Assessment02_pt_b

Xilin Huang Liam

20/09/2021

Loading data from Yahoo Finance

Before we starting working on building models and analysis, data need to be loaded from Yahoo Finance API. In our project, we will be collecting:

Coins (to US dollar)

- BTC-USD Bitcoin
- ETH-USD Ethereum
- ADA-USD Cardano
- DOGE-USD Dogecoin
- SHIB-USD Shiba Inu coin

Index

- ^DJI Dow Jones Industrial
- ^IXIC Nasdaq Composite
- ^GSPC S&P 500
- GC=F Gold

Stocks

- TSLA Tesla
- GOOG Google
- AAPL Apple
- NVDA Nvidia
- AMD Advanced Micro Devices
- TSM Taiwan Semiconductor Manufacturing

All the data will be saved as xts (Extensible Time Series) object.

```
rm(list=ls())
library(zoo)
library(xts)
library(TTR)
library(quantmod)
coin_portfolio=c("BTC-USD","ETH-USD","ADA-USD",
                  "DOGE-USD", "SHIB-USD")
index portfolio=c("^DJI","^IXIC","^GSPC","GC=F")
stock_portfolio=c("TSLA", "GOOG", "AAPL", "NVDA", "AMD", "TSM")
data <- getSymbols(c(coin_portfolio,</pre>
                      index_portfolio,
                      stock_portfolio),
                    src='yahoo',
                    #from=dyear,
                    #to=d,
                    autoassign=FALSE)
```

Simple linear regression

For simple linear regression, we will use TSLA stock - Bitcoin as example. Since this project will be focusing on performing linear regression models, the data will be transformed from xts object to dataframe.

```
df_BTC = data.frame(date=index('BTC-USD'), coredata('BTC-USD'))
df_TSLA = data.frame(date=index(TSLA), coredata(TSLA))
library(tidyr)
# use Friday's data for weekends
df_BTCTSLA <- merge(df_BTC,df_TSLA,by='date', all.x = TRUE)</pre>
df_BTCTSLA_filled <- df_BTCTSLA %>%
fill(TSLA.Open, TSLA.High, TSLA.Low, TSLA.Close, TSLA.Adjusted, TSLA.Volume)
# subset data (2019, close price and volume)
df_BTCTSLA_sub <- subset(df_BTCTSLA_filled, date>='2019-01-01', select=c(date,TSLA.Close,TSLA.Volume,BT
row.names(df_BTCTSLA_sub) <- NULL</pre>
library(dplyr)
lag_list = c(1, 3, 5, 10, 20, 30, 100)
for (i in lag_list){
  if (i == lag_list[1]) {
    df_BTCTSLA_lag = data.frame(col1 = lag(df_BTCTSLA_sub$TSLA.Close, n = i))
    names(df_BTCTSLA_lag)[ncol(df_BTCTSLA_lag)] <- paste0("TSLA_price_lag_", i)</pre>
     df_BTCTSLA_lag[,ncol(df_BTCTSLA_lag)+1] <- lag(df_BTCTSLA_sub$TSLA.Close, n = i) 
    names(df_BTCTSLA_lag)[ncol(df_BTCTSLA_lag)] <- paste0("TSLA_price_lag_", i)</pre>
  }
}
## Warning in diff(df_BTCTSLA_lag_m$BTC.USD.Close)/df_BTCTSLA_lag_m$BTC.USD.Close:
## longer object length is not a multiple of shorter object length
```

```
## Warning in diff(df_BTCTSLA_lag_m$TSLA.Close)/df_BTCTSLA_lag_m$TSLA.Close: longer
## object length is not a multiple of shorter object length
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.5
library(ggfortify)
## Warning: package 'ggfortify' was built under R version 4.0.5
x value = log(df BTCTSLA lag m$BTC.USD.Close)
y_value = df_BTCTSLA_lag_m$TSLA_price_lag_1
fit=lm(data = df_BTCTSLA_lag_m, x_value~y_value)
summary(fit)
##
## lm(formula = x_value ~ y_value, data = df_BTCTSLA_lag_m)
##
## Residuals:
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -0.68998 -0.25402 0.03193 0.24400 0.75645
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.652e+00 1.642e-02 526.84 <2e-16 ***
## y_value
             2.671e-03 3.912e-05 68.26 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3439 on 994 degrees of freedom
     (6 observations deleted due to missingness)
## Multiple R-squared: 0.8242, Adjusted R-squared: 0.824
## F-statistic: 4660 on 1 and 994 DF, p-value: < 2.2e-16
ggplot(df_BTCTSLA_lag_m, aes(x = x_value, y = y_value)) +
 geom_point() +
 stat_smooth(method = 'lm', col = 'red') +
  labs(title = paste("Adj R2 = ", signif(summary(fit)$adj.r.squared, 5),
                     " Intercept = ", signif(fit$coef[[1]], 5),
                     " Slope =", signif(fit$coef[[2]], 5),
                     " P =", signif(summary(fit)$coef[2,4], 5)))
## 'geom_smooth()' using formula 'y ~ x'
## Warning: Removed 6 rows containing non-finite values (stat_smooth).
## Warning: Removed 6 rows containing missing values (geom_point).
```

Adj R2 = 0.82401 Intercept = 8.6519 Slope = 0.0026705 P = 0

autoplot(fit)


```
##
## Call:
## lm(formula = x_value ~ y_value, data = df_BTCTSLA_lag_m)
##
## Residuals:
##
     Min
              1Q Median
                            3Q
                                  Max
  -18401 -3352
                          2688
                                29012
##
                     17
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 4395.1183
                           333.4078
                                      13.18
                                              <2e-16 ***
## y_value
                 59.0768
                             0.8838
                                      66.84
                                              <2e-16 ***
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 6907 on 895 degrees of freedom
     (105 observations deleted due to missingness)
## Multiple R-squared: 0.8331, Adjusted R-squared: 0.8329
## F-statistic: 4468 on 1 and 895 DF, p-value: < 2.2e-16
## 'geom_smooth()' using formula 'y ~ x'
## Warning: Removed 105 rows containing non-finite values (stat_smooth).
## Warning: Removed 105 rows containing missing values (geom_point).
```

Adj R2 = 0.83293 Intercept = 4395.1 Slope = 59.077 P = 0

x_value


```
##
## Call:
## lm(formula = x_value ~ y_value, data = df_BTCTSLA_lag_m)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
  -34.940 -1.814
                   -0.123
                             1.742
                                   18.214
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 0.2522
                            0.1224
                                     2.061
                                             0.0395 *
## y_value
                 0.2137
                            0.0342
                                     6.247 6.19e-10 ***
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 3.84 on 990 degrees of freedom
     (10 observations deleted due to missingness)
## Multiple R-squared: 0.03793,
                                    Adjusted R-squared: 0.03696
## F-statistic: 39.03 on 1 and 990 DF, p-value: 6.193e-10
## 'geom_smooth()' using formula 'y ~ x'
## Warning: Removed 10 rows containing non-finite values (stat_smooth).
## Warning: Removed 10 rows containing missing values (geom_point).
```

Adj R2 = 0.036956 Intercept = 0.25222 Slope = 0.21366 P = 6.193e–10

