Deep Learning model

For German traffic dataset and CIFAR

TABLE OF CONTENTS

01

German traffic dataset

Architecture, hyperparameters and results

02

CIFAR 100 dataset

Architecture, hyperparameters and results

Procedure

For training the neural network we tried several approaches

- EarlyStopping.
- Different activation functions.
- Different optimization techniques.
- Parameters grid.

Some of them failed, due to lack of computational resources and time

Parameters grid

For defining the hyperparameters, we defined all the combinations with a fixed architecture.

Num. units 1	300	500	1000
Num. units 2	250	500	1000
Dropout	0.1	0.15	1.16
Learning rate	0.001	0.0001	
Optimizer	sgd	adam	

0

O1 German traffic dataset

SELECTED ARCHITECTURE

150 epochs SGD optimizer Lr = 0.0001

RESULT

Accuracy: 0.8975

Loss: 2.2976

O2 CIFAR 100 dataset

SELECTED ARCHITECTURE

RESULT

Accuracy: 0.2952

Loss: 3.0581

THANKS

Do you have any questions?

Rodrigo Pueblas Carlos Sánchez Cristian Abrante

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik.