JALPAIGURI GOVERNMENT ENGINEERING COLLEGE

[A GOVERNMENT AUTONOMOUS COLLEGE] JGEC/B.TECH/CSE/PCC-CS402/ 2023-24

2024

DESIGN AND ANALYSIS OF ALGORITHMS

Full Marks: 70

Times: 3 Hours

The figures in the margin indicate full marks.

Candidates are instructed to write the answers in their own words as far as practicable.

	GROUP-A	
	[OBJECTIVE TYPE QUESTIONS]	
	ver all questions	5x2=10
1.	What is the time complexity of the recurrence relation $T(n) = 2T(\sqrt{n})+1$?	
2.	Prove that the complexity of the function n! is O(n").	
3	Is "P=NP"- Justify your answer.	
10	What are heuristics? Do they always guarantee solutions?	
×	What are implicit and explicit constraints?	
	GROUP-B	
Answ	[LONG ANSWER TYPE QUESTIONS] ver any four questions	4x15 = 60
	Explain the algorithm development life cycle (ADLC) with examples in each phase.	
6.	ii) Prove that the average case time-complexity of quick sort algorithm is O(n log n).	5
	iii) Explain different types of SAT problem.	3
	Alama and kasama	
7.	i) Given the weight vector(15,25,35,45,55) and the profit vector(10,20,30,40,50) and a knapsack of	5
	capacity 100, find out the optimal solution for the knapsack problem of five objects.	
	ij) Discuss the procedure for Strassen's matrix multiplication to evaluate the product of two nxn	
	matrices. Find the resulting recurrence relation for the same and calculate it's time complexity. Is this	
	method an improvement over the conventional matrix multiplication method? If so why?	4+4+1+1
8.	iy Explain the Bellman-Ford algorithm with an example.	6
	ji) Write down the all pair shortest path algorithm. Calculate it's time complexity.	5+1
	iii) Compare and contrast between greedy method and dynamic programming concept.	3
9.	 What is Turing's halting problem? Prove that halting problem is an undecidable problem. 	2+3
	How you will solve the 0/1 knapsack problem using dynamic programming algorithm?	5
	(iii) Explain the Travelling Salesperson problem with an example and solve it with dynamic programming	5
10	concept.	1 7
10.	i) Prove that Clique Decision Problem (CDP) is a NP-complete problem?	5
	ii) Explain the strategy to solve the 15-puzzle problem. Also draw the necessary steps required to	5
	solve the problem.	
	iii) If $f(n)=a_m n^m + a_{m-1} n^{m-1} + + a_1 n + a_0$, where $a_m > 0$, then show that $f(n)=\Omega(n^m)$.	5
11.	Write down the Prim's algorithm to find out the minimal spanning tree of an undirected graph.	3
	ii) Find the minimum number of operations required for the following matrix chain multiplication using	7
	dynamic programming method: A(4X5)*B(5X3)*C(3x2)*D(2X7).	
	iii) How would you show that a decision problem is NP-Complete?	5
12.	i) What do you mean by the reducibility? Give some examples to clear this concept?	2+3
	ii) Explain the 8-queens problem and state some feasible solution of the problem.	5

iii) Draw one solution of the state space tree for 4 queen's problem using backtracking algorithm.

22101104011

JALPAIGURI GOVERNMENT ENGINEERING COLLEGE [A GOVERNMENT AUTONOMOUS COLLEGE] COE/B.TECH/CSE/PCC-CS404/2023-24 2024

FORMAL LANGUAGE & AUTOMATA THEORY

Full Marks: 70

Times: 3 Hours

The figures in the margin indicate full marks.

Candidates are requested to write their answers in their own words as far as practicable.

	GROUP-A	
Answ	dI questions [OBJECTIVE TYPE QUESTIONS]	
1.	ine Turing Machine.	5x2-16
2.	ine Deterministic Finite Automata (NFA) with a suitable example.	
3.	te the Pumping Lemma for Context from Lawrence and Lexample.	
4.	te the Pumping Lemma for Context free Languages and state also the application of this lemma. The Greibach Normal Form (GNF) with example.	
5.	ine Push-down Automata.	
	[LONG ANSWER TYPE QUESTIONS]	
An	any four questions	
7.280		4x15=60
6.	Construct a Turing machine for the following language	**
37		-10
	Prove that the family of contract c $L = \{a^n b^n c^n : n \ge 1\}$	
	Prove that the family of context-free languages is not closed under intersection.	5
(7)	Prove that $(1 \pm 0.0^{\circ}1) \pm (1 \pm 0.0^{\circ}1) (0 + 1.0^{\circ}1) (0 + 1$	
	Prove that $(1 + 00^{\circ}1) \div (1 + 00^{\circ}1)(0 + 10^{\circ}1)^{\circ}(0 + 10^{\circ}1) = 0^{\circ}1(0 + 10^{\circ}1)^{\circ}$.	5+5+5=10
	Design a NFA to accept the language: $L = \{b^n a^n : 0 \le n \le 3\}$	
	Construct a regular expression for the following language	
	$L = \{a^n \ b^m \colon n \ge 0\} \cup \{a^n \ b^n \colon n \ge 0\}$	
8.	Show that the language $I = I \circ^{n} I \circ^{n} \circ 0 < \dots < n > 0$	
5555	Show that the language $L = \{a^n \ b^n : 0 \le n, n \ne 50 \}$ is context free.	5 5
	Prove that every regular language is also a context free language, but vice-versa is not true.	5
	Define formal grammar and formal language with examples	5
9)	Prove that the family of context-free language is closed under union, concatenation, and star-	
	closure.	3x2=6
	Construct a NPDA for the language., $L = \{ww^k : w \in \{a, b\}^*\}$	
) Is it possible to construct a regular expression for the following language? Justify your answer.	5
	$t = \{a^n b^n : n \ge 1\}$	
	$b = \{a \mid a : n \ge 1\}$	4
10.	Write the subset construction algorithm to convert a given NFA into an equivalent DFA	
200	Prove the following grammar is ambiguous grammar:	5
	$G = (V, T, P, S)$, where $V = \{E, I\}$, $T = \{a, b, c, + *, (.)\}$, with productions	5
	$E \to I, E \to E + E, E \to E \bullet E, E \to (E), I \to a, I \to b, I \to c$	
	Prove that the following given language is not regular language using pumping lemma:	
	$L = \{a^n b^n : n \ge 0\}$	5
	2 - (u u : n = 0)	
11.	Prove that the following language is context-free language but not regular language	1020
27	$L = \{a^n \ b^{2n} : n \ge 0\}$	5
	Prove that the family of equals by some in $\{u \in U : u \geq 0\}$	
	Prove that the family of regular languages is closed under intersection.	
	 i) Write regular expressions for the following languages on {0, 1}: a) L = { all strings ending with 01} 	\$
	 b) L = { all strings containing an even number of 0's} 	17.62
	o, a - (an orange communing an even number of 0 5)	\$
6		r.r.o.
		1.196

- Write short notes on any three of the following topics:

 i. Closures properties of context free languages

 - ii. Regular Grammar
 - iii. Hierarchical structure of all different kind of Automata & their corresponding languages
 - iv. Regular Expression

JALPAIGURI GOVERNMENT ENGINEERING COLLEGE [A GOVERNMENT AUTONOMOUS COLLEGE] JGEC/B.TECH/CSE/ PCC-CS403/ 2023-24

2024

Object Oriented Programming

Full Marks: 70

Times: 3 Hours

[4]

The figures in the margin indicate full marks. Candidates are instructed to write the answers in their own words as far as practicable.

GROUP-A [OBJECTIVE TYPE QUESTIONS] Answer all questions 5x2=10 What do you mean by thread? Define friend function and friend class? [2] What are command line arguments? How they are useful? [2] [2] What is inline function? Define constructor chaining? [2] [2] GROUP-B [LONG ANSWER TYPE QUESTIONS] Answer any four questions i. What is Object Oriented Programming? State the differences between Object Oriented Programming and 4x15 = 60Structure Oriented Programming. ii. Explain different features of Object Oriented programming. [1+4] iii. What is operator overloading? Overload pre- increment and post- increment operators with suitable code [5] snippet. [1+4] i. Explain the different levels of access modifiers available in Object Oriented Programming with examples. ii. What do you mean by method overloading and method overriding? Explain with examples, [6] Affi. Compare different types of polymorphisms with examples. [4] [5] Explain different types of base class access controls used in inheritance with programming code snippet. ii. What is the main drawback of multiple-inheritance for classes and how can it solve? Explain with proper [6] iii. When do you declare a class member static? Explain with an example. [1+4][4] i. What is an exception? Describe try-catch block and finally block used in exception handling? ii. Define an exception "NoMatchException" that is thrown when a given string is not present in a list of [1+5] string objects. Write a program that uses this exception. iii. What do you mean by compile time exception and run time exception? Explain with proper examples. [5] [4] 10. i. Why thread is called light weight process? Explain the complete life cycle of a thread object with proper ij Explain different ways of implementing thread class in Object oriented programming? Explain with [1+5] suitable programming code. iff. Explain copy constructor with proper code snippet. [6] [3] 11/2 i/What is the order in which constructor and the destructor are executed in inheritance? Explain the execution of constructor and destructor in multi-level and multiple-inheritance with suitable examples. ik Explain the differences between abstract class and interface in Object Oriented Programming with [1+5] iii. What is an interface? Give an example where interfaces are used to support multiple-inheritance. [4] [1+4] i. Explain call by value, call by address and call by reference with examples. ii. What are pure y much functions? When they should be used? Explain with programming code. [6] iii. Explain constructor overloading with examples. [1+4]

2010110 4049

JALPAIGURI GOVERNMENT ENGINEERING COLLEGE [A GOVERNMENT AUTONOMOUS COLLEGE] JGEC/B.TECH./CSE/PCC-CS401/2023-24 2024

COMPUTER ARCHITECTURE

Dest.	Marks:	70
Cul	IVIATES:	707

Time: 3 Hour

The figures in the margin indicate full marks.

Candidates are instructed to write the answers in their own words as far as practicable.

GROUP-A

[OBJECTIVE TYPE QUESTIONS]

Ansv	ver all questions			
X	Define pre-fetch buffer.		3/12 10	
	What is array processor?			
3/	What is 90-10 rule for program	execution?		
4.	Define vector stride.			
5.	What is VLIW?			

GROUP-B

[LONG ANSWER TYPE QUESTIONS]

Answer any four questions

6. i) Derive speed up ratio of pipeline processing over non-pipeline processing.

ii) Consider the following pipelined processor with four stages. All successor stages must be used after each clock cycle. Assume the clock time t=20 ns.

- a) Specify the reservation table for this pipeline with six columns and four rows.
 b) Derive the forbidden latencies, permissible latencies and initial collision vector from the reservation table.
 c) Draw the state diagram which shows all possible latency cycles.
 d) Find all greedy cycle and compute the minimum average latency.
 e) Compute the throughput in MIPS of the above pipeline processor.
- 7, i) Explain the working principle of data flow computers. List some potential problems with data flow 5+2 computer implementation.
 ii) Show the data flow execution of X=(a+b)(a-b) considering a=20, b=10.
 - iii) How data flow computer is different from control flow computer?
- 8 ii) What is the difference between linear and non-linear pipelining? Discuss different stages of instruction 2+3 pipelining.

 iii) Write a short note on pipeline hazards.

 5
- iii) Determine the number of clock cycles that a pipeline processor takes to process 501 instructions in a six-segment pipeline. Compute the total execution time and throughput when clock time t=20 ns. 2+3
- Explain the memory hierarchy pyramid, showing register, cache, primary and secondary memories in the diagram and also explain the relationship of cost, speed and expacity.
 - ii) What is locality of reference property of memory hierarchy? How does it improve the performance of 5 a computer system?
 - iii) Consider a two level memory hierarchy, M1 and M2. Denote the hit ratio of M1 as h. Let c1 and c2 be the costs per KB, s1 and s2 the memory capacities, and t1 and t2 the access times.

	respectively.	
	n) Under what conditions will the average cost of the entire memory system approach c2?	5
	b) Find effective access time t _{eff} of this memory system when h=0.9, t1=.40 ns and t2= 10 ms.	
10.	 Define multiprocessor and multicomputer system. Differentiate them with respect to memory sharing and message passing mechanisms. 	4+2
	ii) Describe UMA, NUMA and COMA with their architectural diagram.	5
	iii) Draw a diagram of SIMD architecture and explain its working principle.	4
11	i) What is virtual memory?	2
	ii) State Belady's Anomaly with a suitable example.	3
	State the Optimal algorithm for page replacement. Find the page fault for the following page sequence with four frames using FIFO, LRU and Optimal algorithms. 02, 01, 05, 01, 03, 07, 03, 05, 09, 10, 07, 06, 11, 10, 09, 11, 01, 07, 06, 09, 10.	10
12	Write short notes on the following topics. (Any three) 5x3 =15 Flynn's classification of computer ii) Internal data forwarding	
	iii) Gather and scatter instructions	
	iv) Inclusion and coherence properties	
	v) Bernstein's conditions	

22101104640

JALPAIGURI GOVERNMENT ENGINEERING COLLEGE [A GOVERNMENT AUTONOMOUS COLLEGE] JGEC/B.TECH/CSE/PAPER CODE:BS-M 401/2023-24 2024

MATHEMATICS III

Full Marks: 70

Times: 3 Hours

The figures in the margin indicate full marks.

Candidates are instructed to write the answers in their own words as far as practicable,

GROUP-A

Ar	ISWER All questions: [OBJECTIVE TYPE QUESTIONS]	
1.	Tenneform II	$5 \times 2 = 10$
2.	Examine the convergence of the c	2
3.	Examine the convergence of the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$. Draw a graph which is neither Eulerian nor Hamiltonian. Justify your claim.	2
4.	Using Green's theorem, show that $\frac{1}{2} \oint_C (x dy - y dx) =$ Area of the region enclosed by the closed curve C .	2
200	closed curve C. $2^{\gamma}C^{\gamma}(x^{\alpha}y^{-\gamma}y^{\alpha}x) = \text{Area of the region enclosed by the}$	2
5.	Change the order of integration and then evaluate $\int_{y=0}^{I} dy \int_{x=0}^{y} e^{\frac{y}{x}} dx$.	2
Ar	GROUP-B [LONG ANSWER TYPE QUESTIONS]	70

Answer any five questions

6.	(i) Solve: $(xy - x^2y^2)ydx + (xy + 2x^2y^2)xdy = 0$.	$12 \times 5 = 60$
	(ii) Solve: $x^4 \frac{dy}{dx} + x^3 y = y^2$.	4
	$\frac{1}{dx} + x y = y^{-}.$	4
	(iii) Find the general solution and singular solution of the differential equation	5525
	$y = px + \sqrt{49p^2 + 25}$ where $p = \frac{dy}{dx}$.	4
7	_ dx	

(i) Define the complement \tilde{G} of a simple graph G. Draw the complement of the graph G with 1+2 7. vertices a, b, c, d, e, f given below:

(ii) Show that the maximum number of edges in a simple graph with n vertices and m 5 components is $\frac{1}{2} (n-m)(n-m+1)$.

(iii) If a graph G has exactly two vertices of odd degree, show that there must be a path 4

	(i) Test the series for convergence: $\frac{x}{1} + \frac{1}{2} \cdot \frac{x^2}{3} + \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{x^3}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^4}{7} + \cdots$ (x > 0).	4
8.	(i) Test the series for convergence 1 2 3 2.4 5 2.4.6 /	4
	(ii) Show that the infinite series $\frac{1}{1\cdot 3} - \frac{2}{3\cdot 5} + \frac{3}{5\cdot 7} - \frac{4}{7\cdot 9} + \cdots$ converges conditionally. (iii) Expand the function $f(x) = \log_e(1+x)$ in infinite series in powers of x stating the	4
	conditions under which the expansion is valid.	*
/	O Define a spanning tree of a connected graph. Prove that a graph G has a spanning	1+1+2
9/	tree if and only if G is connected. (ii) Use Prim's algorithm to find the minimal spanning tree in the graph G given below:	
		5
	.\ . /	
	\ /'	
	\ / .	
	· ·	
70	(iii) Find the number of dependent vertices in a binary tree with n vertices.	2
10.	(i) Solve: $(D^2 - 5D + 6)y = x^2e^{-b}$ where $D \equiv \frac{d}{dx}$.	4
V .	47.	4
		4
	(ii) Solve: $(D^3 - D^2 + 3D + 5)y = e^x \cos x$ where $D = \frac{d}{dx}$.	,
11.	(i) Solve by method of variation of parameters: $\frac{d^2y}{dx^2} + y = \cos \theta cx$.	
	(a) Solve: $x^3 \frac{d^2y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + 8y = 65 \cos(\log x)$.	4
	(ii) Show that if $l\frac{d^2\theta}{dt^2} + g\theta = 0$, $\theta = \alpha$ and $\frac{d\theta}{dt} = 0$ when $t = 0$, then $\theta = \alpha \cos \sqrt{\frac{\pi}{2}}t$ (g, l)	4
1150020	are positive real numbers).	4
12,	DEvaluate the line integral $\oint_C (2xy - x^2)dx + (x + y^2)dy$ where C is the closed	-
	curve of the region bounded by $y = x^2$ and $y^2 = x$.	
	(ii) Determine $\iint_R (x^2 + y^2) dx dy$ where R is the region bounded by the curves	4
	$y = x^2$, $x = 2$ and $y = 1$.	0
	(iii) Evaluate $\iint_S \vec{F} \cdot nds$ where $\vec{F} = z\vec{i} + x\vec{j} - 3y^2z\vec{k}$ and S is the surface of the	4
12	cylinder $x^2 + y^2 = 16$ included in the first octant between $z = 0$ and $z = 4$.	
13/	(i) Using Green's theorem evaluate $\oint_C (xydx + y^2xdy)$, where C is the closed curve	4
	bounded by $y = x$, $y = 0$ and $x = 1$. (ii) Evaluate $\int_C \vec{F} \cdot d\vec{r}$ by Stoke's theorem, where $\vec{F} = y^2\vec{i} + x^2\vec{j} - (x + z)\vec{k}$ and C is	
	(ii) Evaluate $\int_C F \cdot dr$ by Stoke's theorem, where $F = y^{-1} + x^{-1} - (x + z)R$ and C is	4
	the boundary of the triangle with vertices at (0,0,0), (1,0,0), (1,1,1).	
	$\mathcal{G}(s)$ Evaluate by Gauss Divergence theorem $\iint_S F. nds$	

where $\vec{F}=x^2\hat{i}+y^2\hat{j}+2z(xy-x-y)\hat{k}$ and S is the surface of the cube $0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1.$

KoH I	No.: Name.		
	JALPAIGURI GOVERNMENT ENGINEERING COLI	EGE	
	A GOVERNMENT AUTONOMOUS COLLEGE		
aren.	JGEC/B.TECH/ CSE/ 2023-24/2024	Paper code: MC-4	101
Paper	r name: ENVIRONMENTAL SCIENCES	I aper cook	
	2012/22	Times: 3 Hours	
Pull I	Marks: 70		
	The figures in the margin indicate full marks.		
	Candidates are instructed to write the answers in their own words as for	ır as practicable.	
	GROUP-A		
	[OBJECTIVE TYPE QUESTIONS]		5x2=10
Ansy	eer all questions		322-10
V.	Write down all the non-conventional resources.		
2, 3, 4,	What are the main objectives of environmental science?		
3,	Name the different types of diseases caused by water pollution.		
	Name six greenhouse gases.		
5.	What do you mean by temperature lapse rate? GROUP-B		
	[LONG ANSWER TYPE QUESTIONS]		
Ane	wer any four questions	4:	x15 = 60
6.	i) What is population growth? what is the necessity of population growth study?		1+2
91	ii) What is the paper and scope of environmental science and engineering?	11 (50.532	3
	iii) Define doubling time of population. Prove that in the case of similar growth at	id decay rates, the half-	2+4
	fife time and doubling time become equal in exponential growth model?		
	iv) In India the increase in population from 33 billion to 120 billion took 60 years.	For exponential growth	3
	at constant rate, what will be the growth rate?		
			2+3
7.	i) Define eco-system? What are the components of eco-system?	nten	
	ii) Write down the main differences between water cycle, gaseous cycle and sedime	ntary.	5
*	iii) Discuss nitrogen cycle.		50
	i) What do you mean by pesticides? Name some pesticides. Why they are s	o dangerous for living	1+2+3
8.	organisms? What could be the remedy for pesticides?		+3
92	ii) Discuss the bio-chemical effects of heavy metals (cadmium, mercury, and lead).		3
	iji) What are the effects of acidification of water (effect of pH)?		3
9.	 What is the importance of dissolve exygen in as water quality parameter. 	A PROGRAMMEN AND A STANDARD CO.	2
379.7	ii) What are the factors responsible for deficiency of oxygen in a river? In what	way do organic wastes	2+3
	affect river water quality and aquatic life?		
	iii) Write down the differences between BOD and COD.		3
	iv) The BOD reaction rate constant is 0.30/day. Calculate the expected BODs if t	he two-day BOD is 150	3
	mg /l. (suppose temperature is constant).		2
	v) Write in brief about biological diversity act, 2002.		4
noan		a Proprieta and Addisor	441
10.		ed on composition.	4+1
	ii) Describe the role of ozone layer in stratosphere.		4
	(iii) What is greenhouse effect? iv) Why do some gases behave as greenhouse gases and others do not?		4
	iv) why on some gases behave as greemouse gases and deters do not.		100
11.	i) What is global warming?		3
***	ii) What do you mean by particulate matter? Explain its role on air pollution.	17	1+3
	iii) What is PAN? Outline the harmful effects of PAN on human beings.		1+3
	iv) Write the difference between photochemical smog and London smog.		4
			40.5
12.	Write short notes on any three of the following: i) Logistic growth model of popular	lation ii) Eutrophication	3x5
	iii) Hardness of water iv) Electrostatic precipitator v) Primary and Secondary	pollulant vi) Catalytic	
	converier,		