Name: APERR_008V01

Type: Earth station, Receiving

Region(s): 2

Description:

Appendix 30 reference receiving earth station antenna pattern for

Region 2 for individual reception.

Cross-Polar Component:

Required Input Parameters:

gain,bmwdth

Validation Warnings/Errors:

Type	Message
Warning	Phi0 () is out of limits [0.1:10.0].

Pattern Information:

This pattern is used for planning the BSS in Region 2.

The minimum antenna diameter wass such that the half-power beamwidth is 1.7 degrees.

The pattern requires input parameter beamwidth.

Co-Polar Component:

$G = G_{max}$	$for \qquad 0 \leq (\phi/\phi_0) \leq 0.25$	$G_x = G_{max} - 25$	for $0 \leq (\phi/\phi_0) \leq 0.25$
$G = G_{max} - 12 (\phi/\phi_0)^2$	for 0.25 < (ϕ/ϕ_0) ≤ 1.13	$G_x = G_{max} - 30 - 40 \log \left \frac{\phi}{\phi_0} - 1 \right $	for $0.25 < (\phi/\phi_0) \le 0.44$
G = $G_{max} - 14 - 25 \log (\phi/\phi_0)$	for 1.13 < $(\phi/\phi_0) \le 14.7$		
$G = G_{max} - 43.2$	for 14.7 < (ϕ/ϕ_0) ≤ 35	$G_x = G_{max} - 20$	for $0.44 < (\phi/\phi_0) \le 1.28$
G = $G_{max} - 85.2 + 27.2 \log (\phi/\phi_0)$	for $35 < (\phi/\phi_0) \le 45.1$	$G_x = G_{max} - 17.3 - 25 \log \left \frac{\varphi}{\varphi_0} \right $	for 1.28 < $(\phi/\phi_0) \le 3.22$
$G = G_{max} - 40.2$	for 45.1 < $(\phi/\phi_0) \le 70$		(1 1 0)
G = G_{max} + 55.2 – 51.7 log (ϕ/ϕ_0)	for $70 < (\phi/\phi_0) \le 80$	$G_x = G_{max} - 30$	for $3.22 < (\phi/\phi_0)$
$G = G_{max} - 43.2$	for $80 < (\phi/\phi_0)$	If $G_x > G$: $G_x = G$	