

Capítulo 1: Transistores Bipolares de Junção - TBJ 1.1: O Transistor Bipolar de Junção

> O Transistor Bipolar de Junção - TBJ (*Bipolar* Junction Transistor - BJT) é um dispositivo semicondutor constituído por três camadas de material extrínseco, podendo ser um:

Transistor pnp: Formado por duas camadas externas

do tipo **p** e uma interna do tipo **n** 

Transistor npn: Formado por duas camadas externas

do tipo **n** e uma interna do tipo **p** 

Unipolar: Condução só por Elétrons ou só por Lacunas

Bipolar: Condução por Elétrons e Lacunas



#### Capítulo 1: Transistores Bipolares de Junção - TBJ 1.1.1: Construção do TBJ

### Região da base (B)

É a região menos dopada e mais estreita do transistor.



### Região do emissor (E)

É a região de maior nível de dopagem e de onde partem os portadores de carga.

### Região do coletor (C)

E a região de maior volume e de nível médio de dopagem. Recebe os portadores de carga provenientes do emissor.



| MODOS DE OPERAÇÃO DO TBJ             |         |         |  |  |  |  |  |
|--------------------------------------|---------|---------|--|--|--|--|--|
| Modo J <sub>EB</sub> J <sub>BC</sub> |         |         |  |  |  |  |  |
| CORTE                                | Reversa | Reversa |  |  |  |  |  |
| SATURAÇÃO                            | Direta  | Direta  |  |  |  |  |  |
| ATIVO                                | Direta  | Reversa |  |  |  |  |  |
| ATIVO REVERSO                        | Reversa | Direta  |  |  |  |  |  |



## Transistor pnp no Modo Ativo: Polarização da J<sub>FR</sub>

Com a polarização direta da  $J_{EB}$  a sua região de depleção tem a largura diminuída e é estabelecido um fluxo denso de portadores majoritários (lacunas) da região p (emissor) para a região n (base).





## Transistor pnp no Modo Ativo: Polarização da J<sub>BC</sub>

Com a polarização reversa da  $J_{BC}$  a sua região de depleção tem a largura aumentada fazendo com que o fluxo de portadores majoritários (lacunas) da região p (coletor) para a região n (base) seja nulo. Entretanto, haverá um fluxo de portadores minoritários (lacunas) da região n (base) para a região p (coletor).





### **Transistor pnp no Modo Ativo**

A região da base, por ser estreita e pouco dopada, apresenta baixa condutividade. Assim, a maior parte dos portadores majoritários vindos do emissor entrará via  $J_{BC}$  na região p do coletor, enquanto apenas alguns poucos deles irão para o terminal da base. Dessa forma, teremos uma corrente entre emissor e coletor da ordem de miliampères enquanto a corrente de base será da ordem microampères.





### **Transistor pnp no Modo Ativo**

Portanto, temos:

$$I_{\mathsf{E}} = I_{\mathsf{C}} + I_{\mathsf{B}}$$

$$\mathbf{I_C} = \mathbf{I_{Cmajorit\acute{a}r\acute{b}}} + \mathbf{I_{Cminorit\acute{a}r\acute{b}}} \left(\mathbf{I_{CO}}\right)$$





### **Transistor npn no Modo Ativo**

$$\begin{aligned} \mathbf{I_E} &= \mathbf{I_C} + \mathbf{I_B} \\ \mathbf{I_C} &= \mathbf{I_{Cmajorit\acute{a}r\acute{o}}} + \mathbf{I_{Cminorit\acute{a}r\acute{o}}} \left( \mathbf{I_{CO}} \right) \end{aligned}$$





### **Transistor pnp**



$$I_{E} = I_{C} + I_{B}$$

$$\alpha = \frac{I_{C}}{I_{E}}$$

Típico:  $0.9 < \alpha < 0.998$ 

### **Transistor npn**





Robert L. Boylestad and Louis Nashelsky Electronic Devices and Circuit Theory, 8e

### **Curvas Características de Entrada**



## Curva Aproximada









## A Corrente I<sub>CBO</sub>



Coletor para a base



Robert L. Boylestad and Louis Nashelsky Electronic Devices and Circuit Theory, 8e

**Exemplo 3.1:** A partir das curvas características de um transistor na configuração base comum, apresentadas abaixo, determine:

- a) o valor de  $I_c$  para  $I_E = 3$  [mA]  $e V_{CB} = 10$  [V];
- b) o valor de  $I_c$  para  $I_E = 3$  [mA]  $e V_{CB} = 2$  [V];
- c) o valor de  $V_{BE}$  para  $I_{C} = 4$  [mA] e  $V_{CB} = 20$  [V];

d) o valor de  $V_{\rm BE}$ , utilizando-se a curva característica aproximada de

entrada.







### Solução para o Exemplo 3.1





| Respostas           |      |  |  |  |
|---------------------|------|--|--|--|
| I <sub>C</sub> [mA] | 3    |  |  |  |
| I <sub>C</sub> [mA] | 3    |  |  |  |
| V <sub>BE</sub> [V] | 0,74 |  |  |  |
| V <sub>BE</sub> [V] | 0,7  |  |  |  |



### **Transistor pnp**

### **Transistor npn**





### **Transistor pnp**





## **Transistor npn**

$$I_{\rm E} = I_{\rm C} + I_{\rm B}$$

$$\beta = \frac{I_{C}}{I_{B}}$$

Típico:  $50 < \beta < 400$ 



### **Transistor pnp**







$$\beta = \frac{I_{C}}{I_{B}}$$

Típico:  $50 < \beta < 400$ 

### **Transistor npn**







### Curvas Características de Entrada



## Curva Aproximada



Robert L. Boylestad and Louis Nashelsky

Electronic Devices and Circuit Theory, 8e



### Curvas Características de Saída





**Exemplo 3.2:** A partir das curvas características de um transistor na configuração emissor comum, apresentadas abaixo, determine:

- a) o valor de  $I_c$  para  $I_B = 30 [\mu A] e V_{ce} = 10 [V]$
- b) o valor de  $I_C$  para  $V_{BE} = 0.7$  [V]  $e V_{CE} = 15$  [V]







### Solução para o Exemplo 3.2





| Respostas               |     |  |  |  |
|-------------------------|-----|--|--|--|
| I <sub>C</sub> [mA]     | 3,4 |  |  |  |
| I <sub>C</sub> [mA] 2,5 |     |  |  |  |



Robert L. Boylestad and Louis Nashelsky Electronic Devices and Circuit Theory, 8e



Essa configuração apresenta valores elevados de impedância de entrada ( $Z_{in}$ ), baixos de impedância de saída ( $Z_{out}$ ) e ganho de tensão ( $G_v$ ) aproximadamente igual a unidade. É usada, principalmente, como isolador de impedâncias.

Suas curvas características são similares às curvas da configuração EC, bastando trocar I<sub>C</sub> por I<sub>F</sub> nas curvas características de saída.



### Capítulo 1: Transistores Bipolares de Junção - TBJ 1.1.4: Análise Comparativa entre as Configurações BC, EC e CC

| Configuração                    |    | Z <sub>i</sub>                             | <b>Z</b> <sub>o</sub>                   | G <sub>i</sub>                                 | $G_{V}$                              |
|---------------------------------|----|--------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------|
| V <sub>EB</sub> V <sub>CB</sub> | ВС | $Z_{i} = \frac{V_{EB}}{I_{E}}$ Muito Baixa | Média                                   | $G_{i} = \frac{I_{C}}{I_{E}} = \alpha$ <1      | $G_{v} = \frac{V_{CB}}{V_{EB}}$ Alto |
| V <sub>CE</sub>                 | EC | $Z_{i} = \frac{V_{BE}}{I_{B}}$<br>Média    | Média<br>Um pouco<br>menor do<br>que BC | $G_{i} = \frac{I_{C}}{I_{B}} = \beta$ Alto     | $G_{v} = \frac{V_{CE}}{V_{BE}}$ Alto |
| V <sub>B</sub> RE VE            | CC | $Z_{i} = \frac{V_{B}}{I_{B}}$ Muito Alta   | Muito<br>Baixa                          | $G_{i} = \frac{I_{E}}{I_{B}} = \beta + 1$ Alto | $G_{v} = \frac{V_{E}}{V_{B}}$ <1     |



# Capítulo 1: Transistores Bipolares de Junção - TBJ 1.1.5: Relações Básicas entre α, β, I<sub>E</sub>, I<sub>C</sub>, I<sub>B</sub>, I<sub>CEO e</sub> I<sub>CBO</sub>

$$I_{\rm E} = I_{\rm C} + I_{\rm B}$$

$$\alpha = \frac{I_{C}}{I_{E}} \Rightarrow I_{E} = \frac{I_{C}}{\alpha}$$

$$\beta = \frac{I_{C}}{I_{B}} \Longrightarrow I_{B} = \frac{I_{C}}{\beta}$$

$$\frac{I_C}{\alpha} = I_C + \frac{I_C}{\beta} \Rightarrow \frac{1}{\alpha} = 1 + \frac{1}{\beta}$$

$$\alpha = \frac{\beta}{\beta + 1}$$

$$\frac{1}{1-\alpha} = \beta + 1$$

$$\beta = \frac{\alpha}{1 - \alpha}$$



### Capítulo 1: Transistores Bipolares de Junção - TBJ 1.1.5: Relações Básicas entre α, β, I<sub>E</sub>, I<sub>C</sub>, I<sub>B</sub>, I<sub>CEO e</sub> I<sub>CBO</sub>

### A Corrente I<sub>CEO</sub>

$$\textbf{I}_{\text{C}} = \textbf{I}_{\text{Cmaj}} + \textbf{I}_{\text{CBO}} \Rightarrow \textbf{I}_{\text{C}} = \alpha \textbf{I}_{\text{E}} + \textbf{I}_{\text{CBO}} \Rightarrow \textbf{I}_{\text{C}} = \alpha \left(\textbf{I}_{\text{C}} + \textbf{I}_{\text{B}}\right) + \textbf{I}_{\text{CBO}}$$

$$I_{C} = \frac{\alpha I_{B}}{1 - \alpha} + \frac{I_{CBO}}{1 - \alpha}$$

$$I_{C} = \beta I_{B} + (\beta + 1) I_{CBO}$$

para 
$$I_B = 0 \Rightarrow I_C = I_{CEO} = (\beta + 1) I_{CBO}$$





### Capítulo 1: Transistores Bipolares de Junção - TBJ 1.1.6: Fator de Amplificação de Corrente (β)

## Determinação Gráfica de $\beta_{cc}$ e $\beta_{ac}$



$$eta_{cc} = rac{I_{C_Q}}{I_{B_Q}}$$

$$\beta_{\text{ac}} = \frac{\Delta I_{\text{C}}}{\Delta I_{\text{B}}}$$



# Capítulo 1: Transistores Bipolares de Junção - TBJ 1.1.6: Fator de Amplificação de Corrente (β)

## Determinação Gráfica de $\beta_{cc}$ e $\beta_{ac}$



$$\beta_{cc} = \frac{2.7 \times 10^{-3}}{25 \times 10^{-6}} = 108$$

$$\beta_{ac} = \frac{(3,2-2,2)x10^{-3}}{(30-20)x10^{-6}} = 100$$



#### Maximum Ratings @ 25°C Unless Otherwise Specified

| Charateristic                          |         | Symbol                            | Value   | Unit    |
|----------------------------------------|---------|-----------------------------------|---------|---------|
| Collector-Emitter Voltage              | 2N4123  | $V_{CEO}$                         | 30      | V       |
|                                        | 2N4124  | v CEO                             | 25      | V       |
| Collector-Base Voltage                 | 2N4123  | \/                                | 40      | V       |
|                                        | 2N4124  | $V_{CBO}$                         | 30      | V       |
| Emitter-Base Voltage                   | 2N4123  | \/                                | 5       | \/      |
|                                        | 2N4124  | $V_{EBO}$                         | 5       | V       |
| Collector Current(DC)                  |         | $I_{C}$                           | 200     | mΑ      |
| D DI I II OT 0500                      |         | D                                 | 625     | mW      |
| Power Dissipation@T <sub>A</sub> =25°  | C       | $P_d$                             | 5.0     | mW/°C   |
| D D: : # OT 0500                       |         | 0                                 | 1.5     | W       |
| Power Dissipation@T <sub>C</sub> =25°C |         | $P_d$                             | 12      | mW/°C   |
| Thermal Resistance, Juncti             | on to   | $R_{\Theta JA}$                   | 200     | °CW     |
| Ambient Air                            |         |                                   |         | <i></i> |
| Thermal Resistance, Junction to        |         | R <sub>OJC</sub>                  | 83.3    | °CW     |
| Case                                   |         | IVOJC                             | 03.3    | C/VV    |
| Operating & Storage Temp               | erature | T <sub>i</sub> , T <sub>STG</sub> | -55~150 | °C      |





Micro Commercial Components 20736 Marilla Street Chatsworth CA 913 11 Phone: (818) 701-4933

CA 913 11 Phone: (818) 701-4933 Fax: (818) 701-4939

#### 2N4123 2N4124

NPN Silicon General

**Purpose Transistor** 

625mW

#### Features

- Through Hole TO-92 Package
- Capable of 625mWatts of Power Dissipatio

Pin Configuration



#### Mechanical Data

- · Case: TO-92, Molded Plastic
- Marking:

2N4123 ---- 2N4123 2N4124 ---- 2N4124

Maximum Ratings @ 25°G Unless Otherwise Specified

| Charateristic                                  | Symbol                          | Value      | Unit       |
|------------------------------------------------|---------------------------------|------------|------------|
| Collector-Emitter Voltage 2N4123<br>2N4124     |                                 | 30<br>25   | ٧          |
| Collector-Base Voltage 2N4123<br>2N4124        | 1 Vonn                          | 40<br>30   | ٧          |
| Emitter-Base Voltage 2N4123<br>2N4124          | 1 V                             | 5          | ٧          |
| Collector Current(DC)                          | l <sub>c</sub>                  | 200        | mA         |
| Power Dissipation@T <sub>A</sub> =25°C         | $P_{d}$                         | 625<br>5.0 | mW<br>mW°C |
| Power Dissipation@T <sub>C</sub> =25°C         | $P_d$                           | 1.5<br>12  | W<br>mW/°C |
| Thermal Resistance, Junction to<br>Ambient Air | Reua                            | 200        | °C/W       |
| Thermal Resistance, Junction to<br>Case        | Rex                             | 83.3       | °C/W       |
| Operating & Storage Temperature                | T <sub>r</sub> T <sub>stq</sub> | -55~150    | °C         |



| DIMENSIONS |        |      |      |      |      |  |  |  |
|------------|--------|------|------|------|------|--|--|--|
|            | INCHES |      | MM   |      |      |  |  |  |
| DIM        | MIN    | MAX  | MIN  | MAX  | NOTE |  |  |  |
| A          | .175   | .185 | 4.45 | 4.70 |      |  |  |  |
| В          | .175   | .185 | 4.46 | 4.70 |      |  |  |  |
| С          | .500   |      | 12.7 | _    |      |  |  |  |
| D          | .016   | .020 | 0.41 | 0.63 |      |  |  |  |
| Е          | .135   | .145 | 3.43 | 3.68 |      |  |  |  |
| G          | .095   | .105 | 2.42 | 2.67 |      |  |  |  |

www.mccsemi.com=



#### ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

| Characteristic                                                                            |                  | Symbol           | Min      | Max | Unit |
|-------------------------------------------------------------------------------------------|------------------|------------------|----------|-----|------|
| OFF CHARACTERISTICS                                                                       |                  |                  |          |     |      |
| Collector-Emitter Breakdown Voltage(1)<br>(I <sub>C</sub> = 1.0 mAdc, I <sub>E</sub> = 0) | 2N4123<br>2N4124 | V(BR)CEO         | 30<br>25 |     | Vdc  |
| Collector–Base Breakdown Voltage<br>(I <sub>C</sub> = 10 μAdc, I <sub>E</sub> = 0)        | 2N4123<br>2N4124 | V(BR)CBO         | 40<br>30 |     | Vdc  |
| Emitter–Base Breakdown Voltage<br>(IE = 10 μAdc, I <sub>C</sub> = 0)                      |                  | V(BR)EBO         | 5.0      | _   | Vdc  |
| Collector Cutoff Current<br>(V <sub>CB</sub> = 20 Vdc, I <sub>E</sub> = 0)                |                  | ICBO             | _        | 50  | nAdc |
| Emitter Cutoff Current<br>(VEB = 3.0 Vdc, I <sub>C</sub> = 0)                             |                  | I <sub>EBO</sub> | _        | 50  | nAdc |

#### ELECTRICAL CHARACTERISTICS (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                                                                                   |                  | Symbol                | Min       | Max  | Unit |
|------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|-----------|------|------|
| ON CHARACTERISTICS(1)                                                                                            |                  |                       |           |      |      |
| DC Current Gain (I <sub>C</sub> = 2.0 mAdc, VCE = 1.0 Vdc) (I <sub>C</sub> = 50 mAdc, V <sub>CE</sub> = 1.0 Vdc) | 2N4123<br>2N4124 | hFE                   | 50<br>120 | _    |      |
| (IC - 30 HMdc, VCE - 1.0 vdc)                                                                                    | 2N4123<br>2N4124 |                       | 25<br>60  | _    |      |
| Collector – Emitter Saturation Voltage<br>(I <sub>C</sub> = 50mAdc, IB = 5.0 mAdc)                               |                  | VCE(sat)              | _         | 0.3  | Vdc  |
| Base–Emitter Saturation Voltage<br>(I <sub>C</sub> = 50mAdc, IB = 5.0 mAdc)                                      |                  | V <sub>BE</sub> (sat) | _         | 0.95 | Vdc  |



#### ELECTRICAL CHARACTERISTICS (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                             |         | Symbol          | Min | Max | Unit |
|------------------------------------------------------------|---------|-----------------|-----|-----|------|
| SMALL-SIGNAL CHARACTERISTICS                               |         |                 |     |     |      |
| Current-Gain-Bandwidth Product                             |         | f⊤              |     |     | MHz  |
| (I <sub>C</sub> =10mAdc, V <sub>CE</sub> =20Vdc, f=100MHz) | 2N4123  |                 | 250 |     |      |
|                                                            | 2N4124  |                 | 300 |     |      |
| Input Capacitance                                          |         | Cibo            | -   | 8.0 | pF   |
| (V <sub>EB</sub> =0.5Vdc, I <sub>C</sub> =0, f=1.0MHz)     |         |                 |     |     |      |
| Collector-Base Capacitance                                 |         | Ccb             |     | 4.0 | pF   |
| (V <sub>CB</sub> =5.0Vdc, I <sub>E</sub> =0, f=1.0MHz)     |         |                 |     |     |      |
| Small-Signal Current Gain                                  |         | h <sub>fe</sub> |     |     |      |
| (I <sub>C</sub> =2.0mAdc,V <sub>CE</sub> =10Vdc,           | 2N4123  |                 | 50  | 200 |      |
| Rs=10kohm,f=1.0kHz)                                        | 2N4124  |                 | 120 | 480 |      |
| Current Gain-High Frequency                                |         | Ihfel           |     |     |      |
| (Ic=10mAdc,VcE=20Vdc, f=100kHz)                            | 2N4123  |                 | 2.5 |     |      |
| (10 10111111111111111111111111111111111                    | 2N4124  |                 | 3.0 |     |      |
|                                                            | 214124  |                 | 0.0 |     |      |
| (Ic=2.0mAdc, VcE=10Vdc, f=1.0kHz)                          |         |                 | 50  | 200 |      |
| (10 ±1011 121,102 1111 121,1111 12)                        | 2N4123  |                 | 120 | 480 |      |
|                                                            | 2N4124  |                 | 0   | .50 |      |
| Noise Figure                                               | 2147127 | NF              |     |     | dB   |
| (I <sub>C</sub> =100uAdc,V <sub>CE</sub> =5.0Vdc,          | 2N4123  | '"              |     | 6.0 | u.   |
| R <sub>S</sub> =1.0kohm,f=1.0kHz)                          | 2N4124  |                 |     | 5.0 |      |

<sup>1</sup> Pulse Test:Pulse Width = 300µs, Duty Cycle = 2.0%



### Parâmetros Relevantes

Dissipação máxima em coletor [P<sub>C(max</sub>]: P<sub>D</sub>

Corrente contínua máxima de coletor [I<sub>C(max)</sub>]: I<sub>c</sub>

Tensão de ruptura coletor-emissor [ $V_{CE(max)}$ ]:  $V_{CEO}$  ou  $V_{(BR)CEO}$ 

Tensão de ruptura coletor-base  $[V_{BC(max)}]$ :  $V_{CBO}$  ou  $V_{(BR)CBO}$ 

Tensão de ruptura emissor-base [V<sub>EB (max)</sub>]: V<sub>EBO</sub> ou V<sub>(BR)EBO</sub>

Tensão de saturação do coletor-emissor: V<sub>CE(sat)</sub>

Tensão de saturação do base-emissor: V<sub>BE(sat)</sub>

Corrente de corte de coletor: I<sub>CBO</sub>

Corrente de corte de emissor: I<sub>EBO</sub>



#### Maximum Ratings @ 25°C Unless Otherwise Specified

| Charateristic                                     |         | Symbol                            | Value   | Unit   |
|---------------------------------------------------|---------|-----------------------------------|---------|--------|
| Collector-Emitter Voltage                         | 2N4123  | $V_{CEO}$                         | 30      | V      |
|                                                   | 2N4124  | <b>v</b> CEO                      | 25      | V      |
| Collector-Base Voltage                            | 2N4123  | \/                                | 40      | V      |
|                                                   | 2N4124  | $V_{CBO}$                         | 30      | V      |
| Emitter-Base Voltage                              | 2N4123  | \/                                | 5       | V      |
|                                                   | 2N4124  | $V_{EBO}$                         | 5       | V      |
| Collector Current(DC)                             |         | $I_{C}$                           | 200     | mΑ     |
|                                                   |         | D                                 | 625     | mW     |
| Power Dissipation@T <sub>A</sub> =25°             | C       | $P_d$                             | 5.0     | m\V/°C |
| David Discipation OT 0500                         |         | D                                 | 1.5     | W      |
| Power Dissipation@T <sub>C</sub> =25 <sup>c</sup> |         | $P_d$                             | 12      | mW/°C  |
| Thermal Resistance, Junction to<br>Ambient Air    |         | $R_{\Theta JA}$                   | 200     | °C/W   |
| Thermal Resistance, Junction to Case              |         | R <sub>OJC</sub>                  | 83.3    | °C/W   |
| Operating & Storage Temp                          | erature | T <sub>i</sub> , T <sub>STG</sub> | -55~150 | °C     |



### Dissipação de Potência em Coletor

$$egin{aligned} \mathbf{P_C} &= \mathbf{V_{CE}I_C} \Big|_{\mathtt{EC}} \ \mathbf{P_C} &= \mathbf{V_{CB}I_C} \Big|_{\mathtt{BC}} \end{aligned}$$

### Limites de Operação

$$\begin{split} &\textbf{I}_{\text{CEO}} \leq \textbf{I}_{\text{C}} \leq \textbf{I}_{\text{C(max)}} \\ &\textbf{V}_{\text{CE(sat)}} \leq \textbf{V}_{\text{CE}} \leq \textbf{V}_{\text{CE(max)}} \\ &\textbf{V}_{\text{CE}}\textbf{I}_{\text{C}} \leq \textbf{P}_{\text{C(max)}} \end{split}$$



Robert L. Boylestad and Louis Nashelsky Electronic Devices and Circuit Theory, 8e

#### Curva de Potência Máxima

