● PRINTER RUSH ● (PTO ASSISTANCE)

Application: 09/042397 Examiner: Vacturian, H GAU: 2634						
From:	fyc	Location:	TOO FMF FDC	Date:	4/27/05	
	₀ 994 ⁴²	Tracking #: <u></u>	06086264	Week Date:	3/14/65	
,	DOC CODE 1449 IDS IIFW SRFW DRW OATH 312 SPEC	6/29/200	MISCELL Continuing Foreign Price Document I Fees Other	Data ority		
[RUSH] MESSAGE: Original claim 3 does not end with a period. Please hespive.						
				Thanh So	fou	
[XRUSH] RESPONSE:						
Janu						
				FAITON	14162	

NOTE: This form will be included as part of the official USPTO record, with the Response document coded as XRUSH.

REV 10/04

2	for generating a frequency and phase corrected output signal in response to said digital receiver
3/18	receiving said updated estimated frequency error estimate and said updated estimated phase error
2/1/0	estimate.
1	
1	4. The frequency and phase synchronizer system of claim 1 wherein said unknown frequency
2	offset value is determined by:
3	
4	generating a first product by multiplying said first sequence of even numbered samples by a first
5	parameter;
6	\cdot
7 2	generating a first complex exponential value by applying a first discrete time voltage controlled
758 84 100	oscillator to said frequency error estimate;
9 <u>.</u>	
100	generating a second product by multiplying said first product and said first complex exponential
11 11	value;
120	
12g 13g 14g	generating a third product by multiplying said second sequence of odd numbered samples by a
14]	second parameter;
15	
16	generating a second complex exponential value by applying a second discrete time voltage
17	controlled oscillator to said frequency error estimate;
18	
19	generating a fourth product by multiplying said third product and said second complex
20	exponential value;
21	
22	generating a sequence of first sum signals SUM11 by adding said second and fourth products,
23	where l is an index and $1 \le l \le N$ and N is a positive integer;