Homework 7

Madilyn Simons

1. If $f(x) = x^7 - 7(x+1) + 20$, then

$$f(x+1) = x^7 + 7x^6 + 21x^5 + 35x^4 + 35x^3 + 21x^2 + 14$$

By Eisenstein's Criterion, f(x+1) is irreducible in $\mathbb{Q}[x]$, and so f(x) is irreducible in $\mathbb{Q}[x]$.

- 2. Let $f(x) = x^5 4x^4 + 4d^3 + 3x^2 26x + 21$. If p = 2, then $\overline{f}(x) = x^5 + x^2 + 1$ in $\mathbb{Z}_p[x]$. Since $\overline{f}(0) = \overline{f}(1) = 1$, $\overline{f}(x)$ is irreducible in $\mathbb{Z}_p[x]$. Therefore, f(x) is irreducible in $\mathbb{Q}[x]$.
- 3. (a) Since -1+3i is a root of f(x), -1-3i is a root of f(x). Therefore

$$f(x) = (x+1+3i)(x+1-3i)(h(x)) = (x^2+2x+10)(h(x))$$

for some polynomial h(x). By division,

$$h(x) = f(x)/(x^2 + 2x + 10) = x^4 + x^2 - 6$$

Thus,

$$f(x) = (x^2 + 2x + 10)(x^4 + x^2 - 6) = (x^2 + 2x + 10)(x^2 + 3)(x^2 - 2)$$

We know that $(x^2 + 2x + 10)$ and $(x^2 - 2)$ are irreducible in $\mathbb{Q}[x]$ by Eisenstein's Criterion for prime p = 2, and $(x^2 + 3)$ is irreducible in $\mathbb{Q}[x]$ for prime p = 3. Therefore, the irreducible factorization of f(x) in $\mathbb{Q}[x]$ is

$$f(c) = (x^2 + 2x + 10)(x^2 + 3)(x^2 - 2)$$

(b) In $\mathbb{R}[x]$,

$$f(x) = (x^2 + 2x + 10)(x^2 + 3)(x^2 - 2) = (x^2 + 2x + 10)(x^2 + 3)(x + \sqrt{2})(x - \sqrt{2})$$

We know that $(x^2+2x+10)$ and (x^2+3) are irreducible $\mathbb{R}[x]$ because a polynomial of the form $f(x)=ax^2+bx+c$ is irreducible in $\mathbb{R}[x]$ if $b^2-4ac<0$. Therefore, the irreducible factorization of f(x) in $\mathbb{R}[x]$ is

$$(x^2 + 2x + 10)(x^2 + 3)(x + \sqrt{2})(x - \sqrt{2})$$

(c) In $\mathbb{C}[x]$, the irreducible factorization of f(x) is

$$f(x) = (x+1+3i)(x+1-i)(x+\sqrt{3}i)(x-\sqrt{3}i)(x+\sqrt{2})(x-\sqrt{2}i)$$

We know that each of these polynomials are irreducible in $\mathbb{C}[x]$ because they all have degree 1.