Analisi della caratteristica tensione corrente in uscita di un BJT

Giovanni Bugli

Giovanni Postacchini

Dicembre 2021, Postazione 15

Abstract

In questa esperienza di laboratorio è stata studiata la caratteristica tensione corrente in uscita per un transistor BJT pnp a emettitore comune. Il transtor è stato analizzato in regione attiva e sono stati stimati alcuni parametri caratteristici del transistor come la tensione di Early $V_{ey}=(20\pm 3)V$, la conduttanza $g=(0.77\pm0.11)mS$ per una corrente di base $I_B\simeq -100\mu A$ e $V_{ey}=(14\pm3)V$, $g=(1.7\pm0.3)mS$ per una corrente di base $I_B\simeq -200\mu A$. Inoltre, è stato stimato il guadagno di corrente $\beta=(1.1\pm0.6)\cdot 10^2$.

1 Introduzione

Lo scopo di questa prova è quello di studiare il comportamento di un transistor BJT a emettitore comune analizzando i valori della corrente in funzione della tensione in uscita. In particolare è stata analizzata la regione attiva in cui la caratteristica di uscita tensione-corrente del transistor ha un'andamento lineare del tipo:

$$V = r \cdot I + V_{ey} \tag{1}$$

dove i parametri sono rispettivamente r la resistenza del BJT e V_{ey} la tensione di Early. Dato r, è immediato ricavare la conduttanza g come g = 1/r.

Inoltre, è possibile stimare il guadagno di corrente β , per una certa tensione V_{CE} fissata in regione attiva, secondo la formula:

$$\beta = \left| \frac{\Delta I_C}{\Delta I_B} \right| \tag{2}$$

dove ΔI_C è la differenza di corrente del collettore misurata per due valori di corrente di base distinti di differenza ΔI_B .

2 Apparato sperimentale e svolgimento

Figura 1: Schema del circuito realizzato per lo studio del transistor BJT pnp in configurazione ad emettitore comune.

Il circuito realizzato, come mostrato in Fig. 1, è formato dai seguenti componenti: un generatore di tensione costante da -5V riferito a massa, due potenziometri R_C ed R_B con fondoscala rispettivamente da $1k\Omega$ e $100k\Omega$, il transistor pnp al silicio BJT 2N3906(BU). Per le misure di tensione si è utilizzato l'oscilloscopio analogico ISO-TECH modello ISR 622 mentre per quelle di corrente il multimetro digitale FLUKE modello 77 IV.

La risoluzione e la precisione specifiche del multimetro e dell'oscilloscopio relativi ai valori di fondo scala utilizzati nelle misure sono riportate in Tab 1. Le incertezze associate alle misure di tensione e corrente sono state calcolate come discusso in appendice.

	Fondo scala	Risoluzione	Precisione
Multimetro	60.00mA	0.01mA	1.5% + 2 digits
	10mV/div	1mV	
	20mV/div	2mV	
	50mV/div	5mV	
Oscilloscopio	100mV/div	10mV	3%
	200mV/div	20mV	
	500mV/div	50mV	
	1V/div	100mV	

Tabella 1: Risoluzione e precisione degli strumenti di misura nei fondo scala utilizzati. La risoluzione dell'oscilloscopio è stata calcolata come fondoscala/10.

I componenti sono stati montati su una scheda millepori alla quale sono stati collegati opportunamente anche il generatore di tensione e gli strumenti di misura quali il multimetro e l'oscilloscopio. In particolare, per misurare la corrente I_C si è collegato il multimetro in serie presso il collettore e per misurare la tensione V_{CE} è stata collegata la sonda del multimetro, riferito a massa, sempre presso il collettore (punto C Fig. 1). Per studiare la caratteristica di uscita tensione-corrente del transistor si è fissato il valore della corrente I_B in corrispondenza della base B e si è proceduto a misurare la corrente del collettore I_C variando tramite il potenziometro R_C la tensione V_{CE} .

In un primo momento si è fissato il potenziometro R_B in modo tale da avere $I_B \simeq -100 \mu A$, ed in un secondo momento si è impostato $I_B \simeq -200 \mu A$. Le misure d I_C e V_{CE} sono state effetuate in un range di tensioni per V_{CE} da -0.05 V a -4 V circa.

3 Risultati e discussione

I dati sperimentali relativi alla tensione e alla corrente nel piano di uscita misurati sono riportati in Tab. 2 e Tab. 3 in appendice B. Siccome viene studiato un transistor pnp, i valori di tensione e corrente sono negativi, perciò per graficare i punti sperimentali sono stati constiderati i valori assoluti.

In Fig 3 sono graficati i punti sperimentali acquisiti per una corrente di base $I_B = -(0.10 \pm 0.02)mA$ e $I_B = -(0.10 \pm 0.02)mA$. In regione attiva, sono ben visibili i due diversi valori di corrente del collettore e le due diverse pendenze delle rette. In particolare, per $I_B \simeq -200\mu A$ si osserva, a parità di tensione V_{CE} , una corrente del collettore maggiore in valore assoluto che per $I_B \simeq -100\mu A$, compatibile a quanto atteso.

Sui dati di tensione e corrente è stato eseguito un fit con l'Eq. 1 in un range di tensioni V_{CE} da -1.4V a -4V, cioè dove la dipendenza tensione-corrente è in buona approssimazione lineare. In Fig. 4 vengono rappresentate le curve caratteristiche. Dai parametri del fit lineare si ricavano dunque la tensione di Early e la resistenza: $V_{ey} = (20 \pm 3)V$, $r = (1.29 \pm 0.18)k\Omega$ con corrente di base $I_B \simeq -100\mu A$; $V_{ey} = (14 \pm 3)V$, $r = (0.59 \pm 0.09)k\Omega$ con corrente di base $I_B \simeq -200\mu A$. Dalla stima di r è possibile ricavare la conduttanza g come g = 1/r, con incertezza propagata $\Delta g = \Delta r/r^2$. Per cui si ottiene: $g = (0.77 \pm 0.11)mS$ con $I_B \simeq -100\mu A$, $g = (1.7 \pm 0.3)mS$ con $I_B \simeq -200\mu A$. Infine, scelto $V_{CE} = -3.1V$, viene valutata la differenza dei valori delle correnti del collettore I_C per le due curve, e si ottiene una stima del guadagno di corrente tramite l'Eq. $2: \beta = (1.1 \pm 0.6) \cdot 10^2$. L'incertezza associata al guadagno di corrente è stata calcolata come mostrato in appendice A. Si nota un grande

errore relativo del guadagno di corrente che è legato all'incertezza associata alle misure delle correnti di base che è assai elevata.

Figura 2: Curve caratteristiche di tensione e corrente in uscita misurate con due diverse correnti di base I_B come riportato in legenda.

Figura 3: Caratteristica tensione-corrente in uscita del transistor sotto due distinte correnti di base I_B . La linea rossa rappresenta il fit lineare eseguito sui punti sperimentali in un range di tensioni 1.4 - 4 V. I parametri stimati dal fit sono riportati in legenda.

4 Conclusioni

L'esperimento ha confermato l'andamento atteso per la caratteristica del BJT in regione attiva. Sono stati ricavati i parametri dal fit corrispondenti alla tensione di Early e alla conduttanza, numericamente $V_{ey} = (20\pm3)V$, $g = (0.77\pm0.11)mS$ per una corrente di base $I_B = -(0.10\pm0.02)mA$ e $V_{ey} = (14\pm3)V$, $g = (1.7\pm0.3)mS$ per una corrente di base $I_B = -(0.20\pm0.02)mA$. Il guadagno di corrente stimato è $\beta = (1.1\pm0.6)\cdot10^2$.

A Stima delle Incetezze

L'incertezza sulle misure di corrente effettuate con il multimetro è 1.25% della lettura + 2 digits. L'incertezza sulle misure di tensione effettuate con l'oscilloscopio σ_{osc} è stata calcolata sommando in quadratura l'errore sulla lettura σ_L , l'errore sullo zero σ_Z e l'errore del costruttore σ_C secondo la formula:

$$\sigma_{osc} = \sqrt{\sigma_L^2 + \sigma_Z^2 + \sigma_C^2}$$

dove l'errore sulla lettura è fondoscala/10 mentre σ_C corrisponde al 3% della lettura.

Per determinare l'incertezza sul guadagno di corrente possiamo riscrivere β in funzione delle correnti misurate direttamente:

$$\beta = |\frac{I_{C2} - I_{C1}}{I_{B2} - I_{B1}}|$$

Siccome ciascuna misura di corrente ha un'incertezza associata ΔI , l'incertezza del guadagno di corrente risulta essere:

$$\Delta \beta = \frac{\Delta I_{C1} + \Delta I_{C2}}{|I_{B2} - I_{B1}|} + \frac{|I_{C2} - I_{C1}|}{(I_{B2} - I_{B1})^2} (\Delta I_{B1} + \Delta I_{B2})$$

B Dati Sperimentali

V_{CE} (V)	Fscala (V/div)	I_C (mA)	Fscala (mA)
-0.050 ± 0.005	0.01	-0.310 ± 0.015	60.00
-0.100 ± 0.010	0.02	-1.00 ± 0.03	60.00
-0.20 ± 0.02	0.05	-2.69 ± 0.05	60.00
-0.30 ± 0.03	0.05	-4.75 ± 0.08	60.00
-0.40 ± 0.04	0.10	-6.68 ± 0.11	60.00
-0.50 ± 0.05	0.10	-8.89 ± 0.14	60.00
-0.60 ± 0.06	0.10	-11.05 ± 0.18	60.00
-0.68 ± 0.07	0.20	-12.22 ± 0.19	60.00
-0.80 ± 0.08	0.20	-14.2 ± 0.2	60.00
-0.88 ± 0.09	0.20	-15.1 ± 0.2	60.00
-1.00 ± 0.10	0.20	-15.7 ± 0.2	60.00
-1.12 ± 0.12	0.20	-15.9 ± 0.2	60.00
-1.30 ± 0.14	0.50	-16.2 ± 0.3	60.00
-1.40 ± 0.15	0.50	-16.3 ± 0.3	60.00
-1.60 ± 0.17	0.50	-16.5 ± 0.3	60.00
-1.70 ± 0.18	0.50	-16.6 ± 0.3	60.00
-1.90 ± 0.20	0.50	-16.8 ± 0.3	60.00
-2.0 ± 0.2	0.50	-16.9 ± 0.3	60.00
-2.2 ± 0.2	0.50	-17.1 ± 0.3	60.00
-2.3 ± 0.2	0.50	-17.1 ± 0.3	60.00
-2.5 ± 0.3	0.50	-17.3 ± 0.3	60.00
-2.6 ± 0.3	0.50	-17.4 ± 0.3	60.00
-2.8 ± 0.3	0.50	-17.6 ± 0.3	60.00
-2.9 ± 0.3	0.50	-17.7 ± 0.3	60.00
-3.1 ± 0.3	1.00	-17.8 ± 0.3	60.00
-3.2 ± 0.3	1.00	-17.9 ± 0.3	60.00
-3.4 ± 0.4	1.00	-18.0 ± 0.3	60.00
-3.6 ± 0.4	1.00	-18.1 ± 0.3	60.00
-3.7 ± 0.4	1.00	-18.1 ± 0.3	60.00
-3.8 ± 0.4	1.00	-18.2 ± 0.3	60.00
-4.0 ± 0.4	1.00	-18.2 ± 0.3	60.00

Tabella 2: Dati sperimentali di tensione collettore-emettitore e corrente del collettore con corrente della base fissa $I_B \simeq -100 \mu A$. Per ogni misura viene riportata l'incertezza e il fondo scala utilizzato in fase di misurazine

V_{CE} (V)	Fscala (V/div)	I_C (mA)	Fscala (mA)
-0.050 ± 0.005	0.01	-0.370 ± 0.016	60.00
-0.100 ± 0.010	0.02	-1.19 ± 0.03	60.00
-0.20 ± 0.02	0.05	-3.09 ± 0.06	60.00
-0.30 ± 0.03	0.05	-5.25 ± 0.09	60.00
-0.40 ± 0.04	0.10	-7.45 ± 0.12	60.00
-0.50 ± 0.05	0.10	-9.81 ± 0.16	60.00
-0.60 ± 0.06	0.10	-12.19 ± 0.19	60.00
-0.68 ± 0.07	0.20	-13.9 ± 0.2	60.00
-0.80 ± 0.08	0.20	-16.8 ± 0.3	60.00
-0.88 ± 0.09	0.20	-18.6 ± 0.3	60.00
-1.00 ± 0.10	0.20	-20.9 ± 0.3	60.00
-1.12 ± 0.12	0.20	-22.6 ± 0.3	60.00
-1.30 ± 0.14	0.50	-24.4 ± 0.4	60.00
-1.40 ± 0.15	0.50	-25.1 ± 0.4	60.00
-1.60 ± 0.17	0.50	-25.9 ± 0.4	60.00
-1.70 ± 0.18	0.50	-26.2 ± 0.4	60.00
-1.90 ± 0.20	0.50	-26.6 ± 0.4	60.00
-2.0 ± 0.2	0.50	-26.9 ± 0.4	60.00
-2.2 ± 0.2	0.50	-27.2 ± 0.4	60.00
-2.3 ± 0.2	0.50	-27.4 ± 0.4	60.00
-2.5 ± 0.3	0.50	-27.8 ± 0.4	60.00
-2.6 ± 0.3	0.50	-27.9 ± 0.4	60.00
-2.8 ± 0.3	0.50	-28.2 ± 0.4	60.00
-2.9 ± 0.3	0.50	-28.4 ± 0.4	60.00
-3.1 ± 0.3	1.00	-28.8 ± 0.4	60.00
-3.2 ± 0.3	1.00	-28.9 ± 0.4	60.00
-3.4 ± 0.4	1.00	-29.2 ± 0.4	60.00
-3.6 ± 0.4	1.00	-29.5 ± 0.5	60.00
-3.7 ± 0.4	1.00	-29.6 ± 0.5	60.00
-3.8 ± 0.4	1.00	-29.8 ± 0.5	60.00
-4.0 ± 0.4	1.00	-30.4 ± 0.5	60.00

Tabella 3: Dati sperimentali di tensione collettore-emettitore e corrente del collettore con corrente della base fissa $I_B \simeq -200 \mu A$. Per ogni misura viene riportata l'incertezza e il fondo scala utilizzato in fase di misurazine