Formulae For

Vector Algebra

By OP Gupta [Indira Award Winner, +91-9650 350 480]

BASIC ALGEBRA OF VECTORS

Important Terms, Definitions & Formulae

- **01.** Vector Basic Introduction: A quantity having magnitude as well as the direction is called vector. It is denoted as \overrightarrow{AB} or \overrightarrow{a} . Its magnitude (or modulus) is $|\overrightarrow{AB}|$ or $|\overrightarrow{a}|$ otherwise, simply AB or a.
 - Vectors are denoted by symbols such as \vec{a} or \vec{a} or \vec{a} .

[Pictorial representation of vector]

- 02. Initial and Terminal points: The initial and terminal points mean that point from which the vector originates and terminates respectively.
- **03. Position Vector:** The position vector of a point say P(x,y,z) is $\overrightarrow{OP} = \vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and the magnitude is $|\vec{r}| = \sqrt{x^2 + y^2 + z^2}$. The vector $\overrightarrow{OP} = \vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is said to be in its *component form*. Here x,y,z are called the *scalar components* or *rectangular components* of \vec{r} and $x\hat{i}$, $y\hat{j}$, $z\hat{k}$ are the vector components of \vec{r} along x-, y-, z- axes respectively.
 - Also, $\overrightarrow{AB} = (\text{Position Vector of B}) (\text{Position Vector of A})$. For example, let $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$. Then, $\overrightarrow{AB} = (x_2\hat{i} + y_2\hat{j} + z_2\hat{k}) (x_1\hat{i} + y_1\hat{j} + z_1\hat{k})$.
 - \Leftrightarrow Here \hat{i} , \hat{j} and \hat{k} are the unit vectors along the axes OX, OY and OZ respectively. (The discussion about unit vectors is given later in the point 05(e).)
- **04. Direction ratios and direction cosines:** If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then coefficients of \hat{i} , \hat{j} , \hat{k} in \vec{r} i.e., x, y, z are called the *direction ratios* (abbreviated as d.r.'s) of vector \vec{r} . These are denoted by a, b, c (i.e. a = x, b = y, c = z; in a manner we can say that scalar components of vector \vec{r} and its d.r.'s both are the same).

Also, the coefficients of \hat{i} , \hat{j} , \hat{k} in \hat{r} (which is the unit vector of \vec{r}) i.e., $\frac{x}{\sqrt{x^2+y^2+z^2}}$, $\frac{y}{\sqrt{x^2+y^2+z^2}}$,

 $\frac{z}{\sqrt{x^2 + y^2 + z^2}}$ are called *direction cosines* (which is abbreviated as d.c.'s) of vector \vec{r} .

- These direction cosines are denoted by l, m, n such that $l = \cos \alpha$, $m = \cos \beta$, $n = \cos \gamma$ and $l^2 + m^2 + n^2 = 1 \implies \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.
- transpectation be easily concluded that $\frac{x}{r} = l = \cos \alpha$, $\frac{y}{r} = m = \cos \beta$, $\frac{z}{r} = n = \cos \gamma$.

 Therefore, $\vec{r} = lr\hat{i} + mr\hat{j} + nr\hat{k} = r(\cos \alpha \hat{i} + \cos \beta \hat{j} + \cos \gamma \hat{k})$. (Here $r = |\vec{r}|$.)

 [See the ΔOAP in Fig.1]
- Angles α, β, γ are made by the vector \vec{r} with the positive directions of x, y, z-axes respectively and these angles are known as the *direction angles* of vector \vec{r}).
- For a better understanding, you can visualize the Fig.1.

05. TYPES OF VECTORS

- a) Zero or Null vector: Its that vector whose *initial* and terminal points are coincident. It is denoted by $\vec{0}$. Of course its magnitude is 0 (zero).
- Any non-zero vector is called a **proper vector**.
- b) Co-initial vectors: Those vectors (two or more) having the same initial point are called the co-initial vectors.

Page - [1]

- c) Co-terminous vectors: Those vectors (two or more) having the same terminal point are called the co-terminous vectors.
- d) Negative of a vector: The vector which has the same magnitude as the \vec{r} but opposite direction. It is denoted by $-\vec{r}$. Hence if, $\overrightarrow{AB} = \vec{r} \Rightarrow \overrightarrow{BA} = -\vec{r}$. That is $\overrightarrow{AB} = -\overrightarrow{BA}$, $\overrightarrow{PQ} = -\overrightarrow{QP}$ etc.
- e) Unit vector: It is a vector with the unit magnitude. The unit vector in the direction of vector \vec{r} is given by $\hat{r} = \frac{\vec{r}}{|\vec{r}|}$ such that $|\vec{r}| = 1$. So, if $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ then its unit vector is:

$$\hat{r} = \frac{x}{\sqrt{x^2 + y^2 + z^2}} \hat{i} + \frac{y}{\sqrt{x^2 + y^2 + z^2}} \hat{j} + \frac{z}{\sqrt{x^2 + y^2 + z^2}} \hat{k}.$$

- Unit vector perpendicular to the plane of \vec{a} and \vec{b} is: $\pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$.
- f) Reciprocal of a vector: It is a vector which has the same direction as the vector \vec{r} but magnitude equal to the reciprocal of the magnitude of \vec{r} . It is denoted as \vec{r}^{-1} . Hence $|\vec{r}^{-1}| = \frac{1}{|\vec{r}|}$.
- g) Equal vectors: Two vectors are said to be equal if they have the same magnitude as well as direction, regardless of the positions of their initial points.

Thus
$$\vec{a} = \vec{b} \Leftrightarrow \begin{cases} |\vec{a}| = |\vec{b}| \\ \vec{a} \text{ and } \vec{b} \text{ have same direction.} \end{cases}$$

Also, if
$$\vec{a} = \vec{b} \implies a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \implies a_1 = b_1, a_2 = b_2, a_3 = b_3$$

- h) Collinear or Parallel vector: Two vectors \vec{a} and \vec{b} are collinear or parallel if there exists a non-zero scalar λ such that $\vec{a} = \lambda \vec{b}$.
- It is important to note that the respective coefficients of \hat{i} , \hat{j} , \hat{k} in \vec{a} and \vec{b} are proportional provide they are parallel or collinear to each other. Consider $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, then by using $\vec{a} = \lambda\vec{b}$, we can conclude that: $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = \lambda$.
- The d.r.'s of parallel vectors are same (or are in proportion).
- The vectors \vec{a} and \vec{b} will have same or opposite direction as λ is positive or negative.
- The vectors \vec{a} and \vec{b} are collinear if $\vec{a} \times \vec{b} = \vec{0}$.
- *i) Free vectors:* The vectors which can undergo parallel displacement without changing its magnitude and direction are called free vectors.

06. ADDITION OF VECTORS

- a) Triangular law: If two adjacent sides (say sides AB and BC) of a triangle ABC are represented by \vec{a} and \vec{b} taken in same order, then the third side of the triangle taken in the reverse order gives the sum of vectors \vec{a} and \vec{b} i.e., $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} \Rightarrow \overrightarrow{AC} = \vec{a} + \vec{b}$. See Fig.2.
- Also since $\overrightarrow{AC} = -\overrightarrow{CA} \Rightarrow \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{AA} = \overrightarrow{0}$.
- And $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} \Rightarrow \overrightarrow{AB} + \overrightarrow{BC} \overrightarrow{AC} = \overrightarrow{0} \Rightarrow \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$.
- **b)** Parallelogram law: If two vectors \vec{a} and \vec{b} are represented in magnitude and the direction by the two adjacent sides (say AB and AD) of a parallelogram ABCD, then their sum is given by that diagonal of parallelogram which is co-initial with \vec{a} and \vec{b} i.e., $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$. For the illustration, see Fig.3.

Multiplication of a vector by a scalar

Let \vec{a} be any vector and k be any scalar. Then the product $k\vec{a}$ is defined as a vector whose magnitude is |k| times that of \vec{a} and the direction is

- (i) same as that of \vec{a} if k is positive, and
- (ii) opposite to that of \vec{a} if k is negative.

MATHEMATICS - List Of Formulae for Class XII By OP Gupta (+91-9650350480)

07. PROPERTIES OF VECTOR ADDITION

- Commutative property: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$. Consider $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ be any two given vectors. Then $\vec{a} + \vec{b} = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k} = \vec{b} + \vec{a}$.
- Associative property: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
- Additive identity property: $\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$.
- Additive inverse property: $\vec{a} + (-\vec{a}) = \vec{0} = (-\vec{a}) + \vec{a}$.
- **08. Section formula:** The position vector of a point say P dividing a line segment joining the points A and B whose position vectors are \vec{a} and \vec{b} respectively, in the ratio m:n
 - (a) internally, is $\overrightarrow{OP} = \frac{m\overrightarrow{b} + n\overrightarrow{a}}{m+n}$
 - **(b)** externally, is $\overrightarrow{OP} = \frac{m\overrightarrow{b} n\overrightarrow{a}}{m n}$.
 - Also if point P is the *mid-point* of line segment AB then, $\overrightarrow{OP} = \frac{\vec{a} + \vec{b}}{2}$

PRODUCT OF VECTORS DOT PRODUCT & CROSS PRODUCT

Important Terms, Definitions & Formulae

01. PRODUCT OF TWO VECTORS

a) Scalar product or Dot product: The dot product of two vectors \vec{a} and \vec{b} is defined by, $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$ where θ is the angle between \vec{a} and \vec{b} , $0 \le \theta \le \pi$. See Fig.4.

Consider
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$. Then $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$.

- Properties / Observations of Dot product
- $\hat{i} \cdot \hat{i} = |\hat{i}| |\hat{i}| \cos 0 = 1 \Rightarrow \hat{i} \cdot \hat{i} = 1 = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k}$
- $\hat{i}.\hat{j} = |\hat{i}||\hat{j}|\cos\frac{\pi}{2} = 0 \Rightarrow \hat{i}.\hat{j} = 0 = \hat{j}.\hat{k} = \hat{k}.\hat{i}$.
- $\vec{a} \cdot \vec{b} \in \mathbb{R}$, where R is real number *i.e.*, any scalar.
- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ (Commutative property of dot product).
- $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$.
- If $\theta = 0$ then, $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}|$. Also $\vec{a} \cdot \vec{a} = |\vec{a}|^2 = a^2$; as θ in this case is 0. Moreover if $\theta = \pi$ then, $\vec{a} \cdot \vec{b} = -|\vec{a}| |\vec{b}|$.
- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ (Distributive property of dot product).
- $\vec{a} \cdot (-\vec{b}) = -(\vec{a} \cdot \vec{b}) = (-\vec{a}) \cdot \vec{b}$.
- Angle between two vectors \vec{a} and \vec{b} can be found by the expression given below:

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

or,
$$\theta = \cos^{-1} \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \right)$$
.

• **Projection of a vector** \vec{a} on the other vector say \vec{b} is given as $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right)$ *i.e.*, $\vec{a} \cdot \hat{b}$.

This is also known as **Scalar projection** or **Component of** \vec{a} **along** \vec{b} .

• **Projection vector** of \vec{a} on the other vector say \vec{b} is given as $\left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right) \cdot \hat{b}$.

This is also known as the **Vector projection**.

- Work done W in moving an object from point A to the point B by applying a force \vec{F} is given as $W = \vec{F} \cdot \overrightarrow{AB}$.
- b) Vector product or Cross product: The cross product of two vectors \vec{a} and \vec{b} is defined by, $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{\eta}$, where θ is the angle between the vectors \vec{a} and \vec{b} , $0 \le \theta \le \pi$ and $\hat{\eta}$ is a unit vector perpendicular to both \vec{a} and \vec{b} . For better illustration, see Fig.5. Consider $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$.

Then,
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)\hat{i} - (a_1b_3 - a_3b_1)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}$$

Properties / Observations of Cross product

- $\hat{i} \times \hat{i} = |\hat{i}| |\hat{i}| \sin 0. \ \hat{j} = \vec{0} \Rightarrow \hat{i} \times \hat{i} = \vec{0} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k}.$
- $\hat{i} \times \hat{j} = |\hat{i}||\hat{j}|\sin\frac{\pi}{2}.\hat{k} = \hat{k} \Rightarrow \hat{i} \times \hat{j} = \hat{k}, \hat{j} \times \hat{k} = \hat{i}, \hat{k} \times \hat{i} = \hat{j}.$
- Fig.6 at the end of chapter can be considered for memorizing the vector product of \hat{i} , \hat{j} , \hat{k} .
- $\vec{a} \times \vec{b}$ is a vector \vec{c} (say) and this vector \vec{c} is perpendicular to both the vectors \vec{a} and \vec{b} .
- $\left| \vec{a} \times \vec{b} \right| = \left| |\vec{a}| \left| \vec{b} \right| \sin \theta \, \hat{\eta} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \sin \theta \, i.e., \, \left| \vec{a} \times \vec{b} \right| = ab \sin \theta.$
- $\vec{a} \times \vec{b} = \vec{0} \Leftrightarrow \vec{a} // \vec{b}$ or, $\vec{a} = \vec{0}$, $\vec{b} = \vec{0}$.
- $\vec{a} \times \vec{a} = \vec{0}$.
- $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (Commutative property does not hold for cross product).
- $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}; (\vec{b} + \vec{c}) \times \vec{a} = \vec{b} \times \vec{a} + \vec{c} \times \vec{a}$

(Distributive property of the vector product or cross product).

• Angle between two vectors \vec{a} and \vec{b} in terms of Cross-product can be found by the expression given here: $\sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|}$

or,
$$\theta = \sin^{-1} \left(\frac{\left| \vec{a} \times \vec{b} \right|}{\left| \vec{a} \right| \left| \vec{b} \right|} \right)$$
.

• If \vec{a} and \vec{b} represent the *adjacent sides of a triangle*, then the **area of triangle** can be obtained by evaluating $\frac{1}{2} |\vec{a} \times \vec{b}|$.

- If \vec{a} and \vec{b} represent the *adjacent sides of a parallelogram*, then the **area of parallelogram** can be obtained by evaluating $|\vec{a} \times \vec{b}|$.
- If \vec{p} and \vec{q} represent the *two diagonals of a parallelogram*, then the **area of** parallelogram can be obtained by evaluating $\frac{1}{2}|\vec{p}\times\vec{q}|$.

If \vec{a} and \vec{b} represent the adjacent sides of a parallelogram, then the diagonals \vec{d}_1 and \vec{d}_2 of the parallelogram are given as:

$$\vec{d}_1 = \vec{a} + \vec{b}$$
 , $\vec{d}_2 = \vec{b} - \vec{a}$.

02. Relationship between Vector product and Scalar product [Lagrange's Identity]

Consider two vectors \vec{a} and \vec{b} . We also know that $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{\eta}$.

Now,
$$\begin{vmatrix} \vec{a} \times \vec{b} | = ||\vec{a}||\vec{b}|\sin\theta\hat{\eta}| \\ \Rightarrow |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta \\ \Rightarrow |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 \sin^2\theta \\ \Rightarrow |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 (1 - \cos^2\theta) \\ \Rightarrow |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - |\vec{a}|^2 |\vec{b}|^2 \cos^2\theta \\ \Rightarrow |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - (|\vec{a}||\vec{b}|\cos\theta)^2 \\ \Rightarrow |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - (|\vec{a}.\vec{b})^2 \\ \Rightarrow |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2 - (|\vec{a}.\vec{b})^2 \\ \text{or,} \qquad |\vec{a} \times \vec{b}|^2 + (|\vec{a}.\vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2.$$

Note that $|\vec{a} \times \vec{b}|^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} \end{vmatrix}$. Here the RHS represents a **determinant of order 2**.

03. Cauchy-Schwartz inequality:

For any two vectors \vec{a} and \vec{b} , we always have $|\vec{a}.\vec{b}| \le |\vec{a}| |\vec{b}|$.

Proof: The given inequality holds trivially when either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$ *i.e.*, in such a case $|\vec{a}.\vec{b}| = 0 = |\vec{a}||\vec{b}|$. So, let us check it for $|\vec{a}| \neq 0 \neq |\vec{b}|$.

As we know, $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

$$\Rightarrow \left(\vec{a}.\vec{b}\right)^2 = \left|\vec{a}\right|^2 \left|\vec{b}\right|^2 \cos^2 \theta$$

Also we know $\cos^2 \theta \le 1$ for all the values of θ .

$$\Rightarrow |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta \le |\vec{a}|^2 |\vec{b}|^2$$

$$\Rightarrow (\vec{a}.\vec{b})^2 \le |\vec{a}|^2 |\vec{b}|^2$$

$$\Rightarrow |\vec{a}.\vec{b}| \le |\vec{a}| |\vec{b}|.$$

[H.P.]

04. Triangle inequality:

For any two vectors \vec{a} and \vec{b} , we always have $\left| \vec{a} + \vec{b} \right| \leq \left| \vec{a} \right| + \left| \vec{b} \right|$

Proof: The given inequality holds trivially when either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$ *i.e.*, in such a case we have

List Of Formulae for Class XII By OP Gupta (Electronics & Communications Engineering)
$$|\vec{a} + \vec{b}| = 0 = |\vec{a}| + |\vec{b}|$$
. So, let us check it for $|\vec{a}| \neq 0 \neq |\vec{b}|$.

Then consider
$$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b}$$

$$\Rightarrow |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos\theta$$

For
$$\cos \theta \le 1$$
, we have: $2|\vec{a}||\vec{b}|\cos \theta \le 2|\vec{a}||\vec{b}|$

$$\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos\theta \le |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|$$

$$\Rightarrow |\vec{a} + \vec{b}|^2 \le (|\vec{a}| + |\vec{b}|)^2$$

$$\Rightarrow |\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|.$$

[H.P.]

SCALAR TRIPLE PRODUCT OF VECTORS

Important Terms, Definitions & Formulae

01. SCALAR TRIPLE PRODUCT:

If \vec{a} , \vec{b} and \vec{c} are any three vectors, then the scalar product of $\vec{a} \times \vec{b}$ with \vec{c} is called scalar triple product of \vec{a} , \vec{b} and \vec{c} .

Thus, $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is called the scalar triple product of \vec{a} , \vec{b} and \vec{c} .

Notation for scalar triple product: The scalar triple product of \vec{a} , \vec{b} and \vec{c} is denoted by $[\vec{a} \ \vec{b} \ \vec{c}]$. That is, $(\vec{a} \times \vec{b}) \cdot \vec{c} = [\vec{a} \ \vec{b} \ \vec{c}]$.

Scalar triple product is also known as **mixed product** because in scalar triple product, both the signs of dot and cross are used.

Consider
$$\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$.

Then,
$$[\vec{a} \ \vec{b} \ \vec{c}] = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

❖ Properties / Observations of Scalar Triple Product

- $(\vec{a} \times b) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$. That is, the position of dot and cross can be interchanged without change in the value of the scalar triple product (provided their cyclic order remains the same).
- $[\vec{a} \ \vec{b} \ \vec{c}] = [\vec{b} \ \vec{c} \ \vec{a}] = [\vec{c} \ \vec{a} \ \vec{b}]$. That is, the value of scalar triple product doesn't change when cyclic order of the vectors is maintained.

Also $[\vec{a} \ \vec{b} \ \vec{c}] = -[\vec{b} \ \vec{a} \ \vec{c}]$; $[\vec{b} \ \vec{c} \ \vec{a}] = -[\vec{b} \ \vec{a} \ \vec{c}]$. That is, the value of scalar triple product remains the same in magnitude but changes the sign when cyclic order of the vectors is altered.

- For any three vectors \vec{a} , \vec{b} , \vec{c} and scalar λ , we have $[\lambda \vec{a} \ \vec{b} \ \vec{c}] = \lambda [\vec{a} \ \vec{b} \ \vec{c}]$.
- The value of scalar triple product is zero if any two of the three vectors are identical. That is, $[\vec{a} \ \vec{a} \ \vec{c}] = 0 = [\vec{a} \ \vec{b} \ \vec{b}] = [\vec{a} \ \vec{b} \ \vec{a}]$ etc.
- Value of scalar triple product is zero if any two of the three vectors are parallel or collinear.
- Scalar triple product of \hat{i} , \hat{j} and \hat{k} is 1 (*unity*) *i.e.*, $[\hat{i} \ \hat{j} \ \hat{k}] = 1$.

If $[\vec{a} \ \vec{b} \ \vec{c}] = 0$ then, the non-parallel and non-zero vectors \vec{a} , \vec{b} and \vec{c} are **coplanar**.

Volume Of Parallelopiped

- If \vec{a} , \vec{b} and \vec{c} represent the three co-terminus edges of a parallelopiped, then its volume can be obtained by: $[\vec{a}\ \vec{b}\ \vec{c}] = (\vec{a} \times \vec{b}) \cdot \vec{c}$. That is,
 - $(\vec{a} \times \vec{b}) \cdot \vec{c}$ = Base area of Parallelopiped × Height of Parallelopiped on this base.
- If for any three vectors \vec{a} , \vec{b} and \vec{c} , we have $[\vec{a}\ \vec{b}\ \vec{c}] = 0$, then volume of parallelepiped with the co-terminus edges as \vec{a} , \vec{b} and \vec{c} , is zero. This is possible only if the vectors \vec{a} , \vec{b} and \vec{c} are co-planar.

Hii, All!

I hope this texture may have proved beneficial for you.

While going through this material, if you noticed any error(s) or, something which doesn't make sense to you, **please** bring it in my notice through SMS or Call at +91-9650 350 480 or Email at **theopgupta@gmail.com**.

With lots of Love & Blessings!

- OP Gupta

Electronics & Communications Engineering, Indira Award Winner www.theOPGupta.WordPress.com

VARIOUS FIGURES RELATED TO THE VECTOR ALGEBRA

Fig 6