University of Cambridge Department of Engineering

MASTERS PROJECT REPORT

Propulsion Systems for e-VTOL Aircraft

Jordan Eriksen

Supervised by: Dr Sam Grimshaw

Abstract

Abstract here..

Nomenclature

Control Volume Analysis

Control volume numbering as below:

- 1. Upstream flow conditions $(V_0 = 0; p_{00} = \eta_{inlet} \cdot p_{atm}; A_0 \ large)$
- 2. Rotor inlet $(V_1 = V_x; p_{01} = p_{atm}; A_1 = A_x)$
- 3. Stator inlet $(V_2 = V_x; p_{02} \neq p_{01}; A_2 = A_x)$
- 4. Stage exit $(V_3 = V_x; p_{03} = p_{01} + \Delta p_0; A_2 = A_x)$
- 5. Diffuser exit $(V_4 \neq V_x; p_{04} = \eta_{diff} \cdot p_{03}; A_4 = A_3 \sigma)$

2.1 Assumptions

- Flow velocity small, hence assume incompressible and Bernoulli applies
- Control volume (CV) large enough such that $\dot{m}V_0 \approx 0$
- Jet leaves propulsor straight and parallel meaning jet exits CV through A_4 with $p_4 = p_{atm}$
- Assuming flow area is equal throughout stage, exit velocity V_3 must be equal to axial velocity V_x , hence flow coeff can be written as $\phi = V_3/U$
- Diffusion factor defined (in terms of exit and axial quantities), considering continuity and incompressibility $\frac{A_4}{A_x} = (\frac{V_x}{V_4})^2 = \sigma$
- No accumulation or leakage in stage so \dot{m} constant throughout

2.2 Calculations

Steady flow momentum equation (SFME) gives

$$T_T = \dot{m}V_4 - \dot{m}V_0 + A_4(p_4 - p_a t m) \tag{1}$$

Assumptions therefore give

$$T_T = \dot{m}V_4 = \rho A_4 V_4^2 \tag{2}$$

Relating to axial quantities

$$T_T = \frac{\rho A_x V_x^2}{\sqrt{\sigma}} \tag{3}$$

Hence design axial velocity can be determined by fan geometry and required thrust

$$V_x = \sqrt{\frac{T_T \sqrt{\sigma}}{\rho A_x}} \tag{4}$$

2.3 Flow Coefficient and Stage Loading

Flow coefficient (ϕ) and stage loading (ψ) can be related to propulsor geometry and required thrust by considering diffuser aspect ratio limitations and the resulting impact on stage exit pressure.

$$\phi = \frac{V_x}{U} \approx 0.7 \qquad \qquad \psi = \frac{\Delta h_0}{U^2} \approx 0.3 \tag{5}$$

Considering the thermodynamic relation between enthalpy and pressure, in an isentropic pressure rise

$$T ds = dh - \frac{dp}{\rho} \tag{6}$$

$$\Delta h_0 = \frac{\Delta p_0}{\rho} \qquad \qquad \therefore \psi = \frac{\Delta p_0}{\rho U^2} \tag{7}$$

Need ψ in terms of velocity

$$\Delta p_0 = p_{03} - p_{01} = p_3 + \frac{1}{2}\rho V_x^2 - p_{atm} \tag{8}$$

Relating p_3 to p_4 by Bernoulli

$$\Delta p_0 = \left[p_{atm} + \frac{1}{2} \rho \left(\frac{V_x^2}{\sigma} - V_x^2 \right) \right] + \frac{1}{2} \rho V_x^2 - p_{atm} = \frac{\rho V_x^2}{2\sigma}$$
 (9)

Giving ψ in terms of V_x and σ

$$\psi = \frac{V_x^2}{2U^2\sigma} \tag{10}$$

Now inserting equation 4 into 5(a) and 5(b)

$$\phi = \sqrt{\frac{T_T \sqrt{\sigma}}{\rho A_x U^2}} \qquad \psi = \frac{T_T}{2\rho A_x U^2 \sqrt{\sigma}} \tag{11}$$

Rearranging for σ

$$\sigma = \left(\frac{\phi^2 \rho A_x U^2}{T_T}\right)^2 \tag{12}$$

$$\sigma = \left(\frac{T_T}{2\rho A_x U^2 \psi}\right)^2 \tag{13}$$

Equate and solve for T_T as a function of ψ and ϕ

$$T_T = \sqrt{2\psi}\phi\rho A_x U^2 \tag{14}$$

In terms of geometric parameters

$$T_T = \sqrt{2\psi}\phi\rho \cdot \pi(r_c^2 - r_h^2) \cdot \Omega^2 \left(\frac{r_h + r_c}{2}\right)^2 \tag{15}$$

Which is solved numerically to obtain the required value of r_c for a given thrust.

Equation 12- (a) and (b) can be combined to determine a relationship between the flow coefficient, stage loading and limiting diffusion factor.

$$\sigma = \frac{\phi^2}{2\psi} \tag{16}$$

*** ADD SECTION ON FIXED AND VARIABLE PARAMETERS ***

2.4 Diffuser Geometry and Thurst vs Mass Optimisation

A simple mass model is employed to determine variation in mass as r_c is changed. The limiting aspect ratio of the diffuser is governed by separation behaviour on the diffuser walls. ESDU 75026 data gives a separation limit estimate that can be approximated by the following relation

$$\sigma \le 0.3313 \cdot \left(\frac{r_c - r_h}{L_{diff}}\right)^{0.5275} + 1 \tag{17}$$

In the limit of separation, a minimum aspect ratio, θ_{min} , can be found for a given σ

$$\theta_{min} = \frac{r_c - r_h}{L_{diff}} = \left(\frac{\sigma - 1}{0.3313}\right)^{\frac{1}{0.5275}} = \left(\frac{\phi^2 - 1}{0.6626 \cdot \psi}\right)^{\frac{1}{0.5275}}$$
(18)

2.4.1 Mass Model

The diffuser is defined as having a starting annulus area of A_x with hub radius r_h and casing radius r_c . The hub is modelled as a cone with length L, base radius r_h and therefore a volume of $\frac{L}{3}\pi r_h^2$. The casing has initial radius r_c , thickness of t, final radius r_e and a length $L = \sqrt{L_{diff}^2 + (r_e - r_c)^2}$. Using the above expression for aspect ratio the volumes can be written in terms of known geometric and non-dimensional flow quantities. Assuming a uniform density of $1240kgm^{-3}$ (for PLA) the approximate diffuser mass can be determined

$$m_d = \rho_{PLA} \Big(V_{cone} + V_{casing} \Big) \tag{19}$$

$$m_d = \rho_{PLA} \left[\frac{\pi r_h^2 (r_c - r_h)}{3\theta} + 2\pi t \sqrt{\frac{\phi^2 (r_c^2 - r_h^2)}{2\psi}} \cdot \sqrt{\left(\frac{r_c - r_h}{\theta}\right)^2 + \left(\frac{\phi^2 (r_c^2 - r_h^2)}{2\psi} - r_c\right)^2} \right]$$
(20)

The mass of the rest of the propulsor is made up approximately of a hub, casing, stator, rotor and electric motor. This can be approximated as

$$m_p = \left(\rho \pi l_c ((r_c + t)^2 - r_c^2)\right)_{casing} + \left(\rho \pi l_h (r_h^2 - (r_h - 0.01)^2)\right)_{hub} + \left(0.08\right)_{rest}$$
(21)

Therefore total mass, M, can be determined as a function of r_c . By subtracting the total mass from the thrust output, the thrust excess/deficit can be determined as a function of r_c for a predetermined set of variables

Parameter	Value
ϕ	0.8
ψ	0.2
r_h	$25mm$ $838rads^{-1}$ $(8000rpm)$

$$T_T - M = 0 (22)$$

$$(\mathbf{r_c})_{\text{critical}} = 52.4 \text{mm}$$
 $L_{\text{diff}} = 94.8 \text{mm}$ (23)

2.5 Work Analysis

Considering how to rank designs in terms of work input, thrust and mass, the following metric is considered

$$METRIC = \frac{W \cdot (|T_T - M| + 1)}{T_T} \tag{24}$$

For an optimum design (minimum work input for a given thrust), this metric is to be minimised. Figure 1 below shows the variation in METRIC for various motor speeds and radii.

Figure 1: Plot of (ALMOST) ND work performance ch'ic