计算机组成原理

群名称:2022春-计组4班

群号:139369553

文杰

计算机科学与技术学院

wenjie@hit.edu.cn

个人主页: http://faculty.hitsz.edu.cn/wenjie

计算机的运算方法

- 定点运算
 - 加减法运算
 - 一位乘法运算
 - booth 算法
 - 除法运算
- 浮点运算

加减法运算

• 补码加减运算公式

(1) 加法

整数
$$[A]_{\stackrel{?}{\nmid h}} + [B]_{\stackrel{?}{\nmid h}} = [A+B]_{\stackrel{?}{\nmid h}} \pmod{2^{n+1}}$$
小数 $[A]_{\stackrel{?}{\nmid h}} + [B]_{\stackrel{?}{\nmid h}} = [A+B]_{\stackrel{?}{\nmid h}} \pmod{2}$

(2) 减法

$$A-B = A+(-B)$$

$$[x]_{\not= h} = \begin{cases} 0, x & 2^n > x \ge 0 \\ 2^{n+1} + x & 0 > x \ge -2^n \pmod{2^{n+1}} \end{cases}$$

$$[x]_{\nmid h} = \begin{cases} x & 1 > x \ge 0 \\ 2 + x & 0 > x \ge -1 \pmod{2} \end{cases}$$

整数
$$[A-B]_{\stackrel{?}{\nmid h}} = [A+(-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2^{n+1}}$$

小数
$$[A - B]_{\stackrel{?}{\nmid h}} = [A + (-B)]_{\stackrel{?}{\nmid h}} = [A]_{\stackrel{?}{\nmid h}} + [-B]_{\stackrel{?}{\nmid h}} \pmod{2}$$

连同符号位一起相加,符号位产生的进位自然丢掉

例:用补码运算求A+B

•设A = 0.1011,B = -0.0101,用补码运算求A+B=?

解:
$$[A]_{\stackrel{}{\mathbb{A}}} = 0.1011$$

$$+[B]_{\stackrel{}{\mathbb{A}}} = 1.1011$$

$$[A]_{\stackrel{}{\mathbb{A}}} + [B]_{\stackrel{}{\mathbb{A}}} = 10.0110 = [A + B]_{\stackrel{}{\mathbb{A}}}$$

$$\therefore A + B = 0.0110$$

验证 0.1011 - 0.0101

• 设
$$A=-9$$
, $B=-5$ (设A和B数值位数为4),求 $A+B$

解:
$$[A]_{\stackrel{}{\uparrow}} = 1, 0111$$

 $+[B]_{\stackrel{}{\uparrow}} = 1, 1011$
 $[A]_{\stackrel{}{\uparrow}} + [B]_{\stackrel{}{\uparrow}} = 1, 0010 = [A + B]_{\stackrel{}{\uparrow}}$
 $\therefore A + B = -1110$

已知 $[X]_{i}$,以下哪个方法可以求出 $[-X]_{i}$?

A 包括符号为在内按位取反

提交

- B 包括符号位在内,每位取反,末位加 1
- © 除符号位外,每位取反,末位加1
- 符号为取反,其他保持不变

关于 $[X]_{i}$ 和 $[-X]_{i}$,哪个表述正确?

- $-[X]_{\dot{\uparrow}\dot{\uparrow}} = [-X]_{\dot{\uparrow}\dot{\uparrow}}$
- $[X]_{i}$ 和 $[-X]_{i}$ 没有任何关系

提交

*例: 已知小数[y]_补,求[-y]_补

设 $[y]_{\uparrow} = y_0 \cdot y_1 y_2 \dots y_n$,根据符号位 y_0 为0或1分开讨论

$$\begin{aligned}
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & -y = -\mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{1}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{1}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1 y_2 \dots y_n \\
 & \{y\}_{\frac{1}{N}} = \mathbf{0}. \ y_1$$

 $[y]_{i}$ 连同符号位在内,每位取反,末位加 1,即得 $[-y]_{i}$

观察发现 $[-y]_{ih} + [y]_{ih} = 2 \longrightarrow 0 \pmod{2}$ $[-y]_{ih} = -[y]_{ih}$

7

*例:已知整数 $[X]_{i}$,求 $[-X]_{i}$

设 $[X]_{\uparrow h} = X_n, X_{n-1} \cdots X_1 X_0$,根据符号位 X_n 为0或1分开讨论

$$<\mathbf{I}> \qquad \boxed{[X]_{\nparallel} = \mathbf{0}, X_{n-1}X_{n-2}...X_{1}X_{0}} <\mathbf{I}\mathbf{I}> \boxed{[X]_{\maltese} = \mathbf{1}, X_{n-1}X_{n-2}...X_{1}X_{0}} \\ X_{\boxplus} = \mathbf{0}, X_{n-1}X_{n-2}...X_{1}X_{0} \qquad X_{\boxplus} = \mathbf{1}, (\overline{X}_{n-1}\overline{X}_{n-2}...\overline{X}_{1}\overline{X}_{0} + \mathbf{1}) \\ [-X]_{\boxplus} = \mathbf{1}, X_{n-1}X_{n-2}...X_{1}X_{0} \qquad [-X]_{\boxplus} = \mathbf{0}, (\overline{X}_{n-1}\overline{X}_{n-2}...\overline{X}_{1}\overline{X}_{0} + \mathbf{1}) \\ [-X]_{\maltese} = \mathbf{1}, (\overline{X}_{n-1}\overline{X}_{n-2}...\overline{X}_{1}\overline{X}_{0} + \mathbf{1}) \qquad [-X]_{\maltese} = \mathbf{0}, (\overline{X}_{n-1}\overline{X}_{n-2}...\overline{X}_{1}\overline{X}_{0} + \mathbf{1})$$

 $[X]_{i}$ 连同符号位在内,每位取反,末位加 1,即得 $[-X]_{i}$

观察发现 $[-X]_{\dot{\uparrow}} + [X]_{\dot{\uparrow}} = 2^{n+1} -> 0 \pmod{2^{n+1}}$ $[-X]_{\dot{\uparrow}} = -[X]_{\dot{\uparrow}}$

例:用补码运算求A-B

设机器数字长为 8 位(含 1 位符号位)且 A = 15,B = 24,用补码求 A - B。 $[A - B]_{\stackrel{}{\mathcal{H}}} = [A]_{\stackrel{}{\mathcal{H}}} + [-B]_{\stackrel{}{\mathcal{H}}}$

解:
$$A = 15 = 0001111$$
 $B = 24 = 0011000$
 $[A]_{\dag} = 0,0001111$
 $[B]_{\dag} = 0,0011000$
 $+[-B]_{\dag} = 1,1101000$

$$[A]_{\nmid h} + [-B]_{\nmid h} = 1, 11101111 = [A - B]_{\nmid h}$$

$$\therefore A - B = -1001 = -9$$

设机器数字长为 8 位(含 1 位符号位)且 A = -97, B = 41, 用补码求 A - B(8位补码表示)。 **(97=01100001** 41=00101001**)**

- A 11110110
- B 01110110
- 11001000

D 其他

提交

例:用补码运算求A-B

- •设机器数字长为 8 位(含 1 位符号位)且 A = -97, B =
- 41, 用补码求 A-B。 (97=01100001 41=00101001)

解:
$$A = -97 = -11000001$$
 $[A - B]_{?} = [A]_{?} + [-B]_{?}$ $[A]_{?} = 1,00111111$ $+[-B]_{?} = 1,1010111$ $[A]_{?} = 1,10110-[A-B]_{?}$

$$[A]_{\stackrel{*}{\uparrow}_{\uparrow}} + [-B]_{\stackrel{*}{\uparrow}_{\uparrow}} = 10, 1110110 = [A - B]_{\stackrel{*}{\uparrow}_{\uparrow}}$$

$$\therefore A - B = +118 \quad (溢出)$$

练习 1 设
$$x = \frac{9}{16}$$
 $y = \frac{11}{16}$,用补码求 $x+y$

作答

练习 1 设
$$x = \frac{9}{16}$$
 $y = \frac{11}{16}$,用补码求 $x+y$ 解: $x = 9/16 = 0.1001$ $y = 11/16 = 0.1011$ $[x]_{\dag} = 0.1001$ $[y]_{\dag} = 0.1011$ $+ [y]_{\dag} = 0.1011$ $[x]_{\dag} + [y]_{\dag} = 1,0100 = [x+y]_{\dag}$ $x+y=-0.1100=-\frac{12}{16}$

一位符号位判溢出

- •一位符号位判溢出: A+B
 - 加法[A+B]_补: 若[A]_补和[B]_补和个数符号相同,而其结果的符号与[A]_补和[B]_补的符号不同,即为溢出
 - **减法[A-B]**_补=[A+(-B)]_补: 若[A]_补和[-B]_补两个数符号相同,而其结果的符号与[A]_补和[-B]_补的**符号不同,即为溢出**
- 硬件实现
 - •最高有效位的进位⊕符号位的进位 = 1, 溢出

两位符号位判溢出

• 小数变形补码

$$[x]_{\nmid h'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

• 整数变形补码

$$[X]_{\nmid h'} = \begin{cases} X & 2^n > X \ge 0 \\ 2^{n+2} + X & 0 > x \ge -2^n \pmod{2^{n+2}} \end{cases}$$

最高符号位 代表其 真正的符号

$$[x]_{\not h'} + [y]_{\not h'} = [x + y]_{\not h'} \pmod{4 \pmod{2^{n+2}}}$$

$$[x-y]_{k} = [x]_{k} + [-y]_{k}$$
 (mod 4 或mod 2^{n+2})

结果的双符号位相同 未溢出 $00, \times \times \times \times$

结果的双符号位不同

溢出

结果的双符号位相同,未溢出

• 例. 设
$$A = +\frac{11}{16} = 0.1011$$
, $B = +\frac{7}{16} = 0.0111$, 求 $[A+B]_{\dot{A}'}$ 解: $[A]_{\dot{A}'} = 00.1011$ $+[B]_{\dot{A}'} = 00.0111$ $[A]_{\dot{A}'} + [B]_{\dot{A}'} = 01.0010 = [A+B]_{\dot{A}'}$ 第1位符号位 结果的双符号位不同,溢出

• 例. 设
$$A = -\frac{11}{16} = -0.1011$$
, $B = -\frac{7}{16} = -0.0111$, 求 $[A + B]_{\dot{A}'}$ 解: $[A]_{\dot{A}'} = 11.0101$ $+[B]_{\dot{A}'} = 11.1001$ $[A]_{\dot{A}'} + [B]_{\dot{A}'} = 110.1110 = [A + B]_{\dot{A}'}$ 丢掉 结果的双符号位不同,溢出

计算机的运算方法

- •定点运算
 - 加减法运算
 - 一位乘法运算
 - Booth 算法
 - 除法运算
- 浮点运算

乘法运算

• 分析笔算乘法

$$A = -0.1101$$
 $B = 0.1011$

- 乘数的某一位决定是否加被乘数
- 4个位积一起相加
- ✓ 乘积的位数扩大一倍

笔算乘法的改进

(8)

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(1 \cdot A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(1 \cdot A + 0.1A)]$$

$$= 0.1\{1 \cdot A + 0.1[0 \cdot A + 0.1(1 \cdot A + 0.1A)]\}$$

$$= 2^{-1}\{1 \cdot A + 2^{-1}[0 \cdot A + 2^{-1}(1 \cdot A + 2^{-1}(1 \cdot A + 0.1A))]\}$$
1 被乘数 $A + 0$
2 右移一位,得新的部分积
3 部分积 + 被乘数
...

右移一位,得结果

 $\begin{array}{r} 0.1101 \\ \times 0.1011 \\ \hline 1101 \\ 1101 \\ 0000 \\ \hline 1101 \\ \hline 0.10001111 \end{array}$

• 改进后的笔算乘法过程(竖式)

 $A \cdot 0.1011$ = $2^{-1} \{ 1 \cdot A + 2^{-1} [0 \cdot A + 2^{-1} (1 \cdot A + 2^{-1} (1 \cdot A + 0))] \}$

$$A = -0.1101$$

 $B = 0.1011$

 $\begin{array}{r} 0.1101 \\ \times 0.1011 \\ \hline 1101 \\ 1101 \\ 0000 \\ \hline 1101 \\ \hline 0.10001111 \end{array}$

部分积	乘数	说 明
0.0000	1011	初态,部分积=0
+0.1101	II	乘数为1,加被乘数
0.1101		
0.0110	1101	$\rightarrow 1$,形成新的部分积
+ 0 . 1 1 0 1	=	乘数为1,加被乘数
1.0011	1	
0.1001	1110	→ 1, 形成新的部分积
+ 0.0000		乘数为0,加0
0.1001	11	
0.0100	1111	→ 1, 形成新的部分积
+0.1101	П	乘数为1,加被乘数
$\boxed{1.0001}$	111	
0.1000	1111	→1 ,得结果

数值部分

小结

- 乘法运算可用 加和移位 实现
 - n = 4, 加 4 次, 移 4 次

$$A \cdot 0.1011$$
= $2^{-1} \{ 1 \cdot A + 2^{-1} [0 \cdot A + 2^{-1} (1 \cdot$

 $\times 0.1011$

1101

0000

1101

0.10001111

1101

•由乘数的末位决定被乘数是否与原部分积相加,然后->1 位形成新的部分积,同时乘数->1位(末位移丢),空出 高位存放部分积的低位。

•被乘数只与部分积的高位相加

硬件: 3个寄存器,其中两个具有移位功能

1个全加器:被乘数和部分积的高位相加操作(n+1位)

计算机的运算方法

- 定点运算
 - •加减法运算
 - 一位乘法
 - Booth 算法
 - 除法运算
- 浮点运算

原码乘法

• 原码一位乘运算规则

以小数为例 设
$$[x]_{\mathbb{R}} = x_0 \cdot x_1 x_2 \cdots x_n$$

$$[y]_{\mathbb{R}} = y_0 \cdot y_1 y_2 \cdots y_n$$

$$[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0) \cdot (0 \cdot x_1 x_2 \cdots x_n) (0 \cdot y_1 y_2 \cdots y_n)$$

$$= (x_0 \oplus y_0) \cdot x^* y^*$$
 式中 $x^* = 0 \cdot x_1 x_2 \cdots x_n$ 为 x 的绝对值
$$y^* = 0 \cdot y_1 y_2 \cdots y_n$$
 为 y 的绝对值

乘积的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相乘 $x^* \cdot y^*$

小数原码一位乘递推公式

$$x^* \cdot y^* = x^* (0.y_1 y_2 \dots y_n)$$

$$= x^* (y_1 2^{-1} + y_2 2^{-2} + \dots + y_n 2^{-n})$$

$$= 2^{-1} (y_1 x^* + 2^{-1} y_2 x^* + \dots + 2^{-n+1} y_n x^*))$$

$$= 2^{-1} (y_1 x^* + 2^{-1} (y_2 x^* + \dots + 2^{-1} (y_n x^* + 0) \dots))$$

$$z_0$$

$$z_0 = 0$$

$$z_1 = 2^{-1} (y_n x^* + z_0)$$

$$z_2 = 2^{-1} (y_n x^* + z_1)$$

$$\vdots$$

$$z_n = 2^{-1} (y_1 x^* + z_{n-1})$$

整数原码一位乘递推公式

$$X^* \times Y^* = X^* (Y_{n-1} \dots Y_1 Y_0) = 2^{n-1} Y_{n-1} X^* + 2^{n-2} Y_{n-2} X^* + \dots + 2^1 Y_1 X^* + 2^0 Y_0 X^*$$

$$= 2^n (2^{-1} Y_{n-1} X^* + 2^{-2} Y_{n-2} X^* + \dots + 2^{-n+1} Y_1 X^* + 2^{-n} Y_0 X^*)$$

$$= 2^n (2^{-1} (Y_{n-1} X^* + 2^{-1} Y_{n-2} X^* + \dots + 2^{-n+2} Y_1 X^* + 2^{-n+1} Y_0 X^*))$$

$$= 2^n (2^{-1} (Y_{n-1} X^* + 2^{-1} (Y_{n-2} X^* + \dots + 2^{-n+3} Y_1 X^* + 2^{-n+2} Y_0 X^*)))$$

$$= 2^n (2^{-1} (Y_{n-1} X^* + 2^{-1} (Y_{n-2} X^* + \dots + 2^{-1} (Y_1 X^* + 2^{-1} (Y_0 X^* + 0))))$$

$$= 2^n (2^{-1} (Y_{n-1} X^* + 2^{-1} (Y_{n-2} X^* + 2^{-1} (\dots + 2^{-1} (Y_1 X^* + 2^{-1} (Y_0 X^* + 0)))))$$

$$Z_0 = 0$$
 $Z_1 = 2^{-1}(Y_0 X^* + Z_0)$
 $Z_2 = 2^{-1}(Y_1 X^* + Z_1)$

 $Z_n = 2^{-1}(Y_{n-1}X^* + Z_{n-1})$

•例. 已知 x = -0.1110, y = 0.1101, 求 $[x \times y]_{\mathbb{R}}$

解:	数值部分的运算		
	部分积	乘数	说 明
	0.0000	1101	部分积 初态 $z_0 = 0$
	+ 0.1110	Ш	+ x*
\m \text{\tin}\text{\tex{\tex	0.1110		
逻辑右	0.0111	0110	→ 1 ,得 z ₁
	+ 0.0000	Ш	+ 0
逻辑右	0.0111	0	
241	0.0011	1011	$\underset{+}{\longrightarrow} \frac{1}{x^*}$,得 z_2
	+ 0.1110	II	+ x*
)四4日 - 1	1.0001	10	
逻辑在	0.1000	1 1 0 <u>1</u>	$\underset{+x^*}{\longrightarrow}$ 1,得 z_3
	+ 0.1110	II	+ x*
\m 4 2 _	1.0110	110	
逻辑和	0.1011	0110	→1, 得 z ₄

• 例结果

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则
$$[x \cdot y]_{\mathbb{R}} = 1.10110110$$

- •特点
 - 绝对值运算
 - 用移位的次数判断乘法是否结束
 - 逻辑移位

补码一位乘法运算规则(小数)

设被乘数 $[x]_{\stackrel{}{\mathbb{N}}} = x_0. x_1 x_2 ... x_n$, 乘数 $[y]_{\stackrel{}{\mathbb{N}}} = y_0. y_1 y_2 ... y_n$

- ●被乘数**任意**,乘数为正(类似原码乘) $y_0=0$, $[x \times y]_{\uparrow \uparrow} = [x]_{\uparrow \uparrow} \times y$ 但加和移位按**补码**规则运算,积的符号**自然形成**
- ●被乘数任意,乘数为负 $[x \times y]_{\stackrel{}{\rightarrow}} = [x]_{\stackrel{}{\rightarrow}} \times 0. y_1 y_2 ... y_n + [-x]_{\stackrel{}{\rightarrow}}$ 乘数 $[y]_{\stackrel{}{\rightarrow}}$, <u>去掉符号位</u>,操作同上,最后加 $[-x]_{\stackrel{}{\rightarrow}}$,<u>校正</u> $y = [y]_{\stackrel{}{\rightarrow}} -2 = 1. y_1 y_2 ... y_n - 2 = 0. y_1 y_2 ... y_n - 1$ $x \times y = x \times 0. y_1 y_2 ... y_n - x$ $[x \times y]_{\stackrel{}{\rightarrow}} = [x \times 0. y_1 y_2 ... y_n - x]_{\stackrel{}{\rightarrow}}$ $= [x]_{\stackrel{}{\rightarrow}} \times 0. y_1 y_2 ... y_n + [-x]_{\stackrel{}{\rightarrow}}$

补码一位乘法运算规则(整数)

设被乘数 $[X]_{\stackrel{}{\mathbb{A}}} = X_n \dots X_l X_0$,乘数 $[Y]_{\stackrel{}{\mathbb{A}}} = Y_n \dots Y_l Y_0$

- ●被乘数任意,乘数为正($[X \times Y]_{\stackrel{}{\mathbb{A}}} = [X]_{\stackrel{}{\mathbb{A}}} \times [Y]_{\stackrel{}{\mathbb{A}}}$, $Y_n = 0$)
 - ●类似原码乘,加和移位按**补码**规则,积的符号**自然形成**
- ●被乘数**任意**,乘数为负
 - ●乘数 $[Y]_{\lambda}$,<u>去掉符号位</u>,其他操作同上,最后 $n2^n[-X]_{\lambda}$ (校正)

$$[X \times Y]_{\nmid h} = [X]_{\nmid h} \times [Y_{n-1} \dots Y_1 Y_0]_{\nmid h} + 2^n [-X]_{\nmid h}$$

计算机的运算方法

- •定点运算
 - 加减法运算
 - 一位乘法
 - Booth 算法
 - 除法运算
- 浮点运算

Booth 算法(被乘数、乘数符号任意)

Booth 算法递推公式

$$[x \cdot y]_{\nmid h} = [x]_{\nmid h} [(y_1 - y_0) + (y_2 - y_1) 2^{-1} + \cdots + (y_{n+1} - y_n) 2^{-n}]$$

$$[z_0]_{\nmid h} = 0$$

$$[z_1]_{\nmid h} = 2^{-1} \{ (y_{n+1} - y_n)[x]_{\nmid h} + [z_0]_{\nmid h} \} \qquad y_{n+1} = 0$$

$$\vdots$$

$$[z_n]_{\nmid h} = 2^{-1} \{ (y_2 - y_1)[x]_{\nmid h} + [z_{n-1}]_{\nmid h} \}$$

$$[x \cdot y]_{\nmid h} = [z_n]_{\nmid h} + (y_1 - y_0)[x]_{\nmid h}$$

最后一步不移位

$y_i y_{i+1}$	$y_{i+1} - y_i$	操作
0 0	0	→1
0 1	1	$+[x]_{\nmid h} \rightarrow 1$
1 0	-1	$+[x]_{\stackrel{\wedge}{\uparrow}} \rightarrow 1$ $+[-x]_{\stackrel{\wedge}{\uparrow}} \rightarrow 1$
1 1	0	→ 1

101

10

 $+[-x]_{\lambda}$

 $+[x]_{\lambda}$

 $+[-x]_{\lambda}$

11

补码

补码

右移

补码

00.0011

$y_i y_{i+1}$	$y_{i+1}-y_i$	操作
0 0	0	→1
0 1	1	$+[x]_{i}\rightarrow 1$
1 0	-1	$+[-x]_{\uparrow \downarrow} \rightarrow 1$
1 1	0	→1
_	_	

• 例. 已知
$$[x]_{\stackrel{}{\mathbb{A}}} = 1.0101$$
, $[y]_{\stackrel{}{\mathbb{A}}} = 1.0011$, 求 $[x \times y]_{\stackrel{}{\mathbb{A}}}$

$$[-x]_{*} = 0.1011$$

$y_i y_{i+1}$	$y_{i+1} - y_i$	操作
0 0	0	→1
0 1	1	$+[x]_{i}\rightarrow 1$
1 0	-1	$+[-x]_{\uparrow \downarrow} \rightarrow 1$
1 1	0	→1

$$\therefore [x \times y]_{\nmid h}$$

$$= 0.10001111$$

乘法小结

- 整数乘法与小数乘法基本相同
 - 可用 逗号 代替小数点

• 原码乘: 符号位 单独处理

补码乘: 符号位 自然形成

- 原码乘去掉符号位运算, 即为无符号数乘法
- 不同的乘法运算需有不同的硬件支持

乘法器硬件示意图

- •被乘数寄存器128位
 - •被乘数64位,要左移一位64次。
- 浪费:被乘数寄存器、ALU
 - 多数时间只用64位

 $\begin{array}{r} 1101 \\ \times 1011 \\ \hline 1101 \\ 1101 \\ 0000 \\ \hline 1101 \\ \hline 10001111 \end{array}$

改良版乘法器硬件

- A. 积寄存器129位(初值为: 65个0 和 64位的乘数)
 - 最高位用于保存加法器的进位
- B. 若乘数最右端为1
 - •取积寄存器[127:64]
 - •取出的值加上被乘数;
 - •和写入积寄存器[128:64]
- C. 积寄存器整体右移一位
- *B和C循环64次
- *结果为积寄存器[127:0]
- *快速乘法: 黑书3.3.3

黑书图3-5

1101

1101

 $\times 1011$

计算机的运算方法

- •定点运算
 - 加减法运算
 - 一位乘法
 - Booth 算法
 - 除法运算
- 浮点运算

除法运算

• 分析笔算除法

$$x = -0.1011$$
 $y = 0.1101$ $\Re x \div y$

$$\begin{array}{c} 0.1101 \\ \hline 0.1101 \\ \hline 0.10110 \\ \hline 0.01101 \\ \hline 0.010010 \\ \hline 0.001101 \\ \hline 0.0001101 \\ \hline 0.00001111 \\ \hline 0.00000111 \\ \hline \end{array}$$

- ✓商符单独处理
- ?心算上商
- ?余数不动低位补"0" 减右移一位的除数
- ?上商位置不固定

$$x \div y = -0.1101$$
 商符心算求得
余数 0.00001111

笔算除法和机器除法的比较

$x = -0.1011 \quad y = 0.1101$ $0.1101 \quad 0.1101$ $0.1101 \quad 0.10110$ 0.01101 0.001010 0.0001101 0.00001101 0.00001101

笔算除法

商符单独处理 心算上商

余数 不动 低位补 "0" 减右移一位 的除数

2 倍字长加法器上商位置不固定

机器除法

符号位异或形成

$$|x| - |y| \ge 0$$
 上商 1

$$|x| - |y| < 0$$
上商 0

余数左移一位低位补"0"减除数

1 倍字长加法器 在寄存器 最末位上商

原码除法

• 以小数为例

$$[x]_{\mathbb{R}} = x_{0}. x_{1}x_{2} \dots x_{n}$$

$$[y]_{\mathbb{R}} = y_{0}. y_{1}y_{2} \dots y_{n}$$

$$[\frac{x}{y}]_{\mathbb{R}} = (x_{0} \oplus y_{0}). \frac{x^{*}}{y^{*}}$$
式中 $x^{*} = 0. x_{1}x_{2} \dots x_{n}$ 为 x 的绝对值 $y^{*} = 0. y_{1}y_{2} \dots y_{n}$ 为 y 的绝对值

商的符号位单独处理 $x_0 \oplus y_0$ 数值部分为绝对值相除 $\frac{x^*}{v^*}$

约定 小数定点除法 $x^* < y^*$ 整数定点除法 $x^* > y^*$ 被除数不等于 0 除数不能为 0

恢复余数法

• 例.
$$x = -0.1011$$
, $y = -0.1101$, 求 $\left[\frac{x}{y}\right]_{\bar{y}}$

假设机器数是5 位,符号位1位

$$[x]_{\text{ff}} = 1.1011 \quad [y]_{\text{ff}} = 1.1101 \quad [y^*]_{\text{h}} = 0.1101 \quad [-y^*]_{\text{h}} = 1.0011$$

(1)
$$x_0 \oplus y_0 = 1 \oplus 1 = 0$$

0.1101
$0.1101 \overline{)0.10110}$
0.01101
0.010010
$_0.001101$
0.00010100
$\underline{0.00001101}$
0.00000111

上商前,比较被除数和除数:

$$[x^*-y^*]_{\lambda}=[x^*]_{\lambda}+[-y^*]_{\lambda}$$

<u> </u>		
② 被除数(余数)	商	说明
0.1011	0.0000	
+ 1.0011		$+[-y^*]_{ eqh}$
1.1110	0	余数为负,上商0
+ 0.1101		恢复余数 +[y*] _补
0.1011	0	恢复后的余数
逻辑左移 1.0110	0	←1
+ 1.0011		+[<i>-y*</i>] _{ネト}
0.1001	0 1	余数为正,上商1
逻辑左移 1.0010	0 1	←1
+ 1.0011		$+[-y^*]_{ eqh}$

上商前,比较被除数和 除数:

$$[x^*-y^*]_{\nmid h} = [x^*]_{\nmid h} + [-y^*]_{\nmid h}$$

被除数(余数)	商	说明
0.0101	011	余数为正,上商1
逻辑左移 0.1010	011	←1
+ 1.0011		+[- <i>y</i> *] _*
1.1101	0110	余数为负,上商0
+ 0.1101		恢复余数 +[y*] _补
0.1010	0110	恢复后的余数
逻辑左移 1.0100	0110	←1
+ 1.0011		+[- <i>y</i> *] _{ネト}
0.0111	01101	余数为正,上商1

上商5次

第一次上商判溢出

$$\frac{x^*}{y^*} = 0.1101$$
∴ $\left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$

余数为正 上商1

移 4 次

余数为负 上商 0,恢复余数

不恢复余数法(加减交替法)

• 恢复余数法运算规则

	被除数(余数)	商	说明
	0.1011	0.0000	
	+ 1.0011		+[- <i>y</i> *] _补
Π	1.1110	0	余数为负,上商 0
L	+0.1101		恢复余数 +[y*] _补
	0.1011	0	恢复后的余数
	1.0110	0	←1
	+ 1.0011		+[_v*] _{\$\}
	0.1001	0 1	余数为正,上商1
	1.0010	0 1	←1
	+ 1.0011		+[- <i>y</i> *] _*

- ① 余数 $R_i > 0$ 上商 "1", $2R_i y^*$
- ② 余数 $R_i < 0$ 上商 "0", $R_i + y^*$ 恢复余数

$$2(R_i + y^*) - y^* = 2R_i + y^*$$

• 不恢复余数法运算规则

加减交替

- ① 余数 $R_i > 0$: 上商"1", $2R_i y^*$
- ② 余数 $R_i < 0$: 上商"0", $2R_i + y^*$

• 例. x = -0.1011, y = -0.1101, 求 $\left[\frac{x}{y}\right]_{\mathbb{R}}$

771.	x - 0.	1011 , y	0.1101,
解:	0.1011	0.0000	
	+1.0011		+[− <i>y</i> *] _{ネト}
逻辑	1.1110	0	余数为负,上商0
左移	1.1100	0	← 1
	+0.1101		+[y*] _补
逻辑	0.1001	0 1	余数为正,上商1
左移	~ 1.0010	0 1	←1
	+1.0011		+[- <i>y</i> *] _≱ ,
逻辑	0.0101	011	余数为正,上商1
左移	0.1010	011	←1
	+1.0011		+[- <i>y</i> *] _{≱⊦}
逻辑	1.1101	0110	余数为负,上商0
左移	~ 1.1010	0110	←1
	+0.1101		+[y*] _{*\}
	0.0111	01101	余数为正,上商1
		-	•

$$[x]_{\mathbb{R}} = 1.1011$$

$$[y]_{\mathbb{R}} = 1.1101$$

$$[x^*]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{$$

$$[y^*]_{n} = 0.1101$$

$$[-y^*]_{\mbox{$*$}} = 1.0011$$

• 不恢复余数法运算规则

$$2R_i - y^*$$

$$2R_i + y^*$$

• 例. 结果

②
$$\frac{x^*}{y^*} = 0.1101$$

$$\therefore \ \left[\frac{x}{y}\right]_{\mathbb{R}} = 0.1101$$

特点 上商 n+1 次

第一次上商判溢出

移n次,加n+1次

用移位的次数判断除法是否结束

第三章 计算机的运算方法

- 定点运算
- 浮点运算

浮点四则运算

•一、浮点加减运算

$$x = S_x \cdot 2^{j_x} \qquad y = S_y \cdot 2^{j_y}$$

1. 对阶

(1) 求阶差

(1) 氷阶差
$$\Delta j = j_x - j_y = \begin{cases} = 0 & j_x = j_y & \text{已对齐} \\ > 0 & j_x > j_y \begin{cases} x \text{向 } y \text{ 看齐} & S_x \leftarrow 1, j_x - 1 \\ y \text{ 向 } x \text{ 看齐} \checkmark S_y \rightarrow 1, j_y + 1 \end{cases} \\ < 0 & j_x < j_y \begin{cases} x \text{ 向 } y \text{ 看齐} \checkmark S_x \rightarrow 1, j_x + 1 \\ y \text{ 向 } x \text{ 看齐} \end{cases} \quad S_y \leftarrow 1, j_y - 1 \end{cases}$$

(2) 对阶原则

小阶向大阶看齐

• 例: $x = 0.1101 \times 2^{01}$, $y = (-0.1010) \times 2^{11}$, 求[x + y]_补

解: $[x]_{*} = 00,01;00.1101$ $[y]_{*} = 00,11;11.0110$

1. 对阶

① 求阶差
$$[\Delta j]_{\stackrel{?}{N}} = [j_x]_{\stackrel{?}{N}} - [j_y]_{\stackrel{?}{N}} = 00,01$$

$$+ 11,01$$

$$\hline 11,10$$
阶差为负 (-2)
$$: S_x \longrightarrow 2 \quad j_x + 2$$

② 对阶 $[x]_{*k'} = 00, 11; 00.0011$

2. 尾数求和

$$[S_x]_{*,'}$$
 = 00.0011 对阶后的 $[S_x]_{*,'}$ + $[S_y]_{*,'}$ = 11.0110
11.1001
∴ $[x+y]_{*,'}$ = 00, 11; 11. 1001

3. 规格化

• (1) 规格化数的定义

$$r=2 \qquad \frac{1}{2} \leq |S| < 1$$

• (2) 规格化数的判断

S>0	规格化形式	S < 0	规格化形式
真值	$0.1 \times \times \cdots \times$	真值	$-0.1\times\times\cdots\times$
原码	$0.1 \times \times \cdots \times$	原码	$1.1 \times \times \cdots \times$
补码	$0.1 \times \times \cdots \times$	补码	$1.0 \times \times \cdots \times$
反码	$0.1 \times \times \cdots \times$	反码	$1.0 \times \times \cdots \times$
百缸	不込工粉	名粉 	**************************************

原码 不论正数、负数,第一数位为1

补码 符号位和第一数位不同

特例

$$S = -\frac{1}{2} = -0.100 \cdots 0$$

$$[S]_{\mathbb{R}} = 1.100 \cdots 0$$

$$[S]_{3} = [1.1] 0 0 \cdots 0$$

 $\therefore \left[-\frac{1}{2}\right]_{\uparrow}$ 不是规格化的数

$$S = -1$$

$$[S]_{\nmid h} = \boxed{1.0000} \cdots 0$$

∴ [-1] 是规格化的数

• (3)左规

尾数左移一位,阶码减1,直到数符和第一数位不同为止

上例
$$[x+y]_{\stackrel{}{\mathbb{A}}} = 00, 11; 11.1001$$

左规后 $[x+y]_{\stackrel{}{\mathbb{A}}} = 00, 10; 11.0010$
 $\therefore x + y = (-0.1110) \times 2^{10}$

• (4)右规

当尾数溢出(>1)时,需右规

即尾数出现 01.×× ···×或 10.×× ···×时

尾数右移一位,阶码加1

• 例. $x = 0.1101 \times 2^{10}$, $y = 0.1011 \times 2^{01}$, 求 x + y (除阶符、数符外,阶码取 3 位,尾数取 6 位)

解: $[x]_{\stackrel{}{\uparrow}} = 00, 010; 00. 110100$ $[y]_{\stackrel{}{\uparrow}} = 00, 001; 00. 101100$

① 对阶

 \therefore [y]_{$\Rightarrow b'$} = 00, 010; 00. 010110

② 尾数求和

$$[S_x]_{\begin{subarray}{ll} [S_x]_{\begin{subarray}{ll} [S_y]_{\begin{subarray}{ll} [S_y]_{\begin{subarray}{ll}$$

③ 右规

$$[x+y]_{3} = 00, 010; 01.001010$$

右规后

$$[x+y]_{\nmid k} = 00, 011; 00. 100101$$

$$\therefore x+y=0.100101\times 2^{11}$$

• 4. 舍入

- 在 对阶 和 右规 过程中,可能出现尾数末位丢失引起误差,需考虑舍入
 - (1)0 舍 1 入法
 - (2)恒置"1"法

•例.
$$x = (-\frac{5}{8}) \times 2^{-5}$$
, $y = (\frac{7}{8}) \times 2^{-4}$, 求 $x - y$ (除阶符、数符外, 阶码取 3 位, 尾数取 6 位)

解:
$$x = (-0.101000) \times 2^{-101}$$
 $y = (0.111000) \times 2^{-100}$ $[x]_{3/2} = 11,011;11.011000$ $[y]_{3/2} = 11,100;00.111000$

① 对阶

$$[\Delta j]_{\uparrow \uparrow} = [j_x]_{\uparrow \uparrow} - [j_y]_{\uparrow \uparrow} = 11,011 + 00,100 11,111$$

阶差为
$$-1$$
 : $S_r \rightarrow 1$, $j_r + 1$

$$\therefore$$
 $[x]_{*} = 11, 100; 11. 101100$

② 尾数求和

③ 右规

$$[x-y]_{3} = 11, 100; 10. 110100$$

右规后

$$[x-y]_{\nmid h} = 11, 101; 11.011010$$

$$\therefore x - y = (-0.100110) \times 2^{-11}$$
$$= (-\frac{19}{32}) \times 2^{-3}$$

$$x = S \cdot 2^{j}$$

溢出判断

• 设机器数为补码,尾数为 规格化形式,并假设阶符取 2 位,阶码的数值部分取 7 位,数符取 2 位,尾数取 n 位,则该 补码在数轴上的表示为

关于计算机的运算方法,哪部分有疑问?

- A 定点加减运算
- B 原码一位乘法
- **Booth**乘法
- D 定点除法
- F 浮点运算
- F 其他可发弹幕

提交