Gaussian(μ , σ)

- The Bell-shaped distribution
- The Normal distribution
- Parameters are the mean μ and standard deviation is σ
 - Variance is σ^2
 - If X is Gaussian we often write X is $N[\mu, \sigma^2]$

Definition 3.8 Gaussian Random Variable

X is a Gaussian (μ, σ) random variable if the PDF of X is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2},$$

where the parameter μ can be any real number and the parameter $\sigma > 0$.

Figure 3.5

Two examples of a Gaussian random variable X with expected value μ and standard deviation σ .

Linear Transformation of a Gaussian

Theorem 3.13

If
$$X$$
 is Gaussian (μ, σ) , $Y = aX + b$ is
$$\underbrace{ \left(\chi \right)}_{2} = \underbrace{ \left(\chi \right)}_{2} = \underbrace$$

 Linear transformation of a Gaussian gives another Gaussian!

• How do show the above?

$$f_{X}(x) = \frac{1}{\sqrt{276^{2}}} e^{-(x-\mu)/26^{2}} \times e^{(-a,a)}$$

$$P(X=y) = P(x+b=y)$$

$$= P(x=y-b)$$

Linear Transformation of a Gaussian

Theorem 3.13

If
$$X$$
 is Gaussian (μ, σ) , $Y = aX + b$ is

If X is not Gaussian, what are E[Y] and E[Y²]?

Standard Normal Variable and CDF

 Def 3.9 The standard random variable is Gaussian(0,1) – 0 mean and unit variance

Definition 3.10 Standard Normal CDF - 1 Love =

The CDF of the standard normal random variable Z is

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-u^{2}/2} du.$$

Expressing a Gaussian CDF as a N[0,1]

Theorem 3.14

If X is a Gaussian (μ, σ) random variable, the CDF of X is

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right).$$

The probability that X is in the interval (a, b] is

$$\oint_{\mathcal{A}} \left[X \leq b \right] = \Phi \left(\frac{b - \mu}{\sigma} \right) - \Phi \left(\frac{a - \mu}{\sigma} \right).$$

Show using definition of CDF and substitution of variables in the integral

- All I need are values of φ(.)
 - This is important as CDF integral calculations for finite limits can only be done numerically
 - Thankfully, all we now need is a tabulation of $\phi(.)$

Standard Normal CDF

- Is this true for any Gaussian Distribution?
- When is it true?
- All I need is $\phi(z)$ for $z \ge 0$

Figure 3.6

VVS Problem

Example 3.16 Problem

If X is the Gaussian (61, 10) random variable, what is $P[X \le 46]$?

$$P\left(X - \mu_X = 46 - \mu_X\right)$$

$$= P\left(X - \mu_X = 46 - \mu_X\right)$$

Example 3.17 Problem

If X is a Gaussian random variable with $\mu = 61$ and $\sigma = 10$, what is $P[51 < X \le 71]$?

$$P\left[\frac{3-\mu}{6} \left(\frac{X-\mu}{6}\right) = \frac{2+\mu}{6}\right]$$

$$= P\left[\frac{2}{5} \left(\frac{2+\mu}{6}\right) - P\left(\frac{2}{5}\right) = \frac{3-\mu}{6}\right]$$

Standard Normal CCDF

Definition 3.11

The standard normal complementary CDF is

$$Q(z) = P[Z > z] = \frac{1}{\sqrt{2\pi}} \int_{z}^{\infty} e^{-u^{2}/2} du = 1 - \Phi(z).$$

$$Q - \{v_{V \setminus C}\}$$

$$\Phi(3) = 0.9987, \ \Phi(4) = 0.9999768$$

$$Q(3) = 1.35 \times 10^{-3}, Q(4) = 3.17 \times 10^{-5}$$

$$P\left(\frac{1}{20} > 1000\right) = P\left(\frac{1}{20} - E\left(\frac{1}{20}\right)\right) > 1000 - E\left(\frac{1}{20}\right)$$

Problem 3.5.6

A professor pays 25 cents for each blackboard error made in lecture to the student who points out the error. In a career of n years filled with blackboard errors, the total amount in dollars paid can be approximated by a Gaussian random variable Y_n with expected value 40n and variance 100n. What is the probability that Y_{20} exceeds 1000? How many years n must the professor teach in order that $P[Y_n > 1000] > 0.99$?

Problem 3.5.7

Suppose that out of 100 million men in the United States, 23,000 are at least 7 feet tall. Suppose that the heights of U.S. men are independent Gaussian random variables with a expected value of 5'10''. Let N equal the number of men who are at least 7'6'' tall.

- (a) Calculate σ_X , the standard deviation of the height of men in the United States.
- (b) In terms of the $\Phi(\cdot)$ function, what is the probability that a randomly chosen man is at least 8 feet tall?
- (c) What is the probability that there is no man alive in the U.S. today that is at least 7'6'' tall?
- (d) What is E[N]?

- Six Sigma Event?
 - Use MATLAB's qfunc

Quiz 3.5

X is the Gaussian (0, 1) random variable and Y is the Gaussian (0, 2) random variable.

- (1) Sketch the PDFs $f_X(x)$ and $f_Y(y)$ on the same axes.
- (2) What is $P[-1 < X \le 1]$?
- (3) What is $P[-1 < Y \le 1]$?
- (4) What is P[X > 3.5]?
- (5) What is P[Y > 3.5]?