

강아지 안구 질병 예측 딥러닝 모델링

TEAM : 숨참고 DeepDive

Member: 조진우, 이수현, 송영달, 이 호, 김유진 2024년 01월 29일 ~ 2024년 02월 08일

프로젝트 개요 • Contents 01 주 제

Contents 02

목표

반려견의 안구 질환을 사전에 진단할 수 있는 웹 기반 서비스 구현

딥러닝을 통한 반려견 안구질환 진단

및 예측

Contents 03

기대 효과

복잡한 절차와 비용없이 간편하게 진단함으로써 반려건 건강관리에 대한 편의성 도모

진행과정

Process 01 문제정의 가정에서 반려견의 안구 질병을 사전에 확인

Process 02 데이터 수집분석 AlHub 데이터셋: (강아지 안구 질병 이미지 & Label.json 파일로 구성)

Process 03 모델링 /학습 사전 학습 된 모델 Fine tunning

Process 04 모델선정/예측 모델 성능 및 최적 파라미터 확인, 모델선정 및 예측

Process 05 웹서비스 구현 Streamlit, flask 연동 웹 서비스 구현

Process 06 후속조치 프로젝트 한계 및 개선 사항

•

문제정의

질병명	설명	
결막염	결막(흰 부위에 제일 앞부분에 위치한 부위)에 염증이 발생 하는 것	
백내장	수정체가 뿌옇게 변하거나 불투명해지는 병	
색소침착성각막염	각막(검은 부위)에 색소가 침착되는 질환(각막 주위 흰 부위에 까만색으로 색소가 침착되는 병)	
유루증	눈물이 코로 배출되지 못하고 눈으로 끊임없이 넘쳐나는 상태(눈물이 계속 흘러 눈 주위 털 색이 적갈색으로 변색)	
궤양성각막질환	각막에 궤양이 생기는 질환	
안검종양	눈꺼풀에 발생하는 종양	
비궤양성각막질환	각막에 염증 발생, 단 궤양성각막질환처럼 궤양이나 상처가 생기지 않음	
핵경화	핵경화 수정체 중심부(핵)가 단단해지고 흐릿해지는 증상. 자연스러운 노화 과정	
안검내반증	눈꺼풀이 안쪽으로 말려들어가 각막에 손상(속눈썹으로 찔림 등)을 주는 질환	
안검염	눈안구 주위에 발생하는 염증	

데이터 수집 및 분석

AlHub 반려동물 안구 질환 데이터 사용 Al
Hub

Hub

안구 질병 진단을 위한 안구 이미지와 레이블 데이터 수집, 각 질병 별 200개씩 데이터로 학습 데이터 생성

최종 사용 데이터(7종류):

ţţţ

결막염	궤양성각막질환	백내장	
색소침착성각막 염	안검종양	유루증	
		_	
	정상		

- ※ 수집 된 데이터 중 단순한 이미지 분석으로 판별 할 수 없는 질병 또는
- 증상이 유사한 질병은 제외

```
"images": {
               "file_name": "D0_2f8ffe39-60a5-11ec-8402-0a7404972c70.jpg",
               "date time": "2017-10-13 00:00:00",
               "device": "검안경",
               "gender": 0.0,
               "age": 10.0,
               "breed": "말티즈",
               "medical_type": 1,
               "width_height": [
                       "2741",
                       "2057"
               "eye_position": "오른쪽눈",
               "image_resolution": [
                       96.0,
                       96.0
},
       "label_filename": "crop_D0_2f8ffe39-60a5-11ec-8402-0a7404972c70.jpg",
       "label_category_id": 1,
        "label_path": "라벨링데이터/안구/개/안구/일반/백내장/초기/crop_D0_2f8ffe39-60a5-11ec-8402-0a7404972c70.jpg",
        "label_deleted": 0,
        "label_bbox": [
               "0.0",
               "0.0",
               "2741.0",
               "2057.0"
        "label_disease_nm": "백내장",
       "label_disease_lv_1": "성숙",
       "label_disease_lv_2": "초기",
        "label_disease_lv_3": "초기"
```

강아지 사진에서 눈 crop을 위한 YOLO 학습 데이터 생성

Labelimg 프로그램을 통해 YOLO 학습용 image crop label 데이터 생성

학습을 위한 데이터셋 구축

결막염

유류증

궤양성 각막질환

백내장

색소침착성 각막염

안검종양

강아지 눈 사진에 대해서 한 가지 질병이 아닌 다양한 질병을 동시에 판별할 수 있게, multi label binary classification을 하기 위함

Why? 왜 one-hot vector를 사용?

질병 이미지마다 one-hot vector를 target으로 지정하여 데이터셋 생성

'무': [0, 0, 0, 0, 0, 0], '결막염': [1, 0, 0, 0, 0, 0], '유루증': [0, 1, 0, 0, 0, 0], '궤양성각막질환': [0, 0, 1, 0, 0, 0], '백내장': [0, 0, 0, 1, 0, 0],

'색소침착성각막염': [0, 0, 0, 0, 1, 0],

'안검종양': [0, 0, 0, 0, 0, 1]

Model의 출력은 6가지 질병에 대한 각각의 독립적인 확률

1. AlexNet (best validation loss: 0.3300 / best validation acc: 0.8603)

1. AlexNet (best validation loss: 0.3300 / best validation acc: 0.8603)

2. DenseNet201 (best validation loss: 0.3291 / best validation acc: 0.8619)

2. DenseNet201 (best validation loss: 0.3291 / best validation acc: 0.8619)

3. GoogLeNet (best validation loss: 0.3163 / best validation acc: 0.8777)

3. GoogLeNet (best validation loss: 0.3163 / best validation acc: 0.8777)

4. ResNet50 (best validation loss: 0.3356 / best validation acc: 0.8684)

4. ResNet50 (best validation loss: 0.3356 / best validation acc: 0.8684)

5. VGG19 (best validation loss: 0.3427 / best validation acc: 0.8652)

5. VGG19 (best validation loss: 0.3427 / best validation acc: 0.8652)

6. ViT (best validation loss: 0.3411 / best validation acc: 0.8623)

6. ViT (best validation loss: 0.3411 / best validation acc: 0.8623)

7. Model Best 성능 비교

8. Model간 평균 성능 비교(각 model 전체 epoch 평균)

웹 어플리케이션 개발

Loss값이 가장 낮은 GoogLeNet 모델로 최종 모델 선정 (best validation loss : 0.3163 / best validation acc : 0.8777)

```
import torch
    import torchvision.transforms as transforms
    from PIL import Image
    def predict_function(model_pth: str,
                            device: torch.device = "cpu"):
        output_list = []
        image = Image.open(img_path).convert("RGB")
        image_tensor = image_transform(image).to(device)
        data = image_tensor.unsqueeze(0)
        model = GoogLeNetModel(6)
        model.load_state_dict(torch.load(model_pth))
        model.to(device)
        model.eval()
        with torch.inference_mode():
            model.eval()
            output = model(data)
        return torch.sigmoid(output)
    # if __name__ == "__main__":
    model_pth = '/content/best_GoogLeNet.pth'
    output = predict_function(model_pth=model_pth,img_path = '/content/drive/MyDrive/개전체_100개_병별로/백내장/crop_D0_0da935dc-60a5-11ec-8402-0a7404972c70.jpg')

→ tensor([[0.1224, 0.0413, 0.0235, 0.8478, 0.0503, 0.0405]])
```

각 질병에 대한 확률 값 [결막염, 유루증, 궤양성각막질환, 백내장, 색소침착성각막염, 안검종양]

웹 어플리케이션 개발

Step 1 Streamlit 구현 강아지 안구 사진 업로드

Step 2

Ghat GPT Open API 통한 각 질병 별 관리 방법에 대한 내용 출력

- 설명: 눈물이 지나치게 많이 나와 눈 주변에 습기가 많아지고 털이 젖는 상태입니다. 이는 눈물 배출 경로가 막혀서 나타날 수 있으며, 이로 인해 눈 주변에 감염이나 피부 문제가 발생할 수 있습니다.
- 관리 방법: 유루증의 원인에 따라 다양한 관리가 필요합니다. 가벼운 경우, 정기적인 눈 주변의 청소와 관리가 도움이 될 수 있습니다. 하지만, 더 심 각한 경우에는 수의사와 상의하여 원인을 진단 받고, 적절한 치료(약물 치료, 수술 등)를 받는 것이 중요합니다.

백내장 (확률 6.0%) & 안검종양 (확률 6.0%)

- 설명: 눈의 수정체가 흐려지면서 시력을 저하시키는 질환입니다. 진행될 경우 실명에 이를 수 있습니다.
- 관리 방법: 초기 단계에서는 약물로 진행을 늦출 수 있지만, 진행된 백내장은 수술적 제거가 필요할 수 있습니다. 조기 발견과 적절한 치료가 중요합

안검종양

- 설명: 안검(눈꺼풀)에 발생하는 종양으로, 양성 또는 악성일 수 있습니다. 종양의 크기나 위치에 따라 눈에 불편함이나 시력 저하를 일으킬 수 있습
- 관리 방법: 종양의 성질을 파악하기 위해 조직 검사가 필요할 수 있습니다. 작은 양성 종양은 주기적인 관찰로 충분할 수 있으나, 악성이거나 크기가 커서 시력에 영향을 줄 경우 수술적 제거가 필요할 수 있습니다.

결막염, 궤양성각막질환, 색소침착성각막염 (확률 2.0%~3.0%)

결막염

- 설명: 눈의 결막(눈물이나 이물질을 몸 밖으로 배출하는 역할을 하는 투명한 막)에 생기는 염증입니다. 바이러스, 박테리아, 알레르기가 일반적인
- 관리 방법: 원인에 따라 적절한 약물 치료가 필요합니다. 청결한 관리와 함께, 알레르기가 원인일 경우 알레르겐을 피하는 것이 중요합니다.

후속조치 ● 모델적용 및 배포 모바일 어플리케이션

0

진단 질환 확대

성능 최적화

안구 질병 예측 모델의 결과와 성과를 분석 후, 웹 어플리케이션의 사용자 피드백을 통해 추가적인 성능 향상을 위한 방향을 설정.

사용자 스트림릿 인터페이스 UI 개선:

보다 직관적이고 사용자 친화적으로 개선. 더 나은 레이아웃 구현, 대화형 요소 추가, 전체적인 디자인 수준 향상

학습 데이터셋 확대:

성능 향상을 위한 데이터 샘플 수 강화

지속적인 개선 :

앱 사용자의 데이터 수집 기반으로 더 나은 솔루션을 제공. 데이터 그래프, 가능성, 치유 방안 등

학습 모델 사전 검토 부족:

이미지 학습 모델에 대한 다양한 검토 및 사전 탐색 부족

참고. 사용기술(Tool), 자료출처

반려견의 안구 질환을 분류하는 효과적인 방법에 관한 연구

<u>논문2</u>

CNN-based diagnosis models for canine ulcerative keratitis

0

참고 데이터

- <u>GitHub - SeoultechCapstonDesignTeam4/PetKeeper_DeepLearning</u>

