Running Time Divide and Conquer Masters Method

Algorithms

Topics

- Running Time Analysis
- Sequence
 - Explicit Formula
 - Recursive Formula
- Summation/Series
- Recurrence Relations
- Divide and Conquer
 - Binary Search & Recurrences
 - Masters Method
 - Merge Sort

Worse Case Performance

- Pick an ordering of the input that yields longest possible runtime for this algorithm
 - "Cooking" the input
 - Example: Insertion sort on a list in reverse order
- Analysis gives the worse case performance
- Provides a theoretical bound on the algorithm but may not be the practical answer

Average Case Performance

- Two views
 - Long term average
 - Average over lots of input sets Amortized Analysis, or
 - Performance for "random" input
- Analysis generally ranges from difficult to very difficult

Best Case Performance

- Pick an ordering of the input that yields shortest possible runtime for this algorithm
 - More "Cooking" the input

Concentrate on Worse Case

- Worse case analysis gives an upper bound on the algorithm's performance
- Worse case performance occurs for a large number of interesting (relevant) cases
- Best case performance is frequently the same for all algorithm of a specific purpose
- Analysis of average-case performance is usually difficult

Arbitrary Algorithms Approaches

- Three approaches
 - Informal Analysis
 - Code Analysis
 - Recurrence Relations

Method 1: Informal Analysis

- Easiest and the least rigorous method
 - least rigorous == unsure
- Arguments may blur the difference between average and worst case

Informal Analysis Example

- Binary search of sorted array for key value
 - Make the current list the entire array
 - Check middle element
 - If == key, done
 - If > key, make current list the upper half of array
 - Otherwise, Make current list the lower half of array
 - Repeat
 - Must eventually find key or report failure(empty list)
 - Halve the array Ilg n times
 - For n = 100, $[lg \ 100] = 7$

Method 2: Code Analysis

- Presumes that the code (pseudo code) is correct (!)
- Look for loops and branches
 - Treat function calls as in-line
- Loops:
 - Count the number of passes
- Nested loops
 - Multiplicative

Code Analysis Example

- Selection sort
 - Find the minimum value of current array: loop from 1 to n-1 (compare to next element)
 - Swap minimum into position 1
 - Repeatedly loop over array
 - From 2 to n-1 (n-2 steps)
 - ■Then from 3 to n-1 (n-3 steps),
 - ... n-2 to n-1 (1 step)
 - Total steps = sum $\{(n-1), (n-2), ..., 1\} = n(n-1)/2$

Method 3: Recurrence Relations

- Many algorithms are specified as recursively
- Write a statement of the amount of work done in terms of
 - Actual # operations for the first step
 - Number of pieces (often 2) into which the input set is divided for further work
 - Multiplier factor, if necessary, on those pieces

Sequence (From CSCI 1900)

- A <u>sequence</u> is a list of ordered objects.
 - -Ex. 1,2,3,2,1,0,1,2,3,1,2
 - Can be finite or infinite
 - Ex 1,0,1,0,1,0,...
 - Elements can be repeated

Formulas

- Explicit Formula, a_n=2ⁿ+n-1
 - $-a_1 = 2^1 + 1 1 = 2$ (We start with n=1)
 - $-a_2 = 2^2 + 2 1 = 5$
 - nth term is defined in terms of n
- Recursive Formula
 - $a_1 = 0, a_2 = 1, a_n = a_{n-1} + a_{n-2} n > 1$
 - $-a_3=1$, $a_4=2$, $a_5=3$, $a_6=5$
 - Fibonacci Numbers (occur in nature)
 - nth term is defined in terms of n and previous terms

Old 1900 Quiz

Series/Summation Practice

Recurrence Relation Example

Binary Search

- First step compares key to one element (the middle one) => one operation
- Split the input set in half
- Do not process both halves, only one => multiplier is one
- Notation is T(n) for operation count
- Recurrence relation is: T(n) = T(n/2) + 3
- Now solve the relation for T(n) in an explicit form (no other references to T(anything))

Substitution method

 Apply the relation inductively until T(1) is reached

■
$$T(n) = T(n/2) + 3 = T(n/4) + 3 + 3 = T(n/8) + 3 + 3$$

+ $3 = ... = T(n/n) + 3 + 3 ... + 3$

- Must be able to evaluate the end condition
 - T(n/n) = T(1) = 1, search an array of 1 element
 - Note: assumes n is a power of 2, so round up (apply ceiling function if necessary)
 - so T(n) = 3 + ... + 3 lg n terms => $T(n) = \lg n$

Recurrence Relation Form

A recurrence relation is a recursive form of an equation, for example:

$$T(1) = 3$$

 $T(n) = T(n-1) + 2$

A recurrence relation can be put into an equivalent closed form without the recursion

Begin by looking at a series of equations with decreasing values of n:

$$T(n) = T(n-1) + 2$$

 $T(n-1) = T(n-2) + 2$
 $T(n-2) = T(n-3) + 2$
 $T(n-3) = T(n-4) + 2$
 $T(n-4) = T(n-5) + 2$

Now, we substitute back into the first equation:

$$T(n) = T(n-1) + 2$$

$$T(n) = (T(n-2) + 2) + 2$$

$$T(n) = ((T(n-3) + 2) + 2) + 2$$

$$T(n) = (((T(n-4) + 2) + 2) + 2) + 2$$

$$T(n) = ((((T(n-5) + 2) + 2) + 2) + 2) + 2$$

■ We stop when we get to T(1):

$$T(n) = T(n-1) + 2$$

$$T(n) = (T(n-2) + 2) + 2$$

$$\vdots$$

$$T(n) = (\cdots((T(1) + 2) + 2) \cdots + 2) + 2$$

How many "+ 2" terms are there? Notice we increase them with each substitution.

■ We must have n – 1 of the "+ 2" terms because there was one at the start and we did n – 2 substitutions:

$$T(n) = T(1) + \sum_{i=1}^{n-1} 2$$

So, the closed form of the equation is:

$$T(n) = 3 + 2(n - 1)$$

Recurrence Relation

- A recurrence relation is an equation that defines a sequence recursively (recursive Formula)
- Solving a recurrence relation is finding a closed-form solution (explicit formula)
- You should have seen this when working with Taylor series (Calculus 2)
- Also used in ODE (ordinary differential equations)
- For CS (Running Time)
 - We can call a function recursively to solve problems (Divide and Conquer)
 - Example Binary Search
 - This will yield a running time which is a recurrence Relation
- Some recurrence relations can be solved using a method called Masters Method (we will see today)
- Other methods
 - Characteristic equation
 - Generating functions

- Master Theorem Method
 - A recipe for solving any recurrence of the form

$$T(n) = aT(n/b) + f(n)$$

- where
 - ■a and b are constants with a ≥ 1 and b>1
- The above recurrence describes the running time of an algorithm that divides a problem set of size n into a pieces to be processed, each of size n/b. The cost of dividing and combining the results is given by f(n)

- Must memorize and apply 3 cases

- Case 1:
$$f(n) = O(n^{\log_b(a) - \varepsilon})$$

for $\varepsilon > 0$
 $T(n) = O(n^{\log_b(a) - \varepsilon})$

- Case 2:

$$f(n) = \Theta(n^{\log_b(a)})$$

$$T(n) = \Theta(n^{\log_b(a)} \lg n)$$

-Case 3:
$$f(n) = \Omega(n^{\log_b(a) + \varepsilon})$$

for
$$\varepsilon > 0$$
 and if $a f(n/b) \le c f(n)$ for some $c < 1$ then

$$T(n) = \Theta(f(n))$$

Using the Master Method

Example 1: Binary Search

Using the Master Method (cont)

Example 2:

$$-T(n) = 9T(n/3) + n$$

$$a = 9 b = 3 f(n) = n$$

$$log_b a = log_3 9 = 2 f(n) = n^{(2-1)} \varepsilon = 1$$

$$Case 1 T(n) = \theta (n^2)$$

Divide and Conquer

- Divide the problem into smaller subproblems
- Conquer the subproblems recursively until the subproblem is small enough to solve
- Example Binary Search, Merge Sort
- Power function

Binary Search (Recurrence)

- Binary Search (array A, first, last, v)
 - If (last <first) output -1</p>
 - Mid = (last + first)/2
 - If A[mid]= v output mid
 - If A[mid]>v
 - ■Binary_search (A, first, mid-1,v)
 - Else Binary_search (A, mid+1, last,v)

Binary Search

- Let T(n) be the worst case running time.
- Each iteration of Binary Search halves the size of the data to be checked.
- T(n) = T(n/2) + 1
- \blacksquare T(1)=1 , i.e. Θ(1)
- We could use induction to prove that T(n)= Θ(lg n).
- We will just use Masters Method
- \blacksquare T(n)=aT (n/b) + g(n)
 - Divide and conquer recurrence relation

Masters Method

- Let a >=1, b>1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence.
- T(n)=aT(n/b) + f(n). Then
 - -1) If $f(n) = O(n^{\log_b(a) \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b(a)})$
 - -2) If $f(n) = \Theta(n^{\log_b(a)})$, then $T(n) = \Theta(n^{\log_b(a)} \log n)$
 - 3) If $f(n) = \Omega(n^{\log_{b(a)}+\epsilon})$ for some constant $\epsilon > 0$, and if af(n/b) <= cf(n) for some constant c<1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

- T(n) = T(n/2) + 1
- B=2, a=1, so b>1, and a >=1
- Log_b a = Log_2 1 = 0
- **■** f(n)=1
- Case 2 applies here 1∈Θ(1) so
 - $-T(n) = \Theta (n^{\log_b(a)} \lg n) = \Theta (\lg n)$

- \blacksquare T(n)= 9T(n/3) +n
- B=3, a=9, so b>1, and a >=1
- \square Log_b a = Log₃ 9 = 2
- $\mathbf{n} \log_{\mathbf{b}(a)} = \mathbf{n}^2$
- **■** f(n)=n
- Does here $n \in O(n^{2-\epsilon})$ for some here $\epsilon > 0$?
- Yes take ε = .5, or even ε =1, but you can not take ε =0.
- Case 1 applies here n∈O(n¹) using so
 - $T(n) = \Theta (n^{\log_b(a)}) = \Theta (n^2)$

- $T(n) = 3T(n/4) + n \lg n$
- B=4, a=3, so b>1, and a >=1
- Log_b $a = Log_4 3 \approx 0.793$
- $\eta \log_b(a) \approx \eta^{0.793}$
- f(n)=n lg n
- Now is n lg n $\in \Omega$ (n^{0.793 + ϵ}) for $\epsilon > 0$
- Yes n lg n \in Ω (n), so take ϵ = 1-0.793 \approx .207
- Case 3 applies here if we can show af(n/b) <= cf(n) for some constant c<1 and sufficiently large n.</p>
- Well, $af(n/b) = 3 (n/4) lg (n/4) = \frac{3}{4} n lg (n/4) <= \frac{3}{4} n lg (n)$
- So when c=3/4<1, af(n/b) <= cf(n)

- $T(n) = 2T(n/2) + n \lg n$
- B=2, a=2, so b>1, and a >=1
- \blacksquare Log_b a = Log₂ 2 = 1
- $\mathbf{n} \log_b(\mathbf{a}) = \mathbf{n}^1$
- f(n)=nlg n
- Case 2 is $n \lg n \in \Theta(n^1)$?
 - No
- Case 3 is n lg $n \in \Omega$ ($n^{1+\epsilon}$) for $\epsilon > 0$?
 - No
- We can not use Regular Masters Method here

Karatsuba: Multiplying Integers

```
Let A and B be n bit numbers
A = (A_1 A_0) B = (B_1 B_0)
  -A_1, A_0, B_1, B_0 are n/2 bit numbers
  - A=2^{n/2}A_1+A_0
  - B=2^{n/2}B_1+B_0
  - A*B=(2n/2 A_1 + A_0)(2n/2 B_1 + B_0)
         = 2^{n/2} A_1 B_1 + 2^{n/2} A_0 B_1 + 2^{n/2} A_1 B_0 + A_0 B_0
         T(n)=4T(n/2)+4n
         Case 1, n<sup>2</sup>
  -A*B=2nA_1B_1+2n/2A_0B_1+2n/2A_1B_0+A_0B_0
            = 2^{n}A_{1}B_{1} + 2^{n/2}(A_{0}B_{1} + A_{1}B_{0}) + A_{0}B_{0}
            =2^{n}A_{1}B_{1}+2^{n/2}\{(A_{1}+A_{0})(B_{1}+B_{0})-A_{1}B_{1}-A_{0}B_{0}\}+A_{0}B_{0}
     (2^{n/2}) A_1 B_1 + 2^{n/2} (A_1 + A_0) (B_0 + B_1) + (2^{n/2} - 1) A_0 B_0
  - T(n)=3T(n/2)+6n

    Case 1, n<sup>lg 3</sup> ≈ n<sup>1.585</sup>

    Because of overhead of recursion, this is used for long values of n

    Small values of n, long multiplication used.
```

Merge Sort Example

Figure 2.4 The operation of merge sort on the array A = (5, 2, 4, 7, 1, 3, 2, 6). The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

Quiz T(n) + Merge Sort