CS 583: PROBABILISTIC GRAPHICAL MODELS

TOPIC: SAMPLING

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

SAMPLING MOTIVATION

- Exact inference is NP-hard
- Exact inference with an arbitrary structured network containing thousands of variables is impractical
- Various approximate inference techniques
 - Variational inference
 - Sampling

SAMPLING

- The basic idea
 - Generate data using the network and the parameters
 - Use the data to answer the queries
- For this to work
 - Sampling needs to be more efficient than running inference
 - Enough data need to be sampled for precision

WE'LL COVER

Forward sampling

Bayesian networks, no evidence

Rejection sampling

Bayesian networks, with evidence

Likelihood weighting

Bayesian networks, with evidence

Gibbs sampling

Bayesian networks and Markov networks, with or without evidence

PRELIMINARIES: HOW TO SAMPLE FROM A DISTRIBUTION

Discrete

- Binary [*p*, 1-*p*]
 - Sample a random number r from [0,1]. If r < p, then it is the first value, otherwise it is the second.
- Multinomial $[p_1, p_2, ..., p_n]$
 - Create $[0, p_1, p_1 + p_2, p_1 + p_2 + p_3, ..., p_1 + p_2 + ... + p_n]$
 - Sample a random number r from [0, 1]. Find i where $p_1+p_2+...+p_{i-1} < r < p_1+p_2+...+p_i$

Continuous

- Depends on the distribution
- For e.g., many different methods to sample from Gaussian distribution

FORWARD SAMPLING

- Use for Bayesian networks and marginal probabilities
- For each variable V_i that is ready
 - Sample a value v_i for V_i using $P(V_i \mid Pa(V_i))$
- \circ Repeat this process M times to generate M instances
- A variable is ready if
 - It has no parents, or
 - You have sampled its all parents
- To compute marginal
 - Use maximum likelihood estimate
 - Count and normalize

FORWARD SAMPLING ON THE STUDENT NETWORK

FORWARD SAMPLING ON THE STUDENT NETWORK

• The sampled data is

Iteration	D	I	S	G	L
1	d^0	i^1	s^0	g^1	l^0
•••	•••	•••	•••	•••	•••
M	•••	•••	•••	•••	•••

 $P(D=d^0) = \# \text{ of rows with } D=d^0 / (\# \text{ of rows with } D=d^0 + \# \text{ of rows with } D=d^1)$

BOUNDS

- Absolute error ε bound with probability at least 1-8
 - $M \ge \ln(2/\delta) / 2\varepsilon^2$
 - E.g.
 - δ =0.1, ϵ =0.1 \Rightarrow M \geq 150
 - δ =0.01, ϵ =0.1 $\Rightarrow M \ge 265$
 - δ =0.01, ϵ =0.01 $\Rightarrow M \ge 26,491$
- Relative error ε bound with probability at least 1-8
 - $M \ge 3\ln(2/\delta) / P(y)\epsilon^2$
 - A big problem with using this bound is that we do not know P(y)

CONDITIONAL PROBABILITY QUERIES

- \circ P(y, e) and P(e) can be separately estimated
- Then $P(y \mid e) = P(y, e) / P(e)$
- For this to work, both P(y, e) and P(e) need to be estimated with *relative* low error
- If we estimate P(y, e) and P(e) with small *absolute* error, then P(y, e)/P(e) can be arbitrarily off.

WHERE IS THE EVIDENCE?

- If evidence is only at the root variables, it is easy; don't sample those variables; just set them to their respective values
 - E.g., if $\mathbf{E} = \{d^1, i^0\}$ in the student network, then don't sample D and I. Just set $D = d^1$ and $I = i^0$
- If the evidence is at the intermediate or leaf nodes (e.g., if any of G, S, L is in the evidence)
 - Rejection sampling
 - Likelihood sampling

REJECTION SAMPLING

- Given evidence e
- Sample an instance $x^{(i)}$ using forward sampling
- If $x^{(i)}$ and and e disagree, then reject the instance
- To compute the conditional, use MLE
 - Count and normalize
- o If we generate M instances, how many of them will be rejected/kept?

LIKELIHOOD WEIGHTING

- Sample like forward sampling, except
 - When a variable is in the evidence set,
 - Set its value to evidence value
- Each instance has a weight
 - $w = \prod_{v \in e} P(v \mid Pa(v))$
- o Counts are now weighted by each instance's weight

LIKELIHOOD WEIGHTING ON A CHAIN

- Network
 - $A \rightarrow B$
- Parameters
 - P(A) = [p; 1-p]
 - P(B | A=t) = [q; 1-q]
 - P(B | A=f) = [r; 1-r]
- P(A | B=t) = ?

$P(A \mid B=T)$

- Exact inference
 - P(A=t | B=t) =
 - \circ P(A=t, B=t) / P(B=t)
 - $P(A=t)P(B=t \mid A=t) / \Sigma_A P(A)P(B=t \mid A)$
 - p*q / (p*q + (1-p)*r)
- Likelihood weighting
 - Sample *M* instances
 - Sample A randomly from [p, 1-p]
 - Set B=t
 - The weight of the instance i is
 - If A=t, $w_i=P(B=t \mid A=t)=q$, else $w_i=P(B=t \mid A=f)=r$
 - Out of *M* instances
 - Approximately p^*M have A=t and each has weight q
 - Approximately (1-p)*M have A=f and each has weight r
 - $P(A=t \mid B=t) = p*M*q / (p*M*q + (1-p)*M*r) = p*q / (p*q + (1-p)*r)$

LIKELIHOOD WEIGHTING ON THE STUDENT

Assume S=s1

- 1.w=1
- 2.D and I are ready.
- 3. Sample D from P(D): d^0 .
- 4. I is ready.
- 5. Sample I from P(I): i^1 .
- 6.G and S are now ready.
- 7. Sample G from $P(G|i^1,d^0)$: g^1 .
- 8.5 and L are ready.
- 9. Set S=s1
- $10.w=w*P(s^1|i^1)$
- 11.L is ready.
- 12. Sample L from $P(L|g^1)$: I^0
- 13. The instance is $\langle d^0, i^1, s1, g^1, | 0 \rangle$
 - and its weight is w
- 14.Repeat the process from step 1 M times.

NETWORK

GIBBS SAMPLING

- Works for both
 - Bayesian and Markov networks
 - With and without evidence
- Huge body of work on it
- I will cover the simplest version
- More details can be found at Chapter 12 Section 3

GIBBS SAMPLING

- All variables: X, evidence variables: E, variables of interest: $Y \subseteq X \setminus E$
- 1. Set evidence variables E to their values e
- Initialize the remaining variables $X \setminus E$ somehow (random is (probably) OK)
- 3. For each variable $X_i \in \mathcal{X} \setminus \boldsymbol{E}$
 - Sample X_i using $P(X_i | X \setminus X_i)$
- 4. Discard the first *N* instances
- 5. Use the last M instances to compute P(Y|e)

$$P(X_i \mid X \setminus X_i)$$

o $P(I|D=d^0, G=q^2, L=l^1, S=s^1) = ?$

$$P(X_{i} \mid X \setminus X_{i})$$

$$P(I \mid D = d^{0}, G = g^{2}, L = I^{1}, S = s^{1}) = ?$$

$$P(I = i^{0} \mid D = d^{0}, G = g^{2}, L = I^{1}, S = s^{1})$$

$$= \frac{P(i^{0}, d^{0}, g^{2}, I^{1}, s^{1})}{P(d^{0}, g^{2}, I^{1}, s^{1})}$$

$$= \frac{P(i^{0}, d^{0}, g^{2}, I^{1}, s^{1})}{P(i^{0}, d^{0}, g^{2}, I^{1}, s^{1}) + P(i^{1}, d^{0}, g^{2}, I^{1}, s^{1})}$$

$$= \frac{P(i^{0})P(d^{0})P(g^{2} \mid i^{0}, d^{0})P(I^{1} \mid g^{2})P(s^{1} \mid i^{0})}{P(i^{0})P(d^{0})P(g^{2} \mid i^{0}, d^{0})P(I^{1} \mid g^{2})P(s^{1} \mid i^{0})}$$

$$= \frac{P(i^{0})P(d^{0})P(g^{2} \mid i^{0}, d^{0})P(I^{1} \mid g^{2})P(s^{1} \mid i^{0})}{P(d^{0})P(I^{1} \mid g^{2})(P(i^{0})P(g^{2} \mid i^{0}, d^{0})P(s^{1} \mid i^{0}) + P(i^{1})P(g^{2} \mid i^{1}, d^{0})P(s^{1} \mid i^{1})}$$

$$= \frac{P(i^{0})P(g^{2} \mid i^{0}, d^{0})P(s^{1} \mid i^{0})}{P(i^{0})P(g^{2} \mid i^{0}, d^{0})P(s^{1} \mid i^{0})}$$

$$= \frac{P(i^{0})P(g^{2} \mid i^{0}, d^{0})P(s^{1} \mid i^{0})}{P(i^{0})P(g^{2} \mid i^{0}, d^{0})P(s^{1} \mid i^{0})}$$

$$= \frac{P(i^{0})P(g^{2} \mid i^{0}, d^{0})P(s^{1} \mid i^{0})}{P(i^{0})P(g^{2} \mid i^{0}, d^{0})P(s^{1} \mid i^{0})}$$

$$= \frac{P(i^{0})P(g^{2} \mid i^{0}, d^{0})P(s^{1} \mid i^{0})}{P(i^{0})P(g^{2} \mid i^{0}, d^{0})P(s^{1} \mid i^{0})}$$

$$= \frac{P(i^{0})P(g^{2} \mid i^{0}, d^{0})P(s^{1} \mid i^{0})}{P(i^{0})P(g^{2} \mid i^{0}, d^{0})P(s^{1} \mid i^{0})}$$

19

$P(X_i \mid X \setminus X_j)$

- Multiply all the factors that include X_i using the most recently sampled (or evidence) values for the remaining variables
- Normalize it
- The approach works for both Bayesian and Markov networks

Markov network example

Α	В	φ(A,B)
Т	Т	5
Т	F	1
F	Т	1
F	F	5

Start with random values: A=F, B=T, C=T.

Sample A. Which distribution do we sample A from?