Inhaltsverzeichnis

1.	Anforderungen 1.1 Schnittstellen	2 2 2
2.	Tool- und Referenzliste	3
3.	Arbeitsplan	4
4.	Konzept	5
5.	Design	6
6.	Testspezifikation und -report	6
7.	Evaluation	6

1. Anforderungen

Das Ziel dieses Projekts ist es ein Board zu entwickeln, welches es vereinfacht Schaltungen aufzubauen und zu testen. Dazu zählt die Implementierung von [Schnittstellen hier].

• Grundlegende dinge, basic wofür

1.1 Schnittstellen

Anzahl	Beschreibung
1	SPI Schnittstellen
1	I2C
1	UART
4	Syncrone PWM Ausgänge
4	Digitale Eingänge, wobei 2 als Encoder verwendet
	werden können.
4	Digitale Ausgänge
4	Analoge Eingänge (Spannungsbereich 0V bis 5V)
2	DAC Kanäle
1	Debugger Schnittstelle

1.2 Anforderungsliste

Daraus können wir folgende Anfoderungen festsetzen:

- 1. Alle genannten Kommunikationsschnittstellen sollten verfügbar und nutzbar sein.
- 2. Das Board soll mit einer Netzteil von 7.5V bis 12V betrieben werden können oder mit einem USB Kabel.
- 3. Da es ein Experimentierboard ist, sollen Kurzschlüsse auf einer aufgebauten Schaltung nicht zur Zerstörung des Board führen.
- 4. USB Anschluss fürs Flashen
- 5. Bei einem Versuchsaufbau soll das Ergebnis möglichst sauber sein.
- 6. Die Platine darf nicht Breiter als 163mm sein.
- 7. Alle Anwenderrelevanten Anschlüsse müssen gut lesbar sein.
- 8. Knopf zum zurücksetzen des Controllers
- 9. Der Anwender soll Zugriff auf 3.3V, 5V und wenn ein Netzteil angeschlossen ist Netzteilspannung haben.
- 10. Led Anzeigelampen für usb connection, Spannungsversorgung, flash
- 11. An/Aus Hauptschalter für das ganze Board

2. Tool- und Referenzliste

• Aus dem Skript die tools

3. Arbeitsplan

Der Arbeitsplan soll helfen Struktur und Ordnung in das Projekt zu bringen. Auf diesem soll außerdem der Fortschritt erkennbar sein.

$oxedsymbol{oxed}$ 1. Anforderungsanalyse			
\square 1.1. Besprechung der User-Needs			
-[]			
□ 2. Architekturkonzept			
☐ 3. Entwicklung eines Blockschaltbilds			
\square 4. Entwicklung einer Software und einer Testliste			
□ 5. Bestückung und Integration			
□ 6. Testing			

4. Konzept

- Eingehen auf Fragestellung
- Hardware Besprechen
- Lösungsansätze
- Grobarchtektur
- Ausgänge auf 20mA Begrenzung
- PWM auf H Brücke
- Usb pins verbinden für uart
- Jumper für Flash
- Externer Debugger
- 6 Klemmleistenanschlüsse die nach unten verbunden sind und 2-4 BNC die nach unten verbunden sind
- Konzept für die Sicherungen, Resettable Fuses
- Schandwiderstand für GPIO
- Crystal für Flash an USB Port
- Fragestellung (Analoge Eingänge und DAC) von -5V bis +5V oder 0V bis +5V
- \bullet stm32f405, gucken wegen ports
- JTAG ist der Debugger
- KiCad
- Testsoftware Analoge aus und eingänge verbinden, testsoftware

- 5. Design
- 6. Testspezifikation und -report
- 7. Evaluation