1. 计算属性闭包

给定 R(A,B,C,D,E), 函数依赖集

$$F = \{AB \rightarrow C, B \rightarrow CD, DE \rightarrow B, C \rightarrow D, D \rightarrow A\}.$$

我们逐一计算 $(AB)^+$ 、 $(AC)^+$ 、 $(DE)^+$,并写出完整推导步骤。

(1) $(AB)^+$

- 1. 初始: {A,B}.
- 2. 用 $AB \rightarrow C$,得到 $\{A, B, C\}$.
- 3. 用 $B \to CD$,由 B 得到 C,D,于是闭包扩展为 $\{A,B,C,D\}$.
- 4. 用 $C \to D$ 、 $D \to A$,并无新属性。
- 5. $DE \rightarrow B$ 需 E,此时无 E。

$$(AB)^+ = \{A,B,C,D\}$$

(2) $(AC)^+$

- 1. 初始: $\{A, C\}$.
- 2. 用 $C \to D$,得到 $\{A, C, D\}$.
- 3. 用 $D \rightarrow A$,无新属性。
- 4. 余下依赖都需 B 或 E, 无法使用。

$$(AC)^+ = \{A,C,D\}$$

(3) $(DE)^+$

- 1. 初始: $\{D, E\}$.
- 2. 用 $DE \rightarrow B$,得到 $\{B, D, E\}$.
- 3. 用 $B \rightarrow CD$,加入 C (D 已有): $\{B, C, D, E\}$.
- 4. 用 $C \rightarrow D$ 、 $D \rightarrow A$,加入A: $\{A, B, C, D, E\}$.
- 5. 其余依赖均已涵盖。

$$(DE)^+ = \{A,B,C,D,E\}$$

2. 设计满足 3NF 的模式

给定 R(A,B,C,D,E,I), 函数依赖集

$$F = \{\, A \rightarrow BD, \; EC \rightarrow D, \; C \rightarrow I, \; ID \rightarrow CE, \; AI \rightarrow D, \; B \rightarrow A\}.$$

我们按以下步骤进行:

2.1 求最小函数依赖集(Minimal Cover)

1. 原子化(分解右部)

$$egin{aligned} A &
ightarrow B, \quad A
ightarrow D, \ EC &
ightarrow D, \ C &
ightarrow I, \ ID &
ightarrow C, \quad ID
ightarrow E, \ AI &
ightarrow D, \ B &
ightarrow A. \end{aligned}$$

- 2. 去除冗余 FD
 - $AI \rightarrow D$: 因已含 $A \rightarrow D$, 故冗余, 去掉。
 - 对每个 FD 考察左部属性的可去除性
 - 。 $ID \to C$ 和 $ID \to E$ 中都无法去掉任一属性。
 - 。 $EC \rightarrow D$ 中 $E \setminus C$ 都不可去除。
 - 。 其余皆为单属性左部, 无法再简化。
- 3. 结果——最小函数依赖集

$$F_{\min} = \{ A \rightarrow B, \ A \rightarrow D, \ EC \rightarrow D, \ C \rightarrow I, \ ID \rightarrow C, \ ID \rightarrow E, \ B \rightarrow A \}.$$

2.2 计算候选键

属性全集 $\{A,B,C,D,E,I\}$ 。我们尝试求闭包,看哪些组合能覆盖全集。

• $\{A,I\}^+$

i. 初始: $\{A, I\}$.

ii. $A \rightarrow B, D \rightarrow \{A, B, D, I\}$.

iii. $ID \rightarrow C, E \rightarrow \{A, B, C, D, E, I\}$.

iv. 其余依赖均已涵盖。

 $\therefore \{A,I\}$ 是超键,且无真子集能覆盖全集,故为候选键。

• $\{B,I\}^+$

i. 初始: $\{B, I\}$.

ii. $B \to A \to \{A, B, I\}$.

iii. $A \rightarrow D \rightarrow \{A, B, D, I\}$.

iv. $ID \to C, E \to$ 全集。 故 $\{B, I\}$ 也是候选键。

其他组合要么不能覆盖全集,要么包含以上二者的超集。

候选键: $\{A, I\}$ 与 $\{B, I\}$ 。

2.3 基于每个依赖构造 3NF 分解

对 F_{\min} 中的每个 FD $X \to Y$,构造关系模式 $R_{XY}(X \cup Y)$:

FD	模式
A o B	$R_1(A,B)$
A o D	$R_2(A,D)$
EC o D	$R_3(E,C,D)$
C o I	$R_4(C,I)$
ID o C	$R_5(I,D,C)$
ID o E	$R_6(I,D,E)$
B o A	$R_7(B,A)$

• 合并或剔除冗余

- \circ $R_1(A,B)$ 与 $R_7(B,A)$ 相同,合并为 $R_{AB}(A,B)$ 。
- 。 $R_5(I,D,C)$ 与 $R_6(I,D,E)$ 可合并为 $R_{IDCE}(I,D,C,E)$,此时也包含了依赖 $ID \to CE$ 、 $EC \to D$ 、 $C \to I$ 、以及通过 $ID \to C$ 与 $ID \to E$ 与 $C \to I$ 的推导。

- 。 $R_3(E,C,D)$ 与 R_{IDCE} 的属性集一致或被包含,可剔除; $R_4(C,I)$ 亦被包含。
- 。 为保证候选键 $\{A,I\}$ (或 $\{B,I\}$)出现在某个模式的属性集中,我们保留 $R_{AI}(A,I)$ 。

最终 3NF 分解:

$$R_{AB}(A, B),$$

 $R_{AD}(A, D),$
 $R_{AI}(A, I),$
 $R_{IDCE}(I, D, C, E).$

• 依赖保留:每个原始 FD 都在某个子模式中得以体现。

• 无损连接: 各子模式中至少有一个包含原关系的候选键($\{A,I\}\subseteq R_{AI}$),保证无损。

• 每个子模式均为 3NF, 因为在各自的模式中, 右部要么是主属性, 要么左部是超键。