

University Of Engineering and Technology Lahore

Project Title:

Kmean and Naïve Base with RT_IoT2022 Dataset

Subject:

Artificial Intelligence

Submitted To:

Ms. Namra Sheikh

Submitted By:

Saneha Raees (2022-CS-706)

Mahnoor Imran (2022-CS-726)

Submission Date:

15-12-2024

1. Introduction

This project utilizes the RT_IoT2022 dataset, which contains IoT network traffic data with labeled attack types, to build a machine learning model for anomaly detection. The report covers data preprocessing, feature selection, model building using K-Means and Naïve Bayes, and performance evaluation.

2. Dataset Overview

The RT_IoT2022 dataset consists of network traffic features such as protocol type and service type, along with labeled attack types.

- Attack Types: Includes Denial of Service, Information Gathering, and more.
- Features: Numeric and categorical attributes like duration, protocol type, and service type.

Dataset Characteristics:

• Samples: 123117

• Features: 84

Classes: 12

3. Data Preprocessing

- Missing Values: No missing values found.
- Balancing: Down-sampling of the majority class (normal traffic) to balance the dataset.
- Feature Engineering:
 - Removed constant columns.
 - Encoded categorical features (service and protocol type).
 - Normalized features to a range of 0-1.
 - Removed highly correlated features (correlation > 0.9).

4. Target Labeling

The Attack type column was label-encoded to convert attack types into numeric labels.

5. Data Splitting

The dataset was split into an 80/20 training-test ratio.

6. Model Training and Evaluation

Naïve Bayes Classification

The Gaussian Naive Bayes model was trained and evaluated on accuracy, precision, recall, and F1-score.

• Cross-validation was used for model robustness.

Evaluation:

- Confusion Matrix: Analyzed for performance.
- Classification report heatmap
- ROC Curve: Plotted and AUC calculated.

7. K-Means Clustering

Elbow Method

K-Means was applied to identify patterns, with the Elbow method determining the optimal number of clusters.

• Elbow Plot: Identified the optimal cluster number.

K-mean UI

This program allows the user to select the number of clusters for K-Means and choose a plot type (Scatter Plot, Elbow Method, or 3D Plot).

Evaluation

Silhouette Score

Visualization

It visualizes the clustering results using UMAP and PCA.

8. Code and Report Generation

The profiling report generated using ydata_profiling provides a detailed overview of the dataset's statistics, distributions, and visualizations.