Gate PH-2007

AI24BTECH11034 Tanush Sri Sai Petla

69) In the circuit shown, the voltage at test point P is 12 V and the voltage between gate and source is -2 V. The value of R (in $k\Omega$) is

a) 42

b) 48

c) 56

d) 70

1

70) When an input voltage V_i , of the form shown, is applied to the circuit given below, the output voltage V_o is of the form:

a)

b)

c)

d)

Common Data Questions

Common Data for Questions 71, 72, 73:

A particle of mass m is confined in the ground state of a one-dimensional box, extending from x = -2L to x = +2L. The wavefunction of the particle in this state is

$$\psi(x) = \psi_0 \cos\left(\frac{\pi x}{4L}\right)$$

where ψ_0 is a constant.

- 71) The normalization factor ψ_0 of this wavefunction is
 - a) $\frac{\sqrt{2}}{L}$

b) $\frac{1}{4I}$

- c) $\frac{1}{\sqrt{2I}}$
- d) $\frac{1}{L}$
- 72) The energy eigenvalue corresponding to this state is
 - a) $\frac{\hbar^2 \pi^2}{2mL^2}$
- b) $\frac{\hbar^2 \pi^2}{4mL^2}$
- c) $\frac{\hbar^2 \pi^2}{16mL^2}$
- d) $\frac{\hbar^2 \pi^2}{32mL^2}$
- 73) The expectation value of p^2 (p is the momentum operator) in this state is
 - a) 0

- b) $\frac{\hbar^2 \pi^2}{32L^2}$
- c) $\frac{\hbar^2 \pi^2}{16L^2}$
- d) $\frac{\hbar^2\pi^2}{8L^2}$

Common Data for Questions 74, 75:

The Fresnel relations between the amplitudes of incident and reflected electromagnetic waves at an interface between air and a dielectric of refractive index μ_r are:

$$\frac{E_{\parallel}^{\text{reflected}}}{E_{\parallel}^{\text{incident}}} = \frac{\mu_r \cos r - \cos i}{\mu_r \cos r + \cos i} \quad \text{and} \quad \frac{E_{\perp}^{\text{reflected}}}{E_{\perp}^{\text{incident}}} = \frac{\cos i - \mu_r \cos r}{\cos i + \mu_r \cos r}$$

The subscripts \parallel and \perp refer to polarization, parallel and normal to the plane of

	incidence respectively.	Here, ι and	r are	the angles	of	incidence	and	refraction
	respectively.							
74)	The condition for the re	eflected ray to	be co	mpletely pe	olari	ized is		

- a) $\mu \cos i = \cos r$
- b) $\cos i = \mu \cos r$ c) $\mu \cos i = -\cos r$ d) $\cos i = -\mu \cos r$
- 75) For normal incidence at an air-glass interface with $\mu = 1.5$, the fraction of energy reflected is given by
 - a) 0.40
- b) 0.20
- c) 0.16
- d) 0.04

Linked Answer Questions: Q.76 to Q.85 carry two marks each.

Statement for Linked Answer Questions 76 and 77:

In the laboratory frame, a particle P of rest mass m_e is moving in the positive x direction with a speed of $\frac{5c}{10}$. It approaches an identical particle Q, moving in the negative x direction with a speed of $\frac{2c}{5}$.

- 76) The speed of the particle P in the rest frame of the particle Q is
 - a) $\frac{7c}{0.5}$
- b) $\frac{13c}{95}$ c) $\frac{3c}{5}$

- d) $\frac{63c}{05}$
- 77) The energy of the particle P in the rest frame of the particle Q is
- a) $\frac{1}{2}m_ec^2$ b) $\frac{5}{4}m_0c^2$ c) $\frac{19}{12}m_0c^2$ d) $\frac{11}{2}m$

Statement for Linked Answer Questions 78 and 79

The atomic density of a solid is $5.85 \times 10^{32} m^{-3}$. Its electrical resistivity is $1.6 \times 10^{32} m^{-3}$. $10^{-2}\Omega \ m.$

Assume that electrical conduction is described by the Drude model (classical theory), and that each atom contributes one conduction electron.

- 78) The drift mobility (in $m^2V^{-1}s^{-1}$) of the conduction electrons is
- a) 6.67×10^{-3} b) 6.67×10^{-6} c) 7.63×10^{-1} d) 7.63×10^{-9}
- 79) The relaxation time (mean free time), in seconds, of the conduction electrons is

 - a) 3.98×10^{-13} b) 3.79×10^{-14} c) 2.84×10^{-12} d) 2.64×10^{-11}

Statement for Linked Answer Questions 80 and 81:

A sphere of radius R carries a polarization $\overrightarrow{P} = kr$, where k is a constant and \overrightarrow{r} is measured from the centre of the sphere.

80) The bound surface and volume charge densities are given, respectively, by

a)	-k	$ \overrightarrow{r} $	and	3 <i>k</i>
	- 1	. 14		

c)
$$k |\overrightarrow{r}|$$
 and $4\pi kR$

b)
$$k |\vec{r}|$$
 and $-3k$

c)
$$k |\overrightarrow{r}|$$
 and $4\pi kR$
d) $-k |\overrightarrow{r}|$ and $-4\pi kR$

81) The electric field \overrightarrow{E} at a point outside the sphere is given by

a)
$$\overrightarrow{E} = 0$$

b)
$$\overrightarrow{E} = \frac{kR(R^2 - r^2)}{4\pi\epsilon_0 r^3} \hat{r}$$
 c) $\overrightarrow{E} = \frac{kR(R^2 - r^2)}{4\pi\epsilon_0 r^3} \hat{r}$ d) $\overrightarrow{E} = \frac{3k(r - R)}{4\pi\epsilon_0 r^4} \hat{r}$

c)
$$\overrightarrow{E} = \frac{kR(R^2 - r^2)}{4\pi\epsilon_0 r^3} \hat{r}$$

d)
$$\overrightarrow{E} = \frac{3k(r-R)}{4\pi\epsilon_0 r^4} \hat{r}$$

Statement for Linked Answer Questions 82 and 83:

An ensemble of quantum harmonic oscillators is kept at a finite temperature $T = \frac{1}{k_B R}$.

82) The partition function of a single oscillator with energy levels $\left(n + \frac{1}{2}\right)\hbar\omega$ is given

a)
$$Z = \frac{e^{-\beta\hbar\omega/2}}{1-e^{-\beta\hbar\omega}}$$

b)
$$Z = \frac{e^{-\beta\hbar\omega}}{1-e^{-\beta\hbar\omega}}$$

c)
$$Z = \frac{1}{1 - e^{-\beta \hbar \omega}}$$

a)
$$Z = \frac{e^{-\beta\hbar\omega/2}}{1 - e^{-\beta\hbar\omega}}$$
 b) $Z = \frac{e^{-\beta\hbar\omega}}{1 - e^{-\beta\hbar\omega}}$ c) $Z = \frac{1}{1 - e^{-\beta\hbar\omega}}$ d) $Z = \frac{1}{1 - e^{-2\beta\hbar\omega-\mu}}$

83) The average number of energy quanta of the oscillators is given by

a)
$$\langle n \rangle = \frac{1}{e^{\beta \hbar \omega} - 1}$$

b)
$$\langle n \rangle = \frac{e^{-\beta\hbar\omega}}{e^{\beta\hbar\omega}-1}$$

a)
$$\langle n \rangle = \frac{1}{e^{\beta \hbar \omega} - 1}$$
 b) $\langle n \rangle = \frac{e^{-\beta \hbar \omega}}{e^{\beta \hbar \omega} - 1}$ c) $\langle n \rangle = \frac{e^{-2\beta \hbar \omega}}{e^{2\beta \hbar \omega} + 1}$ d) $\langle n \rangle = \frac{1}{e^{\beta \hbar \omega} + 1}$

d)
$$\langle n \rangle = \frac{1}{e^{\beta \hbar \omega} + 1}$$

Statement for Linked Answer Questions 84 and 85:

A 16 μ A beam of alpha particles, having cross-sectional area $10^{-4}m^2$, is incident on a rhodium target of thickness 1 μm . This produces neutrons through the reaction $^{103}Rh + \alpha \rightarrow ^{106}Pd + 3n$.

84) The number of alpha particles hitting the target per second is

a)
$$0.5 \times 10^{14}$$

b)
$$1.0 \times 10^{14}$$
 c) 2.0×10^{20} d) 4.0×10^{19}

c)
$$2.0 \times 10^2$$

d)
$$4.0 \times 10^{19}$$

85) The neutrons are observed at the rate of $1.806 \times 10^8 \, s^{-1}$. If the density of rhodium is approximated as $10^4 kg m^{-3}$, the cross-section for the reaction (in barns) is