
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Mon Oct 15 13:42:33 EDT 2007

Validated By CRFValidator v 1.0.3

Application No: 10592922 Version No: 1.1

Input Set:

Output Set:

Started: 2007-10-15 13:41:37.604

Finished: 2007-10-15 13:41:39.203

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 599 ms

Total Warnings: 65

Total Errors: 0

No. of SeqIDs Defined: 67

Actual SeqID Count: 67

Err	or code	Error Description										
W	402	Undefined organism found in <213> in SEQ ID (3)										
W	402	Undefined organism found in <213> in SEQ ID (4)										
W	213	Artificial or Unknown found in <213> in SEQ ID (5)										
W	213	Artificial or Unknown found in <213> in SEQ ID (6)										
W	213	Artificial or Unknown found in <213> in SEQ ID (7)										
W	213	Artificial or Unknown found in <213> in SEQ ID (8)										
W	213	Artificial or Unknown found in <213> in SEQ ID (9)										
W	213	Artificial or Unknown found in <213> in SEQ ID (10)										
W	213	Artificial or Unknown found in <213> in SEQ ID (11)										
W	213	Artificial or Unknown found in <213> in SEQ ID (12)										
W	213	Artificial or Unknown found in <213> in SEQ ID (13)										
W	213	Artificial or Unknown found in <213> in SEQ ID (14)										
W	213	Artificial or Unknown found in <213> in SEQ ID (15)										
W	213	Artificial or Unknown found in <213> in SEQ ID (16)										
W	213	Artificial or Unknown found in <213> in SEQ ID (17)										
W	213	Artificial or Unknown found in <213> in SEQ ID (18)										
W	213	Artificial or Unknown found in <213> in SEQ ID (19)										
W	213	Artificial or Unknown found in <213> in SEQ ID (20)										
W	213	Artificial or Unknown found in <213> in SEQ ID (21)										
W	213	Artificial or Unknown found in <213> in SEQ ID (22)										

Input Set:

Output Set:

Started: 2007-10-15 13:41:37.604

Finished: 2007-10-15 13:41:39.203

Elapsed: 0 hr(s) 0 min(s) 1 sec(s) 599 ms

Total Warnings: 65

Total Errors: 0

No. of SeqIDs Defined: 67

Actual SeqID Count: 67

Err	or code	Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (23)
W	213	Artificial or Unknown found in <213> in SEQ ID (24) This error has occured more than 20 times, will not be displayed

SEQUENCE LISTING

<110>		ER, Gregory	_				
	WALDE	ER, Kenneth,	, Russell				
		ASKIS, James LLAN, Janine					
	DAIL	ES, Lyndal,	Jane				
<120>	LIG	ANDS OF THE	MOLECULE F	IT (AGT-121)	AND THEIR	PHARMACEUTICAL	USE
<130>	DAVI	221.003APC					
<140>	1059	2922					
<141>	2006	5-09-14					
<150>	PCT/	'AU2005/0003	372				
<151>	2005	5-03-16					
<150>	US 6	50/553 , 823					
		1-03-16					
<160>	67						
<170>	Pate	entIn versio	on 3.1				
<210>	1						
<211>	6317	7					
<212>	DNA						
<213>	Psam	nmomys obesi	ıs				
<400>	1						
	_	ggaaattaag	gaatgcaatt	ctgccaccat	gatggaagga	ctgaaaaaac	60
gtacaa	aggaa	ggcctttgga	atacggaaga	aagaaaaaga	cactgactct	acaggeteae	120
cagato	cgaga	tggaatgcag	cccagcccac	acgagctccc	ctaccatagc	aaagcagagt	180
gtgcco	cgaga	aggagggaac	aaagcttcga	agaaaagcaa	tggggcacca	aatggatttt	240
atgcgg	gaaat	tgattgggaa	agatataact	cacctgagct	ggatgaagaa	ggttacagca	300
tcagad	cctga	ggaaccaggc	tctaccaaag	gaaagcactt	ttattcttca	agtgaatccg	360
aagago	gagga	agaatcgcac	aagaagttca	atatcaagat	taaacccttg	cagtccaagg	420
acatco	cttaa	gaatgctgca	acagtagacg	agctgaaggc	ttccataggc	aacattgcac	480
tttccc	ccttc	gcctgtgagg	aaaagtccga	ggcgcagccc	gggtgcaatt	aaaaggaact	540
tatcca	agtga	agaagtcgca	agacccaggc	gttccacccc	aactccagaa	cttacaagca	600
agaago	cctct	ggacgacact	ctggcccttg	ctccctctt	tggcccaccg	ttagaatctg	660
cttttç	gatgg	acacaagacg	gaagttcttt	tagatcagcc	tgagatatgg	ggttcaggcc	720

aaccagttaa cccaagcatg gagtcaccaa agctagcaag accttttccc actggaaccc 780

ctccacctct gcctccaaaa	actgtaccag	ccaccccgcc	tcggacaggc	tcccccttaa	840
cagtggcgac aggaaatgac	caggcagcca	cagaggccaa	aattgagaaa	ctaccatcca	900
tcagtgacct ggacagcatt	tttggccccg	tgttgtcccc	caagtctgtt	gctgttaata	960
ctgaggagac gtgggtccat	ttctctgatg	cateceegga	acatgttact	ccagagttga	1020
ctccaaggga aaaggtggtg	accccaccag	ctgcatcaga	catcccagct	gactccccaa	1080
ctccaggccc gcctggcccc	ccaggctcgg	caggtccccc	agggcctcct	ggtcctcgca	1140
atgtaccatc tccgctcaat	ttagaagaag	tccagaagaa	agtcgctgag	cagaccttca	1200
ttaaagatga ttacttagaa	acactctcat	ctcctaaaga	gtgtgggttg	ggacagagag	1260
caactccacc tcccccacca	ccacccacct	acaggactgt	ggtttcgtcc	cccggacctg	1320
gctcgggcag tggtacgggg	accgccagtg	gtgcatcgtc	ccctgctcgg	ccagccaccc	1380
ccttagttcc ttgcagctgc	tccactccgc	ctccacctcc	tccccggcct	ccatcccggc	1440
caaagctacc tccaggaaag	cctggagttg	gagacgtgtc	cagacctttt	agcccaccca	1500
tacactecte cagecetect	ccaatagcac	ccttagcccg	ggctgaaagc	acttcttcaa	1560
tatcatcaac caattccctg	agcgcagcca	ccactcccac	agttgagaat	gaacagsctt	1620
ccctcgtttg gtttgacaga	ggaaagtttt	atttgacttt	tgaaggttct	tccaggggac	1680
ccagtectet aactatgggg	gcccaggaca	ccctcccggt	tgcagcagca	ttcacagaaa	1740
ctgtcaatgc ctacttcaaa	ggagcagatc	caagcaaatg	cattgttaag	atcacgggag	1800
aaatggtgtt gteettteet	gctggcatca	ccagacactt	tgccaacaac	ccatccccag	1860
ctgctctgac ttttcgagtg	ataaattcca	gcaggttaga	gcacgtcctg	ccgaaccccc	1920
agctcctctg ctgcgataac	acacaaaatg	atgccaatac	caaggaattc	tgggtaaaca	1980
tgccaaattt gatgacccac	ctgaagaagg	tctctgaaca	aaaaccccag	gctacatatt	2040
acaatgtgga catgctcaag	tatcaggtgt	cagcccaggg	cattcagtcc	acacctctga	2100
acttggcggt gaactggcgc	tgtgagcctt	ccagcactga	cctgcgcata	gattataagt	2160
acaacacgga tgccatgtcc	accgcagtgg	cccttaacaa	cgtgcagttc	ctggtcccca	2220
ttgatggagg agtgaccaag	ctccaggctg	tccttcctcc	agcagtctgg	aatgctgaac	2280
aacaaagaat attatggaag	attcctgata	tctcccagaa	gtcagaaaat	ggaggcgtag	2340
gttetttaet ggeaagattt	caattagccg	aaggcccaag	caaaccttcc	ccactggtcg	2400
tgcagttcac gagtgaaggg	agcactctgt	ctggctgcga	cattgagctt	gtcggagcag	2460
ggtacgggtt ttcactcatc	aagaagaggt	ttgctgcagg	aaaatacttg	gccgataact	2520

aataaaatgt	catgcaagga	ttttgaagat	ccatgtcctg	gagaactgtt	gtctgagaga	2580
catattttaa	tctggtttga	ggaaaacaaa	ccaaccgatg	tctgtacgtg	ggctctgtca	2640
gctggaaggt	cccggctttc	agccgtgatt	tcccacaccc	agtacaagga	ggatcagttc	2700
tacagtactt	acttctaggt	gtactattgt	taatggtttt	aaaatgtaat	tattgtattt	2760
gtaaactgta	ccttcattcc	agtaaggcag	ttagacacct	gagttttagc	tttttttcc	2820
attcctgaaa	cggatgtaat	ttaaactgcg	gtatgtaaat	ttaatagtag	tactgtcgaa	2880
tggcacaatg	cttacagaga	tacagtgcat	tttgtcaata	tataaaattt	aaatataatg	2940
ttgatagtta	ccataaaggg	ggtgccacac	atcaagaacc	ttaaatggaa	ccagaaacaa	3000
gcaagcaaac	aaacaaacaa	acaaacaaaa	ccttactttt	cttcactcct	tattacattt	3060
tcctctagag	ctaaagaaac	ttctagcttc	ggtttagtgg	gttaaattca	gaaactattt	3120
cagaaaaaaa	aaaaaattct	gaagttacag	catattcaaa	gagaagcatt	aattaccact	3180
tttttaaaag	ctttttttc	aaaccgcaaa	tttcataaaa	atgcaaactg	tgtaaacagg	3240
gcctcttatt	tttataactt	gtgtaaaaag	ggaaaatcaa	ttcatattta	aagtttaagt	3300
agtattaaat	tatatccaag	agtgaagagg	atgttgaaat	cttacctgac	cccatgcccc	3360
ttctttgcag	tttagcaaat	gttgagattg	ctaaatcatc	agattaaagc	caacttgatt	3420
tttaaagttt	caagactttc	tgaagctgaa	ctggttaaaa	cttttgcaca	attgcttgga	3480
acggagggg	aggggcctct	ctggtccagc	acaggtacct	tgtttcttcc	ctactcacaa	3540
gaatcaaaac	aatgaaagtc	aagaaccaca	gagggggaa	attagttccc	tgttcagtcc	3600
aaaaggagaa	ctttaaactt	atcatttacg	tctttgggga	aggaagaaat	aagctttata	3660
agtgaaatcc	tattcacctt	gttgtcctat	gaatgttttc	ggggtgactt	taagattcat	3720
tgtatacatg	tgcgagtctc	tgctattctt	ggggagttga	aagcagagcc	aggccagtgg	3780
ccttgaagtt	cagtaaatgc	cacagttctg	gggcaaaggt	aggcatgagg	gttctgcccc	3840
tcagcacagg	aatcagagca	gtgtcttgta	aggtctaaag	attaagtctt	ccagtaagcc	3900
acaagttatt	ttgtaacaga	gttggggagt	tttggcactc	gctgctgact	ttcattttgt	3960
atccactcaa	atggagtctt	caactctttt	caactttaga	atcaaattaa	tttttttt	4020
tttttttt	tttttacaca	aggtttactc	tgtgtaactg	tcctggatgt	tctggaactc	4080
tttttgtaga	ccaggctggc	ctcgaactca	gagagatcca	cctgcctgtg	ctccccaagt	4140
gctgggatta	aaggcgtgtg	ccaccatgcc	tggcttagat	taaatttttt	aagtcttact	4200

tcaccagtga gattgtgatt ggcagttgtt tcgagagagc tttgtagctt aatcta	tgtt 4260
ctcttcaatc aatgcttgct accaaaagaa tgtccaaaat gatctatttt tcctgg	gaac 4320
aattcatcta tttaaatagg ctcttgccta gttccccaaa gcagcctgtc tttgaa	ggtt 4380
tttttgaaca aaataatttt ttcacaaaaa gtttggtttt gaaatcaaaa tagagaa	aata 4440
aaatgtaaat tttaaatcta atggaacatg aggaaatgaa aaaacttaag ccaatg	gaga 4500
gtaaaagcag aaaaaaatga aacttaccta gaatgtgatt atattatgtt tttaag	tagt 4560
caattcatgg aaaaatattg aatattaaca caaagcatat taaaaatatg taaata	ttac 4620
tgtttctcat gtctttctct ttatatctta ttttatatag ttttagaatg aattgg	tcat 4680
taaatacagt gtttctttcc aaagaataat tttgttgata ttgtaaaaat gtaatt	aaag 4740
atagagactt gaatagtctc taacattatc caaatgtttc taggaaccaa attcaa	agct 4800
gtgaagaaag cttgcaatcc ctgaattggc ttttgtgaaa tggaatgacg gtgggt	aatc 4860
tcaaaattca gacttgaata gtcagagctg aagtggggaa tgggtggttc cttctg	gttc 4920
agaaaatagg tcaaataaca gcatttgctc gcatcaggga tggagatgtt ggtgat	gttt 4980
ggttttactc tcgcaggctt tcgtctcctg ttgaaggtgt atctgtagcc cagtgg	gata 5040
agagttcatg ttctgagatg tggtcctaga caaggcaggc aaggtttcag tcatca	atac 5100
ctatcaggtc aggttccctt ttgtctatac aaaatgggtt agctcatagc cagatg	gttt 5160
gcaggacagt gagctaaatt aggacaagat tetggttage caaagagetg ttteet	aagc 5220
actctgattt ttttttaaag ctgatagaaa gtgtaaatgt tctattttga cgacat	ggaa 5280
agtatgtttt cctcttcaaa taaatccctt atttttatga aattttcaaa aataaa	ttct 5340
tgtttaaaat agtctgaatg ttatcatagt tggaacttgg caattactaa tttgaa	attc 5400
tatgagatgt atctccagct aaaatggcaa ttccctgtat gctatctggg gctcag	ttta 5460
cctctaagga agactgtcag agtgcaaatg gttttgagtg acgggaaagt caaagg	gcaa 5520
atgtttgtgc ttttttcttt ttctgtctta tatacttctt cttggtctca gaatgc	aaag 5580
tatcagagee atagttaeae acattteeae ttttaaeget tettttgaag gaageae	gatc 5640
cacttttgcc ccgccactca tgcctgctgt gcagactcag acgagtccct gccctc	ttca 5700
cgcctttggg gtgagagggg agccatatgt aagtagtttt caagcttttc ttaatg	ggac 5760
ttttcttttt ctaataaaat catgcctgga atcctgtaaa gattgttgcc tggctg	tgaa 5820
ggggcttctc cagatcctga aatatagcat cacaatacgt aaatgactcc cgatgg	atct 5880
cccagctctg aagacttgct cttctacttc acatgtgtag ccacgacgat cagctg	gcac 5940

acagtacaat	tagctgtgta	gtgagtgctc	cccagctatc	agtcatgaaa	catatcactt	6000
tgctcaacct	gtttttaaaa	aagctccaaa	atggtaaaaa	tgcttttcag	tctttgtttt	6060
cccaataatg	gtattgaggc	ctaagctgat	taacttcccc	caaagtggta	ccacagctgg	6120
taacgacccc	aatgatcctg	aaaaaaatgg	aatgagtacc	ttgctgtttc	rtttagttya	6180
ttttgggaaa	ataatccatt	tgaatgtcaa	gataaaaagg	caccaggaaa	agtcctcatt	6240
ggaaggatta	aagatgagcc	tggtaagatg	ttaagatgta	agatgttaag	atgtgttact	6300
gtaaaaaaaa	aaagctt					6317

<210> 2

<211> 827

<212> PRT

<213> Psammomys obesus

<400> 2

Met Met Glu Gly Leu Lys Lys Arg Thr Arg Lys Ala Phe Gly Ile Arg $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15 \hspace{1.5cm} 15$

Lys Lys Glu Lys Asp Thr Asp Ser Thr Gly Ser Pro Asp Arg Asp Gly 20 25 30

Met Gln Pro Ser Pro His Glu Leu Pro Tyr His Ser Lys Ala Glu Cys 35 40 45

Ala Arg Glu Gly Gly Asn Lys Ala Ser Lys Lys Ser Asn Gly Ala Pro 50 55 60

Asn Gly Phe Tyr Ala Glu Ile Asp Trp Glu Arg Tyr Asn Ser Pro Glu 65 70 75 80

Leu Asp Glu Glu Gly Tyr Ser Ile Arg Pro Glu Glu Pro Gly Ser Thr 85 90 95

Lys Gly Lys His Phe Tyr Ser Ser Ser Glu Ser Glu Glu Glu Glu Glu 100 \$105\$

Ser His Lys Lys Phe Asn Ile Lys Ile Lys Pro Leu Gln Ser Lys Asp 115 120 125

Ile Leu Lys Asn Ala Ala Thr Val Asp Glu Leu Lys Ala Ser Ile Gly 130 135 140

Asn Ile 145	Ala L	eu Ser	Pro 150	Ser	Pro	Val	Arg	Lys 155	Ser	Pro	Arg	Arg	Ser 160
Pro Gly	Ala I	le Lys 165	Arg	Asn	Leu	Ser	Ser 170	Glu	Glu	Val	Ala	Arg 175	Pro
Arg Arg		hr Pro 80	Thr	Pro	Glu	Leu 185	Thr	Ser	Lys	Lys	Pro 190	Leu	Asp
Asp Thr	Leu A 195	la Leu	Ala	Pro	Leu 200	Phe	Gly	Pro	Pro	Leu 205	Glu	Ser	Ala
Phe Asp 210	Gly H	is Lys		Glu 215	Val	Leu	Leu	Asp	Gln 220	Pro	Glu	Ile	Trp
Gly Ser 225	Gly G	ln Pro	Val 230	Asn	Pro	Ser	Met	Glu 235	Ser	Pro	Lys	Leu	Ala 240
Arg Pro	Phe P	ro Thr 245	Gly	Thr	Pro	Pro	Pro 250	Leu	Pro	Pro	Lys	Thr 255	Val
Pro Ala		ro Pro 60	Arg	Thr	Gly	Ser 265	Pro	Leu	Thr	Val	Ala 270	Thr	Gly
Asn Asp	Gln A 275	la Ala	Thr	Glu	Ala 280	Lys	Ile	Glu	Lys	Leu 285	Pro	Ser	Ile
Ser Asp 290	Leu A	sp Ser		Phe 295	Gly	Pro	Val	Leu	Ser 300	Pro	Lys	Ser	Val
Ala Val	Asn T	hr Glu	Glu 310	Thr	Trp	Val	His	Phe 315	Ser	Asp	Ala	Ser	Pro 320
Glu His	Val T	hr Pro 325	Glu	Leu	Thr	Pro	Arg 330	Glu	Lys	Val	Val	Thr 335	Pro
Pro Ala		er Asp 40	Ile	Pro	Ala	Asp 345	Ser	Pro	Thr	Pro	Gly 350	Pro	Pro
Gly Pro	Pro G 355	ly Ser	Ala	Gly	Pro 360	Pro	Gly	Pro	Pro	Gly 365	Pro	Arg	Asn

Val	Pro 370	Ser	Pro	Leu	Asn	Leu 375	Glu	Glu	Val	Gln	Lys 380	Lys	Val	Ala	Glu
Gln 385	Thr	Phe	Ile	Lys	Asp 390	Asp	Tyr	Leu	Glu	Thr 395	Leu	Ser	Ser	Pro	Lys 400
Glu	Суз	Gly	Leu	Gly 405	Gln	Arg	Ala	Thr	Pro 410	Pro	Pro	Pro	Pro	Pro 415	Pro
Thr	Tyr	Arg	Thr 420	Val	Val	Ser	Ser	Pro 425	Gly	Pro	Gly	Ser	Gly 430	Ser	Gly
Thr	Gly	Thr 435	Ala	Ser	Gly	Ala	Ser 440	Ser	Pro	Ala	Arg	Pro 445	Ala	Thr	Pro
Leu	Val 450	Pro	Cys	Ser	Cys	Ser 455	Thr	Pro	Pro	Pro	Pro 460	Pro	Pro	Arg	Pro
Pro 465	Ser	Arg	Pro	Lys	Leu 470	Pro	Pro	Gly	Lys	Pro 475	Gly	Val	Gly	Asp	Val 480
Ser	Arg	Pro	Phe	Ser 485	Pro	Pro	Ile	His	Ser 490	Ser	Ser	Pro	Pro	Pro 495	Ile
Ala	Pro	Leu	Ala 500	Arg	Ala	Glu	Ser	Thr 505	Ser	Ser	Ile	Ser	Ser 510	Thr	Asn
Ser	Leu	Ser 515	Ala	Ala	Thr	Thr	Pro 520	Thr	Val	Glu	Asn	Glu 525	Gln	Ala	Ser
Leu	Val 530	Trp	Phe	Asp	Arg	Gly 535	Lys	Phe	Tyr	Leu	Thr 540	Phe	Glu	Gly	Ser
Ser 545	Arg	Gly	Pro	Ser	Pro 550	Leu	Thr	Met	Gly	Ala 555	Gln	Asp	Thr	Leu	Pro 560
Val	Ala	Ala	Ala	Phe 565	Thr	Glu	Thr	Val	Asn 570	Ala	Tyr	Phe	Lys	Gly 575	Ala
Asp	Pro	Ser	Lys 580	Cys	Ile	Val	Lys	Ile 585	Thr	Gly	Glu	Met	Val 590	Leu	Ser

Phe Pro	Ala 595	Gly	Ile	Thr	Arg	His 600	Phe	Ala	Asn	Asn	Pro 605	Ser	Pro	Ala
Ala Leu 610	Thr	Phe	Arg	Val	Ile 615	Asn	Ser	Ser	Arg	Leu 620	Glu	His	Val	Leu
Pro Asn 625	Pro	Gln	Leu	Leu 630	Суз	Суз	Asp	Asn	Thr 635	Gln	Asn	Asp	Ala	Asn 640
Thr Lys	Glu	Phe	Trp 645	Val	Asn	Met	Pro	Asn 650	Leu	Met	Thr	His	Leu 655	Lys
Lys Val	Ser	Glu 660	Gln	Lys	Pro	Gln	Ala 665	Thr	Tyr	Tyr	Asn	Val 670	Asp	Met
Leu Lys	Tyr 675	Gln	Val	Ser	Ala	Gln 680	Gly	Ile	Gln	Ser	Thr 685	Pro	Leu	Asn
Leu Ala 690	Val	Asn	Trp	Arg	Cys 695	Glu	Pro	Ser	Ser	Thr 700	Asp	Leu	Arg	Ile
Asp Tyr 705	Lys	Tyr	Asn	Thr 710	Asp	Ala	Met	Ser	Thr 715	Ala	Val	Ala	Leu	Asn 720
Asn Val	Gln	Phe	Leu 725	Val	Pro	Ile	Asp	Gly 730	Gly	Val	Thr	Lys	Leu 735	Gln
Ala Val	Leu	Pro 740	Pro	Ala	Val	Trp	Asn 745	Ala	Glu	Gln	Gln	Arg 750	Ile	Leu
Trp Lys	755					760	_				765			_
Ser Leu 770					775					780				
Pro Leu 785	Val	Val	Gln	Phe 790	Thr	Ser	Glu	Gly	Ser 795	Thr	Leu	Ser	Gly	Cys 800
Asp Ile	Glu	Leu	Val 805	Gly	Ala	Gly	Tyr	Gly 810	Phe	Ser	Leu	Ile	Lys 815	Lys

820 825

<210> 3

<211> 499

<212> PRT

<213> Human

<400> 3

Met Met Glu Gly Leu Lys Lys Arg Thr Arg Lys Ala Phe Gly Ile Arg 1 $$ 5 $$ 10 $$ 15

Lys Lys Glu Lys Asp Thr Asp Ser Thr Gly Ser Pro Asp Arg Asp Gly
20 25 30

Met Gln Pro Ser Pro His Glu Leu Pro Tyr His Ser Lys Ala Glu Cys 35 40 45

Ala Arg Glu Gly Gly Lys Lys Ala Ser Lys Lys Ser Asn Gly Ala Pro 50 55 60

Asn Gly Phe Tyr Ala Glu Ile Asp Trp Glu Arg Tyr Asn Ser Pro Glu 65 70 75 80

Leu Asp Glu Glu Gly Tyr Ser Ile Arg Pro Glu Glu Pro Gly Ser Thr
85 90 95

Lys Gly Lys His Phe Tyr Ser Ser Ser Glu Ser Glu Glu Glu Glu Glu 100 \$105\$

Ser His Lys Lys Phe Asn Ile Lys Ile Lys Pro Leu Gln Ser Lys Asp 115 120 125

Ile Leu Lys Asn Ala Ala Thr Val Asp Glu Leu Lys Ala Ser Ile Gly 130 135 140

Asn Ile Ala Leu Ser Pro Ser Pro Val Arg Lys Ser Pro Arg Arg Ser 145 150 155 160

Pro Gly Ala Ile Lys Arg Asn Leu Ser Ser Glu Glu Val Ala Arg Pro 165 170 175

Arg Arg Ser Thr Pro Thr Pro Glu Leu Thr Ser Lys Lys Pro Leu Asp 180 185 190 Asp Thr Leu Ala Leu Ala Pro Leu Phe Gly Pro Pro Leu Glu Ser Ala 195 200 205

Phe Asp Gly His Lys Thr Glu Val Leu Leu Asp Gln Pro Glu Ile Trp 210 215 220

Arg Pro Phe Pro Thr Gly Thr Pro Pro Pro Leu Pro Pro Lys Thr Val