	PAGE NO. :
3	DATE:
ASSIGNMEN.	
RECTURENCE RE	
· I(n) = > 0(1)	if n=1
2 T(1/2+17)	+ n Otherwise
Answer:	
$T(n) = 2T(n_2+17)$	+ n
We ignore 17 as i	
T(n) = 2T(n/2)) + 0
From Master's Theo	
$T(n) = \alpha T(n/b)$	
Here $a=2$, $b=2$, $\therefore n^{\log_b a} = n^{\log_b a}$	922
= n	
1-tence, 1(n) = 0(n (logba)
D = O((n)
". We can write	T(n)= O (nlogue (gn)
	= O(nlgn)
Ancwer: T(n) = 01	
	1

PAGE NO. : 2	
$\Omega = 1$	
therwise	
tree approach	
<u> </u>	
Cost of Expansion	
4	
1	
•	

Now,
$$n \geq n = 2R$$

 $\therefore R = \log_2 n$

T/11/2

We use recursion

to solve this problem.

10swers:

height of

the tree

The total time complexity for expanding the tree is the sum of the costs for expansion at each step.

$$\frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}$$

$$= \sum_{i=1}^{\log_2 n} 1 = \log_2 n$$

DATE :
• $T(n) = \{0(1) i n=1 \}$
Ascussos 27(n/2) + n/logn Otherwise
Answer:
We use the recursion tree approach
to solve this problem
$T(n) = 2T(n/2) + \frac{n}{\log n}$
(ost of Expansion
$\eta/\log \eta \rightarrow \eta/\log \eta$
$\frac{n/2}{(0.00)^2} \frac{n/2}{(0.00)^2} \rightarrow \frac{n/(0.00)^2}{(0.00)^2}$
1097/2 1097/2
0/4 0/4 0/4 > D/10004
1097/4 Rogn/4 Rogn/4 Rogn/4
i n/ok
$\frac{1}{\sqrt{2}} \rightarrow \frac{1}{\log \sqrt{2}} $
log 11/2 R
Now, as we know that the recorsion
stops at 1, 1/2k = 1.
$\Rightarrow n = 2^{k}$ $-k = \log_{2}n$
R = 10929
(\L

:. T(n) = (09n + 2090/2 + --. = n/logn + logn/2+ - n (log2k+log2k-1++1) + = n (+ + + · · · + 1) = nlog (logn) +1) = C(nloglogn) Caloglogn) Answer: We use the recorsion tree approach to solve this problem $\frac{1}{(n)} = \frac{1}{(n+3)} + \frac{1}{(n+3)} + n$ P. T. O.

Cost of Expansion
$n/3$ $2n/3$ \longrightarrow n
n/q $2n/q$ $2n/q$ $4n/q$ $\longrightarrow 1$
$\frac{280}{28} \rightarrow 0$
3
Now, as we know the recursion
stops at 1 2^{R} n = 1 \Rightarrow $k = loop n$

	PAGE NO. : 9
7	DATE:
$T(n) = \begin{cases} 1 & \text{if } 1 \end{cases}$	1=1
) + n otherwise
Answer:	
We use the reconsion	tree approach
to solve the problem. T(n) = T(n/6) + T(n/6)	20/2) L O
((1) - ((115) + 1)	•
	Cost of Expansion
n/5 2n/3 -	
	15
20/ 20/ 20/	2 132
n/25 27/15 21/15 21/19	$q \rightarrow \frac{1}{152} \cap$
	128
· 28	$n \rightarrow \frac{13}{168}n$
3 K	
As we know that the	e recursion stops
As we know that the at 1, $\frac{2^{k}}{3^{k}} n = 1 \implies k$	= loa, n
38	03/2
$(.7(n) = n + \frac{13n}{15} + \frac{13^2}{152}n$	+ · · · + 13k
111 15 (621)	15 0
$\int_{-\infty}^{\infty} \frac{130}{15} + \frac{13^{2}}{15^{2}} = \int_{-\infty}^{\infty} \frac{1 + \frac{13}{15}}{15^{2}} + \frac{13^{2}}{15^{2}}$	+ + 13k
(1)	R+1
$= n \left(\frac{1}{15}, \frac{1}{15}, \frac{1}{15} \right)$)
1-13	

PAGE NO. 12	fre cor 21.00
DATE :	

PAGE NO : 12
i. We can write
A(R) = A(R/2) + 1
We know from Page 2., that the
solution of this reconnence relation is
$A(k) = O(\log k)$
Now, $n=2^{k}$ and $A(k)=\frac{n}{2k}$
T(2k) Q(0,000)
2R = O (loglogn)
α $T(\alpha)$ α α
or, $\frac{1(n)}{n} = O(\log \log n)$
(T(n) = O(nloalnan)
Answer: T(n) = O(nloglogn)