IMPLÉMENTEZ UN MODÈLE DE SCORING

Projet 7 – Parcours Data Scientist

DPENCLASSROOMS

sommaire

INTRODUCTION

PRÉSENTATION DU JEU DE DONNÉES

ANALYSE EXPLORATOIRE

MODÉLISATION

DASHBOARD

INTRODUCTION

- Société financière 'Prêt à dépenser' propose des crédits à la consommation
- Mettre en œuvre un outil de scoring
- Développer un Dashboard interactif et qui serait transparent pour le client

PRESENTATION DU JEU DE DONNÉES

Les données originales sont téléchargeables sur kaggle

307 511 clients pour 122 Indicateurs

Suppression des colonnes contenant plus de 50% de valeurs manquantes

Suppression des valeurs aberrantes

Suppression des variables à faible importance

Imputation des valeurs manquantes par la médiane

307 507 clients pour24 Indicateurs

ANALYSE EXPLORATOIRE

73,5% des clients sont mariés. 72% des clients ont entre 30 et 59 ans.

Analyse exploratoire - suite

On peut constater que 49% des clients occupent des emplois d'ouvriers, et que 70% des clients présentent des revenus compris entre : 88000 et 212700

Analyse exploratoire - suite

La grande majorité des prêts contractés par les clients sont des prêts de trésorerie, représentant 90,5 % de l'ensemble des prêts.

MODÉLISATION

Encodage des variables catégoriques

Standardisation des données

Séparation du dataset en train et test

Jeu de donnée déséquilibré

Client solvable (Target:0): 92 %

Client à risque (Target:1): 8 %

Smote: rééquilibré les données

Sélection du modèle de Machine Learning

Sélectionner le meilleur algorithme adapté à notre problématique

Le meilleur modèle dans notre cas est LGBMClassifier

Algorithme	Accuracy	AUC
Light Gradient Boosting	0,90	0,687
Dummy Classifier	0,92	0,5
AdaBoost Classifier	0,77	0,666
Gradient Boosting Classifier	0,86	0,682

Performances du modèle après optimisation des hyperparamètres

L'AUC a augmenté de 0,686 à 0,704, tandis que la précision est passée de 0,90 à 0,91.

Interprétation des résultats du modèle

Les varibles sont classées par ordre d'influence sur la prédiction du modèle. Pour cet exemple, « Ext_source_2" est la caractéristique la plus importante, suivie de " Ext_source_3 ", " Amt_Income_Total ", " Amt_Good_Price " ...

Définition du Seuil dans notre problématique

Un prêt non remboursé coûte bien plus cher à la banque que ce qu'il aurait potentiellement rapporté.

Nous modélisons ça de la manière suivante :

O pour les vrais négatifs (TN)

- -1 pour les faux positifs (FP)
- +1 pour les vrais positifs (TP)
- 10 pour les faux négatifs (FN)

Le seuil qui optimise la fonction se situe à 0,11, ce qui signifie qu'un crédit sera accordé si la probabilité de défaut d'un client est inférieure à 11%.

Avec le seuil par défaut à 0.5

Avec le seuil optimal à 0.11

DASHBOARD

https://github.com/zhmidi78

https://zh-pretprediction.streamlit.app/

MERCI