MMD-based Aggregated Two-Sample Test

Antonin Schrab^{1,2,3}, Ilmun Kim⁴, Mélisande Albert⁵, Béatrice Laurent⁵, Benjamin Guedj^{2,3}, and Arthur Gretton¹

¹Gatsby Computational Neuroscience Unit, UCL ²Centre for Artificial Intelligence, UCL ³Inria London ⁴Statistical Laboratory, University of Cambridge ⁵Institut de Mathématiques, Université de Toulouse

Introduction

Two-sample problem

Given independent samples $\bullet X_m \coloneqq (X_1, \ldots, X_m)$ where $X_i \overset{\text{iid}}{\sim} p$ in \mathbb{R}^d ,

• $\mathbb{Y}_n \coloneqq (Y_1, \ldots, Y_n)$ where $Y_i \stackrel{\text{iid}}{\sim} q$ in \mathbb{R}^d ,

can we decide whether or not $p \neq q$ holds?

This corresponds to testing the hypothesis \mathcal{H}_0 : p=q against \mathcal{H}_a : $p \neq q$.

Uniform separation rates & Minimax rate

Given a test Δ , a class of functions $\mathcal C$ and some $\beta \in (0,1)$, what is the smallest value $\tilde{\rho} > 0$ such that Δ has power at least $1 - \beta$ against all alternative hypotheses satisfying $p - q \in \mathcal C$ and $\|p - q\|_2 > \tilde{\rho}$? (\star)

$$oldsymbol{
ho}\left(\Delta,\mathcal{C},oldsymbol{eta}
ight)\coloneqq\inf\left\{\widetilde{
ho}>0: \sup_{(p,q):(\star)}\mathbb{P}_{p imes q}\!\left(\Delta(\mathbb{X}_{\mathit{m}},\mathbb{Y}_{\mathit{n}})=0
ight)\leqoldsymbol{eta}
ight\}$$

Uniform separation rates are rates taking the form $C(m+n)^{-r}$.

The smallest rate achieved by a test of level α is the **minimax rate**

$$\underline{
ho}\left(\mathcal{C}, a, oldsymbol{eta}
ight) \coloneqq \inf_{\Delta_{oldsymbol{lpha}}} oldsymbol{
ho}\left(\Delta_{oldsymbol{a}}, \mathcal{C}, oldsymbol{eta}
ight).$$

For Sobolev balls $\mathcal{S}_d^s(R)$, minimax rate $\rho(\mathcal{S}_d^s(R), \alpha, \beta)$ is $(m+n)^{-2s/(4s+d)}$

 $\mathcal{S}_d^s(R)\coloneqq\left\{f\in L^1\!\!\left(\mathbb{R}^d
ight)\cap L^2\!\!\left(\mathbb{R}^d
ight):\int_{\mathbb{R}^d}\!\!\left\|\xi\,
ight\|_2^{2s}\!\!\left|\widehat{f}(\xi)
ight|^2\mathrm{d}\xi\le (2\pi)^dR^2
ight\}.$

Maximum Mean Discrepancy

The Maximum Mean Discrepancy $\mathrm{MMD}(p,q)$ between p and q is

$$\mathbb{E}_{X,X'\sim p}[k(X,X')] - 2\mathbb{E}_{X\sim p,Y\sim q}[k(X,Y)] + \mathbb{E}_{Y,Y'\sim q}[k(Y,Y')].$$

A quadratic-time estimator $\widehat{\mathsf{MMD}}_k^2(\mathbb{X}_m,\mathbb{Y}_n)$ is defined as

$$\frac{1}{m(m-1)} \sum_{1 \le i \ne i' \le m} k(X_i, X_{i'}) + \frac{1}{n(n-1)} \sum_{1 \le j \ne j' \le n} k(Y_j, Y_{j'}) - \frac{2}{mn} \sum_{i=1}^m \sum_{j=1}^n k(X_i, Y_j).$$

When m=n, another quadratic-time estimator $\widehat{\mathsf{MMD}}_k^2(\mathbb{X}_n,\mathbb{Y}_n)$ is

$$\frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} k(x_i, x_j) - k(x_i, y_j) - k(y_i, x_j) + k(y_i, y_j).$$

We can simulate \mathcal{H}_0 using permutations or a wild bootstrap to estimate the $(1-\alpha)$ -quantile and construct a non-asymptotic test of level α .

Kernels and choice of bandwidths

For bandwidths $\lambda \in (0,\infty)^d$, we work on $\mathbb{R}^d imes \mathbb{R}^d$ with the kernel

$$k_{\lambda}(x,y) := \prod_{i=1}^{d} \frac{1}{\lambda_{i}} K_{i}\left(\frac{x_{i}-y_{i}}{\lambda_{i}}\right)$$

for d characteristic kernels $K_i \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ satisfying $\int_{\mathbb{R}} K_i(u) du = 1$. Two common ways to choose the bandwidths: \bullet median heuristic

splitting the data

Aim

Construct a non-asymptotic test which is optimal in the minimax sense.

Our contributions

Single test: construction

Consider $\widehat{\mathsf{MMD}}_{\lambda}^2(\mathbb{X}_m, \mathbb{Y}_n)$ and compute B simulated test statistics, let $\widehat{q}_{1-a}^{\lambda}$ be the $\lceil (B+1)(1-a) \rceil$ -th biggest of those B+1 values, the single test is

$$\Delta_a^{\lambda}(\mathbb{X}_m, \mathbb{Y}_n) \coloneqq \mathbf{1}\left(\widehat{\mathsf{MMD}}_{\lambda}^2(\mathbb{X}_m, \mathbb{Y}_n) > \widehat{q}_{1-a}^{\lambda}\right).$$

Single test: theoretical results

For $a \in (0, e^{-1})$, $\lambda_1 \cdots \lambda_d < 1$ and $B \in \mathbb{N}$ large enough, we have

$$\rho\left(\Delta_a^{\lambda}, \mathcal{S}_d^s(R), \beta\right)^2 \leq C(d, s, R, \beta) \left(\sum_{i=1}^d \lambda_i^{2s} + \frac{\ln\left(\frac{1}{a}\right)}{(m+n)\sqrt{\lambda_1 \cdots \lambda_d}}\right).$$

For $\lambda_i^* = (m+n)^{-2/(4s+d)}$, the test $\Delta_a^{\lambda^*}$ is optimal in the minimax sense $\rho\left(\Delta_a^{\lambda^*}, \mathcal{S}_d^s(R), \beta\right) \leq C(d, s, R, \alpha, \beta) \left(m+n\right)^{-2s/(4s+d)}$.

Aggregated test: construction

Consider a collection Λ of bandwidths and some weights $(w_{\lambda})_{\lambda \in \Lambda}$ such that $\sum_{\lambda \in \Lambda} w_{\lambda} \leq 1$. The aggregated test $\Delta_{\alpha}^{\Lambda}$ rejects \mathcal{H}_{0} if one of the tests $\{\Delta_{u_{\alpha}w_{\lambda}}^{\lambda}\}_{\lambda \in \Lambda}$ rejects \mathcal{H}_{0} where

$$u_{\alpha} = \sup \left\{ u > 0 : \mathbb{P}_{\mathcal{H}_0} \left(\max_{\lambda \in \Lambda} \left(\widehat{\mathsf{MMD}}_{\lambda}^2(\mathbb{X}_m, \mathbb{Y}_n) - \widehat{q}_{1-uw_{\lambda}}^{\lambda} \right) > 0 \right) \leq \alpha \right\}.$$

The probability can be estimated by a Monte-Carlo approximation and the supremum can be estimated using the bisection method.

Aggregated test: theoretical results

For $a \in (0, e^{-1})$ and $B_1, B_2, B_3 \in \mathbb{N}$ all large enough, $\lambda_1 \cdots \lambda_d \leq 1$ for all $\lambda \in \Lambda$ and $\sum_{\lambda \in \Lambda} w_{\lambda} \leq 1$, we have

$$\rho\left(\Delta_{a}^{\Lambda}, \mathcal{S}_{d}^{s}(R), \beta\right)^{2} \leq C(d, s, R, \beta) \min_{\lambda \in \Lambda} \left(\sum_{i=1}^{d} \lambda_{i}^{2s} + \frac{\ln\left(\frac{1}{aw_{\lambda}}\right)}{(m+n)\sqrt{\lambda_{1} \cdots \lambda_{d}}}\right)$$

Consider $\Lambda \coloneqq \left\{ \left(2^{-\ell}, \dots, 2^{-\ell} \right) : \ell \in \left\{ 1, \dots, \left\lceil \frac{2}{d} \log_2 \left(\frac{m+n}{\ln(\ln(m+n))} \right) \right\rceil \right\} \right\}$ and $w_\lambda \coloneqq \frac{6}{\pi^2 \ell^2}$. Then, Δ_α^{Λ} is (almost) optimal in the minimax sense

$$\rho\left(\Delta_{\alpha}^{\Lambda}, \mathcal{S}_{d}^{s}(R), \beta\right) \leq C(d, s, R, \alpha, \beta) \left(\frac{\ln(\ln(m+n))}{m+n}\right)^{2s/(4s+d)}$$

and is adaptive (no dependence on the unknown parameter s of $\mathcal{S}_d^s(R)$).

Summary of key contributions

- (almost) optimal in the minimax sense
- wild bootstrap & permutations
- outperforms state-of-the-art MMD tests
- adaptive test
- no data splitting
- wide range of kernels

Experiments

Perturbed uniform

MNIST

References

- [1] Mélisande Albert, Béatrice Laurent, Amandine Marrel, and Anouar Meynaoui. Adaptive test of independence based on HSIC measures. arXiv e-prints, pages arXiv-1902, 2019.
- [2] Ilmun Kim, Sivaraman Balakrishnan, and Larry Wasserman. Minimax optimality of permutation tests. arXiv preprint arXiv:2003.13208, 2020.
- [3] Tong Li and Ming Yuan. On the optimality of gaussian kernel based nonparametric tests against smooth alternatives. *arXiv preprint arXiv:1909.03302, 2019*.
- [4] Jonas M. Kübler and Wittawat Jitkrittum and Bernhard Schölkopf and Krikamol Muandet. Learning Kernel Tests Without Data Splitting. arXiv preprint arXiv:2006.02286, 2020