Quiz. 6

- 1. What is the unit for the following reaction rate expressed in liter per mole per second?
- A. rate of a chemical reaction
- B. rate constant for a zero-order rate law
- C. rate constant for a first-order rate law

D. rate constant for a second-order rate law

- E. rate constant for a third-order rate law
- 2. Experimental data for the reaction have been plotted in the following three different ways (with concentration units in mol/L)

What is the order of the reaction with respect to A?

- A. zero-order
- B. first-order
- C. second-order
- D. third-order
- 3. The rate law for the decomposition of phosphine (PH₃) is:

$$Rate = -rac{\Delta [PH_3]}{\Delta t} = k \left[PH_3
ight]$$

It takes 120. s for 1.00 M PH₃ to decrease to 0.250 M. How much time is required for 2.00 M PH₃ to decrease to a concentration of 0.125 M?

- A. 480. s
- B. 120. s
- C. 1440. s
- D. 240. s
- 4. A study was made of the effect of the hydroxide concentration on the rate of the reaction:

$$I^{-}\left(aq
ight) + OCl^{-}\left(aq
ight) \longrightarrow IO^{-}\left(aq
ight) + Cl^{-}\left(aq
ight)$$

The following data were obtained:

[I ⁻] ₀ (mol/L)	[OCl ⁻] ₀ (mol/L)	[OH ⁻] ₀ (mol/L)	Initial Rate (mol/L · s)
0.0013	0.012	0.10	9.4×10^{-3}
0.0026	0.012	0.10	18.7×10^{-3}
0.0013	0.0060	0.10	4.7×10^{-3}
0.0013	0.018	0.10	14.0×10^{-3}
0.0013	0.012	0.050	18.7×10^{-3}
0.0013	0.012	0.20	4.7×10^{-3}
0.0013	0.018	0.20	7.0×10^{-3}

Determine the rate law.

A. k[OH-][OCI-][I-]-1

- B. k[OH-][OCI-][I-]
- C. k[OH-][OCI-]0.5[I-]
- D. k [OCI-]2[I-]
- E. k[OH-] [I-]

Quiz.

Consider the reaction of acetic acid in water

CH₃CO₂H(aq) + H₂O(l)
$$\Longrightarrow$$
 CH₃CO₂⁻(aq) + H₃O⁺(aq) where $K_a = 1.8 \times 10^{-5}$.

Which is the stronger acid?

- A. CH3COO-
- B. H3O+
- C. CH3COOH D. H2O
- 2. Use Table 7.2 to order the following from the strongest to the weakest acid.

Table 7.2					
Values of K _a for Some Common Monoprotic Acids ◀					
Formula	Name	Value of K_a			
HSO ₄ -	Hydrogen sulfate ion	1.2×10^{-2}			
HClO ₂	Chlorous acid	1.2×10^{-2}			
HC ₂ H ₂ ClO ₂	Monochloracetic acid	1.35×10^{-3}			
HF	Hydrofluoric acid	7.2×10^{-4}			
HNO_2	Nitrous acid	4.0×10^{-4}			
$HC_2H_3O_2$	Acetic acid	1.8×10^{-5}			
$[Al(H_2O)_6]^{3+}$	Hydrated aluminum(III) ion	1.4×10^{-5}			
HOCl	Hypochlorous acid	3.5×10^{-8}			
HCN	Hydrocyanic acid	6.2×10^{-10}			
NH ₄ ⁺	Ammonium ion	5.6×10^{-10}			
HOC ₆ H ₅	Phenol	1.6×10^{-10}			

- A. HCN > NH4+ > HOC6H5
- B. HF > HSO₄- > HCN
- C. HOCI > [AI(H₂O)₆]₃₊ > HOC₆H₅
- D. $HCIO_2 > HNO_2 > HF$
- E. [AI(H₂O)₆]₃₊ > HOC₆H₅ > HOCI
- Calculate the pH of a $0.010\ M$ solution of iodic acid (HIO₃, $K_a = 0.17$).

A. 2.02

- B. 1.38
- C. -0.62
- D. 0.38
- E. 3.38
- 4. Calculate [S₂-] in a 0.10 M H₂S solution. Assume Ka₁=1.0 * 10-7 ; Ka₂=1.0

A. 1.0 *10-19

- B. 1.38 *10-7
- C. 2.76 *10-11
- D. 2.76 *10-10
- E. 1.0 *10-7

1. Which one of the symbols is the state function?
A. Heat (q)
B. Work (w)
C. Internal energy (E)
2. A balloon is inflated to its full extent by heating the air inside it. In the final stages of this process, the volume of the balloon changes from 4.00×106 L to 4.50×106 L by addition of 1.3×108 J of energy as heat . Assuming the balloon expands against a constant pressure of 1.0 atm, calculate ΔE for the process. 1 atm = 1 x 105 Pa
A. 8 x 107 J
B. 4 x 107 J
C. 2 x 107 J
D. 1 x 107 J
3. Which law of thermodynamics is described by the statement: "Energy is neither created nor destroyed"?
A. First law
B. Second law
C. Third law

Quiz. 9

- 1. Which of the following statements is true?
- A. An adiabatic process is defined as a process in which no energy as heat flows into the system.
- B. Entropy is independent of temperature.
- C. When an ideal gas expands reversibly, and isothermally, $q < 0, \, w < 0$
- D. An endothermic reaction cannot be spontaneous.
- 2. Which of the following statements is true?
- A. If the temperature of the system increases, heat must have been added to it.
- B. For an isothermal process, q = -w
- C. F(x, y) is a state function defined on state variables (x, y). The change of F going along path A is different from the change of F going along path B.

- D. The direction of a reversible process cannot be changed by an infinitesimal (very, very small) modification of a variable.
- 3. In which of these cases do the surroundings do work on the system?

A.
$$q = -47 \text{ kJ}, w = +88 \text{ kJ}$$

B.
$$q = +82 \text{ kJ}, w = -47 \text{ kJ}$$

C.
$$q = +47 \text{ kJ}, w = 0$$

1. For each of the following pairs of substances, which of the following sequences represents the correct rank of S° at $25^{\circ}C$ and 1 atm?

 $C_2H_5OH(l)$ or $C_2H_5OH(g)$ $CO_2(s)$ or $CO_2(g)$ $N_2O(g)$ or He(g)

- A. $CO_2(s) > CO_2(g)$
- B. $N_2O(g) > He(g)$
- C. C₂H₅OH(ℓ) > C₂H₅OH(g)
- 2. Which of the following is the best reducing agent?

H₂, Na, Na+, F-, Au

- A. F-
- B. Au
- C. H₂
- D. Na+
- E. Na
- 3. Base on the following overall reactions. Calculate $\ensuremath{\mathsf{E}}^\circ$.

Assume that all concentration are 1.0 M and that all partial pressures are 1.0 atm

 $Cr_{3+(aq)} + Cl_{2(g)} Cr_{2}O_{72-(aq)} + Cl_{-(aq)}$

Half-reaction	€° (V)
$F_2 + 2e^- \rightarrow 2F^-$	2.87
$Ag^{2+} + e^- \rightarrow Ag^+$	1.99
$Co^{3+} + e^- \rightarrow Co^{2+}$	1.82
$H_2O_2 + 2H^+ + 2e^- \rightarrow 2H_2O$	1.78
$Ce^{4+} + e^{-} \rightarrow Ce^{3+}$	1.70
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68
$IO_4^- + 2H^+ + 2e^- \rightarrow IO_3^- + H_2O$	1.60
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51
$Au^{3+} + 3e^- \rightarrow Au$	1.50
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	1.33
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21

- A. -0.03 V
- B. 0.03 V
- C. -0.10 V
- D. 2.69 V
- E. 0.10 V
- 4. Estimate E° for the half-reaction.

$$2H_2O + 2e^- \longrightarrow H_2 + 2OH^-$$

given the following values of $\Delta G_{\mathrm{f}}^{\circ}$:

$$H_2O(l) = -237 \text{ kJ/mol}$$

 $H_2(g) = 0.0$
 $OH^-(aq) = -157 \text{ kJ/mol}$
 $e^- = 0.0$

- A. -0.829 V
- B. 16.58 V
- C. -8.30 x 10-4 V
- D. 0.414 V
- E. -0.414 V