

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского Институт информационных технологий, математики и механики

Образовательный курс «Современные методы и технологии глубокого обучения в компьютерном зрении»

Детектирование объектов на изображениях

При поддержке компании Intel

Гетманская Александра, Кустикова Валентина, Тужилкина Анастасия

Содержание

- □ Цель лекции
- Постановка задачи детектирования объектов на изображениях
- □ Открытые наборы данных
- □ Показатели качества детектирования
- □ Глубокие модели для детектирования объектов
- □ Сравнение моделей детектирования объектов
- □ Заключение

Цель лекции

□ *Цель* – рассмотреть модели глубокого обучения для задачи детектирования объектов

ПОСТАНОВКА ЗАДАЧИ ДЕТЕКТИРОВАНИЯ ОБЪЕКТОВ

Постановка задачи (1)

□ Задача детектирования объектов состоит в том, чтобы определить положение прямоугольника, окаймляющего объект заданного класса

Постановка задачи (2)

□ Задача детектирования состоит в том, чтобы каждому изображению *I* поставить в соответствие множество положений объектов *B* интересующих классов:

$$\varphi: I \to B$$
, $B = \left\{b_k, k = \overline{0, |B| - 1}\right\}$,

где $b_k = ((x_1^k, y_1^k), (x_2^k, y_2^k)[, s^k, c^k]), s^k \in \mathbb{R}$ – достоверность,

 c^k – класс объектов («СТОЛ», «ПЕШЕХОД», «АВТОМОБИЛЬ»,

«АВТОБУС» и т.п.) (x_1^1, y_1^1)

ОТКРЫТЫЕ НАБОРЫ ДАННЫХ

Наборы данных (1)

Набор данных	трениров	Размер тренировочного множества		Размер валидационного множества		Размер тестового множества	
	Изображения	Объекты	Изображения	Объекты	Изображения	Объекты	
	Де	тектиров	ание объект	ов реальн	юй жизни		
PASCAL VOC 2007 [http://host.robots. ox.ac.uk/pascal/V OC/voc2007]	2 501	6 301	2 510	6 307	4 952	12 032	20
PASCAL VOC 2012 [http://host.robots. ox.ac.uk/pascal/V OC/voc2012]	5 717	13 609	5 823	13 841	N/A	N/A	20
MS COCO [http://cocodatase t.org]	165 482	N/A	81 208	N/A	81 434	N/A	91

Наборы данных (2)

Набор данных	Разм трениров множес	Очного	Размер валидационного множества		Размер тестового множества		Кол-во классов
	Изображения	Объекты	Изображения	Объекты	Изображения	Объекты	
	Де	тектиров	ание объект	ов реалы	ной жизни		
Open Images Dataset [https://storage.go ogleapis.com/ope nimages/web/inde x.html]	~1,7 млн.	~1,4 млн.	~40 тыс.	~204 тыс.	~125 тыс.	~625 тыс.	600
	Детектирование и распознавание лиц						
WIDER FACE [http://shuoyang1 213.me/WIDERF ACE]	12 881	~157 тыс.	3 220	~39 тыс.	16 102	~196 тыс.	1

Наборы данных (3)

Набор данных	Размер тренировочного множества		Размер валидационного множества		Размер тестового множества		Кол-во классов	
	Изображения	Объекты	Изображения	Объекты	Изображения	Объекты		
	Детектирование и распознавание лиц							
LFW [http://vis- www.cs.umass.ed u/lfw]	11 910	~5 тыс.	0	0	1 323	~700	1	
AFLW [https://www.tugra z.at/institute/icg/r esearch/team- bischof/lrs/downlo ads/aflw]	25 тыс.	25 тыс. * 21					21	
IMDB-WIKI [https://data.visio n.ee.ethz.ch/cvl/rr othe/imdb-wiki]	523 051	~500 тыс.	_	_	_	_	1	

Наборы данных (4)

Набор данных	Размер тренировочного множества		Размер валидационного множества		Размер тестового множества		Кол-во классов	
	Изображения	Объекты	Изображения	Объекты	Изображения	Объекты		
	Детектирование пешеходов							
Caltech [http://www.vision. caltech.edu/lmag e_Datasets/Calte chPedestrians]	~57 видео по 1 мин	~ 175 тыс.	_	_	~ 47 видео по 1 мин	~ 175 тыс.	1	
Wider Person [http://www.cbsr.i a.ac.cn/users/sfz hang/WiderPerso n]	8 000	~ 240 тыс.	1 000	~ 30 тыс.	4 382	~ 130 тыс.	1	

Open Images Dataset

- □ 15 851 536 объектов, принадлежащих 600 категориям
- □ Если более 5 экземпляров объектов одного класса сильно перекрывают друг друга, они заключаются в один прямоугольник с меткой «группа объектов»
- □ Все прямоугольники размечены вручную

^{*} Open Images Dataset [https://storage.googleapis.com/openimages/web/index.html].

^{**} Kuznetsova A., Rom H., Alldrin N., Uijlings J., Krasin I., Pont-Tuset J., Kamali S., Popov S., Malloci M., Kolesnikov A., Duerig T., Ferrari V. The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale. – 2020. – [https://arxiv.org/pdf/1811.00982.pdf].

WIDER FACE

- WIDER FACE бенчмарк для сравнения качества работы методов детектирования лиц на изображениях
- □ 32 203 изображения, на которых отмечено 393 703 лица с высокой степенью изменчивости в масштабе, позе и перекрытии

* WIDER FACE [http://shuoyang1213.me/WIDERFACE].

Caltech Pedestrian Dataset

- □ 10 часов видео с разрешением 640х480 и частотой 30 Гц. Видео получено с видеорегистратора, который установлен на автомобиле, движущемся в городских условиях
- □ ~250 000 аннотированных кадров (в 137 отрезках длиной около минуты), содержащих 350 000 окаймляющих прямоугольников и 2 300 уникальных пешеходов

* Caltech Pedestrian Dataset [http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians].

ПОКАЗАТЕЛИ КАЧЕСТВА ДЕТЕКТИРОВАНИЯ ОБЪЕКТОВ

Рассматриваемые показатели качества

- □ Показатель числа истинных срабатываний (true positive rate)
- □ Показатель числа ложных срабатываний (false detection rate)
- □ Количество ложных срабатываний, в среднем приходящихся на изображение (average false positives per frame)
- □ Средняя точность предсказания (average precision)

Показатель числа истинных срабатываний

□ Показатель числа истинных срабатываний (true positive rate) – отношение количества правильно обнаруженных объектов TP к общему числу размеченных объектов TP + FN

$$TPR = \frac{TP}{TP + FN}$$

- □ Считается, что объект обнаружен правильно, если доля перекрытия обнаруженного (detection, d) и размеченного (groundtruth, g) окаймляющих прямоугольников $IoU = \frac{S_{d \cap g}}{S_{d \cup g}}$ превышает некоторое пороговое значение au
- Предсказание Порог τ выбирается в промежутке от 0.5 до 0.7
- Показатель числа истинных Разметка срабатываний не отражает количество ложных срабатываний, поэтому рассматривается вместе со следующим показателем

True False TP FN True FP **False** TN

Показатель числа ложных срабатываний

□ Показатель числа ложных срабатываний (false detection rate) – отношение количества ложных срабатываний к общему числу срабатываний детектора

$$FDR = \frac{FP}{TP + FP}$$

- □ Объект считается обнаруженным правильно при выполнении тех же условий, что и для предыдущего показателя
- □ Обнаруженный прямоугольник принимается за ложное срабатывание, если ему не нашлась пара из разметки

Предсказание

Разметка

	True	False
True	TP	FN
False	FP	TN

Количество ложных срабатываний, в среднем приходящихся на изображение

□ Количество ложных срабатываний, в среднем приходящихся на изображение (average false positives per frame) – отношение количества ложных срабатываний FP к общему числу обработанных изображений N

$$FPperFrame = \frac{FP}{N}$$

- □ Объект считается обнаруженным правильно при выполнении тех же условий, что и для предыдущих показателей
- □ Показатель представляет интерес при обработке потока изображений (например, видео)

Разметка

Предсказание

	True	False
True	TP	FN
False	FP	TN

Средняя точность предсказания (1)

□ Обозначения:

- $IoU = \frac{S_{d \cap g}}{S_{d \cup g}}$ доля перекрытия обнаруженного (detection) и размеченного (groundtruth) окаймляющих прямоугольников (Intersection over Union), $IoU \in [0;1]$
- TP количество объектов, для которых доля перекрытия не меньше некоторого порога τ (т.е. считается, что объект обнаружен правильно true positive)
- FP количество обнаруженных объектов с долей перекрытия, меньшей τ (объект найден ошибочно), или объект обнаружен более одного $\mathsf{detection}$

раза (false positives)

-FN — количество необнаруженных объектов (false negatives)

groundtruth

Средняя точность предсказания (2)

- □ Пороговое значение τ , как правило, выбирается равным 0.5
- □ *Точность* (precision) отношение количества правильно обнаруженных прямоугольников к общему числу срабатываний детектора

$$Precision = p = \frac{TP}{TP + FP}$$

□ *Отклик* (recall) – отношение количества правильно обнаруженных прямоугольников к общему числу объектов

$$Recall = r = \frac{TP}{TP + FN}$$

Средняя точность предсказания (3)

□ Средняя точность предсказания (average precision) – математическое ожидание точностей

$$AP = \int_{0}^{1} p(r)dr$$

- □ Схема вычисления:
 - Обнаруженные окаймляющие прямоугольники сортируются в порядке убывания достоверности наличия в них объектов
 - Для каждого обнаруженного прямоугольника выполняется поиск соответствия из разметки согласно условию $IoU \geq \tau$
 - Выполняется вычисление точности и отклика
 - Строится зависимость точности от отклика
 - Вычисляется площадь под графиком построенной зависимости

Средняя точность предсказания (4)

- □ Пример вычисления средней точности предсказания:
 - Исходное изображение фотография яблок из набора данных ImageNet [http://www.image-net.org]
 - Разметка содержит окаймляющие прямоугольники для 5 яблок (зеленые прямоугольники)
 - Алгоритм детектирования обнаруживает 10 яблок (красные прямоугольники)
 - Для определенности предполагается, что достоверности различны, чтобы далее однозначно идентифицировать прямоугольники

Средняя точность предсказания (5)

- □ Пример вычисления средней точности предсказания:
 - Сортировка прямоугольников, вычисление точности и отклика

Nº	Достоверность	Объект?	Точность	Отклик
1	0.95	Да	1/1 = 1.0	1/5 = 0.2
2	0.91	Нет	1/2 = 0.5	1/5 = 0.2
3	0.9	Да	2/3 ≈ 0.67	2/5 = 0.4
4	0.81	Нет	2/4 = 0.5	2/5 = 0.4
5	0.8	Да	3/5 = 0.6	3/5 = 0.6
6	0.76	Да	4/6 = 0.67	4/5 = 0.8
7	0.64	Нет	4/7 ≈ 0.57	4/5 = 0.8
8	0.5	Нет	4/8 = 0.5	4/5 = 0.8
9	0.45	Нет	4/9 ≈ 0.44	4/5 = 0.8
10	0.35	Да	5/10 = 0.5	5/5 = 1.0

Средняя точность предсказания (6)

- □ Пример вычисления средней точности предсказания:
 - Построение зависимости точности от отклика
 - Результат зигзагообразная кривая

Средняя точность предсказания (7)

- □ Пример вычисления средней точности предсказания:
 - Вычисление площади под зигзагообразной кривой интерполяция и вычисление площади под «ступенькой»

Средняя точность предсказания (8)

- □ Средняя точность предсказания отражает следующие аспекты качества:
 - Точность показывает, насколько точными являются предсказания (качество построения окаймляющего прямоугольника)
 - Отклик показывает, насколько хорошо обнаруживаются все объекты (способность обнаруживать все изображенные объекты)

ГЛУБОКИЕ МОДЕЛИ ДЛЯ ДЕТЕКТИРОВАНИЯ ОБЪЕКТОВ

Классификация глубоких моделей для детектирования объектов

- □ *Двухстадийные модели* формируют набор гипотез, которые потом классифицируются, и уточняются границы
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN
 - R-FCN
- □ *Одностадийные модели* предполагают формирование набора прямоугольников при проходе нейронной сети
 - SSD
 - YOLOv1, *v2, *v3

Рассматриваемые модели (1)

R-CNN (2014)

- Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. 2014. –
 [https://arxiv.org/pdf/1311.2524.pdf],
 [https://ieeexplore.ieee.org/abstract/document/6909475] (опубликованная версия).
- □ Fast R-CNN (2015)
 - Girshick R. Fast R-CNN. 2015. [https://ieeexplore.ieee.org/document/7410526] (опубликованная версия).
- □ Faster R-CNN, R-FCN (2016)
 - Ren S., He K., Girshick R., Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. 2016. –
 [https://arxiv.org/pdf/1506.01497.pdf], [https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf]
 (опубликованная версия).

Рассматриваемые модели (2)

Dai J., Li Y., He K., Sun J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. – 2016. – [https://arxiv.org/pdf/1605.06409.pdf], [https://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf] (опубликованная версия).

□ SSD (2016)

Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y., Berg A.C. SSD: Single Shot MultiBox Detector. — 2016. —
[https://arxiv.org/pdf/1512.02325.pdf],
[https://link.springer.com/chapter/10.1007/978-3-319-46448-0_2]
(опубликованная версия).

□ YOLOv1 (2015), *v2 (2016)

- Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object detection. 2015. [https://arxiv.org/pdf/1506.02640.pdf], [https://ieeexplore.ieee.org/document/7780460] (опубликованная версия).
- Redmon J., Farhadi A. YOLO9000: Better, Faster, Stronger. 2016. –
 [https://arxiv.org/pdf/1612.08242.pdf], [https://pjreddie.com/darknet/yolo].

Рассматриваемые модели (3)

□ YOLOv3, RetinaNet (2018)

- Redmon J., Farhadi A. YOLOv3: An Incremental Improvement. 2018. –
 [https://pjreddie.com/media/files/papers/YOLOv3.pdf].
- Lin T., Goyal P., Girshick R., He K., Dollar P. Focal Loss for Dense Object
 Detection. 2018. [https://arxiv.org/pdf/1708.02002.pdf].

□ CenterNet (2019)

Zhou X., Wang D., Krahenbuhl P. Objects as Points. – 2019. –
 [https://arxiv.org/pdf/1904.07850.pdf].

□ *Примечание:* на данный момент значительное количество нейронных сетей, которые демонстрируют хорошие результаты детектирования на открытых наборах данных, являются модификациями перечисленных моделей

R-CNN (1)

- □ R-CNN (Region-based Convolutional Neural Network) одна из первых моделей, которая позволила получить высокие показатели качества детектирования на PASCAL VOC 2012
- □ Схема работы модели:
 - Генерация областей возможного наличия объектов гипотез (~2000 областей)
 - Извлечение признаков для каждой сгенерированной области
 - Классификация построенных областей
 - Построение окаймляющих прямоугольников

^{*} Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. – 2014. – [https://arxiv.org/pdf/1311.2524.pdf], [https://ieeexplore.ieee.org/abstract/document/6909475].

R-CNN (2)

□ Схема R-CNN:

^{*} Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. – 2014. – [https://arxiv.org/pdf/1311.2524.pdf], [https://ieeexplore.ieee.org/abstract/document/6909475].

R-CNN (3)

- □ Генерация областей возможного наличия объектов гипотез (~2000 областей)
 - Сканирование изображения
 - Выделение областей интереса с использованием метода выборочного поиска (selective search algorithm)
- □ Выделение признаков для каждой сгенерированной области
 - Обработка каждой построенной области с использованием сверточной нейронной сети посредством выполнения прямого прохода
 - В реализации R-CNN используется модель AlexNet
 (5 сверточных слоев и 2 полносвязных, на выходе вектор признаков размера 4096 элементов)

^{*} Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. – 2014. – [https://arxiv.org/pdf/1311.2524.pdf], [https://ieeexplore.ieee.org/abstract/document/6909475].

R-CNN (4)

- □ Классификация областей
 - Получение выхода сети и его перенаправление на вход метода опорных векторов (Support Vector Machine, SVM)
 - Использование набора бинарных SVM-классификаторов, каждый из которых определяет принадлежность определенному классу объектов
- □ Построение окаймляющих прямоугольников
 - Получение выхода сети
 - Перенаправление выхода сети на вход линейной регрессии для определения границ окаймляющего прямоугольника
 - Применение алгоритма подавления немаксимумов (greedy non-maximum suppression) для каждого класса объектов

^{*} Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. – 2014. – [https://arxiv.org/pdf/1311.2524.pdf], [https://ieeexplore.ieee.org/abstract/document/6909475].

R-CNN (5)

- □ Основной недостаток R-CNN вывод (inference) модели работает очень медленно, поэтому модель не может быть использована в системах реального времени
 - Для каждой сгенерированной гипотезы на входном изображении требуется прямой проход по сверточной сети, что составляет ~2000 прямых проходов на изображение
- □ Недостаток построения модели необходимость обучения или тонкой настройки (fine-tuning) трех групп моделей:
 - Сверточная сеть для извлечения признаков (настройка)
 - Набор бинарных SVM-классификаторов (обучение)
 - Линейная регрессия для уточнения границ окаймляющих прямоугольников (обучение)

^{*} Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. – 2014. – [https://arxiv.org/pdf/1311.2524.pdf], [https://ieeexplore.ieee.org/abstract/document/6909475].

Fast R-CNN (1)

- □ Fast R-CNN развитие R-CNN, направленное на ускорение вычислений в R-CNN
- □ Проблема при генерации областей возможного наличия объектов области могут в значительной степени перекрываться, в результате чего сверточная сеть будет проходить по одинаковым фрагментам изображения, которые принадлежат разных гипотезам
- □ Решение изменить порядок выполнения этапов извлечения признаков и генерации гипотез о возможном наличии объектов (алгоритмы используются те же, что и для R-CNN)
- □ Отличие набор SVM-классификаторов и линейных регрессий заменяются на нейросетевые реализации

^{*} Girshick R. Fast R-CNN. – 2015. – [https://arxiv.org/pdf/1504.08083.pdf], [https://ieeexplore.ieee.org/document/7410526].

Fast R-CNN (2)

* Girshick R. Fast R-CNN. – 2015. – [https://arxiv.org/pdf/1504.08083.pdf], [https://ieeexplore.ieee.org/document/7410526].

Fast R-CNN (3)

 □ Слой объединения (Rol pooling layer) интегрирует информацию о построенной карте признаков входного изображения и сгенерированном регионе и формирует признаковое описание области

– Вход:

- Выходная карта признаков с последнего сверточного слоя нейронной сети, которая обеспечивает извлечение признаков
- Координаты сгенерированной области в системе, связанной с входным изображением

– Выход:

• Признаковое описание области (размеры одинаковы для всех областей)

Fast R-CNN (4)

□ Слой объединения (Rol pooling layer) интегрирует информацию о построенной карте признаков входного изображения и сгенерированном регионе и формирует признаковое описание области

– Алгоритм:

- Координаты сгенерированной области преобразуются в систему, связанную со сверточной картой признаков, построенной для изображения
- Далее рассматривается фрагмент карты признаков размера $w \times h$, соответствующий сгенерированной области
- На полученный фрагмент накладывается сетка фиксированного размера $W \times H \ (W = H = 7)$
- В каждой ячейке выполняется операция объединения по максимуму (max pooling), в результате чего формируется признаковое описание области пространственных размеров $W \times H$

Fast R-CNN (5)

- □ Слой объединения (Rol pooling layer) интегрирует информацию о построенной карте признаков входного изображения и сгенерированном регионе и формирует признаковое описание области
 - Пример для $w \times h = 9 \times 8$ и $W \times H = 3 \times 3$

Fast R-CNN (6)

- □ Общая часть классификатора и регрессора:
 - 2 полносвязных слоя
 - Выходной вектор используется в качестве входов для двух параллельных веток – классификатора и регрессора
- □ Классификатор полносвязный слой + функция активации softmax
 - Количество элементов полносвязного слоя соответствует количеству классов с учетом фона
 - Выходной вектор отражает достоверность принадлежности каждому классу
- □ Регрессор полносвязный слой
 - Выходной вектор смещения прямоугольника для каждого возможного класса (per-class bounding-box regression offsets)

Faster R-CNN (1)

- □ Faster R-CNN модификация Fast R-CNN, в которой для генерации областей возможного наличия объектов используется специальная нейронная сеть RPN (Region Proposal Network)
- □ По аналогии с Fast R-CNN изображение произвольного размера подается на вход сверточной нейронной сети (лучшие результаты на ResNet-101) для извлечения признаков
- □ Полученная карта признаков перенаправляется на вход RPN, цель которой состоит в том, чтобы обойти карту признаков скользящим окном (sliding window) и сформировать набор областей, а также карты достоверностей их принадлежности каждому из допустимых классов

* Ren S., He K., Girshick R., Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. – 2016. – [https://arxiv.org/pdf/1506.01497.pdf], [https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf].

Faster R-CNN (2)

- □ RPN сверточная нейронная сеть
- □ Вход:
 - Изображение произвольного разрешения
- □ Выход:
 - Набор прямоугольных регионов (гипотез)
 и соответствующих векторов достоверностей, отражающих степень принадлежности классу или фону
- □ RPN состоит из двух частей:
 - Последовательность сверточных слоев, наследуемая из широко известных моделей (например, ZF или VGG)
 - Небольшая сверточная сеть для генерации гипотез, которая реализует обход карты признаков, построенной с использованием сверточной сети (первая часть RPN)

Faster R-CNN (3)

□ Сеть для генерации гипотез (Region Proposal Network):

* Ren S., He K., Girshick R., Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. – 2016. – [https://arxiv.org/pdf/1506.01497.pdf], [https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf].

Faster R-CNN (4)

- □ Сеть для генерации гипотез (Region Proposal Network):
 - Карта признаков обходится окном размера 3х3, что соответствует рецептивному полю размера 171х171 для модели ZF и 228х228 для VGG
 - Для каждого положения окна формируется k гипотез о прямоугольных областях, содержащих объект. Центр области совпадает с центром окна, области отличаются соотношением сторон
 - Промежуточный слой сверточный слой с ядром 3х3 + функция активация ReLU. В результате обхода скользящим окном формируется вектор размерности 256 для модели ZF и 512 для VGG
 - Классификационный и регрессионный слои реализуются посредством одномерных сверточных слоев

Faster R-CNN (5)

- □ Сеть для генерации гипотез (Region Proposal Network):
 - Выход регрессионного слоя вектор размерности 4k, по 4 координаты для каждой гипотезы, которые соответствуют сдвигам сторон прямоугольной области (shape offsets), являющейся гипотезой
 - Выход классификационного слоя вектор достоверностей размерности 2k, по 2 значения для каждой гипотезы, соответствующие достоверностям того, что область содержит объект некоторого класса или нет (реализуется бинарный классификатор)

Faster R-CNN (6)

- □ Генератор гипотез:
 - Каждый элемент входной карты признаков соответствует ведущему положению (anchor) набора гипотез
 - Для генерации гипотез используется 2 параметра масштаб и соотношение сторон прямоугольной области
 - VGG-16 уменьшает масштаб исходного изображения в 16 раз, 16 – шаг генерации гипотез в системе координат исходного изображения
 - Если масштабы {8, 16, 32} и соотношения сторон {1/2, 1/1, 2/1}, то генерируется 9 гипотез для каждого ведущего положения
 - Чтобы получить следующее ведущее положение на исходном изображении, достаточно сдвинуть предыдущее положение на 16
- □ Примечание: модель обучается как единая нейронная сеть,
 функция ошибки взвешенная функция потерь для двух веток,
 □ соответствующих классификации и регрессии

R-FCN (1)

- □ R-FCN (Region-based Fully Convolutional Network) является логическим продолжением развития метода Faster R-CNN
- □ Основная идея R-FCN состоит в том, чтобы на выходе сети сформировать *карты достоверностей принадлежности допустимым классам, которые чувствительны к расположению областей возможного наличия объектов* (position-sensitive score maps)

* Dai J., Li Y., He K., Sun J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. – 2016.

^{- [}https://arxiv.org/pdf/1605.06409.pdf], [https://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf].

R-FCN (2)

* Dai J., Li Y., He K., Sun J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. — 2016. — [https://arxiv.org/pdf/1605.06409.pdf], [https://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf].

R-FCN (3)

- □ Схема работы R-FCN:
 - Извлечение признаков из исходного изображения посредством прямого прохода по некоторой сверточной нейронной сети
 - Добавление сверточных слоев и формирование набора карт достоверностей принадлежности допустимым классам, которые чувствительны к расположению областей возможного наличия объектов
 - Количество таких карт $-k^2$, что отвечает числу относительных положений объекта на пространственной сетке $k \times k$, которой разбивается каждая область возможного наличия объекта (если k=3, то относительные положения «сверху слева», «сверху по центру», ..., «снизу справа»)
 - Глубина каждой карты C+1, где C- количество категорий объектов
 - Глубина объединенной карты признаков $-k^2(C+1)$

R-FCN (4)

- □ Схема работы R-FCN:
 - Генерация областей возможного наличия объектов с использованием полностью сверточной RPN
 - Объединение карт достоверностей в соответствии с относительным положением в области (position-sensitive Rol pooling layer)
 - В соответствии с расположением области вырезается соответствующая часть набора карт признаков, отвечающих относительным позициям объекта
 - Полученные карты реорганизуются в соответствии с относительными позициями
 - Классификация областей с помощью softmaxклассификатора. Вход классификатора – вектор достоверностей принадлежности области каждому из допустимых классов, полученный посредством голосования

SSD (1)

- SSD (Single Shot Multibox Detector) позволяет одновременно предсказывать размещение окаймляющих прямоугольников и классифицировать объекты, ограниченные этими прямоугольниками
- □ SSD представляет собой единую сверточную нейронную сеть, к промежуточным картам признаков которой применяются нейросетевые детекторы
- □ Разработаны архитектуры для разных размеров входа (SSD300 – 300x300, SSD512 – 512x512 и другие)

^{*} Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y., Berg A.C. SSD: Single Shot MultiBox Detector. - 2016. - [https://arxiv.org/pdf/1512.02325.pdf], [https://link.springer.com/chapter/10.1007/978-3-319-46448-0 2 Нижний Новгород, 2021 г. Детектирование объектов на изображениях

SSD (2.1)

□ Архитектура SSD300:

* Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y., Berg A.C. SSD: Single Shot MultiBox Detector. – 2016. – [https://arxiv.org/pdf/1512.02325.pdf], [https://link.springer.com/chapter/10.1007/978-3-319-46448-0_2].

SSD (2.2)

Слой	Разрешение карты	Классификатор	Разрешение карты признаков	Количество
(num_filters w×h, stride[, pad])	признаков на выходе слоя		на выходе классификатора	гипотез
image:	300×300×3			
conv1_1: 64 3×3, 1, 1 + ReLU	300×300×64			
conv1_2: 64 3×3, 1, 1 + ReLU	300×300×64	1		
pool1: max 2×2, 2	150×150×64			
conv2_1: 128 3×3, 1, 1 + ReLU	150×150×128			
conv2_2: 128 3×3, 1, 1 + ReLU	150×150×128			
pool2: max 2×2, 2	75×75×128	1		
conv3_1: 256 3×3, 1, 1 + ReLU	75×75×256	1		
conv3_2: 256 3×3, 1, 1 + ReLU	75×75×256			
conv3_3: 256 3×3, 1, 1 + ReLU	75×75×256	1		
pool3: max 2×2, 2	38×38×256	1		
conv4_1: 512 3×3, 1, 1 + ReLU	38×38×512	1		
conv4_2: 512 3×3, 1, 1 + ReLU	38×38×512	1		
conv4_3: 512 3×3, 1, 1 + ReLU	38×38×512	conv_c1: $4(c + 4)$ 3×3, 1	38×38×[4(c+4)]	38*38*4=5776
pool4: max 2×2, 2	19×19×512			
conv5_1: 512 3×3, 1, 1 + ReLU	19×19×512			
conv5_2: 512 3×3, 1, 1 + ReLU	19×19×512	1		
conv5_3: 512 3×3, 1, 1 + ReLU	19×19×512	1		
pool5: max 3×3, 1, 1	19×19×512			
fc6: 1024 3×3, 1, 6 (dilation: 6) + ReLU	19×19×1024			
fc7: 1024 1×1, 1, 0 + ReLU	19×19×1024	conv_c2: $6(c + 4)$ 3×3, 1	19×19×[6(c+4)]	19*19*6=2166
conv6_1: 256 1×1, 1, 0 + ReLU	19×19×256			
conv6_2: 512 3×3, 2, 1 + ReLU	10×10×512	conv_c3: $6(c+4)$ 3×3, 1	10×10×[6(c+4)]	10*10*6=600
conv7_1: 128 1×1, 1, 0 + ReLU	10×10×128			
conv7_2: 256 3×3, 2, 1 + ReLU	5×5×256	conv_c4: $6(c + 4)$ 3×3, 1	5×5×[6(c+4)]	5*5*6=150
conv8_1: 128 1×1, 1, 0 + ReLU	5×5×128			
conv8_2: 256 3×3, 1, 0+ ReLU	3×3×256	conv_c5: $4(c + 4) 3 \times 3$, 1	3×3×[4(c+4)]	3*3*4=36
conv9_1: 128 1×1, 1, 0 + ReLU	3×3×128			
conv9_2: 256 3×3, 1, 0 + ReLU	1×1×256	conv_c6: $4(c+4)$ 3×3, 1	1×1×[4(c+4)]	1*1*4=4
Общее число гипотез о расположении объектов				8732

Структура SSD300 (conv – сверточный слой, pool – пространственное объединение; количество фильтров классификатора k(c+4), где k – количество прямоугольников по умолчанию, c – количество классов, 4 соответствует числу сторон прямоугольников (каждое значение – сдвиг стороны окаймляющего прямоугольника относительно стороны прямоугольника по умолчанию)

SSD (3)

□ Архитектура SSD300:

- Модель построена на базе модели VGG-16, в которой сверточные слои фигурируют без изменений, а полностью связанные слои заменены на полностью сверточные
- К картам признаков разного масштаба присоединяются классификационные сверточные слои, которые одновременно обеспечивают генерацию возможных положений объектов и их классификацию
- Для исключения дублирования окаймляющих прямоугольников, выполняется процедура подавления немаксимумов (non-maximum suppression)

SSD (4)

- □ Классификационные сверточные слои:
 - Карта признаков на некотором уровне отвечает описанию изображения некоторого масштаба в целом, ячейка карты описанию некоторой прямоугольной области изображения
 - Каждый классификационный слой определенной ячейке карты признаков ставит в соответствие набор окаймляющих прямоугольников по умолчанию (k штук)
 - Для каждого прямоугольника определяется вектор достоверностей принадлежности объекта допустимым классам (длины С) и вектор сдвигов сторон прямоугольника по умолчанию для уточнения его границ (вектор длины 4)
 - Если карта признаков имеет размеры $m \times n$ и каждой ячейке соответствует k-прямоугольников, то количество выходов на классификационном слое составляет kmn(c+4)

SSD (5)

- Формирование гипотез прямоугольников, потенциально содержащих объект
 - Рассмотрим на примере SSD300 и карты признаков, построенной на четвертом сверточном слое

SSD (6)

- Формирование гипотез прямоугольников, потенциально содержащих объект
 - Для каждого центра делается предположение о расположении объекта
 - Гипотез 4 или 6, что соответствует количеству прямоугольников, у которых центр расположен в выбранной точке: два квадрата разного масштаба, две пары прямоугольников с соотношением сторон 1/2, 2/1 и 1/3, 3/1

YOLOv1 (1)

- □ YOLO (You Only Look Once) еще одна модель детектирования объектов, которая представляется единой сверточной сетью, обеспечивающей построение окаймляющих прямоугольников и классификацию объектов в этих прямоугольниках
- Модель плохо обнаруживает объекты небольшого размера.

^{*} Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object detection. – 2015.

^{- [}https://arxiv.org/pdf/1506.02640.pdf], [https://ieeexplore.ieee.org/document/7780460].

YOLOv1 (2)

- \square Входное изображение делится на ячейки сеткой $S \times S$
- □ Каждая ячейка отвечает за предсказание В окаймляющих прямоугольников

□ Для каждого окаймляющего прямоугольника предсказываются параметры x, y, w, h, c, где (x, y) – центр прямоугольника относительно границ ячейки, w и h – ширина и высота прямоугольника в системе координат изображения, c – достоверность присутствия объекта

^{*} Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object detection. – 2015. – [https://arxiv.org/pdf/1506.02640.pdf], [https://ieeexplore.ieee.org/document/7780460].

YOLOv1 (3)

 □ Достоверность присутствия объекта в ячейке определяется следующим образом:

$$c = P(Object) \cdot IoU_{pred}^{truth},$$

где P(Object) – вероятность наличия объекта в окаймляющем прямоугольнике, IoU_{pred}^{truth} – отношение площади пересечения обнаруженного и размеченного прямоугольников

- □ Достоверность строится для ячейки независимо от количества соответствующих окаймляющих прямоугольников
- □ Если ячейка не содержит объект, то достоверность равна нулю
- lacktriangle В противном случае, значение достоверности принимается равным IoU_{pred}^{truth}

YOLOv1 (4)

- □ Для каждого окаймляющего прямоугольника прогнозируется C условных вероятностей $P(Class_i | Object)$, где C количество детектируемых классов объектов
- □ Условные вероятности классов умножаются на предсказания достоверности прямоугольника, что позволяет получить оценки достоверности для каждого прямоугольника, зависящие от класса:

$$P(Class_i|Object) \cdot P(Object) \cdot IoU_{pred}^{truth} = P(Class_i) \cdot IoU_{pred}^{truth}$$

- □ Построенные оценки отражают 2 аспекта:
 - Вероятность наличия объекта определенного класса в прямоугольнике
 - Степень соответствия предсказанного прямоугольника объекту

YOLOv1 (5)

Входное изображение, разбитое на ячейки

Карта достоверностей (разный цвет – разные классы объектов)

Предсказание — тензор размерности $S \times S \times (B * 5 + C)$, для каждой ячейки сетки размерности $S \times S$ предсказывается B окаймляющих прямоугольников и C вероятностей принадлежности классам

* Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object detection. – 2015. – [https://arxiv.org/pdf/1506.02640.pdf], [https://ieeexplore.ieee.org/document/7780460].

YOLOv1 (6)

- □ YOLOv1 базируется на модели GoogLeNet:
 - Сеть содержит 24 сверточных слоя и следующих за ними 2 полносвязных слоя, после каждого слоя функция активации ReLU
 - Вместо начальных inception-модулей используется сверточный слой, понижающий размерность изображения

YOLOv1 (7)

- □ YOLOv1 базируется на модели GoogLeNet:
 - При запуске на PASCAL VOC количество ячеек S=7 при построении сети, количество прямоугольников B=2, количество классов объектов C=20
 - Сеть сначала обучается на ImageNet для настройки 20 сверточных и 1 полносвязного слоев на изображениях 224х224

YOLOv2 (1)

- □ YOLOv2 модификация YOLOv1
- □ Основные изменения:
 - Пакетная нормализация входов каждого сверточного слоя
 - Предварительная настройка сверточных слоев на ImageNet осуществляется на изображениях разрешения 448х448, что дает возможность настроить фильтры для работы на высоком разрешении
 - Использование ведущих прямоугольников вместо прямого предсказания координат
 - Многомасштабное обучение каждые 10 пачек случайно меняется разрешение изображения {320, 352,..., 608}
 - Увеличение количества категорий объектов (YOLO9000)

* Redmon J., Farhadi A. YOLO9000: Better, Faster, Stronger. – 2016. – [https://arxiv.org/pdf/1612.08242.pdf], [https://pjreddie.com/darknet/yolo].

YOLOv2 (2)

- □ Архитектура YOLOv2:
 - Выходной тензор имеет размерность 13х13х125: 13х13 соответствует сетке разбиения исходного изображения, 5 прямоугольников в каждой ячейке (по 25 параметров)

416x416x3

Изображение

Нижний Новгород, 2021 г.

YOLOv2 (3)

- Использование ведущих прямоугольников вместо прямого предсказания координат
- □ Генерация ведущих окаймляющих прямоугольников с помощью алгоритма кластеризации k-средних
 - Вместо ручного выбора В прямоугольников, запускается кластеризация k-средних на обучающей выборке окаймляющих прямоугольников для автоматического поиска хороших начальных приближений
 - Метрика расстояния между прямоугольником и кластером: d(box, centroid) = 1 IoU(box, centroid)
 - Экспериментально показано, что k=5 хороший компромисс между сложностью модели и высоким откликом
 - Для каждой ячейки входного изображения формируется
 5 ведущих прямоугольников

YOLOv2 (4)

 \Box Сеть для каждого прямоугольника предсказывает 5 компонент t_x, t_y, t_w, t_h и t_o и вектор принадлежности классам (20 классов)

$$b_{x} = \sigma(t_{x}) + c_{x}, b_{y} = \sigma(t_{y}) + c_{y},$$

$$b_{w} = p_{w}e^{t_{w}}, b_{h} = p_{h}e^{t_{h}},$$

$$P(object) * IoU(b, object) = \sigma(t_{o})$$

где (c_x, c_y) – смещение текущей ячейки относительно левого

верхнего угла изображения, p_w , p_h – ширина и высота

ведущего прямоугольника,

 t_{x} – смещение по x,

 t_y – смещение по y,

 t_o – значение достоверности,

 $\sigma(\cdot)$ – сигмоидальная функция

активации

YOLOv3 (1)

- □ YOLOv3 развитие YOLOv2
 - Наращивание глубины сети (106 полностью сверточных слоев)
 - Добавление остаточных связей
 - Детектирование объектов на трех разных масштабах признаковых описаний
 - Использование трех ведущих прямоугольников на каждом масштабе вместо пяти

^{*} Redmon J., Farhadi A. YOLOv3: An Incremental Improvement. – 2018. – [https://pjreddie.com/media/files/papers/YOLOv3.pdf].

YOLOv3 (2)

^{*} $255 = B \times (5 + C) = 3 \times (5 + 80)$, 80 классов в наборе данных MS COCO.

^{**} What's new in YOLO v3? [https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b].

RetinaNet (1)

- □ RetinaNet состоит из четырех частей:
 - Основная часть (backbone) автономная сверточная нейронная сеть на базе ResNet, которая отвечает за извлечение признаков из входного изображения
 - Пирамидальная сеть признаков (Feature Pyramid Net,
 FPN) сверточная нейронная сеть в форме пирамиды, сеть служит для объединения карт признаков разного масштаба
 - Классификационная подсеть (classification subnet)
 обеспечивает классификацию областей возможного
 расположения объектов
 - Регрессионная подсеть (box regression subnet)
 обеспечивает построение границ окаймляющих
 прямоугольников

U

RetinaNet (2)

* Lin T., Goyal P., Girshick R., He K., Dollar P. Focal Loss for Dense Object Detection. – 2018. – [https://arxiv.org/pdf/1708.02002.pdf].

RetinaNet (3)

□ Основная часть (backbone):

- Сверточная сеть, содержащая последовательность преобразований – *стадий*, – каждая из которых уменьшает вдвое разрешение входной карты признаков
- Слои сверточной сети, не изменяющие разрешение карты признаков, относятся к одной и той же стадии сети
- Изменение разрешения карты признаков соответствует переходу на новую стадию
- Выход функции активации ResNet-50 каждого последнего остаточного блока, не изменяющего разрешение, карта признаков на восходящем пути (bottom-up pathway)
 пирамиды признаков (bottom-up pathway)

RetinaNet (4)

□ Пирамидальная сеть признаков (Feature Pyramid Net, FPN):

- Карты признаков восходящего пути пирамиды формируются в предыдущем блоке модели RetinaNet
- Карты признаков нисходящего пути (top-down pathway)
 формируются посредством повышающей дискретизации (upsampling) вдвое карты признаков, построенной на предыдущей стадии нисходящего пути. В результате формируется «грубая» оценка признакового описания
- Результат повышающей дискретизации дополняется более точной картой признаков, построенной на соответствующем уровне восходящего пути пирамиды (5 уровней)
- Каждый уровень пирамиды используется для детектирования * Lin T., Dollar P., Girshick R., He K., Hariharan B., Belongie S. Feature Pyramid Networks for Object Detection [https://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper_pdf].

RetinaNet (5.1)

□ Классификационная (classification) подсеть:

- Подсеть предсказывает вероятность присутствия объекта для каждого допустимого пространственного положения из набора ведущих позиций (anchors) для каждого возможного класса объектов
- Ведущие позиции формируются по аналогии с Faster R-CNN
 - Каждая карта признаков разбивается на прямоугольные области
 - Количество областей на уровнях пирамиды меняется от 32² до 512² (5 уровней)
 - Рассматриваются соотношения сторон ведущих позиций {1:2, 1:1, 2:1}
 - Масштаб ведущих позиций $\{2^0, 2^{1/3}, 2^{2/3}\}$ для каждого соотношения
 - Всего 9 ведущих позиций в каждой точке, соответствующей прямоугольнику

RetinaNet (5.2)

□ Классификационная (classification) подсеть:

- Полностью сверточная сеть
- Параметры подсети разделяются между разными уровнями пирамидальной сети признаков
- Структура подсети:
 - 4 сверточных слоя с ядрами 3x3 и количеством фильтров C=256
 - После каждого сверточного слоя следует функция активации ReLU
 - Последний слой сверточный с ядрами 3x3 и количеством фильтров $K \cdot A$ (K количество возможных классов объектов, A = 9 количество допустимых ведущих позиций), после которого следует функция активации softmax

RetinaNet (6)

□ Регрессионная (box regression) подсеть:

- Подсеть встроена параллельно классификационной подсети
- Структура подсети аналогична классификационной модели вплоть до последнего слоя
- Последний слой используется для уточнения положений ведущих позиций, выход интерпретируется как 4 сдвига центра ведущей позиции относительно искомого окаймляющего прямоугольника (аналогично R-CNN)
- Последний слой сверточный с ядрами 3x3 и количеством фильтров $4 \cdot A$, после которого следует функция активации softmax

CenterNet (1)

- □ В отличие от ранее рассмотренных моделей CenterNet не предусматривает применение ведущих позиций (anchors)
- □ CenterNet напрямую предсказывает расположение центра объекта и его размеры

 СenterNet строится на базе широко известных классификационных моделей (ResNet-18, ResNet-101 и других) посредством построения полностью сверточных сетей вида «кодировщик-декодировщик»

CenterNet (2.1)

- □ Идея получить на выходе тепловую карту расположения ключевых точек
 - $I \in \mathbb{R}^{W \times H \times 3}$ входное изображение разрешения $W \times H$
 - Цель построить тепловую карту $\hat{Y} \in [0,1]^{\frac{w}{R} \times \frac{H}{R} \times C}$, где R выходной шаг дискретизации (по умолчанию равен 4), C количество видов ключевых точек (в задаче детектирования объектов равен количеству обнаруживаемых классов объектов)
 - $\hat{Y}_{x,y,c} = 1$ соответствует обнаруженной ключевой точке, $\hat{Y}_{x,y,c} = 0$ фону

Zhou X., Wang D., Krahenbuhl P. Objects as Points. – 2019. – [https://arxiv.org/pdf/1904.07850.pdf].

CenterNet (2.2)

- □ Идея получить на выходе тепловую карту расположения ключевых точек
 - В процессе обучения для каждой ключевой точки p класса c вычисляется ее эквивалент на изображении меньшего разрешения $\tilde{p} = \left| \frac{p}{R} \right|$ (на выходной карте)
 - Все точки собираются в тепловую карту $Y \in [0,1]^{\frac{W}{R} \times \frac{H}{R} \times C}$ с использованием Гауссова ядра $Y_{x,y,c} = e^{\frac{-\left((x-\widetilde{p}_x)^2+(y-\widetilde{p}_y)^2\right)}{2\sigma_p^2}}$, где σ_p стандартное среднеквадратическое отклонение, адаптивное к размерам объекта

CenterNet (2.3)

- □ Идея получить на выходе тепловую карту расположения ключевых точек
 - Отклонение вычисляется как радиус окружности, ограничивающей возможные расположения центров объекта относительно искомого центра объекта

 Если два Гауссиана одного класса перекрываются, то используется поэлементный максимум

CenterNet (3)

- \square Пусть окаймляющий прямоугольник с номером k описывается координатами $\left(x_1^{(k)}, y_1^{(k)}\right), \left(x_2^{(k)}, y_2^{(k)}\right)$, тогда \widehat{Y} предсказывает
 - расположение центра $\left(\frac{x_1^{(k)} + x_2^{(k)}}{2}, \frac{y_1^{(k)} + y_2^{(k)}}{2}\right)$
- $lue{}$ Дополнительно подбираются размеры объекта $s_k = \left(x_2^{(k)} x_1^{(k)}, y_2^{(k)} y_1^{(k)}\right)$
- \square Для объектов всех категорий делается единое предсказание размеров, т.е. $\hat{S} \in \mathbb{R}^{\frac{W}{R} \times \frac{H}{R} \times 2}$

 \square На выходе сети формируется тепловая карта глубины C+4

^{*} Zhou X., Wang D., Krahenbuhl P. Objects as Points. – 2019. – [https://arxiv.org/pdf/1904.07850.pdf].

 $\left(x_2^{(k)}, y_2^{(k)}\right)$

CenterNet (4.1)

□ Функция ошибки складывается из трех компонент:

$$L_{det} = L_k + \lambda_{size} L_{size} + \lambda_{off} L_{off}$$

Ошибка предсказания расположения ключевых точек (центров объектов)

Ошибка предсказания размеров объектов

Ошибка смещения (выходная карта имеет меньшее разрешение)

$$L_k = -rac{1}{N} \sum_{x,y,c} \left\{ rac{\left(1 - \widehat{Y}_{x,y,c}
ight)^{lpha} \log \widehat{Y}_{x,y,c}}{\left(1 - Y_{x,y,c}
ight)^{eta} \widehat{Y}_{x,y,c}^{lpha} \log \left(1 - \widehat{Y}_{x,y,c}
ight)},
ight.$$
 иначе

где N – количество ключевых точек на изображении I, $Y=(Y_{x,y,c})$ и $\widehat{Y}=(\widehat{Y}_{x,y,c})$ – размеченная и построенная тепловые карты ключевых точек, $\alpha=2$, $\beta=4$ – гиперпараметры

CenterNet (4.2)

□ Функция ошибки складывается из трех компонент:

$$L_{det} = L_k + \lambda_{size} L_{size} + \lambda_{off} L_{off}$$

Ошибка предсказания расположения ключевых точек (центров объектов)

Ошибка предсказания размеров объектов

Ошибка смещения (выходная карта имеет меньшее разрешение)

$$L_{size} = \frac{1}{N} \sum_{k=1}^{N} \left| \widehat{S}_{p_k} - s_k \right|,$$

 L_{size} — L1-ошибка построения центров объектов, \widehat{S}_{p_k} и s_k — предсказанный и реальный размеры объекта с номером k и расположением центра в точке p_k , $\lambda_{size}=0.1$ — параметр

CenterNet (4.3)

□ Функция ошибки складывается из трех компонент:

$$L_{det} = L_k + \lambda_{size} L_{size} + \lambda_{off} L_{off}$$

Ошибка предсказания расположения ключевых точек (центров объектов)

Ошибка предсказания размеров объектов

Ошибка смещения (выходная карта имеет меньшее разрешение)

$$L_{off} = \frac{1}{N} \sum_{p} \left| \hat{O}_{\tilde{p}} - \left(\frac{p}{R} - \tilde{p} \right) \right|,$$

 $L_{off}-L1$ -ошибка дискретизации, p — расположение ключевой точки, R — выходной шаг дискретизации, $\tilde{p}=\left\lfloor \frac{p}{R} \right\rfloor$ — эквивалент расположения ключевой точки на выходной карте, $\lambda_{off}=1$ — параметр

CenterNet (5)

- В процессе вывода для каждого класса объектов извлекаются «пики» на тепловой карте
- «Пиком» считается точка, значение в которой больше или равно значениям в 8 соседях
- □ Отбирается 100 «пиков» с максимальными значениями
- □ Если $\widehat{P} = \{(\widehat{x_i}, \widehat{y_i}), i = \overline{1, n}\}$ множество обнаруженных центров объектов класса c, тогда восстановить окаймляющий прямоугольник в системе координат изображения можно следующим образом:

$$\left(\widehat{x_i} + \delta\widehat{x_i} - \frac{\widehat{w_i}}{2}, \widehat{y_i} + \delta\widehat{y_i} - \frac{\widehat{h_i}}{2}\right), \left(\widehat{x_i} + \delta\widehat{x_i} + \frac{\widehat{w_i}}{2}, \widehat{y_i} + \delta\widehat{y_i} + \frac{\widehat{h_i}}{2}\right),$$

где $(\delta \widehat{x_i}, \delta \widehat{y_i})$ и $(\widehat{w_i}, \widehat{h_i})$ – предсказанные сдвиг и размеры объекта

СРАВНЕНИЕ МОДЕЛЕЙ ДЕТЕКТИРОВАНИЯ ОБЪЕКТОВ

Изменение качества детектирования (1)

- □ Тренировочный набор данных: PASCAL VOC 2012 + сторонние данные (обычно MS COCO)
- □ Тестовый набор данных: PASCAL VOC 2012
- □ Количество классов объектов: 20 классов
- □ Показатель качества: средняя точность предсказания (average precision)
- □ Модели:
 - R-CNN (R-CNN (bbox reg)*) модель R-CNN, построенная на 16-слойной сверточной сети, которая обучена на ILSVRC 2012 и настроена на VOC 2012 trainval, SVM-детекторы обучены на VOC 2012 trainval

[http://host.robots.ox.ac.uk:8080/leaderboard/displaylb_main.php?challengeid=11&compid=4].

^{*} Указано название модели, которое фигурирует в таблице с результатами детектирования объектов на данных PASCAL VOC 2012

Изменение качества детектирования (2)

- Faster R-CNN (Faster RCNN, ResNet (VOC+COCO)*) развитие модели Faster RCNN. Построена на ResNet, обучена на ImageNet и настроена на MS COCO trainval, настроена на VOC 2007 trainval+test и VOC 2012 trainval
- R-FCN (R-FCN, ResNet (VOC+COCO)) модель R-FCN, построенная на базе ResNet-101. Предварительно обучена на ImageNet, последовательно настроена на наборах MS COCO trainval, VOC 2007 trainval+test и VOC 2012 trainval
- SSD300ft (SSD300 VGG16 07++12+COCO) SSD300,
 обученная на MS COCO trainval35k и настроенная на VOC07 trainval + test and VOC12 trainval
- YOLOv2 базовая модель, рассмотренная в лекции
- ATLDETv2 ансамбль из двух моделей, основанных на ResneXt152_32x8d (описание модели не опубликовано)

Изменение качества детектирования (3)

Модель	Год	mAP, %	АР, % (для некоторых классов)				
			bus	car	cat	person	train
R-CNN	2014	62.4	65.9	66.4	84.6	76.0	54.2
Faster R-CNN	2015	83.8	86.3	87.8	94.2	89.6	90.3
SSD300ft	2016	79.3	84.9	84.0	93.4	85.6	88.3
R-FCN	2016	85.0	86.7	89.0	95.8	91.1	92.0
YOLOv2	2017	75.4	81.2	78.2	92.9	88.6	88.8
ATLDETv2	2019	92.9	95.5	95.7	98.0	96.1	96.2

- □ С 2014 по 2019 гг. средняя точность детектирования увеличилась на 30% за счет применения рассмотренных подходов
- □ Легковесные модели (YOLOv2) показывают более низкие результаты качества
- □ Согласно результатам конкурса PASCAL VOC 2012* разрабатывается много модификаций рассмотренных моделей

[http://host.robots.ox.ac.uk:8080/leaderboard/displaylb_main.php?challengeid=11&compid=4].

Сравнение качества и скорости работы моделей

□ Тренировочные данные: PASCAL VOC 2007+2012

□ Тестовые данные: PASCAL VOC 2007

 Показатель качества: средняя точность предсказания, усредненная по 20 классам (mean average precision)

□ Инфраструктура: NVIDIA M40 или Titan X (сравнение

качественное) похое качество. но низкий FPS

пенлохое качество, но низкии гръ	
(модель не работает в реальном	
времени)	
Высокий FPS, но низкое	
качество	
Компромисс между качеством	
и скоростью работы	

Модель	mAP, %	FPS
Fast R-CNN	70.0	0,5
Faster R-CNN VGG-16	73.2	7
Faster R-CNN ResNet	76.4	5
YOLO	63.4	45
SSD500	76.8	19
YOLOv2 544x544	78.6	40

^{*} Redmon J., Farhadi A. YOLO9000: Better, Faster, Stronger. – 2016. – [https://arxiv.org/pdf/1612.08242.pdf], [https://pjreddie.com/darknet/yolo].

Заключение

- □ Множество глубоких моделей для детектирования объектов не ограничивается рассмотренными в настоящей лекции
- □ Существует большое количество модификаций рассмотренных архитектур (в частности, Faster R-CNN и SSD), о чем свидетельствуют результаты широко известных конкурсов по детектированию объектов разных классов
- □ Оптимальная модель компромисс между точностью и скоростью
 - Точность определяется требованиями к результатам решения задачи (результаты точности различаются в зависимости от тестовых данных!)
 - Скорость определяется имеющимися аппаратными возможностями (высокая скорость вывода на мощных GPU не всегда является хорошим показателем)

Основная литература (1)

- □ Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. 2014. [https://arxiv.org/pdf/1311.2524.pdf], [https://ieeexplore.ieee.org/abstract/document/6909475].
- ☐ Girshick R. Fast R-CNN. 2015. [https://arxiv.org/pdf/1504.08083.pdf], [https://ieeexplore.ieee.org/document/7410526].
- □ Ren S., He K., Girshick R., Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. 2016. [https://arxiv.org/pdf/1506.01497.pdf], [https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf].

Основная литература (2)

- Dai J., Li Y., He K., Sun J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. 2016. –
 [https://arxiv.org/pdf/1605.06409.pdf],
 [https://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf].
- □ Liu W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y., Berg A.C. SSD: Single Shot MultiBox Detector. 2016. [https://arxiv.org/pdf/1512.02325.pdf], [https://link.springer.com/chapter/10.1007/978-3-319-46448-0_2].
- □ Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object detection. 2015. [https://arxiv.org/pdf/1506.02640.pdf], [https://ieeexplore.ieee.org/document/7780460].

Основная литература (3)

- □ Redmon J., Farhadi A. YOLO9000: Better, Faster, Stronger. 2016. [https://arxiv.org/pdf/1612.08242.pdf], [https://pjreddie.com/darknet/yolo].
- □ Redmon J., Farhadi A. YOLOv3: An Incremental Improvement. –
 2018. [https://pjreddie.com/media/files/papers/YOLOv3.pdf].
- □ Lin T., Goyal P., Girshick R., He K., Dollar P. Focal Loss for Dense Object Detection. 2018. [https://arxiv.org/pdf/1708.02002.pdf].
- □ Zhou X., Wang D., Krahenbuhl P. Objects as Points. 2019. [https://arxiv.org/pdf/1904.07850.pdf].

Авторский коллектив (1)

- □ Турлапов Вадим Евгеньевич д.т.н., профессор кафедры МОСТ ИИТММ ННГУ vadim.turlapov@itmm.unn.ru
- □ Васильев Евгений Павлович преподаватель кафедры МОСТ ИИТММ ННГУ evgeny.vasiliev@itmm.unn.ru
- □ Гетманская Александра Александровна преподаватель кафедры МОСТ ИИТММ ННГУ getmanskaya.alexandra@gmail.com
- □ Кустикова Валентина Дмитриевна к.т.н., доцент кафедры МОСТ ИИТММ ННГУ valentina.kustikova@itmm.unn.ru

Авторский коллектив (2)

- □ Золотых Николай Юрьевич д.ф.-м.н., доцент кафедры АГДМ ИИТММ ННГУ nikolai.zolotykh@gmail.com
- □ Носова Светлана Александровна преподаватель кафедры МОСТ ИИТММ ННГУ nosova.sv.a@gmail.com
- □ Тужилкина Анастасия Андреевна магистрант ИИТММ ННГУ tan98-52@yandex.ru

