Uma Revisão do Método ERA Aplicado à Identificação de Modos de Trens de Pouso

Renan Cavenaghi Silva¹
Graduando de Engenharia Mecânica

Douglas Domingues Bueno²

¹ ⊠: cavenaghi.silva@unesp.br
² ⊠: douglas.bueno@unesp.br

25 de Setembro de 2020

Escopo

Introdução

- 1. Introdução;
- 2. Metodologia;
- Resultados:
- 4. Considerações Finais; e
- Referências

- Qual o motivo para determinar o modelo matemático de um sistema mecânico?
 - aplicações;
 - comportamento do sistema;
 - vantagens;

- Como determinar o modelo matemático?
 - como escolher o tipo de modelo;
 - determinação dos parâmetros;
 - associar características do modelo ao sistema real.

Introdução

- Informações mensuráveis do sistema físico do trem de pouso;
- Identificação do modelo matemático na forma de espaço de estados com o ERA (Eigensystem Realization Algorithm); e
- Determinar as propriedades dinâmicas do sistema através do modelo matemático.

$$\begin{aligned} \mathbf{x}[k+1] &= \mathbf{A}_d \mathbf{x}[k] + \mathbf{B}_d \mathbf{u}[k] \\ \mathbf{y}[k] &= \mathbf{C}_d \mathbf{x}[k] + \mathbf{D}_d \mathbf{u}[k] \end{aligned}$$

(b)

Figura 1: (a) Sistema físico e (b) modelo matemático do trem de pouso

- ► Algoritmo **ERA**¹ desenvolvido para identificar os parâmetros modais de estruturas:
 - frequências naturais;
 - fatores de amortecimento modal; e
 - modos de vibração.
- Determinação da ordem do sistema através da Decomposição em Valores Singulares (SVD).

¹J.N. Juang e Richard Pappa. "An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction". Em: Journal of Guidance Control and Dynamics 8 (nov. de 1985). DOI: 10.2514/3.20031.

▶ A identificação do modelo matemático do sistema mecânico utilizando o **ERA** consiste em encontrar os coeficientes das matrizes A_d , B_d , C_d e D_d do modelo matemático na forma de espaço de estados:

$$\mathbf{x}[k+1] = \mathbf{A}_d \mathbf{x}[k] + \mathbf{B}_d \mathbf{u}[k]$$
$$\mathbf{y}[k] = \mathbf{C}_d \mathbf{x}[k] + \mathbf{D}_d \mathbf{u}[k]$$

Uma das formas de se determinar as matrizes consiste em aplicar um impulso unitário em cada entrada e obter os chamados parâmetros de Markov do sistema mecânico:

Resultados

Aplicando um impulso unitário em uma entrada $\mathbf{u}_i[0] = 1$, com o sistema partindo do repouso, i.e., $\mathbf{x}_i[0] = \mathbf{0}$ e coletando a sequência de dados $\mathbf{y}_{i}[k]$.

Uma Revisão do Método ERA Aplicado à Identificação de Modos de Trens de Pouso

Para a primeira entrada, j = 1, obtem-se que:

$$\mathbf{x}_1[1] = \underbrace{\mathbf{A}_d \mathbf{x}_1[0]}_{\mathbf{0}} + \mathbf{B}_d \mathbf{u}_1[0]$$

$$\mathbf{x}_{1}[1] = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{n1} \end{bmatrix} = \mathbf{B}_{d}|_{1}$$

 $\mathbf{B}_d|_1$ correponde a primeira coluna da matriz \mathbf{B}_d . Se repetirmos o procedimento para as demais entradas:

$$\mathbf{X}[0] = \begin{bmatrix} \mathbf{x}_1[0] & \mathbf{x}_2[0] & \cdots & \mathbf{x}_m[0] \\ \mathbf{B}_{d|1} & \mathbf{B}_{d|2} & \cdots & \mathbf{B}_{d|m} \end{bmatrix} = \mathbf{B}_d$$

em que as colunas $j=1,2,\ldots,m$ correspondem ao vetor da resposta das variáveis de estado à aplicação de um impulso na entrada j no instante discreto k.

Repetindo o mesmo desenvolvimento para as observações dos sensores, tem-se que:

$$\mathbf{y}_1[0] = \mathbf{D}_d \mathbf{u}_1[0] = \mathbf{D}_d|_1$$

e montando a matriz das observações referentes a aplicação do impulso em cada entrada,

$$\mathbf{Y}[0] = \begin{bmatrix} \mathbf{y}_1[0] & \mathbf{y}_2[0] & \cdots & \mathbf{y}_m[0] \\ \mathbf{D}_{d|1} & \mathbf{D}_{d|2} & \cdots & \mathbf{D}_{d|m} \end{bmatrix} = \mathbf{D}_d$$

$$\mathbf{X}[2] = \mathbf{A}_d \mathbf{B}_d$$

$$\mathbf{Y}[1] = \mathbf{C}_d \mathbf{B}_d$$

e para um instante k

$$\mathbf{X}[k] = \mathbf{A}_d^{k-1} \mathbf{B}_d$$

$$\mathbf{Y}[k] = \mathbf{C}_d \mathbf{A}_d^{k-1} \mathbf{B}_d$$

Considerando o caso de uma excitação qualquer $\mathbf{u}[k]$ no instante inicial k=0 tem-se que:

$$\mathbf{x}[1] = \mathbf{B}_d \mathbf{u}[0]$$

$$\mathbf{y}[0] = \mathbf{D}_d \mathbf{u}[0]$$

para o instante k=1:

$$\mathbf{x}[2] = \mathbf{A}_d \mathbf{B}_d \mathbf{u}[0] + \mathbf{B}_d \mathbf{u}[1]$$

$$\mathbf{y}[1] = \mathbf{C}_d \mathbf{B}_d \mathbf{u}[0] + \mathbf{D}_d \mathbf{u}[1]$$

para o instante k=2:

$$\mathbf{x}[3] = \mathbf{A}_d^2 \mathbf{B}_d \mathbf{u}[0] + \mathbf{A}_d \mathbf{B}_d \mathbf{u}[1] + \mathbf{B}_d \mathbf{u}[2]$$

$$\mathbf{y}[2] = \mathbf{C}_d \mathbf{A}_d \mathbf{B}_d \mathbf{u}[0] + \mathbf{C}_d \mathbf{B}_d \mathbf{u}[1] + \mathbf{D}_d \mathbf{u}[2]$$

E para um instante qualquer k tem-se que a observação é:

$$\mathbf{y}[k] = \sum_{i=1}^k \mathbf{C}_d \mathbf{A}_d^{i-1} \mathbf{B}_d \mathbf{u}[k-i] + \mathbf{D}_d \mathbf{u}[k]$$

que pode ser reescrita como:

$$\mathbf{y}[k] = \sum_{i=0}^{k} \mathbf{Y}[i]\mathbf{u}[k-i] = (\mathbf{Y} * \mathbf{u})[k]$$

A observação $\mathbf{y}[k]$ corresponde a convolução da entrada com a informação referente à resposta ao impulso do sistema aplicada em cada entrada, conhecida na literatura como parâmetros de Markov.

Com os parâmetros de Markov $\mathbf{Y}[k]$, pode-se definir uma matriz de Hankel da seguinte forma:

$$\mathbf{H}_{rs}[k-1] = \begin{bmatrix} \mathbf{Y}[k] & \mathbf{Y}[k+1] & \dots & \mathbf{Y}[k+s] \\ \mathbf{Y}[k+1] & \mathbf{Y}[k+2] & \dots & \mathbf{Y}[k+s+1] \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Y}[k+r] & \mathbf{Y}[k+r+1] & \dots & \mathbf{Y}[k+r+s] \end{bmatrix}$$

em que r e s indicam a ordem da matriz de Hankel.

Que pode ser representada em termos das matrizes do sistema como:

$$\mathbf{H}_{rs}[k-1] = \begin{bmatrix} \mathbf{C}_d \mathbf{A}_d^{k-1} \mathbf{B}_d & \mathbf{C}_d \mathbf{A}_d^k \mathbf{B}_d & \dots & \mathbf{C}_d \mathbf{A}_d^{k+s-2} \mathbf{B}_d \\ \mathbf{C}_d \mathbf{A}_d^k \mathbf{B}_d & \mathbf{C}_d \mathbf{A}_d^{k+1} \mathbf{B}_d & \dots & \mathbf{C}_d \mathbf{A}_d^{k+s-1} \mathbf{B}_d \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{C}_d \mathbf{A}_d^{k+r-2} \mathbf{B}_d & \mathbf{C}_d \mathbf{A}_d^{k+r-1} \mathbf{B}_d & \dots & \mathbf{C}_d \mathbf{A}_d^{k+r+s-3} \mathbf{B}_d \end{bmatrix}$$

e sua versão deslocada em um instante discreto

$$\mathbf{H}_{rs}[k] = \begin{bmatrix} \mathbf{C}_d \mathbf{A}_d^k \mathbf{B}_d & \mathbf{C}_d \mathbf{A}_d^{k+1} \mathbf{B}_d & \dots & \mathbf{C}_d \mathbf{A}_d^{k+s-1} \mathbf{B}_d \\ \mathbf{C}_d \mathbf{A}_d^{k+1} \mathbf{B}_d & \mathbf{C}_d \mathbf{A}_d^{k+2} \mathbf{B}_d & \dots & \mathbf{C}_d \mathbf{A}_d^{k+s} \mathbf{B}_d \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{C}_d \mathbf{A}_d^{k+r-1} \mathbf{B}_d & \mathbf{C}_d \mathbf{A}_d^{k+r} \mathbf{B}_d & \dots & \mathbf{C}_d \mathbf{A}_d^{k+r+s-2} \mathbf{B}_d \end{bmatrix}$$

$$\mathbf{H}_{rs}[k] = \mathbf{O}\mathbf{A}_d^k\mathbf{C}$$

onde

$$\mathbf{O} = egin{bmatrix} \mathbf{C}_d \ \mathbf{C}_d \mathbf{A}_d \ dots \ \mathbf{C}_d \mathbf{A}_d^{r-1} \end{bmatrix}$$

е

$$\mathbf{C} = egin{bmatrix} \mathbf{B}_d & \mathbf{A}_d \mathbf{B}_d & \dots & \mathbf{A}_d^{s-1} \mathbf{B}_d \end{bmatrix}$$

Para os caso particulares das matrizes de Hankel definidas nos instantes k=0 e k=1, tem-se:

$$\mathbf{H}_{rs}[0] = \mathbf{OC}$$

$$\mathbf{H}_{rs}[1] = \mathbf{O}\mathbf{A}_d\mathbf{C}$$

Se multiplicarmos $\mathbf{H}_{rs}[1]$ pelas inversas das matrizes \mathbf{O}^{-1} e \mathbf{C}^{-1} :

$$\mathbf{O}^{-1}\mathbf{H}_{rs}[1]\mathbf{C}^{-1} = \underbrace{\mathbf{O}^{-1}\mathbf{O}}_{\mathbf{A}_d}\underbrace{\mathbf{C}\mathbf{C}^{-1}}_{\mathbf{I}}$$

que resulta em:

$$\mathbf{O}^{-1}\mathbf{H}_{rs}[1]\mathbf{C}^{-1} = \mathbf{A}_d$$

Fatorando a matriz $\mathbf{H}_{rs}[0]$ utilizando a decomposição em valores singulares, obtem-se que:

Resultados

$$\mathbf{H}_{rs}[0] = \mathbf{P}\mathbf{D}\mathbf{Q}^T$$

em que valem as relações $\mathbf{P}^T\mathbf{P} = \mathbf{Q}^T\mathbf{Q} = \mathbf{I}$ e a matriz \mathbf{D} é diagonal e contêm os valores singulares λ_i de $\mathbf{H}_{rs}[0]$. Dessa forma, podemos reescrever:

$$\mathbf{H}_{rs}[0] = \underbrace{\mathbf{P}\mathbf{D}^{1/2}}_{\mathbf{O}} \underbrace{\mathbf{D}^{1/2}\mathbf{Q}^{T}}_{\mathbf{C}}$$

$$\mathbf{O}^{-1} = \mathbf{D}^{-1/2} \mathbf{P}^T$$
 $\mathbf{C}^{-1} = \mathbf{Q} \mathbf{D}^{-1/2}$

e a matriz dinâmica do sistema mecânico pode ser finalmente calculada através de:

$$\mathbf{A}_d = \mathbf{D}^{-1/2} \mathbf{P}^T \mathbf{H}_{rs}[1] \mathbf{Q} \mathbf{D}^{-1/2}$$
 $\mathbf{B}_d = \mathbf{D}^{1/2} \mathbf{Q}^T \mathbf{E}_m$ $\mathbf{C}_d = \mathbf{E}_p^T \mathbf{P} \mathbf{D}^{1/2}$ $\mathbf{D}_d = \mathbf{Y}[0]$

em que $\mathbf{E}_m = [\mathbf{I}_m, \mathbf{0}_m, \dots, \mathbf{0}_m]$ e $\mathbf{E}_p = [\mathbf{I}_p, \mathbf{0}_p, \dots, \mathbf{0}_p]$ com \mathbf{I}_j e $\mathbf{0}_j$ as matrizes identidade e nula de ordem j.

Uma vez explicado o procedimento para a identificação das matrizes do sistema dinâmico, a redução de ordem do modelo é feita através da análise dos valores singulares de $\mathbf{H}_{rs}[0]$.

Figura 2: Visualização da Decomposição em Valores Singulares

Em que $\mathbf{H}_{rs}[0]$ pode ser expresso por:

$$\mathbf{H}_{rs}[0] = \tilde{\mathbf{P}}\tilde{\mathbf{D}}\tilde{\mathbf{Q}}^T$$

- Obter os parâmetros de Markov;
- Montar a matriz de Hankel com os parâmetros de Markov;
- Aplicar a Decomposição em Valores Singulares sobre a matriz de Hankel:
- Reduzir a ordem do sistema:
- Obter os parâmetros dinâmicos \mathbf{A}_d , \mathbf{B}_d , \mathbf{C}_d e \mathbf{D}_d ; e
- Extrair os parâmetros modais do sistema a partir da matriz identificada \mathbf{A}_d .

O de trem de pouso simulado consiste de uma representação com dois graus de liberdade, um torsional e um lateral, conforme:

Figura 3: Vista frontal de um avião e representação da flexibilidade lateral e torsional do trem de pouso dianteiro.

$$\mathbf{M}\ddot{\mathbf{x}}(t) + \mathbf{C}\dot{\mathbf{x}}(t) + \mathbf{K}\mathbf{x}(t) = \mathbf{0}$$

onde

$$\mathbf{M} = \begin{bmatrix} m & 0 \\ 0 & I_z \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} c_y & ec_y \\ ec_y & e^2c_y + c_\psi \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} k_y & ek_y \\ ek_y & e^2k_y + k_\psi \end{bmatrix}$$

е

$$\mathbf{x}(t) = \left\{ y(t) \quad \psi(t) \right\}^T$$

Simulação de resposta livre do trem de pouso.

$$\mathbf{y}(t) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{Bmatrix} \psi(t) \\ y(t) \\ \dot{\psi}(t) \\ \dot{y}(t) \end{Bmatrix} = \begin{Bmatrix} \psi(t) \\ y(t) \end{Bmatrix}$$

Dessa forma, foram simulados dois ensaios utilizando a vibração livre do sistema com condições iniciais não nulas e distintas, *i.e.*, $\mathbf{x}_1[0] \neq \mathbf{x}_2[0]$:

$$\left\{ \mathbf{y}_1[k] \quad \mathbf{x}_1[0] \quad \mathbf{y}_2[k] \quad \mathbf{x}_2[0] \right\}$$

em que $\mathbf{y}_i[k]$ é uma sequência das amostras do sinal contínuo $\mathbf{y}(t)$

Montando as matrizes $\mathbf{H}_{rs}[0]$ e $\mathbf{H}_{rs}[1]$, considerando r=s=20 e com os parâmetros de Markov determinados como:

Resultados

0000000000000

$$\mathbf{Y}[k] = \begin{bmatrix} \psi_1[k] & \psi_2[k] \\ y_1[k] & y_2[k] \end{bmatrix}$$

pode-se realizar a decomposição em valores singulares de $\mathbf{H}_{rs}[0]$ e determinar a ordem do sistema por meio da análise dos valores singulares.

Figura 4: Valores Singulares da Matriz de Hankel

Reduzindo a ordem do sistema, identifica-se as matrizes do sistema:

00000000000000

$$\mathbf{A}_d = \begin{bmatrix} 0,9830 & -0,2083 & 0,0634 & 0,0100 \\ 0,2165 & 0,9215 & 0,0112 & 0,0777 \\ -0,0775 & 0,0495 & 1,1139 & -0,1273 \\ -0,0256 & -0,0889 & 0,3219 & 0,8577 \end{bmatrix}$$

$$\mathbf{B}_d = \begin{bmatrix} -0,6800 & -1,4173 \\ 0,8979 & 2,9848 \\ -0,1589 & -1,1696 \\ 1,1714 & 2,0026 \end{bmatrix}$$

$$\mathbf{C}_d = \begin{bmatrix} -0,9224 & -0,0406 & -1,0511 & 0,8920 \\ 1,0222 & 3,2773 & -0,0341 & -1,7572 \end{bmatrix}$$

Figura 5: Comparativo entre $\psi_1[k]$ do sistema simulado e do sistema identificado para r=20 e s=20.

Figura 6: Comparativo entre $y_1[k]$ do sistema simulado e do sistema identificado para r = 20 e s = 20.

Figura 7: Comparativo entre $\psi_1[k]$ do sistema simulado e do sistema identificado para r=3 e s=1.

Figura 8: Comparativo entre $y_1[k]$ do sistema simulado e do sistema identificado para r=3 e s=1.

Figura 9: Comparativo do módulo da transformada rápida de Fourier dos sinais identificados com parâmetros de identificação distintos com o sinal analítico.

Figura 10: Comparativo da fase da transformada rápida de Fourier dos sinais identificados com parâmetros de identificação distintos com o sinal analítico.

$$\Phi^{-1}\mathbf{A}_d\Phi=z$$

em que Φ é a matriz de autovetores e z a matriz dos autovalores.

	Analítico	Identificado
$z_{i,i+1}$	-	$0,9434 \pm 0,2725j$ $0,9946 \pm 0,0820j$
$s_{i,i+1}$	$-36,2824 \pm 561,8390j$ $-4,0091 \pm 164,5171j$	$-36,2824 \pm 561,8390j$ $-4,0091 \pm 164,5171j$
$\omega_{i,i+1}$	563,0093 $164,5660$	$563,0093 \\ 164,5660$
$\zeta_{i,i+1}$	$0,0644 \\ 0,0243$	$0,0644 \\ 0,0243$

Fonte: Elaborado pelo autor

Correlação entre modos do sistema identificado com o do sistema analítico

$$\mathsf{MAC}_{\phi_{id}-\phi} = \begin{bmatrix} 1,0000 & 0,6951 \\ 0,6951 & 1,0000 \end{bmatrix}$$

- conhecer algoritmos que permitam determinar parâmetros do modelo e a influência dos parâmetros do algoritmo na correta identificação do sistema;
- avaliar criticamente os resultados do modelo identificado por meio de indicadores.

- Utilizar o ERA para tratar de sistemas envolvendo dados experimentais;
- Comparar com outros métodos de identificação de sistemas mecânicos.

Juang, J.N. e Richard Pappa. "An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction". Em: Journal of Guidance Control and Dynamics 8 (nov. de 1985). DOI: 10.2514/3.20031.

Obrigado pela atenção

Para acesso ao trabalho e aos códigos desenvolvidos: https://github.com/rkavenaghi/ERA

