Geometric Deep Learning

Erik Schultheis, Kate Haitsiukevich, Çağlar Hızlı, Alison Pouplin, Vikas Garg 8.2.2024

Course overview

- Introductory lectures: Group Theory, Graph Neural Networks, GDL Blueprint, Manifolds
- Exercises (first set: next week; deadline 6.11.24)
- Presentations by You

Tentative Timeline

Week	Date	Session 1 (45')	Session 2 (45')
October - Perio	od II		
Week 43	24.10	Introduction	Group Theory
Week 44	31.10	GNNs - Course I	GNNs - Course II
November - Pe	riod II		
Week 45	07.11	GNNs - Solutions	Sym Course
Week 46	14.11	Sym Solutions	Man Course I
Week 47	21.11	Man Course II	Paper
Week 48	28.11	Man Solutions	Paper
December- Period II			
Week 49	05.12	Evaluation week	
Week 50	12.12	Evaluation week /	Neurips
Week 51	19.12	Holidays	

Tentative Timeline

Week	Date	Session 1 (45')	Session 2 (45')			
January - Period III						
Week 02	09.01	Paper	Paper			
Week 03	16.01	Paper	Paper			
Week 04	23.01	Paper	Paper			
Week 05	30.01	Paper	Paper			
February - Period III						
Week 06	6.02	Paper	Paper			
Week 07	13.02	Paper	Paper			
Week 08	20.02	Evaluation week				
		•				

Resources

- · Geometric Deep Learning book
- Graph Represetation Learning book
- Equivariant and coordinate-independent CNNs book

Evaluation

- Participation in course
- Notebook exercises
- Paper presentation
- Writing assignments

Part I: Why Geometric Deep Learning

Learning on generic vector spaces

classification with real-valued data

Given training dataset $x_1, \ldots, x_n \in \mathbb{R}^d$ and labels $y_1, \ldots, y_n \in [C]$, generate a function so that

$$\mathbb{E}_{X,Y}[\ell(f(X),Y)] \to \mathsf{min} \ .$$

Learning on generic vector spaces

classification with real-valued data

Given training dataset $x_1, \ldots, x_n \in \mathbb{R}^d$ and labels $y_1, \ldots, y_n \in [C]$, generate a function so that

$$\mathbb{E}_{X,Y}[\ell(f(X),Y)] \to \min$$
.

Requires huge amounts of data.

Handwritten digits, original									
	0	0	0	0	0	O	O	0	
	1	l	1	١	١	/	/	1	
	2	J	2	2	2	J	2	2	
	3	3	3	3	3	3	3	3	
	4	4	Y	Ч	4	4	4	4	
	5	5	5	5	5	5	5	5	
	6	G	6	6	6	6	6	6	
	7	7	7	7	7	7	7	7	
	8	8	8	8	8	8	8	8	
	9	૧	9	9	9	9	9	9	

Handwritten digits, permuted Š SOUR MAN WILL SAME SEEMS SEEMS SOCIAL LANGE LANGE September 1931 Jahr Shipper ě TYTH WINELESS ISSUES W. St. Water 18 (S.) TENNING TEN **经验的** Line spide with SAM Poto 140.7 35.0C 9 , L 1 1 1

Examples of structured data

Architecture	Domain	Symmetry
CNN	Grid	Translation
Spherical CNN	Sphere / SO(3)	Rotation SO(3)
Mesh CNN	Manifold	Gauge Symmetry
GNN	Graph	Permutation
Deep Sets	Set	Permutation
Transformer	Complete graph	Permutation
LSTM	1D Grid	Time translation

Part II: Statistical Learning Theory

Data distribution

Image: Amini et al. (2019)

Data distribution

Definitions

- · data point/instance $x_i \in \mathcal{X} = \mathbb{R}^d$
- label $y_i \in \mathbb{R}$ (regression), $y_i \in [C]$ (classification)
- · data set: $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^n$
- · data distribution: $x_i \sim_{\text{i.i.d.}} \mathbb{P}$
- ground truth: $y_i = f^*(x_i)$

Example

- $x_i = 2$, $y_i = 2$
- \mathcal{D} : 50000 image-label pairs
- \mathbb{P} distribution of hand-drawn images; $\mathbb{P}(\mathbf{2}) > \mathbb{P}(\mathbf{3})$
- $f^*(\mathbf{\lambda}) = 2$

Error Measure

Definitions

- · loss $\ell: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$
- · risk $\mathcal{R}[f] = \mathbb{E}[\ell(f(X), f^*(X))]$
- empirical risk $\hat{\mathcal{R}}[f] = n^{-1} \sum_{i} [\ell(f(x_i), y_i)]$

Examples

- Squared error, absolute error (regression)
- cross-entropy (classification)

Error Measure

Definitions

- · loss $\ell: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}_{>0}$
- risk $\mathcal{R}[f] = \mathbb{E}[\ell(f(X), f^*(X))]$
- empirical risk $\hat{\mathcal{R}}[f] = n^{-1} \sum_{i} [\ell(f(x_i), y_i)]$

Examples

- Squared error, absolute error (regression)
- cross-entropy (classification)

Task: minimize $\mathcal{R}[f]$ with access only to $\hat{\mathcal{R}}[f]$

× training instances

We might be unlucky with the i.i.d. sample we draw

Most of the time, we should be mostly correct

Probably Approximately Correct (PAC) Learning

An algorithm A is a PCA-learner if there exists a function $m(\epsilon, \delta)$, such that for every $\epsilon, \delta \in (0, 1)$ and every distribution \mathbb{P} , when running the learning algorithm on a i.i.d. sample S of size $m(\epsilon, \delta)$, with probability at least δ we have

$$\mathcal{R}[A(S)] \leq \epsilon$$
.

Shalev-Shwartz and Ben-David. (2014). *Understanding Machine Learning - From Theory to Algorithms.*

Most of the time, we should be mostly correct

Probably Approximately Correct (PAC) Learning

An algorithm A is a PCA-learner if there exists a function $m(\epsilon, \delta)$, such that for every $\epsilon, \delta \in (0,1)$ and every distribution \mathbb{P} , when running the learning algorithm on a i.i.d. sample S of size $m(\epsilon, \delta)$, with probability at least δ we have

$$\mathcal{R}[A(S)] \leq \epsilon$$
.

Probably (with probability δ) we are *approximately* (with tolerance ϵ) correct. Can we achieve that, at least?

Shalev-Shwartz and Ben-David. (2014). *Understanding Machine Learning - From Theory to Algorithms*.

No free lunch theorem

Let A be any learning algorithm for the task of binary classification with 0-1 loss over a domain \mathcal{X} . Let m be any number smaller than $|\mathcal{X}|/2$, representing a training set size. Then, there exists a distribution \mathbb{P} over $\mathcal{X} \times \{0,1\}$ such that

- There exists a function $f: \mathcal{X} \longrightarrow \{0,1\}$ with $\mathcal{R}[f] = 0$
- With probability of at least 1/7 over the choice of training set $S \sim \mathbb{P}^m$ we have $\mathcal{R}[A(S)] \geq 1/8$

Shalev-Shwartz and Ben-David. (2014). *Understanding Machine Learning - From Theory to Algorithms.*

No free lunch theorem

Let A be any learning algorithm for the task of binary classification with 0-1 loss over a domain \mathcal{X} . Let m be any number smaller than $|\mathcal{X}|/2$, representing a training set size. Then, there exists a distribution \mathbb{P} over $\mathcal{X} \times \{0,1\}$ such that

- There exists a function $f: \mathcal{X} \longrightarrow \{0,1\}$ with $\mathcal{R}[f] = 0$
- With probability of at least 1/7 over the choice of training set $S \sim \mathbb{P}^m$ we have $\mathcal{R}[A(S)] \geq 1/8$

⇒ We need to restrict the set of admissible functions

Shalev-Shwartz and Ben-David. (2014). *Understanding Machine Learning - From Theory to Algorithms*.

No free lunch theorem

Let A be any learning algorithm for the task of binary classification with 0-1 loss over a domain \mathcal{X} . Let m be any number smaller than $|\mathcal{X}|/2$, representing a training set size. Then, there exists a distribution \mathbb{P} over $\mathcal{X} \times \{0,1\}$ such that

- There exists a function $f: \mathcal{X} \longrightarrow \{0,1\}$ with $\mathcal{R}[f] = 0$
- With probability of at least 1/7 over the choice of training set $S \sim \mathbb{P}^m$ we have $\mathcal{R}[A(S)] \geq 1/8$
- ⇒ We need to restrict the set of admissible functions
- ⇒ approximation model

Shalev-Shwartz and Ben-David. (2014). *Understanding Machine Learning - From Theory to Algorithms.*

Approximation model and complexity measure

Hypothesis class

The model (or hypothesis) class is a subset $\mathcal{F} \subset \{f: \mathcal{X} \longrightarrow \mathbb{R}\}$

Examples

- Polynomials up to degree k
- Neural networks of a given architecture

Approximation model and complexity measure

Hypothesis class

The model (or hypothesis) class is a subset $\mathcal{F} \subset \{f : \mathcal{X} \longrightarrow \mathbb{R}\}$

Complexity measure

A non-negative mapping $\gamma:\mathcal{F}\longrightarrow\mathbb{R}_{\geq 0}$ that captures how "complex" a hypothesis is.

Examples

- Polynomials up to degree k
- Neural networks of a given architecture

Examples

- Degree of polynomial
- Number of neurons in network

Less complex functions less likely to overfit

Now we get to make a trade-off

Restrict to simple hypothesis $\mathcal{F}_{\beta} := \{ f \in \mathcal{F} : \gamma(f) \leq \beta \}$:

Now we get to make a trade-off

Restrict to simple hypothesis $\mathcal{F}_{\beta} := \{ f \in \mathcal{F} : \gamma(f) \leq \beta \}$:

× training instances

Now we get to make a trade-off

Restrict to simple hypothesis $\mathcal{F}_{\beta} := \{ f \in \mathcal{F} : \gamma(f) \leq \beta \}$:

We can generalize this example to a generic error decomposition

$$\mathcal{R}[\hat{f}] - \inf_{f \in \mathcal{F}} \mathcal{R}[f] = \left(\mathcal{R}[\hat{f}] - \inf_{f \in \mathcal{F}_{\delta}} \mathcal{R}[f]\right) + \left(\inf_{f \in \mathcal{F}_{\delta}} \mathcal{R}[f] - \inf_{f \in \mathcal{F}} \mathcal{R}[f]\right)$$

$$= \left(\hat{\mathcal{R}}[\hat{f}] - \inf_{f \in \mathcal{F}_{\delta}} \hat{\mathcal{R}}[f]\right) + \left(\inf_{f \in \mathcal{F}_{\delta}} \hat{\mathcal{R}}[f] - \inf_{f \in \mathcal{F}_{\delta}} \mathcal{R}[f]\right) + \left(\mathcal{R}[\hat{f}] - \hat{\mathcal{R}}[\hat{f}]\right) + \epsilon_{\text{approx}}$$

$$\leq \epsilon_{\text{opt}} + 2 \sup_{f \in \mathcal{F}_{\delta}} \left|\hat{\mathcal{R}}[f] - \mathcal{R}[f]\right| + \epsilon_{\text{approx}}$$

$$= \epsilon_{\text{opt}} + \epsilon_{\text{stat}} + \epsilon_{\text{approx}}$$

Controlling sources of error simulataneously is challenging

- In practice, SGD seems to be successfull at minimizing ϵ_{opt}
- · Small hypothesis class \mathcal{F}_{δ} : $\downarrow \epsilon_{\mathrm{stat}}$, $\uparrow \epsilon_{\mathrm{approx}}$
- · Large hypothesis class \mathcal{F}_{δ} : $\uparrow \epsilon_{\mathrm{stat}}$, $\downarrow \epsilon_{\mathrm{approx}}$

Lipschitzness is too weak – Staticical curse of dimensionality

Lipschitz

A function f is L-Lipschitz if $\forall x_1, x_2 \in \mathcal{X}$:

$$||f(x_1)-f(x_2)|| \leq L \cdot ||x_1-x_2||.$$

⇒ limits rate of variation of the function

Curse of dimensionality

How many training points do we need to learn a 1-Lipschitz function on a *d*-dimensional hypercube?

Barron functions too strong – Approximation curse of dimensionality

A function f with Fourier-transform \hat{f} is in the Barron-class, if

$$\int \hat{f}(\omega) \|\omega\|_2^2 d\omega < \infty.$$

Barron functions too strong – Approximation curse of dimensionality

A function f with Fourier-transform \hat{f} is in the Barron-class, if

$$\int \hat{f}(\omega) \|\omega\|_2^2 d\omega < \infty.$$

 \implies High frequency components need to decay faster than $\|\omega\|^{-3}$; functions need to be very smooth.

The input data distribution is assumed to have low-dimensional structure *embedded* in a high-dimensional space

The input data distribution is assumed to have low-dimensional structure *embedded* in a high-dimensional space

Can we exploit that?

Goldt et al. (2020). "Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model"

Part III: Signals over geometric domains

Geometric Domains

MNIST image: $x \in \mathbb{R}^{28 \times 28}$ as a vector. Defined on a grid of 28 \times 28 *pixels*.

 \implies Mapping from pixel to intensity.

Geometric Domains

MNIST image: $x \in \mathbb{R}^{28 \times 28}$ as a vector. Defined on a grid of 28 \times 28 *pixels*.

 \implies Mapping from pixel to intensity.

Signal

Given some domain Ω , a signal is a mapping

$$X \colon \Omega \longrightarrow \mathcal{C}$$

from domain locations to c-dimensional vectors (channels) in vector space C.

The space of all signals is $\mathcal{X}(\Omega, \mathcal{C})$.

Geometric Domains

MNIST image: $x \in \mathbb{R}^{28 \times 28}$ as a vector. Defined on a grid of 28 \times 28 *pixels*.

 \implies Mapping from pixel to intensity.

Signal

Given some domain Ω , a signal is a mapping

$$x: \Omega \longrightarrow \mathcal{C}$$

from domain locations to c-dimensional vectors (channels) in vector space C.

The space of all signals is $\mathcal{X}(\Omega, \mathcal{C})$.

Addition and scalar multiplication

For two signals x and y on Ω , $\alpha, \beta \in \mathbb{R}$, define $\alpha x + \beta y$ through

$$(\alpha x + \beta y)(\omega) := \alpha x(\omega) + \beta y(\omega) \quad \forall \omega \in \Omega.$$

⇒ vector space

domain Ω

Addition and scalar multiplication

For two signals x and y on Ω , $\alpha, \beta \in \mathbb{R}$, define $\alpha x + \beta y$ through

$$(\alpha x + \beta y)(\omega) := \alpha x(\omega) + \beta y(\omega) \quad \forall \omega \in \Omega.$$

⇒ vector space

domain Ω

Inner product

With an inner product $\langle \cdot, \cdot \rangle_{\mathcal{C}}$ on \mathcal{C} , and a measure μ on Ω , define inner product on $\mathcal{X}(\Omega, \mathcal{C})$:

$$\langle \mathsf{x}, \mathsf{y} \rangle \coloneqq \int_{\Omega} \langle \mathsf{x}(\omega), \mathsf{y}(\omega) \rangle_{\mathcal{C}} \, \mathrm{d}\mu(\omega) \,.$$

→ Hilbert space

Inner product

With an inner product $\langle \cdot, \cdot \rangle_{\mathcal{C}}$ on \mathcal{C} , and a measure μ on Ω , define inner product on $\mathcal{X}(\Omega, \mathcal{C})$:

$$\langle \mathsf{X}, \mathsf{y} \rangle := \int_{\Omega} \langle \mathsf{X}(\omega), \mathsf{y}(\omega) \rangle_{\mathcal{C}} \, \mathrm{d}\mu(\omega) \,.$$

⇒ Hilbert space

Example: MNIST - single channel, counting measure

$$\langle x, y \rangle = \sum_{i=1}^{28} \sum_{j=1}^{28} x[i, j] \cdot y[i, j]$$

Symmetries

A transformation of an object that leaves the object unchanged.

Symmetries

A transformation of an object that leaves the object unchanged.

Symmetry of the label function

Recall: $f^*: \mathcal{X} \longrightarrow \mathcal{Y}$ ground-truth label function.

A transformation $g:\mathcal{X}\longrightarrow\mathcal{X}$ is a symmetry of the label function, if $f^*\equiv f^*\circ g$.

Symmetries

A transformation of an object that leaves the object unchanged.

Symmetry of the label function

Recall: $f^*: \mathcal{X} \longrightarrow \mathcal{Y}$ ground-truth label function.

A transformation $g: \mathcal{X} \longrightarrow \mathcal{X}$ is a symmetry of the label function, if $f^* \equiv f^* \circ g$.

Example: Horizontal flip

$$f^*\Big(\bigcap_{i=1}^n\Big)=f^*\Big(\bigcap_{i=1}^n\Big)=\text{"dog"}.$$

Symmetries of the label function

- Any bijective function that respects class boundaries is a symmetry of the label function
- \implies if we knew all symmetries, a single instance per class would be enough to learn.
- If we know some symmetries, less training data is needed.

Symmetries of the label function

- Any bijective function that respects class boundaries is a symmetry of the label function
- \implies if we knew all symmetries, a single instance per class would be enough to learn.
- If we know some symmetries, less training data is needed.
- Can exploit symmetries of the underlying domain.

Symmetries of geometric domains

• A transformation $g:\Omega\longrightarrow\Omega$ is a symmetry of the domain Ω if it preserves its structure.

Symmetries of geometric domains

- A transformation $g:\Omega\longrightarrow\Omega$ is a symmetry of the domain Ω if it preserves its structure.
- · Permutation of elements in a set preserves set membership
- Euclidian isometries (rotation, translation, reflection) preserve angles and distances in Euclidian spaces (\mathbb{R}^d)
- Diffeomorphism preserves manifold structure

We can lift symmetries on the domain to symmetries on signals

Given a symmetry $g:\Omega\longrightarrow\Omega$, we can define a symmetry \tilde{g} on $\mathcal{X}(\Omega,\mathcal{C})$ through:

$$\tilde{g}(x)(\omega) = x(g^{-1}(\omega)).$$

We can lift symmetries on the domain to symmetries on signals

Given a symmetry $g: \Omega \longrightarrow \Omega$, we can define a symmetry \tilde{g} on $\mathcal{X}(\Omega, \mathcal{C})$ through:

$$\tilde{g}(x)(\omega) = x(g^{-1}(\omega)).$$

The mathematical theory is symmetries is **group theory**

Part IV: Group Theory

Definition

A collection of abstract transformations

$$G = (\{u, v, w, \ldots\}, \circ)$$
 that can be combined with

a "multiplication" ∘:

Closedness: $u \circ v \in G$

Associativity:
$$u \circ (v \circ w) = (u \circ v) \circ w$$

Neutral Element: $\exists e \in G : eu = ue = u$.

Inverse: $\forall u \in G : \exists u^{-1} : u^{-1}u = e$

Definition

A collection of abstract transformations

$$G = (\{u, v, w, \ldots\}, \circ)$$
 that can be combined with

a "multiplication" ∘:

Closedness: $u \circ v \in G$

Associativity:
$$u \circ (v \circ w) = (u \circ v) \circ w$$

Neutral Element:
$$\exists e \in G : eu = ue = u$$
.

Inverse: $\forall u \in G : \exists u^{-1} : u^{-1}u = e$

Examples

Natural numbers $\mathbb{N} = (\{1, 2, \ldots\}, +)$

Definition

A collection of abstract transformations

$$G = (\{u, v, w, \ldots\}, \circ)$$
 that can be combined with

a "multiplication" ∘:

Closedness: $u \circ v \in G$

Associativity:
$$u \circ (v \circ w) = (u \circ v) \circ w$$

Neutral Element:
$$\exists e \in G : eu = ue = u$$
.

Inverse: $\forall u \in G : \exists u^{-1} : u^{-1}u = e$

Examples

Natural numbers $\mathbb{N} = (\{1, 2, \ldots\}, +)$ No

Definition

A collection of abstract transformations

$$G = (\{u, v, w, \ldots\}, \circ)$$
 that can be combined with

a "multiplication" ∘:

Closedness: $u \circ v \in G$

Associativity:
$$u \circ (v \circ w) = (u \circ v) \circ w$$

Neutral Element:
$$\exists e \in G : eu = ue = u$$
.

Inverse: $\forall u \in G : \exists u^{-1} : u^{-1}u = e$

Examples

Natural numbers $\mathbb{N} = (\{1, 2, ...\}, +)$ No Integers $\mathbb{Z} = (\{..., -1, 0, 1, ...\}, +)$

Definition

A collection of abstract transformations

$$G = (\{u, v, w, \ldots\}, \circ)$$
 that can be combined with

a "multiplication" ∘:

Closedness: $u \circ v \in G$

Associativity:
$$u \circ (v \circ w) = (u \circ v) \circ w$$

Neutral Element:
$$\exists e \in G : eu = ue = u$$
.

Inverse: $\forall u \in G : \exists u^{-1} : u^{-1}u = e$

Examples

Natural numbers $\mathbb{N} = (\{1, 2, ...\}, +)$ No Integers $\mathbb{Z} = (\{..., -1, 0, 1, ...\}, +)$ Yes

Definition

A collection of abstract transformations

$$G = (\{u, v, w, \ldots\}, \circ)$$
 that can be combined with

a "multiplication" ∘:

Closedness:
$$u \circ v \in G$$

Associativity:
$$u \circ (v \circ w) = (u \circ v) \circ w$$

Neutral Element:
$$\exists e \in G : eu = ue = u$$
.

Inverse: $\forall u \in G : \exists u^{-1} : u^{-1}u = e$

Examples

Natural numbers $\mathbb{N} = (\{1, 2, ...\}, +)$ No Nonzero reals $\mathbb{R}^* = (\mathbb{R} \setminus \{0\}, \cdot)$ Integers $\mathbb{Z} = (\{..., -1, 0, 1, ...\}, +)$ Yes

Definition

A collection of abstract transformations

$$G = (\{u, v, w, \ldots\}, \circ)$$
 that can be combined with

a "multiplication" ∘:

Closedness:
$$u \circ v \in G$$

Associativity:
$$u \circ (v \circ w) = (u \circ v) \circ w$$

Neutral Element:
$$\exists e \in G : eu = ue = u$$
.

Inverse: $\forall u \in G : \exists u^{-1} : u^{-1}u = e$

Examples

Natural numbers $\mathbb{N} = (\{1, 2, ...\}, +)$ No Integers $\mathbb{Z} = (\{..., -1, 0, 1, ...\}, +)$ Yes

Nonzero reals $\mathbb{R}^* = (\mathbb{R} \setminus \{0\}, \cdot)$ Yes

Definition

A collection of abstract transformations

$$G = (\{u, v, w, \ldots\}, \circ)$$
 that can be combined with

a "multiplication" ∘:

Closedness: $u \circ v \in G$

Associativity:
$$u \circ (v \circ w) = (u \circ v) \circ w$$

Neutral Element: $\exists e \in G : eu = ue = u$.

Inverse: $\forall u \in G : \exists u^{-1} : u^{-1}u = e$

Examples

Natural numbers $\mathbb{N} = (\{1, 2, ...\}, +)$ No Nonzero reals $\mathbb{R}^* = (\mathbb{R} \setminus \{0\}, \cdot)$ Yes Integers $\mathbb{Z} = (\{..., -1, 0, 1, ...\}, +)$ Yes Nonzero reals $\mathbb{R}^* = (\mathbb{R} \setminus \{0\}, +)$

Definition

A collection of abstract transformations

$$G = (\{u, v, w, \ldots\}, \circ)$$
 that can be combined with

a "multiplication" ∘:

Closedness: $u \circ v \in G$

Associativity:
$$u \circ (v \circ w) = (u \circ v) \circ w$$

Neutral Element:
$$\exists e \in G : eu = ue = u$$
.

Inverse: $\forall u \in G : \exists u^{-1} : u^{-1}u = e$

Examples

Natural numbers $\mathbb{N}=(\{1,2,\ldots\},+)$ No Nonzero reals $\mathbb{R}^*=(\mathbb{R}\setminus\{0\},\cdot)$ Yes Integers $\mathbb{Z}=(\{\ldots,-1,0,1,\ldots\},+)$ Yes Nonzero reals $\mathbb{R}^*=(\mathbb{R}\setminus\{0\},+)$ No

The group captures the structure of how transformations combine

Structurally, these are the same group: $(\{0\}, +) \equiv (\{1\}, \cdot)$

The group captures the structure of how transformations combine

Structurally, these are the same group: $(\{0\}, +) \equiv (\{1\}, \cdot)$

	id	R	R ²	F	FR	FR ²
id	id	R	R ²	F	FR	FR ²
R	R	R ²	id	RF	RFR	RFR ²
R ²	R ²	id	R	R ² F	R ² FR	R ² FR ²
F	F	FR	FR ²	id	R	FR
FR	FR	FR ²	F	FRF	FRFR	FRFR ²
FR ²	FR ²	F	FR	FR ² F	FR ² FR	FR2FR2

Figure 4: Left: an equilateral triangle with corners labelled by 1, 2, 3, and all possible rotations and reflections of the triangle. The group D_3 of rotation/reflection symmetries of the triangle is generated by only two elements (rotation by 60° R and reflection F) and is the same as the group Σ_3 of permutations of three elements. Right: the multiplication table of the group D_3 . The element in the row $\mathfrak g$ and column $\mathfrak h$ corresponds to the element $\mathfrak g \mathfrak h$.

Some important groups

C(n) Cycl	c group	$x \mapsto x + 1 \mod n$
-----------	---------	--------------------------

D(n) Dihedral Vertices of a regular n-gon

under reflection and rotation

S(n) Permutation Arbitrary permutation

SO(n) Special ortho. Rotations in \mathbb{R}^n

O(n) Orthogonal Rotations and reflections in \mathbb{R}^n

 $\operatorname{\mathsf{GL}}(n)$ General linear Invertible linear transforms of I

$$C(n) \subset D(n) \subset S(n)$$

 $SO(n) \subset O(n) \subset GL(n)$

Group Actions: Making group elements actually transform something

Definition

A group action \mathcal{A} of a group G on some set Ω is a mapping $G \times \Omega \longrightarrow \Omega$, $(g,\omega) \mapsto g.\omega$, that is *compatible* with the group structure, that is,

$$(g \circ h).\omega = g.(h.\omega)$$
$$e.\omega = \omega$$

Group Actions: Making group elements actually transform something

Definition

A group action \mathcal{A} of a group G on some set Ω is a mapping $G \times \Omega \longrightarrow \Omega$, $(g,\omega) \mapsto g.\omega$, that is *compatible* with the group structure, that is,

$$(g \circ h).\omega = g.(h.\omega)$$
$$e.\omega = \omega$$

Examples: The same group can act differently

- The group $(\mathbb{R}, +)$ acting on the set \mathbb{R} : u.v = u + v
 - The group $(\mathbb{R}, +)$ acting on the vector space \mathbb{R}^2 as a horizontal shift: u.(x,y) = (x+u,y)
 - The group $(\mathbb{R}, +)$ acting on the vector space \mathbb{R}^2 as a vertical shift: u.(x,y) = (x,y+u)

Orbits

- The trajectory that can be reached by applying any group element to a fixed starting point
- $G.\omega = \{g.\omega \mid g \in G\}$
- Partitions the space into equivalence classes $[\omega] \in \Omega/G$

Orbits

- The trajectory that can be reached by applying any group element to a fixed starting point
- $G.\omega = \{g.\omega \mid g \in G\}$
- Partitions the space into equivalence classes $[\omega] \in \Omega/G$

One sample per orbit enough to learn label function

Summary and Outlook

Today

- Statistical learning theory: Need assumptions to enable successfull learning in high-dimensional spaces
 Inputs as signals on a geometric space: Allows us to exploit symmetries of
- the underlying structureGroup theory: Mathematical framework for symmetries

Next Week

- · Sets and Graphs: Permutation group
- Graph neural networks as a first instantiation of the geometric deep learning blueprint

References

References

- [1] Alexander Amini et al. *Spatial Uncertainty Sampling for End-to-End Control*. 2019 arXiv: 1805.04829
- [2] Sebastian Goldt et al. "Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model". In: Phys. Rev. X 10 (4 Dec. 2020), p. 041044.
- [3] John Jumper et al. "Highly accurate protein structure prediction with AlphaFold". In: nature 596.7873 (2021), pp. 583–589.
- [4] Hao Li et al. **"Visualizing the Loss Landscape of Neural Nets".** In: Advances in Neural Information Processing Systems. Ed. by S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018.
- [5] Shai Shalev-Shwartz and Shai Ben-David. *Understanding Machine Learning -*