

MICRO NAVIGATOR (MICRON) PHASE 2B

Volume II — Appendices

Autonetics Group Rockwell International 3370 Miraioma Avenue Anaheim, CA 92803

August 1977

TECHNICAL REPORT AFAL-TR-77-138, VOLUME II

Final Report for the Period 5 August 1975 through 25 February 1977

JAN 4 1978

Approved for public release; distribution unlimited.

AIR FORCE AVIONCS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AFB, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

RONALD E. JANOSKO, Capt, USAF MICZON Project Manager, ADP-666A

RONALD L. RINGO, Chief Reference Systems Branch Reconnaissance & Wpn Delivery Div

FOR THE COMMANDER

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFAL/RWA ,W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAG	E	READ INSTRUCTIONS BEFORE COMPLETING FORM
. REPORT NUMBER 2. GC	OVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AFAL-TR-77-138, Volume II		
TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
MICRO NAVIGATOR (MICRON) PHASE 2	В	Technical Report - Final,
Volume II - Appendixes		5 Aug 1975 thru 25 Feb 1977
Teemical Report AFAL - (1819, Volum	6.1	6. PERFORMING ORG. REPORT NUMBER
Einel Report for the Period 5 Aug 1970 t	hum 25 Feb 277	C75-787/201
. AUTHOR(*)		8. CONTRACT OR GRANT NUMBER(3)
		T00015 55 G 1001
Joseph M. Miller, et al		F33615-75-C-1301
		10 PROGRAM ELEMENT PROJECT TASK
PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Autonetics Group, Rockwell Internationa 3370 Miraloma Avenue	1	Project No. ADP 666A
Anaheim, California 92803		Troject No. 1121 00011
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Air Force Wright Aeronautical Laborato	ries (AFSC)	August 1977
Air Force Avionics Laboratory	1100 (1110)	13. NUMBER OF PAGES
Wright-Patterson AFB, Ohio 45433 AFA	L/RWA -666A	338
4. MONITORING AGENCY NAME & ADDRESS(If different from	Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
6. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distribution	n unlimited.	
		Pagest)
7. DISTRIBUTION STATEMENT (of the abstract entered in Blo	ock 20, it dillerent from	(Kepon)
18. SUPPLEMENTARY NOTES		
9. KEY WORDS (Continue on reverse side if necessary and iden	attly by black number)	
Cost of Ownership	MICRON	
Engineering Prototype MICRON	Navigation P	erformance
Mass Unbalance Modulation		ertial Navigator
Micro Electrostatic Gyro	Standard Nav	
Micro Navigator	Sure Start G	
	tity by block number)	,

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The Micro Navigator (MICRON) is a low-cost highly reliable, and moderately accurate strapdown inertial navigator. The heart of the MICRON system is the microelectrostatic gyro (MESG), an instrument which incorporates an all-attitude, whole-angle readout from an electrostatically suspended rotor. Under previous Air Force contracts two developmental navigation systems (N57A-1 and N57A-2) were designed, fabricated, and flight tested. Two gyro subassemblies for developmental testing were designed, fabricated, and integrated.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

The overall objective of the MICRON Phase 2B contract was to design, develop, fabricate, and integrate the Engineering Prototype MICRON (EPM) and its associated software and test equipment. The specific objectives were to develop a MICRON system resulting in high reliability, ease of maintenance, low acquisition cost, and moderate performance, and be a potential candidate as the inertial navigation unit (INU) for the F-16.

One EPM was designed, fabricated, assembled, and integrated. The EPM meets the performance requirements of the Phase 2B contract and the F-16 packaging envelope requirements. Spares were fabricated and tested to support maintenance of the EPM. Test Equipment, system software, and test station software were developed and verified.

System analyses, studies, and tradeoffs were made which resulted in improved accuracy, reliability, producibility, and life cycle costs. Design specifications were prepared and maintained.

Integration testing was conducted to establish system compatibility and operability. Seventeen navigation performance runs, including two demonstration runs, were made during integration testing. Position and velocity errors were well within (approximately one-half) the contract requirement.

FOREWORD

This report was prepared under Air Force Contract F33615-75-C-1301, Project No. ADP 666A and covers work performed by the Autonetics Group of Rockwell International, 3370 Miraloma Avenue, Anaheim, CA 92803, for the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, Ohio. This final report consists of two volumes of which this is Volume II. The titles of the volumes are:

Volume I Technical Report

Volume II Appendices

The purpose of the MICRON Phase 2B contract was to design, develop, fabricate, and integrate the Engineering Prototype MICRON (EPM) and its associated software and test equipment. The MICRON is a low cost, highly reliable, moderately accurate inertial navigation system which utilizes electrostatic gyroscopes (ESG).

This program was conducted from 5 August 1975 through 25 February 1977. It was directed by the MICRON Program Manager, J. A. Schwarz; the MICRON Assistant Program Manager, J. E. Menzel; the Engineering Manager, A. P. Truban; and the Project Engineer, G. E. Runyon. The cognizant Air Force Project Managers on this phase of the MICRON program were Captain W. G. Peterson and Captain R. E. Janosko, AFAL/RWA-666A. The contractor submitted the draft of this report in May 1977. The contractor's final submittal date of this report was August 1977.

The principal contributors to this report were A. P. Andrews, T. F. Brasher, H. L. Bump, J. D. Courtier, K. J. Gibson, F. J. Gulde, F. R. Hall, D. W. Holmes, K. K. Jin, L. E. Johnsen, J. Jurison, J. F. Klinchuch, and J. M. Miller.

This report has been assigned the Internal Rockwell Control Number, C75-787/201. All correspondence relating to this document should reference this number.

iv

TABLE OF CONTENTS

		Page
Appendix A.	EPM Hybrid Status and Technology	1
Appendix B.	Thermal Stress Analysis Results for Active Components on Hybrid Circuits	13
Appendix C.	Hybrid, Module, and Transformer Functional Test Specifications	25
Appendix D.	Precision Thin Film Resistor Requirements and Performance Tests	29
Appendix E.	Fabrication, Assembly, and Test of EPM Electronic Modules	33
Appendix F.	Results and Analyses of Magnetic Field Sensitivity Tests	35
Appendix G.	Fast Cycle Program Detailed Flow Charts	53
Appendix H.	Background Program Detailed Flow Charts	81
Appendix I.	Start Program Detailed Flow Charts	111
Appendix J.	Calibration Data Collect Program Detailed Flow Charts	171
Appendix K.	Navigation Program Detailed Flow Charts	183
Appendix L.	EPM Simulator Detailed Flow Charts	237
Appendix M.	EPM Thermal Design and Analyses	261
Appendix N.	Navigation Performance Data	275

APPENDIX A. EPM HYBRID STATUS AND TECHNOLOGY

A.1 HYBRID DESIGN AND STATUS

There are 31 different hybrid circuit types and a total of 63 hybrids utilized within the EPM (N73) system. Both thick and thin film substrate technology is used. Thin film technology is used when good resistor stability and tracking is required. Thick film technology is used in logic-type hybrids and hybrids where resistor performance requirements are not too demanding. A summary of the hybrids fabricated, assembled, and tested is given in Table A-1. Halex Inc. fabricated the substrates which utilize the thin film technology. Halex resistor networks have been shown to provide very good stability. The thick film hybrid substrates were fabricated at Autonetics. All the hybrids were assembled and tested at Autonetics.

A. 1.1 Hybrid Packaging

Two basic schemes are used to package the MICRON Phase 2B Hybrid Microelectronics as shown in Figure A-1 and A-2.

I. FLATPACK (BUTTERFLY)

1. IP1605-1	60 leads	$1.700 \times 0.945 \times 0.125$
2. IP1605-4	30 leads	1.700 x 0.945 x 0.125
3. IP1100MOD	40 leads	1.130 x 0.945 x 0.263
PLUG IN		
1. 35018	31 pin	1.770 x 1.245 x 0.191
2. 35019	63 pin	1.770 x 1.245 x 0.191
3. 35019Q01	47 pin	1.770 x 1.245 x 0.191

The packages are gold plated Kovar. The flatpacks are soldered to the PCB board material, and the Plug in packages are inserted into sockets with the four corner pins soldered down to the PCB.

A. 1.2 Hybrid Circuits

IL.

Two types of hybrid technology are used:

- L. Thick Film
- II. Thin Film

A.1.3 Substrate Materials and Processes

A. 1.3.1 Thick Film Multilayer

The substrate material for hybrids using thick film multilayer is 96 percent unglazed alumina having a surface finish of 25 microinches CLA.

TABLE A-1. SUMMARY OF EPM HYBRIDS FABRICATED, ASSEMBLED, AND TESTED

			Subs Techn	Substrate	Otv Reg'd	Oty of	Hybrids
MLB on which Hybrid is Mounted	Hybrid Circuit Nomenclature	Hybrid Circuit Part Number	Fi	Thick	Per System	Spares Req'd for EPM	Assembled, and Tested
Suspension and	Servo Network	12405-507		×	2	2	•
MUNI Electronics Module (SF11 1 & 2)	MIN Demodulator	12415-507	××		, ,	7 6	
	MUM Demodulator Filter	12420-507	×		. ~	. ~	•
	Modulator	12425-507	×		•	. 60	,
	Multiplexer	12430-507	×		2	2	4
	MUM Demod Sample & Hold	12435-507	×		7	2	4
	Sample & Hold/Gap Summation	12520-507	×		4	m	,
Timing and	A/D Converter	12440-507	×		-	2	~
Sequencing Electronics	Suspension Timing Generator	12445-507		×	-	2	e
Module (SEU 3)	Sequencer No. 1	12450-507		×	-	2	6
	Sequencer No. 2	_		×	-	2	m
	Precision Crystal Osc./Gap Monitor	-		×	-	2	~
	50 kHz Buffer/EMA Pwr Supply	12475-507	_	×	-	2	m
	DC Ref & Pretoad Modulator	12480-507	×		-	2	m
	EMA Signal Filter	12495-507		×	-	7	m
	Ladder Network	12565-507	×		-	2	m
				>			
Signal Cenerator	Tomostor Controller	13400 507		< >		, .	. ~
Flectronics Module	Cal Constant Storage No. 1	12460-507		< ×		, -	. ~
(SEU 4)	Cal Constant Storage No. 2	12465-507		×	-	-	7
Charge Amplifier Electronics Module	Charge Amplifier	12400-507	×		2	2	56
Spin Motor	Spin Motor Power Preamp.	12525-507		×	-	2	m
Electronics Assembly							
Converter Electronics	Synchro Bite	12505-507		×	-	2	m
Module	Synchro Buffer Amplifier	12510-507	×	×	۳	•	7
	Synchro Reference Generator	12515-507		×	-	7	
	Synchro DAC	12545-507	×		2		s
	DAC Amplifier	12560-507	×		-	2	m
Data Terminal Ilnit	Transmitter/Recrainer	12503_507	>	*	,	•	
	Encoder	12535-507		×	. –	2 .	n m
	Decoder	12540-507		×	7	~	

Figure A-1. Flatpack Metal Package

Figure A-2. Plug In Package

The alumina substrate is used as the insulating base on which a number of conductor, resistor, and insulating layers are sequentially screened and fired. The insulated conductor layers are connected using a system of filled vias (or windows) in the insulating layer.

The conductor material used is a high gold content fritless gold (016990). Gold conductor compositions are used in all applications requiring thermocompression wire bonding, beam lead bonding and ultrasonic wire bonding. The sheet resistivity of fired gold conductor compositions is less than 0.005 ohms per square.

The insulator is a low K composition glass-ceramic (K = 6 to 12) and is used to provide insulation between conductor layers. Typical crossover capacitance between two 0.005 in. wide line running perpendicular to each other and separated by a nominal insulator thickness of 0.001 in. is 0.05 pF. Two layers of insulation between conductor layers are used to minimize any possibility of pinholes.

The following criteria are used to design high density multilayer interconnect structures:

Conductors

1. Minimum width and spacing 0.005 in.

2. Lines are oriented parallel or perpendicular to each other and the edges of rectangular substrate

3. Beam lead bond sites 0.006 in. wide with 0.004 in. space

4. Spacing between upper layer conductor and 0.005 in. edge of device installation window

5. All beam lead bond sites are screened on the lowest metalization level

6. Maximize conductor densities on the lowest possible conductor layer

7. Avoid adjacent parallel conductor runs on different layers

8. Use two levels of conductors

9. Wire bond sites 0.005 sq. min.

Insulator

1. Substrate edge distance 0.005 in. min.

2. Via size 0.0075 in. x 0.010 in. min.

- 3. Vias connecting parallel conductors staggered.
- 4. Minimum insulator width

0.005 in.

A.1.3.2 Plated Thin Film

The plated thin film substrate is used in metal hybrid packages where stable resistor values are required.

The thin film substrate is an unglazed 99.5 percent alumina structure with a surface finish in the order of 2 to 6 microinches CLA (as fired). The substrate is coated with gold over nickel over nichrome in a vacuum deposition chamber. The deposited gold is electrodeposited with gold to provide gold TC beam lead bondability and low sheet resistivity. The nichrome provides metalization adhesion to the substrate and a nickel barrier is deposited between the gold and nichrome to eliminate adverse conditions caused by stresses at the interface. The conductor pattern is delineated by a chemical etch process. The resistors are stabilized in air at 230°C for 95 hr then at 150°C for 168 hr.

The conductor interconnect design criteria is basically that of thick film.

A.1.4 Assembly Materials and Processes

Table A-2 summarizes the use of materials in fabricating the hybrid microcircuits.

A.1.4.1 Organics

Nonconductive epoxy is used to attach; substrate-to-case; non-beam lead active and passive elements (not requiring back contact) and transformers.

Electrically conducting, silver filled epoxy is used to attach nonbeam lead active devices (requiring back contact) and chip capacitors.

See Table A-3 for specific epoxy material properties.

A.1.4.2 Microjoining

Beam lead devices are bonded using one-at-a-time TC bonding (IC's).

Ultrasonically bonded aluminum or gold wires (1.00 mil diameter) are used to interconnect nonbeam lead active and passive devices. 1.5 mil diameter gold wires will be used for case-to-substrate connections.

A.1.4.3 Hermetic Sealing

A.1.4.3.1 Metal Package Seal. An 80-20 gold-tin preform is used as the sealant between the gold plated package and lid. The seal is effected using a Solid State Equipment Corp. (SSEC) seam sealer which allows the substrate to case epoxy bond line to be held at $< 100\,^{\circ}$ C. Acceptable leak rate is equal to or less than 5×10^{-7} He ATM cc/sec.

TABLE A-2. MATERIALS

Bond	Method/Materials
Sub-To-Case	Nonconductive Epoxy (Ablefilm 529)
Sub-To-Sub (Charge Amp)	Nonconductive Epoxy (Ablefilm 529)
Chip-To-Sub	
- Chip C's	Conductive Epoxy (Able Bond 36-2)
- Chip R's	Nonconductive Epoxy (ECCO Bond 104)
- Chip IC's	Conductive/nonconductive Epoxy (Able Bond 36-2/ECCO Bond 104)
- Chip Q's	Conductive Epoxy (Able Bond 36-2)
Wire Bond	
- Chip IC's	Ultrasonic A on Thin Film Ultrasonic AU on Thick Film
- Chip Q's	Ultrasonic A on Thin Film Ultrasonic AU on Thick Film
- Pack-To-Sub	Ultrasonic AU on Flat Packs Thermocompression AU on Plug In
Beam Lead Devices	Thermocompression
Seal (Metal Package)	Seam Seal (Gold-Tin)

TABLE A-3. EPOXY PROPERTIES

Eccobond 104 (Insulative Epoxy)

Meets NASA Outgassing Requirements for Space Application (< 1 percent TWL)

Thermal Stability (TGA): Flat (No Weight Loss), 100°C - 300°C

Total Weight Loss (TWL): 0.1 percent After 700 hr at 150°C

Shear Strength (With 150-6 Primer): >880 PSI (20°C - 250°C)

Ablebond 36-2 (Conductive Epoxy)

Meets NASA Outgassing Requirements for Space Application (<1 percent TWL)

Thermal Stability (TGA): FLAT (No Weight Loss), 100°C - 300°C

Total Weight Loss (TWL): 0.4 percent after 700 hr at 150°C

Shear Strength: >880 PSI (20°C - 250°C)

No Evidence of Corrosion or Silver Migration at 85 percent RH, and 85 C for 200 hr

Volume Resistivity: 0.0001 ohms-cm (Vendor Data Sheet)

A. 2 HYBRID ASSEMBLY AND TEST

All hybrid circuits are fabricated per Documented ESWA procedures. Figure A-3 shows a typical ESWA Ticket. This ticket shows the step-by-step flow of operations performed on the hybrids and the process specifications utilized in the assembly process. The operator or inspector signs and dates the ticket when each operation is completed. All rework information is also recorded on the ESWA ticket.

Stabilization bake (24 hr)

Temperature cycling

Constant acceleration

Hermeticity

Burn-In (168 hr)

Final functional test III ambient

PAGE NO. 1 A 2 4 6 2 9 0 IF NOT ONIC. SEVA NO. SHOP JOB NO. MI CRON PHASE 2B SHOP JOB NO. MI CRON PHASE 2B SHOP JOB NO. SHOP JOB NO. ACCEPTED BY. ACCEPTED BY. AUTHORIZED BY. CHARGE NO. EST. HOURS. EST. COMPLETION DATE. DOCUMENTATION REQ'D VES X NO TO BE FLIGHT TESTED OR DELIV'D VES X NO	
MICRON PHASE 2B SHOP JOE NO. BETTER ORIG. NO. BELOW TO D/244, 251, 252 & 253FROM D/252 ACCEPTED BY AUTHORIZED BY CHARGE NO. EST. HOURS. EST. COMPLETION DATE	
MICRON PHASE 2B SHOP JOB NO. MICRON PHASE 2B SHOP JOB NO. D/244, 251, 252 & 253 _{FROM} D/252 ACCEPTED BY AUTHORIZED BY CHARGE NO. EST. HOURS. EST. COMPLETION DATE	
CHARGE NO	
CHARGE NOEST. HOURSEST. COMPLETION DATE	
DOCUMENTATION REQ'D YES X NO TO BE FLIGHT TESTED OR DELIV'D YES X NO	
MAT'L TO BE FURN. BY RESP. ENG. 881-C No	
INSTRUCTIONS RESP. ENG. L. R. Enlow Ext. 1452	
Perform microcircuit assembly, test and inspection per the applicable microcircuit drawing and page 2 of this ESWA.	
REWORK RECORD	
FAILED REWORK OK FAILED REW	ORK OK
DATE TEST NO. REWORK REQUIRED OPER DATE DATE TEST NO. REWORK REQUIRED OPER	
	-
	_
	1
	-

Figure A-3. Documented ESWA Procedures (Sheet 1 of 2)

PAGE	PAGE NO. 2	ESWA MICRON PHASE	2B	CIRCUIT NAME	AME						
¥	A 246290	90 P/N					REWORK	RK			
		S/N	ODED	ODED	ODED		7030) EB	OPER	
	Dept.	Task	INSP DATE		INSP	DATE	INSP	DATE	INSP DATE	INSP	DATE
-	252	Fab & identify substrate						1	+		
7	176	Verify substrate acceptance					1	-	-	+	
~	252	Clean substrate/AA0110-033, Method I					1	+	1		
4	252	Mount beam lead devices/AA0107-077				=		-	-		
S	252	Mark case/applicable circuit drawing									
9	252	Clean case/AA0110-033, Method I									
7	252	Assemble circuit/AL70089									
œ	252	Bond/circuit drawing									
6	252	Bond pull flying leads/AA0115-142			-12-21	-		-			
10	252	Clean circuit/AA0110-033, Method II				****					
11	252	Eng'g visual inspection				20 A 2		1	1		
12	244	F/T (AMB/HI)/applicable F/T spec					Ī	-			
13	252	Clean ckt/AA0110-033, Method II						-	-		
14	253	Preseal INSP/AA0115-141, Class B						-			
15	251	Clean cover/AA0110-033, Method V				-		-		1	
16	251	Seal ckt/AA0107-081, Method I						-	-		
17	251	Gross leak test/AA0115-079						+	1		
82	251	Mark cover/applicable circuit drawing	+				1	+	-	+	
19	251	Stabilization bake/AA0115-145, Class B				1	1	-	-		
02	251	Temp Cycle/AA0115-145, Class B	-				1	1			
17	251	Centrifuge/AA0115-145, Class B	1				-				
22	251	Hermeticity test/AA0115-145, Class B.				-					
		except 15 psi for 6 hour minimum.					-		-		
23	253	Burn-in/TEM	+	-			1				
77	244	F/T (AMB/HI)/applicable F/T spec	+			:	•				
25 ;	253	INSP & Closeout/AA0115-145, Class B						-20	_		

Figure A-3. Documented ESWA Procedures (Sheet 2 of 2)

The process specifications called out on the ESWA ticket are compatible with the requirements of MIL-M-38510. The screen tests are essentially the same as the Class B screen tests specified in MIL-STD-883. One-hundred percent screen tests are performed on all hybrids. The screen tests include the following:

Preseal

100 percent wire bond pull

Operating temperature functional test (Final)

Internal visual

Post-Seal

Stabilization bake (24 hr at 125°C)

Temperature cycling (10 cycles (-55°C and +125°C)

Constant acceleration (3000 G's)

Hermeticity

Burn-in (168 hr at 105°C ambient)

Final functional test (operating temperature)

All data have been recorded each time a hybrid circuit was functionally tested.

A. 3 DESCRIPTION OF TYPICAL EPM HYBRIDS

Figures A-4, A-5 and A-6 show samples of the hybrid types used in the EPM.

Figure	Item	Substrate	Package
Figure A-4	Servo Network	Two-layer	31 pin
	(12405-507-1)	thick film	plug-in
Figure A-5	MUM Demodulator	Two-layer	60 pin
	(12515-507-1)	thick film	flatpack
Figure A-6	Modulator (12425-507-1)	Thin-film	47 pin plug-in

Figure A-4. Servo Network

PAGE NO.

12405-507-1

S/N 608-14-009

700-721-1212-B 3-4-76

Figure A-5. MUM Demodulator

Figure A-6. Modulator

PAGE NO.

12515-507-1 S/N 613-32-001

4-26-76

700-72A-1526 A

VOL NO.

3-5-76

700-72A-1214-A

APPENDIX B

THERMAL STRESS ANALYSIS RESULTS FOR ACTIVE COMPONENTS ON HYBRID CIRCUITS

CHARGE AMP $TC = 76^{\circ}C$

	Non	ninal Ca	se	Nominal	Wo	orst Case		Worst Case
Component Name	ΔT	T_{J}	DP	T _J Stress	$\Delta \mathrm{T}$	T_{J}	DP	T _J Stress
Q1 2N3439 A Q2 MJC5416 B AR1 CF2620 AR2 CF2620 AR3 LF156 CR1 BD3600 CR2 BD3600 CR3 BD3600 CR4 BD3600 CR4 BD3600 CR5 MC5639-2 CR6 MC5639-2 CR7 BD3600 CR8 BD3600 CR9 BD3600 CR9 BD3600 CR10 BD3600	0.3374 0.3374 0.3589 0.2548 0.6393 0.6394 0.1952 0.3373 0.1756 0.1756	76.34 76.34 76.36 76.25 76.64 76.64 76.34 76.18	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.342 0.342 0.342 0.342 0.344 0.344 0.341 0.342 0.341	28.1 28.1 6.63 6.63 6.89 0.6745 0.7178 0.5095 1.28 1.28 0.3905 0.6745 0.3512	104.1 104.1 82.63 82.63 82.90 76.67 76.72 76.51 77.28 77.28 76.39 76.67 76.35	0.25 0.25 0.075 0.075 0.075 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002	0.452 0.452 0.461 0.461 0.463 0.3445 0.3445 0.3434 0.3485 0.3485 0.3426 0.3423 0.3423

SAMPLE & HOLD GAP

	Nor	ninal Ca	se	Nominal	Wo	orst Case	e	Worst Case
Component Name	ΔΤ	$^{\mathrm{T}}_{\mathrm{J}}$	DP	Stress	$\Delta \mathrm{T}$	$_{\rm J}$	DP	T _J Stress
AR1 CF2620 AR2 CF2620 AR3 CF2620 AR4 CF2620 AR5 LF156 Z1 CD4053 BH Z2 CD4053 BH	5.091 4.554 4.554 4.554 5.415 0.06 0.06	73.09 72.56 72.56 72.56 73.41 68.06 68.06	0.090 0.090 0.090 0.090 0.090 0.002	0.385 0.380 0.380 0.380 0.387 0.345 0.345	7.015 6.2774 6.2744 6.2744 7.46 0.09 0.09	75.01 74.28 74.28 74.28 75.46 68.09 68.09	0.124 0.124 0.124 0.124 0.124 0.003 0.003	0.4001 0.3942 0.3942 0.3942 0.4037 0.3447 0.3447

^{*}This data not available for nominal but since worst case T_J stress is less than 0.5, the nominal is also less than 0.5. Reliability guidelines recommend stress ratios less than 0.5 for nominal and 0.75 for worst case.

	Non	ninal Ca	se	Nominal	We	orst Case		Worst Case T _J
Component Name	$\Delta \mathrm{T}$	$^{\mathrm{T}}_{\mathrm{J}}$	DP	${ m T_J}$ Stress	$\Delta \mathrm{T}$	$^{\mathrm{T}}_{\mathrm{J}}$	DP	Stress
Q1 B2T2222A Q2 B2T2222A Q3 B2T3725B Q4 B2T3725B Z1 LS03 CR1 BD3600 CR2 BD3600 CR3 BD3600 CR4 BD3600 CR5 BD3600 CR6 BD3600 CR7 BD3600 CR7 BD3600 CR9 BD3600 CR10 BD3600 CR11 BD3600 CR11 BD3600 CR12 BD3600	0.0932 0.736 1.667 1.667 0.748 0.439 0.382 0.382 0.382 0.382 0.382 0.382 0.382 0.382 0.382 0.382	65.93 65.74 66.67 65.75 65.44 65.38 65.38 65.38 65.38 65.38 65.38 65.38 65.38	0.002 0.002 0.013 0.013 0.008 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.234 0.233 0.238 0.238 0.320 0.270 0.270 0.270 0.270 0.270 0.270 0.270 0.270 0.270 0.270 0.270 0.270	1.864 1.473 1.846 1.846 1.122 0.878 0.763 1.908 1.908 1.908 1.908 1.908 1.908 1.908 1.908 1.908	66.86 66.47 66.85 66.85 66.12 65.88 65.76 66.91 66.91 66.91 66.91 66.91 66.91 66.91	0.004 0.004 0.015 0.015 0.012 0.002 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.2392 0.2370 0.2391 0.2391 0.3290 0.2792 0.2717 0.2794 0.2794 0.2794 0.2794 0.2794 0.2794 0.2794 0.2794 0.2794
CR13 BD3600 CR14 BD3600	$0.382 \\ 0.382$	65.38 65.38	0.001	0.270	1.908 1.908	66.91 66.91	0.005	0.2794
AR1 MC1538 AR2 MC1538 AR3 MC1538	8.68 8.68 8.68	73.68 73.68 73.68	$0.151 \\ 0.151 \\ 0.151$	0.389 0.389 0.389	$egin{array}{c} 21.67 \ 21.67 \ 21.67 \ \end{array}$	86.67 86.67 86.67	$0.377 \\ 0.377 \\ 0.377$	0.4934 0.4934 0.4934
AR4 MC1538	9.73	74.73	0.151	0.399	24.30	89.30	0.377	0.5144

SERVO NETWORK

	Non	n inal Ca	se	Nominal	We	orst Case	e	Worst Case
Component Name	$\Delta \mathrm{T}$	${ t T}_{ extsf{J}}$	DP	T _J Stress	$\Delta \mathrm{T}$	$^{\mathrm{T}}_{\mathrm{J}}$	DP	T _J Stress
AR1 LF156 Z1 CD4053 BH Z2 CD4053 BH Z3 CD4053 BH Z4 CD4053 BH	3.51 0.06 0.06 0.06 0.06	71.51 68.06 68.06 68.06 68.06	0.060 0.002 0.002 0.002 0.002	0.372 0.345 0.345 0.345 0.345	4.684 0.09 0.09 0.09 0.09	72.62 68.09 68.09 68.09 68.09	0.080 0.003 0.003 0.003 0.003	0.3814 0.3447 0.3447 0.3447 0.3447

TEMP CONTROLLER

 $TC = 65^{\circ}C$

	Nominal Case			Nom i nal	Worst Case ΔT			Worst Case
Component Name	$\Delta \mathrm{T}$	$^{\mathrm{T}}_{\mathrm{J}}$	DP	${ m T}_{ m J}$ Stress	AT	Тт	DD	T _J Stress
Name	Δ1	J	DP	Stress	Δ1	J.	DP	Siless
AR1 RM4136	1.8815	66.88	0.053	0.335	3.0175	68.06	0.085	0.3442
AR2 RM4136	1.8815	66.88	0.053	0.335	3.0175	68.02	0.085	0.3442
AR3 RM4136	1.8815	66.88	0.053	0.335	3.0175	68.02	0.085	0.3442
AR4 RM4136	1.8815	66.88	0.053	0.335	3.0175	68.02	0.085	0.3442
AR5 RM4131	0.5496	65.55	0.008	0.321	0.9618	65.96	0.014	0.3277
Z1 LS175	1.935	66.94	0.045	0.336	3.569	68.57	0.083	0.3486
Z2 LS175	1.935	66.94	0.045	0.336	3.569	68.57	0.083	0.3486
Z3 LS04	0.5291	65.53	0.012	0.324	0.5732	65.57	0.013	0.3246
Z4 DM78L12	0.3555	65.36	0.005	0.323	1.0665	66.07	0.015	0.3286
CR1 BD3600	0.2114	65.21	0.001	0.268	0.4228	65.43	0.002	0.2695
CR2 BD3600	0.2114	65.21	0.001	0.268	0.4228	65.43	0.002	0.2695
CR3 BD3600	0.2114	65.21	0.001	0.268	0.4228	65.43	0.002	0.2695
CR4 BD3600	0.2114	65.21	0.001	0.268	0.4228	65.43	0.002	0.2695
CR5 BD3600	0.2114	65.21	0.001	0.268	0.4228	65.43	0.002	0.2695
CR6 BD3600	0.2114	65.21	0.001	0.268	0.4228	65.43	0.002	0.2695
CR7 BD3600	0.2114	65.21	0.001	0.268	0.4228	65.43	0.002	0.2695
CR8 BD3600	0.2114	65.21	0.001	0.268	0.4228	65.43	0.002	0.2695

DIFF AMP/NOTCH FILTER

Nominal		n in al Ca	se	Nominal	Wo	orst Cas	e	Worst Case T _J Stress 0.4185 0.4185 0.4274
Component Name	$\Delta \mathrm{T}$	${ m T}_{ m J}$	DP	Stress	$\Delta \mathrm{T}$	$^{\mathrm{T}}\mathrm{_{J}}$	DP	
AR1 LF156 AR2 LF156 AR3 LF156 AR4 LF156 AR5 LF156 AR6 LF156	6.65 6.65 7.45 8.55 8.55 6.65	74.65 74.65 75.45 76.55 76.55 74.65	0.120 0.120 0.120 0.120 0.120 0.120	0.397 0.397 0.402 0.412 0.412 0.397	9.31 9.31 10.43 11.90 11.90 9.31	77.31 77.31 78.43 79.90 79.90 77.31	0.168 0.168 0.168 0.168 0.168	0.4185

Component Name	Nominal Case			Nominal	Worst Case			Worst Case T _J
	ΔΤ	$^{\mathrm{T}}_{\mathrm{J}}$	DP	T _J Stress	ΔT	T_{J}	DP	Stress
Z1 LS08	0.7989	68.8	0.017	0.350	1.081	69.08	0.023	0.3526
Z2 LS175	1.935	69.94	0.045	0.3595	3.569	71.57	0.083	0.3726
Z3 LS175	1.935	69.94	0.045	0.3595	3.569	71.57	0.083	0.3726
Z4 LS174	3.555	71.56	0.065	0.3725	6.6187	74.62	0.121	0.3970
Z5 LS08	0.8164	68.82	0.017	0.3506	1.105	69.10	0.023	0.352
Z6 LS04	0.5350	68.54	0.012	0.3483	0.5796	68.58	0.013	0.3486
Z7 LS10	0.3342	68.33	0.006	0.3466	0.390	68.39	0.007	0.347
Z8 LS20	0.2228	68.22	0.004	0.3458	0.2785	68.28	0.005	0.346
Z9 LS08	0.7989	68.8	0.017	0.3504	1.081	69.08	0.023	0.352
Z10 5407	6.365	74.37	0.125	0.395	7.025	75.03	0.138	0.400
Z11 LS00	0.3842	68.38	0.008	0.347	0.4322	68.43	0.009	0.347
Z12 5407	6.365	74.37	0.125	0.395	7.025	75.03	0.138	0.400

SEQUENCER NO. 2

Component	Non	ninal Ca	se	Nominal	minal Worst Case			Worst Case
Component Name	ΔΤ	${ t T}_{ extsf{J}}$	DP	¹ J Stress	ΔT	T_{J}	DP	T _J Stress
Z1 LS04Y Z2 LS08Y Z3 LS04Y Z4 LS10Y Z5 LS00Y Z6 L193Y Z7 L193Y Z8 L193Y Z9 L193Y Z10 LS112Y	1.781 0.692 1.781 0.2307 0.2307 1.208 1.208 1.208 5.268	69.78 68.69 69.78 68.23 68.23 69.21 69.21 69.21 73.27	0.024 0.009 0.024 0.003 0.003 0.043 0.043 0.043 0.043	0.358 0.3495 0.358 0.3458 0.3458 0.354 0.354 0.354 0.354	2.524 5.459 2.524 0.4613 0.4613 2.332 2.332 2.332 2.332 12.116	70.52 73.46 70.52 68.46 68.46 70.33 70.33 70.33 80.12	0.034 0.071 0.034 0.006 0.006 0.083 0.083 0.083 0.083	0.3642 0.3877 0.3642 0.3477 0.3626 0.3626 0.3626 0.3626 0.4410

Component Name	Non	Nominal Case			Worst Case			Worst Case
	ΔT	$^{\mathrm{T}}_{\mathrm{J}}$	DP	T _J Stress	ΔΤ	T_{J}	DP	T _J Stress
AR1 CF2620 AR2 CF2620 AR3 CF2620 Z1 CD4053 BH Z2 CD4053 BH Z3 LS00 Z4 LS00 Z5 LS08 Z6 LS08 Z7 LS04	4.776 4.776 4.776 0.0618 0.0618 0.3939 0.3822 0.8613 0.8613	74.78 74.78 74.78 70.06 70.06 70.39 70.38 70.86 70.86 70.61	0.090 0.090 0.090 0.002 0.002 0.008 0.008 0.017 0.017	0.398 0.398 0.398 0.3605 0.3605 0.363 0.363 0.3669 0.3669	6.587 6.587 6.587 0.0927 0.0927 0.4431 0.4300 1.165 1.165 0.6587	76.59 76.59 76.59 70.09 70.09 70.44 70.43 71.17 71.17 70.66	0.124 0.124 0.124 0.003 0.003 0.009 0.009 0.023 0.023 0.013	0.413 0.413 0.413 0.3607 0.3607 0.364 0.364 0.3694 0.3653
Z8 LS03 Z9 DM78L12 Q1 2N2222 Q2 2N2222 Q3 2N2222 Q4 2N2222	0.3822 0.1545 0.5137 0.3570 0.3840 0.5137	70.38 70.15 70.51 70.36 70.38 70.15	0.008 0.005 0.002 0.002 0.002 0.002	0.3631 0.361 0.260 0.2592 0.3631 0.258	0.4300 0.4635 23.12 16.06 17.28 23.12	70.43 70.46 93.12 86.06 87.28 93.12	0.009 0.015 0.090 0.090 0.090 0.090	0.3637 0.3637 0.3893 0.3489 0.3559 0.3893

SPIN MOTOR CONTROL

Component	Nominal Case			Nominal	Wo	rst Cas	e	Worst Case
Component Name	ΔT	T_{J}	DP	T _J Stress	ΔΤ	$^{\mathrm{T}}_{\mathrm{J}}$	DP	T _J Stress
AR1 RM4136 AR2 RM4136 AR3 RM4136 Z1 CD4053 BH Z2 CD4053 BH Z3 CD4053 BH Z4 CD4053 BH Z5 CD4053 BH Z6 DM78L12	1.8815 1.8815 1.8815 0.0618 0.0618 0.0618 0.0618 0.0618	66.88 66.88 66.88 65.06 65.06 65.06 65.06 65.36	0.053 0.053 0.053 0.002 0.002 0.002 0.002 0.002	0.335 0.335 0.335 0.3205 0.3205 0.3205 0.3205 0.3229	3.0175 3.0175 3.0175 0.0927 0.0927 0.0927 0.0927 1.0665	68.02 68.02 68.02 65.09 65.09 65.09 65.09 66.07	0.085 0.085 0.085 0.003 0.003 0.003 0.003 0.003	0.3442 0.3442 0.3442 0.3207 0.3207 0.3207 0.3207 0.3286

	Nominal Case			Nominal T-	Worst Case			Worst Case
Component Name	ΔΤ	$^{\mathrm{T}}_{\mathrm{J}}$	DP	Stress	ΔΤ	T_{J}	DP	T _J Stress
AR1 CF2620 AR2 LF156 Z1 DM78L12 Z2 CD4053 BH Z3 LS08 Z4 LS08 Z5 LS08 Z6 LS08	4.56 3.33 0.70 0.60 1.396 1.396 1.396	69.56 68.33 65.70 65.06 66.40 66.40 66.40 66.04	0.090 0.060 0.010 0.002 0.017 0.017 0.017	0.357 0.347 0.326 0.3205 0.3312 0.3312 0.3312	5.86 4.43 1.12 0.09 3.614 3.614 3.614	70.86 69.43 66.12 65.09 68.61 68.61 68.61	0.124 0.080 0.0159 0.003 0.044 0.044 0.044	0.3669 0.3554 0.3290 0.3207 0.3489 0.3489 0.3489 0.3489

PRECISION CRYSTAL OSCILLATOR/GAP MONITOR

 $TC = 65^{\circ}C$

	Nor	Nominal Case Nominal Worst Case				Worst Case		
Component Name	ΔΤ	T_{J}	DP	Stress	ΔT	$^{\mathrm{T}}_{\mathrm{J}}$	DP	T _J Stress
Z1 LS04 Z2 LS112 Z3 LS163 Z4 CD4053 BH AR1 LF156 AR2 LF156 Q1 B2T918 Q2 B2T918	2.889 0.88 3.74 0.06 3.33 3.33 2.791 6.978	67.89 65.88 68.74 65.06 68.33 67.79 71.98	0.012 0.020 0.100 0.002 0.060 0.060 0.012 0.030	0.3431 0.327 0.3499 0.3205 0.3466 0.3466 0.2445 0.2685	5.417 1.76 6.36 0.09 4.43 4.43 3.489 8.141	70.42 66.76 71.36 65.09 69.43 69.43 68.49 73.14	0.0225 0.040 0.170 0.003 0.080 0.080 0.015 0.035	0.3634 0.3341 0.3709 0.3207 0.3554 0.3554 0.2485 0.2751

MUM DEMODULATOR

	Nominal Case			Nominal	Worst Case			Worst Case
Component Name	ΔΤ	T_{J}	DP	Stress	ΔΤ	T _J	DP	T _J Stress
AR1 RM4131	3.219	68.22	0.0225	The second secon	4.29	69.29	0.030	0.3543
AR2 RM4131 AR3 RM4131	3.219 3.219	68.22 68.22	0.0225		4.29 4.29	69.29	0.030	0.3543
Z1 CD4053 BH Z2 CD4053 BH	0.06	65.06 65.06	0.002	0.3205 0.3205	0.09 0.09	65.09 65.09	0.003	0.3207
Z3 CD4053 BH	0.06	65.06	0.002	0.3205	0.09	65.09	0.003	0.3207
Z4 CD4053 BH Z5 DM78L12	0.06 1.05	65.06 66.05	0.002 0.015	$0.3205 \\ 0.3284$	$0.09 \\ 2.53$	65.09 67.53	0.003 0.036	0.3207 0.3402

SYNCHRO DAC

	Nominal Case			Nominal	Worst Case			Worst Case
Component Name	ΔΤ	$^{\mathrm{T}}_{\mathrm{J}}$	DP	T _J Stress	ΔΤ	T_{J}	DP	T _J Stress
AR1 RM4136 AR2 RM4136 Z1 AD7522 Z2 AD7522 Z3 AD7522 Z4 AD7522	7.455 7.455 0.3510 0.3510 0.3510 0.3510	82.46 82.46 75.35 75.35 75.35 72.02	0.210 0.210 0.015 0.015 0.015 0.015	0.4597 0.4597 0.4028 0.4028 0.4028 0.4002	12.075 12.075 0.702 0.702 0.702 0.702	87.08 87.08 75.70 75.70 75.70 75.70	0.340 0.340 0.030 0.030 0.030 0.030	0.4966 0.4966 0.4056 0.4056 0.4056 0.4056

DAC AMP

 $TC = 75^{\circ}C$

	ninal Ca	se	Nominal T-	Worst Case			Worst Case T _J	
Component Name	ΔT	$^{\mathrm{T}}_{\mathrm{J}}$	DP	Stress	ΔΤ	${f T}_{f J}$	DP	Stress
AR1 RM4136 AR2 RM4136 AR3 RM4136 AR4 RM4136 Z1 CD4053 BH	7.455 7.455 7.455 7.455 0.0618	82.46 82.46 82.46 82.46 75.06	0.210 0.210 0.210 0.210 0.210 0.002	0.4597 0.4597 0.4597 0.4597 0.4005	12.075 12.075 12.075 12.075 0.0927	87.08 87.08 87.08 87.08 75.09	0.340 0.340 0.340 0.340 0.003	0.4966 0.4966 0.4966 0.4966 0.4007

SYNCHRO BITE

 $TC = 75^{\circ}C$

	Nominal Case			Nominal	Worst Case			Worst Case T _J
Component Name	ΔΤ	T_{J}	DP	T _J Stress	ΔΤ	$^{\mathrm{T}}_{\mathrm{J}}$	DP	Stress
AR1 RM4136 AR2 RM4136 AR2 RM4136 Z1 CD4053 BH	1.8815 1.8815 1.8815 0.0618	76.88 76.88 76.88 75.06	0.053 0.053 0.053 0.002	0.415 0.415 0.415 0.4005	3.0175 3.0175 3.0175 0.0927	78.02 78.02 78.02 75.09	0.085 0.085 0.085 0.003	0.4242 0.4242 0.4242 0.4007

SUSPENSION TIMING GENERATOR

	Nominal Case			Nominal	Wo	Worst Case		
Component Name	ΔΤ	т	DP	T _J Stress	ΔΤ	т	DP	T _J Stress
Z1 LS04 Z2 LS163 Z3 LS163 Z4 LS112 Z5 LS00 Z6 LS10 Z7 LS08 Z8 LS04 Z9 LS21 Z10 LS21 Z11 LS112	1.112 3.553 3.553 0.748 0.6199 0.448 0.6997 1.781 0.2244 0.748	71.11 73.56 73.56 70.75 70.62 70.45 70.70 71.78 70.22 70.22	0.024 0.095 0.095 0.020 0.003 0.003 0.009 0.024 0.006 0.006 0.020	0.3689 0.3885 0.3885 0.366 0.365 0.3652 0.3742 0.3618 0.3618	1.576 5.984 5.984 1.496 4.89 3.534 5.52 2.524 0.4114 1.496	71.58 75.99 75.99 71.50 74.89 73.53 75.52 72.52 70.41 70.41	0.034 0.160 0.160 0.040 0.006 0.006 0.071 0.034 0.011 0.011	0.3726 0.408 0.408 0.372 0.3991 0.3882 0.4046 0.3802 0.363 0.363
Z12 LS112 Z13 LS04 Z14 5407	0.748 1.139 0.1122	70.75 71.14 70.11	$0.020 \\ 0.024 \\ 0.003$	$\begin{array}{c} 0.3641 \\ 0.3691 \\ 0.3689 \end{array}$	$egin{array}{c} 1.496 \ 1.614 \ 0.2244 \end{array}$	71.50 71.61 70.22	$0.040 \\ 0.034 \\ 0.006$	$\begin{bmatrix} 0.372 \\ 0.3729 \\ 0.3618 \end{bmatrix}$

MULTIPLEXER

 $TC = 70^{\circ}C$

	Noi	minal Ca	.se	Nominal T-	W	orst Case	e	Worst Case T _T
Component Name	ΔΤ	T _J	DP	Stress	ΔΤ	T_{J}	DP	Stress
AR1 LF156 Z1 CF506A Z3 CF506A	6.648 4.5 4.5	76.65 74.5 74.5	0.120 0.036 0.036	0.413 0.396 0.396	9.307 15.0 15.0	79.31 85.0 85.0	0.168 0.120 0.120	0.4345 0.480 0.480

A/D CONVERTER

	Nominal Case			Nominal T-	We	Worst Case		
Component Name	ΔΤ	T_{J}	DP	Stress	ΔΤ	т	DP	T _J Stress
AR1 CMP-01 AR2 CF2620 Z1 65008 Z2 D139 Z3 10005 CR1 BD3600	4.664 3.643 1.745 4.670 11.866 4.304	72.67 71.643 69.75 72.67 79.87 72.304	0.233 0.042 0.469	0.3814 0.3731 0.358 0.3814 0.439 0.3154	7. 295 4. 503 1. 745 4. 670 11. 866 4. 304	75.3 72.5 69.75 72.67 79.87 72.304	0.122 0.089 0.233 0.042 0.469 0.0098	0.4024 0.380 0.358 0.3814 0.439 0.3154

	Nominal Case			Nominal T _J	W	Worst Case ${ m T}_{ m J}$		
Component Name	ΔT	$^{\mathrm{T}}_{\mathrm{J}}$	DP	Stress	ΔΤ	T_{J}	DP	Stress
AR1 LF156 AR2 LF156 AR3 LF156 AR4 LF156 AR5 LF156 AR6 LF156 Z1 CD4053 BH Z2 CD4053 BH	4.577 3.726 3.726 4.59 3.33 3.513 0.15 0.15	69.58 68.73 68.73 69.96 68.33 68.51 65.15	0.060 0.060 0.060 0.060 0.060 0.060 0.005	0.3566 0.3498 0.3498 0.3597 0.3466 0.3481 0.3212	6.102 4.968 4.968 6.612 4.43 4.684 0.31 0.31	71.1 69.97 69.97 71.61 69.43 69.68 65.31 65.31	0.080 0.080 0.080 0.080 0.080 0.080 0.010	0.368 0.3598 0.3598 0.3728 0.3554 0.3574 0.3225
Z3 CD4053 BH Z4 CD4053 BH	0.15 0.15	65.17 65.15	0.005 0.005	0.3214 0.3212	0.34 0.31	65.34 65.31	0.010 0.010	0.322

SYNCHRO REF GENERATOR

 $TC = 75^{\circ}C$

	Nominal Case			Nominal T _J	w	Worst Case T _J		
Component Name	ΔΤ	$^{\mathrm{T}}_{\mathrm{J}}$	DP	Stress	ΔΤ	T_{J}	DP	Stress
AR1 LF156 AR2 LF156 Z1 SN54L123 Z2 CD4053 Z3, 6, 7 BL54LS04 Z4, 5 BL54LS138 CR1, 2, 3 MZC3.9A5 CR4, 5 BD3600 Q1, 2, 3 FT5416B Q4 B2T2222A					4.6 4.6 5.8 0 0 0 0 0 3.2	80 80 81 75 75 75 75 75 75	0.076 0.076 0.115 0.001 0.012 0.032 0.001 0.080 0.001	0.44 0.44 0.45 0.4 0.4 0.4 0.4 0.42 0.4

^{*}This data not available for nominal but since worst case T_J stress is less than 0.5, the nominal is also less than 0.5. Reliability guidelines recommend stress ratios less than 0.5 for nominal and 0.75 for worst case.

MODULATOR

 $T_C = 71^{\circ}C$

Component	Nominal Case			Nomi nal T _J	V	Worst Case T _J		
Name	ΔΤ	T_{J}	DP	Stress	ΔΤ	$T_{\mathbf{J}}$	52.1 52.1 98.0 91.0 98.0 91.0	Stress
DZ1 MZC3.9A5	-	71		_	39	110	52.1	0.566
DZ2 MZC3.9A5	-	71	=	-	39	110	52.1	0.566
AR1 LF156	7.3	78.3	98	0.430	7.3	78.3	98.0	0.430
AR2 LF156	6.8	77.8	91	0.426	6.8	77.8	91.0	0.426
AR3 LF156	7.3	78.3	98	0.430	7.3	78.3	98.0	0.430
AR4 LF156	6.8	77.8	91	0.426	6.8	77.8	91.0	0.426
Z3 CD4054B	-	71	0.02	0.46	-	71	0.02	0.46
Z6 CD4053B	-	71	0.02	0.46	-	71	0.02	0.46
Z1 CD4053B	-	71	0.02	0.46	-	71	0.05	0.46
DZ3 MZC3.9A5	-	71	-	-	14.3	85.3	52.1	0.402
DZ4 MZC3.9A5	-	71	-	_	14.3	85.3	52.1	0.402

DC REF & PRELOAD MODULATOR

 $T_C = 71^{\circ}C$

	Nominal Case			Nominal T _J	W	Worst Case			
Component Name	ΔΤ	T_{J}	DP	Stress	ΔΤ	T_{J}	DP	T _J Stress	
Q1 2N2907A DZ1 MZC3.9A5 Z1 CD4053B Z2 CD4053B A1 MCC 1538 A2 LF156 A3 LF156 A4 LF156 A5 LF156 A6 MCC1538 A7 LF156				*	27.8 18.1 0.003 0.002 14.0 5.9 2.8 5.8 5.7 14.0 5.7	2 2 2	312. 0 68. 0 0. 06 0. 04 302. 0 81. 0 39. 0 80. 0 79. 0 302. 0 79. 0	0.409 0.427 0.460 0.460 0.482 0.417 0.391 0.416 0.415 0.482 0.415	

^{*}This data not available for nominal but since worst case T_J stress is less than 0.5, the nominal is also less than 0.5. Reliability guidelines recommend stress ratios less than 0.5 for nominal and 0.75 for worst case.

SYNCHRO BUFFER AMPLIFIER

		Nomi	n al			Worst Case				
Amplifier (SL25548)	ΔΤ	$^{\mathrm{T}}_{\mathrm{J}}$	DP	Stress	ΔΤ	т	DP	Stress		
AR1	1.992	74.992	0.68	0.400	14.650	87.650	5	0,501		
AR2	1.992	74.992	0.68	0.400	14.650	87.650	5	0,501		
AR3	12.306	85. 306	4.2	0.482	29.300	102.300	10	0, 618		
AR4	12.306	85. 306	4.2	0.482	29.300	102.300	10	0.618		

APPENDIX C. HYBRID, MODULE, AND TRANSFORMER FUNCTIONAL TEST SPECIFICATIONS

This appendix provides a list of functional test specifications which were written for hybrid, module and transformer functional test. The parameters in the functional test specifications have been derived from the detail design specifications.

TABLE C-1. MODULE FUNCTIONAL TEST SPECIFICATIONS

Specification Number	Title
AL01073	Suspension and MUM Electronics, Autonetics Drawing Number 12302-507; Functional Test For
AL01074	Timing and Sequencing Module, Autonetics Drawing Number 12305-507; Functional Test For
AL01075	Signal Generator and Memory Module, Autonetics Drawing Number 12310-507; Functional Test For
AL01076	Converter Electronics Module, Autonetics Drawing Number 12330-507; Functional Test For
AL01077	Power Supply Number 1, Autonetics Drawing Number 12345-507; Functional Test For
AL01078	Power Supply Number 2 and 3, Autonetics Drawing Number 12356-507; Functional Test For
AL01079	High Voltage Switch, Autonetics Drawing Number 12360-507; Functional Test For
AL01088	MICRON Central Processor Unit, P/N 14219-501, Acceptance Test For
AL01090	MICRON Processor Input Output; Autonetics Part Number 15390-501-1, Acceptance Test for
AL01202	Charge Amplifier Assembly, Autonetics Drawing Number 12725-507; Functional Test For
AL01203	Spin Motor Electronics Module, Autonetics Drawing Number 12753-507; Functional Test For
AL80281	MICRON Data Terminal Unit; Autonetics Part Number 12335-507, Operating Instructions For

TABLE C-2. HYBRID FUNCTIONAL TEST SPECIFICATIONS

Specification Number	<u>Title</u>
AL00985	Charge Amplifier, Autonetics Drawing Number 12400-507; Functional Test For
AL00986	Sample and Mold/Gap Summation, Autonetics Drawing Number 12520-507; Functional Test For
AL00987	Servo Network, Autonetics Drawing Number 12405-507; Functional Test For
AL00988	Differential Amplifier and Notch Filter, Autonetics Drawing Number 12410-507; Functional Test For
AL00989	Modulator, Autonetics Drawing Number 12425-507; Functional Test For
AL00990	Multiplexer, Autonetics Drawing Number 12430-507 Functional Test For
AL00991	MUM Demodulator, Autonetics Drawing Number 12415-507; Functional Test For
AL00992	MUM Democulator Filter, Autonetics Drawing Number 12420-507; Functional Test For
AL00993	MUM Demodulator Sample and Hold, Autonetics Drawing Number 12435-507; Functional Test For
AL00994	Suspension Timing Generator, Autonetics Drawing Number 12445-507; Functional Test For
AL00995	DC Reference and Preload Modulator, Autonetics Drawing Number 12480-507; Functional Test For
AL00996	Precision Crystal Oscillator and Gap Monitor, Autonetics Drawing Number 12470-507; Functional Test For
AL00997	Sequencer Number 1, Autonetics Drawing Number 12450-507; Functional Test For
AL00998	Sequencer Number 2, Autonetics Drawing Number 12455-507; Functional Test For

TABLE C-2. (Cont)

Specification Number	Title
AL00999	50 kHz Buffer and EMA Power Supply, Autonetics Drawing Number 12475-507; Functional Test For
AL01000	EMA Signal Filter, Autonetics Drawing Number 12495-507; Functional Test For
AL01001	A/D Converter, Autonetics Drawing Number 12440-507; Functional Test For
AL01002	Spin Motor Controller, Autonetics Drawing Numbe 12485-507; Functional Test For
AL01003	Temperature Controller, Autonetics Drawing Number 12490-507; Functional Test For
AL01004	Spin Motor Power Pre-Amplifier and Logic, Autonetics Drawing Number 12525-507; Functional Test For
AL01006	Synchro Buffer Amplifier, Autonetics Drawing Number 12510-507; Functional Test For
AL01007	Synchro Reference Generator, Autonetics Drawing Number 12515-507; Functional Test For
AL01008	Synchro Bite, Autonetics Drawing Number 12505-507; Functional Test For
AL01009	Synchro DAC, Autonetics Drawing Number 12545-507; Functional Test For
AL01063	DAC Amplifier, Autonetics Drawing Number 12560-507; Functional Test For
AL01064	Ladder Network, Autonetics Drawing Number 12565-507; Functional Test For
AL80294	MICRON Hybrid Decoder, Autonetics Part Number 12540-507-1; Operating Instructions For
AL80295	MICRON Hybrid Encoder, Autonetics Part Number 12535-507-1; Operating Instructions For
AL80296	MICRON Hybrid Transmitter/Receiver, Autonetics Part Number 12530-507-1; Operating Instructions For

TABLE C-3. TRANSFORMER FUNCTIONAL TEST SPECIFICATIONS

Specification Number	Title
AL01055	Transformer, Power, Step-up, Autonetics Part Number 13304-404-1; Functional Test For
AL01056	Transformer, Power, Step-up and Step-down, Autonetics Part Numbers 13313-404-1 and 13321-404-1; Functional Test For
AL01057	Transformer, Power, Isolation, Autonetics Part Number 13308-404-1; Functional Test For
AL01058	Transformer, Power, Step-down, Autonetics Par Number 13317-404-1; Functional Test For
AL01059	Transformer, Pulse, Autonetics Part Number 20321-404-1; Functional Test For
AL01060	Reactor, Autonetics Part Number 36317-404-1; Functional Test For
AL01061	Transformer, Saturable, Autonetics Part Number 40426-404-1; Functional Test For

APPENDIX D. PRECISION THIN FILM RESISTOR REQUIREMENTS AND PERFORMANCE TESTS

There are a number of EPM hybrid substrates which contain resistors which require good tracking stability to maintain system calibration. The estimated requirements are summarized in Table D-1.

Test data has been taken on a limited sample of Halex Inc. resistors and Collins Radio resistors. Halex resistors are utilized for precision electronics for the FPM system. The preproduction system uses Collins Radio resistors.

Two networks (H01 and H02) of Halex resistors and three networks (C01, C02 and C03) of Collins resistors were packaged, sealed and initial measurements were made. Periodic resistor measurements were then made after the resistors were stored in an 85°C environment. Collins and Halex resistors meet the stability requirements, as shown in Table D-2.

It is estimated that the system will have about 40 hr of operation per month when in the field, or 480 hr per year. The temperature of the resistors in the system with power on will be between 65°C and 70°C. It is estimated that the rate of change of resistors doubles for every 10° C. At room temperature with power off (25°C) the rate of change would be

$$2^{-\left(\frac{85-25}{10}\right)} = 1/64$$

the rate of change at 85°C. Therefore the data obtained for 1020 hr at 85°C indicate the resistors should have adequate stability for two years if all of the above assumptions are true. Further tests will be conducted with power on to determine if there is a difference for these conditions.

TABLE D-1. MICRON PRECISION RESISTOR REQUIREMENTS

Ratio Tracking Stability/Year	20 ppm @ 75°C	33 ppm @ 70°C	20 ppm @ 70°C	20 ppm @ 70°C	100 ppm @ 70oC	Ratio of 650 ppm Absolute of 150 ppm @ 70° C	20 ppm @ 70°C	20 ppm @ 70°C	40 ppm @ 75°C	100 ppm @ 70°C	40 ppm @ 75°C	40 ppm @ 75°C	25 ppm @ 70°C (Accumulated total error)
TCR Tracking/ ^o C (ppm)	10 ± 5	10 ± 5	10 ± 5	10 ± 5	100 ± 50	35 ± 17.5	10 ± 5	10 ± 5	10 ± 5	100 ± 50	10 ± 5	10 ± 5	5 ± 2.5
TCR Absolute / ^O C (ppm)	s ± 150	≤ ± 150	≤ ± 150	≤ ± 150	≥ ± 150	≥ ± 150	≥ ± 150	≤ ± 150	≤ ± 150	≤± 150	≤ ± 150	≤± 150	≤ ± 150
Title	Charge Amplifier	Diff Amp/Notch Filter	MUM Demodulator	MUM Demodulator Filter	Modulator	Multiplexer	MUM Demodulator S&H	DC Ref & Reload Mod	Synchro Buffer Amp	S&H/Gap Summation	Synchro DAC	DAC Amp	Ladder Network
Part Number	12400-507	12410-507	12415-507	12420-507	12425-507	12430-507	12435-507	12480-507	12510-507	12520-507	12545-507	12560-507	12565-507

TABLE D-2. COLLINS-HALEX RESISTOR STUDY (PPM SHIFT)

	(B	6	6	3	4		2	3	2	1		3	2	6			-		3	6
uare	COMB	22.8	27.	16.6	3.4		- 0.7	10.6	-10.5	4.1		20.6	29.5	15. 9	3.4		0.4	10.5	- 9.	3.5
HALEX 150 ohms/square	HO2	21.49	26.58	16.61	2.69		- 1.90	5.31	96.6 -	2.95		18.5	20.6	16.0	2.2		0.05	5.0	- 5.0	3.3
15	HO1	24.31	27.91	17.28	3.22		0.49	10.61	-10.49	4.64		22.7	29.5	19.3	3.1		0.7	10.5	- 9.3	4.4
OCESS	COMB	-61.57	-48.5	8-62-	11.6		- 0.05	5.8	- 5.7	3.0		-106.6	- 77.9	-123.6	13.58		- 0.7	15.0	-15.0	4.5
STANDARD COLLINS PROCESS 100 ohms/square	CO3	-50.7	-48.5	-53.8	1.9		- 1.2	5.1	- 5.7	2.7		6.88-	-77.9	-93.8	4.4		- 1.5	15.3	-15.0	6.1
UDARD CO	CO2	-76.9	-73.7	-79.8	2.3		.51	5.8	- 5.0	3.1		-120	-116.4	-123.6	2.02		6.0 -	3.8	0.9 -	2.5
STAN	CO1	-57.1	-50.6	8.09-	2.7		.50	5.7	- 5.0	2.8		-110.8	-105.6	-114.7	2.58		0.3	9.1	- 5.7	3.8
	Absolute R	ı×	Max	Min	Ф	Ratio	I×	Max	Min	Ь	Absolute R	ı×	Max	Min	Ь	Ratio	ı×	Max	Min	Ь
		Postseal	to	Post		340 Hours	at	2000				Postseal	to	Post		1020 Hours	at	2 60		

Each circuit contains 12, 94K resistors designed for 150 ohms/sq each packaged in a MICRON package and sealed Collins circuits were built using 100 ohms/sq, therefore their resistors were 63K All circuits built from 12420-507 artwork - MUM Demod Filter (MICRON) NOTES:

"Absolute R" rows are average of 12 resistors "Ratio" rows are average of 55 ratios of the 12 resistors "Combined" column is the total data of all substrates

average change of the 12 resistors
maximum change of the 12 resistors
minimum change of the 12 resistors
standard deviation of the change for the 12 resistors × X E o

APPENDIX E. FABRICATION, ASSEMBLY, AND TEST OF EPM ELECTRONIC MODULES

MODULE FAB/ASSEMBLY/TEST

A flow diagram for the fabrication, assembly and test of the electronics modules is shown in Figure E-1. All hardware has been fabricated per documented ESWA procedures. Operational Sign Off Record (OSR) books are maintained for each module type. When an operation or test is completed, it is verified by inspection, stamped and dated. Functional test data is also recorded in the OSR book at the time of functional test.

Figure E-1. Flow Diagram for Fab, Assembly and Test of Modules

A far W

APPENDIX F. RESULTS AND ANALYSES OF MAGNETIC FIELD SENSITIVITY TESTS*

A magnetic coil was fabricated and installed on Test Station No. 4. The coil was mounted so that the gyro would be in the center of the coil, and the generated field would be parallel to the gyro Z-axis. The 14 holes in the mu-metal shield for feedthroughs (eight to the gyro electrodes plus six to the spin motor windings) are along the +Z axis, and the θ-shaped hole for the cavity support structure and vacuum port are along the -Z axis. From this, it might be expected that the dominant weakness in the shielding would be along the Z-axis. (This was found to be the case during Phase 1A vibration testing, in which the magnetic field levels at the gyro location on the shaker were from 20 to 55 gauss. At that time, the dominating effect was a slowdown torque on the rotor. This torque was maximum when the Z-axis was parallel to the field direction.) With the gyro removed, the magnetic field was measured by a Hall probe at the gyro location which the coil current was varied. The coil current levels at 1, 3.16 and 10 gauss were noted and used later for applying these field levels to a gyro. The magnitude of the earth's magnetic field is about 0.3 gauss in the laboratory, and this field was also present when these measurements were made. Consequently, the total applied field (earth field + coil field) will have the correct values for the orientation of the tilt table in which the coil calibration was made. The tilt table was re-oriented to apply the field at the different angles to the spin axis, so that the total applied field could differ slightly from the calibrated values at the noncalibrated orientations. However, the coil-induced field magnitudes were generally much greater than the natural field magnitude. Consequently, the results are considered reasonably accurate, especially at the higher field levels.

Magnetic sensitivities were determined by applying the magnetic field during alternate samples of either drift data or angle readout data. In this way, interpolation between the "no-field" samples could be used for removing any secular trend in the outputs. In the case of drift data, the magnetic field was "off" for 10 min, then "on" for 10 min, etc. In the case of angle readout data, the field was alternately "on" and "off" for periods of one minute, with smoothed samples recorded every 15 sec.

In the case of angle readout data, shifts of less than 0.01 milliradians could have been detected, but none were observed under any conditions – even with 10 gauss input.

In the case of drift data, definite shifts were recorded. The results are tabulated in Table F-1. These tend to support a model of "gauss-squared" sensitivity of drift rates, which is the physically derived model relationship. This relationship in the test data is demonstrated in Figure F-1, which is a log-log plot of measured rss drift rate change vs applied field strength. All the plots have a "gauss-squared" slope, with different intercepts for different angles between the applied field and the rotor spin axis. The greatest sensitivity occurred with 45 deg between the field and the spin axis. This is roughly an order of magnitude greater than the sensitivity with the spin axis parallel to the field, and a factor of three greater than the sensitivity with the spin axis normal to the field. A similar relationship would be predicted by the model, which is derived from the model for an unshielded rotor.

^{*}The N75 activities discussed in this appendix were performed under a separate IR&D task using the N57A System. Although this activity was not performed under the MICRON contract, this discussion in included in this report since it provides additional information on the sensitivity of system performance to magnetic fields.

TABLE F-1. MAGNETIC FIELD SENSITIVITY SUMMARY, THREE GYROS: (Spin Vector Oriented Polar, Magnetic Field Case-Fixed Along Z)

Angle Between Field and Spin Vector	Gyro Number	Change 1 Gauss	e of Gyros Drif Deg/Hr/Axis 3.16 Gauss	t Rates	Average Per Axis Sensitivity, Deg/Hr/Gauss ²
00	A013Y A017Y A021Y Average	0.003 0.011 0.003 0.005	NA 0.062 0.015 0.039	0.310 0.194 0.049 0.184	0.0037
45 ⁰	A013Y A017Y A021Y Average	0.049 0.039 0.029 0.039	NA 0.379 0.291 0.335	2.375 1.506 2.219 2.033	0.0310
900	A013Y A017Y A021Y Average	0.015 0.013 0.008 0.012	NA 0.117 0.082 0.099	0.698 0.175 0.543 0.472	0.0088

An unshielded spinning rotor has a drift sensitivity to a uniform magnetic field that is modeled by the following formula:

$$\dot{Y} = -k Y x (Y^T f) (Y x f)$$

where

k is a proportionality constant (depending upon rotor speed and rotor bulk resistivity)

y is a unit vector parallel to the rotor spin axis

f is the uniform magnetic field vector

x denotes a vector cross-product

The MESG is shielded, but there are gaps in the mu-metal shield that admit some z-axis component of field. Consequently, the expected drift rate due to the internal magnetic field will be approximated by a z-axis component, which is of the form

$$\dot{\mathbf{Y}} = -\mathbf{k'Y} \mathbf{x} (\mathbf{Y}^{T} \begin{bmatrix} 0 \\ 0 \\ \mathbf{f}_{\mathbf{z}} \end{bmatrix}) (\mathbf{Y} \mathbf{x} \begin{bmatrix} 0 \\ 0 \\ \mathbf{f}_{\mathbf{z}} \end{bmatrix})$$

Figure F-1. Drift Rate Sensitivity to a Magnetic Field

$$= -k'\gamma x (\gamma_z f_z) \begin{bmatrix} \gamma_y f_z \\ -\gamma_x f_z \\ 0 \end{bmatrix}$$

$$= +k' f_z^2 \begin{bmatrix} -\gamma_x \gamma_z^2 \\ -\gamma_y \gamma_z^2 \\ (\gamma_x^2 + \gamma_y^2)\gamma_z \end{bmatrix}$$

where k' now contains the attenuation factor due to the shielding for the applied field. (The actual field inside the mu-metal will probably not be uniform in direction and magnitude, but the model may serve as an approximation.) For this model, the squared drift rate will be

$$\begin{aligned} |\dot{Y}|^2 &= (k')^2 f_z^4 \left[\gamma_x^2 \gamma_z^2 + \gamma_y^2 \gamma_z^2 + (\gamma_x^2 + \gamma_y^2)^2 \right] \gamma_z^2 \\ &= (k')^2 f_z^4 \left[(\gamma_x^2 + \gamma_y^2) (\gamma_x^2 + \gamma_y^2 + \gamma_z^2) \right] \gamma_z^2 \\ &= (k')^2 f_z^4 (\gamma_x^2 + \gamma_y^2) \gamma_z^2 \\ &= (k')^2 f_z^4 \gamma_z^2 (1 - \gamma_z^2) \end{aligned}$$

This will have its maximum value when

$$\gamma_z^2 = \frac{1}{2} \text{ and } f = \begin{bmatrix} 0 \\ 0 \\ f_z \end{bmatrix}$$

which is when the rotor spin axis is 45 deg from the $\pm z$ -axis and the total field is along z. Under these conditions, the maximum magnitude

$$\left|\dot{\gamma}\right|_{\max} = \frac{1}{2} k' \left|f\right|^2 \tag{1}$$

The rms magnitude, over all orientations of the spin axis (γ) with respect to the MESG case, will be the root-mean (RM):

$$|\dot{\gamma}|_{rms} = k' f_z^2 RM \left(\gamma_z^2 - \gamma_z^4\right)$$
$$= k' f_z^2 \sqrt{\frac{1}{3} - \frac{1}{5}}$$
$$= \sqrt{\frac{2}{15}} k' f_z^2$$

However, the MESG case may have any orientation with respect to the external field, also. The rms over all relative orientations of the MESG with respect to the field will be

$$\begin{aligned} \left|\dot{\gamma}\right|_{rms} &= \sqrt{\frac{2}{15}} \ k' \ RM \left(f_z^4\right) \\ &= \sqrt{\frac{2}{15}} \ k' \ \left(\frac{1}{\sqrt{5}} \left|f\right|^2\right) \\ &= \sqrt{\frac{2}{75}} \ k' \left|f\right|^2 \end{aligned}$$
(2)

From the measured peak sensitivity of 0.031 $deg/hr/axis/gauss^2$, one can infer that the experimental value of the constant k' in Eq (1) is:

$$k' = \frac{2|\dot{\gamma}_{max}|}{|f|^2}$$
$$= (2) (\sqrt{2}) (0.031)$$
$$= 0.088$$

(The factor of $\sqrt{2}$ is needed because the units of $|\dot{\gamma}|$ are deg/hr "radial" and those of 0.031 are deg/hr/axis.") Consequently, from Eq (2), the rms drift rate would be expected to be

$$\frac{1}{\sqrt{2}} \left| \dot{\gamma} \right|_{\text{rms}} = \frac{1}{\sqrt{75}} (0.088) \left| f \right|^2$$
$$= 0.010 \left| f \right|^2$$

The magnitude of the natural magnetic field ranges from about 0.2 to 0.7 gauss. Consequently, one would predict that the rms induced drift rates would range from 0.0004 deg/hr/axis to 0.005 deg/hr/axis.

The level of the natural magnetic field in the MICRON laboratory is about 0.3 gauss. From this, one would infer an expected rms drift rate in the order of 0.001 deg/hr/axis due to this effect. It is interesting to note that the most significant new drift model "discovered" in Phase 2A has exactly the same form as the magnetic

sensitivity model, but with the magnetic field vector "f" replaced by the gravitational field vector "g." No physical explanation of the model could be determined at that time. It now appears possible that the effect may, in fact, be a magnetic effect, because the magnetic field direction is only about 30 deg from the gravitational field direction at the laboratory.

Some additional tests were performed to determine the effect of mu-metal shield design on sensitivity. The "N57A" design for the spin motor coil assembly has an extra hole along the z-axis for a screw which fixes the motor to the top of the vacuum housing. This motor design was compared to the EPM motor design, which is without the extra z-hole. The results are tabulated in Table F-2 and summarized in Figure F-2. They indicate no dramatic reduction in sensitivity resulting from elimination of the extra z-hole.

TABLE F-2. MAGNETIC FIELD SENSITIVITY SUMMARY, EFFECT OF SPIN MOTOR SHIELDING (N57A Type: Hole Along Z Axis, EPM Type: No Hole Along "Z" Axis, Spin Vector Oriented Polar, Magnetic Field - Case-Fixed)

Magnetic Field	Motor	Gyro	Drift Rate Sensitivi	ties
Orientation To	Type	De	eg/Hr/Gauss ² /Axis	
Spin Vector	Shielding	1 Gauss	3.16 Gauss	10 Gauss
00	N57A	0.008	0.006	0.003
	EPM	0.003	0.001	0.001
45 ⁰	N57A	0.045	0,038	0.020
	EPM	0.029	0,029	0.022
90°	N57A	0.013	0.011	0.005
	EPM	0.008	0.008	0.006

The rotor speed changes observed during the tests are tabulated in Table F-3 and summarized in Figure F-3. They show generally good agreement with the model, which would predict the maximum drag torques with the spin axis 90 deg from the field and varying as the square of the field. They also show generally close agreement in magnitude. With the spin axis 45 deg from the field direction, the model would predict as much torque in drift as in drag. The tabulated results would then relate to drifts as follows (where " — " means "would be equivalent to").

$$0.016 \text{ Hz/min/gauss}^2 \longrightarrow \frac{0.016}{2460 \text{ (Hz)}} \text{ rad/min/gauss}^2$$

$$\longrightarrow \frac{0.016}{(60) (2460)} \text{ rad/sec/gauss}^2$$

$$\longrightarrow \frac{(0.016) (2 \times 10^5)}{(60) (2460)} \text{ deg/hr/gauss}^2$$

$$\longrightarrow 0.022 \text{ deg/hr/gauss}^2$$

$$\longrightarrow 0.015 \text{ deg/hr/axis/gauss}^2$$

By comparison, the measured drift sensitivities at the 10-gauss level were in the order of $0.02 \, deg/hr/axis/gauss^2$.

APPLIED FIELD STRENGTH GAUSS

Figure F-2. Peak Radial Drift Rate Sensitivity to a Magnetic Field for Two Shield Designs

TABLE F-3. MAGNETIC FIELD SENSITIVITY SUMMARY, EFFECT ON ROTOR SPEED (Spin Vector Aligned Polar, Magnetic Field Case-Fixed Gyro A021Y)

Field	Come	Rate of Change of Rotor	Speed, RPS per Minute
Strength, Gauss	Gyro Number	45° Field Position	90° Field Position
1	A013Y	-0.04	-0.05
	A017Y	-0.04	-0.05
	A021Y	-0.04	-0.05
3.16	A013Y	-0.16	-0.33
	A017Y	-0.19	-0.33
	A021Y	-0.19	- 0.33
10	A013Y	-1.7	- 2. 8
	A0174	-1.6	-3.2
	A021Y	-1.6	-3.2

In conclusion, these tests showed no detectable angle readout sensitivity to magnetic fields and drift rate sensitivities in the order of 0.01 deg/hr/axis/gauss². This would yield expected rms drifts in the range of 0.0004 to 0.0050 deg/hr/axis due to natural magnetic fields. These figures tend to be consistent with the observed performance from the "rotated" N57A tests (~0.1 nmi/hr CEP rates) in which the system and its gyros were unshielded, the induced drifts appear to be within the levels of budgeted errors for EPM. However, in the case that other avionics equipment may produce magnetic fields of magnitude in excess of the natural levels, and especially in the case of high-accuracy MICRON, the use of extra shielding was considered.

Figure F-3. Rotor Speed Sensitivity to a Magnetic Field

Under a separate IR&D task, an external magnetic shield was developed for the N57A navigation system. A series of calibrations was conducted for the purpose of determining the sensitivity of calibrated drift rates and residual drift rates to the natural magnetic field.

The effectiveness of the magnetic shield was determined by measuring (with a Hall probe) the internal magnetic field in the presence of the external natural magnetic field (~0.5 gauss). The measurements indicated a field attenuation factor of about 150:1.

Four complete sets of calibrations were performed with system shut-downs between all calibrations. The magnetic shield was installed between the second and third calibrations. In this way, the results could be compared between calibrations with no shielding change (both with and without shielding) as well as between shielded and unshielded calibrations. Each calibration included about 10 hours of data with the rotor spin axis parallel to the earth rotation axis, and about 14 hours of data with the rotor spin axis in the normal navigation directions (initially vertical and horizontal).

The resulting calibration parameters were compared in terms of the drift compensation which they would cause to be applied under the conditions of sensed acceleration and attitude (of the MESG rotor with respect to its suspension envelope) experienced during calibration. The rms compensation differences are summarized in Table F-4. These results indicate as good repeatability between shielded and unshielded calibrations as between two shielded or between two unshielded calibrations.

TABLE F-4. SUMMARY OF RMS DRIFT COMPENSATION DIFFERENCES, DEG/HR/AXIS

Cal #:	1	2	3	4
Cal #	(unshielded)	(unshielded)	(shielded)	(shielded)
1	0.0	0.0048(1)	0.0040(1)	0.0049(1)
(unshielded)	0.0	0.0053(2)	0.0043(2)	0.0054(2)
2	0.0048(1)	0.0	0.0046(1)	0.0043(1)
(unshielded)	0.0053(2)	0.0	0.0052(2)	0.0067(2)
3	0.0040(1)	0.0046(1)	0.0	0.0058(1)
(shielded)	0.0043(2)	0.0052(2)	0.0	0.0050(2)
4	0.0049(1)	0.0043(1)	0.0058(1)	0.0
(shielded)	0.0054(2)	0.0067(2)	0.0050(2)	0.0

NOTES: (1) Gyro No. 150 - (2) Gyro No. 182

As a means for evaluating the effect of shielding upon individual parameters, the "correlation coefficient" between the parameter variation and the "shielding variation" was computed for each calibration parameter for each gyro. (Two gyros in N57A were calibrated simultaneously.) The results are given in Table F-5 (for Gyro No. 150) and Table F-6 (for Gyro No. 182). There is only one parameter that has a correlation coefficient larger than 0.5 in magnitude, and having the same sign on both gyros. That is parameter number 16, which models drifts due to X-channel servo phase mismatch at rotor frequency. Its correlation coefficient with shielding has an average value of 0.6. Its rms variation on Gyro No. 150 is 0.00025; and on Gyro No. 182, 0.0016. The units of this parameter are such that these rms variations correspond to 0.0001 and 0.0008 deg/hr/axis for Gyros 150 and 182, respectively. Compared to the rss total error budget of 0.0100 deg/hr/axis, these values are insignificant. (For example, it would require about 150 independent error sources of magnitude 0.0008 deg/hr/axis to make up a rss total of 0.01 deg/hr/axis).

Since there are no significant drift rates due to natural magnetic fields which can be detected in the modeled effects, the other place to look is in the un-modeled effects; that is, in the measured drift rates that are not compensated by the calibration models. These drift rates are called "calibration residuals," and they are computed for every calibration. The rms calibration residuals for all eight calibrations are tabulated in Table F-7.

The calibration residuals for the unshielded system are, if anything, slightly larger than those for the shielded system. The difference is hardly significant, but in the case of both gyros the residual drift rates are definitely not larger in the presence of the natural magnetic field.

The main conclusion drawn from these tests is that the natural magnetic field causes no significant MESG drift rates in an unshielded nautical-mile-per-hour system. In order to evaluate system performance at higher field levels, a 13-cm diameter magnetic coil was mounted against the exterior of the N57A housing, at the point nearest the two gyros. Then, during a rotated free-inertial navigation test, the induced magnetic field level was varied discretely from 0 to 10 gauss, measured at the surface of the N57A housing at the closest point to the gyros (i.e., in the center of the coil). The distance to the center of each gyro from the center of the coil is about 10 cm. These conditions were intended to simulate the F-16 magnetic susceptibility specification.

The navigation performance, in terms of the measured velocity error, is shown in Figure F-4. Drift rate errors would appear as offsets in the mean velocity errors on this plot. There is no measurable shift during the periods of coil activation and, therefore, no detectable performance degradation due to the induced fields.

These results are not consistent with previous tests on gyro Test Station IV where drift rate sensitivities were measured. Analytical studies of the effects of system rotation, performed under a separate IR&D task, had predicted that rotation would anihilate the dominating drift sensitivity to magnetic fields and rotor drag torques. To reconcile Test Station IV and N57A test results, the N57A magnetic sensitivity tests were repeated with two important differences:

- 1. A coil with more turns was used, enabling higher fields to be achieved.
- 2. The N57A system was navigated in both the rotating and non-rotating modes during this test series. (Previous tests using an applied field were conducted with the N57A system navigating in the rotated mode only.)

TABLE F-5. SUMMARY OF CORRELATIONS BETWEEN DRIFT PARAMETER VARIATIONS AND SHIELDING FOR GYRO NO. 150

000	16	•	00	8	CV	•	8	C	2	0	~	-	5	-	6	5	~	4	CV	A	6	m	6	m	4	C	4	-	m	-		4	•	0	-
4 A L UE C	6614	. 6663	46.4	. 6633-	0619	0624	632	0613	2000	.1169-	6615	.2443	0001-	9638	0614	-9999	2202	8652	0343	PR39-	6663	0481	1870-	.8653-	6216	7.	6236-	3620-	6167	.2419	613	6616-	63	6691	P030-
THE PEAN	2	. 461	1 49	アンス	864	400	239	330	338	133	. 622	247	.nre	230	861	739	061	. 661	011	22.2	122.	. 162	104	· nk	. 212	. 6443	851	1 e S	, R E 4	125	613	338	011	600	23
NS FRUR	61	. 848	220	523	16	629	021	000	999.	932	220.	. 842	.020	020	220	222	229	888	923	1.26	. 823.	683	937	664	. 618	0366	114	993	223	6 9 3	162	223	20	667	488
CEVIATIO	S	200	00	800	.001	300	001	001	2	233	000	989	000	001	800	900	000	000	823	010	003	. 643	936	600.	.018	.825	996	.0.47	126	. 227	662	802	900	500	300
FEAN VALUE	2	5	23	6.1	-	6.3	0	23	23	16	20	22	60	61	00	6	22.	60	.13	6.4	80	.64	20	=	26	40.	12	2	.01	9	18	23.	8	2	61
ALUES CAL #4	3	20	34	6.1	Ξ	4	2	34	37	3	120	S)	99.	3	00	3	33.	93.	17	63	30	8	7	.12	28	784	7	5	200.	16	-10	23	4	33	61
CAL #3	2	3	3	2	=	5	5	Š	30	70	20	2	3	-	20	8	3	2	N	5	-	.14	53	-:	28	689.	17	6	90	20	1	20	9	8	9
CAL #2	2.	7	20.	7	12	4	3	7	0	13	×	3	27	CV	30	2	2	11	Ξ	. 26	-	4 2 4	20	.12	50	695	21	21	43	S.	50	22.	63	6 1	86
CALIBKAI CAL #1	3	3	5	3	=	7)	00	5	-	4	-	D	3	3	6	3	2	3	5	500	03	.06	16	.12	28	614	2	10	.10	.89	5	20.	5	W	-
•	-	N	*	4	O	o	1	æ,	O	-	11	1.5	2	14	10											26									

TABLE F-6. SUMMARY OF CORRELATIONS BETWEEN DRIFT PARAMETER VARIATION AND SHIELDING FOR GYRO NO. 182

L #4 CCE	817 .3	267 .1	88 .2	F15 .3	9. 700	6336	6032	186-6	6569	1223	V319	512 .4	3. 9A.	K32 . B	P. 299	4276	807-12	464 .1	825 .6	633 .6	K5K4	8 Se 0	5385	667 .4	1.584	3036	521 .1	168 .7	375-0	2111-,7	656 .1	2. 474	061158	
CAL #3 CA	1124	2000	. 6001	. 2233	. 0 412	eces .	. 7239	6211 .	erre.	. 6279.			reee	. 67579.	. 2000.	. 2330	. 6613	. 7333	. 6351	. 1539.	. 61213.	RE42	. 1227.	reaf	. 8538 .	135	re78	. 2586	3846	. 17V4	2t84	. 1212	. 6884	1070
CAL #2	000	6.1	. 7 62	010	420	100.	129	443.	661	.062	. 662	486	.001	. 005	200.	671	000	620	116	534	021	627	498	. RY 3	630.	110	. 771	.277	142	.192	0.57	.621	1000.	000
CAL #1	S	961	601	000	061	000	200	000	601	627	204	. 195	0000.	303	130	000	. 003	200	.026	500	700	. 126	183	Sun.	655	639	120	660	.235	350	148	100	0187	5
VALLE	3	ت	23.	23	0		00	0.3	00	7 7	3	7	6.0	7	10	100	00	00	.14	6	25.	3 - 3	0	5	2.0	99	7	E)	2.	5	5.50	3	640	0
CAL #4	0	3	S	30	A	23		K	.>	3	V.	30	7	77.	30	11.	3	7	. 46	3	7	19	1	1.		50	4.	40	.72	11	70.	7	4 7 .	5
CAL #3	2	5	2	5	4	-	5	.7		S S	3	12	2	3	2	2	25	2	17	5	300	V.	S	5	77.	90.	47	3	7	. 35	2	2	543.1	30
CAL #2	2	7	ن	ني	5	-	>		-	4	1	·V	\sim	2	3	7	3	3	N	V.	3	5.	3	7.	. V.	1	3	= :	7	.75	3	22	4	
CAL #1	28.		27.3.	>	4	.015	2	2	.061	-	7	151	3	233	7.		23		176	W	~	~)	3	J.	O	743	(")	. 526				5	052	5
	-	v.	2	4	Ω	L	1	10	3		:																						33	

TABLE F-7. RMS CALIBRATION RESIDUALS

Gyro No.	RMS Calibration Residuals, Deg/Hr/Axis			
	Unshielded Calibrations		Shielded Calibrations	
	June 8 & 10	June 14 & 16	June 21 & 23	June 24 & 28
150	0.010	0.009	0.010	0.010
182	0.011	0.011	0.012	0.011

Examination of north velocity error in Figure F-5 shows no detectable performance degradation due to the induced fields where the N57A system is navigating in the rotated mode. The calculated applied maximum field strength at the gyro rotor was 11.8 gauss and the rotor was noted to slow down 3.6 rps. These results are consistent with previous N57A testing and analysis which indicates that drift rate errors due to rotor speed change and magnetic torques will be cancelled by rotation about an axis through electrode No. 1 center.

North velocity errors in Figures F-6 and F-7 indicate drift rate changes upon application of the magnetic field corresponding to sensitivities of $0.065^{\rm o}/hr/gauss^2$ and $0.043^{\rm o}/hr/gauss^2$ respectively. These results were obtained with the N57A system navigating in the non-rotated mode and are consistent with the $0.03^{\rm o}/hr/gauss^2$ sensitivity determined from Test Station IV testing.

Magnetic sensitivity of the N57A rotated in a manner to simulate the EPM configuration (rotation axis 5° off plate center 1 - toward Z) was also tested. Analysis predicted 10 percent of the sensitivity of operation in the non-rotated mode would result. Test data indicates 15 percent to 23 percent of the sensitivity of operation in the non-rotated mode results when the N57A is rotated to simulate EPM.

Further related tests were run to verify analysis of the benefits of rotation about plate center No. 1. In the first of these tests, a larger coil was placed on the N57A and a magnetic field of magnitude sufficient to cause a rotor speed loss of 8 Hz was applied with no degradation of navigation performance. The second test resulted in no degradation of navigation performance when the polar gyro rotor was overheated approximately 10° F. Both of these tests experimentally verify the analytically predicted benefits of plate center No. 1 rotation.

In summary, the N57A magnetic sensitivity testing has verified the following:

- 1. In the rotated mode the N57A is relatively insensitive to magnetic fields and gyro rotor slowdown.
- 2. In the stationary mode the ESG demonstrates 0.03°/hr/gauss² to 0.065°/hr/gauss² magnetic sensitivity.
- 3. N57A2 and T/S IV magnetic sensitivity tests are in substantial agreement.
- 4. The EPM system sensitivity to rotor speed change and to rotor temperature change is significantly reduced from the N57A system.
- 5. Analytical predictions of the benefits of rotation are accurate.

Figure F-4. Navigation Run Velocity Error

Figure F-5. Magnetic Sensitivity Test - N57A2 Rotated

Reduce to

8/2

F14 F-5 Pa 50

Figure F-6. Magnetic Sensitivity Test - N57A2 Stationary (1800 Heading)

Tigure F-7. Magnetic Sensitivity Test - N57A2 Stationary (00 Heading)

APPENDIX G

FAST CYCLE PROGRAM DETAILED FLOW CHARTS

	FLOW CHART SYMBOLS	
\bigcirc	ENTRY POINT OR CONNECTOR	
	PROCESS	
	SUBROUTINE	
	BRANCH POINT	
	OFF-PAGE CONNECTOR	
\Diamond	OFF-PAGE BRANCH	

TABLE G-1. FAST CYCLE VARIABLES

Symbol	Index		Definition	Max Value	Word Length
	i	j	2011110011		(Bits)
BKGFG	-	-	Set True When in Background, False When in Fast or Slow Cycles	-	16
ISWD	-	-	Instrument Status Word	-	16
			= 3 Both Gyros Operating		
			= 2 Gyro 2 Operating		
			= 1 Gyro 1 Operating		
GSWD	-	-	Demod Routine Gyro Status, Perform BITE Test:	-	16
			3 — Both Gyros		
			2 - Gyro 2		
			1 - Gyro 1		
STNV	-		Slow Cycle Mode		16
			START = +		
			CALIBRATE = 0		
			NAVIGATE = -		
DEMF	-	_	Demod Routine Mode	_	16
			= 0 5 Hz Slip, Phase Lock		
			= 1 0 Slip, Phase Lock		
			= 2 5 Hz Stip, Freq Lock		
			= 3 0 Slip, Freq Lock		
			= -1 No Control		
NGMUM	-	-	MUM Data Not Good ≠0		16
SPINF	_	_	Hold Demod Routine in Freq Lock Mode ≠0,		16
			Perform Normal Mode Sequencing = 0		

TABLE G-1. (Cont)

Symbol	Index		Definition	Max Value	Word
	i	j	*		(Bits)
SIMFL	-	_	Simulator Flag	-	16
			0 — No Simulator (Normal)		
			+ - Start, Rotor Desuspended		
			- — Nav, Rotor Suspended, Spun		
			(Load SIMFL = 0)		
SYMOD	-	-	System Mode from C/D Panel Switch (Load SYMOD = X'15)	-	16
SYMDO	-	-	Old Value of C/D Panel Mode Switch	-	16
COUNT	-	-	Modulo 5 Counter to Sequence C/D Panel Output	-	16
PFLAG	-	-	Print Flag Set by Program . Address of List of Data Addresses (0 — No Print) (Load PFLAG = 0)	-	16
PRFLG	-	-	Buffered PFLAG (Load PRFLG = 0)	-	16
HPO UT	-	-	Length of HP Output Data Buffer (HPDO) HPOUT = 0 For No Output		16
HPIN	-	_	HP Input Data Buffer (HPDI) Contains Data If HPIN = 0	-	16
HPFLG	-	-	I/O Control Word from HP2100 HPFLG = + Micron Output Request HPFLG = - Micron Input Request	-	16
ENTER	-		Keyboard Input Code (SYMOD) (0 — No Input) (Load ENTER = 0)	-	16
LSRIN, MSRIN	-	-	Least and Most Significant Keyboard Input	-	16

TABLE G-1. (Cont)

Symbol i	Inc	dex		Mex Value	Word Longti (Bits)
	ı	, i	Definition		
ALV _{ij} BTV _{ij}	Gyro (1, 2)	Axis (1, 2, 3)	DC Offset and 3-Space Scale Factor, Phase Compensated $lpha$, eta	1.	16
GMUij	Gyro (1, 2, 3)	Axis (1, 2, 3)	ALU x BTU and Normalized GMU3 = GMU1 x GMU2	1.	16
DALij DBTij	Gyre (1, 2)	Axis (1, 2, 3)	α , β DC Offsets (Initialize From Cal Param)	1.	32
GMi	Gyro (1, 2)	-	Magnitude of (ALU x BTU)	1.	16
DVUi	Axis (1, 2, 3)	-	Compensated EMA Data — MICRON Frame	2 ⁴ fps	32
DVUBi	Axis (1, 2, 3)	-	Summed DVU;	2 ⁷ fps	16
DV\$F;	Axis (1, 2, 3)		Compensated EMA Data — Spin Frame	2 ⁷ fps	32
SEQ	-	-	Sequence Counter (64/Sec)	2 ¹⁵ Cycles	16
DFDi	Gyro (1, 2)	- I	Demod Control Freq Estimate	1302.08 Hz	32
SL	-	-	Demod Routine Reference Phase Angle	π Rad	16
SS, CS	-	-	Sin and Cos of SL	1.	16
RCi	Gyro (1, 2)	-	Demod Routine Phase Lock Reference Vector — Cal Mode	1.	16
DMRi	Gyro (1, 2)	-	Demod Control Residual Phase/1/64 Second	1302.08 Hz	16
DMROi	Gyro (1, 2)	-	DMR _i Lagged 1/64 Sec	1 302.08 Hz	16
т	-	_	Demod Routine Mode Sequence Timer (64/Sec)	2 ¹⁵ Cycles	16

TABLE G-1. (Cont)

Symbol	Index		Definition	Max Value	Word Longti
	i	i			(Bits)
ALN _{ij} BTN _{ij}	Gyro (1, 2)	Axis (1, 2, 3)	Normalized ALU and BTU	1.	16
ABS _i	Gyro (1, 2)	-	Length of (ALU + BTU)/2	1.	16
RTIME	-	-	1 sec Clock	2 ¹⁵ sec	16
SMCS1	-	-	Smoothed Gyro No. 1 Case Temp	521 ⁰ F	16
SMCS2	-	-	Smoothed Gyro No. 2 Case Temp	521 ⁰ F	16
SMCA1		-	Smoothed Charge Amp No. 1 Temp	312.5 ⁰ F	16
SMCA2	-	_	Smoothed Charge Amp No. 2 Temp	312.5°F	16
SMEMA	-	-	Smoothed EMA Block Temp	312.5 ⁰ F	16
SMS1	_	-	Smoothed SEU No. 1 Temp	312.5°F	16
SMS2	-	-	Smoothed SEU No. 2 Temp	312.5°F	16
SMS3	-	_	Smoothed SEU No. 3 Temp	312.5°F	16
SMMX1	-	_	Smoothed MUX No. 1 Temp	312.5°F	16
SMMX2	-	_	Smoothed MUX No. 2 Temp	312.5°F	16
SMAIR	-	-	Smoothed Air Temp	312.5°F	16
SMBAT		=	Smoothed Battery Temp	312.5°F	16
SMTCM	-	<u>-</u>	Smoothed Converter Module Temp	312.5°F	16
SG AP _i	1, 2		Smoothed Gyro Gap	167.9 µin	16
CG AP:	1, 2	-	Compensated Rotor Temp	167.9 µ in	16

TABLE G-1. (Concluded)

Sunt at	Index		Definition	Max Value	Word Longth
Symbol	i.	i	Definition .	Max Vaus	(Bits)
CT _i , ST _i	Gyro 1, 2	-	Cos, Sin Polhode Damping Torque Angle	1	16
ALO,	Gyre 1, 2	_	Old Value of ALN;	1.	16
CD UI _i	1, 2, 3, 4, 5	-	CDU Input Data Buffer	-	16
EN	-	-	IAU Rotation Encoder Position	180°	16
CDUFL			= 1 If CDU Data Were Output Previous Fast Cycle = 0 Otherwise	-	16
KX0B	-	-	Integral of Battery Current	130 amp-sec	16
TMPK;	1, 2,, 8	-	Previous Value of Temp Control Loop Error Signals	1.	16
NGPP	-	-	Raw Data Transmission Counter (Negative)	2 ¹⁵	16
AOLD	-	-	Old Value of EN (Unscaled)	363 ⁰	16
AOLDR	-	-	2 Cycles Old Value of EN	363°	16
ROT8	-	-	Change in EN Over 1 Cycle	180°	16

TABLE G-2. FAST CYCLE CONSTANTS

Symbol	Definition		Value	Max Value	Scaled Value
DSLO	Demod Stip Frequency (5.086	i25 Hz)	0.025297 Rad	π	0.150045
DSL ₁	(Mode Determined by DEMF)	(0 Hz)	0	π	0
DSL ₂		(5.08625 Hz)	0.025297 Rad	π	0.158845
DSL ₃		(0 Hz)	0	π	•
K _{1S0}	Demod Control Gain, Slip-Phase	(Freq)	-(0.02376) (64)/Sec	# (1302.08)/Sec	-0.0003717
K _{2S0}	$(\tau = 1/8 \mathrm{Sec}, \zeta = 0.7)$	(Phase)	-(0.2073) (64)/Sec	π (1302.08)/Sec	-0.003244
K _{1S1}	Demod Control Gain, O Slip-Phase	(Freq)	-(0.1078 (64)/Sec	,,	-0.001678
K _{2S1}	$(\tau = 1/32 \text{Sec}, \zeta = 0.7)$	(Phase)	-(0.4741) (64)/Sec	"	-0.007416
K _{1S2}	Demod Control Gain, Slip-Freq	(Freq)	-8/Sec		-0.00199
K _{2S2}	(T = 1/8 Sec)	(Phase)	0	"	0
K _{1S3}	Demod Control Gain O Slip-Freq		-16/Sec		-0.00390
K _{2S3}	(τ = 1/16 Sec)	(Phase)	0	"	0
DT	Demod Control — Residual Freq	Scaling	64/Sec	π (1302.08)/Sec	0.0625829
TBMX	Demod Control BITE Threshold		Sin 60°	2	0.433
TXP	Case Expansion Coefficient		0.467 _{\mu} in./ ⁰ F	(167.9 μ in.	0.724559
ENMX	Encoder Max Value		319/[(320) (2)]	521 °F)2	0.4984375
ENBS	Encoder Bias		1/2 - ENMX	1	0.0015625
ENLIM	Encoder Wild Point Limit (0.13°)		6	214	0.000366

TABLE G-2. (Cont)

Symbol	Definition	Value	Max Value	Scaled Value
A2LST1		3.9331	4	0.98328
A2LST ₂		3.9331	4	0.98328
A2LST3		-0.9678	4	-0.24195
A2LST4		-0.9678	4	-0.24195
A2LST ₅	Temp Controller Gains	-0.8585	4	-0.24163
A2LST ₆		-0.6463	4	-0.16158
A2LST7		0.6463	4	0.16158
A2LST ₈		0.6463	4	0.16158
A3LST ₁		3.6796	4	0.919844
A3LST ₂		3.6796	4	0.919844
A3LST3		-0.9283	4	-0.23208
A3LST4	Temp Controller Gains	-0.9283	4	-0.23208
A3LST ₅	•	-0.8415	4	-0.21038
A3LST ₆		-0.6264	4	-0.1566
A3LST7		0.6264	4	0.1566
A3LST ₈)	0.6464	4	0.1566

TABLE G-3. THERM MEMORY MAP

```
Input
                                                                                                  Set Point
SEQ;
            SM
                                                                    TMLST
                                                                                                  ATLST
                                                                                                                                                                       (2^{-2})
              SMCS1 = SMCS1 + [TMG1
                                                                                            - ATMG1 - GND - SMCS1"]
                                                                                                                                                                        (2^{-2}) & CGAP1<sup>+</sup> = SGAP1<sup>+</sup> (TXP) (SMCS1<sup>+</sup>)
              SGAP1 = SGAP1 + [-SMGAP + GS01 + GND - SGAP1]
    1
              SMCA1 = SMCA1" + [TMCA1 - ATMC1 - GND - SMCA1"] (2"-2) & UGAP1 = SGAP1

SMCA2 = SMCA2" + [TMCA2 - ATMC2 - GND - SMCA2"] (2"-2)

SMEMA = SMEMA" + [TMCMA - ATME - GND - SMEMA"] (2"-2)
                                                                                                                                                                        (2<sup>-2</sup>)
(2<sup>-2</sup>)
                              = SMS1" + [TMS1
= SMS2" + [TMS2
= SMS3" + [TMS3
              SMS1 = SMS1"
                                                                                          - ATMS1 - GND - SMS1"]
                                                                                           - ATMS2 - GND - SMS2"]
                                                                                                                                                                        (2-2)
              SMS3
                                                                                          - ATMS3 - GND - SMS3"]
    7
                                                                                                                                                                        (2-2
              SMCS2 = SMCS2 + [TMG2
                                                                                           - ATMG2 - GND - SMCS2"]
                                                                                                                                                                         (2^{-2}) & CGAP2<sup>+</sup> = SGAP2<sup>+</sup> - (TXP) (SMCS2<sup>+</sup>)
              SGAP2 = SGAP2 + [-SMGAP + GS02 + GND - SGAP2]
             SMMX2 = SMMX2" + [BMX2 - TMX20 - GND - SMMX2"] (2-2) & D115 Battery Check
                                                                                                                                                                         (2^{-2})
              SMAIR = SMAIR + [BAIR
                                                                                          - TAIRO - GND - SMAIRT
  11
                                                                                                                                                                        (2-2)
              SMBAT = SMBAT + [BBAT - TBATO - GND - SMBAT]
  12
              SMMX1 = SMMX1" + [BMX1 - TMX10 - GND - SMMX1"]
SMTCM = SMTCM" + [BTCM - TCM0 - GND - SMTCM"]
                                                                                                                                                                        (2-2)
  13
                                                                                                                                                                         (2-2)
  14
THERM<sub>15</sub>
             TCALST
                                                                  A2LST TMLST
                                                                                                                  ATLST
                                                                                                                                                               A3LST
                                                                                                                                                                                      TMPK
              TCG1^{+} = TCG1^{-} - {(AG2)} (TMG1^{-} - ATMG1 - GND) - (AG3)
                                                                                                                                                                                  (TMPK<sub>0</sub>)] (2<sup>9</sup>)
                                                                                                                                                                                                                        TMPK_0 = TMG1 - ATMG1 - TMPK_1 = TMG2 - ATMG2 - TMPK_2 = TMCA1 - ATMC1 - 
              TCG2^+ = TCG2^- - [(AG2) (TMG2^- - ATMG2 - GND) - (AG3)
                                                                                                                                                                                  (TMPK<sub>1</sub>)] (2<sup>9</sup>)
              TCCA1+ = TCCA1- - [(-AC2) (TMCA1- - ATMC1 - GND) - (-AC3)
                                                                                                                                                                                  (TMPK<sub>2</sub>)] (2<sup>9</sup>)
                                                                                                                                                                                 (TMPK<sub>3</sub>)] (2<sup>9</sup>)
(TMPK<sub>4</sub>)] (2<sup>9</sup>)
              TCCA2+ = TCCA2- - [(-AC2) (TMCA2- - ATMC2 - GND) - (-AC3)
                                                                                                                                                                                                                        TMPK3 = TMCA2 - ATMC2 -
                                                                                                                                                                                                                        TMPK<sub>4</sub> = TMEMA - ATME -
TMPK<sub>5</sub> = TMS1 - ATMS1 -
              TCEMA+ = TCEMA- - [(-AE2) (TMEMA- - ATME - GND) - (-AE3)
              TCS1^{+} = TCS1^{-} - [(-AS2) (TMS1^{-} - ATMS1 - GND) - (-AS3)

TCS2^{+} = TCS2^{-} - [(AS2) (TMS2^{-} - ATMS2 - GND) - (AS3)
                                                                                                                                                                                 (TMPK<sub>5</sub>)] (2<sup>9</sup>)
  5
                                                                                                                                                                                 (TMPK<sub>6</sub>)] (2<sup>9</sup>)
  6
                                                                                                                                                                                                                        TMPK6 = TMS2
                                                                                                                                                                                                                                                                  - ATMS2 -
               TCS3+ = TCS3- - [(AS2) (TMS3- - ATMS3 - GND) - (AS3)
                                                                                                                                                                                 (TMPK<sub>7</sub>)] (2<sup>9</sup>)
                                                                                                                                                                                                                        TMPK7 = TMS3 - ATMS3 -
```

BKG (1-SEC RATE)

```
Loc - SM;
                                                                              Input - Loc
                                                                                                  Set Point - Loc
                                                                             TMG1 = 083B
                                                                 2D
                                                                                                  ATMG1
                                                                                                              = OD82
                                                                 2E AND 3C SMGAP = 0830
                                                                                                  GS01
                                                                                                              = OC26
 & CGAP1+ = SGAP1+ (TXP) (SMCS1+)
                                                                             TMCA1 = 083D
                                                                 2F
                                                                                                  ATMC1
                                                                                                              = OD84
 & DI15 Battery Check
                                                                             TMCA2 = 083E
                                                                                                  ATMC2
                                                                                                              = OD85
                                                                             TMEMA = 083F
                                                                 31
                                                                                                  ATME
                                                                                                             = OD86
                                                                             TMS1 = 085A
TMS2 = 085B
                                                                 32
                                                                                                  ATMS1
                                                                                                             = OD87
                                                                 33
                                                                                                  ATMS2
                                                                                                             = OD88
                                                                             TMS3 = 085C
                                                                 34
                                                                                                  ATMS3
                                                                                                             = OD89
                                                                             TMG2 = 083C
                                                                 35
                                                                                                  ATMG2
                                                                                                             = 0D83
                                                                 36 AND 3D SMGAP = 0830
                                                                                                  GS02
                                                                                                             = OC27
 & CGAP2+ = SGAP2+ - (TXP) (SMCS2+)
                                                                             BMX2 = 0840
                                                                                                  TMX20
                                                                 37
                                                                                                              = OC35
 & D115 Battery Check
                                                                             BAIR = 085D
                                                                 38
                                                                                                  TAIR0
                                                                                                              = OC36
                                                                             BBAT = 085E
                                                                 39
                                                                                                  TBATO
                                                                                                             = OC37
                                                                             BMX1 = 085F
BTCM = 0860
                                                                 3A
                                                                                                  TMX10
                                                                                                             = OC34
                                                                                                  TCMO
                                                                                                                 OC38
                                                                 3B
                                                                              Loc Set Point
 TMPK
                                                                  Input
                                                                                                        Output
                                                                                               Loc
                                                                                                                    Loc
                 TMPK<sub>0</sub> = TMG1 - ATMG1 - GND
TMPK<sub>1</sub> = TMG2 - ATMG2 - GND
TMPK<sub>2</sub> = TMCA1 - ATMC1 - GND
TMPK<sub>3</sub> = TMCA2 - ATMC2 - GND
TMPK<sub>4</sub> = TMEMA - ATME - GND
(TMPK<sub>0</sub>)] (2<sup>9</sup>)
(TMPK<sub>1</sub>)] (2<sup>9</sup>)
(TMPK<sub>2</sub>)] (2<sup>9</sup>)
(TMPK<sub>3</sub>)] (2<sup>9</sup>)
                                                                 TMG1
                                                                         = 083B ATMG1 = 0D82
                                                                                                       TCG1
                                                                                                                = 0804
                                                                 TMG2
                                                                         = 083C ATMG2 = 0D83
                                                                                                       TCG2
                                                                                                               = 0805
                                                                                                       TCCA1 = 0809
                                                                 TMCA1 = 083D ATMC1 = 0D84
                                                                 TMCA2 = 083E ATMC2 = 0D85
                                                                                                       TCCA2 = 080A
(TMPK4)] (29)
                                                                 TMEMA = 083F ATME = 0D86
                                                                                                       TCEMA = 0808
(TMPK<sub>5</sub>)] (2<sup>9</sup>)
                  TMPK5 = TMS1 - ATMS1 - GND
TMPK6 = TMS2 - ATMS2 - GND
                                                                 TMS1 = 085A ATMS1 = 0D87
                                                                                                       TCS1 = 080B
(TMPK 6)] (29
                                                                 TMS2 = 085B ATMS2 = 0D88
                                                                                                       TCS2
                                                                                                               = 0806
(TMPK7)] (29)
                  TMPK7 = TMS3 - ATMS3 - GND
                                                                 TMS3
                                                                         = 085C ATMS3 = 0D89
                                                                                                       TCS3
                                                                                                                = 0807
                                                                              Loc
                                                                 TMRF1 = 0861
                                                                 Set Point = Loc
                                                                  TC01 = 0C28
                                                                  TC02 = 0C29
                                                                  TSC1 = OC2A
                                                                  TSC2 = OC2B
                                                                  TSE = OC2C
                                                                  TSS1 = OC2D
                                                                  TSS2 = OC2E
                                                                  TSS3 = OC2F
```

APPENDIX H

BACKGROUND PROGRAM

DETAILED FLOW CHARTS

FLOW CHART SYMBOLS

ENTRY POINT OR CONNECTOR

PROCESS

SUBROUTINE

BRANCH POINT

OFF-PAGE CONNECTOR

OFF-PAGE BRANCH

ID	LSTX1	LSTY1	LSTZA	<u>i</u>
62	B24	-24.0	3.6	0
63	B15C	-15.0	2.25	1
64	B15	-15.0	6.0	2
65	B7	+ 7.5	1.125	3
66	BM7	- 7.5	1.125	4
67	BSC	+ 5.2	0.78	5
68	B12	+12.0	1.8	6
69	BM12	-12.0	1.8	7
70	B15S	+15.0	2.25	8
71	BM15S	-15.0	2.25	9
72	POS5	+ 5.0	2.0	10
73	MIN5	- 5.0	2.0	11
74	GND	0	1.0	12

ID	SEU	KMU		<u>i</u>
75	SMCS1	30°F	(KSMCS)	0
76	SGAP1	15µIN.	(GAPT2)	1
77	SMCA1	30°F	(KMUX2)	2
78	SMCA2	30°F	(KMUX2)	3
79	SMEMA	30°F	(KMUX2)	4
80	SMS1	30°F	(KMUX1)	5
81	SMS2	30°F	(KMUX1)	6
82	SMS3	30°F	(KMUX1)	7
83	SMCS2	30°F	(KSMCS)	8
84	SGAP2	15#IN.	(GAPT2)	9
85	SMMX2	50°F	(KINT)	10
86	SMAIR	50°F	(KAIR)	11
87	SMBAT	50°F	(KBAT)	12
88	SMMX1	50°F	(KINT)	13
89	SMTCM	50°F	(KINT)	14
90	CGAP1	2μIN.	(GOT)	15
91	CGAP2	2μIN.	(GOT)	16

TABLE H-1. BITE CONSTANTS

SYMBOL	DEFINITION	VALUE	MAX VALUE	SCALED VALUE
KMUX ₁	SEU Delta Overtemp Limit	30°F	312.5°F	0.096
KMUX ₂	C/A, EMA Delta Overtemp Limit	30 ⁰ F	312.5°F	0.096
KINT	Uncontrolled Internal Temp	50 ⁰ F	312.5°F	0.16
	Delta Overtemp Limits	A		
KAIR	Inlet Air Delta Overtemp Limit	50 ⁰ F	312.5°F	0.16
KBAT	Battery Delta Overtemp Limit	50°F	312.5°F	0.16
DVG	Accelerometer Reasonableness Reference	$\left(\frac{32.174}{8}\right)^2 \text{ fps}^2$	2 ¹⁴ fps ²	9.8721 ⁴
DVBIT	Accelerometer Reasonableness Threshold	(.068)DVG	2 ¹⁴ fps ²	2 ⁻¹³
VGMX	Max Velocity Threshold	2 ¹¹ fps	2 ¹² fps	2-1
OBDT1	System-on-Battery Drain Per $\frac{1}{8}$ sec $\binom{\text{Subr.}}{\text{Therm}}$	(10.5) 8 mp-sec	130	0.0101
OBDT2	28 VDC Backup Drain Per Second	0.5 amp-sec	130	0.00385
GOT	Rotor Delta Overtemp Limit	2 μin.	167 µin.	0.0120
GAPT2	Unsafe Gap Tolerance	15 µin.	167 μin.	0.0898
GMO	Mum Magnitude Reference	0.9	1	0.9
DGM	Mum Magnitude Threshold	0.05	1	0.05
ORTH	Spin Orthogonality Threshold	Sin 15 ⁰	1	2-2
DFR	Demod Frequency Threshold	10 Hz	1302.08 Hz	0.00768
ENBIT	IAU Rotation Motor BITE Threshold	0.080	π rad	0.000444
KSMCS	Gyro Delta Overtemp Limit	30 ⁰ F	521 ⁰ F	.0576
PVPV	Temp Monitor Reference Voltage Scale Factor	45033	1	45033

TABLE H-2. BACKGROUND VARIABLES

	INDE	X		MAX	WORD
SYMBOL	i	j	DEFINITION	VALUE	LENGT
NVCL	-	-	CAL/Nav Mode Switch Command	-	16
SMRF	-	-	Smoothed Temp. Mon. Ref. Volts	6.6666V.	16
DVR	-		Temp. Mon. Ref. Volts. Correction	5. V.	16
SYNFL	-	-	Synchro Initialization Check Sequencer	-	16
VG	-	-	Ground Speed (Nav)	2500 fps	16
SDOT	-	-	SN ₁ · SN ₂ (Nav)	1	32
MODC	-	-	Mode Command from CDU	_	16
MODF	-	_	Functioning Mode	_	16
PRINH	-	-	HP-or-Printer Interface Flag (HP, +-Printer, O-Neither or Instrumentation.)	_	16
PFLAG	-	-	Print Flag	-	16
PRFLG	-	-	Buffered PFLAG	_	16
PTIME	-	-	Print Time	-	16
ALIST	-	_	Address of Print List	_	16
DPTIME	-	-	Print Time Interval	-	16
HPDI _i ,HPDO _i	1,,63	-	HP Input & Output Buffers	-	16
GSWD	-	-	Gyro Status Word	-	16
STDSP	-	-	Display Status Word	-	16
BITE	1,,8	-	BITE Flags	-	16
LSRIN, MSRIN	-	_	Least and Most Significant CDU Input Registers	-	16
ENTER	-	-	Keyboard Entry Flag	-	16
ROTC	-	-	Time of Last Rotator Turnaround	2 ¹⁵ Cycles	16
ENP	-	_	Previous Value of EN (1 Sec old)	π rad	16
SIMFL	-	-	Simulator Flag: IF SIMFL # 0, Simulate	_	16
DMOD _i	1,2		Demod Ref. Frequency	1302.08 Hz	16
HZCi	1,2		Rotor Speed	1302.08 Hz	16
SYMOD	- "	-	CDU Input Mode Word	-	16
ATMG	1,2		Gyro Temp Point Set	521 °F	16
ATMS	-	-	SEU Temp Set Point	312 ⁰ F	16
ATME	-	_	EMA Temp Set Point	312 ⁰ F	16
ATMC;	1,2	_	Charge Amp Temp Set Point	312 ⁰ F	16

TABLE H-3. BUILT-IN TESTS

Bite	Word/				Tested In	
No.	Bit	Condition		Mode	Subroutine	Action
•	1/15	Eset evels incomnists at next PIR1 interrint		All	PIR1 Intervint	Continue
. 7	1/14	SPARE				
8	1/13	System parallel I/O busy (STO 1 = 1) (Lab only)		All	FST64 & Int. Timer	Continue
4	1/12	Failed to read HPFLG from HP2100 (Lab only)		₩.	Inout	Continue
ro	1/1	Unrecognized input data code from HP2100 (Lab only)	only)	All	Background	Continue
9	1/10	DPU I/O test word failure		All	FASTC	Continue
1	1/9	Excessive Rotor Excursion (Biomation trigger)		1	PIRO interrupt	Desuspend & Shutdown
•	1/8	Suspended at entry to system checks, Z heat, or suspend modes	spend modes	Start	TCI' = 1, 2, 3	Abort mode to idle
6	1/1	Not suspended at entry to suspended heat mode		Start	TC1' = 5	Abort mode to idle
2	1/6	No preload in Z-heat mode, or failure to suspend		Start	TCI' = 2, 3	Abort mode to idle
=	1/5	EMA Counter: X ≠ Y		Start	Charge Mon.	Continue
12	1/4	EMA Counter: Y ≠ Z		Start	Charge Mon.	Continue
13	1/3	EMA Counter: Z # 40 kHz		Start	Charge Mon.	Continue
14	1/2	SPARE				
15	1/1	APARE				
16	2/15	Mode time out: System checks (TCI' =	(TCI' = 1, Limit = 1805 sec)	Start	Start	Abort mode to idle
11	2/14	Mode time out: Z-Heat (TCI' =	(TCI' = 2, Limit = 3.5 min)	Start	Start	Abort mode to idle
18	2/13	Mode time out: Suspend (TCI' =	(TCI' = 3, Limit 120 sec)	Start	Start	Abort mode to idle
19	2/12	Mode time out: Charge monitor (TCI' =	(TCI' = 4, Limit = 3 sec)	Start	Start	Abort mode to idle
20	11/2	Mode time out: Suspended heat (TCI' =	(TCI' = 5, Limit = 40 sec)	Start	Start	Abort mode to idle
21	2/10	SSI	(TCI' = 6, Limit = 3 sec)	Start	Start	Abort mode to idle
22	5/9	Mode time out: Spin Gyro No. 1 (TCI'	(TCl' = 7, Limit = 15 sec)	Start	Start	Abort mode to idle
23	8/2	0.1	(TCI' = 8, Limit = 60 sec)	Start	Start	Abort mode to idle
24	1/2	Mode time out: (not assigned) (TCI' =	(TCl' = 9, Limit = 15 sec)	Start	Start	Abort mode to idle
25	5/6	Mode time out: Spin Gyro No. 2 (TCI' =	(TCl' = 10, Limit = 15 sec)	Start	Start	Abort mode to idle
56	5/2	Mode time out: Damp Gyro No. 2 (TCI'	(TCl' = 11, Limit = 60 sec)	Start	Start	Abort mode to idle
27	2/4	Mode time out: (not assigned) (TCI':	(TCI' = 12, Limit = 15 sec)	Start	Start	Abort mode to idle
28	2/3	Mode time out: Temp stabilization (TCI':	(TCI' = 13, Limit = 5 min)	Start	Start	Abort mode to idle
53	7/2	Mode time out: High freq Degauss (TCI'	(TCI' = 14, Limit = 3 sec)	Start	Start	Abort mode to idle
30	1/2	Mode time out: Standby (TCI':	(TCI' = 15, Limit = 3 sec)	Start	Start	Abort mode to idle

TABLE H-3. (Cont)

			Tested In	
	Condition	Mode	Subroutine	Action
2	Gyro No. 1 rotor speed exceeds tolerance (DEMOD freq ±10 Hz)	Nav	Nav bkgnd	Continue
2	Gyro No. 2 rotor speed exceeds tolerance (DEMOD freq ±10 Hz)	Nav	Nav bkgnd	Continue
0	Gyro No. 1 rotor positioning error exceeds 6 deg	Start	Standby	Continue
2	Gyro No. 2 rotor positioning error exceeds 6 deg	Start	Standby	Continue
를	Redundant axis changing BITE	Nav	SPTNV	Continue
.5	Align north gyro drift bias estimate exceeds .07 deg/hr	Align	Align	If in START desussend
5	Gyro No. 1 exceeds large charge threshold	_		& resuspend.
2	Gyro No. 2 exceeds large charge threshold	Start	Chg mon.	After 6 failures shutdown.
2	Gyro No. 1 exceeds small charge threshold Temporarily	88	88	If in NAV, shutdown.
yro	Gyro No. 2 exceeds small charge threshold 📝 disabled	Nav	, cg	
yro	Gyro No. 1 DEMOD phase lock lost	All	DEMOD	Continue
yro	Gyro No. 2 DEMOD phase lock lost	All	DEMOD	Continue
SPARE	W			
SPARE	W			
APARE	W			
ser	Reserved for system checks mode (TCI' = 1)			
TE	BITE's at power turn-on.			
at p	Not presently implemented.			
				•
Ite	Battery overtemp during fast charge	Start	TCl' = 1	Delay 1 min, then shutdown.
atte	Battery test failed	Start	TCl' = 1	30 min battery charge, then
				abort to idle.

TABLE H-3. (Cont)

Bite	Word/				Tested In	
No.	Bit	Condition		Mode	Subroutine	Action
19	5/15	SPARE				
62	5/14	-24 V reg pwr supply exceeds tolerance	(±3.6 V)	All	Background	
63	5/13	-15 V reg (Crit) pwr supply exceeds tolerance	(±2.25 V)	All	Background	
64	5/12	-15 V unreg pwr supply exceeds tolerance	(¥6.0 V)	All	Background	
65	5/11	+7.5 V reg pwr supply exceeds tolerance	(±1.125 V)	All	Background	Set Bite and shutdown if
99	9/10	-7.5 V reg pwr supply exceeds tolerance	(±1.125 V)	All	Background	tolerance is exceeded on
29	6/9	+5.2 V reg (C) pwr supply exceeds tolerance	(±0.78 V)	All	Background	5 consecutive samples
89	8/9	+12 V reg pwr supply exceeds tolerance	(±1.8 V)	All	Background	
69	2/5	-12 V reg pwr supply exceeds tolerance	(±1.8 V)	All	Background	
02	9/9	+15 V reg (S) pwr supply exceeds tolerance	(±2.25 V)	All	Background	
۲	2/2	-15 V reg (S) pwr supply exceeds tolerance	(±2.25 V)	All	Background	
72	5/4	+5 V ADC reference exceeds tolerance	(±2.0 V)	All	Background	
73	5/3	-5 V ADC reference exceeds tolerance	(±2.0 V)	All	Background	
74	2/5	Ground ADC reference exceeds tolerance	(±1.0 V)	All	Background /	
75	1/9	Gyro No. 1 case delta overtemp	(30 ₀ F)	AII	Background	
9/	6/15	Gyro No. 1 rotor delta overtemp	(15 µ in.)	All	Background	
11	6/14	Charge Amp No. 1 delta overtemp	(30 ₀ F)	All	Background	
82	6/13	Charge Amp No. 2 delta overtemp	(30 ₀ F)	All	Background	Set bite and shutdown if
79	6/12	EMA block delta overtemp	(30 ₀ F)	All	Background (temperature is greater than
88	6/11	SEU No. 1 delta overtemp	(30 ₀ F)	AII	Background	set point plus tolerance on
2	6/10	SEU No. 2 delta overtemp	(30 ₀ F)	All	Background	5 consecutive samples
82	6/9	SEU No. 3 delta overtemp	(30 ₀ F)	. IIV	Background	
83	8/9	Gyro No. 2 case delta overtemp	(30 ₀ F)	All	Background	
84	2/9	Gyro No. 2 rotor delta overtemp	(15 μ in.)	All	Background /	
82	9/9	MUX No. 2 delta overtemp	(50°F)	All	Background	
98	9/9	Inlet air delta overtemp	(50°F)	All	Background	Set bite and continue if
87	6/4	Battery delta overtemp	(50°F)	All	Background	tolerance is exceeded on
88	6/3	MUX No. 1 delta overtemp	(50 ₀ F)	All	Background	5 consecutive samples
88	6/2	Converter module delta overtemp	(50 ₀ F)	All	Background	
90	6/1	Gyro No. 1 GAP is greater than set point +2 μ in.		AII	Background	

TABLE H-3. (Concluded)

Bite No.	Word/ Bit	Condition		Mode	Tested In	Action
91	7/15	Gyro No. 2 GAP is greater than set point +2 μ in.		All	Background	Same as Bite No. 85-90
92	7/14	External memory power supply out of tolerance		All	Background	Continue
93	7/13	Memory check sum failure		All	Background	Continue
94	7/12	SPARE				
95	11/1	SPARE				
96	01/2	EMA pulse rate ≠ 1 g		Align	Nav bkgnd	Continue
57	6/1	SPARE				
86	8/1	Velocity is greater than 2048 ft/sec		Nav	Nav bkgnd	Continue
66	1/1	Gyro No. 1 MUM magnitude exceeds tolerance (0.9 ±.05)	1 ± .05)	Nav	Nav bkgnd	Continue
100	9/2	Gyro No. 2 MUM Magnitude exceeds tolerance (0.9 ±.05)	(£.05)	Nav	Nav bkgnd	Continue
101	1/5	Spin vector non-orthogonality exceeds 15 deg		Nav	Nav bkgnd	Continue
102	7/4	SPARE		Nav	Nav bkgnd	Continue
103	1/3	SPARE				
104	7/2	Roll synchro output BITE		ı	Nav bkgnd	
105	1/1	Pitch synchro output BITE	Temporarily	1	Nav bkgnd	
106	8/15	Heading synchro output BITE	disabled	ı	Nav bkgnd	
107	8/14	DC analog output No. 1 BITE		ı	Nav bkgnd	
108	8/13	DC analog output NO. 2 BITE		1	Nav bkgnd	
109	8/12	IAU rotator stopped moving		1	Nav bkgnd	Turn off rotator power, continue
110	8/11	28 vdc aircraft power loss		All	Background	Continue
11	8/10	400 Hz INU primary power loss, INU operating on battery	battery	All	Background	Continue
112	6/8	Converter test: DI01 # PD005	Temporarily	1	Background	
113	8/8	Converter test: DI02 #PD006	Disabled	ı	Background	
114	8/7	Converter test: DI03 #PD012		1	Background	
115	9/8	Noisy Roll converter data		1	Start bkgnd	
116	8/2	Noise pitch converter data		ı	Start bkgnd	
117	8/4	Noisy heading converter data		1	Start bkgnd	
118	8/3	Synchro output Bad		ı	Start bkgnd	
119	8/2	SPARE				
120	8/1	SPARE				

APPENDIX I

START PROGRAM

DETAILED FLOW CHARTS

	FLOW CHART SYMBOLS
\bigcirc	ENTRY POINT OR CONNECTOR
	PROCESS
	SUBROUTINE
	BRANCH POINT
	OFF-PAGE CONNECTOR
\Diamond	OFF-PAGE BRANCH

TABLE I-I. START PROGRAM MODES

		\$0	015
TCI	Mode	On	0#
•	Idle		x
1	System Checks		×
2	Heat	x	
3	Suspend		x
•	Charge Monitor		x
5	Suspended Z-Heat	x	
6	Low Frequency Degauss		X*
7	Spin 1	X	
	Damp 1		x.
•	Final Spin 1 (NA)		
10	Spin 2	x	
11	Damp 2		X.
12	Final Spin 2 (NA)		
13	Temp Stab.	x	
14	High Frequency Degauss		X.
15	Standby		×
16	Manual Charge Mon		×
17	Desuspond		×
18	Manual Brake (NA)	x	
19	Spin Motor Offset Cal		

^{*}For These Modes, SD 015 is Initially Off and is Turned on During the Mode.

TABLE I-2. START PROGRAM VARIABLES

	Index				Word
Symbol	i	j	Description	Max Value	Length (Bits)
TCI	– (Automatic 1–15 if Sigr	The state of the s	Start Mode (See Table I-1)	-	16
TCI'		-	TCI with Sign Bit Set 0		16
SMFLG	- 1	-	First Time Flag (= 0) and Sequence Counter in Mode	-	16
JUMPR	_	-	Starting Address of Mode Specified by TCI. Also Termination Flag (JUMPR = 0)	-	16
TSFLG	-	-	Positioning Routine Flag		16
CSPNP	-		Spinup Direction Pointer (CSPIN) (Values 0, 1, 2)	-	16
GYROM		K =	Gyro Pointer (1, 2)	-	16
BUTIM			Mode Time Limit		16

TABLE I-2. (Cont)

	Inde	x			Word Length	
Symbol	i j		Description	Max Value	(Bits)	
PFLAG	-	=	Print Flag	-	16	
FNTCH	-		Speed Adjust Routine Freq Goal (0 = Speed Adjust Complete)	1302.08 Hz	16	
SPEND	-	-	Charge Monitor Recycle Counter	-	16	
POINT	-	-	Address of Charge Monitor Subroutines	-	16	
ZTIME	-	-	High Current Z Host Timer	2 ⁹ Sec	16	
PHICG	-	-	Charge Monitor Fourier Analysis Phase	π Rad	16	
CCGB, SCGB	-	-	Cos and Sin Fourier Coefficients	5	16	
CHARG	Gyro (1, 2)	-	Charge on Rotor/Large Charge Limit	100	16	
TMS	- 1	-	Speed Adjust Routine Timer	2 ¹⁵ Cycles	16	
GAIN	-	-	Speed Adjust Routine Torquing Gain	1	16	
FSPIN	-	-	Spin Routine — Rotor Speed Goal	1302,08 Hz	16	
FSMC	-	_	Spin Routine — Initial Motor Frequency	1302.08 Hz	16	
MFSMC	-	-	Spin Routine — Max Motor Frequency	1302.08 Hz	16	
DFSMC	-	-	Spin Routine — Motor Freq Charge/Cycle	1302.08 Hz	16	
DELTA	-	-	Speed Detect Routine — MUM Freq Jitter	1302.08 Hz	16	
кт	-	,-	Speed Detect Routine — MUM Threshold Gain	1	16	

TABLE I-2. (Cont)

	Ind	lex			Word
Symbol	\1 1		Description	Max Value	Longth (Bits)
U	-	-	Speed Adjust Routine — Spin Direction	-	16
AMMO, AMM1, AMM2, AMM3	-	-	Speed Detect — MUM Magnitudes	1	16
SVDM	<u>-</u>	-	Speed Detect — Previous Demod Freq	1302,08 Hz	16
THRM	Gyro (1, 2)		Thermal Gradient Model — Gyro	167 μ in.	32
AXD, AYD, AZD BXD, BYD, BZD SXD, SYD, SZD	-	-	Spin Motor Outputs in Gyro Coordinates (Also AXD _i , i = 0, 1, 2, · · · 11)	1	16
SSTAT	_	-	Start Mode Status Bit (16-TCI') Set When Mode Complete	-	16
CSPIN _{ij}	(1, 2, 3)	(1, 2, 3, 4)	Spin and Degauss Matrix	1	16
THRME	-	-	Temp Stat. Routine — Thermal Gradient Model — EMA	312.5°F	32
PSPIN	-	-	Polar Spin Flag (1 = Polar Spin, 0 = Nov Spin)	-	-

TABLE I-2. (Cont)

	le le	n de x			Word	
Symbol	i	i	Description	Max Value	Longth (Bits)	
IFAM	-	-	Polhode Family (Region)	-	16	
			0 — Unidentified			
			1 — C Nbhd			
			2 — C Family			
			3 — Transition Zone			
			4 - A Family			
			5 - A None			
SGN	<u>-</u>	-	C Family Sign (0, π)	πRad	16	
ISIGN	-	-	C Family Sign Has Been Determined (-1)	-	16	
IPHAS		-	+A Family Identified (-1)	_	16	
			(Not Identified = 0)			
NMIN	-	-	Number of Min Per Polhode Period (1, 2)	-	16	
SPFLG	_	-	Spin Flag	-	16	
			0 — No Speed Adjust			
			- — Speed Adjust in Progress			
			+ — Inhibit Speed Adjust			
IFRZ	_	_	TH Extropolation Flag	_	16	
			0 — Do Not Extrapolate			
			Extrapolate			
			+ — Do Not Extrapolate and Check Max Threshold			
NPREV	_	_	Counter to Detect Successive Phase Reversals	_	16	

TABLE I-2. (Cont)

	Inde	x			Word
Symbol	i j		Definition	Max Value	Longth (Bits)
AMM	-	-	Smoothed MUM Magnitude	1	32
AMS _i	Filter Stages (1, 2, 3)	-	MUM Magnitude Filter Outputs	1	32
SEQUN	-	-	SEQ Threshold — Undamp Torque	215	16
SEQLT	-	-	SEQ Threshold — No Minimum	215	16
SEQWD	-	-	SEQ Thresheld — Minimum Time for Next Min	215	16
NF	-	-	Damping Complete Counter (-1)	-	-
XR3	-	-	Decrement NF	-	-
A MMS_i	(0,1,, 11)		AMM Data Storage for Max/Min Filter (AMM ₁₁ = -1)	1	32
PNTR	-	-	Pointer for AMMS List	-	-
D1	-	-	2-9 \(\sum_{i=-5}^{5} \) AMMS_{i+6}	1	32
D2	-	_	2-9 \(\sum_{i=-5}^{5} \) i AMMS _{i+6}	1	32
D3	-	-	$\sum_{i=-5}^{5} i^2 (2^{-9} \text{ AMMS}_{i+6}^{-D1/11})$	1	32
AMPK	-	_	Amplitude of Max or Min	1	32
PEAKN	-	-	Amplitude of Min Point	1	32
PEAKX	-	-	Amplitude of Max Point	1	32
TH	_	_	Phase Variable	π Rad	16

TABLE I-2. (Cont)

	Ind	lex			Word
Symbol	i j		D e finition	Max Value	(Bits)
тнх	-	-	Value of TH at Last Max Threshold Point	πRed	16
тно	-	- - -	Cardinal Value at Last Min Point $(0,\pi)$	π Red	16
FE	-	-	Extrapolation Frequency for TH	πRad/Cycle	16
TP	-	-	Polhode Period	2 ¹⁵ Cycles	16
AMMAX	-		Max Threshold Value	1	16
AMX;	(1, 2)	-	Past Values of PEAKX (2 = Oldest)	1	16
AMN _i	(1, 2)	_	Past Values of PEAKN (2 = Oldest)	1	16
SEQN, SEQN _i	(1, 2, 3)	-	Past Values of Time of Min (3 = Oldest) (SEQN = Current Min)	2 ¹⁵ Cycles	16
PP	-	_	Peak to Peak Amplitude (PEAKX - PEAKN)	1	32
PPN	-	-	Normalized PP (PP/PEAKX)	1	32
PPH	-	-	PPN 1/2	1	16
SMAX	-	-	Slope of Max Amplitudes	1	16
SMIN		-	Slope of Min Amplitudes	1	16
DMAX	-	_	Difference Between High and Low Mex	1	16
ISMAX	-	-	Data Invalid When Positive	-	16
ISMIN	-	_	Data Invalid When Positive	-	16
TA;	(1, 2)	_	TP Threshold When NMIN = 1, 2	2 ¹⁵ Cycles	16

TABLE I-2. (Cont)

	Ind	lex			Word
Symbol	i j		Definition	Max Value	Length (Bits)
TCi	(1, 2)	-	ATP Limits (TC1 ≤ ATP ≤ TC2)	2 ¹⁵ Cycles	16
ATP	-	-	Smoothed TP	2 ¹⁵ Cycles	16
NANG	-	-	Control Angles ANBHD	2 ¹⁵ Torque Units	16
CMAX	-	- '	AMM Threshold for CNBHD Control	1	16
GCAL	-	-	ANBHD Cal Sequence Counter	-	16
FLAG51	-	-	Indicates First Entry into NMIN = 1 in ANBHD with IPHAS = -1	-	16
THOS	-	-	THO Value in ANBHD, NMIN = 1	πRad	16
THA	-	-	A Pendulosity Component	1 Rad	16
GP ₁₂	-	- ANBHD Control Gain		2 ¹² Torque ·	16
THP	-	-	Torque Control Angle	π Rad	16
ICNBD	-	-	CNBHD Control Flag	_	16
			- Control in Progress O Reset		
NTQ '	-	-	Torque Amplitude (Current)	1	16
PPH _i	(1, 2, 4)	-	PPH Storage for ANBHD Cal	1 .	16
AMAX	-	-	Family Identification Threshold	1	16
TPA	-	-	Transition Zone TP Threshold — A Family Side	2 ¹⁵ Cycles	16
TPC	-	-	Transition Zone TP Threshold — C Family Side	2 ¹⁵ Cycles	16

TABLE I-2. (Concluded)

	Index				Word
Symbol	i	i	Definition	Max Value	Length
DEMF		-	Demod Routine Mode	-	16
SPINF	-	-	Holds Demod Routine in Freq Lock Mode IF # 0; Normal Mode Sequencing IF = 0	_	16
RTIME	-	-	1 Sec Clock	2 ¹⁵ Sec	16
BATST	-	-	= 0, Do Not Perform Battery Test = 1, Do Perform Battery Test (Load "1", Keyin "0")	-	16

TABLE I-3. START PROGRAM CONSTANTS

Symbol	Definition	-	Value	Max Value	Scaled Value
TIME;	Time Limit of i th Mode, i = TXP	(1)	1805 Sec	2 ¹⁵ Sec	
ıımc _i	Time Limit of F mode, F- TAP	(2)	3.5 Min	2 360	T.
		(3)	120 Sec		
		(4)	3 Sec		
		(5)	40 Sec		
		(6)	3 Sec		
		(7)	15 Sec		
		(8)	60 Sec		
		(9)	15 Sec		
		(10)	15 Sec		
		(11)	60 Sec		
		(12)	15 Sec		
		(13)	5 Min		,
		(14)	3 Sec		
		(15)	3 Sec		
DLGZ	Z Heat Gap Threshold	34 μ	in	167.9 μ in.	0.2025
GCNTZ	High Current Z Heat Predicted Gap Heating Rate	3 μ	In./Sec	671.7 μ In./2 ⁻⁶ Sec	0.000070
ZCAS	Z Heat Minimum Case Temp for Termination	15 ⁰ F		521 ⁰ F	0.02879
DFCG	Demod Slip Frequency During Charge Monitor	6.35	782 Hz	1302.08 Hz	0.00488
DLPCG	Demod Slip Phase Increment During Charge Monitor (2 ⁻⁶ Sec) (DFCG)	35.7	6274 ⁰	π Rad	0.1986819
CGSL	Charge Monitor Large Charge Threshold BITE	0.11	6	1	0.116
DDGZ	Z Heat Threshold	2 μ	ln.	671.7 μ In.	0.00298

TABLE I-3. (Cont)

Symbol	Definition	Value	Max Value	Scaled Value
GTH	Thermal Transient Decay Gain			
	(Getter Gyros)	2 ⁻⁶ /40.0	1	3.9\ -4 8.5\ -4
	(VACION Pump Gyros)	2 ⁻⁶ Sec/18.4 Sec	1	8.5\-4
KU	Rotor Temp Uncertainty Factor	$\frac{1}{0.5\mu\text{in./(0F)}^2}$	(521 ⁰ F) ² /167.9µin.	0.001237
GAPT	Temp Stabilization Complete Threshold	0.5 μ in.	167.9 μ in.	0.00298
GCNTS	Temp Stabilization Predicted Gap Heating Rate	0.5 μ in./Sec	(167.9) (64) μin./ Sec	0.465
DFSPN	Speed Adjust Routine — Termination Mode Threshold	1.9 Hz	1302.08 Hz	0.00146
DFADJ	Speed Adjust Routine Predicted Spinup Rate	5 Hz/Cycle	1302.08 Hz/Cycle	0.0039
ETH	EMA Thermal Time Constant	1/(64) (32)	1	2-11
FHEMA	EMA Fast Heating Rate	50° F/Min	(66)(64) 312.5 ⁰ F/ Min	0.416 4
TSPND	Safe Charge Amp Temp for Suspension	10°F	312.5°F	0.032
UPGZ	Suspended Z Heat Limit	17 μin.	167.9 μ in.	0.101
UPDGZ	Suspended Z Heat — Heating Rate	2.2 µ in./Sec	(167.9) μ in./Sec	2.047
AT	Stated Detect Routine AMMO Threshold	-2-4		-2-4

TABLE I-3. (Cont)

Symbol	Definition	Value	Max Value	Scaled Value
V40	EMA Precounter BITE Test Pulse Count		2 ⁹ Pulse	XA500
DV40	EMA Precounter BITE Test Pulse Variance	2 Pulse	2 ⁹ Pulse	2-8
THPOS	Rotor Positioning BITE Threshold (6°)	0.01	1	0.01
FHCNT	Fast Heater Gap Expansion Rate (80 0 F/Min) (0.467 μ in./0F)	0.623 μ in./Sec	(167.9)(64)µin./Sec	0.579 4
PPF	Damp — Termination Threshold	0.0007	1	0.9007
PPFLT	Damp — Inhibit Phase Reversal Threshold	0.01	1	0.01
AMAP	Damp — PPN Threshold for ANBHD	0.04	1	0.04
GPG	GP ₁₂ Reduction Factor in Case of Phase Loss	0.8		0.8
GTP	ATP Filter Gain	0.3935	1	0.3935
GAIN A	ANBHD Gain	0.7	1	0.7
GAIN1	SMC Electronics Gain (DC/2 nd Harmonic)	0.7	1	0.7
GAIN2	SMC Electronics Gain (Fundamental/2 nd Harmonic)	0.805/0.94		0.856

TABLE I-3. (Cont)

Symbol	Definition	Value	Max Value	Scaled Valu
GN1	MUM Magnitude Filter Gain (Light)	2 ⁻¹	1	2 ⁻¹
GN2	MUM Magnitude Filter Gain (Heavy)	2-2	1	2-2
Lag	Lag Introduced by Light Filter	2 Cycle	2 ¹⁵ Cycle	2-14
ALAG	Lag Introduced by Heavy Filter	7 Cycle	2 ¹⁵ Cycle	2.136 4
AMAXS	Family Identification MUM Mag Threshold (AMAX)	0.72	1	0.72
EPDS	DMAX Threshold — Detect DMAX #0 (0.025)	0.040	1	0.040
EPDMS	DMAX Threshold — Detect DMAX = 0	0.004	1	0.004
EPSCN	SMIN Threshold — <u>+</u> C Family Detect	0.001	1	0.001
EPSAN	SMIN Threshold — A Family Phase Reverse	0.001	1	0.001
EPS5	DMIN Threshold – ANBHD NMIN 1, 2 Test	0.001	1	0.001
KFREQ ₁	TA1 Factor	0.75	23	0.09375
KFREQ ₂	TA2 Factor	1.25	23	0.15625
KFREQ3	TC1 Factor	0.5	23	0.0625
KFREQ ₄	TC2 Factor	1.25	23	0.15625
KFREQ ₅	TPA Factor	1.5	23	0.1875
KFREQ ₆	TPC Factor	1.3	23	0.1625
TPO	TP Max Threshold	128 Cycles	215	2-8

TABLE I-3. (Cont)

Symbol	Definition	Value	Max Value	Scaled Value
POLAR	Polar Spin Up Matrix (3 X 4)	0.0	1	0.0
	Scaled (1 - 2 ⁻⁴)	0.9375	1	0.9375
		0.0	1	0.0
		-0.522252	1	-0.522252
		0.0		0.0
		0.778566	1	0.778566
		0.0	1	0.0
		-0.9375	1	-0.9375
		0.0	1	0.0
		0.778566	1	0.778566
		0.0		0.0
		0.522253	1	0.522253
NAVSP	Nav Spin Up Matrix (3 X 4)	0.722468	1	0.722468
	Scaled (1 - 2 ⁻⁴)	-0.580936	1	-0.580936
		-0.139536	1	-0.139536
		0.597280	1	0.597280
		0.707694	1	0.707694
		0.146130	1	0.146130
		0.014779	1	0.014779
		-0.201506	1	-0.201506
		0.915475	1	0.915475
		0.722468	1	0.722468
		-0.580936	1	-0.580936
		-0.139536	1	-0.139536

TABLE I-3. (Concluded)

Symbol	Definition	Value	Max Value	Scaled Value
V24	Nominal Voltage Magnitude	24	30	0.3
V15	Nominal Voltage Magnitude	15	30	9.5
V7	Nominal Voltage Magnitude	7.5	10	0.75
V5	Nominal Voltage Magnitude	5.2	10	0.52
V12	Nominal Voltage Magnitude	12	30	0.4
P15	Fractional Tolerance	0.15	1	0.15
P40	Fractional Tolerance	0.40	1	0,40
P10	Fractional Tolerance	0.10	1	0.10
P20	Fractional Tolerance	0.20	1	0.20
P025	Fractional Tolerance	0.025	1	0.025
P039	Fractional Tolerance	0.039	1	0.039
P02	Fractional Tolerance	0.02	1	0.02
SSTIM	Sure Start Time Interval Count	1 Sec	-	X'40
TCHRG	Battery Fast Charge Timer	1800 Sec	-	X'708
FCBAT	Battery Temp Limit During Fast Charge	70°F	312.5°F	0.224
TLG	Gyro Case Fast Warmup Threshold	-2 ⁰ F	521°F	-0.00384
TLCA	Charge Amp Fast Warmup Threshold	-2 ⁰ F	312.5 ⁶ F	-0.0064
TLS	SEU Fast Warmup Threshold	-2 ⁰ F	312.5°F	-0.0064
TLEMA	EMA Fast Warmup Threshold	-295	312.5°F	-0.0064

APPENDIX J

CALIBRATION DATA COLLECT PROGRAM DETAILED FLOW CHARTS

	FLOW CHART SYMBOLS
\bigcirc	ENTRY POINT OR CONNECTOR
	PROCESS
	SUBROUTINE
	BRANCH POINT
	OFF-PAGE CONNECTOR
\Diamond	OFF-PAGE BRANCH

1.05.

TABLE J-1. CAL DATA COLLECT PROGRAM VARIABLES

Symbol		ndex	Description	Max Value	Longi
	i	j			(Bits
NGP	-	-	Number of Gyro Data Points	215	16
NGS	-	-	Number of Gyro Samples/Data Point	215	16
NEP	-	-	Number of EMA Data Points	215	16
NES	-	-	Longth of EMA Data Point Collection (Number of Samples = 64 NES	2 ¹⁵ sec	16
IGS	-	-	Sample Counter Initialized to MGS	215	16
IES	-	-	Sample Counter Initialized to MES	215	16
GTIME	(1, 2)	-	Time Gyre Data Point Collection Complete	-	16
ETIME	(1, 2)	-	Time EMA Data Point Collection Complete (SEQ, RTIME)	-	16
DMP	· _	-	HP Output Mode Word Bit Set:		
			15 — Gyre 1 Data		
			14 - Gyre 2 Data		
			13 — EMA Data		
G _{ij}	Gyro (1, 2)	(1, 2, 23)	Gyro Fourier Analysis Results	2 ¹⁰ rad	32
GS _{ij}	Gyro (1, 2)	(1, 2, 23)	Seved Values of G	2 ¹⁰ rad	32
E,		-	EMA Least Squares Results		
	(1, 2, 3)		(∑ pulse)	2 ²⁴ pulses	32
	(4, 5, 6)		($\Sigma\Sigma$ pulso)	2 ³⁰ pulses	32
ES _i	(1, 2, 3)	-	Seved Values of E	2 ²⁴ pulses	32
	(4, 5, 6)			2 ³⁰ pulses	32
KE	_	-	EMA Least Squares Weighting Factor	26	16

TABLE J-2. CAL DATA COLLECT PROGRAM CONSTANTS

			Max Value	Scaled Value
DVO	Zero Acceleration Pulse Count (Use Integer Number of Pulses)	20000/64 pulse	2 ⁹ pulse	2-0 (312)
\$10	R Vector Update Threshold	sin 10°	•	6.17
DTC	Residual Demod Freq Scaling	84/sec	2604.16 Hz	0.0246

APPENDIX K

NAVIGATION PROGRAM DETAILED FLOW CHARTS

	FLOW CHART SYMBOLS
\bigcirc	ENTRY POINT OR CONNECTOR
	PROCESS
	SUBROUTINE
	BRANCH POINT
	OFF-PAGE CONNECTOR
\Diamond	OFF-PAGE BRANCH

COMA - COMMON ANGLE COMPENSATION ROUTINE

NOTE: $\mathrm{SF}_{\gamma\,\mathrm{iq}}\,\mathrm{is}\,\mathrm{PH}_{\gamma\,\mathrm{i}}\,\mathrm{IN}\,\mathrm{PARAMETER}\,\mathrm{LIST}$ (ALL 16 BIT) ALL PARAMETERS
ARE IN LIST PRMG_i

$$\begin{split} &X=2\;(TA_i^2-1/2)\\ &TC_j=TC_j^2+P_{ji}^2+TB_j^2-P32_i\;(TA_n\;TG_m+TA_m\;TG_n)\\ &+TA_j^2\;X\;(PD6_{ji}^2+X\;(PD5_{ji}^2+X\;(PD4_{ji}^2+X\;(PD3_{ji}^2+X\;(PD2_{ji}^2+X\;(PD1_{ji}^2+X\;P31_i^2))))))\\ &-TG_j^2\;(PT+X\;(P33_i^2+X\;(P34_i^2+XP35_i^2))-P4_i^2\;(TAG_m^2+TAG_n^2))\\ &(j,m,n)=(1,2,3),\;(2,3,1),\;(3,1,2) \end{split}$$

$$SN_0 = \begin{bmatrix} CXX \\ CXY \\ CXZ \end{bmatrix}$$

SCALES TO (1 - 2-22) VECTOR MAGNITUDE

{32 BIT}

AROL1 = $-\frac{1}{2}$ SR -(S60)(CR) + X'8000 AROL2 = $+\frac{1}{2}$ SR -(S60)(CR) + X'8000

APIT1 = $-\frac{1}{2}$ SP - (S60)(CP) + X'8000

APIT2 = $+\frac{1}{2}$ SP -(S60)(CP) + X'8000

AHDG1 = $-\frac{1}{2}$ SH -(S60)(CH) + X'8000

AHDG2 = $+\frac{1}{2}$ SH -(S60)(CH) + X'8000

 $ROL = ROL + (DR)(1/0.96\pi)$

 $PIT = PIT + (DP) (1/0.96\pi)$

 $HDG = HDG + (DH)(1/\pi)$.

TABLE K-1. NAVIGATION PROGRAM CONSTANTS

Symbol	Definition	Value	Mex Value	Scaled Value
AINV (32 Bit)	1/8 sec - Inverse of Earth Radius (Equatorial)	∆t ₅ /20925004 ft	2 ⁻²¹ fps ⁻¹	0.012527374
ER (32 Bit)	Earth Rate	7.292110 75 rad/	2 ⁻¹³ rad/sec	0.59737014
K _{th}	Vertical Damping — Altitude ($3\Delta t_{\rm g}/r$) (τ = 100 sec, ζ = 0.7)	0.03 ∆t _s	2-8	0.96
K _{2h}	Vertical Damping — Velocity $(1/\zeta^2 + 2) \Delta t_z / \tau^2 + 2w_e^2 \Delta t_z$	$(4^{-4} + 2w_s^2) \Delta t_s$	2 ⁻¹⁴ /sec	0.82549
K _{3h}	Vertical Damping — Bias ($\triangle t_y/\tau^3 \zeta^2$)	-2-6 At,	2 ⁻²⁰ /sec ²	-0.262144
K _{hB}	Altimeter Bissing — Align (7 = 64 sec)	2-6 At,	1	2-9
K _{ZA}	Vertical Channel Align — Velocity ($2\Delta t_s/\tau$) (τ = 64 sec, ζ = 0.7)			-2-8
K _{3A}	Vertical Channel Align — Bias $(\Delta t_y/\tau^2\zeta^2)$	2-11 ∆t _s	2 ⁻⁶ /sec	2-8
KCAGE	Redundant Axis Caging ($\tau = 2^8$ sec)	-2 ⁻⁸ /sec	2 ⁻⁷ /sec	-2-1
K.	Gyro Bies Decay Gain (7 = 2 hr)	Δt ₂ /7200	2-6	1.11-3
LGAIN	DC Offset Filter — Low Gain ($\tau = 2^6$ sec)	2-6 Ats	1	2-9
HGAIN	DC Offset Filter — High Gain (τ = 2 sec)	2 ∆t _s	1	2-2
a ₉₀	Moesurement Noise	(2 ⁻⁶ fps) ²	2 ⁶ (fpc) ²	2-18
Q ₀₁	Initial Cov — (Vol, Vol)	33 (fps) ²	2 ⁶ (fps) ²	0.515625
Q ₀₂	Inital Cov — (Vel, Tilt)	-	Z ^A /g red fps	-0.5
Q ₉₆	Initial Cov — (Tilt, Tilt)	(2.52 dog) ²	2 ² /g ² rad ²	0.5
Q ₀₁₀	Initial Cov — (Drift, Drift)	(0.52 deg/hr) ²	2 ⁻¹² /g ² (rad/sec) ²	0.00002724

TABLE K-1. (Cont)

Symbol	Definition	Value	Max Value	Scaled Value
Q ₀₁₃	Initial Cov $ (\nabla, \nabla)$	0.17 mrad	(1 fps ² /g) ²	3.10-5
Q ₈₁₇	Process Noise — (Vel)	(0.00391 fps) ²	2 ⁶ (fps) ²	2-22
Q ₀₁₈	Process Noise — (Tilt)	(6.★ ⁷ rad) ²	2 ⁻⁴ /g ² (rad) ²	2-27
Q ₀₁₉	Process Noise — (Drift)	(3.89-4 dog/hr)2	2 ⁻¹⁸ /g ² (rad/sec) ²	2-30
Q ₀₁₆	Process Noise — (Thermal-Vel)	≈2 ⁻¹⁴ (fps) ²	2 ⁶ (fps) ²	1.192
K _T	Thermal Noise Decay Gain.(τ = 75 sec)	0.898825	1	0.898825
SEQF	Course Align Time	2 ⁵ sec	2 ⁻⁶ sec (LSB)	211
NF	Fine Align Time — Minimum	5 min	2 ⁻⁶ sec (LSB)	19200
NSH	Stored Heading Time — Minimum	2 ⁶ sec	2 ⁻⁶ sec (LSB)	212
TCGL	Time Between Charge Monitor (Long)	3600 sec	1 sec (LSB)	3600.
TCGS	Time Between Charge Monitor (Short)	1800 sec	1 sec (LSB)	1800.
VTURN	Max Velocity Change in 1 sec for Charge Monitor	10 fps	2 ¹² fps	0.00244
CGNL	Large Charge Threshold	TBD	1	TBD
CGNS	Small Charge Threshold	TBD	1	TBD
GRAV ₁ (32 Bit)	Gravity Coefficient	32.000032 fps ²	2 ⁶ fps ²	0.5013755
GRAV ₂ (32 Bit)	Gravity Coefficient	0.1000044 fps ²	2 ⁶ fps ²	0.00265147
GRAV ₃ (32 Bit)	Gravity Coefficient	3.005610 - 6/sec 2	2 ⁻¹¹ /sec ²	0.00631934
MAGC	GMU Magnitude Correction	(4.76) 2 ⁻¹⁶	2-5	0.00232

TABLE K-1. (Concluded)

Symbol	Definition	Value	Max Value	Scaled Value
VSCL	Scaling to Velocity Display	2 ¹² fps/2500 fps	2	0.8192
TEPS	Earth Ellipticity (2e/a) ∆t _s	4.805-11 fps-1	2 ⁻³⁴ fps ⁻¹	0.688054
VH S CL	Scaling to Altitude Display Extrapolation	4.05000*4	2-10	0.40765
PAINV	1/64 sec + Inverse Earth Radius — Display	2 ⁻⁶ soc/20025004 ft	(π/2500 fps) 2 ⁻¹⁵	0.0194706
HSCL	Scaling to Altitude Display	2 ¹⁷ ft/80337.5 ft	2	0.81535
KVA	Velocity Scaling for Drift Comp	-0.7957031	1	-0.7957031
ROTGL	Rotator Turn Around Threshold	0.60 deg	π rad	0.00383
M3	Align Filter Measurement Coefficient gT2/6	e 2 ⁵ /3	g 2 ⁹	0.0208333

TABLE K-2. NAVIGATION PROGRAM VARIABLES

Symbol	Inc	lex	Definition	Max Value	Word Length
Oy	1	i	Definition	IMEA VAIUE	(Bits)
MODC	-	<u>-</u>	Mode Command-Control/Display Panel 0 = Standby 1 = Stored Heading (Cal) 2 = Gyro Compass (Align) 3 = Nav		16
MODF	-		Functioning Mode (Same Code as MODC)	-	16
RTIME	-	-	1 sec Clock	2 ¹⁵ sec	16
STDSV	-	-	Status Display Word to Control/Display Panel	-	16
CGFLG	-	_	Charge Monitor Flag, $ eq$ 0 Charge Monitor in Progress	_	16
TCG	-	_	Value of RTIME for Next Scheduled Charge Monitor	2 ¹⁵ sec	16
DVMAG	-	_	Velocity Change Over 1 sec Interval	2 ¹² fps	16
LATC	-	-	Initial Latitude (Keyboard Input)	*	32
LONG	-	-	Initial Longitude (Keyboard Input)	π	32
LATR	-	-	Check Point Latitude		32
LONR	_	<u>_</u>	Check Point Longitude	π	32

TABLE K-2. (Cont)

Symbol	In	dex	Definition	Max Value	Word
	i	i		2	(Bits
GMG _{ij}	Gyre (1, 2, 3)	Axis (1, 2, 3)	Uncompensated?(YGi)-Gyro Frame	1	16
GGD	-	_	GMG ₁ · GMG ₂	1	16
DGG	-	-	1 - GGD ²	1	16
GD ij	Gyro (1, 2)	(1, 2, 3, 4)	$DG_{i1} = \Delta^{\gamma}_{i} \cdot \Delta^{\gamma}_{i} + (2^{-12} - 2^{-16})$ $DG_{i2} = \gamma_{GK} \cdot \Delta^{\gamma}_{i} (K \neq i)$ $DG_{i3} = \gamma_{G3} \cdot \Delta^{\gamma}_{i} / DGG$ $DG_{i4} = DG_{i2} / DGG$	2 ⁻⁵ rad	16
GM _{ij}	Gyro (1, 2, 3)	Axis (1, 2, 3)	Compensated 7 (7 _{Ci})-MICRON Frame	1	32
ET jj	Row (1, 2, 3)	Column (1, 2, 3)	Delta Velocity Correction Matrix (7)	2 ⁻⁵ rad	16
ETO ij	Row (1, 2, 3)	Column (1, 2, 3)	Old ET Matrix	2 ⁻⁵ rad	16
GMGC _{ij}	Gyro (1, 2, 3)	Axis (1, 2, 3)	Compensated γ -Gyro Coordinates (γ_{G_i})	1	16
DVM;	Axis (1, 2, 3)	-	Delta Velocity From Fast Cycle DVUB; MICRON Coordinates	2 ⁷ fps	16
EXP	-	-	Exponential Decay	1	32
BS	Gyro (1, 2)	Axis (1, 2, 3)	Drift Rate Compensation Spin Frame	2 ⁻¹⁵ rad/sec	16
DVS;	Axis (1, 2, 3)	-	Compensated Delta Velocity-Spin Frame	2 ⁷ fps	32
GMDOT	-	-	GM ₁ · GM ₂ Filtered	1	32
DDOT	-	-	GM _{DOT} + S _{DOT}	1	32
v,	Axis (1, 2, 3)		Velocity	2 ¹² fps	32

TABLE K-2. (Cont)

Symbol	le le	Index	Definition	Max Value	Word Length
Cy	i	j	3 Stilliadii	IIIEA VOIGS	(Bits)
SN _{ij}	Gyro (1, 2, 3)	Axis (1, 2, 3)	RSA Vectors - Nav Frame	1	32
S _{DOT}	-	-	-sn ₁ · sn ₂	1	32
DSN	-	-	1 - S ² _{DOT}	1	32
KDSN	-	-	1/DSN	2	32
cxi	Axis (x, y, z)	-	Earth Polar Direction Cosines	1	32
ERDT _i	Axis (1, 2, 3)	-	ER _i * 1/8 sec + Residual	2 ⁻⁹ rad	32
THDT _{ij}	Gyro (1, 2)	Axis (1, 2, 3)	Drift Angle Change Over 1/8 sec + Residual	2 ⁻⁹ rad	32
ARDT _i	Axis (1, 2)	_	Vehicle Rate * 1/8 sec + Residual	2 ⁻⁹ rad	32
ALT	-	_	Altitude	2 ¹⁷ ft	32
ALTR	<u>-</u>	-	Reference Altitude (Input)	TBD	16
ALTB	-	_	Reference Altitude Bias	2 ¹⁷ ft	32
DALT	-	<u>-</u>	Altitude Error	2 ¹⁷ ft	16
BIASZ	-	-	Vertical Accelerometer Bias	2 ⁶ fps ²	32
GRAV	_	-	Gravity	2 ⁶ fps ²	32

TABLE K-2. (Cont)

Symbol	In	dex	Definition	Max Value	Word
	i	j	50111115011	Max Value	(Bits)
ALPHA	-	-	Angle From North to X Nav Axis (CCW)	π rad	32
LAT	-	-	Latitude	π rad	32
LON	-	-	Longitude	πrad	32
C _{SN ij}	Row (1, 2, 3)	Column (1, 2, 3)	Spin to Nav Transformation Matrix	1	16
CEij	Row (1, 2, 3)	Column (1, 2, 3)	Spin to Nav Transformation + ARO Correction Matrix	2 rad	16
GMB _{ij}	Gyro (1, 2, 3)	Axis (1, 2, 3)	Uncompensated γ -Body Frame	1	16
CBN _{ij}	Row (1, 2, 3)	Column (1, 2, 3)	Body to Nav Transformation Matrix [Only Compute (i,j) = (1,1), (2,1), (3,1), (3,2), (3,3)]	1	16
HDG	-	-	Heading (Load HDG = 0)	π rad	16
PIT		-	Pitch Angle	πrad	16
ROL	-	-	Rall Angle	πrad	16
EPS _i	Axis (1, 2)	-	Alignment Drift Rate Estimate	2 ⁻¹² rad/sec	32
VBAR _i	Axis (1, 2)	-	Average Velocity	2 ⁷ fps	32
a _i	(0, 1, 19)	-	Covariance Matrix and Noise Variances	Relative Scale See Constants Q _{Oi} for Initial Scale	32
K _{iF}	(1, 2, 3, 4, 5)	-	Alignment Reset Gains		
			K _{1F}	2	16
			K _{2F}	2 ⁻⁷ rad/fps	16
			K _{3F}	2 ⁻¹⁶ rad/sec/fps	16
			K _{4F} , K _{5F}	2 ⁻³ fps ² /fps	16
KURVX			Earth Curvature Terms	2 ⁻²¹ (fps) ⁻¹	32
KURVY			* 2 ⁻³ sec	2 ⁻²¹ (fps) ⁻¹	32
KURVC				2 ⁻³⁶ (fps) ⁻¹	16

TABLE K-2. (Cont)

Index		Definition	Max Value	Lengt
i	j			(Bits
-	-	Velocity North, East, Down — Display	2500 fps	32
-	-	Ground Speed	2500 fps	16
-	-	Velocity Change 1/64 sec — North, East	2 ⁵ fps	32
Axis (1, 2, 3)	-	Velocity Change 1/64 sec — Nav Frame	2 ⁵ fps	32
-	-	Acceleration North, East, Down	512 fps ²	32
-	-	Display Latitude, Longitude	πrad	32
-	-	Latitude, Longitude Check Point Correction	πrad	32
-	-	Control Flag ≠0 Means Apply Control in Slow Cycle Routines	-	16
		(LSB) Bit 15 - Position Control		
		Bit 14 — Velocity Control		
		Bit 13 — Tilt Control		
Axis (1, 2, 3)	-	Altitude Change — MICRON Frame	1 rad	16
11, 2, 0/	-	Altitude Change — Body Frame	1 rad	16
-	-	Roll, Pitch Change	1/0.96 rad	16
-	-	Heading Change	1 rad	16
-	-	Sin/Cos of Roll, Pitch, Heading	1/0.96	16
	-		- Velocity North, East, Down - Display - Ground Speed - Velocity Change 1/64 sec - North, East Axis (1, 2, 3) - Velocity Change 1/64 sec - Nav Frame - Acceleration North, East, Down - Display Latitude, Longitude - Latitude, Longitude Check Point Correction - Control Flag ≠ 0 Means Apply Control in Slow Cycle Routines (LSB) Bit 15 - Position Control Bit 14 - Velocity Control Bit 13 - Tilt Control Axis (1, 2, 3) - Altitude Change - MICRON Frame - Aktitude Change - Body Frame - Roll, Pitch Change - Heading Change	- Velocity North, East, Down - Display - Ground Speed - Velocity Change 1/64 sec - North, East 25 fps - Velocity Change 1/64 sec - Nov Frame - Velocity Change 1/64 sec - Nov Frame - Acceleration North, East, Down - Display Latitude, Longitude - Display Latitude, Longitude - Latitude, Longitude Check Point Correction - Control Flag ≠ 0 Means Apply Control in Slow - Cycle Routines (LSB) Bit 15 - Position Control Bit 14 - Velocity Control Bit 14 - Velocity Control Bit 13 - Tilt Control Axis (1, 2, 3) - Altitude Change - MICRON Frame - Roll, Pitch Change 1 rad - Heading Change 1 rad

TABLE K-2. (Concluded)

Symbol	In	dex	Definition	Max Value	Word Length
	i	i			(Bits)
ACNV	-	-	1/64 sec/(Earth Radius Cos Lat)	π/2500 fps 2 ⁻⁹	16
SLAT, CLAT	-	-	Sin, Cos Latitude	1	32
SINAL, COSAL	-	-	Sin, Cos ALPHA	1	32
PF	-	-	Single Pole Flag + = South Pole Singularity - = North Pole Singularity	-	16
DELCX, DELSX, DELCY, DELSY	-	-	Rotating Bias Error Estimate — Align	2 ⁴ sec	32
AC, AS	-	_	\int_0^8 sec Cos, Sin of Rotation Angle	2 ³ sec	32
RC, RS		-	$\frac{1}{8 \text{ sec}} \int_0^8 AC, AS dt$	2 ³ sec	32
CEN, SEN	-	-	Cos, Sin of Rotation Angle (EN)	1	16
ROT8	-	-	Rotation Angle in 1/64 sec	πrad	16
RN, RE	-	-	Distance From Initialization	πrad	16
EPSN	_	_	North Drift Rate For Display	2 ⁻¹² rad/sec	16

TABLE K-3. FIVE-STATE ALIGNMENT FILTER

			fax Value	Scaled	
Parameter	Value	State Vector	Cov	Value	
a ₀	$(0.5, -0.1 \text{ ft})^2 = 2^{-8}, -2^{-12} (\text{fps})^2$		2 ⁶ (fps) ²	2-14, 2-18	
Q ₁	(33 fps) ²	2 ³ fps	2 ⁶ (fps) ²	0.515625	
a 2	(V, \$\phi)		2 ⁴ /g (r-fps)	-2 ⁻¹	
a 3	(∨, €)		$2^{-3}/g$ (r/s - fps)	0	
04	(V, ∇_c)		2^3 (fps – fps 2)	0	
a ₅	(V, ∇_s)		2^3 (fps · fps 2)	0	
a ₆	(2.52 ⁰) ² = 6.375 deg² 0.0019322r ²	2/g rad	$2^2/g^2 (r^2)$	2 ⁻¹	
a,	(φ, €)		$2^{-7}/y^2 (r^2/s)$	0	
a 8	$(\phi, \nabla_{\mathbf{c}})$		2/g (r·fps ²)	0	
σ ⁹	$(\phi, \nabla_{\mathbf{s}})$		2/g (r · fps ²)	0	
Q ₁₀	$(\epsilon, \epsilon) = (0.52^{\circ}/hr)^2$ 0.8-9 (fps3) ²	2 ⁻⁶ /g r/s	$2^{-12}/g^2 (r/s)^2$	2.724 ⁻⁵ ≈2 ⁻¹	
a ₁₁	(€, ∇ _c)		$2^{-6}/g \ (r/s \ fps^2)$	0	
a ₁₂	$(\epsilon, \nabla_{\varsigma})$		$2^{-6}/g \ (r/s \ fps^2)$	0	
a ₁₃	$(\nabla_{e'} \nabla_{e}) (0.17 \text{ mr})^2 g^2$	1 fps ²	1 (fps ²)	3.16 ⁻⁵ ≈ 2 ⁻¹⁵	
014	$(\nabla_{\mathbf{c}'}, \nabla_{\mathbf{s}})$		1 (fps ²) ²	0	
Q ₁₅	$(\nabla_{\rm s'}\nabla_{\rm s})~(0.17~{\rm mr})^2~{\rm g}^2$	1 fps ²	1 (fps ²) ²	3.16 ⁻⁵ ≈2 ⁻¹⁵	
Q ₁₆	(Therm V) = $7.6^{-5} (fps)^2 = 2^{-9}$		2 ⁶ (fps) ²	1.192 ⁻⁶ ≈2 ⁻²	
a ₁₇	V Noise = $0.153^{-4} (fps)^2 = 2^{-16}$		2 ⁶ (fps) ²	2-22	
Q ₁₈	ϕ Noise = 45 ⁻¹⁴ $r^2 = 2^{-41}$		2 ⁻⁴ /g ² (r ²)	2-27	
a ₁₉	ϵ Noise = 14.7 ⁻⁸ ($^{0}/hr$) ² = 3.453 ⁻¹⁸ ($^{r/s}$) ²		2 ⁻¹⁸ /g ² (r/s) ²	2-30	

APPENDIX L

EPM SIMULATOR DETAILED FLOW CHARTS

	FLOW CHART SYMBOLS
\bigcirc	ENTRY POINT OR CONNECTOR
	PROCESS
	SUBROUTINE
	BRANCH POINT
	OFF-PAGE CONNECTOR
\Diamond	OFF-PAGE BRANCH

*NOTE: SP, AND FQO, HAVE NO SIGN BIT

NOTE:

*SP; HAS NO SIGN BIT (0.5 SP; = LOGICAL RIGHT SHIFT)

**EQUIVALENT VECTOR EQUATIONS

$$\begin{array}{c} \text{WP = W}_{ABCi} \bullet ^{P}_{ABCi} \\ \text{W}_{ABCi} = \text{W}_{ABCi} + 2^{6} \left[\left(^{P}_{ABCi} \otimes \text{W}_{ABCi} \right) \text{STK} + \left(\text{WPW}_{ABCi} - ^{P}_{ABCi} \right) \text{CTK} \right] / \text{MUM}_{i} \\ \text{(VMUM}_{2}) & \text{(VMUM}_{1}) \end{array}$$

NOTE: SV = TEMPORARY (3 x 1) VECTOR ARRAY (SV_j, j = 1, 2, 3)

ZERO ALL INPUT WORDS IN SEU I/O BLOCK

$TEMP_{i} = TMPO_{j}; i = 1, 2, 8$	$WA_1 = WAO_1$
TROT ₁ = TROTO ₁	$WB_1 = WBO_1$
TROT ₂ = TROTO ₂	$WC_1 = WCO_1$
SP ₁ = SPO ₁	$WA_2 = WAO_2$
SP ₂ = SPO ₂ MUM ₁ = MUMO ₁	$WB_2 = WBO_2$
$MUM_2 = MUMO_2$	$WC_2 = WCO_2$
WS _{ii} = 0; i = 1, 2; j = 1, 2, 3	KB = -KA -KC
	$KCA = (KC/4KA)^{1/2}$
	ALSIM _{ij} = ALO _{ij}
	BTSIM _{ij} = BTO _{ij}
	$GND = 2^{-9}$
	POS5 = 0.9999
	MIN5 = -1
	TMRF1 = TMRF2 = -0.609
	DROT = X'0004

TABLE L-1. SIMULATOR PROGRAM CONSTANTS

Symbol	Definition	Value	Max Value	Scaled Value
GRAV _i	Gravity + Accelerometer Bies (K _V = 0.02 fps/pulse) (1 g = 25.135 pulse)	287.365 pulse	2 ¹¹ pulse	0.14031494
ce,		2-7	1	2-7
ce ²	Charge on the Rotor	2-7	1	2-7
PEO ₁	Accelerometer Bies + Shim, XEMA	312.5 + 0.14623	2 ¹¹ pulse	0.15265929
PEO ₂	Accelerometer Bias + Shim, YEMA	312.5 + 0.43867	2 ¹¹ puise	0.15280208
TXPS	Case Coefficient of Expansion	0.5578 μ in./°F	(167.9 µ in./521°F) ²	0.86544
KDM1	Frequency to Phase Conversion	1/64 sec	2 ⁷ /2 604 .16 Hz	0.3178906
KDM2	Demod Filter Cutoff Freq	(32 Hz) ²	2 ⁻⁷ (2604.16 Hz) ²	0.0193274
ERS _i	Earth Rate — (Body Coordinates)	-8.832456 ⁰ /hr	2 ⁻¹¹ rad/sec	-0.0876973
i = 1, 2, 3		-8.832456 ⁰ /hr	2 ⁻¹¹ rad/sec	-0.0876973
		8.379093 ⁰ /hr	2 ⁻¹¹ rad/sec	0.0831959
RHEAT	Rotor Heating — Z Heat Mode	1 μ in./sec	671.7 µ in./(1/64 sec)	2.32 x 10 ⁻⁵
RSPN	Rotor Heating — Spin Mode	2 ⁻⁸ μ in.	167.9 μ in.	3.1 x 10 ⁻⁵
CSPN	Case Heating — Spin Mode	0	312.5°F	0
KA	Polhode Parameter [(B - C)/A] 2 ⁻⁶ sec (T _A = 1 sec)	4.7794\ ⁻⁶ sec	2 ⁻² /(2 _π) (2460 Hz) 1.617\-5	0.295498
K _C	Polhode Parameter [(A - B)/C] 2 ⁻⁶ sec	4.30155 \ ⁻⁶ sec	2 ⁻² /(2 _#) (2640 Hz)	0.28095
KS	Maximum MUM Magnitude	0.875	1	0.875
DCB	Demod DC Bias	2-10	1	2-10
PA ₁ , PA ₂	A Axis Pedulosity Gyros 1, 2	0.02	1	0.02
28 ₁ , P8 ₂	B Axis Pedulosity Gyros, 1, 2	-0.05	1	-0.05
PC ₁ , PC ₂	C Axis Pedulosity Gyros 1, 2	-0.993		-0.993

TABLE L-1. (Cont)

Symbol	Definition	Value	Max Value	Scaled Valu
DROT	Azimuth Rotation	(3°/64)	360 deg	0.00013
SMCOF	SMC Offset	2-4	1	2-4
TROTO,	Initial TROT;	-139 μ in.	167.9 μ in.	-0.828
rroto ₂		–139 μ in.	167.9 μ in.	-0.828
SPO ₁	Initial SP; (No Sign Bit)	2457 Hz	1302.08 Hz	1.88699
SPO ₂		2460 Hz	1302.08 Hz	1.88928
NUMO,	Initial MUM _j	0.875	1	0.875
MUMO ₂		0.875	1	0.875
NAO,	Initial WA ₁ , WB ₁ , WC ₁	0.98481	1	0.98481
NBO,		0	1	0
NCO1		0.17365	1	0.17365
NAO ₂	Initial WA ₂ , WB ₂ , WC ₂	0.17365	1	0.17365
NBO2		. 0	1	0
NCO2		0.98481	1	0.98481
ALO ₁₁	Initial ALSIM — Gyro 1	0.90	1	0.9
ALO ₁₂		0	1	0
ALO ₁₃		0	1	0
BT0 ₁₁	Initial BTSIM — Gyro 1	0	1	0
BT0 ₁₂		. 0.9	1	0.9
BT0 ₁₃		0	1	0
ALO ₂₁	Initial ALSIM — Gyro 2	0	1	0
ALO ₂₂		0.9	1	0.9
ALO ₂₃		. 0	1	0
BT0 ₂₁	Initial BTSIM — Gyro 2	0	1	0
BT0 ₂₂		0	1	0
TO 23		0.9	1	0.9
CEG ₁₁	EMA to Gyro Frame Transformation	0.75	1	0.75
CEG ₁₂		-0.25	1	-0.25
CEG ₁₃		0.6123724	1	0.6123724
CEG ₂₁		-0.25	1	-0.25
CEG ₂₂		0.75	1	0.75

TABLE L-1. (Concluded)

Symbol	Definition	Value	Max Value	Scaled Value
CEG ₂₃	EMA to Gyro Frame Transformation	0.6123724	1	0.6123724
CEG ₃₁		-0.6123724	1	-0.6123724
CEG ₃₂		-U.6123724	1	-0.6123724
CEG33		0.5	1	0.5
TMPO ₁	Initial Temperatures (Relative to Set Point Reference	-391°F	521°F	-0.75
TMPO2	Temp)	-391°F	521°F	-0.75
rMPO ₃		-234°F	312.5°F	-0.75
TMPO4		-234°F	312.5°F	-0.75
rMPO ₅		-234°F	312.5°F	-0.75
TMPO6		-234°F	312.5°F	-0.75
TMPO7		-234°F	312.5°F	-0.75
TMPO ₈		-234 ⁰ F	312.5°F	-0.75
MAS ₁	Thermal Mess	-0.00123°F	(521.°F) (2 ⁻¹⁶)	-0.15472
MAS ₂		-0.00123°F	(521°F) (2 ⁻¹⁶)	-0.15472
MAS ₃		-0.001325°F	(312.5°F) (2 ⁻¹⁶ ;	-0.27787
MAS ₄		-0.001325°F	(312.5°F) (2 ⁻¹⁶)	-0.27787
MAS ₅		0.000622°F	(312.5°F) (2 ⁻¹⁶)	0.13044
MAS ₆		0.002306°F	(312.5°F) (2 ⁻¹⁶)	0.48360
MAS,		0.002306°F	(312.5°F) (2 ⁻¹⁶)	0.48360
MAS ₈		9.001325°F	(312.5°F) (2 ⁻¹⁶)	0.27787
FHG	Fast Heater — Gyro	0.021°F	521°F	40 x 10 ⁻⁶
FHCA	Fast Heater — Charge Amp	0.21°F	312.5°F	67 x 10 ⁻⁶
HEMA	Fast Heater — EMA	0.021°F	312.5°F	67 x 10 ⁻⁶
HSE	Fast Heater — System Electronics	0.021°F	312.5°F	67 x 10 ⁻⁶
rof	Temp Control Offset	2-5	1	2-5
rmgn	Temp Control DC Offset Sensor Gain	-0.2	1	-0.2
MGN	SMC DC Offset Sensor Gain	-0.5	1	-0.5

TABLE L-2. SIMULATOR PROGRAM VARIABLES

Symbol	Ind	lex	Definition	Max Value	Word
	i	j			(Bits)
TEMP	(1, 2, 8)	-	Simulated Temperatures	521°F i = 1,2 312.5°F i = 3-8	32
TROT _i	Gyro (1, 2)	-	Rotor Temp	167.9 μ in	32
SPD	<u>-</u>	-	TD Frequency (Dummy Variable) (No Sign Bit)	1302.08 Hz	16
SP _i	Gyro (1, 2)	-	Rotor Speed (No Sign Bit)	1302.08 Hz	16
ALSIM _{ij}	Gyro (1, 2)	Axis (1, 2, 3)	Inertial a (Body Coordinates)	1	32
BTSIMij	Gyro (1, 2)	Axis (1, 2, 3)	Inertial $oldsymbol{eta}$ (Body Coordinates)	1	32
ws _{ij}	Gyro (1, 2)	Axis (1, 2, 3)	Spin Vector (Case Coordinates)	2604.16 Hz	32
WA _i , WB _i ,	Gyro (1, 2)	-	Spin Vector (Rotor Coordinates) Normalized on Rotor Speed)	1	32
AS _i , BS _i , SS _i	Axis (1, 2, 3)	-	Spin Motor Commands Reordered into (x, y, z)	1	16
CROT	-	-	Cos of Platform Rotation Angle	-	16
SROT	-	-	Sin of Platform Rotation Angle	_	16
cosu	_	_	Cos Slip Angle	1	16
SINR	-		Sin Slip Angle	1	16
PEi	EMA (1, 2, 3)	-	EMA Pulses + Residual	2 ¹¹ pulse	32
PHi	Gyro (1, 2)	-	Net Demod Phase Stip	2 ⁸ # rad	32
DELTS	-	-	Slip Frequency	2604.16 Hz	16
FQO _i	Gyro (1, 2)	_	Previous Demod Command (No Sign Bit)	1302.08 Hz	16
MUM	Gyro (1, 2)	-	MUM Magnitude	1	16
K ₈	-	-	Polhode Parameter	1	16
KCA	_	_	Polhode Parameter	1	16

TABLE L-3. GYRO PARAMETER LIST SIMULATOR VALUES

Word	Parameter	Value	Scaled Value	Word	Parameter	Value	Scaled Value
1-24	DAL11 - DBT23	0	0	54	TCMO	130°F	0.366
				55	VROLD	4.06V	0.609
25	HZC1	2460 Hz	X'F1D0				
26	HZC2	2458 Hz	X'F1A2	56	HRSCL	0	0
27	TPNB1	1 sec	2-6	57, 58	LATC	330 51.26	0.1886796294
28	TPNB2	1 sec	2-6	59, 60	LONC	-1170 50.88	-0.6547111111
29	THA1	-1	-1	61, 62	ALTC	235 ft	0.0018
30	THA2	-1	-1	63, 64	SMHDG	0	0
31	GP121	0.5	0.5				
32	GP122	0.5	0.5	65	KRB1C	0	0
33	PHASE	900	0.5	66	KPB1C	0	0
				67	KHB1C	0	0
34	GD01	264 μ in.	X'16B0	68	KRB3C	0	0
35	GD02	256 μ in.	X'1600	69	KPB3C '	0	0
36	GS01	63μ in.	X'309C	70	KHB3C	0	0
37	G S0 2	62.8 μ in.	X'2FEC	71	ENO	0	0
				72	ROLO	0	0
38	TC01	-325.6°F	X'8000	73	PITO	0	0
39	TCO2	-325.60F	X'8000	74	PIT01	0	0
40	TSC1	-101.40F	X'B000				
41	TSC2	-101.4ºF	X'B000				
42	TSE	-101.4ºF	X*B000				
43	TSS1	-101.40F	X'B000				
44	TSS2	-101.4ºF	X'B000				
45	TSS3	-101.4ºF	X'B000				
46-49	Spare	-	-				
50	TMX10	159.8ºF	0.27064				
51	TMX20	159.8°F	0.27064				
52	TAIRO	95°F	0.478				
53	TBATO	80°F	0.526				

TABLE L-4. PRMA - EMA LIST

Simulator Values

Word	Parameter	Value	Scaled Value	
1, 2	∇ _{V1}	-312.64623р	-0.61063717	
3, 4	∇ _{V2}	-312.93867 _p	-0.61120834	
5, 6	∇v3	-312.5p	-0.61035156	
7, 8	KV11		-0.48)
9, 10	KV12		+0.16	
11, 12	KV13		-0.391918336	
13, 14	KV21	×>	+0.16	4.
15, 16	KV22		-0.48	CEG + 0.02 fps/p/2 ⁻⁵ fps/p +
17, 18	KV23		-0.391918336	\(
19, 20	KV31		+0.391918336	
21, 22	KV32		+0.391918336	
23, 24	KV33		-0.32	J
25	CBM11		-0.3535426	
26	CBM21		-0.3535426	
27	CBM31		0.8659989	
28	-CBM12		0.707085	
29	-CBM22		-0.707085	
30	-CBM32		0	
31	-CBM13		0.6123537	
32	-CBM23		0.6123537	
33	-свмзз		0.4999847	

TABLE L-5. $PRMG_1$ AND $PRMG_2$ - GYRO LIST Simulator Values

Word	Parameter	Value	Scaled Value
1-12	△cgm	0	0
13-80	Angle	0	0
81-119	Drift	0	0
120-126	Spare	0	0
127	SFA1	0.270	0.270
128	SFA2	0.270	0.270
129 7	\$FA3	0.270	0.270
130	PHB1	0	0
131	PHB2	0	0
132	РНВ3	0	•
133	PHA1	0	0
134	PHA2	0	
135	РНАЗ	0	0
136	SFB1	0.270	0.270
137	SFB2	0.270	0.270
138	SFB3	0.270	0.270

TO ASSESS ASSESS.

APPENDIX M

EPM THERMAL DESIGN AND ANALYSES

As throughout the design evolution of the MICRON INS, extensive thermal analyses were performed during Phase 2B. These analyses were made at both the INU and module levels and were essential as an aid and as confirmation of the EPM thermal design. INU level analyses consisted of setting up a 140-node thermal network model of the physical INU design and exercizing the network by means of the IBM 370 computer, using the Rockwell XF0014 General Thermal Analyzer Program. These computer analyses permitted parametric studies, by varying the network parameters, to determine system thermal design characteristics and requirements such as heater sizes and locations, control set points and control loop parameters for stable operation, system thermal responses to fast reaction and over-cooling transients and steady-state coldplate temperatures as a function of cooling air and environmental conditions. The module level analyses provided detail parts operating temperatures and thermal stresses as primary input data for reliability predictions, using coldplate temperature from the INU analyses as bases.

The requirements and objectives of the MICRON EPM thermal design were the following:

- 1. Temperature Control. Regulate inertial instrument and critical electronics temperature within limits prescribed by performance considerations within the specified ranges of cooling air and environmental conditions.
- 2. Electronics Cooling. Provide efficient cooling of non-controlled electronics to minimize temperature and maximize reliability throughout specified ranges of cooling air and environmental conditions.
- 3. Transient Conditions. Provide capability to meet specified thermal transient conditions, including cold-start fast reaction and overcooling.

The EPM thermal design, which evolved from extensive thermal analyses and from XN-77 and N57A experience, is depicted by Figures M-1 and M-2. The following design features were incorporated:

- 1. Maximum isolation of temperature controlled and non-controlled zones. The IAU and SEU thermally controlled regions are identified in Figure M-1.
- 2. Integral chassis coldplate cooling of MHU electronics with wedge-lock module retention. Isolated, externally finned IAU. No contact of cooling air contaminated with moisture and debris with circuit components. (Figure M-2).
- 3. External copper heat rail thermal shunts on electronic modules for efficient, predictable thermal performance.
- 4. Eight (8) proportional temperature control channels which use resistive heating and the DPU as the controller.
- 5. Four (4) fast reaction heater circuits which are controlled by DPU issued discretes via relays.

Figure M-1. INU Thermal Design Configuration

Figure M-2. INU Cooling Air Flow Schematic

The design heat load, excluding heaters, is given by Table M-1. Approximately 300 watts are dissipated under normal operation. Tables M-2 and M-3 list EPM temperature control heater and fast reaction heater characteristics, respectively. Maximum control heater power, i.e., all control heaters fully on as during startup, is 190 w. Nominal heater power at nominal cooling air flow conditions is 50-60 watts, as shown by Figure M-3. The total fast reaction heater power of 1770 watts provide warm up at the $80^{\rm o}$ F/min heating rate, requiring only 2 minutes of heating from $0^{\rm o}$ F start.

The EPM thermal design was developed and verified by extensive thermal analyses at both the INU and module levels. The INU level analyses consisted of synthesizing a thermal network (model) of the INU physical-thermal design and exercising the network by means of the IBM 370 computer, using the Rockwell XF0014 General Thermal Analyzer Program. These computer analyses permitted parametric studies, by varying the network parameters, to determine optimal system thermal design requirements and characteristics such as heater sizes and locations, sensor locations, control set points, control loop parameters for stable operation, system thermal responses to fast reaction and overcooling transients, and steady-state coldplate temperatures as a function of cooling air and environmental conditions.

Figure M-4 shows the thermal network of one-half of the INU. The relationship of the rotating IAU nodes to the IAU physical design is detailed in Figure M-5. Figures M-6 and M-7 are computer generated CRT plots showing thermal response of elements of the IAU to a typical fast reaction transient condition.

Module level thermal analyses were performed for each module type. These analyses consisted of hand calculations of component temperature rises relative to a reference coldplate temperature. The reference coldplate temperatures were determined by the computerized INU level analyses.

An example of a module level analysis is shown by Figure M-8 for the SEU No. 4 Module. (This example was chosen since it was the simplest module but still illustrated the procedure used.) A thermal balance algebraic expression was generated for each "rail" such as the rail for U1, Q7 and Q6, and temperature rises were calculated for each electronic part for module lock thermal contact, conduction along the copper rail, contact from rail to part case, and part case to junction, if applicable. Each hybrid package was treated as a single heat source. Additionally, the junction temperatures of the most highly stressed semiconductors of each hybrid were calculated. Table M-4 shows the thermal results of the SEU No. 4 analysis example.

TABLE M-1. MICRON EPM DESIGN HEAT LOAD

1001100		TO COM TATE		20
HEAT SOURCE		HEAT MUDE	SPIN/DAMP MODE	NORMAL OF
ELECTRONICS				
PSU NO. 1		52.0 W	52.0 W	52.0 W
U NO. 2		0.09	0.09	0.09
U NO. 3		15.0	15.0	15.0
2		25.0	25.0	25.0
INVERTER		65.0	65.0	65.0
U – MEMORY		10.9	10.9	10.9
DPU - CPU		14.9	14.9	14.9
DPU - 1/0		8.9	8.9	8.9
SEU NO. 4		4.7	4.7	4.7
SEU NO. 3		5.7	5.7	5.7
U NO. 2		2.7	2.7	2.7
U NO. 1		2.7	2.7	2.7
HV SWITCH, XFMR & MISC MHU		10.0	10.0	7.0
	SUBTOTAL	277.5 W	277.5 W	274.5 W
IAU				
CHARGE AMP ASSY (2)		8.7 W	8.7 W	8.7 W
		4.0	4.0	4.0
ESG (2) & HVPS		80.8	18.4	4.8
		118.4	100.4	0.5
MUTUR, ENCODER, ETC.		10.0	10.0	0.01
	SUBTOTAL	221.9 W	141.5 W	28.0 W

TABLE M-2. MICRON EPM TEMPERATURE CONTROL REQUIREMENTS

	Erm Len	EFM LEMPERATURE CONTROL REQUIREMENTS	UUIKEMENIS		
TEN	TEMPERATURE CONTROL HEATER LOCATIONS	NOMINAL HEATER POWER	MAXIMUM HEATER POWER	NOMINAL SET POINT	REGULATION
_:	ESG NO. 1	9 W	10 W	J017	0.25°C
2.	ESG NO. 2	S	10	71°C	0.25°C
6	EMA BLK/ESG MT	10	* 05	7100	0.25°C
4	CHARGE AMP NO. 1	S	15	71°C	0.8°C
ž.	CHARGE AMP NO. 2	LC.	15	710€	0.80€
9	SEU NO. 1	10	30	6300	0.90
	SEU NO. 2	10	30	63°C	306.0
œ	SEU NO. 3	10	30	900	1.00€
	TOTAL	W 09	190 W		
	* CONTROLLED BY EMA BLOCK SENSOR				
	30 W ON EMA BLOCK				
	20 W ON MOUNT				

TABLE M-3. MICRON EPM FAST REACTION HEATER REQUIREMENTS

FB	FR HEATER LOCATION	REQUIRED HEATER SIZE	ZE RELAY NO.**
IAU			
-	ESG NO. 1	M 09*	K5
2	ESG NO. 2	09*	K5
e.	EMA NO. 1	*40	K3
4	EMA NO. 2	*40	K3
5.	EMA NO. 3	*40	K3
6.	ESG MOUNT	280	K5
7.	EMA BLK	220	53
8	CHARGE AMP HOUSING	200	K4
	CHARGE AMP NO. 1	70	K4
<u>.</u>	CHARGE AMP NO. 2	0.2	K4
	INS	SUBTOTAL 1080 W	
SEU			
	SEU NO. 1	230 W	K2
3 %	SEU NO. 3	230	22
	SUI	SUBTOTAL 690 W	
	.01	TOTAL ***1770 W	
* *		EXISTING PART OF INSTRUMENT K5 OPENS WHEN AVERAGE TEMPERATURE OF ESG 1 AND ESG 2 EXCEEDS 145°F	EDS 145°F
	K4 OPENS WHEN AVERAGE TE	NJ OPENS WHEN EMA BLOCK TEMPERATURE EXCEEDS 159°F K4 OPENS WHEN AVERAGE TEMPERATURE OF CA 1 AND CA 2 EXCEEDS 159ºF	IS 1590F
*		KZ OPENS WHEN AVERAGE TEMPERATURE OF SEU 1, SEU 2, AND SEU 3 EXCEEDS 143ºF	3 EXCEEDS 143°F

Figure M-3. MICRON EPM Cooling Air Requirements

Figure M-4. MICRON EPM INU Thermal Network

A HEATERS (200 SERIES - CONTEOL;
300 SERIES - FAST REACTION)

O OTHER MODES

FIRED HEAT SOURCES

Figure M-5. EPM IAU Thermal Design

N = NODE NO.

Figure M-6. ESG Fast Reaction Thermal Response

Figure M-7. EMA Fast Reaction Thermal Response

MODULE THERMAL ANALYSIS - SEU NO. 4 EXAMPLE

Figure M-8. Module Thermal Analysis - SEU No. 4 Example

TABLE M-4. MODULE THERMAL ANALYSIS RESULTS, SEU NO. 4 EXAMPLE

COM	COMPONENT	PD-HEAT			14	11			RA	RATING	STRESS	SS
REF SYMBOL	30L	DISS (WATTS)	OC)	OC)	(OC)	0°C)	(°C)	OC)	Tj	PD	Ţ	PD
15	(3)	~.002	0.4	4.4	0~	0~	53.8	53.8	150	0.5	.230	.004
07	<u>(</u>	<.10	1.0	7.4	0.3	2.3	27.7	0.09	200	1.9	.200	.053
90	<u>(1)</u>	<.15	1.0	6.3	0.4	3.5	29.7	60.2	200	1.9	.201	.079
A1	(4)	.63	2.0	7.0	8.0	1.3	58.8	60.1	175		.234	
A2	(4)	.63	2.0	10.5	8.0	1.3	62.3	63.6	175		.257	
A8	(9)	.20	2.0	8.9	0.3	0.4	60.2	9.09	175		.237	
A3	(2)	.20	2.0	7.9	0.3	0.4	59.2	9.69	175		.231	
A4	(2)	.20	2.0	5.1	0.3	0.4	56.4	8.95	175		.212	
04	(2)	.40	2.0	4.2	2.5	8.0	27.7	65.7	200	8.75	.232	.05
05	Ē	.40	2.0	7.2	2.5	8.0	60.7	68.7	200	8.75	.250	.05
7	(2)	.40	2.0	7.8	2.5	8.0	61.3	69.3	200	8.75	.253	.05
5	Ξ	.40	2.0	6.9	2.5	8.0	60.4	68.4	200	8.75	.248	.05
63	Ξ	.40	2.0	4.6	2.5	8.0	58.1	66.1	200	8.75	.235	.05
A6	(10)	90.	2.0	4.3	0.1		55.4					
(RM	(RM 4136)					1.9(12)		57.3	175		.215	
A7	(11)	.34	2.0	8.5	0.3		8.69					
(RM	(RM 4136)					1.9(12)		61.7	175		.245	
A9	(8)	11.	2.0	7.5	0.1		58.6					
A5	(6)	07.	2.0	6.5	0.7		58.2					
Ξ	U2T151 UN	U2T151 UNITRODE DARLINGT	NO	U2T101 DA	U2T101 DARLINGTON	(3) SN 54090J	J. (4)	DAC MOS	(5) O.R	O REF MOS		
<u>3</u> (9)	METG MOS Temp contr	METG MOS (7) MHQ 2222 X Temp controller — T _i for	(222 XSTR (8) FOR RM 4136	CAL STORE NO. 1 (9) (12) 76-552-EDA-22 JA	Z	CAL STORAGE NO. 2 DRASI CO	E NO. 2 COL	2 (10) SM CONTROLLER — Tj FOR RM 4136 COLD PLATE REF TEMP = 49°C	NTROLLE	R – T _j FOF 90C	3 RM 413	

APPENDIX N. NAVIGATION PERFORMANCE DATA

This appendix contains EPM individual navigation plots as well as ensemble CEP and velocity error curves. Figures N-1 through N-6 show summary and ensemble plots while the individual navigation performance plots are given in Figures N-7 through N-34.

EPM 1 navigation position and velocity plots are contained in Figures N-7 through N-23. Plots are provided for all navigation runs made through 25 February 1977 with the IAU rotating. (Some navigation runs were made in December 1976 without the IAU rotating.) The two demonstration navigation runs are No. 1230761825 and 1230762239 shown in Figures N-11 and N-12, respectively. Position and velocity error summaries are plotted in Figures N-1 and N-2 summarizing the EPM 1 navigation performance.

Navigation plots are provided (Figures N-24 through N-34) for EPM 2 rotating IAU testing through February 1977. (This testing was not performed with contract funding. The data has been included in this report to provide a broader statistical base for evaluation of the navigation performance of the EPM design.) One navigation run made on 28 January 1977 has been excluded since it was made with a defective SEU 1 module. Position and velocity error summaries are plotted in Figures N-3 and N-4 for the EPM 2 navigation performance.

Figures N-5 and N-6 contain the summary plots for the ensemble of EPM 1 and EPM 2 navigation runs.

DDC

Figure N-2. EPM 1 Velocity Error Summary from Time t = 0 Indicated Time for 17 Navigation Runs

277

Figure N-4. EPM 2 Time RMS Velocity Error Summary From Time t = 0 to Indicated Time for 11 Navigation Runs

Figure N-6. EPM 1 and EPM 2 Time RMS Velocity Error Summary from Time t = 0 to Indicated Time for 28 Navigation Runs

Phane

Figure N-7. EPM 1 NAV Run 1227766215, 0 Deg Heading

ding

Figure N-8. EPM 1 NAV Run 1228760545, 0 Deg Heading

Figure N-9. EPM 1 NAV Run 1229760541, 90 Deg Heading

Figure N-10. EPM 1 NAV Run 1230760327, 0 Deg Heading

, 0 Deg Heading

Figure N-11. EPM 1 NAV Run 1230761825, 0 Deg Heading

Figure N-12. EPM 1 NAV Run 1230762239, 180 Deg Heading

Figure N-13. EPM 1 NAV Run 0102770229, 270 Deg Heading

Deg Heading

Figure N-14. EPM 1 NAV Run 0102770428, 270 Deg Heading 290

Heading

Figure N-15. EPM 1 NAV Run 0102770604, 270 Deg Heading 291

102770604, 270 Deg Heading

Figure N-16. EPM 1 NAV Run 0112770203, 0 Deg Heading

Figure N-17. EPM 1 NAV Run 0112770630, 90 Deg Heading

Figure N-18. EPM 1 NAV Run 0214772013, 0 Deg Heading 294

Figure N-19. EPM 1 NAV Run 0214772235, 90 Deg Heading 295

Figure N-20. EPM 1 NAV Run 0215770056, 0 Deg Heading

Figure N-21. EPM 1 NAV Run 0216771820, 163 Deg Heading

Figure N-22. EPM 1 NAV Run 0216772221, 161 Deg Heading

Figure N-23. EPM 1 NAV Run 0217770325, 161 Deg Heading

Figure N-24. EPM 2 NAV Run 0127772015, 0 Deg Heading 300

Figure N-25. EPM 2 NAV Run 0128770615, 90 Deg Heading 301

Figure N-34. EPM 2 NAV Run 0215770033, 0 Deg Heading 302

Figure 26. EPM 2 NAV Run 0131771945, 0 Deg Heading

Figure N-27. EPM 2 NAV Run 0204772126, 0 Deg Heading 304

Figure N-28. EPM 2 NAV Run 0214770042, 0 Deg Heading 305

Figure N-29. EPM 2 NAV Run 0214770307, 90 Deg Heading 306

Figure N-30. EPM 2 NAV Run 0214770528, 0 Deg Heading 307

Figure N-31. EPM 2 NAV Run 0214771713, 0 Deg Heading 308

Figure N-32. EPM 2 NAV Run 0214771945, 90 Deg Heading

Figure N-33. EPM 2 NAV Run 0214772212, 0 Deg Headin

