Exercice 1

La fonction f(x) est paire ssi $\forall x, f(x) = f(-x)$, La fonction f(x) est impaire ssi $\forall x, f(x) = -f(-x)$.

Soit une fonction f(x),

$$f(x) = \frac{2f(x)}{2} = \frac{2f(x) + f(-x) - f(-x)}{2} = \frac{f(x) + f(-x) + f(x) - f(-x)}{2} = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} = \frac{f($$

Soit la fonction $f_1(x) = \frac{f(x) + f(-x)}{2}$, la fonction $f_1(x)$ est paire car $f_1(-x) = \frac{f(-x) + f(-x)}{2} = \frac{f(-x) + f(x)}{2} = \frac{f(-x) + f(x)}{2}$

Soit la fonction $f_2(x) = \frac{f(x) - f(-x)}{2}$, la fonction $f_2(x)$ est impaire car $f_2(-x) = \frac{f(-x) - f(-x)}{2} = \frac{f(-x) - f(-x)}{2} = \frac{f(-x) - f(-x)}{2}$ $-\frac{f(x)-f(-x)}{2} = -f_2(x).$

Pour toute fonction f(x), on a trouvé une fonction $f_1(x)$ paire et une fonction $f_2(x)$ impaire tel que $f(x) = f_1(x) + f_2(x)$.

Buffon TD1 - Exercice 5

Vrai pour u_0 ? $u_0 = \frac{0(0+1)}{2} = 0$, oui. Admettons que $u_n = \frac{n(n+1)}{2}$, calculons u_{n+1}

$$u_{n+1} = u_n + n + 1 = \frac{n(n+1)}{2} + n + 1 = \frac{n(n+1)}{2} + \frac{2(n+1)}{2} = \frac{(n+1)(n+2)}{2} = \frac{(n+1)((n+1)+1)}{2} = \frac{(n+1)(n+2)}{2} = \frac{(n+1$$

Vrai pour v_0 ? $v_0 = \frac{0(0+1)(2.0+1)}{6} = 0$, oui. Admettons que $v_n = \frac{n(n+1)(2n+1)}{6}$, calculons v_{n+1} .

$$v_{n+1} = v_n + n + 1 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{n(n+1)(2n+1)}{2} + \frac{6(n+1)^2}{6} = \frac{(n+1)(n(2n+1) + 6(n+1))}{6} + \frac{(n+1)(2n+1)}{6} +$$

$$v_{n+1} = \frac{(n+1)(2n^2 + n + 6n + 6)}{6} = \frac{(n+1)(n+2)(2n+3)}{6} = \frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}$$

Vrai pour w_0 ? $w_0 = \left(\frac{0(0+1)}{2}\right)^2 = 0$, oui.

Admettons que $w_n = \left(\frac{n(n+1)}{2}\right)^2$, calculons w_{n+1} .

$$w_{n+1} = w_n + (n+1)^3 = \left(\frac{n(n+1)}{2}\right)^2 + (n+1)^3 = \left(\frac{n(n+1)}{2}\right)^2 + \frac{4(n+1)^3}{4} = \frac{n^2(n+1)^2 + 4(n+1)^3}{4}$$
$$w_{n+1} = \frac{(n+1)^2(n^2 + 4(n+1))}{4} = \frac{(n+1)^2(n+2)^2}{4} = \left(\frac{(n+1)((n+1)+1)}{2}\right)^2$$

Buffon TD1 - Exercice 6

Preuve par récurrence, suppposons $\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies n! \geq 2^n$, trouvons un entier n pour lequel $n! \geq 2^n$ et vérifions la propriét'e pour n+1 avec l'hypothèse de récurence $n! \geq 2^n$. Prenons n=4, on a $4! = 24 \ge 16 = 2^4.$

$$(n+1)!=n!(n+1)\geq 2^n(n+1)$$
 (hypothèse de récurrence)
$$=n2^n+2^n>2^{n+1}, \ \text{pour } n\geq 2$$

Pour $n_0 \ge 2$ la proposition est vraie. Donc il existe un n_0 (par exemple $n_0 = 2$) pour lequel la proposition est vraie.

Buffon TD1 - Exercice 7

$$u_0 = 1, u_1 = u_0 = 1, u_2 = u_0 + u_1 = 2, u_3 = u_0 + u_1 + u_2 = 4, u_4 = u_0 + u_1 + u_2 + u_3 = 8.$$

Vrai pour u_0 ?, $u_0 = 1 \le 2^0 = 1$, Vrai.

Hypothèse de récurrence: $u_n \leq 2^n$, calculons u_{n+1} .

$$u_{n+1} = u_0 + u_1 + \dots + u_{n-1} + u_n = u_n + u_n = 2u_n \le 2 \cdot 2^n = 2^{n+1}$$

La proposition est vraie.

Buffon TD1 - Exercice 8

$$\forall x \in \mathbb{R}, \left(x + \frac{1}{x} \in \mathbb{Z} \implies \left(\forall n \in \mathbb{N}, x^n + \frac{1}{x^n} \in \mathbb{Z}\right)\right)$$

Pour n=0, on a $\forall x \in \mathbb{R}$, $\left(x+\frac{1}{x} \in \mathbb{Z} \implies \left(x^0+\frac{1}{x^0} \in \mathbb{Z}\right)\right)$ qui est vrai. Pour n=1, on a $\forall x \in \mathbb{R}$, $\left(x+\frac{1}{x} \in \mathbb{Z} \implies \left(x^1+\frac{1}{x^1} \in \mathbb{Z}\right)\right)$ qui est vrai.

Supposons la propriété vraie au rang k < n, calculons le rang n.

$$\left(x^{n-1} + \frac{1}{x^{n-1}}\right)\left(x + \frac{1}{x}\right) = x^n + x^{n-2} + \frac{1}{x^n} + \frac{1}{x^n - 2} = \left(x^n + \frac{1}{x^n}\right) + \left(x^{n-2} + \frac{1}{x^{n-2}}\right)$$

Donc

$$\left(x^{n} + \frac{1}{x^{n}}\right) = \left(x^{n-1} + \frac{1}{x^{n-1}}\right) - \left(x^{n-2} + \frac{1}{x^{n-2}}\right)$$

Par hypothèse de récurence, on a $\left(x^{n-1} + \frac{1}{x^{n-1}}\right) \in \mathbb{Z}$ et $\left(x^{n-2} + \frac{1}{x^{n-2}}\right) \in \mathbb{Z}$. Donc $\left(x^n + \frac{1}{x^n}\right) \in \mathbb{Z}$ car la soustraction de deux nombres dans \mathbb{Z} .

Buffon TD2 - Exercice 1.a

$$(1-a)\sum_{k=1}^{n}ka^{k-1} = \sum_{k=1}^{n}ka^{k-1} - \sum_{k=1}^{n}aka^{k-1} = \sum_{k=1}^{n}ka^{k-1} - \sum_{k=1}^{n}ka^{k}$$

$$\sum_{k=1}^{n} ka^{k-1} - ka^k = \sum_{k=0}^{n-1} a^k - na^n = \sum_{k=0}^{n} a^k - (n+1)a^n$$

Donc

$$\sum_{k=1}^{n} ka^{k} = \sum_{k=1}^{n} ka^{k-1} - \sum_{k=0}^{n} a^{k} + (n+1)a^{n}$$

On a
$$\sum_{k=0}^n a^k = \frac{1-a^{n+1}}{1-a}$$
 et $\sum_{k=1}^n k a^{k-1} = \left(\sum_{k=0}^n a^k\right)' = \left(\frac{1-a^{n+1}}{1-a}\right)'$ Donc

$$\sum_{k=1}^{n} ka^{k} = \left(\frac{1 - a^{n+1}}{1 - a}\right)' - \frac{1 - a^{n+1}}{1 - a} + (n+1)a^{n}$$

Buffon TD2 - Exercice 1.b

Trouver a, b, c, tel que $\forall x \in \mathbb{R}^{+*}$, $\frac{1}{x(x+1)(x+2)} = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{x+2}$.

$$\frac{a}{x} + \frac{b}{x+1} + \frac{c}{x+2} = \frac{a(x+1)(x+2) + bx(x+2) + cx(x+1)}{x(x+1)(x+2)} = \frac{a(x^2+3x+2) + b(x^2+2x) + c(x^2+x)}{x(x+1)(x+2)}$$

Donc

$$\begin{cases} a+b+c=0\\ 3a+2b+c=0\\ 2a=1 \end{cases}$$

Et
$$a = \frac{1}{2}$$
, $b = -1$, $c = \frac{1}{2}$. Donc $\frac{1}{x(x+1)(x+2)} = \frac{1}{2x} - \frac{1}{x+1} + \frac{1}{2(x+2)}$.

$$\begin{split} \sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} &= \sum_{k=1}^{n} \frac{1}{2k} - \frac{1}{k+1} + \frac{1}{2(k+2)} = \sum_{k=1}^{n} \frac{1}{2k} - \sum_{k=1}^{n} \frac{1}{k+1} + \sum_{k=1}^{n} \frac{1}{2(k+2)} \\ &= \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k+1} + \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k+2} \\ &= \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k} + \frac{1}{2} \sum_{k=3}^{n+2} \frac{1}{k} \\ &= \frac{1}{2} (\sum_{k=3}^{n} \frac{1}{k} + 1 + \frac{1}{2}) - (\sum_{k=3}^{n} \frac{1}{k} + \frac{1}{2} + \frac{1}{n+1}) + \frac{1}{2} (\sum_{k=3}^{n} \frac{1}{k} + \frac{1}{n+1} + \frac{1}{n+2}) \\ &= \frac{1}{4} - \frac{1}{2(n+1)} + \frac{1}{2(n+2)} \end{split}$$

Buffon TD2 - Exercice 3.1

$$\sum_{k \in [1,2n], impair} 3^k = 3^1 + 3^3 + 3^5 + \dots + 3^{2n-1} = 3 + 3.9 + (3.9).9 + \dots (((\dots))).9$$

Soit la suite géométrique définit par $u_0=3$ et de raison q=9. La somme $\sum_{k\in[0,n]}u_k=u_0$. $\left(\frac{1-q^{n+1}}{1-q}\right)$. Donc

$$\sum_{k \in [1,2n], impair} 3^k = 3. \left(\frac{1 - 9^{n-1}}{1 - 9} \right)$$

Buffon TD2 - Exercice 3.2

$$\sum_{k=2}^{n} \ln(1 - \frac{1}{k^2}) = \sum_{k=2}^{n} \ln(\frac{k^2 - 1}{k^2}) = \sum_{k=2}^{n} \ln(\frac{(k-1)(k+1)}{k^2}) = \sum_{k=2}^{n} \ln(k-1) + \ln(k+1) - \ln(k^2)$$

$$= \sum_{k=2}^{n} \ln(k-1) + \sum_{k=2}^{n} \ln(k+1) - 2\sum_{k=2}^{n} \ln(k) = \sum_{k=1}^{n-1} \ln(k) + \sum_{k=3}^{n+1} \ln(k) - 2\sum_{k=2}^{n} \ln(k)$$

$$= \sum_{k=2}^{n-1} \ln(k) + \ln(1) + \sum_{k=2}^{n-1} \ln(k) - \ln(2) + \ln(n) + \ln(n+1) - 2\sum_{k=2}^{n-1} \ln(k) - 2\ln(n) = -\ln(2) + \ln(n) + \ln(n+1) - 2\ln(n)$$

$$= -\ln(2) + \ln\left(\frac{n+1}{n}\right)$$

Buffon TD2 - Exercice 3.3

$$\prod k = 1n\left(1 - \frac{1}{2k}\right) = \left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{4}\right)\left(1 - \frac{1}{6}\right)\dots\left(1 - \frac{1}{2n}\right) = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} = \frac{\prod_{k=1}^{n} 2n - 1}{\prod_{k=1}^{n} 2n} = \frac{\prod_{k=[1,2n],impair} n}{\prod_{k=[1,2n],pair} n}$$

Soit les séries arithmétique $u_0=1$ et $u_{n+1}=u_n+2$ et $v_0=0$ et $v_{n+1}=v_n+2$.

$$\frac{\prod_{k=0}^{n} u_n}{\prod_{k=0}^{n} v_n}$$

Buffon TD2 - Exercice 3.4

$$\prod_{k=1}^{n} 3^{k} = 3.3^{2}.3^{3}.....3^{n} = 3^{1+2+3+...+n} = 3^{\sum_{k=1}^{n} k} = 3^{\frac{n(n+1)}{2}}$$

Buffon TD2 - Exercice 3.6

$$\sum_{k=1}^{n} kk! = \sum_{k=1}^{n} ((k+1) - 1)k! = \sum_{k=1}^{n} (k+1)k! - k! = \sum_{k=1}^{n} (k+1)! - \sum_{k=1}^{n} k! = (n-1)! - 1$$

Exercice Cauchy

Solution de l'équation différentielle de la forme (y'(t) = a(t)y(t) + b(t)) est $y(t) = \lambda e^{A(t)} + y_1(t)$ avec A(t) une primitive de la fonction a(t) et $y_1(t)$ est une solution particulière de l'équation.

Pour $y'(t) - \frac{y(t)}{t^2} = e^{\frac{1}{t}}\sin(t)$, donc $a(t) = \frac{1}{t^2}$ et $b(t) = e^{\frac{1}{t}}\sin(t)$. On a $A(t) = -\frac{1}{t}$. Recherchons une solution particulière de la forme $y_1(t) = \lambda(t)a^{A(t)}$ avec $\lambda'(t) = b(t)e^{A(t)}$.

$$\lambda'(t) = b(t)e^{A(t)} = e^{\frac{1}{t}}\sin(t)e^{-\frac{1}{t}} = \sin(t)$$

donc $\lambda(t) = -\cos(t)$ et $y_1(t) = -\cos(t)e^{-\frac{1}{t}}$

Par conséquent

$$y(t) = \lambda e^{A(t)} + y_1(t) = \lambda e^{-\frac{1}{n}} - \cos(t)e^{-\frac{1}{t}} = e^{-\frac{1}{n}}(\lambda - \cos(t))$$

Calculons l'unique solution $y(2\pi) = e^{-\frac{1}{2\pi}}(\lambda - \cos(2\pi)) = \lambda e^{-\frac{1}{2\pi}} = 0.$

Donc $\lambda = 0$ et l'unique solution est

$$y(t) = -\cos(t)e^{-\frac{1}{t}}$$

QED