

Bacterial genomics: Sequencing and Bioinformatics Training

14 - 18 July 2025

Sequencing and Bioinformatics Training Course

Course Overview

This one-week intensive training course provides participants with a comprehensive introduction to sequencing workflows and bioinformatics analysis, with a focus on bacterial genomics. The course is designed for laboratory scientists, researchers, and students who wish to understand the end-of-the-end process of Bacterial DNA sequencing and Bioinformatics analysis. Participants will engage in both hands-on wet-lab activities and practical bioinformatics sessions.

Course Contents

Lectures

- DNA Extraction: Theory
- Bacterial Genomics and Applications

Wet-Lab

- DNA Extraction: Laboratory Protocols
- DNA Quality Control and Assessment
- Library Preparation for Sequencing
- Illumina Next-Generation Sequencing

Bioinformatics analysis

- Introduction to Unix Command Line and Conda Environments
- Sequence Data Retrieval and Preprocessing
- Genome Assembly and Quality Metrics
- Species Identification and Typing
- AMR and Virulence Gene Screening
- Phylogenetic Analysis and Interpretation
- Overview of Online GUI Bioinformatics tools

Learning Outcomes

- 1. Understand the key steps in DNA extraction, library preparation, and sequencing.
- 2. Navigate and use Unix command line tools and manage software using Conda.
- 3. Retrieve, assess, and preprocess sequencing data for downstream analysis.
- 4. Assemble bacterial genomes and interpret assembly metrics.
- 5. Identify bacterial species and determine clonal complex, strain types, spa types, SCCmec types etc
- 6. Detect antimicrobial resistance and virulence genes
- 7. Construct and interpret phylogenetic trees to assess genomic relatedness.

Training Timetable

Time	Monday	Tuesday	Wednesday	Thursday	Friday	
8:00 - 9:00 AM	Welcome &	Library	Wednesday	Lecture:	AMR &	
0.00 - 7.00 AM	Introduction			Bacterial	Virulence	
		Preparation		200001101	, 11 011010	
	DNA			Genomics	Gene	
	Extraction				Screening	
	Lecture					
9:00 - 10:30 AM	DNA	Library		Bacterial	AMR &	
	Extraction Lab	Preparation		Genomics	Virulence	
					Gene	
					Screening	
10:30 - 11:00 AM	Tea Break					
11:00 - 1:00 PM	DNA	Library	Finish	Dataset	Phylogenetics	
	Extraction Lab	Preparation	Library Prep	Retrieval, QC		
		•	& Start	&		
			Sequencing	Preprocessing		
1:00 - 2:00 PM	Lunch					
2:00 - 3:30 PM	DNA Quality	Library	Intro to Unix	Genome	Online Tools	
	Control Check	Preparation	& Conda	Assembly,	Overview	
		op		Species ID &		
				Typing		
3:30 - 5:00 PM		Library	Intro to Unix	Genome	Feedback &	
		Preparation	& Conda	Assembly,	Closing	
		- reparation	a dollad	Species ID &	Groomig	
				Typing		
				1 y ping		

DNA Extraction Using Zymo BashingBead™ Lysis Kit

Materials Needed

- Fungal or bacterial cells (50–100 mg wet weight)
- Water or isotonic buffer (e.g., PBS)
- ZR BashingBead™ Lysis Tube (0.1 mm & 0.5 mm beads)
- BashingBead™ Buffer
- Bead beater (e.g., TerraLyzer[™], FastPrep®-24, Disruptor Genie[™], vortex)
- Microcentrifuge
- Zymo-Spin™ III-F Filter
- Zymo-Spin™ IICR Column
- Collection tubes
- Genomic Lysis Buffer
- DNA Pre-Wash Buffer
- g-DNA Wash Buffer
- DNA Elution Buffer
- 1.5 ml microcentrifuge tube

Procedure

Sample Preparation

- Add 50–100 mg of fungal or bacterial cells (wet weight) resuspended in up to 200 µl of water or isotonic buffer (e.g., PBS) into a ZR BashingBead™ Lysis Tube (0.1 mm & 0.5 mm).
- 2. Add 750 µl BashingBead™ Buffer to the tube.
- 3. Cap tightly to prevent leakage.

Cell Disruption

- 4. Secure the tube in a bead beater fitted with a 2 ml tube holder.
- 5. Process at maximum speed for \geq 5 minutes.
- 6. Processing time varies by device:
 - High-speed disrupters: ~3 minutes (e.g., TerraLyzer[™], FastPrep®-24)
 - Lower-speed devices: up to 20 minutes (e.g., Disruptor Genie[™], vortex)

Centrifugation

7. Centrifuge the lysis tube at $10,000 \times g$ for 1 minute.

Filtration

- 8. Transfer up to 400 µl of supernatant to a Zymo-Spin™ III-F Filter in a Collection Tube.
- 9. Centrifuge at $8,000 \times g$ for 1 minute.

Lysis Buffer Addition

10. Add 1,200 μ l Genomic Lysis Buffer to the filtrate in the Collection Tube.

DNA Binding

- 11. Transfer 800 µl of the mixture to a Zymo-Spin™ IICR Column in a Collection Tube.
- 12. Centrifuge at $10,000 \times g$ for 1 minute.
- 13. Repeat with the remaining mixture.
- 14. Note: Max column capacity is 800 μl.

Pre-Wash

- 15. Discard the flow-through and place the column in a new Collection Tube.
- 16. Add 200 μ l DNA Pre-Wash Buffer, then centrifuge at 10,000 \times g for 1 minute.

Wash

- 17. Add 500 μl g-DNA Wash Buffer to the column.
- 18. Centrifuge at $10,000 \times g$ for 1 minute.

DNA Elution

- 19. Transfer the column to a clean 1.5 ml microcentrifuge tube.
- 20. Add 100 μ l (minimum 35 μ l) of DNA Elution Buffer directly to the column matrix.
- 21. Centrifuge at $10,000 \times g$ for 30 seconds to elute the DNA.

DNA Extraction Worksheet

SNo.	Sample ID	A260/280	A260/230	Nanodrop Conc (ng/ul)	Qubit Conc (ng/ul)
1					
2					
3					
4					
1 2 3 4 5					
6					
7					
8					
9					
10					
11					
12					
13					
14 15					
16					
17					
18					
19					
20					
21					
22					
23					
24					
25					
26					
26 27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43					
44					