AI & Machine Learning Applications

Terminology

Machine Learning, Data Science, Data Mining, Data Analysis, Statistical Learning, Knowledge Discovery in Databases, Pattern Discovery.

Machine learning is an application of artificial **intelligence** (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed.

Data everywhere!

- ➤ Google: processes 24 peta bytes of data per day.
- Facebook: 10 million photos uploaded every hour.
- > Youtube: 1 hour of video uploaded every second.
- > Twitter: 400 million tweets per day.
- > Astronomy: Satellite data is in hundreds of PB.
- **>** ...
- ➤ \By 2020 the digital universe will reach 44 zettabytes..."

That's XYZ trillion gigabytes!

Data types

Data comes in different sizes and also flavors (types):

- > Texts
- > Numbers
- > Clickstreams
- > Graphs
- > Tables
- Images
- > Transactions
- > Videos
- Some or all of the above!

Difference Between Traditional Programming and Machine Learning

Traditional Programming

Machine Learning

Applications of Machine Learning

- Spam filtering
- Credit card fraud detection
- > Digit recognition on checks, zip codes
- Detecting faces in images
- ➤ MRI image analysis
- > Recommendation system
- > Search engines
- Handwriting recognition
- Scene classification

Machine Learning:

- Decision trees
- > Rule induction
- Neural Networks
- > SVMs
- Clustering method
- Association rules
- > Feature selection
- Visualization
- Graphical models
- Genetic algorithm

Key Elements of Machine Learning

Every machine learning algorithm has three components:

Representation: how to represent knowledge. Examples include decision trees, sets of rules, instances, graphical models, neural networks, support vector machines, model ensembles and others.

Evaluation: the way to evaluate candidate programs (hypotheses). Examples include accuracy, prediction and recall, squared error, likelihood, posterior probability, cost, margin, entropy k-L divergence and others.

Optimization: the way candidate programs are generated known as the search process. For example combinatorial optimization, convex optimization, constrained optimization.

Feature Reduction in ML

Theoretical view: More features More information More discrimination power

- In practice:
 - the inclusion of more features leads to worse performance

many reasons why this is not the case!

Curse of Dimensionality

- number of training examples is fixed
 - => the classifier's performance usually will degrade for a large number of features!

The number of training examples required increases exponentially with dimensionality.

Feature Reduction in ML

- Irrelevant and
- redundant features
 - can confuse learners.

- Limited training data.
- Limited computational resources.
- Curse of dimensionality.

Dimensionality Reduction

• Significant improvements can be achieved by first mapping the data into a *lower-dimensional* space.

$$x = \begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_N \end{bmatrix} --> reduce \ dimensionality --> y = \begin{bmatrix} b_1 \\ b_2 \\ \dots \\ b_K \end{bmatrix} \ (K << N)$$

- Dimensionality can be reduced by:
 - Combining features using a linear or non-linear transformations.
 - Selecting a subset of features (i.e., feature selection).

Feature Selection

Problem of selecting some subset of features, while ignoring the rest

Feature Extraction

• Project the original x_i , i = 1,...,d dimensions to new k < d dimensions, z_i , j = 1,...,k

Criteria for selection/extraction:

either improve or maintain the classification accuracy, simplify classifier complexity.

Feature Selection - Definition

- Given a set of features $F = \{x_1, ..., x_n\}$ the Feature Selection problem is to find a subset $F' \subseteq F$ that maximizes the learners ability to classify patterns.
- Formally F' should maximize some scoring function

Subset selection

- *d* initial features
- There are 2^d possible subsets
- Criteria to decide which subset is the best:
 - classifier based on these m features has the lowest probability of error of all such classifiers
- Can't go over all 2^d possibilities
- Need some heuristics

Subset selection

- Select uncorrelated features
- Forward search
 - Start from empty set of features
 - Try each of remaining features
 - Estimate classification/regression error for adding specific feature
 - Select feature that gives maximum improvement in validation error
 - Stop when no significant improvement
- Backward search
 - Start with original set of size d
 - Drop features with smallest impact on error

Feature extraction - definition

• Given a set of features $F = \{x_1, ..., x_N\}$ the Feature Extraction ("Construction") problem is to map F to some feature set F'' that maximizes the learner's ability to classify patterns

Feature Extraction

• Find a projection matrix w from N-dimensional to M- dimensional vectors that keeps error low

$$\mathbf{z} = \mathbf{w}^T \mathbf{x}$$

Types of Learning

Unsupervised learning:

Learning a model from unlabeled data.

Unsupervised learning

Methods: K-means, gaussian mixtures, hierarchical clustering, spectral clustering, etc.

Types of Learning

Supervised learning:

Learning a model from labeled data.

fruit	length	width	weight	label
fruit 1	165	38	172	Banana
fruit 2	218	39	230	Banana
fruit 3	76	80	145	Orange
fruit 4	145	35	150	Banana
fruit 5	90	88	160	Orange
fruit n			•••	

Supervised learning

Methods: Support Vector Machines, neural networks, decision trees, K-nearest neighbors, naive Bayes, etc.

Types of Learning

Semi supervised learning:

Learning a model from unlabeled and labeled data.

Types of Learning

Weakly Supervised learning:

Learning a model from unlabeled and labeled labeled data.

Some Applications

- Skin cancer detection
- Diabetics retinopathy detection
- Brain tumor segmentation
- Cell segmentation in microscopy images
- Cell segmentation and classification with partial annotations

Unsupervised learning

Introduction

- > Supervised classification Algorithms is called as Classification.
- > Unsupervised classification Algorithms is called as Clustering.
- > Pattern is called as feature vector or observation.
- > Depending on application we select the features.

Examples:

Text Documents: Stop words, keywords, etc.

Video :color, color histogram, image edges, etc.

Finger Prints : loops, arch, ridges, valleys, etc.

Introduction

Clustering:

Clustering is the process of grouping a set of data objects into groups of similar objects.

Clustering Background

Cluster: A collection of data objects

- similar to one another within the same cluster
- dissimilar to objects in other clusters

Clustering Background

- One of the functionalities of pattern recognition.
- Unsupervised learning
- Different to classification
- No training set required
- Applications : Marketing,
 Biology,
 Documents.

Uses: Clustering useful in several exploratory Pattern analysis, Grouping Decision makings and Machine learning algorithms.

Challenges in Clustering

- Clustering of Large data set.
- Fastness of Clustering Algorithm.

Examples of Clustering Applications

- <u>Marketing:</u> Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Land use: Identification of areas of similar land use in an earth observation database
- <u>Insurance</u>: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning</u>: Identifying groups of houses according to their house type, value, and geographical location
- <u>Earth-quake studies</u>: Observed earth quake epicenters should be clustered along continent faults

Quality: What is Good Clustering?

- A good clustering method will produce high quality clusters with
 - high intra-class similarity
 - low inter-class similarity
- The quality of a clustering result depends on both the similarity measure used by the method and its implementation

Major Clustering Approaches

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion, e.g., minimizing
 - the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS

• Hierarchical approach:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON

Density-based approach:

- Based on connectivity and density functions
- Typical methods: DBSACN, OPTICS, DenClue

Major Clustering Approaches

- Grid-based approach:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE
- Model-based:
 - A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
 - Typical methods: EM, SOM

System Architecture

Typical Alternatives to Calculate the Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_j) = min(t_{ip}, t_{jq})$
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_j) = max(t_{ip}, t_{jq})$
- Average: avg distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_j) = avg(t_{ip}, t_{jq})$
- Centroid: distance between the centroids of two clusters, i.e., $dis(K_i, K_j) = dis(C_i, C_j)$
- Medoid: distance between the medoids of two clusters, i.e., $dis(K_i, K_j) = dis(M_i, M_j)$
- Medoid: one chosen, centrally located object in the cluster

Partitioning Clustering Algorithms

Partitioning Method: Given a database of n objects, a portioning method constructs k partitions of the data, where each partition represents a cluster and k<n

Requirements:

- 1. Each group must contains at least one object.
- 2. Each object must belongs to exactly one group.
 - <u>k-means</u> (MacQueen'67): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

K-Means (Centroid -Based Technique)

Input: The number of clusters k, data base contain n objects.

Output: A set of k clusters. Method:

- 1. arbitrarily choose k objects as the initial cluster centers.
- 2. repeat
- 3. assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster.
- 4. update the cluster center means.
- 5. until no change.

The *K-Means* Clustering Method

Example

Drawbacks

- ❖ Applicable only when *mean* is defined
- \bullet Need to specify k, the *number* of clusters, in advance
- Unable to handle noisy data and *outliers*
- ❖Not suitable to discover clusters with *non-convex shapes*

Applications Related to Mechanical Dept.

- Classification methods are used to find out the likelihood of new shaft being failure one under given load condition.
- Engine Prognosis
- ➤ Tool condition monitoring (using vibration/sound/acceleration data to predict wear and tear through regression)

Image Classification

Feature Extraction

Features are the information or list of numbers that are extracted from an image. These are real-valued numbers (integers, float or binary).

Texture

Global Feature Descriptors

These are the feature descriptors that quantifies an image globally.

- **Color** Color Channel Statistics (Mean, Standard Deviation) and Color Histogram
- > Shape
- > Texture
- > Others Histogram of Oriented Gradients (HOG)

Local Feature Descriptors

- These are the feature descriptors that quantifies local regions of an image.
- ➤ Interest points are determined in the entire image and image patches/regions surrounding those interest points are considered for analysis.

- SIFT (Scale Invariant Feature Transform)
- SURF (Speeded Up Robust Features)
- BRIEF (Binary Robust Independed Elementary Features)

FLOWERS-17 dataset

Thank You