Import Libries and Dataset.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Reading Dataset

data=pd.read_csv('CHD_preprocessed.csv')

Display Top Five Rows of The Dataset.

data.head()

₽		male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHy
	0	1	39	1	0	0.0	0.0	Oops No translation	found.
	1	0	46	0	0	0.0	0.0	0	
	2	1	48	0	1	20.0	0.0	0	
	3	0	61	1	1	30.0	0.0	0	
	4	0	46	1	1	23.0	0.0	0	
	4								>

Display Last 5 Rows of Dataset

data.tail()

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	pr
4128	1	50	0	1	1.0	0.0	0	
4129	1	51	1	1	43.0	0.0	0	
4130	0	48	0	1	20.0	0.0	0	
4131	0	44	0	1	15.0	0.0	0	
4132	0	52	0	0	0.0	0.0	0	
4								•

Find Shape of The Dataset.

Getting Information from Dataset.

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4133 entries, 0 to 4132
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	male	4133 non-null	int64
1	age	4133 non-null	int64
2	education	4133 non-null	int64
3	currentSmoker	4133 non-null	int64
4	cigsPerDay	4133 non-null	float64
5	BPMeds	4133 non-null	float64
6	prevalentStroke	4133 non-null	int64
7	prevalentHyp	4133 non-null	int64
8	diabetes	4133 non-null	int64
9	totChol	4133 non-null	float64
10	sysBP	4133 non-null	float64
11	diaBP	4133 non-null	float64
12	BMI	4133 non-null	float64
13	heartRate	4133 non-null	float64
14	glucose	4133 non-null	float64
15	TenYearCHD	4133 non-null	int64
44	aa. £1aa+C4/O\ ÷	m+C4(0)	

dtypes: float64(8), int64(8)

memory usage: 516.8 KB

Check Null Values in Dataset.

data.isnull()

	male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke
0	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False
4128	False	False	False	False	False	False	False
4129	False	False	False	False	False	False	False
4130	False	False	False	False	False	False	False
4131	False	False	False	False	False	False	False
4132	False	False	False	False	False	False	False
4133 rd	4133 rows × 16 columns						
4							>

data.isnull().sum()

male 0 age 0 currentSmoker 0 cigsPerDay 0 BPMeds 0 prevalentStroke 0

prevalentHyp	0
diabetes	0
totChol	0
sysBP	0
diaBP	0
BMI	0
heartRate	0
glucose	0
TenYearCHD	0
dtype: int64	

Checking Duplicates Data and Droping Them.

```
data_dup=data.duplicated().any()
print(data_dup)
```

False

Get Overall Statistics of Dataset.

data.describe()

	male	age	education	currentSmoker	cigsPerDay	BPMed
count	4133.000000	4133.000000	4133.000000	4133.000000	4133.000000	4133.00000
mean	0.427293	49.557222	0.280668	0.494798	9.101621	0.03435
std	0.494745	8.561628	0.449380	0.500033	11.918440	0.18216
min	0.000000	32.000000	0.000000	0.000000	0.000000	0.00000
25%	0.000000	42.000000	0.000000	0.000000	0.000000	0.00000
50%	0.000000	49.000000	0.000000	0.000000	0.000000	0.00000
75%	1.000000	56.000000	1.000000	1.000000	20.000000	0.00000
max	1.000000	70.000000	1.000000	1.000000	70.000000	1.00000
4						>

Data Correlation Matrix.

data.corr()

		male	age	education	currentSmoker	cigsPerDay	BPMeds
ma	ale	1.000000	-0.029085	0.004725	0.199750	0.320773	-0.055519
aç	ge	-0.029085	1.000000	-0.076576	-0.212415	-0.192079	0.142893
educ	ation	0.004725	-0.076576	1.000000	-0.013964	-0.018521	-0.014353
current	Smoker	0.199750	-0.212415	-0.013964	1.000000	0.771739	-0.056488
cigsP	erDay	0.320773	-0.192079	-0.018521	0.771739	1.000000	-0.050877
BPN	leds	-0.055519	0.142893	-0.014353	-0.056488	-0.050877	1.000000
prevaler	ntStroke	-0.004304	0.058712	-0.027895	-0.033515	-0.033658	0.122337
prevale	entHyp	0.003700	0.309546	-0.063900	-0.105899	-0.069803	0.272050

plt.figure(figsize=(17,10))
sns.heatmap(data.corr(),annot=True)

How Many Have Smoker and How Many Not:

```
0 2088
1 2045
Name: currentSmoker, dtype: int64
plt.figure(figsize=(4,5))
sns.countplot(data['currentSmoker'])
```


Find Count of Male and Female in Dataset.

<Axes: ylabel='count'>

Check Age Distribution.

○ 2000 T

sns.distplot(data['age'])
plt.show()

<ipython-input-44-dbfeb16865c8>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

Show Age Distribution As Per CurrentSmoker.

```
data.columns
```


Show Age Distribution as Per Diabetes.

```
plt.figure(figsize=(10,5))
sns.countplot(x="age",hue="diabetes",data=data)
```


Check Diabetes Distribution

data.columns

data['diabetes'].hist()

Compare Diabetes as per Smokers

```
g=sns.FacetGrid(data,hue="currentSmoker",aspect=2)
g.map(sns.kdeplot,'diabetes',fill=True)
plt.show()
#plt.legend(labels=['Smoker','Non Smoker'])
```


Plot Continues Variables.

```
data.columns
```

```
cate_val=[]
cont_val=[]
for column in data.columns:
  if data[column].nunique() <=10:</pre>
    cate_val.append(column)
  else:
      cont_val.append(column)
cate_val
     ['male',
  'education',
      'currentSmoker',
      'BPMeds',
      'prevalentStroke',
      'prevalentHyp',
      'diabetes',
      'TenYearCHD']
cont_val
     ['age',
      'cigsPerDay',
      'totChol',
      'sysBP',
      'diaBP',
      'BMI',
      'heartRate',
      'glucose']
data.hist(cont_val,figsize=(17,15))
plt.show()
plt.tight_layout()
```

