Algorithmique des graphes

2 — Parcours et applications

Anthony Labarre

3 février 2021

Parcours d'arbres

• Une des tâches les plus basiques pour n'importe quelle structure de données consiste à la parcourir;

- Une des tâches les plus basiques pour n'importe quelle structure de données consiste à la parcourir;
- Les graphes se parcourent principalement de deux façons : en profondeur ou en largeur;

- Une des tâches les plus basiques pour n'importe quelle structure de données consiste à la parcourir;
- Les graphes se parcourent principalement de deux façons : en profondeur ou en largeur;
- Le choix du type de parcours dépendra de ce qu'on veut en faire;

- Une des tâches les plus basiques pour n'importe quelle structure de données consiste à la parcourir;
- Les graphes se parcourent principalement de deux façons : en profondeur ou en largeur;
- Le choix du type de parcours dépendra de ce qu'on veut en faire;
- Un nombre surprenant d'algorithmes résolvant des problèmes très variés sont de simples variantes de ces parcours;

•0000

Échauffement : parcours d'arbres

 En guise d'échauffement, examinons les parcours sur des arbres (binaires);

Parcours d'arbres

•0000

- En guise d'échauffement, examinons les parcours sur des arbres (binaires);
- Les arbres peuvent être vus comme des graphes très particuliers :

Parcours d'arbres

•0000

- En guise d'échauffement, examinons les parcours sur des arbres (binaires);
- Les arbres peuvent être vus comme des graphes très particuliers :
 - 1 ils ne possèdent pas de cycles;

Parcours d'arbres

•0000

- En guise d'échauffement, examinons les parcours sur des arbres (binaires);
- Les arbres peuvent être vus comme des graphes très particuliers :
 - 1 ils ne possèdent pas de cycles;
 - 2 le point de départ est fixé (c'est la racine);

- En guise d'échauffement, examinons les parcours sur des arbres (binaires);
- Les arbres peuvent être vus comme des graphes très particuliers :
 - 1 ils ne possèdent pas de cycles;
 - 2 le point de départ est fixé (c'est la racine);
- On les parcourt fréquemment de deux manières :

- En guise d'échauffement, examinons les parcours sur des arbres (binaires);
- Les arbres peuvent être vus comme des graphes très particuliers :
 - 1 ils ne possèdent pas de cycles;
 - 2 le point de départ est fixé (c'est la racine);
- On les parcourt fréquemment de deux manières :
 - en profondeur : la racine, puis le sous-arbre gauche, puis le sous-arbre droit;

- En guise d'échauffement, examinons les parcours sur des arbres (binaires);
- Les arbres peuvent être vus comme des graphes très particuliers :
 - 1 ils ne possèdent pas de cycles;
 - 2 le point de départ est fixé (c'est la racine);
- On les parcourt fréquemment de deux manières :
 - en profondeur : la racine, puis le sous-arbre gauche, puis le sous-arbre droit;
 - en largeur : la racine, puis ses fils, puis les fils de ces fils, ...

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0123456789;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

Parcours d'arbres en profondeur et en largeur

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

00000

- en profondeur : 0 1 3 4 6 7 8 9 2 5;
- en largeur: 0 1 2 3 4 5 6 7 8 9;

Piles et files

On aura besoin dans la suite de deux structures de données bien connues :

Piles et files

Parcours d'arbres

00000

On aura besoin dans la suite de deux structures de données bien connues :

Pile

Last In First Out

- empiler(x): rajoute x en haut de la pile;
- dépiler() : retire et renvoie le haut de la pile;

00000

On aura besoin dans la suite de deux structures de données bien connues :

Pile

Last In First Out

- empiler(x): rajoute x en haut de la pile;
- dépiler() : retire et renvoie le haut de la pile;

File

First In First Out

- enfiler(x): rajoute x à la fin de la file;
- défiler() : retire et renvoie le début de la file;

Piles et files

Parcours d'arbres

00000

On aura besoin dans la suite de deux structures de données bien connues :

Pile

Last In First Out

- empiler(x): rajoute x en haut de la pile;
- dépiler() : retire et renvoie le haut de la pile;

File

First In First Out

- enfiler(x): rajoute x à la fin de la file;
- défiler() : retire et renvoie le début de la file;

Les deux classes possèdent aussi les méthodes est_vide() et pas_vide();

00000

nes et mes

On aura besoin dans la suite de deux structures de données bien connues :

Pile

Last In First Out

- empiler(x): rajoute x en haut de la pile;
- dépiler() : retire et renvoie le haut de la pile;

File

First In First Out

- enfiler(x): rajoute x à la fin de la file;
- défiler() : retire et renvoie le début de la file;

- Les deux classes possèdent aussi les méthodes est_vide() et pas_vide();
- Toutes ces méthodes s'exécutent en O(1);

00000

On aura besoin dans la suite de deux structures de données bien connues :

Pile

Last In First Out

- empiler(x): rajoute x en haut de la pile;
- dépiler() : retire et renvoie le haut de la pile;

File

First In First Out

- enfiler(x): rajoute x à la fin de la file;
- défiler() : retire et renvoie le début de la file;

- Les deux classes possèdent aussi les méthodes est_vide() et pas_vide();
- Toutes ces méthodes s'exécutent en O(1);
- Pour être plus concis, on suppose que empiler() et enfiler() acceptent aussi plusieurs éléments;

Parcours d'arbres en profondeur

Parcours d'arbres

Le parcours d'arbre en profondeur s'écrit facilement de manière récursive :

Algorithme 1 : ProfondeurArbre(A)

Entrées : un arbre binaire enraciné *A*.

Résultat : l'affichage des sommets de *A* suivant un parcours en profondeur à partir de la racine.

- 1 **si** $A.racine() \neq NIL$ **alors**
- afficher(A.racine());
- 3 PROFONDEURARBRE(A.sous_arbre_gauche());
- 4 ProfondeurArbre(A.sous_arbre_droit());

0000

Algorithme 2 : PARCOURSLARGEURARBRE(A)

Entrées : un arbre enraciné *A*.

Sortie : la liste des sommets de l'arbre ordonné selon un parcours en largeur à partir de la racine.

Parcours d'arbres

Parcourir un graphe présente plusieurs difficultés par rapport aux arbres (binaires ou non):

1 tout sommet peut servir de point de départ;

Parcours d'arbres

Parcourir un graphe présente plusieurs difficultés par rapport aux arbres (binaires ou non):

- 1 tout sommet peut servir de point de départ ;
- 2 il n'y a pas (encore) d'orientation ou d'ordre sur les voisins;

Parcours d'arbres

Parcourir un graphe présente plusieurs difficultés par rapport aux arbres (binaires ou non) :

- 1 tout sommet peut servir de point de départ;
- 2 il n'y a pas (encore) d'orientation ou d'ordre sur les voisins;
- 3 certains sommets sont accessibles par plusieurs chemins, il faudra donc se rappeler de ce qu'on a déjà examiné;

Parcours d'arbres

Parcourir un graphe présente plusieurs difficultés par rapport aux arbres (binaires ou non) :

- 1 tout sommet peut servir de point de départ;
- 2 il n'y a pas (encore) d'orientation ou d'ordre sur les voisins;
- 3 certains sommets sont accessibles par plusieurs chemins, il faudra donc se rappeler de ce qu'on a déjà examiné;

Conventions : on suppose que :

- la méthode G.voisins(v) renvoie les voisins de v par ordre croissant d'identifiant;
- en cas d'ambigüité, on sélectionne les sommets d'indice minimal;

Parcours de graphe en profondeur

 Le principe du parcours en profondeur se généralise comme suit aux graphes :

Parcours de graphe en profondeur

- Le principe du parcours en profondeur se généralise comme suit aux graphes :
 - 1 si le sommet actuel u n'a pas encore été visité, l'afficher;

Parcours de graphe en profondeur

- Le principe du parcours en profondeur se généralise comme suit aux graphes :
 - 1 si le sommet actuel u n'a pas encore été visité, l'afficher;
 - 2 pour chaque voisin v non encore visité de u : parcourir v et ses descendants en profondeur.

Parcours de graphe en profondeur

- Le principe du parcours en profondeur se généralise comme suit aux graphes :
 - 1 si le sommet actuel u n'a pas encore été visité, l'afficher;
 - 2 pour chaque voisin v non encore visité de u : parcourir v et ses descendants en profondeur.
- Examinons les étapes de ce parcours sur un exemple.

Parcours en profondeur : exemple

Exemple 2 (départ = 0)

Parcours en profondeur : exemple

Parcours en profondeur : exemple

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités :

0

à traiter (pile)

résultat :

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : √

à traiter (pile)

résultat : 0

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : 🗸

3

à traiter (pile)

résultat : (

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : 🗸 🗸

> 3 6

à traiter (pile)

résultat : 0 1

Parcours d'arbres

arcours en profondeur : exemple

Les coulisses

0 1 2 3 4 5 6 7 8 visités : $\sqrt{|{\slash}|}$

6 3 6

à traiter (pile)

résultat : 0 1

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : $\sqrt{|\mathcal{V}|}$

3

à traiter (pile)

résultat : 0 1 4

Parcours d'arbres

Les coulisses

résultat : 0 1 4

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : $\sqrt{|\mathcal{V}|}$

3

à traiter (pile)

résultat : 0 1 4 7

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : $\sqrt{|{\checkmark}|}$

6 3

à traiter (pile)

résultat : 0 1 4 7

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : 🗸 🗸

à traiter (pile)

résultat : 01475

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

à traiter (pile)

résultat : 0 1 4 7 5

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : $\sqrt{|\mathcal{V}|}$ $\sqrt{|\mathcal{V}|}$ $|\mathcal{V}|$

6 3

à traiter (pile)

résultat : 0 1 4 7 5 2

Exemple 2 (départ = 0)

Les coulisses

0 1 2 3 4 5 6 7 8 visités : $\sqrt{|\mathcal{V}|}$ $\sqrt{|\mathcal{V}|}$

3

à traiter (pile)

Exemple 2 (départ = 0)

Les coulisses

0 1 2 3 4 5 6 7 8 visités : $\sqrt{|\mathcal{V}|}$

> 6 3 6

à traiter (pile)

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : $\sqrt{\cancel{\ }} \sqrt{\cancel{\ }} \sqrt{\cancel{\ }} \sqrt{\cancel{\ }} \sqrt{\cancel{\ }}$

3

à traiter (pile)

Parcours d'arbres

Les coulisses

6 3

à traiter (pile)

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

 $\begin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ \text{visités} : \boxed{\checkmark | \checkmark |} \end{array}$

3

à traiter (pile)

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

6

à traiter (pile)

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

 $\begin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ \text{visités} : \boxed{\checkmark | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark |} \end{array}$

6

à traiter (pile)

Exemple 2 (départ = 0)

Parcours d'arbres

Les coulisses

 $\begin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ \text{visités} : \boxed{\checkmark \ \checkmark \ \sqrt{\ } \ \sqrt{\$

à traiter (pile)

Parcours d'arbres

000

Algorithme 3 : PROFONDEUR (G, départ, visités=NIL)

```
Entrées: un graphe non-orienté G, un sommet de départ, un tableau
          (facultatif) visités de taille |V|.
```

Sortie : les sommets de G accessibles depuis le départ dans l'ordre où le parcours en profondeur les a découverts.

```
1 résultat ← liste();
2 si visités = NIL alors visités \leftarrow tableau(G.nombre_sommets(), FAUX);
3 a_traiter ← pile();
4 a_traiter.empiler(départ);
   tant que a_traiter.pas_vide() faire
        sommet \leftarrow a\_traiter.dépiler();
        si ¬ visités[sommet] alors
 7
            résultat.ajouter_en_fin(sommet);
 8
            visités[sommet] \leftarrow VRAI;
 9
            pour chaque voisin dans renverser(G.voisins(sommet)) faire
10
                 si ¬ visités[voisin] alors a_traiter.empiler(voisin);
11
12 renvoyer résultat;
```

 Le principe du parcours en largeur se généralise comme suit aux graphes :

- Le principe du parcours en largeur se généralise comme suit aux graphes:
 - 1 si le sommet actuel u n'a pas encore été visité, l'afficher;

- Le principe du parcours en largeur se généralise comme suit aux graphes :
 - $oldsymbol{0}$ si le sommet actuel u n'a pas encore été visité, l'afficher;
 - 2 pour chaque voisin v non encore visité de u : placer v dans la file d'attente;

- Le principe du parcours en largeur se généralise comme suit aux graphes :
 - $\mathbf{0}$ si le sommet actuel u n'a pas encore été visité, l'afficher;
 - 2 pour chaque voisin v non encore visité de u : placer v dans la file d'attente;
 - 3 appliquer le même traitement aux éléments de la file jusqu'à ce qu'elle soit vide.

- Le principe du parcours en largeur se généralise comme suit aux graphes:
 - 1 si le sommet actuel u n'a pas encore été visité, l'afficher;
 - 2 pour chaque voisin v non encore visité de u : placer v dans la file d'attente:
 - 3 appliquer le même traitement aux éléments de la file jusqu'à ce qu'elle soit vide.
- Ce parcours partitionne les sommets de G en fonction de leur **distance** au sommet de départ :

- Le principe du parcours en largeur se généralise comme suit aux graphes :
 - $\mathbf{0}$ si le sommet actuel u n'a pas encore été visité, l'afficher;
 - 2 pour chaque voisin v non encore visité de u : placer v dans la file d'attente;
 - 3 appliquer le même traitement aux éléments de la file jusqu'à ce qu'elle soit vide.
- Ce parcours partitionne les sommets de G en fonction de leur distance au sommet de départ;
- Examinons les étapes de ce parcours sur un exemple.

Arbres de parcours

Parcours d'arbres

Exemple 3 (départ = 0)

Les coulisses

0 1 2 3 4 5 6 7 8 visités :

à traiter (file) : 0

résultat :

(file : fin à gauche, début à droite)

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : 🗸 📗

à traiter (file) : résultat : 0

(file : fin à gauche, début à droite)

Parcours d'arbres

Les coulisses

visités : $\sqrt{|\mathcal{V}|}$ | 3 4 5 6 7 8 $|\mathcal{V}|$ à traiter (file) : 6 4 6 3

résultat : 0 1

(file : fin à gauche, début à droite)

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : $\sqrt{|\mathcal{V}|}$

à traiter (file) : 8 6 6 4 6

résultat : 0 1 3

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : | | | | | | | | |

à traiter (file) : 5 8 6 6 4

résultat : 0 1 3 6

Les coulisses

0 1 2 3 4 5 6 7 8 visités : | | | | | | | | | | | |

à traiter (file) : 7 5 8 6 6

résultat : 0 1 3 6 4

Les coulisses

0 1 2 3 4 5 6 7 8 visités : $\sqrt{|\mathcal{V}|} |\sqrt{|\mathcal{V}|} |\sqrt{|\mathcal{V}|}$

à traiter (file) : 7 5 résultat : 0 1 3 6 4 8

Les coulisses

0 1 2 3 4 5 6 7 8 visités : $\sqrt{|\mathcal{N}|} |\sqrt{|\mathcal{N}|} |\sqrt{|\mathcal{N}|}$

à traiter (file) : 7 2 7

résultat : 0 1 3 6 4 8 5

Parcours d'arbres

Les coulisses

0 1 2 3 4 5 6 7 8 visités : $\sqrt{\cancel{\ }}$ $\sqrt{\cancel{\ }}$ $\sqrt{\cancel{\ }}$

à traiter (file) : 7 2

résultat : 0 1 3 6 4 8 5 7

Parcours d'arbres

Les coulisses

 $\begin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ \text{visités} : \boxed{\checkmark | \checkmark |} \end{array}$

à traiter (file) : 7

résultat : 0 1 3 6 4 8 5 7 2

Parcours d'arbres

Les coulisses

à traiter (file) :

résultat : 0 1 3 6 4 8 5 7 2

```
Entrées : un graphe non-orienté G, un sommet de départ, un tableau (facultatif) visités de |V| cases indiquant les sommets déjà traités
```

Sortie : les sommets de G accessibles depuis le départ dans l'ordre où le parcours en largeur les a découverts.

```
1 résultat ← liste();
2 si visités = NIL alors visités \leftarrow tableau(G.nombre_sommets(), FAUX);
a_{\text{traiter}} \leftarrow \text{file()};
4 a_traiter.enfiler(départ);
   tant que a_traiter.pas_vide() faire
        sommet \leftarrow a_traiter.défiler();
6
        si ¬ visités[sommet] alors
 7
             résultat.ajouter_en_fin(sommet);
 8
             visités[sommet] \leftarrow VRAI;
             pour chaque voisin dans G.voisins(sommet) faire
10
                  si ¬ visités[voisin] alors a_traiter.enfiler(voisin);
11
12 renvoyer résultat;
```

Comparaison des algorithmes

Comparons les deux algorithmes de parcours :

Profondeur

```
1 résultat ← liste();
2 si visités = NIL alors visités ←
     tableau(G.nombre_sommets(), FAUX);
3 a_traiter ← pile();
   a_traiter.empiler(départ):
   tant que a_traiter.pas_vide() faire
         sommet ← a_traiter.dépiler();
         si ¬ visités[sommet] alors
                résultat.ajouter_en_fin(sommet);
               visités[sommet] ← VRAI;
               pour chaque voisin dans
10
                  renverser(G.voisins(sommet)) faire
                      si ¬ visités[voisin] alors
11
                        a_traiter.empiler(voisin);
  renvover résultat:
```

Largeur

```
résultat ← liste();
  si visités = NIL alors visités ←
     tableau(G.nombre_sommets(), FAUX);
3 a_traiter ← file();
   a_traiter.enfiler(départ):
   tant que a_traiter.pas_vide() faire
          sommet ← a_traiter.défiler();
          si ¬ visités[sommet] alors
                résultat.aiouter_en_fin(sommet):
                visités[sommet] ← VRAI;
                pour chaque voisin dans
10
                  G.voisins(sommet) faire
                      si ¬ visités[voisin] alors
11
                        a_traiter.enfiler(voisin);
12 renvoyer résultat;
```

Seul le type de la structure de données a_traiter change!

Nos algorithmes de parcours explorent-ils bien tout le graphe?

Nos algorithmes de parcours explorent-ils bien tout le graphe? Oui, si le graphe est "en un seul morceau".

Applications

Nos algorithmes de parcours explorent-ils bien tout le graphe? Oui, si le graphe est "en un seul morceau". Plus formellement :

Définition 1

Parcours d'arbres

Un graphe G = (V, E) est **connexe** si pour toute paire de sommets $u, v \in V$, il existe un chemin dans G dont les extrémités sont u et v.

Nos algorithmes de parcours explorent-ils bien tout le graphe? Oui, si le graphe est "en un seul morceau". Plus formellement :

Définition 1

Un graphe G = (V, E) est **connexe** si pour toute paire de sommets $u, v \in V$, il existe un chemin dans G dont les extrémités sont u et v.

Exemple 4

graphe connexe

graphe non connexe

Complexité des algorithmes de parcours

 Toutes les méthodes des structures de données auxiliaires sont en O(1);

- Toutes les méthodes des structures de données auxiliaires sont en O(1);
- La complexité des algorithmes de parcours dépend donc directement de l'implémentation du graphe;

- Toutes les méthodes des structures de données auxiliaires sont en O(1);
- La complexité des algorithmes de parcours dépend donc directement de l'implémentation du graphe;
- Pour chaque sommet v, on doit accéder à tous ses voisins;

- Toutes les méthodes des structures de données auxiliaires sont en O(1);
- La complexité des algorithmes de parcours dépend donc directement de l'implémentation du graphe;
- Pour chaque sommet v, on doit accéder à tous ses voisins;
 - matrice d'adjacence : G.voisins(v) est en O(|V|);

- Toutes les méthodes des structures de données auxiliaires sont en O(1);
- La complexité des algorithmes de parcours dépend donc directement de l'implémentation du graphe;
- Pour chaque sommet v, on doit accéder à tous ses voisins;
 - matrice d'adjacence : G.voisins(v) est en O(|V|);
 - listes d'adjacence : G.voisins(v) est en O(deg(v));

- Toutes les méthodes des structures de données auxiliaires sont en O(1);
- La complexité des algorithmes de parcours dépend donc directement de l'implémentation du graphe;
- Pour chaque sommet v, on doit accéder à tous ses voisins;
 - matrice d'adjacence : G.voisins(v) est en O(|V|);
 - listes d'adjacence : G.voisins(v) est en O(deg(v));
- Nos parcours ont donc une complexité de :

- Toutes les méthodes des structures de données auxiliaires sont en O(1);
- La complexité des algorithmes de parcours dépend donc directement de l'implémentation du graphe;
- Pour chaque sommet v, on doit accéder à tous ses voisins;
 - matrice d'adjacence : G.voisins(v) est en O(|V|);
 - listes d'adjacence : G.voisins(v) est en O(deg(v));
- Nos parcours ont donc une complexité de :
 - $O(|V|^2)$ pour une matrice d'adjacence;

Complexité des algorithmes de parcours

- Toutes les méthodes des structures de données auxiliaires sont en O(1);
- La complexité des algorithmes de parcours dépend donc directement de l'implémentation du graphe;
- Pour chaque sommet v, on doit accéder à tous ses voisins;
 - matrice d'adjacence : G.voisins(v) est en O(|V|);
 - listes d'adjacence : G.voisins(v) est en O(deg(v));
- Nos parcours ont donc une complexité de :
 - $O(|V|^2)$ pour une matrice d'adjacence;
 - O(|V| + |E|) pour des listes d'adjacence (rappel : $\sum_{v \in V} \deg(v) = 2|E|$);

On associe aux parcours en largeur et en profondeur des arbres de parcours, qui retracent l'ordre dans lequel les sommets ont été découverts.

Exemple 5 (arbres de parcours au départ de 0)

On associe aux parcours en largeur et en profondeur des **arbres de parcours**, qui retracent l'ordre dans lequel les sommets ont été découverts.

Exemple 5 (arbres de parcours au départ de 0)

Notion d'arbre de parcours

Parcours d'arbres

On associe aux parcours en largeur et en profondeur des **arbres de parcours**, qui retracent l'ordre dans lequel les sommets ont été découverts.

Exemple 5 (arbres de parcours au départ de 0)

Parcours d'arbres

- Pour calculer ces arbres, on doit stocker le parent de chaque sommet dans l'exploration.
- On dira qu'un sommet est orphelin s'il n'a pas de parent, et adopté sinon;

- Pour calculer ces arbres, on doit stocker le parent de chaque sommet dans l'exploration.
- On dira qu'un sommet est orphelin s'il n'a pas de parent, et adopté sinon;
- Les deux parcours traitent les sommets différemment :

- Pour calculer ces arbres, on doit stocker le parent de chaque sommet dans l'exploration.
- On dira qu'un sommet est orphelin s'il n'a pas de parent, et adopté sinon;
- Les deux parcours traitent les sommets différemment :
 - profondeur : le voisin u de v est adopté par v si u n'est pas visité;

- Pour calculer ces arbres, on doit stocker le parent de chaque sommet dans l'exploration.
- On dira qu'un sommet est orphelin s'il n'a pas de parent, et adopté sinon;
- Les deux parcours traitent les sommets différemment :
 - profondeur : le voisin u de v est adopté par v si u n'est pas visité:
 - largeur : le voisin u de v est adopté par v s'il est orphelin ;

- Pour calculer ces arbres, on doit stocker le parent de chaque sommet dans l'exploration.
- On dira qu'un sommet est **orphelin** s'il n'a pas de parent, et adopté sinon;
- Les deux parcours traitent les sommets différemment :
 - profondeur : le voisin u de v est adopté par v si u n'est pas visité:
 - largeur : le voisin u de v est adopté par v s'il est orphelin ;
- Dans les deux cas, à la fin du parcours, le seul sommet orphelin est celui dont on est parti;

Parcours d'arbres

Parcours d'arbres

Forêts de parcours

Parcours d'arbres

- Si le graphe est connexe, ces arbres sont dits "couvrants" car ils couvrent tous les sommets du graphe.
- Sinon, on cherchera à construire une forêt couvrante (un arbre par "morceau" du graphe);

Exemple 8 (forêt couvrante)

Connexité et composantes connexes

Comme on l'a vu, un graphe connexe est un graphe "en un seul morceau".

Définition 2

Parcours d'arbres

Une **composante connexe** d'un graphe G est un sous-graphe connexe H de G qui est maximal, c'est-à-dire qu'il n'existe pas de sommet de G à la fois accessible à partir d'un élément de V(H) et hors de V(H).

Comment identifier ces composantes connexes?

Identification des composantes connexes

Il suffit de lancer un parcours à partir de chacun des sommets du graphe.

Parcours en largeur

Algorithme 5 : ComposantesConnexes(G)

```
Entrées : un graphe non orienté G.

Sortie : les composantes connexes de G, identifiées par la liste de leurs sommets.

1 résultat \leftarrow liste();
```

- visités ← tableau(G.nombre_sommets(), FAUX);
 pour chaque sommet dans G.sommets() faire
 si ¬ visités[sommet] alors
- 5 | résultat.ajouter_en_fin(LARGEUR(G, sommet, visités));
- 6 renvoyer résultat;

Graphes bipartis

Parcours d'arbres

Définition 3

Un graphe G=(V,E) est **biparti** s'il existe une bipartition $V=V_1\cup V_2$ telle que deux sommets de la même partie ne sont jamais adjacents.

Définition 3

Un graphe G = (V, E) est **biparti** s'il existe une bipartition $V = V_1 \cup V_2$ telle que deux sommets de la même partie ne sont jamais adjacents.

Exemple 9

Graphes bipartis

Définition 3

Un graphe G = (V, E) est **biparti** s'il existe une bipartition $V = V_1 \cup V_2$ telle que deux sommets de la même partie ne sont jamais adjacents.

Exemple 9

Graphes bipartis

Définition 3

Un graphe G = (V, E) est **biparti** s'il existe une bipartition $V = V_1 \cup V_2$ telle que deux sommets de la même partie ne sont jamais adjacents.

Exemple 9

Reconnaissance de graphes bipartis

 De nombreux problèmes "difficiles" sur les graphes deviennent "faciles" sur des graphes bipartis;

- De nombreux problèmes "difficiles" sur les graphes deviennent "faciles" sur des graphes bipartis;
- Il est donc important de pouvoir les reconnaître.

- De nombreux problèmes "difficiles" sur les graphes deviennent "faciles" sur des graphes bipartis;
- Il est donc important de pouvoir les reconnaître.
- Comment procéder? Approche naïve: examiner toutes les bipartitions jusqu'à ce qu'on en trouve une satisfaisante ou qu'on puisse conclure qu'il n'en existe pas;

- De nombreux problèmes "difficiles" sur les graphes deviennent "faciles" sur des graphes bipartis;
- Il est donc important de pouvoir les reconnaître.
- Comment procéder? Approche naïve : examiner toutes les bipartitions jusqu'à ce qu'on en trouve une satisfaisante ou qu'on puisse conclure qu'il n'en existe pas;
- Mauvaise idée : il y a $O(2^{|V|})$ bipartitions.

- De nombreux problèmes "difficiles" sur les graphes deviennent "faciles" sur des graphes bipartis;
- Il est donc important de pouvoir les reconnaître.
- Comment procéder? Approche naïve : examiner toutes les bipartitions jusqu'à ce qu'on en trouve une satisfaisante ou qu'on puisse conclure qu'il n'en existe pas;
- Mauvaise idée : il y a $O(2^{|V|})$ bipartitions.
- La caractérisation suivante va nous donner un algorithme efficace.

Parcours en largeur 000000

Caractérisation des graphes bipartis

Théorème 4

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

Théorème 4

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

Démonstration.

 \Rightarrow : tout cycle partant de v y revient par des aller-retours :

 \dots et donc tout cycle de G est pair.

k

Caractérisation des graphes bipartis

Théorème 4

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

Démonstration.

 \Leftarrow : \equiv "si G n'est pas biparti, alors il contient un cycle impair".

1 2 3

Théorème 4

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

Démonstration.

 \Leftarrow : \equiv "si G n'est pas biparti, alors il contient un cycle impair".

Théorème 4

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

Démonstration.

 \Leftarrow : \equiv "si G n'est pas biparti, alors il contient un cycle impair".

Théorème 4

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

Démonstration.

 \Leftarrow : \equiv "si G n'est pas biparti, alors il contient un cycle impair".

Caractérisation des graphes bipartis

Théorème 4

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

Démonstration.

 \Leftarrow : \equiv "si G n'est pas biparti, alors il contient un cycle impair".

Caractérisation des graphes bipartis

Théorème 4

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

Démonstration.

 \Leftarrow : \equiv "si G n'est pas biparti, alors il contient un cycle impair".

Caractérisation des graphes bipartis

Théorème 4

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

Démonstration.

 \Leftarrow : \equiv "si G n'est pas biparti, alors il contient un cycle impair".

Théorème 4

Parcours d'arbres

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

Démonstration.

 \Leftarrow : \equiv "si G n'est pas biparti, alors il contient un cycle impair".

 $S_1 + \{x_1, x_2\} + S_2$ est un cycle de longueur impaire.

Algorithme de reconnaissance des graphes bipartis

• On en déduit l'algorithme de reconnaissance suivant :

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);

Algorithme de reconnaissance des graphes bipartis

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu ;

Algorithme de reconnaissance des graphes bipartis

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu;
 - colorier leurs voisins pas encore coloriés en rouge;

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu;
 - colorier leurs voisins pas encore coloriés en rouge;
 - •

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu;
 - colorier leurs voisins pas encore coloriés en rouge;
 - •

Parcours d'arbres

 Si l'on essaie d'attribuer deux couleurs différentes à un même sommet, on a un cycle impair et le graphe n'est pas biparti;

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu;
 - colorier leurs voisins pas encore coloriés en rouge;
 - ..

- Si l'on essaie d'attribuer deux couleurs différentes à un même sommet, on a un cycle impair et le graphe n'est pas biparti;
- Sinon, le graphe est biparti et on obtient une bipartition $(V = V_1 \cup V_2)$;

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu;
 - colorier leurs voisins pas encore coloriés en rouge;
 - •

Parcours d'arbres

- Si l'on essaie d'attribuer deux couleurs différentes à un même sommet, on a un cycle impair et le graphe n'est pas biparti;
- Sinon, le graphe est biparti et on obtient une bipartition $(V = V_1 \cup V_2)$;

Exemple 10 (pas biparti) 8 7 6 4 0 3

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu;
 - colorier leurs voisins pas encore coloriés en rouge;
 - •

- Si l'on essaie d'attribuer deux couleurs différentes à un même sommet, on a un cycle impair et le graphe n'est pas biparti;
- Sinon, le graphe est biparti et on obtient une bipartition $(V = V_1 \cup V_2)$;

Exemple 10 (pas biparti) 8 7 6 4 0 3

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu;
 - colorier leurs voisins pas encore coloriés en rouge;
 - •

- Si l'on essaie d'attribuer deux couleurs différentes à un même sommet, on a un cycle impair et le graphe n'est pas biparti;
- Sinon, le graphe est biparti et on obtient une bipartition $(V = V_1 \cup V_2)$;

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu;
 - colorier leurs voisins pas encore coloriés en rouge;
 - •

- Si l'on essaie d'attribuer deux couleurs différentes à un même sommet, on a un cycle impair et le graphe n'est pas biparti;
- Sinon, le graphe est biparti et on obtient une bipartition $(V = V_1 \cup V_2)$;

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu ;
 - colorier leurs voisins pas encore coloriés en rouge;

- Si l'on essaie d'attribuer deux couleurs différentes à un même sommet, on a un cycle impair et le graphe n'est pas biparti;
- Sinon, le graphe est biparti et on obtient une bipartition $(V = V_1 \cup V_2)$;

Exemple 10 (pas biparti)

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu ;
 - colorier leurs voisins pas encore coloriés en rouge;
 - •

- Si l'on essaie d'attribuer deux couleurs différentes à un même sommet, on a un cycle impair et le graphe n'est pas biparti;
- Sinon, le graphe est biparti et on obtient une bipartition ($V = V_1 \cup V_2$);

Exemple 10 (pas biparti) 8 7 6 4 0 3

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu ;
 - colorier leurs voisins pas encore coloriés en rouge;
 - •

- Si l'on essaie d'attribuer deux couleurs différentes à un même sommet, on a un cycle impair et le graphe n'est pas biparti;
- Sinon, le graphe est biparti et on obtient une bipartition ($V = V_1 \cup V_2$);

Exemple 10 (pas biparti) 8 7 6 4 0 3

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu ;
 - colorier leurs voisins pas encore coloriés en rouge;
 - •
- Si l'on essaie d'attribuer deux couleurs différentes à un même sommet, on a un cycle impair et le graphe n'est pas biparti;
- Sinon, le graphe est biparti et on obtient une bipartition ($V = V_1 \cup V_2$);

Exemple 10 (pas biparti) 3 7 6 6 4 0 3

- On en déduit l'algorithme de reconnaissance suivant :
 - choisir un sommet arbitraire et le colorier (rouge);
 - colorier ses voisins en bleu ;
 - colorier leurs voisins pas encore coloriés en rouge;
 - •

- Si l'on essaie d'attribuer deux couleurs différentes à un même sommet, on a un cycle impair et le graphe n'est pas biparti;
- Sinon, le graphe est biparti et on obtient une bipartition ($V = V_1 \cup V_2$);

Exemple 10 (pas biparti) 3 7 6 6 4 0 3

Algorithme 6 : ESTBIPARTI(G)

```
Entrées : un graphe connexe G.
   Sortie : VRAI si G est biparti, FAUX sinon.
1 si G.nombre\_sommets() = 0 alors renvoyer VRAI;
2 couleurs ← tableau(G.nombre_sommets(), -1);
3 catégorie ← VRAI;
4 départ \leftarrow sommet arbitraire de G;
5 a_{traiter} \leftarrow file();
6 a_traiter.enfiler(départ);
7 couleurs[départ] ← catégorie;
   tant que a_traiter.pas_vide() faire
       sommet \leftarrow a\_traiter.défiler();
9
       catégorie \leftarrow \neg couleurs[sommet];
10
       pour chaque voisin dans G.voisins(sommet) faire
11
            si couleurs[voisin] = -1 alors
12
                 couleurs[voisin] ← catégorie;
13
                 a_traiter.enfiler(voisin);
14
            sinon si couleurs[voisin] \neq catégorie alors renvoyer FAUX ;
15
  renvoyer VRAI;
```

 On peut utiliser l'algorithme de reconnaissance de graphes bipartis pour savoir si le graphe contient un cycle impair;

- On peut utiliser l'algorithme de reconnaissance de graphes bipartis pour savoir si le graphe contient un cycle impair;
- Comment savoir si un graphe contient un cycle quelconque?
 Deux options :

- On peut utiliser l'algorithme de reconnaissance de graphes bipartis pour savoir si le graphe contient un cycle impair;
- Comment savoir si un graphe contient un cycle quelconque?
 Deux options :
 - si on veut juste répondre "oui" ou "non" : comparer |E| à |V|;

- On peut utiliser l'algorithme de reconnaissance de graphes bipartis pour savoir si le graphe contient un cycle impair;
- Comment savoir si un graphe contient un cycle quelconque?
 Deux options :
 - si on veut juste répondre "oui" ou "non" : comparer |E| à |V| ;
 - si on veut renvoyer un cycle explicite : parcourir le graphe, et repérer si l'on retombe sur un sommet ... déjà visité?

- On peut utiliser l'algorithme de reconnaissance de graphes bipartis pour savoir si le graphe contient un cycle impair;
- Comment savoir si un graphe contient un cycle quelconque?
 Deux options :
 - si on veut juste répondre "oui" ou "non" : comparer |E| à |V| ;
 - si on veut renvoyer un cycle explicite : parcourir le graphe, et repérer si l'on retombe sur un sommet ... déjà visité?
 - non : sur un sommet adopté;

Exemple 12

Parcours d'arbres

Exemple 12

Exemple 12

Exemple 12

Exemple 12

Clusters en dot

Parcours d'arbres

On peut demander à Graphviz d'encadrer des sous-graphes, appelés *clusters* :

```
Exemple 13
graph G {
    subgraph cluster_moncluster {
        # définition des sommets et / ou des arêtes du cluster
        # ...
```

Attention:

- on doit utiliser le préfixe cluster_après subgraph pour nommer le sous-graphe;
- seuls les programmes dot et fdp prennent en compte les clusters: