MATH H105: Homework 1

William Guss 26793499 wguss@berkeley.edu

February 11, 2016

55. Take the following dx_{321} , dx_{546} . See their wedge product,

$$dx_{321} \wedge dx_{546}$$

$$= dx_{3} \wedge dx_{2} \wedge dx_{1} \wedge dx_{5} \wedge dx_{4} \wedge dx_{6}$$

$$= -dx_{2} \wedge dx_{3} \wedge dx_{1} \wedge dx_{5} \wedge dx_{4} \wedge dx_{6}$$

$$= dx_{1} \wedge dx_{2} \wedge dx_{3} \wedge dx_{5} \wedge dx_{4} \wedge dx_{6}$$

$$= dx_{1} \wedge dx_{2} \wedge dx_{3} \wedge dx_{4} \wedge dx_{5} \wedge dx_{6}$$

$$= dx_{12} \wedge dx_{3} \wedge dx_{4} \wedge dx_{5} \wedge dx_{6}$$

$$= dx_{12} \wedge dx_{34} \wedge dx_{5} \wedge dx_{6}$$

$$= dx_{12} \wedge dx_{34} \wedge dx_{56}$$

$$= dx_{12} \wedge dx_{3456}$$

$$= dx_{123456}.$$
(1)

- 56. False. Observe that a=0 if and only if a=-a. Take ω to be a k-form. Then observe that $\omega \wedge \omega = (-1)^{k^2} \omega \wedge \omega$ if we rearrange the wedge product. So for k odd the square is odd so $\omega \wedge \omega = 0$ except for when $k=2n, \ \omega \wedge \omega \neq 0$.
- 57. Consider the forms $\alpha + \beta$. Then, $d(\alpha + \beta) = d(fdx_I + gdx_I) = d((f+g) \wedge dx_I) = d(f+g) \wedge dx_I = (df+dg) \wedge dx_I = df \wedge dx_I + dg \wedge dx_I = d(\alpha) + d(\beta)$.

58.

59.

60.

61. See 56.