LSC Optymalizacja w DASK

Adam Ćwikła, Michał Szewc

Możliwości w Dask

Dask Cluster Dask to elastyczna biblioteka Python, zaprojektowana do obsługi dużych zbiorów danych oraz pracy rozproszonej. Oferuje:

- Rozwiązywanie problemów z big data: Pozwala na przetwarzanie danych, które nie mieszczą się w pamięci RAM.
- Paralelizację: Dask umożliwia wykorzystanie wielu rdzeni procesora lub klastrów komputerowych.
- Znane API: Integruje się z popularnymi bibliotekami, jak pandas, NumPy czy scikit-learn.
- Skalowalność: Może działać lokalnie (na jednym komputerze) lub w środowiskach rozproszonych, takich jak chmury (np. AWS, GCP).

Big pandas

Dask DataFrame to odpowiednik pandas, który pozwala na pracę z danymi większymi niż RAM komputera. Kluczowe cechy:

- Podział na partycje: Dane są dzielone na mniejsze fragmenty, co umożliwia operacje na dużych zbiorach danych.
- API zgodne z pandas: Większość operacji pandas działa podobnie w Dask, co zmniejsza krzywą nauki.
- Wsparcie dla formatów big data:
 Obsługuje Parquet, CSV

Big array

Dask Array to rozszerzenie dla NumPy, przystosowane do pracy z danymi wielowymiarowymi. Właściwości:

- Podział na bloki: Dane są dzielone na mniejsze, przetwarzalne fragmenty.
- Wsparcie dla operacji NumPy: Większość metod NumPy (np. suma, transpozycja) jest wspierana przez Dask Array.

Obsługa macierzy wielowymiarowych: Przydatne w analizie danych obrazowych, symulacjach i modelowaniu numerycznym.

Dask umożliwia prostą paralelizację kodu za pomocą:

- Dask.delayed: Dekorator, który przekształca funkcje w zadania wykonywane równolegle. Przykład:
 - Zamiast wykonywać operacje jedna po drugiej, Dask buduje graf zadań (DAG) i optymalizuje ich wykonywanie.
- Dask Futures: Używane do asynchronicznego zarządzania zadaniami w czasie rzeczywistym.
- Zintegrowane schedulery: Dask automatycznie dopasowuje strategię wykonywania zadań do środowiska.

Analizowany zbiór danych

Uruchomienie daska na Athenie

```
#!/bin/bash
#SBATCH --partition plgrid-gpu-a100
#SBATCH --nodes 4
#SBATCH --ntasks-per-node 16
#SBATCH --mem-per-cpu=4G
#SBATCH --time 0:30:00
#SBATCH -- job-name dask-test
cd $SCRATCH
module load GCC/10.3.0
module load OpenMPI/4.1.1
module load dask/2021.9.1
module load SciPy-bundle/2021.05
## module load matplotlib/3.4.2
export SLURM_OVERLAP=1
# mpirun -np 8 dask-mpi --no-nanny --local-directory
$SCRATCH/dask_tmp/workers --scheduler-file $SCRATCH/dask_tmp/scheduler.json
# python site_sonar_dask.py
mpirun -np 8 python /net/people/plgrid/plgmszewc/LSC/pro/site_sonar_dask.py
```

Problemy napotkane podczas implementacji

Z racji na rozmiar danych, najprostsze wywołanie programu zajomwało za dużo pamięci. Próby poradzenia sobie z problemem:

- Stworzenie clustra lokalnego w innym procesie.
- Stworzenie clustra lokalnego za pomocą OpenMPI4 (mpirun / mpiexec).
- Stworzenie clustra lokalnego za pomocą dask-mpi i OpenMPI4.

Niestety nie udało się osiągnąć pożądanego wyniku i pojedyncze wątki dla większych wywołań były zabijane i uniemożliwiały dokończenie całości obliczeń. Aczkolwiek, jeżeli byśmy brali wyłącznie czas spędzony na wczytywaniu plików, to jako czynności niezależne, to przyspieszenie było bliskie liniowemu od liczby wątków.

Wynik czasowe

llość plików	czas dla pandas	czas dla dask
4		

Dziękujemy za uwagę