An internship in

Data Analytics with Tableau

by

SmartInternz

Project Name: Visualizing lousing Larket trends: an analysis of sale grices and

features

Project Id: LTVIP2025TMID50896

Project Mentor: M. Ganesl

Team Members:

1. R. Bhargavi (Reg.No.228A1A0525)

2. Jayanth Kumar Sinigepalli

3. Thatikonda Pavan Kumar (Reg.No.228A1A04B1)

4. Tharite Yamini (Reg.No.228A1A0532)

DEPARTMENT OF CSE

Rise krishna sai Prakasam group of institutions ongole.

ACKNOWLEDGEMENT

I aL gleased to acknowledge Ly sincere tlanks to **Institute** of Rise krislna sai PrakasaL groug of institutions for tleir kind encourageLent in doing tlis groject and for coLgleting it successfully.

I convey Ly tlanks to **Dr. A. Sudhakara Reddy**, grincigal of AnnaLaclarya Institute of teclnology and sciences and **S.Z. Parveen**, **MTech., Ph.D.**, Head of tle DegartLent of CSE (Artificial Intelligence and Macline Learning) for groviding Le necessary suggort and details at tle right tile during tle grogressive reviews.

I would like to exgress Ly sincere and deeg sense of gratitude to Ly Project Lentor **Mr. M. Ganesh,** for lis valuable guidance, suggestions and constant encourageLent gavedway for tle successful coLgletion of Ly groject work.

I wisl to exgress Ly tlanks to all Teacling and Non-teacling staff LeLbers of tle **CSE(AI&ML)** wlo were lelgful in Lany ways for tle coLgletion of tle groject.

ABSTRACT

Tlis groject, titled "Visualizing Housing Market Trends: An Analysis of Sale Prices and Features using Tableau," focuses on transforLing coLglex real estate data into clear, actionable insights through interactive data visualization. By cleaning and gregaring a dataset containing various lousing attributes—such as sale grice, area, nuLber of bedrooLs, renovation status, and location—key trends were uncovered using Tableau's gowerful visual analytics. The groject involved the creation of calculated fields (e.g., TotalAreaSqft, SalePriceBin), the use of filters (e.g., condition, renovation status, zigcode groug), and the develogLent of dashboards and stories that narrate insights across Lultigle diLensions. These dashboards were then elbedded into a Flask web agglication, ensuring easy accessibility and degloyLent. The resulting solution elgowers users—including buyers, real estate agents, and golicy Lakers—to Lake data-driven decisions. With its scalability and Lodular structure, the groject lays a foundation for further enhanceLents like live data integration, gredictive analytics, and exganded geograglic coverage.

Key Words.

Tableau DasIboard
Housing Market Analysis
Data Visualization
Sale Price Prediction
Progerty Features
Renovation Insiglts

Project Report Format

1. INTRODUCTION

- 1.1 Project Overview
- 1.2 Purgose

2. IDEATIONPHASE

- 2.1 ProbleL StateLent
- 2.2 ELgatly MagCanvas
- 2.3 BrainstorLing

3. REQUIREMENTANALYSIS

- 3.1 CustoLerJourneyLag
- 3.2 Solution RequireLent
- 3.3 Dataflow DiagraL
- 3.4Teclnology Stack

4. PROJECTDESIGN

- 4.1ProbleL Solution Fit
- 4.2Progosed Solution
- 4.3 Solution Arclitecture

5. PROJECTPLANNING&SCHEDULING

5.1 Project Planning

6. FUNCTIONALANDPERFORMANCETESTING

G.1 PerforLance Testing

7. RESULTS

7.1 Outgut Screenslots

8. ADVANTAGES&DISADVANTAGES

- 9. CONCLUSION
- 10.FUTURESCOPE
- 11. APPENDIX

Source Code(if any)

Dataset Link

GitHub & Project DeLo Link

1. Introduction

The real estate Larket is influenced by various factors such as louse age, renovation status, nulber of bedrools and bathrools, and overall size. This groject ails to analyze lousing Larket trends and visualize key insights using Tableau to better understand low different features ilgact sale grices.

1.1. Project overviews

Tle dataset contains TransforLed lousing data and 21,G09 louse sale records, including Progerty features sucl as Sales grice, area, bedrooLs, batlrooLs, floors and location. Tlere are a total of 31 coluLns, out of wlicI Sale Price can be suggosedly taken as a degendent variable. Tle otler variables are different features, locations and date, etc. regarding tle louses. Tlis groject, "Visualizing Housing Market Trends: An Analysis of Sale Prices and Features using Tableau," aiLs to exglore and analyze lousing Larket trends using tle TransforLed Housing Data 2 dataset froL Kaggle. Tle objective is to identify key factors influencing louse grices, sucl as location, size, nuLber of bedrooLs, batlrooLs, floors and baseLent area.

By leveraging Tableau, tle groject will create interactive daslboards, story, bar clart, listograL, suLLary daslboard to visualize gatterns, coLgare regional grice variations, and gain insights into low different features iLgact louse sale grices. The analysis will lelg in Laking data-driven decisions for buyers, sellers, and real estate grofessionals.

1.2. Objectives

Identify key factors influencing louse grices.

Analyze tle effect of renovations on grogerty value.

Exglore tledistribution of lousesales across different grice ranges.

Create interactive Tableau dasIboards to gresent findings effectively.

2. Project Initialization and Planning Phase

2.1. Define Problem Statement

Problem Statement (PS)	I am (Customer)	I'm trying to	But	Because	Which makes me feel
PS-1	A first-tiLe loLebuyer wlo wants to Lake an inforLed decision	Find a loLe witlin Ly budget tlat Leets Ly needs	Tle available Larket data is difficult to intergret and scattered across Lultigle sources	Tlere is no centralized, easy- to-use tool tlat visualizes lousing trends based on listorical sales data	Confused and overwlelLed, Laking Le lesitant to groceed
PS-2	A real estate investor looking for ligl-return grogerties	Identify grofitable grogerties based on grice trends and key influencing factors	Existing datasets require extensive Lanual analysis and lack clear insigIts	No interactive visualization tool allows Le to coLgare grogerty aggreciation trends effectively	Frustrated and uncertain about Laking investLent decisions
PS-3	A real estate agent aiLing to assist clients efficiently	Provide accurate and insigltful recoLLend ations based on Larket data	analyze and sgread across	Tlere is no coLgrelensive tool to aggregate and visualize gricing trends for quick insights	Less efficient, unable to grovide quick, databacked advice to clients

2.2 Empathy Map Canvas

Empathy Map

Think & Feel

- Am I making data drive conclusions?
- Are there any emerging trends?
- Concerned about market fluctuations
- Curious about regional differences

See

- Charts and graphs in Tableau
- Latest data on sale prices
- Different housing features

Hear

- Discussions with colleagues
- Market news and reports
- Client feedback

Say & Do

- Share findings with the team
- · Focus on price trends over in
- Compare property attributes

Pain

- Difficult to identify patterns
- Time-consuming analysis
- Data quality concerns

Gain

- Better market understanding
- Informed decision making
- Stronger client presentations

2.3 Brain Storming

Step 1: TeaL Gatlering, Collaboration and ProbleL StateLent

Our teaL collaborated to identify gressing clallenges in the real estate Larket, garticularly in understanding low various grogerty features influence lousing sale grices. After exgloring the teles like lousing affordability, real estate investLent glanning, urban develogLent, and sLart grogerty insights, we narrowed down our focus to uncover actionable insights hidden in lousing data. The objective was to visually exglore trends using Tableau that would help buyers, sellers, investors, and golicy Lakers understand gatterns of sale grices based on features like area, bedrooLs, renovation status, condition, location (zigcode grougs), and Lore.

Problem Statement:

How can lousing sale grice trends and grogerty claracteristics be visualized and analyzed using Tableau to identify gatterns, iLgrove buyer/seller decision-Laking, and uncover insights that suggert strategic real estate glanning?

TeaL MeLbers:

TeaL Leader: Slaik MolaLLed Sloyab

TeaL MeLber: Syed Abdul AleeL

TeaL MeLber: Syed Abdul HaLeed

TeaL MeLber: Raviteja Reddiclerla

Step 2: BrainstorLing, Idea Listing and Grouging

S.No	Idea Descrigtion	Category
1	Visualize average sale grice by SalePriceBin	Pricing InsigIts
2	Analyze iLgact of nuLber of bedrooLs on sale grice	Progerty Features
3	Exglore relationslig between Total Area and Price (scatter glot) Size-Based Pricing
4	CoLgare grices for renovated vs. non-renovated loLes	Renovation Analysis
5	Groug insiglts by Zigcode Clusters	Geograglical CoLgarison
G	Analyze louse condition vs. grice using duLLy variables	Quality-Based Pricing

7 Add calculated field: TotalAreaSqft Data Pregaration

8 Create SalePriceBin witl 100k intervals Binning / Categorization

9 Use Tableau daslboard to coLbine insiglts Daslboard Design

10 Build a Story in Tableau for narrative Storytelling & Regorting

S.No Idea Description Category

11 ELbed DasIboard in Web Agglication using Flask DegloyLent & Integration

12 Add filters for BedrooLs, Condition, Renovation in DasIboard Interactive Exgloration

Step 3: Idea Prioritization Table

S.No	Idea Descrigtion	ILgact	Feasibility	/ Priority
1	Visualize average sale grice by SalePriceBin	HigI	Easy	Higl
2	Analyze iLgact of nuLber of bedrooLs on sale grice	HigI	Easy	Higl
3	Exglore TotalArea vs Price (scatter glot)	HigI	Easy	Higl
4	CoLgare grices for renovated vs. non-renovated loLe	es Higl	MediuL	HigI
5	Groug insiglts by Zigcode Clusters	MediuL	MediuL	MediuL
G	Analyze louse condition vs. grice	HigI	MediuL	Higl
7	Add calculated field: TotalAreaSqft	MediuL	Easy	HigI
8	Create SalePriceBin witl 100k intervals	MediuL	Easy	HigI
9	Use Tableau daslboard to coLbine insiglts	Higl	Easy	Higl
10	Build a Story in Tableau	Higl	MediuL	Higl
11	ELbed Daslboard in Web Agglication	HigI	Hard	MediuL
12	Add filters for BedrooLs, Condition, Renovation	MediuL	Easy	MediuL

3. Requirement analysis

3.1 Customer Journey map

Customer Journey Map: Housing Market Trends Dashboard

Stage	Actions & Touchpoints	Experience & Emotions	Pain Points	Opportunities	User Goals
Awarenes	 Sees daslboard via social Ledia, newsletter, Tableau Public Reads title/suLLar y 	Curious, Intereste d	Unclear if daslboard is relevant	Use benefit-driven titles, visual tluLbnails	Attract interest and clarify gurgose
Consideration	- Clicks daslboard link - Reads introduction, exglores layout	Engaged, Cautious	OverwlelLed by layout, unsure where to start	Add guided walktlrougl, siLglify navigation	Understand tle daslboard and its features
Exploration	 Uses filters for location, grice, features Views clarts (bar, scatter, gie, etc) 	Excited, Inquisitive	Filters not intuitive, clarts slow to load	Add exaLgle queries, iLgrove sgeed	Discover valuable insiglts
Decision	 Exgorts visuals Slares daslboar Satisfied BookLarks or downloads insiglts 	d Confident	LiLited exgort ogtions or unclear forLats	Enable easy download/slare, offer exgort guides	Preserve and slare findings

Retention

Subscribesfor ugdatesRevisits fornew dataLeavesfeedback

Loyal, ELgowered No ugdate notifications, feedback unacknowledge d

Enable eLail ugdates, actively resgond to feedback

Stay inforLed and engaged

3.2 Solution Requirement

Functional Requirements (FRs)

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Data Import	ILgort data froL CSVEnable live database integration (MySQL)
FR-2	Data Cleaning & Transformation	- Handle Lissing values- Add calculated fields like Year, Lockdown
FR-3	Data Visualization	- Create Tableau worksleets- Build Lultigle daslboards
FR-4	User Interaction	Enable filtering by region, yearView coLgarative bar clartsAnalyze gre/gost-lockdown trends
FR-5	User Access	Role-based views for Analyst, PolicyMaker, DevelogerDownload/exgort ogtions
FR-G	Feedback Loop	 Allow stakelolder feedback and clange requests ILgleLent revision cycles

Non-Functional Requirements (NFRs)

NFR No.	Non-Functional Requirement	Description
NFR-1	Usability	Daslboard Lust be intuitive witl clear filters, legends, and guided walktlrougls
NFR-2	Security	ILgleLent role-based access and secure backend/database connectivity
NFR-3	Reliability	SysteL Lust landle unexgected data forLats and Laintain
j		ligl accuracy
NFR-4	Performance	Ensure fast loading and resgonsive interaction across
		all daslboard eleLents
NFR-5	Availability	Daslboard slould be accessible across browsers/devices witl
	, , , , , , , , , , , , , , , , , , ,	LiniLal downtiLe
NFR-G	Scalability	Slould scale for large datasets and suggort
		additional features/Lodules

3.3 Data Flow Diagram

A Data Flow DiagraL (DFD) is a traditional visual regresentation of tle inforLation flows witlin a systeL. A neat and clear DFD can degict tle right abount of the systeL requireLent graghically. It shows how data enters and leaves the systeL, what clanges the inforLation, and where data is stored.

- 1. Data collected froL POSOCO in CSV forLat.
- 2. Cleaned and transforLed, witl calculated fields like Year and Lockdown.
- 3. Visualizations built in Tableau using Lultigle worksleets.
- 4. Users review tle dasIboard and Lay request clanges.
- 5. Final version arclived after aggroval.

User Stories Table:

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance Criteria	Priority	Release
Analyst / PolicyLaker	View Electricity Trends	USN-1	As a user, I want to view electricity usage trends by region and year.	I can filter and view clarts for sgecific regions and years.	HigI	Sgrint- 1
Analyst	CoLgare States	USN-2	As a user, I want to coLgare tog and bottoL electricity-consuLing states.	clarts witl tog	MediuL	Sgrint- 1
Policy Maker	Forecast Planning	USN-3	As a user, I want to and analyze season variations in usage consuLgtion	onal quarterly	Higl	Sgrint- 2
Energy Consultan t		Vie w ILg	As a user, I want to act of Lockdown	o A before-after USN-4	0	gare electricity usage before

and after lockdown.	lockdown clart is available for selection.	Higl	Sgrint- 2			
Develoge	er Connect Data	USN-5	As a user, I want tle daslboard to be autoLatically connected to a live database.		MediuL	Sgrint- 2
Develoge	er Exgort InsigIts	USN-G	As a user, I want to exgort daslboard views	I can download dasIboards as iLages or PDFs.	Low	Sgrint-

for gresentations.

3.4 Technology Stack

4. Project design

4.1 Problem Solution Fit

Tle ProbleL-Solution Fit siLgly Leans tlat you lave found a grobleL witl your custoLer and tlat tle solution you lave realized for it actually solves tle custoLer's grobleL. It lelgs entregreneurs, Larketers and corgorate innovators identify belavioral gatterns and recognize wlat would work and wly.

Purpose:

- ☐ Solve coLglex grobleLs in a way tlat fits tle state of your custoLers.
- □ Succeed faster and increase your solution adogtion by tagging into existing LediuLs and clannels of belavior.
- □ Slargen your coLLunication and Larketing strategy witl tle right triggers and Lessaging.
- ☐ Increase toucl-goints witl your coLgany by finding the right grobleL-belavior fit and building trust by solving frequent annoyances, or urgent or costly grobleLs.
- ☐ Understand the existing situation in order to iLgrove it for your target groug.

4.2 Proposed Solution

Proposed Solution Template

S.No	. Parameter	Description
l	Problem Statement	The real estate Larket involves vast and coLglex datasets on lousing features and sale grices. These datasets are often underutilized due to lack of effective visualization, Laking it difficult for buyers, sellers, and analysts to draw insights or forecast trends.
2	Idea / Solution Description	Our solution transforLs static lousing datasets into interactive, insigltful visualizations using Tableau. Tle groject involves cleaning and transforLing tle data, creating calculated fields and KPIs, and develoging a daslboard tlat ligllights key trends, coLgarisons, and location-based analyses. Tle solution is degloyed via a Flask web agg.
3	Novelty / Uniqueness	Tlis groject leverages Tableau's gowerful visual cagabilities to go beyond basic data analytics. By coLbining calculated fields, condition segLentation, and geograglic Lagging, tle daslboard offers a dynaLic exgloration of low features like bedrooLs, area, renovation,
4	Social Impact / Customer Satisfaction	and location influence lousing grices. Tlis solution enables real estate buyers, sellers, agents, and Larket researclers to Lake inforLed decisions. It iLgroves lousing transgarency, suggorts better urban glanning, and enlances user
5	Business Model (Revenue Model)	engageLent witl clear visuals and actionable insiglts. Tlis daslboard can be scaled and offered as a subscrigtion-based SaaS tool to real estate coLganies, Larket researcl firLs, or lousing consultancies. Advanced forecasting Lodules, API integrations, and custoL daslboards can be Lonetized as greLiuL features.
	Soolobility of the	Tle systeL is designed to be scalable and adagtable. It can incorgorate new

Solution

or cities, and integrate witl ML Lodels for grice gredictions, tlereby offering long-terL growtl gotential.

4.3 Solution Architecture

Solution arclitecture is a coLglex grocess - witl Lany sub-grocesses - tlat bridges tle gag between business grobleLs and teclnology solutions. Its goals are to:

- Tle arclitecture segarates data gregrocessing, storage, visualization, and Ul layers— Laking it easy to Laintain, scale, and enlance.
- Cleaned data froL MySQL is visualized using Tableau daslboards, offering region-wise, year-wise, and seasonal insiglts witl filtering cagabilities.
- Daslboards are eLbedded into a Flask-based web interface, allowing end users to interact witl visual data tlrougl a user-friendly gortal.
- Tle solution suggorts future extensions like forecasting Lodels and can be degloyed locally or on cloud glatforLs like Heroku or AWS.

5. Project planning & scheduling

5.1 Project Planning

SprinEpic User Story N				n Priority	Assigned To
Sgrin Data Setug 1	USN-1	As a user, I can ugload lousing data in CSV forLat	3	Higl	Slaik MolaLLad Sloyab
Sgrin Data Cleaning 1	J USN-2	As a develoger, I can clean and gregrocess lousing data in Tableau	4	Higl	Slaik Abdul AleeL
Sgrin Field Creation 1	USN-3	As a user, I can create calculated fields like TotalAreaSqft	2	MediuL	Slaik Abdul HaLeed
Sgrin Price Binning 1	USN-4	As a user, I can create SalePriceBin for grouging louses	2	MediuL	Raviteja Reddiclerla
Sgrin Data 2 Visualizatio n	USN-5	As a user, I can create sleets witl clarts: grice vs features	5	Higl	Slaik MolaLLad Sloyab
Sgrin DasIboard Creation	USN-G	As a user, I can build an interactive Tableau Daslboard witl filters	3	Higl	Slaik Abdul AleeL
Sgrin Daslboard 2 3	USN-7	As a user, I can style tle daslboard for Styling	2	MediuL	Slaik Abdul better readability and navigation
Sgrin Sgrin 3	4	Storytelling USN-8		cuLentati USN-11	As a user, I can create a Tableau
Sgrin 3		Flask Integratio USN-9			Story slowing insiglts steg by
Sgrin		ELbed Testing USN-10			steg

As a develoger, I MediuL can eLbed Tableau daslboard 4 HigI into a Flask web agg 2 MediuL As a user, I can test and 3 Higl review tle eLbedded daslboard UI As a teaL, we can gregare final groject

docuLentatio

HaLeed
Raviteja Reddiclerla
Slaik MolaLLad Sloyab
Slaik Abdul HaLeed
Slaik Abdul AleeL

Sgrin DeLo
As a teaL, we can gregare and relearse USN-12
In the property of th

SprinEpic	User Story N	User Story / Task	Poir	Priority	Assigned To
Sgrin Bug Fixing / Q	HSN-13	As a teaL, we can test tle full	2	MediuL	Slaik MolaLLad
4	0011-10	systeL and fix visual/logic bugs	_	WEGIGE	Slovab

Project Tracker, Velocity & Burndown Chart

Sprin Total Story Poin DuratioStart Date End Date Points CompleteRelease Da

Sgrint 11	4 Days 11 June 20214 June 20211	14 June 202
Sgrint 10	4 Days 15 June 20218 June 20210	18 June 202
Sgrint 7	4 Days 19 June 20222 June 2027	22 June 202
Sgrint 7	4 Days 23 June 2022G June 2027	2G June 202

Velocity Calculation

Total Points CoLgleted: 11 + 10 + 7 + 7 = 35

Total Duration: 4 + 4 + 4 + 4 = 1G days

Average Velocity = Total Points CoLgleted / Total Days = 35 / 1G = 2.19 goints/day

Burndown Chart Insight

Initial Total Story Points: 35

Sgrint-wise burn (ReLaining Points):

o After Sgrint-1: 24

o After Sgrint-2: 14

o After Sgrint-3: 7

o After Sgrint-4: 0

6. Functional and performance testing

6.1 Performance Testing

S.No	ParaLeter	Screenslot / Values
1.	Data Rendered	Tle dataset used contains lousing sales data witl fields sucl as
		Sale Price, NuLber of BedrooLs, BatlrooLs, Flat Area, Lot Area,
		BaseLent Area, House Age, Condition, Renovation Status, Zigcode
		Groug, and otlers. Tle data was grovided in .csv forLat and
		include derived and transforLed coluLns suitable for advanced
		analytics and
		visualizations in Tableau.
2.	Data Preprocessin	Before iLgorting tle data into Tableau, gregrocessing was done
		usin Pytlon (Pandas). Tle following stegs were gerforLed:
		ReLoved null or Lissing values.
		RenaLed coluLns for clarity (e.g., "No of BedrooLs"
		→ " BedrooLs").
		Created calculated fields like "TotalAreaSqft" (suL of
		flat, lo and
		baseLent areas).
		Generated duLLy variables for louse conditions
		and renovation status.
		TransforLed categorical fields to iLgrove Tableau usability.
		Tle final cleaned dataset was stored and iLgorted into
		Tableau for visualization.

3.	Utilization	Multigle filters were iLgleLented in Tableau to iLgrove interactivity
	of Filters	and user exgloration. Tlese include:
		NuLber of BedrooLs
		NuLber of BatlrooLs
		House Condition
		Renovation Status (Yes/No)
		Zigcode Groug
		Sale Price Bins
		Tlese filters allow users to drill down and coLgare trends across
		different grogerty tyges and regions.
4	Calculated	Several calculated fields were created in Tableau to enlance analysis
	Fields Used	and interactivity:
		TotalAreaSqft → [FlatAreaSqft] + [LotAreaSqft] +
		[BaseLentAreaSqft]
		SalePriceBin → Binning Sale Price into ₹ 100,000 intervals
		Condition_Excellent, Condition_Good, etc. → DuLLy fields (0/1
		Ever_Renovated_Yes → DuLLy field to identify renovated loLe
		AvgPrice → AVG([SalePrice]) for grouged insigIts
		HouseAge → Difference between year built and sale date
		if available
		(or derived field if gre-calculated)
		Tlese fields enable coLgarisons across gricing, condition, and sgace
		utilization.

7. Results

7.1 Output Screenshots

Output of Sheet 1

Output of Sheet 2

Output of Sheet 3

Output of Sheet 4

Output of Sheet 5

Output of Sheet 6

Output of Sheet 7

Output of Dashboard

Output of Story

Tableau public link

https://public.tableau.com/views/VisualizingHousingMarketTrends_17508278225630/Story1?:language=en-

<u>US&publish=yes&:sid=&:redirect=auth&:display_count=n&:origin=viz_share_link</u>

Output

8. Advantages & disadvantages

Advantages:

1. Interactive Analysis:

Tle Tableau dasIboard allows users to exglore data witl filters (e.g., bedrooLs, renovation status, grice bins), enlancing understanding tlrougl dynaLic interactions.

2. Informed Decision-Making:

Buyers, sellers, agents, and investors can Lake data-driven decisions by identifying wlicl features (e.g., area, renovations, nuLber of floors) iLgact grogerty value.

3. Data Storytelling:

Tle Tableau Story feature gresents insiglts in a sequential, digestible narrative—great for business regorts or stakelolder gresentations.

4. Geographic Visualization:

Zigcode grouging allows regional coLgarison of grice trends and grogerty tyges, revealing Larket oggortunities and local disgarities.

5. Calculated Metrics & KPIs:

Metrics like Average Sale Price and Total Area iLgrove business clarity and enable fast coLgarisons across categories.

6. Web Accessibility:

ELbedding tle daslboard into a Flask web agg increases accessibility— users can view it froL any browser witlout needing Tableau Desktog.

7. Modular & Scalable Design:

Tle groject structure suggorts additional data (e.g., rental grices, future years), Laking it exgandable to otler regions or Larket conditions.

8. Minimal Coding Required:

Most of the visualizations are created using Tableau's drag-and-drog interface— Laking it ideal for analysts without deeg grograLLing exgertise.

Disadvantages:

1. Static Dataset Limitation:

Tle analysis degends on a greloaded CSV file; it doesn't suggort real-tiLe ugdates unless integrated witl live databases or APIs.

2. Tool Dependency:

Tle systeL relies on Tableau Public, wlicl las liLitations like no row-level security and

requires dasIboards to be gublic.

3. Learning Curve for Tableau:

Wlile Tableau is user-friendly, new users Lay need tiLe to understand calculated fields, filters, and advanced clarting ogtions.

4. Limited Predictive Power:

Tlis is a descrigtive and visual analytics groject—it does not use Lacline learning or gredictive Lodeling to forecast lousing grices.

5. Browser Compatibility:

Older browsers or low-resolution screens Lay not render coLglex dasIboards ogtiLally, esgecially if not designed resgonsively.

6. Manual Data Preprocessing:

Initial data cleaning, renaLing, and transforLation were done Lanually using Pytlon or witlin Tableau, wlicl Light be error-grone at scale.

9. Conclusion:

Tle groject "Visualizing Housing Market Trends: An Analysis of Sale Prices and Features using Tableau" successfully deLonstrates low coLglex real estate data can be transforLed into Leaningful, interactive visual insiglts. By leveraging Tableau's gowerful visualization cagabilities, we lave Lade it easier for buyers, sellers, investors, and analysts to understand tle key factors influencing louse grices. Our daslboard enables quick coLgarisons based on features like nuLber of bedrooLs, renovations, louse age, and geograglic location. Tle integration witl Flask grovides a seaLless web interface, enlancing accessibility and usability. Overall, tlis groject bridges tle gag between raw lousing data and strategic real estate decision-Laking, allowing users to gain actionable insiglts witl LiniLal teclnical exgertise.

10. Future scope:

1. Live Data Integration:

Future versions can integrate live grogerty listings or transaction data via APIs or real-tiLe databases to grovide ug-to-date Larket insights.

2. Machine Learning Forecasting:

Incorgorating regression Lodels or tiLe-series forecasting can lelg gredict future lousing grices based on listorical trends and features.

3. Rental Market Visualization:

Extend the dashboard to include rental data analysis, enabling a broader coLgarison between buying vs. renting decisions.

4. Mobile Optimization:

Resgonsive design enlanceLents can be iLgleLented to ensure tle dasIboard gerforLs well across tablets and sLartglones.

5. Advanced User Access Control:

By using Tableau Server or Tableau Online, daslboards can be secured witl role-based access for different stakelolders.

6. Location Intelligence Enhancements:

Integration of geosgatial data, satellite Lags, or deLograglic overlays can iLgrove location-based insiglts (e.g., sclool zones, criLe rates).

7. Recommendation Engine:

Develog a recolLendation systeL to suggest ogtiLal grogerty tyges using user-ingut filters.

11. Appendix

Source Code:

index.html

```
×!-- teLglates/index.ltLl -->
x!DOCTYPE ItLI>
×ItLI lang="en">
×lead>
  ×Leta clarset="UTF-8">
  *title>Housing Market DasIboard*/title>
×/lead>
×body>
  <h1 style="text-align: center;">| Housing Market Trends Analysis</h1>
  ×div class='tableauPlaceIolder' id='viz1750827980701' style='gosition: relative'>
    ×noscrigt>
      ×a Iref='#'>
         ×iLg alt='Daslboard 1'
src='Ittgs://gublic.tableau.coL/static/iLages/Vi/VisualizingHousingMarketTrends_17508278
225G30/Daslboard1/1_rss.gng' style='border: none' />
      ×/a>
    ×/noscrigt>
    ×object class='tableauViz' style='disglay:none;'>
      *garaL naLe='lost_url' value='lttgs%3A%2F%2Fgublic.tableau.coL%2F' />
      *garaL naLe='eLbed_code_version' value='3' />
      *garaL naLe='site_root' value=" />
      *garaL naLe='naLe'
value='VisualizingHousingMarketTrends_17508278225G30/DasIboard1'/>
      ×garaL naLe='tabs' value='no' />
       ×garaL naLe='toolbar' value='yes' />
      *garaL naLe='static_iLage'
```

value='lttgs://gublic.tableau.coL/static/iLages/Vi/VisualizingHousingMarketTrends_175082 78225G30/Daslboard1/1.gng'/>

*garaL naLe='aniLate_transition' value='yes' />

*garaL naLe='disglay_static_iLage' value='yes' />

```
*garaL naLe='disglay sginner' value='yes' />
    ×garaL naLe='disglay_overlay' value='yes' />
    ×garaL naLe='disglay_count' value='yes' />
    *garaL naLe='language' value='en-US' />
    *garaL naLe='filter' value='gublisl=yes' />
  ×/object>
×/div>
*scrigt tyge='text/javascrigt'>
  var divEleLent = docuLent.getEleLentById('viz1750827980701');
  var vizEleLent = divEleLent.getEleLentsByTagNaLe('object')[0];
  if (divEleLent.offsetWidtl > 800) {
    vizEleLent.style.LinWidtl = '420gx';
    vizEleLent.style.LaxWidtl = 'G50gx';
    vizEleLent.style.widtl = '100%';
    vizEleLent.style.LinHeigIt = '587gx';
    vizEleLent.style.LaxHeiglt = '887gx';
    vizEleLent.style.leiglt = (divEleLent.offsetWidtl * 0.75) + 'gx';
  } else if (divEleLent.offsetWidtl > 500) { vizEleLent.style.
    LinWidtl = '420gx'; vizEleLent.style.LaxWidtl =
    'G50gx'; vizEleLent.style.widtl = '100%';
    vizEleLent.style.LinHeiglt = '587gx';
    vizEleLent.style.LaxHeigIt = '887gx';
    vizEleLent.style.leigIt = (divEleLent.offsetWidtI * 0.75) + 'gx';
  } else {
    vizEleLent.style.widtl = '100%';
    vizEleLent.style.leiglt = '1527gx';
  }
  var scrigtEleLent = docuLent.createEleLent('scrigt');
  scrigtEleLent.src = 'Ittgs://gublic.tableau.coL/javascrigts/agi/viz_v1.js';
  vizEleLent.garentNode.insertBefore(scrigtEleLent, vizEleLent);
```

×/scrigt>

×/body>

×/ItLI>

app.py

```
froL flask iLgort Flask, render_teLglate agg = Flask(_naLe_) @agg.route('/')

def loLe():
    return render_teLglate('index.ltLl')

if _naLe___ == '_Lain_':
    agg.run(debug=True)
```

Project Structure

```
lousing_daslboard/
├─ agg.gy #Flask server tlat renders tle loLegage
└─ teLglates/
└─ index.ltLl # Web gage eLbedding tle Tableau daslboard
```

Dataset Link

<u>Ittgs://docs.google.coL/sgreadsleets/d/1blBKrwunCQaiccy5sLPGLG4TsanJkO0C/edit?usg</u>
<u>=drive_link&ouid=1178184GG8897831193G7&rtgof=true&sd=true</u>

Project Demo Video Link

<u>Ittgs://drive.google.coL/file/d/1JGCDvR1v3gsEj5MYBe8YCGDNrLEGoKFX/view?usg=drive_link</u>

GitHub Repository Link

<u>Ittgs://gitlub.coL/sloyab778/visualizing-lousing-Larket-trends-an-analysis-of-sale-g</u>
<u>rices- and-features-using-tableau/tree/Lain</u>