

Übung 02: RISC-V Assembly

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

24. Oktober 2025

Keine Garantie für die Richtigkeit der Tutorfolien. Bei Unklarheiten/Unstimmigkeiten haben VL/ZÜ-Folien recht!

Abstraktionsebenen

- Code in einer Hochsprache (C, Java¹, ...) ist lediglich eine Abstraktion
- Compiler: Hochsprache → Assemblercode
- Assembler: Assemblercode → Maschinencode (1:1 Übersetzung)
- Maschinencode ist plattformspezifisch!
- ISA: "Bedienungsanleitung" einer CPU

¹ im Regelfall zu Bytecode kompiliert

RISC vs. CISC

Reduced Instruction Set Computer

- beschränkte Menge an Instruktionen
- einfache Implementierung, schnelle Dekodierung
- komplexere Operationen benötigen mehrere Instruktionen

Beispiel: RISC-V

Complex Instruction Set Computer

- mächtiges Instruktionsset
- komplexe Implementierung, Realisierung als Mikrocode, langsame Dekodierung
- dedizierte Instruktion für beinahe jede Operation²

Beispiel: x86-64

²am Beispiel x86: VCVTTPS2UQQ, GF2P8AFFINEINVQB, MASKMOVDQU:)

RISC-V

- Befehlssatz in ERA: RV32IM
- 32 Register, einige davon mit spezieller Funktion
- Instruktionen auf 32 Bit begrenzt
 - → Konstanten müssen zusammengebastelt werden
- Datenwortbreite: 32 Bit (4 Byte)
- Little-Endian-Architektur
- Byte-adressierbarer Speicher, maximale Hauptspeichergröße?

RISC-V

- Befehlssatz in ERA: RV32IM
- 32 Register, einige davon mit spezieller Funktion
- Instruktionen auf 32 Bit begrenzt
 - ightarrow Konstanten müssen zusammengebastelt werden
- Datenwortbreite: 32 Bit (4 Byte)
- Little-Endian-Architektur
- Byte-adressierbarer Speicher, maximale Hauptspeichergröße?
 - $ightarrow 2^{32}$ Adressen, ca. $4.3\,\mathrm{GB}$

Register

Register	ABI Name	Description	Saver ³
x 0	zero	Hard-wired zero	
x1	ra	Return address	Caller
x2	sp	Stack pointer	Callee
x 3	gp	Global pointer	
x4	tp	Thread pointer	
x5-x7	t0-t2	Temporaries	Caller
x8	s0/fp	Saved register/frame pointer	Callee
x9	s1	Saved register	Callee
x10-11	a0-1	Function arguments/return values	Caller
x12-17	a2-7	Function arguments	Caller
x18-27	s2-11	Saved registers	Callee
x28-31	t3-6	Temporaries	Caller

³Erst in zwei Wochen relevant

Immediates

- als "Konstanten" in Instruktion enkodiert
- RV32IM verwendet 12- und 20-Bit Immediates
- Datenwortbreite 32 Bit → "Erweiterung" von Immediates notwendig
- Sign- vs. Zero-Extension
- Achtung: 12-Bit-Immediates werden immer als signed Zahlen interpretiert!

Fragen?

Links

- Zulip: "ERA Tutorium Mi-1600-3" bzw. "ERA Tutorium Fr-1500-1"
- ERA-Moodle-Kurs
- ERA-Artemis-Kurs
- Einführung Fixpunktarithmetik, Alternative
- Übersicht an RISC-V-Instruktionen

Übung 02: RISC-V Assembly

Einführung in die Rechnerarchitektur

Niklas Ladurner

School of Computation, Information and Technology Technische Universität München

24. Oktober 2025

