AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

1. (Currently amended) A method of treatment <u>for Type II</u> for diabetes and its complications and associated conditions, comprising administering compounds <u>selected from</u> of Formula (1) (Gibberellins)

wherein

 R^1 is H or a group $-O-R^{20}$, where R^{20} is H, a glycosylic ether group (glycoside ether), C_{1-6} alkyl group, or R^1 together with R^2 or R^{10} forms a bond (C_1-C_2 or C_1-C_{10} double bond, respectively);

 R^2 is H or a group $-O-R^{21}$, where R^{21} is H, a glycosylic ether group (glycoside ether), or together with R^4 forms a bond (lactone) or R^2 together with R^1 or R^3 forms a bond (C_1-C_2 or C_2-C_3 double bond, respectively);

 R^3 is H, =O, or $-O-R^{22}$, where R^{22} is H or a glycosylic ether group (glycoside ether), or R^3 together with R^2 forms a bond (C_2-C_3 double bond);

 R^4 is OH, or $-OR^{23}$, where R^{23} is unsubstituted or substituted $C_{1\sim20}$ alkyl, allyl, aryl, arylalkyl, amidine, $-NR^{24}R^{25}$ or an unsaturated or saturated ring containing one or more hetero-atoms selected from the group consisting of nitrogen, oxygen and sulfur; R^{24} and R^{25} may or may not be the same, are hydrogen, or $C_{1\sim20}$ alkyl, allyl, aryl, arylalkyl or an unsaturated or saturated ring containing one or more hetero-atoms selected from the group consisting of nitrogen, oxygen and sulphur; or R^4 together with R^{21} or R^{28} forms a bond (lactone);

 R^5 is H or a glycosylic ester (glycoside ester) group, or unsubstituted or substituted $C_{1\sim20}$ alkyl esters, allyl esters, aryl esters, arylalkyl esters, active esters;

R⁶ is H or OH or together with R⁷ forms a bond (C₁₁-C₁₂ double bond);

 R^7 is H, =O, or $-OR^{26}$, where R^{26} is H or a glycosylic ether group (glycoside ether) or R^7 together with R^6 forms a bond (C_{11} - C_{12} double bond);

 R^8 is H, hydroxyl, mercaptan, or halogen, amino, azido, $NR^{24}R^{25}$, unsubstituted or substituted $C_{1\sim20}$ alkyl, allyl, aryl, or arylalkyl, or $-OR^{27}$, where R^{27} is a glycosylic ether group (glycoside ether);

R⁹ is H or OH, or together with R¹⁵ forms a bond (C₉-C₁₅ bond);

 R^{10} is H, CH₃, CHO, COOH, or a glycosylic ester (glycoside ester) of said COOH, CH_2O-R^{28} or $-OR^{28}$, where R^{28} is H or together with R^4 forms a bond (lactone) or R^{10} together with R^1 forms a bond (C_1-C_{10} double bond);

R¹¹ is H, or OH or is absent;

R¹² is CH₃, CH₂OH, COOH or a glycosylic ester (glycoside ester) of said COOH;

 R^{13} is methylene, or a divalent hetero-atom, or NR^{29} , where R^{29} is NHR^{30} or OR^{30} where R^{30} is H, or $C_{1\sim20}$ alkyl, aryl, alkylaryl; and a double bond is present between C_{16} and R^{13} when R^{11} is absent; or R^{13} is H, OH, CH_3 CHO, CH_2X , where X is halogen, $CHNR^{29}$ where R^{29} is NHR^{30} or OR^{30} where R^{30} is H, or $C_{1\sim20}$ alkyl, aryl, alkylaryl when R^{11} is H or OH; with the proviso that where R^{11} is OH, R^{13} is not OH;

R¹⁴ is H or OH;

R¹⁵ is H, or together with R⁹ forms a bond (C₉-C₁₅ bond);

<u>and its</u> and/or pharmaceutically acceptable <u>lactones</u>, <u>esters</u>, <u>active esters</u>, <u>salts</u> and <u>organic bases</u>, <u>derivatives</u> to a patient in need thereof.

- 2. (Original) The method of claim 1, wherein the complications and associated conditions of diabetes are one or more of: obesity, micro and macro vascular diseases, nephropathy, neuropathy, eye diseases, and diabetic ulcerations.
 - 3. (Original) The method of claim 1, wherein the Gibberellins are Gibberellin A_3 .
- 4. (Original) The method of claim 1, wherein the Gibberellins are a mixture of Gibberellin A₃ and Gibberellin A₄ and/or Gibberellin A₇.
- 5. (Currently amended) The method of claim 1, wherein the pharmaceutically acceptable derivatives are salts are selected from including alkali metal salts, alkaline earth metal salts, metal, and salts of ammonium [[,]] or organic bases.

6. (Original) The method of claim 5, wherein the organic bases are lidocaine, or $NR^{16} R^{17} R^{18} R^{19}$, where R^{16} , R^{17} , R^{18} , R^{19} , which may be the same or not the same, are hydrogen, or substituted or unsubstituted $C_{1\sim20}$ alkyl, alkanol, or aryl groups.

7. (Canceled)

8. (Currently amended) A method of treatment <u>for Type II</u> of diabetes and <u>its</u>

<u>complications and associated</u> related conditions comprising administering an

<u>effective amount of a compound selected from of formula (1) (Gibberellins)</u>

$$R^{2}$$
 R^{10}
 R^{15}
 R^{15}
 R^{10}
 R^{10}

wherein

 R^1 is H or a group $-O-R^{20}$, where R^{20} is H, a glycosylic ether group (glycoside ether), C_{1-6} alkyl group, or R^1 together with R^2 or R^{10} forms a bond (C_1-C_2 or C_1-C_{10} double bond, respectively);

 R^2 is H or a group $-O-R^{21}$, where R^{21} is H, a glycosylic ether group (glycoside ether), or together with R^4 forms a bond (lactone) or R^2 together with R^1 or R^3 forms a bond (C_1-C_2 or C_2-C_3 double bond, respectively);

 R^3 is H, =O, or $-O-R^{22}$, where R^{22} is H or a glycosylic ether group (glycoside ether), or R^3 together with R^2 forms a bond (C_2-C_3 double bond);

 R^4 is OH, or $-OR^{23}$, where R^{23} is unsubstituted or substituted $C_{1\sim20}$ alkyl, allyl, aryl, arylalkyl, amidine, $-NR^{24}R^{25}$ or an unsaturated or saturated ring containing one or more hetero-atoms selected from the group consisting of nitrogen, oxygen and sulfur; R^{24} and R^{25} may or may not be the same, are hydrogen, or $C_{1\sim20}$ alkyl, allyl, aryl, arylalkyl or an unsaturated or saturated ring containing one or more hetero-atoms selected from the group consisting of nitrogen, oxygen and sulphur; or R^4 together with R^{21} or R^{28} forms a bond (lactone);

 R^5 is H or a glycosylic ester (glycoside ester) group, or unsubstituted or substituted $C_{1\sim20}$ alkyl esters, allyl esters, aryl esters, arylalkyl esters, active esters;

R⁶ is H or OH or together with R⁷ forms a bond (C₁₁-C₁₂ double bond);

 R^7 is H, =O, or $-OR^{26}$, where R^{26} is H or a glycosylic ether group (glycoside ether) or R^7 together with R^6 forms a bond (C_{11} - C_{12} double bond);

 R^8 is H, hydroxyl, mercaptan, or halogen, amino, azido, $NR^{24}R^{25}$, unsubstituted or substituted $C_{1\sim20}$ alkyl, allyl, aryl, or arylalkyl, or $-OR^{27}$, where R^{27} is a glycosylic ether group (glycoside ether);

R⁹ is H or OH, or together with R¹⁵ forms a bond (C₉-C₁₅ bond);

 R^{10} is H, CH₃, CHO, COOH, or a glycosylic ester (glycoside ester) of said COOH, CH_2O-R^{28} or $-OR^{28}$, where R^{28} is H or together with R^4 forms a bond (lactone) or R^{10} together with R^1 forms a bond (C_1-C_{10} double bond);

R¹¹ is H, or OH or is absent;

R¹² is CH₃, CH₂OH, COOH or a glycosylic ester (glycoside ester) of said COOH;

 R^{13} is methylene, or a divalent hetero-atom, or NR^{29} , where R^{29} is NHR^{30} or OR^{30} where R^{30} is H, or $C_{1\sim20}$ alkyl, aryl, alkylaryl; and a double bond is present between C_{16} and R^{13} when R^{11} is absent; or R^{13} is H, OH, CH_3 CHO, CH_2X , where X is halogen, $CHNR^{29}$ where R^{29} is NHR^{30} or OR^{30} where R^{30} is H, or $C_{1\sim20}$ alkyl, aryl, alkylaryl when R^{11} is H or OH; with the proviso that where R^{11} is OH, R^{13} is not OH;

R¹⁴ is H or OH:

 R^{15} is H, or together with R^9 forms a bond (C₉-C₁₅ bond);

and its pharmaceutically acceptable <u>lactones</u>, <u>esters</u>, <u>active esters</u>, <u>salts and organic bases</u>, <u>derivatives</u>

in combination with other compatible therapeutic agents selected from the group consisting of analgesics, anti-hypertensive agents, sedatives, hypnotics, lipid-lowering agents, and anti-infective agents or combinations thereof, to a patient in need thereof.

- 9. (Currently Amended) A method according to claim 11 [[8]], wherein the Gibberellins are Gibberellin A₃.
- 10. (Currently Amended) A method according to claim 11 [[8]], wherein the Gibberellins are a mixture of Gibberellin A₃ and Gibberellin A₄ and/or Gibberellin A₇.
- 11. (Currently amended) A method of treatment <u>for Type I and Type II</u> ef diabetes and <u>its complications and associated</u> related conditions comprising administering compounds <u>selected from</u> ef formula (1) (Gibberellins)

$$R^{2}$$
 R^{10}
 R^{10}
 R^{15}
 R^{10}
 R^{15}
 R^{10}
 $R^$

wherein

 R^1 is H or a group $-O-R^{20}$, where R^{20} is H, a glycosylic ether group (glycoside ether), $C_{1\sim6}$ alkyl group, or R^1 together with R^2 or R^{10} forms a bond (C_1-C_2 or C_1-C_{10} double bond, respectively);

 R^2 is H or a group $-O-R^{21}$, where R^{21} is H, a glycosylic ether group (glycoside ether), or together with R^4 forms a bond (lactone) or R^2 together with R^1 or R^3 forms a bond (C_1-C_2 or C_2-C_3 double bond, respectively);

 R^3 is H, =O, or $-O-R^{22}$, where R^{22} is H or a glycosylic ether group (glycoside ether), or R^3 together with R^2 forms a bond (C_2-C_3 double bond);

 R^4 is OH, or $-OR^{23}$, where R^{23} is unsubstituted or substituted $C_{1\sim20}$ alkyl, allyl, aryl, arylalkyl, amidine, $-NR^{24}R^{25}$ or an unsaturated or saturated ring containing one or more hetero-atoms selected from the group consisting of nitrogen, oxygen and sulfur; R^{24} and R^{25} may or may not be the same, are hydrogen, or $C_{1\sim20}$ alkyl, allyl, aryl, arylalkyl or an unsaturated or saturated ring containing one or more hetero-atoms selected from the group consisting of nitrogen, oxygen and sulphur; or R^4 together with R^{21} or R^{28} forms a bond (lactone);

 R^5 is H or a glycosylic ester (glycoside ester) group, or unsubstituted or substituted C_{1-20} alkyl esters, allyl esters, aryl esters, arylalkyl esters, active esters;

R⁶ is H or OH or together with R⁷ forms a bond (C₁₁-C₁₂ double bond);

 R^7 is H, =O, or $-OR^{26}$, where R^{26} is H or a glycosylic ether group (glycoside ether) or R^7 together with R^6 forms a bond (C_{11} - C_{12} double bond);

 R^8 is H, hydroxyl, mercaptan, or halogen, amino, azido, $NR^{24}R^{25}$, unsubstituted or substituted $C_{1\sim20}$ alkyl, allyl, aryl, or arylalkyl, or $-OR^{27}$, where R^{27} is a glycosylic ether group (glycoside ether);

R⁹ is H or OH, or together with R¹⁵ forms a bond (C₉-C₁₅ bond);

 R^{10} is H, CH₃, CHO, COOH, or a glycosylic ester (glycoside ester) of said COOH, CH_2O-R^{28} or $-OR^{28}$, where R^{28} is H or together with R^4 forms a bond (lactone) or R^{10} together with R^1 forms a bond (C_1-C_{10} double bond);

R¹¹ is H, or OH or is absent;

R¹² is CH₃, CH₂OH, COOH or a glycosylic ester (glycoside ester) of said COOH;

 R^{13} is methylene, or a divalent hetero-atom, or NR^{29} , where R^{29} is NHR^{30} or OR^{30} where R^{30} is H, or $C_{1\sim20}$ alkyl, aryl, alkylaryl; and a double bond is present between C_{16} and R^{13} when R^{11} is absent; or R^{13} is H, OH, CH_3 CHO, CH_2X , where X is halogen, $CHNR^{29}$ where R^{29} is NHR^{30} or OR^{30} where R^{30} is H, or $C_{1\sim20}$ alkyl, aryl, alkylaryl when R^{11} is H or OH; with the proviso that where R^{11} is OH, R^{13} is not OH;

R¹⁴ is H or OH;

R¹⁵ is H, or together with R⁹ forms a bond (C₉-C₁₅ bond);

and or their pharmaceutically acceptable <u>lactones</u>, <u>esters</u>, <u>active esters</u>, <u>salts and</u> <u>organic bases derivatives</u>,

in combination with substances selected from the group consisting of insulin, its fragment derivatives, IGFs, growth factors, and other pharmaceutically compatible anti-diabetic agents, or combinations thereof, to a patient in need thereof.

12. (Currently amended) A method of treatment <u>for Type I and Type II</u> ef diabetes and <u>its complications and associated</u> related conditions comprising administering compounds <u>selected from</u> ef formula (1) (Gibberellins)

$$R^{2}$$
 R^{10}
 R^{10}
 R^{15}
 R^{10}
 R^{15}
 R^{10}
 R^{11}
 R^{11}
 R^{11}
 R^{11}
 R^{11}
 R^{11}

wherein

 R^1 is H or a group $-O-R^{20}$, where R^{20} is H, a glycosylic ether group (glycoside ether), $C_{1\sim6}$ alkyl group, or R^1 together with R^2 or R^{10} forms a bond (C_1-C_2 or C_1-C_{10} double bond, respectively);

 R^2 is H or a group $-O-R^{21}$, where R^{21} is H, a glycosylic ether group (glycoside ether), or together with R^4 forms a bond (lactone) or R^2 together with R^1 or R^3 forms a bond (C_1-C_2 or C_2-C_3 double bond, respectively);

 R^3 is H, =O, or $-O-R^{22}$, where R^{22} is H or a glycosylic ether group (glycoside ether), or R^3 together with R^2 forms a bond (C_2-C_3 double bond);

 R^4 is OH, or $-OR^{23}$, where R^{23} is unsubstituted or substituted $C_{1\sim20}$ alkyl, allyl, aryl, arylalkyl, amidine, $-NR^{24}R^{25}$ or an unsaturated or saturated ring containing one or more hetero-atoms selected from the group consisting of nitrogen, oxygen and sulfur; R^{24} and R^{25} may or may not be the same, are hydrogen, or $C_{1\sim20}$ alkyl, allyl, arylalkyl or an unsaturated or saturated ring containing one or more hetero-atoms selected from the group consisting of nitrogen, oxygen and sulphur; or R^4 together with R^{21} or R^{28} forms a bond (lactone);

 R^5 is H or a glycosylic ester (glycoside ester) group, or unsubstituted or substituted $C_{1\sim20}$ alkyl esters, allyl esters, aryl esters, arylalkyl esters, active esters;

 R^6 is H or OH or together with R^7 forms a bond (C_{11} - C_{12} double bond);

 R^7 is H, =O, or $-OR^{26}$, where R^{26} is H or a glycosylic ether group (glycoside ether) or R^7 together with R^6 forms a bond (C_{11} - C_{12} double bond);

 R^8 is H, hydroxyl, mercaptan, or halogen, amino, azido, $NR^{24}R^{25}$, unsubstituted or substituted $C_{1\sim20}$ alkyl, allyl, aryl, or arylalkyl, or $-OR^{27}$, where R^{27} is a glycosylic ether group (glycoside ether);

R⁹ is H or OH, or together with R¹⁵ forms a bond (C₉-C₁₅ bond);

 R^{10} is H, CH₃, CHO, COOH, or a glycosylic ester (glycoside ester) of said COOH, CH₂O- R^{28} or $-OR^{28}$, where R^{28} is H or together with R^4 forms a bond (lactone) or R^{10} together with R^1 forms a bond (C₁-C₁₀ double bond);

R¹¹ is H, or OH or is absent;

R¹² is CH₃, CH₂OH, COOH or a glycosylic ester (glycoside ester) of said COOH;

 R^{13} is methylene, or a divalent hetero-atom, or NR^{29} , where R^{29} is NHR^{30} or OR^{30} where R^{30} is H, or $C_{1\text{--}20}$ alkyl, aryl, alkylaryl; and a double bond is present between C_{16} and R^{13} when R^{11} is absent; or R^{13} is H, OH, CH_3 CHO, CH_2X , where X is halogen, $CHNR^{29}$ where R^{29} is NHR^{30} or OR^{30} where R^{30} is H, or $C_{1\text{--}20}$ alkyl, aryl, alkylaryl when R^{11} is H or OH; with the proviso that where R^{11} is OH, R^{13} is not OH;

R¹⁴ is H or OH:

R¹⁵ is H, or together with R⁹ forms a bond (C₉-C₁₅ bond);

and its or their pharmaceutically acceptable lactones, esters, active esters, salts and organic bases derivatives,

in combination with <u>substances selected from the group consisting of insulin, its</u>
<u>fragment derivatives, IGFs, growth factors, and other pharmaceutically</u>
<u>compatible anti-diabetic agents, or combinations thereof, along with</u> other
compatible therapeutic agents selected from the group consisting of analgesics, antihypertensive agents, sedatives, hypnotics, lipid-lowering agents, and anti-infective
agents or combinations thereof, to a patient in need thereof.

13. (Currently amended) The method according to claim 11 [[1]], for the treatment of type 1 diabetes and its associated conditions.

- 14. (Currently amended) The method according to claim <u>11</u> [[1]], for the treatment of type 2 diabetes and its associated conditions.
- 15. (Currently amended) The method according to claim <u>14</u> [[1]], for the treatment of insulin resistant diabetes.
- 16. (Currently amended) The method according to claim 1, wherein the diabetic related complications and associated conditions [[,]] are chosen from obesity, micro and macro vascular diseases, nephropathy, neuropathy and eye diseases.
- 17. (Currently amended) An anti-diabetic agent <u>consisting essentially of</u> comprising a compound of formula (1)

$$R^{1}$$
 R^{10}
 R^{15}
 R^{15}
 R^{15}
 R^{15}
 R^{10}
 R^{15}
 R^{11}
 R^{11}
 R^{11}
 R^{11}

wherein

 R^1 is H or a group $-O-R^{20}$, where R^{20} is H, a glycosylic ether group (glycoside ether), C_{1-6} alkyl group, or R^1 together with R^2 or R^{10} forms a bond (C_1-C_2 or C_1-C_{10} double bond, respectively);

 R^2 is H or a group $-O-R^{21}$, where R^{21} is H, a glycosylic ether group (glycoside ether), or together with R^4 forms a bond (lactone) or R^2 together with R^1 or R^3 forms a bond (C_1-C_2 or C_2-C_3 double bond, respectively);

 R^3 is H, =O, or -O- R^{22} , where R^{22} is H or a glycosylic ether group (glycoside ether), or R^3 together with R^2 forms a bond (C_2 - C_3 double bond);

 R^4 is OH, or $-OR^{23}$, where R^{23} is unsubstituted or substituted $C_{1\sim20}$ alkyl, allyl, aryl, arylalkyl, amidine, $-NR^{24}R^{25}$ or an unsaturated or saturated ring containing one or more hetero-atoms selected from the group consisting of nitrogen, oxygen and sulfur; R^{24} and R^{25} may or may not be the same, are hydrogen, or $C_{1\sim20}$ alkyl, allyl, aryl, arylalkyl or an unsaturated or saturated ring containing one or more hetero-atoms selected from the group consisting of nitrogen, oxygen and sulphur; or R^4 together with R^{21} or R^{28} forms a bond (lactone);

 R^5 is H or a glycosylic ester (glycoside ester) group, or unsubstituted or substituted $C_{1\sim20}$ alkyl esters, allyl esters, aryl esters, arylalkyl esters, active esters;

R⁶ is H or OH or together with R⁷ forms a bond (C₁₁-C₁₂ double bond);

 R^7 is H, =O, or $-OR^{26}$, where R^{26} is H or a glycosylic ether group (glycoside ether) or R^7 together with R^6 forms a bond (C₁₁-C₁₂ double bond);

 R^8 is H, hydroxyl, mercaptan, or halogen, amino, azido, $NR^{24}R^{25}$, unsubstituted or substituted $C_{1\sim20}$ alkyl, allyl, aryl, or arylalkyl, or $-OR^{27}$, where R^{27} is a glycosylic ether group (glycoside ether);

R⁹ is H or OH, or together with R¹⁵ forms a bond (C₉-C₁₅ bond);

 R^{10} is H, CH₃, CHO, COOH, or a glycosylic ester (glycoside ester) of said COOH, CH_2O-R^{28} or $-OR^{28}$, where R^{28} is H or together with R^4 forms a bond (lactone) or R^{10} together with R^1 forms a bond (C_1-C_{10} double bond);

R¹¹ is H, or OH or is absent;

R¹² is CH₃, CH₂OH, COOH or a glycosylic ester (glycoside ester) of said COOH;

 R^{13} is methylene, or a divalent hetero-atom, or NR^{29} , where R^{29} is NHR^{30} or OR^{30} where R^{30} is H, or $C_{1\sim20}$ alkyl, aryl, alkylaryl; and a double bond is present between C_{16} and R^{13} when R^{11} is absent; or R^{13} is H, OH, CH_3 CHO, CH_2X , where X is halogen, $CHNR^{29}$ where R^{29} is NHR^{30} or OR^{30} where R^{30} is H, or $C_{1\sim20}$ alkyl, aryl, alkylaryl when R^{11} is H or OH; with the proviso that where R^{11} is OH, R^{13} is not OH;

R¹⁴ is H or OH;

R¹⁵ is H, or together with R⁹ forms a bond (C₉-C₁₅ bond);

and/or its <u>pharmaceutically acceptable lactones</u>, <u>esters</u>, <u>active esters</u>, <u>salts and organic bases</u> derivatives as an active ingredient, together with a pharmaceutically acceptable carrier.

- 18. (Original) An anti-diabetic agent according to claim 17, wherein the agent is a medicament suitable for administration with a medicator.
- 19. (Currently amended) An anti-diabetic agent **consisting essentially of** comprising a compound of formula (1)

$$R^{2}$$
 R^{10}
 R^{10}
 R^{15}
 R^{10}
 R^{15}
 R^{10}
 R^{15}
 R^{10}
 R^{15}
 R^{10}
 R^{15}
 R^{10}
 R^{15}
 R^{10}
 $R^$

wherein

 R^1 is H or a group $-O-R^{20}$, where R^{20} is H, a glycosylic ether group (glycoside ether), $C_{1\sim6}$ alkyl group, or R^1 together with R^2 or R^{10} forms a bond (C_1-C_2 or C_1-C_{10} double bond, respectively);

 R^2 is H or a group $-O-R^{21}$, where R^{21} is H, a glycosylic ether group (glycoside ether), or together with R^4 forms a bond (lactone) or R^2 together with R^1 or R^3 forms a bond (C_1-C_2 or C_2-C_3 double bond, respectively);

 R^3 is H, =O, or $-O-R^{22}$, where R^{22} is H or a glycosylic ether group (glycoside ether), or R^3 together with R^2 forms a bond (C_2-C_3 double bond);

 R^4 is OH, or $-OR^{23}$, where R^{23} is unsubstituted or substituted $C_{1\sim20}$ alkyl, allyl, aryl, arylalkyl, amidine, $-NR^{24}R^{25}$ or an unsaturated or saturated ring containing one or more hetero-atoms selected from the group consisting of nitrogen, oxygen and sulfur; R^{24} and R^{25} may or may not be the same, are hydrogen, or $C_{1\sim20}$ alkyl, allyl, aryl, arylalkyl or an unsaturated or saturated ring containing one or more hetero-atoms selected from the group consisting of nitrogen, oxygen and sulphur; or R^4 together with R^{21} or R^{28} forms a bond (lactone);

 R^5 is H or a glycosylic ester (glycoside ester) group, or unsubstituted or substituted $C_{1\sim20}$ alkyl esters, allyl esters, aryl esters, arylalkyl esters, active esters;

R⁶ is H or OH or together with R⁷ forms a bond (C₁₁-C₁₂ double bond);

 R^7 is H, =O, or $-OR^{26}$, where R^{26} is H or a glycosylic ether group (glycoside ether) or R^7 together with R^6 forms a bond (C₁₁-C₁₂ double bond);

 R^8 is H, hydroxyl, mercaptan, or halogen, amino, azido, $NR^{24}R^{25}$, unsubstituted or substituted $C_{1\sim20}$ alkyl, allyl, aryl, or arylalkyl, or $-OR^{27}$, where R^{27} is a glycosylic ether group (glycoside ether);

R⁹ is H or OH, or together with R¹⁵ forms a bond (C₉-C₁₅ bond);

 R^{10} is H, CH₃, CHO, COOH, or a glycosylic ester (glycoside ester) of said COOH, CH_2O-R^{28} or $-OR^{28}$, where R^{28} is H or together with R^4 forms a bond (lactone) or R^{10} together with R^1 forms a bond (C_1-C_{10} double bond);

R¹¹ is H, or OH or is absent;

R¹² is CH₃, CH₂OH, COOH or a glycosylic ester (glycoside ester) of said COOH;

 R^{13} is methylene, or a divalent hetero-atom, or NR^{29} , where R^{29} is NHR^{30} or OR^{30} where R^{30} is H, or $C_{1\sim20}$ alkyl, aryl, alkylaryl; and a double bond is present between C_{16} and R^{13} when R^{11} is absent; or R^{13} is H, OH, CH_3 CHO, CH_2X , where X is halogen, $CHNR^{29}$ where R^{29} is NHR^{30} or OR^{30} where R^{30} is H, or $C_{1\sim20}$ alkyl, aryl, alkylaryl when R^{11} is H or OH; with the proviso that where R^{11} is OH, R^{13} is not OH;

R¹⁴ is H or OH;

R¹⁵ is H, or together with R⁹ forms a bond (C₉-C₁₅ bond);

<u>organic bases</u> as an active ingredient, together with pharmaceutically acceptable carriers or excipients, wherein the agent is a slow release composition.

- 20. (Original) An anti-diabetic agent according to claim 17, wherein the agent is for oral administration.
- 21. (Original) An anti-diabetic agent according to claim 17, wherein the agent is for inhalation administration.
- 22. (Original) An anti-diabetic agent according to claim 17, wherein the agent is for transdermal administration.
- 23. (Original) An anti-diabetic agent according to claim 17, wherein the agent is for parenteral injection.
- 24. (Original) An anti-diabetic agent according to claim 17, wherein the agent is for topical, rectal, or vaginal administration.
 - 25. (Canceled)
- 26. (Currently amended) An anti-diabetic agent according to claim <u>17</u>, [[25]] wherein the <u>pharmaceutically acceptable salt</u> derivative is a sodium salt of formula (1).
- 27. (Currently amended) An anti-diabetic agent according to claim <u>17</u>, [[25]] wherein the <u>pharmaceutically acceptable salt</u> derivative is a zinc salt of formula (1).

- 28. (Currently amended) An anti-diabetic agent according to claim <u>17</u>, [[25]] wherein the <u>pharmaceutically acceptable ester</u> derivative is a ethyl ester of formula (1).
- 29. (Currently amended) A method of manufacturing an anti-diabetic agent according to claim 17, comprising combining a compound <u>selected from</u> of formula (1) <u>and and/or</u> its <u>pharmaceutically acceptable lactones</u>, <u>esters</u>, <u>active esters</u>, <u>salts</u> and <u>organic bases derivatives</u> with a pharmaceutically acceptable carrier.
- 30. (Withdrawn) A process for the preparation of Gibberellins including Gibberellin A₃, including the steps of:
 - (a) incubating a Gibberellin-producing strain of microorganism in a fermentation broth;
 - (b) adjusting the pH of the fermentation broth to pH 6.5 to 7.0 and filtering to obtain a filter cake of microorganism mycelium, and a filtrate;
 - (c) washing the filter cake with water and combining the washing with the filtrate to form an aqueous solution;
 - (d) concentrating the aqueous solution;
 - (e) mixing the aqueous solution with an organic solvent at a temperature of 5 to 10°C and adjusting the pH of the mixture to less than 2.0;
 - (f) allowing the mixture to separate into an aqueous phase and a first organic phase and removing the first organic phase;
 - (g) re-extracting the aqueous phase from step (f) with organic solvent to obtain a second organic phase;
 - (h) combining the first and second organic phases and concentrating to form a concentrated organic solution;
 - (i) heating the concentrated organic solution at 60-70°C for 3 to 4 hours with stirring, until the precipitation of solid matter ceases;

- (j) cooling the concentrated organic solution to room temperature and filtering to obtain a precipitate;
- (k) washing the precipitate in cold organic solvent and drying to obtain an off-white solid containing about 80% Gibberellin A₃, about 4% Gibberellin A₄ and about 4% Gibberellin A₇.
 - 31. (Withdrawn) The process of claim 30, comprising the further steps of:
- (I) dissolving the off-white solid in a mixture of 32.6% methanol, 2.2% water and 65.2% acetone to obtain a Gibberellin solution;
- (m)diluting the Gibberellin solution with a 10:1 mixture of organic solvent and water;
- (n) filtering the diluted Gibberellin solution and concentrating the filtrate by vacuum evaporation;
- (o) heating the concentrate to a temperature of 60 to 80°C for 2 to 3 hours with stirring, cooling to room temperature and filtering to obtain a solid crystalline precipitate;
- (p) washing the precipitate with cold organic solvent and drying to obtain Gibberellin A₃ crystals.
- 32. (Withdrawn) A process according to claim 30 wherein the Gibberellin-producing strain of microorganism is *Gibberella fujikuroi*.
- 33. (Withdrawn) A process according to claim 30, wherein the concentration of the solutions in steps (d) and (h) is achieved using vacuum evaporation.
- 34. (Withdrawn) A process according to claim 30 wherein the organic solvent is ethyl acetate.
- 35. (Withdrawn) A process according to claim 31 wherein the organic solvent is ethyl acetate.

- 36. (Withdrawn) A process according to claim 31 comprising the further steps of:
 - (q) dissolving the Gibberellin A₃ in methanol;
 - (r) adding the Gibberellin solution to an equimolar aqueous solution of NaHCO₃;
 - (s) evaporating the mixed solutions to dryness to obtain a solid residue;
 - (t) dissolving the residue in water and freeze drying to obtain Gibberellin A₃ sodium salt.
- 37. (Withdrawn) A process according to claim 36, comprising the further steps of dissolving the Gibberellin A_3 sodium salt in water, passing the solution through a column loaded with a zinc ion-exchange resin, washing the column with water, collecting and combining the effluent and washings and removing the water to obtain Gibberellin A_3 zinc salt.
- 38. (Withdrawn) A process according to claim 31 comprising the further steps of:
 - (q) dissolving the Gibberellin A₃ in a 50:1 ratio mixture of acetone to water;
 - (r) mixing the Gibberellin A₃ solution with equimolar amounts of triethylamine and ethyl chloroformate, and a one tenth molar amount of N-methyl morpholine, and stirring at -15°C for 20 minutes;
 - (s) diluting the resultant mixture with anhydrous ethanol and stirring at room temperature;
 - (t) evaporating the diluted mixture to dryness and partitioning the residue between ethyl acetate and water in a 6:1 ratio;

separating the ethyl acetate layer, washing with 2% HCI, followed by water,

followed by 5% NaHCO₃, followed by water, and evaporating under reduced pressure to dryness to give Gibberellin A₃ ethyl ester.

- 39. (New) The method of claim 11, wherein the complications and associated conditions of diabetes are one or more of: obesity, micro and macro vascular diseases, nephropathy, neuropathy, eye diseases, and diabetic ulcerations.
- 40. (New) The method of claim 11, wherein the pharmaceutically acceptable salts are selected from alkali metal salts, alkaline earth metal salts, metal, and salts of ammonium or organic bases.
- 41. (New) The method of claim 40, wherein the organic bases are lidocaine, or $NR^{16} R^{17} R^{18} R^{19}$, where R^{16} , R^{17} , R^{18} , R^{19} , which may be the same or not the same, are hydrogen, or substituted or unsubstituted $C_{1\sim20}$ alkyl, alkanol, or aryl groups.