TopAL - Tópicos de Álgebra Linear Lista 6

1. Seja $A\in\mathbb{C}^{m\times n}$. Mostre que se $Q\in\mathbb{C}^{m\times m}$ e $Z\in\mathbb{C}^{n\times n}$ são matrizes unitárias, então

$$||QAZ||_2 = ||A||_2$$

e

$$||QAZ||_F = ||A||_F$$
.

2. Encontre os autovalores e autovetores dos seguintes operadores:

(i)
$$T \in \mathcal{L}(\mathbb{C}^3)$$
, $T(x, y, z) = (2x + 2y + 3z, 3x + 2y + 2z, 3x + 3y + z)$.

(ii)
$$T \in \mathcal{L}(\mathbb{C}^2)$$
, $T(x,y) = (ax + by, bx + cy)$.

(iii)
$$T \in \mathcal{L}(\mathbb{C}^2)$$
, $T(x,y) = (ax + by, -bx + cy)$.

(iv)
$$T \in \mathcal{L}(C(\mathbb{R})), (Tf)(t) = tf(t).$$

(v)
$$T \in \mathcal{L}(\mathbb{K}^{\infty}), T(\xi_1, \xi_2, \dots) = (\xi_2, \xi_3, \dots).$$

(vi)
$$T \in \mathcal{L}(C(\mathbb{R})), (Tf)(t) = \int_0^t f(s) ds.$$

- 3. Mostre que uma matriz unitária triangular é diagonal.
- 4. Encontre o polinômio característico das transformações identidade e nula de dimensão n.
- 5. Mostre que se λ é autovalor da matriz $A \in \mathbb{C}^{m \times n}$, então existe $y \in \mathbb{C}^m$ não-nulo tal que $y^*A = \lambda y^*$.
- 6. Mostre que $\lambda_1, \ldots, \lambda_k$ são autovalores distintos de um operador, e v_1, \ldots, v_k são autovetores associados, então $\{v_1, \ldots, v_k\}$ é linearmente independente. Mostre ainda que, se o operador é auto-adjunto, então $\{v_1, \ldots, v_k\}$ é um conjunto ortogonal.
- 7. Sejam $A \in B$ matriz n por n. Mostre que se (I AB) é inversível, então (I BA) também é, e

$$(I - BA)^{-1} = I + B(I - AB)^{-1}A.$$

- 8. Mostre que se $T \in \mathbb{C}^{n \times n}$ é triangular e normal, então T é diagonal.
- 9. Mostre que se $A \in \mathbb{C}^{m \times n}$ e $B \in \mathbb{C}^{n \times m}$ com $m \geq n$, então

$$\lambda(AB) = \lambda(BA) \cup \{\underbrace{0, \dots, 0}_{m-n}\}.$$

10. Mostre que se a matriz R decomposta em blocos,

$$R = \left[\begin{array}{cc} R_{11} & R_{12} \\ 0 & R_{22} \end{array} \right],$$

é normal e $\lambda(R_{11}) \cap \lambda(R_{22}) = \emptyset$, então $R_{12} = 0$.

11. Mostre que os autovalores de um operador auto-adjunto são reais. Como são os autovalores de um operador T tal que $T^* = -T$?

- 12. Seja $A \in \mathbb{C}^{m \times n}$ e $A = U \Sigma V^*$ sua decomposição SVD, com U e V unitárias de dimensão apropriada, e $\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0), \ \sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_r > 0$. Mostre que,
 - (i) posto(A) = r.
 - (ii) $Nu(A) = [v_{r+1}, \dots, v_n].$
 - (iii) $Im(A) = [u_1, \dots, u_r].$
 - (iv) $Nu(A^*) = [u_{r+1}, \dots, u_m].$
 - (v) $\text{Im}(A^*) = [v_1, \dots, v_r].$
 - (vi) $A = \sum_{i=1}^{r} \sigma_i u_i v_i^*$.
 - (vii) $||A||_2 = \sigma_1$.
 - $\text{(viii)} \ \min_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2} = \sigma_n \qquad (m \ge n).$
 - (ix) Se A é real, $\sigma_1 = \max_{y \in \mathbb{R}^m, x \in \mathbb{R}^n} \frac{y^T A x}{\|x\|_2 \|y\|_2}$.
- 13. Mostre que se $A \in \mathbb{R}^{m \times n}$ tem posto n, então $\left\|A(A^TA)^{-1}A^T\right\|_2 = 1$.
- 14. Seja V um espaço vetorial com produto interno, e T um operador linear auto-adjunto definido positivo, isto é,

$$\langle Tv, v \rangle > 0, \quad \forall v \in V, v \neq 0.$$

Mostre que, se T tem autovalores, eles são positivos.

15. Encontre uma decomposição em valores singulares para uma matriz ortogonal.