Curso R / Rstudio 2022

GGPLOT2

Ggplot2

- One of the most attractive aspects of the R system is its capability to produce state-of-the-art statistical graphics (R by example).
- Ggplot2 (o ggplot) es un sistema organizado de visualización de datos. Forma parte del tidyverse.
- Tiene 3 components básicos:
 - Data (data frame con los datos a graficar)
 - Aesthetic mapping (relación entre las variables de la gráfica y determinados aspectos como color o la forma)
 - Geoms (capa que define el tipo de gráfica a plotear)
 - Ejemplos: geom_point, geom_line, geom_area, geom_tile

Base: mtcars

> head(cars,10)												
	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb	cylinders
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4	6
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4	6
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1	4
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1	6
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2	8
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1	6
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4	8
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2	4
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2	4
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4	6

Plot básico

Agregando aesthetics

```
ggplot(data = cars, aes(x = wt, y = mpg, color = cylinders, shape = cylinders)) +
geom_point()
```

Ojo: si quieres un valor fijo para color o shape, el argumento va afuera de aesthetics.

facet_wrap

```
ggplot(data = cars, aes(x = wt, y = mpg)) +
geom_point()+
facet_wrap(~cylinders)
```

facet_wrap divide en varias graficas con base en una variable

geom_smooth

Ojo: con el help puedes obtener distintos métodos de optimización. El default es "loess" (corre regresiones logales)

geom_boxplot

Distribución de velocidad por cilindraje

Tema

Más opciones para modificar temas en:

Modify components of a theme — theme ● ggplot2 (tidyverse.org)

Existen temas predefinidos:

```
library(ggthemes)

ggplot(data = cars, aes(x = cylinders, y = qsec)) +
  geom_boxplot()+
  theme_stata()
```


O podemos modificar los componentes manualmente:

```
ggplot(data = cars, aes(x = cylinders, y = qsec))+
  geom_boxplot()+
  theme(panel.background = element_rect(fill = "white"),
     plot.background = element_rect(fill = "lightblue"),
     axis.text = element_text(colour = "black"))
```


Data visualization with ggplot2:: CHEAT SHEET

Basics

ggplot2 is based on the grammar of graphics, the idea that you can build every graph from the same components; a data set, a coordinate system. and geoms-visual marks that represent data points.

To display values, map variables in the data to visual properties of the geom (aesthetics) like size, color, and x and y locations.

Complete the template below to build a graph.

ggplot(data = mpg, aes(x = ctv, v = hwv)) Begins a plot that you finish by adding layers to. Add one geom function per layer.

last_plot() Returns the last plot.

ggsave("plot.png", width = 5, height = 5) Saves last plot as 5' x 5' file named "plot.png" in working directory. Matches file type to file extension.

Aes Common aesthetic values.

color and fill - string ("red", "#RRGGBB")

linetype - integer or string (0 = "blank", 1 = "solid", 2 = "dashed", 3 = "dotted", 4 = "dotdash", 5 = "longdash",

lineend - string ("round", "butt", or "square")

linejoin - string ("round", "mitre", or "bevel")

size - integer (line width in mm) 0 1 2 3 4 5 6 7 8 9 10 11 12

shape - integer/shape name or 13 14 15 16 17 18 19 20 21 22 23 24 25 a single character ("a") ⊠⊠□○△◇○○□◆△▽

Geoms Use a geom function to represent data points, use the geom's aesthetic properties to represent variables. Each function returns a layer.

GRAPHICAL PRIMITIVES

a <- ggplot(economics, aes(date, unemploy)) b <- ggplot(seals, aes(x = long, y = lat))

> a + geom_blank() and a + expand_limits() Ensure limits include values across all plots.

b + geom_curve(aes(yend = lat + 1, xend = long + 1), curvature = 1 - x, xend, y, yend, alpha, angle, color, curvature, linetype, size

a + geom_path(lineend = "butt", lineioin = "round", linemitre = 1) x, y, alpha, color, group, linetype, size

a + geom_polygon(aes(alpha = 50)) - x, y, alpha, color, fill, group, subgroup, linetype, size

b + geom_rect(aes(xmin = long, ymin = lat, xmax = long + 1, ymax = lat + 1) - xmax, xmin, ymax, ymin, alpha, color, fill, linetype, size

LINE SEGMENTS

common aesthetics: x, y, alpha, color, linetype, size

b + geom_segment(aes(yend = lat + 1, xend = long + 1)) $b + geom_spoke(aes(angle = 1:1155, radius = 1))$

ONE VARIABLE continuous

c <- ggplot(mpg, aes(hwy)); c2 <- ggplot(mpg)

c + geom area(stat = "bin") x, y, alpha, color, fill, linetype, size

c + geom_density(kernel = "gaussian")

x, y, alpha, color, fill, group, linetype, size, weight

c + geom_dotplot() x, y, alpha, color, fill

> c + geom_freqpoly() x, y, alpha, color, group, linetype, size

c + geom_histogram(binwidth = 5) x, y, alpha, color, fill, linetype, size, weight

c2 + geom_qq(aes(sample = hwy)) x, y, alpha, color, fill, linetype, size, weight

discrete

d <- ggplot(mpg, aes(fl))

d + geom_bar() x, alpha, color, fill, linetype, size, weight

TWO VARIABLES

both continuous

e <- ggplot(mpg, aes(cty, hwy))

e + geom_label(aes(label = cty), nudge_x = 1, nudge_y = 1) - x, y, label, alpha, angle, color, family, fontface, hjust, lineheight, size, vjust

x, y, alpha, color, fill, shape, size, stroke

e + geom_rug(sides = "bl") x, y, alpha, color, linetype, size

> e + geom_smooth(method = lm) x, y, alpha, color, fill, group, linetype, size, weight

f + geom_col() x, y, alpha, color, fill, group, linetype, size

x, y, lower, middle, upper, ymax, ymin, alpha, color, fill, group, linetype, shape, size, weight

f + geom_dotplot(binaxis = "y", stackdir = "center") x, y, alpha, color, fill, group

f + geom_violin(scale = "area") x, y, alpha, color, fill, group, linetype, size, weight

both discrete

g <- ggplot(diamonds, aes(cut, color))

g + geom_count() x, y, alpha, color, fill, shape, size, stroke

e + geom_jitter(height = 2, width = 2) x, y, alpha, color, fill, shape, size

continuous bivariate distribution h <- ggplot(diamonds, aes(carat, price))

 $h + geom_bin2d(binwidth = c(0.25, 500))$ x, y, alpha, color, fill, linetype, size, weight

h + geom_hex()

continuous function

i <- ggplot(economics, aes(date, unemploy))

i + geom_area() x, y, alpha, color, fill, linetype, size

/\ i + geom_line() x, y, alpha, color, group, linetype, size

i + geom_step(direction = "hv") x, y, alpha, color, group, linetype, size

visualizing error

df < -data.frame(grp = c("A", "B"), fit = 4:5, se = 1:2)j <- ggplot(df, aes(grp, fit, ymin = fit - se, ymax = fit + se))

j + geom_crossbar(fatten = 2) - x, y, ymax, ymin_alpha_color_fill__recurr_i vmin, alpha, color, fill, group, linetype, size

j + geom_errorbar() - x, ymax, ymin, alpha, color, group, linetype, size, width Also geom errorbarh().

j + geom_linerange() x, ymin, ymax, alpha, color, group, linetype, size

j + geom_pointrange() - x, y, ymin, ymax, alpha, color, fill, group, linetype, shape, size

data <- data.frame(murder = USArrests\$Murder, state = tolower(rownames(USArrests))) map <- map_data("state") k <- ggplot(data, aes(fill = murder))

k + geom_map(aes(map_id = state), map = map) + expand_limits(x = map\$long, y = map\$lat) map id, alpha, color, fill, linetype, size

THREE VARIABLES

seals\$z <- with(seals, sqrt(delta_long^2 + delta_lat^2)); l <- ggplot(seals, aes(long, lat))

l + geom contour(aes(z = z)) x, y, z, alpha, color, group, linetype, size, weight

l + geom raster(aes(fill = z), hiust = 0.5. vjust = 0.5, interpolate = FALSE)

+ geom tile(aes(fill = z)) x, y, alpha, color, fill, linetype, size, width

RStudio® is a trademark of RStudio, PBC • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at ggplot2.tidyverse.org • ggplot2 3.3.5 • Updated: 2021-08

Puedes encontrar el cheatsheet solo buscando "ggplot2 cheatsheet"

Para más ejemplos de gráficas

<u>The R Graph Gallery – Help and inspiration for R charts (r-graph-gallery.com)</u>