応用数学

第2章:確率統計

統計学1_01, 統計学1_02

集合とは

ものの集まりである。

数学的には、下記のように表現する。

$$S = \{a, b, c, d, e, f, g\}$$
$$a \in S$$

集合(S)の要素(a,b...)同士は明確に区別することができる。

集合Sの内部に、集合 $M=\{c,d,g\}$ があったとすると、 $M\subset S$

集合Sに含まれないhは、

 $h \notin S$

のように区別、表現できる。

※確率・統計における「事象」は、集合として取り扱うことができる。

統計学1 03

共通の部分を持つ集合

- 和集合 $A \cup B$ ※A,Bのみに含まれる部分も含まれる
- 共通部分 $A\cap B$ **A,Bどちらにも含まれる部分のみ

~以外を表す集合

- 絶対補 $U \setminus = \overline{A}$ ※A以外の世界全部を表現
- 相対補 $B \setminus A$ ※BからAを除いたもの

統計学1_04

この集合を表現した式として適切な式は?

右側部分が、 $B\setminus A$ 、 左側部分が、 $A\setminus B$ と表現でき、 それらの和集合であるから、 $(B\setminus A)\cup (A\setminus B)$

統計学1_05

確率とは

- 頻度確率(客観確率)
 - 。発生する頻度
 - 。 例: 当たりくじを引く確率
- ベイズ確率(主観確率)
 - 。 信念の度合い
 - 。 例:あなたは40%の確率でインフルエンザですという診断

確率の定義

$$P(A)=rac{n(A)}{n(U)}=rac{ 事象 A}$$
が起こる数すべての事象の数

※よって、確率は0~1の間の値をとる

例:

$$P(\overline{A})=\frac{事象A$$
が起こらない数 $=\frac{1}{2}$ すべての事象の数 $-$ 事象 A が起こる数 $=\frac{n(U)-n(A)}{n(U)}$ $=\frac{n(U)}{n(U)}-\frac{n(A)}{n(U)}$ $=1-P(A)$