(Multiple) Regression in SAS: REG vs. GLM

- There are two major procedures in SAS that fit regression models
 - o **proc reg** (reg is short for 'regression')
 - o **proc glm** (glm stands for 'general linear model')
- Some of the pros and cons of each are:
 - o REG will allow you to fit several different models in a single **proc** statement; GLM will not
 - o GLM will allow you to directly include special categorical predictor variables (using a class statement) and interactions in the model statement; to include such terms using REG, you first need to create new variables in the **data** step.
- Note: the clb cli clm options on the model statement still work for multiple regression, in both REG and GLM (see the notes on Simple Linear Regression in SAS).

Example SAS code using the BAC data:

```
DATA bac;
input BAC weight sex $ beers;
datalines;
0.12 192
           male 8
          female
                        5
0.1
      132
          female
0.03 128
                        2
0.19 110
          female
                        9
0.04 172
           male 3
0.095 250
           female
                        7
0.07
     125
                        3
           female
      175
           male 5
0.06
0.02
      175
                        3
           female
0.05
      275
           male 5
0.07 130
           female
                        4
0.1
      168
           male 6
           female
0.085 128
                        5
0.09 246
           male 7
           male 1
0.01
      164
0.05 175
           male 4
run;
DATA bac;
     set bac; * this tells SAS to copy the bac dataset we just created;
/* recode sex from 'female/male' to '0/1' */
if sex='male' then sex_r=1;
      else if sex='female' then sex_r=0;
/* quadratic terms for beers and weight */
beers2 = beers*beers;
weight2 = weight*weight;
/* create interaction terms */
int sb = beers*sex r;
int wb = beers*weight;
run;
```

```
/* Use PROC REG to create models
/* Note: Can use multiple MODEL statements
                                                        * /
/* Note: Need to use recoded variables from 2nd DATA step above */
/************************
/* Basic BAC Models from the notes */
PROC reg data=bac;
     model bac = beers;
     model bac = beers weight;
     model bac = beers sex_r; * note inclusion of recoded variable;
     model bac = beers sex_r weight;
     model bac = beers weight beers2 weight2 int_wb;
run;
/***********************
/* Use PROC GLM to create models
                                                      * /
/* Note: Only one MODEL statement per proc
/* Note: Do not need to use recoded variables from DATA step */
/************************
PROC glm data=bac;
 model bac = beers;
run;
PROC glm data=bac;
 class sex; * this tells SAS that sex is a categorical variable;
 model bac = beers sex / solution;
/* the 'solution' option requests that the parameter estimates be displayed, these are
hidden by default when you include a categorical predictor */
run;
PROC glm data=bac;
     model bac = beers weight beers*beers weight*weight weight*beers; * the last 3 terms
all represent interactions;
run;
quit; * GLM will tend to run endlessly if you do not include a 'quit' statement;
/******************/
/* Too much output??? */
/*******/
ODS HTML CLOSE; *this stops SAS from writing any more output to the Results Viewer
ODS HTML; *this opens a new Results Viewer window where new output will be displayed;
```

Output Produced by this Code (Graphics Not Included):

The SAS System

The REG Procedure
Model: MODEL1
Dependent Variable: BAC

Number of Observations Read 16

Number of Observations Used 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F	Value	Pr > F
Model	1	0.02338	0.02338		55.94	<.0001
Error	14	0.00585	0.00041783			
Corrected Total	15	0.02922				

Root MSE 0.02044 **R-Square** 0.7998

Dependent Mean 0.07375 Adj R-Sq 0.7855

Coeff Var 27.71654

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	-0.01270	0.01264	-1.00	0.3320
beers	1	0.01796	0.00240	7.48	<.0001

The REG Procedure Model: MODEL2

Dependent Variable: BAC

Number of Observations Read 16

Number of Observations Used 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	0.02782	0.01391	128.33	<.0001
Error	13	0.00141	0.00010838		
A					

Corrected Total 15 0.02922

Root MSE 0.01041 **R-Square** 0.9518

Dependent Mean 0.07375 Adj R-Sq 0.9444

Coeff Var 14.11574

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	0.03986	0.01043	3.82	0.0021
beers	1	0.01998	0.00126	15.82	<.0001
weight	1	-0.00036282	0.00005668	-6.40	<.0001

The REG Procedure Model: MODEL3

Dependent Variable: BAC

Number of Observations Read 16

Number of Observations Used 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F	Value	Pr > F
Model	2	0.02494	0.01247		37.79	<.0001
Error	13	0.00429	0.00032991			
Corrected Total	15	0.02922				

Root MSE 0.01816 **R-Square** 0.8532

Dependent Mean 0.07375 Adj R-Sq 0.8307

Coeff Var 24.62821

Variable	DF		Standard Error	t Value	Pr > t
Intercept	1	-0.00348	0.01200	-0.29	0.7767
beers	1	0.01810	0.00214	8.48	<.0001
sex r	1	-0.01976	0.00909	-2.18	0.0487

The REG Procedure Model: MODEL4

Dependent Variable: BAC

Number of Observations Read 16

Number of Observations Used 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F	Value	Pr > F
Model	3	0.02785	0.00928		80.81	<.0001
Error	12	0.00138	0.00011486			
Corrected Total	15	0.02922				

Root MSE 0.01072 **R-Square** 0.9528

Dependent Mean 0.07375 Adj R-Sq 0.9410

Coeff Var 14.53212

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	0.03871	0.01097	3.53	0.0042
beers	1	0.01990	0.00131	15.20	<.0001
sex_r	1	-0.00324	0.00629	-0.52	0.6156
weiaht	1	-0.00034440	0.00006842	-5.03	0.0003

The REG Procedure Model: MODEL5

Dependent Variable: BAC

Number of Observations Read 16

Number of Observations Used 16

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	5	0.02843	0.00569	71.53	<.0001
Error	10	0.00079491	0.00007949		
Corrected Total	15	0 02022			

Root MSE 0.00892 **R-Square** 0.9728

Dependent Mean 0.07375 Adj R-Sq 0.9592

Coeff Var 12.08920

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	0.13855	0.04909	2.82	0.0181
beers	1	0.01364	0.00724	1.88	0.0892
weight	1	-0.00132	0.00044525	-2.98	0.0139
beers2	1	0.00051929	0.00045388	1.14	0.2792
weight2	1	0.00000255	0.00000103	2.48	0.0324
int_wb	1	0.00000203	0.00003050	0.07	0.9483

The GLM Procedure

Number of Observations Read 16

Number of Observations Used 16

The GLM Procedure

Dependent Variable: BAC

Source	DF S	Sum of	Squares	Mean	Square	F	Value	Pr > F
Model	1	0.0	02337535	0.02	2337535		55.94	<.0001
Error	14	0.0	00584965	0.00	0041783			
Corrected Total	15	0.0	02922500					

R-Square Coeff Var Root MSE BAC Mean

0.799841 27.71654 0.020441 0.073750

```
Source DF Type I SS Mean Square F Value Pr > F
 beers
         1 0.02337535
                       0.02337535
                                     55.94 < .0001
Source DF Type III SS Mean Square F Value Pr > F
beers
           0.02337535 0.02337535
                                     55.94 < .0001
Parameter
              Estimate
                         Standard t Value Pr > |t|
                            Error
Intercept -.0127006040 0.01263750
                                    -1.00
                                            0.3320
beers
          0.0179637619 0.00240170
                                    7.48
                                            <.0001
```

Note: 'Type I' vs. 'Type III' Sums of Squares

- Type I SS = sequential (order dependent)
 - Accounts for new term in model after all <u>previous</u> terms have been accounted for
- Type III SS = overall (not order dependent)
 - Accounts for new term in model after all other terms have been accounted for
- Both printed by default with PROC GLM

The GLM Procedure

Class Levels Values

sex 2 female male

Number of Observations Read 16

Number of Observations Used 16

The GLM Procedure

Dependent Variable: BAC

Source	DF Sum	of Squares	Mean Square F	- Value	Pr > F
Model	2	0.02493623	0.01246811	37.79	<.0001
Error	13	0.00428877	0.00032991		
Corrected Total	15	0.02922500			

R-Square Coeff Var Root MSE BAC Mean

0.853250 24.62821 0.018163 0.073750

Source	DΓ	Type 1 55	mean Square	r value	Pr > F
beers	1	0.02337535	0.02337535	70.85	<.0001
sex	1	0.00156088	0.00156088	4.73	0.0487

Source DF Type III SS Mean Square F Value Pr > F

beers	1	0.02371123	0.02371123	71.87 <.0001
sex	1	0.00156088	0.00156088	4.73 0.0487

for a categorical	sex	1	0.00156088	0.00156088	4.73	0.0487
predictor, you need 1 fewer variables	Parameter		Estimate	Standard	t Value	Pr > t
than there are categories. That is				Error		
basically what GLM	Intercept		.0232383420 E	3 0.01222983	-1.90	0.0798
is telling you here.	beers	0	.0181001727	0.00213501	8.48	<.0001

Recall from class:

Also note: 'male' is

baseline category.

used as the

sex female 0.0197625216 B 0.00908557 2.18 0.0487

0.000000000 B sex male

This table would not be printed without the solutions option, since sex is categorical.

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

The GLM Procedure

Dependent	Variable:	BAC
-----------	-----------	-----

Source	DF Sum	of Squares	Mean Square	F Value	Pr > F
Model	5	0.02843009	0.00568602	71.53	<.0001
Error	10	0.00079491	0.00007949		
Corrected Total	15	0.02922500			

R-Square Coeff Var Root MSE BAC Mean

0.972800 12.08920 0.008916 0.073750

Source	DF Type I	SS Mean Square	F Value Pr > F
beers	1 0.023375	35 0.02337535	294.06 <.0001
weight	1 0.004440	77 0.00444077	55.86 <.0001
beers*beers	1 0.000122	47 0.00012247	1.54 0.2428
weight*weight	1 0.000491	15 0.00049115	6.18 0.0322
beers*weight	1 0.000000	35 0.00000035	0.00 0.9483
0	DE T 111	00 11	5 Value Bu > 5
Source	DF Type III	SS Mean Square	F Value Pr > F
beers	1 0.000281	70 0.00028170	3.54 0.0892
weight	1 0.000703	96 0.00070396	8.86 0.0139
beers*beers	1 0.000104	0.00010405	1.31 0.2792
weight*weight	1 0.000489	0.00048975	6.16 0.0324
beers*weight	1 0.000000	0.00000035	0.00 0.9483
Parameter	Estimato	e Standard t Error	Value Pr > t
Intercept	0.138553017	4 0.04909102	2.82 0.0181
beers	0.0136361629	9 0.00724370	1.88 0.0892
weight	001324995	7 0.00044525	-2.98 0.0139
beers*beers	0.000519290	1 0.00045388	1.14 0.2792
weight*weight	0.0000025500	0.00000103	2.48 0.0324
beers*weight	0.000002029	1 0.00003050	0.07 0.9483