

20. (1)比较下列分子或离子中的键角大小(填">""<"或"="): $_{\rm NCl_3}$, $_{\rm H_2O}$ $_{\rm CS_2}$, $_{\rm O}$ $_{\rm H_2O}$ $_{\rm NH_3}$ ① BE CH₄, SO₃ 3 H,O 1、通过空间结构分析(VSEPR模型): CO₂直线形(180°),BCl₃、BF₃平面正三角形(120°) CH4、CCl4、SiCl4正四面体形(109°28') 2、考虑孤电子对对成键电子对的排斥作用: NH₃ (107°) H₂O(105°) 3、考虑不同成键类型电子对之间的排斥作用: HCHO (∠HCO>∠HCH) COCI, (∠CICO>∠CICCI) 4、考虑电负性对键角的影响: H₂O>H₂S>H₂Se NH₃>PH₃>AsH₃ 【最后考虑中心原子或配 配位原子相同,中心原子电负性大,成键电子对偏向于中心原子, 电子对之间的斥力大,键角大 PL>PBr>PCL>PF 中心原子相同,配位原子电负性小,成键电子对偏向于中心原子。 电子对之间的斥力大,键角大

(2) ClO_2 中心原子为 Cl , Cl_2O 中心原子为 O , 二者均为 V 形结构,但 ClO_2 中存在大 π 键 $\left(\Pi_3^2\right)$ 。 ClO_2 中 Cl原子的轨道杂化方式为____; O-Cl-O键角_ __Cl-O-Cl键角(填">""<"或"=")。比较 ClO₂与 Cl₂O 中Cl-O键的键长并说明原因**先判断再说明原因**

21. "天问一号"利用环绕器在火星上空开展了全球遥感探测,通过分析火星表面反射太阳的光谱特征数据, 发现火星土壤富含三价铁。

(1)火星表面反射太阳的光谱属于_ __。 A. 发射光谱

分子的空间结构

2023.05.25

-、分子结构的测定

红外光谱仪

测定化学键或官能团

质谱仪

测定相对分子质量

晶体X射线衍射仪

测定键长、键角等

-、分子结构的测定

红外光谱的测定原理:

分子中的原子不是固定不动的,而是不断地振动着的。当一束红外线透过分子时,分子会吸收跟它的某些化学键的振动频率相同的红外线,再记录到图谱上呈现吸收峰。通过和已有谱图库比对,或通过量子化学计算,可以得知各吸收 峰是由哪种化学键、哪种振动方式引起的,综合这些信息,可分析出分子中含

一、分子结构的测定

用质谱法测定分子的相对分子质量

质荷比(粒子的相对质量与其电荷数的比值)的<mark>最大值(一般是)</mark>即为该物质 的相对分子质量。

一、分子结构的测定

X射线衍射仪

在晶体的X射线衍射实验中,当单一波长的X射线通过晶体时,X射线和晶体中的电 子相互作用,会在记录仪上产生分立的斑点或明锐的衍射峰。键长、键角等信息

X射线衍射仪

单晶衍射图

二、多样的分子空间

1. 双原子分子: O2

2. 三原子分子: 三原子(AB₂型)分子的空间结构——直线形和V形

化学式	њ .z.ф	结构式	樹魚	健角 分子的空间结构模型		空间结构
化子及	中1文	细鸭风	延用	空间填充模型	球棍模型	工門细門
CO ₂	:Ö::C::Ö:	O=C=O	180°		©=©=	直线形
H ₂ O	H:Ö:H	н н	105°	ॐ	· ^	V形

二、多样的分子空间

3. 四原子分子: 四原子(AB,型)分子的空间结构——平面三角形和三角锥形

化学式	电子式	结构式	键角	分子的空间		空间结构
式	冊177	细門八	19E/H	空间填充模型	球棍模型	工門细門
CH ₂ O	:O: H:C:H	0=C H	120°		•••	平面三角形
NH ₃	H H: N: H	H H H	107°		-	三角锥形
BF ₃	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	F F F	120°	&		平面三角形

其他四原子分子: - (180° C₂H₂ 180°

P₄ 60° 正四面体形

二、多样的分子空间

4. 五原子分子: 五原子(AB4型)分子的空间结构——正四面体形

化学 式	电子式	结构式	键角	分子的空间 空间填充模型	结构模型 球棍模型	空间结构
CH ₄	H H:Č:H H	н	109°28'			正四面体形
CCl ₄	:Ö: :Ö:Ö:Ö: :Ö:	CI CI-C-CI CI	109°28'		o-fo	正四面体形

三、价层电子对互斥模型

有一种比较简单的理论叫价层电子对互斥模型(VSEPR model), 这种简单的理论可以用来预测分子的空间结构。

要点:

- (1) 分子的空间结构是中心原子周围的价层电子对相互排斥的结果。
- (2) VSEPR的"价层电子对"是指分子中的中心原子与结合原子间的σ键电子对(多重键只记σ键电子对)和中心原子上的孤电子对。
- (3) 中心原子的价层电子对数(VP)=σ键电子对数+孤电子对数
- (4) 价层电子对之间由于**静电排斥**作用,而趋向于**尽可能彼此远离**, 分子也尽可能采取对称结构,**使静电斥力最小**。

得出分子的VSEPR模型

三、价层电子对互斥模型

- 1. 预测分子的空间结构的步骤
- 1.计算中心原子的成键电子对数=与中心原子结合原子数
- 2.计算中心原子上的孤电子对数
- 3.价层电子对数=σ键电子对数+孤电子对数
- 4.确定VSEPR理想模型
- 5.略去孤电子对,确定分子的空间结构

2. 中心原子上的价层电子对数的计算

(1)中心原子上的价层电子对数=σ键电子对数+中心原子上的孤电子对数

①σ键电子对数的确定:由化学式确定(与中心原子结合原子数)

②中心原子上的孤电子对数的确定:中心原子上的孤电子对数= (a-xb)

a	中心原子的价层电子数				
	主族元素	=最外层电子数			
	阳离子	=中心原子的价电子数-离子的电荷数			
	阴离子	=中心原子的价电子数+ 离子的电荷数			
x	与中心原子结合的原子数				
b	与中心原子结合的原子最多能接受的	自电子数 (可以看成达到稳定结构还缺几个电子)			
	Н	=1			
	其他原子	=8-该原子的价层电子数			

3. 常见分子或离子的空间结构的推测

分子或离子	中心原子上的 孤电子对数	中心原子上的 价层电子对数	VSEPR模 型	VSEPR模型 名称	空间结构	空间结 构名称
CO ₂ 、BeCl ₂	0	2	0-0-0	直线形	0-0-0	直线形
CO ₃ ^{2—} 、BF ₃	0	3	بن	平面三角形	٨	平面三 角形
SO ₂ 、PbCl ₂	1	3	.8.	「岡二州ル	~	V形
CH ₄ 、CCl ₄	0		~	正四面体形	·	正四面 体形
NH ₃ 、NF ₃	1	4	-	m 赤 休 平4	~	三角锥形
H ₂ O、H ₂ S	2			四面体形		V形

1	2	3	4	5	6	7	8	9	10
C	A	D	C	D	C	В	A	В	A
11	12	13	14	15	16	17	18		
A	D	D	CD	BC	D	C	A		

19. (1) H₂S【H₂S 四对, 其他三对】 平面三角 2【σ键和π键】

(2) sp³ 平面三角形 (3) 平面三角形 三角锥形

20. (1) 3:1 sp² (2) sp³ (3) sp³ NH₄⁻ CH₄ 21.I. (1) ①236⑦8 ①30 (2) ⑦ (4) sp²

II. (1) [Ar]3d⁷或 1s²2s²2p⁶3s²3p⁶3d⁷ 平面三角形) N O N、C、H sp² sp³ 21 (2) N O

22.(1)PCl3 三角锥形

(2)不对,因为氮原子没有 2d 轨道

(3)

н [н:й:н]⁺[:н]

8. 下列说法不正确的是

- A. 杂化轨道只用于形成共价键
- B. 分子的空间结构为平面三角形,中心原子为 sp^2 杂化
- C. 中心原子是 sp 杂化的, 其分子的空间结构不一定为直线型
- D. 价层电子对互斥模型中, π 键电子对数不计入中心原子的价层电子对数

正误判断,正确的打"√",错误的打"×"。 (1)杂化轨道只用于形成共价键。()

- (2)中心原子若通过sp³杂化轨道成键,则该分子一定为正四面体形结构。()

- 新版教材P50
- 正误判断,正确的打 "√",错误的打 "×"。
 (1)杂化轨道只用于形成共价键。() (2)中心原子若通过sp'杂化轨道成键,则该分子一定为正四面体形结构。()
- 老版教材P50

10. 由短周期前 10 号元素组成的物质 T 和 X 有如图所 示的转化。 X 不稳定, 易分解。下列有关说法正确 的是

A. 为使该转化成功进行,Y可以是酸性KMnO₄溶液

B. 等物质的量的 T、X 分子中含有π键的数目均为 NA 没有具体的量

C. T分子中含有 p-pπ键, 该键的特征是轴对称, 可旋转

D. T分子的空间结构为三角锥形

II. 钴的一种配位聚合物的化学式为{[Co(bte)2(H2O)2](NO3)2}n。

(1)Co2+基态核外电子排布式为____ ___; NO3 的空间结构为

(2)bte 的分子式为 C₆H₈N₆, 其结构简式如图所示。

配体得有孤电子对

①[Co(bte)2(H2O)2]2+中,与Co2+形成配位键的原子是_

②C、H、N的电负性从大到小顺序为_

三、价层电子对互斥模型

判断下列微粒中心原子的价层电子对数

 O_3 , SO_4^{2-} , HCN, H_4SiO_4 , H_3PO_2

中心原子的判断:

- 1.氢和末端卤素原子不作为中心原子
- 2.数目少的原子可能是中心原子
- 3.电负性小的原子可能是中心原子
- 4.能形成更多键的原子可能是中心原子
- 5.多中心原子中,可分成多个局部进行处理

三、价层电子对互斥模型

判断下列微粒的空间结构:

 NO_2 BF_3 SO_{3}^{2-} H_3O^+ ClO₄- SO_4^{2-} 平面三角形 三角锥形 三角锥形 正四面体形 正四面体形 ClO_2 PCl₅ PCl₃ I_3^+ SF_4 **HCIO** I_3 三角双锥 三角锥形 直线形 V形 V形 V形

_	价层 电子 对数	价层 电子 对排 布	成键 电子 对数	孤电 子对 数	分子 类型	电子对的排 布方式	分子构型	实例
			5	0	AB ₅		三角双锥	PCl ₅
	_	三角双锥	4	1	AB ₄	4	变形四 面体	SF ₄
		- 久雅	3	2	AB ₃	4	T形	CIF ₃
_			2	3	AB ₂	-	直线形	I_3^-

价层 电子 对数	价层电 子对排 布	成键 电子 对数	孤电 子对 数	分子 类型	电子对的排 布方式	分子构型	实例
		6	0	AB_6		正八面体	SF ₆
6	八面体	5	1	AB ₅	4	四方锥形	IF ₅
		4	2	AB_4	*	平面正方形	ICl ₄

三、价层电子对互斥模型

价层电子对互斥模型对分子空间结构的预测少有失误,但它<mark>不能用于预测以过渡金属为中心原子的分子</mark>,除非金属具有全满、半满或全空的d轨道。

四、杂化轨道理论

正四面体的空间构型 (键长相同,键角相同均为109°28')

基态C、H原子的价层电子排布图

C的基态

H的基态

解决成键的问题

四、杂化轨道理论

不会得到正四面 体形的甲烷分子

四、杂化轨道理论

杂化轨道理论是一种价键理论,是鲍林为了<u>解释</u>分子的空间结构提出的。

杂化轨道理论对CH₄形成的解释

形成CH₄时,C原子有一个**激发过程**,有1个电子从2s轨道激发到2p的1个空轨道上去,形成**激发态**,这样就有4个未成对电子。同时1个2s轨道和3个2p轨道进行**杂化**,形成四个**sp³杂化轨道**,四个**sp³杂化**轨道再与4个H原子的1s轨道重叠形成4个C-H σ键。

四、杂化轨道理论

杂化轨道理论认为:在形成分子时,中心原子通常存在激发、杂化、轨道重叠等过程。但应注意,原子轨道的杂化,只有在形成分子的过程中才会发生,而孤立的原子是不可能发生杂化的。同时只有能量相近的原子轨道(如2s、2p)才能发生杂化。

杂化前后的变与不变

变:轨道的成分、能量、形状、方向 不变:原子轨道的数目

轨道成键时更有利于轨道间的重叠 **满足最小排斥**,最大夹角分布 ①杂化轨道的数目等于参 加杂化的原子轨道数目

②相同类型的<mark>杂化轨道</mark>的 形状和能量相同

四、杂化轨道理论

杂化轨道类型 (根据轨道分)

1. sp³杂化

CH₄, H₂O, NH₃, SO₄²-

CH₂=CH₂, SO₂, SO₃, CO₃²-

 $CH \equiv CH \setminus CO_2$

其他如: sp³d、sp³d²、dsp²等

四、杂化轨道理论

杂化轨道类型 (按轨道能量分)

等性杂化轨道 各条杂化轨道能量一致 等性杂化如甲烷中 C 的 sp³ 杂化

判断方法:看杂化前原子轨道中电子数目,如果电子数一样,则为等性杂化

四、杂化轨道理论

如何确定原子的杂化类型

- 找出中心原子
- **杂化轨道数 = 价层电子对数**= 中心原子孤电子对数+中心原子 σ 键

电子对数

价层电 子对数	中心原子的 杂化轨道类型	VSEPR 理想模型
2	sp	直线形
3	sp ²	平面三角形
4	sp ³	四面体形
5	sp³d	三角双锥
6	sp³d²	八面体形

