Band structure of bulk silicon

- Dr. JinYou Lu
- Contact information: jinyoulu@ntu.edu.tw

Background

- DFT simulation: Quantum espresso 6.5 version
- Visualize the structure and its k space: XCrySDen
 - 1. Ubuntu
 - 2. XCrySDen-1.5.25-bin-semishared
 - 3. ./xcConfigure

On windows:

- 1. cygwin 2. DISPLAY=127.0.0.1:0.0; export DISPLAY (add that to your .bash_profile)
 - 3. ./scrysden

Procedure for drawing a band structure a band structure

☐ GGA or LDA functionals

perform a single step from superposition of atomic orbitals along the uniform dense k points

create the data to draw the band structure

self-consistent field pw.x

 $pw.x (nscf) \rightarrow pw.x (bands)$

band.x->plotband.x

pw.x (bands)

K-points generation

perform a band structure calculation along the given k-path

0.0000 0.5000 0.0000 20 !L

0.0000 0.0000 0.0000 30 !Gamma

-0.500 0.0000 -0.500 10 !X

-0.375 0.2500 -0.375 30 !U

0.0000 0.0000 0.0000 20 !Gamma

جامعــة خليفــة Khalifa University

Bulk Silicon

Bulk silicon has an indirect bandgap of 1.1 eV,

- 1. limits its photon absorption capacity to the visible and near infrared (IR) region of the electromagnetic spectrum
- 2. Silicon solar cells have been the dominant driving force in photovoltaic technology for the past several decades due to the relative abundance and environmentally friendly nature of silicon.

Silicon input file (1)

1. first compute the self-consistent-calculation

```
&control
 calculation='scf',
 prefix='si',
 pseudo dir= '/research/lens/pseudo/',
 outdir = '/scratch/cyulu/',
&system
    ibrav=2, celldm(1) = 10.410909236,
    nat=2, ntyp=1,
                                      Pesudopotential suggest:
    ecutwfc=40
                                      UPSS= Ecutrho ~8*ecutwfc
    ecutrho=320
    nbnd=8
                                  smearing='gaussian', degauss=0.005
At least more than 4 because Valence
     !occupations='smearing',
                                    band has only 4 nbnd, and we want to
&electrons
                                    know some information for the
 conv thr=1.d-10,
                                    conduction band
ATOMIC SPECIES
   28.0855 Si.pbe-nl-rrkjus psl.1.0.0.UPF
ATOMIC POSITIONS {crystal}
Si -0.25 0.75
                      -0.25
     0.00
            0.00
                       0.00
K POINTS {automatic}
 8 8 8 0 0 0
```

Silicon input file (2)

1. first compute the self-consistent-calculation

```
<UPF version="2.0.1">
&control
                                                             <PP INFO>
 calculation='scf',
                                                            Generated using "atomic" code by A. Dal Corso v.6.3
                                                            Author: ADC
 prefix='si',
                                                            Generation date: 4Sep2018
 pseudo dir= '/research/lens/pseudo/',
                                                            Pseudopotential type: USPP
                                                            Element: Si
 outdir = '/scratch/cyulu/',
                                                            Functional: PBE
                                                               Suggested minimum cutoff for wavefunctions: 44. Ry
&system
                                                               Suggested minimum cutoff for charge density: 175. Ry
                                                               The Pseudo was generated with a Scalar-Relativistic Calculation
     ibrav=2, celldm(1) =10.410909236,
                                                               L component and cutoff radius for Local Potential: 2 1.7000
     nat=2, ntyp=1,
                                                               Pseudopotential contains additional information for GIPAW reconstruction.
                                                               Valence configuration:
     ecutwfc=40
                                                               nl pn l occ
                                                                                        Rcut US
                                                                                 Rcut
                                                                                                   E pseu
     ecutrho=320
                                                               35 1 0 2.00
                                                                                                 -0.794728
                                                                                1.600
                                                                                         1.800
                                                               3P 2 1 2.00
                                                                                         1.800
                                                                                                 -0.299965
                                                                                1.600
                                                                                                             4 electron per
     nbnd=8
                                                               Generation configuration:
     !occupations='smearing', smearing='gaussiar
                                                                                                             silicon atom
                                                                                                 -0.794725
                                                               35 1 0 2.00
                                                                                1.600
                                                                                         1.800
                                                               35 1 0 0.00
                                                                                1.600
                                                                                         1.800
                                                                                                  6.000000
                                                                                                             during the
                                                                                                 -0.299965
                                                                  2 1 2.00
                                                                                1.600
                                                                                         1.800
&electrons
                                                               3P 2 1 0.00
                                                                                1.600
                                                                                         1.800
                                                                                                  6.000000
                                                                                                             calculation
 conv thr=1.d-10,
                                                               3D 3 2 0.00
                                                                                1.700
                                                                                         1.700
                                                                                                  0.100000
                                                               Pseudization used: troullier-martins
                                                          functional="PBE" z_valence="4.000000000000000"
ATOMIC SPECIES
    28.0855 Si.pbe-nl-rrkjus psl.1.0.0.UPF
                                                        Details can be found in
ATOMIC POSITIONS {crystal}
                                                         https://www.quantum-espresso.org/pseudopotentials/unified-
Si -0.25
            0.75
                        -0.25
                                                         pseudopotential-format
      0.00 0.00
                      0.00
K POINTS {automatic}
```

Silicon band structure: scf output

```
! occupations='smearing', smearing='gaussian',degauss=0.005
```

No smearing

```
smearing
```

Explanation:

- 1. In a semiconductor, if we have a system with 8 electrons, then at every k-point the first 4 doubly occupied states will be populated.
- 2. In a metal, whether or not a state is occupied depends on its energy and the value of the Fermi level.

Silicon band structure: pw.x

1. A detailed k path is required for Bands.x input file, which is basically same as the scf input file, except a detailed k path.

```
K_POINTS {crystal_b}
5
0.0000 0.5000 0.0000 20 !L
0.0000 0.0000 0.0000 30 !Gamma
-0.500 0.0000 -0.500 10 !X
-0.375 0.2500 -0.375 30 !U
0.0000 0.0000 0.0000 20 !Gamma
```



```
REAL FORM of k-point COORDINATES
Real form of k-point coordinates (kx,ky,kz,label):
   0.5000000000
                    0.5000000000
                                     0.5000000000
  0.0000000000
                    0.000000000
                                     0.0000000000
                                                      GAMMA
  0.5000000000
                    0.5000000000
                                     0.0000000000
                                                      X
  0.6250000000
                    0.6250000000
                                     0.2500000000
   0.0000000000
                    0.0000000000
                                     0.0000000000
                                                      GAMMA
```

Procedure for drawing a band structure a band structure

☐ GGA or LDA functionals

perform a single step from superposition of atomic orbitals along the uniform dense k points

create the data to draw the band structure

self-consistent field pw.x

 $pw.x (nscf) \rightarrow pw.x (bands)$

band.x->plotband.x

pw.x (bands)

K-points generation

perform a band structure calculation along the given k-path

0.0000 0.5000 0.0000 20 !L

0.0000 0.0000 0.0000 30 !Gamma

-0.500 0.0000 -0.500 10 !X

-0.375 0.2500 -0.375 30 !U

0.0000 0.0000 0.0000 20 !Gamma

Silicon band structure: bands.x

1. Arrange the plot file for band structure;

```
&bands
outdir='/scratch/cyulu/'
prefix='si'
filband='si.bands.dat'
```

Input file for plotbands.x

```
1 si.bands.dat
2 -7 16  — Emin, Emax
3 si.bands.xmgr — !output for xmgrace plotting
4 si.bands.ps
5 6.1330 — Fermi energy
6 2 6.1330 — ! The Estep and Reference Energy
7
```

Backup

Procedure for drawing a band structure

☐ GGA or LDA Hybrid functionals:

hybrid functional not support nscf perform a band structure calculation along the uniform dense k points pw.x (nscf) self-consistent field pw.x pw.x (bands) perform a band structure calculation along the given k-path 0.0000 0.5000 0.0000 20 !L 0.0000 0.0000 0.0000 30 !Gamma -0.500 0.0000 -0.500 10 !X

-0.375 0.2500 -0.375 30 !U

0.0000 0.0000 0.0000 20 !Gamma

create the data to draw the band structure

band.x->plotband.x

Silicon band structure: hybrid functionals: HSE

Silicon band structure: hybrid functionals: HSE

1. (hybrid functional) HSE Si band gap

```
input_dft='HSE',
nqx1=1, nqx2=1, nqx3=1,
x_gamma_extrapolation=.true.,
exxdiv_treatment='gygi-baldereschi',
```

gygi-balderesch:

The q+G=0 divergence

Gygi-Baldereschi PRB 34, 4405 (1986)

$$\begin{split} \rho_{\mathbf{k}-\mathbf{q},v'}(\mathbf{r}) &= \phi_{\mathbf{k}-\mathbf{q},v'}^*(\mathbf{r})\phi_{\mathbf{k},v}(\mathbf{r}) &\implies A(\mathbf{q}+\mathbf{G}) = \frac{\Omega}{(2\pi)^3} \int d\mathbf{k} \ |\rho_{\mathbf{k},v}^{\mathbf{k}-\mathbf{q},v'}(\mathbf{q}+\mathbf{G})|^2 \\ &= \frac{1}{N_\mathbf{k}} \sum_{\mathbf{k}} |\rho_{\mathbf{k},v}^{\mathbf{k}-\mathbf{q},v'}(\mathbf{q}+\mathbf{G})|^2 \end{split}$$

$$E_{HF} = -\frac{4\pi e^2}{2\Omega} \times \frac{\Omega}{(2\pi)^3} \int d\mathbf{q} \sum_{\mathbf{G}} \frac{A(\mathbf{q} + \mathbf{G})}{|\mathbf{q} + \mathbf{G}|^2}$$
 integrable divergence

Procedure for drawing a HSE bandstructure and the University المامنة Procedure for drawing a HSE bandstructure

Hybrid functional

create all the files you need to plot your band structure

awk '/wannier 90/{flag=1;next}/OPEN_GRID :/{flag=0}flag' opengrid.out >kpoints.dat

--writes Kohn-Sham orbitals for the complete k-point grid (not symmetry independent points only) in real space. Useful for further processing. It can be used to generate the Kohn-Sham state data required in pw2wannier.x and Wannier90 from the initial SCF calculation, bypassing the non-SCF calculation step.

5 0.0000 0.5000 0.0000 20 !L 0.0000 0.0000 0.0000 30 !Gamma -0.500 0.0000 -0.500 10 !X -0.375 0.2500 -0.375 30 !U 0.0000 0.0000 0.0000 20 !Gamma