批量投产前的质量保证

系统FMEA

质量培训网

www.best9000.com

iso16949@msn.com

系统FMEA

- □ 是D-FMEA和P-FMEA的进一步发展。
- 揭示了在项目的所有关键部位按项目进度如何通过经验、计算、试验和检验降低已有的风险或将来的风险。
- □ 是一种重要的支持跨部门合作的管理方法。
- □ 结构化的记录可以被后续活动所使用。

系统FMEA

- ☐ FMEA及系统FMEA概述
- □ 产品和过程的系统FMEA的基础
- □ 实施系统FMEA的五个步骤
- □ 系统FMEA的表格
- □ 系统FMEA的组织流程
- □ 与其他方法之间的关系

质量培训网 www.best9000.com

iso16949@msn.com

FMEA及系统FMEA概述

FMEA的发展过程

- □ 最初是在美国的航天工业界率先使用。
- □ 随着FMEA的成功使用,逐渐被其他行业接受, 并在全球推广实施。
- □ 美国福特、通用和克莱斯勒三大汽车公司将 FMEA纳入QS-9000体系中,逐步成为行业标 准。

FMEA及系统FMEA概述

系统FMEA的目的

- □ 提高产品的功能保证和可靠性
- □ 降低担保费用与折扣费用
- □ 缩短开发过程
- □ 减少批量投产时的问题
- □ 提高准时供货信誉
- □ 实现更经济的生产
- □ 改进服务
- □ 改善内部信息流

FMEA及系统FMEA概述

FMEA方法的进一步发展

- □ 进行设计FMEA时,只考虑各个构件的缺陷,而 没有系统地所有构件之间的功能关系。
- □ 进行过程FMEA时,只考虑单个过程潜在的缺陷,没有系统地分析整个生产过程。必要时还需考虑工装设备的设计制造。
- □ 进行FMEA分析时只使用FMEA表格,没有关于功能与失效功能之间关系的系统的描述。

系统FMEA定义

- □ 将研究的系统结构化,并分成系统单元,说明各单元间的功能关系。
- □ 从已描述的功能中导出每一系统单元的可想象的 失效功能(潜在缺陷)。
- □ 确定不同系统单元失效功能间的逻辑关系,以便 能在系统FMEA中分析潜在的缺陷、缺陷后果和 缺陷原因。

产品系统FMEA

设计FMEA的缺陷分析内容:

- □ 构件缺陷
- □ 缺陷原因
- □ 缺陷后果

质量培训网 www.best9000.com iso16949@msn.com

产品系统FMEA

考虑整个产品钳子的失效功能,需要时 才考虑到构件的故障类型。

- □ 系统缺陷
- □ 系统缺陷原因
- □ 缺陷(在系统中造成的)后果

过程系统FMEA

P-FMEA研究每道工序中存在的缺陷,在过程系统FMEA中,根据系统单元"人、机、料、法、环"使生产过程结构化,并对生产过程加以描述。

每一道工序被理解为系统单元的任务/功能。

需要时,将功能研究与缺陷研究延伸到生产 设备的设计数据中去。

准备

搜集

- ■图纸
- □ 实验报告
- □ 产品建议书
- □ 质量规定
- □ 可比较的系统单元的 缺陷表
- 售后市场经验

- □ 法律条文
- □ 官方规定
- □ 安全规章
- □ 标准化资料
- □ 过程计划
- □ 装配计划
- □ 检验计划等

系统结构与系统单元

- □ 用系统单元描述系统结构(结构树)是对每个系统 单元按其功能及失效功能进行分析的基础。
- □ 在一个系统结构中,系统单元按结构设置与排序, 体现在总系统中的结构关系。
- 系统结构的安排是从顶层系统单元到不同的结构层次,进而描述每一系统单元与其他系统单元之间通过交接点形成的联系。
- □ 在每个系统单元下设置的结构是独立的分结构。

功能与功能结构

功能与功能结构

- □ 可以用功能结构图(功能树/功能网)来描述多个系统单元对某一输出功能的共同作用。
- □ 在确定某一系统单元的功能结构时必须考虑相 关的输入功能与内部功能。
- □ 共同描述一项功能的各个分功能在功能结构中 按逻辑关系彼此相连。

功能结构

缺陷分析

- □ 所考虑的系统单元的潜在缺陷是指:从已知功能中 导出和描述的失效功能,如没有完成功能或功能受 到限制。
- □ 潜在缺陷原因: 下一级系统单元及通过交接点所涉及的系统单元的所有可以想象的失效功能。
- 潜在缺陷后果:对上一级系统单元及通过交接点所 涉及的系统单元所造成的失效功能。

风险评价

风险评价的尺度: 风险顺序数RPN

要素组成

严重度S用来评价缺陷后果的严重性

频度P用来评价缺陷原因发生的概率

不可探测度D 用来评价缺陷原因、缺陷或缺陷后果

发生后被发现的概率

 $RPN = S \times P \times D$

风险评价

严重度S

- □ 根据缺陷后果对整个系统以及外部顾客所 产生的影响来确定S值的大小
- □ 也可以从内部顾客的观点出发按相似的评 价准则确定

风险评价

频度P

- □ 应考虑所制订的所有的预防措施;
- □ 可以根据经验值来推测;
- □ 如果在一个新系统中包含有已评价的子系统, 应根据可能已改变的边界条件来验证评价结果。

风险评价

不可探测度D

- 应考虑所制订的所有发现缺陷和/或缺陷后果的措施及其有效性;
- 如果在一个新系统中包含有已评价的子系统, 应根据可能已改变的边界条件来验证评价结果;
- □ 在原因链/影响链中尽可能早地发现缺陷是有重要意义的。

产品系统FMEA评分判据

评分	严重度S	频度P	缺陷率 (ppm)	不可探测度D			
10 9	特别严重 安全风险,未满足 法律要求,整车不 能运行	非常高 缺陷原因发生的频率很高,不能使用或不合适的设计	500,000 100,000	非常低 不可能发现已发生的缺陷原因,无或不可能验 证设计的可靠性,验证 方法不可靠			
8 7	严重 整车功能受到很大 限制,必须立即强 制性送修,重要子 系统功能受到限制	高 缺陷原因重复 发生,有问题 的不成熟的设 计	50,000 10,000	低 已发生的缺陷原因的发 现率很低,可能无法验 证设计的可靠性,验证 方法不可靠			

产品系统FMEA评分判据

评分	严重度S	频度P	缺陷率 (ppm)	不可探测度D
6 5 4	中等严重整车功能受到限制,不需要立即强制性送修, 重要的操纵系统与舒适	中等 缺陷原因偶尔 发生,合适的 设计,比较成 熟	5,000 1,000 500	中等 可能发现已发生的 缺陷原因,也许能 验证设计的可靠 性,验证方法相对 不可靠
3 2	性系统的功能受到限制 轻微 对整车的功能影响较 小,必须按计划送修排 除,操纵系统与舒适性 系统的功能受到限制	低 缺陷原因很少 发生,可靠的 设计	100 50	高 已发生的缺陷原因 被发现的概率很 高,通过许多相互 独立的试验方法来
1	非常轻微 对整车的功能影响非常 轻微,只有专业人员才 能察觉	很低 缺陷原因不可 能发生	1	证明 很高 肯定能发现已发生 的缺陷原因 ₂₈

过程系统FMEA评分判据

评分	严重度S	频度P	缺陷率 (ppm)	不可探测度D			
10 9	特别严重 安全风险,未满足 法律要求,整车不 能运行	非常高 缺陷原因发生 的频率很高, 不能使用或不 合适的过程	500,000 100,000	非常低 不可能发现已发生的缺陷原因, 无或不可能检验过程的缺陷原因			
8 7	严重 整车功能受到很大 限制,必须立即强 制性送修,重要子 系统功能受到限制	高 缺陷原因重复 发生,不精确 的过程	50,000 10,000	低 已发生的缺陷原因的发 现率很低, 可能不被发现,检验不 可靠			

过程系统FMEA评分判据

评分	严重度S	频度P	缺陷率 (ppm	不可探测度D
6 5 4	中等严重 整车功能受到限制, 不需要立即强制性送修, 重要的操纵系统与舒适性 系统的功能受到限制	中等 缺陷原因偶尔 发生, 不太精确的过程	5,000 1,000 500	中等 可能发现已发生的 缺陷原因, 检验相对可靠
3 2	轻微 对整车的功能影响较小, 必须按计划送修排除,操 纵系统与舒适性系统的功 能受到限制	低 缺陷原因很少 发生,精确的 过程	100 50	高 已发生的缺陷原因 被发现的概率很 高,检验可靠,如 多种相互独立的检
1	非常轻微 对整车的功能影响非常轻 微,只有专业人员才能察 觉	很低 缺陷原因不可 能发生	1	验 很高 肯定能发现已发生 的缺陷原因 30

第五步

优化

- 1. 设计更改,以消除缺陷原因或降低缺陷后果的严重度;
- 2. 提高设计的可靠性,以降低缺陷原因的发生频度;
- 3. 采用有效的发现缺陷原因的措施(尽可能避免额外的检验)。

注意事项

- □ 提高可靠性或增加发现率的措施确定后,需要重 新进行临时的风险分析;
- □ 实施规定的措施并验证其有效性后,应通过确定 新的RPN值来进行最终的风险评价;
- □ 当设计发生重大更改时应按上述五个步骤对涉及的零件重新进行系统FMEA;
- □ 把某一RPN值作为控制界限是没有意义的,因为 各个系统FMEA的评价标准可能不同。

系统FMEA的表格

		缺陷可能性及影响分析								编号:	
□产品系统FMEA						□过程系统FMEA					
类型/型号/生产/批 号:			零件号:			责任人:				部门:	
系统编号	-/系统	 单	更改状态: 零件号:			公司: 责任人:				部门:	
元:	_		更改状态:			公司:				日期	
落乾/録	₩ 第:S 潜在 潜在 预防		- - - - - - - - - - - - - - - - - - -	F	发现缺 陷措施	探 RP		Z	责任人/ 完成日 期		
											33

系统FMEA的表格

		措施跟踪									FMEA编号:		
		FMEA								第一步	-		
│ 类型/型号/生产	零件号:			责任人:					部门:				
号:			史以	女状态:		公司	•				日期		
	系统编号/系统单			零件号:			责任人:			音	部门:		
元:			更改状态:			公司:				日期			
增长	R	预	• • • • • • • • • • • • • • • • • • • •			壬人/ 完成状态				·			
│ 因及其缺陷 │ │ 与缺陷后果 │	P N	14,00 14,14,00		完成日 期 20		20	40	60	80	100	状态 		
												34	

实施系统FMEA的组织流程

在跨部门工作组中制定系统FMEA

- □ 可以利用许多人知识和经验;
- □ 增加系统FMEA结果的认知度;
- □ 促进跨部门的联系和合作;
- □ 通过方法专家的支持保证系统化、有效的工作。

实施系统FMEA的组织流程

工作组的任务分配

专业部门(项目总负责)

- □ 决定实施
- □ 支持信息的收集
- □ 决策采取措施
- 批准系统FMEA
- □ 演示系统FMEA
- □ 验证措施的实施

工作组的任务分配

系统FMEA项目负责人

- □ 参与系统FMEA的准备(限定题目、定义交接点、组建工作组)
- □ 参加系统描述、缺陷分析以及优化措施的确 定
- □ 提供现有过程的经验值
- □ 参与措施的选择
- □ 演示系统FMEA

工作组的任务分配

技术专家

- □ 在系统FMEA工作组中说明开发/策划状态
- □ 提供现有过程的经验值
- □ 参加系统描述、缺陷分析以及优化措施的确定
- □ 把已决定的优化措施进一步转化为策划状态

工作组的任务分配

方法专家(也可兼为技术专家及负责人)

- □ 收集必要的数据材料
- □ 准备系统FMEA(限定题目、定义交接点、组建工作组)
- □ 引导实施系统描述、缺陷分析、风险评价以及优化措施的 确定
- □ 需要时做好系统FMEA会议的前导与后续工作
- □ 主持系统FMEA小组的工作
- □ 评价系统FMEA,建议采取措施
- □ 保证FMEA工作的记录存档
- □ 在企业内部协调工作

与其他方法之间的关系

- □ 质量机能展开(QFD)
- □ 故障树分析 (FTA)
- □ 事件流程分析(EA)
- □ 统计过程控制 (SPC)
- □ 价值分析(WA)
- □ 实验设计 (DoE)

系统结构与系统单元

* 外协件

汽车系统结构 (部

系统结构与系统单元

传动器

传动器壳体中间轴 主轴/从动轴 输入轴总成 油封* 润滑材料*

 滚珠轴承_____ 轴承座
 轴承座
 抽承座
 抽承座设

 抽承座
 特性
 计数据

滑动油封 一 滑动油封 一 滑动油封 的特性 设计数据

轴承座—曲轴 常数齿轮(五 党键轴截面形状

─ 设计FMEA

*外协件

**与过程系统FMEA的交互

传动器系统结构

第二步

保证符合 产品建议 书要求的 无故障/ 经济行驶

汽车

车身

传动系统

保证汽车 的驱动

• • • • •

发动机

离合器*

保证传递/切断发动机与传动器间的驱动功率

• • • • •

传动器

保证有利于环境且无 故障的运行 保证各档位的扭矩变 换/转速变换

• • • • •

• • • • •

• • • • •

.

• • • • •

• • • • •

.

传动器 保证有利于环境 且无故障的运行 保证各档位的扭 矩变换/转速变换

传动器壳体 中间轴 主轴/从动轴 输入轴总成 通过油封达到符 合功能的密封 油封* 无渗漏地封闭油室

滚珠轴承 轴承座 滑动油封 滑动油封 滑动油封 的特性 设计数据 确保油封上达 ** 符合磨损 到油膜结构 率要求 直径 Rz 硬度 轴承座—曲轴 圆度公差 滑动面宽度 常数齿轮(五档) 耐腐性 花键轴截面形状

传动器系统结构及功能

功能与功能结构

传动器功能结构

[传动器壳体] 第三步 油室未封闭 [传动器壳体轴承盖] [滑动油封] 未符合功能/无间隙地 安装油封 滑动面磨损 [滑动油封] [输入轴总成] 未确保油封的 通过油封未达到 油膜结构 [传动器] 符合功能的密封 未保证有利于环境且功能可 [离合器*] 产生振动 靠的运行 [输入轴总成] [滑动油封] 通过油封未达到 未确保油封的 无渗漏的密封 油膜结构 [油封*] 在静**振量接训网** 资源地对资源0.com传动器失效功能结构

iso16949@msn.com

滑动油封的失效功能结构

传动器

缺陷后果	缺陷	缺陷原因
无法保证汽车 的前进	无法保证有利 于环境且功能 可靠的运行	无法通过油封 达到符合功能 要求的密封

输入轴总成

缺陷后果	缺陷	缺陷原因
无法保证有利 于环境且功能 可靠的运行	无法通过油封 达到符合功能 要求的密封	无法保证油封 的油膜结构

滑动油封

设计FMEA (基于组件的系统 FMEA)

缺陷后果	缺陷	缺陷原因
无法通过油封 达到符合功能 要求的密封	无法保证油封 的油膜结构	滑动面磨损

设计FMEA (基于组件的系统

滑动油封

缺陷后果	缺陷	缺陷原因
无法通过油封 达到符合功能 要求的密封	无法保证油封 的油膜结构	滑动面磨损

产品系统 FMEA

滑动油封特性

缺陷后果	缺陷	缺陷原因
无法保证油封	滑动面磨损	[设计数据]
╽か油膜结构		•直径不合格
		•Rz不合格
		•硬度不足
		[磨损过程]

交互

51

系统单元"滑动油封特性"

缺陷后果	缺陷	缺陷原因
无法保证油封的油 膜结构	滑动面磨损	[设计数据] 直径不合格 Rz不合格 硬度不足 [磨损过程] 滑动油封的粗糙度 未按图纸规定加工

产品系统 FMEA

系统单元"滑动油封磨损过程"

过程系统 FMEA

缺陷后果	缺陷	缺陷原因
[总过程] 输入轴总成的生产 有缺陷 [特性] 滑动面磨损	滑动油封的粗糙度 未按图纸规定加工	磨床砂轮转速范围 太低

FMEA

潜在缺陷后果	S	潜在 缺陷	潜在缺 陷原因	预防措施	P	发现缺陷 措施	D	RP N	人员	
系统单元: 传动	抽总	.成	功能:	通过油封达到符合	动制	· 是要求的密封				
不能保证有利		不能	滑动面	开始日期:						
┃ 于环境且功能 ┃ 可靠的运行[<i>佳</i>		通过	磨损	专家的技巧	6	振动测量	5	240		
可靠的运行[传 动器] 		油封 达到 符合	[滑动 油封] 	设计更改(轴 承尺寸)		噪音分析				
不能保证传递/		功能		检查啮合齿形						
┃切断发动机与 ┃传动器间的驱	要求 不能保		开始日期:							
动功率[离合器*]			的密 封 	は は は は は は は は は は は は は は は は は は は	根据DIN确定粗 糙度	4	测量	3	96	
不能保证汽车 的驱动[传动系 统]			[滑动 油封]	提示:"磨削" 过程FMEA		耐久试验				
不能保证符合	8		产生振	开始日期:						
产品建议书要 求的无故障/经 济行驶[汽车]			动[离 合器]	由供方实施产 品系统FMEA	4	离合器试 验台	6	192 53		

潜在缺陷后果	S	潜在缺陷	潜在缺 陷原因	预防措施	P	发现缺陷措 施	D	RPN	
系统单元:滑动油封	特性	. J	力能: 符合屬						
不能保证油膜结构		滑动面	直径不	开始日期:			,		
[滑动油封]		磨损	符合要 求[滑动	专家的技巧	4	测量控制	1	32	
┃ 不能通过油封达到 ┃ 无磨损的密封[输入			油封设	根据DIN设计更改		台架实验			
轴总成]			计数据 **]	过程系统FMEA*					
不能保证有利于环 境且功能可靠的运 行[传动器]			Rz不符 合要求	开始日期:					
不能保证传递/切断 发动机与传动器间				[滑动油 封设计	专家的技巧	4	通过试验证 明	3	96
┃的驱动功率[离合器 ┃*]			数据**]	根据DIN设计更改		在过程中检			
				过程系统FMEA*		查测量技术			
不能保证汽车的驱 动[传动系统]			硬度不	开始日期:	•				
不能保证符合产品	8		符合要 求[滑动	专家的技巧		通过试验验	5	160	
┃建议书要求的无故 ┃障/经济行驶[汽车]		;	油封设	根据DIN设计更改		证 			
1 1. 22.//1 3.XL/ V-1-1			计数据 **]	过程系统FMEA*			54		

第一步

系统结构与系统单元

输入轴总成 生产总过程 磨削送料过程

.....过程

滚珠轴承的轴承座与油封的滑动面的磨削过程

驱动轴的清洗过程

装配送料过程

把轴承装到轴上的装配过程

装配输出过程

调整员

操作员

磨床

环境

装配工

装配设备

轴承

油脂

第一步

系统结构与系统单元

滚珠轴承的轴 承座与油封的 滑动面的磨削 过程 调整员

磨床

操作员

环境

夹紧系统

驱动系统

控制系统

机座

磨削工装

冷却/润滑系统

机器的固定基础

磨床冷却剂的供给

分系统结构

第一步

系统结构与系统单元

生产总过程

滚珠轴承的轴承 座与油封的滑动

面的磨削过程

磨削送料过程

.....过程

堆料员

材料

叉车司机

输送装置

磨床

—— (夹紧系统

驱动系统

交接点

控制系统

机座

磨削工装

冷却/润滑系统

输送链与夹紧系统的交接点

第二步

功能与功能

[滚珠轴承的轴 承座与油封的滑

按要求磨削滑动 油封

动面的磨削过程]

功能结构

[调整员]

•为生产过

[操作员]

- •开始磨削
- •监控磨削
- •对过程采
- •保证所要

[夹紧系统]

- •传递夹紧坯件的夹紧力
- •将工件固定在一定的位置
- •加工完毕后卸除夹紧力 [控制系统]
- •实施规定的加工程序 [磨削工装]
- •清除磨削
- •保证X小时的耐用时间 [冷却/润滑系统]
- •给加工位置提供足够的冷却液

[磨床]

- •使砂轮保持力
- •实施符合规定精

[磨床冷却液导管]

•提供足量的冷却液

[环境]

•为磨削过程保证一定的环境条件

第三步

缺陷分析

[滚珠轴承的轴承 座与油封的滑动面 的磨削过程]

滑动油封的粗糙度

[输入轴总成生产总过程]

输入轴总成 制造有缺陷

[驱动系统]

- •驱动转速太低
- •驱动功率不够

[控制系统]

•未按规定执行加工程序

加加过工

滑动油封的直径小 于图纸要求 [夹紧系统]

- •工件未正确定位
- •加工完毕后卸除夹紧力
- [控制系统]
- •放 •未按规定执行加工程序

[磨床]

[调图

•装.

[机床固定基础]

- ●磨削速 ●層
 - •磨床未与外界充分
- •未正确 隔离[**]

[环境]

•磨床受到邻近机床振动的干扰

[调整员

[控制系统]

•装入〕 •未按规定执行加工程序

[磨床]

•精磨时材料进给量太大

失效功能结构

产品系统FMEA/过程系统FMEA的交互

.....特性

缺陷后果	缺陷	缺陷原因
无法保证油封	滑动面磨损	[设计数据]
╽的油膜结构		•直径不合格
		•Rz不合格
		•硬度不足
		[磨损过程]

.....磨削过程

缺陷后果	缺陷	缺陷原因
[总过程] 输入轴总成制 造有缺陷 [特性] 滑动面磨损	滑动油封未按 图纸要求加工	磨床磨削速度 范围太低

第四步

风险评价

过程优化

潜在缺陷后果	S	潜在 缺陷	潜在缺陷 原因	预防措施	P	发现缺陷措 施	D	RPN					
系统单元:滚珠轴承轴承座和滑动油封的磨削过程 功能:按规定(图纸)磨削滑动油封													
输入轴总成	8	滑动	装入了错	开始日期:									
制造有缺陷 [输入轴总成	油的糙未图要加				的粗 糙度	的粗	为粗 [调整员]	至今未规定	10	光电监控毛 坯直径	2	160	
生产总过程] 						·	更改日期:						
								图纸	图纸	图纸		按零件号装入 程序	2
		加工	放入的砂	开始日期:									
			轮太小 [调整员]	至今未规定	10	定期手工检 查砂轮的直 径	4 6	320 1					

潜在缺陷后果	S	潜在缺陷	潜在缺陷 原因	预防措施	P	发现缺陷措 施	D	RPN
系统单元:滚珠轴承轴承座和滑动油封的磨削过程 功能:按规定(图纸)磨削滑动油封								
输入轴总成制造有缺陷 [输入轴总成生产总过程]	8	滑油的糙未图要加动封粗度按纸求工	没有确定 工装的磨 损 [调整员]	开始日期:				
				至今未规定	10	光电监控毛 坯直径	2	160
			磨削速度 范围太低 [磨床]	开始日期:				
				计划使用实践 证明良好的驱 动单元	2	在线监控转速	2	32
			未正确实 施精磨生 产过程 [磨床]	开始日期:				
				计划好的控制 系统已无故障 地用于批生产	2	在机床制造 商处进行检 验运行	3	48
			磨床受邻 近机器振 动的干扰 [环境]	开始日期:				
				至今未规定	10	至今未规定	10	800
				更改日期				
				与基础的设计 相符**	5	测量安装基 础的振动	1 6	40

SFMEA 培训课程大纲

- 一.培训目的: 通过本课程的学习, 使学员能掌握 SFMEA 工具, 并了解 DFMEA、QFD、FTA 和 DVP&R 等相关工具; 使学员能在产品设计中进行的 SFMEA 分析, 掌握 SFMEA 和 DFMEA 之间的接口和关联,初步了解并行工程、价值工程、质量损失函数、容差设计、可制造性和装配设计等工具, 为达到 6SIGMA 设计打下理论基础。
- 二. 培训对象: 产品及工艺设计开发人员、销售工程师、设备工程师。
- 三. 课程内容

SFMEA 相关的质量术语 防错 验证 确认 产品设计和开发 VS 过程设计和开发

● 产品设计工具

QFD 并行工程 价值工程 质量损失函数 DOE 亲和图 可制造性和装配设计 FTA 可靠性设计 设计防错系统设计

● 三次设计

系统设计 参数设计 容差设计

● FMEA 简介

FMEA 的发展历史 FMEAs 的种类 Automotive FMEAs 关联

SFMEA 与 DFMEA 的关联

ISO/TS1694:2002 对产品设计开发的要求,APQP 的五大阶段及与DFMEA 关系,DFMEA、SFMEA、PFMEA 简介及关联。

● DFMEA 简介

DFMEA 分析对象 产品的功能 产品潜在失效模式 产品潜在失效后果 失效的潜在起因/机理 现行控制、建议的措施和采取的措施

SFMEA

产品功能结构树 功能与功能结构 系统结构与子系统 失效模式 失效模式起因 子系统关键失效模式

● SFMEA 实施流程步骤

组成产品FMEA小组 顾客要求收集 用亲和图归类顾客要求确定顾客功能和技术功能 建立功能框图 进行SFMEA分析产品功能结构树分析FTA 部件功能及关键失效模式分析

确定子系统及部件功能和失效模式

四. 课程学时: 每天七小时 共两天

报名电话: 0510-83709004

传真: 0510-83012489

E-mail: iso16949@msn.com

(无锡)13812264739,

(上海)13816949004