Tenemos los ingredientes necesarios para la demostración

Teorema

 $\overline{GRAPH-ISO} \in AM$

Tenemos los ingredientes necesarios para la demostración

Teorema

 $\overline{GRAPH-ISO} \in AM$

Corolario

GRAPH- $ISO \in co$ -AM

Tenemos los ingredientes necesarios . . .

El teorema anterior se demuestra estableciendo el siguiente resultado:

Teorema (Schöning)

Existe una MT probabilística no determinista M tal que $t_M(n)$ es $O(n^k)$ y para cada par (G_1, G_2) de grafos:

- ▶ Si G_1 no es isomorfo a G_2 , entonces $\mathbf{Pr}_s(M(G_1, G_2, s) \text{ acepte}) = 1$
- ▶ Si G_1 es isomorfo a G_2 , entonces $\mathbf{Pr}_s(M(G_1, G_2, s) | acepte) \leq \frac{1}{4}$

Antes de definir la MT probabilística no determinista M, vamos a discutir algunas nociones y herramientas útiles para la demostración.

Suponga que G_1 y G_2 son dos grafos con m > 0 nodos cada uno.

Recuerde que num (G_1, G_2) fue definido como:

$$\{(H,i,f)\mid H \text{ es un grafo isomorfo a } G_1 \text{ o } G_2, i\in\{1,2\} \text{ y } f\in \operatorname{\mathsf{Aut}}(G_i)\}$$

Para utilizar las herramientas desarrolladas primero tenemos que representar cada $(H,i,f)\in \operatorname{num}(G_1,G_2)$ como un string en $\{0,1\}^\ell$

ightharpoonup ¿Cuál es el valor de ℓ ?

¿Cuántos bits necesitamos para representar una tupla $(H, i, f) \in \text{num}(G_1, G_2)$?

Podemos representar H usando su matriz de adyacencia, para lo cual necesitamos m^2 bits

- Podemos representar H usando su matriz de adyacencia, para lo cual necesitamos m^2 bits
- Para almacenar el valor de i necesitamos un bit

- Podemos representar H usando su matriz de adyacencia, para lo cual necesitamos m^2 bits
- Para almacenar el valor de i necesitamos un bit
- Podemos almacenar la biyección f como una lista de m números $a_1 \dots a_m$ tal que $f(i) = a_i$

- Podemos representar H usando su matriz de adyacencia, para lo cual necesitamos m^2 bits
- Para almacenar el valor de i necesitamos un bit
- Podemos almacenar la biyección f como una lista de m números $a_1 \dots a_m$ tal que $f(i) = a_i$
 - ▶ Dado que cada $a_i \le m$, basta con utilizar $1 + \lfloor \log_2(m) \rfloor$ bits para almacenar a_i

- Podemos representar H usando su matriz de adyacencia, para lo cual necesitamos m^2 bits
- Para almacenar el valor de i necesitamos un bit
- Podemos almacenar la biyección f como una lista de m números $a_1 \dots a_m$ tal que $f(i) = a_i$
 - ▶ Dado que cada $a_i \le m$, basta con utilizar $1 + \lfloor \log_2(m) \rfloor$ bits para almacenar a_i
 - Por lo tanto necesitamos $m(1 + \lfloor \log_2(m) \rfloor)$ bits para almacenar la lista $a_1 \dots a_m$

¿Cuántos bits necesitamos para representar una tupla $(H, i, f) \in \text{num}(G_1, G_2)$?

- Podemos representar H usando su matriz de adyacencia, para lo cual necesitamos m^2 bits
- Para almacenar el valor de i necesitamos un bit
- Podemos almacenar la biyección f como una lista de m números $a_1 \dots a_m$ tal que $f(i) = a_i$
 - ▶ Dado que cada $a_i \le m$, basta con utilizar $1 + \lfloor \log_2(m) \rfloor$ bits para almacenar a_i
 - Por lo tanto necesitamos $m(1 + \lfloor \log_2(m) \rfloor)$ bits para almacenar la lista $a_1 \dots a_m$

Suponemos entonces que $\ell = m^2 + 1 + m(1 + \lfloor \log_2(m) \rfloor)$

Desde ahora en adelante consideramos a cada elemento de num (G_1,G_2) como un string de ℓ bits

▶ Tenemos que num $(G_1, G_2) \subseteq \{0, 1\}^{\ell}$

Desde ahora en adelante consideramos a cada elemento de num (G_1, G_2) como un string de ℓ bits

► Tenemos que num $(G_1, G_2) \subseteq \{0, 1\}^{\ell}$

Defina $X(G_1, G_2)$ como num $(G_1, G_2)^m$

► Cada elemento de num $(G_1, G_2)^m$ es de la forma $w_1 w_2 \cdots w_m$, donde para cada $i \in \{1, \dots, m\}$ se tiene que w_i es un string en num (G_1, G_2)

Desde ahora en adelante consideramos a cada elemento de num (G_1, G_2) como un string de ℓ bits

► Tenemos que num $(G_1, G_2) \subseteq \{0, 1\}^{\ell}$

Defina $X(G_1, G_2)$ como num $(G_1, G_2)^m$

► Cada elemento de num $(G_1, G_2)^m$ es de la forma $w_1 w_2 \cdots w_m$, donde para cada $i \in \{1, \dots, m\}$ se tiene que w_i es un string en num (G_1, G_2)

Tenemos que:

Desde ahora en adelante consideramos a cada elemento de num (G_1, G_2) como un string de ℓ bits

► Tenemos que num $(G_1, G_2) \subseteq \{0, 1\}^{\ell}$

Defina $X(G_1, G_2)$ como num $(G_1, G_2)^m$

► Cada elemento de num $(G_1, G_2)^m$ es de la forma $w_1 w_2 \cdots w_m$, donde para cada $i \in \{1, \dots, m\}$ se tiene que w_i es un string en num (G_1, G_2)

Tenemos que:

 $X(G_1, G_2) \subseteq \{0, 1\}^{\ell \cdot m}$

Desde ahora en adelante consideramos a cada elemento de num (G_1, G_2) como un string de ℓ bits

► Tenemos que num $(G_1, G_2) \subseteq \{0, 1\}^{\ell}$

Defina $X(G_1, G_2)$ como num $(G_1, G_2)^m$

Cada elemento de num $(G_1, G_2)^m$ es de la forma $w_1 w_2 \cdots w_m$, donde para cada $i \in \{1, \dots, m\}$ se tiene que w_i es un string en num (G_1, G_2)

Tenemos que:

- $X(G_1, G_2) \subseteq \{0, 1\}^{\ell \cdot m}$
- ▶ Si G_1 no es isomorfo a G_2 , entonces $|X(G_1, G_2)| \geq (4 \cdot m!)^m$

Desde ahora en adelante consideramos a cada elemento de num (G_1, G_2) como un string de ℓ bits

► Tenemos que num $(G_1, G_2) \subseteq \{0, 1\}^{\ell}$

Defina $X(G_1, G_2)$ como num $(G_1, G_2)^m$

Cada elemento de num $(G_1, G_2)^m$ es de la forma $w_1 w_2 \cdots w_m$, donde para cada $i \in \{1, \dots, m\}$ se tiene que w_i es un string en num (G_1, G_2)

Tenemos que:

- $X(G_1, G_2) \subseteq \{0, 1\}^{\ell \cdot m}$
- ▶ Si G_1 no es isomorfo a G_2 , entonces $|X(G_1, G_2)| \ge (4 \cdot m!)^m$
- ▶ Si G_1 es isomorfo a G_2 , entonces $|X(G_1, G_2)| = (2 \cdot m!)^m$

Finalmente defina $n = 1 + \lceil m \cdot \log_2(2 \cdot m!) \rceil$

Finalmente defina $n = 1 + \lceil m \cdot \log_2(2 \cdot m!) \rceil$

Tenemos que:

$$1 + \lceil m \cdot \log_2(2 \cdot m!) \rceil = 1 + \lceil m \cdot (1 + \log_2(m!)) \rceil$$

$$\leq 1 + \lceil m \cdot (1 + \log_2(m^m)) \rceil$$

$$= 1 + \lceil m \cdot (1 + m \log_2(m)) \rceil$$

$$\leq 1 + \lceil m \cdot (1 + m^2) \rceil$$

$$= 1 + m + m^3$$

Finalmente defina $n = 1 + \lceil m \cdot \log_2(2 \cdot m!) \rceil$

Tenemos que:

$$1 + \lceil m \cdot \log_2(2 \cdot m!) \rceil = 1 + \lceil m \cdot (1 + \log_2(m!)) \rceil$$

$$\leq 1 + \lceil m \cdot (1 + \log_2(m^m)) \rceil$$

$$= 1 + \lceil m \cdot (1 + m \log_2(m)) \rceil$$

$$\leq 1 + \lceil m \cdot (1 + m^2) \rceil$$

$$= 1 + m + m^3$$

Concluimos que $n+1=2+\lceil m\cdot \log_2(2\cdot m!)\rceil<2^{m-2}$ para todo $m\geq 14$

Vamos a utilizar esta propiedad en la siguiente lámina

Suponga que G_1 no es isomorfo a G_2 y que $m \geq 14$

► Tenemos que $2^{m-2} > (n+1)$

Suponga que G_1 no es isomorfo a G_2 y que $m \ge 14$

► Tenemos que $2^{m-2} > (n+1)$

Concluimos que $|X(G_1, G_2)| > (n+1)2^n$, puesto que:

$$|X(G_{1}, G_{2})| \geq (4 \cdot m!)^{m}$$

$$= 2^{\log_{2}((4 \cdot m!)^{m})}$$

$$= 2^{m \cdot \log_{2}(4 \cdot m!)}$$

$$= 2^{m+m \cdot \log_{2}(2 \cdot m!)}$$

$$= 2^{m-1+(1+m \cdot \log_{2}(2 \cdot m!))}$$

$$\geq 2^{m-1+\lceil m \cdot \log_{2}(2 \cdot m!) \rceil}$$

$$= 2^{m-2+n}$$

$$= 2^{m-2} \cdot 2^{n}$$

$$> (n+1)2^{n}$$

Si G_1 es isomorfo a G_2 tenemos que $|X(G_1, G_2)| \leq 2^{n-1}$, puesto que:

$$|X(G_1, G_2)| = (2 \cdot m!)^m$$

 $= 2^{\log_2((2 \cdot m!)^m)}$
 $= 2^{m \cdot \log_2(2 \cdot m!)}$
 $\leq 2^{\lceil m \cdot \log_2(2 \cdot m!) \rceil}$
 $= 2^{1 + \lceil m \cdot \log_2(2 \cdot m!) \rceil - 1}$
 $= 2^{n-1}$

En la demostración vamos a considerar funciones de hash aleatorias $h \in \mathcal{H}(\ell \cdot m, n)$

Estas funciones están dadas por matrices Booleanas A de $n \times (\ell \cdot m)$

Los elementos son de A son escogidos con distribución uniforme y de manera independiente

Necesitamos $(\ell \cdot m \cdot n)$ bits para representar A

Necesitamos entonces $(\ell \cdot m \cdot n)$ bits para representar una función de hash aleatoria $h:\{0,1\}^{\ell \cdot m} \to \{0,1\}^n$

Necesitamos entonces $(\ell \cdot m \cdot n)$ bits para representar una función de hash aleatoria $h:\{0,1\}^{\ell \cdot m} \to \{0,1\}^n$

Vale decir, necesitamos la siguiente cantidad de bits para representar h:

$$[m^2 + 1 + m(1 + |\log_2(m)|)] \cdot m \cdot [1 + \lceil m \cdot \log_2(2 \cdot m!) \rceil]$$

Necesitamos entonces $(\ell \cdot m \cdot n)$ bits para representar una función de hash aleatoria $h: \{0,1\}^{\ell \cdot m} \to \{0,1\}^n$

Vale decir, necesitamos la siguiente cantidad de bits para representar h:

$$[m^2 + 1 + m(1 + |\log_2(m)|)] \cdot m \cdot [1 + [m \cdot \log_2(2 \cdot m!)]]$$

El valor $(\ell \cdot m \cdot n)$ es polinomial en m, de lo cual concluimos que es polinomial en el tamaño de (G_1, G_2)

Recuerde que la MT probabilística no determinista M está tratando de verificar si dos grafos G_1 y G_2 no son isomorfos.

M recibe como entrada una tupla de la forma $(G_1,G_2,h_1,\ldots,h_{n+1})$

- lacktriangle Cada h_i es una función de hash aleatoria de $\{0,1\}^{\ell \cdot m}$ en $\{0,1\}^n$
 - lacktriangleright m es el número de nodos de G_1 , ℓ y n son definidos como fue mostrado en las transparencias anteriores
- La tupla (h_1, \ldots, h_{n+1}) corresponde al string de bits aleatorios que recibe M

Con entrada $(G_1, G_2, h_1, \ldots, h_{n+1})$ la MT M realiza los siguientes pasos:

1. Si G_1 y G_2 no tienen el mismo número de nodos entonces retorne **sí**, si no vaya al paso 2

- 1. Si G_1 y G_2 no tienen el mismo número de nodos entonces retorne **sí**, si no vaya al paso 2
- 2. Sea m el número de nodos de G_1 y G_2

- 1. Si G_1 y G_2 no tienen el mismo número de nodos entonces retorne $\mathbf{s}\mathbf{i}$, si no vaya al paso 2
- 2. Sea m el número de nodos de G_1 y G_2
- 3. Si m < 14 entonces vaya al paso 3.1, si no vaya al paso 4

- 1. Si G_1 y G_2 no tienen el mismo número de nodos entonces retorne **sí**, si no vaya al paso 2
- 2. Sea m el número de nodos de G_1 y G_2
- 3. Si m < 14 entonces vaya al paso 3.1, si no vaya al paso 4
 - 3.1 Construya todas las posibles biyecciones $f: \{1, \ldots, m\} \rightarrow \{1, \ldots, m\}$

- 1. Si G_1 y G_2 no tienen el mismo número de nodos entonces retorne **sí**, si no vaya al paso 2
- 2. Sea m el número de nodos de G_1 y G_2
- 3. Si m < 14 entonces vaya al paso 3.1, si no vaya al paso 4
 - 3.1 Construya todas las posibles biyecciones $f: \{1, \ldots, m\} \rightarrow \{1, \ldots, m\}$
 - 3.2 Si alguna de estas biyecciones f es un isomorfismo de G_1 en G_2 entonces retorne **no**. En caso contrario retorne **sí**

- 1. Si G_1 y G_2 no tienen el mismo número de nodos entonces retorne **sí**, si no vaya al paso 2
- 2. Sea m el número de nodos de G_1 y G_2
- 3. Si m < 14 entonces vaya al paso 3.1, si no vaya al paso 4
 - 3.1 Construya todas las posibles biyecciones $f: \{1, \ldots, m\} \rightarrow \{1, \ldots, m\}$
 - 3.2 Si alguna de estas biyecciones f es un isomorfismo de G_1 en G_2 entonces retorne **no**. En caso contrario retorne **sí**
- 4. Adivine $(H_1, g_1, i_1, f_1, \dots, H_m, g_m, i_m, f_m)$ tal que para cada $j \in \{1, \dots, m\}$: g_j es un isomorfismo de H_j en G_1 o G_2 , y $f_j \in Aut(G_{i_j})$

- 1. Si G_1 y G_2 no tienen el mismo número de nodos entonces retorne **sí**, si no vaya al paso 2
- 2. Sea m el número de nodos de G_1 y G_2
- 3. Si m < 14 entonces vaya al paso 3.1, si no vaya al paso 4
 - 3.1 Construya todas las posibles biyecciones $f: \{1, \ldots, m\} \rightarrow \{1, \ldots, m\}$
 - 3.2 Si alguna de estas biyecciones f es un isomorfismo de G_1 en G_2 entonces retorne **no**. En caso contrario retorne **sí**
- 4. Adivine $(H_1, g_1, i_1, f_1, \dots, H_m, g_m, i_m, f_m)$ tal que para cada $j \in \{1, \dots, m\}$: g_j es un isomorfismo de H_j en G_1 o G_2 , y $f_j \in Aut(G_{i_j})$
- 5. Sea $x = (H_1, i_1, f_1, \dots, H_m, i_m, f_m)$

Con entrada $(G_1, G_2, h_1, \ldots, h_{n+1})$ la MT M realiza los siguientes pasos:

- 1. Si G_1 y G_2 no tienen el mismo número de nodos entonces retorne **sí**, si no vaya al paso 2
- 2. Sea m el número de nodos de G_1 y G_2
- 3. Si m < 14 entonces vaya al paso 3.1, si no vaya al paso 4
 - 3.1 Construya todas las posibles biyecciones $f: \{1, \ldots, m\} \rightarrow \{1, \ldots, m\}$
 - 3.2 Si alguna de estas biyecciones f es un isomorfismo de G_1 en G_2 entonces retorne **no**. En caso contrario retorne **sí**
- 4. Adivine $(H_1, g_1, i_1, f_1, \dots, H_m, g_m, i_m, f_m)$ tal que para cada $j \in \{1, \dots, m\}$: g_j es un isomorfismo de H_j en G_1 o G_2 , y $f_j \in \operatorname{Aut}(G_{i_j})$
- 5. Sea $x = (H_1, i_1, f_1, \dots, H_m, i_m, f_m)$

 $x \in X(G_1, G_2)$

6. Para k = 1 hasta n + 1 haga lo siguiente:

- 6. Para k = 1 hasta n + 1 haga lo siguiente:
 - 6.1 Adivine $(H_1, g_1, i_1, f_1, \dots, H_m, g_m, i_m, f_m)$ tal que para cada $j \in \{1, \dots, m\}$: g_j es un isomorfismo de H_j en G_1 o G_2 y $f_j \in \operatorname{Aut}(G_{i_j})$

- 6. Para k = 1 hasta n + 1 haga lo siguiente:
 - 6.1 Adivine $(H_1, g_1, i_1, f_1, \dots, H_m, g_m, i_m, f_m)$ tal que para cada $j \in \{1, \dots, m\}$: g_j es un isomorfismo de H_j en G_1 o G_2 y $f_j \in \operatorname{Aut}(G_{i_j})$
 - 6.2 Sea $y = (H_1, i_1, f_1, \dots, H_m, i_m, f_m)$

- 6. Para k = 1 hasta n + 1 haga lo siguiente:
 - 6.1 Adivine $(H_1, g_1, i_1, f_1, \dots, H_m, g_m, i_m, f_m)$ tal que para cada $j \in \{1, \dots, m\}$: g_j es un isomorfismo de H_j en G_1 o G_2 y $f_j \in \operatorname{Aut}(G_{i_j})$
 - 6.2 Sea $y = (H_1, i_1, f_1, \dots, H_m, i_m, f_m)$

$$y \in X(G_1, G_2)$$

- 6. Para k = 1 hasta n + 1 haga lo siguiente:
 - 6.1 Adivine $(H_1, g_1, i_1, f_1, \ldots, H_m, g_m, i_m, f_m)$ tal que para cada $j \in \{1, \ldots, m\}$: g_j es un isomorfismo de H_j en G_1 o G_2 y $f_j \in \operatorname{Aut}(G_{i_j})$
 - 6.2 Sea $y = (H_1, i_1, f_1, \dots, H_m, i_m, f_m)$

$$y \in X(G_1, G_2)$$

6.3 Si x = y o $h_k(x) \neq h_k(y)$, entonces retorne **no**

- 6. Para k = 1 hasta n + 1 haga lo siguiente:
 - 6.1 Adivine $(H_1, g_1, i_1, f_1, \ldots, H_m, g_m, i_m, f_m)$ tal que para cada $j \in \{1, \ldots, m\}$: g_j es un isomorfismo de H_j en G_1 o G_2 y $f_j \in \operatorname{Aut}(G_{i_j})$
 - 6.2 Sea $y = (H_1, i_1, f_1, \dots, H_m, i_m, f_m)$

$$y \in X(G_1, G_2)$$

- 6.3 Si x = y o $h_k(x) \neq h_k(y)$, entonces retorne **no**
- 7. Retorne sí

La MT no determinista M funciona en tiempo polinomial.

Además, M acepta una entrada $(G_1, G_2, h_1, \ldots, h_{n+1})$ si y sólo si alguna de las siguientes condiciones se cumple:

- $ightharpoonup G_1$ y G_2 no tienen el mismo número de nodos
- $ightharpoonup G_1$ y G_2 tienen m < 14 nodos cada uno y no son isomorfos
- $ightharpoonup G_1$ y G_2 tienen $m \geq 14$ nodos cada uno y

```
\exists x \in X(G_1, G_2) \, \forall k \in \{1, \dots, n+1\}\exists y \in X(G_1, G_2) : (x \neq y \land h_k(x) = h_k(y))
```

Usamos las condiciones de aceptación de M para establecer la probabilidad de error de esta máquina de Turing

Vale decir, dados dos grafos G_1 y G_2 queremos calcular la probabilidad:

$$\mathbf{Pr}_{h_1,...,h_{n+1}}(M(G_1,G_2,h_1,...,h_{n+1}) \text{ acepte})$$

dependiendo de si G_1 y G_2 son o no son isomorfos.

Suponemos primero que G_1 y G_2 **no** son isomorfos.

Suponemos primero que G_1 y G_2 **no** son isomorfos.

Si G_1 y G_2 no tienen el mismo número de nodos, o si tienen el mismo número de nodos m < 14, entonces:

$$Pr_{h_1,...,h_{n+1}}(M(G_1,G_2,h_1,...,h_{n+1}) \text{ acepte}) = 1$$

De hecho en estos casos las funciones h_1, \ldots, h_{n+1} no son tomadas en cuenta.

Si G_1 y G_2 tienen el mismo número de nodos $m \ge 14$, entonces tenemos que $|X(G_1,G_2)| > (n+1)2^n$

Si G_1 y G_2 tienen el mismo número de nodos $m \ge 14$, entonces tenemos que $|X(G_1,G_2)| > (n+1)2^n$

Concluimos por el último lema demostrado que para cualquier secuencia h_1 , . . . , h_{n+1} de funciones de hash aleatorias en $\mathcal{H}(\ell \cdot m, n)$:

$$\exists x \in X(G_1, G_2) \, \forall k \in \{1, \dots, n+1\}$$

 $\exists y \in X(G_1, G_2) : (x \neq y \land h_k(x) = h_k(y))$

Si G_1 y G_2 tienen el mismo número de nodos $m \geq 14$, entonces tenemos que $|X(G_1,G_2)| > (n+1)2^n$

Concluimos por el último lema demostrado que para cualquier secuencia h_1 , . . . , h_{n+1} de funciones de hash aleatorias en $\mathcal{H}(\ell \cdot m, n)$:

$$\exists x \in X(G_1, G_2) \, \forall k \in \{1, \dots, n+1\}$$

 $\exists y \in X(G_1, G_2) : (x \neq y \land h_k(x) = h_k(y))$

Por lo tanto en este caso también tenemos que:

$$Pr_{h_1,...,h_{n+1}}(M(G_1, G_2, h_1,..., h_{n+1}) \text{ acepte}) = 1$$

Finalmente, consideramos el caso en que G_1 y G_2 son grafos isomorfos.

ightharpoonup Suponemos que G_1 y G_2 tienen el mismo número de nodos m

Finalmente, consideramos el caso en que G_1 y G_2 son grafos isomorfos.

ightharpoonup Suponemos que G_1 y G_2 tienen el mismo número de nodos m

Si m < 14 entonces la MT M no se puede equivocar al decidir si G_1 es isomorfo a G_2 , y tenemos que:

$$\mathbf{Pr}_{h_1,...,h_{n+1}}(M(G_1,G_2,h_1,...,h_{n+1}) \text{ acepte}) = 0$$

Finalmente, consideramos el caso en que G_1 y G_2 son grafos isomorfos.

ightharpoonup Suponemos que G_1 y G_2 tienen el mismo número de nodos m

Si m < 14 entonces la MT M no se puede equivocar al decidir si G_1 es isomorfo a G_2 , y tenemos que:

$$\mathbf{Pr}_{h_1,...,h_{n+1}}(M(G_1,G_2,h_1,...,h_{n+1}) \text{ acepte}) = 0$$

Suponemos entonces que $m \ge 14$

Tenemos que $|X(G_1, G_2)| \le 2^{n-1}$

Tenemos que $|X(G_1, G_2)| \le 2^{n-1}$

Concluimos por el último lema demostrado:

$$\mathsf{Pr}_{h_1,...,h_{n+1}}(\exists x \in X(G_1,G_2) \, \forall k \in \{1,\ldots,n+1\}$$

$$\exists y \in X(G_1,G_2) : (x \neq y \land h_k(x) = h_k(y))) \leq \frac{1}{4}$$

Tenemos que $|X(G_1, G_2)| \leq 2^{n-1}$

Concluimos por el último lema demostrado:

$$\mathbf{Pr}_{h_1,...,h_{n+1}}(\exists x \in X(G_1,G_2) \, \forall k \in \{1,...,n+1\}$$

$$\exists y \in X(G_1,G_2) : (x \neq y \land h_k(x) = h_k(y))) \leq \frac{1}{4}$$

Por lo tanto:

$$\Pr_{h_1,...,h_{n+1}}(M(G_1,G_2,h_1,...,h_{n+1}) \text{ acepte}) \le \frac{1}{4}$$