Package 'matrixsampling'

October 13, 2022

Type Package
Title Simulations of Matrix Variate Distributions
Version 2.0.0
Date 2019-08-24
Author Stéphane Laurent
Maintainer Stéphane Laurent < laurent_step@outlook.fr>
Description Provides samplers for various matrix variate distributions: Wishart, inverse-Wishart, normal, t, inverted-t, Beta type I, Beta type II, Gamma, confluent hypergeometric. Allows to simulate the noncentral Wishart distribution without the integer restriction on the degrees of freedom.
License GPL-3
<pre>URL https://github.com/stla/matrixsampling</pre>
<pre>BugReports https://github.com/stla/matrixsampling/issues</pre>
Encoding UTF-8
LazyData true
Imports stats, keep
ByteCompile true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-08-24 22:00:02 UTC
R topics documented:
rinvwishart 2 rmatrixbeta 3 rmatrixbetaII 4 rmatrixCHIIkind2 6 rmatrixCHIkind2 7 rmatrixCHkind1 8
1

2 rinvwishart

rmatrixgamma																				
rmatrixit																				
rmatrix normal																				
rmatrixt																				
rwishart																				
rwishart_chol																				

Index 16

rinvwishart

Inverse-Wishart sampler

Description

Samples the inverse-Wishart distribution.

Usage

```
rinvwishart(n, nu, Omega, epsilon = 0, checkSymmetry = TRUE)
```

Arguments

n sample size, a positive integer

nu degrees of freedom, must satisfy nu > p-1, where p is the dimension (the order

of Omega)

Omega scale matrix, a positive definite real matrix

epsilon threshold to force invertibility in the algorithm; see Details

checkSymmetry logical, whether to check the symmetry of Omega; if FALSE, only the upper tri-

angular part of Omega is used

Details

The inverse-Wishart distribution with scale matrix Ω is defined as the inverse of the Wishart distribution with scale matrix Ω^{-1} and same number of degrees of freedom. The argument epsilon is a threshold whose role is to guarantee the invertibility of the sampled Wishart distributions. See Details in rwishart.

Value

A numeric three-dimensional array; simulations are stacked along the third dimension (see example).

rmatrixbeta 3

Examples

rmatrixbeta

Matrix Beta sampler

Description

Samples a matrix Beta (type I) distribution.

Usage

```
rmatrixbeta(n, p, a, b, Theta1 = NULL, Theta2 = NULL, def = 1,
    checkSymmetry = TRUE)
```

Arguments

n	sample size, a positive integer
р	dimension, a positive integer
a, b	parameters of the distribution, positive numbers with constraints given in Details
Theta1	numerator noncentrality parameter, a positive semidefinite real matrix of order p; setting it to NULL (default) is equivalent to setting it to the zero matrix
Theta2	denominator noncentrality parameter, a positive semidefinite real matrix of order p; setting it to NULL (default) is equivalent to setting it to the zero matrix
def	1 or 2, the definition used; see Details
checkSymmetry	logical, whether to check the symmetry of Theta1 and Theta2

Details

A Beta random matrix U is defined as follows. Take two independent Wishart random matrices $S_1 \sim \mathcal{W}_p(2a, I_p, \Theta_1)$ and $S_2 \sim \mathcal{W}_p(2b, I_p, \Theta_2)$.

```
• definition 1: U = (S_1 + S_2)^{-\frac{1}{2}} S_1 (S_1 + S_2)^{-\frac{1}{2}}
```

• definition 2:
$$U = S_1^{\frac{1}{2}}(S_1 + S_2)^{-1}S_1^{\frac{1}{2}}$$

4 rmatrixbetaII

In the central case, the two definitions yield the same distribution. Under definition 2, the Beta distribution is related to the Beta type II distribution by $U \sim V(I+V)^{-1}$.

Parameters a and b are positive numbers that satisfy the following constraints:

- if both Theta1 and Theta2 are the null matrix, a+b > (p-1)/2; if a < (p-1)/2, it must be half an integer; if b < (p-1)/2, it must be half an integer
- if Theta1 is not the null matrix, $a \ge (p-1)/2$; if b < (p-1)/2, it must be half an integer
- if Theta2 is not the null matrix, $b \ge (p-1)/2$; if a < (p-1)/2, it must be half an integer

Value

A numeric three-dimensional array; simulations are stacked along the third dimension (see example).

Warning

Definition 2 requires the calculation of the square root of $S_1 \sim \mathcal{W}_p(2a, I_p, \Theta_1)$ (see Details). While S_1 is always positive semidefinite in theory, it could happen that the simulation of S_1 is not positive semidefinite, especially when a is small. In this case the calculation of the square root will return NaN.

Note

The matrix variate Beta distribution is usually defined only for a>(p-1)/2 and b>(p-1)/2. In this case, a random matrix U generated from this distribution satisfies 0< U< I. For an half integer $a\le (p-1)/2$, it satisfies $0\le U< I$ and rank(U)=2a. For an half integer $b\le (p-1)/2$, it satisfies $0< U\le I$ and rank(I-U)=2b.

Examples

```
Bsims <- rmatrixbeta(10000, 3, 1, 1)
dim(Bsims) # 3 3 10000</pre>
```

rmatrixbetaII

Matrix Beta II sampler

Description

Samples a matrix Beta type II distribution.

Usage

```
rmatrixbetaII(n, p, a, b, Theta1 = NULL, Theta2 = NULL, def = 1,
  checkSymmetry = TRUE)
```

rmatrixbetaII 5

Arguments

n	sample size, a positive integer
p	dimension, a positive integer
a, b	parameters of the distribution, positive numbers with constraints given in Details
Theta1	numerator noncentrality parameter, a positive semidefinite real matrix of order p; setting it to NULL (default) is equivalent to setting it to the zero matrix
Theta2	denominator noncentrality parameter, a positive semidefinite real matrix of order p; setting it to NULL (default) is equivalent to setting it to the zero matrix
def	1 or 2, the definition used; see Details
checkSymmetry	logical, whether to check the symmetry of Theta1 and Theta2

Details

A Beta type II random matrix V is defined as follows. Take two independent Wishart random matrices $S_1 \sim \mathcal{W}_p(2a, I_p, \Theta_1)$ and $S_2 \sim \mathcal{W}_p(2b, I_p, \Theta_2)$.

• definition 1: $V=S_2^{-\frac{1}{2}}S_1S_2^{-\frac{1}{2}}$ • definition 2: $V=S_1^{\frac{1}{2}}S_2^{-1}S_1^{\frac{1}{2}}$

In the central case, the two definitions yield the same distribution. Under definition 2, the Beta type II distribution is related to the Beta distribution by $V \sim U(I-U)^{-1}$.

Parameters a and b are positive numbers that satisfy the following constraints:

- in any case, b > (p-1)/2
- if Theta1 is the null matrix and a < (p-1)/2, then a must be half an integer
- if Theta1 is not the null matrix, $a \ge (p-1)/2$

Value

A numeric three-dimensional array; simulations are stacked along the third dimension (see example).

Warning

The issue described in the Warning section of rmatrixbeta also concerns rmatrixbetaII.

Note

The matrix variate Beta distribution of type II is usually defined only for a>(p-1)/2 and b>(p-1)/2. In this case, a random matrix V generated from this distribution satisfies V>0. For an half integer $a\le (p-1)/2$, it satisfies $V\ge 0$ and rank(V)=2a.

```
Bsims <- rmatrixbetaII(10000, 3, 1, 1.5)
dim(Bsims) # 3 3 10000</pre>
```

6 rmatrixCHIIkind2

rmatrixCHIIkind2	Sampler of the matrix variate type II confluent hypergeometric kind two distribution
	two distribution

Description

Samples the matrix variate type II confluent hypergeometric kind two distribution.

Usage

```
rmatrixCHIIkind2(n, nu, alpha, beta, theta = 1, p)
```

Arguments

n	sample size, a positive integer
nu	shape parameter, a positive number; if $nu < (p-1)/2$, then nu must be a half integer
alpha, beta	shape parameters; alpha > $(p-1)/2$, beta < $nu + 1$
theta	scale parameter, a positive number
р	dimension (order of the sampled matrices), an integer greater than or equal to

Value

A numeric three-dimensional array; simulations are stacked along the third dimension.

References

A. K. Gupta & D. K. Nagar. *Matrix Variate Distributions*. Chapman & Hall/CRC, Boca Raton (2000).

```
nu <- 5; alpha <- 13; beta <- 4; theta <- 2; p <- 2
sims <- rmatrixCHIIkind2(50000, nu, alpha, beta, theta, p)
# simulations of the trace
trsims <- apply(sims, 3, function(X) sum(diag(X)))
mean(trsims)
p * theta * nu * (nu+(p+1)/2-beta) / (alpha+nu+(p+1)/2-beta)</pre>
```

rmatrixCHIkind2 7

rm	atrixCHIkind2	Sampler of the matrix variate type I confluent hypergeometric kind two distribution
rm	atrixCHIkind2	

Description

Samples the matrix variate type I confluent hypergeometric kind two distribution.

Usage

```
rmatrixCHIkind2(n, nu, alpha, beta, theta = 1, p)
```

Arguments

n	sample size, a positive integer
nu	shape parameter, a positive number; if $nu < (p-1)/2$, then nu must be a half integer
alpha, beta	shape parameters; alpha > $nu + (p-1)/2$, beta < $nu + 1$
theta	scale parameter, a positive number
р	dimension (order of the sampled matrices), an integer greater than or equal to one

Value

A numeric three-dimensional array; simulations are stacked along the third dimension.

References

A. K. Gupta & D. K. Nagar. *Matrix Variate Distributions*. Chapman & Hall/CRC, Boca Raton (2000).

```
nu <- 5; alpha <- 13; beta <- 4; theta <- 2; p <- 2 sims <- rmatrixCHIkind2(50000, nu, alpha, beta, theta, p) # simulations of the trace trsims <- apply(sims, 3, function(X) sum(diag(X))) mean(trsims) p * theta * nu * (nu+(p+1)/2-beta) / (alpha-nu-(p+1)/2)
```

8 rmatrixCHkind1

rmatrixCHkind1	Sampler of the matrix variate confluent hypergometric kind one distribution

Description

Samples the matrix variate confluent hypergometric kind one distribution.

Usage

```
rmatrixCHkind1(n, nu, alpha, beta, theta = 1, Sigma = NULL, p,
    checkSymmetry = TRUE)
```

Arguments

n	sample size, a positive integer
nu	shape parameter, a positive number; if $nu < (p-1)/2$, where p is the dimension (the order of Sigma), then nu must be a half integer
alpha, beta	shape parameters with the following constraints: $b = a$ or $b > a > nu + (p-1)/2$
theta	scale parameter, a positive number
Sigma	scale matrix, a symmetric positive definite matrix, or NULL for the identity matrix of order p
р	if Sigma is NULL, this sets Sigma to the identity matrix of order p ; ignored if Sigma is not NULL
checkSymmetry	logical, whether to check that Sigma is a symmetric positive definite matrix

Value

A numeric three-dimensional array; simulations are stacked along the third dimension.

Note

For alpha = beta, this is the matrix variate Gamma distribution with parameters nu, theta, Sigma.

References

Gupta & al. Properties of Matrix Variate Confluent Hypergeometric Function Distribution. *Journal of Probability and Statistics* vol. 2016, Article ID 2374907, 12 pages, 2016.

```
\label{eq:continuous_sims} $$\operatorname{nu} <-5$; alpha <-10$; beta <-12$; theta <-2$; p <-3$; Sigma <- toeplitz(3:1)$$ CHsims <- rmatrixCHkind1(10000, nu, alpha, beta, theta, Sigma)$$ \# simulations of the trace $$ sims <- apply(CHsims, 3, function(X) sum(diag(X)))$$ mean(sims)$$ theta * nu * (nu-beta+(p+1)/2) / (nu-alpha+(p+1)/2) * sum(diag(Sigma))$$
```

rmatrixgamma 9

xgamma Matrix Gamma	sampler

Description

Samples a matrix Gamma distribution.

Usage

```
rmatrixgamma(n, nu, theta, Sigma = NULL, p, checkSymmetry = TRUE)
```

Arguments

n	sample size, a positive integer
nu	shape parameter, a positive number; if $nu < (p-1)/2$, where p is the dimension (the order of Sigma), then nu must be a half integer
theta	scale parameter, a positive number
Sigma	scale matrix, a symmetric positive definite matrix, or NULL for the identity matrix of order \ensuremath{p}
p	if Sigma is NULL, this sets Sigma to the identity matrix of order $p;$ ignored if Sigma is not NULL
checkSymmetry	logical, whether to check that Sigma is a symmetric positive definite matrix

Details

This is the distribution of $\frac{\theta}{2}S$ where $S \sim \mathcal{W}_p(2\nu, \Sigma)$.

Value

A numeric three-dimensional array; simulations are stacked along the third dimension.

References

Gupta & al. Properties of Matrix Variate Confluent Hypergeometric Function Distribution. *Journal of Probability and Statistics* vol. 2016, Article ID 2374907, 12 pages, 2016.

```
nu <- 3; theta <- 4; Sigma <- toeplitz(2:1)
Gsims <- rmatrixgamma(10000, nu, theta, Sigma)
apply(Gsims, c(1,2), mean) # should be nu * theta * Sigma
nu * theta * Sigma</pre>
```

10 rmatrixit

rmatrixit	Matrix inverted-t sampler	

Description

Samples the matrix inverted-t distribution.

Usage

```
rmatrixit(n, nu, M, U, V, checkSymmetry = TRUE, keep = TRUE)
```

Arguments

n	sample size, a positive integer
nu	degrees of freedom, any positive number or an integer strictly greater than 1-nrow(M)
М	mean matrix, without constraints
U	columns covariance matrix, a positive semidefinite matrix of order equal to nrow(M)
V	rows covariance matrix, a positive semidefinite matrix of order equal to ncol(M)
checkSymmetry	logical, whether to check the symmetry of \ensuremath{U} and \ensuremath{V}
keep	logical, whether to return an array with class keep

Value

A numeric three-dimensional array; simulations are stacked along the third dimension (see example).

```
nu <- 0
m <- 2
p <- 3
M <- matrix(1, m, p)
U <- toeplitz(m:1)
V <- toeplitz(p:1)
ITsims <- rmatrixit(10000, nu, M, U, V)
dim(ITsims) # 2 3 10000
apply(ITsims, 1:2, mean) # approximates M
vecITsims <- t(apply(ITsims, 3, function(X) c(t(X))))
round(cov(vecITsims),2) # approximates 1/(nu+m+p-1) * kronecker(U,V)</pre>
```

rmatrixnormal 11

Matrix normal sampler
-

Description

Samples the matrix normal distribution.

Usage

```
rmatrixnormal(n, M, U, V, checkSymmetry = TRUE, keep = TRUE)
```

Arguments

n	sample size, a positive integer
М	mean matrix, without constraints
U	columns covariance matrix, a positive semidefinite matrix of order equal to $nrow(M)$
V	rows covariance matrix, a positive semidefinite matrix of order equal to ncol(M)
checkSymmetry	logical, whether to check the symmetry of U and V
keep	logical, whether to return an array with class keep

Value

A numeric three-dimensional array; simulations are stacked along the third dimension (see example).

```
m <- 3
p <- 2
M <- matrix(1, m, p)
U <- toeplitz(m:1)
V <- toeplitz(p:1)
MNsims <- rmatrixnormal(10000, M, U, V)
dim(MNsims) # 3 2 10000
apply(MNsims, 1:2, mean) # approximates M
vecMNsims <- t(apply(MNsims, 3, function(X) c(t(X))))
round(cov(vecMNsims)) # approximates kronecker(U,V)</pre>
```

12 rmatrixt

rmatrixt	Matrix t sampler

Description

Samples the matrix t-distribution.

Usage

```
rmatrixt(n, nu, M, U, V, checkSymmetry = TRUE, keep = TRUE)
```

Arguments

n	sample size, a positive integer
nu	degrees of freedom, a positive number
М	mean matrix, without constraints
U	columns covariance matrix, a positive semidefinite matrix of order equal to $nrow(M)$
V	rows covariance matrix, a positive semidefinite matrix of order equal to ncol(M)
checkSymmetry	logical, whether to check the symmetry of \ensuremath{U} and \ensuremath{V}
keep	logical, whether to return an array with class keep

Value

A numeric three-dimensional array; simulations are stacked along the third dimension (see example).

Note

When p=1 and V=nu or when m=1 and U=nu, the distribution is the multivariate t-distribution.

```
nu <- 4
m <- 2
p <- 3
M <- matrix(1, m, p)
U <- toeplitz(m:1)
V <- toeplitz(p:1)
Tsims <- rmatrixt(10000, nu, M, U, V)
dim(Tsims) # 2 3 10000
apply(Tsims, 1:2, mean) # approximates M
vecTsims <- t(apply(Tsims, 3, function(X) c(t(X))))
round(cov(vecTsims), 1) # approximates 1/(nu-2) * kronecker(U,V)
## the `keep` class is nice when m=1 or p=1:
Tsims <- rmatrixt(2, nu, M=1:3, U=diag(3), V=1)
Tsims[,,1] # dimensions 3 1</pre>
```

rwishart 13

```
# without `keep`, dimensions are lost:
rmatrixt(2, nu, M=1:3, U=diag(3), V=1, keep=FALSE)[,,1]
```

er

Description

Samples a Wishart distribution.

Usage

```
rwishart(n, nu, Sigma, Theta = NULL, epsilon = 0,
  checkSymmetry = TRUE)
```

Arguments

n	sample size, a positive integer
nu	degrees of freedom, a positive number; if $nu < p-1$ where p is the dimension (the order of Sigma), must be an integer; in the noncentral case (i.e. when Theta is not the null matrix), nu must satisfy $nu >= p-1$
Sigma	scale matrix, a positive semidefinite real matrix
Theta	noncentrality parameter, a positive semidefinite real matrix of same order as Sigma; setting it to NULL (default) is equivalent to setting it to the zero matrix
epsilon	a number involved in the algorithm only if it positive; its role is to guarantee the invertibility of the sampled matrices; see Details
checkSymmetry	logical, whether to check the symmetry of Sigma and Theta

Details

The argument epsilon is a threshold whose role is to guarantee that the algorithm samples invertible matrices when nu > p-1 and Sigma is positive definite. The sampled matrices are theoretically invertible under these conditions, but due to numerical issues, they are not always invertible when nu is close to p-1, i.e. when nu-p+1 is small. In this case, the chi-squared distributions involved in the algorithm can generate zero values or values close to zero, yielding the non-invertibility of the sampled matrices. These values are replaced with epsilon if they are smaller than epsilon.

Value

A numeric three-dimensional array; simulations are stacked along the third dimension (see example).

Note

A sampled Wishart matrix is always positive semidefinite. It is positive definite if nu > p-1 and Sigma is positive definite, in theory (see Details).

In the noncentral case, i.e. when Theta is not null, the Ahdida & Alfonsi algorithm is used if nu is not an integer and p-1 < nu < 2p-1, or if nu = p-1. The simulations are slower in this case.

14 rwishart_chol

References

A. Ahdida & A. Alfonsi. Exact and high-order discretization schemes for Wishart processes and their affine extensions. *The Annals of Applied Probability* **23**, 2013, 1025-1073.

Examples

```
nu <- 4
p <- 3
Sigma <- toeplitz(p:1)
Theta <- diag(p)
Wsims <- rwishart(10000, nu, Sigma, Theta)
dim(Wsims) # 3 3 10000
apply(Wsims, 1:2, mean) # approximately nu*Sigma+Theta
# the epsilon argument:
Wsims_det <- apply(rwishart(10000, nu=p-1+0.001, Sigma), 3, det)
length(which(Wsims_det < .Machine$double.eps))
Wsims_det <- apply(rwishart(10000, nu=p-1+0.001, Sigma, epsilon=1e-8), 3, det)
length(which(Wsims_det < .Machine$double.eps))</pre>
```

rwishart_chol

Sampling Cholesky factor of a Wishart matrix

Description

Samples the lower triangular Cholesky factor of a Wishart random matrix.

Usage

```
rwishart_chol(n, nu, Sigma, epsilon = 0)
```

Arguments

n sample size, a positive integer

nu degrees of freedom, a number strictly greater than p-1, where p is the dimension

(the order of Sigma)

Sigma scale matrix, a positive definite real matrix

epsilon a number involved in the algorithm only if it positive; its role is to guarantee the

invertibility of the sampled matrices; see Details

Details

The argument epsilon is a threshold whose role is to guarantee that the algorithm samples invertible matrices. The matrices sampled by the algorithm are theoretically invertible. However, because of numerical precision, they are not always invertible when nu is close to p-1, i.e. when nu-p+1 is small. In this case, the simulations of chi-squared distributions involved in the algorithm can generate zero values or values close to zero, yielding the non-invertibility of the sampled matrices. These values are replaced with epsilon if they are smaller than epsilon.

rwishart_chol 15

Value

A numeric three-dimensional array; simulations are stacked along the third dimension (see example).

```
nu <- 4
p <- 3
Sigma <- diag(p)
Wsims <- rwishart_chol(10000, nu, Sigma)
dim(Wsims) # 3 3 10000
Wsims[,,1]</pre>
```

Index

```
keep, 10–12

rinvwishart, 2

rmatrixbeta, 3, 5

rmatrixbetaII, 4

rmatrixCHIIkind2, 6

rmatrixCHkind1, 8

rmatrixgamma, 9

rmatrixit, 10

rmatrixnormal, 11

rmatrixt, 12

rwishart, 2, 13

rwishart_chol, 14
```