

FOUNDATIONS OF COMPUTER SCIENCE LECTURE 13: Undecidability

Prof. Daniele Gorla

Undecidable problems

- Computers appear so powerful that you may believe that they can solve all problems
- One of the philosophically most important theorems of the theory of computation: There are problems that are algorithmically unsolvable
- So, no matter how powerful a computer and how smart the programmer, today we shall prove that computers are limited in a fundamental way
- Even ordinary problems that people want to solve turn out to be computationally unsolvable
- For example: given a computer program and a precise specification of what that program is supposed to do, you need to verify that the program performs as specified
- Because both the program and the specification are mathematically precise objects, you hope to automate the process of verification by feeding these objects into a suitably programmed computer
- The general problem of software verification is not solvable by any computer

Membership problem for TMs (1)

Thm.: $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \text{ is undecidable.}$

Proof

We assume that A_{TM} is decidable and obtain a contradiction.

Suppose that H is a decider for A_{TM} , i.e.

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept } w \end{cases}$$

Next, we construct a new Turing machine D with H as a subroutine:

$$D(\langle M \rangle) = \begin{cases} \text{accept} & \text{if } H(\langle M, \langle M \rangle \rangle) = \text{reject (i.e., if } M \text{ does not accept } \langle M \rangle) \\ \text{reject} & \text{if } H(\langle M, \langle M \rangle \rangle) = \text{accept (i.e., } M \text{ accepts } \langle M \rangle) \\ \text{rem: the encoding of a TM is a string of symbols, often binary, so it can be used as a} \end{cases}$$

word

The contradiction arises when we run D on its own description $\langle D \rangle$:

$$\langle D \rangle \in L(D)$$
 if and only if $\langle D \rangle \notin L(D)$

Thus, there cannot exist any decider H for A_{TM} .

SAPIENZA UNIVERSITÀ DI ROMA DIPARTIMENTO DI INFORMATICA

Membership problem for TMs (2)

Pictorially, let's describe the problem of $A_{\rm TM}$ as a matrix, where rows are TMs, columns are the encoding of TMs, and elements of the matrix are {accept, reject, BLANK} (where BLANK

stands for non-termination):

	$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 angle$	
M_1	accept		accept		
$M_1 \ M_2 \ M_3$	$egin{array}{c} accept \\ accept \end{array}$	$egin{array}{c} accept \\ reject \end{array}$	accept	accept	
M_3	****	reject			12301200120
M_4	accept	accept		reject	
:			:		
•			•		

H turns every BLANK into reject:

D complements the values in the diagonal:

But since *D* is a TM itself, it is present both in the rows and in the columns:

	$\langle M_1 angle$	$\langle M_2 angle$	$\langle M_3 angle$	$\langle M_4 angle$		$\langle D \rangle$	
M_1	reject	reject	accept	reject		accept	-
M_2	\overline{accept}	reject	accept	accept		accept	
M_3	reject	\overline{reject}	accept	reject		reject	
M_4	accept	accept	\overline{reject}	accept		accept	
÷		:	:		·		
D	reject	reject	accept	accept		?	
÷		:					٠

Membership problem for TMs (3)

Thm.: $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \text{ is recursively enumerable.}$

Proof

The following Turing machine U recognizes A_{TM} : different, as U is not a decider, so it can loop On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Simulate *M* on input *w*
- 2. If M enters its accept state, accept; if M enters its reject state, reject.

- U loops on input $\langle M, w \rangle$ if M loops on w
 - \rightarrow this is why *U* cannot decide A_{TM}
- If the algorithm had some way to determine that M was not halting on w, it could reject in this case (like H in the previous proof)
 - → there is no algorithmic way to establish this (see later on)
- The Turing machine U is interesting in its own right and it is called *universal TM* (first proposed by Alan Turing in 1936)
- This machine is called universal because it is capable of simulating any other TM from the description of that machine.
- Played an important early role in developing stored-program computers

Beyond R.E. languages

Are there languages that are not either R.E.? i.e. languages not generated by any TM

Thm.: L is decidable if and only if both L and \overline{L} are R.E..

Proof

- \rightarrow If L is decidable, there exists a decider M for it. Hence, L is R.E. (a decider is a TM) but also \overline{L} is R.E. (it is accepted by the TM that behaves like M, but with q_{accept} and q_{reject} swapped).
- \leftarrow Let M_1 be a TM for L and M_2 for \overline{L} . Then, consider the TM M that On input w:
 - 1. Run in parallel M_1 and M_2 on input w
 - 2. If M_1 accepts, accept; if M_2 accepts, reject.

Running the two machines in parallel means that M has two tapes: one for simulating M_1 and the other for simulating M_2 . Then, M performs one step of each machine, and continues until one of them accepts (that eventually happens, since every w either belongs to L or to \overline{L}).

Q.E.D.

Now consider $\bar{A}_{TM} = \{ s \mid s \text{ is not the encoding of a TM and a string} \} \cup \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \}$

Cor.: \bar{A}_{TM} is not R.E..

Proof

If it was, A_{TM} would have been decidable.

The Halting problem

Thm.: $H_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on } w \} \text{ is undecidable.}$

Proof

By contradiction, assume the existence of decider R for H_{TM} .

We construct a decider S for A_{TM} as follows:

On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- 1. Run R on input $\langle M, w \rangle$
- 2. If *R* rejects, reject
- 3. If *R* accepts, simulate *M* on *w* until it halts
- 4. If *M* has accepted, accept; otherwise reject.

Clearly, if R decides H_{TM} , then S decides A_{TM} .

Because A_{TM} is undecidable, H_{TM} also must be undecidable.

Proofs by Reductions

- The previous proof is an example of *reduction*, a crucial method in this course
- Reductions are ways of (algorithmically) converting a problem *A* into another problem *B* in such a way that a solution for *B* can be used to solve *A*
- This is something common in everyday life:
 - Suppose that you want to find your way around a new city
 - This would be easy if you had a map.
 - Thus, you can reduce the problem of finding your way around the city (problem *A*) to the problem of obtaining a map of the city (problem *B*)
- Note that reducibility says nothing about solving A or B alone
 - \rightarrow it only states that A can be solved in the presence of a solution to B
- In computability, this can be used whenever A is reducible to B and B is decidable; in this case, also A is decidable
 - \rightarrow Equivalently (as we did before): if A is undecidable and reducible to B, then B is undecidable too
- In proving undecidability of the Halting problem, we used $A = A_{TM}$ and $B = H_{TM}$.

Rice's Theorem

Thm.: Let P be a language consisting of TM descriptions such that

- P is nontrivial (i.e., it contains some, but not all, TM descriptions); and
- P is defined by some property of the TM's language.

Then, *P* is undecidable.

Proof

By contradiction, let R_P be a decider for P; we now show how to reduce A_{TM} to P.

Let T_{\emptyset} be a TM that always rejects, so $L(T_{\emptyset}) = \emptyset$.

W.l.o.g., assume that $\langle T_{\emptyset} \rangle \notin P$ (if not, proceed with \bar{P} instead of P, since a decider for P yields one for \bar{P}).

Because P is not trivial, there exists a TM T with $\langle T \rangle \in P$. Given M and w, consider the TM $S_{T,M,w}$:

On input *x*:

- Simulate M on w
- (ii) If it halts and rejects, reject
- (iii) If it accepts, simulate T on x. If it accepts, accept

If M accepts w,

the language of $S_{T,M,w}$ is the same as T's, otherwise as T_{\emptyset} 's: $L(S_{T,M,w}) =$

if M accepts w

otherwise.

We now show how to decide A_{TM} by using R_P 's ability to distinguish between T_\emptyset and T:

On input $\langle M, w \rangle$:

- Run R_P with input $\langle S_{T,M,w} \rangle$. If it accepts, accept; otherwise reject

Therefore, M accepts w iff $\langle S_{T,M,w} \rangle \in P$.

O.E.D.

Corollaries of Rice's Theorem

Cor.: $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \text{ is undecidable.}$

Cor.: $EQ_{TM} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2) \}$ is undecidable.

Cor.: $FIN_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a finite language} \} \text{ is undecidable.}$

Cor.: $REG_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \} \text{ is undecidable.}$

Cor.: $CF_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a C.F. language} \} \text{ is undecidable.}$

Cor.: $CS_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a C.S. language} \} \text{ is undecidable.}$

Computation histories

<u>Def.:</u> Let M be a Turing machine and w an input string. A *computation history* for M on w is a sequence of configurations $C_1, C_2, ..., C_k$, where

- C_1 is the start configuration of M on w, and
- each C_i yields C_{i+1} according to the transitions of M.

The history is said *accepting/rejecting* whenever C_k is an accepting/rejecting configuration.

Computation histories are finite sequences.

 \rightarrow If M doesn't halt on w, no accepting nor rejecting history exists for M on w

Deterministic machines have at most one computation history on any given input; Nondeterministic machines may have many computation histories on a single input, corresponding to the various computation branches

→ in the rest of this class, we shall only consider deterministic TMs

Undecidable problems for CSLs: Emptyness

Thm.: $E_{LBA} = \{ \langle M \rangle \mid M \text{ is a LBA and } L(M) = \emptyset \} \text{ is undecidable.}$

Proof

Assume a decider R for E_{LBA} and construct a decider S for A_{TM} as follows:

On input $\langle M, w \rangle$, where M is a TM and w is a string:

- (i) Construct a LBA B that accepts all and only the accepting computation histories for M on w
- (ii) Run R on input $\langle B \rangle$
- (iii) If R accepts (i.e., $\langle B \rangle \in E_{LBA}$), reject (i.e., $w \notin L(M)$); if R rejects, accept

For step (i), we proceed as follows:

- we assume that a history is a single string with the configurations separated by #
- On input x, first B breaks up x according to the delimiters
- Then B determines whether the C_i 's satisfy the conditions of an accepting computation history:
 - 1. C_1 is the start configuration for M on w
 - 2. Each C_{i+1} legally follows from C_i
 - 3. C_k is an accepting configuration for M.
- 1 and 3 are very easy to check. For 2, B has to check that C_i and C_{i+1} are identical except for the positions under and adjacent to the head in C_i .
- These positions must be updated according to the transition function of M
 - \rightarrow checkable by zig-zagging between corresponding positions of C_i and C_{i+1} .

Undecidable problems for CSLs: Equivalence

<u>Thm.:</u> $EQ_{LBA} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are LBA and } L(M_1) = L(M_2) \}$ is undecidable. Proof

Assume a decider R for EQ_{LBA} and construct a decider S for E_{LBA} as follows:

On input $\langle M \rangle$, where M is a LBA:

- 1. Run R on input $\langle M, N \rangle$, where N is a LBA that rejects all inputs
- 2. If *R* accepts, accept; if *R* rejects, reject.

SAPIENZA UNIVERSITÀ DI ROMA DIPARTIMENTO DI INFORMATICA

Undecidable problems for CFLs: All Σ^*

<u>Thm.:</u> $ALL_{PDA} = \{ \langle M \rangle \mid M \text{ is a PDA and } L(M) = \Sigma^* \} \text{ is undecidable.}$ <u>Proof</u>

Assume a decider R for ALL_{PDA} and construct a decider S for A_{TM} as follows:

On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Construct a PDA B that accepts all Σ^* if and only if M doesn't accept w
- 2. Run R on input $\langle B \rangle$
- 3. If R accepts, reject; if R rejects, accept

B should accept everything but one accepting history for M on w (provided that one exists, i.e. $w \in L(M)$).

B receives histories still as strings of config's separated by # (almost...) and non-deterministically:

- Checks whether the first configuration is not the starting one \rightarrow if so, accepts
- Checks whether the last configuration is not an accepting one \rightarrow if so, accepts
- Checks whether some C_i doesn't yield C_{i+1} according to the transitions of $M \rightarrow$ if so, accepts

For the last task, B has a non-det. branch (for all i) that: reads C_i , pushes it into the stack, and then compares it with C_{i+1} (still around the head position) by simultaneously reading C_{i+1} and popping C_i

 \rightarrow but C_i is in the wrong order (the last char of C_i is at top of the stack after the push)

Hence, the input for B is $\# \underbrace{\longrightarrow}_{C_1} \# \underbrace{\longleftarrow}_{C_2^{\mathcal{R}}} \# \underbrace{\longrightarrow}_{C_3} \# \underbrace{\longleftarrow}_{C_4^{\mathcal{R}}} \# \cdots$

SAPIENZA UNIVERSITÀ DI ROMA DIPARTIMENTO DI INFORMATICA

Undecidable problems for CFLs: Equivalence

 $\underline{Thm.:} EQ_{PDA} = \{ \langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are PDA and } L(M_1) = L(M_2) \} \text{ is undecidable.}$

Proof

Assume a decider R for EQ_{PDA} and construct a decider S for ALL_{PDA} as follows:

On input $\langle M \rangle$, where M is a PDA:

- 1. Run R on input $\langle M, N \rangle$, where N is a PDA that accepts all inputs
- 2. If *R* accepts, accept; if *R* rejects, reject.

Problems for Languages: Summing up

	Membership	Emptyness	Equivalence
Regular	DEC	DEC	DEC
C.F.	DEC	DEC	UNDEC
C.S.	DEC	UNDEC	UNDEC
R.E.	UNDEC	UNDEC	UNDEC