Nombres réels

1 Approximations d'un réel

1.1 Ensembles de nombres

Notation 1.1

- ▶ On note \mathbb{R} l'ensemble des nombres *réels*.
- ▶ On note $\mathbb Q$ l'ensemble des nombres *rationnels* i.e. l'ensemble des nombres de la forme $\frac{p}{q}$ avec $(p,q) \in \mathbb Z \times \mathbb N^*$. Un nombre réel non rationnel est dit *irrationnel*.
- ▶ On note $\mathbb D$ l'ensemble des nombres décimaux i.e. l'ensemble des nombres de la forme $\frac{a}{10^n}$ avec $(a,n) \in \mathbb Z \times \mathbb N$.
- ightharpoonup On note $\mathbb Z$ l'ensemble des *entiers relatifs*.
- \blacktriangleright On note $\mathbb N$ l'ensemble des *entiers naturels*.

Remarque. On a $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$.

Exemple 1.1

 $\sqrt{2}$ est irrationnel.

1.2 Partie entière

Le théorème suivant découle de la construction des entiers.

Théorème 1.1 Propriété fondamentale des entiers

Toute partie non vide et majorée (resp. minorée) de $\mathbb Z$ admet un plus grand élément (resp. un plus petit élément).

Ce théorème légitime la définition suivante.

Définition 1.1 Partie entière d'un réel

Soit $x \in \mathbb{R}$. On appelle partie entière de x, notée |x|, le plus grand entier relatif inférieur ou égal à x.

Proposition 1.1 Caractérisation de la partie entière

Soit $(x, k) \in \mathbb{R} \times \mathbb{Z}$.

$$k = |x| \iff x - 1 < k \leqslant x \iff k \leqslant x < k + 1$$

REMARQUE. Il pourra être utile dans les exercices de remarquer que si n et p sont des entiers

$$n$$

Remarque. On appelle *partie fractionnaire* de x le réel noté $\{x\} = x - \lfloor x \rfloor$. On a donc $\{x\} \in [0,1[$.

Proposition 1.2 Propriétés de la partie entière

- (i) La partie entière est une application croissante.
- (ii) $\forall x \in \mathbb{R}, x = |x| \iff x \in \mathbb{Z}.$
- (iii) $\forall (x, n) \in \mathbb{R} \times \mathbb{Z}, |x + n| = |x| + n$.

ATTENTION! En général, $\lfloor x + y \rfloor \neq \lfloor x \rfloor + \lfloor y \rfloor$ et $\lfloor nx \rfloor \neq n \lfloor x \rfloor$ même si n est entier.

ATTENTION! La partie entière est croissante i.e.

$$\forall (x,y) \in \mathbb{R}^2, \ x \leqslant y \implies \lfloor x \rfloor \leqslant \lfloor y \rfloor$$

Mais la partie entière n'est pas strictement croissante. Par exemple, $0 < \frac{1}{2}$ mais $\lfloor 0 \rfloor = \lfloor \frac{1}{2} \rfloor$.

Remarque. Pour $x \in \mathbb{R}$, le plus petit entier relatif supérieur ou égal à x se note $\lceil x \rceil$. Si $k \in \mathbb{Z}$, alors

$$k = \lceil x \rceil \iff x \leqslant k < x + 1 \iff k - 1 < x \leqslant k$$

On a en fait $\lceil x \rceil = -|-x|$.

1.3 Approximations décimales

Définition 1.2

Soient $x \in \mathbb{R}$ et $n \in \mathbb{N}$. On pose $\mathbb{D}_n = \left\{ \frac{\alpha}{10^n}, \alpha \in \mathbb{Z} \right\}$.

- ▶ On appelle valeur décimale approchée de x à 10^{-n} près par défaut l'unique décimal $\alpha_n \in \mathbb{D}_n$ tel que $\alpha \leqslant x < \alpha + 10^{-n}$.
- ▶ On appelle valeur décimale approchée de x à 10^{-n} près par excès l'unique décimal $\beta_n \in \mathbb{D}_n$ tel que $\beta 10^{-n} < x \leq \beta$.

Exemple 1.2

3, 1415 est une valeur décimale approchée de π à 10^{-4} près par défaut.

3, 1416 est une valeur décimale approchée de π à 10^{-4} près par excès.

Remarque. On peut exprimer α_n et β_n . En fait,

$$\alpha_{n} = \frac{\lfloor 10^{n} \chi \rfloor}{10^{n}} \qquad \beta_{n} = \frac{\lceil 10^{n} \chi \rceil}{10^{n}}$$

Si $x \in \mathbb{D}$, alors $\alpha_n = \beta_n = x$.

Sinon, $\beta_n = \alpha_n + 10^{-n}$.

Remarque. α est le nombre décimal dont les décimales (chiffres après la virgule) sont les n premières décimales de x.

1.4 Densité dans \mathbb{R}

Définition 1.3 Densité

Soit \mathcal{A} une partie de \mathbb{R} . On dit que \mathcal{A} est *dense* dans \mathbb{R} si tout intervalle ouvert non vide de \mathbb{R} contient au moins un élément de \mathcal{A} .

Proposition 1.3 Caractérisation «epsilonesque» de la densité

Soit \mathcal{A} une partie de \mathbb{R} . \mathcal{A} est dense dans \mathbb{R} si et seulement si

$$\forall x \in \mathbb{R}, \ \forall \varepsilon > 0, \]x - \varepsilon, x + \varepsilon [\cap \mathcal{A} \neq \varnothing]$$

Proposition 1.4 Caractérisation séquentielle de la densité

Soit \mathcal{A} une partie de \mathbb{R} . \mathcal{A} est dense dans \mathbb{R} si et seulement si pour tout $x \in \mathbb{R}$, il existe une suite (x_n) d'éléments de \mathcal{A} de limite x.

Proposition 1.5 Densité de \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ dans \mathbb{R}

 \mathbb{D} , \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R} .

2 Relation d'ordre sur \mathbb{R}

2.1 Majoration et minoration

Définition 2.1 Parties majorées, minorées, bornées

Soit A une partie de \mathbb{R} .

- ▶ On dit que \mathcal{A} est *majorée* s'il existe $M \in \mathbb{R}$ tel que $x \leq M$ pour tout $x \in \mathcal{A}$. Dans ce cas, on dit que M est un *majorant* de \mathcal{A} .
- ▶ On dit que \mathcal{A} est *minorée* s'il existe $\mathfrak{m} \in \mathbb{R}$ tel que $x \geqslant \mathfrak{m}$ pour tout $x \in \mathcal{A}$. Dans ce cas, on dit que \mathfrak{m} est un *minorant* de \mathcal{A} .
- ightharpoonup On dit que \mathcal{A} est *bornée* si elle est majorée et minorée.

Proposition 2.1

Soit \mathcal{A} une partie de \mathbb{R} . \mathcal{A} est bornée si et seulement si il existe $K \in \mathbb{R}$ tel que $|x| \leq K$ pour tout $x \in \mathcal{A}$.

2.2 Maxima et minima

Définition 2.2 Maximum et minimum

Soit \mathcal{A} une partie de \mathbb{R} .

- ▶ On dit que M est le maximum ou le plus grand élément de A si $M \in A$ et M est un majorant de A. On note alors $m = \min A$.
- ▶ On dit que m est le *minimum* ou le *plus petit élément* de \mathcal{A} si m ∈ \mathcal{A} et m est un minorant de \mathcal{A} . On note alors $\mathcal{M} = \max \mathcal{A}$.

Exemple 2.1

-1 et 1 sont respectivement le minimum et le maximum de l'intervalle [-1, 1].

ATTENTION! Une partie de \mathbb{R} n'admet pas forcément de maximum ou de minimum. Par exemple,]-1, 1[n'admet ni minimum ni maximum. En particulier, -1 et 1 ne sont pas le minimum et le maximum de]-1, 1[puisqu'ils n'appartiennent pas à cet intervalle.

2.3 Bornes inférieures et supérieures

Définition 2.3 Borne inférieure et supérieure

Soit A une partie de \mathbb{R} .

- ▶ On appelle borne supérieure de \mathcal{A} le minimum de l'ensemble des majorants de \mathcal{A} , <u>s'il existe</u>. Dans ce cas, on le note sup \mathcal{A} .
- ▶ On appelle *borne inférieure* de \mathcal{A} le maximum de l'ensemble des minorants de \mathcal{A} , <u>s'il existe</u>. Dans ce cas, on le note inf \mathcal{A} .

Rien ne garantit a priori l'existence d'une borne inférieure ou supérieure. On a néanmoins le théorème suivant.

Théorème 2.1 Propriété de la borne supérieure

Toute partie non vide et majorée (resp. minorée) de \mathbb{R} possède une borne supérieure (resp. inférieure).

Remarque. Ce théorème est admis car il découle directement de la construction de \mathbb{R} qui est hors programme. Pour votre culture, le corps des réels \mathbb{R} est construit à partir des corps des rationnels \mathbb{Q} de façon à ce qu'il possède justement cette propriété de la borne supérieure.

Proposition 2.2

Soit \mathcal{A} une partie de \mathbb{R} .

- ightharpoonup Si $M = \max A$, alors $M = \sup A$.
- ightharpoonup Si $\mathfrak{m} = \min \mathcal{A}$, alors $\mathfrak{m} = \inf \mathcal{A}$.

ATTENTION! Les réciproques sont fausses! Une partie de \mathbb{R} peut posséder une borne supérieure (resp. inférieure) sans posséder de maximum (resp. minimum).

Exemple 2.2

Les bornes inférieures et supérieures de [-2, 1[sont -2 et 1. De plus, -2 est le plus petit élément de \mathcal{A} mais [-2, 1[ne possède pas de plus grand élément.

Les propositions suivantes permettent de déterminer des bornes supérieures et inférieures en pratique.

Proposition 2.3 Caractérisation «epsilonesque» des bornes inférieures et supérieures

Soient \mathcal{A} une partie de \mathbb{R} et $c \in \mathbb{R}$.

- $\diamond \ c = \inf \mathcal{A} \text{ si et seulement si } c \text{ est un minorant de } \mathcal{A} \text{ et si pour tout } \epsilon > 0, \text{ il existe } \alpha \in \mathcal{A} \text{ tel que } c + \epsilon > \alpha.$
- $\diamond c = \sup \mathcal{A}$ si et seulement si c est un majorant de \mathcal{A} et si pour tout $\epsilon > 0$, il existe $a \in \mathcal{A}$ tel que $c \epsilon < a$

Proposition 2.4 Caractérisation séquentielle des bornes inférieures ou supérieures

Soient \mathcal{A} une partie de \mathbb{R} et $\mathbf{c} \in \mathbb{R}$.

- $ightharpoonup c = \inf \mathcal{A}$ si et seulement si c est un minorant de \mathcal{A} et s'il existe une suite (\mathfrak{a}_n) d'éléments de \mathcal{A} de limite c.
- ightharpoonup c = sup \mathcal{A} si et seulement si c est un majorant de \mathcal{A} et s'il existe une suite (\mathfrak{a}_n) d'éléments de \mathcal{A} de limite c.

Exercice 2.1

Déterminer les bornes supérieure et inférieure de $\left\{\frac{3}{2^p}-\frac{1}{3^q},(p,q)\in\mathbb{N}^2\right\}$.

Méthode Passage à la borne supérieure/inférieure

- ▶ Si $\forall x \in \mathcal{A}, x \leq M$, alors sup $\mathcal{A} \leq M$.
- ▶ Si $\forall x \in A, x \ge M$, alors inf $A \ge M$.

ATTENTION! Le passage à la borne supérieure/inférieure ne conserve que les inégalités *larges*, exactement comme le passage à la limite.

Exercice 2.2

Soient \mathcal{A} et \mathcal{B} deux parties non vides de \mathbb{R} . On définit $\mathcal{A} + \mathcal{B} = \{x + y \mid (x, y) \in \mathcal{A} \times \mathcal{B}\}.$

- 1. On suppose A et B majorées. Montrer que sup $A + B = \sup A + \sup B$.
- 2. On suppose A et B minorées. Montrer que $\inf A + B = \inf A + \inf B$.

2.4 La droite réelle achevée $\overline{\mathbb{R}}$

Définition 2.4 Droite achevée $\overline{\mathbb{R}}$

On appelle droite achevée $\overline{\mathbb{R}}$ l'ensemble $\mathbb{R} \cup \{-\infty, +\infty\}$ où les éléments $-\infty$ et $+\infty$ sont définis par les propriétés suivantes :

Prolongement de l'ordre $\forall x \in \overline{\mathbb{R}}, -\infty \leqslant x \leqslant +\infty$.

Prolongement de l'addition

$$\forall x \in \mathbb{R}, \begin{cases} x + (+\infty) = +\infty + x = +\infty \\ x + (-\infty) = -\infty + x = -\infty \end{cases} \text{ et } \begin{cases} +\infty + (+\infty) = +\infty \\ -\infty + (-\infty) = -\infty \end{cases}$$

Prolongement de la multiplication

$$\begin{array}{lll} \forall x>0, & x\times(+\infty)=+\infty, & x\times(-\infty)=-\infty\\ \forall x<0, & x\times(+\infty)=-\infty, & x\times(-\infty)=+\infty\\ \forall x\in\mathbb{R}, & \frac{x}{+\infty}=0, & \frac{x}{-\infty}=0\\ (+\infty)\times(+\infty)=+\infty, & (+\infty)\times(-\infty)=-\infty, & (-\infty)\times(-\infty)=+\infty \end{array}$$

ATTENTION! Formes indéterminées Cette définition ne donne aucun sens aux expressions suivantes $\infty - \infty$, $0 \times \infty$ et $\frac{\infty}{\infty}$.

Corollaire 2.1

Toute partie non vide de $\overline{\mathbb{R}}$ possède une borne supérieure et inférieure dans $\overline{\mathbb{R}}$.

Proposition 2.5

Soit A une partie non vide de \mathbb{R} .

- \diamond inf $A = -\infty$ si et seulement si pour tout $m \in \mathbb{R}$, il existe $x \in A$ tel que $x \leqslant m$ (i.e. A est non minorée).
- \diamond sup $\mathcal{A} = +\infty$ si et seulement si pour tout $M \in \mathbb{R}$, il existe $x \in \mathcal{A}$ tel que $x \geqslant M$ (i.e. \mathcal{A} est non majorée).

Proposition 2.6 Caractérisation séquentielle

Soit \mathcal{A} une partie de \mathbb{R} .

- ▶ inf $A = -\infty$ si et seulement si il existe une suite (a_n) d'éléments de A de limite $-\infty$.
- ▶ $\sup A = +\infty$ si et seulement si il existe une suite (a_n) d'éléments de A de limite $+\infty$.

2.5 Extension aux applications

Définition 2.5 Fonction majorée/minorée

Soient E un ensemble et $f: E \to \mathbb{R}$ une application.

- \blacktriangleright On dit que f est *majorée* sur E si f(E) est majorée. Un majorant de f(E) est appelé un *majorant* de f sur E.
- ▶ On dit que f est *minorée*) sur E si f(E) est minorée. Un minorant de f(E) est appelé un *minorant* de f sur E.
- ▶ On dit que f est bornée sur E si f est minorée et majorée sur E.

REMARQUE. On retrouve en fait la définition classique.

- ♦ f est majorée sur E s'il existe $M \in \mathbb{R}$ tel que $\forall x \in E$, $f(x) \leq M$.
- \diamond f est minorée sur E s'il existe $m \in \mathbb{R}$ tel que $\forall x \in E, f(x) \geqslant m$.

Dans ce cas, M et m sont respectivement un majorant et un minorant de f sur E. ■

Proposition 2.7

Soit $f: E \to \mathbb{R}$ une application. f est bornée sur E *si et seulement si* |f| est majorée sur E.

Définition 2.6 Maximum/minimum

Soient E un ensemble et $f: E \to \mathbb{R}$ une application.

- ▶ On appelle maximum de f sur E le réel max f(E), *s'il existe*. On le note max f ou max f(x).
- ▶ On appelle minimum de f sur E le réel min f(E), *s'il existe*. On le note min f ou min f(x).

REMARQUE. Un maximum (resp. minimum) de f sur E est un majorant (resp. minorant) de f sur E *atteint* par la fonction f. Autrement dit,

- $\diamond M$ est un maximum de f sur E si $\forall x \in E$, $f(x) \leq M$ et s'il existe $c \in E$ tel que f(c) = M,
- \diamond m est un minimum de f sur E si $\forall x \in E$, $f(x) \geqslant m$ et s'il existe $c \in E$ tel que f(c) = m.

ATTENTION! Il ne faut pas confondre l'extremum d'une fonction et le point en lequel il est atteint. Notamment, l'extremum est unique mais peut être atteint plusieurs fois. Par exemple, -1 et 1 sont respectivement le minimum et le maximum de sin sur \mathbb{R} , mais ils sont atteints une infinité de fois sur \mathbb{R} .

Définition 2.7 Borne supérieure/inférieure

Soient E un ensemble et $f : E \to \mathbb{R}$ une application.

- ▶ On appelle *borne supérieure* de f sur E le réel sup f(E), *s'il existe*. On le note sup f ou sup f(x).
- lacktriangle On appelle borne inférieure de f sur E le réel inf f(E), s'il existe. On le note $\inf_{E} f$ ou $\inf_{x \in E} f(x)$.

Remarque. Pour que f possède une borne supérieure (resp. inférieure) sur E, il est nécessaire et suffisant que E soit non vide et que f soit majorée (resp. minorée) sur E, en vertu de la propriété de la borne supérieure. Si E est non vide, f admet toujours une borne supérieure et une borne inférieure sur E dans $\overline{\mathbb{R}}$.

Exemple 2.3

Soit E un ensemble. Soient $f: E \to \mathbb{R}$ et $g: E \to \mathbb{R}$ deux fonctions bornées sur E. Alors f+g est bornée sur E et

$$\sup_{E}|f+g|\leqslant \sup_{E}|f|+\sup_{E}|g|$$

Méthode Déterminer la borne inférieure/supérieure d'une fonction

Il suffit d'établir le tableau de variations de la fonction.

Exemple 2.4

Considérons la fonction $f: x \mapsto e^{-x^2}$. On obtient facilement son tableau de variation.

Le théorème de la bijection montre que $f(\mathbb{R}_+) = f(\mathbb{R}_-) =]0,1]$ et donc que $f(\mathbb{R}) =]0,1]$. On en déduit que $\max_{\mathbb{R}} f = 1$ et donc que $\sup_{\mathbb{R}} f = 1$. De plus, $\inf_{\mathbb{R}} f = 0$ mais f n'admet pas de minimum sur \mathbb{R} . Si elle en admettait un, ce serait 0 mais 0 n'appartient pas à $f(\mathbb{R})$.

3 Intervalles de \mathbb{R}

La définition suivante permet de décrire tous les intervalles de \mathbb{R} (fermés, ouverts, majorés, minorés, ...).

Définition 3.1 Intervalle de $\mathbb R$

On appelle $\mathit{intervalle}$ de $\mathbb R$ toute partie I de $\mathbb R$ vérifiant la propriété suivante :

$$\forall (x, y) \in I^2, \ \forall t \in \mathbb{R}, \ x \leqslant t \leqslant y \implies t \in I$$

Proposition 3.1

Une intersection d'intervalles est un intervalle.

Proposition 3.2

Les intervalles de \mathbb{R} sont les ensembles du type [a,b], [a,b[,]a,b] ou]a,b[avec $a,b\in\mathbb{R}$ tels que $a\leqslant b$ et éventuellement $a=-\infty$ ou $b=+\infty$ en position de «borne ouverte».

Remarque. On retrouve donc bien tous les intervalles au sens précédent de l'acception. L'ensemble vide est un intervalle ouvert de \mathbb{R} puisqu'il est du type]a, a[avec $a \in \mathbb{R}$.

Notation 3.1

Si I est un intervalle, on note \bar{I} l'intervalle composé de la réunion de I et des bornes finies de I et on note \mathring{I} l'intervalle I privé de ses bornes.

Remarque. \overline{I} est le plus petit intervalle fermé contenant I.

 $\check{\rm I}$ est le plus grand intervalle ouvert contenu dans ${\rm I.}$

Exemple 3.1

- ► Si I =] -1,2], alors $\bar{I} = [-1,2]$ et $\mathring{I} = [-1,2]$.
- ► Si I =]3, $+\infty$ [, alors $\bar{I} = [3, +\infty[$ et $\mathring{I} =]3, +\infty[$.
- ► Si $I =]-\infty, 4]$, alors $\bar{I} =]-\infty, 4]$ et $\mathring{I} =]-\infty, 4[$.