

Encodage des caractères

Exercice 2: Voici les premiers octets d'un petit fichier de taille 1427 octets, lus avec l'éditeur de fichier binaire xxd >> 89 50 4E 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 32 00 00 00 32 08 06 00 00 00 1e 3f 88

En décodant les premiers octets, avec l'encodage ASCII, deviner de quel type de fichier il s'agit.

Exercice 3 : Jean a envoyé un message à Pierre mais, à la réception, le message est un peu étrange ...

- 1°) Expliquer ce qui s'est passé.
- 2°) Dans la suite d'octets transmise, repérer les octets qui sont mal décodés et expliquer comment les décoder.

texte saisi par Jean	>>	j'ai été reçu à l'examen
Suite d'octets envoyée	e dans le	réseau » 01101010 00100111 01100001 01101001 00100000 11000011 10101001
01110100 11000011 1	.0101001	. 00100000 01110010 01100101 11000011 10100111 01110101 00100000 11000011
10100000 00100000 0	1101100	00100111 01100101 01111000 01100001 011011
texte reçu par Pierre	>>	j'ai été reçu à l'examen

Exercice 4 : Donner l'encodage en UTF-8 des caractères ci-dessous à partir de leur point de code unicode.

caractère	point de code	encodage UTF-8
а	U+0061	
É	U+00C9	
î	U+00EE	
ü		C3 BC

caractère	point de code	encodage UTF-8
⊡	U+2680	
2	U+2658	
\n	U+0A	
Å		E2 84 AB

Exercice 5 : On dispose de 2 fichiers enregistrés contenant le même texte mais avec un encodage différent : l'un en UTF-8 et l'autre en ISO-8859-15. Voici le texte →

Ça va ? Vœux

Example Comparer la taille en octets de chaque fichier à la longueur du texte ('œ' est un unique caractère)

	contenu du fichier en hexadécimal	encodage
Fichier 1	c3 87 61 20 76 61 20 3f 0a 56 c5 93 75 78	
Fichier 2	c7 61 20 76 61 20 3f 0a 56 bd 75 78	

Associer à chaque caractère son encodage et retrouver le point de code Unicode de chaque caractère.

	Ç	а	٧	а	?	V	œ	u	X
Encodage ISO-8859-15									
Encodage UTF-8									
Point de code Unicode									

CORRECTION

Exercice 1 : Décoder la suite d'octets suivants, qui représente un texte encodé en ASCII.

(Rappel: 'A' correspond au point de code décimal 65 et 'a' correspond au point de code décimal 91)

e n c o d a g e

Exercice 2: Voici les premiers octets d'un petit fichier de taille 1427 octets, lus avec l'éditeur de fichier binaire xxd >> 89 50 4E 47 0d 0a 1a 0a 00 00 00 0d 49 48 44 52 00 00 00 32 00 00 00 32 08 06 00 00 00 1e 3f 88

En décodant les premiers octets, avec l'encodage ASCII, deviner de quel type de fichier il s'agit.

```
octet: 89 (hexa)
                       137 (décimal)
                                                     Un fichier PNG commence par une signature de 8 octets
                                     car:
octet: 50 (hexa)
                      80 (décimal)
                                      car: P
                                                     représenté par les valeurs décimales suivantes :
                                                      137 80 78 71 13 10 26 10
octet: 4e (hexa)
                      78 (décimal)
                                      car: N
octet: 47 (hexa)
                      71 (décimal)
                                      car: G
                                                     ou en hexadécimal:
octet: 0d (hexa)
                       13 (décimal)
                                      car:
                                                      89 50 4E 47 0D 0A 1A 0A.
                       10 (décimal)
octet: 0a (hexa)
                                      car:
                                                     La suite du fichier est décomposée en plusieurs parties de
octet: 1a (hexa)
                       26 (décimal)
                                      car:
                                                     longueurs variables, appelées chunk.
octet: 0a (hexa)
                       10 (décimal)
                                      car:
```

```
ch='89 50 4e 47 0d 0a 1a 0a 00 00 00 dd 49 48 44 52'.split(' ')
for el in ch:
    o1=int(el[:2],16)
    print(f"octet : {el} (hexa)\t{o1} (décimal)\tcar : {chr(o1)}")
```

Exercice 3:

texte saisi par Jean ≫ j'ai été reçu à l'examen

En hexadecimal >> 6a 27 61 69 20 c3 a9 74 c3 a9 20 72 65 c3 a7 75 20 c3 a0 20 6c 27 65 78 61 6d 65 6e

texte reçu par Pierre ≫ j'ai été reçu à l'examen

Le texte a été encodé en UTF8 et décodé avec un autre encodage obsolète : ISO-8859-1 (latin1) ou ISO-8859-15 (latin9) ou le plus probablement cp1252 (abusivement appelé ANSI)

Les octets mal décodés sont ceux qui ne correspondent pas à un caractère dont le point de code est inférieur à 127.

On les repère parce qu'ils commencent par 1 ou 11 au lieu de 0.

Ils sont codés sur deux octets en utf8 et ces deux octets sont alors décodés comme deux caractères de la table cp1252.

```
# Problème d'encodage : un exemple
# Jean écrit un mail
texte = "i'ai été recu à l'examen"
print('texte saisi par Jean :')
print(texte,'\n')
# son OS l'encode pour le faire passer sur le réseau
octets transmis = texte.encode(encoding="utf-8")
print("Suite d'octets envoyée dans le réseau : ")
for octet in octets_transmis:
    print(f"{octet:08b}", end=
  rint('\n')
for octet in octets_transmis:
    print(f"{octet:02x}", end=" ")
print('\n')
# Pierre recoit le binaire mais son ordi est un vieux Windows mal configuré
texte_recu = octets_transmis.decode(encoding="cp1252")
print('texte reçu par Pierre : ')
print(texte_recu)
```

Exercice 4 : Donner l'encodage en UTF-8 des caractères ci-dessous à partir de leur point de code unicode.

car	point de code	encodage UTF-8
а	U+0061	61
	01100001	01100001
É	U+00C9	C3 89
	11001001	11000011 10001001
î	U+00EE	C3 AE
	11101110	11000011 10101110
ü	U+FC	C3 BC
	11111100	11000011 10111100

car	point de code	encodage UTF-8
⊡	U+2680	E2 9A 80
	10011010000000	11100010 10011010 10000000
2	U+2658	E2 99 98
	10011001011000	11100010 10011001 10011000
\n	U+0A	0A
	00001010	00001010
Å	U+212B	E2 84 AB
	10000100101011	11100010 10000100 10101011

Exercice 5 : On dispose de 2 fichiers enregistrés contenant le même texte mais avec un encodage différent : l'un en UTF-8 et l'autre en ISO-8859-15. Voici le texte →

Ca va? Vœux

Example Comparer la taille en octets de chaque fichier à la longueur du texte ('œ' est un unique caractère)

	contenu du fichier en hexadécimal	encodage
Fichier 1	c3 87 61 20 76 61 20 3f 0a 56 c5 93 75 78	UTF-8
Fichier 2	c7 61 20 76 61 20 3f 0a 56 bd 75 78	ISO-8859-15

Associer à chaque caractère son encodage et retrouver le point de code Unicode de chaque caractère.

	Ç	а		V	а		?	\n	V	œ	u	X
Encodage ISO-8859-15	c 7	61	20	76	61	20	3f	0a	56	bd	75	78
Encodage UTF-8	c3 87	61	20	76	61	20	3f	0a	56	c5 93	75	78
Point de code Unicode (décimal)	199	97	32	118	97	32	63	10	86	339	117	120

```
# pour afficher la suite d'octets en hexadécimal, séparés par un espace
ch='''Ça va ?
Vœux'''
octet_str=ch.encode('utf8').hex()
ch hex=''
for octet in octet_str:
    ch_hex+=octet
    if i%2==0 : ch_hex+=' '
print(ch_hex)
```

Exercice 6 : Décoder la suite d'octets suivants, qui représente un texte encodé en UTF8 ≫ Spé NSI ♥

Mauvais décodage avec latin9

112 83 195 169 32 78 83 73 32 226 153 165 S Ã **(**0) Ν S Т â р

Bon décodage avec utf8

_ 233 83 112 78 83 73 9829 S S é N Ι р

```
texte = "Spé NSI ♥"
octets = texte.encode('utf-8')
suite_en_decimal = list(octets)
suite_en_binaire = [bin(octet)[2:].rjust(8,'0') for octet in octets]
print(suite_en_decimal)
print(suite_en_binaire)
print(suite_en_binaire)
print(' '.join(suite_en_binaire))
for n in suite_en_decimal:
    print(f"{n:^9}",end="")
print()
for n in suite_en_decimal:
      print(f"{chr(n):^9}",end="")
```