

CS208: Applied Privacy for Data Science Membership Attacks

School of Engineering & Applied Sciences Harvard University

February 1, 2022

Motivation

• Last time: on a dataset with n individuals, releasing m=n counts with error $E=o(\sqrt{n})$ allows for reconstructing 1-o(1) fraction of sensitive attributes. [Dinur-Nissim `03]

What is this \sqrt{n} threshold?

• if $X = X_1 + \cdots + X_n$ for independent random variables X_i each with standard deviation σ , then the standard deviation of X is $\Theta(\sqrt{n})$.

• If the X_i 's are bounded (or "subgaussian"), then X will have Gaussian-like concentration around its expectation $n\mu$:

$$\Pr[|X - n\mu| > t \cdot \sqrt{n}] \le e^{-\Omega(t^2)}$$
 [Chernoff-Hoeffding Bound]

This is why subsampling k out of n rows allows us to approximate m counts each to within $\pm O(\sqrt{k \log m})$

Normalized Counts (i.e. Averages)

- if $X = (X_1 + \cdots + X_n)/n$ for independent random variables X_i each with standard deviation σ , then the standard deviation of X is $\Theta(1/\sqrt{n})$
- If the X_i 's are bounded (or "subgaussian"), then X will have Gaussian-like concentration around its mean μ :

$$\Pr[|X - \mu| > t/\sqrt{n}] \le e^{-\Omega(t^2)}$$
 [Chernoff-Hoeffding Bound]

This is why subsampling k out of n rows allows us to approximate

$$m$$
 averages each to within $\pm O\left(\left(\frac{1}{\sqrt{k}}\right)\cdot\sqrt{\log m}\right)$

Motivation

• Last time: on a dataset with n individuals, releasing m=n averages with error $E=o(1/\sqrt{n})$ allows for reconstructing 1-o(1) fraction of sensitive attributes.

• Q: what happens if we allow error $\Omega(1/\sqrt{n}) \le E \le o(1)$?

• A (today): if we release $m=n^2$ counts, can be vulnerable to "membership attacks".

Attacker gets:

- Access to mechanism outputs
- Alice's data
- (Possibly) auxiliary info about population

Then decides: if Alice is in the dataset X

Membership Attacks: Examples Population **OR** Alice's data n Data set X 0 people aux Mechanism Attacker (stats, ML model, ...)

- Genome-wide Association Studies [Homer et al. `08]
 - release frequencies of SNP's (individual positions)
 - determine whether Alice is in "case group" [w/a particular diagnosis]
- ML as a service [Shokri et al. `17]
 - apply models trained on X to Alice's data

- Population = [vector $p = (p_1, ..., p_d)$ of probabilities]
 - j'th attribute = iid Bernoulli(p_i), independent across j
 - Attacker gets p (or a few random draws)

- Population = vector $p = (p_1, ..., p_d)$ of probabilities
 - j'th attribute = iid Bernoulli(p_i), independent across j
 - Adversary gets $a \approx \bar{x}$ and p (or a few random draws)
 - Only assume that a = M(x) has $|a_j \bar{x}_j| \le \alpha$ whp. ("Noise" need not be independent or unbiased.)

- We are interested in $\alpha > 1/\sqrt{n}$.
- In this regime, if p known to mechanism, can prevent attack. (Q: Why?)
- So we will assume random p_j 's (e.g. iid uniform in [0,1]).

Theorem [Dwork et al. `15]: There is a constant c and an attacker A such that when $d \ge cn$ and $\alpha = |a - \bar{x}| < \min \left\{ \sqrt{d/O(n^2 \log(1/\delta))} \right\}$.

- If Alice is IN, then $\Pr[A(y, a, p) = IN] \ge \Omega(\frac{1}{\alpha^2 n})$.
- If Alice is OUT, then $Pr[A(y, a, p) = IN] \le \delta$.

Theorem [Dwork et al. `15]: There is an attacker A such that when $d \geq O(n)$ and $\alpha < \min\left\{\sqrt{d/O(n^2\log(1/\delta))}, 1/2\right\}$:
• If Alice is IN, then $\Pr[A(y,a,p) = \text{IN}] \geq \Omega\left(\frac{1}{\alpha^2n}\right)$. (true

- positive)
- If Alice is OUT, then $\Pr[A(y, a, p) = IN] \leq \delta$. (false positive)

Remarks:

- Only interesting when $\delta < \Omega\left(\frac{1}{\alpha^2 n}\right)$.
 On average, successfully trace $\Omega\left(\frac{1}{\alpha^2}\right)$ members of dataset. This is the best possible. (Why?)
- Gives hope of safely release at most $\tilde{O}(n^2)$ means!

The Attacker

Q: How would you do the attack?

$$A(y, a, p) = \begin{cases} IN & \text{if } \langle y, a \rangle - \langle p, a \rangle > T \\ OUT & \text{if } \langle y, a \rangle - \langle p, a \rangle \le T \end{cases}$$

Note: given p,a, can choose $T=T_{p,a}=O(\sqrt{d\log(1/\delta)})$ to make false positive probability exactly δ .

Attacks on Aggregate Stats (mean)

- What error α makes sense?
 - Estimation error due to sampling $\approx 1/\sqrt{n}$
 - Reconstruction attacks require $\alpha \leq 1/\sqrt{n}$, $d \geq n$
 - Robust membership attacks: $\alpha \lesssim \sqrt{d}/n$
- Lessons
 - "Too many, too accurate" statistics reveal individual data
 - "Aggregate" is hard to pin down

Membership Attacks on ML

[Shokri et al. 2017]

Train a ML model to recognize the difference

Recognize the difference

[slide based on one from Reza Shokri]

Attack Technique – Shadow Models

Train the attack model

to predict if an input was a member of the training set (in) or a non-member (out)

Obtaining Data for Training Shadow Models

• **Real**: similar to training data of the target model (i.e., drawn from same distribution)

• **Synthetic**: use a sampling algorithm to obtain data classified with high confidence by the target model

Attack Pipeline

Using the Attack Model

Another Attack on ML?

[Frederickson et al. `14, cf. McSherry `16]

Attacker gets:

- Access to mechanism outputs
- Some of Alice's data
- (Possibly) auxiliary info about population

Then computes: a sensitive attribute of Alice

Another Attack on ML?

[Frederickson et al. `14, cf. McSherry `16]

Difference from reconstruction attacks:

- Above attack works even if Alice not in dataset. Based on correlation between known & sensitive attributes.
- Reconstruction attacks work even when sensitive bit uncorrelated.

Goals of Differential Privacy

- Utility: enable "statistical analysis" of datasets
 - e.g. inference about population, ML training, useful descriptive statistics
- Privacy: protect individual-level data
 - against "all" attack strategies, auxiliary info.