Повторение

Листок №50

Задача 1. Пусть k и n — натуральные числа, большие 1. Верно ли, что множество корней степени n из комплексного числа z совпадает с множеством корней степени kn из числа z^k ?

Задача 2. Докажите, что произведение расстояний от вершины правильного N-угольника, вписанного в окружность радиуса 1, до остальных его вершин равно N.

Задача 3. Докажите, что точки плоскости, соответствующие комплексным числам z_1, z_2, z_3 лежат на одной проямой тогда и только тогда, когда существуют вещественные числа $\lambda_1, \lambda_2, \lambda_3$, не все равные нулю, такие, что $\lambda_1 z_1 + \lambda_2 z_2 + \lambda_3 z_3 = 0$ и $\lambda_1 + \lambda_2 + \lambda_3 = 0$.

Задача 4*. Пусть
$$c_1,c_2,\dots,c_n,z$$
 — такие комплексные числа, что
$$\frac{1}{z-c_1}+\frac{1}{z-c_2}+\dots+\frac{1}{z-c_n}=0,$$

причем точки c_1, c_2, \ldots, c_n являются вершинами выпуклого многоугольника. Докажите, что точка z лежит внутри этого многоугольника.

Задача 5. Докажите, что из всякого покрытия отрезка интервалами можно выбрать конечное число интервалов, которые покрывают этот отрезок, причем каждая точка покрыта не более чем двумя интервалами.

Задача 6. Функция f непрерывна на отрезке [a;b]. Для $x \in [a;b]$ пусть $g(x) = \min\{f(t) \mid t \in [a;x]\}$. Обязательно ли g(x) непрерывна на [a;b]?

Задача 7. Функция f непрерывна на отрезке [a;b] и принимает на нём некоторое значение дважды. Докажите, что для любого $\varepsilon > 0$ найдутся такие точки $x_1, x_2 \in [a;b]$, что $|x_1 - x_2| < \varepsilon$ и $f(x_1) = f(x_2)$.

Задача 8. Найдите все непрерывные на \mathbb{R} функции f такие, что f(x) = f(2x) при всех $x \in \mathbb{R}$.

Задача 9. Для каждого $x \in \mathbb{R}$ пусть $f(x) = \lim_{m \to \infty} \left(\lim_{n \to \infty} \cos^{2n}(2\pi x m!) \right)$. В каких точках из \mathbb{R} непрерывна функция f?

Задача 10. Пусть $\Delta_h^1 f(x) = f(x+h) - f(x)$, $\Delta_h^{m+1} f(x) = \Delta_h^1 \left(\Delta_h^m f(x) \right)$. Докажите, что непрерывная функция f(x) является многочленом степени не выше m тогда и только тогда, когда $\Delta_h^{m+1} f(x) = 0$ при любых $x,h \in \mathbb{R}$.

Задача 11. Постройте такую функцию f(x,y), что при любом $b \in \mathbb{R}$ функция f(x,b) будет непрерывной на \mathbb{R} как функция от x, при любом $a \in \mathbb{R}$ функция f(a,y) будет непрерывной на \mathbb{R} как функция от y, но f(x,y) как функция двух переменных будет разрывна в точке (0,0).

Задача 12*. Дана бесконечная последовательность функций f_1, f_2, \ldots (все функции определены на $\mathbb R$ и принимают действительные значения). Всегда ли существует конечный набор функций g_1, g_2, \ldots, g_N (также определенных на $\mathbb R$ и принимающих действительные значения), композициями которых можно записать любую из функций исходной последовательности (например, $f_1(x) = g_2(g_1(g_2(x)))$ при всех $x \in \mathbb R$)?

Задача 13*. Докажите, что существует ровно два отображения из перестановок в числа, таких что f(e) = 1 и f(ab) = f(a)f(b). А именно, $f(\sigma) = 1$ и $f(\sigma) = 3$ нак σ .

3адача 14^* . Каждому из N мудрецов написали на лбу число и выдали две варежки: одну черную и одну белую. По сигналу все мудрецы одновременно надевают варежки. После чего их строят в шеренгу в порядке возрастания написанных на их лбах чисел и просят соседей взяться за руки. Как мудрецам надевать варежки, чтобы в результате каждая белая варежка взялась за белую, а каждая черная — за черную? (Мудрец видит все числа, кроме своего.)

1	2	3	4	5	6	7	8	9	10	11	12	13	14