Security - Key Spaces

Problem Statement

K denotes a set called the $key\ space$. Any element of K is called a key.

Each element $e \in K$ uniquely determines a bijection from M to C, denoted by E_e . E_e is called an encryption function. Similarly for each $d \in K$ we have a bijection from C to M, denoted by D_d and it is called a decryption function.

For example, consider the same shifting function that we dealt with in the previous challenge. Now suppose the amount of shift we do is some e (e=1 in previous question). Then e is a valid key representing the bijective function $f(x)=shift_x_by_e$.

For this task, consider a message which consists of decimal digits and a key e which operates by shifting each digit by e places. Find the corresponding cipher text.

Constraints

 $1 \le Length \ of \ the \ string \le 10$ $0 \le e \le 9$

Input Format

Input consists of 2 lines.

The first line contains the message string.

The second line contains the key e.

Output Format

Output a single line which contains the cipher thus obtained.

Sample Input

Sample Output

513

391