# Revision

COMP 1531
Aarthi Natarajan
Week 10

# Week 12 Revision Classes and ERDs

# **Case Study**

- UNSW has several departments. Each department is managed by a chair, and at least one professor.
- Professors must be assigned to one, but possibly more departments. At least one professor teaches each course, but a professor may be on sabbatical and not teach any course.
- Each course may be taught more than once by different professors.
- We know of the department name, the professor name, the professor employee id, the course names, the course schedule, the term/year that the course is taught, the departments the professor is assigned to, the department that offers the course
- Draw a class diagram and an ER model for the above casestudy

# 1. Identify classes

- Abstract or tangible "things" in our problem domain (nouns and noun phrases) determined from requirement analysis
- e.g., departments, chair, professor

#### 2. Find associations

- Verbs that join the nouns e.g., professor (noun) teaches (verb) students (noun)
- 3. Draw CRC diagram

# **Defining the CRC cards**

| Professor                               |                      |
|-----------------------------------------|----------------------|
| Assigned to a Department Teaches Course | Department<br>Course |
| Knows Name Knows Employee ID            |                      |

| Department                    |           |  |
|-------------------------------|-----------|--|
| Managed by a Chair            | Chair     |  |
| <i>Is Assigned</i> Professors | Professor |  |
| Offers Courses Course         |           |  |
| Knows Department Name         |           |  |

| Course                                                                             |                         |
|------------------------------------------------------------------------------------|-------------------------|
| Offered by a Department Taught by Professor Knows schedule Knows term/year offered | Department<br>Professor |

| Chair                               |                         |
|-------------------------------------|-------------------------|
| Manages a Department Is a Professor | Department<br>Professor |
| Knows Department Name               |                         |

#### 4. Draw the conceptual class diagram



# 5. Fill in the multiplicity



## 5. Identify attributes



- 5. Identify behaviours
- 6. Review class diagram and fine tune it



#### **Designing a database**

#### Two data models

- Logical: abstract model e.g., ER Model, OO Model
- Physical: record-based models e.g., relational model

#### A strategy for designing a database

- Design using abstract model (conceptual-level modelling)
- Map to physical model (implementation-level modelling)



# Steps to drawing the entity relationship diagram

## 1. Identify entities

- Typically the nouns and noun phrases determined from requirement analysis
- Include only entities relevant to problem domain
- e.g., departments, chair, professor

# 2. Find relationships

- Verbs that join the nouns e.g., professor (noun) teaches (verb) students (noun)
- 3. Draw conceptual ER diagram



# Steps to drawing the entity relationship diagram

- 5. Add cardinality
- 6. Identify the entity attributes
- 7. Identify the primary key



#### **Relational Data Model**

The relational data model describes the world as a collection of inter-connected relations (or tables)

Goal of relational model:

- a simple, general data modelling formalism
- maps easily to file structures (i.e. implementable)
   Relational model has two styles of terminology:

| mathematical  | relation | tuple        | attribute      |
|---------------|----------|--------------|----------------|
| data-oriented | table    | record (row) | field (column) |

#### STUDENT

| Name  | Student_number | Class | Major |
|-------|----------------|-------|-------|
| Smith | 17             | 1     | CS    |
| Brown | 8              | 2     | CS    |

#### **Relational Data Model**

#### Example of a relation (table): Bank Account



#### **Constraints**

Relations are used to represent real-world entities and relationships between these entities

To represent real-world problems, need to describe

- what values are/are not allowed
- what combinations of values are/are not allowed

Constraints are logical statements that do this:

- Domain constraint
- Key constraint
- Entity constraint
- Referential integrity

#### **Referential Integrity Example**

#### Table DEPARTMENT (Parent Table) Primary Key in Parent Table

| DEPT_NO | DEPT_NAME | CITY      |
|---------|-----------|-----------|
| 10      | MARKETING | SYDNEY    |
| 11      | SALES     | SYDNEY    |
| 12      | TECH      | MELBOURNE |

#### Table EMPLOYEE (Child Table)

Foreign Key in child table must match a primary key in the parent table

| EMP_NO | EMP_NAME | ROLE        | DEPT |
|--------|----------|-------------|------|
| 5012   | John     | CEO         | 10   |
| 5016   | Alison   | SALESPERSON | 11   |
| 5018   | Cathy    | MANAGER     | 12   |

Insert Fails due to violates the referential integrity constraint

5015 Mitchell SALESPERSON 30

## **Relational Model vs Entity Model**

Correspondences between relational (R) and ER data models:

- ER attribute → relational attribute
- ER entity → relational tuple
- ER entity-set → relational table (relation)
- ER relationship → relational table (relation)
- ER key → relational primary key

Differences between relational and ER models:

- Relational uses relations to model entities and relationships
- Relational has no composite or multi-valued attributes (only atomic)
- Relational has no object-oriented notions (e.g. subclasses, inheritance)

## **Case Study:**

(1) Develop an ER design for the following scenario:

A database records information about teams, players, and their fans, including:

- For each team, its name, its players, its captain (one of its players)
  and the colours of its uniform.
- For each player, their name and team.
- For each fan, their name, favourite teams, favourite players, and favourite colours.

# Solution: ER Design



#### **Solution:**

(2) Now, convert the following ER design into a relational data model based on the box schema notation



#### **Solution:**

- (3) Which elements of the ER design do not appear in the relational model?
- At a syntactic level, the multi-valued attributes from the E/R design do not appear directly in the relational model, but are replaced by tuples in the TeamColours and FavColours tables.
- At a semantic level, it doesn't capture the total participation of the Team entity in the PlaysFor relationship. While all players have to play for a team, the diagram does not enforce that each team must have at least one player who plays for it (except indirectly via the fact that it has to have a captain)
- It also doesn't require that a team has any colours or that a fan has any favourite colours.
  - (Of course, the E/R diagram doesn't imply this either (non-key attributes are not required to have a value), but if it did state this, the relational model as given could not capture it.)