ECE5463: Introduction to Robotics

Lecture Note 2: Configuration Space

Prof. Wei Zhang

Department of Electrical and Computer Engineering
Ohio State University
Columbus, Ohio, USA

Spring 2018

Outline

• Mechanical Structure of a Robot

Configuration Space

• Representation of Configuration Space

(

Typical Mechanical Structure

- A robot is mechanically constructed by connecting a set of bodies, called links, to each other using various types of joints.
- Links are usually modeled as rigid bodies
- **Actuators**, such as electric motors, deliver forces and torques to the joints, thereby causing motion of the robot
- End-effector, such as gripper or hand, is attached to a specific link

Typical Joints

- Revolute Joint (R): hinge joint
- Prismatic Joint (P): linear joint
- Helical Joint (H): screw joint

- Cylindrical Joint (C): independent
 +ranslation and votation
- Universal Joint (U):
- Spherical Joint (S): ball and socket

Outline

Mechanical Structure of a Robot

Configuration Space

• Representation of Configuration Space

Configuration Space Definitions

- Configuration: a complete specification of the position of every point of the robot.

 geometry / structure information of the robot is know a priori
- **Degree of Freedom (dof)**: The minimum number of real-valued coordinates needed to represent the configuration

• Configuration Space (C-space): The space (set) that contains all possible configurations of the robot.

 Effective representation of the C-space is essential for many aspects of robotics

How to find the dof?

• Example: coin on a table

consider a few points on the coin. (Coin's geometry is known the coordinates of all the points can not be specified independently

- the first of A (xx, yx) can be chosen arbitrarily =) def > 2
- Then the coordinate of , (x_8, y_8) must satisfy $d_{AB} = J(x_4 x_8)^2 + (y_4 y_8)^2$ \Rightarrow $(x_8, y_8) \oplus constraint <math>\Rightarrow$ we have 1-move dof 1 constraint
- After specifying (x4, ya) and (x8, y8), all other points' coordinates are fully determined (i.e. can be determined based (x4, y8) & (x8, y8)
- overall, dof = 3

DoF of Planar and Spatial Rigid Body

· planar rigid body has dof = 3

similarly, we can find out that

Spatial rigid body in R3

dof = 6

DoF of Joints

• Joint can be viewed as providing freedoms to allow one rigid body to move relative to another.

 Dof of a joint: minimum # of variables needed to represent the configuration of a joint

Joint can also be viewed as providing constraints on the possible motions of

the two rigid bodies it connects

these numbers are only three for joints

(that connect 2 bodies

		Constraints c	Constraints c
		between two	between two
Joint type	dof f	planar	spatial
		rigid bodies	rigid bodies
Revolute (R)	1	2	5
Prismatic (P)	1	2	5
Helical (H)	1	N/A	5
Cylindrical (C)	2	N/A	4
Universal (U)	2	N/A	4
Spherical (S)	3	N/A	3

DoF of Mechanisms (Linkages)

dof = (sum of freedoms of the bodies) – number of **independent** constraints

(1)

only true if all constraints are indep

- Grübler's Formula: $dof = m(N-1-J) + \sum_{i=1}^{J} f_i$
- N: # of links (including ground / frame as a link) daf = m. (N-1) \$\frac{1}{2} C_1
- m: # of dof of a body (m=3 for planar m=6 for spatial)
- J: # of Joints
- fi: # of dof of ith joint
- Ci: # of constraint provided by ith joint

 B Note: fit Ci = m

$$def = m \cdot (N-1) - \sum_{i=1}^{3} C_{i}$$

$$= m \cdot (N-1) - \sum_{i=1}^{3} (m-5_{i})$$

$$= m \cdot (N-1-3) + \sum_{i=1}^{3} f_{i}$$

DoF Examples

$$J = 4$$

 $f_i = 1$, $f_i = f_2 = f_3 = 1$

$$def = 3(4-1-4)+1.4'$$

$$= -3+4=1$$

DoF Examples

Blindly using Erübler's formula $N = 5, T = 6, T_{i=1}$ $Lof \times 3(5-1-6) + 6 \cdot (1)$ $= 3 \cdot (-2) + 6 = 0$

Assuming all links are the same
In this case, link 2 is redundant,
d the joint does not provide indep
constraint, can be viewed as if
there was no link 2

consider point that connects three bodies

dof=3+1+1=5, equivalently, this joint provides 9-5=4 constraints

orequivalently, we can view 3-body joint as

2 2-body joint staying on top of each other

$$N=7+1=8$$
, $T=8(R)+1(P)$,
 $d_0f=3(8-1-9)+9=3x(-2)+9=3$

$$d^{3}f = 3. (4-1-4)+4=1$$

DoF Examples

$$N = 5 \times 3 + 1 + 1 = 17$$

$$J = 3 \times 3 (R) + 4 \times 3 (S)$$

$$= 9(R) + 12(S)$$

$$f_{R} = 1, f_{S} = 3$$

$$dof = 6 \times (17 - 1 - 21) + 9 \times (1) + 12 \times (3)$$

$$= 6 \times (-5) + 9 + 36 = 45 - 30 = 15$$

Outline

Mechanical Structure of a Robot

Configuration Space

• Representation of Configuration Space

Issues for Explicit Parameterization

- Representation of Euclidean space: choose reference frame and represent point as a vector
- Representation of *curved space* is more tricky than it appears
- Explicit parameterization uses the same number of coordinates as the space dimension (suffer from singularity)

Donly valid for a range, need bookkeeping steps to reset coordinate

2) problematic in representing velocity as time rate of change of coordinate (2,8) suppose one travels as a constant speed, but longitude change & becomes unbounded as B approaches North/South >-le

Topology

- Explicit parameterization of sphere (latitude/longitude) suffers from singularity because sphere and plane have different topologies.
- Roughly, two spaces are topologically equivalent if one can be continuously deformed into the other without cutting or gluing.

• Topologically **distinct** 1-d spaces:

circle:

S (tdim sphere)

- line:

E= IR

closed interval:

Topology

• Examples of topologically different 2-d spaces

Sh: n-dim sphere
surface of ball in Rht1

Implicit Representation of C-Space

- Implicit Representation: View *n*-dim space as embedded in a higher dimensional Euclidean space subject to constraints.
- Use more coordinates than the minimum, but can avoid singularities
- Example: Sphere S^2

 $S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x_1^2 y_1^2 + z_2^2 = 1\}$, View S^2 as a surface embedded in 3d space It use more variables than dof of S^2 , but there are no singularities. A point moving smoothly around the sphere is represented by smoothly changing (x, y, z)

• In this class, we will primarily use the implicit representation even at Worth/South

Summary Questions

• What is the configuration space (C-space) of a robot?

What is dof of C-space, and how to find dof?

What is topological equivalence?

Pros and cons for explicit and implicit representation of C-space

• Further reading: chapter 2 of Lynch and Park.