

Painel ▶ SBL0059 ▶ 10 setembro - 16 setembro ▶ Teste de revisão

Iniciado em quinta, 24 Set 2020, 15:37

Estado Finalizada

Concluída em quinta, 24 Set 2020, 16:26
Tempo empregado 49 minutos 10 segundos

Avaliar 8,00 de um máximo de 10,00(80%)

Correto

Atingiu 2,00 de 2,00

Encontre uma função potencial f para o campo $ec{f F}=e^{y+2z}({f i}+x{f j}+2x{f k})$.

Escolha uma:

$$igcup$$
 a. $f(x,y,z)=2xe^{y+2z}+C$

$$\bigcirc$$
 b. $f(x,y,z)=3xe^{y+2z}+C$

$$igcup$$
 c. $f(x,y,z)=2xe^{y+3z}+C$

$$lacksquare$$
 d. $f(x,y,z)=xe^{y+2z}+C$

4

$$\bigcirc$$
 e. $f(x,y,z)=xe^{y+3z}+C$

Sua resposta está correta.

Solução:

A definição de função potencial é:

$$ec{\mathbf{F}} =
abla f(x,y,z)$$

Sendo que abla é:

$$abla = \left(rac{\partial}{\partial x}, rac{\partial}{\partial y}, rac{\partial}{\partial z}
ight)$$

Então, a questão quer que achemos a função f de forma:

$$ec{\mathbf{F}} = \left(rac{\partial f}{\partial x}, rac{\partial f}{\partial y}, rac{\partial f}{\partial z}
ight)$$

logo

$$rac{\partial f}{\partial x}=e^{y+2z}
ightarrow f(x,y,z)=xe^{y+2z}+g(y,z)
ightarrow rac{\partial f}{\partial y}=xe^{y+2z}+rac{\partial g}{\partial y}=xe^{y+2z}
ightarrow rac{\partial g}{\partial y}=0$$

$$egin{aligned} & o f(x,y,z) = xe^{y+2z} + h(z) o rac{\partial f}{\partial z} = 2xe^{y+2z} + h'(z) = 2xe^{y+2z} \ & o h'(z) = 0 o h(z) = c o f(x,y,z) = xe^{y+2z} + c \end{aligned}$$

Resposta: Concluímos que \vec{F} é um campo vetorial conservativo e que sua função potencial é $f(x,y,z)=xe^{y+2z}+c$.

A resposta correta é: $f(x,y,z)=xe^{y+2z}+C$

.

Questão 2

Correto

Atingiu 2,00 de 2,00

O campo $\vec{\mathbf{F}} = (z+y)\vec{\mathbf{i}} + z\vec{\mathbf{j}} + (y+x)\vec{\mathbf{k}}$ é conservativo.

Escolha uma opção:

- Verdadeiro
- Falso

Solução:

O teste das componentes para campos conservativos define que um campo

$$ec{\mathbf{F}} = M(x,y,z) ec{\mathbf{i}} + N(x,y,z) ec{\mathbf{j}} + P(x,y,z) ec{\mathbf{k}}$$

qualquer é conservativo se, e somente se,

$$\frac{\partial(P)}{\partial(y)} = \frac{\partial(N)}{\partial(z)}, \quad \frac{\partial(M)}{\partial(z)} = \frac{\partial(P)}{\partial(x)} \quad \text{e} \quad \frac{\partial(N)}{\partial(x)} = \frac{\partial(M)}{\partial(y)}$$

Assim, temos que para este caso:

$$M(x, y, z) = z + y$$

$$N(x, y, z) = z$$

$$P(x, y, z) = y + x$$

E fazendo então os testes temos (lembrando que caso uma igualdade do teste seja quebrada já temos que o campo não é conservativo):

$$rac{\partial(P)}{\partial(y)}=rac{\partial(y+x)}{\partial(y)}=x$$
 e $rac{\partial(N)}{\partial(z)}=rac{\partial(z)}{\partial(z)}=1$.

Como a igualdade esperada não foi obtida, já podemos afirmar que \vec{F} não é conservativo.

A resposta correta é 'Falso'.

Correto

Atingiu 2,00 de 2,00

Aplique o teorema de Green para calcular a integral $\oint\limits_C y^2 dx + x^2 dy$ sobre o triângulo delimitado pelas retas x=0, x+y=1 e y=0.

Resposta: 0

Resposta:

Para iniciar, sabendo que como M multiplica dx e N multiplica dy, temos:

$$M=y^2$$
 e $N=x^2$.

Para podermos usar o teorema de Green, temos que ter os valores das derivadas de M em função de y e N em função de x, logo:

$$rac{\partial M}{\partial y}=2y$$
 , $rac{\partial N}{\partial x}=2x$.

A seguir, para utilizar o teorema de Green, temos que fazer a integral das derivadas encontrada, então temos:

$$\iint\limits_R (2x-2y)dydx.$$

Para concluir, vamos lembrar que o triângulo é limitado por x=0, x+y=1 e y=0, logo temos que:

$$\int_0^1 \int_1^{1-x} (2x - 2y) dy dx = \int_0^1 (-3x^2 + 4 - 1) dx$$
 $\left[-x^3 + 2x^2 - x \right]$
 $-1 + 2 - 1$
 $= 0$.

A resposta correta é: 0.

Correto

Atingiu 2,00 de 2,00

Use o terema de Green para resolver a integral $\oint_C 6y + x dx + (y+2x) dy$ sobre a circunferência $(x-2)^2 + (y-3)^2 = 4$.

Escolha uma:

- \bigcirc a. -12π
- \odot b. -16π

- \circ c. -8π
- \bigcirc d. -11π
- \circ e. -6π

Sua resposta está correta.

Resposta:

Logo
$$r^2=4\Rightarrow r=2$$

Passo 1: Transforma a integral de linha em integral dupla

$$\int_C (6y+x) dx + (y+2x) dy = \iint\limits_C \left(rac{
ho N}{
ho x}
ight) - \left(rac{
ho M}{
ho y}
ight) \, dx \, dy$$

$$\frac{
ho N}{
ho x} = \frac{
ho y + 2x}{
ho x} = 2$$

$$\frac{\rho M}{\rho y} = \frac{\rho 6y + x}{\rho y} = 6$$

$$\oint\limits_C M(8y+x)dx + N(y+2x)dy \iint\limits_R (2-6)\,dx\,dy \Rightarrow \iint\limits_R -4dxdy$$

Usando a área do círculo para concluir a integral temos:

$$\iint\limits_R -4 dx dy = -4 \pi r^2 = -4 \pi (2)^2 = -16 \pi$$

A resposta correta é: -16π

Incorreto

Atingiu 0,00 de 2,00

Utilize o teorema de Green para encontrar a circulação em sentido anti-horário para o campo $\vec{\mathbf{F}}=(x-y)\,\mathbf{i}+(y-x)\,\mathbf{j}$ e a curva C (o quadrado limitado por $x=0,\,x=1,\,y=0,\,y=1$).

Resposta: 2

X

Resposta:

Tomando
$$M=x-y$$
 e $N=y-x$

Calculamos as derivadas:

$$rac{\partial M}{\partial x}=1;rac{\partial N}{\partial y}=1;rac{\partial M}{\partial y}=-1;rac{\partial N}{\partial x}=-1$$

Circulação:

$$\iint\limits_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy$$

$$= \int_{0}^{1} \int_{0}^{1} -1 - (-1) dxdy$$

$$= 0$$

A resposta correta é: 0.

O universal pelo regional.

Mais informações

UFC - Sobral

EE- Engenharia Elétrica

EC - Engenharia da Computação

PPGEEC- Programa de Pós-graduação em Engenharia Elétrica e Computação

Contato

Rua Coronel Estanislau Frota, s/n – CEP 62.010-560 – Sobral, Ceará

■ Telefone: (88) 3613-2603

☑ E-mail:

Social

