3.4.2.1 Net Present Value (NPV) Example

Q:

Your	Inflower	Outflows	Net Flow	Discount Factor	y NPV
0		\$ 100,060	(\$ 100,000)	1.0000	(\$100,000)
1	\$20,000		20,000	0.8772	17544
2	50,000				
3	50,000		\		
4	25,000				
Total					
1000			-		<i>?</i>

Solution of Year 1

$$\frac{1}{(1+r+p_{\epsilon})^{1}}=0.3772$$

$$\Rightarrow r + p_t = \frac{1}{0.8772} - 1$$
= 0.13999

@ Year 2.

Discount Factor =
$$\frac{1}{(1+r+p_{E})^{2}}$$
= $\frac{1}{(1+0.14)^{2}}$
= 0.7695

3 Year 3

$$\frac{1}{(1+0.14)^3} = 0.67497 \approx 0.6749$$

4) Year 4
$$\frac{1}{(1+0.14)^4} = 0.592$$

NPV = -100,000 + 17544 + 38475 +33745 + 14803 =4567 > 0So, invest!