

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Προχωρημένα Θέματα Βάσεων Δεδομένων

Εξαμηνιαία Εργασία

Ομάδα 88 Μάριος Κερασιώτης 03117890

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

1	Εισα	ιγωγή	. 3
		ικοποίηση και ρύθμιση συστήματος	
3	Εκτέ	λεση των ερωτημάτων	. 3
4	Aπo	τελέσματα πειραμάτων	. 3
		Q1	
		Q2	
		Q3	
		Q4	
	4.5	Q5	. 6
		νοι εκτέλεσης	
_			

1 Εισαρορη

Σε αυτήν την εργασία καλούμαστε να επεξεργαστούμε δεδομένα όγκου, που αφορούν καταγραφές διαδρομών ταξί στην πόλη της Νέας Υόρκης. Συγκεκριμένα για να γίνει κάτι τέτοιο χρησιμοποιούμε τις τεχνολογίες Apache Hadoop 3.3.4 και Apache Spark 3.3.1. Το Apache Hadoop μας επιτρέπει να έχουμε έναν κατανεμημένο αποθηκευτικό χώρο στο σύνολο των virtual machines (VMs) μας και να επεξεργαζόμαστε τα δεδομένα με χρήση του μοντέλου Map Reduce. Το Apache Spark αποτελεί μια μηχανή ανάλυσης δεδομένων μεγάλου όγκου. Εμείς θα την χρησιμοποιήσουμε με τον python client της, το PySpark, σε περιβάλλον conda Python 3.10.

Τα δεδομένα πάρθηκαν από το Taxi & Limousine Commission (TLC) της Νέας Υόρκης. Συγκεκριμένα λήφθηκαν έξι αρχεία για κάθε μήνα από τον Ιανουάριο έως και τον Ιούνιο του 2022 και ένα αρχείο που αντιστοιχεί το πεδίο LocationID των παραπάνω αρχείων με τα προάστια και τις ζώνες της πόλης.

Η υλοποίηση της εργασίας βρίσκεται στο GitHub στο <u>mariosker/advanced_topics_in_database_systems_2022-ntua</u> repository, το οποίο είναι private. Έχει γίνει όμως πρόσκληση στον χρήστη dtsouma. Εάν δεν μπορείτε να μπείτε, εκτός από το να επικοινωνήσετε μαζί μου, μπορείτε να μπείτε και στο <u>gitfront</u>.

2 ΑΡΧΙΚΟΠΟΙΗΣΗ ΚΑΙ ΡΥΘΜΙΣΗ ΣΥΣΤΗΜΑΤΟΣ

Για να λειτουργήσει το σύστημα έπρεπε πρώτα να ρυθμιστούν τα hostnames στο /etc/hosts αρχείο. Αφότου γίνει αυτό κατεβάζουμε τα Hadoop και Spark. Στο Hadoop τροποποιούμε τα

- etc/hadoop/core-site.xml,
- etc/hadoop/hadoop-env.sh,
- etc/hadoop/hdfs-site.xml και
- etc/hadoop/workers

Για το spark αντίστοιχα τα αρχεία

- conf/spark-defaults.conf,
- conf/workers

Τέλος τροποποιούμε και το .bashrc.

3 ΕΚΤΕΛΕΣΗ ΤΩΝ ΕΡΩΤΗΜΑΤΩΝ

Το κάθε ερώτημα είναι αυτόνομο και δεν εξαρτάται από άλλα αρχεία. Έτσι σε ένα σύστημα με προ εγκατεστημένα και ρυθμισμένα τα Hadoop και Spark, και που έχει τα κατεβασμένα τα αρχεία από το TLC στον φάκελο raw_data στο hdfs μπορούμε απλώς να τρέξουμε τα scripts με την εντολή \$SPARK_PATH/bin/spark-submit --master spark://master:7077 <script.py>.

4 ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΙΡΑΜΑΤΩΝ

Οι πίνακες Q1 και Q2 είναι οι ανάστροφοι των αρχικών αποτελεσμάτων για ευκολότερη ανάγνωση.

4.1 Q1

Σκοπός του ερωτήματος αυτού είναι να βρεθεί η διαδρομή με το μεγαλύτερο φιλοδώρημα (tip) τον Μάρτιο και σημείο άφιξης το "Battery Park". Η υλοποίηση του πρέπει να γίνει με χρήση του DataFrame/ SQL API.

VendorID	2
tpep_pickup_datetime	2022-03-17 12:27:47
tpep_dropoff_datetime	2022-03-17 12:27:58
passenger_count	1
trip_distance	0
RatecodeID	1
store_and_fwd_flag	N
PULocationID	12
DOLocationID	12
payment_type	1
fare_amount	2.5
extra	0
mta_tax	0.5
tip_amount	40
tolls_amount	0
improvement_surcharge	0.3
total_amount	45.8
congestion_surcharge	2.5
airport_fee	0
max(tip_amount)	40

4.2 Q2 Σκοπός του ερωτήματος αυτού είναι να βρεθεί, για κάθε μήνα, η διαδρομή με το υψηλότερο ποσό στα διόδια, αγνοώντας τα μηδενικά ποσά. Η υλοποίηση του πρέπει να γίνει με χρήση του DataFrame/ SQL API.

VendorID	1	1	1	1	1	1
tpep_pickup_d	2022-01-22	2022-02-18	2022-03-11	2022-04-29	2022-05-21	2022-06-12
atetime	11:39:07	02:33:30	20:08:32	04:31:21	16:47:48	16:51:46
tpep_dropoff_	2022-01-22	2022-02-18	2022-03-11	2022-04-29	2022-05-21	2022-06-12
datetime	12:31:09	02:35:28	20:09:45	04:32:30	17:05:47	17:56:48
passenger_cou	1	1	1	2	1	9
nt						
trip_distance	33.4	1.3	0	0	2.4	22
RatecodeID	1	1	1	1	3	1
store_and_fw	Υ	N	N	N	N	N
d_flag						
PULocationID	70	265	265	249	239	142
DOLocationID	265	265	265	249	246	132
payment_type	4	1	1	3	3	2
fare_amount	88	3	2.5	3	31.5	67.5
extra	0	0.5	1	3	0	2.5
mta_tax	0.5	0.5	0.5	0.5	0	0.5

tip_amount	0	19.85	48	0	0	0
tolls_amount	193.3	95	235.7	911.87	813.75	800.09
improvement_ surcharge	0.3	0.3	0.3	0.3	0.3	0.3
total_amount	282.1	119.15	288	918.67	845.55	870.89
congestion_su rcharge	0	0	0	2.5	0	2.5
airport_fee	0	0	0	0	0	0

4.3 Q3

Σκοπός του ερωτήματος αυτού είναι να βρεθεί, ανά 15 ημέρες, ο μέσος όρος της απόστασης και του κόστους για όλες τις διαδρομές με σημείο αναχώρησης διαφορετικό από το σημείο άφιξης. Η υλοποίηση του πρέπει να γίνει με χρήση του DataFrame/ SQL API και του RDD API.

Το αποτέλεσμα του ερωτήματος είναι το εξής:

start	end	avg_trip_distance	avg_total_amount
2021-12-29 02:00:00	2022-01-13 02:00:00	5.35568	20.2054
2022-01-13 02:00:00	2022-01-28 02:00:00	4.62712	18.9418
2022-01-28 02:00:00	2022-02-12 02:00:00	6.37884	19.5637
2022-02-12 02:00:00	2022-02-27 02:00:00	5.98213	19.9099
2022-02-27 02:00:00	2022-03-14 02:00:00	6.33147	20.6179
2022-03-14 02:00:00	2022-03-29 03:00:00	6.02865	21.198
2022-03-29 03:00:00	2022-04-13 03:00:00	5.51855	21.3446
2022-04-13 03:00:00	2022-04-28 03:00:00	5.62503	21.4268
2022-04-28 03:00:00	2022-05-13 03:00:00	6.28778	21.8067
2022-05-13 03:00:00	2022-05-28 03:00:00	7.93508	22.7945
2022-05-28 03:00:00	2022-06-12 03:00:00	6.529	22.3675
2022-06-12 03:00:00	2022-06-27 03:00:00	6.11689	22.4656
2022-06-27 03:00:00	2022-07-12 03:00:00	5.9794	22.1151

4.4 Q4

Σκοπός του ερωτήματος αυτού είναι να βρεθούν οι τρεις μεγαλύτερες ώρες αιχμής ανά ημέρα της εβδομάδος, εννοώντας τις ώρες (π.χ., 7-8πμ, 3-4μμ, κλπ) της ημέρας με τον μεγαλύτερο αριθμό επιβατών σε μια κούρσα ταξί. Ο υπολογισμός αφορά όλους τους μήνες. Η υλοποίηση του πρέπει να γίνει με χρήση του DataFrame/ SQL API.

hour_of_the_day	week_day	max_passengers	rank
19	Friday	9	1
18	Friday	9	2
3	Friday	8	3
1	Monday	9	1
17	Monday	9	2
20	Monday	9	3

13	Saturday	9	1
14	Saturday	9	2
6	Saturday	9	3
16	Sunday	9	1
21	Sunday	8	2
15	Sunday	8	3
21	Thursday	9	1
2	Thursday	9	2
12	Thursday	8	3
11	Tuesday	9	1
19	Tuesday	9	2
20	Tuesday	9	3
9	Wednesday	9	1
4	Wednesday	8	2
20	Wednesday	8	3

4.5 Q5

Σκοπός του ερωτήματος αυτού είναι να βρεθούν οι κορυφαίες πέντε ημέρες ανά μήνα στις οποίες οι κούρσες είχαν το μεγαλύτερο ποσοστό σε tips. Η υλοποίηση του πρέπει να γίνει με χρήση του DataFrame/ SQL API.

day_of_month	month	average_tip_percentage	rank
29	1	0.215483	1
15	1	0.195323	2
22	1	0.193373	3
30	1	0.192807	4
21	1	0.192767	5
4	2	0.195576	1
5	2	0.195341	2
6	2	0.194006	3
10	2	0.193552	4
17	2	0.19291	5
9	3	0.195558	1
12	3	0.19392	2
30	3	0.193293	3
24	3	0.192785	4
10	3	0.192741	5
1	4	0.191378	1
7	4	0.191248	2
6	4	0.190912	3
27	4	0.19032	4
28	4	0.189369	5
12	5	0.192142	1

4	5	0.191388	2
11	5	0.190291	3
10	5	0.189719	4
6	5	0.189681	5
16	6	0.190439	1
8	6	0.189675	2
23	6	0.189216	3
9	6	0.189113	4
17	6	0.188299	5

5 ΧΡΟΝΟΙ ΕΚΤΕΛΕΣΗΣ

API	Data frame/ SQL		RI	DD
# of workers	1	2	1	2
Q1	14.468	8.132		
Q2	11.022	8.655		
Q3	6.309	8.155		
Q4	10.343	8.221		
Q5	6.989	6.121		

Οι παραπάνω χρόνοι εκτέλεσης είναι σε δευτερόλεπτα (seconds).