Uncertainty-Aware Human Mesh Recovery from Video by Learning Part-Based 3D Dynamics

2D-to-3D

Problem Statement

- → To recover temporally consistent human mesh from RGB video.
- → Temporally consistent means :
 - The changes on the surface of the mesh should be smooth across the frames.
 - There should not be any extreme variations in the pose or body shape in between adjacent frames.

Formulation

- \rightarrow Given input video V = { I₊} containing T frames, where I₊ denotes tth frame.
- Goal is to predict human motion sequences $M = \{ \Theta_t \} [t = 1 \text{ to } T]$, where Θ_t represents SMPL parameters for t^{th} frame.
- → SMPL Parameters:
 - $igoplus \theta \in \mathbb{R}^{24 \times 3} \to \text{Pose parameters}$: Models global body rotation and relative rotation of 23 joints in axis-angle representation.
 - igapha eta ϵ R 10 ightarrow Shape parameters : First 10 coefficients of shape space given by PCA
- \rightarrow Given θ and β , SMPL defines a function $S(\theta, \beta) \in \mathbb{R}^{6890 \times 3}$ which outputs a 3D human mesh.

Uncertainty-Aware Temporal Feature

- \rightarrow Given a sequence of input frames $I_1 \dots I_T$, a feature vector is extracted per frame using a pretrained ResNet : $f_1 \dots f_T$ where $f_t \in \mathbb{R}^{2048}$
- These features are passed to a GRU Layer that yields temporal features : $\mathbf{g_1}$ $\mathbf{g_{T_i}}$ where $\mathbf{g_t} \in \mathbf{R^{2048}}$
- → G_t is then concatenated with two more features :
 - ♦ Uncertainty-aware static feature
 - Dynamic feature

Uncertainty-Aware Static Feature

- → Choice for the feature : An embedding vector z for 2D pose that should remain consistent across the views.
- → This is a difficult task as various human pose in 3D space can be projected to same 2D pose which leads to an ambiguity.
- → To solve this issue Pr-VIPE (Probabilistic View Invariant Pose Embedding) is used.

VIPE

→ VIPE : View Invariant Pose Embedding.

VIPE: Approach

- → Goal is to embed 2D poses such that their distances in the embedding space corresponds to similarities between corresponding 3D pose in Eucledian space.
- → Two 3D poses are said to be matched if they are visually similar regardless of the viewpoint.
- \rightarrow Given two sets of 3D keypoints (y_i, y_i), matching indicator function is defined as:

$$m_{ij} = \begin{cases} 1, & \text{if NP-MPJPE}(\boldsymbol{y}_i, \boldsymbol{y}_j) \leqslant \kappa \\ 0, & \text{otherwise,} \end{cases}$$

→ k controls visual similarity, and to quantify visual similarity, Normalized Procrustes-aligned Mean Per Joint Position Error is used.

VIPE: Triplet Ratio Loss

- \rightarrow Let input 2D keypoints $x \in \mathbb{R}^n$ and output embedding vector $z \in \mathbb{R}^d$.
- → Goal is to learn a mapping function :

$$f: \mathbb{R}^n \to \mathbb{R}^d$$
, such that $D(\boldsymbol{z}_i, \boldsymbol{z}_j) < D(\boldsymbol{z}_i, \boldsymbol{z}_{j'}), \forall m_{ij} > m_{ij'}$

 \rightarrow here, z = f(x) and $D(z_i, z_i)$ is the distance measure in embedding space.

VIPE: Triplet Ratio Loss

- \rightarrow Let **p(m | x_i, x_i)** be the matching probability of two 3D poses y_i and y_i.
- \rightarrow If two 3D poses are identical then $p(m \mid x_i, x_i) = 1$.
- \rightarrow If two poses are sufficiently different, then **p(m | x_i, x_i)** should be small.
- \rightarrow For any given input triplet (x_i , x_{i+} , x_{i-}) with $m_{ii+} > m_{ii-}$:

$$\frac{p(m|\boldsymbol{z}_i, \boldsymbol{z}_{i^+})}{p(m|\boldsymbol{z}_i, \boldsymbol{z}_{i^-})} \geqslant \beta,$$

 \rightarrow where $\beta > 1$. Applying negative logarithm both sides,

$$(-\log p(m|\boldsymbol{z}_i, \boldsymbol{z}_{i^+})) - (-\log p(m|\boldsymbol{z}_i, \boldsymbol{z}_{i^-})) \leqslant -\log \beta.$$

VIPE: Triplet Ratio Loss

→ Now, for a batch-size **N**, triplet ratio loss can be defined as:

$$\mathcal{L}_{\text{ratio}} = \sum_{i=1}^{N} \max(0, D_m(\boldsymbol{z}_i, \boldsymbol{z}_{i^+}) - D_m(\boldsymbol{z}_i, \boldsymbol{z}_{i^-}) + \alpha)),$$

with distance kernel $D_m(z_i, z_j) = -\log p(m|z_i, z_j)$ and margin $\alpha = \log \beta$

→ After learning the embedding, matching probability can be determined as :

$$p(m|\boldsymbol{z}_i, \boldsymbol{z}_j) = \sigma(-a||\boldsymbol{z}_i - \boldsymbol{z}_j||_2 + b),$$

where, **a** and **b** are learnable parameters.

VIPE: Positive Pairwise Loss

→ To ensure identical 3D poses have higher matching probability, positive pairwise loss is also used.

$$\mathcal{L}_{ ext{positive}} = \sum_{i=1}^{N} -\log p(m|oldsymbol{z}_i,oldsymbol{z}_{i^+}).$$

ightarrow The combination of $m{L}_{ratio}$ and $m{L}_{positive}$ is used to train the embedding model.

Pr-VIPE

→ Pr-VIPE : Probabilistic View Invariant Pose Embedding.

Pr-VIPE

- \rightarrow Let **p(m | x_i, x_i)** be the matching probability of two 3D poses y_i and y_i.
- → Now instead of using indicator function, this probability is defined as:

$$p(m|\boldsymbol{x}_i, \boldsymbol{x}_j) = \int p(m|\boldsymbol{z}_i, \boldsymbol{z}_j) p(\boldsymbol{z}_i|\boldsymbol{x}_i) p(\boldsymbol{z}_j|\overline{\boldsymbol{x}}_j) d\boldsymbol{z}_i d\boldsymbol{z}_j$$

→ This can approximated by Monte Carlo Sampling, with *K* samples drawn from each distribution as:

$$p(m|\mathbf{x}_i, \mathbf{x}_j) \approx \frac{1}{K^2} \sum_{k_i=1}^K \sum_{k_i=1}^K p(m|\mathbf{z}_i^{(k_1)}, \mathbf{z}_j^{(k_2)}).$$

Pr-VIPE

- → After learning the probabilistic embedding, the model outputs **mean** and **covariance** for a given set of 2D keypoints.
- ightarrow Mean : $\mu_{\rm t} \, \epsilon \, {\sf R}^{32} \,$ and Covariance : $\sigma_{\rm t} \, \epsilon \, {\sf R}^{32} \,$ are then concatenated to form uncertainty-aware static feature $\upsilon_{\rm t} \, \epsilon \, {\sf R}^{64} \,$

Recall: Uncertainty-Aware Temporal Feature

- \rightarrow Given a sequence of input frames $\mathbf{I_1}$ $\mathbf{I_T}$, a feature vector is extracted per frame using a pretrained ResNet : $\mathbf{f_1}$ $\mathbf{f_T}$ where $\mathbf{f_t} \in \mathbf{R^{2048}}$
- ightharpoonup These features are passed to a GRU Layer that yields temporal features : $\mathbf{g_1}$ $\mathbf{g_{T_i}}$ where $\mathbf{g_t}$ ϵ $\mathbf{R^{2048}}$
- \rightarrow **G**₊ is then concatenated with two more features :
 - Uncertainty-aware static feature
 - Dynamic feature

Dynamic Feature

- → Optical flow is utilised here as it has strong cues for motion dynamics.
- For a frame I_t optical flow information is constructed by calculating homographies between successive frames within the interval $[I_{t-15}, I_t]$.
- → 3x3 homography matrix is obtained by solving flow equations using SVD.
- \rightarrow All the homographies are stacked together to form dynamic feature $d_{+} \in \mathbb{R}^{135}$

Recall: Uncertainty-Aware Temporal Feature

- Given a sequence of input frames $I_1 \dots I_T$, a feature vector is extracted per frame using a pretrained ResNet : $f_1 \dots f_{T_1}$ where $f_t \in \mathbb{R}^{2048}$
- These features are passed to a GRU Layer that yields temporal features : $\mathbf{g_1}$ $\mathbf{g_{T_i}}$ where $\mathbf{g_t} \in \mathbb{R}^{2048}$
- \rightarrow **G**₊ is then concatenated with two more features :
 - Uncertainty-aware static feature
 - ♦ Dynamic feature ✓

Split & Recombine

Split & Recombine: Temporal Convolution

Generator Loss Function

→ Loss for the generator is proposed as:

$$L_{\mathcal{G}} = L_{2D} + L_{3D} + L_{SMPL},$$

$$L_{2D} = \sum_{t=1}^{T} \|x_t - \hat{x}_t\|_2,$$

$$L_{3D} = \sum_{t=1}^{T} \|X_t - \hat{X}_t\|_2,$$

$$L_{SMPL} = \|\beta - \hat{\beta}\|_{2} + \sum_{t=1}^{T} \|\theta_{t} - \hat{\theta}_{t}\|_{2}.$$

Evaluation

		3DPW				MPI-INF-3DHP			Human3.6M		
Models		PA-MPJPE↓	MPJPE ↓	MPVPE↓	Accel↓	PA-MPJPE↓	MPJPE↓	Accel↓	PA-MPJPE↓	MPJPE↓	Accel↓
Frame-based	Kanazawa et al. [3]	76.7	130.0	-	37.4	89.8	124.2	-	56.8	88	-
	Kolotouros et al. [29]	70.2	2 - 2	-) =	-		-	50.1	-	:=:
	Kolotouros et al. [30]	59.2	96.9	116.4	29.8	67.5	105.2	-	41.1	-	18.3
	Moon et al. [15]	57.7	93.2	110.1	30.9	-	-	-	41.1	55.7	13.4
	Choi et al. [18]	58.3	88.9	106.3	22.6		-	-	46.3	64.9	23.9
Temporal	Kanazawa et al. [2]	72.6	116.5	139.3	15.2	= -	-	-	56.9	-	-
	Doersch et al. [5]	74.7	-	-	· -	-	-	-	-	-	-
	Sun et al. [35]	69.5	-	-	-	-	-	-	42.4	59.1	-
	Kocabas et al. [27]	56.5	95.8	113.4	27.1	63.4	97.7	29.0	41.5	65.9	18.3
	Choi et al. [17]	55.8	95.0	111.5	7.0	62.8	97.4	8.0	41.1	62.3	5.3
	Ours	52.2	92.8	106.1	6.8	59.4	93.5	9.4	38.4	58.4	6.1

Results

