第六章

6.5 银行家算法

a.

$$A_r=15-(2+4+1+1+1)=6$$

$$B_r = 6 - (1+1+1) = 3$$

$$C_r = 9 - (2 + 1 + 1) = 5$$

$$D_r = 10 - (1 + 1 + 2 + 1 + 1) = 4$$

可验证正确性

b.

要求需求矩阵,使用最大需求减去当前已分配即可

	A	B	C	D
P_0	7	5	3	4
P_1	2	1	2	2
P_2	3	4	4	2
P_3	2	3	3	1
P_4	4	1	2	1
P_5	3	4	3	3

c.

给出两种序列参考

序列1

进程	进程终止时可用资源
P_1	[6, 4, 6, 5]
P_2	[10, 5, 6, 7]
P_0	[12, 5, 8, 8]
P_3	[13, 5, 8, 9]
P_4	[14, 6, 8, 9]

P_5	[15, 6, 9, 10]
7 5	11a n 9 101
- 0	110, 0, 0, 10

序列2

进程	进程终止时可用资源
P_1	[6,4,6,5]
P_4	[7, 5, 6, 5]
P_5	[8, 5, 7, 6]
P_2	[12, 6, 7, 8]
P_3	[13, 6, 7, 9]
P_0	[15, 6, 9, 10]

d.

不应

此时需求矩阵为

	\boldsymbol{A}	B	C	D
P_0	7	5	3	4
P_1	2	1	2	2
P_2	3	4	4	2
P_3	2	3	3	1
P_4	4	1	2	1
P_5	0	2	0	0

假设允许 P_5 的请求,此时可用资源向量为[3,1,2,1],若只有进程获取所有资源之后才会释放资源,此时可用资源向量不满足需求矩阵中任何一行,故发生死锁

6.6

a.

使用方格表示资源,圆圈表示进程,资源指向进程表示资源被某一个进程占有,进程指向资源表示进程请求某一个资源。资源A、B、C、D、E、F仅拥有一个单元的资源,此时资源图成环,会发生死锁。

b.

只需打破**a.**中资源图循环即可,例如:

P0	P1	P2
В	E	С
С	В	F
A	D	D

6.7

当 I的速度远大于O的时候,例如当I= \max ,而O=O的时候,就会导致磁盘中都是输入的块,那么这个时候就会导致:

- I 等待空间来输入
- P 等待空间来输出

由于磁盘不能得到输出,所以O进程不会消耗它,导致死锁。

6.14

a.

会,foo运行semwait(S),bar运行semwait(R),两个进程分别在semwait(R)、semwait(S)阻塞。

b.

不会,两个进程同时运行,foo在semsignal(R)后,bar在semwait(R)的阻塞被解除,反之亦然,故不会出现有一个被无限延后。