If G is a finite group and HCG a subgroup, then we have a redriction functor

Res_H: Rep_G(G) -> Rep_G(H). In the opposite direction, how do rep's of H give rep's of G?

Answer: induced representations = rep. of G built from G/H many copies of a rep. of H,

assembled into a G-rep. according to the manner in which left mult by geG acts on cosets of H.

Def: A representation V of G, with a subspace $W \subset V$ which is invariant under the subgroup $H \subset G$ (i.e. a subsequence of $\operatorname{Res}_{H}^{G} V$), is said to be induced by $W \in \operatorname{Rep}(H)$ if, as a vector space, $V = \bigoplus_{G \in G/H} \sigma W$. With $V = \operatorname{Ind}_{H}^{G} W$. i.e. fixing one element in each coset, $\sigma_{1,\dots, G} \in G$, we can write each $v \in V$ uniquely as $v = \sigma_{1} w_{1} + \dots + \sigma_{k} w_{k}$ for $w_{1,\dots, k} v_{k} \in W$.

Thm: Given a reprosedation W of H, the induced reprosedation $V = Ind_{W}^{G}W$ exists and is unique up to isomorphism of G-rep.

Pf: Migreness: given $V \in Rep(G)$ and $W \subset V$ invariant under H less $V = \bigoplus \sigma_i W$, necessarily $g \in G$ acts by mapping $\sigma_i W$ to $\sigma_j W$, where j is such that $g \sigma_i \in G$; H, i.e. $h = \sigma_j^{-1} g \sigma_i \in H$, and necessarily $g(\sigma_i W) = \sigma_j h_W \in \sigma_j W$. This determines the G-action uniquely.

• Existence: build $V = \bigoplus_{i=1}^{k} G_i W$ where the G_i are now formal symbols lie. The direct sum of k = |G/H| opins of W), and make $g \in G$ act as above.

(Note: by construction, $din V = |G/H| \cdot din W)$.

Examples: 1) The permutation rep. associated to the left action of G on G/H is induced by the trivial representation of H. Include V has a Gasis $\{e_G\}_{G\in G/H}$; the basis element e_H (for the coset H) is fixed by H, so $W = span(e_H)$ is invariant under H, and $gW = span(e_{gH})$, with $V = \bigoplus_{gH \in G/H} span(e_{gH}) = \bigoplus_{gH \in G/H} gW$.

- 2) The regular rep. of G is induced by the regular rep. of H: here $W = \text{span} \{e_h, h \in H\} \subset V = \text{span} \{e_g, g \in G\}$.
- · Fact: Idy (WOW') = Indy (W) ⊕ Indy (W'), but Ind(WOW') & Ind(W) @ Id(W').

```
On the other hand, if U is a rp. of G and W a rep. of H, then

Ind(Res(U) @ W) = U @ Ind(W).

(indeed: Ind(W) = \bigoplus oW, so U@ Ind(W) = \bigoplus(U@ oW) = \bigoplus o(U@ W),

where U@ W = U@ Ind(W) is invariant under H and = Res(U) @ W as H-rep?).

in particular: Ind(Res(U)) = U@ Ind(trivial) = U@ (pernut. rep. G/H).
```

We can achally calculate the character of an induced representation! Character spectratives $\sigma_{1}...,\sigma_{k}$ of casets of H as usual; $g \in G$ maps $\sigma_{i} \in G$ to $\sigma_{j} \in G$. If $i \neq j$ have this doesn't contribute to $\operatorname{tr}(g)$. If i = j then $h = \sigma_{i}^{-1}g \sigma_{i} \in H$ and g maps $\sigma_{i} \in G$ to itself by $g(\sigma_{i} \otimes W) = \sigma_{i} h \otimes G$, so $\operatorname{tr}(g|\sigma_{i} \otimes W) = \operatorname{tr}(h|W) = \chi_{W}(h)$. Summing ove $\sigma_{i} \in G$: $\chi_{Ind} = \chi_{W}(g) = \sum_{\sigma_{i} \in G/H} \chi_{W}(\sigma_{i}^{-1}g \sigma_{i}) = \frac{1}{|H|} \sum_{s \in G} \chi_{W}(s^{-1}g s).$ $\chi_{Ind} = \chi_{G}(g) = \chi_{G}$

• A key properly for understanding induced representations is Frobenius recipocity $\frac{\text{Prop:}}{\text{Prop:}}$ If U is a representation of G, and W a reproof H, then every H equivariant map $\text{Im} A(W) \longrightarrow \text{Res}(U)$ extends uniquely to a G-equivariant map $\text{Im} A(W) \longrightarrow U$: $\text{Hom}_{H}(W, \text{Res}(U)) \simeq \text{Hom}_{G}(\text{In}A(W), U)$.

Proof: Choose reproductives $\sigma_i,...,\sigma_k \in G$ of the cosets of H, and let $V = Ind(W) = \bigoplus \sigma_i W$:

given $\varphi: W \to Res(U)$ H-equivariant, if $\widetilde{\varphi}: V \to U$ is G-equivariant and $\widetilde{\varphi}_{|W} = \varphi$, then necessarily we have a commodagum $W \xrightarrow{\varphi} U$ i.e. $\widetilde{\varphi}_{|G|} := given by \widetilde{\varphi}(\sigma_i w) = \sigma_i \cdot \varphi(w)$ This determines $\widetilde{\varphi}$ uniquely.

This determines $\widetilde{\varphi}$ uniquely.

This determines if uniquely.

To check it is Gequivariant, recall $g \in G$ acts on V by mapping $\sigma_i W$ to $\sigma_j W$ st. $g \sigma_i = \sigma_j h \in \sigma_j H$, via $g(\sigma_i w) = \sigma_j \cdot hw$. Given $\sigma_i w \in \sigma_i W$, $\widetilde{\varphi}(g(\sigma_i w)) = \widetilde{\varphi}(\sigma_j \cdot hw) = \sigma_j \cdot \varphi(hw) = \sigma_j h \varphi(w) = g \sigma_i \cdot \varphi(w) = g(\widetilde{\varphi}(\sigma_i w))$. $aehing on U \Rightarrow \widetilde{\varphi}g = g \widetilde{\varphi} \text{ on } \sigma_i W \text{ V i, hence on V.}$

So: φ does have a unique Gequivariat extension $\overline{\varphi}$.

Conversely, given $\widetilde{\varphi}$ f $\operatorname{Hom}_{\mathbb{C}}(V,U)$, $\widetilde{\varphi}$ is Hequivariat, and here

its rehidian to $W \subset V$ is Hequivariant. \square Comparing dimensions, dim $\operatorname{Hom}_{\mathbb{C}}(...) = \dim \operatorname{Hom}_{\mathbb{C}}(...) = \emptyset$

3

Corollary (Frobenius reciprocity): $\langle \chi_{IL} \psi, \chi_{U} \rangle_{G} = \langle \chi_{U}, \chi_{Res} U \rangle_{H}$

Thus: if U is an ined up of G and W an irred up of H, then the number of times W appears in Res(U) is equal to the number of times U appears in Ind(W).

Example: G=S4 > H=S3: redictions of irrd reps of S4 are

• hinal: Res $(U_4) = U_3$

· alterating: Res(U') = U'3

· standard: Res(V4) = V2 & U3

(since pernet rep. Ct restricts to pernet. @ trivial: Res (V4 @ U4) = V3 @ U3 @ U3).

• $V_4' = V_4 \otimes U_4'$; Res $(V_4') = V_3 \oplus U_3'$ (using $V_3 \otimes U_3' \simeq V_3$).

• W (factors through $S_4/\{(ij)(kl)\} \simeq S_3$): Res(W) = V_3 .

(or instead of arguing explicitly, one can just use character tables!).

So by Probenius recipicly, $\operatorname{Ind}(V_3) = \bigoplus \text{ of the irred-rgs of } S_4$ whose restrictions contain V_3 (this has dim. 8=4.2) = $V_4 \oplus V_4' \oplus W$.

(similarly, $\operatorname{Ind}(U_3) = U_4 \oplus V_4$ and $\operatorname{Ind}(U_3') = U_1' \oplus V_4'$).

* Some of the key motivation for studying induced representations comes from two deep theorems of Artin & Braner

Thm (Artin) | Every character of a reproduction of G is a linear contination with rational coefficients of characters of reproductations induced from cyclic subgroups of G.

Coefficients of characters of representations induced from cyclic subgroups of G.

Then (Brane) | Every character of a remodelism of G is a linear contination with integer

Thm (Brane) | Every character of a reproduction of G is a linear contination with integer coefficients of characters of reproductations induced from "elementary" Subgroups of G.

where elementary = isomorphic to a product $C \times H$, H pigmip $|H| = p^k$ C cyclic $\simeq \mathbb{Z}/n$, p + n. (whith prove. See e.g. Serre's "Reps. of Brite groups")

Real reproctations: we're shalled actions of Finite groups on complex vector spaces, now we want to be the same for real ones.

· Existence of an invariant inner product still holds (build (.,. > by averaging).

⇒ every rep. is ⊕ of irreducibles (given a subrep., its 1 is also a subrep.)

· Schur's lemma fails: Z/n ach on IR2 by rotations, Kis is irreducible, has nontrivial automorphisms eg any rotation of IR2.

```
4
```

Main tool to shely real rep^{ns}: complexification { real rep^{ns}} -> { complex rp^{ns}}

V₆ 1→ V=V₆ Ø_R C = V₆ ⊕ i V₆. (G acts by g(v+iw) = gv + i gw).

Def: A complex up. V of G is called real if there exists a up. over R, Vo, st. $V = V_0 \otimes C$ Necessary condition: χ_V must take real values! This is also not a sufficient cond?

Ex: the quaternion group $Q = \{\pm 1, \pm i, \pm j, \pm k\}$, $i^2 = j^2 = k^2 = ijk = -1$ acks on \mathbb{C}^2 by $\pm 1 \mapsto \pm 1d$, $\pm i \mapsto \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $\pm j \mapsto \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\pm k \mapsto \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$

 $\chi(\pm 1) = \pm 2$, all others have $\chi = 0$: so χ takes real values.

However this dres not come from a 2-dimensional real representation: Q (+> GL(2,R). (this is because a real representation of a finite group has an invariant inner product, by the same averaging bick as in the complex case, so we'd get Q c> O(2), with -1 acting by -Id, but only 2 elevents of O(2) square to -Id (notations by ±90°) while we need 6 such elevents for ±i, ±j, ±k.)

SIF Vo is a reprocederant of Gove IR, then it has an invavant inner product <; ->.

Extending, this yields a nondegeneral symmetric bilinear form on V = VORC. We'll see:

The interpolation of Gove IR, then it has an invavant inner product <; ->.

Thui An irreducible complex reprostation V of a finite grap G is real iff V caries a G-irvariant nondegenerate symmetric bilinear form.

As a first step:

Prop: A complex representation V is real iff there exists a G-equivariant, complex antilinear map $\tau: V \to V$ (i.e. $\tau(\lambda v) = \overline{\lambda} \tau(v)$) such that $\tau^2 = id$.

The one dischool is clear; if $V=V_0 \otimes_R C$, let $T(v+i\omega)=V-i\omega$ for $V, \omega \in V_0$: complex conjugation! In opposite direction, given T, $v \in V$ decomposes into $Re(v)=\frac{v+\tau(v)}{2}$ and $i Tm(v)=\frac{v-\tau(v)}{2}$ which belong to the ± 1 eigenspaces of T. Let $V_0=\ker(\tau-id)$, which is an R-subspace of V (not a C-subspace!) and, so R-linear maps, $Ti=-i\tau$ so iV_0 is the -1-esurpace, and $V=V_0 \oplus iV_0=V_0 \oplus iV_0$.

The above was just linear algebra, but G-equivariance of τ implies that the eigenspace $V_0 = \ker(\tau - 1)$ is preserved by G, hence a subrep. ove IR (similarly for iV₀).