ZANICHELLI

B3 – La regolazione genica

L'importanza della regolazione

- La regolazione genica "è la capacità di una cellula di controllare l'espressione dei suoi geni" e in tal modo di regolare quel processo
- mediante cui l'informazione portata da un gene viene trasformata in un prodotto funzionale di natura proteica;
- i geni possono essere attivati o disattivati al momento opportuno per evitare un inutile dispendio energetico :
 - " tenere in funzione moltissimi geni anche quando non servono comporta un dispendio di energia inutile".

L'importanza della regolazione

L'esperimento di Gurdon sulle rane ha dimostrato che "nelle cellule mature non si perde DNA funzionale e i geni non sono inattivati in modo definitivo".

Quindi il differenziamento delle cellule di un organismo pluricellulare dipende dall'inattivazione di certi gruppi di geni e dall'attivazione di altri.

I procarioti controllano l'espressione genica

Nei procarioti certe proteine legate al DNA «accendono» e «spengono» i geni.

La regolazione genica nei procarioti è spiegata dal modello dell'**operone**, formato dai seguenti componenti:

- un gene regolatore;
- un promotore;
- un operatore;
- alcuni geni strutturali.

Il controllo genico nei procarioti

Operone: promotore + operatore + geni strutturali.

I **geni regolatori** sono sparsi nel cromosoma, non fanno parte dell'operone, ma codificano per attivatori e repressori della trascrizione.

I procarioti controllano l'espressione genica

L'operone *lac* è un **operone inducibile**: in assenza di lattosio l'operone è inattivo, mentre in presenza di lattosio l'operone è attivo e vengono così prodotti gli enzimi per digerire il lattosio.

/

L'importanza della regolazione

- In E. coli la presenza di lattosio come alimento induce la sintesi dell'enzima beta-galattosidasi, che lo scinde;
- la presenza
 dell'amminoacido triptofano
 nel terreno di crescita
 inibisce invece la produzione
 degli enzimi per la sua
 sintesi interna.

Il controllo genico nei procarioti

I fattori di regolazione della trascrizione:

- sono proteine codificate da geni regolatori;
- si legano vicino alla sequenza promotore di un gene(all'operatore);
- possono reprimere o attivare la trascrizione;
- agiscono a volte con piccole molecole effettrici che ne modificano la conformazione.

<u>I geni costitutivi non subiscono questo controllo, sono sempre attivi perché codificano per proteine indispensabili durante l'intera vita della cellula.</u>

Negli eucarioti l'espressione genica specializza le cellule

Le cellule eucariotiche sono specializzate grazie all'attivazione di certi geni.

Esempi di espressione genica in cellule specializzate: i geni «accesi» sono quelli contrassegnati in colore.

Negli eucarioti l'espressione genica è controllata a vari livelli

Negli eucarioti il DNA è sempre associato con abbondanti proteine. L'acido nucleico e le proteine formano un materiale dall'aspetto filiforme chiamato **cromatina**.

Durante la divisione cellulare, la cromatina si condensa notevolmente formando i **cromosomi**.

I geni fortemente condensati nella cromatina non vengono espressi

Nell'interfase la maggior parte della cromatina si trova in uno stato poco condensato, lasso, chiamato **eucromatina**. I geni posti nell'eucromatina possono venire espressi.

Negli eucarioti le proteine legate al DNA regolano la trascrizione

I fattori di trascrizione sono proteine che regolano la trascrizione del DNA. Gli attivatori di trascrizione sono coinvolti nella promozione della trascrizione; essi si legano a regioni di DNA chiamate intensificatori (o enhancers).

Come nei **procarioti** *la capacità della RNA polimerasi di legarsi al promotore è regolata* da:

- attivatori e repressori;
- molecole effettrici.

Negli **eucarioti** la *regolazione* è *più complessa* perché :

- maggior numero di proteine e tipi di cellule diverse;
- non ci sono gli operoni(nei quali più geni strutturali venivano trascritti in un'unica molecola di mRNA) perché ogni gene strutturale ha un proprio sistema di controllo e viene trascritto separatamente;
- inibizione della trascrizione attraverso l'aggiunta di un gruppo metile al DNA;
- attivatori che alterano la struttura della cromatina in certe regioni del DNA consentendo all'RNA polimerasi di riconoscere e raggiungere un gene per dare avvio alla trascrizione. Es. l'enzima "istone –acetiltransferasi" che attacca gruppi acetili alle code N-terminali delle proteine istoniche.

- Eterocromatina: cromatina più condensata;
- eucromatina: cromatina distesa, permette la trascrizione, presente solo in interfase;
- istoni: proteine che mantengono la cromatina spiralizzata;
- il grado di condensazione varia da un tipo di cellula all'altro;
- eterocromatina permanente: corpi di Barr, centromeri, telomeri e regioni non codificanti. ປາ ກອກ ປະເທດ ປະເທ

9 MOZIE OPP ACETILTRASFERASI

- Acetilazione: l'acetiltransferasi (un enzima) attacca gruppi acetili -COCH₃
- Fosforilazione: reazione chimica che consiste nell'addizione di un gruppo fosfato (PO₄³⁻)
- Metilazione: addizione di un gruppo metile -CH₃

Acetilazione, fosforilazione avvengono sulle code N-terminali delle proteine istoniche, che si allentano, lasciando libero il DNA per la trascrizione. -> Joonice & hocciero

La metilazione avviene sia sulle code N-terminali che sulla citosina del DNA reprime l'espressione genica, *incrementando l'interazione tra il DNA e gli istoni.*

 Nei mammiferi ci sono 50 enzimi che modificano gli istoni, per compattare o despiralizzare la cromatina.

Serine

La fosforilazione (reazione chimica che consiste nell'addizione di un gruppo fosfato PO₄ 3- ad un amminoacido) del gruppo ossidrilico presente nella catena laterale (residuo R) della serina per produrre fosfoserina da come risultato che essendo sia i gruppi fosfato della serina che quelli del DNA negativi essi si respingonoe quindi la cromatina diventa meno compatta consentendo il processo di trascrizione.

LO SERINA & POLARE

<u>L'acetilazione</u> si ha trasferendo un gruppo acetile

-COCH₃ (il donatore è l'AcetilCoA) su un residuo R della lisina presente all'estremità N-terminale degli istoni. La lisina perde così la carica positiva normalmente presente sull' N della catena laterale e di conseguenza non si lega più con i gruppi fosfato del DNA che hanno carica negativa.

In questo modo <u>la cromatina diventa meno compatta</u> consentendo <u>l'aggancio della RNA polimerasi cioè il</u> processo di trascrizione

Acetilazione della lisina e conseguenza sulla trascrizione

<u>La metilazione</u> (addizione di un gruppo metile -CH₃) ha solitamente luogo sui <u>residui R</u> di **arginina o lisina** presenti all'estremità N-terminale degli istoni e **sulla** citosina del DNA.

La <u>metilazione reprime l'espressione genica,</u> <u>incrementando l'interazione tra il DNA e gli istoni</u>

La metilazione della citosina del DNA e delle code N-terminali e la deacetilazione delle code N- terminali trasforma l'eucromatina in eterocromatina nella quale l'espressione genica è repressa, essendo incrementata l'interazione tra il DNA e gli istoni e quindi non essendo consentito l'aggancio della RNA polimerasi cioè il processo di trascrizione

Lo schema sintetizza il rimodellamento della cromatina attraverso la modificazione degli istoni e la metilazione del DNA, due dei fondamentali meccanismi alla base dell'epigenetica. Nel riquadro è rappresentata la metilazione della citosina a 5-metilcitosina.

La regolazione negli <u>eucarioti</u>

Il promotore delle cellule eucariotiche è costituito non da una sola unità ma da <u>almeno tre regioni differenti</u>

La regolazione negli <u>eucarioti</u>

Il **promotore** è costituito da **tre** regioni differenti:

- La <u>prima</u> regione detta <u>TATA</u> box, localizza il punto in cui la trascrizione può avere luogo;
- La **seconda** regione (dista 25 paia di B.A.) è il sito di inizio della trascrizione, dove si inserisce la RNA polimerasi;
- -La terza regione cioè il sito degli elementi regolatori detti enhancer o silencer, (a seconda che favoriscano o inibiscano l'avvio della trascrizione) controllati da proteine chiamate <u>attivatori o repressori</u> e da una proteina chiamata <u>mediatore</u> se molto lontani dalla sequenza promotore. (dista in genere 50 100 B.A. ma a volte anche migliaia) —> hω dello tipo che viloto che e buigo.

 ο νοθει είνερισμο ρετ foue il legouie —> μου μο di σου δείσου δείου ρονεθουσο

Fattori di trascrizione generali GTF: sono 5 e si legano al promotore basale per consentire l'attacco della RNA polimerasi.

La regolazione negli <u>eucarioti</u>

Meccanismo della trascrizione

- La trascrizione ha inizio quando un attivatore si lega all'enhancer;
- gli enhancer sono specifici per ogni tipo di cellula.

L'elaborazione dell'mRNA nel nucleo può influenzare l'espressione dei geni

Il controllo post-trascrizione ha luogo nel nucleo e coinvolge:

- l'elaborazione del trascritto primario (pre-mRNA);
- la velocità con cui l'mRNA abbandona il nucleo.

```
-> SPLICING- ZANICHELLI

in bose os come si legano 2

i segmenti -> formano
```

Sylvia S. Mader Immagini e concetti della biologia © Zanichelli editore, 2012

Nel citoplasma ha luogo l'ultimo controllo dell'espressione dei geni

Gli ultimi due stadi del controllo dell'espressione genica hanno luogo nel citoplasma, uno a livello della traduzione e uno che agisce a traduzione avvenuta.

Il **controllo di traduzione** ha inizio quando la molecola di mRNA elaborato raggiunge il citoplasma, prima della sintesi proteica.

Il **controllo post-traduzione** interviene una volta che la proteina è stata sintetizzata e prima che diventi attiva.

