Image Retrieval Using Kernel Methods Mini Proposal Defense

Foong Joan Tack

Department of Computer Science and Networked System
Faculty of Science and Technology
Sunway University
cloverevolc@yahoo.com
12058590@imail.sunway.edu.my

December 5, 2012

Overview

- What is Content-based Image Retrieval?
- What is Kernel Methods?
- Why is it a good idea to use Kernel Methods?

What is Image Retrieval

Courtesy of Natalia Vassilieva, Russian Summer School in Information Retrieval 2009

Content-based vs. Description-based

	DBIR	CBIR
+	 Fulltext search algorithms are applicable 	Automatic index construction
	Search results corresponds to image semantics	Index is objective
_	 Manual annotating is hardly feasible 	Semantic gap
	Manual annotations are subjective	Querying by example is not convenient for a user

Features

Similarity

Semantic Gap

Application: Image Archives

- personal photo collection
- art gallery
- search for uncle John's photos
- search for Monet's painting

Application: Medical Images

- x-ray
- MRI
- pathological vs healthy

Application: Security

- suspicious items
- face recognition

Application: Industry

(a) CD-ROM controller (b) Pack of pills

(c) Level of liquid

(d) Air-bladders in plastic

Application: Satellite Images

- weather monitoring
- military

Main Components

Courtesy of Natalia Vassilieva, Russian Summer School in Information Retrieval 2009

Kernel Methods (1)

$$\phi:X\mapsto H$$

Kernel Methods (2)

- no explicit representation, only kernel function
- implicitly calculate in higher dimensional space
- higher dimension ⇒ higher capacity
- separation of data representation and algorithm

Kernel Methods (3)

Definition

A positive definite kernel k(x, x') is a function from X^2 to real number such that:

$$\sum_{i,j} a_i a_j k(x_i, x_j) > 0$$

Theorem (Aronszajn theorem)

k is a positive definite kernel if and only if there exist a Hilbert Space H and a mapping $\phi: X \mapsto H$ such that $k(x,x') = \phi(x)^T \phi(x')$ for all $(x,x') \in X^2$

Kernel Methods (4)

Definition (Kernel Trick)

any algorithm for finite-dimensional vectors that only uses pairwise dot-products can be applied in the feature space.

The algorithm and data are separated, hence *Modularity*

Kernel Methods (5) - Examples

- linear kernel, $k_L(x, x') = x^T x'$ and
- polynomial kernel, $k_P(x, x') = (x^T x')^d$
- Gaussian RBF kernel, $k_G(x, x') = exp(-\frac{|x-x'|^2}{2\sigma^2})$

Support Vector Machine

The points X_p and X_n can be parametrized as:

$$X_P = \sum_{i \in P} a_i x_i, \sum a_i = 1$$

$$X_N = \sum_{j \in N} a_j x_j, \sum a_j = 1$$

Support Vector Machine

The solution can be found by optimizing:

$$max||X_{P} - X_{N}||^{2}$$

Online SVM

$\mathbf{UPDATE}(k)$:

- Compute X_Px_k, X_Nx_k, and x_kx_k.
- Compute λ_u using equations (4) or (5).
- Compute λ using equation (6)
- $\alpha_i \leftarrow (1 \lambda)\alpha_i$ for all i such that $y_i = y_k$.
- $\alpha_k \leftarrow \alpha_k + \lambda$.
- Update $X_P X_P$, $X_N X_P$ and $X_N X_N$ using equation (7) or (8).

HULLER:

- Initialize X_P and X_N by averaging a few points.
- Compute initial $X_P X_P$, $X_N X_P$, and $X_N X_N$.
- Iterate:
 - Pick a random p such that $\alpha_p = 0$
 - UPDATE(p)
 - Pick a random r such that $\alpha_r \neq 0$
 - UPDATE(r)

The Huller: a simple and efficient online SVM, Antoine Bordes and Leon Bottou

Future Work - Rigorous Formulation of Problem

- only empirical justification
- hard to compare result
- hidden assumption
 - fixed distribution
 - independent sampling

Future Work - Clustering with SVD

Suppose that our database contains images $I_1, I_2, ..., I_k$, and the image I_j is represented by $[O_1^j, O_2^j, ..., O_n^j]$ then we can construct the matrix below:

$$O = \begin{pmatrix} O_1^1 & O_1^2 & \cdots & O_1^k \\ O_2^1 & O_2^2 & \cdots & O_2^k \\ \vdots & \vdots & \cdots & \vdots \\ O_n^1 & O_n^2 & \cdots & O_n^k \end{pmatrix}$$

Future Work - Clustering with SVD

$$O = U\Sigma V^*$$

where U is an $n \times n$ unitary matrix, Σ is a $n \times k$ diagonal matrix, and V is a $k \times k$ unitary matrix. The core of this method is that we truncate the matrix Σ down to a rank r matrix Σ_r , and U, V to U_r , V_r by keeping only their first r columns.

- SVM is a kind of supervised learning need label
- similar to PCA

Future Work - Improvement on Algorithm

- multi-classes
- soft margin

Future Work - Kernel Design

- Fisher Kernel is a general framework to design kernel for for probabilistic distribution.
- Pyramid Match Kernel is a kernel used for unordered features sets with variable length

 ${\sf Questions}\ ?$