MAT 222 Linear Algebra Week 1 Lecture Notes 2

Murat Karaçayır

Akdeniz University
Department of Mathematics

13th February 2025

Matrices

 Now we define new instruments in order to handle linear systems in a systematic way.

Matrices

A matrix is a rectangular array of numbers. (By "number" we mean real number in this course, unless otherwise stated.)

Examples of matrices

- $A = \begin{bmatrix} 1 & 0 & \pi \\ \frac{\sqrt{2}}{5} & -\frac{2}{7} & 110 \end{bmatrix}$ is a matrix that has 2 rows and 3 columns. Each number inside A is called an entry. So A has 6 entries.
- Normal (round) brackets may also be used: $A = \begin{pmatrix} 1 & 0 & \pi \\ \frac{\sqrt{2}}{5} & -\frac{2}{7} & 110 \end{pmatrix}$.
- $B = \begin{bmatrix} 1 & e \\ 1 & \sin(0.5) \end{bmatrix}$ is a matrix that has 2 rows and 2 columns. B is said to be a square matrix.
- If a matrix has m rows and n columns, it is said to be of size $m \times n$. A is a 2×3 matrix and B is 2×2 .

Entries of a Matrix

- Entries of a matrix can be referred to by specifying their position within the matrix by two subscripts. Row position is specified first.
- For $A = \begin{bmatrix} 1 & 0 & \pi \\ \frac{\sqrt{2}}{5} & -\frac{2}{7} & 110 \end{bmatrix}$ we write $a_{1,1} = 1, a_{1,2} = 0, a_{2,3} = 110$ etc. (Capital letters may also be used: $A_{1,1}, A_{1,2}, \ldots$)
- A matrix may also be referred to by its general entry and size. $A = [a_{i,j}]_{2\times 3}$ or $A = [A_{i,j}]_{2\times 3}$ means "A is a "2 × 3 matrix."
- Occasionally it is useful to refer to submatrices of a matrix. For instance, the last two columns of A may be denoted by $A_{:,2:3}$. So $A_{:,2:3} = \begin{bmatrix} 0 & \pi \\ -\frac{2}{7} & 110 \end{bmatrix}$. This notation is not standard; it is mainly used in programming languages. This procedure is known as slicing a matrix.
- Slicing may be used to refer to individual columns and rows. For example, $A_{:,2} = \begin{bmatrix} 0 \\ -\frac{2}{7} \end{bmatrix}$ and $A_{1,:} = \begin{bmatrix} 1 & 0 & \pi \end{bmatrix}$.

Origins of Matrices

A matrix can come up in a wide variety of circumstances.

Example 1: Sales in a store

 An electronic device store may organize its weekly sales according to the product type and day of the week as follows:

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Computer	4	2	1	1	0	5	13
Printer	1	2	0	0	1	3	6
Owen	1	3	0	4	1	2	3

- In this table each row corresponds to a certain product type and each column to a certain day. So we have a 3×7 matrix.
- Note that entries in a specific row or column can be added to obtain the number of sales for a specific product or during a certain day. For example, the sum of the second row is 13, which is equal to the number of printer sales during the entire week.

Origins of Matrices

Example 2: Incidence matrix of a directed graph

- A directed graph is a set of vertices (corners) and directed edges that connect a pair of these vertices.
- Consider the below directed graph that has 4 vertices and 6 edges.

 The incidence matrix of the graph is defined as follows:

$$M_{j,k} = \begin{cases} 1, & \text{if edge } k \text{ leaves vertex } j \\ -1, & \text{if edge } k \text{ enters vertex } j \\ 0, & \text{otherwise} \end{cases}$$

- The incidence matrix uniquely determines the directed graph.
- The incidence matrix of the above directed graph is

$$M = \begin{bmatrix} 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & -1 & -1 \\ -1 & 0 & 0 & -1 & 0 & 1 \end{bmatrix}, \text{ which is } 4 \times 6.$$

Exercise: What is the sum of the entries of M? Is it a coincidence?

Origins of Matrices (Example 2 Continued)

• Exercise: Find the incidence matrix of the below directed graph.

• Exercise: Sketch the directed graph whose incidence matrix is given by

$$M = \begin{bmatrix} 1 & 0 & -1 & 1 \\ -1 & 1 & 0 & -1 \\ 0 & -1 & 1 & 0 \end{bmatrix}.$$

Exercise: Let A be an $m \times n$ matrix, where $m \ge 2$, whose entries are -1, 0 or 1 with sum of each column equal to 0. Is A certainly the incidence matrix of a directed graph? In other words, is there certainly a directed graph whose incidence matrix is A?

Matrix Operations

 The most basic operations on matrices are addition and scalar multiplication.

Matrix addition

If $A = [a_{i,j}]_{m \times n}$ and $B = [b_{i,j}]_{m \times n}$, then the matrix A + B is defined as the $m \times n$ matrix whose i, j entry is equal to $a_{i,j} + b_{i,j}$.

- In other words, we add the entries that are on the same position.
- Consider $A = \begin{bmatrix} 4 & 1 \\ -2 & 0 \\ 4 & 12 \end{bmatrix}$ and $B = \begin{bmatrix} -7 & 0 \\ \frac{3}{2} & -5 \\ -4 & 16 \end{bmatrix}$. Then we have

$$A+B=\begin{bmatrix} 4 & 1 \\ -2 & 0 \\ 4 & 12 \end{bmatrix}+\begin{bmatrix} -7 & 0 \\ \frac{3}{2} & -5 \\ -4 & 16 \end{bmatrix}=\begin{bmatrix} -3 & 1 \\ -\frac{1}{2} & -5 \\ 0 & 28 \end{bmatrix}.$$

• Note that only matrices having the same size can be added. For instance, if $C = \begin{bmatrix} 1 & 4 \\ -2 & 3 \end{bmatrix}$, then A + C is not defined.

Matrix Operations

Multiplication of a matrix by a scalar

Let A be an $m \times n$ matrix and c be a real number (called a scalar). Then cA, called the scalar multiple of A by c is the $m \times n$ matrix whose i, j entry is equal to c times $a_{i,j}$.

- For example, if $A = \begin{bmatrix} 4 & 1 \\ -2 & 0 \\ 4 & 12 \end{bmatrix}$, then $-3A = \begin{bmatrix} -12 & -3 \\ 6 & 0 \\ -12 & -36 \end{bmatrix}$.
- A common application of scalar multiplication is unit conversion. For example, if the matrix $D = \begin{bmatrix} 155 & 210 & 342 & 430 \end{bmatrix}$ consists of the distance (in miles) of a certain city to four distinct locations, then these distances can be converted to kilometers by scaling the matrix with 1.609 (approximate value). Distances in km are given by $(1.609)D = \begin{bmatrix} 249.395 & 337.89 & 550.278 & 691.87 \end{bmatrix}$.
- Exercise: Define the subtraction of two matrices and give an example.
- **Exercise:** Is scalar multiplication distributive over matrix addition? In other words, if A and B are two matrices of the same size and c is a scalar, is c(A + B) equal to cA + cB?

Vectors

Vectors

A matrix having a single row or a single column is called a vector.

- If a vector has only one row, it is called a row vector. $\mathbf{v} = \begin{bmatrix} 4 & \sqrt{17} & -\pi^2 \end{bmatrix}$ is a row vector of size 3.
- If a vector has only one column, it is called a column vector. $\mathbf{u} = \begin{bmatrix} -2 \\ 1 + \sqrt{5} \end{bmatrix} \text{ is a column vector of size 2.}$
- Since vectors are matrices, matrix operations are also defined for them.

• If
$$\mathbf{v}_1 = \begin{bmatrix} 4 \\ 2 \\ -1 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} -4 \\ 0 \\ 3 \end{bmatrix}$, then $\mathbf{v}_1 + \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$ and $5\mathbf{v}_1 = \begin{bmatrix} 20 \\ 10 \\ -5 \end{bmatrix}$.

Geometric interpretation of vectors

- Vectors having 2 or 3 entries have obvious geometric interpretations.
 Let us consider vectors in 2 dimensions for this purpose.
- Each column vector $\begin{bmatrix} a \\ b \end{bmatrix}$ can be associated with the point (a, b) in the 2-dimensional analytic plane \mathbb{R}^2 . (In physics it is useful to think of the vector $\begin{bmatrix} a \\ b \end{bmatrix}$ as the directed line segment that starts at the origin (0,0) and ends at the point (a,b).) See the figure below.

Geometric interpretation of vectors

 The idea of vectors as geometric objects can be easily extended to addition and scalar multiple of vectors.

Geometric view of vector addition

- The sum of two 2-dimensional vectors can be calculated using parallelogram rule: If u and v are represented by points in the plane, then u + v is the fourth vertex of the parallelogram whose three vertices are u, v and the origin.
- In the above figure^a, you see the addition of the vectors $\mathbf{u} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and

$$\mathbf{v} = egin{bmatrix} -6 \\ 1 \end{bmatrix}$$
 . The result is $\mathbf{u} + \mathbf{v} = egin{bmatrix} -4 \\ 3 \end{bmatrix}$.

^aThe figure is taken from Lay, Lay & Mcdonald, Linear Algebra, 9th Ed., page 26.

Geometric interpretation of vectors

Geometric view of scalar multiple of a vector

- If u is a vector, cu is a vector pointing to the same direction as u if c > 0 and to the opposite direction as u if c < 0.
 It is stretched (by a factor of c) version of u if |c| > 1 and a shrinked (by a factor of c) version of u if |c| < 1.
- In the above figure, we have $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. The figure shows $2\mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ and $-\frac{1}{2}\mathbf{u} = \begin{bmatrix} -1 \\ -1/2 \end{bmatrix}$. Note that $0\mathbf{u} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is the origin.

A New Geometric Interpretation of Linear Systems

- We have seen that a linear system of 2 unknowns can be seen as relative positions of two planar lines.
- Now we look at linear systems from a new perspective.

"Column picture" of linear systems

- Consider the system 2x y = 1x + y = 5
- We can write it in vector form as $\begin{bmatrix} 2x y \\ x + y \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$.
- Alternatively we can write $x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$.
- Literally we are trying to answer this question: "Which scalar multiple of the vector $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and which scalar multiple of the vector

$$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 add up to give the vector $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$?"

A New Geometric Interpretation of Linear Systems

"Column picture" of linear systems

- On the left you see the vectors $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ in blue. You also see the "desired" result $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$ in black.
- We want to "combine" u and v in such a way as to give the vector [1 5]
- Can you see the correct combination?
- It is x = 2, y = 3, which is the solution of the linear system. See the figure on the left.
 - As a result, we have $2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$.

Linear Combination of Vectors

Linear combination

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be n vectors of the same size and let a_1, a_2, \dots, a_n be scalars. Then

$$\mathbf{v} = \sum_{i=1}^n a_i \mathbf{v}_i = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_n \mathbf{v}_n$$

is a vector of the same size, known as a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$.

- Linear combination of vectors may be considered the most important operation in linear algebra.
- For example, if $\mathbf{u} = \begin{bmatrix} 3 & 0 & 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -2 & 1 & 5 \end{bmatrix}$, then $3\mathbf{u} 4\mathbf{v} = \begin{bmatrix} 17 & -4 & -14 \end{bmatrix}$.
- Similarly, if $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, then $\frac{1}{2}\mathbf{v}_1 1\mathbf{v}_2 + 4\mathbf{v}_3 = \begin{bmatrix} 6 \\ 5.5 \end{bmatrix}$.
- Exercise: Can you express all ordered triples (a, b, c) as a linear combination of u and v?

Linear Combination of Column Vectors

- We will put emphasis to linear combination of column vectors.
- We can generalize the "column picture"¹ idea to any linear system.

$$3a + b + 12c = 35$$

For example, consider the system

$$a + 5b + 4c = 28$$
.
 $2a + 6b + 0.5c = 27$

• It can be expressed as
$$a \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} + b \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix} + c \begin{bmatrix} 12 \\ 4 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 35 \\ 28 \\ 27 \end{bmatrix}$$
.

• So we are looking for the "correct" combination of $\begin{bmatrix} 3\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 1\\5\\6 \end{bmatrix}$ and

$$\begin{bmatrix} 12\\4\\0.5 \end{bmatrix} \text{ that gives the right-hand side } \begin{bmatrix} 35\\28\\27 \end{bmatrix}.$$

¹This expression is due to Gilbert Strang.

Matrix-Vector Product

Oclumn picture of linear systems gives rise to the following definition.

Matrix-vector product

Let *A* be a matrix whose columns are $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ and let $\mathbf{v} = \begin{bmatrix} c_2 \\ \vdots \\ c_n \end{bmatrix}$ be a column vector of size *n*. The matrix-vector product of *A* and \mathbf{v} is defined by

$$A\mathbf{v} = c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \ldots + c_n\mathbf{u}_n.$$

 $A\mathbf{v}$ is the linear combination of columns of A by the entries of \mathbf{v} in the same order.

• Let
$$A = \begin{bmatrix} 3 & -1 & 2 \\ \frac{1}{2} & 4 & -2 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$. Then

$$A\mathbf{v} = \begin{bmatrix} 3 & -1 & 2 \\ \frac{1}{2} & 4 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix} = 2 \begin{bmatrix} 3 \\ \frac{1}{2} \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 4 \end{bmatrix} + (-1) \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ 23 \end{bmatrix}.$$

Note that the number of columns of A should be equal to the size of the column vector v. Otherwise Av is not defined.

Matrix Representation of Linear Systems

Matrix-vector multiplication brings us to one of the central ideas in linear algebra:
 Every linear system can be represented by a matrix.

$$3x_1 + x_2 + 12x_3 = 35$$

For example, our previous system $x_1 + 5x_2 + 4x_3 = 28$ can be expressed by $2x_1 + 6x_2 + 0.5x_3 = 27$

$$x_1 \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 5 \\ 6 \end{bmatrix} + x_3 \begin{bmatrix} 12 \\ 4 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 12 \\ 1 & 5 & 4 \\ 2 & 6 & 0.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 35 \\ 28 \\ 27 \end{bmatrix}.$$

 $\bullet \ \ \, \text{The matrix} \, \begin{bmatrix} 3 & 1 & 12 \\ 1 & 5 & 4 \\ 2 & 6 & 0.5 \end{bmatrix} \, \text{is known as the coefficient matrix of the system and}$

$$\mathbf{b} = \begin{bmatrix} 35 \\ 28 \\ 27 \end{bmatrix}$$
 is the vector on the right-hand side. If we define $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ to be the

vector of unknowns, then we have

$$A\mathbf{x} = \mathbf{b}$$

 Exercise: Express enough of today's linear systems in matrix-vector product form until you completely understand the concept.

