点云分类、分割、目标检测的概述

报告人: 孙飞

一、什么是点云

二、点云数据的优点

- 数据易采集
- 点云数据包含了三维信息,相对于2D图像而言,数据包含的信息 量更丰富。

三、应用场景

autonomous driving

AR

四、点云的常见处理方法

Point Cloud

Mesh

Volumetric

Multi-View Images RGB(D)

Point cloud: 点云非常接近原始传感器的数据集,数据稀疏,难处理。 Mesh: 连接点生成三角面片或多边形面片,多在计算机图形学中使用。 Volumetric: 将空间划分成三维网格,点映射到网格中,使用三维卷积

Multi-View: 多个图像二维卷积,需要选择拍摄角度等。

五、点云分类、分割、目标检测发展概述

POINTNET论文阅读

报告人: 孙飞

Pointnet完成的任务:分类、部分分割、语义分割

一、点云处理的三大难题

• 输入无序性的问题

a. 点云处理的最大问题,对于同一组点云,输入的次序不同,输出的结果必须相同,若共有N个点,则其排列共有N!个。

b. 对于二维图像的卷积,存在局部空间,但点云并不存在,导致无法进行卷积。

• 点和点之间的交互

点云中点并不是孤立存在的,邻近的局部点云构成了一个有用的集合。

• 旋转不变性问题

当点云旋转或移动时, 不应改变点云及每个点的语义分类。

二、输入无序性问题

解决方法1:将输入的点转为一个权威的点。 ×

理由: 不存在这样一个权威序列。

解决方法2: 使用RNN进行点云的处理。

理由: RNN模型的训练也和其输入序列的位置相关。

解决方法3: 使用对称结构。 ✓

例子: a+b+c+d=a+b+d+c

max(a,b,c,d) = max(a,d,b,c)

论文中处理无序性问题使用了最大池化,在对n个点进行卷积等操作后,生成n * 1024维的矩阵,1024维的1024个整体特征,对于每个维度,求其最大值,解决了输入无序性的问题。即有 \max (a,b,c,d,e,f,g) = \max (a,d,b,e,c,f,g) = ...

二、输入无序性问题

Classification Network

Segmentation Network

- Pointnet 网络结构:在前期进行多次卷积后,使用max_pooling,得到了 1024维的全局向量,代表了点云的整体特征。
- 直观来讲,1024维特征中,每个维度通过max操作得到了点云在某个方向下的特点,其中global_feature即1024越大,得到的效果越好。
- 2d图像卷积: space-centric. 点云: shape-centric

二、输入无序性问题

Critical Point Sets: max_pooling得到的关键点。 Upper-bound Shapes: 提取出相同关键点的最大点数。

Input Point Cloud

Critical Point Sets

Upper-bound Shapes

三、点和点之间的交互(语义分割问题)

- 在分类问题中,此问题其实不是特别重要,在分类中,只要处理出全局特征,通过对全局特征进行mlp或者用svm分类等,即可得到最终答案,但是在part segmentation 以及 scene semantic parsing中,此问题就显得极其重要。
- 论文中进行处理时,通过将提取出的全局特征以及点特征结合,得到n*1088(64+1024)的特征矩阵,然后在此矩阵的居处上,重新提取每个点的特征,得到包含局部及全局特征的点信息。

四、旋转不变性(仿射变换)

- 论文中使用两个仿射变换矩阵T-Net去简单模拟STN
- T-Net网络结构和主网络类似, 其输出换为shape=[3,3]的矩阵
- ・ 在Feature T-Net中添加正则损失 $L_{reg}=\|I-AA^T\|_F^2$ 期望预测出的矩阵A为正交矩阵帮助训练[64,64]的矩阵

五、实验结果

	input	#views	#views accuracy	
			avg. class	overall
SPH [11]	mesh	-	68.2	-
3DShapeNets [28]	volume	1	77.3	84.7
VoxNet [17]	volume	12	83.0	85.9
Subvolume [18]	volume	20	86.0	89.2
LFD [28]	image	10	75.5	-
MVCNN [23]	image	80	90.1	-
Ours baseline	point	-	72.6	77.4
Ours PointNet	point	1	86.2	89.2

Table 1. Classification results on ModelNet40. Our net achieves state-of-the-art among deep nets on 3D input.

Classification: ModelNet40

五、实验结果

	mean	aero	bag	cap	car	chair	ear	guitar	knife	lamp	laptop	motor	mug	pistol	rocket	skate	table
(4							phone									board	
# shapes		2690	76	55	898	3758	69	787	392	1547	451	202	184	283	66	152	5271
Wu [27]	1-	63.2	-	-		73.5	-	-		74.4	(æ.	-	-	-	-	-	74.8
Yi [29]	81.4	81.0	78.4	77.7	75.7	87.6	61.9	92.0	85.4	82.5	95.7	70.6	91.9	85.9	53.1	69.8	75.3
3DCNN	79.4	75.1	72.8	73.3	70.0	87.2	63.5	88.4	79.6	74.4	93.9	58.7	91.8	76.4	51.2	65.3	77.1
Ours	83.7	83.4	78.7	82.5	74.9	89.6	73.0	91.5	85.9	80.8	95.3	65.2	93.0	81.2	57.9	72.8	80.6

Table 2. **Segmentation results on ShapeNet part dataset.** Metric is mIoU(%) on points. We compare with two traditional methods [27] and [29] and a 3D fully convolutional network baseline proposed by us. Our PointNet method achieved the state-of-the-art in mIoU.

Part Segmentation: ShapeNet

	mean IoU	overall accuracy
Ours baseline	20.12	53.19
Ours PointNet	47.71	78.62

Table 3. **Results on semantic segmentation in scenes.** Metric is average IoU over 13 classes (structural and furniture elements plus clutter) and classification accuracy calculated on points.

Semantic Segmentaion: S3DIS

五、实验结果

	#params	FLOPs/sample
PointNet (vanilla)	0.8M	148M
PointNet	3.5M	440M
Subvolume [18]	16.6M	3633M
MVCNN [23]	60.0M	62057M

#params: 网络参数量,模型大小的评估

FLOPs: 浮点数运算次数,即需要多少的运算量

Pointnet部分可视化结果

六、总结

- 第一个可以直接处理点云的网络。
- 可以进行分类、部分分割、语义分割多重任务。
- 实验结果超出当前最好成绩或和当前最好成绩相当。

谢 谢 观 看!