

Quasicrystals. I. Definition and structure

Dov Levine and Paul J. Steinhardt

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

(Received 3 September 1985)

that cell. An alternative and much more useful construction makes use of four types of unit cells, each of which is a zonohedron that can be formed from the oblate and prolate rhombohedral bricks: (a) a rhombic triacontahedron formed from ten oblate and ten prolate bricks; (b) a rhombic icosahedron formed from five oblate and five prolate bricks; (c) a rhombic dodecahedron formed from two oblate and two prolate bricks; and (d) a single prolate rhombohedron. Associated with these four units is a set of

Zonohedra with golden rhombic faces

Solid name	Triacontahedron	Icosahedron	Dodecahedron	Hexahedron (acute/obtuse)	Rhombus (2-faced)
Full symmetry	lh (order 120)	D5d (order 20)	D _{2h} (order 8)	D _{3d} (order 12)	D _{2h} (order 8)
n Belts of $(2(n-1))_n$ // edges [10]	6 belts of 10 ₆ // edges	5 belts of 85 // edges	4 belts of 64 // edges	3 belts of 43 // edges	2 belts of 2 ₂ // edges
n(n-1) Faces ^[11]	30	20 (–10)	12 (–8)	6 (-6)	2 (-4)
2 <i>n</i> (<i>n</i> -1) Edges ^[12]	60	40 (–20)	24 (–16)	12 (–12)	4 (-8)
n(n-1)+2 Vertices ^[13]	32	22 (–10)	14 (-8)	8 (-6)	4 (-4)
Solid image					φ 1

Generalized dual method (GDM)

$$t_{n_j,n_k}^0 = n_j \boldsymbol{e}_j + n_k \boldsymbol{e}_k + \sum_{l \neq j \neq k} (\lfloor (x_{n_j} \boldsymbol{u}_{jk} + x_{n_k} \boldsymbol{u}_{kj}) \cdot \boldsymbol{e}_l - \alpha_l \rfloor + 1) \boldsymbol{e}_l.$$

