Aufgabe 1 Betrachte die Menge $M := \{ \psi : I_{\delta}(t_0) \to \mathbb{R}^n \mid ||\psi(t) - x_0|| \leq b \}$ von Wegen in der Nähe von x_0 und die Abbildung

$$P: M \to M$$

$$(P\psi)(t) := x_0 + \int_{t_0}^t F(t, \psi(t)) dt$$

Zeigen Sie, dass ein Fixpunkt ψ^* von P eine Lösung der Differentialgleichung $\psi'(t) = F(t, \psi(t))$ ist.

Aufgabe 2 Seien $\varphi_1, \dots, \varphi_n$ Lösungen der homogenen Gleichung $\varphi'(t) = A\varphi(t)$. Zeigen Sie, dass dann $c_1 \cdot \varphi_1 + \dots + c_n \cdot \varphi_n$ auch eine Lösung ist.

Aufgabe 3

Programmieren Sie das Runge-Kutta Verfahren in Python. Lösen Sie damit Näherungsweise das Räuber-Beute Model und plotten Sie die Lösungen in Python.