MATH 6262, TEST 1 SOLUTIONS

oblem 1. (1) Assume $X \sim Exp(1)$. Find $\mathbb{E}[X^2 - X + 1|X^3]$. (2) If $X \sim N(0, 1)$, find $\mathbb{E}[X^2 + X^3|X^4]$.

- (3) If (X, Y) have density given by

$$f_{X,Y}(x,y) = \begin{cases} x+y, & 0 \le x \le 1 \text{ and } 0 \le y \le 1 \\ 0, & \text{otherwise}, \end{cases}$$

find $\mathbb{E}[X|Y]$.

- (4) Assume (X,Y) take the values (0,0),(3,1),(1,2),(0,2) with probabilities 1/2,1/4,1/8,1/8. Compute $\mathbb{E}[X|Y]$.
- (1) Because $X^2 X + 1 = \phi(X^3)$, where the function $\phi(x) = x^{2/3} x^{1/3} + 1$ is Solution. defined for x > 0. Thus we get that

$$\mathbb{E}[X^2 - X + 1|X^3] = X^2 - X + 1.$$

(2) In this case we get that $\mathbb{E}[X^2 + X^3|X^4] = \mathbb{E}[X^2|X^4] + \mathbb{E}[X^3|X^4]$. For the first one, $\mathbb{E}[X^2|X^4]=X^2$ because X^2 is a function of X^4 . Indeed $X^2=(X^4)^{1/2}$ so the conditional expectation $\mathbb{E}[X^2|X^4]=X^2$. On the other hand, $\mathbb{E}[X^3|X^4]=0$ because intuitively, knowing X^4 , we determine X up to a sign and these signs balance each other. The formal argument needs a little work out. One way is to mimick the argument we had for the case of $\mathbb{E}[X|X^2]$. Thus let's assume that $\mathbb{E}[X^3|X^4] = \phi(X^4)$ for some function ϕ . Then according to the characterization of the conditional expectation we get

$$\mathbb{E}[X^3\psi(X^4)] = \mathbb{E}[\phi(X^4)\psi(X^4)]$$

for any choice of the function ψ . The key is that

$$\mathbb{E}[X^{3}\psi(X^{4})] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{3}\psi(x^{4})e^{-x^{2}/2}dx$$

This last integral is 0 because changing x into -x changes the integral into it's negative, thus it's only possible value is 0. Therefore we get

$$0 = \mathbb{E}[\phi(X^4)\psi(X^4)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(x)\psi(x^4)e^{-x^2/2}dx$$
$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} \phi(x^4)\psi(x^4)e^{-x^2/2}dx$$
$$= \frac{2}{x^2} \int_{0}^{\infty} \phi(t)\psi(t)e^{-t^{1/2}/2}dx$$

Therefore, because this is true for any choice of ψ , it follows that ϕ is 0 on the positive line.

Another way of arguing that $\mathbb{E}[X^3|X^4]$ is the following. If we set $Y=X^3$, then $\mathbb{E}[X^3|X^4] = \mathbb{E}[Y|Y^{4/3}]$ and because Y has now a symmetric distribution, we can use one of the homework problems to finish the argument that $\mathbb{E}[Y|Y^{4/3}]=0$.

(3) This is based on the formula for the conditional distribution. Essentially we need to compute $f_{X|Y}(x|y)$ and then integrate x against this density. Thus

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}.$$

Now, $f_Y(y) = \int_0^1 (x+y) dx = y + 1/2$ for $y \in [0,1]$ and thus

$$f_{X|Y}(x|y) = \frac{x+y}{y+1/2} = \frac{2(x+y)}{2y+1},$$

and finally, if we take

$$\phi(y) = \int_0^1 x f_{X|Y}(x|y) dx = \int_0^1 \frac{2x(x+y)}{2y+1} dx = \frac{2/3+y}{2y+1} = \frac{3y+2}{6y+3}$$

And thus $\mathbb{E}[X|Y] = \phi(Y)$.

(4) For this we use the same formula as

$$\mathbb{E}[X|Y] = \phi(Y)$$

where $\phi(y) = \sum_{x} x f_{X|Y}(x|y)$ and

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

where $f_Y(y)$ is given by

$$\begin{array}{c|c|c|c} y & 0 & 1 & 2 \\ \hline f_Y(y) & 1/2 & 1/4 & 1/4 \end{array}.$$

Thus, we get that

$$\phi(y) = \begin{cases} 0 & y = 0 \\ 3 & y = 1 \\ 1/2 & y = 2 \end{cases}$$

and thus $\mathbb{E}[X|Y] = \phi(Y)$.

Problem 2. If X_1, X_2, X_3 are iid Bernoulli with parameter θ , show that $2X_1 + 3X_2 + 4X_3$ is not a sufficient statistic. Is this complete? Can you find a sufficient and complete statistic?

Solution. This problem is not correct as it is formulated. The statistic I had on paper was $Z = 2X_1 + 3X_2 + 5X_3$ not $Y = 2X_1 + 3X_2 + 4X_3$. Essentially Y is sufficient, while Z is not sufficient. However, neither Y nor Z are complete.

I would like to thank Yixian Zhai for bringing this to my attention.

Now, to the problem. We are going to check that *Y* is sufficient. We can use the factorization theorem. The likelihood function is

$$L(x_1, x_2, x_3; p) = p^{x_1} (1 - p)^{1 - x_1} p^{x_2} (1 - p)^{1 - x_2} p^{x_3} (1 - p)^{1 - x_3} = p^{\sum_{i=1}^{3} x_i} (1 - p)^{3 - \sum_{i=1}^{3} x_i} (1$$

For *Y* to be a sufficient statistic, we want this likelihood function to be written as

$$L(x_1, x_2, x_3; p) = k_1(2x_1 + 3x_2 + 4x_3; p)k_2(x_1, x_2, x_3)$$

This is possible because the values of $2x_1 + 3x_2 + 4x_3$ are different as x_1, x_2, x_3 run in $\{0, 1\}$. More precisely, we have (1)

As one can see we have a one-to-one assignment in this and thus we can define

$$k_1(y;p) = \begin{cases} (1-p)^3 & y = 0\\ p(1-p)^2 & y = 2, 3, 4\\ p^2(1-p) & y = 5, 6, 7\\ p^3 & y = 9 \end{cases}$$

and we can simply take $k_2(x_1, x_2, x_3) = 1$.

This shows that *Y* is a sufficient statistic.

To show that Z is not a sufficient statistic, we argue again using the factorization theorem. To do this, we argue by contradiction, assuming that we can write

(2)
$$L(x_1, x_2, x_3; p) = p^{\sum_{i=1}^{3} x_i} (1-p)^{3-\sum_{i=1}^{3} x_i} = k_1(2x_1 + 3x_2 + 5x_3; p)k_2(x_1, x_2, x_3)$$

for some functions, k_1 and k_2 . However, we have now that

(3)

Thus we observe here that 5 is taken for two different sequences of x_1, x_2, x_3 . Thus applying this to (2), we get for $(x_1, x_2, x_3) = (0, 0, 1)$,

$$p(1-p)^2 = k_1(5; p)k_2(0, 0, 1)$$

and also for (1, 1, 0) that

$$p^{2}(1-p) = k_{1}(5; p)k_{2}(1, 1, 0).$$

Well we can not have both of these true for all choices of p in [0,1]. This is proves that Z is not a sufficient statistic.

Now we move to the completeness and show that neither Y, Z are complete. Indeed, if

$$\mathbb{E}[u(Y)] = 0 \text{ for all } p \in [0, 1]$$

then, using (1) we have

$$(1-p)^3u(0) + p(1-p)^2(u(2) + u(3) + u(4)) + p^2(1-p)(u(5) + u(6) + u(7)) + p^3u(9) = 0$$

for any choice of p. This means that u(0) = 0, u(2) + u(3) + u(4) = 0 and u(5) + u(6) + u(7) = 0 and u(9) = 0 which means that we can for instance choose u(2) = -1, u(3) = 1, while take all the other values of u to be 0. This shows that u is not identically and u(Y) is not identically 0.

In a similar vein we also have for Z, that if

$$\mathbb{E}[u(Z)] = 0 \text{ for all } p \in [0, 1]$$

then using (3) we get that

$$(1-p)^3u(0) + p(1-p)^2(u(2) + u(3) + u(5)) + p^2(1-p)(u(5) + u(7) + u(8)) + p^3u(9) = 0$$

and in a similar vein to the above we can take u(2) = -1, u(3) = 1 and all the other values to be 0, which shows that u(Z) is not identically 0, thus showing that Z is not complete.

The obvious choice for a sufficient and complete statistic is $W = \sum_{i=1}^{3} X_i$.

Problem 3. Let X_1, X_2, \ldots, X_n be a sample from a distribution with pdf given by $f(x; \theta) = \frac{1}{\theta^2} x e^{-x/\theta}$ for x > 0 and $\theta > 0$. Find a complete and sufficient statistic and then the MVUE.

Solution. This is a regular exponential family, with

$$f(x;\theta) = e^{-x/\theta + \ln(x) - 2\ln(\theta)}$$

Thus a complete and sufficient statistic is $T = \sum_{i=1}^{n} X_i$. The MVUE is a function of this statistic which is unbiased. In fact, the obvious thing to di it to start trying to try and see if T itself is an unbiased estimator. To this end,

$$\mathbb{E}[T] = n\mathbb{E}[X_1] = n \int x f(x:\theta) dx = \frac{n}{\theta^2} \int_0^\infty x^2 e^{-x/\theta} dx \stackrel{x=\theta y}{=} n\theta \int_0^\infty x^2 e^{-x} dx = 2n\theta.$$

The last integral above is computed using twice integration by parts. Even if you do not know how to compute that, it is a constant and we can get the MVUE by simply taking T/(cn), where $c = \int_0^\infty x^2 e^{-x} dx = 2$.

Problem 4. Let X_1, X_2, \ldots, X_n be a sample from the uniform distribution on $[\theta, 1]$ for $\theta < 1$.

- (1) Is this family a regular exponential family?
- (2) Show that the statistic $T = \min\{X_1, X_2, \dots, X_n\}$ is a sufficient statistic for θ .
- (3) Is T also complete?

Solution. (1) This is not a regular exponential family because the support of the density is $[\theta, 1]$ and thus depends on θ /

(2) To show that this is a sufficient statistic, we use the factorization theorem to write

$$f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta) = \frac{1}{(1 - \theta)^n} \mathbb{1}_{[\theta, 1]}(x_1) \mathbb{1}_{[\theta, 1]}(x_2) \dots \mathbb{1}_{[\theta, 1]}(x_n)$$

$$= \frac{1}{(1 - \theta)^n} \mathbb{1}_{[\theta, \infty)}(\min(x_1, x_2, \dots, x_n)) \mathbb{1}_{(-\infty, 1]}(\max(x_1, x_2, \dots, x_n))$$

which shows that *T* is a sufficient statistic.

(3) To see if *T* is complete, we need to look at

$$\mathbb{E}[u(T)] = 0$$

for any θ . To figure this out, we need to find the distribution of T. This is, we first find the cdf of T and then the pdf. To find the cdf we take

$$F_T(t) = \mathbb{P}(\min(X_1, X_2, \dots, X_n) \le t) = 1 - \mathbb{P}(\min(X_1, X_2, \dots, X_n) > t)$$

= 1 - \mathbb{P}(X_1 > t)\mathbb{P}(X_2 > t) \dots \mathbb{P}(X_n > t) = 1 - \mathbb{P}(X_1 > t)^n = 1 - \left(\frac{1-t}{1-\theta}\right)^n.

Thus the density is

$$f_T(t) = \frac{n(1-t)^{n-1}}{(1-\theta)^n}$$

which then gives

$$\mathbb{E}[u(T)] = \frac{n}{(1-\theta)^n} \int_{\theta}^{1} u(t)(1-t)^{n-1} dt = 0$$

for any θ . This implies that $\int_{\theta}^{1} u(t)(1-t)^{n-1}dt=0$ for all choices of θ and differentiating this w.r.t θ leads to $u(\theta)(1-\theta)^{n-1}=0$ for all θ . Thus u(t)=0 for all $t\in[0,1]$, which means that u(T)=0. This shows that T is a complete statistic.

Problem 5. Take a sample X_1, X_2, \ldots, X_n from the geometric distribution $Geom(1/\theta)$ (i.e. $f(x; \theta) =$ $1/\theta(1-1/\theta)^x$ for $x=0,1,2,\ldots$ and $\theta>1$). Find a sufficient statistic for θ . Is this complete? Find the *MVUE for* θ .

Solution. This is pretty straightforward. We have that $f(x;\theta)$ is a regular exponential family with

$$f(x;\theta) = e^{\ln(1-1/\theta)x - \ln(\theta)}.$$

Thus, this yields a complete and sufficient statistic given by $T = \sum_{k=1}^{n} X_i$. To find an MVUE, we need to find an unbiased estimator of θ . If we integrate T we obtain that

$$\mathbb{E}[T] = n\mathbb{E}[X_1] = n(\theta - 1)$$

and thus 1 + T/n is the MVUE.