Nonlinear Dimensionality Reduction: t-Stochastic Neighbor Embedding (t-SNE)

Prof. Endri Raco

Polytechnic University of Tirana *Erasmus+ Exchange Professor*

Advanced Multivariate Analysis
Polytechnic University of Catalonia (UPC)
October 15, 2025

Welcome to Advanced Multivariate Analysis

Today's Journey

- 2-hour deep dive into t-SNE
- Mathematical foundations to practical insights
- Three key parts:
 - SNE The original idea
 - t-SNE Solving the crowding problem
 - 4 Hyperparameters & interpretation

$$p_{j|i} = \frac{e^{-\|\mathbf{x}_i - \mathbf{x}_j\|^2 / 2\sigma_i^2}}{\sum_{k \neq i} e^{-\|\mathbf{x}_i - \mathbf{x}_k\|^2 / 2\sigma_i^2}}$$

Core t-SNE Formula (We'll derive this today)

The Curse of Dimensionality

Our Intuition Works Here:

2D: Simple

3D: Manageable

But Not Here:

100D? 1000D?

Problems:

- Distance concentration
- Volume: $V_n(r) \propto r^n$
- Sparse data

"Geometric intuition fails"

Goals of Dimensionality Reduction

Goal 1: Visualization

Key: "See" hidden structure

Goal 2: Feature Extraction

Benefits:

- Noise reduction
- Efficiency
- Better ML

Challenge: Preserve relationships while reducing dimensions

When Linear Methods Falter

Swiss Roll Dataset

3D Manifold

True Structure: 2D manifold in 3D space

PCA Projection

Problem:

Preserves variance, destroys local structure

Need methods that preserve local relationships

The Manifold Hypothesis

"High-dimensional data often lies on or near a much lower-dimensional manifold"

Example: Earth's Surface

2D surface in 3D

Mathematical Form

Data: $\mathbf{X} = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$ where $\mathbf{x}_i \in \mathbb{R}^D$

Assumption:

 \exists manifold \mathcal{M} with dim $d \ll D$:

$$\mathbf{x}_i \approx f(\mathbf{z}_i) + \epsilon_i$$

- $\mathbf{z}_i \in \mathbb{R}^d$ (low-dim)
- $f: \mathbb{R}^d \to \mathbb{R}^D$
- ϵ_i (noise)

Goal: Uncover this hidden low-dimensional structure

Preserving Neighborhoods: t-SNE in Action

PCA on MNIST Digits

Problems:

- Classes overlap significantly
- Linear projection limitations
- Poor cluster separation

t-SNE on MNIST Digits

t-SNE: Clear Separation

Advantages:

- Distinct clusters
- Preserves local structure
- Reveals true relationships

"t-SNE focuses on preserving local neighborhood structure" Similar points in high-D → nearby points in low-D

Today's Journey: From Theory to Mastery

From Distances to Probabilities: The Core Idea

Central Insight: Convert distances between points into probabilities
that represent neighborhood relationships

Traditional Approach

Euclidean Distances

Problem: How to weight different distances?

SNE/t-SNE Approach

Probabilities

Solution: Probabilities naturally normalize!

"What is the probability that point i would pick point i as its neighbor?"