CLAIMS

We claim:

- 1. A method for preserving antigen presentation on a virally infected mammalian cell, comprising:
- (a) providing a population of mammalian cells at least a portion of which is suspected of being virally infected and
- (b) contacting said cells with an anti-apoptotic reagent, thereby preserving antigen presentation on virally infected cells.
- 2. The method of claim 1, wherein said cells comprise peripheral blood leukocytes.
 - 3. The method of claim 1, wherein said cells comprise neutrophils.
 - 4. The method of claim 1, wherein said cells comprise granulocytes.
 - 5. The method of claim 1, wherein said virus is selected from the group consisting of herpes, HIV, cytomegalovirus (CMV), and hepatitis.
 - 6. The method of claim 5, wherein said virus is CMV.
 - 7. The method of claim 1, wherein said antigen comprises a viral antigen present on the surface of said mammalian cells.

- 8. The method of claim 7, wherein said antigen comprises pp65 protein of CMV.
- 9. The method of claim 1, wherein the contacting is *ex vivo*.
- 10. The method of claim 1, wherein the reagent is a nucleic acid.
- 11. The method of claim 10, wherein the reagent is an ICE antisense sequence.
 - 12. The method of claim 1, wherein the reagent is a protease inhibitor.
 - 13. The method of claim 12, wherein the protease inhibitor is irreversible.
 - 14. The method of claim 12, wherein the protease inhibitor is reversible.
 - 15. The method of claim 12, wherein the protease inhibitor is a compound of

formula 1:

FORMULA 1

wherein:

n is 1 or 2;.

 R^1 is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, (substituted)phenyl, phenylalkyl, (substituted)phenylalkyl, heteroaryl, (heteroaryl)alkyl or $(CH_2)_mCO_2R^4$, wherein m=1-4, and R^4 is as defined below;

 R^2 is a hydrogen atom, chloro, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, (substituted)phenyl, phenylalkyl, (substituted)phenylalkyl, heteroaryl, (heteroaryl)alkyl or $(CH_2)_pCO_2R^5$, wherein p=0-4, and R^5 is as defined below;

R³ is a hydrogen atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted)phenylalkyl;

R⁴ is a hydrogen atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted)phenylalkyl;

R⁵ is a hydrogen atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted)phenylalkyl;

A is a natural and unnatural amino acid:

B is a hydrogen atom, a deuterium atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, (substituted)phenyl, phenylalkyl, (substituted)phenylalkyl, heteroaryl, (heteroaryl)alkyl, halomethyl, CH_2ZR^6 , $CH_2OCO(aryl)$, $CH_2OCO(heteroaryl)$; or $CH_2OPO(R^7)R^8$, where Z is an oxygen or a sulfur atom;

R⁶ is phenyl, substituted phenyl, phenylalkyl, substituted phenylalkyl, heteroaryl, or (heteroaryl)alkyl; and

R⁷ and R⁸ are independently selected from a group consisting of alkyl, cycloalkyl, phenyl, substituted phenyl, phenylalkyl, (substituted phenyl) alkyl, and (cycloalkyl) alkyl; and

X and Y are independently selected from the group consisting of a hydrogen atom, halo, trihalomethyl, amino, protected amino, an amino salt, mono-substituted amino, di-substituted amino, carboxy, protected carboxy, a carboxylate salt, hydroxy, protected hydroxy, a salt of a hydroxy group, lower alkoxy, lower alkylthio, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, (cycloalkyl)alkyl, substituted (cycloalkyl)alkyl, phenyl, substituted phenyl, phenylalkyl, and (substituted phenyl)alkyl;

or a pharmaceutically acceptable salt thereof.

16. The method of claim 12, wherein the protease inhibitor is a compound of formula 3:

$$A-N \longrightarrow O \longrightarrow NH$$

$$(CH_2)_m \longrightarrow B$$

$$CO_2R^1 \longrightarrow O$$

FORMULA 3

wherein:

n is 1 or 2; m is 1 or 2; A is R²CO-, R³-O-CO-,or R⁴SO₂-; a group of the formula:

$$\mathsf{R}^{5}\mathsf{CONH} \quad \begin{picture}(20,10) \put(0,0){\line(1,0){0.5ex}} \put(0,$$

further wherein:

R¹ is a hydrogen atom, alkyl or phenylalkyl;

R² is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, phenylalkyl, substituted phenyl, (substituted phenyl)alkyl, heteroaryl, or (heteroaryl)alkyl;

R³ is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted phenyl)alkyl;

R⁴ is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, phenylalkyl, substituted phenyl, (substituted phenyl)alkyl, heteroaryl, or (heteroaryl)alkyl;

R⁵ is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, phenylalkyl, substituted phenyl, (substituted phenyl)alkyl, heteroaryl, or (heteroaryl)alkyl;

R⁶ is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted phenyl)alkyl;

R⁷ is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, phenylalkyl, substituted phenyl, (substituted phenyl)alkyl, heteroaryl, or (heteroaryl)alkyl;

R⁸ is an amino acid side chain chosen from the group consisting of natural and unnatural amino acids;

B is a hydrogen atom, a deuterium atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, phenylalkyl, substituted phenyl, (substituted phenyl)alkyl, heteroaryl, (heteroaryl)alkyl, or halomethyl;

a group of the formula:

$-CH_2XR^9$;

wherein R⁹ is phenyl, substituted phenyl, phenylalkyl, (substituted phenyl)alkyl, heteroaryl, or (heteroaryl)alkyl; and X is an oxygen or a sulfur atom;

a group of the formula:

-CH₂-O-CO-(aryl);

a group of the formula:

-CH₂-O-CO-(heteroaryl);

a group of the formula:

$$-CH_2-O-PO(R^{10})R^{11}$$

wherein R^{10} and R^{11} are independently selected from a group consisting of alkyl, cycloalkyl, phenyl, substituted phenyl, phenylalkyl and (substituted phenyl) alkyl; and the pharmaceutically-acceptable salts thereof.

17. The method of claim 12, wherein the protease inhibitor is a compound of the formula:

$$R^1 - N$$
 O
 $A - N$
 O
 B

Formula I

wherein:

A is a natural or unnatural amino acid of Formula IIa-i:

B is a hydrogen atom, a deuterium atom, C_{1-10} straight chain or branched alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, substituted naphthyl, 2-benzoxazolyl, substituted 2-oxazolyl, $(CH_2)_n$ cycloalkyl, $(CH_2)_n$ phenyl, $(CH_2)_n$ (substituted phenyl), $(CH_2)_n$ (1 or 2-naphthyl), $(CH_2)_n$ (heteroaryl), halomethyl, CO_2R^{12} , $CONR^{13}R^{14}$, CH_2ZR^{15} , $CH_2OCO(aryl)$, $CH_2OCO(heteroaryl)$, or $CH_2OPO(R^{16})R^{17}$, where Z is an oxygen or a sulfur atom, or B is a group of the Formula IIIa-c:

R¹ is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, substituted phenyl, phenylalkyl, substituted phenylalkyl, naphthyl, substituted naphthyl, (1 or 2 naphthyl)alkyl, heteroaryl, (heteroaryl)alkyl, R^{1a}(R^{1b})N, [or] R^{1c}O, 2-phenoxyphenyl or 2- or 3- benzylphenyl; and

R² is hydrogen, lower alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or substituted phenylalkyl;

and wherein:

R^{1a} and R^{1b} are independently hydrogen, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, substituted phenyl, phenylalkyl, substituted phenylalkyl, naphthyl, substituted naphthyl, (1 or 2 naphthyl)alkyl, heteroaryl, or (heteroaryl)alkyl, with the proviso that R^{1a} and R^{1b} cannot both be hydrogen;

R^{1c} is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, substituted phenyl, phenylalkyl, substituted phenylalkyl, naphthyl, substituted naphthyl, (1 or 2 naphthyl)alkyl, heteroaryl, or (heteroaryl)alkyl;

 R^3 is C_{1-6} lower alkyl, cycloalkyl, phenyl, substituted phenyl, $(CH_2)_nNH_2$, $(CH_2)_nNHCOR^9$, $(CH_2)_nN(C=NH)NH_2$, $(CH_2)_mCO_2R^2$, $(CH_2)_mOR^{10}$, $(CH_2)_mSR^{11}$, $(CH_2)_ncycloalkyl$, $(CH_2)_nphenyl$, $(CH_2)_n(Substituted phenyl)$, $(CH_2)_n(1$ or 2-naphthyl) or $(CH_2)_n(phenyl)$, wherein heteroaryl includes pyridyl, thienyl, furyl, thiazolyl, imidazolyl,

pyrazolyl, isoxazolyl, pyrazinyl, pyrimidyl, triazinyl, tetrazolyl, and indolyl;

 R^{3a} is hydrogen or methyl, or R^3 and R^{3a} taken together are -(CH₂)_d- where d is an integer from 2 to 6;

R⁴ is phenyl, substituted phenyl, (CH₂)_mphenyl, (CH₂)_m(substituted phenyl), cycloalkyl, or benzofused cycloalkyl;

 R^5 is hydrogen, lower alkyl, cycloalkyl, phenyl, substituted phenyl, $(CH_2)_n$ cycloalkyl, $(CH_2)_n$ phenyl, $(CH_2)_n$ (substituted phenyl), or $(CH_2)_n$ (1 or 2-naphthyl);

 R^6 is hydrogen, fluorine, oxo, lower alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, $(CH_2)_n$ cycloalkyl, $(CH_2)_n$ phenyl, $(CH_2)_n$ (substituted phenyl), $(CH_2)_n$ (1 or 2-naphthyl), OR^{10} , SR^{11} or $NHCOR^9$;

 R^7 is hydrogen, oxo, lower alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, $(CH_2)_n$ cycloalkyl, $(CH_2)_n$ phenyl, $(CH_2)_n$ (substituted phenyl), or $(CH_2)_n$ (1 or 2-naphthyl);

 R^8 is lower alkyl, cycloalkyl, $(CH_2)_n$ cycloalkyl, $(CH_2)_n$ phenyl, $(CH_2)_n$ (substituted phenyl), $(CH_2)_n$ (1 or 2-naphthyl), or COR^9 ;

 R^9 is hydrogen, lower alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, $(CH_2)_n$ cycloalkyl, $(CH_2)_n$ phenyl, $(CH_2)_n$ (substituted phenyl), $(CH_2)_n$ (1 or 2-naphthyl), OR^{12} , or $NR^{13}R^{14}$;

 R^{10} is hydrogen, lower alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, $(CH_2)_n$ cycloalkyl, $(CH_2)_n$ phenyl, $(CH_2)_n$ (substituted phenyl), or $(CH_2)_n$ (1 or 2-naphthyl);

 R^{11} is lower alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, $(CH_2)_n$ cycloalkyl, $(CH_2)_n$ phenyl, $(CH_2)_n$ (substituted phenyl), or $(CH_2)_n$ (1 or 2-naphthyl);

 R^{12} is lower alkyl, cycloalkyl, $(CH_2)_n$ cycloalkyl, $(CH_2)_n$ phenyl, $(CH_2)_n$ (substituted phenyl), or $(CH_2)_n$ (1 or 2-naphthyl);

 R^{13} is hydrogen, lower alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, substituted naphthyl, (CH₂)_ncycloalkyl, (CH₂)_nphenyl, (CH₂)_n(substituted phenyl), or (CH₂)_n(1 or 2-naphthyl);

R¹⁴ is hydrogen or lower alkyl;

or R¹³ and R¹⁴ taken together form a five to seven membered carbocyclic or heterocyclic ring, such as morpholine, or N-substituted piperazine;

 R^{15} is phenyl, substituted phenyl, naphthyl, substituted naphthyl, heteroaryl, $(CH_2)_n$ phenyl, $(CH_2)_n$ (substituted phenyl), $(CH_2)_n$ (1 or 2-naphthyl), or $(CH_2)_n$ (heteroaryl);

 R^{16} and R^{17} are independently lower alkyl, cycloalkyl, phenyl, substituted phenyl, naphthyl, phenylalkyl, substituted phenylalkyl, or (cycloalkyl)alkyl;

 R^{18} and R^{19} are independently hydrogen, alkyl, phenyl, substituted phenyl, $(CH_2)_n$ phenyl, $(CH_2)_n$ (substituted phenyl), or R^{18} and R^{19} taken together are -(CH=CH)₂-;

 R^{20} is hydrogen, alkyl, phenyl, substituted phenyl, $(CH_2)_n$ phenyl, $(CH_2)_n$ (substituted phenyl);

R²¹, R²² and R²³ are independently hydrogen, or alkyl;

```
X is CH_2, (CH_2)_2, (CH_2)_3, or S;

Y^1 is O or NR^{23};

Y^2 is CH_2, O, or NR^{23};

a is 0 or 1 and b is 1 or 2, provided that when a is 1 then b is 1;

c is 1 or 2, provided that when c is 1 then a is 0 and b is 1;

m is 1 or 2; and

n is 1, 2, 3 or 4;
```