Taller Interpolacion

Juan José Bolaños David Andres Duarte David Saavedra

Profesora: Eddy Herrera

Punto #1

Demuestre que dados los n+1 puntos distintos (xi,yi) de una función definida y continua en [a,b] el polinomio interpolante que incluye a todos los puntos es único

Unicidad del polinomio interpolante

Unicidad del polinomio interpolante

$$R2(x) = Q2(x) - P2(x)$$

$$R2(x0) = Q2(x0) - P2(x0) = 0$$

$$R2(x1) = Q2(x1) - P2(x1) = 0$$

$$R2(x2) = Q2(x2) - P2(x2) = 0$$

Unicidad del polinomio interpolante

$$R2(x0) = Q2(x0) - P2(x0) = 0$$

 $R2(x1) = Q2(x1) - P2(x1) = 0$
 $R2(x2) = Q2(x2) - P2(x2) = 0$

Punto #5

Utilice la interpolación de splines cubícos para el problema del contorno del perrito que esta en el libro: Numerical Analysis, Ninth Edition. Richard L. Burden and J. Douglas Faires (Chapter 3 pg 164, exercise 32), este debe incluir la parte inferior del perrito.

QUÉ SON LOS SPLINES CUBÍCOS?

#N+1DATOS

N POLINOMIOS

4N ECUACIONES

Función cúbica

$$ax^3 + bx^2 + cx + d$$

SPLINES CUBÍCOS

