# Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и кибербезопасности Высшая школа компьютерных технологий и информационных систем

# Отчёт по лабораторной работе № 2

| Гема: Построение марковского процесса и модели в классе СМО или Сем | ЛO. |
|---------------------------------------------------------------------|-----|
| Дисциплина: Системный анализ и принятие решений.                    |     |

| Выполнил студент гр. 5130901/10101 |           | _ М.Т. Непомнящий |
|------------------------------------|-----------|-------------------|
|                                    | (подпись) |                   |

Руководитель \_\_\_\_\_\_ А.Г. Сиднев \_\_\_\_\_\_ (подпись)

# Оглавление

| 1. | Усло                  | овие                             | .3 |
|----|-----------------------|----------------------------------|----|
| 1  | .1.                   | Условие варианта                 |    |
| 1  | .2.                   | Задание                          |    |
| 2. | Хол                   | решения                          |    |
|    | .1.                   | Построение марковского процесса  |    |
| _  | 2.1.1                 |                                  |    |
|    | 2.1.2                 |                                  |    |
|    | 2.1.3                 |                                  |    |
| 2  | .2.                   | Обоснование получившейся системы |    |
| _  | .2.<br>2.2.1          |                                  |    |
|    | 2.2.2                 |                                  |    |
|    | 2.2.3                 |                                  |    |
| 2  | .3.                   | Построение второй модели         |    |
| 2  | . <i>3</i> .<br>2.3.1 |                                  |    |
|    | 2.3.2                 | •                                |    |
|    |                       |                                  |    |
|    | 2.3.3                 |                                  |    |
|    | 2.3.4                 |                                  |    |
|    | 2.3.5                 |                                  |    |
|    | 2.3.6                 |                                  |    |
| 3. | Выв                   | юл                               | () |

## 1. Условие

## 1.1. Условие варианта

### Вариант 17:

В узел коммутации сообщений, состоящий из входного буфера, процессора, двух исходящих буферов и двух выходных линий, поступают сообщения с двух направлений. Сообщения с одного направления поступают во входной буфер, обрабатываются в процессоре, буферируются в выходном буфере первой линии и передаются по выходной линии. Сообщения со второго направления обрабатываются аналогично, но передаются по второй выходной линии. Применяемый метод контроля потоков требует одновременного присутствия в системе не более трех сообщений на каждом направлении. Сообщения поступают через интервалы времени 15±7 мс. Время обработки в процессоре равно 7мс. Если сообщение поступает при наличии трех сообщений в направлении, то оно получает отказ.

Смоделировать работу узла коммутации в течение 10с. Определить загрузки устройств и вероятность отказа в обслуживании из-за переполнения буфера направления. Определить изменения в функции распределения времени передачи при снятии ограничений, вносимых методом контроля потоков.

## 1.2. Задание

- 1) По содержательному описанию задачи построить марковский процесс перехода системы из состояния в состояние. Считать, что все временные задержки являются случайными величинами, распределенными по показательному закону.
- 2) Предложить и обосновать кодировку состояния системы в виде вектора. Дать оценку мощности множества состояний системы.
- 3) Если понадобится, ограничить множество состояний системы для лучшего отображения графа перехода системы из состояния в состояние.
- 4) Предположить, что все вероятности состояний системы известны. Написать формулы расчета показателей системы, которые требуется определить в задании.
- 5) Построить еще одну модель системы в классе систем массового обслуживания или сетей систем массового обслуживания. Какие показатели СМО или СеМО необходимо найти, чтобы ответить на вопросы задания?

## 2. Ход решения

## 2.1. Построение марковского процесса

#### 2.1.1. Описание состояний

Чтобы построить цепь марковского процесса, необходимо определить состояния системы. Предположим, что у нас есть три возможных состояния системы:

- 1. Состояние 0 (S0): Входной буфер пуст, процессор не занят.
- 2. Состояние 1 (S1): Входной буфер заполнен сообщениями из первого направления, процессор обрабатывает сообщения.
- 3. Состояние 2 (S2): Входной буфер заполнен сообщениями из второго направления, процессор обрабатывает сообщения.
- 4. Состояние 3 (S3): Входной буфер заполнен сообщениями из второго направления, процессор обрабатывает сообщения.

#### 2.1.2. Ввод интенсивностей

Введем интенсивности для данной задачи:

- Интенсивность поступления сообщений:
  - $\lambda_1$  интенсивность поступления сообщения в первом направлении.
  - $\lambda_2$  интенсивность поступления сообщения во втором направлении.
- Интенсивность ухода из буферной памяти:
  - au интенсивность ухода сообщения из буферной памяти.
- Интенсивность обработки на процессоре:
  - $\mu_1$  интенсивность обработки сообщения процессором в первой линии.
  - $\mu_2$  интенсивность обработки сообщения процессором во второй линии.

#### 2.1.3. Построение цепи

Таким образом, можем составить следующую марковскую цепь:



Рис. 1 – Построение цепи марковского процесса

## 2.2. Обоснование получившейся системы

#### 2.2.1. Тип СМО

Определим тип СМО:

- $\lambda$  (интенсивность поступления) и  $\mu$  (интенсивность обработки) могут изменяться в зависимости от времени => система является **неоднородной**.
- Новые данные, поступающие в систему, обрабатываются системой независимо от внешних источников => система является разомкнутой.
- Есть только один канал, по которому происходит обработка данных (процессор, т. е. блок 2) => система является одноканальной.
- Также, есть ограничение по количеству сообщений, находящихся в очереди (если поступает больше сообщений, чем предусмотрено, то они получают) => это система с ограниченной очередью

Таким образом, имеем: **неоднородную разомкнутую одноканальную СМО с ограниченной очередью**.

$$N = (N1, N2)$$
, где  $0 \leftarrow N1 \leftarrow 3$ ,  $0 \leftarrow N2 \leftarrow 3$ 

Общее число состояний равно 16 = декартово произведение  $4^2 = 4 \cdot 4 = 16$ 

#### 2.2.2. Мощность множества состояний системы

Множество состояний системы описано тройкой  $\{S0, S1, S2\}$ . Так как каждое состояние может принимать различные значения (например, количество сообщений в буферах), мощность множества состояний зависит от количества возможных вариантов для каждого из состояний. Например, если у нас есть 2 возможных значения для каждого буфера (пустой или заполнен), то всего возможных состояний будет  $2^4 = 16$ .

#### 2.2.3. Определение интенсивностей

Согласно постановке задания нужно предположить, что все вероятности состояний системы известны. По условию задачи временные интервалы даны с погрешностью. Опустим эти погрешности, взяв в качестве числовой характеристики среднее значение. Воспользуемся обозначениями интенсивностей, введёнными выше в пункте 2.1.2. Также, среднее время дано в общем виде для 1 и 2 направлений, т. е.: сказано, что сообщения поступают через интервалы времени 15±7 мс, но не известны интервалы времени для каждого из путей в отдельности. Предположим, что они имеют разные временные интервалы, например, по 1-му направлению сообщения поступают раз в 12 мс, а по 2-му раз в 18 мс. Тогда:

Таким образом, мы имеем следующие интенсивности:

• Интенсивность поступления сообщений:

$$\lambda_1 = \frac{1}{\text{ср.время поступления в направлении 1}} = \frac{1}{12}$$

 $<sup>*</sup>N_i$  — число поступивших сообщений для передачи по i-й линии.

$$\lambda_2 = \frac{1}{\text{ср.время поступления в направлении 2}} = \frac{1}{15}$$

• Интенсивность обработки на процессоре:

$$\mu = \mu_1 = \mu_2 = \frac{1}{ ext{ср.время обработки в процессорe}} = \frac{1}{7}$$

Также, по аналогии с предыдущей задачей, мы предполагаем, что все временные задержки являются случайными величинами, распределенными по показательному закону.

## 2.3. Построение второй модели

В предоставленном мною рассмотрении модели используется 3 состояния, описанных в пункте 2.1.1. Согласно им построим следующую модель:



Рис. 2 – Построение второй модели

#### Пояснения:

Зелёным цветом обозначены те переходы, когда процессор начинает обрабатывать сообщения, пришедшие на него с 1-го потока, а синим – со 2-го.

Фиолетовым цветом обозначен переход в состояние Ø (туда отправляются те сообщения, которые отбрасываются в результате переполнения)

В моей интерпретации условия было решено, что сообщения на 1-е направление поступают быстрее, чем на первое, т. к.  $\lambda_1 > \lambda_2$  (следствие из пункта 2.2.3). Из этого следует, что при подаче 2-х сообщений на 1-е направление и 2-х сообщений на 2-е

направление, сначала обработается сообщение на 1-м направлении (состояние 1\_1), после этого поступит 1-е сообщение на второе направление (состояние 2\_1), после чего поступит снова следующие (2-е) сообщение с 1-го направления (состояние 1\_2) и так далее. После обработки процессором последнего сообщения (2\_2) произойдёт переход из состояния 2\_2 в состояние 0, тем самым, обработка данных будет завершена.

Для большей наглядности рассмотрим несколько вариантов поступления сообщений в систему и рассмотрим, как будет обрабатывать их процессор в данном случае. Для краткости под рисунками количество сообщений поданных на каждое из сообщений будем отмечать в виде (n,k), где n – кол-во сообщений, поданных на первый поток, k – на 2-й.

## 2.3.1. Случай 1



Рис. 3 – Граф переходов для обработки сообщений (2, 2)

## 2.3.2. Случай 2



Рис. 4 – Граф переходов для обработки сообщений (1, 2)

# 2.3.3. Случай 3



Рис. 5 – Граф переходов для обработки сообщений (3, 3)

## 2.3.4. Случай 4



Рис. 6 – Граф переходов для обработки сообщений (3, 1)

## 2.3.5. Случай 5



Рис. 7 – Граф переходов для обработки сообщений (0, 3)

## 2.3.6. Случай 6



Рис. 8 – Граф переходов для обработки сообщений (0, 4)

Пояснение к рисунку 8: не знал, как лучше показать случай, при котором лишние сообщения будут «отбрасываться», поэтому представил это так, как показано на рисунке. При переполнении те сообщения, которые не успевают обработаться, отправляются в состояние Ø, а остальные сообщения обрабатываются в обычном режиме.

## 3. Вывод

В результате проделанной работы были построены две модели системы коммутации сообщений, состоящей из входного буфера, процессора, двух исходящих буферов и двух выходных линий. Обе модели представлены в виде цепей марковского процесса, учитывая различные состояния системы в зависимости от заполненности буферов и состояния процессора.

В первой модели предполагается использование трех состояний системы, связанных с заполненностью входного буфера и состоянием процессора. Тип Системы массового обслуживания (СМО) определен как неоднородная разомкнутая одноканальная СМО с ограниченной очередью.

Во второй модели учтены дополнительные состояния, связанные с различными комбинациями заполненности входных буферов и состояний процессора. Тип СМО в данной модели также определен как неоднородная разомкнутая одноканальная СМО с ограниченной очередью.

Для обеих моделей были определены интенсивности поступления сообщений, интенсивности обработки на процессоре, и интенсивность ухода сообщений из буфера в выходную линию. Мощность множества состояний системы рассчитана, и были предложены оценки для числа возможных состояний.