COM1006 Devices and Networks (Autumn) COM1090 Computer Architectures

Lecture #4

Dr Dirk Sudholt Department of Computer Science University of Sheffield

d.sudholt@sheffield.ac.uk
http://staffwww.dcs.shef.ac.uk/~dirk/campus_only/com1006/
Based on parts of Chapter 2 in Clements, Principles of Computer Hardware

Aims of this lecture

- To introduce combinatorial logic
- To introduce fundamental gates: AND, OR, NOT
- To show how truth tables can be used to describe digital circuits
- To show how a Boolean equation consisting of a sum of products can be used to describe a digital circuit
- To introduce NAND, NOR and EOR gates

Combinatorial and sequential logic

- Digital computers are constructed from two kinds of logic elements:
- Combinatorial logic. Generates output based solely on its current input, e.g. if window open AND raining then close window:

• Sequential logic (see later lectures). The output from a sequential logic element depends on its past history as well as its current input (i.e., a sequential element remembers its previous inputs).

Gates

- A gate is a simple processing element with one or more input terminals and an output terminal.
- The output of a gate is a function of its inputs only.
- Gates can be regarded as transmission elements that control the flow of information through a computer.
- Digital computers consist of nothing more than the interconnection of AND, OR and NOT gates.
- Other gates (NAND, NOR, EOR) can be derived from them.
- Later we'll see that any digital circuit can be designed from interconnected NAND (or NOR) gates alone.
- At the chip level, gates are implemented by transistors.

Circuit conventions

- Logic circuits are generally read from left to right (i.e., inputs on left, outputs on right).
- Circuits can contain many signal paths (lines) and sometimes these must be drawn as crossing one another:

 The voltage at any point along a conductor is constant, so the logical state is the same everywhere on a line.

Fundamental gates: AND

- An AND gate has two or more inputs and a single output.
- The output of an AND gate is true iff each of its inputs is true.

Two-input AND gate

Three-input AND gate

- The logical symbol for AND is a dot, so A AND B is written $A \cdot B$; in practice the dot is often omitted and we write AB.
- Alternative notations: A∧B, A.B
- Logical AND behaves like a multiplier in conventional algebra, e.g.
 A(B+C) = AB+AC in conventional and Boolean algebra.

Truth tables

- Truth tables are a useful way of describing the relationship between inputs and outputs of a gate.
- The value of each output is tabulated for every possible combination of the inputs.
- Inputs are binary so a circuit with n inputs has 2^n rows in its truth table.

Truth table for the AND gate

Α	В	F = AB
0	0	0
0	1	0
1	0	0
1	1	1

Logical operations on words

- Recall that computers process groups of bits called words. Typically a word consists of 8, 16, 32 or 64 bits.
- When logical operations such as AND are applied to words, the operation is applied to each pair of bits:

• This example shows a common use of AND; word B acts as a **mask** that clears some bits of word A.

Fundamental gates: OR

- An OR gate has two or more inputs and a single output.
- The output of an OR gate is true if any one (or more than one) of its inputs is true.

Two-input OR gate

Three-input OR gate

- The logical symbol for OR is +, so A OR B is written A+B.
- Alternative notation: A∨B
- The logical OR operator behaves like addition in conventional algebra.
- O Does logical OR have the same meaning as "or" in English?

Truth table and logical OR on words

 Computers also perform logical OR on words, e.g.:

- Logical OR is used to set one or more bits in a word to logical 1.
- So using AND and OR we can selectively set and clear the bits of a word.

Truth table for the OR gate

Α	В	F = A+B
0	0	0
0	1	1
1	0	1
1	1	1

► AND and OR gates as circuits

AND

Current will only flow if A and B are closed

OR

Current will flow if either A or B is closed

Fundamental gates: NOT

- The NOT gate is also called an **inverter** or **complementer**.
- The NOT gate has one input and one output. The output is the opposite (logical inverse) of the input.

Α	$F = \overline{A}$
0	1
1	0

Other conventions: A*, ¬A, /A

Note that it's the small circle that indicates logical inversion, not the triangle

• NOT can also be applied to words (e.g., if A=11011100 then \overline{A} = 00100011)

Example of AND-OR-INVERT logic

 Problem: construct a 3-input majority device. The output is to be TRUE when 2 or more of the inputs are TRUE.

- General approach:
 - Construct a **truth table** that defines the required behaviour:
 - Read a sum of products expression from the truth table
 - Simplify the expression in order to minimise the number of gates/lines used (just examples now; see later lectures)
 - Construct the device (on paper or in a simulator)

Step 1: Truth table

Note that when tabulating the possible values of the inputs the order is not important, but it is usual to list them in the natural binary sequence

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Step 2: Sum of products expression

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 From the truth table, we can write down the set of inputs that cause the output to be true:

$$\overline{A}BC$$
, $A\overline{B}C$, $AB\overline{C}$, ABC

 The output F is the logical sum of these four cases:

$$F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

- This is called a sum of products
 (S-of-P) expression because it is
 the logical OR (sum) of a group of
 terms each composed of several
 variables ANDed together (products)
- Useful for drawing circuits in a systematic fashion (see later)

▶Sum of products expression (continued)

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- The terms ABC, ABC, ABC, ABC represent minterms.
- A minterm is a product of all variables in true or complemented form.
- Every Boolean function F can be described as sum of products (i.e. ORing minterms where F is 1).
- This is called **canonical form**.
- So every Boolean function can be implemented with AND, OR, NOT.
- There is an alternative representation based on products of sums (P-of-S), ANDing sums of variables where F is 0.

► Step 3: Simplify the S-of-P expression

- We have $F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$
- There is a simpler form for this expression, using fewer and simpler terms.

9 Why do you think a simpler form is better?

- We'll spend the next lecture talking about how to simplify expressions.
- For now, I'll give the solution away a simpler form is:

$$F = AB + BC + AC$$

How can you be sure that it's the same function?

Comparing Boolean Functions

Α	В	С	F	AB + BC + AC
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

- Two Boolean functions are equal if all entries in the truth table are the same.
- This method is not feasible for many variables.

Step 4: Construct the device

► Step 4: Construct the device

NAND and NOR gates

- NAND and NOR gates are the two most widely used gates in real circuits.
- They are not fundamental gates because they are derived from the other gates we've seen:
 - The NAND gate is derived from an AND gate followed by an inverter (Not AND)
 - The NOR gate is derived from an OR gate followed by an inverter (Not OR)
- Remember that the small circle indicates inversion.
- Another common gate is Exclusive OR (EOR) which is derived from AND, OR and NOT gates.

NAND gate

AND gate followed by an inverter

Truth table for the NAND gate

Α	В	$F = \overline{A \cdot B}$
0	0	1
0	1	1
1	0	1
1	1	0

NOR

NOR gate

$$A \longrightarrow F = \overline{A + B}$$

OR gate followed by an inverter

Truth table for the NOR gate

A	В	$F = \overline{A + B}$
0	0	1
0	1	0
1	0	0
1	1	0

EOR gate

Circuit implementation of EOR gate

Truth table for the EOR gate

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

$$F = \overline{A} \cdot B + A \cdot \overline{B}$$

Note from the truth table that EOR is a 1-bit adder (excluding the carry)

► Another example - what is it?

- Consider the following digital circuit which has three inputs, one output and three intermediate values.
- What does it do?

Truth table (incomplete)

l	nput	S	Inte	Intermediate values		
X	Υ	Z	$P=\overline{X}$	$Q = \overline{PY}$	$R=\overline{X}\overline{Z}$	F=QR
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
_1	1	1				

► Truth table

	nput	S	Into	Intermediate values		
X	Υ	Z	$P=\overline{X}$	$Q = \overline{PY}$	$R=\overline{X}\overline{Z}$	F=QR
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	1	0
1	0	1	0	1	0	1
1	1	0	0	1	1	0
1	1	1	0	1	0	1

It's a multiplexer (switch)

- From the truth table, note that:
 - when X=0, F=Y
 - when X=1, F=Z
- So this circuit acts as an electronic switch, that connects the output to one of the two inputs (Y or Z) depending on the value of X:

This circuit is called a multiplexer.

Two equivalent Boolean functions

From the truth table, we get a S-of-P expression for F:

$$F = \overline{X}Y\overline{Z} + \overline{X}YZ + X\overline{Y}Z + XYZ$$

 From the circuit we could also get an equation for F by writing the outputs of each gate in terms of its inputs:

$$F = \overline{QR}, Q = \overline{YP}, P = \overline{X}$$

Therefore $Q = \overline{Y} \overline{X}$ by substituting for P

$$R = \overline{XZ}$$

Therefore $F = Y \overline{X} \overline{XZ}$.

 So a given Boolean function can be written in more than one way; we return to this point in the next lecture.

▶Summary

- Fundamental gates are AND, OR and NOT
- Digital circuits can be conveniently described by
 - A truth table
 - A Boolean function in sum-of-products form
- Fundamental gates can be used to construct three other very important gates: NAND, NOR and EOR
- The Boolean function that describes a circuit can be written in many forms; some are more amenable to implementation than others