CSC 311 – Winter 2022-2023

Design and Analysis of Algorithms 6. Divide-and-Conquer

Prof. Mohamed Menai
Department of Computer Science
King Saud University

Outline

- Divide-and-Conquer
- Binary search
- Merge sort
- Quicksort
- Multiplication of large integers
- Matrix multiplication: Strassen's algorithm
- Quickhull algorithm

Divide-and-Conquer

• Breaking large problems into smaller subproblem instances

The most-well known algorithm design strategy:

- 1. Divide the instance of problem into two or more smaller instances (subproblems).
- 2. Conquer the smaller instances by solving them recursively.
- 3. Combine the solutions to the smaller instances into the solution for the original (larger) instance.

Divide-and-Conquer

- Given: a divide-and-conquer algorithm
 - An algorithm that divides the problem of size n into a subproblems, each of size n/b
 - Let the cost of each stage (i.e., the work to divide the problem + combine solved subproblems) be described by the function f(n)
- T(n) = aT(n/b) + f(n)

Binary search

Very efficient algorithm for searching in sorted array:

```
K
VS
A[0] \dots A[m] \dots A[n-1]
```

If K = A[m], stop (successful search); otherwise, continue searching by the same method in A[0..m-1] if K < A[m] and in A[m+1..n-1] if K > A[m]

```
l \leftarrow 0; r \leftarrow n-1
while l \le r do
m \leftarrow \lfloor (l+r)/2 \rfloor
if K = A[m] return m
else if K < A[m] r \leftarrow m-1
else l \leftarrow m+1
return -1
```

Analysis of binary search

- Time efficiency
 - Recurrence: $T(n) = 1 + T(\lfloor n/2 \rfloor)$, T(1) = 1
 - Solution: $T(n) = \lceil \log(n+1) \rceil = \Theta(\log n)$

This is VERY fast: e.g., $T(10^6) = 20$

- Optimal for searching a sorted array
- Limitations: must be a sorted array (not linked list)

Merge sort

```
MergeSort(A, left, right)
  if (left < right)
  mid = floor((left + right) / 2);
  MergeSort(A, left, mid);
  MergeSort(A, mid+1, right);
  Merge(A, left, mid, right);

// Merge() takes two sorted subarrays of A and
// merges them into a single sorted subarray of A
// (how long should this take?)</pre>
```

Analysis of merge sort

Statement	<u>Ettort</u>
MergeSort(A, left, right)	T(n)
if (left < right)	$\Theta(1)$
mid = floor((left + right) / 2);	$\Theta(1)$
MergeSort(A, left, mid);	T(n/2)
MergeSort(A, mid+1, right);	T(n/2)
Merge(A, left, mid, right);	$\Theta(n)$

• So $T(n) = \Theta(1)$ when n = 1, and = 2T(n/2) + n when n > 1 T(n) = ?

Quicksort

- Sorts in place
- Sorts $O(n \log n)$ in the average case
- Sorts $O(n^2)$ in the worst case
 - But in practice, it's quick
 - And the worst case doesn't happen often

Quicksort

- Another divide-and-conquer algorithm
 - The array A[p..r] is partitioned into two non-empty subarrays A[p..q] and A[q+1..r]
 - Invariant: All elements in A[p..q] are less than all elements in A[q+1..r]
 - The subarrays are recursively sorted by calls to quicksort
 - Unlike merge sort, no combining step: two subarrays form an already-sorted array

Quicksort code

```
Quicksort(A, p, r)
{
    if (p < r)
    {
        q = Partition(A, p, r);
        Quicksort(A, p, q);
        Quicksort(A, q+1, r);
    }
}</pre>
```

Partition

- All the action takes place in the partition() function
 - Rearranges the subarray in place
 - End result:
 - Two subarrays
 - All values in first subarray ≤ all values in second subarray
 - Returns the index of the "pivot" element separating the two subarrays

Partition

- Partition(A, p, r):
 - Select an element to act as the "pivot"
 - Grow two regions, A[p..i] and A[j..r]
 - All elements in A[p..i] <= pivot
 - All elements in A[j..r] >= pivot
 - Increment i until A[i] >= pivot
 - Decrement j until $A[j] \le pivot$
 - Swap A[i] and A[j]
 - Repeat until $i \ge j$
 - Return j

Partition code

```
Partition(A, p, r)
    x = A[p];
                                       Illustrate on
    i = p - 1;
                           A = \{5, 3, 2, 6, 4, 1, 3, 7\};
    j = r + 1;
    while (TRUE)
        repeat
            j--;
        until A[j] \le x;
        repeat
                                        What is the running time of
            i++;
                                            partition()?
        until A[i] >= x;
        if (i < j)
            Swap(A, i, j);
        else
            return j;
```

Partition code

```
Partition(A, p, r)
    x = A[p];
    i = p - 1;
    j = r + 1;
    while (TRUE)
        repeat
             j--;
        until A[j] \le x;
        repeat
             i++;
                                       partition() runs in O(n) time
        until A[i] >= x;
        if (i < j)
            Swap(A, i, j);
        else
            return j;
```

Analyzing quicksort

- Worst case for the quicksort
 - Partition is always unbalanced
- Best case for the quicksort
 - Partition is perfectly balanced
- Which is more likely?
 - The latter...
- Will any particular input elicit the worst case?
 - Yes: Already-sorted input

Analyzing quicksort

• In the worst case:

$$T(1) = \Theta(1)$$

$$T(n) = T(n-1) + \Theta(n)$$

• Works out to

$$T(n) = \Theta(n^2)$$

Analyzing quicksort

• In the best case:

$$T(n) = 2T(n/2) + \Theta(n)$$

Works out to

$$T(n) = \Theta(n \log n)$$

Improving quicksort

- The real liability of quicksort is that it runs in $O(n^2)$ on already sorted input
- Two solutions:
 - Randomize the input array, OR
 - Pick a random pivot element
- How will these solve the problem?
 - By insuring that no particular input can be chosen to make quicksort run in $O(n^2)$ time

Multiplication of large integers

Consider the problem of multiplying two (large) *n*-digit integers represented by arrays of their digits such as:

$$A = 12345678901357986429$$
 $B = 87654321284820912836$

The grade-school algorithm:

$$\begin{array}{c} a_1 \ a_2 \dots \ a_n \\ b_1 \ b_2 \dots \ b_n \\ (d_{10}) \ d_{11} d_{12} \dots d_{1n} \\ (d_{20}) \ d_{21} d_{22} \dots \ d_{2n} \\ \dots \dots \dots \dots \\ (d_{n0}) \ d_{n1} d_{n2} \dots \ d_{nn} \end{array}$$

Efficiency: $\Theta(n^2)$ one-digit multiplications

First Divide-and-Conquer algorithm

A small example: A * B where A = 2135 and B = 4014

$$A = (21 \cdot 10^2 + 35), B = (40 \cdot 10^2 + 14)$$

So, A * B =
$$(21 \cdot 10^2 + 35) * (40 \cdot 10^2 + 14)$$

= $21 * 40 \cdot 10^4 + (21 * 14 + 35 * 40) \cdot 10^2 + 35 * 14$

In general, if $A = A_1A_2$ and $B = B_1B_2$ (where A and B are *n*-digit,

 A_1, A_2, B_1, B_2 are n/2-digit numbers),

$$A * B = A_1 * B_1 \cdot 10^n + (A_1 * B_2 + A_2 * B_1) \cdot 10^{n/2} + A_2 * B_2$$

Recurrence for the number of one-digit multiplications M(n):

$$M(n) = 4M(n/2), M(1) = 1$$

Solution: $M(n) = n^2 = \Theta(n^2)$

Second Divide-and-Conquer algorithm

$$A * B = A_1 * B_1 \cdot 10^n + (A_1 * B_2 + A_2 * B_1) \cdot 10^{n/2} + A_2 * B_2$$

The idea is to decrease the number of multiplications from 4 to 3:

$$(A_1 + A_2) * (B_1 + B_2) = A_1 * B_1 + (A_1 * B_2 + A_2 * B_1) + A_2 * B_2,$$

i.e., $(A_1 * B_2 + A_2 * B_1) = (A_1 + A_2) * (B_1 + B_2) - A_1 * B_1 - A_2 * B_2,$

which requires only 3 multiplications at the expense of (4-1) extra add/sub. Recurrence for the number of multiplications M(n):

$$M(n) = 3M(n/2), M(1) = 1$$

Solution: $M(n) = 3^{\log 2^n} = n^{\log 2^3} \approx n^{1.585} = \Theta(n^{1.585})$

Strassen's matrix multiplication

Strassen observed [1969] that the product of two matrices can be computed as follows:

$$= \begin{pmatrix} M_1 & + M_4 & - M_5 + M_7 & & M_3 + M_5 \\ \\ M_2 + M_4 & & M_1 & + M_3 & - M_2 + M_6 \end{pmatrix}$$

Formulas for Strassen's algorithm

$$M_1 = (A_{00} + A_{11}) * (B_{00} + B_{11})$$

$$M_2 = (A_{10} + A_{11}) * B_{00}$$

$$M_3 = A_{00} * (B_{01} - B_{11})$$

$$M_4 = A_{11} * (B_{10} - B_{00})$$

$$M_5 = (A_{00} + A_{01}) * B_{11}$$

$$M_6 = (A_{10} - A_{00}) * (B_{00} + B_{01})$$

$$M_7 = (A_{01} - A_{11}) * (B_{10} + B_{11})$$

Analysis of Strassen's algorithm

- If *n* is not a power of 2, matrices can be padded with zeros.
- Number of multiplications:

$$M(n) = 7M(n/2), M(1) = 1$$

- Solution: $M(n) = 7^{\log 2^n} = n^{\log 2^7} \approx n^{2.807}$ vs. n^3 of brute-force alg. $M(n) = \Theta(n^{2.807})$
- Algorithms with better asymptotic efficiency are known but they are even more complex.

Quickhull algorithm

Convex hull: smallest convex set that includes given points

- Assume points are sorted by x-coordinate values
- Identify extreme points P_1 and P_2 (leftmost and rightmost)
- Compute *upper hull* recursively:
 - find point P_{max} that is farthest away from line P_1P_2
 - compute the upper hull of the points to the left of line $P_1P_{\rm max}$
 - compute the upper hull of the points to the left of line $P_{\rm max}P_2$
- Compute *lower hull* in a similar manner

Efficiency of quickhull algorithm

- Finding point farthest away from line P_1P_2 can be done in linear time
- Time efficiency:
 - worst case: $\Theta(n^2)$ (as quicksort)
 - average case: $\Theta(n)$ (under reasonable assumptions about distribution of points given)
- If points are not initially sorted by x-coordinate value, this can be accomplished in $O(n \log n)$ time
- Several $O(n \log n)$ algorithms for convex hull are known

Reading

Chapter 4

Anany Levitin, Introduction to the design and analysis of algorithms, 3rd Edition, Pearson, 2011.