浙江大学实验报告

专业:材料科学与工程姓名:林亨学号:3230103696日期:2024.11.12

 课程名称:
 电路与电子技术实验 I
 指导老师:
 王旃
 实验类型:
 数电实验

 实验名称:
 数字式时钟
 成 绩:
 签 名:
 无

一、实验目的

1. 了解数字电路的基本组成,认识数字信号、逻辑电平和逻辑关系;

- 2. 学习数字电子电路的常用调试方法;
- 3. 掌握数制、码制及相互间的转换方法;
- 4. 熟悉集成计数器的逻辑功能、时序分析方法和测试方法。
- 5. 掌握用示波器测量多个波形时序关系的方法。

二、实验原理

1. 数码管

- 二极管应串接电阻以防电流过大而烧坏。
- 实验箱上已将译码器和数码管连接好。
- 实验箱上的数码管为共阴极,但原理与之相同

2. 74LS00 芯片

3. 74LS161 芯片

74LS161 是常用的四位二进制可预置的同步加法计数器,它可以灵活地运用在各种数字电路以及单片机系统中, 实现分频器等很多重要的功能。

74LS161计数器封装引脚排列图 (P584)

			输	输 入				触发器状态				
СР	CR	LD	CT_P	CT_T	D	C	В	A	Q_D	Q_C	Q_B	Q _A
×	0	×	×	×	×	×	×	×	0	0	● ● ● 単 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	0
↑	1	0	×	×	D	C	В	A	D	C	B	A
1	1	1	1	1	×	×	×	×	4位二	二进制	加法	计数
× ×	L升沿有 1	<u>教</u> 1	0	×	×	×	×	×		保持	功能	
×	1	1	×	0	×	×	×	×	保持功能			

4. 10 进制和 6 进制计数器

当达到需要进位的数字时,利用与非门输出0传递到清零端,使得计数器清零

5. 60 进制计数器

秒、分计数器都是 60 进制计数器,由 10 进制计数器和 6 进制计数器级联而成,个位为 10 进制计数器,十位为 6 进制计数器,如图所示。当个位十进制计数器计到 9 后,下一个计数脉冲到达时计数器状态应该回到 0,同时向十位计数器发出上升沿进位信号。因此,个位计数器向十位计数器发出的进位信号 Z 是在个位计数器从 (1001) 状态变到 (0000) 状态时发出的,所以进位信号的逻辑表达式为 $Z=Q_DQ_A$ 。60 进制秒计数器与 60 进制分计数器之间的进位信号 Z,是在 60 进制秒计数器的 (01011001) 状态转换到 (00000000) 状态,即当秒计数器计到 59 秒后,再来一个计数脉冲,使状态回到 00 时发出的,所以 60 进制分计数器的计数输入脉冲 Z 的逻辑表达式 $Z=Q_AQ_C$ 。

数字式计时器中的时计数器采用 24 进制计数,个位为 10 进制计数器,十位为 2 进制计数器。当十位的计数值还不到 2(即 $Q_DQ_CQ_BQ_A$ 为 0010) 时,个位的计数器应按照十进制的规律进行计数。但当计数到 23 时,若再来一个 CP 脉冲,则应将十位计数器和个位计数器同时清零,从而实现 24 进制计数。所以 Z, 的逻辑表达式为 $Z=Q_{2b}Q_{1c}$ 。

三、 主要仪器设备

- 1. 数字逻辑电路实验箱
- 2. 74LS00 芯片

片

採

3. 74LS161 芯片

四、操作方法与实验步骤

1. 测试译码显示电路的功能

在实验箱上译码显示电路部分的 D、C、B、A 端依次输入 0000 1111 代码 (使用数据开关), 列表记录数码管 所显示的数字或形状。

2. 测试 74LS00 与非门的功能

将与非门的输出端接发光二极管,输入端接数据开关。接通与非门的电源,观察与非门在不同输入组合下的输出情况并记录。

将实验箱提供的 1Hz 基准频率(或秒信号)送入与非门输入端,输出接发光二极管。控制端 Y 接数据开关,当控制端 Y 分别加上逻辑电平 0 和 1 时,观察 Y 对输出的控制作用。

3. 测试 74LS161 计数器的功能

在 CP 端加入手控的逻辑电平信号,输出端(QD、QC、QB、QA)接发光二极管,观察并记录发光二极管亮、暗情况与 CP 端手动脉冲个数的关系。

将输出换至数码显示,观察计数器的输出。

实验中 A、B、C、D 可悬空; LD、 CT_P CT_T 接高电平; CR 接数据开关; CO 接发光二极管。

4. 分别连接 10 进制和 6 进制加法计数器

计数器输出连显示译码电路。

首先用手动的方法,向 CP 端送入计数脉冲,检查功能是否正确。

手动检查无误后,再用实验箱上的秒信号作为输入脉冲

5. 分别连接 60 进制和 24 进制加法计数器

将十进制和六进制进行级联,然后再将十进制的输出和六进制的输出,分别与两个显示电路(D、C、B、A)连接、测试。完成能显示"分"或"时"的电路。

五、 实验结果与分析

1. 测试阶段,译码管能正确显示二进制数字,结果如下:芯片与非门和计数功能均正常 2. 计数器都正确完成了

输入	显示	输入	显示
0000	0	1000	8
0001	1	1001	9
0010	2	1010	灭
0011	3	1011	灭
0100	4	1100	灭
0101	5	1101	灭
0110	6	1110	灭
0111	7	1111	灭

计数功能,交给老师验收。

江

六、 心得与讨论

戸

1. 通过本次实验,体会到数字逻辑电路的功能与特点,学习了用数字集成逻辑电路组装数字电路,并学习数字电路的调试方法。比如,在调试时,应分阶段连接调试,一步一步地进行。以本次实验为例,先连接好个位的十进制计数器,电路工作正确后,再接十位的六进制计数器。两者都正常后,再将 60 进制计数器连接起来。采用这种步步为营的接线和调试方法(称为自下而上),能较容易地发现问题并排除故障。

2. 老师还讲了许多 60 进制和 24 进制计数器可能会遇到的问题以及解决方法,如十位清零过快,需要加滤波电容来延时清零。

6