First Named

Kalman Pelhos et al. Inventor

Appln. No.

Filed

: Herewith

Title

: MAGNETIC STORAGE MEDIA HAVING TILTED

MAGNETIC ANISOTROPY

Docket No.

: I69.12-0556

INFORMATION DISCLOSURE STATEMENT

Commissioner for Patents Alexandria, VA 22313-1450

P.O. Box 1450

SENT VIA EXPRESS MAIL Express Mail No.: EV 302260655 US

Group Art Unit:

Examiner:

Sir:

The enclosed PTO Form-1449 lists patents and publications submitted pursuant to 37 C.F.R. 1.97. Copies of the patents or publications are enclosed as necessary.

TIME OF FILING

The Information Disclosure Statement is being filed:

with the application or within three months of the filing date of a national application (other than a 1. <u>X</u> continued prosecution application under 37 C.F.R. 1.53(d)) or date of entry into the national stage of an international application or, to the best of the undersigned's knowledge, before the mailing date of a first Office action on the merits or a first office action after the filing of a request for continued examination under 37 C.F.R. 1.114, whichever event occurs last. In accordance with 37 C.F.R. 1.97(b), no certification or fee is required.

By:__

Respectfully submitted,

KINNEY & LANGE, P.A.

David R. Fairbairn, Reg. No. 26,047

THE KINNEY & LANGE BUILDING

312 South Third Street

Minneapolis, MN 55415-1002 Telephone: (612) 339-1863

Fax: (612) 339-6580

DRF:AMM:ks

LIST OF PATENTS AND PUBLICATIONS FOR APPLICANTS INFORMATION DISCLOSURE STATEMENT U.S. PATENT DOCUMENTS Examiner Initial AA 4,395,439 07/26/83 Kitamoto et al. 427 132 05/19/81 AB 4,426,265 01/17/84 Brunsch et al. 204 192 M 02/26/82 AC 4,950,548 08/21/90 Furusawa et al. 428 611 05/23/89 FOREIGN PATENT DOCUMENTS Document No. Date Country Class Sub Translation Yes No OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.) AD Ejji Kita, Kimiteru Tagawa, Masafumi Kamikubota and Akira Tasaki; Magnetic recording media prepared by oblique incidence; November 1981; IEEE Transactions on Magnetics, Vol. Mag-17, No. 6 AE R. Sugita, N. Echigo, K. Tohma and C. Yamanitsu; Incident angle dependence of recording characteristics of vacuum deposited Co-Cr Films; September 1990; IEEE Transactions on Magnetics, Vol. 26, No. 5 AF J.P.C. Bernards, G.J.P. van Engelen, C.P.G. Schrauwen, H.A.J. Cramer, S.B. Lutijens; Simulation of the recording process with a VSM on Co-Cr and Co-Ni-O layers deposited at oblique incidence; September 1990; IEEE Transactions on Magnetics, Vol. 26, No. 5 AG Ki-Scok Moon and Sung-Chul Shin; Dependence of structural and magnetic properties on deposition angle in electron-beam evaporated Co-Pt multilayer thin films; 1996; American Institute of Physics AH Yung-Chieh Hsieh and Sergei Gadetsky, Takao Suzuki; M. Mansuripur; Oblique sputtering of amorphous ThFeCo thin films on glass substrates and the effect of deposition angle on perpendicular magnetic insortiopy; 1997; American Institute of Physics AI R. D. McMichael; C. G. Lee, J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics AJ M.J. Hadley, R. Atkinson, R.J. Pollard, Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.	FORM	PTO-1	449						Atty I69.		ocket No.	:		Application No.:
U.S. PATENT DOCUMENTS Examiner		I.					FOR		I .					
Examiner Initial AA 4,395,439 07/26/83 Kitamoto et al. 427 132 05/19/81 AB 4,426,265 01/17/84 Brunsch et al. 204 192 M 02/26/82 AC 4,950,548 08/21/90 Furusawa et al. 428 611 05/23/89 FOREIGN PATENT DOCUMENTS OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.) AD Eiji Kita, Kimiteru Tagawa, Masafumi Kamikubota and Akira Tasaki; Magnetic recording media prepared by oblique incidence; November 1981; IEEE Transactions on Magnetics, Vol. Mag-17, No. 6 AE R. Sugita, N. Echigo, K. Tohrna and C. Yamamitsu; Incident angle dependence of recording characteristics of vacuum deposited Co-Cr Films; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AF J.P.C. Bernards, G.J.P. van Engelen, C.P.G. Schrauwen, H.A.J. Cramer, S.B. Lutijens; Simulation of the recording process with a VSM on Co-Cr and Co-Ni-O layers deposited at oblique incidence; September 1990; IEEE Transactions on Magnetics, Vol. 26, No. 5 AG Ki-Seok Moon and Sung-Chul Shin; Dependence of structural and magnetic properties on deposition angle in electron-beam evaporated Co-Pt multilayer thin films; 1996; American Institute of Physics AI R. D. McMichael; C. G. Lee; J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on biliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9 AJ M.J. Hadley, R. Atkinson, R.J. Pollard; Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.													Group Art:	
Initial Date Name Class Sub Class If Appropriate AA 4,395,439 07/26/83 Kitamoto et al. 427 132 05/19/81 AB 4,426,265 01/17/84 Brunsch et al. 204 192 M 02/26/82 AC 4,950,548 08/21/90 Furusawa et al. 428 611 05/23/89 FOREIGN PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.) OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.) AD Eiji Kita, Kimiteru Tagawa, Masafumi Kamikubota and Akira Tasaki; Magnetic recording media prepared by oblique incidence; November 1981; IEEE Transactions on Magnetics, Vol. Mag-17, No. 6 AE R. Sugita, N. Echigo, K. Tohma and C. Yamamitsu; Incident angle dependence of recording characteristics of vacuum deposited Co-Cr Films, September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AF J.P.C. Bermards, G.J.P. van Engelen, C.P.G. Schrauwen, H.A.J. Cramer, S.B. Luitjens; Simulation of the recording process with a VSM on Co-Cr and Co-Ni-O layers deposited at oblique incidence; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AG Ki-Seok Moon and Sung-Chul Shin; Dependence of structural and magnetic properties on deposition angle in electron-beam evaporated Co/Pt multilayer thin films; 1996; American Institute of Physics AH Yung-Chieh Hsieh and Sergei Gadetsky; Takao Suzuki; M. Mansuripur; Oblique sputtering of amorphous TbFeCo thin films on glass substrates and the effect of deposition angle on perpendicular magnetic anisotropy; 1997; American Institute of Physics AI R. D. McMichael; C. G. Lee; J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9					τ	J.S. PAT	ENT DO	CUMENTS	}					
AB 4,26,265 01/17/84 Brunsch et al. 204 192 M 02/26/82 AC 4,950,548 08/21/90 Furusawa et al. 428 611 05/23/89 FOREIGN PATENT DOCUMENTS FOREIGN PATENT DOCUMENTS OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.) AD Eiji Kita, Kimiteru Tagawa, Masafumi Kamikubota and Akira Tasaki; Magnetic recording media prepared by oblique incidence; November 1981; IEEE Transactions on Magnetics, Vol. Mag-17, No. 6 AE R. Sugita, N. Echigo, K. Tohma and C. Yamamitsu; Incident angle dependence of recording characteristics of vacuum deposited Co-Cr Films; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AF J.P.C. Bernards, G.J.P. van Engelen, C.P.G. Schrauwen, H.A.J. Cramer, S.B. Luitjens; Simulation of the recording process with a VSM on Co-Cr and Co-Ni-O layers deposited at oblique incidence; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AG Ki-Seok Moon and Sung-Chul Shin; Dependence of structural and magnetic properties on deposition angle in electron-beam evaporated CoPt multilayer thin films; 1996; American Institute of Physics AH Yung-Chieh Hsieh and Sergei Gadetsky; Takao Suzuki; M. Mansuripur; Oblique sputtering of amorphous TbFeCo thin films on glass substrates and the effect of deposition angle on perpendicular magnetic anisotropy; 1997; American Institute of Physics AI R. D. McMichael; C. G. Lee; J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9 AJ M.J. Hadley, R. Atkinson, R.J. Pollard; Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.			Document No.	Dat	e		Na	me		(Class	Sub Cla	ass	_
FOREIGN PATENT DOCUMENTS Document No. Date Country Class Sub Translation Yes No		AA	4,395,439	07/26/8	3	Kitamo	to et al.				427	132		05/19/81
FOREIGN PATENT DOCUMENTS Document No. Date Country Class Sub Translation Yes No		AB	4,426,265	01/17/8	4	Brunsch et al.				204		192 N	1	02/26/82
Document No. Date Country Class Sub Translation Yes No OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.) AD Eiji Kita, Kimiteru Tagawa, Masafumi Kamikubota and Akira Tasaki; Magnetic recording media prepared by oblique incidence; November 1981; IEEE Transactions on Magnetics, Vol. Mag-17, No. 6 AE R. Sugita, N. Echigo, K. Tohma and C. Yamamitsu; Incident angle dependence of recording characteristics of vacuum deposited Co-Cr Films; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AF J.P.C. Bernards, G.J.P. van Engelen, C.P.G. Schrauwen, H.A.J. Cramer, S.B. Luitjens; Simulation of the recording process with a VSM on Co-Cr and Co-Ni-O layers deposited at oblique incidence; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AG Ki-Seok Moon and Sung-Chul Shin; Dependence of structural and magnetic properties on deposition angle in electron-beam evaporated Co/Pt multilayer thin films; 1996; American Institute of Physics AH Yung-Chieh Hsieh and Sergei Gadetsky; Takao Suzuki; M. Mansuripur; Oblique sputtering of amorphous TbFeCo thin films on glass substrates and the effect of deposition angle on perpendicular magnetic anisotropy; 1997; American Institute of Physics AI R. D. McMichael; C. G. Lee; J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9 AJ M.J. Hadley, R. Atkinson, R.J. Pollard; Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.		AC	4,950,548	08/21/9	0	Furusay	wa et al.				428	611		05/23/89
OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.) AD Eiji Kita, Kimiteru Tagawa, Masafumi Kamikubota and Akira Tasaki; Magnetic recording media prepared by oblique incidence; November 1981; IEEE Transactions on Magnetics, Vol. Mag-17, No. 6 AE R. Sugita, N. Echigo, K. Tohma and C. Yamamitsu; Incident angle dependence of recording characteristics of vacuum deposited Co-Cr Films; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AF J.P.C. Bermards, G.J.P. van Engelen, C.P.G. Schrauwen, H.A.J. Cramer, S.B. Luitjens; Simulation of the recording process with a VSM on Co-Cr and Co-Ni-O layers deposited at oblique incidence; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AG Ki-Seok Moon and Sung-Chul Shin; Dependence of structural and magnetic properties on deposition angle in electron-beam evaporated Co/Pt multilayer thin films; 1996; American Institute of Physics AH Yung-Chieh Hsieh and Sergei Gadetsky; Takao Suzuki; M. Mansuripur; Oblique sputtering of amorphous TbFeCo thin films on glass substrates and the effect of deposition angle on perpendicular magnetic anisotropy; 1997; American Institute of Physics AI R. D. McMichael; C. G. Lee; J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9 AJ M.J. Hadley, R. Atkinson, R.J. Pollard; Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.	<u></u>	<u>,</u>			FOI	REIGN P.	ATENT :	DOCUMEN	ITS					
AD Eiji Kita, Kimiteru Tagawa, Masafumi Kamikubota and Akira Tasaki; Magnetic recording media prepared by oblique incidence; November 1981; IEEE Transactions on Magnetics, Vol. Mag-17, No. 6 AE R. Sugita, N. Echigo, K. Tohma and C. Yamamitsu; Incident angle dependence of recording characteristics of vacuum deposited Co-Cr Films; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AF J.P.C. Bernards, G.J.P. van Engelen, C.P.G. Schrauwen, H.A.J. Cramer, S.B. Luitjens; Simulation of the recording process with a VSM on Co-Cr and Co-Ni-O layers deposited at oblique incidence; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AG Ki-Seok Moon and Sung-Chul Shin; Dependence of structural and magnetic properties on deposition angle in electron-beam evaporated Co/Pt multilayer thin films; 1996; American Institute of Physics AH Yung-Chieh Hsieh and Sergei Gadetsky; Takao Suzuki; M. Mansuripur; Oblique sputtering of amorphous TbFeCo thin films on glass substrates and the effect of deposition angle on perpendicular magnetic anisotropy; 1997; American Institute of Physics AI R. D. McMichael; C. G. Lee; J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9 AJ M.J. Hadley, R. Atkinson, R.J. Pollard; Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.			Document N	Date		Country			Class		-			
AD Eiji Kita, Kimiteru Tagawa, Masafumi Kamikubota and Akira Tasaki; Magnetic recording media prepared by oblique incidence; November 1981; IEEE Transactions on Magnetics, Vol. Mag-17, No. 6 AE R. Sugita, N. Echigo, K. Tohma and C. Yamamitsu; Incident angle dependence of recording characteristics of vacuum deposited Co-Cr Films; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AF J.P.C. Bernards, G.J.P. van Engelen, C.P.G. Schrauwen, H.A.J. Cramer, S.B. Luitjens; Simulation of the recording process with a VSM on Co-Cr and Co-Ni-O layers deposited at oblique incidence; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AG Ki-Seok Moon and Sung-Chul Shin; Dependence of structural and magnetic properties on deposition angle in electron-beam evaporated Co/Pt multilayer thin films; 1996; American Institute of Physics AH Yung-Chieh Hsieh and Sergei Gadetsky; Takao Suzuki; M. Mansuripur; Oblique sputtering of amorphous TbFeCo thin films on glass substrates and the effect of deposition angle on perpendicular magnetic anisotropy; 1997; American Institute of Physics AI R. D. McMichael; C. G. Lee; J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9 AJ M.J. Hadley, R. Atkinson, R.J. Pollard; Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.														
incidence; November 1981; IEEE Transactions on Magnetics, Vol. Mag-17, No. 6 AE R. Sugita, N. Echigo, K. Tohma and C. Yamamitsu; Incident angle dependence of recording characteristics of vacuum deposited Co-Cr Films; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AF J.P.C. Bernards, G.J.P. van Engelen, C.P.G. Schrauwen, H.A.J. Cramer, S.B. Luitjens; Simulation of the recording process with a VSM on Co-Cr and Co-Ni-O layers deposited at oblique incidence; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AG Ki-Seok Moon and Sung-Chul Shin; Dependence of structural and magnetic properties on deposition angle in electron-beam evaporated Co/Pt multilayer thin films; 1996; American Institute of Physics AH Yung-Chieh Hsieh and Sergei Gadetsky; Takao Suzuki; M. Mansuripur; Oblique sputtering of amorphous TbFeCo thin films on glass substrates and the effect of deposition angle on perpendicular magnetic anisotropy; 1997; American Institute of Physics AI R. D. McMichael; C. G. Lee; J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9 AJ M.J. Hadley, R. Atkinson, R.J. Pollard; Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.			го	THER AR	T (Inc	luding Au	thor, Tit	le, Date, Per	tinent	Pag	es, Etc.)			
deposited Co-Cr Films; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AF J.P.C. Bernards, G.J.P. van Engelen, C.P.G. Schrauwen, H.A.J. Cramer, S.B. Luitjens; Simulation of the recording process with a VSM on Co-Cr and Co-Ni-O layers deposited at oblique incidence; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AG Ki-Seok Moon and Sung-Chul Shin; Dependence of structural and magnetic properties on deposition angle in electron-beam evaporated Co/Pt multilayer thin films; 1996; American Institute of Physics AH Yung-Chieh Hsieh and Sergei Gadetsky; Takao Suzuki; M. Mansuripur; Oblique sputtering of amorphous TbFeCo thin films on glass substrates and the effect of deposition angle on perpendicular magnetic anisotropy; 1997; American Institute of Physics AI R. D. McMichael; C. G. Lee; J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9 AJ M.J. Hadley, R. Atkinson, R.J. Pollard; Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.		AD										cording m	nedia	prepared by oblique
process with a VSM on Co-Cr and Co-Ni-O layers deposited at oblique incidence; September 1990; IEEE Transactions on Magnetics, Vol., 26, No. 5 AG Ki-Seok Moon and Sung-Chul Shin; Dependence of structural and magnetic properties on deposition angle in electron-beam evaporated Co/Pt multilayer thin films; 1996; American Institute of Physics AH Yung-Chieh Hsieh and Sergei Gadetsky; Takao Suzuki; M. Mansuripur; Oblique sputtering of amorphous TbFeCo thin films on glass substrates and the effect of deposition angle on perpendicular magnetic anisotropy; 1997; American Institute of Physics AI R. D. McMichael; C. G. Lee; J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9 AJ M.J. Hadley, R. Atkinson, R.J. Pollard; Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.		AE											g cha	racteristics of vacuum
beam evaporated Co/Pt multilayer thin films; 1996; American Institute of Physics AH Yung-Chieh Hsieh and Sergei Gadetsky; Takao Suzuki; M. Mansuripur; Oblique sputtering of amorphous TbFeCo thin films on glass substrates and the effect of deposition angle on perpendicular magnetic anisotropy; 1997; American Institute of Physics AI R. D. McMichael; C. G. Lee; J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9 AJ M.J. Hadley, R. Atkinson, R.J. Pollard; Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.		AF	process with a VS	SM on Co	-Cr an									
films on glass substrates and the effect of deposition angle on perpendicular magnetic anisotropy; 1997; American Institute of Physics AI R. D. McMichael; C. G. Lee; J. E. Bonevich, P. J. Chen, W. Miller, and W. F. Egelhoff, Jr.; Strong anisotropy in thin magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9 AJ M.J. Hadley, R. Atkinson, R.J. Pollard; Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.		AG										ties on de	epos	ition angle in electron-
magnetic films deposited on obliquely sputtered Ta underlayers; November 1, 2000; Journal of Applied Physics Volume 88, Number 9 AJ M.J. Hadley, R. Atkinson, R.J. Pollard; Magnetic properties of Co films deposited onto obliquely sputtered Ta underlayers; 2002; Elsevier Science B.V.		АН	films on glass sub	strates an										
underlayers; 2002; Elsevier Science B.V.		AI	magnetic films de	posited of										
EXAMINER: DATE CONSIDERED:		AJ					ignetic pi	roperties of	Co filr	ns d	eposited (onto oblic	quely	y sputtered Ta
	EXAMI	NER:	-					DATE CC	NSID	ERE	ED:			

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

OTHER ART (Including Author, Title, Date, Pertinent Pages, Etc.)

Al	M. Cartier, S. Auffret, P. Bayle-Guillemaud, F. Ernult, F. Fettar, and B. Dieny; Influence of deposition angle on the properties of NiO spin-valves; February 1, 2002; American Institute of Physics								
AI	ation of CoCrPt/Ti thin film media by collimated sputtering;								
AN	A. Lisfi, J. C. Lodder, H. Wormeester, and B. Poelsema metallic thin films; 2002; The American Physical Societ	; Reorientation of magnetic anisotropy in obliquely sputtered ty Physical Review B 66, 174420 (2002)							
AN Anup G. Roy and David E. Laughlin; Effect of seed layers in improving the crystallographic textur perpendicular recording media; May 15, 2002; Journal of Applied Physics; Volume 91, Number 10									
EXAMINER	d: D.	ATE CONSIDERED:							

EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.