

TEORIA OBLICZALNOŚCI

Marcin Piątkowski

Wykład 10

Pamięciowa złożoność obliczeniowa

Maszyna (k+2)-taśmowa

Pamięciowa złożoność obliczeniowa

Złożoność deterministyczna

Złożonością pamięciową **deterministycznej** maszyny Turinga M nazywamy funkcję $f: N \to N$, gdzie f(n) jest równa **maksymalnej** liczbie komórek taśm roboczych wykorzystywanych (odczyt/zapis) przez maszynę M uruchomioną dla **dowolnego** słowa długości n.

Złożoność niedeterministyczna

Złożonością pamięciową **niedeterministycznej** maszyny Turinga M nazywamy funkcję $f: \mathbb{N} \to \mathbb{N}$, gdzie f(n) jest równa **maksymalnej** liczbie komórek taśm roboczych wykorzystywanych (odczyt/zapis) przez maszynę M na **dowolnej** ścieżce obliczeń po uruchomieniu na **dowolnym** słowie długości n.

Klasy pamięciowej złożoności obliczeniowej

 $\mathsf{SPACE}(\mathsf{f}(\mathsf{n}))$ — zbiór wszystkich problemów rozstrzyganych w pamięci O(f(n)) przez **deterministyczne** maszyny Turinga

 $\mathsf{NSPACE}(\mathsf{f}(\mathsf{n}))$ — zbiór wszystkich problemów rozstrzyganych w pamięci O(f(n)) przez **niedeterministyczne** maszyne Turinga

Wyrażenie składające się ze zmiennych oraz operacji ¬, ∨, ∧

$$SAT = \{ \phi : \phi - \text{spełnialna formuła logiczna} \}$$

$$\checkmark \phi_1 = (\neg x \lor y) \land (z \lor \neg y) \land (x \lor \neg z)$$

$$\checkmark \phi_2 = (x \lor \neg x) \land (y \lor \neg y) \land (z \lor \neg z)$$

$$\checkmark \phi_3 = (x \lor \neg y) \land (\neg x \lor y) \land (x \lor y) \land (\neg x \lor \neg y)$$

$$SAT = \{ \phi : \phi - \text{spełnialna formuła logiczna} \}$$

Dla formuły ϕ rozmiaru n zawierającej m różnych zmiennych:

- Generuj kolejno wszystkie wartościowania zmiennych x_1, \ldots, x_m
- Dla każdego wartościowania oblicz wartość formuły ϕ
- Jeśli ϕ ma wartość true \Longrightarrow akceptuj
- III Jeśli dla żadnego wartościowania ϕ nie miała wartości **true** \Longrightarrow odrzuć

$$SAT = \{ \phi : \phi - \text{spełnialna formuła logiczna} \}$$

```
Dla formuły \phi rozmiaru n zawierającej m róm SAT \in SPACE(n)

Generuj kolejno wszystm

Dla każdm

Czas:

O(n)

Besli m

Jeśli m

Jeśli dla mego wartościowania \phi nie miała wartości true m

odrzuć
```

Twierdzenie Savitcha

Twierdzenie (Savitch - 1970)

Niech $f: \mathbf{N} \longrightarrow \mathbf{R}^+$ będzie funkcją spełniającą warunek $f(n) \ge \log(n)$.

Wówczas zachodzi inkluzja:

$$NSPACE(f(n)) \subseteq SPACE(f^2(n)).$$

Osiągalność konfiguracji

$REACH(c_1, c_2, t)$

$$\begin{array}{c} \textbf{true} & \text{jeśli} & c_1 = c_2 \\ \\ \textbf{false} & \text{jeśli} & c_1 \neq c_2 \end{array}$$

Dla każdej poprawnej konfuguracji c_m :

- Wywołaj REACH $(c_1, c_m, \lfloor \frac{t}{2} \rfloor)$
- Wywołaj REACH $(c_m, c_2, \lceil \frac{t}{2} \rceil)$
- Zwróć true jeśli oba wywołania zwróciły true

Zwróć false (jeśli dla żadnej konfiguracji nie było true)

t

22

Marcin Piątkowski

t > 1

Osiągalność konfiguracji

$REACH(c_1, c_2, t)$

$$\begin{array}{c} \textbf{t} = \textbf{1} \\ \begin{cases} \textbf{true} & \text{jeśli} \ c_1 = c_2 \ \text{lub} \ c_1 \to c_2 \\ \\ \textbf{false} & \text{w przeciwnym przypadku} \end{cases}$$

Dla każdej poprawnej konfuguracji c_m :

- Wywołaj REACH $(c_1, c_m, \lfloor \frac{t}{2} \rfloor)$
- Wywołaj REACH $(c_m, c_2, \lceil \frac{t}{2} \rceil)$
- Zwróć true jeśli oba wywołania zwróciły true

Zwróć false (jeśli dla żadnej konfiguracji nie było true)

Marcin Piątkowski

t > 1

Symulacja

M_1 – maszyna niedeterministyczna działająca w pamięci $\mathsf{O}\big(\mathsf{f}(\mathsf{n})\big)$

- oxtimes Zakładamy, że M_1 ma dokładnie jedną konfigurację akceptującą c_{ACC}
- c_0 konfiguracja początkowa maszyny M_1
- Każda ścieżka w drzewie obliczeń M_1 wykorzystuje pamięć rozmiaru O(f(n)) oraz może składać się z $2^{O(f(n))}$ kroków obliczeń
- Górne ograniczenie liczby konfiguracji $M_1 \implies 2^{d \cdot f(n)} \ (d \in N)$

Symulacja

M_1 – maszyna niedeterministyczna działająca w pamięci O(f(n))

- oxtimes Zakładamy, że M_1 ma dokładnie jedną konfigurację akceptującą c_{ACC}
- c_0 konfiguracja początkowa maszyny M_1
- Każda ścieżka w drzewie obliczeń M_1 wykorzystuje pamięć rozmiaru O(f(n)) oraz może składać się z $2^{O(f(n))}$ kroków obliczeń
- Górne ograniczenie liczby konfiguracji $M_1 \implies 2^{d \cdot f(n)} \ (d \in N)$

M₂ – maszyna deterministyczna symulująca działanie M₁

- Symulacja działania $M_1 \implies \mathsf{REACH} \Big(c_0, \, c_{ACC}, \, 2^{d \cdot f(n)} \Big)$
- Każde wywołanie REACH (c_1, c_2, t) wymaga zapamiętania c_1, c_2 oraz $t \implies O(f(n))$ dodatkowej pamięci
- Głębokość rekurencji $\implies O\Big(\log\Big(2^{d\cdot f(n)}\Big)\Big) = O\Big(f(n)\Big)$
- Pamięć wykorzystywana przez $M_2 \Longrightarrow O(f^2(n))$

$$PSPACE = \bigcup_{k} SPACE(n^{k})$$

$$NPSPACE = \bigcup_{k} NSPACE(n^{k})$$

$$SAT = \{ \phi : \phi - \text{spełnialna formuła logiczna} \}$$

$$PSPACE = \bigcup_{k} SPACE(n^{k})$$

$$NPSPACE = NPSPACE$$

$$NPSPACE = NPSPACE$$

$$NSPACE(n^{k})$$

$$Na mocy twierdzenia Savitcha wSPACE(n^{k})$$

$$SAT = \{ \phi : \phi - \text{spełnialna formuła logiczna} \}$$

- Formuła logiczna z kwantyfikatorami wyrażenie składające się ze zmiennych, operatorów ¬, ∨, ∧ oraz kwantyfikatorów ∀, ∃
- Formuła bez zmiennych wolnych każda zmienna jest w zasięgu pewnego kwantyfikatora
- Formuła w preneksowej postaci normalnej wszystkie kwantyfikatory występują na początku ϕ

$$\phi = \forall_x \exists_y \forall_z (z \land (x \lor y) \land (\neg x \lor \neg y))$$

$$\mathit{TBQF} = \Big\{ \phi: \ \phi$$
 – prawdziwa formuła logiczna bez zmiennych wolnych $\Big\}$

 ϕ nie zawiera kwantyfikatorów

Oblicz wartość ϕ i odpowiednio akceptuj lub odrzuć

Oblicz wartość ψ dla x= true Oblicz wartość ψ dla x= false \Longrightarrow akceptuj/odrzuć

 $\phi = \forall_{\mathsf{x}} \, \psi$

Oblicz wartość ψ dla x= true Oblicz wartość ψ dla x= false \Longrightarrow akceptuj/odrzuć

$$TBQF = \left\{ \phi : \phi - \text{prawdziwa formuła logiczna bez zmiennych wolnych} \right\}$$

 ϕ nie zawiera kwantyfikatorów A

Oblicz wartość ϕ i odpowiednio akceptu

 $\phi = \exists_{\mathsf{x}} \psi$

Oblicz

Zapamiętanie wartości zmieniej X

Zapamiętanie wartości zmieniej X κ≅ Głębokość rekurencji ograniczona przez rozmiar φ Całkowity rozmiar dodatkowej pamięci O(n)

 $\psi \, \mathrm{dla} \; x = \mathsf{true}$ $\int dx = false$

Uniwersytet Mikołaja Kopernika Marcin Piątkowski

Klasa L (LSPACE)

$$L = SPACE(log(n))$$

$$L = \left\{ a^k b^k : k \ge 0 \right\}$$

Klasa NL (NLSPACE)

$$NL = NSPACE(\log(n))$$

$$PATH = \{(G, v_1, v_2) : \text{ w grafie } G \text{ istnieje ścieżka } v_1 \leadsto v_2 \}$$

$$EXPSPACE = \bigcup_{k} SPACE(2^{n^{k}})$$

$$NEXPSPACE = \bigcup_{k} NSPACE(2^{n^{k}})$$

$$EXPSPACE = \bigcup_{k} SPACE \left(2^{n^{k}}\right)$$

$$EXPSPACE = \sum_{k} NEXPSPACE = \sum_{k} NEXPSPACE = \sum_{k} NSPACE \left(2^{n^{k}}\right)$$

$$Na \ mocy \ twierdzenia Savitcha = \bigcup_{k} NSPACE \left(2^{n^{k}}\right)$$

Uogólnione wyrażenia regularne

$$\varnothing \qquad \varepsilon \qquad R_1 \cdot R_2 \qquad R_1 | R_2 \qquad R^* \qquad R^k \; = \; \underbrace{R \cdot R \cdots R}_k$$

$$EQREX \uparrow = \{(R_1, R_2) : równoważne uogólnione wyrażenia regularne\}$$

$$L(R_1) = L(R_2)$$

$$\left(a^{k} \mid (b \cdot c)^{m}\right)^{n} \implies \left(\underbrace{\underbrace{a \cdot a \cdots a}_{k} \mid \underbrace{bc \cdot bc \cdots bc}_{m}\right) \cdots \left(\underbrace{\underbrace{a \cdot a \cdots a}_{k} \mid \underbrace{bc \cdot bc \cdots bc}_{m}\right)}_{m}\right)$$

Złożoność czasowa vs złożoność pamięciowa

$$DTIME(f(n)) \subseteq SPACE(f(n))$$

$$NTIME(f(n)) \subseteq NSPACE(f(n))$$

