

Software Project Management Plan

Riferimento	
Versione	1.0
Data	06/11/2021
Destinatario	Prof.ssa F. Ferrucci
Presentato da	Amideo Salvatore e Vidoni Alice
Approvato da	

UnisaEAT

Sommario

R	evision History	3
Te	eam Composition	4
1.	Panoramica del Progetto	5
	1.1 Riepilogo del progetto	5 5
	1.2 Evoluzione dello SPMP	6
2.	Contesto del Progetto	7
	2.1 Modello di processo	7
	2.2 Process Improvement Plan	8
	2.3 Infrastructure Plan	8
	2.4 Metodi, tool e tecniche	8
	2.5 Product Acceptance Plan	10
	2.6 Organizzazione del progetto	10
3.	Pianificazione del progetto	11
	3.1 Avvio del progetto	
	3.1.2 Scopo, ambito e obiettivi	12
	3.2 Project Works Plans	
	3.2.1 Work activities	
	3.2.2 Schedule Allocation	
	3.2.4 Budget Allocation	14
4.	Valutazione e controllo del progetto	14
	4.1 Requirements Management Plan	14
	4.2 Scope Change Control Plan	15
	4.3 Schedule Control Plan	15
	4.4 Budget Control Plan	16
	4.5 Quality Assurance Plan	16
	4.6 Project Closeout Plan	16
5.	Consegna del prodotto	16

6.	Supporting Process Plan	. 17
	6.1 Supervisione e ambiente di lavoro del progetto	. 17
	6.2 Decision Management	. 20
	6.3 Risk Management	. 21
	6.4 Configuration Management	. 21
	6.5 Quality Assourance	. 21
	6.6 Misure	. 21
7	Piani addizionali	22

Revision History

Data	Versione	Descrizione	Autori
04/11/2021	0.1	Prima stesura	Salvatore Amideo Alice Vidoni
06/11/2021	1.0	Revisione Finale	Salvatore Amideo Alice Vidoni

Team Composition

Ruolo	Nome	Posizione	Contatti
Sponsor	Filomena Ferrucci	Sponsor	fferrucci@unisa.it
Project Manager	Alice Vidoni	Project Manager	a.vidoni@studenti.unisa.it
Project Manager	Salvatore Amideo	Project Manager	s.amideo@studenti.unisa.it
Team Member	Alessandro Cavaliere	Team Member	a.cavaliere41@studenti.unisa.it
Team Member	Alessio Salzano	Team Member	a.salzano32@studenti.unisa.it
Team Member	Carmine Citro	Team Member	c.citro23@studenti.unisa.it
Team Member	Claudio Buono	Team Member	c.buono20@studenti.unisa.it
Team Member	Gerardo Sessa	Team Member	g.sessa56@studenti.unisa.it
Team Member	Maria Rosaria Salzano	Team Member	m.giudice12@studenti.unisa.it
Team Member	Nicola Cappello	Team Member	n.cappello@studenti.unisa.it

Software Project Management Plan (SPMP) del Progetto UnisaEAT

1. Panoramica del Progetto

1.1 Riepilogo del progetto

1.1.1 Scopo, ambito e obiettivi

Il Sistema UnisaEAT, si pone come obiettivo la semplificazione e la velocizzazione delle funzionalità del servizio mensa UNISA, rendendole più agevoli sia per chi ci lavora sia per chi ne usufruisce. I nostri obiettivi riguardano la realizzazione di un sistema che permetta di avere una massima automazione per quanto riguarda l'intera gestione del tesserino mensa ed automatizzare le ordinazioni dei pasti. Si vuole velocizzare le comunicazioni tra Cliente e personale ADISU, ottimizzare la metodologia d'acquisto dei pasti, facilitare le mansioni dell'operatore Mensa nella distribuzione dei pasti e agevolare le funzioni gestionali dell'intero servizio.

1.1.2 Assunzioni e vincoli

Non esiste un reale sistema che fornisce i servizi che intende fornire UnisaEAT, esiste però una piattaforma online gestita dall'ADISU che permette la richiesta, il rinnovo e la ricarica del tesserino, e di visualizzare il menu giornaliero. Pertanto, per questi requisiti facciamo riferimento ai dati che l'ADISU ritiene necessari per compiere queste operazioni.

Nell'ambito del processo, al contrario, i vincoli principali si individuano nelle ore di lavoro a disposizione per team member, 50 per ognuno, e dalle scadenze fissate dal Top Manager. Tali dati saranno riportati nel dettaglio in seguito nel documento.

Per quanto riguarda vincoli sulle tecnologie e i tools, si assume l'uso di strumenti di management quali ClickUp e Microsoft Project. Oltre ciò, sia assume che lo sviluppo dell'applicativo avverrà tramite l'uso di tecnologie web, nella fattispecie utilizzando Node.js, React e HTML.

1.1.3 Deliverables di progetto

Di seguito si riporta una tabella contenente tutti i deliverables previsti per il progetto UnisaEAT.

Deliverables/Milestones	WBS id	Responsabile	Completamento
			pianificato

RAD	1.1.3	Tutto il team	18/11/2021
SDD	1.2.5	Tutto il team	30/11/2021
CP e TCS	1.3.3	Tutto il team	06/12/2021
Consegna Intermedia	1.4	Tutto il team	13/12/2021
ODD	1.5.2.7	Tutto il team	11/12/2021
Applicativo	1.7.6	Tutto il team	11/01/2022
TIR e TSR	1.8.4	Tutto il team	12/01/2022
Consegna Finale	1.9	Tutto il team	18/01/2022

1.1.4 Riepilogo dello schedule e del budget

Di seguito si riporta un riepilogo dello schedule e del budget ad alto livello attraverso il Gantt Chart ottenuto tramite Microsoft Project. Non sono riportate le risorse umane essendo che il lavoro è stato separato verticalmente, per motivi didattici.

Per maggiori info si rimanda ai documenti:

- Schedule Management Plan;
- Business Case.

1.2 Evoluzione dello SPMP

Il presente documento sarà aggiornato in caso di necessità e periodicamente ogni due settimane dall'inizio del progetto. L'aggiornamento avverrà seguendo le regole previste nel documento Configuration Management Plan.

2. Contesto del Progetto

Nella presente sezione vengono descritti il modello del processo adottato per lo sviluppo del progetto software in questione, la pianificazione del progresso del processo, la pianificazione dell'infrastruttura necessaria per lo sviluppo del progetto, i metodi, gli strumenti e le tecniche necessarie all'avanzamento, la pianificazione dell'accettazione del prodotto, e l'organizzazione del progetto.

2.1 Modello di processo

Il modello di ciclo di vita scelto per il progetto UnisaEAT è un modello a V con possibilità di retroazione. Tale modello consiste in un classico modello a cascata con maggior focus sulle fasi di design dei test. Tale scelta è stata presa in virtù di due principali caratteristiche del contesto di lavoro:

- L'impossibilità di avere un confronto reale e costante col cliente non presente nel progetto in questione, per motivi didattici.
- La necessità, sempre didattica, di produrre documentazione di test sin dalle prime fasi del processo.

Nonostante la mancanza della figura del cliente, ogni conclusione di fase si è comunque seguito un processo di Verifica, atto a garantire che il prodotto che si sta costruendo rispetti la specifica data, e di Validazione, atto a stabilire se il prodotto che si sta costruendo adempia ai suoi reali obiettivi operativi. Per quanto riguarda la fase implementativa, si andrà a seguire il modello di sviluppo Scrum, un modello agile. Sebbene tale modello sia contrapposto alla natura orientata alla pianificazione del waterfall, si reputa necessario prendere tale scelta per motivi didattici. Nello specifico, era desiderio del Project Manager fare in modo che i team members potessero vivere l'esperienza dello Scrum, seppur non al suo massimo, per poterne trarre beneficio in termini di conoscenze.

Sempre durante lo sviluppo sarà seguito un processo di Continuous Integration e Deployment (CI/CD) tramite l'uso di tools appositi e riconosciuti nel mondo professionale. Motivo di tale scelta risulta essere principalmente la necessità di automatizzare processi di verifica del codice prodotto, onde evitare problemi inaspettati e di impatto elevato sul progetto durante le fasi di implementazione più concitate. Per ciò che concerne il configuration management si fa riferimento al documento di Configuration Management Plan.

2.2 Process Improvement Plan

Per ciò che riguarda le attività atte a migliorare la qualità dei processi stessi, esse possono essere elencate di seguito:

- Training: al fine di migliorare e velocizzare i processi di design e sviluppo, ogni fase del ciclo di vita sarà preceduta da una fase di training organizzata dal PM con l'obiettivo di istruire i team members su cosa deve essere fatto e come.
- Sprint Retrospective: durante la fase di sviluppo si seguirà un modello agile, lo Scrum. Tale modello prevede l'esecuzione di analisi a posteriori di ogni fase di lavoro per lo sviluppo di una versione dell'applicativo. Tali retrospettive saranno fatte sia attraverso un questionario che una riunione formale di persone e le informazioni ottenute saranno usate per migliorare il processo. Tali informazioni saranno contenute in una serie di documenti separate dagli altri, facenti parte di un diverso modello di ciclo di vita.

2.3 Infrastructure Plan

Nella presente sezione si andrà a descrivere come avverrà la configurazione dell'ambiente di sviluppo del prodotto. Nello specifico, le macchine usate dai team members saranno principalmente macchine personali sulle quali verrà installata una IDE per lo sviluppo, preferibilmente Visual Studio Code, e uno strumento di versioning locale, GitHub Desktop. Il setup di tali macchine avverrà in un meeting ad hoc organizzato prima dell'inizio della fase di implementazione. Tali scelte sono state necessarie sia per la natura didattica del progetto che per l'attuale situazione di pandemia relativa al COVID-19.

2.4 Metodi, tool e tecniche

Metodi

Nella presente sezione si andranno a elencare le metodologie adottate durante la fase di implementazione e sviluppo. Nello specifico, saranno utilizzate le seguenti metodologie:

- Scrum, come modello di ciclo di vita per lo sviluppo;
- Pair Programming, per lo sviluppo di alcune parti dell'applicativo (causa COVID-19 verrà effettuato da remoto);
- Pull based development, per la gestione dell'avanzamento del lavoro;
- Revisioni, per lo accounting della qualità del codice.

Tools e tecnologie

Nella presente sezione si andranno a elencare i principali tools usati durante l'intero ciclo di vita del progetto UnisaEAT e le tecnologie per lo sviluppo.

Per ciò che concerne l'organizzazione del lavoro del team saranno utilizzati i seguenti tools:

- ClickUp, per la gestione e coordinazione riguardanti i tasks di progetto e per l'implementazione della Scrum Board per la fase di implementazione;
- Microsoft Teams, per la comunicazione formale soprattutto dal PM verso gli altri team members,
 per il lavoro di gruppo e i meeting formali;
- WhatsApp, per la comunicazione informale di tutto il team di progetto;

Per ciò che concerne lo sviluppo di artefatti, saranno utilizzati i seguenti tools:

- One Drive, per la gestione delle cartelle contenenti i documenti di progetto;
- Microsoft Word, per la scrittura dei documenti;
- Microsoft Excel, per i fogli di lavoro;
- Visual Paradigm Community Edition, per la creazione dei diagrammi UML;
- Balsamiq, per la creazione dei mockups delle interfacce grafiche;
- Visual Studio Code, per lo sviluppo del codice sorgente tramite IDE;
- Selenium IDE, per il testing di sistema;

Per ciò che concerne lo sviluppo del software, saranno utilizzate le seguenti tecnologie:

- Node.js, come linguaggio di programmazione back-end;
- Mocha e Chai, come framework per il test di unità e integrazione;
- React, come linguaggio di programmazione front-end;
- CSS, come linguaggio di styling del front-end;
- Javascript, come linguaggio di scripting per il front-end;
- Bootstrap, come framework front-end per lo sviluppo di view grafiche.

Per ciò che concerne il build, le verifiche, e il deployment del software, saranno utilizzate i seguenti tools:

- Express.js, per il building e il testing del software;
- GitHub, per il versioning;
- NYC, per il calcolo delle metriche;
- Standard JS, per il rispetto della convenzione del codice JavaScript.

2.5 Product Acceptance Plan

La prima versione release del prodotto sarà consegnata e mostrata al Top Manager nella settimana dopo il 18/01/2022. Tale consegna prevederà una presentazione sull'approccio di management e sviluppo dell'intero progetto e sui principali artefatti prodotti.

Oltre ciò, sarà mostrata una breve demo atta a validare alcune funzionalità dell'applicativo. Il prodotto in questione sarà accettato sulla base dei seguenti criteri:

- Consegna dei deliverable di progetto entro le date fissate dal Top Manager;
- Consegna dell'applicativo con le funzionalità a priorità elevata entro la data ultima del progetto;
- Elevata qualità di tutti gli artefatti prodotti, dimostrata attraverso l'uso di check-list di qualità e tools per il calcolo di metriche sul codice;
- Branch-coverage del test dell'applicativo superiore al 75%, calcolata tramite l'uso del tool NYC;
- Numero di errori dati in output da JavaScriptLint, calcolati in base al rispetto della convenzione del codice JavaScript, inferiore a 20.

2.6 Organizzazione del progetto

Nella presente sezione si andrà a descrivere la struttura dell'organizzazione del progetto. Tale struttura è di tipo gerarchico e vede al suo apice il Top Manager, che si occupa di supervisionare il progetto e comunicare con i Project Manager. I Project Manager hanno la responsabilità di portare il progetto a compimento con successo, facendo lavoro di management nei confronti dei team members, che rispondono direttamente a lui. Tra i team member poi vi è la figura del review leader, che ha il compito di eseguire revisioni periodiche di tutti i documenti e filtrare richieste di modifiche importanti verso il project manager (questo ruolo verrà svolto a turno da tutti i membri).

Di seguito, l'organigramma dell'organizzazione.

3. Pianificazione del progetto

Di seguito si andrà a descrivere nel dettaglio come sono state condotte le fasi di avvio del progetto, di stima delle risorse e del budget, e i piani relativi alla gestione delle risorse.

3.1 Avvio del progetto

Di seguito si andranno a descrivere i piani per la stima, il reclutamento del team, l'acquisto delle risorse, e il training del team di progetto.

3.1.1 Estimation Plan

Il budget a disposizione risulta essere di 50 ore a team member per un totale di 350 ore a cui vanno ad aggiungersi le 100 ore dei Project Manager. Di seguito, si mostrano come tali ore sono state stimate in relazione alle diverse macro-attività del progetto UnisaEAT:

- Requirements Elicitation and Analysis: 93h;
- System Design: 37h;
- System Test Design: 16h;
- Object Design: 30h;
- System Implementation: 148h;

• Testing: 24h.

3.1.2 Scopo, ambito e obiettivi

Il piano per la selezione del team di progetto prevede l'identificazione di soggetti con abilità di varia natura. Consapevoli del fatto che non sia possibile avere un team eccellente in ogni campo, si cercherà di ottenere figure che possano compensarsi a vicenda. Ciò nonostante, prettamente di tipo comportamentale, dovranno essere possedute da tutto il team. Per i presenti motivi, tutte le abilità richieste dal PM saranno presentate nell'introduzione dello stesso agli studenti triennali.

Le abilità di tipo tecnico riguardano prettamente conoscenze in ambito di programmazione orientata agli oggetti e costruzione di basi di dati e schermate web. Oltre ciò, vengono richieste competenza ingegneristiche nella modellazione, formalizzazione, e risoluzione di problemi. Ciò nonostante, si prevede che tali abilità andranno a migliorare nel corso del progetto. Per concludere, tutti i team members dovranno essere predisposti all'apprendimento di nuove tecnologie e flessibili al cambiamento. Di seguito, si mostra una tabella contenente le abilità richieste con relativa importanza:

Abilità	Importanza (da 1 a 5)
Predisposizione all'apprendimento di nuove tecnologie	5
Flessibilità al cambiamento	5
Rispetto e serietà	5
Capacità di lavorare in gruppo	4
Formalizzazione di problemi	4
Risoluzione di problemi	4
Programmazione orientata agli oggetti	5
Progettazione e sviluppo di DB relazionali	3
Programmazione Front-End	4

3.1.3 Resource Acquisition Plan

L'acquisizione dei membri del gruppo avverrà in passi successivi:

- 1. Gli studenti triennali compileranno un questionario sulle loro capacità tecniche e esperienze passate;
- 2. I Project Manager faranno una presentazione della propria idea a tutti gli studenti triennali;
- 3. Gli studenti formeranno dei gruppi autonomi e esprimeranno le proprie preferenze su un certo numero di Project Manager;

4. I Project Manager visioneranno le preferenze e sceglieranno un gruppo, risolvendo eventuali conflitti tra loro o prendendo singoli membri da gruppi divisi.

3.1.4 Training Plan

Nel corso del progetto saranno organizzate sessioni di training precedenti ogni inizio di macro-attività atte a facilitare il lavoro dei team members. Se necessario, il PM potrà decidere di organizzare sessioni di training addizionali e non pianificate. Altri training ancora potrebbero essere concordati tra i team member e il PM a discrezione dei primi.

Di seguito sono riportate le principali attività di training previste per il progetto:

- Training sui tools di management come ClickUp;
- Training su Node.js, MongoDB, React;
- Training su Mocha e Chai.

3.2 Project Works Plans

Di seguito si andranno a descrivere i piani riguardanti lo schedule e il budget di progetto.

3.2.1 Work activities

Di seguito è riportata una vista della WBS di progetto ad alto livello:

Per una vista più dettagliata della WBS e dei work packages si rimanda ai documenti di WBS Dictionary e Schedule Management Plan.

3.2.2 Schedule Allocation

Le schedule delle attività è descritto nei documenti di schedule (Schedule Management Plan) e nei files ottenuti tramite Microsoft Project 2019 (allegati alla consegna).

3.2.3 Resource Allocation

Per motivi didattici, per la quasi totalità della attività di progetto, la divisione dei compiti tra gli studenti sarà di tipo verticale. Tutti i team member lavoreranno parallelamente su diversi artefatti facenti parte della stessa macro-attività.

3.2.4 Budget Allocation

Il budget del progetto consiste prevalentemente delle ore di lavoro per team member. L'assegnazione di tali ore è decisa basandosi su esperienze pregresse e numero di artefatti per macro-attività. Nel dettaglio, si stima che le attività richiedenti maggior numero di risorse siano la fare si requirements analysis, perché la prima affrontata dal team, e la fase implementativa.

Nel documento relativo allo schedule è possibile vedere come i costi sono stati assegnati alle varie attività.

4. Valutazione e controllo del progetto

Nella presente sezione si andranno a specificare le procedure necessarie per la pianificazione del controllo dei requisiti, della schedulazione, del budget, della qualità, di reporting e dell'insieme di metriche, la presentazione dei possibili rischi che possono accadere e i rispettivi piani per evitarli o minimizzarli e quelli di contingenza da attuare in caso essi si verifichino.

4.1 Requirements Management Plan

La raccolta dei requisiti risulta essere una parte essenziale nell'ambito dello sviluppo di un buon prodotto software. La raccolta dei requisiti sarà fatta all'inizio della fase di requirements elicitation, sfruttando diagrammi degli attori, specifiche del cliente, e activity diagram. I requisiti così ottenuti saranno poi raffinati e analizzati attraverso l'uso di casi d'uso e scenari. Una volta raggiunta una sufficiente conoscenza di essi, saranno elencati seguendo lo standard IEEE e sarà associata loro una priorità.

Tutti i requisiti a priorità elevata saranno completamente documentati e implementati nella prima versione. I requisiti a priorità media e bassa non saranno documentati, a eccezione di alcuni considerati importanti per diversi motivi.

I requisiti potranno subire modifiche previa accettazione da parte di tutto il team e non oltre la fase di implementazione, a eccezione di casi particolari.

4.2 Scope Change Control Plan

Durante lo sviluppo del progetto è possibile che ci sia l'esigenza di modificare, eliminare o aggiungere requisiti funzionali. Proposte di tale tipo dovranno però seguire un preciso percorso che prevede diverse fasi:

- 1. **Proposta di cambiamento**: un qualsiasi stakeholder può proporre una richiesta di cambiamento direttamente ai Project Manager andando a strutturare tale richiesta in un documento esaustivo comprendente le motivazioni e i benefici dell'introduzione della modifica;
- 2. **Valutazione**: i PM dovranno valutare la modifica in termini di impatto sul progetto e sulle risorse del budget.
- 3. **Condivisione di opinioni**: la modifica sarà valutata con l'intero team di sviluppo e ogni team member potrà esprimere la propria opinione.
- 4. **Accettazione o rifiuto**: la richiesta potrà essere accettata o rifiutata dal PM sulla base delle analisi effettuate;
- 5. **Annotazione su Board**: la modifica viene segnata su una board condivisa e il team individua assieme tutti gli artefatti che si devono modificare per implementare la change request. Una volta che tutti gli artefatti sono stati modificati, la card è sarà chiusa e la modifica sarà considerata implementata.

4.3 Schedule Control Plan

La pianificazione dello schedule avviene prevalentemente attraverso l'uso di Microsoft Project 2019 il quale implementa in modo automatico numerose funzioni, tra le quali il calcolo dello earned value usabile per calcolare numerose metriche, tra le quali l'indice di performance dello schedule (SPI) e l'indice di performance dei costi (CPI). Durante il corso del progetto, i PM aggiorneranno manualmente i progressi tramite il software, ottenendo tali metriche e prendendo decisioni sulla base di esse.

Oltre quanto precedentemente detto, dopo l'assegnazione dei singoli tasks il PM terrà traccia dello stato tramite l'uso di una bord ClickUp, andando a fissare scadenze per ognuno di essi. Con cadenza settimanale, saranno effettuati meeting formali comprendenti di una parte di status sui tasks in corso per la milestones.

4.4 Budget Control Plan

Anche per il controllo dei costi e del budget si farà uso degli strumenti forniti da Microsoft Project 2019. Anche nel presente caso, attraverso il calcolo dello Earned Value, si andranno a calcolare metriche quali l'indice di performance dei costi (CPI) e altre relative al costo. Sempre sulla base di tali metriche, saranno prese decisioni da parte del PM.

4.5 Quality Assurance Plan

I processi di quality assurance sono riportati nel dettaglio nel documento di Quality Management Plan.

4.6 Project Closeout Plan

L'intero prodotto sarà consegnato al cliente a terminazione del progetto. Sarà consegnata l'intera documentazione attraverso la piattaforma e-learning, le valutazioni fatte dai PM ai team member e sarà fatta una presentazione sul progetto sia dai PM che dai team member per illustrare l'intero progetto e le attività svolte.

5. Consegna del prodotto

Nella presente sezione si andranno a elencare tutti i deliverables di progetto, distinguendo tra deliverables di management e deliverables di sviluppo.

Di seguito la lista dei deliverables di management:

- Statement of Work (SOW);
- Business Case (BC);
- Project Charter;
- Software Project Management Plan (SPMP);
- Quality Management Plan (QMP);
- Risk Management Plan (RMP);
- Risk Register;
- WBS Dictionary (WBSDIC);
- Schedule Management Plan (SMP);

- Configuration Management Plan (CMP);
- Documentazione di Scrum.

Di seguito la lista dei deliverables di sviluppo:

- Requirements Analysis Document (RAD);
- System Design Document (SDD);
- Test Plan (TP);
- Category Partition (CP);
- Test Case Specification (TCS);
- Object Design Document (ODD);
- Test Incident Report (TIR);
- Test Summary Report (TSR);
- Codice sorgente;
- Matrice di tracciabilità;
- Documenti di revisione;
- Foglio con ore di lavoro;
- Agende di meeting;
- Minute di meeting.

6. Supporting Process Plan

Nella presente sezione si andranno a descrivere i piani di supporto per il successo del progetto.

6.1 Supervisione e ambiente di lavoro del progetto

Durante il corso della settimana, ogni team member lavorerà, eventualmente in gruppo, a un task previsto per quella stessa settimana e appartenente ad una delle attività di progetto. Una volta a settimana, durante il meeting formale, ogni team member dovrà aggiornare i PM sullo status dei task assegnatigli. Oltre ciò, una volta a settimana, sarà organizzata una giornata di lavoro di gruppo durante la quale tutti i team members lavoreranno assieme su uno dei canali predisposti per il lavoro. In tali occasioni anche i PM parteciperanno al lavoro, supervisionandolo e aiutando se necessario. Oltre ciò, i PM leggeranno gli artefatti prodotti ogni settimana, almeno nelle prime fasi di progetto, per aumentare la qualità e aiutare i team members a comprendere bene gli standard fissati per la documentazione. Al raggiungimento di una

milestone, la revisione degli artefatti sarà assegnata a due membri del team (a rotazione) e, una volta conclusa, i PM prenderanno in carico il documento e lo visioneranno per individuare eventuali errori da correggere. Ogni consegna, sarà responsabilità del Top Manager eseguire un ulteriore controllo a scopo valutativo.

Durante il corso del progetto, gli ambienti di lavoro principali saranno i canali online come Microsoft teams e Discord, per ovvi motivi dipendenti dalla pandemia del COVID-19. Durante tali lavori, la supervisione del team members sarà affidata al Project Manager. La supervisione dei Project Manager spetterà al Top Manager tramite meeting occasionali.

La valutazione del lavoro svolto per i team members si baserà su una serie di parametri valutativi scelti dai PM e concordati col team di sviluppo durante la firma del Team Contract. Di seguito si riporta una lista di tali parametri valutativi:

Nome campo	Descrizione	Significato	Significato	Significato
	campo	valutazione	valutazione	valutazione
		minima	media	massima
Produttività	Attitudine a	Si agisce senza la	Si agisce cercando	Si agisce
	conseguire un	minima capacità	di evitare	pensando sempre
	risultato superiore	di iniziativa	problematiche	al futuro e di
	ai mezzi impiegati		ovvie	conseguenza
Qualità del	Correttezza e	Lo studente	Lo studente	Lo studente
lavoro	precisione delle	produce artefatti	produce artefatti	produce artefatti
	attività svolte	di pessima qualità	di qualità	di ottima qualità e
		o non li produce	soddisfacente ma	rispetta tutto
		affatto	spesso non	quello che viene
			rispetta quanto	detto e deciso
			definito	
			precedentemente	
Comunicazione	Capacità di	Lo studente non	Lo studente si	Lo studente
	comunicare con i	comunica ai PM	limita a	comunica in
	PM e con gli altri	eventuali	comunicare	maniera costante
	membri del team	problemi	eventuali ritardi o	con i PM e con gli
	in modo costante	riscontrati nello	problemi nello	altri team
	e preciso	svolgimento delle	svolgimento delle	members lo stato
		task o non	task quando la	delle proprie task,

		comunica nelle	data di consegna è	permettendo ai
		tempistiche	ormai alle porte	PM di intervenire
		stabilite eventuali		in maniera
		ritardi delle		repentina in caso
		consegne.		di problemi e/o
				ritardi
Puntualità	Rispetto delle	Lo studente	Lo studente	Lo studente
	scadenze fissate	consegna gli	consegna gli	consegna gli
	dai PM	artefatti con largo	artefatti con largo	artefatti
		ritardo	ritardo un	rispettando i
		continuamente	numero medio di	tempi previsti
			volte	
Iniziativa	Capacità di	Si agisce senza la	Si agisce cercando	Si agisce
1	proporre e avviare	minima capacità	di evitare	pensando sempre
	nuove attività	di iniziativa,	problematiche	al futuro e di
		limitandosi a	ovvie	conseguenza, così
		svolgere le sue		da essere
		task in maniera		avvantaggiati nelle
		basilare		task successive
Partecipazione	Partecipazione e	Lo studente non	Lo studente	Lo studente
	interesse mostrato	partecipa ai	partecipa ai	partecipa
	durante i meeting	meeting	meeting in modo	attivamente a tutti
	e durante le		apatico	i meeting
	discussioni			
Autonomia	Capacità di saper	Lo studente pone	Lo studente pone	Lo studente
	portare a termine	di continuo,	domande al fine	lavora in maniera
	le attività in modo	sull'operato da	di migliorare il	autonoma.
	autonomo	svolgere,	suo operato, o	
		domande la cui	puramente di	
		risposta è ovvia o	natura logistica	
		è data dallo studio		
		della teoria		

Entusiasmo	Interesse	Lo studente	Lo studente	Lo studente
	dimostrato per le	risulta poco	risulta interessato	risulta interessato
	attività assegnate	interessato nello	solo alle attività	a tutte le attività
		svolgimento delle	progettuali che lo	progettuali, anche
		attività progettuali	riguardano in	a quelle che non
			prima persona	lo riguardano in
				prima persona
Abilità tecniche	Capacità di	Lo studente non è	Lo studente è a	Lo studente è in
	applicare	a conoscenza di	conoscenza delle	grado di applicare
	immediatamente e	nozioni teoriche	nozioni teoriche,	le proprie
	in modo corretto		ma non è in grado	conoscenze
	le proprie		di applicarle al	teoriche al
	conoscenze		progetto	progetto
Revisione	Valutazione	-1 al voto finale,	0 al voto finale, se	+1 al voto finale,
	dell'attività di	se a seguito della	a seguito della	se la revisione
	revisione delle	revisione dei PM	revisione dei PM	viene fatta in
	task per cui è	risultano esserci	risultano esserci	modo corretto e
	prevista. A	task con status	modifiche da	non ci sono
	differenza dei	"REJECT", che	apportare ai	modifiche da
	criteri precedenti,	risultano essere	contenuti delle	apportare, al netto
	alla revisione	quindi per la	task, e quindi	di correzioni
	verrà assegnato -	maggior parte	risultano esserci	ortografiche e/o
	1, 0 o +1.	errati nei	errori non gravi	di formattazione
		contenuti	nelle task	del documento

6.2 Decision Management

Per ciò che concerne le decisioni, risulta essere doverosa una distinzione tra decisioni in ambito di management del team di sviluppo e decisioni che riguardano lo sviluppo del prodotto.

Le prime, comprendenti principalmente decisioni sullo schedule, sui rischi da gestire, sull'assegnazione di ruoli di spicco, sul budget, e sulle attività formali, saranno prese dai soli Project Manager e comunicate ai team members che potranno esporre una loro opinione eventualmente usata per modificare quanto deciso.

Le seconde, comprendenti decisioni sull'assegnazione dei tasks, sulle funzionalità del prodotto, sulle priorità degli artefatti e degli elementi riguardanti il prodotto, e altro, saranno prese da tutto il gruppo durante i meeting formali e le riunioni di gruppo. Solitamente tale processo avviene con la presentazione da parte dei PM di una serie di decisioni da prendere e la discussione di tutto il gruppo a riguardo.

Un tipico processo di decision making prevede:

- 1. Formalizzazione del problema e sua enunciazione sotto forma di domanda;
- 2. Proposta di una serie di alternative atte a risolvere il problema;
- 3. Valutazione di pro e contro o di eventuali ostacoli per ogni alternativa;
- 4. Votazione di una soluzione.

In caso di stallo su una decisione, i Project Manager avranno sempre il potere di prenderne una arbitrariamente, sebbene tale scelta dovrà essere correttamente esposta e supportata onde evitare malcontenti nel gruppo di progetto.

Eventuali proposte potranno essere presentate anche direttamente dai team members e subiranno il medesimo iter valutativo delle altre.

6.3 Risk Management

Per ciò che concerne la Risk Management, si rimanda al documento di Risk Management Plan.

6.4 Configuration Management

Per ciò che concerne la Configuration Management, si rimanda al documento di Configuration Management Plan.

6.5 Quality Assourance

Per ciò che concerne la Quality Assourance, si rimanda al documento di Quality Management Plan.

6.6 Misure

Per ciò che concerne le metriche da calcolare durante l'esecuzione del progetto, occorre fare una distinzione tra metriche di qualità e di dimensione e complessità.

Le prime sono esaustivamente esposte nel documento di Quality Management Plan.

Le seconde sono esposte di seguito.

Nome metrica	Descrizione	Motivazione

Lines of Code (LOC)	Numero totale di linee di	Metrica dimensionale per
	codice.	caratterizzare la dimensione
		dell'applicativo
Non Comment NCLOC	Numero totale di linee di codice	Metrica dimensionale per
	effettivo	caratterizzare la dimensione
		dell'applicativo
Comment Lines of Code	Numero totale di linee di	Metrica dimensionale per
CLOC	commenti	caratterizzare la dimensione
		dell'applicativo

Oltre le metriche precedentemente citate si è cercato di misurare la produttività del team attraverso l'uso di burndown charts in fase di implementazione, avendo usato un approccio Scrum. In tale diagramma si è tenuto conto del Focus Factor (alto all'inizio e in declino progressivo) per stimare il carico di lavoro e i tempi di completamento. Tali documenti possono essere trovati nella cartella Scrum.

7. Piani addizionali

Si prevede di organizzare un meeting dopo la fine del progetto per un'attività di lessons learned più approfondita (una attività preliminare sarà fatta prima della consegna) con tutti i team members che sarà usata per arricchire la presentazione finale del progetto, dal lato dei PM.