MATH240 – Lecture 12

Enlai Li

February 10, 2023

1 Last lecture

1.1 Euclid's algorithm

$$a, b \in \mathbb{Z} \to gcd(a, b) = d$$

1.2 Bezout's theorem

$$d = \gcd(a, b) \rightarrow d = sa + tb$$

1.3 Corollary

If c|a and c|b, then c|gcd(a,b)

1.4 Proof

$$c|a \text{ and } c|b$$

 $\Rightarrow a = kc \text{ and } b = nc$

Then

$$d = gcd(a, b)$$

$$= sa + tb, \text{ where } s, t \in \mathbb{Z}$$

$$= sac + tbc$$

$$= c(sk + tn) \Rightarrow c|d$$

2 Coprime

two integers a,b are coprime if gcd(a,b) = 1 ex:

- \bullet 42 and 515 are coprime
- a = 7, n = not a multiple of 7 $\Rightarrow gcd(7, 9) = 1$

That's because the only divisions of 7 are 1 (only possibility left) and 7 (not a divisor of n)

This works for any other prime number

Theorem a and b are coprime $\iff 1 = sa + tb$ **proof** Bezout when d=1

$$1 = sa + tb$$
Let $d = gcd(a, b)$
Goal: prove $d = 1$

$$d|a \text{ and } d|b$$

$$\Rightarrow d|sa + tb \text{ (elementary property of 1)}$$

$$\Rightarrow d|1$$

$$\Rightarrow d = 1$$

3 prime numbers

p is prime $\iff p > 1$ and its only positive divisors are 1 and p ex:

$$2, 3, 5, 7, 11, 13, \dots$$

A number that is not a prime is called composite ex:

$$42 = 6 \times 7$$

n is composite $\iff n = ab$, where a, b > 1

Prime numbers are interesting in number theory because they are easy to understand, yet they easily lead to very difficult problems

3.1 Goldbach's conjecture (open since 1742)

Every even number n > 2 is the sum of two primes ex:

$$42 = 19 + 23$$
$$20 = 13 + 7$$

It's been tested by computers to work up to very large numbers (400 trillions), no one has proved it

3.2 Fundamental Theorem of Arithmetic (FTA)

primes are a fundamental role in number theory as the building blocks of all integers

ex: we can write 42 as product of primes

$$42 = 6 \times 7$$
$$= 2 \times 3 \times 7$$

We can always decompose a number as a product of primes, in a unique way. We need the following lemma to prove this:

Lemma if p is prime and p|ab then p|a or p|b ex:

$$3|42=6\times7 \text{ and indeed } 3|6$$
 Counter-example $14|42=6\times7$ but $14\rlap/6$ and $14\rlap/7$

We really need p to be prime for this to work

Proof

Assume
$$p|ab, p$$
 is prime $\Rightarrow ab = px$
Goal: $p|a$ or $p|b$
Assume $p\not|a$, New goal $p|b$
Since $p\not|a$ then p and a are coprime

$$\Rightarrow 1 = sp + ta$$

$$b = spb + tab$$

$$= spb + tpx$$

$$= p(sb + tx)$$

$$\Rightarrow p|b$$

Let $n \geq 2$ be an integer, the we can find prime numbers

$$p_1 \leq p_2 \leq p_3 \cdots \leq p_k$$

such that $n = p_1 \le p_2 \le p_3 \cdots \le p_k$ moreover this list of prime is unique **Proof** We must prove existence and uniqueness of the prime factorization of n. We do both in a single proof by strong induction!

Base case: n = 2

- Existence: n = 2 (prime)
- Uniqueness: $2 = p_1 p_2 p_3 \dots p_k$, where $p_1 = 2$ and $p_2 p_3 \dots p_k = 1$

Induction step Assume the FTA true for all integers < b. We want to prove it for n. 2 cases:

n is prime: same as base case (replace 2 by n)

n is composite:

• Existence: $n = ab, n > a, b \ge \mathbb{Z}$, by induction hypothesis we can write

$$a = p_1 p_2 p_3 \dots \le p_k$$

$$b = q_1 q_2 q_3 \dots \le q_l$$

$$\Rightarrow n = p_1 p_2 \dots p_k q_1 q_2 q_l$$

This is a product of primes! rearrange them in increasing order and we have a solution

• Uniqueness: Assume the two prime decompositions of n

$$n = p_1 p_2 p_3 \dots p_k$$
, where $p_1 \leq \dots \leq p_k$
 $n = q_1 q_2 q_3 \dots q_l$, where $q_1 \leq \dots \leq q_l$
 $p_1 | n \Rightarrow p_1 | q_1 q_2 \dots q_l$
By the lemma
 $p_1 | q_1 \text{ or } p_1 | q_2 \text{ or } \dots \text{ or } p_1 | q_l$
 $\Rightarrow p_1 = q_1 \text{ or } p_1 = q_2 \text{ or } \dots \text{ or } p_1 = q_l$
 $\Rightarrow p_1 = q_1, \text{ for some } i$

Now we consider the number $\frac{n}{p_1} < n$ by the induction hypothesis, all primes $p_2p_3\dots p_k$ are the same as the primes $q_1q_2q_3\dots q_l$. All primes $p_1p_2p_3\dots p_k$ are the same as $q_1q_2q_3\dots q_l$

$$k = l$$
 and $p_1 = q_1$ and ... and $p_k = p_l$

We can regroup repeated factors and write the prime decomposition with exponents (canonical form)

$$n = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \dots p_k^{\alpha_k}$$
, where $p_1 < \dots < p_k$ and $\alpha_1 > \dots > \alpha_k > 0$

ex:

$$72 = 2 \times 36$$
$$= 2 \times 2 \times 2 \times 3 \times 3$$
$$= 2^3 \times 3^2$$

We could in fact allow 0 in the exponents but we could lose uniqueness of the list of primes

Lemma

With all exponents
$$\leq 0$$
, let $a = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \dots p_k^{\alpha_k}$ $b = p_1^{\beta_1} p_2^{\beta_2} p_3^{\beta_3} \dots p_k^{\beta_k}$ Then $a|b \iff \alpha_i \leq \beta_i$, for all i

Ex:

$$72 = 3^2 2^3$$
$$36 = 3^2 2^2$$

$$\begin{array}{l} \textbf{Proof Suppose } a|b \text{ then } b=ac \\ \text{Let } c=p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3}\dots p_k^{\alpha_k}, \text{ Then } c=ac \end{array}$$

$$p_1^{\beta_1}p_2^{\beta_2}p_3^{\beta_3}\dots p_k^{\beta_k} = p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3}\dots p_k^{\alpha_k} \times p_1^{q_1}p_2^{q_2}p_3^{q_3}\dots p_k^{q_k}$$

Exponents are unique (by FTA)

$$\beta_1 = \alpha + q_1 \ge \alpha_1$$

$$\beta_2 = \alpha + q_2 \ge \alpha_2$$

$$\beta_k = \alpha + q_k \ge \alpha_k$$

Assume $\alpha_i \leq \beta_i, \forall i$ Let

$$p_i = \beta - \alpha_i, \forall i \ge 0$$

Let
$$c = p_1^{\beta_1} p_2^{\beta_2} p_3^{\beta_3} \dots p_k$$
 Then $b = acRaa|b$