עבודת הגשה 2 – קורס רשתות תקשורת מחשבים

מגישה:

313279036 – לינוי אסלן

:1 שאלה

הנחה: משתמשים בפרוטוקול LSR:

- B א. טבלת הניתוב בצומת

#	N'	D(A)P(A)	D(C)P(C)	D(D)P(D)	D(E)P(E)	D(F)P(F)	D(G)P(G)	D(H)P(H)
0	В	∞	∞	∞	2,B	∞	∞	<mark>1, B</mark>
1	BH	∞	∞	∞	<mark>2,B</mark>	9,H	∞	
2	BHE	∞	∞	∞		<mark>3,E</mark>	∞	
3	BHEF	∞	<mark>5,F</mark>	8,F			∞	
4	BHEFC	∞		<mark>6,C</mark>			∞	
5	BHEFCD	<mark>9,D</mark>					12,D	
6	BHEFCDA						<mark>10,A</mark>	
7	BHEFCDAG							

- B נתיבי ניתוב של צומת

יעד	קישור
А	(B,E,F,C,D,A)
С	(B,E,F,C)
D	(B,E,F,C,D)
E	(B,E)
F	(B,E,F)
G	(B,E,F,C,D,A,G)
Н	(B,H)

ב. טבלת הניתוב בצומת D –

#	N'	D(A)P(A)	D(B)P(B)	D(C)P(C)	D(E)P(E)	D(F)P(F)	D(G)P(G)	D(H)P(H)
0	D	3,D	∞	1,D	∞	5,D	6,D	∞
1	DC	3,D	∞		∞	<mark>3,C</mark>	6,D	∞
2	DCF	<mark>3,D</mark>	∞		4,F		6,D	∞
3	DCFA		∞		<mark>4,F</mark>		4,A	11,F
4	DCFAE		6,E				<mark>4,A</mark>	7,E
5	DCFAEG		<mark>6,E</mark>					7,E
6	DCFAEGB							7,E
7	DCFAEBGH							

- D נתיבי ניתוב של צומת

יעד	קישור
А	(D,A)
В	(D,C,F,E,B)
С	(D,C)
E	(D,C,F,E)
F	(D,C,F)
G	(D,A,G)
Н	(D,C,F,E,H)

- F- B אורך והמסלול מ-B ל-

$$Cost_of_path(B->F) = (B, E, F) = C(B,E) + C(E,F) = 2 + 1 = 3$$

ד. חישוב אורך והמסלול מ-D ל-B-

Cost_of_path(D->B) = (D, C, F, E, B) =
$$C(D,C) + C(C,F) + C(F,E) + C(E,B) = 1 + 2 + 1 + 2 = 6$$

ה. חישוב אורך והמסלול מ-B ל-A-

Cost_of_path(B->A) = (B, E, F, C, D, A) =
$$C(B,E) + C(E,F) + C(F,C) + C(C,D) + C(D,A) = 2 + 1 + 2 + 1 + 3 = 9$$

ו. חישוב אורך והמסלול מ-D ל-H.

Cost_of_path(D->H) = (D, C, F, E, B, H) =
$$C(D,C) + C(C,F) + C(F,E) + C(E,B) + C(B,H) = 1 + 2 + 1 + 2 + 1 = 7$$

:2 שאלה

<u>הנחה</u>: משתמשים בפרוטוקול DVR:

א. חישוב נתיבים אופטימליים בכל נתב:

– (t₀) 0 שלב

Α	Α	В	С	D	E	F	G	Н
Α	0	∞	∞	3	∞	∞	1	∞
D	∞	∞	∞	∞	∞	∞	∞	∞
G	∞	∞	∞	∞	∞	∞	∞	∞

A vector = $0 \infty \infty 3 \infty \infty 1 \infty$

В	Α	В	С	D	E	F	G	Н
В	∞	0	∞	∞	2	∞	∞	1
E	∞	∞	∞	∞	∞	∞	∞	∞
Н	∞	∞	∞	∞	∞	∞	∞	∞

B vector = ∞ 0 ∞ ∞ 2 ∞ ∞ 1

С	Α	В	С	D	E	F	G	Н
С	∞	∞	0	1	∞	2	∞	∞
D	∞	∞	∞	∞	∞	∞	∞	∞
F	∞	∞	∞	∞	∞	∞	∞	∞

C vector = $\infty \infty 0.1 \infty 2 \infty \infty$

D	Α	В	С	D	E	F	G	Н
Α	∞	∞	∞	∞	∞	∞	∞	∞
С	∞	∞	∞	∞	∞	∞	∞	∞
D	3	∞	1	0	∞	5	6	∞
F	∞	∞	∞	∞	∞	∞	∞	∞
G	∞	∞	∞	∞	∞	∞	∞	∞

D vector = $3 \approx 10 \approx 56 \approx$

E	Α	В	С	D	E	F	G	Н
В	∞	∞	∞	∞	∞	∞	∞	∞
E	∞	2	∞	∞	0	1	∞	3
F	∞	∞	∞	∞	∞	∞	∞	∞
Н	∞	∞	∞	∞	∞	∞	∞	∞

E vector = ∞ 2 ∞ ∞ 0 1 ∞ 3

F	Α	В	С	D	E	F	G	Н
С	∞	∞	∞	∞	∞	∞	∞	∞
D	∞	∞	∞	∞	∞	∞	∞	∞
Е	∞	∞	∞	∞	∞	∞	∞	∞
F	∞	∞	2	5	1	0	∞	8
Н	∞	∞	∞	∞	∞	∞	∞	××

F vector = $\infty \infty 2510 \infty 8$

G	Α	В	С	D	E	F	G	Н
Α	∞		∞	∞	∞	∞	∞	∞
D	∞	∞	∞	∞	∞	∞	∞	××
G	1	∞	∞	6	∞	∞	0	∞

G vector = $1 \infty \infty 6 \infty \infty 0 \infty$

Н	Α	В	С	D	E	F	G	Н
В	∞	∞	∞	∞	∞	∞	∞	∞
E	∞	∞	∞	∞	∞	∞	∞	oo.
F	∞	∞	∞	∞	∞	∞	∞	oo
Н	∞	1	∞	∞	3	8	∞	0

H vector = ∞ 1 ∞ ∞ 3 8 ∞ 0

Α	Α	В	С	D	E	F	G	Н
Α	0	∞	4	3	∞	8	1	∞
D	3	∞	1	0	∞	5	6	∞
G	1	∞	∞	6	∞	∞	0	∞

```
\begin{split} &d_A(B) = min \, \{ \, C(A,\,D) + d_D(B), \, C(A,G) + d_G(B) \, \} = \, \infty \\ &d_A(C) = min \, \{ \, C(A,\,D) + d_D(C), \, C(A,G) + d_G(C) \, \} = \, 4(D) \\ &d_A(D) = min \, \{ \, C(A,\,D) + \, d_D(D), \, C(A,\,G) + d_G(D) \} = \, 3 \\ &d_A(E) = min \, \{ \, C(A,\,D) + \, d_D(E), \, C(A,\,G) + d_G(E) \} = \, \infty \\ &d_A(F) = min \, \{ \, C(A,\,D) + \, d_D(F), \, C(A,\,G) + d_G(F) \} = \, 8(D) \\ &d_A(G) = min \, \{ \, C(A,\,D) + \, d_D(G), \, C(A,\,G) + d_G(G) \} = \, 1 \\ &d_A(H) = min \, \{ \, C(A,\,D) + \, d_D(H), \, C(A,\,G) + d_G(H) \} = \, \infty \end{split}
```

В	Α	В	С	D	E	F	G	Н
В	∞	0	∞	∞	2	3	∞	1
E	∞	2	∞	∞	0	1	∞	3
Н	∞	1	∞	∞	3	8	∞	0

$$\begin{split} d_B(A) &= min \; \{ \; C(B, \, E) + d_E(A), \, C(B, H) + d_H(A) \; \} = \; \infty \\ d_B(C) &= min \; \{ \; C(B, \, E) + d_E(C), \, C(B, H) + d_H(C) \; \} = \; \infty \\ d_B(D) &= min \; \{ \; C(B, \, E) + d_E(D), \, C(B, H) + d_H(D) \; \} = \; \infty \\ d_B(E) &= min \; \{ \; C(B, \, E) + d_E(E), \, C(B, H) + d_H(E) \; \} = \; 2 \\ d_B(F) &= min \; \{ \; C(B, \, E) + d_E(F), \, C(B, H) + d_H(F) \; \} = \; \textbf{3(E)} \\ d_B(G) &= min \; \{ \; C(B, \, E) + d_E(G), \, C(B, H) + d_H(G) \; \} = \; \infty \\ d_B(H) &= min \; \{ \; C(B, \, E) + d_E(H), \, C(B, H) + d_H(H) \; \} = \; 1 \end{split}$$

С	Α	В	С	D	E	F	G	Н
С	4	∞	0	1	3	2	7	10
D	3	∞	1	0	∞	5	6	∞
F	∞	∞	2	5	1	0	∞	8

$$\begin{split} &d_C(A) = min \, \{ \, C(C,\, D) + d_D(A), \, C(C,F) + d_F(A) \, \} = \, \textbf{4(D)} \\ &d_C(B) = min \, \{ \, C(C,\, D) + d_D(B), \, C(C,F) + d_F(B) \, \} = \, \infty \\ &d_C(D) = min \, \{ \, C(C,\, D) + d_D(D), \, C(C,F) + d_F(D) \, \} = \, 1 \\ &d_C(E) = min \, \{ \, C(C,\, D) + d_D(E), \, C(C,F) + d_F(E) \, \} = \, \textbf{3(F)} \\ &d_C(F) = min \, \{ \, C(C,\, D) + d_D(F), \, C(C,F) + d_F(F) \, \} = \, 2 \\ &d_C(G) = min \, \{ \, C(C,\, D) + d_D(G), \, C(C,F) + d_F(G) \, \} = \, \textbf{7(D)} \\ &d_C(H) = min \, \{ \, C(C,\, D) + d_D(H), \, C(C,F) + d_F(H) \, \} = \, \textbf{10(F)} \end{split}$$

D	Α	В	С	D	E	F	G	Н
Α	0	∞	∞	3	∞	∞	1	∞
С	∞	∞	0	1	∞	2	∞	∞
D	3	∞	1	0	6	3	4	13
F	∞	∞	2	5	1	0	∞	8
G	1	∞	∞	6	∞	∞	0	∞

```
\begin{split} &d_D(A) = min \, \{ \, C(D,A) + d_A(A), \, C(D,C) + d_C(A), \, C(D,F) + \, d_F(A), \, C(D,G) + \, d_G(A) \, \} = \, 3 \\ &d_D(B) = min \, \{ \, C(D,A) + d_A(B), \, C(D,C) + d_C(B), \, C(D,F) + \, d_F(B), \, C(D,G) + \, d_G(B) \, \} = \, \infty \\ &d_D(C) = min \, \{ \, C(D,A) + d_A(C), \, C(D,C) + d_C(C), \, C(D,F) + \, d_F(C), \, C(D,G) + \, d_G(C) \, \} = \, 1 \\ &d_D(E) = min \, \{ \, C(D,A) + d_A(E), \, C(D,C) + d_C(E), \, C(D,F) + \, d_F(E), \, C(D,G) + \, d_G(E) \, \} = \, 6(F) \\ &d_D(F) = min \, \{ \, C(D,A) + d_A(F), \, C(D,C) + d_C(F), \, C(D,F) + \, d_F(F), \, C(D,G) + \, d_G(F) \, \} = \, 3(C) \\ &d_D(G) = min \, \{ \, C(D,A) + d_A(G), \, C(D,C) + d_C(G), \, C(D,F) + \, d_F(G), \, C(D,G) + \, d_G(G) \, \} = \, 4(A) \\ &d_D(H) = min \, \{ \, C(D,A) + d_A(H), \, C(D,C) + d_C(H), \, C(D,F) + \, d_F(H), \, C(D,G) + \, d_G(H) \, \} = \, 13(F) \end{split}
```

E	Α	В	С	D	E	F	G	Н
В	∞	0	∞	∞	2	∞	∞	1
E	∞	2	3	6	0	1	∞	3
F	∞	∞	2	5	1	0	∞	8
Н	∞	1	∞	∞	3	8	∞	0

```
\begin{split} &d_E(A) = min \, \{ \, C(E,B) + d_B(A), \, C(E,F) + d_F(A), \, C(E,H) + \, d_H(A) \, \} = \, \infty \\ &d_E(B) = min \, \{ \, C(E,B) + d_B(B), \, C(E,F) + d_F(B), \, C(E,H) + \, d_H(B) \, \} = \, 2 \\ &d_E(C) = min \, \{ \, C(E,B) + d_B(C), \, C(E,F) + d_F(C), \, C(E,H) + \, d_H(C) \, \} = \, \textbf{3(F)} \\ &d_E(D) = min \, \{ \, C(E,B) + d_B(D), \, C(E,F) + d_F(D), \, C(E,H) + \, d_H(D) \, \} = \, \textbf{6(F)} \\ &d_E(F) = min \, \{ \, C(E,B) + d_B(F), \, C(E,F) + d_F(F), \, C(E,H) + \, d_H(F) \, \} = \, 1 \\ &d_E(G) = min \, \{ \, C(E,B) + d_B(G), \, C(E,F) + d_F(G), \, C(E,H) + \, d_H(G) \, \} = \, \infty \\ &d_E(H) = min \, \{ \, C(E,B) + d_B(H), \, C(E,F) + d_F(H), \, C(E,H) + \, d_H(H) \, \} = \, 3 \end{split}
```

F	Α	В	С	D	E	F	G	Н
С	∞	∞	0	1	∞	2	∞	∞
D	3	∞	1	0	∞	5	6	∞
E	∞	2	∞	∞	0	1	∞	3
F	8	3	2	3	1	0	11	4
Н	∞	1	∞	∞	3	8	∞	0

```
\begin{split} &d_F(A) = min \, \{ \, C(F,\,C) + d_C(A), \, C(F,D) + d_D(A), \, C(F,\,E) + \, d_E(A), \, C(F,\,H) + \, d_H(A) \, \} = \, \textbf{8(D)} \\ &d_F(B) = min \, \{ \, C(F,\,C) + d_C(B), \, C(F,D) + d_D(B), \, C(F,\,E) + \, d_E(B), \, C(F,\,H) + \, d_H(B) \, \} = \, \textbf{3(E)} \\ &d_F(C) = min \, \{ \, C(F,\,C) + d_C(C), \, C(F,D) + d_D(C), \, C(F,\,E) + \, d_E(C), \, C(F,\,H) + \, d_H(C) \, \} = \, 2 \\ &d_F(D) = min \, \{ \, C(F,\,C) + d_C(D), \, C(F,D) + d_D(D), \, C(F,\,E) + \, d_E(D), \, C(F,\,H) + \, d_H(D) \, \} = \, \textbf{3(C)} \\ &d_F(E) = min \, \{ \, C(F,\,C) + d_C(E), \, C(F,D) + d_D(E), \, C(F,\,E) + \, d_E(E), \, C(F,\,H) + \, d_H(E) \, \} = \, 1 \\ &d_F(G) = min \, \{ \, C(F,\,C) + d_C(G), \, C(F,D) + d_D(G), \, C(F,\,E) + \, d_E(G), \, C(F,\,H) + \, d_H(G) \, \} = \, \textbf{11(D)} \\ &d_F(H) = min \, \{ \, C(F,\,C) + d_C(H), \, C(F,D) + d_D(H), \, C(F,\,E) + \, d_E(H), \, C(F,\,H) + \, d_H(H) \, \} = \, \textbf{4(E)} \end{split}
```

G	Α	В	С	D	E	F	G	Н
Α	0	∞	∞	3	∞	∞	1	∞
D	3	∞	1	0	∞	5	6	∞
G	1	∞	7	4	∞	11	0	∞

```
\begin{split} &d_G(A) = min \, \{ \, C(G,\,A) + d_A(A),\, C(G,D) + d_D(A) \, \} = \, 1 \\ &d_G(B) = min \, \{ \, C(G,\,A) + d_A(B),\, C(G,D) + d_D(B) \, \} = \, \infty \\ &d_G(C) = min \, \{ \, C(G,\,A) + d_A(C),\, C(G,D) + d_D(C) \, \} = \, \textbf{7(D)} \\ &d_G(D) = min \, \{ \, C(G,\,A) + d_A(D),\, C(G,D) + d_D(D) \, \} = \, \textbf{4(A)} \\ &d_G(E) = min \, \{ \, C(G,\,A) + d_A(E),\, C(G,D) + d_D(E) \, \} = \, \infty \\ &d_G(F) = min \, \{ \, C(G,\,A) + d_A(F),\, C(G,D) + d_D(F) \, \} = \, \textbf{11(D)} \\ &d_G(H) = min \, \{ \, C(G,\,A) + d_A(H),\, C(G,D) + d_D(H) \, \} = \, \infty \end{split}
```

Н	Α	В	С	D	E	F	G	Н
В	∞	0	∞	∞	2	∞	∞	1
E	∞	2	∞	∞	0	1	∞	3
F	∞	∞	2	5	1	0	∞	8
Н	∞	1	10	13	3	4	∞	0

```
\begin{array}{l} d_{H}(A) = min \; \{\; C(H,\,B) + d_{B}(A), \; C(H,E) + d_{E}(A), \; C(H,\,F) + \; d_{F}(A) \; \} = \; \infty \\ d_{H}(B) = min \; \{\; C(H,\,B) + d_{B}(B), \; C(H,E) + d_{E}(B), \; C(H,\,F) + \; d_{F}(B) \; \} = \; 1 \\ d_{H}(C) = min \; \{\; C(H,\,B) + d_{B}(C), \; C(H,E) + d_{E}(C), \; C(H,\,F) + \; d_{F}(C) \; \} = \; \textbf{10(F)} \\ d_{H}(D) = min \; \{\; C(H,\,B) + d_{B}(D), \; C(H,E) + d_{E}(D), \; C(H,\,F) + \; d_{F}(D) \; \} = \; \textbf{13(F)} \\ d_{H}(E) = min \; \{\; C(H,\,B) + d_{B}(E), \; C(H,E) + d_{E}(E), \; C(H,\,F) + \; d_{F}(E) \; \} = \; 3 \\ d_{H}(F) = min \; \{\; C(H,\,B) + d_{B}(F), \; C(H,E) + d_{E}(F), \; C(H,\,F) + \; d_{F}(F) \; \} = \; \textbf{4(E)} \\ d_{H}(G) = min \; \{\; C(H,\,B) + d_{B}(G), \; C(H,E) + d_{E}(G), \; C(H,\,F) + \; d_{F}(G) \; \} = \; \infty \end{array}
```

– (t₂) 2 שלב

Α	Α	В	С	D	E	F	G	Н
Α	0	∞	4	3	9	6	1	16
D	3	∞	1	0	6	3	4	13
G	1	∞	7	4	∞	11	0	∞

```
\begin{split} &d_A(B) = min \, \{ \, C(A,\,D) + d_D(B),\, C(A,G) + d_G(B) \, \} = \, \infty \\ &d_A(C) = min \, \{ \, C(A,\,D) + d_D(C),\, C(A,G) + d_G(C) \, \} = \, 4 \\ &d_A(D) = min \, \{ \, C(A,\,D) + \, d_D(D),\, C(A,\,G) + d_G(D) \} = \, 3 \\ &d_A(E) = min \, \{ \, C(A,\,D) + \, d_D(E),\, C(A,\,G) + d_G(E) \} = \, 9(D) \\ &d_A(F) = min \, \{ \, C(A,\,D) + \, d_D(F),\, C(A,\,G) + d_G(F) \} = \, 6(D) \\ &d_A(G) = min \, \{ \, C(A,\,D) + \, d_D(G),\, C(A,\,G) + d_G(G) \} = \, 1 \\ &d_A(H) = min \, \{ \, C(A,\,D) + \, d_D(H),\, C(A,\,G) + d_G(H) \} = \, 16(D) \end{split}
```

В	Α	В	С	D	E	F	G	Н
В	∞	0	5	8	2	3	∞	1
E	∞	2	3	6	0	1	∞	3
Н	∞	1	10	13	3	4	∞	0

```
\begin{split} &d_B(A) = min \, \{ \, C(B,E) + d_E(A), \, C(B,H) + d_H(A) \, \} = \, \infty \\ &d_B(C) = min \, \{ \, C(B,E) + d_E(C), \, C(B,H) + d_H(C) \, \} = \, \textbf{5(E)} \\ &d_B(D) = min \, \{ \, C(B,E) + d_E(D), \, C(B,H) + d_H(D) \, \} = \, \textbf{8(E)} \\ &d_B(E) = min \, \{ \, C(B,E) + d_E(E), \, C(B,H) + d_H(E) \, \} = \, 2 \\ &d_B(F) = min \, \{ \, C(B,E) + d_E(F), \, C(B,H) + d_H(F) \, \} = \, 3 \\ &d_B(G) = min \, \{ \, C(B,E) + d_E(G), \, C(B,H) + d_H(G) \, \} = \, \infty \\ &d_B(H) = min \, \{ \, C(B,E) + d_E(H), \, C(B,H) + d_H(H) \, \} = \, 1 \end{split}
```

С	Α	В	С	D	E	F	G	Н
С	4	5	0	1	3	2	5	6
D	3	∞	1	0	6	3	4	13
F	8	3	2	3	1	0	11	4

```
\begin{split} &d_{C}(A) = min \, \{ \, C(C,\,D) + d_{D}(A),\, C(C,F) + d_{F}(A) \, \} = \, 4 \\ &d_{C}(B) = min \, \{ \, C(C,\,D) + d_{D}(B),\, C(C,F) + d_{F}(B) \, \} = \, \textbf{5(F)} \\ &d_{C}(D) = min \, \{ \, C(C,\,D) + d_{D}(D),\, C(C,F) + d_{F}(D) \, \} = \, 1 \\ &d_{C}(E) = min \, \{ \, C(C,\,D) + d_{D}(E),\, C(C,F) + d_{F}(E) \, \} = \, 3 \\ &d_{C}(F) = min \, \{ \, C(C,\,D) + d_{D}(F),\, C(C,F) + d_{F}(F) \, \} = \, 2 \\ &d_{C}(G) = min \, \{ \, C(C,\,D) + d_{D}(G),\, C(C,F) + d_{F}(G) \, \} = \, \textbf{5(D)} \\ &d_{C}(H) = min \, \{ \, C(C,\,D) + d_{D}(H),\, C(C,F) + d_{F}(H) \, \} = \, \textbf{6(F)} \end{split}
```

D	Α	В	С	D	E	F	G	Н
Α	0	∞	4	3	∞	8	1	∞
С	4	∞	0	1	3	2	7	10
D	3	6	1	0	4	3	4	7
F	8	3	2	3	1	0	11	4
G	1	∞	7	4	∞	11	0	∞

```
\begin{split} &d_D(A) = min \, \{ \, C(D,\,A) + d_A(A),\, C(D,C) + d_C(A),\, C(D,\,F) + \, d_F(A),\, C(D,\,G) + \, d_G(A) \, \} = \, 3 \\ &d_D(B) = min \, \{ \, C(D,\,A) + d_A(B),\, C(D,C) + d_C(B),\, C(D,\,F) + \, d_F(B),\, C(D,\,G) + \, d_G(B) \, \} = \, \textbf{6(F)} \\ &d_D(C) = min \, \{ \, C(D,\,A) + d_A(C),\, C(D,C) + d_C(C),\, C(D,\,F) + \, d_F(C),\, C(D,\,G) + \, d_G(C) \, \} = \, 1 \\ &d_D(E) = min \, \{ \, C(D,\,A) + d_A(E),\, C(D,C) + d_C(E),\, C(D,\,F) + \, d_F(E),\, C(D,\,G) + \, d_G(E) \, \} = \, \textbf{4(C)} \\ &d_D(F) = min \, \{ \, C(D,\,A) + d_A(F),\, C(D,C) + d_C(F),\, C(D,\,F) + \, d_F(F),\, C(D,\,G) + \, d_G(F) \, \} = \, 3 \\ &d_D(G) = min \, \{ \, C(D,\,A) + d_A(G),\, C(D,C) + d_C(G),\, C(D,\,F) + \, d_F(G),\, C(D,\,G) + \, d_G(G) \, \} = \, 4 \\ &d_D(H) = min \, \{ \, C(D,\,A) + d_A(H),\, C(D,C) + d_C(H),\, C(D,\,F) + \, d_F(H),\, C(D,\,G) + \, d_G(H) \, \} = \, \textbf{7(F)} \end{split}
```

E	Α	В	С	D	E	F	G	Н
В	∞	0	∞	∞	2	3	∞	1
E	9	2	3	4	0	1	12	3
F	8	3	2	3	1	0	11	4
Н	∞	1	10	13	3	4	∞	0

```
\begin{aligned} &d_E(A) = min \, \{ \, C(E,B) + d_B(A), \, C(E,F) + d_F(A), \, C(E,H) + d_H(A) \, \} = \, 9(F) \\ &d_E(B) = min \, \{ \, C(E,B) + d_B(B), \, C(E,F) + d_F(B), \, C(E,H) + d_H(B) \, \} = \, 2 \\ &d_E(C) = min \, \{ \, C(E,B) + d_B(C), \, C(E,F) + d_F(C), \, C(E,H) + d_H(C) \, \} = \, 3 \\ &d_E(D) = min \, \{ \, C(E,B) + d_B(D), \, C(E,F) + d_F(D), \, C(E,H) + d_H(D) \, \} = \, 4(F) \\ &d_E(F) = min \, \{ \, C(E,B) + d_B(F), \, C(E,F) + d_F(F), \, C(E,H) + d_H(F) \, \} = \, 1 \\ &d_E(G) = min \, \{ \, C(E,B) + d_B(G), \, C(E,F) + d_F(G), \, C(E,H) + d_H(G) \, \} = \, 12(F) \\ &d_E(H) = min \, \{ \, C(E,B) + d_B(H), \, C(E,F) + d_F(H), \, C(E,H) + d_H(H) \, \} = \, 3 \end{aligned}
```

F	Α	В	С	D	E	F	G	Н
С	4	∞	0	1	3	2	7	10
D	3	∞	1	0	6	3	4	13
E	∞	2	3	6	0	1	∞	3
F	6	3	2	3	1	0	7	4
Н	∞	1	10	13	3	4	∞	0

```
\begin{split} &d_F(A) = min \, \{ \, C(F,\,C) + d_C(A),\, C(F,D) + d_D(A),\, C(F,\,E) + \, d_E(A),\, C(F,\,H) + \, d_H(A) \, \} = \, \textbf{6(C)} \\ &d_F(B) = min \, \{ \, C(F,\,C) + d_C(B),\, C(F,D) + d_D(B),\, C(F,\,E) + \, d_E(B),\, C(F,\,H) + \, d_H(B) \, \} = \, 3 \\ &d_F(C) = min \, \{ \, C(F,\,C) + d_C(C),\, C(F,D) + d_D(C),\, C(F,\,E) + \, d_E(C),\, C(F,\,H) + \, d_H(C) \, \} = \, 2 \\ &d_F(D) = min \, \{ \, C(F,\,C) + d_C(D),\, C(F,D) + d_D(D),\, C(F,\,E) + \, d_E(D),\, C(F,\,H) + \, d_H(D) \, \} = \, 3 \\ &d_F(E) = min \, \{ \, C(F,\,C) + d_C(E),\, C(F,D) + d_D(E),\, C(F,\,E) + \, d_E(E),\, C(F,\,H) + \, d_H(E) \, \} = \, 1 \\ &d_F(G) = min \, \{ \, C(F,\,C) + d_C(G),\, C(F,D) + d_D(G),\, C(F,\,E) + \, d_E(G),\, C(F,\,H) + \, d_H(G) \, \} = \, \textbf{7(D)} \\ &d_F(H) = min \, \{ \, C(F,\,C) + d_C(H),\, C(F,D) + d_D(H),\, C(F,\,E) + \, d_E(H),\, C(F,\,H) + \, d_H(H) \, \} = \, 4 \end{split}
```

G	Α	В	С	D	E	F	G	Н
Α	0	∞	4	3	∞	8	1	∞
D	3	∞	1	0	6	3	4	13
G	1	∞	5	4	10	7	0	17

```
\begin{split} &d_G(A) = min \, \{ \, C(G,\,A) + d_A(A),\, C(G,D) + d_D(A) \, \} = \, 1 \\ &d_G(B) = min \, \{ \, C(G,\,A) + d_A(B),\, C(G,D) + d_D(B) \, \} = \, \infty \\ &d_G(C) = min \, \{ \, C(G,\,A) + d_A(C),\, C(G,D) + d_D(C) \, \} = \, \textbf{5(A)} \\ &d_G(D) = min \, \{ \, C(G,\,A) + d_A(D),\, C(G,D) + d_D(D) \, \} = \, 4 \\ &d_G(E) = min \, \{ \, C(G,\,A) + d_A(E),\, C(G,D) + d_D(E) \, \} = \, \textbf{10(D)} \\ &d_G(F) = min \, \{ \, C(G,\,A) + d_A(F),\, C(G,D) + d_D(F) \, \} = \, \textbf{7(D)} \\ &d_G(H) = min \, \{ \, C(G,\,A) + d_A(H),\, C(G,D) + d_D(H) \, \} = \, \textbf{17(D)} \end{split}
```

Н	Α	В	С	D	E	F	G	Н
В	∞	0	∞	∞	2	3	∞	1
E	∞	2	3	6	0	1	∞	3
F	8	3	2	3	1	0	11	4
Н	12	1	6	7	3	4	15	0

```
\begin{split} d_H(A) &= min \, \{ \, C(H,\,B) + d_B(A), \, C(H,E) + d_E(A), \, C(H,\,F) + \, d_F(A) \, \} = \, \textbf{12(F)} \\ d_H(B) &= min \, \{ \, C(H,\,B) + d_B(B), \, C(H,E) + d_E(B), \, C(H,\,F) + \, d_F(B) \, \} = \, 1 \\ d_H(C) &= min \, \{ \, C(H,\,B) + d_B(C), \, C(H,E) + d_E(C), \, C(H,\,F) + \, d_F(C) \, \} = \, \textbf{6(E)} \\ d_H(D) &= min \, \{ \, C(H,\,B) + d_B(D), \, C(H,E) + d_E(D), \, C(H,\,F) + \, d_F(D) \, \} = \, \textbf{7(F)} \\ d_H(E) &= min \, \{ \, C(H,\,B) + d_B(E), \, C(H,E) + d_E(E), \, C(H,\,F) + \, d_F(E) \, \} = \, 3 \\ d_H(F) &= min \, \{ \, C(H,\,B) + d_B(F), \, C(H,E) + d_E(F), \, C(H,\,F) + \, d_F(F) \, \} = \, 4 \\ d_H(G) &= min \, \{ \, C(H,\,B) + d_B(G), \, C(H,E) + d_E(G), \, C(H,\,F) + \, d_F(G) \, \} = \, \textbf{15(F)} \end{split}
```

<u>שלב אחרון –</u>

Α	Α	В	С	D	E	F	G	Н
Α	0	9	4	3	7	6	1	10
D	3	6	1	0	4	3	4	7
G	1	10	5	4	8	7	0	11
В	Α	В	С	D	E	F	G	Н
В	9	0	5	6	2	3	10	1
E	7	2	3	4	0	1	8	3
Н	10	1	6	7	3	4	11	0
С	Α	В	С	D	E	F	G	Н
С	4	5	0	1	3	2	5	6
D	3	6	1	0	4	3	4	7
F	6	3	2	3	1	0	7	4
D	Α	В	С	D	E	F	G	Н
Α	0	9	4	3	7	6	1	10
С	4	5	0	1	3	2	5	6
D	3	6	1	0	4	3	4	7
F	6	3	2	3	1	0	7	4
G	1	10	5	4	8	7	0	11
E	Α	В	С	D	E	F	G	Н
В	9	0	5	6	2	3	10	1
E	7	2	3	4	0	1	8	3
F	6	3	2	3	1	0	7	4
Н	10	1	6	7	3	4	11	0

F	Α	В	С	D	E	F	G	Н
С	4	5	0	1	3	2	5	6
D	3	6	1	0	4	3	4	7
E	7	2	3	4	0	1	8	3
F	6	3	2	3	1	0	7	4
Н	10	1	6	7	3	4	11	0
G	Α	В	С	D	E	F	G	Н
Α	0	9	4	3	7	6	1	10
D	3	6	1	0	4	3	4	7
G	1	10	5	4	8	7	0	11
Н	Α	В	С	D	E	F	G	Н
В	9	0	5	6	2	3	10	1
E	7	2	3	4	0	1	8	3
F	6	3	2	3	1	0	7	4
Н	10	1	6	7	3	4	11	0

ב. <u>נניח שעלות מעבר בין F ל-C השתנה מ-2 ל-30.</u> האם תיווצר לולאה אין סופית בין צומת D ל-F?

מי שמכיר בשינוי העלות הם הצמתים C ו-F בלבד. מכאן, שה-DATA המועבר מצומת D "מעוניין" להגיע ל-F דרך C, וזאת בשל העובדה שאיננו מכיר בשינוי שקרה, ומבחינתו המסלול מ-D ל-C ומ-F להגיע ל-F דרך C, וזאת בשל העובדה שאיננו מכיר בשינוי שקרה, ומבחינתו המסלול הקצר ל-F ל-F הוא המסלול הקצר ביותר. עם הגעת ה-DATA לצומת C, צומת C מזהה שהמסלול הקצר ל-F הינו ישירות דרך D, ומכאן שנוצרת לולאת ניתוב בין D ל-F וזאת עד להתייצבות האלגוריתם (כלומר, עד לרגע שבו החיבור של עלות המעברים בטבלאות בין D ל-F דרך C, עולה על העלות בין D ל-F באופן ישיר).

שאלה 3:

– DVR א. טבלאות ניתוב באמצעות אלגוריתם ניתוב

<u>- (t₀) 0 שלב</u>

Α	Α	В	С	D
Α	0	2	∞	8
В	∞	∞	∞	∞
D	∞	∞	∞	∞

A vector = $0.2 \approx 8$

В	Α	В	С	D
Α	∞	∞	∞	∞
В	2	0	7	9
С	∞	∞	∞	∞
D	∞	∞	∞	∞

B vector = 2 0 7 9

С	Α	В	С	D
В	∞	∞	∞	∞
С	∞	7	0	4
D	∞	∞	∞	∞

C vector = ∞ 7 0 4

D	Α	В	С	D
Α	∞	∞	∞	∞
В	∞	∞	∞	∞
С	∞	∞	∞	∞
D	8	9	4	0

D vector = 8 9 4 0

<u>– (t₁) שלב 1</u>

Α	Α	В	С	D
Α	0	2	9	8
В	2	0	7	9
D	8	9	4	0

$$d_A(B) = min \{C(A,B) + d_B(B), C(A,D) + d_D(B)\} = 2$$

$$d_A(C) = min \{C(A,B) + d_B(C), C(A,D) + d_D(C)\} = 9(B)$$

$$d_A(D) = min \{C(A,B) + d_B(D), C(A,D) + d_D(D)\} = 8$$

В	Α	В	С	D
Α	0	2	∞	8
В	2	0	7	9
С	∞	7	0	4
D	8	9	4	0

$$\begin{split} &d_B(A) = min \; \{ \; C(B,A) + d_A(A), \; C(B,C) + d_C(A), \; C(B,D) + d_D(A) \; \} = 2 \\ &d_B(C) = min \; \{ \; C(B,A) + d_A(C), \; C(B,C) + d_C(C), \; C(B,D) + d_D(C) \; \} = 7 \\ &d_B(D) = min \; \{ \; C(B,A) + d_A(D), \; C(B,C) + d_C(D), \; C(B,D) + d_D(D) \; \} = 9 \end{split}$$

С	Α	В	С	D
В	2	0	7	9
С	9	7	0	4
D	8	9	4	0

$$\begin{split} &d_{C}(A) = min \; \{ \; C(C,B) + d_{B}(A), \; C(C,D) + d_{D}(A) \; \} = \textcolor{red}{9(B)} \\ &d_{C}(B) = min \; \{ \; C(C,B) + d_{B}(B), \; C(C,D) + d_{D}(B) \; \} = 7 \\ &d_{C}(D) = min \; \{ \; C(C,B) + d_{B}(D), \; C(C,D) + d_{D}(D) \; \} = 4 \end{split}$$

D	Α	В	С	D
Α	0	2	∞	8
В	2	0	7	9
С	∞	7	0	4
D	8	9	4	0

$$\begin{array}{l} d_D(A) = min \left\{ C(D,A) + d_A(A), \, C(D,B) + d_B(A), \, C(D,C) + d_C(A) \, \right\} = \, 8 \\ d_D(B) = min \left\{ C(D,A) + d_A(B), \, C(D,B) + d_B(B), \, C(D,C) + d_C(B) \, \right\} = \, 9 \\ d_D(C) = min \left\{ C(D,A) + d_A(C), \, C(D,B) + d_B(C), \, C(D,C) + d_C(C) \, \right\} = \, 4 \end{array}$$

– (t₂) 2 שלב

Α	Α	В	С	D
Α	0	2	9	8
В	2	0	7	9
D	8	9	4	0

אין שינוי

В	Α	В	С	D
Α	0	2	9	8
В	2	0	7	9
С	9	7	0	4
D	8	9	4	0

אין שינוי

С	Α	В	С	D
В	2	0	7	9
С	9	7	0	4
D	8	9	4	0

אין שינוי

D	Α	В	С	D
Α	0	2	9	8
В	2	0	7	9
С	9	7	0	4
D	8	9	4	0

אין שינוי

.2- אין שינויים, כלומר, האלגוריתם התייצב, לכן נעצור באיטרציה ה

ב. <u>יש להציג לכל נתב טבלאות ניתוב לאחר השינוי (בזמן מסוים T המעבר בין נתבים B ו-D השתנה ל-</u> <u>80). יש להראות 3 איטרציות אחרונות:</u>

<u>איטרציה א':</u>

Α	Α	В	С	D
Α	0	2	9	8
В	2	0	7	9
D	8	9	4	0

$$d_{A}(B) = \min \{C(A,B) + d_{B}(B), C(A,D) + d_{D}(B) \} = 2$$

$$d_{A}(C) = \min \{C(A,B) + d_{B}(C), C(A,D) + d_{D}(C) \} = 9$$

$$d_A(D) = min \{C(A,B) + d_B(D), C(A,D) + d_D(D)\} = 8$$

В	Α	В	С	D
Α	0	2	9	8
В	2	0	7	10
С	9	7	0	4
D	8	9	4	0

$$\begin{split} &d_B(A) = min \ \{ \ C(B,A) + d_A(A), \ C(B,C) + d_C(A), \ C(B,D) + d_D(A) \ \} = \{ \ 2 + 0, \ 7 + 9, \ 80 + 4 \ \} = 2 \\ &d_B(C) = min \ \{ \ C(B,A) + d_A(C), \ C(B,C) + d_C(C), \ C(B,D) + d_D(C) \ \} = \{ \ 2 + 9, \ 7 + 0, \ 80 + 4 \ \} = 7 \\ &d_B(D) = min \ \{ \ C(B,A) + d_A(D), \ C(B,C) + d_C(D), \ C(B,D) + d_D(D) \ \} = \{ \ 2 + 8, \ 7 + 4, \ 80 + 0 \ \} = \textbf{10(A)} \end{split}$$

С	Α	В	С	D
В	2	0	7	9
С	9	7	0	4
D	8	9	4	0

$$d_{C}(A) = min \{ C(C,B) + d_{B}(A), C(C,D) + d_{D}(A) \} = 9$$

$$d_{C}(B) = min \{ C(C,B) + d_{B}(B), C(C,D) + d_{D}(B) \} = 7$$

$$d_{C}(D) = min \{ C(C,B) + d_{B}(D), C(C,D) + d_{D}(D) \} = 4$$

D	Α	В	С	D
Α	0	2	9	8
В	2	0	7	9
С	9	7	0	4
D	8	10	4	0

$$\begin{split} &d_D(A) = min \left\{ C(D,A) + d_A(A), \, C(D,B) + d_B(A), \, C(D,C) + d_C(A) \, \right\} = \, \left\{ \, 8 + 0, \, 80 + 2, \, 4 + 9 \, \right\} = 8 \\ &d_D(B) = min \left\{ C(D,A) + d_A(B), \, C(D,B) + d_B(B), \, C(D,C) + d_C(B) \, \right\} = \, \left\{ \, 8 + 2, \, 80 + 4, \, 4 + 7 \, \right\} = \frac{10(A)}{A} \\ &d_D(C) = min \left\{ C(D,A) + d_A(C), \, C(D,B) + d_B(C), \, C(D,C) + d_C(C) \, \right\} = \, \left\{ \, 8 + 9, \, 80 + 7, \, 4 + 0 \, \right\} = 4 \end{split}$$

<u>איטרציה ב':</u>

Α	Α	В	С	D
Α	0	2	9	8
В	2	0	7	10
D	8	10	4	0

$$\begin{aligned} &d_A(B) = min \left\{ C(A,B) + d_B(B), \, C(A,D) + d_D(B) \, \right\} = \left\{ \, 2 + 0, \, 8 + 10 \, \right\} = 2 \\ &d_A(C) = min \left\{ C(A,B) + d_B(C), \, C(A,D) + d_D(C) \, \right\} = \left\{ \, 2 + 7, \, 8 + 4 \, \right\} = 9 \\ &d_A(D) = min \left\{ C(A,B) + d_B(D), \, C(A,D) + d_D(D) \, \right\} = \left\{ \, 2 + 10, \, 8 + 0 \, \right\} = 8 \end{aligned}$$

В	Α	В	С	D
Α	0	2	9	8
В	2	0	7	10
С	9	7	0	4
D	8	10	4	0

$$\begin{split} &d_B(A) = min \, \{ \, C(B,A) + d_A(A), \, C(B,C) + d_C(A), \, C(B,D) + d_D(A) \, \} = \{ \, 2 + 0, \, 7 + 9, \, 80 + 4 \, \} = 2 \\ &d_B(C) = min \, \{ \, C(B,A) + d_A(C), \, C(B,C) + d_C(C), \, C(B,D) + d_D(C) \, \} = \{ \, 2 + 9, \, 7 + 0, \, 80 + 4 \, \} = 7 \\ &d_B(D) = min \, \{ \, C(B,A) + d_A(D), \, C(B,C) + d_C(D), \, C(B,D) + d_D(D) \, \} = \{ \, 2 + 8, \, 7 + 4, \, 80 + 0 \, \} = 10 \end{split}$$

С	Α	В	С	D
В	2	0	7	10
С	9	7	0	4
D	8	10	4	0

$$\begin{split} &d_C(A) = min \; \{ \; C(C,B) + d_B(A), \; C(C,D) + d_D(A) \; \} = \; \{ \; 7 + 2, \; 4 + 8 \; \} = 9 \\ &d_C(B) = min \; \{ \; C(C,B) + d_B(B), \; C(C,D) + d_D(B) \; \} = \{ \; 7 + 0, \; 4 + 10 \; \} = 7 \\ &d_C(D) = min \; \{ \; C(C,B) + d_B(D), \; C(C,D) + d_D(D) \; \} = \{ \; 7 + 10, \; 4 + 0 \; \} = 4 \end{split}$$

D	Α	В	С	D
Α	0	2	9	8
В	2	0	7	10
С	9	7	0	4
D	8	10	4	0

```
\begin{aligned} &d_D(A) = \min \left\{ C(D,A) + d_A(A), \, C(D,B) + d_B(A), \, C(D,C) + d_C(A) \right\} = \left\{ \, 8 + 0, \, 80 + 2, \, 4 + 9 \, \right\} = 8 \\ &d_D(B) = \min \left\{ C(D,A) + d_A(B), \, C(D,B) + d_B(B), \, C(D,C) + d_C(B) \right\} = \left\{ \, 8 + 2, \, 80 + 4, \, 4 + 7 \, \right\} = 10 \\ &d_D(C) = \min \left\{ C(D,A) + d_A(C), \, C(D,B) + d_B(C), \, C(D,C) + d_C(C) \right\} = \left\{ \, 8 + 9, \, 80 + 7, \, 4 + 0 \, \right\} = 4 \end{aligned}
```

ניתן לראות כי באיטרציה זו לא התבצעו שינויים נוספים מאיטרציה קודמת, לכן נעצור פה.

ג. <u>כמה איטרציות צריך לבצע כדי שאלגוריתם הניתוב יתייצב</u>? – לאחר איטרציה אחת אלגוריתם הניתוב מתייצב, ניתן לראות זאת בסעיף ב'.

:4 שאלה

– מפרסמים OSPF-ו RIP-ש advertisements נשווה את

<u>RIP</u> – הפרסום של RIP הוא עבור השכנים הישירים שלו בלבד.

עדכוני ניתוב בין שכנים מוחלפים בערך כל 30 שניות, וזאת באמצעות "הודעות תגובה" המכונות " RIP advertisements". הודעת התגובה שנשלחה ע"י נתב או מארח מכילה רשימה של עד 25 רשתות יעד בתוך ה-AS, כמו גם את מרחק השולח לכל אחת מאותן רשתות משנה.

אם לא נשלח advertisement תוך 180 שניות השכנים נחשבים ל-"מתים" ו-advertisement חדש נשלח לשבנים

- OSPF הפרסום של OSPF הוא עבור כולם, כלומר עושה OSPF לכולם.

advertisements של OSPF כלולות בהודעות OSPF המועברות ישירות ע"י IP, עם פרוטוקול של שכבה OSPF עליונה עבור OSPF. לפיכך, פרוטוקול OSPF חייב ליישם בעצמו פונקציונליות כמו העברת הודעות אמינה ו-OSPF לפיכך, פרוטוקול OSPF .link-state broadcast

:5 שאלה

<u>תשובה</u>: נכון

<u>הסבר</u>: נתב ה-BGP מתפקד ב-2 תפקידים – גם בניתוב פנימה וגם בניתוב החוצה. כלומר, משמש כנתב רגיל במידה והחבילה מועברת לרשת אחרת. רגיל במידה והחבילה מועברת בתוך הרשת, ומשמש כ-gateway, במידה והחבילה מועברת לרשת אחרת. בשל העובדה ש BGP מתפקד גם כ-gateway, אז כאשר נתב BGP מקבל את המסלול המפורסם מהשכן, הוא **אבן** צריך להוסיף את הזיהוי של עצמו למסלול המתקבל ואז לשלוח את המסלול החדש לכל השכנים שלו. אם BGP לא יוסיף את הזיהוי של עצמו למסלול, אז הוא לא יוכל לנתב את המידע לנתבים ברשת שלו.