P - 59 - 2012

염산 및 질산의 탱크 저장에 관한 기술지침

2012. 7.

한국산업안전보건공단

안전보건기술지침의 개요

- O 작성자: 한국안전전문기관협의회 김기영
- O 개정자 : 한 우 섭
- O 제 · 개정 경과
 - 2011년 6월 화학안전분야 제정위원회 심의(제정)
 - 2012년 7월 총괄 제정위원회 심의(개정, 법규개정조항 반영)
- O 관련 규격 및 자료
 - HSG 235, "Bulk storage of acids Guidance on the storage of hydrochloric acid and nitric acid in tanks", 2003
- O 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자: 2012년 7월 18일

제 정 자: 한국산업안전보건공단 이사장

P - 59 - 2012

염산 및 질산의 탱크 저장에 관한 기술지침

1. 목적

이 지침은 사업장에서 염산 및 질산을 탱크에 저장·취급하는데 필요한 사항을 제공하는데 그 목적이 있다.

2. 적용범위

이 지침은 사업장에서 염산 및 질산을 탱크에 저장·취급하는 경우에 적용한다.

3. 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다
 - (가) "탱크"라 함은 상압탱크 및 압력용기를 말한다.
 - (나) "설비"라 함은 탱크, 배관, 계기류, 이송장치 등 염산 또는 질산을 저장·취급하는데 필요한 모든 것을 말한다.
 - (다) "UPVC (Unplasticized polyvinyl chloride)"라 함은 플라스틱화 되지 않은 폴리염 화비닐을 말한다.
 - (라) "PTFE"는 4불화 폴리에틸렌 (Polytetrafluroethylene)을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고 는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전보건기준에 관한 규칙」에서 정하는 바에 의한다.

4. 위험성 평가

4.1 위험요인

(1) 염산 및 질산의 저장·취급 시에는 작업장 내의 근로자뿐만 아니라 주위의 주민 및 주

P - 59 - 2012

위 환경에 커다란 위험을 줄 수 있다. 이러한 위험은 저장탱크, 이송배관 등에서 대량 의 누출로 야기된다. 이러한 사고를 일으키는 주원인은 다음과 같다.

- (가) 부식 측정 잘못 및 부식 방지시편의 교체 잘못
- (나) 운반차량 또는 다른 물체와의 충돌
- (다) 과 충전
- (라) 혼합금지 물질의 혼입
- (2) 소량으로 누출된 경우라도 사람이 누출된 염산 또는 질산의 액체에 접촉되거나 흄을 흡인하면 심각한 상해를 입을 수 있다. 사소한 사고라도 적절한 조치를 취하지 않으면 큰 사고로 진전될 수 있으므로 조심하여야 한다.
- (3) 그러므로 사업주는 근로자 및 저장·취급 업무를 수행하는 인력의 안전·보건을 확보하기 위하여 위험성 평가를 실시하여야 한다.
- (4) 위험성 평가 시에는 탱크 자체에 의한 위험 및 외부에서 탱크에 가해지는 위험도 포함되어야 한다.

4.2 위험성 평가의 목적

- (1) 누출 빈도의 최소화
- (2) 사고 시 근로자 와 주위 사람의 상해 및 주위 환경에 미치는 영향의 최소화
- (3) 비상대책 마련

4.3 위험성 평가단계

- (1) 1 단계 ; 위험의 인지
- (2) 2 단계 ; 누가 어느 정도의 상해를 입을지 결정
- (3) 3 단계 ; 손상의 크기 예측 및 현재의 안전조치의 적절성 검토 및 추가 대책의 필 요성 검토
- (4) 4 단계 ; 평가 결과의 기록 및 추가 대책이 필요한 경우 개선계획 수립 및 시행

P - 59 - 2012

(5) 5 단계 ; 주기적인 위험성 평가 결과 검토

4.4 위험성 평가 시 고려 인자

- (1) 저장용량
- (2) 설비의 설계 기준
- (3) 부지경계선, 도로, 주위 건물 및 공정 지역으로 부터의 탱크 위치
- (4) 근접지역의 활동성
- (5) 주위에서 사용하는 다른 위험물질 양 및 위치
- (6) 입·출 하역 방법
- (7) 탱크로 다른 물질의 인입 가능성
- (8) 근로자의 교육 및 감독
- (9) 설비의 유지·보수
- (10) 누출 시 영향을 받을 근로자 및 주위 사람 수 및 대피 능력

4.5 위험성 평가 시기

- (1) 신규설비 설치 시
- (2) 기존설비 변경 시
- (3) 기존설비 폐기 시

5. 설비의 설계 등

- 5.1 설비의 설치 장소
- 5.1.1 설치 장소 선정

P - 59 - 2012

- (1) 염산 및 질산 탱크 설치 시에는 다음과의 이격거리를 고려하여야 한다.
 - (가) 부지 경계선
 - (나) 도로 및 주요간선도로
 - (다) 거주 건물
 - (라) 강 알카리 및 산화제 등과 같은 혼용해서는 아니 되는 위험물질의 저장·취급 설비
 - (마) 수로 및 지하수 시추공
- (2) 탱크는 워칙적으로 1층에 설치한다.
- (3) 탱크 주위에는 유지·보수를 위하여 접근 통로가 있어야 하며 충분한 공간이 확보되어야 한다.

5.1.2 확산 방지 턱

- (1) 누출 시에 확산을 방지하기 위하여 확산 방지 턱을 설치한다.
- (2) 확산 방지 턱의 설치 목적은 다음과 같다.
 - (가) 배수로 등으로 액체 염산 및 질산의 유입 방지
 - (나) 사업장과 주위의 설비 및 사람에게 유해·위험을 줄 수 있는 액체 염산 및 질산의 확산 방지
 - (다) 부지의 오염 방지
 - (라) 누출된 액체의 포집·처리
- (3) 확산 방지 턱 및 바닥의 재질은 취급하는 물질에 대한 내식성이 있는 것이어야 한다.
- (4) 같은 확산 방지 턱 내부에는 저장하는 염산 및 질산과 반응하거나 서로 접촉하여서 는 아니 되는 물질을 저장·취급하는 설비를 설치하여서는 아니 된다.

5.2 설비의 사용재질

5.2.1 공통사항

P - 59 - 2012

- (1) 염산 및 질산은 부식성이 매우 높은 물질이므로 액체 상태 또는 흄 상태의 염산 및 질산과 접촉하는 설비 등의 재질은 내식성이 있는 재질을 사용하여야 한다.
- (2) 재질 선정에 영향을 주는 인자는 다음과 같다.
 - (가) 역산 및 질산의 물리·화학적 특성
 - (나) 염산 및 질산의 농도
 - (다) 역산 및 질산의 밀도
 - (라) 이물질의 존재 여부
 - (마) 취급·저장 온도
- (3) 부식이 심한 경우에는 적당한 코팅을 하여 설비를 제작·설치할 수 있다.

5.2.2 염산 저장 및 취급 설비

- (1) 염산은 스테인리스 스틸을 포한한 대부분위 금속에 대하여 부식성이 높으므로, 플라스틱, 내산고무, 유리 및 세라믹 재질을 사용하거나 금속에 이러한 재질을 라이닝하여 사용한다.
- (2) 염산 저장·취급 설비에는 다음과 같은 재질을 주로 사용한다.
 - (가) 수지를 함침시킨 화이버글라스로 강화시킨 UPVC
 - (나) 고밀도 폴리에틸렌(High density polyethylene)
 - (다) 수지를 함침시킨 화이버글라스로 내부를 강화시킨 폴리프로필렌
 - (라) 적절한 고무로 라이닝한 탄소강
 - * 참고 ; 1. 플라스틱이 화학적 저항성이 뛰어나다 하더라도, 플라스틱은 물리적인 제한이 따른다. 예를 들면, 플라스틱은 압력에 약하며 또한, 열, 태양 광선, 저온 등에 영향을 받아 쉽게 깨지거나 손상을 입는다.
 - 2. 유리 재질도 염산에 호환성이 있으나 큰 탱크에는 잘 사용하지 않는다. 유리는 설비 내부를 라이닝 하는데 사용한다.

5.2.3 질산 저장 및 취급 설비

P - 59 - 2012

- (1) 92 wt% 이상 농도의 질산 설비에는 다음의 재질을 주로 사용한다.
 - (가) 상용 등급의 알루미늄
 - (나) 구리가 포함되지 않은 알루미늄 합금
 - (다) 스테인리스 스틸 304L(STS 304L)
- (2) 60~70 wt% 농도의 질산 설비에는 다음 재질을 주로 사용한다.
 - (가) 스테인리스 스틸 304L, 316L 및 321(STS 304L, 316L 및 321)
 - (나) 글라스 화이버와 폴리에스터 수지로 강화시킨 UPVC
 - * 참고; 1. 각 등급의 오스티나이트계 스테인리스 스틸도 질산의 농도, 온도 및 불순물 등에 따라 내부식성이 다르다(염소와 구리염(Cupper salts)에는 특히 약하다).
 - 2. 알루미늄은 92% 이상의 질산에는 내부식성이 좋으나, 저농도에서는 적합하지 않다.
 - 3. 유리 및 PTFE는 질산에 호환성이 좋으나 큰 탱크에는 사용하지 않고 주 로 라이닝 재질로 사용한다.

5.3 설비의 설계 및 설치

5.3.1 탱크 설계

- (1) 탱크 설계 시 고려하여야 할 사항은 다음과 같다
 - (가) 염산 및 질산의 밀도
 - (나) 용량
 - (다) 사용재질
 - (라) 염산 및 질산의 이송 방법
- (2) 내용물의 이송 방법에는 다음과 같은 방법이 있다.

P - 59 - 2012

- (가) 펌프를 이용한 이송
- (나) 증기 회수식 펌프 이송
- (다) 압축공기에 의한 이송(이 경우 설계압력은 게이지 압으로 210 Pa(30 psig) 이상으로 한다.)
- (3) 탱크는 기계적인 완벽성을 확보하기 위하여 다음 기준과 동등 이상의 국내·외 기준 에 따라 제작·설치하여야 한다.

(가) 상압탱크

- ① 한국산업표준 KS B 6283 "액체저장탱크의 내풍압 및 내진에 대한 설계요건"
- ② KOSHA GUIDE 안전보건기술지침의 "저장탱크의 형식선정에 관한 기술지침"

(나) 압력용기

- ① 한국산업표준 KS B 6750 "압력용기 설계 및 제조 일반"
- ② 한국산업표준 KS B 6750-3 "일반 산업용 압력용기"

5.3.2 통기설비

- (1) 상압탱크에는 통기설비를 설치하여야 한다.
- (2) 통기설비의 크기는 탱크에서 산을 입·출하 시에 탱크 내부에 진공 및 과압이 걸리지 않도록 충분한 것이어야 한다.
- (3) 통기설비의 크기는 KOSHA GUIDE의 "통기설비 설치에 관한 기술지침"에 정하는 것 이상이어야 한다.

5.3.3 오버플로우(Overflow)

- (1) 상압탱크에는 통기설비와 별도로 오버플로우를 설치하여야 한다.
- (2) 오버플로우는 탱크에 과충전 되었을 때 탱크 내부에 압력이 축적(Built up)되지 않도록 충분한 크기의 것이어야 한다.
- (3) 오버플로우의 크기는 탱크로 인입되는 배관의 크기와 같거나 커야하며 최소한 100 mm(NPS 4) 이상이어야 한다.
- (4) 오버플로우는 탱크의 바닥 높이까지 내려와야 한다.

P - 59 - 2012

5.3.4 흄 제거설비(Fume scrubber)

- (1) 대량 저장탱크의 통기설비는 흄의 대기 방출을 방지하기 위하여 흄 제거설비에 연결하여야 한다.
- (2) 흄 제거설비는 활성탄 고정층 또는 물, 가성소다 수용액, 약산 수용액 등의 흡수액을 사용한 흡수설비 등을 주로 사용한다.

5.3.5 배관

- (1) 액체이송배관은 8항에 기술된 취급하는 염산 및 질산에 적합한 재질로 설치하여야 한다.
- (2) 배관 고정용 클램프 및 지지대는 부식 환경을 고려하여 적합한 재질을 선정하여 설치하여야 한다.
- (3) 배관은 용접 또는 플랜지로 연결하여야 한다. 이 경우에도 플랜지 볼트, 가스킷 및 패킹 재질은 취급하는 산에 대하여 내부식성 재질이어야 한다.
- (4) 염산 취급 배관에 사용하는 가스킷은 뷰틸 고무(Butyl rubber) 재질을 주로 사용하며, 질산 취급 배관에 사용하는 가스킷은 PTFE 재질을 주로 사용한다.
- (5) 배관은 이송 차량 등에 의하여 충격을 받지 않도록 보호되어야 한다.

5.3.6 밸브

- (1) 밸브의 재질은 취급하는 산에 대하여 내 부식성이 있는 재질이어야 한다.
- (2) 탱크의 하단에 설치된 인출 배관에는 긴급차단밸브의 설치를 고려하여야 한다. 이 경우 기급차단밸브의 설치 위치는 가능한 한 탱크에 가깝게 설치한다.
- (3) 완전 차단이 필요한 경우에는 플러그 밸브(Plug valve)를 사용한다.
- (4) 주 인출 배관 및 드레인 배관에는 다이아프람 밸브(Diaphragm valve)는 사용하지 않는다.
- (5) 밸브는 운전자가 접근하기 쉬운 장소에 설치한다.
- (6) 밸브에는 밸브의 개·폐 표지를 붙인다.

5.3.7 펌프

P - 59 - 2012

- (1) 염산 및 질산과 같은 부식성 유체를 이송하는 펌프에서의 누출은 안전 및 환경에 심각한 영향을 줄 수 있다.
- (2) 펌프의 재질은 취급하는 염산 및 질산에 내식성이 있는 재질이어야 한다.
- (3) 주로 PTFE가 라이닝된 주철제(Cast iron) 펌프 및 씰이 없는(Sealess) 마그네틱 펌 프를 주로 사용한다.

5.3.8 계기

- (1) 저장 탱크에는 적절한 액위를 측정할 수 있는 계기가 설치되어야 한다.
- (2) 압력식 액위계, 마그네틱 부유식 액위계(Magnetically coupled float gauge) 및 초음 파 굴절형 송신기(Ultrasonic reflection transmitter) 등이 주로 쓰인다.
- (3) 상압 탱크에는 다이아프람 액위계도 많이 사용한다.
- (4) 압력용기에는 차압식 전송기(Differential pressure transmitter)를 사용하여야 한다.
- (5) 사이트 글라스(Sight glass)는 사용하지 않는다.
- (6) 저장 탱크에 높은 액위 경보시스템(High level alarm)을 설치하여 탱크로리 차량운전 자에게 경보할 수 있도록 하여야 한다. 또한 이 경보시스템에 탱크로리 하역 펌프와 연동하여 과충전을 방지하여야 한다.

6. 표지 및 개인 보호구

6.1 표지 및 라벨링

- (1) 취급하는 염산 및 질산에 의한 유해·위험을 방지하기 위하여 저장 탱크, 배관, 시료채취장소(Sampling point), 연결부위 및 밸브 등에는 표지 및 라벨링을 하여야 한다.
- (2) 표지 및 라벨링은 고용노동부 고시 제2009-68호 "화학물질의 분류·표시 및 물질안전 보건자료에 관한 기준"에 따른다.

6.2 표지개인보호구 등

(1) 염산 및 질산 취급 작업자 및 유지·보수 작업자는 물질안전보건자료에서 정하는 개

P - 59 - 2012

인보호구를 작업 시에는 항상 착용하여야 한다.

- (2) 개인보호구를 착용하는 작업자는 개인보호구 사용방법에 대하여 주기적으로 교육을 받아야 한다.
- (3) 설비의 주위에는 아이 샤워를 설치하여야 한다.

7. 설비의 유지보수 및 교육 훈련

7.1 설비의 유지 및 보수

- (1) 모든 설비는 설비 운전, 유지·보수 이력 및 부식속도 등에 기반한 위험성 평가에 기 초하여 유지·보수 방법 및 주기 등을 결정하여야 한다.
- (2) 유지·보수는 기능이 인정된 인력에 의하여 실시한다.
- (3) 신규 설비는 사용하기 전에 관련 기준에 따라 압력시험을 실시하여야 한다.
- (4) 설비를 시운전하기 전에 설비의 내부를 청소하고 드레인 시킨 후 건조하여야 한다.
- (5) 염산 및 질산 설비의 유지·보수는 위험이 따르는 작업이므로 유지·보수 작업 시작 전에 내용물을 드레인한 후, 물로 세정하여야 한다.
- (6) 유지·보수 작업에 참여하는 모든 작업자는 적절한 개인 보호구를 착용하여야 한다.
- (7) 염산 및 질산 자체는 인화성 액체가 아니지만 금속과 접촉하면 수소 가스를 발생시 키므로 유지·보수 작업 시작 전에 설비 내부의 가연성 가스 농도를 측정하여야 한다.

7.2 교육 및 훈련

- (1) 염산 및 질산을 취급하는 사업장에 근무하는 근로자 및 작업자는 염산 및 질산에 대한 위험에 대하여 교육을 받아야 한다.
- (2) 설비 운전자는 정상운전절차 및 비상조치절차에 대한 정기적인 교육·훈련을 받아야 한다.
- (3) 정기적인 훈련 및 교육에는 다음 사항이 포함되어야 한다.
 - (가) 액체로 취급하는 염산 및 질산의 위험성 및 물질의 특성

P - 59 - 2012

- (나) 설비의 안전운전절차
- (다) 개인 보호구의 사용 방법
- (라) 설비 결함 발견 시의 대응 방법
- (마) 사소한 누출시의 대책
- (바) 예방정비의 중요성
- (사) 비상대응절차 등

8. 비상조치

8.1 공통 사항

- (1) 염산 및 질산 누출에 대비한 비상조치계획을 작성·비치하여야 한다.
- (2) 비상조치계획에는 모든 관리자의 임무와 다음에 관한 사항이 포함되어야 한다.
 - (가) 경보의 발령
 - (나) 대피로 및 대피 방법
 - (다) 비상대응기관에 연락 방법
 - (라) 응급처치 방법
 - (마) 설비의 격리 절차
 - (바) 주요 밸브의 위치 및 작동 방법
 - (사) 대량 누출 시 주위 시설로 확산 방지대책 등
- (3) 기타 비상조치계획에 필요한 사항은 KOSHA GUIDE의 "비상조치계획 수립지침"을 참조한다.
- (4) 비상조치 방법은 누출된 염산 및 질산의 양, 농도 및 누출 장소에 따라 결정하여야 한다.
- (5) 모든 비상조치에 참여하는 인력은 자급식 공기호흡기 및 전신 보호의 등을 착용하여

P - 59 - 2012

야 한다.

8.2 염산 취급 시

- (1) 염산은 산화제와 접촉하면 독성의 염소 가스를 생성한다.
- (2) 물을 이용하여 염산이 누출된 주위를 청소할 때에는 세심한 주의를 하여야 한다. 왜 냐하면 물과 농염산은 점도 차이가 커서 잘 석이지 않기 때문이다.
- (3) 염산 청소액과 접촉하지 않도록 하여야 한다.

8.3 질산 취급 시

- (1) 고농도 질산은 강한 산화제로 가연성 물질과 접촉하면 화재를 일으키므로, 가연성 물질은 비상조치 시에 사용하여서는 안 된다.
- (2) 고농도 질산에 접촉한 나무 및 섬유 등은 화재가 발생하지 않도록 조치 및 처리하여 야 한다.

KOSHA GUIDE P - 59 - 2012

<붙임 1>

염산 및 질산의 물성

구 분	염 산	질 산
명 칭	염산(Hydrochloric acid) 간혹, 염화수소의 산(Muriatic acid)	질산(Nitric acid)
화학식	HCl	HNO ₃
CAS No.	7647-01-0	7697-37-2
분자량	36	63
통상공급농도	28 ~ 36%	60 ~ 70%
성 상	무수염산은 강한 자극성 냄새가 남	무색, 노란색 및 붉은색의 액체로 강한 자극성 냄새가 남
녹는점/어는점	-115 ℃(무수염산 기준)	-41.6 ℃(무수질산 기준)
끓는점	-85 ℃(무수염산 기준)	121 ℃(무수질산 기준)
인체유해성	증기 또는 흄을 흡입하거나, 피부에 접촉하거나 또는 눈에 들어가면 심각한 손상을 입을 수 있음	증기 또는 흄을 흡입하거나, 피부에 접촉하거나 또는 눈에 들어가면 심각한 손상을 입을 수 있음
금속 부식성	철 또는 납 등의 일반적인 금속에 대하여 부식성이 높으며 접촉시 수소 가스를 발생함	일반적인 금속에 대하여 부식성이 높으며 접촉시 수소 가스를 발생함
반응성	과망간산염(Permanganate), 염소산염(Chlorate), 아염소산염(Chlorite), 차아염소산염(Hypochlorite) 등과 같은 산화제와 접촉하면 반응을 일으키며 염소가스를 발생시킴	알카리, 금속 및 유기물과 반응하여 지산염 또는 니트로 화합물을 생성하며 금속 파우더, 카바이트, 염소 등과 격렬히 반응함
기 타	_	강한 산화제이며, 지푸라기, 코크스, 차콜, 종이, 톱밥 및 천조각 등과 같은 가연성 물질과 접촉하면 심각한 화재를 일으킴