Greening A Top-20 Economy: Energy Efficient Timely Transportation of Long-Haul Heavy-Duty Trucks

Lei Deng

2017.09.26

US Trucking Industry: A Top-20 Economy

- □ Freight revenue¹: \$726B in 2015
 (2.3x HK GDP)
- □ Freight tonnage¹: 10B (70% of all freight), 2015
- □ Number of heavy-duty truck drivers²: 1.8M, 2014

Rank ¢	Country +	GDP (millions \$ of US\$)	
	World	73,433,644	
_	European Union ^{[n 1][9]}	18,460,646	
1	United States	17,946,996	
2	China ^[n 6]	10,866,444	
3	Japan	4,123,258	
4	Germany	3,355,772	
5	United Kingdom	2,848,755	
6	France	2,421,682	
7	India	2,073,543	
8	■ I Italy	1,814,763	
9	Brazil	1,774,725	
10	I ◆ I Canada	1,550,537	
11	South Korea	1,377,873	
12	Australia	1,339,539	
13	Russia ^[n 2]	1,326,015	
14	Spain	1,199,057	
15	■ Mexico	1,144,331	
16	Indonesia	861,934	
17	Netherlands	752,547	
18		718,221	
19	★ Switzerland	664,738	
20	Saudi Arabia	646,002	
21	Argentina	548,055	

Source 1: ATA American Trucking Trends 2016

Source 2: <u>Bureau of Labor Statistics</u>,

U.S. Department of Labor

Greening Heavy-Duty Trucks is Relevant

Transportation energy use (US 2013, source: US DOE)

Operational costs of trucking (US 2014, source: American Transportation Research Institute)

How to Reduce Fuel Consumption?

- □ Fuel-economic truck design
 - Designs better engines, drivetrains, aerodynamics and tires, etc. Example: <u>SuperTruck</u>

- □ Energy-efficient truck operation
 - Route planning
 - Speed planning

Truck Operation Centers around Timely Transportation

Perishable Food

Amazon SLA

(Source: Internet)

Logistic role in a supply chain

□ As estimated by <u>US FHWA</u>, unexpected delay can increase freight cost by 50% to 250%

Energy-Efficient Timely Transportation

- \Box Objective: minimize the fuel consumption of travelling from city s to city d
- Constraint: a hard deadline constraint
- Design Space: route planning and speed planning

Existing Work on Energy-Efficient Trucking

Paper	Hard Deadline	Route Planning	Speed Planning
[1][2][3]	*	✓	*
[4]	×	×	✓
[5]	✓	×	✓
Current Practice	human intelligence		
This Work	✓	✓	✓

- [1] Eva Ericsson, et al, Optimizing route choice for lowest fuel consumption Potential effects of a new driver support tool, *Transportation Research Part C*, 2006.
- [2] K. Boriboonsomsin, et al, Eco-routing navigation system based on multisource historical and real-time traffic information, *IEEE Transactions on Intelligent Transportation Systems*, 2012.
- [3] G. Scora, et al, Value of eco-friendly route choice for heavy-duty trucks, Research in Transportation Economics, 2015.
- [4] E. Hellstrom, et al, Look-ahead control for heavy trucks to minimize trip time and fuel consumption, *Control Engineering Practice*, 2009.
- [5] E. Hellstrom, et al, Design of an efficient algorithm for fuel-optimal look-ahead control, *Control Engineering Practice*, 2010.

Our Contributions

- Formulate the problem and prove that it is NP-Complete
- □ Propose an **FPTAS** to achieve a $(1 + \epsilon)$ -approx. solution with complexity $O(mn^2/\epsilon^2)$
- □ Propose a near-optimal heuristic algorithm with complexity $O(m + n \log n)$
- Use simulations based on real-world US highway networks to show that our heuristic solution reduce fuel consumptions by up to 17%, as compared to fastest/shortest path algorithm

Simulation: Network Statistics

n	m	avg D_e (mile)	avg R_e^{lb} (mph)	avg R_e^{ub} (mph)	avg $ \theta $ (%)
38213	82781	3.26	36.43	54.19	0.82

A Solution Example

Fastest/F Shortest/S Optimal/O

Sol	Time (hour)	Dist. (mile)	Fuel (gallon)
F	36.11	1821	332.1
F-SO	40	1821	308.3
S	38.58	1773	318
S-SO	40	1773	307
OPT- LB	40	1778	300.1
OPT- UB	40	1778	300.1

F Path Add Remove
S Path Add Remove
O Path Add Remove

Note: The solutions OPT-LB and OPT-UB are the same, and thus they are the optimal solution. O Path (optimal path) is the corresponding path of the optimal solution.

Performance of Our Heuristic Algorithm

Average performance of **2704** instances (s, d, T)

Sol.	Avg Time Incre.(%)	$egin{array}{c} ext{Avg Dist.} \ ext{Decre.}(\%) \end{array}$	Avg Fuel Decre.(%)	Avg Fuel Econ.(mpg)
Fastest path	-	-	-	5.05
Shortest path	2.82	1.63	3.08	5.13
Heuristic	32.89	1.46	16.37	5.96
OPT-LB	32.95	1.47	16.39	5.96

Save ~17% fuel as compared to shortest/fastest path algorithms Enough to power 90% of the transportation sector in New York State

Thank You!

Lei Deng

http://personal.ie.cuhk.edu.hk/~dl013/

Lei Deng, Mohammad H. Hajiesmaili, Minghua Chen, and Haibo Zeng, "Energy Efficient Timely Transportation of Long-Haul Heavy-Duty Trucks," in *Proc. ACM e-Energy*, June 2016. (Best Paper Award Candidate) To appear in *IEEE Transactions on Intelligent Transportation Systems*.