

# Data Driven Decision Making: Descriptive Statistics

GSBA 545, Fall 2021

Professor Dawn Porter



### Descriptive Statistics

- Basic Terminology & Scales of Measurement
- Numerical Measures
  - Central Tendency
  - Dispersion
- Graphical Methods
  - Histograms
  - Box-and-Whisker plots
  - Bar Charts & Pie Charts
  - Scatterplots



### Descriptive Statistics

#### MPG for 153 Hybrid Cars





### Hybrid Car data: Population or Sample?



Total Results: 0





### Descriptive Statistics

#### **Population**





#### MPG for 153 Hybrid Cars

Population: Set of all items of interest in a statistical problem.

#### Parameter: Descriptive measure of population

- *N* = population size
- $\mu$  = population average
- $\sigma$  = population standard deviation

#### Population: 153 Hybrid Cars

- N = 153
- $\mu$  = mean = average = 34.80 mpg
- $\sigma$  = standard deviation = typical fluctuation = 10.97 mpg



### Descriptive Statistics

#### Sample



School of Business

### Sample

#### MPG for 39 Hybrid SUV Cars

Sample: Set of data drawn from the population

#### Statistic: Descriptive measure of sample

- n = sample size
- $\bar{x}$  = sample average
- s =sample standard deviation

#### Sample: 39 Hybrid SUV Cars

- n = 39
- $\bar{x}$  = mean = average = 26.01 mpg
- s = standard deviation = typical fluctuation = 4.60 mpg



### Data Types & Graphs

#### Numerical (quantitative)

- Natural measurement system
- Ratios and comparisons make sense

# Histograms Boxplots Scatterplots

#### Categorical (qualitative)

- Nominal: no inherent ordering
- Ordinal: ordered, but distance between classes may vary





### Scales of Measurement

## **Discrete:** Possible number of values is countable

- Number of Hybrid SUV Cars
- Number of Comedy films released in 2017
- Number of games in any given World Series

# **Continuous:** Possible number of values is relatively infinite

- MPG of Hybrid Cars
- Height, weight, distance

# **Cross-sectional:** Snapshot of data at a specific point in time

 Economic indicators for several countries in 2019

# **Time Series:** Result of tracking one or more variables over time

 Economic indicators for only the US from 1900-2019



### Distribution Shapes

Histograms and boxplots help uncover distribution shape:

Symmetrical (roughly equal tails)

Bell-Shaped Distribution.

Positively Skewed – skewed right (long tail on right)

Income Distributions.

Negatively Skewed – skewed left (long tail on left)

Scores on an easy exam.

### Distribution Shapes





### Symmetric Distribution

#### Phillips Stock Prices\*:

Mean ≈ Median and Median is somewhat close to being about halfway between 25<sup>th</sup> and 75<sup>th</sup> percentiles.





<sup>\*</sup>Weekly closing prices, 1/6/14 - 5/23/16

### Right-Skewed Distribution

#### LA Used Car Prices:

Mean > Median and Mean is closer to the 75<sup>th</sup> percentile than to the 25<sup>th</sup> percentile.





### Left-Skewed Distribution

### Top Movies in China, Rotten Tomatoes Score:

Mean < Median and Median is closer to 75<sup>th</sup> than to 25<sup>th</sup> percentile.





#### Box & Whisker Plot



<sup>1</sup> Bounds of the *reasonable range* are:

Median  $\pm$  1.5 IQR

<sup>2</sup> Extreme values are defined as being at least
 3 IQRs from the median.



#### Scatterplot: Example





### Scatterplot: Example

Facebook: In the 100 or so days before you're likely to start a relationship with someone, the number of interactions between users is expected to rise consistently. Then, right before the relationship begins, there's a free-fall in the number of timeline posts. After the relationship is established, the freefall is followed by a steady decline in the number of wall posts.





### Side-by-Side Boxplots



#### Hybrid Car MPG:

Use side by side boxplots to display relationships between categorical variables (car type) and a quantitative variable (MPG).

USC

#### Pie Charts

School of Business



#### Bar Charts

Bar charts display percentages or counts of different cars by their classes, a categorical variable.





### Central Tendency

How do we describe a dataset, especially if it is rather large, without having to present a table of meaningless numbers?

Generally, just two numbers will suffice:

- 1. Measure of central tendency (i.e. typical value, or location),
- 2. Measure of dispersion (fluctuation).

#### Common measures of central tendency:

Mean (μ): Average or expected value

Median  $(M_d)$ : Middle point of ordered observations

**Mode**  $(M_0)$ : Most frequent value



#### Population Mean

The **mean** of a **population** of *N* measurements  $x_1, \dots, x_N$ :

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{N} (x_1 + x_2 + \dots + x_N)$$

Eg: Viewing our data set of the Hybrid Cars' MPG as a population, the population mean is

$$\mu = \frac{1}{153} \sum_{i=1}^{153} x_i = \frac{1}{153} (41.26 + 54.1 + \dots + 37) = 34.7975 \text{ mpg}$$



#### Sample Mean

The **mean** of a **sample** of *n* measurements  $x_1, \dots, x_n$ :

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

Eg: Assessing only the SUV cars from the Hybrid Car MPG dataset, of which there are 39 rows, the sample mean is

$$\bar{x} = \frac{1}{39} \sum_{i=1}^{39} x_i = \frac{1}{39} (18.82 + 21 ... + 33.64) = 26.0077 \text{ mpg}$$

USC
School of Business

#### Median

We can use  $\bar{x}$  as an estimate of  $\mu$ , but we then need to assess the *accuracy* of this and draw conclusions, or *make inferences*, about  $\mu$ .

**Problem:**  $\bar{x}$  is extremely sensitive to outliers.

- Outliers may be due to errors in recording data
- May be real (but exceptional) observations
- Usually set aside outliers before computing
- Can also use median

Whenever a dataset has extreme values, the **median** is the preferred measure of central location.



Given *n* measurements arranged in order of magnitude,

Median = Middle value if n is odd, or Average of two middle values if n is even.

*Eg:* CEO compensation for 5 food processing firms:

| Pillsbury      | 698,000   |
|----------------|-----------|
| Borden         | 1,200,000 |
| Campbell Soup  | 646,000   |
| Hershey Foods  | 573,000   |
| Ralston Purina | 750,000   |

Median



Converting to multiples of \$1,000 and arranging in order: 573, 646, 698, 750, 1200

Median compensation is? \$698,000

Mean compensation is? \$773,400

Mean > median because of outlier, Borden.

Removing Borden, *mean* = \$666,750 < \$672,000 = *median* 

- Divides data set into two equal parts
- Half of data lies below median, half lies above it
- Resistant to outliers

#### Dispersion

Mean and median do not completely summarize a dataset... we also need to know how spread out the data is.





- GE exhibits better quality control: not much variation
- Philips has more fluctuation although average is same as GE



#### Range: Largest minus smallest measurement

Crude measure with little info about dispersion of values



No resistance to outliers

#### Eg: Range of Hybrid Car MPG dataset

- Highest value: 72.92 mpg (Prius Alpha V)
- Lowest value: 17 mpg (Silverado 2WD)

Range = 
$$72.92 \text{ mpg} - 17 \text{ mpg} = 55.92 \text{ mpg}$$

### Interquartile Range (IQR)

#### Interquartile range (IQR): $Q_3 - Q_1 = 75^{th}$ %ile $-25^{th}$ %ile

- Width of "middle half" of dataset when ordered from smallest to largest
- Resistant to outliers (robust measure)

1<sup>st</sup> quartile:  $Q_1 = 25^{th}$  percentile, 25% of values lie below Median of the lower half of the data.

 $2^{nd}$  quartile:  $Q_2$  or  $50^{th}$  percentile = Median.

3<sup>rd</sup> quartile: Q<sub>2</sub> or = 75<sup>th</sup> percentile, 75% of values lie below Median of the upper half of the data.

#### Eg: IQR of Hybrid Car MPG dataset

- $Q_3 = 41.565 \text{ mpg}$
- $Q_1 = 26 \text{ mpg}$

better rage for spread.

IQR = 41.565 mpg - 26 mpg = 15.565 mpg | Mark Principle

/dawnporter025)

USC School of Business

### Interquartile Range (IQR)

20 customer satisfaction ratings:

forex would be into

Find the IQR for customer satisfaction ratings:

$$IQR = 9 - 7.5 = 1.5$$

What is the 50<sup>th</sup> percentile?

Average of 8 & 8 = 8

What is the 75<sup>th</sup> percentile?

Average of 9 & 9 = 
$$9$$



#### Variance & Standard Deviation

Population  $X_1, X_2, ..., X_N$ 



Population Variance:

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Population Standard Deviation:

$$\sigma = \sqrt{\sigma^2}$$

Sample  $x_1, x_2, ..., x_n$ 



Sample Variance:

$$s^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Sample Standard Deviation:

$$s = \sqrt{s^2}$$

vouce objuste stights



#### Variance & Standard Deviation

#### MPG of 153 Hybrid Cars:

Mean: 
$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{153} (41.26 + 54.1 + \dots + 37) = 34.8 \text{ mpg}$$

Variance: 
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$
  
=  $\frac{1}{153} [(41.26 - 34.8)^2 + \dots + (37 - 34.8)^2]$   
=  $120.3958 \text{ mpg}^2$ 

Standard Deviation: 
$$\sigma = \sqrt{\sigma^2} = 10.9725 \text{ mpg}$$



#### Variance & Standard Deviation

#### MPG of 39 SUV Hybrid Cars:

Mean: 
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{39} (18.82 + 21 + \dots + 33.64) = 26 \text{ mpg}$$

Variance: 
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
  
=  $\frac{1}{38} [(18.82 - 26)^2 + \dots + (33.64 - 26)^2]$   
=  $21.149 \text{ mpg}^2$ 

Standard Deviation: 
$$s = \sqrt{s^2} = 4.599 \text{ mpg}$$



### Coefficient of Variation

The **coefficient of variation** indicates how large the standard deviation is in relation to the mean and is useful for comparing levels of fluctuation between different variables.

The coefficient of variation for a population is computed as:

$$c_v = \left[\frac{\sigma}{\mu} \times 100\right] \%$$

And for a **sample** it is:

$$c_v = \left[\frac{s}{\bar{x}} \times 100\right] \%$$



### Coefficient of Variation

#### MPG of the Hybrid Car dataset:

The coefficient of variation for the MPG of the population of 153 Hybrid Cars is:

$$c_v = \left[\frac{10.9725}{34.7975} \times 100\right] \% = 31.53\%$$

And the coefficient of variation for the MPG of the sample of 39 SUV Hybrid Cars is:

$$c_v = \left[\frac{4.5988}{26.0077} \times 100\right] \% = \boxed{17.68\%}$$

→ The sample of SUV data is relatively less variable than the population.

### Coefficient of Variation

#### Comparison of two stocks, Pfizer and Johnson & Johnson:

Monthly adjusted closing PFE and JNJ stock prices (4/1/08 - 3/1/18) had:

|           | PFE       | JNJ       |
|-----------|-----------|-----------|
|           | Adj Close | Adj Close |
| $\bar{x}$ | 22.18     | 76.67     |
| S         | 8.36      | 29.33     |

The coefficient of variation for PFE is: 
$$c_{v,PFE} = \left[\frac{8.36}{22.18} \times 100\right]\% = 37.68\%$$

And the coefficient of variation for the JNJ is: 
$$c_{v,JNJ} = \left[\frac{29.33}{76.67} \times 100\right]\% = 38.25\%$$

→ The two stock prices seem to be relatively equally risky!



### Empirical Rule

A normal population with mean  $\mu$  and standard deviation  $\sigma$  has approximately

**68.26%** of the population measurements within one standard deviation of the mean:

$$[\mu - \sigma, \quad \mu + \sigma]$$

**95.44%** of the population measurements within two standard deviations of the mean:

$$[\mu - 2\sigma, \qquad \mu + 2\sigma]$$

99.74% of the population measurements within three standard deviations of the mean:

$$[\mu - 3\sigma, \quad \mu + 3\sigma]$$