Diberikan data eksperimen sebagai berikut:

Waktu	Ketinggian
(detik)	(meter)
0	0
2	922.41
4	1444.4
6	1726.4
8	1864.7
10	1916.9

Data tersebut merupakan data ketinggian sebuah benda yang bergerak ke atas dengan kelajuan awal 600 m/s.

Data tersebut dapat diprediksi dengan persamaan di bawah. Carilah nilai m dan c agar persamaan tersebut dapat memprediksi data eksperimen dengan baik, jika diketahui $g=9.81 \text{ m/s}^2$, m dalam kg, c dalam kg/s, x dalam meter, dan t dalam detik. Gunakan metode PSO dengan keriteria nilai koefisien korelasi (\mathbb{R}^2) terbesar.

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + mg = 0$$

$$\frac{dx}{dt} = v$$

$$x(0) = 0$$
 meter

$$v(0) = 600 \text{ m/s}$$

Hasil pencarian konstanta menggunakan metode PSO

Saya telah melakukan 5 kali ulangan untuk mendapatkan nilai R^2 sebesar 0 sehingga didapatkan nilai konstanta yang dicari sebesarc1 = -0.089329 dan c2 = 4.9696

Parameter pada ulangan terpilih dapat dilihat pada Tabel 1, sedangkan gambar plot data eksperimen vs simulasi serta tabelnya untuk setiap ulangan terpilih dapat dilihat pada Gambar 1 sd 5

Tabel 1. Parameter Ulangan Terpilih

Ulangan	Jumlah	Jumlah	Parameter Tebakan		\mathbb{R}^2	HasilT	ebakan
Ke	Partikel	Iterasi	a	В		a	b
1 2	3	Max = 8	Max = 7	0.52899	1.5097	-1.0464	
		Min = -8	Min = -7				
2 5	4	Max = 9	Max = 8.5	0.42101	5.1401	-7.9749	
		Min = -9	Min = -8.5	0.42101			
3 6	7	Max = 10	Max = 9	0.40046	1.5395	-9.0242	
		Min = -10	Min = -9				
4	4 9	8	Max = 10.7	Max = 10.5	0.40046	0.44094	-11.359
4 9		Min = -10.7	Min = -10.5	0.40040	0.44094	-11.339	
5 10	11	Max = 10.95	Max = 10.55	0	-0.089329	4.9696	
	10	10 11	Min = -10.9	Min = -10.5	U	-0.003323	4.7070

Data X	Data	Data	
Data A	Y_eksperimen	Y_simulasi	
0	0	0	
2	1199.7	922.41	
4	2398.8	1444.4	
6	3597.2	1726.4	
8	4795	1864.7	
10	5992.1	1916.9	

Data X	Data	Data
	Y_eksperimen	Y_simulasi
0	0	0
2	1090.6	922.41
4	1984	1444.4
6	2709.5	1726.4
8	3291.7	1864.7
10	3751.8	1916.9

Data X	Data	Data
	Y_eksperimen	Y_simulasi
0	0	0
2	978.55	922.41
4	1611.7	1444.4
6	2009.8	1726.4
8	2248.1	1864.7
10	2377.6	1916.9

Data X	Data	Data
	Y_eksperimen	Y_simulasi
0	0	0
2	517.46	922.41
4	574.13	1444.4
6	564.95	1726.4
8	546.35	1864.7
10	526.4	1916.9