计量经济学课堂笔记

2022年11月23日

目录

Ι	一元线性回归 4				
1	模型建立				
2	模型求解				
3	模型验证 3.1 拟合优度检验	4 4 5			
4	模型应用				
5	补充知识 5.1 三种平方和(总平方和、回归平方和、残差平方和) 5.2 三种平方和的对应自由度 5.3 一元线性回归的古典假定 5.4 最佳线性无偏估计量				
II	多元线性回归	6			
6	模型设立				
7	模型求解				
8	模型检验				
9	模型应用	7			
II	I 多重共线性	7			
IV	· · · · · · · · · · · · · · · · · · ·	7			

V 自相关 7

Part I

一元线性回归

一元线性回归总共分为四个步骤,分别是模型建立,模型求解,模型 验证,模型应用。

1 模型建立

一元线性回归的模型总共有四种表达形式:

$$E(X_i|Y_i) = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \mu_i \tag{1}$$

$$Y_i = \hat{\beta_0} + \hat{\beta_1} X_i + \mu_i \tag{2}$$

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \tag{3}$$

$$Y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \mu_i \tag{4}$$

其中公式(1)为总体回归函数的条件均值形式,(2)为总体回归函数的真实值形式,(3)为样本回归函数的预测值形式,(4)为样本回归函数的真实值形式。

2 模型求解

一元线性回归模型求解使用ols(普通最小二乘法)进行求解,求解过程不用理会。ols核心思想为残差平方和最小即 $min\sum_{n=1}^{i}\mu_{i}$ 。通过ols求解出 β_{0} 与 β_{1} 等参数,得出线性回归方程。

3 模型验证

3.1 拟合优度检验

拟合优度检验量 $R^2 = \frac{ESS}{TSS}$ 。 R^2 取值范围为[0,1]。 R^2 越大解释变量 X_i 对观测量 Y_i 解释力度越强。当 R^2 高于一定阈值时说明,解释变量 x_i 对观测量 y_i 具

有较强的解释力度。

3.2 回归系数假设检验

回归系数检验使用t统计量,其中 $t = \frac{\hat{\beta_i}}{se\beta_i}$ 。计算出t统计量后与临界值相比较,若t统计量高于临界值则说明该解释变量 x_i 对于观测量 y_i 具有显著性影响。

4 模型应用

当通过ols计算出模型 $y_i=\hat{\beta}_0+\hat{\beta}_1x_i+\mu_i$,并通过了拟合优度检验与回归系数检验后。可以对模型进行应用。此时每当解释变量 x_i 增加一个单位时,观测量 y_i 平均增加 β_1 个单位(千万不要漏掉平均!!!)

5 补充知识

5.1 三种平方和(总平方和、回归平方和、残差平方和)

$$TSS = ESS + RSS \tag{5}$$

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 + \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2$$
 (6)

公式(5)与公式(6)是完全等价的。

5.2 三种平方和的对应自由度

表 1: 三种平方和的对应自由度

<u> </u>					
	TSS	总回归平方和	n-1		
	RSS	残差平方和	n-k		
	ESS	回归平方和	k-1		

5.3 一元线性回归的古典假定

5个古典假定全部都是对于随机扰动项 μ_i 而言的

1. 0均值

$$E(\mu_i|X_i) = 0 = E(Y_i|X_i) \tag{7}$$

2. 同方差

$$Var(\mu_i|X_i) = \sigma^2 \tag{8}$$

3. 随机扰动项 μ_i 之间逐次不相关

$$Cov(\mu_i, \mu_j) = 0 (9)$$

4. 随机扰动项 μ_i 与解释变脸 X_i 之间逐次不相关

$$Cov(\mu_i, X_i) = 0 (10)$$

5. 正态性假定

$$\mu_i \sim N(0, \sigma^2) \tag{11}$$

5.4 最佳线性无偏估计量

BLUE (the best linear unbiased estimator) 即最佳线性无偏估计量,应满足以下3点特性:

- 1. 无偏性: 满足 $E(\mu_i) = 0$ 的古典假定
- 2. 有效性: 满足 $Var(\mu_i) = \sigma^2$ 的古典假定
- 3. 线性性: 满足 $Cov(\mu_i, \mu_j) = 0$ 的古典假定

Part II

多元线性回归

6 模型设立

多元线性模型

- 7 模型求解
- 8 模型检验
- 9 模型应用

Part III

多重共线性

Part IV

异方差

Part V

自相关