Homework 9

Fall 2016, Math 107, Prof. Adam Loy

Due Wednesday, November 16 at the beginning of class

Instructions

Please complete your homework in this R markdown file. When you are done, please knit the document to Word and print a hard copy for submission. Make sure to change the author: so that you get credit for your work!

The below code chunk loads all of the necessary R packages.

```
library(ggplot2)
library(mosaic)
```

Problem 1

An independent random sample is selected from an approximately normal population with unknown standard deviation. Find the degrees of freedom and use R to find the critical t-value (t^*) for the given sample size and confidence level.

Part a.

```
n=6, \mathrm{CL}=90\%
```

INSERT YOUR CODE HERE

Part b.

```
n = 21, CL = 98\%
```

```
# INSERT YOUR CODE HERE
```

Part c.

```
n = 29,CL = 95\%
```

INSERT YOUR CODE HERE

Part d.

```
n = 12,CL = 99\%
```

INSERT YOUR CODE HERE

Problem 2

An independent random sample is selected from an approximately normal population with an unknown standard deviation. Find the p-value for the given set of hypotheses and T test statistic. Also determine if the null hypothesis would be rejected at $\alpha = 0.05$.

Part a.

```
H_A: \mu > \mu_0, n = 11, T = 1.91
```

INSERT YOUR CODE HERE

Write your answer here, replacing this text.

Part b.

```
H_A: \mu < \mu_0, n = 17, T = -3.45
```

INSERT YOUR CODE HERE

Write your answer here, replacing this text.

Part c.

 $H_A: \mu \neq \mu_0, n = 7, T = 0.83$

INSERT YOUR CODE HERE

Write your answer here, replacing this text.

Part d.

 $H_A: \mu > \mu_0, n = 28, T = 2.13$

INSERT YOUR CODE HERE

Write your answer here, replacing this text.

Problem 3

Researchers interested in lead exposure due to car exhaust sampled the blood of 52 police officers subjected to constant inhalation of automobile exhaust fumes while working traffic enforcement in a primarily urban environment. The blood samples of these officers had an average lead concentration of 109.4 μ g/l and a SD of 36.4 μ g/l; a previous study of individuals from a nearby suburb, with no history of exposure, found an average blood level concentration of 35 μ g/l.¹

The data set leadexposure.csv contains the measured lead concentration found in the blood samples.

First, run the below code chunk to load the leadexposure.csv data set.

lead <- read.csv("data/leadexposure.csv")</pre>

Part a.

Write down the hypotheses that would be appropriate for testing if the police officers appear to have been exposed to a higher concentration of lead.

Write your answer here, replacing this text.

 $^{^{1}}$ WI Mortada et al. "Study of lead exposure from automobile exhaust as a risk for nephrotoxicity among traffic policemen." In: *American journal of nephrology* 21.4 (2000), pp. 274–279.

Part b.

Explicitly state and check the conditions/assumptions necessary for inference on these data.

INSERT YOUR CODE HERE

Write your answer here, replacing this text.

Part c.

Test the hypothesis that the downtown police officers have a higher lead exposure than the group in the previous study. Interpret your results in context.

INSERT YOUR CODE HERE

Write your answer here, replacing this text.

Part d.

Based on your preceding result, without performing a calculation, would a 99% confidence interval for the average blood concentration level of police officers contain 35 μ g/l?

Write your answer here, replacing this text.

Part e.

Verify your answer to part (d) by constructing a 99% confidence interval for the average blood concentration level of police officers. Provide an interpretation of this interval in the context of the problem.

INSERT YOUR CODE HERE

Write your answer here, replacing this text.