- 1.9 1) Initialisation: Pour n = 1, on constate que $4^1 1 = 3$ est bien divisible par 3.
 - **Hérédité :** Supposons $4^n 1$ divisible par 3 pour un certain $n \in \mathbb{N}$. Par suite, il existe un entier a tel que $4^n 1 = 3a$.

Montrons que l'entier $4^{n+1} - 1$ est aussi divisible par 3.

$$4^{n+1} - 1 = 4 \cdot 4^n - 1 =$$

$$(3+1)\cdot 4^n - 1 =$$

$$3 \cdot 4^n + \underbrace{4^n - 1}_{3 \, a} =$$

$$3 \cdot 4^n + 3a =$$

$$3(4^n + a)$$

2) (a) Soit $n \in \mathbb{N}$ tel que $4^n + 1$ soit divisible par 3.

Par hypothèse, il existe un entier a tel que $4^n + 1 = 3 a$.

$$4^{n+1} + 1 =$$

$$4 \cdot 4^n + 1 =$$

$$(3+1)\cdot 4^n + 1 =$$

$$3\cdot 4^n + \underbrace{4^n + 1}_{3\,a} =$$

$$3 \cdot 4^n + 3 a =$$

$$3(4^n + a)$$

On a ainsi montré que si $4^n + 1$ est divisible par 3, alors $4^{n+1} + 1$ est lui aussi divisible par 3.

(b) Le raisonnement précédent montre uniquement l'hérédité; l'initialisation n'est jamais vérifiée : 4^n+1 n'est jamais divisible par 3, quel que soit $n \in \mathbb{N}$.

Cette dernière affirmation doit encore être prouvée. Plus précisément, montrons par récurrence que le reste de la division de $4^n + 1$ par 3 vaut 2, pour tout $n \in \mathbb{N}$.

Initialisation : Pour n = 1, on constate que $4^1 + 1 = 5$ possède bien un reste de 2, lorsqu'on le divise par 3.

Hérédité : Supposons que le reste de la division de $4^n + 1$ par 3 vaille 2 pour un certain $n \in \mathbb{N}$.

Cela signifie qu'il existe un entier a tel que $4^n + 1 = 3 a + 2$.

$$4^{n+1} + 1 =$$

$$4 \cdot 4^n + 1 =$$

$$(3+1) \cdot 4^n + 1 =$$

$$3 \cdot 4^n + \underbrace{4^n + 1}_{3 \, a + 2} =$$

$$3 \cdot 4^n + 3a + 2 =$$

$$3(4^n + a) + 2$$

Étant donné que $4^{n+1}+1=3$ $(4^n+a)+2$, le reste de la division de $4^{n+1}+1$ par 3 donne également 2.