project goal:

The goal of this project is differentiate between people who would default the loan or not based on data provided. It help to give the chance to people who would complete the payment.

Dataset description:

Train Dataset:

#	Feature	Data Type	Description
0	Loan_ID	Text	A unique loan ID
1	Gender	categorical - text	Male / Female
2	Married	categorical - text	Married (Yes) / Not married (No)
3	Dependents	categorical - text	Number of people depending on the client (Applicant)
4	Education	categorical - text	Graduate / Ungraduate
5	Self_Employed	categorical - text	Yes / No
6	ApplicantIncome	Number (integer)	Income of client (Applicant)
7	CoapplicantIncome	Number (float)	Income of Co-applicant (additional person involved in the loan application process.)
8	LoanAmount	Number (float)	Amount of loan in thousands
9	Loan_Amount_Term	Number (float)	record of a borrower's responsible repayment of debts
10	Credit_History	Number (float)	Credit history (record of a borrower's responsible repayment of debts) that meets guidelines
11	Property_Area	categorical - text	Urban / Semi / Rural
12	Loan_Status	categorical - text	Approved (yes) / Not Approves (NO)

Size:

614 entries

13 columns

Test Dataset:

Same as train data set but without Loan_Status

Size:

367 entries

12 columns

statistical and graphical presentation of the dataset:

Box Blot shows the real mean of of incomes

Box Blot shows the real mean of of incomes, For Female and Male

Histogram that shows loan amount divided in

Box Blot shows the real mean of of incomes, For graduate and Not Graduate people

Bar chart for credit history shows the amount that meet the guidelines and the one is not.

Dataset preprocessing:

- Handle missing values
- Label Encoding
- Drop unaffected feature

Machine Learning Algorithms:

- **Decision Tree**: flowchart like tree structure, where each internal node denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (terminal node) holds a class label.[1]
- **Logistic regression:** supervised learning classification algorithm used to predict the probability of a target variable.[2]
- **Random Forest**: a supervised learning algorithm. The "forest" it builds, is an ensemble of decision trees, usually trained with the "bagging" method. The general idea of the bagging method is that a combination of learning models increases the overall result.[3]

Results:

- Decision Tree:

	precision	recall	f1-score	support
0 1	0.44 0.85	0.58 0.76	0.50 0.80	45 140
accuracy macro avg weighted avg	0.64 0.75	0.67 0.72	0.72 0.65 0.73	185 185 185

^{71.89%} Accurate

- Logistic regression:

	precision	recall	f1-score	support
0 1	0.85 0.86	0.49 0.97	0.62 0.91	45 140
accuracy macro avg weighted avg	0.85 0.85	0.73 0.85	0.85 0.76 0.84	185 185 185

85.41% Accurate

- Random Forest:

	precision	recall	f1-score	support
0 1	0.66 0.85	0.51 0.91	0.57 0.88	45 140
accuracy macro avg weighted avg	0.76 0.81	0.71 0.82	0.82 0.73 0.81	185 185 185

81.62% Accurate

Comparison with previous studies:

Study1: An Approach for Prediction of Loan Approval using Machine Learning Algorithm

Dataset description	dataset from Kaggle: The train dataset contains approximately 600+ rows and 13+ columns whereas the test dataset contains 300+ rows and 12+ columns, the test dataset does not contain the target variable.	
ML method	Logistic Regression	
Performance measure	Accuracy = 0.811	

Study 2: Design and Simulation of Loan Approval Prediction Model using AWS Platform

Dataset description	dataset containing 4520 records and 17 properties.	
ML method decision tree logistic regression		
Performance measure	Accuracy = 0.82	

Study 3: Loan Default Prediction with Machine Learning Techniques

Dataset description	Xiamen International Bank		
ML method	 XGBoost Random Forest (RF) AdaBoost K nearest neighborhood (KNN) Multilayer perceptrons (MLP) 		
Performance measure	AUC: - XGBoost = 0.7166 - RF = 0.501 - AdaBoost = 1 - KNN = 0.5036 - MLP = 0.5		

Study 4: Predictions of Loan Defaulter - A Data Science Perspective

lending club loan dataset from Kaggle: The dataset was composition million records and 150 features	ed of 1.6
---	-----------

ML method	Logistic RegressionRFKNN
Performance measure	Accuracy: - Logistic Regression = 0.80 - RF = 0.79 - KNN = 0.78

Study 5: Swindle: Predicting the Probability of Loan Defaults using CatBoost Algorithm

Dataset description standard Indian loan default dataset from Kaggle: containing 181398 records and 41 properties.	
ML method - CatBoost	
Performance measure	Not mentioned

Study 6: Loan Prediction Using Ensemble Technique

Dataset description	data set include 13 attributes such as Gender, Marital Status, Education, Number of Dependents, Income, Loan Amount, Credit History and others. The data sets contain 615 records.
ML method	Ensemble learning which combines: - SVM Model - Random Forest Network - Tree Model for Genetic Algorithm
Performance measure	Accuracy = 79.86

Best achieved Accuracy result from my models where 85.41 for Logistic regression

References:

- [1] Decision Tree
- [2] Machine Learning Logistic Regression
- [3] A Complete Guide to the Random Forest Algorithm

Studies:

- 1: An Approach for Prediction of Loan Approval using Machine Learning Algorithm
- 2: Design and Simulation of Loan Approval Prediction Model using AWS Platform
- 3: Loan Default Prediction with Machine Learning Techniques
- 4: Predictions of Loan Defaulter A Data Science Perspective
- 5: Swindle: Predicting the Probability of Loan Defaults using CatBoost Algorithm
- 6: Loan Prediction Using Ensemble Technique

Appendix

	precision	recall	f1-score	support
0	0.92	0.48	0.63	48
1	0.81	0.98	0.89	106
accuracy			0.82	154
macro avg	0.86	0.73	0.76	154
weighted avg	0.84	0.82	0.81	154

Study 2: Where 0 is non-default and 1 as default

Model	Performance Metrics				
Model	Accuracy	Precision	Recall		
Logistic Regression	0.80	0.81	0.97		
Random Forest	0.79	0.81	097		
KNN	0.78	0.81	0.97		

Study 4

Models	Accuracy	Н	Gini	AUC	AUCH	KS	MER	MWL	ROC
Decision Tree	78.47	0.26	0.52	0.76	0.76	0.52	0.22	0.17	0.76
Linear Model	79.86	0.30	0.60	0.80	0.80	0.60	0.18	0.12	0.80
Neural Network	79.86	0.30	0.60	0.80	0.80	0.60	0.18	0.12	0.80
Random Forest	80.56	0.32	0.60	0.80	0.80	0.60	0.19	0.13	0.80
SVM	80.56	0.32	0.60	0.80	0.80	0.60	0.19	0.13	0.82
Bagged Cart	78.47	0.26	0.52	0.76	0.76	0.52	0.22	0.17	0.76
Tree model for genetic algorithm	81.25	0.35	0.68	0.84	0.84	0.68	0.17	0.09	0.84
model tree	79.86	0.30	0.59	0.79	0.79	0.59	0.19	0.13	0.79
Extremelearning machine	68.75	0.27	0.49	0.66	0.59	0.48	0.16	0.11	0.64
Multivariate Adaptive Regression Spline	79.86	0.30	0.60	0.80	0.80	0.60	0.18	0.12	0.80
BGLM	79.86	0.30	0.60	0.80	0.80	0.60	0.18	0.12	0.80
ENSEMBLED MODEL (SVM + RF + TMGA)	79.86	0.31	0.63	0.78	0.78	0.63	0.20	0.14	0.79

Study 6

Original Code

RNSS/RNSS Public

11 Pull requests Actions Projects <> Code ጕ main ▾ RNSS / loan_prediction_dataset.ipynb Go to file Aয় 1 contributor רֹם 1060 lines (1060 sloc) 74.2 KB Raw Blame <> Open in Colab (https://colab.research.google.com/github/RNSS/RNSS/blob/main/loan_prediction_dataset.ipynb) In []: # This Python 3 environment comes with many helpful analy tics libraries installed # It is defined by the kaggle/python docker image: https: //github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv) # Input data files are available in the "../input/" direc tory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory import os print(os.listdir("../input")) # Any results you write to the current directory are save d as output. ['test.csv', 'train.csv'] In []: import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns

Loading and Summarizing Data

In []: train_data = pd.read_csv("../input/train.csv")
 train_data.head()

Out[]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	7
0	LP001002	Male	No	0	Graduate	No	į
1	LP001003	Male	Yes	1	Graduate	No	2
2	LP001005	Male	Yes	0	Graduate	Yes	(
3	LP001006	Male	Yes	0	Not Graduate	No	2
4	LP001008	Male	No	0	Graduate	No	(

In []: train_data.describe()

Out[]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amoui
count	614.000000	614.000000	592.000000	600.00000
mean	5403.459283	1621.245798	146.412162	342.00000
std	6109.041673	2926.248369	85.587325	65.12041
min	150.000000	0.000000	9.000000	12.00000
25%	2877.500000	0.000000	100.000000	360.00000
50%	3812.500000	1188.500000	128.000000	360.00000
75%	5795.000000	2297.250000	168.000000	360.00000
max	81000.000000	41667.000000	700.000000	480.00000

Distribution Analysis

In []: train_data['ApplicantIncome'].hist(bins=70,grid=False)

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe3f1129048>

In []: train_data.boxplot(column = 'ApplicantIncome')

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe3f105c518>

In []: train_data.boxplot(column = 'ApplicantIncome', grid =Fals
e, by = 'Education')

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe3ed75f390>

In []: train_data['LoanAmount'].hist(bins=100,grid = False)

Out[]: <matplotlib.axes. subplots.AxesSubplot at 0x7fe3ed6e67f0>

40

Categorical Value Analysis

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe3ed5e8da0>

Data Munging

In []:	train_data.apply(la	ambda	x: sum(x.isnull()),axis=0)
Out[]:	Loan_ID	0	
	Gender	13	
	Married	3	
	Dependents	15	
	Education	0	
	Self_Employed	32	
	ApplicantIncome	0	
	CoapplicantIncome	0	
	LoanAmount	22	
	Loan_Amount_Term	14	
	Credit_History	50	
	Property Area	0	

```
Loan Status
                               0
        dtype: int64
In [ ]: train_data['LoanAmount'].fillna(train_data['LoanAmount'].
        mean(),inplace=True)
In [ ]: | train data['Self Employed'].fillna('No',inplace=True)
In [ ]: | train data['Gender'].fillna(train data['Gender'].mode()[0
        ], inplace=True)
        train data['Married'].fillna(train data['Married'].mode()
        [0], inplace=True)
        train data['Dependents'].fillna(train data['Dependents'].
        mode()[0], inplace=True)
        train_data['Loan_Amount_Term'].fillna(train_data['Loan_Am
        ount Term'].mode()[0], inplace=True)
        train data['Credit History'].fillna(train data['Credit Hi
        story'].mode()[0], inplace=True)
In [ ]: train data.head()
Out[ ]:
           Loan ID
                    Gender | Married |
                                   Dependents Education Self Employed
         0 LP001002 Male
                           No
                                   0
                                              Graduate
                                                        No
         1 LP001003 Male
                           Yes
                                   1
                                                        No
                                              Graduate
         2 LP001005 Male
                                   0
                           Yes
                                              Graduate
                                                        Yes
                                              Not
         3 LP001006 Male
                           Yes
                                   0
                                                        No
                                              Graduate
         4 LP001008 Male
                           No
                                   0
                                              Graduate
                                                        No
In [ ]: train_data.apply(lambda x: sum(x.isnull()),axis=0)
```

```
Out[]: Loan ID
                               0
        Gender
                               0
        Married
                               0
        Dependents
        Education
        Self Employed
                               0
        ApplicantIncome
                               0
        CoapplicantIncome
                               0
        LoanAmount
                               0
        Loan Amount Term
                               0
        Credit History
                               0
        Property Area
                               0
        Loan Status
                               0
        dtype: int64
```

In []: from sklearn.preprocessing import LabelEncoder

```
var_mod = [ Gender , Married , Dependents , Education , s
elf_Employed','Property_Area','Loan_Status']
le = LabelEncoder()
for i in var_mod:
    train_data[i] = le.fit_transform(train_data[i])
train_data.head()
```

Out[]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	1
0	LP001002	1	0	0	0	0	Ļ
1	LP001003	1	1	1	0	0	4
2	LP001005	1	1	0	0	1	
3	LP001006	1	1	0	1	0	2
4	LP001008	1	0	0	0	0	(

Training Model

modified Code

11 Pull requests Actions Projects <> Code لا main ◄ RNSS / IT351_Project.ipynb Go to file A 1 contributor 2488 lines (2488 sloc) 204 KB Raw Blame <> Open in Colab (https://colab.research.google.com/github/RNSS/RNSS/blob/main/IT351_Project.ipynb) 1. Import Libraries In []: #visualization import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns #default theme from matplotlib import cycler colors = cycler('color', ['#EE6666', '#3388BB', '#9988DD', '#EECC55', '#88BB44', '#FFBBBB']) plt.rc('axes', facecolor='#E6E6E6', edgecolor='none', axisbelow=True, grid=True, prop cycle=colors) plt.rc('grid', color='w', linestyle='solid') plt.rc('xtick', direction='out', color='gray') plt.rc('ytick', direction='out', color='gray') plt.rc('patch', edgecolor='#E6E6E6') plt.rc('lines', linewidth=2) In []: #Label encoding from sklearn.preprocessing import LabelEncoder #spliting data into train and test from sklearn.model_selection import train test split from sklearn.tree import DecisionTreeClassifier

from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
#Evaluation

from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report

In []: #data wrangling
 import numpy as np
 import pandas as pd

2. Data Acquisition

```
In [ ]: #Upload from Colab
from google.colab import files
uploaded = files.upload()
```

Saving train.csv to train.csv Saving test.csv to test.csv

Train Data set

Out[]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	7
0	LP001002	Male	No	0	Graduate	No	Ę
1	LP001003	Male	Yes	1	Graduate	No	2
2	LP001005	Male	Yes	0	Graduate	Yes	[3
3	LP001006	Male	Yes	0	Not Graduate	No	2
4	LP001008	Male	No	0	Graduate	No	ę

Test Data set

l		Loan_וט	Genaer	warried	Dependents	Education	Seit_Employea	1
	0	LP001015	Male	Yes	0	Graduate	No	Ļ
	1	LP001022	Male	Yes	1	Graduate	No	9
	2	LP001031	Male	Yes	2	Graduate	No	Į
	3	LP001035	Male	Yes	2	Graduate	No	2
	4	LP001051	Male	No	0	Not Graduate	No	()

3. Exploratory Analysis

Train Data set

```
In [ ]: train_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	614 non-null	object
1	Gender	601 non-null	object
2	Married	611 non-null	object
3	Dependents	599 non-null	object
4	Education	614 non-null	object
5	Self_Employed	582 non-null	object
6	ApplicantIncome	614 non-null	int64
7	CoapplicantIncome	614 non-null	float64
8	LoanAmount	592 non-null	float64
9	Loan_Amount_Term	600 non-null	float64
10	Credit_History	564 non-null	float64
11	Property_Area	614 non-null	object
12	Loan_Status	614 non-null	object
d+vn	eg. float64(4) int	64(1) object (8)	

dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB

In []: train_data.describe()

Out[]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amou
count	614.000000	614.000000	592.000000	600.00000
mean	5403.459283	1621.245798	146.412162	342.00000
std	6109.041673	2926.248369	85.587325	65.12041
min	150.000000	0.000000	9.000000	12.00000

25%	2877.500000	ບ.ບບບບບ	100.000000	360.00000
50%	3812.500000	1188.500000	128.000000	360.00000
75%	5795.000000	2297.250000	168.000000	360.00000
max	81000.000000	41667.000000	700.000000	480.00000

Graphical Techniques

```
In [ ]: plt.subplots(figsize=(8,5))
    train_data['ApplicantIncome'].hist(bins=70,grid=False,edg
    ecolor='white')
    plt.xlabel('Income amount')
    plt.ylabel('Number of clients (Applicants)')
    plt.title('Income of clients (Applicants)')
    plt.show()
```


/usr/local/lib/python3.7/dist-packages/numpy/core/_asarra y.py:83: VisibleDeprecationWarning: Creating an ndarray f rom ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or sha pes) is deprecated. If you meant to do this, you must spe cify 'dtype=object' when creating the ndarray

return array(a, dtype, copy=False, order=order)

/usr/local/lib/python3.7/dist-packages/numpy/core/_asarra y.py:83: VisibleDeprecationWarning: Creating an ndarray f rom ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or sha pes) is deprecated. If you meant to do this, you must spe cify 'dtype=object' when creating the ndarray

return array(a, dtype, copy=False, order=order)

Income of clients (Applicants) By Gender


```
In [ ]: plt.subplots(figsize=(8,5))
    train_data['LoanAmount'].hist(bins=100,grid = False,edgec
    olor='white')
    plt.xlabel('Loan Amount')
    plt.ylabel('Number of clients (Applicants)')
    plt.title('Loan Amount of clients (Applicants)')
    plt.show()
```



```
In [ ]: plt.subplots(figsize=(8,5))
    temp = train_data['Credit_History'].value_counts(ascendin
    g = True)
    temp.plot(kind = 'bar',grid = False,edgecolor='white')
    plt.xlabel('Credit History ')
    plt.ylabel('Number of clients (Applicants)')
    plt.title('Amount of apllicants follow guidlines or not')
    plt.show()
```

Amount of apllicants follow guidlines or not

Test Data set

```
In [ ]: test_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 367 entries, 0 to 366
Data columns (total 12 columns):

		/	
#	Column	Non-Null Count	Dtype
0	Loan_ID	367 non-null	object
1	Gender	356 non-null	object
2	Married	367 non-null	object
3	Dependents	357 non-null	object
4	Education	367 non-null	object
5	Self_Employed	344 non-null	object
6	ApplicantIncome	367 non-null	int64
7	CoapplicantIncome	367 non-null	int64
8	LoanAmount	362 non-null	float64
9	Loan_Amount_Term	361 non-null	float64
10	Credit_History	338 non-null	float64
11	Property_Area	367 non-null	object
-1 ±	£1+C4/2\	(1/2) -b+/7	`

dtypes: float64(3), int64(2), object(7)

memory usage: 34.5+ KB

In []: test_data.describe()

Out[]:

	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amoui
count	367.000000	367.000000	362.000000	361.000000
mean	4805.599455	1569.577657	136.132597	342.537396
std	4910.685399	2334.232099	61.366652	65.156643
min	0.000000	0.000000	28.000000	6.000000

25%	2864.000000	0.000000	100.250000	360.000000
50%	3786.000000	1025.000000	125.000000	360.000000
75%	5060.000000	2430.500000	158.000000	360.000000
max	72529.000000	24000.000000	550.000000	480.000000

4. Process/Clean Data

Train Data set

1: Handle missing values

```
In [ ]: train data.apply(lambda x: sum(x.isnull()),axis=0)
Out[]: Loan ID
                               0
                              13
        Gender
        Married
                               3
        Dependents
                              15
        Education
                               0
        Self Employed
                              32
        ApplicantIncome
                               0
        CoapplicantIncome
                               0
                              22
        LoanAmount
                              14
        Loan Amount Term
        Credit History
                              50
                               0
        Property Area
        Loan Status
        dtype: int64
In [ ]: train_data['LoanAmount'].fillna(train_data['LoanAmount'].
        mean(),inplace=True)
In [ ]: train data['Self Employed'].fillna('No',inplace=True)
In [ ]: train data['Gender'].fillna(train data['Gender'].mode()[0
        ], inplace=True)
        train data['Married'].fillna(train data['Married'].mode()
        [0], inplace=True)
        train data['Dependents'].fillna(train data['Dependents'].
        mode()[0], inplace=True)
        train data['Loan Amount Term'].fillna(train data['Loan Am
        ount Term'].mode()[0], inplace=True)
        train data['Credit History'].fillna(train data['Credit Hi
        story'].mode()[0], inplace=True)
```

```
In [ ]: train_data.apply(lambda x: sum(x.isnull()),axis=0)
Out[]: Loan_ID
        Gender
                              0
        Married
                              0
        Dependents
                              0
        Education
                              0
        Self Employed
        ApplicantIncome
        CoapplicantIncome
        LoanAmount
        Loan Amount Term
        Credit_History
        Property Area
                              0
        Loan Status
                              0
        dtype: int64
```

2: Lable Encoding

```
In [ ]: var mod = ['Gender', 'Married', 'Dependents', 'Education', 'S
        elf_Employed','Property_Area','Loan_Status']
        le = LabelEncoder()
        for i in var mod:
            train_data[i] = le.fit_transform(train_data[i])
            print(i," : ", le.classes )
        train data.head(20)
```

Gender ['Female' 'Male'] Married : ['No' 'Yes'] Dependents : ['0' '1' '2' '3+']

Education : ['Graduate' 'Not Graduate']

Self_Employed : ['No' 'Yes']
Property_Area : ['Rural' 'Semiurban' 'Urban']

Loan Status : ['N' 'Y']

Out[]:

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed
0	LP001002	1	0	0	0	0
1	LP001003	1	1	1	0	0
2	LP001005	1	1	0	0	1
3	LP001006	1	1	0	1	0
4	LP001008	1	0	0	0	0
5	LP001011	1	1	2	0	1
6	LP001013	1	1	0	1	0
7	LP001014	1	1	3	0	0
8	LP001018	1	1	2	0	0
9	LP001020	1	1	1	0	0

10	LP001024	1	1	2	0	0
11	LP001027	1	1	2	0	0
12	LP001028	1	1	2	0	0
13	LP001029	1	0	0	0	0
14	LP001030	1	1	2	0	0
15	LP001032	1	0	0	0	0
16	LP001034	1	0	1	1	0
17	LP001036	0	0	0	0	0
18	LP001038	1	1	0	1	0
19	LP001041	1	1	0	0	0

3: Drop unaffected label

```
In [ ]: train_data.drop('Loan_ID',axis=1,inplace=True)
```

Test Data set

1: Handle missing values

```
In [ ]: test_data.apply(lambda x: sum(x.isnull()),axis=0)
Out[ ]: Loan_ID
                               0
        Gender
                              11
        Married
                               0
        Dependents
                              10
        Education
                               0
        Self Employed
                              23
        ApplicantIncome
                               0
        CoapplicantIncome
                               0
        LoanAmount
                               5
        Loan_Amount_Term
                               6
        Credit_History
                              29
        Property_Area
                               0
        dtype: int64
In [ ]: test data['LoanAmount'].fillna(train data['LoanAmount'].m
        ean(),inplace=True)
```

```
In [ ]: test data['Self Employed'].fillna('No',inplace=True)
In [ ]: test_data['Gender'].fillna(test_data['Gender'].mode()[0],
        inplace=True)
        test data['Married'].fillna(test data['Married'].mode()[0
        ], inplace=True)
        test data['Dependents'].fillna(test data['Dependents'].mo
        de()[0], inplace=True)
        test data['Loan Amount Term'].fillna(test data['Loan Amou
        nt_Term'].mode()[0], inplace=True)
        test data['Credit History'].fillna(test data['Credit Hist
        ory'].mode()[0], inplace=True)
In [ ]: test data.apply(lambda x: sum(x.isnull()),axis=0)
Out[]: Loan ID
        Gender
                              0
        Married
                              0
        Dependents
                              0
        Education
                              0
        Self Employed
        ApplicantIncome
        CoapplicantIncome
        LoanAmount
                              0
        Loan Amount_Term
                              0
        Credit History
                              0
        Property_Area
                              0
        dtype: int64
```

2: Lable Encoding

```
In [ ]: var_mod_test = ['Gender', 'Married', 'Dependents', 'Educatio
    n', 'Self_Employed', 'Property_Area']
    for i in var_mod_test:
        test_data[i] = le.fit_transform(test_data[i])
        print(i," : ", le.classes_)
    test_data.head()
```

Gender : ['Female' 'Male']
Married : ['No' 'Yes']
Dependents : ['0' '1' '2' '3+']

Education : ['Graduate' 'Not Graduate']

Self_Employed : ['No' 'Yes']

Property_Area : ['Rural' 'Semiurban' 'Urban']

Out[]	:
--------	---

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	1
0	LP001015	1	1	0	0	0	ţ
1	LP001022	1	1	1	0	0	3
2	LP001031	1	1	2	0	0	Ļ

1	\Box			l				_
	3	LP001035	1	1	2	0	0	2
	4	LP001051	1	0	0	1	0	(

3: Drop unaffected label

```
In [ ]: test_data.drop('Loan_ID',axis=1,inplace=True)
```

Corrlation Matrix

```
In [ ]: sns.heatmap(train_data.corr() ,cmap='cubehelix_r')
```


5. Model Generation & Evaluation

```
In [ ]: Y = train_data['Loan_Status']
X = train_data.drop('Loan_Status', axis = 1)
X_train, X_test, y_train, y_test = train_test_split(X, Y,
test_size = 0.3, random_state = 3)
print("X_train = ",len(X_train),"\nX_test=",len(X_test))

X_train = 429
X_test= 185
```

Decision Tree

```
In [ ]: DT = DecisionTreeClassifier()
    DT.fit(X_train,y_train)
    predict_DT = DT.predict(X_test)
```

	precision	recall	f1-score	support
0	0.40	0.60	0.48	45
1	0.85	0.71	0.78	140
accuracy			0.69	185
macro avg	0.63	0.66	0.63	185
weighted avg	0.74	0.69	0.70	185

68.65% Accurate

Logistic Regression

```
In [ ]: LR = LogisticRegression()
    LR.fit(X_train, y_train)
    predict_LR = LR.predict(X_test)
```

In []: LR_SC = accuracy_score(predict_LR,y_test)
 print(classification_report(y_test, predict_LR))
 print(f"{round(LR_SC*100,2)}% Accurate")

	precision	recall	f1-score	support
0 1	0.85 0.86	0.49 0.97	0.62 0.91	45 140
accuracy macro avg	0.85	0.73	0.85 0.76	185 185
weighted avg	0.85	0.85	0.84	185

85.41% Accurate

Random Forest