Solution to Assignment 0

BY XIAONAN PENG

Part I

Problem 1. Skipped.

Problem 2.

a)
$$N(A^TA) = N(A)$$

Prove: We want to prove two matrices have the same nullspace is equivalent to prove the following two equations have same solution set:

$$A^T A x = 0, A x = 0$$

One side: $Ax = 0 \Rightarrow A^T Ax = 0 \Rightarrow N(A) \subset N(A^T A)$

The other side: $A^T A x = 0 \Rightarrow x^T A^T A x = 0 \Rightarrow ||Ax||_2^2 = 0 \Rightarrow Ax = 0 \Rightarrow N(A^T A) \subset N(A)$

Thus, we proved they have the same nullspace.

b)
$$C(A^{T}A) = C(A^{T})$$

Prove: Suppose $y \in C(A^TA)$, then $\exists x \text{ s.t. } y = A^TAx = A^T(Ax)$, this implies that $y \in C(A^TA) \Rightarrow C(A^TA) \subset C(A^T)$.

From (a), we know $n - r(A^TA) = n - r(A) \Rightarrow r(A^TA) = r(A) = r(A^T)$, thus the two column spaces have the same dimension. We have $C(A^TA) = C(A^T)$.

c)
$$r(A) = r(A^{T}A) = r(AA^{T})$$

Prove: From (b) we know $r(AA^T) = r(A) = r(A^T) = r(A^TA)$.

Problem 3. A is SPD

a) A is non-singular.

Prove: If A is singular, $\exists x \neq 0$ s.t. $Ax = 0 \Rightarrow x^T A x = 0$, contradicting to positive definite.

b) All eigenvalues of A are positive.

Prove: $Ax = \lambda x \Rightarrow x^T Ax = \lambda ||x||_2^2 > 0 \Rightarrow \lambda > 0.$

c) \exists full column rank matrix R s.t. $A = R^T R$

Prove: A is real symmetric, it has an eigenvalue decomposition: $A = UDU^T$, from (b) we know that all entries of D are positive, then we can define $\sqrt{D} = \text{diag}(\sqrt{\lambda_i})_{i=1}^n$. Then we have

$$A = U\sqrt{D}\sqrt{D}U^T = (\sqrt{D}U^T)^T(\sqrt{D}U^T) = R^TR$$

Problem 4.

Prove: A is symmetric, then we have $A = UDU^T = \sum_i \lambda_i u_i u_i^T$, where $U = [u_1, \dots, u_n]$.

$$x^{T}Ax = x^{T}\sum_{i} \lambda_{i}u_{i}u_{i}^{T}x$$

$$= \sum_{i} \lambda_{i}x^{T}u_{i}u_{i}^{T}x$$

$$\leqslant \sum_{i} \lambda_{\max}x^{T}u_{i}u_{i}^{T}x$$

$$= \lambda_{\max}x^{T}\left(\sum_{i} u_{i}u_{i}^{T}\right)x$$

$$= \lambda_{\max}x^{T}UU^{T}x$$

$$= \lambda_{\max}x^{T}x$$

Thus, we have $\frac{x^T A x}{x^T x} \leq \lambda_{\max}$, when x is the eigenvector corresponding to λ_{\max} , the inequality attains equal. Thus we have

$$\lambda_{\max} = \sup_{x} \frac{x^T A x}{x^T x} = \sup_{\|x\|_2 = 1} x^T A x$$

Part II

Problem 5.

a)#
nonzero eigenvalues of $A^T\!A = r(A)$

Prove: Suppose $A^TA = VDV^T$, since V is invertible, $r(A^TA) = r(D) = \#$ nonzero eigenvalues, and we know that $r(A) = r(A^TA)$, so #nonzero eigenvalues of $A^TA = r(A)$.

b) $A^{T}A$ and AA^{T} share the same nonzero eigenvalues.

Prove: From (a), we know that A^TA and AA^T have the same number of nonzero eigenvalues, we just need to show each eigenvalue of A^TA is also an eigenvalue of AA^T .

Suppose $A^TAx = \lambda x$, then $AA^T(Ax) = \lambda(Ax)$, λ is also an eigenvalue of AA^T with eigenvector Ax.

The spectrum of $A^TA = \{\lambda_1, \dots, \lambda_r, 0_{r+1}, \dots, 0_n\}$

The spectrum of $AA^T = \{\lambda_1, \dots, \lambda_r, 0_{r+1}, \dots, 0_m\}$

Since A^TA is semi-positive definite, there is no negative eigenvalues. Thus we can write $\lambda_i = \sigma_i^2$.

c) Suppose $A^T A v_i = \sigma_i^2 v_i, \sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r > 0$, let $u_i = \frac{A v_i}{\sigma_i}, i = 1, \dots, r$.

$$AA^{T}u_{i} = AA^{T}Av_{i}\frac{1}{\sigma_{i}} = \sigma_{i}Av_{i} = \sigma_{i}^{2}u_{i}$$

Thus, u_i is eigenvector of AA^T corresponding to eigenvalue σ_i^2 . We call v_i, u_i as singular vectors.

Up to now, we have an orthonormal set $\{v_1, \ldots, v_r\}$ in the rowspace of A, orthonormal set $\{u_1, \ldots, u_r\}$ in the columnspace of A. We need extend the set to a basis.

Let v_{r+1}, \ldots, v_n be the last n-r eigenvectors of A^TA corresponding to eigenvalue $0, u_{r+1}, \ldots, u_m$ be the last m-r eigenvectors of AA^T corresponding to eigenvalue 0.

d)Algorithm

$$\lambda, V = \text{eigen}(A^T A); \lambda, U = \text{eigen}(A A^T); r = \text{rank}(A)$$

for $i = 1, \ldots, r$:

$$\sigma_i = \operatorname{sqrt}(\lambda_i), u_i = \frac{A v_i}{\sigma_i}$$

if m > n:

$$\Sigma = [\operatorname{diag}(\sigma_1, \dots, \sigma_n), 0_{m-n})^T$$

else:

$$\Sigma = [\operatorname{diag}(\sigma_1, \dots, \sigma_m), 0_{n-m})^T$$

Problem 6.

a)

$$\begin{split} \frac{\partial}{\partial \beta} \bigg(\frac{1}{2} \| X\beta - y \|_2^2 + \frac{\lambda}{2} \| \beta \|_2^2 \bigg) &= X^T (X\beta - y) + \lambda \beta \\ &= (X^T X + \lambda I) \beta - X^T y \end{split}$$

$$\left(\frac{\partial \operatorname{tr}(AX)}{\partial X}\right)_{i,j} = \frac{\partial \operatorname{tr}(AX)}{\partial x_{ij}}$$

$$= \frac{\partial \sum_{k} \sum_{i} a_{ik} x_{ki}}{\partial x_{ij}}$$

$$= a_{ji}$$

$$\Rightarrow \frac{\partial \operatorname{tr}(AX)}{\partial X} = A^{T}$$

$$\begin{array}{rcl} \frac{\partial \operatorname{tr}(AXB)}{\partial X} & = & \frac{\partial \operatorname{tr}(BAX)}{\partial X} \\ & = & A^T B^T \end{array}$$

d)

$$\left(\frac{\partial \operatorname{tr}(AX^{-1}B)}{\partial X} \right)_{i,j} = \frac{\partial \operatorname{tr}(AX^{-1}B)}{\partial x_{ij}}$$

$$= \frac{\partial \operatorname{tr}(BAX^{-1})}{\partial x_{ij}}$$

$$= \operatorname{tr}\left(BA \frac{\partial X^{-1}}{\partial x_{ij}} \right)$$

$$= \operatorname{tr}(BA(-X^{-1}e_ie_j^TX^{-1}))$$

$$= -\operatorname{tr}(e_j^TX^{-1}BAX^{-1}e_i)$$

$$= -e_j^TX^{-1}BAX^{-1}e_i$$

$$= -(X^{-1}BAX^{-1})_{ji}$$

$$\Rightarrow \frac{\partial \operatorname{tr}(AX^{-1}B)}{\partial X} = -(X^{-1}BAX^{-1})^T$$

Problem 7.

$$\begin{split} l(\mu, \Sigma | D) &= & \ln \Biggl(\prod_{i=1}^n p(X_i) \Biggr) \\ &= \sum_{i=1}^n \ln \Biggl(\frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp \Biggl(\frac{-1}{2} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) \Biggr) \Biggr) \\ &= \sum_{i=1}^n -\frac{n}{2} \ln(2\pi) - \frac{1}{2} \log(\det(\Sigma)) - \frac{1}{2} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) \\ &\Rightarrow \frac{\partial l}{\partial \mu} &= \sum_{i=1}^n \Sigma^{-1} (x_i - \mu) \\ &= \Sigma^{-1} \Biggl(\sum_{i=1}^n x_i \Biggr) - n \Sigma^{-1} \mu \\ &\Rightarrow \hat{\mu}^{(\text{MLE})} &= \frac{1}{n} \sum_{i=1}^n x_i \\ &\Rightarrow \frac{\partial l}{\partial \Sigma} &= \sum_{i=1}^n -\frac{1}{2} \frac{\partial}{\partial \Sigma} (\log(\det(\Sigma))) - \frac{1}{2} \frac{\partial}{\partial \Sigma} \{ (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) \} \\ &= \sum_{i=1}^n -\frac{1}{2} \Sigma^{-1} - \frac{1}{2} \frac{\partial}{\partial \Sigma} \{ \operatorname{tr}(x_i - \mu)^T \Sigma^{-1} (x_i - \mu) \} \\ &= \sum_{i=1}^n -\frac{1}{2} \Sigma^{-1} + \frac{1}{2} (\Sigma^{-1} (x_i - \mu) (x_i - \mu)^T \Sigma^{-1}) \\ &\Rightarrow \hat{\Sigma}^{(\text{MLE})} &= \frac{1}{n} \sum_{i=1}^n (x_i - \mu) (x_i - \mu)^T \end{split}$$

Problem 8.

$$\begin{split} \mathbb{E}(\|x\|_2^2) &= \mathbb{E}(x^T x) \\ &= \mathbb{E}(\operatorname{tr}(x^T x)) \\ &= \mathbb{E}(\operatorname{tr}(x x^T)) \\ &= \operatorname{tr}(\mathbb{E}(x x^T)) \\ &= \operatorname{tr}(\operatorname{Var}(x) + \mathbb{E}(x)\mathbb{E}(x)^T) \\ &= \operatorname{tr}(\Sigma) + \|\mathbb{E}(x)\|_2^2 \end{split}$$