

UML: <u>Diagrama de Classes</u>

UML – Diagrama de Classes

- Introdução Diagrama de classes
- Elementos do diagrama de classes
- Exemplo: Sistema de matrícula

Introdução - Diagrama de Classes

- Mostra um conjunto de classes e seus relacionamentos.
- É o diagrama central da modelagem orientada a objetos.

- Elementos de um diagrama de classes
 - Classes
 - Relacionamentos
 - Associação
 - Agregação
 - Composição
 - Generalização
 - Dependência

- Elementos de um diagrama de classes
 - Classes
 - Relacionamentos
 - Associação
 - Agregação
 - Composição
 - Generalização
 - Dependência

Classes

 Graficamente, as classes são representadas por retângulos incluindo <u>nome</u>, <u>atributos</u> e <u>métodos</u>.

- Devem receber nomes de acordo com o vocabulário do domínio do problema.
- É comum adotar um padrão para nomeá-las

Ex: todos os nomes de classes serão substantivos singulares com a primeira letra maiúscula

Classes

- Atributos
 - Representam o conjunto de características (estado) dos objetos daquela classe
 - Visibilidade:
 - + público: visível em qualquer classe de qualquer pacote
 - # protegido: visível para classes do mesmo pacote
 - privado: visível somente para classe

Exemplo:

+ nome : String

Classes

- Métodos
 - Representam o conjunto de operações (comportamento) que a classe fornece
 - Visibilidade:
 - + público: visível em qualquer classe de qualquer pacote
 - # protegido: visível para classes do mesmo pacote
 - privado: visível somente para classe

Exemplo:

- getNome() : String

- Elementos de um diagrama de classes
 - Classes
 - Relacionamentos
 - Associação
 - Agregação
 - Composição
 - Generalização
 - Dependência

Relacionamentos

- Os relacionamentos possuem:
 - Nome: descrição dada ao relacionamento (faz, tem, possui,...)
 - Sentido de leitura
 - Navegabilidade: indicada por uma seta no fim do relacionamento
 - Multiplicidade: 0..1, 0..*, 1, 1..*, 2, 3..7
 - Tipo: associação (agregação, composição), generalização e dependência
 - Papéis: desempenhados por classes em um relacionamento

Relacionamentos

E a navegabilidade?

Relacionamentos

 O cliente sabe quais são seus endereços, mas o endereço não sabe a quais clientes pertence

- Elementos de um diagrama de classes
 - Classes
 - Relacionamentos
 - Associação
 - Agregação
 - Composição
 - Generalização
 - Dependência

Relacionamentos: Associação

- Uma associação é um relacionamento estrutural que indica que os objetos de uma classe estão vinculados a objetos de outra classe.
- Uma associação é representada por uma linha sólida conectando duas classes.

Relacionamentos: Associação

- Indicadores de multiplicidade:
 - 1 Exatamente um
 - 1..* Um ou mais
 - 0..* Zero ou mais (muitos)
 - * Zero ou mais (muitos)
 - 0..1 Zero ou um
 - m..n Faixa de valores (por exemplo: 4..7)

Relacionamentos: Associação

Relacionamentos: Associação

Exemplo:

- Um Estudante pode ser
 um aluno de uma Disciplina e
 um jogador da Equipe de Futebol
- Cada Disciplina deve ser cursada por no mínimo 1 aluno
- Um aluno pode cursar de 0 até 8 disciplinas

- Elementos de um diagrama de classes
 - Classes
 - Relacionamentos
 - Associação
 - Agregação
 - Composição
 - Generalização
 - Dependência

- Relacionamento: Agregação
 - É um tipo especial de associação
 - Utilizada para indicar "todo-parte"

um objeto "parte" pode fazer parte de vários objetos "todo"

- Elementos de um diagrama de classes
 - Classes
 - Relacionamentos
 - Associação
 - Agregação
 - Composição
 - Generalização
 - Dependência

- Relacionamento: Composição
 - É uma variante semanticamente mais "forte" da agregação
 - Os objetos "parte" só podem pertencer a um único objeto "todo" e têm o seu tempo de vida coincidente com o dele

Quando o "todo" morre todas as suas "partes" também morrem

Relacionamento: Composição

Ex:

Agregação X Composição

- Elementos de um diagrama de classes
 - Classes
 - Relacionamentos
 - Associação
 - Agregação
 - Composição
 - Generalização
 - Dependência

- Relacionamento: Generalização
 - É um relacionamento entre itens gerais (superclasses) e itens mais específicos (subclasses)

- Elementos de um diagrama de classes
 - Classes
 - Relacionamentos
 - Associação
 - Agregação
 - Composição
 - Generalização
 - Dependência

- Relacionamento: Dependência
 - Representa que a alteração de um objeto (o objeto indepedendente) pode afetar outro objeto (o objeto dependente)

Ex:

cliente ----- fornecedor

Obs:

- A classe cliente depende de algum serviço da classe fornecedor
- A mudança de estado do fornecedor afeta o objeto cliente
- A classe cliente n\u00e3o declara nos seus atributos um objeto do tipo fornecedor
- Fornecedor é recebido por parâmetro de método


```
Import java.awt.Graphics;
class HelloWorld extends java.applet.Applet
{
   public void paint (Graphics g)
       g.drawString("Hello, world!", 10, 10);
}
       Applet
     HelloWorld
                                      Graphics
    paint(Graphics g)
```


- Classe de associação
 - Usada quando uma associação entre duas classes contiver atributos da associação
 - Atributos farão parte da classe de associação
 - C existe para todo relacionamento de A com B

- C possui referência para A e para B
 - Não existem dois objetos C e C'que referenciam a mesma tupla A,B, isto é, não existe c(a,b,x) e c'(a,b,x') onde a e b são objetos de A e B, respectivamente, e x e x' são valores de um atributo de C.

Classe de associação

 Uma pessoa pode fazer mais de um pedido na mesma empresa

Exemplo: O Blog

- Um blog tem um título e uma data de criação e além disso é um conjunto de conteúdos.
- Estes conteúdos (mensagens) podem ser notas ou comentários sobre as notas. Tanto notas quanto comentários têm características comuns como o texto e a data de sua criação.
- Todo usuário possui:
 - E-mail (deve ser único, ou seja, não há mais de um usuário com o mesmo e-mail)

Blog: o sistema deve...

- Permitir a criação de blogs
- Permitir a utilização de blogs
 - Qualquer usuário pode ler conteúdos
 - Somente o dono do blog pode criar notas
 - Qualquer usuário pode criar comentários. Para criar um comentário o usuários precisa ler as notas.
 - Somente o dono do blog pode remover conteúdos. Para remover um conteúdo ele precisará ler o conteúdo. Caso ele remova um comentário, o autor do comentário deve ser notificado por e-mail.

Software de Engenharia Laboratório de

Blog: Casos de uso

Software

Blog: Diagrama de Classes

Descrição

A Universidade XYZ deseja informatizar seu sistema de matrículas:

- A universidade oferece vários cursos.
- O Coordenador de um curso define as disciplinas que serão oferecidas pelo seu curso num dado semestre.
- Várias disciplinas são oferecidas em um curso.
- Várias turmas podem ser abertas para uma mesma disciplina, porém o número de estudantes inscritos deve ser entre 3 e 10.
- Estudantes selecionam 4 disciplinas.
- Quando um estudante matricula-se para um semestre, o Sistema de Registro Acadêmico (SRA) é notificado.
- Após a matrícula, os estudantes podem, por um certo prazo, utilizar o sistema para adicionar ou remover disciplinas.
- Professores usam o sistema para obter a lista de alunos matriculados em suas disciplinas. O Coordenador também.
- Todos os usuários do sistema devem ser validados.

Diagrama de Casos de Uso

Descrição do Caso de Uso "Matricular em Disciplina"

- Esse caso de uso se inicia quando o Estudante de Curso inicia uma sessão no sistema e apresenta suas credenciais.
- O sistema verifica se a credencial é válida.
- O sistema solicita que o estudante realize sua matrícula, selecionando 4 disciplinas.
- O estudante preenche um formulário eletrônico de matrícula e o submete para uma análise de consistência.
- O sistema analisa as informações contidas no formulário.
 - Se as informações são consistentes, o estudante é incluído em turmas abertas de 4 disciplinas, iniciando pelas preferenciais.
 - Se as informações não são consistentes, o sistema informa o motivo da inconsistência e solicita que o formulário seja alterado.

Diagrama de Classes: identificando as classes

Professor

Coordenador

Estudante

Universidade

Disciplina

Turma

Curso

FormularioMatricula

AnalisadorMatricula

SistemaRegistroAcademico

ListaAlunos

Diagrama de Classes: identificando os relacionamentos

- Exemplos de candidatos a relacionamentos:
 - A é parte física ou lógica de B.
 - A está contido fisicamente ou logicamente em B.
 - A é uma descrição de B.
 - A é membro de B.
 - A é subunidade organizacional de B.
 - A usa ou gerencia B.
 - A se comunica/interage com B.
 - A está relacionado com uma transação B.
 - A é possuído por B.
 - A é um tipo de B.

Diagrama de Classes: identificando os relacionamentos

 O formulário de matrícula <u>é processado por</u> um analisador de matrícula

O analisador de matrícula gerencia a disciplina

Diagrama de Classes

Diagrama de Classes: identificando os atributos

 Os atributos podem ser encontrados examinando-se as descrições dos casos de uso e também pelo conhecimento do domínio do problema.

 Cada turma oferecida possui um código, uma sala e um horário.

Turma código sala horário

Diagrama de Classes

Diagrama de Classes: identificando os métodos

Diagrama de Classes:

E a navegabilidade?


```
public class Estudante {
    private String nome;
    private String matricula;
    private String sala;
    private Estudante alunos[];
}
```

OBS: Turma não aparece como atributo de Estudante!

Diagrama de Classes:

- Acrescentando generalizações:
 - Atributos, operações e/ou relacionamentos comuns podem ser movidos para uma classe mais geral.

