Lecture 13

Inference on Two Population Means
Text: Chapter 6

STAT 8010 Statistical Methods I February 27, 2020

> Whitney Huang Clemson University

Notes

Agenda

- Inference on Two Population Means: Two-Sample t Confidence Intervals/Tests
- Paired T-Test

Comparing Two Population Means

- We often interested in comparing two groups (e.g.)
 - Does a particular pesticide increase the yield of corn per acre?
 - Do men and women in the same occupation have different salaries?
- The common ingredient in these questions: They
 can be answered by conducting statistical inferences
 of two populations using two (independent) samples,
 one from each of two populations

Inference on Two Population Means	
CLEMS#N	
Inference on Two Population Means: Two-Sample t Confidence Intervals/Tests	

Notes			
Notes			
-			
-			

Notation

- Parameters:
 - Population means: μ_1, μ_2
 - Population standard deviations: σ_1, σ_2
- Statistics:
 - Sample means: \bar{X}_1, \bar{X}_2
 - Sample standard deviations: s_1, s_2
 - Sample sizes: n_1, n_2

Notes

Notes

Statistical Inference for $\mu_1 - \mu_2$

- Point estimate: $\bar{X}_1 \bar{X}_2$
- Interval estimate: Need to figure out $\sigma_{\bar{X}_1 \bar{X}_2}$
- Hypothesis Testing:
 - Upper-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 > 0$
 - Lower-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 < 0$
 - Two-tailed test: $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 \neq 0$

13.5

Confidence Intervals for $\mu_1 - \mu_2$

If we are willing to **assume** $\sigma_1=\sigma_2$, then we can "pool" these two (independent) samples together to estimate the common σ using s_p :

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

We can then derive the (estimated) standard error of $\bar{X}_1 - \bar{X}_2$, which takes the following form

$$\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

With CLT (assuming sample sizes are sufficiently large), we obtain the $(1-\alpha) \times 100\%$ Cl for $\mu_1-\mu_2$:

$$\underbrace{\bar{X}_1 - \bar{X}_2}_{\text{point estimate}} \pm \underbrace{t_{\alpha/2, n_1 + n_2 - 2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}_{\text{margin of error}}$$

Inference on Two Population Means
CLEMS N
Inference on Two Population Means: Two-Sample t Confidence Intervals/Tests

Notes				

Confidence Intervals for $\mu_1 - \mu_2$: What if $\sigma_1 \neq \sigma_2$?

• We will use s_1^2, s_2^2 as the estimates for σ_1^2 and σ_2^2 to obtain the standard error:

$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

 The formula for the degrees of freedom is somewhat complicated:

$$\frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

• We can then construct the $(1-\alpha) \times 100\%$ CI for $\mu_1 - \mu_2$:

$$\underbrace{\bar{X}_1 - \bar{X}_2}_{\text{point estimate}} \pm t_{\alpha/2, \text{ df calculated from above}} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}_{\text{margin of error}}$$

To Pool ($\sigma_1=\sigma_2$) or Not to Pool ($\sigma_1\neq\sigma_2$)?

We could perform the following test:

- $H_0: \sigma_1^2/\sigma_2^2 = 1 \text{ vs. } \sigma_1^2/\sigma_2^2 \neq 1$
- Test statistic: $F^* = s_1^2/s_2^2$. Under H_0 , $F^* \sim F(n_1-1,n_2-1)$
- For a given α , we reject H_0 if the P-value $<\alpha$ (or $F_{obs}>F_{\alpha}(n_1,n_2)$)
- If we fail to reject H_0 , then we will use s_p as an estimate for σ and we have $s_{\bar{X}_1-\bar{X}_2}=s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}$. Otherwise, we use $s_{\bar{X}_1-\bar{X}_2}=\sqrt{\frac{s_1^2}{n_1^2}+\frac{s_2^2}{n_2}}$

...

Notes

Notes

Example

An experiment was conducted to evaluate the effectiveness of a treatment for tapeworm in the stomachs of sheep. A random sample of 24 worm-infected lambs of approximately the same age and health was randomly divided into two groups. Twelve of the lambs were injected with the drug (treatment group) and the remaining twelve were left untreated (control group). After a 6-month period, the worm counts were recorded:

Treatment	18	43	28	50	16	32	13	35	38	33	6	7
Control	40	54	26	63	21	37	39	23	48	58	28	39

Population Means				
CLEMS#N				
UNIVERSITY				

Inference on Two
Population Means
Two-Sample t
Confidence
Intervals/Tests

Notes

Plot the Two Samples

- n₁ = n₂ = 12 ⇒ sample size is perhaps not large enough for CLT to work. But the boxplots suggest the distributions are symmetric with no outliers
- The untreated lambs (control group) appear to have higher average worm counts than the treated lambs (treatment group). But do we have enough evidence

Notes			

Example Cont'd

We fail to reject $\sigma_1=\sigma_2=\sigma$. Therefore we will use s_p , the pooled standard deviation, as an estimate for σ

Notes

Example Cont'd

- Place a 95% confidence interval on $\mu_1 \mu_2$ to assess the size of the difference in the two population means
- \bullet Test whether the mean number of tapeworms in the stomachs of the treated lambs is less than the mean for untreated lambs. Use an $\alpha=0.05$ test

Inference on Two Population Means CLEMS UNIVERSITY Y
Inference on Two Population Means: Two-Sample t Confidence Intervals/Tests

Notes			

Another Example

A simple random sample with sample size 37 is taken and are subjected to a treatment ($\bar{X}_1=19.45, s_1=4.3$). A Simple random sample with sample size 31 is taken and given a placebo ($\bar{X}_2=18.2, s_2=2.2$). At the 10% level can we say that the means are different between the two groups?

Notes			

Paired T-Test: Motivating Example

Insurance handlers are concerned about the high estimates they are receiving for auto repairs from garage I compared to garage II. To verify their suspicions, each of 15 cars recently involved in an accident was taken to both garages for separate estimates of repair costs. The estimates from the two garages are given in the following table

Inference on Two
Oppulation Means
LLEMS IN Inference on Two
Oppulation Means:
Ww-Sample te
Ww-Sample te
Oppulation Means:
Ww-Sample te
Address Inference on Two

13.14

Notes			

Example Cont'd

Suppose we perform a two-sample test

Sample statistics:

$$\bar{X}_1 = 16.85, \bar{X}_2 = 16.23, s_1 = 3.20, s_2 = 2.94$$

- \bullet $H_0: \mu_1 \mu_2 = 0$ vs. $H_a: \mu_1 \mu_2 > 0$
- $t_{obs} = \frac{\bar{X}_1 \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2^2}}} = \frac{16.85 16.23}{\sqrt{\frac{3.2^2}{15} + \frac{2.94^2}{15}}} = \frac{0.62}{1.12} = 0.55$
- Critical value for rejection region: $t_{0.05,df=27} = 1.70$
- Since t_{obs} is not in the rejection region. We fail to reject H_0 at 0.05 level.

Inference on Two Population Means
CLEMS N
Paired T-Test

Notes			

Boxplots and R Output

Welch Two Sample t-test

data: GarageI and GarageII
t = 0.54616, df = 27.797, p-value =
0.2947
dlternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:
-1.29749 Inf
sample estimates:
mean of x mean of y
16.84667 16.23333

Notes

	22 -							1
	20 -					/.		
Garagell	18 -				/.	•		
Gara	16 -			<i>/</i> :·	•			
	14 -		/•	•				
	12 -	, / (6					
			- 1	-	-	-	-	_
		12	14	16	18	20	22	
				_				

For all but one of the 15 cars, the estimates from garage I were higher than that from garage II.

Analyzing Matched Pairs

- Matched pairs are dependent samples where each unit in the first sample is directly linked with a unit in the second sample
- This could occur in several situations, for example, before/after study, study on twins, pairing subjects based on similar characteristics
- $\bullet \ \, \text{We need different strategy for testing two dependent} \\ \ \, \text{samples} \Rightarrow \text{Paired T-Tests}$

Inference on Two Population Means
CLEMS N
Paired T-Test

Notes	
Notes	
Notes	
Notes	

Paired T-Tests

- $H_0: \mu_{diff} = 0$ vs. $H_a: \mu_{diff} > 0$ (Upper-tailed); $\mu_{diff} < 0$ (Lower-tailed); $\mu_{diff} \neq 0$ (Two-tailed)
- \bullet Test statistic: $t^*=rac{ar{\chi}_{diff}-0}{rac{\gamma_{diff}}{2}}.$ If $\mu_{diff}=0,$ then $t^*\sim t_{df=n-1}$
- Use rejection region method or P-value method to make a decision

Notes

Notes

Car Repair Example Revisited

Garage I - Garage II | Garage I - Garage II | Garage II 17.6 - 17.3 = 0.320.2 - 19.1 = 1.1 19.5 - 18.4 = 1.1 11.3 - 11.5 = **-0.2** 13.0 - 12.7 = 0.3 16.3 - 15.8 = 0.515.3 - 14.9 = 0.4 16.2 - 15.3 = 0.9 12.2 - 12.0 = 0.2 14.8 - 14.2 = 0.621.3 - 21.0 = 0.322.1 - 21.0 = 1.1 17.6 - 16.7 = 0.9 16.9 - 16.1 = 0.8 18.4 - 17.5 = 0.9

- First, compute the difference in paired samples
- Compute the sample mean and standard deviation for the differences
- Then perform a one sample t-test

13.20

Car Repair Example Cont'd

$$\bar{X}_{diff} = 0.61, s_{diff} = 0.39$$

- $t_{obs} = \frac{0.61}{\frac{0.39}{\sqrt{15}}} = 6.03$
- Critical value for rejection region: $t_{0.05,df=14}=1.76 \Rightarrow$ reject H_0
- We do have enough evidence that the true mean repair cost difference for the garage I and II is greater than 0

Population Means					
CLEMS	% N				

Inference on Two Population Means Two-Sample t Confidence Intervals/Tests

Notes			

Boxplot and R Output

Paired t-test

data: GarageI and GarageII
t = 6.0234, df = 14, p-value = 1.563e-05
alternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:
0.439886 Inf
sample estimates:
mean of the differences
0.6133333

Notes			
Notes			
110100			
Notes			
Notes			