PGL(2,Z)'nin dış otomorfizmi ve **R**'ye dayattığı 'modüler' envolüsyon.

A. Muhammed Uludağ, Galatasaray Üniversitesi (Hakan Ayral ile ortak çalışma)

October 6, 2016

Marmara Üniversitesi Matematik Günleri 6-8 Ekim 2016

Foreword

İkili kuadratik formlara dair bir makalesinde Poincaré şöyle der

"...belirsiz kuadratik formlar için değişmez bulmanın, bu kelimeye yüklediğimiz anlam dâhilinde, imkânı yoktur..."

O günden beri birkaç teşebbüs yapılmıştır...

Bu incelememiz "değişmez" kelimesinin anlamını değiştirerek bu konuda ne yapılabileceğini görmek için yeni bir teşebbüstür.

Foreword

İkili kuadratik formlara dair bir makalesinde Poincaré şöyle der

"...belirsiz kuadratik formlar için değişmez bulmanın, bu kelimeye yüklediğimiz anlam dâhilinde, imkânı yoktur..."

O günden beri birkaç teşebbüs yapılmıştır...

Bu incelememiz "değişmez" kelimesinin anlamını değiştirerek bu konuda ne yapılabileceğini görmek için yeni bir teşebbüstür.

Foreword

İkili kuadratik formlara dair bir makalesinde Poincaré şöyle der

"...belirsiz kuadratik formlar için değişmez bulmanın, bu kelimeye yüklediğimiz anlam dâhilinde, imkânı yoktur..."

O günden beri birkaç teşebbüs yapılmıştır...

Bu incelememiz "değişmez" kelimesinin anlamını değiştirerek bu konuda ne yapılabileceğini görmek için yeni bir teşebbüstür.

İçindekiler

1 Jimm'in tanımı ve fonksiyonel denklemler

2 Dinamik

3 Ağaç otomorfizmleri ve Lebesgue ölçüsü

Birinci Kısım Jimm'in tanımı ve fonksiyonel denklemler

Notation

Her $x \in \mathbf{R}$ sürekli kesir şeklinde yazılabilir:

$$[n_0, n_1, n_2, \dots] = n_0 + \frac{1}{n_1 + \frac{1}{n_2 + \frac{1}{\dots}}}$$

 $(n_0 \in \mathbf{Z}, n_i \in \mathbf{Z}_{>0} \text{ for } i > 0)$, şayet x irrasyonelse bu sürekli kesir yegânedir.

Notation

 1_k ile k uzunluğundaki $1, 1, \ldots, 1$ dizisini gösteriyoruz.

Notation

Her $x \in \mathbf{R}$ sürekli kesir şeklinde yazılabilir:

$$[n_0, n_1, n_2, \dots] = n_0 + \frac{1}{n_1 + \frac{1}{n_2 + \frac{1}{\dots}}}$$

 $(n_0 \in \mathbf{Z}, n_i \in \mathbf{Z}_{>0} \text{ for } i > 0)$, şayet x irrasyonelse bu sürekli kesir yegânedir.

Notation

 1_k ile k uzunluğundaki $1, 1, \ldots, 1$ dizisini gösteriyoruz.

R'den R'ye 'tekil' bir fonksiyon ₹ (Jimm) tanımlayalım:

Tanım

$$\mathbf{J}([n_0, n_1, n_2, \dots]) = \\ [1_{n_0-1}, 2, 1_{n_1-2}, 2, 1_{n_2-2}, \dots]$$

('Tekil fonksiyon'dan ne kastettiğimiz ileride açığa kavuşacak.)

$$\mathbf{J}([n_0, n_1, n_2, \dots]) = [1_{n_0-1}, 2, 1_{n_1-2}, 2, 1_{n_2-2}, \dots]$$

Examples

$$\mathbf{J}([3,3,3,\dots] = [1_{3-1},2,1_{3-2},2,1_{3-2},2\dots] = [1,1,2,1,2,1,2,\dots]$$
$$\mathbf{J}([5,5,5,\dots] = [1,1,1,1,2,1,1,1,2,1,1,1,2,\dots]$$

Göstereceğiz ki bu çok özel bir fonksiyondur, zira:

- ullet $\operatorname{PGL}_2(\boldsymbol{\mathsf{Z}})$ modüler grubunun dış otomorfizminden kaynaklanır,
- h.h. türevlenir olup türevi h.h. sıfırdır,
- bazı çok özel fonksiyonel denklemleri sağlar,
- kuadratik irrasyoneller kümesini korur,
- kuadratik eşlenik alma (Galois etkisi) ile yer değiştirir (komüt eder),
- Lebesgue ölçüsünün gizli bir simetrisini verir,
- •
- bir 'gerçel' modüler formdur.

$$\mathbf{J}([n_0, n_1, n_2, \dots]) = [1_{n_0-1}, 2, 1_{n_1-2}, 2, 1_{n_2-2}, \dots]$$

Bu tanım sadece $n_k \ge 2$ için çalışır. $n_k = 2$ durumunda da çalıştırmak için, şu kural kullanılır:

Kural I

$$\ldots, n, 1_0, m, \cdots = \ldots, n, m, \ldots$$

Orneklei

$$J([2,2,2,\ldots]) = [1,2,1_0,2,1_0,2\ldots] = [1,2,2,2,\ldots]$$
$$J([2,3,2,3\ldots]) = [1,2,1,2,2,1,2,2,1,\ldots]$$

$$\mathbf{J}([n_0, n_1, n_2, \dots]) = [1_{n_0-1}, 2, 1_{n_1-2}, 2, 1_{n_2-2}, \dots]$$

Bu tanım sadece $n_k \ge 2$ için çalışır. $n_k = 2$ durumunda da çalıştırmak için, şu kural kullanılır:

Kural I

$$\ldots, n, 1_0, m, \cdots = \ldots, n, m, \ldots$$

Örnekler

$$\mathbf{J}([2,2,2,\dots]) = [1,2,1_0,2,1_0,2\dots] = [1,2,2,2,\dots]$$
$$\mathbf{J}([2,3,2,3\dots]) = [1,2,1,2,2,1,2,2,1,\dots]$$

$$\mathbf{J}([n_0, n_1, n_2, \dots]) = [1_{n_0-1}, 2, 1_{n_1-2}, 2, 1_{n_2-2}, \dots]$$

 $n_k = 1$ durumunda çalıştırmak için ise, şu kural kullanılır:

RULE II

$$\ldots, n, 1_{-1}, m, \cdots = \ldots, n+m-1, \ldots$$

Örnekler

$$[1_0, \underbrace{2, 1_{-1}, 2}_{3}, 1_0, \underbrace{2, 1_{-1}, 2}_{3}, 1_0, \underbrace{2, 1_{-1}, 2}_{3}, 1_0, \underbrace{2, 1_{-1}, 2}_{3}, \dots] =$$

$$= [3, 3, 3, \dots]$$

daha önce görmüş müydük?

$$\mathbf{J}([n_0, n_1, n_2, \dots]) = [1_{n_0-1}, 2, 1_{n_1-2}, 2, 1_{n_2-2}, \dots]$$

 $n_k = 1$ durumunda çalıştırmak için ise, şu kural kullanılır:

RULE II

$$\ldots, n, 1_{-1}, m, \cdots = \ldots, n+m-1, \ldots$$

Örnekler

$$[1_0, \underbrace{2, 1_{-1}, 2}_{3}, 1_0, \underbrace{2, 1_{-1}, 2}_{3}, 1_0, \underbrace{2, 1_{-1}, 2}_{3}, 1_0, \underbrace{2, 1_{-1}, 2}_{3}, \dots] =$$

$$= [3, 3, 3, \dots]$$

daha önce görmüş müydük?

$$\mathbf{J}([n_0,n_1,n_2,\dots])=[1_{n_0-1},2,1_{n_1-2},2,1_{n_2-2},\dots]$$

Bu iki kuralla birlikte \mathbf{J} $\mathbf{R} \setminus \mathbf{Q}$ üzerinde iyi tanımlı olur ve bir "çevrimdir" (envolüsyon).

$$\mathsf{J}(\mathsf{J}(x))=x$$

J'in grafiğini şöyle çizilir (graf koyu kutucukların içinde yer alır)

- J fonksiyonu R\Q üzerinde süreklidir.
- Q üzerinde sıçrama süreksizlikleri vardır.
- J hemen her yerde türevlenirdir.
- türevi hemen heryerde sıfıra eşittir.
- Q üzerine doğal bir genişlemesi vardır.

- J fonksiyonu R\Q üzerinde süreklidir.
- Q üzerinde sıçrama süreksizlikleri vardır.
- J hemen her yerde türevlenirdir.
- türevi hemen heryerde sıfıra eşittir.
- Q üzerine doğal bir genişlemesi vardır.

- J fonksiyonu R\Q üzerinde süreklidir.
- Q üzerinde sıçrama süreksizlikleri vardır.
- J hemen her yerde türevlenirdir.
- türevi hemen heryerde sıfıra eşittir.
- Q üzerine doğal bir genişlemesi vardır.

- J fonksiyonu R\Q üzerinde süreklidir.
- Q üzerinde sıçrama süreksizlikleri vardır.
- J hemen her yerde türevlenirdir.
- türevi hemen heryerde sıfıra eşittir.
- Q üzerine doğal bir genişlemesi vardır.

- J fonksiyonu R\Q üzerinde süreklidir.
- Q üzerinde sıçrama süreksizlikleri vardır.
- J hemen her yerde türevlenirdir.
- türevi hemen heryerde sıfıra eşittir.
- Q üzerine doğal bir genişlemesi vardır.

Şimdi şu örneği ele alalım:

Örnek

$$\mathbf{J}(1+[3,3,3\ldots]) = \mathbf{J}([4,3,3\ldots]) = [1,1,1,2,1,2,1,\ldots]$$
$$= 1 + \underbrace{\frac{1}{[1,1,2,1,2,1,\ldots]}}_{=\mathbf{j}([3,3,3,\ldots])}$$

Daha genel olarak şu denklem geçerlidir:

Fonksiyonel Denklem (*)

$$\mathbf{J}(1+x)=1+\frac{1}{x}$$

(*) fonksiyonel denklemi aşağıdaki şu daha temel fonksiyonel denklemlerden türetilebilir:

$$J(J(x)) = x$$

$$J(\frac{1}{x}) = \frac{1}{J(x)}$$

$$J(-x) = -\frac{1}{J(x)}$$

$$J(1-x) = 1 - J(x)$$

Fonksiyonel denklemlerin bir de iki-değişkenli ifadesi mevcuttur.

$$\mathbf{J}(x) = y \iff \mathbf{J}(y) = x$$

$$xy = 1 \iff \mathbf{J}(x)\mathbf{J}(y) = 1$$

$$x + y = 0 \iff \mathbf{J}(x)\mathbf{J}(y) = -1$$

$$x + y = 1 \iff \mathbf{J}(x) + \mathbf{J}(y) = 1$$

$$\frac{1}{x} + \frac{1}{y} = 1 \iff \frac{1}{\mathbf{J}(x)} + \frac{1}{\mathbf{J}(y)} = 1$$

⇒ **J**, harmonik sayı çiftlerini korur.

 $\mathrm{PGL}_2(\mathbf{Z})$ 'nin şu Möbius grubuna izomorf olduğunu hatırlayalım:

$$\left\{\frac{px+q}{rx+s} \mid ps-qr=\pm 1, p, q, r, s \in \mathbf{Z}\right\}$$

Fact

Şu üç envolüsyon, $\operatorname{PGL}_2(\boldsymbol{Z})$ grubunu üretir:

$$Ux := \frac{1}{x}, \quad Vx := -x, \quad Kx := 1 - x$$

(+ bazı bağıntılar)

Fonksiyonel denklemler şu şekilde yazılır

$$JU = UJ$$
, $JK = KJ$, $JV = UVJ$

 \Longrightarrow ki bu da **J**'in $\operatorname{PGL}_2(\mathbf{Z})$ 'nin **Dyer dış otomorfizmi** olduğunu gösterir .

En genel fonksiyonel denklem şu şekilde yazılır:

$$\mathbf{J}(Mx) = \mathbf{J}(M)\mathbf{J}(x), \quad M \in \mathrm{PGL}_2(\mathbf{Z})$$

(burada J(M), M'nin Dyer otomorfizmi altındaki görüntüsünü göstermektedir.).

Bu denkleme göre J "bir çeşit" kovaryant fonksiyondur.

Note: Şayet

$$f\left(\frac{pz+q}{rz+s}\right) = \frac{pf(z)+1}{rf(z)+s} \quad \forall \frac{pz+q}{rz+s} \in \mathrm{PGL}_2(\mathbf{Z})$$

ise, f'ye katı kovaryant (veya equivaryant) denir. Bu türden üst yarı sahada analitik fonksiyonlar, modüler formlar kullanarak elde edilebilir.

Olgu I

J nihayetinde devirli sürekli kesirleri yine nihayetind devirli sürekli kesirlere götürür.

 \Longrightarrow

J kuadratik irrasyonelleri yine kuadratik irrasyonellere götürür. yani J "gerçel-çarpım kümesini" muhafaza eder.

(iz, norm, işaret gibi değerlere saygı duymaz)

Örnekler

$$J(\sqrt{2}) = J([1, 2, 2, \dots]) = 1 + \sqrt{2}$$

Ama genelde bu kadar basit değildir:

$$\mathbf{J}(\sqrt{11}) = \frac{15 + \sqrt{901}}{26}, \quad \mathbf{J}(-\sqrt{11}) = \frac{15 - \sqrt{901}}{26}$$

Olgu I

J nihayetinde devirli sürekli kesirleri yine nihayetind devirli sürekli kesirlere götürür.

=

J kuadratik irrasyonelleri yine kuadratik irrasyonellere götürür. yani J "gerçel-çarpım kümesini" muhafaza eder.

(iz, norm, işaret gibi değerlere saygı duymaz)

Örnekler

$$J(\sqrt{2}) = J([1, 2, 2, \dots]) = 1 + \sqrt{2}$$

Ama genelde bu kadar basit değildir:

$$\mathbf{J}(\sqrt{11}) = \frac{15 + \sqrt{901}}{26}, \quad \mathbf{J}(-\sqrt{11}) = \frac{15 - \sqrt{901}}{26}$$

Olgu I

J nihayetinde devirli sürekli kesirleri yine nihayetind devirli sürekli kesirlere götürür.

==

J kuadratik irrasyonelleri yine kuadratik irrasyonellere götürür. yani J "gerçel-çarpım kümesini" muhafaza eder.

(iz, norm, işaret gibi değerlere saygı duymaz)

Örnekler

$$J(\sqrt{2}) = J([1, 2, 2, \dots]) = 1 + \sqrt{2}$$

Ama genelde bu kadar basit değildir:

$$\mathbf{J}(\sqrt{11}) = \frac{15 + \sqrt{901}}{26}, \quad \mathbf{J}(-\sqrt{11}) = \frac{15 - \sqrt{901}}{26}$$

Olgu II

J sürekli kesirlerin sonlarına saygı duyar (yani x, y'nin sürekli kesirleri nihayetinde kesişiyorsa, $\mathbf{J}(x)$ ve $\mathbf{J}(y)$ için de aynısı doğrudur).

J, $\operatorname{PGL}_2(\mathbf{Z})$ -etkisine saygı duayr (yani x and y aynı $\operatorname{PGL}_2(\mathbf{Z})$ -yörüngesindeyse, $\mathbf{J}(x)$ ve $\mathbf{J}(y)$ de aynı yörüngededir.)

Daha kesin bir dille ifade etmek gerekirse

$$J(Mx) = J(M)J(x)$$
 $M \in PGL_2(\mathbf{Z}), x \in \mathbf{R}$

ve dolayısıyla

$$\mathbf{x} = My \implies \mathbf{J}(\mathbf{x}) = \mathbf{J}(M)\mathbf{J}(y), \quad \mathbf{J}(M) \in \mathrm{PGL}_2(\mathbf{Z})$$

Olgu II

J sürekli kesirlerin sonlarına saygı duyar (yani x, y'nin sürekli kesirleri nihayetinde kesişiyorsa, $\mathbf{J}(x)$ ve $\mathbf{J}(y)$ için de aynısı doğrudur).

$$\iff$$

J, $\operatorname{PGL}_2(\mathbf{Z})$ -etkisine saygı duayr (yani x and y aynı $\operatorname{PGL}_2(\mathbf{Z})$ -yörüngesindeyse, $\mathbf{J}(x)$ ve $\mathbf{J}(y)$ de aynı yörüngededir.)

Daha kesin bir dille ifade etmek gerekirse

$$J(Mx) = J(M)J(x)$$
 $M \in PGL_2(\mathbf{Z}), x \in \mathbf{R}$

ve dolayısıyla

$$x = My \implies \mathbf{J}(x) = \mathbf{J}(M)\mathbf{J}(y), \quad \mathbf{J}(M) \in \mathrm{PGL}_2(\mathbf{Z})$$

Olgu I&II birlikte şunu gösterir

Olgu III

J, **R**'deki "bozuk rank-2 kafeslerin modül uzayının" bir envolüsyonunu dayatır, bu esnada "gerçel-çarpım" mahallini (locus) korur.

$$J \circlearrowright R/\mathrm{PGL}_2(Z)$$

Yani, Olgular bize diyor ki

J aslında bir modüler fonksiyondur.

Dahası da var:

Olgu IV

J, kuadratik irrasyoneller üzerindeki Galois etkisiyle değişmelidir, yani

$$\mathbf{J}(a+\sqrt{b}) = A + \sqrt{B}$$

$$\iff$$

$$\mathbf{J}(a-\sqrt{b}) = A - \sqrt{B}$$

Şimdi iki-değişkenli fonksiyonel denklemlere dönelim:

$$xy = 1 \iff \mathbf{J}(x)\mathbf{J}(y) = 1$$

$$x + y = 0 \iff \mathbf{J}(x)\mathbf{J}(y) = -1$$

$$x + y = 1 \iff \mathbf{J}(x) + \mathbf{J}(y) = 1$$

$$\frac{1}{x} + \frac{1}{y} = 1 \iff \frac{1}{\mathbf{J}(x)} + \frac{1}{\mathbf{J}(y)} = 1$$

ve $x = a + \sqrt{b}$ bir kuadratik irrasyonel olmak üzere, $y = \bar{x}$ yazalım:

$$x\bar{x} = 1 \iff \mathbf{J}(x)\mathbf{J}(\bar{x}) = 1$$

$$x + \bar{x} = 0 \iff \mathbf{J}(x)\mathbf{J}(\bar{x}) = -1$$

$$x + \bar{x} = 1 \iff \mathbf{J}(x) + \mathbf{J}(\bar{x}) = 1$$

$$\frac{1}{x} + \frac{1}{\bar{x}} = 1 \iff \frac{1}{\mathbf{J}(x)} + \frac{1}{\mathbf{J}(\bar{x})} = 1$$

Sayılar Kuramından Hatırlatma

Sayet
$$x = a + \sqrt{b}$$
 $(a, b \in \mathbf{Q}, b > 0)$ ise

x'in **normu**
$$N(x) := x\bar{x} \iff N(a + \sqrt{b}) = a^2 - b$$

x'in **izi**
$$T(x) := x + \bar{x} \iff T(a + \sqrt{b}) = 2a$$

Örnek

$$N(1+\sqrt{2})=-1$$
, $T(1+\sqrt{2})=2$

Şunu elde ederiz:

Mütekabiliyet I

$$x\bar{x} = 1 \iff \mathbf{J}(x)\mathbf{J}(\bar{x}) = 1$$
; i.e. $N(x) = 1 \iff N(\mathbf{J}(x)) = 1$ \Longrightarrow

J, kuadratik sayı cisimlerindeki norm+1 ünitlerin bir envolüsyonuna kısıtlanır.

$${f J} \circlearrowleft \{a + \sqrt{a^2 - 1} \, | \, 1 < a \in {f Q} \}$$

ve şunu elde ederiz:

Correspondence II

$$x + \bar{x} = 0 \iff \mathbf{J}(x)\mathbf{J}(\bar{x}) = -1$$
; i.e. $T(x) = 0 \iff N(\mathbf{J}(x)) = -1$.

⇒ J, positive rasyonellerin kareköklerinin kümesiyle kuadratik sayı cisimlerindeki norm-1 ünitlerin kümesi arasında bir eşleme kurar.

$$\mathbf{J}: \{\sqrt{q} \mid q \in \mathbf{Q}\} \to \{a + \sqrt{a^2 + 1} \mid a \in \mathbf{Q}\}$$

Bu mütekabiliyetler bariz olmaktan çok uzaktır:

Mütekabiliyet II-Örnek

Mütekabiliyet II-Başka örnekler

$$\begin{array}{ccccc} \sqrt{N} & \to & \mathbf{J}(\sqrt{N}) \\ \sqrt{3} & \to & \frac{1}{2}(\sqrt{13}+3) \\ \sqrt{5} & \to & \frac{1}{3}(\sqrt{10}+1) \\ \sqrt{6} & \to & \frac{1}{14}(\sqrt{221}+5) \\ \sqrt{7} & \to & \frac{1}{6}(\sqrt{37}+1) \\ \sqrt{8} & \to & \frac{1}{4}(\sqrt{17}+1) \\ \sqrt{10} & \to & \frac{1}{7}(\sqrt{65}+4) \\ \sqrt{11} & \to & \frac{1}{26}(\sqrt{901}+15) \\ \sqrt{12} & \to & \frac{1}{34}(\sqrt{1517}+19) \\ \sqrt{13} & \to & \frac{1}{3}(\sqrt{13}+2) \\ \sqrt{14} & \to & \frac{1}{5}(\sqrt{34}+3) \\ \sqrt{15} & \to & \frac{1}{18}(\sqrt{445}+11) \\ \sqrt{17} & \to & \frac{1}{19}(\sqrt{442}+9) \end{array}$$

We get...

Mütekabiliyet III

$$x + y = 1 \iff \mathbf{J}(x) + \mathbf{J}(\bar{x}) = 1$$
; i.e. $T(x) = 1 \iff T(\mathbf{J}(x)) = 1$

$$\mathbf{J} \circlearrowleft \{\frac{1}{2} + \sqrt{a} \,|\, 0 < a \in \mathbf{Q}\}$$

Şunu elde ederiz:

Mütekabiliyet IV

$$\frac{1}{x}+\frac{1}{\bar{x}}=1\iff \frac{1}{\mathbf{J}(x)}+\frac{1}{\mathbf{J}(\bar{x})}=1; \text{ i.e. } T(\frac{1}{x})=1\iff T(\frac{1}{\mathbf{J}(x)})=1$$

$$T(x) = N(x) \iff T(\mathbf{J}x) = N(\mathbf{J}x)$$

Bir başka deyişle,

J
$$\circlearrowright$$
 $\{a + \sqrt{a^2 - 2a} \mid 1 < a \in \mathbf{Q}\}$

... ve bu türden başka mütekabiliyetler de mevcuttur.

Daha yüksek mertebeden cebirsel sayılar hakkında ne söylenebilir?

Tahmin

Şayet x cebirsel ve mertebesi > 2 ise, $\mathbf{J}(x)$ aşkındır. $^{\epsilon}$

^aTesting the transcendence conjecture of Jimm and its continued fraction statistics (joint with H. Ayral, to appear) Daha yüksek mertebeden cebirsel sayılar hakkında ne söylenebilir?

Tahmin

Şayet x cebirsel ve mertebesi > 2 ise, $\mathbf{J}(x)$ aşkındır. ^a

 a Testing the transcendence conjecture of Jimm and its continued fraction statistics (joint with H. Ayral, to appear)

$$\mathbf{J}(\sqrt[3]{2}) = \mathbf{J}([1;3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,\dots])$$

= $[2,1,3,1,1,1,4,1,1,4,1_6,3,1_{12},3,1_8,2,3,1,1,2,\dots]$
= $2.784731558662723\dots$

$$\mathbf{J}(\pi) = \mathbf{J}([3,7,15,1,292,1,1,1,2,1,3,\dots]) = [1_2,2,1_5,2,1_{13},3,1_{290},5,3,\dots]$$

 $= 1.7237707925480276079699326494931025145558144289232\dots$

$$\mathbf{J}(e) = \mathbf{J}([2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, \dots]) = [1, 3, 4, 1, 1, 4, 1, 1, 1, \dots, \overline{4, 1_{2n}}]$$

 $= 1.3105752928466255215822495496939143349712038085627\dots$

(Bu sayıları PSLQ-algoritmasını muhtelif sabit kümeleri üzerinde çalıştırarak tanımayı denedik ama başarısız olduk.)

KISIM II Dinamik

Dinamik

Olgu

J, Gauss tasvirini "Fibonacci tasvirine" eşlenikler:

$$T_{\textit{Gauss}}: [0, \textit{n}_1, \textit{n}_2, \textit{n}_3, \dots] \in [0, 1] \longrightarrow [0, \textit{n}_2, \textit{n}_3, \textit{n}_4, \dots] \in [0, 1]$$

$$\Longrightarrow$$

$$T_{Fibonacci} = \mathbf{J} T_{Gauss} \mathbf{J} : [0, 1_k, n_{k+1}, n_{k+2}, \dots] \rightarrow [0, n_{k+1} - 1, n_{k+2}, \dots]$$

Örnek

$$T_{Fibonacci}([0, 1, 1, 1, 5, 13, 7, \dots]) = [0, 4, 13, 7, \dots]$$

 $T_{Fibonacci}([0, 4, 13, 7, \dots]) = [0, 3, 13, 7, \dots], \dots$

Dinamik

Olgu

J, Gauss tasvirini "Fibonacci tasvirine" eşlenikler:

$$\mathcal{T}_{\textit{Gauss}}: [0,\textit{n}_{1},\textit{n}_{2},\textit{n}_{3},\dots] \in [0,1] \longrightarrow [0,\textit{n}_{2},\textit{n}_{3},\textit{n}_{4},\dots] \in [0,1]$$

$$\Longrightarrow$$

$$T_{Fibonacci} = \mathbf{J} T_{Gauss} \mathbf{J} : [0, 1_k, n_{k+1}, n_{k+2}, \dots] \rightarrow [0, n_{k+1} - 1, n_{k+2}, \dots]$$

Örnek

$$T_{Fibonacci}([0, 1, 1, 1, 5, 13, 7, \dots]) = [0, 4, 13, 7, \dots],$$

 $T_{Fibonacci}([0, 4, 13, 7, \dots]) = [0, 3, 13, 7, \dots], \dots$

Bu iki tasvirin dinemiği sıkı sıkıya bağlantılıdır (Isola v.d.). Fibonacci tasvirinin transfer operatörü

$$(\mathscr{L}_{s}^{Fib}\psi)(y) = \sum_{k=1}^{\infty} \frac{1}{(F_{k+1}y + F_{k})^{2s}} \psi\left(\frac{F_{k}y + F_{k-1}}{F_{k+1}y + F_{k}}\right)$$
(1)

Gauss tasvirinin transfer operatörü

$$(\mathscr{L}_s^{Gauss}\psi)(y) = \sum_{k=1}^{\infty} \frac{1}{(k+x)^{2s}} \psi\left(\frac{1}{k+x}\right)$$
 (2)

Bu iki tasvirin dinemiği sıkı sıkıya bağlantılıdır (Isola v.d.). Fibonacci tasvirinin transfer operatörü

$$(\mathscr{L}_{s}^{Fib}\psi)(y) = \sum_{k=1}^{\infty} \frac{1}{(F_{k+1}y + F_{k})^{2s}} \psi\left(\frac{F_{k}y + F_{k-1}}{F_{k+1}y + F_{k}}\right)$$
(1)

Gauss tasvirinin transfer operatörü

$$(\mathscr{L}_s^{Gauss}\psi)(y) = \sum_{k=1}^{\infty} \frac{1}{(k+x)^{2s}} \psi\left(\frac{1}{k+x}\right)$$
 (2)

Sabit ölçüler

$$T_{Fibonacci} \leftrightarrow \frac{1}{x(x+1)}$$
 (infinite), $T_{Gauss} \leftrightarrow \frac{1}{x+1}$

Zeta functions (transfer operatorünün Lebesgue ölçüsündeki değeri)

$$T_{Fibonacci} \leftrightarrow (\mathscr{L}_s^{Fib}\psi)(\mathbf{1}) = \sum_{n=1}^{\infty} \frac{1}{F_n^s}$$
 ("Fibonacci zeta")

$$T_{Gauss} \leftrightarrow (\mathscr{L}_s^{Gauss} \psi)(\mathbf{1}) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$
 ("Riemann zeta")

Fibonacci transfer operatörünün öz fonksiyonları üç terimli fonksiyonel denklemi sağlar:

$$\psi(y) = \frac{1}{y^{2s}}\psi\left(\frac{y+1}{y}\right) + \frac{1}{\lambda}\frac{1}{(y+1)^{2s}}\psi\left(\frac{y}{y+1}\right)$$
(3)

(Lewis ve Zagier'nin incelediği üç terimli fonksiyonel denkleme eşdeğerdir.)

KISIM III

Ağaç otomorfizmleri ve Lebesgue ölçüsü

Farey ağacı

Farey toplamı kuralıyla üretilir:

$$\frac{p}{q} \oplus \frac{r}{s} = \frac{p+r}{q+s}$$

Sürekli kesirler ve Farey ağacı

Ağacın sınırı $\partial \mathcal{F}$, kökten çıkan tüm sonsuz patikaların kümesidir.

Olgu

Her yolu sürekli kesirine götüren $\partial \mathcal{F} \rightarrow [0,1]$ tasviri [0,1] aralığındaki irrasyonelleri parametrize eder (ve rasyoneller üzerinde 2'ye 1'dir.).

Sürekli kesirler ve Farey ağacı

Ağacın sınırı $\partial \mathcal{F}$, kökten çıkan tüm sonsuz patikaların kümesidir.

Olgu

Her yolu sürekli kesirine götüren $\partial \mathcal{F} \rightarrow [0,1]$ tasviri [0,1] aralığındaki irrasyonelleri parametrize eder (ve rasyoneller üzerinde 2'ye 1'dir.).

Ağacın otomorfizm grubu $\operatorname{Aut}(\mathcal{F})$, sınır $\partial \mathcal{F}$ üzerinde doğal yoldan etkir: $\Longrightarrow \operatorname{Aut}(\mathcal{F})$ sürekli kesirler üzerinde, yukarıdaki parametrizasyon aracılığıyla ektir. (her otomorfizm için sayılabilir bir kümeyi ihmal ederk)

$Aut(\mathcal{F})$ grubunun sürtme tasviri.

⇒ J her köşeyi sürten otomorfizmdir.

 $Aut(\mathcal{F})$ grubunun sürtme tasviri.

⇒ J her köşeyi sürten otomorfizmdir.

$Aut(\mathcal{F})$ grubunun burma tasviri.

$Aut(\mathcal{F})$ grubunun burma tasviri.

⇒ J bir köşeyi burup bir köşe atlayan otomorfizmdir.

$Aut(\mathcal{F})$ grubunun burma tasviri.

 $Aut(\mathcal{F})$ grubunun burma tasviri.

⇒ **J** bir köşeyi burup bir köşe atlayan otomorfizmdir.

Sürtme (veya burma) otomorfizmlerinin sınır etkilerine bakarsak, \mathbf{J} 'in parçalı- $\operatorname{PGL}_2(\mathbf{Z})$ tasvirlerinin bir limiti olarak görebiliriz....

Parçalı- $PGL_2(\mathbf{Z})$ tasvirlerin limiti olarak Jimm

Farey ağacına geri dönelim..

Bir yürüyüşçü, kök köşeden yürüyüşe başlar. Her x köşesi için, o köşeye atasından varma ihtimali verilmiştir.

Bu, sürekli kesirler üzerine, yani [0,1] üzerinde bir ölçü dayatır.

Farey ağacına geri dönelim..

Bir yürüyüşçü, kök köşeden yürüyüşe başlar. Her x köşesi için, o köşeye atasından varma ihtimali verilmiştir.

Bu, sürekli kesirler üzerine, yani [0,1] üzerinde bir ölçü dayatır.

Şayet $\pi(x) \equiv 1/2$ dersek, [0,1]'e dayatılan ölçü Minkowski-Denjoy soru işareti fonksiyonudur.

Soru

Lebesgue ölçüsünü hangi 'varış' ihtimal fonksiyonu $\pi_{Leb}(x)$ dayatır?

Şayet $\pi(x) \equiv 1/2$ dersek, [0,1]'e dayatılan ölçü Minkowski-Denjoy soru işareti fonksiyonudur.

Soru

Lebesgue ölçüsünü hangi 'varış' ihtimal fonksiyonu $\pi_{Leb}(x)$ dayatır?

Şayet $\pi(x) \equiv 1/2$ dersek, [0,1]'e dayatılan ölçü Minkowski-Denjoy soru işareti fonksiyonudur.

Soru

Lebesgue ölçüsünü hangi 'varış' ihtimal fonksiyonu $\pi_{Leb}(x)$ dayatır?

Olgu

 $n_k > 1$ olsun. O halde

$$\pi_{Leb}([0, n_1, n_2, \dots, n_{k-1}, n_k]) = 1 - [0, n_k - 1, n_{k-1}, \dots, n_2, n_1]$$

varış ihtimalleri, [0,1]'e Lebesgue ölçüsünü dayatır.

Lebesgue ölçüsünün latif bir simetrisi:

$$\pi_{Leb}\mathbf{J}(x) = \mathbf{J}\pi_{Leb}(x)$$

(Sağda J ağaç üzerinde etkirken solda arsyoneller üzerine etkimektedir.)

References

- Sur un mode nouveau de représentation géométrique des formes quadratiques binéaires définies ou indéfinies. M. H. Poincaré.
- Jimm, a Fundamental Involution. (with H. Ayral) arXiv:1501.03787
- On the involution of the real line induced by Dyer's outer automorphism of PGL(2,Z). (with H. Ayral) arXiv:1605.03717
- A subtle symmetry of Lebesgue's measure. (with H. Ayral) arXiv:1605.07330
- Testing the transcendence conjecture of Jimm and its continued fraction statistics. (with H. Ayral, to appear)
- An involution of reals, discontinuous on rationals and whose derivative vanish almost everywhere. (with H. Ayral, to appear)

THANKS...

J acts on..

- Binary quadratic forms (tears apart class groups)
- Beatty partitions of N.

$$r \in \mathbf{R} \setminus \mathbf{Q} \leadsto \mathcal{B}_r = \lfloor r \rfloor, \lfloor 2r \rfloor, \lfloor 3r \rfloor, \ldots = (\lfloor nr \rfloor)_{n \geq 1}$$

If r > 1 and $\frac{1}{r} + \frac{1}{s} = 1$ then $\mathcal{B}_r \cup \mathcal{B}_s = \mathbb{N}$. Hence **J** induce a duality of Beatty partitions of **N**.

- Trivalent ribbon graphs \simeq dessins \simeq decorated TM spaces. \Longrightarrow J induces a duality of punctured Riemann surfaces.
- Dynamical continued fraction maps..
-

J acts on..

- Binary quadratic forms (tears apart class groups)
- Beatty partitions of N.

$$r \in \mathbf{R} \setminus \mathbf{Q} \leadsto \mathcal{B}_r = \lfloor r \rfloor, \lfloor 2r \rfloor, \lfloor 3r \rfloor, \ldots = (\lfloor nr \rfloor)_{n \geq 1}$$

If r > 1 and $\frac{1}{r} + \frac{1}{s} = 1$ then $\mathcal{B}_r \cup \mathcal{B}_s = \mathbf{N}$. Hence **J** induce a duality of Beatty partitions of **N**.

- Trivalent ribbon graphs \simeq dessins \simeq decorated TM spaces. \Longrightarrow J induces a duality of punctured Riemann surfaces.
- Dynamical continued fraction maps..
-

J acts on..

- Binary quadratic forms (tears apart class groups)
- Beatty partitions of N.

$$r \in \mathbf{R} \setminus \mathbf{Q} \leadsto \mathcal{B}_r = \lfloor r \rfloor, \lfloor 2r \rfloor, \lfloor 3r \rfloor, \ldots = (\lfloor nr \rfloor)_{n \geq 1}$$

If r > 1 and $\frac{1}{r} + \frac{1}{s} = 1$ then $\mathcal{B}_r \cup \mathcal{B}_s = \mathbf{N}$. Hence **J** induce a duality of Beatty partitions of **N**.

- Trivalent ribbon graphs \simeq dessins \simeq decorated TM spaces. \Longrightarrow J induces a duality of punctured Riemann surfaces.
- Dynamical continued fraction maps..
-

J acts on..

- Binary quadratic forms (tears apart class groups)
- Beatty partitions of N.

$$r \in \mathbf{R} \setminus \mathbf{Q} \leadsto \mathcal{B}_r = \lfloor r \rfloor, \lfloor 2r \rfloor, \lfloor 3r \rfloor, \ldots = (\lfloor nr \rfloor)_{n \geq 1}$$

If r > 1 and $\frac{1}{r} + \frac{1}{s} = 1$ then $\mathcal{B}_r \cup \mathcal{B}_s = \mathbf{N}$. Hence **J** induce a duality of Beatty partitions of **N**.

- Trivalent ribbon graphs \simeq dessins \simeq decorated TM spaces. \Longrightarrow J induces a duality of punctured Riemann surfaces.
- Dynamical continued fraction maps..

•

J acts on..

- Binary quadratic forms (tears apart class groups)
- Beatty partitions of N.

$$r \in \mathbf{R} \setminus \mathbf{Q} \leadsto \mathcal{B}_r = \lfloor r \rfloor, \lfloor 2r \rfloor, \lfloor 3r \rfloor, \ldots = (\lfloor nr \rfloor)_{n \geq 1}$$

If r > 1 and $\frac{1}{r} + \frac{1}{s} = 1$ then $\mathcal{B}_r \cup \mathcal{B}_s = \mathbf{N}$. Hence **J** induce a duality of Beatty partitions of **N**.

- Trivalent ribbon graphs \simeq dessins \simeq decorated TM spaces. \Longrightarrow J induces a duality of punctured Riemann surfaces.
- Dynamical continued fraction maps..
-

Maple Codes

end proc

(also available on request)

```
iimm := proc(Z) local X, Y, u, k, i; X := Z; if not type(X[nops(X)],
integer) then X := Z[1 ... nops(X)-1] end if; Y := [0]; for k to nops(X) do
if X[k] = 1 then Y := [op(Y[1 .. nops(Y)-1]), Y[nops(Y)]+1]; next end if;
Y := [op(Y[1 .. nops(Y)-1]), Y[nops(Y)]+1]; for i to X[k]-1 do Y :=
[op(Y), 1] end do; next end do; return Y end proc
rotate := proc (L) local i, j, K, M; for i to nops(L) while L[i] = 1 do end
do; K := []; for j to i do K := [op(K), 1] end do; M := [L[i]-1, op(L[i+1])]
.. nops(L)]), op(K)]; return M, K end proc
isurd := proc (s) local x, y, z, a, b, K, L, M, i, j; if evalf(s) i 1 then b :=
1/s: a := 1 else b := s end if; x := cfrac(b, quotients, periodic); K :=
rotate(x[2]); L := [[op(x[1]), op(K[2])], K[1]]; y := [jimm(L[1]), op(K[2])]
[imm(L[2])]; z := cfrac(y); if a = 1 then return 1/z else return z end if
```

Example.

$$\mathbf{J}([0;\overline{1_{n-1},a}])=[0;n,\overline{1_{a-2},n+1}] \implies$$

$$J\left(\frac{a}{2}\left[\sqrt{1+4\frac{aF_{n-1}+F_{n-2}}{a^2F_n}}-1\right]\right)$$

$$=\frac{1}{n+\frac{n+1}{2}\left(\sqrt{1+4\frac{(n+1)F_{a-2}+F_{a-3}}{(n+1)^2F_{a-1}}}-1\right)}$$

(notice the exchange $(a, F_n) \leftrightarrow (F_a, n)$)

