Unidad I: Altavoz en Pantalla Infinita

Parte 4 – Impedancia Eléctrica y Función de Respuesta

> Recinto para Altavoces Prof. Ing. Andrés Barrera A.

1.- Impedancia Eléctrica en Pantalla Infinita

La impedancia eléctrica en los terminales del altavoz:

$$Z_{VC} = \operatorname{Re} + \left[\frac{\operatorname{Res} / / Z_{Cmes} / / Z_{Lces}}{\operatorname{1}} \right]$$

$$Z_{VC} = \operatorname{Re} + \left[\frac{1}{\frac{1}{\operatorname{Re} s} + \frac{1}{\frac{1}{j\omega Cmes}}} + \frac{1}{j\omega Lces}} \right]$$

$$Z_{VC} = \operatorname{Re} + \left[\frac{1}{\frac{1}{\operatorname{Re} s} + sCmes} + \frac{1}{sLces}} \right] = \dots = \operatorname{Re} + \operatorname{Res} \left[\frac{sLces}{s^2 CmesLces \operatorname{Res} + sLces} + \operatorname{Res}} \right]$$

Dividiendo por Res:
$$Z_{VC} = \text{Re} + \text{Res} \left[\frac{sLces}{s^2CmesLcesRes + sLces + Res} \right] / \times \frac{\frac{1}{Res}}{\frac{1}{Res}}$$

$$Z_{VC} = \text{Re} + \text{Res} \left[\frac{s\frac{Lces}{Res}}{s^2CmesLces + s\frac{Lces}{Res} + 1} \right]$$

Def. Constante de Tiempo Característica del Sistema (Ts)

$$T_S = \frac{1}{\omega_S} = \frac{1}{2\pi f_S}$$

Usando: (1)
$$T_S^2 = \frac{1}{\omega_S^2} = CmesLces$$

$$(2) \frac{Lces}{Res} = \frac{\frac{1}{\omega_s^2 Cmes}}{\frac{Qms}{\omega_s Cmes}} = \frac{1}{\omega_s Qms} = \frac{T_s}{Qms}$$

1.- Impedancia Eléctrica en Pantalla Infinita

Finalmente:

$$Z_{VC}(s) = \text{Re} + \text{Res} \left[\frac{s \frac{T_S}{Qms}}{s^2 T_S^2 + s \frac{T_S}{Qms} + 1} \right]$$

2.- Magnitud de $Z_{VC}(s)$

$$\left| Z_{VC}(j\omega) \right| = \text{Re} + \text{Res} \left[\frac{\frac{1}{Qms} \left(\frac{\omega}{\omega_{S}} \right)}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_{S}} \right)^{2} \right]^{2} + \frac{1}{Qms^{2}} \left(\frac{\omega}{\omega_{S}} \right)^{2}}} \right]$$

Análisis:

i) Baja Frecuencia
$$\omega \rightarrow 0 =$$

Baja Frecuencia
$$\omega \to 0 \Rightarrow Lim |Z_{VC}(j\omega)|_{\omega \to 0} = \text{Re}$$

Alta Frecuencia $\omega \to \infty \Rightarrow Lim |Z_{VC}(i\omega)| = \text{Re}$

ii) Alta Frecuencia
$$\omega \to \infty \Rightarrow Lim \big| Z_{VC}(j\omega) \big|_{\omega \to \infty} = \text{Re}$$

iii) En Resonancia $\omega = \omega_S \Rightarrow \big| Z_{VC}(j\omega) \big|_{\omega = \omega_S} = \text{Re} + \text{Res}$

2.- Magnitud de $Z_{VC}(s)$

Respuesta

2.- Medición de Parámetros TS

Sabemos que:

$$|Z_{VC}(j\omega)|_{MAX} = \text{Re+Res}$$

Definimos:

$$r_0 = \frac{\left| Z_{VC}(j\omega) \right|_{MAX}}{\text{Re}} = 1 + \frac{\text{Res}}{\text{Re}}$$

Usando: $Qms = \omega_s Cmes \cdot Res$

$$Qes = \omega_s Cmes \cdot Re$$

$$\therefore \frac{\text{Res}}{\text{Re}} = \frac{\text{Qms}}{\text{Qes}}$$

$$Qes = \frac{Qms}{r_0 - 1}$$

2.- Medición de Parámetros TS

Asimismo, definimos:

$$r_1 = \sqrt{r_0} \quad \wedge \quad \omega_S = \sqrt{\omega_1 \omega_2}$$

Evaluando la impedancia en ω_1 y ω_2 , igualando a r_1 , y despejando Qms tenemos que

$$Qms = \frac{\omega_S}{\omega_2 - \omega_1} \sqrt{r_0}$$

2.- Medición de Parámetros TS

$$Qes = \frac{Qms}{r_0 - 1}$$

$$\qquad \qquad \Box \rangle$$

$$Qms = \frac{\omega_S}{\omega_2 - \omega_1} \sqrt{r_0}$$

$$Qts = \frac{QesQms}{Qes + Qms}$$

2.- Medición de la Compliancia Acústica de la Suspensión

2.1.- MÉTODO DE LA MASA ("DELTA MASS")

Fundamento: Agregar una masa de valor conocido al diafragma, y medir la nueva frecuencia de resonancia del sistema.

$$fs = \frac{1}{2\pi\sqrt{CmsMms}} \leftarrow \frac{\text{Frecuencia de resonancia}}{\text{del altavoz}}$$
Nueva frecuencia de resonancia, al agregar una masa "m"
$$fs' = \frac{1}{2\pi\sqrt{Cms(Mms+m)}} \quad con \quad fs' < fs$$

Nueva frecuencia de

$$\left(\frac{fs}{fs'}\right)^2 = \frac{Mms + m}{Mms} \Rightarrow Mms = \frac{m}{\left(\frac{fs}{fs'}\right)^2 - 1}$$

2.- Medición de la Compliancia Acústica de la Suspensión

2.1.- MÉTODO DE LA MASA ("DELTA MASS")

Finalmente, a partir de Mms es posible determinar Cms y finalmente Vas.

$$Vas = \rho_0 c^2 Cms \cdot Sd^2$$

$$Cms = \frac{1}{(2\pi fs)^2 Mms}$$

$$\therefore Vas = \rho_0 c^2 \frac{Sd^2}{(2\pi fs)^2 Mms}$$

Volumen de aire equivalente de la suspensión.

2.- Medición de la Compliancia Acústica de la Suspensión

2.2.- MÉTODO DE LA COMPLIANCIA ("DELTA COMPLIANCE")

Fundamento: Montar el altavoz en una caja de volumen conocido (Vb) y variar la compliancia del sistema.

$$fs = \frac{1}{2\pi\sqrt{CmsMms}} \leftarrow \frac{\text{Frecuencia de resonancia}}{\text{del altavoz}}$$

Nueva frecuencia de volumen Vb

Nueva frecuencia de resonancia, al montar el altavoz en una caja de
$$fs' = \frac{1}{2\pi\sqrt{Cms'Mms}} \quad con \quad fs' < fs$$

$$\left(\frac{fs}{fs'}\right)^{2} = \frac{Cms'}{Cms} = \frac{\frac{Vas + Vb}{\rho_{0}c^{2}}}{\frac{Vas}{\rho_{0}c^{2}}}$$

$$Vas$$

$$Vas = \frac{Vb}{\left(\frac{fs}{fs'}\right)^2 - 1}$$

3.1.- Potencia Acústica de Salida

$$P_{A} = |U_{0}|^{2} R_{AR} = |U_{0}|^{2} \frac{\rho_{0} \omega^{2}}{2\pi c}$$

3.2.- Potencia Eléctrica de Entrada

$$P_E = \left(\frac{eg}{Rg + Re}\right)^2 Re$$

3.3.- Eficiencia o Razón de Transferencia de Potencia

$$\eta = \frac{P_A}{P_E} = \frac{|U_0|^2 R_{AR}}{\left(\frac{eg}{Rg + Re}\right)^2 Re} = |U_0|^2 R_{AR} \frac{(Rg + Re)^2}{eg^2 Re}$$

El caudal se determina a partir del circuito acústico:

$$Z_A = \frac{P}{U} \Leftrightarrow Rat + sMas + \frac{1}{sCas} = \frac{eg \cdot Bl}{(Rg + Re)Sd} \cdot \frac{1}{U_0(s)}$$

3.3.- Eficiencia o Razón de Transferencia de Potencia

Despejando U_0 :

$$U_0(s) = \frac{eg \cdot Bl}{(Rg + Re)Sd} \left[\frac{sCas}{s^2 MasCas + sRatCas + 1} \right]$$

Multiplicando por sMas/sMas tenemos que:

$$U_0(s) = \frac{eg \cdot Bl}{(Rg + Re)Sd \cdot sMas} \left[\frac{s^2 MasCas}{s^2 MasCas + sRatCas + 1} \right]$$

Función de Respuesta del Altavoz G(s)

3.3.- Eficiencia o Razón de Transferencia de Potencia

Entonces:

$$U_0(s) = \frac{eg \cdot Bl}{(Rg + Re)Sd \cdot sMas}G(s)$$

Volviendo a la eficiencia:

$$\eta(\omega) = |U_0|^2 R_{AR} \frac{(Rg + Re)^2}{eg^2 Re} = \left(\frac{eg \cdot Bl}{(Rg + Re)Sd \cdot \omega Mas}\right)^2 \cdot \frac{\rho_0 \omega^2}{2\pi c} \cdot \frac{(Rg + Re)^2}{eg^2 Re} \cdot |G(j\omega)|^2$$

3.3.- Eficiencia o Razón de Transferencia de Potencia

Finalmente:

Independiente de la frecuencia (Eficiencia de referencia η_0)

Impedancia Eléctrica y Función de Respuesta

4.-Función de Respuesta

Inicialmente:

$$G(s) = \frac{s^2 Mas Cas}{s^2 Mas Cas + sRat Cas + 1}$$

Transformando a parámetros TS:

FUNCIÓN DE RESPUESTA

$$G(s) = \frac{s^{2}T_{S}^{2}}{s^{2}T_{S}^{2} + s\frac{T_{S}}{Qts} + 1}$$

$$G(j\omega) = \frac{-\left(\frac{\omega}{\omega_{S}}\right)^{2}}{1 - \left(\frac{\omega}{\omega_{S}}\right)^{2} + j\frac{1}{Qts}\left(\frac{\omega}{\omega_{S}}\right)}$$

5.- Respuesta de Frecuencia

Tomando el módulo:

$$|G(j\omega)| = \frac{\left(\frac{\omega}{\omega_S}\right)^2}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_S}\right)^2\right]^2 + \frac{1}{Qts^2}\left(\frac{\omega}{\omega_S}\right)^2}}$$

Análisis:

i) Baja Frecuencia
$$\omega \to 0 \Rightarrow Lim |G(j\omega)|_{\omega \to 0} = 0$$
 $(20 \log |G(j\omega)| \to -\infty dB)$

ii) Alta Frecuencia
$$\omega \to \infty \Rightarrow Lim[G(j\omega)]_{\omega \to \infty} = 1$$
 $(20\log|G(j\omega)| \to 0dB)$

i) Baja Frecuencia
$$\omega \to 0 \Rightarrow Lim|G(j\omega)|_{\omega \to 0} = 0$$
 $(20\log|G(j\omega)| \to -\infty dB)$
ii) Alta Frecuencia $\omega \to \infty \Rightarrow Lim|G(j\omega)|_{\omega \to \infty} = 1$ $(20\log|G(j\omega)| \to 0 dB)$
iii) En Resonancia $\omega = \omega_S \Rightarrow |G(j\omega)|_{\omega = \omega_S} = Qts$ $(20\log|G(j\omega)| = 20\log Qts)$

5.- Respuesta de Frecuencia

6.-Parámetros importantes

6.1.- Eficiencia de Referencia

Escrita en términos de parámetros TS.

$$\eta_0 = \frac{\rho_0}{2\pi c} \cdot \frac{(Bl)^2}{\text{Re} \cdot Sd^2 Mas^2} = \frac{4\pi^2}{c^3} \cdot \frac{fs^3 Vas}{Qes}$$

6.2.- Frecuencia de corte (f3) del sistema

Surge cuando:

$$20\log|G(j\omega)|_{\omega=\omega_3} = -3dB \Rightarrow \frac{f_3}{f_s} = \sqrt{\frac{Q_3}{Q_3}}$$

$$\frac{f_3}{f_S} = \sqrt{\frac{\left(\frac{1}{Qts^2} - 2\right) + \sqrt{\left(\frac{1}{Qts^2} - 2\right)^2 + 4}}{2}}$$

6.-Parámetros importantes

6.3.- Sensibilidad del altavoz

Supuestos: Campo libre ^ Radiación hemisférica

$$I = \frac{P_A}{2\pi r^2} = \frac{p^2}{\rho_0 c} \longrightarrow p^2(\omega) = \rho_0 c \frac{P_A}{2\pi r^2} = \rho_0 c \frac{\eta(\omega) P_E}{2\pi r^2} = \rho_0 c \frac{\eta_0 |G(j\omega)|^2 P_E}{2\pi r^2}$$

Transformando a dB:

$$SPL(r, P_E) = 10\log \eta_0 + 20\log |G(j\omega)| + 10\log P_E - 20\log r + 112,1$$

Aplicando definición de sensibilidad:

$$sens = 10\log \eta_0 + 112,1 \quad dB(1W,1m)$$

$$\eta_0 = \frac{4\pi^2}{c^3} \cdot \frac{fs^3 Vas}{Qes}$$

KAPPALITE™ 3012HO Neodymium

Recommended for vented professional audio enclosures for full-range or as mids.

Thiele & Small Parameters

Resonant Frequency (fs)	51.5Hz
DC Resistance (Re)	5.5
Coil Inductance (Le)	0.98mH
Mechanical Q (Qms)	6.94
Electromagnetic Q (Qes)	0.33
Total Q (Qts)	0.32
Compliance Equivalent Volume (Vas)	81.10 liters / 2.86 cu.ft.
Peak Diaphragm Displacement Volume (Vd)	330cc
Mechanical Compliance of Suspension (Cms)	0.20mm/N
BL Product (BL)	15.9 T-M
Diaphragm Mass inc. Airload (Mms)	46.9 grams
Efficiency Bandwidth Product (EBP)	157.4
Maximum Linear Excursion (Xmax)	6.2mm
Surface Area of Cone (Sd)	532.4 cm2
Maximum Mechanical Limit (Xlim)	12.5mm

