HABERMANS DATASET ASSIGNMENT

Description of dataset-:

- 1. AGE Age of patient
- 2. YOP Year of operation
- 3. POS_NODES No. of positive auxillary nodes found
- 4. STATUS-: 1= Patient survived for 5 or more years, 2= Patient died within 5 years.

```
In [4]: import pandas as p
    x=['AGE','YOP','POS_NODES','STATUS']
    a=p.read_csv('haberman.csv',names=x)
    print(a.head())
```

AGE	Y0P	POS_NODES	STATUS
30	64	_ 1	1
30	62	3	1
30	65	0	1
31	59	2	1
31	65	4	1
	30 30 31	30 64 30 62 30 65 31 59	30 64 1 30 62 3 30 65 0 31 59 2

-> There are 306 datapoints and 4 features.

-> These are the column name in the dataset.

```
In [9]: print(a['STATUS'].value_counts())

1     225
2     81
Name: STATUS, dtype: int64

-> There are 2 classes:'1' and '2' -> Datapoints present for class '1': 225 -> Datapoints present for class '2': 81
```

- 1. The dataset is classified into two classes i.e 225 patients of class 1, those who survived for more than 5 years,81 patients of class 2, those who not survived for more than 5 years.
- 2. This dataset is an imbalanced dataset as there is huge margin between the datapoints of class-1 and class-2.

OBJECTIVE

Given a persons age, positive nodes and year of operation we have to find whether that person lies in class-1 or class-2.

2-D SCATTER PLOT

```
.add_legend()
plt.show()
```


- 1. Using age and no. of positive axillary nodes as features, we cannot make any difference since both are overlapping each other.
- 2. Most of the people have 0 positive auxillary node.

PAIR-PLOT

```
In [23]: plt.close()
    sea.set_style("whitegrid")
    sea.pairplot(a,hue="STATUS",size=4)
    plt.show()
```


1. There are no two features through which we can easily distinguish between class-1 and

HISTOGRAM AND PDF

```
In [25]: sea.FacetGrid(a,hue='STATUS',size=6) \
    .map(sea.distplot,'POS_NODES') \
    .add_legend()
    plt.show()
```



```
In [26]: sea.FacetGrid(a,hue='STATUS',size=5) \
    .map(sea.distplot,'AGE') \
```


As the distribution for class-1 and class-2 overlaps in huge amount, so we will go for the mean.

```
In [43]: import numpy as np
    al= a.loc[a['STATUS']==1];
    a2= a.loc[a["STATUS"]==2];
    print("MEANS-:")
    print(".FOR AGE")
    print(round(np.mean(a1["AGE"])))
    print(round(np.mean(a2["AGE"])))
    print(".FOR POS_NODES")
    print(".FOR POS_NODES")
    print(round(np.mean(a1["POS_NODES"])))
    print(round(np.mean(a2["POS_NODES"])))
    print(".FOR YOP")
    print(".FOR YOP")
    print(round(np.mean(a1["YOP"])))
    print(round(np.mean(a1["YOP"])))
```

- 1. Of the three features POS_NODES is a very important feature in identifying the class as the difference between the means are more as compared to others.
- 2. Most of the people that have 0 POS NODES have survived.
- 3. The mean positive auxiliary nodes for the person that survived are 3 as compared to 7 which have not survived.
- 4. The mean age of the patients which survived is 52 years and not survived is 54 years.

CDF

1. If the positive auxiliary nodes are more than 46 then the person definately comes under the class-2.

2. If the no. of positive auxillary nodes lies between 0-24 then there are 82%-98% chances of survival whereas the non-survival ranges from 59% to 84%.

STATISTICAL DESCRIPTION

In [76]: a1.describe()

Out[76]:

	AGE	YOP	POS_NODES	STATUS
count	225.000000	225.000000	225.000000	225.0
mean	52.017778	62.862222	2.791111	1.0
std	11.012154	3.222915	5.870318	0.0
min	30.000000	58.000000	0.000000	1.0
25%	43.000000	60.000000	0.000000	1.0
50%	52.000000	63.000000	0.000000	1.0
75%	60.000000	66.000000	3.000000	1.0
max	77.000000	69.000000	46.000000	1.0

In [77]: a2.describe()

Out[77]:

	AGE	YOP	POS_NODES	STATUS
count	81.000000	81.000000	81.000000	81.0
mean	53.679012	62.827160	7.456790	2.0
std	10.167137	3.342118	9.185654	0.0
min	34.000000	58.000000	0.000000	2.0
25%	46.000000	59.000000	1.000000	2.0

	AGE	YOP	POS_NODES	STATUS
50%	53.000000	63.000000	4.000000	2.0
75%	61.000000	65.000000	11.000000	2.0
max	83.000000	69.000000	52.000000	2.0

BOX PLOT

```
In [81]: sea.boxplot(y='POS_NODES',x='STATUS',data=a)
plt.show()
```


VIOLIN PLOT

```
In [82]: sea.violinplot(x='STATUS',y='POS_NODES',data=a,size=8)
plt.show()
```


- 1. The Plots tells us that 50% of points in class-2 are having auxillary nodes less than 5.
- 2. 75% of points in class-1 are having auxillary nodes less than 5.
- 3. The plot also tells us that if the value of positive auxillary nodes are greater than 7 then the patient will not survive.