William Stallings Computer Organization and Architecture

Chapter 8
Computer Arithmetic

Arithmetic & Logic Unit

- # Does the calculations
- **#**Everything else in the computer is there to service this unit
- **#**Handles integers
- ****** May handle floating point (real) numbers
- ****May be separate FPU (maths co-processor)**
- ™ May be on chip separate FPU (486DX +)

ALU Inputs and Outputs

Integer Representation

#Only have 0 & 1 to represent everything **#**Positive numbers stored in binary

□e.g. 41=00101001 **#**No minus sign **#**No period **#**Sign-Magnitude

XTwo's compliment

Sign-Magnitude

- **X**Left most bit is sign bit
- **#**0 means positive
- **#1** means negative
- $\mathbf{H} + 18 = 00010010$
- # -18 = 10010010
- **#**Problems
 - Need to consider both sign and magnitude in arithmetic

Two's Compliment

```
\Re + 3 = 00000011

\Re + 2 = 00000010

\Re + 1 = 00000001

\Re + 0 = 00000000

\Re - 1 = 11111111

\Re - 2 = 11111110

\Re - 3 = 11111101
```

Benefits

△Add 1 to LSB

XOne representation of zero **X**Arithmetic works easily (see later) **X**Negating is fairly easy
△3 = 00000011
△Boolean complement gives 11111100

11111101

Geometric Depiction of Twos Complement Integers

Negation Special Case 1

```
# 0 = 00000000

#Bitwise not 111111111

#Add 1 to LSB +1

#Result 1 00000000

#Overflow is ignored, so:

#-0 = 0 \sqrt{\phantom{a}}
```

Negation Special Case 2

```
\#-128 =
                 10000000
# bitwise not 01111111

# Add 1 to LSB
                       +1
# Result
                 10000000
#So:
\mathbf{H} -(-128) = -128 X
#Monitor MSB (sign bit)
X It should change during negation
```

Range of Numbers

#8 bit 2s compliment

$$\triangle + 127 = 011111111 = 2^7 - 1$$

$$\triangle$$
 -128 = 10000000 = -2⁷

#16 bit 2s compliment

$$\triangle + 32767 = 0111111111111111111111 = 2^{15} - 1$$

$$\triangle$$
 -32768 = 100000000 00000000 = -2¹⁵

Conversion Between Lengths

```
\Re Positive number pack with leading zeros \Re + 18 = 00010010 \Re + 18 = 00000000 00010010 \Re Negative numbers pack with leading ones \Re - 18 = 10010010 \Re - 18 = 11111111 10010010 \Re - 18 = 11111111 10010010
```

Addition and Subtraction

- ****Normal binary addition**
- ****** Monitor sign bit for overflow
- **X**Take twos compliment of substahend and add to minuend

$$△$$
i.e. a - b = a + (-b)

So we only need addition and complement circuits

Hardware for Addition and Subtraction

Multiplication

#Complex

#Work out partial product for each digit

#Take care with place value (column)

#Add partial products

Multiplication Example

```
\mathbb{H}
        1011
               Multiplicand (11 dec)
H
       1101
               Multiplier (13 dec)
H
        1011
               Partial products
H
       0000
               Note: if multiplier bit is 1 copy
H
                multiplicand (place value)
     1011
H
    1011
                otherwise zero
# 10001111 Product (143 dec)
X Note: need double length result
```

Unsigned Binary Multiplication

Execution of Example

C 0	A 0000	Q 1101	M 1011	Initial	Values
0	1011 0101	1101 1110	1011 1011	Add Shift	First Cycle
0	0010	1111	1011	Shift }	Second Cycle
0	1101 0110	1111 1111	1011 1011	Add Shift	Third Cycle
1	0001	1111 1111	1011 1011	Add Shift	Fourth Cycle

Flowchart for Unsigned Binary Multiplication

Multiplying Negative Numbers

- **#**This does not work!
- **Solution** 1
 - Convert to positive if required

 - ☑ If signs were different, negate answer
- **Solution** 2
 - □ Booth's algorithm

Booth's Algorithm

Example of Booth's Algorithm

A	Q	Q ₋₁	М	Initial Values
0000	0011	0	0111	
1001	0011	0	0111	A A - M } First Shift Cycle
1100	1001	1	0111	
1110	0100	1	0111	Shift Second Cycle
0101	0100	1	0111	$ \begin{array}{ccc} A & A + M \\ Shift & Cycle \end{array} $
0010	1010	0	0111	
0001	0101	0	0111	Shift } Fourth Cycle

Division

- **#**More complex than multiplication
- ****Negative numbers are really bad!**
- ***Based on long division**

Division of Unsigned Binary Integers

Division Algorithm

Example

Α	Q	M = 0011
0000	0111	Initial value
0000	1110	Shift
1101		Subtract
0000	1110	Restore
0001	1100	Shift
1110		Subtract
0001	1100	Restore
0011	1000	Shift
0000		Subtract
0000	1001	Set Q ₀ = 1
0001	0010	Shift
1110		Subtract
0001	0010	Restore

Real Numbers

- **X** Numbers with fractions
- **#**Could be done in pure binary

$$\triangle 1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$$

- ****Where is the binary point?**
- #Fixed?
- **#**Moving?
 - △How do you show where it is?

Floating Point

- \mathbb{H} +/- .significand x 2^{exponent}
- **#** Misnomer
- **#**Point is actually fixed between sign bit and body of mantissa
- **#**Exponent indicates place value (point position)

Floating Point Examples

(b) Examples

Signs for Floating Point

- **#**Mantissa is stored in 2s compliment
- **#**Exponent is in excess or biased notation
 - △e.g. Excess (bias) 128 means
 - △8 bit exponent field

 - □Range -128 to +127

Normalization

- #FP numbers are usually normalized
- #i.e. exponent is adjusted so that leading bit (MSB) of mantissa is 1
- **#**Since it is always 1 there is no need to store it
- **#** (c.f. Scientific notation where numbers are normalized to give a single digit before the decimal point
- \Re e.g. 3.123 x 10³)

FP Ranges

#For a 32 bit number

△8 bit exponent

 $\triangle + / - 2^{256} \approx 1.5 \times 10^{77}$

#Accuracy

 \triangle 23 bit mantissa $2^{-23} \approx 1.2 \times 10^{-7}$

△About 6 decimal places

Expressible Numbers

(a) Twos Complement Integers

(b) Floating-Point Numbers

IEEE 754

- **#**Standard for floating point storage
- ₩32 and 64 bit standards
- **#8** and 11 bit exponent respectively
- *****Extended formats (both mantissa and exponent) for intermediate results

FP Arithmetic +/-

- **#**Check for zeros
- ****** Align significands (adjusting exponents)
- ******Add or subtract significands
- **X** Normalize result

FP Arithmetic x/÷

- #Check for zero
- ****Add/subtract exponents**
- ****Multiply/divide significands (watch sign)**
- **X** Normalize
- **#**Round
- **X**All intermediate results should be in double length storage

Floating Point Multiplication

Floating Point Division

Required Reading

#Stallings Chapter 8

XIEEE 754 on IEEE Web site