

2018 Fall

# Computational Statistics HW#6

182STG18 이하경

## I. Description

## Numerical Integration

## Newton-Cotes Rule (Riemann, Trapezoidal, Simpson's Rule)

HW5 에서는 1 차원(one-dimensional)의 적분 계산에 대해 유용하게 사용할 수 있는 수치적분 근사법에 대해 소개하고, Newton-Cotes Quadrature 인 Riemann, Trapezoidal, Simpson's rule 의 세 가지 근사법을 직접 구현해보았다. Newton-Cotes Quadrature 는  $[x_i, x_{i+1}]$  내의 subinterval 들을 동일한 간격으로 나눈다는 조건이 있다. 다음의 식에 따라 각 subinterval 내에서 m 차 다항식으로 근사하여 계산한 상수와 피적분함수를 이용하여 전체 적분 값을 계산한다.

$$p_{ij}(x) = \prod_{k=0, k \neq j}^{m} \frac{x - x_{ik}^*}{x_{ij}^* - x_{ik}^*}$$

$$\to p_i(x) = \sum_{i=0}^{m} f(x_{ij}^*) p_{ij}(x)$$
(5.8)

$$\int_{x_i}^{x_{i+1}} f(x)dx \approx \int_{x_i}^{x_{i+1}} p_i(x)dx \tag{5.9}$$

$$= \sum_{j=0}^{m} f(x_{ij}^{*}) \int_{x_{i}}^{x_{i+1}} p_{ij}(x) dx$$
 (5.10)

$$= \sum_{j=0}^{m} A_{ij} f(x_{ij}^*)$$
 (5.11)

만약 적분 구간이 유한하지 않거나 Singularity 가 발생하여 적분 계산이 어려운 경우 변수의 변환을 이용해 적분식을 적절히 변환(transformation)하여 안정적인 적분계산을 할 수 있다. Implementation 1 과 2 에서는 HW5 에 이어수치적분 근사법을 예제에 적용해보고, 변환을 이용한 적분 또한 계산해본다.

## Romberg Integration

1 차원의 적분 계산 시 Newton-Cotes 방법은 상당히 유용하나, 근사다항식의 차수 m 이 작을 경우(eg. m=0, Riemman Rule) 값의 수렴이 느리다는 단점이 있다. Romberg Algorithm 은 Newton-Cotes 의 Trapezoidal Rule 을 이용해 더 나아가 좀 더 효율적이고 빠르게 계산할 수 있도록 한 방법으로 다음의 계산을 따른다.

Let  $\hat{T}_{(n)}$  trapezoidal rule estimate of  $\int_a^b f(x) dx$  using n subintervals of equal length  $\hbar = \frac{b-a}{n}$ ,

Then 
$$\hat{T}_{(2n)} = \frac{1}{2}\hat{T}_{(2)} + \frac{\hbar}{2}\sum_{i=1}^{n}f\left(a + \left(i - \frac{1}{2}\right)\hbar\right) \rightarrow \frac{4\hat{T}_{(2n)} - \hat{T}_{(n)}}{3} = \int_{a}^{b}f(x)dx + O(n^{-4})$$

Define 
$$\hat{T}_{0.0} = (b-a) \left[ \frac{1}{2} f(a) + \frac{1}{2} f(b) \right] \& \hat{T}_{i.0} = \hat{T}_{(2^i)} for i = 0, ..., m$$

Relationship 
$$\hat{T}_{i,j} = \frac{4^{j}\hat{T}_{i,j-1} - \hat{T}_{i-1,j-1}}{4^{j} - 1} \ for \ j = 1, ..., i \ \& \ i = 1, ..., m$$

이 때  $\hat{T}_{m,j}=\int_a^b f(x)dx+O\left(4^{-mj}\right),\ 4^{-mj}$ 의 상대오차로 비교적 빠른 속도로 수렴한다. 또한  $Q_{i,j}=rac{\hat{T}_{i,j}-\hat{T}_{i-1,j}}{\hat{T}_{i+1,j}-\hat{T}_{i,j}}\cong 4^{j+1}$  이 i가 증가할수록 성립하는 지 확인하여 적분 계산 값을 평가할 수 있다.

Implementation 3 에서는 Romberg Algorithm 을 이용하여 실제 적분 계산을 적용해본다.

#### Simualation & MC Integration

## Rejection Sampling

Monte Carlo Simulation 은 random variable  $X \sim f(x)$ , pdf 에서 관심함수 h(X)에 대한 기댓값 E[h(X)]을 계산하고자 할 때, target 분포 f(x)로부터 i.i.d. sample 을 생성하여 mean 과 variance 를 추정하는 방법이다. 만약 X가 따르는 f(x)가 알려진 분포가 아니거나 복잡할 경우, 우리는 random sample 을 뽑기 위해 target 분포를 찾을 필요가 있다. 이 중 효과적인 방법 중 하나인 Rejection Sampling 방법은 다음의 알고리즘에 따라 정확한 target 분포로부터 쉽게 random draw 를 얻을 수 있다.

- 1. Sample  $Y \sim g$
- 2. Sample  $u \sim Unif(0,1)$
- 3. Reject Y if  $u > \frac{f(Y)}{e(Y)}$
- 4. Otherwise keep Y & Set X=y

여기서 g 는 sampling 이 가능한 다른 density 함수, e 는 envelope  $e(X) = \frac{g(X)}{\alpha} \ge f(X)$ ,  $\forall x, f(x) > 0$  이다. 알려진 쉬운 density 로부터 sample Y 을 생성하고, random rejection 을 통해 Accept 와 Reject 를 결정하는 방법이다. Accect 된 X sample 은 실제 분포 f 를 따른다. \*  $P(X \le y) = P\left[Y \le y \mid u \le \frac{f(Y)}{e(y)}\right] = \int_{-\infty}^{y} f(z) dz$ 

Implementation 4 와 5 에서는 Rejection Sampling 을 이용해 각각 Gamma 분포로부터의 Sampling, Prior 와 Likelihood 를 이용한 Bayesian Posterior 로부터의 Sampling 을 직접 수행해본다.

## **II**. Implementation

## 1. Derivation for Simpson's Rule (Problems 5.2)

**Goal** 아래의 식에 따라 Simpsion's rule 에서의  $A_{ij}$ , j=0,1,2 을 유도한다.

$$p_{ij}(x) = \prod_{k=0, k \neq j}^{m} \frac{x - x_{ik}^*}{x_{ij}^* - x_{ik}^*}$$

$$\int_{x_i}^{x_{i+1}} f(x) dx \approx \int_{x_i}^{x_{i+1}} p_i(x) dx = \sum_{i=0}^m f(x_{ij}^*) \int_{x_i}^{x_{i+1}} p_{ij}(x) dx = \sum_{i=0}^m A_{ij} f(x_{ij}^*)$$

 $(: p_{io}(x) = p_{i2}(x))$ 

#### Result

for Simpson's rule, 
$$\chi_{i0}^{i} = \chi_{i}$$
,  $\chi_{i1}^{i} = \frac{1_{i} + \chi_{i+1}}{2}$ ,  $\chi_{i2}^{i} = \chi_{i+1}$  (m=1)

(5.8)  $p_{ij}(x) = \prod_{k=0, k \neq j}^{2} \left(\frac{\chi - \chi_{ik}^{*}}{\chi_{ij}^{*} - \chi_{ik}^{*}}\right)$ ,  $j = 0, 1, 2$  &  $p_{i}(x) = \sum_{j=0}^{2} f(\chi_{ij}^{*}) p_{ij}(x)$ 

$$\rightarrow p_{io}(x) = \left(\frac{\chi - \chi_{ii}^{*}}{\chi_{i0}^{*} - \chi_{ik}^{*}}\right) \cdot \left(\frac{\chi - \chi_{i2}^{*}}{\chi_{i0}^{*} - \chi_{ik}^{*}}\right) = \frac{(2\chi - \chi_{i} - \chi_{i+1})(\chi - \chi_{i+1})}{(\chi_{i} - \chi_{i+1})^{2}}$$

$$p_{ii}(x) = \left(\frac{\chi - \chi_{io}^{*}}{\chi_{i1}^{*} - \chi_{i}^{*}}\right) \cdot \left(\frac{\chi - \chi_{i2}^{*}}{\chi_{i1}^{*} - \chi_{i1}^{*}}\right) = \frac{-4 (\chi - \chi_{i})(\chi - \chi_{i+1})}{(\chi_{i+1} - \chi_{i+1})^{2}}$$

$$p_{i2}(x) = \left(\frac{\chi - \chi_{io}^{*}}{\chi_{i2}^{*} - \chi_{i1}^{*}}\right) \cdot \left(\frac{\chi - \chi_{i1}^{*}}{\chi_{i2}^{*} - \chi_{i1}^{*}}\right) = \frac{(-4\chi_{i1})(\chi - \chi_{i+1})}{(\chi_{i+1} - \chi_{i1})^{2}} = p_{io}(\chi)$$

$$\Rightarrow \int_{\mathcal{I}_{i}}^{\mathcal{I}_{i+1}} f(x) dx \stackrel{\sim}{=} \sum_{j=0}^{2} \text{Aij } f(x_{i}) = \frac{1}{b} (\mathcal{I}_{i+1} - \mathcal{I}_{i}) \left[ f(x_{i}) + f(x_{i+1}) \right] + \frac{2}{3} (\mathcal{I}_{i+1} - \mathcal{I}_{i}) \cdot f\left(\frac{\mathcal{I}_{i} + \mathcal{I}_{i+1}}{2}\right)$$

$$= \frac{1}{b} (\mathcal{I}_{i+1} - \mathcal{I}_{i}) \left[ f(x_{i}) + \psi + \left(\frac{\mathcal{I}_{i} + \mathcal{I}_{i+1}}{2}\right) + f(x_{i+1}) \right]$$

## 2. Bayesian Estimation of $\mu$ (Problems 5.3)

| Obs        | (6.52, 8.32, 0.31, 2.82, 9.96, 0.14, 9.64)                                                                                                       |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Prior      | $\mu \sim \text{Cauchy}(5,2)$                                                                                                                    |
| Likelihood | $\bar{x} \mid \mu \sim N(\mu, 3^2/7)$                                                                                                            |
| Posterior  | $\pi(\mu \bar{x}) = \frac{\pi(\mu)L(\mu \bar{x})}{\int_{-\infty}^{\infty} \pi(\mu)L(\mu \bar{x})d\mu} = k \cdot (prior) \cdot (likeli\hbar ood)$ |

## a. Goal

수치적분법을 이용해 사후분포의 비례상수  $\mathbf{k} = \left[\int_{-\infty}^{\infty} \pi(\mu) \cdot L(\mu|\bar{x}) \ d\mu\right]^{-1}$  을 계산하고 실제 값인 7.84654 와 비교해본다. ( $\int \mathbf{k} \times prior \times likeli hood \ d\mu = 1$ )

#### Result

| method      | value   | subintervals | niter | comp.time |
|-------------|---------|--------------|-------|-----------|
| Riemann     | 7.84654 | 1024         | 10    | 0.0089    |
| Trapezoidal | 7.84654 | 1024         | 10    | 0.0088    |
| Simpson     | 7.84654 | 2048         | 11    | 0.0109    |
| Integrate   | 7.84654 |              |       | 0.0003    |

세가지 수치적분법을 이용하여 적분 구간은 모두 density 의 값이 0 에 수렴하는 [-100, 100] 까지로 계산하였다. Error 의 threshold E=10^-8 으로 설정하고 값을 확인하였을 때 소수 다섯째자리 내에서 세 가지 방법 모두 실제 값인 7.84654를 정확히 계산하였고, 반복 수와 소요 시간 또한 세 가지 방법이 거의 동일하게 빨랐다.

## b. Goal

(a)에서의 값 7.84654 를 이용해 사후확률  $P(2 \le \mu \le 8 \mid \bar{x}) = 7.84654 \cdot \int_2^8 \pi(\mu) \cdot L(\mu \mid \bar{x}) \ d\mu$  을 세 가지 수치적분법으로 계산하고 실제 값 0.99605 와 비교해본다.

Error 의 계산 시 Relative Convergence Criterion  $\frac{|P^k-P^{k-1}|}{|P^{k-1}|}<\epsilon=0.0001$  을 사용한다.

## Result

| method      | threshold E | value   | subintervals | niter | comp.time |
|-------------|-------------|---------|--------------|-------|-----------|
| ъ.          | 10^-4       | 0.99596 | 256          | 8     | 0.0083    |
| Riemann     | 10^-5       | 0.99605 | 4096         | 12    | 0.0189    |
|             | 10^-4       | 0.99603 | 64           | 6     | 0.0050    |
| Trapezoidal | 10^-5       | 0.99605 | 256          | 8     | 0.0120    |
| Simpson     | 10^-4       | 0.99605 | 16           | 4     | 0.0042    |
| Integrate   |             | 0.99605 |              |       | 0.0001    |

먼저 threshold를 0.0001로 하였을 때 각각의 방법에서 계산된 결과를 확인해보면 Simpson's rule 만이 실제 값과 일치하였고 Riemann rule의 경우 실제 값과 0.00009만큼, Trapezoidal rule의 경우 0.00002만큼 오차가 발생하였다. 정확한 값을 계산해보기 위해 threshold를 0.00001(=10^-5)으로 조정하고 다시 실행하였을 때 두 방법 모두 실제 값인 0.99605 와 일치하였다. 적분 시의 반복 수와 계산 속도는 Simpson's rule 에서 가장 빠르고 안정적이었으며 Rieman rule 이 가장 느렸다.

#### c. Goal

사후확률  $\mathbf{P}(\boldsymbol{\mu} \geq \mathbf{3} \mid \overline{x}) = 7.84654 \cdot \int_3^\infty \pi(\boldsymbol{\mu}) \cdot L(\boldsymbol{\mu} \mid \overline{x}) \, d\boldsymbol{\mu}$  을 계산하고 실제 값 0.99086 과 비교한다. 무한대의 적분 구간에 대해 transformation  $\mathbf{u} = \exp(\boldsymbol{\mu})/(\mathbf{1} + \exp(\boldsymbol{\mu}))$  을 이용해 식을 변환하여 계산한다.

#### Result

| method      | value   | subintervals | niter | comp.time |
|-------------|---------|--------------|-------|-----------|
| Riemann     | 0.99086 | 2097152      | 21    | 0.8432    |
| Trapezoidal | 0.99086 | 4096         | 12    | 0.0122    |
| Simpson     | 0.99086 | 8192         | 13    | 0.0174    |

적분의 변환을 통해 구하는 사후확률의 식은 다음과 같이 표현할 수 있다.

$$P(\mu \ge 3 \mid \bar{x}) = \int_{e^3/(1+e^3)}^1 \pi\left(\log(\frac{u}{1-u})\right) \cdot L\left(\log\left(\frac{u}{1-u}\right) \mid \bar{x}\right) \cdot \frac{1}{u(1-u)} du$$

위의 적분을 계산하기 위해 수치적분법을 이용할 경우 1 에서의 singularity 가 발생하므로, 이를 제외하기 위해서 적분의 상한을 1-10^-8 으로 조정하여 세 가지 수치적분 방법을 이용해 확률 값을 계산하였다. E=10^-8 하에서 계산된 확률의 값은 소수 다섯째자리 내에서 모두 실제 값과 동일하였고, 계산 속도는 Trapezoidal, Simpson 에 비해 Riemann rule 이 상당히 느렸다. 반복 수 증가에 따른 subinterval 의 수 n 이 2 의 배수의 속도로 증가함에 따라 Riemann rule 에서의 subinterval 의 수가 매우 큰 것을 확인하였다.

#### d. Goal

(c)의 적분 값을 transformation  $\mathbf{u} = \mathbf{1}/\mu$  을 이용해 계산한다.

#### Result

| method      | k       | subintervals | niter | comp.time |
|-------------|---------|--------------|-------|-----------|
| Riemann     | 0.99086 | 4194304      | 22    | 2.5261    |
| Trapezoidal | 0.99086 | 4096         | 12    | 0.0211    |
| Simpson     | 0.99086 | 256          | 8     | 0.0118    |

d의 적분 변환을 통해 구하는 사후확률의 식은 다음과 같다.

$$P(\mu \geq 3 \mid \bar{x}) = \int_{1/3}^{0} \pi\left(\frac{1}{u}\right) \cdot L\left(\frac{1}{u} \mid \bar{x}\right) \cdot \left(-\frac{1}{u^{2}}\right) du$$

이 계산 시에도 역시 0 에서의 singularity 를 해결하기 위해 적분구간을 0+10^-8 으로 조정하였다. 세 가지 적분법 모두 E=10^-8 하에서 적절한 값을 계산하였고 계산속도는 Simpson < Trapezoidal < Simpson 순으로 Simpson's rule 을 이용한 계산이 가장 효율적이었다.

# 3. Integration using Romberg's Algorithm (Problems 5.4)

#### Goal

X 가 Unif[1,a]를 따르고 Y=(a-1)/X, a>1일 때, E[Y]=log(a)를 m=6 인 Romberg's Algorithm 을 이용하여 계산한다. (임의의 a 값으로 10을 지정하였다. 이때 실제 E(Y) 값은 log(10)=2.30256이다.)

Result. Triangular array  $\hat{T}_{i,j}$  (m = 6)

| $\widehat{T}_{i,j}$ | 0          | 1          | 2          | 3          | 4          | 5          | 6          |
|---------------------|------------|------------|------------|------------|------------|------------|------------|
| 0                   | 4.95000000 |            |            |            |            |            |            |
| 1                   | 3.29318182 | 2.74090909 |            |            |            |            |            |
| 2                   | 2.62922118 | 2.58495714 | 2.57456034 |            |            |            |            |
| 3                   | 2.39773710 | 2.39406275 | 2.39103268 | 2.38811954 |            |            |            |
| 4                   | 2.32795210 | 2.32767844 | 2.32741811 | 2.32716864 | 2.32692962 |            |            |
| 5                   | 2.30906066 | 2.30904219 | 2.30902397 | 2.30900599 | 2.30898824 | 2.30897070 |            |
| 6                   | 2.30421333 | 2.30421215 | 2.30421097 | 2.30420980 | 2.30420862 | 2.30420746 | 2.30420629 |

테이블의 가장 마지막 행(m=6)을 확인하였을 때  $\hat{T}_{6,6}=2.30421$ 로 실제 값과 약 0.00162 정도의 오차가 발생하여 적분 값이 타당하다고 판단하였다. m의 크기를 증가시킨다면 오차의 크기가 더 줄어들 것으로 예상하였다.

| Result. $Q_i$ | i,j          |            |             |            |            |            |
|---------------|--------------|------------|-------------|------------|------------|------------|
| i             | subintervals | 0          | 1           | 2          | 3          | 4          |
| 1             | 2            |            |             |            |            |            |
| 2             | 4            | 2.49535604 |             |            |            |            |
| 3             | 8            | 2.86827769 | 0.8169540   |            |            |            |
| 4             | 16           | 3.31710413 | 2.875595131 | 2.88499426 |            |            |
| 5             | 32           | 3.69399879 | 3.56210660  | 3.45841565 | 3.35583778 |            |
| 6             | 64           | 3.89729691 | 3.85840634  | 3.82176084 | 3.78688681 | 3.75373126 |

j=0 일 때 i가 증가함에 따라  $Q_{i,j}$  가 점점  $4^{j+1}$ =4 에 가까워지는 것을 확인하였다.



## 4. Gamma Derivates (Example 6.1)

#### Goal.

Rejection Sampling Algorithm 을 따라 Gamma(r, 1), r ≥ 1으로부터 n 개의 sample 에서 random variable 들을 생성해보고 r=1, ..., 4 에 따른 acceptance rate 를 확인한다. 또한 R 의 rgamma 함수를 이용해 생성한 random sample 과 Q-Q plot 을 그려 결과를 확인한다.

$$Y \sim \text{target dist}^n \ f(y) = \frac{t(y)^{r-1}t'(y)e^{-t(y)}}{\Gamma(r)}, \qquad t(y) = a(1+by)^3 > 0 \ for \ -\frac{1}{b} < y < \infty, \ \ a = r - \frac{1}{3}, \ \ b = \frac{1}{\sqrt{9a}}$$
 then  $X = t(Y) \sim Gamma(r, 1)$ 

g(Y)를 f(Y)에 비례하는 단순화된 density,  $\mathrm{e}(\mathrm{Y}) = \mathrm{e}^{\frac{-y^2}{2}} \sim N(0,1)$  envelope 로 두었을 때 다음의 과정을 따라 random sampling 을 진행한다.

1. n 개의 Z ~ N(0,1) & u ~ Unif(0,1) sample 을 생성한다.

2.  $u \le g(Z)/e(Z) = \exp\left[\frac{Z^2}{2} + a\log\frac{t(Z)}{a} - t(Z) + a\right]$  일 경우 Z를 Accept 하고, 아닐 경우 Reject 한다.

n=10000 개의 Z와 U의 sample 을 생성하여 이용하였다.

Result 1. Acceptance Rate by shape r

| r | acceptance rate |
|---|-----------------|
| 1 | 95.39%          |
| 2 | 98.20%          |
| 3 | 98.98%          |
| 4 | 99.27%          |

r 에 따른 acceptance rate 를 확인해보면 r=4 일 때 Z 로부터 accept 된 비율이 99% 이상으로 매우 높았다. 비율이 가장 작은 r=1 에서도 95% 이상이 유지되어 전체적으로 매우 좋은 결과를 보였다.

Result 2. Gamma Q-Q Plot of X=t(Z) vs random gamma sample





Accept 된 Z를 이용한 X=t(Z)와 R의 rgamma를 이용해 실제 r값에 따른 Gamma(r, 1) 분포에서 random sample을 생성한 뒤 Q-Q plot 을 통해 어느 정도 일치하는 지 확인하였다. 대부분 모두 직선을 따르며 r 이 커짐에 따라 acceptance rate 가 증가하였으므로 직선과 가까운 점들이 점점 더 많아지는 것을 확인할 수 있다.

**Result 3.** q(Z) & envelope e(Z)



추가적으로 q(Z)와 e(Z)의 그래프를 그려봤을 때 거의 겹쳐 그려지는 것을 확인할 수 있었다. 이 예제의 경우 rejection region 이 굉장히 작아 e(Z)가 좋은 envelope 라고 할 수 있다.

## 5. Sampling a Bayesian Posterior (Example 6.2)

| Obs                       | (8, 3, 4, 3, 1, 7, 2, 6, 2, 7)                       |
|---------------------------|------------------------------------------------------|
| Prior $f(\lambda)$        | $\log \lambda \sim N(\log 4, 0.5^2)$                 |
| Likelihood $L(\lambda X)$ | $X \mid \lambda \sim Poission(\lambda)$              |
| unnormalized<br>Posterior | $q(\lambda X) \propto f(\lambda) \cdot L(\lambda X)$ |

#### Goal

Rejection Sampling 방법으로 Bayesian Posterior Sample 을 생성하려고 한다. Log-Normal Prior 에서 생성된 n 개의  $\lambda_i$  와  $U_i \sim U(0,1)$ 으로부터  $q(\lambda|X)/e(\lambda|X) = L(\lambda|X)/L(\hat{\lambda}^{MLE} = 4.3|X)$ 을 이용해  $\lambda$ 의 posterior sample 을 생성하고 acceptance rate 를 확인해본다. 또한  $\lambda$  에 따른  $q(\lambda|X)$ 와  $e(\lambda|X)$ 의 그래프를 직접 그려본다.

초기에 n=10000 개의  $\lambda_i$  와  $U_i$  sample 을 생성하여 알고리즘에 이용하였다.

#### Result



이 예제의 경우 10000 개의  $\lambda_i$  로부터 accepted 된 비율이 29.22%로 약 30%에 미치지 않았다.  $q(\lambda)$ 와  $e(\lambda)$  의 그래프를 통해서도 accept. region 과 reject. region의 크기를 확인할 수 있다. 그래프에서 shaded area, 즉 reject 되는 부분이 매우 커 좋은 envelope 가 될 수 없다고 판단하였다. 만약 target distribution 인 posterior 로부터 1000 개의 random sample 을 생성하고자 할 경우, 약 1000/0.3  $\cong$  3422 개의 초기 sample 을 뽑아야 하므로 비효율적일 수 있다.

## **Ⅲ**. Discussion

Newton Cotes Rule 은 1 차원의 적분 계산에서 훌륭한 퍼포먼스를 보인다. 본 과제의 Implementation 2 에서 Bayesian Posterior 함수를 이용한 적분 계산에 세 가지 근사법을 이용하였을 때 대부분의 값들이 정확히 실제 값과 일치하였음을 통해 상당히 훌륭한 방법임을 확인하였다. 대부분의 경우 근사다항식의 차수가 높아질수록, 즉 Simpson < Trapezoidal < Riemann 순으로 계산의 수렴 속도가 빨랐다. 특히 m=0 인 Riemann Rule 의 경우는 수렴 속도가 느리다는 Newton Cotes 의 단점을 깨달을 수 있었는데, Error 의 threshold 값을 매우 작게 설정하였을 때 subinterval 의 수가 기하급수적으로 늘어나 최종 값을 계산하는 데 상당히 오랜 시간이 걸렸으며 어떤 경우는 R 에서 계산을 완료하지 못하기도 하였다. 그러나 threshold 를 10^-05 정도로 하였을 때는 모두 안정적으로 적분 값을 계산하였으므로 합리적이라고 생각하였다.

Implementation 3 에서 Romberg 알고리즘을 몇 가지 step 을 이용해 빠르게 적분 값 log(a)을 계산하였고, 근사시 m 의 크기가 작아도 비교적 Newton-Cotes 에 비해 빠르게 합리적인 적분 값을 계산할 수 있다는 것을 알게되었다.

통계학에서 많은 경우 random variable X와 관심함수 h(X)에 대하여 기댓값을 계산하여 추정에 이용하는데, 이를 위한 접근 방법은 크게 수치적분과 MC Simulation 으로 나눌 수 있다. 위에서 확인하였듯 1 차원의 적분에서는 수치적분이 매우 정확하고 훌륭하나, 다차원의 적분에서는 Simulation을 이용한 기댓값의 추정이 효과적일 수 있다. Simulation을 위해서는 관심 분포로부터의 적절한 iid sample을 뽑는 것이 매우 중요한데, Implementation 4 와 5에서 Rejection Sampling을 이용해 실제 simulation으로 간단하게 random sample을 효과적으로 생성할 수 있음을 알게 되었다. 또한 버려지는 부분을 줄이고 acceptance rate을 높이기 위해서는 좋은 envelope를 설정하는 것이 중요함을 알게 되었다.

# [Appendix] R Code

#### # functions

}

```
# Riemann
  myrieman <- function(f, a, b, start=1, E=10^-8)
    niter = 0; maxiter = 100; error = 1
    # initial value
    R = (b-a)*f(a)
    k <- start
    while (error >= E & niter <= maxiter)
    \{ R_0 < -R \}
    n <- 2^k; h <- (b-a)/n
    i <- 0:(n-1)
    R \leftarrow h * sum( f(a+i*h) )
    error <- abs(R - R_0) / abs(R_0 + 10^-3)
    niter <- niter + 1
    k <- k + 1
    print(paste("error = ", error, " niter = ", niter, sep = ""))
    return(R)
  }
# Trapezoidal
  mytrapezoid <- function(f, a, b, start=1, E=10^-8)
    niter = 0; maxiter = 100; error = 1
    # initial value
    t = (b-a)*f(a)
    k <- start
    while (error >= E & niter <= maxiter)
    { t_0 <- t
    n \leftarrow 2^k; h \leftarrow (b-a)/n
    i <- 1:(n-1)
    t <- h/2*f(a) + h*sum( f(a+i*h) ) + h/2*f(b)
    error \leftarrow abs(t - t_0) / abs(t_0 + 10^-3)
    niter <- niter + 1
    k < -k + 1
    print(paste("error = ", error, " niter = ", niter, sep = ""))
    }
    return(t)
```

```
# Simpson
 mysimpson <- function(f, a, b, start=1, E=10^-8)
    niter = 0; maxiter = 100; error = 1
    # initial value
    S = (b-a)*f(a)
    k <- start
    while (error >= E & niter <= maxiter)
    { S_0 <- S
    n <- 2^k; h <- (b-a)/n
    i <- 1:(n/2)
    S <- (h/3) * sum( f(a+(2*i-2)*h) + 4*f(a+(2*i-1)*h) + f(a+(2*i)*h) )
    error <- abs(S - S_0) / abs(S_0 + 10^-3)
    niter <- niter + 1
    k < -k + 1
    print(paste("error = ", error, " niter = ", niter, sep = ""))
    return(S)
 }
```

## # 5.3 Bayesian Estimation

```
# prior : mu ~ Cauchy(5, 2)
# likelihood : xbar ~ N(mu, 3^2/7)
 data1 <- c(6.52, 8.32, 0.31, 2.82, 9.96, 0.14, 9.64)
# a) -----
 prop <- function(mu) {
    prior <- dcauchy(mu, 5, 2)
    likelihood <- dnorm(mean(data1), mu, 3/sqrt(7))
    return(prior*likelihood)
 }
# true
 k <- 1/integrate(prop, -Inf, Inf)$value; k
# numerical int.
 k1 <- 1/myrieman(prop, -100, 100) # system.time( for (i in 1:100) myrieman(prop, -100, 100) )
 k2 <- 1/mytrapezoid(prop, \ -100, \ 100) \ \# \ system.time( \ for \ (i \ in \ 1:100) \ mytrapezoid(prop, \ -100, \ 100) \ )
 k3 < -1/mysimpson(prop, -100, 100) \# system.time( for (i in 1:100) mysimpson(prop, -100, 100) )
 round(c(k1, k2, k3), 5)
# b) -----
 post <- function(mu) { prop(mu) * 7.84654 }</pre>
 b <- integrate(post, 2, 8)$value
 b1 <- myrieman(post, 2, 8, E = 0.0001) # system.time( for (i in 1:100) myrieman(post, 2, 8, E = 0.0001) )
 b2 <- mytrapezoid(post, 2, 8, E = 0.0001) # system.time( for (i in 1:100) mytrapezoid(post, 2, 8, E = 0.0001))
 b3 \leftarrow mysimpson(post, 2, 8, E = 0.0001) # system.time( for (i in 1:100) mysimpson(post, 2, 8, E = 0.0001) )
 round(c(b1, b2, b3), 5)
 b11 <- myrieman(post, 2, 8, E = 0.00001) # system.time( for (i in 1:100) myrieman(post, 2, 8, E = 0.00001) )
```



```
b21 \leftarrow mytrapezoid(post, 2, 8, E = 0.00001) # system.time( for (i in 1:100) mytrapezoid(post, 2, 8, E = 0.00001) )
  round(c(b11, b21), 5)
# c) -----
  u \leftarrow function(mu) \{ exp(mu) / (1 + exp(mu)) \}
  transf <- \ function(u) \ \{ \ post(log(u/(1-u))) \ * \ 1/(u*(1-u)) \ \}
  c1 <- myrieman(transf, u(3), 1-1e-08) # system.time( for (i in 1:100) myrieman(transf, u(3), 1-1e-08) )
  c2 <- mytrapezoid(transf, u(3), 1-1e-08) # system.time( for (i in 1:100) mytrapezoid(transf, u(3), 1-1e-08) )
  c3 <- \ mysimpson(transf,\ u(3),\ 1-1e-08)\ \#\ system.time(\ for\ (i\ in\ 1:100)\ mysimpson(transf,\ u(3),\ 1-1e-08)\ )
  round(c(c1, c2, c3), 5)
  integrate(transf, u(3), 1)
# d) -----
  u2 <- function(mu) { 1/mu }
  transf2 <- function(u) { post(1/u) * (-1/u^2) }
  d1 <- myrieman(transf2, u2(3), 0) # system.time( for (i in 1:100) myrieman(transf2, u2(3), 0) )
  d2 <- \ mytrapezoid(transf2, u2(3), 0+1e-08) \ \# \ system.time( \ for \ (i \ in \ 1:100) \ mytrapezoid(transf2, u2(3), 0+1e-08) )
  d3 <- \ mysimpson(transf2,\ u2(3),\ 0+1e-08)\ \#\ system.time(\ for\ (i\ in\ 1:100)\ mysimpson(transf2,\ u2(3),\ 0+1e-08)\ )
  round(c(d1, d2, d3), 5)
  integrate(transf2, u2(3), 0)
```

#### # 5.4 Romberg

```
myromberg <- function(f, a, b, k)
    { n <- 2^k ; h <- (b-a)/n
        i <- 1:(n-1)
        t <- h * ( f(a)/2 + ifelse(k==0, 0, sum(f(a+i*h))) + f(b)/2 )
        return(t)
}

a = 10
f <- function(x) { 1/x }

m = 6

result <- matrix(nrow = m+1, ncol = m+1)
for (i in 0:m) { result[i+1, 1] <- myromberg(f, (a-1)/a, a-1, i) }
for (i in 1:m) { for (j in 1:i) { result[i+1, j+1] <- (4^i*result[i+1, j] - result[i, j]) / (4^i - 1) } }
round(result, 8)</pre>
```

#### # 6.1 Gamma Derivates

```
 tfunc <- function(y, r) \ \{ \ a = r-1/3 \ ; \ b = 1/sqrt(9*a) \ ; \ t = a*(1+b*y)^3 \ ; \ return(t) \ \}   qfunc <- function(y, r) \ \{ \ a = r-1/3 \ ; \ q = exp(\ a*log(tfunc(y, r)/a) - tfunc(y, r) + a \ ) \ ; \ return(q) \ \}   efunc <- function(y) \ \{ \ exp(-y^2/2) \ \}   n = 10000 \ ; \ r = 1   set.seed(0) \ ; \ z <- rnorm(n) \ ; \ u <- runif(n)   x <- tfunc(z, r) \ ; \ u <- u[x > 0] \ ; \ z <- z[x > 0] \ ; \ x <- x[x > 0]   accept <- (u <= qfunc(z, r)/efunc(z)) \ ; \ sum(accept)/n   z.keep <- z[accept]   x.keep <- tfunc(z.keep, r)   set.seed(0) \ ; \ qq <- \ data.frame(x = sort(x.keep), \ qgamma = sort(rgamma(length(x.keep), r, 1)))   ggplot(qq) + theme_test() + theme(plot.title = element_text(hjust = 0.5), \ plot.subtitle = element_text(hjust = 0.5)) +   geom_smooth(aes(x, qgamma), method = "lm", size = 2, se = F, color = "pink") + geom_point(aes(x, qgamma), size = 1) +
```

```
labs(title = "Gamma Q-Q Plot", subtitle = paste("r = ", r, "; accentance rate = ", sum(accept)/n*100, "%", sep = ""))

gg <- data.frame(x, qx = qfunc(x, r), ex = efunc(x))

ggplot(filter(gg, x <= 5)) + theme_test() +

theme(plot.title = element_text(hjust = 0.5), plot.subtitle = element_text(hjust = 0.5)) +

geom_area(aes(x, ex), fill = "gray") + geom_area(aes(x, qx), fill = "white") +

geom_line(aes(x, ex), color = "gray") + geom_line(aes(x, qx), linetype = "dashed") +

labs(y = "density", title = "q(x) and e(x)")
```

#### # 6.2 Bayesian Sampling

```
data2 <- c(8, 3, 4, 3, 1, 7, 2, 6, 2, 7)
Lfunc <- function(lambda)
\{ lik = c() \}
       for (i in 1:length(lambda)) { lik[i] <- prod(dpois(data2, lambda[i])) }
       return(lik)
}
n = 10000
set.seed(0); I <- rInorm(n, log(4), 0.5); u <- runif(n)
accept <- (u <= Lfunc(I)/Lfunc(4.3)); sum(accept)/n
gg <- data.frame(l, prior = dlnorm(l, log(4), 0.5)) %>% mutate(envelope = prior*Lfunc(4.3)*10^11)
for (i in 1:nrow(gg)) { gg[i, "target"] = gg[i, "prior"]*Lfunc(gg[i, "l"])*10^11 }
ggplot(filter(gg, I <= 20)) +
       theme\_test() + theme(plot.title = element\_text(hjust = 0.5), plot.subtitle = element\_text(hjust = 0.5), legend.position = "") + theme_text(hjust = 0.5), legend.position = "") + theme
       geom_area(aes(l, envelope, fill = "envelope")) + geom_area(aes(l, target, fill = "target")) +
       geom_line(aes(l, envelope), size = 1) + geom_line(aes(l, target), size = 1, linetype = "dashed") +
       scale_fill_manual("", values = c(envelope = "gray", target = "white")) +
       labs(title = "posterior & envelope", x = "lambda", y = "density",
                              subtitle = paste("acceptance rate = ", sum(accept)/n*100, "%", sep = ""))
```