1, introduce

IP version : 00

IP function : implement the CLAHE algorithm with verilogHDL . Divide images into blocks of size 8 * 8

Latency : 26 clock
Resolution : 1920*1080
Standards : VESA

Hardware : xilinx all device Software : vivado2022.1

File type : DCP

IP import : NO (Except for DSP used by implementation instructions)

Utilization : LUT 8.6k

LUTRAM 41
FF 13K
BRAM 64
DSP 143

(most of DSP used in module can be replaced with LUT)

2, Interface description

IO name	Width	Default value	Function
I_video_clk	1		Input clock by video clock . such as 148.5M in 1080p
I_video_syn	3		Input video synchronization signal follow VESA
I_video_dat	8		Fix to 8bit because of DCP file generation limit
I_limit_dat	32	32'd4096	Limit data for CLAHE , you can fix to 32'd633 and video will be more dark
I_hist_level	4	4'd2	Ratio of CLAHE data in OUTPUT data
			0 : Output data = Original data
			1 : Output data = 25% CLAHE data + 75% Original data
			2 : Output data = 50% CLAHE data + 50% Original data
			3 : Output data = 75% CLAHE data + 25% Original data
			4 : Output data = CLAHE data
O_video_dat	8		Output data for video
O_video_syn	3		Output synchronization signal for video

3, usage

3.1 Generate simulation file with DCP

1) Open vivado and source into the directory , enter the command to tcl consoles as follows :

cd [get_property directory]/clahe_dcp_top.dcp

2) Open DCP file with vivado by open_checkpoint command:

open_checkpoint clahe_dcp_top.dcp

3) In the new window, enter the following command

write_verilog -force -mode funcsim clahe_dcp_top_sim.v

3.2 Import file to vivado

Import DCP in design sources and simulation file to simulation sources

(more information about DCP and EDF, please contact www.xilinx.com)

4, supplement

1, Setting to other resolution or data width , or any further questions, please feel free to contact me.

Email: pengmoon19@gmail.com