ESTIMATING ONSET AND OFFSET ASYNCHRONIES IN POLYPHONIC AUDIO-TO-SCORE ALIGNMENT

Johanna Devaney

SCHOOL OF **MUSIC**THE OHIO STATE UNIVERSITY

- Identifying onset and offset asynchronies in sounded simultaneities is important for studying expressive performance and guiding signal processing algorithms
- This poster describes a hybrid dynamic time warping (DTW)/hidden Markov model (HMM) algorithm to improve the accuracy of DTW-based alignment for polyphonic recordings

PROBLEM

- Dynamic time warping (DTW)-based alignment algorithms are not sufficient by themselves to estimate asynchronies in polyphonic performances (Devaney and Ellis, 2009)
- Example of errors in estimating onset and offset asynchrony:

RELATED WORK

- Devaney, Mandel and Ellis (2009)
 - Used periodicity, power, and fundamental frequency estimates of the singing voice to guide an HMM to refine a DTW alignment algorithm
 - The algorithm identified the transient and steady state sections of the note
 - Decreased median alignment error in the initial DTW alignment from 52 to 28 ms
- Niedermeyer and Widmer (2010)
 - Used non-negative matrix factorization (NMF) to refine onset estimates obtained through DTW alignment
 - Algorithm evaluated against two accuracy thresholds
 - 10 ms (Friberg and Sundberg1993) 40% to 50%
 - 50 ms (other onset detection evaluations) 85% to 89%
 - Note offsets were neither estimated nor evaluated.

REFERENCES

Devaney, J., & Ellis, D.P.W. (2009). Handing asynchrony in audio-score alignment. In *Proceedings of the ICMC*.

Devaney, J., Mandel, M.I., & Ellis, D.P.W. (2009). Improving MIDI-audio alignment with acoustic features. *Proceedings of WASPAAo*.

Friberg, A., & Sundberg, J. (1993). Perception of just noticeable time displacement of a tone presented in a metrical sequence at different tempos. In *Proceedings of the Stockholm Music Acoustics Conference*.

Niedermayer, B., & Widmer, G. (2010). A multi-pass algorithm for accurate audio-to-score alignment. In *Proceedings of ISMIR*

HYBRID DTW/HMM MODEL

- The offset-onset transitions identified by the DTW alignment are refined by a 3-state HMM
 - number of states is 3^N, where N is the number of voices

- Observations calculated from a constant-Q filter bank decomposition of the signal with one filter per semitone
 - a power measurement (in decibels) was summed over a 3-semitone span around the fundamental of the MIDI note for both the ending and starting note
- Evaluation
 - four multi-tracked recordings of a three-part piece
 - multi-tracked recordings were hand annotated to generate ground truth
 - tests were run on the composite signals
- Metric 1: number of onsets and offsets within a fixed time of the ground truth

	10 ms (228 notes)		50 ms (228 notes)	
	On	Off	On	Off
DTW	14	38	88	102
DTW/HMM	20	25	119	109

 Metric 2: 2.5th, 25th, 50th, 75th, and 97.5th percentiles of the difference between the predictions and the ground truth

Percentiles		2.5	25	50	75	97.5
Ons	DTW DTW/HMM	3.1 3.8	29.2 19.2	••••	122.5 100.1	759.5 653.2
Offs	DTW DTW/HMM		21.8 25.1	•	141.9 131.3	752.9 677.0