Parte A de la primera prueba

Seleccione y resuelva tres de los siguientes ejercicios.

Ejercicio 1. Resuelva las siguientes cuestiones:

- a. Pruebe que la diferencia $(27^4)^9 (25^3)^6$ es múltiplo de 37.
- b. Pruebe que todo número natural $n \ge 8$ puede escribirse de la forma n = 3p + 5q, donde $p, q \in \mathbb{N} \cup \{0\}$.
- c. Halle el número natural $N=2^a5^b$ sabiendo que la suma de todos sus divisores es 961.

Ejercicio 2. Determine a y b para que las raíces del polinomio con coeficientes reales,

$$f(x) = x^4 - 2x^3 - 21x^2 + ax + b$$

estén en progresión aritmética.

Ejercicio 3. Una urna contiene tres bolas blancas y cuatro bolas rojas. Tres bolas son transferidas aleatoriamente a una segunda urna vacía. Una bola es seleccionada al azar de la segunda urna, y resulta ser blanca. ¿Cuál es la probabilidad de obtener de esta segunda urna al menos una bola roja, al extraer las dos bolas restantes?

Ejercicio 4. Calcule las raíces de la siguiente ecuación sabiendo que sus afijos forman un rombo con diagonales paralelas a los ejes y con centro en z = i:

$$x^4 - 4ix^3 - 3x^2 - 2ix - 6 = 0$$

Ejercicio 5. Calcule el área encerrada por la gráfica de la curva $y = 4 \cos^2(x) - 6 \operatorname{sen}(x)$ y el eje de abscisas, entre dos valores del eje de abscisas separados por un periodo.

Ejercicio 6. Determine los vértices de un cuadrado sabiendo que:

- i. Su centro está en el punto (2,3).
- ii. Si se traslada dicho centro al origen de coordenadas, se gira un ángulo de 60° en sentido positivo y se reducen sus lados a la mitad, los vértices del nuevo cuadrado son los afijos de las raíces de un polinomio de grado 4 con coeficientes reales, siendo una de ellas $x_1 = 1$.