THE STURM-LIOUVILLE PROBLEM AND THE POLAR REPRESENTATION THEOREM

JORGE REZENDE

Grupo de Física-Matemática da Universidade de Lisboa Av. Prof. Gama Pinto 2, 1649-003 Lisboa, PORTUGAL and

Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa e-mail: rezende@cii.fc.ul.pt

Dedicated to the memory of Professor Ruy Luís Gomes

Abstract: The polar representation theorem for the *n*-dimensional time-dependent linear Hamiltonian system

$$\dot{Q} = BQ + CP, \ \dot{P} = -AQ - B^*P,$$

with continuous coefficients, states that, given two isotropic solutions (Q_1, P_1) and (Q_2, P_2) , with the identity matrix as Wronskian, the formula

$$Q_2 = r\cos\varphi, \ Q_1 = r\sin\varphi,$$

holds, where r and φ are continuous matrices, $\det r \neq 0$ and φ is symmetric.

In this article we use the monotonicity properties of the matrix φ eigenvalues in order to obtain results on the Sturm-Liouville problem

AMS Subj. Classification: 34B24, 34C10, 34A30 Key words: Sturm-Liouville theory, Hamiltonian systems, polar

Key words: Sturm-Liouville theory, Hamiltonian systems, polar representation.

1. Introduction

Let n = 1, 2, ... In this article, (.,.) denotes the natural inner product in \mathbb{R}^n . For $x \in \mathbb{R}^n$ one writes $x^2 = (x, x), |x| = (x, x)^{\frac{1}{2}}$. If

M is a real matrix, we shall denote M^* its transpose. M_{jk} denotes the matrix entry located in row j and column k. I_n is the identity $n \times n$ matrix. M_{jk} can be a matrix. For example, M can have the four blocks M_{11} , M_{12} , M_{21} , M_{22} . In a case like this one, if $M_{12} = M_{21} = 0$, we write $M = \text{diag}(M_{11}, M_{22})$.

1.1. The symplectic group and the polar representation theorem.

Consider the time-dependent linear Hamiltonian system

(1.1)
$$\dot{Q} = BQ + CP, \, \dot{P} = -AQ - B^*P,$$

where A, B and C are time-dependent $n \times n$ matrices. A and C are symmetric. The dot means time derivative, the derivative with respect to τ . The time variable τ belongs to an interval. Without loss of generality we shall assume that this interval is [0, T[, T > 0. T can be ∞ . In the following t, 0 < t < T, is also a time variable and $\tau \in [0, t]$.

If (Q_1, P_1) and (Q_2, P_2) are solutions of (1.1) one denotes the Wronskian (which is constant) by

$$W(Q_1, P_1; Q_2, P_2) \equiv W = P_1^* Q_2 - Q_1^* P_2.$$

A solution (Q, P) of (1.1) is called isotropic if W(Q, P; Q, P) = 0. From now on (Q_1, P_1) and (Q_2, P_2) will denote two isotropic solutions of (1.1) such that $W(Q_1, P_1; Q_2, P_2) = I_n$. This means that

$$P_1^*Q_2 - Q_1^*P_2 = I_n , P_1^*Q_1 = Q_1^*P_1 , P_2^*Q_2 = Q_2^*P_2.$$

These relations express precisely that, for each $\tau \in [0, T[$ the $2n \times 2n$ matrix

(1.2)
$$\Phi = \begin{bmatrix} Q_2 & Q_1 \\ P_2 & P_1 \end{bmatrix}$$

is symplectic. Its left inverse and, therefore, its inverse, is given by

$$\Phi^{-1} = \begin{bmatrix} P_1^* & -Q_1^* \\ -P_2^* & Q_2^* \end{bmatrix}.$$

As it is well-known the $2n \times 2n$ symplectic matrices form a group, the symplectic group.

Then, one has

$$P_1Q_2^* - P_2Q_1^* = I_n, \quad Q_1Q_2^* = Q_2Q_1^*, \quad P_1P_2^* = P_2P_1^*,$$

and, therefore,

$$Q_2^* P_1 - P_2^* Q_1 = I_n, \quad Q_2 P_1^* - Q_1 P_2^* = I_n,$$

and the following matrices, whenever they make sense, are symmetric

$$\begin{split} &P_2Q_2^{-1}, \quad Q_1P_1^{-1}, \quad Q_2P_2^{-1}, \quad P_1Q_1^{-1}, \\ &Q_2^{-1}Q_1, \quad P_2^{-1}P_1, \quad Q_1^{-1}Q_2, \quad P_1^{-1}P_2. \end{split}$$

Denote by J, S and M, the following $2n \times 2n$ matrices

$$J = \begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}, \quad S = \begin{bmatrix} A & B^* \\ B & C \end{bmatrix},$$

and M = -JS. J is symplectic and S is symmetric.

One says that the $2n \times 2n$ matrix L is antisymplectic if $LJL^* = -J$. Notice that the product of two antisymplectic matrices is symplectic, and that the product of an antisymplectic matrix by a symplectic one is antisymplectic. We shall use this definition later.

Notice that if n=1 and L is a 2×2 matrix, then one has $LJL^*=(\det L)\,J.$

Equation (1.1) can then be written

$$\dot{\Phi} = M\Phi$$

Notice that, if Φ is symplectic, Φ^* is symplectic, and

$$\Phi^{-1} = -J\Phi^*J, \ \Phi^*J\Phi = J, \ \Phi J\Phi^* = J.$$

When we have a C^1 function $\tau \mapsto \Phi(\tau)$, $\dot{\Phi}J\Phi^* + \Phi J\dot{\Phi}^* = 0$. Hence, $\dot{\Phi}J\Phi^*$ is symmetric and one can recover M:

$$M = \dot{\Phi}\Phi^{-1} = -\dot{\Phi}J\Phi^*J.$$

This means that from Φ one can obtain A, B, and C:

$$A = \dot{P}_1 P_2^* - \dot{P}_2 P_1^*, \quad C = \dot{Q}_1 Q_2^* - \dot{Q}_2 Q_1^*,$$

$$B = -\dot{Q}_1 P_2^* + \dot{Q}_2 P_1^* = Q_1 \dot{P}_2^* - Q_2 \dot{P}_1^*.$$

The proof of the following theorem on a polar representation can be found in [3]. See also [4], [5].

Theorem 1.1. Assume that $C(\tau)$ is always > 0 (or always < 0) and of class C^1 . Consider two isotropic solutions of (1.1), (Q_1, P_1) and (Q_2, P_2) , such that $W = I_n$. Then, there are C^1 matrix-valued functions $r(\tau)$, $\varphi(\tau)$, for $\tau \in [0, T[$, such that: a) $\det r(\tau) \neq 0$ and $\varphi(\tau)$ is symmetric for every τ ; b) the eigenvalues of φ are C^1 functions of τ , with strictly positive (negative) derivatives; c) one has

$$Q_2(\tau) = r(\tau)\cos\varphi(\tau)$$
 and $Q_1(\tau) = r(\tau)\sin\varphi(\tau)$.

Notice that φ is not unique and that

(1.3)
$$\frac{d}{d\tau}Q_2^{-1}Q_1 = Q_2^{-1}CQ_2^{*-1},$$

whenever $\det Q_2(\tau) \neq 0$ (see [3]).

Example 1.1. Consider n = 1, B = 0, A = C = 1. Let $k_1, k_2 \in \mathbb{R}$. For $k_2 > 0$, let

$$Q_2(\tau) = k_2^{-1/2} \cos \tau, \ \ Q_1(\tau) = k_2^{-1/2} (k_1 \cos \tau + k_2 \sin \tau).$$

Then there exists an increasing continuous function of τ , $\xi(k_1, k_2, \tau) \equiv \xi(\tau)$, $\tau \in \mathbb{R}$, such that

$$Q_2(\tau) = r(\tau)\cos\xi(\tau), \ Q_1(\tau) = r(\tau)\sin\xi(\tau),$$

where $r(\tau) = k_2^{-1/2} \sqrt{\cos^2 \tau + (k_1 \cos \tau + k_2 \sin \tau)^2}$. The function ξ is not unique in the sense that two such functions differ by $2k\pi$, $k \in \mathbb{Z}$. For $\tau \neq \frac{\pi}{2} + k\pi$, one has

$$(1.4) k_1 + k_2 \tan \tau = \tan \xi(\tau).$$

This formula shows that $\lim_{\tau \to \pm \infty} \xi(\tau) = \pm \infty$.

For $k_2 < 0$, one defines, obviously,

$$\xi(k_1, k_2, \tau) = -\xi(-k_1, -k_2, \tau).$$

When $k_2 = 0$, ξ is a constant function. For every $k_2 \in \mathbb{R}$, formula (1.4) remains valid.

One can fix ξ by imposing $-\frac{\pi}{2} < \xi(0) < \frac{\pi}{2}$, as we shall do from now on.

For $k_2 > 0$, one has $\xi\left(\frac{\pi}{2} + k\pi\right) = \frac{\pi}{2} + k\pi$, and for $k_2 < 0$, one has $\xi\left(\frac{\pi}{2} + k\pi\right) = -\frac{\pi}{2} - k\pi$, for every $k \in \mathbb{Z}$.

If S is a symmetric $n \times n$ matrix, and Ω is an orthogonal matrix that diagonalizes S, $S = \Omega \operatorname{diag}(s_1, s_2, \ldots, s_n)\Omega^*$, we denote

$$\xi(k_1, k_2, S) \equiv \xi(S) = \Omega \operatorname{diag}(\xi(s_1), \xi(s_2), \dots, \xi(s_n)) \Omega^*.$$

Define now

(1.5)
$$\zeta(\tau) \equiv \zeta(k_1, k_2, \tau) = -\xi(k_1, k_2, \tau) + \frac{\pi}{2}.$$

Then $0 < \zeta(0) < \pi$, and

$$(k_1 + k_2 \tan \tau)^{-1} = \tan \zeta(\tau),$$

for every τ such that $k_1 + k_2 \tan \tau \neq 0$.

For $k_2 > 0$, one has $\zeta\left(\frac{\pi}{2} + k\pi\right) = -k\pi$, and for $k_2 < 0$, one has $\zeta\left(\frac{\pi}{2} + k\pi\right) = (k+1)\pi$, for every $k \in \mathbb{Z}$. The function ζ is increasing for $k_2 < 0$, decreasing for $k_2 > 0$ and constant for $k_2 = 0$.

If S is a symmetric $n \times n$ matrix, one can define $\zeta(k_1, k_2, S)$ as we did before for ξ .

We shall need these functions later.

Theorem 1.1 can be extended in the following way:

Theorem 1.2. Assume that $C(\tau)$ is of class C^1 . Consider two isotropic solutions of (1.1), (Q_1, P_1) and (Q_2, P_2) , such that $W = I_n$. Then, there are C^1 matrix-valued functions $r(\tau)$, $\varphi(\tau)$, for $\tau \in [0, t]$, such that: a) $\det r(\tau) \neq 0$ and $\varphi(\tau)$ is symmetric for every τ ; b) the eigenvalues of φ are C^1 functions of τ ; c) one has

$$Q_{2}(\tau) = r(\tau)\cos\varphi(\tau)$$
 and $Q_{1}(\tau) = r(\tau)\sin\varphi(\tau)$.

Proof. Let us first notice that $Q_2Q_2^* + Q_1Q_1^* > 0$. This is proved noticing that, as $P_1Q_2^* - P_2Q_1^* = I_n$, one has $(P_1^*x, Q_2^*x) - (P_2^*x, Q_1^*x) = |x|^2$, which implies that $\ker Q_1^* \cap \ker Q_2^* = \{0\}$. Hence, $(Q_2^*x, Q_2^*x) + (Q_1^*x, Q_1^*x) > 0$, for every $x \neq 0$.

Define now

$$\Phi = \begin{bmatrix} Q_2 & Q_1 \\ P_2 & P_1 \end{bmatrix}, \quad \Psi = \begin{bmatrix} \cos\left(k\tau\right)I_n & \sin\left(k\tau\right)I_n \\ -\sin\left(k\tau\right)I_n & \cos\left(k\tau\right)I_n \end{bmatrix},$$

M as before, $\Phi_1 = \Phi \Psi$ and $M_1 = \dot{\Phi}_1 \Phi_1^{-1}$. The constant k is > 0. Then, one has

$$M_1 = M + \Phi \dot{\Psi} \Psi^{-1} \Phi^{-1}.$$

Let the $n \times n$ matrices, that are associated with M_1 , be A_1 , B_1 and C_1 . Then

$$C_1 = C + k \left(Q_2 Q_2^* + Q_1 Q_1^* \right).$$

Hence, as $Q_2Q_2^* + Q_1Q_1^* > 0$, for k large enough, we have that $C_1(\tau) > 0$, for every $\tau \in [0,t]$. We can then apply Theorem 1.1. There are C^1 matrix-valued functions $r_1(\tau)$, $\varphi_1(\tau)$, for $\tau \in [0,t]$, such that

$$\cos(k\tau) Q_2(\tau) - \sin(k\tau) Q_1(\tau) = r_1(\tau) \cos \varphi_1(\tau)$$

$$\sin(k\tau) Q_2(\tau) + \cos(k\tau) Q_1(\tau) = r_1(\tau) \sin \varphi_1(\tau).$$

From this, we have

$$Q_{2}(\tau) = r_{1}(\tau) \cos (\varphi_{1}(\tau) - k\tau I_{n})$$
$$Q_{1}(\tau) = r_{1}(\tau) \sin (\varphi_{1}(\tau) - k\tau I_{n}).$$

The generic differential equations for r and φ are easily derived from equations (15), (17) and (18) in [3].

Consider (r_0, s) , with s symmetric, such that

$$\dot{r}_0 = Br_0 + Cr_0^{*-1}s, \ \dot{s} = sr_0^{-1}Cr_0^{*-1}s + r_0^{-1}Cr_0^{*-1} - r_0^*Ar_0.$$

Then r is of the form $r = r_0 \Omega$, where Ω is any orthogonal, $\Omega^{-1} = \Omega^*$, and time-dependent C^1 matrix. From this one can derive a differential equation for rr^* .

The function φ verifies the equations

(1.6)
$$\frac{\cos \mathcal{C}_{\varphi} - I}{\mathcal{C}_{\varphi}} \dot{\varphi} = -\Omega^* \dot{\Omega}, \quad \frac{\sin \mathcal{C}_{\varphi}}{\mathcal{C}_{\varphi}} \dot{\varphi} = r^{-1} C r^{*-1},$$

where $C_{\varphi}\dot{\varphi} = [\varphi, \dot{\varphi}] = \varphi\dot{\varphi} - \dot{\varphi}\varphi$, $(C_{\varphi})^2 \dot{\varphi} \equiv C_{\varphi}^2 \dot{\varphi} = [\varphi, [\varphi, \dot{\varphi}]]$, and so on.

As in Theorem 1.1, φ is not unique. Notice that $r(\tau) = r_1(\tau)$ and $\varphi(\tau) = \varphi_1(\tau) - k\tau I_n$, with k large enough and φ_1 such that its eigenvalues are C^1 functions of τ , with strictly positive derivatives.

Remark 1.1. If one considers Φ^* instead of Φ , then Q_2 is replaced by Q_2^* and Q_1 is replaced by P_1^* . Then Theorem 1.2 gives

$$Q_{2}^{*}\left(au\right) =r\left(au\right) \cos\varphi\left(au\right) \ \ ext{and} \ \ P_{2}^{*}\left(au\right) =r\left(au\right) \sin\varphi\left(au\right) ,$$

or

$$Q_2(\tau) = \cos \varphi(\tau) r^*(\tau)$$
 and $P_2(\tau) = \sin \varphi(\tau) r^*(\tau)$.

In this case the matrix $\varphi(\tau)$ is a generalization of the so-called Prüfer angle [1].

Denote (Q_c, P_c) , (Q_s, P_s) the (isotropic) solutions of (1.1) such that

$$Q_{c}(0) = P_{s}(0) = I_{n}, \quad Q_{s}(0) = P_{c}(0) = 0.$$

From now on we shall denote by Φ_0 the symplectic matrix

$$\Phi_0 = \begin{bmatrix} Q_c & Q_s \\ P_c & P_s \end{bmatrix}.$$

Then $\dot{\Phi}_0 = M\Phi_0$ and $\Phi_0(0) = I_{2n}$.

1.2. The Sturm-Liouville problem.

Let $t \in [0, T[$ and $\lambda \in]l_{-1}, l_1[\subset \mathbb{R}$. The interval $]l_{-1}, l_1[$ can be as general as possible. In this article, t is the "time" variable and λ is the "eigenvalue" variable.

Consider A_0 , B_0 and C_0 time and eigenvalue dependent $n \times n$ matrices. As in (1.1) A_0 and C_0 are symmetric. Define also M_0 , S_0 and Φ_0 (here, $\dot{\Phi}_0 = M_0\Phi_0$) as before.

From now on we shall use the notations $A_0 \equiv A_0(\tau) \equiv A_0(\tau, \lambda)$, and the same for the other matrices.

Consider also α_j , β_j , γ_j and δ_j , j = 0, 1, eight eigenvalue dependent $n \times n$ matrices, and the problem of finding a λ and a solution

$$\tau \longmapsto (q(\tau, \lambda), p(\tau, \lambda)) \equiv (q(\tau), p(\tau)) \equiv (q, p),$$

 $(q,p) \in \mathbb{R}^n \times \mathbb{R}^n$, for $\tau \in [0,t]$, $\lambda \in [l_{-1},l_1]$, of the system

$$\dot{q} = B_0 q + C_0 p, \quad \dot{p} = -A_0 q - B_0^* p,$$

with the "boundary" conditions

$$\begin{bmatrix} \beta_0 & \delta_0 \\ \beta_1 & \delta_1 \end{bmatrix} \begin{bmatrix} -q(0) \\ q(t) \end{bmatrix} + \begin{bmatrix} -\alpha_0 & \gamma_0 \\ -\alpha_1 & \gamma_1 \end{bmatrix} \begin{bmatrix} p(0) \\ p(t) \end{bmatrix} = 0,$$

or, equivalently,

$$\begin{bmatrix} \beta_0 & \alpha_0 \\ \beta_1 & \alpha_1 \end{bmatrix} \begin{bmatrix} q (0) \\ p (0) \end{bmatrix} - \begin{bmatrix} \delta_0 & \gamma_0 \\ \delta_1 & \gamma_1 \end{bmatrix} \begin{bmatrix} q (t) \\ p (t) \end{bmatrix} = 0.$$

Denote

$$S_q = \begin{bmatrix} \beta_0 & \delta_0 \\ \beta_1 & \delta_1 \end{bmatrix}, \quad S_p = \begin{bmatrix} -\alpha_0 & \gamma_0 \\ -\alpha_1 & \gamma_1 \end{bmatrix}.$$

In order to preserve the self-adjointness of the problem, one has to have self-adjoint boundary conditions $S_q S_p^* = S_p S_q^*$ [2]. This means that

$$\alpha_0 \beta_0^* + \delta_0 \gamma_0^* = \beta_0 \alpha_0^* + \gamma_0 \delta_0^*, \alpha_1 \beta_1^* + \delta_1 \gamma_1^* = \beta_1 \alpha_1^* + \gamma_1 \delta_1^*, \alpha_0 \beta_1^* + \delta_0 \gamma_1^* = \beta_0 \alpha_1^* + \gamma_0 \delta_1^*.$$

Remark 1.2. Consider F a eigenvalue dependent symplectic matrix. If Φ is a symplectic solution of $\dot{\Phi} = M_0 \Phi$, then all previous formulas involving Φ , M_0 , S_q and S_p remain valid if we replace Φ by $F^{-1}\Phi$, M_0 by $F^{-1}M_0F$, S_q by $S_q \operatorname{diag}(F_{11}, F_{11}) + S_p \operatorname{diag}(-F_{21}, F_{21})$, and S_p by $S_q \operatorname{diag}(-F_{12}, F_{12}) + S_p \operatorname{diag}(F_{22}, F_{22})$.

As

$$\begin{bmatrix} q\left(\tau\right) \\ p\left(\tau\right) \end{bmatrix} = \Phi_{0}\left(\tau\right) \begin{bmatrix} q\left(0\right) \\ p\left(0\right) \end{bmatrix}$$

one obtains

$$\left(\begin{bmatrix}\beta_{0} & \alpha_{0} \\ \beta_{1} & \alpha_{1}\end{bmatrix} - \begin{bmatrix}\delta_{0} & \gamma_{0} \\ \delta_{1} & \gamma_{1}\end{bmatrix} \Phi_{0}\left(t\right)\right) \begin{bmatrix}q\left(0\right) \\ p\left(0\right)\end{bmatrix} = 0.$$

In order to have a non trivial solution, $(q(0), p(0)) \neq (0, 0)$, of this system we must have

(1.7)
$$\det \left(\begin{bmatrix} \beta_0 & \alpha_0 \\ \beta_1 & \alpha_1 \end{bmatrix} - \begin{bmatrix} \delta_0 & \gamma_0 \\ \delta_1 & \gamma_1 \end{bmatrix} \Phi_0(t) \right) = 0.$$

We shall need now the following lemma.

Lemma 1.3. Consider a, b, c and d, $n \times n$ real matrices, such that $ab^* = ba^*$ and $cd^* = dc^*$. Let

$$N = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

Then det N = 0 if and only if det $(ad^* - bc^*) = 0$.

Proof. From

$$NJN^*J = \text{diag}(-ad^* + bc^*, -da^* + cb^*),$$

one has $(\det N)^2 = (\det (ad^* - bc^*))^2$. The lemma follows now easily.

In order to apply this lemma to equation (1.7) we need to assume that, from now on,

$$\beta_j \alpha_j^* + \delta_j \gamma_j^* - \beta_j Q_s^*(t) \delta_j^* - \beta_j P_s^*(t) \gamma_j^* - \delta_j Q_c(t) \alpha_j^* - \gamma_j P_c(t) \alpha_j^*,$$

for j = 0, 1, is symmetric.

Condition (1.8) is equivalent to

$$\begin{bmatrix} \delta_j & \gamma_j \end{bmatrix} \Phi_0 \begin{bmatrix} -\alpha_j & \beta_j \end{bmatrix}^* + \beta_j \alpha_j^* + \delta_j \gamma_j^*,$$

for j=0,1, is symmetric. This is true for every symplectic matrix Φ_0 if and only if it is true for every matrix Φ_0 , even if it is not symplectic. Then one can easily prove the following proposition.

Proposition 1.4.

$$\begin{bmatrix} \delta_j & \gamma_j \end{bmatrix} \Phi_0 \begin{bmatrix} -\alpha_j & \beta_j \end{bmatrix}^* + \beta_j \alpha_j^* + \delta_j \gamma_j^*,$$

for j=0,1, is symmetric for every symplectic matrix Φ_0 , if and only if $\beta_j\alpha_j^* + \delta_j\gamma_j^*$ is symmetric and $\beta_jG\delta_j^* = 0$, $\beta_jG\gamma_j^* = 0$, $\delta_jG\alpha_j^* = 0$, $\gamma_jG\alpha_j^* = 0$, for j=0,1, and every antisymmetric matrix G.

With this assumption, equation (1.7) is equivalent to

$$\det(ad^* - bc^*) = 0,$$

where

$$a = \beta_0 - \delta_0 Q_c(t) - \gamma_0 P_c(t)$$

$$d = \alpha_1 - \delta_1 Q_s(t) - \gamma_1 P_s(t)$$

$$b = \alpha_0 - \delta_0 Q_s(t) - \gamma_0 P_s(t)$$

$$c = \beta_1 - \delta_1 Q_c(t) - \gamma_1 P_c(t)$$

It is then natural to consider a symplectic matrix Φ defined by

$$\Phi = \begin{bmatrix} Q_2 & Q_1 \\ P_2 & P_1 \end{bmatrix},$$

where $Q_2 = R_0 (ad^* - bc^*) R_1^*$, with det $R_0 \neq 0$, det $R_1 \neq 0$. Then, formula (1.9) is equivalent to det $Q_2 = 0$.

Notice that, if Φ is of the form

$$\Phi = L_0 + L_1 \Phi_0 L_2 + L_3 \Phi_0^* L_4,$$

then

$$(L_0)_{11} = R_0 \left(\beta_0 \alpha_1^* - \alpha_0 \beta_1^* + \delta_0 \gamma_1^* - \gamma_0 \delta_1^*\right) R_1^*,$$

$$(L_1)_{11} = R_0 \delta_0, \quad (L_1)_{12} = R_0 \gamma_0,$$

$$(L_2)_{11} = -\alpha_1^* R_1^*, \quad (L_2)_{21} = \beta_1^* R_1^*,$$

$$(L_3)_{11} = R_0 \alpha_0, \quad (L_3)_{12} = -R_0 \beta_0,$$

$$(L_4)_{11} = \delta_1^* R_1^*, \quad (L_4)_{21} = \gamma_1^* R_1^*.$$

As $\alpha_0 \beta_1^* + \delta_0 \gamma_1^* = \beta_0 \alpha_1^* + \gamma_0 \delta_1^*$, one obtains

$$(L_0)_{11} = 2R_0 \left(\beta_0 \alpha_1^* - \alpha_0 \beta_1^*\right) R_1^* = 2R_0 \left(\delta_0 \gamma_1^* - \gamma_0 \delta_1^*\right) R_1^*.$$

The main problem here involved is to discover conditions over the matrices L_0 , L_1 , L_2 , L_3 and L_4 , so that Φ is symplectic for every symplectic matrix Φ_0 . More generally, the problem is to discover conditions over Φ , with $Q_2 = R_0 (ad^* - bc^*) R_1^*$, such that Φ is symplectic for every symplectic matrix Φ_0 . These questions can be completely solved in dimension one as it is done in the Appendix.

Let us take a look to simple cases in dimension greater than one.

Assume that $L_0 = L_3 = L_4 = 0$ and that L_1 and L_2 are both symplectic or antisymplectic. Then Φ is symplectic for every symplectic matrix Φ_0 . The same happens, mutatis mutandis, when $L_0 = L_1 = L_2 = 0$.

The purpose of this article is to use the polar representation theorem in order to obtain results on the Sturm-Liouville problem.

2. A theorem on two parameters dependent symplectic matrices

In this section we prove a theorem that we shall need later and is a good introduction to the method we use in this article.

As before, let $\tau \in [0, t] \subset [0, T[$ and $\lambda \in]l_{-1}, l_1[\subset \mathbb{R}$. Consider the C^1 function $(\tau, \lambda) \mapsto \Phi(\tau, \lambda)$, where $\Phi(\tau, \lambda)$ is symplectic.

In the following we shall denote $\frac{\partial}{\partial \lambda}(\cdot) \equiv (\cdot)'$ the eigenvalue derivative, the derivative with respect to λ .

We define

$$M_1 = \dot{\Phi}\Phi^{-1}, \ S_1 = -JM_1.$$

and

$$M_2 = \Phi' \Phi^{-1}, \ S_2 = -JM_2.$$

Notice that, as Φ , M_j and S_j are both time and eigenvalue dependent, we shall use, as we did already before, the notations $\Phi \equiv \Phi(\tau) \equiv \Phi(\tau, \lambda), \ M_j \equiv M_j(\tau) \equiv M_j(\tau, \lambda), \ S_j \equiv S_j(\tau) \equiv S_j(\tau, \lambda)$, and so on (j = 1, 2). We also naturally denote

$$\Phi = \begin{bmatrix} Q_2 & Q_1 \\ P_2 & P_1 \end{bmatrix}, \quad S_j = \begin{bmatrix} A_j & B_j^* \\ B_j & C_j \end{bmatrix},$$

and assume that C_1 and C_2 are C^1 functions.

Let
$$\epsilon_1 = \pm 1$$
, $\epsilon_2 = \pm 1$, $\epsilon = \epsilon_1 \epsilon_2$.

Let $\tau_0 \geq 0$ and $\chi :]\tau_0, T[\to]l_{-1}, l_1[$ a continuous function, such that $\epsilon \chi$ is strictly decreasing and $\lim_{\tau \to T} \epsilon \chi(\tau) = \epsilon l_0 \geq \epsilon l_{-\epsilon}$ and $\lim_{\tau \to \tau_0} \chi(\tau) = l_{\epsilon}$.

Assume that

(2.1)
$$\det Q_2(\tau, \lambda) = 0 \Rightarrow \epsilon(\lambda - \chi(\tau)) > 0,$$

and that

$$(2.2) \quad \epsilon \left(\lambda - \chi \left(\tau \right) \right) > 0 \Rightarrow \left\{ \epsilon_1 C_1 \left(\tau, \lambda \right) > 0 \land \epsilon_2 C_2 \left(\tau, \lambda \right) > 0 \right\}.$$

Theorem 2.1. Under Conditions (2.1) and (2.2), equation

$$\det Q_2\left(\tau,\lambda\right) = 0,$$

defines implicitly n sets of continuous functions $\tau \mapsto \lambda_{jk}(\tau)$, (j = 1, 2, ..., n), with the index $k \in \mathbb{Z}$ and bounded below. Some of these sets, or all, may be empty. In each nonempty set these functions have a natural order: $\epsilon \lambda_{jk}(\tau) < \epsilon \lambda_{j,k+1}(\tau) < \epsilon \lambda_{j,k+2}(\tau) < \cdots$.

Let $l \in]l_{-1}, l_1[$ and $t \in [0, T[$, and assume that $\det Q_2(t, l) \neq 0$. Denote by μ_j the cardinal of the set $\{k \in \mathbb{N} : \epsilon(\lambda_{jk}(t) - l) < 0\}$ and let $\mu = \sum_{j=1}^n \mu_j$. Then, μ is the number of times, counting the multiplicities, that $Q_2(\tau, l)$ is singular, for $\tau < t$.

Proof. As the proof for $\epsilon=-1$ is similar, suppose that $\epsilon=1$. Define

$$\mathcal{D} = \{ (\tau, \lambda) : \tau \in [\tau_0, T[\lambda, \lambda \in]l_{-1}, l_1[\lambda, \lambda > \chi(\tau)] \}$$

From Theorem 1.1, one has that

$$Q_1(\tau, \lambda) = r(\tau, \lambda) \sin \varphi(\tau, \lambda)$$

$$Q_2(\tau, \lambda) = r(\tau, \lambda) \cos \varphi(\tau, \lambda),$$

where $r(\tau, \lambda)$, $\varphi(\tau, \lambda)$, for $(\tau, \lambda) \in \mathcal{D}$, are C^1 matrix-valued functions such that $\det r(\tau, \lambda) \neq 0$ and $\varphi(\tau, \lambda)$ is symmetric for every (τ, λ) and the eigenvalues of φ are C^1 functions of τ and λ . Denote $\varphi_1(\tau, \lambda), \ldots, \varphi_n(\tau, \lambda)$ such eigenvalues. Then $\epsilon_1 \dot{\varphi}_1(\tau, \lambda), \ldots, \epsilon_1 \dot{\varphi}_n(\tau, \lambda)$ and $\epsilon_2 \varphi'_1(\tau, \lambda), \ldots, \epsilon_2 \varphi'_n(\tau, \lambda)$ are positive continuous functions, for $(\tau, \lambda) \in \mathcal{D}$. The matrix $Q_2(\tau, l)$, with $\tau < t$, is singular if, with $\lambda = l$,

(2.3)
$$\varphi_j(\tau, \lambda) = \frac{\pi}{2} + k\pi,$$

for some $j = 1, \ldots, n$ and $k \in \mathbb{Z}$.

Notice that $\varphi_j(\tau, \lambda) > \varphi_j(0, \lambda)$, so that the set of possible k either is empty or is bounded below.

Consider the sets Λ_{jk} defined by equation (2.3):

$$\Lambda_{jk} = \left\{ (\tau, \lambda) \in \mathcal{D} : \varphi_j (\tau, \lambda) = \frac{\pi}{2} + k\pi \right\},\,$$

If one of the sets Λ_{jk} is not empty, then, locally, it defines a function $\lambda_{jk}(\tau)$, and

$$\frac{d\lambda_{jk}}{d\tau}\left(\tau\right) = -\frac{\partial\varphi_{j}}{\partial\tau}\left(\tau,\lambda_{jk}\left(\tau\right)\right)\left(\frac{\partial\varphi_{j}}{\partial\lambda}\left(\tau,\lambda_{jk}\left(\tau\right)\right)\right)^{-1},$$

because $\epsilon_1/\epsilon_2 = 1$.

Therefore, $\dot{\lambda}_{jk}(\tau) < 0$. Hence, the sets Λ_{jk} defined by (2.3) are totally ordered: $(\tau_1, \lambda_1) \succ (\tau_2, \lambda_2)$ if $\tau_1 > \tau_2$ and $\lambda_1 < \lambda_2$. Λ_{jk} has an infimum (t_{jk}, l_{jk}) . The case $t_{jk} > 0$ and $l_{jk} < l_1$ can not happen from the implicit function theorem. The case $t_{jk} = 0$ and $l_{jk} < l_1$ is impossible as formula (2.1) makes clear. Hence, $t_{jk} \geq 0$ and $l_{jk} = l_1$.

Hence, λ_{jk} are C^1 functions $\lambda_{jk}(\tau):]t_{jk}, T[\to \mathbb{R}$, such that

$$\lim_{\tau \to t_{jk}} \lambda_{jk} \left(\tau \right) = l_1 , \frac{d}{d\tau} \lambda_{jk} \left(\tau \right) < 0 , \varphi_j \left(\tau, \lambda_{jk} \left(\tau \right) \right) = \frac{\pi}{2} + k\pi.$$

We remark that, namely from (2.1), we have

$$\lambda_{j,k+1}(\tau) > \lambda_{jk}(\tau) > \chi(\tau)$$
.

Hence, one has that the following three assertions are equivalent:

- a) There is a $\tau < t$, such that $\lambda_{jk}(\tau) = l$.
- b) There is a $\tau < t$, such that $\varphi_j(\tau, l) = \frac{\pi}{2} + k\pi$.
- c) $\lambda_{jk}(t) < l$.

From this, the theorem follows.

3. Some formulas

As before, let $\tau \in [0, t] \subset [0, T[$ and $\lambda \in]l_{-1}, l_1[\subset \mathbb{R}$. Consider the C^1 function $(\tau, \lambda) \mapsto \Phi(\tau, \lambda)$, where $\Phi(\tau, \lambda)$ is symplectic. We define

$$M_1 = \dot{\Phi}\Phi^{-1}, \quad S_1 = -JM_1.$$

Notice that, as Φ , M_1 and S_1 are both time and eigenvalue dependent, we shall use, as we did already before, the notations $\Phi \equiv \Phi(\tau) \equiv \Phi(\tau, \lambda)$, $M_1 \equiv M_1(\tau) \equiv M_1(\tau, \lambda)$, $S_1 \equiv S_1(\tau) \equiv S_1(\tau, \lambda)$, and so on.

In the following we shall denote $\frac{\partial}{\partial \lambda}(\cdot) \equiv (\cdot)'$ the eigenvalue derivative, the derivative with respect to λ .

It is now natural to compute Φ' and $\Phi'\Phi^{-1} \equiv M_2$.

Deriving both members of $\dot{\Phi} = M_1 \Phi$ in order to λ , one obtains

$$\dot{\Phi}' = M_1' \Phi + M_1 \Phi'.$$

We shall use now the variations of parameters method. Write $\Phi' = \Phi K$, where K is both time and eigenvalue dependent: $K \equiv K(\tau, \lambda)$.

Let
$$K_0 = K(0, \lambda) \equiv K(0)$$
. As $K(0, \lambda) = \Phi^{-1}(0) \Phi'(0)$, and

$$\Phi(\tau) = \Phi(0) + \int_0^{\tau} M_1(\sigma) \Phi(\sigma) d\sigma,$$

one has

$$\Phi'(\tau) = (\Phi(0))' + \int_0^{\tau} (M_1(\sigma) \Phi(\sigma))' d\sigma.$$

Hence, $\Phi'(0) = (\Phi(0))'$ and $K_0 = K(0, \lambda) = \Phi^{-1}(0) (\Phi(0))'$.

On the other hand, one obtains

(3.2)
$$\dot{\Phi}' = \dot{\Phi}K + \Phi \dot{K} = M_1 \Phi K + \Phi \dot{K} = M_1 \Phi' + \Phi \dot{K}.$$

Comparing (3.1) with (3.2), one has

$$M_1'\Phi = \Phi \dot{K}.$$

From this one concludes that $\dot{K} = \Phi^{-1} M_1' \Phi$. Therefore

$$K(\tau) = K_0 + \int_0^{\tau} \Phi^{-1}(\sigma) M_1'(\sigma) \Phi(\sigma) d\sigma.$$

From now on we shall use the notations:

$$F(\tau, \sigma) = \Phi(\tau) \Phi^{-1}(\sigma), \quad F_0(\tau, \sigma) = \Phi_0(\tau) \Phi_0^{-1}(\sigma).$$

Then

$$M_{2}(\tau) \equiv \Phi' \Phi^{-1} = \Phi K \Phi^{-1}$$

$$= \Phi(\tau) \Phi^{-1}(0) (\Phi(0))' \Phi^{-1}(\tau)$$

$$+ \int_{0}^{\tau} F(\tau, \sigma) M'_{1}(\sigma) \Phi(\sigma) F^{-1}(\tau, \sigma) d\sigma.$$

Notice that, if V is any $2n \times 2n$ eigenvalue dependent matrix,

$$\int_{0}^{\tau} \Phi^{-1}(\sigma) V M_{1}(\sigma) \Phi(\sigma) d\sigma = \int_{0}^{\tau} \Phi^{-1}(\sigma) V \dot{\Phi}(\sigma) d\sigma$$
$$= \left[\Phi^{-1}(\sigma) V \Phi(\sigma)\right]_{0}^{\tau} + \int_{0}^{\tau} \Phi^{-1}(\sigma) M_{1}(\sigma) V \Phi(\sigma) d\sigma.$$

Hence,

$$M_{2}(\tau) = \Phi(\tau) \left(\Phi^{-1}(0) \left(\Phi(0)\right)' + \left[\Phi^{-1}(\sigma) V \Phi(\sigma)\right]_{0}^{\tau}\right) \Phi^{-1}(\tau) + \int_{0}^{\tau} F(\tau, \sigma) G_{1} F^{-1}(\tau, \sigma) d\sigma,$$

with

(3.3)
$$G_1 \equiv M_1'(\sigma) - V M_1(\sigma) + M_1(\sigma) V$$

or, equivalently,

$$M_{2}(\tau) = V + \Phi(\tau) \Phi^{-1}(0) ((\Phi(0))' - V\Phi(0)) \Phi^{-1}(\tau) +$$
$$+ \int_{0}^{\tau} F(\tau, \sigma) G_{1}F^{-1}(\tau, \sigma) d\sigma.$$

Choosing

(3.4)
$$V = (\Phi(0))' \Phi^{-1}(0),$$

one has

$$(3.5) M_2(\tau) = V + \int_0^{\tau} F(\tau, \sigma) G_1 F^{-1}(\tau, \sigma) d\sigma,$$

with V defined by (3.4) and G_1 defined by (3.3). Equation (3.5) can be written

$$M_2(\tau) = (\Phi(0))' \Phi^{-1}(0)$$

+
$$\int_0^{\tau} F(\tau, \sigma) G_2 F^{-1}(\tau, \sigma) d\sigma,$$

with

$$G_2 \equiv \Phi(0) \left(\Phi^{-1}(0) M_1(\sigma) \Phi(0)\right)' \Phi^{-1}(0)$$
.

4. First remarkable case

Let us take

$$\Phi = L_1 \Phi_0 L_2,$$

where

$$\dot{\Phi}_0 = M_0 \Phi_0, \ M_0 = -JS_0.$$

 L_1 and L_2 are both symplectic or both antisymplectic and eigenvalue dependent: $L_1 \equiv L_1(\lambda)$, $L_2 \equiv L_2(\lambda)$. As before, Φ , Φ_0 , M_0 and S_0 are both time and eigenvalue dependent: $\Phi \equiv \Phi(\tau) \equiv \Phi(\tau, \lambda)$, $\Phi_0 \equiv \Phi_0(\tau) \equiv \Phi_0(\tau, \lambda)$, $M_0 \equiv M_0(\tau) \equiv M_0(\tau, \lambda)$, $S_0 \equiv S_0(\tau) \equiv S_0(\tau, \lambda)$ and so on.

As
$$\dot{\Phi} = L_1 \dot{\Phi}_0 L_2 = L_1 M_0 \Phi_0 L_2 = L_1 M_0 L_1^{-1} \Phi$$
, one has
$$M_1 = L_1 M_0 L_1^{-1},$$

$$K_0 = L_2^{-1} L_1^{-1} (L_1 L_2)'.$$

Then

$$M_{2}(\tau) = L_{1}\Phi_{0}(\tau) L_{1}^{-1} (L_{1}L_{2})' L_{2}^{-1}\Phi_{0}^{-1}(\tau) L_{1}^{-1} + \int_{0}^{\tau} F(\tau,\sigma) M'_{1}(\sigma) F^{-1}(\tau,\sigma) d\sigma,$$

and

$$M_2(\tau) = V + \int_0^{\tau} F(\tau, \sigma) G_3 F^{-1}(\tau, \sigma) d\sigma,$$

where

$$V = (L_1 L_2)' (L_1 L_2)^{-1},$$

and

$$G_3 \equiv M_1'(\sigma) - V M_1(\sigma) + M_1(\sigma) V.$$

One also has the formula

(4.1)
$$M_{2}(\tau) = V + \int_{0}^{\tau} L_{1} F_{0}(\tau, \sigma) G_{4} F_{0}^{-1}(\tau, \sigma) L_{1}^{-1} d\sigma,$$

where

$$G_4 \equiv M_0' + M_0 L_2' L_2^{-1} - L_2' L_2^{-1} M_0$$

Remark 4.1. If $(L_1)_{12} = 0$, $\det((L_1)_{11}) \neq 0$ and $C_0 > 0$ $(C_0 < 0)$, then $C_1 = (L_1)_{11} C_0 (L_1)_{11}^* > 0$ (< 0).

4.1. Example: the Morse index theorem.

Let N a symmetric $n \times n$ matrix. Define $Q_1 = Q_s$ and $Q_2 = Q_c + Q_s N$. Then Q_1 and Q_2 are isotropic, W = I. Hence, from Theorem 1.1, one has that

$$Q_{1}(\tau) = Q_{s}(\tau) = r(\tau)\sin\varphi(\tau),$$

$$(4.2) Q_2(\tau) = Q_c(\tau) + Q_s(\tau) N = r(\tau) \cos \varphi(\tau),$$

where $r(\tau)$, $\varphi(\tau)$, for $\tau \in [0, T[$, are C^1 matrix-valued functions such that $\det r(\tau) \neq 0$ and $\varphi(\tau)$ is symmetric for every τ and the eigenvalues of φ are C^1 functions of τ . Denote $\varphi_1(\tau), \ldots, \varphi_n(\tau)$ such eigenvalues, with $\varphi_j(0) = 0$. Then $\dot{\varphi}_1(\tau), \ldots, \dot{\varphi}_n(\tau)$ are positive continuous functions.

Let $t \in [0, T[$. Assume that $Q_2(t)$ is invertible and that $\varphi_j(0) = 0, j = 1, \ldots, n$, and define $\mu_j \in \mathbb{Z}$, such that

$$-\frac{\pi}{2} + \mu_j \pi < \varphi_j(t) < \frac{\pi}{2} + \mu_j \pi.$$

Define the index μ :

(4.3)
$$\mu = \sum_{j=1}^{n} \mu_{j}.$$

Then, μ is the number of times that $Q_2(\tau)$ is singular, for $\tau \in [0, t]$, taking into account the multiplicity of the singularity, i.e. the dimension of ker Q_2 .

Consider now the Lagrangian

$$L\left(q,\dot{q},\tau\right) = \frac{1}{2}\left(\dot{q},C\left(\tau\right)^{-1}\dot{q}\right) - \left(\dot{q},C\left(\tau\right)^{-1}B\left(\tau\right)q\right) - \frac{1}{2}\left(q,\mathcal{A}\left(\tau\right)q\right),$$

where $A = A - B^*C^{-1}B$.

Consider now the real separable Hilbert space \mathcal{H} , whose elements are the continuous functions $\gamma:[0,t]\to\mathbb{R}^n$,

$$\gamma\left(\tau\right) = -\int_{\tau}^{t} \dot{\gamma}\left(\sigma\right) d\sigma,$$

for $\dot{\gamma} \in L^2([0,t];\mathbb{R}^n)$. The inner product $\langle .,. \rangle$ in \mathcal{H} is defined by

$$\langle \gamma_1, \gamma_2 \rangle = \int_0^t \left(\dot{\gamma}_1(\tau), C(\tau)^{-1} \dot{\gamma}_2(\tau) \right) d\tau.$$

One denotes $\langle \gamma, \gamma \rangle = ||\gamma||^2$.

To the Lagrangian L corresponds the action

$$S(\gamma) = \int_{0}^{t} L(\gamma(\tau), \dot{\gamma}(\tau), \tau) d\tau + \frac{1}{2}(\gamma(0), N\gamma(0)),$$

where N, as before, is a symmetric $n \times n$ matrix.

The quadratic form $S: \mathcal{H} \to \mathbb{R}$, defines a symmetric operator $\mathcal{L}(t) \equiv \mathcal{L}: \mathcal{H} \to \mathcal{H}, \ S(\gamma) = \frac{1}{2} \langle \gamma, \mathcal{L}\gamma \rangle$,

$$\langle \gamma_{1}, \mathcal{L}\gamma_{2} \rangle = \int_{0}^{t} \left(\dot{\gamma}_{1} (\tau), C(\tau)^{-1} \dot{\gamma}_{2} (\tau) \right) d\tau$$

$$- \int_{0}^{t} \left(\dot{\gamma}_{1} (\tau), C(\tau)^{-1} B(\tau) \gamma_{2} (\tau) \right) d\tau$$

$$- \int_{0}^{t} \left(\dot{\gamma}_{2} (\tau), C(\tau)^{-1} B(\tau) \gamma_{1} (\tau) \right) d\tau$$

$$- \int_{0}^{t} \left(\gamma_{1} (\tau), \mathcal{A}(\tau) \gamma_{2} (\tau) \right) d\tau + (\gamma_{1} (0), N\gamma_{2} (0)),$$

which has the following expression

$$(\mathcal{L}\gamma)(\tau) = \gamma(\tau) + \int_{\tau}^{t} B(\sigma) \gamma(\sigma) d\sigma$$
$$- \int_{\tau}^{t} C(\sigma) d\sigma \int_{0}^{\sigma} B^{*}(\theta) C(\theta)^{-1} \dot{\gamma}(\theta) d\theta$$
$$- \int_{\tau}^{t} C(\sigma) d\sigma \int_{0}^{\sigma} \mathcal{A}(\theta) \gamma(\theta) d\theta + \int_{\tau}^{t} C(\sigma) d\sigma N\gamma(0).$$

 \mathcal{L} is the sum of four symmetric operators. The first one is the identity. The second one, which involves B, is a Hilbert-Schmidt operator. The third one, which involves \mathcal{A} , is a trace class operator. The forth one, which involves N, is a finite rank operator.

The eigenvalues λ of \mathcal{L} are given by the equation

(4.4)
$$\mathcal{L}\gamma = \lambda \gamma, \quad \gamma \in \mathcal{H}, \quad \gamma \neq 0.$$

Assume that $\lambda \neq 1$ and put $\varepsilon = (1 - \lambda)^{-1}$. As $\frac{d\varepsilon}{d\lambda} = (1 - \lambda)^{-2} > 0$, we shall use ε instead of λ as a parameter, and $(\cdot)' \equiv \frac{\partial}{\partial \varepsilon} (\cdot)$.

Then, one has

$$(4.5) |\varepsilon| > \left(at + bt^2\right)^{-1},$$

where a, b > 0 (see [5]).

Define

$$A_1 = \varepsilon A + (\varepsilon^2 - \varepsilon) B^* C^{-1} B = \varepsilon A + \varepsilon^2 B^* C^{-1} B$$

 $B_1 = \varepsilon B, \quad C_1 = C.$

Call $\mathcal{L}_{\varepsilon}$ the operator \mathcal{L} where one puts A_1 , B_1 , C_1 and εN instead of A, B, C and N. Notice that $\mathcal{L} = \mathcal{L}_1$. Then equation (4.4) becomes

$$\mathcal{L}_{\varepsilon}\gamma = 0, \quad \gamma \in \mathcal{H} , \gamma \neq 0.$$

This equation can be rewritten

$$\dot{\gamma} = B_1 \gamma + C_1 \beta, \quad \dot{\beta} = -A_1 \gamma - B_1^* \beta,$$
$$\gamma(t) = 0, \quad \beta(0) - \varepsilon N \gamma(0) = 0.$$

Put $L_1 = I_{2n}$ and

$$L_2 = \begin{bmatrix} fI_n & kfI_n \\ \varepsilon fN & f^{-1}I_n + k\varepsilon fN \end{bmatrix},$$

where k is constant and $f \equiv f(\varepsilon) \neq 0$.

Then $\Phi = L_1 \Phi_0 L_2 = \Phi_0 L_2$. Put $\Phi_{11} = Q_{\varepsilon,2}$, $\Phi_{12} = Q_{\varepsilon,1}$ and so on. Hence, $Q_{\varepsilon,2} = f\left(Q_c + \varepsilon Q_s N\right)$ and $Q_2 = f^{-1}Q_{1,2}$. Then $\left(L_2' L_2^{-1}\right)_{12} = 0$, and if $f + 2f'\varepsilon = 0$,

$$(L_2'L_2^{-1})_{22} = -(L_2'L_2^{-1})_{11} = (2\varepsilon)^{-1}, \quad (L_2'L_2^{-1})_{21} = 0.$$

Now, one computes G_4 :

$$M_0' + M_0 L_2' L_2^{-1} - L_2' L_2^{-1} M_0 = \begin{bmatrix} B & \varepsilon^{-1} C \\ -\varepsilon B^* C^{-1} B & -B^* \end{bmatrix}.$$

Denoting

$$\begin{bmatrix} X & Z \\ W & Y \end{bmatrix} = \Phi_0 \left(\tau \right) \Phi_0^{-1} \left(\sigma \right),$$

one has

$$C_2 = \varepsilon^{-1} \int_0^\tau (XC - \varepsilon ZB^*) C^{-1} (CX^* - \varepsilon BZ^*) d\sigma.$$

Then $\varepsilon C_2 > 0$ for $\tau > 0$.

From this, from (4.5) and from Theorem 2.1 one can easily state the following theorem, whose complete proof can be seen in detail in [5].

Theorem 4.1. Let $\lambda(t)$ be an eigenvalue of the operator $\mathcal{L}(t)$. Then, there are three possibilities: 1) $\lambda(t) = 1$; 2) (and 3)) $\lambda(t) > 1$ ($\lambda(t) < 1$); in this case there exists a $t_0 \ge 0$ and a continuous function $\lambda(\tau)$, for $\tau \in [t_0, t]$, such that $\lambda(\tau)$ is an eigenvalue of the operator $\mathcal{L}(\tau)$ and $\lambda(t_0) = 1$; moreover, $\lambda(\tau)$ is C^1 in $[t_0, t]$ with $\dot{\lambda}(\tau) > 0$ ($\dot{\lambda}(\tau) < 0$).

The eigenvalues of $\mathcal{L}(t)$ which are different from 1 can be organized in 2n sets; n for those > 1, n for those < 1. Some of these sets may be empty. In each set, the eigenvalues have a natural order: $\lambda_0(\tau) > \lambda_1(\tau) > \cdots > 1$, or $\lambda_0(\tau) < \lambda_1(\tau) < \cdots < 1$, for every τ . In particular, the eigenspace of $\lambda \neq 1$ has at most dimension n.

Let $Q_2 \equiv Q_c + Q_s N$, be a solution of the system (1.1). Then, $Q_2(t)$ is invertible if and only if $\mathcal{L}(t)$ is invertible and the number of the negative eigenvalues of \mathcal{L} (its Morse index) is μ , as defined by (4.3).

4.2. Example.

Let $A_0 = (1 - \mu)A_3 + \mu A_4$, $B_0 = (1 - \mu)B_3 + \mu B_4$, $C_0 = (1 - \mu)C_3 + \mu C_4$. Assume that A_3 , A_4 , B_3 , B_4 , C_3 , C_4 , L_1 and L_2 are μ -independent and that L_1 and L_2 are symplectic. We shall use μ instead of λ as a parameter, and $(\cdot)' \equiv \frac{\partial}{\partial \mu}(\cdot)$. Then

$$S_0' = \begin{bmatrix} A_4 - A_3 & B_4 - B_3 \\ B_4^* - B_3^* & C_4 - C_3 \end{bmatrix} \equiv \begin{bmatrix} A & B \\ B^* & C \end{bmatrix}.$$

If

$$\begin{bmatrix} X(\tau,\sigma) & Z(\tau,\sigma) \\ W(\tau,\sigma) & Y(\tau,\sigma) \end{bmatrix} \equiv \begin{bmatrix} X & Z \\ W & Y \end{bmatrix} = L_1 \Phi_0(\tau) \Phi_0^{-1}(\sigma),$$

then

$$C_2 = \int_0^\tau \left(XC(\sigma)X^* + ZA(\sigma)Z^* - XB(\sigma)Z^* - ZB^*(\sigma)X^* \right) d\sigma.$$

Hence, if $JS_0'J \leq 0$, $\varphi(\tau, \mu_1) \leq \varphi(\tau, \mu_2)$ for $\mu_1 \leq \mu_2$ and we have proved the following theorem:

Theorem 4.2. If $JS'_0J \leq 0$ $(JS'_0J \geq 0)$, $\varphi(\tau,\mu)$ is an increasing (decreasing) function of μ for every τ . Moreover, if, for every τ , there exists $\sigma < \tau$ such that $(JS'_0J)(\sigma) < 0$ $(JS'_0J > 0)$, then $\varphi(\tau,\mu)$ is a strictly increasing (decreasing) function of μ for every $\tau > 0$.

Notice that if L_1 and L_2 are antisymplectic one has to reverse the inequalities involving JS'_0J in this theorem.

5. Second remarkable case

Let us take

$$\Phi = L_1 \Phi_0^* L_2,$$

where

$$\dot{\Phi}_0 = M_0 \Phi_0, \ M_0 = -JS_0.$$

 L_1 and L_2 are both symplectic or both antisymplectic and eigenvalue dependent: $L_1 \equiv L_1(\lambda)$, $L_2 \equiv L_2(\lambda)$. As before, Φ , Φ_0 , M_0 and S_0 are both time and eigenvalue dependent: $\Phi \equiv \Phi(\tau) \equiv \Phi(\tau, \lambda)$, $\Phi_0 \equiv \Phi_0(\tau) \equiv \Phi_0(\tau, \lambda)$, $M_0 \equiv M_0(\tau) \equiv M_0(\tau, \lambda)$, $S_0 \equiv S_0(\tau) \equiv S_0(\tau, \lambda)$ and so on.

$$\begin{split} M_1 &= \dot{\Phi}\Phi^{-1} = L_1\Phi_0^*M_0^*\Phi_0^{*-1}L_1^{-1} \\ &= \Phi L_2^{-1}M_0^*L_2\Phi^{-1}. \\ M_2 &= \Phi'\Phi^{-1} = \left(L_1'\Phi_0^*L_2 + L_1\Phi_0^{*\prime}L_2 + L_1\Phi_0^*L_2'\right)L_2^{-1}\Phi_0^{*-1}L_1^{-1}. \\ M_2 &= \Phi'\Phi^{-1} = L_1'L_1^{-1} + L_1\Phi_0^{*\prime}\Phi_0^{*-1}L_1^{-1} + L_1\Phi_0^*L_2'L_2^{-1}\Phi_0^{*-1}L_1^{-1}. \end{split}$$

Notice that $(\Phi_0^{*'}\Phi_0^{*-1})^* = \Phi_0^{-1}\Phi_0'$ is $K \equiv K(\tau, \lambda)$, as defined in this section when we replace Φ by Φ_0 . In this situation, $K_0 = 0$ and M_1 is M_0 .

$$K \equiv K(\tau) = \int_{0}^{\tau} \Phi_{0}^{-1}(\sigma) M_{0}'(\sigma) \Phi_{0}(\sigma) d\sigma.$$

Then

$$\begin{split} M_{2}\left(\tau\right) &= L_{1}^{\prime}L_{1}^{-1} + L_{1}\Phi_{0}^{*}L_{2}^{\prime}L_{2}^{-1}\Phi_{0}^{*-1}L_{1}^{-1} \\ &+ L_{1}\left(\int_{0}^{\tau}\Phi_{0}^{*}\left(\sigma\right)M_{0}^{*\prime}\left(\sigma\right)\Phi_{0}^{*-1}\left(\sigma\right)d\sigma\right)L_{1}^{-1}. \\ M_{2}\left(\tau\right) &= L_{1}^{\prime}L_{1}^{-1} + \Phi L_{2}^{-1}L_{2}^{\prime}\Phi^{-1} \\ &+ L_{1}\left(\int_{0}^{\tau}\Phi_{0}^{*}\left(\sigma\right)M_{0}^{*\prime}\left(\sigma\right)\Phi_{0}^{*-1}\left(\sigma\right)d\sigma\right)L_{1}^{-1}. \end{split}$$

Theorem 5.1. Let $(L_2)_{22} = 0$, $\det((L_2)_{12}) \neq 0$, $Q_2(\tau) = r(\tau)\cos\varphi(\tau)$ and $Q_1(\tau) = r(\tau)\sin\varphi(\tau)$. Denote $\varphi_1(\tau), \ldots, \varphi_n(\tau)$ the eigenvalues of $\varphi(\tau)$. Then, if $C_0 > 0$ ($C_0 < 0$) and $\sin\varphi_j(\tau_0) = 0$, then $\varphi_j(\tau)$ is decreasing (increasing) in a neighborhood of τ_0 .

Proof. Denote

$$C_{3} = -(L_{2})_{12}^{*}C_{0}(L_{2})_{12},$$

$$B_{3} = -(L_{2})_{12}^{*}C_{0}(L_{2})_{11} + (L_{2})_{12}^{*}B_{0}(L_{2})_{21},$$

$$A_{3} = -(L_{2})_{11}^{*}C_{0}(L_{2})_{11} - (L_{2})_{21}^{*}A_{0}(L_{2})_{21} + (L_{2})_{11}^{*}B_{0}(L_{2})_{21} + (L_{2})_{21}^{*}B_{0}^{*}(L_{2})_{11}.$$

Then

$$C_1 = Q_2 C_3 Q_2^* - Q_2 B_3 Q_1^* - Q_1 B_3^* Q_2^* + Q_1 A_3 Q_1^*.$$

Let $U \equiv U(\tau)$ a C^1 orthogonal matrix defined in a neighborhood of τ_0 and $\Phi = U^* \varphi U$. Then, as, for $k \geq 1$,

$$\mathcal{C}_{\varphi}^{k}\dot{\varphi}=U\big(-\mathcal{C}_{\Phi}^{k+1}(U^{*}\dot{U})+\mathcal{C}_{\Phi}^{k}\dot{\Phi}\big)U^{*},$$

from formula (1.6), one has

$$\frac{\sin \mathcal{C}_{\Phi}}{\mathcal{C}_{\Phi}}\dot{\Phi} - (\sin \mathcal{C}_{\Phi})(U^*\dot{U}) = U^*r^{-1}C_1r^{*-1}U.$$

One can choose U such that $\Phi(\tau_0)$ is diagonal and $\Phi = \operatorname{diag}(\Phi_1, \Phi_2)$, with $\sin \Phi_1(\tau_0) \neq 0$, $\sin \Phi_2(\tau_0) = 0$.

Then, one obtains:

$$\left(\frac{\sin \mathcal{C}_{\Phi}}{\mathcal{C}_{\Phi}}\dot{\Phi}\right)_{22} = \dot{\Phi}_{2}, \quad \left((\sin \mathcal{C}_{\Phi})(U^{*}\dot{U})\right)_{22}(\tau_{0}) = 0,$$

and

$$U^*r^{-1}C_1r^{*-1}U = \cos\Phi UC_3U^*\cos\Phi - \cos\Phi UB_3U^*\sin\Phi - \sin\Phi UB_3^*U^*\cos\Phi + \sin\Phi UA_3U^*\sin\Phi.$$

Hence

$$(U^*r^{-1}C_1r^{*-1}U)_{22}(\tau_0) = (\cos\Phi UC_3U^*\cos\Phi)_{22}(\tau_0) < 0.$$

and

$$\dot{\Phi}_2\left(\tau_0\right) = \left(\cos\Phi U C_3 U^* \cos\Phi\right)_{22} \left(\tau_0\right) < 0.$$

Then $\dot{\Phi}_{2}\left(\tau\right)<0$ in a neighborhood of τ_{0} and the theorem follows.

Similarly one can prove the following theorem:

Theorem 5.2. Let $(L_2)_{21} = 0$, $\det((L_2)_{11}) \neq 0$, $Q_2(\tau) = r(\tau)\cos\varphi(\tau)$ and $Q_1(\tau) = r(\tau)\sin\varphi(\tau)$. Denote $\varphi_1(\tau), \ldots, \varphi_n(\tau)$ the eigenvalues of $\varphi(\tau)$. Then, if $C_0 > 0$ ($C_0 < 0$) and $\cos\varphi_j(\tau_0) = 0$, then $\varphi_j(\tau)$ is decreasing (increasing) in a neighborhood of τ_0 .

5.1. Example.

Let $A_0 = (1-\mu)A_3 + \mu A_4$, $B_0 = (1-\mu)B_3 + \mu B_4$, $C_0 = (1-\mu)C_3 + \mu C_4$. Assume that A_3 , A_4 , B_3 , B_4 , C_3 and C_4 are μ -independent. We shall use μ instead of λ as a parameter, and $(\cdot)' \equiv \frac{\partial}{\partial \mu}(\cdot)$. Then

$$S_0' = \begin{bmatrix} A_4 - A_3 & B_4 - B_3 \\ B_4^* - B_3^* & C_4 - C_3 \end{bmatrix} \equiv \begin{bmatrix} A & B \\ B^* & C \end{bmatrix}.$$

Define

$$L_1 = \begin{bmatrix} \alpha_0 & -\beta_0 \\ \beta_0 & \alpha_0 \end{bmatrix}, \quad L_2 = \begin{bmatrix} (1-\mu)\delta_3 + \mu\delta_4 & -I_n \\ I_n & 0 \end{bmatrix}$$

with $(\alpha_0 \alpha_0^* + \beta_0 \beta_0^*)^{-1/2} = I_n$, $\alpha_0 \beta_0^* = \beta_0 \alpha_0^*$, $\delta_3 = \delta_3^*$ and $\delta_4 = \delta_4^*$. If

$$\begin{bmatrix} X(\tau) & Z(\tau) \\ W(\tau) & Y(\tau) \end{bmatrix} \equiv \begin{bmatrix} X & Z \\ W & Y \end{bmatrix} = L_1 \Phi_0^*(\tau),$$

then

(5.1)
$$C_2 = Q_1(\delta_4 - \delta_3)Q_1^*$$

 $-\int_0^\tau (ZC(\sigma)Z^* + XA(\sigma)X^* + XB^*(\sigma)Z^* + ZB(\sigma)X^*) d\sigma.$

Hence, if $S_0' \leq 0$ and $\delta_4 - \delta_3 \geq 0$, $\varphi(\tau, \mu_1) \leq \varphi(\tau, \mu_2)$ for $\mu_1 \leq \mu_2$ and we have proved the following theorem:

Theorem 5.3. If $S_0' \leq 0$ and $\delta_4 - \delta_3 \geq 0$, $\varphi(\tau, \mu)$ is an increasing function of μ for every τ . Moreover, if $\delta_4 - \delta_3 > 0$ or, for every τ , there exists $\sigma < \tau$ such that $(S_0')(\sigma) < 0$, then $\varphi(\tau, \mu)$ is a strictly increasing function of μ for every $\tau > 0$.

5.2. Example: the Sturm-Liouville problem.

Consider the Sturm-Liouville equation

(5.2)
$$(C_0^{-1}\dot{q})^{\dot{}} + (-D + \lambda E) q = 0,$$

subject to the separated end conditions

(5.3)
$$\beta_0 q(0) + \alpha_0 \left(C_0^{-1} \dot{q} \right)(0) = 0$$
$$\delta_1 q(t) + \gamma_1 \left(C_0^{-1} \dot{q} \right)(t) = 0.$$

In this case $A_0 = -D + \lambda E$, $B_0 = 0$; C_0 , D and E are τ dependent and λ independent; C_0 , E > 0. The matrices α_0 , β_0 , γ_1 , δ_1 are λ independent. In this case $\beta_1 = \alpha_1 = \delta_0 = \gamma_0 = 0$ One also has

$$\alpha_0 \beta_0^* = \beta_0 \alpha_0^*, \quad \gamma_1 \delta_1^* = \delta_1 \gamma_1^*.$$

Assume also that $\alpha_0\alpha_0^* + \beta_0\beta_0^* > 0$, $\det \gamma_1 \neq 0$. It is clear that one can replace δ_1 by $\gamma_1^{-1}\delta_1 \equiv \delta$ (a symmetric matrix) and γ_1 by I_n . One can also replace α_0 by $(\alpha_0\alpha_0^* + \beta_0\beta_0^*)^{-1/2}\alpha_0$ and β_0 by $(\alpha_0\alpha_0^* + \beta_0\beta_0^*)^{-1/2}\beta_0$ and have $\alpha_0\alpha_0^* + \beta_0\beta_0^* = I_n$, as we shall assume from now on. Then condition (1.7) is

$$\det\left(\begin{bmatrix}\beta_{0} & \alpha_{0} \\ 0 & 0\end{bmatrix} - \begin{bmatrix}0 & 0 \\ \delta & I_{n}\end{bmatrix} \begin{bmatrix}Q_{c}\left(t\right) & Q_{s}\left(t\right) \\ P_{c}\left(t\right) & P_{s}\left(t\right)\end{bmatrix}\right) = 0.$$

Defining

$$Q_2 = (\alpha_0 Q_c^* - \beta_0 Q_s^*) \, \delta + \alpha_0 P_c^* - \beta_0 P_s^*,$$

$$Q_1 = -\alpha_0 Q_c^* + \beta_0 Q_s^*,$$

one has that condition (1.7) is $\det Q_2(t) = 0$.

From now on we shall use the notation

$$Q_1 = r(\tau, \lambda) \sin \varphi(\tau, \lambda), \quad Q_2 = r(\tau, \lambda) \cos \varphi(\tau, \lambda).$$

Notice that the continuity condition on $\varphi(\tau, \lambda)$ implies that $\lambda \mapsto \varphi(0, \lambda)$ is constant.

We define $\Phi = L_1 \Phi_0^* L_2$, Φ as in formula (1.2) and

$$L_1 = \begin{bmatrix} \alpha_0 & -\beta_0 \\ \beta_0 & \alpha_0 \end{bmatrix}, \quad L_2 = \begin{bmatrix} \delta & -I_n \\ I_n & 0 \end{bmatrix}.$$

Then, if

$$\begin{bmatrix} X(\tau) & Z(\tau) \\ W(\tau) & Y(\tau) \end{bmatrix} \equiv \begin{bmatrix} X & Z \\ W & Y \end{bmatrix} = L_1 \Phi_0^*(\tau),$$

we have

$$X \equiv X(\tau) = \alpha_0 Q_c^*(\tau) - \beta_0 Q_s^*(\tau) = -Q_1$$

$$Z \equiv Z(\tau) = \alpha_0 P_c^*(\tau) - \beta_0 P_s^*(\tau)$$

$$C_1 = -ZC_0 Z^* - XA_0 X^*$$

$$M_2 = \int_0^\tau \begin{bmatrix} X & Z \\ W & Y \end{bmatrix} \begin{bmatrix} 0 & -E \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Y^* & -Z^* \\ -W^* & X^* \end{bmatrix} d\sigma$$

(5.4)
$$C_2 = -\int_0^\tau X(\sigma) E(\sigma) X^*(\sigma) d\sigma.$$

We remark that $C_2 < 0$, for $\tau \in]0,t]$.

Lemma 5.4. Consider the simpler case where $C_0 = cI_n$, $D = dI_n$, $E = eI_n$, $\delta = \theta I_n$ with $c, d, e, \theta \in \mathbb{R}$, c, e > 0. Then, there exists a symmetric matrix φ^- such that, for every $\tau \in]0, t]$,

$$\lim_{\lambda \to +\infty} \varphi(\tau, \lambda) = -\infty, \quad \lim_{\lambda \to -\infty} \varphi(\tau, \lambda) = \varphi^{-},$$

where $\tan \varphi^- = 0$. Moreover, φ^- is constant for $\tau \in]0,t]$.

Proof. Consider first $\lambda > d/e$. Define $\omega = \sqrt{c(-d + \lambda e)}$. Then

$$Q_2 = \theta \left((\cos \omega \tau) \alpha_0 - c\omega^{-1} (\sin \omega \tau) \beta_0 \right)$$
$$- (\cos \omega \tau) \beta_0 - c^{-1} \omega (\sin \omega \tau) \alpha_0,$$
$$Q_1 = - (\cos \omega \tau) \alpha_0 + c\omega^{-1} (\sin \omega \tau) \beta_0.$$

Defining ψ and ρ , det $\rho \neq 0$, such that

$$\alpha_0 = \rho \cos \psi, \quad c\omega^{-1}\beta_0 = \rho \sin \psi,$$

one has

$$Q_2 = \rho \left(\theta \cos(\omega \tau I_n + \psi) - c^{-1} \omega \sin(\omega \tau I_n + \psi)\right),$$

$$Q_1 = -\rho \cos(\omega \tau I_n + \psi).$$

Then $Q_1^{-1}Q_2 = -\theta + c\omega^{-1}\tan(\omega\tau I_n + \psi)$, for every τ such that $\det\cos(\omega\tau I_n + \psi) \neq 0$.

Hence

$$Q_1 = \rho \tilde{\rho} \sin \zeta (-\theta, c\omega^{-1}, \omega \tau I_n + \psi),$$

$$Q_2 = \rho \tilde{\rho} \cos \zeta (-\theta, c\omega^{-1}, \omega \tau I_n + \psi),$$

with ζ defined by (1.5) and

$$\tilde{\rho} = \sqrt{\cos^2(\omega \tau I_n + \psi) + \left(\theta \cos(\omega \tau I_n + \psi) - c^{-1}\omega \sin(\omega \tau I_n + \psi)\right)^2}.$$

As $Q_1 = r \sin \varphi$, $Q_2 = r \cos \varphi$, one has

$$r = \rho \tilde{\rho}, \quad \varphi = \zeta(-\theta, c\omega^{-1}, \omega \tau I_n + \psi).$$

As

$$\lim_{\sigma \to +\infty} \zeta(-\theta, c\omega^{-1}, \sigma) = -\infty,$$

the first part of the lemma follows.

Consider now the case $\lambda < d/e$. Define $\omega = \sqrt{c(d - \lambda e)}$. Then

$$Q_2 = \theta \left((\cosh \omega \tau) \,\alpha_0 - c\omega^{-1} (\sinh \omega \tau) \,\beta_0 \right)$$
$$- \left(\cosh \omega \tau \right) \beta_0 + c^{-1} \omega (\sinh \omega \tau) \,\alpha_0,$$
$$Q_1 = -(\cosh \omega \tau) \,\alpha_0 + c\omega^{-1} (\sinh \omega \tau) \,\beta_0.$$

Defining η and ϱ , det $\varrho \neq 0$, such that

$$\alpha_0 = \varrho \cos \eta, \quad \beta_0 = \varrho \sin \eta,$$

Then

$$Q_2^{-1}Q_1 = \frac{-\cos\eta + c\omega^{-1}(\tanh\omega\tau)\sin\eta}{\left(\theta + c^{-1}\omega(\tanh\omega\tau)\right)\cos\eta - \left(\theta c\omega^{-1}(\tanh\omega\tau) + 1\right)\sin\eta}$$

Hence, for every $\tau \in]0,t]$, there exists a λ_* such that, for $\lambda \leq \lambda_*$,

$$||Q_2^{-1}Q_1|| \le \left(-|\theta| + c^{-1}\omega \left(\tanh \omega \tau\right)\right)^{-1},$$

and

$$\lim_{\lambda \to -\infty} \left\| Q_2^{-1} Q_1 \right\| = 0$$

For $\tau_* > 0$, this convergence is uniform in $[\tau_*, t]$. From this, the last part of the lemma follows.

Theorem 5.5. Consider the general case for C_0 , D, E and δ . Then, for every $\tau \in]0,t]$,

$$\lim_{\lambda \to +\infty} \varphi\left(\tau, \lambda\right) = -\infty, \quad \lim_{\lambda \to -\infty} \tan \varphi\left(\tau, \lambda\right) = 0,$$

and $\varphi(\tau, \lambda)$ is a strictly decreasing function of λ .

Moreover, the eigenvalues of $\varphi(\tau, \lambda)$ converge to constant functions on]0, t], as $\lambda \to -\infty$.

Proof. As C_2 , defined by formula (5.4), is < 0, $\varphi(\tau, \lambda)$ is a strictly decreasing function of λ , for every $\tau \in]0, t]$.

For $\lambda > 0$, choose $\theta > ||\delta||$, $d \ge D$, $0 < e \le E$, $0 < c \le C_0$, with $\theta, d, e, c \in \mathbb{R}$.

We use now Theorem 5.3. Put $\delta_3 = \delta$, $\delta_4 = \theta I_n$, $A_3 = -D + \lambda E$, $A_4 = (-d + \lambda e) I_n$, $C_3 = C_0$, $C_4 = cI_n$.

Then, from Theorem 5.3, one concludes that

$$\varphi(\tau, \lambda) \equiv \varphi(\tau, \lambda, 0) < \varphi(\tau, \lambda, 1),$$

and the first formula of the theorem is proved.

For $\lambda < 0$, choose $\theta > ||\delta||$, $d \geq D$, $e \geq E$, $0 < c \leq C_0$, with $\theta, d, e, c \in \mathbb{R}$.

We use again Theorem 5.3. Put $\delta_3 = \delta$, $\delta_4 = \theta I_n$, $A_3 = -D + \lambda E$, $A_4 = (-d + \lambda e) I_n$, $C_3 = C_0$, $C_4 = cI_n$.

Then, from Theorem 5.3, one concludes that

$$\varphi_{1}\left(\tau,\lambda,0\right)\equiv\varphi\left(\tau,\lambda\right)\equiv\varphi\left(\tau,\lambda,0\right)<\varphi\left(\tau,\lambda,1\right)\equiv\varphi_{1}\left(\tau,\lambda,1\right),$$

the eigenvalues of $\varphi(\tau, \lambda)$ are bounded as $\lambda \to -\infty$.

For $\lambda < 0$, choose $\theta > ||\delta||$, $d \leq D$, $0 < e \leq E$, $c \geq C_0$, with $\theta, d, e, c \in \mathbb{R}$.

We use once more Theorem 5.3. Put $\delta_3 = \delta$, $\delta_4 = -\theta I_n$, $A_3 = -D + \lambda E$, $A_4 = (-d + \lambda e)I_n$, $C_3 = C_0$, $C_4 = cI_n$.

Then, from Theorem 5.3, one concludes that

$$\varphi_2(\tau, \lambda, 0) \equiv \varphi(\tau, \lambda) \equiv \varphi(\tau, \lambda, 0) > \varphi(\tau, \lambda, 1) \equiv \varphi_2(\tau, \lambda, 1).$$

Choose λ_* the minimum of the $\lambda < 0$ such that $\det \cos \varphi_1(\tau, \lambda, \mu) = 0$ or $\det \cos \varphi_1(\tau, \lambda, \mu) = 0$, with $\mu \in [0, 1]$. It is clear that there exists such a λ_* , as φ_1 and φ_2 are bounded near $\lambda = -\infty$. Then, for $\lambda < \lambda_*$ and $\mu \in [0, 1]$, $\det \cos \varphi_1(\tau, \lambda, \mu) \neq 0$, $\det \cos \varphi_2(\tau, \lambda, \mu) \neq 0$. Hence, $\det Q_2(\tau, \lambda, \mu) \neq 0$ in both cases.

As, from (1.3) and (5.1), $\frac{d}{d\mu}Q_2^{-1}Q_1 > 0$ in the first case and < 0 in the second one, one obtains that, for $\lambda < \lambda_*$,

$$\tan \varphi_2(\tau, \lambda, 1) < Q_2^{-1} Q_1 < \tan \varphi_1(\tau, \lambda, 1).$$

Therefore

$$||Q_2^{-1}Q_1|| < \max\{||\tan\varphi_1(\tau,\lambda,1)||, ||\tan\varphi_2(\tau,\lambda,1)||\}.$$

From Theorem 5.3, one concludes that

$$\lim_{\lambda \to -\infty} \left\| Q_2^{-1} Q_1 \right\| = 0.$$

Then, for $\tau > 0$,

$$\lim_{\lambda \to -\infty} \tan \varphi_1(\tau, \lambda, \mu) = 0 \text{ and } \lim_{\lambda \to -\infty} \tan \varphi_2(\tau, \lambda, \mu) = 0.$$

As $\lim_{\lambda \to -\infty} \varphi_1(\tau, \lambda, 1)$ and $\lim_{\lambda \to -\infty} \varphi_2(\tau, \lambda, 1)$ are constant in]0, t], and the eigenvalues of these limit functions are integer multiple of π , the continuity of the functions φ_1 and φ_2 implies the last part of the theorem.

Finally we have the following theorem:

Theorem 5.6. For the Sturm-Liouville equation (5.2), subject to conditions (5.3), there are an infinite number of eigenvalues $\lambda_{j,0} < \lambda_{j,1} < \lambda_{j,2} < \cdots < \lambda_{j,k} < \cdots, j = 1,2,\ldots,n$, with $\lim_{k\to\infty} \lambda_{j,k} = +\infty$.

The eigenfunctions can be described as follows. There exists a matrix function $Q_1(\tau, \lambda) = r(\tau, \lambda) \sin \varphi(\tau, \lambda)$, such that $\det r(\tau, \lambda) \neq 0$ and $\varphi(\tau, \lambda)$ is symmetric. The matrix functions r and φ are continuous. Consider the φ eigenvalues $\varphi_j(\tau, \lambda)$ and eigenvectors $e_j(t, \lambda_{j,k})$. Then the eigenfunction corresponding to $\lambda_{j,k}$ is $Q_1(\tau, \lambda_{j,k})e_j(t, \lambda_{j,k})$ and $\sin \varphi_j(\tau, \lambda_{j,k})$ has exactly k zeros on]0, t[.

Proof. Consider $\varphi(\tau, \lambda)$ and its eigenvalues $\varphi_j(\tau, \lambda)$, $j = 1, 2, \ldots, n$. Then, from Theorem 5.5, $\varphi_j(\tau, \lambda)$ is strictly decreasing in λ , $\lim_{\lambda \to +\infty} \varphi_j(\tau, \lambda) = -\infty$, and there exists $l_j \in \mathbb{Z}$, such that $\lim_{\lambda \to -\infty} \varphi_j(\tau, \lambda) = l_j \pi$, for $\tau \in]0, t]$.

From Theorem 5.1, whenever $\varphi_j(\tau_l, \lambda) = l\pi$, for some $\tau_l \in]0, t[$, then $\varphi_j(\tau, \lambda)$ is a decreasing function of τ in a neighborhood of τ_l . Then, $\varphi_j(\tau, \lambda) < l\pi$ for $\tau > \tau_l$ and $\varphi_j(\tau, \lambda) > l\pi$ for $\tau < \tau_l$.

Clearly there exists a $\lambda_{j,k}$ such that $\varphi_j(t,\lambda_{j,k}) = (l_j - k - \frac{1}{2}) \pi$, for $k = 0, 1, 2, \ldots$

For $\tau_* > 0$, there exists λ_* such that $\varphi_j(\tau_*, \lambda_*) = (l_j - 1) \pi$. Hence, for $\tau < \tau_*$, $\varphi_j(\tau_*, \lambda_*) > (l_j - 1) \pi$. Therefore $\varphi_j(0, \lambda_*) > (l_j - 1) \pi$. As $\lambda \mapsto \varphi_j(0, \lambda)$ is constant, it follows that $\varphi_j(0, \lambda) > (l_j - 1) \pi$ for every λ .

Define τ_m , m = 1, 2, ..., k, $\varphi_j(\tau_m, \lambda_{j,k}) = (l_j - m) \pi$. The points τ_m are the unique points where $\sin \varphi_j(\tau, \lambda_{j,k}) = 0$ for $\tau \in]0, t]$. \square

Acknowledgements

The Mathematical Physics Group is supported by the portuguese Foundation for Science and Technology (FCT)

References

- [1] E. A. Coddington, N. Levinson, *Theory of ordinary differential equations*, McGraw-Hill, New York, 1955.
- [2] W. Kratz, "An oscillation theorem for self-adjoint differential systems and the Rayleigh principle for quadratic functionals", J. London Math. Soc. (2) 51 (1995), 401–416.
- [3] J. Rezende, "A theorem on some linear Hamiltonian systems", Differ. Equ. Dyn. Syst. 5 (1997), 163–173.
- [4] J. Rezende, "Time-dependent linear Hamiltonian systems and quantum mechanics", Lett. Math. Phys. 38 (1996), 117–127.
- [5] J. Rezende, "A polar representation and the Morse index theorem", Lett. Math. Phys. **50** (1999), 91–102.

Appendix A.

Proposition A.1. Let n = 1. $L_0 + L_1 \Phi L_2$ is symplectic for every symplectic matrix Φ is equivalent to $(\det L_0) + (\det L_1) (\det L_2) = 1$ and $L_1^*JL_0JL_2^* = 0$.

If $L_0 + L_1 \Phi L_2$ is symplectic for every symplectic matrix Φ , one of the following situations happens

a) L_0 is symplectic and $\det L_1 = \det L_2 = 0$, with $L_1 \neq 0$ and $L_2 \neq 0$.

- b) L_0 is symplectic and $L_1 = 0$ or $L_2 = 0$.
- c) $L_0 = 0$ and $\det L_1 \det L_2 = 1$.

Proof.

$$(L_0 + L_1 \Phi L_2) J(L_0^* + L_2^* \Phi^* L_1^*)$$

$$= L_0 J L_0^* + L_0 J L_2^* \Phi^* L_1^* + L_1 \Phi L_2 J L_0^* + L_1 \Phi L_2 J L_2^* \Phi^* L_1^*$$

$$= (\det L_0) J + L_0 J L_2^* \Phi^* L_1^* + L_1 \Phi L_2 J L_0^* + (\det L_1) (\det L_2) J = J.$$

As this must be true for Φ and $-\Phi$, one has

$$(\det L_0) + (\det L_1)(\det L_2) = 1,$$

$$L_0 J L_2^* \Phi^* L_1^* + L_1 \Phi L_2 J L_0^* = 0.$$

Hence, $L_1\Phi L_2JL_0^*$ is symmetric, for every symplectic matrix Φ . As $L_1\left(\Phi_1+\Phi_2\right)L_2JL_0^*$ is also symmetric for any two symplectic matrices, $L_1\Phi L_2JL_0^*$ is symmetric even if Φ is not symplectic. As $K_1\Phi K_2$ is symmetric for every matrix Φ if and only if $K_2JK_1=0$, one easily concludes that $L_1^*JL_0JL_2^*=0$. The proposition follows now without problems.

Let n=1 and $f_{11}, f_{12}, f_{21}, f_{22}: \mathbb{R}^4 \to \mathbb{R}$ four affine functions. Then, if

$$L = \begin{bmatrix} f_{11}(\Phi_{11}, \Phi_{12}, \Phi_{21}, \Phi_{22}) & f_{12}(\Phi_{11}, \Phi_{12}, \Phi_{21}, \Phi_{22}) \\ f_{21}(\Phi_{11}, \Phi_{12}, \Phi_{21}, \Phi_{22}) & f_{22}(\Phi_{11}, \Phi_{12}, \Phi_{21}, \Phi_{22}) \end{bmatrix}$$

is symplectic for every symplectic matrix $\Phi,$ one has that L is one of the forms

$$L = L_0 + L_1 \Phi L_2, \quad L = L_0 + L_1 \Phi^* L_2.$$

This can be proved by an explicit, and tedious, computation.

Notice that, following the proposition L_0 is either 0 or symplectic. If $L_0 = 0$, then L_1 and L_2 can be chosen such that $|\det L_1| = |\det L_2| = 1$, $(\det L_1)(\det L_2) = 1$. In this case they are either both symplectic or both antisymplectic.

In our problem $\Phi_{11} \equiv Q_c(t) = Q_c^*(t), \ \Phi_{12} \equiv Q_s(t) = Q_s^*(t), \ \Phi_{21} \equiv P_c(t) = P_c^*(t), \ \Phi_{22} \equiv P_s(t) = P_s^*(t).$ Hence

$$f_{11}(\Phi_{11}, \Phi_{12}, \Phi_{21}, \Phi_{22}) = x_0 + x_1 \Phi_{11} + x_2 \Phi_{12} + x_3 \Phi_{21} + x_4 \Phi_{22}$$

where

$$x_0 = R(\beta_0 \alpha_1 - \alpha_0 \beta_1 + \delta_0 \gamma_1 - \gamma_0 \delta_1)$$

$$x_1 = R(\alpha_0 \delta_1 - \delta_0 \alpha_1)$$

$$x_2 = R(\delta_0 \beta_1 - \beta_0 \delta_1)$$

$$x_3 = R(\alpha_0 \gamma_1 - \gamma_0 \alpha_1)$$

$$x_4 = R(\gamma_0 \beta_1 - \beta_0 \gamma_1)$$

where $R = R_0 R_1$ is a real eigenvalue dependent parameter, $R \neq 0$. Notice that $x_1 x_4 - x_2 x_3 = R^2 (\delta_1 \gamma_0 - \delta_0 \gamma_1) (\beta_1 \alpha_0 - \alpha_1 \beta_0)$. As $x_0 = 2R(\beta_0 \alpha_1 - \alpha_0 \beta_1) = 2R(\delta_0 \gamma_1 - \gamma_0 \delta_1)$, one has that

$$x_1 x_4 - x_2 x_3 = 4^{-1} x_0^2.$$

Let $L_0 = I_2$, the 2×2 unit matrix. Then L can be of the following three forms:

- a) $f_{11} = 1$, $f_{22} = 1$, $f_{12} = 0$;
- b) $f_{11} = 1$, $f_{22} = 1$, $f_{21} = 0$;
- c) there exists an $\kappa \neq 0$ such that $f_{22} 1 = -(f_{11} 1)$, $f_{12} = \kappa(f_{11} 1)$, $f_{12} = -\kappa^{-1}(f_{11} 1)$.

The case where L_0 is symplectic but $\neq I_2$ is easily derived from this one.

Let now $L_0 = 0$. Then $x_0 = 0$ and $x_1x_4 - x_2x_3 = 0$.

There are five possible situations: a) $x_1 \neq 0$, b) $x_1 = 0, x_4 \neq 0$, $x_3 = 0$, c) $x_1 = 0, x_4 \neq 0$, $x_2 = 0$, d) $x_1 = 0, x_4 = 0$, $x_2 = 0$, e) $x_1 = 0, x_4 = 0$, $x_3 = 0$.

	a)	b)	c)	d)	e)
$(L_1)_{11}$	a	$ax_2x_4^{-1}$	0	0	\overline{a}
$(L_1)_{12}$	$ax_3x_1^{-1}$	a	a	a	0
$(L_1)_{21}$	b	$-\nu a^{-1} + bx_2x_4^{-1}$	$-\nu a^{-1}$	$-\nu a^{-1}$	b
$(L_1)_{22}$	$\nu a^{-1} + bx_3 x_1^{-1}$	b	b	b	νa^{-1}
$(L_2)_{11}$	$a^{-1}x_1$	0	$a^{-1}x_3$	$a^{-1}x_3$	0
$(L_2)_{12}$	c	$-\nu a x_4^{-1}$	$-\nu a x_4^{-1} + c x_3 x_4^{-1}$	c	$-\nu a x_2^{-1}$
$(L_2)_{21}$	$a^{-1}x_2$	$a^{-1}x_4$	$a^{-1}x_4$	0	$a^{-1}x_2$
$(L_2)_{22}$	$\nu a x_1^{-1} + c x_2 x_1^{-1}$	c	c	$\nu a x_3^{-1}$	c

where a, b and c are real eigenvalue dependent parameters, $a \neq 0$, and $\nu = \pm 1$; $\nu = 1$ in the symplectic case, $\nu = -1$ in the antisymplectic case.