

INSTITUTE OF PSYCHIATRY, PSYCHOLOGY & NEUROSCIENCE

Techniques in Neuroscience

Week 2:

Electrophysiology: Looking at live neurons in action

Dr Jonathan Robbins

Topic 1: An introduction to electrophysiology Part 3 of 3

Part 3

Week 2 Electrophysiology: Looking at live neurons in action

Topic 1: An introduction to electrophysiology

Definitions to aid understanding

Definitions:

Voltage: the potential difference in charge between two points.

Current: the rate at which an electric charge is flowing.

Click *Next* to continue

Week 2 Electrophysiology: Looking at live neurons in action

Topic 1: An introduction to electrophysiology

Summary on intracellular recordings

Technique	Advantages	Disadvantages
Current clamp	Records activity of the cell in 'physiological conditions' Detailed and high resolution recordings of voltages	Cannot control voltage
Voltage clamp	Can control the voltage Detailed and high resolution recordings of currents	Unstable
Sharp electrode	Reusable Simple electrode solution	High resistance Can be difficult to make Some damage to cell
Patch electrode	Low resistance Relatively easy to make Less damage to cell Dialysis of cell contents	Not reusable Dialysis of cell contents Complex electrode solution
Single channel	Allows the recording in real time of the functional activity of a single protein Elucidates drug action at molecular level	Complex and lengthy analysis

Click *Next* to continue

Week 2

Electrophysiology: Looking at live neurons in action

Topic 1: An introduction to electrophysiology

13 of 18

Summary

- Electrophysiology can record the electrical activity of whole brain tissue, a single neuron or a single ion channel.
- Electrophysiology is a dynamic, functional, SI unit-based, real-time, hi-fidelity and high temporal resolution approach.
- Many electrophysiological approaches can be used in vivo.
- Electrophysiology can be used simultaneously or in conjunction with optical, molecular, biochemical and pharmacological techniques.
- It is essential to the understanding of the nervous system.

Week 2 Electrophysiology: Looking at live neurons in action

Topic 1: An introduction to electrophysiology

References

Docherty, R. J., Charlesworth, G., Farrag, K., Bhattacharjee, A., & Costa, S. (2005). The use of the rat isolated vagus nerve for functional measurements of the effect of drugs in vitro. *Journal of pharmacological and toxicological methods*, 51(3), 235-242.

M. Passmore, G. (unpublished data)

Lilley, S., LeTissier, P., & Robbins, J. (2004). The discovery and characterization of a proton-gated sodium current in rat retinal ganglion cells. *Journal of Neuroscience*, 24(5), 1013-1022.

Lilley, S. J., & Robbins, J. (1998). The action of local anaesthetics on the compound action potential is altered by the nature of the permeant ion in frog nerve. *Neuroscience letters*, 252(1), 41-44.

Margrie, T. W., Brecht, M., & Sakmann, B. (2002). In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflügers Archiv European Journal of Physiology, 444(4), 491-498.

O'keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.

Perezoso. (2007). Ciona intestinalis adult [photograph]. Retrieved from https://commons.wikimedia.org/wiki/File:Cionaintestinalis.jpg

Quiroga, R. Q., Kraskov, A., Koch, C., & Fried, I. (2009). Explicit encoding of multimodal percepts by single neurons in the human brain. Current Biology, 19(15), 1308-1313.

Robbins, J. (unpublished data)

The Scripps Research Institute. (2008). Scientific Report 2008: Molecular and Integrative Neurosciences. CNS Actions of Inflammatory Factors. Retrieved from https://www.scripps.edu/news/scientificreports/sr2008/mind08gruol.html

Week!

Electrophysiology: Looking at live neurons in action

Topic 1: An introduction to electrophysiology

15 of 18

References

Trouslard, J., Mirsky, R., Jessen, K. R., Burnstock, G., & Brown, D. A. (1993). Intracellular calcium changes associated with cholinergic nicotinic receptor activation in cultured myenteric plexus neurones. *Brain research*, 624(1), 103-108.

Wellcome Library. (2014). Sciatic nerve, Galvani [Etching]. Retrieved from

 $https://commons.wikimedia.org/wiki/File:Sciatic_nerve,_Galvani_Wellcome_M0012614.jpg\#/media/File:Sciatic_nerve,_Galvani_Wellcome_M0012614.jpg\#/media/File:Sciatic_nerve,_Galvani_Wellcome_M0012614.jpg\#/media/File:Sciatic_nerve,_Galvani_Wellcome_M0012614.jpg\#/media/File:Sciatic_nerve,_Galvani_Wellcome_M0012614.jpg\#/media/File:Sciatic_nerve,_Galvani_Wellcome_M0012614.jpg\#/media/File:Sciatic_nerve,_Galvani_Wellcome_M0012614.jpg\#/media/File:Sciatic_nerve,_Galvani_Wellcome_M0012614.jpg\#/media/File:Sciatic_nerve,_Galvani_Wellcome_M0012614.jpg\#/media/File:Sciatic_nerve,_Galvani_Wellcome_M0012614.jpg\#/media/File:Sciatic_nerve,_Galvani_Wellcome_M0012614.jpg\#/media/File:Sciatic_nerve,_Galvani_Wellcome_M0012614.jpg$

Week 2

Electrophysiology: Looking at live neurons in action

Topic 1: An introduction to electrophysiology

Attributions

Portraits for Halle Berry and Michelle Pfeiffer adapted from:

Jeremiah, C. (2007). Michelle Pfeiffer at the premiere of Stardust in Los Angeles. Retrieved from https://commons.wikimedia.org/wiki/File:Michelle_Pfeiffer_2007.jpg Marin, G. (2010). Actress Halle Berry at the 2010 [photograph]. Retrieved from https://commons.wikimedia.org/w/index.php?curid=16219454 Skidmore, G. (2017). Halle Berry speaking at the 2017 San Diego Comic-Con International in San Diego, California [photograph]. Retrieved from https://commons.wikimedia.org/w/index.php?curid=61271080

US Navy (2006). Halle Berry - USS Kearsarge. Retrieved from https://commons.wikimedia.org/wiki/Halle_Berry#/media/File:Halle_Berry_-_USS_Kearsarge.jpg

Electrophysiology: Looking at live neurons in action

Topic 1: An introduction to electrophysiology

17 of 18

End of topic

Week 2 Electrophysiology: Looking at live neurons in action

Topic 1: An introduction to electrophysiology