Note: Show all necessary steps in determining your solution.

Score:

Instructor: P. Kreth

Due: 09/03/2020

/ 25

- [2 pts] 1. B&P Problem 1.1: Determine the period of the function defined by $x(t) = \sin 11t + \sin 12t$
- [4 pts] 2. B&P Problem 1.2: For the following functions, which are periodic and which are non-periodic?
 - (a) $x(t) = 3\sin t + 2\sin 2t + \sin 3t$
 - (b) $x(t) = 3\sin t + 2\sin 2t + \sin \pi t$
 - (c) $x(t) = 3\sin 4t + 2\sin 5t + \sin 6t$
 - (d) $x(t) = e^{-t} \sin t$
- [3 pts] 3. Determine if $x(t) = \sin(\sqrt{50}t) + 4\cos(\sqrt{98}t \frac{\pi}{4})$ is periodic and, if so, what is its period?
- [6 pts] 4. Calculate the Fourier Transform, $X(\omega)$, of the following function,

$$x(t) = \begin{cases} Ae^{-at}\cos(bt) & t \ge 0\\ 0 & t < 0 \end{cases}$$

and plot $X(\omega)$ in the complex plane. Graph the magnitude $|X(\omega)|$ and phase $\angle X(\omega)$ with $A=2,\ a=1,$ and $b=\pi$ for $0\leq\omega\leq10.$

[10 pts] 5. Determine the Fourier Series approximation of the following sawtooth wave, and plot the results with n=1, 3, 5, 15, and 95 (on the same figure). In your graph, show the results from $0 \le t \le 2$, and use at least 10,000 points to resolve the edge effects (i.e., t=linspace(0, 2, 10000);). Hint: find a pattern in the coefficients and write a code to generate the various terms for you. Based on your observations, what do you think the spectrum of a sawtooth wave would look like, compared to a sine wave at the same frequency?

 $x(t) = t - \lfloor t \rfloor$ where $\lfloor t \rfloor$ denotes floor(t)

