Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И Лобачевского»

Отчёт по лабораторной работе № 210 «Исследование линейных двухполюсников и четырехполюсников»

Выполнили:

Студенты 2 курса, ВШОПФ

Зинягин Алексей

Мурзина Полина

Дата допуска: 21.09.22 г.

Дата лабораторной работы: 28.09.22 г.

Дата отчета: 03.11.22 г.

Цель работы: исследовать свойства электрических двухполюсников и четырехполюсников, составленных из линейных элементов, ознакомиться с понятиями импеданса, коэффициента передачи, вычислить соответствующее импедансы двухполюсников и коэффициенты передачи четырехполюсников.

Оборудование: установка для исследования четырехполюсников и двухполюсников, осциллограф, звуковой генератор.

Теоретические обоснования.

Двухполюсник — электрическая цепь, состоящая из произвольного числа элементов и имеющая два наружных контакта (зажима), с помощью которых она подключается к другим цепям. Четырехполюсники же имеют четыре наружных зажима. Обычно два зажима называют входными (к ним подключается источник энергии), а два других — выходные (с них снимается выходное напряжение). При анализе двухполюсников и четырехполюсников предполагается, что энергия к ним подводится от идеального генератора напряжения (генератора, внутреннее сопротивление которого равно нулю), а регистрирующие приборы имеют входное сопротивление $R_{\rm Bx} \to \infty$.

Мы ограничимся изучением линейных четырехполюсников, поведение которых описывается линейными дифференциальными уравнениями, т.е. они составлены из линейных элементов, имеющих линейную вольтамперную или аналогичные ей характеристики (резисторы, конденсаторы, катушки индуктивности).

В данной работе мы рассмотрели двухполюсники, приведенные на рис.1.

При подключении линейных двухполюсников к гармонической ЭДС в них возникают гармонические напряжения и токи той же частоты, что и частота подключаемой ЭДС. Запишем их в виде:

$$u = Ue^{i(\omega t - \varphi_u)}$$
, $i = Ie^{i(\omega t - \varphi_i)}$,

Им соответствуют комплексные амплитуды:

$$\dot{U} = Ue^{-i\varphi_u}$$
, $\dot{I} = Ie^{-i\varphi_i}$

Комплексный импеданс - отношение комплексных амплитуд, имеющее размерность сопротивления, основная характеристика двухполюсников:

$$\frac{\dot{U}}{\dot{I}} = \dot{z} = \frac{U}{I} e^{i(\varphi_i - \varphi_u)} = z e^{i\varphi}$$

Коэффициент передачи — важнейшая характеристика четырехполюсника, равная отношению комплексной амплитуды напряжения на выходе к комплексной амплитуде напряжения на входе:

$$\dot{K} = \frac{\dot{U}_{\text{BMX}}}{\dot{U}_{\text{BX}}} = Ke^{i\varphi}$$

Коэффициент передачи четырехполюсника зависит только от частоты. Модуль коэффициента передачи $K(\omega)$ – амплитудная характеристика четырехполюсника, а его аргумент $\phi(\omega)$ – фазовая характеристика.

Четырехполюсники применяются в различных случаях, например, дифференцирование и интегрирование сигналов, изменение величины и полярности импульсов, линии задержки, линейные формирующие цепи и т.д.

Рис. 3

На рис. 2. Представлена схема мостового четырехполюсника, которым можно пользоваться в качестве фазовращателя. В этой схеме $R_1=R_2=R$, $C_1=C_2=C$. Тогда токи i_1,i_2 в ветвях схемы будут иметь одинаковую амплитуду и совпадать по фазе. $U_{\rm BX}$ подводится к одной диагонали моста (AB), а выходное — снимается с диагонали (ДЕ).

На рис.3. представлена векторная диаграмма этой схемы. $U_{\rm BX}$ можно представить как сумму двух взаимно перпендикулярных векторов, изображающих напряжения на C_1 , R_1 или C_2 , R_2 , а выходное напряжение (между точками Д и E) — в виде разности напряжения на R_1 и C_2 . Из диаграммы следует, что напряжение на выходе по амплитуде равно напряжению на входе, а по фазе сдвинуто на угол φ , и

$$tg\frac{\varphi}{2} = \frac{v_R}{v_c} = \frac{IR}{I*1/\omega C} = \omega RC$$

Это соотношение показывает, что сдвиг фаз между входным и выходным напряжениями может изменяться от нуля до 180° . Но получить сдвиг фаз в точности равный 180° в такой схеме

не удастся, так как ωRC всегда конечно. Для получения этого сдвига и больше можно использовать четырёхполюсники, приведенные на рис.4.

Его амплитудная и фазовая характеристика будут соответственно:

$$K(\omega) = \frac{\Omega^3}{\sqrt{(1 - 6\Omega)^2 + \Omega^2(5 - \Omega^2)^2}};$$

$$\varphi(\omega) = \frac{3\pi}{2} - arctg \frac{\Omega(5 - \Omega^2)}{1 - 6\Omega^2},$$

где Ω = ω RC-безразмерная циклическая частота. Тогда частота, при которой входное и выходное напряжение будут противофазны, равна

$$\omega = \frac{1}{RC\sqrt{6}}$$

Модуль коэффициента передачи при этом равен 1/29, т.е. амплитуда напряжения на выходе в 29 раз меньше амплитуды входного напряжения. Изменяя R, C можно в широких пределах менять частоту, для которой входное и выходное напряжение будут противофазны. Эти частоты могут быть от долей герца до десятков мегагерц, при этом четырехполюсники будут в любом случае иметь достаточно малые габариты. Вместо конденсаторов можно использовать индуктивности, но габариты тогда резко возрастут, особенно в области низких частот.

Экспериментальная часть.

1. Для двухполюсников на рис.1 измерили z и аргумент ф при нескольких значениях частоты в диапазоне звукового генератора. Также рассчитали зависимость модуля импеданса z и аргумента ф от частоты. Занесли результаты в табл.1-4. Построили соответствующие графики, для удобства откладывали частоту в логарифмическом масштабе (рис.5-6, 7-8, 9-10, 11-12).

$$z=rac{1}{i\omega}+R$$
, где $rac{1}{i\omega C}-$ импеданс конденсатора, $R-$ импеданс сопротивления.

$$\mathbf{a}$$
) $\dot{z}=rac{1}{i\omega}+R$, где $rac{1}{i\omega c}$ — импеданс конденсатора, R — импеданс сопротивления. $|z|=rac{\sqrt{1+(\omega RC)^2}}{\omega C}$, $arphi=arctgrac{|Imz|}{|Rez|}=arctgrac{1}{\omega RC}$, $R=13$ кОм, $C=0$,05мк Φ .

v, Гц	ω, рад/с	$U_{\rm BX}$, B	<i>U</i> _{вых} , В	2of	2og	$arphi_{ exttt{ iny T}}$, рад	$arphi_{\scriptscriptstyle 3}$, рад	z _т , кОм	z _э , кОм
50	314	23,6	6,4	23,6	23	1,37	1,34	65	47,94
60	376,8	23,6	7,56	23,6	21,8	1,33	1,18	54,65	40,58
70	439,6	23,6	8,64	23,6	21,2	1,29	1,12	47,32	35,51
90	565,2	23,2	10,6	23,2	20	1,22	1,04	37,7	28,45
100	628	23,4	11,3	23,4	19,2	1,18	0,96	34,4	26,92
110	690,8	23,2	12	23,2	19,2	1,15	0,97	31,74	25,13
120	753,6	23,2	12,7	23,2	18,4	1,12	0,92	29,55	23,75
130	816,4	23,2	13,4	23,2	18	1,08	0,89	27,73	22,51
140	879,2	23,2	14	23,2	17,4	1,05	0,85	26,2	21,54
150	942	23,2	14,4	23,2	17,2	1,02	0,84	24,9	20,94
160	1004,8	23,2	14,9	23,2	16,6	0,99	0,80	23,77	20,24
170	1067,6	23,2	15,4	23,2	16,2	0,96	0,77	22,8	19,58
180	1130,4	23,2	15,8	23,2	15,8	0,94	0,75	21,96	19,09
190	1193,2	23,2	16,2	23,2	15,4	0,91	0,73	21,21	18,62
200	1256	23	16,5	23	14,8	0,89	0,70	20,56	18,12
300	1884	23	18,8	23	11,6	0,68	0,53	16,78	15,9
400	2512	22,6	20,2	22,6	9,2	0,55	0,42	15,24	14,54
500	3140	22,2	21	22,2	7,8	0,46	0,36	14,48	13,74
600	3768	22,2	21,4	22,2	6,2	0,39	0,28	14,04	13,49

700	4396	22,2	21,6	22,2	5,2	0,34	0,24	13,77	13,36
800	5024	22,2	21,6	22,2	4,8	0,30	0,22	13,6	13,36
900	5652	22,4	21,8	22,4	4,2	0,27	0,19	13,47	13,36
1000	6280	22,8	22,4	22,8	4,2	0,24	0,19	13,38	13,23

Табл.1

Рис. 5. Зависимость модуля импеданса от логарифма частоты для двухполюсника с Рис. 1 а

Рис.6. Экспериментально и теоретически полученные зависимости аргумента импеданса двухполюсника, изображенного на Рис.1a

6) $\dot{z} = i\omega L + R$, $|z| = \sqrt{(\omega L)^2 + R^2}$, $z = \frac{U_{\text{BX}}}{U_{\text{Bbix}}} R$, $\varphi = arctg \frac{\omega L}{R}$, R = 13кОм, L = 0.28 Гн.

v, Гц		$U_{\rm BX}$, B	$U_{\scriptscriptstyle m BMX}$, B	2of	2og	$arphi_{\scriptscriptstyle m T}$, рад	$arphi_{\scriptscriptstyle 9}$, рад	$ z _{\mathrm{T}}$	$ z _{a}$
	ω,						-	кОм	кОм
1000	рад/с	22.0	22.2	22.0	3				
1000	6280	22,8	22,2	22,8	3	0,134	0,132	13,12	13,35
1100	6908	22,8	22,2	22,8	3,8	0,148	0,167	13,14	13,35
1300	8164	22,8	22,2	22,8	4	0,174	0,176	13,2	13,35
1700	10676	22,8	21,8	22,8	5,8	0,226	0,257	13,34	13,6
2000	12560	22,8	21,6	22,8	6,6	0,264	0,294	13,47	13,72
2200	13816	22,8	21,2	23,2	7	0,289	0,307	13,56	13,98
2500	15700	23,2	20,8	23	8	0,326	0,355	13,72	14,5
2700	16956	23	20,6	23,2	9	0,350	0,398	13,84	14,51
3000	18840	23,2	20,6	23,2	9	0,385	0,398	14,03	14,64
3200	20096	23,2	20,4	23,2	9,6	0,408	0,427	14,17	14,78
3500	21980	23,2	19,8	23,2	10,6	0,442	0,475	14,38	15,23
3700	23236	23,2	19,8	23,2	11,4	0,464	0,514	14,54	15,23
4000	25120	23,2	19,2	23,2	12	0,496	0,544	14,78	15,71
4200	26376	23,2	19	23,2	12,4	0,517	0,564	14,95	15,87
4500	28260	23,2	18,8	23,4	13	0,547	0,589	15,22	16,04
4700	29516	23,4	18,6	23,6	13,6	0,566	0,614	15,4	16,35
5000	31400	23,6	18,2	23,6	14	0,595	0,635	15,69	16,86
5200	32656	23,6	18	23,6	14,4	0,613	0,656	15,89	17,04
5500	34540	23,6	17,6	23,6	14,6	0,64	0,667	16,2	17,43
5700	35796	23,6	17	23,6	15	0,657	0,689	16,42	18,05
6000	37680	23,6	16,5	23,6	15,8	0,682	0,734	16,74	18,59
7000	43960	23,6	15,5	24	17,2	0,758	0,799	17,9	19,79
8000	50240	24	14,4	24	18,4	0,825	0,874	19,15	21,67
9000	56520	24	13,5	24	19,4	0,883	0,941	20,48	23,11
10000	62800	24	12,5	24	20	0,934	0,985	21,87	24,96

11000	69080	24	11,6	24	20,4	0,979	1,016	23,31	26,9
15000	94200	24	8,72	24	22,6	1,11	1,23	29,41	35,78
20000	125600	24	5,84	24	23,2	1,22	1,31	37,49	53,42
			,		,		,	Í	ŕ
25000	157000	24	3,54	24	24	1,28	1,57	45,84	88,14

Табл.2

Рис.7. Зависимость модуля импеданса от логарифма частоты для двухполюсника с Рис.1б

Рис. 8. Экспериментально и теоретически полученные зависимости аргумента импеданса двухполюсника, изображенного на Рис.16

B)
$$\dot{z}_1 = \frac{R}{1 + i\omega C}$$
, $\dot{z} = \dot{z}_1 + R = \frac{R}{1 + i\omega RC} + R = \frac{R(1 - i\omega RC)}{1 + (\omega RC)^2} + R$,

$$\mathbf{B}) \, \dot{z}_1 = \frac{R}{1 + i\omega C} \, , \ \, \dot{z} = \dot{z}_1 + R = \frac{R}{1 + i\omega RC} + R = \frac{R(1 - i\omega RC)}{1 + (\omega RC)^2} + R,$$

$$|z| = R \sqrt{\left(1 + \frac{1}{1 + (\omega RC)^2}\right)^2 + \left(\frac{\omega C}{1 + (\omega RC)^2}\right)^2}; \, \varphi = \operatorname{arctg} \frac{\omega RC}{2 + (\omega RC)^2}; \, R = 13 \, \mathrm{kOm}, \, C = 0,05 \, \mathrm{mk\Phi}.$$

٦				2 6		1			
ν, Гц		U_{BX} , B	$U_{\text{вых}}$, В	2of	2og	$\varphi_{\scriptscriptstyle \mathrm{T}}$, рад	$ \varphi_{\scriptscriptstyle exttt{9}},$ рад $ $	$ z _{_{ m T}}$,	$ z _{\mathfrak{g}},$
	ω,							кОм	кОм
	рад/с								
50	314	22,8	12,2	22,8	4,6	0.000		2.5.40	242
					_	0,099	0,203	25,48	24,3
60	376,8	22,4	12,4	22,4	5	0,118	0,225	25,26	23,48
70	439,6	22,4	12,7	22,4	4,8	0,136	0,216	25,02	22,93
100	628	22,8	13,1	22,8	4,6	0,186	0,203	24,14	22,63
110	690,8	22,8	13,2	22,8	5	0,201	0,221	23,82	22,45
120	753,6	22,8	13,4	22,8	5,2	0,215	0,23	23,48	22,12
130	816,4	22,8	13,5	22,8	5,6	0,229	0,248	23,14	22
150	942	22,8	13,8	22,8	6	0,252	0,266	22,46	21,48
170	1067,6	22,8	14,1	22,8	6,2	0,273	0,275	21,77	21,02
200	1256	22,8	14,8	22,8	6,4	0,297	0,285	20,8	20,03
300	1884	22,8	16,4	22,8	7	0,337	0,312	18,2	18,07
400	2512	22,8	17,7	22,8	6,8	0,337	0,303	16,55	16,75
500	3140	22,6	18,6	22,6	6,2	0,32	0,278	15,52	15,8
600	3768	22,6	19,2	22,6	5,6	0,3	0,25	14,86	15,30
700	4396	22,4	20,2	22,4	4,88	0,274	0,22	14,42	14,42
800	5024	22,4	20,6	22,4	4,6	0,252	0,207	14,11	14,14
900	5652	22,4	20,8	22,4	4,2	0,233	0,189	13,9	14
1000	6280	22,8	21,4	22,8	4	0,215	0,176	13,74	13,85
<u> </u>					<u> </u>				L

Табл.3

Рис. 9. Зависимость модуля импеданса от логарифма частоты для двухполюсника с Рис. 1 в

Рис.10. Экспериментально и теоретически полученные зависимости аргумента импеданса двухполюсника, изображенного на Рис.1в

$$R_1$$
 L_1
 R_2

$$\Gamma \frac{1}{\dot{z_1}} = \frac{1}{R} + \frac{1}{i\omega L} = \frac{\omega L - iR}{\omega R L} , \ \dot{z_1} = \frac{\omega^2 L^2 R + i\omega L R^2}{\omega^2 L^2 + R^2} , \ \dot{z} = \dot{z_1} + R = \frac{2\omega^2 L^2 R + R^3}{\omega^2 L^2 + R^2} + i\frac{\omega L R^2}{\omega^2 L^2 + R^2} , \ |z| = \frac{\sqrt{(2\omega^2 L^2 R + R^3)^2 + (\omega L R^2)^2}}{\omega^2 L^2 + R^2} ;$$

$$\varphi = arctg \frac{\omega LR}{2\omega^2 L^2 + R^2}$$
; R = 13kOm, L = 0,28 Γ H.

v, Гц		$U_{\rm\scriptscriptstyle BX}$, B	$U_{\scriptscriptstyle m Bыx}$, В	2of	2og	$arphi_{ exttt{T}}$, рад	$arphi_{\scriptscriptstyle 9}$, рад	$ z _{_{ m T}}$,	$ z _{\mathfrak{z}}$
	ω, рад/с							кОм	кОм
20	125,6	22,8	22,2	22,8	4,2	0,002	0,185	13	13,35
30	188,4	22,2	22,2	22,2	3,4	0,004	0,154	13	13
40	251,2	22,2	22,6	22,2	2,4	0,005	0,108	13	12,78
100	628	22	22,8	22	0,2	0,012	0,009	13	12,54
200	1256	22,2	22,4	22,2	0,6	0,024	0,027	13	12,88
300	1884	22,2	22,4	22,2	1,2	0,036	0,054	13	12,88
400	2512	22,4	22	22,4	1,6	0,048	0,0715	13	13,24
500	3140	22,4	22	22,4	2	0,06	0,089	13	13,24
600	3768	22,4	22	22,4	2,4	0,072	0,107	13,1	13,24
700	4396	22,4	21,8	22,4	2,6	0,083	0,116	13,14	13,36
800	5024	22,4	21,8	22,4	2,8	0,095	0,125	13,18	13,36
900	5652	22,6	21,4	22,6	3	0,11	0,133	13,23	13,73
1000	6280	22,8	21,4	22,8	3,2	0,12	0,141	13,28	13,85
1500	9420	23	20,6	23	4,6	0,168	0,201	13,61	14,51
2000	12560	23	19,8	23	5,4	0,213	0,237	14,03	15,1
2500	15700	23	19	23	6	0,25	0,264	14,54	15,74
3000	18840	23	18,2	23	6,6	0,28	0,291	15,09	16,43
3500	21980	23	17,6	23	7	0,302	0,309	15,68	16,99
4000	25120	23	17	23	7,2	0,318	0,318	16,28	17,59
4500	28260	23	16,4	23	7,4	0,33	0,328	16,87	18,23
5000	31400	23,4	16,4	23,4	7,4	0,336	0,3218	17,45	18,55
6000	37680	23,2	15,4	23,2	7,2	0,34	0,316	18,54	19,58
7000	43960	23,2	14,6	23,2	7	0,335	0,307	19,5	20,66
8000	50240	23,4	14,6	23,4	7	0,325	0,304	20,34	20,84
9000	56520	23,4	14	23,4	6,6	0,313	0,286	21,06	21,73
10000	62800	23,2	13,8	23,2	6,4	0,299	0,279	21,67	21,86

Табл.4

Рис.11. Зависимость модуля импеданса от логарифма частоты для двухполюсника с Рис.1г

Рис.12. Экспериментально и теоретически полученные зависимости аргумента импенданса двухполюсника, изображенного на Рис.1г

2. Для схемы на рис.2 при максимальном значении сопротивления $R_1=R_2=R=140~$ кОм получили экспериментальную кривую зависимости ϕ от частоты. Сравнили ее с теоретической (рис.13).

наклон	v, Гц	ω, рад/с	2of	2og	$sin arphi_{\scriptscriptstyle m T}$, рад	$sin arphi_{\scriptscriptstyle 9}$, рад
	20	125,6	12	8,8	0,493	0,733
	25	157	12	9,44	0,595	0,787
						,
	30	188,4	12	10,1	0,684	0,842
	35	219,8	12	10,6	0,761	0,883
	40	251,2	12	11,1	0,825	0,925
	45	282,6	12	11,4	0,878	0,95
	50	314	12	11,7	0,919	0,975
	55	345,4	12	11,7	0,951	0,975
	60	376,8	12	12	0,973	1
	65	408,2	12	12	0,988	1
\bigcirc	70	439,6	11,9	12	0,997	1,008
Ŏ	75	471	12	12	0,999	1
	80	502,4	12,2	12	0,999	0,984
	85	533,8	12,3	12,1	0,994	0,984
	90	565,2	12,3	12,1	0,986	0,984
	95	596,6	12,4	12,1	0,975	0,976
	100	628	12,4	12	0,963	0,968
	105	659,4	12,4	11,9	0,949	0,959
	110	690,8	12,4	11,9	0,935	0,96
	115	722,2	12,5	11,7	0,919	0,936
	120	753,6	12,6	11,6	0,903	0,921
	125	785	12,6	11,5	0,887	0,913

Табл.5

При постоянном значении частоты v=75 Γ ц сняли зависимости ϕ от R, результат занесли в табл.6.

R, кОм	2of	2og	fi эксп	fi теор
140	12	12	1,57	1,56
130	12,1	11,9	1,39	1,49
120	12,1	11,8	1,35	1,41
110	12,1	11,6	1,28	1,32
100	12,2	11,3	1,18	1,23
90	12,3	11,1	1,13	1,13
80	12,3	10,6	1,04	1,03
70	12,4	9,92	0,93	0,92
60	12,4	9,04	0,82	0,8
50	12,4	8,16	0,72	0,68
40	12,5	6,88	0,58	0,55
30	12,7	5,6	0,46	0,42
20	12,7	4,4	0,35	0,28

10	12,7	2,4	0,19	0,14
0	12,8	0,58	0,045	0

Табл.6.

Построили теоретические и экспериментальные кривые этой зависимости ϕ от R.

Рис.14

3. Для четырехполюсника на рис. 4 сняли зависимость $\phi(\omega)$, результаты занесли в табл. 7.

наклон	V,Гц	ω, рад/с	2of	2og	$sin arphi_{\scriptscriptstyle 9}$, рад	$sin arphi_{\scriptscriptstyle m T}$, рад
	90	565,2	23,8	8,2	0,345	-0,476
	100	628	23,6	11	0,466	-0,437
	150	942	23,6	17,6	0,746	-0,308
	200	1256	23,6	20,4	0,864	-0,235
	250	1570	23,4	21,8	0,932	-0,189
	300	1884	23,2	22,4	0,966	-0,158
	320	2009,6	23,2	22,4	0,966	-0,148
	340	2135,2	23	22,4	0,974	-0,139
	360	2260,8	23	22,4	0,974	-0,132
	380	2386,4	22,8	22,4	0,982	-0,125
		1			1	1

420 2637,6 22,8 22,2 0,974 -0,11 440 2763,2 22,6 22,2 0,982 -0,10 460 2888,8 22,2 21,8 0,982 -0,10 480 3014,4 22,2 21,8 0,982 -0,09 500 3140 22,4 21,6 0,964 -0,09 550 3454 22 21,4 0,973 -0,08 600 3768 22 20,6 0,936 -0,07 650 4082 21,8 20,2 0,927 -0,07	8
460 2888,8 22,2 21,8 0,982 -0,10 480 3014,4 22,2 21,8 0,982 -0,09 500 3140 22,4 21,6 0,964 -0,09 550 3454 22 21,4 0,973 -0,08 600 3768 22 20,6 0,936 -0,07	3
480 3014,4 22,2 21,8 0,982 -0,09 500 3140 22,4 21,6 0,964 -0,09 550 3454 22 21,4 0,973 -0,08 600 3768 22 20,6 0,936 -0,07)8
500 3140 22,4 21,6 0,964 -0,09 550 3454 22 21,4 0,973 -0,08 600 3768 22 20,6 0,936 -0,07)3
550 3454 22 21,4 0,973 -0,08 600 3768 22 20,6 0,936 -0,07	98
600 3768 22 20,6 0,936 -0,07	94
	36
650 4082 21.8 20.2 0.927 -0.03	78
0.50 1002 21,0 20,2 0,727 -0,07	72
700 4396 21,8 19,6 0,899 -0,06	57
750 4710 21,4 19,2 0,897 -0,06	52
800 5024 21,2 18,4 0,868 -0,05	8
850 5338 21,2 18 0,849 -0,05	54
900 5652 21,2 17,4 0,821 -0,05	51

Табл.7

Построили соответствующий график зависимости $\phi(v)$. Определили, при какой частоте он будет равен $\pi/2$ (около 400 Γ ц).

Выводы.

- Изучили устройство двухполюсников и четырехполюсников;
- Для двухполюсников рассчитали зависимости модуля импеданса и аргумента от частоты и построили соответствующие графики;
- Для четырехполюсника, схема которого представлена на рисунке 2, при постоянном значении частоты построили теоретические и экспериментальные кривые зависимости $\varphi(R)$;

