Big Data Project

Πλανάκης Νικηφόρος , 2121213 Τσιτλαούρι Γεώργιος-Δαυίδ, 2121219

Link προς αποθετήριο GitHub https://github.com/giwrgostst/big-data-spark-taxi

1. Εισαγωγή

Η παρούσα εργασία έχει ως κύριο στόχο την αξιολόγηση και τη βελτιστοποίηση της επεξεργασίας μεγάλων δεδομένων ταξί (New York Yellow Taxi) χρησιμοποιώντας το οικοσύστημα Apache Hadoop και Apache Spark. Συγκεκριμένα:

- 1. Να συνδεθούμε σε απομακρυσμένη υποδομή Kubernetes και να ρυθμίσουμε το Spark Job History Server.
- 2. Να μετατρέψουμε τα πρωτότυπα αρχεία CSV σε μορφή Parquet στο HDFS, με έμφαση στο dataset yellow tripdata 2024.
- 3. Να υλοποιήσουμε έξι ερωτήματα (Query 1–6) με διάφορα APIs (RDD, DataFrame, SQL), συγκρίνοντας την απόδοση μεταξύ CSV/Parquet και μεταξύ διαφορετικών ρυθμίσεων πόρων (horizontal vs. vertical scaling).
- **4. Να μελετήσουμε την αυτόματη επιλογή στρατηγικής join** από τον βελτιστοποιητή Catalyst του Spark και να αξιολογήσουμε την επίδραση παραμετροποίησης στις εκτελέσεις.

Σύντομη παρουσίαση Hadoop (≥ 3.3) & Spark (≥ 3.5)

Το Apache Hadoop (έκδοση \geq 3.3) παρέχει μια κατανεμημένη υποδομή αποθήκευσης (HDFS) και εκτέλεσης batch εργασιών (MapReduce).

Το Apache Spark (έκδοση \geq 3.5) βασίζεται σε in-memory επεξεργασία, προσφέροντας τρεις βασικούς τρόπους γειρισμού δεδομένων:

- RDD API: Χαμηλού επιπέδου, για λεπτομερή έλεγχο μετασχηματισμών.
- DataFrame API: Λογική αναπαράσταση πινάκων με βελτιστοποιήσεις Catalyst.
- Spark SQL: Εκτέλεση SQL ερωτημάτων πάνω σε DataFrames/Views.
- Η χρήση Parquet ως στήλης-ορισμένης μορφής επιταχύνει την ανάγνωση-εγγραφή και επιτρέπει καλύτερη συμπίεση σε σχέση με το CSV.

2. Υλικά & Μεθόδοι

Υποδομή Kubernetes & Job History Server

Για τη διασφάλιση επαναληψιμότητας και κεντρικής καταγραφής, χρησιμοποιήθηκε η απομακρυσμένη Kubernetes υποδομή του μαθήματος και τοπικά στήθηκε ο Spark Job History Server μέσω Docker Compose.

• Σύνδεση στο cluster

Αρχικά φορτώθηκε το αρχείο ρύθμισης (kubeconfig) στον υπολογιστή εργασίας και επιβεβαιώθηκε η πρόσβαση στο cluster με επιτυχή εμφάνιση όλων των κόμβων σε κατάσταση "Ready".

• Επαλήθευση υπηρεσιών Spark

Στη συνέχεια ελέγχθηκε ότι τα pods που διαχειρίζονται τις Spark εργασίες είναι ενεργά στο προβλεπόμενο namespace, επιβεβαιώνοντας την ορθή λειτουργία των υπηρεσιών.

• Ιστορικό εκτελέσεων

Τοπικά εκκινήθηκε ο Spark History Server μέσω Docker Compose, ρυθμισμένος ώστε να καταναλώνει απευθείας τα logs από τον shared φάκελο των Spark jobs στο HDFS. Το περιβάλλον παρακολούθησης επιβεβαιώθηκε με επιτυχή εμφάνιση της λίστας των εκτελεσμένων jobs στο web UI.

Datasets & HDFS

Τα δεδομένα προέρχονται από τρία αρχεία:

- 1. yellow_tripdata_2024: το πρωτότυπο CSV των ταξί του 2024, η δομή του οποίου απαιτούσε επιπλέον προεπεξεργασία για να αναγνωριστούν σωστά οι τύποι πεδίων.
- 2. tripdata_2015_with_gps: αρχείο του 2015 με συντεταγμένες GPS για κάθε διαδρομή.
- 3. zone lookup: πίνακας αντιστοιχίας ζωνών κωδικών σε ονόματα περιοχών.

Μετά την προεπεξεργασία, όλα τα παραχθέντα DataFrames ανεβάστηκαν στο HDFS στο path hdfs://hdfs-namenode:9000/user/{username}/data/parquet/, εξασφαλίζοντας κοινή βάση για τις συγκριτικές εκτελέσεις.

Εργαλεία & ΑΡΙς

Για την υλοποίηση των ερωτημάτων και τη μέτρηση επιδόσεων αξιοποιήθηκαν:

- Apache Spark (έκδοση ≥ 3.5)
 - RDD API για λεπτομερή streaming μετασχηματισμούς.
 - DataFrame API με βελτιστοποιήσεις Catalyst.
 - Spark SQL για εκτέλεση SQL ερωτημάτων.
- Apache Hadoop (έκδοση ≥ 3.3) ως υποκείμενο σύστημα αποθήκευσης (HDFS).

Το υπολογιστικό περιβάλλον στηρίχθηκε σε pods Kubernetes, με διάταξη πόρων που διαμορφώθηκε ανά εκτέλεση προκειμένου να μελετηθεί η horizontal & vertical κλιμάκωση.

3. Μετατροπή και αποθήκευση σε Parquet

Για να εξασφαλιστεί γρήγορη ανάγνωση και αποδοτική αποθήκευση στη συνέχεια των queries, τα τρία raw CSV datasets μετατράπηκαν σε στήλης—οριζόμενη μορφή Parquet και γράφτηκαν στο HDFS, στο path: hdfs://hdfs-namenode:9000/user/{username}/data/parquet/

Διαδικασία μετατροπής

Αναλύοντας τον κώδικα μετατροπής (csv to parquet.py), ακολουθήθηκε η παρακάτω λογική:

• yellow_tripdata_2015

Ορίστηκε αυστηρό schema με τονισμένα τα timestamps και τους αριθμητικούς τύπους. Τα δεδομένα repartitioned σε 200 partitions ώστε να εξασφαλιστεί ομοιόμορφος καταμερισμός φόρτου κατά την εγγραφή.

• yellow_tripdata_2024

Εντοπίστηκαν και προστέθηκαν νέα πεδία (π.χ. congestion_surcharge, Airport_fee, cbd_congestion_fee) με τον κατάλληλο τύπο Double.

Επαλήθευση σωστής ανάγνωσης όλων των πεδίων ως Timestamp ή Double, ώστε στο Parquet να διατηρούνται οι τύποι.

Repartition σε 200 partitions για γρήγορη, παράλληλη εγγραφή.

taxi_zone_lookup

Σταθερό μικρό dataset, re-partitioned σε 1 partition, για απλοποίηση joins χωρίς overhead πολλών partitions.

Εκτέλεση & Χρονομετρήσεις

Τα logs από την εγγραφή του yellow_tripdata_2024 δείχνουν λεπτομερώς τη συμπεριφορά του cluster:

Write to Parquet (Stage 5)

- Ολοκληρώθηκαν 200 tasks κατανεμημένα σε 6 executors.
- Διάρκεια ανά task: από ~3 s έως ~6.3 s (π.χ. task 188 σε 6.255 s, task 196 σε 5.059 s).
- Συνολικός χρόνος Stage 5: 210.873 s
- Commit Parquet files: επιπλέον 1.886 s
- Επεξεργασία παραμέτρων metadata από ParquetUtils: σχεδόν άμεση (~2 ms).

Validation read

- Stage 6: Μία partition scan ολοκληρώθηκε σε 0.610 s, με broadcast των blocks στα executors (~35.2 KiB & ~7.5 KiB).
- **Stage 8:** Final result σε 0.206 s, επιβεβαιώνοντας ότι τα αρχεία είναι προσβάσιμα και πλήρη.

Καθαρισμός

• Ο SparkContext σταμάτησε επιτυχώς, απελευθερώνοντας executors και πόρους.

Παρατηρήσεις

- Η επιλογή 200 partitions για τα μεγάλα datasets εξασφάλισε ισορροπία ανάμεσα σε παράλληλη εκτέλεση και overhead scheduling.
- Η προσεκτική οριστικοποίηση του σχήματος για το 2024 dataset απέφυγε μετατροπές στην εγγραφή, μειώνοντας πιθανά σφάλματα τύπων.

 Ο συνδυασμός Parquet με in-memory broadcast κατά το validation προσφέρει ταχύτητα ανάγνωσης (validation stages < 1 s).

4. Query 1

Περιγραφή ερωτήματος

Υπολογίζεται ο μέσος όρος γεωγραφικών συντεταγμένων (latitude, longitude) ανά ώρα της ημέρας, βάσει του dataset των ταξί. Ως στήλες εισόδου χρησιμοποιούνται το timestamp της παραλαβής και οι δυο συντεταγμένες· το αποτέλεσμα είναι ένας πίνακας με 24 γραμμές (0–23) και δύο αριθμητικές στήλες (avg_latitude, avg_longitude).

Υλοποίηση με RDD

Η λογική ήταν:

- Μαρ κάθε γραμμής σε (hourOfDay, (lat, lon, 1)).
- ReduceByKey για άθροισμα συντεταγμένων και πλήθος.
- Map Values για υπολογισμό μέσων όρων.
- sortByKey & collect για τελική ταξινόμηση.

Μετρικές εκτέλεσης (από logs)

- ShuffleMapStage (sortByKey): 0,335 s
- ResultStage (collect): 0,347 s
- Συνολικός χρόνος: $\approx 0.68 \text{ s}$

Ακολουθεί ο ενδεικτικός πίνακας από το output της εκτέλεσης:

HourOfDay	Latitude	Longitude
00	-73.977064	40.743686
01	-73.979515	40.742398
02	-73.981978	40.741994
03	-73.982195	40.742367
04	-73.978937	40.745220
05	-73.967153	40.747087
06	-73.969152	40.750279
07	-73.971241	40.754117
08	-73.974180	40.754748
09	-73.974638	40.754332
10	-73.973708	40.754826
11	-73.974793	40.754725
12	-73.975044	40.754481
13	-73.974809	40.753703
14	-73.973309	40.753209
15	-73.971765	40.753481
16	-73.971000	40.753057
17	-73.972573	40.753619
18	-73.974657	40.752959
19	-73.975474	40.751220
20	-73.975025	40.749389
21	-73.975417	40.748573
22	-73.975906	40.747342
23	-73.975641	40.745966

Υλοποίηση με DataFrame API (χωρίς UDF)

- 1. Δημιουργία στήλης hour από το timestamp.
- **2.** groupBy("hour").agg(avg("latitude"), avg("longitude")).
- **3.** orderBy("hour") + show().
- **4.** Μετρικές εκτέλεσης (από logs)
 - ShuffleMapStage 2 (main aggregation & shuffle): 89,766 s
 - ResultStage 4 (showString): 0,336 s
 - Συνολικός χρόνος: $\approx 90,10 \text{ s}$

Ακολουθεί ο ενδεικτικός πίνακας από το output της εκτέλεσης:

```
hour avg latitude
                 avg_longitude
    40.742398159234845 -73.97951454927195
    40.74199428739916 |-73.98197840305262
    40.74236727641727 | -73.9821953779699
    |40.74521955176397 |-73.97893655944617
    |40.747087331890285|-73.96715276900309
    |40.75027942835681 |-73.96915181885342|
    40.75411724758616 | -73.9712412266747
    40.75474772815866 | -73.97418022574088
    40.75433219192566 | -73.97463821565843
    |40.754825527035344|-73.97370815402361
    40.75472515238458 | -73.97479250993958
    40.75448102557209 | -73.97504395618643
13
    40.75370280051392 |-73.97480880331395
    40.75320914608027 | -73.97330878261884
14
   40.75348067316158 |-73.97176474360728
15
   |40.753057139533475|-73.9709998606949
16
   17
18
19
20
21
   40.74734244415441 | -73.9759059577899
   40.74596646198623 | -73.97564074899563
```

Υλοποίηση DataFrame με UDF

- 1. Προστέθηκε UDF για μετατροπή του πεδίου hour αντί του built-in casting.
- 2. Διαφοροποιήθηκε ελαφρώς το pipeline, με πρόσθετο στάδιο UDF evaluation πριν το groupBy.
- 3. Μετρικές εκτέλεσης (από logs)
 - ShuffleMapStage 2: 63,731 s
 - ResultStage 4: 0,368 s
 - Συνολικός χρόνος: ≈ 64,10 s

Ακολουθεί ο ενδεικτικός πίνακας από το output της εκτέλεσης:

lhaun		
Inour	avg_latitude	avg_longitude
10	40.74368565719834	-73.97706444739464
11	40.742398159234845	-73.97951454927195
12	40.74199428739916	-73.98197840305262
13	40.74236727641727	-73.98197840303202 -73.9821953779699
14	40.74521955176397	-73.97893655944617
15	40.747087331890285	-73.96715276900309
!-		
6		-73.96915181885342
7	40.75411724758616	-73.9712412266747
8	40.75474772815866	-73.97418022574088
9	40.75433219192566	-73.97463821565843
10		-73.97370815402361
11	40.75472515238458	-73.97479250993958
12	40.75448102557209	-73.97504395618643
13	40.75370280051392	-73.97480880331395
14	40.75320914608027	-73.97330878261884
15	40.75348067316158	-73.97176474360728
16	40.753057139533475	-73.9709998606949
17	40.75361876518549	-73.97257319140424
18	40.75295938035137	-73.9746568850624
19	40.75121953053051	-73.97547378526613
20	40.74938945686275	 -73.9750251552531
21	40.74857347686459	-73.975417237537
22	40.74734244415441	-73.9759059577899
23	40.74596646198623	-73.97564074899563
+	+	t

Σύγκριση επιδόσεων & σχολιασμός

Υλοποίηση	ShuffleStage	ShowStage	Συνολικό Time
RDD API	0.335 s	0.347 s	0.68 s
Dataframe API	89.766 s	0.336 s	90.1 s
Dataframe + UDF	63.731 s	0.368 s	64.1 s

- Η RDD υλοποίηση εκτελείται σχεδόν ακαριαία (~0,7 s), καθώς αποφεύγει μεγάλο μέρος του overhead της γεννήτριας κώδικα και των shuffle operations του Catalyst.
- Η καθαρή DataFrame εκδοχή είναι η πιο «βαριά» (~90 s), λόγω default αριθμού partitions και πλήρους shuffle σε όλο το dataset.
- Η χρήση UDF επιταχύνει σχετικά (~64 s), πιθανώς διότι μειώνει τον αριθμό internal operators και θυσιάζει μέρος του optimization pipeline, αλλά εξακολουθεί να υποφέρει από μεγάλο shuffle κόστος.

Συμπέρασμα

Για αυτό το ερώτημα, το RDD API υπερέχει κατά κράτος σε χρόνο, ενώ το DataFrame API ακόμα και με UDF παρουσιάζει σημαντικό overhead shuffle. Σε μελλοντικές επεκτάσεις, μία βελτιστοποιημένη DataFrame υλοποίηση (π.χ. coalesce partitions ή broadcast small tables) θα μειώσει τους χρόνους εκτέλεσης.

5. Query 2

Περιγραφή ερωτήματος

Για κάθε VendorID βρίσκουμε την μέγιστη απόσταση που διένυσε ένα ταξί (με χρήση της συνάρτησης Haversine) και υπολογίζουμε τη μέση διάρκεια της διαδρομής. Ως στήλες εισόδου χρησιμοποιούνται το VendorID, η απόσταση σε χιλιόμετρα και η διάρκεια σε λεπτά· το αποτέλεσμα είναι ένας πίνακας με μία γραμμή ανά VendorID και δύο αριθμητικές στήλες (max distance, avg duration).

Υλοποίηση με RDD

Λογική υλοποίησης:

Μαρ σε (VendorID, (distance, duration, 1)) → reduceByKey για άθροισμα αποστάσεων, χρόνων και πλήθους → υπολογισμός μέγιστης απόστασης και μέσης διάρκειας → collect.

Μετρικές εκτέλεσης:

- ShuffleMapStage (reduceByKey): 320,317 s
- ResultStage (collect): 0,750 s
- Συνολικός χρόνος: 321,127 s

Ακολουθεί ο ενδεικτικός πίνακας από το output της εκτέλεσης:

```
VendorID Max Haversine Distance (km) Duration (min)
1 57.24 95.1
2 53.90 62.0
```

Υλοποίηση με DataFrame API

Λογική υλοποίησης:

Φόρτωση DataFrame → χρήση built-in max(distance) & avg(duration) με groupBy("VendorID") → show().

Μετρικές εκτέλεσης:

- ShuffleMapStage (aggregation & shuffle): 70,406 s
- ResultStage (showString): 0,882 s
- Συνολικός χρόνος: 71,288 s

Ακολουθεί ο ενδεικτικός πίνακας από το output της εκτέλεσης:

Υλοποίηση με Spark SQL

Λογική υλοποίησης:

 Δημιουργία view → εκτέλεση SQL: SELECT VendorID, MAX(haversine_distance) AS max_distance, AVG(duration_minutes) AS avg_duration FROM trips_view GROUP BY VendorID

→ show() και EXPLAIN.

Μετρικές εκτέλεσης:

- ShuffleMapStage (aggregation & shuffle): 113,280 s
- ResultStage (showString): 0,686 s
- Συνολικός χρόνος: 113,966 s

Ακολουθεί ο ενδεικτικός πίνακας από το output της εκτέλεσης:

VendorID	+ Max Haversine Distance (km)	+ Duration (min)
1 2	+ 57.24 53.9	95.13 61.95
+	+	++

Σύγκριση επιδόσεων & σχολιασμός

Υλοποίηση	ShuffleStage	ShowStage	Συνολικό Time
RDD API	320,317 s	0.75 s	321.127 s
Dataframe	70.406 s	0.882 s	71.288 s
Spark SQL	113.28 s	0.686 s	113.966 s

- Η DataFrame API υπερέχει καθαρά, με συνολικό χρόνο ~71 s, αξιοποιώντας το codegen και τον βελτιστοποιητή Catalyst για αποτελεσματικό shuffle και aggregation.
- Το Spark SQL είναι πιο βαρύ (~114 s), καθώς προστίθεται parsing/analysis του query και ενδεχομένως λιγότερο αποτελεσματικό physical planning σε σχέση με το άμεσο DataFrame API.
- Η RDD υλοποίηση αποδεικνύεται πολύ αργή (~321 s) λόγω του Python overhead στο reduceByKey και του πλήρους serialization κάθε στοιχείου.

Συμπέρασμα

Για σύνθετες συναθροίσεις, η DataFrame/SQL προσέγγιση μειώνει δραστικά το κόστος σε σχέση με το RDD API, με προτίμηση στο άμεσο DataFrame API για καλύτερο trade-off ευκολίας κώδικα και επιδόσεων.

6. Query 3

Περιγραφή ερωτήματος

Μετράμε το συνολικό πλήθος ταξιδιών ανά Pickup_Borough, συγκρίνοντας την εκτέλεση με CSV και με Parquet input. Ω ς στήλη εισόδου χρησιμοποιείται το Pickup_Borough \cdot το

αποτέλεσμα είναι ένας πίνακας με τόσες γραμμές όσες οι διαφορετικές περιοχές και μία αριθμητική στήλη (TotalTrips), ταξινομημένος αλφαβητικά κατά Borough.

Υλοποίηση με DataFrame API

- Φόρτωση των raw CSV/Parquet με spark.read
- Μετασχηματισμοί: εξαγωγή Pickup Borough, TotalTrips = count(*) με groupBy + agg\
- orderBy(Pickup Borough) + show()

Ακολουθούν οι ενδεικτικοί πίνακες από το output της εκτέλεση με CSV και Parquet:

Manhattan 34166015

Υλοποίηση με Spark SQL

- Δημιουργία view (createOrReplaceTempView("trips"))
- SQL ερώτημα:

 $SELECT\ Pickup_Borough,\ COUNT(*)\ AS\ TotalTrips$

FROM trips

GROUP BY Pickup Borough

ORDER BY Pickup Borough

Εντολή EXPLAIN για εμφάνιση του physical plan

Ακολουθούν οι ενδεικτικοί πίνακες από το output της εκτέλεση με CSV και Parquet:

+ Borough	++ TotalTrips	
Manhattan Queens Brooklyn Unknown Bronx N/A EWR	34166015 941767 321584 71174 43994 18881	
Staten Island 583 +		

Εκτέλεση με CSV vs Parquet input

Υλοποίηση	ShuffleStage	ShowStage	Συνολικό Time
Dataframe + CSV	201.303 s	0.793 s	202.096 s
Dataframe + Parquet	10.273 s	0.359 s	10.632 s
SQL + CSV	156.786 s	1.632 s	158.418 s
SQL + Parquet	11.843 s	0.269 s	12.112 s

- Το Parquet προσφέρει καθολικά ταχύτερη ανάγνωση (~20×) χάρη στο columnar format, vectorized reader και push-down φίλτρων, μειώνοντας δραστικά το I/O.
- Στις δύο μορφές API, το DataFrame είναι ελαφρώς ταχύτερο από το SQL, επειδή παρακάμπτει κάποια parsing-και-planning overhead του SQL parser.
- Το CSV υποφέρει από full schema inference και parsing overhead σε κάθε stage, ενώ το Parquet επαναχρησιμοποιεί το αποθηκευμένο schema.

Συμπέρασμα

Επιλέγουμε Parquet + DataFrame API για βέλτιστο trade-off επιδόσεων και απλότητας.

7. Query 4

Περιγραφή ερωτήματος

Υπολογίζεται ο αριθμός των νυχτερινών διαδρομών (π.χ. μεταζύ 20:00 και 06:00) ανά VendorID. Ως στήλες εισόδου χρησιμοποιούνται το VendorID και το pickup_datetime — φιλτράροντας τα ταξίδια μέσα στο νυχτερινό ωράριο· το αποτέλεσμα είναι ένας πίνακας με μία γραμμή για κάθε VendorID και μία αριθμητική στήλη (NightTrips).

Υλοποίηση SQL με CSV

- ShuffleMapStage (aggregation & shuffle): 193.963 s
- ResultStage (showString): 0.370 s
- Συνολικός χρόνος: ~ 194.333 s

Ακολουθεί ο ενδεικτικός πίνακας από το output της εκτέλεση:

Υλοποίηση SQL με Parquet

- ShuffleMapStage (aggregation & shuffle): 25.373 s
- ResultStage (showString): 0.658 s
- Συνολικός χρόνος: ~ 26.031 s

Ακολουθεί ο ενδεικτικός πίνακας από το output της εκτέλεση:

Σύγκριση Επιδόσεων & Σχολιασμός

Υλοποίηση	ShuffleStage	ShowStage	Συνολικό Time
CSV	193.962 s	0.37 s	194.333 s
Parquet	25.373 s	0.658 s	26.031 s

- Μείωση partitions επειδή από τα 34 partitions στο CSV κατεβάσαμε σε 16 στο Parquet χάρη στην ικανότητα του Parquet να παραλείπει partitions χωρίς νυχτερινά ταξίδια (predicate pushdown).
- Διαβάζουμε μόνο το VendorID και το πεδίο ώρας, αντί για ολόκληρη την εγγραφή, κάνουμε το λεγόμενο Column pruning.
- Το Parquet χρησιμοποιεί ενσωματωμένα στατιστικά για να φορτώσει bulk σειρές, αποφεύγοντας costly κλήσεις parsing κειμένου, δηλαδη Vectorized I/O.

Συμπέρασμα

Η ανάγνωση από Parquet μείωσε κατά \sim 168 s τον χρόνο shuffle/aggregation, καθώς εκτελέστηκαν λιγότερα tasks και αξιοποιήθηκε πιο αποδοτικός σχεδιασμός από τον Catalyst optimizer.

Το overhead για το τελικό show (συλλογή αποτελεσμάτων) παραμένει αμελητέο και στα δύο $(\sim 0.3-0.7 \text{ s})$.

Συστήνεται να διατηρούμε τα μεγάλου όγκου datasets σε Parquet (με σωστό schema), ειδικά όταν γίνονται επιλεκτικά ερωτήματα: το όφελος σε Ι/Ο και CPU είναι δραματικό, όπως φαίνεται εδώ με >5× ταχύτερη εκτέλεση.

8. Query **5**

Περιγραφή ερωτήματος

Για κάθε συνδυασμό ζώνης παραλαβής (PickupZone) και ζώνης απόθεσης (DropoffZone) υπολογίζεται το συνολικό πλήθος ταξιδιών και επιλέγονται τα 20 πρώτα ζευγάρια κατά φθίνουσα

σειρά. Ω ς στήλες εισόδου χρησιμοποιούνται οι δύο ζώνες· το αποτέλεσμα είναι ένας πίνακας 20 γραμμών με τρεις στήλες (PickupZone, DropoffZone, TotalTrips), ταξινομημένος κατά φθίνουσα συχνότητα.

Υλοποίηση DataFrame API

- Φόρτωση CSV/Parquet σε DataFrame
- Ομαδοποίηση (groupBy("PickupZone", "DropoffZone"))
- Aggregation με count()
- Ταξινόμηση κατά φθίνουσα συχνότητα (orderBy(desc("count")))
- Περιορισμός στα πρώτα 20 (limit(20)) και show()

Εκτέλεση με CSV input

- ShuffleMapStage (stage 5): 190.040 s
- ResultStage (stage 7: showString): 1.551 s
- Συνολικός χρόνος: 191.591 s

Ακολουθεί ο ενδεικτικός πίνακας από το output της εκτέλεσης με CSV:

PickupZone	DropoffZone 	TotalTrips
Upper East Side South	Upper East Side North	279894
Upper East Side North	Upper East Side South	241425
Midtown Center	Upper East Side South	131903
Upper East Side South	Midtown Center	117112
Midtown Center	Upper East Side North	109747
Upper East Side South	Midtown East	107499
Upper West Side South	Lincoln Square East	105687
Lincoln Square East	Upper West Side South	105221
Upper West Side South	Upper West Side North	100123
JFK Airport	Times Sq/Theatre District	94129
Lenox Hill West	Upper East Side North	91559
Upper East Side North	Midtown Center	91354
Penn Station/Madison Sq West	Times Sq/Theatre District	86171
Upper West Side North	Upper West Side South	85430
Midtown East	Upper East Side South	85184
JFK Airport	Outside of NYC	84737
Upper East Side North	Lenox Hill West	84406
Upper East Side South	Lenox Hill West	83103
LaGuardia Airport	Times Sq/Theatre District	82303
Upper East Side North	Upper West Side South	80940
+	+	++

Εκτέλεση με Parquet input

- ShuffleMapStage (stage 4): 16.784 s
- ResultStage (stage 6: showString): 0.852 s
- Συνολικός χρόνος: 17.636 s

Ακολουθεί ο ενδεικτικός πίνακας από το output της εκτέλεσης με Parquet:

	-	
PickupZone	DropoffZone	TotalTrips
Upper East Side South	Upper East Side North	279894
Upper East Side North		241425
Midtown Center		131903
Upper East Side South	Midtown Center	117112
Midtown Center	Upper East Side North	109747
Upper East Side South	Midtown East	107499
Upper West Side South	Lincoln Square East	105687
Lincoln Square East	Upper West Side South	105221
Upper West Side South	Upper West Side North	100123
JFK Airport	Times Sq/Theatre District	94129
Lenox Hill West	Upper East Side North	91559
Upper East Side North	Midtown Center	91354
Penn Station/Madison Sq West	Times Sq/Theatre District	86171
Upper West Side North	Upper West Side South	85430
Midtown East	Upper East Side South	85184
JFK Airport	Outside of NYC	84737
Upper East Side North	Lenox Hill West	84406
Upper East Side South	Lenox Hill West	83103
LaGuardia Airport	Times Sq/Theatre District	
Upper East Side North	Upper West Side South	80940
+	+	++

Σύγκριση επιδόσεων & σχολιασμός

Υλοποίηση	ShuffleStage	ShowStage	Συνολικό Time
CSV	190.04 s	1.151 s	191.591 s
Parquet	16.784 s	0.852 s	17.636 s

- H Parquet υλοποίηση είναι \sim 11× ταχύτερη στο shuffle stage (16.8 s vs 190 s) και συνολικά \sim 10× ταχύτερη (17.6 s vs 191.6 s).
- O columnar, binary χαρακτήρας του Parquet μειώνει δραστικά το κόστος I/O, parsing και serialization.
- Το CSV αναγκάζει το Spark να διαβάσει, να κάνει full text parsing και να μετατρέψει σε τύπους σε κάθε εκτέλεση, επιβαρύνοντας το shuffle.

Συμπέρασμα

Για βαριές συναθροίσεις σε μεγάλα datasets, η χρήση Parquet αντί CSV μεγιστοποιεί την απόδοση εκτέλεσης, εκμεταλλευόμενη αποδοτικό I/O, predicate pushdown και vectorized reads.

9. Query 6

Περιγραφή ερωτήματος

Υπολογίζονται, ανά Borough, τα συνολικά έσοδα από ταξί (άθροισμα κόστους διαδρομής, φιλοδωρημάτων, διοδίων, επιβαρύνσεων, φόρων και τελών αεροδρομίου) με χρήση DataFrame API, και μελετάται πώς ο χρόνος εκτέλεσης μεταβάλλεται σε διαφορετικές ρυθμίσεις εκτελεστών (horizontal vs vertical scaling). Ως στήλες εισόδου χρησιμοποιούνται τα δεδομένα των διαδρομών (σε Parquet) και ο broadcast πίνακας ζωνών (CSV) το αποτέλεσμα είναι ένας πίνακας με μία γραμμή ανά Borough και στήλες με τα επιμέρους έσοδα και το συνολικό TotalRevenue.

Σημείωση

Στον κώδικα του Q6 χρησιμοποιήθηκε Parquet για το αρχείο yellow_tripdata_2024 (βελτιστοποιημένη μορφή) και CSV για το taxi_zone_lookup.csv (μικρό, σταθερό, broadcast από τον Catalyst).

Υλοποίηση DataFrame API

- Φόρτωση yellow tripdata 2024.parquet σε DataFrame
- Φόρτωση taxi zone lookup.csv σε DataFrame & broadcast
- join σε ζώνες
- groupBy("Borough") + sum(«Fare», «Tips», «Tolls», ..., συνολικό έσοδο)
- orderBy(desc("TotalRevenue")) + limit(8) + show()

(όπου το "TotalRevenue" = sum(Fare+Tips+Tolls+Extras+MTA Tax+Congestion+Airport Fee))

Ενδεικτικός πίνακας εκτέλεσης με 2 executors × 4 cores / 8 GB:

```
|Extras ($)
                                                                                                 |MTA Tax ($)
             |Fare ($)
                                  |Tips ($)
                                                       |Tolls ($)
Borough
|Congestion ($)|Airport Fee ($)|Total Revenue ($)
             |5.736913174399613E8 |1.0283189082000495E8|8565520.359999418
                                                                            |4.503831111000001E7 |
1.7585360060000002E7|7.758510827E7 |4614.75
                                                  |8.508696007099583E8 |
             1.9388638829000157E8 3.1903783399991773E7 1.3798238659960296E7 1.1647018249999998E7 1756847.81
Queens
4822778.5
              15440047.0
                              |2.651304236800669E8 |
Brooklyn
             |1.6536112589999862E7|684384.8400000002
                                                       |380030.7899999861
                                                                            120046.22
                                                                                                 287577.0
115120.0
              456.75
                              |1.8814492059999198E7|
                                                                            19357.2
                                                                                                 160976.0
             4040209.4599999944 | 46934.32
                                                       206104.6800000025
Bronx
5075.0
              94.5
                              4481557.34000003
                                                       96265.70999999894
                                                                            240247.25
Unknown
             2607544.390000002
                                  458179.8699999995
58260.200000000001
                                                  3685691.170000018
                  233995.0
                                  15339.25
             |1971412.8399999992 |195514.68000000028 |44691.22000000014
                                                                            |3727.0
                                                                                                 2558.0
N/A
2212.5
              194.25
                              2240523.940000001
EWR
             485796.61000000004 | 60438.10999999994
                                                       111150.429999999998
                                                                            408.5
                                                                                                 |168.0
                              |563645.70000000002
              1.75
                                                      15891.540000000001
                                                                                                 |554.5
|Staten Island|60368.780000000035 |3532.800000000000
                                                                            184.25
147.5
              10.5
                              |83191.120000000001
```

Ενδεικτικός πίνακας εκτέλεσης με 4 executors × 2 cores / 4 GB:

+	+	+			+
+	+	+	+		
Borough		Tips (\$)	Tolls (\$)	Extras (\$)	MTA Tax (\$)
Congestion ((\$) Airport Fee (<pre>\$) Total Revenue (</pre>	(\$)		
+	+				
+					
Manhattan			82000495E8 8565520.35		0001E7
1.75853600600		827E7 4614.75			
Queens				59960296E7 1.16470182499	99998E7 1756847.81
4822778.5	5440047.0	2.6513042368006			
Brooklyn		9862E7 684384.8400		9999861 120046.22	287577.0
115120.0	456.75	1.8814492059999	9198E7		
Bronx		9944 46934.32	206104.680	0000025 9357.2	60976.0
5075.0	94.5				
Unknown	2607544.390000				1
	00001 233995.0				
N/A			00000028 44691.2200	0000014 3727.0	2558.0
2212.5	194.25	2240523.9400000			
EWR		0004 60438.10999		99999998 408.5	168.0
97.5	1.75	563645.70000000			
		0035 3532.800000		0000001 184.25	554.5
147.5	10.5	83191.120000000	001		
	+				
+			+		

Ενδεικτικός πίνακας εκτέλεσης με 8 executors × 1 cores / 2 GB:

```
|Tolls ($)
          |Fare ($) | Tips ($)
                                                               Extras ($)
                                                                                 MTA Tax ($)
|Congestion ($)|Airport Fee ($)|Total Revenue ($) |
[4.5038311110000014E7]
Queens |1.9388638829000154E8|3.1903783399991773E7|1.3798238659960296E7|1.164701825E7
1756847.8100000003 |4822778.5 |5440047.0 |2.6513042368006688E8|
|Brooklyn | 1.6536112589999862E7 | 684384.8400000003 | 380030.78999998607 | 120<u>0</u>46.22
                                                                                 287577.0
            |456.75 | |1.88144920599992E7 |
115120.0
Bronx
           4040209.4599999944 |46934.32000000001 |206104.68000000253 |9357.2
                                                                                 60976.0
           94.5 | 4481557.340000029 |
15075.0
           |2607544.3900000025 |458179.869999995 |96265.70999999894
Unknown
                                                              240247.25
                            5339.25 | 3685691.170000017 |
58260.2000000000004 | 233995.0
           1971412.8399999992 | 195514.68000000025 | 44691.2200000000125 | 3727.0
                                                                                 2558.0
N/A
2212.5
            |194.25 |2240523.9400000013 |
           485796.61000000004 |60438.109999999935 |11150.429999999998 |408.5
I FWR
                                                                                 168.0
97.5
            1.75 | 563645.70000000002 |
|Staten Island|60368.78000000004 |3532.8
                                              |15891.540000000008 |184.25
                                                                                 |554.5
                         83191.12
1147.5
            10.5
```

Εκτέλεση με διαφορετική κλιμάκωση

Ρύθμιση	ShuffleStage	ShowStage	Συνολικό Time
2 executors × 4 cores / 8 GB	28.145 s	0.976 s	29.121 s
4 executors × 2 cores / 4 GB	20.177 s	1.993 s	22.17 s

8 executors × 1 cores 15.231 s 0.321 s 15.552 s	
---	--

Σύγκριση & Ανάλυση Scaling

Οριζόντια κλιμάκωση (more executors):

- Πλεονέκτημα: Κάθε executor «κρατά» broadcast variables τοπικά ⇒ μειωμένο network
 I/O στα shuffle blocks.
- Αποτέλεσμα: Μετακίνηση από 29 s→15.6 s (×1.86 ταχύτερα) όταν αυξήσαμε από 2→8 executors

Κάθετη κλιμάκωση (λιγότεροι executors με παραπάνω cores):

- Πλεονέκτημα: Λιγότερες διαδικασίες, μεγαλύτερη μνήμη/core ⇒ ίσως καλύτερη CPU cache locality.
- **Μειονέκτημα:** Λιγότερα nodes φέρνουν broadcast στο ίδιο machine \Rightarrow αυξημένα remote fetches.

Συμπέρασμα για το φορτίο μας:

- Με σταθερό συνολικό αριθμό cores & μνήμης, horizontal scaling (πολλοί small executors) βελτιώνει αισθητά την απόδοση, χάρη στη βελτιωμένη τοπικότητα των broadcast δεδομένων.
- Προσοχή: πολύ μεγάλος αριθμός executors μπορεί να αυξήσει overhead της διαχείρισης πολλών JVMs και να φέρει GC issues.

10. Μελέτη Catalyst Optimizer

Περιγραφή κεφαλαίου

Στόχος μας είναι να κατανοήσουμε τον τρόπο με τον οποίο ο Catalyst Optimizer επιλέγει στρατηγική join —BroadcastHashJoin, SortMergeJoin κ.λπ.— όταν περιορίζουμε το αποτέλεσμα σε λίγες γραμμές (LIMIT 50), και πώς αυτή η επιλογή αλλάζει αν τροποποιήσουμε τις βασικές παραμέτρους του Spark SQL.

Μετρικές εκτέλεσης

- ShuffleMapStage (Join): 9.391 s
- ResultStage (Show): 0.317 s
- Συνολικό: ≈ 9.708 s

Επιλεγμένη στρατηγική join

Ο Catalyst επέλεξε BroadcastHashJoin:

- Στα logs εμφανίζεται
 - "TorrentBroadcast: ... estimated total size 4.0 MiB"
 - γεγονός που δείχνει ότι ο μικρός πίνακας ζωνών (~4 MiB) «broadcastάρεται» σε όλους τους executors.
- Η μεγάλη πλευρά (το trips dataset) διαβάζεται partition-wise και, έχοντας το μικρό lookup τοπικά, κάθε executor κάνει γρήγορα έναν hash join χωρίς πρόσθετο shuffle για τη μικρή πλευρά.

Γιατί BroadcastHashJoin;

- Μέγεθος lookup < spark.sql.autoBroadcastJoinThreshold (10 MB από default)
- Hash join απαιτεί μία μόνο σάρωση του μεγάλου πίνακα, αντί για δύο ταξινομήσεις που θα έκανε το Sort-Merge
- Μειωμένο network I/O, αφού το μικρό dataset στέλνεται μόνο μία φορά

Θεωρία πίσω από την επιλογή

- Ο Catalyst Optimizer συλλέγει στατιστικά (μέγεθος, partitions) και συγκρίνει το κόστος κάθε join αλγορίθμου.
- Όταν μία πλευρά είναι αρκετά μικρή, το BroadcastHashJoin αποδεικνύεται χαμηλότερου κόστους από το Sort-Merge (το οποίο απαιτεί shuffle + ταξινόμηση και των δύο πλευρών).
- Το LIMIT 50 δεν επηρεάζει την επιλογή, διότι Spark δεν μπορεί να αποφύγει να σκανάρει τα partitions προτού συγκεντρώσει τις πρώτες γραμμές.

Συμπέρασμα

Για μικρούς lookup πίνακες σε σχέση με το μεγάλο trips dataset, o BroadcastHashJoin είναι η προτιμητέα στρατηγική – επιβεβαιωμένη εδώ από το κόστος (\sim 9.4 s) και τα logs broadcast (\sim 4 MiB).

11. Συζήτηση

Συνολική σύγκριση επιδόσεων

Σε όλες τις υλοποιήσεις των ερωτημάτων παρατηρείται καθαρή υπεροχή του DataFrame API έναντι του RDD API, με τον Spark SQL να κινείται στο ίδιο μέγεθος ή ελαφρώς βραδύτερα (λόγω parsing/analysis). Συνοπτικά:

- Ερωτήματα σύνθετων συναθροίσεων (Q2): ο RDD εκτελείται σε \sim 321 s, ενώ DataFrame + built-in συναρτήσεις σε \sim 71 s.
- CSV vs Parquet (Q3–Q5, Q4): η χρήση Parquet μειώνει κατά 5–20× τον χρόνο I/O και shuffle, οδηγώντας σε συνολικό χρόνο κάτω από 20 s για βαριά ερωτήματα, έναντι 150–200 s με CSV.
- Catalyst UDF (Q1): η απλή μετατροπή σε UDF μείωσε ελαφρώς το overhead (~64 s vs ~90 s), αλλά δεν πλησιάζει την ταχύτητα του RDD (~0,7 s) σε ερωτήματα με πολύ μικρό σύνολο αποτελεσμάτων.

Παρατηρήσεις για scaling & βελτιστοποίηση

- Horizontal vs Vertical scaling (Q6): με σταθερό σύνολο πόρων, η οριζόντια κλιμάκωση (πολλοί μικροί executors) οδηγεί σε καλύτερη τοπικότητα των broadcast variables και μείωση του network I/O, φέρνοντας τον χρόνο από ~29 s (2×4 cores) σε ~15.6 s (8×1 core).
- Broadcast μικρών πινάκων: στα joins με lookup πίνακα < 10 MB, o Catalyst επιλέγει αυτόματα BroadcastHashJoin, αποφεύγοντας πλήρη shuffle.

• Column pruning & predicate push-down: στο Parquet format το Catalyst περιορίζει τα blocks και τις στήλες που διαβάζονται, με αποτέλεσμα εκτεταμένο όφελος Ι/Ο σε κάθε ερώτημα που δεν απαιτεί όλα τα πεδία.

Περιορισμοί & προτάσεις βελτίωσης

Skew & partitioning

Στα queries με άνιση κατανομή των keys (π.χ. rare zones ή νυχτερινά ταξί), ενδεχομένως κάποια partitions να γίνονται bottleneck. Θα ωφελούσε η χρήση custom partitioner ή salting για πιο ομοιόμορφη κατανομή.

Caching & persistence

Επαναλαμβανόμενες αναγνώσεις του ίδιου dataset (CSV ή Parquet) μπορούν να επιταχυνθούν με cache() ή write-as-table, αποφεύγοντας π.χ. το re-parsing του CSV.

Fine-tuning Spark conf

Οι default τιμές (spark.sql.autoBroadcastJoinThreshold, spark.sql.shuffle.partitions) ίσως να μην είναι βέλτιστες για το συγκεκριμένο cluster. Ξεχωριστές ρυθμίσεις ανά ερώτημα (π.χ. μείωση partitions σε μικρά joins, αύξηση σε βαριά aggregations) θα μπορούσαν να μειώσουν τον overhead.

Vectorized UDFs / pandas-UDFs

Για πολυπλοκότερους υπολογισμούς (π.χ. custom distance functions) το pandas-UDF προσφέρει καλύτερο throughput απ' ό,τι οι κανονικοί scalar UDFs.

Ανάλυση στατιστικών

Η συλλογή ANALYZE TABLE ... COMPUTE STATISTICS και η χρήση EXPLAIN EXTENDED μπορούν να βοηθήσουν τον Catalyst να επιλέξει ακόμη πιο αποδοτικούς plans, ειδικά σε πολύ μεγάλα datasets.

Συνολικά, η βέλτιστη απόδοση επιτυγχάνεται με Parquet + DataFrame API + κατάλληλο tuning (broadcast, partitions, caching) και κλιμάκωση που συνδυάζει τη δυνατότητα για τοπικό broadcast με επαρκή parallelism.

12. Συμπεράσματα

Στο πλαίσιο της έρευνας αυτής αναδείχθηκαν τα εξής κύρια ευρήματα:

1. Υπερογή DataFrame API vs RDD API

- Για βαριές συναθροίσεις (π.χ. Q2), το DataFrame API με built-in συναρτήσεις επιταχύνει έως ~4×–5× σε σχέση με το RDD, αξιοποιώντας vectorized I/O, code generation και Catalyst optimizer.
- Το RDD API παραμένει ταχύτερο μόνο σε πολύ μικρά ερωτήματα (π.χ. Q1 με 24 σειρές), όπου το parsing και το shuffle των DataFrames υπερτερούν του Python overhead

2. Parquet vs CSV

- Η μετάβαση από CSV σε Parquet οδηγεί σε 10×-20× μείωση χρόνου I/O και shuffle (Q3-Q5), χάρη στο columnar format, την predicate push-down και τον vectorized reader.
- Η χρήση Parquet δικαιολογείται ιδιαίτερα σε μεγάλα, στήλη-προς-στήλη ερωτήματα· το CSV χάνει σε parsing overhead και full scan.

3. Broadcast joins & Catalyst Optimizer

- Ο Catalyst επιλέγει αυτόματα BroadcastHashJoin όταν ένας από τους πίνακες είναι μικρότερος από το spark.sql.autoBroadcastJoinThreshold (10 MB).
- Broadcast μικρών lookup πινάκων (π.χ. taxi_zones ~4 MiB) αποφεύγει πλήρη shuffle, μειώνοντας εκθετικά το network I/O στο join (O12.1).

4. Κλιμάκωση πόρων

- Οριζόντια κλιμάκωση (πολλοί executors με λίγους cores) βελτιώνει την τοπικότητα των broadcast variables και μειώνει το network I/O, φέρνοντας ~1.86× ταχύτερους χρόνους (Q6).
- Κάθετη κλιμάκωση (λίγοι executors με πολλούς cores) προσφέρει καλύτερη CPU cache locality, αλλά μπορεί να υπερφορτώνει μεμονωμένους κόμβους και να αυξάνει τον remote fetching.

5. Ρυθμίσεις & Βελτιστοποίηση

- Tuning των spark.sql.shuffle.partitions, threshold για broadcast και coalescing partitions έχει σημαντικό αντίκτυπο.
- Το caching (persist) και η προκαταρκτική συλλογή στατιστικών (ANALYZE TABLE) συμβάλλουν στην επιτάχυνση επαναλαμβανόμενων ερωτημάτων.

Συνολικά, η προτεινόμενη στρατηγική για μεγάλα, παραγωγικά pipelines είναι:

- Αποθήκευση σε Parquet με σωστό schema & partitioning.
- DataFrame API με built-in functions και Catalyst tuning.
- Broadcast μικρών πινάκων για fast hash joins.
- **Οριζόντια κλιμάκωση** με αρκετούς executors για βέλτιστη τοπικότητα.
- Στοχευμένο tuning partitions, threshold και caching όπου απαιτείται.

Με αυτές τις πρακτικές εξασφαλίζεται μέγιστη απόδοση, ελαχιστοποίηση I/O και βέλτιστη εκμετάλλευση του Spark Catalyst Optimizer.

13. Παραρτήματα

Στην εικόνα βλέπουμε το dashboard του Spark History Server (v4.0.0), το οποίο συγκεντρώνει τα logs από όλες τις εκτελέσεις των ερωτημάτων Q1–Q6 και το ερώτημα 1B.

Κύρια σημεία

- Οι Parquet runs (π.χ. Q3_DF_Parquet: ~51 s) είναι πολύ πιο γρήγορες από τις CSV (Q3 DF CSV: ~7.3 min).
- Η DataFrame/SQL API υπερέχει σημαντικά των RDD.
- Το πείραμα με το join (JoinExplain) έτρεξε σε μόλις 27 s, επιβεβαιώνοντας τη χρήση BroadcastHashJoin.
- Στο Q6, η αύξηση των executors (horizontal scaling) μείωσε τον χρόνο από \sim 29 s σε \sim 15 s.

Το k9s και δείχνει όλα τα pods στο namespace gtsitlaouri-priv. Κάθε γραμμή αντιστοιχεί σε ένα Spark-driver pod ή σε κάποια άλλη εφαρμογή (εδώ μόνο το weather-app-deployment-6bdfb75588-k7hwf είναι "Running", όλα τα υπόλοιπα έχουν "Completed").

Κύρια σημεία

- Όλα τα Spark-driver pods (για Q1–Q6) είναι σε status Completed, με μηδενικά restarts και μηδενική τρέχουσα χρήση πόρων — σημαίνει ότι τα jobs ολοκληρώθηκαν επιτυχώς και έκλεισαν.
- Το μόνο "ζωντανό" pod αυτή τη στιγμή είναι το weather-app-deployment-6bdfb75588-k7hwf, με status Running, 2 CPU cores και 88 MiB μνήμης σε χρήση.
- Διανομή: σχεδόν όλα τα Spark pods τρέχουν στο node source-code-pc8, ενώ το container της weather app στο source-code-pc1.
- Port-forward (PF): όλα τα driver pods έχουν το •, πράγμα που σημαίνει ότι είναι εύκολα προσβάσιμα από τοπικό port-forwarding στο k9s.

```
:~$ hdfs dfs -ls /user/gtsitlaouri/
Found 4 items
drwxrwxr-x+ -
                gtsitlaouri gtsitlaouri
                                                     0 2025-06-10 17:57 /user/gtsitlaouri/code
drwxrwx---+ - gtsitlaouri gtsitlaouri
                                                     0 2025-05-02 17:28 /user/gtsitlaouri/data
drwxrwxr-x+ - gtsitlaouri gtsitlaouri
                                                     0 2025-06-10 18:06 /user/gtsitlaouri/logs
                gtsitlaouri gtsitlaouri
                                                     0 2025-05-07 16:27 /user/gtsitlaouri/output
 :om@TOM-72:~$ hdfs dfs -ls /user/gtsitlaouri/code
Found 17 items
-rw-rw-r--+ 3 gtsitlaouri gtsitlaouri
                                                   676 2025-06-09 20:11 /user/gtsitlaouri/code/1b.py
 rw-rw-r--+ 3 gtsitlaouri gtsitlaouri
                                                  4035 2025-06-06 16:22 /user/gtsitlaouri/code/csv_to_parquet.py
-rw-rw-r--+ 3 gtsitlaouri gtsitlaouri
                                                  827 2025-06-10 17:57 /user/gtsitlaouri/code/q1_df.py
                                                  1130 2025-06-10 17:57 /user/gtsitlaouri/code/q1_df_udf.py
-rw-rw-r--+ 3 gtsitlaouri gtsitlaouri
                                                  1261 2025-06-10 17:56 /user/gtsitlaouri/code/q1_rdd.py
             3 gtsitlaouri gtsitlaouri
         --+ 3 gtsitlaouri gtsitlaouri
                                                  2585 2025-06-09 20:42 /user/gtsitlaouri/code/q2_df.py
                                                  1941 2025-06-09 20:41 /user/gtsitlaouri/code/q2_rdd.py
              3 gtsitlaouri gtsitlaouri
              3 gtsitlaouri gtsitlaouri
                                                  1830 2025-06-09 20:42 /user/gtsitlaouri/code/q2_sql.py
                                                  1154 2025-06-09
             3 gtsitlaouri gtsitlaouri
                                                                   18:00 /user/gtsitlaouri/code/q3_df_csv.py
              3 gtsitlaouri gtsitlaouri
                                                  924 2025-06-09 18:32 /user/gtsitlaouri/code/q3_df_parquet.py
                                                   727 2025-06-09
                                                                   18:34 /user/gtsitlaouri/code/q3_sql_csv.py
              3 gtsitlaouri gtsitlaouri
              3 gtsitlaouri gtsitlaouri
                                                   719 2025-06-09 18:55 /user/gtsitlaouri/code/q3_sql_parquet.py
              3 gtsitlaouri gtsitlaouri
                                                   589 2025-06-09
                                                                   19:05 /user/gtsitlaouri/code/q4_sql_csv.py
              3 gtsitlaouri gtsitlaouri
                                                   579 2025-06-09 19:11 /user/qtsitlaouri/code/q4_sql_parquet.py
              3 gtsitlaouri gtsitlaouri
                                                  1198 2025-06-09 19:39 /user/gtsitlaouri/code/q5_df_csv.py
                                                  1062 2025-06-09 19:49 /user/gtsitlaouri/code/q5_df_parquet.py
              3 gtsitlaouri gtsitlaouri
        r--+ 3 gtsitlaouri gtsitlaouri 1005 2025-06
-72:~$ hdfs dfs -ls /user/gtsitlaouri/data/parquet
                                                  1005 2025-06-09 19:59 /user/qtsitlaouri/code/q6_df.py
Found 3 items
drwxrwxr-x+ - spark gtsitlaouri
drwxrwxr-x+ - spark gtsitlaouri
                                              0 2025-06-09 18:27 /user/gtsitlaouri/data/parquet/taxi_zone_lookup
0 2025-06-09 18:19 /user/gtsitlaouri/data/parquet/yellow_tripdata_2015
0 2025-06-09 18:27 /user/gtsitlaouri/data/parquet/yellow_tripdata_2024
drwxrwxr-x+ - spark qtsitlaouri
```

Αυτή η εικόνα δείχνει την ιεραρχία και τα περιεχόμενα των HDFS φακέλων του χρήστη gtsitlaouri.

Κύρια σημεία

• Βασικοί φάκελοι

- Στο /user/gtsitlaouri υπάρχουν οι υποφάκελοι code, data, logs και output.
- b. Δικαιώματα: ο ιδιοκτήτης είναι gtsitlaouri, ενώ ο φάκελος data/parquet ανήκει στο spark user—αποτυπώνει το διάχωρισμα ρόλων μεταξύ κώδικα και αποθηκευμένων δεδομένων.

• Φάκελος code

- 1. Περιέχει 17 Python scripts (~600–4 000 bytes το καθένα), με ονόματα που ακολουθούν το pattern q1 *, q2 *, ... q6 * και επιπλέον ένα csv to parquet.py.
- 2. Κάθε αρχείο αντιστοιχεί σε μία υλοποίηση ερωτήματος (RDD, DataFrame, SQL, CSV vs Parquet) ή βοηθητικό conversion script.

• Φάκελος data/parquet

Τρεις καταχωρίσεις:

1. taxi zone lookup (μικρό lookup broadcast),

- 2. yellow_tripdata_2015 (παραγωγή παραδείγματος),
- 3. yellow_tripdata_2024 (πλήρες dataset).
- Όλοι οι φάκελοι έχουν μέγεθος "0" στο listing επειδή πρόκειται για directories· τα δεδομένα τους είναι σε μορφή Parquet.

Αυτή η δομή επιβεβαιώνει ότι ο κώδικας και τα αρχεία Parquet είναι σωστά ανεβασμένα στο HDFS, χωρισμένα σε λογικά κομμάτια (scripts vs datasets), έτοιμα για εκτέλεση των Spark jobs.

fin.