ARI-HW_02

Matěj Pinkas

03. March 2024

Stabilita systému 1

- Stabilita systému je dána jeho vlastními čísly
- Stabilní je právě tehdy když jsou reálné části všech vlastních čísel záporné

$$A = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 7,3809 & 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & -2,1904 & 0 & -2 & 0 & 0 \\ 0 & 0 & -3,1904 & 0 & 0 & 0 \end{bmatrix}$$

$$eig(A) = \begin{bmatrix} -2,1587 \\ 2,1587 \\ 1,8625i \\ -1,8626i \\ 1,7862i \\ -1,7862i \\ -1,7862i \end{bmatrix}$$

$$eig(A) = \begin{bmatrix} -2, 1587 \\ 2, 1587 \\ 1, 8625i \\ -1, 8626i \\ 1, 7862i \\ -1, 7862i \end{bmatrix}$$

Pouze jedno vlastní číslo matice A má zápornou reálnou hodnotu. Systém tedy není stabilní

Řiditelnost systému

$$B_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} B_{2} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} B_{3} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

2.1 Vstup u_1

$$C_{B_1} = \begin{bmatrix} B_1 & AB_1 & A^2B_1 & A^3B_1 & A^4B_1 & A^5B_1 \end{bmatrix}$$

$$C_{B_1} = \begin{bmatrix} 0 & 1 & 0 & 3,3809 & 0 & 20,1921 \\ 0 & 0 & -2 & 0 & -2,3810 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 3,3809 & 0 & 20,1921 & 0 \\ 0 & -2 & 0 & -2,3810 & 0 & -35,1688 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$rank(\mathcal{C}_{B_1}) = 4$$
$$dim(\mathcal{C}_{B_1}) = 6$$

Matice řiditelnosti e_{B_1} nemá plnou hodnost (pouze 4 z 6) a proto systém není řiditelný vstupem u_1

2.2 Vstup u_2

$$C_{B_2} = \begin{bmatrix} B_2 & AB_2 & A^2B_2 & A^3B_2 & A^4B_2 & A^5B_2 \end{bmatrix}$$

$$C_{B_2} = \begin{bmatrix} 0 & 0 & 2 & 0 & 2,3810 & 0 \\ 0 & 1 & 0 & -6,1904 & 0 & 8,7975 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 2,31810 & 0 & 35,1688 \\ 1 & 0 & -6,1904 & 0 & 8,7975 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$rank(\mathcal{C}_{B_2}) = 4$$
$$dim(\mathcal{C}_{B_2}) = 6$$

Matice řiditelnosti \mathcal{C}_{B_2} nemá plnou hodnost (pouze 4 z 6) a proto systém není řiditelný vstupem u_2

2.3 Vstup u_3

$$rank(\mathcal{C}_{B_3}) = 2$$
$$dim(\mathcal{C}_{B_3}) = 6$$

Matice řiditelnosti \mathcal{C}_{B_3} nemá plnou hodnost (pouze 2 z 6) a proto systém není řiditelný vstupem u_3

Systém nemá ani jeden samostatný motor, který by dělal systém řiditelný.

3 Přenos systému pro dané vstupy

3.1 Přenos pro vstup u_1

$$H(s) = (s * I - A)^{-1}B_1 = \begin{bmatrix} \frac{s^2 + 2.19}{s^4 - 1.191s^2 - 16.17} \\ \frac{-2s}{s^4 - 1.191s^2 - 16.17} \\ 0 \\ \frac{s^3 + 2.19s}{s^4 - 1.191s^2 - 16.17} \\ \frac{-2s^2}{s^4 - 1.191s^2 - 16.17} \\ 0 \end{bmatrix}$$

(Hodnoty: 10^{-15} a menší aproximuji jako 0)

3.2 Přenos pro vstup u_2

$$H(s) = (s * I - A)^{-1}B_2 = \begin{bmatrix} \frac{2s}{s^4 - 1.19s^2 - 16.17} \\ \frac{s^2 - 7.381}{s^4 - 1.19s^2 - 16.17} \\ 0 \\ \frac{2s^2}{s^4 - 1.19s^2 - 16.17} \\ \frac{s^3 - 7.381s}{s^4 - 1.19s^2 - 16.17} \end{bmatrix}$$

(Hodnoty: 10^{-15} a menší aproximuji jako 0)

3.3 Přenos pro vstup u_3

$$H(s) = (s * I - A)^{-1}B_3 = \begin{bmatrix} 0\\0\\\frac{1}{s^2 + 3,19}\\0\\0\\\frac{s}{s^2 + 3,19} \end{bmatrix}$$

(Hodnoty: 10^{-15} a menší aproximuji jako 0)

Přenos ani jednoho systému s každým ze tří vstupů není ve všech směrech (x, y, z) a proto není možné ho ovládat pouze jedním vstupem.

4 Řiditelnost celého systému

$$B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$C_B = \begin{bmatrix} B & AB & A^2B & A^3B & A^4B & A^5B \end{bmatrix}$$

Matice řiditelnosti e_B má plnou hodnost a proto systém je řiditelný vstupem: $(u_1,\,u_2\,\,u_3)$

 $dim(\mathcal{C}_B) = 6$

5 Přenos celkového systému

$$H(s) = (s*I-A)^{-1}B = \begin{bmatrix} \frac{s^2 + 2.19}{s^4 - 1.191s^2 - 16.17} & \frac{2s}{s^4 - 1.19s^2 - 16.17} & 0\\ -\frac{2s}{s^4 - 1.191s^2 - 16.17} & \frac{s^2 - 7.381}{s^4 - 1.19s^2 - 16.17} & 0\\ 0 & 0 & \frac{1}{s^2 + 3.19} \\ \frac{s^3 + 2.19s}{s^4 - 1.191s^2 - 16.17} & \frac{2s^2}{s^4 - 1.16s^2 - 16.17} & 0\\ \frac{-2s^2}{s^4 - 1.191s^2 - 16.17} & \frac{s^3 - 7.381s}{s^4 - 1.19s^2 - 16.17} & 0\\ 0 & 0 & \frac{s}{s^2 + 3.19} \end{bmatrix}$$

(Hodnoty: 10^{-15} a menší aproximuji jako 0)