

VLSI Physical Design with Timing Analysis

Lecture – 7: Overview of Timing Analysis

Bishnu Prasad Das

Department of Electronics and Communication Engineering

Contents

- Timing Analysis
- Significance of Static Timing Analysis
- STA in VLSI Physical Design
- Static Timing Analysis
- Dynamic Timing Analysis
- Timing Paths

Timing Analysis

- Timing Analysis assesses and ensures that the designed circuit meets timing and performance requirements.
- Timing parameters of the circuit or chip, such as setup and hold times, clock-to-Q delays, and critical paths are evaluated and

optimized.

Significance of Static Timing Analysis

- Determines the **critical path** of the design, which in turn determines the performance of the design.
- Determines the shortest path in the design (To avoid hold violation).
- Impact of clock skew and clock jitter on the timing of the design.
- Impact of process variations on the timing of the design.

STA in VLSI Physical Design

Timing Analysis

- Timing constraints for a chip are tested at a specified clock rate by employing either
 - Static Timing Analysis(STA) or
 - Dynamic Timing Analysis(DTA).

Static Timing Analysis(STA)

Checks static delay requirements of the circuit without applying input fah = 1942

processed

vectors or monitoring output vectors.

- Process of Static Timing Analysis:
 - Break a design down into timing paths.
 - Calculate the signal propagation delay along each path.
 - Check for violations of timing constraints inside the design and at the input/output interface.

Dynamic Timing Analysis(DTA)

- Verifies functionality of the design by applying input vectors and checking the outputs against expected outputs.
- Checks for logical correctness of the designed circuit.
- Simulation time is relatively more than STA as all inputs need to be checked.
- Best suitable for designs having clocks crossing multiple domains

Timing Paths

Timing Paths

Timing Paths

• Critical Path: The path between an input and an output with the

maximum delay.

Shortest Path: The path between an input and an output with the

minimum delay.

False Path

- A false path is a path that exists in the design which:
 - 1. is not functional; or
 - 2. is not required to meet its timing constraints for the design to function properly.

- Let
 - Delay of the NOR gate = 4 ns
 - Delay of the MUX = 3 ns
 - Delay of the NOT gate = 1 ns

- Consider the given circuit
 - It has five paths
 - P1: NOR + MUX
 - P2: NOR + MUX + NOR + MUX
 - P3: NOR + MUX + MUX
 - P4: NOT + MUX + NOR + MUX
 - P5: NOT + MUX + MUX

Delay of P2 = NOR + MUX + NOR + MUX

$$= 4 + 3 + 4 + 3$$

Delay of P3 = NOR + MUX + MUX

$$= 4 + 3 + 3$$

• Delay of P4 = NOT + MUX + NOR + MUX = 1 + 3 + 4 + 3= 11 ns

Critical Path:

$$-$$
 Case $-$ 1: T = 0

- Delay of P3 = NOR + MUX + MUX = 4 + 3 + 3= 10 ns
- Case -2: T = 1

Thank You

