Course Code	Course Name	Credits
CSC501	Theoretical Computer Science	3

Pre	Prerequisite: Discrete Structures		
Cou	Course Objectives:		
1.	Acquire conceptual understanding of fundamentals of grammars and languages.		
2.	Build concepts of theoretical design of deterministic and non-deterministic finite automata and push down automata.		
3.	Develop understanding of different types of Turing machines and applications.		
4.	Understand the concept of Undecidability.		
Cou	Course Outcomes: At the end of the course, the students will be able to		
1.	Understand concepts of Theoretical Computer Science, difference and equivalence of DFA and NFA , languages described by finite automata and regular expressions.		
2.	Design Context free grammer, pushdown automata to recognize the language.		
3.	Develop an understanding of computation through Turing Machine.		
4.	Acquire fundamental understanding of decidability and undecidability.		

Module	Unit	Topics	Theory
No.	No.	COY	Hrs.
1.0	2	Basic Concepts and Finite Automata	
	1.1	Importance of TCS, Alphabets, Strings, Languages, Closure	
		properties, Finite Automata (FA) and Finite State machine	
<u>c</u>	8	(FSM).	
	1.2	Deterministic Finite Automata (DFA) and Nondeterministic	
		Finite Automata (NFA): Definitions, transition diagrams and	
		Language recognizers, Equivalence between NFA with and	
		without ε- transitions, NFA to DFA Conversion, Minimization	
		of DFA, FSM with output: Moore and Mealy machines,	
	S.	Applications and limitations of FA.	
2.0		Regular Expressions and Languages	07
	2.1	Regular Expression (RE), Equivalence of RE and FA, Arden's	
		Theorem, RE Applications	
	2.2	Regular Language (RL), Closure properties of RLs, Decision	
		properties of RLs, Pumping lemma for RLs.	
3.0		Grammars	08
	3.1	Grammars and Chomsky hierarchy	
	3.2	Regular Grammar (RG), Equivalence of Left and Right	
		linear grammar, Equivalence of RG and FA.	

2	3.3	Context Free Grammars (CFG)	
	Definition, Sentential forms, Leftmost and Rightmost		
	derivations, Parse tree, Ambiguity, Simplification and		
		Applications, Normal Forms: Chomsky Normal Forms	
		(CNF) and Greibach Normal Forms (GNF), Context Free	
		language (CFL) - Pumping lemma, Closure properties.	
4.0		Pushdown Automata(PDA)	04
	4.1	Definition, Language of PDA,PDA as generator, decider and	
		acceptor of CFG, Deterministic PDA, Non-Deterministic	
		PDA, Application of PDA.	
5.0		Turing Machine (TM)	09
	5.1	Definition, Design of TM as generator, decider and acceptor,	
		Variants of TM: Multitrack, Multitape, Universal TM,	
		Applications, Power and Limitations of TMs.	
6.0		Undecidability	02
	6.1	Decidability and Undecidability, Recursive and Recursively	
		Enumerable Languages, Halting Problem, Rice's Theorem,	
		Post Correspondence Problem.	
Total		39	

-			
Tex	Text Books:		
1.	John E. Hopcroft, Rajeev Motwani, Jeffery D. Ullman, "Introduction to Automata		
	Theory, Languages and Computation", 3rd Edition, Pearson Education, 2008.		
2.	Michael Sipser, "Theory of Computation", 3rd Edition, Cengage learning. 2013.		
3.	Vivek Kulkarni, " <i>Theory of Computation</i> ", Illustrated Edition, Oxford University Press, (12 April 2013) India.		
Ref	Reference Books:		
1.	J. C. Martin, "Introduction to Languages and the Theory of Computation", 4 th Edition, Tata McGraw Hill Publication, 2013.		
2.	Kavi Mahesh, "Theory of Computation: A Problem Solving Approach", Kindle Edition, Wiley-India, 2011.		

Ass	Assessment:		
Inte	Internal Assessment:		
1.	Assessment consists of two class tests of 20 marks each.		
2.	The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed.		
3.	Duration of each test shall be one hour.		
Ter	Term work:		
1.	Term Work should consist of at least 06 assignments (at least one assignment on each module).		

2.	Assignment (best 5 assignments)	20 marks
	Attendance	5 marks
3.	It is recommended to use JFLAP software (www.jflap.org) for better teaching and learning processes.	

En	End Semester Theory Examination:		
1.	Question paper will comprise of 6 questions, each carrying 20 marks.		
2.	The students need to solve total 4 questions.		
3.	Question No.1 will be compulsory and based on entire syllabus.		
4.	Remaining questions (Q.2 to Q.6) will cover all the modules of syllabus.		
Us	Useful Links:		
1.	www.jflap.org		
2.	https://nptel.ac.in/courses/106/104/106104028/		
3.	https://nptel.ac.in/courses/106/104/106104148/		

