Least Angle Regression, Forward Stagewise and the Lasso

Background

- The topic in this section is linear regression
- But the motivation comes from the area of flexible function fitting: "Boosting"— Freund & Schapire (1995)

Least Squares Boosting

Friedman, Hastie & Tibshirani — see *Elements of Statistical Learning (chapter 10)*

Supervised learning: Response y, predictors $x = (x_1, x_2 \dots x_p)$.

- 1. Start with function F(x) = 0 and residual r = y
- 2. Fit a CART regression tree to r giving f(x)
- 3. Set $F(x) \leftarrow F(x) + \epsilon f(x)$, $r \leftarrow r \epsilon f(x)$ and repeat step 2 many times

Least Squares Boosting

Prediction Error

Number of steps

Linear Regression

Here is a version of least squares boosting for multiple linear regression: (assume predictors are standardized)

(Incremental) Forward Stagewise

- 1. Start with $r = y, \beta_1, \beta_2, \dots \beta_p = 0$.
- 2. Find the predictor x_j most correlated with r
- 3. Update $\beta_j \leftarrow \beta_j + \delta_j$, where $\delta_j = \epsilon \cdot \operatorname{sign}\langle r, x_j \rangle$ 4. Set $r \leftarrow r \delta_j \cdot x_j$ and repeat steps 2 and 3 many times

 $\delta_j = \langle r, x_j \rangle$ gives usual forward stagewise; different from forward stepwise

Analogous to least squares boosting, with trees=predictors

Linear regression via the Lasso (Tibshirani, 1995)

- Assume $\bar{y} = 0$, $\bar{x}_j = 0$, $Var(x_j) = 1$ for all j.
- Minimize $\sum_{i} (y_i \sum_{j} x_{ij}\beta_j)^2$ subject to $\sum_{j} |\beta_j| \leq s$
- With orthogonal predictors, solutions are soft thresholded version of least squares coefficients:

$$\operatorname{sign}(\hat{\beta}_j)(|\hat{\beta}_j| - \gamma)_+$$

 $(\gamma \text{ is a function of } s)$

• For small values of the bound s, Lasso does variable selection. See pictures

More on Lasso

- Implementations use quadratic programming to compute solutions
- Can be applied when p > n. In that case, number of non-zero coefficients is at most n 1 (by convex duality)
- interesting consequences for applications, eg microarray data

Diabetes Data

Why are Forward Stagewise and Lasso so similar?

- Are they identical?
- In orthogonal predictor case: *yes*
- In hard to verify case of *monotone* coefficient paths: *yes*
- In general, almost!
- Least angle regression (LAR) provides answers to these questions, and an efficient way to compute the complete Lasso sequence of solutions.

Least Angle Regression — LAR

Like a "more democratic" version of forward stepwise regression.

- 1. Start with $r = y, \hat{\beta}_1, \hat{\beta}_2, \dots \hat{\beta}_p = 0$. Assume x_j standardized.
- 2. Find predictor x_j most correlated with r.
- 3. Increase β_j in the direction of sign(corr (r, x_j)) until some other competitor x_k has as much correlation with current residual as does x_j .
- 4. Move $(\hat{\beta}_j, \hat{\beta}_k)$ in the joint least squares direction for (x_j, x_k) until some other competitor x_ℓ has as much correlation with the current residual
- 5. Continue in this way until all predictors have been entered. Stop when $corr(r, x_j) = 0 \,\forall j$, i.e. OLS solution.

The LAR direction \mathbf{u}_2 at step 2 makes an equal angle with \mathbf{x}_1 and \mathbf{x}_2 .

Relationship between the 3 algorithms

- Lasso and forward stagewise can be thought of as restricted versions of LAR
- For Lasso: Start with LAR. If a coefficient crosses zero, stop. Drop that predictor, recompute the best direction and continue. This gives the Lasso path

Proof (lengthy): use Karush-Kuhn-Tucker theory of convex optimization. Informally:

- For forward stagewise: Start with LAR. Compute best (equal angular) direction at each stage. If direction for any predictor j doesn't agree in sign with $corr(r, x_j)$, project direction into the "positive cone" and use the projected direction instead.
- in other words, forward stagewise always moves each predictor in the direction of $corr(r, x_j)$.
- The incremental forward stagewise procedure approximates these steps, one predictor at a time. As step size $\epsilon \to 0$, can show that it coincides with this modified version of LAR

Summary

- LARS—uses least squares directions in the active set of variables.
- Lasso—uses least square directions; if a variable crosses zero, it is removed from the active set.
- Forward stagewise—uses non-negative least squares directions in the active set.

Benefits

- Possible explanation of the benefit of "slow learning" in boosting: it is approximately fitting via an L_1 (lasso) penalty
- new algorithm computes entire Lasso path in same order of computation as one full least squares fit. Splus/R Software on Hastie's website:

www-stat.stanford.edu/~hastie/Papers#LARS

- Degrees of freedom formula for LAR: After k steps, degrees of freedom of fit = k (with some regularity conditions)
- For Lasso, the procedure often takes > p steps, since predictors can drop out. Corresponding formula (conjecture):
 Degrees of freedom for last model in sequence with k predictors is equal to k.

Degrees of freedom

Degree of Freedom result

$$df(\hat{\mu}) \equiv \sum_{i=1}^{n} cov(\hat{\mu}_i, y_i) / \sigma^2 = k$$

Proof is based on is an application of Stein's unbiased risk estimate (SURE). Suppose that $g: \mathbb{R}^n \to \mathbb{R}^n$ is almost differentiable and set $\nabla \cdot g = \sum_{i=1}^n \partial g_i/\partial x_i$. If $\mathbf{y} \sim N_n(\mu, \sigma^2 \mathbf{I})$, then Stein's formula states that

$$\sum_{i=1}^{n} \operatorname{cov}(g_i, y_i) / \sigma^2 = E[\nabla \cdot g(\mathbf{y})].$$

LHS is degrees of freedom. Set $g(\cdot)$ equal to the LAR estimate. In orthogonal case, $\partial g_i/\partial x_i$ is 1 if predictor is in model, 0 otherwise. Hence RHS equals number of predictors in model (=k).

Non-orthogonal case is much harder.

Software for R and Splus

lars() function fits all three models: lasso, lar or forward.stagewise. Methods for prediction, plotting, and cross-validation. Detailed documentation provided. Visit www-stat.stanford.edu/~hastie/Papers/#LARS

Main computations involve least squares fitting using the *active set* of variables. Computations managed by updating the Choleski R matrix (and frequent downdating for lasso and forward stagewise).

glmpath package (with Ph.D student MeeYoung Park) fits L_1 -penalized GLM and Cox model paths.

MicroArray Example

- Expression data for 38 Leukemia patients ("Golub" data).
- X matrix with 38 samples and 7129 variables (genes)
- Response Y is dichotomous ALL (27) vs AML (11)
- LARS (lasso) took 4 seconds in R version 1.7 on a 1.8Ghz Dell workstation running Linux.
- In 70 steps, 52 variables ever non zero, at most 37 at a time.

10-fold cross-validation for Leukemia Expression Data (Lasso)

10-fold cross-validation for Leukemia Expression Data (LAR)

Forward Stagewise

10-fold cross-validation for Leukemia Expression Data (Stagewise)

Summary

- the lasso and associated methods are potentially useful for wide (p > N) data
- in a series of papers in 2004, Donoho (Stanford) shows that the lasso gives a good approximation to the L_0 solution (best subsets), if the true coefficient vector is sufficiently sparse.
- however- this begs the question: how good is either the L_0 or lasso when p >> N? Our experience is mixed.
- this is a current topic of interest

Software

- lars package available R and S-PLUS
- GLMSELECT in SAS