RESULTS

1. Generating set for σ

Let $\mathbf{e}_{11}, \mathbf{e}_{12}, \dots, \mathbf{e}_{1n}, \mathbf{e}_{22}, \mathbf{e}_{23}, \dots, \mathbf{e}_{nn}$ be a basis for $\mathbb{Z}^{\binom{n+1}{2}}$. We have $\sigma^{\vee} = \operatorname{Cone}(\mathscr{A})$ for $\mathscr{A} = \{\mathbf{e}_{ij}, \mathbf{e}_{ii} - \mathbf{e}_{ij} + \mathbf{e}_{jj} \mid i \leq j\}$.

Claim: For σ as above, we have

$$\sigma = (\sigma^{\vee})^{\vee} = \operatorname{Cone}(\mathscr{B}).$$

for

$$\mathcal{B} = \{ \mathbf{e}_{ii}, \mathbf{e}_{ii} + \mathbf{e}_{ij_1} + \dots + \mathbf{e}_{ij_r} + \mathbf{e}_{j'_1i} + \dots + \mathbf{e}_{j'_{r'}i} \mid 1 \le i \le n, \ r, r' > 0, \ j_h > i \text{ for } 1 \le h \le r, \ j'_{h'} < i \text{ for } 1 \le h' \le r' \}$$

Proof. Given $u = (b_{11}, \ldots, b_{1n}, b_{22}, \ldots, b_{2n}, \ldots, b_{nn}) \in N_{\mathbb{R}} \cong \mathbb{R}^{\binom{n+1}{2}}$, we have that $u \in \sigma$ if and only if:

- (1) $b_{ij} \geq 0$, for all $i \leq j$
- (2) $b_{ii} b_{ij} + b_{jj} \ge 0$, for all i < j

This follows from the definition of the dual cone. The vector u is in σ if and only if $\langle u, a \rangle \geq 0$ for any $a \in \sigma^{\vee}$. In particular, $\langle u, a \rangle \geq 0$ for $a \in \{\mathbf{e}_{ii}, \mathbf{e}_{ii} - \mathbf{e}_{ij} + \mathbf{e}_{jj} \mid i \leq j\} = \mathscr{A}$, which gives the above inequalities.

It is clear that $\sigma' = \text{Cone}(\mathscr{B})$ is contained in σ . (The inner product is bilinear so it suffices to see that the inner product of any generator of σ' with any generator of σ^{\vee} is nonnegative.)

To show that $\sigma \subseteq \sigma'$, we show instead that elements not in σ' are not in σ .

An element not in $\operatorname{Cone}(\mathscr{B})$ is given by a linear combination $\sum_{p=1}^{q} b_p \beta_p$ for $\beta_p \in \mathscr{B}$ where at least one b_p is negative. As a result we see that $\mathbf{e}_{ij_h}, \mathbf{e}_{j'_h i}$ are not in $\operatorname{Cone}(\mathscr{B})$ for $1 \leq i \leq n, r, r' > 0, j_h > i$ for $1 \leq h \leq r, j'_{h'} < i$ for $1 \leq h' \leq r'$.

Hence we can decompose any element u' not in $Cone(\mathcal{B})$ into a sum of the following form:

$$u' = \sum_{g=1}^{r'''} \left[b_{i_g i_g} \mathbf{e}_{i_g i_g} + b_{i_g j_1} \mathbf{e}_{i_g j_1} + \dots + b_{i_g j_r} \mathbf{e}_{i_g j_r} + b_{j'_1 i_g} \mathbf{e}_{j'_1 i_g} + \dots + b_{j'_{r'} i_g} \mathbf{e}_{j'_{r'} i_g} \right.$$
$$\left. + b_{k_1 \ell_1} \mathbf{e}_{k_1 \ell_1} + \dots + b_{k_{-n'} \ell_{-n'}} \mathbf{e}_{k_{-n'} \ell_{-n'}} \right]$$

where $1 \leq i \leq n$, r, r', r'', r''' > 0, $j_h > i$ for $1 \leq h \leq r$, $j'_{h'} < i$ for $1 \leq h' \leq r'$ and $b_{k_{h''}\ell_{h''}} \neq 0$, $k_{h''} \neq \ell_{h''} \neq i$ for $1 \leq h'' \leq r''$. But u' cannot be in σ as it violates condition (2) above.

Hence elements not in σ' are not in σ , so the reverse inclusion holds and $\sigma = \sigma'$.

Date: July 14, 2022.

