## **Question 1**

Consider the lossy coaxial capacitor shown in the figure below. The capacitor consists of two perfect conductors at  $r=\alpha$  and r=c and two lossy dielectric media with dielectric permittivities and conductivities  $\varepsilon_i$ ,  $\sigma_i$ , i=1,2. The interface between the two media is at r=b. The capacitor has finite length L in the z-direction, however, its electric field can be approximated by the field of a capacitor with  $L\to\infty$ . The voltage difference between the inner and outer perfect conductor is  $V(r=\alpha)-V(r=c)=V_0$ .



1. Using the Laplace equation, show that the general form of the electric field in the two regions is  $\mathbf{E}_i = \frac{A_i}{r} \mathbf{a}_r$ , i = 1, 2. (4 pts)

| 2. | Using boundary conditions for the volume current density ${\bf J}$ , show | that $\frac{A_1}{A_2}$ | $=\frac{\sigma_2}{\sigma_1}$ . | (2 pts) |
|----|---------------------------------------------------------------------------|------------------------|--------------------------------|---------|
|----|---------------------------------------------------------------------------|------------------------|--------------------------------|---------|

3. Find the resistance R of the resistor. (8 pts)

|  |  | R = |  |  |  |  |  |
|--|--|-----|--|--|--|--|--|
|--|--|-----|--|--|--|--|--|

**Derivation:** 

| 4. | Is there a surface charge densi (you can use $A_1$ , $A_2$ in this cal | ty $ ho_s$ at the interface between the culation). If not, why no | ween the two lossy dieler<br>of ? ( <b>4 pts</b> ) | ectrics? If yes, calculate it |
|----|------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|-------------------------------|
| 5. | Is there a volume charge densi                                         | ty $ ho_v$ within the capacito                                    | r? If yes, why; if not, w                          | hy not ? ( <b>2 pts</b> )     |

## Question 2

1. A thin wire of length L carries current I along the z-axis for  $0 \le z \le L$ . Using the Biot-Savart law, the magnetic field that this wire produces at an arbitrary observation point P(x, y, z) can be expressed as follows:

$$\mathbf{B}(x,y,z) = \frac{\mu_0 I}{4\pi} \int_{z'=0}^{z'=L} \frac{?}{(x^2 + y^2 + (z - z')^2)^{3/2}}$$

Derive the term that is missing in this expression. (10 pts)



Answer:

| 2    |  |  |  |
|------|--|--|--|
| ٠. [ |  |  |  |

**Derivation:** 

2. The charge q shown in the figure moves with constant velocity within the electric field of a parallel plate capacitor with voltage  $V_o$  and plate separation h, due to a constant magnetic field within the capacitor. Find the magnitude and direction of the magnetic flux density  $\mathbf{B}$  of this magnetic field. (4 pts)



Answer:

$$B =$$

**Derivation:** 

- 3. The two circular coils shown in the figure, centered at  $A_1$  and  $A_2$ , support co-directional currents  $I_1 = I_2 = I$ . Let the magnetic field densities generated by each of the two coils alone be  $\mathbf{B_1}$ ,  $\mathbf{B_2}$ . The total magnetic field density  $\mathbf{B}$  at point  $\mathbf{P}$  on the axis is:
  - a) In the positive x direction and has magnitude smaller than the magnitude of  $\mathbf{B}_1$  at P.
  - b) In the positive x direction and has magnitude smaller than the magnitude of  ${f B_2}$  at P.
  - c) In the negative x direction and has magnitude greater than the magnitude of  $\mathbf{B_2}$  at  $\mathbf{P}$ . (0.5  $\rho$   $\stackrel{\leftarrow}{\leftarrow}$ )
  - d) In the negative x direction and has magnitude greater than the magnitude of  $\mathbf{B_1}$  at P. (0,5 pc) Choose all answers that apply and briefly explain. (4 pts)



- 4. Which of the following expressions can represent a magnetic flux density B? Choose all answers that apply and briefly explain. (2 pts)
  - a)  $B_0 \mathbf{a}_x$ , where  $B_0$  is a constant.
  - b)  $x y a_x$ .
  - c)  $\frac{B_0}{r}$   $\mathbf{a}_r$ , where  $B_0$  is a constant.
  - d)  $\frac{B_0}{r}$   $\mathbf{a}_{\phi}$ , where  $B_0$  is a constant.