Ferienkurs Analysis 1

WS 2012/13 3. Übungsblatt

(Bertram Klein)

Mittwoch, 13. März 2013

Aufgabe 1

Bestimmen Sie die folgenden Grenzwerte:

- a) $\lim_{x\to 0} x \cot x$
- b) $\lim_{x \to 0} \frac{\cos x 1}{\sin^2 x}$
- c) $\lim_{x \to \frac{\pi}{2}} \left(\tan x \frac{1}{\cos x} \right)$
- d) $\lim_{x\to 0} \left(\frac{1}{\exp x 1} \frac{1}{x}\right)$.

Aufgabe 2

Bestimmen Sie die stetige Fortsetzung der Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ mit $f(x) = \frac{x}{\exp x - 1}$ auf ganz \mathbb{R} .

Aufgabe 3

Zeigen Sie, dass die durch $f(x) = \sqrt{|x|}$ gegebene Funktion $f: \mathbb{R} \to \mathbb{R}$ an jedem Punkt $x_p \in \mathbb{R}$ stetig ist. Ist die Funktion auch gleichmässig stetig? *Hinweis*: Es gibt einen gesondert zu behandelnden Punkt, machen Sie dafür eine entsprechende Fallunterscheidung.

Aufgabe 4

Gegeben ist die Funktion $f(x) = \frac{x}{x-1}, f : \mathbb{R} \setminus \{1\} \to \mathbb{R}$.

- a) Für $x_p \neq 1$ bestimmen Sie $\delta(\varepsilon, x_p)$ so, dass für alle x mit $|x x_p| < \delta(\varepsilon, x_p)$ gilt $|f(x) f(x_p)| < \varepsilon$. Hinweis: Benutzen Sie die Abschätzung $|a + b| \geq ||a| |b||$.
- b) Zeigen Sie, dass f für alle $x_p \neq 1$ stetig ist.

Aufgabe 5

Zeigen Sie, dass die Funktion $f(x) = x^2$ mit $f: D \to \mathbb{R}$ auf dem Intervall $D = [1,3] \subset \mathbb{R}$ Lipschitz-stetig ist.

1

Aufgabe 6

Berechnen Sie für die folgenden Funktionen f(x) die jeweiligen Ableitungen nach x.

a)
$$f(x) = \exp(ax)\sin(\omega x + \alpha)$$

b)
$$f(x) = \cos(\sin(\cos(x^2)))$$

Aufgabe 7

Für welche Werte a > 0, $a \in \mathbb{R}$ ist die Funktion $f : \mathbb{R} \to \mathbb{R}$ mit $f(x) = |x|^a \sin \frac{1}{x}$ für $x \neq 0$ und f(0) = 0 im Punkt $x_p = 0$ differenzierbar? Berechnen Sie gegebenenfalls die Ableitung!

Aufgabe 8

Gegeben sei die Funktion $f(x) = 4|x-1|^3 + |x|^3$ auf $-\infty < x < \infty$.

- a) Zeigen Sie: f(x) > 0 für alle x. Welchem Wert strebt f(x) zu für $x \to \pm \infty$?
- b) Berechnen Sie die Ableitung f'(x).

c) Zeigen Sie, dass
$$f''(x) = \begin{cases} -30x + 24, & x \le 0 \\ -18x + 24, & 0 < x \le 1 \\ 30x - 24, & x > 1 \end{cases}$$
.

d) Zeigen Sie, dass f(x) für alle x zweimal differenzierbar ist.

Aufgabe 9

Geben Sie für f(x) jeweils das Taylorpolynom dritten Grades im Punkt x_p an.

a)
$$f(x) = \exp(\sin(x)), x_p = 0.$$

b)
$$f(x) = \log(x^2), x_p = 1.$$

Aufgabe 10

Berechnen Sie die Ableitung nach x dort, wo die Funktion f(x) differenzierbar ist.

2

a)
$$f(x) = |x|$$
.

b)
$$f(x) = x\sqrt{|x|}$$
.