1. T-Exercise 8 (American put option in the CRR model)

X(t) and Y(t) are functions of both t and W(t), so use (3.9) for that:

$$df(X(t)) = \left(\partial_1 f(t, X(t)) + \partial_2 f(t, X(t))\mu(t) + \frac{1}{2}\partial_{22} f(t, X(t))\sigma^2\right)dt + \partial_2 f(t, X(t))\sigma(t)dW(t)$$

- (a) d(X(t)) = d(tW(t)) = W(t)dt + tdW(t) (remember that $\mu(t) = 0$ as W(t) is std Brownian
- (b) $\partial_2 Y(t) = -\frac{W(t)}{(1+t)^2}$ $dY(t) = (1+t)^{-1}dW(t) - \frac{W(t)}{(1+t)^2}dtY(t) = \frac{W(t)}{1+t}$
- 2. T-Exercise 9 (Exchange rates)

$$dD(t) = D(t)\mu dt + D(t)\sigma dW(t)$$

$$E(t) := 1/D(t)$$

- (a) $E(t) = \frac{1}{D(t)} = f(D(t))$ hence use (3.8) for that: $df(X(t)) = [f'(X(t))\mu + \frac{1}{2}f''(X(t))\sigma^{2}]dt + f'(X(t))\sigma dW(t)$ $dE(t) = (-D^{-2}(t)\mu(t) + D^{-3}(t)\sigma(t)^{2})dt - D^{-2}(t)\sigma(t)dW(t)$ where $\mu(t) = D(t)\mu$ and $\sigma(t) = D(t)\sigma$ from dD(t) process substitute and get $dE(t) = E(t) \left((\sigma^2 - \mu)dt - \sigma dW(t) \right)$
- (b) Use the stochastic exponential for the Ito process

(3.11)
$$\mathcal{E}(X)(t) = exp\left(\int_0^t (\mu(s) - \frac{1}{2}\sigma^2)ds + \int_0^t \sigma(s)dW(s)\right)$$
 it follows that for linear SDE $dX(t) = \mu X(t)dt + \sigma X(t)dW(t)$ with $X(0) = x$ and constant μ and σ can be rephrased as $dX(t) = X(t)dY(t)$ with $Y(t) = \mu t + \sigma W(t)$ using (3.11) we get $X(t) = x\mathcal{E}(Y)(t) = xexp((\frac{1}{2}\sigma^2 - \mu)t - \sigma W(t))$

$$dD(t) = D(t)\mu dt + D(t)\sigma dW(t) = D(t)(\mu dt + \sigma dW(t)) = D(t)dY(t) \text{ where}$$

$$dY(t) = \mu dt + \sigma dW(t)$$

$$D(t) = D(0)\mathcal{E}(Y)(t) = D(0)exp\left[(\mu - \frac{1}{2}\sigma^2)t + \sigma W(t)\right]$$

$$E(t) = E(0)\mathcal{E}(Y)(t) = E(0)exp\left[\left(\frac{1}{2}\sigma^2 - \mu\right)t - \sigma W(t)\right]$$
where $dY(t) = (\sigma^2 - \mu)dt - \sigma dW(t)$

where $dY(t) = (\sigma^2 - \mu)dt - \sigma dW(t)$

(c) Plugin $\mu = \frac{1}{2}\sigma^2$ and we get:

$$D(t) = D(0)exp(\sigma W(t))$$
 and $E(t) = E(0)exp(-\sigma W(t))$

Drift part vanishes, diffusion is symmetric, hence E_t and D_t are symmetric EV's are the same, so no currency has an advantage