Data Load and Cleanin

```
# STEP 1: Data Load and Cleaning
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load dataset
df = pd.read_csv("/content/WA_Fn-UseC_-HR-Employee-Attrition.csv")
df.head()
```

$\overline{\Rightarrow}$		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNumber .
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	1
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	2
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	4
	3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	5
	4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	7

5 rows × 35 columns

df.describe()

$\overrightarrow{\Rightarrow}$		Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRate	JobIn
	count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.000000	14
	mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.891156	
	std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.329428	
	min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.000000	
	25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.000000	
	50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.000000	
	75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.750000	
	max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.000000	

8 rows × 26 columns

```
# Drop unnecessary columns
columns_to_drop = ['EmployeeCount', 'Over18', 'StandardHours', 'EmployeeNumber']
df.drop(columns=columns_to_drop, axis=1, inplace=True)

# Convert 'Attrition' to binary: Yes → 1, No → 0
df['Attrition'] = df['Attrition'].map({'Yes': 1, 'No': 0})

# Check for missing values
missing_values = df.isnull().sum()
print("Missing Values:\n", missing_values[missing_values > 0])

** Missing Values:
    Series([], dtype: int64)

# Shape and Column Info
print("\nDataset Shape after Clean print("\nDataset Shape after Clean print("\nRemaining Columns:\n", df.columns)
```

```
Dataset Shape after Cleaning: (1470, 31)
     Remaining Columns:
     'JobLevel', 'JobRole', 'JobSatisfaction', 'MaritalStatus',
            'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked', 'OverTime'
            'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction', 'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole',
            'YearsSinceLastPromotion', 'YearsWithCurrManager'],
           dtype='object')
# Show first 5 rows of cleaned data
print("\nSample Data:\n", df.head())
\overline{z}
     Sample Data:
                           BusinessTravel DailyRate
        Age Attrition
                                                                   Department \
     0
                           Travel_Rarely 1102
        41
                    1
                                                                       Sales
                       Travel_Frequently
                                                279 Research & Development
     1
        49
                    a
         37
                          Travel_Rarely
                                                1373 Research & Development
     3
         33
                    0 Travel_Frequently
                                               1392 Research & Development
                                                591 Research & Development
     4
        27
                    0
                           Travel_Rarely
        DistanceFromHome Education EducationField EnvironmentSatisfaction
                                2 Life Sciences
     0
                      1
                       8
                                 1 Life Sciences
                       2
                                  2
                                            0ther
                                                                          4
                                 4 Life Sciences
                      3
                                                                          4
     3
                                          Medical
     4
                                1
        Gender ... PerformanceRating RelationshipSatisfaction StockOptionLevel \
     0 Female ...
                                    3
                                                              1
                                                                                 0
         Male ...
                                     4
                                                               4
                                                                                 1
         Male ...
       Female ...
                                                               3
                                                                                 0
     3
                                    3
         Male ...
     4
                                    3
                                                               4
                                                                                 1
       TotalWorkingYears TrainingTimesLastYear WorkLifeBalance YearsAtCompany
     0
                      8
                                             0
                                                       1
                                                                              6
                      10
                                              3
                                                              3
                                                                             10
                      7
                                                                              0
     3
                       8
                                             3
                                                              3
                                                                              8
     4
                       6
                                              3
                                                                              2
        YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager
     ρ
                        4
                                                 a
                                                  1
                                                  0
                                                  3
                                                                       0
     3
     4
                                                  2
                                                                       2
     [5 rows x 31 columns]
df_cleaned = df.copy()
df_cleaned.to_csv("Clean_HR_Attrition.csv", index=False)
print(" ✓ Clean CSV saved!")

→ Clean CSV saved!
# Set style
sns.set(style="whitegrid")
plt.figure(figsize=(12, 6))
₹ <Figure size 1200x600 with 0 Axes>
     <Figure size 1200x600 with 0 Axes>
# 1. Count Plot - Attrition
plt.subplot(2, 3, 1)
sns.countplot(data=df, x='Attrition', palette='Set2')
plt.title("Attrition Count")
```

/tmp/ipython-input-14-4181848654.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legenc sns.countplot(data=df, x='Attrition', palette='Set2')
Text(0.5, 1.0, 'Attrition Count')


```
# 2. Attrition by Gender
plt.subplot(2, 3, 2)
sns.countplot(data=df, x='Gender', hue='Attrition', palette='Set1')
plt.title("Attrition by Gender")
```

→ Text(0.5, 1.0, 'Attrition by Gender')


```
# 3. Attrition by OverTime
plt.subplot(2, 3, 3)
sns.countplot(data=df, x='OverTime', hue='Attrition', palette='Set3')
plt.title("Attrition by OverTime")
```

→ Text(0.5, 1.0, 'Attrition by OverTime')


```
# 4. Monthly Income Distribution
plt.subplot(2, 3, 4)
sns.histplot(data=df, x='MonthlyIncome', hue='Attrition', kde=True, bins=30)
plt.title("Monthly Income Distribution")
```

```
→ Text(0.5, 1.0, 'Monthly Income Distribution')
```

```
Monthly Income Distribution

150
Attrition

100

10000 20000

MonthlyIncome
```

```
# 5. Years at Company vs Attrition
plt.subplot(2, 3, 5)
sns.boxplot(data=df, x='Attrition', y='YearsAtCompany', palette='coolwarm')
plt.title("Years at Company vs Attrition")
```

/tmp/ipython-input-18-3834869003.py:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legenc sns.boxplot(data=df, x='Attrition', y='YearsAtCompany', palette='coolwarm')
Text(0.5, 1.0, 'Years at Company vs Attrition')


```
# 6. Department-wise Attrition
plt.subplot(2, 3, 6)
sns.countplot(data=df, x='Department', hue='Attrition', palette='Accent')
plt.title("Attrition by Department")
plt.xticks(rotation=15)
plt.tight_layout()
plt.show()
```


** Label Encoding**

```
from sklearn.preprocessing import LabelEncoder
```

Create a copy of the dataset
df_encoded = df.copy()

```
# Label encode all categorical columns
label_encoder = LabelEncoder()
# Identify categorical columns
categorical_cols = df_encoded.select_dtypes(include=['object']).columns
# Apply Label Encoding
for col in categorical_cols:
   df_encoded[col] = label_encoder.fit_transform(df_encoded[col])
# Show the encoded columns and head
print("Encoded Columns:\n", categorical_cols.tolist())
print("\nEncoded Dataset Sample:\n", df_encoded.head())

→ Encoded Columns:
     ['BusinessTravel', 'Department', 'EducationField', 'Gender', 'JobRole', 'MaritalStatus', 'OverTime']
        Age Attrition BusinessTravel DailyRate Department DistanceFromHome \
                             2
        41
                                          1102
        49
                    a
                                            279
                                                                           8
    3
        33
                    0
                                           1392
                                                                           3
    4
        27
                                            591
                                                                           2
                    P
       Education EducationField EnvironmentSatisfaction Gender
    0
                                                              0 ...
                              1
                                                              1 ...
    1
                              1
                                                       3
                               4
                                                       4
                                                               0 ...
                              1
    4
                              3
       PerformanceRating RelationshipSatisfaction StockOptionLevel \
    0
                                                1
                       4
                                                4
                                                                  1
                                                                 0
                                                3
                       3
    4
                       3
                                                4
                                                                 1
       TotalWorkingYears TrainingTimesLastYear WorkLifeBalance YearsAtCompany
    0
                                            0
                      8
                                                            1
                                             3
                                                             3
                                                                             0
    3
                       8
                                             3
                                                             3
                                                                             8
    4
                       6
                                             3
       YearsInCurrentRole YearsSinceLastPromotion YearsWithCurrManager
    a
                       4
                                               0
                                                1
                                                3
                                                                     0
    4
    [5 rows x 31 columns]
```

▼ Train-Test Split

```
from sklearn.model_selection import train_test_split

# Features (X) and Target (y)

X = df_encoded.drop('Attrition', axis=1)
y = df_encoded['Attrition']

# Split into training and testing sets (80% train, 20% test)

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y)

# Print data shapes
print("  Train shape:", X_train.shape)
print("  Test shape:", X_test.shape)

Train shape: (1176, 30)
  Test shape: (294, 30)
```

Interpretation Tips: Accuracy: Overall correctness of the model. Confusion Matrix: True Positives (TP): Attrition predicted correctly False Positives (FP): Attrition predicted but didn't occur False Negatives (FN): Attrition missed by model Precision/Recall: High Precision = low false positives High Recall = low false negatives F1 Score balances both from sklearn.metrics import accuracy_score, confusion_matrix, classification_report import seaborn as sns import matplotlib.pyplot as plt # Accuracy Score accuracy = accuracy_score(y_test, y_pred) print(f" ✓ Model Accuracy: {accuracy:.2f}") # Confusion Matrix cm = confusion_matrix(y_test, y_pred) print("\nConfusion Matrix:\n", cm) # Plot Confusion Matrix plt.figure(figsize=(5,4)) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') plt.title('Confusion Matrix - Logistic Regression') plt.xlabel('Predicted') plt.ylabel('Actual') plt.show() # Classification Report

print("\nClassification Report:\n")

print(classification_report(y_test, y_pred))

