Unit 7. Infinite Series

7A: Basic Definitions

7A-1

- a) Sum the geometric series: $\sum_{0}^{\infty} \frac{1}{4^n} = \sum_{0}^{\infty} \left(\frac{1}{4}\right)^n = \frac{1}{1 (1/4)} = \frac{4}{3}.$
- b) $1-1+1-1+\ldots+(-1)^n+\ldots$ diverges, since the partial sums s_n are successively $1,0,1,0,\ldots$, and therefore do not approach a limit.
- c) Diverges, since the *n*-th term $\frac{n-1}{n}$ does not tend to 0 (using the *n*-th term test for divergence).
- d) The given series $= \ln 2 + \frac{1}{2} \ln 2 + \frac{1}{3} \ln 2 + \dots = \ln 2(1 + \frac{1}{2} + \frac{1}{3} + \dots);$ but $\sum_{1}^{\infty} 1/n$ diverges; therefore the given series diverges.
 - e) $\sum_{1}^{\infty} \frac{2^{n-1}}{3^n} = \frac{1}{3} \sum_{1}^{\infty} \frac{2^{n-1}}{3^{n-1}}$, geometric series with sum $\frac{1}{3} \left(\frac{1}{1 (2/3)} \right) = \frac{1}{3} \cdot 3 = 1$.
 - f) series $=\sum_{0}^{\infty} \left(\frac{-1}{3}\right)^{n} = \frac{1}{1-(-1/3)} = \frac{3}{4}$ (sum of a geometric series)
- **7A-2** .21111... = .2+.01+.001+... = .2+.01 $\left(1+\frac{1}{10}+\frac{1}{10^2}+... = .2+.01\left(\left(\frac{1}{1-1/10}\right)\right) = \frac{19}{90}$.
- **7A-3** Geometric series; converges if |x/2| < 1, i.e., if |x| < 2, or equivalently, -2 < x < 2.

7A-4

- a) Partial sum: $s_m = \left(\frac{1}{\sqrt{1}} \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{3}}\right) + \dots + \left(\frac{1}{\sqrt{m}} \frac{1}{\sqrt{m+1}}\right)$ $= 1 \frac{1}{\sqrt{m+1}} \to 1 \text{ as } m \to \infty. \text{ Therefore the sum is } 1.$
- $\text{b)} \ \ \frac{1}{n(n+2)} = \frac{1/2}{n} + \frac{-1/2}{n+2} \ ; \ \text{therefore} \ \ \sum_{1}^{\infty} \frac{1}{n(n+2)} \ = \ \frac{1}{2} \bigg(\sum_{0}^{\infty} \bigg(\frac{1}{n} \frac{1}{n+2} \bigg).$

The m-th partial sum of the series is

$$s_m = \frac{1}{2} \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{5} + \frac{1}{4} - \frac{1}{6} + \dots + \frac{1}{m} - \frac{1}{m+2} \right) = \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{m+1} - \frac{1}{m+2} \right),$$
 since all other terms cancel.

Therefore $s_m \to \frac{3}{4}$ as $m \to \infty$, so the sum is 3/4.

7A-5 The distance the ball travels is $h + \frac{2}{3}h + \frac{2}{3}h + \frac{2}{3}\left(\frac{2}{3}h\right) + \frac{2}{3}\left(\frac{2}{3}h\right) + \dots$; the successive terms give the first down, the first up, the second down, and so on. Add h to the series to make the terms uniform; you get a geometric series to sum:

$$2\left(h+2h/3+(2/3)^2h+\ldots\right)=2h(1+2/3+(2/3)^2+\ldots)=2h\left(\frac{1}{1-2/3}\right)=6h.$$
 Subtracting the h that we added on gives: the total distance traveled $=5h.$

7B: Convergence Tests

7B-1

a)
$$\int_0^\infty \frac{x}{x^2+4} = \frac{1}{2}\ln(x^2+4)\Big|_0^\infty = \infty; \text{ divergent}$$

b)
$$\int_0^\infty \frac{1}{x^2+1} = \tan^{-1}x\Big|_0^\infty = \frac{\pi}{2}$$
; convergent

c)
$$\int_0^\infty \frac{1}{\sqrt{x+1}} = 2(x+1)^{1/2} \Big|_0^\infty = \infty$$
; divergent

d)
$$\int_{1}^{\infty} \frac{\ln x}{x} = \frac{1}{2} (\ln x)^2 \Big|_{1}^{\infty} = \infty$$
; divergent

e)
$$\int_2^\infty \frac{1}{(\ln x)^p \cdot x} = \frac{(\ln x)^{1-p}}{1-p} \Big]_2^\infty$$
, if $p \neq 1$: divergent if $p < 1$, convergent if $p > 1$

If p=1, $\int_2^\infty \frac{dx}{\ln x} = \ln(\ln x) \Big]_2^\infty = \infty$. Thus series converges if p>1, diverges if $p \leq 1$.

f)
$$\int_1^\infty \frac{1}{x^p} = \frac{x^{1-p}}{1-p}\Big|_1^\infty$$
, if $p \neq 1$; diverges if $p < 1$, converges if $p > 1$.

If p=1, $\int_{1}^{\infty} \frac{dx}{x} = \ln x \Big]_{1}^{\infty} = \infty$; thus series converges if p>1, diverges if $p \leq 1$.

7B-2

a) Convergent; compare with
$$\sum_{1}^{\infty} \frac{1}{n^2}$$
: $\frac{n^2}{n^2 + 3n} = \frac{1}{1 + 3/n} \rightarrow 1 \text{ as } n \rightarrow \infty$

b) Divergent; compare with
$$\sum \frac{1}{n}$$
: $\frac{n}{n+\sqrt{n}} = \frac{1}{1+1/\sqrt{n}} \to 1$, as $n \to \infty$

c) Divergent; compare with
$$\sum \frac{1}{n}$$
: $\frac{n}{\sqrt{n^2+n}} = \frac{1}{\sqrt{1+1/n}} \to 1$, as $n \to \infty$

d) Convergent; compare with
$$\sum_{1}^{\infty} \frac{1}{n^2}$$
: $\lim_{n \to \infty} n^2 \sin\left(\frac{1}{n^2}\right) = \lim_{h \to 0} \frac{\sin h}{h} = 1$

e) Convergent; compare with
$$\sum_{1}^{\infty} \frac{1}{n^{3/2}}$$
: $\frac{n^{3/2}\sqrt{n}}{n^2+1} = \frac{n^2}{n^2+1} = \frac{1}{1+1/n^2} \to 1$ as $n \to \infty$

f) Divergent, by comparison test:
$$\frac{\ln n}{n} > \frac{1}{n}$$
; $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges

g) Convergent; compare with
$$\sum \frac{1}{n^2}$$
: $\frac{n^2 \cdot n^2}{n^4 - 1} = \frac{n^4}{n^4 - 1} \rightarrow 1$ as $n \rightarrow \infty$

h) Divergent; compare with
$$\sum \frac{1}{4n}$$
 : $\frac{4n \cdot n^3}{4n^4 + n^2} = \frac{1}{1 + 1/4n^2} \rightarrow 1$

7B-3 By the mean-value theorem, $\sin x < x$, if x > 0; therefore $\sum_{0}^{\infty} \sin a_n < \sum_{0}^{\infty} a_n$; so the series converges by the comparison test.

7B-4

a) By ratio test,
$$\frac{n+1}{2^{n+1}} \cdot \frac{2^n}{n} = \left(\frac{n+1}{n}\right) \cdot \frac{1}{2} \to \frac{1}{2}$$
 as $n \to \infty$; convergent

b) By ratio test,
$$\frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} = \frac{2}{n+1} \to 0 \text{ as } n \to \infty$$
; convergent

c) By ratio test,
$$\frac{2^{n+1}}{1 \cdot 3 \cdot \dots \cdot 2n+1} \cdot \frac{1 \cdot 3 \cdot \dots \cdot 2n-1}{2^n} = \frac{2}{2n+1} \rightarrow 0 \text{ as } n \rightarrow \infty;$$
 convergent

d) By ratio test,
$$\frac{(n+1)!^2}{(2n+2)!} \cdot \frac{(2n)!}{n!^2} = \frac{(n+1)^2}{(2n+2)(2n+1)} \to \frac{1}{4} \text{ as } n \to \infty; \text{ convergent}$$

e) Ratio test fails:
$$\frac{1}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{1} \to 1$$
 as $n \to \infty$; but $\sum \frac{1}{\sqrt{n}}$ diverges; therefore the series is not absolutely convergent.

f) By ratio test,
$$\frac{(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{n!} = \frac{n^n}{(n+1)^n} = \frac{1}{(1+1/n)^n} \to \frac{1}{e} < 1 \text{ as } n \to \infty;$$
 convergent

g) Ratio test fails:
$$\frac{1}{(n+1)^2} \cdot \frac{n^2}{1} \to 1$$
 as $n \to \infty$; but $\sum \frac{1}{n^2}$ converges; therefore the series is absolutely convergent.

h) Ratio test fails:
$$\sum \frac{1}{\sqrt{n^2+1}}$$
 diverges, by limit comparison with $\sum \frac{1}{n}$; therefore the series is not absolutely convergent.

i) Ratio test fails: $\sum \frac{n}{n+1}$ diverges by the *n*-th term test; therefore the series is not absolutely convergent

7B-5

- e) conditionally convergent: terms alternate in sign, $\frac{1}{\sqrt{n}} \rightarrow 0$, decreasing;
- h) conditionally convergent: terms alternate in sign, $\frac{1}{\sqrt{n^2+1}} \rightarrow 0$, decreasing;
- i) divergent, by the n-th term test: $\lim_{n\to\infty} \ \frac{(-1)^n n}{n+1} \ \neq 0$.

7B-6 In all of these, we are using the ratio test.

a)
$$\frac{|x|^{n+1}}{n+1} \cdot \frac{n}{|x|^n} = |x| \cdot \left(\frac{n}{n+1}\right) \rightarrow |x| \text{ as } n \rightarrow \infty; \text{ converges for } |x| < 1; \ R = 1$$

b)
$$\frac{2^{n+1}|x|^{n+1}}{(n+1)^2} \cdot \frac{n^2}{2^n|x|^n} = 2|x| \cdot \left(\frac{n}{n+1}\right)^2 \to 2|x| \text{ as } n \to \infty;$$

converges for 2|x| < 1 or |x| < 1/2; R = 1/2

c)
$$\frac{(n+1)!|x|^{n+1}}{n!|x|^n} = (n+1)|x| \to \infty \text{ as } n \to \infty; \text{ converges only for } |x| = 0; R = 0$$

d)
$$\frac{|x|^{2(n+1)}}{3^{n+1}} \cdot \frac{3^n}{|x|^{2n}} = \frac{|x|^2}{3} \to \frac{|x|^2}{3}$$
 as $n \to \infty$; converges for $\frac{|x|^2}{3} < 1$,

e)
$$\frac{|x|^{2n+3}}{2^{n+1}\sqrt{n+1}} \cdot \frac{2^n\sqrt{n}}{|x|^{2n+1}} = \frac{|x|^2}{2} \cdot \sqrt{\frac{n}{n+1}} \to \frac{|x|^2}{2} \text{ as } n \to \infty; \text{ converges for } \frac{|x|^2}{2} < 1 \text{ or } |x| < \sqrt{2}; \ R = \sqrt{2}$$

f)
$$\frac{(2n+2)!|x|^{2n+2}}{(n+1)!^2} \cdot \frac{n!^2}{(2n)!|x|^{2n}} = |x|^2 \cdot \frac{(2n+2)(2n+1)}{(n+1)^2} \to 4|x|^2 \text{ as } n \to \infty;$$

converges for $4|x|^2 < 1$, or |x| < 1/2; R = 1/2

g)
$$\frac{|x|^{n+1}}{\ln(n+1)} \cdot \frac{\ln n}{|x|^n} = |x| \cdot \frac{\ln n}{\ln(n+1)} \rightarrow |x| \text{ as } n \rightarrow \infty; \text{ converges for } |x| < 1; \ R = 1$$

(By L'Hospital's rule,
$$\lim_{x\to\infty} \frac{\ln x}{\ln(x+1)} = \lim_{x\to\infty} \frac{1/x}{1/(x+1)} = 1.$$
)

$$\text{h)} \quad \frac{2^{2n+2}|x|^{n+1}}{(n+1)!} \cdot \frac{n!}{2^{2n}|x|^n} \ = \ \frac{2^2|x|}{n+1} \ \to \ 0 \ \text{ as } n \to \infty; \text{ converges for all } x; \ R = \infty$$

7C: Taylor Approximations and Series

7C-1

(a)
$$y = \cos x$$
 $y' = -\sin x$ $y'' = -\cos x$ $y^{(3)} = \sin x$ $y^{(4)} = \cos x$, ...
 $y(0) = 1$ $y'(0) = 0$ $y''(0) = -1$ $y^{(3)}(0) = 0$ $y^{(4)}(0) = 1$, ...
 $a_0 = 1$ $a_1 = 0$ $a_2 = -1/2!$ $a_3 = 0$ $a_4 = 1/4!$...

The pattern then repeats with the higher coefficients, so we get finally

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$$

(b)

$$y = \ln(1+x)$$
 $y' = (1+x)^{-1}$ $y'' = -(1+x)^{-2}$ $y^{(3)} = 2!(1+x)^{-3}$ $y^{(4)} = -3!(1+x)^{-4}$, ...
 $y(0) = 0$ $y'(0) = 1$ $y''(0) = -1$ $y^{(3)}(0) = 2!$ $y^{(4)}(0) = -3!$, ...
 $a_0 = 0$ $a_1 = 1$ $a_2 = -1/2$ $a_3 = 1/3$ $a_4 = -1/4$...

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + \frac{(-1)^{n-1}x^n}{n} + \dots$$

(c) Typical terms in the calculation are given.

$$y = (1+x)^{1/2} y'' = \left(\frac{1}{2}\right) \left(\frac{-1}{2}\right) (1+x)^{-3/2} y^{(4)} = \frac{(-1)(-3)(-5)}{2^4} (1+x)^{-7/2}$$

$$y(0) = 1 y''(0) = \frac{-1}{2^2} y^{(4)}(0) = \frac{(-1)^3 (1 \cdot 3 \cdot 5)}{2^4}$$

$$a_0 = 1 a_2 = -1/8 a_4 = -\frac{1 \cdot 3 \cdot 5}{2^4 4!}$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \ldots + (-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-3)}{2^n \cdot n!} x^n + \ldots$$

One gets the same answer by using the binomial formula; this is the way to remember the series:

$$(1+x)^{1/2} = 1 + \left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2 + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}x^3 + \dots$$

7C-2
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + R_6(x)$$

(We could use either $R_5(x)$ or $R_6(x)$, since the above polynomial is both $T_5(x)$ and $T_6(x)$, but $R_6(x)$ gives a smaller error estimation if |x| < 1, since it contains a higher power of x.)

$$R_6(1) = \frac{\sin^{(7)} c}{7!} \cdot 1^7 = \frac{-\cos c}{7!}$$
, for some $0 < c < 1$. Therefore $|R_6(1)| \le \frac{1}{7!} = \frac{1}{5040} < .0002$

Thus $\sin 1 \approx 1 - \frac{1}{3!} + \frac{1}{5!} \approx .84166$; the true value is $\sin 1 = .84147$, which is within the error predicted by the Taylor remainder.

7C-3 Since $f(x) = e^x$, the *n*-th remainder term is given by

$$R_n(1) = \frac{f^{(n+1)}(c)}{(n+1)!} \cdot 1^{n+1} = \frac{e^c}{(n+1)!} < \frac{3}{(n+1)!} < \frac{5}{10^5}$$
 if $n+1=8$.

Therefore we want n=7, i.e., we should use the Taylor polynomial of degree 7; calculation gives $e\approx 1+1+1/2+1/6+1/24+1/120+1/720+1/5040=2.71825...$, which is indeed correct to 3 decimal places.

7C-4 Using as in 7C-2 the remainder $R_3(x)$, rather than $R_2(x)$, we have

$$|R_3(x)| = \left| \frac{\cos^{(4)}(c)}{4!} x^4 \right| = \left| \frac{\cos c}{4!} x^4 \right| \le \frac{|x|^4}{4!} \le \frac{(.5)^4}{24} = .0026.$$

So the answer is no, if |x| < .5. (If the interval is shrunk to |x| < .3, the answer will be yes, since $(.3)^4/24 < .001$.)

7C-5 By Taylor's formula for e^x , substituting $-x^2$ for x,

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} + \frac{e^c(-x^2)^3}{3!}, \quad 0 < c < .5$$

Since $0 < e^c < 2$, the remainder term is $< \frac{x^6}{3}$; integrating,

$$\int_0^{.5} e^{-x^2} dx = \left[x - \frac{x^3}{3} + \frac{x^5}{10} \right]_0^{.5} + \text{ error } = .461 + \text{ error};$$

where $|\text{error}| < \int_0^{.5} \frac{x^6}{3} = \frac{x^7}{21} \Big]_0^{.5} = .00028 < .0003$; thus the answer .461 is good to 3 decimal places.

7D: Power Series

7D-1

(a)
$$e^{-2x} = 1 - 2x + \frac{2^2}{2!}x^2 + \dots + (-1)^n \frac{2^n}{n!}x^n + \dots,$$

by substituting -2x for x in the series for e^x .

(b)
$$\cos\sqrt{x} = 1 - \frac{x}{2!} + \frac{x^2}{4!} - \frac{x^3}{6!} + \dots + \frac{(-1)^n x^n}{(2n)!} + \dots$$

(c)
$$\sin^2 x = \frac{1}{2} (1 - \cos 2x) = \frac{1}{2} \left(1 - \left[1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} - \dots \right] \right)$$
$$= \frac{1}{2} \left(\frac{(2x)^2}{2!} - \frac{(2x)^4}{4!} + \dots + \frac{(-1)^{n-1}(2x)^{2n}}{(2n)!} + \dots \right)$$

(d) Write the series for 1/(1+x), differentiate and multiply both sides by -1:

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^{n+1}x^{n+1} + \dots$$
$$\frac{1}{(1+x)^2} = 1 - 2x + 3x^2 + \dots + (-1)^n(n+1)x^n + \dots$$

(e)
$$D \tan^{-1} x = \frac{1}{1+x^2} = 1-x^2+x^4-x^6+\ldots+(-1)^n x^{2n}+\ldots,$$

by substituting x^2 for x in the series for 1/(1+x); (cf. (d) above). Now integrate both sides of the above equation:

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \dots + C;$$

Evaluate the constant of integration by putting x = 0, one gets 0 = 0 + C, so C = 0.

(f)
$$D\ln(1+x) = \frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^{n+1}x^{n+1} + \dots$$
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^n x^{n+1}}{n+1} + \dots + C,$$

by integrating both sides. Find C by putting x = 0, one gets C = 0.

(g)
$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$
$$e^{-x} = 1 - x + \frac{x^{2}}{2!} - \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

Adding and dividing by 2 gives: $\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots + \frac{x^{2n}}{(2n)!} + \ldots$

7D-2

a)
$$\frac{1}{x+9} = \frac{1/9}{1+x/9} = \frac{1}{9} \left(1 - \frac{x}{9} + \frac{x^2}{9^2} - \frac{x^3}{9^3} + \dots \right) = \frac{1}{9} - \frac{x}{9^2} + \frac{x^2}{9^3} - \dots$$

b)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots$$
; substituting $-x^2$ for x gives

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \dots + \frac{(-1)^n x^{2n}}{n!} + \dots$$

c)
$$e^x \cos x = \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots\right) \left(1 - \frac{x^2}{2} + \dots\right) = 1 + x + \left(\frac{x^3}{6} - \frac{x^3}{2} + \dots\right)$$

= $1 + x - \frac{x^3}{2} + \dots$; the terms in x^2 cancel.

d)
$$\frac{\sin t}{t} = 1 - \frac{t^2}{3!} + \frac{t^4}{5!} + \dots + \frac{(-1)^n t^{2n}}{(2n+1)!} + \dots$$

$$\int_0^x \frac{\sin t}{t} dt = x - \frac{x^3}{3 \cdot 3!} + \frac{x^5}{5 \cdot 5!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1) \cdot ((2n+1)!} + \dots$$

e)
$$e^{-t^2/2} = 1 - \frac{t^2}{2} + \frac{t^4}{2^2 \cdot 2!} - \frac{t^6}{2^3 \cdot 3!} + \dots$$

$$\int_0^x e^{-t^2/2} dt = x - \frac{x^3}{3 \cdot 2} + \frac{x^5}{5 \cdot 2^2 \cdot 2!} - \frac{x^7}{7 \cdot 2^3 \cdot 3!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1) \cdot 2^n \cdot n!} + \dots$$

f)
$$\frac{1}{x^3-1} = \frac{-1}{1-x^3} = -1-x^3-x^6-\ldots-x^{3n}-\ldots$$

g)
$$y = \cos^2 x \implies y' = -2\cos x \sin x = -\sin 2x$$
; substituting $2x$ into the series for $\sin x$,

$$y' = -2x + \frac{2^3 x^3}{3!} - \frac{2^5 x^5}{5!} + \dots; \text{ integrating,}$$

$$y = \cos^2 x = -x^2 + \frac{2^3 x^4}{4!} - \frac{2^5 x^6}{6!} + \dots + \frac{(-1)^n 2^{2n-1} x^{2n}}{(2n)!} + \dots + C;$$

Since y(0) = 1, we see that C = 1, so $\cos^2 x = 1 - x^2 + \frac{x^4}{3} - \dots$

h) Method 1:
$$\frac{\sin x}{1-x} = (\sin x) \left(\frac{1}{1-x}\right) = \left(x - \frac{x^3}{6} + \dots\right) (1 + x + x^2 + x^3 + \dots)$$

= $x + x^2 + \left(x^3 - \frac{x^3}{6} + \dots\right) = x + x^2 + \frac{5}{6}x^3 + \dots$

Method 2: divide 1-x into $x-x^3/6+\ldots$, as done on the left below:

$$x + x^2 + 5x^3/6 + \dots$$
 $x + x^3/3 + \dots$
 $1 - x$ $x - x^3/6 + \dots$ $1 - x^2/2$ $x - x^3/6 + \dots$
 $x - x^2$ $x - x^3/2$ $x^2 - x^3/6 + \dots$ $x^2 - x^3$
 $5x^3/6 + \dots$

i) Method 1: Calculating successive derivatives gives:

$$y = \tan x$$
, $y' = \sec^2 x$, $y'' = 2\sec^2 x \tan x$, $y^{(3)} = 2(2\sec^2 x \tan x \cdot \tan x + \sec^2 x \cdot \sec^2 x)$
 $y(0) = 0$, $y'(0) = 1$, $y''(0) = 0$, $y^{(3)}(0) = 2$,

so the Taylor series starts

$$\tan x = x + \frac{2x^3}{3!} + \dots = x + \frac{x^3}{3} + \dots$$

Method 2: $\tan x = \frac{\sin x}{\cos x}$; divide the $\cos x$ series into the $\sin x$ series (done on the right above) — this turns out to be easier here than taking derivatives!

7D-3

a)
$$\frac{1-\cos x}{x^2} = \frac{1-(1-x^2/2+\dots)}{x^2} = \frac{x^2/2+\dots}{x^2} \to \frac{1}{2}$$
 as $x \to 0$.

b)
$$\frac{x - \sin x}{x^3} = \frac{x - (x - x^3/6 + \dots)}{x^3} = \frac{x^3/6 + \dots}{x^3} \to \frac{1}{6}$$
 as $x \to 0$

c)
$$(1+x)^{1/2} = 1 + x/2 - x^2/8 + \dots \Rightarrow (1+x)^{1/2} - 1 - x/2 = -x^2/8 + \dots$$

 $\sin x = x - x^3/6 + \dots \Rightarrow \sin^2 x = x^2 + \dots$

Therefore,
$$\frac{(1+x)^{1/2}-1-x/2}{\sin^2 x} = \frac{-x^2/8+\dots}{x^2+\dots} \to \frac{-1}{8}$$
 as $x \to 0$.

d)
$$\cos u - 1 = -u^2/2 + \dots;$$
 $\ln(1+u) - u = -u^2/2 + \dots;$

Therefore,
$$\frac{\cos u - 1}{\ln(1 + u) - u} = \frac{-u^2/2 + \dots}{-u^2/2 + \dots} \to 1$$
 as $u \to 0$.