1

GATE Questions 9

EE24BTECH11012 - Bhavanisankar G S

1) Let u(x, t) be the solution to the wave equation

$$\frac{\partial^2 u}{\partial x^2}(x,t) = \frac{\partial^2 u}{\partial t^2}(x,t); u(x,0) = \cos 5\pi x; \frac{\partial u}{\partial t} = 0$$

Then the value of u(1, 1) is

2) Let $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ Then

a) $\lim_{x\to 0} f(x) = 0$

c) $\lim_{x\to 0} f(x) = \frac{\pi^2}{6}$ d) $\lim_{x\to 0} f(x)$ does not exist

b) $\lim_{x\to 0} f(x) = 1$

3) Suppose X is a random variable with $P(X = k) = (1-p)^k p$ for $k \in \{0, 1, 2, ...\}$ and for some $p \in (0, 1)$. For the hypothesis testing problem

$$H_0: p = \frac{1}{2}H_1: p \neq \frac{1}{2}$$

Consider the test "Reject H_0 if $X \le A$ or if $X \ge B$ ", where $A \le B$ are given positive integers. The type-1 error of this test is

a) $1 + 2^{-B} + 2^{-A}$

c) $1 + 2^{-B} - 2^{-A-1}$ d) $1 - 2^{-B} + 2^{-A-1}$

b) $1 - 2^{-B} + 2^{-A}$

- 4) Let G be a group of order 231. The number of elements of order 11 in G is
- 5) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $f(x, y) = (e^{x+y}, e^{x-y})$. The area of the image of the region $\{(x, y) \in \mathbb{R} : 0 \le x, y \le 1\}$ under the mapping f is

a) 1

b) e - 1

c) e^2

d) $e^2 - 1$

6) Which of the following is a field?

b) $\frac{\mathbb{C}(x)}{x^2+2}$

7) Let $x_0 = 0$ Define $x_{n+1} = \cos x_n$ for every $n \ge 0$. Then

a) $\{x_n\}$ is increasing and convergent

every $n \in \mathbb{N}$

b) $\{x_n\}$ is decreasing and convergent

d) $\{x_n\}$ is not convergent

- c) $\{x_n\}$ is convergent and $x_{2n} \leq \lim_{m \to \infty} \leq x_{2n+1}$ for
- 8) Let C be the contour |z| = 2 oriented in the anti-clockwise direction. The value of the integral $\int ze^{\frac{2}{z}}dz$ is

a) $3\pi i$

b) $5\pi i$

c) $7\pi i$

d) $9\pi i$

9) For each $\lambda \ge 0$, let X_{λ} be a random variable with exponential density $\lambda e^{-\lambda x}$ on $(0, \infty)$ Then $Var(log X_{\lambda})$

a) is strictly increasing in λ

c) does not depend on λ

b) is strictly decreasing in λ

d) first increases and the decreases in λ

- 10) Let $\{a_n\}$ be the sequence of consecutive positive solutions of the equation $\tan x = x$ and let $\{b_n\}$ be the sequence of consecutive positive solutions of the equation $\tan \sqrt{x} = x$. Then

 - a) $\sum_{n=1}^{\infty} \frac{1}{a_n}$ converges but $\sum_{n=1}^{\infty} \frac{1}{b_n}$ diverges b) $\sum_{n=1}^{\infty} \frac{1}{a_n}$ diverges but $\sum_{n=1}^{\infty} \frac{1}{b_n}$ converges c) Both $\sum_{n=1}^{\infty} \frac{1}{a_n}$ and $\sum_{n=1}^{\infty} \frac{1}{b_n}$ converges d) Both $\sum_{n=1}^{\infty} \frac{1}{a_n}$ and $\sum_{n=1}^{\infty} \frac{1}{b_n}$ diverges
- 11) Let f be an analytical function on $\overline{D} = \{z \in \mathbb{C} : |z| \le 1\}$ Assume that $|f(z)| \le 1$ for each $z \in \overline{D}$. Then, which of the following is NOT a possible value of $(e^f)(0)$?

a) 2

b) 6

c) $\frac{7}{9}e^{\frac{1}{9}}$

- d) $\sqrt{2} + i\sqrt{2}$
- 12) The number of non-isomorphic abelian groups of order 24 is
- 13) Let V be the real vector space of all polynomials in one variable with real coefficiencts and having degree at most 20. Define the subspaces

$$W_1 = \left\{ p \in V : p(1) = 0; p(\frac{1}{2}) = 0; p(5) = 0; p(7) = 0 \right\}$$

$$W_2 = \left\{ p \in V : p(\frac{1}{2}) = 0; p(3) = 0; p(4) = 0; p(7) = 0 \right\}$$

Then the dimension of $W_1 \cap W_2$ is