Probability and Measure - Tutorial 11

1. Assume $(\Omega_1, \mathcal{A}_1) = (\mathbb{R}, \mathcal{B})$ – the real line with Borel σ -algebra – and $(\Omega_2, \mathcal{A}_2) = (\mathbb{N}, P(\mathbb{N}))$ – the natural numbers with σ -algebra given by their power set. Show that, for $E \subset \Omega_1 \times \Omega_2$, we have that $E \in \mathcal{A}_1 \otimes \mathcal{A}_2$ if and only if $E^{\omega_2} \in \mathcal{A}_1$ for all $\omega_2 \in \Omega_2$.

Some terminology for random variables. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X : \Omega \to \overline{\mathbb{R}}$ be a random variable. Recall that the distribution of X is the measure $\mathbb{P}_X = \mathbb{P} \circ X^{-1}$.

We say that X is discrete if it only attains countably many values. Let $\mathcal{X} \subset \mathbb{R}$ be the set of values attained by X. The probability mass function of X is the function $p_X : \mathcal{X} \to \mathbb{R}$ defined by

$$p_X(x) = \mathbb{P}(X = x), \quad x \in \mathcal{X}.$$

We say that X is absolutely continuous if there exists a function $f_X: \mathbb{R} \to [0, \infty)$ such that

$$\mathbb{P}(X \in A) = \int_A f_X \, \mathrm{d}m \quad \text{for all } A \in \mathcal{B}.$$

Such a function f_X is called a *probability density function* of X (note that f_X is not uniquely defined: if we change it in a set of measure zero, the above property will still hold).

- 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $X : \Omega \to \overline{\mathbb{R}}$ be a random variable. Let $g : \mathbb{R} \to \overline{\mathbb{R}}$ be a measurable function such that $g \circ X$ is integrable.
 - (a) Prove that

$$\mathbb{E}[g(X)] = \int_{\mathbb{R}} g \, d\mathbb{P}_X.$$

(b) Prove that if X is discrete, attaining values on a countable set \mathcal{X} and with probability mass function p_X , then

$$\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}} g(x) \cdot p_X(x).$$

(c) Prove that if X is absolutely continuous, with probability density function f_X , then

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx.$$

Review of the Riemann integral. Let $a, b \in \mathbb{R}$, $a \leq b$. Recall that a partition \triangle of the interval [a, b] is a finite set of intervals of the form

$$[x_0, x_1], [x_1, x_2], \dots [x_{n-1}, x_n]$$

with

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b.$$

We say a partition \triangle of [a,b] is a *refinement* of another partition \triangle' of [a,b] if the endpoint of every interval in \triangle' is also the endpoint of an interval of \triangle . The *norm* of a partition \triangle (denoted $|\triangle|$) is defined as the largest among the lengths of the intervals of \triangle .

Given a function $f:[a,b]\to\mathbb{R}$ and a partition \triangle of [a,b], we define the lower and upper sums

$$S_*(f,\triangle) = \sum_{I \in \triangle} \left(\inf_{x \in I} f(x) \right) \cdot m(I), \qquad S^*(f,\triangle) = \sum_{I \in \triangle} \left(\sup_{x \in I} f(x) \right) \cdot m(I).$$

The function is said to be *Riemann integrable* if, given any sequence of partitions \triangle_N of [a,b] so that

$$\triangle_{N+1}$$
 is a refinement of $\triangle_N \ \forall N$, $\lim_{N\to\infty} |\triangle_N| = 0$,

we have that

$$\lim_{N \to \infty} S_*(f, \triangle_N) = \lim_{N \to \infty} S^*(f, \triangle_N) \in \mathbb{R}.$$

In this case, the *Riemann integral* of f on [a,b] is the common value of the above limits. It will be denoted here by R(f,[a,b]), to distinguish it from the Lebesgue integral.

- 3. Let [a,b] be an interval and $f:[a,b]\to\mathbb{R}$ be Riemann integrable.
 - (a) Prove that f is $(\mathcal{M}, \mathcal{B})$ -measurable $(\mathcal{M}$ is the Lebesgue σ -algebra on [a, b]).
 - (b) Prove that f is (Lebesgue) integrable and the values of its Lebesgue and Riemann integrals coincide.
- 4. Let $f:[1,\infty)\to\mathbb{R}$ be defined by $f(x)=\frac{\sin x}{x}$. Prove that the limit $\lim_{a\to\infty}\int_1^a f(x)\mathrm{d}x$ exists, but f is not Lebesgue integrable.