CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

CPU & Control Unit

Lecture No.- 03

Recap of Previous Lecture

Topics to be Covered

Topic: Hardwired Control Unit

Control logic is implemented with Gates, flip-flops, decoders and other digital circuits.

Advantage: Can be optimized to produce a faster mode of operation.

Disadvantage: Rearranging the wires among various components is difficult.

-> can be implemented only for simple computers.

I what type of instrs CPU can support? 2. How to execute insth? -> sequence of micro-operations to execute inst. I4. -- for each micro-oph Instⁿ I1 IZ IS what control word to be generated 1. Minn-op1 2. M-02 M-03 4. 4. 5 5. 6. M-0/2 Which signal to be active & which to be inactive

Table	for nleth II	I2	TJ	
TI	00110111000 II IT S3 54 56 57 58			
T2 T3				
TY TS				

Topic: Hardwired Control Unit

#Q. A hardwired CPU uses 10 control signals S1 to S10, in various time steps T1 to T5, to implement 4 instructions 11 to 14 as shown below:

	T1	T2	Т3	T4	T5
I1	S1, S3, S5	S2, S4, S6	S1, S7	S10	S3, S8
12	S1, S3, S5	S8, S9, S10	S5, S6, S7	s 6	S1O
13	S1, S3, S5	S7, S8, S10	S2, S6, S9	S10	S1, S3
I4	S1, S3, S5	S2, S6, S7	S5, S10	S6, S9	S10

Which of the following pairs of expressions represent the circuit for generating control signals S5 and S10 respectively?

S5 = T1+(I2
$$H4$$
)·T3 and
S10 = (I1 + I3)·T4 + (I2 + I4)·T5

S5 = T1+(I2
$$+$$
I4)·T3 and
S10 = (I1 + I3 + I4)·T2 + (I2 + I3)·T4+(I2+I4)·T5

$$S5 = T1+(I2H4)\cdot T3$$
 and $S10 = (I2 + I3)\cdot T2+I4\cdot T3+(I1 + I3)\cdot T4+(I2+I4)\cdot T5$

$$SS = T1 + I2T3 + I4T_3$$

= $T1 + (I2 + I4)T_3$

Topic: Micro-Programmed Control Unit

Control logic is implemented with micro-programs.

Advantage: Updating the control logic is easy.

Le can be implemented for complex computers also

Disadvantage: Slower than hardwired control unit.

All possible control words are stored in a memory inside control unit.

Whenever needed, as per the requirement a control word is read from memory.

Topic: Micro-Programmed Control Unit

Control mem.

Control memory ILY c. word c.w. II c.w. sequencer (next add. generaled T2

C. W .] CW2 ca3 C.W. 1 C. W. 2

all control
words needed
to execute
an inst, are
stored sequencially
in same order
as needed

वहर् execute Instⁿ I1 c. W. 4 c.w.5 Sequencer on Each add. in control memory - Micro-insta add. Ø control word address inton for micro-operal sent to sequencer to help it
generating next add.

Topic: Control Word Sequencing

Next address information

Topic: Control Word Sequencing

standard format of control unit micro-inst

control mem.

next address

inputs = (log_inputs)

select lines = (log_inputs)

micros Control mem. add=8 bits

[MCQ]

#Q. The microinstructions stored in the control memory of a processor have a width of 26 bits. Each microinstruction is divided into three fields: a microoperation field of 13 bits, a next address field (X), and a MUX select field (Y). There are 8 status bits in the inputs of the MUX.

How many bits are there in the X and Y fields, and what is the size of the control memory in number of words?

A 10, 3, 1024

B

8, 5, 256

c 5, 8, 2048

D

10, 3, 512

micro-insth 21-676

Next add. MUX Micro-oph select (Signals)

X => 10 bits => no. of words in mem. = 2 = 1024

26 份的

Size of Control memory = 1024 * 26 bits = 26 k bits

Topic: Types of Microprogrammed Control Unit

Horizontal

vertical

2 mins Summary

Topic

Hardwired Control Unit

Topic

Microprogrammed Control Unit

Topic

RISC vs CISC

Topic

Byte Ordering

Happy Learning THANK - YOU