MADRID 2015

In []: import pandas as pd

import numpy as np

from matplotlib import pyplot as plt

import seaborn as sns

from sklearn.linear_model import LinearRegression,LogisticRegression,Lasso,Rid
from sklearn.model_selection import train_test_split

In [2]: df=pd.read_csv("C:/Users/user/Downloads/FP1_air/csvs_per_year/csvs_per_year/mac
df

_				-	_	-	
\cap	1.1	. +	- 1		า		
w	u	ı			_		

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	TCH	TOL	
0	2015- 10-01 01:00:00	NaN	0.8	NaN	NaN	90.0	82.0	NaN	NaN	NaN	10.0	NaN	NaN	28
1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	28
2	2015- 10-01 01:00:00	3.1	NaN	1.8	NaN	29.0	97.0	NaN	NaN	NaN	NaN	NaN	7.1	28
3	2015- 10-01 01:00:00	NaN	0.6	NaN	NaN	30.0	103.0	2.0	NaN	NaN	NaN	NaN	NaN	28
4	2015- 10-01 01:00:00	NaN	NaN	NaN	NaN	95.0	96.0	2.0	NaN	NaN	9.0	NaN	NaN	28
210091	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	11.0	33.0	53.0	NaN	NaN	NaN	NaN	NaN	28
210092	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	1.0	5.0	NaN	26.0	NaN	10.0	NaN	NaN	28
210093	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	7.0	74.0	NaN	NaN	NaN	NaN	NaN	28
210094	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	3.0	7.0	65.0	NaN	NaN	NaN	NaN	NaN	28
210095	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	9.0	54.0	29.0	NaN	NaN	NaN	NaN	28

210096 rows × 14 columns

```
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210096 entries, 0 to 210095
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	date	210096 non-null	object
1	BEN	51039 non-null	float64
2	CO	86827 non-null	float64
3	EBE	50962 non-null	float64
4	NMHC	25756 non-null	float64
5	NO	208805 non-null	float64
6	NO_2	208805 non-null	float64
7	0_3	121574 non-null	float64
8	PM10	102745 non-null	float64
9	PM25	48798 non-null	float64
10	S0_2	86898 non-null	float64
11	TCH	25756 non-null	float64
12	TOL	50626 non-null	float64
13	station	210096 non-null	int64

dtypes: float64(12), int64(1), object(1)

memory usage: 22.4+ MB

In [4]: df1=df.dropna()
 df1

Out[4]:

:		date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
	1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	28
	6	2015- 10-01 01:00:00	0.5	0.3	0.3	0.12	6.0	83.0	1.0	19.0	12.0	3.0	1.29	4.8	28
	25	2015- 10-01 02:00:00	1.6	0.7	1.3	0.38	81.0	105.0	4.0	36.0	19.0	13.0	1.93	6.9	28
	30	2015- 10-01 02:00:00	0.4	0.3	0.3	0.11	5.0	72.0	2.0	16.0	10.0	2.0	1.27	7.8	28
	49	2015- 10-01 03:00:00	2.2	0.8	1.8	0.41	111.0	104.0	4.0	35.0	20.0	14.0	2.05	13.9	28
	210030	2015- 07-31 22:00:00	0.1	0.1	0.1	0.06	1.0	10.0	69.0	10.0	3.0	2.0	1.18	0.2	28
	210049	2015- 07-31 23:00:00	0.4	0.3	0.1	0.12	3.0	28.0	56.0	15.0	7.0	12.0	1.45	1.2	28
	210054	2015- 07-31 23:00:00	0.1	0.1	0.1	0.06	1.0	10.0	63.0	5.0	1.0	2.0	1.18	0.2	28
	210073	2015- 08-01 00:00:00	0.1	0.3	0.1	0.11	2.0	23.0	59.0	5.0	2.0	11.0	1.44	0.6	28
	210078	2015- 08-01 00:00:00	0.1	0.1	0.1	0.06	1.0	8.0	65.0	7.0	1.0	2.0	1.18	0.4	28

16026 rows × 14 columns

In [5]: df1=df1.drop(["date"],axis=1)

```
In [6]: sns.heatmap(df1.corr())
```

Out[6]: <AxesSubplot:>


```
In [7]: plt.plot(df1["EBE"],df1["PM25"],"o")
```

Out[7]: [<matplotlib.lines.Line2D at 0x23a1638ebb0>]


```
In [8]: x=df1.drop(["EBE"],axis=1)
    y=df1["EBE"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [9]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[9]: LinearRegression()

```
In [10]: prediction=li.predict(x_test)
    plt.scatter(y_test,prediction)
```

Out[10]: <matplotlib.collections.PathCollection at 0x23a16575700>

```
In [11]: lis=li.score(x_test,y_test)
```

```
In [12]: df1["TCH"].value_counts()
```

```
Out[12]: 1.20
                   905
          1.19
                   873
          1.21
                   793
          1.22
                   638
          1.18
                   465
          2.79
                     1
          4.46
                     1
          2.48
                     1
          3.43
                     1
          2.63
```

Name: TCH, Length: 184, dtype: int64

Out[13]: 2.0 8290 1.0 7736

Name: TCH, dtype: int64

Lasso

```
In [14]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
```

Out[14]: Lasso(alpha=5)

```
In [15]: prediction1=la.predict(x_test)
    plt.scatter(y_test,prediction1)
```

Out[15]: <matplotlib.collections.PathCollection at 0x23a165d8e50>


```
In [16]: las=la.score(x_test,y_test)
```

Ridge

```
In [17]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[17]: Ridge(alpha=1)

```
In [18]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)
```

Out[18]: <matplotlib.collections.PathCollection at 0x23a163df9a0>


```
In [19]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [20]: en=ElasticNet()
en.fit(x_train,y_train)
```

Out[20]: ElasticNet()

```
In [21]: prediction2=rr.predict(x_test)
    plt.scatter(y_test,prediction2)
```

Out[21]: <matplotlib.collections.PathCollection at 0x23a16657ee0>


```
In [22]: ens=en.score(x_test,y_test)
```

```
In [23]: print(rr.score(x_test,y_test))
    rr.score(x_train,y_train)
```

0.8030115171965686

Out[23]: 0.7576572353945755

Logistic

```
In [24]: g={"TCH":{1.0:"Low",2.0:"High"}}
    df1=df1.replace(g)
    df1["TCH"].value_counts()
```

Out[24]: High 8290 Low 7736

Name: TCH, dtype: int64

```
In [25]: x=df1.drop(["TCH"],axis=1)
y=df1["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
To [26]: le_tesisticDegreesies()
```

```
In [26]: lo=LogisticRegression()
    lo.fit(x_train,y_train)
```

Out[26]: LogisticRegression()

```
In [27]: prediction3=lo.predict(x_test)
   plt.scatter(y_test,prediction3)
```

Out[27]: <matplotlib.collections.PathCollection at 0x23a16414a60>


```
In [28]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [29]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.model_selection import GridSearchCV
```

```
In [30]: g1={"TCH":{"Low":1.0,"High":2.0}}
df1=df1.replace(g1)
```

```
In [31]: x=df1.drop(["TCH"],axis=1)
    y=df1["TCH"]
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [32]: rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[32]: RandomForestClassifier()

```
In [33]:
                                   parameter={
                                                    'max_depth':[1,2,4,5,6],
                                                    'min samples_leaf':[5,10,15,20,25],
                                                    'n estimators':[10,20,30,40,50]
                                   grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accur")
In [34]:
                                    grid_search.fit(x_train,y_train)
Out[34]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                                                                      param_grid={'max_depth': [1, 2, 4, 5, 6],
                                                                                                                                     'min samples leaf': [5, 10, 15, 20, 25],
                                                                                                                                     'n_estimators': [10, 20, 30, 40, 50]},
                                                                                      scoring='accuracy')
In [35]: rfcs=grid_search.best_score_
In [36]: | rfc_best=grid_search.best_estimator_
In [37]: | from sklearn.tree import plot_tree
                                    plt.figure(figsize=(80,40))
                                    plot tree(rfc best.estimators [5],feature names=x.columns,class names=['Yes',"
Out[37]: [Text(2200.56338028169, 2019.0857142857144, 'SO 2 <= 5.5\ngini = 0.5\nsampl
                                    es = 7059\nvalue = [5445, 5773]\nclass = No'),
                                        Text(1257.4647887323945, 1708.457142857143, 'CO <= 0.35 \setminus inj = 0.168 
                                    ples = 3458\nvalue = [4990, 509]\nclass = Yes'),
                                        Text(723.0422535211268, 1397.8285714285716, 'NO <= 2.5\ngini = 0.109\nsamp
                                    les = 3159\nvalue = [4720, 291]\nclass = Yes'),
                                        Text(345.80281690140845, 1087.2, 'CO <= 0.25 \setminus i = 0.065 \setminus i = 2303

  | 123 | 123 | 123 |

                                       Text(125.74647887323944, 776.5714285714287, 'CO <= 0.15\ngini = 0.048\nsam
                                    ples = 2164\nvalue = [3359, 84]\nclass = Yes'),
                                        Text(62.87323943661972, 465.9428571428573, 'gini = 0.0 \nsamples = 368 \nval
                                    ue = [588, 0]\nclass = Yes'),
                                        Text(188.61971830985917, 465.9428571428573, '0 3 <= 50.5 \neq 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057 = 0.057
                                    mples = 1796\nvalue = [2771, 84]\nclass = Yes'),
                                        Text(125.74647887323944, 155.3142857142857, 'gini = 0.169\nsamples = 366\n
                                    value = [544, 56]\nclass = Yes'),
                                        Text(251.49295774647888, 155.3142857142857, 'gini = 0.025\nsamples = 1430

    | value = [2227, 28] \rangle = Yes'),

                                        Text(565.8591549295775, 776.5714285714287, 'BEN <= 0.15\ngini = 0.292\nsam ↓
```

```
In [38]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.8029944802406465 Lasso: 0.4077775855828065 Ridge: 0.8030115171965686 ElasticNet: 0.7001824428916614 Logistic: 0.5187188019966722 Random Forest: 0.9561419147798181

Best Model is Random Forest

In [39]:

_		F 2 2 3	
(1	111	1 39 1	
v	uc		

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
0	2016- 11-01 01:00:00	NaN	0.7	NaN	NaN	153.0	77.0	NaN	NaN	NaN	7.0	NaN	NaN	2
1	2016- 11-01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.4	2
2	2016- 11-01 01:00:00	5.9	NaN	7.5	NaN	297.0	139.0	NaN	NaN	NaN	NaN	NaN	26.0	2
3	2016- 11-01 01:00:00	NaN	1.0	NaN	NaN	154.0	113.0	2.0	NaN	NaN	NaN	NaN	NaN	2
4	2016- 11-01 01:00:00	NaN	NaN	NaN	NaN	275.0	127.0	2.0	NaN	NaN	18.0	NaN	NaN	2
209491	2016- 07-01 00:00:00	NaN	0.2	NaN	NaN	2.0	29.0	73.0	NaN	NaN	NaN	NaN	NaN	2
209492	2016- 07-01 00:00:00	NaN	0.3	NaN	NaN	1.0	29.0	NaN	36.0	NaN	5.0	NaN	NaN	2
209493	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	1.0	19.0	71.0	NaN	NaN	NaN	NaN	NaN	2
209494	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	6.0	17.0	85.0	NaN	NaN	NaN	NaN	NaN	2
209495	2016- 07-01 00:00:00	NaN	NaN	NaN	NaN	2.0	46.0	61.0	34.0	NaN	NaN	NaN	NaN	2

209496 rows × 14 columns

MADRID 2016

In []: df2=pd.read_csv("C:/Users/user/Downloads/FP1_air/csvs_per_year/csvs_per_year/mair/csvs_per_year

```
In [40]: df2.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209496 entries, 0 to 209495
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	date	209496 non-null	object
1	BEN	50755 non-null	float64
2	CO	85999 non-null	float64
3	EBE	50335 non-null	float64
4	NMHC	25970 non-null	float64
5	NO	208614 non-null	float64
6	NO_2	208614 non-null	float64
7	0_3	121197 non-null	float64
8	PM10	102892 non-null	float64
9	PM25	52165 non-null	float64
10	S0_2	86023 non-null	float64
11	TCH	25970 non-null	float64
12	TOL	50662 non-null	float64
13	station	209496 non-null	int64

dtypes: float64(12), int64(1), object(1)

memory usage: 22.4+ MB

Out[41]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
1	2016- 11-01 01:00:00	3.1	1.1	2.0	0.53	260.0	144.0	4.0	46.0	24.0	18.0	2.44	14.4	28
6	2016- 11-01 01:00:00	0.7	0.8	0.4	0.13	57.0	66.0	3.0	23.0	15.0	4.0	1.35	5.0	28
25	2016- 11-01 02:00:00	2.7	1.0	2.1	0.40	139.0	114.0	4.0	37.0	21.0	14.0	2.30	15.0	28
30	2016- 11-01 02:00:00	0.7	0.7	0.4	0.13	48.0	59.0	3.0	23.0	15.0	3.0	1.35	5.0	28
49	2016- 11-01 03:00:00	1.7	0.8	1.4	0.25	53.0	90.0	4.0	31.0	19.0	10.0	1.95	10.7	28
209430	2016- 06-30 22:00:00	0.1	0.2	0.1	0.02	1.0	5.0	97.0	19.0	12.0	2.0	1.15	0.2	28
209449	2016- 06-30 23:00:00	0.6	0.4	0.3	0.15	14.0	63.0	54.0	29.0	13.0	16.0	1.48	1.9	28
209454	2016- 06-30 23:00:00	0.1	0.2	0.1	0.02	1.0	7.0	91.0	16.0	9.0	2.0	1.15	0.3	28
209473	2016- 07-01 00:00:00	0.6	0.4	0.3	0.16	11.0	68.0	45.0	24.0	14.0	16.0	1.50	1.9	28
209478	2016- 07-01 00:00:00	0.1	0.2	0.1	0.02	1.0	6.0	89.0	16.0	9.0	2.0	1.15	0.2	28

16932 rows × 14 columns

In [42]: df3=df3.drop(["date"],axis=1)

```
In [43]: sns.heatmap(df3.corr())
```

Out[43]: <AxesSubplot:>


```
In [44]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

Linear

```
In [45]: li=LinearRegression()
li.fit(x_train,y_train)
```

Out[45]: LinearRegression()

```
In [ ]:
```

```
In [46]: prediction=li.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[46]: <matplotlib.collections.PathCollection at 0x23a1724cd60>


```
In [47]: lis=li.score(x_test,y_test)
In [48]: df3["TCH"].value_counts()
Out[48]: 1.16
                  757
          1.18
                  701
         1.17
                  683
         1.19
                  618
         1.15
                  577
         4.82
                    1
         2.78
                    1
         3.59
                    1
         3.10
                    1
         4.07
         Name: TCH, Length: 217, dtype: int64
In [49]: |df3.loc[df3["TCH"]<1.40,"TCH"]=1</pre>
         df3.loc[df3["TCH"]>1.40,"TCH"]=2
         df3["TCH"].value_counts()
Out[49]: 1.0
                 10002
          2.0
                  6930
         Name: TCH, dtype: int64
In [ ]:
```

Lasso

```
In [50]: la=Lasso(alpha=5)
la.fit(x_train,y_train)
Out[50]: Lasso(alpha=5)
```

```
In [51]: prediction1=la.predict(x_test)
    plt.scatter(y_test,prediction1)
```

Out[51]: <matplotlib.collections.PathCollection at 0x23a16fa9e80>


```
In [52]: las=la.score(x_test,y_test)
```

Ridge

```
In [53]: rr=Ridge(alpha=1)
rr.fit(x_train,y_train)
```

Out[53]: Ridge(alpha=1)

```
In [54]: prediction2=rr.predict(x_test)
   plt.scatter(y_test,prediction2)
```

Out[54]: <matplotlib.collections.PathCollection at 0x23a16ffef40>


```
In [55]: rrs=rr.score(x_test,y_test)
```

ElasticNet

```
In [56]:
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[56]: ElasticNet()
In [57]:
         prediction2=rr.predict(x_test)
         plt.scatter(y_test,prediction2)
Out[57]: <matplotlib.collections.PathCollection at 0x23a17022f40>
           4.0
           3.5
           3.0
           2.5
           2.0
           1.5
           1.0
                   1.5
                          2.0
                                2.5
                                      3.0
                                           3.5
                                                 4.0
                                                       4.5
              1.0
In [58]:
         ens=en.score(x_test,y_test)
In [59]:
         print(rr.score(x_test,y_test))
         rr.score(x_train,y_train)
         0.7500531919104193
Out[59]: 0.7540860619941899
         Logistic
In [60]:
         g={"TCH":{1.0:"Low",2.0:"High"}}
         df3=df3.replace(g)
```

```
In [61]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [62]: lo=LogisticRegression()
 lo.fit(x_train,y_train)

Out[62]: LogisticRegression()

```
In [63]: prediction3=lo.predict(x_test)
    plt.scatter(y_test,prediction3)
```

Out[63]: <matplotlib.collections.PathCollection at 0x23a170c0ca0>


```
In [64]: los=lo.score(x_test,y_test)
```

Random Forest

```
In [65]: from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
```

```
In [66]: g1={"TCH":{"Low":1.0,"High":2.0}}
df3=df3.replace(g1)
```

```
In [67]: x=df3.drop(["TCH"],axis=1)
y=df3["TCH"]
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [68]: rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
```

Out[68]: RandomForestClassifier()

```
In [69]:
                   parameter={
                            'max_depth':[1,2,4,5,6],
                            'min samples_leaf':[5,10,15,20,25],
                            'n estimators':[10,20,30,40,50]
In [70]:
                   grid search=GridSearchCV(estimator=rfc,param grid=parameter,cv=2,scoring="accur")
                   grid_search.fit(x_train,y_train)
Out[70]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                                               param_grid={'max_depth': [1, 2, 4, 5, 6],
                                                                         'min samples leaf': [5, 10, 15, 20, 25],
                                                                         'n_estimators': [10, 20, 30, 40, 50]},
                                               scoring='accuracy')
In [71]: rfcs=grid_search.best_score_
In [72]: | rfc_best=grid_search.best_estimator_
In [73]: | from sklearn.tree import plot_tree
                   plt.figure(figsize=(80,40))
                   plot tree(rfc best.estimators [5],feature names=x.columns,class names=['Yes',"
Out[73]: [Text(2187.8019801980195, 2019.0857142857144, 'NO 2 <= 37.5\ngini = 0.484\n
                    samples = 7481\nvalue = [6970, 4882]\nclass = Yes'),
                      Text(999.980198019802, 1708.457142857143, 'TOL <= 0.55\ngini = 0.283\nsamp
                    les = 4079\nvalue = [5368, 1102]\nclass = Yes'),
                     Text(453.02970297029697, 1397.8285714285716, 'SO 2 <= 3.5 \setminus gini = 0.075 \setminus s
                    amples = 1882\nvalue = [2887, 117]\nclass = Yes'),
                     Text(220.9900990097, 1087.2, 'TOL <= 0.35\ngini = 0.01\nsamples = 1702
                    \nvalue = [2710, 13]\nclass = Yes'),
                     Text(88.3960396039, 776.5714285714287, 'NO 2 <= 11.5\ngini = 0.003\nsa
                   mples = 1243\nvalue = [2015, 3]\nclass = Yes'),
                      Text(44.198019801980195, 465.9428571428573, 'gini = 0.0\nsamples = 1100\nv
                   alue = [1803, 0]\nclass = Yes'),
                      Text(132.59405940594058, 465.9428571428573, 'TOL <= 0.25 \neq 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028 = 0.028
                   mples = 143\nvalue = [212, 3]\nclass = Yes'),
                      Text(88.3960396039, 155.3142857142857, 'gini = 0.0\nsamples = 67\nvalu
                    e = [105, 0] \setminus nclass = Yes'),
                     Text(176.7920792079, 155.3142857142857, 'gini = 0.053\nsamples = 76\nv
                   alue = [107, 3]\nclass = Yes'),
                      Text(353.58415841584156, 776.5714285714287, 'NO_2 <= 29.5\ngini = 0.028\ns
                                                               FCOF 4031 3
```

```
In [74]: print("Linear:",lis)
    print("Lasso:",las)
    print("Ridge:",rrs)
    print("ElasticNet:",ens)
    print("Logistic:",los)
    print("Random Forest:",rfcs)
```

Linear: 0.7499272637946903 Lasso: 0.19751618918213187 Ridge: 0.7500531919104193 ElasticNet: 0.5703555451049473 Logistic: 0.5938976377952756 Random Forest: 0.9190010124873439

Best model is Random Forest

In []: