Autómatas y Lenguajes Formales Tarea 1

Alumnos:

Torres Partida Karen Larissa Altamirano Niño Luis Enrique

23 de febrero de 2020

1. Sea x una cadena, x^R su reversa y x^i la cadena concatenada consigo misma i veces. Demuestre por inducción matemática que $(x^R)^i=(x^i)^R$. (Hint: Use el hecho de que $(xy)^R=y^Rx^R$)

Demostración.

Por inducción matemática sobre i.

Caso Base: Sea i = 0, entonces tenemos:

$$\begin{split} (x^R)^i &= (x^R)^0 \\ &= \varepsilon \quad \text{por definición de } x^i \\ &= (\varepsilon)^R \quad \text{por definición de reversa de una cadena} \\ &= (x^0)^R \quad \text{por definición de } x^i \\ &= (x^i)^R \end{split}$$

Hipótesis de inducción: Supongamos que $(x^R)^i = (x^i)^R$.

<u>Paso Inductivo:</u> Ahora tenemos que mostrar que $(x^R)^{i+1} = (x^{i+1})^R$, así tenemos:

$$(x^R)^{i+1}=(x^R)^ix^R$$
 por la definición de x^i
$$=(x^i)^Rx^R$$
 por la hipótesis de inducción
$$=(xx^i)^R$$
 por el hecho de que $(xy)^R=y^Rx^R$
$$=(x^ix)^R$$
 en este caso sí es válido conmutar la concatenación de cadenas
$$=(x^{i+1})^R$$
 por la definición de x^i

$$\therefore (x^R)^i = (x^i)^R \quad \blacksquare$$

2. a) Demuestre que si $L_1 \subseteq L_2$ entonces $L_1^* \subseteq L_2^*$.

Demostración.

Primero supongamos que $L_1 \subseteq L_2$, ahora demostraremos que $\forall n \geq 0 (L_1^n \subseteq L_2^n)$ ya que nos será de utilidad, entonces procederemos por inducción matemática sobre n para demostrar lo anterior, así tenemos:

<u>Caso Base</u>: Sea n=0, hay que mostrar que $L_1^0\subseteq L_2^0$, la contención es clara pues por la definición de potencias A^n de un conjunto A tenemos que $A^0=\{\varepsilon\}$, es decir $L_1^0=\{\varepsilon\}$ y $L_2^0=\{\varepsilon\}$, y es claro que $\{\varepsilon\}\subseteq\{\varepsilon\}$.

Hipótesis de Inducción: Supongamos que $L_1^n \subseteq L_2^n$.

<u>Paso Inductivo:</u> Tenemos que mostrar ahora que $L_1^{n+1} \subseteq L_2^{n+1}$, entonces sea $x \in L_1^{n+1}$, y por definición de potencia de un conjunto A^n , esto es lo mismo que $x \in L_1^n L_1$, ahora por definición de concatenación de conjuntos tenemos que $x \in L_1^n \land x \in L_1$, ahora por la hipótesis de inducción, como $x \in L_1^n$, entonces $x \in L_2^n$, y como por la hipótesis inicial $L_1 \subseteq L_2$ y $x \in L_1$, entonces $x \in L_2$, así tenemos que $x \in L_2^n \land x \in L_2$, es decir, $x \in L_2^n L_2$, o lo que es igual $x \in L_2^{n+1}$

Por lo tanto $L_1^{n+1} \subseteq L_2^{n+1}$ y queda demostrado que $\forall n \geq 0 (L_1^n \subseteq L_2^n)$.

Ahora hay que mostrar que $L_1^* \subseteq L_2^*$.

Sea $x \in L_1^*$, ahora por la definición de cerradura de Kleene $x \in \bigcup_{n \geq 0} L_1^n$, es decir, $\exists n (x \in L_1^n)$, y por lo demostrado anteriormente, tenemos que entonces $\exists n (x \in L_2^n)$, lo que implica que $x \in \bigcup_{n \geq 0} L_2^n$, es decir, $x \in L_2^*$, y por lo tanto $L_1^* \subseteq L_2^*$.

- \therefore Si $L_1 \subseteq L_2$ entonces $L_1^* \subseteq L_2^*$.
- b) Demuestre que $L_1^* \cup L_2^* \subseteq (L_1 \cup L_2)^*$.

Demostración:

Primero vamos a probar que $\forall n \geq 0 (L_1^n \subseteq (L_1 \cup L_2)^n)$, ya que, nos será de utilidad. Entonces tenemos:

<u>Caso base:</u> Sea n=0, hay que mostrar que $L_1^0\subseteq (L_1\cup L_2)^0$, la contención es clara pues por la definición de potencias A^n de un conjunto A tenemos que $A^0=\{\varepsilon\}$, es decir $L_1^0=\{\varepsilon\}$ y $(L_1\cup L_2)^0=\{\varepsilon\}$, y es claro que $\{\varepsilon\}\subseteq\{\varepsilon\}$.

Hipótesis de Inducción: Supongamos que $L_1^n \subseteq (L_1 \cup L_2)^n$.

<u>Paso Inductivo</u>: Tenemos que mostrar que $L_1^{n+1} \subseteq (L_1 \cup L_2)^{n+1}$, entonces, sea $x \in L_1^{n+1}$, esto implica que $x \in L_1^n L_1$ (por la definición de potencia de un conjunto A^n), y entonces, $x \in L_1^n$ y $x \in L_1$ (por la definición de concatenación de conjuntos), ahora como $x \in L_1^n$, entonces por la hipótesis de inducción tenemos que $x \in (L_1 \cup L_2)^n$, y como $x \in L_1$ entonces $x \in (L_1 \cup L_2)$, así tenemos que $x \in (L_1 \cup L_2)^n (L_1 \cup L_2)$, o lo que es lo mismo, $x \in (L_1 \cup L_2)^{n+1}$, y por lo tanto $L_1^{n+1} \subseteq (L_1 \cup L_2)^{n+1}$.

Demostrado lo anterior porcederemos ahora sí a mostrar que $L_1^* \cup L_2^* \subseteq (L_1 \cup L_2)^*$. Entonces sea $x \in L_1^* \cup L_2^*$, entonces tenemos dos casos:

- Si $x \in L_1^*$, entonces $x \in \bigcup_{n \geq 0} L_1^n$, esto implica que $\exists n (x \in L_1^n)$, entonces, por lo que ya demostramos, tenemos que $\exists n (x \in (L_1 \cup L_2)^n)$, es decir, $x \in \bigcup_{n \geq 0} (L_1 \cup L_2)^n$ y entonces $x \in (L_1 \cup L_2)^*$.

 Por lo tanto $L_1^* \cup L_2^* \subseteq (L_1 \cup L_2)^*$.
- Si $x \in L_2^*$. (Es análogo al primer caso)

Por lo tanto, como en ambos casos llegamos a lo mismo, tenemos que $L_1^* \cup L_2^* \subseteq (L_1 \cup L_2)^*$ es cierto.

c) Encuentre un lenguaje L sobre el alfabeto $\sum = \{a, b\}$ que no sea $\{\varepsilon\}$ y satisfaga $L = L^*$.

Respuesta:

Sea L el lenguaje de todas las cadenas de a's , es decir $L=\{\varepsilon,a,aa,aaa,aaaa,...\}=\{a^n|n\geq 0\}=\{a\}^*=L^*$

3. Demuestre la siguiente propiedad de la función de transición extendida $\hat{\delta}$. Para todo estado $q \in Q$ y cualesquiera cadenas $x, y \in \sum^*$ se satisface:

$$\widehat{\delta}(q, xy) = \widehat{\delta}(\widehat{\delta}(q, x), y)$$

Demostración.

Procedemos por inducción estructural sobre la cadena y.

<u>Caso Base:</u> Sea $y = \varepsilon$, entonces empezando del lado derecho de la igualdad tenemos:

$$\begin{split} \widehat{\delta}(\widehat{\delta}(q,x),y) &= \widehat{\delta}(\widehat{\delta}(q,x),\varepsilon) \\ &= \widehat{\delta}(q,x) \quad \text{por la definición de } \widehat{\delta} \\ &= \widehat{\delta}(q,x\varepsilon) \quad \text{por la definición de concatenación de cadenas} \\ &= \widehat{\delta}(q,xy) \end{split}$$

Hipótesis de inducción: Supongamos que $\widehat{\delta}(q, xy) = \widehat{\delta}(\widehat{\delta}(q, x), y)$

<u>Paso inductivo:</u> Tenemos que mostrar que $\widehat{\delta}(q, x(ya)) = \widehat{\delta}(\widehat{\delta}(q, x), ya)$, donde $a \in \Sigma$, entonces partiendo nuevamente del lado derecho de la igualdad tenemos:

$$\begin{split} \widehat{\delta}(\widehat{\delta}(q,x),ya) &= \delta(\widehat{\delta}(\widehat{\delta}(q,x),y),a) \quad \text{por la definición de } \widehat{\delta} \\ &= \delta(\widehat{\delta}(q,xy),a) \quad \text{por la hipótesis de inducción} \\ &= \widehat{\delta}(q,xya) \quad \text{por la definición de } \widehat{\delta} \\ &= \widehat{\delta}(q,x(ya)) \quad \text{por la asocitividad en cadenas} \end{split}$$

$$\widehat{\delta}(q, xy) = \widehat{\delta}(\widehat{\delta}(q, x), y)$$

4. Sean L_1 y L_2 dos lenguajes sobre Σ . Definimos el lenguaje cociente de L_1 y L_2 como

$$L_1/L_2 = \{x \in \Sigma^* | \text{ para alguna } y \in L_2, \text{ se tiene } xy \in L_1\}$$

Demuestre que si L_1 es regular y L_2 es cualquier lenguaje, entonces L_1/L_2 es regular. **Hint:** L_1 puede ser reconocido por el AFD $M = \{Q, \Sigma, \delta, q_0, F\}$. Con base en M defina el AFD $M' = \{Q', \Sigma, \delta', q'_0, F'\}$ que reconozca a L_1/L_2 . Recuerde que $\hat{\delta}$ permite conocer el estado en M al que se llega procesando la cadena $y \in L_2$, partiendo de cualquier estado $q_i \in Q$.

Demostración.

Supongamos que L_1 es regular, es decir, existe un autómata $M=(Q,\Sigma,\delta,q_0,F)$ que lo reconoce, entonces para una cadena $x\in\Sigma^*$, tenemos que $x\in L_1/L_2$ si y sólo si hay una cadena $y\in L_2$ tal que $xy\in L_1$ (esto por la definición de L_1/L_2) y esto pasa si y sólo si hay una cadena $y\in L_2$ tal que $\widehat{\delta}(q_0,xy)=\widehat{\delta}(\widehat{\delta}(q_0,x),y)$ (es decir, que las cadenas xy lleguen a un estado final). Con esto definiremos un conjunto de estados finales $F'=\{q\in Q\mid \text{para algún }y\in L_2,\widehat{\delta}(q,y)\in F\}$. Entonces para cualquier $x,x\in L_1/L_2$ si y sólo si $\widehat{\delta}(q_0,x)\in F'$, es decir, $M'=(Q,\Sigma,\delta,q_0,F')$ reconoce a L_1/L_2 , y por lo tanto L_1/L_2 también es regular.

5. Describa informalmente el lenguaje reconocido por los siguientes Autómatas Finitos Deterministas (AFD):

Respuesta:

Este autómata reconoce la cadena vacía y las cadenas que empiezan con a y terminan con b.

b)

Respuesta:

Este autómata reconoce la cadena vacía, las cadenas con solo b's, o, las cadenas que terminan con a y no contienen a las subcadenas aa ni abb.

6. a) Diseñe un Autómata Finito Determinista (AFD) que reconozca el lenguaje

 $\{w \in \{a,b\}^* | w$ contiene a lo más una presencia de la cadena aa $\}$

(La cadena aaa contiene dos presencias de la cadena aa.)

Respuesta:

b) Diseñe un Autómata Finito Determinista (AFD) que reconozca el lenguaje

 $\{w \in \{a,b\}^* | w \text{ tiene como subcadenas a } ab \text{ y } ba\}.$

Respuesta:

