Keview for the Basic Skills Test - Key

$$2\frac{5\pi}{12} \cdot \frac{180}{\pi} = \frac{5.30}{2} = 5.15 = 75^{\circ}$$

$$\sin^{\frac{1}{2}} = \frac{1}{2}$$

$$\cos^{\frac{1}{2}} = \frac{1}{3} \cdot -\frac{1}{3}$$

$$\tan^{\frac{1}{2}} = \frac{1}{3} \cdot -\frac{1}{3}$$

(b)
$$2\sin^2 x = 1$$

 $\sin^2 x = \frac{1}{2}$
 $|\sin x| = \frac{1}{2} = \frac{1}{2}$
 $\sin x = \frac{1}{2} = \frac{1}{2}$
 $\sin x = \frac{1}{2} = \frac{1}{2}$

C)
$$\sin 2x = \cos x$$
 $2\sin x \cos x = \cos x$
 $2\sin x \cos x - \cos x = 0$
 $2\sin x \cos x - \cos x = 0$
 $\cos x (2\sin x - 1) = 0$
 $\cos x (2\sin x - 1) = 0$
 $\cos x = 0$ or $2\sin x - 1 = 0$
 $\cos x = 0$ or $2\sin x - 1 = 0$
 $\sin x = \frac{1}{2}$
 $x = \frac{\pi}{2}, \frac{3\pi}{2}$
 $x = \frac{\pi}{6}$

$$x = \sqrt{4}, \frac{34}{4}, \frac{74}{4}$$

d) $\sin x = \tan x$
 $\sin x - \tan x = 0$
 $\sin x (1 - \cos x) = 0$
 $\sin x = 0 \text{ or } \cos x = 1$
 $x = 0, \pi, 2\pi$
 $x = 0, 2\pi$

(b) (a)
$$f(-4) = -2$$
 $g(3) = 4$
(c) $f(x) = g(x)$ $dx = -2$ and $x = 4$
(d) $f(x) = -1$ when $x = -3$ and $x = 4$
(e) $f(x) = -1$ when $x = -3$ and $x = 4$
(f) $f(x) = -3$ $dx = -4$ d

10 Q
$$M = \frac{1}{2}(x+3)$$
 demois of $M(x)$ is $M(x)$ is

(b)
$$g(x) = (x-5)$$
 $(5,0)$
 $(5,0)$
 $(5,0)$
 $(5,0)$
 $(5,0)$
 $(5,0)$
 $(5,0)$

(12) P: permeter
$$P = 20 = 2l + 2\omega$$

$$A = l \cdot \omega$$

$$A = l \cdot (10 - l) = 10l - l^{2} m^{2}$$

$$A = l \cdot (10 - l) = 10l - l^{2} m^{2}$$

$$A = l \cdot \omega$$

(13) (a)
$$\times (x+3) = 18$$

 $x^2 + 3x - 18 = 0$
 $(x+6)(x-3) = 0$
 $x=-6$ $x=3$

(a)
$$2x^{2} + 2x = 5$$

 $2x^{2} + 2x - 5 = 0$
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can not be factored
 $(2x \times x) = 0$ can

constant speed => linear model (14) 2:00 time x=0 hr 2:50 time x= = hr make ordered pair (time, distance) have two points (0,0) and (3,40) y-interespt m=40-0 = 40 = 40. = 48 mph d = 48t miles where t is hours travelled since 2:00pm note: makes sense with distance = note * time slope of line represents velocity (10, 19.34) "increases by # for every 16ft" => lineor mode)

(10, 19.34)

(10, 19.34)

(10, 19.34)

(10, 19.34) $m = \frac{19.34 - 16}{10 - 0} = \frac{4.34}{10}$ = .434P-15=,434(d-0) P = .434d +15 16/12 where d is depth in H below ocean surface (b) p=100=,434d+15 85 = .434d d = .434 = 195.853 A (1b) (a) $y = \beta(x) + 3$ (b) $y = \beta(x) - 3$ (c) $y = \beta(x) - 3$ (d) $y = \beta(x - 3) = \beta(x + 3)$ (e) $y = -\beta(x)$ (f) $y = \beta(-x)$

(1) (a) =
$$f(x-4)$$
 = shifts $f(x)$ right 4 units graph 3
(a) $y = f(x) + 3$ = shifts $f(x)$ up 3 units graph 1
(b) $y = \frac{1}{2}f(x)$ compresses $f(x)$ by a factor of 2 graph 4
(c) $y = \frac{1}{2}f(x)$ compresses $f(x)$ by a factor of 2 graph 5
(d) $y = -f(x+4)$ = shifts $f(x)$ left by 4 units graph 3 and reflects across herizental axis graph 5
(e) $y = 2f(x+6)$ = shifts $f(x)$ left by bunits graph by a factor graph 2
(f) $y = 2f(x+6)$ = shifts $f(x)$ left by bunits graph by a factor graph 2
(f) $y = 2f(x+6)$ = $y = 2f(x)$ = $y = 2f(x+3)$ = $y = 2f(x)$ = $y = 2f(x+3)$ = $y = 2f(x$