函数极限和连续性基础

函数基础知识和性质

- 函数三要素: 定义域、对应关系和值域
- 函数四大性质: 有界性、奇偶性、周期性和单调性
- 函数运算: 四则运算、复合运算、反函数运算
- 初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数六类
- 任意一个定义在 [-l,l] 上的函数 f(x) 均可以写成一个奇函数和一个偶函数的和 f(x)=h(x)+g(x) 其中 $h(x)=\frac{f(x)+f(-x)}{2}$ 是偶函数, $g(x)=\frac{f(x)-f(-x)}{2}$ 是奇函数

重要函数和预备知识

三角函数和差化积、积化和差公式

积化和差

•
$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

•
$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

•
$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

•
$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

•
$$\tan \alpha + \tan \beta = \frac{\sin \alpha + \sin \beta}{\cos \alpha \cos \beta}$$

和差化积

•
$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

•
$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

•
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

•
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

反三角函数

 $\arcsin x + \arccos x = \frac{\pi}{2}$,构造函数求导,导函数恒为 0, $f(x) = f(0) = \frac{\pi}{2}$

反正弦函数

•
$$f(x) = \arcsin(x), x \in [-1, 1], y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$$

反余弦函数

• $f(x) = \arccos(x), x \in [-1, 1], y \in [0, \pi]$

反正切函数

•
$$f(x) = \arctan(x), x \in (-\infty, +\infty), y \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

双曲函数

双曲正弦函数

•
$$f(x) = \frac{e^x - e^{-x}}{2}, x \in \mathbb{R}, \mathbb{R} \to \mathbb{R}$$

双曲余弦函数

$$ullet f(x)=rac{e^x+e^{-x}}{2}, x\in \mathbb{R}, \mathbb{R} o \mathbb{R}$$

双曲正切函数

$$ullet f(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}, x\in \mathbb{R}, \mathbb{R} o (-1,1)$$

黎曼函数和狄利克雷函数

黎曼函数定义在[0,1]上的分段函数

•
$$f(x) = egin{cases} rac{1}{q}, & p,q \in \mathbb{Q} \mathbb{A} x = rac{p}{q} \in (0,1) \ 0, & x
ot \in \mathbb{Q}$$
或 $x = 0,1$

狄利克雷函数定义在全平面上的分段函数

$$oldsymbol{ullet} oldsymbol{f}(x) = egin{cases} 1, & x \in \mathbb{Q} \ 0, & x
otin \mathbb{Q} \end{cases}$$

符号函数

•
$$f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

取整函数

•
$$f(x)=[x]$$
, $x-1<[x]\leq x$, $\lim_{x o 0^+}=0$, $\lim_{x o 0^-}=-1$

平均值不等式

调和平均值

$$\bullet \ \ H_n = \frac{n}{\sum_{k=1}^k \frac{1}{a_k}}$$

几何平均值

•
$$G_n = \sqrt[n]{\prod_{k=1}^n a_k}$$

算术平均值

$$\bullet \ \ A_n = \frac{\sum_{k=1}^n a_k}{n}$$

平方平均值

$$ullet \ Q_n = \sqrt{rac{\sum_{k=1}^n a_k^2}{n}}$$

平均值大小关系

• $H_n \leq G_n \leq A_n \leq Q_n$,每一个等号成立的条件都是 $a_1 = a_2 = \ldots = a_n$

重要不等式

柯西不等式:
$$\left(\sum_{i=1}^n a_i^2\right)\left(\sum_{i=1}^n b_i^2\right) \geq \left(\sum_{i=1}^n a_i b_i\right)^2$$

$$\sin x < x < an x, x \in (0rac{\pi}{2})$$
, $\arctan x < x < rcsin x, x \in [0,1]$

$$x-1 \geq \ln x, x \in (0,+\infty)$$
, $e^x \geq x+1, x \in \mathbb{R}$

$$rac{1}{1+x}<\ln\left(1+rac{1}{x}
ight)<rac{1}{x},x\in(0,+\infty)$$

函数图形

几个坐标系下的重要图形

极坐标

- \mathbf{B} : $r = a \sin \theta$
- 心形线: $r = a(1 \pm \cos \theta)$
- 三叶玫瑰线: $r = a \sin 3\theta$
- 阿基米德螺线: $r=a\theta$
- 伯努利双纽线: $r^2=a^2\cos 2 heta$ 或者 $r^2=a^2\sin 2 heta$

参数方程

- 摆线: $x = a(t \sin t), y = a(1 \cos t)$
- 星形线: $x = a \cos^3 t, y = a \sin^3 t$

函数的极限

函数极限定义

定义

• 设函数 f(x) 在点 x_0 的某个去心邻域 $\mathring{U}(x_0,\delta)$ 内有定义,如果存在常数 A,对于任意给定的正数 ϵ ,总存在正数 δ ,使得当 x 满足不等式 $0<|x-x_0|<\delta$ 时,对应的函数值 f(x)都满足不等式 $|f(x)-A|<\epsilon$,那么常数 A 是当 x 趋于 x_0 时函数 f(x) 的极限,记作 $\lim_{x\to x_0}f(x)=A$

- 单侧极限[左极限(右极限)]: 若函数 f(x) 在点 x_0 的左(右)邻域内有定义,如果存在常数 A,对于任意给定的正数 ϵ ,总存在正数 δ ,使得当 x 满足不等式 $0 < x x_0 < \delta$ ($0 < x_0 x < \delta$)时,对应的函数值 f(x)都满足不等式 $|f(x) A| < \epsilon$,那么常数 A 是当 x 趋于 x_0 时函数 f(x) 的左(右)极限,记作 $\lim_{x \to x_0^-} f(x) = A(\lim_{x \to x_0^+} f(x) = A)$
- 极限 $\lim_{x o x_0}f(x)$ 收敛的充分必要条件为 f(x) 在 x=a 处左右极限存在且相等,即 $\lim_{x o x_0^-}f(x)=\lim_{x o x_0^+}f(x)$
- 无穷远处极限(双侧,单侧只取一边): f(x) 在 $(-\infty,-a)\cup(a,+\infty)$ 上有定义, $\forall \epsilon>0$, $\exists A>0$,当 |x|>A 时, $|f(x)-l|<\epsilon$,我们称 l 是当 x 趋于无穷远时函数 f(x) 的极限,记作 $\lim_{x\to\infty}f(x)=l$
- 极限发散
 - 。 震荡发散: $\displaystyle \lim_{x \to 0} \sin(\frac{1}{x})$ 反复震荡
 - \circ 左右极限存在但不相等: $\lim_{x o 0} [x]$
 - 。 广义收敛: f(x) 在 x=a 的去心邻域 $\mathring{U}(a,\delta)$ 上有定义, orall X>0,当 $0<|x-a|<\delta$ 时, |f(x)|>X,则称 f(x) 在 x=a 处广义收敛

函数极限性质

唯一性

• 若极限存在,则极限唯一

局部有界性

• 若函数 f(x) 满足 $\lim_{x o x_0}f(x)=A$,则存在正数 M>0,存在正数 $\delta>0$,使得当 x 满足不等式 $0<|x-x_0|<\delta$ 时,对应的函数值 f(x) 都满足不等式 $|f(x)|\leq M$

局部保号性

• 若函数 f(x) 满足 $\lim_{x o x_0}f(x)=A>0$,则存在正数 $\delta>0$,使得当 x 满足不等式 $0<|x-x_0|<\delta$ 时,对应的函数值 f(x)>0

函数极限计算

无穷小

极限四则运算

•
$$\lim_{x \to a} f(x) = A$$
, $\lim_{x \to a} g(x) = B$

$$ullet \lim_{x o a} [f(x)\pm g(x)] = \lim_{x o a} f(x)\pm \lim_{x o a} g(x)$$

$$ullet \lim_{x o a} [f(x)\cdot g(x)] = \lim_{x o a} f(x)\cdot \lim_{x o a} g(x)$$

$$ullet \lim_{x o a}rac{f(x)}{g(x)}=rac{\lim\limits_{x o a}f(x)}{\lim\limits_{x o a}g(x)}, B
eq 0$$

$$ullet \lim_{x o a} [f(x)]^n = [\lim_{x o a} f(x)]^n$$

无穷小比阶: $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x) = 0$

• 等价无穷小:
$$\lim_{x o 0} rac{f(x)}{g(x)} = 1$$
 , 记作 $f(x) \sim g(x)$

• 同阶无穷小:
$$\lim_{x o 0} rac{f(x)}{g(x)} = k (k
eq 0)$$
,记作 $f(x) pprox g(x)$

• 高阶无穷小:
$$\lim_{x o 0} rac{f(x)}{g(x)} = 0$$
,记作 $f(x) = o(g(x))$

• 低阶无穷小:
$$\lim_{x \to 0} rac{f(x)}{g(x)} = \infty$$
 ,记作 $g(x) = O(f(x))$

常见等价无穷小: $x \to 0$

•
$$an x \sim \sin x \sim x$$
, $\ln(x+1) \sim x \sim e^x - 1$

$$ullet \cos x \sim 1 - rac{x^2}{2}$$
 , $a^x - 1 \sim x \ln a \; (a > 0)$

•
$$\arcsin x \sim \arctan x \sim x$$

•
$$(1+x)^a - 1 \sim ax$$

洛必达法则

定理内容:设函数 f(x) 和 g(x) 都在 x=a 的某邻域内可导(a 可以为 ∞ , 邻域也可以是单侧的), 且 $g'(a)\neq 0$

• (1).
$$\dfrac{0}{0}$$
: $\displaystyle\lim_{x o a}f(x)=\displaystyle\lim_{x o a}g(x)=0$

• (2).
$$\frac{\infty}{\infty}$$
: $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$

• 如果
$$\lim_{x o a}rac{f'(x)}{g'(x)}=l(l$$
 可以是实数或者 ∞),我们有: $\lim_{x o a}rac{f(x)}{g(x)}=l$

泰勒公式

• 欧拉公式:
$$e^{i\theta} = \cos \theta + i \sin \theta$$

•
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots, x \in (-\infty, +\infty)$$

•
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^{2n+1} \frac{x^{2n-1}}{(2n-1)!} + \dots, x \in (-\infty, +\infty)$$

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^{2n-1} \frac{x^{2n-2}}{(2n-2)!} + \dots, x \in (-\infty, +\infty)$$

•
$$\tan x = x + \frac{x^3}{3} + \dots = \sum_{n=0}^{\infty} \frac{B_{2n}(-4)^n (1-4^n)}{(2n)!} x^{2n-1}, x \in (-\frac{\pi}{2}, \frac{\pi}{2})$$

$$ullet \ rcsin x = x + rac{x^3}{6} + \dots = \sum_{n=0}^{\infty} rac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}, x \in (-1,1)$$

•
$$\arctan x = x - \frac{x^3}{3} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}, x \in (-1,1)$$

•
$$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots, x \in (-1,1]$$

•
$$\ln(1-x) = -x - \frac{x^2}{2} - \dots - \frac{x^n}{n} + \dots, x \in [-1,1)$$

•
$$(1+x)^{\alpha}=1+\alpha x+rac{lpha(lpha-1)}{2!}x^2+\cdots+rac{lpha(lpha-1)\cdots(lpha-n+1)}{n!}x^n$$

七种未定式极限: $\frac{0}{0}$, $\frac{\infty}{\infty}$, $+\infty+(-\infty)$, $0\cdot\infty$, 1^{∞} , 0^0

函数的连续和间断

连续点定义

• 设函数 f(x) 在点 x_0 的某个邻域 $U(x_0,\delta)$ 内有定义,如果 $\lim_{x o x_0}f(x)=f(x_0)$,那么称函数 f(x) 在点 x_0 处连续

间断点

第一类间断点:

- 可去间断点: $\lim_{x o x_0} f(x)
 eq f(x_0)$ ($f(x_0)$ 可以无定义)
- 跳跃间断点: $\lim_{x \to x_0^-} \neq \lim_{x \to x_0^+}$

第二类间断点: $\lim_{x \to x_0^-} f(x)$ 和 $\lim_{x \to x_0^+} f(x)$ 至少有一个不存在

- 震荡间断点: $\lim_{x \to x_0} f(x)$ 震荡不存在
- 无穷间断点: $\lim_{x o x_0} f(x) = \infty$
- 其他第二类间断点