

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/814,059	03/30/2004	Byung-Sung Kwak	03-1498/LSIIP238	5738
24319	7590	12/28/2005	EXAMINER	
LSI LOGIC CORPORATION			VAN, LUAN V	
1621 BARBER LANE			ART UNIT	PAPER NUMBER
MS: D-106				1753
MILPITAS, CA 95035				

DATE MAILED: 12/28/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	10/814,059	KWAK ET AL.
	Examiner Luan V. Van	Art Unit 1753

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 30 March 2004.
- 2a) This action is **FINAL**. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-20 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-20 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
 - a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- 1) Notice of References Cited (PTO-892)
- 2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
- 3) Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date 3/30/04.
- 4) Interview Summary (PTO-413)
Paper No(s)/Mail Date. _____.
- 5) Notice of Informal Patent Application (PTO-152)
- 6) Other: _____.

DETAILED ACTION

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

(e) the invention was described in (1) an application for patent, published under section 122(b), by another filed in the United States before the invention by the applicant for patent or (2) a patent granted on an application for patent by another filed in the United States before the invention by the applicant for patent, except that an international application filed under the treaty defined in section 351(a) shall have the effects for purposes of this subsection of an application filed in the United States only if the international application designated the United States and was published under Article 21(2) of such treaty in the English language.

Claims 1-4, 6, 7,16, and 18-20 are rejected under 35 U.S.C. 102(e) as being anticipated by Bonkabeta et al.

Regarding claim 1, Bonkabeta et al. teach a method of planarizing a metal layer on a semiconductor substrate, the method comprising: forming a trench or via (paragraph 31) in a dielectric layer of the semiconductor substrate; forming the metal layer (paragraph 34) on the dielectric layer such that the metal layer at least fills the trenches or vias; immersing the substrate (paragraph 32) in an electrolyte plating solution having organic additives (paragraph 34), the organic additives comprising at least one of plating accelerators, plating suppressors, and plating levelers (such as the polymer phenazonium derivatives), and removing the excess portions of the metal layer by performing sequentially electropolishing followed by electroplating (figure 6a).

Regarding claim 2, Bonkabeta et al. teach removing the excess portions of the metal layer further comprises a relaxation step (shown as a gap in figure 6a) after the electropolishing and electrolytic plating steps.

Regarding claim 3, Bonkabeta et al. teach the concentrations of the organic additives are selected such that the plating rate is greater than the electropolishing rate in a topography dependant fashion, since the plating method and composition (paragraph 34) of Bonkabeta et al. is same as that of the instant claims.

Regarding claim 4, Bonkabeta et al. teach the topography dependant fashion comprises increasing the rate of plating at corners of trenches or vias, since the plating method and composition (paragraph 34) of Bonkabeta et al. is same as that of the instant claims.

Regarding claim 6, Bonkabeta et al. teach the removal rate of electropolishing is controlled by one of adjusting the voltage applied (or amperage, paragraph 44) to the electrodes in the electrolytic solution and the duration (paragraph 45) of the applied voltage.

Regarding claim 7, Bonkabeta et al. teach the polishing, plating, and relaxation operations comprise one cycle of a pass and wherein the method comprises at least two passes performed sequentially (see figure 6 a).

Regarding claim 16, Bonkabeta et al. teach using the wafer wide polisher 103 (figure 1).

Regarding claim 18, Bonkabeta et al. teach an electrochemical polishing apparatus 100 (figure 1) for performing electropolishing of a semiconductor substrate, the polishing apparatus configured to: receive a substrate in an electrolyte plating solution having organic additives, the organic additives comprising at least one of plating accelerators, plating suppressors, and plating levelers (paragraph 34), and remove the excess portions of the metal layer by performing sequentially electrolytic polishing followed by electrolytic plating.

Regarding claim 19, Bonkabeta et al. teach the polishing apparatus is further configured to perform a relaxation step (shown as a gap in figure 6a) after the polishing and plating steps.

Regarding claim 20, Bonkabeta et al. teach the polishing, plating, and relaxation operations comprise one cycle of a pass and wherein the apparatus is further configured to perform at least two passes sequentially (see figure 6 a).

Claims 18-20 are rejected under 35 U.S.C. 102(e) as being anticipated by Taylor.

Regarding claim 18, Taylor teach an electrochemical polishing apparatus (paragraph 38) for performing electropolishing of a semiconductor substrate, the polishing apparatus configured to: receive a substrate in an electrolyte plating solution having organic additives, the organic additives comprising at least one of plating accelerators, plating suppressors, and plating levelers (paragraph 24), and remove the excess portions of the metal layer by performing sequentially electrolytic polishing followed by electrolytic plating.

Regarding claim 19, Taylor teach the polishing apparatus is further configured to perform a relaxation step (paragraph 34) after the polishing and plating steps.

Regarding claim 20, Taylor teach the polishing, plating, and relaxation operations comprise one cycle of a pass and wherein the apparatus is further configured to perform at least two passes sequentially (figure 1).

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

- (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

The factual inquiries set forth in *Graham v. John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:

1. Determining the scope and contents of the prior art.
2. Ascertaining the differences between the prior art and the claims at issue.
3. Resolving the level of ordinary skill in the pertinent art.
4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

Claims 5, 8, 9 and 17 are rejected under 35 U.S.C. 103(a) as being unpatentable over Bonkabeta et al. in view of Taylor.

Bonkabeta et al. teach the method as described above. In addition, Bonkabeta et al. teach a positive pulse (or plating) duration of 60-120 ms, and a negative pulse (or electropolishing) duration of 5-30 ms (paragraph 42). The difference between the reference to Bonkabeta et al. and the instant claims is that the reference does not explicitly teach the specific ratio of the electropolishing to electroplating rates of the instant claims (5, 8 and 9) nor the specific relaxation time (17), although Bonkabeta et al. disclosed that the performance (i.e., the likelihood of void formation in the vias and the roughness of the metal layer, paragraph 63) can be influenced by process parameters such as "the time dependence of applied currents, in particular amperages and durations of pulses, numbers of applied pulses and angular frequencies" (paragraph 62) etc.

Art Unit: 1753

Taylor teach that the electropolishing and electroplating conditions, or pulsed waveform conditions, are adjusted to smooth the micro features after the macro features have been substantially reduced by polishing (paragraph 35). Taylor further teach the polishing may continue until the surface is as smooth as desired for the particular application (paragraph 36). In addition, Taylor teach that the relaxation time or off time may range from about 10 μ s to about 500 ms (paragraph 34).

Addressing claims 5, 8 and 9, it would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the electropolishing and electroplating rates of Bonkabeta et al. by changing the electropolishing and electroplating conditions as taught by Taylor, because it would form a smooth metal layer.

Addressing claims 17, it would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the relaxation time of Bonkabeta et al. by using the off time of Taylor, because it would improve the smoothness of the deposit.

Claims 10-14 are rejected under 35 U.S.C. 103(a) as being unpatentable over Bonkabeta et al. in view of Reid et al.

Art Unit: 1753

Bonkabeta et al. teach the method as described above. The difference between the reference to Bonkabeta et al. and the instant claims is that the reference does not explicitly teach the specific concentrations of the additives of the instant claims, although Bonkabeta et al. disclose that the performance (i.e., the likelihood of void formation in the vias and the roughness of the metal layer, paragraph 63) can be influenced by process parameters such as "concentrations of components of the electrolyte, in particular concentration of conductor metal ions and additives" (paragraph 62) etc.

Reid et al. teach an electroplating method wherein the solution comprises: a leveler at a concentration of between about 0.5-8 ml/L (Table 1); a suppressor at a concentration of between about 1-6 ml/L; and an accelerator at a concentration of between about 0.5-8 ml/L. The ranges of concentration as taught by Reid et al. are within the ranges of the instant claims.

It would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the electroplating method of Bonkabeta et al. by using additive concentrations of Reid et al., because such concentrations are suitable for electroplating to produce metal films and features without voids or defects (paragraph 7).

Claims 15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Bonkabeta et al. in view of Datta et al.

Bonkabeta et al. teach the method as described above. The difference between the reference to Bonkabeta et al. and the instant claims is that the reference teach a spray of electrolyte (paragraph 69) but does not explicitly teach moving the spray from the center to the edge of the wafer (claim 15).

Datta et al. teach an electropolishing process using a linear electrode with a nozzle assembly which is scanned slowly back-and-forth over the anode, parallel to the substrate surface (column 8 lines 43-45).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the electroplating method of Bonkabeta et al. by moving the spray across the substrate as taught by Datta et al., because it would enable metal to be removed at a high rate of speed (column 10 lines 22-24).

Claims 1-9 and 15-17 are rejected under 35 U.S.C. 103(a) as being unpatentable over Taylor in view of Zhou et al.

Taylor teach a method of planarizing a metal layer on a semiconductor substrate, the method comprising: forming a trench or via (paragraph 4-5) in a dielectric layer of

the semiconductor substrate; forming the metal layer (paragraph 14) on the dielectric layer such that the metal layer at least fills the trenches or vias; immersing the substrate (paragraph 38) in an electrolyte plating solution having organic additives (paragraph 24), the organic additives comprising at least one of plating accelerators, plating suppressors, and plating levelers, and removing the excess portions of the metal layer by etching using a pulsed current anodic waveform (paragraph 34).

Taylor differs from the instant claims in that the reference does not explicitly teach sequentially electropolishing followed by electroplating in the planarization step (claim 1), although one skilled in the art can construe a pulsed current anodic waveform to have electropolishing followed by electroplating, since a pulsed current anodic waveform has an anodic current and a cathodic current; the specific ratio of the electropolishing to electroplating rates of the instant claims (5, 8 and 9); nor using a nozzle (claim 15) and a wafer wide polisher (claim 16).

Zhou et al., which is incorporated in Taylor, teach sequentially electropolishing (anodic current, figure 1) followed by electroplating (cathodic current, figure 1) in the planarization step; controlling the rate of metal removal by changing the anodic duty cycle and frequency (column 13 lines 14-29); and supplying an electrolyte to the nozzle of the tool 304 (figure 3 a).

Addressing claims 1, it would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the method of Taylor by using sequential electropolishing followed by electroplating as taught by Zhou et al., because it would improve the smoothness of the metal deposit (example 2).

Addressing claims 5, 8 and 9, it would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the electropolishing and electroplating rates of Taylor by changing the electropolishing and electroplating conditions as taught by Zhou et al., because it would form a smooth metal layer.

Addressing claims 15-16, it would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the electroplating method of Taylor by using the nozzle of Zhou et al., because it would control the electrolyte flow rate in order to obtain a smooth surface. With respect to the size of the polisher (claim 16), the "mere scaling up of the prior art process capable of being scaled up... would not establish patentability in a claim to an old process so scaled" (MPEP 2144.04).

Regarding claim 2, Taylor teach removing the excess portions of the metal layer further comprises a relaxation step (paragraph 34) after the electropolishing and electrolytic plating steps.

Art Unit: 1753

Regarding claim 3, Taylor teach the concentrations of the organic additives are selected such that the plating rate is greater than the electropolishing rate in a topography dependant fashion, since the plating method and composition (paragraph 24) of Taylor is same as that of the instant claims.

Regarding claim 4, Taylor teach the topography dependant fashion comprises increasing the rate of plating at corners of trenches or vias, since the plating method and composition (paragraph 24) of Taylor is same as that of the instant claims.

Regarding claim 6, Taylor teach the removal rate of electropolishing is controlled by one of adjusting the voltage applied to the electrodes in the electrolytic solution and the duration (paragraph 34) of the applied voltage.

Regarding claim 7, Taylor teach the polishing, plating, and relaxation operations comprise one cycle of a pass and wherein the method comprises at least two passes performed sequentially (paragraph 34).

Regarding claim 17, Taylor teach a positive pulse (or plating) duration of 1-100 ms (paragraph 30), and a negative pulse (or electropolishing) duration of 10-500 ms (paragraph 34). In addition, Taylor teach that the relaxation time or off time may range from about 10 μ s to about 500 ms (paragraph 34).

Claims 10-14 are rejected under 35 U.S.C. 103(a) as being unpatentable over Taylor in view of Reid et al.

Taylor teach the method as described above. The difference between the reference to Taylor and the instant claims is that the reference does not explicitly teach the specific concentrations of the additives of the instant claims, although Taylor disclose a bath having the same additives (paragraph 24).

Reid et al. teach an electroplating method wherein the solution comprises: a leveler at a concentration of between about 0.5-8 ml/L (Table 1); a suppressor at a concentration of between about 1-6 ml/L; and an accelerator at a concentration of between about 0.5-8 ml/L. The ranges of concentration as taught by Reid et al. are within the ranges of the instant claims.

It would have been obvious to one having ordinary skill in the art at the time the invention was made to modify the electroplating method of Taylor by using the additive concentrations of Reid et al., because such concentrations are suitable for electroplating to produce metal films and features without voids or defects (paragraph 7).

Conclusion

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Luan V. Van whose telephone number is 571-272-8521. The examiner can normally be reached on M-F 8:30-5:00.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Nam Nguyen can be reached on 571-272-1342. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

LVV
12/11/05

NAM NGUYEN
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 1700