LECTURE NOTES

ANDREW

0.1 Lemma Let $\tau_+ = \inf\{t \geq 0 \mid X_t \neq X_0\}$ be the time of the first jump. Suppose $\{\tau_+ > 0\} > 0$. Then $\tau_+ \sim \operatorname{Exp}(\lambda)$ for some $\lambda > 0$.

Proof. Let $F(t) = \mathbb{P}\{\tau_+ > t\}$ be the distribution function for τ_+ . By the Markov property on X_t , we have

$$\mathbb{P}\{\tau_{+} > t + s \mid \tau_{+} > t\} = \mathbb{P}\{\tau_{+} > s\} = F(s).$$

Unraveling the conditional probability on the left, we find

$$F(s) = \frac{\mathbb{P}\{\tau_{+} > t + s \text{ and } \tau_{+} > t\}}{\mathbb{P}\{\tau_{+} > t\}} = \frac{F(t + s)}{F(t)}.$$

We then have that F(t+s) = F(t)F(s), and the only continuous solution to this equation is $F(t) = e^{-\lambda t}$ for some $\lambda > 0$.

To solve our problem with splitting and dying cells, we model it with a continuous time Markov chain with state space $\{1, 2, ..., N\}$ and generator G given by

$$G = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \dots & 0 \\ \mu & -\mu - \lambda & \lambda & 0 & 0 & \dots & 0 \\ 0 & 2\mu & -2\mu - 2\lambda & 2\lambda & 0 & \dots & 0 \\ 0 & 0 & 3\mu & -3\mu - 3\lambda & 3\lambda & \dots & 0 \\ \vdots & & & & \vdots \end{pmatrix}$$

Let $h(x) = \mathbb{P}^x \{ \tau_N < \tau_0 \}$ be the hitting probability. From the theorem on hitting probabilities, we know that

$$h(0) = 0$$

$$h(N) = 1$$

$$Gh(x) = 0 \quad \forall x \neq 0, N.$$

The last of these equations says

$$x\lambda(h(x+1) - h(x)) + x\mu(h(x-1) - h(x)) = 0$$

which rearranges into

$$h(x+1) - h(x) = \frac{\mu}{\lambda}(h(x) - h(x-1)).$$

Since h(1) - h(0) = h(1) by our boundary condition we can use this as the seed for this recurrence relation. We get

$$h(x+1) - h(x) = \left(\frac{\mu}{\lambda}\right)^x h(1),$$

Date: 2 November 2018.

so

$$h(x) = h(1) + \sum_{y=1}^{x-1} h(y+1) - h(y)$$

$$= h(1) \left\{ 1 + \sum_{y=1}^{x-1} \left(\frac{\mu}{\lambda}\right)^y \right\}$$

$$= h(1) \left(\frac{1 - \left(\frac{\mu}{\lambda}\right)^x}{1 - \frac{\mu}{\lambda}} \right).$$

Next we use the other boundary condition:

$$1 = h(N) = h(1) \left(\frac{1 - \left(\frac{\mu}{\lambda}\right)^N}{1 - \frac{\mu}{\lambda}} \right)$$

which gives

$$h(1) = \left\{ \frac{1 - \left(\frac{\mu}{\lambda}\right)^N}{1 - \frac{\mu}{\lambda}} \right\}^{-1},$$

and

$$h(x) = \frac{1 - \left(\frac{\mu}{\lambda}\right)^x}{1 - \left(\frac{\mu}{\lambda}\right)^N}.$$

This gives us the answer to our first question: what is the probability that a single mutation "grows?" This is answered by the value

$$h(1) = \frac{1 - \left(\frac{\mu}{\lambda}\right)}{1 - \left(\frac{\mu}{\lambda}\right)^N} \approx 1 - \frac{\mu}{\lambda} \text{ for large } N.$$

Stationary Distributions

0.2 Proposition Let $(X_t)_{t\geq 0}$ be a continuous time Markov chain with generator G on state space \mathcal{X} . Suppose that $G^T\pi=0$ for some probability distribution π on \mathcal{X} . Then

$$\mathbb{P}^{\pi}\{X_t = y\} = \pi(y).$$

The conditions on π above mean

$$\sum_{y \in \mathcal{X}} \pi(y) = 1, \quad \pi(y) \ge 0, \quad \sum_{y \in \mathcal{X}} \pi(y) G_{yx} = 0.$$

The notation \mathbb{P}^{π} means

$$|\pi\{X_t = y\} = \sum_{x \in \mathcal{X}} \pi(x) |^x \{X_t = y\}.$$

Such a distribution π is called a stationary distribution.

Proof. Let $f: \mathcal{X} \to \mathbb{R}$ be a function (thought of as a column vector) with $\sum_y \pi(y) f(y) < \infty$ (if we wished to generalize to a countable state space). Recall that

$$\mathbb{E}_{f(X_t)}^x = P_t f(x) = e^{tG} f(x).$$

Since $\pi G = 0$,

$$\pi P_t = \pi e^{tG} = \pi \sum_{n>0} \frac{t^n}{n!} G^n = \pi.$$

So,

$$\mathbb{E}_{f(X_t)}^{\pi} = \pi P_t f = \pi f = \sum_{x} \pi(x) f(x).$$

The statement of the proposition now follows from taking f to be the indicator of y:

$$f(x) = \begin{cases} 1 & x = y \\ 0 & x \neq y. \end{cases}$$

Fact. If
$$\pi$$
 is unique, then $P_t \to \pi$ as $t \to \infty$. That is, for all f, x , $\mathbb{E}^x_{f(X_t)} \to \sum_y \pi(y) f(y)$ as $t \to \infty$.

This can also be phrased as saying that X_t converges in distribution to π .