Assignment #4 CIS 427/527

Group 2

February 3, 2016

1

Complete the proof of soundness of propositional logic (given in val Dalen, Lemma 1.5.1) with the case of \rightarrow_E .

Solution

 $\mathbf{2}$

Prove the soundness of the \vee rules ($\vee I$ and $\vee E$).

Solution

3

Do we have $\models (p \rightarrow q) \lor (q \rightarrow r)$?

Solution

p	q	r	$(p \rightarrow q)$	$(q \rightarrow r)$	$ \mid (p \to q) \lor (q \to r) $
0	0	0	1	1	1
0	0	1	1	1	1
0	1	1	1	0	1
0	1	1	1	1	1
1	0	1	0	1	1
1	0	1	0	1	1
1	1	1	1	0	1
1	1	1	1	1	1

4

Do we have $(q \to (p \lor (q \to p))) \lor \neg (p \to q) \models p$?

Solution

If both p and q are false, we have $q \to (p \lor (q \to p)) \lor \neg (p \to q) = 1$ while p = 0, breaking the semantic entailment.

5

Assuming the soundness and completeness of natural deduction for propositional logic, suppose that you need to show that ϕ is not a semantic consequence of $\phi_1, \phi_2, ..., \phi_n$, but that you are only allowed to base your argument on the use of natural deduction rules. Which judgement would you need to prove in order to guarantee that $\phi_1, \phi_2, ..., \phi_n \not\models \phi$? Do you need completeness and soundness for this to work out?

Solution

6

Consider the following axiom based system, called Hilbert system:

$$(\phi \to (\psi \to \phi))$$

$$((\phi \to (\psi \to \sigma)) \to ((\phi \to \psi) \to (\phi \to \sigma)))$$

$$((\neg \phi \to \neg \psi) \to ((\neg \phi \to \psi) \to \phi))$$

Combined with the Modus Ponens inference rule, which corresponds to the elimination rule of the implication connective.

Prove according to this system the judgement $\vdash \phi \rightarrow \phi$.

Solution

$$\frac{((\phi \to (\psi \to \sigma)) \to ((\phi \to \psi) \to (\phi \to \sigma))) \qquad (\phi \to (\psi \to \phi))}{((\varphi \to (\psi \to \varphi)) \to (\varphi \to \varphi)))} \text{ Let } \psi = \psi \to \varphi \text{ and } \sigma = \varphi \qquad (\phi \to (\psi \to \phi))$$

7

Consider classical logic given in the handout "Natural deduction in sequent form" in Figure 5. Prove the following judgements:

 $\vdash \phi \lor \neg \phi$ (This is called Law of Excluded Middle). $((\phi \to \psi) \to \phi) \to \phi$ (This is called Peirce's Law).

Solution

 $\bullet \vdash \phi \lor \neg \phi$

$$\frac{ \begin{bmatrix} \neg(\phi \lor \neg\phi) \end{bmatrix}^{1} \qquad \frac{[\phi]^{2}}{\phi \lor \neg\phi} \lor I}{ \frac{\bot}{\neg\phi} \to I_{2}} \to E}
\frac{ \frac{\bot}{\neg\phi} \to I_{2}}{ \frac{\phi \lor \neg\phi}{} \lor I}
\frac{\bot}{\phi \lor \neg\phi} \lor E
\frac{\bot}{\phi \lor \neg\phi} RAA_{1}$$

•
$$((\phi \to \psi) \to \phi) \to \phi$$

8

Prove the following judgements:

$$A \to B \to A$$

 $(A \to B \to C) \to (A \to B) \to (A \to C)$
 $(A \land B \to C) \to (A \to B \to C)$
 $(A \to B \to C) \to (A \land B \to C)$
Annotate each proof with lambda-terms.

Solution

$$\begin{split} A \rightarrow B \rightarrow A \\ (\lambda x: A.\ \lambda y: B.\ x) \\ (A \rightarrow B \rightarrow C) \rightarrow (A \rightarrow B) \rightarrow (A \rightarrow C) \\ (\lambda x: A \rightarrow B \rightarrow C.\ \lambda y: A \rightarrow B.\ \lambda z: A.\ x\ z\ (y\ z)) \\ (A \wedge B \rightarrow C) \rightarrow (A \rightarrow B \rightarrow C) \\ (\lambda x: A \wedge B \rightarrow C.\ \lambda y: A.\ \lambda z: B.\ x(y*z)) \end{split}$$

$$\begin{array}{c} (A \to B \to C) \to (A \land B \to C) \\ (\lambda x : A \to B \to C. \ \lambda y : A \land B. \ x(\text{fst } y)(\text{snd } y)) \end{array}$$