ASSIGNMENT-3

WEEK-3

NAME: N. SUSRUTHA HASINI

MORNING SESSION (10:00 - 12:00)

Perform Data preprocessing on Titanic dataset

Data Preprocessing

- o Import the Libraries.
- o Importing the dataset.
- o Checking for Null Values.
- o Data Visualization.
- o Outlier Detection
- o Splitting Dependent and Independent variables
- o Perform Encoding
- o Splitting Data into Train and Test
- o Feature Scaling.

o Import the Libraries.

In [1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

o Importing the dataset.

In [2]:

df=pd.read_csv("Titanic-Dataset.csv")

In [3]:
df.head()

Out[3]:

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embark	ed
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	
1	2	1	1	Cumings, Mrs. John Bradley (Florence	female	38.0	1	0	PC 17599	71.2833	C85	С	

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embark	ed
				Briggs Th									
2	3	1		Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	

In [4]:
df.describe()

Out[4]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare			
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000			
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208			
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429			
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000			
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400			
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200			
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000			
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200			

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

#	Column	Non-	-Null Count	Dtype
0	PassengerId	891	non-null	int64
1	Survived	891	non-null	int64
2	Pclass	891	non-null	int64
3	Name	891	non-null	object
4	Sex	891	non-null	object
5	Age	714	non-null	float64
6	SibSp	891	non-null	int64
7	Parch	891	non-null	int64
8	Ticket	891	non-null	object
9	Fare	891	non-null	float64
10	Cabin	204	non-null	object
11	Embarked	889	non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [6]:

df.corr()

/tmp/ipykernel_8747/1134722465.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

df.corr()

Out[6]:

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
PassengerId	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652	0.012658
Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

In [7]:

df.corr().Parch.sort_values(ascending=False)

/tmp/ipykernel_8747/1925834096.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric only to silence this warning.

df.corr().Parch.sort values(ascending=False)

Out[7]:

Parch 1.000000
SibSp 0.414838
Fare 0.216225
Survived 0.081629
Pclass 0.018443
PassengerId -0.001652
Age -0.189119

Name: Parch, dtype: float64

In [8]:

sns.heatmap(df.corr(),annot=True)

/tmp/ipykernel_8747/4277794465.py:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

sns.heatmap(df.corr(),annot=True)

Out[8]:

<Axes: >

o Checking for null values

```
In [9]:
df.isnull().sum()
Out[9]:
PassengerId
                   0
Survived
                   0
Pclass
                   0
Name
                   0
Sex
                   0
Age
                 177
SibSp
                   0
Parch
                   0
Ticket
                   0
Fare
                   0
Cabin
                 687
Embarked
                   2
dtype: int64
In [10]:
df.drop(["Cabin"],axis=1,inplace=True)
In [11]:
mean_age = df['Age'].mean()
mean_age
Out[11]:
```

```
29.69911764705882
In [12]:
df['Age'].fillna(mean_age, inplace=True)
In [13]:
mode embarked = df["Embarked"].mode()[0]
mode embarked
Out[13]:
'S'
In [14]:
df["Embarked"].fillna(mode_embarked,inplace=True)
df.isnull().sum()
Out[15]:
PassengerId
Survived
Pclass
                0
Name
                0
Sex
                0
Age
                0
                0
SibSp
Parch
                0
Ticket
                0
Fare
                0
                0
Embarked
dtype: int64
```

o Data visualization

```
In [16]:
# Example 1: Create a histogram of the 'Age' column
plt.hist(df['Age'], bins=20, edgecolor='k')
plt.xlabel('Age')
plt.ylabel('Count')
plt.title('Age Distribution')
plt.show()

# Example 2: Create a bar chart for the 'Pclass' column
pclass_counts = df['Pclass'].value_counts()
plt.bar(pclass_counts.index, pclass_counts.values)
plt.xlabel('Pclass')
plt.ylabel('Count')
plt.title('Passenger Class Distribution')
plt.xticks(pclass_counts.index, labels=['1st', '2nd', '3rd'])
plt.show()
```


In [17]:
Example 1: Create a box plot of 'Age' by 'Pclass'
sns.boxplot(x='Pclass', y='Age', data=df)

```
plt.xlabel('Pclass')
plt.ylabel('Age')
plt.title('Age Distribution by Passenger Class')
plt.show()

# Example 2: Create a countplot of 'Sex'
sns.countplot(x='Sex', data=df)
plt.xlabel('Sex')
plt.ylabel('Count')
plt.title('Passenger Gender Distribution')
plt.show()
```



```
In [18]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 11 columns):
               Non-Null Count Dtype
   Column
--- ----
                _____
0
    PassengerId 891 non-null
                              int64
    Survived
               891 non-null
                              int64
1
                891 non-null
    Pclass
                              int64
3
   Name
               891 non-null object
4
   Sex
               891 non-null object
               891 non-null
 5
                              float64
   Age
                891 non-null
                              int64
 6
   SibSp
                891 non-null
7
   Parch
                              int64
8
   Ticket
               891 non-null object
 9
   Fare
                891 non-null
                              float64
10 Embarked
               891 non-null
                               object
dtypes: float64(2), int64(5), object(4)
memory usage: 76.7+ KB
In [19]:
df.drop(["PassengerId","Name","Ticket"],axis=1,inplace=True)
In [20]:
df.head()
Out[20]:
```

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S

o Outlier Detection

```
In [21]:
# Select numerical columns from the dataset
numerical_attributes = df.select_dtypes(include=['int64', 'float64'])

# Create box plots for each numerical attribute
plt.figure(figsize=(16, 8))  # Adjust the figure size for better
visualization

for i, column in enumerate(numerical_attributes.columns):
    plt.subplot(2, 3, i+1)  # Create subplots in a 2x3 grid
    sns.boxplot(x=column, data=numerical_attributes, whis=1.5)  # Adjust
whis as needed

plt.tight_layout()
```


o Removal of Outliers

```
In [22]:
# Load your dataset into a pandas DataFrame (assuming your dataset is
loaded as 'df')
# Define the numerical attributes
numerical_attributes = ['Age', 'SibSp', 'Parch', 'Fare']
# Define a function to detect and potentially remove outliers
def detect_and_remove_outliers(df, column):
   Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
   IQR = Q3 - Q1
    lower_bound = Q1 - 1.5 * IQR
    upper bound = Q3 + 1.5 * IQR
   outliers = df[(df[column] < lower bound) | (df[column] > upper bound)]
    return outliers
# Detect and potentially remove outliers for each numerical attribute
outliers dict = {}
for attribute in numerical attributes:
    outliers = detect_and_remove_outliers(df, attribute)
    outliers dict[attribute] = outliers
# Print the detected outliers for each numerical attribute
for attribute, outliers in outliers dict.items():
   print(f"Outliers in {attribute}:")
   print(outliers)
```

Optionally, remove the outliers from the DataFrame
for attribute, outliers in outliers_dict.items():
 df = df[~df.index.isin(outliers.index)]

Now, the DataFrame 'df' contains the data with potential outliers removed.

Outliers in Age:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
7	0	3	male	2.00	3	1	21.0750	S
11	1	1	female	58.00	0	0	26.5500	S
15	1	2	female	55.00	0	0	16.0000	S
16	0	3	male	2.00	4	1	29.1250	Q
33	0	2	male	66.00	0	0	10.5000	S
827	1	2	male	1.00	0	2	37.0042	С
829	1	1	female	62.00	0	0	80.0000	S
831	1	2	male	0.83	1	1	18.7500	S
851	0	3	male	74.00	0	0	7.7750	S
879	1	1	female	56.00	0	1	83.1583	С

[66 rows x 8 columns]
Outliers in SibSp:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
7	0	3	male	2.000000	3	1	21.0750	S
16	0	3	male	2.000000	4	1	29.1250	Q
24	0	3	female	8.000000	3	1	21.0750	S
27	0	1	male	19.000000	3	2	263.0000	S
50	0	3	male	7.000000	4	1	39.6875	S
59	0	3	male	11.000000	5	2	46.9000	S
63	0	3	male	4.000000	3	2	27.9000	S
68	1	3	female	17.000000	4	2	7.9250	S
71	0	3	female	16.000000	5	2	46.9000	S
85	1	3	female	33.000000	3	0	15.8500	S
88	1	1	female	23.000000	3	2	263.0000	S
119	0	3	female	2.000000	4	2	31.2750	S
159	0	3	male	29.699118	8	2	69.5500	S
164	0	3	male	1.000000	4	1	39.6875	S
171	0	3	male	4.000000	4	1	29.1250	Q
176	0	3	male	29.699118	3	1	25.4667	S
180	0	3	female	29.699118	8	2	69.5500	S
182	0	3	male	9.000000	4	2	31.3875	S
201	0	3	male	29.699118	8	2	69.5500	S
229	0	3	female	29.699118	3	1	25.4667	S
233	1	3	female	5.000000	4	2	31.3875	S
261	1	3	male	3.000000	4	2	31.3875	S
266	0	3	male	16.000000	4	1	39.6875	S
278	0	3	male	7.000000	4	1	29.1250	Q
324	0	3	male	29.699118	8	2	69.5500	S
341	1	1	female	24.000000	3	2	263.0000	S

374	0	3	female	3.000000	3	1	21.0750	S
386	0	3	male	1.000000	5	2	46.9000	S
409	0	3	female	29.699118	3	1	25.4667	S
480	0	3	male	9.000000	5	2	46.9000	S
485	0	3	female	29.699118	3	1	25.4667	S
541	0	3	female	9.000000	4	2	31.2750	S
542	0	3	female	11.000000	4	2	31.2750	S
634	0	3	female	9.000000	3	2	27.9000	S
642	0	3	female	2.000000	3	2	27.9000	S
683	0	3	male	14.000000	5	2	46.9000	S
686	0	3	male	14.000000	4	1	39.6875	S
726	1	2	female	30.000000	3	0	21.0000	S
787	0	3	male	8.000000	4	1	29.1250	Q
792	0	3	female	29.699118	8	2	69.5500	S
813	0	3	female	6.000000	4	2	31.2750	S
819	0	3	male	10.000000	3	2	27.9000	S
824	0	3	male	2.000000	4	1	39.6875	S
846	0	3	male	29.699118	8	2	69.5500	S
850	0	3	male	4.000000	4	2	31.2750	S
863	0	3	female	29.699118	8	2	69.5500	S
Outli	iers in Pa	arch:						
	Survived	Pclass	Sex	Age	SibSp	Parch	Fare E	Embarked
7	0	3	male	2.000000	3	1	21.0750	S
8	1	3	female	27.000000	0	2	11.1333	S
10	1	3	female	4.000000	1	1	16.7000	S
13	0	3	male	39.000000	1	5	31.2750	S
16	0	3	male	2.000000	4	1	29.1250	Q
871	1	1	female	47.000000	1	1	52.5542	S
879	1	1	female	56.000000	0	1	83.1583	С
880	1	2	female	25.000000	0	1	26.0000	S
885	0	3	female	39.000000	0	5	29.1250	Q
888	0	3	female	29.699118	1	2	23.4500	S
[213	rows x 8	columns]						
Outl	iers in Fa	are:						
	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
1	1	1	female	38.000000	1	0	71.2833	С
27	0	1	male	19.000000	3	2	263.0000	S
31	1	1	female	29.699118	1	0	146.5208	С
34	0	1	male	28.000000	1	0	82.1708	С
52	1	1	female	49.000000	1	0	76.7292	С
846	0			29.699118	8	2		
849	1			29.699118	1		89.1042	
856	1			45.000000			164.8667	
863	0			29.699118			69.5500	
879	1			56.000000			83.1583	
	rows x 8							
	0							

o Comparing the Before and After removing the outliers

```
In [23]:
import matplotlib.pyplot as plt
import seaborn as sns

# Select numerical columns from the dataset
numerical_attributes = df.select_dtypes(include=['int64', 'float64'])

# Create box plots for each numerical attribute
plt.figure(figsize=(16, 8))  # Adjust the figure size for better
visualization

for i, column in enumerate(numerical_attributes.columns):
    plt.subplot(2, 3, i+1)  # Create subplots in a 2x3 grid
    sns.boxplot(x=column, data=numerical_attributes, whis=1.5)  # Adjust
whis as needed

plt.tight_layout()
plt.show()
```

In [24]: df.head()

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Out[24]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.000000	1	0	7.2500	S
2	1	3	female	26.000000	0	0	7.9250	S
3	1	1	female	35.000000	1	0	53.1000	S
4	0	3	male	35.000000	0	0	8.0500	S
5	0	3	male	29.699118	0	0	8.4583	Q

-0.04

-0.02

0.02

0.04

o Splitting the Dependent and Independent variables

```
In [25]:
# Assuming 'df' is your DataFrame containing the dataset
X = df.drop('Survived', axis=1) # Independent variables
y = df['Survived'] # Dependent variable
In [26]:
X.head()
```

Out[26]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	male	22.000000	1	0	7.2500	S
2	3	female	26.000000	0	0	7.9250	S
3	1	female	35.000000	1	0	53.1000	S
4	3	male	35.000000	0	0	8.0500	S
5	3	male	29.699118	0	0	8.4583	Q

In [27]: y.head()

Out[27]:

1

3 1

0 4

0

Name: Survived, dtype: int64

o Perform Encoding

In [28]:

from sklearn.preprocessing import LabelEncoder

le=LabelEncoder()

In [30]:

X["Sex"]=le.fit_transform(X["Sex"])

Embarked=pd.get dummies(X["Embarked"],drop first=True)

In [32]:

Embarked

Out[32]:

- at[].							
	Q	S					
0	0	1					
2	0	1					
3	0	1					
4	0	1					
5	1	0					
884	0	1					
886	0	1					
	0	1					

```
QS
887 0 1
889 0 0
890 1 0
577 rows × 2 columns
In [33]:
X=pd.concat([X,Embarked],axis=1)
X.drop(["Embarked"],axis=1,inplace=True)
o Splitting Data into Train and Test
In [35]:
from sklearn.model selection import train test split
x_train,x_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_sta
te=2)
In [36]:
x train.shape, x test.shape, y train.shape, y test.shape
((461, 8), (116, 8), (461,), (116,))
o Feature Scaling
In [37]:
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
In [38]:
x_train=sc.fit_transform(x_train)
x test=sc.fit transform(x test)
In [39]:
x_train
Out[39]:
array([[ 0.6931394 , -1.76523977, 0.0155626 , ..., -0.04945919,
        -0.34879005, -1.74466606],
       [0.6931394, 0.56649528, -1.4470116, ..., -0.5034821,
        -0.34879005, 0.57317559],
       [0.6931394, 0.56649528, 0.16538695, ..., -0.5612962,
        -0.34879005, 0.57317559],
       [ 0.6931394 , 0.56649528, 0.0155626 , ..., 0.7106139 ,
         2.86705424, -1.74466606],
       [-2.03794831, 0.56649528, 0.0155626, ..., -1.18255274,
       -0.34879005, 0.57317559],
       [0.6931394, -1.76523977, 0.0155626, ..., -0.57501479,
         2.86705424, -1.74466606]])
In [40]:
x test
Out[40]:
array([[-0.7382193 , 0.60390884, -0.09693589, -0.39103094, 0.
```

```
-1.19986147, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.09693589, 4.144928, 0.
 0.75158987, 2.69920623, -1.69312335],
[-0.7382193, 0.60390884, 0.58763637, -0.39103094, 0.
-0.31856086, -0.37047929, 0.59062442],
[-0.7382193, 0.60390884, -0.05807902, -0.39103094, 0.
-0.31856086, -0.37047929, 0.59062442],
[-2.09748023, 0.60390884, -0.09693589, -0.39103094, 0.
 0.97611169, -0.37047929, 0.59062442],
[-2.09748023, 0.60390884, -0.31636518, -0.39103094, 0.
 2.75340124, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, 0.32935021, -0.39103094, 0.
-0.40249425, -0.37047929, 0.59062442],
[-2.09748023, 0.60390884, -0.09693589, -0.39103094, 0.
 2.3589143 , -0.37047929, 0.59062442],
[-2.09748023, 0.60390884, -0.09693589, -0.39103094, 0.
 1.12683927, -0.37047929, -1.69312335],
[ 0.62104163,  0.60390884,  0.84592253,  4.144928 ,  0.
-0.53468934, -0.37047929, 0.59062442],
[-2.09748023, 0.60390884, -0.09693589, -0.39103094, 0.
 2.99680807, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, 0.32935021, -0.39103094, 0.
-0.47278847, -0.37047929, -1.69312335],
[ 0.62104163, 0.60390884, 0.58763637, -0.39103094, 0.
-0.60183606, -0.37047929, 0.59062442],
[-0.7382193, 0.60390884, 1.49163792, -0.39103094, 0.
-0.10872739, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -1.09122365, -0.39103094, 0.
-0.59134438, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -1.60779596, -0.39103094, 0.
-0.54727935, -0.37047929, 0.59062442],
[ 0.62104163,  0.60390884,  0.20020713,  1.87694853,  0.
 0.13048278, -0.37047929, 0.59062442],
[ 0.62104163, -1.65587907, -1.73693904, -0.39103094, 0.
 0.01367268, -0.37047929, -1.69312335],
[0.62104163, 0.60390884, -1.3495098, -0.39103094, 0.
-0.40249425, -0.37047929, 0.590624421,
[-2.09748023, 0.60390884, -0.44550826, -0.39103094, 0.
 1.36010695, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -0.05807902, -0.39103094, 0.
-0.47278847, -0.37047929, 0.59062442],
[-2.09748023, -1.65587907, 2.91221178, 4.144928 , 0.
 3.12096234, -0.37047929, 0.59062442],
[-0.7382193, 0.60390884, -0.83293749, -0.39103094, 0.
-0.31856086, -0.37047929, 0.59062442],
[-2.09748023, 0.60390884, -0.09693589, -0.39103094, 0.
 1.02857006, -0.37047929, 0.59062442],
[ 0.62104163, 0.60390884, 0.20020713, -0.39103094, 0.
-0.54063183, -0.37047929, 0.59062442],
```

```
[-2.09748023, 0.60390884, 0.45849329, -0.39103094, 0.
 1.02857006, -0.37047929, 0.59062442],
[ 0.62104163, -1.65587907, -0.57465133, -0.39103094, 0.
-0.53468934, -0.37047929, 0.59062442],
[-2.09748023, 0.60390884, -0.09693589, -0.39103094, 0.
  1.31814026, -0.37047929, 0.590624421,
[-0.7382193, 0.60390884, -0.70379441, 1.87694853, 0.
 0.98240669, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -1.3495098, -0.39103094, 0.
-0.54063183, -0.37047929, 0.59062442],
[ 0.62104163,  0.60390884,  1.36249484, -0.39103094,  0.
-0.60183606, -0.37047929, 0.59062442],
[-0.7382193, -1.65587907, 0.58763637, -0.39103094, 0.
 0.56273974, -0.37047929, 0.590624421,
[ 0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
-0.5371402 , -0.37047929, 0.59062442],
[ 0.62104163, 0.60390884, -0.05807902, -0.39103094, 0.
-0.5371402 , -0.37047929 , 0.590624421 ,
[0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
-0.54937769, 2.69920623, -1.69312335],
[-2.09748023, -1.65587907, 2.52478254, -0.39103094, 0.
 1.21007602, -0.37047929, -1.69312335],
[0.62104163, 0.60390884, -0.70379441, -0.39103094, 0.
-0.60813106, -0.37047929, 0.59062442],
[ 0.62104163, 0.60390884, 2.65392562, -0.39103094, 0.
-0.54937769, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.05807902, -0.39103094, 0.
-0.5930902 , -0.37047929, -1.69312335],
[0.62104163, 0.60390884, -1.09122365, -0.39103094, 0.
-0.5930902 , -0.37047929, -1.69312335],
[0.62104163, -1.65587907, -1.60779596, -0.39103094, 0.
-0.57071356, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -0.57465133, 1.87694853, 0.
 0.15146612, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, 1.49163792, -0.39103094, 0.
 -0.56616437, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -0.09693589, -0.39103094, 0.
 -0.54937769, 2.69920623, -1.69312335],
[-2.09748023, 0.60390884, 2.13735331, -0.39103094, 0.
 0.94778417, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
 -0.52419767, -0.37047929, 0.59062442],
[ 0.62104163, -1.65587907, -0.09693589, 1.87694853, 0.
 0.82712992, 2.69920623, -1.69312335],
[-0.7382193, 0.60390884, -0.05807902, -0.39103094, 0.
-0.10872739, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
-0.5930902 , -0.37047929, -1.69312335],
[0.62104163, 0.60390884, -0.70379441, 1.87694853, 0.
```

```
0.29415289, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, 2.13735331, 1.87694853, 0.
  0.0171727 , -0.37047929, 0.59062442],
[-0.7382193, -1.65587907, -0.09693589, -0.39103094, 0.
  1.56994043, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -1.73693904, -0.39103094, 0.
-0.47278847, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.31636518, -0.39103094, 0.
 -0.40249425, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, 0.20020713, -0.39103094, 0.
-0.53468934, -0.37047929, 0.590624421,
[0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
 0.0171727 , -0.37047929 , 0.59062442],
[0.62104163, 0.60390884, 1.49163792, -0.39103094, 0.
 -0.55777103, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.44550826, 1.87694853, 0.
 0.01332855, -0.37047929, -1.69312335],
[-0.7382193, 0.60390884, 1.49163792, 1.87694853, 0.
 1.06634008, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -0.09693589, -0.39103094, 0.
-0.54937769, 2.69920623, -1.69312335],
[0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
 3.54202259, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.70379441, -0.39103094, 0.
-1.19986147, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
-0.5371402 , -0.37047929, -1.69312335],
[-0.7382193, -1.65587907, -0.05807902, -0.39103094, 0.
-0.10872739, -0.37047929, 0.59062442],
[ 0.62104163, -1.65587907, -0.09693589, 1.87694853, 0.
 0.01367268, -0.37047929, -1.69312335],
[-0.7382193, 0.60390884, -0.09693589, -0.39103094, 0.
-1.19986147, -0.37047929, 0.59062442],
[ 0.62104163, 0.60390884, 1.94363869, -0.39103094, 0.
-0.59344272, -0.37047929, -1.69312335],
[0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
-0.59344272, -0.37047929, -1.693123351,
[\ 0.62104163,\ 0.60390884,\ 0.58763637,\ -0.39103094,\ 0.
-0.52419767, -0.37047929, 0.59062442],
[ 0.62104163, 0.60390884, -0.1872221 , -0.39103094, 0.
-0.40389594, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.1872221, -0.39103094, 0.
-0.53888601, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -0.09693589, -0.39103094, 0.
-0.54937769, 2.69920623, -1.69312335],
[ 0.62104163, 0.60390884, -1.60779596, -0.39103094, 0.
-0.52419767, -0.37047929, 0.59062442],
[-0.7382193, -1.65587907, 0.45849329, -0.39103094, 0.
-0.31856086, -0.37047929, 0.59062442],
```

```
[0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
-0.5371402 , -0.37047929, 0.59062442],
[ 0.62104163,  0.60390884, -0.1872221 , -0.39103094,  0.
-0.40249425, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -1.22036673, -0.39103094, 0.
-0.55077938, 2.69920623, -1.693123351,
[ 0.62104163, -1.65587907, 0.84592253, -0.39103094, 0.
-0.39515008, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
-0.54937769, 2.69920623, -1.69312335],
[ 0.62104163, 0.60390884, -0.44550826, -0.39103094, 0.
-0.5371402 , -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.31636518, -0.39103094, 0.
-0.54553354, -0.37047929, 0.590624421,
[ 0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
-0.5371402 , -0.37047929 , 0.59062442],
[-2.09748023, -1.65587907, 0.58763637, 1.87694853, 0.
 3.16467485, -0.37047929, 0.590624421,
[0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
-0.5371402 , -0.37047929, 0.59062442],
[0.62104163, 0.60390884, 0.32935021, -0.39103094, 0.
-0.47348512, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -1.86608212, -0.39103094, 0.
-0.55077938, 2.69920623, -1.69312335],
[0.62104163, 0.60390884, -0.31636518, -0.39103094, 0.
-0.54063183, -0.37047929, 0.59062442],
[ 0.62104163, 0.60390884, -0.1872221 , 1.87694853, 0.
-0.60848358, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -0.09693589, -0.39103094, 0.
-0.55077938, 2.69920623, -1.69312335],
[-0.7382193, -1.65587907, 0.20020713, -0.39103094, 0.
-0.10872739, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -0.09693589, -0.39103094, 0.
-0.5930902 , -0.37047929, -1.69312335],
[0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
-0.5371402 , -0.37047929, -1.69312335],
[-0.7382193, 0.60390884, -0.96208057, -0.39103094, 0.
-0.10872739, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -0.09693589, -0.39103094, 0.
-0.53853349, 2.69920623, -1.69312335],
[-0.7382193, 0.60390884, -1.22036673, 1.87694853, 0.
-0.23462747, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.05807902, -0.39103094, 0.
-0.59344272, -0.37047929, -1.69312335],
[0.62104163, 0.60390884, -1.09122365, -0.39103094, 0.
-0.60183606, -0.37047929, 0.59062442],
[-2.09748023, 0.60390884, -0.09693589, -0.39103094, 0.
 1.40207365, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -0.09693589, -0.39103094, 0.
```

```
-0.5371402 , -0.37047929 , 0.59062442],
[0.62104163, 0.60390884, -1.73693904, -0.39103094, 0.
-0.60183606, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, 1.10420868, -0.39103094, 0.
 0.82712992, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -0.09693589, -0.39103094, 0.
-0.53853349, 2.69920623, -1.69312335],
[0.62104163, 0.60390884, 0.20020713, -0.39103094, 0.
-0.49796849, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -1.3495098, -0.39103094, 0.
-0.47278847, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -0.09693589, -0.39103094, 0.
 -0.54937769, 2.69920623, -1.69312335],
[0.62104163, 0.60390884, 2.26649639, -0.39103094, 0.
-0.54063183, -0.37047929, 0.59062442],
[-2.09748023, 0.60390884, -0.09693589, -0.39103094, 0.
 2.12390081, -0.37047929, -1.69312335],
[-0.7382193, -1.65587907, 1.49163792, 1.87694853, 0.
 0.98240669, -0.37047929, 0.59062442],
[0.62104163, -1.65587907, -1.09122365, -0.39103094, 0.
-0.37416673, -0.37047929, 0.59062442],
[-2.09748023, 0.60390884, 1.23335176, -0.39103094, 0.
-1.19986147, -0.37047929, 0.59062442],
[ 0.62104163,  0.60390884, -1.3495098 , -0.39103094,  0.
-0.52419767, -0.37047929, 0.59062442],
[-0.7382193, 0.60390884, -1.47865288, -0.39103094, 0.
-0.31856086, -0.37047929, 0.59062442],
[0.62104163, 0.60390884, -1.22036673, -0.39103094, 0.
-0.54063183, -0.37047929, 0.59062442],
[ 0.62104163, -1.65587907, 0.00649252, -0.39103094, 0.
-0.54937769, 2.69920623, -1.69312335],
[-2.09748023, 0.60390884, 1.49163792, 1.87694853, 0.
 3.21119074, -0.37047929, 0.59062442],
[-0.7382193, 0.60390884, 3.04135486, -0.39103094, 0.
 0.98240669, -0.37047929, 0.59062442]])
```