### 學號:R06922048 系級: 資工碩一 姓名:陳柏堯

1. (1%)請比較有無 normalize(rating)的差別。並說明如何 normalize.

#### (collaborator:)

normalize 的方式是將每個 rating 的值減掉均值再除以標準差。 Testing 的時候要乘上 之前存好的標準差、加上之前的均值。

比較有無 normalize 的兩個 MF latent dim 我都設定為 25。

如下圖 training 過程的 rmse ,發現 normalize 過後的 data training 較快,在 500 個 epoch 的時候,val rmse with norm 和 without norm 基本差不多,但是 norm 過後的 performance 略好一些。



| epochs | rmse train     | rmse val       | rmse train (without norm) | rmse val (without norm) |
|--------|----------------|----------------|---------------------------|-------------------------|
| 50     | 0.840339383508 | 0.861209869438 | 0.99050607352             | 0.916963340651          |
|        |                |                |                           |                         |
| 100    | 0.83229477625  | 0.857391056108 | 0.892687377739            | 0.894344991899          |
| 500    | 0.828001326398 | 0.857171080478 | 0.828126540495            | 0.858051353753          |

## 2. (1%)比較不同的 latent dimension 的結果。

#### (collaborator:)

我分別比較 dim=10, 20, 40, 60, 80, 100 的 mf, 他們的 data 都有 normalize 過。比較發現, dim 越高 training 越快收斂, 經過 500 個 epoch 比較發現, dim 越高其 performance 會越好。但是,當 dim 大到 100 左右時,能提升的 performance 就有限了。



| 100epochs      | rmse (training) | rmse(validation) |
|----------------|-----------------|------------------|
| latent_dim=10  | 0.860438135     | 0.870045758      |
| latent_dim=20  | 0.840536174     | 0.86041391       |
| latent_dim=40  | 0.81026557      | 0.853824166      |
| latent_dim=60  | 0.785594829     | 0.850756407      |
| latent_dim=80  | 0.764185992     | 0.850519824      |
| latent_dim=100 | 0.745714655     | 0.849947802      |

3. (1%)比較有無 bias 的結果。

(collaborator:)

有無 bias 比較的兩個 mf 我都沒有對 data normalize 過,無 bias 的 model 我是同時去掉 movie 和 user 的 bias。

下圖 training 過程發現,有 bias 的 model 收斂比較快,從 validation rmse 來看,500 個 epoch 之後,有 bias 可以到 0.85 左右,而無 bias 只能到 0.9 多。這表示 bias 對於 performance 非常重要。



| epochs | rmse train  | rmse val    | rmse train (without bias) | rmse val (without bias) |
|--------|-------------|-------------|---------------------------|-------------------------|
| 50     | 0.990506074 | 0.916963341 | 1.499865793               | 0.994658277             |
| 100    | 0.892687378 | 0.894344992 | 1.502169075               | 0.994767141             |
| 500    | 0.82812654  | 0.858051354 | 1.500741916               | 0.994261664             |

4. (1%)請試著用 DNN 來解決這個問題,並且說明實做的方法(方法不限)。並比較 MF 和 NN 的結果,討論結果的差異。

(collaborator:)

MF和DNN的比較,兩個 model 我都有做 normalize。

DNN 的 model 是分別將 user 和 movie 做 500dim 的 embedding, 然後 concatenate 在一起再依序接到 100、20、10、1 的 dense 做 linear regression。

由於 DNN 的 latent dim 較大,因此收斂速度比 mf 快,其 validation 的 rmse 0.879 略比 mf 差一點。但這表示,DNN 可以做到接近 MF 的 performance,調整參數和 model 應可再改進 DNN 的 performance。



|                    | Best val rmse  | Best epochs |
|--------------------|----------------|-------------|
| Mf latent_dim=25   | 0.856731646775 | 235         |
| DNN latent_dim=500 | 0.879712448921 | 6           |

5. (1%)請試著將 movie 的 embedding 用 tsne 降維後,將 movie category 當作 label 來作 圖。

(collaborator:)

先取出 MF dim100 model 的 movie embedding  $\circ$ 

對每個 movie 的 genre 做 random 取其中 1 個作為 category, 再用 sklearn 的 T-SNE 對 embedding 層降維,對每一個 category 作圖如下:

(紅色是該 genre,藍色是其他 genre)





再根據上方個別的分佈圖以及自己對於電影種類的認知,將一些不同的 genre 歸為同一個 category, 作圖如下:



紅色:Action, Drama, Documentary, Romance, Mystery, Sci-fi

黄色: Thriller, Crime, Horror, War, Film-Noir, Western

藍色: Musical, Animation, Children, Adventure, Fantasy, Comedy

6. (BONUS)(1%)試著使用除了 rating 以外的 feature, 並說明你的作法和結果, 結果好壞不會影響評分。

(collaborator:)

## 作法:

latent\_dim = 100 並且如第 1 題所述作 normalization。

原始 model 是 movie 和 user 的 embedding 層作 dot 加上 user bias 和 movie bias, 本題新的 model 是在原始 model 的基礎上,再加上 gender bias, age bias 和 occupation bias。Gender 和 occupation 是利用 embedding 算出 bias,age 則是接 1 層 dense 算出 bias.

# 結果:

沒有加上 gender, age, occupation 的 model 在一開始 training 的速度比較慢(如下圖綠線),而在 100 個 epoch 之後,其 performance 和原來的 model 基本差不多。原始的 model 在第 58 個 epoch,validation rmse 達到最低點 0.849183,上傳到 Kaggle 得到 public Score 0.85129;而加了新 feature 的 model 在第 160 個 epoch 達到 validation rmse 最低點 0.849136,上傳到 Kaggle 得到 public score 0.84979。 比較發現,增加這些 feature 對於最後的 performance 仍然有一點幫助。

