Modelos de Razonamiento

PRESENTACIÓN DE LA ASIGNATURA

CURSO: 5°

PROFESORES:

OSCAR CORCHO GARCÍA MIGUEL ANGEL GARCÍA REMESAL

Objetivos de la asignatura

- Presentación de métodos de Inteligencia Artificial, principalmente simbólicos, especializados en la simulación de formas razonamiento que permiten la resolución de ciertas clases de problemas.
 - Espacio y tiempo
 - Taxonomías
 - o Razonamiento basado en casos
 - o Recuperación de información
 - o Planificación
- Soluciones técnicas que recogen los últimos avances en estos campos y que están en línea con necesidades actuales de sistemas reales.
- Continuación y extensión de conceptos básicos estudiados en las asignaturas de Inteligencia Artificial e Ingeniería del Conocimiento.

Contenidos

• Razonamiento sobre modelos taxonómicos

- o Formalismos de representación de conocimientos (repaso)
 - × Lógica formal (lógica de predicados, lógica de primer orden)
 - × Redes semánticas
 - × Marcos
 - × Sistemas de producción
- o Lógica de descripciones
 - x Introducción y elementos básicos
 - Detección de inconsistencias y clasificación
 - × Depuración y modularización
- Prácticas con las herramientas Protégé/SWOOP y los razonadores Pellet/SHER

Contenidos

- o Representación de datos espaciales
 - Conceptos espaciales fundamentales
 - × Modelos continuos
 - o Estructuras de datos de información geo-espacial
 - Algoritmos geométricos y de razonamiento espacial fundamentales
 - Razonamiento espacial e incertidumbre
 - × Modelos discretos
 - Razonamiento espacial cualitativo (QSR)
- o Búsqueda espacial
- o Prácticas con Sistemas de Información Geográfica y Prolog/QSR

Contenidos

- Razonamiento temporal
 - o Razonamiento temporal cualitativo
 - o Prácticas con Prolog

Contenidos

- o Representación de casos en librerías de casos.
- o Modelo general del proceso de razonamiento basado en casos
- o Integración de razonamiento basado en casos con otros paradigmas
- o Prácticas con la herramienta JCOLIBRI

Contenidos

- Recuperación inteligente de información (RI)
 - o Introducción y conceptos básicos
 - o Modelos clásicos de RI
 - × Booleano
 - × Vectorial
 - × Probabilístico
 - o RI en la web (web retrieval)
 - o Evaluación de modelos de RI
 - o Mejora del rendimiento en modelos de RI
 - x Retroalimentación de la relevancia
 - × Uso de taxonomías de conceptos y ontologías
 - o Prácticas con SMART, MG, etc.

Contenidos

- o Introducción y conceptos básicos
- Representación y Modelización
 - Técnicas clásicas, variables de estado, conjuntos, PDDL
 - Planificación Clásica
 - Espacio de estados
- Espacio de caracterista
 Espacio de planes
 Planificación Neoclásica
 - × Planificación en Grafos
 - × SAT-Planning
 - Satisfacción de Restricciones
- o Heurísticas y estrategias de Control
 - Uso de reglas de control (lógica temporal)
 - Redes jerárquicas de tareas (HTN)
- o Planificación Temporal (crónicas)
- Planificación en presencia de incertidumbre
- o Prácticas con STRIPS, GRAPHPLAN, SHOP2, etc.

Bibliografía Básica

- General/Razonamiento basado en casos:
 - o Stefik, M. (1995): Introduction to Knowledge Systems. Morgan Kauffman.
- Razonamiento Espacio-Temporal:
 - Worboys, M.F. and Duckham, M. (2004). GIS: A Computing Perspective, Second Edition. CRC Press.
- Razonamiento Taxonómico:
 - o Gómez, A., Fernández, M., Corcho, O. (2003): Ontological Engineering. Springer-Verlag.
- Recuperación de Información:
 - o Baeza-Yates, R., Ribeiro-Neto, B. (1999): Modern Information Retrieval. Addison-Wesley.
- Planificación Automática:
 - o Ghallab, M., Nau, D., Traversa, P. (2004): Automated Planning: Theory and Practice. Morgan Kauffman.

Estructura propuesta de clases

- Miércoles (1 hora, optativa)
 - Clases prácticas
 - x Explicación de uso de herramientas
 - × Ejercicios sencillos
 - × Desarrollo y dudas sobre las prácticas
 - o Explicación de las prácticas a realizar
- Viernes (2 horas)
 - Clases teóricas
 - o Posibles charlas invitadas de expertos en las áreas de trabajo exploradas

Evaluación

Prácticas

- Las prácticas contendrán una parte obligatoria y partes opcionales
 - × Se deben aprobar todas las prácticas (cuatro)
 - × Las calificaciones de cada práctica individual se guardan hasta septiembre
 - × Las prácticas son individuales

• Examen teórico

o El examen se realizará para aquellos alumnos que no hayan superado la parte práctica