1.48 Theorem. Given $a, b, c \in \mathbb{Z}$ and a, b not both 0, there exists $x, y \in \mathbb{Z}$ that satisfy the equation ax + by = c if and only if $(a, b) \mid c$.

Proof. Let $a, b, c \in \mathbb{Z}$ and a, b not both 0 be given. Suppose there exists $x, y \in \mathbb{Z}$ that satisfy the equation ax + by = c. Let d = (a, b) where a = da' and b = db' for some $a', b' \in \mathbb{Z}$. Thus,

$$c = ax + by$$

$$= da'x + db'y$$

$$= d(a'x + b'y).$$

Thus, $(a, b) \mid c$.

Now suppose $(a, b) \mid c$. Let d = (a, b). By Theorem 1.40, there exists $s, t \in \mathbb{Z}$ such that as + bt = d. We have that $d \mid c$ such that $(as + bt) \mid c$. By definition, for some $k \in \mathbb{Z}$,

$$c = (as + bt)k$$
$$= ask + btk.$$

By CPI, let sk = x and tk = y for some $x, y \in \mathbb{Z}$. Thus, ax + by = c.

Since both directions of the biconditional statement are true, there exists $x, y \in \mathbb{Z}$ that satisfy the equation ax + by = c if and only if $(a, b) \mid c$.