

UiO: Department of Physics
University of Oslo

Monte Carlo Modeling of Transactions

Erik Skaar

Erik Skaar FYS4150

Contents

1	Introduction	2
2	Theory	2
3	3.2 Ridge	2
4	Result & Discussion	2
5	Conclusion	2
6	Appendix	2

CONTENTS Page 1 of 2

Erik Skaar FYS4150

Abstract

[1]

- 1 Introduction
- 2 Theory
- 3 Method
- 3.1 Standard

$$\beta = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

3.2 Ridge

$$\beta = \left(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

3.3 Lasso

$$\beta = \operatorname{argmin}_{\beta} \left\{ \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|^q \right\}$$

- 3.4 k-fold and bootstrap
- 4 Result & Discussion
- 5 Conclusion

References

- [1] Morten Hjorth-Jensen. Computational Physics. Lecture notes. 2015. URL: https://github.com/CompPhysics/ComputationalPhysics/blob/master/doc/Lectures/lectures2015.pdf.
- 6 Appendix

6 APPENDIX Page 2 of 2