

Ficha Técnica

Supervisão - Marcela Santos

Coordenação Pedagógica - Hirla Arruda

Conteudista - Sarah Mendes

Revisão técnica - Luciano Pamplona

Revisão - Keila Resende

Design Instrucional – Guilherme Duarte

Ilustração - Guilherme Duarte

Supervisão - Associação Brasileira de Profissionais de Epidemiologia de Campo - ProEpi

Supervisão - Sala de Situação - Universidade de Brasília

Jonas Brant

Copyright © 2021, Associação Brasileira de Profissionais de Epidemiologia de Campo.

Todos os direitos reservados.

A cópia total ou parcial, sem autorização expressa do(s) autor(es) ou com o intuito de lucro, constitui crime contra a propriedade intelectual, conforme estipulado na Lei nº 9.610/1998 (Lei de Direitos Autorais), com sanções previstas no Código Penal, artigo 184, parágrafos 1° ao 3°, sem prejuízo das sanções cabíveis à espécie.

Sumário

Contextualização	6
1.1. Testes rápidos de anticorpos	8
1.2. Testes rápidos para detecção de antígenos	9
Testes sorológicos	10
Biologia molecular RT-PCR	11
Conclusão	12
Referências	13

Aula 2 - Compreendendo a sensibilidade de um teste e a sua capacidade de detectar o contato prévio com o agente infeccioso em indivíduos realmente infectados.

Figura 1 – Medical photo created by freepik - www.freepik.com

Olá,

Ao final desta aula, você compreenderá os conceitos de sensibilidade de testes diagnósticos e suas contribuições para as ações de contenção de cadeias de transmissão de Covid-19. Também aprenderá o conceito de sensibilidade de testes laboratoriais, a aplicabilidade da sensibilidade de cada teste, bem como as vantagens e as limitações.

Contextualização

A avaliação da qualidade de testes diagnósticos é um tema de interesse da investigação clínica e epidemiológica. Nas pesquisas epidemiológicas, os testes diagnósticos são entendidos não apenas como exames laboratoriais, mas, também referem-se a procedimentos diversos como interrogatório clínico, exame físico e métodos propedêuticos diversos que irão definir se um caso é realmente um caso.

Fonte: Tecnologia foto criado por DCStudio - br.freepik.com

O desempenho de um teste diagnóstico depende da ausência de desvios da verdade (ausência de viés) e da precisão (o mesmo teste aplicado no mesmo paciente, ou a amostra deve produzir os mesmos resultados): respectivamente da validade e da reprodutibilidade do "teste".

Fica a Dica

Existem cinco principais características de performance dos testes diagnósticos com resultados numéricos: sensibilidade, especificidade, valor preditivo (positivo e negativo), acurácia e razão de verossimilhança (positiva e negativa).

Nesta aula vamos falar sobre a sensibilidade dos testes diagnósticos de forma geral, e específica, para a Covid-19.

É preciso ter em mente que a sensibilidade de um teste mede a proporção de indivíduos que têm a doença e apresentam teste positivo.

Quando a intenção para a realização do teste for afastar o diagnóstico de uma doença ou condição, como por exemplo, em paciente suspeito de recidiva ou progressão, considera-se que o melhor teste a ser utilizado é o que possui alta sensibilidade, pois terá mais impacto no valor preditivo negativo. Ou seja, se o teste der resultado negativo é muito pouco provável que a pessoa esteja, de fato, doente.

Saiba Mais!

- Sensibilidade: é a probabilidade de resultado positivo nos doentes (verdadeiro positivo).
- Especificidade: é a probabilidade de resultado negativo entre os nãodoentes (verdadeiro negativo).
- Valor preditivo positivo: é a probabilidade da presença da doença quando o teste é positivo
- Valor preditivo negativo: é a probabilidade da ausência de doença quando o teste é negativo.
- Acurácia: é a probabilidade do teste fornecer resultados corretos, ou seja, ser positivo nos doentes e negativo entre não doentes. Expresso de outra forma é a probabilidade dos verdadeiros positivos e verdadeiros negativos como uma proporção de todos os resultados.
- A razão de verossimilhança (RV): é a probabilidade de um determinado resultado em alguém com a doença, dividida pela probabilidade do mesmo resultado em alguém sem a doença, e também pode ser positiva ou negativa.

Observe a tabela abaixo.

		Doença		
		Presente	Ausente	
Teste	Positivo	A- Verdadeiro positivo	B- Falso positivo	a+b
	Negativo	C - Falso negativo	D - Verdadeiro negativo	c+d
		a+c	b+d	N= a+b+c+d

As seguintes proposições podem ser calculadas:

- Sensibilidade: a/(a+c)
- Especificidade: d/(b+d)
- Valor preditivo positivo: a/(a+b)
- Valor preditivo negativo: d/(c+d)
- Classificação correta (acurácia): (a+d)/N
- Classificação incorreta: (b+c)/N

1.1. Testes rápidos de anticorpos

Em 2020, foi realizada uma meta-análise por Castro¹, avaliando alguns tipos de testes para a identificação do SARS-CoV-2 disponíveis.

Fonte: Médico foto criado por freepik - br. freepik.com

Os resultados demonstraram que testes para detecção de IgM apresentam em **média sensibilidade de 82%** (IC 95% 76 - 87%) e especificidade de 97% (IC 95% 96 - 98%). Testes baseados em detecção de IgG apresentaram sensibilidade de 97% (IC 95% 90 - 99%).

Um dado que chama a atenção no trabalho é que durante a fase aguda dos sintomas, testes para detecção de IgM podem apresentar taxas de falso negativo de 10% a 40%, o que sugere que seu uso seja maior nos estudos do que para confirmação diagnóstica.

1.2. Testes rápidos para detecção de antígenos

Os testes rápidos para detecção de antígeno em amostras de orofaringe e nasofaringe, coletados por meio de *swab*, inicialmente foram lançados no mercado com relato de alta sensibilidade.

A meta-análise supracitada identificou sensibilidade de 97% (IC 95% 85 – 99%), e especificidade de 99% (IC 95% 77 – 100%), tendo como referência o RT-PCR. Entretanto, análises posteriores e independentes demonstraram sensibilidade

substancialmente mais baixas que as anteriormente declaradas, em torno de 72-81%. Portanto, é preciso avaliar a sensibilidade do teste que está sendo usado.

Testes sorológicos

Fonte: Médico foto criado por freepik - br.freepik.com

A respeito dos exames sorológicos, diferentes metodologias foram analisadas por Lisboa (2020) em uma outra meta-análise. O, medindo IgG ou IgM, uma sensibilidade de 84,3% (IC 95% 75,6 – 90,9%).

Enquanto isso, os métodos do tipo LFIA (lateral flow immunoassays) apresentaram sensibilidade de 66% (IC 95% de 49,3-79,3%). Por sua vez, exames com método CLIA (chemiluminescent immunoassays), alcançaram sensibilidade de 97,8% (IC95% 46,2 – 100%). A sensibilidade foi maior a partir de três semanas, após o início dos sintomas (variando de 69,9% a 98,9%) em comparação com a primeira semana (13,4% a 50,3%)³.

Biologia molecular RT-PCR

Fonte: Segurança foto criado por freepik - br.freepik.com

O teste molecular para detecção do RNA viral tem sido considerado como o padrão-ouro, ao qual os demais testes são comparados. Ele é capaz de identificar a partícula viral em amostras de orofaringe e nasofaringe. Contudo, é preciso salientar que ele não detecta apenas vírus viáveis, podendo persistir com resultado positivo por semanas, em alguns casos, mesmo após a cura clínica do paciente.

A padronização dos exames baseados em RT-PCR (reverse transcriptase polymerase chain reaction), no início da pandemia, contou com outros exames de controle, como a cultura viral e a microscopia eletrônica. Estudos de meta-análise, demonstraram uma sensibilidade de 86% (IC 95% 84 - 88%) do RT-PCR para diagnóstico da Covid-19.

Saiba Mais!

Leia os artigos citados nesta aula, acesse os links abaixo ou clique no botão.

Real-life validation of the Panbio™ COVID-19 antigen rapid test (Abbott) in community-dwelling subjects with symptoms of potential SARS-CoV-2 infection

Clique aqui!

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165277/

Real-life validation of the Panbio™ COVID-19 antigen rapid test (Abbott) in community-dwelling subjects with symptoms of potential SARS-CoV-2 infection

Clique aqui!

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7832943/

Conclusão

Nesta aula você viu que a sensibilidade é uma das cinco principais características de performance dos testes diagnósticos. Com resultados numéricos, pode-se entender que é a sensibilidade do teste que irá definir a proporção de resultados positivos entre os doentes, e que os testes disponíveis para a Covid-19 possuem sensibilidade variada, podendo sofrer alterações dependendo do tempo de doença em que o teste foi realizado.

Referências

Castro R, Luz PM, Wakimoto MD, Veloso VG, Grinsztejn B, Perazzo H. COVID-19: a meta-analysis of diagnostic test accuracy of commercial assays registered in Brazil. Braz J Infect Dis. 2020 Mar-Apr;24(2):180-187. doi. Disponível em: https://doi.org/10.1016/j.bjid.2020.04.003. Acesso em: 28 jun. 2021.

Gremmels, H., Winkel, B. M. F., Schuurman, R., Rosingh, A., Rigter, N. A. M., Rodriguez, O., Hofstra, L. M. (2020). Real-life validation of the Panbio™ COVID-19 antigen rapid test (Abbott) in community-dwelling subjects with symptoms of potential SARS-CoV-2 infection. EClinicalMedicine doi. Disponível em: https://doi.org/10.1016/j.eclinm.2020.100677>. Acesso em: 28 jun. 2021.

Lisboa Bastos M, Tavaziva G, Abidi SK, Campbell JR, Haraoui LP, Johnston JC, Lan Z, Law S, MacLean E, Trajman A, Menzies D, Benedetti A, Ahmad Khan F. **Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis.** BMJ. 2020 Jul 1;370:m2516. doi. Disponível em: https://doi.org/10.1136/bmj.m2516. Acesso em: 28 jun. 2021.

Floriano I, Silvinato A, Bernardo WM, Reis JC, Soledade G. Accuracy of the Polymerase Chain Reaction (PCR) test in the diagnosis of acute respiratory syndrome due to coronavirus: a systematic review and meta-analysis. Rev Assoc Med Bras (1992). 2020 Jul;66(7):880-888. doi. Disponível em: https://doi.org/10.1590/1806-9282.66.7.880>. Acesso em: 28 jun. 2021.