$n^{\circ}5$ - Fonctions spéciales

Notes de Cours

I Fonctions exponentielles et logarithme

FIGURE 1 – Les graphes des fonction l
n et exp sont symétriques par rapport à la droite d'équation
 y=x

Voici un formulaire des propriétés fondamentales à connaître et savoir utiliser.

1. Domaines de définition, variations :

$$\exp: \ \mathbb{R} \longrightarrow \]0, +\infty[\qquad \qquad \ln: \]0, +\infty[\longrightarrow \ \mathbb{R}$$

$$x \longmapsto e^x \qquad \qquad x \longmapsto \ln(x)$$

Les fonctions exp et ln sont strictement croissantes sur \mathbb{R} et \mathbb{R}_+^* respectivement.

$$\lim_{x \to -\infty} e^x = 0 \qquad \qquad \lim_{y \to 0} \ln(y) = -\infty$$

$$\lim_{x \to +\infty} e^x = +\infty \qquad \qquad \lim_{y \to +\infty} \ln(y) = +\infty$$

2. Les fonctions sont réciproques l'une de l'autre :

$$\forall x \in \mathbb{R}, \ \ln\left(e^x\right) = x \qquad \forall y > 0, \ e^{\ln(y)} = y$$

3. Dérivée:

$$\frac{d(e^x)}{dx} = e^x \text{ sur } \mathbb{R}, \qquad \frac{d\ln|x|}{dx} = \frac{1}{x} \text{ sur } \mathbb{R}^*$$

et plus généralement pour une fonction u, on a

$$(e^u)' = u' \times e^u \qquad (\ln(u))' = \frac{u'}{u}$$

4. **Des sommes aux produits :** L'exponentielle transforme les sommes en produit. Et le logarithme transforme les produits en sommes. C'est-à-dire que pour tous $x, y \in \mathbb{R}$ et tous $a, b \in \mathbb{R}_+^*$, on a

$$e^{0} = 1 \qquad \ln(1) = 0$$

$$e^{1} = e \qquad \ln(e) = 1$$

$$e^{x+y} = e^{x} \times e^{y} \qquad \ln(a \times b) = \ln(a) + \ln(b)$$

$$e^{x-y} = \frac{e^{x}}{e^{y}} \qquad \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$$

$$e^{-x} = \frac{1}{e^{x}} \qquad \ln\left(\frac{1}{a}\right) = -\ln(a)$$

$$e^{x \times y} = (e^{x})^{y} \qquad \ln(a^{b}) = b \times \ln(a)$$

$$e^{\frac{x}{y}} = \sqrt[y]{e^{x}} \qquad \ln\left(\sqrt[b]{a}\right) = \frac{\ln(a)}{b}$$

5. Fonction puissance et logarithme en base a > 0: Pour a > 0, $x \in \mathbb{R}$ et y > 0, on définit

$$a^x := e^{x \ln(a)} \qquad \qquad \log_a(y) := \frac{\ln(y)}{\ln(a)}$$

les fonctions $x \mapsto a^x$ et $y \mapsto \log_a(y)$ sont réciproques l'une de l'autre. Le logarithme népérien correspond au logarithme en base e (c'est-à-dire qu'on $\log_e = \ln$).

6. Croissance comparée : Soit $\alpha \in \mathbb{R} \cup \{-\infty, +\infty\}$. Si la limite en α de $(\ln(x))^a \cdot |x|^b \cdot e^{cx}$ est une forme indéterminée, alors

$$\lim_{x \to \alpha} (\ln(x))^a \cdot |x|^b \cdot e^{cx} = \begin{cases} \lim_{x \to \alpha} e^{cx} & \text{si } c \neq 0 \\ \lim_{x \to \alpha} |x|^b & \text{si } c = 0 \text{ et } b \neq 0 \\ \lim_{x \to \alpha} (\ln(x))^a & \text{si } c = 0 \text{ et } b = 0 \end{cases}$$

II Exercices

II.A Calculs élémentaires

1. (SF 31, 32) (Aspect fondamental) Mettre les expressions suivantes sous la forme ln(a):

$$\ln(6) + \ln(4) - \ln(12) = \ln(\dots)$$
 $3\ln(2) - 4\ln(\sqrt{2}) = \ln(\dots)$

$$\frac{1}{2}\ln(t^2+4t+4) = \ln(\dots)$$

$$\ln(x^2-1) - \ln(x+1) = \ln(\dots)$$

2. (SF 31, 33, 34) (Aspect fondamental) Mettre les expressions suivantes sous la forme e^a :

$$\sqrt[3]{e^{-12}} = e^{\cdots} \qquad e^3 3^e = e^{\cdots}$$

$$\frac{\sqrt{e^{-4x}}}{\left(e^{-\frac{x}{2}}\right)^6 e^{5x}} = e^{\dots} \qquad u^{\frac{1}{\ln(u)}} = e^{\dots}$$

3. (SF 22, 23, 24, 25, 39) (Aspect fondamental) Déterminer les domaines de définition des fonctions suivantes et calculer leurs dérivées

$$f_1(x) = \ln(3x - 2)$$
 $f_2(x) = e^{x^2}$
 $f_3(x) = x \ln(x) - x$ $f_4(x) = 3^x$
 $f_5(x) = \log_{10}(x)$ $f_6(x) = \ln(e^x - x)$

Le logarithme en base a est la réciproque de la fonction $x \mapsto 2^x$, c'est-à-dire que l'on a $y = a^x \iff x = \log_a(y)$. Ou en d'autre termes, le logarithme de y est l'exposant x pour lequel a^x fait y.

4. (SF 32, 33, 34) Calcul de logarithmes en base entière

Déterminer les logarithmes suivants

$$\log_2(256) = \log_3(9) = \log_3(81) = \log_4(2^{10}) = \log_5(625) = \log_{10}(1000000) = \log_{10}(0,001) = \log_{10}(27) = \log_{10$$

- 5. (SF 32, 33, 34) Logarithmes en base 2 et 10
 - (a) Sachant $2^{10} = 1024$, $2^9 = 512$ et $10^3 = 1000$, montrer que

$$3 \le \log_2(10) \le 3 + \frac{1}{3}$$

- (b) Sachant que $10 \le 33 < 100$, donner un encadrement de $\log_{10}(33)$ entre deux entiers.
- (c) Que vaut la partie entière de $\log_{10}(3827939174323)$? (Indication : trouver $k \in \mathbb{N}$ tel que $10^k \le 3827939174323 < 10^{k+1}$)

Remarque II.1. De manière plus générale pour un entier $n \in \mathbb{N}^*$, $\lfloor \log_{10}(n) \rfloor + 1$ correspond au nombre de chiffres de n dans son écriture en base n.

6. (SF 32, 33, 34) Calcul de logarithmes en base b

Calculer la valeur des logarithmes suivants arrondis à l'entier inférieur. On rappelle que $\lfloor x \rfloor$ désigne la partie entière inférieure du réel x (aussi appellé x "arrondi à l'entier inférieur"), c'est-à-dire l'unique entier relatif $k_x \in \mathbb{Z}$ tel que $k_x \le x < k_x + 1$. Par exemple on a $\lfloor 23, 45 \rfloor = 23$ et $\lfloor 1, 5 \rfloor = 1$ et $\lfloor -45, 1 \rfloor = -46$ et $\lfloor n \rfloor = n$ pour $n \in \mathbb{Z}$):

$$\lfloor \log_2(8) \rfloor =$$

$$\lfloor \log_3(81) \rfloor =$$

$$\lfloor \log_5(5) \rfloor =$$

$$\lfloor \log_7(3) \rfloor =$$

$$\lfloor \log_{10}(2349242) \rfloor =$$

$$\lfloor \log_2(15) \rfloor =$$

II.B Calculs de limites

7. (SF 13, 14, 16) Calculer les limites suivantes

$$\lim_{x \to +\infty} e^{-3x} \qquad \qquad \lim_{x \to 1} \ln(x^2 + x + 1)$$

$$\lim_{x \to 0^+} \ln(e^x - 1) \qquad \qquad \lim_{x \to -\infty} e^{x \ln(-\frac{1}{2+x})}$$

$$\lim_{x \to -\infty} \frac{1}{e^{3-4x}} \qquad \qquad \lim_{x \to 0^+} e^{-\frac{1}{x}}$$

8. (SF 13, 14, 15, 16, 17) Calculer les limites suivantes

$$\lim_{x \to +\infty} \frac{e^x}{x} \qquad \qquad \lim_{x \to 0^+} x \ln(x)$$

$$\lim_{x \to 0^+} e^x \ln(x) \qquad \qquad \lim_{x \to +\infty} e^{3x} - e^{2x}$$

$$\lim_{x \to +\infty} \frac{2e^{-x} - 5e^{2x} + 1}{3e^{2x} - e^x} \qquad \qquad \lim_{x \to -\infty} x + e^{-x}$$

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} \qquad \qquad \lim_{x \to +\infty} x^{\frac{1}{x}}$$

- 9. (SF 13,16, 19)
 - (a) Calculer les limites suivantes (on pourra faire apparaître des taux de variation)

$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1}$$

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1}$$

$$\lim_{x \to 0} \frac{e^{3x} - e^{-x}}{x}$$

$$\lim_{x \to +\infty} x \ln\left(1 + \frac{2}{x}\right)$$

(b) Pour $x \in \mathbb{R}$, calculer la limite suivante

$$\lim_{n \to +\infty} \left(1 + \frac{x}{n} \right)^n$$

II.C Trigonométrie hyperbolique

Définition II.2 (sinus, cosinus et tangente hyperbolique). Pour $x \in \mathbb{R}$, on pose

$$ch(x) = \frac{e^x + e^{-x}}{2}, \quad sh(x) = \frac{e^x - e^{-x}}{2}, \quad th(x) = \frac{sh(x)}{ch(x)}$$

Remarque II.3. Cette définition ressemble un peu à la définition via l'exponentielle complexe des fonctions cos et sin :

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}, \qquad \sin(x) = \frac{e^{ix} - e^{-ix}}{2}, \qquad \tan(x) = \frac{\sin(x)}{\cos(x)}$$

et c'est d'ailleurs pour cette raison qu'on les appelle ainsi.

10. (SF 31, 32, 33) Lien avec l'hyperbole

Montrer que pour tout $x \in \mathbb{R}$, on a

$$\operatorname{ch}^{2}(x) - \operatorname{sh}^{2}(x) = 1$$

Remarque II.4. La relation $\operatorname{ch}^2(t) - \operatorname{sh}^2(t) = 1$ rappelle la relation sur les fonctions trigonométriques classique $\operatorname{cos}^2(t) + \sin^2(t) = 1$ et ces relations ont toute deux une interprétation géométrique intéressante pour comprendre le nom de ces fonctions! En effet, la relation $\operatorname{cos}^2(t) + \sin^2(t) = 1$ nous dit que pour tout $t \in \mathbb{R}$ les points de coordonnées $(\cos(t), \sin(t))$ sont sur la courbe d'équation cartésienne $x^2 + y^2 = 1$, c'est à dire le cercle de centre (0,0) et rayon 1 (appelé cercle trigonométrique). En faisant varier le paramètre t dans \mathbb{R} tout entier, les points $(\cos(t), \sin(t))$ vont décrire le cercle tout entier (en d'autres termes, $(\cos(t), \sin(t))$ est une représentation paramétrique du cercle trigonométrique). Quant à la relation $\operatorname{ch}^2(t) - \operatorname{sh}^2(t) = 1$, elle nous dit que les points de coordonnées $(\operatorname{ch}(t), \operatorname{sh}(t))$ sont sur la courbe d'équation $x^2 - y^2 = 1$ qui correspond à une hyperbole. En faisant varier t dans \mathbb{R} tout entier, les points $(\operatorname{ch}(t), \operatorname{sh}(t))$ vont décrire une des deux branches de l'hyperbole (l'autre branche est décrite par les points $(-\operatorname{ch}(t), \operatorname{sh}(t))$).

Pour connaître le signe d'une fonction, on est peut être amené à devoir d'abord étudier ses variations, et donc à étudier le signe de sa dérivée. L'exercice suivant en est une belle illustration.

11. (SF 38, 39, 40, 41) Etude conjointe des fonctions ch et sh

Dans cet exercice, on cherche à étudier les fonctions sh et ch.

- (a) Déterminer la parité des fonctions ch et sh.
- (b) Dériver les fonctions ch et sh (exprimer le résultat en fonction de ch et sh).
 - i. Développer le produit $(e^{x/2} e^{-x/2})^2$. En déduire que pour tout $x \in \mathbb{R}$, on a $\operatorname{ch}(x) > 1$.
 - ii. Calculer les limites de la fonction sh en $-\infty$ et $+\infty$.
 - iii. En déduire le tableau de variation de la fonction sh
- (c) i. Déterminer le signe de sh(x) en fonction de x (on pourra se servir du tableau de variation).
 - ii. Calculer les limites de la fonction ch en $-\infty$ et $+\infty$.
 - iii. En déduire la tableau de variation de la fonction ch.
- (d) Dessiner l'allure du graphe de sh et ch.

Remarque II.5. Le graphe en U de la fonction cosinus hyperbolique est appelée un chainette ¹ car il correspond à la forme que prend une corde (ou chaîne) suspendue par ses extrémités et soumis à son poids (supposé uniforme le long de la corde).

12. (SF 31, 32, 38, 39, 40, 41) Etude de la fonction th

Dans cet exercice, on étudie la fonction th.

(a) Déterminez le domaine de définition de th. Quelle est sa parité?

1. ou parfois aussi vélaire

(b) i. Calculer la dérivée de thet montrer que pour tout $x \in \mathbb{R}$,

$$th'(x) = \frac{1}{ch^2(x)}$$

- ii. Calculer les limites de th(x) en $\pm \infty$.
- iii. Tracer le tableau de variation et l'allure du graphe.

L'étude de la fonction th nous montre qu'il s'agit d'une fonction continue et strictement croissante de $]-\infty,\infty[$ dont l'image est]-1,1[. En vertu du théorème de la bijection, on sait donc qu'il existe une fonction réciproque de]-1,1[dans $]-\infty,\infty[$, qu'on appellera argument tangente hyperbolique notée argth (le nom est à rapprocher de la fonction arc tangente, réciproque de la tangente). Dans l'exercice qui suit, on se propose de déterminer une formule pour cette fonction

13. (SF 8, 31, 32, 33) Réciproque de la tangente hyperbolique

(a) Si $y \in \mathbb{R} \setminus \{-1, 1\}$, résoudre l'équation

$$y = \frac{t-1}{t+1}$$

d'inconnue t.

(b) Montrer que pour tout $x \in \mathbb{R}$, on a

$$th(x) = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

(c) En déduire la solution de l'équation

$$y = \operatorname{th}(x)$$

d'inconnue x où $y \in]-1,1[$ est fixé. Indication : On pourra poser $t=e^{2x}$.

II.D Etude de la fonction x^x

- 14. (SF 15, 31, 33, 34, 38, 39, 40, 41) Dans cet exercice, on cherche à étudier la fonction $f(x) = x^x$.
 - (a) Réécrire f(x) sous la forme $f(x) = e^{g(x)}$ avec g une fonction qu'on explicitera. En déduire le domaine de définition de f.
 - (b) i. Calculer la dérivée de f.
 - ii. Calculer la limite de f en $+\infty$. Calculer la limite en 0^+ et en déduire que f est prolongeable par continuité en 0.
 - iii. Tracer le tableau de variation.

II.E Propriétés du logarithme

Comment démontre-t-on les propriétés du logarithme? Dans cette partie on propose quelques preuves en partant de zéro. C'est-à-dire qu'on prend la définition suivante du logarithme et qu'on en déduit ses propriétés.

Définition II.6 (Logarithme). Pour x > 0, on pose

$$\ln(x) = \int_{1}^{x} \frac{dt}{t}$$

15. (SF 65, 57) Le logarithme transforme les produits en sommes

L'objectif de cet exercice est de démontrer que le logarithme transforme les produits en sommes. Pour cela, on ne s'autorisera à utiliser que la définition II.6 ci-dessus (on ne suppose pas que l'on connaît déjà les autres propriété du logarithme).

- (a) Que vaut ln(1)?
- (b) Montrer que pour tout a, b > 0, on a

$$\int_{a}^{b} \frac{dt}{t} = \ln(b) - \ln(a)$$

(c) En effectuant le changement de variable u = ty, montrer que pour tout x, y > 0

$$\ln\left(\frac{x}{y}\right) = \int_{y}^{x} \frac{du}{u}$$

(d) En déduire que pour tout x, y > 0,

$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$$

(e) En déduire que pour tout x, y > 0, on a également

$$\ln\left(\frac{1}{x}\right) = -\ln(x)$$

puis

$$\ln(x \times y) = \ln(x) + \ln(y)$$

16. (SF 57, 1253, 329) Bijectivité du logarithme

Dans cet exercice, on ne s'autorise à utiliser que l'expression $\ln(x) = \int_1^x \frac{dt}{t}$ et les propriétés du logarithme démontrée dans l'exercice prédédent.

- (a) Montrer que la fonction l
n est strictement croissante sur \mathbb{R}_+^*
- (b) Montrer par récurrence sur $n \ge 0$ que $\ln(2^n) = n \ln(2)$.
- (c) En déduire que

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

puis que

$$\lim_{x \to 0^+} \ln(x) = -\infty$$

(Indication: pour déduire la limite en 0^+ , on pourra faire le changement de variable $y=\frac{1}{x}$)

(d) Justifier que la fonction ln est continue. En déduire que c'est une bijection de \mathbb{R}_+^* dans \mathbb{R} .

II.F Propriétés de l'exponentielle

Le fait que la fonction ln soit une bijection de \mathbb{R}_+^* dans \mathbb{R} assure qu'il existe une fonction réciproque de \mathbb{R} dans \mathbb{R}_+^* . Cela nous autorise à prendre la définition suivante de l'exponentielle.

Définition II.7 (exponentielle). La fonction $\exp : \mathbb{R} \to \mathbb{R}_+^*$ est définie comme la réciproque de la fonction ln. En particulier c'est une fonction strictement positive, strictement croissante sur \mathbb{R} et on a les limites

$$\lim_{x \to -\infty} e^x = 0, \qquad \lim_{x \to +\infty} e^x = +\infty$$

- 17. (SF 22, 25, 67) Lien avec les équations différentielles
 - (a) En utilisant la relation $\ln(e^x) = x$ valable pour tout $x \in \mathbb{R}$, montrer que $\exp'(x) = \exp(x)$.
 - (b) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable telle que f'(x) = af(x). Montrer qu'il existe $c \in \mathbb{R}$ tel que $f(x) = ce^{ax}$ pour tout $x \in \mathbb{R}$.

(Indication: On pourra considérer $g(x) = \frac{f(x)}{e^{ax}}$, et dériver g.)