Week 1 Quiz - Recurrent Neural Networks

- 1. Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?
 - $x^{(i) < j > }$

We index into the i-th row first to get the ith training example (represented by parentheses), then the j-th column to get the jth word (represented by the brackets).

- $\ \square \ x^{< i > (j)}$
- $\Box x^{(j) < i >}$
- $\square \ x^{< j > (i)}$
- 2. Consider this RNN:

This specific type of architecture is appropriate when:

- $\Box T_x < T_y$
- $\Box T_x > T_y$
- $\Box T_x = 1$
- 3. To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

- ☐ Speech recognition (input an audio clip and ouput a transcript)
- ☑ Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
- ☐ Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)
- 4. You are training this RNN language model.

At the t-th time step, what is the RNN doing? Choose the best answer.

- $\Box \text{ Estimating } P(y^{<1>}, y^{<2>}, \dots, y^{< t-1>})$ $\blacksquare \text{ Estimating } P(y^{< t>} \mid y^{<1>}, y^{<2>}, \dots, y^{< t-1>})$
- \Box Estimating $P(y^{< t>})$
- $\hfill\Box$ Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t>})$
- 5. You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- \Box (i) Use the probabilities output by the RNN to pick the highest probability word for that timestep as $\hat{y}^{< t>}$. (ii) Then pass the ground truth word from the training set to the next time-step.
- \Box (i) Use the probabilities output by the RNN to randomly sample a chosen word for that timestep as $\hat{y}^{< t>}$. (ii) Then pass the ground truth word from the training set to the next time-step.
- \Box (i) Use the probabilities output by the RNN to pick the highest probability word for that timestep as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- \checkmark (i) Use the probabilities output by the RNN to randomly sample a chosen word for that timestep as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- 6. You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?
 - ☐ Vanishing grdient problem.
 - Exploding gradient problem.
 - \square ReLU activation function g(.) used to compute g(z), where z is too large.
 - \square Sigmoid activation function g(.) used to compute g(z), where z is too large.
- 7. Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?
 - 1
 - **1**00
 - □ 300
 - □ 10000
- 8. Here're the update equations for the GRU.

GRU

$$\tilde{c}^{} = \tanh(W_c[\Gamma_r * c^{}, x^{}] + b_c)$$

$$\Gamma_u = \sigma(W_u[c^{}, x^{}] + b_u)$$

$$\Gamma_r = \sigma(W_r[c^{}, x^{}] + b_r)$$

$$c^{} = \Gamma_u * \tilde{c}^{} + (1 - \Gamma_u) * c^{}$$

$$a^{} = c^{}$$

Alice proposes to simplify the GRU by always removing the Γu . I.e., setting Γu = 1. Betty proposes to simplify the GRU by removing the Γr . I. e., setting Γr = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

- \Box Alice's model (removing Γu), because if $\Gamma r pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- \Box Alice's model (removing Γu), because if $\Gamma r pprox 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- ightharpoonup Betty's model (removing Γr), because if $\Gamma u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- \Box Betty's model (removing Γr), because if $\Gamma u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- 9. Here are the equations for the GRU and the LSTM:

GRU

$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$

$$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_r = \sigma(W_r[\,c^{< t-1>},x^{< t>}] + b_r)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$$

$$a^{} = c^{}$$

LSTM

$$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$$

$$\Gamma_u = \sigma(W_u[a^{< t-1>}, x^{< t>}] + b_u)$$

$$\Gamma_{\!f} = \sigma(W_f[\,a^{< t-1>},x^{< t>}\,] + b_f)$$

$$\Gamma_o = \sigma(W_o[a^{< t-1>}, x^{< t>}] + b_o)$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$$

$$a^{< t>} = \Gamma_o * c^{< t>}$$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to ____ and ___ in the GRU. What should go in the the blanks?

