```
Sistemi autonomi: coso a tempo centrous, proprieta generali
         ( c) (H = A(H) = (H)
                             man additions l'ingrasso, Actie Comm, actie Com
追
        1 x (to) = 20
                            Dishinguiomo due casi: A(t) tempo vociente e A(t)= A tempo invocionte per
         cui aiuricinema sumpre atravare educatorii in forma chiusa, montre mon sano cost paril primo coso.
```

per verificare che è effettionement voluntore barth softlinae: 2111: ac	Casa scolare $\begin{cases} \dot{x}(t) = a \cdot x(t) \\ \dot{x}(t) = x_0 \end{cases}$ and $\dot{x}(t) \in \mathbb{C}$ escappismo the factorization $\dot{x}(t) = \dot{x}(t) = \dot{x}(t)$
Toseme di arritanza e unività globale. Se I = Ja, b [= R, t = I e consideriorno (2 (t) = x) dose f: R x C ~ C m continua a habi rispotto a t etale che 3 L e IR per uni (Vt e I) (Vx, y e C n) II f(t, x)-f(t, y) & L x - y , ciac f è lipschitiana, allora la solvisione delle equariore differenziale esite colè univa per t e I. Tutte le valte chi indichiamo una morma 1 sonzopadia, si inferole la morma 2. Roppista: Se A(t) è continua a trabi la solvinore di (x(t)=x) ciste alè univa per t e IR. Rim: f(t, x) = A(t) x, applichima il terrema precedente un questa calte di f(t, x) e consideriuma I = Ja, b [= R, to I, nomene observativa che f e apportationa: If f(t, x) - f(t, y) II = II A(t) x - A(t) y = A(t) (x - y) s A(t) i x - y s max A(t) x - y = L x - y . Giundi la solvinore esiste ed è unica per t e I, ma I è orbitalio quinati la parsono essendore a talle quanto (R. Repetta: La solvinore che oc(t)=0 è colvitore, gravie al tenema precedente. Ocf. Sia B = Ib, b,, bos una base di C e pur i = 1, m sia y; la solvitore dell'equazione (y'(t) = A(t) y'(t) allora (x, x,, x, 3 si chiamano insterne fundamentale di solvinoria 2 y (t) = bi la malnice (x, x,, x, 3 si chiamano insterne fundamentale di solvinoria 2 y (t) = bi la colvitore dell'equazione (Y(t) = [4(1) Y(t) Requelle: Y è la colvitore dell'equazione (Y(t) = A(t) Y(t) Requelle: Y è la colvitore dell'equazione (Y(t) = A(t) Y(t) Requelle: Y è la colvitore dell'equazione (Y(t) = (y, t), bos] Requelle: det Y(t) + o Vt e IR.	por verificare che è effettiamente volunione barte sostituine: xi(t) = a e a x = a x (t) c
Toseme di arritanza e unività globale. Se I = Ja, b [= R. t = I e consideriorno (2 (t) = x2 dose f: R x C ~ C m continua a tradhi respetto a t e tale che 3 L e IR per uni (Vt e I) (Vx, y e C m) II f(t, x)-f(t, y) & L II x-yII, ciac f à lipschitiana, allora la solvisione delle equariore differentiale estre cole univa que t e I. Tette le valle chaindichismo una morma II II sonzopadia, si inferde la morma 2. Roppieta: Se A(t) è continua a tradhi la solvinore di fixti-ex(1)x(1) (x(t)=x2) Ciste adé unica put e IR. Roppieta: Se A(t) è continua a tradhi la solvinore di fixti-ex(1)x(1) Roppieta: Se A(t) è continua a tradhi la solvinore di fixti-ex un questa calle di f(t, x) e consider- risona I = 1 a, b I = R. Ciste al cunica put e IR. Roppieta: Ja, b I = R. Roppieta: Ja, b I = R. Roppieta: Ja, b I = R. Roppieta: La solvinore esiste ed è unica per t e I, ma I è orbitantio quinati la postoma essendere a talle quanto IR. Roppieta: La solvinore che se(t)=0 è solvitore, gravie al tenema precidente. Coff. Sia B = Ib, b,, ba i una base di C e pur i = 1,, n sia Y: la solvitore cial equazione (V; C+ = A(t) V; (t) allora (V; V;, V; 3 si chiomorno insterne fundamentale di solvinorio a Ly (t) = bi la malnice U(t) = [Vx, V;, V; 1] e C e m si chiomentale di solvinorio a Ly (t) = bi la colvitore dell' equazione (V(t) = A(t) V(t) Roppieta: V è la solvitore dell' equazione (V(t) = A(t) V(t) Roppieta: dat V(t) + o Vt e IR.	xC+1= e^AC+-Fi) as above e^A i un espanenziala oli mallice che veelnema in questa larione.
Tutte le volte ch'indictions une montre III sensiopedia, si intervole la norma 2. Rispieta: Se Act) è continua ortrati la solutione de l'acti)=2ct cette ede unica put ER. Rispieta: Se Act) è continua ortrati la solutione de l'acti)=2ct cette ede unica put ER. Rispieta: f(t, x) = Act) x applictionne il teorema precedente un qualta icalta du fct, x) e comoble- risonne I = I a, bl = R, to c I, nomene da verificore de felipsolitiona. Il f(t, x) - f(t, y) II = II Act) x - A(t) y II = II A(t) (x y) II = II A(t) II II x - y II = max IA(t) II II x - y II = L x - y II. quindi la aduniore einte ede unica per te I, ma I e orthorio guinosi la parsonne effendere a tulto quanto R. Begista: La solumbra di fact) = Act) x(t) è dalla da x(t) = 0 V te R Dinn: Basia mostrare che x(t) = 0 è salutione, grazzie al tenema precedente. Dif Sia B = ib, b,, basì una base di c me que i = 1, m sia Y; la solutione dell'equazione [Y:(t) = A(t) Y;(t) albora fx, x,, x, 3 si chiomano insterne fundamentale di solutioni a Ly:(t) = bi la matrice Y(t) = [Y, Y,, Y, 1] e C man si chioma matrice fondomentale di solutione [all di solutione. Rispiela: Y è la colutione dell'equatione (Y(t) = A(t) Y(t) Rispiela: det Y(t) = [Y;(t), x;(t),, x, (t)] = [A(t) Y, (t),, x, (t)] = [A(t) Y(t), A(t) Y, (t)] = A(t) [Y, (t), y, (t)] = A(t) Y(t) & Y te IR.	Joseph di arritanza e unita globale: Se I = Ja, 6 [= R, t=e I e considerionno 2 (t) = x6 dore f: R x C C continua a traditi rispetto a t e tale che
Represta: Se Act) è continua a trati la solument di (2ct)=Act)2ct) conte colè unica put ER. Clim: f(t, x) = Act) x, applichame il teoreme precedente un quella icalta di f(t, x) e consideraione I = Ia, bl = R, to e I, nomme ola venificare che fe Resolutiona: Il f(t, x) - f(t, y) II = II Act) x - Act y II = II A(t) (x - y) II e II A(t) II II x - y II = maxe II A(t) II II x - y II = maxe II A(t) II II x - y II = maxe II A(t) II II x - y II = maxe II A(t) II II x - y II = maxe II A(t) II II x - y II = maxe II A(t) II II x - y II = II x - y II = y - y II = II x - y II = II	allora le solvière dell'equestione différentiale esse enté unice per teI.
Represta: Se Act) è continua a trati la solument di (2ct)=Act)2ct) conte colè unica put ER. Clim: f(t, x) = Act) x, applichame il teoreme precedente un quella icalta di f(t, x) e consideraione I = Ia, bl = R, to e I, nomme ola venificare che fe Resolutiona: Il f(t, x) - f(t, y) II = II Act) x - Act y II = II A(t) (x - y) II e II A(t) II II x - y II = maxe II A(t) II II x - y II = maxe II A(t) II II x - y II = maxe II A(t) II II x - y II = maxe II A(t) II II x - y II = maxe II A(t) II II x - y II = maxe II A(t) II II x - y II = II x - y II = y - y II = II x - y II = II	Tutte le volte chimolichionno una morma 11.11 sonsopedici, si interole la morma 2.
Clim: $f(t, x) = A(t)x$, applichamo il teoremo precedente un questa scella di $f(t, x) = consistenzione I = Ia, bi = R, to e I, nomenne observatione che fe ilipschitiona: Il f(t,x) - f(t,y) = Il A(t)x - A(t)y = IIA(t) (x-y) = IIA(t) Il x-y = maxe IA(t) Il x-y = tiant in the produce existe ed è unica per te I, ma I e onlihario quimoli la parsonne essenolare a tulto quanto R. Bapicte: La solumene di f(t,x) = A(t)x(t) è dalla da f(t,x) = A(t)x(t) e solumente. Of: Sia B=ib, b, ,,, bn} una base di Cm e pur i=1,, on sia Y; la plurione olali equazione [Y; (t) = A(t)Y; (t) = A(t)$	Proprieta: Se ACt) è continua a trasti la solument di (xcti)=20 este ode unica put ER.
If (4, x) = f(4, y) = Active - Activy = Alt (x-y) = Alt x-y = Active - Active - Active = Alt (x-y) = Alt x-y = x-y	Paim: f(t, x) = A(t)x, applichamo il teoremo precedente conquerto scalla di f(t, x) e conside-
Reputte: La solumente di 12(t)=A(t)2(t) è dala da 2(t)=0 Vte R Qim: Bastamoshare che 2(t)=0 è solumente grazzie al Tonoma precedente. Obf: Sia B=ib, b,, b, ima base di C ^m e par i=1,, n sia Y: la plurione dell'equazione [ii:(t)=A(t)ii:(t) allora in, x,, y, is chiomano insterne fundamentale di soluzioni a 24:(t)=b; la matrice Y(t)=[41,42,, y, i] c C ^{man} si chioma matrice fondamente Tale di solumente. Roprete: Y è la soluzione dell'equazione (Y(t)=A(t)Y(t)) Roprete: Y è la soluzione dell'equazione (Y(t)=B, L,, b, n] Cion: Y(t)=[ii:(t), ii:(t),, ii:(t)]=[A(t)ii:(t), A(t)ii:(t),, A(t)ii:(t)]=A(t)[41, ii:(t),, ii:(t)]= Raprete: det Y(t) +0 Vt elR.	The state of the s
Def: Sia B=ib,b,,,,,b, una base di C ^m e pere i=1,, n sia 4: la soluzione otell'equazione [ψ;(+) = A(+)ψ;(+) allora {ψ, ψ,, ψ, 3 si chiormano insterne fundamentale di soluzioni a 2ψ;(+) = b; la matrice Ψ(+) = [Ψ, ψ, ω, ψ,] ∈ C ^{man} si chiorna matrice fondomen- [ala di soluzione [Ψ(+) = A(+)Ψ(+) [ropuelle: Ψ ē la soluzione dell'equazione (Ψ(+) = [b, b,, b, n] Cien: Ψ(+) = [Ψ, (+), ψ, (+),, ψ, (+)] = [A(+)ψ, (+), A(+)ψ, (+)] = A(+)[Ψ, (+), Ψ, (+)] = - A(+)Ψ(+). &; Ψ(+) = [Ψ, (+),, ψ, (+)] = [b,, b, n].	a telle quento R. Bapareta: La solumena di fict)=Act)2(1) è della da 2(t)=0 VteR
[4:(+)=Act) \(\psi(t) \) allows \\ \{\psi, \psi_{\chi,\chi}, \psi_{\chi}\} \\ \text{le maknize } \\ \Psi(t) = \text{b}; \\ \text{le maknize } \\ \Psi(t) = \text{[\psi_{\eta}, \psi_{\eta}, \psi_{\eta}, \psi_{\eta}, \psi_{\eta}, \psi_{\eta}, \psi_{\eta}\} \] \(\text{Cman maknize } \\ \text{formama maknize } \\	Qim: Baste mosthore che accti =0 è solutione, grazzie al Tenoma precedente.
[4:(+)=Act) \(\psi(t) \) allows \\ \{\psi, \psi_{\chi,\chi}, \psi_{\chi}\} \\ \text{le maknize } \\ \Psi(t) = \text{b}; \\ \text{le maknize } \\ \Psi(t) = \text{[\psi_{\eta}, \psi_{\eta}, \psi_{\eta}, \psi_{\eta}, \psi_{\eta}, \psi_{\eta}, \psi_{\eta}\} \] \(\text{Cman maknize } \\ \text{formama maknize } \\	Of: Sia B=16,6,,,bos une base di C"e per i=1,, n sia 4: le soluzione dell'equazione
Proposed: \(\times \) & la columnatione dell'equazione \(\frac{\psi(t)}{\psi(t)} = A(t) \psi(t) \) Coim : \(\psi(t) = [\psi(t), \psi(t)], \psi(t) \) = \[[A(t) \psi_1(t), A(t) \psi_2(t), \psi_2(t) \] = \[A(t) \psi(t) \] = \[A(t) \psi(t), \psi(t), \psi(t) \] = \[A(t) \psi(t),	(Ψ; (t) = b; allora {4,42,, 4,3 s) chiomano insterne fundamentale di soluzioni a 24,(t) = b; le matrice Ψ(t) = [4,42,,4,3] ∈ C ^{man} si chioma matrice fondomen-
Qiam: \(\frac{1}{2}(t) = [\frac{1}{2}(t), \frac{1}{2}(t), \frac{1}{2}(t)] = [A(t)\psi_1(t), A(t)\psi_2(t), \frac{1}{2}(t)] = A(t)\psi_2(t), \frac{1}{2}(t) = [A(t)\psi_1(t), \frac{1}{2}(t)] = [A(t)\psi_1(t), \frac{1}{2}(t)] = [A(t)\psi_1(t), \frac{1}{2}(t)] = A(t)\psi_1(t), \frac{1}{2}(t) = A(t)\psi_1(t), \frac{1}(t) = A(t)\psi_1(t), \frac{1}{2}(t)	CASE OF SOLETING
= A(t) 4(t). Bi, \(\psi(t_0) = [\psi(t_0)] = [\black \bar{\psi}_{\rho}, \black \bar{\psi}_{\rho}]. \\ \text{Proprieta: det 4(t) \neq 0 \text{ \text{\ti}\text{\tex{\tex	Propuete: 4 è la coluzione dell'equazione [4(to)=[b,b,,ba]
	Proprieta: det 4(4) to VtelR.
	Oim: Per essendo (3 TER) det 40=0 => il Mennel ha dimensione 70 => (3 x do) \$(A) v=0, definismo
72(4) = YCt) v ecoloolismo xCt) = Y(t) v = A(t) Y(t) v = A(t) Z(t), inoline 72(7) = YCt) v = 0 ma	
per la propieta percedente dans essere RCt)=0 VER, in particolore 2(+)=0 => 9(th)·v=0 => [by,b,,bm]v=0 ma B è una base e non pur esistere un tale v > 0, contradaluntore &	

8 E = --8 . 100 . -

Reprietà: La solumerone di { x(h) = AC+1x(h) e data da x(h) = Y(h) Y'(h) x.	
Dein: Barka sostituine. zi(t)= 4(t) 2(t) x = A(t) 4(t) 2(t) x = A(t) 2(t) /2; = A(t) z(t). 2(t) = 4(L) x - (t) x = Ix = x = .	0
Of: Le matrice di transistore della stata da \$\P(t,t_0) = \P(t)\P(t_0)	
Requieta: La solumière di (sict)=Act) schi è date da sict)= \$\Delta(+,t_0) \tau (\in soluma riscutto	ira).
auesto giustitica il nome perché Eltito) ci consmile di passare dello sido d'importo a giallo	t.
Repuela: \$\Darkson di \frac{1}{D}(t,t_0) = A(t) \Darkson di \frac{1}{D}(t,t_0) = I	
Dim: 黄(+,to) = d (火(+)火-(th)) = 火(+)火-(th) = A(+)火(+)火-(th) = A(+)火(+)火(+)、 東(+,to) - 火(+)火-(th) = I.	
Romieta: \$\Phi(t,t)\phi(t,t) = \Phi(t,t)\} Om. \$\Phi(t,t)\phi(t,t) = \Phi(t)\frac{\psi(t,t)}{\phi(t,t)}\Phi(t,t) = \Phi(t,t)\phi(t,t)\}	
Roprieta: \$\Phi(\frac{1}{1}) = \Phi'(\frac{1}{1})\$ Own: \$\Phi(\frac{1}{1}) \Phi(\frac{1}{1}, \frac{1}{1}) = \Phi(\frac{1}{1}, \frac{1}{1}) = \Pi(\frac{1}{1}, \frac{1}{1}) = \Pi(\frac{1}, \frac{1}{1}) = \Pi(\frac{1}, \frac	
Caso tempo invariante [ix(t)=Ax(t) 2x(ti)=x Soppiono che x(t)= \(\varPhi(t,t)\) no	
Oef: Oata $A \in \mathbb{C}^{m \times m}$, <u>l'exponentiale</u> di matrice di $A \in \mathbb{C}^{A} = \Phi(\epsilon, o)$ dave $\Phi(t, o) \in \mathbb{C}$ solutions di $\Phi(t, o) = A \Phi(t, o)$ $\Phi(t, o) = A \Phi(t, o)$	
Roprieta: Se rell allona eA2= \$(2,0)	
Cirm: & E(t., t.) è la massier di hanstrone per à(t) = Az(t), donc E(t. t.t. z) è le	
modnie di honstaione per sich) = Azach), in fath $\frac{d}{dt} \bar{\Phi}(tz,t_0z) = A\bar{\Phi}(tz,t_0z) \cdot z = Az\bar{\Phi}(tz,t_0z)$. Inoltre $\bar{\Phi}(tz,t_0z) _{t=t_0} = I$, quindi pur elefinizione $e^{Az}\bar{\Phi}(tz,t_0z)$.	o) _{t=1} =
hunicté: de est = A est (formalmente è la stèrra proprieté dell'exponenziale valore)	
Qim. de et = de (t, o) = A (t, o) = A eAt	П
Proprieté: e°= I, OE C num (é analogo al caso scalare in ceni e°=1)	
$ \mathcal{D}_{sm}: e^{\circ} = e^{A^{\circ}} = \underline{\Phi}(1,0,0) = \underline{\Phi}(0,0) = \underline{I}. $	

Proprietà: en= 2 1 (formalmente è la ressa proprietà dell'exporenzala ralore)	
Com in realto dimastriamo che e = 5 (At) chianomente per t=1 atteniamo quello	
che voglamo dimortrare. Shuttarno il fattoche et \$(t,0) e he quindi soddurfa	
I'd At A At a and I'd as he a Ame I the Ball of the construction of	
est est. A est e gaindi questa equatione differentiale definise in modo univoco est	
vedere se è soddisfatta: $\frac{1}{\text{olt}} = \frac{1}{12} \frac{\text{ontitlerie}}{\text{olt}} = \frac{1}{12} \frac{\text{olt}}{\text{olt}} = \frac{1}{12} \frac{\text{olt}}{\text$	
of the salarisates of the off of	
d constone of derivations bisophereble verifice delice morries of convergence	
· · · · · · · · · · · · · · · · · · ·	
-A == At quindi abbiamo verificato la prima equazione, rimone la condenire initiale	
At = I.1 At Att. se valutions le somme per tes rimane sols il primo Pormi	-
100 i! I 2 me cioc I. Poiche querre commateria cintrolie la sterra	
equambre resolta dall'esponenzable di malhice violdine che le due cose coincidono I]
Per gli scalari vole che e e e e e + b, vale onche mel caso matriciale?	
e. e. = e + 5? In generala questo non e vera, ma e vera quando la matricia communitario	
Proprieté: Se A, B e C ^{men} con AB=BA, allora e A e B = e A + B Diam: Facciormo vedere che e At e Bt = e A + B)t, poi per t = 1 ottenismo la tresi. Pez prioma cosa montriormo che A e B = e B t A. Per farció definitamo	İ
Beam: raccorns vegere the e e e e , so per 1=2 outlowns to 1=1.	
for nume top morniomo che Me = e M. ter parcio definiamo	
R(t) = Aet - et A e facciomo vedere che vale zero. Calceliamo la decidata:	
is(t)= ABeBt-BeBtA = B(AeBt-eBtA) = BIR(t), inolline It(a)=AeBteBteBteBteBteBteBteBteBteBteBteBteBte	
= AI-IA = 0. Ma allora l'unua solurzione pur errere colo quella identicamente mulla	
e quincle Aest = estA. Ora defendance w(t) = eAtest = e(A+G)t	
in (t) = A e At e et + e At B et - (A+B) e (A+	
= (A+B)(eAt Bt - eA+B)= (A+B) w(t) incline w(0) = eA-e 0 - e(A+B) = I-I=0	
= (A+B)(e ^{At} e ^{Bt} -e ^{a+Bt})=(A+B)w(t), intelline w(0)=e ^A ·e ^B ·- e ^(A+B) ·= I-I=0, quindi, come pu x, w(t)=0 & tell equindi vale che e ^{At} e e (A+B)t	7
Nel caso scalare alabitamo che e = (e)	
homieta: e-A=(eA)-1	
C A (A) (A) F (A-A) O T	_
	_
of et a a et of et AeAt	
e°=1 e°=1	
e° = 1	
ece = ea+6 se AB = BA ea & e(A+8)	

e*=(e*)"

e = (e) -

B. E 2 K B B 1 E E E E 8 6 8 8 E = • 8 = 6 6 ---1 -

No.

Requieta: \$(+, to) = e^(+-1-)	aniano .
<u>Requesta</u> : Φ(+, +0) = e ^{A(+,-0)} Qim. Φ(+,+0) = Φ(+,0) · Φ(0,+0) = Φ(+,0) = (Φ(+,0))'=	eAt. (eAt.) = eAt! e-At. = e(AtAt.)
Sistemi autonomi: colcolo esporeriaale di matrice	
Metado: 8 = fb, b2,, bnf base di CM, eAt e At [b1, b2, bn] base andra scella in modo efficiente in modo tote da	[b, b, bn] =[eath, eath, eath, Ib, ba, bn] nondere comenients is colcolo di questi podott
Reports: Se ve Cm. 72(4) = et, allone (2(4) = A7(4)	
Qim. &(4) = Aeat = ARE), incline x(0) = e^0.v = Iv = v.	
hopicla: Se v è un autorettore di A associato all'autoralore (Quindi in questo caso vale un'equivoloniza ha ego Qim: 12(1):= ext. Verifichismo che codoliste l'eq. differ autorettore (Au= Xv) e quindi extru = extru = = 1.v=v.	montrole matricole ed esponentials scalare) envials: \$(1)=2e ¹ tv=e ² t)v me v e ² cm
Se A et diagonalizzabile, ellère esiste una bose di C° fath some 2, 2,, 2m gli autéraleri associati alle borse. Quins =[e^tb1,, e^e bm][b1,, bm] -[e^2, b2, e^mt bn][b1,, bn] che vi permette di calcolore l'exponenziale di makure.	di est est [b,, b n][b,, b n]'=
Esempcio: A= -4 -2 6 \ \(\chi_A(1) = \det \begin{pmatrix} \hat{14} & 2 -6 & = 2 \\ 0 & \lambda & 0 \\ \hat{1} & \det \end{pmatrix} \]	$A((A+a)(\lambda-5)+18) = A(\lambda^2-\lambda-1) = A(\lambda-2)(\lambda+1)$ $F(A) = \{0, -1, 2\}$ quindi essendo he autóvali i distinti ou nemo che A è aliganalizzadoise
puche sommo di questi autorabri arre un autorette	
= 2=0 KorA = Ker [-4 -2 6] = Jm[1]. + 2	=-1 Ker (A+I) = Ker [-3 -2 6]=Jm[2]
= 2 = 0 Ker A = Ker [-4 -2 6] = Jm[1] . * 1 = 1	0 6 0 0
[-3 -2 5] [1]	[-3 -2 6] [1]
*)=2 Ker (A-2] = Ker [-6 -2 6] = 7m[1]	e At [e ty, e ty, e ty][v, v, v,] =
0 -2 0 0	=[1 2et e2t] [1 2 1]
a = 2 x x	1 0 0 1 0 0 =
Fort set _ set set set actionmo westions	le [de At Ac At [0 d 0]
ac -e 1-e ac -e pour confunc	at At T
+ 2t 2t 1t 1t -t	tio + + +
e-e 1-e 2e-e	-1 -1 2

```
\mathcal{Z}(t) = \Phi(t, \epsilon) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = e^{A(t-1)} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2e^{-(t-1)} - e^{2(t-1)} \\ 0 \\ e^{-(t-1)} - e^{1(t-1)} \end{bmatrix}
   Ad exemple { 2(t) = A2(t) 
2(1) = [4,0,0]
   Vealiano ora come calcolore l'espanentiala di matrice nel caso generale
   Rometé Se le IN, las e Avec, cise ve Ker Aº, allora e At = = il Av.
  Com: Refundamo R(t)= $\frac{\xi}{1!} A^{\frac{1}{2}}, \quad \frac{\xi}{1!} A^{\frac{1}{2}}, \quad \xi(t) \quad \quad \frac{\xi}{2}(t) = A\xi(t) \quad \qq \quad \q
10-10 = A 5 1 A V = A 5 tk AV = ARH . RO = 11 AV = 1. I.V = V.
                  In altromative athermore potato vonfizore querte proprietà a partine dalla rullypo in sene di et = = = + Ai ma paiche Abreo, Abreo per i 20 et = = = + Air.
   Roprieta: Se a c C, allora e = e I
   aim: east? eat ]. Definion aft) = eat I everifichomo che xill = a Ixill e xill=I.
                   zit = aeat = aIeat = aIzt), zw=eao[= 1:1:1
   Promieté: Siamo CeIV, l'>0 e le l'taliche (A-lI) v=0 cisè v è un autometère genuralizzaté al A associaté a l, allère et v= elt = time 1/4 (A-lI) v.
   Quim: ext = e(A-XI+XIX * eXt e(A-XII+ v = ext = e1 (A-XI) v a ornimalize communication
  Casi postriologi: se l=1 (A-2I)v=0, v i un authrettore samplice: e tv = etv
               : 2 =2 , (A-)[)v=0 , quindi eAtv=etV+t(A-)[)v)
               ·se l=3, (A-II)v=0, abborno che eti= etv+t(A-II)v+t(A-II)v)
               olificilimente salinemo oltre l=3.
  Exercises: A = \begin{bmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \end{bmatrix} eat =? Gome prima esta euchismo oli autovalori \chi_{\Lambda}(\lambda) = (\lambda^2 - 4\lambda + 4)(\lambda + 1) = (\lambda - 2)^2(\lambda + 1), \sigma(A) = \{2, -1\} con m_{\Lambda}(2) = 2.
                 · )=2 Nor (A-21) = Ner [-2 1 0] = Im[1] man abbitions omena regerimbe la malteplici-
                                 mo formane

1 1 0 = Im 0 | 4 questo punto possiomo sceptiena coma base

1 2 -2 -2 0 | 1 | questo ne vottori 10, v2, v3
```

eAt [eAt, eAt, eAt,][v,v,v,] eAt, = ext, +tex(A-XI)v = et [0]+text [1] = [text exterter]	et]
$e^{At}_{3} \cdot e^{At} \begin{bmatrix} \frac{1}{4} \\ -\frac{1}{4} \end{bmatrix} + te^{2t} \begin{bmatrix} -\frac{1}{4} \\ -\frac{1}{4} \end{bmatrix} = \begin{bmatrix} e^{3t} + te^{4t} \\ -4 + e^{4t} \end{bmatrix} \cdot e^{At}_{3} \cdot e^{At}_{3} \cdot e^{At}_{3} \cdot e^{-t}_{3} \cdot e^{-$	1
At = \begin{array}{c c c c c c c c c c c c c c c c c c c	te st
In generale quindi par calcolore l'esponenziale di mathice possionno usare questo metrodo: B={b,b2,,bn} bose di C ^m , e ^{At} , [e ^{At} b1,, e ^{At} bn][b1,bm], quando possionno sceglianno una bose di autorettori oppure di autorettori generalizzati.	
Requieté: Se Ac Roma Av = 2v => Av => Av = 2v => Av = 2	
Bapuclá: Se A & R ^{nxm} e ^{At} v = e ^{At} v Qum: e ^{At} v = e ^{At} v = e ^{At} v.	
Requests: Se AciR ^{man} , e ^{At} Reivi = Reje ^{At} vi e e ^{At} Imivi = Imje ^{At} vi. Dim. Reje ^{At} vi = (e ^{At} v + e ^{At} v)/2 = (e ^{At} v + e ^{At} v)/2 = e ^{At} (v+v)/2 = e ^{At} (v+v)/2 = e ^{At} Reivi, par Ime analysis	
<u>Applieta</u> : Spanfv, \overline{v} } = span {Re\$v}, Jon\$v} Qinu: Faccionno veolore la doppio inclusione. v = Re\$v}+ j Jon\$v}, \overline{v} = Re\$v}- j Jon\$v} Re\$v}- j Jon\$v} Re\$v}- j Jon\$v}	
Consideriormo un cero in cui abbismo cultorettori complessi e corringati, quimoli consideriormo una bo B = i b, b, b, b,, bm? et = [etb, etb, etb, etb, etbal[b, b, b,, bal], il probleme di qui espressione è che contreve plei numori complessi e dervermo pre l'inverse divina malhire he	esta
contiene numou: complex: the pero evere un'aperatione compliate quindi conviene fore questa solutione & be, 5,3 -> { Refbil. I'm [bil], cost ficendo facciono sporine i complessi do malhere di destra, incline possomo struttore le proprieta precedenti e quindi abbamo che ext = [Refeath.], Imfeae bil, ettb.,, ettb.][Refbil, Imfbil, b,, b.].	200
Esomptio: $A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ $e^{At} = ?$ $\chi_{k}(\lambda) = (\lambda^{2} + 1)(\lambda + 2) = (\lambda - j)(\lambda + j)(\lambda + 2), \ \sigma(A) = \{j, -j, -2\}$ $G = \{j, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2$	
6 -2 -2-j 0 -26 2-j 0 0 0	

3 3 -3 3 1 -7 7 1 7 ----7 1 潮 7 -10 -18 100 -10 標 福 種 纒 -纏 -1 1

8

-

una volta fixate le condison interiali abbiamo un'unita soluzione. Imponiamo che	
= a; (t) A' _t== I, \(\alpha(\o)\)I+\(\alpha(\o)\)A+\(\alpha(\o)\)A'+\(\alpha(\o)\)A'-\(\al	
che accores, arcoreacore= mercoreo. Por il transmo di esistemene e unicital attenamo la	
islurione che ha la forma che cercavomo.	J
Proposela: Se Ac C nxm e V e un sottoparzio di C n Tale che A(V) = V, allone e at(V) = V.	
Quim: Voylooms mosthare the serce V => extract, telk (quind) seil date initiale appointme a V	
Quim: Voylumo mothere he se xeV => e AxeV, YteR, (quindi xil deto iniziale appartione a V ci appartione amche hulla la voluzione) e A = E xi(H)A, per definizione di invauamza Axec	1
⇒ A(Ax)=AxeV => AxeV, i=q., l-1, quinoi tuttigli elementi di questa sommo ce	
slame in V	J
Commo Kaira manute according intermetions for manuels in questo mode.	
Geometricamente possiomo interpretere la propriete: in questo modo: R' Test 23 " Piono invarionte. Se partismo de un dato iniziale che appurtiene al R' piono, nimonomo sempre su quel piono	
orme aimonome comme ou quel momo	
(0) X, (M)	
Proprietas: Sia A & Comm V um sollospanno di Com un ACV) & V, Sia B una base di Ve sa ze la solu	
From de (2ich) = A2ich) com zeV. Allone 2ch) eV, VteR c d[2ch] = [Q v] = [2th] =	
2 se(to) = 20 dove a: C Transformations Cimeona dissociata ed A é tale che	
Q(or) = Anc. Yt & IR	
Deion: 261= e Alt-to 20 EV poiché e At (V) EV e 20 EV. Vedicions de le coordinate di 2 in base B	
scoldifono l'equazione. Sia B = 16, bz, b., bri,, b., I un completamento di B, base di C.	
Consideration silt) = Axit) e menolions de continule rispetto a B: [xilt] = [Axit] =]	
= [a] = [z(1)] = , ma [a] = = [A, An] = e A, = [a], insthe [z(1)] = = [z(1)] = [z(1)] =	8
(stringle sosti Econolo attenzione che Lattili = 1/41 / 1201 1 / 1201 18 Al Lattili Calcindi	
[ic(4)] = A, [264] be se conorica	
Quindi sostileumalo otherwomo che [xitt] = [A, An] [x(t)] = [A, [x(t)] a] Quindi [x(t)] = A [x(t)] = x (x(t)] = x (x(t)) = x(t)] = x (x(t)) = x(t) = x(t)] = x (x(t)) = x(t) = x	7
T 1 1 0 0 1 4 0 0 1 4 0 0 0 0 0 0 0 0 0 0	
Esemps: A = [-1 4 0 0], sottosponeiro V = Jm [1 0] voglianno varificare che A(V) = V	
6 40 3 1 1 -2 Controlle Sisteme Comercia Da	
2 4 3 -1 1 ci descrive & solutioni di questo	
Pentiamo della imporiamea AV=AJmH=JmAH=Jm[-2 1]	ı
2 -3	
-2 5	
2 -3	

10 10

是是

9

0 -2 1 | 1 0 -2 1 | 1 0 -2 1 | 1 0 -2 1 | Quindi la Tena e la qualta colonna 1 1 2 -3 0 0 0 -2 0 1 0 -2 2 2000 dipendenti della prime due e 2 2 5 0 -2 0 4 0 0 0 0 quindi abblismo provato che Vè inva 1 1 2 -3 0 1 0 -2 0 0 0 0 riorbe rispotto ad A. Calcoliomoci ora $\begin{bmatrix} a|_{V} \end{bmatrix}_{8,8} \cdot B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} a|_{V} \end{bmatrix}_{8,8} = \begin{bmatrix} a(b)]_{8}, \begin{bmatrix} a(b)]_{8} \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & -3 \end{bmatrix}$ $\begin{vmatrix} a(b) \\ -1 \end{vmatrix} = -b_{1} - b_{1} - b_{1}, \quad a(b_{1}) = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -3b_{1} + b_{1}$ $\begin{vmatrix} a(b) \\ b \end{vmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} = -b_{1} - b_{1}, \quad a(b_{1}) = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix} = -3b_{1} + b_{1}$ Codimoli [se] 8= [-1-3] [se] se se el possiono harare le soluzioni dal sistema rispetto alle coordinate B risolvendo questo sistema exe antiche quello di partenza 4x4 Calcolions one l'esponemaille di malnice de A1: $(\lambda) = \lambda^2 + 4\lambda + 4 = (\lambda + 2)$, $\sigma(A) = \{-2\}$ Ve = C^ per il tourema di decompositione primarie. Ker (A+ e I)= 76 [1 1] = Im [1] mon abbiano ragginina la malterizità algobrica e quindi per completere [1-1] [-1] domenno calcolore Ker (A+2I), queito mol dure che ma (2) = (2+2) et= [et[d], et[]]. possiomo prendere la base conomica parchet lanto qualsiasi base va bene $e^{a+}\begin{bmatrix} 1 \\ 0 \end{bmatrix} = e^{a+}\begin{bmatrix} 1 \\ 0 \end{bmatrix} + te^{a+}\begin{bmatrix} A+2T \end{bmatrix}\begin{bmatrix} 1 \\ 0 \end{bmatrix} = e^{a+}(\begin{bmatrix} 1 \\ 0 \end{bmatrix} + t\begin{bmatrix} 1 \\ -1 \end{bmatrix}) = \begin{bmatrix} e^{a+}(1+t) \\ -te^{a+} \end{bmatrix}$ en [] = et [] + tet [A+x] [] = e2t [] + tet [] = [tet [1] = [et [1-t]] Quindi eAt = [e-16(1+t) te-16] Peril colcolo dell'esponenziale di matrice possimo cuare anche la tranformata di Laplace Def: Sie A: IR -> Cmx, le hosformate di Laplace di A è le formaine 2 £ AV: C-> Cmxm taleche 2 £ AI(s) = 5 ACH est alt. (2 Af(s)) = (5 ACH est alt); = 5 ai; (He est alt Bapiete: 2 of Act) = 5 2 (Act) - Alo) [dim. urta in FCA] Alient <=> (sI-A)lenti=I => lent = (sI-A) Consequentes: se tro et = L f(sI-A) f(t), t deve evene zo perche l'e una Marformazione monolatione e quindi ci da informazione colo vella parte elella funzione Marformala per voloni di tro

Example: $A = \begin{bmatrix} -3 & 1 \\ -1 & -1 \end{bmatrix}$. $(sI-A)^{-1} = \begin{bmatrix} s+3 & -1 \\ 1 & s+1 \end{bmatrix}^{-1} = \begin{bmatrix} s+1 & 1 \\ -1 & s+3 \end{bmatrix}$. $(s+3)(s+1)+1 = \frac{1}{s^2+4s+4} \begin{bmatrix} s+1 & 4 \\ -1 & s+3 \end{bmatrix}$
Compros: A = [-1 -1] (\$1-1) = [1 8+1] [-1 5+3] (5+3)(5+1)+1 5+45+4 [-1 5+3]
= [\frac{2+1}{(5+1)^2} \frac{1}{(5+1)^2} \] the della difficallé di quetta formula e data dal fatho de invertermo una makrize che dipende da un parametro s, su quetto quando utilizationo (5+1) \frac{2}{(5+1)^2} \frac{5+3}{(5+1)^2} \] quetto metado rora conveniente utilizzare el metado dell'appiunta per il
= 1 1 motive the dipende do un parametro s, on questo quando utilizationa
[15+2], (5+2), drough welpage were conveniente nystoware of melodo dell'opping per of
Colicido dessa matrice unversa.
Recordiamo era come calcolore l'antitrasformate di daplace, consideriamo una trasformate di
Recordiamo ena come calcolore l'antilizationnale di daplace, consideriamo una l'assistante di Laplace revisionale fiatte dalla da X(s) = N(s) Laplace revisionale fiatte dalla da X(s) = N(s) (s-p.) ^m 1(s-pe) ^m e, con p; pela. Sappionno che L'{X(s)}(t) = Elicioni (ses { X(s) est p} ? lez quanto rigacordo il calcolo dei residui, se più un polo di ordine l di F(s) funcione di roriabile completa, allona abbionno che "durata di ordine l'imperiori di colore della completa.
L-{X(s)}(+) = Rest X(s) est X(s) est p? les quanto riguardo il collèdo dei residui, se p è un polo
di ordine l di FTS) funcione di voniabile complerca, allona abbionno che "deviata di ordine l'impe
Rest F(s), p = $\frac{1}{(e_{-1})!} \cdot \frac{de^{-1}}{ds^{e_{-1}}} \cdot \frac{(F(s)(s-p)^e)}{(e_{-1})!}$
$Res{F(s), p} = \frac{1}{(e-1)!} \frac{2e^{-1}(F(s)(s-p)^e)}{2e^{-1}(s-1)!} = \frac{1}{(e-1)!} \frac{2e^{-1}(F(s)(s-p)^e)}{2e^{-1}(s-1)!} = \frac{1}{(e-1)!} \frac{2e^{-1}(F(s)(s-p)^e)}{2e^{-1}(e-1)!} = \frac{1}{(e-1)!} \frac{2e^{-1}(e-1)^e}{2e^{-1}(e-1)!} = \frac{1}{(e-1)!} \frac{2e^{-1}(e-1)!}{2e^{-1}(e-1)!$
$ 2^{-1} \left\{ \frac{S+1}{(S+1)^{2}} \right\} = \operatorname{Res} \left\{ \frac{S+1}{(S+1)^{2}} \right\}^{-2} = \frac{1}{4!} \frac{d}{dS} \left(\frac{S+1}{(S+1)^{2}} \right) \Big _{S=-2} = e^{-1} + t(S+1)e^{-1} \Big _{S=-2} = te^{-1} \Big _{S=-2} = te$
2-1 \{\frac{5+3}{(5+2)}\} = Rus \{\frac{5+3}{(5+2)}} = \frac{5+3}{(5+2)} = \frac{4}{(5+2)} = \frac{4}{(5+2)} = \frac{4}{(5+2)} = \frac{4}{(5+2)} = \frac{6}{(5+2)} = \frac{6}{
e At ettet tett
[-te" e"+te"]
Promietà: Sia Ac (mxm con polinomia minimo ua(2) = (2-2,) 4: (2-2e) 4e allora pli elementi di ext
Branieta: Sia Ac ("" con polinomia minumo MA(A) = (\lambda-\lambda)\\\^\\\^\\\\^\\\\^\\\\^\\\\\^\\\\\\\\\
che si dicomo i modi del sistema rèct) = Aract)
Dim: Par il l'enonne di decompositione primoria C™ V, ⊕ V, e ⊕ V, e, inollie suppionno che
e At [1,0,,0] mino colomne di e At, decomponionno [1,0,,0] = 2,+2,++ 2e con 2cie Vx;, i=1.
e [1,0,o] = e (x,+x,++xe); z, è un autovettore generalizzato di V2,
eAx = eAt Z = (A-AI) 24 => le componenti di questo vettore sono combinazioni lineari di questo
functions del temps exit text ture it mastions il procedimento en exx es ze = la tesi
you'do not be marine coxomna, du P Amayor Barrente et morante and la alles comme
Esempio: A = 1 -2 1 1 Vagliamo calcolore il polimornio minimo e i madi del sistema
0 -2 0 asserble and A. Xa(1)= det [2+1 2 -1 -1] =
1 2 7 1 0 000 () () () () () () () () (
1 2 0 2 0 1 = (\(\frac{1}{2}\) = \(\frac{1}{2}\) = \(\frac{1}{2}\) = \(\frac{1}{2}\) = \(\frac{1}{2}\) = \(\frac{1}{2}\)
Exemple: $A = \begin{bmatrix} -2 & -2 & 1 & 1 \\ 0 & -2 & 0 & 0 \\ 1 & -2 & -1 & 1 \\ 2 & 0 & -2 & 0 \end{bmatrix}$ Vaglismo calcolore il polimonio minimo ei medi del sistema occaziolito ad A . $(\lambda) = \det \begin{bmatrix} \lambda + 1 & 2 & -1 & -1 \\ \lambda + 1 & 2 & -1 & -1 \end{bmatrix} = (\lambda + 2)((\lambda + 1)(\lambda + 1) - (\lambda + 2)((\lambda + 1)(\lambda + 1) - (\lambda + 2)(\lambda + 2)($
= $(\lambda+1)(\lambda^3+2\lambda^2+3\lambda+2-3\lambda-2) = \lambda^2(\lambda+2)$ $\sigma(A)=\{0,-2\}$ again autovalore he me = 2
3,4,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,

un(2) = 2 (2+2) per copine gli esponenti del polimonio minimo datolorno colcolore i karnol. · l=0, Fer (A-oI) = Fer 1-1 -2 1 1 1 ci basta capine la dimensione.

0 2 0 0 dim For (A-oI) = 1 poiché 1 nongo é 3, quindi
1 -2 -1 1 pri noggingere me = 2 dornemo fore il termel di (A-oI)? E 12 0 2 0 equind in up 2 ha espanente 2. . A=2 Ker(A-II) = [1 -2 1 1] le seconde nige è nuller, le l'ense coincide con le prime,

0 0 0 0 le prime e le grante sone independenti, quindiil nongo è

1 -2 1 1 a, quindi dim Ren(A-2I)=2, quindi l'esponente di(X+2)

2 0 -2 2] sava 1. 氫 ,u,(1)= 2(1+2), quindi avneme 3 mooli: madi= {5,t,e-2} Sistemi automani a tempo discrete e tempo invarioniti (2(k+1)= Ax(k) 2(k+1)=Ax(k+1)=Ax. ...x(k+i)=Ax. (2(k+i)=Ax. ...x(k+i)=Ax. hamietà: Le solumone di (41) existe col è unica per les les col è olata de selle) = Ate-les Quim: Verifichiorno che (4) è soddirfatta relleti) = Aktilic 20 = A.Aktilica = Arch), rello) = Aktilica = Izo Unitate: per assurado assumiamo de ot ao solutione di os con teta, sia te mindre Z: lez les: 2(k) = x(k) }. Qi consequente x(k) - x(k) = Ax(k-1) - Ax(k-1) = A(x(k-1)-x(k-1)) = A0=0 \$ 1 Europie: [se(k+1)=0.2(k), x(k) & C per le 7 o soppionoche x(k)=0, x(-1)=?

1=x(0)=0.x(-1) impossibile, la sol in-1 non esiste. (2(k+1)=0.2k), 2(k)=0 per (20. 2(-4)=? 2(6)=0.2(-4), questa equazione è 1200=0 soolalisfatta perqualunque SEC. In entropholic con la mature di sistema [0] è una mature singolore. Proprieto: Se A é inventibile, le soluzione di an existe esté unica per le ell, esté dala da 2(k)= Ak-Koro, koZ. he dam é identica collo precedente, combo solo de 462 Def: Le malinere di honsissione della stato è data de Elk,k.)=A** oc., se A è involtibile ∉ à ben definite 4k.K. e.K. Se invece Amon è inventibile æ èben definite perkæko Coledo di At non possomo forto per tremoine propologo, metodo simile el colcolo de ex Sie B= {bi,..., bm} base di Cm, A= A"[bi,..., bm][bi,..., bm]=[Abi,..., Abm][bi,..., bm] dobbirmo xegliere gli elementi della base in modo Tele da for si che il calcolo delle potenze Atb: sta particulamente semplice e la negolo è la stessa del calcolo dell'esponenziale di massice Se possibile seglionne gli autorettori altrumenti gli autorettori generallerati.

5 di Cirac: 5: Z → R (K) = f 13 se k =0 Proprieta: Se An=0 allera A"x = 6(K)x, k=0 Dim: A'x. Ix=x, ce k+0, Aux = A"- Ax= A"-0=0 Chapmeta & Ax= 1x allow Atx = 2 2, 4 20 Qim: Ax=Ix=x, Ax=1x, Ax=A.Ax=Alx=JAx=12,..., Ax=12 Caso particulore Ax=0, Ax=0"x=5(k)x, supportendo che 0=1. Se A e diagonalimatrile, sia B= ib.,.., b m' uma base di autorettori 2,..., 2 m, quindi A = A [6,..., b m][6,..., b m] = [A"b1,..., A"bn][b1,..., bn]"=[\lambda"b,, \lambda"b1,..., \lambda"bn][b1,..., bn] pecogni tezo Ecomplis: $A = \begin{bmatrix} 4 & 0 & 2 \\ -4 & 2 & -4 \\ -9 & 0 & -2 \end{bmatrix}$ $\chi_{A}(\lambda) = olet \begin{bmatrix} \lambda - 4 & 0 & -2 \\ 4 & \lambda - 1 & -4 \\ 4 & 0 & \lambda + 1 \end{bmatrix} = (\lambda - 2)((\lambda - 4)(\lambda + 1) + 8) = (\lambda - 1)(\lambda^{2} - 2\lambda - 6 + 8) = (\lambda - 2)(\lambda^{2} - 2\lambda^{2} - 6 + 8) = (\lambda - 2)(\lambda^{2} - 2\lambda^{2} - 6 + 8) = (\lambda - 2)(\lambda^{2} - 2\lambda^{2} - 6 + 8) = (\lambda - 2)(\lambda^{2} - 2\lambda^{2} - 6 + 8) = (\lambda - 2)(\lambda^{2} - 2\lambda^{2} - 6 + 8) = (\lambda - 2)(\lambda^{2} - 2\lambda^{2} - 6 + 8) = (\lambda - 2)(\lambda^{2} - 2\lambda^{2} - 6 + 8) = (\lambda - 2)(\lambda^{2} - 2\lambda^{2} - 6 + 8) = (\lambda - 2)(\lambda^{2} - 2\lambda^{2} - 6 + 8) = (\lambda - 2)(\lambda^{2} - 2\lambda^{2} - 6 + 8) = (\lambda - 2)(\lambda^{2} - 2\lambda^{2} $\text{Ker } (A-2I) = \text{Ker } \begin{bmatrix} 2 & 0 & 2 \\ -9 & 0 & -9 \end{bmatrix} = \text{Jm} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ Ker } (A) = \text{Ker } \begin{bmatrix} 4 & 0 & 2 \\ -4 & 2 & -4 \\ -4 & 2 & -4 \end{bmatrix} = \text{Jm} \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} \\
 \text{include } A = \begin{bmatrix} -9 & 0 & -9 \\ -9 & 0 & -9 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 9 & 9 \end{bmatrix}, \quad \begin{bmatrix} -1 & 0 \\ 9 & 9 \end{bmatrix}$ $A^{n} = [A^{n}b, A^{n}b, A^{n}b, A^{n}b, b_{1}, b_{2}, b_{3}]^{-1} = [\tilde{a}b_{1}, 2^{n}b_{2}, \delta(a)b_{3}] \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ -1 & 0 & -2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ -2 & 1 & -2 \\ -1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ -2 & 1 & -2 \\ -1 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ -2 & 1 & -2 \\ -2 & 1 & -2 \\ -2 & 1 & -2 \\ -2 & 1 & -2 \\ -2 & 1 & -2 \\ -2 & 2^{n} - \delta(a) \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ -2 & 1 & -2 \\$ Def: Se m, k e let il coefficiente binomiale (%) e' definito come (k) = 1 (m-1)!k! se h & m se hom (ii) = # sottoinsionei eli le elementi preti da un insione di m elementi. Passiomo estendere la definizione consumbindo ile keZ e $\binom{m}{k}$ =0 se k =0. Aguieta (Regula di Ascal): Vm EIN, Vk EZ ("")= ("")+ ("")+ ("-s) Imaginismo di avere A con m+1 elementi, e di questi vogliamo sceptierne le, tutte la possibile scelte possono essere divise in due gruppi, il primo contiene tutti i sottoinstorni che non contienzono il s'elemento di A.

i primi son (**-i), i secondi sono (**i). A Dim: 1. 600, 2. 67m, 3. ochem. 1. Se $k \le 0$ $\binom{m+1}{n} = \begin{cases} 0 & k < 0 \end{cases}$ $\binom{m}{n} = \begin{cases} 0 & k < 0 \end{cases}$ $\binom{m}{n} = \begin{cases} 0 & k < 0 \end{cases}$ $\binom{m}{n-1} = 0$

3

3

3

H

A

To the second

3

-

1

2 2 2

-

18

13

13

-18

湖湖

7

-

難

=

Sistemi autonomii a tempo disorete, partez Esemplio. A = $\begin{bmatrix} 4 & 1 & 2 \\ 0 & 2 & 0 \\ -4 & -1 & -2 \end{bmatrix}$, $\chi_{A}(\lambda) = \text{olet} \begin{bmatrix} \lambda - 4 & -1 & -2 \\ 0 & \lambda - \iota & 0 \\ 4 & 1 & \lambda + 1 \end{bmatrix} = (\lambda - \iota)((\lambda - 4)(\lambda + 1) + \theta) = (\lambda - \iota)((\lambda - 4)(\lambda - 2) + \theta) = (\lambda - \iota)((\lambda - 4)(\lambda - 4$ 7=2 xcr(A-2T) = xcr [2 1 2] [1] dimensione informa alla malteplicité algobrica
0 0 0 = hm 0 di 2 in Xa(A), quindi detalorno calcalare anche Quind: A=[Ab, Ab, Ab,][b, b, b] Ab, 20 b = 20 b E outsvettore generalizated indire 2 quindi dobtions ware le formule Abe= 2 bz + 122 (A-2I) be= $\begin{bmatrix} 0 \\ 2^{4} + 4e^{2^{4}} & 0 \\ -1 \end{bmatrix} \begin{bmatrix} 4e^{2^{4}} \\ -4e^{2^{4}} \end{bmatrix}, \quad A^{4}b_{3} = 50eb_{3} = \begin{bmatrix} 5(4) \\ 0 \\ -280e \end{bmatrix}$ Quandi $A^{4} = \begin{bmatrix} -1 \\ -280e \end{bmatrix}$ $\begin{bmatrix} 2^{k} & k2^{k-1} & \delta(k) \\ 0 & 2^{k} & 0 \\ -2^{k} & -k2^{k-1} & -2\delta(k) \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2^{k} - \delta(k) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2^{k}$ In presente di autoralori complessi e consigniti consiene procedere come ubbrono fatto mel caso di e^{At} B= {by, by, bo, ..., ba} conscience sostituine con B= { Refbot, Innthat, bo, ..., ba} cost do cinculouse i complexsi dallo base, incline se A e Rmm A"Relb! = RelA"b], A" Jimib! = JimiA" b}. E quindi A"=[RefAbol, InfAbol, Abo., Abo.][Refbol, Infbol, ba., bm]" Esemplio: $A = \begin{bmatrix} -3 & -4 & 0 \\ 2 & 1 & 0 \\ -2 & -4 & -1 \end{bmatrix}$ $\chi_{A}(\lambda) = det \begin{bmatrix} \lambda+3 & 4 & 0 \\ -2 & \lambda-1 & 0 \\ 2 & 4 & \lambda+1 \end{bmatrix} = (\lambda+2)(\lambda-(-1+2j))(\lambda-(-1-2j))$ $= (\lambda+1)(\lambda-(-1+2j))(\lambda-(-1-2j))$ $= (\lambda+2)(\lambda-(-1+2j))(\lambda-(-1-2j))$ $= (\lambda+2)(\lambda-(-1+2j))(\lambda-(-1-2j))$ $= (\lambda+2)(\lambda-(-1+2j))(\lambda-(-1-2j))$ $= (\lambda+2)(\lambda-(-1+2j))(\lambda-(-1-2j))$ $= (\lambda+2)(\lambda-(-1+2j))(\lambda-(-1-2j))$ diagonalizzabile purché abbienne fre autaaleni distinti digonalizzabile perchi abbiamo tre autaalori distinti = (1-1)(-1-1)s= 1.25=5

-

-

1

-

=

-

Se X(x) e una fermanne reasionala fratto, allora Z' (x) = pepotial Res (x) 2", p} \[\leftarrow \leftarrow \rightarrow \righ X ((++1) = -4k(-2) 11-1 $\frac{2(8+9)}{(2+2)^{2}} = \sum_{P \in \{-2\}} \frac{2(2+9)2^{k-1}}{(2+2)^{2}}, P = \frac{d}{dr^{2}} \frac{2^{k}(2+4)}{(2+2)^{2}} \frac{(2+1)^{k}}{(2+2)^{k}} = \frac{1}{2} \frac{2^{k}(2+4)}{(2+2)^{k}} = \frac{1}{2} \frac{2^{k}(2+4)}$ A = [(4+1) (2)" | 4(-2)"-1
-4k(-2)" | 2k(-2)"-1(-2)" homieta: Sia A & Cmxm con polirismio minimo un() = 200 (1-1,1 1/2 (1-2,1 1/4) (1-2e) 1/4 allora la componenti della potenza di malture A" sono combolnarzioni lineari di 5(th), 8(th-1), , 5(k-1,4+1), 1, k), , , let), , , , , h, k, e, ... let , detti modi dol sistema. Ouim: Consideriemo A"en -> la prima colonna di A". Per il Cerreme di decomposizione primaria C= Kir A+ ⊕ Kor (A - λ, I) + ⊕ ... ⊕ Ker (A-λe I) + , quindi e, = 20 + 21 + ... + 20 un At 20 = Z S(k-i) A 20 = combinatione limene di fo(k), 5(k-1),... 5(k-1,0+1) A'ze = = (1)) 1 (A-2,1) x, me (1) = 1. (16-1) è contingnone limeore de 11, k, 11) quindi le componenti di Atic, sono combinamini limeore di 12,4, tel.", k. ", ". Anologamente s' procede per pli althi termini se; e por le altre colonne di A". Esemplo: $A = \begin{bmatrix} 4 & 1 & -2 \\ -1 & 2 & -4 \end{bmatrix}$ vogliamo housie i modi ossociáti el sisteme a tempo descreto $\chi_{A}(A) = \det \begin{bmatrix} \lambda - 4 & -1 & -2 \\ 1 & \lambda - 2 & 4 \end{bmatrix} = ((\lambda - 4)(\lambda - 2) + 1)\lambda = (\lambda^{2} - 6\lambda + 9)\lambda = (\lambda - 3)^{2}\lambda$ $\sigma(A) = \{0, 3\}$ $\mu_A(\lambda) = (\lambda - 3)^{\frac{1}{\lambda}}$, calculations ver $(A - 3I) = \text{Ker} \left[1 \quad 1 \quad -2 \right] = \text{Im} \left[1 \right]$ man abbiding of the sum of the che Ma(1)=(1-3)2) = Xa(1). Avremo quinoli 3 modi, due associati a 3 e uno a 0. moodi = 1 34, 16.3", 8(16)}. A tempo continuo averamo visto che se AIV) EV allona [si(t)=2CH) allona sct) EV, Ytelk Boquieta: Sia A & Comm e V un sottosponio di Com tale che ACVI = V e sia 20 EV, allore la soluzione dell'equazione alla differente (ack+1)=Auck) è taleche ack) eV, +kzk.

2 x(ko)=20

33

38

30

1

-

1

1

1

-

-

-

-

相相相相

相相相

總

總

1

12

相

