AJO Protel 99 Fundament 49 SE

คู่มือ Protel99

โดย นายบุญชัย กิ่งรุ้งเพชร

ราคา 280 บาท

สงวนลิขสิทธิ์ © ตาม พ.ร.บ. ลิขสิทธิ์ พ.ศ. 2521/2537 โดยบริษัทแอคครา เอ็นจิเนียริ่ง จำกัด ไม่อนุญาตให้คัดลอกส่วนใดส่วนหนึ่งของเล่มนี้ นอกจากจะได้รับอนุญาต เป็นลายลักษณ์อักษรจากเจ้าของลิขสิทธิ์เท่านั้น Copyrights© 2000 by: Accra Engineering Co.,Ltd. 58/4 M2 Klongtanon Bangkhen Bangkok 10220

ข้อมูลทางบรรณานุกรรมของหอสมุดแห่งชาติ

บุญชั้ย กิ่งรุ้งเพชร คู่มือ Protel99.- -กรุงเทพฯ: เม็ดทราย, 2543. 312 หน้า 1. โปรเทล 99 (โปรแกรมคอมพิวเตอร์) I. ชื่อเรื่อง. 005.369

ISBN 974-7753-75-8

จัดพิมพ์โดย บริษัท แอคครา เอ็นจิเนียริ่ง จำกัด 58/4 หมู่ 2 แขวงคลองถนน เขตสายไหม กทม. 10220 โทรศัพท์ 974-7480 โทรสาร 974-9288

จัดจำหน่ายโดย

บริษัท ซีเอ็ดยูเคชั่นจำกัด (มหาชน)

SE-EDUCATION PUBPLIC COMPANY LIMITED

800/43-45 ซอยตระกูลสุข ถนนอโศกดินแดง เขตดินแดง กรุงเทพ 10320 โทรศัพท์ 248-8280..9 โทรสาร 248-5999

พิมพ์ที่ เม็ดทรายพริ้นติ้ง 882-5492..3 นายชลิต โภคาเจริญวัจนะ ผู้พิมพ์โฆษณา พศ. 2543

คำนำ

ซอฟต์แวร์สำหรับออกแบบ PCB ในปัจจุบันมีความสามารถ ช่วยงานออกแบบอิเล็กทรอนิกส์ได้ เป็นอย่างดี Protel99 เป็นซอฟต์แวร์ตัวหนึ่งที่มีการใช้งานอย่างแพร่หลายและเป็นที่รู้จักในบ้านเรา บริษัทมีความตั้งใจผลิตหนังสือเพื่อใช้เป็นข้อมูลอ้างอิง เหมาะสำหรับทั้งผู้ที่คุ้นเคยและผู้ที่เริ่มต้นใหม่

โครงสร้างหนังสือจะใช้วิธียกตัวอย่างบอร์ดทดลอง ดังแสดงอยู่ในภาคผนวก ผู้อ่านสามารถ เรียนรู้โดยเริ่มต้นจากบทที่ 1 ซึ่งปูพื้นตั้งแต่วิธีการทำ PCB เพื่อให้เข้าใจได้ว่าจากซอฟต์แวร์จะกลายมา เป็นแผ่น PCB จริง ๆทำอย่างไร บทที่ 2 เป็นต้นไปจะเริ่ม Design Explorer ซึ่งเป็นส่วนรวมศูนย์ของโปร เทล ซอฟต์แวร์จะควบคุมชิ้นงานผ่าน Design Explorer เสมอ บทที่ 3 จะเป็นเรื่องส่วนสำหรับออกแบบ วงจร (Schematic Capture) สำหรับเขียนแผนทางไฟฟ้า ก่อนนำแผนนี้ไปทำ PCB ต่อไป ในส่วนการ ออกแบบ PCB จะเริ่มตั้งแต่ทำความรู้จักกับส่วนออกแบบ PCB ในบทที่ 7 และเริ่มต้นสร้างรูปร่างบอร์ด พร้อมกับนำวงจรจากแผนทางไฟเข้ามาในบทที่ 8 บทที่ 9 จะเป็นเรื่องการจัดเรียงอุปกรณ์ (Placement) ซึ่งเครื่องมือของโปรเทลมีทั้งจัดเรียงด้วยตนเองและให้ซอฟต์แวร์เป็นผู้จัดการให้ทั้งหมด ในบทที่ 10 เป็น เรื่องการเดินเส้นหรือแทร็คเพื่อเชื่อมต่อวงจรเข้าหากัน ซึ่งเช่นกันมีทั้งการเดินเส้นด้วยตนเองและให้ ซอฟต์แวร์จัดการให้ทั้งหมด

ในภาคหลังจะเป็นเรื่องการตรวจสอบความถูกต้องชิ้นงาน และการสร้างอาร์ทเวิคเพื่อนำไปชิ้น งาน PCB จริง ๆต่อไป แต่ละบทจะแทรกสอดการใช้คำสั่งเพื่อทำบอร์ดตัวอย่าง จนกระทั่งท้ายสุดควรจะ ได้บอร์ดตามที่แสดง เมื่อผู้อ่านเริ่มคุ้นเคยตามแนวทางนี้ ควรจะนำไปประยุกต์กับบอร์ดซิ้นงานอื่นได้ไม่ ยาก ผู้เรียนควรได้ทดลองลงมือปฏิบัติเพื่อให้เห็นผลอย่างจริงจัง

บริษัทหวังว่าเมื่อท่านได้อ่านหนังสือเล่มนี้แล้ว หากสงสัยประการใด และต้องการข้อมูลใดเพิ่ม เติมสามารถติดต่อบริษัทได้ที่ http://www.accra.co.th หรือ email: sale@accra.co.th

สารบัญ

บทที่ 1 กระบวนการสร้าง PCB	1
PCB คืออะไร	1
PCB ทำหน้าที่อะไร	1
PCB ประเภทต่าง ๆ	1
กระบวนการของ PCB	2
ขั้นตอนการออกแบบ	2
ขั้นตอนการสร้างชิ้นงาน	3
CAE Software ที่เป็นที่แพร่หลายในตลาด	5
บทที่ 2 ทำความรู้จัก Design Explorer	9
ส่วนประกอบด่างๆของซอฟต์แวร์	9
เริ่มต้นเรียกโปรแกรม	10
ส่วนต่างๆของ Design Explorer	13
โครงสร้างไฟล์	14
จัดการ Design Database	15
จัดการเอกสารและโฟลเดอร์ใน Design Database	18
จัดการ Design Windows	25
การทำงานเป็นทีม	28
การเปลี่ยนแปลงสภาพแวดล้อม	31
สรุป	34
บทที่ 3 เครื่องมือสร้างวงจร	35
แผนทางเดินไฟฟ้า (Schematic Diagram)	35
ส่วนต่างๆของไดอะแกรม	36
เปลี่ยนการมองไปยังบริเวณต่างๆ	37
Preference ของสเค็มมาติก	39
Design Option	44
การใช้แม่แบบ(Template)	46
การ Browse Schematic	47
การจัดการกับ Part และ Library	48
คุณสมบัติของวัตถุ (Object Properties)	50
สรุป	54
บทที่ 4 วงจรตัวอย่าง	55
เริ่มต้นวงจรฝึกหัด	55
วาง Part ในวงจร	58
เพิ่ม Part Library เข้ามาในระบบ	59
การนำสัญลักษณ์มาใช้ (Place Part)	61

เคลื่อนย้ายสัญลักษณ์	63
การลบสัญลักษณ์ (Delete Part)	64
การใช้บัส	64
การทำซ้ำเป็นชุด	66
ใส่เส้นสัญญาณ (Place Wire)	69
ใส่สัญลักษณ์ชัพพลาย (Place Power Port)	70
ใส่อุปกรณ์ตัวอื่นๆที่เหลือ	70
ใส่สัญลักษณ์ช่องต่อ (Place Port)	71
การตั้งชื่อ Net	72
การวาดสิ่งที่ไม่เกี่ยวกับทางไฟฟ้า	73
สรุป	77
บทที่ 5 วงจรชนิดหลายแผ่น	79
วงจรชนิดหลายแผ่น	79
โครงสร้างของวงจรชนิดหลายแผ่น	80
การสร้างวงจรชนิดหลายแผ่น	80
การเชื่อมต่อระหว่างวงจร	82
ขอบเขตการเชื่อมต่อเน็ท	83
สรุป	89
บทที่ 6 ดำเนินงานวงจร	91
กำหนดชื่ออ้างอิง (Annotate Reference Designator)	91
การตรวจสอบความถูกต้องทางไฟฟ้า (Electrical Rules Check)	93
การคันหาตำแหน่งผิดพลาด	95
สร้างรายงานต่างๆ	97
การสั่งพิมพ์วงจร	99
การสร้าง Netlist	101
การเตรียมวงจรลำหรับออกแบบ PCB	103
สรุป	105
บทที่ 7 ทำความรู้จัก PCB	107
คำจำกัดความและส่วนต่างๆของ PCB ที่ปรากฏบนจอภาพ	107
Layer Stack	109
หน่วยการวัดและกริด(Grid)	111
เปลี่ยนการมองและเลื่อนไปบริเวณต่าง	112
การ Browse PCB	116
Preference	117
การจัดการ Footprint	121
กฎการออกแบบ (Design Rules)	123
สรุป	135

บทที่ 8 เริ่มต้น PCB ตัวอย่าง	137
เริ่มต้นกำหนด PCB ชิ้นใหม่	138
ใช้ Board Wizard	141
กำหนดทางเลือกของเอกสาร (Document Option)	148
กำหนดความชอบ (Preference)	150
ไลบรารีของ Footprint	152
นำไลบรารีจากภายนอกเข้ามาในชิ้นงาน (Import Library)	154
การนำวงจรเข้ามาใน PCB	154
การเชื่อมต่อใน PCB (PCB Connectivity)	156
สรุป	160
บทที่ 9 การจัดเรียง (Placement)	161
คำสั่งเบื้องต้นสำหรับย้ายอุปกรณ์	162
การทำงานร่วมกันระหว่าง Schematic และ PCB	165
กฎการออกแบบ (Design Rules) ของ Placement	166
คำสั่งเคลื่อนย้ายอุปกรณ์ชนิดโต้ตอบ (Interactive Placement)	168
เริ่มต้นย้ายเข้าบอร์ดตัวอย่าง	169
การย้ายตำแหน่งชื่ออุปกรณ์และชื่ออ้างอิง	170
การใช้ Placement Room	171
การใช้ Union	173
การจัดเรียงอัตโนมัติ (Auto Placement)	173
แนวทางการใช้ Auto Place ให้ได้ผลสูงที่สุด	174
การใส่วัตถุอื่นๆ	175
สรุป	180
บทที่ 10 เดินเส้น (Routing)	181
การจัดการคอนเนคชั่น	182
การกำหนดกริด	182
กำหนดกฎการออกแบบ	183
เดินเส้นด้วยมือ	188
การเดินเส้นและเปลี่ยนเลเยอร์	192
การแก้ไขแทร็ค	194
เดินเส้นอัตโนมัติ (Auto Routing)	198
การใช้ Auto Router	200
การสร้างจุดทดสอบ (Test Point)	202
การสร้างหยดน้ำตา (Tear Drop)	205
রহা	206

บทที่ 11 การสร้าง Copper Plane	207
การสร้างโพลีกอนเพลน	207
ทดลองต่อบนบอร์ดทดลอง	211
การสร้างเพาวเวอร์เพลน	214
การสร้างสปลิทเพลน	217
Blind, Buried Via และ Drill Pair	220
बर्ग	221
บทที่ 12 การตรวจสอบและจัดการชิ้นงาน	223
การตรวจสอบความผิดพลาด	223
ตรวจสอบชนิด Batch DRC	224
การตรวจสอบชนิดทันที	227
ตรวจสอบ Signal Integrity	227
การตรวจสอบ Reflection และ Cross-Talk	229
การสร้างรายงาน	231
ความสอดคล้องชิ้นงาน (Design Synchronization)	232
การส่งผ่าน Design ไปที่ PCB	233
การส่งกลับ Design จาก PCB	237
การซิงโครในซ์สเค็มมาติกหรือ PCB ที่นำเข้า	238
धर्येत	238
บทที่ 13 Print Preview และ CAM	241
การสร้าง Output และ Artwork	241
Print Preview	242
Printout	243
สร้างไฟล์สำหรับการผลิต (CAM-Computer Aids Manufacturing)	249
CAM Manager	251
การสั่งสร้าง CAM File	262
การมอง PCB ในรูป 3D	263
बर्रेग	265
บทที่ 14 อุปกรณ์,ฟุทปริ้นท์และไลบรารี	267
เครื่องมือแก้ไขไลบรารีของวงจร(Schematic Library Editor)	267
ฟุทปริ้นท์ของ PCB	274
ไลบรารีของ Footprint	276
बर्ग	283

บทที่ 15 การติดตั้ง	285
เครื่องคอมพิวเตอร์ที่จะใช้	285
การติดตั้ง	285
สรุป	289
ภาคผนวก	291
วงจรสำหรับตัวอย่าง	291
ดีย์ ย่อต่างๆ	299
คีย์ย่อสำหรับเมนต่างๆ	300