编译原理

作业 - 5

姓名: 刘建东 学号: 201700130011

班级: 2017 级菁英班 日期: 2020 年 4 月 9 日

题目 1

令文法 G₁ 为:

$$E \to E + T|T$$

$$T \to T * F|F$$

$$F \to (E)|i$$

证明 E + T * F 是它的一个句型,指出这个句型的所有短语,直接短语和句柄。

解答:由下述推导可知,E+T*F为文法 G_1 的一个句型。

$$E \Rightarrow E + T \Rightarrow E + T * F$$

根据语法树可求得该句型对应的所有短语、直接短语和句柄。

· 短语: E+T*F、T*F

· 直接短语: T*F

· 句柄: T*F

题目 2

考虑下面的表格结构文法 G2:

$$S \to a | \wedge |(T)$$

$$T \to T, S|S$$

- (1) 给出 (a,(a,a)) 和 $(((a,a),\land,(a)),a)$ 的最左和最右推导。
- (2) 指出 $(((a,a), \land, (a)), a)$ 的规范归约及每一步的句柄。根据这个规范归约,给出"移进-归约"的过程,并给出它的语法树自下而上的构造过程。

解答:

(1) (a,(a,a)) 最左推导如下:

$$S \Rightarrow (T) \Rightarrow (T,S) \Rightarrow (S,S) \Rightarrow (a,S) \Rightarrow (a,(T)) \Rightarrow (a,(T,S)) \Rightarrow (a,(S,S))$$
$$\Rightarrow (a,(a,S)) \Rightarrow (a,(a,a))$$

(a,(a,a)) 最右推导如下:

$$S \Rightarrow (T) \Rightarrow (T,S) \Rightarrow (T,(T)) \Rightarrow (T,(T,S)) \Rightarrow (T,(T,a)) \Rightarrow (T,(S,a)) \Rightarrow (T,(a,a))$$
$$\Rightarrow (S,(a,a)) \Rightarrow (a,(a,a))$$

 $(((a,a), \land, (a)), a)$ 最左推导如下:

$$S \Rightarrow (T) \Rightarrow (T,S) \Rightarrow (S,S) \Rightarrow ((T),S) \Rightarrow ((T,S),S) \Rightarrow ((T,S,S),S) \Rightarrow ((S,S,S),S)$$

$$\Rightarrow (((T),S,S),S) \Rightarrow (((T,S),S,S),S) \Rightarrow (((S,S),S,S),S) \Rightarrow (((a,S),S,S),S)$$

$$\Rightarrow (((a,a),S,S),S) \Rightarrow (((a,a),\land,S),S) \Rightarrow (((a,a),\land,(T)),S) \Rightarrow (((a,a),\land,(S)),S)$$

$$\Rightarrow (((a,a),\land,(a)),S) \Rightarrow (((a,a),\land,(a)),a)$$

 $(((a,a), \land, (a)), a)$ 最右推导如下:

$$S \Rightarrow (T) \Rightarrow (T,S) \Rightarrow (T,a) \Rightarrow (S,a) \Rightarrow ((T),a) \Rightarrow ((T,S),a) \Rightarrow ((T,(T)),a)$$

$$\Rightarrow ((T,(S)),a) \Rightarrow ((T,(a)),a) \Rightarrow ((T,S,(a)),a) \Rightarrow ((T,\wedge,(a)),a)$$

$$\Rightarrow ((S,\wedge,(a)),a) \Rightarrow (((T),\wedge,(a)),a) \Rightarrow (((T,S),\wedge,(a)),a) \Rightarrow (((T,a),\wedge,(a)),a)$$

$$\Rightarrow (((S,a),\wedge,(a)),a) \Rightarrow (((a,a),\wedge,(a)),a)$$

(2) 规范归约过程如下,下划线处即为对应的句柄。

句型	归约规则
$(((\underline{a},a),\wedge,(a)),a)$	$S \to a$
$(((\underline{S},a),\wedge,(a)),a)$	$T \to S$
$(((T,\underline{a}),\wedge,(a)),a)$	$S \to a$
$(((\underline{T},\underline{S}),\wedge,(a)),a)$	$T \to T, S$
$((\underline{(T)}, \wedge, (a)), a)$	$S \to (T)$
$((\underline{S}, \wedge, (a)), a)$	$T \to S$
$((T, \underline{\wedge}, (a)), a)$	$S \to \wedge$
$((\underline{T},\underline{S},(a)),a)$	$T \to T, S$
$((T,(\underline{a})),a)$	$S \to a$
$((T,(\underline{S})),a)$	$T \to S$
$((T,\underline{(T)}),a)$	$S \to (T)$
$((\underline{T},\underline{S}),a)$	$T \to T, S$
$(\underline{(T)},a)$	$S \to (T)$
(\underline{S},a)	$T \to S$
(T,\underline{a})	$S \to a$
$(\underline{T},\underline{S})$	$T \to T, S$
(T)	$S \to (T)$
\overline{S}	

根据上述的规范归约, 我们可以得到下述"移进-归约"的过程。

步骤	符号栈	输入串	动作	
0	#	$(((a,a),\wedge,(a)),a)\#$	预备	
1	#($((a,a),\wedge,(a)),a)\#$	进	
2	#(($(a,a), \wedge, (a)), a) \#$	进	
3	#((($a,a), \wedge, (a)), a)\#$	进	
4	#(((a	$,a),\wedge,(a)),a)\#$	进	
5	#(((S	$,a),\wedge,(a)),a)\#$	归,用 $S \to a$	
6	#(((T	$,a),\wedge,(a)),a)\#$	归,用 $T \to S$	
7	#(((T,	$a), \wedge, (a)), a)\#$	进	
8	#(((T,a))	$), \wedge, (a)), a)\#$	进	
9	#(((T,S)))	$), \wedge, (a)), a)\#$	归,用 $S \to a$	
10	#(((T	$), \wedge, (a)), a)\#$	归,用 $T \to T, S$	
11	#(((T)	$, \wedge, (a)), a)\#$	进	
12	#((S	$, \wedge, (a)), a)\#$	归,用 $S \to (T)$	
13	#((T	$, \wedge, (a)), a)\#$	归,用 $T \to S$	
14	#((T,	$\wedge,(a)),a)\#$	进	
15	$\#((T, \land$,(a)),a)#	进	
16	#((T,S))	,(a)),a)#	归,用 $S \to \land$	
17	#((T	,(a)),a)#	$ $ 归,用 $T \to T, S$	
18	#((T,	(a)),a)#	进	
19	#((T,(a)),a)#	进	
20	#((T,(a)),a)#	进	
21	#((T,(S)),a)#		
22	#((T,(T)),a)#	归,用 $T \to S$	
23	#((T,(T))),a)#	进	
24	#((T,S))),a)#	归,用 $S \to (T)$	
25	#((T),a)#	归, 用 $T \to T, S$	
26	#((T)	,a)#	进	
27	#(S	,a)#	归,用 $S \to (T)$	
28	#(T	,a)#	归,用 $T \to S$	
29	#(T,	a)#	进	
30	#(T,a))#	进	
31	#(T,S))#	归,用 $S \to a$	
32	#(T)#	归,用 $T \to T, S$	
33	#(T)	#	进	
34	#8	#	归,用 $S \to (T)$	
35	#8	#	接受	

由此我们也可以得到如下语法树自下而上的构造过程,编号即为自下而上的归并顺序。

题目 3

考虑文法

$$S \to AS|b$$

$$A \to SA|a$$

- (1) 列出这个文法的所有 LR(0) 项目。
- (2) 构造这个文法的 LR(0) 项目集规范族及识别活前缀的 DFA。
- (3) 这个文法是 SLR 的吗? 若是,构造出它的 SLR 分析表。
- (4) 这个文法是 LALR 或 LR(1) 的吗?

解答:

(1) 该文法的所有 LR(0) 项目如下所示:

编号	项目	编号	项目	编号	项目
1	$S' \rightarrow \cdot S$	2	$S' \to S$.	3	$S \rightarrow \cdot AS$
4	$S \to A \cdot S$	5	$S \to AS$.	6	$S \rightarrow b$
7	S o b.	8	$A \rightarrow \cdot SA$	9	$A \rightarrow S \cdot A$
10	$A \to SA$.	11	$A \rightarrow a$	12	$A \rightarrow a$

(2) 根据上述的 LR(0) 项目, 我们可以直接构造出如下包含 LR(0) 项目集规范族的 DFA。

- (3) 观察上述 LR(0) 项目集规范族, 我们可以发现状态 I_1, I_5, I_7 存在移进归约冲突, 因此我们首先计算 各非终结符的 FOLLOW 集如下。
 - · FOLLOW(S')={#,a,b}
 - · FOLLOW(S)= $\{\#,a,b\}$
 - $\cdot \text{ FOLLOW(A)} = \{a,b\}$

接下来我们再判断上述三个状态的移进归约冲突是否可以消解。

- · I_1 : FOLLOW(S') 不包含 a、b, 冲突可消解。
- · I₅: FOLLOW(A) 中包含 a、b, 冲突不可消解。
- · I7: FOLLOW(S) 中包含 a、b, 冲突不可消解。

因此我们可以判断该文法不是 SLR 文法。

(4) 首先我们列出 LR(1) 项目集规范族如下:

 $I_0: S' \rightarrow \cdot S, \#$ $S \rightarrow AS, \#/a/b$ $S \rightarrow b, \#/a/b$ $A \rightarrow SA, a/b$

 $A \rightarrow a, a/b$

 $I_5: A \rightarrow SA \cdot, a/b$

 $S \rightarrow A \cdot S, a/b$

 $S \rightarrow AS, a/b$

 $S \rightarrow b, a/b$

 $A \rightarrow SA, a/b$

 $A \rightarrow a, a/b$

 $S \rightarrow AS, a/b$

 $S \rightarrow b, a/b$

 $I_1: S' \to S \cdot \#$ $A \rightarrow S \cdot A, a/b$ $A \rightarrow SA, a/b$ $A \rightarrow a, a/b$

 $S \rightarrow AS, a/b$ $S \rightarrow b, a/b$

 $I_6: A \rightarrow S \cdot A, a/b$ $A \rightarrow SA, a/b$ $A \rightarrow a, a/b$ $S \rightarrow AS, a/b$ $S \rightarrow b, a/b$

 $A \rightarrow a, a/b$

 $I_{10}: S \to A \cdot S, a/b$ $I_{0}: S \rightarrow AS \cdot a/b$ $A \rightarrow S \cdot A, a/b$ $S \rightarrow AS, a/b$ $A \rightarrow SA, a/b$ $S \rightarrow b, a/b$ $A \rightarrow a, a/b$ $A \rightarrow SA, a/b$

 $I_2: S \rightarrow A \cdot S, \#/a/b$ $S \rightarrow AS, \#/a/b$

> $S \rightarrow b, \#/a/b$ $A \rightarrow SA, a/b$

 $A \rightarrow a, a/b$

 $I_3: A \rightarrow a \cdot a/b$

 $I_4: S \rightarrow b \cdot , \#/\alpha/b$

 $I_7: S \rightarrow b \cdot a/b$

 $I_8: S \rightarrow AS \cdot , \#/a/b$ $A \rightarrow S \cdot A, a/b$ $A \rightarrow SA, a/b$ $A \rightarrow a, a/b$ $S \rightarrow AS, a/b$ $S \rightarrow b, a/b$

我们可以发现在 I_9 状态中,同时包含项目 $S \to AS \cdot a/b$ 与 $A \to a/a/b$,因此遇到搜索符号 a 时, 将难以判断该移进还是归约,存在"移进-归约"冲突,即该文法不是 LR(1) 文法,更不是 LALR 文 法。

题目 4

证明下面文法是 SLR(1) 但不是 LR(0) 的。

$$S \to A$$

 $A \to Ab|bBa$

 $B \to aAc|a|aAb$

解答: 首先我们根据上述文法,列出各非终结符的 FOLLOW 集。

- · FOLLOW(S')={#}
- · FOLLOW(S)= $\{\#\}$
- $\cdot \text{ FOLLOW(A)=}\{b,c,\#\}$
- · $FOLLOW(B) = \{a\}$

然后我们再列出上述文法的 LR(0) 项目集规范族。

$$I_0: S' \to \cdot S$$

$$S \to \cdot A$$

$$A \to \cdot Ab$$

$$A \to \cdot bBa$$

$$I_1: S' \to S \cdot$$

$$I_2: S \to A \cdot$$

$$A \to A \cdot b$$

$$I_3: A \to b \cdot Ba$$

$$B \to \cdot aAc$$

$$B \to \cdot a$$

$$B \to \cdot aAb$$

$$I_4: A \to Ab \cdot$$

$$I_5: A \to bB \cdot a$$

$$I_6: B \to a \cdot Ac$$

$$B \to a \cdot$$

$$B \to a \cdot Ab$$

$$A \to Ab$$

$$A \to bBa$$

$$I_8: B \to aA \cdot c$$

$$B \to aA \cdot b$$

$$A \to A \cdot b$$

 $I_7: A \rightarrow bBa$

 $I_9: B \rightarrow aAc$.

我们可以发现状态 I_2 , I_6 存在移进归约冲突, T_{10} 存在归约归约冲突,因此我们需要查看这三个状态中出现的冲突是否可以通过 FOLLOW 集消解。

- · *I*₂: FOLLOW(S) 不包含 b, 冲突可消解。
- · *I*₆: FOLLOW(B) 不包含 b, 冲突可消解。
- · I_{10} : FOLLOW(A) 与 FOLLOW(B) 无交集,冲突可消解。

因此不难发现,上述的文法是 SLR(1),但不是 LR(0)的。

题目 5

证明下面的文法是 LL(1) 的但不是 SLR(1) 的。

$$S \rightarrow AaAb|BbBa$$

$$A \to \varepsilon$$

$$B \to \varepsilon$$

解答: 首先我们给出该文法中所有非终结符的 FIRST 集与 FOLLOW 集,如下所示。

 $FIRST(S) = \{a,b\}, FOLLOW(S) = \{\#\}$

 $FIRST(A) = \{\varepsilon\}, FOLLOW(A) = \{a,b\}$

 $FIRST(B) = \{\varepsilon\}, FOLLOW(B) = \{a,b\}$

可以发现该文法不含左递归,且对于非终结符 S 来说, FIRST(AaAb)={a},FIRST(BbBa)={b},相交 为空, 因此该文法是 LL(1) 的。

接下来我们再来判断该文法是否是 SLR(1) 的,我们进行文法扩展,增加 $FOLLOW(S')=\{\#\}$,再列 出该文法的 LR(0) 项目集规范族。

$$I_0: S' \to \cdot S$$

$$S \to \cdot AaAb$$

$$S \to \cdot BbBa$$

$$A \to \cdot$$

$$B \to \cdot$$

$$I_1: S' \to S \cdot$$

$$I_2: S \to A \cdot aAb$$

$$I_3: S \to B \cdot bBa$$

$$I_4: S \to Aa \cdot Ab$$
$$A \to \cdot$$

$$I_5: S \to Bb \cdot Ba$$

$$B \to \cdot$$

$$I_6: S \rightarrow AaA \cdot b$$

$$I_7: S \to BbB \cdot a$$

$$I_8: S \rightarrow AaAb$$
.

$$I_9: S \rightarrow BbBa$$

I0不存在"移进-归约"冲突, 因为没有终结符要移进

不难发现, 在 I_0 状态中, 存在"移进-归约"冲突与"归约-归约"冲突, 且 FOLLOW(A) 与 FOLLOW(B)存在交集, 因此该文法不是 SLR(1)。

题目 6

证明下面的文法是 LALR(1) 的但不是 SLR(1) 的。

$$S \rightarrow Aa|bAc|dc|bda$$

$$A \to d$$

解答: 我们直接给出 LR(1) 项目集规范族, 如下所示。

$$I_0: S' \rightarrow \cdot S, \#$$

$$S \rightarrow \cdot Aa, \#$$

$$S \rightarrow \cdot bAc, \#$$

$$S \rightarrow \cdot dc, \#$$

$$S \rightarrow \cdot bda, \#$$

$$A \rightarrow \cdot d, a$$

$$I_1: S' \rightarrow S \cdot, \#$$

$$I_2: S \to A \cdot a, \#$$

$$I_3: S \rightarrow b \cdot Ac, \#$$

 $S \rightarrow b \cdot da, \#$
 $A \rightarrow \cdot d, c$

$$I_4: S \to d \cdot c, \#$$

 $A \to d \cdot a$

$$I_5: S \rightarrow Aa \cdot , \#$$

$$I_5: S \to Aa \cdot, \#$$

$$I_8: S \to dc \cdot, \#$$

$$I_6: S \rightarrow bA \cdot c, \#$$

$$\rightarrow bA \cdot c, \#$$
 $I_9: S \rightarrow bAc \cdot, \#$

$$I_7: S \rightarrow bd \cdot a, \#$$

$$A \rightarrow d \cdot c$$

$$I_{10}:$$

$$I_{10}: S \rightarrow bda \cdot, \#$$

不难发现上述各项目集中并未出现无法消解的冲突,因此该文法是 LR(1)的。进一步,我们可以发现上述项目集中不存在同心集,因此不需要合并,即该文法是 LALR(1)的。

继续观察,我们可以发现状态 $I_4:\{[S\to d\cdot c,\#],[A\to d\cdot,a]\}$,对应于 LR(0) 项目中的状态 $\{[S\to d\cdot c],[A\to d\cdot]\}$,即出现了"移进-归约"冲突。

进一步, 我们可以求出 $FOLLOW(A) = \{a,c\}$, 包含 c, 因此冲突不可消解, 该文法不是 SLR(1) 的。

题目 7

证明下面的文法是 LR(1) 的但不是 LALR(1) 的。

$$S \to Aa|bAc|Bc|bBa$$

$$A \to d$$

$$B \to d$$

解答: 我们直接给出 LR(1) 项目集规范族, 如下所示。

$$I_{0}: S' \rightarrow \cdot S, \#$$

$$S \rightarrow \cdot Aa, \#$$

$$S \rightarrow \cdot bAc, \#$$

$$S \rightarrow \cdot bBc, \#$$

$$S \rightarrow \cdot bBa, \#$$

$$A \rightarrow \cdot d, a$$

$$B \rightarrow \cdot d, c$$

$$I_{1}: S' \rightarrow S \cdot \#$$

$$I_{2}: S \rightarrow A \cdot a, \#$$

$$I_{3}: S \rightarrow b \cdot Ac, \#$$

$$S \rightarrow b \cdot Ba, \#$$

$$A \rightarrow \cdot d, c$$

$$B \rightarrow c, d$$

$$I_{1}: S \rightarrow bA \cdot c, \#$$

$$I_{2}: S \rightarrow bA \cdot c, \#$$

$$I_{3}: S \rightarrow b \cdot Ac, \#$$

$$I_{4}: S \rightarrow bA \cdot c, \#$$

$$I_{4}: S \rightarrow B \cdot c, \#$$

$$I_{4}: S \rightarrow bAc \cdot \#$$

$$I_{1}: S \rightarrow bBc \cdot \#$$

不难发现上述各项目集中并未出现无法消解的冲突,因此该文法是 LR(1) 的。然后我们再验证是否是 LALR(1),因此将同心集 I_5 与 I_9 进行合并,得到 I_{59} : { $[A \to d \cdot , a/c], [B \to d \cdot , a/c]$ }。很明显 I_{59} 是一个含有"归约-归约"冲突的集合,因此上述文法不是 LALR(1) 的。