实验 3-IP 核集成 SOC 设计实验报告

——建立 CPU 调试、测试和应用环境

姓名: <u>林逸竹</u> 学号: <u>3160104229</u> 专业: <u>计</u>算机科学与技术 课程名称: 计算机组成与设计实验 同组学生姓名: 无

实验时间: 2018-3-26 实验地点: 紫金港东 4-509 指导老师: 施青松,黎金洪

一、实验目的和要求

- 1. 初步了解 GPIO 接口与设备
- 2. 了解计算机系统的基本结构
- 3. 了解计算机各组成部分的关系
- 4. 了解并掌握 **IP** 核的使用方法
- 5. 了解 SOC 系统并用 IP 核实现简单的 SOC

二、实验内容和原理

2.1 实验任务

- 1. 分析基本接口和 IP 核
- 2. 设计存储器 IP 模块
- 3. 练习掌握 IP 核的使用方法
- 4. 选用第三方 IP 核和已有模块集成实现 SOC 此实验项层用原理图设计实现 建立 CPU

2.2 Computer Organization

Computer System:

- Software
- Hardware
 - CPU
 - ◆ Control unit

- Datapath
 - Path: multiplexors
 - ALU
 - Registers
- Memory
- I/O interface
 - ♦ Input: PS2
 - ◆ Bidirectional: Storage
 - ♦ Output: VGA

2.3 SOC System on Chip

System on Chip(片上系统/系统级芯片)

- 从狭义角度:是信息系统的芯片集成,或将系统集成在一块芯片上。
- 从广义角度: Soc 是一个微小型系统

SOC 三要素:

- IP 核集成
 - IP(Intellectual Property)
- IP 核复用
- IC 工艺

IP 核的三种形式:

- 软 IP 核(soft IP Core)
- 固 IP 核(firm IP Core)
- 硬 IP 核(hard IP Core)

系统集成方法:

- 系统集成法
- 部分集成法
- IP 核集成法

三、主要仪器设备

- 3.1 实验设备
 - 1. 计算机(Intel Core i5 以上,4GB 内存以上)系统
 - 2. 计算机软硬件课程贯通教学实验系统
 - 3. Xilinx ISE14.4 及以上开发工具
- 3.2 材料

无

四、实验实现方法、步骤与调试

OExp03-IP2SOC

- 1. 建立顶层模块
- 2. 导入各种 symbol 文件和 IP 核
- 3. 连线完成模块

五、实验结果与分析

能够实现下表功能。

□图形功能测试

开关	位置	功能
SW[1:0]	X0	七段码图形显示
SW[2]	0	CPU全速时钟
SW[4:3]	00	7段码从上至下亮点循环右移
SW[4:3]	11	7段码矩形从下到大循环显示
SW[7:5]	000	作为外设使用(E000000/FFFFFE00)

□文本功能测试

开关	位置	功能
SW[1:0]	01	七段码文本显示(低16位)(Arduino有效)
	11	七段码文本显示(高16位)「Arduinoff X」「
SW[2]	0	CPU全速时钟
SW[4:3]	01	7段码显示RAM数字
SW[4:3]	10	7段码显示累加
SW[7:5]	000	作为外设使用(E000000/FFFFE00)

Figure 1 实验结果(1) 跑马灯

Figure 2 实验结果(2) 矩形

Figure 3 实验结果(3) RAM

Figure 4 实验结果(4) 累加

六、讨论、心得

实验相对简单,连线即可,但还有一些功能性模块无法完全理解。