Algebraic Geometry II: Exercises for Lecture 2

February 14, 2019

Rings are commutative with unit element 1.

1) Let R be a ring and let $X = \operatorname{Spec} R$. Let $f \in R$. Suppose that

$$X_f = \bigcup_{\alpha \in S} X_{f_\alpha} \, .$$

Suppose we have $g_{\alpha} \in R_{f_{\alpha}}$ such that g_{α} and g_{β} have the same image in $R_{f_{\alpha}f_{\beta}}$. According to a lemma stated last time, there exists then a $g \in R_f$ with image g_{α} in $R_{f_{\alpha}}$ (for all α).

- i) Write out in detail why it suffices to prove this for a finite covering.
- ii) Write out the proof for a finite covering in detail.
- 2) Let R be a ring and let $X = \operatorname{Spec} R$. Let U be an open subset of X. Recall the definition of $\Gamma(U, \mathcal{O}_X)$. Show that it is a ring.
- 3) As above. Suppose that V is an open subset of U. Show that the coordinate projection

$$\prod_{[P]\in U} R_P \to \prod_{[P]\in V} R_P$$

induces a map from $\Gamma(U, \mathcal{O}_X)$ to $\Gamma(V, \mathcal{O}_X)$. We take this as the restriction map; \mathcal{O}_X is then a presheaf.

- 4) Show that \mathcal{O}_X is in fact a sheaf.
- 5*) Show that $\Gamma(X_f, \mathcal{O}_X) = R_f$ (i.e., the 'new' rule, for the sections on an arbitrary open, agrees with the 'old' rule for distinguished open subsets).
- 6) Show that the stalk of \mathcal{O}_X at [P] is R_P .