

Cinemática en dos dimensiones Movimiento circular Prof. Ing. Natalia Montalván

Movimiento circular uniforme MCU

- Cuando una partícula se mueve en un círculo con **rapidez constante**, tiene un **movimiento circular uniforme**. Un automóvil que da vuelta a una curva de radio constante con rapidez constante, o un satélite en órbita circular son ejemplos de este movimiento.
- El **vector velocidad siempre es tangente a la trayectoria del objeto** y perpendicular al radio de la trayectoria circular.

- La aceleración depende del **cambio en la velocidad**.
- Puesto que la velocidad es una cantidad vectorial, una aceleración puede ocurrir en dos formas: por un cambio en la magnitud de la velocidad y por un cambio en la dirección de la velocidad. La última situación ocurre para un objeto que se mueve con rapidez constante en una trayectoria circular.
- Aun cuando un objeto se mueva con rapidez constante en una trayectoria circular, todavía tiene una aceleración.

Por lo tanto: Cuando una partícula se mueve en una trayectoria circular, la dirección de su velocidad cambia, esto implica que la partícula debe tener una componente de aceleración perpendicular a la trayectoria, incluso si la rapidez es constante.

Movimiento circular uniforme MCU

- El vector aceleración en movimiento circular uniforme siempre es perpendicular a la trayectoria y siempre apunta hacia el centro del círculo. Si eso no fuera cierto, habría una componente de la aceleración paralela a la trayectoria y tal componente de aceleración conduciría a un cambio en la rapidez de la partícula a lo largo de la trayectoria.
- En consecuencia, para movimiento circular uniforme, el vector aceleración sólo puede tener una componente perpendicular a la trayectoria, que es hacia el centro del círculo.

constante en una travectoria circular La aceleración es

Movimiento circular uniforme: rapidez

exactamente perpendicular a la velocidad: sin componente paralela. Al centro del círculo

Aceleración centrípeta

Una aceleración de esta naturaleza se aceleración centrípeta o radial (centrípeta significa hacia el centro) y se representa como a_c o a_{rad} :

$$a_c = \frac{v^2}{r}$$

Movimiento circular uniforme MCU

Periodo

- En muchas situaciones es conveniente describir el movimiento de una partícula que se mueve con rapidez constante en un círculo de radio r en términos del **periodo T**, que se define como el tiempo requerido para una revolución completa (una vuelta completa al círculo).
- En un tiempo T, la partícula recorre una distancia igual a la circunferencia de la trayectoria circular: 2πr (perímetro).
- Su rapidez estará dada por: $v = \frac{2\pi R}{T}$
- $a_c = \frac{v^2}{r} = \frac{\left(\frac{2\pi r}{T}\right)^2}{r} = \frac{4\pi^2 r}{T^2}$ Al reemplazar en la ecuación de aceleración centrípeta:

Ejemplo: En un juego mecánico, los pasajeros viajan con rapidez constante en un círculo de 5 m de radio, dando una vuelta completa cada 4 s. ¿Qué aceleración tienen?

Resolución: Nos dan el radio R = 5 m y el periodo T = 4 s, así que podemos calcular la aceleración a partir de la ecuación anterior:

$$a_{\rm rad} = \frac{4\pi^2 (5.0 \text{ m})}{(4.0 \text{ s})^2} = 12 \text{ m/s}^2$$

Movimiento circular uniforme no uniforme

Aceleración centrípeta

Si la rapidez varía, tenemos un movimiento **circular no uniforme**. En el movimiento circular no uniforme, sigue existiendo una componente radial de la aceleración que siempre es perpendicular a la velocidad instantánea y dirigida al centro del círculo:

$$a_c = \frac{v^2}{r}$$

Dado que la rapidez v tiene diferentes valores en diferentes puntos del movimiento, la aceleración radial (centrípeta) **no es constante**. La aceleración radial es mayor donde la rapidez es mayor.

Aceleración tangencial

Hay una componente de aceleración paralela a la velocidad instantánea, que es tangente al círculo. La componente de aceleración tangencial $a_{\rm t}$ es igual a la tasa de cambio de la rapidez. La componente de aceleración tangencial causa un cambio en la rapidez de la partícula, y su magnitud está dada por: $d|\vec{v}|$

Movimiento circular no uniforme

Vector aceleración

El vector de aceleración de una partícula que se mueve con rapidez variable en un círculo es la suma vectorial de las componentes de aceleración radial y tangencial. Esta última tiene la dirección de la velocidad si la partícula está acelerando, y la dirección opuesta si está frenando.

 $\vec{\mathbf{a}} = \vec{\mathbf{a}}_r + \vec{\mathbf{a}}_t$

Un automóvil muestra una aceleración constante de 0.3 m/s² paralela a la autopista. El automóvil pasa sobre una elevación en el camino tal que lo alto de la elevación tiene forma de círculo con 500 m de radio. En el momento en que el automóvil está en lo alto de la elevación, su vector velocidad es horizontal y tiene un magnitud de 6 m/s. ¿Cuáles es la magnitud del vector aceleración total para el automóvil en este instante?

Resolución: Puesto que el automóvil que acelera se mueve a lo largo de una trayectoria curva, este problema se clasifica como uno que involucra una partícula que experimenta aceleraciones tangencial y radial:

Rapidez mínima: aceleración radial mínima, aceleración tangencial cero.

Disminución

Rapidez máxima: aceleración radial máxima, aceleración tangencial cero.

$$a_r = -\frac{v^2}{r} = \frac{(6.00 \text{ m/s})^2}{500 \text{ m}} = 0.072 \text{ 0 m/s}^2$$

$$\sqrt{a_r^2 + a_t^2} = \sqrt{(-0.072 \text{ 0 m/s}^2)^2 + (0.300 \text{ m/s}^2)^2}$$

 0.309 m/s^2