```
function Iterative-Deepening-Search(problem) returns a solution, or failure for depth = 0 to \infty do result \leftarrow Depth-Limited-Search(problem, depth) if result \neq \text{cutoff then return } result
```

Figure 3.18 The iterative deepening search algorithm, which repeatedly applies depth-limited search with increasing limits. It terminates when a solution is found or if the depth-limited search returns *failure*, meaning that no solution exists.

Time complexity:

$$N(\text{IDS}) = (d)b + (d-1)b^2 + \dots + (1)b^d, = \bigcirc(b^d)$$

if
$$b=10$$
 and $d=5$, the numbers are
$$N(\mathrm{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$$

$$N(\mathrm{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110$$

Time complexity:

$$N(IDS) = (d)b + (d-1)b^2 + \dots + (1)b^d$$
,

if
$$b = 10$$
 and $d = 5$, the numbers are

$$N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$$

$$N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110$$

► Complete and optimal?

Time complexity:

$$N(IDS) = (d)b + (d-1)b^2 + \dots + (1)b^d$$
,

if
$$b = 10$$
 and $d = 5$, the numbers are

$$N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$$

$$N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110$$

- Complete and optimal?
- Space complexity?

Time complexity:

$$N(IDS) = (d)b + (d-1)b^2 + \dots + (1)b^d$$
,

if
$$b = 10$$
 and $d = 5$, the numbers are

$$N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$$

$$N(BFS) = 10 + 100 + 1,000 + 10,000 + 100,000 = 111,110$$

- Complete and optimal?
- ► Space complexity? *O*(*bd*)

Figure 3.20 A schematic view of a bidirectional search that is about to succeed when a branch from the start node meets a branch from the goal node.

Figure 3.20 A schematic view of a bidirectional search that is about to succeed when a branch from the start node meets a branch from the goal node.

► Can we do bidirectional search for 8 puzzle problem?

▶ Will bidirectional search be useful? Why?

$$a^{10} = 1024$$
 $a^{10} = 1024$
 $a^{10} = 32$
 $a^{10} = 32$
 $a^{10} = 32$

- ▶ Will bidirectional search be useful? Why?
- ► Can bidirectional search be used for all problems?

- ▶ Will bidirectional search be useful? Why?
- ► Can bidirectional search be used for all problems?
- Knuth's problem

Will bidirectional search be useful? Why?

- [5,6)
- Can bidirectional search be used for all problems?
- ► Knuth's problem

The problem definition:

- Initial state: 4.
- Actions: Apply factorial, square root, or floor operation (factorial for integers only).
- Transition model: As given by the mathematical definitions of the operations.
- Goal test: State is the desired positive integer.

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time Space Optimal?						

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs $\geq \epsilon$ for positive ϵ ;

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time Space Optimal?	Yes ^a \leftarrow $O(b^d)$ $O(b^d)$ Yes ^c					

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs b0 for positive b3;

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time Space Optimal?	$egin{array}{l} \operatorname{Yes}^a & & & & \\ O(b^d) & & & & \\ O(b^d) & & & & \\ \operatorname{Yes}^c & & & & \end{array}$	$\operatorname{Yes}^{a,b} O(b^{1+\lfloor C^*/\epsilon floor}) \ O(b^{1+\lfloor C^*/\epsilon floor}) \ \operatorname{Yes}$				

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs $\geq \epsilon$ for positive ϵ ; c optimal if step costs are all identical; d if both directions use breadth-first search.

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time Space Optimal?	$egin{array}{l} \operatorname{Yes}^a & & & & \\ O(b^d) & & & & \\ O(b^d) & & & & \\ \operatorname{Yes}^c & & & & \end{array}$	$\operatorname{Yes}^{a,b} O(b^{1+\lfloor C^*/\epsilon \rfloor}) \ O(b^{1+\lfloor C^*/\epsilon \rfloor}) \ \operatorname{Yes}$	No $O(b^m)$ $O(bm)$ No			

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs $\geq \epsilon$ for positive ϵ ; c optimal if step costs are all identical; d if both directions use breadth-first search.

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time Space Optimal?	$egin{aligned} \operatorname{Yes}^a \ O(b^d) \ O(b^d) \ \operatorname{Yes}^c \end{aligned}$	$\operatorname{Yes}^{a,b} O(b^{1+\lfloor C^*/\epsilon \rfloor}) \ O(b^{1+\lfloor C^*/\epsilon \rfloor}) \ \operatorname{Yes}$	$egin{array}{c} \operatorname{No} \\ O(b^m) \\ O(bm) \\ \operatorname{No} \end{array}$	No $O(b^\ell)$ $O(b\ell)$ No		

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs $\geq \epsilon$ for positive ϵ ; c optimal if step costs are all identical; d if both directions use breadth-first search.

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time	$\operatorname{Yes}^a O(b^d)$	$\operatorname{Yes}^{a,b} O(b^{1+\lfloor C^*/\epsilon \rfloor})$	No $O(b^m)$	No $O(b^{\ell})$	$\operatorname{Yes}^a O(b^d)$	
Space Optimal?	$O(b^d)$ Yes ^c	$O(b^{1+\lfloor C^*/\epsilon\rfloor})$ Yes	O(bm) No	$O(b\ell)$ No	O(bd) Yes ^c	

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs b for positive b continuity of positive b continuity b

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete? Time Space Optimal?	$Yes^a \ O(b^d) \ O(b^d) \ Yes^c$	$egin{array}{l} \operatorname{Yes}^{a,b} & O(b^{1+\lfloor C^*/\epsilon floor}) & O(b^{1+\lfloor C^*/\epsilon floor}) & \operatorname{Yes} & \end{array}$	$egin{aligned} &\operatorname{No} \ O(b^m) \ O(bm) \ &\operatorname{No} \end{aligned}$	No $O(b^\ell)$ $O(b\ell)$ No	$egin{aligned} \operatorname{Yes}^a \ O(b^d) \ O(bd) \ \operatorname{Yes}^c \end{aligned}$	$Yes^{a,d}$ $O(b^{d/2}) \neq$ $O(b^{d/2}) \neq$ $Yes^{c,d}$

Figure 3.21 Evaluation of tree-search strategies. b is the branching factor; d is the depth of the shallowest solution; m is the maximum depth of the search tree; l is the depth limit. Superscript caveats are as follows: a complete if b is finite; b complete if step costs $\geq \epsilon$ for positive ϵ ; c optimal if step costs are all identical; d if both directions use breadth-first search.

Informed (Heuristic) Search Strategies

- ightharpoonup Evaluation function f(n)
- ▶ Heuristic function h(n)

$$t(\omega)$$

$$f(n) = g(n) + h(n)$$

Informed (Heuristic) Search Strategies

Straight Line Distances

	Arad	366	Mehadia	241
->	Bucharest	_0_	Neamt	234
	Craiova	160	Oradea	380
	Drobeta	242	Pitesti	100
	Eforie	161	Rimnicu Vilcea	193
	Fagaras	176	Sibiu	253
	Giurgiu	77	Timisoara	329
	Hirsova	151	Urziceni	80
	Iasi	226	Vaslui	199
	Lugoj	244	Zerind	374

Figure 3.22 Values of h_{SLD} —straight-line distances to Bucharest.

Greedy Best-first Search

 $\blacktriangleright \text{ Evaluation function } f(n) = h(n)$

Greedy Best-first Search

▶ Evaluation function f(n) = h(n)

