2.3 Operations on Linear Transformations and Matrices

Definitions: If $T_1 : \mathbb{R}^n \to \mathbb{R}^m$ and $T_2 : \mathbb{R}^n \to \mathbb{R}^m$ are linear transformations, and $k \in \mathbb{R}$, then we can define:

Sum of
$$T_1$$
 & T_2 : $\mathbb{R}^n \to \mathbb{R}^m$,
$$T_1 - T_2 : \mathbb{R}^n \to \mathbb{R}^m, \text{ and}$$

$$kT_1 : \mathbb{R}^n \to \mathbb{R}^m,$$

as linear transformations, with actions given, respectively, by:

$$(T_1 + T_2)(\vec{v}) = T_1(\vec{v}) + T_2(\vec{v}),$$

$$(T_1 - T_2)(\vec{v}) = T_1(\vec{v}) - T_2(\vec{v}), \text{ and}$$

$$(kT_1)(\vec{v}) = kT_1(\vec{v}).$$

Arithmetic of Matrices

in 1

Definitions: If A and B are both $m \times n$ matrices, and k is any scalar, then we can define: A + B, A - B, and kA

$$A + B$$
, $A - B$, and kA

as $m \times n$ matrices with entries given by:

rices with entries given by:
$$(A + B)_{i,j} = (A)_{i,j} + (B)_{i,j}, \quad \text{whit is also in teach}$$

$$(A - B)_{i,j} = (A)_{i,j} - (B)_{i,j}, \quad \text{and}$$

$$(kA)_{i,j} = k(A)_{i,j}.$$

We call these the sum and difference of A and B, and the scalar multiple of A by k.

In particular, we can define the *negative* of a matrix, -A, to be:

$$-A = (-1)A = (-\alpha_{ij})_{m \times n}$$

with the property that:

$$A + (-A) = (-A) + A = 0_{m \times n}$$

$$A + (-A) = [0]_{m \times n}$$

Connection Between Linear Transformations and Matrices

Theorem: If $T_1: \mathbb{R}^n \to \mathbb{R}^m$ and $T_2: \mathbb{R}^n \to \mathbb{R}^m$ are linear transformations, with matrices $[T_1]$ and $[T_2]$ respectively, and k is any scalar, then for any $\vec{v} \in \mathbb{R}^n$:

$$(T_1 + T_2)(\vec{v}) = ([T_1] + [T_2])\vec{v}$$

 $(T_1 - T_2)(\vec{v}) = ([T_1] - [T_2])\vec{v}$
 $(kT_1)(\vec{v}) = (k[T_1])\vec{v}$

Consequently, $T_1 + T_2$, $T_1 - T_2$ and kT_1 are linear transformations with matrices given by, respectively:

$$[T_1 + T_2] = [T_1] + [T_2],$$

 $[T_1 - T_2] = [T_1] - [T_2],$ and
 $[kT_1] = k[T_1]$

Compositions of Linear Transformations

Definition/Theorem: If $T_1 : \mathbb{R}^n \to \mathbb{R}^k$ and $T_2 : \mathbb{R}^k \to \mathbb{R}^m$ are linear transformations, then we can define their **composition**:

$$T_2 \circ T_1 : \mathbb{R}^n \to \mathbb{R}^m$$

as a linear transformation, with action given as follows:

Suppose
$$\vec{u} \in \mathbb{R}^n$$
, $T_1(\vec{u}) = \vec{v} \in \mathbb{R}^k$, and $T_2(\vec{v}) = \vec{w} \in \mathbb{R}^m$. Then:

$$(T_2 \circ T_1)(\vec{u}) = T_2(T_1(\vec{u})) = T_2(\vec{v}) = \vec{w}.$$

$$\mathbb{R}^n \xrightarrow{T_1} \mathbb{R}^k \xrightarrow{T_2} \mathbb{R}^m$$

$$T_2 \circ T_1 \nearrow$$

General Matrix Products

Definition — Matrix Product:

If A is an $m \times k$ matrix, and B is a $k \times n$, then we can construct the $m \times n$ matrix AB, where:

$$column i of AB = A \times (column i of B)$$

In other words, if we write *B* in terms of its columns as:

$$B = \left[\overrightarrow{c}_1 \mid \overrightarrow{c}_2 \mid \cdots \mid \overrightarrow{c}_n \right]$$

then:

$$AB = \left[\overrightarrow{Ac_1} \mid \overrightarrow{Ac_2} \mid \cdots \mid \overrightarrow{Ac_n} \right]$$

Linear Combinations of Linear Transformations and Matrices

$$(c_1T_1 + c_2T_2 + \dots + c_kT_k)(\vec{v})$$

= $c_1T_1(\vec{v}) + c_2T_2(\vec{v}) + \dots + c_kT_k(\vec{v})$

$$c_1A_1+c_2A_2+\cdots+c_kA_k.$$

$$[c_1T_1 + c_2T_2 + \dots + c_kT_k]$$

$$= c_1[T_1] + c_2[T_2] + \dots + c_k[T_k]$$