ФКН ВШЭ, 3 курс, 3 модуль

Материалы к коллоквиуму

Вероятностные модели и статистика случайных процессов, весна 2017

Теоретический минимум

- 1. Сформулируйте определение случайного процесса как случайной функции.
- 2. Сформулируйте определение сечения случайного процесса.
- 3. Сформулируйте определение траектории случайного процесса.
- 4. Сформулируйте определение случайного процесса с непрерывным временем.
- 5. Сформулируйте определение случайного процесса с дискретным временем.
- 6. Сформулируйте определение случайного поля.
- 7. Сформулируйте определение векторнозначного случайного процесса.
- 8. Приведите пример случайного процесса с непрерывным временем.
- 9. Приведите пример случайного процесса с дискретным временем.
- 10. Приведите пример случайного поля.
- 11. Приведите пример векторнозначного случайного процесса.
- 12. Сформулируйте определение семейства конечномерных распределений случайного процесса.
- 13. Приведите пример функции, задающей конечномерные распределения случайного процесса.
- 14. Сформулируйте определение математического ожидания случайного процесса.
- 15. Сформулируйте определение дисперсии случайного процесса.
- 16. Сформулируйте определение ковариационной функции случайного процесса.
- 17. Сформулируйте определение непрерывного в среднем квадратичном случайного процесса.
- 18. Сформулируйте определение случайного процесса с непрерывными траекториями.
- 19. Сформулируйте определение стохастически непрерывного случайного процесса.
- 20. Приведите пример непрерывного в среднем квадратичном случайного процесса.
- 21. Приведите пример случайного процесса с непрерывными траекториями.
- 22. Приведите пример стохастически непрерывного случайного процесса.

- 23. Сформулируйте определение гауссовской случайной величины.
- 24. Сформулируйте определение гауссовского случайного вектора.
- 25. Запишите выражение для характеристической функции гауссовской случайной величины.
- 26. Сформулируйте определение винеровского процесса.
- 27. Сформулируйте определение гауссовского процесса.
- 28. Приведите пример гауссовского процесса.
- 29. Сформулируйте определение процесса Орнштейна-Уленбека.
- 30. Сформулируйте определение последовательности независимых одинаково распределенных случайных величин.
- 31. Сформулируйте определение сильно стационарного случайного процесса.
- 32. Сформулируйте определение ковариационно стационарного случайного процесса.
- 33. Приведите пример сильно стационарного случайного процесса.
- 34. Приведите пример ковариационно стационарного случайного процесса.
- 35. Перечислите свойства ковариационной функции слабо стационарного случайного процесса.
- 36. Сформулируйте определение случайного процесса, эргодичного в среднем квадратичном по математическому ожиданию.
- 37. Приведите пример процесса, являющегося эргодичным по математическому ожиданию в среднем квадратичном.
- 38. Сформулируйте определение процесса восстановления.
- 39. Сформулируйте определение пуассоновского процесса.
- 40. Запишите выражение для математического ожидания однородного пуассоновского процесса с интенсивностью $\lambda > 0$.
- 41. Запишите выражение для распределения сечения однородного пуассоновского процесса с интенсивностью $\lambda > 0$ в момент t.
- 42. Сформулируйте основные свойства приращений пуассоновского процесса.
- 43. Сформулируйте определение приращений случайного процесса.
- 44. Сформулируйте определение процесса с независимыми приращениями.
- 45. Сформулируйте определение процесса со стационарными приращениями.
- 46. Сформулируйте определение дискретной марковской цепи.

- 47. Сформулируйте определение марковского свойства.
- 48. Сформулируйте определения существенного и несущественного состояний марковской цепи.
- 49. Сформулируйте определения возвратного и невозвратного состояний марковской цепи.
- 50. Сформулируйте определение сообщающихся состояний марковской цепи.
- 51. Сформулируйте определение неприводимой дискретной марковской цепи.
- 52. Сформулируйте определения периодического и непериодического состояний марковской цепи.
- 53. Приведите пример дискретной марковской цепи.
- 54. Приведите пример дискретной марковской цепи с периодическими состояниями.
- 55. Приведите пример дискретной марковской цепи с невозвратными состояниями.
- 56. Сформулируйте определение дискретного случайного блуждания с дискретным временем.
- 57. Сформулируйте определение эргодической марковской цепи.
- 58. Сформулируйте определение стационарного распределения вероятностей дискретной марковской цепи.
- 59. Запишите выражение для авторегрессионной модели AR(p).
- 60. Запишите выражение для модели скользящего среднего MA(q).
- 61. Запишите выражение для смешанной модели авторегрессии и скользящего среднего ARMA(p,q).
- 62. Запишите выражение для смешанной модели интегральной авторегрессии и скользящего среднего ARIMA(p,d,q).
- 63. Запишите выражение для авторегрессионной модели условной неоднородности ARCH(p).
- 64. Запишите выражение для обобщенной авторегрессионной модели условной неоднородности GARCH(p,q).
- 65. Сформулируйте определение скрытой марковской модели.
- 66. Запишите выражение для линейной неоднородной модели динамической системы в фильтре Калмана.
- 67. Запишите условия, при которых процесс, моделирующий состояние в модели динамической системы, является марковским.

Теоретический максимум

- 1. С использованием теоремы А. Н. Колмогорова продемонстрировать невозможность существования непрерывного случайного процесса с сечениями, являющимися последовательностью независимых случайных величин.
- 2. Сформулировать и доказать необходимые и достаточные условия непрерывности случайного процесса в среднем квадратичном.
- 3. С использованием определения стохастически непрерывного процесса доказать, что свойства стохастической непрерывности и независимости сечений случайного процесса (при близких значениях времени) являются несовместными.
- 4. Сформулировать и доказать утверждение о необходимых и достаточных условиях гауссовости случайного вектора.
- 5. Сформулировать и доказать теорему о нормальной корреляции в случае пары гауссовских случайных величин.
- 6. Сформулировать и доказать теорему о нормальной корреляции в случае пары гауссовских случайных векторов.
- 7. Сформулировать определения и свойства винеровского и гауссовского процессов. Привести примеры гауссовских процессов. Описать полный набор параметров, однозначно определяющих гауссовский процесс, обосновать это описание.
- 8. Получить явный аналитический вид системы конечномерных распределений процесса Ориштейна-Уленбека.
- 9. Перечислить классы стационарности случайных процессов, описать связь между ними. Привести примеры процессов, относящихся к каждому классу.
- 10. Сформулировать и доказать свойства (распределение, матожидание и дисперсию) пуассоновского потока событий с интенсивностью $\lambda>0$ в момент t.
- 11. Получить явный аналитический вид системы конечномерных распределений пуассоновского процесса.
- 12. Сформулировать и доказать теорему о вероятности наблюдения заданной последовательности состояний дискретной марковской цепи.
- 13. Сформулировать и доказать теорему о вероятности перехода дискретной марковской цепи из одного состояния в другое за n шагов.
- 14. Описать классификацию состояний дискретной марковской цепи.
- 15. Сформулировать определение Сформулировать и доказать условия возвратности либо невозвратности случайного блуждания.
- 16. Сформулировать и доказать утверждение о том, что возвратность или невозвратность состояния дискретной марковской цепи следует из равенства или неравенства бесконечности величины $\sum_{i=1}^{n} p_{ii}^{(n)}$, соответственно.

- 17. Сформулировать и доказать утверждение о том, что возвратность или невозвратность состояния дискретной марковской цепи равносильна тому, что вероятность f_i события $\{\exists n \in \mathbb{N} : X_n = i\}$, где n некоторый момент времени, i рассматриваемое состояние, равняется либо меньше единицы, соответственно.
- 18. Сформулировать и доказать утверждение о том, что (1) если одно из состояний цепи нулевое, то и все остальные нулевые, (2) если одно из состояний возвратное, то и все остальные возвратные, (3) если одно из состояний периодическое с периодом d, то и все остальные периодические с периодом d.
- 19. Вывести формулу средней длительности пребывания дискретной марковской цепи в заданном состоянии.
- 20. Описать вычислительную разностную схему, позволяющую сгенерировать реализацию гауссовского случайного процесса с помощью стохастического интегрирования по броуновскому движению (на примере процесса Орнштейна-Уленбека).
- 21. Описать вычислительную схему, позволяющую сгенерировать реализацию гауссовского случайного процесса с помощью разложения Холецкого (на примере процесса фрактального броуновского движения).
- 22. Описать вычислительную схему, позволяющую сгенерировать реализацию однородного пуассоновского случайного процесса.
- 23. Описать вычислительную схему, позволяющую сгенерировать реализацию неоднородного пуассоновского случайного процесса.
- 24. Пусть (h_1,\ldots,h_n) реализация, полученная в результате наблюдений величин h_k из модели $\mathrm{MA}(q)$ в моменты $k=1,\ldots,n,$ и $\overline{h_n}=\frac{1}{n}\sum_{k=1}^n h_k$ временное среднее. Доказать, что стремление величины $\Delta_n^2=\mathrm{E}\,|\overline{h_n}-\mu|^2$ к нулю при $n\to\infty$ равносильно стремлению к нулю суммы $\frac{1}{n}\sum_{k=1}^n R(k),$ где $R(k)=\mathrm{cov}(h_{n+k},h_n).$ Здесь $\mathrm{E}\,h_n=\mu.$
- 25. Вывести уравнения Юла-Уолкера для авторегрессионной модели AR(p).
- 26. Пусть (S_n, X_n) скрытая марковская модели с M состояниями и матрицей перехода за один шаг $P = (p_{ij}), i, j = 1, \ldots, M$, в которой условное распределение $p(X_i | S_i = s_i)$ является нормальным $\mathcal{N}(\mu_{s_i}, \sigma^2)$. Описать алгоритм сегментации временного ряда, в котором параметры $\boldsymbol{\theta} = (P, \boldsymbol{\mu}, \sigma)$ известны, и требуется по выборке (x_1, \ldots, x_n) оценить значения (s_1, \ldots, s_n) скрытых состояний (S_1, \ldots, S_n) марковской цепи. Описать необходимые для решения заданной задачи предположения.
- 27. Пусть (S_n, X_n) скрытая марковская модели с M состояниями и матрицей перехода за один шаг $P = (p_{ij}), i, j = 1, \ldots, M$, в которой условное распределение $p(X_i|S_i=s_i)$ является нормальным $\mathcal{N}(\mu_{s_i}, \sigma^2)$. Описать алгоритм сегментации временного ряда, в котором параметры $\boldsymbol{\theta} = (P, \boldsymbol{\mu}, \sigma)$ неизвестны, и требуется по выборке (x_1, \ldots, x_n) оценить значения этих параметров и значения (s_1, \ldots, s_n) скрытых состояний (S_1, \ldots, S_n) марковской цепи. Описать необходимые для решения заданной задачи предположения.

Задачи

1. Подсчитайте математическое ожидание, дисперсию и ковариационную функцию случайного процесса $Y = (Y_t)_{t>0}$, задаваемого соотношением

$$Y_t = a(t)X_t + b(t),$$

где $X = (X_t)_{t\geqslant 0}$ – случайный процесс с математическим ожиданием $m(t) = \mathrm{E}\,X_t$, дисперсией $\sigma^2(t) = \mathrm{E}[X_t - \mathrm{E}\,X_t]^2$ и ковариационной функцией $R(t_1,t_2) = \mathrm{E}[(X_{t_1} - \mathrm{E}\,X_{t_1})(X_{t_2} - \mathrm{E}\,X_{t_2})]$.

- 2. Доказать, что пуассоновский поток событий является стохастически непрерывным случайным процессом.
- 3. Пусть $\boldsymbol{\xi} = (\xi_1, \xi_2)^\intercal$ гауссовский случайный вектор с математическим ожиданием Е $\boldsymbol{\xi} = \boldsymbol{\mu} = (\mu_1, \mu_2)^\intercal$ и ковариационной матрицей

$$\mathrm{E}[(oldsymbol{\xi} - oldsymbol{\mu})^\intercal] = egin{bmatrix} \sigma_1^2 &
ho\sigma_1\sigma_2 \
ho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}.$$

Выписать явное аналитическое выражение для двумерной плотности распределения случайного вектора $\boldsymbol{\xi}$.

4. Пусть $\boldsymbol{\xi} = (\xi_1, \xi_2)^\intercal$ – гауссовский случайный вектор с математическим ожиданием Е $\boldsymbol{\xi} = \boldsymbol{\mu} = (\mu_1, \mu_2)^\intercal$ и ковариационной матрицей

$$\mathrm{E}[(oldsymbol{\xi} - oldsymbol{\mu})^\intercal] = egin{bmatrix} \sigma_1^2 &
ho\sigma_1\sigma_2 \
ho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}.$$

Подсчитать явное аналитическое выражение для условной плотности $f_{\xi_2|\xi_1}(x_2|x_1)$ распределения случайного вектора ξ_2 при условии $\xi_1 = x_1$.

- 5. Пусть N^1, N^2, \ldots, N^n независимые пуассоновские потоки событий с интенсивностями $\lambda_1, \lambda_2, \ldots, \lambda_n$, соответственно. Определить тип и параметры процесса $N_t = \sum_{i=1}^n N_t^i$.
- 6. Подсчитать корреляции процесса MA(2).
- 7. Подсчитать корреляции процесса MA(q).
- 8. Подсчитать математическое ожидание процесса AR(1) и его предел при $n \to \infty$, где n время.
- 9. Подсчитать дисперсию процесса AR(1) и ее предел при $n \to \infty$, где n время.
- 10. Подсчитать ковариацию процесса AR(1) и ее предел при $n \to \infty$, где n время.
- 11. Записать правдоподобие $L(h_1, \ldots, h_n | \boldsymbol{\theta})$ выборки (h_1, \ldots, h_n) из авторегрессионной модели AR(p), где $\boldsymbol{\theta} = (a_0, \ldots, a_p, \sigma)$.
- 12. Подсчитать математическое ожидание процесса ARMA(1,1) и его предел при $n \to \infty$, где n время.
- 13. Подсчитать дисперсию процесса ARMA(1,1) и е предел при $n \to \infty$, где n время.

6

- 14. Подсчитать ковариацию процесса ARMA(1,1) и ее предел при $n \to \infty$, где n время.
- 15. Подсчитать математическое ожидание квадрата процесса ARCH(1) (величину Е h_n^2) и его предел при $n \to \infty$, где n время.
- 16. Подсчитать математическое ожидание 4 степени процесса ARCH(1) (величину Е h_n^4) и его предел при $n \to \infty$, где n время.
- 17. Подсчитать дисперсию квадрата процесса ARCH(1) (величину $\mathrm{D}h_n^2$) и ее предел при $n \to \infty$, где n время.
- 18. Подсчитать первую корреляцию процесса ARCH(1) (величину $\rho_1 = \operatorname{E} h_n^2 h_{n-1}^2$) и ее предел при $n \to \infty$, где n время.
- 19. Записать правдоподобие $L(h_1, \ldots, h_n | \boldsymbol{\theta})$ выборки (h_1, \ldots, h_n) из модели ARCH(1), где $\boldsymbol{\theta} = (\alpha_0, \alpha_1)$.
- 20. Подсчитать математическое ожидание квадрата процесса GARCH(1,1) (величину $\to h_n^2$) и его предел при $n \to \infty$, где n время.
- 21. Подсчитать математическое ожидание 4 степени процесса GARCH(1,1) (величину $\to h_n^4$) и его предел при $n \to \infty$, где n время.
- 22. Подсчитать первую корреляцию процесса GARCH(1,1) (величину $\rho_1 = \operatorname{E} h_n^2 h_{n-1}^2$) и ее предел при $n \to \infty$, где n время.
- 23. Записать правдоподобие $L(h_1, \ldots, h_n | \boldsymbol{\theta})$ выборки (h_1, \ldots, h_n) из модели GARCH(1,1), где $\boldsymbol{\theta} = (\alpha_0, \alpha_1, \beta_1)$.
- 24. Записать правдоподобие $L(S_n, X_n | \boldsymbol{\theta})$ выборки $(S_n, X_n) = (s_1, \dots, s_n, x_1, \dots, x_n)$ из скрытой марковской модели с M состояниями и матрицей перехода за один шаг $P = (p_{ij}), i, j = 1, \dots, M$, где $\boldsymbol{\theta} = (P, \boldsymbol{\mu}, \sigma)$ а условное распределение $p(X_i | S_i = s_i)$ является нормальным $\mathcal{N}(\mu_{s_i}, \sigma^2)$.
- 25. Получить формулы для математического ожидания и ковариационной матрицы вектора состояния динамической системы в фильтре Калмана.
- 26. Получить формулы для условного относительно наблюдений z_1, \ldots, z_{k-1} математического ожидания и ковариационной матрицы вектора состояния динамической системы в фильтре Калмана.
- 27. Получить формулы для условного относительно наблюдений z_1, \ldots, z_k математического ожидания и ковариационной матрицы вектора состояния динамической системы в фильтре Калмана.
- 28. Приведите пример некоррелированных, но зависимых случайных величин.
- 29. Приведите пример процесса, являющегося сильно стационарным, но не эргодичным по математическому ожиданию в среднем квадратичном.
- 30. Рассмотрим марковскую цепь, изображённую на рисунке 1. На ней присутствуют 2 рекуррентных класса: $R_1=1,2,\,R_2=5,6,7.$ Пусть X0=3. Найти вероятность того, что цепь будет поглощена в $R_1.$

Рис. 1: Рисунок к задаче 30.

31. Дана матрица перехода

$$P = \begin{pmatrix} \alpha & 1 - \alpha \\ \beta & 1 - \beta \end{pmatrix}.$$

Найти P^n .

- 32. Игрок вступает в игру с капиталом 100\$. В каждом ходу игры игрок получает 1\$ с вероятностью p и теряет 1\$ с вероятностью 1-p. Игра продолжается, пока игрок не наберёт 300\$ или не проиграет все деньги. Какова вероятность, что игра когданибудь закончится? Какова вероятность, что игрок выйдет победителем?
- 33. Рассмотрим марковскую цепь, показанную на рисунке 2. Положим $\frac{1}{2} . Есть ли у данной цепи предельное распределение? Найти$

$$\lim_{n \to \infty} P(X_n = j | X_0 = i).$$

Рис. 2: Рисунок к задаче 33.

- 34. Доказать, что функция $R(t,s) = \min\{t,s\} ts$ может или не может являться ковариационной функцией случайного процесса.
- 35. Доказать, что функция $R(t,s) = \min\{t,s\} t(s+1)$ может или не может являться ковариационной функцией случайного процесса.
- 36. Пусть $B = (B_t)_{t\geqslant 0}$ винеровский процесс. Доказать, что процесс

$$C_t = \begin{cases} 0, & t = 0, \\ tB_{1/t}, & t > 0. \end{cases}$$

также винеровский.

37. Пусть $B = (B_t)_{t\geqslant 0}$ — винеровский процесс. Доказать, что процесс

$$C_t = \sqrt{c}B_{t/c}, \qquad c = \text{const} > 0$$

также винеровский.

- 38. ξ_1, \dots, ξ_n независимые одинаково распределенные показательные случайные величины. Подсчитать (по индукции) плотность распределения суммы $\xi_1 + \dots + \xi_n$.
- 39. Пусть $N=(N_t)_{t\geqslant 0}$ пуассоновский случайный процесс с параметром λ . Доказать, что случайный процесс $M=(M_t)_{t\geqslant 0}$, задаваемый соотношением $M_t=N_{t+1}-N_t$, является стационарным второго порядка процессом, т.е. что его математическое ожидание $\mathbf{E}\,M_t$ не зависит от времени, а его ковариационная функция $R_M(t_1,t_2)$ зависит от t_1 и t_2 через их разность $\tau=t_1-t_2$.
- 40. Доказать положительную определенность функции

$$R(t,s) = \begin{cases} 1 - |t-s|, & |t-s| < 1, \\ 0, & |t-s| >= 1. \end{cases}$$

41. Доказать положительную определенность функции

$$R(t,s) = e^{-|t-s|}.$$

- 42. Пусть ξ_1, ξ_2, \ldots независимые одинаково распределенные случайные величины, причем $P(\xi_t=1)=p, P(\xi_t=-1)=1-p$. Является ли цепью Маркова последовательность $\eta_t=\xi_t\xi_{t+1}$? Если да, найти ее вероятности перехода за один шаг.
- 43. Пусть ξ_1, ξ_2, \ldots независимые одинаково распределенные случайные величины, причем $P(\xi_t = 1) = p, P(\xi_t = -1) = 1 p$. Является ли цепью Маркова последовательность $\eta_t = \xi_1 \xi_2 \ldots \xi_t$? Если да, найти ее вероятности перехода за один шаг.
- 44. Для случайного процесса $h=(h_t)_{t\geqslant 0}$, заданного выражением

$$h_t = \varepsilon_t - 1.3\varepsilon_{t-1} + 0.4\varepsilon_{t-2}$$

где $\varepsilon = (\varepsilon_t)_{t\geqslant 0}$ – последовательность независимых одинаково стандартно нормально распределенных случайных величин,

- (а) Провести исследование на стационарность 2-го порядка (с доказательством);
- (b) Вычислить первые четыре автокорреляции $\rho_0, \rho_1, \rho_2, \rho_3$;
- (c) Вычислить дисперсию случайной величины h_t .
- 45. Для случайного процесса $h = (h_t)_{t \ge 0}$, заданного выражением

$$h_t - h_{t-1} = \varepsilon_t - 1.3\varepsilon_{t-1} + 0.3\varepsilon_{t-2},$$

где $\varepsilon = (\varepsilon_t)_{t\geqslant 0}$ – последовательность независимых одинаково стандартно нормально распределенных случайных величин,

- (а) Провести исследование на стационарность 2-го порядка (с доказательством);
- (b) Вычислить первые четыре автокорреляции $\rho_0, \rho_1, \rho_2, \rho_3$;
- (c) Вычислить дисперсию случайной величины h_t .

46. Для модели GARCH(1, 1) временного ряда, задающейся уравнениями

$$X_n = \mu + h_n, \quad h_n = \sigma_n \varepsilon_n,$$

$$\sigma_n^2 = \alpha_0 + \alpha_1 h_{n-1}^2 + \beta_1 \sigma_{n-1}^2,$$

где $\varepsilon = (\varepsilon_t)_{t=1,\,2,\,\dots}$ – процесс гауссовского белого шума,

- (a) Записать формулу для подсчета $\sigma_{n+1}^2;$
- (b) Подсчитать распределение величины X_{n+1} .