

FAKULTET FOR REALFAG OG TEKNOLOGI

PÅSKETENTAMEN 2015

Emnekode: MA-005-G

MA-005-K

Emnenavn: Matematikk for Forkurset

Dato: 20. mars 2015

Varighet: 0900 - 1400

Antall sider inkl. forside 3

Tillatte hjelpemidler: Godkjent kalkulator

Godkjente formelsamlinger (uten notater)

Merknader: Løs hver oppgave på en oversiktlig måte. Ta med nødvendige

mellomregninger, slik at du forklarer fremgangsmåten og begrunner svaret. Legg vekt på nøyaktige utregninger.

Alle deloppgaver vektes likt

UNIVERSITETET I AGDER

Oppgave 1

a) Vis at $x^2 + 2xy - 3y^2 = (x+3y)(x-y)$

og trekk sammen utrykket

$$\frac{x-y}{x^2 + 2xy - 3y^2} - \frac{2}{x-y} - \frac{7}{x+3y}$$

Løs likningene ved regning. Bruk eksaktverdier der det er naturlig:

b)
$$2x - \sqrt{x+1} = 13$$

c)
$$\left(\sin x + \frac{\sqrt{2}}{2}\right) \left(\tan x + 1\right) = 0$$
 $x \in [0, 2\pi)$

d)
$$4\ln(x)^2 - 3(\ln x)^2 + 3 = 0$$

Oppgave 2

Deriver funksjonene:

$$\mathbf{a)} \quad f(x) = x^5 e^{5x}$$

$$\mathbf{b)} \quad f(x) = \ln(2x^2 + 2x)$$

c)
$$f(x) = \frac{\sin 2x}{2x}$$

Oppgave 3

Løs integralene ved regning

$$\mathbf{a)} \quad \int \left(\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}\right) dx$$

b)
$$\int \cos^2 x \, dx$$
 Tips: Enklest å løse integralet ved å bruke en omskriving av $\cos 2x$

$$\mathbf{c)} \quad \int\limits_{0}^{\frac{\pi}{2}} \frac{\cos x}{\sin x + 1} dx$$

Oppgave 4

Funksjonen f er gitt ved $f(x) = 3 - 2\cos\left(2x - \frac{\pi}{2}\right)$ $x \in [0, 2\pi]$

- a) Finn amplituden, likevektslinja og perioden
- **b**) Finn ved regning funksjonens 2 toppunkter og 2 bunnpunkter
- c) Tegn grafen til f sammen med linja y = 4 i et koordinatsystem, og løs likningen f(x) = 4 grafisk
- **d)** Løs likningen f(x) = 4 ved regning. Bruk eksaktverdier

UNIVERSITETET I AGDER

Oppgave 5

Punktene A(1,2,4), B(2,-3,1), D(5,3,1) og T(5,10,6) er gitt.

- a) Punktene A, B og D er tre av hjørnene i et trapes ABCD der $\overrightarrow{DC} = 2\overrightarrow{AB}$ Finn koordinatene til hjørnet C i trapeset
- **b**) Regn ut $\overrightarrow{AB} \cdot \overrightarrow{AD}$ og $\overrightarrow{AB} \times \overrightarrow{AD}$
- c) Finn $\angle BAD$ og arealet av $\triangle ABD$ ved regning
- **d**) Punktene *A*, *B*, *D* og *T* er hjørnene i en trekantet pyramide Finn ved regning volumet av pyramiden

Oppgave 6

Funksjonen f er gitt ved $f(x) = \frac{x^2 - x - 6}{x^2 - x - 2}$

- a) Finn funksjonens nullpunkter og vertikalasymptoter
- **b)** Vis at $f'(x) = \frac{4(2x-1)}{(x^2-x-2)^2}$ og finn eventuelle topp- og bunnpunkter
- c) Tegn grafen til f med vertikalasymptoter i et koordinatsystem
- **d**) Vis at $\int f(x)dx = x + \frac{4}{3}\ln|x+1| \frac{4}{3}\ln|x-2| + C$
- e) Finn arealet avgrenset av grafen til f, x-aksen og linja x = 4 ved regning

Eksakte verdier i trigonometri

∠u,°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
$\angle u$, rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
sin u	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos u	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tan u	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	ikke def.	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	ikke def.	$-\sqrt{3}$	<u>-1</u>	$-\frac{\sqrt{3}}{3}$	0

Vektorformler

Vektor produkt
$$[x_1, y_1, z_1] \times [x_2, y_2, z_2] = \begin{bmatrix} y_1 & z_1 \\ y_2 & z_2 \end{bmatrix}, - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{bmatrix}, \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix}$$

Lengden av vektoren $\vec{a} \times \vec{b}$ er $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin v$

Arealet av et parallellogram er $A = |\vec{a} \times \vec{b}|$

Arealet av en trekant er $A = \frac{1}{2} |\vec{a} \times \vec{b}|$

Trippelprodukt $(\vec{a} \times \vec{b}) \cdot \vec{c}$

Volum av parallellepiped $V = |(\vec{a} \times \vec{b}) \cdot \vec{c}|$

Volum av firkantet pyramide $V = \frac{1}{3} |(\vec{a} \times \vec{b}) \cdot \vec{c}|$

Volum av trekantet pyramide $V = \frac{1}{6} |(\vec{a} \times \vec{b}) \cdot \vec{c}|$