基础物理实验原始数据记录

	-	_ _	^	277	1/4	•)	^ H .	<i>></i> >	₩ ⊢	Į		~\\
实验名称温度的》	则量	, 用动;	态法》	则定良导	华体的	热导	率	地点_	Ź	教学	娄 427	
学生姓名陈苏	学-	号 <u>2022</u>	K8009	906009	_ 分	班分约	且座号_	1-03-	<u>5</u> 号	(例:	1-04	-5号
实验日期 <u>2023</u> 年_	11	月 <u></u> 6	<u>5</u> 日	成组	责评定			教师多	签字_			
1. 热波波速的测量 (
相邻热电偶间距。	6为	2cm,						量点的	位置실	ど标 。		
			; 	动态法	则铆比	」然 号	学 				T	
测量点 n												
对应峰值时间 t (s)												
波速(m/s)												
波速平均值:					热导	率:						
			ì	动态法	则铝的]热导	率					
测量点 n												
对应峰值时间 t (s)												
波速(m/s)												
波速平均值:					热导	率:	l	<u></u>			l	
2. 电位差计测热电偶》	皇美	由动热	(纻	#II F.~t	温度	曲线.	求 出想	由偶	的温美	生由 系	S数 α)
尼亚产厂从派代码	ш⁄т	-6-9193	1-4	ibt DX c	шш/ Х і	ш-Д,	МСШW	. C 119	H J 11111./_	L. G.7	\ <i>y</i> , "	,
室温: t=	_°C		电动势	浡: E _x =	=		_mv	ì	令端温		$t_0 = 0$	°C
温度 t (℃)												
电动势 Ex (mv)												
	温度	き特性曲	线(绘制 R	,∼t 温 <u>∫</u>	度特性	生曲线 ,	线性	拟合习		同电阻	温度
室温: t=	<u></u> °C			电阻:	R _x =	=	<u> </u>	2				
温度 t (℃)												
电阻 R _x (Ω)												

4. 平衡电桥测热敏电阻温度特性曲线

绘制 $R_{T}\sim t$ 曲线,观察热敏电阻的温度特性;绘制 $lnR_{T}\sim 1/T$ 曲线,线性拟合求出热敏电阻的特性常数 A 和 B (注意: T 为热力学温度)。

电阻:
$$R_T$$
= Ω

温度 t (℃)			
电阻 R _T (Ω)			

5. 非平衡电桥热敏电阻温度计的设计

工作电源电压:
$$E = V$$
 , $R_2 = \Omega$, $R_1/R_3 = 9$; 实际值: $R_2 = \Omega$, $R_1 = \Omega$, $R_3 = 1000$ Ω .

设定温度 t (℃)			
测试电压 U。(mv)			
测试温度(℃)			

(热敏电阻温度计: $U_0 = \lambda + m(t-t_1)$, 式中 $t_1 = 40$ °C(所测温度区间的中心值)

参数计算:

A 和 B: 根据热敏电阻电阻值与温度关系 $R=A\mathrm{e}^{\frac{B}{T}}$,可得 $\ln R=\ln A+\frac{B}{T}$,做线性拟合。

$$E = \left(\frac{4BT_1^2}{4T_1^2 - B^2}\right) m$$
, 注意 $T_1 = 273 + 40 = 313K$

$$R_2 = \frac{B - 2T_1}{B + 2T_1} R_{xT1} \left(R_{xT1}$$
为在温度 T_1 时热敏电阻的电阻)

$$\frac{R_1}{R_2} = \frac{2BE}{(B+2T_1)E-2B\lambda} - 1$$

)