MA2003 Complex Analysis Exercise Sheet 2

1. For each function f below, write f in the form

$$f(z) = f(x+iy) = u(x,y) + iv(x,y)$$

and determine whether or not the Cauchy-Riemann equations are satisfied:

(a)
$$f(z) = \exp(i \overline{z})$$
 (b) $f(z) = z + \frac{1}{z}$ (c) $f(z) = z^3$.

In the cases where f is differentiable, find the derivative of f both using the rules of differentiation and using the Cauchy-Riemann equations.

2. Show that the Cauchy-Riemann equations are satisfied by the function f defined on the open upper half plane $H_+ = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ by

$$f(x+iy) = u(x,y) + iv(x,y) = \log\left(\sqrt{x^2 + y^2}\right) + i\left(\frac{\pi}{2} - \arctan\left(\frac{x}{y}\right)\right).$$

Assuming that f is indeed holomorphic on H_+ , show that

$$f'(x+iy) = \frac{1}{x+iy}$$
 i.e., that $f'(z) = \frac{1}{z}$.

3. Describe the geometric effect of applying the functions:

- (a) $f(z) = \frac{1}{z}$ to a small disc centred at 1 i, and
- (b) $g(z) = \exp(2iz)$ to a small disc centred at $\frac{\pi}{4} + i$.

4. The set of points L = [0, 1-2i] is a line segment. It is also a path because we have a parametrisation given by $\gamma : [0,1] \to \mathbb{C}, \ \gamma(t) = (1-2i)t$. Use this parametrisation to evaluate the integral

$$\int_L \left(\mathsf{Im}(z) + 3i \right) \ dz.$$

5. Find the value of

$$\int_{\Gamma_1} f(z) dz$$
 and $\int_{\Gamma_2} f(z) dz$,

where $f(z) = 3\overline{z}$, Γ_1 is the straight line path from 0 to -i and Γ_2 is the straight line path from 1-i to 1+i.

6. Fix a point $z_0 \in \mathbb{C}$ and define a complex function f via

$$f(z) = (z - z_0)^n$$

where $n \in \mathbb{Z}$. Find the value of

$$\int_{\Gamma} f(z) \ dz,$$

where Γ is the circle with centre z_0 and radius r > 0, traversed in the anticlockwise direction (use the parametrisation $\gamma : [0, 2\pi] \to \mathbb{C}$, $\gamma(t) = z_0 + r(\cos(t) + i\sin(t))$). Do this separately for the cases n = -1 and $n \neq -1$.

(Hint: for the case $n \neq -1$, you need to show that

$$\frac{d}{dt} \left[(\cos(t) + i\sin(t))^{n+1} \right] = i(n+1) (\cos(t) + i\sin(t))^{n+1}$$

and then use the (real) Fundamental Theorem of Calculus).

- 7. Let $f, g: U \to \mathbb{C}$ be continuous, and let Γ be a smooth path contained in U parametrised by $\gamma: [a, b] \to \mathbb{C}$. Prove that
 - (a) for every constant $\alpha \in \mathbb{C}$ we have $\int_{\Gamma} (f + \alpha g) = \int_{\Gamma} f + \alpha \int_{\Gamma} g$, and
 - (b) if $\tilde{\Gamma}$ denotes the reverse of Γ , we have $\int_{\tilde{\Gamma}} f = -\int_{\Gamma} f$. As a hint, parametrise $\tilde{\Gamma}$ using $\tilde{\gamma}: [a,b] \to \mathbb{C}$, $\tilde{\gamma}(t) = (a+b-t)$, and use the substitution s = a+b-t.