Discrete Structures (MA5.101)

Quiz - 2 (Monsoon 2021)

International Institute of Information Technology, Hyderabad

Time: 60 Minutes Total Marks: 30

Instructions: This is online examination.

Write at the top of your answer book the following:

Discrete Structures (MA5.101)

Quiz - 2 (Monsoon 2021)

Date: 27-Dec-2021

Name:

Roll Number:

Submit your scanned hand-written answer script in the moodle with the file name: RollNo_Quiz2_SecNo_27Dec2021.pdf

December 27, 2021

1.	Choose	the co	rrect option	for the	following	questions:	
----	--------	--------	--------------	---------	-----------	------------	--

(a) Let a set A have 11 district elements, then the number of binary relations on A are	e
(1) 101	

- (A) 121
- (B) 2^{11}
- (C) 121^2
- (D) 2^{121}
- (b) The rank of smallest equivalence relation on a set S, where S contains 12 distinct elements is
 - (A) 12
 - (B) 144
 - (C) 132
 - (D) 156
- (c) Let S be a set of the elements $\{1,2,3,4,5\}$. The transitive closure of the relation $\{(0,1),(1,2),(2,2),(3,0)\}$ on the set S is
 - (A) $\{(0,1),(1,2),(2,2),(3,4)\}$
 - (B) $\{(0,0),(1,1),(2,2),(3,3),(4,4),(5,5)\}$
 - (C) $\{(0,1),(1,1),(2,2),(5,3),(5,4)\}$
 - (D) $\{(0,1),(0,2),(1,2),(2,2),(3,4),(5,3),(5,4)\}$
- (d) Let a relation R is defined on $\mathbb Z$ (set of integers) as ${}_xR_y$ iff x+y is even and R is known as

- (A) an equivalence relation with one equivalence class
- (B) an equivalence relation with three equivalence classes
- (C) an equivalence relation with two equivalence classes
- (D) an equivalence relation
- (e) Let S be a set have n elements and R be a binary relation on the set S. Then, the time complexity for computing the transitive closure of R should be _____.
 - (A) O(n)
 - (B) $O(n^3)$
 - (C) $O(n^{(n+3/2)})$
 - (D) $O(\log n)$
- (f) Let a relation R is defined as $R = \{(x,y)|y=x-1, \& x,y \in \{1,2,3\}\}$. Then, the reflexive transitive closure of R is
 - (A) $\{(x,y)|x \ge y \& x,y \in \{1,2,3\}\}$
 - (B) $\{(x,y)|x=y \& x,y \in \{1,2,3\}\}$
 - (C) $\{(x,y)|x>y \& x,y \in \{1,2,3\}\}$
 - (C) $\{(x,y)|x \le y \& x,y \in \{1,2,3\}\}$
- (g) A partial order \leq is defined on the set $S = \{x, b_1, b_2, \dots b_n, y\}$ as $x \leq b_i$ for all i and $b_i \leq y$ for all i, where $n \geq 1$. The number of total orders on the set S which contain the partial order \leq is
 - (A) n+4
 - (B) n!
 - (C) n^2
 - (D) n^{3}
- (h) Let a relation R on \mathbb{Z} and define as $(a,b) \in R | a \ge b^2$. Then R is _____.
 - (A) Not transitive
 - (B) Antisymmetric
 - (C) Symmetric
 - (D) Not reflexive
- (i) For $x,y\in\mathbb{Z}$ defined as x|y, which means that x divides y is a relation which does not satisfy .
 - (A) reflexive and symmetric relations
 - (B) symmetric relation
 - (C) transitive relation
 - (D) irreflexive and symmetric relation
- (j) For $x, y \in R$ defined as x = y, which means that |x| = |y|. If [x] is an equivalence relation in R, then the equivalence relation for [17] is ______.
 - (A) $\{, \dots, -11, -7, 0, 7, 11, \dots\}$
 - (B) $\{, \dots, -17, 0, 17, \dots \}$
 - (C) $\{2, 4, 9, 11, 15, \cdots\}$
 - (D) $\{-17, 17\}$

2. Consider the set $S = \{1, 2, 3, 4\}$ and a relation R defined in it as $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)$	(3,4)
---	-------

- (i) If the symmetric closure of R is exist then find out, else why not.
- (ii) What about the transitive closure of R.

$$[5 + 5 = 10]$$

- 3. (a) Prove that a relation R defined on a set A is an equivalence relation, if and only if R is reflexive and such that ${}_aR_b$ and ${}_bR_c$ imply ${}_cR_a$, for $a,b,c\in A$.
 - (b) Let S be a set and let R be a binary relation on S. Then, prove or disprove $R \cup R^{-1}$ is the smallest symmetric relation containing the relation R.

$$[5 + 5 = 10]$$