Build a Personalized Online Course Recommender System with Machine Learning

Muhammad Farooq 3rd November 2023

Outline

- Introduction and Background
- Exploratory Data Analysis
- Content-based Recommender System using Unsupervised Learning
- Collaborative-filtering based Recommender System using Supervised learning
- Conclusion
- Appendix

Introduction

Problem statement and hypotheses

The main problem addressed in this project is the difficulty for the users to discover new courses that likely to their interests by creating a personalized learning track system more appropriate to the users' subject requirements to empower the desired skills. The main object and hypothesize is to build a user personalized recommendation system based on course content and students' learning history in discovering of new courses and to facilitate the learning pathways. By adopting content and collaborative-filtering systems will develop by comparing appropriate supervised and unsupervised machine learning models to find the best model.

Project background and context

An unprecedented demand and growth an Online Learning Management System has challenged the Machine Learning engineer a startup of and Al based MOOC (Massive Open Online Course) with universal access like Udemy, Edx and Coursra. Building a personalized and effective online course recommender system with machine learning is a complex task, but it can greatly enhance user experience and engagement on course recommender platform. By ensuring an up-to-date with the latest advancements in recommendation algorithms and practices for ongoing improvements.

Exploratory Data Analysis

Course counts per genre

20 most popular courses

	TITLE	Enrolls
0	python for data science	14936
1	introduction to data science	14477
2	big data 101	13291
3	hadoop 101	10599
4	data analysis with python	8303
5	data science methodology	7719
6	machine learning with python	7644
7	spark fundamentals i	7551
8	data science hands on with open source tools	7199
9	blockchain essentials	6719
10	data visualization with python	6709
11	deep learning 101	6323
12	build your own chatbot	5512
13	r for data science	5237
14	statistics 101	5015
15	introduction to cloud	4983
16	docker essentials a developer introduction	4480
17	sql and relational databases 101	3697
18	mapreduce and yarn	3670

Word cloud of course titles

Content-based Recommender System using Unsupervised Learning

Flowchart of content-based recommender system using a user profile and course genres. For each dot product

Evaluation results of user profile-based recommender system (Threshold Score = 10)

On average 18 courses approximately have been recommended per user (in the test user dataset)

```
1 # In this cell we will get the mean of score
2 res_df['SCORE'].mean()

$\square$ 0.0s
```

18.62679972290352

Top-10 common recommended courses

Course-ID	No. of times
TA0106EN	608
GPXX0IBEN	548
excourse22	547
excourse21	547
ML0122EN	544
excourse04	533
GPXX0TY1EN	533
excourse06	533
excourse31	524
excourse73	516

Flowchart of content-based recommender system using course similarity

Evaluation results of course similarity based recommender system

Hyper-parameter settings, such as a score or similarity threshold

On average 11.383 approximately unseen courses have been recommended per user.

Top-10 most frequently recommended courses.

```
sorted(dict(zip
[82]
      ✓ 0.0s
     excourse62
                    579
     excourse22
                    579
                    562
     DS0110EN
     excourse65
                    555
     excourse63
                    555
                    551
     excourse72
                    550
     excourse68
     excourse67
                    539
     excourse74
                    539
     BD0145EN
                    506
     dtype: int64
```

Flowchart of clustering-based recommender system

USERS GROUPSED IN CLUSTER 3 RECOMMENDED 02 COURSES 'PYTHON', 'MACHINE LEARNING'

Evaluation results of clustering-based recommender system

Threshold = 5.735 considering it to be 6 approximately

On average, how many new courses

Top-10 commonly recommended courses

```
1 user recommend.iloc[:,1:].sum().sort values(ascending=False).iloc[:10]
✓ 0.0s
DA0101EN
              532
DS0103EN
              506
DS0101EN
BD0101EN
DS0105EN
PY0101EN
              386
BD0111EN
              367
BC0101EN
ML0115EN
ML0101ENv3
dtype: int64
```

Collaborative-filtering Recommender System using Supervised Learning

Flowchart of KNN based recommender system

KNN High Memory Cost

Flowchart of Non-Negative Factor based recommender system

Slide 18

MFOC1

Muhammad Farooq/Network/Service Operations Center/Technology/Islamabad, 03/11/2023

Flowchart of Neural Network Embedding based recommender system

Explicit User & Item Feature Engineering

Compare the performance of collaborative-filtering models

Optional: Build a course recommender system app with Streamlit App

Conclusions

Appendix

