INSTITUTO TECNOLÓGICO DE BUENOS AIRES

Cátedra: ELECTROTECNIA I Electrónicos

MEDICION DE POTENCIA EN CORRIENTE ALTERNA

Trabajo de Laboratorio Nº 2

GR	UPO N°	INTEGRANTES	
Legajo N°		Nombre	

	Fecha	Docente
Realizado		
Presentado		
Aprobado		

1. Se dispone del siguiente Circuito

Donde el Nucleo de la Inductancia se puede mover libremente y dejar la misma solamente con núcleo de aire, R es la resistencia de la bobina. Se pide efectuar las mediciones de tensión, corriente y potencia para las siguientes situaciones.

С

Circuito A Núcleo de Sólido

Circuito B Núcleo Sólido por la mitad

Circuito C Núcleo de aire (Sin Núcleo)

CIRCUITO	W	Amper	Volts
A			
В			
С			

Repetir las mediciones para cada uno de los núcleos disponibles completando para cada caso uma tabla.

A partir de los valores medidos y trabajando a parti de aqui solo con los correspondientes al núcleo de hierro laminado, completar la tabla adjunta.

CIRCUITO	Q	S	Cos Ø
A			
В			
С			

Se pide graficar el diagrama Fasorial de tensión y corriente en las tres situaciones. Describir como varían las potencias activas y reactivas cuando pasan de un estado a otro y por que.

2. Dado los siguientes circuitos, donde el núcleo es de hierro laminado, completar la tabla adjunta:

CIRCUITO	Q	S	P	Cos Ø
R1				
С				
RLC				

Se pide graficar el diagrama fasoriales para los 3 casos. Comparar los resultados de la suma vectorial de las corrientes medidas en L, R1 y C con la medida en el circuito RLC, analizar los resultados y justificar las diferencias.

3.	Colocar en paralelo el banco de capacitores e ir conectando los
	mismos hasta llevar el factor de potencia a un valor de 0,9
	inductivo. Dejar registrado dicho valor.

\boldsymbol{C}	_					
C	_	_	_			

4. De acuerdo a los valores registrados en el punto 2, calcular le valor de C requerido para llevar el factor de Potencia a 0,9 inductivo y comparar con los medido en punto 3. Justificar los resultados