Deadlock

enrico.bacis@unibg.it

D.1 Si assuma che L^r_i^X (L^w_i^X) rappresenti una richiesta di lock in lettura (scrittura) da parte della transazione i sulla risorsa X. Sia data la sequenza di richieste di lock:

Si verifichi se la sequenza di richieste di lock porta ad una situazione di blocco critico. Costruiamo un grafo in cui l'arco i,j indica che t_i aspetta un rilascio da t_j Lr₁A Lr₂A Lw₃B Lr₄C Lw₂D Lw₃A Lw₁C Lw₅E Lr₅D Lr₄E

L'aciclicità del grafo garantisce l'assenza di deadlock. t₂ può terminare per prima, poi nel'ordine t₅, t₄, t₁, t₃ **D.2** Si verifichi **che** la sequenza di richieste di lock porta ad una situazione di blocco critico.

Si individui inoltre quale transazione può essere fatta terminare per rimuovere la situazione di blocco.

Il grafo è ciclico. C'è un deadlock tra le transazioni t_1 , t_2 e t_3 , che si può risolvere uccidendo t_3 (non t_2 [t_1], ché rimarrebbe il ciclo tra t_1 e t_3 [tra t_2 e t_3])

E.1 Siano date le seguenti condizioni di attesa sui nodi di un DBMS distribuito:

Nodo 1:
$$E_4 arrow t_1$$
, $t_1 arrow t_2$, $t_2 arrow E_2$
Nodo 2: $E_1 arrow t_2$, $t_2 arrow t_4$, $t_4 arrow E_3$
Nodo 3: $E_2 arrow t_4$, $t_4 arrow t_3$, $t_3 arrow E_4$
Nodo 4: $E_3 arrow t_3$, $t_3 arrow t_1$, $t_1 arrow E_1$

Determinare se si è in presenza di una situazione di blocco critico.

 $t_i \rightarrow t_j$ indica un'attesa locale $(t_i \text{ attende il rilascio di una } risorsa \text{ acquisita da } t_i)$

 $t_i \rightarrow E_n$ indica che t_i attende la *terminazione* dell'esecuzione di una sottotransazione t_i sul *nodo* n (invocazione *sincrona*)

 $E_m \rightarrow t_i$ indica che t_i è stata invocata in modo sincrono da una t_i residente sul nodo m Ogni condizione di attesa in cui una sottotransazione t_i, attivata in remoto da un nodo m, attende (anche transitivamente a causa della situazione dei lock) un'altra transazione $\mathbf{t_i}$, che a sua volta attende una sotto-transazione remota su un nodo n, è espressa da:

$$E_m \rightarrow t_i \rightarrow t_i \rightarrow E_n$$

Tale è anche la forma del messaggio che si scambiano i nodi del sistema

Nodo 1:
$$E_4 \rightarrow t_1$$
, $t_1 \rightarrow t_2$, $t_2 \rightarrow E_2$
Nodo 2: $E_1 \rightarrow t_2$, $t_2 \rightarrow t_4$, $t_4 \rightarrow E_3$
Nodo 3: $E_2 \rightarrow t_4$, $t_4 \rightarrow t_3$, $t_3 \rightarrow E_4$
Nodo 4: $E_3 \rightarrow t_3$, $t_3 \rightarrow t_1$, $t_1 \rightarrow E_1$

L'algoritmo è distribuito.

Ogni istanza (in esecuzione su un nodo) comunica ad altre istanze dello stesso algoritmo le sequenze di attesa:

$$E_m \rightarrow t_i \rightarrow t_j \rightarrow E_n$$

I messaggi sono inviati solo " in avanti", cioè verso i nodi dove è attiva la sottotransazione *attesa* da t_i, e viene inviato solo se i>j (*puramente convenzionale*)

Per rispondere *simuliamo l'esecuzione* - **asincrona** e **distribuita** - dell'algoritmo di rilevazione dei deadlock. Ogni nodo decide di inviare le condizioni di attesa (da esterno su esterno) che rileva, in base alla convenzione per cui la generica condizione

$$E_m \rightarrow t_i \rightarrow t_m \rightarrow t_n \rightarrow t_p \rightarrow t_j \rightarrow E_n$$

si traduce nel messaggio

$$E_m \rightarrow t_i \rightarrow t_j \rightarrow E_n$$

da inviare al nodo \mathbf{n} , e soltanto se $\mathbf{i} > \mathbf{j}$

NODO 1

NODO 2

NODO 3

NODO 4

Nulla da inviare

Nulla da inviare

 $E_2 \rightarrow t_4 \rightarrow t_3 \rightarrow E_4$ da inviare al nodo 4 $E_3 \rightarrow t_3 \rightarrow t_1 \rightarrow E_1$ da inviare al nodo 1

RICEVUTO $E_3 \rightarrow t_3 \rightarrow t_1 \rightarrow E_1$ RICEVUTO $E_2 \rightarrow t_4 \rightarrow t_3 \rightarrow E_4$

NODO 2

NODO 3

NODO 4

 $E_3 \rightarrow t_3 \rightarrow t_2 \rightarrow E_2$ da inviare al nodo 2

Nulla da inviare

Nulla da inviare

 $E_2 \rightarrow t_4 \rightarrow t_1 \rightarrow E_1$ da inviare al nodo 1

RICEVUTO

$$E_2 \rightarrow t_4 \rightarrow t_1 \rightarrow E_1$$

RICEVUTO $E_3 \rightarrow t_3 \rightarrow t_2 \rightarrow E_2$

 $E_2 \rightarrow t_4 \rightarrow t_2 \rightarrow E_2$ da inviare al nodo 2 Nulla da inviare

Nulla da inviare

Nulla da inviare

Nulla da inviare SCOPRE UN CICLO

Nulla da inviare

Nulla da inviare

Esiste un blocco critico tra le transazioni t₂ e t₄

E.2 Dire se le seguenti condizioni di attesa determinano una situazione di blocco critico:

Nodo 1:
$$E_2 o t_1$$
, $t_1 o t_2$, $E_3 o t_2$, $t_2 o t_3$, $t_3 o E_2$, $E_2 o t_4$, $t_4 o t_3$
Nodo 2: $E_1 o t_3$, $t_3 o t_5$, $t_5 o t_6$, $t_6 o E_3$, $E_3 o t_7$, $t_7 o t_6$, $t_9 o t_4$, $t_4 o E_1$, $t_1 o E_1$
Nodo 3: $E_2 o t_6$, $t_6 o t_8$, $t_8 o t_2$, $t_2 o E_1$, $t_7 o E_2$

Dove $t_m \rightarrow t_n$ indica un'attesa locale (t_m attende il rilascio di una *risorsa* acquisita da t_n), $t_m \rightarrow E_n$ indica che t_m attende l'esecuzione di una sottotransazione sul *nodo* n (invocazione *sincrona*) e $E_m \rightarrow t_n$ indica che t_n è stata invocata in modo sincrono da una t_i sul nodo m

NODO 1

NODO 2

NODO 3

 $E_2 \rightarrow t_4 \rightarrow t_3 \rightarrow E_2$ da inviare al nodo 2

 $E_3 \rightarrow t_7 \rightarrow t_6 \rightarrow E_3$ da inviare al nodo 3

 $E_2 \rightarrow t_6 \rightarrow t_2 \rightarrow E_1$ da inviare al nodo 1

NODO 1 E_2 E_3 $\mathbf{E_2}$

NODO 2

NODO 3

 $E_2 \rightarrow t_6 \rightarrow t_3 \rightarrow E_2$ da inviare al nodo 2 Il messaggio arrivato non causa nuovi messaggi Il messaggio arrivato non causa nuovi messaggi

ESISTE UN BLOCCO CRITICO

Obermark

Su una base dati distribuita su 3 nodi (α, β, γ) sono in esecuzione sei transazioni $T_1...T_6$, che operano sulle risorse A...F, così allocate: A,B,C sul nodo α , D sul nodo β e E,F sul nodo γ .

Le operazioni delle transazioni sono state registrate in questo ordine:

$$r_1(E), r_2(D), r_3(A), r_2(C), w_1(B), r_4(B), w_4(A), r_3(E), r_5(D), w_1(C), w_3(F), r_6(D), w_5(E), w_6(D)$$

Assumendo che ogni transazione sia <u>iniziata dal nodo su cui si trova la prima risorsa acceduta</u>, e che si verifica l'invocazione di <u>una sotto-transazione quando si accede a una risorsa remota</u>, si costruiscano le condizioni di attesa e le si mostri in forma grafica. Si indichino gli eventuali messaggi da inviare secondo l'algoritmo di Obermark, e se ne simuli l'esecuzione per rilevare eventuali condizioni di deadlock.

 $r_1(E), r_2(D), r_3(A), r_2(C), w_1(B), r_4(B), w_4(A), r_3(E), r_5(D), w_1(C), w_3(F), r_6(D), w_5(E), w_6(D)$

 $r_1(E), r_2(D), r_3(A), \\ r_2(C), w_1(B), r_4(B), w_4(A), r_3(E), r_5(D), w_1(C), w_3(F), r_6(D), w_5(E), \\ w_6(D), w_6(D), w_6(D), w_6(D), w_6(D), w_6(D), w_6(D), w_6(D), w_6(D), \\ w_6(D), w_6(D), w_6(D), w_6(D), w_6(D), \\ w_6(D), w_6(D), w_6(D), w_6(D), \\ w_6(D), w_6(D), w_6(D), \\ w_6(D), w_6(D), \\ w_6(D), w_6(D), \\ w_6(D), w_6(D), \\ w_6(D)$

 $r_1(E), r_2(D), r_3(A), r_2(C), \underline{w_1(B)}, \underline{r_4(B)}, \underline{w_4(A)}, r_3(E), r_5(D), \underline{w_1(C)}, \underline{w_3(F)}, \underline{r_6(D)}, \underline{w_5(E)}, \underline{w_6(D)}$

 $r_1(E), r_2(D), r_3(A), r_2(C), w_1(B), r_4(B), w_4(A), r_3(E), r_5(D), w_1(C), w_3(F), r_6(D), w_5(E), w_6(D)$

 $r_1(E), r_2(D), r_3(A), r_2(C), w_1(B), r_4(B), w_4(A), r_3(E), r_5(D), w_1(C), w_3(F), r_6(D), w_5(E), w_6(D)$

 $r_1(E), r_2(D), r_3(A), r_2(C), w_1(B), r_4(B), w_4(A), r_3(E), r_5(D), w_1(C), w_3(F), r_6(D), w_5(E), w_6(D)$

Message: $E_{\beta} \rightarrow T_5 \rightarrow T_1 \rightarrow E_{\alpha}$ to node α

No deadlock is found