• OpenClassrooms Projet 7: DATA SCIENCE

Implémentez un modèle de scoring

INTRODUCTION

Data Scientist pour la banque "Prêt à dépenser"

Objectif : Catégoriser les demandes de prêt des nouveaux clients

SOMMAIRE

01

ANALYSE EXPLORATOIRE

Découverte du fichier de données

02

ENTRAINEMENT DES MODELES

Choix des modèles, de la métrique et de la technique d'échantillonnage

Présentation du dashboard Streamlit et de l'API FastAPI

ANALYSE EXPLORATOIRE

Découverte du jeu de données

DATAFRAME INITIAL

2 Dataframes :

- Train:

307 511 lignes et 122 colonnes

SK_ID_CURR	TARGET	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL A
100002	1	Cash loans	М	N	Υ	0	202500.0
100003	0	Cash loans	F	N	N	0	270000.0
100004	0	Revolving loans	М	Υ	Y	0	67500.0
100006	0	Cash loans	F	N	Υ	0	135000.0

- Target : 48 744 lignes et 121 colonnes

SK_ID_CURR	NAME_CONTRACT_TYPE	CODE_GENDER	FLAG_OWN_CAR	FLAG_OWN_REALTY	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT
100001	Cash loans	F	N	Y	0	135000.0	568800.0
100005	Cash loans	M	N	Y	0	99000.0	222768.0
100013	Cash loans	M	Y	Y	0	202500.0	663264.0
100028	Cash loans	F	N	Y	2	315000.0	1575000.0
100038	Cash loans	М	Y	N	1	180000.0	625500.0

ANALYSE EXPLORATOIRE

Dataframe: 307 511 lignes et 122 colonnes

Données	Données	
dupliquées	manquantes	
0	25% au total	

Colonnes utiles pour classification :

Corrélations positives

- DAYS_BIRTH
- DAYS_EMPLOYED
- REGION_RATING_CLIENT_W_CITY
- REGION_RATING_CLIENT
- NAME_INCOME_TYPE_Working
- DAYS_LAST_PHONE_CHANGE

Corrélations négatives

- EXT_SOURCE_3
- EXT_SOURCE_2
- EXT_SOURCE_1
- NAME_EDUCATION_TYPE_Higher education
- CODE_GENDER_F
- NAME_INCOME_TYPE_Pensioner

Préparation du dataframe

Gestion des anomalies

Label Encoding

Réduction de dimension

One-Hot Encoding

Color	Red	Yellow	Green
Red			
Red	1	0	0
Yellow	1	0	0
Green	0	1	0
Yellow	0	0	1

DATAFRAME FINAL

DAYS_BIRTH	DAYS_EMPLOYED	REGION_RATING_CLIENT_W_CITY	REGION_RATING_CLIENT	NAME_INCOME_TYPE_Working
-19241	-2329.0	2	2	1
-18064	-4469.0	2	2	1
-20038	-4458.0	2	2	1
-13976	-1866.0	2	2	1
-13040	-2191.0	2	2	1

48 744 lignes et 31 colonnes

VISUALISATION DE L'OBJECTIF

La variable 'TARGET' est fortement déséquilibrée

Métrique : Accuracy

ENTRAINEMENT DES MODELES

Choix des modèles, de la métrique et de la technique d'échantillonnage

PREMIERS RESULTATS

Précision	0.182	0	0.429
Rappel	0.010	0	0.005

Accuracy élevée

⇒ 90% en moyenne

 Précision et rappel très faibles

Mauvaise prédiction

TECHNIQUE D'ÉCHANTILLONNAGE

Under-sampling

Over -sampling

Class-Weight

CHOIX DE LA MÉTRIQUE

True Class

- Minimiser le taux de mauvais payeurs
- Maximiser le taux de bons payeurs

Choix de la métrique : F β -Score avec β = 3

RESULTATS Under-Sampling

RESULTATS SMOTE

0.482

0.084

RESULTATS CLASS-WEIGHT

MODELE CHOISI

Modèle	Under-sampling	SMOTE	Class-Weight
LGBM	0.464	0.115	0.447
Random Forest	0.462	0.084	0.002
Ridge	0.477	0.482	0.482

Ridge meilleur score mais LGBM meilleure interprétabilité

INTERPRETABILITE

LIME

SHAP

ENTRAINEMENT DE MODELE

```
my estimator = lqbm.LGBMClassifier(random state = 42)
my params = {
     'learning rate': [0.05, 0.1, 0.15],
     'n estimators': [50, 100, 150],
     'num leaves': [25, 31, 37], # large num leaves helps improve accuracy but might lead to over-fitting
    'boosting type' : ['gbdt', 'dart'], # for better accuracy -> try dart
    'objective' : ['binary', None],
     'max bin':[255, 510], # large max bin helps improve accuracy but might slow down training progress
     'random state' : [42],
    'colsample bytree' : [0.99, 1, 1.01],
     'subsample' : [0.9, 1.0]
 my gridsearch = GridSearchCV(estimator=my estimator, param grid=my params, scoring=my scorer, cv=cv)
 my gridsearch.fit(X resampled, y resampled)
GridSearchCV(cv=RepeatedKFold(n repeats=3, n splits=10, random state=42),
            estimator=LGBMClassifier(random_state=42),
            param grid={'boosting type': ['gbdt', 'dart'],
                         'colsample bytree': [0.99, 1, 1.01],
                         'learning rate': [0.05, 0.1, 0.15],
                         'max bin': [255, 510], 'n estimators': [50, 100, 150],
                         'num leaves': [25, 31, 37],
                         'objective': ['binary', None], 'random state': [42],
                         'subsample': [0.9, 1.0]},
            scoring=make scorer(fbeta score, beta=3))
```

FB-Score = 0.464

DASHBOARD ET API 03

Streamlit & FastAPI

STREAMLIT

http://localhost:8501/

FastAPI

http://127.0.0.1:8000/

CONCLUSION

- β =3 à confirmer
- + de caractéristiques exploitables
- Limité par l'interprétabilité

MERCI POUR VOTRE ATTENTION!