Implementation of Lexical Analysis

Lecture 4

Prof. Aiken CS 143 Lecture 4

Written Assignments

- WA1 assigned today
- · Due in one week
 - 11:59pm
 - Electronic hand-in

Prof Aiken CS 143 Lecture 4

Tips on Building Large Systems

- · KISS (Keep It Simple, Stupid!)
- Don't optimize prematurely
- · Design systems that can be tested
- It is easier to modify a working system than to get a system working

Prof Aiken CS 143 Lecture 4

Outline

- · Specifying lexical structure using regular expressions
- Finite automata
 - Deterministic Finite Automata (DFAs)
 - Non-deterministic Finite Automata (NFAs)
- Implementation of regular expressions RegExp => NFA => DFA => Tables

Prof. Aiken CS 143 Lecture 4

Notation

- · There is variation in regular expression notation
- · Union: A | B
- = A + B
- Option: A + ε
- = A?
- Range: 'a' +' b' +...+' z'
- = [a-z]
- Excluded range:
 - complement of $[a-z] \equiv [^a-z]$

Prof. Aiken CS 143 Lecture 4

Regular Expressions in Lexical Specification

- Last lecture: a specification for the predicate $s \in L(R)$
- · But a yes/no answer is not enough!
- · Instead: partition the input into tokens
- · We adapt regular expressions to this goal

Regular Expressions => Lexical Spec. (1)

- 1. Write a rexp for the lexemes of each token
 - Number = digit +
 - Keyword = 'if' + 'else' + ...
 - · Identifier = letter (letter + digit)*
 - · OpenPar = '('
 - .

Prof. Aiken CS 143 Lecture 4

Regular Expressions => Lexical Spec. (2)

- 2. Construct R, matching all lexemes for all tokens
 - R = Keyword + Identifier + Number + ... = $R_1 + R_2 + ...$

Prof Aiken CS 143 Lecture 4

Regular Expressions => Lexical Spec. (3)

- 3. Let input be $x_1...x_n$ For $1 \le i \le n$ check
 - $x_1...x_i \in L(R)$
- 4. If success, then we know that
 - $x_1...x_i \in L(R_i)$ for some j
- 5. Remove $x_1...x_i$ from input and go to (3)

Prof. Aiken CS 143 Lecture 4

Ambiguities (1)

- · There are ambiguities in the algorithm
- · How much input is used? What if
 - $x_1...x_i \in L(R)$ and also
 - $x_1...x_K \in L(R)$
- Rule: Pick longest possible string in L(R)
 - The "maximal munch"

Prof Aiken CS 143 Lecture 4

10

Ambiguities (2)

- · Which token is used? What if
 - $x_1...x_i \in L(R_i)$ and also
 - $x_1...x_i \in L(R_k)$
- Rule: use rule listed first (j if j < k)
 - Treats "if" as a keyword, not an identifier

Prof. Aiken CS 143 Lecture 4

11

Error Handling

- What if
 - No rule matches a prefix of input?
- · Problem: Can't just get stuck ...
- Solution:
 - Write a rule matching all "bad" strings
 - Put it last (lowest priority)

Summary

- Regular expressions provide a concise notation for string patterns
- · Use in lexical analysis requires small extensions
 - To resolve ambiguities
 - To handle errors
- · Good algorithms known
 - Require only single pass over the input
 - Few operations per character (table lookup)

Prof. Aiken CS 143 Lecture 4

Finite Automata

- Regular expressions = specification
- Finite automata = implementation
- · A finite automaton consists of
 - An input alphabet ∑
 - A set of states 5
 - A start state n
 - A set of accepting states $F \subseteq S$
 - A set of transitions state → input state

Prof. Aiken CS 143 Lecture 4

14

Finite Automata

Transition

$$s_1 \rightarrow^a s_2$$

Is read

In state s_1 on input "a" go to state s_2

- · If end of input and in accepting state => accept
- · Otherwise => reject

Prof. Aiken CS 143 Lecture 4

Finite Automata State Graphs

A state

· The start state

· An accepting state

· A transition

Prof. Aiken CS 143 Lecture 4

A Simple Example

· A finite automaton that accepts only "1"

Prof. Aiken CS 143 Lecture 4

Another Simple Example

- · A finite automaton accepting any number of 1's followed by a single 0
- Alphabet: {0,1}

And Another Example

- · Alphabet {0,1}
- · What language does this recognize?

Prof. Aiken CS 143 Lecture 4

19

Epsilon Moves

Another kind of transition: ε-moves

 Machine can move from state A to state B without reading input

Prof. Aiken CS 143 Lecture 4

Deterministic and Nondeterministic Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No ε-moves
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have ε-moves

Prof. Aiken CS 143 Lecture 4

Execution of Finite Automata

- A DFA can take only one path through the state graph
 - Completely determined by input
- · NFAs can choose
 - Whether to make $\epsilon\text{-moves}$
 - Which of multiple transitions for a single input to take

Prof. Aiken CS 143 Lecture 4

22

Acceptance of NFAs

An NFA can get into multiple states

• Input: 1 0 0

Rule: NFA accepts if it can get to a final state

Prof. Aiken CS 143 Lecture 4

NFA vs. DFA (1)

- NFAs and DFAs recognize the same set of languages (regular languages)
- · DFAs are faster to execute
 - There are no choices to consider

Prof. Aiken CS 143 Lecture 4

CS 143 Lecture 4 24

NFA vs. DFA (2) • For a given language NFA can be simpler than DFA NFA DFA

• DFA can be exponentially larger than NFA

Prof. Aiken CS 143 Lecture 4

NFA to DFA: The Trick

- · Simulate the NFA
- · Each state of DFA
 - = a non-empty subset of states of the NFA
- · Start state
 - = the set of NFA states reachable through $\epsilon\text{-moves}$ from NFA start state
- Add a transition $S \rightarrow a S'$ to DFA iff
 - S' is the set of NFA states reachable from any state in S after seeing the input a, considering ϵ moves as well

Prof. Aiken CS 143 Lecture 4

NFA to DFA. Remark

- · An NFA may be in many states at any time
- · How many different states?
- If there are N states, the NFA must be in some subset of those N states
- · How many subsets are there?
 - 2N 1 = finitely many

Prof. Aiken CS 143 Lecture 4

32

34

36

Implementation

- · A DFA can be implemented by a 2D table T
 - One dimension is "states"
 - Other dimension is "input symbol"
 - For every transition $S_i \rightarrow^a S_k$ define T[i,a] = k
- · DFA "execution"
 - If in state S_i and input a, read T[i,a] = k and skip to state S_v
 - Very efficient

Prof. Aiken CS 143 Lecture 4

Implementation (Cont.)

- NFA -> DFA conversion is at the heart of tools such as flex
- · But, DFAs can be huge
- In practice, flex-like tools trade off speed for space in the choice of NFA and DFA representations