Department of Applied Mathematics and Computer Science

Introduction to Parallel Computing

Overview

- Parallel Computing
 - The name of the game
 - Programming models
 - Caches revisited
 - Parallel architectures
 - Multi-core everywhere
 - Hardware examples
 - Memory and multi-core

Parallelism is everywhere

- In today's computer installations one has many levels of parallelism:
 - Instruction level (ILP)
 - Chip level (multi-core, multi-threading)
 - System level (SMP)
 - GP-GPUs
 - Clusters

What is Parallelization?

The Name of the Game

What is Parallelization?

An attempt of a definition:

"Something" is parallel, if there is a certain level of independence in the order of operations

"Something" can be:

- A collection of program statements
- An algorithm
- A part of your program
- ► The problem you are trying to solve

Parallelism – when?

Something that does not follow this rule is not parallel !!!

Parallelism – Example 1

```
for (i=0; i<n; i++]
a[i] = a[i] + b[i];
```

Every iteration in this loop is independent of the other iterations

Thread	T=1	T=2
1	a[1]=a[1]+b[1]	a[5]=a[5]+b[5]
2	a[2]=a[2]+b[2]	a[8]=a[8]+b[8]
3	a[3]=a[3]+b[3]	a[12]=a[12]+b[12]
4	a[4]=a[4]+b[4]	a[7]=a[7]+b[7]

Parallelism – Example 2

```
for (i=0; i<n; i++]
a[i] = a[i+1] + b[i];
```

This operation is not parallel!

Proc	T=1	T=2
1	a[1]=a[2]+b[1]	a[4]=a[5]+b[4]
2	a[2]=a[3]+b[2]	a[8]=a[9]+b[8]
3	a[3]=a[4]+b[3]	a[12]=a[13]+b[12]
4	a[5]=a[6]+b[5]	a[7]=a[8]+b[7]

Parallelism – Results example 2

```
Results for P=1
  12512501.0
  12512501.0
  12512501.0
  12512501.0
Results for P=8
  12512508.0
  12512508.0
  12512508.0
  12512508.0
Results for P=32
  12512526.0
  12512530.0
  12512528.0
  12512527.0
Results for P=64
  12512548.0
  12512545.0
  12512549.0
  12512547.0
```

- parallel version of example 2 was run 4 times each on 1, 8, 32 and 64 threads/processors
- Output: sum over all elements of vector a
- □ Except for P=1, the results are:
 - Wrong
 - Inconsistent
 - NOT reproducable
- This is called a 'Data Race'

Parallelism

Fundamental problem:

```
for (i = 0; i < n; i++)
a[i]= a[i+M] + b[i];
```

M = 0: parallel

M >= 1: not parallel

What is a Thread?

- Loosely said, a thread consists of a series of instructions with it's own program counter ("PC") and state
- A parallel program will execute threads in parallel
- These threads are then scheduled onto processing units (P)

Single- vs. multi-threaded

Parallelism vs Concurrency

Concurrent, non-parallel execution:

e.g. multiple threads on a single core CPU

Concurrent, and parallel execution

Parallelism vs Concurrency

Parallelism – Memory Access

Memory section read

Memory section written

parallel

Memory section read

Danger!!!

Memory section written

not parallel! - ... unless one can

... unless one car protect the overlap area

Parallelism – Data Races

- Race conditions can be nasty and difficult to detect:
 - Numerical results differ (slightly) from run to run
 - Difficult to distinguish from numerical side effects
 - Changing the number of threads can make the problem disappear – or appear again
 - Shows very often first when using many threads, i.e. late in development
- There are tools to detect data races
 - Those tools instrument your code, i.e. a detection run takes substantially longer

Numerical Results

Consider:

$$A = B + C + D + E$$

Serial Processing

$$A = B + C$$

$$A = A + D$$

$$A = A + E$$

Parallel Processing

Thread 0

Thread 1

$$T1 = B + C$$

$$T2 = D + E$$

$$T1 = T1 + T2$$

- The roundoff behaviour is different and so the numerical results may be different too
- This is natural for parallel programs, but it may be hard to differentiate it from an ordinary bug

January 2023

Basic concepts

Consider the following code with two loops

```
for (i = 0; i < n; i++)
a[i] = b[i] + c[i];
```

```
for (i = 0; i < n; i++)
d[i] = a[i]; + e[i];
```

Running this in parallel over i might give the wrong answer.

Basic concepts – the barrier

☐ The problem can be fixed:

```
for (i = 0; i < n; i++)
a[i] = b[i] + c[i];
```

wait!

```
for (i = 0; i < n; i++)
d[i] = a[i] + e[i];
```

The barrier assures that no thread starts working on the second loop before the work on loop one is finished.

Basic concepts – the barrier

When to use barriers?

- To assure data integrity, e.g.
 - after one iteration in a solver
 - between parts of the code that read and write the same variables
- Barriers are expensive and don't scale to a large number of threads

Basic concepts – reduction

A typical code fragment:

```
for( i = 0; i < n; i++ ) {
    sum += a[i];
    ...
}</pre>
```

- ☐ This loop can not run in parallel, unless the update of sum is protected. ☐ serial code
- □ An operation like the above is called a "reduction" operation, and there are ways to handle this issue (more later...).

Parallel Overhead

- The total CPU time may exceed the serial CPU time:
 - The newly introduced parallel portions in your program need to be executed
 - Threads need time for sending data to each other and for synchronizing ("communication")
- Typically, things also get worse when increasing the number of threads
- Efficient parallelization is about minimizing the communication overhead

Communication

Serial Execution

Wallclock time

Parallel - Without communication

- Embarrassingly parallel: 4x faster
- Wallclock time is ¼ of serial wallclock time

Parallel - With communication

- Additional communication
- Less than 4x faster
- Consumes additional resources
- Wallclock time is more than ¼
 of serial wallclock time
- Total CPU time increases

Load Balancing

Perfect Load Balancing

- All threads finish in the same amount of time
- ◆No threads is idle

Load Imbalance

- Different threads need a different amount of time to finish their task
- ◆ Total wall clock time increases
- ◆ Program will not scale well

Dilemma – Where to parallelize?

- ◆Parallelization at the highest () level:
 - Low communication cost
 - Limited to 5 processors only
 - Potential load balancing issue
- ◆Parallelization at the lowest () level:
 - Higher communication cost
 - Not limited to a certain number of processors
 - Load balancing probably less of an issue

Scalability

We distinguish ...

- ... how well a solution to some problem will work when the size of the problem increases.
 - typically associated with algorithmic complexity
- ... how well a parallel solution to some problem will work when the number of processing units (PUs) increases.
 - Strong scaling (speed-up) or weak scaling

Scalability – speed-up & efficiency

- ◆ Define the speed-up S(P) as S(P) := T(1)/T(P)
- ◆ The efficiency E(P) is defined as E(P) := S(P)/P
- ◆ In the ideal case, S(P)=P and E(P)=P/P=1=100%
- Unless the application is embarrassingly parallel, S(P) will start to deviate from the ideal curve
- Past this point P_{opt}, the application will get less and less benefit from adding processors
- Note that both metrics give no information on the actual run-time
- As such, they can be dangerous to use

Amdahl's Law

Assume our program has a parallel fraction "f"

This implies the execution time T(1) := f*T(1) + (1-f)*T(1)

On P processors: T(P) = (f/P)*T(1) + (1-f)*T(1)

Amdahl's law:

$$S(P) := T(1) / T(P) = 1 / (f/P + 1-f)$$

Comments:

- This "law' describes the effect that the non-parallelizable part of a program has on scalability
- Note that the additional overhead caused by parallelization and speed-up because of cache effects are not taken into account

Amdahl's Law

- It is easy to scale on a small number of processors
- ◆ Scalable performance however requires a high degree of parallelization i.e. f is very close to 1
- ◆ This implies that you need to parallelize that part of the code where the majority of the time is spent

Amdahl's Law in Practice

We can estimate the parallel fraction "f"

Recall:
$$T(P) = (f/P)*T(1) + (1-f)*T(1)$$

It is trivial to solve this equation for "f":

$$f = (1 - T(P)/T(1))/(1 - (1/P))$$

Example:

$$T(1) = 100$$
 and $T(4)=37 => S(4) = T(1)/T(4) = 2.70$
 $f = (1-37/100)/(1-(1/4)) = 0.63/0.75 = 0.84 = 84%$

Estimated performance on 8 processors is then:

$$T(8) = (0.84/8)*100 + (1-0.84)*100 = 26.5$$

 $S(8) = T/T(8) = 3.78$

Scaling: strong vs. weak

- How does the execution time go down for a fixed problem size by increasing the number of PUs?
 - \blacksquare Amdahl's law \Rightarrow speed-up, i.e. reduce time
 - also known as "strong scaling"
- How much can we increase the problem size by adding more PUs, keeping the execution time approx. constant?
 - \Box Gustafson's law \Rightarrow scale-up, i.e. increase work
 - also known as "weak scaling"

Amdahl's vs Gustafson's law

Amdahl: fixed work

Gustafson: fixed work/PU

Amdahl's vs Gustafson's Law

- Amdahl's law
 - Theoretical performance of an application with a *fixed* amount of parallel work given a particular number of Processing Units (PUs)
- Gustafson's Law:
 - Theoretical performance of an application with a fixed amount of parallel work per PU given a particular number of PUs

Code scalibility in practice – I

- Although Amdahl and Gustafson provide theoretical upper bounds, eventually real data are necessary for analysis
- Inconsistencies in performance especially on shared systems – often appear in singular runs
- Best practice: Monitor codes several times and average the results to filter out periods of heavy usage due to other users

Code scalibility in practice – II

- Ideally, HPC codes would be able to scale to the theoretical limit, but ...
 - Never the case in reality
 - All codes eventually reach a real upper limit on speedup
 - At some point codes become "bound" to one or more limiting hardware factors (memory, network, I/O)

Code scalibility in practice – III

What is Parallelization? - Summary

- Parallelization is simply another optimization technique to get your results sooner
- To this end, more that one processor is used to solve the problem
- The "Elapsed Time" (also called wallclock time) will come down, but total CPU time will probably go up
- The latter is a difference with serial optimization, where one makes better use of <u>existing</u> resources, i.e. the cost will come down

Two "classic" parallel programming models:

- Distributed memory
 - PVM (standardized)
 - MPI (de-facto standard, widely used)
 - http://mpi-forum.org or http://open-mpi.org/
- Shared memory
 - Pthreads (standardized)
 - □ C++11 threads
 - OpenMP (de-facto standard) http://openmp.org/
 - Automatic parallelization (depends on compiler)

January 2023

Other programming models

- PGAS (Partitioned Global Address Space):
 - UPC (Unified Parallel C)
 - Co-Array Fortran
- GPUs: massively parallel & shared memory
 - CUDA
 - OpenCL
 - Shader languages
 - OpenMP (target offloading)

Distributed memory programming model, e.g. MPI:

- all data is private to the threads
- data is shared by exchanging buffers
- explicit synchronization

MPI:

- An MPI application is a set of independent processes (aka ranks)
 - on different machines
 - on the same machine
- communication over the interconnect
 - network (network of workstations, cluster, grid)
 - memory (SMP)
- communication is under control of the programmer

Shared memory model, e.g. OpenMP:

- all threads have access to the same global memory
- data transfer is transparent to the programmer
- synchronization is (mostly) implicit
- there is private data as well

OpenMP:

- needs an SMP
- but ... with current CPU designs, there is an SMP in every computer
 - multi-core CPUs (CMP)
 - chip multi-threading (CMT)
 - or a combination of both
 - or ... (whatever we'll see in the future)

OpenMP version of "Hello world":

```
#include <stdio.h>
int main(int argc, char *argv[]) {
    #pragma omp parallel
    {
      printf("Hello world!\n");
      } /* end parallel */
      return(0);
}
```



```
% qcc -o hello -fopenmp hello.c
% ./hello
                              implementation dependent.
Hello world!
% OMP NUM THREADS=2 ./hello
Hello world!
Hello world!
% OMP NUM THREADS=8 ./hello
Hello world!
Hello world!
Hello world!
Hello world!
```

no. of threads: OMP_NUM_THREADS

MPI version of "Hello world":

```
#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
int main(int argc, char **argv) {
    int myrank, p;
    MPI Init(&argc, &argv);
    MPI Comm rank (MPI COMM WORLD, &myrank);
    MPI Comm size (MPI COMM WORLD, &p);
    printf("Hello world from %d!\n", myrank);
   MPI Finalize();
    return 0;
```


MPI version: compile and run

```
$ module load mpi
$ mpicc -o hello mpi hello mpi.c
$ ./hello mpi
Hello world from 0!
$ mpirun -np 4 ./hello mpi
Hello world from 1!
Hello world from 3!
Hello world from 0!
Hello world from 2!
```


Automatic Parallelization

- Some compilers are capable of generating parallel code for loops that can be safely executed in parallel.
- This is always loop based!
- Compilers:
 - Intel compilers: -parallel
 - Oracle Studio compilers: -xautopar
 - GCC: -floop-parallelize-all -ftree-parallelize-loops=N
 - limited, sets no. of threads (N) at compile time!
- For more information see the manual pages

Caches revisited

Typical cache based system

How are caches organized?

- Caches contain partial images of memory
- If data gets modified, the state of that data, i.e. the whole cache line, changes
- This has to be made known to the system
- There are two common approaches:
 - Write-through
 - Write-back

Write-through cache

Notes:

- simple to implement
- easy to find the right copy
- can result in waste of bandwidth

- Always flushes a modified cache line back to a higher level in the memory hierarchy
 - e.g. from L1-cache to main memory
- This assures, that the system always knows where to access the correct cache line

Write-back cache

Notes:

- minimizes cache traffic
- need to keep track of status
- this mechanism is called 'cache coherency'
- Write a modified cache line back only if needed
 - capacity issues
 - another cache line maps onto this line
 - another CPU might need this cache line

Caches in MP/multi-core systems

- A cache line always starts in memory
- Over time multiple copies may exist

Cache coherency ('cc')

- tracks changes in copies
- assures correct cache line is used
- many implementations
- hardware support to be efficient

Cache coherency ('cc')

- Needed in write-back cache systems
- Keeps track of the status of all cache lines
- State information:

```
data state bits

0000 = clean
0001 = shared
010 = dirty
1000 = invalid
```

- Signals ("coherency traffic") are used to update the state bits of the cache lines
- This allows to build efficient SMP systems

Snoopy based cache coherence

- Also known as "broadcast cache coherence"
 - all addresses are sent to all CPUs
 - result takes only a few cycles
- Advantages:
 - low latency
 - fast cache-to-cache transfer
- Disadvantages:
 - data bandwidth limited by snoop bandwidth
 - difficult to scale to many CPUs

Directory based cache coherence

- Also known as SSM (Scalable Shared Memory)
- point-to-point protocol, i.e. a directory keeps track which CPUs are involved with a particular cache line
- requests are sent to the involved CPUs only
- Advantages:
 - larger bandwidth & scalable to many CPUs
- Disadvantages:
 - longer & non-uniform latency
 - slower cache-to-cache transfer
 - need to store the directory entries

SSM example:

Parallel Architectures

Parallel Architectures

- ☐ It is difficult to label systems:
 - most systems share some characteristics, but not all
 - the variety of systems is increasing
- □ In the ("historical") overview presented here, systems are labelled based on main memory:
 - Shared or Distributed:
 - can all CPUs access all memory, or only a subset?
 - Memory access times
 - uniform vs non-uniform

Uniform Memory Access (UMA)

Memory access:

uniform for all P

Example systems:

single-socket multi-core CPU (e.g. your laptop)

Non-Uniform Memory Access (NUMA)

Memory access:

non-uniform across P

Example systems:

cluster of nodes, connected by a (fast) network

cc-NUMA

Memory access:

- non-uniform across P
- ... but cache-coherency on the interconnect

Example systems:

(almost) all multi-socket x64 servers

Multi-core – everywhere! Welcome to a "threaded" world

The first multi-core chips

- □ 2004 multi-core arrives:
 - IBM POWER5
 - Sun UltraSPARC-IV
- 2005 is the year of the x86 dual-core CPUs:
 - AMD Opteron "Denmark" (August 2005)
 - Intel Xeon "Paxville DP" (October 2005)
- □ 2008/2009: quad-cores
 - AMD Opteron 'Barcelona'
 - Intel Xeon 'Nehalem'

2009's Multi-cores

282 use Quad-Core 204 use Dual-Core 3 use Nona-core

99% of Top500 Systems Are Based on Multi-core 3 use Nona-c

MT Sparc				MT Sparc		MT Sparc	MT Sparc
8K L1	8K L1	8K L1	8K L1	8K L1	8K L1	8K L1	8K L1
Cro	ossbar	Switch	(16 By	te read	is, 8 B	yte writ	es)
90	GB/s	(writet	hru)	179	GB/s	(fill)	
4MB Shared L2 (16 way) (address interleaving via 8x64B banks)							
4	x128b	memo	ry cont	rollers	(2 bank	s each	1)
1.33 GB/s (write) 42.66 GB/s (rea							3/s (read)
		66	7MHz	FBDIM	Ms		

Sun Niagara2 (8 cores)

IBM Power 7 (8 cores)

Fujitsu Venus (8 cores)

AMD Istanbul (6 cores)

Core 0 Core 1 Core 2 Core 3

Q
P
Shared L3 Cache

ntegrated Memory Controller - 3 Ch DDR3

Intel Nehalem (4 cores)

Intel Polaris [experimental] (80 cores)

TOP500: multi-cores 2011 and 2016

What is a multi-core chip?

- A "core" is not well-defined let us assume it covers the processing units and the L1 caches (a very simplified CPU).
- Different implementations are possible and available (examples follow), e.g. multi-threaded cores
- Cache hierarchy of private and shared caches
- For software developers it matters that there is parallellism in the hardware, they can take advantage of

A generic multi-core design

The AMD Opteron – single core

On-chip:

- Memory controller
- □ L2 cache
- 3 fast HyperTransport links: 6.4 GB/s per link

AMD Opteron - dual-core

AMD Opteron – quad-core

- dedicated L2 caches
- □ shared L3 cache

AMD Opteron – quad-core

Quad-core Intel Xeon

Intel® Xeon® processor 5400 series

(Codename 'Harpertown)

Two dual-core chips "glued" together

The Intel "Nehalem" CPU

First quad-core CPU with QPI

UltraSPARC-T2

System on a chip:

- 8 cores with 8 threads = 64 threads
- integrated multi-threaded 10 Gb/s Ethernet
- integrated crypto-unit per core
- low power (< 95W)</p>
- ☐ < 1.5W/thread
 </p>

UltraSPARC-T2

Why adding threads to a core?

Execution of two threads:

Interleaving the work – better utilization:

Keyword: "Throughput Computing"

GPU computing - Accelerators

Graphics Processors

- Specialized hardware for operations typical for graphics rendering
- lots of cores (SPs scalar processors)
- very fast memory (expensive!) limited in size (compared to main memory)
- more instructions have been added over the last years to do more general purpose computing
- programming environments (CUDA, OpenCL) to harness the power of the GPUs

January 2023

A generic GPGPU

GPU "features"

- every "core" is a very simple processor
- "cores" cannot work independently
- no independent execution of threads, but SIMT (Single Instruction, Multiple Threads)
- no global address space, neither within the GPU, nor with the CPU
- no cache-coherency
- latency hiding by executing many threads
- □ ===> more next week

Remember from "Serial Tuning":

- The TPP is easy to calculate:
 - 2 GHz CPU/core
 - 4 Flops per clock cycle
 - TPP: 8 GFlop/s (per core!)
- □ To obtain that peak performance, we need to be able to feed the core with the right amount of data!

How much data is that?

- 4 floating point operations (add, mult) need 8 floating numbers => 64 bytes (double prec.)
- That is 64 bytes / clock cycle or 128 GB/s
 - 128 GB is the content of more than 27 DVDs!!!
- But what is the memory bandwidth in modern machines?

Memory bandwidth of the Xeon 5500 family

- equipped with DDR3-1333 DIMMS:
 - 1333 MT/s => 10.6 GB/s per memory channel
 - or 32 GB/s maximum (all channels equipped)
- □ with DDR3-1066 DIMMS:
 - max. 25.5 GB/s
- that's per socket but each CPU has 4 cores!
- => the memory bandwidth per core is less!!!!

Flashback (single core):

Compute-bound vs memory-bound

- Compute-bound:
 - the number of flops is higher than the number of mem-ops (load/store)
 - example: matrix times matrix
- Memory bound:
 - the number of mem-ops is dominating the flops
 - example: matrix times vector

Compute-bound vs memory-bound

- □ but ...
- for large problems, even matrix times matrix gets dominated by the memory operations, it turns into a memory bound problem
- we know how to solve that e.g. by blocking algorithms, to keep the problem compute bound

Scaling of memory-bound applications

- What happens with memory bound applications on multi-core systems?
- \square N cores one CPU, e.g. N = 4
- N threads execute a mem-bound kernel
 - => all N threads fight for the same mem-bw
 - => this is a performance bottleneck
 - => this has a negative effect on scaling (speed-up)

Scaling of memory-bound applications (cont'd)

- this effect is visible for all parallel applications, regardless of the programming model, i.e.
 - MPI applications
 - OpenMP applications
- adding more cores to the CPU makes the situation even worse!
- adding more sockets helps, but one still can't make use of all cores!

- Amdahl's law, i.e. the definition of speed-up, doesn't take bottlenecks into account!
- Where are those bottlenecks?
 - arithmetic operations: flop/s
 - memory access: bandwidth/latency
 - network access: communication or I/O (bw/latency)

Example: part of the STREAM benchmark (Triad)

```
for(i=0; i < N; ++i) {
  a[i] = b[i] + s * c[i];
}</pre>
```

- □ How 'expensive' is one iteration of this loop?
 - 2 floating point operations: add & mult
 - 3 memory operations (2 loads, 1 store)
 - s is kept in a register

Arithmetic operations:

- time for a Flop: about one nanosecond (1 ns)
- modern CPUs can do several Flops per cycle (vectorization, FMA)

Memory operations:

- latency: 90ns (DRAM)
- bandwidth: a few bytes per cycle

=> the Triad code is memory bound!

Operational (or arithmetic) intensity:

$$I = \frac{arithmetic operations[flops]}{data transfers(ld, st)[words]}$$

- e.g. for the triad problem:
 - \blacksquare I = 2 flops/3 words = 0.66 flops/word
 - with 8 bytes/word (double): I = 0.083 flops/byte
- ightharpoonup now we also need to consider the bandwidth of the slowest data path, b_s (in bytes/second)

Achievable Performance P:

$$P := min(I * b_s, P_{peak})$$

This is called the 'Roofline (Performance) Model'

from: Simon Schwitanski RWTH Aachen (2022)

from: Simon Schwitanski RWTH Aachen (2022)

from: Simon Schwitanski RWTH Aachen (2022)

Classification of problems:

Arithmetic oper.	Data transfers	Classification	Examples
O(N)	O(N)	memory bound	scalar product, vector ops, sparse matrix times vector
O(N ²)	O(N ²)	memory bound (but can benefit from cache)	dense matrix times vector, matrix addition
O(N ^x) (x>2)	$O(N^2)$	compute bound	dense matrix multiplication

Summary

- You have heard about:
 - Parallel programming models and basic concepts
 - Parallel architectures (shared / distributed memory)
 - Cache-coherency
 - Multi-core CPUs
 - GPUs/accelerators
 - Multi-core and memory bandwidth
- Next 3 lectures:

Portable programming of shared memory systems with OpenMP

