MATH 593 - Multilinear Algebra

ARessegetes Stery

December 15, 2023

Contents

1	The Tensor Algebra	2
2	Exterior and Symmetric Algebra	4
3	Symmetric, Alternating and Hermitian Forms	4
4	The Spectral Theorem	4

1 The Tensor Algebra

Definition 1.1 (Multilinear). Let R be a commutative ring, and M_1, \dots, M_n, N be R-modules. A map $\varphi: M_1 \times \dots \times M_n \to N$ is **multilinear** if for all $i \in [1, n]$, for all $x_j \in M_j$ for $j \neq i$, the map $\varphi(x_1, \dots, x_{i-1}, -, x_{i+1}, \dots, x_n): M_i \to M$ is R-linear.

Remark 1.1. Via performing induction on n, it can be shown that for a multilinear map $f: M_1 \times \cdots \times M_n \to N$, with the tensor map $\varphi: M_1 \times \cdots \times M_n \to M_1 \otimes_R \cdots \otimes_R M_n$ (which is multilinear), there exists a R-linear map $g: M_1 \otimes_R \cdots \otimes_R M_n \to P$ s.t. $g \circ \varphi = f$.

Definition 1.2 (Tensor Algebra). Let M be a fixed R-module. Define $T^0(M) := R, T^1(M) = M$; and for $n \ge 2$, define $T^n(M) := \underbrace{M \otimes_R \cdots \otimes_R M}$. Then the **tensor algebra** is defined as

$$T(M) := \bigoplus_{i>0} T^i(M) = R \oplus M \oplus (M \otimes_R M) \oplus \cdots$$

Remark 1.2. Since for all $i, T^i(M)$ has an R-module structure, T(M) is also an R-module.

Proposition 1.1. T(M) also has an R-algebra structure.

Proof. It suffices to define multiplication for each summand of T(M) and check that it is well-defined. Define

$$\alpha_{ij}: T^i(M) \times T^j(M) \to T^{i+j}(M), \quad (a_1 \otimes \cdots \otimes a_i, b_1 \otimes \cdots \otimes b_j) \mapsto (a_1 \otimes \cdots \otimes a_i \otimes b_1 \otimes \cdots \otimes b_j)$$

This is indeed well-defined, as by applying the universal property of tensor product for i times gives the desired map. Notice that for the case where i = 0 or j = 0 this is just scalar multiplication, this is just scalar multiplication.

Remark 1.3. This can be extended to a map $T(M) \times T(M) \to T(M)$, which makes T(M) a ring. The map is given by for $x = \bigoplus_{i \geq 0} x_i$, $y = \bigoplus_{j \geq 0} y_j$, the multiplication is defined as $x \cdot y = \bigoplus_{i,j \geq 0} \alpha_{i,j}(x_i,y_j)$, with $1 \in T^0(M) = R$. Moreover, the inclusion $R = T^0(M) \hookrightarrow T(M)$ is a ring homomorphism which makes T(M) an R-algebra.

Remark 1.4. Notice that this differs from the polynomial ring in that it is not commutative (in terms of the direct summands). Therefore, the terms in $\bigoplus_{i,j} \alpha_{ij}$ cannot be collected into one. $T^n = M \otimes \cdots \otimes M$ has a basis given by $x_{i_1} \otimes \cdots \otimes x_{i_n}$, where $i_k \in [\![1,d]\!]$ for all $k \in [\![1,n]\!]$. Therefore, for $n \geq 2$, $T^n(M)$ is not commutative.

Proposition 1.2 (Universal Property of T(M)). Consider the (forgetful) functor $F:_R \underline{Alg} \to {}_R \underline{Mod}, M \mapsto T(M)$. Let M be an R-module and S an R-algebra. If $f: M \to S$ is a morphism of R-modules, then there exists a unique morphism of R-algebras $g: T(M) \to S$ s.t. $g \mid_{T^1(M)} = f$, i.e. $g \circ F = f$:

Proof. Apply the universal property of tensor product and direct sum.

Define $f_n: \underbrace{M \times \cdots \times M}_{n \text{ times}} \to S$, where $f_n(x_1, \cdots, x_n) = f(x_1) \cdots f(x_n)$. This is clearly multilinear, which implies that there exists a unique R-linear map $g_n: T^n(M) \to S$ s.t. $g_n(x_1 \otimes \cdots \otimes x_n) = f(x_1) \cdots f(x_n)$. Apply the universal property of direct sum on the superscript gives that there exists a unique R-linear map $g: T(M) \to S$ s.t. $g|_{T^n(M)} = g_n$. Check the followings:

• g is a morphism of R-algebras. Since it is already a morphism of R-modules, it suffices to check that this definition is compatible with multiplication. For $x = \bigoplus_{i=0}^{n} x_i, y = \bigoplus_{j=0}^{m} y_j$, this gives

$$g(x \cdot y) = g(x_0 \otimes \cdots \otimes x_n \otimes y_0 \otimes \cdots \otimes y_m) = \prod_{i=0}^n f(x_i) \cdot \prod_{j=0}^m f(y_j) = g(x_0 \otimes \cdots \otimes x_n) \cdot g(y_0 \otimes \cdots \otimes y_m) = g(x) \cdot g(y)$$

• g is the unique morphism of R-algebras $T(M) \to S$, s.t. $g|_{T^1(M)} = f$. This is clear as defining $g|_{T^1(M)}$ gives the map on $g|_{T^n(M)}$ for all n, as by the definition of the multiplication. Furthermore, the map restricted to $T^0(M)$ is given by the associated morphism with the R-algebra S. Both of which are uniquely determined.

Remark 1.5. This makes T a functor, which maps from R-modules to R-algebras. For all R-linear maps $f: M \to N$, there exists a unique morphism of R-algebras T(f) s.t. the following diagram commutes: This makes T a functor as it preserves

$$M \xrightarrow{f} N$$

$$\downarrow \qquad \qquad \downarrow$$

$$T(M) \xrightarrow{T(f)} T(N)$$

compositions. Further this is the left adjoint of the forgetful functor G which only regards S as an R-module, i.e. we have the following isomorphism

$$\operatorname{Hom}_{{\scriptscriptstyle{R}}\operatorname{Alg}}(T(M),S) \simeq \operatorname{Hom}_{R}(M,G(S))$$

as by the universal property of tensor algebra the morphism from T(M) to S is uniquely defined by the map $f:M\to S$.

Definition 1.3 (Graded Ring). A ring R is a graded ring if it comes with a decomposition $R = \bigoplus_{i \geq 0} R_i$ as abelian groups; and multiplication satisfies the relation $R_p \cdot R_q \subseteq R_{p+q}$ for all $p, q \geq 0$.

Remark 1.6. Consider the subring $R \subseteq R_0$. If R_0 lies in the center of R, i.e. $R_0 \subseteq \{a \in R \mid ab = ba \forall b \in R\}$, then R becomes an R_0 -algebra; and the decomposition $R = \bigoplus_{i \ge 0} R_i$ is a direct sum of R_0 -modules.

Example 1.1. Consider the following examples of graded rings:

- 1. The tensor algebra ${\cal T}(M)$ is a graded ring, where ${\cal R}_0={\cal T}^0(M)={\cal R}$
- 2. The multivariate polynomials $S=R[x_1,\cdots,x_n]$ is a graded ring, where $S_d=\oplus_{\{i_1,\cdots,i_d\mid \sum_k i_k=d\}}Rx_1^{i_1}\cdots x_d^{i_d}$

Definition 1.4 (Homogeneous). If $R = \bigoplus_{i \geq 0} R_i$ is a graded ring, the elements of R_n are homogeneous of degree n.

Definition 1.5 (Morphism of Graded Rings). If R and S are graded rings, then a morphism of graded rings $f: R \to S$ is a ring homomorphism s.t. $f(R_i) \subseteq S_i$ for all i. Such definition gives the result that graded rings form a category.

Definition 1.6 (Homogeneous Ideal). If R is a graded ring, and $I \subseteq R$ an ideal. I is a **homogeneous ideal** if $I = \bigoplus_{i \ge 0} (I \cap R_i)$. Equivalently, for all $f \in I$, for all $f_i \in R_i$ s.t. $f = \sum_{i=0}^d f_i$, then $f_j \in I$ for all j.

Remark 1.7. If further I is two-sided, then $R/I = \bigoplus_{i \geq 0} (R_i/(R_i \cap I))$ as a direct sum of abelian groups. In this case, R/I is a graded ring, and the quotient $\pi : R \to R/I$ is a morphism of graded rings.

Proposition 1.3. Let R be a graded ring, and $I \subseteq R$ an ideal. Then I is homogeneous if and only if it can be generated by homogeneous elements.

Proof. Show implication in two directions:

- \Rightarrow : Since I is homogeneous, there exists ideals $I_k \subseteq R_k$ s.t. $I = \bigoplus_{k \ge 0} I_k$. Then it is generated by the generating sets of I_k , which are all homogeneous.
- \Leftarrow : If I can be generated by homogeneous elements, then for all $x \in R$ there exists a decomposition

$$x = \sum_{r \in R} c_r r = \sum_{i \ge 0} \sum_{r \in R_i} c_{ri} r_i$$

where only finitely many c_{ri} s can be non-zero, and $r_i \in I$. Collecting all the terms in the inner summation gives $x = \sum_{i>0} c_i r_i$ for $r_i \in I_i \subseteq R_i$, which satisfies the definition of homogeneous ideals.

Remark 1.8. It is not necessary (and also not true) that all the homogeneous elements must (can) have the same degree. For example, it is completely valid to have $R \cdot (I \cap R_0) \subsetneq I \cap R_1$, which prevents any homogeneous generating set of the same degree from existing.

- 2 Exterior and Symmetric Algebra
- 3 Symmetric, Alternating and Hermitian Forms
- 4 The Spectral Theorem