Una Advertencia

Una Advertencia

Restricciones de la Regresión Lineal

- 1.Linealidad
- 2. Homocedasticidad
- 3. Normalidad multivariable
- 4. Independencia de los errores
- 5. Ausencia de multicolinealidad

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^* x_1$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^* x_1 + b_2^* x_2$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State		New York	California
192,261.83	165,349.20	136,897.80	471,784.10	New York	}		
191,792.06	162,597.70	151,377.59	443,898.53	California			
191,050.39	153,441.51	101,145.55	407,934.54	California			
182,901.99	144,372.41	118,671.85	383,199.62	New York			
166,187.94	142,107.34	91,391.77	366,168.42	California			

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

	New York	California

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State	New York	California
192,261.83	165,349.20	136,897.80	471,784.10	New York—	1	
191,792.06	162,597.70	151,377.59	443,898.53	California	0	
191,050.39	153,441.51	101,145.55	407,934.54	California	0	
182,901.99	144,372.41	118,671.85	383,199.62	New York—	 1	
166,187.94	142,107.34	91,391.77	366,168.42	California	0	

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State	New York	California
192,261.83	165,349.20	136,897.80	471,784.10	New York	1	0
191,792.06	162,597.70	151,377.59	443,898.53	California —	0	 1
191,050.39	153,441.51	101,145.55	407,934.54	California —	0	 1
182,901.99	144,372.41	118,671.85	383,199.62	New York	1	0
166,187.94	142,107.34	91,391.77	366,168.42	California —	0	 > 1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + b_4^* D_1$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3$$

$$+ b_4 * D_1$$

La trampa de las Variables Dummies

La Trampa de las Variables Dummies

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + b_4^* D_1$$

La Trampa de las Variables Dummies

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70			nia
191,050.39	153,441.51		= 1 - D	nia
182,901.99	144,372.41			ork
166,187.94	142,107.34			nia

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3$$

La Trampa de las Variables Dummies

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

Variables Dummy

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3$$

$$+ b_4^* D_1 + D_5^* D_2$$

Siempre debemos omitir una variable

Construir el Modelo (Paso a Paso)

¿Por qué?

1)

2)

5 métodos para construir modelos:

- 1. Exhaustivo (All-in)
- 2. Eliminación hacia atrás
- 3. Selección hacia adelante
- 4. Eliminación Bidireccional
- 5. Comparición de scores

Regresión paso a paso

"All-in" - cases:

- Conocimiento a priori; OR
- Necesidad; OR
- Preparación previa para Eliminación hacia atrás

Eliminación hacia atrás

PASO 1: Seleccionar el nivel de significación para permanecer en el modelo (p.e. SL = 0.05)

PASO 2: Se calcula el modelo con todas las posibles variables predictoras

PASO 4: Se elimina la variable predictora

PASO 5: Ajustar el modelo sin dicha variable*

FIN: El modelo está listo

Selección hacia adelante

PASO 2: Ajustamos todos los modelos de regresión lineal simple $y \sim x_n$ Elegimos el que tiene **menor** p-valor.

PASO 3: Conservamos esta variable, y ajustamos todos los posibles modelos con una variable extra añadida a la(s) que ya tenga(s) el modelo hasta el momento

FIN: Conservamos el modelo anterior

Eliminación Bidireccional

PASO 1: Seleccionar un nivel de significación para entrar y salir del modelo

p.e.: SLENTER = 0.05, SLSTAY = 0.05

PASO 2: Llevar a cabo el siguiente Paso de Selección hacia adelante (con las nuevas variables con: P < SLENTER para entrar)

PASO 3: Llevar a cabo TODOS los pasos de la Eliminación hacia atrás (las variables antiguas deben tener P < SLSTAY para quedarse)

PASO 4: No hay nuevas variables para entrar ni antiguas para salir

FIN: El modelo está listo

Todos los modelos posibles

PASO 1: Seleccionar un criterio de bondad de ajuste (p.e. criterio de Akaike)

PASO 2: Construir todos los posibles modelos de regresión: 2^N-1 combinaciones en total

PASO 3: Seleccionar el modelo con el mejor criterio elegido

FIN: El modelo está listo

Por ejemplo: 10 columnas significan 1,023 modelos

5 métodos para construir modelos:

- 1. Exhaustivo (All-in)
- 2. Eliminación hacia atrás
- 3. Selección hacia adelante
- 4. Eliminación Bidireccional
- 5. Comparición de scores

Recapitulando

Recapitulación

En esta sección hemos visto

- 1. Como crear variables dummies para las categorías de variables independientes
- 2. Como evitar la trampa de las variables dummies
- 3. Hacia atrás, hacia adelante, Bidireccional, Todos...
- 4. Construir un modelo paso a paso!!
- 5. Como usar el R2 Ajustado en modelización
- 6. Como interpretar los coeficientes de una RLM