MATLAB REPORT

Submitted by: Fareena Ansari

Roll no. 214104611

Problem 2: Stochastic Stability of Infinite slopes

Theory: The Monte Carlo Method is a computational algorithm that relies on repeated random sampling to address risk and uncertainty in quantitative analysis and decision making.

During a Monte Carlo simulation, values are sampled at random from the input probability distributions. Each set of samples and the resulting outcome from that sample are recorded.

PROBLEM:

H = depth of soil above bedrock

h = height of groundwater table above bedrock,

 Υ = moist unit weight

 Υ_{sat} = saturated unit weight of the soil

 $\Upsilon_w = \text{unit weight of water } (9.81 \text{ kN/m}^3)$

 Φ = effective stress friction angle

 Θ = slope inclination.

Variable	Description	Distribution	Statistics
Н	Depth of soil above	Uniform	[2,8] m
	bedrock		
h = H*U	Height of water table	U is uniform	[0,1]
φ	Effective stress	Lognormal	$Mean = 35^{\circ} cov = 8\%$
	friction angle		
Θ	Slope inclination	Lognormal	$Mean = 20^{\circ} cov = 5\%$
Υ	Moist unit weight of	*	*
	soil		
Υ_{sat}	Saturated unit weight	**	**
	of soil		
Υ_w	Unit weight of water	Deterministic	$9.81~\text{kN/m}^3$

* $\Upsilon = \Upsilon_w (G_s + 0.2e)/(1+e)$ (assume degree of saturation = 20% for "moist").

** $\Upsilon_{sat} = \Upsilon_w(G_s + e)/(1+e)$ (degree of saturation = 100%)

Assume specific gravity of solids = G_s = uniformly distributed [2.5, 2.7] and void ratio = e = uniformly distributed [0.3, .6]

COMMAND WINDOW:

```
Command Window

>> Untitled
MONTE CARLO SIMULATION :
Elapsed time is 0.100376 seconds.
Failure probability: 0.01900000 +- 0.00431729

>> Untitled
MONTE CARLO SIMULATION :
Elapsed time is 0.091665 seconds.
Failure probability: 0.02100000 +- 0.0045342

fx >>
```