MODULE 1

PROBABILITY

PROBLEMS

- **1.** Let $\Omega = \{1, 2, 3, 4\}$. Check which of the following is a sigma-field of subsets of Ω :
 - (i) $\mathcal{F}_1 = \{\phi, \{1, 2\}, \{3, 4\}\};$
 - (ii) $\mathcal{F}_2 = \{\phi, \Omega, \{1\}, \{2, 3, 4\}, \{1, 2\}, \{3, 4\}\};$
 - (iii) $\mathcal{F}_3 = \{\phi, \Omega, \{1\}, \{2\}, \{1, 2\}, \{3, 4\}, \{2, 3, 4\}, \{1, 3, 4\}\}.$
- **2.** Show that a class \mathcal{F} of subsets of Ω is a sigma-field of subsets of Ω if, and only if, the following three conditions are satisfied: (i) $\Omega \in \mathcal{F}$; (ii) $A \in \mathcal{F} \Rightarrow A^{\mathcal{C}} = \Omega A \in \mathcal{F}$; (iii) $A_n \in \mathcal{F}$, $n = 1, 2, \dots \Rightarrow \bigcap_{n=1}^{\infty} A_n \in \mathcal{F}$.
- **3.** Let $\{\mathcal{F}_{\lambda} : \lambda \in \Lambda\}$ be a collection of sigma-fields of subsets of Ω .
 - (i) Show that $\bigcap_{\lambda \in \Lambda} \mathcal{F}_{\lambda}$ is a sigma-field;
 - (ii) Using a counter example show that $\cup_{\lambda \in \Lambda} \mathcal{F}_{\lambda}$ may not be a sigma-field;
 - (iii) Let \mathcal{C} be a class of subsets of Ω and let $\{\mathcal{F}_{\lambda} : \lambda \in \Lambda\}$ be a collection of all sigma-fields that contain the class \mathcal{C} . Show that $\sigma(\mathcal{C}) = \bigcap_{\lambda \in \Lambda} \mathcal{F}_{\lambda}$, where $\sigma(\mathcal{C})$ denotes the smallest sigma-field containing the class \mathcal{C} (or the sigma-field generated by class \mathcal{C}).
- **4.** Let Ω be an infinite set and let $\mathcal{A} = \{A \subseteq \Omega : A \text{ is finite or } A^{\mathcal{C}} \text{ is finite} \}$.
 - (i) Show that \mathcal{A} is closed under complements and finite unions;
 - (ii) Using a counter example show that \mathcal{A} may not be closed under countably infinite unions (and hence \mathcal{A} may not be a sigma-field).
- 5. (i) Let Ω be an uncountable set and let

$$\mathcal{F} = \{A \subseteq \Omega : A \text{ is countable or } A^{\mathcal{C}} \text{ is countable} \}.$$

- (a) Show that \mathcal{F} is a sigma-field;
- (b) What can you say about \mathcal{F} when Ω is countable?
- (ii) Let Ω be a countable set and let $\mathcal{C} = \{\{\omega\} : \omega \in \Omega\}$. Show that $\sigma(\mathcal{C}) = \mathcal{P}(\Omega)$.
- **6.** Let $\mathcal{F} = \mathcal{P}(\Omega)$ = the power set of $\Omega = \{0, 1, 2, ...\}$. In each of the following cases, verify if (Ω, \mathcal{F}, P) is a probability space:

- (i) $P(A) = \sum_{x \in A} e^{-\lambda} \lambda^x / x!, A \in \mathcal{F}, \lambda > 0$;
- (ii) $P(A) = \sum_{x \in A} p(1-p)^x$, $A \in \mathcal{F}$, 0 ;
- (iii) P(A) = 0, if A has a finite number of elements, and P(A) = 1, if A has infinite number of elements, $A \in \mathcal{F}$.
- 7. Let (Ω, \mathcal{F}, P) be a probability space and let $A, B, C, D \in \mathcal{F}$. Suppose that $P(A) = 0.6, P(B) = 0.5, P(C) = 0.4, P(A \cap B) = 0.3, P(A \cap C) = 0.2, P(B \cap C) = 0.2, P(A \cap B \cap C) = 0.1, P(B \cap D) = P(C \cap D) = 0, P(A \cap D) = 0.1$ and P(D) = 0.2.

Find:

- (i) $P(A \cup B \cup C)$ and $P(A^C \cap B^C \cap C^C)$;
- (ii) $P((A \cup B) \cap C)$ and $P(A \cup (B \cap C))$;
- (iii) $P((A^C \cup B^C) \cap C^C)$ and $P((A^C \cap B^C) \cup C^C)$;
- (iv) $P(B \cap C \cap D)$ and $P(A \cap C \cap D)$;
- (v) $P(A \cup B \cup D)$ and $P(A \cup B \cup C \cup D)$;
- (vi) $P((A \cap B) \cup (C \cap D))$.
- **8.** Let (Ω, \mathcal{F}, P) be a probability space and let A and B be two events (i.e., $A, B \in \mathcal{F}$).
 - (i) Show that the probability that exactly one of the events A or B will occur is given by $P(A) + P(B) 2P(A \cap B)$;
 - (ii) Show that $P(A \cap B) P(A)P(B) = P(A)P(B^{C}) P(A \cap B^{C}) = P(A^{C})P(B) P(A^{C} \cap B) = P((A \cup B)^{C}) P(A^{C})P(B^{C}).$
- **9.** Suppose that $n \ge 3$ persons $P_1, ..., P_n$ are made to stand in a row at random. Find the probability that there are exactly r persons between P_1 and P_2 ; here $r \in \{1, 2, ..., n-2\}$.
- **10.** A point (X, Y) is randomly chosen on the unit square $S = \{(x, y): 0 \le x \le 1, 0 \le y \le 1\}$ (i.e., for any region $R \subseteq S$ for which the area is defined, the probability that (X, Y) lies on R is $\frac{\text{area of } R}{\text{area of } S}$). Find the probability that the distance from (X, Y) to the nearest side does not exceed $\frac{1}{3}$ units.
- 11. Three numbers a, b and c are chosen at random and with replacement from the set $\{1, 2, ..., 6\}$. Find the probability that the quadratic equation $ax^2 + bx + c = 0$ will have real root(s).
- 12. Three numbers are chosen at random from the set $\{1, 2, ..., 50\}$. Find the probability that the chosen numbers are in
 - (i) arithmetic progression;

- (ii) geometric progression.
- 13. Consider an empty box in which four balls are to be placed (one-by-one) according to the following scheme. A fair die is cast each time and the number of dots on the upper face is noted. If the upper face shows up 2 or 5 dots then a white ball is placed in the box. Otherwise a black ball is placed in the box. Given that the first ball placed in the box was white find the probability that the box will contain exactly two black balls.
- **14.** Let $((0,1], \mathcal{F}, P)$ be a probability space such that \mathcal{F} is the smallest sigma-field containing all subintervals of $\Omega = (0,1]$ and P((a,b]) = b a, where $0 \le a < b \le 1$ (such a probability measure is known to exist).
 - (i) Show that $\{b\} = \bigcap_{n=1}^{\infty} \left(b \frac{1}{n+1}, b\right], \forall b \in (0, 1];$
 - (ii) Show that $P(\{b\}) = 0, \forall b \in (0,1]$ and P((0,1]) = 1 (Note that here $P(\{b\}) = 0$ but $\{b\} \neq \phi$ and P((0,1)) = 1 but $(0,1) \neq \Omega$);
 - (iii) Show that, for any countable set $A \in \mathcal{F}$, P(A) = 0;
 - (iv) For $n \in \mathbb{N}$, let $A_n = \left(0, \frac{1}{n}\right]$ and $B_n = \left(\frac{1}{2} + \frac{1}{n+2}, 1\right]$. Verify that $A_n \downarrow B_n \uparrow$, $P(\operatorname{Lim}_{n \to \infty} A_n) = \lim_{n \to \infty} P(A_n)$ and $P(\operatorname{Lim}_{n \to \infty} B_n) = \lim_{n \to \infty} P(B_n)$.
- 15. Consider four coding machines M_1 , M_2 , M_3 and M_4 producing binary codes 0 and 1. The machine M_1 produces codes 0 and 1 with respective probabilities $\frac{1}{4}$ and $\frac{3}{4}$. The code produced by machine M_k is fed into machine $M_{k+1}(k=1,2,3)$ which may either leave the received code unchanged or may change it. Suppose that each of the machines M_2 , M_3 and M_4 change the received code with probability $\frac{3}{4}$. Given that the machine M_4 has produced code 1, find the conditional probability that the machine M_1 produced code 0.
- 16. A student appears in the examinations of four subjects Biology, Chemistry, Physics and Mathematics. Suppose that probabilities of the student clearing examinations in these subjects are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ and $\frac{1}{5}$ respectively. Assuming that the performances of the students in four subjects are independent, find the probability that the student will clear examination(s) of
 - (i) all the subjects;
- (ii) no subject;
- (iii) exactly one subject;

- (iv) exactly two subjects;
- (v) at least one subject.
- **17.** Let A and B be independent events. Show that

$$\max\{P((A \cup B)^c), P(A \cap B), P(A \triangle B)\} \ge \frac{4}{9},$$
 where $A \triangle B = (A - B) \cup (B - A)$.

18. For independent events $A_1, ..., A_n$, show that

$$P\left(\bigcap_{i=1}^{n} A_i^c\right) \leq e^{-\sum_{i=1}^{n} P(A_i)}.$$

- **19.** Let (Ω, \mathcal{F}, P) be a probability space and let A_1 , A_2 , ... be a sequence of events (i. e., $A_i \in \mathcal{F}$, i = 1, 2, ...). Define $B_n = \bigcap_{i=n}^{\infty} A_i$, $C_n = \bigcup_{i=n}^{\infty} A_i$, $n = 1, 2, ..., D = \bigcup_{n=1}^{\infty} B_n$ and $E = \bigcap_{n=1}^{\infty} C_n$. Show that:
 - (i) D is the event that all but a finite number of A_n s occur and E is the event that infinitely many A_n s occur;
 - (ii) $D \subseteq E$;
 - (iii) $P(E^c) = \lim_{n \to \infty} P(C_n^c) = \lim_{n \to \infty} \lim_{m \to \infty} P(\bigcap_{k=n}^m A_k^c)$ and $P(E) = \lim_{n \to \infty} P(C_n)$;
 - (iv) if $\sum_{n=1}^{\infty} P(A_n) < \infty$ then, with probability one, only finitely many A_n s will occur;
 - (v) if $A_1, A_2, ...$ are independent and $\sum_{n=1}^{\infty} P(A_n) < \infty$ then, with probability one, infinitely many $A_n s$ will occur.
- **20.** Let *A*, *B* and *C* be three events such that *A* and *B* are negatively (positively) associated and *B* and *C* are negatively (positively) associated. Can we conclude that, in general, *A* and *C* are negatively (positively) associated?
- **21.** Let (Ω, \mathcal{F}, P) be a probability space and let A and B two events (i. e., $A, B \in \mathcal{F}$). Show that if A and B are positively (negatively) associated then A and B^c are negatively (positively) associated.
- 22. A locality has n houses numbered $1, \ldots, n$ and a terrorist is hiding in one of these houses. Let H_j denote the event that the terrorist is hiding in house numbered $j, j = 1, \ldots, n$ and let $P(H_j) = p_j \in (0,1), j = 1, \ldots, n$. During a search operation, let F_j denote the event that search of the house number j will fail to nab the terrorist there and let $P(F_j | H_j) = r_j \in (0,1), j = 1, \ldots, n$. For each $i, j \in \{1, \ldots, n\}, i \neq j$, show that H_j and F_j are negatively associated but H_i and F_j are positively associated. Interpret these findings.

- **23.** Let A, B and C be three events such that $P(B \cap C) > 0$. Prove or disprove each of the following:
 - (i) $P(A \cap B|C) = P(A|B \cap C)P(B|C)$;
 - (ii) $P(A \cap B|C) = P(A|C)P(B|C)$ if A and B are independent events.
- **24.** A *k-out-of-n system* is a system comprising of *n* components that functions if, and only if, at least k ($k \in \{1,2,...,n\}$) of the components function. A 1-out-of-*n* system is called a *parallel system* and an *n*-out-of-*n* system is called a *series system*. Consider *n* components $C_1,...,C_n$ that function independently. At any given time t the probability that the component C_i will be functioning is $p_i(t)$ (\in (0,1)) and the probability that it will not be functioning at time t is $1 p_i(t)$, i = 1,...,n.
 - (i) Find the probability that a parallel system comprising of components $C_1, ..., C_n$ will function at time t;
 - (ii) Find the probability that a series system comprising of components $C_1, ..., C_n$ will function at time t;
 - (iii) If $p_i(t) = p(t)$, i = 1, ..., n, find the probability that a k-out-of-n system comprising of components $C_1, ..., C_n$ will function at time t.