The View Transformation

CS 418: Interactive Computer Graphics
Professor Eric Shaffer

WebGL and Camera Views

WebGL renders geometry in a 2x2x2 axis aligned box centered at the origin

- This is like having a camera in a fixed position
- So...how can we render arbitrary views of our geometry?

Bonus Questions:

What is the "handedness" of WebGL clipspace?

What is the handedness of the world coordinate system used by WebGL systems?

Graphics Pipeline

We will call the camera transformation the view transformation

In WebGL convention, the projection transformation inverts the handedness of the coordinate system

The canonical view volume is a 2x2x2 box centered at the origin with coordinates ranging from [-1,-1,-1] to [1,1,1]

Graphics Pipeline and WebGL

From WebGL Beginner's Guide by Cantor and Jones

```
What boxes in the theory diagram does this code correspond to?
```

```
gl Position = uPMatrix*uMVMatrix*vec4(aVertexPosition, 1.0);
```

Graphics Pipeline

$$\begin{vmatrix} x_s \\ y_s \\ 0 \end{vmatrix} = \begin{vmatrix} w2V \end{vmatrix}$$

W2V Persp View Model

Viewing

We often will want to allow the view of our 3D scene to change

We can do so using by applying affine transformations to the geometry

A view matrix is functionally equivalent to setting up a camera location in world space.

It is a transformation matrix like the Model matrix, but

- Happens after the modeling transformation
- It applies the same transformations equally to every object

Viewing

The engines don't move the ship at all.

The ship stays where it is and the engines move the universe around it.

-- Futurama

WebGL really only ever renders one viewpoint...looking down the Z axis through the [-1,-1,-1]x[1,1,1] view volume

So, to see a different view, we need to move everything in the world so that

- 1. The camera location is moved to the origin
- 2. The view direction of camera lines up with the z axis

Viewing Transformation

Creating a LookAt Function

Suppose we want to implement a function that sets up a view

There are lots of possible ways to do this...we'll choose a simple *lookat camera* The API we create will require a someone using the function to specify:

- The **eyepoint** (or camera location)
- The lookat point (a point in the view direction)
- An "up" vector that we use to specify rotation around the view vector

Deriving the Viewing Transformation

One way to think about what you are doing

- Translate the eyepoint to the origin
- Rotate so that
 - lookat vector aligns with -z axis (OpenGL/WebGL)
 - up aligns with y

We move all objects (the world) this way...

- Create an orthonormal basis with eye at the origin
- And vectors u, v, w as the basis vectors
- ...and then align u,v,w with x,y,z

Local Frames

A frame has an origin point and set of basis vectors

Any point can be expressed as coordinates in such a frame

For example (0,0,0) and <1,0,0>, <0,1,0>,<0,0,1>

• And an example of a point in that space:

$$(4,0,0)$$
= $(0,0,0)$ + 4 <1,0,0> + 0 <0,1,0> + 0 <0,0,1>

Cross Product of Two Vectors

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$

$$\mathbf{b} = \langle b_1, b_2, b_3 \rangle$$

$$\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - b_2a_3, a_3b_1 - b_3a_1, a_1b_2 - b_1a_2 \rangle$$

Important Property:

The cross product yields a vector orthogonal to the original two vectors

The Orthonormal Basis for View Space

l = lookatPoint - eyepoint

- Let l be the lookat vector...then $w = -\frac{l}{\|l\|}$
- If t is the up direction $u = \frac{t \times w}{\|t \times w\|}$
- And then $v = w \times u$
- The view matrix is then:

$$M_{view} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} x_u & y_u & z_u & 0 \\ x_v & y_v & z_v & 0 \\ x_w & y_w & z_w & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -x_e \\ 0 & 1 & 0 & -y_e \\ 0 & 0 & 1 & -z_e \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Why do we negate the lookat vector when computing w?

Moving Between Frames in 2D

How would we convert from (x,y) to (u,v)?

To convert coordinates from (u,v) space to (x,y) we can:

$$\begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_e \\ 0 & 1 & y_e \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_u & x_v & 0 \\ y_u & y_v & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_p \\ v_p \\ 1 \end{bmatrix} = \begin{bmatrix} x_u & x_v & x_e \\ y_u & y_v & y_e \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_p \\ v_p \\ 1 \end{bmatrix}$$

This can be written as

$$\mathbf{p}_{xy} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{e} \\ 0 & 0 & 1 \end{bmatrix} \mathbf{p}_{uv}$$

View Transformation

You can now look at your scene from any

- Position
- Orientation (almost)
 - What lookat and up vector pair won't work?

...just uses a matrix multiplication

$$M_{view} = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} x_u & y_u & z_u & 0 \\ x_v & y_v & z_v & 0 \\ x_w & y_w & z_w & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -x_e \\ 0 & 1 & 0 & -y_e \\ 0 & 0 & 1 & -z_e \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Let's review viewing....

We start out by setting up our geometry in world coordinates

Which transformation does this?

The view transformation

We pick a specific viewing position and direction in worldspace

The view transformation

We transform the world so the view position is at the origin. The view direction is down the -z axis in WebGL

The projection transformation

We pick a viewing volume. This is specified in *viewing coordinates*.

The projection transformation

Our view volume is transformed to fit in the WebGL view volume The WebGL view volume is a box with clip planes at -1, +1 The z coordinates are negated to flip the z-axis