SVM (Salary_Data)

1) Prepare a classification model using SVM for salary data

Data Description:

```
age -- age of a person
workclass -- A work class is a grouping of work
education -- Education of an individuals
maritalstatus -- Marital status of an individuals
occupation -- occupation of an individuals
relationship --
race -- Race of an Individual
sex -- Gender of an Individual
capitalgain -- profit received from the sale of an investment
capitalloss -- A decrease in the value of a capital asset
hoursperweek -- number of hours work per week
native -- Native of an individual
Salary -- salary of an individual
```

1. Import Libs

In [1]:

```
import numpy as np
import pandas as pd
from sklearn import preprocessing
from sklearn import metrics
import seaborn as sns
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
from sklearn.decomposition import PCA
from mlxtend.plotting import plot_decision_regions
from sklearn.metrics import confusion_matrix as cm
from sklearn.metrics import accuracy_score as ac
from sklearn.metrics import classification_report as report,roc_curve
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import LabelEncoder
```

2. Import Data

```
In [2]:
```

```
test_data = pd.read_csv('SalaryData_Test(1).csv')
train_data = pd.read_csv('SalaryData_Train(1).csv')
```

In [3]:

test_data

Out[3]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	
0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	
1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	
2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	
3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	
4	34	Private	10th	6	Never- married	Other- service	Not-in-family	White	
					•••		•••		
15055	33	Private	Bachelors	13	Never- married	Prof- specialty	Own-child	White	
15056	39	Private	Bachelors	13	Divorced	Prof- specialty	Not-in-family	White	
15057	38	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Husband	White	
15058	44	Private	Bachelors	13	Divorced	Adm- clerical	Own-child	Asian- Pac- Islander	
15059	35	Self-emp- inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	
15060 rows × 14 columns									
4								•	

In [4]:

train_data

Out[4]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black
30156	27	Private	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	White
30157	40	Private	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	White
30158	58	Private	HS-grad	9	Widowed	Adm- clerical	Unmarried	White
30159	22	Private	HS-grad	9	Never- married	Adm- clerical	Own-child	White
30160	52	Self-emp- inc	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife	White
30161 ו	rows	× 14 columr	าร					
4								•

3. Data Preprocessing

In [5]:

```
df_temp = test_data.append(train_data)
df_temp
```

C:\Users\shubham\AppData\Local\Temp\ipykernel_2088\1463285300.py:1: FutureWa rning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.

df_temp = test_data.append(train_data)

Out[5]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race
0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black
1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White
2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White
3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black
4	34	Private	10th	6	Never- married	Other- service	Not-in-family	White
30156	27	Private	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	White
30157	40	Private	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	White
30158	58	Private	HS-grad	9	Widowed	Adm- clerical	Unmarried	White
30159	22	Private	HS-grad	9	Never- married	Adm- clerical	Own-child	White
30160	52	Self-emp- inc	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife	White

45221 rows × 14 columns

localhost:8888/notebooks/python for ds john/Assignments/SVM/SVM(SalaryData).ipynb

In [6]:

```
train = train_data.copy()
test = test_data.copy()
test.head()
```

Out[6]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	25	Private	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male
1	38	Private	HS-grad	9	Married-civ- spouse	Farming- fishing	Husband	White	Male
2	28	Local-gov	Assoc- acdm	12	Married-civ- spouse	Protective- serv	Husband	White	Male
3	44	Private	Some- college	10	Married-civ- spouse	Machine- op-inspct	Husband	Black	Male
4	34	Private	10th	6	Never- married	Other- service	Not-in-family	White	Male

In [7]:

train.head()

Out[7]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	s
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Ma
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Ma
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Ma
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Ma
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Fema
4									•

```
In [8]:
```

```
str_c = ["workclass","education","maritalstatus","occupation","relationship","race","sex","
str_c
```

Out[8]:

```
['workclass',
  'education',
  'maritalstatus',
  'occupation',
  'relationship',
  'race',
  'sex',
  'native']
```

In [9]:

```
for i in str_c:
    train[i]= LabelEncoder().fit_transform(train[i])
    test[i]=LabelEncoder().fit_transform(test[i])

mapping = {' >50K': 1, ' <=50K': 0}
train = train.replace({'Salary': mapping})
test = test.replace({'Salary': mapping})</pre>
```

In [10]:

```
test.head()
```

Out[10]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	25	2	1	7	4	6	3	2	1
1	38	2	11	9	2	4	0	4	1
2	28	1	7	12	2	10	0	4	1
3	44	2	15	10	2	6	0	2	1
4	34	2	0	6	4	7	1	4	1
4									>

In [11]:

```
train.head()
```

Out[11]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	39	5	9	13	4	0	1	4	1
1	50	4	9	13	2	3	0	4	1
2	38	2	11	9	0	5	1	4	1
3	53	2	1	7	2	5	0	2	1
4	28	2	9	13	2	9	5	2	0
4									•

In [12]:

```
df = train.append(test)
```

C:\Users\shubham\AppData\Local\Temp\ipykernel_2088\2767323617.py:1: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.

df = train.append(test)

In [13]:

df1 = df.copy()
df1

Out[13]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	s
0	39	5	9	13	4	0	1	4	
1	50	4	9	13	2	3	0	4	
2	38	2	11	9	0	5	1	4	
3	53	2	1	7	2	5	0	2	
4	28	2	9	13	2	9	5	2	
15055	33	2	9	13	4	9	3	4	
15056	39	2	9	13	0	9	1	4	
15057	38	2	9	13	2	9	0	4	
15058	44	2	9	13	0	0	3	1	
15059	35	3	9	13	2	3	0	4	

45221 rows × 14 columns

In [14]:

df1.describe()

Out[14]:

	age	workclass	education	educationno	maritalstatus	occupation	r
count	45221.000000	45221.000000	45221.000000	45221.000000	45221.000000	45221.000000	45
mean	38.548086	2.204507	10.313217	10.118463	2.585148	5.969572	
std	13.217981	0.958132	3.816992	2.552909	1.500460	4.026444	
min	17.000000	0.000000	0.000000	1.000000	0.000000	0.000000	
25%	28.000000	2.000000	9.000000	9.000000	2.000000	2.000000	
50%	37.000000	2.000000	11.000000	10.000000	2.000000	6.000000	
75%	47.000000	2.000000	12.000000	13.000000	4.000000	9.000000	
max	90.000000	6.000000	15.000000	16.000000	6.000000	13.000000	
4							•

```
In [15]:
```

```
df1.isna().sum()
```

Out[15]:

0 age workclass 0 ${\it education}$ 0 educationno 0 maritalstatus 0 occupation 0 relationship 0 race 0 sex capitalgain 0 capitalloss 0 hoursperweek 0 native 0 Salary 0 dtype: int64

Finding Correlation

```
In [16]:
```

```
corr = df1.corr()
```

In [17]:

```
plt.figure(figsize=(10,10))
sns.heatmap(corr,annot=True)
plt.show()
```



```
In [18]:
```

```
df1.index.is_unique
```

Out[18]:

False

In [19]:

```
df1=df1.loc[~df1.index.duplicated(), :]
```

In [20]:

```
plt.figure(figsize=(16,5))
print("Skew: {}".format(df1['educationno'].skew()))
print("Kurtosis: {}".format(df1['educationno'].kurtosis()))
sns.kdeplot(df1['educationno'],shade=True,color='r')
plt.show()
```

Skew: -0.305378355820322 Kurtosis: 0.643604835875955

The Data is negatively skewed and has Low Kurtosis value

Most of people have eduction Number of years of education 8 - 11

```
In [21]:
```

```
dfa = df_temp[df_temp.columns[0:13]]
obj_colum = dfa.select_dtypes(include='object')
```

In [22]:

```
plt.figure(figsize=(16,10))
for i,col in enumerate(obj_colum,1):
    plt.subplot(2,4,i)
    df_temp[col].value_counts(normalize=True).plot.bar()
    plt.ylabel(col)
    plt.xlabel('% distribution per category')
plt.tight_layout()
plt.show()
```


In [23]:

```
num_columns = dfa.select_dtypes(exclude='object')
```

In [24]:

```
plt.figure(figsize=(18,30))
for i,col in enumerate(num_columns,1):
    plt.subplot(4,2,i)
    sns.kdeplot(df1[col],color='g',shade=True,legend=True)
    plt.ylabel(col)
plt.tight_layout()
plt.show()
```


In [25]:

```
pd.DataFrame(data=[num_columns.skew(),num_columns.kurtosis()],index=['skewness','kurtosis']
Out[25]:
```

	age	educationno	capitalgain	capitalloss	hoursperweek
skewness	0.532784	-0.310621	11.788871	4.517536	0.340536
kurtosis	-0.155931	0.635045	150.147899	19.376085	3.201287

4. Model Building

SVM

```
In [26]:
```

```
col = df1.columns
col
```

Out[26]:

In [69]:

```
x_train = train[col[0:13]]
y_train = train[col[13]]
x_test = test[col[0:13]]
y_test = test[col[13]]
```

In [70]:

```
def norm_func(i):
    x = (i-i.min())/(i.max()-i.min())
    return (x)
```

```
In [71]:
```

```
x_train = norm_func(x_train)
x_test = norm_func(x_test)
```

4.1 Linear

In [72]:

```
model_linear = SVC(kernel = "linear")
model_linear.fit(x_train,y_train)
pred_test_linear = model_linear.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_linear))
```

Accuracy: 0.8098273572377158

In [73]:

```
fpr, tpr, thresholds = roc_curve(y_test, pred_test_linear)
plt.figure(figsize=(8,6))
plt.plot(fpr, tpr, linewidth=2, color='red')
plt.plot([0,1], [0,1], 'k--' )
plt.rcParams['font.size'] = 12
plt.title('ROC curve for SVM Classifier using Linear Kernel for Predicting Size_category')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.show()
ROC_AUC = roc_auc_score(y_test, pred_test_linear)
print('ROC AUC : {:.4f}'.format(ROC_AUC))
```

ROC curve for SVM Classifier using Linear Kernel for Predicting Size_category

ROC AUC : 0.6455

4.2 Poly

In [74]:

```
model_poly = SVC(kernel = "poly")
model_poly.fit(x_train,y_train)
pred_test_poly = model_poly.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_poly))
```

Accuracy: 0.8435590969455511

In [75]:

```
fpr, tpr, thresholds = roc_curve(y_test, pred_test_poly)
plt.figure(figsize=(8,6))
plt.plot(fpr, tpr, linewidth=2, color='red')
plt.plot([0,1], [0,1], 'k--')
plt.rcParams['font.size'] = 12
plt.title('ROC curve for SVM Classifier using Polynomial Kernel for Predicting Size_categor
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.show()
ROC_AUC = roc_auc_score(y_test, pred_test_poly)
print('ROC AUC : {:.4f}'.format(ROC_AUC))
```

ROC curve for SVM Classifier using Polynomial Kernel for Predicting Size_category

ROC AUC : 0.7485

4.3 RBF

In [76]:

```
model_rbf = SVC(kernel = "rbf")
model_rbf.fit(x_train,y_train)
pred_test_rbf = model_rbf.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_rbf))
```

Accuracy: 0.8432934926958832

In [77]:

```
fpr, tpr, thresholds = roc_curve(y_test, pred_test_rbf)
plt.figure(figsize=(8,6))
plt.plot(fpr, tpr, linewidth=2, color='red')
plt.plot([0,1], [0,1], 'k--')
plt.rcParams['font.size'] = 12
plt.title('ROC curve for SVM Classifier using RBF Kernel for Predicting Size_category')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.show()
ROC_AUC = roc_auc_score(y_test, pred_test_rbf)
print('ROC AUC : {:.4f}'.format(ROC_AUC))
```

ROC curve for SVM Classifier using RBF Kernel for Predicting Size_category

ROC AUC : 0.7445

4.4 Sigmoid

In [78]:

```
model_sigmoid = SVC(kernel = "sigmoid")
model_sigmoid.fit(x_train,y_train)
pred_test_sigmoid = model_sigmoid.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, pred_test_sigmoid))
```

Accuracy: 0.5768924302788845

In [79]:

```
fpr, tpr, thresholds = roc_curve(y_test, pred_test_sigmoid)
plt.figure(figsize=(8,6))
plt.plot(fpr, tpr, linewidth=2, color='red')
plt.plot([0,1], [0,1], 'k--')
plt.rcParams['font.size'] = 12
plt.title('ROC curve for SVM Classifier using Sigmoid Kernel for Predicting Size_category')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.show()
ROC_AUC = roc_auc_score(y_test, pred_test_sigmoid)
print('ROC AUC : {:.4f}'.format(ROC_AUC))
```

ROC curve for SVM Classifier using Sigmoid Kernel for Predicting Size_category

ROC AUC: 0.4285

The Poly Model has best accuracy compare to other Models. but RBF model has almost equal Accuracy to Poly Model

In []: