Orderings

- The ability to order data is one of the revolutions introduced by computers.
 - search cannot be performed effectively if data is not ordered;
 - program analysis, for example for proving termination, requires an ordering to measure progress towards a final state.

Monday, 14 October 13

- A partial order on a set A is a relation $R \subseteq A \times A$ such that:
 - R is reflexive
 - R is antisymmetric: for all a, b∈A, if a R b and b R a then a=b.
 - R is transitive.
- A total order on a set A is a partial order such that, for all $a, b \in A$, either a R b or b R a.

- For example,
 - ≤ over the integers is a total order.
 - x divides y over the natural numbers is a partial order.

Eladeiro – 2013/14

Partial and total orderings

- For example,
 - ≤ over the integers is a total order.
 - x divides y over the natural numbers is a partial order.
 - \subseteq is a partial order on 2^A .

Monday, 14 October 13

Partial and total orderings

CS1860 – Mathematical Structures

RELATIONS - 3.8, 3.9, 3.10

Strict orderings

- A strict (partial) order on a set A is a relation $R \subseteq A \times A$ such that:
 - R is irreflexive for all $a \in A$, $(a,a) \notin R$
 - R is antisymmetric.
 - R is transitive.

Not the same as not being reflexive

For example, < is a strict ordering of the integers.

Exercise

- If \leq is a partial order, then a < b iff $a \leq b$ and $a \neq b$ defines a strict order.
- If < is a strict order, then $a \le b$ iff a < b or a=b defines a partial order.

Product orderings

- If we have a partial order \leq on a set A, we can extend it to the *product order* on $A \times A$ as follows
 - $(a_1,a_2) \le (b_1,b_2)$ iff $a_1 \le b_1$ and $a_2 \le b_2$

CS1860 – Mathematical Structures

RELATIONS - 3.8, 3.9, 3.10

Lexicographic orderings

- If we have a partial order \leq on a set A, we can extend it to the *lexicographic order* on $A \times A \times ... \times A$ as follows
 - $(a_1, ..., a_n) \leq (b_1, ..., b_n)$ iff
 - a₁ < b₁, or
 - $a_1 = b_1$ and $a_2 < b_2$, or
 - $a_1 = b_1$ and $a_2 = b_2$ and $a_3 < b_3$, or
 - ..., or
 - $a_1 = b_1, a_2 = b_2, ..., a_n = b_n$

RELATIONS - 3.8, 3.9, 3.10

CS1860 - Mathematical Structures

(0,0)