WHOOPS, THERE IS A FIBONACCI REPRESENTATION OF $\mathcal{H}_{k,q}(S_n)$

MILES JOHNSON & NATALIE STEWART

Let k be a field, and let $q \neq 0 \in k$ be the parameter of the Hecke algebra $\mathscr{H} := \mathscr{H}_{k,q}(S_n)$. Let F^m be the vector space with basis given by the strings $\{*,p\}^{m+2}$ in which the character * doesn't appear twice in a row. We will act on this by \mathscr{H} by defining the action of T_i "locally", and changing character i+1 only dependent on characters i,i+1,i+2. We will use "hat" notation e.g. $(1+T_1)(pppp)=(\widehat{pppp})$. Then, we may define our action as follows:

$$\widehat{(*pp)} := a(*pp)$$

$$\widehat{(*p*)} := b(*p*)$$

$$\widehat{(p*p)} := c(p*p) + d(ppp)$$

$$\widehat{(pp*)} := a(pp*)$$

$$\widehat{(ppp)} := d(p*p) + e(ppp).$$

for constants

$$a = -1$$

$$b = q$$

$$c = \tau(q\tau - 1)$$

$$d = \tau^{3/2}(q + 1)$$

$$e = \tau(q - \tau)$$

$$\tau = \frac{2}{1 + \sqrt{5}}.$$

It is easy to verify that these are compatible with the quadratic and braid relations, and hence define a representation F^m of \mathcal{H} , henceforth referred to as the Fibonacci representation. This has 4 subrepresentations dependent on the first and last character. We will characterize these subrepresentations fully in the following section.

1. Characterization of ${\cal F}^m$ via Specht Modules

Let $F^m = F^m_{*p} \oplus F^m_{p*} \oplus F^m_{**} \oplus F^m_{pp}$ be the decomposition of the Fibonacci representation into the 4 subrepresentations depending on the values of the first and last character. We'll supress the superscripts when the dimension is clear.

Note that F^m has dimension the m+1st fibonacci number f_{m+2} , we have $\dim F^m_{**}=f_{m+1}$, $F^m_{*p}\simeq F^m_{p*}$ has dimension f_m , and $\dim F^m_{pp}=f_{n-1}$. Further, note that m=2n gives that $\dim F^m_{pp}=\dim D^{(2,\ldots,2)}$; we will prove that these modules are isomorphic via the following propositions:

- (1) F^m_{*p} is irreducible, and Res $F^m_{*p} \simeq F^{m-1}_{pp} \simeq F^{m-1}_{*p} \oplus F^{m-1}_{**}$.
- (2) Res $F_{**}^m \simeq F_{*p}^{m-1}$.
- (3) F^m decomposes into a direct sum of irreducible representations:

$$F^m \simeq 3F^m_{*p} \oplus 2F^m_{**}$$

item Let $D_{m,k} := D^{(m,m-k)'}$ be the nearly-two-column Specht module. Then,

Res
$$D_{m,0} \simeq D_{m-1,1}$$

Res $D_{m,1} \simeq D_{m-1,0} \oplus D_{m-1,2}$
Res $D_{m,2} \simeq D_{m-1,1} \oplus D_{m-1,3}$
Res $D_{m,3} \simeq D_{m-1,2}$.

(4) The claims are henceforth conjectural:

$$F_{**}^{2n} \simeq D_{n,0}$$

 $F_{**}^{2n-1} \simeq D_{n+1,3}$
 $F_{*p}^{2n} \simeq D_{n+1,2}$
 $F_{*p}^{2n-1} \simeq D_{n,1}$.

If these are true, then

$$F^{2n} \simeq 3D_{n+1,2} \oplus 2D_{n,0}$$

 $F^{2n-1} \simeq 3D_{n,1} \oplus 2D_{n+1,3}.$

(5) In the 2n=8 case, let K be the intersection of kernels of $(1+T_i)$ for W; then, we have $W/K \simeq F_{**}$. We can start by studying low-dimensional cases. First, note that F_{*p}^2 is the sign representation $D^{(2)}$ and F_{**}^2 is the trivial representation $D^{(1)^2}$.

 F_{pp}^2 , which is a 2-dimensional representation of a semisimple commutative algebra, and hence decomposes into a direct sum of two subrepresentations. In particular, we can use the basis $\{(p*p), (ppp)\}$ and explicitly write the matrix

$$\rho_{T_1} = \begin{bmatrix} c & d \\ d & e \end{bmatrix}$$

having characteristic polynomial $(c-\lambda)(e-\lambda)-d^2=\lambda^2-(c+e)\lambda+(ce-d^2)$. The reader can verify that this has roots are -1 and q. The eigenspaces with eigenvalues -1 and q are subrepresentations isomorphic to the sign and trivial representation, hence F_{pp} is isomorphic to a direct sum of the trivial and sign representations: $F_{pp}^2 \simeq F_{pp}^2 \oplus F_{pp}^2$.

Now let's prove that F_{**}^3 is irreducible; this has basis $\{*p*p\}$, $\{*ppp\}$, and the following matrices:

$$\rho_{T_1} = \begin{bmatrix} b & 0 \\ 0 & a \end{bmatrix}; \qquad \rho_{T_2} = \begin{bmatrix} c & d \\ d & e \end{bmatrix}.$$

A subrepresentation must be one-dimensional, and hence an eigenspace of each of these matrices; since $b \neq a$, the first has eigenspaces given by the spans of basis elements, and since $d \neq 0$, these are not eigenspaces of the second. Hence F_{**}^3 is irreducible. Now we may move on to the general case.

Proposition 1.1. The representation $F_{*p} := F_{*p}^m$ is irreducible.

Proof. We will prove this inductively in m. We've already proven it for F_{*p}^3 and F_{*p}^4 , so suppose that F_{*p}^{m-2} is irreducible.

Let $\{v_i\}$ be the basis for F_{*p} . Then, each v_i is cyclic; indeed, we can transform every basis vector into $(*p \dots p)$ by multiplying by the appropriate $\frac{1}{d-c}(T_i-c)$, and we can transform $(*p \dots p)$ into any basis vector by multiplying be the appropriate $\frac{1}{d-e}(T_i-e)$. Hence it is sufficient to show that each $v \in F_{*p}$ generate some basis element.

Let v' be the basis element (*p*p...p), which is many copies of *p, followed by an extra p if m is odd. We will show that each $v \in F$ generates v'.

Say that a basis element v_i is represented in v if it has nonzero coefficient in v. Suppose that no elements beginning (*p*p) are represented in v_i ; then, all such elements are represented in T_3v , so we may assume that at least one is represented in v.

Note that $(T_2 - a)v$ is a nonzero element where only elements beginning (*p*p) are represented; if F' is the subspace of F_{*p} spanned by v_i beginning (*p*p), then $\operatorname{Res}_{\mathscr{H}(S_{m-2})}^{\mathscr{H}(S_m)}F' \simeq F_{*p}^{m-2}$, and v' is mapped to the analogous element in F_{*p}^{m-2} . Hence irreducibility of F_{*p}^{m-2} implies that v' is generated by $(T_2 - a)$, and F_{*p}^m is irreducible.

Figure 1. Illustration of the partitions of 9 which can, via row removal, yield (n, n-2)' alone, or both (n, n-2)' and (n-1, n-1)'.

There is a bit of bookkeeping to do; we've equivocated by saying asserting that the subalgebras $\mathscr{H}_{k,q}(S_{m-r}) \subset \mathscr{H}_{k,q}(S_m)$ are equivalent, inclding restrictions. This works because they are conjugate, and conjugation gives an isomorphism of the restriction of a representation to separate subalgebras.

Knowing this, the restriction statements are clear; $\operatorname{Res} F^m_{*p} \simeq F^{m-1}_{pp}$ by considering the last m-2 transpositions, and $\operatorname{Res} F^{m-1}_{*p} \simeq F^{m-1}_{*p} \oplus F^{m-1}_{**}$ by considering the first m-2. Similarly, $\operatorname{Res} F^m_{**} \simeq F^{m-1}_{*p}$ by considering the first m-2 transpositions. This gives that $F \simeq 3F_{*p} \oplus 2F_{**}$.

Now we may move on and use Young Tableau to characterize F. Recall that the socle of D^{λ} is given \bigoplus D^{μ} , and that D^{λ} is semisimple iff every $\mu \xrightarrow{\text{normal}} \lambda$ is good. $\mu \xrightarrow{\text{good}} \lambda$

Proposition 1.2. The irreducible components of F are given by the following isomorphisms:

$$\begin{split} F_{**}^{2n} &\simeq D^{(n,n)'} \\ F_{**}^{2n-1} &\simeq D^{(n+1,n-2)'} \\ F_{*p}^{2n} &\simeq D^{(n+1,n-1)'} \\ F_{*p}^{2n-1} &\simeq D^{(n,n-1)'}. \end{split}$$

Proof. We will prove this by induction on n; we have already proven the base case F^2 , so suppose that we have proven these isomorphisms for F^{2n-2} . We will prove the isomorphisms for F^{2n-1} and F^{2n} . By semisimplicity, $F^{2n-1}_{**} \simeq D^{\lambda_{**}}$ and $F^{2n-1}_{*p} \simeq D^{\lambda_{*p}}$ for some diagrams λ_{**} and λ_{*p} . We will show

that $\lambda_{**} = (n+1, n-2)'$ and $\lambda_{*p} = (n+1, n-1)'$.

First, note that we have

Res
$$D^{\lambda_{**}} \simeq D^{(n,n-2)'} \simeq \text{Res } D^{(n+1,n-2)'}$$

and

Res
$$D^{\lambda_{*p}} \simeq D^{(n,n-2)} \oplus D^{(n-1,n-1)} \simeq \text{Res } D^{(n,n-1)'}$$
.

By semisimplicity, every normal cell in λ_{**} and λ_{*p} is good, and every good cell is removed in a summand of the restriction.

In particular, for λ_{**} , the only tableaus which can remove a cell to yield $D^{(n,n-2)'}$ are (n+1,n-2)', (n, n-1)', and (n, n-2, 1)' as illustrated in Figure 1; we have already seen that $D^{(n,n-1)'}$ does not have irreducible restriction, so we are left with (n+1, n-2)' and (n, n-2, 1)'. To have irreducible restriction, λ_{**} must have 1 as its only normal number; we may directly check that (n, n-2, 1)' doesn't satisfy this, as we have the following:

$$\beta_{\lambda}(1,2) = 3 - 2 + (n-2) = n - 1$$

$$\beta_{\lambda}(1,3) = 3 - 1 + n = n + 2$$

$$\beta_{\lambda}(2,3) = 2 - 1 + 3 = 4.$$

At least one of $\beta(1,2)$ and $\beta(1,3)$ is nonzero, and hence at least one of M_2 and M_3 is empty. Hence at least one of 2 or 3 is normal, and $\lambda_{**} = (n+1, n-2)$.

For λ_{*p} , we immediately see from Figure 1 that the only option is (n, n-1).

We can perform a similar argument for the ${\cal F}^{2n}$ case, finding now that

Res
$$D^{\mu_{**}} \simeq D^{(n,n-1)'} \simeq \text{Res } D^{(n,n)'}$$

and

Res
$$D^{\mu_{*p}} \simeq D^{(n,n-1)'} \oplus D^{(n+1,n-2)'} \simeq \text{Res } D^{(n+1,n-1)'}$$
.

Through a similar process, we see that $\mu_{*p} = (n+1, n-1)'$. We narrow down μ_{**} to one of (n, n)' or (n, n-1, 1)', and note that

$$\beta_{\mu}(1,2) = 3 - 2 + (n-1) = n$$

$$\beta_{\mu}(1,3) = 3 - 1 + n = n + 2$$

$$\beta_{\mu}(2,3) = 2 - 1 + 2 = 3$$

and hence at least one of 2 or 3 is normal, $\text{Res}D^{(n,n-1,1)'}$ is not irreducible, and $\mu_{**}=(n,n)'$, finishing our proof.

Hence F is semisimple, and we have its decomposition into quotients of specht modules. We've proven almost everything that we've set out to; all that's left is explicit transition matrices $W \to F_{**}$.