In [51]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import random as rd
```

In [52]:

```
data=pd.read_csv('thyroid.csv') #reading t
data.columns=['T3','TST','TSTI','TSH','Maximal Absolute Difference','Label'] #addigng c
data.head()
```

Out[52]:

	Т3	TST	TSTI	TSH	Maximal Absolute Difference	Label
0	113	9.9	3.1	2.0	5.9	1
1	127	12.9	2.4	1.4	0.6	1
2	109	5.3	1.6	1.4	1.5	1
3	105	7.3	1.5	1.5	-0.1	1
4	105	6.1	2.1	1.4	7.0	1

In [53]:

C	data.describe()	#previewing the statistical info the given dataset
	* *	

Out[53]:

	Т3	тѕт	тѕті	тѕн	Maximal Absolute Difference	Label
count	214.000000	214.000000	214.000000	214.000000	214.000000	214.000000
mean	109.607477	9.803271	2.049533	2.889252	4.206075	1.443925
std	13.175063	4.708332	1.422777	6.130868	8.088786	0.727808
min	65.000000	0.500000	0.200000	0.100000	-0.700000	1.000000
25%	103.000000	7.100000	1.325000	1.000000	0.525000	1.000000
50%	110.000000	9.200000	1.700000	1.300000	2.000000	1.000000
75%	117.750000	11.300000	2.200000	1.700000	4.100000	2.000000
max	144.000000	25.300000	10.000000	56.400000	56.300000	3.000000

```
In [54]:
p=data['Label']
                                      #preparing the label
p=pd.DataFrame(p)
                                      #converting into dataframe
p.head()
Out[54]:
   Label
       1
 0
 1
       1
 2
       1
 3
       1
 4
       1
In [55]:
k=p['Label']
                                                       #preparing the label
k=pd.DataFrame(k)
                                                       #coverting into dataframe
k["Label"].replace({1: 0, 2: 1,3:2}, inplace=True)
                                                       #replacing the column values
z=k['Label']
                                                       #copying the variable
Z
Out[55]:
0
       0
1
       0
2
       0
3
       0
4
       0
       2
209
210
       2
       2
211
       2
212
213
       2
Name: Label, Length: 214, dtype: int64
In [56]:
X=data.iloc[:, [0,1,2,3,4]].values
Χ
Out[56]:
```

```
array([[113. , 9.9,
                       3.1,
                              2.,
                                     5.9],
                       2.4,
       [127., 12.9,
                              1.4,
                                     0.6],
      [109., 5.3]
                       1.6,
                              1.4,
                                     1.5],
                5.1,
       [103.,
                       1.4,
                              1.2,
                                     5.],
              4.7,
       [ 97. ,
                       1.1,
                              2.1,
                                    12.6],
       [102.,
                                     6.7]])
                5.3,
                       1.4,
                              1.3,
```

```
In [57]:
m=X.shape[0]
n=X.shape[1]
n_iter=100
In [58]:
K=3
In [59]:
Centroids=np.array([]).reshape(n,0)
In [60]:
for i in range(K):
    rand=rd.randint(0,m-1)
    Centroids=np.c_[Centroids,X[rand]]
In [61]:
Output={}
In [62]:
EuclidianDistance=np.array([]).reshape(m,0)
for k in range(K):
       tempDist=np.sum((X-Centroids[:,k])**2,axis=1)
       EuclidianDistance=np.c_[EuclidianDistance,tempDist]
C=np.argmin(EuclidianDistance,axis=1)+1
In [63]:
Y={}
for k in range(K):
    Y[k+1]=np.array([]).reshape(5,0)
for i in range(m):
    Y[C[i]]=np.c_[Y[C[i]],X[i]]
for k in range(K):
    Y[k+1]=Y[k+1].T
for k in range(K):
     Centroids[:,k]=np.mean(Y[k+1],axis=0)
```

In [64]:

```
for i in range(n_iter):
     #step 2.a
     EuclidianDistance=np.array([]).reshape(m,0)
      for k in range(K):
          tempDist=np.sum((X-Centroids[:,k])**2,axis=1)
          EuclidianDistance=np.c_[EuclidianDistance,tempDist]
      C=np.argmin(EuclidianDistance,axis=1)+1
     #step 2.b
     Y={}
      for k in range(K):
          Y[k+1]=np.array([]).reshape(5,0)
      for i in range(m):
          Y[C[i]]=np.c_[Y[C[i]],X[i]]
      for k in range(K):
          Y[k+1]=Y[k+1].T
      for k in range(K):
          Centroids[:,k]=np.mean(Y[k+1],axis=0)
     Output=Y
```

In [65]:

```
plt.scatter(X[:,0],X[:,1],c='black',label='unclustered data')
plt.legend()
plt.title('Plot of data points')
plt.show()
```


In [66]:

```
plt.figure(figsize=(15,7))
color=['green', 'orange', 'blue']
labels=['cluster1', 'cluster2', 'cluster3']
for k in range(K):
    plt.scatter(Output[k+1][:,0],Output[k+1][:,1],c=color[k],label=labels[k],s=20)
plt.scatter(Centroids[0,:],Centroids[1,:],s=120,c='red',label='Centroids',marker='*')
plt.legend()
plt.title('Thyroid Gland Classification',fontsize=15)
plt.legend(title = 'Cluster')
plt.show()
```


In [67]:

```
from sklearn.cluster import KMeans
```

In [68]:

```
kmeans = KMeans(n_clusters = 3, random_state=101) # number of clusters set to 5
```

In [69]:

```
y=kmeans.fit_predict(X)
```

In [70]:

```
clusters=kmeans.labels_ #adding the labels to the variable
clusters #previewing
```

Out[70]:

In [71]:

```
centers = kmeans.cluster_centers_ #finding the centriods of the clusters.
centers #previewing the centriods
```

Out[71]:

```
array([[112.23684211, 9.54144737, 1.80263158, 1.31118421, 2.58618421], [89.94871795, 14.71794872, 3.64615385, 1.16153846, 0.95128205], [125.56521739, 3.2 , 0.97391304, 16.24782609, 20.43043478]])
```

In [72]:

```
plt.figure(figsize=(15,7))
plt.scatter(X[y == 0, 0], X[y == 0, 1], s = 20, c = 'b', label = 'Cluster 1')
plt.scatter(X[y == 1, 0], X[y == 1, 1], s = 20, c = 'Orange', label = 'Cluster 2')
plt.scatter(X[y == 2, 0], X[y == 2, 1], s = 20, c = 'Green', label = 'Cluster 3')
plt.scatter(centers[:, 0], centers[:, 1], s = 120, c = 'Red', label = 'Centroids', marker = plt.title('Thyroid Gland Classification', fontsize=15)
plt.legend(title = 'Cluster')
plt.show()
```


In [73]:

from sklearn.metrics import classification_report, confusion_matrix #importin classific
from sklearn import metrics

In [74]:

[]-					
print(classif	ication_repo	rt(cluste	#printing the classification repor		
	precision	recall	f1-score	support	
0	0.91	0.89	0.90	152	
1	0.71	0.64	0.68	39	
2	0.77	1.00	0.87	23	
accuracy			0.86	214	
macro avg	0.80	0.85	0.82	214	
weighted avg	0.86	0.86	0.86	214	

In [75]:

```
fig, axes = plt.subplots(1, 2, figsize=(20,10))
color=['green','orange','blue']
labels=['cluster1','cluster2','cluster3']
for k in range(K):
    axes[0].scatter(Output[k+1][:,0],Output[k+1][:,1],c=color[k],label=labels[k],s=20)
axes[0].scatter(Centroids[0,:],Centroids[1,:],s=120,c='red',label='Centroids',marker='*')
axes[0].set_title("Kmeans without using SKlearn",fontsize=20)
axes[1].scatter(X[:, 0], X[:, 1], c=clusters, s=30)
axes[1].scatter(centers[:,0],centers[:,1],marker="*",color="red",s=120)
axes[1].set_title("Kmeans using SKlearn",fontsize=20)
```

Out[75]:

Text(0.5, 1.0, 'Kmeans using SKlearn')

In []: