

FIG. 1

DOUBLE STRANDED OR SINGLE STRANDED DNA OR RNA

FIG.3

5-APAS-UTP

5-APAS-CTP

5-SF-UTP

FIG. 4

8-APAS-ATP

५

FIG. 6

FIG. 7

FIG.8

FIG.9

FIG.10

FIG.11

FIG.12

FIG. 13

DEAMINATED METHYLATED DNA

DEAMINATED
UNMETHYLATED
DNA

FIG. 14

M=1 IF BOTH COPIES ARE 100% METHYLATED: ONLY λ_{2GE} DETECTED

M=0.5 IF 1 COPY IS METHYLATED: BOTH λ_{2GE} AND λ_{2AE} DETECTED

M=0 IF BOTH COPIES UNMETHYLATED: ONLY λ_{2AE} DETECTED

M=METHYLATION INDEX=
$$\frac{E\lambda_{2GE}}{E\lambda_{2GE} + E\lambda_{2AE}}$$

X=NON BASE-PAIRED NUCLEOTIDES
 -BUBBLE IS 8-14 nt LONG

FIG.15

FIG. 16

FIG.18

FIG. 19

FIG.20

FIG. 21

FIG.22

FIG.23

FIG. 24

FIG. 25

- Lane 1 CMPS
- Lane 2 CTPS
- Lane 3 IAEDANS
- Lane 4 AEDANS-SpppC
- Lane 5 AEDANS-S-pC
- Lane 6 AMPS
- Lane 7 AEDANS-SpA
- Lane 8 IAEDANS
- Lane 9 CTPS
- Lane 10 CMPS

FIG. 26

Appl. No. *To Be Assigned*; Group Art Unit: *To Be Assigned*; Inventors: Michelle M. Hanna.; Tel: 202.371-2600
Title: Molecular Detection Systems Utilizing Reiterative Oligonucleotide Synthesis

FIG. 27

FIG.28

ATATACTGGGTCTACAAGGTTAACGTCAACCAGGGATTGAAATATAACTTTAAACAGAGCTGGATTATCCAGT
AGGCAGATTAAGCATGTGCTTAAGGCATCAGCAAAGTCTGAGCAATCCATTTCAGGTAGTACATGTTT
TGATAAGCTAAAAAGTAGTAGTCACAGGAAAATTAGAACCTTACCTCCTGCGCTGTTACTCTTAGT
GCTGTTAACCTTCTTGTAAAGTGAGGGTGGTGGAGGGTGCCATAACTTCAAGGGAGTAAGTTCTTCTT
GGTCTT
TGGCGCATCTGGCTCACTGCAACCTCCGCTTCTCCTGGTTCAAGCGATTCTCCTACATCAGCCTCCGA
GTAGCTGGATTACAGGCATGCCACCAAGCCCCGCTAATTGTATTAGTAGAGACAGGGTTTCGC
CATGTTGGTCAGGCTTGTCTGAACCTCCTGGCTCAGGTGATCCGCTGTCTCAGGCTCCAGAATGCTGG
GATTATAGACGTGAGCCACCGCATCCGACTTCCCTTATGTAATAGTATAATTCTATCAAAGCATT
TTTTTTTGAGTCGGAGTCTCATTCTGTACCCAGGCTGGAGGGTGGTGGCGATCTGGCTTACTGCAA
CCTCTGCCTCCGGTTCAAGCGATTCTCCTGCCTCAGCCTCTGAGTAGCTGGAATTACACACGTGCGCCA
CCATGGCCAGCTAATTGTATTAGTAGAGACGGGTGTCACCATTGGCCAAGCTGGCTCGAAC
CTGACCTCAGGTGATCTGCCCGCTCGGCTCCAAAGTCTGGATTACAGGTGTGAGCCACCGCGTCCT
GCTCCAAAGCATTCTTCTATGCCTAAAACAAGATTGCAAGCCAGTCTCAAAGCGGATAATTCAAGAGC
TAACAGGTATTAGCTTAGGATGTGGCACTGTTCTTAAGGTTATATGTATTAAACATCATTAAACTCACA
ACAACCCCTATAAAGCAGGGGCACTCATTCCTCCCCCTTATAATTACGAAAATGCAAGGTATT
AGTAGGAAAGAGAAATGTGAGAAGTGTGAAGGAGACAGGACAGTATTGAAGCTGGTCTTGGATCACTGTG
CAACTCTGCTCTAGAACACTGAGCACTTTCTGGTCTAGGAATTATGACTTTGAGAATGGAGTCCGTCTT
CCAATGACTCCCTCCCCATTTCCTATCTGCCTACAGGCAGAATTCTCCCCCTGGTCTCGTATTAAATAACCTCA
TCTTTCAGAGTCTGCTTATACCAGGAATGTACACGTCTGAGAAACCTTGCCTCAGACAGCCGTTAC
ACGCAGGAGGGAAAGGGAGGGAGAGCAGTCCGACTCTCCAAAAGGAATCCTTGAACTAGGG
TTCTGACTTAGTGAACCCCGCGCTCTGAAAATCAAGGGTTGAGGGGGTAGGGGGACACTTCTAGTCGA
CAGGTGATTTCGATTCTCGGTGGGCTCTCACAACTAGGAAGAATAGTTGCTTTCTTATGATTAAAGA
AGAAGCCATACTTCCCTATGACACCAAACACCCGATTCAATTGGCAGTTAGGAAGGTTGATCGCGGAG
GAAGGAAACGGGGCGGGGGCGGATTCTTTAACAGAGTGAACGCACTCAAACACGCCCTTGCTGGCAGG
CGGGGGAGCGCGGCTGGAGCAGGAGGGCGAGGGCGGTGTGGGGGGCAGGTGGGAGGAGCCAGT
CCTCCTCCCTGCCAACGCTGGCTCTGGCGAGGGCTGCTCCGGCTGGTGCCTCCGGAGACCCAAAC
TGGGGCGACTTCAGGGTGCCACATTGCTAACGTGCTGGAGTTAATGACACCTCCTCCGAGCACTGCTC
ACGGCGTCCCTTGCTGGAAAGATACCGCGGTCCCTCAGAGGATTGAGGGACAGGGTGGAGGGGGC
TCTTCCGCCAGCACCGAGGAAGAAAGAGGAGGGGAGAGCAGGAGCGGGCGGGAGCAGCATGGAGCCGGCG
GCGCTCGCGGCTGCGAGAGGGGAGAGCAGGAGCGGGCGGGAGCAGCATGGAGCCGGCG
GGGGAGCAGCATGGAGCCTCAGGCTGACTGGCTGGCACGGCCACGGCCGGCCGGGGTGGTAGAGGAGGT
GCGGGCGCTGCTGGAGGGCGCTGCCAACGCAACGAAATAGTTACGGTGGAGGCGATCCAGGT
GGTAGAGGGTCTGCAAGGGAGCAGGGATGGGGCGACTCTGGAGGACGAAGTTGCAAGGGAAATT
GGAATCAGGTAGCGCTCGATTCTCCGGAAAAAGGGGAGGCTTCTGGGAGTTTCAAGAAGGGTTGTA
ATCACAGACCTCCTGGCGACGCCCTGGGGCTTGGAGCCAAGGAAGAGGAATGAGGAGCCACGCG
CGTACAGATCTCTCGAACGTGAGAAGATCTGAAGGGGGAACATATTGTATTAGATGGAAGTATGCTCTT
ATCAGATACAAATTAACGAACGTTGGATAAAAAGGGAGTCTAAAGAAATGTAAGATGTGCTGGACTAC
TTAGCCTCAATTACAGATACCTGGATGGAGCTTATCTTCTTACTAGGAGGGATTATCAGTGGAAATCTGT

FIG. 29A

Appl. No. *To Be Assigned*; Group Art Unit: *To Be Assigned*; Inventors: Michelle M. Hanna.; Tel: 202.371-2600
Title: Molecular Detection Systems Utilizing Reiterative Oligonucleotide Synthesis

GGTGTATGTTGAATAAATCGAATATAATTGATCGAAATTATTAGAAGCGGCCGGCGCGGTGCCTC
ACGCCTTGTAAATCCCTCACTTGGGAGATCAAGGCAGGGGGAAATCACCTGAGGTGGGAGTTCGAGACCA
GCCTGGCCAACAGGTGAAACCTCGCCTCTACTAAAAAATACAAAAAGTAGCCGGGGGTGGTGGCAGGCGCCT
GTAATCCCAGCTACTCGGGAGGTTGAGGCAGGAGAACGCTGAACCCGGAGGCTGAGGTTGAGTGAAC
AGCGAGATGGAGGCCACTTCAGCCTGGGTGACAGAGTGAGACTTTGTCGAAAGAAAAGAGAGAGAA
AGAGAGAGAGAAAAATTATTAGAAGCAACTACATATTGTGTTTATTAACTGAGTAGGGCAAATAAATATA
TGTTTGCTGTAGGAACCTAGGAAATAATGAGCCACATTGATCATGCTTACATTCCAGAGGTAATATGAGTTACCAT
TTTGGGAATATCTGCTAACATTGCTCTTTACTATCTTAGCTTACTTGATATAGTTATTGTGATAAGAG
TTTCAATTCCCTCATTTGAACAGAGGTGTTCTCCTCTCCCTACTCCTGTTGTGAGGGAGTTAGGGGAG
GATTTAAAAGTAATTAATACATGGGTAACCTAGCATCTCTAAAATTGCCAACAGCTGAACCCGGGAGTTG
GCTTGTAGTCCTACAATATCTAGAAGAGAGCTTATTGTTAAAACAAAAGGAAAAGAAAAGTGGATAG
TTTGACAATTAAATGGAG

FIG. 29B

FIG. 30