Travaux dirigés de modélisation des structures informatiques

V. Garnero

Table des matières

1	Représentations d'une relation	2
2	Opérations sur les relations	3
3	Propriétés des relations	5
4	Relations d'ordre et d'équivalence	8
5	Clôture d'une relation	10

1 Représentations d'une relation

Exercices de TD

Exercice 1-1: On considère deux ensembles $A = \{a, b, c\}$ et $B = \{0, 1, 2\}$ et les relations $\mathcal{R} \subseteq A \times A$ et $\mathcal{S} \subseteq A \times B$. \mathcal{R} et \mathcal{S} sont définies respectivement par les matrices suivantes :

\mathcal{R}	$\mid a \mid$	b	c
\overline{a}	F	F	V
b	V	F	V
\overline{c}	F	F	V

${\cal S}$	0	1	2
a	V	F	F
b	F	F	V
c	F	V	F

- 1. Représentez S sous la forme d'un diagramme de A vers B.
- 2. Représentez R sous la forme d'un diagramme de A vers A.
- 3. Représentez R sous la forme d'un graphe orienté avec comme nœuds les éléments de A.

Exercice 1-2: On considère $A = \{0, 1, 2, 3\}$ et les relations d'ordre strict $\langle \subseteq A \times A \rangle$ et d'ordre large $A \subseteq A \times A \otimes A$.

- 1. Représentez < et \ge sous la forme d'un tableau.
- 2. Représentez < et \ge sous la forme d'un diagramme de A vers A.
- 3. Représentez < et \geqslant sous la forme d'un graphe orienté avec comme nœuds les éléments de A.

2 Opérations sur les relations

Exercices de TD

Exercice 2-1: On considère les ensembles $A = \{a_0, a_1, a_2\}$, $B = \{b_0, b_1, b_2\}$, $C = \{c_0, c_1\}$, $Z = \{z_0, z_1\}$. On considère la relation $\mathcal{R} \subseteq A \times B$, la relation $\mathcal{S} \subseteq B \times C$, et la relation $\mathcal{T} \subseteq Z \times A$ définies par :

- $\mathcal{R} = \{(a_0, b_0), (a_1, b_0), (a_1, b_2), (a_2, b_1), (a_2, b_2)\},$
- $\mathcal{T} = \{(z_0, a_1), (z_1, a_0), (z_1, a_1), (z_1, a_2)\},$
- $\mathcal{S} = \{(b_0, c_0), (b_1, c_0), (b_1, c_1)\}.$
- 1. Calculez $(S \circ \mathcal{R}) \circ \mathcal{T}$.
- 2. Calculez $S \circ (\mathcal{R} \circ \mathcal{T})$.
- 3. Démontrez que la composition est associative.

Exercice 2-2: On considère les ensembles $A = \{a_0, a_1, a_2\}, B = \{b_0, b_1, b_2\}$. On considère les relations $\mathcal{R}_1, \mathcal{R}_2 \subseteq A \times B$, définies par :

- $\mathcal{R}_1 = \{(a_0, b_0), (a_1, b_0), (a_1, b_2), (a_2, b_1), (a_2, b_2)\},$
- $\mathcal{R}_2 = \{(a_0, b_1), (a_1, b_0), (a_1, b_1), (a_1, b_2), (a_2, b_0)\},$
- 1. Calculez $(\mathcal{R}_1 \cap \mathcal{R}_2)^{-1}$.
- 2. Calculez $(\mathcal{R}_1^{-1} \cap \mathcal{R}_2^{-1})$.
- 3. Démontrez que toutes relations $\mathcal{R}, \mathcal{S} \subseteq A \times B$ vérifies $(\mathcal{R}_1 \cap \mathcal{R}_2)^{-1} = \mathcal{R}_1^{-1} \cap \mathcal{R}_2^{-1}$.

Exercice 2-3: On considère les ensembles $A = \{a_0, a_1, a_2, a_3\}; B = \{b_0, b_1, b_2\}; C = \{c_0, c_1\}$. On considère les relations $\mathcal{R} = \{(a_0, b_0), (a_0, b_1), (a_1, b_2), (a_2, b_0), (a_2, b_2)\} \subseteq A \times B$ et $\mathcal{S} = \{(b_0, c_0), (b_1, c_0), (b_1, c_1), (b_2, c_1)\} \subseteq B \times C$.

- 1. Tracez le diagramme de la composition $S \circ \mathcal{R}$.
- 2. Calculez le produit booléen des matrices de \mathcal{R} et \mathcal{S} .
- 3. Calculez le produit réel des matrices de \mathcal{R} et \mathcal{S} .

Exercice 2-4: On considère les ensembles $A = \{a_0, a_1, a_2\}$, $B = \{b_0, b_1, b_2\}$, $Z = \{z_0, z_1\}$. On considère les relations $\mathcal{R}_1, \mathcal{R}_2 \subseteq A \times B$, et la relation $\mathcal{T} \subseteq Z \times A$ définies par :

- $\mathcal{R}_1 = \{(a_0, b_0), (a_1, b_0), (a_1, b_2), (a_2, b_1), (a_2, b_2)\},$
- $\mathcal{R}_2 = \{(a_0, b_1), (a_1, b_0), (a_1, b_1), (a_1, b_2), (a_2, b_0)\},$
- $\mathcal{T} = \{(z_0, a_1), (z_1, a_0), (z_1, a_1), (z_1, a_2)\}.$
- 1. Calculez $(\mathcal{R}_1 \cap \mathcal{R}_2) \circ \mathcal{T}$.
- 2. Calculez $(\mathcal{R}_1 \circ \mathcal{T}) \cap (\mathcal{R}_2 \circ \mathcal{T})$.
- 3. Démontrer que la composition n'est pas ∩-distributive.
- 4. Démontrer que, pour tous $\mathcal{R}_1, \mathcal{R}_2, \mathcal{T}$, on vérifie $(\mathcal{R}_1 \cap \mathcal{R}_2) \circ \mathcal{T} \subseteq (\mathcal{R}_1 \circ \mathcal{T}) \cap (\mathcal{R}_2 \circ \mathcal{T})$.

Exercice 2-5: On considère les ensembles $A = \{a_0, a_1, a_2\}, B = \{b_0, b_1, b_2\}, C = \{c_0, c_1\}$. On considère la relation $\mathcal{R} \subseteq A \times B$, et la relation $\mathcal{T} \subseteq Z \times A$ définies par :

- Calculez $(\mathcal{R} \circ \mathcal{T})^{-1}$.
- Calculez $(\mathcal{T}^{-1} \circ \mathcal{R}^{-1})$.
- Démontrer que toutes relations $\mathcal{R} \subseteq A \times B$, $\mathcal{T} \subseteq B \times C$ vérifies $(\mathcal{R}_1 \circ \mathcal{R}_2)^{-1} = \mathcal{R}_2^{-1} \circ \mathcal{R}_1^{-1}$.

Exercices d'entraînement

Exercice 2-6: On considère les ensembles $A = \{a_0, a_1, a_2\}$, $B = \{b_0, b_1, b_2\}$, $Z = \{z_0, z_1\}$. On considère les relations $\mathcal{R}_1, \mathcal{R}_2 \subseteq A \times B$, et la relation $\mathcal{T} \subseteq Z \times A$ définies par :

- $\mathcal{R}_1 = \{(a_0, b_0), (a_1, b_0), (a_1, b_2), (a_2, b_1), (a_2, b_2)\},$
- $\mathcal{R}_2 = \{(a_0, b_1), (a_1, b_0), (a_1, b_1), (a_1, b_2), (a_2, b_0)\},$
- $\mathcal{T} = \{(z_0, a_1), (z_1, a_0), (z_1, a_1), (z_1, a_2)\}.$
- 1. Calculez $(\mathcal{R}_1 \cup \mathcal{R}_2) \circ \mathcal{T}$.
- 2. Calculez $(\mathcal{R}_1 \circ \mathcal{T}) \cup (\mathcal{R}_2 \circ \mathcal{T})$.
- 3. Démontrez que la composition est ∪-distributive.

Exercice 2-7: On considère les ensembles $A = \{a_0, a_1, a_2\}, B = \{b_0, b_1, b_2\}$. On considère la relation $\mathcal{R} \subseteq A \times B$, définies par :

- Calculez $(\mathcal{R}^{-1})^{-1}$.
- Démontrer que toute relation $\mathcal{R} \subseteq A \times B$ vérifie $(\mathcal{R}^{-1})^{-1} = \mathcal{R}$.

3 Propriétés des relations

Exercices de TD

Exercice 3-1: On considère l'ensemble $A = \{a, b, c\}$ et les relations $\mathcal{R} \subseteq A \times A$ et $\mathcal{S} \subseteq A \times A$, définies par leur matrices :

\mathcal{R}	$\mid a \mid$	b	c
\overline{a}	F	F	V
\overline{b}	V	F	V
\overline{c}	\overline{F}	F	V

${\cal S}$	a	$\mid b \mid$	$\mid c \mid$
a	V	F	F
\overline{b}	F	F	V
c	F	V	F

Pour chacune des relations, précisez quelles propriétés (réflexivité, symétrie, antisymétrie, transitivité) sont vérifiées.

- 1. La relation \mathcal{R} sur $A \times A$.
- 2. La relation S sur $A \times A$.

Exercice 3-2: On considère $\mathcal{R} \subseteq A \times A$ une relation. Démontrer les deux assertions suivantes ou leur négation.

- 1. Si \mathcal{R} est antisymétrique, alors \mathcal{R}^{-1} est aussi antisymétrique.
- 2. Si \mathcal{R}^{-1} est antisymétrique, alors \mathcal{R} est aussi antisymétrique.

Exercice 3-3: Pour chacune des relations suivantes, précisez quelles propriétés (réflexivité, symétrie, antisymétrie, transitivité) sont vérifiées. On considère \mathcal{D} l'ensemble des droites du plan.

- 1. La relation de perpendicularité \perp sur $\mathcal{D} \times \mathcal{D}$.
- 2. La relation de parallélisme $\parallel \operatorname{sur} \mathcal{D} \times \mathcal{D}$.

Exercice 3-4: On considère \mathcal{R}_1 , $\mathcal{R}_2 \subseteq A \times A$ deux relations. Démontrer les trois assertions suivantes ou leur négation.

- 1. Si $\mathcal{R}_1, \mathcal{R}_2$ sont antisymétriques, alors $\mathcal{R}_1 \cup \mathcal{R}_2$ est aussi antisymétrique.
- 2. Si \mathcal{R}_1 est antisymétrique, alors $\mathcal{R}_1 \cup \mathcal{R}_2$ est aussi antisymétrique.
- 3. Si $\mathcal{R}_1 \cup \mathcal{R}_2$ est antisymétrique, alors $\mathcal{R}_1, \mathcal{R}_2$ sont antisymétriques.

Exercice 3-5: On considère \mathcal{R}_1 , $\mathcal{R}_2 \subseteq A \times A$ deux relations. Démontrer les trois assertions suivantes ou leur négation.

- 1. Si $\mathcal{R}_1, \mathcal{R}_2$ sont transitives, alors $\mathcal{R}_1 \cap \mathcal{R}_2$ est aussi transitive.
- 2. Si \mathcal{R}_1 est transitive, alors $\mathcal{R}_1 \cap \mathcal{R}_2$ est aussi transitive.
- 3. Si $\mathcal{R}_1 \cap \mathcal{R}_2$ est transitive, alors $\mathcal{R}_1, \mathcal{R}_2$ sont transitives.

Exercice 3-6: On considère les ensemble $A = \{0, 1, 2\}$ et $B = \{0, 1, \dots b - 1\}$ (avec b > 0).

- 1. Caractériser toutes les relations antisymétriques sur $A \times A$; et sur $B \times B$.
- 2. Dénombrer toutes les relations $A \times A$; et sur $B \times B$.
- 3. Écrire un algorithme genASr qui, étant donné un nombre b, génère de manière aléatoire uniforme une relation antisymétriques $\mathcal{R} \subseteq B \times B$.
- 4. Écrire un algorithme testASr qui, étant donné une matrice, teste si la relation associée $\mathcal{R} \subseteq A \times A$ est antisymétriques.

Exercice 3-7: On considère \mathcal{R}_1 , $\mathcal{R}_2 \subseteq A \times A$ deux relations. Démontrer les trois assertions suivantes ou leur négation.

- 1. Si $\mathcal{R}_1, \mathcal{R}_2$ sont antisymétriques, alors $\mathcal{R}_1 \circ \mathcal{R}_2$ est aussi antisymétrique.
- 2. Si \mathcal{R}_1 est antisymétrique, alors $\mathcal{R}_1 \circ \mathcal{R}_2$ est aussi antisymétrique.
- 3. Si $\mathcal{R}_1 \circ \mathcal{R}_2$ est antisymétrique, alors $\mathcal{R}_1, \mathcal{R}_2$ sont antisymétriques.

Exercice 3-8: On rappelle que $\mathcal{R} \subset A \times A$ est antisymétrique si, par définition : $\forall a, b \in A; (a, b) \in \mathcal{R} \Rightarrow (b, a) \notin \mathcal{R} \vee a = b$.

- 1. Donner la formule pour \mathcal{R} est non symétrique.
- 2. Démontrer que \mathcal{R} est non symétrique n'est pas équivalent à \mathcal{R} est antisymétrique.
- 3. Démontrer que \mathcal{R} est antisymétrique si et seulement si $\forall a, b \in A; a \neq b \Rightarrow ((a, b) \in \mathcal{R} \Rightarrow (b, a) \notin R)$.
- 4. Démontrer que \mathcal{R} est antisymétrique n'implique pas $(a,b) \notin \mathcal{R} \Rightarrow (b,a) \in \mathcal{R}$.
- 5. Donner la formule pour \mathcal{R} est non antisymétrique.

R antisymétrique

$$\Leftrightarrow \forall \mathbf{a}, \mathbf{b}; (\mathbf{a}, \mathbf{b}) \in \mathcal{R} \Rightarrow [(\mathbf{b}, \mathbf{a}) \notin \mathcal{R} \vee \mathbf{a} = \mathbf{b}]$$

$$\Leftrightarrow \forall a, b; (a, b) \notin \mathcal{R} \lor (b, a) \notin \mathcal{R} \lor a = b$$

$$\Leftrightarrow \forall a, b; a = b \lor (a, b) \notin \mathcal{R} \lor (b, a) \notin \mathcal{R}$$

$$\Leftrightarrow \forall a, b; a \neq b \Rightarrow [(a, b) \notin \mathcal{R} \lor (b, a) \notin R]$$

$$\Leftrightarrow \forall \mathbf{a}, \mathbf{b}; \mathbf{a} \neq \mathbf{b} \Rightarrow [(\mathbf{a}, \mathbf{b}) \in \mathcal{R} \Rightarrow (\mathbf{b}, \mathbf{a}) \notin \mathbf{R}]$$

$$\Leftrightarrow \forall a, b; [a \neq b \land (a, b) \in R] \Rightarrow (b, a) \notin R$$

$$\Leftrightarrow \forall a, b; [(a, b) \in \mathcal{R} \land (b, a) \in R] \Rightarrow a = b$$

Exercice 3-9: On considère $\mathcal{R} \subseteq A \times A$ une relation quelconque. On considère $\mathcal{I} = \{(e, e) \mid e \in A\}$ la relation identité sur $A \times A$. Prouvez les assertions suivantes :

- 1. \mathcal{R} est réflexive si et seulement si $\mathcal{I} \subseteq \mathcal{R}$.
- 2. \mathcal{R} est symétrique si et seulement si $\mathcal{R} = \mathcal{R}^{-1}$.
- 3. \mathcal{R} est antisymétrique si et seulement si $\mathcal{R} \cap \mathcal{R}^{-1} \subseteq \mathcal{I}$.
- 4. \mathcal{R} est transitive si et seulement si $\mathcal{R} \circ \mathcal{R} \subseteq \mathcal{R}$.

Exercices d'entrainement

Exercice 3-10: Pour chacune des relations suivantes, précisez quelles propriétés (réflexivité, symétrie, antisymétrie, transitivité) sont vérifiées.

- 1. Les relations d'ordre \langle et \geq sur $A \times A$ (avec $A = \{0, 1, 2, 3\}$).
- 2. Les relations d'ordre $\langle et \geq sur \mathbb{N} \times \mathbb{N}$.
- 3. Les relations d'égalité = et de congruence $\equiv_{[5]}$ sur $\mathbb{N} \times \mathbb{N}$.

Exercice 3-11: On considère les ensemble $A = \{0, 1, 2\}$ et $B = \{0, 1, \dots b-1\}$ (avec b > 0).

- 1. Caractériser toutes les relations réflexives sur $A \times A$; et sur $B \times B$.
- 2. Dénombrer toutes les relations $A \times A$; et sur $B \times B$.
- 3. Écrire un algorithme genRr qui, étant donné un nombre b, génère de manière aléatoire uniforme une relation réflexive $\mathcal{R} \subseteq B \times B$.
- 4. Écrire un algorithme testRr qui, étant donné une matrice, teste si la relation associée $\mathcal{R} \subseteq A \times A$ est réflexive.

Exercice 3-12: On considère \mathcal{R}_1 , $\mathcal{R}_2 \subseteq A \times A$ deux relations. Démontrer les trois assertions suivantes ou leur négation.

- 1. Si $\mathcal{R}_1, \mathcal{R}_2$ sont symétriques, alors $\mathcal{R}_1 \cap \mathcal{R}_2$ est aussi symétrique.
- 2. Si \mathcal{R}_1 est symétrique, alors $\mathcal{R}_1 \cap \mathcal{R}_2$ est aussi symétrique.
- 3. Si $\mathcal{R}_1 \cap \mathcal{R}_2$ est symétrique, alors $\mathcal{R}_1, \mathcal{R}_2$ sont symétriques.

Exercice 3-13: On considère \mathcal{R}_1 , $\mathcal{R}_2 \subseteq A \times A$ deux relations. Démontrer les trois assertions suivantes ou leur négation.

- 1. Si $\mathcal{R}_1, \mathcal{R}_2$ sont transitives, alors $\mathcal{R}_1 \cup \mathcal{R}_2$ est aussi transitive.
- 2. Si \mathcal{R}_1 est transitive, alors $\mathcal{R}_1 \cup \mathcal{R}_2$ est aussi transitive.
- 3. Si $\mathcal{R}_1 \cup \mathcal{R}_2$ est transitive, alors $\mathcal{R}_1, \mathcal{R}_2$ sont transitives.

4 Relations d'ordre et d'équivalence

Exercices de TD

Exercice 4-1: On considère une relation $\mathcal{R} \subseteq A \times A$ où $A = \{0, \dots, a-1\}$.

1. Écrire un algorithme test0t qui teste si \mathcal{R} est une relation d'ordre totale.

On pourra utiliser des algorithmes vus précédemment.

Exercice 4-2: Étant donné \mathcal{R} une relation d'ordre (quelconque), \mathcal{R} est une relation d'ordre totale si et seulement si $\forall x, y \in A; x\mathcal{R}y \vee y\mathcal{R}x$. Sinon on parle de relation d'ordre partielle.

Pour chacune des relations suivantes, précisez si elles sont des relations d'équivalence, d'ordre (partielle ou totale) ou non.

- 1. La relation $\mathcal{R}_1 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_1 = \{(a, a), (b, b), (b, c), (c, b), (c, c)\}$.
- 2. La relation $\mathcal{R}_2 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_2 = \{(a, a), (b, b), (b, a), (b, c), (c, c)\}.$
- 3. La relation $\mathcal{R}_3 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_3 = \{(a, a), (b, b), (c, b), (b, a), (c, c)\}$.

Exercice 4-3: Pour chacune des relations suivantes, justifier qu'elles sont des relations d'équivalence et préciser l'ensemble quotient :

- 1. la relation d'égalité sur $\mathbb{Z} \times \mathbb{Z}$ définie par l'ensemble $E = \{(a, a) \mid a \in \mathbb{Z}\}$
- 2. la relation d'égalité en valeur absolue, définie par $A = \{(a,b) \mid a,b \in \mathbb{Z}, a^2 = b^2\},$
- 3. la relation de parité sur $\mathbb{N} \times \mathbb{N}$ définie par $P = \{(a,b) \mid a,b \in \mathbb{N}, (a-b) \equiv_{[2]} 0\},\$
- 4. la relation de congruence modulo 5 sur $\mathbb{N} \times \mathbb{N}$ définie par $C_{[5]} = \{(a,b) \mid a,b \in \mathbb{N}, (a-b) \equiv_{[5]} 0\}.$

Exercice 4-4: Soit $\mathcal{R} \subseteq A \times A$ une relation d'équivalence quelconque. On rappelle que pour tout élément $x \in A$ on définit $[x] = \{y \mid x\mathcal{R}y\}$. On considère l'ensemble quotient $A/\mathcal{R} = \{[x] \mid x \in A\}$.

- 1. Démontré que pour tout $x \in A$, $x \in [x]$.
- 2. Démontré que pour tout $x, y \in A, y \in [x]$ si et seulement si [x] = [y].
- 3. Démontré que pour tout $x, y \in A, [x] = [y]$ ou $[x] \cap [y] = \emptyset$.
- 4. Conclure que A/\mathcal{R} est une partition de A.

Exercices d'entrainement

Exercice 4-5: Etant donné \mathcal{R} une relation d'ordre (quelconque), \mathcal{R} est une relation d'ordre totale si et seulement si $\forall x, y \in A; x\mathcal{R}y \vee y\mathcal{R}x$. Sinon on parle de relation d'ordre partielle.

Pour chacune des relations suivantes, précisez si elles sont des relations d'équivalence, d'ordre (partielle ou totale) ou non.

1. La relation d'égalité $E \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $E = \{(a, b) \mid a, b \in \mathbb{Z}, a = b\}$.

- 2. La relation d'égalité en valeur absolue $A \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $A = \{(a, b) \mid a, b \in \mathbb{Z}, a^2 = b^2\}.$
- 3. La relation d'infériorité $I \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $I = \{(a, b) \mid a, b \in \mathbb{Z}, a \leq b\}$.
- 4. La relation de divisibilité $D \subseteq \mathbb{Z} \times \mathbb{Z}$ définie par $D = \{(a, b) \mid a, b \in \mathbb{Z}, b \equiv_{[a]} 0\}$.
- 5. La relation d'inclusion $S \subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ définie par $S = \{(A, B) \mid A, B \subseteq \mathbb{N}, A \subseteq B\}.$

Exercice 4-6: On considère une relation $\mathcal{R} \subseteq A \times A$ où $A = \{0, \dots, a-1\}$.

1. Écrire un algorithme test0 qui teste si \mathcal{R} est une relation d'ordre.

On pourra utiliser des algorithmes vus précédemment.

Exercice 4-7: Pour chacune des relations suivantes, justifier qu'elles sont des relations d'équivalence et préciser l'ensemble quotient :

- 1. la relation $\mathcal{R}_1 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_1 = \{(a, a), (b, b), (b, c), (c, b), (c, c)\},$
- 2. la relation $\mathcal{R}_2 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_2 = \{(a, a), (b, b), (c, c)\},$
- 3. la relation $\mathcal{R}_3 \subseteq \{a, b, c\} \times \{a, b, c\}$ définie par $\mathcal{R}_3 = \{(a, a), (b, b), (b, c), (c, b), (c, c), (a, b), (b, a), (a, c), (c, a)\}.$

5 Clôture d'une relation

Exercices de TD

Exercice 5-1: On considère $\mathcal{R} \subseteq A \times A$ une relation quelconque. On défini :

- \mathcal{R}^s la clôture symétrique de \mathcal{R} ; \mathcal{R}^s est la relation qui satisfait :
 - \mathcal{R}^s contient \mathcal{R} ,
 - $\stackrel{et}{-} \mathcal{R}^s$ symétrique,
 - $\stackrel{et}{-}$ pour toute relation $S \subseteq A \times A$, si $R \subseteq S$ et S symétrique, alors $R^s \subseteq S$.
- $\mathcal{R}' \subseteq A \times A$ définie par : $\mathcal{R}' = \bigcap_{\substack{S \text{ symétrique} \\ S \supset \mathcal{R}}} \mathcal{S}$.
- 1. Démontré que les trois définitions sont équivalentes, c.a.d. que $R^s = \mathcal{R}' = \mathcal{R}$ ".

Exercice 5-2: On considère $\mathcal{R} \subseteq A \times A$ une relation quelconque. on définie :

- \mathcal{R}^t la clôture transitive de \mathcal{R} ; \mathcal{R}^t est la relation qui satisfait :
 - \mathcal{R}^t contient \mathcal{R} ,
 - $\stackrel{et}{-}$ \mathcal{R}^t transitive,
 - $\stackrel{et}{-}$ pour toute relation $S \subseteq A \times A$, si $R \subseteq S$ et S relation transitive, alors $R^t \subseteq S$.
- $\mathcal{R}'' \subseteq A \times A$ définie par : $\mathcal{R}'' = \bigcup_{n \ge 0} \mathcal{R}^n$ (où $\mathcal{R}^1 = \mathcal{R}$ et $\mathcal{R}^{i+1} = \mathcal{R}^i \circ \mathcal{R}$).
- 1. Démontrer que les trois définitions sont équivalentes, c.a.d. que $R^t = \mathcal{R}' = \mathcal{R}$ ".
- 2. Écrire un algorithme constRs qui construit dans la relation \mathcal{R}^t la clôture transitive de la relation $\mathcal{R} \subseteq A \times A$.

Exercices d'entrainement

Exercice 5-3: On considère $\mathcal{R} \subseteq A \times A$ une relation quelconque. On défini :

- \mathcal{R}^r la clôture réflexive de \mathcal{R} ; \mathcal{R}^r est la relation qui satisfait :
 - \mathcal{R}^r incluse dans \mathcal{R} ,
 - $\stackrel{et}{-} \mathcal{R}^r$ réflexive,
 - $\frac{et}{}$ pour toute relation $S \subseteq A \times A$, si $R \subseteq S$ et S réflexive, alors $R^r \subseteq S$.
- $\mathcal{R}' \subseteq A \times A$ définie par : $\mathcal{R}' = \bigcap_{\substack{S \text{ réflexive} \\ S \supset \mathcal{R}}} \mathcal{S}$.
- 1. Démontrer que les trois définitions sont équivalentes, c.a.d. que $R^r = \mathcal{R}' = \mathcal{R}$ ".
- 2. Écrire un algorithme constRr qui construit la relation \mathcal{R}^r , clôture réflexive de la relation $\mathcal{R} \subseteq A \times A$.

Exercice 5-4: On considère $\mathcal{R} \subseteq A \times A$ une relation quelconque. On rappel que \mathcal{R} est une relation d'équivalence si et seulement si \mathcal{R} est réflexive, symétrique et transitive. Similairement aux autres clôtures on appelle clôture par équivalence de \mathcal{R} la plus petite relation d'équivalence qui contient \mathcal{R} . On définie donc :

- \mathcal{R}^e la clôture par équivalence de \mathcal{R} ; \mathcal{R}^e est la relation qui satisfait :
 - 1. \mathcal{R}^e contient \mathcal{R} ,
 - 2. \mathcal{R}^e relation d'équivalence,
 - 3. Pour toute relation d'équivalence $S \subseteq A \times A$, si $R \subseteq S$, alors $R^e \subseteq S$.
- $\mathcal{R}'' \subseteq A \times A$ définie par : $\mathcal{R}'' = \bigcup_{n \geqslant 0} (\mathcal{R} \cup \mathcal{R}^{-1} \cup \mathcal{I})^i$ (avec \mathcal{I} la relation identité et $\mathcal{S}^{i+1} = \mathcal{S}^i \circ \mathcal{S}$).
- 1. Démontrer que les quatre définitions sont équivalentes : $\mathcal{R}^e = \mathcal{R}' = \mathcal{R}'' = \mathcal{R}'''$.
- 2. Écrire un algorithme constRe qui construit dans la relation R^e clôture par équivalence de la relation $\mathcal{R} \subseteq A \times A$.