1

CLAIMS

1	∕1.	A method of forming a network from a plurality of nodes and a base station, the		
2	method comprising the steps of:			
3		(a) identifying at least one node of the plurality of nodes to operate as a cluster-		
4	head;			
5		(b) forming a plurality of clusters from the plurality of nodes, each of the clusters		
6	havin	having at least one cluster-head;		
7		(c) transmitting data from at least one node in at least one of the plurality of		
8	cluste	clusters to the cluster-head in that cluster;		
9		(d) transmitting data from at least one cluster-head to the base station; and		
10		(e) identifying a different one of the plurality of nodes to operate as a cluster-head		
1	2.	The method of claim 1, wherein the step of forming a plurality of clusters further		
2	comp	comprises the steps of:		
3		advertising the availability of each of said plurality of cluster-heads; and		
4		establishing a communication path between each of said plurality of cluster-heads		
5	and at	and at least one of the plurality of nodes, not operating as a cluster-head, to form a		
6	cluste	cluster.		
1	3.	The method of claim 2 wherein the step of establishing a communication path		
2	betwe	between the cluster-head and each of the at least one of the plurality of nodes comprises		
3	the ste	the steps of:		
4		transmitting a status signal from each one of said plurality of cluster-heads;		
5		receiving at each of the plurality of nodes one or more of the status signals;		
6		comparing, at each of the plurality of nodes, not operating as a cluster-head, the		
7	signal	strengths of the received one or more status signals; and		
8		joining a particular one of the cluster-head's cluster as a result of the comparison.		

4. The method of claim 3, wherein the step of joining a particular cluster is based on

- a determination, by at least one of the plurality of nodes, of the cluster-head transmitting the status signal having the highest received signal strength.
- 1 5. The method of claim 2 further comprising the steps of:
- 2 generating at the cluster-head, a schedule having allotted slots for transmission;
- transmitting data from at least one node to the cluster-head during the allotted
- 4 slots;
- 5 receiving data in the cluster-head that are transmitted from at least one node; and
- 6 transmitting data from the cluster-head to the base station.
- 1 6. The method of claim 5, wherein the step of receiving data in the cluster-head
- 2 further comprises the step of reducing data transmission latency by using application-
- 3 specific data aggregation to reduce the amount of redundant data sent to the base station.
- The method of claim 5, wherein the step of receiving data in the cluster-head
- 2 further comprises the step of increasing the signal to noise ratio of the data sent to the
- 3 base station by using application-specific data aggregation.
- 1 8. The method of claim 5, wherein the step of generating a schedule uses a time
- 2 division multiplexing protocol.
- 1 9. The method of claim 5, further comprising the step of beamforming the data
- 2 received from the plurality of nodes in the cluster.
- 1 10. The method of claim 1, wherein the step of identifying at least one of the plurality
- 2 of nodes to operate as a cluster-head further includes the step of randomly selecting one
- 3 of the plurality of nodes to be a cluster-head.
- 1 11. The method of claim 10, wherein the step of randomly selecting one of the

- plurality of nodes to be a cluster-head is based on a probabilistic function of an amount of
 energy remaining in each of the plurality of nodes.
- 1 12. The method of claim 1, wherein the step of forming a plurality of clusters further comprises the steps of:
- 3 collecting data on the status of each of the plurality of nodes;
- 4 assigning each of the plurality of nodes to a particular one of a plurality of
- 5 clusters.
- 1 / 13. A method for forming a network from a base station and a plurality of nodes, the
- 2 method comprising the steps of:
- 3 electing a cluster-head from the plurality of nodes;
- establishing a communication path between first ones of the plurality of nodes and
- 5 the cluster-head to form a cluster;
- 6 establishing a first round of data transmission;
- 7 transmitting from the first ones of the plurality of nodes to the cluster-head during
- 8 the first data transmission round; and
- 9 transmitting data from the cluster-head to the base station during the first data
- transmission round.
- 1 14. The method of claim 13 further comprising the steps of:
- 2 electing a plurality of cluster-heads corresponding to a first set of cluster-heads for
- 3 use during the first round of data transmission; and
- 4 establishing a communication path between each of the plurality of cluster-heads
- 5 and at least one node of the plurality of nodes to form a first plurality of clusters.
- 1 15. The method of claim 14 wherein the step of electing a plurality of cluster-heads is
- 2 performed by the base station.

l	16.	The method of claim 15 wherein the base station elects cluster-heads by		
2	minimizing the energy required during the first round of data transmission.			
3				
4	17.	The method of claim 14 wherein:		
5		during the first round of data transmission, each of the at least one node in each		
6	cluster	transmits data to the cluster-head of that cluster; and		
7		transmitting the data from each cluster-head to the base station during the first		
8	transm	aission round.		
1	18.	The method of claim 14 further comprising the steps of:		
2		establishing a second round of data transmission;		
3		determining whether each node of the plurality of nodes has operated as a cluster-		
4	head;			
5		electing a second set of cluster-heads wherein each node in the second set of		
6	cluster	-heads has never before been a cluster-head; and		
7		forming a second set of clusters about the second set of cluster-heads.		
1	19.	The method of claim 14 further comprising the steps of:		
2		in each of the second set of clusters;		
3		transmitting data from each node in the second set of clusters to the respective		
4	cluster	nodes; and		
5		transmitting data from each of the second set of cluster-heads to the base station.		
1	20.	The method of claim 14 further comprising the steps of:		
2	establi	shing a second round of data transmission;		
3		determining an amount of energy remaining in each node of the plurality of		
4	nodes			
5		electing a second set of cluster-heads, wherein the election is based on the amount		
6	of ene	rgy remaining in each node of the plurality of nodes; and		
7		forming a second set of clusters about the second set of cluster-heads.		

1		·		
2	/ 21.	A network comprising:		
3		a base station; and		
4		a plurality of nodes comprising:		
5		a cluster-head selector processor; and		
6		a cluster selector processor, each cluster comprised of a subset of said		
7	plurality of nodes, and one of each of said subset of said plurality of nodes temporarily			
8	acting as a cluster-head.			
1	22.	The network according to claim 21, wherein each of the plurality of nodes is in		
2	electri	electrical communication with a sensor.		
	•			
1	23.	The network according to claim 21, wherein each of said plurality of nodes further		
2	compr	ises a sleep mode.		
	2.4			
1	24.	The network according to claim 21, wherein each of said plurality of nodes further		
2	compr	ises an adjustable transmission energy level.		
1	25.	The network according to claim 21, wherein each of said plurality of nodes		
2		r comprises a low energy mode, and a high energy mode.		
3	Turtile	comprises a low energy mode, and a mgn energy mode.		
)				
1	26.	The network according to claim 21, wherein each of said plurality of nodes has a		
2	limited	d amount of remaining energy; and		
3		wherein the cluster-head selector processor selects each of said plurality of nodes		
4	as a cl	uster-head based on the limited amount of remaining energy in each of said		
5		plurality of nodes and the number of times each of said plurality of nodes has operated as		
6	•	a cluster head.		

- 1 27. The network according to claim 21, wherein each of said plurality of nodes
- 2 further comprises a signal strength processor.
- 1 28. The network according to claim 27, wherein the cluster selector processor
- 2 determines the cluster selection in response to a signal from the signal strength
- 3 processor.
- 1 29. The network according to claim 21, wherein the base station selects each of said
- 2 plurality of nodes to temporarily act as a cluster-head.
- 1 30. The network according to claim 21, wherein the base station determines which
- 2 of each of said plurality of nodes is included in each temporary cluster.