GaN Modelleme Çalışma Planı

GaN modellemelerinde hangi adımlarla ilerleneceğinin ve her adımda nelerin doğrulanacağının belirlenmesi için bir dosya oluşturulması kararlaştırıldı.

Makalelere Mendeley'de IMMD/device/Modelling uzantısından ulaşılabilir.

GaN modellemesini yapmaktaki hedeflerimiz:

- GANFET'in gate davranışını modellemek¹
- GANFET'in drain-source akımını modellemek²
- GANFET'in iç kapasitanslarını modellemek³
- GaNFET'in kayıp karakterizasyonunu modellemek
 - lleri ve ters iletim sırasında oluşan kayıpların modellenmesi
 - Anahtarlama anlarında oluşan kayıpların modellenmesi⁴
- Sabit parameterlerle yapılan modellemelerin sıcaklık değişimiyle bağlantılı olarak modellenmesi
- Kendi GaN parametrelerimizi çıkarıp bunlar üzerinde çalışmak

Modelleme Devresi

Modelleme devremizi basit tutup olabildiğince yükü azaltmaya çalıştık. R-Load ile çalışmaya başlayabiliriz, daha sonra R-L Load ile devam edilebilir, Free Wheeling Diode bu yüzden koyuldu.

 $^{^{\}rm 1}$ A Simple Behavioral Electro-Thermal Model of GaN FETs for SPICE Circuit Simulation — Figure 2

² Characterization and Modeling of a Gallium Nitride Power HEMT – Table I

³ Nonsegmented PSpice Circuit Model of GaN HEMT With Simulation Convergence Consideration – Figure 3

⁴ An Analytical Switching Process Model of Low-Voltage eGaN HEMTs for Loss Calculation – Figure 3,4,5,6

GaNFET modellemesinde kullanılabilecek seçenekler Seçenek #1

Kullanılan makaleler:

- i. Nonsegmented PSpice Circuit Model of GaN HEMT With Simulation Convergence Consideration(Rd ve Rs'e yer verilmemiş)
- ii. Characterization and Modeling of a Gallium Nitride Power HEMT
- iii. An Analytical Switching Process Model of Low-Voltage eGaN HEMTs for Loss Calculation
- iv. An Analytical Model for False Turn-On Evaluation of High-Voltage Enhancement-Mode GaN Transistor in Bridge-Leg Configuration (Yukarıdaki devrenin daha detaylandırılmışı)
- v. Analysis of GaN HEMTs Switching Transients Using Compact Model (Yukarıdaki devrenin çok daha detaylısı)

Artılar & Eksiler

- + Güç elektroniği uygulamalarına tavsiye edilen bir yöntem olması
- + İhtiyaçlarımızı karşılayacak kadar ayrıntı içermesi
- + Bu modellemenin üzerine ulaşılabilir kaynakların fazla olması
- + Sıcaklığa bağlı modellemeler için uygun olması
- Karmaşıklık seviyesinin yüksek olması
- Bütün parametrelerin ayrıntılı olarak belirlenmesi gerekliliği
- Anlaşılırlığın yer yer düşük olması

Seçenek #2

Fig. 1. (a) I_d - V_{ds} characteristics of GaN-HEMTs, and schematics of the equivalent circuit model in (b) the linear region and (c) saturation region.

Kullanılan makaleler:

i. Equivalent Circuit Model for GaN-HEMTs in a Switching Simulation

Artılar & Eksiler

- + Güç elektroniği uygulamalarına tavsiye edilen bir yöntem olması
- + İhtiyaçlarımızı karşılayacak kadar ayrıntı içermesi
- + Sıcaklığa bağlı modellemeler için uygun olması
- Karmaşıklık seviyesinin yüksek olması
- Bütün parametrelerin ayrıntılı olarak belirlenmesi gerekliliği
- Anlaşılırlığın yer yer düşük olması
- Bir makalede işlenmiş olması ve makalenin tarih olarak diğerlerinden geride olması(2008). Makalede bizim için önemli sayılabilecek Turn-ON ve Turn-OFF anlarını tıpatıp aynı kabul etmesi ve anlatımın ayrıntı içermek anlamında zayıf olması.

N-Channel MOSFET

Artılar & Eksiler

- + Basit, kolay ve alışılmış olması
- MOSFET ile GANFET'in gerilime bağlı akım davranışlarının aynı kabul edilmesi
- Body diode'un varlığından ötürü ters iletimin modellenme zorluğu
- Sıcaklığa bağlı olarak sadece Rds(ON)'un modellenebiliyor olması
- Bu yöntemin literatürdeki GaN kayıp karakteristiğinin modellenmesinde kullanılan bir yöntem olmaması