1

Assignment 1 Ncert Exampler

Rajeev Kumar EE22BTECH11042

Question 9.3.13 Find the probability of getting 5 twice in 7 throws of a dice.

Solution:

let Y be a gaussian Random variable

Parameter	Value	Description
X	{0,1,2,3,4,5,6,7}	Number of 5 appearing on dice
n	7	Number of cards drawn
p	$\frac{1}{6}$	getting 5
q	<u>5</u>	getting any other number
$\mu = np$	$\frac{7}{6}$	Mean of Binomial distribution
$\sigma^2 = npq$	35 36	Varience of Binomial distribution

TABLE 0

RANDOM VARIABLE AND PARAMETER

$$Y \sim N(\mu, \sigma) \tag{1}$$

$$\sim N(1.166, 0.972)$$
 (2)

Due to continuity correction Pr(X = x) can be approximated using gaussian distribution as

$$p_Y(x) \approx \Pr(x - 0.5 < Y < x + 0.5)$$
 (3)

$$\approx \Pr(Y < x + 0.5) - \Pr(Y < x - 0.5) \tag{4}$$

$$\approx F_Y(x+0.5) - F_Y(x-0.5) \tag{5}$$

CDF of Y is defined as:

$$F_Y(x) = \Pr(Y < x) \tag{6}$$

$$=\Pr\left(\frac{Y-\mu}{\sigma}<\frac{x-\mu}{\sigma}\right) \tag{7}$$

$$\implies \frac{Y - \mu}{\sigma} \sim N(0, 1) \tag{8}$$

$$=1-\Pr\left(\frac{Y-\mu}{\sigma}>\frac{x-\mu}{\sigma}\right) \tag{9}$$

$$= \begin{cases} 1 - Q\left(\frac{x-\mu}{\sigma}\right) & x \ge \mu \\ Q\left(\frac{\mu-x}{\sigma}\right) & x < \mu \end{cases}$$
 (10)

Then probability in terms of Q funtion is

$$\implies p_Y(x) \approx Q\left(\frac{(x-0.5)-\mu}{\sigma}\right) - Q\left(\frac{(x+0.5)-\mu}{\sigma}\right) \tag{11}$$

The Gaussian approximation for Pr(X = 2) is

$$p_Y(2) \approx Q\left(\frac{1.5 - 1.166}{0.972}\right) - Q\left(\frac{2.5 - 1.166}{0.972}\right)$$
 (12)

$$\approx Q(0.343) - Q(1.371) \tag{13}$$

$$\approx 0.282\tag{14}$$

Fig. 0. Binomial and gaussian distribution