EPFL

MAN

Mise à niveau

Maths 1A Prepa-031(A)

Student:
Arnaud FAUCONNET

Professor: Guido BURMEISTER

Printemps - 2019

Chapter 5

Polynômes complexes

5.1 Définition

Un polynôme en z à coefficients complexes est une combinaison linéaire de puissances entières positives de z.

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0$$

avec $a_k \in \mathbb{C}_1$, k = 0, ..., n

Remarque: Si z est une variable complexe, P définit une application.

$$P: \mathbb{C} \longrightarrow \mathbb{C}$$
$$z \longmapsto P(z)$$

Remarque: Les opérations restent les mêmes que sur $\mathbb{R}[x]$

5.2 Théorème fondamentale de l'algèbre

Théorème: Tout polynôme (non constant) $P(z) \in \mathbb{C}[z]$ possède au moins une racine complexe.

On dit que \mathbb{C} est algébriquement clos.

Exemple: Le polynôme

$$P(z) = z^{17} + 122iz^3 - 12 - 12i$$

admet $z_0 = 1 + i$ comme racine.

Corollaire: Les polynômes irréductibles dans $\mathbb{C}[z]$ sont du premier degré. (On peut toujours factoriser $(z-z_0)$, z_0 une racine).

Corollaire: Formules de Viète

• $P_2(z) = az^2 + bz + c$, $a, b, c \in \mathbb{C}$ et $a \neq 0$ Les racines existent: z_1 et z_2 .

Alors

$$z_1 + z_2 = -\frac{b}{a}$$
 $z_1 z_2 = \frac{c}{a}$ où $z_1, z_2 = \frac{-b + \sqrt{\Delta}}{2a}$

• $P_3(z) = az^3 + bz^2 + cz + d$, $a \neq 0$

Les racines existent: z_1 , z_2 et z_3 et

$$z_1 + z_2 + z_3 = -\frac{b}{a}$$
 $z_1 z_2 + z_2 z_3 + z_3 z_1 = \frac{c}{a}$ $z_1 z_2 z_3 = -\frac{d}{a}$

• $P_n(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0, \quad a_n \neq 0$

Les racines existent: z_k , k = 1, ..., n où

$$z_1 + z_2 + \dots + z_n = -\frac{a_{n-1}}{a_n}$$
 $z_1 z_2 \cdots z_n = (-1)^n \frac{a_0}{a_n}$

5.3 Décompositions dans $\mathbb{R}[x]$

Théorème: Soit $P(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_0$ avec $a_k \in \mathbb{R}, \quad k = 0, ..., n$ Alors z racine de P

$$\iff P(z) = 0$$

$$\iff \overline{P(z)} = 0$$

$$\iff \overline{a_n z^n + a_{n-1} z^{n-1} + \dots + a_0} = \overline{a_n} \overline{z^n} + \dots + \overline{a_0}$$

$$= a_n \overline{z}^n + \dots + a_0 = P(\overline{z})$$

Corollaire: Soit $P(z) = az^2 + bz + c$, $a, b, c \in \mathbb{R}$, $a \neq 0$ Alors P(z) possède

- soit deux racines réelles, distinctes ou confondues
- soit deux racines complexes de partie imaginaire non nulle, mais conjuguées l'une de l'autre.

Théorème: Les polynômes irréductibles de $\mathbb{R}[x]$ sont

- soit du premier degré
- soit du second degré, à discriminant négatif

En effet, tout polynômes P à coefficients réels possède, vu comme un polynôme complexe, au moins une racine z_0 .

- Si cette racine est réelle, $z_0 = x_0 \in \mathbb{R}$ et P(x) est divisible par $x x_0$.
- Si cette racine n'est pas réelle (Im $(z_0) \neq 0$) $\overline{z_0}$ est aussi racine de P. P est aussi divisible par $(x-z_0)(x-\overline{z_0})=x^2-2\mathrm{Re}(z_0)x+|z_0|^2$

C'est un polynôme réel à discriminant négatif.

$$\Delta' = (\text{Re}(z_0))^2 - |z_0|^2 = -(\text{Im}(z_0))^2 < 0$$

Exemple: Décomposer un facteur irréductible dans $\mathbb{R}[x]$

$$P(x) = x^4 + 1$$

- ullet P est de coefficients réels et de degré 4, sans racine réelles: P a deux paires de racines complexes conjuguées.
- racine complexes de $P: x = (r, \varphi)$

$$x^4 = -1 = (1, \pi + k \cdot 2\pi) = (r^4, 4\varphi)$$

$$r^4 = 1 \iff r = 1 \quad (\operatorname{car} r \in \mathbb{R}_+)$$

 \iff

$$4\varphi = \pi + k \cdot 2\pi \quad \iff \quad \varphi = \frac{\pi}{4} + k \cdot \frac{\pi}{2} \quad k \in \mathbb{Z}$$

Les solutions sont

$$S = \left\{ \frac{1 \pm i}{\sqrt{2}}, \frac{-1 \pm i}{\sqrt{2}} \right\}$$

• Factorisation:

$$\begin{split} P(x) &= \left(x - \frac{1+i}{\sqrt{2}}\right) \left(x - \frac{1-i}{\sqrt{2}}\right) \left(x - \frac{-1+i}{\sqrt{2}}\right) \left(x - \frac{-1-i}{\sqrt{2}}\right) \\ &= \left(\left(x - \frac{1}{\sqrt{2}}\right)^2 - \frac{i^2}{2}\right) \left(\left(x - \frac{1}{\sqrt{2}}\right) - \frac{i^2}{2}\right) \\ &= \underbrace{\left(x^2 - \sqrt{2}x + 1\right)}_{\text{irr. dans } \mathbb{R}[x_2]} \underbrace{\left(x^2 + \sqrt{2}x + 1\right)}_{\text{irr. dans } \mathbb{R}[x_2]} \end{split}$$