

Signal processing and analysis

Name: Boaz Mwubahimana	Student ID: 2022276190010
Major: Photogrammetry and Remote Sensing	Assignment Index: I
Course: Signal processing and analysis	Professor: LUO Bin
	TA: 韩承熙 Sigma

I. Proving a function to be a periodic function and expression function_(QN1&2)

Signore Processing AND ANALYSIS

The former transformation:
$$d_{p}(x):$$

$$-p_{1} = f_{2}p(j\omega_{0}) = \frac{3\pi}{P} \underbrace{\mathcal{E}}_{N} \left((\omega_{0} - n \frac{\pi \pi}{P}) \right)$$
By thing constitution and former transformation, $f(x) = F(j\omega)$

$$= \frac{2\pi}{P} f(j\omega) \underbrace{\mathcal{E}}_{N} \left((\omega_{0} - n \frac{\pi \pi}{P}) \right)$$
The Inverse of Forries transformation of $f_{p}(j\omega)$:
$$-p_{1} = \int_{0}^{2\pi} f(j\omega) \underbrace{\mathcal{E}}_{N} \left((\omega_{0} - n \frac{\pi \pi}{P}) \right) dt$$

$$= \frac{2\pi}{P} f(j\omega) \underbrace{\mathcal{E}}_{N} \left((\omega_{0} - n \frac{\pi \pi}{P}) \right) dt$$

$$= \frac{2\pi}{P} f(x + np)$$

III. Result

IV. Generate an image as Figure 4a, which is a radial Sinusoid signal.

a.

V.

The original image (source: Wikipedia) b.

Subsisted original image and extractions of semple img

c. some noise added to the original image.

d. adding more detection to the image

trying to detect near the mouth of Einstein

More: Recover signal from noise amplitude

Recovering signal from amplitude

comparing the two methods