Minicurso de Arduino

Aula 03

- Constantes:
 - \circ const int x = 10;
 - #define x 100
 - True/False.
 - HIGH/LOW.
 - INPUT/OUTPUT
- Comentário:
 - // Este é um comentário de linha
 - /*Este é um comentário permite mais de uma linha */

- Tipo de Variáveis:
 - As variáveis são lugares na memória principal que servem para armazenar dados.
 - São acessadas por meio de um identificador único.
 - O seu valor pode ser alterado ao longo da execução do programa.
 - A variável só pode armazenar um valor a cada instante.
 - Obedecendo a regra: o primeiro caractere do nome de uma variável deve, obrigatoriamente, ser uma letra e não pode ter caracteres especiais ou palavras reservadas.

Tipo de dados	RAM	Intervalo numérico	
void keyword	N/A	N/A	
boolean	1 byte	0 a 1 (false ou true)	
byte	1 byte	0 a 255	
char	1 byte	-128 a 127	
unsigned char	1 byte	0 a 255	
int	2 bytes	-32.768 a 32.767	
unsigned int	2 bytes	0 a 65.535	
word	2 bytes	0 a 65.535	
long	4 bytes	-2.147.483.648 a 2.147.483.647	
unsigned long	4 bytes	0 a 4.294.967.295	
float	4 bytes	-3,4028235E+38 a 3,4028235E+38	
double	4 bytes	-3,4028235E+38 a 3,4028235E+38	
string	1 byte + x	Sequência de caracteres	
array	1 byte + x	Coleção de variáveis	

- Tipo de operadores:
 - Aritméticos:

Símbolo	Significados	
<u> </u>	Subtração	
+	Adição	
*	Multiplicação	
.1	Divisão	
%	Resto da divisão (módulo)	

Relacionais:

Operação	Operador	Exemplo
lgualdade	==	x == y
Diferença	!=	x != y
Maior	>	x > y
Menor	<	x< y
Maior ou igual	>=	x >= y
Menor ou igual	<=	x <= y

- Tipo de operadores:
 - Lógicos:

Operação	Operador
Е	&
Ou	I
Negação	!
Ou Exclusivo	^

Compostos:

- ++ (incremento)
- -- (decremento)
- += (adição com atribuição)
- -= (subtração com atribuição)
- *= (multiplicação com atribuição)
- /= (divisão com atribuição)

Entradas e Saídas

Sinais Digitais e Analógicos

Sinal Digital: Possui uma quantidade limitada, geralmente representada por dois níveis.

Sinal Analógico: Pode assumir infinitos valores em um intervalo de tempo

Pinos Digitais

O Arduino possui 14 pinos que podem ser utilizadas como **entrada** ou **saída** digital, numeradas de 0 a 13. Antes de utiliza-lás é necessário configurá-la conforme a necessidade.

Estão limitadas a dois estados, ou seja, o Arduino reconhece apenas dois valores de tensão: 0V e 5V.

Dispositivos com sinal digital

Funções para usar os pinos digitais

- void pinMode()
 - Sintaxe: pinMode(pino, modo);
 - O Modo:
 - **INPUT**: Entrada digital;
 - INPUT_PULLUP: Entrada digital como resistor interno PULL-UP habilitado;
 - OUTPUT: Saída digital;

- int digitalRead();
 - Sintaxe: digitalRead(pino);
 - Retorno: HIGH ou LOW;
- void digitalWrite()
 - Sintaxe: digitalWrite(pino, valor);
 - Output
 Valor:
 - **HIGH**(nível lógico alto)
 - **LOW**(nível lógico baixo)

Resistores Pull-Up e Pull-Down

Pull-Up:

Chave aberta: 5V Chave fechada: 0V

Pull-Down:

Chave aberta: 0V Chave fechada: 5V

Pinos Analógicos

O Arduino possui 6 entradas analógicas, numeradas de A0 a A5. São utilizadas para medir variações de tensão.

Para a leitura dos sinais analógicos, o Arduino traduz os valores para um valor digital, visto que internamente ele trabalha com dados digitais. Esse processo é feito pelo conversor analógico digital, ADC ou A/D.

Dispositivos com sinal analógico

Funções para usar os pinos analógicos

- int analogRead();
 - Sintaxe: analogRead(pino);
 - Retorno: int(0 a 1023);

Pinos Arduino - Esquemático

Ambiente - Arduino IDE

O ambiente de desenvolvimento do Arduino é gratuito e pode ser baixado no site.

As principais funcionalidades são:

- Escrever código do programa.
- Salvar o código.
- Compilar o código.
- Transportar código o compilado para a placa do Arduino.

Funções setup() e loop()

setup(): onde devem ser definidas algumas configurações iniciais do programa. Ele executa uma única vez.

loop(): função principal do programa. Fica executando indefinidamente.

Prática no Tinkercad


```
#define led 6;
   void setup()
     pinMode(led, OUTPUT);
   void loop()
     digitalWrite(led, LOW);
10
     delay(1000);
12
     digitalWrite(led, HIGH);
     delay(1000);
13
14
15
16
17
```


Prática no Tinkercad


```
#define led 6
   #define botao 8
   void setup()
     pinMode(led, OUTPUT);
     pinMode(botao, INPUT_PULLUP);
   void loop()
11
12
     if(!digitalRead(botao)){
        digitalWrite(led, LOW);
13
     } else {
14
        digitalWrite(led, HIGH);
15
16
17
```


Semáforo

Prática no Tinkercad

```
//Agora é com vocês! :)
ONU ONIUGAA = XI
                                        10
                                        13
                                        14
                                        15
                                        16
                                        17
```


