CALABI–YAU EMBEDDING OF SOME REDUCIBLE SURFACES VIA ORBIFOLDS

1. Introduction

The purpose of this note is to introduce the local Gromov–Witten invariants of a local del Pezzo orbifold and to prove embeddability of some higher rank surfaces considered in [6]. Here, a del Pezzo orbifold is a 2 dimensional orbifold constructed in the following way. Given a smooth projective surface S, a normal crossing divisor $D = D_1 + \ldots D_n$, and a vector $\vec{r} \in \mathbb{Z}^n$, we can attach a stabilizer group of $\mathbb{Z}_{r_i} := \mathbb{Z}/r_i\mathbb{Z}$ to D, and construct a smooth DM stack $S_{D,\vec{r}}$ it is called a root stack [2]. For our application, we will only concern when n = 1, r = 2 so we write simply S for $S_{D,\vec{r}}$. We work over \mathbb{C} .

2. Geometry of orbifolds

Here we recall a bit of well known facts on orbifolds. A good reference is [4], chapter 4. See also [2] on root stacks. The root stack construction comes with a map c to its coarse moduli space, which is just the underlying projective surface S

$$c: \mathcal{S} \to S$$
.

It is an isomorphism on $S \setminus D$ and thus the generic stabilizer is trivial. Hence, it is a Gorenstein orbifold. Its inertia stack is given by the disjoint union

$$IS = S \sqcup D$$
.

It carries a canonical line bundle $\omega_{\mathcal{S}}$ or canonical divisor $K_{\mathcal{S}}$. The orbi-line bundle $\omega_{\mathcal{S}}$ is given by

$$\omega_{\mathcal{S}} = c^* \omega_S \otimes \mathcal{L}$$

where $\mathcal{L}^{\otimes 2} \simeq \mathcal{O}_S(D)$ is an orbi-line bundle which is not a pullback of a usual line bundle on S. Let (z_1, z_2) be local coordinates with D given by $z_1 = 0$ and let (x_1, x_2) be a corresponding local coordinate system of the upstair orbifold. Then we have

$$c^*(dz_1 \wedge dz_2) = 2x_1 dx_1 \wedge dx_2$$

and the ramification divisor is given by $x_1 = 0$. This shows that orbifold line bundle ω_S is not locally trivial around points on D and it has the induced \mathbb{Z}_2 action from the downstair. On $S \setminus D$, it is just the usual line bundle.

By the same way, the canonical divisor is given by

$$K_{\mathcal{S}} = c^* K_S + \frac{1}{2} D$$

which is a \mathbb{Q} -divisor. The anticanonical orbibundle $K_{\mathcal{S}}^{-1}$ can also be defined.

The notion of Chern class also generalizes, having value in $H^i(X, \mathbb{Q})$.

We say a \mathbb{Q} -Cartier divisor D is ample if it is locally ample and some positive multiple of it is an integral ample Cartier divisor.

Definition 2.1. Let S be an orbifold constructed from the root stack construction on (S, D). If K_S^{-1} is an ample divisor, then we say S is a del Pezzo orbifold.

3. Calabi-Yau embedding of some reducible surfaces

Let \mathcal{X} be the total space of $K_{\mathcal{S}}$ on \mathcal{S} which is again an orbifold. It is a Calabi-Yau orbifold of dimension 3 which we call an local (orbi)surface. Its coarse moduli space X is known to be \mathbb{Q} -factorial and it has a singularity along D in the zero section and there exists a crepant resolution by a single blow-up. Resolving this singularity, we get a genuine (non-stacky, non-compact) Calabi-Yau 3-fold X which has $S \cup_D R$ where R is a ruled surface over D.

Theorem 3.1. Let S be a smooth projective surface and D be a smooth divisor with self intersection $D^2 = d$. Then the above construction gives a (non-compact) Calabi-Yau 3-fold containing $S \cup_D R$ where R is a ruled surface over D such that the self-intersection of D in R is 2-d.

In the case $D^2 \ge -1$, the Calabi–Yau condition completely determines the ruled surface and the glued curve.

Theorem 3.2. Let S be a smooth projective surface and D be a smooth divisor with self-intersection $D^2 = d \ge -1$. Then there is a non-compact Calabi-Yau 3-fold X containing $S \cup \mathbb{F}_{-2-d}$ where $S \cap \mathbb{F}_{-2-d} = D$ is the unique negative curve in \mathbb{F}_{-2-d} .

Example 3.3. Let $S = \mathbb{P}^2$ and D be a smooth conic. In this case, the root stack S is actually a global quotient stack $S = [\mathbb{F}_0/\langle i \rangle]$ where $p : \mathbb{F}_0 \to \mathbb{P}^2$ is the double cover of \mathbb{P}^2 branched along D and $i : \mathbb{F}_0 \to \mathbb{F}_0$ is the involution that comes with the double cover. Although scheme-theoretic quotient is just \mathbb{P}^2 , it has nontrivial stabilizer attached to D. Consider the toal space of line bundle ω_S on S. Outside D, it is just the usual line bundle. Thus, the orbifold structure is supported over D. In local coordinate, the stabilizer just acts as multiplication by (-1) on the fiber and the defining equation. Thus, the coarse moduli space of $\mathcal X$ has a transverse A_1 singularity. Being Gorenstein Calabi–Yau, it admits a crepant resolution which is just the blowing up the singular locus in this case. The resulting blow-up is \mathbb{F}_6 by the Calabi–Yau condition and we get a normal crossing divisor $\mathbb{P}^2 \cup \mathbb{F}_6$.

This example can be constructed from $\text{Tot}K_{\mathbb{F}_0}/\langle \tau \rangle$ where τ is acting on the fiber by multiplication by (-1) as well.

Hence the invariant for $\mathbb{P}^2 \cup \mathbb{F}_6$ in [6] could have been defined using this Calabi–Yau embedding.

Example 3.4. Let $S = \mathbb{P}^2$ and $D = \ell$ be a line. In this case, there does not exist a double cover of \mathbb{P}^2 branched along a line, so it cannot be constructed as a global quotient of a variety. However, there is such a double cover locally, and it glues in the category of orbifolds. Let S be such an orbifold, and $\mathcal{X} = \text{Tot}(\omega_S)$. The coarse moduli space X has transverse A_1 singularity along a line. Blowing up this line, we get a divisor $\mathbb{P}^2 \cup \mathbb{F}_3$ in the resolution \widetilde{X} .

Since a coordinate axis in \mathbb{P}^2 is a torus invariant divisor, the orbifold \mathcal{X} has toric description, as a partial resolution of isolated quotient singularity $\mathbb{C}^3/\mathbb{Z}_5$.

Example 3.5. Let $S = \mathbb{F}_0 = \mathbb{P}^1 \times \mathbb{P}^1$ and D be a smooth curve of class $f_1 + f_2$, where f_i is a ruling of \mathbb{F}_0 . It is not a torus invariant divisor, and there is no double cover in branched along D in the categories of varieties. Let S be the (square) root stack along D and let X be the total space of canonical bundle on S. Blowing up D in the zero section, we get $\mathbb{F}_0 \cup \mathbb{F}_4$.

Example 3.6. It can be extended to root stack of higher order of stabilizer group. In this case, the canonical bundle becomes $K_{\mathcal{S}} = c^* K_S + \left(1 - \frac{1}{n}\right) D$ and thus the

zero section has A_{n-1} singularity. we need more than one blowups to resolve the singularity, and we get more than one ruled surface attached to S. For instance, the partial resolution of $\mathbb{C}^3/\mathbb{Z}_{2k+1}$ can be obtained from this orbifold construction, by considering $\mathbb{P}^2_{\ell,k}$

In particular, we have the following.

Proposition 3.7. The snc del Pezzo surfaces in [6] can all be embedded into a non-compact Calabi-Yau 3-fold.

Proof. The only remaining case is $\mathbb{F}_0 \cup \mathbb{F}_4$. Since the gluing curve is of class $f_1 + f_2$ which has self-intersection 2 in \mathbb{F}_0 , Theorem 3.2. produces an embedding.

We expect to produce all Calabi–Yau 3-fold containing shrinkable surfaces. However, we do not yet know how to deal with surfaces with some points on a component blown-up.

References

- T. Bridgeland, A. King, M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (3) (2001) 535-554.
- [2] C. Cadman, Gromov-Witten invariants of P²-stacks, Compos. Math. 143 (2007), no. 2, 495–514.
- [3] F. Nironi, Moduli spaces of semistable sheaves on projective deligne-mumford stacks, math.AG/0811.1949 (2008).
- [4] C. Boyer, K. Galicki, Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008, MR2382957.
- [5] A. Kresch On the geometry of DM stacks
- [6] S. Katz and S. Nam, Local enumerative invariants of some simple normal crossing del Pezzo surfaces, arXiv:2209.13031.
- [7] J. Ross, R. Thomas, Weighted Projective Embeddings, Stability of Orbifolds, and Constant Scarla Curvature Kär Metrics