

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคภาคเรียนที่ 1 ปีการศึกษา 2558 ชาว

วิชา BMT 353 Biomechanics สอบวันอังคารที่ 22 กันยายน 2558 สาขาวิชา เทคโนโลยีมีเดีย เวลา 13.00 - 16.00 น.

ขื่อนักศึกษา	สกุล	รหัส	
คำชี้แจง	,		

- 1. ข้อสอบมีทั้งหมด 16 ข้อ จำนวน 4 หน้า รวมใบปะหน้าข้อสอบ
- 2. ทำข้อสอบลงในสมุดคำตอบ
- 3. ห้ามนำเครื่องคิดเลข เครื่องคำนวณ เอกสาร หนังสือ ตำราเรียนใดๆ เข้าห้องสอบ โดยเด็ดชาด
- 4. ข้อสอบทุกข้อผ่านการตรวจสอบแล้ว หากมีความผิดพลาดของข้อสอบ ให้ใช้วิจารณญาณผู้เข้าสอบ พิจารณาทำข้อสอบเอง

ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ข้อสอบชุดนี้ได้ผ่านการพิจารณาของสาขาวิชาฯ แล้ว

ดร.ธนวัช สุจริตวรกุล **ผู้ออกข้อสอบ**

ดร.ทวีศักดิ์ ยิ่งถาวรสุข **ประธานหลักสูตรเทคโนโลยีมีเดีย**

- ข้อสอบมี 1 ตอน จำนวน 16 ข้อ คะแนนเต็ม 40 คะแนน
- ไม่อนุญาตให้นำหนังสือและอุปกรณ์สื่อสารทุกชนิดเข้าห้องสอบ
- อนุญาตให้ใช้เครื่องคำนวณได้

คำสั่ง จงแสดงวิธีคำนวณและตอบคำถามโดยใช้สูตรคำนวณที่กำหนดให้ต่อไปนี้

- การเคลื่อนที่

1.
$$v = v_0 + at$$

2.
$$s = v_0 t + \frac{1}{2} a t^2$$

3.
$$v^2 = v_0^2 + 2as$$

1. Re =
$$(DV\mathbf{p})/\mu$$

2.
$$P = \rho gh$$

3.
$$m = \rho AV$$

4.
$$Q = AV$$

5.
$$A = (\pi D^2)/4$$

1.
$$P = w/t$$

2.
$$P = pQ$$

1.
$$P_i - P_o = (2 \gamma)/r$$

2.
$$h = 2 \gamma / \rho gr$$

1.
$$\Sigma F = 0$$

2.
$$c^2 = a^2 + b^2$$

- ชีวพลังงานศาสตร์
- 1. $BMR_1 = 65.1 + (9.6 \times น.น. เป็น Kg) + (1.9 \times ส.ส. เป็น cm) (4.7 <math>\times$ อายุเป็นปี)
- 2. BMR₂ = $66.5 + (1.8 \times u.u.$ เป็น Kg) + $(5 \times a.a.$ เป็น cm) (6.8×2) อายุเป็นปี)
- 3. ค่าคงที่ของกิจกรรม

เพศ	ค่าคงที่ของกิจกรรม			
SATI	งานเบา	งานปานกลาง 	งานหนัก	
ชาย	1.55	1.78	2.10	
หญิง	1.56	1.64	1.82	

- 1.) จงอธิบายความหมายของ Kinematics และ Kinetics
- 2.) ก่อนเครื่องบินเล็กลำหนึ่งจะขึ้นจะต้องวิ่งในสนาม 1700 m ใช้เวลา 15 s เพื่อเร่งความเร็วจงหา 2.1 ความเร่ง 2.2 ความเร็วตอนเครื่องขึ้น
- 3.) พี่โหน่งปล่อยก้อนหินจากปากเหวลึก 500 m ต้องใช้เวลาเท่าใดก้อนหินจึงจะตกถึงก้นเหว
- 4.) ทันตแพทย์ใช้ลวดดัดฟันทำมุมด้านละ 5° โดยกำหนดให้ลวดมีแรงดึงข้างละ 3 N ดังรูป เหงือก จะต้องออกแรงบนฟันเท่าใดจึงจะยึดฟันให้สมดุล

5.) พิจารณา Russell traction ที่ใช้ตุ้มน้ำหนักถ่วง 15 N จงหาแรงที่กระทำกับขาคนไข้ดังรูป กำหนดให้มุมมีค่าเท่ากับ 35° สมมุติให้ไม่มีแรงอื่นนอกจากแรงดึงจากตุ้มถ่วงน้ำหนัก

6.) กล้ามเนื้อสะโพกซึ่งเชื่อมสะโพก (hip) กับกระดูกโคนขา (femur) ประกอบด้วยแรงที่ทำมุม ต่างกันดังภาพจงคำนวณหาแรงลัพธ์เมื่อกำหนดให้แรง F มีค่าเท่ากับ 180 N

- 7.) หญิงคนหนึ่งอายุ 45 ปีสูง 165 cm หนัก 50 kg ทำงานปานกลางเป็นเวลา 8 ชั่วโมงต่อวัน จงหา 7.1 BMR 7.2 พลังงานที่หญิงคนนี้ต้องการต่อวัน
- 8.) ชายคนหนึ่งในขณะทำงานมีความดันเลือดเท่ากับ 160 mmHg และมีอัตราปริมาตรไหลเท่ากับ $1.84 \times 10^{-4} \; \mathrm{m}^3/\mathrm{s}$ จงหากำลังของหัวใจ (กำหนดให้ 160 mmHg เท่ากับ $2.13 \times 10^{-4} \; \mathrm{Pa}$)
- 9.) หญิงคนยืนตรงกระเพาะปัสสาวะสูงจากพื้น 120 cm จงคำนวณหาความดันที่เส้นเลือดแดงใหญ่ ที่เท้า เมื่อกำหนดความหนาแน่นของปัสสาวะเท่ากับ 1250 kg/m³

- 10.) เลือดมีความหนาแน่นเท่ากับ $1.06 \times 10^3 \, \mathrm{kg/m^3}$ ถูกส่งไปเลี้ยงสมองไหลด้วยอัตราการไหลโดย มวล 2.25 kg/s จงคำนวณหา
 - 10.1 ความเร็วเฉลี่ยของเลือดที่ใหลผ่าน artery ขนาด 1.50 cm
 - 10.2 ความเร็วเฉลี่ยของเลือดที่ไหลผ่าน arteriole ขนาด 0.5 cm
- 11.) ปัสสาวะถูกขับขนาดเส้นผ่าศูนย์กลางเท่ากับ 1 cm ด้วยความเร็ว 0.5 m/s **จงคำนวณเพื่อหา ลักษณะการไหล** โดยกำหนดให้ค่าความหนาแน่นและความหนืดของเลือดขณะนั้นมีค่าเท่ากับ 1.06×10^3 kg/m³ และ 3.15×10^{-3} Pa.s

12.)

สาร	ความดันไอ (mmHg)	
เมทิลแอลกอฮอล์	96.0	
อะซีติกแอซิด	11.7	
เบนซีน	74.7	
โบรมีน	173.0	
น้ำ	17.5	
คาร์บอนเตตตระคลอไรด์	91.0	
ปรอท	12×10 ⁻³	
โทลูอีน	23.0	

- 12.1 จงเรียงลำดับความสามารถในการระเหยเป็นไอของสารจากช้าไปเร็ว
- 12.2 สารใดมีจุดเดือดต่ำสุดและสารใดมีจุดเดือดสูงสุดเพราะเหตุใด
- 13.) ปรากฏการณ์ Capillary effect คืออะไร เกิดขึ้นได้อย่างไรอธิบาย
- 14.) น้ำเหลืองในหลอดเลือดมีระดับ 2.50×10⁻² m และหลอดเลือดมีรัศมี 0.5 cm จงหาแรงตึงผิวของ น้ำเหลือง เมื่อกำหนดให้มีความหนาแน่นเท่ากับ 1000 kg/m³
- 15.) หยดเลือดเส้นผ่าศูนย์กลาง 4.04 × 10^{-4} m ที่อุณหภูมิ 20°C มีแรงตึงผิวเท่ากับ 0.058 N/m และ ความดันภายนอก 760 N/m² จงหาความดันภายใน
- 16.) เมื่อใส่เม็ดเลือดแดงลงในน้ำปรากฏว่าเม็ดเลือดแดงแตกทันที จงอธิบายปรากฏการณ์ที่เกิดขึ้นว่า เกิดจากสาเหตุใด