

Universidade do Minho

Escola de Engenharia

Programação Ciber-Física 2023/2024

Trabalho Prático 1

Ricardo Lopes Santos Silva :: pg54188; Afonso Xavier Cardoso Marques :: pg53601

I. INTRODUÇÃO

Este trabalho prático centra-se na modelagem e análise de um sistema ciber-físico relacionado com o funcionamento dos semáforos numa interseção em forma de T. O objetivo principal é desenvolver um modelo abrangente que represente de forma precisa o comportamento e as interações dos componentes do sistema, incluindo as estradas principais e secundárias, bem como os semáforos correspondentes. Através da utilização de técnicas de modelagem formal e metodologias de análise, a tarefa visa investigar a funcionalidade e eficácia do sistema ciber-físico na garantia de um fluxo de tráfego seguro e eficiente na interseção.

A seguinte imagem representa o cenário de estudo que consiste numa interseção em forma de T com uma estrada principal (Major Road) e dois semáforos e uma estrada secundária (Minor Road) com um sensor e um semáforo. Neste cenário, os carros conduzem do lado esquerdo.

Fig. 1: Cenário em estudo

II. PARTE 1

A. Contextualização

O primeiro objetivo deste trabalho é modelar e analisar o sistema em causa de forma a garantir o funcionamento correto dos semáforos na interseção.

Para garantir um fluxo de tráfego razoável, o sistema tem as seguintes restrições:

- Os semáforos na Major Road estão sempre verdes, e sempre vermelhos na Minor Road, a menos que um veículo seja detetado pelo sensor.
- 2) Caso o sensor seja ativado, os semáforos mudarão de acordo com a ordem normal e permitirão que o tráfego saia da Minor Road. Após um intervalo de tempo adequado (30 segundos), os semáforos voltarão à posição padrão para que o tráfego possa fluir na Major Road novamente.
- 3) Finalmente, assim que um veículo for detetado pelo sensor, este é desativado até que os semáforos da Minor Road voltem a estar vermelhos.

O sistema também respeita as seguintes restrições temporais:

- 1) Os semáforos intermediários (com luz amarela) permanecem ligados por 5 segundos.
- 2) Existe um atraso de 1 segundo entre desligar uma luz e ligar a próxima.
- O semáforo da Major Road deve permanecer verde por pelo menos 30 segundos em cada ciclo, mas deve reagir ao sensor imediatamente após esse período.

B. Desenvolvimento e Apuramento de Resultados

1) Modelo:

O primeiro passo na resolução desta primeira parte consiste na modelação em UPPAAL do sistema de semáforos descrito anteriormente. Sendo assim, propomos o seguinte modelo:

Fig. 2: Modelo desenvolvido

Como é possível ver na imagem acima, foram criadas três entidades (representadas sob a forma de autómatos) que ilustram, pela ordem em que aparecem, o comportamento dos semáforos na Minor Road, os semáforos na Major Road e o Sensor. De seguida apresentamos uma descrição mais detalhada de cada autómato:

LigthsMinorRoad:
Este automato é composto por ...

· LigthsMajorRoad:

Este automato é composto por ...

Sensor:

Este automato é composto por ...

O modelo foi devidamente testado para garantir um funcionamento dentro do esperado e que cumpra as regras estabelecidas. O anexo A ilustra a simulação feita em UPPAAL.

2) Verificação de Propriedades:

De forma a garantir que o modelo do sistema está bem construido e que as suas regras e restrições são respeitadas, expressamos em CTL as seguintes propriedades de *reachability*, *safety* e *liveness* e testamos-las no UPPAAL para verificar se eram satisfazíveis.

- (1) o semáforo da Minor Road pode ficar verde;
- (2) o semáforo da Major Road pode ficar vermelho.
- (3) o sistema nunca entra em estado de bloqueio (deadlock);
- (4) os semáforos da Minor e Major Road não podem estar verdes ao mesmo tempo.
- (5) se houver carros à espera, eventualmente eles irão ter o sinal verde.

Em CTL, as propriedades são expressas da seguinte forma:

- (1) E<> LigthsMinorRoad.green
- (2) E<> LigthsMajorRoad.red
- (3) A[] not deadlock
- (4) A[] !(LigthsMajorRoad.green and LigthsMinorRoad.green)
- (5) A<> (LigthsMajorRoad.red imply LigthsMajorRoad.green) or (LigthsMinorRoad.red imply LigthsMinorRoad.green)

Usando a ferramenta Verifier do UPPAAL (ver anexo B), testamos a satisfatibilidade de todas as propriedades tendo em todos os casos obtido resultado positivo, pelo que concluímos que o modelo está bem construido.

No decorrer do desenvolvimento deste trabalho, encontramos outras propriedades que consideramos desejáveis para o sistema ciber-físico em estudo, tais como:

- (6) ...
- (7) ...

Usando a sintaxe em CTL abaixo, estas propriedades foram testadas no Verifier do UPPAAL (ver anexo ...) tendo-se novamente obtido o resultado de satisfazível.

- (6) ...
- (7) ...

III. PARTE 2

A. Contextualização

O sistema anterior de semáforos funciona razoavelmente bem sob a suposição de que uma das estradas tem mais tráfego do que a outra. No entanto, essa suposição muitas vezes é muito forte: pode ser o caso de que ambas as estradas tenham a mesma quantidade de tráfego, ou até mesmo que o fluxo de tráfego varie drasticamente ao longo do dia.

A segunda parte deste trabalho (mais exploratório) tem como objetivo abordar precisamente esse problema, que é conhecido por ter um impacto significativo na economia e no meio ambiente. Para isso, agora podemos assumir que cada semáforo tem um sensor inteligente ligado a ele. O sensor informa se o tráfego próximo ao semáforo é alto, baixo ou simplesmente inexistente. As restrições da primeira parte mantêm-se.

B. Desenvolvimento e Apuramento de Resultados

1) Modelo:

Para a resolução da segunda parte, foi necessário adaptar o modelo UPPAAL anterior para levar em consideração as informações fornecidas pelos sensores. Espera-se, por exemplo, que se o sensor mais à direita indicar tráfego intenso e os outros sensores não indicarem tráfego, então o semáforo mais à direita deve permanecer verde pelo menos até que os sensores forneçam novas informações. Sendo assim, propomos a seguinte reformulação para o modelo:

Fig. 3: Novo modelo desenvolvido

2) Verificação de Propriedades:

Iremos agora verificar se todas as propriedades mencionadas na primeira parte ainda são válidas para o novo modelo. Fazendo os devidos testes, concluimos que ...

3) (Valorização):

A segunda parte é de natureza mais exploratória, e portanto existe a liberdade para ajustar os parâmetros dos sensores conforme necessário para promover soluções diferentes e criativas. Serão valorizadas propriedades expressas em CTL que digam algo sobre a eficiência do sistema desenvolvido. Tal propriedade pode ser, por exemplo, "Se o sensor mais à direita sempre detetar tráfego intenso e os outros não detetarem tráfego algum, então observaremos no máximo uma mudança nos semáforos".

Sendo assim, para efeitos de valorização, propomos as seguintes propriedades ...

IV. CONCLUSÃO

Com este projeto terminado, apresentamos uma breve conclusão que consideramos englobar todo o processo de aprendizagem despoletado por este trabalho.

Este relatório destaca o estudo feito sobre um sistema ciber-físico ...

APPENDIX A SIMULAÇÃO DO UPPAAL NA PARTE 1

$\label{eq:APPENDIX B} \textbf{Resultados Verifier do UPPAAL na parte 1}$

REFERENCES

- [1] https://uppaal.org/features/
- [2] https://haslab.github.io/MFP/PCF/2324/index