Programme de colle : semaine 13

Ι	Suites	numériques	1
	I.1	Questions de cours	1
		Enoncer et démontrer la caractérisation séquentielle de la borne supérieure	1
		Enoncer et démontrer le théorème de la limite monotone	2
		Démontrer que deux suites adjacentes convergent vers la même limite	2
ΙΤ	Exerci	ces types	2

I Suites numériques

I.1 Questions de cours

Enoncer et démontrer la caractérisation séquentielle de la borne supérieure

Théorème 14.41

Soit A une partie non vide de \mathbb{R} et soit $M \in \mathbb{R}$. Alors M est la borne supérieure (resp. inférieure) de A si et seulement si M majore (resp. minore) A et s'il existe une suite d'éléments de A qui converge vers M.

 \Rightarrow

On suppose que $M = \sup A$. Donc M majore A. On rappelle que :

$$\forall \epsilon > 0, \exists a \in A, M - \epsilon < a$$

Donc:

$$\forall n \in \mathbb{N}, \exists a \in A, M - \frac{1}{n+1} < a_n \leq M \ (M \text{ est un majorant})$$

D'après la suite $(a_n) \in A^{\mathbb{N}}$ étant ainsi définie, d'après le théorème d'encadrement :

$$a_n \xrightarrow[n \to +\infty]{} M$$

$$a_n \xrightarrow[n \to +\infty]{} M$$
 (majorant de A)

Soit $\epsilon > 0$. On choisit $a_n \in A$ tel que :

$$a_n \in]M - \epsilon, M + \epsilon[$$

Donc $M - \epsilon$ ne majore pas A. Donc :

$$M = \sup A$$

Enoncer et démontrer le théorème de la limite monotone

Théorème 14.50

Si u est une suite croissante et majorée (resp. décroissante et minorée), alors u converge vers $\sup_{n\in\mathbb{N}}(u_n)$ (resp. vers $\inf_{n\in\mathbb{N}}(u_n)$).

Si u est une suite croissante et non majorée (resp. décroissante et non minorée) alors u tend vers $+\infty$ (resp. vers $-\infty$).

— On suppose u croissante et majorée.

L'ensemble $A = \{u_n | n \in \mathbb{N}\}$ est non vide et majoré. Cet ensemble possède une borne supérieure notée l (propriété fondamentale de \mathbb{R}).

Soit $\epsilon >$. Comme $l - \epsilon < u_n$ ne majore pas A, on choisit $N \in \mathbb{N}$ tel que $l - \epsilon < u_n$.

Or (u_n) est croissante donc :

$$\forall n \geq N, l - \epsilon < u_N \leq u_n \leq l$$

Donc:

$$\forall n \geq N, u_n \in]l - \epsilon, l + \epsilon[$$

Soit:

$$u_n \underset{n \to +\infty}{\longrightarrow} l$$

— On suppose u croissante et non majorée.

Soit $A \in \mathbb{R}_+$. Soit $N \in \mathbb{N}$ tel que:

$$u_N \ge A \ (u \text{ non majorée})$$

Donc:

$$\forall n \geq N, A \leq u_N \leq u_n \ (u \text{ croissante})$$

Soit:

$$u_n \xrightarrow[n \to +\infty]{} +\infty$$

Démontrer que deux suites adjacentes convergent vers la même limite

Théorème 14.55

Deux suites adjacentes convergent vers une limite commune.

Soit u et v deux suites adjacentes avec u croissante et v décroissante.

Soit w = v - u. Par opération, w est décroissante.

Par hypothèse:

$$w_n \xrightarrow[n \to +\infty]{} 0$$

Donc $w \leq 0$, soit $u \leq v$.

La suite u est donc majorée par v_0 , et croissante donc convergente d'après le théorème de la limite monotone. Pour les mêmes raisons, v converge.

Or, par théorème d'opérations :

$$\lim_{n \to +\infty} v_n - \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} (v_n - u_n) = 0$$

II Exercices types

Exercice 1

Déterminer l'expression explicite de la suite de Fibonnaci, définie par

$$\begin{cases} \phi_0 = 0 \text{ et } \phi_1 = 1\\ \forall n \in \mathbb{N}, \phi_{n+2} = \phi_{n+1} + \phi_n \end{cases}$$

Programme de colle Axel Montlahuc

Exercice 2

On pose pour tout $n \in \mathbb{N}$, $u_n = \sqrt{n} - \lfloor \sqrt{n} \rfloor$.

- 1. Etudier $\lim_{n \to +\infty} u_{n^2+n}$. En déduire que la suite (u_n) n'a pas de limite.
- 2. Soit $a \in \mathbb{N}$ et $b \in \mathbb{N}^*$ avec $a \leq b$. Et udier $\lim_{n \to +\infty} u_{n^2b^2+2an}$.
- 3. Montrer que tout élément de [0,1] est la limite d'une certaine suite extraite de (u_n) .

Exercice 3

- 1. Montrer que $[3, +\infty[$ est stable par $x \mapsto \frac{2x^2-3}{x+2}$. On note alors (x_n) la suite définie par $x_0 = 5$ et pour tout $n \in \mathbb{N}, x_{n+1} = \frac{2x_n^2-3}{x_n+2}$.
- 2. (a) Etudier la monotonie de (x_n) .
 - (b) En déduire $\lim_{n \to +\infty} x_n$.