Simulating pp collisions with Pythia

By Vishu Saini, MSc Physics IIT Bombay

Nov. - December 2021

1 Simulations with Pythia

1.1 Pythia

The Pythia program is a standard tool for the generation of high- energy physics collisions, by the help of pythia, events are generated. Events are the sets of outgoing particles produced in the interactions between two incoming particles.

1.2 pp Collisions at 13 TeV

This program will take two incoming proton beams at a center of mass energy of 13TeV, and the outcomes are given in histograms. The Code for Pythia is given below:

```
/*Author: Vishu Saini, MSc Physics, IIT Bombay */
  /*Date: December 2021*/
5 /* proton -proton collisions*/
6 /* Using trees to store data and plotting them using root. Trees can also be used
       to feed data to GEANT4 */
  #include <iostream>
9 #include "TFile.h"
#include "TTree.h"
#include "Pythia8/Pythia.h"
14 int main()
15 {
    TFile *output = new TFile("tutorial3.root", "recreate");
16
17
    TTree *tree1 = new TTree("tree1","tree1"); // charged particle tree
18
19
    TTree *tree2 = new TTree("tree2","tree2"); // neutral particle tree
20
    // Saving the variables as branches
23
     int id, event, size, no;
24
    double pT_1, eta_1, y_1;
                                           //declare the variables first
25
                                          // I = integer, D = double
26
    tree1->Branch("pT_1", &pT_1, "pT_1/D");
tree1->Branch("eta_1", &eta_1, "eta_1/D");
tree1->Branch("y_1", &y_1, "y_1/D");
27
28
29
    double pT_2, eta_2, y_2, phi_2;
31
    tree2->Branch("pT_2", &pT_2, "pT_2/D");
tree2->Branch("eta_2", &eta_2, "eta_2/D");
32
33
   tree2->Branch("y_2", &y_2, "y_2/D");
```

```
35
36
37
    int nevents = 1e4;
                            // number of events
38
39
    Pythia8::Pythia pythia;
40
41
42
    pythia.readString("Beams:idA = 2212");
                                                    // proton beam A
43
    pythia.readString("Beams:idB = 2212");
                                                    //proton beam B
    pythia.readString("Beams:eCM = 14.e3");
44
                                                   //CM energy
    pythia.readString("SoftQCD:all = on");
                                                    // turn on QCD physics
45
    pythia.readString("HardQCD:all = on");
                                                  //turnn on QCD physics
46
47
    pythia.init() ;
48
49
    for (int i = 0; i < nevents; i++)</pre>
50
51
52
      if (!pythia.next()) continue ;
53
54
55
      int n_charged_particle = 0, n_neutral_particle = 0, n_pion_particle = 0,
      n_kaon_particle = 0;
56
      int entries = pythia.event.size();
57
      std:: cout << "Event: " << i << std:: endl;</pre>
58
      //std:: cout << "Event size: " << enteries << std:: endl;</pre>
59
60
      event = i;
61
      size = entries;
62
       for (int j = 0; j < entries ; j++)</pre>
63
64
         if (pythia.event[j].isFinal()) {
65
66
           if (pythia.event[j].isCharged()) {
             pT_1 = pythia.event[j].pT();
67
             eta_1 = pythia.event[j].eta();
68
             y_1 = pythia.event[j].y();
69
             n_charged_particle ++;
70
             tree1->Fill();}
71
           }
72
73
         if (pythia.event[j].isFinal()) {
75
           if (pythia.event[j].isNeutral()) {
76
             pT_2 = pythia.event[j].pT();
             eta_2 = pythia.event[j].eta();
77
             y_2 = pythia.event[j].y();
78
             phi_2 = pythia.event[j].phi();
79
             n_neutral_particle ++ ;
80
             tree2->Fill();}
81
82
83
      }
84
85
86
87
    output->Write();
88
    output ->Close();
89
90
    return 0;
91
92
93 }
```

Listing 1: Pythia Code

Figure 1: Charged particle distributions

Figure 2: Neutral particle distributions

References

- [1] Cheuk-Yin Wong. *Introduction to High-Energy Heavy-Ion Collisons*. World Scientific., Singapore, 2016.
- [2] S.C Garg, R.M Bansal, C.K Ghosh. Pythia Documentation. [https://pythia.org/documentation/].
- [3] R.K Puri, V.K Babbar. ROOT Manual. [https://root.cern/manual/].