Should you create project level alternatives in portfolios?

Jeffrey M. Keisler University of Massachusetts Boston

Ideas

- Portfolio decision quality
- Calculating value added
- Using data

Of potential interest www.portfoliodecisionanalysis.com

Project Level Buyup Alternatives

Adding value

Simple PDA Pick everything above target slope.

With partial-funding alternatives, apply target slope to projects.

Project characteristics?

Copyright J.M. Keisler 2012

There is (are?) data

					•						
									Maximum	First	Second
		First	Second	Third		First	Second	Third	investments'	midpoint	midpoint
	Core	step	step	step	Core	step	step	step	bang for the	implied	implied
PROJECT	investment	investment	investment		value	value	value	value	buck	exponent	exponent
1	0				32				0.425295858	-0.2903912	
2					28.8				2.043650794		
3	5304				30.5				1.700798334	16.84797	
4	. 0				34.3				0.076923077		
5	0	1144			33.7				0.262237762		
6					0				5.842159207	-1.7374891	
7	788			5645				10	0 15.02985382	0.4044793	-0.9598412
8					28.9				3.032345013	0.8381046	
9		3614	5726	11290	27.5	30.3	31.5	33.	1 0.522485538	1.9913243	1.9981897
10					34.4				2.325581395		
11					34.1				0.096693096	-2.7716965	
12					33.8				0.811359026		
13					33.9	34			0.168918919		
14		1748			33.7				0.641025641		
15	C	4264	6396		33.8	34.1			0.062539087	0.7934905	
16	4425	5621	7701		33.8	34.3	34.3		0.152625153	-21.150831	
17	328	361			32.6				33.33333333		
18	C	118	501		33.9	34.1	34.2		0.598802395	4.5780823	
19					34.1				0.378787879		
20	C	416	832		33.6	34.2	34.5		1.081730769	1.3862936	
21		2430	5046		30.3	31.5			0.640760645	-0.5902268	
22		15823	19764	29952	29.6	31.1	31.5	3	2 0.122749591	3.3266821	2.8665923
23		16245	23712		22.9	29.5	35.6		0.535593792	-1.462334	
24		28600	28600		20.5	36.1	43.4		NA		
25		1088	5451		30.7	32.3	33.1		0.440286186	5.4618009	
26		2188			34.1	34.2			0.045703839		
27	156	15200	35770		21.2	21.3	29.4		0.230246532	-7.5579047	
28	3224	4673	6545		60.2	60.2	60.4		0.060222824		
29	33488	53470			21.5	50.2			1.436292663		
30		6240	10033		27.9	32.1	33.4		1.450039547		
31		357			28				12.60504202		
32	459	1045	4056	4	500 yrigh 37,1	M. Keisler 2 36.5	38		0.250208507	9.2302573	
33		16640	19282	'	27.4	36.5	37.3		1.114613826	2.8753521	

And you?

- How many alternatives?
- Basis of alternatives?
- Diminishing returns?
- Satisfaction?

Estimate simulation settings

Source	Engineering projects	Pharma R&D projects	BASE-CASE	
N	33	30		
Cost (mean not important)	LogN(7.5,1.75)	LogN(3.3,2)	LogN(3,2)	
Productivity	LogN(<i>na</i> ,1.65) values were in utiles	LogN(3,1.2) late stage bias	LogN(2,√2) <i>incl. other data</i>	
Curvature (<0→incr returns)	Uniform(-3,7) 23 midpoints	U(-4,6) 41 midpoints	U(-3.5,6.5)	

Simulated portfolios

Significant lift

How much value added by PPM?

Sensitivity

Base case: adds 15% of PPM value

Lower budget: 19%

Less variation: 9%

More concave:36%

2 midpoints = 99% of PPM Value

Say no to haircuts

Only 33% of PPM Value

Application: Portfolios of portfolios

Sharpe & Keelin (1998) figured it out

The end

• For more info, working paper at:

http://scholarworks.umb.edu/management_wp/8/