Seat	
No.	

[5057]-2044

S.E. (E&TC and Electronics) (I Sem.) EXAMINATION, 2016 ELECTRICAL CIRCUITS AND MACHINES (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Solve Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Figures to the right indicate full marks.
 - (iii) Neat diagrams must be drawn wherever needed.
 - (iv) Use of non-programmable electronic pocket calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Find the current through Z_L by using Thevenin's theorem in the circuit shown below : [6]

(b) Explain and draw the equivalent and approximate circuit of the single phase transformer referred to primary. [6]

Or

2. (a) A 10 kVA transformer has a full load efficiency of 96%. The copper loss and iron loss are equal. Table given below shows the loading schedule of the transformer during a day. Calculate all day efficiency : [6]

Loading	No. of hours
No load	10
Full load	2
Half load	5
Quarter load	7

- (b) State and explain: Maximum power transfer theorem and Norton's theorem. [6]
- (a) Derive the torque equation for D.C. motor. Draw the torque-current, speed-current and torque-speed characteristics of a shunt motor using torque equation or otherwise.
 - (b) Discuss briefly different methods of speed control for three phase induction motors. [6]

4.	(<i>a</i>)	Explain	the dif	fference	between	the	squirrel	cage	induction	rotor
		and slip	ring	induction	on rotor.	•				[6]

- (b) A 100 kW belt driven D.C. shunt generator running at 500 rpm on 220 V supply, continues to run as a motor when the belt breaks. When it runs as a motor, it draws 12 kW from supply. Find the speed at which it will run as a motor. The resistances of armature and field are 0.025 Ω and 55 Ω respectively. The total brush contact drop is 2 V. [6]
- 5. (a) Explain the construction and working principle of BLDC motor.Also draw its speed torque characteristics. [7]
 - (b) Write a short note on Reluctance motor. [6]

Or

- 6. (a) Explain the construction and working principle of Universal

 Motor. [7]
 - (b) Distinguish between Brushless D.C. motor and Conventional D.C. motor. [6]

- 7. (a) Explain the working principle of permanent magnet Stepper motor with constructional diagram. [7]
 - (b) Draw and explain characteristics of D.C. Servomotor. [6]

Or

- 8. (a) Describe the principle of operation of single-phase split phase type induction motor along with its circuit and phasor diagram. [7]
 - (b) What is Stepper motor? Explain the concept of Stepper motor. [6]