

목차

- 4.1 Motivation
- 4.2 Proximity Matrix
- 4.3 Types of Clustering
- 4.4 Number of Clusters
- 4.5 Experimental Results
- 4.6 Conclusions

Motivation

- 대상을 해당 특징을 지닌 그룹으로 나누고, 내부적 동질성을 최대화되며, 외부적 동질성은 최소화하는 방법을 말함
- 금융 시장에서 클러스터링은 중요함
 - 상대 지표를 보기 위해 peer를 선정할 때에도 사용

Proximity Matrix

- 모델
 - $X(N \times F)$
 - *N*: # of objects
 - *F*: # of features
 - N개의 objects의 F를 통해 proximity를 계산할 수 있음
 - *N* × *N* 행렬 생성
 - Proximity measures
 - Correlation
 - Mutual information
 - Distance Metric
 - Standardize the input data를 해야 한다
 - Scale이 큰 하나의 변수가 다른 값을 잡아먹을 수 있음

Types of Clustering

- Types
 - Partitional
 - One-level partitioning
 - 서로 배타적
 - Hierarchical
 - Partition을 반복적으로 진행
 - 분할적일수도, 응집적일수도 있음

Types of Clustering

- Connectivity
 - Distance connectivity(hierarchical)
- Centroids
 - Vector quantization(k-means)
- Distribution
 - Statistical Distributions
- Density
 - Search for connected dense region in the data space
 - DBSCAN, OPTICS
- Subspace
 - Cluster는 2차원(features, observation)으로 나뉨
 - Biclustering(coclustering) 진행 가능
 - cluster observations and features simultaneously.

Types of Clustering

- 문제상황
 - # of Freatures exceeds # of observation
 - Curse of Dimensionality
 - Most of the space spanning the observation will be empty
- 해결
 - Project the data matrix onto a low-dimensional space
 - PCA
 - Project the proximity matrix onto a low-dimensional space
 - 해당 값을 new X matrix로 사용

- 문제상황
 - Partitioning algorithms
 - 연구자들이 correct # of clusters를 제시해줘야 함
- 해결
 - Elbow method
 - Marginal percentage of variance가 predefined threshold를 넘어서지 못할 때 멈춤
 - Percentage of Variance Explained : $\frac{between\ group\ variance}{Total\ Variance}: F-test$
 - Optimal Number of Clusters
 - · Silhouette method
 - Correlation matrix뿐만 아니라 다양하게 적용될 수 있음

- Observation Matrix
 - Modeling
 - N variables : 다변량 정규분포
 - $\rho_{i,j}$: correlation between i,j
 - strong common component가 있다면 detoning이 필요함
 - 방법론
 - 1) Define distance matrix

•
$$d_{i,j} = \sqrt{\frac{1}{2}(1-\rho_{i,j})}$$

- 2) use Correlation matrix
- 3) derive the X matrix as $X_{i,j} = \sqrt{\frac{1}{2}(1 \rho_{i,j})}$
 - 앞으로는 3번 방법 사용
- 장점
 - $ho_{i,j}=0.9,
 ho_{i,j}=1.0$ 이 $ho_{i,j}=0.1$ 에서 $ho_{i,j}=0.2$ 보다 큼

- Base Clustering
 - K-means algorithm
 - 장점
 - 쉽고, 효과적
 - 단점
 - User-set # of clusters K
 - Initialization is random

- Base Clustering
 - K-means algorithm 개선 방향
 - 1. optimal K 찾기
 - Silhouette score 사용

•
$$S_i = \frac{b_i - a_i}{\max\{a_i, b_i\}}$$

- a_i : average distance between i and other elements (intracluster distance)
- b_i : average distance between i and all the elements in the nearest cluster of which i is not a member (intercluster distance)
- $S_i = 1$: cluster well
- $S_i = -1$: cluster poor
- q: Cluster Quality

•
$$q = \frac{E[\{S_i\}]}{\sqrt{V[\{S_i\}]}}$$

- $E[{S_i}]$: mean of the silhouette coefficients
- $V[\{S_i\}]$: variance of the silhouette coefficients

- Base Clustering
 - K-means algorithm 개선 방향
 - 2. K-means의 initialization 문제 개선
 - 1) Evaluate the observation matrix
 - 2) double for
 - 2-1) different k
 - Evaluate the quality q for each clustering
 - 2-2) repeat first loop multiple time
 - 3) select the clustering with the highest q

- Base Clustering
 - K-means algorithm 개선 방향
 - 3. Higher-Level Clustering
 - Cluster of inconsistent quality
 - \overline{q} : quality의 평균
 - $\{q_k|q_k<\overline{q_k}\}$

