Courbes de Bézier de degré 2 : paraboles associées à des triangles de contrôle

Tout le problème se passe dans E_3 , espace affine euclidien de dimension 3, mais on pourra très souvent (toujours ...) se restreindre ici à un plan. Le choix, fait une fois pour toutes, d'une origine O permettra si utile d'identifier le point A et le vecteur \overrightarrow{OA} et l'écriture A = tB + (1-t)C correspondra à $\overrightarrow{OA} = t \overrightarrow{OB} + (1-t)\overrightarrow{OC}$. De même on pourra utiliser l'écriture B-A pour désigner \overrightarrow{AB}

De façon générale, on appelle courbes polynomiales de degré n les courbes qui admettent une représentation du type : $t \mapsto M(t) = A_1 + t A_2 + t^2 A_3 + ... + t^n A_n$ soit : $\overrightarrow{OM(t)} = \overrightarrow{OA_1} + t .\overrightarrow{OA_2} + t^2 .\overrightarrow{OA_3} + ... + t^n .\overrightarrow{OA_n}$ où les points $A_1, ..., A_n$ sont des points fixés.

Dans tout ce problème, n = 3. L'objectif sera d'étudier un procédé de génération de courbes polynômiales de degré 2 puis de raccordement d'arcs de ces courbes, à partir d'une ligne polygonale appelée polygone de contrôle.

Partie 1. Paraboles et courbes polynomiales de degré 2.

Dans cette partie, on étudie comment une parabole peut être associée à un polygone de contrôle formé de trois points ordonnés et on établit quelques propriétés.

On désigne ici par "parabole" toute courbe dont une représentation paramétrique est :

 $t \mapsto M(t) = A + t\vec{v} + t^2\vec{w}$ c'est à dire telle que : $\overrightarrow{AM(t)} = t \cdot \vec{v} + t^2 \cdot \vec{w}$ où A est un point fixé et \vec{v} et \vec{w} sont deux vecteurs indépendants. Soit P une telle parabole.

- 1.1. Montrer que P est incluse dans un plan que l'on précisera.
- 1.2. Montrer qu'il existe un et un seul point S de P tel que la tangente en S à P soit orthogonale à \vec{w} .
- 1.3. Démontrer que la droite passant par S et de vecteur directeur \vec{w} est axe de symétrie orthogonale de P.

Partie 2. Courbe de Bézier de degré 2 (à trois points de contrôle).

Dans cette partie, on se donne trois points A_1 , A_2 , A_3 distincts de E_3 .

Pour tout réel t on définit successivement les points suivants :

- $B_1(t)$ barycentre des points A_1 et A_2 affectés des coefficients (1-t) et t.
- $B_2(t)$ barycentre des points A_2 et A_3 affectés des coefficients (1 t) et t
- M(t) barycentre des points $B_1(t)$ et $B_2(t)$ affectés des coefficients (1 t) et t.

On s'intéresse à la courbe P décrite par le point M(t) lorsque t décrit \mathbf{R} et, plus particulièrement, à l'arc de cette courbe obtenu lorsque t décrit l'intervalle [0; 1].

2.0. Comment pourrait-on définir les points $B_1(t)$, $B_2(t)$ et M(t) à l'aide d'homothéties de rapport t?

2.1. Démontrer la relation :
$$\overrightarrow{OM(t)} = (1-t)^2 \overrightarrow{OA_1} + 2t(1-t)\overrightarrow{OA_2} + t^2 \overrightarrow{OA_3}$$
 (1)

2.2. Montrer que la courbe décrite par le point M(t) est une parabole si et seulement si les points A_1 , A_2 , A_3 ne sont pas alignés (on supposera désormais cette condition satisfaite).

G. Julia 2012/2013

- 2.3. Identifier les points M(0) et M(1). Déterminer la position du point $M\left(\frac{1}{2}\right)$ (on appellera A'_2 le milieu de $[A_1A_3]$ et on positionnera $M\left(\frac{1}{2}\right)$ par rapport à A_2 et à A'_2).
- 2.4. Soit t un réel distinct de 0 et de 1. Montrer que les vecteurs $\overline{M(t)M(1-t)}$ et $\overline{A_1A_3}$ sont colinéaires et que le milieu du segment [M(t)M(1-t)] appartient à la droite $(A_2A'_2)$. Que dire alors des positions relatives des points M(t) et M(1-t)?
- 2.5. Exprimer le vecteur dérivé $\frac{d\overline{OM(t)}}{dt}$. Montrer que, pour tout réel t, la tangente à P au point M(t) est la droite $(B_1(t)B_2(t))$. Identifier en particulier les tangentes à P aux points M(0), M(1) et $M(\frac{1}{2})$.

La courbe P que l'on vient d'étudier est entièrement déterminée par la donnée des trois points A_1 , A_2 , A_3 . Il s'agit d'une « courbe de Bézier » de degré 2, et les points A_1 , A_2 , A_3 qui la déterminent sont appelés ses « points de contrôle ». En déplaçant l'un ou l'autre de ces points, on modifie la courbe Γ , celle-ci restant une parabole tant qu'il n'y a pas alignement des trois points de contrôle.

2.6. *Exemple*: L'espace étant muni d'un repère orthonormé, d'origine O, représenter la parabole obtenue dans le cas : $A_1(0, 2, 0)$, $A_2(2, 3, 0)$, $A_3(1, 0, 0)$. Déterminer son sommet S et son axe.

Partie 3. Raccordement, courbe de Bézier de degré 2 associée à une ligne polygonale.

Dans cette partie, on étudie des courbes formées par le raccordement de plusieurs arcs de parabole.

Soit n un entier strictement positif et 2n+1 points notés $A_1, A_2, ..., A_{2n+1}$. On considère les arcs de parabole :

- P₁ de polygone de contrôle (A_1, A_2, A_3) de point courant $M_1(t)$; $(t \in [0; 1])$
- P₂ de polygone de contrôle (A_3, A_4, A_5) de point courant $M_2(t)$; $(t \in [0; 1])$
- ...
- En général P_k de polygone de contrôle $(A_{2k-1}, A_{2k}, A_{2k+1})$ de point courant $M_k(t)$; $(t \in [0; 1])$; (k = 1, 2, ..., n).

On se propose de raccorder les uns aux autres ces arcs de parabole et on désigne par Γ la courbe réunion des arcs de parabole P_k définis ci-dessus. Le (2n+1)-uplet $(A_1,A_2,...,A_{2n+1})$ sera le « polygone de contrôle » de cette courbe. À cet effet, on construit la fonction $t \in [0; n] \mapsto \overline{OM(t)}$ suivante :

Pour tout réel t de l'intervalle [0; n[, soit e(t) la partie entière de t. On pose : $\overrightarrow{OM(t)} = (1 - (t - e(t)))^2 \overrightarrow{OA_{2e(t)+1}} + 2(t - e(t))(1 - (t - e(t))) \overrightarrow{OA_{2e(t)+2}} + (t - e(t))^2 \overrightarrow{OA_{2e(t)+3}}$. Cette définition peut se prolonger pour t = n en convenant que $\overrightarrow{OM(n)} = \overrightarrow{OA_{2n+1}}$.

- 3.1. Vérifier que le point M(t) décrit la courbe Γ lorsque t décrit [0; n].
- 3.2. Montrer que pour que la fonction $t \in [0; n[\mapsto \overline{OM(t)}]$ soit de classe C^1 il faut et il suffit que A_{2k+1} soit milieu du segment $[A_{2k}, A_{2k+2}]$ pour tout entier k tel que $1 \le k \le n-1$.

G. Julia 2012/2013

3.4. *Application*: On considère le quart du cercle U représentatif de la fonction : $x \in [0; 1] \mapsto \sqrt{1 - x^2}$ et ses points A_1, A_3, A_5 d'abscisses respectives $0, \frac{\sqrt{2}}{2}$ et 1.

On définit le point A_2 comme étant le point d'intersection des tangentes au quart de cercle en A_1 et en A_3 et le point A_4 comme étant le point d'intersection des tangentes au quart de cercle en A_3 et en A_5 .

- 3.4.1. Soit Γ la courbe de Bézier de degré 2 générée par ces cinq points. Donner une représentation paramétrique de l'arc $A_1A_2A_3$.
- 3.4.2. <u>L'emploi d'une calculatrice formelle paraît indispensable pour cette question.</u> Le détail des calculs n'est pas demandé dans l'ensemble de cette question.

A l'aide de la calculatrice, expliciter un coefficient k > 0 tel que : $\left\| \overrightarrow{OM(t)} \right\|^2 = 1 + k t^2 (1 - t)^2$ pour tout M, de paramètre t appartenant à l'arc $A_1 A_2 A_3$ de Γ .

Déterminer alors le maximum, pour M appartenant à Γ , de la distance de M au quart de cercle U.

G. Julia 2012/2013