In [166]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")

In [167]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv")

In [168]: data.describe()

Out[168]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [169]: data.head()

Out[169]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700

Out[170]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	рор	51	1766	54276	1	7900

1538 rows × 6 columns

Out[171]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
3	lounge	51	2739	160000	1	6000
6	lounge	51	731	11600	1	10750
7	lounge	51	1521	49076	1	9190
11	lounge	51	366	17500	1	10990
1528	lounge	51	2861	126000	1	5500
1529	lounge	51	731	22551	1	9900
1530	lounge	51	670	29000	1	10800
1534	lounge	74	3835	112000	1	4600
1536	lounge	51	2557	80750	1	5990

1094 rows × 6 columns

In []:

In [172]: data=pd.get_dummies(data)
 data

Out[172]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	44.907242	8.611560	8900	1	0	0
1	2	51	1186	32500	1	45.666359	12.241890	8800	0	1	0
2	3	74	4658	142228	1	45.503300	11.417840	4200	0	0	1
3	4	51	2739	160000	1	40.633171	17.634609	6000	1	0	0
4	5	73	3074	106880	1	41.903221	12.495650	5700	0	1	0
1533	1534	51	3712	115280	1	45.069679	7.704920	5200	0	0	1
1534	1535	74	3835	112000	1	45.845692	8.666870	4600	1	0	0
1535	1536	51	2223	60457	1	45.481541	9.413480	7500	0	1	0
1536	1537	51	2557	80750	1	45.000702	7.682270	5990	1	0	0
1537	1538	51	1766	54276	1	40.323410	17.568270	7900	0	1	0

1538 rows × 11 columns

```
In [173]: data.shape
```

Out[173]: (1538, 11)

In [175]: data2

Out[175]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge
0	51	882	25000	1	8900	1
3	51	2739	160000	1	6000	1
6	51	731	11600	1	10750	1
7	51	1521	49076	1	9190	1
11	51	366	17500	1	10990	1
1528	51	2861	126000	1	5500	1
1529	51	731	22551	1	9900	1
1530	51	670	29000	1	10800	1
1534	74	3835	112000	1	4600	1
1536	51	2557	80750	1	5990	1

1094 rows × 6 columns

```
In [176]: data2.shape
Out[176]: (1094, 6)
In [177]: y=data2['price']
    x=data2.drop('price',axis=1)
    #predicted value we removed from data frame

In [178]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
    #divide the columns into testing and training
```

In [179]: x_test.head(5)

Out[179]:

	engine_power	age_in_days	km	previous_owners	model_lounge
6	76 51	762	18609	1	1
2:	15 51	701	25000	1	1
1	46 51	4018	152900	1	1
13:	19 51	731	20025	1	1
104	41 51	640	38231	1	1

In [180]: y_test.head(5)

Out[180]: 676

676 10250 215 9790 146 5500 1319 9900 1041 8900

Name: price, dtype: int64

In [181]: x_train.head(5)

Out[181]:

		engine_power	age_in_days	km	previous_owners	model_lounge
•	441	51	762	36448	1	1
	701	51	701	27100	1	1
	695	51	3197	51083	1	1
	1415	51	670	33000	1	1
	404	51	456	14000	1	1

```
In [182]: y train.head(5)
Out[182]: 441
                   8980
                  10300
          701
                   5880
          695
          1415
                  10490
                   9499
          404
          Name: price, dtype: int64
In [183]: #for ridge regression
          from sklearn.model selection import GridSearchCV
          from sklearn.linear model import Ridge
          alpha=[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20,30]
          ridge=Ridge()
          parameters={'alpha':alpha}
          ridge regressor=GridSearchCV(ridge,parameters)
          ridge regressor.fit(x train,y train)
Out[183]: GridSearchCV(estimator=Ridge(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                              5, 10, 20, 301})
In [184]: ridge regressor.best params
Out[184]: {'alpha': 30}
In [185]: | ridge=Ridge(alpha=30)
          ridge.fit(x train,y train)
          y pred ridge=ridge.predict(x test)
In [186]: from sklearn.metrics import mean squared error
          Ridge Error=mean squared error(y pred ridge, y test)
          Ridge Error
Out[186]: 519771.8129989742
```

```
In [187]: from sklearn.metrics import r2 score
           r2 score(y test,y pred ridge)
Out[187]: 0.8373030813683995
In [188]: Results=pd.DataFrame(columns=['Actual', 'predicted'])
           Results['Actual']=y test
           #Results=pd.DataFrame(columns=['price', 'predicted'])
           #Results['price']=v test
           Results['predicted']=y pred ridge
           #Results['km']=x test['km']
           Results=Results.reset index()
           Results['Id']=Results.index
           Results.head(10)
Out[188]:
                             predicted Id
              index Actual
                    10250 10045.347779 0
               676
               215
                     9790
                           9989.171535 1
               146
                     5500
                           4769.099603 2
              1319
                     9900 10048.683238 3
              1041
                     8900
                           9813.944798 4
              1425
                     9500
                           8678.143561 5
               409
                    10450 10173.797921 6
               617
                     9790 10180.627008 7
              1526
                     9300
                           9107.315259 8
              1010
                     4600
                           5625.007407 9
In [189]:
           import seaborn as sns
           import matplotlib.pyplot as plt
```

```
In [190]: sns.lineplot(x='Id',y='Actual',data=Results.head(50))#blue
sns.lineplot(x='Id',y='predicted',data=Results.head(50))#orange
plt.plot
```

Out[190]: <function matplotlib.pyplot.plot(*args, scalex=True, scaley=True, data=None, **kwargs)>

In []:	
---------	--