Journal Name

ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxxx

Molecular electrometer and binding of cations to phospholipid bilayers[†]

Andrea Catte, a‡ Mykhailo Girych, b Matti Javanainen, c,d Claire Loison, e Josef Melcr, f Markus S. Miettinen, g , h Luca Monticelli, i Jukka Määttä, j Vasily S. Oganesyan, a O. H. Samuli Ollila, * Joona Tynkkynen, c and Sergey Vilov, e

Received Date Accepted Date

DOI: 10.1039/xxxxxxxxxx

www.rsc.org/journalname

Despite the vast amount of experimental and theoretical studies on the binding affinity of cations — especially the biologically relevant Na⁺ and Ca²⁺ — for phospholipid bilayers, there is no consensus in the literature. Here we show that by interpreting changes in the choline headgroup order parameters according to the 'molecular electrometer' concept [Seelig *et al., Biochemistry*, 1987, **26**, 7535], one can directly compare the ion binding affinities between simulations and experiments. Our findings strongly support the view that in contrast to Ca²⁺ and other multivalent ions, Na⁺ and other monovalent ions (except Li⁺) do not specifically bind to phosphatidylcholine lipid bilayers at sub-molar concentrations. However, the Na⁺ binding affinity was overestimated by several molecular dynamics simulation models, resulting in artificially positively charged bilayers and exaggerated structural effects in the lipid headgroups. While qualitatively correct headgroup order parameter response was observed with Ca²⁺ binding in all the tested models, no model had sufficient quantitative accuracy to interpret the Ca²⁺:lipid stoichiometry or the induced atomistic resolution structural changes. All scientific contributions to this open collaboration work were made publicly, using nmrlipids.blogspot.fi as the main communication platform.

1 Introduction

Due to its high physiological importance — nerve cell signalling being the prime example — interaction of cations with phospholipid membranes has been widely studied via theory, simulations, and experiments. The relative ion binding affinities are generally agreed to follow the Hofmeister series ^{1–9}, however, consen-

- a School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
- b Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- ^c Tampere University of Technology, Tampere, Finland
- ^d University of Helsinki, Helsinki, Finland
- ^e Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622, LYON, France
- f Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic, Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
- g Fachbereich Physik, Freie Universität Berlin, Berlin, Germany
- h Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
- ⁱ Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR 5086, Lyon, France ^j Aalto University, Espoo, Finland
- *Author to whom correspondence may be addressed. E-mail: samuli.ollila@aalto.fi.
- † Electronic Supplementary Information (ESI) available: 5 figures, detailed technical discussion and simulation details. See DOI: 10.1039/b000000x/
- ‡ The authors are listed in alphabetical order.

sus on the quantitative affinities is currently lacking. Until 1990, the consensus (documented in two extensive reviews 2,3) was that while multivalent cations interact significantly with phospholipid bilayers, for monovalent cations (with the exception of Li⁺) the interactions are weak. This conclusion has since been strengthened by further studies showing that bilayer properties remain unaltered upon the addition of sub-molar concentrations of monovalent salt 4,10,11 . Since 2000, however, another view has emerged, suggesting much stronger interactions between phospholipids and monovalent cations, and strong Na⁺ binding in particular $^{6-9,12-18}$.

The pre-2000 view has the experimental support that (in contrast to the significant effects caused by any multivalent cations) sub-molar concentrations of NaCl have a negligible effect on phospholipid infrared spectra⁴, area per molecule ¹⁰, dipole potential ¹⁹, lateral diffusion ¹¹, and choline head group order parameters ²⁰; in addition, the water sorption isotherm of a NaCl-phospholipid system is highly similar to that of a pure NaCl solution — indicating that the ion–lipid interaction is very weak ⁴.

The post-2000 'strong binding' view rests on experimental and above all simulational findings. At sub-molar NaCl concentrations, the rotational and translational dynamics of membrane-embedded fluorescent probes decreased ^{7,9,12}, and atomic force microscopy (AFM) experiments showed changes in bilayer hard-

ness $^{14-18}$; in atomistic molecular dynamics (MD) simulations, phospholipid bilayers consistently bound Na $^+$, although the binding strength depended on the model used $^{12,13,21-26}$.

Some observables have been interpreted in favour of both views. For example, as the effect of monovalent ions (except Li⁺) on the phase transition temperature is tiny (compared to the effect of multivalent ions), it was initially interpreted as an indication that only multivalent ions and Li⁺ specifically bind to phospholipid bilayers²; however, such a small effect in calorimetric measurements was later interpreted to indicate that also Na⁺ binds^{8,12}. Similarly, the lack of significant positive electrophoretic mobility of phosphatidylcholine (PC) vesicles in the presence of NaCl (again in contrast to multivalent ions and Li⁺) suggested weak binding of Na^{+1,8,14,15,27}; however, these data were also explained by a countering effect of the Cl⁻ ions ^{22,28}. Furthermore, to reduce the area per lipid in scattering experiments, molar concentrations of NaCl were required 10, indicating weak ion-lipid interaction; in MD simulations, however, already orders of magnitude lower concentrations resulted in Na⁺ binding and a clear reduction of area per lipid 12,23. Finally, lipid lateral diffusion was unaltered by NaCl in noninvasive NMR experiments ¹¹; however, as it was reduced upon Na⁺ binding in simulations, the reduced lateral diffusion of fluorescent probes ^{7,9,12} has been interpreted to support the post-2000 'strong binding' view.

In this paper, we set out to solve the apparent contradictions between the pre-2000 and post-2000 views. To this end, we employ the 'molecular electrometer' concept, according to which the changes in the C–H order parameters of the α and β carbons in the phospholipid head group (see Fig. 1) can be used to measure the ion affinity for a PC lipid bilayer 20,29-32. As the order parameters can be accurately measured in experiments and directly compared to simulations³³, applying the molecular electrometer as a function of cation concentration allows the comparison of binding affinity between simulations and experiments. In addition to demonstrating the usefulness of this general concept, we show that the response of the α and β order parameters to penetrating cations is qualitatively correct in MD simulations, but that in several models the affinity of Na⁺ for PC bilayers is grossly overestimated. Moreover, we show that the accuracy of lipid-Ca²⁺ interactions in current models is not enough for atomistic resolution interpretation of NMR experiments.

This work was done as an Open Collaboration at nmrlipids.blogspot.fi; all the related files 34 and almost all the simulation data (https://zenodo.org/collection/user-nmrlipids) are openly available.

2 Results and Discussion

2.1 Background: Molecular electrometer in experiments

The basis for the molecular electrometer is the experimental observation that binding of any charged objects (ions, peptides, anesthetics, amphibiles) on a PC bilayer interface induced systematic changes in the choline α and β segment C–H order parameters $^{20,29-32,35-40}$. Being systematic, these changes could be employed for determining the binding affinities of the charged objects in question. Originally the molecular electrometer was de-

Fig. 1 Chemical structure of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), and the definition of γ , β , α , g_1 , g_2 and g_3 segments.

vised for cations 20,29,30 , but further experimental quantification with various positively and negatively charged molecules showed that the choline order parameters S_{CH}^{α} and S_{CH}^{β} in general vary linearly with small amount of bound charge per lipid $^{30-32,35-40}$. Let now $S_{\text{CH}}^{i}(0)$, where i refers to either α or β , denote the order parameter in the absence of bound charge; the empirically observed linear relation can then be written as 41

$$\Delta S_{\text{CH}}^{i} = S_{\text{CH}}^{i}(X^{\pm}) - S_{\text{CH}}^{i}(0) = \frac{4m_{i}}{3\chi}X^{\pm}.$$
 (1)

Here X^{\pm} is the amount of bound charge per lipid, m_i an empirical constant depending on the valency and position of bound charge, and the value of the quadrupole coupling constant $\chi \approx 167 \, \text{kHz}$.

With bound positive charge, the absolute value of the β segment order parameter increases and the α segment order parameter decreases (and *vice versa* for negative charge) $^{20,29-32,35,40}$. However, as $S_{\rm CH}^{\beta}(0) < 0$ while $S_{\rm CH}^{\alpha}(0) > 0^{42-44}$, both $\Delta S_{\rm CH}^{\beta}$ and $\Delta S_{\rm CH}^{\alpha}$ in fact decrease with bound positive charge (and increase with bound negative charge). Consequently, values of m_i are negative for bound positive charges; for ${\rm Ca}^{2+}$ binding to POPC bilayer (in the presence of 100 mM NaCl), combination of atomic absorption spectra and $^2{\rm H}$ NMR experiments gave $m_{\alpha} = -20.5$ and $m_{\beta} = -10.0^{30}$. This decrease can be rationalised by electrostatically induced tilting of the choline P–N dipole 31,32,46 — also seen in simulations 23,24,47,48 — and is in line with the order parameter increase related to the P–N vector tilting more parallel to the membrane plane seen with decreasing hydration levels 45 .

Quantification of $\Delta S_{\text{CH}}^{\alpha}$ and $\Delta S_{\text{CH}}^{\beta}$ for a wide range of different cations (aqueous cations, cationic peptides, cationic anesthetics) has revealed that $\Delta S_{\text{CH}}^{\beta}/\Delta S_{\text{CH}}^{\alpha}\approx 0.5^{38,40}$. More specifically, the relation $\Delta S_{\text{CH}}^{\beta}=0.43\Delta S_{\text{CH}}^{\alpha}$ was found to hold for DPPC bilayers at various CaCl₂ concentrations²⁰.

2.2 Molecular electrometer in MD simulations

The black curves in Fig. 2 show how the headgroup order parameters for DPPC and POPC bilayers change in H² NMR experiments as a function of salt solution concentration ^{20,30}: Only mi-

Fig. 2 Changes in the PC lipid headgroup β (top row) and α (bottom) segment order parameters in response to NaCl (left column) or CaCl₂ (right) salt solution concentration increase. Comparison between simulations (Table 1) and experiments (DPPCs from Ref. 20, POPC from Ref. 30). The signs of the experimental values, from experiments without ions ^{42–44}, can be assumed unchanged at these salt concentrations ^{30,33}. We stress that none of the models reproduces the order parameters without salt within experimental error, indicating structural inaccuracies of varying severity in all of them ⁴⁵. Note that the relatively large drop in CHARMM36 at 450 mM CaCl₂ arose from more equilibrated binding due to a very long simulation time, see ESI[†].

nor changes are seen as a function of [NaCl], but the effect of $[CaCl_2]$ is an order of magnitude larger. Thus, according to the molecular electrometer, the monovalent Na⁺ ions have negligible affinity for PC lipid bilayers at concentrations up to 1 M, while binding of Ca²⁺ ions at the same concentration is significant ^{20,30}.

Figure 2 also reports order parameter changes calculated from MD simulations of DPPC and POPC lipid bilayers as a function of NaCl or CaCl₂ initial concentrations in solution (for details of the simulated systems see Table 1 and ESI[†]). Note that although none of these MD models reproduces within experimental uncertainty the order parameters for a pure PC bilayer without ions (Fig. 2 in Ref. 45), which indicates structural inaccuracies of varying severity in all models 45 , all the models qualitatively reproduce the experimentally observed headgroup order parameter increase with dehydration 45 . Similarly here (Fig. 2) the presence of cations led to the decrease of $S^{\alpha}_{\rm CH}$ and $S^{\beta}_{\rm CH}$, in qualitative agreement with experiments. The changes were, however, overestimated by most models, which according to the molecular electrometer indicates overbinding of cations in most MD simulations.

While the molecular electrometer is well established in experi-

ments (see Sec. 2.1 above), it is not *a priori* clear that it works in simulations. The overestimated order parameter decrease could, in principle, arise from an exaggerated response of the choline headgroups to the binding cations, instead of overbinding. Therefore, to evaluate the usability of the molecular electrometer in MD simulations, we analysed the relation between cation binding and choline order parameter decrease in simulations.

According to the molecular electrometer, the order parameter changes are linearly proportional to the amount of bound cations (Eq. (1)). Figure 3 shows this proportionality in MD simulations (see ESI † for the definition of bound ions); in keeping with the molecular electrometer, a roughly linear correlation between bound cation charge and order parameter change was found in all the eight models. Note that quantitative comparison of the proportionality constants (i.e. slopes in Fig. 3) between different models and experimental slopes ($m_{\alpha} = -20.5$ and $m_{\beta} = -10.0$ for Ca²⁺ binding in DPPC bilayer in the presence of 100mM NaCl³⁰) is not straightforward since the simulation slopes depend on the definition used for bound ions (see ESI †).

We note that the quantitative comparison of order parameter

Fig. 3 Change of order parameters (from salt-free solution) of the β and α segments, ΔS_{CH}^{β} and ΔS_{CH}^{α} , as a function of bound cation charge. Eight MD simulation models compared; the two lines per model denote to the two hydrogens per carbon. The order parameters as well as the bound charge calculated separately for each leaflet; cations residing between the bilayer centre and the density maximum of Phosphorus considered bound; error bars (shaded) show standard error of mean over lipids.

changes in response to bound charge should be more straightforward for systems with charged amphiphiles fully associated in the bilayer, as the amount of bound charge is then explicitly known in both simulations and experiments. In such a comparison between experiments 32,49 and previously published Berger-model-based simulations 50 , we could not rule out overestimation of order parameter response to bound cations (slopes m_{α} and m_{β}), see ESI † . This might, in principle, explain the overestimated order parameter response of the Berger model to CaCl₂, but not to NaCl (see discussion in ESI †). Since simulation data with charged amphiphiles are not available for other models, an extended comparison with different models is left for further studies.

Figure 3 shows that the decrease of order parameters clearly correlated with the amount of bound cations in simulations. This is also evident from Fig. 4, which shows the Na⁺ density profiles of the MD models ordered according to the order parameter change (in Fig. 2) from the smallest (top) to the largest (bottom). The general trend in the figure is that the Na⁺ density peaks are larger for models with larger changes in order parameters, in line with the observed correlation between cation binding and order parameter decrease in Fig. 3.

Fig. 4 Na⁺ (solid line) and Cl⁻ (dashed) distributions along the lipid bilayer normal from MD simulations at several NaCl concentrations. The eight MD models are ordered according to their strength of order parameter change in response to NaCl (Fig. 2) from the weakest (top panel) to the strongest (bottom). The light green vertical lines indicate the locations of the Phosphorus maxima, used to define bound cations in Fig. 3.

Fig. 5 Relation between $\Delta \mathcal{S}^{\beta}_{CH}$ and $\Delta \mathcal{S}^{\alpha}_{CH}$ from experiments 20 and different simulation models. Solid line is $\Delta \mathcal{S}^{\beta}_{CH} = 0.43 \Delta \mathcal{S}^{\alpha}_{CH}$ determined for DPPC bilayer from 2 H NMR experiment with various CaCl $_2$ concentrations 20

Figure 5 compares the relation between $\Delta S_{\text{CH}}^{\beta}$ and $\Delta S_{\text{CH}}^{\alpha}$ in experiments 20 and in MD models. Only Lipid14 gave $\Delta S_{\text{CH}}^{\beta}/\Delta S_{\text{CH}}^{\alpha}$ ratio in agreement with the experimental ratio; all other models underestimated the α segment order parameter decrease with bound cations with respect to the β segment decrease.

In conclusion, a clear correlation between bound cations and order parameter decrease was observed for all simulation models. Consequently, the molecular electrometer can be used to compare the cation binding affinity between experiments and simulations. However, we found that quantitatively the response of α and β segment order parameters to bound cations in simulations did not generally agree with the experiments; e.g., the $\Delta S_{\rm CH}^{\beta}/\Delta S_{\rm CH}^{\alpha}$ ratio agreed with experiments only in the Lipid14 model (Fig. 5). Thus, the observed overestimation of the order parameter changes with salt concentrations could, in principle, arise from overbinding of cations or from an oversensitive lipid headgroup response to the bound cations (see also discussion in ESI †). A careful analysis with current lipid models is performed in the next section.

2.3 Cation binding in different simulation models

The order parameter changes (Fig. 2) and density distributions (Fig. 4) demonstrate significantly different Na⁺ binding affinities in different simulation models. The best agreement with experiments (lowest ΔS_{CH}^{α} and ΔS_{CH}^{β}) is observed for those models (Orange, CHARMM36, and Lipid14; see Fig. 2) that also predict the lowest Na⁺ densities in the membrane proximity (Fig. 4). In all the other tested models, the choline order parameter responses to NaCl are clearly overestimated (Fig. 2), and the strength of the overestimation is clearly linked to the strength of the Na⁺ binding affinity (compare Figs. 2 and 4); this leads us to conclude that sodium binding affinity is overestimated in all these models.

In the best three models, the order parameter changes with NaCl are small (< 0.02), so with the achieved statistical accuracy we cannot conclude which of the three has the most realistic Na $^+$

binding affinity, especially at physiological NaCl concentrations ($\sim 150 \mathrm{mM}$) relevant for most applications. The overestimated binding in the other models raise questions on the quality of the predictions from these models when NaCl is present. Especially interactions between charged molecules and lipid bilayer might be significantly affected by the strong Na⁺ binding, as it makes the bilayer effectively positively charged.

Significant Ca^{2+} binding affinity to a phosphatidylcholine bilayer at sub-molar concentrations is agreed in the literature 2,3,20,30 , however, several details are yet under discussion. Simulations suggest that Ca^{2+} bind to lipid carbonyl oxygens with coordination number of 4.2^{13} , while interpretation of NMR and scattering experiments suggest that one Ca^{2+} interacts mainly with choline groups $^{106-108}$ of two phospholipid molecules 30 . A simulation model correctly reproducing the order parameter changes would resolve the discussion by giving atomistic resolution interpretation for the experiments.

As a function of CaCl₂ concentration, all but one (CHARMM36 with recent ion model by Yoo et al. ⁷⁶), model overestimate the order parameter decrease (Fig. 2). According to the molecular electrometer, this indicates overestimated Ca2+ binding. This is the most likely scenario for the models where changes in both order parameters were overestimated, however, in the case of CaCl₂ we cannot exclude the possibility that the headgroup response is oversensitive to bound cations (see ESI†). In CHARMM36 with ion model by Yoo et al. 76, ΔS_{CH} is overestimated for β but underestimated for α , in line with Fig. 5 where $\Delta S_{\text{CH}}^{\beta}/\Delta S_{\text{CH}}^{\alpha}$ ratio in CHARMM36 is larger than in experiments. Since we do not know if ΔS_{CH}^{β} or ΔS_{CH}^{α} is more realistic in CHARMM36, we cannot conclude if Ca²⁺ binding is too strong or weak in this simulation model. This could be resolved by comparing CHARMM36 model to the experimental data with known amount of bound charge (e.g., experiments with amphiphilic cations ^{32,49}), however, such simulation data are not currently available.

The ion density distributions with $CaCl_2$ in Fig. 6 show significant Ca^{2+} binding in all models, however, some differences occur in details. The Berger model predicts deeper penetration depth (density maxima close to ± 1.8 nm) compared to other models (density maxima close to ± 2 nm). The latter value is probably more realistic since 1H NMR and neutron scattering data indicate that Ca^{2+} interacts mainly with the choline group $^{2,106-108}$. In CHARMM36, almost all Ca^{2+} ions present in simulation bind in bilayer indicating strongest binding affinity among the tested models. The difference is not as clear in Fig. 2 because α carbon order parameters are the least sensitive to bound charge in CHARMM36 (Fig. 3).

The origin of inaccuracies in lipid–ion interactions and binding affinities in different models is far from clear. Potential candidates could be, for example, discrepancies in the ion models ^{109–111}, incomplete treatment of electronic polarizability ¹¹², or inaccuracies in the lipid headgroup description ⁴⁵. Cordomi et al. ²⁴ showed that the Na⁺ binding affinity decreases when ion radius increases in the model, however, also the models with the largest radius show significant binding in DPPC bilayer simulated with OPLS-AA force field ¹¹³. In our results, the Slipids model gives essentially similar binding affinity with ion parameters from Refs.

Table 1 List of MD simulations. The salt concentrations calculated as [salt]= $N_c \times [water]/N_w$, where [water] = 55.5 M; these correspond the concentrations reported in the experiments by Akutsu et al.²⁰. The lipid force fields named as in our previous work ⁴⁵.

force field for lipids / ions	lipid	salt	[salt] (mM)	aN_1	$^b\mathrm{N_w}$	cN_c	^d T (K)	^e t _{sim} (ns)	f _{tanal} (ns)	g files
Berger-POPC-07 ⁵¹ / –	POPC	no	0	128	7290	0	298	270	50	52
Berger-POPC-07 ⁵¹ / ffgmx ⁵³	"	NaCl	340	"	7202	44	"	110	"	54
Berger-POPC-07 ⁵¹ / ffgmx ⁵³	"	$CaCl_2$	340	"	7157	"	"	108	58	55
Berger-DPPC-97 ⁵⁶ / –	DPPC	no	0	72	2880	0	323	60	50	57
Berger-DPPC-97 ⁵⁶ / ffgmx ⁵³	"	NaCl	150	"	"	8	"	120	60	58
Berger-DPPC-97 ⁵⁶ / ffgmx ⁵³	"	"	1000	"	2778	51	"	"	"	59
BergerOPLS-DPPC-06 ⁶⁰ / –	DPPC	no	0	72	2880	0	323	120	60	61
BergerOPLS-DPPC-06 ⁶⁰ / OPLS ⁶²	"	NaCl	150	"	"	8	"	"	"	63
BergerOPLS-DPPC-06 ⁶⁰ / OPLS ⁶²	"	"	1000	"	2778	51	"	"	"	64
CHARMM36 ⁶⁵ / –	POPC	no	0	128	5210	0	303	200	150	66
CHARMM36 ⁶⁵ / –	"	"	0	72	2242	"	"	30	20	67
CHARMM36 ⁶⁵ / CHARMM36 ⁶⁸	"	NaCl	350	"	2085	13	"	80	60	69
CHARMM36 ⁶⁵ / CHARMM36 ⁶⁸	"	"	690	"	"	26	"	73	"	70
CHARMM36 ⁶⁵ / CHARMM36 ⁶⁸	"	"	950	"	2168	37	"	80	"	71
CHARMM36 ⁶⁵ / CHARMM36	"	CaCl ₂	350	128	6400	35	"	200	100	72
CHARMM36 ⁶⁵ / CHARMM36	"	"	450	200	9000	73	310	2000	"	73
CHARMM36 ⁶⁵ / CHARMM36	"	"	670	128	6400	67	303	200	120	74
CHARMM36 ⁶⁵ / CHARMM36	"	"	1000	"	"	100	"	"	100	
CHARMM36 ⁶⁵ / –	DPPC	no	0	128	8000	0	323	170	150	_
CHARMM36 ⁶⁵ / Yoo ⁷⁶	"	CaCl ₂	430	"	7760	60	"	200	170	_
CHARMM36 ⁶⁵ / Yoo ⁷⁶	"	"	890	"	7520	120	"	200	"	_
MacRog ⁷⁷ / –	POPC	no	0	128	6400	0	310	400	200	78
MacRog ⁷⁷ / –	"	"	0	288	14400	"	310	90	40	79
MacRog ⁷⁷ / OPLS ⁶²	"	NaCl	100	200	14554	27	"	"	50	80
MacRog 77 / OPLS 62	"	"	210	"	14500	54	"	"	"	"
MacRog 77 / OPLS 62	"	"	310	"	14446	81	"	"	"	"
MacRog ⁷⁷ / OPLS ⁶²	"	"	420	"	14392	108	"	"	"	"
Orange / –	POPC	no	0	72	2880	0	298	60	50	81
Orange / OPLS ⁶²	"	NaCl	140	, _	2866	7		120	60	82
Orange / OPLS ⁶²	"	"	510	"	2802	26	"	120	100	83
Orange / OPLS ⁶²	"	"	1000	"	2780	50	"	"	80	84
Orange / OPLS	"	CaCl ₂	510	"	2802	26	"	"	60	85
Slipids ⁸⁶ / –	POPC	no	0	128	5120	0	310	200	150	87
Slipids ⁸⁶ / AMBER ⁸⁸	"	NaCl	130	200	9000	21	310	105	100	89
Slipids ⁸⁶ / AMBER ⁶²	"	CaCl ₂	450	200	7000	73	"	2000	100	90
Slipids ⁹¹ / –	DPPC	no	0	128	3840	0	323	150	100	92
Slipids ⁹¹ / AMBER ^{93,94}	"	NaCl	150	600	18000	49	3 <u>2</u> 3	100	40	_
Slipids ⁹¹ / AMBER ^{93,94}	"	"	850	128	3726	57	"	205	200	95
Slipids ⁹¹ / AMBER ^{93,94}	"	"	1750	120	3612	114	"	105	100	"
Slipids ⁹¹ / AMBER ^{93,94}	"	"	2570	"	3514	163	"	103	100	"
Lipid14 ⁹⁶ / –	POPC	no	0	128	5120	0	298	205	200	97
Lipid14 / – Lipid14 ⁹⁶ / AMBER ⁶²	"	NaCl	150	120	3120	12	290 "	203	200	97 98
Lipid14 / AMBER Lipid14 ⁹⁶ / AMBER ⁶²	"	"	1000	"	"	77	"	"	"	99
Lipid14 ⁹⁶ / AMBER ⁶²	"	CaCl ₂	350	"	6400	35	"	200	100	100
Lipid14 ⁹⁶ / AMBER ⁶²	"	"	1000	"	U 4 UU	100	"	200	100	100
Ulmschneiders ¹⁰² / –	POPC		0	128	5120	0	298	2×205	2×200	101
Ulmschneiders ¹⁰² / OPLS ⁶²	POPC	no NoCl		128	5120		298 "			
Ulmschneiders ¹⁰² / OPLS ⁶²	"	NaCl "	150	"	"	12	"	205	200	104
Omiscinierders / OPLS			1000			77				105

a Number of lipid molecules

b Number of water molecules

c Number of cations

d Simulation temperature

 $[\]it e$ Total simulation time

fTime used for analysis

 $g\,Reference$ for simulation files

Fig. 6 Ca²⁺ (solid line) and Cl⁻ (dashed) distributions along the lipid bilayer normal from MD simulations. For clarity, only one CaCl₂ concentration per MD model is shown; see ESl[†] for a plot including all the available concentrations. The light green vertical lines indicate the locations of the Phosphorus maxima, used to define bound cations in Fig. 3.

88 and 93,94. Further, the compensation of missing electronic polarizability by scaling ion charge 112,114 reduced Na $^+$ binding in Berger, BergerOPLS and Slipids models, but not enough to be in agreement with experiments (ESI †). The charge-scaled Ca $^{2+}$ model 115 slightly reduced binding in CHARMM36, but did not have significant influence on binding in Slipids (ESI †). Significant reduction of Ca $^{2+}$ binding was observed with ion model by Yoo et al 76 , however, the CHARMM36 lipid model must be further analysed to fully interpret the results.

On the other hand, also the lipid models may have significant influence on ion binding behaviour. For example, the same ion model and non-bonded parameters are used in the Orange and BergerOPLS ⁶⁰ simulations, but while Na⁺ ion binding affinity appears realistic in the Orange model, it is significantly overestimated in the BergerOPLS (Fig. 4). However, realistic Na⁺ binding does not directly relate to realistic Ca²⁺ binding (see Orange, Lipid14 and CHARMM36 in Fig. 2) or realistic choline order parameter response to bound charge (see Orange and CHARMM36 in Fig. 5). It should be also noted that the low binding affinity of Na⁺ in CHARMM36 model is due to the additional repulsion added between sodium ions and lipid oxygens (NBFIX) ⁶⁸ (ESI[†]). Altogether, our results indicate that probably both, lipid and ion force field parameters, need improvement to correctly predict the cation binding affinity, and the associated structural changes.

3 Conclusions

As suggested by the molecular electrometer concept $^{20,29-32}$, the decrease in order parameters of α and β carbons in the PC head group of lipids bilayers is related to cation binding in all tested simulation models (Fig. 3), despite of known inaccuracies in the actual atomistic resolution structures 45 . Hence the molecular electrometer concept allows a direct comparison of Na⁺ binding affinity between simulations and noninvasive NMR experiments. The comparison reveals that most models overestimate Na⁺ binding; only Orange, Lipid14, and CHARMM36 predict realistic binding affinity. None of the tested models has the required accuracy to interpret the Ca²⁺:lipid stoichiometry or induced structural changes with atomistic resolution.

In general, our results support the pre-2000 view that at submolar concentrations, in contrast to Ca²⁺ and other multivalent ions $^{1\text{--}4,10,11,19,20,27,30},\;\text{Na}^+$ and other monovalent ions (except Li⁺) do not specifically bind to phospholipid bilayers. Concerning the interpretation of existing experimental data, our work supports Cevc's view² that the observed small shift in phase transition temperature is not indicative of Na⁺ binding. Further, our findings are in line with the noninvasive NMR spectroscopy work of Filippov et al. 11 that proved the results of Refs. 7,9,12 to be explainable by direct interactions between Na+ ions and fluorescent probes. Finally, as spectroscopic methods are in general more sensitive to atomistic details in fluid-like environment than AFM, our work indirectly suggests that the ion binding reported from AFM experiments on fluid-like lipid bilayer systems ^{14–18} might be confounded with other physical features of the system. Concerning contradictions in MD simulation results, we reinterpret strong Na⁺ binding as an artefact of several simulation models, e.g., the Berger model used in Refs. 12,13.

The artificial specific Na⁺ binding in simulations may lead to doubtful results, since it effectively leads to positively charged phosphatidylcholine (PC) lipid bilayers even at physiological NaCl concentration. Such a PC bilayer has distinctly different interactions with charged objects compared to a (more realistic) model without specific Na⁺ binding. Furthermore, the overestimation of Na⁺ binding affinity may extend also to other positively charged objects, say, membrane protein segments. This would affect lipid-protein interactions and could explain, for example, contradicting

results on electrostatic interactions between charged protein segments and lipid bilayer ^{116,117}. In conclusion, more careful studies and model development on lipid bilayer–charged object interactions are called for to make molecular dynamics simulations directly usable in a physiologically relevant electrolytic environment.

This work has been done as a fully open collaboration, using nmrlipids.blogspot.fi as the communication platform. All the scientific contributions have been communicated publicly through this blog or GitHub repository³⁴.All the related content and data is available at Ref. 34.

AC and VSO wish to thank the Re-**Acknowledgements:** search Computing Service at UEA for access to the High Performance Computing Cluster; VSO acknowledges the Engineering and Physical Sciences Research Council in the UK for financial support (EP/L001322/1). OHSO acknowledges Tiago Ferreira for very useful discussions, the Emil Aaltonen foundation for financial support, Aalto Science-IT project and CSC-IT Center for Science for computational resources. MSM acknowledges financial support from the Volkswagen Foundation (86110). MG acknowledges financial support from Finnish Center of International Mobility (Fellowship TM-9363). J. Melcr acknowledges computational resources provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085 projects under the program "Projects of Large Research, Development, and Innovations Infrastructure". LM acknowledges funding from the Institut National de la Sante et de la Recherche Medicale (INSERM).

References

- 1 M. Eisenberg, T. Gresalfi, T. Riccio and S. McLaughlin, *Biochemistry*, 1979, **18**, 5213–5223.
- 2 G. Cevc, Biochim. Biophys. Acta Rev. Biomemb., 1990, 1031, 311 – 382.
- 3 J.-F. Tocanne and J. Teissié, *Biochim. Biophys. Acta Reviews on Biomembranes*, 1990, **1031**, 111 142.
- 4 H. Binder and O. Zschörnig, *Chem. Phys. Lipids*, 2002, **115**, 39 61.
- 5 J. J. Garcia-Celma, L. Hatahet, W. Kunz and K. Fendler, *Lang-muir*, 2007, 23, 10074–10080.
- 6 E. Leontidis and A. Aroti, *J. Phys. Chem. B*, 2009, **113**, 1460–1467.
- 7 R. Vacha, S. W. I. Siu, M. Petrov, R. A. Böckmann, J. Barucha-Kraszewska, P. Jurkiewicz, M. Hof, M. L. Berkowitz and P. Jungwirth, *J. Phys. Chem. A*, 2009, **113**, 7235–7243.
- 8 B. Klasczyk, V. Knecht, R. Lipowsky and R. Dimova, *Langmuir*, 2010, **26**, 18951–18958.
- 9 F. F. Harb and B. Tinland, Langmuir, 2013, 29, 5540-5546.
- 10 G. Pabst, A. Hodzic, J. Strancar, S. Danner, M. Rappolt and P. Laggner, *Biophys. J.*, 2007, **93**, 2688 2696.
- 11 A. Filippov, G. Orädd and G. Lindblom, *Chem. Phys. Lipids*, 2009, **159**, 81 87.
- 12 R. A. Böckmann, A. Hac, T. Heimburg and H. Grubmüller, *Biophys. J.*, 2003, **85**, 1647 1655.
- 13 R. A. Böckmann and H. Grubmüller, *Ang. Chem. Int. Ed.*, 2004, **43**, 1021–1024.

- 14 S. Garcia-Manyes, G. Oncins and F. Sanz, *Biophys. J.*, 2005, 89, 1812 – 1826.
- 15 S. Garcia-Manyes, G. Oncins and F. Sanz, *Electrochim. Acta*, 2006, **51**, 5029 5036.
- 16 T. Fukuma, M. J. Higgins and S. P. Jarvis, *Phys. Rev. Lett.*, 2007, 98, 106101.
- 17 U. Ferber, G. Kaggwa and S. Jarvis, Eur. Biophys. J., 2011, 40, 329–338.
- 18 L. Redondo-Morata, G. Oncins and F. Sanz, *Biophys. J.*, 2012, 102, 66 74.
- 19 R. J. Clarke and C. Lüpfert, *Biophys. J.*, 1999, **76**, 2614 2624.
- 20 H. Akutsu and J. Seelig, Biochemistry, 1981, 20, 7366-7373.
- 21 J. N. Sachs, H. Nanda, H. I. Petrache and T. B. Woolf, *Biophys. J.*, 2004, **86**, 3772 3782.
- 22 M. L. Berkowitz, D. L. Bostick and S. Pandit, *Chem. Rev.*, 2006, **106**, 1527–1539.
- 23 A. Cordomí, O. Edholm and J. J. Perez, *J. Phys. Chem. B*, 2008, **112**, 1397–1408.
- 24 A. Cordomí, O. Edholm and J. J. Perez, *J. Chem. Theory Comput.*, 2009, **5**, 2125–2134.
- 25 C. Valley, J. Perlmutter, A. Braun and J. Sachs, *J. Membr. Biol.*, 2011, **244**, 35–42.
- 26 M. L. Berkowitz and R. Vacha, Acc. Chem. Res., 2012, 45, 74–82.
- 27 S. A. Tatulian, Eur. J. Biochem., 1987, 170, 413–420.
- 28 V. Knecht and B. Klasczyk, Biophys. J., 2013, 104, 818 824.
- 29 M. F. Brown and J. Seelig, Nature, 1977, 269, 721-723.
- 30 C. Altenbach and J. Seelig, *Biochemistry*, 1984, **23**, 3913–3920.
- 31 J. Seelig, P. M. MacDonald and P. G. Scherer, *Biochemistry*, 1987, **26**, 7535–7541.
- 32 P. G. Scherer and J. Seelig, *Biochemistry*, 1989, **28**, 7720–7728.
- 33 O. S. Ollila and G. Pabst, Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments, 2016, http://dx.doi.org/10.1016/j.bbamem.2016.01.019, In Press.
- 34 A. Catte, M. Girych, M. Javanainen, C. Loison, J. Melcr, M. S. Miettinen, L. Monticelli, J. Määttä, V. S. Oganesyan, O. H. S. Ollila, J. Tynkkynen and S. Vilov, lipid_ionINTERACTION: First submission to Physical Chemistry Chemical Physics (PCCP), 2016, http://dx.doi.org/10.5281/zenodo.57845.
- 35 C. Altenbach and J. Seelig, *Biochim. Biophys. Acta*, 1985, 818, 410 – 415.
- 36 P. M. Macdonald and J. Seelig, *Biochemistry*, 1987, **26**, 1231–1240.
- 37 M. Roux and M. Bloom, *Biochemistry*, 1990, **29**, 7077–7089.
- 38 G. Beschiaschvili and J. Seelig, *Biochim. Biophys. Acta Biomembranes*, 1991, **1061**, 78 84.
- 39 F. M. Marassi and P. M. Macdonald, *Biochemistry*, 1992, 31, 10031–10036.

- 40 J. R. Rydall and P. M. Macdonald, *Biochemistry*, 1992, **31**, 1092–1099.
- 41 T. M. Ferreira, R. Sood, R. Bärenwald, G. Carlström, D. Topgaard, K. Saalwächter, P. K. J. Kinnunen and O. H. S. Ollila, *Langmuir*, 2016, **32**, 6524–6533.
- 42 M. Hong, K. Schmidt-Rohr and A. Pines, *J. Am. Chem. Soc.*, 1995, **117**, 3310–3311.
- 43 M. Hong, K. Schmidt-Rohr and D. Nanz, *Biophys. J.*, 1995, **69**, 1939 1950.
- 44 J. D. Gross, D. E. Warschawski and R. G. Griffin, *J. Am. Chem. Soc.*, 1997, **119**, 796–802.
- 45 A. Botan, F. Favela-Rosales, P. F. J. Fuchs, M. Javanainen, M. Kanduč, W. Kulig, A. Lamberg, C. Loison, A. Lyubartsev, M. S. Miettinen, L. Monticelli, J. Määttä, O. H. S. Ollila, M. Retegan, T. Róg, H. Santuz and J. Tynkkynen, *J. Phys. Chem. B*, 2015, 119, 15075–15088.
- 46 J. Seelig, Cell Biol. Int. Rep., 1990, 14, 353-360.
- 47 A. A. Gurtovenko, M. Miettinen, , M. Karttunen and I. Vattulainen, *J. Phys. Chem. B*, 2005, **109**, 21126–21134.
- 48 W. Zhao, A. A. Gurtovenko, I. Vattulainen and M. Karttunen, *J. Phys. Chem. B*, 2012, **116**, 269–276.
- 49 C. M. Franzin, P. M. Macdonald, A. Polozova and F. M. Winnik, *Biochim. Biophys. Acta Biomembranes*, 1998, **1415**, 219 234.
- 50 M. S. Miettinen, A. A. Gurtovenko, I. Vattulainen and M. Karttunen, *J. Phys. Chem. B*, 2009, **113**, 9226–9234.
- 51 S. Ollila, M. T. Hyvönen and I. Vattulainen, *J. Phys. Chem. B*, 2007, **111**, 3139–3150.
- 52 O. H. S. Ollila, T. Ferreira and D. Topgaard, MD simulation trajectory and related files for POPC bilayer (Berger model delivered by Tieleman, Gromacs 4.5), 2014, {http://dx.doi.org/10.5281/zenodo.13279}.
- 53 T. P. Straatsma and H. J. C. Berendsen, *J. Chem. Phys*, 1988, **89**, year.
- 54 O. H. S. Ollila, MD simulation trajectory and related files for POPC bilayer with 340mM NaCl (Berger model delivered by Tieleman, ffgmx ions, Gromacs 4.5), 2015, http://dx.doi.org/10.5281/zenodo.32144.
- 55 O. H. S. Ollila, MD simulation trajectory and related files for POPC bilayer with 340mM CaCl_2 (Berger model delivered by Tieleman, ffgmx ions, Gromacs 4.5), 2015, http://dx.doi.org/10.5281/zenodo.32173.
- 56 S.-J. Marrink, O. Berger, P. Tieleman and F. Jähnig, *Biophys. J.*, 1998, **74**, 931 943.
- 57 J. Määttä, DPPC_Berger, 2015, http://dx.doi.org/10. 5281/zenodo.13934.
- 58 J. Määttä, *DPPC_Berger_NaCl*, 2015, http://dx.doi.org/10.5281/zenodo.16319.
- 59 J. Määttä, DPPC_Berger_NaCl_1Mol, 2015, http://dx.doi.org/10.5281/zenodo.17210.
- 60 D. P. Tieleman, J. L. MacCallum, W. L. Ash, C. Kandt, Z. Xu and L. Monticelli, *J. Phys. Condens. Matter*, 2006, **18**, S1221.
- 61 J. Määttä, *DPPC_Berger_OPLS06*, 2015, http://dx.doi.org/10.5281/zenodo.17237.

- 62 J. Åqvist, J. Phys. Chem., 1990, 94, 8021-8024.
- 63 J. Määttä, DPPC_Berger_OPLS06_NaCl, 2015, http://dx.doi.org/10.5281/zenodo.16484.
- 64 J. Määttä, DPPC_Berger_OPLS06_NaCl_1Mol, 2016, http://dx.doi.org/10.5281/zenodo.46152.
- 65 J. B. Klauda, R. M. Venable, J. A. Freites, J. W. O'Connor, D. J. Tobias, C. Mondragon-Ramirez, I. Vorobyov, A. D. M. Jr and R. W. Pastor, *J. Phys. Chem. B*, 2010, 114, 7830–7843.
- 66 H. Santuz, MD simulation trajectory and related files for POPC bilayer (CHARMM36, Gromacs 4.5), 2015, DOI: 10.5281/zenodo.14066.
- 67 O. H. S. Ollila and M. Miettinen, MD simulation trajectory and related files for POPC bilayer (CHARMM36, Gromacs 4.5), 2015, {http://dx.doi.org/10.5281/zenodo.13944}.
- 68 R. M. Venable, Y. Luo, K. Gawrisch, B. Roux and R. W. Pastor, *J. Phys. Chem. B*, 2013, **117**, 10183–10192.
- 69 O. H. S. Ollila, MD simulation trajectory and related files for POPC bilayer with 350mM NaCl (CHARMM36, Gromacs 4.5), 2015, http://dx.doi.org/10.5281/zenodo.32496.
- 70 O. H. S. Ollila, MD simulation trajectory and related files for POPC bilayer with 690mM NaCl (CHARMM36, Gromacs 4.5), 2015, http://dx.doi.org/10.5281/zenodo.32497.
- 71 O. H. S. Ollila, MD simulation trajectory and related files for POPC bilayer with 950mM NaCl (CHARMM36, Gromacs 4.5), 2015, http://dx.doi.org/10.5281/zenodo.32498.
- 72 M. Girych and O. H. S. Ollila, **POPC_CHARMM36_CaCl2_035Mol, 2015, http://dx.doi.org/10.5281/zenodo.35159.
- 73 M. Javanainen, POPC @ 310K, 450 mM of CaCl_2. Charmm36 with default Charmm ions, 2016, http://dx.doi.org/10.5281/zenodo.51185.
- 74 M. Girych and O. H. S. Ollila, POPC_CHARMM36_CaCl2_067Mol, 2015, http: //dx.doi.org/10.5281/zenodo.35160.
- 75 M. Girych and O. H. S. Ollila, POPC_CHARMM36_CaCl2_1Mol, 2015, http://dx. doi.org/10.5281/zenodo.35156.
- 76 J. Yoo, J. Wilson and A. Aksimentiev, Biopolymers, 2016.
- 77 A. Maciejewski, M. Pasenkiewicz-Gierula, O. Cramariuc, I. Vattulainen and T. Rog, *J. Phys. Chem. B*, 2014, **118**, 4571–4581.
- 78 M. Javanainen, 2015.
- 79 M. Javanainen, POPC @ 310K, varying water-to-lipid ratio. Model by Maciejewski and Rog, 2014, http://dx.doi.org/10.5281/zenodo.13498.
- 80 M. Javanainen and J. Tynkkynen, POPC @ 310K, varying amounts of NaCl. Model by Maciejewski and Rog, 2015, http://dx.doi.org/10.5281/zenodo.14976.
- 81 O. H. S. Ollila, J. Määttä and L. Monticelli, MD simulation trajectory for POPC bilayer (Orange, Gromacs 4.5.), 2015, http://dx.doi.org/10.5281/zenodo.34488.
- 82 O. H. S. Ollila, J. Määttä and L. Monticelli, MD simulation trajectory for POPC bilayer with 140mM NaCl (Orange,

- *Gromacs 4.5.*), 2015, http://dx.doi.org/10.5281/zenodo.34491.
- 83 O. H. S. Ollila, J. Määttä and L. Monticelli, MD simulation trajectory for POPC bilayer with 510mM NaCl (Orange, Gromacs 4.5.), 2015, http://dx.doi.org/10.5281/zenodo.34490.
- 84 S. Ollila, J. Määttä and L. Monticelli, MD simulation trajectory for POPC bilayer with 1000mM NaCl (Orange, Gromacs 4.5.), 2015, http://dx.doi.org/10.5281/zenodo.34497.
- 85 O. H. S. Ollila, J. Määttä and L. Monticelli, MD simulation trajectory for POPC bilayer with 510mM CaCl_2 (Orange, Gromacs 4.5.), 2015, http://dx.doi.org/10.5281/zenodo.34498.
- 86 J. P. M. Jämbeck and A. P. Lyubartsev, *J. Chem. Theory Comput.*, 2012, **8**, 2938–2948.
- 87 M. Javanainen, *POPC* @ *310K*, *Slipids force field.*, 2015, DOI: 10.5281/zenodo.13887.
- 88 D. E. Smith and L. X. Dang, J. Chem. Phys, 1994, 100, year.
- 89 M. Javanainen, POPC @ 310K, 130 mM of NaCl. Slipids with ions by Smith & Dang, 2015, http://dx.doi.org/10.5281/zenodo.35275.
- 90 M. Javanainen, POPC @ 310K, 450 mM of CaCl_2. Slipids with default Amber ions, 2016, http://dx.doi.org/10.5281/zenodo.51182.
- 91 J. P. M. Jämbeck and A. P. Lyubartsev, *J. Phys. Chem. B*, 2012, **116**, 3164–3179.
- 92 J. Määttä, *DPPC_Slipids*, 2014, http://dx.doi.org/10.5281/zenodo.13287.
- 93 D. Beglov and B. Roux, *J. Chem. Phys.*, 1994, **100**, 9050–9063.
- 94 B. Roux, Biophys. J., 1996, 71, 3177 3185.
- 95 J. Melcr, Simulation files for DPPC lipid membrane with Slipids force field for Gromacs MD simulation engine, 2016, http://dx.doi.org/10.5281/zenodo.55322.
- 96 C. J. Dickson, B. D. Madej, Ã. A. Skjevik, R. M. Betz, K. Teigen, I. R. Gould and R. C. Walker, J. Chem. Theory Comput., 2014, 10, 865–879.
- 97 M. Girych and O. H. S. Ollila, POPC_AMBER_LIPID14_Verlet, 2015, http://dx.doi.org/10.5281/zenodo.30898.
- 98 M. Girych and O. H. S. Ollila, POPC_AMBER_LIPID14_NaCl_015Mol, 2015, http: //dx.doi.org/10.5281/zenodo.30891.
- 99 M. Girych and O. H. S. Ollila, POPC_AMBER_LIPID14_NaCl_1Mol, 2015, http://dx.doi.org/10.5281/zenodo.30865.
- 100 M. Girych and O. H. S. Ollila, POPC_AMBER_LIPID14_CaCl2_035Mol, 2015, http://dx.doi.org/10.5281/zenodo.34415.
- 102 J. P. Ulmschneider and M. B. Ulmschneider, *J. Chem. Theory Comput.*, 2009, **5**, 1803–1813.

- 103 M. Girych and O. H. S. Ollila, POPC_Ulmschneider_OPLS_Verlet_Group, 2015, http://dx.doi.org/10.5281/zenodo.30904.
- 104 M. Girych and O. H. S. Ollila, POPC_Ulmschneider_OPLS_NaCl_015Mol, 2015, http://dx.doi.org/10.5281/zenodo.30892.
- 105 M. Girych and O. H. S. Ollila, POPC_Ulmschneider_OPLS_NaCl_1Mol, 2015, http://dx.doi.org/10.5281/zenodo.30894.
- 106 H. Hauser, M. C. Phillips, B. Levine and R. Williams, *Nature*, 1976, **261**, 390 394.
- 107 H. Hauser, W. Guyer, B. Levine, P. Skrabal and R. Williams, *Biochim. Biophys. Acta Biomembranes*, 1978, **508**, 450 463.
- 108 L. Herbette, C. Napolitano and R. McDaniel, *Biophys. J.*, 1984, **46**, 677 685.
- 109 B. Hess, C. Holm and N. van der Vegt, *J. Chem. Phys*, 2006, **124**, year.
- 110 A. A. Chen, and R. V. Pappu, J. Phys. Chem. B, 2007, 111, 11884–11887.
- 111 M. M. Reif, M. Winger and C. Oostenbrink, *J. Chem. Theory Comput.*, 2013, **9**, 1247–1264.
- 112 I. Leontyev and A. Stuchebrukhov, *Phys. Chem. Chem. Phys.*, 2011, **13**, 2613–2626.
- 113 W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, *J. Am. Chem. Soc.*, 1996, **118**, 11225–11236.
- 114 M. Kohagen, P. E. Mason and P. Jungwirth, *J. Phys. Chem. B*, 2016, **120**, 1454–1460.
- 115 M. Kohagen, P. E. Mason and P. Jungwirth, *J. Phys. Chem. B*, 2014, **118**, 7902–7909.
- A. Arkhipov, Y. Shan, R. Das, N. Endres, M. Eastwood,
 D. Wemmer, J. Kuriyan and D. Shaw, *Cell*, 2013, **152**, 557
 569.
- 117 K. Kaszuba, M. Grzybek, A. Orlowski, R. Danne, T. Róg, K. Simons, Ã. Coskun and I. Vattulainen, *Proc. Natl. Acad. Sci. USA*, 2015, **112**, 4334–4339.