Terna Engineering College Computer Engineering Department

Program: Sem VII

Course: Artificial Intelligence & Soft Computing (AI&SC)

Experiment No. 05

PART B

(PART B: TO BE COMPLETED BY STUDENTS)

(Students must submit the soft copy as per the following segments within two hours of the practical. The soft copy must be uploaded on the Blackboard or emailed to the concerned lab in charge faculties at the end of the practical in case there is no Blackboard access available)

Roll No. 50	Name: AMEY THAKUR
Class: BE-COMPS-50	Batch: B3
Date of Experiment: 24-08-2021	Date of Submission: 24-08-2021
Grade:	

Aim: Identify the Classification problem and create a Knowledge database for that problem and apply appropriate search methods for optimization.

B.1 Software Code written by student:

(Paste your Problem Statement for Classification and Data set Used as a knowledge Database for Given Classification Problem)

Problem Statement

To categorise the flower dataset in order to determine if it is in stock or not, using a combination of classifiers, evaluators, and search algorithms to improve accuracy and compare findings.

B.2 Input and Output:

(Paste your screenshot of Analysis of Data, Relevant Attributes Selection by using at least Three methods)

Flowers.arff

@relation Flowers

@attribute Type {Lilies, Orchids, Roses, Tulips}

@attribute Color {Red,Yellow,Blue}

@attribute Feature {Fresh,Luster,Vibrance,Strong}

@attribute InStock {Yes,No}

@data

Lilies	Red	Fresh	Yes
Orchids	Blue Luster		Yes
Orchids	Yellow Fresh		Yes
Tulips	Red	Strong	No
Lilies	Yellow	Vibrance	Yes
Tulips	Red	Fresh	No
Roses	Yellow	Strong	No
Roses	Blue	Luster	Yes
Lilies	Blue	Strong	Yes
Orchids	Red	Vibrance	Yes
Roses	Yellow	Fresh	Yes
Tulips	Red	Luster	No
Tulips	Yellow	Strong	No
Roses	Blue Vibrance		Yes
Orchids	Blue	Luster	Yes
Orchids	Red	Strong	No
Lilies	Blue	Fresh	Yes
Tulips	Yellow	Vibrance	No
Roses	Red	Luster	Yes
Roses	Yellow	Strong	No
Lilies	Red	Vibrance	Yes
Orchids	Blue	Fresh	Yes
Lilies	Red	Fresh	Yes

Tulips	Yellow Vibrance		No
Roses	Blue Luster		Yes
Roses	Red Strong		No
Lilies	Red Luster		Yes
Orchids	Yellow	Fresh	Yes
Tulips	Red	Luster	No
Roses	Blue	Fresh	Yes
Lilies	Blue	Fresh	Yes
Lilies	Red	Strong	No
Orchids	Red	Fresh	Yes
Tulips	Yellow Vibrance		No
Orchids	Blue	Luster	Yes
Tulips	Yellow	Strong	No
Lilies	Red	Vibrance	Yes
Tulips	Red	Luster	No
Roses	Blue	Strong	No
Orchids	Blue	Vibrance	Yes
Orchids	Red	Vibrance	Yes
Roses	Yellow	Fresh	Yes
Tulips	Blue	Luster	No
Lilies	Yellow	Strong	No
Roses	Red	Vibrance	Yes
Orchids	Blue	Luster	Yes
- P			
Tulips	Red	Fresh	No
Lilies	Red Blue	Fresh Strong	No No

Orchids Red Luster Yes

Weka

B.3 Observations and learning: (Performance Evaluation)

(Students are expected to comment on the output obtained with clear observations getting from Performance Evaluation after analyzing the data and learning for each task assigned)

CLASSIFIER	EVALUATOR	SEARCH METHOD	ACCURACY
J48	CFS Subset	Best First	88%
J48	Wrapper Subset	Best First	58%
J48	Wrapper Subset	Greedy Stepwise	58%
J48	Classifier Attribute	Ranker	88%
Naive Bayes	CFS Subset	Best First	94%
Naive Bayes	Wrapper Subset	Greedy Stepwise	58%
Naive Bayes	Classifier Attribute	Ranker	94%
ZeroR	CFS Subset	Best First	58%
ZeroR	Wrapper Subset	Best First	58%
ZeroR	Classifier Attribute	Ranker	58%
KStar	CFS Subset	Best First	92%
KStar	Wrapper Subset	Greedy Stepwise	58%
KStar	Classifier Attribute	Ranker	88%
Random Forest	CFS Subset	Best First	94%
Random Forest	Wrapper Subset	Best First	58%
Random Forest	Classifier Attribute	Ranker	94%

We can deduce the following from the given comparison:

- → The least accurate classifier is the ZeroR, which is useful for defining a baseline performance as a standard for other classification algorithms.
- → Greedy Stepwise Search has a lower accuracy than Best First and Ranker Search Algorithms.
- → The Classifier Attribute and the CFS Subset Evaluator decide the most accuracy, while the Wrapper Subset Evaluator is accountable for the least accuracy.

B.4 Conclusion:

(Students must write the conclusion as per the attainment of individual outcome listed above and learning/observation noted in section B.3)

As a result, we were able to successfully incorporate a variety of problem-solving techniques while also optimising the accuracy for the provided dataset.

B.5 Question of Curiosity

(To be answered by student based on the practical performed and learning/observations)

Q1) What are the different methods for Relevant Attribute Selection?

Ans:

In the data mining process, Relevant Attribute Selection is a strategy for data minimization. Data reduction decreases the size of data so that it can be used more efficiently for analysis.

Attribute Subset Selection Methods

- 1. Stepwise Forward Selection
- 2. Stepwise Backward Elimination
- 3. Combination of Forward Selection and Backward Elimination
- 4. Decision Tree Induction

Q2) Explain Performance Evaluation Parameters for Classification Problem.

Ans:

1. Confusion Matrix

The counts of test records successfully and erroneously predicted by the model are used to evaluate the performance of a classification model. The confusion matrix offers a more detailed view of not just a predictive model's performance, but also which classes are being forecasted correctly and erroneously, as well as the kind of errors that are being produced.

Accuracy:
$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$
 Recall:
$$Recall = \frac{TP}{TP + FN}$$
Precision:
$$F_1 \text{ score:}$$

$$F_1 = \frac{2}{\frac{1}{Recall} + \frac{1}{Precision}}$$

2. Combining Precision and Recall — F1 Score

We aim to maximise either recall or accuracy at the expense of the other measure in the three examples above. For example, we would like to reduce FN to improve recall in the case of a good or bad loan categorization. However, in instances when we wish to discover the best balance of accuracy and recall, we may use the F1 score to combine the two measures.

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

3. Decision Threshold & Receiver Operating Characteristic (ROC) curve

The ROC plot is a popular method of displaying the performance of a classification model. It describes the trade-off between the true positive rate (tpr) and the false positive rate (fpr) for different probability thresholds in a prediction model.

$$true\ positive\ rate = \frac{true\ positives}{true\ positives + false\ negatives} \qquad false\ positive\ rate = \frac{false\ positives}{false\ positives + true\ negatives}$$