零死角玩转STM32—M3系列

淘宝: fire-stm32.taobao.com

论坛: www.fireBBS.cn

扫描进入淘宝店铺

主讲内容

01

ADC简介

02

ADC功能框图讲解

参考资料:《零死角玩转STM32》

"ADC—电压采集"章节

ADC简介

ADC: Analog to Digital,模拟数字转换器

- 口 1-三个独立的ADC 1 / 2 / 3
- 口 2-分辨率为12位
- 口 3-每个ADC具有18个通道, 其中外部通道16个

ADC功能框图讲解

- 1-电压输入范围
- 2-输入通道
- 3-转换顺序
- 4-触发源
- 5-转换时间
- 6-数据寄存器
- 7-中断

输入电压: VREF- ≤ VIN ≤ VREF+

决定输入电压的引脚: VREF-、VREF+、 VDDA、 VSSA

VSSA 和 VREF-接地,把 VREF+和 VDDA 接 3V3,

得到ADC 的输入电压范围为: 0~3.3V。

超出0~3.3V的电压怎么测?

ADC可以测量:-10V~10V

根据基尔霍夫定律(KCL),节点流入的电流等于流出的电流

(Vint - Vout)/R2 + (3V3-Vout)/R1 = Vout / R3

Vout = (Vint + 10) / 6

R1 / R2 / R3 的值怎么确定?

输入通道

每个ADC具有18个通道,其中外部通道16个

STM32F103ZET6 ADC IO 分配									
ADC1	IO	ADC2	IO	ADC3	IO				
通道0	PA0	通道0	PA0	通道0	PA0				
通道1	PA1	通道1	PA1	通道1	PA1				
通道2	PA2	通道2	PA2	通道2	PA2				
通道3	PA3	通道3	PA3	通道3	PA3				
通道4	PA4	通道4	PA4	通道4	PF6				
通道5	PA5	通道5	PA5	通道5	PF7				
通道6	PA6	通道6	PA6	通道6	PF8				
通道7	PA7	通道7	PA7	通道7	PF9				
通道8	PB0	通道8	PB0	通道8	PF10				
通道9	PB1	通道9	PB1	通道9	连接内部VSS				
通道10	PC0	通道10	PC0	通道10	PC0				
通道11	PC1	通道11	PC1	通道11	PC1				
通道12	PC2	通道12	PC2	通道12	PC2				
通道13	PC3	通道13	PC3	通道13	PC3				
通道14	PC4	通道14	PC4	通道14	连接内部VSS				
通道15	PC5	通道15	PC5	通道15	连接内部VSS				
通道16	连接内部温度传感器	通道16	连接内部VSS	通道16	连接内部VSS				
<u>通</u> 道17	连接内部Vrefint	通道17	连接内部VSS	通道17	连接内部VSS				

输入通道

每个ADC具有18个通道,其中外部通道16个

STM32F103VET6 ADC IO 分配									
ADC1	10	ADC2	IO 100 10))	ADC3	IO				
通道0	PA0	通道0	PA0	通道0	PA0				
通道1	PA1	通道1	PA1	通道1	PA1				
通道2	PA2	通道2	PA2	通道2	PA2				
通道3	PA3	通道3	PA3	通道3	PA3				
通道4	PA4	通道4	PA4	通道4	没有通道4				
通道5	PA5	通道5	PA5	通道5	没有通道5				
通道6	PA6	通道6	PA6	通道6	没有通道6				
通道7	PA7	通道7	PA7	通道7	没有通道7				
通道8	PB0	通道8	PB0	通道8	没有通道8				
通道9	PB1	通道9	PB1	通道9	连接内部VSS				
通道10	PC0	通道10	PC0	通道10	PC0				
通道11	PC1	通道11	PC1	通道11	PC1				
通道12	PC2	通道12	PC2	通道12	PC2				
通道13	PC3	通道13	PC3	通道13	PC3				
通道14	PC4	通道14	PC4	通道14	连接内部VSS				
通道15	PC5	通道15	PC5	通道15	连接内部VSS				
通道16	连接内部温度传感器	通道16	连接内部VSS	通道16	连接内部VSS				
通道17	连接内部Vrefint	通道17	连接内部VSS	通道17	连接内部VSS				

输入通道分类

外部的 16 个通道在转换的时候又分为规则通道和注入通道,

其中规则通道最多有 16路, 注入通道最多有 4 路。那这两个

通道有什么区别? 在什么时候使用?

输入通道分类

规则通道:顾名思意,规则通道就是很规矩的意思,我们平时

一般使用的就是这个通道。

注入通道: 注入, 可以理解为插入, 插队的意思, 是一种不安

分的通道。它是一种在规则通道转换的时候强行插入要转换的

一种。这点跟中断程序很像,都是不安分的主。所以,注入通

道只有在规则通道存在时才会出现。

通道转换顺序

规则序列寄存器 SQRx,x(1,2,3)									
寄存器	寄存器位	功能	取值						
	SQ1[4:0]	设置第1个转换的通道	<u>通</u> 道1~16						
	SQ2[4:0]	设置第2个转换的通道	通道1~16						
COBS	SQ3[4:0]	设置第3个转换的通道	通道1~16						
SQR3	SQ4[4:0]	设置第4个转换的通道	<u>通</u> 道1~16						
	SQ5[4:0]	设置第5个转换的通道	通道1~16						
	SQ6[4:0]	设置第6个转换的通道	<u>通</u> 道1~16						
	SQ7[4:0]	设置第7个转换的通道	<u>通</u> 道1~16						
	SQ8[4:0]	设置第8个转换的通道	<u>通</u> 道1~16						
SQR2	SQ9[4:0]	设置第9个转换的通道	通道1~16						
26177	SQ10[4:0]	设置第10个转换的通道	<u>通</u> 道1~16						
	SQ11[4:0]	设置第11个转换的通道	<u>通</u> 道1~16						
	SQ12[4:0]	设置第12个转换的通道	<u>通</u> 道1~16						
	SQ13[4:0]	设置第13个转换的通道	<u>通</u> 道1~16						
	SQ14[4:0]	设置第14个转换的通道	<u>通</u> 道1~16						
SQR1	SQ15[4:0]	设置第15个转换的通道	<u>通</u> 道1~16						
	SQ16[4:0]	设置第16个转换的通道	<u>通</u> 道1~16						
	SQL[3:0]	需要转换多少个通道	1~16						

图 30-3 规则序列寄存器

通道转换顺序

注入序列寄存器 JSQR 只有一个,最多支持 4个通道,具体多少个由 JSQR 的 JL[2:0] 决定。如果 JL 的 值小于 4 的话,则 JSQR 跟 SQR 决定转换顺序的设置不一样,第一次转换的不是 JSQR1[4:0],而是 JCQRx[4:0],x = (4-JL),跟 SQR 刚好相反。如果 JL=00(1个转换),那么转换的顺序是从 JSQR4[4:0]开始,而不是从 JSQR1[4:0]开始,这个要注意,编程的时候不要搞错。当 JL等于 4 时,跟 SQR 一样。

注入序列寄存器 JSQR								
寄存器	寄存器位	功能	取值					
JSQR	JSQ1[4:0]	设置第1个转换的通道	通道1 [~] 4					
	JSQ2[4:0]	设置第2个转换的通道	通道1 [~] 4					
	JSQ3[4:0]	设置第3个转换的通道	通道1 [~] 4					
	JSQ4[4:0]	设置第4个转换的通道	通道1 [~] 4					
	JL[1:0]	需要转换多少个通道	1~4					

图 30-4 注入序列寄存器

触发源

1、软件触发: ADC CR2:ADON/SWST

ART/JSWSTART

2、外部事件触发:内部定时器/外部IO

选择: ADC_CR2:EXTSEL[2:0]和 JEXTSEL[2:0]

激活: ADC CR2:EXTEN 和 JEXTEN

转换时间

转换时间: Tconv = 采样时间 + 12.5 个周期

ADC_CLK: ADC模拟电路时钟,最大值为14M,由 PCLK2提供,还可分频,2/4/6/8,RCC_CFGR的 ADCPRE[1:0]设置。PCLK2=72M。

数字时钟: RCC_APB2ENR, 用于访问寄存器

转换时间

采样时间: ADC 需要若干个 ADC CLK 周期完成对输入的 模拟量进行采样,采样的周期数可通过ADC 采样时间寄存器 ADC SMPR1 和 ADC SMPR2 中的 SMPx[2:0]位设置, ADC SMPR2控制的是通道 0~9, ADC SMPR1 控制的是通 道 10~17。每个通道可以分别用不同的时间采样。其中采样 周期最小是 1.5 个, 即如果我们要达到最快的采样, 那么应该 设置采样周期为 31.5个周期, 这里说的周期就是 1/ADC CLK。

转换时间

最短的转换时间: Tconv = 采样时间 + 12.5 个周期

 $PCLK2 = 72M, ADC_CLK = 72/6 = 12M$

Tconv = 1.5+12.5 = 14周期 = 14/12us=1.17us

数据寄存器

一切准备就绪后, ADC 转换后的数据根据转换组的

不同,规则组的数据放在ADC_DR 寄存器,注入组的

数据放在 JDRx。

数据寄存器

11.12.14 ADC规则数据寄存器(ADC_DR) 地址偏移: 0x4C 复位值: 0x0000 0000 3130 26 25 24 2317 16 ADC2DATA[15:0] r r r r15 DATA[15:0] ADC2DATA[15:0]: ADC2转换的数据 (ADC2 data) 位31:16 - 在ADC1中: 双模式下,这些位包含了ADC2转换的规则通道数据。见11.9: 双ADC模式 - 在ADC2和ADC3中:不使用这些位。 DATA[15:0]: 规则转换的数据 (Regular data) 位15:0 这些位为只读,包含了规则通道的转换结果。数据是左对齐或右对齐,如图29和图30所示。

1-16位有效,用于存放独立模式转换完成数据

2- ADC CR2: ALIGN

3-只有一个,多通道采集的是最好使用DMA

数据寄存器

11.12.13 ADC 注入数据寄存器x (ADC_JDRx) (x= 1..4)

地址偏移: 0x3C - 0x48 复位值: 0x0000 0000

	ZEE. OXCOOL COOL														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	保留														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	JDATA[15:0]														
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r
	在	⁄շ31:16	保留	保留。必须保持为0。											
	在	立21:20 JDATA[15:0]: 注入转换的数据 (Injected data)													
			这些	位为只证	卖,包含	了注入	通道的转	专换结果	. 数据	是左对法	 产或右对	齐,如	图29和	图30所示	۲.

1-16位有效,用于存放注入通道转换完成数据

2- ADC CR2: ALIGN

3-有4个这样的寄存器

中断

- 1-ADC_SR, ADC_CR1
- 2- ADC HTR, ADC LTR

电压转换

怎么根据数据量算出模拟量

1-电压输入范围为: 0~3.3V

2-分辨率为12位

3-最小精度为: 3.3/2^12

4-设数字量为X,则有模拟量 Y = (3.3 / 2^12)*X

零死角玩转STM32—M3系列

论坛: www.fireBBS.cn

淘宝: fire-stm32.taobao.com

扫描进入淘宝店铺