

10.Übungsblatt zur Vorlesung Optimierung B

Abgabe spätestens in der Übung am 20.01.12

Als kanonisches LP bezeichnet man ein LP der Form

$$\max\left\{c^t x \mid Ax \le b, \ x \in \mathbb{R}^n_+\right\},\,$$

das dazugehörige duale LP ist

$$\min \left\{ b^t y \mid A^t y \ge c, \ y \in \mathbb{R}^n_+ \right\}.$$

Das kanonische LP wird in diesem Zusammenhang auch das primale LP genannt.

Nach dem **schwachen Dualitätssatz** gilt für alle zulässigen Lösungen x und y des primalen bzw. dualen Problems:

$$c^t x \leq b^t y$$
.

Besitzt eines der beiden LPs eine beschränkte Optimallösung x^* bzw. y^* , dann gilt nach dem **starken Dualitätssatz** die Gleichheit der optimalen Zielfunktionswerte

$$c^t x^* = b^t y^*.$$

Aufgabe 1: 2 Punkte

Bestimme zu den unten angegebenen LPs die dualen LPs. Vereinfache diese gegebenenfalls durch Zusammenfassen von Nebenbedingungen $ax \leq b$ und $ax \geq b$ zu ax = b, beziehungsweise von Variablen ohne Nichtnegativitätsbedingungen.

a) max
$$2x + y$$
 b) max $2x + y$ **c)** max $2x + y$ s.t. $x + y \le 4$ s.t. $x + y = 4$ $x \le 3$ $x \le 3$ $x \le 3$ $x \ge 0$ $x \ge 0$ $x \ge 0$

Aufgabe 2: 1 Punkte

Beweise die folgende Aussage:

Das duale LP eines dualen LP ist das primale LP.

Verwende dazu ausschließlich die Transformationsregeln für LPs in kanonischer Form.

Aufgabe 3: 3 Punkte

Betrachte das folgende LP P:

$$\max tx$$
s.t. $rx \le s$

$$x \ge 0,$$

wobei r, s und t beliebige reelle Zahlen sind. Sei D das duale LP von P. Unter welchen Annahmen bezüglich r, s und t gelten die folgenden Behauptungen?

- a) P und D haben optimale Lösungen mit endlichem Wert.
- b) P ist zulässig, D aber nicht.
- c) D ist zulässig, P aber nicht.
- d) Weder D noch P sind zulässig.

Aufgabe 4: 2 Punkte

Es sei
$$A := \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 und $M := \{x \in \mathbb{R}^3 \mid Ax = b\}$.

Zeige: A ist nicht vollständig unimodular, aber M ist ganzzahlig für alle $b \in \mathbb{Z}^3$.

Aufgabe 5: 2 Punkte

Eine (0,1)-Matrix A heißt blanciert, falls sie keine quadratische Untermatrix mit ungerader Zeilen-/Spaltenzahl besitzt, die genau zwei Einsen in jeder Zeile und Spalte enthält.

Zeige: Vollständig unimodulare $\{0,1\}$ -Matrizen sind balanciert, aber balancierte $\{0,1\}$ -Matrizen sind nicht zwangsläufig vollständig unimodular.

Viel Erfolg!