

1. A method for communicating information to a remotely located
computer, the method comprising:
encoding the information using a plurality of features of an optical
pointer;
transmitting the encoded information to a remote location using the
optical pointer;
detecting the plurality of features of the optical pointer;
decoding the information based on the detected plurality of feature
of the optical pointer; and
generating a command for the remotely located computer based or
the decoded information.
2. The method of claim 1 wherein the step of detecting comprises
capturing at least one image of the optical pointer using a camera;
and
processing the at least one image to identify the plurality of
features of the optical pointer.
3. The method of claim 2 wherein the step of processing the at
least one image comprises:
processing a plurality of frames by comparing an image to a
previously captured image to detect differences between the image and the
previously captured image.
4. The method of claim 1 wherein the step of generating a
command comprises generating a command to move a computer cursor to a
position corresponding to position of a cursor transmitted by the optical pointer.
5. The method of claim 1 wherein the step of transmitting the
encoded information comprises transmitting the encoded information to a
remotely located surface for detection by a camera.

i	6. The method of claim I wherein the step of transmitting the
2	encoded information comprises transmitting the encoded information to a
3	remotely located receiver.
1	7. The method of claim 1 wherein the plurality of features of the
2	optical pointer include at least one emitter capable of generating light within at
3	least a portion of at least one area.
1	8. The method of claim 1 wherein the plurality of features of the
2	optical pointer comprise a plurality of sections, each section having at least one
3	area of light, the area being generated by a portion of an emitter, a dedicated
4	emitter, or a cluster of emitters acting together.
1	9. The method of claim 8 further comprising transmitting a
2	plurality of channels of information with each channel of information being
3	transmitted via a corresponding section.
1	10. The method of claim 9 wherein at least one of the plurality of
2	channels of information includes voice data.
3	11. The method of claim 9 wherein at least one of the plurality of
4	channels of information includes keyboard character information.
1	12. The method of claim 8 wherein the at least one area of light
2	has a plurality of associated attributes.
1	13. The method of claim 12 further comprising:
2	changing at least one attribute in a predetermined manner to
3	uniquely identify the optical pointer.

T	14. The method of claim 12 wherein the pluranty of associated
2	attributes include characteristics that can be modified in a time-dependent pattern
3	to distinguish a given area over time among multiple image frames.
1	15. The method of claim 14 wherein the plurality of attributes
2	includes at least one of shape, intensity, orientation, and wavelength.
1	16. The method of claim 1 wherein the information includes
2	identification information to uniquely identify a user.
1	17. The method of claim 16 wherein the step of generating a
2	command comprises generating a command to allow a user access based on the
3 -	identification information.
4	18. A method for remotely controlling a computer, the method
5	comprising:
6	displaying output from the computer on a remotely located screen;
7	encoding keyboard information by modulating one or more optical
8	pointer features;
9	projecting the encoded keyboard information on the remotely
10	located screen;
11	capturing a plurality of image frames including at least a portion o
12	the remotely located screen;
13	processing image frames to detect and decode the encoded
14	keyboard information transmitted by the optical pointer; and
15	generating a command to control the computer based on the
16	decoded information.
1	19. The method of claim 18 further comprising:
2	encoding voice information by modulating one or more optical
3	pointer features.

10

1	20. The method of claim 18 wherein the step of processing
2	comprises detecting a change in orientation of the optical pointer.
1	21. The method of claim 18 wherein the step of processing
2	comprises detecting a pattern of movement, a change in orientation, or a change
3	in size of the optical pointer, and wherein the step of generating a command
4	comprises generating a sequence of commands.
1	22. The method of claim 18 wherein the step of processing
2 ·	comprises detecting a pattern of movement of the optical pointer.
1	23. The method of claim 22 wherein detecting a pattern of
2	movement comprises detecting a change in size of an optical pointer feature.
1	24. The method of claim 23 wherein detecting a pattern of
2	movement comprises detecting an increased size of an optical pointer feature and
3	wherein the step of generating a command comprises generating a zoom command
4	for the computer.
5	25. The method of claim 22 wherein the step of generating
6	comprises generating a scroll command for the computer.
1	26. A computer presentation system comprising:
2	a computer;
3	a screen associated with the computer for displaying output from
4	the computer;
5	a camera positioned to capture a plurality of image frames
6	including at least a portion of the screen associated with the computer, the camera
7	being in communication with the computer;
8	wherein the computer includes instructions for processing the
0	image frames to detect modulation of at least one feature of an optical cursor

projected onto the screen from an external optical pointer and instructions for

2

11	decoding the modulated feature to generate a corresponding input for the
12	computer.
1	27. The system of claim 26 further comprising:
2	a projector in communication with the computer for projecting an
3	image of the output from the computer onto the screen.
1	28. The system of claim 26 further comprising a laser pointer for
2	generating the optical cursor.
1	29. The system of claim 26 wherein the computer includes
2	instructions for processing the image frames to detect a predetermined pseudo-
3	random modulation of the at least one feature to uniquely identify the external
4	optical pointer.
5	30. The system of claim 26 wherein the computer includes
6	instructions for processing the image frames to detect a pattern of movement and
7	to decode the pattern of movement to generate a zoom command input.
1	31. The system of claim 26 wherein the computer includes
2	instructions for processing the image frames to detect a change in size of one or
3	more features of the optical pointer and to decode the change in size to generate a
4	zoom command input.
1	32. The system of claim 26 wherein the computer includes
2	instructions for processing the image frames to detect a pattern of movement and
3	to decode the pattern of movement to generate a rotation command input.
1	33. The system of claim 26 wherein the at least one feature

comprises shape, wavelength, intensity, or orientation.