Instituto Tecnológico de Costa Rica Escuela de Matemática Álgebra Lineal para Computación

\mathcal{T} iempo: 2 horas \mathcal{P} untaje \mathcal{T} otal: 31 puntos \mathcal{N} oviembre de 2008

II Examen Parcial

Instrucciones: Esta es una prueba de desarrollo; por lo tanto, debe presentar **todos** los pasos necesarios que le permitieron obtener cada una de las respuestas. Trabaje en forma clara, ordenada y utilice bolígrafo para resolver el examen. No se aceptan reclamos de exámenes resueltos con lápiz o que presenten algún tipo de alteración. No se permite el uso de calculadora programable ni de teléfono celular.

- 1. Sea $\mathcal{T}: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$, tal que $\mathcal{T}\left(a+bx+cx^2\right) = (b-c,a-b+c,a)$ una transformación lineal. Calule:
 - (a) El núcleo de \mathcal{T} (2 pts)
 - (b) La nulidad y el rango de \mathcal{T} (3 pts)
 - (c) Una base de la imagen de \mathcal{T} (3 pts)
- 2. Sea $\mathcal{T}: \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$, tal que $\mathcal{T}(a+bx+cx^2) = a ax + (a+c)x^2$ una transformación lineal.
 - (a) Determine si \mathcal{T} es inyectiva o no lo es. Justifique. (2 pts)
 - (b) Calcule todas la preimágenes de $p(x) = 1 x + 3x^2$ (2 pts)
 - (c) Calcule todas la preimágenes de $q(x) = 4 + 2x x^2$ (2 pts)
- 3. Sean $\mathcal{T}: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^2$, tal que $\mathcal{T}(a+bx+cx^2) = (b+c,a+b)$ una transformación lineal, $\mathcal{B} = \{1+x^2,1+x,1\}$ una base de $\mathcal{P}_2(\mathbb{R})$ y $\mathcal{B}' = \{(1,-1),(0,1)\}$ una base de \mathbb{R}^2
 - (a) Calcule la matriz de \mathcal{T} de la base \mathcal{B} a la base \mathcal{B}' ; es decir, $[\mathcal{T}]_{\mathcal{B}}^{\mathcal{B}'}$ (4 pts)
 - (b) Si se sabe que $[u]_{\mathcal{B}} = \begin{pmatrix} -1\\2\\3 \end{pmatrix}$, calcule $\mathcal{T}(u)$ sin utilizar la matriz $[\mathcal{T}]_{\mathcal{B}}^{\mathcal{B}'}$ (2 pts)
 - (c) Calcule $\mathcal{T}(u)$ utilizando la matriz $[\mathcal{T}]_{\mathcal{B}}^{\mathcal{B}'}$, si se sabe que $[u]_{\mathcal{B}} = \begin{pmatrix} -1\\2\\3 \end{pmatrix}$ (2 pts)
- 4. Sea $\mathcal{T}: \mathcal{V} \to \mathcal{W}$ una transformación lineal. Demuestre que si el núcleo de \mathcal{T} es $\left\{\mathbf{0}\right\}$ entonces \mathcal{T} es inyectiva. (3 pts)
- 5. Considere la matriz A dada por $A = \begin{pmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix}$
 - (a) Compruebe que $\lambda = 1$ y $\lambda = 10$ son los únicos valores propios de A (3 pts)
 - (b) Determine una base del espacio propio asociado al valor propio $\lambda=1$ (3 pts)