6. 商位相

岩井雅崇 2022/11/08

この問題を解答するにあたり以下の用語を定義しておく.(これは次回の演習の内容でもある).

定義 1. 位相空間 (X, \mathcal{O}) とする. X がハウスドルフ空間 (または T_2 空間) であるとは、任意の $a,b \in X$ について、ある $U,V \in \mathcal{O}$ があって $a \in U,b \in V,U \cap V = \emptyset$ となること.

また断りがなければ、 \mathbb{R}^n にはユークリッド位相を入れたものを考える.また \mathbb{R}^{n+1} の部分集合 S^n を $S^n=\{(x_1,\ldots,x_{n+1})\in\mathbb{R}^{n+1}\mid\sum_{i=1}^{n+1}x_i^2=1\}$ と定め,位相は \mathbb{R}^{n+1} の相対位相を入れる.

問 6.1 実数の集合 \mathbb{R} について, 同値関係 \sim_1 を

$$x \sim_1 y \Leftrightarrow x - y \in \mathbb{Z}$$

を考える. $\pi: \mathbb{R} \to \mathbb{R}/\sim_1$ を標準写像とし π により \mathbb{R}/\sim_1 に商位相を入れる. 以下の問いに答えよ.

- (a) $f: \mathbb{R} \to S^1$ を $f(t) = (\cos 2\pi t, \sin 2\pi t)$ とする.このときある連続写像 $\tilde{f}: \mathbb{R}/\sim_1 \to S^1$ で $f = \tilde{f} \circ \pi$ となるものが唯一存在することを示せ.
- (b) \tilde{f} は全単射であることを示せ.
- (c) $ilde{f}^{-1}$ は連続であることを示せ、よって \mathbb{R}/\sim_1 と S^1 は同相である、 1

問 6.2 実数の集合 \mathbb{R} について、同値関係 \sim_2 を

$$x \sim_2 y \Leftrightarrow x - y \in \mathbb{Q}$$

とし \mathbb{R}/\sim_2 に商位相を入れる. \mathbb{R}/\sim_2 はハウスドルフ空間であるか判定せよ.

問 $6.3 X = \{(x,y) \in \mathbb{R}^2 | y = 0 \text{ stat } y = 1\}$ とする. 同値関係 \sim を

$$(x_1,y_1) \sim (x_2,y_2) \Leftrightarrow \lceil x_1 \neq 0 \text{ かつ } x_1 = x_2 \rfloor$$
 または $\lceil y_1 = y_2 \text{ かつ } x_1 = x_2 \rfloor$

とし X/\sim に商位相を入れる. X/\sim はハウスドルフ空間であるか判定せよ.

問 6.4 次の問いに答えよ.

- (a) 閉写像でも開写像でない連続写像の例をあげよ.
- (b) 連続全単射が開写像であれば同相写像であることを示せ.
- 問 $6.5*(X,\mathcal{O}_X)$ を位相空間とし、 \sim を X 上の同値関係とする。 $\mathcal{O}(\pi)$ を標準写像 $\pi:X\to X/\sim$ による商位相とし、 $(X/\sim,\mathcal{O}(\pi))$ を商空間とする。次の主張に関して、真である場合は証明し、偽である場合は反例をあげよ。

 $^{^1}$ もし別に同相を示す手段があるなら他の方法を用いて良い.実は授業後半の事実を用いると (c) は簡単に示せる. (おそらく現時点だと少々厄介である.).

- (a) 商写像 $\pi: X \to X/\sim$ は開写像である.
- (b) 商写像 $\pi: X \to X/\sim$ は閉写像である.

問 $6.6 \mathbb{R}^{n+1} \setminus \{0\}$ について、同値関係 \sim を

$$x \sim y \Leftrightarrow 0$$
 でない実数 α が存在して $x = \alpha y$

と定義する. 商写像 $\pi: \mathbb{R}^{n+1}\setminus\{0\}\to (\mathbb{R}^{n+1}\setminus\{0\})/\sim$ によって位相を入れたものを実射影空間と呼び, $\mathbb{RP}^n:=(\mathbb{R}^{n+1}\setminus\{0\})/\sim$ と書く. 以下 $x=(x_1,x_2,\ldots,x_{n+1})$ を \mathbb{RP}^n の元とみなしたものを $(x_1:\cdots:x_{n+1})$ と書き実同次座標と呼ぶ. 次の問いに答えよ

- (a) $i=1,\ldots,n+1$ について $U_i=\{(x_1:\cdots:x_{n+1})|x_i\neq 0\}$ とおく. $\mathbb{RP}^n=\cup_{i=1}^{n+1}U_i$ であることをしめせ.
- (b) $i=1,\ldots,n+1$ について写像 $f_i:\mathbb{R}^n\to U_i$ を $f_i(y_1,\ldots,y_n)=(y_1:\cdots:y_{i-1}:1:y_i:y_{i+1}:\cdots:y_n:1)$ とする. $f_i:\mathbb{R}^n\to U_i$ は同相写像を定めることを示せ.

問 $6.7 \mathbb{RP}^1$ は S^1 と同相であることを示せ.

問 6.8 次の問いに答えよ.

(a)
$$\sigma: S^n \to \mathbb{RP}^n$$

$$(x_1, \dots, x_{n+1}) \longmapsto (x_1 : \dots : x_{n+1})$$

は全射連続写像であることを示せ.

- (b) σ は商写像であることを示せ.
- (c) 任意の $q \in \mathbb{RP}^n$ について $\sigma^{-1}(q)$ の個数を求めよ.
- (d) $f:S^2 \to \mathbb{R}^3$ を f(x,y,z)=(yz,zx,xy) とする.このときある連続写像で $\tilde{f}:\mathbb{RP}^2 \to \mathbb{R}^3$ で $f=\tilde{f}\circ\sigma$ となるものが唯一存在することを示せ.
- 問 $6.9*GL(2,\mathbb{R})$ を 2×2 の正則行列とする. $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2,\mathbb{R})$ を $(a,b,c,d)\in\mathbb{R}^4$ と同一視することで, $GL(2,\mathbb{R})$ を \mathbb{R}^4 の部分集合とみなし, \mathbb{R}^4 の相対位相を入れる. $GL(2,\mathbb{R})$ に同値関係 \sim を

$$A \sim B \Leftrightarrow P \in GL(2,\mathbb{R})$$
 が存在して $A = P^{-1}BP$

を考える. 次の問いに答えよ.

- (a) 任意の $\alpha \neq 0$ なる実数について $\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ であることを示せ.
- (b) 商空間 $GL(2,\mathbb{R})/\sim$ はハウスドルフ空間であるか判定せよ.

 $^{^2}i=1$ のときは $f_1(y_1,\ldots,y_n)=(1:y_1:\cdots:y_n)$ とし, i=n+1 のときは $f_{n+1}(y_1,\ldots,y_n)=(y_1:\cdots:y_n:1)$ とする.