

Problemi astratti

- Un problema è un'entità astratta (es. il TSP).
- Una istanza del problema è un suo caso particolare in cui vengono specificati tutti i suoi elementi costitutivi.
- Un programma risolve un problema se può generare una soluzione in corrispondenza di qualunque sua istanza.

Vittorio Maniezzo - Universita di Bologna

Risolvibilitá

Per poter risolvere un problema con un programma è necessario codificare l'istanza da risolvere con una stringa (binaria) comprensibile dal programma.

Codifica: corrispondenza fra l'insieme delle istanze del problema e un insieme di stringhe binarie.

$$e: I \rightarrow \{0,1\}^*$$

Un algoritmo risolve un problema in tempo O(T(n)) se, quando gli viene fornita la codifica binaria di una istanza i di lunghezza n=|i|, produce una soluzione al più in un tempo O(T(n)).

Vittorio Maniezzo - Universita di Bologna

3

Problemi decisionali

I problemi decisionali sono una classe di problemi dove per ogni possibile ingresso un algoritmo deve scegliere una di due risposte possibili: "si" o "no".

Si tratta quindi della classe delle funzioni computabili del tipo

$$f: \mathbf{N} \to \{0,1\}$$

Vittorio Maniezzo - Universita di Bologna

Δ

Problemi decisionali, esempi

- Problema del sottografo completo. Dati un grafo G e un intero n, stabilire se il grafo G contiene un sottografo completo con n vertici.
- Problema del cammino hamiltoniano. dato un grafo G stabilire se esiste un cammino che tocchi tutti i vertici di G una e una sola volta.
- Problema del cammino euleriano. Dato un grafo G stabilire se esiste un cammino che percorra tutti gli archi di G una e una sola volta.

Vittorio Maniezzo - Universita di Bologna

5

Probl. decisionali, CNF

CNF (Conjunctive Normal Form, forma normale congiuntiva): una formula booleana del tipo:

$$(x_{1,1} \lor x_{1,2} \lor ... \lor x_{1,k1}) \ \& \ (x_{2,1} \lor x_{2,2} \lor ... \lor x_{2,k2}) \ \& \ ... \ \& \ (x_{n,1} \lor x_{n,2} \lor ... \lor x_{n,kn}),$$

dove $x_{i,j} = v_s$ o $x_{i,j} = \neg v_s$ per un dato insieme di variabili $\{v_1,...,v_m\}$.

 Problema SAT. Data una CNF F stabilire se F è soddisfacibile, cioè se esiste un assegnamento di valori 0 e 1 alle variabili in F tale per cui il valore di F per quell'assegnamento è 1.

Vittorio Maniezzo - Universita di Bologna

Probl. decisionali, k-CNF

k-CNF: una formula booleana del tipo:

$$(x_{1,1} \lor x_{1,2} \lor ... \lor x_{1,k}) \& (x_{2,1} \lor x_{2,2} \lor ... \lor x_{2,k}) \& ... \& (x_{n,1} \lor x_{n,2} \lor ... \lor x_{n,k}),$$

ogni congiunto contiene k termini disgiuntivi, e $x_{i,j} = v_s$ o $x_{i,j} = \neg v_s$ per un insieme dato di variabili $\{v_1,...,v_m\}$.

 k-SAT. Data una k-CNF F, stabilire se F è soddisfacibile, cioè se esiste un assegnamento di valori 0 e 1 alle variabili in F, tale per cui il valore di F per quell'assegnamento è 1.

Vittorio Maniezzo - Universita di Bologna

7

Problemi di ottimizzazione

Spesso il problema non richiede di rispondere si o no, ma di trovare il massimo o il minimo di una funzione (es. TSP, knapsack, scheduling, ...)

Questi sono problemi di ottimizzazione, sono comunque riconducibili a problemi di decisione chiedendosi se esiste una soluzione di costo inferiore (superiore) a una soglia k e istanziando ad es. una ricerca binaria per il minimo k intero.

La complessità di un problema di ottimizzazione e del suo corrispondente problema decisionale è la stessa.

Vittorio Maniezzo - Universita di Bologna

Le classi P ed NP

- Un problema decisionale è nella classe P se esiste un algoritmo che *risolve* qualsiasi istanza del problema P in tempo polinomiale.
- Un problema decisionale è nella classe NP se esiste un algoritmo che, data una istanza i e una sua possibile soluzione s, verifica la correttezza della soluzione s in tempo polinomiale (rispetto alla dimensione dell'istanza).

Vittorio Maniezzo - Universita di Bologna

9

La classe NP

Più formalmente, un problema è in NP se esiste un algoritmo non deterministico che lo risolve in tempo polinomiale.

Un algoritmo non deterministico *in questo contesto* è (molto poco formalmente) un algoritmo che può usare una istruzione di goto "magica" che trasferisce l'esecuzione sempre all'istruzione successiva che minimizza il tempo di completamento del processo.

Uno pseudocodice sarebbe:

. . .

goto(L1,L2,L3)

L1: gestisci il primo caso L2: gestisci il primo caso L3: gestisci il primo caso

Vittorio Maniezzo - Universita di Bologna

NP completezza

 $f: \mathbb{N} \to \{0, 1\}$ è \mathbb{NP} -completo se e solo se:

- *f* ∈ **NP**
- per ogni $g \in \mathbf{NP}$ si ha $g \leq_{p} f$ NPC è la classe dei problemi NP completi.

- se un qualunque problema in NPC è risolvibile in tempo polinomiale, allora P=NP.
- equivalentemente, se un qualunque problema in NP non è risolvibile in tempo polinomiale, allora tutti i problemi in NPC non sono risolvibili in tempo polinomiale.

Vittorio Maniezzo - Universita di Bologna

13

Prove di NP completezza

Difficile: dalla definizione. Si richiede di dimostrare che la funzione è in **NP** e che qualunque altra funzione in **NP** è riducibile polinomialmente alla funzione data.

Questo è stato fatto (*Cook 1971, Levin 1973*) per il problema SAT: stabilire se una data formula CNF è soddisfacibile (versione *circuit SAT*).

Più facile: mostrare che la funzione f è in **NP** quindi mostrare che $g \le_{\mathbf{n}} f$ per qualche problema g che è già noto essere **NP** completo.

Vittorio Maniezzo - Universita di Bologna

15

Riduzioni: metodologia

Riducendo a Q un qualunque problema P' noto essere in NPC, implicitamente si riducono a Q tutti i problemi in NP.

Quindi per dimostrare che un problema Q è in NPC si può:

- 1) dimostrare che Q∈NP
- 2) selezionare un problema P' in NPC
- 3) progettare un algoritmo polinomiale che calcola una funzione h che fa corrispondere ad ogni istanza di P' una istanza di Q
- 4) dimostrare che h è tale per cui $x \in P'$ sse $h(x) \in Q$, $\forall x$

NP completezza, esempi di prove

Problema del sottografo completo (max clique). Dati un grafo G e un intero n stabilire se esiste un sottografo completo di G si n vertici.

Prova di NP-completezza, si parte da SAT (data una CNF F, stabilire se F è soddisfacibile).

Si assume di sapere già che SAT è **NP**-completo.

19

Clique

Clique: dato un grafo G = (V, E), un sottinsieme S dei suoi vertici forma una clique se ogni coppia di vertici di S è connessa

3-sat ≤p Clique

Teorema: Φ è soddisfacibile sse G ha una clique di k vertici

- Φ è soddisfacibile \to G ha una clique di k vertici Se Φ è soddisfacibile allora $\forall C_r$, $\exists \ell_i^r$, un letterale che vale 1. La ℓ_i^r corrisponde a un vertice v_i^r . Allora $V' = \{v_i^r\}$ è una clique (per $r \neq s$ ℓ_i^r è compatibile con ℓ_j^s).
- G ha una clique di k vertici → Φ è soddisfacibile
 Nessun arco in G connette vertici di una tripla (clausola).
 V' ha un vertice per tripla, v_i^r.
 Si può porre ℓ_i^r = 1.

Vittorio Maniezzo - Universita di Bologna

Dato un grafo G, se G' è il grafo complementare di G allora ogni coppia di nodi è connessa in G' se e solo se non è connessa in G.

G'=(V,E') è complemento di $G=(V,E) \leftrightarrow (u,v) \in E'$ sse $(u,v) \notin E$

25

Clique <p Vertex Cover

Vertex Cover:

min |S|, $S \subseteq V$ t.c. $\forall (u,v) \in E$ si ha $u \in S$ e/o $v \in S$ (ogni arco del grafo ha almeno un estremo in S)

Input: <G,k> di CLIQUE

sia G' il complemento di G

Output: <G', |V|-k> di vertex cover.

G ha una clique di dimensione k sse G' ha una copertura di dimensione |V|-k.

Vittorio Maniezzo - Universita di Bologna

Clique Vertex Cover

Tesi. CLIQUE ≤ VERTEX COVER.

- Dato un grafo non orientato G = (V, E), e il suo complemento G' = (V, E'), dove E' = { (v, w) : (v, w) ∉ E}.
- G ha una clique di dimensione k sse G' ha un vertex cover di dimensione |V|-k.

Prova. ←

- Ipotesi: G' ha una cover S' con |S'| = |V| k.
- Considera S = V S'.
- chiaramente |S| = k.
- Per mostrare che S è una clique, considera un arco (v, w) ∈ E'.
 - se $(v, w) \in E'$, allora $v \in S'$, e/o $w \in S'$,
 - se v ∉ S' e w ∉ S', allora (v, w) ∈ E
 - quindi S è una clique in G

Vittorio Maniezzo - Universita di Bologna

31

Vertex Cover ≤p Subset Sum

Subset Sum:

Dato un insieme S di numeri e un numero t, si vuole determinare se esiste un S' \subseteq S tale che la somma dei numeri in S' sia uguale a t.

Dato un grafo G e una opportuna procedura di costruzione di S e t, si dimostra che G ha una copertura di ordine k sse \exists S' \subseteq S di somma t.

. . .

Vittorio Maniezzo - Universita di Bologna

