2016年《综合课程设计 2-1》课程实验报告(第二类实验)

实验题二:在 FPGA 芯片内用硬件描述 语言描述一个 8-3 优先编码器

姓名: 王科

学号: 1310583

专业: 计算机科学与技术

完成日期: 2016/3/25

目录

-,		2 -
二、		
三、	实验步骤 2	<u> </u>
	1. 设计译码器的端口、内部逻辑程序	
	2. 观察 FPGA 电路板,将输入输出端口进行引脚绑定 3	} -
	3. 电路连接示意图 4	ļ -
	4. 实验结果 4	
四、	实验程序(.VHD 文件)	
Ŧī.、	实验总结 - 8	} _

一、 实验内容

在 FPGA 芯片内用硬件描述语言描述一个 8-3 优先编码器,利用用户实验板上的资源测试该逻辑:输入代码端接用户实验板上的手动开关,输出接 LED显示模块。进行手动操作,观察该编码器的输入输出特性。

说明: "编码"是"译码"的逆行为,实现编码的逻辑称为"编码器"。编码器有多个输入,多个输出。普通编码器在同一时刻最多只能有一个输入信号有效,当所有输入均无效时,规定产生某种输出。而优先编码器允许几个输入同时有效,但各个输入的优先权不同,编码器自动产生当前优先权最高的输入的编码。本题要实现的编码器有8个(即8位)输入,3个输出。

二、 实验原理

和上一个实验类似,该实验使用 VHDL 语言设计一个 8-3 优先编码器,即是 3-8 译码器的逆过程,由于不需要使用使能端故只需要一个 8 位的输入端口和一个 3 位的输出端口即可。而且有优先关系,故可以在 VHDL 程序内使用一个进程 顺序判断 8 个端口是否依次有效,达到优先编码的功能。从第 8 位到第 1 位,依次判断是否有效(低电平),若存在一位有效则不需要考虑比它低优先级的端口是否有效,在输出端口输出对应的值即可。

三、 实验步骤

1. 设计译码器的端口、内部逻辑程序

编码器有两个端口,分别是一个8位的输入端口和一个3位的输出端口,其外部模块图如下:

vhdl 语言设计端口如下:

```
ENTITY encode83 IS

PORT(
D:IN STD_LOGIC_VECTOR(0 TO 7);
A:OUT STD_LOGIC_VECTOR(0 TO 2)
);
END encode83;
```

其内部逻辑输入输出关系如下:

	INPUT								OUTPUT		
D[7]	D[6]	D[5]	D[4]	D[3]	D[2]	D[1]	D[0]	A[0]	A[1]	A[2]	
0	Х	Х	Х	Х	х	Х	Х	1	1	1	
1	0	Х	Х	Х	Х	Х	Х	1	1	0	
1	1	0	Х	Х	Х	Х	Х	1	0	1	
1	1	1	0	Х	Х	Х	Х	1	0	0	
1	1	1	1	0	Х	Х	Х	0	1	1	
1	1	1	1	1	0	Х	Х	0	1	0	
1	1	1	1	1	1	0	Х	0	0	1	
1	1	1	1	1	1	1	0	0	0	0	
1	1	1	1	1	1	1	1	0	0	0	

由此设计 VHDL 结构体程序如下:

```
ARCHITECTURE content OF encode83 IS
BEGIN
PROCESS(D)
BEGIN
   IF
         (D(7)='0') THEN A<="111";
   ELSIF (D(6)='0') THEN A<="110";
   ELSIF (D(5)='0') THEN A<="101";
   ELSIF (D(4)='0') THEN A<="100";
   ELSIF (D(3)='0') THEN A<="011";
   ELSIF (D(2)='0') THEN A<="010";
   ELSIF (D(1)='0') THEN A<="001";
   ELSIF (D(0)='0') THEN A<="000";
   ELSE A<="ZZZ";
   END IF;
END PROCESS;
END;
```

2. 观察 FPGA 电路板,将输入输出端口进行引脚绑定

根据 FPGA 电路板上空闲的剩余引脚,在这次实验中个输入输出端对应的引脚号如下表:

		Node Name	Direction	Location	I/O Bank	Vref Group	I/O Standard	Reserved	Group	Current Strength
1	•	A[0]	Output	PIN_97	3	B3_N0	3.3-V LVTTL (default)		A[02]	24mA (default)
2	•	A[1]	Output	PIN_99	3	B3_N0	3.3-V LVTTL (default)		A[02]	24mA (default)
3	•	A[2]	Output	PIN_100	3	B3_N0	3.3-V LVTTL (default)		A[02]	24mA (default)
4		D[0]	Input	PIN_96	3	B3_N0	3.3-V LVTTL (default)		D[07]	24mA (default)
5		D[1]	Input	PIN_94	3	B3_N0	3.3-V LVTTL (default)		D[07]	24mA (default)
6		D[2]	Input	PIN_93	3	B3_N0	3.3-V LVTTL (default)		D[07]	24mA (default)
7		D[3]	Input	PIN_92	3	B3_N0	3.3-V LVTTL (default)		D[07]	24mA (default)
8		D[4]	Input	PIN_87	3	B3_N1	3.3-V LVTTL (default)		D[07]	24mA (default)
9		D[5]	Input	PIN_86	3	B3_N1	3.3-V LVTTL (default)		D[07]	24mA (default)
10		D[6]	Input	PIN_81	3	B3_N1	3.3-V LVTTL (default)		D[07]	24mA (default)
11		D[7]	Input	PIN_80	3	B3_N1	3.3-V LVTTL (default)		D[07]	24mA (default)
12		< <new node="">></new>								

编译下载到 FPGA 电路板上,然后连接实验箱的电路。

3. 电路连接示意图

连接 FPGA 电路板上电路:

- ▶ 将 FPGA 板上的 PIN_80~PIN_96 (D[7]~D[0]) 接到 FPGA 电路板的控制开关上;
- ➤ 将 FPGA 板上的 PIN_97、PIN_99、PIN_100(A[0]、A[1]、A[2])接到 FPGA 电路板的 LED 灯泡上

对应端口连接表								
说明	引脚	说明	引脚					
FPGA 板的输入端	PIN_80~PIN_96	FPGA 电路板控制	K0 [∼] K2					
(D[7]~D[0])		开关						
FPGA 板的输出端	PIN_97、	FPGA 电路板的	L7 [~] L0					
□ (A[0]~A[2])	PIN_99、PIN_100	LED 灯泡						

4. 实验结果

实验时当输入端全为高电平即"11111111"时,FPGA上的实验结果如下:

实验 LED 灯输出"000"与预期结果一致。

实验时当输入端为即"11101111"时,FPGA上的实验结果如下:

实验 LED 灯输出"100"与预期结果一致。

实验时当输入端为即"00111111"时,FPGA上的实验结果如下:

实验 LED 灯输出"111",而屏蔽了结果"110",体现了优先编码的功能,即 D[7] 优先级比 D[6]高,这与预期结果一致。

四、 实验程序(.VHD 文件)

整个实验所用的程序如下(附件 "encode83. vhd"):

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
ENTITY encode83 IS
   PORT(
       D:IN STD_LOGIC_VECTOR(0 TO 7);
       A:OUT STD_LOGIC_VECTOR(0 TO 2)
   );
END encode83:
ARCHITECTURE content OF encode83 IS
BEGIN
PROCESS(D)
BEGIN
   IF
        (D(7)='0') THEN A<="111";
   ELSIF (D(6)='0') THEN A<="110";
   ELSIF (D(5)='0') THEN A<="101";
   ELSIF (D(4)='0') THEN A<="100";
   ELSIF (D(3)='0') THEN A<="011";
   ELSIF (D(2)='0') THEN A<="010";
   ELSIF (D(1)='0') THEN A<="001";
   ELSIF (D(0)='0') THEN A<="000";
   ELSE A<="ZZZ";
   END IF;
END PROCESS;
END;
```

五、 实验总结

这次的使用 VHDL 语言设计 8-3 优先解码器实验是在上一个 3-8 译码器实验 的基础上做的,与上一个不同的是这次使用了 PROCESS () 进程语句,在优先选择的过程中必须按照优先级顺序来依次判断是否有效,所以必须将这些需要顺序执行的语句放到一个进程中去。

由于一开始对于 VHDL 语言的并发性和进程的概念不是很理解,导致每次实验的结果都不一样,后来查看 VHDL 的教程过后才发现,如果不是放在同一个进程中的语句,其执行的顺序与书写的顺序无关,这才恍然大悟,终于明白了进程与并发的概念,最后成功的做出了实验。

通过这次的实验,我对于 VHDL 硬件描述语言有了更深的认识,对于其各种描述语句的逻辑有了更深的理解,也对于 VHDL 语言的使用熟练了一些。

最后感谢老师们不厌其烦的为我解答疑惑并帮助我调试 bug,我才能顺利的完成了这次实验!