Cryptographic Protocols

Spring 2019

Part 2

Polynomial, Negligible, Noticeable

Function $f: \mathbb{N} \to \mathbb{R}$

- f is polynomial $\Leftrightarrow \exists c \exists n_0 \forall n \geq n_0 : f(n) \leq n^c$
- f is negligible $\Leftrightarrow \forall c \exists n_0 \forall n \geq n_0 : f(n) \leq \frac{1}{n^c}$
- f is noticeable $\Leftrightarrow \exists c \exists n_0 \forall n \geq n_0 : f(n) \geq \frac{1}{n^c}$
- f is overwhelming \Leftrightarrow 1-f is negligible

Implications

- $poly \times poly = poly$; poly(poly) = poly
- ullet poly imes negligible \subseteq negligible
- (poly \times noticeable) \cap overwhelming \neq {}

P, NP, PSPACE, etc.

Running Time of a Turing machine (TM, aka algorithm)

- for input x: number of steps s(x)
- for *n*-bit input: $t(n) := \max\{s(x) : x \in L, |x| \le n\}$ (worst-case)
- ullet TM is poly-time iff t(n) is a polynomial function

Complexity Classes

- $P = \{L : \exists \text{ poly-time TM that decides } L\}$
- NP = $\{L: \exists \text{ poly-time comp. function } \varphi: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ s.t. $x \in L \Leftrightarrow \exists w \ (\varphi(x,w) = 1 \ \land \ |w| \leq \text{poly}(|x|)) \ \}$

(also: NP = {L : \exists non-det. poly-time TM that accepts L})

- NP-hard = $\{L : \forall L' \in \mathsf{NP}: \ L' \text{ can be reduced to } L\}$
- NP-Complete = NP \cap NP-hard
- $\bullet \ \mathsf{PSPACE} = \{L: \exists \ \mathsf{TM} \ \mathsf{that} \ \mathsf{accepts} \ L \ \mathsf{with} \ \mathsf{poly} \ \mathsf{memory} \ (\mathsf{in} \ \mathsf{any} \ \mathsf{time})\}$

Interactive Proofs of Statements

Def: An interactive proof for language L is a pair (P,V) of int. programs s.t.

i) $\forall x$: running time of V is polynomial in |x|

ii) $\forall x \in L$: $\Pr((P \Leftrightarrow V) \rightarrow \text{``accept"}) \geq 3/4$

[p = 3/4]

iii) $\forall x \notin L, \forall P' : Pr((P' \Leftrightarrow V) \rightarrow \text{``accept"}) \leq 1/2$

[q = 1/2]

Examples: Sudoku, GI, GNI, Fiat-Shamir.

Remarks

- ullet Constants p,q are arbitrary, could be $p=1-2^{-|x|}$ and $q=2^{-|x|}$
- ullet However: only NP-languages have proofs with q=0
- If iii) holds only for poly-time P': interactive argument (not a proof)
- Probabilistic P are not more powerful than deterministic P

Def: IP = set of L which have an interactive proof.

Theorem: IP = PSPACE.

Zero-Knowledge

Idea: Protocol (P,V) has transcript T, simulator S outputs similar T'.

Def: (P,V) is **zero-knowledge** (**ZK**) $\Leftrightarrow \forall$ poly-time V' \exists S:

- i) Transcript T of (P ↔ V') and output T' of S are indistinguishable.
- ii) Running time of S is polynomially bounded.

Def: (P,V) is black-box zero-knowledge (BB-ZK) $\Leftrightarrow \exists S \forall V'$:

- i) Transcript T of (P \Leftrightarrow V') and output T' of S in (S \Leftrightarrow V') are indisting..
- ii) Running time of S is polynomially bounded.

Def: (P,V) is **honest-verifier zero-knowledge** (HVZK) if S exists for V' = V.

Types of ZK: perfect, statistical, computational (type of indisting.)

c-Simulatability and Zero-Knowledge

Definition: A three-move protocol (round) with challenge space $\mathcal C$ is c-simulatable if for any value $c\in \mathcal C$ one can efficiently generate a triple (t,c,r) with the same distribution as occurring in the protocol (conditioned on the challenge being c), i.e., the conditional distribution $P_{TR|C}$ is efficiently samplable.

Lemma: A 3-move *c*-simulatable protocol is HVZK. (assumption: challenge is efficiently samplable)

Lemma: A HVZK round with c uniform from $\mathcal C$ for poly-bounded $|\mathcal C|$ is ZK.

Lemma: A sequence of ZK protocols is a ZK protocol.

Theorem: A protocol consisting of c-simulatable rounds, with uniform challenge from a (per-round) polynomially bounded space \mathcal{C} , is perfect ZK.