પ્રશ્ન 1(અ) [3 ગુણ]

આકૃતિ સાથે પોઝિટિવ અને નેગેટિવ ફીડબેક વચ્ચેનો તફાવત જણાવો અને સમજાવો.

જવાબ:

પરિમાણ	નેગેટિવ ફીડબેક	પોઝિટિવ ફીડબેક
સિગ્નલ	આઉટપુટ સિગ્નલ વિરુદ્ધ તબક્કા સાથે ઇનપુટ પર પાછો ફીડ કરવામાં આવે છે	આઉટપુટ સિગ્નલ સમાન તબક્કા સાથે ઇનપુટ પર પાછો ફીડ કરવામાં આવે છે
ગેઇન	ઘટાડે છે	વધારે છે
સ્થિરતા	સુધારે છે	ઘટાડે છે
ઉપયોગો	એમ્પલિફાયર્સ	ઓસિલેટર્સ

આકૃતિ:

- ફ્રેઝ સંબંધ: નેગેટિવ ફીડબેકમાં, સિગ્નલ 180° આઉટ ઓફ ફ્રેઝ હોય છે જ્યારે પોઝિટિવ ફીડબેકમાં, સિગ્નલ ઇન ફ્રેઝ હોય છે
- હેતુ: નેગેટિવ ફીડબેક સિસ્ટમને સ્થિર કરે છે જ્યારે પોઝિટિવ ફીડબેક ઓસિલેશન ઉત્પન્ન કરે છે

મેમરી ટ્રીક: "નેગેટિવ નિયમિતતા માંગે, પોઝિટિવ પરિવર્તન આપે"

પ્રશ્ન 1(બ) [4 ગુણ]

એમ્પલીફાયરના ઇનપુટ ઇમ્પીડન્સ પર નેગેટિવ ફીડબેક ની અસર સમજાવો.

ફીડબેકનો પ્રકાર	ઇનપુટ ઇમ્પિડન્સ પર અસર	સૂત્ર
વોલ્ટેજ સિરીઝ	વધારે છે	$Z(in-f) = Z(in)(1+A\beta)$
કરંટ સિરીઝ	વધારે છે	$Z(in-f) = Z(in)(1+A\beta)$
વોલ્ટેજ શંટ	ઘટાડે છે	$Z(in-f) = Z(in)/(1+A\beta)$
કરંટ શંટ	ઘટાડે છે	$Z(in-f) = Z(in)/(1+A\beta)$

- **સિરીઝ ફીડબેક**: જ્યારે ફીડબેક સિગ્નલ ઇનપુટની સાથે સિરીઝમાં હોય, ઇનપુટ ઇમ્પિડન્સ વધે છે
- **શંટ ફીડબેક**: જ્યારે ફીડબેક સિગ્નલ ઇનપુટની સમાંતર હોય, ઇનપુટ ઇમ્પિડન્સ ઘટે છે
- **મેગ્નિટ્યુડ**: ફેરફાર (1+Αβ)ના પ્રમાણમાં હોય છે જ્યાં A એ ગેઇન અને β એ ફીડબેક ફેક્ટર છે

મેમરી ટ્રીક: "સિરીઝ સંવર્ધન કરે, શંટ સંકોચન કરે"

પ્રશ્ન 1(ક) [7 ગુણ]

નેગેટિવ ફીડબેકના ફાયદા અને ગેરફાયદાની યાદી બનાવો.

જવાબ:

ફાયદા	ગેરફાયદા
ગેઇન સ્થિર કરે છે	સમગ્ર ગેઇન ઘટાડે છે
બેન્ડવિડ્થ વધારે છે	વધારાના ઘટકોની જરૂર પડે છે
ડિસ્ટોર્શન ઘટાડે છે	યોગ્ય રીતે ડિઝાઇન ન કરવામાં આવે તો ઓસિલેશન થઈ શકે છે
નોઇઝ ઘટાડે છે	કાળજીપૂર્વક ફેઝ કોમ્પેન્સેશનની જરૂર પડે છે
ઇનપુટ/આઉટપુટ ઇમ્પિડન્સ સુધારે છે	પાવર કન્ઝમ્પશન વદ્યારે છે
તાપમાન સંવેદનશીલતા ઘટાડે છે	સર્કિટ વધુ જટિલ બનાવે છે
ફ્રિક્વન્સી રિસ્પોન્સ નિયંત્રિત કરે છે	કેટલાક કિસ્સાઓમાં સિગ્નલ-ટુ-નોઇઝ રેશિયો ઘટાડી શકે છે

- **પર્ફોર્મન્સ ટ્રેડઓફ**: બેહતર સ્થિરતા અને લિનિયરિટી મેળવવા માટે ગેઇનનો ત્યાગ કરે છે
- ફિક્વન્સી વિચારણા: ઉચ્ચ ફ્રિક્વન્સી પર ઓસિલેશન રોકવા માટે કોમ્પેન્સેશનની જરૂર પડી શકે છે
- **ડિઝાઇન જરિલતા**: યોગ્ય રીતે ડિઝાઇન કરવું વધુ જટિલ છે પરંતુ લાંબા ગાળે બેહતર કામગીરી આપે છે

મેમરી ટ્રીક: "ગેઇન ગુમાવી, સ્થિરતા મેળવી"

પ્રશ્ન 1(ક) અથવા [7 ગુણ]

વોલ્ટેજ શ્રેણી ફીડબેક એમ્પ્લીફાયરને બ્લોક ડાયગ્રામ દોરી વિગતવાર સમજાવો અને પ્રાયોગિક વોલ્ટેજ શ્રેણી ફિડબક સર્કિટ દોરો.

જવાબ:

પરિમાણ	વોલ્ટેજ સિરીઝ ફીડબેકમાં અસર
ઇનપુટ સિગ્નલ	વોલ્ટેજ
ફીડબેક સિગ્નલ	વોલ્ટેજ
ઇનપુટ ઇમ્પિડન્સ	વધે છે
આઉટપુટ ઇમ્પિડન્સ	ઘટે છે
ગેઇન સ્થિરતા	સુધરે છે
બેન્ડવિડ્થ	વધે છે

આકૃતિ:

પ્રાયોગિક સર્કિટ:

- **સેમ્પલિંગ પદ્ધતિ**: આઉટપુટ વોલ્ટેજ સેમ્પલ કરવામાં આવે છે અને ઇનપુટ પર પાછો ફીડ કરવામાં આવે છે
- મિક્સિંગ **પદ્ધતિ**: ફીડબેક સિગ્નલ ઇનપુટ સિગ્નલ સાથે શ્રેણીમાં મિક્સ કરવામાં આવે છે
- કાર્ય સિદ્ધાંત: સુધારેલી સ્થિરતા અને લિનિયરિટી માટે ગેઇન ઘટાડે છે
- **અનુપ્રયોગો**: ઓડિયો એમ્પલિફાયર્સ, ઇન્સ્ટ્રુમેન્ટેશન એમ્પલિફાયર્સ

મેમરી ટ્રીક: "વોલ્ટેજ સિરીઝ - ઇમ્પિડન્સ ઇન ઉપર, આઉટ નીચે"

પ્રશ્ન 2(અ) [3 ગુણ]

કોલપીટ્સ ઓસીલેટર સર્કિટ પર ટૂંકી નોંધ લખો.

જવાબ:

ยรร	รเช่
LC šs	ઓસિલેશન ફ્રિક્વન્સી નક્કી કરે છે
કેપેસિટીવ વોલ્ટેજ ડિવાઇડર	ફીડબેક પ્રદાન કરે છે
સિક્રય ઉપકરણ	ઓસિલેશન જાળવી રાખવા માટે ગેઇન પ્રદાન કરે છે

• ड्विंड्यन्सी सूत्र: f = 1/(2π√(L×(C1×C2)/(C1+C2)))

• **ફીડબેક**: કેપેસિટીવ વોલ્ટેજ ડિવાઇડર (C1 અને C2) દ્વારા પ્રદાન કરવામાં આવે છે

• **અનુપ્રયોગો**: RF ઓસિલેટર્સ, કમ્યુનિકેશન સર્કિટ્સ

મેમરી ટ્રીક: "કોલપીટ્સમાં કેપેસિટિવ ડિવાઇડર છે"

પ્રશ્ન 2(બ) [4 ગુણ]

ઓસીલેટરની જરૂરિયાત સમજાવો. i) બાર્કસન માપદંડ. ii) ટેન્ક સર્કિટ. iii) એમ્પ્લીફાયર.

જવાબ:

જરૂરિયાત	รเช้	સમજૂતી
બાર્કસન માપદંડ	સતત ઓસિલેશન સુનિશ્ચિત કરે છે	લૂપ ગેઇન = 1, ફેઝ શિફ્ટ = 0° અથવા 360°
ટેંક સર્કિટ	ફ્રિક્વન્સી નક્કી કરે છે	ઊર્જા સંગ્રહ કરતી રેઝોનન્ટ LC સર્કિટ
એમ્પલિફાયર	ગેઇન પ્રદાન કરે છે	સર્કિટ ખોટને ભરપાઈ કરે છે

આકૃતિ:

- **બાર્કસન માપદંડ**: ડેમ્પિંગ વિના સતત ઓસિલેશન માટેની ગાણિતિક શરત
- ટેંક સર્કિટ: ઓસિલેશનની ફ્રિક્વન્સી નક્કી કરતી LC સર્કિટ
- એમ્પલિફાયર: ઓસિલેશન જાળવવા માટે ઊર્જા પ્રદાન કરતું સક્રિય ઉપકરણ

મેમરી ટ્રીક: "BAT - બાર્કસન એમ્પલિફાયર ટેંક"

પ્રશ્ન 2(ક) [7 ગુણ]

UJT ના બાંધકામ, કાર્ય અને V-I લાક્ષણિકતાઓ સમજાવો.

પરિમાણ	વર્ણન
બાંધકામ	બે બેઝ કનેક્શન અને એક એમિટર સાથેનો સિલિકોન બાર
સિમ્બોલ	એક બાજુએ એમિટર સાથેનો ત્રિકોણ અને બે બેઝ
સમકક્ષ સર્કિટ	ડાયોડ સાથેનો વોલ્ટેજ ડિવાઇડર
મુખ્ય પરિમાણ	ઇન્ટ્રિન્સિક સ્ટેંડઓફ રેશિયો (ŋ)

V-I લાક્ષણિક કર્વ:

• **બાંધકામ**: P-ટાઇપ એમિટર જંક્શન સાથેનો N-ટાઇપ સિલિકોન બાર

• કાર્ય સિદ્ધાંત: જ્યારે એમિટર વોલ્ટેજ > (ŋ×VBB), ડિવાઇસ કન્ડક્ટ કરે છે

• ઓપરેશનના વિસ્તારો: કટ-ઓફ, નેગેટિવ રેસિસ્ટન્સ, અને સેચુરેશન

• **અનુપ્રયોગો**: રિલેક્સેશન ઓસિલેટર્સ, ટાઇમિંગ સર્કિટ્સ, ટ્રિગરિંગ ડિવાઇસીસ

મેમરી ટ્રીક: "UJT પહેલા ઉંચું પછી નીચું - નકારાત્મક પ્રતિરોધ રાજ કરે"

પ્રશ્ન 2(અ) અથવા [3 ગુણ]

હાર્ટલી ઓસીલેટરના ફાયદા, ગેરફાયદા અને એપ્લીકેશન જણાવો.

જવાબ:

ફાયદા	ગેરફાયદા	અનુપ્રયોગો
સરળ ટ્યુનિંગ	ભારે ઇન્ડક્ટર્સ	RF જનરેટર્સ
વિશાળ ફ્રિક્વન્સી રેન્જ	મ્યુચ્યુઅલ ઇન્ડક્ટન્સ સમસ્યાઓ	રેડિયો રિસીવર્સ
સરળ ડિઝાઇન	ઉચ્ચ ફ્રિક્વન્સી પર મુશ્કેલ	એમેચ્યોર રેડિયો
સારી ફ્રિક્વન્સી સ્થિરતા	સેન્ટર-ટેપ્ડ કોઇલની જરૂર પડે છે	કમ્યુનિકેશન ઇક્વિપમેન્ટ

આકૃતિ:

• **મુખ્ય લક્ષણ**: ફીડબેક માટે ટેપ્ડ ઇન્ડક્ટર વાપરે છે

• ड्विंड्यन्सी सूत्र: f = 1/(2π√(C×(L1+L2)))

• ખાસ લક્ષણ: ફીડબેક માટે ઇન્ડક્ટિવ વોલ્ટેજ ડિવાઇડર

મેમરી ટ્રીક: "હાર્ટલીમાં હંમેશા ટેપ્ડ ઇન્ડક્ટર"

પ્રશ્ન 2(બ) અથવા [4 ગુણ]

UJT ને રિલેક્સેસન ઓસીલેટર તરીકે સમજાવો.

ย28	ธเน้
UJT	સ્વીચિંગ ક્રિયા પ્રદાન કરે છે
કેપેસિટર	ટાઇમિંગ ઘટક
રેસિસ્ટર	ચાર્જિંગ રેટ નિયંત્રિત કરે છે
આઉટપુટ	સોટૂથ વેવફોર્મ

વેવફોર્મ્સ:

- ઓપરેટિંગ પ્રિન્સિપલ: કેપેસિટર UJT ફાયરિંગ વોલ્ટેજ સુધી ચાર્જ થાય ત્યાં સુધી, પછી ઝડપથી ડિસ્ચાર્જ થાય છે
- ફિક્યન્સી સૂત્ર: f≈ 1/(RC×ln(1/(1-η)))

• **અનુપ્રયોગો**: ટાઇમિંગ સર્કિટ્સ, પલ્સ જનરેટર્સ, કંટ્રોલ સિસ્ટમ્સ

મેમરી ટ્રીક: "ચાર્જ-ફાયર-રિપીટ - સોટૂથની ધબક"

પ્રશ્ન 2(ક) અથવા [7 ગુણ]

વેઇનબ્રિજ ઓસિલેટરનું કાર્ય સુઘડ રેખાકૃતિ સાથે સમજાવો, તેના માટે ફાયદા, ગેરફાયદા અને એપ્લિકેશન પણ જણાવો.

જવાબ:

પરિમાણ	વર્ણન
રથના	બ્રિજ ફોર્મેશનમાં RC ફીડબેક નેટવર્ક
ફ્રિક્વન્સી સૂત્ર	f = 1/(2πRC) જ્યારે R1=R3 અને C2=C4
ફીડબેક	RC નેટવર્ક મારફતે પોઝિટિવ ફીડબેક
ફેઝ શિફ્ટ	રેઝોનન્ટ ફ્રિક્વન્સી પર 0°

આકૃતિ:

સર્કિટ:

ફાયદા:

- ઉચ્ચ ફ્રિક્વન્સી સ્થિરતા
- ઓછા ડિસ્ટોર્શન આઉટપુટ
- સરળ RC ઘટકો
- સરળતાથી ટ્યુન કરી શકાય

ગેરફાયદા:

- મર્યાદિત ફ્રિક્વન્સી રેન્જ
- એમ્પલિટ્યુડ સ્ટેબિલાઇઝેશનની જરૂર
- ઘટક વેરિએશન પ્રત્યે સંવેદનશીલ
- ઓસિલેશન શરૂ કરવા મુશ્કેલ

અનુપ્રયોગો:

- ઓડિયો ટેસ્ટ ઇક્વિપમેન્ટ
- ફંક્શન જનરેટર્સ
- સંગીત વાદ્યો
- લેબોરેટરી સિગ્નલ સોર્સીસ

મેમરી ટ્રીક: "વાઇન વર્ક્સ એટ R1C1=R2C2 ફ્રિક્વન્સી"

પ્રશ્ન 3(અ) [3 ગુણ]

પાવર એમ્પલીફાયરનું વર્ગીકરણ આપો.

જવાબ:

વર્ગીકરણ આધાર	પ્રકારો
કન્ડક્શન એંગલ પર આદ્યારિત	ક્લાસ A, B, AB, C
રચના પર આધારિત	સિંગલ-એન્ડેડ, પુશ-પુલ, કોમ્પ્લિમેન્ટરી
કપલિંગ પર આદ્યારિત	RC કપલ્ડ, ટ્રાન્સફોર્મર કપલ્ડ, ડાયરેક્ટ કપલ્ડ
ઓપરેશન પર આધારિત	લિનિયર, સ્વિચિંગ

- **કલાસ A**: સંપૂર્ણ 360° સાયકલ માટે કન્ડક્ટ કરે છે, સૌથી વધુ લિનિયરિટી, સૌથી ઓછી કાર્યક્ષમતા
- **કલાસ B**: 180° સાયકલ માટે કન્ડક્ટ કરે છે, મધ્યમ ડિસ્ટોર્શન, મધ્યમ કાર્યક્ષમતા
- **કલાસ AB**: 180°-360° સાયકલ માટે કન્ડક્ટ કરે છે, સારી લિનિયરિટી, સારી કાર્યક્ષમતા
- **કલાસ C**: <180° સાયકલ માટે કન્ડક્ટ કરે છે, સૌથી વધુ ડિસ્ટોર્શન, સૌથી વધુ કાર્યક્ષમતા

મેમરી ટ્રીક: "A આખો સમય, B અર્ધો, AB લગભગ અર્ધો, C વધુ કાપે"

પ્રશ્ન 3(બ) [4 ગુણ]

વર્ગ A પાવર એમ્પલિફાયર સમજાવો.

જવાબ:

પરિમાણ	ક્લાસ A એમ્પલિફાયર
કન્ડક્શન અંગલ	360° (પૂર્ણ સાયકલ)
બાયસિંગ	લોડ લાઇનના કેન્દ્રમાં Q-પોઇન્ટ
કાર્યક્ષમતા	ઓછી (25-30% મહત્તમ)
ડિસ્ટોર્શન	ખૂબ ઓછું

લોડ લાઇન:

- **ઓપરેટિંગ પ્રિન્સિપલ**: ટ્રાન્ઝિસ્ટર સમગ્ર ઇનપુટ સાયકલ માટે કન્ડક્ટ કરે છે
- વ્યવહારિક કાર્યક્ષમતા: સામાન્ય રીતે ખોટ કારણે 25-30%
- **અનુપ્રયોગો**: ઓડિયો પ્રી-એમ્પલિફાયર્સ, ઓછી પાવરના એમ્પલિફાયર્સ જ્યાં કાર્યક્ષમતા કરતાં ગુણવત્તા વધુ મહત્વની છે

મેમરી ટ્રીક: "ક્લાસ A - હંમેશાં કન્ડકટિંગ, આખો સાયકલ"

પ્રશ્ન 3(ક) [7 ગુણ]

પુશ પુલ એમ્પલીફાયરનો સિદ્ધાંત સમજાવો અને વર્ગ B પુશ પુલ એમ્પલીફાયર પર ટૂંકી નોંધ લખો.

જવાબ:

પુશ-પુલ સિદ્ધાંત	ક્લાસ B પુશ-પુલ
બે પૂરક ઉપકરણો વાપરે છે	દરેક ટ્રાન્ઝિસ્ટર અર્ધા સાયકલ માટે કન્ડક્ટ કરે છે
ઇવન હાર્મોનિક ડિસ્ટોર્શન ઘટાડે છે	ઉચ્ચ કાર્યક્ષમતા (78.5% સૈદ્ધાંતિક)
ટ્રાન્સફોર્મરમાં DC મેગ્નેટાઇઝેશનને ૨૬ કરે છે	ક્રોસઓવર ડિસ્ટોર્શનથી પીડાય છે
ઉચ્ચ આઉટપુટ પાવર પ્રદાન કરે છે	ડિસ્ટોર્શન ઘટાડવા માટે યોગ્ય બાયસિંગની જરૂર પડે છે

વેવફોર્મ્સ:

- કાર્ય સિદ્ધાંત: દરેક ટ્રાન્ઝિસ્ટર વૈકલ્પિક અર્ધ-સાયકલ માટે કન્ડક્ટ કરે છે
- ફાયદા: ઉચ્ચ કાર્યક્ષમતા, ઓછા ઇવન હાર્મોનિક્સ, ઓછી ગરમી ઉત્પન્ન થાય છે
- ગેરફાયદા: ટ્રાન્ઝિશન પોઇન્ટ્સ પર ક્રોસઓવર ડિસ્ટોર્શન
- અનુપ્રયોગો: ઓડિયો પાવર એમ્પલિફાયર્સ, ઉચ્ચ-પાવર સિસ્ટમના આઉટપુટ સ્ટેજ

મેમરી ટ્રીક: "પુશ-પુલ: જોડીએ પ્રોસેસ કરે અલગ પલસેશન"

પ્રશ્ન 3(અ) અથવા [3 ગુણ]

પુશ પુલ એમ્પલીફાયરમાં ક્રોસઓવર ડિસ્ટોરશન ની ચર્ચા કરો. તેને કેવી રીતે દૂર કરી શકાય છે.

જવાબ:

ક્રોસઓવર ડિસ્ટોર્શન	ઉકેલ પદ્ધતિઓ
સિગ્નલ ક્રોસઓવર પોઇન્ટ્સ પર થાય છે	નાનો બાયસ વોલ્ટેજ લાગુ કરો (ક્લાસ AB)
ટ્રાન્ઝિસ્ટરના નોન-લિનિયર રીજન કારણે	ડાયોડ કોમ્પેન્સેશન નેટવર્ક વાપરો
શૂન્યની આસપાસ "ડેડ ઝોન" બનાવે છે	ફીડબેક કરેક્શન લાગુ કરો
નાના સિગ્નલ્સને વધુ અસર કરે છે	કોમ્પ્લિમેન્ટરી એમિટર-ફોલોઅર સ્ટેજ વાપરો

કરેક્શન સર્કિટ:

- કારણ: ટ્રાન્ઝિસ્ટર્સને ચાલુ થવા માટે ~0.7V જરૂરી છે, જે ડેડ ઝોન બનાવે છે
- **અસર**: ડિસ્ટોર્શન ખાસ કરીને ઓછા વોલ્યુમ પર નોંધપાત્ર રીતે જોવા મળે છે
- **ઉકેલ**: ડાયોડ્સ અથવા VBE મલ્ટિપ્લાયર સાથે ક્લાસ AB બાયસિંગ
- પરિણામ: પોઝિટિવ અને નેગેટિવ હાફ-સાયકલ વચ્ચે સરળ ટ્રાન્ઝિશન

મેમરી ટ્રીક: "ક્લાસ AB ગેપને સરળ બનાવે"

પ્રશ્ન 3(બ) અથવા [4 ગુણ]

કોંપલિમેંટરી સિમેટરી પુશ-પુલ એમ્પલીફાયર સમજાવો.

ยรร	હેતુ
NPN ટ્રાન્ઝિસ્ટર	પોઝિટિવ હાફ-સાયકલ સંભાળે છે
PNP ટ્રાન્ઝિસ્ટર	નેગેટિવ હાફ-સાયકલ સંભાળે છે
બાયસિંગ નેટવર્ક	ક્રોસઓવર ડિસ્ટોર્શન ઘટાડે છે
આઉટપુટ કપલિંગ	લોડમાં ડાયરેક્ટ કપલિંગ

કાર્ય સિદ્ધાંત:

- મુખ્ય **લક્ષણ**: પુશ-પુલ ઓપરેશન માટે પૂરક ટ્રાન્ઝિસ્ટર્સ (NPN અને PNP) વાપરે છે
- **ફાયદો**: આઉટપુટ ટ્રાન્સફોર્મરની જરૂર નથી, લોડમાં ડાયરેક્ટ કપલિંગ
- **કાર્યક્ષમતા**: સામાન્ય રીતે 78.5% સૈદ્ધાંતિક મહત્તમ
- **અનુપ્રયોગો**: ઓડિયો એમ્પલિફાયર્સ, પાવર આઉટપુટ સ્ટેજ

મેમરી ટ્રીક: "NPN ઉપર તાણે, PNP નીચે તાણે"

પ્રશ્ન 3(ક) અથવા [7 ગુણ]

વર્ગ B પુશ પુલ એમ્પલીફાયર માટે કાર્યક્ષમતાનું સમીકરણ મેળવો.

જવાબ:

પરિમાણ	સૂત્ર	นถุ่น
DC ઇનપુટ પાવર	PDC = 2VCC×IDC	સપ્લાયમાંથી લેવામાં આવતી પાવર
AC આઉટપુટ પાવર	PAC = Vrms²/RL	લોડમાં ડેલિવર થતી પાવર
મહત્તમ કાર્યક્ષમતા	η = (π/4)×100% = 78.5%	સૈદ્ધાંતિક મહત્તમ
વ્યવહારિક કાર્યક્ષમતા	60-70%	ખોટને ધ્યાનમાં લેતા

ગાણિતિક વ્યુત્પત્તિ:

સાઇનસોઇડલ ઇનપુટ માટે: v(t) = Vm sin(ωt)

સ્ટેપ 1: DC ઇનપુટ પાવર

• પ્રતિ ટ્રાન્ઝિસ્ટર ઇનપુટ કરંટ: lm/π

• કુલ DC ઇનપુટ પાવર: PDC = 2VCC×lm/π

સ્ટેપ 2: AC આઉટપુટ પાવર

• RMS આઉટપુટ વોલ્ટેજ: Vrms = Vm/√2

• મહત્તમ આઉટપુટ વોલ્ટેજ: Vm = VCC

• આઉટપુટ પાવર: PAC = Vrms²/RL = Vm²/2RL

સ્ટેપ 3: કાર્યક્ષમતા ગણતરી

• η = (PAC/PDC)×100%

• $\eta = ((Vm^2/2RL)/(2VCC \times Im/\pi)) \times 100\%$

• જ્યારે Vm = VCC અને lm = VCC/RL

• $\eta = (\pi/4) \times 100\% = 78.5\%$

- **પાવર ડિસિપેશન**: આઉટપુટ વોલ્ટેજ સ્વિંગ VCC નજીક પહોંચે ત્યારે સૌથી વધુ કાર્યક્ષમ
- કન્ડક્શન **અંગલ**: દરેક ટ્રાન્ઝિસ્ટર યોક્કસ 180° માટે કન્ડક્ટ કરે છે
- વ્યવહારિક પરિબળો: બાયસિંગ કરંટ, સેચુરેશન વોલ્ટેજ અને અન્ય ખોટ કાર્યક્ષમતા ઘટાડે છે
- **તુલના**: ક્લાસ A (25-30%) કરતાં ઘણી ઊંચી, ક્લાસ C (>80%) કરતાં ઓછી

મેમરી ટ્રીક: "પાઈ-ડિવાઈડ-બાય-4 આપે 78.5% - ક્લાસ B નું બેસ્ટ"

પ્રશ્ન 4(અ) [3 ગુણ]

વ્યાખ્યાયિત કરો. (i) CMRR (ii)સ્ત્યુ રેટ. (iii)ઇનપુટ ઓફસેટ પ્રવાહ.

જવાબ:

પરિમાણ	વ્યાખ્યા	સામાન્ય મૂલ્યો
CMRR	ડિફરન્શિયલ ગેઇનનો કોમન-મોડ ગેઇનના ગુણોત્તર	80-120 dB
સ્લ્યુ રેટ	આઉટપુટ વોલ્ટેજના પરિવર્તનનો મહત્તમ દર	0.5-20 V/μs
ઇનપુટ ઓફસેટ કરંટ	બે ઇનપુટ્સમાં જતા કરંટનો તફાવત	1-100 nA

આકૃતિ:

- CMRR: ઓપ-એમ્પની કોમન-મોડ સિગ્નલ્સને નકારવાની ક્ષમતા માપે છે
- સ્ત્યુ રેટ: અવિકૃત આઉટપુટ માટે મહત્તમ ફ્રિક્વન્સીને મર્યાદિત કરે છે
- ઇનપુર ઓફસેટ કરંટ: સમાન ઇનપુર્સ હોવા છતાં આઉટપુટ એરર કરાવે છે

મેમરી ટ્રીક: "ભૂલો ૨૬ કરવા રેશિયો જોઈએ"

પ્રશ્ન 4(બ) [4 ગુણ]

ઓપરેશનલ એમ્પલીફાયરનો મૂળભૂત બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

સ્ટેજ	รเช้
ડિફરન્શિયલ ઇનપુટ	ઇનપુટ્સ વચ્ચેના તફાવતને સ્વીકારે અને એમ્પલિફાય કરે છે
હાઈ-ગેઇન ઇન્ટરમીડિયેટ	વોલ્ટેજ એમ્પલિફિકેશન પ્રદાન કરે છે
લેવલ શિફ્ટર	આઉટપુટ સ્ટેજ માટે DC લેવલ શિફ્ટ કરે છે
આઉટપુટ બફર	ઓછો આઉટપુટ ઇમ્પિડન્સ પ્રદાન કરે છે

- **ડિફરન્શિયલ ઇનપુટ સ્ટેજ**: ડિફરન્શિયલ ઇનપુટને સિંગલ-એન્ડેડ આઉટપુટમાં કન્વર્ટ કરે છે
- **હાઈ-ગેઇન સ્ટેજ**: મોટાભાગનો ઓપન-લૂપ ગેઇન પ્રદાન કરે છે
- લેવલ શિફ્ટર: યોગ્ય આઉટપુટ ઓપરેશન માટે સિગ્નલ લેવલ શિફ્ટ કરે છે
- **આઉટપુટ સ્ટેજ**: કરંટ ગેઇન અને ઓછો આઉટપુટ ઇમ્પિડન્સ પ્રદાન કરે છે

મેમરી ટ્રીક: "ડિફ-એમ્પ ગેઇન શિફ્ટ આઉટ"

પ્રશ્ન 4(ક) [7 ગુણ]

ઇન્ટિગ્રેટર તરીકે ઓપરેશનલ એમ્પલીફાયરને વિગતવાર સમજાવો.

જવાબ:

પરિમાણ	นต์า	સૂત્ર
સર્કિટ	ફીડબેકમાં કેપેસિટર સાથે ઓપ-એમ્પ	-
ટ્રાન્સફર ફંક્શન	આઉટપુટ ઇનપુટના ઇન્ટિગ્રલને પ્રમાણસર	Vo = -(1/RC)∫Vi dt
ફ્રિક્વન્સી રિસ્પોન્સ	લો-પાસ ફિલ્ટર તરીકે કાર્ય કરે છે	ગોઇન = 1/(jωRC)
ફેઝ શિફ્ટ	-90°	-

ઇનપુટ/આઉટપુટ વેવફોર્મ્સ:

• કાર્ય સિદ્ધાંત: કેપેસિટર સમય સાથે કરંટને ઇન્ટિગ્રેટ કરે છે

• **ગાણિતિક આધાર**: Vo(t) = -(1/RC)∫Vi(t)dt + Vo(0)

• મર્યાદાઓ: કેપેસિટર લીકેજ, ઓપ-એમ્પ ઇનપુટ બાયસ કરંટ ડ્રિફ્ટ ઉત્પન્ન કરે છે

• **અનુપ્રયોગો**: વેવફોર્મ જનરેટર્સ, એનાલોગ કમ્પ્યુટર્સ, એક્ટિવ ફિલ્ટર્સ

મેમરી ટ્રીક: "સ્ક્વેર-ઇન ટ્રાયેંગલ-આઉટ, RC સેટ્સ ધ સ્લોપ"

પ્રશ્ન 4(અ) અથવા [3 ગુણ]

ઓપરેશનલ એમ્પલીફાયરને સમિંગ એમ્પલીફાયર તરીકે સમજાવો.

પરિમાણ	વર્ણન	સૂત્ર
સર્કિટ	સમાન ફીડબેક સાથે મલ્ટિપલ ઇનપુટ્સ	$V_0 = -(R_1/R_1 \times V_1 + R_1/R_2 \times V_2 +)$
સમાન રેસિસ્ટર્સ	સરળ યોગ/સરેરાશ	$V_0 = -(V_1 + V_2 + + V_n)$
વેઇટેડ સમ	અલગ ઇનપુટ રેસિસ્ટર્સ	$V_0 = -(K_1V_1 + K_2V_2 + + K_nV_n)$
ઇન્વર્ટિંગ	ઇનપુર્સથી આઉટપુટ ઇન્વર્ટેડ થયેલો	-

• કાર્ય સિદ્ધાંત: દરેક ઇનપુટ સમિંગ જેક્શનમાં કરંટ યોગદાન આપે છે

• **અનુપ્રયોગો**: ઓડિયો મિક્સર્સ, સિગ્નલ પ્રોસેસિંગ, એનાલોગ કમ્પ્યુટર્સ

• વર્ચ્યુઅલ ગ્રાઉન્ડ: સમિંગ પોઇન્ટ લગભગ-શૂન્ય વોલ્ટેજ જાળવે છે

• વેરિએશન્સ: ઇન્વર્ટિંગ, નોન-ઇન્વર્ટિંગ અને ડિફરન્શિયલ સમર

મેમરી ટ્રીક: "ઘણા ઇનપુટ, એક આઉટપુટ - બધું બેરેબાર"

પ્રશ્ન 4(બ) અથવા [4 ગુણ]

ઓપરેશનલ એમ્પલીફાયરના ઉપયોગો જણાવો.

જવાબ:

અનુપ્રયોગ કેટેગરી	ઉદાહરણો
સિગ્નલ પ્રોસેસિંગ	એમ્પલિફાયર્સ, ફિલ્ટર્સ, બફર્સ
ગાણિતિક ઓપરેશન્સ	એડર્સ, સબટ્રેક્ટર્સ, ઇન્ટિગ્રેટર્સ, ડિફરન્શિએટર્સ
વેવફોર્મ જનરેટર્સ	સાઇન, સ્ક્વેર, ટ્રાયેંગલ, પત્સ જનરેટર્સ
ઇન્સ્ટ્રુમેન્ટેશન	ઇન્સ્ટ્રુમેન્ટેશન એમ્પલિફાયર્સ, કરંટ-ટુ-વોલ્ટેજ કન્વર્ટર્સ
કોમ્પેરેટર્સ	ઝીરો ક્રોસિંગ ડિટેક્ટર્સ, વિન્ડો કોમ્પેરેટર્સ
પ્રિસિઝન રેક્ટિફાયર્સ	ફુલ-વેવ, હાફ-વેવ રેક્ટિફાયર્સ
વોલ્ટેજ રેગ્યુલેટર્સ	સિરીઝ રેગ્યુલેટર્સ, શંટ રેગ્યુલેટર્સ

- **લિનિયર અનુપ્રયોગો**: એમ્પલિફિકેશન, ફિલ્ટરિંગ માટે લિનિયર રીજનમાં ઓપ-એમ્પ વાપરે છે
- **નોન-લિનિયર અનુપ્રયોગો**: કમ્પેરિઝન, લિમિટેશન માટે સેચુરેશન લક્ષણો વાપરે છે
- એનાલોગ કોમ્પ્યુટેશન: એનાલોગ સિગ્નલ પર ગાણિતિક ઓપરેશન્સ કરવા
- **સિગ્નલ કન્ડિશનિંગ**: એનાલોગ-ટુ-ડિજિટલ કન્વર્ઝન માટે સિગ્નલ્સ અડેપ્ટ કરવા

મેમરી ટ્રીક: "SMWIG-CR: સિગ્નલ, મેથ, વેવ, ઇન્સ્ટ્રુમેન્ટ, ગેટ, કન્વર્ટ, રેગ્યુલેટ"

પ્રશ્ન 4(ક) અથવા [7 ગુણ]

ઓપરેશનલ એંપ્લિફાયર ને ઇનવરટિંગ અને નોન-ઈનવરટિંગ અંપ્લિફાયર તરીકે સમજાવો.

જવાબ:

પરિમાણ	ઇન્વર્ટિંગ એમ્પલિફાયર	નોન-ઇન્વર્ટિંગ એમ્પલિફાયર	
સર્કિટ કન્ફિગરેશન	નેગેટિવ ટર્મિનલ પર ઇનપુટ	પોઝિટિવ ટર્મિનલ પર ઇનપુટ	
ગેઇન ફોર્મ્યુલા	A = -Rf/Rin	A = 1 + Rf/Rin	
ઇનપુટ ઇમ્પિડન્સ	= Rin	ખૂબ ઊંચી (≈ 10º ohms)	
ફેઝ શિફ્ટ	180°	0°	
વર્ચ્યુઅલ ગ્રાઉન્ડ	નેગેટિવ ઇનપુટ પર	લાગુ પડતું નથી	

ઇન્વર્ટિંગ એમ્પલિફાયર:

નોન-ઇન્વર્ટિંગ એમ્પલિફાયર:

Rf

ઇન્વર્ટિંગ મોડ:

- ગેઇન સમીકરણ: Vout = -(Rf/Rin)×Vin
- **વર્ચ્યુઅલ ગ્રાઉન્ડ**: નેગેટિવ ઇનપુટ ~0V પર જાળવવામાં આવે છે
- અનુપ્રયોગો: સિગ્નલ ઇન્વર્ઝન, નિયંત્રિત ગેઇન, સમિંગ

નોન-ઇન્વર્ટિંગ મોડ:

- ગેઇન સમીકરણ: Vout = (1 + Rf/Rin)×Vin
- **લઘુત્તમ ગેઇન**: હંમેશા ≥ 1
- અનુપ્રયોગો: બફરિંગ, ઊંચા ઇનપુટ ઇમ્પિડન્સ સાથે વોલ્ટેજ એમ્પલિફિકેશન

મેમરી ટ્રીક: "ઇન્વર્ટ: નેગેટિવ ઇનપુટ લે, નોન-ઇન્વર્ટ: પોઝિટિવ સિગ્નલ લે"

પ્રશ્ન 5(અ) [3 ગુણ]

IC555 નું પિન વર્ણન આપો.

પિન નંબર	પિન નામ	વર્ણન
1	ગ્રાઉન્ડ	સર્કિટ ગ્રાઉન્ડ સાથે જોડાયેલ
2	ટ્રિગર	< 1/3 VCC હોય ત્યારે ટાઇમિંગ સાયકલ શરૂ કરે છે
3	આઉટપુટ	આઉટપુટ સિગ્નલ પ્રદાન કરે છે
4	રીસેટ	LOW હોય ત્યારે ટાઇમિંગ સમાપ્ત કરે છે
5	કંટ્રોલ વોલ્ટેજ	થ્રેશોલ્ડ વોલ્ટેજ એડજસ્ટ કરે છે
6	થ્રેશોલ્ડ	> 2/3 VCC હોય ત્યારે ટાઇમિંગ સાયકલ સમાપ્ત કરે છે
7	ડિસ્થાર્જ	ટાઇમિંગ કેપેસિટર સાથે જોડાયેલ
8	VCC	પોઝિટિવ સપ્લાય વોલ્ટેજ (5-15V)

• **ઇનપુટ પિન્સ**: ટ્રિગર, રીસેટ, થ્રેશોલ્ડ, કંટ્રોલ વોલ્ટેજ

• આઉટપુટ પિન્સ: આઉટપુટ, ડિસ્થાર્જ

• **પાવર પિન્સ**: VCC, ગ્રાઉન્ડ

• આંતરિક સ્ટ્રક્ચર: કોમ્પેરેટર્સ, ફિલપ-ફલોપ, ડિસ્ચાર્જ ટ્રાન્ઝિસ્ટરથી બનેલું છે

મેમરી ટ્રીક: "ગ્રાઉન્ડ ટ્રિગર આઉટપુટ રીસેટ કંટ્રોલ થ્રેશોલ્ડ ડિસ્ચાર્જ વોલ્ટેજ"

પ્રશ્ન 5(બ) [4 ગુણ]

દિફ્ફેરેંટિયાટર તરીકે op-amp સમજાવો.

જવાબ:

પરિમાણ	વર્ણન	સૂત્ર
સર્કિટ	ઇનપુટમાં કેપેસિટર સાથેનો ઓપ-એમ્પ	Vo = -RC(dVi/dt)
ડ્રાન્સફર ફંક્શન	આઉટપુટ પરિવર્તનના દરને પ્રમાણસર	H(s) = -sRC
ફ્રિક્વન્સી રિસ્પોન્સ	હાઈ-પાસ ફિલ્ટર તરીકે કાર્ય કરે છે	ગેઇન ફ્રિક્વન્સી સાથે વધે છે
ફેઝ શિફ્ટ	+90°	-

આકૃતિ:

ઇનપુટ/આઉટપુટ વેવફોર્મ્સ:

- **કાર્ય સિદ્ધાંત**: આઉટપુટ વોલ્ટેજ ઇનપુટના પરિવર્તન દરને પ્રમાણસર છે
- **ગાણિતિક આદ્યાર**: Vo = -RC(dVin/dt)
- વ્યવહારિક મર્યાદાઓ: ઉચ્ચ-આવૃત્તિના નોઇઝ પ્રત્યે સંવેદનશીલ
- **અનુપ્રયોગો**: વેવફોર્મ જનરેશન, એજ ડિટેક્શન, રેટ-ઓફ-ચેન્જ ઇન્ડિકેટર

મેમરી ટ્રીક: "ડિફરન્શિએટર ડેરિવેટિવ્સ આપે - RC સ્પીડ નક્કી કરે"

પ્રશ્ન 5(ક) [7 ગુણ]

IC 555 ને અસ્ટેબલ અને મોનોસ્ટેબલ મલ્ટિવાઇબ્રેટર તરીકે સમજાવો.

જવાબ:

પરિમાણ	અસ્ટેબલ મલ્ટિવાઇબ્રેટર	મોનોસ્ટેબલ મલ્ટિવાઇબ્રેટર
વ્યાખ્યા	ફ્રી-રનિંગ ઓસિલેટર	વન-શોટ પલ્સ જનરેટર
સ્ટેબલ સ્ટેટ્સ	કોઈ નહીં (સતત ઓસિલેટ)	એક સ્ટેબલ સ્ટેટ
ટાઇમિંગ	T = 0.693(RA+2RB)C	T = 1.1RC
ટ્રિગર	સેલ્ફ-ટ્રિગરિંગ	બાહ્ય ટ્રિગરની જરૂર
આઉટપુટ	સતત સ્કવેર વેવ	ફિક્સ્ડ પહોળાઈનો સિંગલ પત્સ

અસ્ટેબલ સર્કિટ:

મોનોસ્ટેબલ સર્કિટ:

અસ્ટેબલ ઓપરેશન:

- **કાર્ય**: કેપેસિટર RA+RB મારફતે ચાર્જ થાય છે અને RB મારફતે ડિસ્ચાર્જ થાય છે
- **ક્યુટી સાયકલ**: RA અને RB ના યોગ્ય પસંદગીથી એડજસ્ટ કરી શકાય છે
- ફિક્યન્સી: f = 1.44/((RA+2RB)C)
- **અનુપ્રયોગો**: LED ફ્લેશર્સ, ટોન જનરેટર્સ, ક્લોક પલ્સ જનરેટર્સ

મોનોસ્ટેબલ ઓપરેશન:

- **કાર્ય**: પિન 2 પર ફ્રોલિંગ એજથી ટ્રિગર થાય છે, સમય T માટે HIGH આઉટપુટ આપે છે
- અનુપ્રયોગો: ટાઇમ ડિલે, પલ્સ વિડ્થ મોક્યુલેશન, ડિબાઉન્સિંગ

મેમરી ટ્રીક: "અસ્ટેબલ હંમેશાં બદલે, મોનોસ્ટેબલ એક પત્સ બનાવે"

પ્રશ્ન 5(અ) અથવા [3 ગુણ]

IC555 ને બાયસ્ટેબલ માલતિવાયબરેટર તરીકે સમજાવો.

પરિમાણ	વર્ણન
વ્યાખ્યા	બે સ્ટેબલ સ્ટેટ્સ ધરાવતી ફિલપ-ફ્લોપ સર્કિટ
ટ્રિંગિટિંગ	ટ્રિગર પિન (2) દ્વારા SET, રીસેટ પિન (4) દ્વારા RESET
સ્ટેબલ સ્ટેટ્સ	બે (HIGH અથવા LOW)
સમય અવધિ	ટાઇમિંગ ઘટકોની જરૂર નથી

ટ્રુથ ટેબલ:

ટ્રિગર (પિન 2)	રીસેટ (પિન 4)	આઉટપુટ (પિન 3)
< 1/3 VCC	HIGH	HIGH
> 1/3 VCC	HIGH	No change
Any	LOW	LOW

• **SET ઓપરેશન**: ટ્વિગર પિન 1/3 VCC કરતાં નીચે જાય ત્યારે થાય છે

• **RESET ઓપરેશન**: રીસેટ પિન LOW ખેંચવામાં આવે ત્યારે થાય છે

• અનુપ્રયોગો: લેચિંગ સ્વિય, મેમરી એલિમેન્ટ્સ, ફિલપ-ફ્લોપ્સ

• **લક્ષણો**: ટાઇમિંગ ઘટકો (R, C) ની જરૂર નથી

મેમરી ટ્રીક: "બાયસ્ટેબલ બે સ્ટેટમાં આવજા કરે"

પ્રશ્ન 5(બ) અથવા [4 ગુણ]

આંતરિક બ્લોક ડાયાગ્રામ સાથે IC555 ની મૂળભૂત કામગીરી સમજાવો.

જવાબ:

બ્લોક	ธเน้
કોમ્પેરેટર્સ	ટ્રિગર અને થ્રેશોલ્ડ વોલ્ટેજનું મોનિટરિંગ કરે છે
ફિલપ-ફ્લોપ	આઉટપુટ સ્ટેટને નિયંત્રિત કરે છે
ડિસ્થાર્જ ટ્રાન્ઝિસ્ટર	ટાઇમિંગ કેપેસિટરને ડિસ્થાર્જ કરે છે
વોલ્ટેજ ડિવાઇડર	રેફરન્સ વોલ્ટેજ સ્થાપિત કરે છે

આંતરિક બ્લોક ડાયાગ્રામ:

GND (1)

મૂળભૂત ઓપરેશન:

- 1. **વોલ્ટેજ ડિવાઇડર**: 2/3 VCC અને 1/3 VCC રેફરન્સ પોઇન્ટ્સ બનાવે છે
- 2. કોમ્પેરેટર 1: પિન 2, 1/3 VCC થી નીચે જાય ત્યારે ટ્રિગર થાય છે
- 3. કોમ્પેરેટર 2: પિન 6, 2/3 VCC થી ઉપર જાય ત્યારે રીસેટ થાય છે
- 4. **ફિલપ-ફ્લોપ**: કોમ્પેરેટર ઇનપુટ્સના આધારે આઉટપુટ સ્ટેટને નિયંત્રિત કરે છે
- 5. **ડિસ્ચાર્જ ટ્રાન્ઝિસ્ટર**: આઉટપુટ LOW હોય ત્યારે પિન 7ને ગ્રાઉન્ડ સાથે જોડે છે
- **વર્સેટિલિટી**: મલ્ટિપલ મોડ્સમાં કોન્ફિગર કરી શકાય છે (અસ્ટેબલ, મોનોસ્ટેબલ, બાયસ્ટેબલ)
- **ટાઇમિંગ પ્રિસિઝન**: બાહ્ય RC ઘટકો દ્વારા નક્કી થાય છે
- **વિશાળ સપ્લાય રેન્જ**: 4.5V થી 16V સુધી કાર્ય કરે છે

મેમરી ટ્રીક: "કોમ્પેરેટર્સ કંટ્રોલ ફ્લિપ-ફ્લોપ ફોર ટાઇમિંગ"

પ્રશ્ન 5(ક) અથવા [7 ગુણ]

વર્ગ A, ક્લાસ B, ક્લાસ C અને ક્લાસ AB પાવર એમ્પલીફાયરને તેમના Q પોઇન્ટ સ્થાનના આઘારે લોડ લાઇન પર, રેખાકૃતિ સાથે કેવી રીતે વર્ગીકૃત કરવામાં આવે છે તે સમજાવો.

જવાબ:

એમ્પલિફાયર ક્લાસ	Q-પોઇન્ટ સ્થાન	કન્ડક્શન એંગલ	કાર્યક્ષમતા
ક્લાસ A	લોડ લાઇનના કેન્દ્રમાં	360°	25-30%
ક્લાસ B	કટ-ઓફ પોઇન્ટ	180°	78.5%
ક્લાસ AB	કટ-ઓફથી થોડું ઉપર	180°-360°	50-78.5%
ક્લાસ C	કટ-ઓફથી નીયે	<180°	>80%

ડાયાગ્રામ લોડ લાઇન:

ઇનપુટ/આઉટપુટ વેવફોર્મ્સ:

ક્લાસ A લક્ષણો:

• **Q-પોઇન્ટ**: લોડ લાઇનના કેન્દ્રમાં

• બાયસ: સમગ્ર સાયકલ માટે કન્ડક્શન જાળવવા માટે ફિક્સ્ડ બાયસ

• **લિનિયરિટી**: ઉત્કૃષ્ટ લિનિયરિટી, ન્યૂનતમ ડિસ્ટોર્શન

ક્લાસ B લક્ષણો:

• **Q-પોઇન્ટ**: કટઓફ પોઇન્ટ પર

• બાયસ: કટઓફ પર બાયસ, દરેક ડિવાઇસ અર્ધા-સાયકલ માટે કન્ડક્ટ કરે છે

• ડિસ્ટોર્શન: ઝીરો-ક્રોસિંગ પર ક્રોસઓવર ડિસ્ટોર્શન

• **કાર્યક્ષમતા**: સારી (78.5% સૈદ્ધાંતિક)

ક્લાસ AB લક્ષણો:

• **Q-પોઇન્ટ**: કટઓફથી થોડું ઉપર

• બાયસ: ક્રોસઓવર ડિસ્ટોર્શન દૂર કરવા માટે નાનો બાયસ કરંટ

• **લિનિયરિટી**: A અને B વચ્ચે સારો સમાધાન

• **รเข้ลหดเ**: นยมน (50-78.5%)

ક્લાસ C લક્ષણો:

• **Q-પોઇન્ટ**: કટઓફથી નીચે

• બાયસ: અર્ધા-સાયકલથી ઓછા માટે કન્ડક્ટ કરે છે

• **ડિસ્ટોર્શન**: ગંભીર ડિસ્ટોર્શન, ટ્યુન્ડ સર્કિટની જરૂર

• કાર્યક્ષમતા: ઉત્કૃષ્ટ (>80%)

મેમરી ટ્રીક: "કેન્દ્રથી ઉપર, કેન્દ્રથી નીચે, કટ-ઓફ પોઇન્ટ, નીચે બિલકુલ - ABCD ક્રમ Q-પોઇન્ટ સ્થાન માટે"