MIT OpenCourseWare http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2.830/6.780J Control of Manufacturing Processes

"An Industrial Example of Oxide Etch Process Control and Optimization"

Spring 2007

Jing Yao Kai Meng Yi Qian

Agenda

- Plasma Etch Process physics
- Industrial Practices
 - SPC Practice
 - A Process Improvement Experiment
- Proposed DOE and RSM methods
- Process control improvements and recommendations

Layered Wafer Manufacturing Process

- 3 basic operations:
 - Film Deposition
 - Photolithography
 - Etch
- This cycle is repeated to build up various layers in the devices.

Image removed due to copyright restrictions. Please see http://dot.che.gatech.edu/henderson/Introductions/Image55.gif

Types of Etching

- Etch techniques
 - Wet etch(Isotropic)

– Dry etch / Plasma etch (Anisotropic)

Plasma Etching Steps

 Plasma etching uses RF power to drive material removal by chemical reaction

• Steps:

Formation of active gas species, e.g.

$$CF_4$$
+ $e^- \rightarrow CF_3^+$ + F + $2e^-$

- Transport of the active species to the wafer surface
- Reaction at the surface
 SiO₂ + 4F → SiF₄ + O₂
- Pump away volatile products

Physical vs Chemical Etching

	Physical Method	Chemical Method
Mechanism	Ion Bombardment	Chemical Reaction
Etch Rate	Low	High
Selectivity	Low	High
Bombardment- induced damage	High	Low
Anisotropy	High	Low

- Industry often uses hybrid technique: physical method to enhance chemical etching
- This gives anisotropic etch profile, reasonably good selectivity, and moderate bombardment-induced damage.

6

Plasma Etch Parameters

Gas chemistry

- Fluorocarbon gases (C₄F₆, CF₄, C₄F₈,etc)
 Atomic F is active etchant for SiO₂
 SiO₂ + 4F → SiF₄ + O₂
 Carbon reacts with oxygen to form passivation layer on Si → provides selectivity
- O₂: Under certain level, O₂ scavenge C in Fluorocarbon, results in higher F concentration → Higher etch rate
- Ar: Ar+ ion beam enhances chemical reaction

Plasma Etch Parameters

- Pressure
 - Low pressure reduces ion-neutral collision on sidewalls (lateral etch), enhances anisotropic etching
- Bias Power
 - Increase bias power enhances physical bombardment of ions
- Etch Time
- Temperature

Critical Issues

- Anisotropy
- Selectivity
- Microscopic Uniformity
- Etch Depth
- Critical Dimension (CD)

Image removed due to copyright restrictions. Please see http://www.mems-exchange.org/catalog/P3431/file/f38826bf4266f95d6e054553/thumbnail?600

Background

- Industry Practices in a DRAM wafer fabrication plant in Singapore
- Current Technology:
 - 95nm 1GB DRAM on 200mm wafers
 - 78nm 1GB DRAM on 300mm wafers
- Information source
 - Interview with process engineer
 - Scaled data based on experiments data (actual data unknown)

Focused Output

- Etch Depth
 - Measuring Method
 - Test wafer ONLY!
 - Over-etch on test wafer
 - Cost
 - 5 sites measurement
 - Percentage over-etch on test wafer 150%
 - 20%-60% over-etch on test wafer
 - Selectivity

Critical Dimension

- Measuring Method
 - Test or production wafer
 - 5 sites measurement

Image removed due to copyright restrictions. Please see http://www.mems-exchange.org/catalog/P3431/file/f38826bf4266f95d6e054553/thumbnail?600

Test Wafer

Production Wafer

SPC Practice

- SPC analysis tools are installed in all production machines
 - X-bar chart and R chart
- Different test methods for different outputs
 - Etch Depth
 - Insert test wafer into production lots
 - Infrequent: ~200 hours
 - Increase frequency when special attention needed
 - Critical Dimension
 - Test 1 wafer per lot (25 wafers)
 - 5 sites average

SPC Practice

- Rules: similar to Western Electrical Handbook rules
- UCL/LCL are set by process engineer
 - Based on USL/LSL
 - UCL/LCL are little bit tighter than USL/LSL
 - Tighten UCL/LCL based on experience
 - UCL/LCL are not based on standard deviation!
- Process pass SPC most of the time
- Stop a machine when a measurement is outside UCL/LCL, other rules mostly ignored
- Slow response

SPC Improvement

 Set UCL/LCL based on sample standard deviation

 Use more effective control chart, like CUSUM or EWMA chart, to improve response time

Use multivariate process control

A Process Improvement Experiment

Problem

- Under-etch
- Discovered by quality assurance from finished products
- Process improvement is necessary because no issues found on the machine

Approach

- 1. Focus on two inputs (C₄F₆ Flow Rate, Bias Power)
- 2. Vary inputs one step away from current value
- 3. Test with all inputs combinations
- 4. Change third input (Time)
- 5. Repeat 1 to 3
- 6. Find the best result

A Process Improvement Experiment

- 1 wafer, no replicates
- 5 sites average
- Goal:
 - CD: 100 ± 5 nm
 - Etch Depth: 1.4 um with 60%~70% over etch on test wafer [2.25um, 2.4 um]

Etch Depth (um)		C4F6 (sccm)			
		14.5	15	15.5	
Bias	1300	1.72	1.68	1.56	
Power	1400	2.08	2.01	1.91	
(W)	1500	2.56	2.45	2.41	

200 sec

CD (nm)		C4F6 (sccm)		
		14.5	15	15.5
Bias	1300	100	95	88
Power	1400	110	103	96
(W)	1500	118	110	104

Etch Depth (um)		C4F6 (sccm)			
		14.5	15	15.5	
Bias	1300	1.63	1.60	1.50	
Power	1400	2.00	1.95	1.87	
(W)	1500	2.50	2.37	2.28	

190 sec

CD (nm)		C4F6 (sccm)		
		14.5	15	15.5
Bias Power (W)	1300	98	93	85
	1400	106	100	94
	1500	114	106	100

A Process Improvement Experiment

- A combination of DOE and OFAT
 - Rely on theoretical study and experience
- Find an optimal based on tested input combinations
- No Response Surface analysis
- No replicates or center points
 - Hard to prove model accuracy
- No variance study
- Confidence Level unknown!

Experimental Design

- Bias Power and C₄F₆
 - Central composite design
 - -3 levels
- Etching Time
 - -2 levels

Factor	Actual test levels (coded test level)				
Factor	(-1)	(0)	(1)		
X1-Bias Power	1300	1400	1500	W	
X2-C4F6	14.5	15.0	15.5	sccm	
X3-Etching Time	190		200	sec	

Run Data

Trial	Bia	as Power	C4F6	Time	Etch Depth (um)	Critical Dimension (n	m)
1		-1	-1	1	1.72	100	
2		0	-1	1	2.08	110	
3		1	-1	1	2.56	118	
4		-1	0	1	1.68	95	
5		0	0	1	2.01	103	
6		1	0	1	2.45	110	Tim
7		-1	1	1	1.56	88	
8		0	1	1	1.91	96	
9		1	1	1	2.41	104	
10		-1	-1	-1	1.63	98	
11		0	-1	-1	2.00	106	
12		1	-1	-1	2.50	114	
13		-1	0	-1	1.60	93	
14		0	0	-1	1.95	100	
15		1	0	-1	2.37	106	
16		-1	1	-1	1.50	85	N
17		0	1	-1	1.87	94	
18		1	1	-1	2.28	100	0

Note: each run data is the mean of 5 sites average on 1 wafer

Response Models

- Second order polynomial models
 - models built using coded variables
 - no transformations of output variables attempted

$$Y = b_0 + \sum_{i=1}^{3} b_i X_i + \sum_{j=i+1}^{3} \sum_{i=1}^{3} b_{ij} X_i X_j + \sum_{i=1}^{3} b_{ii} X_i^2$$

Model Evaluation

- RSM fitting
 - ANOVA performed
 - Each output model claimed significant at
 >99.8% confidence level or higher

 Regression coefficients shown for significant terms

Etch Depth

Response Surface model

$$ED = 1.970 + 0.407x_1 - 0.080x_2 + 0.038x_3 + 0.052x_1^2$$

Residual

Etch Depth – Contour Plot

Critical Dimension

Response Surface model

$$CD = 101.111 + 7.750x_1 - 6.583x_2 + 1.556x_3$$

Residual

Critical Dimension – Contour Plot

Process Optimization

 Optimization criteria for Oxide etch and the best values attainable within the resulting optimized factor space

Factor	Optimization Criteria	Best Values
Etch Depth	$2.25\mu m \le CD \le 2.40\mu m$	2.25μm
Critical Dimention	$100 \pm 5nm$	100nm

Optimal Input

	X1-Bias Power	X2-C4F6	X3-Etching Time
Model	1487 W	15.48 sccm	190 sec
Actual	1500 W	15.5 sccm	190 sec

26

23 Full Factorial Design

- Only consider linear relationships
- Drop other 10 test points
 (possible test points for lack-of-fit)

Trial	Bias Power	C4F6	Time	Etch Depth (um)	Critical Dimension (nm)
1	-1	-1	1	1.72	100
2	1	-1	1	2.56	118
3	-1	1	1	1.56	88
4	1	1	1	2.41	104
5	-1	-1	-1	1.63	98
6	1	-1	-1	2.50	114
7	-1	1	-1	1.50	85
8	1	1	-1	2.28	100

27

Etch Depth

Predicted Value (p<0.01)

$$ED = 2.020 + 0.418x_1 - 0.083x_2 + 0.043x_3$$

Residual

Critical Dimension

Predicted Value (p<0.01)

$$CD = 100.875 + 8.125x_1 - 6.625x_2 + 1.625x_3$$

Residual

DOE Improvement

- Adding replicates at center points
 - Use to assess pure error ('noise') as percentage of the response
 - Assess lack of fit
- Use Factorial Design

Current practice18 trails

– 2³ with 4 center points
 12 trails

- 3³⁻¹_{III} with 6 center points 15 trails

- Analyze Variation
 - consider variation at the desired value
- Randomize run order
 - Esp. in replicates to minimize the trend

Process Control Recommendations

- SPC Analysis
 - Use more effective control chart, like
 CUSUM or EWMA chart
 - Use multivariate process control
- DOE and RSM optimization
 - Adding replicates at center points
 - Use Factorial Design
 - Analyze Variation
 - Randomize run order

Thank You!