Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №5 по дисциплине «Методы машинного обучения» на тему «Линейные модели, SVM и деревья решений»

Выполнил: студент группы ИУ5-21М Коробко Д. О.

1. Цель лабораторной работы

Изучение линейных моделей, SVM и деревьев решений.

2. Задание

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите 1) одну из линейных моделей, 2) SVM и 3) дерево решений. Оцените качество моделей с помощью трех подходящих для задачи метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации.
- 6. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

3. Выполнение

3.1. Загрузка датасета

Выбранный набор: Classifying wine varieties.

```
In [6]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        from sklearn.model selection import GridSearchCV
        from sklearn.model_selection import learning_curve, validation_curve
        from sklearn.model_selection import KFold, RepeatedKFold, LeaveOneOut,
        from sklearn.model_selection import cross_val_score, cross_validate
        from sklearn.metrics import roc_curve,confusion_matrix, roc_auc_score,
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import classification_report
        from sklearn.svm import SVC
        from sklearn.model_selection import cross_val_score
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.linear_model import LinearRegression
        import warnings
        warnings.filterwarnings('ignore')
        plt.style.use('ggplot')
In [7]: data = pd.read_csv('Wine.csv', sep=";")
        data.head()
```

Out[7]:	Class	Alcohol	Malic a	cid	Ash	Alcal:	inity of	ash	Magnesium	\
0	1	14.23	1	71	2.43		-	L5.6	127	
1	1	13.20	1	78	2.14		-	L1.2	100	
2	1	13.16	2	2.36	2.67		-	L8.6	101	
3	1	14.37	1	95	2.50		-	L6.8	113	
4	1	13.24	2	2.59	2.87		2	21.0	118	
	Total	phenols	Flavanoi	.ds	Nonflav	anoid	phenols	Pro	anthocyanin	s
0		2.80	3.	06			0.28		2.2	9
1		2.65	2.	76			0.26		1.2	8
2		2.80	3.	24			0.30		2.8	1
3		3.85	3.	49			0.24		2.1	8
4		2.80	2.	69			0.39		1.8	2
	Color	intensity	, Hue	OD28	30/OD315	of d	iluted wi	ines	Proline	
0		5.64	1.04				3	3.92	1065	
1		4.38	1.05				3	3.40	1050	
2		5.68	1.03				3	3.17	1185	
3		7.80	0.86				3	3.45	1480	
4		4.32	1.04				2	2.93	735	

Колонки и их типы данных

In [8]: data.dtypes

Out[8]:	Alcohol Malic acid Ash Alcalinity of ash Magnesium Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity Hue OD280/OD315 of diluted wines	int64 float64 float64 float64 int64 float64 float64 float64 float64 float64
	OD280/OD315 of diluted wines Proline dtype: object	float64 int64

Проверка на пустые значение

```
Magnesium - 0
Total phenols - 0
Flavanoids - 0
Nonflavanoid phenols - 0
Proanthocyanins - 0
Color intensity - 0
Hue - 0
OD280/OD315 of diluted wines - 0
Proline - 0
In [10]: data.shape
Out[10]: (178, 14)
In [11]: CLASS = 'Class'
         RANDOM\_STATE = 17
         TEST SIZE = 0.3
         X = data.drop(CLASS, axis=1).values
         Y = data[CLASS].values
         X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=)
         print('X_train: {}'.format(X_train.shape))
         print('X_test: {}'.format(X_test.shape))
X_train: (124, 13)
X_test: (54, 13)
3.2. Обучение
  Машина опрных векторов
In [12]: clf = SVC(gamma='auto')
         clf.fit(X_train, Y_train)
         clf.score(X test, Y test)
Out[12]: 0.3888888888888889
In [13]: Y_pred = clf.predict(X_test)
         print(classification_report(Y_test, Y_pred))
              precision
                           recall f1-score
                                               support
                   0.00
                             0.00
                                        0.00
                                                    18
           1
           2
                   0.39
                             1.00
                                        0.56
                                                    21
           3
                   0.00
                             0.00
                                        0.00
                                                    15
                             0.39
                                        0.39
                                                    54
   micro avg
                   0.39
                                        0.19
                                                    54
   macro avg
                   0.13
                             0.33
```

0.22

54

0.39

weighted avg

0.15

Дерево решений

```
In [14]: tree = DecisionTreeClassifier(random_state=0)
        tree.fit(X_train, Y_train)
        tree.score(X_test, Y_test)
Out[14]: 0.98148148148148151
In [15]: Y_pred = tree.predict(X_test)
        print(classification_report(Y_test, Y_pred))
             precision recall f1-score support
                            1.00
          1
                  0.95
                                      0.97
                                                  18
          2
                  1.00
                            0.95
                                      0.98
                                                  21
          3
                  1.00
                            1.00
                                      1.00
                                                  15
                  0.98
                            0.98
                                      0.98
                                                  54
  micro avg
  macro avg
                  0.98
                            0.98
                                      0.98
                                                  54
weighted avg
                            0.98
                                      0.98
                                                  54
                  0.98
```

Линейная регрессич

Out[16]: 0.88205015361986894

3.3. Подбор гиперпараметра с использованием GridSearchCV и кроссвалидации

Машина опрных векторов

Out[18]: {'C': 1.21}

```
clf.fit(X_train, Y_train)
         clf.score(X test, Y test)
Out[19]: 0.40740740740740738
In [20]: Y_pred = clf.predict(X_test)
         print(classification_report(Y_test, Y_pred))
              precision
                           recall f1-score
                                             support
                             0.06
           1
                   1.00
                                       0.11
                                                    18
           2
                   0.40
                             1.00
                                       0.57
                                                    21
           3
                   0.00
                             0.00
                                       0.00
                                                   15
                                                    54
   micro avg
                   0.41
                             0.41
                                       0.41
                                       0.22
                   0.47
                             0.35
                                                    54
   macro avg
                                       0.26
weighted avg
                   0.49
                             0.41
                                                    54
  Дерево решений
In [21]: PARAMETER_TAG = 'min_impurity_decrease'
         param_grid = {PARAMETER_TAG : np.arange(0.01, PARAMETER_MAX_VALUE, 0.00)
         tree = DecisionTreeClassifier(random_state=0)
         tree_cv = GridSearchCV(tree, param_grid, cv = CROSS_VALIDATOR_GENERAT
         tree_cv.fit(X_train,Y_train)
         tree_cv.best_score_
Out[21]: 0.91935483870967738
In [22]: tree_cv.best_params_
Out[22]: {'min_impurity_decrease': 0.050000000000000003}
In [23]: tree = DecisionTreeClassifier(random_state=0, min_impurity_decrease =
         tree.fit(X_train, Y_train)
         tree.score(X_test, Y_test)
Out[23]: 0.92592592592593
In [24]: Y_pred = tree.predict(X_test)
         print(classification_report(Y_test, Y_pred))
              precision
                           recall f1-score
                                              support
                             1.00
                                       0.90
           1
                   0.82
                                                    18
           2
                                       0.89
                   1.00
                             0.81
                                                    21
```

In [19]: clf = SVC(gamma='auto', C = clf_cv.best_params_[PARAMETER_TAG])

3	1.00	1.00	1.00	15
micro avg	0.93	0.93	0.93	54
macro avg	0.94	0.94	0.93	54
weighted avg	0.94	0.93	0.93	54

Линейная регрессия

Результаты

Наилиучший результат показо дерево решений.

Наихудший - машина опрных векторов