Neutral expectation

- A random mutation is ~3 times more likely to be non-synonymous that synonymous, depending on the variety of factors, such as codon composition, transition/transversion ratios, etc.
- We need to **estimate** the proportion of <u>random</u> mutations that are synonymous, and use it as a reference to compute **dS**.
- In early literature, these quantities were codified as synonymous and nonsynonymous "sites" and/or mutational opportunity.
- As a very crude approximation (assuming that third positions ~ synonymous), each codon has 1 synonymous and 2 non-synonymous sites.

Computing synonymous and non-synonymous sites for GAA (Glutamic Acid)

Start codon:	G	A	A
Site/Change to	1	2	3
A	AAA Lysine	*	*
C	CAA Glutamine	GCA Alanine	GAC Aspartic Acid
G	*	GGA Glycine	GAG Glutamic Acid
T	TAA Stop	GTA Valine	GAT Aspartic Acid
Synonymous changes	0	0	1
Non-synonymous changes	3	3	2
Synonymous sites	0	0	1/3
Non-synonymous sites	1	1	2/3