Classic Paper Reading Group Session 2

On the role of definitions in and beyond cryptography [Rog05]

Simon Pohmann

October 30, 2022

Pseudorandom number generators

When should we consider a sequence of numbers to be "random"?

Pseudorandom number generators

When should we consider a sequence of numbers to be "random"?

Definition

A function $G: \{0,1\}^n \to \{0,1\}^N$ with $N > n \ge 1$ is called *pseudorandom generator*.

Pseudorandom number generators

When should we consider a sequence of numbers to be "random"?

Definition

A function $G: \{0,1\}^n \to \{0,1\}^N$ with $N > n \ge 1$ is called *pseudorandom generator*.

Remark

PRG are more like "randomness expanders"

"How random" is a PRG?

Definition

The advantage of an algorithm A when attacking a PRG G is

$$\mathbf{Adv}^{\mathsf{PRG}}_{\mathcal{G}}(A) := \mathsf{Pr}[\mathbf{Game}^{0}_{\mathcal{G}}(A) = 0] - \mathsf{Pr}[\mathbf{Game}^{1}_{\mathcal{G}}(A) = 0]$$

in

$$\begin{array}{ccc} \mathbf{Game}_{G}^{0}(A) & \mathbf{Game}_{G}^{1}(A) \\ \downarrow & & \downarrow \\ A \xleftarrow{} \mathsf{sample} & G(U_n) & \downarrow & \downarrow \\ \{0,1\} & \{0,1\} & \{0,1\} & \end{array}$$

where U_n resp. U_N are uniformly random.

Example

If $G: \{0,1\}^n \to \{0,1\}^{n+1}$ is a PRG, then this is also the case for

Proof: [KL21, Thm. 8.19]

Example

If $G: \{0,1\}^n \to \{0,1\}^{n+1}$ is a PRG, then this is also the case for

$$\{0,1\}^n \xrightarrow{X_0} G \xrightarrow{X_1} \cdots \xrightarrow{X_m} G \xrightarrow{X_{m+1}} \{0,1\}^N$$

Proof: [KL21, Thm. 8.19]

Definitions have a huge impact on the field

Example

If $G: \{0,1\}^n \to \{0,1\}^{n+1}$ is a PRG, then this is also the case for

$$\{0,1\}^n \xrightarrow{X_0} G \xrightarrow{X_1} \cdots \xrightarrow{X_m} G \xrightarrow{X_{m+1}} \{0,1\}^N$$

Proof: [KL21, Thm. 8.19]

- Definitions have a huge impact on the field
- Definitions are about ideas

Example

If $G:\{0,1\}^n \to \{0,1\}^{n+1}$ is a PRG, then this is also the case for

$$\{0,1\}^n \xrightarrow{x_0} G \xrightarrow{x_1} \cdots \xrightarrow{x_m} G \xrightarrow{x_{m+1}} \{0,1\}^N$$

Proof: [KL21, Thm. 8.19]

- ▶ Definitions have a huge impact on the field
- Definitions are about ideas
- Good definitions are robust

Asymptotic notions

Definition

A function $f: \mathbb{Z}_+ \to \mathbb{R}_+$ is *negligible*, if f(n) is *eventually* smaller than any 1/poly(n).

Definition

An algorithm A is *polynomial-time*, if there is a polynomial p such that the number of operations on an input of length n is at most p(n).

Asymptotic notions

Definition

A function $f: \mathbb{Z}_+ \to \mathbb{R}_+$ is *negligible*, if f(n) is *eventually* smaller than any 1/poly(n).

Definition

An algorithm A is polynomial-time, if there is a polynomial p such that the number of operations on an input of length n is at most p(n).

Concrete	Asymptotic
application oriented	originated in complexity theory

Concrete	Asymptotic
application oriented	originated in complexity theory
no definition of "secure"	secure := advantage is negligible

Concrete	Asymptotic
application oriented	originated in complexity theory
no definition of "secure"	$secure := advantage \; is \; negligible$
constant in/output size	sizes depend on "security parameter"

Concrete	Asymptotic
application oriented	originated in complexity theory
no definition of "secure"	$secure := advantage \ is \ negligible$
constant in/output size	sizes depend on "security parameter"
attackers must be "feasible"	attackers must be polynomial-time

Concrete	Asymptotic
application oriented	originated in complexity theory
no definition of "secure"	$secure := advantage \ is \ negligible$
constant in/output size	sizes depend on "security parameter"
attackers must be "feasible"	attackers must be polynomial-time

▶ Definitions can change the way a theory develops

Concrete	Asymptotic
application oriented	originated in complexity theory
no definition of "secure"	$secure := advantage \ is \ negligible$
constant in/output size	sizes depend on "security parameter"
attackers must be "feasible"	attackers must be polynomial-time

- ▶ Definitions can change the way a theory develops
- ▶ Definitions come from a scientific culture

Blockciphers

Definition

A blockcipher is a function $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ such that $E(k,\cdot)$ is a permutation for all $k \in \mathcal{K}$.

Blockciphers

Definition

A blockcipher is a function $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ such that $E(k,\cdot)$ is a permutation for all $k \in \mathcal{K}$.

Remark

We did not specify the decryption function.

Advantage for blockciphers

Definition

The advantage of an algorithm A during a chosen-ciphertext attack to blockcipher E is

$$\mathsf{Adv}_E^{\mathsf{CPA}}(A) := \mathsf{Pr}[\mathsf{Game}_E^0(A, k) = 0] - \mathsf{Pr}[\mathsf{Game}_E^1(A, \pi) = 0]$$

for a uniformly random $k \in \mathcal{K}$ and $\pi \in \mathrm{Sym}(\{0,1\}^n)$ in the games

Advantage for blockciphers

$$\begin{array}{cccc}
\mathbf{Game}_{E}^{0}(A,k) & \mathbf{Game}_{E}^{1}(A,\pi) \\
\downarrow & & & \downarrow \\
A & & E \\
\downarrow & E(k,m) & & \downarrow \\
0,1 \} & & \{0,1\}
\end{array}$$

Advantage for blockciphers

► For low-level primitives, simple & pessimistic definitions are better

Authenticated Encryption

Definition

An AE scheme are two deterministic functions

$$E: \mathcal{K} \times \mathcal{N} \times \{0,1\}^* \to \{0,1\}^*$$
 (encryption)
 $D: \mathcal{K} \times \mathcal{N} \times \{0,1\}^* \cup \{\bot\}$ (decryption)

such that D(k, n, E(k, n, m)) = m for all k, n, m. Further, we require that $|E(k, n, m)| = |m| = \tau$.

$$\{0,1\}^* \xrightarrow{\hspace*{1cm}} \stackrel{\mathcal{K}}{\longleftarrow} \stackrel{\mathcal{N}}{\longleftarrow} \{0,1\}^* \xrightarrow{\hspace*{1cm}} \stackrel{\mathcal{K}}{\longrightarrow} \stackrel{\mathcal{N}}{\longleftarrow} \{0,1\}^*$$

Two contests

Definition (privacy advantage)

The advantage of an algorithm A for a privacy attack on an AE scheme (E,D) is

$$\mathbf{Adv}_E^{\mathsf{AE-P}}(A) := \mathsf{Pr}[\mathbf{Game}_E^0(A,k) = 0] - \mathsf{Pr}[\mathbf{Game}_E^1(A) = 0]$$

for a uniformly random $k \in \mathcal{K}$ in the games

Two contests

Definition (authenticity advantage)

The advantage of A for an authenticity attack on an AE scheme (E,D) is

$$\mathsf{Adv}_E^{\mathsf{AE-A}}(A) := \mathsf{Pr}[\mathsf{Game}_E(A,k) \neq \perp]$$

for a uniformly random $k \in \mathcal{K}$ in the game

Definitions emerge, change, and die more than people think

Session Key distribution

We'll skip this

We assume the existence of a *idealized hash function* (or random oracle) $H: \{0,1\}^* \to \{0,1\}^n$.

▶ Defining and modelling are different, but similar

We assume the existence of a *idealized hash function* (or random oracle) $H: \{0,1\}^* \to \{0,1\}^n$.

Defining and modelling are different, but similar

We assume the existence of a *idealized hash function* (or random oracle) $H: \{0,1\}^* \to \{0,1\}^n$.

Defining and modelling are different, but similar

We assume the existence of a *idealized hash function* (or random oracle) $H: \{0,1\}^* \to \{0,1\}^n$.

Defining and modelling are different, but similar

References

Jonathan Katz and Yehuda Lindell. *Introduction to modern cryptography, 3rd edition*. CRC Press, 2021.

Phillip Rogaway. "On the Role Definitions in and Beyond Cryptography". In: *Advances in Computer Science - ASIAN 2004. Higher-Level Decision Making.* Ed. by Michael J. Maher. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 13–32. ISBN: 978-3-540-30502-6.