

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MATHEMATICS

SRINIVASA RAMANUJAN

18MAB101T Calculus and Linear Algebra

		UNIT –I Matrices	THE MAN WHO KNEW INFINITY
Sl.No.		Tutorial Sheet -2	Answers
		Part – A	
1	Using Cayley-I	Hamilton theorem, find the inverse of $\begin{pmatrix} 2 & 1 \\ 1 & -5 \end{pmatrix}$	$ \frac{\lambda^2 + 3\lambda - 11 = 0}{\frac{1}{11} \begin{pmatrix} 5 & 1 \\ 1 & -2 \end{pmatrix}} $
2	Express A ³ in t	erms of A and I if $A = \begin{pmatrix} 1 & 0 \\ 4 & 5 \end{pmatrix}$	λ^2 -6 λ +5=0 A^3 = 31A-30I
3	Using Cayley H	Hamilton theorem, find A^3 if $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$	(41 42 84 83
4	Find A ⁵ -25A ² +	122A if A= $ \begin{pmatrix} 0 & 0 & 2 \\ 2 & 1 & 0 \\ -1 & -1 & 3 \end{pmatrix}$	$ \begin{pmatrix} -34 & 0 & -20 \\ -20 & -54 & 0 \\ 10 & 10 & -74 \end{pmatrix} $
5	Find A ⁸ -5A ⁷ +7.	$\mathbf{A}^{6} - 3\mathbf{A}^{5} + \mathbf{A}^{4} - 5\mathbf{A}^{3} + 8\mathbf{A}^{2} - 2\mathbf{A} + \mathbf{I} \text{ of } \mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$	$ \lambda^{3}-5\lambda^{2}+7\lambda-3=0 $ $ \begin{pmatrix} 8 & 5 & 5 \\ 0 & 3 & 0 \\ 5 & 5 & 8 \end{pmatrix} $
	1	Part – B	1.2
6	Verify Cayley	-Hamilton theorem and find A^{-1} and A^4 if $A = \begin{pmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$	$\mathbf{A}^{-1} = \frac{1}{20} \begin{pmatrix} 7 & -2 & -3 \\ 1 & 4 & 1 \\ -2 & 2 & 8 \end{pmatrix}$
			$\mathbf{A}^{4} = \begin{pmatrix} 53 & 203 & 37 \\ -369 & 625 & -369 \\ 203 & -203 & 219 \end{pmatrix}$ $\lambda^{3} - 6\lambda^{2} + 9\lambda - 4 = 0$
7	Verify Cayley	-Hamilton theorem and find A ⁻¹ and A ⁴ if A= $ \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} $	$\mathbf{A}^{-1} = \frac{1}{4} \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{pmatrix}$ $\mathbf{A}^{4} = \begin{pmatrix} 86 & -85 & 85 \\ -85 & 86 & -85 \\ 85 & -85 & 86 \end{pmatrix}$

8	Diagonalise the matrix A by orthogonal transformation if $A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{pmatrix}$	
		$\mathbf{D} = \mathbf{N}^{T} \mathbf{A} \mathbf{N} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$
9	Diagonalise the matrix A by orthogonal transformation if $A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{pmatrix}$	$ \begin{pmatrix} 1, 4, 4 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} $
	_	$\mathbf{D} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$
