Climate and Conflict

Group 1

Alexandra DeKinder, Ameya Karnad, Kulkanya Lekhyananda and Nitasha Nair

Outline

- Introduction
- Research Questions
- Methodology
- Data
- Analysis
- Challenges
- Policy Application and Challenges

Introduction & Background Information

West Africa

Conflicts in West Africa

- For decades, many countries in West Africa have experienced violent conflicts and civil strife.
- Recently, there has been an alarming signal that the number of conflicts is surging in this region.
- General conflict factors include:
 - Poverty and food insecurity
 - Growing population
 - Migration
 - Increasing desertification
- These conflicts have resulted in destruction of lives and property, internal displacement of people, a region-wide refugee crisis, poverty, and disease, as well as others.

Climate Pattern in the West Africa Region

Wet Season (Apr - Oct)

Rainfall on average less than 2,000 mm per year

Dry Season (Nov - Apr)

January is the coldest month with temperature 21-33c.

The temperature can reach the high of 40c.

- The change in sea-surface temperature causes the variability of rainfall in the region. The region experiences flood when the normal monsoon season associated with the periodic warming of the pacific ocean.
- The region also experiences series of drought, dating back to at least the 17th century.

Research Question

"How does climate change and natural resource shortage correlate with conflicts within a country?"

Conflict Drivers

Source: ECC Platform

Senegal

• Capital: Dakar

• **Population**: 15 million

• 14 Regions and 45 Departments

• Land use: Agriculture 47%, forest 44%, other 9%

• SENEGE COHOMY: mining, construction, tourismustisheries and agriculture

• Climate: Wet season (May-Nov), Dry Season (Dec-Apr)

Conflict: is one of the most stable democracy in Africa, but there is low-level insurgency since the 1980s, and cease-fire in effect since 2012

Migration - Patterns of movement

Data

Datasets

Data Cleaning and preprocessing

- Confirmed Data Science "80/20 rule"
- Names of Departments were recorded differently (English/ French, Hyphen).
 Had to be manually cleaned

Thiès → Thies

- Other common issues related to Dates
- Merging of the datasets

Conflict Data

- Decided to go with monthly department wise dataset as other datasets were aggregated monthly
- The dataset consisted of various attributes like year_month, temperature, rainfall, population, landmass, wetland, farmland, location, number of conflicts etc.
- Selected year_month, location, temperature and rainfall as others are mostly static.

Food Price

date	cmname	unit	category	price	currency	country	admname	adm1id	mktname	mktid	cmid	ptid	umid	catid	sn	default
#date	#item+nam	e #item+unit	#item+type	#value	#currency	#country+n	aı #adm1+nam	#adm1+cod	e #name+mar	ket	#item+code			#item+ty	pe+ #meta+id	
1/15/07	Maize (loca	l) KG	cereals and	160	XOF	Senegal	Kedougou	1374	4 Kedougou	419	56	15		5	1 419_56_15	_5
3/15/07	Maize (loca	I) KG	cereals and	100	XOF	Senegal	Kedougou	1374	4 Kedougou	419	56	15		5	1 419_56_15	_5
4/15/07	Maize (loca	I) KG	cereals and	200	XOF	Senegal	Kedougou	1374	4 Kedougou	419	56	15		5	1 419_56_15	_5
5/15/07	Maize (loca	I) KG	cereals and	200	XOF	Senegal	Kedougou	1374	4 Kedougou	419	56	15		5	1 419_56_15	_5
7/15/07	Maize (loca	I) KG	cereals and	190	XOF	Senegal	Kedougou	1374	4 Kedougou	419	56	15		5	1 419_56_15	_5
8/15/07	Maize (loca	I) KG	cereals and	190	XOF	Senegal	Kedougou	1374	4 Kedougou	419	56	15		5	1 419_56_15	_5
9/15/07	Maize (loca	I) KG	cereals and	190	XOF	Senegal	Kedougou	1374	4 Kedougou	419	56	15		5	1 419_56_15	_5
10/15/07	Maize (loca	I) KG	cereals and	200	XOF	Senegal	Kedougou	1374	4 Kedougou	419	56	15	Į.	5	1 419_56_15	_5
11/15/07	Maize (loca	I) KG	cereals and	187.5	XOF	Senegal	Kedougou	1374	4 Kedougou	419	56	15		5	1 419_56_15	_5
2/15/00	Maire (less	II VC	coroole and	150	VOE	Canagal	Vadaugau	127	1 Vadaugau	410	E C	15		-	1 410 FC 1F	Е

Biomass

- Biomass dataset was quite clean
- Had to be converted from a wide format to a long format.
- The data was year wise, so when we merge, the biomass for the same months of the year was kept common.

admin2Name	-	BIO_1998	¥	BIO_1999	¥	BIO_2000	¥	BIO_2001	¥	BIO_2002	*	BIO_2003	¥	BIO_2004	~
Oussouye		1560110.4	11	1537335.4	61	1678915.4	48	1641250.35	51	1632475.3	67	1598316.5	85	1745985.0)31
Ziguinchor		2047302.2	24	2164199.3	05	2345175.1	03	2206426.72	26	2174319.6	78	2171063.1	76	2447281.3	339
Salemata		2711501.4	31	3426710.5	39	3252310.0	03	2935459.50)7	2779032.2	72	2909580.6	62	3223825.1	18
Goudomp		2725832.5	55	3018910.8	45	3212206.7	74	2903187.34	14	2626439.0	74	3095079.7	72	3273260.3	325
Sedhiou		3855458.	39	4468341.5	49	4871179.5	31	4276381.51	14	3751757.6	07	4514758.1	71	4844117.5	34
Kolda		4523293.2	26	5502726.3	17	5454629.9	43	4886279.73	31	4287356.8	01	5403445.8	68	5701885.7	777
Bignona		8292660.9	23	9071224.	15	9737392.4	51	9048874.61	17	8786806.8	87	9180807.4	12	9771370.7	737
Kedougou		9130150.6	13	11700951.	07	10839437.	55	10015334.4	12	8936085.3	63	9802141.1	01	10585849.	.99
Bounkiling		3729713.3	63	4653547.8	92	5035496.4	64	4420309.37	79	3904959.9	71	4532977.9	47	4762889.5	511
Saraya		10246374	.9	12887300.	68	11863191.	46	10633061.4	14	9660624.7	48	10493965.	14	10994788.	.67
Velingara		6261183.6	03	8015979.6	93	7954182.6	78	6975711.55	7	6150418.	87	7497826.0	86	7968692.6	529
Medina Yoro Foulah		5530036.	46	6960701.1	04	6824073.4	47	5964148.04	11	5351490.4	62	6588611.9	74	7089380.5	37

Final Dataset

Month wise data for all cities including variables like Temperature (in C),
 Rainfall (in mm), Prices of Millet, Maize, Rice and Sorghum (in franc CFA per KG), biomass and number of conflicts.

YEAR -	NAME_ ▼	YRMO 🔻 I	D_1 ~	ID_2 ▼	NAME_ ▼	TEMP ▼	RAIN -	ACTION ~	Maize 🔻	Millet 🔻	Rice 💌	Sorghur *	biomas: *
2007	Bakel	200701	12	36	Tambacou	26.95	0.028333	0	212.5	200	225	195	5317881
2007	Bakel	200708	12	36	Tambacou	27.98333	29.83833	0	200	200	250	190	5317881
2007	Bakel	200702	12	36	Tambacou	28.86667	0.101667	0	200	200	225	190	5317881
2007	Bakel	200710	12	36	Tambacou	30.35	3.056667	0	NA	200	250	190	5317881
2007	Bakel	200709	12	36	Tambacou	28.26667	8.158333	0	200	200	250	187.5	5317881
2007	Bakel	200705	12	36	Tambacou	35.95	1.118333	0	225	200	225	175	5317881
2007	Bakel	200707	12	36	Tambacou	29.8	18.31167	0	200	200	250	193.3333	5317881
2007	Bakel	200706	12	36	Tambacou	33.58333	5.721667	0	200	200	250	200	5317881
2007	Bakel	200711	12	36	Tambacou	28.66667	1.573333	0	200	200	250	190	5317881

Summary Statistics of the Food price data

Analysis

Models

- Regression
- Classification
- Historical Data based Classification
- Incident case study

Linear Regression Model

Linear model to predict number of conflicts - Prone to Failure

$$Y = b_0 + b_1 Temp + b_2 Rainfall + b_3 Pr_Maize + b_4 Pr_Rice + b_5 Pr_Sorghum + b_6 Pr_Millet + b_7 Biomass$$

Classification Model

- Converted number of incidents to as Yes / No case
- Used logistic regression Accuracy = 98.2 %
- Too good to be True?? you are right!

	Pred	dicted
Actual	0	1
0	504	0
1	9	0

Need to tackle Class imbalance issue

Classification Model - Logistic regression

- Undersampled the no conflict data
- Accuracy = 67.64%, TPR = 100%

$$P = \frac{e^{a+bX}}{1+e^{a+bX}}$$

Classification Model - Other models

Same case with other classification models.

	Predicted					
Actual	0	1				
0	391	113				
1	1	8				

Classification Model - Support Vector Machines

- SVM constructs hyperplane in high-dimensional space for classification
- Accuracy = 74.85%
- TPR = 100%

	Pred	licted
Actual	0	1
0	375	129
1	0	9

Classification Model - Decision Tree

- Decision trees use a tree-like model for decisions
- Decision Tree- Accuracy = 77.78%
- TPR = 88.88%

	Predicted					
Actual	0	1				
0	391	113				
1	1	8				

Historical data based Model

- Conflicts mainly happen due to long term effects.
- Not enough data for a Time series Classification model (LSTM)
- We tried to model data for Bignona (The only region with enough conflict data)

Used a logistic regression based model to predict using attributes of upto 3

months prior (Oversampled in this case)

Accuracy - 0.82 %

	Predicted				
Actual	0	1			
0	16	3			
1	1	3			

Data highly Inadequate for the model to be used for real time classification

The 2010 Sahel Drought A Case Study

Sahel Region

Drought in the Sahel

- The previous drought
 - First record: in 1680s
 - The 1740s 1750s
 - o The 1830s
 - o The 1980s
- Possible causes of the drought
 - The tropical convection
 - The change in the temperature in the surrounding ocean
 - The West African Monsoon
 - El Niño
 - Deforestation

Consequences

- Less vegetation or greenery
- Drying up of water resources in an already arid region

The Most Recent Drought

- Believed to have begun in 2010 after the onset of El Nino
- Rainfall was reported to be at the all-time low in February 2010
- Situation was most severe in 2012 when the region is reported to be in drought and famine (extreme scarcity of food)
- There has been no formal evidence of the end of this drought period
- Some sources say the situation recovered in 2017

Senegal Food Prices During Drought

Conflict Dashboard

Challenges in Modeling Social Behavior and Conflicts

- Complicated
- Conflict is a complex topic, there are numerous factors which are difficult to measure and capture in the model
- Data collection is not always consistent over long periods of time or between regions, which result in data gaps and issues comparing across space.
- Rare event cases.

Policy Recommendation and Application

Projected temperature rise in the region

Relevant Stakeholders

Government agencies such as:

- Disaster Management
- Civil Protection Department

Private sector

- Insurance firms
- Health service providers

International Organisations

- Humanitarian Aid
- Multilateral Organizations like the UN

Communities

Pastoralists, Farmers and civilians

Short- Medium Term

- Regulating Food Prices
- Macroeconomic policies to control inflation
- Early Warning System for Conflict Prevention

Long Term

- Resource management
- Extension services
- Climate change resilience building

Policy Challenges

- Decision makers often don't have a comprehensive information and lack understanding of how different factors interact with each other
- Causation vs Correlation
- Migration across countries
- Implementing consistent data collection methods across the region is expensive
- Resources are managed nationally or subnationally despite being a shared resource
- Results should used in conjunction with other information

Future Research

- Implication of climate change on spread of diseases
- Integrating migratory patterns
- Supplementing conflict incidents with social media sentiment analysis
- Satellite imaging as another source of data
- Expanding model to other countries

Thank You

Questions?