Model Documentation of the 'AH-64 HELICOPTER at 130 knots Ph.'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^4 u$$
 $\in \mathbb{R}^2 w \in \mathbb{R}^4 z$ $\in \mathbb{R}^4 y \in \mathbb{R}^2$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t) \tag{1c}$$

Outputs: z

2.1 Exemplary parameter values

Symbol	Value
A	$\begin{bmatrix} -0.0649 & 0.0787 & 0.1705 & -0.5616 \end{bmatrix}$
	$\begin{bmatrix} 0.0386 & -0.939 & 4.2277 & 0.0198 \end{bmatrix}$
	$0.1121 -0.4254 -0.7968 \qquad 0$
	0 0 1.0 0
В	[-0.9454 0.5313]
	$\begin{bmatrix} -8.6476 & -10.769 \end{bmatrix}$
	19.0824 -2.8959
	0 0
B_1	$\begin{bmatrix} -0.9454 & 0.5313 \end{bmatrix}$
	$\begin{bmatrix} -8.6476 & -10.769 \end{bmatrix}$
	19.0824 - 2.8959
	0 0
C_1	1.0 0 0 0
	0 1.0 0 0
	0 0 1.0 0
	0 0 0 1.0
C	
	0 0 0 1.0
D_{11}	
D_{12}	
	$\begin{bmatrix} 0 & 0 \\ 1.0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 1.0 & 0 \\ 0 & 1.0 \end{bmatrix}$
D_{21}	

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

HE2 AH-64 HELICOPTER at 130 knots Ph. M. Fitzsimons, "Reducing the computation required to solve a standard minimax problem", AUTO, Vol.31, pp.1885-1887, 1995

4 Simulation

Figure 1: Simulation of the AH-64 HELICOPTER at 130 knots Ph..

References

 $[1]\,$. Fitz simons, "Reducing the computation required to solve a standard minimax problem", AUTO, Vol. 31, pp.1885-1887, 1995