Izmir Institute of Technology CENG 115 Discrete Structures

Slides are based on the Text

Discrete Mathematics & Its Applications (6th Edition)

by Kenneth H. Rosen

Slides were prepared by Dr. Michael P. Frank for COT 3100 course in University of Florida

Binary Relations

- Let A, B be any sets. A binary relation R from A to B, is a subset of $A \times B$.
 - -E.g. < can be seen as $\{(n,m) \mid n \le m\}$
- $(a,b) \in R$ means that a is related to b (by R)
- Also written as a R b
 - -E.g. a < b mean $(a,b) \in <$

Relations on a Set

- A (binary) relation from a set A to itself is called a *relation on the set A*.
- *E.g.*, the "<" relation from earlier was defined as a relation *on* the set **N** of natural numbers.
- Let $A = \{1,2,3,4\}$. Which ordered pairs are in relation $R = \{(a,b) | a \text{ divides } b\}$?
- Relations can be represented as sets of pairs. E.g. $A=\{0,1,2\}$ $B=\{x,y\}$ $R=\{(0,x),(0,y),(2,x)\}$ Then, 0 R x and 0 R y and 2 R x

Reflexivity

- A relation R on A is reflexive if $\forall a (a,a) \in R$.
 - -E.g. the relation $\geq :\equiv \{(a,b) \mid a \geq b\}$ is reflexive.
 - Other examples of reflexive relations:
 - =, 'have same cardinality', \leq , \geq , \subseteq

Example

```
E.g. Consider the following relations on \{1, 2, 3, 4\}
R1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R2 = \{(1,1), (1,2), (2,1)\}
R3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)\}
R4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (3,4), (
                  (4,4)
R6 = \{(3,4)\}
    Which of these relations are reflexive? R3, R5
```

Symmetry

- A binary relation R on A is symmetric if $\forall a,b((a,b)\in R \leftrightarrow (b,a)\in R)$.
 - -Eg. = (equality) is symmetric. < is not. ≤ is not.
 - "is married to" is symmetric, "likes" is not.
- A binary relation R is asymmetric if $\forall a,b((a,b)\in R \to (b,a)\notin R)$.
 - -Eg. < is asymmetric, "likes" is not.
 - \le is not asymmetric, since it is true for (a,a)

Example

• Example: Which of the following relations are symmetric?

$$R1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$$

$$R2 = \{(1,1), (1,2), (2,1)\}$$

$$R3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$$

$$R4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$$

R2 and R3

Example

- Consider the relation $x \le y$
- Is it symmetrical? No.
- Is it asymmetrical? No.
- Is it reflexive? Yes.

Antisymmetry

- Consider the relation $x \le y$
 - It is not symmetric. (For instance, $5 \le 6$ but not $6 \le 5$)
 - It is not asymmetric. (For instance, $5 \le 5$)
 - (You *might* say it's *nearly* asymmetric, since the only symmetries occur when x=y)
- This is called antisymmetry: the only symmetrical pairs (x,y),(y,x) in the relation are ones where x=y.
- A binary relation R on A is antisymmetric iff $\forall a,b((a,b)\in R \land (b,a)\in R) \rightarrow a=b). E.g. \leq, \geq, \subseteq$

Transitivity

- A relation R is *transitive* if (for all a,b,c) $((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$.
- Which of the relations in example are transitive?

```
R1 = \{(1,1), (1,2), (2,1)\}
R2 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)\}
R3 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R4 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R5 = \{(3,4)\}
R3,R4 \text{ and } R5
```

§ 8.3: Representing Relations

- So far, we have seen some ways to represent *n*-ary relations such as ordered pairs (pairs etc.)
- Two other methods to represent binary relations:
 - Zero-one matrices.
 - Directed graphs.
- An important reason to choose among these is some calculations are easier with one of these representations.

Using Zero-One Matrices

- To represent a binary relation $R:A \times B$ by an $|A| \times |B|$ 0-1 matrix $\mathbf{M}_R = [m_{ij}]$, let $m_{ij} = 1$ iff $(a_i,b_j) \in R$.
- *E.g.*, Let *A*={Joe,Fred,Mark} and *B*={Susan,Mary,Sally}. Suppose Joe likes Susan and Mary, Fred likes Mary, and Mark likes Sally.
- Then the 0-1 matrix representation of the relation Likes: $A \times B$ is:

	Susan	Mary	Sally	
Joe		1	0	
Fred	0	1	0	
Mark		0	1	

Zero-One Reflexive, Symmetric

• Recall: *Reflexive*, *symmetric*, asymmetric, and anti-symmetric relations.

Reflexive: only 1's on diagonal

Symmetric: all identical across diagonal

Asymmetric:
0's on diagonal +
1's are 0's across
diagonal

Anti-symmetric: all 1's are 0's across diagonal

Using Directed Graphs

• A directed graph or digraph $G=(V_G,E_G)$ is a set V_G of vertices (nodes) with a set E_G of edges (arcs). Represented using dots for nodes, and arrows for edges. $R:A\times B$ can be represented as a graph $G_R=(V_G=A\cup B,E_G=R)$.

Matrix representation \mathbf{M}_R :

	Susan	Mary	Sally	
Joe	\[\] 1	1	0	
Fred	0	1	0	
Mark		0	1	

Graph rep. G_R :

Digraph Reflexive, Symmetric

• Many properties of a relation are easily determined by inspection of its graph.

Reflexive: Every node has a self-loop

Symmetric: Every link is bidirectional

Asymmetric: No link is bidirectional, no self-loop

Anti-symmetric:
No link is
bidirectional

§ 8.4: Closures of Relations

- For any property X, the "X closure" of a set A is defined as the "smallest superset" of A that has property X. More specifically,
 - The *reflexive closure* of a relation *R* on *A* is the smallest superset of *R* that is reflexive.
 - The *symmetric closure* of *R* is the smallest superset of *R* that is symmetric.
 - The *transitive closure* of *R* is the smallest superset of *R* that is transitive.

Reflexive Closure

- Let R be a relation on the set A. The reflexive closure of R is $S = R \cup \{(a, a), \forall a \in A\}$.
- Example:

```
Let R = \{(a,b) (a,c) (b,d) (d,e) (a,a)\},
then the reflexive closure of R is
\{(a,b) (a,c) (b,d) (d,e) (a,a) (b,b) (c,c) (d,d) (e,e)\}
```

Symmetric Closure

- Let R be a relation on the set A. The symmetric closure of R is $S = R \cup R^{-1}$
- Example:

```
Let R = \{(a,b) (a,c) (b,d) (d,e)\},
then the symmetric closure of R is
\{(a,b) (a,c) (b,d) (d,e) (b,a) (c,a) (d,b) (e,d)\}
```

Transitive Closure

- The *transitive closure* of R (notation: R^*) is obtained by "repeatedly" adding (a,c) to R for each (a,b),(b,c) in R.
- $E.g:R=\{(a,b) \ (a,c) \ (b,d) \ (d,e)\}$

	a	b	c	d	e
a	0	1	1	0	0
b	0	0	0	1	0
c	0	0	0	0	0
d	0	0	0	0	1
e	0 0 0 0 0	0	0	0	0

• $R *= \{(a,b) (a,c) (b,d) (d,e) (a,d) (b,e) (a,e) \}$

	a 0 0 0 0	b	c	d	e
a	0	1	1	1	1
b	0	0	0	1	1
c	0	0	0	0	0
d	0	0	0	0	1
e	0	0	0	0	0

Warshall's Algorithm

- Fast algorithms are available for calculating R^* , especially *Warshall's algorithm*. This algorithm uses a matrix representation.
- **Procedure** Warshall ($M_R : n \times n \text{ 0-1 matrix}$)

```
\mathbf{W} := \mathbf{M}_R
\mathbf{for} \ k := 1 \ \mathbf{to} \ n
\mathbf{for} \ i := 1 \ \mathbf{to} \ n
\mathbf{for} \ j := 1 \ \mathbf{to} \ n
w_{ij} := w_{ij} \lor (w_{ik} \land w_{kj})
\mathbf{return} \ \mathbf{W} \ \{ \mathbf{this} \ \mathbf{represents} \ R^* \}
```

note: $w_{ij} = 1$ means there is a path from *i* to *j* going only through nodes $\leq k$

§ 8.6: Partial Orderings

- A relation *R* on *A* is called a *partial ordering* or *partial order* iff it is <u>reflexive</u>, <u>antisymmetric</u>, and <u>transitive</u>.
 - We often use a symbol looking something like ≼ (or analogous shapes) for such relations.
- A set A together with a partial order \leq on A is called a *partially ordered set* or *poset* and is denoted (A, \leq) .

Partial Orderings

- Examples:
 - The relation ≥is a partial ordering on the set of integers
 - The divisibility relation |
 is a partial ordering on the set of positive integers
 - The subset relation ⊆
 is a partial ordering on the power set of a set S.

Total Orderings

- The elements a and b of a poset (S, \leq) are called comparable if $a \leq b$ or $b \leq a$. Otherwise, a and b are called incomparable.
- Example:
 - In the poset $(Z^+, |)$
 - 3 and 9 are comparable? Yes, because 3 | 9.
 - 5 and 7 are comparable? No, because 5/7 and 7/5.

Total Orderings

- If (S, \leq) is a poset and every two elements of S are comparable
 - S is called a *totally ordered set*
 - ≼ is called a total order
- Example
 - $-(Z, \leq)$ is totally ordered
 - $-(Z^+, |)$ is not totally ordered

Hasse Diagram

To construct a Hasse Diagram of a partial ordering:

- 1) Construct a digraph representation of the poset
- (A, R) so that all arcs point up (except the loops).
- 2) Eliminate all loops since we know that the poset is reflexive.
- 3) Eliminate all arcs that are redundant because of transitivity. We know that the poset is transitive.
- 4) Eliminate the arrows at the ends of arcs. Since every edge points upward, we do not show directions.

Hasse Diagrams (1)

• We are able to simplify the diagram because we know that the relation is a partial order, so the 'missing' information can be inferred.

FIGURE 2 Constructing the Hasse Diagram for $(\{1, 2, 3, 4\}, \leq)$.

Hasse Diagrams (2)

Hasse Diagrams (3)

FIGURE 4 The Hasse Diagram of $(P(\{a,b,c\}),\subseteq)$.