Name:	Daniel Detore	Date:	9/25/2024

I pledge my honor that I have abided by the Stevens Honor System.

Point values are assigned for each question.

1. Find a tight upper bound for $f(n) = n^4 + 10n^2 + 5$. Write your answer here: __O(n^4)___ (4 points)

Prove your answer by giving values for the constants c and n_0 . Choose the smallest integer value possible for c. (4 points)

$$c = 2, n_0 = 4$$

2. Find an asymptotically tight bound for $f(n) = 3n^3 - 2n$. Write your answer here: $\theta(n^3)$ (4 points)

Prove your answer by giving values for the constants c_1 , c_2 , and n_0 . Choose the tightest integer values possible for c_1 and c_2 . (6 points)

$$c_1 = 2$$
; $c_2 = 3$; $n_0 = 2$

3. Is $3n-4 \in \Omega(n^2)$? Circle your answer: yes / **no**. (2 points)

If yes, prove your answer by giving values for the constants c and n_0 . Choose the smallest integer value possible for c. If no, derive a contradiction. (4 points)

If
$$3n - 4 \in \Omega(n^2)$$
, then $\exists c \in \mathbb{Z}$ where $0 \le cn^2 \le 3n - 4 \ (\forall n \ge n_0)$.

We also have $3n - 4 \le 3n + 4n = 7n$

Combining these statements gives us:

$$cn^2 \le 7n$$

$$c$$
n ≤ 7

$$n \leq \frac{7}{c}$$

Because n can grow to infinity, there is no way to bound it by any constant $\frac{7}{c}$. $\therefore 3n-4 \notin \Omega(n^2)$.

4. Write the following asymptotic efficiency classes in **increasing** order of magnitude. $O(n^2)$, $O(2^n)$, O(1), $O(n \lg n)$, O(n), O(n!), $O(n^3)$, $O(\lg n)$, $O(n^n)$, $O(n^2 \lg n)$ (2 points each)

5. Determine the largest size n of a problem that can be solved in time t, assuming that the algorithm takes f(n) milliseconds. Write your answer for n as an integer. (2 points each)

a.
$$f(n) = n$$
, $t = 1$ second $n = 1000$

b.
$$f(n) = n \lg n$$
, $t = 1$ hour $n = 204094$

c.
$$f(n) = n^2$$
, $t = 1$ hour $n = 1897$

```
d. f(n) = n^3, t = 1 day n = 9295
```

- e. f(n) = n!, t = 1 minute n = 8
- 6. Suppose we are comparing two sorting algorithms and that for all inputs of size n the first algorithm runs in $4n^3$ seconds, while the second algorithm runs in 64nlg(n) seconds. For which integer values of n does the first algorithm beat the second algorithm? $n \ge 1$ (4 points)

 Explain in detail how you got your answer or paste code that solves the problem (2 point):

```
import math

for n in range(1, 10000):
    if ((4*math.pow(n,3)) < (64*n*math.log2(n))):
        print(n)
        break</pre>
```

7. Give the complexity of the following methods. Choose the most appropriate notation from among O, Θ , and Ω . (8 points each)

```
int function1(int n) {
    int count = 0;
    for (int i = n / 2; i <= n; i++) {</pre>
        for (int j = 1; j <= n; j *= 2) {
             count++;
    return count;
}
Answer: \Theta(nlgn)
int function2(int n) {
    int count = 0;
    for (int i = 1; i * i * i <= n; i++) {</pre>
        count++;
    return count;
Answer: \Theta(\sqrt[3]{n})
int function3(int n) {
    int count = 0;
    for (int i = 1; i <= n; i++) {</pre>
         for (int j = 1; j <= n; j++) {</pre>
             for (int k = 1; k <= n; k++) {
                  count++;
             }
         }
```

```
return count;
Answer: \Theta(n^3)
int function4(int n) {
    int count = 0;
    for (int i = 1; i <= n; i++) {</pre>
        for (int j = 1; j <= n; j++) {
             count++;
             break;
         }
    return count;
Answer: \Theta(n)
int function5(int n) {
    int count = 0;
    for (int i = 1; i <= n; i++) {</pre>
        count++;
    for (int j = 1; j <= n; j++) {</pre>
        count++;
    return count;
}
Answer: \Theta(n)
```