

CS326 – Systems Security

Mathematical Background 2

Elias Athanasopoulos athanasopoulos.elias@ucy.ac.cy

Extended Euclidean Algorithm

Find the modular multiplicative inverse of a

$$a \cdot x \equiv 1 \mod m$$
,

m and α are known, what is the value of x?

- Condition for existence: gcd(a, m) = 1 (i.e., a and m are co-primes)
- Example

$$3x \equiv 1 \pmod{10}$$

$$3.7 = 21 \equiv 1 \pmod{10}$$

Algorithm

$$a \cdot x \equiv 1 \mod m$$
, then it holds that $a \cdot x \equiv 1 + k \cdot m$, for an integer k or $a \cdot x + (-k) \cdot m = 1$

If I can express x, m in the above form then I can compute x''

Bezout's Identity: Let a and b be integers with gcd(a, b), there exist integers x and y such that ax + by = gcd(a, b)

But,
$$gcd(a, m) = 1 => a \cdot x + y \cdot m = 1$$

(Diophantine Equation)

Example (1/3)

gcd(2, 1) = 1

$$a = 12$$
, $m = 67$
First, calculate the gcd()
 $gcd(67, 12) = gcd(67 - 5 \cdot 12, 12) = gcd(7, 12) =$
 $gcd(12, 7) = gcd(12 - 1 \cdot 7, 7) = gcd(5, 7) =$
 $gcd(7, 5) = gcd(7 - 1 \cdot 5, 5) = gcd(2, 5) =$
 $gcd(5, 2) = gcd(5 - 2 \cdot 2, 2) = gcd(1, 2)$
 $gcd(2, 1) = 1$
Therefore, $gcd(67, 12) = 1$

Example (2/3)

From the above calculations, it holds

$$67 = 5 \cdot 12 + 7$$
 (1)
 $12 = 1 \cdot 7 + 5$ (2)
 $7 = 1 \cdot 5 + 2$ (3)
 $5 = 2 \cdot 2 + 1$ (4)

 Numbers in red are going to be substituted according to the above expressions

Example (3/3)

It turns out, that

$$1 = 5 - 2 \cdot 2$$
 we substitute 2 from (3)
 $1 = 5 - 2 \cdot (7 - 5)$ we substitute 5 from (2)
 $1 = 12 - 7 - 2 \cdot (7 - 12 + 7)$ we substitute 7 from (1)
 $1 = 12 - (67 - 5 \cdot 12) - 2 \cdot (67 - 5 \cdot 12 - 12 + 67 - 5 \cdot 12)$

 Now, I have only 67 and 12 and I have to group their coefficients

$$1 = 12 - 67 + 5 \cdot 12 - 2 \cdot (2 \cdot 67 - 11 \cdot 12)$$

$$1 = -67 + 6 \cdot 12 - 4 \cdot 67 + 22 \cdot 12$$

$$1 = -5 \cdot 67 + 28 \cdot 12$$

Solution

$$1 = -5 \cdot 67 + 28 \cdot 12$$

(Recall: $1 = (-5) \cdot m + 28 \cdot \alpha$)
or
 $28 \cdot 12 = 1 + (-5) \cdot 67$, i.e.,
 $28 \cdot 12 \equiv 1 \pmod{67}$

• The modular multiplicative inverse of $\alpha = 12$ and m = 67 is "28", or,

$$12^{-1} \equiv 28 \pmod{67}$$