Why do larger firms pay executives more for performance?

Performance-based versus labor market incentives

VU Finance Lunch Seminar

Bo Hu

October 25, 2018

Department of Economics, Vrije Universiteit Amsterdam Tinbergen Institute

Introduction

Introduction

- Industry: Competition for executive matters for incentive contracts.
 - Apple proxy statement 2016:
 "experienced personnel ... are in high demand, ... (the contract incentives are designed) to attract and retain a talented executive team and align executives interests with those of shareholders ..."
 - Amazon proxy statement 2016:
 The core philosophy concerning executive incentive package is "to attract and retain the highest caliber employees"
 - ..

Introduction

- Academia: The mechanism linking the managerial labor market and incentive contract design is not clear.
 - Direction for future research in Edmans et al. 2017

"Most models of incentives in market equilibrium are static. It would be useful to add a dynamic moral hazard problem where incentives can be provided not only through contracts, but also by ... the promise of being hired by a larger firm. This would, among other things, analyze how contracting incentives interact with ... hiring incentives. These different incentive channels may conflict with as well as reinforce each other."

Research Questions

- How does the managerial labor market competition impact the incentive contracts?
- Explain two important empirical puzzles
 - Firm-size premium in compensation growth
 Compensation growth is higher in larger firms, controlling for total compensation at the beginning.
 - Firm-size premium in performance-based incentives
 Performance-based incentives are higher in larger firms controlling for total compensation.

Motivating Facts

• A typical executive compensation package:

Performance-based incentives.

$$\mathtt{delta} = \frac{\Delta \mathtt{Wealth(in\ dollars)}}{\Delta \mathtt{Firm\ Value(in\ percentage)}}$$

Table 1: Compensation growth increases with firm size

	$\Delta \log(tdc1)$						
	(1)	(2)	(3)	(4)	(5)	(6)	
$log(firm \ size)_{-1}$	0.112*** (0.00903)	0.154*** (0.0129)	0.108*** (0.00183)	0.107*** (0.00189)	0.141*** (0.00177)	0.127*** (0.00489)	
$\begin{array}{l} log(firm\;size)_{-1} \\ \times \; EE90 \end{array}$			0.0711* (0.0403)				
$\begin{array}{l} log(firm\;size)_{-1} \\ \times\; EE190 \end{array}$				0.0759** (0.0353)			
$\begin{array}{l} log(firm\; size)_{-1} \\ \times \; gai \end{array}$					0.0233*** (0.00546)		
$log(firm\ size)_{-1} \times inside\ CEO$						-0.000232*** (0.0000696)	
$log(tdc1)_{-1}$	-0.290*** (0.0200)	-0.390*** (0.0262)	-0.251*** (0.00173)	-0.251*** (0.00173)	-0.304*** (0.00267)	-0.253*** (0.00173)	
Dummies	X	X	X	X	X	X	
Other contorls		X	X	X	X	X	
Observations adj. R^2	129068 0.157	106819 0.216	106820 0.260	106820 0.260	58188 0.233	106820 0.262	

Table 2: Performance-based incentives increases with firm size

	$\log(delta)$								
	(1)	(2)	(3)	(4)	(5)	(6)			
log(firm size)	0.604*** (0.0141)	0.347*** (0.0247)	0.525*** (0.00512)	0.529*** (0.00499)	0.561*** (0.00310)	0.571*** (0.0139)			
log(firm size) × EE90			0.359* (0.118)						
log(firm size) × EE190				0.415** (0.101)					
log(firm size) × gai					0.0648*** (0.00156)				
log(firm size) × inside CEO						-0.000458* (0.000202)			
log(tdc1)		0.609*** (0.0350)	-0.251*** (0.00173)	-0.251*** (0.00173)	-0.304*** (0.00267)	-0.253*** (0.00173)			
Dummies	X	X	X	X	X	X			
Other contorls		X	X	X	X	X			
Observations adj. R ²	146747 0.442	128006 0.514	125858 0.521	125858 0.521	75747 0.531	125858 0.521			

Model

- embed dynamic moral hazard into an equilibrium search framework
- managerial labor market: search frictional and on-the-job search
- executives are poached by outside firms, and poaching offers have impacts on compensation level and contract incentives
- a hierarchical job ladder towards larger firms

Model

- embed dynamic moral hazard into an equilibrium search framework
- managerial labor market: search frictional and on-the-job search
- executives are poached by outside firms, and poaching offers have impacts on *compensation level* and *contract incentives*
- a hierarchical job ladder towards larger firms

Explain firm-size premium in compensation growth

- executives use poaching offers to renegotiate with the current firm
- larger firms are more capable of countering outside offers

Explain firm-size premium in performance-based incentives

- 1. Poaching offers generate labor market incentives
 - poaching firms are willing to bid higher for more productive executive
 - executive productivity depends on past effort
 - taking effort today will lead to a more favorable offer from the same poaching firm

Explain firm-size premium in performance-based incentives

- 1. Poaching offers generate labor market incentives
 - poaching firms are willing to bid higher for more productive executive
 - executive productivity depends on past effort
 - taking effort today will lead to a more favorable offer from the same poaching firm
- 2. Total Incentives = Performance-based + Labor Market Incentives

Explain firm-size premium in performance-based incentives

- 1. Poaching offers generate labor market incentives
 - poaching firms are willing to bid higher for more productive executive
 - executive productivity depends on past effort
 - taking effort today will lead to a more favorable offer from the same poaching firm
- 2. Total Incentives = Performance-based + Labor Market Incentives
- 3. Labor Market Incentives decrease in firm size
 - executives in larger firms are less likely to receive competitive outside offers
 - executives in larger firms have a higher certainty equivalent of expected utility in the future; subjectively they are less sensitive to wealth variation (diminishing marginal utility)

Road Map

- 1. Model
- 2. Reduced-form Evidence
- 3. Structural Estimation
- 4. Policy Implications

Related Literature

- Assignment Models
 - Edmans, Gabaix and Landier (2009), Edmans and Gabaix (2011)
 - executives in larger firms value leisure more $u(w \times g(e))$.
- Moral Hazard Models
 - Margiotta and Miller (2000), Gayle and Miller (2009), Gayle, Golan and Miller (2015)
 - moral hazard problem is more severe / the quality of signal (about effort) is poor in larger firms
- Dynamic contract literature
 - moral hazard: Spear and Srivastava (1987), etc.
 - limited commitment: Thomas Worrall (1988, 1990), etc.
- Labour search literature
 - sequential auction: Postel-Vinay and Robin (2002), etc.

The Model

Set Up: Moral Hazard

Discrete time and infinite periods

Executives:

• risk averse, u(w) - c(e), $e \in \{0, 1\}$, c(1) = c, c(0) = 0,

$$u(w) = \frac{w^{1-\sigma}}{1-\sigma}$$

- ullet effort e stochastically increases executive productivity $z \in \mathcal{Z}$
- z is persistent, follows a discerete Markov Chain process
 - ullet $\Gamma(z'|z)$ when take the effort, $\Gamma^s(z'|z)$ when shirk
- ullet die with $\delta \in (0,1)$, the match breaks up, the job disappears

Set Up: Moral Hazard

Discrete time and infinite periods

Executives:

• risk averse, u(w) - c(e), $e \in \{0, 1\}$, c(1) = c, c(0) = 0,

$$u(w) = \frac{w^{1-\sigma}}{1-\sigma}$$

- effort *e* stochastically increases executive productivity $z \in \mathcal{Z}$
- ullet z is persistent, follows a discerete Markov Chain process
 - $\Gamma(z'|z)$ when take the effort, $\Gamma^s(z'|z)$ when shirk
- die with $\delta \in (0,1)$, the match breaks up, the job disappears

Firms:

- firm size $s \in \mathcal{S}$, exogenous and permanent
- production (cash flow) $y(s,z) = \alpha_0 s^{\alpha_1} z$, $\alpha_0, \alpha_1 \in (0,1]$.

Set Up: Managerial Labor Market

Managerial Labor Market:

- search frictional and allows on-the-job search
- with $\lambda \in (0,1)$ sample an outside firm s' from F(s')

Sequential Auction:

- ullet Bertrand competition between current firm s and outside firm s'
- Each firm has a **bidding frontier**, $\overline{W}(z,s)$, defined by

$$\Pi(z,s,\overline{W}(z,s))=0$$

- $\overline{W}(z,s)$ increases in z and s
- ullet if s' < s, renegotiate with the current firm
- ullet if s'>s, transit to the poaching firm

Contracting Problem

Firms maximize profits

$$\Pi(z,s,V) = \max_{w,W(z',s')} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} \left[y(s,z') - w + \tilde{\beta} \Pi(z',s,W(z',s')) \right] \tilde{F}(s') \Gamma(z'|z)$$

subject to

$$V = u(w) - c + \tilde{\beta} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} W(z', s') \tilde{F}(s') \Gamma(z'|z), \qquad (PKC)$$

$$\tilde{\beta} \sum_{z' \in \mathbb{Z}} \sum_{s' \in \mathbb{S}} W(z', s') \tilde{F}(s') \Big(\Gamma(z'|z) - \Gamma^s(z'|z) \Big) \ge c, \qquad (IC)$$

$$W(z', s') \ge \min\{ \overline{W}(z', s'), \overline{W}(z', s) \}, \qquad (PC\text{-Executive})$$

$$W(z', s') < \overline{W}(z', s). \qquad (PC\text{-Firm})$$

The Equilibrium

An stationary equilibrium is defined by

- value functions $\{W^0, W, \Pi\}$;
- optimal contracts $\sigma = \{w, e, W(z')\}$ for $z' \in \mathbb{Z}$;
- Γ follows the optimal effort choice;
- a distribution of executives across employment states evolving according to flow equations.

Explain size premium in

compensation growth

Three sets of poaching offers

Three sets of outside firms s':

```
\mathcal{M}_1: s' \geq s, lead to job turnovers
```

 $\mathcal{M}_2: s' < s,$ improve compensation, no job turnovers

 \mathcal{M}_3 : other or no outside firms

Three sets of poaching offers

Three sets of outside firms s':

 $\mathcal{M}_1: s' \geq s$, lead to job turnovers

 $\mathcal{M}_2: s' < s$, improve compensation, no job turnovers

 \mathcal{M}_3 : other or no outside firms

The continuation value of an executive is

$$\sum_{s' \in \mathcal{M}_1} F(s') \mathbb{E}[\overline{W}(z',s)] + \sum_{s' \in \mathcal{M}_2} \mathbb{E}[\overline{W}(z',s')] F(s') + \sum_{s' \in \mathcal{M}_3} F(s') \mathbb{E}[W(z')]$$
labor market driven

promise driven

performance-based incentives

Explain size premium in

Incentive Compatibility Constraint

What is the incentive out of W(z')?

Incentive Compatibility Constraint

What is the incentive out of W(z')?

$$\mathcal{I}[W(z')] \equiv \tilde{\beta} \left\{ \sum_{z'} W(z') \Gamma(z'|z) - \sum_{z'} W(z') \Gamma^{s}(z'|z) \right\}.$$

Incentive Compatibility Constraint

What is the incentive out of W(z')?

$$\mathcal{I}[W(z')] \equiv \tilde{\beta} \left\{ \sum_{z'} W(z') \Gamma(z'|z) - \sum_{z'} W(z') \Gamma^{s}(z'|z) \right\}.$$

The incentive compatibility constraint is

$$\sum_{s' \in \mathcal{M}_1} F(s') \mathcal{I}[\overline{W}(z',s)] + \sum_{s' \in \mathcal{M}_2} \mathcal{I}[\overline{W}(z',s')] F(s') + \sum_{s' \in \mathcal{M}_3} F(s') \mathcal{I}[W(z')] \ge c.$$
Market-based Incentives

Performance-based Incentives

Sets of outside firms s':

 $\mathcal{M}_1: s' \geq s$, lead to job turnovers

 $\mathcal{M}_2: s' < s$, improve compensation, no job turnovers

 \mathcal{M}_3 : other or no outside firms

Incentives from $\overline{W}(z',s)$ decrease in s

Incentives from $\overline{W}(z',s)$ decrease in s

Proposition

Suppose the executives' utility is of the CRRA form and the cost of effort $c=\overline{c}(s)$, then $\mathcal{I}\Big(\overline{W}(z',s)\Big)$ decreases in s if

$$\sigma > 1 + \frac{\mathsf{s}^{1-\alpha_1}}{\alpha_1} \psi'(\mathsf{s}),\tag{1}$$

where $\psi(s)$ is a function of s that is positive and increasing in s.

Intuition

- ullet a higher s leads to higher certainty equivalent of $\overline{W}(z',s)$
- a higher certainty equivalent leads to lower marginal utility of extra wealth

Examine Direct Evidence

Three implications of the model

- 1. The managerial labor market is active.
- 2. Managers climb job ladders towards larger firms.
- 3. Managers in larger firms tend to have less job-to-job transitions.

Data

Data sources

- ExecuComp: compensation and individual features, etc.
- CompuStat: firm performance, etc.
- CRSP: stock return.
- BoardEX: executive employment history.

Define job turnovers

- Job-to-job transition: leaves the current firm, and starts to work in another firm within 180 days.
- Exit: otherwise.

Three implications of the model

- 1. The managerial labor market is active.
- 2. Managers climb job ladders towards larger firms.
- 3. Managers in larger firms tend to have less job-to-job transitions.

Job-to-job transition rate over age

Exit rate over age

Key implications of the model

- 1. The managerial labor market is active.
- 2. Managers climb job ladders towards larger firms.
- 3. Managers in larger firms tend to have less job-to-job transitions.

Climb the Job Ladder

Table 3: Change of firm size upon job-to-job transitions

Panel A: All executives					
Firm size proxy	Total obs.	Firm size decrease obs. (%)	Firm size increase obs. (%)		
Market Cap	2567	985 (39%)	1582 (61%)		
Sales	2617	1051 (40%)	1566 (60%)		
Book Assets	2616	1038 (40%)	1578 (60%)		

Panel B: Across age groups

Age groups	Total obs.	Firm size decrease obs. (%)	Firm size increase obs. (%)
≤ 40	100	34 (34%)	66 (66%)
[40, 45)	381	135 (35%)	246 (65%)
[45, 50)	701	262 (37%)	439 (63%)
[50, 55)	766	304 (40%)	462 (60%)
[55, 60)	261	179 (43%)	82 (67%)
[60, 65)	73	52 (39%)	21 (61%)
[65, 70)	30	7 (25%)	23 (75%)
≥ 70	6	1 (16%)	5 (84%)

Key implications of the model

- 1. The managerial labor market is active.
- 2. Managers climb job ladders towards larger firms.
- 3. Managers in larger firms tend to have less job-to-job transitions.

Table 4: Job-to-Job Transitions and Firm Size

Job-to-Job Transition			
•	(1)	(2)	
log(Firm Size)	0.917**** (0.0109)	0.972* (0.0139)	
Age	0.985**** (0.00273)	0.967*** (0.0112)	
log(tdc1)		0.830**** (0.0150)	
Market-Book Ratio	0.942**** (0.0150)	0.939**** (0.0157)	
Market Value Leverage	1.033** (0.0139)	1.035** (0.0142)	
Profitability	0.913**** (0.0197)	0.905**** (0.0199)	
Year FE	Yes	Yes	
Industry FE	Yes	Yes	
N chi2	154635 496.1	118119 491.4	

Estimation

Model Specifications

· utility function of CRRA form

$$u(w) = \frac{w^{1-\sigma}}{1-\sigma}$$

production function (cash flows)

$$y(s,z)=e^{\alpha_0}s^{\alpha_1}z$$

• productivity process by AR(1), discretized by Tauchen (1989)

$$z_t = \rho_0(e) + \rho_z z_{t-1} + \epsilon_t$$

ullet poaching firm distribution by truncated log-normal F(s)

Parameters

Parameters	Description	
δ	the death probability	
λ_1	the offer arrival probability	
$ ho_z$	the AR(1) coefficient of productivity shocks	
μ_{z}	the mean of productivity shocks for $\emph{e}=1$	
σ_{z}	the standard deviation of productivity shocks	
μ_{s}	the mean of $F(s)$	
σ_{s}	the standard deviation of $F(s)$	
С	cost of efforts	
σ	relative risk aversion	
α_0, α_1	production function parameters	

Moments and Estimation

A. Targeted Moments

Moments	Data	Model	Estimates	Standard Error
Exit Rate	0.0691	0.0691	$\delta = 0.0695$	0.0127
J-J Transition Rate	0.0498	0.0473	$\lambda_1 = 0.3164$	0.0325
$\hat{ ho}_{profit}$	0.7683	0.6299	$\rho_z = 0.8004$	0.0366
Mean(profit)	0.1260	0.1144	$\mu_z = 0.0279$	0.0014
Var(profit)	0.0144	0.0160	$\sigma_z^2 = 0.1198$	0.0044
$Mean(\log(size))$	7.4515	7.4806	$\mu_s = 1.2356$	0.0365
$Var(\log(size))$	2.3060	2.1610	$\sigma_s = 2.5795$	0.1211
$Mean(\log(wage))$	7.2408	7.2665	$\alpha_0 = -1.5534$	0.0147
Var(log(wage))	1.1846	0.8960	$\alpha_1=0.5270$	0.0217
$\beta_{wage-size}$	0.3830	0.2822		
β _{delta} -wage	1.1063	1.1997	$\sigma = 1.1038$	0.0030
$Mean(\log(delta))$	8.4994	8.478	c = 0.0814	0.0259
$Var(\log(delta))$	3.4438	3.35872		

Predictions on the empirical puzzles

B. Untargeted Moments

Moments	Data	Model	Description
$eta_{\Delta wage-size}$	0.112	0.1450	Size premium in compensation growth
$\beta_{delta-size}$	0.3473	0.3122	Firm-size incentive premium, tdc1 controlled
$\beta_{delta-size-nowage}$	0.6044	0.6507	Firm-size incentive premium, tdc1 not controlled

- These moments are not targeted.
- They are predicted by the estimated model.
- The model quantitatively captures the two premiums.

Table 1: Compensation growth increases with firm size

			Δ log	g(tdc1)		
	(1)	(2)	(3)	(4)	(5)	(6)
$log(firm \ size)_{-1}$	0.112*** (0.00903)	0.154*** (0.0129)	0.108*** (0.00183)	0.107*** (0.00189)	0.141*** (0.00177)	0.127*** (0.00489)
$\begin{array}{l} log(firm\;size)_{-1} \\ \times \; EE90 \end{array}$			0.0711* (0.0403)			
$\begin{array}{l} log(firm\;size)_{-1} \\ \times\; EE190 \end{array}$				0.0759** (0.0353)		
$\begin{array}{l} log(firm\; size)_{-1} \\ \times \; gai \end{array}$					0.0233*** (0.00546)	
$log(firm\ size)_{-1} \times inside\ CEO$						-0.000232*** (0.0000696)
$log(tdc1)_{-1}$	-0.290*** (0.0200)	-0.390*** (0.0262)	-0.251*** (0.00173)	-0.251*** (0.00173)	-0.304*** (0.00267)	-0.253*** (0.00173)
Dummies	X	X	X	X	X	X
Other contorls		X	X	X	X	X
Observations adj. R^2	129068 0.157	106819 0.216	106820 0.260	106820 0.260	58188 0.233	106820 0.262

Table 2: Performance-based incentives increases with firm size

			log	(delta)		
	(1)	(2)	(3)	(4)	(5)	(6)
log(firm size)	0.604*** (0.0141)	0.347*** (0.0247)	0.525*** (0.00512)	0.529*** (0.00499)	0.561*** (0.00310)	0.571*** (0.0139)
log(firm size) × EE90			0.359* (0.118)			
log(firm size) × EE190				0.415** (0.101)		
log(firm size) × gai					0.0648*** (0.00156)	
log(firm size) × inside CEO						-0.000458* (0.000202)
log(tdc1)		0.609*** (0.0350)	-0.251*** (0.00173)	-0.251*** (0.00173)	-0.304*** (0.00267)	-0.253*** (0.00173)
Dummies	X	X	X	X	X	X
Other contorls		X	X	X	X	X
Observations adj. R ²	146747 0.442	128006 0.514	125858 0.521	125858 0.521	75747 0.531	125858 0.521

If labor market incentives are ignored ...

Policy Implications

Policy: Spillover effects

- A worse corporate governance: α_0 is higher.
- What is the spillover effect to the managerial labor market?
 - Compensation level of executives who have received offers from this firm will be higher.
 - Labor market incentives for executives who expect to receive offers from this firm will be lower; performance-based incentives will be higher.

Policy: Spillover effects

Policy: Spillover effects

Summary

Summary

- How does the managerial labor market competition impact the incentive contracts?
 - Competition impacts both compensation level and incentives.
- Explain two important empirical puzzles
 - Firm-size premium in compensation growth Larger firms are more capable of countering outside offers.
 - Firm-size premium in performance-based incentives
 Poaching offers generate labor market incentives which decrease in firm size.

Thanks you for your attention.

http://bohuecon.github.io

No Moral Hazard, Full Commitment

Only Moral Hazard

Only Limited Commitment

Optimal Contract


```
CEO's of "Small Firms" in S&P 500
```

REGENERON PHARMACEUTICALS 897.3801

CENTENE CORP

HOLOGIC INC

GARTNER INC

ANSYS INC

SKYWORKS SOLUTIONS INC

ALASKA AIR GROUP INC

ACUITY BRANDS INC.

tdc1: total compensation delta: dollar-percentage incentive					
	Company	Market Cap	tdc1	delta	
		millions	000's	000's/%	
	INCYTE CORP	446.408	2432.9734	60.939838	
	WESTROCK CO	547.828	2800.668	130.96215	
ENVIS	ION HEALTHCARE CORP	678.6906	1777.991	217.729	
1	PRICELINE GROUP INC	886.0817	1775.531	165.73476	
	LKQ CORP	889.9763	2602.093	473.70974	

1113.547

1130.155

1194.977

1328.171

1276.448

1368.129

1474.909

3094.134

2638.243

4584.605

950.098

2709.708

1102.528

3738.803

8945.338

566.14187

128.10688 I

344.02299 I

99.525198

428.10996

133.42285 |

431.01562 |

158.65569

```
CEO's of "Large Firms" in S&P 500
```

COCA-COLA CO 95494.39 12781.61

126749.6

INTEL CORP 147738.2 6101.835

94944.89 17283.529

97836.48 15268.415

121238.6 16269.85

129381.2 21693.615

192048.2 16652.894

EXXON MOBIL CORP 344490.6 48922.808 3843.027 |

13125.882

1666.3201 I

425.62199 I

2919.7995 I

5981.3853 | 1106.8351 |

1298.8777 I

1874.5755 I

1465.7708 I

AT&T INC

PEPSICO INC

CHEVRON CORP

CISCO SYSTEMS INC

WAL-MART STORES INC

INTL BUSINESS MACHINES CORP

+-----

References i

References

Edmans, Alex, Xavier Gabaix, and Dirk Jenter (2017), "Executive compensation: A survey of theory and evidence." Technical report, National Bureau of Economic Research.