

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»			
КАФЕДРА«Программное обеспечение ЭВМ и информационные технологии»			
ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №2			
Студент Ковель Александр Денисович			
Группа	ИУ7-76Б		
Предмет	ет Моделирование		
Студент			Ковель А. Д.
		подпись, дата	фамилия, и.о.
Преподават	ель		Рудаков И. В.

подпись, дата

фамилия, и.о.

1 Аналитические раздел

1.1 Марковские случайные процессы

Марковский процесс — случайный процесс, обладающий следующим свойством: для каждого момента времени t_0 вероятность любого состояния системы в будущем при $\mathbf{t} > t_0$ зависит только от состояния системы в настоящем $\mathbf{t} = t_0$ и не зависит от того, как процесс развивался в прошлом.

Вероятностью і-ого состояния называется вероятность $P_i(t)$ того, что в момент времени t система будет находиться в состоянии S_i . Для любого момента t сумма вероятностей всех состояний равна единице.

Для марковских процессов используются уравнения Колмогорова, составляющиеся по следующему правилу: в левой части каждого уравнения стоит производная вероятности состояния, а правая часть содержит столько членов сколько стрелок связано с данным состоянием. Если стрелка направлена из состояния, то соответствующий член имеет знак «-», в состояние — «+». Каждый член равен произведению интенсивности данной стрелки и вероятности того состояния, из которого исходит стрелка.

То есть строится система уравнений, которые имеют вид:

$$p'_{i}(t) = \sum_{j=1}^{n} \lambda_{ji} p_{j}(t) - p_{i}(t) \sum_{j=1}^{n} \lambda_{ij},$$
(1)

n — число состояний в системе;

 λ_{ij} — интенсивность перехода системы из i-ого состояния в j-ое.

Для определения предельных вероятностей состояний необходимо в уравнениях Колмогорова заменить их производные нулями и решить полученную систему линейных алгебраических уравнений.

Одно из уравнений данной системы заменяется условием нормировки:

$$\sum_{i=1}^{n} p_i(t) = 1. (2)$$

Время стабилизации вероятности состояний с некоторым малым шагом Δt , считается найденным, когда выполняется соотношение:

$$|p_i(t) - \lim_{t \to \infty} p_i(t)| < \varepsilon, \tag{3}$$

где ε — точность.

2 Результаты работы

На рисунке 1 представлен результат работы программы с 3 состояними.

Рисунок 1 – Результат работы программы с 3 состояними