Computação Distribuída

Odorico Machado Mendizabal

Universidade Federal de Santa Catarina – UFSC Departamento de Informática e Estatística – INE

Redes de Computadores

Revisão de Comunicação e Suporte de Redes

- Redes de computadores permitem a comunicação entre dispositivos independentes
- Um meio físico é usado para enviar informação de um componente para outro
 - Pulsos (ondas) propagados por cabos, ar, fibras óticas, etc., são moduladas (em frequência ou amplitude) com intuito de codificar dados binários
- Representação da informação e regras são definidas através de protocolos

Internet – Um Exemplo Típico

Protocolos de Camadas

- A International Standards Organization (ISO) desenvolveu um modelo de referência para interconexão de sistemas abertos (OSI)
- Para que computadores se comuniquem em uma rede, todos devem usar os mesmos protocolos de comunicação
- Divisão em camadas torna a implementação de protocolos mais flexível, facilitando atualizações e correções
- Dispositivos em rede não necessitam implementar todas as camadas

Pilha de Protocolos em Camadas (OSI)

Formato das Mensagens na Rede

Encapsulamento da mensagem e sucessivos cabeçalhos

Camada Física

- Transmissão de sequências de bits sobre meio físico
- Bits são convertidos em sinais elétricos:
 - Faixas de tensão representam os valores 0 e 1
 - Tempos de transmissão
 - conectores e pinagens
 - meio físico utilizado
 - aspectos eletrônicos e mecânicos
- Não trata de correção de erros na transmissão

Camada Física

Transmissão da banda passante

Sinal binário

Chaveamento por mudança de amplitude

Chaveamento por mudança de freqüência

Chaveamento por mudança de fase

Camada Física

Tipos de Redes, exemplos, e características

	Exemplo	Alcance	Bandwidth (Mbps)	Latência (ms)
Wired:				
LAN	Ethernet (IEEE 802.3)	1-2 kms	10-100 000	1-10
WAN	IP routing	worldwide	0.010-600	100-500
MAN	ATM	250 kms	1-150	10
Internetwork	Internet	worldwide	0.5-600	100-500
Wireless:				
WPAN	Bluetooth (802.15.1)	10 - 30m	0.5-2	5-20
WLAN	WiFi (IEEE 802.11)	0.15-1.5 km	2-54	5-20
WMAN	WiMAX (802.16)	550 km	1.5-20	5-20
WWAN	GSM, 3G phone nets	worldwide	0.01-02	100-500

Camada de Enlace

- Organiza sequências de bits em conjuntos de bits chamados quadros (frames)
- Reconhece início e fim de quadros
- Detecta perdas de quadros e requisita retransmissão
- Implementa mecanismos de detecção e correção de erros (checksum)

Camada de Enlace

Fluxo de bytes e detecção de erros

Camada de Enlace

Fluxo de bytes e detecção de erros

Comunicação no Nível de Enlace

Camada de Rede

- Estabelece esquema único de endereçamento independente da sub-rede utilizada
- Encaminha informação da origem para o destino (roteamento)
- Permite conexão de sub-redes heterogêneas
- Controla fluxo de transmissão entre sub-redes (controle de congestão)
- Funções de contabilização

Camada de Rede – Endereçamento IP

- Identificação utilizada para referenciar um nodo localizado em uma rede local ou pública
- IPv4 utiliza 32 bits para representar um endereço:
 - Para melhor leitura, utiliza-se 4 octetos separados por "."
 - Ex.: 192.168.1.34
 - Primeira parte do endereço indica a rede
 - Segunda parte do endereço identifica um host localizado na rede
- O espaço de endereçamento das redes é identificado por classes de redes (as mais comuns são as classes A, B e C)

Camada de Rede – Classes de Endereços

Faixa de Endereços Nº de Hosts

- Classe A: [1.0.0.0, 126.0.0.0]
- Classe B: [128.0.0.0 , 191.255.0.0]
- Classe C: [192.0.0.0, 223.255.255.0]

16.777.216

65.536

256

Camada de Rede – Endereçamento IP

- Atualmente é mais usual adotar o método CIDR (Classless Inter-Domain Routing) – Encaminhamento Entre Domínios Sem Classificação – para a alocação de endereços IP
 - Abordagem mais flexível e eficiente para a alocação de endereços IP
 - A notação CIDR permite uma distribuição mais granular de endereços IP
 - Quanto maior o sufixo CIDR, menor será o número de endereços IP disponíveis

CIDR	MÁSCARA DE SUB-REDE	MÁSCARA CORINGA	Nº DE ENDEREÇOS IP	ENDEREÇOS IP USÁVEIS
/32	255.255.255.255	0.0.0.0	1	1
/31	255.255.255.254	0.0.0.1	2	2*
/24	255.255.255.0	0.0.0.255	256	254
/23	255.255.254.0	0.0.1.255	512	510

Camada de Rede – Endereços Especiais

- **127.0.0.1**: No contexto local, este endereço representa o endereço do próprio host
 - Mensagens enviadas para este endereço descem a pilha de protocolos e são encaminhadas de volta (*loopback*) pela pilha.

Broadcast: Todos os bits identificadores do host são atribuídos com o valor 1

Ex.: para a ID da rede: 192.168.0.0 (rede classe C – apenas o último octeto é usado para endereçar o host)

- O endereço de difusão (broadcast) é 192.168.0.255

Camada de Rede – Roteamento em uma WAN

Camada de Rede – Tabelas de Rota

Routings from A		
_To	Link	Cost
A	local	0
В	1	1
C	1	2
D	3	1
_ <u>E</u>	1	2

Routings from B		
То	Link	Cost
A	1	1
В	local	0
C	2	1
D	1	2
E	4	1

Routings from C		
<u>To</u>	Link	Cost
A	2	2
В	2	1
C	local	0
D	5	2
Ε	5	1

Routings from D			
Link	Cost		
3	1		
3	2		
6	2		
local	0		
6	1		
	Link 3 3 6 local		

Camada de Transporte

- Divide e reagrupa a informação binária em pacotes
- Garante a sequência dos pacotes
- Assegura a conexão confiável entre origem e destino da comunicação
- Primeira camada que estabelece comunicação origemdestino

Camada de Transporte

• Camadas de rede, transporte e sessão/aplicação

Camada de Transporte

Exemplos de primitivas oferecidas

Camada de Sessão

- Gerencia sessões de comunicação
- Sessão é uma comunicação que necessita armazenar estados
- Estados de verificação (checkpoints) são armazenados para permitir re-estabelecimento da comunicação em caso de queda da comunicação

Exemplo: Retomar transferências de arquivos

Camada de Apresentação

- Trata da representação dos dados em alto nível
- Adoção de sistema padronizado de representação de caracteres
- Adoção de códigos de representação numérica padrão
- Compressão de dados
- Codificação de dados

Camada de Aplicação

- Aplicações que oferecem os serviços ao usuário final
- Unificação de sistemas de arquivos e diretórios
- Correio eletrônico (SMTP)
- Login remoto
- Transferência de arquivos (FTP)
- Execução remota

Formato de Mensagens TCP/IP

Encapsulamento da mensagem e sucessivos cabeçalhos

Implementação da Pilha de Protocolos

Referências

Parte destes slides são baseadas em material de aula dos livros:

Coulouris, George; Dollimore, Jean; Kindberg, Tim; Blair, Gordon.
 Sistemas Distribuídos: Conceitos e Projetos. Bookman; 5ª edição.
 2013. ISBN: 8582600534

 Tanenbaum, Andrew S.; Van Steen, Maarten. Sistemas Distribuídos: Princípios e Paradigmas. 2007. Pearson Universidades; 2ª edição. ISBN: 8576051427

