Parts I & II	for example:
Mod(S) Teich(S) space of hyp metrics on S/ isotopy	 Isom Teich(S) ≅ Mod ± (S) Nielsen-Thurston classification for elements of Mod(S)
This action tells us about both Mod(S)	This is geometric gp thy.
& Teich(s) Teich(s)	Teich metric.

Moduli space X(5) < 0 M(S) = {hyp metrics} / isometry. = {complex str's}/~

= { algebraic strs}/~ = {conformal strs}/~

eichmüller space (orbifold) univ. cover q & Diffo (T2) of M(S). q*(M) is a different Euch metric on T; Teich(S) = { hyp. metnics }/isotopy isometric to u via q. = { hyp. metrics}/Diffo(S) $(X_1,\varphi_1) \sim (X_2,\varphi_2)$ if (action is pullback) tisotopic to id. 3 isometry I: X, → X2 = $\{(X, \varphi): X \text{ hyp surf.}\}$ marked

g: 5 → X diffeo \$/~ S = top surface, φ_2 φ_2 φ_3 φ_4 φ_2 φ_3 φ_4 Commute up to isotopy.

The torus Teich (T2) = { Eucl. metrics } / scale isometry = {(X, 4)}/~ Prop. Teich (T2) \ighthappy H2 Pf. Teich (T2) marked lattices in R2 Prop ~ topology on marked
parallelograns/scale
parallelograns/isometry

Scale so a = 1 € C reflect over IR so im b > 0.

Teich (T2). We'll see: Teich metric is hyp metric.

Marked octagons / isometry Some points in Teich (S2)

Length functions

For a curve (isotopy class) in S: La: Teich(S) → R

X Lx(a) length of the geodesic in X-metric.

(no such map for M(S)).

let &= {curres in S}/isotopy

lengths of (actually: 6g-5 comes Will show: $l: Teich(s) \longrightarrow \mathbb{R}^d$ injective. determine the metric)

The algebraic topology Have: Teich(Sg) \hookrightarrow DF(Tr₁(Sg), PSL₂TR)/PGL₂R via deak gp action DF (M1(S3), PSL2R) discrete faithful reps TI (Sg) -> PSL2R Conjugation. Like torus case:

Teich (T2) > DF (Z2, |som E2)/|som E2 cov space actions
Tr(Sg) → Isom H2 DF(Tr.(Sg), PSL2TR)/PGL2R has a natural topology from (PSL2TR)²⁹