Question Review

If the slope of one of the line represented by the equation $ax^2+2hxy+by^2=0$ be λ times that of the other, then:

- \bigcirc 4 λ h = ab(1 + λ)
- $4\lambda h^2 = ab(1 + \lambda)^2$
- none of these

EXPLANATIONS

Report (

56 % were correct!

It is given that, $m_2=\lambda m_1\Rightarrow m_1+\lambda m_1=rac{-2h}{h}$

$$\Rightarrow m_1 = \frac{-2h}{b(1+\lambda)}$$

$$ext{ and } m_1 \cdot \lambda m_1 = rac{a}{b} \Rightarrow m_1 = \sqrt{rac{a}{b\lambda}}$$

Hence,
$$\sqrt{rac{a}{b\lambda}}=rac{-2h}{b(1+\lambda)}$$

On squaring both sides, $4\lambda h^2=ab(1+\lambda)^2$

The number of triangles ABC that can be formed with a=3,b=8 and $\sin A=rac{5}{13}$ is

 \bigcirc 1

O 2

○ 3

Report (!) **EXPLANATIONS**

47 % were correct!

Applying sine rule, $\frac{\sin B}{b}=\frac{\sin A}{a}$ or $\frac{\sin B}{8}=\frac{5/13}{3}$ or $\sin B=\frac{40}{39}>1$, which is not possible. Hence no triangle can be formed by the given conditions.

The vectors $ec{a}=2i-3j+4k, ec{b}=i+j+k, ec{c}=3i-4j+5k$ are:

- linearly independent
- coplanar
- collinear
- onone of theses

EXPLANATIONS Report (!)

49 % were correct!

Given;

$$a=2i-3j+4k$$

$$b = i + j + k$$

$$c=3i-4j+5k$$

$$egin{aligned} \Delta &= egin{array}{ccc} 2 & -3 & 4 \ 1 & 1 & 1 \ 3 & -4 & 5 \ \end{pmatrix} \ &\Rightarrow \Delta &= 2(5+4) + 3(5-3) + 4(-4-3) \ &\Rightarrow \Delta &= -4
eq 0 \end{aligned}$$

So, the vectors are linearly independent.

A complex number z satisfies the equation, $z+\bar{z}=z\bar{z}$. Then, Im(z) lies in:

- (-∞,1]
- O [0,1]
- \bigcirc (-1,1)
- **○** [-1,1]

EXPLANATIONS Report !

22 % were correct!

Let
$$z = a + ib$$

So,
$$z=a-ib$$

By given,

$$2a=a^2+b^2$$

$$\Rightarrow a^2 - 2a + b^2 = 0$$

Since, a is real,

$$B^2-4AC\geq 0\Rightarrow 4-4b^2\geq 0$$

Upon simplification,

$$b \in [-1,1]$$

The distance between the line $\dfrac{x-1}{3}=\dfrac{y+2}{-2}=\dfrac{z-1}{2}$ and the plane 2x+2y-z=6 is:

- O 9
- O 1
- O 2
- **O** 3

EXPLANATIONS Report (!)

35 % were correct!

Check for perpendicularity:

$$3 \cdot 2 + (-2) \cdot 2 + 2 \cdot (-1) = 0$$

So, the line and the plane are parallel, To find the distance between the line and the plane, take any point on the line, (1, -2, 1).

Now the perpendicular distance of the point (1, - 2, 1) from the plane will be the required distance. Hence distance

$$d=\left|rac{2-4-1-6}{\sqrt{9}}
ight|=3$$

If $\sqrt{2}\sec heta+ an heta=1$ then the general value of heta is

- $2n\pi + \frac{\pi}{4}$
- $2n\pi \frac{\pi}{4}$
- $\bigcirc 2n\pi \pm \frac{\pi}{4}$

<u>Report</u> !

39 % were correct!

$$\sqrt{2}\sec{ heta}+ an{ heta}=1\Rightarrowrac{\sqrt{2}}{\cos{ heta}}+rac{\sin{ heta}}{\cos{ heta}}=1$$

$$\Rightarrow \sin \theta - \cos \theta = -\sqrt{2}$$

Dividing by $\sqrt{2}$ on both sides:

$$egin{aligned} rac{1}{\sqrt{2}} \sin heta - rac{1}{\sqrt{2}} \cos heta = -1 \ \Rightarrow rac{1}{\sqrt{2}} \cos heta - rac{1}{\sqrt{2}} \sin heta = 1 \Rightarrow \cos \left(heta + rac{\pi}{4}
ight) = \cos(0) \end{aligned}$$

$$\Rightarrow heta + rac{\pi}{4} = 2n\pi \pm 0 \Rightarrow heta = 2n\pi - rac{\pi}{4}$$

 $\lim_{x o 0}rac{(1+x)^5-1}{(1+x)^3-1}=$

- O
- \bigcirc 1
- 5/3
- O 3/5

EXPLANATIONS

Report !

86 % were correct!

Using L-Hopital Rule:

$$\lim_{x o 0}rac{(1+x)^5-1}{(1+x)^3-1}=\lim_{x o 0}rac{5(1+x)^4}{3(1+x)^2}=5/3$$

Domain of $y=rac{1}{\sqrt{|x|-x}}$ is

- **○** (-∞,0)
- (-∞,0]
- (-∞,-1)
- \bigcirc $(-\infty,\infty)$

EXPLANATIONS Report (!)

55 % were correct!

For y to be defined, $|x|-x>0 \Rightarrow |x|>x$

This happens for all negative x's. So, $x \in (-\infty,0)$

What will happen if CCl_4 is treated with $AgNO_3$

- A white ppt. of AgCl will form
- \bigcirc NO₂ will be evolved

VDI ANIATIONIC	Donort /
(PLANATIONS	<u>Report</u>
25 % were correct! Because CCl_4 is a organic solvent and $AgNO_3$ is insoluble in organic solvent.	
Hardness of water is conventionally expressed in terms of equivalent amount of	
○ MgCO3	
○ Na2CO3	
• CaCO3	
○ NapCO3	
PLANATIONS	<u>Report</u>
molar concentrations of Ca ²⁺ and Mg ²⁺ , in mol/L or mmol/L units.	ididiless is the sain of t
molar concentrations of Ca ²⁺ and Mg ²⁺ , in mol/L or mmol/L units. Iodoethane is converted to Butane by reacting it with metal in presence of ether.	ididiless is the sum of the
lodoethane is converted to Butane by reacting it with metal in presence of ether.	ididiless is the sum of the
lodoethane is converted to Butane by reacting it with metal in presence of ether. Na	ididiless is the sum of the
Iodoethane is converted to Butane by reacting it with metal in presence of ether. Na Al	ATTAINESS IS THE SUITI OF C
Na	nardness is the sum of th
Iodoethane is converted to Butane by reacting it with metal in presence of ether. Na Al Mg Zn	Report (
lodoethane is converted to Butane by reacting it with metal in presence of ether. Na Al Mg	

O CI <f<s<0< th=""><th></th></f<s<0<>	
• O < S < F < CI	
○ S < O < CI < F	
○ F < CI < O < S	
XPLANATIONS	<u>Report</u>
of fluorine is unexp place.	high electron affinity. Electron affinity decrease down the group with an exception of Fluorine. Electron affictedly low $(< Cl)$. This may perhaps be due to small size of F atom due to which electronic repulsion tails $Cl>F>S>O$
	carbonate solution contains 2.65 grams of Na_2CO_3 . If 10 \emph{ml} of this one litre, what is the concentration of the resultant solution (mol. wt. of
O.1M	
O.01M	
O.001M	
O.0001M	
XPLANATIONS	Report
57 % were correct Molarity = $\dfrac{W(}{\mathrm{molecut}}$ 0 m of this solution $N_1V_1=N_2V_2$ $10 imes 0.1=1000 imes x=0.001 M$	$rac{m) imes 1000}{m ext{ wt.} imes V(ml)} = rac{2.65 imes 1000}{106 imes 250} = 0.1 M$ s diluted to 1000 m/
At 90^oC pure wate	has $[H_3O^+]=10^{-6}M,$ the value of K_w at this temperature will be
O 10 ⁻⁶	
• 10 ⁻¹²	

10	-8	

EXPLANATIONS

Report !

60 % were correct!

For pure water $[H^+]=[OH^-]$

$$K_w = [H^+][OH^-]$$

$$\therefore K_w = 10^{-12}$$

What is the minimum concentration of SO_4^{2-} required to precipitate $BaSO_4$ in a solution containing $1.0\times 10^{-4}mol~Ba^{2+}$? (K_{sp} for $BaSO_4$ is 4×10^{-10})

- $0.4 \times 10^{-10} M$
- \bigcirc 2 × 10⁻/M
- 0.4×10^{-9} M
- \circ 2 × 10⁻³M

EXPLANATIONS

Report ()

57 % were correct!

$$BaSO_4
ightleftharpoons Ba^{2+} + SO_4^{2-}$$

$$K_{sp}=[Ba^{2+}] imes[SO_4^{2-}]$$

$$4 imes 10^{-10} = [1 imes 10^{-4}] imes [SO_4^{2-}]$$

$$[SO_4^{2-}] = rac{4 imes 10^{-10}}{1 imes 10^{-4}} = 4 imes 10^{-6}.$$

The number of possible alcoholic isomers for $C_4 H_{10} {\it O}$ are

○ 3

O 5

O 6

EXPLANATIONS

Report !

48 % were correct!

1.	CH_3	$-CH_2$	$-CH_2$	$-CH_2$	-OH
			Butan -1-0	.1	

2.
$$CH_3 - CH_2 - CH - CH_3$$

OH Butan -2-ol

3.
$$CH_3 - CH - CH_2 - OH$$

 CH_3

2 methyl pro pan -1-ol

$$CH_3$$

4.
$$CH_3 - CH_3 = CH_3$$

2-Methyl propan - 2-ol

You look ----. What's the matter?

- sad
- sadness
- sadly
- none

EXPLANATIONS Report !

94 % were correct!

An adjective defines noun/pronoun. Here, 'you' is a pronoun which is described by the adjective 'sad'.

sadness = noun

sadly = adverb

Which one is correct?

- Do you brush your teeth daily?
- O Did you brush your teeth daily?
- O Have you brushed your teeth daily?
- All of above.

EXPLANATIONS

Report !

74 % were correct!

22, 9:34 A	Test Result EngineeringDote
	Habitual actions are indicated by simple present tense.
	and in the national hird of America
	eagle is the national bird of America
	○ A
	○ An
	• The
	○ None
	The passive voice of "Did Sanjeev kiss her?" is:
	Was she kissed by Sanjeev?
	O Has she been kissed by Sanjeev?
	O Did she kiss Sanjeev?
	O Does she kiss Sanjeev?
EX	PLANATIONS Report !
	76 % were correct!
	Active: Subject + verb + object.
	Passive: Object + be-verb + past participle (v_3) + by subject.
	The tense remains the same.
	Previous 1 Next

2022 © **engineeringdote**, a product of Studydote Pvt. Ltd - Online study portal