Insulin

- 1st molecule shown to have hormone effects
- 1st protein to be sequenced
- 1st protein to be crystallized
- 1st protein to be chemically synthesized
- 1st hormone to be made clinically available by recombinant DNA technology
- Insulin is an <u>anabolic</u> hormone leads to:
 - Increased glycogenesis
 - Increased lipogenesis
 - Increased protein synthesis

 Insulin is the single hormone which opposes the effects of: glucagon, epinephrine, norepinephrine, and others.

Table 51–3. Enzymes whose degree of phosphorylation and activity are altered by insulin.¹

Enzyme	Change in Activity	Possible Mechanism
CAMP metabolism Phosphodiesterase (low K _m) Protein kinase (cAMP-dependent)	Increase Decrease	Phosphorylation Association of R and C subunits
Glycogen metabolism Glycogen synthase Phosphorylase kinase Phosphorylase	Increase Decrease Decrease	Dephosphorylation Dephosphorylation Dephosphorylation
Glycolysis and gluconeogenesis Pyruvate dehydrogenase Pyruvate kinase 6-Phosphofructo-2-kinase Fructose-2,6-bisphosphatase	Increase Increase Increase Decrease	Dephosphorylation Dephosphorylation Dephosphorylation Dephosphorylation
Lipid metabolism Acetyl-CoA carboxylase HMG-CoA reductase Triacylglycerol lipase	Increase Increase Decrease	Dephosphorylation Dephosphorylation Dephosphorylation
Signaling molecules p42/44MAP kinase p90RSK GSK3 p70 S6 kinase Phosphoprotein phosphatase 1G	Increase Increase Decrease Increase Increase	Dephosphorylation Dephosphorylation Dephosphorylation Dephosphorylation Dephosphorylation

¹Modified and reproduced, with permission, from Denton RM et al: A partial view of the mechanism of insulin action. Diabetologia 1981;21:347.

Also: †glucose transporters †PFK, PK, PFK2/FBPase mRNA

Insulin Deficiency – Diabetes Mellitus

Biochemistry -

The cells (the body) starve for glucose under conditions of severe HYPERGLYCEMIA!!!

Body Fuels are broken down constantly to increase lipolysis, increase glycogenolysis increase protein degradation.

Ketone bodies are formed -> metabolic acidosis

Causes and Types of Diabetes

- I Insulin Dependent juvenile onset ~ 10%
 - defect in insulin production
 - autoimmune disease against pancreas
- II Non-Insulin Dependent adult onset ~ 90%
 - defect in insulin receptor?
 - can be autoimmune disease
 - often associated with obesity
 - can be controlled be diet, exercise

Metabolic Responses to Insulin Deficiency

Fatty Acid Synthesis

Intracellular: NADH / NAD+ ~ 1/1000

NADPH / NADP+ ~ 100/1

Pentose Phosphate Pathway

- 2 Functions: 1) generate NADPH
 - 2) generate ribose-5-phosphate

Substrate is Glucose-6-P:

Pentose Phosphate Pathway

- Fatty acid synthesis occurs in the cytosol
- Acetyl CoA is the substrate, and therefore acetyl CoA must be transported out from the mitochondria.
- FA synthesis requires NADPH which comes from the pentose phosphate pathway.

The Tricarboxylate Transporter

Intracellular: NADH / NAD+ ~ 1/1000

NADPH / NADP+ ~ 100/1

NADH is maintained low, while NADPH is maintained high to drive glycolysis and fatty acid synthesis at the same time.

Activation of Acetyl-CoA

$$H_3C \xrightarrow{O} SCoA + HCO_3 \xrightarrow{ATP} OOC \xrightarrow{C} SCoA$$

Acetyl-CoA

Malonyl-CoA

See mechanism of pyruvate carboxylase

β-Ketoacyl-ACP

Desaturation

- occurs on the membrane of the ER.
- involves oxidation carried out by a mini e- transport chain
- O₂ is the final e- acceptor
- Requires NADH!

H⁺ + NADH
$$E - FAD$$
 Fe^{2+} Fe^{3+} Fe^{2+} Fe

Mammals cannot introduce double bonds further out than C₉.

Hence, linoleic acid (18:2 cis Δ^9 , Δ^{12}) and linolenic acid (18:3 cis Δ^9 , Δ^{12} , Δ^{15}) cannot be made.

They must be obtained from the diet.

Acetyl CoA Carboxylase

Control of FA Synthesis

Acetyl-CoA

Citrate (+) Palmitoyl CoA Acetyl CoA AMP \bigcirc carboxylase Glucagon Epinephrine Insulin (+) cAMP \bigcirc Malonyl CoA Fatty Acids

Synthesis of Palmitate Requires:

- 8 Acetyl-CoA
- 7 ATP
- 14 NADPH

Synthesis of Triacylglycerol

In adipose tissue, glucose is required to generate DHAP, the direct precursor of glycerol-3P

FA synthesis occurs primarily in **LIVER**, some in adipose tissue, some in skeletal muscle.

TAG is made in **LIVER** & adipose tissue. Main function of adipose tissue is **TAG STORAGE**.

In adipose tissue, G3P must be made from glucose.

G3P cannot be made from glycerol.

Thus, glucose is required in adipose tissue for synthesis of TAG.