Genetic Algorithm

Generated by Doxygen 1.8.17

1 Namespace Index	I
1.1 Namespace List	l
2 Class Index	3
2.1 Class List	3
3 File Index	5
3.1 File List	5
4 Namespace Documentation	7
4.1 func Namespace Reference	7
4.1.1 Detailed Description	7
4.1.2 Function Documentation	7
4.1.2.1 ackleysOne()	7
4.1.2.2 ackleysTwo()	3
4.1.2.3 alpine()	3
4.1.2.4 eggHolder()	3
4.1.2.5 firstDeJong())
4.1.2.6 griewangk())
4.1.2.7 levy())
4.1.2.8 mastersCosineWave())
4.1.2.9 michalewicz())
4.1.2.10 pathological())
4.1.2.11 quartic())
4.1.2.12 rana()	l
4.1.2.13 rastrigin()	l
4.1.2.14 rosenbrock()	l
4.1.2.15 schwefel()	l
4.1.2.16 sineEnvelopeSineWave()	2
4.1.2.17 step()	2
4.1.2.18 stretchedVSineWave()	2
5 Class Documentation 13	3
5.1 DataStats Class Reference	3
5.2 Genetic_algorithm Class Reference	3
5.2.1 Constructor & Destructor Documentation	1
5.2.1.1 Genetic_algorithm()	1
5.2.2 Member Function Documentation	1
5.2.2.1 run()	1
5.3 Population Class Reference	5
5.3.1 Detailed Description	5
5.3.2 Member Function Documentation	5
5.3.2.1 evaluate()	5
5.3.2.2 generation()	5

5.3.2.3 init()	15
5.3.2.4 reset()	16
5.3.2.5 sort_by_cost()	16
6 File Documentation	17
6.1 src/data_stats.h File Reference	17
6.1.1 Detailed Description	17
6.2 src/func.h File Reference	17
6.2.1 Detailed Description	18
6.3 src/genetic_algorithm.h File Reference	18
6.3.1 Detailed Description	19
6.4 src/population.h File Reference	19
6.4.1 Detailed Description	19
6.5 src/run.h File Reference	20
6.5.1 Detailed Description	20
6.5.2 Function Documentation	20
6.5.2.1 output()	20
6.5.2.2 output_all()	21
6.5.2.3 runFunc()	21
Index	23

Namespace Index

1.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:	
func	

2 Namespace Index

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

DataStats	13
Genetic_algorithm	13
Population	15

4 Class Index

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

src/data_stats.h
Data analysis
src/func.h
Math functions
src/genetic_algorithm.h
Genetic algorithm
src/population.h
Population generation
src/run.h
Run result

6 File Index

Namespace Documentation

4.1 func Namespace Reference

18 functions

Functions

- float schwefel (vector< float > &x)
- float firstDeJong (vector< float > &x)
- float rosenbrock (vector< float > &x)
- float rastrigin (vector< float > &x)
- float griewangk (vector< float > &x)
- float sineEnvelopeSineWave (vector< float > &x)
- float stretchedVSineWave (vector< float > &x)
- float ackleysOne (vector< float > &x)
- float ackleysTwo (vector< float > &x)
- float eggHolder (vector< float > &x)
- float rana (vector< float > &x)
- float pathological (vector< float > &x)
- float michalewicz (vector< float > &x)
- float mastersCosineWave (vector< float > &x)
- float quartic (vector< float > &x)
- float levy (vector< float > &x)
- float step (vector < float > &x)
- float alpine (vector< float > &x)

4.1.1 Detailed Description

18 functions

4.1.2 Function Documentation

4.1.2.1 ackleysOne()

```
float func::ackleysOne ( vector < float > & x)
```

Function 8, Implementation of Ackley's One function

Parameters

x descriptionx Vector of float

4.1.2.2 ackleysTwo()

```
float func::ackleysTwo ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 9, Implementation of Ackley's Two function

Parameters

x descriptionx Vector of float

4.1.2.3 alpine()

```
float func::alpine ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ \mbox{$x$} \ )
```

Function 18, Implementation of Alpine function

Parameters

x descriptionx Vector of float

4.1.2.4 eggHolder()

```
float func::eggHolder ( \mbox{vector} < \mbox{float} > \mbox{\&} \ x \ )
```

Function 10, Implementation of Egg Holder function

Parameters

x descriptionx Vector of float

4.1.2.5 firstDeJong()

```
float func::firstDeJong ( \mbox{vector} < \mbox{float} > \mbox{\&} \mbox{ x )} \label{eq:vector}
```

Function 2, Implementation of 1st De Jong's function

Parameters

x descriptionx Vector of float

4.1.2.6 griewangk()

```
float func::griewangk ( \mbox{vector} < \mbox{float} > \mbox{\&} \mbox{ x )} \label{eq:vector}
```

Function 5, Implementation of Griewangk function

Parameters

x descriptionx Vector of float

4.1.2.7 levy()

```
float func::levy ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 16, Implementation of Levy function

Parameters

x descriptionx Vector of float

4.1.2.8 mastersCosineWave()

```
float func::mastersCosineWave ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ \mbox{x} \ )
```

Function 14, Implementation of Masters Cosine Wave function

Parameters

x descriptionx Vector of float

4.1.2.9 michalewicz()

```
float func::michalewicz ( \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 13, Implementation of Michalewicz function

Parameters

x descriptionx Vector of float

4.1.2.10 pathological()

```
float func::pathological ( \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 12, Implementation of Pathological function

Parameters

x descriptionx Vector of float

4.1.2.11 quartic()

```
float func::quartic ( \mbox{vector} < \mbox{float} > \mbox{\&} \mbox{ x )} \label{eq:vector}
```

Function 15, Implementation of Quartic function

Parameters

x descriptionx Vector of float

4.1.2.12 rana()

```
float func::rana ( \label{eq:vector} \mbox{vector} < \mbox{float} > \mbox{\&} \mbox{ x )}
```

Function 11, Implementation of Rana function

Parameters

x descriptionx Vector of float

4.1.2.13 rastrigin()

```
float func::rastrigin ( \mbox{vector} < \mbox{float} > \mbox{\&} \mbox{ x )} \label{eq:vector}
```

Function 4, Implementation of Rastrigin's function

Parameters

x descriptionx Vector of float

4.1.2.14 rosenbrock()

```
float func::rosenbrock ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 3, Implementation of Rosenbrock's function

Parameters

x descriptionx Vector of float

4.1.2.15 schwefel()

```
float func::schwefel ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ \mbox{x} \ )
```

Function 1, Implementation of Schwefel's function

Parameters

x descriptionx Vector of float

4.1.2.16 sineEnvelopeSineWave()

```
float func::sineEnvelopeSineWave ( \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 6, Implementation of Sine Envelope Sine Wave function

Parameters

x descriptionx Vector of float

4.1.2.17 step()

```
float func::step ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ \mbox{$x$} \ )
```

Function 147 Implementation of Step function

Parameters

x descriptionx Vector of float

4.1.2.18 stretchedVSineWave()

```
float func::stretchedVSineWave ( \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 7, Implementation of Stretched V Sine Wave function

Parameters

x descriptionx Vector of float

Class Documentation

5.1 DataStats Class Reference

Public Member Functions

• void run ()

Generate analytical data.

Public Attributes

- float mean = INT MAX
- float median = INT_MAX
- float **stand** = INT_MAX
- float range_low
- float range_high
- float time_avg = 0
- vector< float > time
- vector< float > data

The documentation for this class was generated from the following files:

- src/data_stats.h
- src/data_stats.cpp

5.2 Genetic_algorithm Class Reference

Public Member Functions

- Genetic_algorithm (float(*funct)(vector< float > &), float I, float u)
 Solution sets.
- void run ()

Initialize genetic algorithm to run for a certain function.

14 Class Documentation

Public Attributes

```
• float f_best = INT_MAX
```

- vector< float > f_best_history
- vector< float > solution best

Minimum f value during execution.

5.2.1 Constructor & Destructor Documentation

5.2.1.1 Genetic_algorithm()

```
Genetic_algorithm::Genetic_algorithm (  \mbox{float}(*) \; (\mbox{vector} < \; \mbox{float} \; > \; \&) \; \; funct, \\ \mbox{float} \; 1, \\ \mbox{float} \; u \; )
```

Solution sets.

Initialize genetic algorithm to run for a certain function

Parameters

f	function	
1	low bound for x	
и	high bound for x	

5.2.2 Member Function Documentation

5.2.2.1 run()

```
void Genetic_algorithm::run ( )
```

Initialize genetic algorithm to run for a certain function.

Run genetic algorithm. Status reset before every run.

The documentation for this class was generated from the following files:

- src/genetic_algorithm.h
- src/genetic_algorithm.cpp

5.3 Population Class Reference

```
#include <population.h>
```

Public Member Functions

- void init (int s, int d, float(*funct)(vector< float > &), float I, float u)
- void generation ()

Initialize a population.

• void evaluate ()

Generate random number to fill the population.

· void reset ()

Evaluate the population the population by first calculating each function's cost, then calculate fitness accordingly.

void sort_by_cost ()

Reset the population for new run.

Public Attributes

- vector< vector< float >> population
- vector< float > cost
- vector< float > fitness
- float fitness_total

5.3.1 Detailed Description

Population for genetic algorithm. Individual's population of x is represented by vector<float>.

5.3.2 Member Function Documentation

5.3.2.1 evaluate()

```
void Population::evaluate ( )
```

Generate random number to fill the population.

Evaluate the population the population by first calculating each function's cost, then calculate fitness accordingly.

5.3.2.2 generation()

```
void Population::generation ( )
```

Initialize a population.

Generate random number to fill the population.

5.3.2.3 init()

```
void Population::init (
    int s,
    int d,
    float(*)(vector< float > &) funct,
    float 1,
    float u)
```

Initialize a population

16 Class Documentation

Parameters

s	population size
d	population dimension
low	x low bound
high	x high bound

5.3.2.4 reset()

```
void Population::reset ( )
```

Evaluate the population the population by first calculating each function's cost, then calculate fitness accordingly.

reset the population for new run

5.3.2.5 sort_by_cost()

```
void Population::sort_by_cost ( )
```

Reset the population for new run.

pair sort to sort the population by cost

The documentation for this class was generated from the following files:

- src/population.h
- src/population.cpp

File Documentation

6.1 src/data_stats.h File Reference

```
data analysis
```

```
#include <vector>
```

Classes

class DataStats

6.1.1 Detailed Description

```
data analysis
```

Author

```
Cheng Su ( csu@cwu.edu)
```

Version

0.1

Date

2020-02-05

6.2 src/func.h File Reference

Math functions.

```
#include <stdio.h>
#include <vector>
```

18 File Documentation

Namespaces

• func

18 functions

Functions

```
float func::schwefel (vector< float > &x)
float func::firstDeJong (vector< float > &x)
float func::rosenbrock (vector< float > &x)
float func::rastrigin (vector< float > &x)
float func::griewangk (vector< float > &x)
```

- float func::sineEnvelopeSineWave (vector< float > &x)
- float func::stretchedVSineWave (vector< float > &x)
- float func::ackleysOne (vector< float > &x)
- float func::ackleysTwo (vector< float > &x)
- float func::eggHolder (vector< float > &x)
- float func::rana (vector< float > &x)
- float func::pathological (vector< float > &x)
- float func::michalewicz (vector< float > &x)
- float func::mastersCosineWave (vector < float > &x)
- float func::quartic (vector< float > &x)
- float func::levy (vector< float > &x)
- float func::step (vector < float > &x)
- float func::alpine (vector< float > &x)

6.2.1 Detailed Description

```
Math functions.
```

Author

```
Cheng Su ( csu@cwu.edu)
```

Version

0.1

Date

2020-02-05

6.3 src/genetic_algorithm.h File Reference

Genetic algorithm.

```
#include <stdio.h>
#include <vector>
#include "genetic_algorithm.h"
#include "population.h"
```

Classes

• class Genetic_algorithm

6.3.1 Detailed Description

```
Genetic algorithm.

Author

Cheng Su ( csu@cwu.edu)

Version

0.1
```

6.4 src/population.h File Reference

Population generation.

2020-02-05

```
#include <stdio.h>
#include <vector>
```

Classes

Date

class Population

6.4.1 Detailed Description

Population generation.

Author

```
Cheng Su ( csu@cwu.edu)
```

Version

0.1

Date

2020-02-05

20 File Documentation

6.5 src/run.h File Reference

Run result.

```
#include <stdio.h>
#include <vector>
#include "data_stats.h"
```

Functions

```
    void setSeed ()
```

```
Set seed for Mersenne Twister
```

- DataStats runFunc (int experiment, string func_name, float(*f)(vector< float > &), float max, float min)

 Run genetic algorithm for a certain function.
- void output (string func_name, DataStats result, vector< vector< float >> f_best_history)
 Write output file for record.
- void output_all (vector < DataStats > result_best)

Write output file for all function results.

6.5.1 Detailed Description

Run result.

Author

```
Cheng Su ( csu@cwu.edu)
```

Version

0.1

Date

2020-02-05

6.5.2 Function Documentation

6.5.2.1 output()

```
void output ( string \ func\_name, DataStats \ result, vector< \ vector< \ float >> f\_best\_history \ )
```

Write output file for record.

Write output file for record

Parameters

func_name	function name
result	result analysis data
f_best_history	minimum value for fx

6.5.2.2 output_all()

```
void output_all ( \label{eq:condition} \mbox{vector} < \mbox{ DataStats } > \mbox{ result\_best } \mbox{)}
```

Write output file for all function results.

Write output file for all function results

Parameters

result	best	statistics for results for every function
--------	------	---

6.5.2.3 runFunc()

```
DataStats runFunc (
                int experiment,
               string func_name,
                float(*)(vector< float > &) f,
                 float min,
                 float max )
```

Run genetic algorithm for a certain function.

Run genetic algorithm for a certain function

Parameters

experiment	experiment size
func_name	function name
min	low bound for x
max	high bound for x

22 File Documentation

Index

ackleysOne func, 7 ackleysTwo	func, 9 michalewicz func, 10
func, 8	Turio, To
alpine	output
func, 8	run.h, <mark>20</mark>
	output_all
DataStats, 13	run.h, <mark>21</mark>
eggHolder	pathological
func, 8	func, 10
evaluate	Population, 15
Population, 15	evaluate, 15
	generation, 15
firstDeJong	init, 15
func, 8	reset, 16
func, 7	sort_by_cost, 16
ackleysOne, 7	
ackleysTwo, 8	quartic
alpine, 8	func, 10
eggHolder, 8	rana
firstDeJong, 8	func, 10
griewangk, 9	rastrigin
levy, 9	func, 11
mastersCosineWave, 9	reset
michalewicz, 10	Population, 16
pathological, 10	rosenbrock
quartic, 10	func, 11
rana, 10	run
rastrigin, 11	Genetic_algorithm, 14
rosenbrock, 11	run.h
schwefel, 11	output, 20
sineEnvelopeSineWave, 12	output_all, 21
step, 12	runFunc, 21
stretchedVSineWave, 12	runFunc
generation	run.h, <mark>21</mark>
Population, 15	
Genetic_algorithm, 13	schwefel
Genetic_algorithm, 14	func, 11
run, 14	sineEnvelopeSineWave
griewangk	func, 12
func, 9	sort_by_cost
, -	Population, 16
init	src/data_stats.h, 17
Population, 15	src/func.h, 17
	src/genetic_algorithm.h, 18
levy	src/population.h, 19
func, 9	src/run.h, 20
maatara Caaina Waxa	step
mastersCosineWave	func, 12

24 INDEX

stretchedVSineWave func, 12