SIN343 - Desafios de Programação

Algoritmos em Grafos

Prof. Pablo Munhoz pablo.munhoz@ufv.br

Universidade Federal de Viçosa Campus Rio Paranaíba

Grafos

- Forma de representação muito utilizada para conjuntos de pontos e ligações
- Grande representatividade: Engenharia, Computação, Matemática, Economia, etc.
- Exemplos de informações representadas por grafos:
 - ► Mapas de rodovias
 - ► Redes de computadores
 - Redes de transporte e de comunicação
 - Circuitos impressos
 - Redes lógicas
- ▶ Assim, definição de um tipo abstrato: GRAFO

Conceitos básicos

- ▶ Grafo: conjunto de vértices e arestas (arcos)
- ▶ Vértice: objeto simples que pode conter um nome e atributos
- Arestas: representam a conexão entre dois vértices

Notação: G(V,A)

▶ G: grafo▶ V: vértices

A: arestas

Grafos direcionados

- Grafo que possui uma aresta especial: também chamada de arco
- ightharpoonup Grafo onde uma aresta (u, v) sai o vértice u e entra no vértice v.
- ightharpoonup O vértice u é **adjacente** ao vértice v
- ▶ Podem haver aresta de um vértice para ele mesmo
- $(u,v) \neq (v,u)$

Grafos direcionados

- Grafo que possui uma aresta especial: também chamada de arco
- ightharpoonup Grafo onde uma aresta (u, v) sai o vértice u e entra no vértice v.
- ightharpoonup O vértice u é **adjacente** ao vértice v
- ▶ Podem haver aresta de um vértice para ele mesmo
- $(u,v) \neq (v,u)$

Classificações de Grafos

- ▶ Grafo ponderado: possui pesos associados às arestas
- ▶ Grafo bipartido: grafo não direcionado, no qual V pode ser particionado em dois conjunto V_1 e V_2
 - $(u,v) \in A$: sse $u \in V_1$ e $v \in V_2$, ou vice-versa
- ▶ Grafo completo: grafo onde todos os pares de vértices são adjacentes

Grafo Bipartido ponderado

Grafo Completo

${\bf Representa \tilde{co}es}$

▶ Matriz de adjacência

	0	1	2	3	4	5
0		1		1		
1			1	1		
2			1	1		
3	1					
4						
5			3 - 33			

Representações

▶ Lista de adjacência

Grafos – Árvore

Árvores

- ▶ Tipo especial de Grafo onde não existem ciclos
- ▶ É um grafo conexo
- ▶ Toda árvore é um grafo, mas nem todo grafo é uma árvore

Problema da árvore geradora mínima

Considere um grafo não-direcionado, conectado e ponderado. O objetivo é encontrar o caminho mais curto de tal maneira que os arcos forneçam um caminho entre todos os pares de nós. Conhecido como *Minimum Spanning Tree* (MST)

Aplicações:

- Projeto de redes de comunicação
- Projeto de rodovias, ferrovias, etc
- Projeto de redes de transmissão de energia

Algoritmos:

- ► Algoritmo de Prim
- ► Algoritmo de Kruskal

Algoritmo de Prim

- ► Criado em 1957
- \blacktriangleright Seja X o conjunto de vértices gerados pela MST, inicialmente vazio
- \blacktriangleright Iniciar de um vértice arbritário e crescer até que todos os vértices estejam em X
- \blacktriangleright Escolha a aresta de menor custo que liga vértices de X a um vértice que não está em $V \setminus X$
- ► Caminha vértice à vértice

Algoritmo de Prim – Exemplo

Algoritmo de Prim – Exemplo

Algoritmo de Kruskal

- ► Criado em 1957
- \blacktriangleright Seja X o conjunto de arestas pertencentes à MST, inicialmente vazio
- \blacktriangleright Escolha a aresta de menor peso entre todas as arestas que não conectam quaisquer dois vértices em A
- Proceda aresta por aresta, de forma que ciclos n\u00e3o sejam formados

Algoritmo de Kruskal – Exemplo

Algoritmo de Kruskal – Exemplo

Algoritmo de Kruskal – Exemplo

- A busca em largura é um dos algoritmos mais simples para exploração de um grafo.
 - Dados um grafo G = (V, E) e um vértice s, chamado de **fonte**, a busca em largura sistematicamente explora as arestas de G de maneira a visitar todos os vértices alcançáveis a partir de s.
- Expande a fronteira entre vértices descobertos e não descobertos uniformemente através da largura da fronteira.
 - O algoritmo descobre todos os vértices a uma distância k do vértice origem antes de descobrir qualquer vértice a uma distância k + 1.
- O grafo pode ser direcionado ou não direcionado.

Algoritmo:

- Para controlar a busca, o algoritmo da Busca em Largura pinta cada vértice na cor branca, cinza ou preto.
- Todos os vértices iniciam com a cor branca e podem, mais tarde, se tornar cinza e depois preto.
 - Branca: não visitado;
 - Cinza: visitado;
 - Preta: visitado e seus nós adjacentes visitados.

```
BuscaEmLargura(G, s)
   for each u \in V[G]
      c[u] \leftarrow white
     d[u] \leftarrow \infty
     \pi[u] \leftarrow \text{NULL}
   c[s] \leftarrow gray
   d[s] \leftarrow 0
   Q \leftarrow \{s\} //Queue
   while Q \neq \emptyset
      u \leftarrow head[Q]
      for each v \in Adj[u]
         if c[v] = white
            c[v] \leftarrow gray
            d[v] \leftarrow d[u] + 1
            \pi[v] \leftarrow u
            enqueue (Q, v)
      dequeue (Q)
      c[u] \leftarrow black
```



```
for each u \in V[G]

c[u] \leftarrow white

d[u] \leftarrow \infty

\pi[u] \leftarrow NULL

c[s] \leftarrow gray

d[s] \leftarrow 0

Q \leftarrow \{s\} //Queue
```



```
u \leftarrow head[Q]
for each v \in Adj[u]
if c[v] = white
c[v] \leftarrow gray
d[v] \leftarrow d[u] + 1
\pi[v] \leftarrow u
enqueue(Q, v)
dequeue(Q)
c[u] \leftarrow black
```



```
u \leftarrow head[Q]
for each v \in Adj[u]
if c[v] = white
c[v] \leftarrow gray
d[v] \leftarrow d[u] + 1
\pi[v] \leftarrow u
enqueue(Q, v)
dequeue(Q)
c[u] \leftarrow black
```



```
u \leftarrow head[Q]
for each v \in Adj[u]
if c[v] = white
c[v] \leftarrow gray
d[v] \leftarrow d[u] + 1
\pi[v] \leftarrow u
enqueue(Q, v)
dequeue(Q)
c[u] \leftarrow black
```


Busca em Largura – Análise

```
BuscaEmLargura (G, s)
   for each u \in V[G]
      c[u] ← white
      d[u] \leftarrow \infty
     \pi[u] \leftarrow \text{NULL}
   c[s] \leftarrow qray
   d[s] \leftarrow 0
   Q \leftarrow \{s\} //Queue
   while 0 \neq \emptyset
      u \leftarrow head[Q]
      for each v E Adj[u]
         if c[v] = white
            c[v] \leftarrow gray
            d[v] \leftarrow d[u] + 1
            \pi[v] \leftarrow u
            enqueue (Q, v)
      dequeue (Q)
      c[u] ← black
```

- Cada vértice de V é colocado na fila Q no máximo uma vez: O(V);
- A lista de adjacência de um vértice qualquer de u é percorrida somente quando o vértice é removido da fila;
- A soma de todas as listas de adjacentes é O(A), então o tempo total gasto com as listas de adjacentes é O(A);
- Enfileirar e desenfileirar tem custo O(1);
- Complexidade: O(V + A)

• A partir de π é possível reconstruir a **árvore da busca em** largura:

- A estratégia é buscar o vértice mais profundo no grafo sempre que possível:
 - As arestas são exploradas a partir do vértice v mais recentemente descoberto que ainda possui arestas não exploradas saindo dele.
- Quando todas as arestas adjacentes a *v* tiverem sido exploradas a busca anda para trás para explorar vértices que saem do vértice do qual *v* foi descoberto (**backtraking**).
- O algoritmo é a base para muitos outros algoritmos importantes, tais como verificação de grafos acíclicos, ordenação topológica e componentes fortemente conectados.

Algoritmo:

- Para controlar a busca, o algoritmo da Busca em Largura pinta cada vértice na cor branca, cinza ou preto.
- Todos os vértices iniciam com a cor branca e podem, mais tarde, se tornar cinza e depois preto.
 - Branca: não visitado;
 - Cinza: visitado;
 - Preta: visitado e seus nós adjacentes visitados.

Algoritmo:

- A busca em profundidade também marca cada vértice com um timestamp.
- Cada vértice tem dois timestamps:
 - d[v]: indica o instante em que v foi visitado (pintado com cinza);
 - **f[v]**: indica o instante em que a busca pelos vértices na lista de adjacência de *v* foi completada (pintado de preto).

```
BuscaEmProfundidade(G)

for each u ∈ V[G]

c[u] ← white

π[u] ← NULL

time ← 0

for each u ∈ V[G]

if c[u] = white

visita(u)
```

```
visita(u)
    c[u] ← gray
    d[u] ← time ← time + 1
    for each v ∈ Adj[u]
        if c[v] = white
            π[v] ← u
            visita(v)
    c[u] ← black
    f[u] ← time ← time + 1
```


for each $u \in V[G]$ $c[u] \leftarrow white$ $\pi[u] \leftarrow NULL$ $time \leftarrow 0$ for each $u \in V[G]$ if c[u] = white visita(u)

	u	V	y	X	W	Z
c	W	W	W	W	W	W
π	/	/	/	/	/	/
d						
f						


```
c[u] \leftarrow gray
d[u] \leftarrow time \leftarrow time + 1

for each v \in Adj[u]

if c[v] = white

\pi[v] \leftarrow u

visita(v)

c[u] \leftarrow black

f[u] \leftarrow time \leftarrow time + 1
```

	u	V	y	X	W	Z
c	g	W	W	W	W	W
π	/	/	/	/	/	/
d	1					
f						


```
c[u] \leftarrow gray
d[u] \leftarrow time \leftarrow time + 1

for each v \in Adj[u]

if c[v] = white

\pi[v] \leftarrow u

visita(v)

c[u] \leftarrow black

f[u] \leftarrow time \leftarrow time + 1
```

	u	V	y	X	W	Z
c	g	g	W	W	W	W
π	/	u	/	/	/	/
d	1	2				
f						


```
c[u] \leftarrow gray
d[u] \leftarrow time \leftarrow time + 1

for each v \in Adj[u]

if c[v] = white

\pi[v] \leftarrow u

visita(v)

c[u] \leftarrow black

f[u] \leftarrow time \leftarrow time + 1
```

	u	V	y	X	W	Z
c	g	g	g	W	W	W
π	/	u	V	/	/	/
d	1	2	3			
f						


```
c[u] \leftarrow gray
d[u] \leftarrow time \leftarrow time + 1

for each v \in Adj[u]

if c[v] = white

\pi[v] \leftarrow u

visita(v)

c[u] \leftarrow black

f[u] \leftarrow time \leftarrow time + 1
```

	u	V	y	X	W	Z
c	g	g	g	g	W	W
π	/	u	V	у	/	/
d	1	2	3	4		
f						

c[u] ← gray
$d[u] \leftarrow time \leftarrow time + 1$
for each v ∈ Adj[u]
if c[v] = white
$\pi[v] \leftarrow u$
visita(v)
c[u] ← black
$f[u] \leftarrow time \leftarrow time + 1$

	u	V	y	X	W	Z
c	g	g	g	b	W	W
π	/	u	V	у	/	/
d	1	2	3	4		
f				5		


```
c[u] \leftarrow gray
d[u] \leftarrow time \leftarrow time + 1

for each v \in Adj[u]

if c[v] = white

\pi[v] \leftarrow u

visita(v)

c[u] \leftarrow black

f[u] \leftarrow time \leftarrow time + 1
```

	u	V	y	X	W	Z
c	g	g	b	b	W	W
π	/	u	V	y	/	/
d	1	2	3	4		
f			6	5		

c[u] ← gray
$d[u] \leftarrow time \leftarrow time + 1$
for each v ∈ Adj[u]
if c[v] = white
$\pi[v] \leftarrow u$
visita(v)
c[u] ← black
$f[u] \leftarrow time \leftarrow time + 1$

	u	V	У	X	W	Z
c	g	b	b	b	W	W
π	/	u	V	у	/	/
d	1	2	3	4		
f		7	6	5		


```
c[u] \leftarrow gray
d[u] \leftarrow time \leftarrow time + 1

for each v \in Adj[u]

if c[v] = white

\pi[v] \leftarrow u

visita(v)

c[u] \leftarrow black

f[u] \leftarrow time \leftarrow time + 1
```

	u	V	y	X	W	Z
c	b	b	b	b	W	W
π	/	u	V	у	/	/
d	1	2	3	4		
f	8	7	6	5		

for each $u \in V[G]$
$c[u] \leftarrow white$
$\pi[u] \leftarrow \text{NULL}$
time ← 0
for each $u \in V[G]$
if $c[u] = white$
visita(u)

	u	V	y	X	W	Z
c	b	b	b	b	W	W
π	/	u	V	y	/	/
d	1	2	3	4		
f	8	7	6	5		


```
c[u] \leftarrow gray
d[u] \leftarrow time \leftarrow time + 1

for each v \in Adj[u]

if c[v] = white

\pi[v] \leftarrow u

visita(v)

c[u] \leftarrow black

f[u] \leftarrow time \leftarrow time + 1
```

	u	V	y	X	W	Z
c	b	b	b	b	g	W
π	/	u	V	у	/	/
d	1	2	3	4	9	
f	8	7	6	5		

c[u] ← gray
$d[u] \leftarrow time \leftarrow time + 1$
for each v ∈ Adj[u]
if c[v] = white
$\pi[v] \leftarrow u$
visita(v)
c[u] ← black
$f[u] \leftarrow time \leftarrow time + 1$

	u	V	y	X	W	Z
c	b	b	b	b	g	g
π	/	u	V	y	/	W
d	1	2	3	4	9	10
f	8	7	6	5		


```
c[u] \leftarrow gray
d[u] \leftarrow time \leftarrow time + 1

for each v \in Adj[u]

if c[v] = white

\pi[v] \leftarrow u

visita(v)

c[u] \leftarrow black

f[u] \leftarrow time \leftarrow time + 1
```

	u	V	y	X	W	Z
c	b	b	b	b	b	b
π	/	u	V	у	/	W
d	1	2	3	4	9	10
f	8	7	6	5	11	12

Busca em Profundidade – Análise

```
BuscaEmProfundidade(G)
for each u \in V[G]
c[u] \leftarrow white
\pi[u] \leftarrow NULL
time \leftarrow 0
for each u \in V[G]
if c[u] = white
visita(u)
```

```
visita(u)
c[u] \leftarrow gray
d[u] \leftarrow time \leftarrow time + 1
for each v \in Adj[u]
if c[v] = white
\pi[v] \leftarrow u
visita(v)
c[u] \leftarrow black
f[u] \leftarrow time \leftarrow time + 1
```

- O procedimento visita é chamado exatamente uma vez ara cada vértice u ∈ V, isso porque visita é chamado apenas para vértices brancos e a primeira ação é pintar o vértice de cinza: O(V);
- O loop principal de visita (u) tem complexidade O(A);
- Complexidade: O(V + A)

Classificação de Arestas:

- Arestas de árvore: são arestas de uma árvore de busca em profundidade. A aresta (u, v) é uma aresta de árvore se v foi descoberto pela primeira vez ao percorrer a aresta (u, v);
- Arestas de retorno: conectam um vértice u com um antecessor v em uma árvore de busca em profundidade (inclui self-loops);
- Arestas de avanço: não pertencem à árvore de busca em profundidade mas conectam um vértice a um descendente que pertence à árvore de busca em profundidade;
- Arestas de cruzamento: podem conectar vértices na mesma árvore de busca em profundidade, ou em duas árvores diferentes.

- Classificação de arestas pode ser útil para derivar outros algoritmos.
- Na busca em profundidade cada aresta pode ser classificada pela cor do vértice que é alcançado pela primeira vez:
 - Branco indica uma aresta de árvore.
 - Cinza indica uma aresta de retorno.
 - Preto indica uma aresta de avanço quando u é descoberto antes de v ou uma aresta de cruzamento caso contrário.

