Preserving F

What it means to preserving dependencies

- a schema is usually decomposed:
- when it is not in 3NF
- for efficiency reasons:
 - the smaller the size of the tuples, the greater the number we can load into memory in the same read operation
 - if the tuple information is not used by the same type of operations in the database, it is better to decompose the schema
 - Example: the Student schema could be decomposed by separating the personal information (CF, FirstName, LastName, DateBirth, PlaceBirth, etc.) from the academic information (Matriculation, CourseDegree, YearCourse, etc.).

What it means to preserving dependencies

- we have seen that when a schema is decomposed, it is not enough for the subschemas to be in 3NF
- ·let's review the two examples (one more "abstract", the other more "concrete")

What we want to achieve - **3NF** is not enough

- a schema that is not in 3NF can be decomposed in multiple ways into a set of schemas in 3NF
- for example, the schema R = ABC with the set of functional dependencies F{A → B, B → C} is not in 3NF, due to the presence in F⁺ of the transitive dependency B → C (the key is A)
- R can be decomposed into:
 - •R1=AB with $A \rightarrow B$ and
 - •R2=BC with $B \rightarrow C$
 - •or
 - •R1=AB with $A \rightarrow B$ and
 - •R2=AC with $A \rightarrow C$
- both schemas are in 3NF, however the second solution is not satisfactory

What we want to achieve - **3NF** is not enough

if we consider two legal instances of the obtained schemas:

R1	Α	В	R2	Α
	a1	b1		a1
	a2	b1		a2

•the instance of the original R schema that I can reconstruct from this (the only way is to reconstruct it by doing a natural join!) is:

R	Α	В	С
	a1	b1	c1
	a2	b1	c2

•BUT it is not a legal instance of R, since it does not satisfy the functional dependency $B \rightarrow C$

we want to preserve ALL dependencies in F⁺

Example

- let us consider the schema R = {Matriculation, Town, Province} with the set of functional dependencies:
- F={Matriculation → Town, Town → Province}
 - the schema is not in 3NF due to the presence in F⁺ of the transitive dependency Town → Province (the key is Matriculation and Province transitively depends on Matriculation)
 - R can be decomposed into:
- R1(Matriculation, Town) with Matriculation → Town
- R2(Town, Province) with Town → Province

•or

- R1(Matriculation, Town) with Matriculation → Town
- R2(Matriculation, Province) with Matriculation → Province
- both schemas are in 3NF, but the second solution is not satisfactory

What we want to achieve - **3NF** is not enough

consider the legal instances of the obtained schemas:

R1	Matriculation Town		R2	Matriculation	Province
	501	Tivoli		501	Rome
	502	Tivoli		502	Rieti

the instance of the original R schema that we can reconstruct from this with a natural join is:

R	Matriculation	Town	Province
	501	Tivoli	Rome
	502	Tivoli	Rieti

- •but it is not a legal instance of R, since it does not satisfy the functional dependency Town → *Province*
- clearly there was an error in the data, but we could not detect it

Definitions

•**Definition:** let R be a relation scheme; a <u>decomposition</u> of R is a family $R_1, R_2, ..., R_k$ of subsets of R covering R, that is

$$R = U_{i=1}^{k} R_{i}$$

(the subsets may have **nonempty** intersection)

- in other words: decomposing it means defining subschemas,
 each of them containing a subset of the attributes of R and
 their union is R
- •so, R is a set of attributes and a decomposition of R is a family of sets of attributes

Example

- given the schema R=(TaxC, Name, Surname, Matriculation, DateB, PlaceB, Degree, Year) we can have the decompositions:
 - R1=(TaxC, Matriculation, Name, Surname, DateB, PlaceB)
 - R2=(Matriculation, TaxC, Name, Surname, Degree, Year)
 - or
 - R1=(TaxC, Matriculation, Name, Surname, DateB, PlaceB)
 - •R2=(Matriculation, Degree, Year)
- in both cases, the families of subsets of R (subschemas) cover the schema, but then we need to check if both decompositions are "good", i.e., if the subschemas are in 3NF, F is preserved, and we can reconstruct any legal instance of R by natural join of the instances of the subschemas

9

Attention

- "decomposing" an instance of a relation with a certain schema, based on the decomposition of the schema itself, means <u>projecting</u> each tuple of the original instance onto the attributes of the individual subschemes ...
- ...eliminating the duplicates that might be generated by the fact that two tuples are distinct but have a common portion that falls into the same subschema

Example

R	TaxC	Name	Last name	Matriculation	Datan	PlaceB	Degree	Year	
	DDD	Davide	Bigi	1111	12-12-90	Bari	Letters	3	
	FFF	Gianni	Neri	1212	15-09-91	Milan	Law	2	
	AAA	Antonio	Rossi	1313	09-08-92	Naples	Mathematics	1	
					=		=		
	TaxC	Name	Surname	Matriculation	DateB	PlaceB	sub sub	schema of R	
R 1	DDD	Davide	Bigi	1111	12-12-90	Bari	projecti	projection of the instance onto the subschema	
	FFF	Gianni	Neri	1212	15-09-91	Milan	onto the		
	AAA	Antonio	Rossi	1313	09-08-92	Naples	\neg J		
				'					
<	TaxC	Name	Surname	Matriculation	Degree	Year	sub	oschema of R	
R	DDD	Davide	Bigi	1111	Letters	3	projec	tion of the ins	tance
2	FFF	Gianni	Neri	1212	Law	2		ne subschema	
	AAA	Antonio	Rossi	1313	Mathematics	1			
								11	

Definition

we continue with the definition of equivalence between two sets of functional dependencies.

.Definition: let F and G be two sets of functional dependencies; F and G are **equivalent**, written F**≡**G if

$$\mathbf{F}^+ = \mathbf{G}^+$$

•F and G do NOT contain the same dependencies, but their closures do

Checking equivalence

.checking the equivalence of two sets of functional dependencies F and G requires verifying the **equality of** F⁺ and G⁺, i.e., that

$F^+ \subseteq G^+$ and that $F^+ \supseteq G^+$

- •as mentioned earlier, computing the closure of a set of functional dependencies takes **exponential time**
- •however, the following lemma and an algorithm allow us to check the equivalence of the two sets of functional dependencies in polynomial time

Lemma on closures

- Lemma: let F and G be two sets of functional dependencies;
 if F⊆G⁺ then F⁺⊆G⁺
- Demonstration: let f∈ F⁺-F (f is a dependency in F⁺ that does not appear in F)
- every functional dependency in F can be derived from G by Armstrong's axioms (for the hypothesis it is in G⁺, and we know that F⁺ = F^A)
- always for the Theorem that proves that $F^+ = F^A$, $f \in F^+$ can be derived from F by applying the Armstrong's axioms
- so, any f∈F⁺ can be derived from G by Armstrong's axioms

$$G \xrightarrow{A} F \xrightarrow{A} F^+$$

Definition

- Definition: let **R** be a relation scheme, **F** a set of functional dependencies on **R** and $\rho = R_1, R_2, ..., R_k$ a decomposition of R:
- we say that ρ **preserves F** if

$$F \equiv G = U_{i=1}^{k} \pi_{Ri}(F),$$

where $\pi_{Ri}(F) = \{ X \rightarrow Y \in F^+ \mid XY \subseteq R_i \}$

- . note:
- obviously, $G = U_{i=1}^{k} \pi_{Ri}(F)$ is a set of functional dependencies
- each $\pi_{Ri}(F)$ is a set of functional dependencies obtained by projecting F onto the subschema R_i
- projecting a set of dependencies F onto a subschema R_i means taking all the dependencies derivable from F by the Armstrong's axioms (so, those in F⁺) that have all the attributes (determinants and dependents) in R_i

Check if F is preserved

- •suppose we **already have** a **decomposition** and want to **check if it** preserves the functional dependencies in F
- •checking **whether** a decomposition preserves a set of functional dependencies F requires verifying **the equivalence** of the two sets of functional dependencies F and G = $\bigcup_{i=1}^k \pi_{Ri}(F)$
- •note: because the definition of G, it will always be that F⁺⊇G
- •each **projection of F** that is **included in G** is also in F^+ , and, by the lemma, that implies that $G^+\subseteq F^+$
- •so, given the Lemma, it is enough to verify that **F⊆G**⁺

Check if F is preserved


```
Algorithm - F in G^+
Input: two sets F and G of functional dependencies on R;
Output: the success variable (true if F \subseteq G^+, false otherwise)
begin

success = true

for each X \rightarrow Y \in F

begin

compute X^+_G

if Y \not\subset X^+_G then success = false
end
```

- end
- if $Y \subseteq X^+_G$ then $X \to Y \in G^A$ (for the lemma) and $X \to Y \in G^+$ (for the Theorem)
- it is enough to verify that **even a single dependency** does not belong to the closure of G to be able to state that **the equivalence does not exist**

Problem

- how do we compute X_{G}^{+} ?
- to use the Algorithm already seen for calculating the closure of X, we would first need to calculate G
- ... but, by the definition of G, this requires the computation of F⁺, which takes exponential time
- we present an algorithm to compute X_G^+ from F

Calculating X_{G}^{+} from F


```
Algorithm - X^+_G from F
Input: a schema R, a set F of functional dependencies on R, a
decomposition \rho = R_1, R_2, ..., R_k, a subset X of R
Output: the closure of X with respect to G = \bigcup_{i=1}^k \pi_{Ri}(F), (in variable Z)
begin
Z = X
S = \emptyset
for i = 1 to k
 S = S \cup (Z \cap R_i)^+ \cap R_i
while S \not\subset Z
    begin
       Z = Z \cup S
       for i = 1 to k
           S = S \cup (Z \cap R_i)^+ \cap R_i
   end
end
```

Observation

we note the relationship between the definition of the projections of F:

$$\pi_{Ri}(F) = \{ X \rightarrow Y \in F^+ \mid XY \subseteq R_i \}$$

and the update step of S:

$$S = S \cup (Z \cap R_i)^+ \cap R_i$$

we are collecting the attributes functionally determined by the part of **Z** that intersects R_i , (for the lemma, $A \in X^+$ if and only if $X \rightarrow A \in F^+$, and in this case $X = Z \subseteq R_i$) according to the dependencies in F^+ ; and from these we select those contained in R_i

starting from a set X, we are "reconstructing" its **closure** from the projections of F that **make up G**, and from there iterating from the set G^{\star} (through transitivity)

by intersectiing with R_{r} , we ensure that the dependency is valid in the individual subschema

Observation

•we also note the difference with the update step of S in the two algorithms:

$$S = A \mid Y \rightarrow V \in F, A \in V \land Y \subseteq Z$$

 $S = S \cup (Z \cap R_i)^+ \cap R_i$

- here the union is needed as we are considering the different subschemas in turn
- we also take dependencies in the closure F⁺ (Z∩R_i → A ∈ F⁺ and... the lemma) as the dependencies in the set G are included in the projections of F onto the subschemas, which are however, dependencies in F ⁺
- •in conclusion we will find the attributes that functionally depend on X even if they belong to subschemas in which X is not included! as they depend on attributes that are in the same subschema as X and depend on X, but they are also in other subschemas!

Careful!

- the algorithm (by definition) always terminates
- the fact that the algorithm terminates does not indicate that a dependency X → Y is preserved!
- to **check if** $X \rightarrow Y$ is preserved, we need to use the previous algorithm

Theorem

• **Theorem:** let R be a relation schema, F a set of functional dependencies on R, $\rho = R_1$, R_2 , ..., R_k a decomposition of R and X a subset of R; the Algorithm correctly computes X^+_G , where $G = \pi_{Ri}(F)$