FALL 2015 MATH-791-001 FIELD PROJECT IN INDUSTRIAL MATHEMATICS

LOCATION: 345 Jarvis Hall Science Wing (JHSW)

UNITS: 3 units

RECOMMENDED MATERIALS: Laptop computer

INSTRUCTOR: Dr. Keith Wojciechowski Wojciechowskik@uwstout.edu

TELEPHONE: 715-232-2291

OFFICE HOURS:

202D Jarvis Hall-Science Wing (my office) or Math TLC (203 / 214 Jarvis Hall-Science Wing)

	MON	TUE	WED	THU	FRI	
10:10 – 11:05 am	Office Hours		Office Hours	Office Hours		10:10 – 11:05 am
2:30 - 3:25 pm	Office Hours		Office Hours	Office Hours		2:30 - 3:25 pm

^{*}By appointment otherwise (usually at my office)*

IMPORTANT DATES: 22 SEP Last day to add semester classes and choose "CR/NC"

22 SEP Last day to drop without "W" mark 10 NOV Last day to drop without "WU" mark

COURSE DESCRIPTION

First course in a two-semester sequence. Problem identification, solution proposal through the development or exploitation of a mathematical model, and initial research. Projects will involve mathematical modeling, numerical algorithm development or selection, or data analysis applied to a topic proposed by their employer, a professor, company, agency, or organization.

RESOURCES

Advisement Center: http://www.uwstout.edu/advisement/index.cfm
Student Services: http://www.uwstout.edu/studentservices/index.cfm
D2L: http://www.uwstout.edu/lit/lts/learn/student_resources.cfm

ACCESSIBILITY

If a student has a disability or suspects he or she has a disability, then he or she is encouraged to contact Disabilities Services (http://www.uwstout.edu/disability/index.cfm) so that we can make accommodations.

POLICIES

Technology:

- Laptop computer, tablet, or scientific calculator
- Cell phone usage is prohibited during class (even as a calculator)

Academic Misconduct (http://www.uwstout.edu/services/dean/studentconduct/index.cfm): Any student found guilty of academic misconduct, as defined in the link above, will receive a zero on the assessment and we will follow university procedures

OBJECTIVES AND LEARNING OUTCOMES

Upon successful completion of this course, the student will be able to:

- 1. Plan a holistic, mathematical, problem solving approach to an organizational specific problem.
- 2. Propose a viable problem-solving approach to a client.
- 3. Develop mathematical models that meet the quality of work expected for a Masters level project. Modeling examples may include, but are not limited to: equation-free models (neural networks), regression (statistical) models, and / or systems of differential equations. In some cases modeling may include a combination of these concepts as in the case of data-driven simulations.

GRADING AND EVALUATION

Assessment	Maximum Possible Points	Percentage of Total Grade	
Team Huddle Contributions (12)	100	25%	
Status Reports (5)	100	25%	
Final Proposal (1)	200	50%	
Total	400	100.0%	

Status Reports:

- Due dates for status reports will be given throughout the semester
- Contain contributions from *each* member of the team
- Contain updates on the progress made toward a solution for the problem given by the client

Final Proposal:

- A rough-draft is due the week of the Thanksgiving holiday
- Project plan that consists of problem definition, problem-solving approach, expected outcome, schedule (timeline of activities), and available resources
- A typed report will be submitted to the instructor and client
- 30 to 60 minute presentation will be made to the instructor and client
- Consists of problem-solving approach, supporting evidence, risk (where project could fail), and any preliminary results or prototype

Final Grades:

Final grades will be based on the percentage of the 400 points students obtain according to the following chart:

Below 70% F

The instructor reserves the right to assign a higher grade

SOFTWARE

Students may choose MATLAB, Scilab, SciPy (Python), Sage, R, etc.