Falling Behind: Has Rising Inequality Fueled the American Debt Boom?

Moritz Drechsel-Grau
University of Zurich

Fabian Greimel
University of Amsterdam

Behavioral Macroeconomics Workshop | Bamberg | June 28, 2022

Outline

Introduction

Mode

Analytical Results

Empirical Evidence

Quantitative Results

Conclusio

Fact I: US Household Debt Boom

Fact I: US Household Debt Boom

Fact I: US Household Debt Boom

Fact I: US Household Debt Boom

Fact I: US Household Debt Boom and Income Inequality

Source: US Flow of funds and World Inequality Database (Piketty et al.) • alternative inequality measure

Fact II: Top Incomes Drive Inequality

Pre-tax incomes in the US. Base year: 1980. Based on Piketty et al. (2018).

Fact III: Mortgages of Non-Rich and Top Incomes Across US States

Figure shows changes between 1980 and 2007 for mortgages of the bottom 90% and incomes of the top 10%. Data: Distributional National Accounts.

In the paper: various specifications that confirm this result.

Research Question and Method

Research Question

Can rising income inequality account for (part of) the mortgage debt boom?

Research Question and Method

Research Question

Can rising income inequality account for (part of) the mortgage debt boom?

Macroeconomic Model

- heterogeneous agents (income and wealth)
- · durable housing and non-durable consumption, mortgages
- social preferences (Keeping up with the Joneses)

Data

 US State-Level Distributional National Accounts (Piketty et al., 2018; Mian et al., 2020)

Findings

Analytical Results

- 1. individual debt is increasing in the incomes of the reference group
- 2. aggregate debt-to-income is increasing in top incomes when somebody cares about the rich

Empirical Results

- 1. top incomes drive mortgages of the non-rich
- 2. top housing wealth drives housing wealth of the non-rich

Quantitative Result

1. Rising inequality and social comparisons generate about 50% of observed mortgage and house price booms

How Rising Income Inequality Leads to a Mortgage Boom

rising top inequality

Keeping up with the Joneses

mortgage boom

- 1. rich become richer (exogenously)
- 2. rich improve their houses, raise reference point
- 3. non-rich want to keep up with the richer Joneses
- 4. non-rich improve their houses using a mortage
- 5. higher debt-to-income ratios across the distribution

Note: non-rich ≈ bottom 90 % (almost everyone!)

Outline

Introduction

Model

Analytical Results

Empirical Evidence

Quantitative Results

Conclusio

- \cdot risky post-tax $\operatorname{earnings}\, \tilde{y}$
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_t, s(h_t, \bar{h}_t))$$

Endogenous States

$$\dot{a}_t = \tilde{y}_t + r_t a_t - c_t - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

- \cdot risky post-tax $\operatorname{earnings}\, \tilde{y}$
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_t, s(h_t, \bar{h}_t))$$

Endogenous States

$$\dot{a}_t = \tilde{y}_t + r_t a_t - c_t - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

- \cdot risky post-tax $\operatorname{\underline{earnings}} \tilde{y}$
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_t, s(h_t, \bar{h}_t))$$

Endogenous States

$$\dot{a}_t = \frac{\tilde{\mathbf{y}}_t}{\mathbf{y}_t} + r_t a_t - c_t - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

- \cdot risky post-tax $\operatorname{earnings}\, \tilde{y}$
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-\rho t} u(\mathbf{c_t}, s(h_t, \bar{h}_t))$$

Endogenous States

$$\dot{a}_t = \tilde{y}_t + r_t a_t - \frac{c_t}{c_t} - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

- \cdot risky post-tax earnings $ilde{y}$
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_t, s(\mathbf{h}_t, \bar{h}_t))$$

Endogenous States

$$\dot{a}_t = \tilde{y}_t + r_t a_t - c_t - \frac{p_t x_t}{h_t}$$
$$\dot{h}_t = -\delta h_t + \frac{x_t}{h_t}$$

$$-a_t \le \omega p_t h_t$$

- \cdot risky post-tax $\operatorname{earnings}\, \tilde{y}$
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- \cdot house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_t, s(h_t, \bar{h}_t))$$

Endogenous States

$$\dot{\mathbf{a}}_t = \tilde{y}_t + r_t \mathbf{a}_t - c_t - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

- \cdot risky post-tax $\operatorname{earnings}\, \tilde{y}$
- non-durable consumption c, durable housing h
- asset a (savings device and mortgage)
- social comparisons
 - housing status $s(h, \bar{h})$
 - \cdot reference measure $ar{h}$
- house price p, interest rate r

Preferences

$$\mathbb{E}_0 \int_0^\infty e^{-\rho t} u(c_t, \underline{s(h_t, \bar{h}_t)})$$

Endogenous States

$$\dot{a}_t = \tilde{y}_t + r_t a_t - c_t - p_t x_t$$
$$\dot{h}_t = -\delta h_t + x_t$$

$$-a_t \le \omega p_t h_t$$

Outline

Introduction

Mode

Analytical Results

Empirical Evidence

Quantitative Results

Conclusio

- finite number of types j
- constant incomes y^j
- · flexible reference groups $\bar{h}=\mathit{Gh}$

- finite number of types j
- constant incomes y^j
- · flexible reference groups $ar{h}=\mathit{Gh}$

e.g.
$$\begin{pmatrix} \bar{h}_P \\ \bar{h}_M \\ \bar{h}_R \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & g_{PM} & g_{PR} \\ 0 & 0 & g_{MR} \\ 0 & 0 & 0 \end{pmatrix}}_{G} \begin{pmatrix} h_P \\ h_M \\ h_R \end{pmatrix}$$

- finite number of types j
- constant incomes y^j
- · flexible reference groups $ar{h}=\mathit{Gh}$

$$\begin{pmatrix} \bar{h}_P \\ \bar{h}_M \\ \bar{h}_R \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & g_{PM} & g_{PR} \\ 0 & 0 & g_{MR} \\ 0 & 0 & 0 \end{pmatrix}}_{G} \begin{pmatrix} h_P \\ h_M \\ h_R \end{pmatrix}$$

- finite number of types j
- constant incomes y^j
- flexible reference groups $\bar{h}=Gh$ e.g.

$$\begin{pmatrix} \bar{h}_P \\ \bar{h}_M \\ \bar{h}_R \end{pmatrix} = \begin{pmatrix} 0 & g_{PM} & g_{PR} \\ 0 & 0 & g_{MR} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} h_P \\ h_M \\ h_R \end{pmatrix}$$

- $u(c, s(h, \bar{h})) = u(c, h \phi \bar{h})$
- house price p, interest rate $r=\rho$ fixed
- · life-time budget constraint
- for convenience: $a_0 = \delta = 0$

General Result

Lemma

Equilibrium debt (given p, r) is

$$-\begin{pmatrix} a_1 \\ \vdots \\ a_N \end{pmatrix} = \kappa_1 \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} + \kappa_2 \phi \underbrace{\left(\sum_{i=1}^{\infty} \kappa_3^i G^i\right)}_{\approx \text{Leontief inverse of } G} \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix},$$

where $\kappa_1, \kappa_2 > 0$, $\kappa_3 \in (0, 1)$.

General Result

Lemma

Equilibrium debt (given p, r) is

$$-\begin{pmatrix} a_1 \\ \vdots \\ a_N \end{pmatrix} = \kappa_1 \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} + \kappa_2 \phi \underbrace{\left(\sum_{i=1}^{\infty} \kappa_3^i G^i\right)}_{\approx \text{Leontief inverse of } G} \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix},$$

where $\kappa_1, \kappa_2 > 0$, $\kappa_3 \in (0, 1)$.

Proposition

Type j's debt is increasing in type k's income as long as j cares about k (directly or indirectly).

General Result

Lemma

Equilibrium debt (given p, r) is

$$-\begin{pmatrix} a_1 \\ \vdots \\ a_N \end{pmatrix} = \kappa_1 \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} + \kappa_2 \phi \underbrace{\left(\sum_{i=1}^{\infty} \kappa_3^i G^i\right)}_{\approx \text{Leontief inverse of } G} \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix},$$

where $\kappa_1, \kappa_2 > 0$, $\kappa_3 \in (0, 1)$.

Proposition

Type j's debt is increasing in type k's income as long as j cares about k (directly or indirectly).

Proposition

Total debt-to-income is increasing in type k's income as long as some other type cares about k. The total effect depends on the in-centrality of k.

Result: Example with three income types

Let
$$\begin{pmatrix} \bar{h}_P \\ \bar{h}_M \\ \bar{h}_R \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & g_{PM} & g_{PR} \\ 0 & 0 & g_{MR} \\ 0 & 0 & 0 \end{pmatrix}}_{G} \begin{pmatrix} h_P \\ h_M \\ h_R \end{pmatrix}$$

then equilibrium debt (given p, r) is

$$-\begin{pmatrix} a_P \\ a_M \\ a_R \end{pmatrix} = \kappa_1 \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix} + \kappa_2 \phi \begin{pmatrix} 0 & \tilde{\phi} \cdot g_{PM} & \tilde{\phi} \cdot g_{PR} + \tilde{\phi}^2 \cdot g_{PM} \cdot g_{MR} \\ 0 & 0 & \tilde{\phi} \cdot g_{MR} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_P \\ y_M \\ y_R \end{pmatrix}$$

where $\tilde{\phi} = \kappa_3 \phi$, $\kappa_1, \kappa_2 > 0$, $\kappa_3 \in (0, 1)$.

→ Households need not be directly linked! (effects trickle-down)

1. others' houses (and \bar{h}) increase in others' incomes

- 1. others' houses (and \bar{h}) increase in others' incomes
- 2. own house increases with others' houses

$$h = c \left(\frac{\xi}{(1-\xi)rp} \right)^{\frac{1}{1-\varepsilon}} + \phi \bar{h}$$

- 1. others' houses (and \bar{h}) increase in others' incomes
- 2. own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments

- 1. others' houses (and \bar{h}) increase in others' incomes
- 2. own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

- 1. others' houses (and \bar{h}) increase in others' incomes
- own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

Why Is Debt Increasing in Others' Incomes?

- 1. others' houses (and \bar{h}) increase in others' incomes
- 2. own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

Why Is Debt Increasing in Others' Incomes?

- 1. others' houses (and \bar{h}) increase in others' incomes
- 2. own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

Why Is Debt Increasing in Others' Incomes?

- 1. others' houses (and \bar{h}) increase in others' incomes
- 2. own house increases with others' houses
- bigger house means more debt
 - use debt to smooth payments
 - bigger house means more debt

13/18

→ Own credit demand is increasing in others' income!

Outline

Introduction

Mode

Analytical Results

Empirical Evidence

Quantitative Results

Conclusion

Data

- · US State-Level Distributional National Accounts (Piketty et al., 2018)
- state-level identifiers imputed from IRS data for top incomes (Mian et al., 2020)
- · aggregate to state-year panel 1980–2007

Regressions I: Top Incomes and Mortgages of Non-Rich

	$\log(NonRic$	$HousePrice_t$	
	(1)	(2)	(3)
$\log(\mathit{TopIncomes}_{t-2})$	0.3218*** (0.0923)	0.2922*** (0.0862)	2.0311*** (0.4456)
$HousePrice_t$			
Non-Rich Income FE	Yes	Yes	-
Total Income FE	-	-	Yes
Demographic Controls	Yes	Yes	Yes
State & Year FE	Yes	Yes	Yes
Method	OLS	IV	OLS
F-test (first stage)	-	13.54	_

Regressions II: Evidence for Social Comparisons

	$\log(NonRichMortgages_t)$		$\log(NonRichHousing_t)$	
	(1)	(2)	(3)	(4)
$\log(TopHousing_{t-2})$	0.9934*** (0.3417)	0.7651** (0.2410)	0.4713*** (0.1720)	0.3498* (0.2025)
$HousePrice_t$		0.0005 (0.0004)		0.0003 (0.0004)
Non-Rich Income FE	Yes	Yes	Yes	Yes
Demographic Controls	Yes	Yes	Yes	Yes
State & Year FE	Yes	Yes	Yes	Yes
Method	IV	IV	IV	IV
F-test (first stage)	26.31	20.63	25.79	17.47

Dynamic Effects on Debt of Bottom 90% — Local Projections

Outline

Introduction

Model

Analytical Results

Empirical Evidence

Quantitative Results

Conclusio

Rising inequality, mortgages and house prices 1980–2007 (1)

inequality rises

Source: Guvenen et al. (2018)

Rising inequality, mortgages and house prices 1980–2007 (1)

inequality rises

Source: Guvenen et al. (2018)

- adjust permanent component of incomes (σ_{α}^2) to match difference in P90/P50 ratio between 1980 and 2007
- all other parameters are kept constant

Rising inequality, mortgages and house prices 1980–2007 (2)

Take-away: Inequality & keeping up with the Joneses generate

- · 40% of the observed mortgage boom
- 55% of the observed house price boom

Social Comparisons are an Important Amplifier — Rising Inequality is not Enough

Note: Keeping reference measure \bar{h} constant at \bar{h}_{1980} .

Take-away: Keeping up with the Joneses contributes 61% of the mortgage debt increase and 30% of the house price increase

Outline

Introduction

Mode

Analytical Results

Empirical Evidence

Quantitative Results

Conclusion

Conclusion

- We formalize a causal link between rising top incomes and the debt boom based on "keeping up with the richer Joneses"
- We show analytically that aggregate debt-to-income ratio is increasing in top incomes when somebody cares about the rich
- We show empirically that top incomes drive mortgage debt across states and time
- We show that rising income inequality "keeping up with the Joneses" are a quantitatively important driver of mortgage debt

References i

GUVENEN, F., G. KAPLAN, J. SONG, AND J. WEIDNER (2018): "Lifetime incomes in the United States over six decades." .

MIAN, A. R., L. STRAUB, AND A. SUFI (2020): "The Saving Glut of the Rich and the Rise in Household Debt," Working Paper 26941, National Bureau of Economic Research.

PIKETTY, T., E. SAEZ, AND G. ZUCMAN (2018): "Distributional national accounts: methods and estimates for the United States," *Quarterly Journal of Economics*, 133, 553–609.