```
import pandas as pd
```

```
df = pd.read_excel('/content/car.xlsx')
```

→		brand	model	transmission	age	fuel	price	mileage	power	seats
	0	18	244	1	4	1	1231000.0	19.01	4.496471	5
	1	10	263	1	6	4	786000.0	19.01	4.496471	5
	2	31	123	1	2	1	1489000.0	19.01	4.496471	5
	3	9	55	0	1	4	1227000.0	19.01	4.496471	5
	4	8	82	1	3	1	887000.0	19.01	4.496471	5
	32009	5	199	1	6	4	292000.0	19.01	4.496471	5
	32010	32	295	1	6	4	534000.0	19.01	4.496471	5
	32011	33	25	1	8	4	424000.0	19.01	4.496471	5
	32012	10	120	0	5	4	685000.0	19.01	4.496471	5
	32013	31	247	1	2	4	392000.0	19.01	4.496471	5

```
32014 rows × 9 columns
X = df.drop('price',axis=1)
y = df['price']
from sklearn.model_selection import train_test_split
 X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2, random\_state=True) 
from xgboost import XGBRegressor
from sklearn.metrics import mean_squared_error, r2_score
from \ sklearn.model\_selection \ import \ cross\_val\_score
# Initialize model
xgb = XGBRegressor(random_state=42)
# Train
xgb.fit(X_train, y_train)
# Predict
y_train_pred = xgb.predict(X_train)
y_test_pred = xgb.predict(X_test)
# Evaluate
print("Train R2:", r2_score(y_train, y_train_pred))
print("Test R2:", r2_score(y_test, y_test_pred))
\label{eq:print}  \texttt{print}(\texttt{"Train MSE:", mean\_squared\_error}(\texttt{y\_train, y\_train\_pred})) \\
print("Test MSE:", mean_squared_error(y_test, y_test_pred))
# Cross-validation
cv_scores = cross_val_score(xgb, X, y, cv=5, scoring='r2')
print("Cross-validation R2 scores:", cv scores)
print("Mean CV R2 score:", cv_scores.mean())
→ Train R²: 0.9463881557940258
     Test R<sup>2</sup>: 0.894281932296258
     Train MSE: 27035480841.700462
     Test MSE: 48066179675.89659
     Cross-validation R<sup>2</sup> scores: [0.82394955 0.87848573 0.89472928 0.89632106 0.70016122]
     Mean CV R<sup>2</sup> score: 0.838729366097031
from sklearn.model_selection import GridSearchCV
# Define hyperparameter grid
param_grid = {
     'n_estimators': [100, 200],
'learning_rate': [0.05, 0.1],
     'max_depth': [3, 5],
     'subsample': [0.8, 1]
# Grid Search
```

grid = GridSearchCV(XGBRegressor(random_state=42), param_grid, cv=5, scoring='r2', verbose=1, n_jobs=-1)

```
# Train
grid.fit(X_train, y_train)
# Best model
best_xgb = grid.best_estimator_
# Predict
y_train_pred = best_xgb.predict(X_train)
y_test_pred = best_xgb.predict(X_test)
print(" \ Best Parameters:", grid.best_params_)
print("Train R2:", r2_score(y_train, y_train_pred))
print("Test R2:", r2_score(y_test, y_test_pred))
print("Train MSE:", mean_squared_error(y_train, y_train_pred))
print("Test MSE:", mean_squared_error(y_test, y_test_pred))
# Cross-validation
cv_scores = cross_val_score(best_xgb, X, y, cv=5, scoring='r2')
print("Cross-validation R<sup>2</sup> scores:", cv_scores)
print("Mean CV R2 score:", cv_scores.mean())
Fitting 5 folds for each of 16 candidates, totalling 80 fits
       Best Parameters: {'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 200, 'subsample': 1}
     Train R<sup>2</sup>: 0.9213729737768
     Test R<sup>2</sup>: 0.8859961782122705
     Train MSE: 39650183510.38786
     Test MSE: 51833412214.30537
     Cross-validation R<sup>2</sup> scores: [0.81538452 0.8738343 0.89714999 0.88858739 0.64147353]
     Mean CV R<sup>2</sup> score: 0.8232859473828155
Start coding or generate with AI.
Start coding or generate with AI.
Start coding or generate with AI.
```