# Covid Lung Analysis

#### WHY?

- Due to the Covid pandemic, healthcare providers have been stretched thin making it difficult for patients to get the care they require.
- If there was a way to create a model that could quickly identify a patient with covid that wasn't invasive, it could quicken the process for patients to get the care they need



### About the Data

- Data originates from <u>Kaggle</u>
- The dataset contains lung x-ray images of 13,808 images in total.
  - o 10,192 (74%) of the images are negative covid patients
  - 3,616 (26%) of the images are positive covid patients



### Data wrangling

- Made the images uniform:
  - Rescaled images to (100,100)
  - Made the images grayscale

Image Dimension : (100, 100)

Image Height : 100
Image Width : 100
Result : Negative



### Data Wrangling

- Manipulated the images using 3 different methods
  - No manipulation
  - Used a gaussian Blur filter
  - Used a Sharpen filter
- Tested them on a testing Neural Network



| Image         | Loss   | Accuracy |
|---------------|--------|----------|
| Original      | 0.2962 | 0.86556  |
| Gaussian Blur | 0.2998 | 0.86218  |
| Sharpened     | 0.2445 | 0.90418  |

### EDA

Slight differences between positive and negative Lung images



## KDE plot confirms that there are potential subtle differences



### EDA



- Scatterplot also shows subtle differences
   between positive and negative patients
- Positive patients have a slightly more concentrated cluster
- When positive patients stray from cluster, they stray further compared to negative patients

### Modeling

- After deciding which image type to use, the next step was to test the hyperparameters
- Original Model
  - o {units: 32, lr: 0.001, momentum: 0.9, units2: 128}
- Tuned Model
  - o {units: 128, lr: 0.001, momentum: 0.6, units2: 128}

| Model    | Loss  | Accuracy |
|----------|-------|----------|
| Original | 0.187 | 0.938    |
| Tuned    | 0.181 | 0.932    |

## Modeling

### Original



#### Tuned



### Modeling

- Decided on the original model due to its simplicity
- Confusion Matrix shows high accuracy
- When making an incorrect prediction model tends to predict a false positive



| Precision | Recall | Accuracy |
|-----------|--------|----------|
| 0.8762    | 0.8820 | 0.9385   |

#### Conclusion

- On average there are subtle differences between a COVID positive patient and a negative patient.
- I was able to create a model with a 93.8% accuracy in predicting whether a patient is COVID positive using lung x-ray images

### Future Improvements

- Spend more time in the tuning stage, adding more layers, using different layers, etc.
- Dealt with the unbalanced dataset in some way