BASIC ELECTRONICS LAB RECORD

[EXPERIMENT 1] DATE - 06/09/2020

Study of Electronics Components

PURUSHOTTAM BEHERA
119BM0004

AIM OF THE EXPERIMENT: -

Study of Electronics Components and familiarization with components.

COMPONENTS REQUIRED: -

Sl.no	Components	Device no./specification	Quantity
1	Resister	$82 \times 10^1 \pm 5 \Omega$	1
		$82 \times 10^4 \pm 5 \ \Omega$	1
		$68 \times 10^3 \Omega$	1
		$10 \times 10^2 \Omega$	1
2	Variable	Potentiometer 4K7	1
	resistance	Preset 102	1
3	Capacitor	Electrolytic 100µF 63V	1
		Non-electrolytic 104	1
4	Diode	Germanium 1N 34A	1
		Silicon 1N	1
		4007 Zener BZX	1
		(6.2V-5.6V)	1
		LED	
5	BJT's	BC 547	1
		SL 100	1
		CL 100	1

6 Op-Amp	IC 741	1
----------	--------	---

THEORY AND OBSERVATION TABLE: -

Resistor: -

It is a component of an electrical circuit that resists the flow of electrical current. It has two terminals and is designated to drop the voltage of the current as it flows from one terminal to the other. It is used to create and maintain a known safe current within an electrical component.

resistor	calculation	first	second	third	fourth	Measurement
		band	band	band	band	value of
						digital
						multimeter
Sample	Color	grey	red	brown	golden	
1	name					
	Position	8	2	1	5%	
	value					$822~\Omega$
	Calculated		82×10^{1}	\pm 5% Ω		
	value		_			
Sample	Color	grey	red	yello	golden	
2	name			W		
	Position	8	2	4	5%	
	value					822 KΩ
	Calculated		82×10^{2}	$4\pm5\%$ (2	
	value					

Sample	Color	blue	grey	orange	-	
3	name					
	Position	6	6 8 3 -			
	value					$68~\mathrm{K}\Omega$
	Calculated		68 ×	$< 10^3$		
	value	Ω				
Sample	Color	brown	black	red	1	
4	name					
	Position	1	1 0 2 -			
	value					1 KΩ
	Calculated		10 ×			
	value					

Variable resistance: -

These variable resistors consist of a resistance track with connections at both the ends and a wiper which moves along the track as you turn the spindle. These can be used as potentiometer.

Variable	Measure the	Measure the	
resistance	standard value	multimeter	
	(written on the	value (two	
	device surface)	end terminal)	
Potentiometer	$4K7 = 4.7 \text{ K}\Omega$	5.932 KΩ	
Preset	$102 = 10 \times 10^2 \Omega$	1.266	

Capacitor: -

A capacitor is a passive electronic component that stores energy in the form of an electric field. There are two types of capacitor i.e. polarized and non-polarized depending upon whether electrolyte is used or not.

Capacitor	Measure the	Measure the
	standard value /	LCR meter
	calculate the	value
	value written on	
	device surface	
Electrolytic	100 μF 63V	98.546 μF
capacitors		
Non-electrolytic	$104 = 10 \times 10^4$	0.0984 μF
Capacitors	pF	

Diode: -

A p-type semiconductor diffused in a n-type semiconductor with a property to conduct electricity in only one direction is called a diode. PN-junction diodes are of two types i.e. germanium and silicon.

Zener diode is used to maintain a fixed voltage and LED is the visible light.

Type of diode	Symbol	Device no.	Forward voltage	Reverse voltage	Determine anode and Cathode
Germanium diode (Ge)		1N - 34A	0.645	0	The terminal near the black ring is cathode and other is anode
Silicon diode (Se)		1N - 4007	0.557	0	Grey ring denotes cathode and other is anode
Zener diode		BZX (6.2V x 5.6)	0.754	_	The terminal near black ring is cathode and other is anode
LED			1.88	0	The longer terminal is anode and shorter one is cathode.

Transistor: -

It is a semiconductor device used to amplify and switch electronic signal and power. It is composed of a semiconductor material with at least three terminals for connection to an external circuit.

Type of	pnp	symbol	device	voltag	voltag	voltag	voltag	voltag
transistor	or		no.	e 1 to	e 2 to	e 1 to	e 3 to	e 3 to
	npn			2	3	3	1	2
BC 547	npn		CT -	0	0.698	0	0	0.7
			BC					
			547					
SL 100	npn		S 400	0	0.66	0	0	0.66
			В					
CL 100	npn		CL	0	0.67	0	0	0.67
			100 S					

<u>Op – Amp:</u> -

An Op – Amp or Operational Amplifier is fundamentally a voltage amplifying device, designed to be use with external feedback components such as resistors and capacitors between its output and input terminals. Those feedback components determine the resulting function or 'operation' of the amplifier and by virtue of the different feedback configurations whether resistive, capacitive or both, the amplifier can perform a variety of different operations, giving rise to its name of "operational amplifier".

An operational amplifier is basically a three terminal device which consists of two high impedance inputs. One of the inputs is called the inverting input, marked with a negative or "minus" sign (-). The other input is called the non-inverting input, marked with a positive or "plus" sign (+).

The IC 741 Op-Amp looks like a small chip. The representation of 741 Op-Amp comprises of 8 pins. The most significant pins are 2,3 and 6; where pins 2 and 3 denote inverting and non-inverting terminals respectively and pin 6 denotes output voltage. The triangular form in the IC signifies an Op-Amp integrated circuit. The current version of the chip is denoted by the famous IC 741 Op-Amp. The main function of this IC 741 is to do mathematical operation in various stages of transistor which commonly have 3 stages like differential i/p, a pushpull o/p and an intermediate gain stage. The differential Op-Amps comprises a set of BJTs.

Wire: -

A single strand copper wire was tested in a multimeter in the continuity mode and was found to be continuous.

CONCLUSION: -

Characteristic property of various electronic components was measured and we get familiarized with all the basic components.