<u> 2017 Fall semester – CS5800 course information</u>

Classes

The following link includes all the details regarding the times and locations.

https://wl11gp.neu.edu/udcprod8/bwckctlg.p disp_listcrse?term_in=201810&subj_in=CS&crse_in=580 0&schd_in=LEC

Grading

Home Work assignments – 15%.

Programming assignment(s) - 10%.

Quizzes – 15% (Best 3 out of 4).

Midterm 1 (Tentative Date Oct 13) – 15%.

Midterm 2 (Tentative Date Nov 17) – 15%.

Final exam (Date TBD) - 30%.

Textbook

Algorithm Design by Kleinberg and Tardos.

Syllabus

The following is a tentative syllabus. It is very likely that we will skip some of the topics. We might also discuss one or two topics that are not mentioned in the table.

Week	Topics	Relevant literature (Algorithm design)
Course overview		
Introduction to algorithms design and analysis		
Stable matching		
Asymptotic notation	2.1 – 2.5	
2.	Divide-and-conquer	
	Merge sort	5.1
	Recurrence relations	5.2
	Master Theorem	
3.	Divide-and-conquer	
	Deterministic algorithm for selection	
	Closest Pair	5.4
4.	Graph Traversals	3.1-3.5
	Basic definitions and applications	
	Basic traversals	
	Breadth-first search	
5.	Graph Traversals II	3.1-3.5
	Depth-first search	
	Topological sorting	
	Strongly connected components	
6.	Greedy algorithms	4.1-4.8

	Activity scheduling	
	Huffman encoding	4.8
7.	Minimum spanning trees	
	Kruskal and Prim's algorithms (greedy)	4.5-4.6
8.	Dynamic programming	Chapter 6
	Longest common subsequence	
	Knapsack	6.4
9.	Shortest paths	6.8
	Shortest paths in DAGs	
	Dijkstra's algorithm	4.4
	Bellman-Ford	6.8
	Floyd-Warshall algorithm	
10.	Flow Networks	7.1-7.3
	Flows and cuts	
	Max-flow min-cut theorem	
	Ford-Fulkerson's algorithm	
	Edmonds–Karp algorithm	
	Applications of network flows	7.5
	Bipartite matching	
11.	Randomized algorithms	Chapter 13
	Selection: Randomized linear time algorithm	
	Hashing	
	Closest pair	
12.	Linear programming	11.6
	Standard forms	
	Formulating problems as linear programs	
	Overview of simplex algorithm	
13.	NP-completeness	Chapter 8
	Hard decision problems	
	Polynomial-time reductions	
	P vs NP	
	Cook's Theorem	
	NP-completeness proofs	
14.	Approximation algorithms	Chapter 11
	Vertex cover	
	Set cover	
	Review	