

电子电路基础

总复习

课程内容

第1章 绪论

第2章 运算放大器及其线性应用

第3章 运算放大器的非线性应用

第4章 半导体器件概述

第5章 基本放大电路

第6章 负反馈放大电路

第7章 集成运算放大器

第8章 正弦波振荡电路

第9章 功率电路

第2章 运算放大器及其线性应用

- 2.1 集成运算放大器
- 2.2 集成运放运算电路
- 2.3 有源滤波器

2.1.1 集成运放的基本特性

- 1. 集成电路分类
- 2. 运算放大器的基本结构
- 3. 运算放大器的符号
- 4. 差模信号和共模信号
- 5. 运放主要指标

$$A_{od} = \left| \frac{u_0}{u_{id}} \right|_{R_L = \infty}$$

$$A_{oc} = \left| \frac{u_0}{u_{ic}} \right|$$

$$K_{CMR} = \left| \frac{A_{od}}{A_{oc}} \right|$$

2.1.2 理想运放

- 1. 理想运放的技术指标
- 2. 理想运放在线性区工作时的特点
 - (1)虚短 (2)虚断
- 3. 理想运放在非线性区工作时的特点

$$u_+ > u_-$$
时, $u_o = +U_{OPP}$

$$u_+ < u_-$$
时, $u_o = -U_{OPP}$

2.2 集成运放运算电路

- 2.2.1 比例运算电路
- 2.2.2 加法与减法电路
- 2.2.3 积分与微分电路
- 2.2.4 基本应用电路

**2.3 有源滤波器

**要求

- 1、了解一阶、二阶有源滤波的电路实现方法。
- 2、了解高阶滤波器的工程设计方法。

要求

1. 掌握理想运放组成的基本线性运算电路,包括比例、求和、微分、积分运算等。

第3章 运算放大器的非线性应用

- 3.1 波形整形电路
- 3.2 非正弦波产生电路

3.1.1 电压比较器

3.1.2 555集成定时器

3.1.3 施密特触发器电路

3.1.4单稳态触发器电路

(a)555定时器构成的 单稳态触发器电路

(b)输入和输出波形

3.2.1 矩形波振荡电路

(a)电路

(b)输出波形

3.2.2 三角波振荡电路

要求

- 1. 熟悉电压比较器、555定时器的电路原理及功能。
- 2. 掌握由比较器、555定时器构成的波形产生及整形电路,并掌握电路的分析计算方法。

第4章 半导体器件概述

- 4.1 PN结及二极管
- 4.2 半导体三极管
- 4.3 半导体场效应管

4.1.1 半导体及PN结

- 1. 本征半导体
- 2. 杂质半导体
- 3. PN结

4.1.2 二极管的基本特性

- 1.二极管的结构类型
- 2.二极管的伏安特性曲线
- 3.二极管的开关特性

4.1.3 二极管的主要参数及电路模型

- 1.二极管的主要参数
- 2.电路模型

4.1.4 特殊二极管

- 1、稳压二极管
- 2、光电二极管
- 3、发光二极管

4.2.1 三极管的结构及工作原理

- 1. 三极管的电流分配与控制 发射结加正向电压,集电结加反向电压。
- 2. 三极管的电流关系

$$I_{\rm E} = I_{\scriptscriptstyle B} + I_{\scriptscriptstyle C}$$

$$I_{\rm C} = \frac{\overline{\alpha}I_{\rm B}}{1 - \overline{\alpha}} + \frac{I_{\rm CBO}}{1 - \overline{\alpha}}$$

$$I_{\rm C} = \alpha I_E + I_{CBO} = \beta I_B + I_{CEO}$$

4.2.2 三极管的基本特性

- 1. 输入特性曲线
- 2. 输出特性曲线
- 3. 三极管的开关特性

4.2.3 三极管的主要参数及电路模型

- 1. 主要参数(α,β,I_{CBO},I_{CEO},I_{CM},P_{CM},U_{(BR)CEO}...
- 2. 电路模型

4.3.1 结型场效应管

- 1. 结型场效应三极管的结构
- 2. 结型场效应三极管的工作原理
- 3. 结型场效应三极管的特性曲线

$$i_{D} = I_{DSS} \left(1 - \frac{u_{GS}}{U_{GS(off)}} \right)^{2}$$

4.3.2 绝缘栅场效应管

- 1. N沟道增强型MOSFET
- 2. N沟道耗尽型MOSFET
- 3. 特性曲线

$$i_D = I_{DO} \left(\frac{u_{GS}}{U_{GS(th)}} - 1 \right)^2$$

TOO STORY

绝缘栅场效应三极管的特性曲线

N沟道增强型

绝缘栅场

效应管

P沟道增强型

沟道耗尽型

N

P沟道耗尽型

4.3.3 场效应管的主要参数和电路模型

- 1. 场效应三极管的主要参数($U_{GS(th)}$ (或 U_{T}), $U_{GS(off)}$ (或 U_{P}), I_{DSS} , g_{m} …
- 2. 电路模型

4.3.4 双极型和场效应型三极管的比较

	双极型三极管	场效应三极管
结构	NPN型	结型耗尽型 N沟道 P沟道
	PNP型	绝缘栅增强型 N沟道P沟道
		绝缘栅耗尽型 N沟道P沟道
	C与E一般不可倒置使用	D与S有的型号可倒置使用
载流子	多子扩散少子漂移	多子漂移
输入量	电流输入	电压输入
控制	电流控制电流源CCCS(β)	电压控制电流源VCCS(g _m)

	双极型三极管	场效应三极管
噪声	较大	较小
温度特性	受温度影响较大	较小,可有零温 度系数点
输入电阻	几十到几千欧姆	几兆欧姆以上
静电影响	不受静电影响	易受静电影响
集成工艺	不易大规模集成	适宜大规模和超 大规模集成

要求

- 1. 熟悉二极管、三极管、场效应管的 伏安特性、开关特性。
- 2. 了解二极管、三极管、场效应管的主要参数,包括静态参数、动态参数和极限参数。
- 3. 掌握三极管、场效应管的微变等效电路模型。

第5章 基本放大电路

- 5.1 放大电路的组成及技术指标
- 5.2 放大电路的分析方法
- 5.3 放大电路的稳定偏置
- 5.4 各种基本组态放大电路的分析与比较
- 5.5 放大电路的频率响应
- 5.6 一般组合放大电路

5.1 放大电路的组成及技术指标

放大的实质、电路的组成、基本组态、静态、动态、直流通路、交流通路、基本指标...

5.2.1 放大电路的静态分析

- 1. 计算法
- 2. 图解分析法
- 分析对象: 静态工作点
- 分析路径:直流通路

5.2.2 放大电路的动态分析

- 1. 图解分析法
- 2. 微变等效电路法
- 分析对象: \dot{A}_u, R_i, R_o
- 分析路径: 交流通路

5.3 放大电路的稳定偏置

- 3.3.1 温度对工作点的影响
- 3.3.2 射极偏置电路

5.4 各种基本组态放大电路的 分析与比较

- 5.4.1 共基组态基本放大电路
- 5.4.2 共集组态基本放大电路
- 5.4.3 复合管
- 5.4.4 场效应管放大电路
- 5.4.5 共源组态基本放大电路
- 5.4.6 共漏组态基本放大电路
- 5.4.7 各种组态放大电路的比较

CS / CG / CD CE / CB / CC $CE: \dot{A}_u = -\frac{\beta R_L'}{}$ $CS: \dot{A}_u = -g_m R_L'$ $CG: A_u = +g_m R_L'$ $CB: \dot{A}_u = +\frac{\beta R_L'}{}$ A_{u} $CD: \dot{A}_{u} = \frac{g_{m}R'_{L}}{1 + g_{m}R'_{L}}$ $CC: \dot{A}_{u} = \frac{(1+\beta)R'_{L}}{r_{be} + (1+\beta)R'_{L}}$ $CE:R_{
m B}//r_{
m he}$ CS: $R_{G1} // R_{G2}$ CB: $R_{\rm E} / [r_{\rm be} / (1 + \beta)]$ CG: $R_{\rm S}//(1/g_{\rm m})$ R_{i} CD: $R_{G3} + (R_{G1} // R_{G2})$ $CC: R_{\rm B}//[r_{\rm be} + (1+\beta)R'_{\rm L}]$ CE: $R_{\rm C}$ $CS: R_D$ $CB: R_C$ $CG: R_D$ R_{0} $CC: R_E / \frac{r_{be} + R_B / R_S}{r_{be}}$ CD: $R_{\rm S}//(1/g_{\rm m})$ 2022/4/20

5.5 放大电路的频率特性

- 5.5.1 概述
- 5.5.2 RC电路的频率响应
- 5.5.3 三极管的高频小信号模型
- 5.5.4 共射放大电路的频率特性

5.6 组合放大电路

- 5.6.1 耦合形式及零点漂移
- 5.6.2 组合放大电路的分析
- 5.6.3 共源-共射放大电路
- 5.6.4 共射-共基-共集放大电路

5.6.1 耦合形式及零点漂移

- 1. 阻容耦合
- 2. 变压器耦合
- 3. 直接耦合
- 4. 零点漂移

5.6.2 组合放大电路的分析

1、静态分析

2、动态分析

5.6.3 共源一共射放大电路

5.6.4 共射一共基一共集放大电路

要求

- 1. 掌握三极管、场效应管的基本偏置方法,包括分压式偏置、自给式偏置,了解其它偏置方式。
- 2. 掌握共基、共射、共集、共源、共栅、共漏 六种基本组态放大电路的静态及动态分析计 算方法。
- 3. 理解基本放大电路的高频特性分析方法。
- 4. 掌握由六种基本组态组合而成的放大电路的静态及动态分析、计算方法。

第6章负反馈放大电路

- 6.1 反馈的基本概念与分类
- 6.2 负反馈对放大电路性能影响
- 6.3 深度负反馈放大电路的分析与计算
- 6.4 负反馈放大电路的稳定性分析 及频率补偿

6.1.1反馈概念

- 输出端:
- 电压反馈——输出与反馈在同一电极;
- 电流反馈——输出与反馈不在同一电极。
- 输入端:
- 串联反馈——反馈与输入信号不加在同一输入端 并联反馈——反馈与输入信号加在同一输入端
- 反馈极性: 瞬时极性法

6.1.2反馈类型与判别

类型 = (交、直流) + 输出 + 输入 + 极性

有 反 馈?

交流反馈

串联反馈 电压反馈

负反馈

直流反馈

电流反馈 并联反馈

正反馈

例如: 交流电压串联负反馈

四种交流负反馈放大器:

电压反馈─→串联反馈

类型判别: 按类型顺序——五步

6.1.3 反馈的基本方程

1. 闭环放大倍数

的一般表达式

$$\dot{A}_f = \frac{\dot{A}}{1 + \dot{A}\dot{F}}$$

- 2. 反馈深度
- 3. 环路增益

$$|\dot{A}\dot{F}|$$

6.2 负反馈对放大电路性能的影响

- 6.2.1 负反馈对增益的影响
- 6.2.2 负反馈对输入电阻的影响
- 6.2.3 负反馈对输出电阻的影响
- 6.2.4 负反馈对通频带的影响
- 6.2.5 负反馈对非线性失真的影响
- 6.2.6 负反馈对噪声、干扰和温漂的影响

6.3 深度负反馈放大电路的分析计算

$$\begin{vmatrix} \cdot & \cdot \\ AF \end{vmatrix} >> 1$$
 $A_f \approx \frac{1}{F}$

$$\frac{\overset{\cdot}{X_o}}{\overset{\cdot}{X_i}} = \overset{\cdot}{A_f} \approx \frac{1}{\overset{\cdot}{F}} = \frac{\overset{\cdot}{X_o}}{\overset{\cdot}{X_f}}$$

$$\dot{X}_{i} \approx \dot{X}_{f}$$

$$\dot{X}'_{i} = \dot{X}_{i} - \dot{X}_{f} \approx 0$$

	电压 串联	电压 并联	电流 串联	电流 并联
X _i	U _i	l _i	U _i	l _i
X_f	U_f	l _f	U_f	l _f
X _o	U _o	U _o	l _o	l _o
F	F _U	F_{G}	F_R	F
A	A _U	A_R	A_{G}	A _I
A _f	A _{UF}	A _{RF}	A _{GF}	A _{IF}

6.4 负反馈放大电路的稳定性分析。 及频率补偿

- 6.4.1 负反馈放大电路的稳定性分析
- 6.4.2 常用的补偿方法

要求

- 1. 熟悉负反馈的基本概念及对放大电路性能的影响。
- 2. 掌握四种类型负反馈电路的判断及估算。
- 3. 熟悉负反馈电路稳定性判据,了解补偿方法。

第7章 集成运算放大器

- 7.1 集成运算放大电路的构成
- 7.2 集成运放中的电流源与有源负载
- 7.3 差分放大电路
- 7.4 集成运放的典型电路和实际电路

7.1 集成运算放大电路的构成

集成运算放大器(简称运放)是一个**高增 益直接耦合多级**放大电路,它的方框图如图 所示。

运算放大器方框图

7.2 集成运放中的电流源与 有源负载

比例电流源

7.3 差分放大电路

- 7.3.1 差分放大电路的结构及工作原理
- 7.3.2 差分放大电路的性能分析
- 7.3.3 差分放大电路的传输特性
- 7.3.4 差分放大电路的改进

7.3.1 差分放大电路结构及工作原理

7.3.2 差分放大电路的性能分析

- 静态计算
- 动态计算(A_{u、Ri、Ro})
 - (一) 差模参数 (A_{ud}, R_{id}, R_o)
 - (二) 共模参数(A_{uc}, R_{ic}, R₀)

7.3.3 差分放大电路的传输特性

7.3.4 差分放大电路的改进

要求

- 1. 掌握几种基本电流源的结构、工作原理、 输出电流和输出电阻的计算方法, 了解 电流源在放大电路中的作用。
- 2. 掌握差动放大电路分析、计算方法,了解其传输特性。
- 3. 了解通用集成运放的电路原理及运放的主要参数。

第8章 正弦波产生电路

- 8.1 正弦波振荡电路的基本概念
- 8.2 RC正弦波振荡电路
- 8.3 LC正弦波振荡电路

8.1 正弦波振荡电路的基本概念

1. 振荡条件

幅度平衡条件: $|\dot{A}\dot{F}|=1$

相位平衡条件: $\varphi_{AF} = \varphi_{A} + \varphi_{F} = \pm 2n\pi$

2. 起振条件和稳幅原理

3. 电路组成及分类 放大电路 正反馈网络

选频网络 稳幅电路

8.2.1 RC文氏桥振荡电路

8. 2. 2 RC移相式振荡电路

8.3.1 LC 正弦波振荡电路

- 1. 变压器反馈式
- 2. 三点式 若与发射极(或运放同相端)相连的是同性 质抗,与发射极不相连的是反性质抗,则 振荡!

8.3.2 石英晶体LC振荡器

要求

- 1. 掌握正弦波振荡的平衡条件、起振条件及判断方法。
- 2. 掌握RC文氏电桥振荡器、RC移相式振荡器、 三点式振荡器、变压器反馈式LC振荡器、石英 晶体振荡器的原理及分析估算方法。

第9章 功率电路

- 9.1 功率放大电路
- 9.2 串联型(线性)直流稳压电路

9.1.1 功率放大电路的特点与分类

- 一、功放电路特点
- 二、功放电路分类

9.1.2互补对称功率放大电路

- 1. 电路
- 2. 工作原理
- 3. 参数计算
- 4. 选管条件
- 5. 存在问题
- 6. 其它类型互补 功率放大电路

9.2 线性直流稳压电路

- 9.2.1 整流电路
- 9.2.2 滤波电路
- 9.2.3 串联型稳压电路

要求

- 1. 熟悉乙类功放电路的分析计算方法。
- 2. 熟悉功放电路的原理及应用(OTL,OCL 电路)。
- 3. 理解串联型稳压电路的分析计算方法,了解三端集成稳压器的应用。