

Métodos Numéricos 1 (MN1)

Unidade 0: Apresentação Geral de Métodos 1 Parte 2: Visão Geral de Métodos Numéricos 1

Joaquim Bento Cavalcante Neto

joaquimb@dc.ufc.br

Grupo de Computação Gráfica, Realidade Virtual e Animação (CRAb)

Departamento de Computação (DC) Universidade Federal do Ceará (UFC)

- Área que estuda métodos numéricos para resolver problemas matemáticos
- Os métodos numéricos, por sua vez, são programas de computador que resolvem problemas matemáticos, fornecendo resultado numérico, que possui um certo grau de aproximação
- Apesar de aproximada, a solução pode ser obtida com um certo controle do erro

- Solução de sistemas de equações:
 - A maioria dos problemas matemáticos podem ser resolvido analiticamente, mas esse método pode se tornar impraticável com o aumento do tamanho do problema
 - Por esse motivo, muitos desses problemas são resolvidos numericamente ao contrário

Problema que não tem solução analítica:

$$x(e^x) = 3$$

- Se deseja-se achar x para essa equação
- Solução numérica: raízes de equações

Problema com custo computacional alto:

$$f_1(x_1, x_2, \dots, x_n) = 0$$
 $f_2(x_1, x_2, \dots, x_n) = 0$
 \vdots
 $f_n(x_1, x_2, \dots, x_n) = 0$

- Se n for alto (exemplo: 1 milhão) é caro
- Solução numérica: sistemas de equações

Problema difíceis de estimar resultados:

T, ºC	ρ, kg/m³	μ, N x s/m ²	v, m²/s
-40	1.52	1.51×10^{-5}	0.99×10^{-5}
0	1.29	1.71×10^{-5}	1.33×10^{-5}
20	1.20	1.80×10^{-5}	1.50×10^{-5}

- Se deseja-se propriedades para T = 15°C
- Solução numérica: interpolação numérica

Exemplos de aplicação

- Animação
 - Uso de interpolação entre key frames
 - Movimento da túnica
 - Sistema de partículas
 - Equações Diferenciais Ordinárias

Progressão Digital de Yoda no filme Star Wars: Episódio II - Ataque dos Clones

Exemplos de aplicação

- Simulação aerodinâmica usando CFD (Computational Fluid Dynamics)
 - Requer a solução numérica de equações especiais (equações diferenciais parciais)

- Levantamento de dados:
 - Levantar todos os dados que são usados na solução do problema (1º passo da solução)
 - Os dados podem ser coletados de várias maneiras (experimentais, observação, etc)
 - Os dados devem ser válidos: do contrário as soluções numéricas não são confiáveis

- Construção do modelo matemático:
 - O modelo matemático é fundamental para a solução correta do problema a ser resolvido
 - Por exemplo, determinado problema pode ser representado por uma equação somente ou por um conjunto de equações (sistema)
 - Deve-se escolher o modelo matemático que seja apropriado senão não pode-se confiar nos resultados numéricos que são obtidos

- Escolha do método numérico:
 - A escolha do método numérico depende do tipo de problema que se deseja resolver
 - Por exemplo, se um problema envolve uma equação e o que mais importa é a facilidade de implementação, melhor método é Bisseção
 - Por exemplo, se um problema envolve uma equação e o que mais importa é a rapidez na solução, o melhor método é o de Newton

- Análise dos resultados numéricos:
 - Os métodos numéricos são muito poderosos mas não se pode confiar cegamente neles
 - Por exemplo, um método numérico pode resolver o problema de maneira correta mas se esse problema foi formulado de maneira errada, o seu uso pode ser muito perigoso
 - Deve-se sempre usar o bom-senso e a nossa capacidade de análise em métodos numéricos

Unidades estudadas

- Teoria de erros
- Raízes de equações
- Sistemas de equações
- Interpolação numérica

Teoria de erros

 Achar o erro absoluto e relativo entre uma solução real e uma solução aproximada:

- Erro absoluto:

$$EA_x = x - \overline{x}$$

- Erro relativo:

$$|ER_x| = \left| \frac{EA_x}{\overline{x}} \right| = \frac{|x - \overline{x}|}{|\overline{x}|}$$

桥

Raízes de Equações

- Determinar valor de x de equação f(x)=0
- Partir de uma aproximação inicial para a raiz, e depois refinar essa aproximação através de um método iterativo qualquer:

Sistemas de Equações

 Determinar os valores de x₁, x₂, ..., x_n que simultaneamente satisfaça um conjunto de equações abaixo de forma numérica:

$$f_1(x_1, x_2, \dots, x_n) = 0$$
 $f_2(x_1, x_2, \dots, x_n) = 0$
 \vdots
 \vdots
 $f_n(x_1, x_2, \dots, x_n) = 0$

Feito transformando o sistema [A]{x}={b}
 em um sistema mais simples [A*]{x}={b*}

Interpolação numérica

 Utilizar uma interpolação polinomial para encontrar um valor intermediário desejado que não consta em uma tabela fornecida:

