Patent claims

1. Compounds of the formula (I)

in which

W represents alkoxy, haloalkoxy, alkoxyalkoxy, alkoxybisalkoxy, bisalkoxyalkoxy or optionally substituted cycloalkylalkanediyloxy which may optionally be interrupted by heteroatoms,

X represents halogen,

Y represents alkyl,

10 CKE represents one of the groups

5

10

15

20

- A represents hydrogen, in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl, saturated or unsaturated, optionally substituted cycloalkyl in which optionally at least one ring atom is replaced by a heteroatom, or in each case optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano- or nitro-substituted aryl, arylalkyl or hetaryl,
- B represents hydrogen, alkyl or alkoxyalkyl, or
- A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle which optionally contains at least one heteroatom,
- D represents hydrogen or an optionally substituted radical from the group consisting of alkyl, alkenyl, alkynyl, alkoxyalkyl, saturated or unsaturated cycloalkyl in which optionally one or more ring members are replaced by heteroatoms, arylalkyl, aryl, hetarylalkyl or hetaryl or
- A and D together with the atoms to which they are attached represent a saturated or unsaturated cycle which optionally (only in the case of CKE = 1) contains at least one heteroatom and which is unsubstituted or substituted in the A,D moiety, or
- A and Q¹ together represent alkanediyl or alkenediyl optionally substituted by hydroxyl or by in each case optionally substituted alkyl, alkoxy, alkylthio, cycloalkyl, benzyloxy or aryl or
- Q¹ represents hydrogen or alkyl,
- $Q^2,\,Q^4,\,Q^5$ and Q^6 independently of one another represent hydrogen or alkyl,
- Q³ represents hydrogen, represents optionally substituted alkyl, alkoxyalkyl, alkylthioalkyl, optionally substituted cycloalkyl (in which optionally one

10

15

20

methylene group is replaced by oxygen or sulphur) or optionally substituted phenyl, or

- Q³ and Q⁴ together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle which optionally contains a heteroatom,
- G represents hydrogen (a) or represents one of the groups

in which

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur,

M represents oxygen or sulphur,

- R¹ represents in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl, polyalkoxyalkyl or optionally halogen-, alkylor alkoxy-substituted cycloalkyl which may be interrupted by at least one heteroatom, in each case optionally substituted phenyl, phenylalkyl, hetaryl, phenoxyalkyl or hetaryloxyalkyl,
- R² represents in each case optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, polyalkoxyalkyl or represents in each case optionally substituted cycloalkyl, phenyl or benzyl,
- R³, R⁴ and R⁵ independently of one another represent in each case optionally halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio, cycloalkylthio and represent in each case optionally substituted phenyl, benzyl, phenoxy or phenylthio,

R⁶ and R⁷ independently of one another represent hydrogen, in each case optionally halogen-substituted alkyl, cycloalkyl, alkenyl, alkoxy, alkoxyalkyl, represent optionally substituted phenyl, represent optionally substituted benzyl, or together with the N atom to which they are attached represent a cycle which is optionally interrupted by oxygen or sulphur.

5

10

2. Compounds of the formula (I) according to Claim 1 in which

W represents C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-alkoxy-bis-C₂-C₄-alkoxy or C₃-C₆-cycloalkyl-C₁-C₂-alkanediyloxy which is optionally mono- to trisubstituted by fluorine, chlorine, C₁-C₃-alkyl or C₁-C₃-alkoxy and in which optionally one methylene group of the ring may be interrupted by oxygen or sulphur,

X represents halogen,

Y represents C₁-C₄-alkyl,

CKE represents one of the groups

15

20

25

D

A represents hydrogen or in each case optionally halogen-substituted C₁-C₁₂-alkyl, C₃-C₈-alkenyl, C₁-C₁₀-alkoxy-C₁-C₈-alkyl, C₁-C₁₀-alkylthio-C₁-C₆-alkyl, optionally halogen-, C₁-C₆-alkyl- or C₁-C₆-alkoxy-substituted C₃-C₈-cycloalkyl in which optionally one or two not directly adjacent ring members are replaced by oxygen and/or sulphur or represents in each case optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-haloalkyl-, C₁-C₆-alkoxy-, C₁-C₆-haloalkoxy-, cyano- or nitro-substituted phenyl or naphthyl, hetaryl having 5 to 6 ring atoms, phenyl-C₁-C₆-alkyl or naphthyl-C₁-C₆-alkyl,

10 B represents hydrogen, C₁-C₁₂-alkyl or C₁-C₈-alkoxy-C₁-C₆-alkyl, or

A, B and the carbon atom to which they are attached represent saturated C₃-C₁₀-cycloalkyl or unsaturated C₅-C₁₀-cycloalkyl in which optionally one ring member is replaced by oxygen or sulphur and which are optionally mono- or disubstituted by C₁-C₈-alkyl, C₃-C₁₀-cycloalkyl, C₁-C₈-haloalkyl, C₁-C₈-alkoxy, C₁-C₈-alkylthio, halogen or phenyl or

A, B and the carbon atom to which they are attached represent C₃-C₆-cycloalkyl which is substituted by an alkylenedithioyl or by an alkylenedioxyl or by an alkylenediyl group which optionally contains one or two not directly adjacent oxygen and/or sulphur atoms and which is optionally substituted by C₁-C₄-alkyl, which, together with the carbon atom to which it is attached, forms a further five- to eightmembered ring or

A, B and the carbon atom to which they are attached represent C₃-C₈-cycloalkyl or C₅-C₈-cycloalkenyl in which two substituents together with the carbon atoms to which they are attached represent in each case optionally C₁-C₆-alkyl-, C₁-C₆-alkoxy- or halogen-substituted C₂-C₆-alkanediyl, C₂-C₆-alkenediyl or C₄-C₆-alkanediyl in which optionally one methylene group is replaced by oxygen or sulphur,

represents hydrogen, in each case optionally halogen-substituted C₁-C₁₂-alkyl, C₃-C₈-alkenyl, C₃-C₈-alkynyl, C₁-C₁₀-alkoxy-C₂-C₈-alkyl, optionally halogen-,

10

15

 C_1 - C_4 -alkyl-, C_1 - C_4 -alkoxy- or C_1 - C_4 -haloalkyl-substituted C_3 - C_8 -cycloalkyl in which optionally one ring member is replaced by oxygen or sulphur or in each case optionally halogen-, C_1 - C_6 -alkyl-, C_1 - C_6 -haloalkyl-, C_1 - C_6 -alkoxy-, C_1 - C_6 -haloalkoxy-, cyano- or nitro-substituted phenyl, hetaryl having 5 or 6 ring atoms, phenyl- C_1 - C_6 -alkyl or hetaryl- C_1 - C_6 -alkyl having 5 or 6 ring atoms, or

A and D together represent in each case optionally substituted C_3 - C_6 -alkanediyl or C_3 - C_6 -alkenediyl in which optionally (only in the case of CKE = (1)) one methylene group is replaced by a carbonyl group, oxygen or sulphur,

possible substituents being in each case:

halogen, hydroxyl, mercapto or in each case optionally halogen-substituted C₁-C₁₀-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₃-C₇-cycloalkyl, phenyl or benzyloxy, or a further C₃-C₆-alkanediyl grouping, C₃-C₆-alkenediyl grouping or a butadienyl grouping which is optionally substituted by C₁-C₆-alkyl or in which optionally two adjacent substituents together with the carbon atoms to which they are attached form a further saturated or unsaturated cycle having 5 or 6 ring atoms (in the case of the compound of the formula (I-1), A and D together with the atoms to which they are attached then represent, for example, the groups AD-1 to AD-10 mentioned below) which may contain oxygen or sulphur, or which optionally contains one of the following groups

or

5

 $\cdot 10$

A and Q¹ together represent C₃-C₆-alkanediyl or C₄-C₆-alkenediyl, each of which is optionally mono- or disubstituted by identical or different substituents from the group consisting of halogen, hydroxyl, of C₁-C₁₀-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₃-C₇-cycloalkyl each of which is optionally mono- to trisubstituted by identical or different halogen, and of benzyloxy and phenyl, each of which is optionally mono- to trisubstituted by identical or different substituents from the group consisting of halogen, C₁-C₆-alkyl and C₁-C₆-alkoxy, which C₃-C₆-alkanediyl or C₄-C₆-alkenediyl moreover optionally contains one of the groups below

$$\begin{array}{c}
O \\
C \\
C
\end{array}$$

$$\begin{array}{c}
C
\end{array}$$

$$C$$

or is bridged by a C₁-C₂-alkanediyl group or by an oxygen atom or

- Q1 represents hydrogen or C₁-C₄-alkyl,
- Q^2 , Q^4 , Q^5 and Q^6 independently of one another represent hydrogen or C_1 - C_4 -alkyl,
- sepresents hydrogen, C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₂-alkyl, C₁-C₆-alkylthio-C₁-C₂-alkyl, optionally C₁-C₄-alkyl- or C₁-C₄-alkoxy-substituted C₃-C₈-cycloalkyl in which optionally one methylene group is replaced by oxygen or sulphur or represents phenyl which is optionally substituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, cyano or nitro, or
- Q³ and Q⁴ together with the carbon atom to which they are attached represent a C₃-C₇-ring which is optionally substituted by C₁-C₄-alkyl, C₁-C₄-alkoxy or C₁-C₂-haloalkyl and in which optionally one ring member is replaced by oxygen or sulphur,
 - G represents hydrogen (a) or represents one of the groups

 R^1

 R^2

5

10

15

- E represents a metal ion equivalent or an ammonium ion, L represents oxygen or sulphur and M represents oxygen or sulphur, represents in each case optionally halogen-substituted C₁-C₂₀-alkyl, C₂-Č₂₀alkenyl, C₁-C₈-alkyl, C₁-C₈-alkyl, poly-C₁-C₈-alkyl, poly-C₁-C₈-alkyl alkoxy-C₁-C₈-alkyl or optionally halogen-, C₁-C₆-alkyl- or C₁-C₆-alkoxysubstituted C₃-C₈-cycloalkyl in which optionally one or more not directly adjacent ring members are replaced by oxygen and/or sulphur, represents optionally halogen-, cyano-, nitro-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₆-haloalkyl-, C₁-C₆-haloalkoxy-, C₁-C₆-alkylthio- or C₁-C₆-alkylsulphonylsubstituted phenyl, represents optionally halogen-, nitro-, cyano-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₆-haloalkyl- or C₁-C₆-haloalkoxy-substituted phenyl-C₁-C₆-alkyl, represents optionally halogen- or C1-C6-alkyl-substituted 5- or 6-membered hetaryl, represents optionally halogen- or C₁-C₆-alkyl-substituted phenoxy-C₁-C₆-alkyl or represents optionally halogen-, amino- or C₁-C₆-alkyl-substituted 5- or 6membered hetaryloxy-C₁-C₆-alkyl, represents in each case optionally halogen-substituted C₁-C₂₀-alkyl, C₂-C₂₀alkenyl, C₁-C₈-alkoxy-C₂-C₈-alkyl, poly-C₁-C₈-alkoxy-C₂-C₈-alkyl, represents optionally halogen-, C1-C6-alkyl- or C1-C6-alkoxy-substituted C3-C8cycloalkyl or represents in each case optionally halogen-, cyano-, nitro-, C₁-C₆-alkyl-, C₁-C₆alkoxy-, C₁-C₆-haloalkyl- or C₁-C₆-haloalkoxy-substituted phenyl or benzyl,
- 25 \mathbb{R}^3 represents optionally halogen-substituted C1-C8-alkyl or represents in each case optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₄-haloalkyl-, C₁-C₄haloalkoxy-, cyano- or nitro-substituted phenyl or benzyl,

10

15

20

25

30

R⁴ and R⁵ independently of one another represent in each case optionally halogen-substituted C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₈-alkylamino, di-(C₁-C₈-alkyl)amino, C₁-C₈-alkylthio, C₂-C₈-alkenylthio, C₃-C₇-cycloalkylthio or represent in each case optionally halogen-, nitro-, cyano-, C₁-C₄-alkoxy-, C₁-C₄-haloalkoxy-, C₁-C₄-alkylthio-, C₁-C₄-haloalkylthio-, C₁-C₄-alkyl- or C₁-C₄-haloalkyl-substituted phenyl, phenoxy or phenylthio,

R⁶ and R⁷ independently of one another represent hydrogen, represent in each case optionally halogen-substituted C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₁-C₈-alkoxy, C₃-C₈-alkenyl, C₁-C₈-alkoxy-C₁-C₈-alkyl, represent optionally halogen-, C₁-C₈-haloalkyl-, C₁-C₈-alkyl- or C₁-C₈-alkoxy-substituted phenyl, represent optionally halogen-, C₁-C₈-alkyl-, C₁-C₈-haloalkyl- or C₁-C₈-alkoxy-substituted benzyl or together represent an optionally C₁-C₄-alkyl-substituted C₃-C₆-alkylene radical in which optionally one carbon atom is replaced by oxygen or sulphur,

R¹³ represents hydrogen, represents in each case optionally halogen-substituted C₁-C₈-alkyl or C₁-C₈-alkoxy, represents optionally halogen-, C₁-C₄-alkyl- or C₁-C₄-alkoxy-substituted C₃-C₈-cycloalkyl in which optionally one methylene group is replaced by oxygen or sulphur or represents in each case optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₄-haloalkyl-, C₁-C₄-haloalkoxy-, nitro- or cyanosubstituted phenyl, phenyl-C₁-C₄-alkyl or phenyl-C₁-C₄-alkoxy,

R^{14a} represents hydrogen or C₁-C₈-alkyl, or

R¹³ and R^{14a} together represent C₄-C₆-alkanediyl,

 R^{15a} and R^{16a} are identical or different and represent C_1 - C_6 -alkyl, or

 R^{15a} and R^{16a} together represent a $C_2\text{-}C_4\text{-}alkanediyl}$ radical which is optionally substituted by $C_1\text{-}C_6\text{-}alkyl,\ C_1\text{-}C_6\text{-}haloalkyl}$ or by optionally halogen-, $C_1\text{-}C_6\text{-}alkyl$ -, $C_1\text{-}C_4\text{-}haloalkyl$ -, $C_1\text{-}C_4\text{-}haloalkyl$ -, $C_1\text{-}C_4\text{-}haloalkyl$ -, $C_1\text{-}C_4\text{-}haloalkyl$ -, nitro- or cyanosubstituted phenyl,

R^{17a} and R^{18a} independently of one another represent hydrogen, represent optionally halogen-substituted C₁-C₈-alkyl or represent optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₄-haloalkyl-, C₁-C₄-haloalkoxy-, nitro- or cyano-substituted phenyl, or

15

R^{17a} and R^{18a} together with the carbon atom to which they are attached represent a carbonyl group or represent optionally halogen-, C₁-C₄-alkyl- or C₁-C₄-alkoxy-substituted C₅-C₇-cycloalkyl in which optionally one methylene group is replaced by oxygen or sulphur,

- R^{19a} and R^{20a} independently of one another represent C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₁-C₁₀-alkoxy, C₁-C₁₀-alkylamino, C₃-C₁₀-alkenylamino, di-(C₁-C₁₀-alkyl)amino or di-(C₃-C₁₀-alkenyl)amino.
 - 3. Compounds of the formula (I) according to Claim 1 in which
 - W represents C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₃-alkoxy-C₂-C₃-alkoxy, C₁-C₂-alkoxy-bis-C₂-C₃-alkoxy or C₃-C₆-cycloalkyl-C₁-C₂-alkanediyloxy in which optionally one methylene group of the ring may be replaced by oxygen,
 - X represents chlorine or bromine,
 - Y represents methyl, ethyl or propyl,

CKE represents one of the groups

10

15

20

- A represents hydrogen, represents C₁-C₆-alkyl or C₁-C₄-alkoxy-C₁-C₂-alkyl, each of which is optionally mono- to trisubstituted by fluorine or chlorine, represents C₃-C₆-cycloalkyl which is optionally mono- to disubstituted by C₁-C₂-alkyl or C₁-C₂-alkoxy or (but not in the case of the compounds of the formulae (I-3), (I-4), (I-6) and (I-7)) represents phenyl or benzyl, each of which is optionally mono- to disubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₄-alkoxy or C₁-C₂-haloalkoxy, cyano or nitro,
- B represents hydrogen, C₁-C₄-alkyl or C₁-C₂-alkoxy-C₁-C₂-alkyl, or
- A, B and the carbon atom to which they are attached represent saturated or unsaturated C₅-C₇-cycloalkyl in which optionally one ring member is replaced by oxygen or sulphur and which is optionally mono- to disubstituted by C₁-C₆-alkyl, trifluoromethyl or C₁-C₆-alkoxy, with the proviso that in this case Q³ represents hydrogen or methyl, or
 - A, B and the carbon atom to which they are attached represent C₅-C₆-cycloalkyl which is optionally substituted by an alkylenedithiol group or by an alkylenedioxyl group or by an alkylenediyl group which optionally contains one or two not directly adjacent oxygen or sulphur atoms and which is optionally substituted by methyl or ethyl, which group, together with the carbon atom to which it is attached, forms a further five- or six-membered ring, with the proviso that in this case Q³ represents hydrogen or methyl,
 - A, B and the carbon atom to which they are attached represent C₃-C₆-cycloalkyl or C₅-C₆-cycloalkenyl in which two substituents together with the carbon atoms to which they are attached represent in each case optionally C₁-C₂-alkyl- or C₁-C₂-alkoxy-substituted C₂-C₄-alkanediyl, C₂-C₄-alkenediyl or butadienediyl, with the proviso that in this case Q³ represents hydrogen or methyl,
 - D represents hydrogen, represents C₁-C₆-alkyl, C₃-C₆-alkenyl or C₁-C₄-alkoxy-C₂-C₃-alkyl, each of which is optionally mono- to trisubstituted by fluorine, represents C₃-C₆-cycloalkyl which is optionally mono- to disubstituted by C₁-C₄-

10

alkyl, C_1 - C_4 -alkoxy or C_1 - C_2 -haloalkyl and in which optionally one methylene group is replaced by oxygen or (but not in the case of the compounds of the formula (I-1)) represents phenyl or pyridyl, each of which is optionally monot odisubstituted by fluorine, chlorine, bromine, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy, or

A and D together represent optionally mono- to disubstituted C_3 - C_5 -alkanediyl in which optionally (only in the case of CKE = (1)) one methylene group may be replaced by oxygen or sulphur, possible substituents being C_1 - C_2 -alkyl or C_1 - C_2 -alkoxy, or

A and D (in the case of the compounds of the formula (I-1)) together with the atoms to which they are attached represent one of the groups AD-1 to AD-10:

AD-10

or

5

10

- A and Q^1 together represent C_3 - C_4 -alkanediyl which is optionally mono- or disubstituted by identical or different substituents from the group consisting of C_1 - C_2 -alkyl and C_1 - C_2 -alkoxy or
- Q¹ represents hydrogen,
- Q² represents hydrogen,
- Q^4 , Q^5 and Q^6 independently of one another represent hydrogen or C_1 - C_3 -alkyl,
- Q³ represents hydrogen, C₁-C₄-alkyl or C₃-C₆-cycloalkyl which is optionally monoto disubstituted by methyl or methoxy, or
 - Q³ and Q⁴ together with the carbon to which they are attached represent a saturated C₅-C₆-ring which is optionally substituted by C₁-C₂-alkyl or C₁-C₂-alkoxy and in which optionally one ring member is replaced by oxygen or sulphur, with the proviso that in this case A represents hydrogen or methyl, or
- 15 G represents hydrogen (a) or represents one of the groups

in which

E represents a metal ion equivalent or an ammonium ion,

10

15

20

25

30

b represents oxygen or surplier and	L	represents oxygen	or	sulphur	and
-------------------------------------	---	-------------------	----	---------	-----

- M represents oxygen or sulphur,
- R¹ represents C₁-C₈-alkyl, C₂-C₈-alkenyl, C₁-C₄-alkoxy-C₁-C₂-alkyl, C₁-C₄-alkylthio-C₁-C₂-alkyl, each of which is optionally mono- to trisubstituted by fluorine or chlorine, or C₃-C₆-cycloalkyl which is optionally mono- to disubstituted by fluorine, chlorine, C₁-C₂-alkyl or C₁-C₂-alkoxy and in which optionally one or two not directly adjacent ring members are replaced by oxygen,

represents phenyl which is optionally mono- to disubstituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl or C₁-C₂-haloalkoxy,

R² represents C₁-C₈-alkyl, C₂-C₈-alkenyl or C₁-C₄-alkoxy-C₂-C₄-alkyl, each of which is optionally mono- to trisubstituted by fluorine,

represents C_3 - C_6 -cycloalkyl which is optionally monosubstituted by C_1 - C_2 -alkyl or C_1 - C_2 -alkoxy or

- represents phenyl or benzyl, each of which is optionally mono- to disubstituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, C₁-C₃-alkoxy, trifluoromethyl or trifluoromethoxy,
- represents C₁-C₆-alkyl which is optionally mono- to trisubstituted by fluorine or represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro,
- represents C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylamino, di-(C₁-C₆-alkyl)amino, C₁-C₆-alkylthio, C₃-C₄-alkenylthio, C₃-C₆-cycloalkylthio or represents phenyl, phenoxy or phenylthio, each of which is optionally monosubstituted by fluorine, chlorine, bromine, nitro, cyano, C₁-C₃-alkoxy, C₁-C₃-haloalkoxy, C₁-C₃-alkylthio, C₁-C₃-haloalkylthio, C₁-C₃-alkyl or trifluoromethyl,
- R⁵ represents C₁-C₆-alkoxy or C₁-C₆-alkylthio,
- R⁶ represents hydrogen, C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₃-C₆-alkenyl, C₁-C₆-alkoxy-C₁-C₄-alkyl, represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, trifluoromethyl, C₁-C₄-alkyl or

10

C₁-C₄-alkoxy, represents benzyl which is optionally monosubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, trifluoromethyl or C₁-C₄-alkoxy,

R⁷ represents C₁-C₆-alkyl, C₃-C₆-alkenyl or C₁-C₆-alkoxy-C₁-C₄-alkyl,

R⁶ and R⁷ together represent a C₄-C₅-alkylene radical which is optionally substituted by methyl or ethyl and in which optionally one methylene group is replaced by oxygen or sulphur.

- 4. Compounds of the formula (I) according to Claim 1 in which
 - W represents methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, secbutoxy, methoxyethoxy, ethoxyethoxy, cyclopropylmethoxy, cyclopentylmethoxy or cyclohexylmethoxy,
 - X represents chlorine or bromine,
 - Y represents methyl or ethyl,

CKE represents one of the groups

- A represents hydrogen, represents C₁-C₄-alkyl or C₁-C₂-alkoxy-C₁-C₂-alkyl, each of which is optionally mono- to trisubstituted by fluorine, represents cyclopropyl, cyclopentyl or cyclohexyl and (only in the case of the compounds of the formula (I-5)) represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, methoxy, ethoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro,
- B represents hydrogen, methyl or ethyl, or
- A, B and the carbon atom to which they are attached represent saturated C₅-C₆-cycloalkyl in which optionally one ring member is replaced by oxygen or sulphur and which is optionally monosubstituted by methyl, ethyl, propyl, isopropyl, trifluoromethyl, methoxy, ethoxy, propoxy or butoxy, with the proviso that in this case Q³ represents hydrogen, or
 - A, B and the carbon atom to which they are attached represent C₆-cycloalkyl which is substituted by an alkylenedioxyl group having two not directly adjacent oxygen atoms, with the proviso that in this case Q³ represents hydrogen, or
 - A, B and the carbon atom to which they are attached represent C₅-C₆-cycloalkyl or C₅-C₆-cycloalkenyl in which two substituents together with the carbon atoms to which they are attached represent C₂-C₄-alkanediyl or C₂-C₄-alkenediyl or butadienediyl, with the proviso that in this case Q³ represents hydrogen,

15

D represents hydrogen, represents C₁-C₄-alkyl, C₃-C₄-alkenyl or C₁-C₄-alkoxy-C₂-C₃-alkyl, each of which is optionally mono- to trisubstituted by fluorine, represents cyclopropyl, cyclopentyl or cyclohexyl or (but not in the case of the compounds of the formula (I-1)) represents phenyl or pyridyl, each of which is optionally monosubstituted by fluorine, chlorine, methyl, ethyl, n-propyl, isopropyl, methoxy, ethoxy or trifluoromethyl,

οr

5

10

15

20

A and D together represent C_3 - C_5 -alkanediyl which is optionally monosubstituted by methyl or methoxy and in which optionally (only in the case of CKE = (1)) one carbon atom is replaced by oxygen or sulphur, or represents the group AD-1,

A and Q¹ together represent C₃-C₄-alkanediyl which is optionally mono- or disubstituted by methyl or methoxy, or

- Q¹ represents hydrogen,
- Q² represents hydrogen,
- Q⁴, Q⁵ and Q⁶ independently of one another represent hydrogen or methyl,
 - Q³ represents hydrogen, methyl, ethyl or propyl, or
 - Q^3 and Q^4 together with the carbon to which they are attached represent a saturated C_5 - C_6 -ring which is optionally monosubstituted by methyl or methoxy, with the proviso that in this case A represents hydrogen,
- G represents hydrogen (a) or represents one of the groups

in which

- E represents an ammonium ion,
- L represents oxygen or sulphur and
- 25 M represents oxygen or sulphur,

15

20

R¹ represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₂-alkoxy-C₁-alkyl, C₁-C₂-alkylthio-C₁-alkyl or represents C₃-C₆-cyclopropyl which is optionally monosubstituted by fluorine, chlorine, methyl or methoxy or represents C₁-C₄-alkyl which is monosubstituted by chlorine,

represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, cyano, nitro, methyl, methoxy, trifluoromethyl or trifluoromethoxy,

- R² represents phenyl or benzyl, C₁-C₈-alkyl, C₂-C₆-alkenyl or C₁-C₄-alkoxy-C₂-C₃-alkyl, each of which is optionally mono- to trisubstituted by fluorine,
- R³ represents C₁-C₆-alkyl.
- 10 5. Compounds of the formula (I) according to Claim 1 in which
 - W represents methoxy, ethoxy, n-propoxy, methoxyethoxy or cyclopropylmethoxy,
 - X represents chlorine,
 - Y represents methyl,
 - CKE represents one of the groups

A represents methyl, isopropyl, isobutyl or cyclopropyl,

B represents hydrogen, methyl or ethyl,

A, B and the carbon atom to which they are attached represent saturated C₅-C₆-cycloalkyl in which optionally one ring atom is replaced by oxygen and which is optionally monosubstituted by methyl or methoxy,

D represents hydrogen, methyl or ethyl,

G represents hydrogen (a) or represents one of the groups

- E represents an ammonium ion,
- R¹ represents C₁-C₆-alkyl, C₁-C₂-alkoxy-C₁-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkyl which is monosubstituted by chlorine or represents phenyl which is optionally monosubstituted by chlorine,
- R² represents C₁-C₈-alkyl, C₃-C₆-alkenyl or benzyl,
- R³ represents C₁-C₆-alkyl.
- 6. Process for preparing compounds of the formula (I) according to Claim 1, characterized in that, to obtain
- 10 (A) compounds of the formula (I-1-a)

A, B, D, W, X and Y are as defined above,

compounds of the formula (II)

15

5

in which

A, B, D, W, X and Y are as defined above,

and

5

10

15

R⁸ represents alkyl,

are condensed intramolecularly in the presence of a diluent and in the presence of a base,

(B) compounds of the formula (I-2-a)

$$\begin{array}{c|c} A & HO & X \\ \hline \\ O & W \end{array} \qquad \qquad (I-2-a)$$

in which

A, B, W, X and Y are as defined above,

compounds of the formula (III)

$$A \times CO_2R^8$$

$$X \times CO_2R^8$$

$$O \times X \times CO_2R^8$$

in which

A, B, W, X, Y and R⁸ are as defined above,

are condensed intramolecularly in the presence of a diluent and in the presence of a base,

(C) compounds of the formula (I-3-a)

A, B, W, X and Y are as defined above,

compounds of the formula (IV)

5 in which

10

15

A, B, W, X, Y and R⁸ are as defined above and

V represents hydrogen, halogen, alkyl or alkoxy,

are cyclized intramolecularly, if appropriate in the presence of a diluent and in the presence of an acid,

(D) compounds of the formula (I-4-a)

$$D \xrightarrow{O} X \\ Y$$
 (I-4-a)

in which

A, D, W, X and Y are as defined above,

compounds of the formula (V)

in which

A and D are as defined above,

or compounds of the formula (Va)

CHA D-C-OSi(
$$R^8$$
)₃ (Va)

in which

5

10

15

A, D and R⁸ are as defined above,

are reacted with compounds of the formula (VI)

in which

W, X and Y are as defined above and

Hal represents halogen,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid acceptor,

(E) compounds of the formula (I-5-ā)

in which

A, W, X and Y are as defined above,

compounds of the formula (VII)

A is as defined above,

are reacted with compounds of the formula (VI)

5 in which

Hal, W, X and Y are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid acceptor,

(F) compounds of the formula (I-6-a)

$$A$$
 OH X Q^1 Q^2 Q W $(I-6-a)$

in which

10

A, B, Q¹, Q², W, X and Y are as defined above,

compounds of the formula (VIII)

in which

A, B, Q¹, Q², W, X and Y are as defined above, and

R8 represents alkyl,

are cyclized intramolecularly, if appropriate in the presence of a diluent and if appropriate in the presence of a base,

(G) compounds of the formula (I-7-a)

in which

A, B, Q^3 , Q^4 , Q^5 , Q^6 , W, X and Y are as defined above,

compounds of the formula (IX)

$$R^{8}O_{2}C$$

$$Q^{3}$$

$$Q^{4}$$

$$Q^{4}$$

$$Q^{4}$$

$$Q^{5}$$

$$Q^{6}$$

$$Q^{8}$$

$$Q^{4}$$

$$Q^{4}$$

$$Q^{4}$$

$$Q^{5}$$

$$Q^{6}$$

$$Q^{8}$$

$$Q^{8}$$

$$Q^{8}$$

$$Q^{8}$$

10 in which

5

15

A, B, Q^3 , Q^4 , Q^5 , Q^6 , W, X and Y are as defined above

and

R⁸ represents alkyl,

are condensed intramolecularly in the presence of a diluent and in the presence of a base,

(H) compounds of the formula (I-8-a)

$$\bigcap_{N} \bigcap_{O} \bigvee_{W} Y \qquad \qquad (I-8-a)$$

A, D, W, X and Y are as defined above,

compounds of the formula (X)

$$\begin{array}{ccc}
A & H \\
I & (X) \\
D & N & H
\end{array}$$

in which

A and D are as defined above,

α) are reacted with compounds of the formula (VI)

10 in which

Hal, X, Y and W are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid acceptor, or

B) are reacted with compounds of the formula (XI)

W, X and Y are as defined above,

and U represents NH2 or O-R8, where R8 is as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of a base, or

γ) are reacted with compounds of the formula (XII)

in which

A, D, W, X, Y and R⁸ are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of a base,

- (I) compounds of the formulae (I-1-b) to (I-8-b) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, R¹, W, X and Y are as defined above, compounds of the formulae (I-1-a) to (I-8-a) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, W, X and Y are as defined above are in each case
 - (α) reacted with acid halides of the formula (XIII)

$$Hal \longrightarrow R^1$$
(XIII)

in which

R¹ is as defined above and

Hal represents halogen,

20

5

10

(B) reacted with carboxylic anhydrides of the formula (XIV)

(XIV)

in which

R¹ is as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(J) compounds of the formulae (I-1-c) to (I-8-c) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, R², M, W, X and Y are as defined above and L represents oxygen, compounds of the formulae (I-1-a) to (I-8-a) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, W, X and Y are as defined above are in each case

reacted with chloroformic esters or chloroformic thioesters of the formula (XV)

$$R^2$$
-M-CO-Cl (XV)

in which

R² and M are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(K) compounds of the formulae (I-1-c) to (I-8-c) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, R², M, W, X and Y are as defined above and L represents sulphur, compounds of the formulae (I-1-a) to (I-8-a) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, W, X and Y are as defined above are in each case

reacted with chloromonothioformic esters or chlorodithioformic esters of the formula (XVI)

$$CI \longrightarrow M-R^2$$
(XVI)

in which

M and R² are as defined above,

10

5

15

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

and

(L) compounds of the formulae (I-1-d) to (I-8-d) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, R³, W, X and Y are as defined above, compounds of the formulae (I-1-a) to (I-8-a) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, W, X and Y are as defined above are in each case

reacted with sulphonyl chlorides of the formula (XVII)

$$R^3$$
-SO₂-Cl (XVII)

in which

R³ is as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(M) compounds of the formulae (I-1-e) to (I-8-e) shown above in which A, B, D, L, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, R⁴, R⁵, W, X and Y are as defined above, compounds of the formulae (I-1-a) to (I-8-a) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, W, X and Y are as defined above are in each case

reacted with phosphorus compounds of the formula (XVIII)

20

5

- 10

15

in which

L, R⁴ and R⁵ are as defined above and

Hal represents halogen,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

10

15

20

(N) compounds of the formulae (I-1-f) to (I-8-f) shown above in which A, B, D, E, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, W, X and Y are as defined above, compounds of the formulae (I-1-a) to (I-8-a) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, W, X and Y are as defined above are in each case

reacted with metal compounds or amines of the formulae (XIX) and (XX), respectively,

$$R^{10} \sim R^{11}$$
 $Me(OR^{10})_t$ (XIX)
 $R^{10} \sim R^{11}$
 $R^{10} \sim R^{11}$
 $R^{10} \sim R^{11}$
 $R^{10} \sim R^{11}$
 $R^{10} \sim R^{11}$

in which

Me represents a mono- or divalent metal,

t represents the number 1 or 2 and

R¹⁰, R¹¹, R¹² independently of one another represent hydrogen or alkyl,

if appropriate in the presence of a diluent,

- (O) compounds of the formulae (I-1-g) to (I-8-g) shown above in which A, B, D, L, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, R⁶, R⁷, W, X and Y are as defined above, compounds of the formulae (I-1-a) to (I-8-a) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, W, X and Y are as defined above are in each case
 - (α) reacted with isocyanates or isothiocyanates of the formula (XXI)

$$R^6-N=C=L$$
 (XXI)

in which

R⁶ and L are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of a catalyst, or

(B) reacted with carbamoyl chlorides or thiocarbamoyl chlorides of the formula (XXII)

$$R^6 N CI$$
 (XXII)

5

10

L, R⁶ and R⁷ are as defined above,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(P) compounds of the formulae (I-1-a) to (I-8-a) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, W, X and Y are as defined above, compounds of the formulae (I-1-a') to (I-8-a') in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, X and Y are as defined above and W' represents bromine

are reacted with alcohols of the formula

W-OH

in which

W is as defined above, if appropriate in the presence of a solvent, a Cu(I) salt and a strong base.

5 7. Compounds of the formula (II)

in which

R⁸, A, B, D, W, X and Y are as defined above.

8. Compounds of the formula (III)

$$\begin{array}{c} A \\ X \\ CO_2R^8 \\ X \\ Y \end{array}$$
 (III)

in which

10

R⁸, A, B, W, X and Y are as defined above.

9. Compounds of the formula (IV)

A, B, W, X, Y and R⁸ are as defined above and

V represents hydrogen, halogen, alkyl or alkoxy.

10. Compounds of the formula (VI)

in which

W, X and Y are as defined above and

Hal represents halogen.

11. Compounds of the formula (VII)

$$R^8O_2C$$
 A
 B
 O
 X
 Y
 $(VIII)$

10

5

in which

A, B, Q¹, Q², R⁸, W, X and Y are as defined above.

12. Compounds of the formula (IX)

$$R^8O_2C$$
 Q^5
 Q^6
 X
(IX)

15

in which

A, B, Q^3 , Q^4 , Q^5 , Q^6 , W, X, Y and R^8 are as defined above.

13. Compounds of the formula (XII)

in which

5 A, D, W, X, Y and R⁸ are as defined above.

14. Compounds of the formula (XXV)

in which

A, B, D, W, X and Y are as defined above.

10 15. Compounds of the formula (XXIV)

$$Y \longrightarrow X$$
 COZ
 $(XXIV)$

in which

W, X, Y and Z are as defined above.

16. Compounds of the formula (XXVII)

W, X and Y are as defined above.

17. Compounds of the formula (XXIX)

$$Y = \bigvee_{M} \bigcap_{O} \bigvee_{N} \bigcap_{C \equiv N} (XXIX)$$

in which

5

A, B, D, W, X and Y are as defined above.

18. Compounds of the formula (XXXI)

$$Y \longrightarrow CO_2R^8$$
 (XXXI)

in which

 $W, X, Y \text{ and } R^8$ are as defined above.

19. Compounds of the formula (XXXIII)

in which

W, X and Y are as defined above.

20. Compounds of the formula (XI)

$$Y - \bigvee_{X} CH COU COU (XI)$$

in which

5 W, X and Y are as defined above

and

U represents NH₂ or OR⁸,

where R⁸ is as defined above.

21. Compounds of the formula (XXXIV)

$$Y \xrightarrow{Q^1} Q^2$$

$$Q \xrightarrow{Q^2} CO_2H$$

$$(XXXIV)$$

10

in which

 $W,\,X,\,Y,\,A,\,B,\,Q^{\,1}\,\,\text{and}\,\,Q^{\,2}\qquad\text{are as defined above}.$

22. Compounds of the formula (XXXV)

$$Y = \begin{array}{c} X & CO_2R^{8'} \\ Q^1 & Q^2 \\ Q & A & B \end{array} CO_2R^8$$
 (XXXV)

in which

A, B, Q¹, Q², W, X and Y are as defined above

and

R⁸ and R^{8'} represent alkyl

and, if the compound of the formula (XXXVII-a) is employed, R⁸ represents hydrogen.

- 23. Compounds of the formula (XXXVIII)

in which

5

A, B, Q^3 , Q^4 , Q^5 , Q^6 , W, X and Y are as defined above.

24. Compounds of the formula (XXXIX)

$$Y \xrightarrow{CO_2 R^{8'}} X \xrightarrow{Q^6 Q^5 Q^4} Q^3 CO_2 R^8$$
 (XXXIX)

in which

A, B, Q³, Q⁴, Q⁵, Q⁶, W, X and Y are as defined above

and

R⁸ and R^{8'} represent alkyl

and, if the compound of the formula (XXXVII-b) is employed, R⁸ represents hydrogen.

15 25. Compounds of the formula (XLII)

$$Y = \bigvee_{W} C \neq O$$
(XLII)

5

10

W, X and Y are as defined above.

- 26. Use of compounds of the formula (I) according to Claim 1 for preparing pesticides and/or herbicides.
 - 27. Pesticides and/or herbicides, characterized in that they comprise at least one compound of the formula (I) according to Claim 1.
- 28. Method for controlling animal pests and/or unwanted vegetation, characterized in that compounds of the formula (I) according to Claim 1 are allowed to act on pests and/or their habitat.
 - 29. Use of compounds of the formula (I) according to Claim 1 for controlling animal pests and/or unwanted vegetation.
 - 30. Process for preparing pesticides and/or herbicides, characterized in that compounds of the formula (I) according to Claim 1 are mixed with extenders and/or surfactants.
- 15 31. Compositions, comprising an effective amount of an active compound combination comprising
 - a') at least one substituted cyclic ketoenol of the formula (I) in which CKE, W, X and Y are as defined above

and

20 (b') at least one compound which improves crop plant tolerance and which is selected from the following group of compounds:

4-dichloroacetyl-1-oxa-4-aza-spiro[4.5]-decane (AD-67, MON-4660), 1-dichloro-acetylhexahydro-3,3,8a-trimethylpyrrolo[1,2-a]-pyrimidin-6(2H)-one (dicyclonon, BAS-145138), 4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine (benoxacor), 1-methyl-hexyl 5-chloro-quinolin-8-oxy-acetate (cloquintocet-mexyl-

cf. also related compounds in EP-A-86750, EP-A-94349, EP-A-191736. EP-A-492366), 3-(2-chloro-benzyl)-1-(1-methyl-1-phenyl-ethyl)-urea (cumyluron), α-(cyanomethoximino)-phenylacetonitrile (cyometrinil), 2.4-dichlorophenoxyacetic acid (2,4-D), 4-(2,4-dichloro-phenoxy)-butyric acid (2,4-DB), 1-(1methyl-1-phenyl-ethyl)-3-(4-methyl-phenyl)-urea (daimuron, dymron). dichloro-2-methoxy-benzoic acid (dicamba), S-1-methyl-1-phenyl-ethyl piperidine-1-thiocarboxylate (dimepiperate), 2,2-dichloro-N-(2-oxo-2-(2-propenylamino)ethyl)-N-(2-propenyl)-acetamide (DKA-24), 2,2-dichloro-N,N-di-2-propenylacetamide (dichlormid), 4,6-dichloro-2-phenyl-pyrimidine (fenclorim), ethyl 1-(2,4-dichloro-phenyl)-5-trichloromethyl-1H-1,2,4-triazole-3-carboxylate chlorazole-ethyl - cf. also related compounds in EP-A-174562 and EP-A-346620), phenylmethyl 2-chloro-4-trifluoromethyl-thiazole-5-carboxylate (flurazole), 4chloro-N-(1,3-dioxolan-2-yl-methoxy)- α -trifluoro-acetophenone oxime (fluxofenim), 3-dichloroacetyl-5-(2-furanyl)-2,2-dimethyl-oxazolidine (furilazole, MON-13900), ethyl 4,5-dihydro-5,5-diphenyl-3-isoxazolecarboxylate (isoxadifenethyl - cf. also related compounds in WO-A-95/07897), 1-(ethoxycarbonyl)-ethyl-3,6-dichloro-2-methoxybenzoate (lactidichlor), (4-chloro-o-tolyloxy)-acetic acid (MCPA), 2-(4-chloro-o-tolyloxy)-propionic acid (mecoprop), diethyl 1-(2,4dichloro-phenyl)-4,5-dihydro-5-methyl-1H-pyrazole-3,5-dicarboxylate (mefenpyrdiethyl - cf. also related compounds in WO-A-91/07874), 2-dichloromethyl-2methyl-1,3-dioxolane (MG-191), 2-propenyl-1-oxa-4-azaspiro[4.5]decane 4carbodithioate (MG-838), 1,8-naphthalic anhydride, α-(1,3-dioxolan-2-ylmethoximino)-phenylacetonitrile (oxabetrinil), 2,2-dichloro-N-(1,3-dioxolan-2-ylmethyl)-N-(2-propenyl)-acetamide (PPG-1292), 3-dichloroacetyl-2,2-dimethyloxazolidine (R-28725), 3-dichloroacetyl-2,2,5-trimethyl-oxazolidine (R-29148), 4-(4-chloro-o-tolyl)-butyric acid, 4-(4-chloro-phenoxy)-butyric acid, diphenylmethoxyacetic acid, methyl diphenylmethoxyacetate, ethyl diphenylmethoxyacetate, methyl 1-(2-chloro-phenyl)-5-phenyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichloro-phenyl)-5-methyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4dichloro-phenyl)-5-isopropyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-(1,1-dimethyl-ethyl)-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-phenyl-1H-pyrazole-3-carboxylate (cf. also related compounds in EP-A-269806 and EP-A-333131), ethyl 5-(2,4-dichloro-benzyl)-2-isoxazoline-3carboxylate, ethyl 5-phenyl-2-isoxazoline-3-carboxylate, ethyl 5-(4-fluoro-phenyl)-5-phenyl-2-isoxazoline-3-carboxylate also (cf. related compounds in WO-A-91/08202), 1,3-dimethyl-but-1-yl 5-chloro-quinolin-8-oxy-acetate, 4-

5

10

15

20

25

30

10

15

20

allyloxy-butyl 5-chloro-quinolin-8-oxy-acetate, 1-allyloxy-prop-2-yl 5-chloroquinolin-8-oxy-acetate, methyl 5-chloro-quinoxalin-8-oxy-acetate, ethyl 5-chloroquinolin-8-oxy-acetate, allyl 5-chloro-quinoxalin-8-oxy-acetate, 2-oxo-prop-1-yl 5chloro-quinolin-8-oxy-acetate, diethyl 5-chloro-quinolin-8-oxy-malonate, diallyl 5chloro-quinoxalin-8-oxy-malonate, diethyl 5-chloro-quinolin-8-oxy-malonate (cf. also related compounds in EP-A-582198), 4-carboxy-chroman-4-yl-acetic acid (AC-304415, cf. EP-A-613618), 4-chloro-phenoxy-acetic acid, 3,3'-dimethyl-4methoxy-benzophenone, 1-bromo-4-chloromethylsulphonyl-benzene, 1-[4-(N-2methoxybenzoylsulphamoyl)-phenyl]-3-methyl-urea (alias N-(2-methoxy-benzoyl)-4-[(methylamino-carbonyl)-amino]-benzenesulphonamide), 1-[4-(N-2-1-[4-(N-4,5-dimethylmethoxybenzoylsulphamoyl)-phenyl]-3,3-dimethyl-urea, benzoylsulphamoyl)-phenyl]-3-methyl-urea, 1-[4-(N-naphthylsulphamoyl)phenyl]-3,3-dimethyl-urea, N-(2-methoxy-5-methyl-benzoyl)-4-(cyclopropylaminocarbonyl)-benzenesulphonamide,

and/or one of the following compounds (defined by general formulae)
of the general formula (IIa)

$$(X^1)_m$$
 (IIa)

or of the general formula (IIb)

$$X^3$$
 X^2
 A^2
 R^{15}
(IIb)

or of the formula (IIc)

where

5

10

15

20

m is 0, 1, 2, 3, 4 or 5,

A¹ represents one of the divalent heterocyclic groups outlined hereinbelow,

n is 0, 1, 2, 3, 4 or 5,

A² represents alkanediyl having 1 or 2 carbon atoms which is optionally substituted by C_1 - C_4 -alkyl and/or C_1 - C_4 -alkoxy-carbonyl and/or C_1 - C_4 -alkenyloxy-carbonyl,

R¹⁴ represents hydroxyl, mercapto, amino, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino or di-(C₁-C₄-alkyl)amino,

R¹⁵ represents hydroxyl, mercapto, amino, C₁-C₇-alkoxy, C₁-C₆-alkenyloxy, C₁-C₆-alkenyloxy-C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino or di-(C₁-C₄-alkyl)amino,

R¹⁶ represents C₁-C₄-alkyl which is optionally substituted by fluorine, chlorine and/or bromine,

R¹⁷ represents hydrogen, or represents C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, dioxolanyl-C₁-C₄-alkyl, furyl, furyl-C₁-C₄-alkyl, thienyl, thiazolyl, piperidinyl, each of which is optionally substituted by fluorine, chlorine and/or bromine, or represents phenyl which is optionally substituted by fluorine, chlorine and/or bromine or C₁-C₄-alkyl,

R¹⁸ represents hydrogen, or represents C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, dioxolanyl-C₁-C₄-alkyl, furyl, furyl-C₁-C₄-alkyl, thienyl, thiazolyl, piperidinyl, each of which is optionally substituted by fluorine, chlorine

and/or bromine, or represents phenyl which is optionally substituted by fluorine, chlorine and/or bromine or C₁-C₄-alkyl, or R¹⁷ and R¹⁸ together also represent C₃-C₆-alkanediyl or C₂-C₅-oxaalkanediyl, each of which is optionally substituted by C₁-C₄-alkyl, phenyl, furyl, a fused benzene ring or by two substituents which, together with the C atom to which they are bonded, form a 5- or 6-membered carbocycle,

- R¹⁹ represents hydrogen, cyano, halogen, or represents C₁-C₄-alkyl, C₃-C₆-cycloalkyl or phenyl, each of which is optionally substituted by fluorine, chlorine and/or bromine,
- 10 R²⁰ represents hydrogen, or represents C₁-C₆-alkyl, C₃-C₆-cycloalkyl or tri(C₁-C₄-alkyl)silyl, each of which is optionally substituted by hydroxyl, cyano, halogen or C₁-C₄-alkoxy,
 - R²¹ represents hydrogen, cyano, halogen, or represents C₁-C₄-alkyl, C₃-C₆-cycloalkyl or phenyl, each of which is optionally substituted by fluorine, chlorine and/or bromine,
 - X^1 represents nitro, cyano, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy,
 - X² represents hydrogen, cyano, nitro, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy,
- 20 X³ represents hydrogen, cyano, nitro, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy,

and/or the following compounds (defined by general formulae)

of the general formula (IId)

$$O = \begin{pmatrix} R^{23} \\ N \end{pmatrix} \begin{pmatrix} (X^5)_v \\ SO_2 \end{pmatrix} \begin{pmatrix} R^{22} \\ O \end{pmatrix} \begin{pmatrix} (IId) \end{pmatrix}$$
(IId)

5

or of the general formula (IIe)

$$R^{25}$$
 R^{26}
 R^{22}
 R^{22}
 R^{22}
 R^{22}
 R^{22}
 R^{22}
 R^{22}
 R^{23}
 R^{22}
 R^{24}
 R^{25}
 R

where

R²⁶

t is 0, 1, 2, 3, 4 or 5,

v is 0, 1, 2, 3, 4 or 5,

R²² represents hydrogen or C₁-C₄-alkyl,

R²³ represents hydrogen or C₁-C₄-alkyl,

R²⁴ represents hydrogen, or represents C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino or di-(C₁-C₄-alkyl)amino, each of which is optionally substituted by cyano, halogen or C₁-C₄-alkoxy, or represents C₃-C₆-cycloalkyl, C₃-C₆-cycloalkyloxy, C₃-C₆-cycloalkylthio or C₃-C₆-cycloalkylamino, each of which is optionally substituted by cyano, halogen or C₁-C₄-alkyl,

R²⁵ represents hydrogen, or represents C₁-C₆-alkyl which is optionally substituted by cyano, hydroxyl, halogen or C₁-C₄-alkoxy, or represents C₃-C₆-alkenyl or C₃-C₆-alkynyl, each of which is optionally substituted by cyano or halogen, or represents C₃-C₆-cycloalkyl which is optionally substituted by cyano, halogen or C₁-C₄-alkyl,

represents hydrogen, or represents C₁-C₆-alkyl which is optionally substituted by cyano, hydroxyl, halogen or C₁-C₄-alkoxy, or represents C₃-C₆-alkenyl or C₃-C₆-alkynyl, each of which is optionally substituted by cyano or halogen, or represents C₃-C₆-cycloalkyl which is optionally substituted by cyano, halogen or C₁-C₄-alkyl, or represents phenyl which is optionally substituted by nitro, cyano, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy, or together with R²⁵ represents C₂-C₆-alkanediyl or C₂-C₅-oxaalkanediyl, each of which is optionally substituted by C₁-C₄-alkyl,

5

10

15

20

- X^4 represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy, and
- X⁵ represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.
- 32. Composition according to Claim 31, in which the compound which improves crop plant tolerance is selected from the following group of compounds:
 - cloquintocet-mexyl, fenchlorazole-ethyl, isoxadifen-ethyl, mefenpyr-diethyl, furilazole, fenclorim, cumyluron, dymron or the compounds IIe-5 or IIe-11.
- 10 33. Method for controlling unwanted vegetation, characterized in that a composition according to Claim 31 is allowed to act on the plants or their habitat.
 - 34. Use of a composition according to Claim 31 for controlling unwanted vegetation.
 - 35. Composition according to Claim 31 in which the compound which improves crop plant tolerance is cloquintocet-mexyl or mefenpyr-diethyl.