Unsupervised learning

Inteligencia Artificial en los Sistemas de Control Autónomo Máster en Ciencia y Tecnología desde el Espacio

Departamento de Automática

Objectives

- 1. Define Machine Learning (ML)
- 2. Delimite ML scope
- 3. Introduce the main ML tasks4. Recognize problems as ML tasks

Bibliography

- Bishop, Christopher M. Pattern Recognition and Machine Learning. 2nd edition. Springer-Verlag. 2011
- Müller, Andreas C., Guido, Sarah. Introduction to Machine Learning with Python. O'Reilly. 2016

Table of Contents

K-means, GMM and PCA

K-means (I)

Clustering is a set of unsupervised techniques that identify groups of data (named clusters)

f_1	f_2	f3	• • •	fn
$\mathfrak{a}_{1,1}$	$\mathfrak{a}_{2,1}$	$\mathfrak{a}_{3,1}$	• • •	$\mathfrak{a}_{\mathfrak{n},1}$
$\mathfrak{a}_{1,2}$	$\mathfrak{a}_{2,2}$	$\mathfrak{a}_{3,2}$	• • •	$\mathfrak{a}_{\mathfrak{n},2}$
$\mathfrak{a}_{1,3}$	$\mathfrak{a}_{2,3}$	$\mathfrak{a}_{3,3}$	• • •	$\mathfrak{a}_{\mathfrak{n},3}$
$\mathfrak{a}_{1,4}$	$\mathfrak{a}_{2,4}$	$\mathfrak{a}_{3,4}$	• • •	$\mathfrak{a}_{\mathfrak{n},4}$
$\mathfrak{a}_{1,5}$	$\mathfrak{a}_{2,5}$	$\mathfrak{a}_{3,5}$	• • •	$\mathfrak{a}_{\mathfrak{n},5}$

Main algorithms

- K-means
- DBScan
- Gaussian Mixture Models (GMM)
- Expectation Maximization (EM)
- •

K-means (II)

In k-means, clusters are identified by a centroid

K-means (III)

K-means drawbacks

- Initial seed
- K election

Elbow method

- I. Select K = 1, ..., n
- 2. Visualize performance for each k
- 3. Choose K where metric stabilizes

Gaussian Mixure Model (GMM)

GMM builds a probabilic model of our data

- GMM is a generative clustering algorithm
- Assumes data coming from a set of multidimensional gaussian distributions
 - GMM fits a set $\{(\mu_i, \sigma_i)\}_{i=1,...,K}$
 - μ is a vector
 - σ is a covariance matrix

(Source)

Principal Components Analysis (I)

Dimensionality reduction transforms data into more convenient representations

- Reduce data dimensionality
- Visualize multidimensional data

Main algorithms

- Isomap
- T-distributed Stochastic Neighbor Embedding (t-SNE)
- Principal Components Analysis (PCA)

Principal Components Analysis (II)

PCA maximizes data variance

Principal Components Analysis (III)

Example: Hand-written digits recognition

- Images of hand-written digits
- 8x8 images (64 dimensions)
- 10 digits
- Classification problem

