Summary for Algebraic Topology II

Notes by Lin-Da Xiao

$2018~\mathrm{ETH}$

Contents

1	21th Feb: Tor functor	2
2	28th Feb:	2
3	2nd Mar: Eilenberg-Zilber	5

1 21th Feb: Tor functor

Definition 1.1. Suppose A is an abelian group, A **Free resolution** is an exact sequence of the form

$$\cdots \longrightarrow F_2 \xrightarrow{f_2} F_1 \xrightarrow{f_1} F_0 \xrightarrow{f_0} A \longrightarrow 0,$$

where each F_i is a free abelian group. If moreover $F_i = 0, \forall i \geq 2$, we call it **Short** free resolution

$$0 \longrightarrow K \longrightarrow F \longrightarrow A \longrightarrow 0$$

(We can easily generalize this definition to R-modules)

Proposition 1.2. Let A be an abelian group. Then there exists a short free resolution of A.

Proof. Let F be the free abelian group generated by all elements in A. There is a surjection from F to A by linearly extending the map sending basis element to itself. Let K denote the kernel of this map. K is an abelian subgroup of a free abelian group (\mathbb{Z} -module). A subgroup of a free abelian group is torsion free as a module. \mathbb{Z} is a PID. If R is a PID, then an R-module is free iff it is torsion free (See Bosch section 4.2). Then we know in particular, K is a free abelian group.

With this construction, we can define the Tor functor now:

Definition 1.3. Let A be an abelian group. Let $0 \to K \xrightarrow{f} F \to A \to 0$ be a short free resolution of A. Given any other abelian group B, we define

$$Tor(A, B) := \ker(f \otimes id_B)$$

Tor(A,B)

This definition is independent on the choice of short free resolution.

2 28th Feb:

Question: Given X, Y what is the cohomology of $X \times Y$?

Answer:

$$H_n(X \times Y) \cong \bigoplus_{i+j=n} H_i(X) \otimes H_j(Y) + \bigoplus_{k+\ell=n-1} \operatorname{Tor}(H_k, (X), H_\ell(Y))$$

We will discuss Elenberg-Zilber theorem along this line the next lecture.

Today, we will prove the Algebraic Kueneth Theorem

2 28TH FEB: 3

Definition 2.1. Suppose (C_{\bullet}, ∂) and $(C'_{\bullet}, \partial')$ are two non-negative chain complexes. We define the **tensor complex** $(C_{\bullet} \otimes C'_{\bullet}, \Delta)$, where

$$(C_{\bullet} \otimes C'_{\bullet})_n = \bigoplus_{i+j=n} C_i \otimes C'_j$$

and the differential Δ is defined by

$$\Delta(c_i \otimes c'_j) = \partial c_i \otimes c'_j + (-1)^i c_i \otimes \partial' c_j$$

First, note that $\Delta(c_i \otimes c'_j)$ does indeed belong to $(C_{\bullet} \otimes C'_{\bullet})_{n-1}$. The reason for $(-1)^i$ is to make $\Delta^2 = 0$. $C_{\bullet} \otimes C'_{\bullet}$ is another non-negative chain complex.

Definition 2.2. Suppose $f_{\bullet}: C_{\bullet} \longrightarrow D_{\bullet}$ and $g_{\bullet}: C'_{\bullet} \longrightarrow D'_{\bullet}$ are two morphism of chain complexes. Then we can define a chain map

$$f \otimes g : C \otimes C' \longrightarrow D \otimes D'$$

by

$$(f \otimes g)_n = \sum_{i+j=n} f_i \otimes g_j$$

It is easy to check this is indeed a chain map.

Lemma 2.3. If $f': C \longrightarrow C'$ and $g': D \longrightarrow D'$ are two more chain maps with f homotopic to f' and g homotopic to g'. Then $f' \otimes g'$ is homotopic to $f \otimes g$.

Theorem 2.4. (Algebraic Kuenneth Theorem) Let (C, ∂) and (D, ∂') be two nonnegative free complex. Then for every $n \geq 0$, there is a split exact sequence

$$0 \longrightarrow \oplus_{i+j=n} H_i(C) \otimes H_j(D) \longrightarrow H_N(C \otimes D) \longrightarrow \oplus_{k+\ell=n-1} \ Tor(H_k(C), H_\ell(D)) \longrightarrow 0$$

where ω is the map $\langle c_i \rangle \otimes \langle d_j \rangle \mapsto \langle c_i \otimes d_j \rangle$. Thus there also exists a (non-natural) isomorphism

$$H_n(C \times D) \cong \bigoplus_{i+j=n} H_i(C) \otimes H_j(D) + \bigoplus_{k+\ell=n-1} Tor(H_k, (C), H_\ell(D))$$

The proof requires two auxiliary results.

Proposition 2.5. Let $(E_{\bullet}, 0)$ be a non-negative chain complex with all differential zero and (D_{\bullet}, ∂) be any non-negative chain complex. Given $i \geq 0$, let D_{\bullet}^{i} denote the chain complex where $D_{n}^{i} = D_{n-i}$ and the boundary map

$$D_n^i \longrightarrow D_{n-1}^i$$

is just the map: $D_{n-i} \longrightarrow D_{n-i-1}$.

Then

$$H_n(E_{\bullet} \otimes D_{\bullet}) \cong \bigoplus_{i \geq 0} H_n(E_i \otimes D_{\bullet}^i)$$

2 28TH FEB: 4

Proof. (of the Proposition) Since E_{\bullet} has no differentials

$$\Delta(e_i \otimes d_{n-i}) = (-1)^i e_i \otimes \partial d_{n-i}$$

$$= (-1)^i (id_E \otimes \partial) [e_i \otimes d_{n-i}]$$

$$H_n(E_{\bullet} \otimes D_{\bullet}) = \frac{ker\Delta}{im\Delta}$$

$$= \bigoplus_{i \geq 0} \frac{ker(id_E \otimes \partial|_{D_{n-i}})}{im(id_E \otimes \partial|_{D_{n-i+1}})}$$

$$= \bigoplus_{i \geq 0} H_n(E_i \otimes D_{\bullet}^i)$$

Proof. (of Theorem) We will prove it in three steps:

Let's use the same notation as we did in the proof of the universal coefficient theorem. $B_n \subset Z_n \subset C_n$. $(Z_{\bullet},0)$ and $(B_{\bullet}^+,0)$ are chain complexes with no differentials, where $B_n^+ = B_{n-1}$. $(H_{\bullet},0)$ be the chain complex. $i: Z_n \hookrightarrow C_n$, $j: B_n \hookrightarrow Z_n, d: C_n \longrightarrow B_{n-1}$, where d is the just the differential ∂ of C_{\bullet} and we use p to denote the projection $Z_n \twoheadrightarrow H_n$. Then we have two short exact sequence of chain complexes

$$0 \longrightarrow Z_{\bullet} \xrightarrow{i_{\bullet}} C_{\bullet} \xrightarrow{D_{\bullet}} B_{\bullet}^{+} \longrightarrow 0$$
$$0 \longrightarrow B_{\bullet} \xrightarrow{j_{\bullet}} Z_{\bullet} \xrightarrow{p_{\bullet}} H_{\bullet} \longrightarrow 0.$$

We tensor it with D_{\bullet} .

$$0 \longrightarrow Z_{\bullet} \otimes D_{\bullet} \xrightarrow{i_{\bullet}} C_{\bullet} \otimes D_{\bullet} \xrightarrow{D_{\bullet}} B_{\bullet}^{+} \otimes D_{\bullet} \longrightarrow 0$$
$$0 \longrightarrow B_{\bullet} \otimes D_{\bullet} \xrightarrow{j_{\bullet}} Z_{\bullet} \otimes D_{\bullet} \xrightarrow{p_{\bullet}} H_{\bullet} \otimes D_{\bullet} \longrightarrow 0.$$

They are again short exact sequence of chain complexes because D is free Abelian group thus flat module.

$$0 \longrightarrow Z_n \xrightarrow{i} C_n \xrightarrow{d} B_{n-1} \longrightarrow 0$$

This sequence splits as B_{n-1} is free abelian. Thus \exists a map $r: C_n \longrightarrow Z_n$ such that $r|_{Z_n}$ is the identity $r_{\bullet}: C_{\bullet} \longrightarrow Z_{\bullet}$.

Denote by μ the composition $p \circ r : C_{\bullet} \longrightarrow H$.

Claim: μ is a chain map from $(C_{\bullet}, \partial) \longrightarrow (H_{\bullet}, 0)$. Take $c \in C_{n+1}$ and check it commutes

$$\mu \circ \partial c = \mu \partial c = p \circ r \partial c = \langle \partial c \rangle = 0$$

and $0 \circ \mu c = 0$

Step 2: Define $\varphi = H_n(\mu \otimes id)$. $H_n(C_{\bullet} \otimes D_{\bullet}) \longrightarrow H_n(H_{\bullet} \otimes D_{\bullet})$.

Claim: φ is an isomorphism.

It suffices to prove the diagram commutes and conclude by five lemma.

$$H_{n+1}(B_{\bullet}^{+} \otimes D_{\bullet}) \xrightarrow{\delta} H_{n}(Z_{\bullet} \otimes D_{\bullet}) \xrightarrow{} H_{n}(C_{\bullet} \otimes D_{\bullet}) \xrightarrow{} H_{n}(B_{\bullet}^{+} \otimes D_{\bullet}) \xrightarrow{\delta} H_{n-1}(Z_{\bullet} \otimes D_{\bullet})$$

$$\downarrow^{id} \qquad \qquad \downarrow^{id} \qquad \qquad \downarrow^{id} \qquad \downarrow^$$

Step 3: We complete the proof

$$H_n(C_{\bullet} \otimes \otimes D_{\bullet}) \cong H_n(H_{\bullet} \otimes D_{\bullet})$$

$$\cong \bigoplus_{i>0} H_n(H_i(C_{\bullet}) \otimes D_{\bullet}^i)$$

By the universal coefficient theorem, there is a split exact sequence

$$0 \longrightarrow H_i(C_{\bullet}) \otimes H_n(D_{\bullet}^i) \longrightarrow H_n(H_i(C_{\bullet}) \otimes D_{\bullet}^i) \longrightarrow \operatorname{Tor}(H_i(C_{\bullet}), H_{n-1}(D_{\bullet}^i)) \longrightarrow 0$$

If we get rid of the notation D^i_{\bullet} .

$$0 \longrightarrow H_i(C_{\bullet}) \otimes H_n(D_{\bullet}^i) \longrightarrow H_n(H_i(C_{\bullet}) \otimes D_{\bullet}^i) \longrightarrow \operatorname{Tor}(H_i(C_{\bullet}), H_{n-1-i}(D_{\bullet})) \longrightarrow 0$$

Take the direct sum over i and use the fact that

3 2nd Mar: Eilenberg-Zilber

Theorem 3.1. (Eilenberg-Zilber) if X and Y are two topological spaces. There is a nontrivial chain equivalence

$$\Omega_{\bullet}: C_{\bullet}(X \times Y) \longrightarrow C_{\bullet}(X) \otimes C_{\bullet}(Y)$$

which is unique up to chain homotopy

Digression on chain equivalences

Lemma 3.2. Let (C_{\bullet}, ∂) be a free chain complex. Then C_{\bullet} is acyclic iff it has contracting chain homotopy

Proof. $Q: C_n \longrightarrow C_{n+1}$ s.t. $Q\partial + \partial Q = id$ if such Q exists then $H_n(C_{\bullet}) = 0 \forall n$. That direction doesn't require C_{\bullet} to be free

$$B_n \subseteq Z_n \subseteq C_n$$

If we assume C_{\bullet} is acyclic then

$$B_n = Z_n, \forall n$$

$$0 \longrightarrow Z_n \xrightarrow{i} C_n \xrightarrow{\partial} Z_{n_1} \longrightarrow 0$$

Since Z_{n-1} is free abelian the sequence splits $\exists r_n: Z_{n-1} \longrightarrow C_n$ s.t. $\partial \circ r_n = id$. Note that $id - r_{n-1} \circ \partial$ jas image in Z_{n-1} , $c \in C_n$. $\partial (c - r_n \partial c) = \partial c - \partial c = 0$ Now define $Q_n: C_n \longrightarrow C_{n+1}$ by $Q_n = r_n(id - r_{n-1} \circ \partial)$. This works.

$$\partial Q_n + Q_{n-1}\partial = \partial r_n (id - r_{n-1}\partial) + r_{n-1}(id - r_{n-2}\partial)\partial$$
$$= id - r_{n-1}\partial + r_{n-1}\partial - r_{n-1}r_{n-2}\partial^2$$
$$= 0$$

Definition 3.3. Suppose $f:(C_{\bullet},\partial) \longrightarrow (D_{\bullet},\partial')$. The **mapping cone** of f is the chain complex $Cone_{\bullet}(f), \partial^f$, where $Cone_n(f) = C_{n-1} \otimes D_n$ and $\partial^f: Cone_n(f) \longrightarrow Cone_{n-1}(f)$

$$\partial^{f}(c,d) = (-\partial c, fc + \partial' d)$$
$$\partial^{f} = \begin{pmatrix} -\partial & 0 \\ f & \partial' \end{pmatrix}$$

Note if C_{\bullet} and D_{\bullet} are free chain complex, so is the cone.

Lemma 3.4. If $f: C_{\bullet} \longrightarrow D_{\bullet}$ is a chain map between two free chain complexes and $Cone_{\bullet}(f)$ is acyclic then f is a chain equivalence.

Proof. If $Cone_{\bullet}(f)$ is acyclic, there exists Q s.t.

$$Q\partial^{f} + \partial^{f}Q = id$$

$$Q = \begin{pmatrix} p & g \\ r & -p' \end{pmatrix}$$

$$\begin{pmatrix} \partial & 0 \\ f & -\partial' \end{pmatrix} \begin{pmatrix} p & g \\ r & -p' \end{pmatrix} + \begin{pmatrix} p & g \\ r & -p' \end{pmatrix} \begin{pmatrix} \partial & 0 \\ f & -\partial' \end{pmatrix} = \begin{pmatrix} id & 0 \\ 0 & id \end{pmatrix}$$

$$\begin{pmatrix} -\partial p - p\partial + gf & -\partial g + g\partial' \\ * & fg - \partial'p' - p'\partial' \end{pmatrix} \begin{pmatrix} id & 0 \\ 0 & id \end{pmatrix}$$

Then we know $g: D_{\bullet} \longrightarrow D_{\bullet}$ is a chain map

$$p\partial + \partial p = gf - id$$

$$p'\partial' + \partial' p = fg - id$$
. Thus f is a chain equivalence with inverse g.

Lemma 3.5. Let $f: C_{\bullet} \longrightarrow D_{\bullet}$. Then there is a LES

$$\cdots \longrightarrow H_{n+1}(Cone_{\bullet}(f)) \longrightarrow H_n(C_{\bullet}) \xrightarrow{H_n(f)} H_n(D_{\bullet}) \longrightarrow H_n(Cone_{\bullet}(f)) \longrightarrow \cdots$$

Proof. Denote by C_{\bullet}^+ the chain complex $C_n^+ = C_{n-1}$. There is a SES

$$0 \longrightarrow D_{\bullet} \stackrel{i}{\longrightarrow} Cone_{\bullet}(f) \stackrel{p}{\longrightarrow} C_{\bullet}^{+} \longrightarrow 0$$

with i(d) = (0, d) and p(c, d) = c

Pass to the LES in homology

It remains to check $\delta = H_n(f)$.

Note if c is a cycle in C_n . Then

$$\partial^f \circ p^{-1}(c) = (-\partial c, fc) = (0, fc) = i(fc)$$
$$\delta : \langle c \rangle \longmapsto \langle i^{-1} \partial^f p^{-1} c \rangle = \langle fc \rangle = H_n(f) \langle c \rangle$$

Proposition 3.6. Suppose $F: C_{\bullet} \longrightarrow D_{\bullet}$ is a chain map between the two free chain complex. Then F is a chain equivalence iff

$$H_n(f): H_n(C_{\bullet}) \longrightarrow H_n(D_{\bullet})$$

is an isomorphism for all n,

Proof. If f is a chain equivalence then $H_n(f)$ is always a isomorphism. This does not require any freeness assumptions and we proved in last semester.

For the converse, if $H_n(f)$ is always an isomorphism, then the LES

$$\cdots \longrightarrow H_{n+1}(Cone_{\bullet}(f)) \longrightarrow H_n(C_{\bullet}) \stackrel{\cong}{\longrightarrow} H_n(D_{\bullet}) \longrightarrow H_n(Cone_{\bullet}(f)) \longrightarrow \cdots$$

This implies $H_n(Cone_{\bullet}(f)) = 0, \forall n$. Then $Cone_{\bullet}(f)$ is acyclic, and we can conclude by the previous lemma.

Recap on Acyclic models.

Definition 3.7. Suppose C is a category and $T_{\bullet}: C \longrightarrow Comp$ is a functor. A family of **models** in C is simply a subset of obj(C)

Fix $n \in \mathbb{Z}$ and consider $T_n : \mathcal{C} \longrightarrow Ab$

$$T_n(\mathcal{C}) = (T_{\bullet}(\mathcal{C}))_{nth\ group}$$

A T_n model set χ is simply a choice of element $x_{\lambda} \in T_n(M_{\lambda})$ for each λ $\mathcal{M} = \{M_{\lambda} | \lambda \in \Lambda\}$

We say that the model is free if the following condition holds.

- 1. $T_n(C)$ is a free abelian group $\forall C \in C$
- 2. There is a T_n -model set $\{x_{\lambda} | \lambda \in \Lambda\}$ s..t

$$\{T_n(f)()x_{\lambda}|f\in Hom(M_{\lambda},C), \lambda\in\Lambda\}$$

is a basis for the free abelian group $T_n(C)$.

 $f: M_{\lambda} \longrightarrow C$ is a morphism in C $T_n(f): T(M_{\lambda}) \longrightarrow T_n(C)$ is a homomorphism between two abelian groups. $T(M_{\lambda}) \in T_n(f)(x_{\lambda})$ does indeed belong to $T_n(C)$. A baissi for $T_n(C)$ is obtained by letting f run over all of $Hom(M_{\lambda}, C)$ and letting λ run over Λ .

We say $T_{\bullet}: \mathcal{C} \longrightarrow Comp$ if free with basis in \mathcal{M} if each T_n is free with basis in \mathcal{M}

Definition 3.8. $T_{\bullet}C \longrightarrow Comp$, we say T_{\bullet} isnon-negative if $T_n(C) = 0$ for all n < 0 and $\forall C$. T_{\bullet} is acyclic in the positive degrees on C if $H_n(T_{\bullet}(C)) = 0, \forall n > 0$.

Suppose $T_{\bullet}C \longrightarrow Comp. \ H_0 \circ T_{\bullet}C \longrightarrow Ab.$

Theorem 3.9. Suppose C is a category with omdels M. Supose $S_{\bullet}, T_{\bullet} : C \longrightarrow Comp$ are 2 functors such that S and T are non-negative and acyclic in positive degree on every model, and both S and T are free with basis in M.

Suppose

$$\Theta: H_0 \circ S_{\bullet} \longrightarrow H_0 \circ T_{\bullet}$$

is a natural equivalence. \exists a natural cahin equivalence $\Psi_{\bullet}: S_{\bullet} \longrightarrow T_{\bullet}$ which isn unique up to chain homotopy and has $H_0(\Psi_{\bullet}) = \Theta$

Example 3.10. Take C = Top, $\mathcal{M} = \{\Delta^n | n \geq 0\}$. T is the singular chain functor.

$$C_{\bullet}: Top \longrightarrow Comp$$

 $X \mapsto C_{\bullet}(X)$

 C_{\bullet} is non-negative, \checkmark . $H_n(C_{\bullet}(\Delta^i)) = H_n(\Delta^i) = .$

Claim: C_n is free with basis in Δ^n

Choose an element $x \in C_n(\Delta^n)$. Take x to be the identity map $\Delta^n \longrightarrow \Delta^n$, write this as $\ell_n : \Delta^n \longrightarrow \Delta^n$. Think of the identity map as an element of $C_n(\Delta^n)$ if σ is any n-simplex in any topological space $C_n(\sigma)(\ell_n) = \sigma \circ \ell_n = \sigma$

 $\{C_n(\sigma)(\ell_n)|\sigma:\Delta^n\longrightarrow X\}$ is basis for the free abelian group $C_n(X)$.

Eilenberg-Zilber $Top \times Top$ is the category of pairs (X, Y) of topological spaces.

We will define two functor from $Top \times Top \longrightarrow Comp\ S_{\bullet}(X,Y) = C_{\bullet}(X,Y)$. $T_{\bullet}(X,Y) = C_{\bullet}(X) \otimes C_{\bullet}(Y)$

For models

$$\mathcal{M} = \{ (\Delta^i, \Delta^j), i, j \ge 0 \}$$

Claim: S and T are both acyclic in positive degree on \mathcal{M} and free with basis in \mathcal{M}

$$S_{\bullet}$$
, $H_n(S_{\bullet}(\Delta^i, \Delta^j)) = H_n(\Delta^i \times \Delta^j) = 0$, $\forall n > 0, \forall i, j$
 $S_i : Top \times Top \longrightarrow Ab$

$$S_i(X,Y) = C_i(X \times Y)$$

<u>Claim</u>: $\{(\Delta^i, \Delta^i)\}$ is a S_i -model set and a basis is $d_i : \Delta^i \otimes \Delta^i$ the diagonal map $x \mapsto (x, x)$ gives a basis

$$\sigma: \Delta^i \longrightarrow X \times Y$$

we can write $\sigma = (\sigma_x, \sigma_y) \circ d_i$, where $\sigma_x = p_X \circ \sigma$ be the composition of σ with $p_X : X \times Y \longrightarrow X$.

 $\sigma = S_i(\sigma)(d_i)$ so that $\{s_i(\sigma)(d_i||\sigma: \Delta^i \longrightarrow X \times Y\}$ is a basis of the free abelian group $C_i(X \times Y)$. $T_i(X \times Y) = (C_{\bullet}(X) \otimes C_{\bullet}(Y))$. $T_i(X,Y)$ is the tensor product of the free groups and so is free. $\{(\ell_i, \ell_j)|i+j=n\}$ is a T_n -model basis.

The last thing to check is that $T_{\bullet}(\Delta^i, \Delta^j)$ is acyclic in positive degrees

$$H_n(C_{\bullet}(\Delta^i) \otimes C_{\bullet}(\Delta^j)) = 0, \forall n > 0.$$

We can not compute this! However we can cheat

$$H_n(C_{\bullet}(\Delta^i)) = H_n(\Delta^i) = \begin{cases} \mathbb{Z} & n = 0\\ 0 & n \neq 0 \end{cases}$$

Consider the chain complex

$$0 \longrightarrow 0 \longrightarrow \cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow 0 \cdots$$

 $C_{\bullet}(\Delta^i)$ has the same homology as this complex. Thus $C_{\bullet}(\Delta^i)$ is equivalenct to the complex and $C_{\bullet}(\Delta^j)$ is also chain equivalent to it. $C_{\bullet}(\Delta^i) \otimes C_{\bullet}(\Delta^j)$ is chain equivalent to

$$0 \longrightarrow 0 \longrightarrow \cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \otimes \mathbb{Z} \longrightarrow 0 \cdots$$

Thus $H_n(C_{\bullet}(\Delta^i) \otimes C_{\bullet}(\Delta^j)) = H_n(0 \longrightarrow \mathbb{Z} \otimes \mathbb{Z} \longrightarrow 0 \cdots)$

 $\underline{\mathrm{Want}} \colon \Theta : H_0 \circ S_{\bullet} \longrightarrow H_0 \circ T_{\bullet} \text{ is a natural equivalence}.$

$$(x,y)\mapsto x\otimes y$$

$$H_0(C_{\bullet}(X \times Y)) \longrightarrow H_0(C_{\bullet}(X) \otimes C_{\bullet}(Y))$$

By the Acylic model theorem

$$\Omega_{\bullet}: S_{\bullet} \longrightarrow T_{\bullet}$$

is a natural chain equivalence

$$\Omega_{\bullet}: C_{\bullet}(X \times Y) \longrightarrow C_{\bullet}(X) \otimes C_{\bullet}(Y)$$

Corollary 3.11. Kueneth formula. Let X and Y be of opological spaces then for $n \geq 0$

There is a split exact sequence