Разбор КР по Тензорам.

Чепелин Вячеслав

Содержание

1	Разбор Кр прошлых лет			
	1.1	Задание 1	2	
	1.2	Задание 2	3	
	1.3	Задание 3	4	
	1.4	Задание 4	4	
2	Инс	рормация о курсе	5	

1 Разбор Кр прошлых лет

1.1 Задание 1.

 M_2 пространство матриц 2×2 . $C = \begin{pmatrix} 3 & 5 \\ -2 & 1 \end{pmatrix}, \forall x \in M_2: f(x) = tr(XC)$

- 1. Докажите, что $f \in M_2^*$
- 2. Найдите координаты в базисе сопряженном базису $\begin{pmatrix} 4 & 2 \\ -1 & -6 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix}$

Решение:

1) Пусть
$$X = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$$
. Тогда $XC = \begin{pmatrix} 3x_1 - 2x_2 & * \\ * & 5x_3 + x_4 \end{pmatrix}$.

Тогда след равен $3x_1-2x_2+5x_3+x_4$. Заметим, что наше f линейно, откуда $f\in M_2^*$.

2) Теперь представим каждую матрицу, как столбики в каноническом базиск $\begin{pmatrix} 4 \\ 2 \\ -1 \\ -6 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 3 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 1 \\ 1 \\ -2 \end{pmatrix}$.

Тогда матрица перехода из канонического в наш будет:

$$T=egin{pmatrix} 4&1&2&3\\2&2&3&1\\-1&1&1&1\\-6&1&0&-2 \end{pmatrix}$$
. Как мы знаем $a'=aT$. Откуда найдем $a=(3,-2,5,1)$.

Умножим и получим:

$$a' = \begin{pmatrix} 3 & -2 & 5 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 1 & 2 & 3 \\ 2 & 2 & 3 & 1 \\ -1 & 1 & 1 & 1 \\ -6 & 1 & 0 & -2 \end{pmatrix} = \begin{pmatrix} -3 & 5 & 5 & 10 \end{pmatrix}$$

Либо я мог просто напросто подставить эти вектора в мою формулу!

1.2 Задание 2.

- 1. $\alpha \in T(1,2), \beta \in T(1,0)$. Найти тип и матрицу тензора $\alpha \otimes \beta, \alpha = \begin{pmatrix} -1 & 1 & 2 & 0 \\ 1 & 1 & -3 & 1 \end{pmatrix}, (2 & -1)$
- 2. $\gamma \in T(1,3)$. Применить γ_j^{ijk} и $\gamma_l^{i[jk]}$ $\gamma = \begin{pmatrix} 3 & 1 & 0 & 4 \\ -2 & 2 & -3 & 0 \\ \hline 2 & 2 & 4 & 0 \\ -1 & 1 & -3 & 1 \end{pmatrix}$

Решение:

1. Мы получим $\gamma=\alpha\otimes\beta\in T(2,2)$. При этом $\gamma_{kl}^{ij}=\alpha_k^{ij}\cdot\beta_l$. Тогда матрица будет вот такой:

$$\gamma = \begin{pmatrix} -2 & 2 & 1 & -1 \\ 2 & 2 & -1 & -1 \\ \hline 4 & 0 & -2 & 0 \\ -6 & 2 & 3 & -1 \end{pmatrix}$$

2. Делаем свертку: $\beta^{ik} = \begin{pmatrix} 7 & 6 \\ -2 & 0 \end{pmatrix}$.

Делаем альтернирование по 2-ум индексам. Выпишем i=1, k=1 Alt $\begin{pmatrix} -2 & 4 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Аналогично для остальных получим: $\beta_2=\begin{pmatrix}0&-1&0&\frac{1}{2}\\0&4&0&-2\\1&0&-\frac{1}{2}&0\\-4&0&2&0\end{pmatrix}$

1.3 Задание 3.

$$\alpha = (4e_1 - e_2 + 2e_3) \otimes (e_2 - e_3) \otimes e_2 + (e_1 + e_2) \otimes (-e_2 + 3e_3) \otimes (e_1 - 2e_2)$$

- 1. Найти тип тензора.
- 2. Найти тензор, сделанный перестанвокой $\sigma = (kij)$
- 3. Найти $\beta(\eta^1,\eta^2,\eta^3)$, если $\eta_1=w^1-w^2+w^3; \eta^2=w^1+2w^2+w^2; \eta^3=w^2-2w^3.$

Решение:

- 1. тензор типа (0,3).
- 2. Найдем сначала матрицу нашего тензора: $\alpha = \begin{pmatrix} 0 & -1 & 3 & 0 & 6 & -10 & 0 & 0 \\ 0 & -1 & 3 & 0 & 1 & -5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & -2 & 0 & 0 & 0 \end{pmatrix}$

Будем делать транспонрование по частям (312) \rightarrow (132) \rightarrow (123)

У нас фиксирован слой. Сделаем перестановку Сделаем β :

$$\beta' = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & 0 & 6 & 1 & 2 & 0 & 0 & 0 \\ 3 & 3 & 0 & -10 & -5 & -2 & 0 & 0 & 0 \end{pmatrix}$$

Теперь у нас зафиксирована строка, сделаем перестановку:

$$\beta = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 6 & 0 & -1 & 1 & 0 & 0 & 2 & 0 \\ 3 & -10 & 0 & 3 & -5 & 0 & 0 & -2 & 0 \end{pmatrix}$$

3. $\beta(\xi_1, \xi_2, \xi_3) = \alpha(\xi_3, \xi_1, \xi_2)$. Дорешайте сами

1.4 Задание 4.

Даны 3 ковектора $f^1 = \begin{pmatrix} 1 & -1 & 1 & 1 \end{pmatrix}, f^2 = \begin{pmatrix} 2 & 0 & 3 & 0 \end{pmatrix}, f^3 = \begin{pmatrix} 1 & -3 & -30 \end{pmatrix}$

- 1. найти существенные коордианаты 3-формы $f = f^1 \wedge f^2 \wedge f^3$
- 2. выписать матицу в пространстве f
- 3. найти $f(\xi_1, \xi_2, \xi_3)$

Решение

Буквально номер из дзшки. Смотрите разборы практик и дз.

2 Информация о курсе

Поток — y2024.

Группы М3138-М3139.

Преподаватель — Кучерук Екатерина Аркадьевна.

Данный разбор сделан не в коммерческих целях, я не хочу никого обидеть, я просто пишу конспекты для себя плак плак

