$$\int_{0}^{1} \frac{1}{x^{p}} dx$$

$$\begin{pmatrix}
\frac{1}{1-p} & Si & -p+1 > 0 \\
+ \infty & Si & -p+1 < 0 \\
p > 1
\end{pmatrix}$$

Proposición

La integral impropia $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ es $\begin{cases} \text{convergente para } p > 1 = p-1 \\ \text{divergente para } p \le 1 \end{cases}$

Resumen

★ Definición sucesiones

• Explícita: $a_n = f(n)$

• Recursiva: $a_{n+1} = f(a_n)$ a_1 dado $a_1 = 1$ $a_1 = 2a_n$ * Convergencia $a_{n+1} = f(a_n)$ $a_1 = 1$ $a_1 = 2a_n$

• Limite a un numero real: Una sucesion $(a_n)_{n\in\mathbb{N}}$ tiene limite L y lo anotamos como lím $a_n = L$ si se cumple que: para todo $\epsilon > 0$, existe $N \in \mathbb{N}$ tal que si $n \geq N$ entonces

• Limite al infinito: Decimos que una sucesion $(a_n)_{n\in\mathbb{N}}$ tiene limite infinito y lo anotamos como $\lim_{n\to\infty} a_n = \infty$ si se cumple que: para todo $A \in \mathbb{R}$, existe $N \in \mathbb{N}$ tal que si $n \geq N$, entonces

$$a_n > A$$
.

- **★** Propiedades
 - $\lim_{n \to \infty} a_n + b_n = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$
 - $\bullet \lim_{n \to \infty} c \cdot a_n = c \cdot \lim_{n \to \infty} a_n$
 - $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$ si $\lim_{n \to \infty} b_n \neq 0$
 - $\lim_{n \to \infty} g(a_n) = g(\lim_{n \to \infty} a_n) g$ función continua. Iman $\lim_{n \to \infty} a_n = \lim_{n \to \infty} a_n$

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS Cálculo II MAT1620 2^{0} Semestre 2021 - Sección 7 Avudante: Doménica Silva camila.silva@uc.cl

- ★ Teo 2 Si una sucesión es acotada y monótona, entonces es convergente

Resumen

- ★ Series
 - $S_n = \sum_{i=1}^n a_i$, si la sucesión $\{S_n\}_n$ es convergente y $\lim_{n \to \infty} S_n = S$ con $S \in \mathbb{R}$, entonces la serie $S = \sum_{i=1}^{\infty} a_i$ es convergente.
- Si $\lim_{n\to\infty} a_n \neq 0$ o no existe, la serie es divergente probable de la integral Si f(x) decreciente, continua y positiva en $[1, \infty[$ y $a_n = f(n),$
- la serie $\sum_{n=1}^{\infty} a_n$ es convergente si y solo si $\int_{1}^{\infty} f(x)dx$
- **\bigstar** Prueba por comparación Sean $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ series con términos positivos.
 - Si $\sum_{n=1}^{\infty} b_n$ es convergente y $b_n \geq a_n$, entonces $\sum_{n=1}^{\infty} a_n$ es convergente
 - $\sum_{n=1}^{\infty} a_n$ es divergente y $b_n \geq a_n$, entonces $\sum_{n=1}^{\infty} b_n$ es divergente
- **Prueba por comparación al límite** Sean $\sum_{n=1}^{\infty} a_n$ y $\sum_{n=1}^{\infty} b_n$ series con términos positivos. Si $\lim_{n\to\infty} \frac{a_n}{b_n} = C$,
 - \bullet Si C es finito y mayor que 0, ambas convergen o divergen.
 - Si C = 0 y $\sum_{n=1}^{\infty} b_n$ converge, entonces $\sum_{n=1}^{\infty} a_n$ es convergente
 - Si $C = \infty$ y $\sum_{n=1}^{\infty} a_n$ converge, entonces $\sum_{n=1}^{\infty} b_n$ es convergente

Pontificia Universidad Católica de Chile Facultad de Matemáticas Cálculo II MAT1620 2º Semestre 2021 - Sección 7

CONSIDERATION LA SUCESIÓN an=arm.

$$\sum_{n=1}^{K} a \cdot r^{n-1} = \frac{a}{1-r} \xrightarrow{\text{Us cv}}$$

Resumen

★ Series alternantes:

Para una serie alternante de la forma $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$, con $b_n > 0$. Si $b_{n+1} \leq b_n$ y $\lim_{n \to \infty} b_n = 0$, la serie es convergente

★ Convergencia absoluta:

- Una serie $\sum_{n=1}^{\infty} a_n$, es llamada absolutamente convergente si $\sum_{n=1}^{\infty} |a_n|$ es convergente.
- Una serie se llama condicionalmente convergente si es convergente pero no absolutamente.
- Si la serie $\sum_{n=1}^{\infty} |a_n|$ es convergente, entonces tambien lo es la serie $\sum_{n=1}^{\infty} a_n$.

★ Prueba de la razón:

- Si $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L < 1$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es absolutamente convergente.
- Si $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L > 1$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.
- Si $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = L = 1$, la prueba de la razón no es concluyente.

★ Prueba de la raíz:

- Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es absolutamente convergente.
- Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ o $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.
- Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, la prueba de la raíz no es concluyente.