ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ §1. РЕШЕНИЕ УРАВНЕНИЙ С ОДНИМ НЕИЗВЕСТНЫМ

Решение уравнений является одной из задач, наиболее часто встречающихся в практике инженера. Любое уравнение с одним неизвестным можно записать в виде f(x) = 0. Решить уравнение — это значит найти те значения x, называемые корнями уравнения или нулями функции f(x), которые обращают уравнение в верное тождество.

Однако, далеко не всегда уравнение можно решить точно. Для некоторых классов уравнений известны формулы, позволяющие точно найти корни уравнения, например, корни квадратного и биквадратного уравнений. Некоторые трансцендентные (тригонометрические, показательные, логарифмические) уравнения могут быть решены путем приведения их к простейшему виду и использованию таблиц. К сожалению, такие приемы могут быть применены лишь к сравнительно узкому классу уравнений.

На практике часто встречаются уравнения, которые нельзя решить элементарными приемами, при этом для практических нужд их точное решение не является необходимым. Кроме того, в некоторых случаях уравнение содержит коэффициенты, известные лишь приближенно и сама задача о точном нахождении корней теряет смысл. Поэтому все большее значение приобретают способы приближенного нахождения корней уравнения и оценки степени их точности.

Пусть дано уравнение f(x) = 0, где функция f(x) определена и непрерывна на конечном или бесконечном интервале a < x < b. Всякое число ξ , такое, что $f(\xi) = 0$, называется корнем (решением) уравнения или нулем функции f(x). Найти корень уравнения f(x) = 0 с заданной точностью ε означает, что если ξ – точное значение корня, а x – его приближенное значение, то $|\xi - x| \le \varepsilon$.

Вычисление корней алгебраических и трансцендентных уравнений вида состоит из нескольких этапов:

- ❖ вначале определяют, какие корни требуется найти, например, только действительные или только положительные и т. д.
- затем находят отрезки из области определения функции f(x), содержащие по одному корню данного уравнения или, как говорят, *отделяют корни*.
- применив какой-либо вычислительный алгоритм, находят выделенный корень с заданной точностью.
- ❖ на заключительном этапе проводится проверка полученных результатов.

§1.1. Отделение и локализация корней уравнения

Отмослить корень \xi уравнения f(x) = 0 — значит указать окрестность точки ξ , не содержащую других корней этого уравнения. При отделении корней уравнения f(x) = 0 полезной является известная из математического анализа следующая теорема.

Теорема. Если функция f(x) непрерывна и монотонна на отрезке [a;b], а ее значения на концах этого отрезка принимают разные знаки, то есть $f(a) \cdot f(b) < 0$, то внутри этого отрезка существует, по крайней мере, один корень ξ уравнения f(x) = 0.

Достаточным признаком монотонности функции f(x) **на отрезке** [a;b] является сохранение знака производной этой функции, то есть корень будет единственным, если f'(x) сохраняет свой знак внутри интервала (a;b).

Графический метод отделения корней уравнения

Корни уравнения f(x) = 0 могут быть отделены также графическим путем. Для этого необходимо построить график функции y = f(x) и определить интервалы, на каждом из которых находится один корень уравнения f(x) = 0. Графически, найти корень уравнения — это значит найти абсциссу точки пересечения графика функции y = f(x) с прямой y = 0 (осью абсцисс).

$$\xi_1 \in [a_1, b_1], \quad \xi_2 \in [a_2, b_2]$$

На практике часто оказывается удобным исходное уравнение f(x) = 0 заменить равносильным ему уравнением $f_1(x) = f_2(x)$, где $f_1(x)$ и $f_2(x)$ функции более простые, чем f(x). Тогда, построив графики функций $y = f_1(x)$ и $y = f_2(x)$,

можно определить интервалы, содержащие по одному корню исходного уравнения. Корни уравнения представляют собой абсциссы точек пересечения указанных графиков.

Пример. Отделить графическим путем корни уравнения $e^x + x - 2 = 0$. Решение. Представим исходную функцию в виде $f_1(x) = f_2(x)$. Построим графики этих функций.

§1.2. Уточнение корня

На чертеже видно, что графики пересекаются в единственной точке, абсцисса которой находится внутри отрезка [0;2]. Следовательно, данное уравнение имеет единственный корень, лежащий внутри отрезка [0; 2]. Требуется уточнить корень с заданной точностью.

Для вычисления корней с требуемой точностью (уточнение корня) обычно применяют какую-либо итерационную процедуру, состоящую в построении числовой последовательности x_n , сходящейся к искомому корню ξ данного уравнения. Имеются различные способы построения таких последовательностей, и выбор алгоритмов их построения для нахождения корня уравнения — весьма важный момент при практическом решении задачи. Немалую роль играют такие свойства алгоритма, как простота, надежность, экономичность и так далее. Одной из характеристик вычислительного алгоритма является его скорость сходимости.

Определение. Последовательность x_n , сходящаяся к пределу ξ ($\xi \neq x_n$), имеет скорость сходимости порядка α , если при $n \to \infty$

$$\left|x_{n+1}-\xi\right|=\mathrm{O}(\left|x_n-\xi\right|^{\alpha}).$$

Сходимость при $\alpha = 1$ называется линейной или первого порядка, сходимость при 1 < n < 2 — сверхлинейной, при n = 2 — квадратичной и так далее. С ростом значения α вычислительный алгоритм построения последовательности x_n усложняется, и условия, обеспечивающие сходимость последовательности x_n , становятся более жесткими.

Метод половинного деления

Простейшим алгоритмом уточнения корня на отрезке [a,b], если f(x) — непрерывная функция и $f(a)\cdot f(b)<0$, является метод половинного деления. Очевидно, что середина отрезка служит приближением к корню уравнения с точностью $\xi \leq \frac{b-a}{2}$.

Постановка задачи: пусть дано уравнение вида

$$f(x) = 0,$$

где функция f(x) непрерывна на [a,b] и $f(a)\cdot f(b)<0$. Требуется определить корень данного уравнения с точностью ε .

Введем обозначения: $a = a_0$, $b = b_0$. Учитывая их, получим, что $[a, b] = [a_0, b_0]$.

Для решения задачи методом половинного деления поступим следующим образом:

- 1. Делим отрезок $\left[a_0,b_0\right]$ пополам, т. е. выбираем точку $x_0=\left(a_0+b_0\right)/2$. Эту точку принимаем за нулевое приближение к корню уравнения.
- 2. Рассматривая два отрезка $[a,x_0]$ и $[x_0,b]$, выбираем тот из них, который содержит корень, следовательно, полагаем, что

$$\begin{bmatrix} a_1, b_1 \end{bmatrix} = \begin{cases} \begin{bmatrix} a, x_0 \end{bmatrix}, & \text{при} & f(a) \cdot f(x_0) < 0, \\ \begin{bmatrix} x_0, b \end{bmatrix}, & \text{при} & f(x_0) \cdot f(b) < 0, \end{cases}$$

т.е. выбирается та половина отрезка, на концах которой функция f(x) принимает значения разных знаков.

3. Выполняем процесс деления отрезка $[a_1,b_1]$ пополам, получая первое приближение корня x_1 , и т. д., т.е. деление отрезка повторяется. Если требуется найти корень уравнения с заданной точностью δ , то деление отрезка пополам продолжается до тех пор, пока длина отрезка не станет меньше 2δ . Тогда середина последнего отрезка дает значение корня с требуемой точностью.

Графическая иллюстрация метода представлена на рисунке

На некотором этапе вычислений получаем или точный корень уравнения f(x)=0, или бесконечную последовательность вложенных друг в друга отрезков $[a_0,b_0]\supset [a_1,b_1]\supset [a_2,b_2]\supset\ldots\supset [a_n,b_n]\ldots,$ таких, что

$$f(a_n) \cdot f(b_n) < 0$$
 $n = 0, 1, 2, ...$
 $b_n - a_n = \frac{b - a}{2^n},$

и последовательность чисел $x_1, x_2, x_3, \dots x_n$ таких, что $a_n < x_n < b_n$. Переходя к пределу, получим, что

$$\lim_{n\to\infty}(b_n-a_n)=\lim_{n\to\infty}\left(\frac{b-a}{2^n}\right)=0.$$

Откуда следует, что

$$\lim_{n\to\infty}b_n=\lim_{n\to\infty}a_n.$$

Обозначая $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n = \xi$, с учетом условия $a_n < x_n < b_n$ получаем, что

$$\lim_{n\to\infty}x_n=\xi.$$

Переходя к пределу в выражении, получаем

$$\lim_{n\to\infty} f(a_n) \cdot f(b_n) = f^2(\xi) < 0,$$

что невозможно.

Отсюда следует, что $f(\xi) = 0$, т. е. ξ есть корень уравнения f(x) = 0.

Если в процессе вычислений сделано n делений отрезка [a,b] пополам, то погрешность вычисления искомого корня определяется как

$$\varepsilon_n = \left| \xi - x_n \right| \le \frac{b_n - a_n}{2} = \frac{b - a}{2^{n+1}}, \quad n = 0, 1, 2, \dots$$

Метод хорд

Рассмотрим уравнение вида

$$f(x) = 0$$
,

искомый корень ξ которого отделен на отрезке [a,b]. Требуется найти этот корень с заданной точностью ε .

На функцию f(x) накладываем следующие условия:

- 1) f(x) непрерывна на отрезке [a,b];
- 2) f(a)f(b) < 0;
- 3) первая и вторая производные y'(x) и y''(x) существуют и непрерывны на отрезке [a, b];
- 4) y'(x) и y''(x) сохраняют свои знаки на отрезке [a, b].

Из последнего условия следует, что функция f(x) монотонна, а кривая y = f(x) выпукла или вогнута в зависимости от знака второй производной на рассматриваемом отрезке [a, b]. Возможны четыре случая поведения функции f(x) на отрезке в зависимости от знака производных:

- 1) f'(x) < 0, f''(x) > 0;
- 2) f'(x) < 0, f''(x) < 0;
- 3) f'(x) > 0, f''(x) < 0,
- 4) f'(x) > 0, f''(x) > 0.

Расположение кривой y = f(x) в каждом из этих случаев изображено на рисунке.

Искомый корень ξ есть абсцисса точки пересечения графика функции y = f(x) с осью Ох. В качестве первого приближения корня данного уравнения можно взять абсциссу x_1 точки пересечения с осью Ox хорды, соединяющей концы

A(a. f(a)) и B(b. f(b)) дуги графика функции f(x) на указанном отрезке. Уравнение хорды AB имеет вид:

$$\frac{y-f(x)}{f(b)-f(a)} = \frac{x-a}{b-a}.$$

Полагая в этом уравнении y = 0, получим первое приближение корня

$$x_1 = a - \frac{f(a)}{f(b) - f(a)}(b - a).$$

Точка x_1 будет расположена тем ближе к искомому корню ξ , чем меньше будет кривизна графика функции, т.е., чем меньше |f''(x)| и больше |f'(x)| на отрезке [a.b]. Взаимное расположение точек x_1 и ξ определяется непосредственным сравнением знаков f(a), f(b) и $f(x_1)$. Если на отрезке [a,b] сохраняется знак не только первой, но и второй производной функции, т.е. на этом отрезке функция не только монотонна, но и график ее не имеет точек перегиба, то вза-имное расположение точек x_1 и ξ можно установить и без проверки знака $f(x_1)$. Точка x_1 всегда ближе точки ξ к тому концу отрезка [a,b], в котором знак функции противоположен знаку ее второй производной.

Для получения второго приближения x_2 формулу (1.4.1) применяют к тому из отрезков $[a, x_1]$ и $[x_1, b]$, на котором функция f(x) принимает значения противоположных знаков.

Аналогично вычисляются и последующие приближения. Вычислив (n-1) -ое приближение, легко получить (n) – е приближение по формуле

$$x_n = \frac{bf(x_{n-1}) - x_{n-1}f(b)}{f(x_{n-1}) - f(b)}, \qquad (n = 1, 2, 3, ...),$$

причем выполняется условие $f(b) \cdot f''(x) > 0$.

Формула для нахождения n —го приближения имеет вид

$$x_{n} = \frac{af(x_{n-1}) - x_{n-1}f(a)}{f(x_{n-1}) - f(a)}$$

в случае, когда выполняется условие $f(a) \cdot f''(x) > 0$.

В первом случае за начальное приближение x_0 выбирают начальную точку отрезка a, во втором случае — конечную точку отрезка b. Последовательность чисел x_n сходится к искомому корню ξ , т.е. $\lim_{n\to\infty} x_n = \xi$.

Приближения $x_1, x_2, x_3,...$ следует вычислять до тех пор, пока два последовательных приближения не совпадут друг с другом на заданное число знаков.

В случае, когда функция f(x) будет иметь отличную от нуля первую производную, то оценку абсолютной погрешности метода хорд можно определить по формуле

$$\left| \xi - x_n \right| \le \frac{\left| f(x_n) \right|}{M}$$
, где $M = \min \left| f'(x) \right|$.

Метод касательных

Рассмотрим уравнение вида f(x) = 0, корень ξ которого отделен на отрезке [a,b]. Требуется найти этот корень с заданной точностью ε . Для решения заданного уравнения будем применять метод касательных.

Как и в случае решения уравнения методом хорд, на функцию f(x) накладываем следующие условия:

- 1) функция f(x) непрерывна на отрезке [a,b];
- 2) f(a)f(b) < 0;
- 3) первая и вторая производные y'(x) и y''(x) существуют и непрерывны на отрезке [a,b];
- 4) y'(x) и y''(x) сохраняют свои знаки на отрезке [a, b].

Суть метода касательных состоит в следующем: дуга кривой y = f(x) на отрезке [a,b] заменяется касательной к ней, и за приближение корня берется абсцисса точки пересечения касательной с осью Ox.

Для определенности рассмотрим случай, когда функция f(x) является возрастающей (f'(x) > 0) и выпуклой вниз функцией (f''(x) > 0).

За начальное (нулевое) приближение x_0 корня возьмем тот конец отрезка [a,b], в котором значение функции f(x) и значение второй производной f''(x) имеют одинаковые знаки. Рассматриваем случай $x_0 = b$, т.к. f(b)f''(b) > 0.

Из точки $B[x_0, f(x_0)]$ проведем касательную к кривой y = f(x). Уравнение касательной имеет вид

$$y = f'(x_0)(x - x_0) + f(x_0)$$
.

Пусть $x = x_1$ — точка пересечения касательной с осью Ox. Ее значение получим из условия y = 0:

$$f'(x_0)(x_1-x_0)+f(x_0)=0$$
,

Откуда $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ — первое приближение корня по методу касательных.

Теперь искомый корень ξ находится на отрезке $[a, x_1]$. Проведя касательную из точки $B_1[x_1, f(x_1)]$ и определив точку ее пересечения с осью Ox, получим

 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ — второе приближение корня по методу касательных. Продол-

жая этот процесс, получим

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})},$$

где x_n-n -е приближение корня, найденное по методу касательных, когда в качестве начальной точки выбирается точка $x_0=b$. Если же в рассматриваемом случае за начальную точку взять $x_0=a$, то уточнение корня может не произойти, так как точка \overline{x} пересечения касательной с осью Ox может оказаться за пределами отрезка [a,b]. Поэтому, выбор начальной точки для уточнения корня

уравнения f(x) = 0 по методу касательных осуществляется по правилу: начальной точкой a или b отрезка [a,b] является та, для которой знак функции f(x) совпадает со знаком ее второй производной, т. е. выполняется условие $f(a) \cdot f''(a) > 0$ или $f(b) \cdot f''(b) > 0$.

Для оценки погрешности n-го приближения x_n можно воспользоваться формулой

$$\left|\xi-x_n\right| \leq \frac{\left|f(x_n)\right|}{m}, \qquad m = \min_{[a,b]} \left[f'(x)\right].$$

При вычислениях на компьютере более удобной оказывается оценка погрешности, позволяющая оценить погрешность приближения корня ε_n на шаге с номером n, т.е.

$$\varepsilon_n = \left| \xi - x_n \right| \le \left| x_n - x_{n-1} \right|.$$

Процесс уточнения корня продолжается до тех пор, пока значение погрешности ε_n превышает некоторое заданное значение ε_0 .

Комбинированный метод хорд и касательных

В рассмотренных выше методах хорд и касательных исходный отрезок [a,b], на котором находится корень уравнения f(x)=0, заменяется $[a,x_1]$ или $[x_1,b]$, причем точка x_1 расположена к корню ближе, чем концы отрезка и т. д. Очевидно, что лучший результат можно получить при приближении к корню с двух сторон одновременно. Этого результата можно достичь при применении комбинированного метода, суть которого состоит в одновременном использовании обоих методов, т.е. метода хорд и метода касательных.

Комбинированным методом удобно пользоваться в том случае, если на исходном отрезке [a,b] вторая производная f''(x) сохраняет свой знак. Тогда касательная будет пересекать ось Ox со стороны выпуклости графика функции f(x), а хорда — со стороны его вогнутости.

Приближения по методу касательных в этом случае располагаются с одной стороны, а приближения, полученные по методу хорд, — с другой. Вычисляя таким способом приближенные значения корней уравнения f(x) = 0, получают все

более суживающиеся отрезки, внутри которых содержится искомый корень. Длина последнего из отрезков дает величину абсолютной погрешности приближенного значения корня, что также подтверждает достоинство комбинированного метода.

Метод итераций

Пусть задано уравнение вида f(x) = 0. Требуется найти приближенное значение корня этого уравнения с заданной степенью точности.

Для решения поставленной задачи воспользуемся методом простой итерации. Иначе этот метод называется методом последовательных приближений.

- 1. Выделяем отрезок [a, b], внутри которого находится корень уравнения и, причем единственный.
 - 2. Уравнение перепишем в виде:

$$x = \phi(x)$$
,

что всегда можно сделать и притом многими способами, например,

$$x = x + \lambda f(x)$$

- 3. За приближенное значение корня заданного уравнения возьмем произвольную точку $x_0 \in [a,b]$. Число x_0 называется начальным приближением корня или нулевым.
- 4. Для уточнения корня вычислим значение функции $\phi(x)$ из правой части уравнения в точке x_0 и обозначим x_1 , т.е. $x_1 = \phi(x_0)$.

Число x_1 называется первым приближением корня.

5. Вычислим второе приближение корня по формуле $x_2 = \phi(x_1)$ и т. д.

n -е приближение получим, вычислив (n-1) -е, т.е. $x_n = \phi(x_{n-1})$.

Этот процесс последовательного вычисления чисел $x_1, x_2, ..., x_n, ...$ называется методом последовательных приближений или методом итерации. Условия, при которых описанный процесс сходится, определяются следующей теоремой.

Теорема. Если на отрезке, содержащем корень ξ уравнения f(x) = 0, а также все его последовательные приближения $x_0, x_1, x_2, ..., x_n$, вычисляемые по методу итераций, выполнено условие $|\phi'(x)| \le m < 1$, то $\lim_{n \to \infty} x_n = \xi$, т.е. процесс итераций сходится.

Геометрическая иллюстрация метода итераций выглядит следующим образом. Построим на отрезке [a,b] в плоскости xOy графики функций $y=\phi(x)$ и y=x.

Корнем исходного уравнения будет являться абсцисса точки пересечения этих графиков. На оси Ox выберем произвольную точку $x_0 \in [a,b]$. Через нее проведем прямую, перпендикулярную оси Ox, до пересечения с кривой $y = \phi(x)$ в точке $M_0(x_0,\phi(x_0))$. Абсцисса точки $M_0(x_0,\phi(x_0))$ является нулевым приближением искомого корня уравнения.

Через точку $M_0(x_0,\phi(x_0))$ проведем прямую, параллельную оси Ox до пересечения с прямой y=x в точке $N_1(x_1,\phi(x_1))$. Абсцисса точки $N_1(x_1,\phi(x_1))$ равна ординате этой точки, т.е. $x_1=\phi(x_0)$, следовательно, точка x_1 является первым приближением корня.

Через точку $N_1(x_1,\phi(x_1))$ проведем прямую, параллельную оси Oy, до пересечения с кривой $y=\phi(x)$ в точке $M_1(x_1,\phi(x_1))$.

Через точку $M_1(x_1,\phi(x_1))$ проведем прямую, параллельную оси Ox, до пересечения с прямой y=x в точке $N_2(x_2,\phi(x_2))$. Абсцисса точки $N_2(x_2,\phi(x_2))$ равна ординате этой точки, т.е. $x_2=\phi(x_1)$. Следовательно, точка x_2 является вторым приближением искомого корня и т.д.

Если этот процесс продолжать неограниченно, то получим ломаную $M_0N_1M_1N_2...$ (лестницу), звенья которой попеременно параллельны оси Ox и оси Oy .

Вершины $M_0M_1M_2...$ лежат на кривой $y=\phi(x)$, а вершины $N_1N_2...$ лежат на прямой y=x. Общие абсциссы точек N_1 и M_1 , N_2 и M_2 и т.д. представляют собой члены итерационной последовательности.

Теорема. Пусть на отрезке [a,b] уравнение $x=\phi(x)$ имеет корень, и во всех точках этого промежутка производная $\phi'(x)$ удовлетворяет неравенству $|\phi'(x)| \le M < 1$. Если при этом выполняется $a \le \phi(x) \le b$, то итерационная последовательность сходится к корню уравнения $x=\phi(x)$, причем за нулевое приближение можно брать любую точку, принадлежащую заданному отрезку, предельное значение которой $\lim_{x\to\infty} x_n = \xi$ является единственным корнем уравнения $x=\phi(x)$ на отрезке [a,b].

Оценка погрешности метода итераций вычисляется по формуле:

$$\left|x_{n}-\xi\right| \leq \frac{M}{1-M}\left|x_{n}-x_{n-1}\right|.$$

Из оценки видно, что процесс итерации следует продолжать до тех пор, пока для двух последовательных приближений x_{n-1} и x_n не будет обеспечено выполнение неравенства

$$\frac{M}{1-M}\left|x_{n}-x_{n-1}\right| \leq \varepsilon.$$

Если $M \le \frac{1}{2}$, то получаем более простую оценку $|x_n - \xi| \le |x_n - x_{n-1}|$.

В этом случае вычисления заканчиваются, когда два соседних приближения совпадут с заданной точностью ε .

Преимущество метода итераций

- 1. При выполнении условий последней теоремы итерационная последовательность $\{x_n\}$ сходится при любом выборе начального приближения x_0 из отрезка [a,b]. Благодаря этому, метод итераций является самоисправляющимся. Это означает, что ошибка, допущенная при вычислениях, но не выходящая за пределы отрезка [a,b], не влияет на конечный результат, т.к. ошибочное значение можно рассматривать как новое начальное приближение.
- 2. Вычисления по методу итераций представляют собой последовательность повторяющихся однотипных процессов. Поэтому данный метод очень удобен для реализации.