ANEXO 1

DISRIBUCIONES MUESTRALES DE ALGUNOS ESTADÍSTICOS

Estadístico	Situación	Supuesto	Distribución del estadístico
$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$	1.1	• $X_1, X_2,, X_n$ i.i.d $N(\mu, \sigma^2)$ • σ conocido • Para cualquier valor de $n \in \mathbb{N}$	N(0,1)
	1.2	 X₁,X₂,,X_n i.i.d X con E(X) = μ y Var(X) = σ² < ∞ σ conocido Para n grande (n≥30) 	Nig(0,1ig) aprox
$\frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$	2.1	 X₁,X₂,,Xₙ i.i.d N(μ,σ²) σ desconocido Para cualquier valor de n∈ N 	t(n-1)
	2.2	 X₁,X₂,,Xn i.i.d X con fdp en forma de campana σ desconocido Para cualquier valor de n∈ N 	t(n-1) aprox
	2.3	 X₁, X₂,, Xn i.i.d X σ desconocido Para n grande (n≥30) 	<i>N</i> (0,1) aprox
$\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$	3.1	• $X_{11}, X_{12}, \dots, X_{1n_1}$ i.i.d $N(\mu_1, \sigma_1^2)$ • $X_{21}, X_{22}, \dots, X_{2n_2}$ i.i.d $N(\mu_2, \sigma_2^2)$ • Muestras aleatorias independientes • σ_1 y σ_2 conocidas • Para todos los valores de $n_1, n_2 \in \mathbb{N}$	N(0,1)
	3.2	• $X_{11}, X_{12},, X_{1n_1}$ i.i.d X_1 con $E(X_1) = \mu_1$ y $Var(X_1) = \sigma_1^2 < \infty$ • $X_{21}, X_{22},, X_{2n_2}$ i.i.d X con $E(X_2) = \mu_2$ y $Var(X_2) = \sigma_2^2 < \infty$ • Muestras aleatorias independientes • σ_1 y σ_2 conocidas • Para n_1 y n_2 grandes $(n_1 \ge 30 \text{ y } n_2 \ge 30)$	<i>N</i> (0,1) aprox

Estadístico	Situación	Supuesto	Distribución del estadístico
$\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{S_{\rho}^{*} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$	4.1	• $X_{11}, X_{12}, \dots, X_{1n_1}$ i.i.d $N(\mu_1, \sigma_1^2)$ • $X_{21}, X_{22}, \dots, X_{2n_2}$ i.i.d $N(\mu_2, \sigma_2^2)$ • Muestras aleatorias independientes • $\sigma_1 = \sigma_2$ desconocidas • Para todos los valores de $n_1, n_2 \in \mathbb{N}$	$t(n_1+n_2-2)$
	4.2	• $X_{11}, X_{12}, \ldots, X_{1n_1}$ i.i.d aproximadamente $N\left(\mu_1, \sigma_1^{\ 2}\right)$ • $X_{21}, X_{22}, \ldots, X_{2n_2}$ i.i.d aproximadamente $N\left(\mu_2, \sigma_2^{\ 2}\right)$ • Muestras aleatorias independientes • $\sigma_1 = \sigma_2$ desconocidas • Para todos los valores de $n_1, n_2 \in \mathbb{N}$	$t(n_1 + n_2 - 2)$ aprox
$\frac{\overline{X}_{1} - \overline{X}_{2} - (\mu_{1} - \mu_{2})}{\sqrt{\frac{S_{1}^{2} + S_{2}^{2}}{n_{1}} + \frac{S_{2}^{2}}{n_{2}}}}$	4.3	• $X_{11}, X_{12}, \dots, X_{1n_1}$ i.i.d aproximadamente $N\left(\mu_1, \sigma_1^{\ 2}\right)$ • $X_{21}, X_{22}, \dots, X_{2n_2}$ i.i.d aproximadamente $N\left(\mu_2, \sigma_2^{\ 2}\right)$ • Muestras aleatorias independientes • σ_1 y σ_2 desconocidas • Para todos los valores de $n_1, n_2 \in \mathbb{N}$	$t{\left(arphi ight)}^{**}$ aprox
$\frac{(n-1)S^2}{\sigma^2}$	5.1	• $X_1, X_2,, X_n$ i.i.d $N(\mu, \sigma^2)$ • Para cualquier valor de $n \in \mathbb{N}$	$\chi^2_{(n-1)}$
$\frac{{\sigma_1}^2 {S_2}^2}{{\sigma_2}^2 {S_1}^2}$	6.1	• $X_{11}, X_{12}, \dots, X_{1n_1}$ i.i.d aproximadamente $N\left(\mu_1, \sigma_1^{\ 2}\right)$ • $X_{21}, X_{22}, \dots, X_{2n_2}$ i.i.d aproximadamente $N\left(\mu_2, \sigma_2^{\ 2}\right)$ • Muestras aleatorias independientes • Para todos los valores de $n_1, n_2 \in \mathbb{N}$	$F_{(n_1-1,n_2-1)}$
$\frac{\hat{\rho} - \pi}{\sqrt{\hat{\rho}(1-)\hat{\rho}/n}}$	7.1	• X_1, X_2, \dots, X_n i.i.d $B(\pi)$ • $\hat{p} = \frac{\sum_{i=1}^{n} X_i}{n}$ es la proporción muestral	<i>N</i> (0,1) aprox

• Para n grande $(n \ge 30)$

Observaciones

*
$$S_p = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

**
$$\upsilon = (s_1^2/n_1 + s_2^3/n_2)^2 / ([(s_1^2/n_1)^2/(n_1 - 1)] + [(s_2^2/n_2)^2/(n_2 - 1)])$$