Sales Analysis

Import necessary libraries

```
In [1]: import os import pandas as pd
```

Merge data from each month into one CSV

```
In [2]: path = "./Sales_Data"
    files = [file for file in os.listdir(path) if not file.startswith('.')] # Ignore hidden files

all_months_data = pd.DataFrame()

for file in files:
        current_data = pd.read_csv(path+"/"+file)
        all_months_data = pd.concat([all_months_data, current_data])

all_months_data.to_csv("all_data_copy.csv", index=False)
```

Read in updated dataframe

```
In [2]: all_data = pd.read_csv("all_data.csv")
    all_data.head()
```

Out[2]:	Order ID		Product	Quantity Ordered Price Each		Order Date	Purchase Address		
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001		
	1	NaN	NaN	NaN	NaN	NaN	NaN		
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215		
	3	176560	Google Phone	1	600	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001		
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St. Los Angeles, CA 90001		

Clean up the data!

The first step in this is figuring out what we need to clean. I have found in practice, that you find things you need to clean as you perform operations and get errors. Based on the error, you decide how you should go about cleaning the data

Drop rows of NAN

```
In [21]: # Find NAN
    nan_df = all_data[all_data.isna().any(axis=1)]
    display(nan_df.head())
    all_data = all_data.dropna(how='all')
```

Drop rows of NAN

```
In [21]:
```

```
# Find NAN
nan_df = all_data[all_data.isna().any(axis=1)]
display(nan_df.head())
all_data = all_data.dropna(how='all')
all_data.head()
```

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
1	NaN	NaN	NaN	NaN	NaN	NaN
356	NaN	NaN	NaN	NaN	NaN	NaN
735	NaN	NaN	NaN	NaN	NaN	NaN
1433	NaN	NaN	NaN	NaN	NaN	NaN
1553	NaN	NaN	NaN	NaN	NaN	NaN

vu.	~	41	
			-

:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215
	3	176560	Google Phone	1	600	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001
	5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001

Get rid of text in order date column

```
In [22]: all_data = all_data[all_data['Order Date'].str[0:2]!='Or']
```

Make columns correct type

```
In [23]: all_data['Quantity Ordered'] = pd.to_numeric(all_data['Quantity Ordered'])
    all_data['Price Each'] = pd.to_numeric(all_data['Price Each'])
```

Augment data with additional columns

Add month column

```
In [24]:
    all_data['Month'] = all_data['Order Date'].str[0:2]
    all_data['Month'] = all_data['Month'].astype('int32')
    all_data.head()
```

ut[24]:	Order ID		Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4	
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4	
	3	176560	Google Phone	1	600.00	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	

5 176561 Wired Headphones 1 11.99 04/30/19 09:27 333 8th St, Los Angeles, CA 90001 4

Add month column (alternative method)

In [47]:

all_data['Month 2'] = pd.to_datetime(all_data['Order Date']).dt.month
all_data.head()

Out[47]:

]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	Month 2
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4	4
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4	4
	3	176560	Google Phone	1	600	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	4
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	4
	5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	4	4

Add city column

```
In [25]:
    def get_city(address):
        return address.split(",")[1].strip(" ")

    def get_state(address):
        return address.split(",")[2].split(" ")[1]

    all_data['City'] = all_data['Purchase Address'].apply(lambda x: f"{get_city(x)} ({get_state(x)})")
    all_data.head()
```

Out[25]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	City
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4	Dallas (TX)
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4	Boston (MA)
	3	176560	Google Phone	1	600.00	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	Los Angeles (CA)
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	Los Angeles (CA)
	5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	4	Los Angeles (CA)

Data Exploration!

Question 1: What was the best month for sales? How much was earned that month?

```
In [26]: all_data['Sales'] = all_data['Quantity Ordered'].astype('int') * all_data['Price Each'].astype('float')
In [27]: all_data.groupby(['Month']).sum()
Out[27]: Quantity Ordered Price Each Sales
```

	Quantity Ordered	Price Each	Sales
Month			
1	10903	1.811768e+06	1.822257e+06
2	13449	2.188885e+06	2.202022e+06
3	17005	2.791208e+06	2.807100e+06
4	20558	3.367671e+06	3.390670e+06
5	18667	3.135125e+06	3.152607e+06
6	15253	2.562026e+06	2.577802e+06
7	16072	2.632540e+06	2.647776e+06
8	13448	2.230345e+06	2.244468e+06
9	13109	2.084992e+06	2.097560e+06

```
10 22703 3.715555e+06 3.736727e+06
11 19798 3.180601e+06 3.199603e+06
12 28114 4.588415e+06 4.613443e+06
```

```
import matplotlib.pyplot as plt

months = range(1,13)
print(months)

plt.bar(months,all_data.groupby(['Month']).sum()['Sales'])
plt.xticks(months)
plt.ylabel('Sales in USD ($)')
plt.xlabel('Month number')
plt.show()
```



```
import matplotlib.pyplot as plt

months = range(1,13)
print(months)

plt.bar(months,all_data.groupby(['Month']).sum()['Sales'])
plt.xticks(months)
plt.ylabel('Sales in USD ($)')
plt.xlabel('Month number')
plt.show()
```


Question 2: What city sold the most product?

In [29]:

all_data.groupby(['City']).sum()

Out[29]:

:		Quantity Ordered	Price Each	Month	Sales
	City				
Atlan	ta (GA)	16602	2.779908e+06	104794	2.795499e+06
Aus	tin (TX)	11153	1.809874e+06	69829	1.819582e+06
Bosto	n (MA)	22528	3.637410e+06	141112	3.661642e+06
Dal	las (TX)	16730	2.752628e+06	104620	2.767975e+06
Los Angel	es (CA)	33289	5.421435e+06	208325	5.452571e+06
New York C	ity (NY)	27932	4.635371e+06	175741	4.664317e+06
Portlar	nd (ME)	2750	4.471893e+05	17144	4.497583e+05
Portla	nd (OR)	11303	1.860558e+06	70621	1.870732e+06
San Francis	co (CA)	50239	8.211462e+06	315520	8.262204e+06
Seatt	le (WA)	16553	2.733296e+06	104941	2.747755e+06

```
import matplotlib.pyplot as plt
keys = [city for city, df in all_data.groupby(['City'])]

plt.bar(keys,all_data.groupby(['City']).sum()['Sales'])
plt.ylabel('Sales in USD ($)')
plt.xlabel('Month number')
plt.xticks(keys, rotation='vertical', size=8)
plt.show()
```


Question 3: What time should we display advertisements to maximize likelihood of customer's buying product?

```
In [31]: # Add hour column
    all_data['Hour'] = pd.to_datetime(all_data['Order Date']).dt.hour
    all_data['Minute'] = pd.to_datetime(all_data['Order Date']).dt.minute
    all_data['Count'] = 1
    all_data.head()
```

-			- 0	٦.	
	117	- 1	-3.71		
\sim	ы. 1	- 1			

]:		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	Month	City	Sales	Hour	Minute	Count
	0	176558	USB-C Charging Cable	2	11.95	04/19/19 08:46	917 1st St, Dallas, TX 75001	4	Dallas (TX)	23.90	8	46	1
	2	176559	Bose SoundSport Headphones	1	99.99	04/07/19 22:30	682 Chestnut St, Boston, MA 02215	4	Boston (MA)	99.99	22	30	1
	3	176560	Google Phone	1	600.00	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	Los Angeles (CA)	600.00	14	38	1
	4	176560	Wired Headphones	1	11.99	04/12/19 14:38	669 Spruce St, Los Angeles, CA 90001	4	Los Angeles (CA)	11.99	14	38	1
	5	176561	Wired Headphones	1	11.99	04/30/19 09:27	333 8th St, Los Angeles, CA 90001	4	Los Angeles (CA)	11.99	9	27	1

```
In [32]: keys = [pair for pair, df in all_data.groupby(['Hour'])]
plt.plot(keys, all_data.groupby(['Hour']).count()['Count'])
plt.xticks(keys)
plt.grid()
plt.show()

# My recommendation is slightly before 11am or 7pm
```


Question 4: What products are most often sold together?

```
In [48]:
                           # https://stackoverflow.com/questions/43348194/pandas-select-rows-if-id-appear-several-time
                           df = all_data[all_data['Order ID'].duplicated(keep=False)]
                           # Referenced: https://stackoverflow.com/questions/27298178/concatenate-strings-from-several-rows-using-pandas-groupby
                           df['Grouped'] = df.groupby('Order ID')['Product'].transform(lambda x: ','.join(x))
                           df2 = df[['Order ID', 'Grouped']].drop_duplicates()
                     \verb|C:\Users\keith\Anaconda3| lib\site-packages\ipykernel\_launcher.py:5: Setting \verb|With\CopyWarning| lib and l
                      A value is trying to be set on a copy of a slice from a DataFrame.
                      Try using .loc[row_indexer,col_indexer] = value instead
                      See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-v
                      ersus-a-copy
In [47]:
                           # Referenced: https://stackoverflow.com/questions/52195887/counting-unique-pairs-of-numbers-into-a-python-dictionary
                           from itertools import combinations
                            from collections import Counter
                           count = Counter()
                           for row in df2['Grouped']:
                                      row list = row.split(',')
                                      count.update(Counter(combinations(row_list, 2)))
                            for key,value in count.most_common(10):
                                      print(key, value)
                      ('iPhone', 'Lightning Charging Cable') 1005
```

```
In [47]:
          # Referenced: https://stackoverflow.com/questions/52195887/counting-unique-pairs-of-numbers-into-a-python-dictionary
          from itertools import combinations
          from collections import Counter
          count = Counter()
          for row in df2['Grouped']:
             row_list = row.split(',')
              count.update(Counter(combinations(row_list, 2)))
          for key,value in count.most_common(10):
              print(key, value)
        ('iPhone', 'Lightning Charging Cable') 1005
        ('Google Phone', 'USB-C Charging Cable') 987
        ('iPhone', 'Wired Headphones') 447
        ('Google Phone', 'Wired Headphones') 414
        ('Vareebadd Phone', 'USB-C Charging Cable') 361
        ('iPhone', 'Apple Airpods Headphones') 360
        ('Google Phone', 'Bose SoundSport Headphones') 220
        ('USB-C Charging Cable', 'Wired Headphones') 160
        ('Vareebadd Phone', 'Wired Headphones') 143
        ('Lightning Charging Cable', 'Wired Headphones') 92
```

What product sold the most? Why do you think it sold the most?

quantity_ordered = product_group.sum()['Quantity Ordered']

product_group = all_data.groupby('Product')

keys = [pair for pair, df in product_group]

In [76]:

What product sold the most? Why do you think it sold the most?

```
In [76]:
    product_group = all_data.groupby('Product')
    quantity_ordered = product_group.sum()['Quantity Ordered']

    keys = [pair for pair, df in product_group]
    plt.bar(keys, quantity_ordered)
    plt.xticks(keys, rotation='vertical', size=8)
    plt.show()
```



```
# Referenced: https://stackoverflow.com/questions/14/62181/adding-a-y-axis-label-to-secondary-y-axis-in-matplotlib
prices = all_data.groupby('Product').mean()['Price Each']

fig, ax1 = plt.subplots()

ax2 = ax1.twinx()
ax1.bar(keys, quantity_ordered, color='g')
ax2.plot(keys, prices, color='b')

ax1.set_xlabel('Product Name')
ax1.set_ylabel('Quantity Ordered', color='g')
ax2.set_ylabel('Price ($)', color='b')
ax1.set_xticklabels(keys, rotation='vertical', size=8)

fig.show()
```

C:\Users\keith\Anaconda3\lib\site-packages\ipykernel_launcher.py:16: UserWarning: Matplotlib is currently using module://ipyk
ernel.pylab.backend_inline, which is a non-GUI backend, so cannot show the figure.
app.launch_new_instance()

