CPE301 – SPRING 2024

Design Assignment 3

Student Name: Johnathan Widney

Student #: 5000354900

Student Email: widney@unlv.nevada.edu

Primary Github address: https://github.com/JackOfSpades-7/UNLV-Embeded-Systems

Directory:

https://github.com/JackOfSpades-7/UNLV-Embeded-Systems/tree/main/Design%20Assignment

%203

Video Playlist:

https://www.youtube.com/playlist?list=PLoASw0sToF2WLAyQSglq1SsK2MMI-Ypez

Submit the following for all Labs:

- 1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.
- Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

List of Components used

Block diagram with pins used in the Atmega3PB (only)

- Atmega328PB Xplained mini microcontroller board
- Arduino compatible external multifunction development shield
- Male-to-male jumper cables
- Logic analyzer
- Female-to-female ribbon cable
- PC

Block diagrams and pins:

Atmega328PB Micro controller:

ATmega8/48/88/168/328 DIP pinout

- * ATmega48/88/168/328 only
- ATmega8 only
- ▲ Internal oscillator must be enabled Reset pin must be disabled

Arduino compatible multifunction development shield:

For assignments dealing with LED - use the pins PB5,PB4,PB3,PB2. For assignments dealing with switches, pin interrupts use pins PC1,PC2,PC3 For assignments in PWM use ~5/PD5 (T0B), ~6/PD6 (T0A), ~9/PB1 (T1A), ~10/PB2 (T1B-LED), ~11/PB3(T2A-LED),~3/PD3(T2B/Buzzer) For assignments with analog input use A0/PC0-Potentiometer, A4/PC4/LM3X, or EXT @ PC5. PD2 is INT0 pin (external interrupt)

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1

// Define counters for LED toggle delays

volatile uint16_t counter0 = 0; volatile uint16_t counter1 = 0;

```
/* This code contains all subtasks of task 1, as I have all 3 timers running simultaneously Task 1.a is accomplished by Timer 0
Task 1.b is accomplished by Timer 1
Task 1.c is accomplished by Timer 2
Review these code pieces for each respective task
*/
#include <avr/io.h>
#include <avr/interrupt.h>

// Define LED pins
#define LED0_PIN PB5
#define LED1_PIN PB4
#define LED2_PIN PB3
```

```
volatile uint16 t counter2 = 0;
// Initialize Timer 0 in normal mode (no interrupts)
void initTimer0() {
        // Set prescaler to 64 (CS02 = 0, CS01 = 1, CS00 = 1)
        TCCR0B |= (1 << CS01) | (1 << CS00);
        // Set compare match value for 0.1 ms delay
        OCR0A = 25; // (16 MHz / 64) * 0.1 ms = 25
}
// Initialize Timer 1 in CTC mode with interrupt
void initTimer1() {
        // Set CTC mode (WGM12 = 1)
        TCCR1B |= (1 << WGM12);
        // Set prescaler to 256 (CS12 = 1, CS11 = 0, CS10 = 0)
        TCCR1B |= (1 << CS12);
        // Set compare match value for 0.5 ms delay
        OCR1A = 125; // (16 MHz / 256) * 0.5 ms = 125
        // Enable Timer 1 compare match interrupt
        TIMSK1 |= (1 << OCIE1A);
}
// Initialize Timer 2 in normal mode with interrupt
void initTimer2() {
        // Set prescaler to 64 (CS22 = 1, CS21 = 0, CS20 = 1)
        TCCR2B |= (1 << CS22) | (1 << CS20);
        // Set compare match value for 0.25 ms delay
        OCR2A = 63; // (16 MHz / 64) * 0.25 ms = 63
        // Enable Timer 2 compare match interrupt
        TIMSK2 = (1 << OCIE2A);
}
// Timer 1 compare match ISR
ISR(TIMER1_COMPA_vect) {
        counter1++;
        if (counter1 \geq= 6000) { // 3 seconds / 0.5 ms = 6000
                PORTB ^= (1 << LED1_PIN); // Toggle LED1
                counter1 = 0;
        }
}
// Timer 2 compare match ISR
ISR(TIMER2_COMPA_vect) {
        counter2++;
        if (counter2 >= 8000) { // 2 seconds / 0.25 ms = 8000
                PORTB ^= (1 << LED2 PIN); // Toggle LED2
                counter2 = 0:
        }
}
int main() {
        // Initialize LEDs as outputs
```

```
DDRB |= (1 << LED0_PIN) | (1 << LED1_PIN) | (1 << LED2_PIN);
        // Initialize timers
        initTimer0();
        initTimer1();
        initTimer2();
        // Enable global interrupts
        sei();
        while (1) {
                 // Check Timer 0 (0.1 ms delay)
                 if (TIFR0 & (1 << OCF0A)) {
                         counter0++;
                         if (counter0 >= 10000) { // 1 second / 0.1 ms = 10000
                                  PORTB ^= (1 << LED0_PIN); // Toggle LED0
                                 counter0 = 0;
                         TIFR0 |= (1 << OCF0A); // Clear the flag
                 }
        }
        return 0;
}
```

3. SCHEMATICS

Use KICAD schematics only (not required for DA1 simulation)

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Task 1:

```
Advanced Mode 🗸 Quick Launch (Ctrl+Q)
cpe301-DA-3-task-1 - Microchip Studio
→ Д ×
                                 ⊕ main()
             #include <avr/io.h>
#include <avr/interrupt.h>
             // Define LED pins
#define LED0_PIN PB5
#define LED1_PIN PB4
#define LED2_PIN PB3
             // Define counters for LED toggle delays
volatile vint16_t counter0 = 0;
volatile vint16_t counter1 = 0;
volatile vint16_t counter2 = 0;
                                                                                                                                                                                                                                               - + 1 ×
      Show output from: Build

Done executing task "BunCompilerTask".

Task "RunOutputFileVerifyTask"

Program Memory Usage : 626 bytes 1.9 % Full
Data Memory Usage : 6 bytes 0.3 % Full
Warning: Memory Usage : 6 bytes 0.3 % Full
Data Memory Usage : 6 bytes 0.3 % Full
One executing task "RunOutputFileVerifyTask".

Done executing task "RunOutputFileVerifyTask".

Done building target "CoreBuild" in project "cpe301-DA-3-task-1.cproj".

Target "PostBuildEvent" skipped, due to false condition; ('$(PostBuildEvent)' != '') was evaluated as ('' != '').

Target "Build" in file "C:\Program Files (x86)\Atme\Studio\7.6\V\s\Avr.common.targets" from project "C:\Users\jdwid\OneDrive\Documents\School\Spring 2024\CPE 301\Design Done building target "Build" in project "cpe301-DA-3-task-1.cproj".

Done building target "Build" in project "cpe301-DA-3-task-1.cproj".

Done building project "cpe301-DA-3-task-1.cproj".
                                                                                 🕝 🔓 😉 🎽 👺
 Build succeeded.
------Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ========
```

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Task 1:

6. VIDEO LINKS OF EACH DEMO

Task 1: https://www.youtube.com/playlist?list=PLoASw0sToF2WLAyQSglq1SsK2MMI-Ypez

7. GITHUB LINK OF THIS DA

Task 1:

 $\frac{https://github.com/JackOfSpades-7/UNLV-Embeded-Systems/blob/main/Design\%20Assignment\%203/Task-1-code.c}{}$

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Johnathan Widney