Correlación

Metodología Cuantitativa Avanzada I

Mayo 2013

ASOCIACIÓN Y CAUSALIDAD

- Técnicas de análisis causal: orientadas a detectar diferencias entre grupos
- Técnicas de asociación: orientadas a detectar similitudes entre grupos o entre características de un mismo grupo
 - En qué medidas las personas que obtienen un alto/ bajo puntaje en una medición, obtienen también un alto/bajo puntaje en otra medición?
 - En qué medida el CI de los niños se relaciona con el CI de sus padres?
 - → Pregunta original que interesaba a Spearman y Pearson (eugenesia)
- En contraste con ANOVA, ambas variables son continuas (intervalar o razón)
- En las medidas de asociación no se establece una relación de antecedente → consecuencia.

BASES: VARIANZA Y COVARIANZA

Varianza:

$$\frac{\sum (x_i - \overline{x})^2}{N - 1} = \frac{\sum (x_i - \overline{x})(x_i - \overline{x})}{N - 1}$$

Covarianza:

$$cov(x,y) = \frac{\sum (x - \overline{x})(y - \overline{y})}{N - 1}$$

EJEMPLO VARIANZA / COVARIANZA (1)

Table 6.1 Adverts watched and toffee purchases

Participant:	1	2	3	4	5	Mean	s
Adverts watched	5	4	4	6	8	5.4	1.67
Packets bought	8	9	10	13	15	11.0	2.92

$$cov(x,y) = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{N - 1}$$

$$= \frac{(-0.4)(-3) + (-1.4)(-2) + (-1.4)(-1) + (0.6)(2) + (2.6)(4)}{4}$$

$$= \frac{1.2 + 2.8 + 1.4 + 1.2 + 10.4}{4}$$

$$= \frac{17}{4}$$

$$= 4.25$$

Fuente: Field et al (2012)

EJEMPLO VARIANZA / COVARIANZA (2)

ID	CI_Padres	CI_hijos	x-Mx	y-My	(x-Mx)*(y-My)	(x-Mx)2	(y-My)2		
	1 70	89	-31.42	-14.26	448.16	987.28	203.44		
	2 75	73	-26.42	-30.26	799.58	698.07	915.86		$\nabla (\mathbf{V} - \nabla)^2$
	3 77	79	-24.42	-24.26	592.53	596.39	588.70	Varianza: $S^2 = \frac{1}{2}$	$\sum (X - X)$
	4 85	86	-16.42	-17.26	283.48	269.65	298.02		n-1
	5 87	87	-14.42	-16.26	234.53	207.97	264.49		
	6 90	91	-11.42	-12.26	140.06	130.44	150.39		
	7 93	98	-8.42	-5.26	44.32	70.91	27.70		
	8 95	102	-6.42	-1.26	8.11	41.23	1.60	Para CI_Padres=	6565/(19-1)
	9 97	102	-4.42	-1.26	5.58	19.55	1.60	=	364.702
1	.0 100	110	-1.42	6.74	-9.57	2.02	45.39		
1	1 100	111	-1.42	7.74	-10.99	2.02	59.86	Para CI_hijos =	5044/19-1
1	2 105	116	3.58	12.74	45.58	12.81	162.23		280.205
1	3 110	100	8.58	-3.26	-27.99	73.60	10.65		
1	4 113	122	11.58	18.74	216.95	134.07	351.07	Covarianza	
1	5 115	105	13.58	1.74	23.58	184.39	3.02		$(x - \overline{x})(y - \overline{y})$
1	.6 120	131	18.58	27.74	515.32	345.18	769.33	cov(x, y) =	$\frac{(x-\bar{x})(y-\bar{y})}{N-1}$
1	7 128	115	26.58	11.74	311.95	706.44	137.75		
1	8 130	135	28.58	31.74	907.01	816.76	1007.23	=	4768/(19-1)
1	9 137	110	35.58	6.74	239.69	1265.86	45.39	=	264.883
Sum	1927	1962	0.00	0.00	4768	6565	5044		
Prom	101.421	103.263							
N	19								

CORRELACIÓN

- Es una medida <u>descriptiva</u>: grado de asociación lineal entre 2 variables
 - Puede ser conceptualizada como la covarianza estandarizada
 - Varía entre -1 y 1, donde 0 indica ausencia de relación (lineal) entre las variables
 - Cohen sugiere para las ciencias sociales:
 - r=0.1: correlación baja
 - r= 0.3 :correlación moderada
 - r= 0.5: correlación alta
- Es una medida <u>inferencial</u>: posee un valor probabilístico asociado con la hipótesis nula (r=0)
- La correlación no es apta para dar cuenta de relaciones no lineales, ni tampoco datos con presencia de outliers. Un diagnóstico visual se puede lograr con scatterplots (nube de puntos).

NUBE DE PUNTOS (SCATTERPLOT)

 Representación gráfica del grado de asociación entre dos variables

- a. Positiva
- b. Negativa
- c. 0
- d. Curvilinear

NUBE DE PUNTOS (SCATTERPLOT)

R: plot(x,y)

CÁLCULO DEL COEFICIENTE DE CORRELACIÓN

- Correlación de Pearson (producto-momento)
 - Paramétrica, supone que datos son continuos y normalmente distribuidos
 - Qué es el "momento"?

- El "momento" es igual a la distancia del centro de equilibrio multiplicado por el peso
- En el caso de la correlación, el "centro" es el promedio. Primero se calcula la distancia del promedio para cada variable (momento), y luego ambos momentos se multiplican (producto)

Antecedente: Covarianza

$$cov(x,y) = \frac{\sum (x - \overline{x})(y - \overline{y})}{N - 1}$$

Pearson:

$$r = \frac{\operatorname{cov}_{xy}}{s_x s_y} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{(N - 1)s_x s_y}$$

 Formula computacional

$$r_{xy} = \frac{\sum [(x - \overline{x})(y - \overline{y})]}{\sqrt{\sum (x - \overline{x})^2 \times \sum (y - \overline{y})^2}}$$

EJEMPLO CÁLCULO DE r PEARSON

CI Data

	CI_Padres	CI_hijos	x-Mx	y-My	(x-Mx)*(y-My)	(x-Mx)2	(y-My)2				
	70	89	-31.42	-14.26	448.16	987.28	203.44				
	75	73	-26.42	-30.26	799.58	698.07	915.86				
	77	79	-24.42	-24.26	592.53	596.39	588.70				
	85	86	-16.42	-17.26	283.48	269.65	298.02				
	87	87	-14.42	-16.26	234.53	207.97	264.49		$\sum [(x \cdot$	$\frac{-\bar{x})(y-\bar{y})}{\bar{x})^2 \times \sum (y-\bar{y})}$	
	90	91	-11.42	-12.26	140.06	130.44	150.39	/ xy -	$\sqrt{\sum (x-5)}$	$(\bar{x})^2 \times \sum (y - \bar{y})^2 \times \sum (y - y$	$\overline{\tilde{\mathbf{v}}})^2$
	93	98	-8.42	-5.26	44.32	70.91	27.70				
	95	102	-6.42	-1.26	8.11	41.23	1.60				
	97	102	-4.42	-1.26	5.58	19.55	1.60	=	4768/ RAIZ(65	565 * 5044)	
	100	110	-1.42	6.74	-9.57	2.02	45.39				
	100	111	-1.42	7.74	-10.99	2.02	59.86	=	0.828605		
	105	116	3.58	12.74	45.58	12.81	162.23				
	110	100	8.58	-3.26	-27.99	73.60	10.65		Alternativam	ente: covarXY	//(sd_X*sd_
	113	122	11.58	18.74	216.95	134.07	351.07				
	115	105	13.58	1.74	23.58	184.39	3.02		covarXY=	264.883	
	120	131	18.58	27.74	515.32	345.18	769.33		sd_X=	19.097	
	128	115	26.58	11.74	311.95	706.44	137.75		sd_Y=	16.739	
	130	135	28.58	31.74	907.01	816.76	1007.23				
	137	110	35.58	6.74	239.69	1265.86	45.39		=	264.883/(19.0	97*16.739)
ım	1927	1962	0.00	0.00	4768	6565	5044		=	0.829	
om	101.42105	103.2632									

• Alternativas:

- Tabla de valores críticos p
- Gpower
- R

Tabla de valores críticos p

	P			
N	0.1	0.05	0.01	0.001
4	0.900	0.950	0.990	0.999
5	0.805	0.878	0.959	0.991
6	0.729	0.811	0.917	0.974
7	0.669	0.754	0.875	0.951
8	0.621	0.707	0.834	0.925
9	0.582	0.666	0.798	0.898
10	0.549	0.632	0.765	0.872
11	0.521	0.602	0.735	0.847
12	0.497	0.576	0.708	0.823
13	0.476	0.553	0.684	0.801
14	0.458	0.532	0.661	0.780
15	0.441	0.514	0.641	0.760
16	0.426	0.497	0.623	0.742
17	0.412	0.482	0.606	0.725
18	0.400	0.468	0.590	0.708
19	0.389	0.456	0.575	0.693
20	0.378	0.444	0.561	0.679
21	0.369	0.433	0.549	0.665
22	0.360	0.423	0.537	0.652
23	0.352	0.413	0.526	0.640
24	0.344	0.404	0.515	0.629
25	0.337	0.396	0.505	0.618
26	0.330	0.388	0.496	0.607

G Power

R: contest(x, y)

```
R Console

> cor.test(CI_padres, CI_hijos)

Pearson's product-moment correlation

data: CI_padres and CI_hijos

t = 6.1026, df = 17, p-value = 1.172e-05

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:
    0.6003395    0.9320339

sample estimates:
    cor
    0.828605
```

COEFICIENTES DE CORRELACIÓN NO PARAMÉTRICOS

- Para datos que no se distribuyen normalmente o que sólo son de naturaleza ordinal
- Se basan en el ranking de los datos correspondientes a los valores de cada variable
- Más usados:
 - Spearman rho
 - Kendall tau

SPEARMAN

- Basado en el ranking de los valores de la variable y en sus desviaciones
- Fórmula: $r = 1 \frac{6 \times \sum d^2}{N^3 N}$
- El resultado de esta fórmula es cercano a una correlación de Pearson de los rankings de las variables

SPEARMAN

• Ejemplo

rating	testost	Rank rating	Rank test	d	d2			
5.4	1.16	19.0	13.0	6.0	36			
4.8	1.01	16.0	6.0	10.0	100			
3.6	1.07	7.5	10.0	-2.5	6.25			
3.8	0.81	9.5	2.0	7.5	56.25			
3	1.06	3.0	8.5	-5.5	30.25	Spearman:		
5.2	1.23	17.5	15.0	2.5	6.25		_	
3.6	0.96	7.5	4.0	3.5	12.25		$6 \times \sum d^2$	
3.4	0.90	6.0	3.0	3.0	9	r =	$1 - \frac{6 \times \sum d^2}{N^3 - N}$	
4.6	0.97	14.0	5.0	9.0	81			
3.2	1.35	4.5	18.0	-13.5	182.25			
2	0.74	1.0	1.0	0.0	0	=	1- <u>6*646.5</u> =	0.433
3.2	1.14	4.5	11.0	-6.5	42.25		19^3-19	
3.8	1.28	9.5	16.0	-6.5	42.25			
4.4	1.15	12.0	12.0	0.0	0	Pearson rank	0.431	
4.6	1.34	14.0	17.0	-3.0	9	Pearson original	0.501	
5.2	1.45	17.5	19.0	-1.5	2.25			
4	1.06	11.0	8.5	2.5	6.25			
2.8	1.05	2.0	7.0	-5.0	25			
4.6	1.19	14.0	14.0	0.0	0			
					646.5			

SPEARMAN VS. PEARSON

- Aplicado a los mismos datos Spearman en general tiende a otorgar valores menores (pierde información al rankear)
- La interpretación de Spearman no se realiza en términos de varianza explicada o desviaciones estándar, ya que es una técnica no paramétrica
- Lo único que se puede decir de Spearman es que muestra cuán cercanos están los rankings de dos variables

KENDALL

- Representa el grado de concordancia entre dos columnas de datos rankeados
- A mayores discrepancias, menor es el coeficiente
- Fórmula: $Kendall's \cdot tau = \frac{C D}{C + D}$
- Donde C=pares concordantes, D= pares discrepantes
- Par concordante: el número de rankings observados bajo un ranking particular que son mayores que ese ranking particular

KENDALL

Ejemplo Kendall

C= Cantidad de observaciones bajo esta celda que son

_			may	ores que esta	celda (10)	D= Can	tidad de obse	rvaciones
Kendall	example			<i>></i>		-> bajo	esta celda qu	ue son
Estudia	Ranking1	Ranking2	C	D		_	res que esta c	
а	1	(2	10	1				
b	2	1	10	0				
С	3	5	7	2		Kendall =	<u>C - D</u>	
d	4	4	7	1			C + D	
e	5	3	7	0				
f	6	8	4	2		=	<u>54 - 12</u>	
g	7	6	5	0			54 + 12	
h	8	7	4	0				
i	9	12	0	3		=	0.636	
j	10	11	0	2				
k	11	10	0	1				
I	12	9						
			54	12				

SPEARMAN VS. KENDALL

- En general, Kendall otorga coeficientes más pequeños que Spearman (por lo cual probablemente se utiliza menos)
- Se sugiere utilizar Kendall para observaciones <
 20
- Kendall posee interpretación más directa que Spearman: es el grado de concordancia entre dos columnas de datos rankeados

CORRELACIONES CON VARIABLES DICOTÓMICAS

 Correlación punto-biserial: entre una variable continua y una dicotómica

$$r = \frac{(\bar{x}_1 - \bar{x}_2) \times \sqrt{p \times (1 - p)}}{\sigma_x}$$

- Donde:
 - x₁ y x₂ son los puntajes para el grupo 1 y grupo 2,
 - p es la proporción de personas en el grupo 1, y
 - σ_x es la desviación estándar de x (ambos grupos)

CORRELACIONES CON VARIABLES DICOTÓMICAS

Ejemplo punto-biserial

ID	CI_Padres	CI_hijos	Sexo (1=F)				
1	70	89	1	(v v) v /	v (1 n)	
2	75	73	0	$r = \frac{(\overline{x}_1 - \overline{x}_2)}{r}$	2) × √p	$r \times (1-p)$	
3	77	79	1		σ_{x}		
4	85	86	0				
5	87	87	1				
6	90	91	0	Prom. Mujeres=	99.600		
7	93	98	1	Prom. Hombres=	107.333		
8	95	102	0	sd(x)=	16.293		
9	97	102	1	p=	10/19 =	0.526	
10	100	110	0				
11	100	111	1				
12	105	116	0	r=	99.6-107.3	33 * raiz(0.52 *	* (1-0.52 <u>)</u>
13	110	100	1			280.200	
14	113	122	0	r=	-0.237		
15	115	105	1				
16	120	131	0				
17	128	115	1				
18	130	135	0				
19	137	110	1				
Sum	1927	1962	10				
Prom	101.421053	103.263158					
Prom	101.421053	103.263158					

CORRELACIONES CON VARIABLES DICOTÓMICAS

Ejemplo punto-biserial en R

... equivale a Pearson

 Representación de asociaciones entre más de un par de variables

CI_Padres	CI_hijos	PSU	Simce
94	89	319	213
75	73	341	243
77	79	361	244
77	86	363	275
79	87	365	280
80	91	372	348
86	98	439	381
91	102	446	393
98	102	453	394
101	110	480	403
112	111	524	425
112	116	585	425
117	100	589	427
124	122	614	429
125	105	625	431
128	131	629	451
128	115	630	454
130	135	681	474
132	110	790	484

• R:

- Representación gráfica en R
 - pairs($\sim x+y+z$)
- Ej:
 - pairs(~PSU+Simce+ CI_Padres+CI_hijos)

- Para obtener significación de coeficientes en matriz:
 - Por pares, ej.: cor.test(CI_padres, CI_hijos)
 - De matriz completa con comando rcor.test
 - Requiere instalar librería ltm
 - Luego: rcortest(data)

```
R Console

> rcor.test(matrix_data)

CI_Padres CI_hijos PSU Simce

CI_Padres ***** 0.862 0.945 0.854

CI_hijos <0.001 ***** 0.812 0.864

PSU <0.001 <0.001 ***** 0.905

Simce <0.001 <0.001 *****

upper diagonal part contains correlation coefficient estimates lower diagonal part contains corresponding p-values
```

- Manejo de datos perdidos
 - Listwise: se eliminan todos los casos con algún dato perdido, toda la matriz posee el mismo N
 - Pairwise: se eliminan los casos correspondientes al par de variables analizadas. El N varía por pares.

• Ej. Datos perdidos

CI_Padres	CI_hijos	PSU	Simce
94	89	319	213
75	73	341	243
77	79	361	244
77	86	363	275
	87	365	280
80	91	372	348
86	98	439	381
91	102	446	393
98	102		394
101	110	480	403
112	111	524	425
112	116	585	425
117	100	589	427
124	122	614	429
125	105	625	
128	131	629	451
128		630	454
130	135	681	474
132	110	790	484

- Listwise: cor(data, use ="na.or.complete")
- Pairwise: cor(data, use ="pairwise.complete.obs")

```
R Console
> cor(matrix data m, use ="na.or.complete")
         CI Padres CI hijos PSU
                                          Simce
CI Padres 1.0000000 0.8803434 0.9374751 0.8374678
CI hijos 0.8803434 1.0000000 0.8118090 0.8617640
PSU 0.9374751 0.8118090 1.0000000 0.9021616
Simce 0.8374678 0.8617640 0.9021616 1.0000000
> cor(matrix data m, use ="pairwise.complete.obs")
         CI Padres CI hijos
                             PSU
                                          Simce
CI Padres 1.0000000 0.8528051 0.9411484 0.8401963
CI hijos 0.8528051 1.0000000 0.8081260 0.8667961
PSU
         0.9411484 0.8081260 1.0000000 0.9132621
Simce
         0.8401963 0.8667961 0.9132621 1.0000000
```

- Significación con datos perdidos en matriz
 - rcor.test (data, + especificación de perdidos)
 - Ej:
 - rcor.test(matrix_data_m, use ="na.or.complete")
 - rcor.test(matrix_data_m, use ="pairwise.complete.obs")

- Número de casos listwise / pairwise
 - Listwise: nrow(na.omit(matrix_data_m))
 - Pairwise? Alternativa:
 - Convertir datos a matriz y utilizar comando rcorr(data), que entrega matriz con N por pares
 - Ejemplo:
 - x=as.matrix(matrix_data_m)
 - rcorr(x)

CONTROL ESTADÍSTICO Y CORRELACIONES PARCIALES

CONTROL ESTADÍSTICO

- ¿Es la relación que estoy estudiando lo que yo pienso que es? ¿Puede haber otra variable no considerada que afecte la relación?
- En investigación científica, control significa control de la varianza (ej. en investigación experimental)
- Control estadístico: métodos para identificar, aislar o neutralizar varianza en la variable dependiente que puede ser causada por una variable ajena al estudio
- La regresión múltiple es una de las formas que permite establecer control estadístico

CORRELACIONES PARCIALES

- Correlación parcial: correlación entre 2 variables $(Y, X_1,)$ controlando el efecto de una tercera variable (X_2)
- Correlación semi-parcial (part correlation): correlación entre 2 variables (Y, X₁) controlando el efecto de una tercera (X2) solo en la variable independiente

$$r_{x_1y.x_2} = \frac{r_{x_1y} - r_{yx_2}r_{x_1x_2}}{\sqrt{1 - r_{yx_2}^2}\sqrt{1 - r_{x_1x_2}^2}}$$

$$r_{y(x_1.x_2)} = \frac{r_{x_1y} - r_{yx_2}r_{x_1x_2}}{\sqrt{1 - r_{x_1x_2}^2}}$$

CONTROL MEDIANTE CORRELACIÓN PARCIAL

- Se utiliza para dar cuenta de correlaciones espúreas, o también para estudiar mediación entre variables
- Ejemplo: ¿en qué medida las habilidades matemáticas y la altura correlacionan en niños, una vez controlando por (parcializando) la edad?
- El símbolo para una correlación entre 2 variables parcializando a una tercera es $r_{12.3}$
- La variable que es parcializada usualmente es llamada variable control
- Es equivalente a una correlación entre residuos entre la variables de las cuales el efecto de una tercera es parcializado

CONTROL MEDIANTE CORRELACIÓN PARCIAL

Ejemplo

	_			_
	Y		X1	X2
		1	3	3
		2	1	2
		3	2	1
		4	4	4
		5	5	5
Sum		15	15	15
Prom		3	3	3
r Yx1		0.7		
r Yx2		0.6		
r x1x2		0.9		

$$r_{x_1y.x_2} = \frac{r_{x_1y} - r_{yx_2}r_{x_1x_2}}{\sqrt{1 - r_{yx_2}^2}\sqrt{1 - r_{x_1x_2}^2}}$$

$$r_{yx1.x2} = \frac{0.7 - (0.6 * 0.9)}{\sqrt{1 - 0.6^2} \sqrt{1 - 0.9^2}} = 0.46$$

- Correlación entre Y y X1, parcializando X2 de ambas variables
- Equivale a la correlación entre el residuo de la regresión de Y en X2 y el residuo de la regresión de X1 en X2

REPORTE DE CORRELACIONES APA 6TH

• En texto:

- Ej: r(55) = .49, p < .01.
 - Entre paréntesis N-2 (df)

Matriz

		(1)	(2)	(3)	(4)
1.	CI Padres				
2.	CI Hijos	0.85**			
3.	PSU	0.94**	0.81**		
4.	Simce	0.84**	0.87**	0.91**	

Nota: Correlaciones de Pearson (n=15), **p.<0.01

REPORTE DE CORRELACIONES APA 6TH

Ejemplo manual APA 6th

Table X Summary of Intercorrelations, Means, and Standard Deviations for Scores on the BSS, BDI, SAFE, and MEIM as a Function of Race

Measure	1	2	3	4	М	SD
1. BSS	_	.54*	.29*	23*	1.31	4.32
2. BDI	.54*	-	.34*	14*	8.33	7.76
3. SAFE	.19*	.30*	_	074	47.18	13.24
4. MEIM	09	11	08	_	47.19	6.26
М	1.50	9.13	39.07	37.78		
SD	3.84	7.25	13.17	7.29		

Note. Intercorrelations for African American participants (n = 296) are presented above the diagonal, and intercorrelations for European American participants (n = 163) are presented below the diagonal. Means and standard deviations for African American students are presented in the vertical columns, and means and standard deviations for European Americans are presented in the horizontal rows. For all scales, higher scores are indicative of more extreme responding in the direction of the construct assessed. BSS = Beck Suicide Scale; BDI = Beck Depression Inventory; SAFE = Societal Attitudinal Familial Environmental; MEIM = Multigroup Ethnic Identity Measure. Adapted from "An Empirical Investigation of Stress and Ethnic Identity as Moderators for Depression and Suicidal Ideation in College Students," by R. L. Walker, L. R. Wingate, E. M. Obasi, and T. E. Joiner, 2008, Cultural Diversity and Ethnic Minority Psychology, 14, p. 78. Copyright 2008 by the American Psychological Association.

Introducción a Regresión

- Correlación: nos habla del grado de asociación, pero no sobre qué siginifica esta asociación en la escala de las variables
- Regresión: permite establecer como aumenta(disminuye) una variable en función de otra variable
- Linea de regresión: representación de esta asociación en términos de intercepto y pendiente

