1. (a) Relational Algebra

1. Find the titles of the Novel books which use Chinese as the language.

$$\pi_{title}\Big(\sigma_{genre="NOvel"/\land language="IChinese"}(Book)\Big) \tag{1}$$

2. Retrieve the names of female customers who have borrowed Novel books and are due for return on 01-01-2025.

```
\pi_{name}\Big(\sigma_{gender=\prime\prime\prime Ms.\prime\prime}(Customer)\bowtie_{Customer.cID=Borrow.cID}\sigma_{dueDate=\prime\prime\prime 01-01-2025\prime\prime}(Borrow)\bowtie_{Borrow.bID=Book.bID}\sigma_{genre=\prime\prime\prime Novel\prime\prime}(Book)\Big)
```

1. (b) SQL Queries

1. Display the distinct genres of books borrowed by Mr. customers whose ages are between 40 and 60.

```
SELECT DISTINCT B.genre
FROM Customer AS C
JOIN Borrow AS BR ON C.cID = BR.cID
JOIN Book AS B ON BR.bID = B.bID
WHERE C.gender = 'Mr.'
AND C.age BETWEEN 40 AND 60;
```

2. For each genre of books, display the genre and the average age of customers.

```
SELECT B.genre, AVG(C.age) AS avg_age

FROM Customer AS C

JOIN Borrow AS BR ON C.cID = BR.cID

JOIN Book AS B ON BR.bID = B.bID

GROUP BY B.genre;
```

2

Table 1: please fill your steps of finding your desired building into this table

Figure 1: (left) spatial building points and enclosing rectangles; (right) corresponding R-tree

Building	a	b	С	d	e	f	g	h	i	j ·
Rating	6	7	7	5	5	7	8	6	4	7

Table 2: ratings of the ten buildings

Node	Q	oNN	dist(q, oNN)	rating
Root	M1(1), M2(2), M3(4)	null	inf	
M1	$m2(\sqrt{2})$, $m1(2)$, $M2(2)$, $M3(4)$	null	inf	
m2	$a(\sqrt{2})$, m1(2), M2(2), $b(\sqrt{5})$, $c(2\sqrt{2})$, M3(4)	null	inf	
a	m1(2), M2(2), b($\sqrt{5}$), c(2 $\sqrt{2}$), M3(4)	null	inf	6≯6
m1	M2(2), b($\sqrt{5}$), e($\sqrt{5}$), c(2 $\sqrt{2}$), e(4), M3(4)	null	inf	
M2	m3(2), b($\sqrt{5}$), e($\sqrt{5}$), c(2 $\sqrt{2}$), e(4), m4(4), M3(4)	null	inf	
m3	f(2), b($\sqrt{5}$), e($\sqrt{5}$), c(2 $\sqrt{2}$), g($\sqrt{10}$), e(4), m4(4), M3(4)	null	inf	
f	${\sf b}(\sqrt{5}),{\sf e}(\sqrt{5}),{\sf c}(2\sqrt{2}),{\sf g}(\sqrt{1}0),{\sf e}(4),{\sf m4}(4),{\sf M3}(4)$	f	2	7 > 6

Result

oNN = f

dist(q, oNN) = 2

Node Accessed = 1 + 3 + 4 + 7 = 15