Subarna Tripathi

Education

- 2013–2018 PhD, Electrical and Computer Engineering, University of California San Diego, USA.
- Dissertation Improving Object Detection and Segmentation by Analyzing Context
- 2007–2011 MS Research, Electrical Engineering, Indian Institute of Technology, Delhi, India.
- 2001–2005 BTech, Computer Science and Engineering, West Bengal University of Technology, India.

Professional & Research Experiences

- May 2018 **Deep Learning Data Scientist**, INTEL CORPORATION.
 - present My responsibilities include research and development in computer vision, machine learning especially deep learning and their applications.
- Jun 2013 Graduate Research Assistant, UC SAN DIEGO.
- Mar 2018 Semantic Video Segmentation
- Sept 2016– Research Intern, QUALCOMM MULTIMEDIA R&D, San Diego, USA.
- to Dec 2016 A low-complexity Object-Detection model using Deep CNN with TensorFlow-Slim
- Jun 2016- to Research Intern, GOOGLE RESEARCH AND MACHINE INTELLIGENCE, Seattle, USA.
 - Sept 2016 Person instance segmentation with human pose using Deep CNN with TF-Slim.
 - Jun 2015 Research Intern, MICROSOFT RESEARCH, Redmond, USA.
 - Sept 2015 Self-calibrating eye-gaze tracking for head mounted virtual reality systems.
 - May 2006 Technical Leader, STMICROELECTRONICS, Noida and Bangalore, India.
 - Oct 2012 Computer Vision, Machine Learning, Video Compression, Computational Photography research projects in the Advanced System Technology (AST) group.
 - Jul 2005 Member of Technical Staff, INTERRA SYSTEMS, Noida, India.
 - May 2006 I developed TraceViewer, MP4/3GPP analyzer for Interra's Vega Video Analyzer.

Selected Publications

- Papers [14] Using Scene Graph Context to Improve Image Generation, <u>Subarna Tripathi</u>, Anahita Bhiwandiwalla, Alexei Bastidas, Hanlin Tang, under review, 2018.
 - [13] Toward Joint Image Generation and Compression using Generative Adversarial Networks, B. Kang, S. Tripathi, and T. Nguyen, under review, 2018.
 - [12] PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding, Kaichun Mo, Shilin Zu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, Hao Su, under review, 2018.
 - [11] Pose2Instance: Harnessing Keypoints for Person Instance Segmentation, <u>S. Tripathi</u>, M. Collins, M. Brown, and S. Belongie, arXiv preprint arXiv:1704.01152.
 - [10] Correction by Projection: Denoising Images by Inferring Latent Vectors from Generative Adversarial Networks, <u>S. Tripathi</u>, Z.C. Lipton, and T. Nguyen, arXiv preprint arXiv:1803.04477.
 - [9] LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems, S. Tripathi, G. Dane, B. Kang, V. Bhaskaran, and T. Nguyen, CVPRW, 2017.
 - [8] Low-Complexity Object Detection with Deep Convolutional Neural Network for Embedded Systems, S. Tripathi, B. Kang, G. Dane, and T. Nguyen, SPIE, 2017.
 - [7] Precise Recovery of Latent Vectors from Generative Adversarial Networks, Z.C. Lipton, and S. Tripathi, ICLR 2017, Workshop track.
 - [6] A Statistical Approach to Continuous Self-Calibrating Eye Gaze Tracking for Head-Mounted Virtual Reality Systems, S. Tripathi, and B. Guenter, WACV 2017, (The Best Paper Award).
 - [5] Context Matters: Refining Object Detection in Video with Recurrent Neural Networks, S. Tripathi, Z. Lipton, S. Belongie, and T. Nguyen, BMVC, 2016.

- [4] Detecting Temporally Consistent Objects in Videos through Object Class Label Propagation, S. Tripathi, S. Belongie, Y. Hwang, and T. Nguyen, WACV, 2016.
- [3] Semantic Video Segmentation: Exploring Inference Efficiency, <u>S. Tripathi</u>, S. Belongie, Y. Hwang, and T. Nguyen, IEEE ISOCC, 2015.
- [2] Real-time Sign Language Fingerspelling Recognition using Convolutional Neural Networks from Depth map, B. Kang, S. Tripathi, and T. Nguyen, ACPR, 2015.
- [1] Improving Streaming Video Segmentation with Early and Mid-Level Visual Processing, S. Tripathi, Y. Hwang, S. Belongie, and T. Nguyen, WACV, 2014.
- Posters [3] Continuous Self-Calibrating Eye Gaze Tracking for Virtual Reality Systems, *S. Tripathi*, and *B. Guenter*, CVPR workshop WiCV, 2017.
 - [2] Context Matters: Refining Object Detection in Video with Recurrent Neural Networks, S. Tripathi, Z. Lipton, S. Belongie, and T. Nguyen, WiML, collocated with NIPS, 2016.
 - [1] **Beyond Semantic Image Segmentation : Exploring Efficient Inference in Video**, <u>S. Tripathi</u>, S. Belongie, and T. Nguyen, CVPR Workshop WiCV, 2015.
- Patents [6] Digital video encoder system, method, and non-transitory computer-readable medium for tracking object regions, S. Tripathi, M. Mathur, and S. chaudhury, US 9,626,769 B2, Grant.
 - [5] **GOP-Independent Dynamic Transcoder Bitrate Controller**, <u>S. Tripathi</u>, and E. Piccinelli, US 8,913,658 B2, Grant.
 - [4] A Method and System for Determining A Macroblock Partition For Data Transcoding, S. Tripathi, K. Saha and E. Piccinelli, US 9,197,903 B2, Grant.
 - [3] Method for Detecting a Straight Line in a Digital Image, L. Magri, B. Rossi, <u>S. Tripathi</u>, P. Fragneto and E. Piccinelli, US 9,245,200 B2, Grant.
 - [2] System and method for object based parametric video coding, S. chaudhury, M. Mathur, A. Khandelia, S. Tripathi, B. Lall, S. Dutta Roy, and S. Gorecha, US 8,848,802 B2, Grant.
 - [1] Moving object detection and classification image analysis methods and systems, <u>S. Tripathi</u>, K Chen, T Nguyen, and Y Hwang, US Patent App. 15/872,378.

Book Chapter Animation and Flash Overview, Computer Graphics Multimedia and Animation, Dr. Malay Pakhira, Prentice Hall of India.

Professional Activities

Area Chair WiML 2017

Reviewer SIGGRAPH, IEEE CSVT, IEEE MS, IEEE HMS, CVPRW