

INTRODUCCIÓN

Los grafos sirven para representar relaciones arbitrarias (no necesariamente jerárquicas) entre objetos de datos

APLICACIONES

- Circuitos electrónicos
- Tarjetas impresas
- Circuitos integrados
- Redes de transporte
- Autopistas
- Vuelos
- Redes de ordenadores
- LANs
- Internet
- Web
- Planeación (rutas críticas)
- Planificación de las tareas que completan un proyecto

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 3

EJEMPLO DE USO DE GRAFOS

•En una red de carreteras las poblaciones representan los vértices del grafo y las carreteras de unión de dos poblaciones, los arcos, de modo que a cada arco se asocia información tal como la distancia entre dos ciudades, el consumo de gasolina por automóvil, etc.

DEFINICIONES

- Un grafo consiste en un conjunto de vértices o nodos (V) y un conjunto de arcos o aristas (A).
- •Un grafo se representa con el par G = (V,A).
- El número de elementos de V se llama orden del grafo
- Un grafo nulo es un grafo de orden cero
- Un arco o arista está formado por un par de nodos u y v, y se representa por (u,v)
- •Un grafo es dirigido (o digrafo) si los pares de nodos que forman los arcos son ordenados y se representan $u \rightarrow v$.

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 5

DEFINICIONES

- •Un grafo no dirigido es aquel que los arcos están formados por pares de nodos no ordenados, se representa u v.
- Si (u,v) es una arista en el conjunto de aristas del grafo A(G), entonces u y v se dice que son vértices adyacentes.
- Es decir, dos vértices son adyacentes si hay un arco que los une.
- Un arco tiene, a veces, asociado un factor de peso, en cuyo caso se dice que es un grafo valorado o ponderado.

FUNDAMENTOS: GRAFOS DIRIGIDOS

Grafo no dirigido

 $V(G1) = \{a,b,c,d\}$

 $A(G1) = \{(a,b),(a,d),(b,c),(b,d)\}$

Adyacentes a a: b, d

Adyacentes a b: a, c, d

Grafo dirigido

 $V(G2) = \{1,3,5,7,9\}$

 $A(G2) = \{(1,3), (3,1), (9,1), (3,5), (5,7)\}$

Adyacentes a 1: 3

Adyacentes a 3: 1, 5

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP)

FUNDAMENTOS

- •Grado de un vértice (o nodo)
- •En un grafo no dirigido
 - Grado de un nodo u = nº de aristas que contienen a u
- En un grafo dirigido
 - Grado de entrada de u = nº de arcos que llegan a u
 - Grado de salida de $u = n^0$ de arcos que salen de u

Grado entrada/salida para:

3?

9?

1?

5?

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 8

M.C. Yalú Galicia Hernández (FCC/BUAP)

FUNDAMENTOS

- Grafos conexos
- Un grafo no dirigido es conexo si existe un camino entre cualquier par de nodos que forman el grafo
- Ejemplos:

- Grafos fuertemente conexos
 - Un grafo <u>dirigido</u> es fuertemente conexo si existe un camino entre cualquier par de nodos que forman el grafo
 - Ejemplos:

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 9

FUNDAMENTOS

- Grafos Completos
- Un grafo completo es aquel en que cada vértice está conectado con todos y cada uno de los restantes nodos.
- Si existen n vértices, habrá (n-1) aristas en un grafo completo y dirigido, y n(n-1)/2 aristas en un grafo no dirigido completo.
- Ejemplos:

Grafo completo no dirigido

Grafo completo dirigido

UN GRAFO CON V VÉRTICES TIENE A LO MÁS V (V-1)/2 ARISTAS

 Prueba: El total de V2 posible pares de vértices incluyen los vértices con bucles y cuentan doble para cada par de vértice distinto, entonces el número de aristas es a lo más

$$(V2 - V)/2 = V(V - 1)/2.$$

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 11

FUNDAMENTOS: CAMINO

- Un camino P de longitud n en el grafo G desde u0 a un es la secuencia de n+1 vértices P = (u0, u1, ..., un) tal que (ui,ui+1) son arcos de G para 0 ≤ i ≤ n
- Un camino es simple si todos los nodos que forman el camino son distintos, pudiendo ser iguales los extremos del camino
- Ejemplo:
- P1 es simple
- P2 no es simple

FUNDAMENTOS: CICLOS Y BUCLES

- Un ciclo es un camino simple cerrado con u0=un, compuesto al menós por tres nodos
- Un ciclo es simple si todos sus vértices y arcos son distintos
- Un arco que va desde un vértice a sí mismo (u,u) se denomina bucle o lazo
- Ejemplo
- C1 es un ciclo simple
- C2 es un ciclo no simple

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 13

ACTIVIDAD INDIVIDUAL

- Obtener todos los caminos de vértice 1 al 4 y del 4 a cualquier otro vértice
- Determinar cual de ellos es simple
- Hay cliclos? Cual?
- •¿Se trata de un grafo conexo?

TAD GRAFO

- Composición:
- <grafo> :: = {<vertice>} + {<arista>}
- <vertice> ::= <<refVertice>> + [<<info>>]
- <arista> ::= <<refVertice>> + <<refVertice>>
- -<grafoEtiquetado> :: = {<vertice>} +
 {<aristaEtiquetada>}
- -<vertice> ::= <<refVertice>> + [<<info>>]

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 15

TAD GRAFO: OPERACIONES

Creación del grafo	crearGrafo (grafo)
Inserción de vértices	insertarVertice(grafo, vertice)
Eliminación de vértices	borrarVertice(grafo, referenciaVertice)
Inclusión de aristas	insertarArista(grafo, vertice1, vertice2)
Borrar aristas	borrarArista(grafo,arista)
Recorrido del grafo	recorrer(grafo,tipoRecorrido)

TAD GRAFO: OPERACIONES

Acceso a los vertices	info(referenciaVertice) → Informacion grado(referenciaVertice) → Entero gradoEntrante(referenciaVertice) → Entero gradoSaliente(referenciaVertice) → Entero adyacentes(referenciaVertice) → {referenciaVertice} incidentes{referenciaVertice} → {referenciaVertice} esAdyacente(refenciaVertice1, referenciaVertice2) → Boolean
Modificación de vertices	asignarInfo(referenciaVertice, valorInformacion)

Acceso a las aristas	vertices(referenciaArista) → (refVertice, refVertice) destino(referenciaArista) → refVertice origen(referenciaArista) → refVertice etiqueta((referenciaArista) → etiqueta
Modificación de aristas	asignarEtiqueta(referenciaArista, valorEtiqueta)

REPRESENTACIÓN DE GRAFOS

- Matriz de adyacencias
- Sea G = (V,A) un grafo de n nodos, suponemos que los nodos $V = \{u1,...,un\}$ están ordenados y podemos representarlos por sus ordinales $\{1,2,...,n\}$.
- La representación de los arcos se hace con una matriz A de nxn elementos aij definida:

1 si hay arco (ui,uj)
aij
0 si no hay arco (ui,uj)

 En resumen, la matriz de advacencia a es un arreglo de dos dimensiones que representa las conexiones entre pares de vértices.

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 19

. , ,

ACTIVIDAD INDIVIDUAL

•Obtén la matriz de adyacencia para el siguiente grafo.

ACTIVIDAD COLABORATIVA

En binas deducir la matriz de adyacencia para el siguiente grafo con aristas ponderadas.

REPRESENTACIÓN

- Matriz de adyacencia
- Poco eficiente si el nº de vértices varía a lo largo del tiempo de vida del grafo
- Puede darse el caso de que el nº de vértices sea mayor del previsto inicialmente
- Poco eficiente cuando el grafo tiene pocos arcos (la matriz es "dispersa")
- Listas de adyacencia
- Representar una lista de todos los vértices
- Cada vértice guarda una lista de adyacencia con un objeto arista para cada vértice alcanzable desde él

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 23

REPRESENTACIÓN: LISTAS DE ADYACENCIA

REPRESENTACIÓN: LISTAS DE ADYACENCIA

ACTIVIDAD INDIVIDUAL

•Obtener la lista de adyacencia para el siguiente grafo.

ACTIVIDAD COLABORATIVA

En binas obtener la lista de adyacencia para el siguiente grafo con aristas ponderadas.

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 27

¿QUE HEMOS APRENDIDO?

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 29

RECORRIDOS EN GRAFOS

- Muchas de las aplicaciones computacionales naturalmente incluyen no solo un conjunto de elementos sino un conjunto de conexiones entre pares de esos elementos
- Las relaciones implicadas por esas conexiones guían inmediatamente a un conjunto de preguntas:
- ¿Hay alguna manera de ir de un elemento a otro siguiendo las conexiones?
- ¿Cuántos otros elementos pueden ser alcanzados desde un elemento dado?
- ¿Cual es la mejor manera de ir desde un elemento a otro?

ALGORITMOS DE BÚSQUEDA O RECORRIDOS EN GRAFOS

- Recorrer un grafo consiste en pasar exactamente una vez por cada uno de los vértices del grafo en busca de algún vértice en particular.
- Existen varias formas de realizar este proceso dependiendo del objetivo particular:
- Recorrido o búsqueda primero en profundidad DFS (Depth-First Search)
- Recorrido o búsqueda primero en achura BFS (Breadth-First Search)

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 31

RECORRIDOS: OPERACIONES AUXILIARES

- Marcar vértice como visitado
- Si los vértices están identificados por algún tipo ordinal, emplear un conjunto que contenga los identificadores de los vértices visitados
- Encontrar los vértices adyacentes
- Con matrices de adyacencia: recorrer la fila correspondiente al vértice, buscando columnas igual a 1
- Con listas de advacencia: recorrer la lista
- Estructuras auxiliares
- TDA Pila en Profundidad
- TDA Cola en Anchura

RECORRIDOS

- Primero en profundidad (DFS: Depth First Search)
- · Visitar vértice inicial vi
- · Visitar vértice adyacente a vi
- ·... proceder así hasta encontrar uno ya visitado...
- Volver atrás hasta llegar a un vértice con adyacentes sin visitar
- El recorrido termina cuando volviendo atrás llegamos al vértice inicial vi y no quedan adyacentes por recorrer

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 33

RECORRIDO PRIMERO EN PROFUNDIDAD

Estructuras de Datos GRAFOS (parte 1)

RECORRIDO EN PROFUNDIDAD

```
DFS(vi)
{
 marcar vi como visitado
 para cada vk adyacente a vi
 si vk no visitado
 entonces DFS(vk)
}
```

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 35

RECORRIDO PRIMERO EN PROFUNDIDAD

	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0	1	1	1	0	0	0	0	0	0	0	0	0
2	1	0	0	1	1	0	0	0	0	0	0	0	0
3	1	0	0	1	0	1	1	0	0	0	0	0	0
4	1	1	1	0	0	1	1	1	0	0	0	0	0
5	0	1	0	0	0	0	0	1	1	0	0	0	0
6	0	0	1	1	0	0	0	0	0	1	0	0	0
7	0	0	1	1	0	0	0	0	0	1	0	0	0
8	0	0	0	1	1	0	0	0	0	0	1	0	0
9	0	0	0	0	1	0	0	0	0	0	1	1	0
10	0	0	0	0	0	1	1	0	0	0	1	0	1
11	0	0	0	0	0	0	0	1	1	1	0	0	1
12	0	0	0	0	0	0	0	0	1	0	0	0	1
13	0	0	0	0	0	0	0	0	0	1	1	1	0

ACTIVIDAD INDIVIDUAL

Obtener la matriz de adyacencia y el recorrido DFS del siguiente grafo. Inicia en el nodo a

RECORRIDO PRIMERO EN PROFUNDIDAD

Solución

a b c e d f g h i j

RECORRIDOS

- Primero en anchura (BFS: Breadth First Search)
- · Visitar vértice inicial vi
- · Visitar todos los vértices adyacentes a vi
- Al terminar, comenzar a visitar los adyacentes a los adyacentes a vi
- ... proceder así hasta que no queden vértices por visitar

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 39

RECORRIDOS: ANCHURA

```
Inicio

marcar vi como visitado
meter vi en cola Q
mientras cola Q no vacía hacer
sacar v de cola Q
para cada vk adyacente a v hacer
si vk no visitado entonces
marcar vk visitado
meter vk en cola Q
fin_si
fin_para
fin_mientras
Fin
```

RECORRIDO PRIMERO EN ANCHURA

RECORRIDO PRIMERO EN ANCHURA

	1	2	3	4	5	6	7	8	9	10	11	12	13		1
1	0	1	1	1	0	0	0	0	0	0	0	0	0		2
2	1	0	0	1	1	0	0	0	0	0	0	0	0		3
3	1	0	0	1	0	1	1	0	0	0	0	0	0		4
4	1	1	1	0	0	1	1	1	0	0	0	0	0		5
5	0	1	0	0	0	0	0	1	1	0	0	0	0		6
6	0	0	1	1	0	0	0	0	0	1	0	0	0		
7	0	0	1	1	0	0	0	0	0	1	0	0	0		7
8	0	0	0	1	1	0	0	0	0	0	1	0	0		8
9	0	0	0	0	1	0	0	0	0	0	1	1	0		9
10	0	0	0	0	0	1	1	0	0	0	1	0	1		10
11	0	0	0	0	0	0	0	1	1	1	0	0	1		111
12	0	0	0	0	0	0	0	0	1	0	0	0	1		11
13	0	0	0	0	0	0	0	0	0	1	1	1	0		12
														•	13

ACTIVIDAD COLABORATIVA

•En binas obtener la matriz de adyacencia y el recorrido del grafo en anchura

ACTIVIDAD COLABORATIVA

- En equipos de 4, suponiendo que se cuenta con la clase Grafo como se muestra.
 - Implementar los recorridos en profundidad y anchura

¿QUE HEMOS APRENDIDO?

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 45

ALGORITMOS DEL CAMINO MÁS CORTO

Sin pesos, Dijkstra, costos negativos

ALGORITMOS DEL CAMINO MÁS CORTO

- •Este tipo de aplicación es muy generalizado, pues uno de los objetivos de tener un grafo, es poder analizar los desplazamientos desde cualquier nodo a los demás que conforman el grafo, lo que se puede utilizar desde diferentes puntos de vista.
- •Fundamentalmente, el planteamiento es el siguiente: a partir de un nodo i del grafo, encontrar los recorridos óptimos (caminos mínimos) para ir a cada uno de los nodos restantes, a partir de la base de que los arcos pueden representar, además de la existencia de la conexión, el costo o distancia para desplazarse de un nodo a otro.
- Existen varias formas de alcanzar la solución, algunas de ellas son: Longitud del camino sin pesos, Dijkstra, costos negativos, Floyd, etc.

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 47

ALGORITMOS DEL CAMINO MÍNIMO

- •Supongamos que se cuenta con un grafo dirigido G=(V,A) en el cual cada arista (vi, vj) tiene asociado un costo Ck no negativo y donde un vértice se especifica como origen.
- El Costo de un camino {v1, v2, ... vn} es

$$\sum_{k=1}^{n-1} C_k$$

 Donde Ck es la suma de los costos de las aristas del camino. A esto se le llama longitud ponderada del camino o longitud del camino.

ALGORITMOS DEL CAMINO MÍNIMO

La idea es determinar el costo del camino más corto desde el origen a todos los demás vértices.

Camino más corto: { v1, v4, v7, v6 }

APLICACIONES ...

- Hay muchos ejemplo donde es interesante resolver el problema del camino más corto o longitud mínima
- Si los vértices representan computadoras, las aristas podrían representar costos de comunicación o costos de tiempo, entonces el camino representaría la vía más económica para enviar información de una computadora a otra.
- Si el grafo representa un mapa de vuelos, cada vértice representaría una ciudad y cada arista una ruta aérea. El camino más corto determinaría el tiempo de viaje mínimo para ir de cierta ciudad a todos los destinos.

PROBLEMA DE LA RUTA MAS CÓRTA

- El problema de la ruta más corta se puede resolver utilizando programación lineal sin embargo, debido a que el método simplex es de complejidad exponencial, se prefiere utilizar algoritmos que aprovechen la estructura en red que se tiene para estos problemas.
- Para ello, el algoritmo mantiene un conjunto S de nodos cuyos pesos finales de camino mínimo desde el nodo origen ya han sido determinados.

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 51

ALGORITMO DE DIJKSTRA

```
Dijkstra (G, s)
Inicializar
Para cada v perteneciente a V[G] Hacer
     d[v] = infinito
     p[v] = nulo
     d[s] = 0
     S = vacío
     Q = V[G]
     mientras Q no vacío Hacer
        u = nodo v con min d[v]
        S = S unión u //se añade al conjunto de nodos finalizados
        Para cada v perteneciente Adyacente u Hacer
          Si d[v] > d[u] + w(u,v) Entonces
             d[v] = d[u] + w(u,v)
             p(v) = u
Fin
```

CAMINOS DE LONGITUD MÍNIMA: DIJKSTRA

- Pasos iniciales:
- Crear una tabla con la siguiente configuración inicial.
- V: son los vértices
- Visitado: indica si el vértice ha sido o no visitado.
- dv: es la distancia temporal por cada vértice. Será la longitud del camino más corto del origen a Vk, usando como intermediarios sólo vértices conocidos.
- pV: Vértice predecesor o anterior, es el último vértice que ocasionó un cambio de dv.

٧	visitado	dv	pv
V1	F	0	0
V2	F	∞	0
V3	F	 ∞	0
V4	F	. ∞ I	0
V5	F	 ∞	0
V6	F	∞	0
V7	F	∞ 	0

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 53

CAMINOS DE LONGITUD MÍNIMA: DIJKSTRA

- Asigna etiquetas temporales (dv) a cada vértice, que son cotas superiores de las distancias mínimas del vértice origen a cada uno de los demás
- Las etiquetas temporales se van convirtiendo en permanentes en cada iteración, representando entonces la distancia mínima del origen a cada vértice
- Comienza con
 - dv = 0 para el vértice origen
 - \cdot dv = ∞ (infinito)

CAMINOS DE LONGITUD MÍNIMA: DIJKSTRA

```
Inicio
Mientras exista Vertice no vistado
vi = nodo no visitado con min dv
poner vi como visitado
para cada vk adyacente a vi hacer
si vk no está visitado entonces
si dv(vk) > dv(vi) + Costo(vi, vk) entonces
dv(vk) = dv(vi) + Costo(vi , vk)
pv(vk) = vi
fin_si
fin_para
Fin_mientras
Fin
```


V	Visitado	dv	р٧
V1	F	0	
V2	F	 ∞	-
V3	F	∞ 	
V4	F	∞	-
V5	F	∞ ∞	_ _
V6	F	∞	-
V7	F	 ∞ 	

٧	visitado	dv	pv
V1	V	0	0
V2	F	2	v1
V3	F	i ∞ i	0
V4	F	1	v1
V5	F	i ∞ i	0
V6	F	∞	0
V7	F	∞ 	0

V	visitado	dv	pv
V1	V	0	0
V2	F	2	v1
٧3	F	3	v4
V4	V	1	v1
V5	F	3	v4
V6	F	9	v4
V7	F	5	v4

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 57

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 59

	٧	visitado	dv	pν	
	V1	V	0	0	
	V2	V	2	v1	
	V3	V	3	v4	
	V4	V	1	v1	Si $dv(v_7) > dv(v_5) + Costo(v_7, v_5)$
	V5	V	3	v4	ajustar dv(v ₇)
ĺ	V6	F	9	v4	Sino dejarlo igual
	V7	F	5	v4	

Estructuras de Datos GRAFOS (parte 1)

V	visitado	dv	pv
V1	V	0	0
V2	V	2	v1
٧3	V	3	v4
V4	V	1	v1
V5	V	3	v4
٧6	F	9	v4
V7	V	5	v4

Si $dv(v_6) > dv(v_7) + Costo(v_6, v_7)$ ajustar $dv(v_6)$ Sino dejarlo igual

 $dv_7 + costo(7,6) = 5 + 1 = 6$ $dv_6 = 9$

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 61

V	visitado	dv	pv
V1	Т	0	0
V2	T	2	v1
٧3	T	3	v4
V4	T	1	v1
V5	T	3	v4
٧6	F	6	v7
V7	Т	5	v4

٧	visitado	dv	pv	
V1	Т	0	0	K
V2	Т	2	v1	
V3	Т	3	v4	
V4	Т	1	v1	
V5	Т	3	v4	
V6	Т	6	v7	
V7	Т	5	v4	l

El camino mínimo para ir de v1 a v6 es: v1, v4, v7, v6 costo 6

ACTIVIDAD COLABORATIVA

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 63

 En binas, aplicar el algoritmo de Dijkstra para obtener el camino de longitud mínima del vértice a al j. Suponer que todos los pesos de las aristas son 1

ACTIVIDAD COLABORATIVA

- En equipos de 4, suponiendo que se cuenta ya con la clase Grafo implementada usando un arreglo de Vértices y una matriz de adyacencia de enteros, agregar los siguientes métodos:
- Crear la tabla inicial con los valores iniciales correspondientes
- Del arreglo de vértices obtener el vértice con dv mínimo no visitado
 - Vertice getDvMinimo()
- Obtener el costo de la arista
 - int getCosto(String vi, String vk)
 - int getCosto(int vi, int vk)
 - int getCosto(Vertice vi, Vertice vk)

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 65

ACTIVIDAD PLENARIA

Compartiendo la solución con todos

66

¿QUE HEMOS APRENDIDO?

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 67

CAMINOS DE LONGITUD MÍNIMA: COSTOS NEGATIVOS

- Si el grafo tiene aristas de costo negativo, el algoritmo de Dijkstra no funciona.
- •El problema es que una vez que un vértice u se declara conocido es posible que desde algún otro vértice v desconocido haya un camino de regreso a u que sea muy negativo.
- •En tal caso, tomar un camino del origen a v con regreso a u será mejor que hacerlo del origen a u sin usar v.

COSTOS NEGATIVOS O BELLMAN-FORD (NO OPTIMIZADO)

```
BellmanFord(Grafo G, nodo_fuente s)
for v \in V[G] do
 distancia[v]=INFINITO;
 predecesor[v]=NIL
distancia[s]=0
for i=1 to |V[G]-1| do
for (u,v) \in E[G] do
        if distancia[v]>distancia[u] + peso(u,v) then
         distancia[v] = distancia[u] + peso (u,v)
         predecesor[v] = u
// comprobamos si hay ciclos negativo
 for (u,v) \in E[G] do
        if distancia[v] > distancia[u] + peso(u,v) then
                print ("Hay ciclo negativo")
                return FALSE
return TRUE
```

COSTOS NEGATIVOS O BELLMAN-FORD

```
BellmanFord(Grafo G, nodo_fuente s)
for v \in V[G] do
distancia[v]=INFINITO; padre[v]=NIL
distancia[s]=0
encolar(s, Q)
en cola[s]=TRUE
mientras Q!=0 then
u = extraer(0)
  en cola[u]=FALSE
for v \in ady[u] do
       if distancia[v]>distancia[u] + peso(u,v) then
          distancia[v] = distancia[u] + peso (u,v)
          padre[v] = u
          if en cola[v]==FALSE then
               encolar(v, O)
               en_cola[v]=TRUE
```

SOBRE ESTE ALGORITMO

- Este tipo de algoritmos eran originales de ruteo de ARPANET
- http://neo.lcc.uma.es/evirtual/cdd/tutorial/red/bell man.html
- http://neo.lcc.uma.es/evirtual/cdd/applets/Bellman Ford/Example3.html
- http://compprog.wordpress.com/2007/11/29/onesource-shortest-path-the-bellman-ford-algorithm/

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 71

COSTOS NEGATIVOS

- Para poder resolver grafos con costos negativos olvidemos el concepto de vértices conocidos (visitados) ya que el algoritmo necesita ser capaz de cambiar de idea.
- Este algoritmo utiliza una cola e inicia con una tabla como la siguiente

٧	Dv	pV
1	0	0
2	∞	0
3	∞	0
4	∞	0
5	80	0

ALGORITMO COSTOS NEGATIVOS

```
Inicio

encolar vi en cola Q
mientras cola Q no vacía hacer
sacar v de cola Q
para cada vk adyacente a v hacer
si Dv(vk) > Dv(v) + Costo(v, vk) entonces
Dv(vk) = Dv(v) + Costo(v , vk)
pV(vk) = v
si vk no está en cola Q entonces
meter vk en cola Q
fin_si
fin_si
fin_para
fin_mientras
Fin
```


ACTIVIDAD INDIVIDUAL

- Aplicar el algoritmo de costos negativos para obtener el camino de longitud mínima para llegar del vértice A al resto de los vértices.
- obtener el camino mínimo del vértice A al E

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 77

ACTIVIDAD COLABORATIVA

 En binas, aplicar el algoritmo de costos negativos para obtener el camino de longitud mínima del vértice A al R

ACTIVIDAD COLABORATIVA

- En ternas, suponiendo que se cuenta ya con la clase Grafo implementada usando un arreglo de Vértices y una matriz de adyacencia de enteros.
- Implementar en Java el método de Bellman-Ford o Costos negativos

M.C. YALÚ GALICIA HDEZ. (FCC/BUAP) 79

ACTIVIDAD COLABORATIVA

- En equipos de 4
- Analicen el escenario de la "Planta WV"
- Identifiquen cual es el problema que puede ser resuelto utilizando los algoritmos de caminos de costo mínimo (CCM)
 - Dibujen el grafo
 - Apliquen alguno de los algoritmos de costos mínimos para solucionar el problema

QUE APRENDIMOS??

