

Jeffrey Borowitz, PhD

Lecturer

Sam Nunn School of International Affairs

Generalizing Linear Regression

Our Linear Regression Model

• X is years of schooling, Y is wages $wages = \alpha + \beta edu + \varepsilon$

How Did We Find the Line of Best Fit?

- Think about what the residuals would look like if we moved the line around
 - They would grow!
- What we're doing is moving the line around (aka changing α and β) to minimize these squared residuals
- Another names for this linear regression model is "least squares"
- For each data point, you can write the equation:

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

So if you pick a particular α and β, you can calculate your εi :

$$\varepsilon_i = y_i - \alpha - \beta x_i$$

Least Squares

So you have your expression for each residual ε_i

- 1. Square each one: ε_i^2
- 2. Add them all up: $\sum_{i} \varepsilon_{i}^{2}$
- 3. This is just a function that depends on your data, and your parameters of interest:

$$F(\alpha, \beta) = \sum_{i} \varepsilon_{i}^{2} = \sum_{i} (y_{i} - \alpha - \beta x_{i})^{2}$$

4. Find α , β to minimize $F(\alpha, \beta)$

These are your estimates

Law of Large Numbers Again

How does the law of large numbers relate?

$$F(\alpha, \beta) = \sum_{i} \varepsilon_{i}^{2} = \sum_{i} (y_{i} - \alpha - \beta x_{i})^{2}$$

- Think about α, β as not random just numbers like 3, or 7.2
- x_i and y_i are summed up, so they are like sample averages
- So you get a kind of combined average function

$$F(\alpha, \beta) \approx \sum_{i} \gamma_{i}(\alpha, \beta) = \mathbb{E}[\gamma(\alpha, \beta)]$$

Where $\gamma_{i}(\alpha, \beta) = (\gamma_{i} - \alpha - \beta x_{i})^{2}$

• If we have large samples, the α and β we choose are the ones that optimize this function

An Aside on Estimation

 We can estimate any function of this form by just taking the sum of the individual data components

$$F(\alpha, \beta) = \sum_{i} \varepsilon_{i}^{2} = \sum_{i} (y_{i} - \alpha - \beta x_{i})^{2}$$

- But remember in polling data: the number of points you need to consider is tied to your desired accuracy
- Using math, something like the central limit theorem applies to $F(\alpha, \beta)$ as well
 - So we can get "accurate" estimates of α and β even with a sample of data points
- Estimating F with just a sample of the data points is called *Stochastic Gradient Descent* and is very widely used in all sorts of big data estimation

Least Squares Generalizes Lots of Ways

$$\min_{\alpha,\beta} F(\alpha,\beta) = \sum_{i} (y_i - \alpha - \beta x_i)^2$$

- You can have more variables than X
 - Control for more things: in addition to education, gender, age, experience, etc. might be useful
- You could control for categorical information with "dummy" variables which are 1 or 0 depending whether things are true or false
- Instead of α + β X you could have really complicated functions parameters and data

Least Squares vs. Maximum Likelihood

- In least squares, the loss function looks like $\sum \varepsilon^2$, so it increases quadratically
- But why quadratic?
 - If we did $\sum |\varepsilon|$, we would penalize big misses less heavily
 - If we did $\sum |\varepsilon^3|$, we would penalize big misses more heavily
 - Answer: squared turns out to be "best" under some assumptions
- Another option is to specify the probability distribution for each ε
 - This is like saying, given schooling, what is the distribution of wages?
 - If you specify a distribution for ε, then you can use this to specify the shape of the distribution
 - This is "maximum likelihood"

Why Least Squares?

- It turns out, least squares has some really nice mathematical properties
 - It's "unbiased" under a relatively wide variety of conditions
 - Under some relatively specific conditions, it's the lowest variance estimator there is

Does Linear Make Sense?

- Least Squares seems like it's restricting us to linear functions of X
- But actually this isn't that much of a limitation
 - We can have two variables: X and Z on the right hand side
 - What if we made Z = X² that's OK
 - And math says that any function of X can be expressed as a sum of polynomials (like X, X², X³, etc.)

Lesson Summary

- A linear regression model, or "least squares", is used to find the line of best fit
- Least Squares allows one to generalize by controlling for more variables and by controlling for categorical information with "dummy variables"
- Least Squares is "unbiased" under a wide variety of conditions

