

Representación de la Información en los Sistemas Digitales

© Luis Entrena, Celia López, Mario García, Enrique San Millán

Universidad Carlos III de Madrid

Introducción a los computadores

Computador: Máquina que procesa información

Sistemas analógicos y digitales

- Sistemas analógicos: aquellos cuyas variables toman valores continuos en el tiempo
 - Las magnitudes físicas son en su mayoría analógicas
- Sistemas digitales: aquellos cuyas variables toman valores discretos en el tiempo
 - Se utilizan valores discretos llamados dígitos
 - Precisión limitada
 - Las cantidades digitales son más fáciles de manejar
 - Las magnitudes analógicas se pueden convertir a magnitudes digitales mediante muestreo

Sistemas analógicos y digitales

Sistema Analógico

Sistema digital

Sistemas binarios

- Sistemas binarios: sistemas digitales que sólo utilizan dos posibles valores
 - Los digitos binarios se denominan bits (Binary digiT)
 - Se representan mediante los símbolos 0 y 1, ó L y H
 - Los sistemas binarios son casi los únicos utilizados. Por extensión, se utiliza el término digital como sinónimo de binario
- ¿Por qué binario?
 - Más fiable: mayor inmunidad frente al ruido
 - Más sencillo de construir: sólo hay que distinguir entre dos valores

Índice

- Sistemas de Numeración
- Conversiones entre sistemas de numeración
- Códigos Binarios:
 - Códigos BCD
 - Códigos progresivos y cíclicos
 - Códigos alfanuméricos
 - Códigos detectores y códigos correctores de errores
 - Representación de números enteros y reales

Sistemas de Numeración

- Permiten representar los números mediante dígitos
- El sistema que utilizamos habitualmente es el sistema decimal:

• N =
$$a_n 10^n + a_{n-1} 10^{n-1} + ... + a_1 10 + a_0$$

- Ejemplo: $272_{10} = 2*10^2 + 7*10 + 2$
- Se puede hacer lo mismo pero utilizando bases diferentes a 10:

Dígito Peso
$$N = a_n b^n + a_{n-1} b^{n-1} + ... + a_1 b + a_0$$
Base

Sistemas de Numeración

- En un sistema con base b los dígitos posibles son:
 - 0, 1, ..., b-1
- Con n dígitos se pueden representar bⁿ números posibles, desde el 0 hasta el bⁿ-1
- Esta representación sirve también para números que no sean naturales:
 - Ejemplo: $727,23_{10} = 7*10^2 + 2*10 + 7 + 2*10^{-1} + 2*10^{-2}$
- Los sistemas que se utilizan en los sistemas digitales son: binario (b=2), octal (b=8) y hexadecimal(b=16)

Sistema Binario

- En este sistema la base es 2. Permiten representar perfectamente la información en los sistemas digitales.
 - Los dígitos posibles son 0 y 1. Un dígito en sistema binario se denomina "bit".
 - Con n bits se pueden representar 2ⁿ números
- El bit de mayor peso se denomina bit más significativo o MSB ("Most Significant Bit"), y el bit de menor peso se denomina bit menos significativo o LSB ("Least Significant Bit")

Habitualmente el MSB se escribe a la izquierda y el LSB a la derecha

• Ejemplo: $1001010_2 = 1*2^6 + 1*2^3 + 1*2^1 = 74_{10}$

Sistema Octal

- En este sistema la base es 8.
 - Los dígitos son 0,1,2,3,4,5,6,7
 - Con n dígitos se pueden representar 8ⁿ números
- Está muy relacionado con el sistema binario (8 es una potencia de 2, en concreto 2³=8)
 - Esto permite convertir fácilmente de octal a binario y de binario a octal
- Ejemplo:

$$137_8 = 1*8^2 + 3*8^1 + 7*8^0 = 95_{10}$$

Sistema Hexadecimal

- En este sistema la base es 16.
 - Los dígitos son 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
 - Está relacionado con el sistema binario (2⁴=16)
 - Un dígito hexadecimal permite representar lo mismo que 4 bits (ya que 2⁴=16). Un dígito hexadecimal se denomina también "nibble".
 - Dos dígitos hexadecimales equivalen por tanto a 8 bits. El conjunto de 8 bits o dos dígitos hexadecimales, se denomina "byte".
- Notaciones: 23AF₁₆ = 23AF_{hex} = 23AFh = 0x23AF = 0x23 0xAF.
- Ejemplo: $23AFh = 2*16^3 + 3*16^2 + 10*16 + 15 = 9135_{10}$

Conversiones entre sistemas de numeración

Pasar de cualquier sistema a sistema decimal:

•
$$N = a_n b^n + a_{n-1} b^{n-1} + ... + a_1 b + a_0$$

- Ejemplos:
 - $1001010_2 = 1*2^6 + 1*2^3 + 1*2^1 = 74_{10}$
 - $137_8 = 1*8^2 + 3*8^1 + 7*8^0 = 95_{10}$
 - 23AFh = $2*16^3 + 3*16^2 + 10*16 + 15 = 9135_{10}$

Para pasar de decimal a otro sistema:

- Método de descomposición en pesos
- Método de divisiones sucesivas por la base

Método de descomposición en pesos

- Consiste en descomponer el número en potencias de la base.
 - Se busca la potencia de la base (menor) más cercana al número.
 - Se van buscando potencias sucesivamente para que la suma de todas ellas sea el número decimal que se quiere convertir.
 - Finalmente los pesos de las potencias utilizadas se utilizan para representar el número en la base buscada.
- Éste método es útil sólo para sistemas donde las potencias de la base son conocidas. Por ejemplo para sistema binario: 1, 2, 8, 16, 32, 64, 128, 256, ...
- Ejemplo:
 - $25_{10} = 16 + 8 + 1 = 2^4 + 2^3 + 2^0 = 11001_2$

Método de divisiones sucesivas por la base

- Consiste en dividir el número decimal a convertir sucesivamente por la base y los cocientes obtenidos en las divisiones anteriores
 - El último cociente obtenido es el MSB del resultado
 - Los restos obtenidos son el resto de dígitos, siendo el primero de los restos obtenidos el LSB
- Ejemplo:

 Este método es más general que el anterior. Sirve para convertir de decimal a cualquier otra base.

Conversión de números reales

 La conversión de binario a decimal se hace igual que para números enteros (utilizando pesos negativos para la parte decimal):

$$101,011_2 = 1*2^2 + 0*2^1 + 1*2^1 + 0*2^{-1} + 1*2^{-2} + 1*2^{-3} = 4 + 1 + 0,25 + 0,125 = 5,375_{10}$$

- La conversión de decimal a binario, se hace en dos partes:
 - Se convierte primero la parte entera por el método de divisiones sucesivas por la base (o por descomposición de pesos)
 - Luego se convierte la parte decimal por un método análogo, multiplicaciones sucesivas por la base.

Método de multiplicaciones sucesivas por la base (parte decimal)

- Consiste en multiplicar la parte decimal del número por la base sucesivamente.
 - Se multiplica la parte decimal del número por 2. La parte entera del resultado es el primer dígito (MSB de la parte decimal) de la conversión
 - Se vuelve a tomar la parte decimal, y se multiplica por 2 otra vez, y nuevamente la parte entera es el siguiente dígito.
 - Se itera tantas veces como se quiera, según la precisión que se quiera obtener en la conversión.
- Ejemplos:

```
0,3125 <sub>10</sub> = 0,0101<sub>2</sub>
0,3125 x 2 = 0,625 => 0
0,625 x 2 = 1,25 => 1
0,25 x 2 = 0,5 => 0
0,5 x 2 = 1 => 1
```

```
0,1_{10} = 0,0 \ 0011 \ 0011 \dots 2

0,1 \times 2 = 0,2 \Rightarrow 0

0,2 \times 2 = 0,4 \Rightarrow 0

0,4 \times 2 = 0,8 \Rightarrow 0

0,8 \times 2 = 1,6 \Rightarrow 1

0,6 \times 2 = 1,2 \Rightarrow 1

0,2 \times 2 = 0,4 \Rightarrow 0 < - se repiten las cuatro cifras, periódicamente

0,4 \times 2 = 0,8 \Rightarrow 0

0,8 \times 2 = 1,6 \Rightarrow 1
```


Otros métodos de conversión

- Los sistemas octal y hexadecimal están relacionados con el binario, ya que sus bases son potencias exactas de 2 (la base binaria). Esto permite convertir entre estos sistemas de forma muy sencilla:
 - OCTAL a BINARIO: Convertir cada dígito en 3 bits
 - Ejemplo: $735_8 = 111 \ 011 \ 101_2$
 - BINARIO a OCTAL: Agrupar en grupos de 3 bits y convertirlos de forma independiente a octal.
 - Ejemplo: $1011100011_2 = 1343_8$
 - HEXADECIMAL a BINARIO: Convertir cada dígito en 4 bits
 - Ejemplo: $3B2h = 0011 1011 0010_2$
 - BINARIO a HEXADECIMAL: Agrupar en grupos de 4 bits y convertirlos de forma independiente a octal
 - Ejemplo: $10 \ 1110 \ 0011_2 = 2E3h$

Códigos Binarios

- Los códigos binarios son códigos que utilizan únicamente 0s y 1s para representar la información
- La información que se puede representar con códigos binarios puede ser de múltiples tipos:
 - Números naturales
 - Números enteros
 - Números reales
 - Caracteres alfabéticos y otros símbolos
- Una misma información (por ejemplo un número natural) se puede representar utilizando diferentes códigos.
 - Es importante especificar siempre qué código que se está utilizando cuando se representa una información en un código binario.

Código Binario Natural

- Es un código binario en el que se representa un número natural mediante su representación en sistema binario
 - Es el código binario más simple
 - Aprovecha que la representación en sistema binario de un número natural utiliza únicamente 0s y 1s
- Notación: Utilizaremos el indicador "BIN" para indicar que un código binario es el código binario natural:
 - \bullet 1001_{BIN} = 1001₂

Código

Códigos BCD ("Binary-Coded Decimal")

•	Permiten representar números naturales de una forma
	alternativa al binario natural.

- Se asigna un código de 4 bits a cada dígito decimal. Un número decimal se codifica en BCD dígito a dígito.
- El código BCD más habitual es el BCD natural (existen otros códigos BCD).

- Ejemplo:
 - $98_{10} = 0111 \ 1000_{BCD}$
- La codificación BCD de un número no tiene por qué coincidir con el código binario natural:
 - $98_{10} = 1001110_{BIN}$
- INCONVENIENTE: No todas las combinaciones corresponden a un código BCD. Por ejemplo,1110_{BCD} no existe.
- VENTAJA: Facilidad de conversión decimal-binario.

decimal	,	BC	CD	
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

díaito

Códigos progresivos y cíclicos

- Dos codificaciones binarias se dice que son adyacentes si sólo hay bit diferente entre ambas.
 - 0000 y 0001 son adyacentes, ya que sólo difieren en el último bit
 - **0001** y **0010** no son adyacentes, ya que los dos últimos bits son diferentes
- Un código se dice que es progresivo si todas las codificaciones consecutivas son adyacentes.
 - El código binario natural no es progresivo, ya que 0001 y 0010 no son adyacentes.
- Un código se dice que es cíclico si además la primera y la última codificación son adyacentes.
- Los códigos progresivos y cíclicos más utilizados son:
 - Código Gray
 - Código Johnson

Código Gray

- El Código Gray es un código progresivo y cíclico
- Ejemplo de Código Gray de 3 bits:

Decimal	I	ódig Grag			
0	0	0	0	•	
1	0	0	1		Todooloo
2	0	1	1	—	Todas las codificaciones
3	0	1	0	-	consecutivas son
4	1	1	0		adyacentes
5	1	1	1		
6	1	0	1		
7	1	0	0		

Código Gray

- Construcción del código Gray de n bits:
 - Primero se copian los códigos de n-1 bits y se añaden otros n-1 copiando los anteriores en orden inverso
 - Luego se añade un cero a la izquierda en los de arriba y un uno en los de abajo
- Código de 1 bit:

Código Gray

Código de 3 bits:

Iterando se pueden construir los códigos Gray de n bits

Conversión entre los códigos Gray y Binario Natural

Se puede convertir directamente de Gray a Binario y de Binario a Gray, sin necesidad de construir toda la tabla:

BINARIO A GRAY:

$$(A_0A_1A_2 \dots A_n)_{BIN} \rightarrow (B_0B_1B_2 \dots B_n)_{GRAY}$$

•
$$B_0 = A_0$$

•
$$B_1 = A_0 + A_1$$

•
$$B_2 = A_1 + A_2$$

•
$$B_n = A_{n-1} + A_{n-2}$$

Ejemplo:

1011_{BIN} → 1110_{GRAY}

GRAY A BINARIO:

$$(A_0A_1A_2...A_n)_{GRAY} \rightarrow (B_0B_1B_2...B_n)_{BIN}$$

•
$$B_0 = A_0$$

•
$$B_1 = A_1 + B_0$$

•
$$B_2 = A_2 + B_1$$

•

•
$$B_n = A_n + B_{n-1}$$

Ejemplo:

1011_{GRAY} → 1101_{BIN}

	В	IN			GR	AY	
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

Código Johnson

- Es otro código progresivo y cíclico
- En cada codificación aparecen agrupados los ceros a la izquierda y los unos a la derecha, o viceversa.
- Ejemplo código Johnson de 3 bits:

Decimal	Johnson						
0	0	0	0				
1	0	0	1				
2	0	1	1				
3	1	1	1				
4	1	1	0				
5	1	0	0				

Códigos alfanuméricos

- Representan símbolos, que pueden ser:
 - Dígitos
 - Letras mayúsculas y minúsculas
 - Signos de puntuación
 - Caracteres de control (espacio, salto de línea, retorno de carro, etc.)
 - Otros símbolos gráficos (operadores matemáticos, etc.)
- Un código alfanumérico mínimo que contenga los 10 dígitos, las 26 letras del alfabeto inglés, mayúsculas y minúsculas (52), necesita al menos 6 bits.
- Los códigos más utilizados en la actualidad son:
 - Código ASCII (7 bits)
 - Códigos ASCII extendidos (8 bits)
 - Códigos unicode (8-32 bits)

Códigos ASCII y ASCII extendidos

- El código ASCII ("American Standard Code for Information Interchange") fue publicado por primera vez en 1963.
- Es un código de 7 bits (128 códigos) estándar que contiene:
 - Dígitos
 - Letras mayúsculas y minúsculas del alfabeto inglés internacional
 - Signos de puntuación
 - Caracteres básicos de control
- Los códigos ASCII extendidos se utilizan para añadir caracteres adicionales:
 - No son estándar, difieren de una región a otra
 - Los 128 primeros códigos coinciden con el ASCII estándar por compatibilidad

Código ASCII Estándar

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	a	P	96	р
1	SOH	DC1 XON	Ļ	1	Α	Q	а	q
2	STX	DC2	11	2	В	R	b	or:
3	ETX	DC3 XOFF	#	3	С	s	С	s
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	E	U	е	u
6	ACK	SYN	&	6	F	V	f	٧
7	BEL	ETB	2	7	G	W	g	W
8	BS	CAN	(8	Н	Х	h	×
9	HT	EM)	9	I.	Y	į	У
Α	LF	SUB	*	a.	J	Z	j	z
В	VT	ESC	+	9	K	Į.	k	{
C	FF:	FS	٠,	×	L	1	1	
D	CR	os	35	=======================================	М	1	m	}
E	50	RS	25	×	N	А	n	20
F	SI	US	1	?	0	2-	0	del

Códigos ASCII Extendidos

EJEMPLO:

ACII extendido LATIN-1

(ISO 8859-1)

_	0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-В	-C	-D	-E	-F
L		1004	0004	0001	100#	8099	1000	981	1000	0000	0004	OIDE	0000	3000	1000	- 0
	0010	arr	0018	desp	Ber	NO45	90%	1917	300	0019	3014	0016	081C	ana	1040	00
	0000	:		#	\$	%	&	1 1007	()		+	9			1
1)	1	2	3	4	5	6	7	8	9	; 9918	;	<	=	>	?
1 %	9	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0
	0000	Q	R	S	T	U	V	W	X	Y	Z	[1 cosc]	A 0060	-0
	0000	a	b	C cont	d	e	f	g	h	i 0000	j	k ************************************	1	m	n	0
)	q	r	S	t	U sore	Y 1000	W	X 10216	y oera	Z 0070	{ 	00/0	},	7	0
	como	-	2008	open	5004	1085	2096	iori	ma	ooie	STREET		ooec	200	1000	. 0
L	com:	opt	2000	0000	1061	0001	(1000)	2000	1016	15000	ioden.	2006	108C	_	2000	- 0
	BLAC)	i.	¢ mu	£	11	¥	1	§	9046	©	II.	*	7.	8000	0	-
1	o mao	±	2 cont	3	0184	μ	9		a none	1 0000	2	39	1/4	1/2	3/4	ż
2		Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	È	ì	Í	Î	ĭ
1)	Ñ	Ò	Ó	Ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	B
3	1	á	â	ã	ä	å	æ	Ç	è	é	ê	ë	ì	í	î NG	ï
1)	ñ	ò	6	Ô	Õ	Ö	+	ø	ù	ú	û	ü	ý	þ	ÿ

Códigos ASCII Extendidos

EJEMPLO:

ASCII extendido Cirílico

ISO 8859-5

- 6	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-B	-C	-D	-E	-F
0-		0001	3002	0003	3000	. (000e	2000	9007	5008	0000	9504	onon	: 0000	0000	1100	0004
1-	mro	8007	5612	onto	Seta	anv	8014	oem	0018	2078	aris	cers	nend	10/10	tire	OWN
2-	200	1	"	#	\$	%	&	1	()	#	+	2	- state	1124	1
3-	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4-	@	A	В	C	D	E	F	G	H	I	J	K	L	M	N	0
5-	P	Q	R	S	T	U	V	W	X	Y	Z	[Odds	1]	A 186	-
6-	, mac	8	b	c	d	6	r	g	h	i	j	k	l	m	n	0
7-	p	q	r	S	t	u	V sen	W	X	y	Z	{ 	I OENG	}	~	:007
8-	1000	8081	1000	0000	1004	CORE	nesa	own	9088	tom	000	come	(000)	min	1365	coar
9-		10091	the	0000	9000	1005	hibe	0001	20088	0000	-	3000	comp	1040	cont	2000
Α-	2004	Ë	Ъ	ŕ.	E	S	I	I	J	Љ	Ь	ħ	Ŕ	-	ÿ	Ц
B-	A	Б	В	Г	Д	E	Ж	3	И	Й	K	Л	M	H	O	П
C-	P	C	T	У	Ф	X	Ц	Ч	Ш	Щ	Ъ	Ы	Ь	Э	Ю	Я
D-	a	6	В	Г	Д	e	Ж	3	И	й	K	Л	M	Н	0	П
E-	p	C	T	y	ф	X	ц	Ч	ш	Щ	ъ 	ы	b	3	Ю	Я
F-	No.	ĕ	ħ	Ť OHU	E	s	i	Ĭ	j	љ	Н	ħ	Ŕ	§	ÿ	Ų

Códigos Unicode

- Los códigos Unicode ("Universal Code") fueron creados en 1991 para tener códigos alfanuméricos estándar, comunes en todas las regiones
 - Se utiliza el mismo código unicode para idiomas Chino, Árabe, etc.
- Como máximo necesitan 32 bits
 - Los primeros 7 bits permiten la compatibilidad con ASCII
 - Con 1 byte se puede representar el código US-ASCII
 - Con 2 bytes: caracteres latinos y alfabetos árabes, griego, cirílico, armenio, hebreo, sirio y thaana.
 - Con 3 bytes: resto de caracteres utilizados en todos los lenguajes
 - Con 4 bytes: caracteres gráficos y poco comunes
- Diferentes versiones de representación. Las más comunes:
 - **UTF-8**: Códigos de 1 byte, pero son de longitud variable (se pueden utilizar 4 grupos de 1 byte para representar un símbolo)
 - UCS-2: Códigos de 2 bytes de longitud fija
 - **UTF-16**: Códigos de 2 bytes, de longitud variable (se pueden utilizar 2 grupos de 2 bytes para representar un símbolo)
 - UTF-32: Códigos de 4 bytes

Códigos Unicode

EJEMPLO:

 Parte del Unicode correspondiente al alfabeto cirílico

Se necesita el segundo byte para la representación

 Las codificaciones completas se pueden encontrar en:

http://www.unicode.org/charts

-	1400							Cyr	illie							94F
1	640	041	042	043	044	045	046	047	048	0.49	04A	04B	04C	04D	04E	OHF
0	È	A	P	a	P	è	w	Ψ	\mathbf{G}	Ĭ.	K	Y	I	Ă	3	ÿ
1	Ë	Ë	C	б	C	ë	w	Ψ	ç	I	X	Y	*	ă	3	ÿ
2	Ъ	В	T	В	T	Ð	Ъ	Ö	*	F	H	X	水	Ä	й	ÿ
3	Ļ	L	y	Г	y.	ŕ	В	9	5	Ŧ	H	X	Ķ	ä	Ĥ	ý.
4	ϵ	Д	Φ	Д	ф	6	Æ	V	0	Б	H	щ	IS	Æ	Й	q
5	S	E	X	e	X	s	Ю	Y	ô	I 5	H	П	Ц	æ	Й	Ÿ
6	ī	ж	П	ж	щ	<u>i</u>	A	Ÿ	ō	ж	Īρ	Ч	Л	Ĕ	Ö	Ī
7	ĭ	3	Ч	3	ч	ï	A	Ÿ	3	ж	Ib	4	Ĥ	ĕ	ŏ	Г
a	J	И	Щ	И	m	j	ĿΑ	Oy	-	3	Q	ч	H	÷	9	Б
u	љ	Й	Щ	й	щ	љ	IA.	oy	杂	3	0	7	H	9	0	El en
٨	щ	K	Ъ	K	ъ	њ	W.	Õ	й	K	ç	h	H	÷	Ö	Ŧ
B	ħ	Л	й	Л	ы	ħ	M	0	ŭ	K	ç	h	Ч	ë	ë	5
c	K	M	Ь	M	Ь	K	FW.	Ĉ	ь	K	Ţ	e	Ч	Ж	Ë	X
D	Й	H	Э	H	9	й	Hñ.	3	ь	K	T	'e	M	×	3	X
E	ÿ	O	Ю	0	10	ÿ	37	W	P	K	Y	ę	M	3	ŷ	X
r	Ü	П	Я	П	Я	Ü	and a	ŵ	p	k	Y	ę	1	3	ÿ	X

Códigos detectores y correctores de errores

- En los sistemas digitales pueden aparecer errores
 - Errores físicos de los circuitos
 - Interferencias electromagnéticas (EMI)
 - Fallos de alimentación eléctrica
 - Etc.
- Códigos detectores de error:
 - Pueden permitir detectar un error en la codificación
- Códigos correctores de error:
 - Permiten detectar un error y además corregirlo
- Los códigos detectores de error y los códigos correctores de error no utilizan las 2ⁿ posibles codificaciones con n bits

Códigos detectores de error

Códigos de paridad:

- Añaden un bit adicional (paridad del número) que permite detectar errores simples en la codificación (error en 1 bit)
- La paridad que se considera es la de la suma de los n bits de la codificación
 - NOTA: la paridad no tiene nada que ver con si la codificación binaria es par o impar (un número binario es par si acaba en 0 e impar si acaba en 1).
- Dos posibles convenios:
 - Añadir un 0 cuando la paridad sea par y 1 cuando sea impar: Se denomina código de paridad par (ya que considerando la suma de los n bits + el bit de paridad la paridad siempre es par)
 - Añadir un 1 cuando la paridad sea par y 0 cuando sea impar: Se denomina código de paridad impar (ya que la suma de los n bits + bit paridad es siempre impar)

Códigos detectores de error

Ejemplo de paridad:

Código detector de errores (código de paridad impar) a partir del código binario natural de dos bits:

Ejemplo de utilidad del código detector:

Si utilizamos este código en una comunicación entre dos sistemas binarios, el sistema receptor podría detectar si hay un error comprobando la paridad.

Ejemplo: Se transmite la codificación 001, y el receptor recibe la codificación 000 (error en el último bit).

Paridad de 001: impar Paridad de 000: par

No coinciden: Error detectado

Códigos detectores de error

- Existen más códigos detectores de error:
 - Número de unos:
 - Se añade a la codificación la suma de unos de la codificación (no sólo la paridad de la suma, sino la suma completa)
 - Número de transiciones:
 - Se añade a la codificación el número de transiciones de 0 a 1 y de 1 a 0 en la codificación
 - Códigos CRC (Cyclic Redundancy Checking):
 - Buscan añadir el menor número posible de bits que permitan detectar el mayor número posible de fallos
 - Estos códigos también permiten corregir algunos errores
- Los códigos más utilizados son los de paridad (por su sencillez) y CRC (por su eficacia)

Códigos correctores de error

- Los códigos correctores permiten no sólo detectar sino también pueden corregir un error.
- Para que un código permita corregir errores, la distancia mínima (número mínimo de bits diferentes entre dos codificaciones) debe ser mayor de 2.
 - Se puede corregir la codificación buscando la codificación más cercana perteneciente al código
- Hamming describió un método general para construir códigos con distancia mínima de 3, conocidos como códigos de Hamming
- Estos códigos son importantes, a partir de ellos se obtienen muchos de los utilizados en sistemas de comunicaciones (por ejemplo los códigos de bloque Reed-Solomon)

Codificación de números enteros y reales

- Además de los códigos binarios vistos hasta ahora, hay otros códigos importantes que se utilizan para representar números enteros y números reales:
 - Números enteros: Códigos de signo y magnitud, Complemento a Uno, Complemento a Dos
 - Números reales: Códigos de Punto fijo y Coma Flotante
- Estos códigos se estudiarán en detalle en el Tema 4:
 Aritmética Binaria

Referencias

- Fundamentos de Sistemas Digitales. Thomas
 L. Floyd. Pearson Prentice Hall
- Introducción al Diseño Lógico Digital. John P. Hayes. Addison-Wesley
- Diseño Digital. John F. Wakerly. Pearson Prentice Hall