbose,
  progress_fn,
  ...
)
```

Arguments

target_region Character string indicating the region being evaluated

generation_time

A list containing the mean, standard deviation of the mean (mean_sd), standard deviation (sd), standard deviation of the standard deviation and the maximum

allowed value for the generation time (assuming a gamma distribution).

delays A call to delay_opts() defining delay distributions and options. See the docu-

mentation of delay_opts() and the examples below for details.

truncation **Experimental** A list of options as generated by trunc_opts() defining the

truncation of observed data. Defaults to trunc_opts(). See estimate_truncation()

for an approach to estimating truncation from data.

rt A list of options as generated by rt_opts() defining Rt estimation. Defaults to

rt_opts(). Set to NULL to switch to using back calculation rather than generat-

ing infections using Rt.

backcalc A list of options as generated by backcalc_opts() to define the back calcula-

tion. Defaults to backcalc_opts().

gp A list of options as generated by gp_opts() to define the Gaussian process.

Defaults to gp_opts().Set to NULL to disable the Gaussian process.

obs A list of options as generated by obs_opts() defining the observation model.

Defaults to obs_opts().

stan A list of stan options as generated by stan_opts(). Defaults to stan_opts().

Can be used to override data, init, and verbose settings if desired.

horizon Numeric, defaults to 7. Number of days into the future to forecast.

CrIs Numeric vector of credible intervals to calculate.

reported_cases A data frame of confirmed cases (confirm) by date (date), and region (region).

target_folder Character string specifying where to save results (will create if not present).

target_date Date, defaults to maximum found in the data if not specified.

return_output Logical, defaults to FALSE. Should output be returned, this automatically up-

dates to TRUE if no directory for saving is specified.

output A character vector of optional output to return. Supported options are the indi-

vidual regional estimates ("regions"), samples ("samples"), plots ("plots"), copying the individual region dated folder into a latest folder (if target_folder is not null, set using "latest"), the stan fit of the underlying model ("fit"), and an overall summary across regions ("summary"). The default is to return samples and plots alongside summarised estimates and summary statistics. If target_folder

is not NULL then the default is also to copy all results into a latest folder.

R_to_growth 91

complete_logger

Character string indicating the logger to output the completion of estimation to.

verbose Logical defaults to FALSE. Outputs verbose progress messages to the console

from epinow.

progress_fn Function as returned by progressr::progressor. Allows the use of a progress

bar.

... Pass additional arguments to epinow. See the documentation for epinow for

details

Value

A list of processed output as produced by process_region

See Also

regional_epinow

R_to_growth

Convert Reproduction Numbers to Growth Rates

Description

Questioning See here for justification. Now handled internally by stan so may be removed in future updates if no user demand.

Usage

```
R_to_growth(R, gamma_mean, gamma_sd)
```

Arguments

R Numeric, Reproduction number estimates gamma_mean Numeric, mean of the gamma distribution

gamma_sd Numeric, standard deviation of the gamma distribution

Value

Numeric vector of reproduction number estimates

```
R_to_growth(2.18, 4, 1)
```

92 sample_approx_dist

sample_approx_dist

Approximate Sampling a Distribution using Counts

Description

Soft-deprecated Convolves cases by a PMF function. This function will soon be removed or replaced with a more robust stan implementation.

Usage

```
sample_approx_dist(
  cases = NULL,
  dist_fn = NULL,
  max_value = 120,
  earliest_allowed_mapped = NULL,
  direction = "backwards",
  type = "sample",
  truncate_future = TRUE
)
```

Arguments

cases A dataframe of cases (in date order) with the following variables: date and

cases.

dist_fn Function that takes two arguments with the first being numeric and the second

being logical (and defined as dist). Should return the probability density or a

sample from the defined distribution. See the examples for more.

max_value Numeric, maximum value to allow. Defaults to 120 days

earliest_allowed_mapped

A character string representing a date ("2020-01-01"). Indicates the earliest

allowed mapped value.

direction Character string, defato "backwards". Direction in which to map cases. Supports

either "backwards" or "forwards".

type Character string indicating the method to use to transform counts. Supports

either "sample" which approximates sampling or "median" would shift by the

median of the distribution.

truncate_future

Logical, should cases be truncated if they occur after the first date reported in

the data. Defaults to TRUE.

Value

A data. table of cases by date of onset

Examples

```
cases <- example_confirmed</pre>
cases <- cases[, cases := as.integer(confirm)]</pre>
print(cases)
# total cases
sum(cases$cases)
delay_fn <- function(n, dist, cum) {</pre>
              if(dist) {
                pgamma(n + 0.9999, 2, 1) - pgamma(n - 1e-5, 2, 1)
                }else{
                 as.integer(rgamma(n, 2, 1))
             }
onsets <- sample_approx_dist(cases = cases,</pre>
                              dist_fn = delay_fn)
# estimated onset distribution
print(onsets)
# check that sum is equal to reported cases
total_onsets <- median(</pre>
   purrr::map_dbl(1:100,
                   ~ sum(sample_approx_dist(cases = cases,
                   dist_fn = delay_fn)$cases)))
total_onsets
# map from onset cases to reported
reports <- sample_approx_dist(cases = cases,</pre>
                               dist_fn = delay_fn,
                               direction = "forwards")
# map from onset cases to reported using a mean shift
reports <- sample_approx_dist(cases = cases,</pre>
                               dist_fn = delay_fn,
                               direction = "forwards",
                                type = "median")
```

save_estimate_infections

Save Estimated Infections

Description

Stable Saves output from estimate_infections to a target directory.

Usage

```
save_estimate_infections(
  estimates,
  target_folder = NULL,
  samples = TRUE,
  return_fit = TRUE
)
```

Arguments

estimates List of data frames as output by estimate_infections

target_folder Character string specifying where to save results (will create if not present).

samples Logical, defaults to TRUE. Should samples be saved

return_fit Logical, defaults to TRUE. Should the fit stan object be returned.

See Also

estimate_infections

```
save_forecast_infections
```

Save Forecast Infections

Description

Experimental Saves the output from forecast_infections to a target directory.

Usage

```
save_forecast_infections(forecast, target_folder = NULL, samples = TRUE)
```

Arguments

forecast A list of data frames as output by forecast_infections

target_folder Character string specifying where to save results (will create if not present).

samples Logical, defaults to TRUE. Should samples be saved

See Also

forecast_infections

save_input 95

save_input

Save Observed Data

Description

Stable Saves observed data to a target location if given.

Usage

```
save_input(reported_cases, target_folder)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be integer and date must be in date format.

target_folder Character string specifying where to save results (will create if not present).

secondary_opts

Secondary Reports Options

Description

Experimental Returns a list of options defining the secondary model used in estimate_secondary(). This model is a combination of a convolution of previously observed primary reports combined with current primary reports (either additive or subtractive). This model can optionally be cumulative. See the documentation of type for sensible options to cover most use cases and the returned values of secondary_opts() for all currently supported options.

Usage

```
secondary_opts(type = "incidence", ...)
```

Arguments

type

A character string indicating the type of observation the secondary reports are. Options include:

- "incidence": Assumes that secondary reports equal a convolution of previously observed primary reported cases. An example application is deaths from an infectious disease predicted by reported cases of that disease (or estimated infections).
- "prevalence": Assumes that secondary reports are cumulative and are defined by currently observed primary reports minus a convolution of secondary reports. An example application is hospital bed usage predicted by hospital admissions.

Overwrite options defined by type. See the returned values for all options that can be passed.

Value

A list of binary options summarising secondary model used in estimate_secondary(). Options returned are cumulative (should the secondary report be cumulative), historic (should a convolution of primary reported cases be used to predict secondary reported cases), primary_hist_additive (should the historic convolution of primary reported cases be additive or subtractive), current (should currently observed primary reported cases contribute to current secondary reported cases), primary_current_additive (should current primary reported cases be additive or subtractive).

See Also

```
estimate_secondary
```

Examples

```
# incidence model
secondary_opts("incidence")
# prevalence model
secondary_opts("prevalence")
```

```
setup_default_logging Setup Default Logging
```

Description

Questioning Sets up default logging. Usage of logging is currently being explored as the current setup cannot log stan errors or progress.

Usage

```
setup_default_logging(
  logs = tempdir(check = TRUE),
  mirror_epinow = FALSE,
  target_date = NULL
)
```

Arguments

logs	Character path indicating the target folder in which to store log information. Defaults to the temporary directory if not specified. Default logging can be disabled if logs is set to NULL. If specifying a custom logging setup then the code for setup_default_logging and the setup_logging function are a sensible place to start.
mirror_epinow	Logical, defaults to FALSE. Should internal logging be returned from epinow to the console.
target_date	Date, defaults to maximum found in the data if not specified.

setup_dt 97

Examples

```
setup_default_logging()
```

setup_dt

Convert to Data Table

Description

Stable Convenience function that sets the number of data.table cores to 1 and maps input to be a data.table

Usage

```
setup_dt(reported_cases)
```

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be integer and date must be in date format.

Value

A data table

setup_future

Set up Future Backend

Description

Stable A utility function that aims to streamline the set up of the required future backend with sensible defaults for most users of regional_epinow. More advanced users are recommended to setup their own future backend based on their available resources.

Usage

```
setup_future(
  reported_cases,
  strategies = c("multiprocess", "multiprocess"),
  min_cores_per_worker = 4
)
```

98 setup_logging

Arguments

reported_cases A data frame of confirmed cases (confirm) by date (date), and region (region).

strategies

A vector length 1 to 2 of strategies to pass to future::plan. Nesting of parallisation is from the top level down. The default is to set up nesting parallisation with both using future::multiprocess. For single level parallisation use a single strategy or future::plan directly. See ?future::plan for options.

min_cores_per_worker

Numeric, the minimum number of cores per worker. Defaults to 4 which assumes 4 MCMC chains are in use per region.

Value

Numeric number of cores to use per worker. If greater than 1 pass to stan_args = list(cores = "output from setup future") or use future = TRUE. If only a single strategy is used then nothing is returned.

setup_logging

Setup Logging

Description

Questioning Sets up futile.logger logging, which is integrated into EpiNow2. See the documentation for futile.logger for full details. By default EpiNow2 prints all logs at the "INFO" level and returns them to the console. Usage of logging is currently being explored as the current setup cannot log stan errors or progress.

Usage

```
setup_logging(
  threshold = "INFO",
  file = NULL,
  mirror_to_console = FALSE,
  name = "EpiNow2"
)
```

Arguments

threshold

Character string indicating the logging level see (?futile.logger for details of the available options). Defaults to "INFO".

file

Character string indicating the path to save logs to. By default logs will be written to the console.

mirror_to_console

Logical, defaults to FALSE. If saving logs to a file should they also be duplicated in the console.

setup_target_folder 99

name

Character string defaulting to EpiNow2. This indicates the name of the logger to setup. The default logger for EpiNow2 is called EpiNow2. Nested options include: Epinow2.epinow which controls all logging for epinow and nested functions, EpiNow2.epinow.estimate_infections (logging in estimate_infections), and EpiNow2.epinow.estimate_infections.fit (logging in fitting functions).

Value

Nothing

setup_target_folder

Setup Target Folder for Saving

Description

Stable Sets up a folders for saving results

Usage

```
setup_target_folder(target_folder = NULL, target_date)
```

Arguments

target_folder Character string specifying where to save results (will create if not present).

target_date Date, defaults to maximum found in the data if not specified.

Value

A list containing the path to the dated folder and the latest folder

simulate_cases

Simulate Cases by Date of Infection, Onset and Report

Description

\@description **Questioning** Simulate cases from a single Rt trace, an initial number of cases, and a reporting model This functionality has largely been superseded by simulate_infections and will likely to replaced or updated to depend on stan code.

100 simulate_cases

Usage

```
simulate_cases(
   rts,
   initial_cases,
   initial_date,
   generation_interval,
   rdist = rpois,
   delay_defs,
   reporting_effect,
   reporting_model,
   truncate_future = TRUE,
   type = "sample"
)
```

Arguments

rts A dataframe of containing two variables rt and date with rt being numeric and

date being a date.

initial_date Date, (i.e as.Date("2020-02-01")). Starting date of the simulation.

generation_interval

Numeric vector describing the generation interval probability density

rdist A function to be used to sample the number of cases. Must take two arguments

with the first specifying the number of samples and the second the mean. De-

faults to rpois if not supplied

delay_defs A list of single row data.tables that each defines a delay distribution (model,

parameters and maximum delay for each model). See lognorm_dist_def for

an example of the structure.

reporting_effect

A numeric vector of length 7 that allows the scaling of reported cases by the day on which they report (1 = Monday, 7 = Sunday). By default no scaling occurs.

reporting_model

A function that takes a single numeric vector as an argument and returns a single numeric vector. Can be used to apply stochastic reporting effects. See the examples for details.

truncate_future

Logical, should cases be truncated if they occur after the first date reported in

the data. Defaults to TRUE.

type Character string indicating the method to use to transform counts. Supports

either "sample" which approximates sampling or "median" would shift by the

median of the distribution.

Value

A dataframe containing three variables: date, cases and reference.

simulate_infections 101

See Also

simulate_infections

simulate_infections

Simulate infections using a given trajectory of the time-varying reproduction number

Description

Stable This function simulates infections using an existing fit to observed cases but with a modified time-varying reproduction number. This can be used to explore forecast models or past counterfactuals. Simulations can be run in parallel using future::plan.

Usage

```
simulate_infections(
  estimates,
  R = NULL,
  model = NULL,
  samples = NULL,
  batch_size = 10,
  verbose = interactive()
)
```

Arguments

estimates	The estimates element of an epinow run that has been done with output = "fit", or the result of estimate_infections with return_fit set to TRUE.
R	A numeric vector of reproduction numbers; these will overwrite the reproduction numbers contained in estimates, except elements set to NA. If it is longer than the time series of reproduction numbers contained in estimates, the values going beyond the length of estimated reproduction numbers are taken as forecast.
model	A compiled stan model as returned by rstan::stan_model.
samples	Numeric, number of posterior samples to simulate from. The default is to use all samples in the estimates input.
batch_size	Numeric, defaults to 100. Size of batches in which to simulate. May decrease run times due to reduced IO costs but this is still being evaluated. If set to NULL then all simulations are done at once.
verbose	Logical defaults to interactive(). Should a progress bar (from progressr) be shown.

102 stan_opts

Examples

```
#set number of cores to use
options(mc.cores = ifelse(interactive(), 4, 1))
# get example case counts
reported_cases <- example_confirmed[1:50]</pre>
# set up example generation time
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani")</pre>
# set delays between infection and case report
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer")</pre>
reporting_delay <- list(mean = convert_to_logmean(3, 1), mean_sd = 0.1,
                         sd = convert\_to\_logsd(3, 1), sd\_sd = 0.1, max = 15)
# fit model to data to recover Rt estimates
est <- estimate_infections(reported_cases, generation_time = generation_time,</pre>
                            delays = delay_opts(incubation_period, reporting_delay),
                            rt = rt_opts(prior = list(mean = 2, sd = 0.1)),
                            gp = gp_opts(ls_min = 10, boundary_scale = 1.5,,
                                          basis_prop = 0.1),
                            obs = obs_opts(scale = list(mean = 0.1, sd = 0.01)))
# update Rt trajectory and simulate new infections using it
R \leftarrow c(rep(NA\_real\_, 40), rep(0.5, 10), rep(0.8, 7))
sims <- simulate_infections(est, R)</pre>
plot(sims)
```

stan_opts

Stan Options

Description

Stable Defines a list specifying the arguments passed to underlying stan backend functions via rstan_sampling_opts and rstan_vb_opts. Custom settings can be supplied which override the defaults.

Usage

```
stan_opts(
  samples = 2000,
  backend = "rstan",
  init_fit = NULL,
  return_fit = TRUE,
  ...
)
```

Arguments

samples Numeric, default 2000. Overall number of posterior samples. When using mul-

tiple chains iterations per chain is samples / chains.

backend Character string indicating the backend to use for fitting stan models. Currently

only "rstan" is supported.

 $init_fit \qquad \qquad \textbf{Experimental} \ Character \ string \ or \ stanfit \ object, \ defaults \ to \ NULL. \ Should \ an$

initial fit be used to initialise the full fit. An example scenario would be using a national level fit to parametrise regional level fits. Optionally a character string can be passed with the currently supported option being "cumulative". This fits the model to cumulative cases and may be useful for certain data sets where the sampler gets stuck or struggles to initialise. See init_cumulative_fit() for details. This implementation is based on the approach taken in epidemia

authored by James Scott.

return_fit Logical, defaults to TRUE. Should the fit stan model be returned.

... Additional parameters to pass underlying option functions.

Value

A list of arguments to pass to the appropriate rstan functions.

See Also

rstan_opts

Examples

```
# using default of rstan::sampling
stan_opts(samples = 1000)
# using vb
stan_opts(method = "vb")
```

summarise_key_measures

Summarise rt and cases

Description

Maturing Produces summarised data frames of output across regions. Used internally by regional_summary.

104 summarise_results

Usage

```
summarise_key_measures(
  regional_results = NULL,
  results_dir = NULL,
  summary_dir = NULL,
  type = "region",
  date = "latest"
)
```

Arguments

regional_results

A list of dataframes as produced by get_regional_results

results_dir Character string indicating the directory from which to extract results.

summary_dir Character string the directory into which to save results as a csv.

type Character string, the region identifier to apply (defaults to region).

date A Character string (in the format "yyyy-mm-dd") indicating the date to extract

data for. Defaults to "latest" which finds the latest results available.

Value

A list of summarised Rt, cases by date of infection and cases by date of report

See Also

regional_summary

summarise_results

Summarise Real-time Results

Description

Questioning Used internally by regional_summary to produce a summary table of results. May be streamlined in later releases.

Usage

```
summarise_results(
  regions,
  summaries = NULL,
  results_dir = NULL,
  target_date = NULL,
  region_scale = "Region"
)
```

summary.epinow 105

Arguments

regions	An character string containing the list of regions to extract results for (must all have results for the same target date).
summaries	A list of summary data frames as output by epinow
results_dir	An optional character string indicating the location of the results directory to extract results from.
target_date	A character string indicating the target date to extract results for. All regions must have results for this date.
region_scale	A character string indicating the name to give the regions being summarised.

Value

A list of summary data

y.epinow Summary output from epinow

Description

Stable summary method for class "epinow".

Usage

```
## S3 method for class 'epinow'
summary(object, output = "estimates", date = NULL, params = NULL, ...)
```

Arguments

output A character string of output to summarise. Defaults to "estimates" but also supports "forecast", and "estimated_reported_cases". date A date in the form "yyyy-mm-dd" to inspect estimates for. params A character vector of parameters to filter for. Pass additional summary arguments to lower level methods	object	A list of output as produced by "epinow".
params A character vector of parameters to filter for.	output	A character string of output to summarise. Defaults to "estimates" but also supports "forecast", and "estimated_reported_cases".
•	date	A date in the form "yyyy-mm-dd" to inspect estimates for.
Pass additional summary arguments to lower level methods	params	A character vector of parameters to filter for.
		Pass additional summary arguments to lower level methods

Value

Returns a data frame of summary output

See Also

summary.estimate_infections epinow

106 theme_map

summary.estimate_infections

Summary output from estimate_infections

Description

Stable summary method for class "estimate_infections".

Usage

```
## S3 method for class 'estimate_infections'
summary(object, type = "snapshot", date = NULL, params = NULL, ...)
```

Arguments

object A list of output as produced by "estimate_infections".

type A character vector of data types to return. Defaults to "snapshot" but also sup-

ports "parameters". "snapshot" returns a summary at a given date (by default the latest date informed by data). "parameters" returns summarised parameter estimates that can be further filtered using params to show just the parameters

of interest and date.

date A date in the form "yyyy-mm-dd" to inspect estimates for.

params A character vector of parameters to filter for.

... Pass additional arguments to report_summary

Value

Returns a data frame of summary output

See Also

summary estimate_infections report_summary

theme_map Custom Map Theme

Description

Questioning Applies a custom map theme to be used with global_map, country_map, and other ggplot2 maps. Status of this function is currently questioning as it is uncertain if it is in use. Future releases may depreciate it.

trunc_opts 107

Usage

```
theme_map(
  map = NULL,
  continuous = FALSE,
  variable_label = NULL,
  trans = "identity",
  fill_labels = NULL,
  scale_fill = NULL,
  breaks = NULL,
  ...
)
```

Arguments

map ggplot2 map object

continuous Logical defaults to FALSE. Is the fill variable continuous.

variable_label A character string indicating the variable label to use. If not supplied then the

underlying variable name is used.

trans A character string specifying the transform to use on the specified metric. De-

faults to no transform ("identity"). Other options include log scaling ("log") and

log base 10 scaling ("log10"). For a complete list of options see ggplot2::continous_scale.

fill_labels A function to use to allocate legend labels. An example (used below) is scales::percent,

which can be used for percentage data.

scale_fill Function to use for scaling the fill. Defaults to a custom ggplot2::scale_fill_manual,

which expects the possible values to be "Increasing", "Likely increasing", "Likely

decreasing", "Decreasing" or "Unsure".

breaks Breaks to use in legend. Defaults to ggplot2::waiver.

... Additional arguments passed to the scale_fill function

Value

A ggplot2 object

trunc_opts Truncation Distribution Options
--

Description

Stable Returns a truncation distribution formatted for usage by downstream functions. See estimate_truncation for an approach to estimate this distribution.

Usage

```
trunc_opts(dist = NULL)
```

108 tune_inv_gamma

Arguments

dist

A list defining the truncation distribution, defaults to NULL in which case no truncation is used. Must have the following elements if defined: "mean", "mean_sd", "sd_mean", "sd_sd", and "max" defining a truncated log normal (with all parameters except for max defined in logged form).

Value

A list summarising the input truncation distribution.

See Also

```
convert_to_logmean convert_to_logsd bootstrapped_dist_fit
```

Examples

```
# no truncation
trunc_opts()
```

tune_inv_gamma

Tune an Inverse Gamma to Achieve the Target Truncation

Description

Questioning Allows an inverse gamma distribution to be. tuned so that less than 0.01 of its probability mass function falls outside of the specified bounds. This is required when using an inverse gamma prior, for example for a Gaussian process. As no inverse gamma priors are currently in use and this function has some stability issues it may be deprecated at a later date.

Usage

```
tune_inv_gamma(lower = 2, upper = 21)
```

Arguments

Numeric, defaults to 2. Lower truncation bound.

upper Numeric, defaults to 21. Upper truncation bound.

Value

A list of alpha and beta values that describe a inverse gamma distribution that achieves the target truncation.

```
tune_inv_gamma(lower = 2, upper = 21)
```

update_horizon 109

update_horizon	Updates Forecast Horizon Based on Input Data and Target

Description

Stable Makes sure that a forecast is returned for the user specified time period beyond the target date.

Usage

```
update_horizon(horizon, target_date, reported_cases)
```

Arguments

horizon Numeric, defaults to 7. Number of days into the future to forecast.

target_date Date, defaults to maximum found in the data if not specified.

reported_cases A data frame of confirmed cases (confirm) by date (date). confirm must be

integer and date must be in date format.

Value

Numeric forecast horizon adjusted for the users intention

List	
------	--

Description

Stable Used to handle updating settings in a list. For example when making changes to opts_list output.

Usage

```
update_list(defaults = list(), optional = list())
```

Arguments

defaults A list of default settings

optional A list of optional settings to override defaults

Value

A list

Index

* datasets example_confirmed, 42 generation_times, 54 incubation_periods, 63	estimate_secondary, 37 estimate_truncation, 40 estimates_by_report_date, 32 example_confirmed, 42 expose_stan_fns, 43
adjust_infection_to_report, 5	extract_CrIs, 43
allocate_delays, 6 allocate_empty, 7	extract_inits, 44
allocate_empty, /	extract_parameter, 44
backcalc_opts, 8	extract_parameter_samples, 45
bootstrapped_dist_fit,9	extract_stan_param, 46
,, – – ,	extract_static_parameter, 46
calc_CrI, 10	filter ents 47
calc_CrIs, 11	<pre>filter_opts, 47 fit_model_with_nuts, 48</pre>
calc_summary_measures, 11	fit_model_with_vb, 48
calc_summary_stats, 12	forecast_infections, 49
clean_nowcasts, 13	forecast_secondary, 51
clean_regions, 13	format_fit, 52
construct_output, 14	101 mat_11t, 32
convert_to_logmean, 14	gamma_dist_def,53
convert_to_logsd, 15	generation_times, 54
copy_results_to_latest, 16	get_dist, 54
country_map, 16	get_generation_time, 55
create_backcalc_data, 18	get_incubation_period, 56
create_clean_reported_cases, 19	get_raw_result, 56
create_future_rt, 19	get_regional_results, 57
create_gp_data, 20	get_regions, 58
create_initial_conditions, 21	get_regions_with_most_reports, 59
create_obs_model, 21	global_map, 59
create_rt_data, 22	gp_opts, 61
create_shifted_cases, 23	growth_to_R, 62
create_stan_args, 24	gr owen_co_n, 02
create_stan_data, 25	incubation_periods, 63
delay_opts, 26	<pre>init_cumulative_fit, 63</pre>
dist_fit, 27	1.110_0aa101.010, 00
dist_skel, 28	lognorm_dist_def,64
u13t_3ke1, 20	
epinow, 29	make_conf, 65
estimate_delay, 33	map_prob_change, 65
estimate_infections, 33	match_output_arguments, 66

INDEX 111

```
obs_opts, 67
                                                tune_inv_gamma, 108
opts_list, 68
                                                update_horizon, 109
                                                update_list, 109
plot (plot.estimate_infections), 69
plot.epinow, 69
plot.estimate_infections, 69
plot.estimate_secondary, 70
plot.estimate_truncation, 71
plot_CrIs, 71
plot_estimates, 72
plot_estimates(), 83
plot_summary, 73
process_region, 74
process_regions, 75
R_to_growth, 91
regional_epinow, 75
regional_runtimes, 78
regional_summary, 80
report_cases, 81
report_plots, 83
report_summary, 84
rstan_opts, 85
rstan_sampling_opts, 86
rstan_vb_opts, 87
rt_opts, 88
run_region, 89
sample_approx_dist, 92
save_estimate_infections, 93
save_forecast_infections, 94
save_input, 95
secondary_opts, 95
setup_default_logging, 96
setup_dt, 97
setup_future, 97
setup_logging, 98
setup_target_folder, 99
simulate_cases, 99
simulate_infections, 101
stan_opts, 102
summarise_key_measures, 103
summarise_results, 104
summary(summary.epinow), 105
summary.epinow, 105
summary.estimate\_infections, 106
theme_map, 106
trunc_opts, 107
```