CHƯƠNG 5: CÁC KHÁI NIỆM CƠ BẢN CỦA LÝ THUYẾT ĐỒ THỊ

PHẦN 1:

- Các khái niệm cơ bản
- Biểu diễn đồ thị
- Một số đồ thị đặc biệt
- Sự đẳng cấu của các đồ thị
- Đồ thị có hướng
- Đường đi và chu trình
- Sự liên thông

Các khái niệm cơ bản

- Đồ thị (Graph)
 - G = (V, E) với V≠∅
 - V: tập các đỉnh
 - E: tập các cạnh
 - Cạnh e∈ E
 - ứng với 2 đỉnh v, w∈ V
 - v, w là 2 đỉnh kề (hay liên kết) với nhau, e liên thuộc với v và w
 - Ký hiệu: e = vw (...)
 - v ≡ w : e được gọi là vòng (khuyên) tại v

$$V = \{1, ..., 7\}$$

$$E = \{\{1, 2\}, \{1, 5\}, \{2, 5\}, \{3, 4\}, \{5, 7\}\}$$

Các khái niệm cơ bản

- Đồ thị (Graph)
 - Cạnh bội (song song)
 - Các cạnh phân biệt cùng tương ứng với một cặp đỉnh
 - Đơn đồ thị
 - Đồ thị không có vòng và cạnh song song
 - Đa đồ thị
 - Các đồ thị không phải là đơn đồ thị

- Đồ thị (Graph)
 - Đồ thị đầy đủ
 - Đơn đồ thị mà mọi cặp đỉnh đều kề nhau
 - K_n: đồ thị đầy đủ có n đỉnh

- Đồ thị G' = (V', E')
- V' ⊆ V, E' ⊆ E

- E và V hữu hạn
- Đồ thị vô hạn

- Biểu diễn hình học
 - Mỗi đỉnh ≡ một điểm
 - Mỗi cạnh = một đường (cong hoặc thẳng) nối 2
 đỉnh liên thuộc với nó
- Biểu diễn bằng ma trận
 - Thường được dùng để biểu diễn trên máy tính
 - 2 cách biểu diễn thường dùng
 - Ma trận kề
 - Ma trận liên thuộc

- Biểu diễn bằng ma trận
 - Ma trận kề
 - Ma trận vuông cấp n (số đỉnh của đồ thị)
 - ullet Các phần tử a_{ii} được xác định bởi
 - $a_{ij}=1$: Nếu $\overset{\circ}{v_i}v_j$ là một cạnh của G
 - $a_{ij}=0$: Nếu $v_iv_j^{'}$ không là một cạnh của G
 - Tính chất
 - Phụ thuộc vào thứ tự liệt kê của các đỉnh
 - Ma trận là đối xứng
 - Một vòng được tính là một cạnh $(a_{kk} = 1)$

- Biểu diễn bằng ma trận
 - Ma trận kề
 - Ví dụ 1

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	1	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	1	0	1	0	1
6	0	0	0	1	1	0

- Biểu diễn bằng ma trận
 - Ma trận kề
 - Ví dụ 2

- Biểu diễn bằng ma trận
 - Ma trận liên thuộc
 - Ma trận $M = (a_{ij})_{nxm}$
 - Các phần tử a_{ij} được xác định bởi
 - $a_{ij}=1$: Nếu cạnh e_{j} liên thuộc với v_{i} của G
 - $a_{ij}=0$: Nếu cạnh e_{j} không liên thuộc với v_{i} của G
 - Tính chất
 - Các cột tương ứng với các cạnh bội là giống nhau trong ma trân liên thuộc
 - Các vòng ứng với một cột có đúng một phần tử bằng 1 ứng với đỉnh nối với vòng đó.

- Biểu diễn bằng ma trận
 - Ma liên thuộc
 - Ví dụ

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8
v_1	$\ 1$	1	1	0	0	0	0	0
v_2	0	1 1 0 0 0	1	1	0	1	1	0
v_3	0	0	0	1	1	0	0	0
v_4	0	0	0	0	0	0	1	1
v_5	0	0	0	0	1	1	0	0

- Biểu diễn bằng bảng (danh sách liền kề)
 - Lưu trữ các đỉnh liền kề với một đỉnh
 - Ví dụ

Đỉnh	Đỉnh liền kề
a	b, c, e
b	а
С	a, c, d, e
d	c, e
е	a, c, d

Các khái niệm cơ bản

- Bậc của đỉnh
 - Đỉnh của đồ thị G có bậc là n nếu nó kề với n đỉnh khác.
 - Ký hiệu: deg(v) hay d(v)
 - Mỗi vòng được kể là 2 cạnh tới một đỉnh
 - Đỉnh cô lập ⇔ deg(v)=0
 - Đỉnh treo ⇔ deg(v)=1
 - Cạnh treo có đầu mút là một đỉnh treo
 - Đồ thị rỗng: deg(v)=0 ∀v

deg(a) = 4; deg(b) = 5; deg(c) = 4; deg(d) = 0; deg(e) = 1; deg(f) = 4; deg(g) = 4

Các khái niệm cơ bản

- Bậc của đỉnh
 - Định lý 1.1
 - Trong mọi đồ thị G = (V, E), tổng số bậc của các đỉnh của G bằng 2 lần số cạnh của nó

$$|E| = \frac{1}{2} \sum_{v \in V} d(v)$$

- Hệ quả
 - Trong mọi đồ thị G = (V, E) ta có
 - Số đỉnh bậc lẻ là một số chẵn
 - Tống bậc của đỉnh bậc lẻ là một số chẵn

- Bậc của đỉnh
 - Định lý 1.2
 - Trong mọi đơn đồ thị G = (V, E), nếu số đỉnh nhiều hơn 1 thì tồn tại ít nhất hai đỉnh cùng bậc.
 - Định lý 1.3
 - Trong mọi đơn đồ thị G = (V, E), nếu số đỉnh nhiều hơn 2 và có đúng hai đỉnh cùng bậc thì hai đỉnh này không đồng thời có bậc bằng 0 hoặc n-1.

- Chứng minh và giải toán bằng phương pháp đồ thị
 - Xây dựng đồ thị mô tả đầy đủ thông tin của bài toán
 - Mỗi đỉnh v∈V = một đối tượng trong bài toán
 - Mỗi cạnh e∈E ≡ mối quan hệ giữa hai đối tượng
 - Vẽ đồ thị mô tả bài toán
 - 2. Sử dụng các định nghĩa, tính chất, định lý, ... suy ra điều cần phải chứng minh

 Một số bài toán ví dụ
 Chứng minh rằng trong một cuộc họp tùy ý có ít nhất 2 đại biểu tham gia trở lên, luôn có ít nhất hai đại biểu mà họ có số người quen bằng nhau trong các đại biểu đến dự họp.

 Một số bài toán ví dụ
 Chứng minh rằng số người mà mỗi người đã có một số lẻ lần bắt tay nhau trên trái đất là một con số chẵn.

- Đồ thị đầy đủ K_n
 - Đơn đồ thị
 - Số đỉnh: |V| = n
 - Bậc: deg(v) = n − 1, ∀v ∈ V
 - Số cạnh: |E| = n(n 1)/2

$$\dot{K}_1$$
 \dot{K}_2

- Đồ thị vòng C_n
 - Đơn đồ thị
 - Số đỉnh: |V| = n ≥ 3
 - Bậc: deg(v) = 2, ∀v ∈ V
 - Số cạnh: |E| = n

- Đồ thị hình bánh xe W_n
 - Nối các đỉnh của C_n với một đỉnh mới u ta được W_n
 - Số đỉnh: $|V| = n + 1, n \ge 3$
 - Bậc: deg(v) = 3, ∀v ∈ V \ {u};
 deg(u) = n
 - Số cạnh: |E| = 2n

- Đồ thị đều bậc k (Đồ thị k-đều)
 - Mọi đỉnh đều có cùng bậc k
 - Số đỉnh: |V| = n
 - Bậc: deg(v) = k, ∀v ∈ V
 - Số cạnh: |E| = n.k/2

Ví dụ:

- C_n là đồ thị đều bậc 2
- K_n là đồ thị đều bậc (n-1)

- Các khối n-lập phương Q_n
 - Có 2^n đỉnh, mỗi đỉnh được biểu diễn bằng một dãy số nhị phân với độ dài n.
 - Hai đỉnh là liền kề nếu và chỉ nếu các dãy nhị phân biểu diễn chúng chỉ khác nhau đúng 1 bit.
 - Số đỉnh: $|V| = 2^n$
 - Bậc: deg(v) = n, ∀v ∈ V
 - Số cạnh: $|E| = n \cdot 2^{n-1}$

- Đồ thị bù
 - Hai đơn đồ thị G và G' được gọi là bù nhau
 - chúng có chung các đỉnh
 - Cạnh nào thuộc G thì không thuộc G' và ngược lại
 - Ký hiệu: G' = G

- Đồ thị lưỡng phân
 - Một đồ thị G được gọi là đồ thị lưỡng phân nếu tập các đỉnh của G có thể phân thành 2 tập hợp không rỗng, rời nhau sao cho mỗi cạnh của G nối một đỉnh thuộc tập này đến một đỉnh thuộc tập kia.
 - Ký hiệu: K_{m,n}

- Định nghĩa
 - G(V, E) đẳng cầu với G'(V', E'), (G≈G') nếu
 - Tồn tại song ánh f: V → V'
 - Bảo toàn quan hệ liền kề:

$$\forall u, v \in V, uv \in E \Leftrightarrow f(u)f(v) \in E'$$

- G đẳng cấu với G' thì
 - |V| = |V'|
 - |E| = |E'|
 - $deg(v) = deg(f(v)), \forall v \in V$

- Định nghĩa
 - Chứng minh 2 đồ thị đẳng cấu
 - Điều kiện cần
 - Xét số cạnh, số đỉnh, bậc của đỉnh
 - Điều kiện đủ
 - Xây dựng song ánh bảo toàn quan hệ liền kề
 - Ví dụ 1:

$$u_1 \qquad u_2$$

$$u_4 \qquad u_3$$

$$G = (V,E)$$

$$H = (W,F)$$

$$f: V \to W$$

$$u_1 \mapsto f(u_1) = v_2$$

$$u_2 \mapsto f(u_2) = v_4$$

$$u_3 \mapsto f(u_3) = v_1$$

$$u_4 \mapsto f(u_4) = v_3$$

 \Rightarrow Xây dựng $f:V \to W$ song ánh, bảo toàn quan hệ liền kề $\Rightarrow G \approx H$

- Định nghĩa
 - Chứng minh 2 đồ thị đẳng cấu
 - Ví dụ 2

- Đồ thị tự bù
 - Định nghĩa
 - Đồ thị G tự bù nếu G đẳng cấu với phần bù của nó
 - Ví dụ

- Định lý 1.4
 - Hai đồ thị có ma trận liền kề (theo một thứ tự nào đó của các đỉnh) bằng nhau thì đẳng cấu với nhau

- Định nghĩa
 - G = (V, E)
 - Tập đỉnh V
 - Tập cạnh (cung) E = { (a, b) | a,b ∈ V }
 - e = (a, b) ∈ E
 - Ký hiệu: e = ab
 - e có hướng từ a đến b
 - a: đỉnh đầu;
 b: đỉnh cuối
 - e là khuyên (vòng) ⇔ a≡b
 - G được gọi là đầy đủ nếu đồ thị vô hướng của nó là đầy đủ

- Bậc của đỉnh
 - Bậc vào
 - deg⁻(v) = | { u | (u, v) ∈ E } | = số cạnh có đỉnh cuối là v
 - Bậc ra
 - deg + (v) = | { u | (v, u) ∈ E } | = số cạnh có đỉnh đầu là v

 Chú ý: Một khuyên (vòng) tại một đỉnh sẽ góp thêm một đơn vị vào bậc vào và bậc ra của đỉnh này.

- Bậc của đỉnh
 - Định lý 1.5
 - Tổng bậc vào của các đỉnh bằng tổng bậc ra và bằng số cạnh của đồ thị

$$\sum_{i=1}^{|V|} \deg^+(v) = \sum_{i=1}^{|V|} \deg^-(v) = |E|$$

Đồ thị cân bằng

$$\deg^+(v) = \deg^-(v), \forall v \in V$$

- Bậc của đỉnh
 - Ví dụ
 - Có một nhóm gồm 9 đội bóng bàn thi đấu vòng tròn một lượt.
 - Hỏi sau khi có kết quả thi đấu của tất cả các đội có thể có trường hợp bất kỳ đội nào trong 09 đội này cũng đều thắng đúng 05 đội khác trong nhóm được không?
 (Lưu ý trong thi bóng bàn không có trận hòa)

- Đường đi
 - Định nghĩa
 - Đường đi có độ dài n từ v_0 , đến v_n với n là một số nguyên dương là một dãy các cạnh liên tiếp $v_0v_1,\,v_1v_2,\,...,\,v_{n-1}v_n$
 - v₀: đỉnh đầu; v_n: đỉnh cuối
 - Ký hiệu: v₀v₁v₂ ... v_{n-1}v_n
 đường đi v₀ v_n

- Đường đi
 - Định nghĩa
 - Đường đi đơn giản (đường đi đơn)
 - Đường đi không qua cạnh nào quá một lần
 - Đường đi sơ cấp
 - Đường đi không qua đỉnh nào quá một lần
 - Đường đi sơ cấp ⇒ Đường đi đơn giản

- Chu trình
 - Định nghĩa
 - Chu trình
 - đường đi khép kín (v₀v₁v₂ ... v_{n-1}v_nv₀)
 - độ dài ít nhất là 3

- Chu trình đơn giản
 - Chu trình không đi qua cạnh nào quá 1 lần
- Chu trình sơ cấp
 - Chu trình không đi qua đỉnh nào quá 1 lần (trừ đỉnh đầu, đỉnh cuối)

- Chu trình
 - Định lý 1.6
 - G = (V, E) là một đồ thị vô hướng
 - Số đỉnh lớn hơn hoặc bằng 3
 - Bậc của mọi đỉnh đều lớn hơn hoặc bằng 2

thì trong G luôn tồn tại một chu trình sơ cấp

- Định lý 1.7
 - G = (V, E) là một đồ thị vô hướng
 - Số đỉnh lớn hơn hoặc bằng 4
 - Bậc của mọi đỉnh đều lớn hơn hoặc bằng 3

thì trong G luôn tồn tại một chu trình sơ cấp có độ dài chẵn

- Tính liên thông trong đồ thị vô hướng
 - Định nghĩa
 - Hai đỉnh v, u trong đồ thị G được gọi là liên thông nếu tồn tại một đường đi nối chúng với nhau.
 - Đồ thị G gọi là liên thông nếu hai đỉnh phân biệt bất kỳ trong đồ thị đều liên thông.
 Ngược lại thì ta gọi là đồ thị không liên thông.

- Tính liên thông trong đồ thị vô hướng
 - Định nghĩa
 - Cho $G = (V,E), v \in V$.
 - V' là tập con của V gồm đỉnh v và tất cả các đỉnh liên thông với v trong G.
 - E' là tập con của E gồm tất cả các cạnh nối các đỉnh thuộc V'.
 Khi đó G' = (V', E') gọi là thành phần liên thông của G chứa v.

Chú ý: Nếu v và u liên thông trong G thì thành phần liên thông của G chứa v cũng là thành phần liên thông của G chứa u.

- Tính liên thông trong đồ thị vô hướng
 - Định lý 1.8
 - Đồ thị G=(V, E) là liên thông khi và chỉ khi G có duy nhất một thành phần liên thông.

(Sv tự chứng minh)

- Tính liên thông trong đồ thị vô hướng
 - Đỉnh cắt và cầu
 - u là đỉnh cắt (điểm khớp)
 ⇔ số thành phần liên thông tăng lên nếu bỏ u và các cạnh liên thuộc với nó.
 - e là cầu

 số thành phần liên thông tăng lên nếu bỏ cạnh e.

- Tính liên thông trong đồ thị vô hướng
 - Định lý 1.9:
 - Đơn đồ thị G = (V, E) có
 - $|V| = n \ge 2$
 - $deg(u) + deg(v) \ge n$, $\forall u, v \in V$ thì G là đồ thị liên thông
 - Hệ quả:
 - Đơn đồ thị G = (V, E), |V| = n có deg(v) ≥ n/2, ∀v ∈ V
 thì G là đồ thị liên thông

- Tính liên thông trong đồ thị vô hướng
 - Định lý 1.10
 - Nếu đồ thị G có đúng 2 đỉnh bậc lẻ thì 2 đỉnh này phải liên thông với nhau
 - Định lý 1.11
 - Đồ thị G là một đồ thị lưỡng phân khi và chỉ khi mọi chu trình của nó đều có độ dài chẵn

- Tính liên thông trong đồ thị có hướng
 - Liên thông mạnh
 - Đồ thị có hướng G được gọi là liên thông mạnh nếu giữa 2 đỉnh u,v bất kỳ trong G luôn có đường đi từ v đến u và từ u đến v.
 - Liên thông yếu
 - Đồ thị có hướng G được gọi là liên thông yếu nếu đồ thị vô hướng tương ứng của nó là liên thông

Một số phép biến đổi đồ thị

- Hợp của 2 đồ thị
 - G = (V, E)
 - G' = (V', E')
 - $G'' = G \cup G' = (V'', E'')$
 - V" = V ∪ V'
 - E" = E ∪ E'

Một số phép biến đổi đồ thị

- Phép phân chia sơ cấp
 - Phép thay thế cạnh e = uv của G bởi một đỉnh mới w cùng với 2 cạnh uw và vw
 - Đồng phôi
 - G và G' gọi là đồng phôi nếu chúng có thể nhận được từ cùng một đồ thị bằng một dãy các phép phân chia sơ cấp
 - Hai đồ thị đồng phôi chưa chắc đẳng cấu với nhau

