Smart House: Remote Light Control

Group 7

Xian Jiaotong-Liverpool University

May 15, 2019

Outline

- Introduction
- Methodology
- Result
- 4 Discussion
- 5 Future Work
- 6 Conclusion

Table of Contents

- Introduction
- 2 Methodology
- 3 Result
- 4 Discussion
- 5 Future Work
- 6 Conclusion

Group 7 (XJTLU) Smart House May 15, 2019 3 / 30

- The need for connectivity and remote control
- Internet of Things (IoT)
- Smart house time-efficient and convenient

Software

- WeChat mini program
- Web server development

Hardware

- Arduino and ESP8266 Wi-Fi module
- Digital magnetic sensor
- Three LED lights

Group 7 (XJTLU) Smart House May 15, 2019

Software

- WeChat mini program
- Web server development

Hardware

- Arduino and ESP8266 Wi-Fi module
- Digital magnetic sensor
- Three LED lights

Smart House May 15, 2019 5 / 30

Software

- WeChat mini program
- Web server development

Hardware

- Arduino and ESP8266 Wi-Fi module
- Digital magnetic sensor
- Three LED lights

Figure 1: Hardware equipment

Table of Contents

- Introduction
- 2 Methodology
- Result
- 4 Discussion
- Future Work
- 6 Conclusion

Group 7 (XJTLU) Smart House May 15, 2019 6 / 30

Methodology

- House model design
- Arduino design
- Mini-program design
- Server design

House model design

- Living room Red LED
- Bedroom Yellow LED
- Dining room Green LED
- Single door A digital magnetic sensor
 - A magnet

Figure 2: House model

Hosting Plan

9 / 30

Processing Request

Arduino Hardware

Equipment

- ESP8266 → WiFi network
- Connected with UNO board → complicated
- NodeMCU = ESP8266 module + UNO board

Smart House May 15, 2019 11 / 30

Arduino Hardware

Equipment

- ESP8266 → WiFi network
- Connected with UNO board → complicated
- NodeMCU = ESP8266 module + UNO board

Circuit

Resistor - Avoid Floating pin

Figure 3: The whole circuit

Group 7 (XJTLU) Smart House May 15, 2019 11 / 30

Arduino Software

Two libraries

- ESP8266WiFi.h connect to a given Wi-Fi network: router, hostspot
- ESP8266HTTPClient.h send HTTP requests GET request - obtain each LED's status every 2s SET request - update the door's status

Group 7 (XJTLU) Smart House May 15, 2019 12 / 30

Arduino Software

Two libraries

- ESP8266WiFi.h connect to a given Wi-Fi network: router, hostspot
- **ESP8266HTTPClient.h** send HTTP requests

GET request - obtain each LED's status every 2s

SET request - update the door's status

Smart House May 15, 2019 12 / 30

WeChat Mini-Program UI

WeChat Mini-Program UI (cont.)

Group 7 (XJTLU) Smart House May 15, 2019 14 / 30

Table of Contents

- Introduction
- 2 Methodology
- Result
- 4 Discussion
- Future Work
- 6 Conclusion

Group 7 (XJTLU) Smart House May 15, 2019 15 / 30

- Power supply 5.1V / 2.1A
 Network personal hotspot
- Magnetic induction distance 1 magnet: $2\text{mm} \sim 8\text{mm} \xleftarrow{more}_{accurate}$ Smart house model size 2 magnets: $10\text{mm} \sim 22\text{mm}$
- Testing by WeChat mini program

Group 7 (XJTLU) Smart House May 15, 2019 16 / 30

- Power supply 5.1V / 2.1A
 Network personal hotspot
- Magnetic induction distance 1 magnet: $2\text{mm} \sim 8\text{mm} \xleftarrow{more}_{accurate}$ Smart house model size 2 magnets: $10\text{mm} \sim 22\text{mm}$
- Testing by WeChat mini program

Group 7 (XJTLU) Smart House May 15, 2019 16 / 30

- Power supply 5.1V / 2.1A
 Network personal hotspot
- Magnetic induction distance 1 magnet: 2mm \sim 8mm $\leftarrow \frac{more}{accurate}$ Smart house model size 2 magnets: 10mm \sim 22mm
- Testing by WeChat mini program

Group 7 (XJTLU) Smart House May 15, 2019 16 / 30

Switch On / Off 3 LEDs

Figure 4: Transmission time for change of light status

	Bedroom	Dining room	Living room
$ar{t}(s)$ Accuracy	3.322 100 %	3.631	2.670

Table 1: Light transmission time

Group 7 (XJTLU) Smart House May 15, 2019 17 / 30

Check door statement

	1 magnet	2 magnets
$ar{t}(s)$ Accuracy	5.481 100 %	5.687

Table 2: Door statement transmission time

Figure 5: Transmission time for change of door status

Group 7 (XJTLU) Smart House May 15, 2019 18 / 30

Table of Contents

- Introduction
- 2 Methodology
- Result
- 4 Discussion
- 5 Future Work
- 6 Conclusion

Group 7 (XJTLU) Smart House May 15, 2019 19 / 30

Discussion

- Circuit design challenge
- Achievement
- Problem

Circuit design challenge

Floating pin / Floating input: affect the I/O pins of digital integrated circuits.

Figure 6: Design causing Floating pin

Group 7 (XJTLU) Smart House May 15, 2019 21 / 30

Circuit design challenge

Solution

The problem of floating pin can be solved by inserting a pull-up 15k lji resistor between I/O and GND.

Figure 7: The design for avoid Floating pin

Group 7 (XJTLU) Smart House May 15, 2019 22 / 30

Achievement & Problems

Achievement

- ullet Average time: within 5 seconds \Rightarrow Response time is acceptable
- Rate of failure ⇒ High rate of success

Problems

- Sometimes the response time have some delay
- Unstable fluctuation in response time

Group 7 (XJTLU) Smart House May 15, 2019 23 / 30

Achievement & Problems

Achievement

- Average time: within 5 seconds ⇒ Response time is acceptable
- Rate of failure ⇒ High rate of success

Problems

- Sometimes the response time have some delay
- Unstable fluctuation in response time

Group 7 (XJTLU) Smart House May 15, 2019 23 / 30

Table of Contents

- Introduction
- 2 Methodology
- Result
- 4 Discussion
- 5 Future Work
- 6 Conclusion

Group 7 (XJTLU) Smart House May 15, 2019 24 / 30

Future Work

5G: enhance the transmission time and the possibility of failing will be decreased.

Figure 8: Comparision of 4G and 5G

Group 7 (XJTLU) Smart House May 15, 2019 25 / 30

Future Work

- Use the server in local city
- Add more functions
- Security: verification and encryption protection Hash codes

Table of Contents

- Introduction
- 2 Methodology
- 3 Result
- 4 Discussion
- 5 Future Work
- 6 Conclusion

Group 7 (XJTLU) Smart House May 15, 2019 27 / 30

Conclusion

- Make a successful prototype
- Investigate IoT and hardware programming
- Improve teamworking and communication skills

Group 7 (XJTLU) Smart House May 15, 2019 28 / 30

Question & Answer

Thank you