Première partie

On représente l'ensemble des données dans un tableau et on calcule le rang de chaque observation.

La fonction rank() de R permet de calculer les rangs des observations.

On peut donc ensuite calculer les coefficients W. Pour A, la somme des rangs des 5 valeurs vaut 41 :

$$W = 41 - \frac{5 * (5 + 1)}{2} = 26$$

Pour B la somme des rangs des 6 valeurs vaut 25 :

$$W = 25 - \frac{6 * (6 + 1)}{2} = 4$$

On observe donc une différence entre le coefficient pour A et pour B, indiquant une différence entre les distributions A et B.

On peut vérifier ces résultats avec la fonction wilcox.test() de R:

```
> wilcox.test(A,B)

Wilcoxon rank sum test with continuity correction

data: A and B
W = 26, p-value = 0.05193
alternative hypothesis: true location shift is not equal to 0
> wilcox.test(B,A)

Wilcoxon rank sum test with continuity correction

data: B and A
W = 4, p-value = 0.05193
alternative hypothesis: true location shift is not equal to 0
```

Mais avec une valeur p supérieure à 0.05, nous ne sommes pas en mesure de rejeter l'hypothèse nulle. Nous ne pouvons donc pas conclure à une différence significative entre les deux distributions.

Seconde partie

Les variables sont mesurées sur les mêmes individus, on peut donc les apparier.

Pour faire un test de wilcox apparié, on lance la commande suivante :

La valeur p étant supérieure à 0.05, nous ne pouvons déclarer que les distributions des variables Var4 et Var6 sont différentes.

Le résultat pour les variables Var3 et Var 5 est le suivant :

Ci-dessous les distributions des variables Var4 et Var6 :

Ci-dessous les distributions des variables Var3 et Var5 :

Ces deux graphiques corroborent les calculs précédents.