関数解析後期メモ

百合川

2018年1月1日

目次

第1章	ノルム空間	1
	共役作用素 ノルム空間の共役作用素	3
	コンパクト作用素 コンパクト作用素の性質	
付録 A	弱収束 ノルム空間における弱収束	20
付録 B	商ノルム空間	23

第1章

ノルム空間

 \mathbb{K} を \mathbb{R} 又は \mathbb{C} とする. \mathbb{K} 上のノルム空間 X におけるノルムを $\|\cdot\|_X$ と表記し、X にノルム位相を導入する.

定理 1.0.1 (有限次元空間における有界点列の収束 (局所コンパクト性)).

 \mathbb{K} を \mathbb{R} 又は \mathbb{C} とし、X を \mathbb{K} 上のノルム空間とする. $\dim X < \infty$ ならば X の任意の有界点列は収束部分列を含む.

証明. X の次元数 n による帰納法で証明する.

第一段 n=1 のとき X の基底を u_1 とすれば,X の任意の有界点列は $(\alpha_m u_1)_{m=1}^{\infty}$ $(\alpha_m \in \mathbb{K}, m=1,2,\cdots)$ と表せる. $(\alpha_m)_{m=1}^{\infty}$ は有界列であるから,Bolzano-Weierstrass の定理より部分列 $(\alpha_{m_k})_{k=1}^{\infty}$ と $\alpha \in \mathbb{K}$ が存在して

$$|\alpha_{m_k} - \alpha| \longrightarrow 0 \quad (k \longrightarrow \infty)$$

を満たし

$$\|\alpha_{m_k}u_1 - \alpha u_1\|_{X} \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が従う.

第二段 n=k のとき定理の主張が成り立つと仮定し、n=k+1 として X の基底を u_1,\cdots,u_{k+1} と表す。X から任意に有界列 $(x_j)_{j=1}^\infty$ を取れば、各 x_j は

$$x_j = y_j + \beta_j u_{k+1}$$
 $(y_j \in \text{L.h.} [\{u_1, \dots, u_k\}], \beta_j \in \mathbb{K})$

として一意に表示される. $(\beta_j)_{j=1}^\infty$ が有界でないと仮定すると $\beta_{j_s} \ge s$ $(j_s < j_{s+1}, s=1,2,\cdots)$ を満たす部分列が存在し, $(x_j)_{i=1}^\infty$ の有界性と併せて

$$\left\|u_{k+1} + \frac{1}{\beta_{j_s}}y_{j_s}\right\|_{X} \le \left\|u_{k+1} + \frac{1}{\beta_{j_s}}y_{j_s} - \frac{1}{\beta_{j_s}}x_{j_s}\right\|_{X} + \left\|\frac{1}{\beta_{j_s}}x_{j_s}\right\|_{X} = \left\|\frac{1}{\beta_{j_s}}x_{j_s}\right\|_{X} \longrightarrow 0 \quad (s \longrightarrow \infty)$$

が成り立つが、有限次元空間は閉であるから $u_{k+1}\in \text{L.h.}\left[\{u_1,\cdots,u_k\}\right]$ が従い矛盾が生じる.よって $(\beta_j)_{j=1}^\infty$ は $\mathbb K$ の有界列でなくてはならず、Bolzano-Weierstrass の定理より部分列 $\left(\beta_{j(1,i)}\right)_{i=1}^\infty$ と $\beta\in\mathbb K$ が存在して

$$\left|\beta_{j(1,i)} - \beta\right| \longrightarrow 0 \quad (i \longrightarrow \infty)$$

を満たす.また $\left(y_{j(1,i)}\right)_{i=1}^{\infty}$ も有界列となるから,或る $y\in \mathrm{L.h.}\left[\left\{u_1,\cdots,u_k\right\}\right]$ と部分列 $\left(y_{j(2,i)}\right)_{i=1}^{\infty}$ が存在して

$$\|y_{j(2,i)} - y\|_X \longrightarrow 0 \quad (i \longrightarrow \infty)$$

第 1 章 ノルム空間 **2**

を満たす. 従って

$$\left\| x_{j(2,i)} - (y + \beta u_{k+1}) \right\|_{X} \le \left\| y_{j(2,i)} - y \right\|_{X} + \left| \beta_{j(1,i)} - \beta \right| \| u_{k+1} \|_{X} \longrightarrow 0 \quad (i \longrightarrow \infty)$$

が成り立つ.

定理 1.0.2 (閉部分空間との点の距離). X をノルム空間, $L \subseteq X$ を閉部分空間とする. このとき任意の $\epsilon > 0$ に対し或る $e \in X$ が存在し, $\|e\|_X = 1$ かつ次を満たす:

$$\inf_{x \in L} \|e - x\|_X > 1 - \epsilon.$$

証明.

定理 1.0.3 (単位球面がコンパクトなら有限次元). X をノルム空間, S を X の単位球面とする. S がコンパクトならば $\dim X < \infty$ である.

証明. 対偶を証明する. 距離空間のコンパクト性についての一般論より, S がコンパクトであることと S の任意の点列が S で収束する部分列を含むことは同値である. $\dim X = \infty$ と仮定する. 任意に一つ $e_1 \in S$ を取り $L_1 \coloneqq \text{L.h.}[\{e_1\}]$ とおけば, L_1 は X の閉部分空間であるから定理 1.0.2 より或る $e_2 \in S$ が存在して

$$\inf_{x \in L_1} \|e_2 - x\|_X > \frac{1}{2}$$

を満たす. $L_2 \coloneqq \text{L.h.}\left[\{e_1,e_2\}\right]$ も Xの閉部分空間であるから或る $e_3 \in S$ が存在して

$$\inf_{x \in L_2} \|e_3 - x\|_X > \frac{1}{2}$$

を満たす. この操作を繰り返してSの点列 e_1,e_2,\cdots を構成すれば、

$$\|e_n-e_m\|_X>\frac{1}{2}\quad (\forall n,m\in\mathbb{N},\ n\neq m)$$

が成り立ち $(e_n)_{n=1}^{\infty}$ は収束部分列を含みえない.

第2章

共役作用素

2.1 ノルム空間の共役作用素

係数体を \mathbb{K} とする.以下ではノルム空間 X におけるノルムを $\|\cdot\|_X$ と表記し,位相はこのノルムにより導入されるものと考える.

定義 2.1.1 (共役作用素). X,Y をノルム空間, T を $X\to Y$ の線型作用素とする. T の定義域 $\mathcal{D}(T)$ が X で稠密であるとき, $g\in Y^*$ に対し

$$f(x) = g(Tx) \quad (\forall x \in \mathcal{D}(T)) \tag{2.1}$$

を満たす $f \in X^*$ が存在すれば、f の存在は g に対して唯一つであり *1 この対応を

$$T^*: g \longmapsto f$$

で表す. $T^*: Y^* \to X^*$ を T の共役作用素という.

上の定義でTが零作用素の場合,Tの定義域はX全体であるが(2.1)を満たすようなfは零作用素のみであり,一方でgとしては何を取っても成り立つから,共役作用素もまた零作用素となる.

定理 2.1.2 (共役作用素は閉線型). X,Y をノルム空間, T を $X \to Y$ の線型作用素とする. $\mathcal{D}(T)$ が X で稠密であるとき, T^* は閉線型作用素である.

この定理を証明するために以下にいくつか準備をする. $x \in X$ と $f \in X^*$ に対して f(x) を次の形式で表現する:

$$f(x) = \langle x, f \rangle_{XX^*}$$
.

$$\langle x, f \rangle_{X,X^*} = \langle Tx, g \rangle_{Y,Y^*} \quad (\forall x \in \mathcal{D}(T))$$

$$f(x) = f'(x) \quad (\forall x \in \mathcal{D}(T))$$

が成り立つ. $\mathcal{D}(T)$ は X で稠密であるから f, f' の連続性より f = f' が従う.

 $^{^{*1}}$ g に対し f とは別に (2.1) を満たす $f' \in X^*$ が存在すれば

第 2 章 共役作用素 **4**

と表現できる. また $A \subset X$, $B \subset X^*$ に対して

$$A^{\perp} \coloneqq \left\{ \, f \in X^* \, \; ; \quad \forall x \in A, \; \langle x, f \rangle_{X,X^*} = 0 \, \right\}, \quad {}^{\perp}B \coloneqq \left\{ \, x \in X \, \; ; \quad \forall f \in B, \; \langle x, f \rangle_{X,X^*} = 0 \, \right\}$$

と表記を定める. 例えばBに対して B^{\perp} と書いたらこれは X^{**} の部分集合を表す.

補助定理 2.1.3. $A \subset X$ に対し A^{\perp} は X^* において閉部分空間となる.

証明. A^{\perp} が X^* において完備部分空間であることを示せばよい.

線型性 任意の $f_1, f_2 \in A^{\perp}$ と $\alpha \in \mathbb{K}$ に対し

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = 0, \quad (\alpha f_1)(x) = \alpha f_1(x) = 0, \quad (\forall x \in A)$$

が成り立つ.

完備性 $f_n \in A^\perp$ が収束列であるとすれば X^* の完備性から $(f_n)_{n=1}^\infty$ は或る $f \in X^*$ に (作用素ノルムで) 収束する. 任意 の $x \in A$ に対して

$$|f(x)| = |f(x) - f_n(x)| \le ||f - f_n||_{X^*} ||x||_X \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち $f \in A^{\perp}$ となる.

補助定理について補足 実際はさらに

$$^{\perp}(A^{\perp}) = \overline{\text{L.h.}[A]}$$

が成り立つ. $A \subset {}^{\perp}(A^{\perp})$ かつ ${}^{\perp}(A^{\perp})$ は X の閉部分空間であるから $\overline{\mathrm{L.h.}\,[A]} \subset {}^{\perp}(A^{\perp})$ が先ず判る. 逆向きの包含 関係について, $X = \overline{\mathrm{L.h.}\,[A]}$ の場合は成り立つが,そうでない場合は次のように考える. Hahn-Banach の定理の系によれば任意の $x_0 \in X \setminus \overline{\mathrm{L.h.}\,[A]}$ を一つ取って

$$f_0(x) = \begin{cases} 0 & (x \in \overline{\text{L.h.} [A]}) \\ f_0(x_0) \neq 0 & (x = x_0) \end{cases}$$

を満たす $f_0 \in X^*$ が存在する. $f_0 \in A^\perp$ であるが $x_0 \notin {}^\perp(A^\perp)$ となり ${}^\perp(A^\perp) \subset \overline{\text{L.h.}\,[A]}$ が従う.

二つのノルム空間 X,Y の直積空間 $X\times Y$ における直積ノルムを

$$||[x, y]||_{X \times Y} = ||x||_X + ||y||_Y \quad (\forall [x, y] \in X \times Y)$$

と表すことにする. $Y \times X$ の共役空間 $(Y \times X)^*$ の任意の元 F に対し

$$F_Y(y) := F[y, 0] \quad (y \in Y)$$

$$F_X(x) := F[0, x] \quad (x \in X)$$
 (2.2)

として F_Y , F_X を定義すれば,F の線型性,有界性から $F_Y \in Y^*$, $F_X \in X^*$ となり,特に $F[y,x] = F_Y(y) + F_X(x)$ が成り立つ.逆に $g \in Y^*$ と $f \in X^*$ に対し

$$F[y, x] = g(y) + f(x) \quad (\forall [y, x] \in Y \times X)$$

と定義すれば $F \in (Y \times X)^*$ となり、従って対応 $(Y \times X)^* \ni F \longmapsto [F_Y, F_X] \in Y^* \times X^*$ は全単射である.

補助定理 2.1.4. 次の写像

$$\varphi: (Y \times X)^* \ni F \longmapsto [F_Y, F_X] \in Y^* \times X^*$$

は線形, 同相である.

証明.

線型性 対応のさせ方 (2.2) に基づけば,任意の $[y,x] \in Y \times X$ と $F_1,F_2 \in (Y \times X)^*$, $\alpha \in \mathbb{K}$ に対して

$$\varphi(F_1 + F_2)[y, x] = (F_1 + F_2)[y, 0] + (F_1 + F_2)[0, x] = \varphi(F_1)[y, x] + \varphi(F_2)[y, x]$$
$$\varphi(\alpha F_1)[y, x] = (\alpha F_1)[y, 0] + (\alpha F_1)[0, x] = \alpha \varphi(F_1)[y, x]$$

が成り立つ.

同相 φ は Banach 空間から Banach 空間への線型全単射であるから, φ^{-1} が有界であるなら値域定理より φ も線型有界となり, 従って φ は同相写像となる. 実際

$$||[F_Y, F_X]||_{Y^* \times X^*} = ||F_Y||_{Y^*} + ||F_X||_{X^*}$$

であることと

$$\left\| \varphi^{-1}[F_Y, F_X] \right\|_{(Y \times X)^*} = \sup_{\substack{[y, x] \in Y \times X \\ [y, x] \neq [0, 0]}} \frac{|F_Y(y) + F_X(x)|}{\| [y, x] \|_{Y \times X}} \le \| F_Y \|_{Y^*} + \| F_X \|_{X^*}$$

により

$$\sup_{\substack{[F_Y, F_X] \in Y^* \times X^* \\ [F_Y, F_X] \neq [0, 0]}} \frac{\left\| \varphi^{-1}[F_Y, F_X] \right\|_{(Y \times X)^*}}{\left\| [F_Y, F_X] \right\|_{Y^* \times X^*}} \le 1$$

が成り立つ.

証明 (定理 2.1.2).

$$U: X \times Y \ni [x, y] \longmapsto [y, -x] \in Y \times X$$

として写像 U(等長,全単射)を定義する. T^* のグラフ $\mathscr{G}(T^*)$ は

$$\mathcal{G}(T^*) = \left\{ \left[g, T^*g \right] \in Y^* \times X^* \ ; \quad \forall [x, Tx] \in \mathcal{G}(T), \quad \langle Tx, g \rangle_{Y,Y^*} = \langle x, T^*g \rangle_{X,X^*} \right\}$$

で表される. 補助定理 2.1.4 により $[g, T^*g]$ に対応する $F_g \in (Y \times X)^*$ がただ一つ存在して

$$\langle Tx, g \rangle_{YY^*} - \langle x, T^*g \rangle_{XX^*} = F_g[Tx, -x] = F_gU[x, Tx], \quad ([x, Tx] \in \mathcal{G}(T))$$

と書き直せるから、補助定理 2.1.4 の同相写像 φ により

$$[U\mathscr{G}(T)]^{\perp} = \{ F \in (Y \times X)^* : \forall [x, Tx] \in \mathscr{G}(T), \quad FU[x, Tx] = 0 \} = \varphi^{-1}\mathscr{G}(T^*)$$
(2.3)

が成り立つ. 補助定理 2.1.3 より $[U\mathcal{G}(T)]^{\perp}$ が $Y^* \times X^*$ の閉部分空間であるから, $\mathcal{G}(T^*) = \varphi[U\mathcal{G}(T)]^{\perp}$ は $(Y \times X)^*$ において閉部分空間となり,従って T^* が閉線型作用素であると示された.

定理 2.1.5 (閉拡張の共役作用素は元の共役作用素に一致する).

X,Y をノルム空間, T を $X\to Y$ の線型作用素とし, $\mathcal{D}(T)$ が X で稠密でかつ T が可閉であるとする. このとき次が成り立つ:

$$\mathscr{G}(\overline{T}^*) = \mathscr{G}(T^*).$$

証明. (2.3) より $\mathscr{G}\left(\overline{T}^*\right) = \varphi\left[U\mathscr{G}(\overline{T})\right]^{\perp}$ が成り立っているから,

$$\left[U\mathcal{G}(\overline{T})\right]^{\perp} = \left[U\mathcal{G}(T)\right]^{\perp}$$

を示せばよい.

 \subset について 任意の $[g,f] \in \left[U\mathscr{G}(\overline{T}) \right]^{\perp}$ に対して

$$\langle \overline{T}x, g \rangle_{YY^*} = \langle x, f \rangle_{X,X^*} \quad (\forall [x, \overline{T}x] \in \mathcal{G}(\overline{T}))$$

が成り立っている.

$$\mathscr{G}(T) \subset \overline{\mathscr{G}(T)} = \mathscr{G}(\overline{T})$$

より

$$\langle Tx, g \rangle_{YY^*} = \langle x, f \rangle_{XX^*} \quad (\forall [x, Tx] \in \mathcal{G}(T))$$

が従い $[g,f] \in [U\mathcal{G}(T)]^{\perp}$ が成り立つ.

⊃ について 任意に $[g,f] \in [U\mathcal{G}(T)]^{\perp}$ を取る. 任意の $[x,y] \in \mathcal{G}(\overline{T})$ に対して $[x_n,Tx_n] \in \mathcal{G}(T)$ を取り

$$||x_n - x||_X \longrightarrow 0, \quad ||Tx_n - y||_Y \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つようにできるから,

$$\left| \langle y, g \rangle_{Y,Y^*} - \langle x, f \rangle_{X,X^*} \right| \le \left| \langle y, g \rangle_{Y,Y^*} - \langle T x_n, g \rangle_{Y,Y^*} \right| + \left| \langle x_n, f \rangle_{X,X^*} - \langle x, f \rangle_{X,X^*} \right| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち

$$[g,f]\in \left[U\mathscr{G}(\overline{T})\right]^{\perp}$$

が従う.

補助定理 2.1.6 (定義域が稠密となるための条件). X,Y をノルム空間, T を $X \to Y$ の線型作用素とする. このとき $\mathcal{D}(T)$ が X で稠密であるための必要十分条件は, $[0,f] \in \varphi[U\mathcal{G}(T)]^{\perp}$ ならば f=0 となることである.

証明.

必要性 (2.3) より, $\overline{\mathcal{D}(T)}=X$ ならば T^* が存在して $\mathcal{G}(T^*)=\varphi\left[U\mathcal{G}(T)\right]^\perp$ を満たすから f=0 となる. 十分性 $\varphi[0,f]\in [U\mathcal{G}(T)]^\perp$ なら

$$(\varphi[0,f])[Tx,-x] = -f(x) = 0 \quad (\forall [x,Tx] \in \mathcal{G}(T))$$

が成り立つ、そして

$$f(x) = 0$$
 ($\forall x \in \mathcal{D}(T)$) ならば $f = 0$ \Leftrightarrow $\overline{\mathcal{D}(T)} = X$

により $\overline{\mathcal{D}(T)} = X$ となる. 実際 $\overline{\mathcal{D}(T)} \subsetneq X$ である場合,Hahn-Banach の定理の系より $f \neq 0$ なる $f \in X^*$ で f(x) = 0 ($\forall x \in \mathcal{D}(T)$) を満たすものが存在する.逆に $\overline{\mathcal{D}(T)} = X$ であるなら, $f \in X^*$ の連続性より f(x) = 0 ($\forall x \in \mathcal{D}(T)$) ならば f = 0 が従う.

ノルム空間 X,Y の第二共役空間 X^{**},Y^{**} への自然な単射を J_X,J_Y と表す。そして

$$J: [X, Y] \ni [x, y] \longmapsto [J_X x, J_Y y] \in [X^{**}, Y^{**}]$$

としてJを定めればJは等長かつ線型単射となる.

定理 2.1.7. X,Y をノルム空間, T を $X \to Y$ の線型作用素とし $\mathcal{D}(T)$ が X で稠密であるとする.

(1) $\overline{\mathcal{D}(T^*)} = Y^*$ ならば T は可閉であり

$$J\mathscr{G}(\overline{T})\subset\mathscr{G}(T^{**})$$

が成り立つ.

(2) Y が反射的 Banach 空間なら、T が可閉であることと $\overline{D}(T^*)=Y^*$ であることは同値となり

$$T^{**}J_X = J_Y\overline{T}$$

が成り立つ.

証明. (1) $\overline{\mathscr{D}(T^*)} = Y^*$ ならば T^* の共役作用素 $T^{**}: X^{**} \to Y^{**}$ が定義される. 任意の $x \in \mathscr{D}$ に対し

$$\langle T^*g, J_X x \rangle_{X^*X^{**}} = \langle x, T^*g \rangle_{XX^*} = \langle Tx, g \rangle_{YY^*} = \langle g, J_Y Tx \rangle_{Y^*Y^{**}} \quad (\forall [g, T^*g] \in \mathscr{G}(T^*))$$

が成り立つから、 $J_X x \in \mathcal{D}(T^{**})$ かつ

$$T^{**}J_Xx=J_YTx\quad (\forall [x,Tx]\in \mathcal{G}(T))$$

が従う. すなわち

$$J\mathscr{G}(T)\subset\mathscr{G}(T^{**})$$

が成り立つ. また

$$J\overline{\mathscr{G}(T)} \subset \overline{J\mathscr{G}(T)} \subset \mathscr{G}(T^{**})$$
 (2.4)

が成り立つ. 実際定理 2.1.2 より T^{**} は閉線型であるから二番目の不等式は成り立つ. だから初めの不等式を示せばよい. 任意に $[J_{XX},J_{YY}]\in J\overline{\mathscr{G}(T)}$ を取れば, $[x_n,Tx_n]\in\mathscr{G}(T)$ を取り

$$||x_n - x||_X \longrightarrow 0$$
, $||Tx_n - y||_Y \longrightarrow 0$ $(n \longrightarrow \infty)$

が成り立つようにできる. J_X, J_Y の等長性より

$$||J_X x_n - J_X x||_{X^{**}} \longrightarrow 0, \quad ||J_Y T x_n - J_Y y||_{Y^{**}} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

となり $[J_Xx,J_Yy] \in \overline{J\mathcal{G}(T)}$ が判る. (2.4) より $[0,y] \in \overline{\mathcal{G}(T)}$ ならば $[0,J_Yy] \in \mathcal{G}(T^{**})$ が従い $J_Yy = 0$ となる. J_Y は単射であるから y = 0 となり $\overline{\mathcal{G}(T)}$ がグラフとなるから T は可閉である.

定理 2.1.8 (共役作用素の有界性). X,Y をノルム空間, $T:X\to Y$ を線型作用素とし $\mathcal{D}(T)$ が X で稠密であるとする. T が有界なら T^* も有界で

$$||T^*||_{\mathscr{D}(T^*)} \le ||T||_{\mathscr{D}(T)}$$

が成り立ち、特に $T \in B(X,Y)$ ならば $T^* \in B(Y^*,X^*)$ かつ $\|T^*\|_{B(Y^*,X^*)} = \|T\|_{B(X,Y)}$ を満たす. *2

証明. 任意の $[x, Tx] \in \mathcal{G}(T)$ と $[g, T^*g] \in \mathcal{G}(T^*)$ に対して

$$\left| \langle x, T^* g \rangle_{X,X^*} \right| = \left| \langle T x, g \rangle_{Y,Y^*} \right| \le ||T||_{\mathscr{D}(T)} ||g||_{Y^*} ||x||_X$$

が成り立つから

$$\parallel T^*g \parallel_{X^*} = \sup_{0 \neq x \in X} \frac{\left| \langle x, T^*g \rangle_{X,X^*} \right|}{\parallel x \parallel_X} \leq \parallel T \parallel_{\mathscr{D}(T)} \parallel g \parallel_{Y^*}$$

となる. 従って $\|T^*\|_{\mathscr{D}(T^*)} \leq \|T\|_{\mathscr{D}(T)}$ を得る. $T \in \mathbf{B}(X,Y)$ である場合, 任意の $g \in Y^*$ に対して

$$f: X \ni x \longmapsto g(Tx)$$

と定義すれば、 $f \in X^*$ となり (2.1) を満たすから $T^* \in B(Y^*, X^*)$ が成り立つ. また

$$||Tx||_{Y} = \sup_{\substack{g \in Y^{*} \\ ||g||_{V^{*}} = 1}} |g(Tx)| = \sup_{\substack{g \in Y^{*} \\ ||g||_{V^{*}} = 1}} |T^{*}g(x)| \le \sup_{\substack{g \in Y^{*} \\ ||g||_{V^{*}} = 1}} ||T^{*}g||_{X^{*}} ||x||_{X} \le ||T^{*}||_{B(Y^{*}, X^{*})} ||x||_{X}$$

が成り立つから $||T^*||_{B(Y^*,X^*)} = ||T||_{B(X,Y)}$ が従う.

定理 2.1.9 (共役作用素の合成). X,Y,Z をノルム空間, $T:X\to Y,$ $U:Y\to Z$ を線型作用素とし $\overline{\mathcal{D}(T)}=X,$ $\overline{\mathcal{D}(U)}=Y,$ $\overline{\mathcal{D}(UT)}=X$ を満たすとする. このとき

$$T^*U^* \subset (UT)^*$$

が成り立ち、特に $U \in \mathbf{B}(Y, \mathbb{Z})$ である場合は $T^*U^* = (UT)^*$ となる.

 $^{*^2 \|\}cdot\|_{\mathscr{D}(T)}, \|\cdot\|_{\mathscr{D}(T^*)}$ および $\|\cdot\|_{\mathsf{B}(X,Y)}, \|\cdot\|_{\mathsf{B}(Y^*,X^*)}$ は作用素ノルムを表す.

証明. 任意の $h \in \mathcal{D}(T^*U^*)$ に対して

$$\langle (UT)x,h\rangle_{Z,Z^*} = \langle Tx,U^*h\rangle_{Y,Y^*} = \langle x,T^*U^*h\rangle_{X,X^*} \quad (\forall [x,Tx] \in \mathcal{G}(UT))$$

が成り立つから, $h \in \mathcal{D}((UT)^*)$ かつ $(UT)^*h = T^*U^*h$ を満たす *3 . ゆえに

$$T^*U^* \subset (UT)^*$$

となる. $U \in \mathbf{B}(Y,Z)$ の場合, $\mathcal{D}(UT) = \mathcal{D}(T)$ と $U^* \in \mathbf{B}(Z^*,Y^*)$ (定理 2.1.8) が従うから, 任意の $h \in \mathcal{D}((UT)^*)$ に対して

$$\langle (UT)x, h \rangle_{Z,Z^*} = \langle x, (UT)^*h \rangle_{X,X^*} \quad (\forall x \in \mathcal{G}(T))$$

かつ

$$\langle (UT)x,h\rangle_{Z,Z^*}=\langle Tx,U^*h\rangle_{Y,Y^*}\quad (\forall x\in\mathcal{G}(T))$$

より $U^*h \in \mathcal{D}(T^*)$ となり $T^*U^*h = (UT)^*h$ を満たす. 従って $(UT)^* \subset T^*U^*$ が成り立ち

$$(UT)^* = T^*U^*$$

を得る.

定理 2.1.10 (共役作用素の和). X,Y をノルム空間, $T:X\to Y$, $U:X\to Y$ を線型作用素とし $\overline{\mathcal{D}(T)}=X$, $\overline{\mathcal{D}(T+U)}=X$ を満たすとする. このとき

$$T^* + U^* \subset (T + U)^*$$

が成り立ち、特に $T, U \in B(X, Y)$ である場合は $T^* + U^* = (T + U)^*$ となる.

証明. 任意の $g \in \mathcal{D}(T^* + U^*)$ に対し,

$$\langle (T+U)x,g\rangle_{YY^*} = \langle Tx,g\rangle_{YY^*} + \langle Ux,g\rangle_{YY^*} = \langle x,T^*g\rangle_{XX^*} + \langle x,U^*g\rangle_{XX^*} \\ ^{*4} = \langle x,(T^*+U^*)g\rangle_{XX^*} \quad (\forall x\in\mathscr{D}(T+U))$$

が成り立つ. 従って $g\in \mathcal{D}((T+U)^*)$ かつ $(T+U)^*g=(T^*+U^*)g$ を満たす.特に $T,U\in B(X,Y)$ のとき,任意の $g\in \mathcal{D}((T+U)^*)$ に対し

$$\langle (T+U)x, g \rangle_{YY^*} = \langle x, (T+U)^*g \rangle_{XX^*} \quad (\forall x \in X)$$

かつ

$$\langle (T+U)x,g\rangle_{Y,Y^*} = \langle Tx,g\rangle_{Y,Y^*} + \langle Ux,g\rangle_{Y,Y^*} = \langle x,(T^*+U^*)g\rangle_{X,X^*} \quad (\forall x\in X)$$

が成り立つから $g \in \mathcal{D}(T^* + U^*)$ かつ $(T + U)^* = (T^* + U^*)$ が従う.

 $^{^{*3}}$ $\mathcal{G}(UT)$ は X で稠密であるから $(UT)^*h = T^*U^*h$ でなくてはならない.

 $^{^{*4}~\}mathscr{D}(T+U)\subset \mathscr{D}(T), \mathscr{D}(U)~\tilde{c}$

第 2 章 共役作用素 10

定理 2.1.11 (共役作用素のスカラ倍). X, Y をノルム空間, $T: X \to Y$ を線型作用素とし $\overline{\mathscr{D}(T)} = X$ を満たすとする. 任意の $\lambda \in \mathbb{K}$ に対し次が成り立つ.

$$(\lambda T)^* = \lambda T^*.$$

証明. $\lambda=0$ の場合,零作用素の共役作用素もまた零作用素となるから $(\lambda T)^*=\lambda T^*$ が成り立つ. $\lambda\neq0$ の場合,任意の $g\in\mathcal{D}((\lambda T)^*)$ に対して

$$\langle x, (\lambda T)^*g\rangle_{X,X^*} = \langle (\lambda T)x, g\rangle_{Y,Y^*} = \lambda \, \langle Tx, g\rangle_{Y,Y^*} = \lambda \, \langle x, T^*g\rangle_{X,X^*} \quad (\forall x \in \mathcal{D}(T))$$

が成り立つから $g \in \mathcal{D}(T^*)$ かつ

$$(\lambda T)^* g = \lambda T^* g$$

が成り立つ. 一方 $g \in \mathcal{D}(T^*)$ に対して

$$\langle (\lambda T)x, g \rangle_{Y,Y^*} = \lambda \langle x, T^* \rangle_{X,X^*} \quad (\forall x \in \mathcal{D}(T))$$

も成り立ち、 $g \in \mathcal{D}((\lambda T)^*)$ かつ

$$(\lambda T)^*g = \lambda T^*g$$

を満たす.

第3章

コンパクト作用素

3.1 コンパクト作用素の性質

係数体を \mathbb{C} , X,Y をノルム空間とし, K を X から Y への線型作用素とする. また X,Y 及び共役空間 X^*,Y^* におけるノルムを $\|\cdot\|_{Y}$, $\|\cdot$

定義 3.1.1 (コンパクト作用素). K がコンパクト作用素 (compact operator) であるということを次で定義する:

• $\mathcal{D}(K) = X$ を満たし、かつ X の任意の有界部分集合 B に対して KB が相対コンパクト (KB の閉包 \overline{KB} がコンパクト) となる.

補助定理 3.1.2 (コンパクト作用素となるための十分条件の一つ). $\mathcal{D}(K) = X$ とする. $B_1 \coloneqq \{x \in X \; | \; \|x\|_X < 1\}$ に対して $\overline{KB_1}$ がコンパクトであるなら K はコンパクト作用素となる.

証明. $B \subset X$ が有界集合なら或る $\lambda > 0$ が存在して $B \subset \lambda B_1$ (= $\{\lambda x; x \in B_1\}$) が成り立つ. $\overline{K(\lambda B_1)}$ がコンパクトとなるならその閉部分集合である \overline{KB} もコンパクトとなるから, $\overline{K(\lambda B_1)}$ がコンパクトとなることを示せばよい. 先ず

$$\overline{K(\lambda B_1)} = \lambda \overline{KB_1}$$

が成り立つことを示す。 $x \in \overline{K(\lambda B_1)}$ に対しては点列 $(x_n)_{n=1}^{\infty} \subset K(\lambda B_1)$ が取れて $\|x_n - x\|_X \longrightarrow 0$ $(n \longrightarrow \infty)$ を満たす。 $y_n \coloneqq x_n/\lambda$ とおけば K の線型性により $y_n \in KB_1$ となり, $\|y_n - x/\lambda\|_X = \|x_n - x\|_X/\lambda \longrightarrow 0$ $(n \longrightarrow \infty)$ となるから $x/\lambda \in \overline{KB_1}$,すなわち $x \in \lambda \overline{KB_1}$ である。逆に $x \in \lambda \overline{KB_1}$ に対しては $x/\lambda \in \overline{KB_1}$ となるから,或る点列 $(t_n)_{n=1}^{\infty} \subset KB_1$ が存在して $\|t_n - x/\lambda\|_X \longrightarrow 0$ $(n \longrightarrow \infty)$ を満たす。 $s_n = \lambda t_n$ とおけば K の線型性により $s_n \in K(\lambda B_1)$ となり, $\|s_n - x\|_X = \lambda \|t_n - x/\lambda\|_X \longrightarrow 0$ $(n \longrightarrow \infty)$ が成り立つから $x \in \overline{K(\lambda B_1)}$ である。以上で $\overline{K(\lambda B_1)} = \lambda \overline{KB_1}$ が示された。 $\overline{K(\lambda B_1)}$ を覆う任意の開被覆 $\cup_{u \in M} O_u$ (M は任意濃度) に対し

$$\overline{KB_1} \subset \bigcup_{\mu \in M} \frac{1}{\lambda} O_{\mu}$$

が成り立ち *1 , 仮定より $\overline{KB_1}$ はコンパクトであるから,M から有限個の添数 μ_i ($i=1,\cdots,n$) を取り出して

$$\overline{KB_1} \subset \bigcup_{i=1}^n \frac{1}{\lambda} O_{\mu_i}$$

 $^{^{*1}}$ 開集合 O_{μ} は $1/\lambda$ でスケールを変えてもまた開集合となる.

第3章 コンパクト作用素

12

となる.

$$\overline{K(\lambda B_1)} = \lambda \overline{KB_1} \subset \bigcup_{i=1}^n O_{\mu_i}$$

が従うから $\overline{K(\lambda B_1)}$ はコンパクトである.

補助定理 3.1.3 (コンパクト作用素であることの同値条件). $\mathscr{D}(K)=X$ とする. (1)K がコンパクトであることと, (2)X の任意の有界点列 $(x_n)_{n=1}^\infty$ に対し点列 $(Tx_n)_{n=1}^\infty$ で収束する部分列を含むことは同値である.

証明.

- (1) \Rightarrow (2) $(x_n)_{n=1}^{\infty}$ は X において有界集合であるから $(Kx_n)_{n=1}^{\infty}$ は相対コンパクトである. 距離空間におけるコンパクト性の一般論により $\overline{(Kx_n)_{n=1}^{\infty}}$ は点列コンパクトとなり (2) が従う.
- (2) \Rightarrow (1) 距離空間の一般論より、任意の有界集合 $B \subset X$ に対して \overline{TB} がコンパクトとなることと \overline{TB} が点列コンパクトとなることは同値である。従って次の主張

主張(※)

TB の任意の点列が \overline{TB} で収束する部分列を含むなら \overline{TB} は点列コンパクトである.

を示せばよい。実際 (※) が示されたとする。TB から任意に点列 $(y_n)_{n=1}^{\infty}$ を取れば,これに対し或る $(x_n)_{n=1}^{\infty} \subset B$ が対応して $y_n = Tx_n$ $(n=1,2,\cdots)$ と表現され,(2) の仮定より $(y_n)_{n=1}^{\infty}$ は $\overline{(y_n)_{n=1}^{\infty}}$ で収束する部分列を持つ。 よって (※) と上の一般論により \overline{TB} はコンパクトとなる。(※) を示す。 \overline{TB} の任意の点列 $(y_n)_{n=1}^{\infty}$ に対して $\|y_n - z_n\|_Y < 1/n$ $(n=1,2,\cdots)$ を満たす $(z_n)_{n=1}^{\infty} \subset TB$ が存在する。部分列 $(z_{n_k})_{k=1}^{\infty}$ が $y \in \overline{TB}$ に収束するなら,任意の $\epsilon > 0$ に対し或る $K_1 \in \mathbb{N}$ が取れて $k \geq K_1$ ならば $\|y - z_{n_k}\|_Y < \epsilon/2$ を満たす。更に或る $K_2 \in \mathbb{N}$ が取れて $k \geq K_2$ なら $1/n_k < \epsilon/2$ も満たされるから,全ての $k \geq \max\{K_1, K_2\}$ に対して

$$\|y - y_{n_k}\|_{Y} \le \|y - z_{n_k}\|_{Y} + \|z_{n_k} - y_{n_k}\|_{Y} < \epsilon$$

が成り立つ.

定義 3.1.4 (コンパクト作用素の空間). ここで新しく次の表記を導入する:

 $B_c(X,Y) := \{ K : X \to Y ; K はコンパクト作用素 \}.$

Y = X の場合は $B_c(X, X) = B_c(X)$ と表記する。有界作用素の空間に似た表記をしているが、定義右辺では作用素の有界性を要件に入れていない。しかし実際コンパクト作用素は有界である (命題 3.1.5).

第 3 章 コンパクト作用素 13

命題 3.1.5 (コンパクト作用素の有界性・コンパクト作用素の合成のコンパクト性).

- (1) $B_c(X,Y)$ は B(X,Y) の線型部分空間となる.
- (2) Z をノルム空間とする. $A \in B(X,Y)$ と $B \in B(Y,Z)$ に対して A 又は B がコンパクト作用素なら BA もまた コンパクト作用素となる.

証明.

(1) 任意に $K \in B_c(X,Y)$ を取れば、コンパクト作用素の定義より $\mathcal{D}(K)=X$ が満たされている。また $B_1:=\{x\in X\;;\;\;\|x\|_X\leq 1\}$ とおけば、 $\overline{KB_1}$ のコンパクト性により KB_1 は有界であるから

$$\sup_{0<\|x\|_{X}\leq 1}\|Kx\|_{Y}=\sup_{x\in B_{1}\setminus\{0\}}\|Kx\|_{Y}<\infty$$

となり $K \in \mathbf{B}(X,Y)$ が従う、次に $\mathbf{B}_c(X,Y)$ が線形空間であることを示す、 $K_1,K_2 \in \mathbf{B}_c(X,Y)$ と $\alpha \in \mathbb{C}$ を任意に取る、補助定理 3.1.3 より,X の任意の有界点列 $(x_n)_{n=1}^\infty$ に対して $((K_1+K_2)(x_n))_{n=1}^\infty$ と $((\alpha K_1)(x_n))_{n=1}^\infty$ が収束部分列を含むことを示せばよい、補助定理 3.1.3 により, $(K_1x_n)_{n=1}^\infty$ は $\overline{(K_1x_n)_{n=1}^\infty}$ で収束する部分列 $(K_1x_{n(1,k)})_{k=1}^\infty$ を持つ、また $(K_2x_{n(1,k)})_{k=1}^\infty$ で収束する部分列 $(K_2x_{n(2,k)})_{k=1}^\infty$ を持ち,更に $(K_1x_{n(2,k)})_{k=1}^\infty$ は収束列 $(K_1x_{n(1,k)})_{k=1}^\infty$ の部分列となるから, $((K_1+K_2)(x_{n(2,k)}))_{k=1}^\infty$ が収束列となり $K_1+K_2 \in \mathbf{B}_c(X,Y)$ が従う、 $(\alpha K_1x_{n(1,k)})_{k=1}^\infty$ もまた収束列であるから $\alpha K_1 \in \mathbf{B}_c(X,Y)$ も従う、以上より $\mathbf{B}_c(X,Y)$ は線形空間である。

(2) A がコンパクト作用素である場合 補助定理 3.1.3 により,X の任意の点列 $(x_n)_{n=1}^{\infty}$ に対し $(Ax_n)_{n=1}^{\infty}$ は収束部分列 $(Ax_{n_k})_{k=1}^{\infty}$ を持つ。B の連続性により $(BAx_{n_k})_{k=1}^{\infty}$ も収束列となるから,補助定理 3.1.3 より BA はコンパクト作用素である.

B がコンパクト作用素である場合 任意の有界集合 $S \subset X$ に対して、A の有界性と併せて AS は有界となる. 従って \overline{BAS} がコンパクトとなるから BA はコンパクト作用素である.

命題 3.1.6 (Y が完備なら $B_c(X,Y)$ は閉). Y が Banach 空間ならば $B_c(X,Y)$ は B(X,Y) の閉部分空間である.

証明. Y が Banach 空間ならば B(X,Y) は作用素ノルム $\|\cdot\|_{B(X,Y)}$ について Banach 空間となるから, $B_c(X,Y)$ の任意の Cauchy 列は少なくとも B(X,Y) で収束する.よって次を示せば補助定理 3.1.3 により定理の主張が従う.

• $A_n \in B_c(X,Y)$ $(n=1,2,\cdots)$ が Cauchy 列をなし $A \in B(X,Y)$ に収束するとき,X の任意の有界点列 $(x_n)_{n=1}^{\infty}$ に対して $(Ax_n)_{n=1}^{\infty}$ が Y で収束する部分列を持つ.

証明には対角線論法を使う。先ず A_1 について,補助定理 3.1.3 により $(A_1x_n)_{n=1}^\infty$ の或る部分列 $\left(A_1x_{k(1,j)}\right)_{j=1}^\infty$ は収束する。 A_2 についても $\left(A_2x_{k(1,j)}\right)_{j=1}^\infty$ の或る部分列 $\left(A_2x_{k(2,j)}\right)_{j=1}^\infty$ は収束する。以下収束部分列を抜き取る操作を繰り返し,一般の A_n に対して $\left(A_nx_{k(n,j)}\right)_{j=1}^\infty$ が収束列となるようにできる。ここで $x_{k_j}:=x_{k(j,j)}$ $(j=1,2,\cdots)$ として点列 $(x_{k_j})_{j=1}^\infty$ を定めれば,これは $(x_n)_{n=1}^\infty$ の部分列であり,また全ての $n=1,2,\cdots$ に対して $\left(A_nx_{k_j}\right)_{j=n}^\infty$ は収束列 $\left(A_nx_{k(n,j)}\right)_{j=1}^\infty$ の部分列となるから $\left(A_nx_{k_j}\right)_{j=1}^\infty$ は収束列である。この $\left(x_{k_j}\right)_{j=1}^\infty$ に対して $\left(Ax_{k_j}\right)_{j=1}^\infty$ が Cauchy 列をなすならば A のコンパクト性が

従う*2. $A_n \to A$ を書き直せば、任意の $\epsilon > 0$ に対して或る $N = N(\epsilon) \in \mathbb{N}$ が存在し、n > N なら $\|A_n - A\|_{\mathbf{B}(X,Y)} < \epsilon$ となる.また n > N を満たす n を一つ取れば、 $\left(A_n x_{k_j}\right)_{j=1}^{\infty}$ は収束列であるから或る $J = J(n,\epsilon) \in \mathbb{N}$ が存在し全ての $j_1, j_2 > J$ に対して $\left\|A_n x_{k_{j_1}} - A_n x_{k_{j_2}}\right\|_Y < \epsilon$ が成り立つ. $M \coloneqq \sup_{n \in \mathbb{N}} \|x_n\|_X < \infty$ とおけば、全ての $j_1, j_2 > J$ に対して

$$\left\|Ax_{k_{j_{1}}}-Ax_{k_{j_{2}}}\right\|_{Y}\leq M\left\|A-A_{n}\right\|_{\mathsf{B}(X,Y)}+\left\|A_{n}x_{k_{j_{1}}}-A_{n}x_{k_{j_{2}}}\right\|_{Y}+M\left\|A-A_{n}\right\|_{\mathsf{B}(X,Y)}<(2M+1)\epsilon$$

が従うから、 $\left(Ax_{k_{j}}\right)_{i=1}^{\infty}$ は Cauchy 列すなわち収束列である.

定理 3.1.7 (コンパクト作用素の共役作用素のコンパクト性).

- (1) $A \in B_c(X,Y) \Rightarrow A^* \in B_c(Y^*,X^*)$ が成り立つ.
- (2) Y が Banach 空間ならば、任意の $A \in B(X,Y)$ に対し $A^* \in B_c(Y^*,X^*) \Rightarrow A \in B_c(X,Y)$ が成り立つ.

証明.

(1) 定理 2.1.8 より $A \in B(X, Y)$ なら $A^* \in B(Y^*, X^*)$ が成り立つ.

$$S_1 := \{ \; x \in X \; ; \quad 0 < || \, x \, ||_X \le 1 \; \}$$

とおけば仮定より $L := \overline{AS}$ は Y のコンパクト部分集合であり、任意に有界点列 $(y_n^*)_{n=1}^\infty \subset Y^*$ を取り

$$f_n: L \ni y \longmapsto y_n^*(y) \in \mathbb{C} \quad (n = 1, 2, \cdots)$$

と定める. 関数族 $(f_n)_{n=1}^\infty$ は正規族となる*3 から、Ascoli-Arzela の定理により L 上の連続関数の全体 C(L) において収束する部分列 $(f_{n_k})_{k=1}^\infty$ を含む.

同等連続性 $(y_n^*)_{n=1}^\infty$ は有界であるから, $M\coloneqq\sup_{n\in\mathbb{N}}\left\|y_n^*\right\|_{Y^*}$ とおけば

$$|f_n(y_1) - f_n(y_2)| = |y_n^*(y_1) - y_n^*(y_2)| \le M \|y_1 - y_2\|_Y \quad (\forall y_1, y_2 \in L, \ n = 1, 2, \cdots)$$

が成り立ち同等連続性が従う.

各点で有界 上で定めた M に対し

$$|f_n(y)| \le M ||y||_Y \quad (\forall y \in L, \ n = 1, 2, \cdots)$$

が成り立つ.

 $^{^{*2}}$ Y が Banach 空間であるから Cauchy 列であることと収束列であることは同値である.

^{*3} 関数族 $(f_n)_{n=1}^\infty$ の同等連続性と各点での有界性を示す.

第3章 コンパクト作用素 **15**

が成り立つ. $(f_{n_k})_{k=1}^{\infty}$ が sup-norm について Cauchy 列をなすから $\left(A^*y_{n_k}^*\right)_{k=1}^{\infty}$ も Cauchy 列となり, X^* の完備性と補助定理 3.1.3 より $A^* \in \mathbf{B}_c$ (Y^*, X^*) が従う.

(2) 証明 1 $J_X: X \longrightarrow X^{**}, J_Y: Y \longrightarrow Y^{**}$ を自然な等長埋め込みとする. 任意に $x \in X$ を取れば

$$\langle A^*y^*,J_Xx\rangle_{X^*,X^{**}}=\langle x,A^*y^*\rangle_{X,X^*}=\langle Ax,y^*\rangle_{Y,Y^*}=\langle y^*,J_YAx\rangle_{Y^*,Y^{**}}\quad (\forall y^*\in Y^*=\mathcal{D}(A^*))$$

が成り立ち、 $\mathcal{D}(A^*) = Y^*$ であるから A^{**} が定義され

$$A^{**}J_Xx = J_YAx \quad (\forall x \in X) \tag{3.1}$$

が従う.また前段の結果と A^* のコンパクト性から A^{**} もコンパクト作用素となる.X から任意に有界点列 $(x_n)_{n=1}^\infty$ を取れば, J_X の等長性より $(J_X x_n)_{n=1}^\infty$ も X^{**} において有界となり,補助定理 3.1.3 により $(A^{**}J_X x_n)_{n=1}^\infty$ の或る部分列 $(A^{**}J_X x_{n_k})_{k=1}^\infty$ は Cauchy 列となる. (3.1) より $(J_Y A x_{n_k})_{k=1}^\infty$ も Cauchy 列となるから, J_Y の等長性より $(Ax_{n_k})_{k=1}^\infty$ は Banach 空間 Y で収束し $A \in \mathbf{B}_c(X,Y)$ が従う.

証明 2 X の任意の有界点列 $(x_n)_{n=1}^{\infty}$ に対して

$$||Ax_n||_Y = \sup_{\|y^*\|_{Y^*} \le 1} |y^*(Ax_n)| = \sup_{\|y^*\|_{Y^*} \le 1} |\langle y^*, Ax_n \rangle_{Y^*, Y}| = \sup_{\|y^*\|_{Y^*} \le 1} |\langle A^*y^*, x_n \rangle_{X^*, X}| = \sup_{x^* \in V} |\langle x^*, x_n \rangle_{X^*, X}|$$

が成り立つ. ただし $V := \overline{\{A^*y^* \mid \|y^*\|_{Y^*} \le 1\}}$ としていて,また第1の等号は

$$||y||_{Y} = \sup_{\substack{0 \neq g \in Y^{*} \\ ||g||_{y_{s}} \leq 1}} \frac{|g(y)|}{||g||_{Y^{*}}} = \sup_{||g||_{Y^{*}} = 1} |g(y)| = \sup_{||g||_{Y^{*}} \leq 1} |g(y)|$$

の関係を使った*⁴. A^* がコンパクトだから V が X^* のコンパクト集合となるから $M:=\sup_{x^*\in V}\|x^*\|_{X^*}$ とおけば $M<\infty$ である. また $(\|x_n\|_X)_{n=1}^\infty$ は $\mathbb R$ において有界列となるから収束する部分列 $(\|x_{n_k}\|_X)_{k=1}^\infty$ を取ることができる. この部分列と全ての $x^*\in V$ に対して

$$|x^*(x_{n_k}) - x^*(x_{n_i})| \le M \|x_{n_k} - x_{n_i}\|_{\mathbf{v}} \longrightarrow 0 \quad (k, j \longrightarrow \infty)$$

が成り立つから,

$$\left\|Ax_{n_k} - Ax_{n_j}\right\|_{Y} = \sup_{x^* \in V} \left|\left\langle x^*, x_{n_k} - x_{n_j}\right\rangle_{X^*, X}\right| \longrightarrow 0 \quad (k, j \longrightarrow \infty)$$

が従い $A \in B_c(X,Y)$ が判明する.

定理 3.1.8 (反射的 Banach 空間の弱点列コンパクト性).

X が反射的 Banach 空間なら、X の任意の有界点列は弱収束する部分列を含む.

定理 3.1.9 (有限次元空間における有界点列の収束). $A \in \mathrm{B}(X,Y)$ に対し $\mathrm{rank}\,A = \dim \mathscr{R}(A) < \infty$ ならば $A \in \mathrm{B}_c(X,Y)$ が成り立つ. また X,Y が Hilbert 空間であるなら逆が成立する.

証明. $\mathscr{R}(A) = AX$ は有限次元空間となるから主張の前半は定理 1.0.1 により従う. A コンパクト作用素なら AX は可分, \overline{AX} は Hilbert より完全正規直交系存在.

 $^{^{*4}}$ Hahn-Banach の定理の系を参照. 始めの \sup は $\|g\|_{Y^*} \le 1$ の範囲で制限しているが,等号成立する g のノルムが 1 であるから問題ない.

第3章 コンパクト作用素

16

定理 3.1.10 (恒等写像がコンパクト作用素なら有限次元). X をノルム空間とする. X の恒等写像 I がコンパクト作用素であるなら $\dim X < \infty$ が成り立つ.

証明. X の単位球面を S と表す. S は X の閉集合である. 実際点列 $x_n \in S$ $(n=1,2,\cdots)$ が $x_n \to x \in X$ となるとき

$$|\|x\|_{X} - \|x_n\|_{X}| \le \|x - x_n\|_{X} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち $x \in S$ が従う. $I \in B_c(X)$ より $\overline{IS} = \overline{S} = S$ は点列コンパクトとなるから $\dim X < \infty$ となる.

定理 3.1.11 (コンパクト作用素は弱収束列を強収束列に写す).

X,Y をノルム空間とし、任意に $A \in B(X,Y)$ を取る.

- (1) $A \in B_c(X,Y)$ なら A は X の任意の弱収束列を強収束列に写す.
- (2) X が反射的 Banach 空間なら (1) の逆が成り立つ.
- 証明. (1) X から任意に弱収束列 $(x_n)_{n=1}^\infty$ を取り弱極限を $x \in X$ とする. このとき $(Ax_n)_{n=1}^\infty$ の任意の部分列が強収束する部分列を含み,且つその収束先が全て Ax であるならば,距離空間における点列の収束の一般論*5 により (1) の主張が従う. $(Ax_n)_{n=1}^\infty$ から任意に部分列 $(Ax_{n(1,k)})_{k=1}^\infty$ を取る. 定理 A.1.6 より $(x_{n(1,k)})_{k=1}^\infty$ は有界列であるから,定理 3.1.3 より部分列 $(Ax_{n(2,k)})_{k=1}^\infty$ が或る $y \in \overline{(Ax_{n(1,k)})_{k=1}^\infty}$ に強収束する. 定理 2.1.8 より A^* が存在して $Y^* = \mathcal{D}(Y^*)$ を満たすから,任意に $g \in Y^*$ を取れば

$$\langle x_{n(2,k)}, A^* g \rangle_{X,X^*} = \langle A x_{n(2,k)}, g \rangle_{Y,Y^*}$$

が成り立つ. 左辺は w- $\lim_{n\to\infty} x_n = x$ の仮定より

$$\langle x_{n(2,k)}, A^*g \rangle_{XX^*} \longrightarrow \langle x, A^*g \rangle_{XX^*} = \langle Ax, g \rangle_{YY^*} \quad (k \longrightarrow \infty)$$

を満たし、一方で右辺は $\lim_{k\to\infty} Ax_{n(2,k)} = y$ より

$$\langle Ax_{n(2,k)}, g \rangle_{YY^*} \longrightarrow \langle y, g \rangle_{YY^*} \quad (k \longrightarrow \infty)$$

を満たすから

$$\langle Ax, g \rangle_{YY^*} = \langle y, g \rangle_{YY^*} \quad (\forall g \in Y^*)$$

が成り立ち Ax = y が従う.

(2) X が反射的 Banach 空間ならば X の任意の有界点列は弱収束する部分列を含む. (2) の仮定よりその部分列を A で写せば Y で強収束するから,定理 3.1.3 より A のコンパクト性が従う.

$$d(s_{n_k}, s) \ge \epsilon \quad (\forall k = 1, 2, \cdots)$$

を満たすから、 $\left(s_{n_k}\right)_{k=1}^{\infty}$ のいかなる部分列も s には収束し得ない.

^{**} (S,d) を距離空間とし、S の点 S と点列 $(s_n)_{n=1}^{\infty}$ を取る。このとき $(s_n)_{n=1}^{\infty}$ 任意の部分列が S に収束する部分列を含むなら、 $(s_n)_{n=1}^{\infty}$ は S に収束する。 実際もし $(s_n)_{n=1}^{\infty}$ が S に収束しないとすれば、或る S のに対し部分列 $(S_{n_k})_{k=1}^{\infty}$ が存在して

3.2 Fredholm 性

以降ノルム空間の商空間は付録 B 章に従って定義する.

補助定理 3.2.1 (商空間のコンパクト作用素). X を複素ノルム空間, Y を X の閉部分空間とする. $A \in \mathbf{B}_c(X)$ が $AY \subset Y$ を満たすとき次が成り立つ:

- (1) $A_1: Y \ni y \mapsto Ay \in Y$ として A_1 を定めれば $A_1 \in B_c(Y)$ が成り立つ.
- (2) $A_2: X/Y \ni [x] \mapsto [Ax] \in X/Y$ として A_2 を定めれば $A_2 \in B_c(X/Y)$ が成り立つ.

証明.

- (1) 任意に Y から有界点列 $(x_n)_{n=1}^{\infty}$ を取る.補助定理 3.1.3 より $(Ax_n)_{n=1}^{\infty}$ の部分列 $(Ax_{n_k})_{k=1}^{\infty}$ は或る $y \in X$ に収束し、Y が閉であるから $y \in Y$ を満たす. $A_1x_{n_k} = Ax_{n_k}$ $(k=1,2,\cdots)$ より $A_1x_{n_k} \longrightarrow y$ $(k \longrightarrow \infty)$ が従い、補助定理 3.1.3 より $A_1 \in B_c(Y)$ が成り立つ.
- (2) well-defined A_2 の定義は well-defined である. つまり同値類の表示の仕方に依らない. 実際 [x] = [x'] なら

$$Ax - Ax' = A(x - x') \in Y$$

が成り立つから $A_2[x] = [Ax] = [Ax'] = A_2[x']$ が従う、また $[x], [y] \in X/Y$ と $\alpha, \beta \in \mathbb{K}$ に対し

$$A_2(\alpha[x] + \beta[y]) = A_2[\alpha x + \beta y] = [A(\alpha x + \beta y)] = [\alpha Ax + \beta Ay] = \alpha[Ax] + \beta[Ay] = \alpha A_2[x] + \beta A_2[y]$$

が成り立つから A_2 は線型作用素である.

コンパクト性 B を X/Y の単位開球とする. B から任意に取った点列 $([x_n])_{n=1}^{\infty}$ に対して $(A_2[x_n])_{n=1}^{\infty}$ が X/Y で収束する部分列を含むなら,定理 3.1.3 の証明中の (※) の主張により A_2B は相対コンパクトとなり,定理 3.1.2 により A のコンパクト性が従う.各 $n \in \mathbb{N}$ について $\|[x_n]\|_{X/Y} < 1$ であるから $\|u_n\|_X \le 2$ を満たす $u_n \in [x_n]$ が存在する.定理 3.1.3 より $(Au_n)_{n=1}^{\infty}$ の或る部分列 $(Au_{n_k})_{k=1}^{\infty}$ は或る $y \in Y$ に収束するから

$$\left\|A_2\left[x_{n_k}\right] - \left[y\right]\right\|_{X/Y} = \left\|\left[Ax_{n_k} - y\right]\right\|_{X/Y} \le \left\|Ax_{n_k} - y\right\|_X \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が成り立つ.

定理 3.2.2 (複素 Banach 空間上のコンパクト作用素の値域の余次元,核の次元).

X を複素 Banach 空間, I を X 上の恒等写像とし, $0 \neq \lambda \in \mathbb{C}$ と $A \in \mathbf{B}_c(X)$ に対して $T \coloneqq \lambda I - A$ とおく. このとき $\mathscr{R}(T)$ は X の閉部分空間であり, $\dim \mathscr{N}(T) < \infty$ かつ $\operatorname{codim} \mathscr{R}(T) < \infty^{*6}$ が成り立つ.

定理 3.2.3 (Fredholm の交代定理).

^{*6} $\operatorname{codim} \mathcal{R}(T) = \dim X / \mathcal{R}(T)$ である.

第3章 コンパクト作用素 18

補助定理 3.2.4. E を複素ノルム空間, E_1, E_2 を E の線型部分空間とし $E = E_1 + E_2$ が成り立っているとする*⁷. また $E, E_1 \times E_2$ におけるノルムをそれぞれ $\|\cdot\|_{E_1 \times E_2}$ としてノルム位相を導入し

$$\Phi: E \ni x \longmapsto [x_1, x_2] \in E_1 \times E_2 \quad (x = x_1 + x_2)$$

を定める. このとき次が成り立つ:

- (1) Φ は全単射かつ閉線型である.
- (2) Φ^{-1} は連続である.
- (3) Φ が連続ならば E_1, E_2 は閉部分空間である.
- (4) E が Banach 空間で E_1, E_2 が閉部分空間ならば Φ は線型同型かつ同相である.
- (5) $\dim E_1 < \infty$ かつ E_2 が閉ならば Φ は線型同型かつ同相である.

証明.

(1) 全単射であること 任意に $[x_1,x_2] \in E_1 \times E_2$ を取れば $x_1 + x_2 \in E$ を満たすから Φ は全射である。また $E_1 \times E_2$ の二元が $[x_1,x_2] = [y_1,y_2]$ を満たせば $x_1 = y_1$ かつ $x_2 = y_2$ となるから Φ は単射である。

閉線型であること $x, y \in E, \alpha \in \mathbb{C}$ を任意に取り $\Phi x = [x_1, x_2], \Phi y = [y_1, y_2]$ とすれば、

$$\Phi(x+y) = [x_1 + y_1, x_2 + y_2] = [x_1, x_2] + [y_1, y_2] = \Phi x + \Phi y,$$

$$\Phi(\alpha x) = [\alpha x_1, \alpha x_2] = \alpha [x_1, x_2] = \alpha \Phi x$$

より Φ の線型性が従う. また $(x_n)_{n=1}^{\infty} \subset E$ が $x_n \to u \in X$ かつ $\Phi x_n \to [u_1, u_2] \in E_1 \times E_2$ を満たす場合,

$$||u - (u_1 + u_2)||_E \le ||u - x_n||_E + ||\Phi x_n - [u_1, u_2]||_{E_1 \times E_2} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち $\Phi u = [u_1, u_2]$ が従うから Φ は閉作用素である.

(2) (1) より逆写像 $\Phi^{-1}: E_1 \times E_2 \to E$ (線形全単射) が存在し、任意の $[0,0] \neq [x_1,x_2] \in E_1 \times E_2$ に対して

$$\frac{\left\| \Phi^{-1}[x_1, x_2] \right\|_E}{\left\| [x_1, x_2] \right\|_{E_1 \times E_2}} = \frac{\left\| x_1 + x_2 \right\|_E}{\left\| x_1 \right\|_E + \left\| x_2 \right\|_E} \leq 1$$

を満たす.

- (3) ノルム空間において一点集合 $\{0\}$ は閉であるから,直積位相において $E_1 \times \{0\}$ 及び $\{0\} \times E_2$ は閉集合である. 従って Φ の連続性と $E_1 = \Phi^{-1}(E_1 \times \{0\})$ 及び $E_2 = \Phi^{-1}(\{0\} \times E_2)$ が成り立つことから E_1, E_2 は閉集合となる.
- (4) $E, E_1 \times E_2$ は Banach 空間でありかつ $\mathcal{D}(\Phi) = E$ が満たされているから,閉グラフ定理より Φ は有界となる. (1)(2) と併せれば Φ, Φ^{-1} は共に連続且つ線型全単射であるから主張が従う.
- (5) $E \rightarrow E$ の恒等写像を I と表す. また

$$p_1: E \ni x \longmapsto [x] \in E/E_2, \quad p_2: E/E_2 \ni [x] \longmapsto x_1 \in E_1 \quad (x = x_1 + x_2, x_1 \in E_1, x_2 \in E_2)$$

と定めれば p_1 は線型連続であり p_2 は線型同型かつ連続である:

$$E_1 \ni x_1 - y_1 = y_2 - x_2 \in E_2$$

^{*7} つまり $E_1 \cap E_2 = \{0\}$ であり、かつ E の任意の元 x は或る $x_1 \in E_1, x_2 \in E_2$ によって $x = x_1 + x_2$ と一意に表される.一意性について、 $x = y_1 + y_2$ $(y_1 \in E_1, y_2 \in E_2)$ が同時に成り立っているとすれば

 p_1 について 任意に $x, y \in E$ と $\alpha, \beta \in \mathbb{C}$ を取れば

$$p_1(\alpha x + \beta y) = [\alpha x + \beta y] = [\alpha x] + [\beta y] = \alpha [x] + \beta [y] = \alpha p_1 x + \beta p_1 y$$

19

が成り立ち p_1 の線型性が従う. また $x \in E$, $x \neq 0$ に対して

$$\frac{\|\,p_1x\,\|_{E/E_2}}{\|\,x\,\|_E} = \frac{\|\,[x]\,\|_{E/E_2}}{\|\,x\,\|_E} \leq \frac{\|\,x\,\|_E}{\|\,x\,\|_E} = 1$$

となるから p_1 は連続である.

 p_2 について E から E_1 への線型準同型を

$$p: E \ni x \longmapsto x_1 \in E_1 \quad (x = x_1 + x_2, x_1 \in E_1, x_2 \in E_2)$$

で定める. $\mathcal{R}(p)=E_1$ かつ $\mathcal{N}(p)=E_2$ であるから、準同型定理より p_2 は線型同型となる. また $\dim E_1<\infty$ であるから $\dim E/E_2=\dim E_1<\infty$ となり*8 p_2 の連続性が従う.

 Φ は p_1, p_2 を用いて

$$\Phi x = [p_2 p_1 x, (I - p_2 p_1) x] \quad (\forall x \in E)$$

と表現できるから

$$\|\Phi x\|_{E_1 \times E_2} = \|p_2 p_1 x\|_E + \|(I - p_2 p_1) x\|_E$$

により Φ の連続性が従い, (1)(2) と併せて主張を得る.

補助定理 3.2.5 (T が単射なら全射).

(1) 或る $n_0 \in \mathbb{N}$ が存在して次を満たす:

$$\mathcal{R}(T) \supset \mathcal{R}\left(T^{2}\right) \supset \cdots \supset \mathcal{R}\left(T^{n_{0}}\right) = \mathcal{R}\left(T^{n_{0}+1}\right) = \mathcal{R}\left(T^{n_{0}+2}\right) = \cdots.$$

(2) T が単射の場合 T は全射である.

$$\alpha_1 f(x_1) + \cdots + \alpha_k f(x_k) = 0$$

が成り立っている場合、f が線型かつ単射であるから

$$\alpha_1 x_1 + \cdots + \alpha_k x_k = 0$$

となり $f(x_1), \cdots, f(x_k)$ の線型独立性が従う. また任意に $y \in Y$ を取れば或る $x \in X$ が対応し f(x) = y を満たすから,

$$y = f(x) = f(\alpha_1 x_1 + \dots + \alpha_k x_k) = \alpha f(x_1) + \dots + \alpha f(x_k)$$

が成り立ち $Y = \text{L.h.}[\{f(x_1), \cdots, f(x_k)\}]$ が従う.

^{*8} 一般の線形空間 X,Y に対し, $\dim X=k<\infty$ 且つ線型同型 $f:X\to Y$ が存在するなら $\dim Y=k$ が成り立つ.実際 X の基底を x_1,\cdots,x_k と すれば $f(x_1),\cdots,f(x_k)$ は Y の基底となる. $\alpha_1,\cdots,\alpha_k\in\mathbb{C}$ に対し

付録A

弱収束

A.1 ノルム空間における弱収束

 \mathbb{K} を \mathbb{R} 又は \mathbb{C} とする. ノルム空間 X のノルムを $\|\cdot\|_X$ と表記し、また $J_X:X\to X^{**}$ を自然な等長単射とする.

定義 A.1.1 (弱収束). X を \mathbb{K} 上のノルム空間とする. X の点列 $(x_n)_{n=1}^\infty$ が $x \in X$ に弱収束するとは

$$\lim_{n \to \infty} f(x_n) = f(x) \quad (\forall f \in X^*)$$

が成り立つことを言い、w- $\lim_{n\to\infty} x_n = x$ と表記する.

定義 A.1.2 (汎弱収束). X を \mathbb{K} 上のノルム空間とする. X^* の列 $(f_n)_{n=1}^\infty$ が $f \in X^*$ に汎弱収束するとは

$$\lim_{x \to \infty} f_n(x) = f(x) \quad (\forall x \in X)$$

が成り立つことを言い、*w- $\lim_{n\to\infty} f_n = f$ と表記する.

定理 A.1.3 (弱収束及び汎弱収束極限の一意性). X を \mathbb{K} 上のノルム空間とする. X の点列 $(x_n)_{n=1}^\infty$ が $u,v\in X$ に弱収束するなら u=v が従い, X^* の列 $(f_n)_{n=1}^\infty$ が $f,g\in X^*$ に汎弱収束するなら f=g が従う.

証明. $(x_n)_{n=1}^{\infty}$ が $u,v \in X$ に弱収束するとき,任意の $f \in X^*$ に対して

$$|f(u) - f(v)| \le |f(u) - f(x_n)| + |f(x_n) - f(v)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち、Hahn-Banach の定理の系より u=v が従う.また $(f_n)_{n=1}^\infty$ が $f,g\in X^*$ に汎弱収束するとき,任意の $x\in X$ に対して

$$|f(x) - g(x)| \le |f(x) - f_n(x)| + |f_n(x) - g(x)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち f = g が従う.

定理 A.1.4 (弱収束と自然な等長単射の関係). X を \mathbb{K} 上のノルム空間とする. $x_n \in X$ $(n=1,2,\cdots)$ が $x \in X$ に弱収束することと $J_X x_n \in X^{**}$ $(n=1,2,\cdots)$ が $J_X x \in X^{**}$ に汎弱収束することは同値である.

付録 A 弱収束 21

証明. 自然な等長単射の定義より任意の $f \in X^*$ について $f(x_n) = J_X x_n(f)$ であるから,

$$\lim f(x_n) = f(x) \quad (\forall f \in X^*)$$

が成り立つことと

$$\lim_{n\to\infty}J_Xx_n(f)=J_Xx(f)\quad (\forall f\in X^*)$$

が成り立つことは同じである.

定理 A.1.5 (汎弱収束列の有界性). X を \mathbb{K} 上のノルム空間とし $X \neq \{0\}$ を仮定する. X^* の列 $(f_n)_{n=1}^\infty$ が各点 $x \in X$ で Cauchy 列をなすとき, $(f_n)_{n=1}^\infty$ は有界となりさらに汎弱収束極限 $f \in X^*$ が存在して次が成り立つ *1 :

$$||f||_{X^*} \leq \liminf_{n\to\infty} ||f_n||_{X^*}.$$

証明. 任意の $x \in X$ に対して $(f_n(x))_{n=1}^\infty$ は有界であるから、一様有界性の原理より $(\|f_n\|_{X^*})_{n=1}^\infty$ が有界となる. また

$$f(x) := \lim_{n \to \infty} f_n(x) \quad (\forall x \in X)$$
 (A.1)

として $f: X \to \mathbb{K}$ を定めれば、f は X^* に属する:

線型性 任意に $x, x_1, x_2 \in X$ と $\alpha \in \mathbb{K}$ を取れば

$$|f(x_1 + x_2) - f(x_1) - f(x_2)| \le |f(x_1 + x_2) - f_n(x_1 + x_2)| + |f(x_1) - f_n(x_1)| + |f(x_2) - f_n(x_2)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

$$|f(\alpha x) - \alpha f(x)| \le |f(\alpha x) - f_n(\alpha x)| + |\alpha| |f(x) - f_n(x)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つ.

有界性 絶対値の連続性より

$$|f(x)| = \lim_{n \to \infty} |f_n(x)| \le \liminf_{n \to \infty} ||f_n||_{X^*} ||x||_X$$

が成り立ち、特に $||x||_X = 1$ として

$$\sup_{\|x\|_{X}=1} |f(x)| \le \liminf_{n \to \infty} \|f_n\|_{X^*} < \infty$$

が従う.

f が f_n の汎弱収束極限であることは (A.1) より従う.

$$\inf_{v \ge n} \|f_n\|_{X^*} \le \sup_{n \in \mathbb{N}} \|f_n\|_{X^*} = M$$

が成り立つから

$$\liminf_{n\to\infty} \|f_n\|_{X^*} \leq M$$

が従う.

 $^{^{*1}}$ 右辺は有限確定する.実際 $(f_n)_{n=1}^\infty$ が有界であるとして $M:=\sup_{n\in\mathbb{N}}\|f_n\|_{X^*}$ とおけば,任意の $n\in\mathbb{N}$ に対し

付録 A 弱収束 22

定理 A.1.6 (弱収束列の有界性). X を \mathbb{K} 上のノルム空間とし $X \neq \{0\}$ を仮定する. X の列 $(x_n)_{n=1}^\infty$ が $x \in X$ に弱収束するとき, $(x_n)_{n=1}^\infty$ は有界列であり次が成り立つ:

$$||x||_X \le \liminf_{n \to \infty} ||x_n||_X.$$

証明. 定理 A.1.4 より $(J_X x_n)_{n=1}^\infty$ が $J_X x \in X^{**}$ に汎弱収束するから,定理 A.1.5 より $(J_X x_n)_{n=1}^\infty$ は有界列で

$$||J_X x||_{X^{**}} \le \liminf_{n \to \infty} ||J_X x_n||_{X^{**}}$$

が成り立つ. J_X は等長であるから定理の主張が従う.

定理 A.1.7 (反射的 Banach 空間の点列が弱収束するための十分条件). X を \mathbb{K} 上の反射的 Banach 空間として点列 $(x_n)_{n=1}^\infty$ を取る. 任意の $f \in X^*$ に対して $(f(x_n))_{n=1}^\infty$ が Cauchy 列となるなら, $(x_n)_{n=1}^\infty$ は或る $x \in X$ に弱収束する.

証明. $f(x_n) = J_X x_n(f)$ であることと定理の仮定より、任意の $f \in X^*$ で $(J_X x_n(f))_{n=1}^\infty$ は $\mathbb K$ の Cauchy 列をなすから、

$$J(f) := \lim_{n \to \infty} J_X x_n(f) \quad (\forall f \in X^*)$$

として $J:X^* \to \mathbb{K}$ を定めれば定理 A.1.5 より $J \in X^{**}$ が成り立つ. X の反射性から J に対し或る $x \in X$ が存在して $J=J_{XX}$ を満たし,定理 A.1.4 より定理の主張を得る.

付録 B

商ノルム空間

 \mathbb{K} を \mathbb{R} 又は \mathbb{C} として X を \mathbb{K} 上のノルム空間とする。X のノルムを $\|\cdot\|_X$ と表記し X にノルム位相を導入する。また X の閉部分空間 Y に対し

$$x \sim y \stackrel{\text{def}}{\Leftrightarrow} x - y \in Y \quad (\forall x, y \in X)$$

として X における同値関係 ~ を定める *1 . 以降, 関係 ~ による $x \in X$ の同値類を [x] と表し, 商集合を X/Y と表す.

定理 B.0.1 (商集合における線型演算). X/Y において

$$[x] + [y] := [x + y], \quad \alpha[x] := [\alpha x] \quad (\forall [x], [y] \in X/Y, \ \alpha \in \mathbb{K})$$
(B.1)

として演算を定義すれば、X/Yはこれを線型演算として線形空間となる.

証明.

well-defined 先ず (B.1) の定義が well-defined であることを示す. 任意に $u \in [x], v \in [y], \alpha \in \mathbb{K}$ を取り

$$[u+v] = [x+y], \quad [\alpha u] = [\alpha x]$$

が成り立つことをいえばよい. 実際 $x \sim u$ かつ $y \sim v$ であるから

$$(x + y) - (u + v) = (x - u) + (y - v) \in Y, \quad \alpha x - \alpha v = \alpha (x - u) \in Y$$

が成り立ち (B.1) が従う.

X が線形空間であるから X/Y は (B.1) の演算で閉じている. よってあとは以下の事項を確認すればよい.

加法 X/Y が加法について可換群をなすことを示す. 任意に $[x],[y],[z] \in X/Y$ を取れば

$$([x] + [y]) + [z] = [x + y] + [z] = [(x + y) + z] = [x + (y + z)] = [x] + [y + z] = [x] + ([y] + [z])$$

が成り立ち結合律が従う. 可換性は

$$[x] + [y] = [x + y] = [y + x] = [y] + [x]$$

^{*1} $x,y,z \in X$ を取る. Y は線形空間であるから、反射率は $x-x=0 \in Y$ により従い、対称律は $x-y \in Y$ なら $y-x=-(x-y) \in Y$ が成り立つことにより従う. 推移律についても、 $x \sim y$ かつ $y \sim z$ が満たされているなら $x-z=(x-y)+(y-z) \in Y$ が成り立ち $x \sim z$ が従う.

付録 B 商ノルム空間 24

により従い、また [x] の逆元は $(-1)[x]^{*2}$ 、X/Y の零元は Y = [0] である.

スカラ倍 任意に [x], $[y] \in X/Y$ と $\alpha, \beta \in \mathbb{K}$ を取れば以下が成り立つ:

- (1) $(\alpha\beta)[x] = [(\alpha\beta)x] = [\alpha(\beta x)] = \alpha[\beta x] = \alpha(\beta[x]),$
- (2) $(\alpha + \beta)[x] = [(\alpha + \beta)x] = [\alpha x + \beta x] = [\alpha x] + [\beta x] = \alpha[x] + \beta[x],$
- (3) $\alpha([x] + [y]) = \alpha[x + y] = [\alpha(x + y)] = [\alpha x + \alpha y] = [\alpha x] + [\alpha y] = \alpha[x] + \alpha[y],$
- $(4) \quad 1[x] = [x].$

補助定理 B.0.2 (同値類は閉). 任意の $[x] \in X/Y$ は X において閉集合となる.

証明. 任意に $[x] \in X/Y$ を取る. 距離空間の一般論より $u_n \in [x]$ $(n = 1, 2, \cdots)$ が或る $u \in X$ に収束するとき $u \in [x]$ が成り立つことを示せばよい. 各 $n \in \mathbb{N}$ について $u_n - x \in Y$ であり、かつ

$$||(u_n - x) - (u - x)||_X = ||u_n - u||_X \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つから、Yが閉であることにより $u-x \in Y$ が従う.

定理 B.0.3 (商空間におけるノルムの定義). X/Y において

$$\|[x]\|_{X/Y} := \inf_{u \in [x]} \|u\|_X \quad (\forall [x] \in X/Y)$$
 (B.2)

として $\|\cdot\|_{X/Y}: X/Y \to \mathbb{R}$ を定めれば、これはノルムとなる.

証明.

正値性 $\|\cdot\|_{X/Y}$ が非負値であることは定義式 (B.2) 右辺の非負性による. また [x] = [0] である場合,

$$\inf_{u \in [x]} ||u||_X = ||0||_X = 0$$

が成り立ち $\|[x]\|_{X/Y}=0$ が従う. 逆に $\|[x]\|_{X/Y}=0$ である場合,

$$||u_n||_X \le \frac{1}{n} \quad (n = 1, 2, \cdots)$$

を満たす点列 $u_n \in [x]$ $(n = 1, 2, \cdots)$ が存在する. すなわち $u_n \longrightarrow 0$ $(n \longrightarrow \infty)$ であるから、補助定理 B.0.2 により $0 \in [x]$ が成り立ち [x] = [0] が従う.

同次性 任意に $[x] \in X/Y$ と $\alpha \in \mathbb{K}$ を取る. $\alpha = 0$ の場合は

$$||0[x]||_{X/Y} = ||[0]||_{X/Y} = 0 = 0 ||[x]||_{X/Y}$$

が成り立つ. $\alpha \neq 0$ の場合は

$$u \in [\alpha x] \quad \Leftrightarrow \quad \frac{1}{\alpha} u \in [x]$$

^{*&}lt;sup>2</sup> [x] + (-1)[y] は [x] - [y] と表す.

付録 B 商ノルム空間 25

が成り立つから

$$\parallel\alpha[x]\parallel_{X/Y} = \parallel\left[\alpha x\right]\parallel_{X/Y} = \inf_{u\in[\alpha x]}\parallel u\parallel_X = |\alpha|\inf_{u\in[\alpha x]}\parallel(1/\alpha)u\parallel_X = |\alpha|\inf_{v\in[x]}\parallel v\parallel_X = |\alpha|\parallel[x]\parallel_{X/Y}$$

が従う.

劣加法性 任意に $[x],[y] \in X/Y$ を取り

$$L := \{ u + v ; u \in [x], v \in [y] \}$$

とおけば、任意の $u+v\in L$ に対し $(u+v)-(x+y)\in Y$ となるから $L\subset [x+y]$ が成り立つ。また

$$||u + v||_X \le ||u||_X + ||v||_X$$

により

$$\inf_{u'+v'\in L} \left\| \, u'+v' \, \right\|_X \leq \left\| \, u \, \right\|_X + \left\| \, v \, \right\|_X \quad \left(\forall u \in [x], \, \, v \in [y] \right)$$

が成り立つから,

$$\inf_{u'+v'\in L} \left\| \left. u'+v' \right. \right\|_X \leq \inf_{u\in [x]} \left\| \left. u \right. \right\|_X + \inf_{v\in [v]} \left\| \left. v \right. \right\|_X = \left\| \left[x \right] \right. \right\|_{X/Y} + \left\| \left[y \right] \right. \right\|_{X/Y}$$

が従い

$$\left\|\left[x\right]+\left[y\right]\right\|_{X/Y}=\left\|\left[x+y\right]\right\|_{X/Y}=\inf_{w\in\left[x+y\right]}\left\|\left.w\right.\right\|_{X}\leq\inf_{u+v\in L}\left\|\left.u+v\right.\right\|_{X}\leq\left\|\left[x\right]\right.\right\|_{X/Y}+\left\|\left[y\right]\right.\right\|_{X/Y}$$

を得る.