

Congruence Ex 16.3 Q5

Answer:

(i) We have AB = AC (given)

 $\angle BAD = \angle CAD$ (AD bisects $\angle BAC$)

and AD = AD (common)

Therefore by SAS condition of congruence, \triangle $ABD \cong \triangle$ ACD.

- (ii) We have used AB, AC; $\angle BAD = \angle CAD$; AD, DA.
- (iii) Now \triangle $ABD\cong\triangle$ ACD therefore by c.p.c.t BD = DC.

Congruence Ex 16.3 Q6

Answer:

i) AB = AD (given)

 $\angle BAC = \angle DAC$ (given)

AC = CA (common)

Therefore by SAS conditionof congruency, $\triangle ABC \cong \triangle ADC$.

ii)
$$\angle ABC = \angle ADC$$
 (c.p.c.t) $\angle ACD = \angle ACB$ (c.p.c.t)

Congruence Ex 16.3 Q7

Answer:

(i) Yes \triangle $ACD\cong\triangle$ CAB by SAS condition of congruency.

(ii) We have used AB = DC, AC = CA and $\angle DCA = \angle BAC$

(iii) $\angle CAD = \angle ACB$ since the two triangles are congruent.

(iv) Yes, this follows from AD $\|BC$ as alternate angles are equal. If alternate angles are equal the lines are parallel.