

Don't forget to hit the record button

Literature Review

Matrix Examples

(show spreadsheets)

Author	Discovery replicated	Dates used
Gordon and Lindsay [32]	Raynaud's disease & fish oil	1983–1985
Hu et al. [63]	Raynaud's disease & fish oil	1980–1985
	Migraine & magnesium	1980-1984
Weeber et al. [27]	Raynaud's disease & fish oil	1960-1986
	Migraine & magnesium	1960-1986
	Raynaud's disease & fish oil	1960-1985
	Somatomedin C & arginine	1960-1989
	Migraine & magnesium	1980-1984
Preiss et al. [34]	Magnesium deficiency & neurologic disease	1966-1994
	Alzheimer's disease & indomethacin	1966–1996
	Alzheimer's disease & estrogen	1974-June 1995 ^a
	Schizophrenia & calcium-independent phospholipase A2	1960-1997

Table 4: End-to-End Clinical Timeline Extraction Systems

Tool:	MedLEE [106]	Deep NLU [107]	Dehghan [54]	Najafahadipour
				[53]
Year	2005	2011	2014	2020
TIMEX	Rule-based: Tem-	Rule-based: Logic	Hybrid: CRF +	Rule-based: Tem-
	poral Constraint	Form Passing, ex-	Rules	poral Tagger
	Structure (TCS),	plicit focus		
	explicit focus			
EVENT	Rule-based	Rule-based: LF	Hybrid: CRF +	Rule-based: C-
		Paning	Ruks	IKES and TNM
				Annotator
TLINK	Rule-based	Rule-based: LF	Rule-based	Hybrid: UDPipe +
		Paning		Rules
Event Nor-	Rain-based: also-	x	Rule-based	Rule-based: Se-
malization	lute reference cho-			mantic Similarity
	sen over implicit			+ Temporal Rules
Event Or-	Temporal dis-	Assigns intervals to	PathCluster	ule-based: Selects
dering	course, Simple	events		earliest occurrence
	Temporal Problems			of unique events,
	(STP) Graph			sorts temporally
Visualization	x	Smile Timeline	PathVisualization	x
		Widget		
Evaluation	x	x	Precision and Re-	P,R,F1 for compo-
			call	nents, manual for
				timeline system
Scope	Single Document	Single Document	Multiple Does-	Multiple Does-
			ments	ments

_	
Term co-occurrence	
Gordon and Lindsay [32]	Relative frequency
Hristovski et al. [69]	Confidence ^a
Hristovski et al. [36]	Support
Swanson et al. [70]	Literature cohesiveness (COH)
Cole and Bruza [50]	Odds-ratio
Stegmann and Grohmann [71]	Equivalence index
Measures of independence	
Yetisgen-Yildiz and Pratt [35], [68]	Z-score
Wren et al. [67]	Mutual Information Measure (MIM)
Cole and Bruza [50]	Log Likelihood (ll)
Semantic predication	
Hristovski et al. [72]	Predication frequency
Wilkowski et al. [53]	Degree centrality
Cameron et al. [73]	Intra-cluster predication similarity
Nearest neighbor search	
Gordon and Dumais [30]	Cosine distance
Bruza et al. [33]	Euclidean distance
Bruza et al. [33]	Information flow
Implicit term	
Hristovski et al. [69]	$X \to Z$ Support
Wren et al. [67]	Average Mutual Information Measure (AMIM)
Wren et al. [67]	Minimum Mutual Information Measure (MMIM)
Wren et al. [67]	Average Minimum Weight (AMW)
**** [a./]	B

Author	Model	Document	Term	Filters		Evaluation			
		representation	representation	s	R	н	R	P	T
Kostoff et al. [58]	bibliometric	abstracts,titles,MesH	n-grams/MeSH	х			X	x	
Gordon and Lindsay	co-	abstracts,titles	n-grams				X		
[32]	occurrence								
Weeber et al. [27]	co- occurrence	abstracts,titles	CUIs	X			X		
Winner et al. [70]		abstracts,titles	CUIs					х	
Wren et al. [79]	co- occurrence	abstracts,titles	COIS					Α.	
Hu et al. [63]	co-	MeSH	CUIs	х	Х	Х	Х		
	occurrence								
Hristovski et al. [36]	co-	MeSH	CUIs	Х					Х
	occurrence								
Srinivasan [28]	co-	MeSH	CUIs	X			X		
	occurrence								
Yetisgen-Yildiz [64]	co- occurrence	MeSH	CUIs	X		X		X	X
							_		
Stegmann and Grohmann [71]	co- occurrence	MeSH	CUIs				Х	X	
Pratt and Yetisgen-	co-	titles	CUIs	х		v	х		
Yildiz [60]	occurrence	titles	COIS	^		^	^		
Swanson and	co-	titles	unigrams				Х	x	
Smalheiser [26]	occurrence								
Preiss [43]	semantic	abstracts,titles	CUIs	X		Х	Х		
van der Eijk et al. [29]	distributional	abstracts	CUIs					x	
Gordon and Dumais	distributional	abstracts,titles,MesH	n-grams				х		
[30]									
Bruza et al. [33]	distributional	titles	unigrams				X		
Cohen et al. [61]	distributional	SemMedDB	CUIs	Х	X			X	
Wilkowski et al. [53]	interactive	SemMedDB	CUIs	Х	X			X	
Workman et al. [56]	interactive	SemMedDB	CUIs	Х	х			х	
Petric et al. [31]	rarity	PMC Full Text	n-grams	X				X	

Machine Learning

gives "computers the ability to learn without being explicitly programmed."

Arthur Samuel 1959

Types of Machine Learning

- Supervised machine learning
 - Algorithm: "learns" from preannotated data
 - Examples: Naïve Bayes, SVMs, Neural Networks
- Unsupervised machine learning
 - Algorithm: only relies on the distributional characteristics of the data set to make predicitions
 - Examples: k-nearest neighbor, kmeans clustering

Our focus

- Supervised machine learning
 - The computer "learns" patterns from a given set of examples
 - The computer infers a function from labeled training data

ML & NLP

Basically this is a method to solve a classification problem

In NLP: we can cast many problems as classification problems

Examples

- Document Classification
- Word Sense Disambiguation
- Entity Recognition
- Relationship Extraction
- Sentiment Analysis
- POS Tagging
- Parsing
- etc

Training Data

The algorithm learns from a set of training data

Data that consists of a set of instances that have been tagged with their appropriate label

Training Data: WSD

I went <tw sense="fish">bass</tw> fishing
I played the <tw sense="instrument">bass</tw>

Training Data: Entity Recognition

The macromolecular complex is <START:surfacecharge> negatively charged <END> at alkaline pH and is present in solution with sodium cations.

Representing an instance

Feature vectors: an n-dimensional vector of numerical features that represent some object

Types of features

- Feature-based Representations
 - Morphological
 - Suffix/prefix of the word
 - Lexical
 - Word itself
 - Contextual information
 - Syntatic
 - Part of speech information
 - Semantic
 - Mapped Concepts from a knowledge source
 - Semantic type/group/category
 - Domain specific
 - Is the term a chemical?

- Featureless Representations
 - Word Embeddings
 - Skip Gram
 - CBOW
 - BERT
 - eLMO
 - Character Embeddings

Feature-based Example

I went <tw sense="fish">bass</tw> fishing

Featureless Example

I went <tw sense="fish">bass</tw> fishing

Basic Idea

$$\begin{bmatrix} f_{1,1} & f_{1,2} & f_{1,3} & f_{1,4} & f_{1,5} \\ f_{2,1} & f_{2,2} & f_{2,3} & f_{2,4} & f_{2,5} \\ f_{3,1} & f_{3,2} & f_{3,3} & f_{3,4} & f_{3,5} \\ f_{4,1} & f_{4,2} & f_{4,3} & f_{4,4} & f_{4,5} \end{bmatrix} \xrightarrow{ \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix}}$$

Basic Idea

Types of Supervised Machine Learning Algorithms

Discriminative Models

- distinguish decision boundaries by inferring knowledge from observed data
- Examples:
 - Neural Networks
 - Decision Trees
 - Support Vector Machines

Generative Models

- indirect utilizing probability theory
- Examples:
 - Naïve Bayes
 - Hidden Markov Models

Generative: HMM

We went over HMMs previously with POS tagging in the Syntactic lecture

Generative: Naïve Bayes

- Common machine learning algorithm
- Premise
 - choose the best label (\hat{s}) given feature vector (\vec{f})

$$\hat{s} = argmax_{s \in S} P(s|\vec{f})$$

$$\hat{s} = argmax_{s \in S} P(s|\vec{f})$$

Naïve Assumption:

The features are conditionally independent given the word sense

$$\hat{s} = argmax_{s \in S} \frac{P(\vec{f} | s)P(s)}{P(\vec{f})}$$

Bayes Rule

Denominator same

$$\hat{s} = argmax_{s \in S} P(\vec{f} | s) P(s)$$

$$\hat{s} = argmax_{s \in S} P(s) \prod_{j=1}^{n} P(f_j|s)$$

$$\hat{s} = argmax_{s \in S} P(s) \prod_{j=1}^{n} P(f_j|s)$$

$$P(s_i) = \frac{count(s_i, w_j)}{count(w_j)}$$

How likely is *bass* referring to a *fish* over all the instances of *bass* in your training data

$$\hat{s} = argmax_{s \in S} P(s) \prod_{j=1}^{n} P(f_j|s)$$

$$P(f_j|s) = \frac{count(f_j, s)}{count(s)}$$

So if we have a feature: $[f_j = played]$ $[f_j = played]$ occurred 3 times for sense $bass^1$ sense $bass^1$ occurred 60 times in the training data

$$P([played]|bass^{1}) = \frac{count(([played],bass^{1})}{count(bass^{1})} = \frac{3}{60} = 0.05$$

$$\hat{s} = argmax_{s \in S} P(s) \prod_{j=1}^{n} P(f_j|s) \qquad P(f_j|s) = \frac{count(f_j, s)}{count(s)}$$

played

New instance: She hooked the worm when <tw sense=?>bass</tw> fishing

$$P([fishing]|bass^{1}) = \frac{count(([fishing],bass^{1})}{count(bass^{1})} * P([fishing]|bass^{2}) = \frac{count(([fishing],bass^{2})}{count(bass^{2})} * P([adjective]|bass^{1}) = \frac{count(([adjective],bass^{1})}{count(bass^{1})} P([adjective]|bass^{2}) = \frac{count(([adjective],bass^{2})}{count(bass^{2})} * P([adjective]|bass^{2}) = \frac{count(([adjective],bass^{2}))}{count(bass^{2})} * P([adjective]|bass^{2}) * P([a$$

The sense with the highest score is assigned to the target word

Generative: Naïve Bayes

The underlying idea is that it is estimating the probability of the label based on seeing that label with the features representing the instance from the training data

Discriminative: Neural Network

distinguish decision boundaries by inferring knowledge from observed data

$$\sum_{i=0}^{n} x_i w_i = x_1 w_1 + x_2 w_2$$

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	_
iign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
lyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer NN	7

Training Data

x_1	2
x_2	1
label	0

Training Data

x_1	2
x_2	1
label	0

Training Data

x_1	2
x_2	1
label	0

w_1	.2
w_2	-1

Training Data
$$\begin{array}{c|c} x_1 & 2 \\ \hline x_2 & 1 \\ \hline \textit{label} & 0 \end{array}$$

\boldsymbol{n}		
$\sum_{i=0} x_i w_i = 2$	*.2+1	* -1 = - . 6
$\overline{i=0}$		

w_1	.2
w_2	-1

Trainin x_1	g Data
x_2	1
label	0

$\sum_{i=0}^n x_i w_i = 2$	*.2+1	* -1 = - . 6
Linear		Adaline, linear

 $\phi(z) = z$

regression

w_1	.2
w_2	-1

error (E) = label - y

Trainin	g Dat
x_1	2
x_2	1
label	0

ta
$$\sum_{i=0}^{n} x_i w_i = 2 * .2 + 1 * -1 = -.6$$

Linear Adaline, linear

 $\phi(z) = z$ regression

w_1	.2
w_2	-1

Trainin x_1	g Data
x_2	1
label	0

ta
$$\sum_{i=0}^{n} x_i w_i = 2 * .2 + 1 * -1 = -.6$$
Linear Adaline, linear

 $\phi(z) = z$

regression

w_1	.2
w_2	-1

Trainin x_1	g Data
x_2	1
label	0

ta
$$\sum_{i=0}^{n} x_i w_i = 2 * .2 + 1 * -1 = -.6$$
Linear Adaline, linear

 $\phi(z) = z$

regression

Random weights

w_1	.2
w_2	-1

$$w_i = \frac{\delta E}{\delta w_i} \qquad w_i = w_i + \Delta w_i$$

Training Data

x_1	2
x_2	1
label	0

Random weights

w_1	.2
w_2	-1

$$\Delta w_i = \frac{\delta E}{\delta w_i}$$

$$w_i = w_i + \Delta w_i$$
$$w_i = w_i + \epsilon E x_i$$

Training Data

x_1	2
x_2	1
label	0

Random weights

w_1	.2
w_2	-1

y

Training Data
$$\begin{array}{c|c} x_1 & 2 \\ \hline x_2 & 1 \\ \hline \text{label} & 0 \end{array}$$

$\Delta w_i = \frac{\delta E}{\delta w_i}$	$w_i = w_i + \Delta w_i$
ow_{i}	$w_i = w_i + \epsilon E x_i$

$$\begin{array}{c|cc} x_1 & 2 \\ \hline x_2 & 1 \\ \hline & |abel| & 0 \end{array}$$

$$w_1 = 0.2 + 0.1 * 0.6 * 0.2 = 0.32$$

Random weights
$$w_1$$
 .2
 w_2 -1

$$w_2 = -1 + 0.1 * 0.6 * 1 = -0.40$$

y | label = 0

Error(E) = label - y
= 0 - (6)
= .6

$$\Delta w_i = \frac{\delta E}{\delta w_i} \qquad w_i = w_i + \Delta w_i$$
$$w_i = w_i + \epsilon E x_i$$

$$w_1 = 0.2 + 0.1 * 0.6 * 0.2 = 0.32$$

 $w_2 = -1 + 0.1 * 0.6 * 1 = -0.40$

Stochastic Gradient Descent

think of the error as a function with respect to the weights

- initializing our weight randomly
- the derivative shows us the slope at this point is a is a positive number
- we want to move closer to the center — so opposite direction of the slope.

Goal: find the minimum of the function.

Step 1: Guess an x

Step 2: update x

for x, we can go two possible directions:

- increase x
- decrease x

We do this based on the derivative of f(x)

The derivative at some point x_0 is defined as:

$$\frac{d}{dx}f(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

This tells us what happens to f(x) when we vary small value to x.

$$\frac{d}{dx}f(x_0) = \lim_{h\to 0} \frac{f(x_0+h) - f(x_0)}{h}$$

Example: at $x_0 = 3$

$$\begin{split} \frac{d}{dx}f(3) &= \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} \\ &= \lim_{h \to 0} \frac{(3+h-1)^2 - (3-1)^2}{h} \\ &= \lim_{h \to 0} \frac{h^2 + 4h}{h} \\ &= \lim_{h \to 0} h + 4 = 4 \end{split}$$

Example: at $x_0 = 3$

$$\begin{split} \frac{d}{dx}f(3) &= \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} \\ &= \lim_{h \to 0} \frac{(3+h-1)^2 - (3-1)^2}{h} \\ &= \lim_{h \to 0} \frac{h^2 + 4h}{h} \\ &= \lim_{h \to 0} h + 4 = 4 \end{split}$$

The slope of $\frac{df}{dx}$ at $x_0 = 3$ is 4

Example: at $x_0 = 3$

$$\begin{split} \frac{d}{dx}f(3) &= \lim_{h \to 0} \frac{f(3+h) - f(3)}{h} \\ &= \lim_{h \to 0} \frac{(3+h-1)^2 - (3-1)^2}{h} \\ &= \lim_{h \to 0} \frac{h^2 + 4h}{h} \\ &= \lim_{h \to 0} h + 4 = 4 \end{split}$$

for a small change of h to xthe value of f(x) will increase by 4h

for a small change of h to xthe value of f(x) will increase by 4h

Therefore, to get closer to the minimum of f(x) we should decrease x_0 a little bit

Learning rate

Gradient Descent

To big of learning rate and it may take a long time to find the global minimum

To small of learning rate and we may end up in a local minimum thinking it is out global minimum

Learning rates

To big of learning rate and it may take a long time to find the global minimum

To small of learning rate and we may end up in a local minimum thinking it is out global minimum

Does that make sense at a high level?

$$\sum_{i=0}^{n} x_i w_i = 1 * 4.0 + 4 * 1.6 + 2 * 0.9 = 12.2$$

 $\boldsymbol{x_1}$

 x_2

 x_3

label

$$\sum_{i=0}^{n} x_i w_i = 1 * 4.0 + 4 * 1.6 + 2 * 0.9 = 12.2$$
 $\phi(12.2) = 12.2$

 $\boldsymbol{x_1}$

 $\boldsymbol{x_2}$

 x_3

label

$$\mathbf{w}_i = \mathbf{w}_i + \varepsilon \mathbf{E} \mathbf{x}_i$$

= 1 - (0.03)

= 0.97

 x_1

 x_2

 x_3 label

$$w_i = w_i + \varepsilon E x_i$$

 x_1

 x_2

x₃

2

$$w_i = w_i + \varepsilon E x_i$$

 x_1

 x_2

x₃

$$w_i = w_i + \varepsilon E x_i$$

 $\boldsymbol{x_1}$

 x_2

x₃

 x_1

 x_2

x₃

2

derivative of a sigmoid function

 x_1

 x_2

x₃

Derivative of a sigmoid function

$$\begin{split} \frac{d}{dx}\sigma(x) &= \frac{d}{dx} \left[\frac{1}{1+e^{-x}} \right] \\ &= \frac{d}{dx} \left(1 + e^{-x} \right)^{-1} \\ &= -(1+e^{-x})^{-2} (-e^{-x}) \\ &= \frac{e^{-x}}{(1+e^{-x})^2} \\ &= \frac{1}{1+e^{-x}} \cdot \frac{e^{-x}}{1+e^{-x}} \\ &= \frac{1}{1+e^{-x}} \cdot \frac{(1+e^{-x})-1}{1+e^{-x}} \\ &= \frac{1}{1+e^{-x}} \cdot \left(\frac{1+e^{-x}}{1+e^{-x}} - \frac{1}{1+e^{-x}} \right) \\ &= \frac{1}{1+e^{-x}} \cdot \left(1 - \frac{1}{1+e^{-x}} \right) \\ &= \sigma(x) \cdot (1-\sigma(x)) \end{split}$$

 $\boldsymbol{x_1}$

 x_2

 x_3

label

 x_1

 x_2

 x_3

Derivative of ax+b

Explanation:

$$f(x) = ax + b$$

Take derivative on both sides:

$$\frac{d}{dx}(f(x)) = \frac{d}{dx}(ax+b)$$

Apply the sum/difference rule for derivative which is stated as:

$$rac{d}{dx}(f+g) = rac{d}{dx}(f) + rac{d}{dx}(g)$$

So that we will have:

$$f'(x) = \frac{d}{dx}(ax) + \frac{d}{dx}(b)$$

Remember the derivative of a constant is zero, so that we will have:

$$f'(x) = \frac{d}{dx}(ax) + 0$$

Take the constant out by applying $\frac{d}{dx}(a \cdot f) = a \cdot \frac{d}{dx}(f)$

$$f'(x) = a \cdot \frac{d}{dx}(x)$$

Apply the common derivative rule $\dfrac{d}{dx}(x)=1$

$$f'(x) = a \cdot 1$$

$$f'(x) = a$$

$$\varepsilon = 0.1$$

$$w_{i} = w_{i} + \varepsilon E x_{i}$$

$$w_{11} = 4.0$$

$$w_{12} = 0.1$$

$$w_{21} = 1.6$$

$$x_{2} \quad w_{22} = 2.3$$

$$w_{31} = 0.9$$

$$x_{3} \quad w_{32} = 4.1$$

$$w_{32} = 4.1$$

$$w_{31} = 0.9$$

$$w_{32} = 4.1$$

$$w_{32} = 4.1$$

$$w_{33} = 0.9$$

$$w_{42} = 0.5$$

$$\Delta w_{41} = \frac{\delta E}{\delta w_{41}} = \frac{\delta E}{\delta j} \frac{\delta j}{\delta w_{41}}$$

$$= 0.03 * 12.2$$

$$= 0.36$$

2

1

x₃

$$\varepsilon = 0.1$$

$$w_{11} = 4.0$$

$$w_{12} = 0.1$$

$$w_{12} = 0.1$$

$$w_{21} = 1.6$$

$$x_{2}$$

$$w_{22} = 2.3$$

$$w_{31} = 0.9$$

$$x_{31} = 0.9$$

$$w_{32} = 4.1$$

$$w_{32} = 4.1$$

$$w_{32} = 4.1$$

$$w_{33} = 0.9$$

$$w_{42} = 0.5$$

$$w_{42} = 0.5$$

$$w_{42} = 0.5$$

$$w_{41} = \frac{\delta E}{\delta w_{41}} = \frac{\delta E}{\delta j} \frac{\delta j}{\delta w_{41}}$$

$$= 0.03 * 12.2$$

$$= 0.36$$

 $w_{41} = w_{41} + \varepsilon \Delta w_{41} = -1 + (0.1 * .36) = -.96$

 x_1

 x_2

 x_3

label

2

$$\varepsilon = 0.1$$

$$w_{i} = w_{i} + \varepsilon E x_{i}$$

$$w_{11} = 4.0$$

$$w_{12} = 0.1$$

$$w_{21} = 1.6$$

$$x_{2} = w_{22} = 2.3$$

$$w_{31} = 0.9$$

$$x_{3}$$

$$w_{32} = 4.1$$

$$x_{41} = w_{41} + \varepsilon \Delta w_{41} = -1 + (0.1 * .36) = -.96$$

$$w_{41} = w_{41} + \varepsilon \Delta w_{41} = -1 + (0.1 * .36) = -.96$$

1

$$\varepsilon = 0.1$$

$$w_i = w_i + \varepsilon E x_i$$

 x_2

x₃

$$\varepsilon = 0.1$$

$$w_i = w_i + \varepsilon E x_i$$

 x_2

 x_3

$$\varepsilon = 0.1$$

$$w_i = w_i + \varepsilon E x_i$$

$$w_{42} = w_{42} + \varepsilon \Delta w_{42} = 0.5 + (0.1 * .5) = -.55$$

 x_2

x₃

$$\varepsilon = 0.1$$

 x_2

x₃

2

1

$$\varepsilon = 0.1$$

$$|w_{i} = w_{i} + \varepsilon E x_{i}|$$

$$w_{11} = 4.0$$

$$w_{12} = 0.1$$

$$w_{21} = 1.6$$

$$x_{2} = 2.3$$

$$w_{31} = 0.9$$

$$x_{31} = 0.9$$

$$x_{31} = 0.9$$

$$x_{32} = 4.1$$

$$w_{32} = 4.1$$

$$w_{32} = 4.1$$

$$w_{31} = \frac{\delta E}{\delta w_{11}} = \frac{\delta E}{\delta j} \frac{\delta j}{\delta w_{11}}$$

 x_2

x₃

2

1

$$\varepsilon = 0.1$$

 x_2

 x_3

$$\varepsilon = 0.1$$

$$|w_{i} = w_{i} + \varepsilon E x_{i}|$$

$$w_{11} = 4.0$$

$$w_{12} = 0.1$$

$$w_{21} = 1.6$$

$$x_{2} = 0.97$$

$$w_{31} = 0.9$$

$$x_{3} = 0.9$$

$$w_{32} = 4.1$$

$$w_{32} = 4.1$$

$$w_{33} = 0.9$$

$$w_{42} = 0.55$$

$$w_{42} = 0.55$$

$$w_{42} = 0.55$$

$$w_{42} = 0.55$$

$$w_{41} = \frac{\delta E}{\delta w_{11}} = \frac{\delta E}{\delta j} \frac{\delta j}{\delta w_{11}}$$

 x_2

x₃

1

$$\varepsilon = 0.1$$

 x_2

 x_3

$$\varepsilon = 0.1$$

$$|w_{i} = w_{i} + \varepsilon E x_{i}|$$

$$w_{11} = 4.0$$

$$w_{12} = 0.1$$

$$w_{21} = 1.6$$

$$x_{2} = 2.3$$

$$w_{31} = 0.9$$

$$x_{3} = 0.9$$

$$w_{31} = 0.9$$

$$x_{3} = 0.9$$

$$x_{3} = 0.9$$

$$x_{42} = 0.55$$

$$\Delta w_{11} = \frac{\delta E}{\delta w_{11}} = \frac{\delta E}{\delta j} \frac{\delta j}{\delta w_{11}} = \frac{\delta E}{\delta j} \frac{\delta j}{\delta m_{1}} \frac{\delta m_{1}}{\delta m_{1}}$$

 $\frac{\delta j}{\delta m_1} = \frac{\delta (m_1 w_{41} + m_2 w_{42})}{\delta m_1} = w_{41} = -0.96$

 $\boldsymbol{x_1}$

 x_2

 x_3

label

2

1

$$\varepsilon = 0.1$$

 x_2

 x_3

$$\varepsilon = 0.1$$

$$|w_{i} = w_{i} + \varepsilon E x_{i}|$$

$$|w_{11} = 4.0|$$

$$|w_{12} = 0.1|$$

$$|w_{12} = 0.1|$$

$$|w_{21} = 1.6|$$

$$|x_{2}|$$

$$|w_{22} = 2.3|$$

$$|w_{31} = 0.9|$$

$$|x_{3}|$$

$$|w_{31} = 0.9|$$

$$|x_{3}|$$

$$|w_{32} = 4.1|$$

$$|x_{2}|$$

$$|x_{3}|$$

$$|x_{3}|$$

$$|x_{3}|$$

$$|x_{3}|$$

$$|x_{4}|$$

 $\overline{\delta w_{11}}$

 $\frac{\delta m_1}{\delta m_1} = \frac{\delta (x_1 w_{11} + x_2 w_{21} + x_3 w_{31})}{\delta m_1} = x_1 = 1$ δw_{11}

 $\boldsymbol{x_1}$

 x_2

 x_3 label

$$\varepsilon = 0.1$$

$$|w_{i} = w_{i} + \varepsilon E x_{i}|$$

$$|w_{11} = 4.0|$$

$$|w_{12} = 0.1|$$

$$|w_{12} = 0.1|$$

$$|w_{21} = 1.6|$$

$$|x_{2}|$$

$$|w_{22} = 2.3|$$

$$|w_{31} = 0.9|$$

$$|x_{3}|$$

$$|w_{31} = 0.9|$$

$$|x_{3}|$$

$$|w_{32} = 4.1|$$

$$|x_{2}|$$

$$|x_{3}|$$

$$|x_{3}|$$

$$|x_{3}|$$

$$|x_{3}|$$

$$|x_{3}|$$

$$|x_{3}|$$

$$|x_{3}|$$

$$|x_{4}|$$

$$|x_{1}|$$

$$|x_{4}|$$

$$|x_{1}|$$

$$|x_{4}|$$

$$|x_{1}|$$

$$|x_{2}|$$

$$|x_{3}|$$

$$|x_{4}|$$

$$|x_{1}|$$

$$|x_{4}|$$

$$|x_{1}|$$

$$|x_{4}|$$

$$|x_{1}|$$

$$|x_{2}|$$

$$|x_{3}|$$

$$|x_{4}|$$

$$|x_{1}|$$

$$|x_{1}|$$

$$|x_{2}|$$

$$|x_{3}|$$

$$|x_{4}|$$

$$|x_{1}|$$

$$|x_{4}|$$

$$|x_{1}|$$

$$|x_{2}|$$

$$|x_{3}|$$

$$|x_{4}|$$

$$|x_{1}|$$

$$|x_{4}|$$

$$|x_{1}|$$

$$|x_{2}|$$

$$|x_{3}|$$

$$|x_{4}|$$

$$|x_{1}|$$

$$|x_{4}|$$

$$|x_{5}|$$

 $\boldsymbol{x_1}$

 x_2

x₃

$$\frac{\delta m_1}{\delta w_{11}} = \frac{\delta (x_1 w_{11} + x_2 w_{21} + x_3 w_{31})}{\delta w_{11}} = x_1 = 1$$

$$\varepsilon = 0.1$$

$$w_{i} = w_{i} + \varepsilon E x_{i}$$

$$w_{11} = 4.0$$

$$w_{12} = 0.1$$

$$w_{21} = 1.6$$

$$x_{2} = 0.97$$

$$w_{22} = 2.3$$

$$w_{31} = 0.9$$

$$w_{31} = 0.9$$

$$w_{32} = 4.1$$

$$w_{32} = 4.1$$

$$w_{33} = 0.9$$

$$w_{42} = 0.55$$

$$\Delta w_{11} = \frac{\delta E}{\delta w_{11}} = \frac{\delta E}{\delta j} \frac{\delta j}{\delta w_{11}} = \frac{\delta E}{\delta j} \frac{\delta j}{\delta m_{1}} \frac{\delta m_{1}}{\delta w_{11}}$$

$$= 0.03 * -1.0 * 1 = -0.03$$

 x_2

 x_3

label

1

$$\varepsilon = 0.1$$

 x_2

 x_3

label

1

$$|w_{i} = w_{i} + \varepsilon E x_{i}|$$

$$w_{11} = 4.0$$

$$w_{12} = 0.1$$

$$w_{21} = 1.6$$

$$x_{2} \quad w_{22} = 2.3$$

$$w_{31} = 0.9$$

$$x_{3} \quad w_{32} = 4.1$$

$$17.5$$

$$\Delta w_{11} = \frac{\delta E}{\delta w_{11}} = \frac{\delta E}{\delta j} \frac{\delta j}{\delta w_{11}} = \frac{\delta E}{\delta j} \frac{\delta j}{\delta m_{1}} \frac{\delta m_{1}}{\delta w_{11}}$$

$$= 0.03 * -1.0 * 1 = -0.03$$

 $w_{11} = w_{11} + \varepsilon \Delta w_{11} = 4.0 + (0.1 * -.03) = 3.997$

$$\varepsilon = 0.1$$

$$w_{11} = w_{11} + \varepsilon \Delta w_{11} = 4.0 + (0.1 * -.03) = 3.997$$

 x_2

 x_3

$$\varepsilon = 0.1$$

$$w_i = w_i + \varepsilon E x_i$$

$$\varepsilon = 0.1$$

 $\boldsymbol{x_1}$

 x_2

x₃

$$\varepsilon = 0.1$$

 $\boldsymbol{x_1}$

 x_2

x₃

$$\varepsilon = 0.1$$

$$w_i = w_i + \varepsilon E x_i$$

$$Error(E) = label - y$$

= 1 - (0.03)
= 0.97

$$y = 0.03$$

Think of the activation function to determine how much of an input feature should progress through the network.

Weights assign significance to those input features.

Modify the weights based on the resulting error

 $\boldsymbol{x_1}$

 x_2

 x_3

Activation Functions

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	-
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer NN	

SoftMax or Sigmoid

The sigmoid function is used for the two-class logistic regression

The **softmax** function is an extension of the sigmoid function to be used for the multiclass logistic regression -- they return a probability distribution over the classes

Questions?

Types of NN

- Recurrent Neural Networks
 - LSTM
 - bi-LSTM
- Convolutional Neural Networks

Recurrent Neural Networks

- Often used for sequence classification tasks
- They remember a history

Long Short Term Memory (LSTM) Units

Long Short Term Memory Units

Long Short Term Memory Units


```
x = input
```

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

 σ = sigmoid tanh = hyperbolic tangent

* = Hadamard product (not matrix multiplication)

i = input gatef = forget gateg = cell gateo = output gate

Gates are always Wx + b + Wh + b

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$


```
x = input
```

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

```
\sigma = sigmoid
tanh = hyperbolic tangent
```

* = Hadamard product (not matrix multiplication)

```
i = input gate
```

f = forget gate

q = cell gate

o = output gate

Gates are always Wx + b + Wh + b

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$


```
x = input
```

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

```
\sigma = sigmoid tanh = hyperbolic tangent
```

* = Hadamard product (not matrix multiplication)

$$i = \text{input gate}$$
 $f = \text{forget gate}$
 $\begin{bmatrix} 3 & 5 & 7 \\ 4 & 9 & 8 \end{bmatrix} \circ \begin{bmatrix} 1 & 6 & 3 \\ 0 & 2 & 9 \end{bmatrix} = \begin{bmatrix} 3 \times 1 & 5 \times 6 & 7 \times 3 \\ 4 \times 0 & 9 \times 2 & 8 \times 9 \end{bmatrix}$
 $g = \text{cell gate}$
 $g = \text{output gate}$
 $g = \text{o$

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$

Activation Functions

$$\operatorname{Sigmoid}(x) = rac{1}{1 + \exp(-x)}$$

$$anh(x) = rac{e^x - e^{-x}}{e^x + e^{-x}}$$


```
x = input
```

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

 σ = sigmoid tanh = hyperbolic tangent

* = Hadamard product (not matrix multiplication)

i = input gate

f = forget gate

g = cell gate

o = output gate

Gates are always Wx + b + Wh + b

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$

x = input

h = hidden state

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

 σ = sigmoid tanh = hyperbolic tangent

* = Hadamard product (not matrix multiplication)

i = input gate *f* = forget gate

g = cell gate

o = output gate

This decides the parts of the input that we want to output based on our learned weights

Gates are always Wx + b + Wh + b

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$


```
x = input
```

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

 σ = sigmoid tanh = hyperbolic tangent

* = Hadamard product (not matrix multiplication)

i = input gate

f = forget gate

g = cell gate

o = output gate

Gates are always $W_X + b + W_h + b$

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$

```
x = input
```

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

 σ = sigmoid tanh = hyperbolic tangent

* = Hadamard product (not matrix multiplication)

i = input gate

f = forget gate

q = cell gate

o = output gate

1 = completely keep this

0 = completely get rid of this

Gates are always Wx + b + Wh + b

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$

```
x = input
```

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

 σ = sigmoid tanh = hyperbolic tangent

* = Hadamard product (not matrix multiplication)

i = input gatef = forget gateq = cell gate

o = output gate

This is combined with our input and is saying how much of the input do we want to pass on

Gates are always Wx + b + Wh + b

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$


```
x = input
```

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

 σ = sigmoid tanh = hyperbolic tangent

* = Hadamard product (not matrix multiplication)

i = input gate

f = forget gate

g = cell gate

o = output gate

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$

```
x = input
```

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

 σ = sigmoid tanh = hyperbolic tangent

* = Hadamard product (not matrix multiplication)

```
i = input gatef = forget gateq = cell gate
```

o = output gate

This is the cell state that we squash between -1 and 1

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$

```
x = input
```

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

 σ = sigmoid tanh = hyperbolic tangent

* = Hadamard product (not matrix multiplication)

i = input gate
 f = forget gate
 g = cell gate
 o = output gate

Then it is multiplied with our sigmoid gate so we only output the parts of our input that we want to.

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$


```
x = input
```

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

 σ = sigmoid tanh = hyperbolic tangent

* = Hadamard product (not matrix multiplication)

i = input gatef = forget gateg = cell gate

o = output gate

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$


```
x = input
```

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

 σ = sigmoid tanh = hyperbolic tangent

* = Hadamard product (not matrix multiplication)

i = input gatef = forget gateg = cell gateo = output gate

This is the information that we want to continue to pass on to the next cell

new Cell state

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$


```
x = input
```

o = output gate

c = cell state

t = current cell (timestep)

 W_{yz} = weights for y at gate z b_{yz} = bias for y at gate z

σ = sigmoid
 tanh = hyperbolic tangent
 * = Hadamard product (not matrix multiplication)

f = input gate This is the hidden state of the general cell (the weights)

new Hidden state

$$egin{aligned} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{(t-1)} + b_{hi}) \ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{(t-1)} + b_{hf}) \ g_t &= anh(W_{ig}x_t + b_{ig} + W_{hg}h_{(t-1)} + b_{hg}) \ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{(t-1)} + b_{ho}) \ c_t &= f_t * c_{(t-1)} + i_t * g_t \ h_t &= o_t * anh(c_t) \end{aligned}$$

LSTM

$$ext{LogSoftmax}(x_i) = \log \left(rac{\exp(x_i)}{\sum_j \exp(x_j)}
ight)$$

Linear Concat σ

Bi-LSTM

BILSTM-CRF

$$P(\mathbf{y} \mid \mathbf{X}) = \prod_{k=1}^{\ell} P(y_k \mid \mathbf{x}_k)$$

$$= \prod_{k=1}^{\ell} \frac{\exp(U(\mathbf{x}_k, y_k))}{Z(\mathbf{x}_k)}$$

$$= \frac{\exp\left(\sum_{k=1}^{\ell} U(\mathbf{x}_k, y_k)\right)}{\prod_{k=1}^{\ell} Z(\mathbf{x}_k)}$$

Questions?

Convolutional Neural Network

"convolutional neural network" employ a mathematical operation called convolution

Convolution Layer

- Traverses a filter over the input layer
- Results are summed with the bias to give a squashed one-depth channel Convoluted Feature Output

Pooling layer

Two types of Pooling:

Max Pooling - returns the maximum value from the portion of the image covered by the Kernel

- a. discards the noisy activations
- b. performs dimensionality reduction

Average Pooling - returns the average of all the values from the portion of the image covered by the Kernel

a. performs dimensionality reduction

simple CNN applied to NLP

Questions?

A model's predictive ability on a test set is measured utilizing evaluation metrics.

Data labels

2

X₃

.

x₅

Predicted Data labels labels **True Positive** X_2 **False Positive** X_3 False Negative X_4 True Positive **X**₅ **True Positive X**₆ **True Negative**

PP PN

TP = 3 FN = 1

N FP = 1 TN = 1

How relevant are our predictions?

$$Precision = \frac{tp}{tp + fp}$$

How sensitive is our system to the target class?

$$Recall = \frac{tp}{tp + fn} = 3/4$$

	PP	PN
Р	TP = 3	FN = 1
N	FP = 1	TN = 1

Harmonic mean between precision and recall

$$F_1 = \left(rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}}
ight) = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} \, .$$

Evaluation Methodologies

Hold out validation:

- Don't train on all available data.
- If dataset is small, hold out set may not be a representative sample.

Cross validation:

- Partition data into *n* disjoint subsets
- Use each subset as a testing set and train on the remaining subsets - average metrics.

Hyper parameter tuning

- Number of parameters that need to be tuned
 - For example
 - Learning rate
 - Epochs
 - Window size
- Conducted over a validation set that is separate from the training and test
 - Tune your hyper parameters over the validation set
 - Evaluate:
 - hold out
 - cross validation
 - Your validation set must be independent of your training and test

Questions?

