TulipaEnergy

Faster Solving and Higher Detailed Large-Scale Energy System Models

Diego Tejada | JuMP dev 2024

innovation for life

Netherlands Organisation for Applied Scientific Research

Creating impactful innovations for the sustainable wellbeing and prosperity of society.

Yet Another Energy System Model in Julia...

The Challenge

- Models aid in integrating renewable energy and coupling energy carriers.
- Optimizing investments helps stakeholders understand system dynamics for energy transition.
- Existing models excel in either technological, operational, or spatial-temporal detail, but never all three simultaneously.
- Key challenge: including enough details while remaining computationally tractable.

Project Description

- New energy model from scratch (model design and coding)
- Sector coupling: e.g., electricity, H2 and heat
- The main objective is to determine the optimal investment and operation decisions
- Representation of different types of energy assets (e.g., producers, consumers, conversions, storages, and transports)

Focus on <u>compact and efficient formulations</u> and implementations suitable for expert energy system researchers

The TulipaEnergy Team

The innovation for life

Germán Morales

Diego Tejada

Lauren Clisby

Ni Wang

Wester Coenraads

netherlands Science center

Abel Soares Siqueira

Julia Optimisation

Expert

Suvayu Ali Data-pipeline Expert

TUDelft

Greg Neustroev Postdoc: Blended Rep. Periods

Maaike Elgersma
PhD: Accurate &
Efficient Formulations

Zhi Gao PhD: Fully Flexible Temporal Resolution

Matthijs Arnoldus MSc: Modelling to Generate Alternatives

Hull Clustering with Blended Representative Periods

- Method of hull clustering with blended representative periods (RPs)
- Advantages over k-means/medoids in data representation
- Faster performance with lower relative regret using fewer RPs

Fully Flexible Temporal Resolution

- Flexible formulation for temporal resolution
- Capability to mix independent resolutions across carriers, regions, and time horizons
- Example of geographical application in the Netherlands

Graph-Based System Representation

- Breaking the misconception of LP as the simplest representation
- Graph theory approach reducing problem size without losing accuracy
- Faster model building and solving with increasing model size

TulipaEnergy 01 + 10 11011 10 O 0 0 01 = 10 01 00 Tulipa Energy and Julia/JuMI 11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

TulipaEnergy nergy Packages

TulipaClustering.jl

TulipaEnergyModel.jl

Builds and runs the optimisation model

TulipalO.jl

Script-based IO for data manipulation

0 0

TulipaEnergy Main Dependencies

01 00

Tulipa

TulipaEnergy and Useful Tool for Development

TulipaEnergyModel.jl

Open-source Julia/JuMP package available on GitHub

- Timeline:
 - 2023 → Core features development and innovations
 - 2024 → Multi-year investment and power system operation constraints
 - 2025 → Operation constraints in other sectors (e.g., gas) and uncertainty
- Applying best practices for software development (e.g., atomic commits, semantic versioning, code review, tests, documentation)

Performance Results - Western European Countries

- 10 European Countries with an hourly resolution
- Minimize operating costs for one year
- Optimization problem size:
 - # variables: \approx 1.2 million
 - # constraints: ≈ 2.5 million
- TulipaEnergyModel.jl building time† and memory usage:
 - Initial code: 314s and 32GB
 - Optimized code: 86s (**↓73%**) and 18GB (**↓44%**)

[†]First draft of the code: 8min for 2 EU countries

How did we achieve it?

Basic JuMP

8

```
@constraint(
    model,
    max_transport_flow_limit[f ∈ Ft, rp ∈ RP, B_flow ∈ graph[f...].partitions[rp]],
    duration(B_flow, rp) * flow[f, rp, B_flow] ≤ upper_bound_transport_flow[f, rp, B_flow]
)
```

Using DataFrames to linearise indices

julia> energy problem.dataframes[:flows] 648×9 DataFrame rep_period timesteps_block efficiency index flow from Symbol Symbol Int64 UnitRange... Float64 Int64 GenericV... 1 flow[(ocgt, demand), 1, 1:1] ocgt demand 1 1:1 0.0 demand 1 2:2 2 flow[(ocgt, demand), 1, 2:2] ocgt 0.0 demand 1 3:3 0.0 3 flow[(ocgt, demand), 1, 3:3] ocgt

Some Final Thoughts

Good Things

- Speed & efficiency!
- Straight-forward syntax
- Great user community support!
- Others: DuckDB, Graphs, Clustering...
- Friendly to both researchers and software engineers

Some Final Thoughts

Good Things

- Speed & efficiency!
- Straight-forward syntax
- Great user community support!
- Others: DuckDB, Graphs, Clustering...
- Friendly to both researchers and software engineers

Room for Improvement

- Skill required for best speed/memory
- Add more tips for speed/efficiency improvement
- New Extensions?
 - Gather Update Solve Scatter (GUSS)
 - NearOptimalAlternatives.jl* for modelling to generate alternatives – MGA

Check out our GitHub!

innovation for life