ASR

Many slides courtesy of James Glass

Automatic Speech Recognition (ASR)

Components of a speech recognizer

3 Components

How to represent the signal

How to model the constraints

How to search for the optimal answer

Speech signal

Speech production

Types of sound

- Speech articulation categorized by manner and place
 - Vowels: No significant constriction in the vocal tract
 - Fricatives: Turbulence produced at a narrow constriction
 - Stops: complete closure of the vocal tract; pressure build up

Places of Articulation

- Nasals: velum lowering results in airflow through the nasal cavity
- Semivowels: constriction in the vocal tract, no turbulence

Palato-Alveolar Alveolar Labial Dental Velar Uvular

Vocal fold vibration

Human ear

Speech processing

Waveform

Spectrogram

Variation of a phoneme

- The most basic sound unit "phoneme"
- The acoustic realization of a phoneme depends on the context

Dynamic Time Warping (DTW)

 A kind of dynamic programming for aligning things of different length

Information theoretic formulation

$$W^* = \underset{W}{\operatorname{arg\,max}} P(W \mid A) \qquad P(W \mid A) = \frac{P(A \mid W)P(W)}{P(A)}$$

Probabilistic ASR formulation

- A search on the space of all possible words, W, and their pronunciation, L.
- Seek best path using dynamic programing or other graph search strategies

The ASR Equation X - waveform, L - pronunciation, W - words

$$W^* = argmax_W P(W \mid X)$$

$$= argmax_W \frac{P(X \mid W)P(W)}{P(X)}$$

$$= argmax_W P(X \mid W)P(W)$$

$$= \sum_{L} P(X \mid W, L)P(L \mid W)$$

$$= \sum_{L} P(X \mid L)P(L \mid W)$$

$$P(X|W) = \sum_{L} P(X, L \mid W)$$

$$= \sum_{L} P(X \mid W, L) P(L \mid W)$$

$$= \sum_{L} P(X \mid L) P(L \mid W)$$

$$= argmax_W \sum_{L} P(X \mid L)P(L \mid W)P(W)$$
$$= argmax_{W,L}P(X \mid L)P(L \mid W)P(W)$$

Lexical modeling (dictionary)

- How a word can be pronounced
- Describes words in terms of phonemes
- Provided by linguists, but can be learned by models (G2P or L2S)
 - Example: sequence to sequence models

```
k o t^
กฎ
กฎหมาย kot^maaj^
            kot^maaj^zaajaa
กฎหมายอาญา
กฎเกณฑ์ kot^keen^
      k o t^
     k o t^ kh ii
กดที
กตดัน
      kot^dan^
กตัญญ
     katan^juu
กติกา
      katikaa
      k @@ th @@ m @@
กทม.
      kabot^
กบภู
กมล
      kamon^
กรกฎาคม karak^kadaakhom^
กรกฎาคม karakadaakhom^
```

Seq2Seq G2P

- Machine translation-based approach
- Input character order is reversed (standard for MT)
- Use beamsearch on decoding side

Encoder-decoder G2P

https://arxiv.org/pdf/1506.00196.pdf

Seq2Seq G2P

Direct translation models

https://arxiv.org/pdf/1506.00196.pdf

Results of G2P

Method	PER (%)	WER (%)
encoder-decoder LSTM	7.53	29.21
encoder-decoder LSTM (2 layers)	7.63	28.61
uni-directional LSTM	8.22	32.64
uni-directional LSTM (window size 6)	6.58	28.56
bi-directional LSTM	5.98	25.72
bi-directional LSTM (2 layers)	5.84	25.02
bi-directional LSTM (3 layers)	5.45	23.55

Language Model

- Very important for ASR
 - "Please write a letter right now to Mrs. Wright. Tell her that two is too many to buy."
 - "How to wreck a nice beach" vs "How to recognize speech"
- Can use n-grams (tri-gram is most popular)
- Or CFG for simple tasks
- Recent work have incorporate neural LM (used for postprocessing)

Acoustic modeling

Waveform

Gaussian Mixture Models

Hidden Markov Models (HMM)

- Dominant framework for ASR
- Model phonemes as hidden states
- Outputs are MFCCs observations
- Unlike PoS tag, the emission probability is continuous rather than discrete

Spoken dialogue system

Language understanding

- Syntactic Understanding
 - Hierarchical parse tree
 - E.g., "Find me a highly rated robot sci-fi movie"
- Semantic Understanding
 - A sequence labeling task
 - Map a sequence of words to a sequence of concepts

"Find me a highly rated robot sci-fi movie"

Semantic tagging

- Joint segmentation/classification problem
 - Segment query constituents and classify the segments into semantic classes

"Book me a double room for 2 at Marriott Bellevue on Friday"

<other> <room_type> <#people> <hotel_name> <location> <reservation_date>

CRF cookbook for language understanding

Key ingredients

- Domain
 - · E.g., movie, flight, restaurant, weather...
- Semantic classes

Domain	Semantic classes	
Flight	General city, General date, General time, Departure city, Departure date, Departure time, Arrival city, Arrival date, Arrival time, Return date, Return time, Transit city, Airline	
Restaurant	Goal, Restaurant name, Amenity, Cuisine, Dish, Hours, Location, Price, Rating	
Movie	Title, Viewers' rating, Year, Genre, Director, MPAA rating, Plot, Actor, Trailer, Song, Review, Character	

CRF cookbook for language understanding

- Key ingredients
 - Models
 - CRFs
 - Semi-CRFs
 - Features
 - Transit features
 - Lexical features (e.g., n-grams in training data)
 - Regular expression features (e.g., time, date, numbers)
 - Semantic features with lexicons (e.g., list of restaurants, movie titles, cities)
 - Linguistic features (e.g., segment length, POS tagging)

CRF cookbook for language understanding

- Key ingredients
 - Data
 - Natural language queries
 - Semantic labels

Domain	Movie	Flight
Query	what is the 1959 american thriller film directed by alfred hitchcock and starring cary grant and eva marie saint	a flight to covington leaving next monday around 2 p m from pittsburgh i prefer no red eye flights
Labels	what is the Other 1959 Release Year american thriller Genre film directed by Other alfred hitchcock Director and starring Other cary grant Actor and Other eva marie saint Actor	a flight to Other covington Arrival City leaving Other next Monday Departure Date around 2 p m Departure Time from Other pittsburgh Departure City i prefer Other no red eye flights Preference