物联网系统硬件平台通讯数据协议

序号	时间	版本	说明	审核
1	2017-12-8	Ver A	RFID 硬件系统通讯数据格式(初稿)	
2	2018-1-12	Ver B	根据程序逻辑优化	
3	2018-4-24	Ver C	使用 ADXL362,只上传计步数据	
4	2018-5-17	Ver D	增加批量清零计步数据功能和上位机读写	
4	2010-3-17	Vei	FRAM 功能	
5	2019-2-14	Ver E	修改计步数据为 20 分钟一个值	
6	2020-9-11	Ver F	精简协议	
7	2021-7-1	Ver G	增加功能码 A1 用于采食量数据	
8	2021-9-6	Ver H	修改3串口编程 RFID 数据格式	

目录

上位应用与 RFID 主控设备通讯数据格式	3
	上位应用与 RFID 主控设备通讯数据格式 1.1 上位应用向 RFID 主控设备发送数据格式 1.2 RFID 主控设备向上位应用发送数据格式 RFID 主控设备与 RFID 标签通讯数据格式 2.1 主控设备向 RFID 标签发送数据格式 2.2 RFID 标签向主控设备发送数据格式 上位应用串口编程 RFID 标签通讯数据格式 上位应用编程主板及其标签的编号

1、上位应用与 RFID 主控设备通讯数据格式

RFID 主控设备与上位应用通讯数据格式,分为上位应用向 RFID 主控设备发送数据,RFID 主控设备向上位应用发送数据两类,具体说明如下:

1.1 上位应用向 RFID 主控设备发送数据格式

表格 1 上位机向 RFID 主控设备发送数据协议(continued)

设备	编码	功能码		RFID 编码								
Byte	20~1	Byte2		Byte3~14								
0xXX	0xXX	0xAX	0xXX	XXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX 0xXX								
	Big-Endian(the same below)											

(功能码为 A3 时协议)(蓝色)

ADXL362 运 ^运	KL362 运动阈值 运动时间		静止阈值	静止	时间	滤波器控制	结束标志		
Byte15~1	L6	Byte17	Byte18~19		Byte20~21		Byte22	Byte 23~24	
0bxxxxx001	0x5E	0x01	0bxxxxx000 0x96		0x00	0x01	0x10	0x0D	0x0A

(功能码为 A5 时协议) (黄色)

即将编程	足的地址码	即将编程	结束标志		
Byte	15~16	Byte	Byte19~20		
REV 0xXX		0xXX	0xXX	0x0D	0x0A

(功能码为 A7 时协议) (绿色)

			世界时间数	计步间隔	重启 CC1101 间隔	结束标志				
Byte15	yte15 Byte16 Byte17 Byte18 Byte19 Byte20 Byte21						Byte22	Byte23	Byte24~25	
Year	Month	Date	Weekday	Hours	Minutes	Seconds	0x0A(20min)	0x70(4hours)	0x0D	0x0A

(功能码为 A8 时协议)(深绿色)

	结束标志								
Byte3	Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Byte9								
Year	ear Month Date Weekday Hours Minutes Seconds								

- (1) 每条有效数据最多 25 字节, 主控设备以命令包为单位下发指令。
- (2) 数据格式解析(25字节)
 - a. 设备编码: Byte0~1, 共 2 个字节。
 - b. 控制功能码: Byte2, 共1个字节, 设备及标签状态代码

表格 2 上位机发给 RFID 主控设备控制功能码表

序号	Byte4	说明
1	0xA0	查询指定编号标签活动量
2	0xA1	查询指定编号标签采食量
3	0xA8	上位设置世界时间数据(即设置系统时间)(24 小时制)
4	0xA9	读取主控设备世界时间数据(即读取系统时间)
5	0xA2	清除指定标签电源电量标志 (2.8V 电量低标志)
6	0xA3	上位配置标签 ADXL362 参数
7	0xA5	上位编程标签地址码、同步码
8	0xA6	上位机清零指定标签计步数据
9	0xA7	上位机设置指定标签世界时间数据

- c. RFID 编码: Byte3~14, 共 12 个字节, 标签硬件 UID。
- d. ADXL362 运动阈值: Byte15~16, 共 2 个字节, 详情参考 ADXL362 芯片手册 page27。
- e. ADXL362 运动时间: Byte17, 共 1 个字节, 详情参考 ADXL362 芯片手册 page27。
- f. ADXL362 静止阈值: Byte18~19, 共 2 个字节, 详情参考 ADXL362 芯片手册 page27。
- g. ADXL362 静止时间: Byte20~21, 共 2 个字节, 详情参考 ADXL362 芯片手册 page27。
- h. ADXL362 滤波器控制: Byte22, 共 1 个字节, 详情参考 ADXL362 芯片手册 page33。
- i. 即将编程的地址码: Byte15~16, 共 2 个字节, Byte10 保留, Byte11 为地址值(0~255)。
- j. 即将编程的同步码: Byte17~18, 共 2 个字节, 为每个标签的同步码, 用于电磁波唤醒功能, 只有同步码一致的 RF 芯片可以相互通信和唤醒。
- k. 世界时间数据: Byte3~9 或 Byte15~21, 共 7 个字节, 设置系统时间时有效, 设置范围为: 年 (0~99), 月 (1~12), 日 (1~31), 星期 (1~7), 小时 (0~23), 分钟 (0~59), 秒 (0~59)。
- I. 计步间隔: Byte22, 共 1 个字节, 为标签存储一个计步数据对应的时间间隔, 公式为 time= Byte22*128s, 例如: 20 分钟的时间间隔约为 20mins=0x0A*128s。
- m. 重启 CC1101 间隔: Byte23, 共 1 个字节, 为防止 CC1101 出现宕机的状态, 设置此间隔为重启 CC1101

的间隔,公式为 time= Byte23*128s,例如:4 小时的时间间隔约为 4hours=0x70*128s。

n. 结束标志: 共2字节, 固定数据 0D 0A, 用于重置指令。

1.2 RFID 主控设备向上位应用发送数据格式

表格 3RFID 主控设备向上位机发送数据协议(continued)

设备	编码	功能码		RFID 编码							
Byte	0~1	Byte2		Byte3~14							
0xXX	0xXX	0xBX	0xXX	XXX 0XXX 0XXX 0XXX 0XXX 0XXX 0XXX 0XXX							
	Big-Endian(the same below)										

(功能码为 A0,A1 时协议)(紫色)

数排	圣区	电池电			世	上界时间数据	1			RSSI 值	
	量低标										
	识 ·										
Byte15~86	Byte87	Byte88	Byte89	Byte90	Byte91	Byte92	Byte93	Byte94	Byte95	Byte96	Byte97
72bytes	step_stage	battery_l	Year	Month	Date	Weekday	Hours	Minutes	Seconds	RFID	MainBo

step data ow ar

(功能码为 A2 时协议)(灰色)

电池电量低标识	RSSI 值				
Byte15	Byte16	Byte17			
battery_low	RFID	MainBoard			

(功能码为 A3 时协议)(蓝色)

ADXL362 运动阈值 运动时间		静止阈值	直	静止	静止时间 滤波器控制 RSSI (SSI 值		
Byte15~16		Byte17	Byte18~:	19	Byte2	0~21	Byte22	Byte 23	Byte 24
0bxxxxx001	0x5E	0x01	0bxxxxx000	0x96	RFID	RFID	0x10	RFID	MainBoard

(功能码为 A5 时协议) (黄色)

编程返回	可的地址码	编程返回	编程返回的同步码 RSSI 值		
Byte	215~16	Byte17~18 Byte19 Byte2			Byte20
REV	REV 0xXX		0xXX	RFID	MainBoard

(功能码为 A6 时协议)(紫色)

(功能码为 A7 时协议) (绿色)

			世界时间数	(据		计步间隔	重启 CC1101 间	R	SSI 值	
								隔		
Byte15	Byte16	Byte17	Byte18	Byte19	Byte20	Byte21	Byte22	Byte23	Byte24	Byte25
Year	RFID	Date	Weekday	Hours	Minutes	Seconds	0x0A(20min)	0x70(4hours)	RFID	MainBoard

(RFID 标签接收有问题时协议)

(尾部时间数据包)

主控世界时间数据区

Byte98	Byte99	Byte100	Byte101	Byte102	Byte103	Byte104
Year	Month	Date	Weekday	Hours	Minutes	Seconds

- (1) 每条有效数据最多 105 字节。
- (2) 数据格式解析
 - a. 控制功能码: Byte2, 共2个字节,设备及标签状态代码。

表格 4 RFID 主控设备发给上位机控制功能码表

		大伯 中国 工工及由交流工程的结构的代
序号	Byte4	说明
1	0xB0	正常上传的指定标签活动量数据
2	0xB1	正常上传的指定标签采食量数据
3	0xB8	设置完成主控设备时间同步,并向上位发送同步时间
4	0xB9	向上位发送同步时间
5	0xB2	清除指定标签电源电量标志(2.8V 电量低标志)完成
6	0xB3	标签返回 ADXL362 参数数据
7	0xB5	标签返回编程的地址码、同步码

8	0xB6	上位机清零标签计步数据应答				
9	0xB7	上位机设置指定标签世界时间数据应答				
10	0xE1	标签接收错误或地址滤波失败				
11	0xE2	标签接收 RFID 编码错误				
12	0xE3	标签接收功能码错误				

- b. 数据区: Byte15~86,共 72 字节,为上传的标签计步数据,共 36 组,每组 2Bytes,每组代表 20 分钟内的计步数据,共可记录 12 小时。
- c. step_stage: Byte87, 共1个字节, 其值从0每过20分钟自加1, 取值为0~35。
- d. 电池电量低标识: Byte88 或 Byte15, 共1个字节, 为1时表示标签锂电池电量低于2.8V。
- e. 错误码: Byte2, 共 1 字节, 共有 3 个值 E0、E1、E2, E0:receive error or Address Filtering fail; E1: receive RFID code error;E2: receive function order error。
- f. RSSI 值: Byte89 或 Byte15 指 RFID 接收的数据包的功率值,Byte90 或 Byte16 指 MainBoard 接收的数据包的功率值。
- g. 其他参数同 1.1 描述。

2、RFID 主控设备与 RFID 标签通讯数据格式

该数据格式为 RFID 控制设备与标签之间的射频通讯数据,分为主控设备向 RFID 标签发送数据,RFID 标签向主控设备发送数据,具体说明如下:

2.1 主控设备向 RFID 标签发送数据格式

表格 5 主控设备向 RFID 标签发送数据协议

设备	编码	功能码	功能码 RFID 编码											
Byte0~1 Byte2								Byte	3~14					
0xXX	0xXX	0xCX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX
	Big-Endian(the same below)													

(功能码为 A3 时协议)(蓝色)

ADXL362 运动阈值		运动时间	静止阈值		静止	时间	滤波器控制
Byte15~16		Byte17	Byte18~:	19	Byte2	0~21	Byte22
0bxxxxx001	0x5E	0x01	0bxxxxx000	0x96	0x00	0x01	0x10

(功能码为 A5 时协议) (黄色)

即将编程	是的地址码	即将编程的同步码		
Byte	15~16	Byte17~18		
REV	0xXX	0xXX	0xXX	

(功能码为 A7 时协议)(绿色)

			计步间隔	重启 CC1101 间隔				
Byte15	Byte16	Byte17	Byte18	Byte19	Byte20	Byte21	Byte22	Byte23
Year	Month	Date	Weekday	Hours	Minutes	Seconds	0x0A(20min)	0x70(4hours)

- (1) 每条有效数据最多 23 字节。
- (2) 数据格式解析 (23 字节)
 - a. 控制功能码: Byte 2, 共 1 个字节,设备及标签功能代码

表格 6 RFID 主控设备发给 RFID 标签控制功能码表

序号 Byte2	说	明
----------	---	---

1	0xC0	上位查询指定编号标签活动量
2	0xC1	上位查询指定编号标签采食量
3	0xC2	清除指定标签电源电量标志(2.8V 电量低标志)
4	0xC3	上位配置标签 ADXL362 参数
5	0xC5	上位编程标签地址码、同步码
6	0xC6	上位机清零指定标签计步数据
7	0xC7	上位机设置指定标签世界时间数据

2.2 RFID 标签向主控设备发送数据格式

表格 7 RFID 标签向主控设备发送数据协议

设备编码 功能码							RFID 编码							
Byte0~1 Byte2					Byte3~14									
0xxx 0xxx 0xxx 0xxx 0xxx 0xxx 0xxx 0xx							0xXX	0xXX	0xXX					
	Big-Endian(the same below)													

(功能码为 A0,A1 时协议)(紫色)

第14页 (共 21页)

数据	区	电池电量低标		世界时间数据							
		识									
Byte15~86	Byte87	Byte88	Byte89 Byte90 Byte91 E			Byte92	Byte93	Byte94	Byte95	Byte96	
72bytes step	72bytes step step_stage		Year	Month	Date	Weekday	Hours	Minutes	Seconds	RFID	
data	data										

(功能码为 A2 时协议)(灰色)

电池电量低标识	RSSI 值
Byte15	Byte16
battery_low	RFID

(功能码为 A3 时协议)(蓝色)

ADXL362 运	协阈值	运动时间	静止阈值	直	静止	时间	滤波器控制	RSSI 值
Byte15~1	L6	Byte17	Byte18~	19 Byte20~2			Byte22	Byte 23
0bxxxxx001 0x5E		0x01	0bxxxxx000	0x96	RFID	RFID	0x10	RFID

(功能码为 A5 时协议)(黄色)

返回编程	星的地址码	返回编程	RSSI 值	
Byte	215~16	Byte:	Byte19	
REV	0xXX	0xXX	0xXX	RFID RSSI

(功能码为 A6 时协议) (紫色)

RSSI 值 Byte15 RFID

(功能码为 A7 时协议) (绿色)

			世界时间数		计步间隔	重启 CC1101 间隔	RSSI 值		
Byte15	Byte16	Byte17	Byte18	Byte21	Byte22	Byte23	Byte24		
Year	RFID	Date	Weekday	Hours	Minutes	Seconds	0x0A(20min)	0x70(4hours)	RFID

(RFID 标签接收有问题(回传功能码为 E1,E2,E3) 时协议)

RSSI 值 Byte15

- (1) 每条有效数据最多 97 字节。
- (2) 数据格式解析
 - a. 控制功能码: Byte2, 共1个字节, 设备及标签状态代码

表格 8 RFID 标签发给 RFID 主控设备控制功能码表

序号	Byte4	
		75
1	0xD0	标签发送活动量数据
2	0xD1	标签发送采食量数据
3	0xD2	清除指定标签电源电量标志(2.8V 电量低标志)完成
4	0xD3	发送标签 ADXL362 参数数据
5	0xD5	标签返回编程的地址码、同步码
6	0xD6	标签清零标签计步数据应答
7	0xD7	标签返回世界时间数据

8	0xE1	标签接收错误或地址滤波失败
9	0xE2	标签接收 RFID 编码错误
10	0xE3	标签接收功能码错误

3、上位应用串口编程 RFID 标签通讯数据格式

上位机通过串口可以对 RFID 进行 eeprom 的编程,对每个 RFID 写入不同的 RFID 编码和 CC1101 地址、同步码,使每个 RFID 标签唯一化。

	起始	标志		地址	止码	同步码		
	Byte	0~3		Byte	e 4~5	Byte 6~7		
0x41	0x42	0x43	0x44	0x00	0xXX	0xXX 0xXX		

	RFID 编码												结束标志	
	Byte8~19												20~21	
0xXX	0xXX												0x0A	

- (1) 有效数据为 16 字节, 串口编程 RFID 标签。
- (2) 地址码: Byte 4~5, 共 2 个字节, Byte5 为地址值 (0~255)。
- (3) 同步码: Byte 6~7, 共 2 个字节, 为每个标签的同步码, 用于电磁波唤醒功能, 只有同步码一致的 RF 芯片可以相互通信和唤醒。
- (4) RFID 编码: Byte 8~19, 共 12 个字节, 标签硬件 UID。

4、上位应用编程主板及其标签的编号

上位机通过串口、GPRS、网口或 WiFi 对主板上 FRAM 进行编程,写入主板 ID 及其挂载的数个 RFID 的 RFID 编码和 CC1101 地址、同步码,使每个主板及其 RFID 标签唯一化。

起始标志		FRAM 地址		读写命令	设备编号		Rev			
Byte 0~1		Byte 2~3		Byte 4	Byte	5~6	Byte7~20			
0xE5	0xE5 0x5E		0x02	0x00	0x01	0x02	0x00		0x00	

	RFID 编码												同步码		结束	标志
	Byte5~16												Byte19~20		0 Byte 21~	
												18				
0xXX	0xxx											0x00XX	0xXX	0xXX	0x0D	0x0A

- (1) 有效数据为 5+16 字节。
- (2) FRAM 地址: Byte2~3, 共 2 个字节, upper bit don't care, 共 15bit 有效地址, 对应 FRAM 的 256Kbit 容量, FRAM 地址=16*i, 其中 i=0 为主板设备编号, i=1 为主板扫描 RFID 时间间隔, i=2~2047 为对应的标签信息。
- (3) 读写命令: Byte4, 共 1 个字节, 0x01 为写命令, 0x02 为读命令, 0x03 为打印所有存储 ID 信息命令, 0x04 为擦除整个 FRAM 命令。
- (4) 设备编号: Byte 5~6, 共 2 个字节, 为本主板的编号, 具有唯一性。
- (5) 地址码: 共2个字节, Byte18 为地址值(0~255)。

第20页 (共 21页)

- (6) 同步码: Byte19~20, 共 2 个字节, 为每个标签的同步码, 用于电磁波唤醒功能, 只有同步码一致的 RF 芯片可以相互通信和唤醒。
- (7) RFID 编码: Byte5~16, 共 12 个字节, 标签硬件 UID。