Luke Palmer MATH 5000 2006-11-17

Proof. Given a model \mathcal{G} of a group $(G, \cdot^{\mathcal{G}})$ which has elements of arbitrarily large finite order. Let $\Sigma = \operatorname{Th} \mathcal{G} \cup \{cc \neq c, ccc \neq c, ...\}$ be a set of statements in the language (\cdot, c) .

Claim: every finite subset of Σ has a model. Given a finite $F \subseteq \Sigma$. Wlg, $F = \{some \ statements \ in \ Th \ \mathcal{G}\} \cup \{c^2 \neq c, ..., c^n \neq c\}$. Pick $g \in G$ of order greater than n. Then (G, \cdot^G, g) is a model of F (it satisfies any subset of Th \mathcal{G} because \mathcal{G} is still our model, and we chose g to satisfy the rest of the statements).

Therefore, there is a $\mathcal{G}' = (G', \cdot^{\mathcal{G}'}, c^{\mathcal{G}'}) \models \Sigma$. $c^{\mathcal{G}'}$ is an element of infinite order, and the group axioms were in Th \mathcal{G} , so \mathcal{G}' is a group. \square

(B) Every model of ZFC is elementarily equivalent to a model of the form (V, ε) in which there is a sequence $\langle a_i : i \in \omega \rangle$, where $a_{i+1} \varepsilon a_i$ for all i; i.e. an infinitely descending ε -sequence.

Proof. Given a model $\mathcal{Z} = (Z, \in^{\mathcal{Z}})$ of ZFC (language $\mathcal{L} = (\in)$). Define $\mathcal{L}' = (\in, c_0, c_1, ...)$. Let $\Sigma = \text{Th } \mathcal{Z} \cup \{c_1 \in c_0, c_2 \in c_1, ...\}$. Any $\{c_1 \in c_0, ..., c_{n+1} \in c_n\}$ together with a subset of Th \mathcal{Z} has a model (let c_i in the model be i in our ω). The rest of the argumentation is very similar to (\mathbf{A}) above.

(C) Any infinite well-ordering A = (A, <) is elementarily equivalent to $\mathcal{B} = (B, <)$ such that B has a subset isomorphic to the rationals.

Proof. Do the "standard compactness argument" to get \mathcal{B} , using the following: $\mathcal{L}' = (\langle \langle c_i : i \in \mathbb{Q} \rangle), \ \Sigma = \operatorname{Th} \mathcal{A} \cup \{c_i \neq c_j : i \neq j \in \mathbb{Q}\} \cup \{(\exists x \ x < c_i \land \exists x \ c_i < x) : i \in \mathbb{Q}\} \cup \{\exists x \ (c_i < x \land x < c_j) : i \in \mathbb{Q}\}.$ Finite subsets of Σ will have models, because finite subsets of the sentences involving c_i will only demand the existence of finite linear-orderings, which will definitely exist in an infinite well-ordering.

By construction, the c_i in \mathcal{B} will be isomorphic to \mathbb{Q} .

(**D**) If $A = (A, +, \cdot)$ is a countable nonstandard model of Th $(\omega, +, \cdot)$, then A has order type $\omega + (\omega^* + \omega) \cdot \eta$.

Proof. There exists an $\chi \in A$ greater than all standard numbers by the "standard compactness argument" with $\Sigma = \text{Th}(\omega,+,\cdot) \cup \{c \neq 0, c \neq 1, c \neq 1+1, \ldots\}$, but there is no nonstandard number less than or between any of the standard numbers because their nonexistence can be asserted in first-order logic $(\neg \exists x \ x < 0, \forall x \neg \exists y (x < y \land y < x + 1), \text{ with } <, 0, \text{ and } 1 \text{ defined appropriately}).$

A nonstandard $\chi + a$ for every standard a exists, since if $\chi + a$ were standard, say n, then the sentence $\forall x(x+a=n\Rightarrow x< n)$ would be false in \mathcal{A} but true in $(\omega,+,\cdot)$.

Similarly $\chi - a$ for every standard a exists. If not, then let take a to be the least counterexample. That would imply that $\chi = a$, and thus not nonstandard. This constructs an $\omega^* + \omega$ around χ , and in fact around every nonstandard number.

Given nonstandard κ , λ , with $\lambda < \kappa$ and $\kappa \neq a + \lambda$ for any standard a. There exists a μ such that either $2\mu = \kappa + \lambda$ or $2\mu = \kappa + \lambda + 1$. It can be shown that $\lambda < \mu < \kappa$. There is no standard a such that $\lambda + a = \mu$ because:

$$\lambda + a = \mu$$
$$2\lambda + 2a = 2\mu$$
$$2\lambda + 2a = \lambda + \kappa$$
$$\lambda + 2a = \kappa$$

But 2a is standard if a is (the same argument works if $2\mu = \kappa + \lambda + 1$). A similar argument shows that there is no standard a such that $\mu + a = \kappa$. This shows density among the $(\omega^* + \omega)$ sections.

Given a nonstandard κ , 2κ is nonstandard and there is no standard a such that $\kappa + a = 2\kappa$, since that would imply that $a = \kappa$, which is nonstandard. Also, there is a nonstandard λ such that $2\lambda = \kappa$ (if λ were standard then so, too, would be κ). Also, there is no standard a such that $\lambda + a = \kappa$ because then $2\lambda + 2a = 2\kappa$, so $\kappa + 2a = 2\kappa$, so $2a = \kappa$ (again, κ would be standard). This shows lack of endpoints among the $(\omega^* + \omega)$ sections.

(E) Every infinite graph G = (V, E) is four-colorable, as long as every finite subgraph is planar.

Proof. Let $\mathcal{L} = (E^2, R^1, G^1, B^1, Y^1, \rangle c_v : v \in V\langle)$. Let $\Sigma = \{\forall x \text{ "exactly one of } R(x), G(x), B(x), Y(x) \text{"}, \forall x \forall y (E(x, y) \Rightarrow (\neg(R(x) \land R(y)) \land ...))\} \cup \{E(c_i, c_j) : \langle i, j \rangle \in E\}$. Every finite subset F of Σ has a model by the four-color theorem (trivially if either of the first two sentences of Σ are not in F). Therefore there is a model $\mathcal{G} \models \Sigma$.

To color G using \mathfrak{G} , simply say that a vertex v is red iff $\mathfrak{G} \models R(c_v)$, etc. This is a coloring because \mathfrak{G} must obey the first two sentences of Σ , and it represents G because of the rest of Σ .