Romarks: _ HW4 _ Lecture 15

Lecture 14

Branching processes and generating functions Part 2:

- Generating function of a branching process: $G_{Z_n}(s)$
- Probability of eventual extinction

SS:
$$Z_{n+1} = \underbrace{\xi}_{h+1} \times_{h}$$

• Branching process: $Z_{n+1} = \sum_{k=1}^{\infty} \chi_k$

• Generating function:
$$G_{\chi}(s) = E(S^{\chi}) = \sum_{k=0}^{\infty} S^{k} P(\chi=k)$$

$$(v, C)_{0,1}, \dots, \zeta = 1. P(\chi:0) + S. P(\chi=1) + S^{2}. P(\chi=2) + \dots$$

reproduction law Xx iid ~ §

Q: Given G_X , how do you find P(X = k)? (i.e. if 1 know the generaling function $G_{\times}(s)$, can 1 obtain the p.w.f. of X (i.e. f(se) = P(X = te)?) $ex: G_{x}(s) = \frac{1}{3} + \frac{1}{3}s + \frac{1}{3}s^{2} - P(x=1) = \frac{1}{3}$ $= P(X:0). S + P(X=1).S' + P(X=2).3' + \cdots$ => Ou can identify P(X = h) with the coefficient associated with S^k in $G_X(S)$.

$$\begin{array}{l} ex: G_{x}(s) = \frac{1}{1 - \frac{1}{2}s} \\ = \frac{1}{2s} \frac{1$$

What is
$$G_{Z_n}(s)$$
? $(Z_{n+1} = X_1 + \cdots + X_{Z_n})$

Notation: $G_n(s) \coloneqq G_{Z_n}(s)$ and $G(s) \coloneqq G_1(s)$.

Recall: if $Q = X_1 + \cdots + X_N_{N-1}N$. X_i is described function. $G_n(s) = G_n(s)$.

Recall: if
$$Q = X_1 + \dots + X_{N_2 + N_2 +$$

= G& G 0 (5)

Generating function of Z_n is n compositions

Of $G_n(s) = G_n(s) = G_n(s) = G_n(s) = G_n(s)$ Prop: $G_n(s) = G_n(s) = G_n(s) = G_n(s) = G_n(s) = G_n(s)$

Corollary:
$$G_{m+n}(s) = G_m \circ G_n (s)$$

Fact:
$$P(Z_n = k) = \begin{cases} \text{csefficit associated with } S^k \text{ for } G_n \\ \frac{(h)}{h!} \frac{dkG_n}{dS^k} (0) \end{cases}$$

Ex) Suppose individual offspring distribution satisfies $\xi \sim \text{Unif}\{0,1,2\}.$

What are
$$P(Z_2 = 0)$$
, $P(Z_2 = 1)$?

What are
$$P(Z_2 - 0), P(Z_2 - 1)$$
?
$$G(S) = \frac{1}{3} + \frac{1}{3}S^1 + \frac{1}{3}S^2 = G_1(S)$$

$$= 3G_{2}(s) = G_{1}(s) = \frac{1}{3} + \frac{1}{3}G_{1}(s) + \frac{1}{3}G_{1}(s)$$

$$= \frac{1}{3} + \frac{1}{3}(\frac{1}{3} + \frac{1}{3}G_{1}(s)) + \frac{1}{3}G_{1}(s)$$

$$= \frac{1}{3} + \frac{1}{3}(\frac{1}{3} + \frac{1}{3}G_{1}(s)) + \frac{1}{3}G_{1}(s)$$

$$= \frac{1}{3} + \frac{1}{3} \left(\frac{1}{3} + \frac$$

Alfernatively:

$$P(Z_{z=1}) = G_{z}(0) = (G_{z} \circ G_{z})(0)$$

$$= G_{z}(6,0) \cdot G_{z}(0)$$

$$= G_{z}(6,0) \cdot G_{z}(0)$$

$$G_{z}(5) = \frac{1}{3} + \frac{1}{3}S + \frac{1}{3}S^{2} \implies G_{z}(5) = \frac{1}{3} + \frac{2}{3}S$$

$$\Rightarrow P(z_{z=1}) = \left(\frac{1}{3} + \frac{2}{3}(6,(0))^{2}\right) = \left(\frac{1}{3}\right)$$
$$= \left(\frac{1}{3} + \frac{2}{3}, \frac{1}{9}\right) \cdot \frac{1}{3}$$

Mean and variance of Z_n

$$E(\xi^2) - (E(\xi))$$

Prop: Let $\mu = \mathbb{E}\xi$, $\sigma^2 = Var(\xi)$. Then

1.
$$\mathbb{E}Z_n = \underline{\mathcal{M}}$$

2.
$$Var(Z_n) = \begin{cases} n\sigma^2 & \text{if } \mu = 1\\ \frac{\sigma^2(\mu^n - 1)\mu^{n-1}}{\mu - 1} & \text{if } \mu \neq 1 \end{cases}$$

$$= \frac{d}{ds} \left(G(G_{n-1}) \right) (1)$$

$$= G'(G_{n-1}(1)) \cdot G_{n-1}(1)$$

$$= E(1^3) = F(X=k) = 1$$

$$= G'(1) \cdot G'(G_{N-2}(1))$$

$$= (----) = (G'(1))^{n} = \mu^{n}$$

$$\mu^{n} (=E(3))$$

$$= (...) = (G'(1))^{n} = \mu^{n}$$

$$\mu (= E(x)) = G'(1) + G'(1) - (G'(1))^{n}$$
we can prove the result

Example: Suppose
$$\xi \sim \text{Bin}(4, \frac{1}{2})$$
.

What is
$$\mathbb{E} Z_n$$
?

What is
$$\mathbb{E}Z_n$$
? What is $\mathbb{E}Z_n^2$?

$$E(\xi) = 4x \frac{1}{2} = 2$$

 $Vau(\xi) = 4x \frac{1}{2}x \frac{1}{2} = 1$

$$\Rightarrow$$
 $\mathbb{E}(Z_n)_{=2}^n$

$$E(Z_{\alpha}^{2}) = Var(Z_{\alpha}) + (E(Z_{\alpha}))^{2}$$

$$= 2^{n-1} + 2^{2n}$$