Math 3607: Homework 3

Due: 10:00PM, Wednesday, June 30, 2021

TOTAL: 30 points

- 1. Do **LM** 9.3–3(a).
- 2. Do **LM** 9.3–11.
- 3. (Inverting hyperbolic cosine; FNC 1.3.6) The function

$$x = \cosh(t) = \frac{e^t + e^{-t}}{2}$$

can be inverted to yield a formula for $a\cosh(x)$:

$$t = \log\left(x - \sqrt{x^2 - 1}\right) \tag{*}$$

where $\log(\cdot)$ denotes the natural logarithmic function $\ln(\cdot)$. In MATLAB, let t=-4:-4:-16 and $x=\cosh(t)$.

- (a) Find the condition number of the problem $f(x) = \operatorname{acosh}(x)$. (You may use Equation (\star) , or look up a formula for f' in a calculus book.) Evaluate κ_f at the entries of x in MATLAB.
- (b) Use Equation (★) on x to approximate t. Record the accuracy of the answers (by displaying absolute and/or relative errors), and explain. (Warning: Use format long to get enough digits or use fprintf with a suitable format.)
- (c) An alternate formula for $a\cosh(x)$ is

$$t = -2\log\left(\sqrt{\frac{x+1}{2}} + \sqrt{\frac{x-1}{2}}\right). \tag{\dagger}$$

Apply Equation (†) to x and record the accuracy as in part (b). Comment on your observation.

(d) Based on your experiments, which of the formulas (\star) and (\dagger) is unstable? What is the problem with that formula?