```
In [2]: import numpy as np
import pandas as pd
```

In [3]: df=pd.read_csv(r'C:\Users\HP\Downloads\Advertising.csv')
 df

Out[3]:		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	12.0
	3	151.5	41.3	58.5	16.5
	4	180.8	10.8	58.4	17.9
	195	38.2	3.7	13.8	7.6
	196	94.2	4.9	8.1	14.0
	197	177.0	9.3	6.4	14.8
	198	283.6	42.0	66.2	25.5
	199	232.1	8.6	8.7	18.4

200 rows × 4 columns

LINEAR REGRESSION

```
In [4]: import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
In [5]: df.columns
```

Out[5]: Index(['TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')

```
In [6]: df.head(10)
Out[6]:
               TV Radio Newspaper Sales
          0 230.1
                    37.8
                                69.2
                                      22.1
                    39.3
          1
              44.5
                                45.1
                                      10.4
          2
              17.2
                    45.9
                                69.3
                                      12.0
            151.5
                    41.3
                                58.5
                                      16.5
             180.8
                                58.4
                                      17.9
                    10.8
          5
               8.7
                    48.9
                                75.0
                                       7.2
              57.5
          6
                    32.8
                                23.5
                                      11.8
          7
            120.2
                    19.6
                                11.6
                                      13.2
               8.6
                     2.1
                                 1.0
                                       4.8
                                21.2
          9 199.8
                     2.6
                                      15.6
In [7]: df=df[['TV','Sales']]
         df.columns=['T','S']
In [8]: |df.describe()
Out[8]:
                         Т
                                    S
          count 200.000000
                            200.000000
          mean 147.042500
                             15.130500
            std
                  85.854236
                              5.283892
                  0.700000
                              1.600000
            min
           25%
                 74.375000
                             11.000000
           50% 149.750000
                             16.000000
           75% 218.825000
                             19.050000
           max 296.400000
                             27.000000
In [9]: |df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 2 columns):
               Column Non-Null Count Dtype
          0
               Т
                        200 non-null
                                          float64
               S
                        200 non-null
                                          float64
         dtypes: float64(2)
```

memory usage: 3.2 KB

```
In [10]: df.fillna(method="ffill",inplace=True)
```

C:\Users\HP\AppData\Local\Temp\ipykernel_7508\1844562654.py:1: SettingWithCop
yWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df.fillna(method="ffill",inplace=True)

```
In [11]: x=np.array(df['T']).reshape(-1,1)
y=np.array(df['S']).reshape(-1,1)
```

```
In [12]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

0.8354647174818481

```
In [13]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [14]:
    df500=df[:][:500]
    sns.lmplot(x="T",y="S",data=df500,order=1,ci=None)
    df500.fillna(method='ffill',inplace=True)
    x=np.array(df500['T']).reshape(-1,1)
    y=np.array(df500['S']).reshape(-1,1)
    df500.dropna(inplace=True)
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression:",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.scatter(x_test,y_pred,color='k')
    plt.show()
```

Regression: 0.7995655902671848


```
In [15]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print(r2)
```

0.7995655902671848

```
In [16]: from sklearn.linear_model import Lasso,Ridge
  import seaborn as sns
  import matplotlib.pyplot as plt
```

```
In [17]: ridgeReg=Ridge(alpha=10)
    ridgeReg.fit(x_train,y_train)
    train_score_ridge=ridgeReg.score(x_train,y_train)
    test_score_ridge=ridgeReg.score(x_test,y_test)
    print('The Train score is {}'.format(train_score_ridge))
    print('The Test score is {}'.format(test_score_ridge))
```

The Train score is 0.8138285804088078 The Test score is 0.799566459773546

```
In [18]: import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   from sklearn.linear_model import Ridge, RidgeCV, Lasso
   from sklearn.preprocessing import StandardScaler
```

In [19]: df=pd.read_csv(r'C:\Users\HP\Downloads\Advertising.csv')
df

-			
\cap	+	110	
w		119	

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4
	1 2 3 4 195 196 197 198	 0 230.1 1 44.5 2 17.2 3 151.5 4 180.8 195 38.2 196 94.2 197 177.0 198 283.6 	0 230.1 37.8 1 44.5 39.3 2 17.2 45.9 3 151.5 41.3 4 180.8 10.8 195 38.2 3.7 196 94.2 4.9 197 177.0 9.3 198 283.6 42.0	0 230.1 37.8 69.2 1 44.5 39.3 45.1 2 17.2 45.9 69.3 3 151.5 41.3 58.5 4 180.8 10.8 58.4 195 38.2 3.7 13.8 196 94.2 4.9 8.1 197 177.0 9.3 6.4 198 283.6 42.0 66.2

200 rows × 4 columns

In [20]: df.head()

Out[20]: TV Radio Newspaper Sales

	1 V	Kaulo	Mewspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

In [21]: df.tail()

Out[21]:

	TV	Radio	Newspaper	Sales
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

```
In [22]: plt.figure(figsize = (10, 10))
sns.heatmap(df.corr(), annot = True)
```

Out[22]: <Axes: >


```
In [23]: In [6]: df.drop(columns = ["Radio", "Newspaper"], inplace = True)
sns.pairplot(df)
df.Sales = np.log(df.Sales)
```



```
In [24]: features = df.columns[0:2]
    target = df.columns[-1]
    X = df[features].values
    y = df[target].values
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, randout print("The dimension of X_train is {}".format(X_train.shape))
    print("The dimension of X_test is {}".format(X_test.shape))
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

The dimension of X_{train} is (140, 2) The dimension of X_{test} is (60, 2)

```
In [25]:
         lr = LinearRegression()
         lr.fit(X_train, y_train)
         actual = y_test
         train_score_lr = lr.score(X_train, y_train)
         test_score_lr = lr.score(X_test, y_test)
         print("\nLinear Regression Model:\n")
         print("The train score for lr model is {}".format(train_score_lr))
         print("The test score for lr model is {}".format(test_score_lr))
         Linear Regression Model:
         The train score for lr model is 1.0
         The test score for lr model is 1.0
In [26]: ridgeReg = Ridge(alpha=10)
         ridgeReg.fit(X_train,y_train)
         train score ridge = ridgeReg.score(X train, y train)
         test_score_ridge = ridgeReg.score(X_test, y_test)
         print("\nRidge Model:\n")
         print("The train score for ridge model is {}".format(train_score_ridge))
         print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.9902871391941609 The test score for ridge model is 0.984426628514122

```
In [45]: plt.figure(figsize = (10, 10))
          plt.plot(features, ridgeReg.coef_, alpha=0.7, linestyle='none', marker='*', markers
          #plt.
          plt.plot(features, lr.coef_, alpha=0.4, linestyle='none', marker='o', markersize=7,
          plt.xticks(rotation = 90)
          plt.legend()
          plt.show()
                    Ridge; \alpha = 10
                    Linear Regression
            0.3 -
            0.2
            0.1 -
            0.0
```

 \geq

```
In [46]: print("\nLasso Model: \n")
  lasso = Lasso(alpha = 10)
  lasso.fit(X_train,y_train)
  train_score_ls =lasso.score(X_train,y_train)
  test_score_ls =lasso.score(X_test,y_test)
  print("The train score for ls model is {}".format(train_score_ls))
  print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.0
The test score for ls model is -0.0042092253233847465

```
In [47]: pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "ba
```

Out[47]: <Axes: >


```
In [48]: from sklearn.linear_model import LassoCV
#Lasso Cross validation
    lasso_cv = LassoCV(alphas = [0.0001, 0.001, 0.01, 1, 10], random_state=0).
#score
print(lasso_cv.score(X_train, y_train))
print(lasso_cv.score(X_test, y_test))
```

0.9999999343798134
0.9999999152638072

```
In [49]: plt.figure(figsize = (10, 10))
   plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markers
   plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,col
   plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,
   plt.xticks(rotation = 90)
   plt.legend()
   plt.title("Comparison plot of Ridge, Lasso and Linear regression model")
   plt.show()
```

Comparison plot of Ridge, Lasso and Linear regression model


```
In [50]: from sklearn.linear_model import RidgeCV
    ridge_cv = RidgeCV(alphas = [0.0001, 0.001, 0.01, 1, 10]).fit(X_train, y_t
    print("The train score for ridge model is {}".format(ridge_cv.score(X_train, y_t
    print("The test score for ridge model is {}".format(ridge_cv.score(X_test, y_t
```

The train score for ridge model is 0.999999999997627 The test score for ridge model is 0.999999999962466

ELASTIC NET

```
In [53]: from sklearn.linear_model import ElasticNet
    regr=ElasticNet()
    regr.fit(X,y)
    print(regr.coef_)
    print(regr.intercept_)

[0.00417976 0.      ]
    2.026383919311004

In [54]: y_pred_elastic=regr.predict(X_train)

In [55]: mean_squared_error=np.mean((y_pred_elastic-y_train)**2)
    print("MSE",mean_squared_error)
```

MSE 0.5538818050142158