2A: Abstraction, Scope, Recursion

CS1101S: Programming Methodology

Martin Henz

August 17, 2016

What makes a good abstraction?

Variable Scope

Recursion

- What makes a good abstraction?
- 2 Variable Scope
- Recursion

Recall: Elements of Programming

- Primitives
- Combination
- Abstraction

What makes a good abstraction?

Tasks and subtasks

Answer 1

One that makes it more natural the think about tasks and subtasks.

Example

Houses → Bricks?

 $\mathsf{Houses} \to \mathsf{Walls} \to \mathsf{Bricks!}$

Underlying principle

"Divide and Conquer"

Simplicity

Answer 2

One that makes programs easier to read and understand.

Simplicity

Answer 2

One that makes programs easier to read and understand.

Example

Familiarity

Answer 3

One that captures common patterns.

Familiarity

Answer 3

One that captures common patterns.

```
var my_cross =
   stack (beside (quarter_turn_right (rcross_bb),
                 turn upside down(rcross bb)),
         beside (rcross bb,
                 quarter turn left(rcross bb)));
function make_cross(p) {
    return stack (beside (quarter turn right (p),
                         turn upside down(p)),
                  beside (p.
                         quarter_turn_left(p)));
```

Reuse

Answer 4

One that allows for program reuse.

Reuse

Answer 4

One that allows for program reuse.

Example

```
var pi = 3.141592653589793;
function square(x) {
    return x * x;
function circle_area_from_radius(r) {
    return pi * square(r);
function circle area from diameter(d) {
    return circle area from radius(d / 2);
```

Information Hiding

Answer 5

One that hides irrelevant details.

Information Hiding

Answer 5

One that hides irrelevant details.

Example

Separation of concerns

Answer 6

One that separates specification from implementation.

Separation of concerns

Answer 6

One that separates specification from implementation.

Example

```
// version 1
function square(x) { return x * x; }

// version 2
function double(x) { return x + x; }
function square(x) {
   return Math.exp(double(Math.log(x)));
}
```

Debugging

Answer 7

One that makes it easy to find errors

Debugging

Answer 7

One that makes it easy to find errors

Example 1

```
function hypotenuse(a, b) {
    return Math.sqrt((a + a) * (b + b));
};
```

Finding Errors

Answer 7

One that makes it easy to find errors

Example 2

```
function sum_of_squares(a, b) {
    return square(x) * square(y);
}
function square(x) {
    return x + x;
}
function hypotenuse(a, b) {
    return Math.sqrt(sum_of_squares(a,b));
};
```

Variable Scope: An Example

```
var x = 10;
function square(x) {
    return x * x;
}
function addx(y) {
    return y + x;
}
square(5) + addx(20);
```

Variable Scope: A Bit of Confusion

```
var pi = 3.141592653589793;
function circle_area_from_radius(r) {
    var pi = 22 / 7;
    return pi * square(r);
}
Which pi?
```

Variable Scope: Yet Another Example

```
function hypotenuse(a, b) {
    function sum_of_squares(a, b) {
        return square(a) + square(b);
    }
    return Math.sqrt(sum_of_squares(a, b));
};
```

Variable Scope: Simplified

```
function hypotenuse(a, b) {
    function sum_of_squares() {
        return square(a) + square(b);
    }
    return Math.sqrt(sum_of_squares());
};
```

Simpler version: In case you're wondering

```
function hypotenuse(a, b) {
    var sum_of_squares = square(a) + square(b);
    return Math.sqrt(sum_of_squares);
};
```

Variables in The Source

Mandatory

All variables in The Source must be declared.

Forms of declaration

- Pre-declared variables (alert)
- var statements
- Formal parameters of function expressions/statements
- Function variable of function statements

Scoping rule

A variable occurrence refers to the closest surrounding declaration.

(1) Pre-declared variables

The Source has several variables pre-declared, for the convenience of the programmer, including alert, Math.floor, Math.sqrt, Math.log, and Math.exp

(2) var statements

The scope of a **var** statement is the closest surrounding function definition, or the "top-level", if there is none.

Example

```
function f(x, y) {
    if (x > 0) {
       var z = x * y;
       return Math.sqrt(z);
    } else {
       ...
    }
}
```

(3) Formal Parameters

The scope of the formal parameters of a function definition is the body of the function.

```
function f(x, y, z) {
    ... x ... y ... z
}
```

(4) Function variable

The scope of the function variable is as if the function was declared with **var**.

Finally, the most important rule

Scoping rule

A variable occurrence refers to the closest surrounding declaration.

A Recursive Function

```
function stackn(n, pic) { // sf: stack_frac
    sf(1/n, pic, stackn(n - 1, pic));
}
```

A Recursive Function

```
function stackn(n, pic) { // sf: stack_frac
    sf(1/n, pic, stackn(n - 1, pic));
}

stackn(2, p);
sf(1/2, p, stackn(1, p));
sf(1/2, p, sf(1/1, p, stackn(0, p)));
sf(1/2, p, sf(1/1, p, sf(1/0, stackn(-1, p))));
...
```

Remarks

Computers will follow orders precisely

We have no choice but to *precisely* describe *how* a computational process should be executed.

Substitution model

A simple model to understand how functions work is to imagine that a function call is repeatedly replaced by the body of the function, where the formal parameter is replaced by the actual argument.

The correct version

The correct version

Obvervation

The solution for n is computed using solution n-1, the solution for n-1 is computed using solution n-2, etc until we reach a case that we can solve trivially.

A Recipe

Recipe for recursion

- Figure out a base case that we can solve trivially
- Assume that you know how to solve the problem for n-1. How can we solve the problem for n?

Second example: Factorial

Factorial

$$n! = n(n-1)(n-2)\cdots 1$$

After grouping and rewriting, we get

$$n! = n(n-1)!$$
 if $n > 1$
= 1 if $n = 1$

Translation into The Source

After grouping and rewriting, we get

$$n! = n(n-1)!$$
 if $n > 1$
= 1 if $n = 1$

In The Source

```
function factorial(n) {
    return n === 1 ? 1 : n * factorial(n-1);
}
```

Example Execution using Substitution Model

```
function factorial(n) {
    return n === 1 ? 1 : n * factorial(n-1);
}
factorial(4)
4 * factorial(3)
4 * (3 * factorial(2))
4 * (3 * (2 * factorial(1)))
4 * (3 * (2 * 1))
4 * (3 * 2)
4 * 6
2.4
```

Notice the build-up of pending operations

A Closer look at performance

Dimensions of performance

- Time: how long does the program run
- Space: how much memory do we need to run the program

Time for calculating *n*!

Number of operations

grows linearly proportional to n.

```
factorial(4)
4 * factorial(3)
4 * (3 * factorial(2))
4 * (3 * (2 * factorial(1)))
4 * (3 * (2 * 1))
4 * (3 * 2)
4 * 6
24
```

Space for calculating *n*!

Deferred operations: Number of "things to remember" grows linearly proportional to *n*.

```
factorial(4)
4 * factorial(3)
4 * (3 * factorial(2))
4 * (3 * (2 * factorial(1)))
4 * (3 * (2 * 1))
4 * (3 * 2)
4 * 6
24
```

Third example: Fibonacci numbers

Leonardo Pisano Fibonacci

12th century, was interested in the sequence:

$$0, 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

Each number is the sum of the previous two.

More precise definition

The function *fib* maps 0 to 0, 1 to 1, and every subsequent natural number n to the sum of the two previous Fibonacci numbers: fib(n-2) + fib(n-1).

What was Fibonacci's most significant achievement?

Computing Fibonacci numbers: A Naive Attempt

Definition

The function *fib* maps 0 to 0, 1 to 1, and every subsequent natural number n to the sum of the two previous Fibonacci numbers: fib(n-2) + fib(n-1).

Tree recursion for Fibonacci numbers: Time

Time for function fib

The tree grows very quickly when we apply fib to larger and larger numbers.

Tree recursion for Fibonacci numbers: Time

Time for function fib

The tree grows very quickly when we apply fib to larger and larger numbers.

A job for recitations

We will take a closer look at this during the recitations.

Tree recursion for Fibonacci numbers: Space

- At any time computing the tree, we need to remember the path to the current node
- Depth of tree grows linearly with n
- Space consumption grows linearly with n

Summary

- Abstraction techniques
- Variable scope
- Resources for computational processes: time and space
- Kinds of recursion: linear recursion and tree recursion