Buy or "Bye"

Development and Optimization of Investment Strategies Using Python

EMA Crossover and Machine Learning Models

Introduction

- Objective: Develop, optimize, and test investment strategies.
- Compare EMA crossover strategy with Machine Learning models.
- Data Source: NVIDIA daily stock prices (Jan 2018 Jan 2024).

Literature Review

Technical Indicators:

EMA crossovers identify market trends (Brown & Jennings, 1989; Murphy, 1999).

Machine Learning:

Captures complex data relationships (Prado, 2018; Patel et al., 2015).

Hybrid Approaches:

• Combining EMA with ML enhances accuracy (Huang et al., 2009; Zhang & Wang, 2017).

Practical Applications and Limitations:

Overfitting risks and parameter tuning (Lopez de Prado, 2018; Kearns & Nevmyvaka, 2013).

Dataset Desription

Data Source: Yahoo Finance

Time Span: January 2018 - January 2024

Key Metrics:

Open, Close, High, Low, Volume

Data Split:

- 80% Training
- 20% Testing

Data Preprocessing:

- Checked for missing values, anomalies
- Ensured data consistency and synchronization

Methodology

Two Strategies:

- EMA12 and EMA26 Crossover
- Machine Learning (Random Forest, XGBoost)

EMA Crossover Strategy:

- Technical Setup: EMA12, EMA26
- Signals: Buy (EMA12 > EMA26), Sell (EMA12 < EMA26)
- Implementation: Python's pandas library
- Optimization: In-sample testing, backtesting on out-of-sample data

Machine Learning Strategy:

- Features: SMA, EMA, Momentum, RSI, Bollinger Bands, MACD, ADX, Stochastic, ATR
- Models: Random Forest, XGBoost
- Implementation: Python's sklearn and xgboost libraries
- Training and Validation: Cross-validation, grid search for hyperparameter tuning

Results

EMA Crossover Strategy	Machine Learning Models	
Buy and Sell Signals: Clear signals coinciding with key market turning points	Random Forest	XGBoost
	Training Accuracy: 0.90	Training Accuracy: 0.83
Performance Metrics:	Testing Accuracy: 0.91	Testing Accuracy: 0.87
Sharpe Ratio: 0.74	Sharpe Ratio: 2.06	Sharpe Ratio: 1.88
Total Return: 236%	Total Return: 170%	Total Return: 145%
	Trades Executed: 14	Trades Executed: 18

Comparative Analysis:

- EMA: Simplicity, Moderate Returns
- ML: Higher Complexity, Higher Returns

NVIDIA Stock Price with EMA Crossover Strategy

NVIDIA Stock Price with RandomForest Strategy Buy/Sell Signals

NVIDIA Stock Price with XGBoost Strategy Buy/Sell Signals

Cumulative Returns of ML-based Trading Strategies

Conclusion

EMA Crossover Strategy:

- Simple and actionable
- Moderate returns, suitable for new traders

Machine Learning Models:

- Superior performance, higher risk-adjusted returns
- Requires deeper understanding and careful management

Strategic Recommendations:

- Hybrid strategies combining EMA and ML
- Future exploration: Sentiment analysis, macroeconomic indicators

References

- 1. Brown, D. P., & Jennings, R. (1989). On technical analysis. *Review of Financial Studies*, 527-551.
- 2. Huang, W. N.-Y. (2009). Forecasting stock market movement direction with support vector machine. *Computers & Operations Research*, 2513-2522.
- 3. Kearns, M., & Nevmyvaka, Y. (2013). Machine learning for market microstructure and high-frequency trading. *Journal of Investment Strategies*, 83-105.
- 4. Lopez de Prado, M. (2018). Building Winning Algorithmic Trading Systems: A Trader's Journey From Data Mining to Monte Carlo Simulation to Live Trading. Wiley.
- 5. Murphy, J. J. (1999). *Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications*. New York: Institute of Finance.
- 6. Patel, J. S. (2015). Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques. *Expert Systems with Applications*, 259-268.
- 7. Prado, M. L. (2018). Advances in Financial Machine Learning. Wiley.
- 8. Zhang, Y., & Wang, J. (2017). Integrating EMA indicators into machine learning models to enhance stock price prediction. *International Journal of Economics and Finance*, 183-194.

Team Collaboration

Task	Assigned to
Data Loading and Preprocessing	Afet Ibadova
EDA	Daryush Ray
Strategy 1	Afet Ibadova
Strategy 2	Daryush Ray
Performance Measures Calculation	Afet Ibadova
Optimization and Backtesting	Daryush Ray