МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 3.1.1

Эффект Хохла

Соболевский Федор Александрович Б05-111

1 Аннотация

В данной работе изучено явление возникновения поперечной ЭДС в полупроводниках с то-ком, находящихся в магнитном поле - эффект Хохла. Исследовано зависимость ЭДС Хохла от величины магнитного поля при различных значениях тока через образец для определения константы Хохла. Также был определён знак носителей заряда и проводимость материала образца.

2 Теоретические сведения

2.1 Эффект Хохла

Рис. 1: Образец с током в магнитном поле

Суть эффекта Хохла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I (рис. 1). Если эту пластину поместить в магнитное поле, направленное по оси y, то между гранями A и B появляется разность потенциалов. На электрон (для простоты рассматриваем один тип носителей), движущийся со средней скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B}$$

где e — абсолютный заряд электрона, \vec{E} — напряженность электрического поля, \vec{B} — индукция магнитного поля. В проекции на ось z получаем

$$F_B = e|\langle v_x \rangle|B.$$

Под действием этой силы электроны отклоняются к грани Б, заряжая ее отрицательно. На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E = eE_z$. В установившемся режиме $F_E = F_B$, поэтому накопление электрических зарядов на боковых гранях пластины прекращается. Отсюда

$$E_z = |\langle v_x \rangle| B.$$

С этим полем связана разность потенциалов

$$U_A = E_z l = |\langle v_x \rangle| B l.$$

В этом и состоит эффект Хохла. Сила тока в проводнике определяется как

$$I = ne|\langle v_x \rangle| la.$$

Отсюда найдем ЭДС Хохла:

$$\mathscr{E}_{\mathbf{X}} = U_{\mathbf{AB}} = \frac{IB}{nea} = R_{\mathbf{X}} \frac{IB}{a}.$$

Константа $R_X = \frac{1}{ne}$ называется постоянной Хохла. В полупроводниках, когда значение проводимости зависит от строения вещества проводника, выражение для постоянной Хохла имеет более сложный вид:

$$R_X = \frac{nb_e^2 - pb_p^2}{e(nb_e + pb_p)^2},$$

где n и p — концентрации электронов и дырок; b_e, b_p — их подвижности.

2.2 Экспериментальная устновка

Схема экспериментальной установки показана на рис. 2.

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (рис. 2a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания A_1 . Разъем K_1 позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе (рис. 26), подключается к батарее. При замыкании ключа K_2 вдоль длинной стороны образца течет ток, величина которого регулируется реостатом R и измеряется миллиамперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Хохла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец.

Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Хохла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Хохла \mathscr{E}_X может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остается неизменным. От него следует (с учетом знака) отсчитывать величину ЭДС Хохла:

$$\mathscr{E}_{X} = U_{34} - U_{0}.$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку \mathscr{E}_X можно определить характер проводимости — электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}ah},\tag{1}$$

где L_{35} — расстояние между контактами 3 и 5, a — ширина образца, h — его толщина.

3 Оборудование и экспериментальные погрешности

Оборудование: электромагнит с регулируемым источником питания, вольтметр, амперметр, миллиамперметр, миллитесламетр, источник питания, образцы легированного германия.

Инструментальные погрешности:

• Амперметр: $\Delta_I = 0.01 \text{ A}$;

• Вольтметр: $\Delta_U = 0.001 \text{ мB}$;

• Миллиамперметр: $\Delta_{\text{мA}} = 0.01 \text{ мA};$

• Миллитесламетр: $\Delta_B = 0.5$ мТл.

4 Результаты измерений и обработка экспериментальных данных

Параметры образца: a=2,2 мм, L=6,0 мм, l=7 мм. Результаты измерения калибровочной зависимости поля B от тока в электромагните I представлены в таб. 1. В дальнейшем использовались только измеренные значения тока и соответствующие им значения индукции поля.

I, A	В, мТл
0,00	22,4
0,25	263,5
0,50	522,6
0,75	762,0
1,00	923,1
1,25	1035,1
1,50	1086,0

Таблица 1: Калибровочная зависимость $B(I_{\mathrm{M}})$

Результаты измерений разности потенциалов U_{34} между точками 3 и 4 в зависимости от поля B при различных значениях тока через образец I и полученные значения ЭДС Хохла U_{\perp} представлены в таб. 2-3. График семейства характеристик $U_{\perp}(B)$ при разных значениях тока I через образец представлен на рис. 3.

<i>I</i> , мА	U_0 , мВ	$I_{ m M},~{ m A}$	U_{34} , мВ	U_{\perp} , мВ
0,2		0,25	-0,005	-0,010
		0,50	-0,013	-0,018
	+0,005	0,75	-0,022	-0,027
		1,00	-0,028	-0,033
		1,25	-0,032	-0,037
		1,50	-0,035	-0,040
0,4	+0,011	0,25	-0,006	-0,017
		0,50	-0,025	-0,036
		0,75	-0,042	-0,053
		1,00	-0,054	-0,065
		1,25	-0,062	-0,073
		1,50	-0,068	-0,079
		0,25	-0,008	-0,026
		0,50	-0,036	-0,054
0,6	10.019	0,75	-0,060	-0,076
	+0,018	1,00	-0,079	-0,097
		1,25	-0,092	-0,110
		1,50	-0,100	-0,118
		0,25	-0,010	-0,035
	+0,025	0,50	-0,046	-0,071
0.8		0,75	-0,081	-0,106
0,8		1,00	-0,105	-0,130
		1,25	-0,121	-0,146
		1,50	-0,133	-0,158
1,0	+0,032	0,25	-0,013	-0,045
		0,50	-0,057	-0,089
		0,75	-0,099	-0,131
		1,00	-0,132	-0,164
		1,25	-0,152	-0,184
		1,50	-0,166	-0,198

Таблица 2: Результаты измерения ЭДС Хохла при I=0,2-1,0 мА

I, мА	U_0 , мВ	$I_{\mathrm{M}},\mathrm{A}$	U_{34} , мВ	U_{\perp} , мВ
1,0	+0,039	0,25	0,084	0,045
		0,50	0,128	0,089
		0,75	0,170	0,131
		1,00	0,202	0,163
		1,25	0,222	0,183
		1,50	0,237	0,198

Таблица 3: Результаты измерения ЭДС Хохла при обратном направлении тока

Рис. 3: Графики зависимости ЭДС Хохла в образце от величины магнитного поля и тока

Знак потенциала соответствует заряду на 3 контакте, значит на нём будут скапливаться дырки. Исходя из геометрии образца, изображённой на рис. 4, получаем, что основными носителями заряда являются дырки, т. е. имеет место дырочная проводимость.

График зависимости $k=\frac{|dU_{\perp}|}{dB}$ от тока I представлен на рис. 5. Получаем угловой коэффициент $\alpha=(18,5\pm0,5)\cdot10^{-5}$ $\frac{\rm B}{\rm A\cdot Tr}$. Тогда постоянная Холла

$$R_H = \alpha \cdot h = (739 \pm 35) \cdot 10^{-6} \frac{\text{M}^3}{\text{K}_{\pi}}.$$

Рассчитаем концентрацию носителей заряда по формуле $n=\frac{1}{R_Hq}=(8.5\pm0.2)\cdot10^{21}~\frac{1}{^{\rm M}^3}$. При токе I=1 мА разность потенциалов между контактами 3 и 5 $U_{35}=-1.980\pm0.001$ В. Вычислим удельную проводимость по формуле (1): $\sigma_0=196.7\pm16.1~{\rm OM\cdot M}^{-1}$. Тогда удельное сопротивление

$$\rho_0 = 1/\sigma_0 = 0.0050 \pm 0.0004 \text{ Om} \cdot \text{m}.$$

Подвижность носителей заряда рассчитывается по формуле

$$\mu = \frac{\sigma}{en} = 1446 \pm 123 \; \frac{\text{cm}^2}{\text{B} \cdot \text{c}}.$$

Рис. 4: Направление тока, вектора магнитного поля и отклонение носителей

Рис. 5: График зависимости коэффициента пропорциональности k от тока в образце

5 Обсуждение результатов и выводы

В данной работе были определены постоянная Хохла, подвижность и концентрация носителей заряда в образце легированного германия. Полученные значения:

$$R_H = (739 \pm 35) \cdot 10^{-6} \frac{\text{M}^3}{\text{K}\pi}, \quad n = (8.5 \pm 0.2) \cdot 10^{21} \frac{1}{\text{M}^3}, \quad \mu = 1446 \pm 123 \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$$

Табличное значение собственной концентрации носителей зарядов для германия $n_0 = 2.4 \cdot 10^{22} \, \frac{1}{\text{м}^3}$. Это несколько отличается от полученного значения, что говорит о возможном наличии примесей в использованном образце германия. Основной вклад в погрешность вносит погрешность определения коэффициентов зависимости. Также на ошибку измерений может влиять зависимость концентрации основных носителей заряда от температуры, ярко выраженная в полупроводниках.

В ходе работы удалось пронаблюдать эффект Хохла в полупроводнике с током и установить характер проводимости по количественным и качественным характеристикам данного эффекта.

Примерное соответствие результатов работы теоретической модели и относительно небольшая погрешность (<10%) говорит о применимости использованного оборудования для наблюдения данного эффекта.