Design and Implementation of VLSI Systems Lecture 02

CMOS logic

Impact of doping on silicon resistivity

silicon 4.995×10^{22} atoms in cm³ Resistivity $3.2 \times 10^5 \, \Omega \text{cm}$

⇒ Electrons are more mobile/faster than holes

What happens if we sandwich p & n types?

➤ In equilibrium, the drift and diffusion components of current are balanced; therefore the net current flowing across the junction is zero.

PN-junction regions of operation

In reverse bias, the width of the depletion region increases. The diode acts as voltage-controlled capacitor.

A forward bias decreases the potential drop across the junction. As a result, the magnitude of the electric field decreases and the width of the depletion region narrows.

nMOS and pMOS transistors

Each transistor consists of a stack of a conducting gate, an insulating layer of silicon dioxide and a semiconductor substrate (body or bulk)

Body is typically grounded

Body is typically at supply voltage

nMOS transistor

g=0: When the gate is at a low voltage $(V_{GS} < V_{TN})$:

- p-type body is at low voltage
- source and drain-junctions diodes are OFF
- transistor is OFF, no current flows

g=1: When the gate is at a high voltage $(V_{GS} \ge V_{TN})$:

- negative charge attracted to body
- inverts a channel under gate to n-type
- transistor ON, current flows, transistor can be viewed as a resistor

nMOS pass '0' more strongly than '1'

$$g = 0$$

$$s - \sqrt{-d}$$

nput
$$g = 1$$
 Output $0 \rightarrow -$ strong 0

$$g = 1$$

1 \rightarrow degraded 1

Why does '1' pass degraded?

$$V_{DD} = V_{DD} - V_{tn}$$

pMOS transistor

g=0: When the gate is at a low voltage ($V_{GS} < V_{TP}$):

- positive charge attracted to body
- > inverts a channel under gate to p-type
- > transistor ON, current flows

g=1: When the gate is at a high voltage $(V_{GS} \ge V_{TP})$:

- negative charge attracted to body
- > source and drain junctions are OFF
- transistor OFF, no current flows

pMOS pass '1' more strongly than '0'

$$g = 0$$

$$s \longrightarrow d$$

$$g = 1$$

$$s \longrightarrow d$$

Input
$$g = 0$$
 Output $0 \longrightarrow degraded 0$

$$g = 0$$

1 \rightarrow strong 1

• Why does '0' pass degraded?

$$V_s = |V_{tp}|$$

$$V_{SDD}$$

An nMOS and pMOS make up an inverter

FIG 1.10 Inverter schematic (a) and symbol (b) $Y = \overline{A}$

pMOS + nMOS = CMOS

More CMOS gates

What is this gate function?

What's wrong about this design?

3-input NANDs

FIG 1.12 3-input NAND gate schematic $Y = \overline{A \cdot B \cdot C}$

FIG 1.13 General logic gate using pull-up and pull-down networks

If: Pull up network = 1 => pull down network must = 0

If: Pull up network = 0 => pull down network must = 1

3-input NANDs

What are the advantages of CMOS circuit style?

Series-Parallel Combinations

FIG 1.14 Connection and behavior of series and parallel transistors

What are the transistor schematics of the NOR gate?

And-Or-Inverter (AOI) gate

FIG 1.17 CMOS compound gate for function $Y = \overline{(A \cdot B) + (C \cdot D)}$

CMOS gate design steps

Steps:

- -Design pull down network
 - -Use the inverse of the given function
 - -NMOS circuit
- -Design pull up network
 - -Use the opposite network of the pull down network: parallel serial; serial parallel
 - -PMOS circuit
- -Combine 2 networks

Examples

Example 1.2

Sketch a static CMOS gate computing $Y = (A + B + C) \cdot D$

Transmission gate

$$g = 0$$
, $gb = 1$
 $a \longrightarrow b$
 $g = 1$, $gb = 0$
 $a \longrightarrow b$
(b)

Input Output
$$g = 1, gb = 0$$

$$0 \longrightarrow strong 0$$

$$g = 1, gb = 0$$

$$1 \longrightarrow strong 1$$
(c)

(d)

(a)

FIG 1.24 Tristate buffer symbol

FIG 1.20 Transmission gate

Tri-state inverter

FIG 1.26 Tristate inverter

Multiplexer (MUX)

FIG 1.27 Transmission gate multiplexer

Latch design

FIG 1.30 CMOS positive-level-sensitive D latch

Flip-flop (edge triggered) design

Summary

- Introduction to VLSI systems and the semiconductor industry
- Basic overview of pn junctions and MOS transistors
- Designing digital logic gates using transistors