Álgebra de conjuntos y Álgebra de proposiciones

Conocemos dos formas diferentes de definir un conjunto, por comprensión y por extensión:

Un conjunto se define por *comprensión o especificación*, si y sólo si se da una propiedad que permite establecer con certeza si un elemento pertenece o no al conjunto.

Esta forma de definir a un conjunto se basa en el axioma de especificación (es dicho axioma). Sea A un conjunto y P(x) una función proposicional con $x \in A$, entonces existe el conjunto P de elementos de A que satisfacen P(x)

Dados A y P(x), existe
$$P = \{x \in A / P(x)\}$$

Ejemplo: B =
$$\{x \in N / x^2 - 4 \le 0 \}$$
, en este caso N = A y $x^2 - 4 \le 0 = P(x)$

Un conjunto se define por *extensión o enumeración*, si y sólo si se enumeran todos los elementos.

En el ejemplo,

$$B = \{0, 1, 2\}$$

Los elementos de B, constituyen el conjunto de verdad de la función proposicional.

Implicación formal

Dadas P(x) y Q(x), dos funciones proposicionales, diremos que P(x) implica formalmente a Q(x) si no puede ocurrir que P(x) sea verdadera y Q(x) sea falsa.

Sean P, el conjunto de verdad de P(x) y Q, el conjunto de verdad de Q(x), si $P(x) \Rightarrow Q(x)$ (formalmente), entonces $P \subset Q$, es decir que si $x \in P \Rightarrow x \in Q$

Ejemplo: Considerando como universo el conjunto de los números enteros, definimos: $P(x) = (x = 3) \ y \ Q(x) = (x = 9), \ la implicación \ Q(x) \Rightarrow P(x) \ es \ formal, \ porque no puede ocurrir que un número sea múltiplo de 9 y no sea múltiplo de 3, Q <math>\subset$ P; mientras que la

implicación $P(x) \Rightarrow Q(x)$ no es formal, existen números que son múltiplos de 3 y no son múltiplos de 9, el 12, por ejemplo.

Doble implicación formal o equivalencia formal

Dadas P(x) y Q(x), dos funciones proposicionales, diremos que son lógicamente equivalentes o que existe entre ellas una equivalencia formal si se cumple que:

$$(P(x) \Rightarrow Q(x)) \land (Q(x) \Rightarrow P(x))$$
 es una tautología

P(x) implica formalmente a Q(x) y Q(x) implica formalmente a P(x)

$$P(x) \Leftrightarrow Q(x)$$

Sean P y Q, los conjuntos de verdad de P(x) y Q(x), definidas en U, si P(x) \Leftrightarrow Q(x) (formalmente), P \subset Q y Q \subset P, entonces P = Q

Ejemplo: Considerando como universo el conjunto de los números naturales, definimos:

P(x) = (x = 2) y Q(x) = (x es número par), $P(x) \Leftrightarrow Q(x)$, no puede ocurrir que un número sea múltiplo de dos y no sea par y tampoco puede ocurrir que un número sea par y no sea múltiplo de dos.

Operaciones con conjuntos

Sean $A = \{x \in U \mid A(x)\}$ y $B = \{x \in U \mid B(x)\}$, los conjuntos de verdad de A(x) y B(x), respectivamente, definimos:

Unión: $A \cup B = \{x \in U \mid A(x) \vee B(x)\}$, la unión de dos conjuntos A y B es el conjunto de verdad de la disyunción de las funciones proposicionales correspondientes.

Intersección: $A \cap B = \{x \in U \mid A(x) \land B(x)\}$, la intersección de dos conjuntos A y B es el conjunto de verdad de la conjunción de las funciones proposicionales correspondientes.

Diferencia: $A - B = \{x \in U / A(x) \land - B(x)\}$, la diferencia de dos conjuntos A y B en ese orden es el conjunto de verdad de la conjunción entre A(x) y la negación de B(x).

Complementación: $\overline{A} = \{x \in U / -A(x)\}$, el complemento de un conjunto A es el conjunto de verdad de la negación de la función proposicional correspondiente.

Diferencia simétrica: A Δ B = {x \in U / A(x) $\underline{\vee}$ B(x)}, la diferencia simétrica de dos conjuntos A y B, es el conjunto de verdad de la disyunción excluyente de las funciones proposicionales correspondientes.

Son estas definiciones las que establecen las relaciones entre el álgebra proposicional y el álgebra de conjuntos, y las que nos permitirán demostrar las leyes del Álgebra de Conjuntos utilizando tablas de verdad.

Veamos algunas de ellas, sin perder de vista que estamos trabajando con funciones proposicionales y que sólo para facilitar la notación, usaremos a, b, c en lugar de A(x), B(x), C(x).

Asociatividad de la unión de conjuntos

 $(A \cup B) \cup C = A \cup (B \cup C)$

(a	V	b)	V	С	\Leftrightarrow	а	V	(b	V	c)
V	V	V	V	V	٧	V	V	٧	٧	V
V	V	V	V	f	٧	٧	V	٧	٧	f
V	V	f	V	V	٧	٧	V	f	٧	٧
V	V	f	V	f	٧	٧	V	f	f	f
f	V	٧	V	V	٧	f	V	٧	٧	٧
f	V	V	V	f	٧	f	V	٧	٧	f
f	f	f	V	٧	٧	f	V	f	٧	٧
f	f	f	f	f	٧	f	f	f	f	f

Se produce una tautología con lo que queda probada la equivalencia lógica.

De otro modo:

Lo que debemos demostrar es la equivalencia lógica o doble implicación formal, es decir, debemos probar que $(A \cup B) \cup C \subset A \cup (B \cup C)$ y que $A \cup (B \cup C) \subset (A \cup B) \cup C$ En efecto,

$$x \in [(A \cup B) \cup C] \Rightarrow x \in (A \cup B) \lor x \in C$$
 (Def. de unión)
 $\Rightarrow (x \in A \lor x \in B) \lor x \in C$ (Def. de unión)
 $\Rightarrow x \in A \lor (x \in B \lor x \in C)$ (Asociatividad de la disyunción)
 $\Rightarrow x \in A \lor x \in (B \cup C)$ (Def. de unión)
 $\Rightarrow x \in [A \cup (B \cup C)]$ (Def. de unión)

Lo que prueba que $(A \cup B) \cup C \subset A \cup (B \cup C)$ (1)

Análogamente se prueba que: $A \cup (B \cup C) \subset (A \cup B) \cup C$ (2)

$$x \in [A \cup (B \cup C)] \Rightarrow x \in A \lor x \in (B \cup C)$$
 (Def. de unión)
 $\Rightarrow x \in A \lor (x \in B \lor x \in C)$ (Def. de unión)
 $\Rightarrow (x \in A \lor x \in B) \lor x \in C$ (Asociatividad de la disyunción)
 $\Rightarrow x \in (A \cup B) \lor x \in C$ (Def. de unión)
 $\Rightarrow x \in [(A \cup B) \cup C]$ (Def. de unión)

De (1) y (2),
$$(A \cup B) \cup C = A \cup (B \cup C)$$

Idempotencia de la unión de conjuntos

$$\mathsf{A} \quad \cup \quad \mathsf{A} \quad = \quad \mathsf{A}$$

а	V	а	\$	а	
V	V	V	V	V	
f	f	f	٧	f	

La idempotencia de la unión de conjuntos se demuestra por la idempotencia de la disyunción lógica.

En efecto:

$$x \in (A \cup A) \Leftrightarrow x \in A \lor x \in A$$
 (Def. de unión)
..... $\Leftrightarrow x \in A$ (Idempotencia de la disyunción)

Del mismo modo, la idempotencia de la intersección de conjuntos se demuestra por la idempotencia de la conjunción lógica.

Elemento neutro de la unión de conjuntos

Recordemos que $\emptyset = \{x / f(x)\}\ y$ que $U = \{x / v(x)\}\$

$$A \cup \varnothing = A$$

а	V	f	\Leftrightarrow	а	
V	V	f	٧	V	
f	f f		٧	f	

En efecto:

Si
$$x \in (A \cup \emptyset) \Rightarrow x \in A \lor x \in \emptyset$$
 (Def. de unión)
$$\Rightarrow x \in A \qquad (x \in \emptyset \text{ es falso}) \text{ El falso es neutro en la disyunción}$$

Luego:
$$(A \cup \emptyset) \subset A$$
 (1)

Por otro lado:

Si $x \in A \Rightarrow x \in (A \cup \emptyset)$ (si x pertenece a A, pertenece a la unión de A con cualquier otro conjunto, en particular a la unión con el conjunto vacío)

Luego: $A \subset (A \cup \emptyset)$ (2)

De (1) y (2):
$$A \cup \emptyset = A$$

Conmutatividad de la intersección de conjuntos

 $A \quad \cap \quad B \quad = \quad B \quad \cap \quad A$

а	^	b	\Leftrightarrow	b	^	а
V	V	٧	V	٧	٧	٧
V	f	f	V	f	f	V
f	f	٧	V	٧	f	f
f	f	f	V	f	f	f

Leyes de De Morgan

~	(a	^	b)	\Leftrightarrow	~	а	V	~	b
f	V	V	V	V	f	٧	f	f	V
V	V	f	f	V	f	٧	V	V	f
V	f	f	V	V	V	f	V	f	V
V	f	f	f	V	V	f	V	V	f

El complemento de la intersección de dos conjuntos es igual a la unión de los complementos de dichos conjuntos.

El complemento de la unión de dos conjuntos es igual a la intersección de los complementos de dichos conjuntos.

Estas dos leyes, se demuestran por las leyes de de Morgan de la conjunción y la disyunción lógicas.