

FCC PART 15C TEST REPORT No. I14Z47644-SRD03

for

TCL Communication Ltd.

CDMA 1X/EVDO tri-band mobile phone

Model Name: 4037V

FCC ID: 2ACCJB001

with

Hardware Version: VC

Software Version: V5HT3-5

Issued Date: 2014-10-08

DAR accreditation (DIN EN ISO/IEC 17025): No. D-PL-12123-01-01

FCC 2.948 Listed: No.733176
IC O.A.T.S listed: No.6629B

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of Ministry of Industry and Information Technology Shouxiang Science Building, No 51, Xueyuan Road, Haidian District, Beijing, P.R.China 100191 Tel:+86(0)10-62304633, Fax:+86(0)10-62304633-2504 Email:welcome@emcite.com

CONTENTS

1.	T	EST LABORATORY	3
	1.1.	TESTING LOCATION	3
	1.2.	TESTING ENVIRONMENT	3
	1.3.	Project data	3
1.4		SIGNATURE	3
2.	C	CLIENT INFORMATION	4
2	2.1.	APPLICANT INFORMATION	4
2	2.2.		
3.	E	EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	5
<u> </u>	3.1.	ABOUT EUT	5
2	3.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	5
	3.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	5
(3.4.	NORMAL ACCESSORY SETTING	5
3	3.5.	GENERAL DESCRIPTION	5
4.	R	REFERENCE DOCUMENTS	6
2	4.1.	DOCUMENTS SUPPLIED BY APPLICANT	6
2	4.2.	REFERENCE DOCUMENTS FOR TESTING	6
5.	L	ABORATORY ENVIRONMENT	7
6.	S	UMMARY OF TEST RESULTS	8
(5.1.	SUMMARY OF TEST RESULTS	8
(5.2.	STATEMENTS	8
7.	T	EST EQUIPMENTS UTILIZED	9
AN	INE	EX A: MEASUREMENT RESULTS	10
	A.1.	. Measurement Method	10
		. PEAK OUTPUT POWER - CONDUCTED	
4	A.3.	. Frequency Band Edges - Conducted	12
4	A.4.	. CONDUCTED EMISSION	14
		. RADIATED EMISSION	
		. 6DB BANDWIDTH	
		. MAXIMUM POWER SPECTRAL DENSITY LEVEL	
۸ () A	C DOWERLINE CONDUCTED EMISSION	27

1. Test Laboratory

1.1. Testing Location

Company Name: TMC Beijing, Telecommunication Metrology Center of MIIT

Address: Shouxiang Science Building, No 51, Xueyuan Road, Haidian District,

Beijing, P.R.China

Postal Code: 100191

Telephone: 00861062304633

Fax: 00861062304633-2504

1.2. Testing Environment

Normal Temperature: $15-35^{\circ}$ C Relative Humidity: 20-75%

1.3. Project data

Project Leader: Xu Zhongfei
Testing Start Date: 2014-09-05
Testing End Date: 2014-09-30

1.4. Signature

Xu Zhongfei

(Prepared this test report)

Li Zhibin

(Reviewed this test report)

Lv Songdong

(Approvedthis test report)

2. Client Information

2.1. Applicant Information

Company Name: TCL Communication Ltd.

12F/B, TCL Tower, Gaoxin Nanyi Road, Nanshan District, Shenzhen,

Address /Post: Guangdong,P.R. China

City: Shenzhen
Postal Code: 518057
Country: China

Contact Person: Lv Meixian

 Contact Email
 meixian.lv@tcl.com

 Telephone:
 0086 755 33956929

 Fax:
 0086 755 36645072

2.2. Manufacturer Information

Company Name: TCL Communication Ltd.

Address /Post: 12F/B, TCL Tower, Gaoxin Nanyi Road, Nanshan District, Shenzhen,

Guangdong, P.R. China

City: Shenzhen
Postal Code: 518057
Country: China

Telephone: 0086 755 33956929 Fax: 0086 755 36645072

3. Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description CDMA 1X/EVDO tri-band mobile phone

Model Name 4037V

FCC ID 2ACCJB001

Frequency Band ISM 2400MHz~2483.5MHz

Type of Modulation(LE mode) GFSK Number of Channels(LE mode) 40

Power Supply 3.7V DC by Battery

3.2. Internal Identification of EUT used during the test

EUT ID*	MEID	HW Version	SW Version
EUT1	A100003BCFECE1	VC	V5HT3-5
EUT2	A100003BCFECEB	VC	V5HT3-5

^{*}EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE used during the test

AE ID*	Description		
AE1	Battery	/	Inbuilt

AE1

Model TLi014A1
Manufacturer BYD
Capacitance 1400mAh
Nominal voltage 3.7V

3.4. Normal Accessory setting

Fully charged battery is used during the test.

3.5. General Description

The Equipment Under Test (EUT) is a model of CDMA 1X/EVDO tri-band mobile phone with integrated antenna. It consists of normal options: lithium battery, charger. Manual and specifications of the EUT were provided to fulfil the test. Samples undergoing test were selected by the Client.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Reference Documents

4.1. Documents supplied by applicant

EUT feature information is supplied by the applicant or manufacturer, which is the basis of testing.

4.2. Reference Documents for testing

The following documents listed in this section are referred for testing.

FCC Part15	FCC CFR 47, Part 15, Subpart C: 15.205 Restricted bands of operation; 15.209 Radiated emission limits, general requirements; 15.247 Operation within the bands 902–928MHz, 2400–2483.5 MHz, and 5725–5850 MHz.			
ANSI C63.10	American National Standard for Testing Unlicensed Wireless Devices	Sep,2009		
FCC Part 2 Frequency Allocations and Radio Treaty Matters; General Rules and Regulations				

5. LABORATORY ENVIRONMENT

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. = 30 %, Max. = 60 %
Shielding effectiveness	> 110 dB
Ground system resistance	< 0.5 Ω
Uniformity of field strength	Between 0 and 6 dB, from 80MHz to 3000 MHz

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 $^{\circ}$ C, Max. = 35 $^{\circ}$ C	
Relative humidity	Min. =30 %, Max. = 60 %	
Shielding effectiveness	> 110 dB	
Electrical insulation	> 10 kΩ	
Ground system resistance	< 0.5 Ω	

Semi-anechoic chamber (23 meters×17meters×10meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 ℃, Max. = 30 ℃		
Relative humidity	Min. = 30 %, Max. = 60 %		
Shielding effectiveness	> 110 dB		
Electrical insulation	> 10 kΩ		
Ground system resistance	< 0.5 Ω		
Normalised site attenuation (NSA)	< ±3.2 dB, 10 m distance, from 30 to 1000 MHz		
Uniformity of field strength	Between 0 and 6 dB, from 80 to 2000 MHz		

6. SUMMARY OF TEST RESULTS

6.1. Summary of Test Results

Abbreviations used in this clause:

- **P** Pass, The EUT complies with the essential requirements in the standard.
- **F** Fail, The EUT does not comply with the essential requirements in the standard
- NA Not Applicable, The test was not applicable
- NP Not Performed, The test was not performed by TMC

SUMMARY OF MEASUREMENT RESULTS	Sub-clause	Verdict
6dB Bandwidth	15.247 (a)(2)	Р
Peak Output Power - Conducted	15.247 (b)(1)	Р
Maximum Power Spectral Density Level	15.247(e)	Р
Conducted Emission	15.247 (d)	Р
Radiated Emission	15.247, 15.205, 15.209	Р
Frequency Band Edges	15.247 (d)	Р
AC Powerline Conducted Emission	15.107, 15.207	Р

Please refer to ANNEX A for detail.

The measurement is made according to ANSI C63.10.

6.2. Statements

TMC has evaluated the test cases requested by the applicant /manufacturer as listed in section 6.1 of this report for the EUT specified in section 3 according to the standards or reference documents listed in section 4.2

7. Test Equipments Utilized

Conducted test system

No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date
1	Vector Signal Analyzer	FSQ26	200136	Rohde & Schwarz	1 year	2015-01-06

Radiated emission test system

Radiated emission test system							
No.	Equipment	Model	Serial Number	Manufacturer	Calibration Period	Calibration Due date	
1	Test Receiver	ESU26	100376	Rohde & Schwarz	1 year	2014-11-05	
2	EMI Antenna	VULB 9163	9163 175	Schwarzbeck	3 years	2015-07-13	
3	EMI Antenna	3117	00119021	ETS-Lindgren	3 years	2015-04-19	
4	Dual-Ridge Waveguide Horn Antenna	3116	2663	ETS-Lindgren	3 years	2015-06-30	
5	Dual-Ridge Waveguide Horn Antenna	3116	2661	ETS-Lindgren	3 years	2015-06-30	
6	Bluetooth Tester	CBT	100153	Rohde & Schwarz	1 year	2015-09-15	
7	LISN	ESH2-Z5	829991/0 12	Rohde & Schwarz	1 year	2015-04-14	
8	Pre-amplifier (18GHz)	HFH2-Z2	829324/0 07	Rohde & Schwarz	/	/	
9	Pre-amplifier (26.5GHz)	SCU18	1005277	Rohde & Schwarz	/	/	
10	Loop Antenna	SCU26	1006788	Rohde & Schwarz	3 years	2015-12-12	
11	Fully-anechoic chamber	S81	CT00008 3-1030	ETS-Lindgren	/	1	

ANNEX A: MEASUREMENT RESULTS

A.1. Measurement Method

A.1.1. Conducted Measurements

The measurement is made according to ANSI C63.10.

- 1). Connect the EUT to the test system correctly.
- 2). Set the EUT to the required work mode (Transmitter, receiver or transmitter & receiver).
- 3). Set the EUT to the required channel.
- 4). Set the EUT hopping mode (hopping or hopping off).
- 5). Set the spectrum analyzer to start measurement.
- 6). Record the values. Vector Signal Analyzer

A.1.2. Radiated Emission Measurements

The measurement is made according to ANSI C63.10.

The radiated emission test is performed in semi-anechoic chamber. The distance from the EUT to the reference point of measurement antenna is 3m. The test is carried out on both vertical and horizontal polarization and only maximization result of both polarizations is kept. During the test, the turntable is rotated 360° and the measurement antenna is moved from 1m to 4m to get the maximization result.

In the case of radiated emission, the used settings are as follows,

Sweep frequency from 30 MHz to 1GHz, RBW = 100 kHz, VBW = 300 kHz;

Sweep frequency from 1 GHz to 26GHz, RBW = 1MHz, VBW = 1MHz;

A.2. Peak Output Power - Conducted

Measurement Limit:

Standard	Limit (dBm)
FCC Part 15.247(b)(1)	< 30

The measurement is made according to ANSI C63.10.

Test Condition

Hopping Mode	RBW	VBW	Span	Sweeptime	Detector	Trace Mode
Hopping OFF	1MHz	5MHz	0	5ms	Peak	Max Hold

Measurement Results:

For GFSK

Frequency	2402 MHz	2440 MHz	2480 MHz	Conclusion
Peak Conducted				
Output Power	2.19	2.47	1.27	Р
(dBm)				

Conclusion: PASS

A.3. Frequency Band Edges - Conducted

Measurement Limit:

Standard	Limit (dBc)
FCC 47 CFR Part 15.247 (d)	> 20

The measurement is made according to ANSI C63.10.

Date: 17.SEP.2014 13:10:33

Test Condition

Hopping Mode	RBW	VBW	Span	Sweeptime	Detector	Trace Mode
Hopping OFF	100KHz	300KHz	8MHz	5ms	Peak	Max Hold

Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not an abosolute field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band edge relative to the highest fundamental emission level.

Measurement Result:

For GFSK

Frequency	Hopping	Band Edge Power (dBc)		Conclusion
2402MHz	Hopping OFF	Fig.1	-55.55	Р
2480MHz	Hopping OFF	Fig.2	-61.30	Р

Conclusion: PASS
Test graphs as below

Fig.1. Frequency Band Edges: GFSK, 2402 MHz, Hopping Off

Date: 17.SEP.2014 13:03:46

Fig.2. Frequency Band Edges: GFSK, 2480 MHz, Hopping Off

A.4. Conducted Emission

Measurement Limit:

Standard	Limit	
CCC 47 CCD Dow 15 247 (d)	20dB below peak output power in 100 kHz	
FCC 47 CFR Part 15.247 (d)	bandwidth	

The measurement is made according to ANSI C63.10.

Test Condition

Hopping Mode	RBW	VBW	Sweeptime	Detector	Trace Mode
Hopping OFF	100KHz	300KHz	Auto	Peak	Max Hold

Measurement Procedure - Reference Level

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Set the span to 5-30 % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. Next, determine the power in 100 kHz band segments outside of the authorized frequency band using the following measurement:

Measurement Procedure - Unwanted Emissions

- 1. Set RBW = 100 kHz.
- 2. Set VBW \geq 300 kHz.
- 3. Set span to encompass the spectrum to be examined.
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize (this may take some time, depending on the extent of the span).

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified above.

Measurement Results:

For GFSK

Frequency	Frequency Range	Test Results	Conclusion
	Center Frequency	Fig.3	Р
	30 MHz ~ 1 GHz	Fig.4	Р
2402 MHz	1 GHz ~ 3 GHz	Fig.5	Р
	3 GHz ~ 10 GHz	Fig.6	Р
	10GHz ~ 26 GHz	Fig.7	Р
	Center Frequency	Fig.8	Р
	30 MHz ~ 1 GHz	Fig.9	Р
2440 MHz	1 GHz ~ 3 GHz	Fig.10	Р
	3 GHz ~ 10 GHz	Fig.11	Р
	10GHz ~ 26 GHz	Fig.12	Р
	Center Frequency	Fig.13	Р
	30 MHz ~ 1 GHz	Fig.14	Р
2480 MHz	1 GHz ~ 3GHz	Fig.15	Р
	3 GHz ~ 10 GHz	Fig.16	Р
	10 GHz ~ 26 GHz	Fig.17	Р

Conclusion: PASS
Test graphs as below

Fig.3. Conducted spurious emission: GFSK,2402MHz

Date: 17.SEP.2014 13:08:53

Date: 17.SEP.2014 13:09:10

Fig.4. Conducted spurious emission: GFSK, 2402 MHz, 30MHz - 1GHz

Date: 17.SEP.2014 13:09:41

Fig.5. Conducted spurious emission: GFSK, 2402 MHz,1GHz - 3GHz

Date: 17.SEP.2014 13:09:58

Fig.6. Conducted spurious emission: GFSK, 2402 MHz,3GHz - 10GHz

Date: 17.SEP.2014 13:10:14

Fig.7. Conducted spurious emission: GFSK, 2402 MHz,10GHz - 26GHz

Date: 17.SEP.2014 13:06:02

Date: 17.SEP.2014 13:06:18

Fig.8. Conducted spurious emission: GFSK, 2440MHz

Fig.9. Conducted spurious emission: GFSK, 2440 MHz, 30MHz - 1GHz

Date: 17.SEP.2014 13:06:50

Fig.10. Conducted spurious emission: GFSK, 2440 MHz, 1GHz – 3GHz

Date: 17.SEP.2014 13:07:07

Fig.11. Conducted spurious emission: GFSK, 2440 MHz, 3GHz – 10GHz

Date: 17.SEP.2014 13:07:23

Fig.12. Conducted spurious emission: GFSK, 2440 MHz, 10GHz – 26GHz

Date: 17.SEP.2014 13:02:05

Fig.13. Conducted spurious emission: GFSK, 2480 MHz

Fig.14. Conducted spurious emission: GFSK, 2480 MHz, 30MHz - 1GHz

Fig.15. Conducted spurious emission: GFSK, 2480 MHz, 1GHz - 3GHz

Fig.16. Conducted spurious emission: GFSK, 2480 MHz, 3GHz - 10GHz

Fig.17. Conducted spurious emission: GFSK, 2480 MHz, 10GHz - 26GHz

A.5. Radiated Emission

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

The measurement is made according to ANSI C63.10

Limit in restricted band:

Frequency of emission	Field strength(uV/m)	Field strength(dBuV/m)
(MHz)		
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

Test Condition

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission	RBW/VBW	Sweep Time(s)
(MHz)		
30-1000	100KHz/300KHz	5
1000-4000	1MHz/1MHz	15
4000-18000	1MHz/1MHz	40
18000-26500	1MHz/1MHz	20

Measurement Results:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable los.

The measurement results are obtained as described below:

Result=P_{Mea}+A_{Rpl}

For GFSK

Frequency	Frequency Range	Test Results	Conclusion
1 GHz ~ 3 GHz		Fig.18	Р
2402 MHz	3 GHz ~ 18 GHz	Fig.19	Р
	9 kHz ~ 30 MHz	Fig.20	Р
2441 MHz	30 MHz ~ 1 GHz	Fig.21	Р
	1 GHz ~ 3 GHz	Fig.22	Р
	3 GHz ~ 18 GHz	Fig.23	Р

2480 MHz	1 GHz ~ 3 GHz	Fig.24	Р
2400 1011 12	3 GHz ~ 18 GHz	Fig.25	Р
Power	2.38GHz~2.4GHzL	Fig.26	Р
Power	2.45GHz~2.5GHzH	Fig.27	Р
For all channels	18 GHz ~ 26.5 GHz	Fig.28	Р

GFSK 2402MHz-Average

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14448	44.7	44.7 13.1 31.6		V
15053	45.4	13.2	32.2	Н
15781	47.2	14.2	33	V
16321	47.2	15	32.2	Н
16826	48	15.5 32.5		Н
17375	47.6	15.5	32.1	Н

GFSK 2440MHz-Average

Frequency(MHz)	Result(dBuV/m)	ARpl (dB) PMea(dBuV/m)		Polarity
14460	44.9	13.1	31.8	V
14972	45.5	13.8	31.7	Н
15731	47.2	14	33.2	Н
16240	47.4	14.5	32.9	Н
16826	48.3	15.5	32.8	Н
17283	48	15.4	32.6	Н

GFSK 2480MHz-Average

Frequency(MHz)	Result(dBuV/m)	ARpl (dB)	PMea(dBuV/m)	Polarity
14527	45	12.7 32.3		Н
15052	45.6	13.3	32.3	V
15740	47.4	14	33.4	Н
16238	47.9	14.5	33.4	Н
16826	48.8	15.5	33.3	Н
17348	48.4	15.5	32.9	Н

Conclusion: PASS
Test graphs as below:

FCC-RE2-1-18G-PEAK+AV

Fig.18. Radiated emission: GFSK, 2402MHz, 1 GHz - 3GHz

FCC-RE2-1-18G-PEAK+AV

Fig.19. Radiated emission: GFSK, 2402MHz, 3 GHz - 18 GHz

Fig.20. Transmitter Spurious Emission - Radiated: GFSK, 2440MHz, 9 kHz - 30 MHz

Fig.21. Radiated emission: GFSK, 2440MHz, 30 MHz - 1 GHz

FCC-RE2-1-18G-PEAK+AV

Fig.22. Radiated emission: GFSK, 2440MHz, 1 GHz - 3 GHz

FCC-RE2-1-18G-PEAK+AV

Fig.23. Radiated emission: GFSK, 2440MHz, 3 GHz - 18 GHz

FCC-RE2-1-18G-PEAK+AV

Fig.24. Radiated emission: GFSK, 2480MHz, 1 GHz - 3 GHz

FCC-RE2-1-18G-PEAK+AV

Fig.25. Radiated emission: GFSK, 2480MHz, 3 GHz - 18 GHz

FCC-RE2-BAND Edge-Low Band

Fig.26. Radiated emission (Power): GFSK low channel

Level in dBµV/m Frequency in MHz

FCC-RE2-BAND Edge-High Band

Fig.27. Radiated emission (Power): GFSK high channel

Fig.28. Radiated emission: GFSK, 18 GHz - 26 GHz

A.6. 6dB Bandwidth

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(a)(2)	>= 500KHz

The measurement is made according to ANSI C63.10

- 1.Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Condition

Hopping Mode	RBW	VBW	Span	Sweeptime
Hopping OFF	100kHz	300kHz	2MHz	2.5ms

Measurement Results:

For GFSK

Frequency	6dB Bandwidth (kHz)		Conclusion
2402MHz	Fig.29	ig.29 673.08	
2440MHz	Fig.30	673.08	Р
2480MHz	Fig.31	679.49	Р

Conclusion: PASS
Test graphs as below:

Date: 17.SEP.2014 13:08:21

Fig.29. 6dB Bandwidth: GFSK, 2402 MHz

Date: 17.SEP.2014 13:05:30

Fig.30. 6dB Bandwidth: GFSK, 2440 MHz

Date: 17.SEP.2014 13:01:33

Fig.31. 6dB Bandwidth: GFSK, 2480 MHz

A.7. Maximum Power Spectral Density Level

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247(e)	<=8.0dBm

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Set the span to 5-30 % greater than the EBW.
- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.
- 9. Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log (3 kHz/100kHz = -15.2 dB).

Measurement Results:

For GFSK

Frequency	Maximum Power Spect	Conclusion	
2402MHz	Fig.32 -13.60		Р
2440MHz	Fig.33	-13.27	Р
2480MHz	Fig.34	-14.46	Р

Test graphs as below:

Date: 17.SEP.2014 13:08:34

Fig.32. Maximum Power Spectral Density Level Function: GFSK, 2402 MHz

Date: 17.SEP.2014 13:05:43

Fig.33. Maximum Power Spectral Density Level Function: GFSK, 2440 MHz

Date: 17.SEP.2014 13:01:47

Fig.34. Maximum Power Spectral Density Level Function: GFSK, 2480 MHz

A.8. AC Powerline Conducted Emission

Test Condition

Voltage (V)	Frequency (Hz)		
120	60		

Measurement Result and limit:

Bluetooth (Quasi-peak Limit)

Frequency range (MHz)	Quasi-peak Limit (dBμV)	Conclusion
0.15 to 0.5	66 to 56	
0.5 to 5	56	Р
5 to 30	60	

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15~MHz to 0.5~MHz.

Bluetooth (Average Limit)

Frequency range (MHz)	Average Limit (dBμV)	Conclusion
0.15 to 0.5	56 to 46	
0.5 to 5	46	Р
5 to 30	50	

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

The measurement is made according to ANSI C63.10

Conclusion: PASS
Test graphs as below:

Traffic:

Final Result 1

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.742000	50.5	FLO	L1	10.0	5.5	56.0
1.170000	51.0	FLO	L1	10.1	5.0	56.0
1.222000	49.1	FLO	L1	10.1	6.9	56.0
1.906000	39.3	FLO	L1	10.1	16.7	56.0
1.962000	47.5	FLO	L1	10.1	8.5	56.0
2.070000	45.2	FLO	L1	10.1	10.8	56.0

Final Result 2

Frequency	CAverage	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.638000	39.3	FLO	L1	10.0	6.7	46.0
1.170000	41.1	FLO	L1	10.1	4.9	46.0
1.222000	39.5	FLO	L1	10.1	6.5	46.0
1.906000	22.7	FLO	L1	10.1	23.3	46.0
2.014000	25.1	FLO	L1	10.1	20.9	46.0
2.070000	30.3	FLO	L1	10.1	15.7	46.0

Idle:

Final Result 1

Frequency	QuasiPeak	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
1.054000	50.5	FLO	L1	10.1	5.5	56.0
1.162000	45.9	FLO	L1	10.1	10.1	56.0
2.006000	40.9	FLO	L1	10.1	15.1	56.0
2.058000	42.4	FLO	L1	10.1	13.6	56.0
2.166000	31.5	FLO	L1	10.1	24.5	56.0
2.214000	41.3	FLO	L1	10.1	14.7	56.0

Final Result 2

Frequency	CAverage	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)			(dB)	(dB)	(dBµV)
0.686000	40.3	FLO	L1	10.0	5.7	46.0
0.790000	41.2	FLO	L1	10.1	4.8	46.0
1.954000	28.0	FLO	L1	10.1	18.0	46.0
2.006000	30.0	FLO	L1	10.1	16.0	46.0
2.110000	32.3	FLO	L1	10.1	13.7	46.0
2.214000	31.7	FLO	L1	10.1	14.3	46.0

*** END OF REPORT BODY ***