Visual
Displays of
Data

Chapter 3

Uses of Graphs

- Positive and negative uses
 - Can accurately and succinctly present information
 - Can reveal/conceal complicated data
- Graphing in the information age: a critical skill
 - http://www.datavis.ca/gallery/

"The Most Misleading Graph Ever Published"

How to Mislead with Graphs

The Cost and Quality of Higher Education

"The Most Misleading Graph Ever Published"

- So why bad?
 - The times are not the same for both lines (going across)
 - The scales are not the same
 - So the starting point is also a problem
 - Rankings ... down = BETTER, so why did they graph ranks that way?

Techniques for Misleading

- The false face validity lie
 - Method seems to represent what it says, but does not actually.
 - e.g., using yelling as a measure of aggression

Techniques for Misleading

- The biased scale lie
 - Scaling to skew the results, or leading questions
 - i.e. goodreads book scale (did not like, it was ok, liked it, really liked it, it was amazing)

Techniques for Misleading

- The sneaky sample lie
 - When participants are preselected or self selected to provide data.
 - Like rate my professor!

More Techniques

- The interpolation lie
 - Assumes that a value between 2 data points follows the same pattern
- The extrapolation lie
 - Assumes knowledge outside of the study

More Techniques

- The inaccurate values lie
 - Uses scaling to distort portions of the data
- The outright lie:
 - Making up data!

The Inaccurate Value Lie

Which of the two graphs is misleading?

Common Types of Graphs

Scatterplots

- Graphs that depict the relation between two scale variables
- Range-frame (!!) x and y axis show the range of the variable
- Observing every data point
 - Linear relationships relationship between variables is a straight line
 - Nonlinear relationships relationship between variables is curved
 - Performance & Anxiety

Scatterplot of Hours Studied and Statistics Grade

- Be sure you load the ggplot library!
 - We are going to use the airquality dataset.
 - data(airquality), head(airquality)

- First build a blank plot.
- myplot = ggplot(dataset, aes(X axis column, Y axis column))
 - Example: myplot = ggplot(airquality, aes(Temp, Ozone))

- Add dots to it!
 - geom_point()
- Man, that's still an ugly graph...how can we clean it up?

Run this cleanup code:

```
    cleanup = theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), axis.line.x = element_line(color = "black"), axis.line.y = element_line(color = "black"), legend.key = element_rect(fill = "white"), text = element_text(size = 15))
```

- Now do,
- myplot + geom_point() + cleanup
 - Much nicer!
- Now, how can we change other things about the graph?
 - How about x and y axis labels?

- + xlab("Text goes here")
- + ylab("Text goes here")

Line Graphs

- Line graphs are best for scale variables (remember this is interval/ratio)
 - Especially useful for trends over time
- Line of best fit
- Time series plot

The Line of Best Fit

- Let's add a line of best fit!
- + geom_smooth()
 - Oh, that's not quite straight.
 - Let's do this instead!
 - geom_smooth(method = "lm")

Weekday Newspaper Circulation 2005 1990 2000 2.2 million 2.1 million NB: The WSJ began including paid online subscribers in their circulation in 2003. 2 million 1.9 million 1.8 million Wall Street Journal 1.7 million Los Angeles Times New York Times Washington Post Daily News 1.3 million New York Post 1.2 million 1.1 million 1 million 900,000 NB: A strike and a bankruptcy greatly damaged 800,000 700,000 600,000 500,000 400,000

Weekly Newspaper Circulation

Bar Graphs

- When the independent variable is nominal or ordinal and the dependent variable is scale
 - Meaning X = groups, Y = interval/ratio
 - Each bar usually represents and AVERAGE score.

Bar Graphs Highlight Differences Between Means

Deceiving with the Scale

- First, build a blank plot.

 - But now, the X axis column will be categorical, the
 Y axis column will be continuous

- myplot = ggplot(airquality, aes(Month, Temp))
 - Month is an integer at the month, let's fix it!
 - The factor() command allows us to take numeric variables and switch them to text.
 - factor(column,
 levels = c(stuff that's in the column already),
 Labels = c(stuff you want to change it to))

```
    + stat_summary(fun.y = mean,
geom = "bar",
fill = "White",
color = "Black")
```

```
    + stat_summary(fun.data = mean_cl_normal, geom = "errorbar",
    position = position_dodge(width = 0.90),
    width = 0.2)
```

Check Your Learning

- What is the best type of graph to depict the following:
 - Depression levels and stress levels for 150 university students. Is depression related to stress?
 - Mean years of education for six regions of the United States. Are education levels higher in some regions than in others?

Choosing the Graph Based on Variables

- One scale variable (with frequencies): histogram or frequency polygon
- One scale independent and one scale dependent variable: scatterplot or line graph
- One nominal or ordinal independent and one scale dependent variable: bar graph
- Two+ nominal or ordinal independent and one interval dependent variable: bar graph