Московский физико-технический институт (госудраственный университет)

Лабораторная работа по общему курсу физики Электричество и магнетизм

3.2.4. Свободные колебания

Глаз Роман Сергеевич Группа Б01-007

Долгопрудный 2021

Содержание

1	Теоретическое введение	1							
	1.1 Последовательный RLC контур]							
	1.2 Свободные затухающие колебания	1							
	1.3 Апериодические колебания	2							
2	Экспериментальная установка								
3	Ход работы	3							
	3.1 Проверка формулы Томсона	3							
	3.2 Определение критического сопротивления	ŀ							
	3.3 Добротность контура	Ę							
4	Заключение								
5	Список используемой литературы	7							

Цель работы: исследования свободных колебаний в колебательном контуре.

В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин ёмкостей, индуктивность, электронный осциллограф, унивенреальный мост.

1. Теоретическое введение

1.1. Последовательный RLC контур

Рассмотрим электрический контур, состоящий из последовательно соединённых конденстора C, катушки индуктивности L и резистора R. Обозначим разность потенциалов на конденсаторе U_C , а ток, текущий в контуре, через I. Тогда

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{I}{C} = 0 \tag{1}$$

Вводя обозначения $\gamma = \frac{R}{2L}$, $\omega_0^2 = \frac{1}{LC}$, получим уравнение

$$\ddot{I} + 2\gamma \dot{I} + \omega_0^2 I = 0 \tag{2}$$

Общее решение этого уравнения имеет следующий вид:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t), \tag{3}$$

где $\kappa = \sqrt{\gamma^2 - \omega_0^2},\, U_0 = U_C$ – начальное напряжение на конденсаторе.

1.2. Свободные затухающие колебания

В случае, когда $\gamma < \omega_0$, имеем $\kappa = i\omega$, где $\omega = \sqrt{\omega_0^2 - \gamma^2}$ – частоты свободных (собственных) колебаний. Тогда ток

$$I = -\frac{U_0}{L\omega}e^{-\gamma t}\sin(\omega t) \tag{4}$$

затухает и имеет колебательный характер. Величина γ определяет затухание колебаний: $\gamma=\frac{1}{\tau},$ где τ – время затухание амплитуды в e раз. Формулы для наряжение на кондесаторе и тока в цепи можно переписать иначе:

$$U_C = U_0 \frac{\omega_0}{\omega} e^{-\gamma t} \cos(\omega t - \theta),$$

$$I = -\frac{U_0}{L} e^{-\gamma t} \cos(\omega t - \theta).$$
(5)

1.3. Апериодические колебания

В случае $\gamma > \omega_0$, формулы для тока и напряжения на конденсаторе имеют следующий вид:

$$I = -\frac{U_0}{L\kappa} e^{-\gamma t} \operatorname{sh}(\kappa t),$$

$$U_C = U_0 e^{-\gamma t} \left(\frac{\gamma}{\kappa} \operatorname{sh}(\kappa t) + \operatorname{ch}(\kappa t) \right).$$
(6)

Процесс в этом случае не является колебательным, его называют апериодическим. Режим, соответствующий $\gamma = \omega_0$, называются *критическим*. В этом случае предельный переход $\omega \to 0$ в (6) даст

$$I = -\frac{U_0}{L} t e^{-\gamma t},$$

$$U_C = U_0 e^{-\gamma t} (1 + \gamma t).$$
(7)

Сопротивление в этом случае

$$R_{\rm \kappa p} = 2\sqrt{\frac{L}{C}} \tag{8}$$

называется *критическим сопротивлением* контура. *Добротность* контура по определению

$$Q = 2\pi \frac{W}{\Delta W},\tag{9}$$

где W – запасённая энергия, ΔW – потери за период. Тогда

$$Q = 2\pi \frac{CU_0^2/2 \cdot e^{-2\gamma t}}{CU_0^2/2 \cdot (e^{-2\gamma t} - e^{-2\gamma (T+t)})} = \frac{\pi}{\gamma T} = \frac{1}{R} \sqrt{\frac{L}{C}}.$$
 (10)

Логарифмическим декрементом затухания называются число

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \ln e^{\gamma T} = \gamma T. \tag{11}$$

или

$$\Theta = \frac{1}{n} \ln \frac{U_k}{U_{k+n}}.$$
(12)

2. Экспериментальная установка

Рис. 1: Экспериментальная установка

На рисунке приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Для периодического возбуждения колебаний в контуре используется генератор импульсов Γ 5-54. С выхода генератора по коаксиальному кабелю импульсы поступают на колебательный контур через электронное реле, смонтированное в отдельном блоке (или на выходе генератора). Реле содержит тиристор D и ограничительный резистор R_1 .

Импульсы заряжают конденсатор C. После каждого импульса генератор отключается от колебательного контура, и в контуре возникают свободные затухающие колебания. Входное сопротивление осциллографа велико ($\approx 1 \text{ MOm}$), так что его влиянием на контур можно пренебречь.

Для получения устойчивой картины затухающих колебаний используется режим ждущей развёртки с синхронизацией внешними импульсами, поступающими с выхода «синхроимпульсы» генератора.

3. Ход работы

3.1. Проверка формулы Томсона

Установим в контуре $R=0,\,C=0,02$ мкФ. Для генератора импульсов имеем следующие настройки: длительность импульсов 5 мкс, частота повторения импульсов $100~\Gamma$ ц.

T, MKC	350	425	540	740	940	1240
C MK Φ	0.02	0.03	0.05	0.09	0.15	0.25

Увеличивая значение C, снимем зависимость T(C):

0,020.032150 1460 1660 1850 2000 2300 T, mkc C, мк Φ $0,\!47$ 0,36 0,580,69 0,80 0,90

Считая, что сопротивление цепи равно нулю, посчитаем также теоретические значение периодов по формуле Томсона. Для этого снимем значение индуктивности катушки: $L=145\pm1$ мГн (при рассматриваемом диапазоне частот). С помощью посчитанных значений построим таблицу, а затем график $T_{\text{теор}}(T_{\text{эксп}})$:

T, MKC	344,14	421,48	544,13	730,04	942,47	1216,73
C , мк Φ	0,02	0,03	0,05	0,09	0,15	0,25
T, MKC	1460	1660	1850	2000	2150	2300
C , мк Φ	0,36	0,47	0,58	0,69	0,8	0,9

Рис. 2: График зависимости $T_{\text{теор}}(T_{\text{эксп}})$

Из графика видно, что для цепи с R=0 действительно выполняется формула Томсона для периода свободных колебаний. Однако нужно учитывать, что у катушки всё ещё есть сопротивление R_L и формула Томсона описывает период колебаний лишь приблизительно.

3.2. Определение критического сопротивления

Из формулы Томсона, имея значение индуктивности катушки, найдём такую ёмкость, при которой частота колебаний будет равна 5 к Γ ц: $C=6,75\pm0,08$ мк Φ . Тогда поставим значение C=6,7 мк Φ на магазине. Из полученных значений найдём критическое сопротивление из теоретической формлулы: $R_{\rm KD}=2\sqrt{L/C}=9430\pm30$ Ом.

Теперь найдём значение критического сопротивления, увеличивая сопротивление на магазине от нуля до тех пор, пока колебания не станут апериодическими: $R_{\rm kp}=9000\pm100~{
m Om}.$

Теперь установим посчитанное значение ёмкости на магазине ёмкостей. Снимания значения амплитуд с осциллографа, посчитаем зависимость логарифмического декремента затухания от сопротивления $\theta(R)$, учитывая, что при рассматриваемой частоте колебаний у катушки сопротивление $R_L=17,2\pm0,05\,$ Ом (это значение нужно добавить к сопротивлению магазина сопротивлений):

θ	0,57	0,69	0,88	0,96	1,10	1,41	1,67	1,76
R, O _M	917	1117	1367	1617	1817	2267	2517	2717

Построим график $\theta(R)$:

Зависимость действительно линейная, как и описывает теория. Теперь построим зависимость $\frac{1}{\theta^2}(\frac{1}{R^2})$:

Коэффициент наклона равен $k=(2,50\pm0,13)\cdot10^6~{\rm Om^{-2}},$ при этом критическое сопротивление связано с этим коэффициентом формулой $R_{\rm Kp}=2\pi\sqrt{k}=9930\pm260~{\rm Om}.$

Таким образом, измеренное значение критического сопротивления тремя способами оказалось во всех случаях примерно одинаковым.

3.3. Добротность контура

Рассчитаем теперь значения добротности для минимум и максимума логарифмического декремента, взятые из предыдущей таблицы с данными:

$$Q_{min} = \frac{\pi}{\theta_{max}} = 1,79 \pm 0,10, \ Q_{max} = \frac{\pi}{\theta_{min}} = 5,51 \pm 0,33$$
 (13)

Погрешности высоки из-за погрешностей измерения лоарифмических декрементов затухания.

Рис. 3: График зависимости $\theta(R)$

Теперь найдём те же самые значения через спирали на фазовой плоскости, измеряя аналогично логарифмический декремент затухания:

$$Q_{min} = \frac{\pi}{\theta_{max}} = 1,82 \pm 0,08, \ Q_{max} = \frac{\pi}{\theta_{min}} = 5,57 \pm 0,29$$
 (14)

4. Заключение

В результате эксперимента подтверждена формула Томсона для свободных колебаний, а так же измерены различные параметры RLC контура при различных значениях параметров контура.

Ёмкость катушки фиксирована на протяжении всего эксперимента и при частоте в районе 5000 Γ ц равна $L=145,1\pm0,2$ м Γ н, для конденсатора имеем C=6,7 мк Φ .

Критическое сопротивление для контура было найдено тремя способами: $R_{\rm кp}=9430\pm30~{\rm Cm}$ – посчитанное значение из теоретической формулы, $R_{\rm kp}=9000\pm100~{\rm Cm}$ – напрямую, исследуя, когда колебания переходят в апериодические и $R_{\rm kp}=9930\pm260~{\rm Cm}$ – значение, найденное косвенным способом через измерение логарифмических декрементов затухания при различных сопротивлениях. Таким образом, самое точное значение –

Рис. 4: График зависимости $\frac{1}{\theta^2}(\frac{1}{R^2})$

измеренное через формулу. При этом все значения получились одинаковыми в пределах нескольких σ .

Для добротностей имеем следующее: $Q_{min}=1,79\pm0,10,\ Q_{max}=5,51\pm0,33$ — значения, измеренные через логарифмические декременты затухания из ранее построенной таблицы, $Q_{min}=1,82\pm0,08,\ Q_{max}=5,57\pm0,29$ — значения, измеренные через спирали на фазовой диаграмме. Таким образом, значения совпадают, но в методе фазовой диаграммы значения имеют меньшую погрешность.

5. Список используемой литературы

- Лабораторный практикум по общей физике. Электричество и магнетизм
- Описание лабораторных работ на кафедре общей физики МФТИ