## Complexidade de Algoritmos I - 2022 - ATIVIDADE 3

|        |      | 5  |     |       | 160016 |
|--------|------|----|-----|-------|--------|
| Nome:_ | June | du | Sur | RA: _ | 108219 |

- 1) Sejam  $T1(n) = 3n + 3n \log_2 n + 25 \log_3 n$ ,  $T2(n) = 15n + 3n^2 + 9n^2 \log_2 n + 8$  e  $T3(n) = 5n^3 + 7n^2 + 2$ , apresente as equações que descrevem a ordem de complexidade de tempo dos algoritmos Alg1, Alg2 e Alg3, respectivamente, para entradas de tamanho n.

  Al = M M M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A = M A
- 2) Um método de ordenação de complexidade  $O(\log n)$  gasta exatamente 2 milissegundos para ordenar 10000 elementos. Supondo que o tempo T(n) para ordenar n desses elementos é diretamente proporcional a  $\log n$ , ou seja,  $T(n) = c.\log n$ :



3) Suponha que cada expressão abaixo represente o tempo T(n) consumido por um algoritmo para resolver um problema de tamanho n. Escreva os termos(s) dominante(s) para valores muito grandes de n e especifique o menor limite assintótico superior O(n) possível para cada algoritmo.

| Expressão                        | Termo(s) Dominante(s) | 0()       |
|----------------------------------|-----------------------|-----------|
| $5 + 0.01n^2 + 0.52n^4$          | 0.1207                | 2-9       |
| $100n + 0.01n^3$                 | 0.01.21               | 23        |
| $5n^2 + 10n^{1.5} + 5n$          | G 12                  | m 2       |
| $13n + 4n^2$                     | The same              | mil       |
| $0.3n + 5n^{1.5} + 2.5n^{1.75}$  | 2,5,475               | 21,75     |
| $n^3\log_2(n) + 5n(\log_3(n))^2$ | 12 7 Por (2)          | 29 02 m   |
| $2n + n^{1.5} + 0.5n^2$          | 7 10 1                | mil       |
| $n^2\log_3(n) + n^2\log_2(n) =$  | 15                    | n2 Ox man |
| $5n^2\log_2(n) + 2n^3 + 10n$     | 5 m 2 Com 2/1)        | magan     |
| $5n^2 + n^3 \log n$              | pro la construcción   | 23/22 20  |

Analise o algoritmo abaixo, escrito em C, que recebe dois vetores,  $a \in b$ , de tamanhos iguais n e determine o menor limite assintótico superior para o pior caso em função

do parâmetro n.

} (go 3ni ,n 3ni ,Sv\* 3seli ,iv\* 1600 for 17ni
id=i fini
id=i fini
if = n fini
if =

5) Encontre o menor limite assintótico superior para o algoritmo abaixo, escrito C:

int menor(int vetorl], int n){

int menor = MAX\_INT;

para i=1 ate n faça

se (vetor[i] < menor)

menor = vetor[i];

para i=1 ate n faca

para i=1 ate n faca

vetor[i] = vetor[i]^(i+]);

reforma(menor);

reforma(menor);

6) Suponha que ofereçam a você dois pacotes de software,  $\mathbf{A}$  e  $\mathbf{B}$ , para processamento de dados da sua empresa, que contêm  $10^6$  registros. Sabendo que o tempo de processamento médio do pacote  $\mathbf{A}$  é  $T_{\mathbf{A}}(n)=2n^2$  milissegundos, e o tempo médio de

**B** é  $T_B(n) = 1000n$  milissegundos, responda:

a) Qual desses pacotes é o mais indicado para processar os dados da empresa?

b) A partir de quantos registros um dos pacotes passa a ser melhor que o outro?

A partir de quantos registros um dos pacotes passa a ser melhor que o outro?

A partir de quantos registros um dos pacotes passa a ser melhor que o outro?

000 005 000 005 000 56° 6

005= W 0001= W 0001= W2-W 0001= 2W6 101.6=81 01.0001=81 101.6=81 101.6=81