Fundamentals of Computer Systems Memory

Harris and Harris Chapter 5.5-5.6 **Memory Architecture**

Memory Cell Technologies

Programmable Logic Devices

Memory Architecture

Memory Interface

Data stored in word units

A word is several bytes (powers of two are typical) write operations store data to memory read operations retrieve data from memory

Conceptual View of Memory

Memory is an array of cells.

Each cell stores a single bit.

Cell Behavior

Implementation of cell depends on type of memory.

Generic Memory Array Architecture

Generic Memory Array Architecture

Address is decoded into set of wordlines.

Wordlines select row to be read/written.

Only one wordline=1 at a time.

Generic Memory Array Architecture

Multiple cells read in parallel, setting values of multiple bitlines.

Coincident Selection Saves Decode Logic

Memory Cell Technologies

Static Random-Access Memory Cell (SRAM)

Dynamic RAM Cell

CMOS Mask-Programmed ROMs

EPROMs and FLASH use Floating-Gate MOSFETs

Volatile Storage Comparisons

	Flip-Flop	SRAM	DRAM
Transistors/Bit	Approx. 20	6	1
Density	Low	Medium	High
Access Time	Fast	Medium	Slow
Destructive Read?	No	No	Yes ¹
Power	High	Medium	Low

¹Therefore refresh required

Programmable Logic Devices

Atari Space Race, 1973

Atari Space Race PCB

Front

Back (mirrored)

The decoder or "AND plane"

In a RAM or ROM, computes every minterm

Pattern is not programmable

The contents or "OR plane"

One term for every output

Pattern is programmable = the contents of the ROM

Can we do better?

Simplifying the Space Race ROM (D_0 - D_7)

$$D_0 = 32\overline{1}0$$

$$D_0 = 32\overline{1}0$$
$$D_1 = 32\overline{1}$$

$$D_0 = 32\overline{1}0$$
 $D_1 = 32\overline{1}$
 $D_2 = 3\overline{2}10 + 32\overline{1}0$

$$D_0 = 32\overline{1}0$$

$$D_1 = 32\overline{1}$$

$$D_2 = 3\overline{2}10 + 32\overline{1}0$$

$$D_3 = \overline{3}2\overline{1}0 + 31\overline{0} + 32\overline{1}0 + 32\overline{1}0$$

$$D_0 = 32\overline{1}0$$

$$D_1 = 32\overline{1}$$

$$D_2 = 3\overline{2}10 + 32\overline{1}0$$

$$D_3 = \overline{3}2\overline{1}\overline{0} + 31\overline{0} + 32\overline{1}0 + 32\overline{1}0$$

$$D_0 = 32\overline{1}0$$

$$D_1 = 32\overline{1}$$

$$D_2 = 3\overline{2}10 + 32\overline{1}0$$

$$D_3 = \overline{3}2\overline{1}0 + 31\overline{0} + 32\overline{1}0 + 32\overline{1}0$$

$$D_4 = \overline{3}\overline{2}10 + \overline{3}2\overline{1}0 + 32\overline{1}0 + 3\overline{2}\overline{1}0 + 32\overline{1}0$$

$$D_5 = \overline{3}1\overline{0} + 20 + 21 + 3\overline{1}0$$

 $\overline{3}2\overline{1}\overline{0} + 3\overline{2}\overline{1}\overline{0}$

$$D_0 = 32\overline{1}0$$

$$D_1 = 32\overline{1}$$

$$D_2=3\overline{2}10+32\overline{1}0$$

$$D_3 = \overline{3}2\overline{1}\,\overline{0} + 31\overline{0} + \\ 32\overline{1}0 + 3210$$

$$D_4 = \overline{3}\,\overline{2}10 + \overline{3}2\overline{1}\,\overline{0} + \\ 3\overline{2}\,\overline{1}0 + 3210$$

$$D_5 = \overline{3}1\overline{0} + 20 + 21 + \\ \overline{3}2\overline{1}\overline{0} + 3\overline{2}\overline{1}\overline{0}$$

$$D_6 = \overline{3}\,\overline{2}\,\overline{1}0 + 32\overline{1}0$$

$$D_0 = 32\overline{10}$$

$$D_1 = 32\overline{1}$$

$$D_2 = 3\overline{210} + 32\overline{10}$$

$$D_3 = \overline{3210} + 31\overline{0} + 32\overline{10} + 32\overline{10}$$

$$D_5 = \overline{310} + 20 + 21 + \overline{3210} + 32\overline{10}$$

$$D_6 = \overline{3210} + 32\overline{10}$$

$$D_7 = \overline{3210} + 32\overline{10}$$
Saved two ANDs

Field-Programmable Gate Arrays (FPGAs)

