ESPACIOS VECTORIALES

Ejercicios del 1. al 5., páginas 1 a 5, Capítulo 2 (cuarta parte)

- 1. Sea $\mathcal{B}_1 = \{v_1, v_2, v_3\}$ una base para un espacio vectorial V.
 - a) Demostrar que $\mathcal{B}_2 = \{v_1, v_1 + v_2, v_1 + v_2 + v_3\}$ también es una base.
 - b) Hallar la matriz de cambio de base M de \mathcal{B}_2 a \mathcal{B}_1 .
- 2. Sean $\mathcal{B}_1 = \{(1,3), (-2,-2)\}$ y $\mathcal{B}_2 = \{(-12,0), (-4,4)\}$ dos bases de \mathbb{R}^2 .
 - a) Determinar la matriz de cambio de base M_1 de \mathcal{B}_1 a \mathcal{B}_2 .
 - b) Determinar la matriz de cambio de base M_2 de \mathcal{B}_2 a \mathcal{B}_1 .
 - c) ¿Qué relación existe entre M_1 y M_2 ?
 - d) Dado x = (2, -1) en la base \mathcal{B}_2 , determinar las coordenadas de x en la base \mathcal{B}_1 .
- 3. Sea $V = \left\{\sum_{i=0}^2 a_i x^i \mid a_i \in \mathbb{R}\right\}$ y $\mathcal{B}_1 = \left\{1, x, x^2\right\}$ base estándar de V.
 - a) Probar que $\mathcal{B}_2 = \{x 1, 1, (x 1)^2\}$ es otra base de V.
 - b) Hallar la matriz de cambio de base de \mathcal{B}_1 a \mathcal{B}_2 .
 - c) Utilizar lo obtenido en el ítem anterior y determinar la coordenadas de p en la base \mathcal{B}_2 siendo $p(x) = 2x^2 5x + 6$. ¿Cuáles son las coordenadas de p en la base $\{1, (x-1)^2, x-1\}$?
- 4. Hallar la matriz de cambio de base de:
 - a) la base estándar de $\mathbb{R}^{2\times 2}$, $\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$, a la base $\mathcal{B}' = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \right\}$.

Determinar las coordenadas de A en la base \mathcal{B}' para $A \in \mathbb{R}^{2 \times 2}$ una matriz cualquiera.

- b) la base $\{1, x, -1 + 2x^2, -3x + 4x^3\}$ de $\mathbb{R}_3[x]$ a la base $\{1, -\frac{1}{2} + x, -x + x^2, \frac{1}{4} \frac{3}{2}x^2 + x^3\}$.
- 5. Sea $\mathcal{B} = \{(1,0),(0,1)\}$ la base estándar de \mathbb{R}^2 y $A = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix}$. ¿Existe una base \mathcal{B}' tal que A es la matriz de cambio de base de \mathcal{B} a \mathcal{B}' ? De existir, hallar dicha base.

Ejercicios del 6. al 8., páginas 6 a 11, Capítulo 2 (cuarta parte), para el ejercicio 7. repasar Capítulo 2 (tercera parte)

6. Encontrar una inversa a izquierda y/o una inversa a derecha (cuando existan) para las siguientes matrices:

$$A = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \end{array} \right], \hspace{1cm} M = \left[\begin{array}{ccc} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{array} \right] \hspace{0.5cm} \mathbf{y} \hspace{0.5cm} T = \left[\begin{array}{ccc} a & b \\ 0 & a \end{array} \right].$$

- 7. Sea A una matriz de tamaño $m \times n$ y supongamos que las columnas de A son linealmente independietes.
 - a) ¿Cuál es el rango de A?
 - b) ¿Cuál es el espacio nulo de A?
 - c) ¿Se puede asegurar la existencia de inversa a izquierda o derecha de A?
- 8. Supongamos que A tiene una inversa a derecha B. Así,

$$AB = I$$

$$A^{T}AB = A^{T}$$

$$B = (A^{T}A)^{-1}A^{T}$$

$$BA = (A^{T}A)^{-1}(A^{T}A) = I$$

Entonces se satisface que BA = I, es decir, B es una inversa a izquierda de A. ¿Qué paso no está justificado?

Ejercicios del 9. al 11., páginas 12 a 26, Capítulo 2 (cuarta parte)

- 9. Para cada una de las siguientes funciones $T: \mathbb{R}^2 \to \mathbb{R}^2$ determinar si se trata de una transformación lineal y en caso afirmativo: obtener nul(T) y rec(T), calcular su dimensión y determinar si T es inversible.
 - a) T((x,y)) = (y,x).
 - b) $T((x,y)) = (x^2, y^2)$.
 - c) T((x,y)) = (x,-y).
 - d) T((x,y)) = (x,0).

Observación:

$$nul(T) = \{x \in dom(T) \colon T(x) = 0\}$$
$$rec(T) = \{y \in codom(T) \colon T(x) = y \text{ para algún } x \in dom(T)\}$$

- 10. Sean V y W espacios vectoriales sobre \mathbb{K} y $\mathcal{L}(V,W) = \{T: V \to W: T \ transformaci\'on \ lineal\}$. Probar que para $T_1, T_2 \in \mathcal{L}(V,W)$:
 - a) $\{v \in V : T_1(v) = T_2(v)\} \subset V$.
 - b) Si $V = \langle U \rangle$ y $T_1(u) = T_2(u), \forall u \in U$, entonces $T_1(v) = T_2(v), \forall v \in V$.
- 11. Sean V y W espacios vectoriales de dimensión finita y $T \in \mathcal{L}(V, W)$. Probar que:
 - a) Si T inyectiva, entonces T transforma conjuntos l.i. de V en conjuntos l.i. de W.
 - b) Si T sobreyectiva, entonces T transforma conjuntos generadores de V en conjuntos generadores de W.
 - c) T isomorfismo si y solo si T transforma bases de V en bases de W.

Ejercicios 12. y 13., páginas 12 a 31, Capítulo 2 (cuarta parte)

12. Consideramos la transformación lineal T definida por:

$$T: \quad \mathbb{R}^{2\times 2} \quad \to \quad \mathbb{R}_3[x] \\ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \mapsto \quad T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = 2dx^3 + (a+b)x^2 + (a-c)x + 2(c+d).$$

- *a*) Probar que *T* es lineal.
- b) Hallar una base para nul(T) y una para rec(T).
- c) Determinar si T es un isomorfismo.
- 13. Sea $T_w : \mathbb{C} \to \mathbb{C}/T_w(z) = z + w\bar{z}$, donde w = a + ib para $a, b \in \mathbb{R}$ y \mathbb{C} son los números complejos vistos como un espacio vectorial sobre \mathbb{R} .
 - a) Considerar w = 1 + i y calcular $T_w(2 + 3i)$.
 - b) Comprobar que T_w es una transformación lineal entre espacios vectoriales.
 - c) Si $B = \{1, i\}$ es base de \mathbb{C} , hallar la matriz de T_w en dicha base.
 - d) Probar que T_w es isomorfismo si y sólo si $a^2 + b^2 \neq 1$.

Ejercicios 14. a 21., páginas 27 a 31, Capítulo 2 (cuarta parte), en algunos se utilizan los conceptos vistos en las páginas 1 a 5

- 14. Sea $V=\mathbb{R}^n$, fijamos la base canónica $\mathcal{B}=\{e_1,e_2,\cdots,e_n\}$. Para cada $T_i:\mathbb{R}^n\to\mathbb{R}^n$ hallar A_i tal que $A_ix=T_i(x), \forall x\in\mathbb{R}^n, i=1,\cdots,4$.
 - a) $T_1(x) = x, \forall x \in \mathbb{R}^n$.
 - b) $T_2(x) = 0, \forall x \in \mathbb{R}^n$.
 - c) $T_3(x) = c \cdot x, c \in \mathbb{R}, \forall x \in \mathbb{R}^n$.

d) Sean p, q enteros distintos entre 1 y n inclusives,

$$T_4(x) = y$$
, donde $y = (y_k)_{k=1}^n$ con $y_k = \begin{cases} x_k & \text{para } k \neq p, & k \neq q \\ x_p & \text{para } k = q \\ x_q & \text{para } k = p \end{cases}$

- 15. Sea $T: \mathbb{R}_n[x] \to \mathbb{R}_n[x]$ tal que $T(a_0 + a_1x + \cdots + a_nx^n) = a_0 + a_1(x+1) + \cdots + a_n(x+1)^n$. Probar que T es isomorfismo.
- 16. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ transformación lineal tal que

$$T((0,0,1)) = (2,3,5),$$
 $T((0,1,1)) = (1,0,0),$ $T((1,1,1)) = (0,1,-1).$

- a) Probar que con esta información es posible obtener $T(v), \forall v \in \mathbb{R}^3$.
- b) Determinar, fijada la base canónica en \mathbb{R}^3 , la matriz de T.
- c) Utilizando el item anterior, obtener $\dim(nul(T))$ y $rg(T) = \dim(rec(T))$.
- d) Determinar si T es inversible.
- 17. Determinar, si existe, una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^2$ que verifique: T((1,-1,1)) = (1,0) y T((1,1,1)) = (0,1).
- 18. Sea V el espacio vectorial de los números complejos y \mathbb{K} el cuerpo de los números reales. Con las operaciones usuales, V es un espacio vectorial sobre \mathbb{K} . Describir explícitamente un isomorfismo de este espacio con \mathbb{R}^2 .
- 19. Mostrar que $\mathbb{K}^{m \times n}$ es isomorfo a \mathbb{K}^{mn} .
- 20. Sean V y W dos espacios vectoriales de dimensión finita sobre \mathbb{K} . Probar que V y W son isomorfos si y sólo si $\dim V = \dim W$.
- 21. Sea T la transformación lineal de \mathbb{R}^3 en \mathbb{R}^2 definida por

$$T(x_1, x_2, x_3) = (x_1 + x_2, 2x_3 - x_1).$$

- a) Si \mathcal{B} es la base ordenada estándar de \mathbb{R}^3 y \mathcal{B}' es la base ordenada estándar para \mathbb{R}^2 , determinar la matriz de T relativa al par $(\mathcal{B}, \mathcal{B}')$.
- b) Si $\mathcal{B} = \{(1,0,-1),(1,1,1),(1,0,0)\}$ y $\mathcal{B}' = \{(0,1),(1,0)\}$ ¿Cuál es la matriz de T relativa a al par $(\mathcal{B},\mathcal{B}')$?

Ejercicio 22., páginas 27 a 36, Capítulo 2 (cuarta parte)

22. Sea V un espacio vectorial de dimensión finita sobre \mathbb{K} y $S,T\in\mathcal{L}(V)$. Probar que, $T\circ S$ es inversible si y solo si S y T son inversibles.

Ejercicios 23. a 26., páginas 27 a 36, Capítulo 2 (cuarta parte) y apunte de Transformaciones Particulares

- 23. a) Encontrar la matriz asociada a la transformación lineal que resulta de la composición de las transformaciones lineales que representan la rotación de un vector en un ángulo de 90° y la proyección sobre el eje x (en ese orden).
 - b) Hallar la matriz que representa la proyección de un vector sobre el *eje x* seguida de la proyección de un vector sobre el *eje y*.
- 24. La matriz

$$A = \left[\begin{array}{cc} 1 & 0 \\ 3 & 1 \end{array} \right]$$

produce una transformación llamada *esfuerzo constante*, que deja fijo al *eje y*. Hacer un bosquejo para indicar qué ocurre cuando se aplica dicha transformación a los vectores (1,0), (2,0) y (-1,0). ¿Cómo se transforma el *eje x*?

- 25. a) Encontrar la matriz de permutación cíclica A de tamaño 4×4 que transforma el vector (x_1, x_2, x_3, x_4) en (x_2, x_3, x_4, x_1) .
 - b) ¿Cuál es la transformación asociada a A^2 ?

- c) Demostrar que $A^3 = A^{-1}$.
- 26. a) Encontrar la matriz A de tamaño 4×3 que representa el desplazamiento derecho que transforma (x_1, x_2, x_3) en $(0, x_1, x_2, x_3)$.
 - b) Calcular la matriz B de tamaño 3×4 que representa el desplazamiento izquierdo que transforma (x_1,x_2,x_3,x_4) en (x_2,x_3,x_4) .
 - c) ¿Cuáles son los productos AB y BA?

EJERCICIOS ADICIONALES

- 1. a) Dado $x=(-26,32)\in\mathbb{R}^2$ en la base estándar. Encontrar la representación de $x\in\mathbb{R}^2$ en la base $\beta'=\{(-6,7),(4,-3)\}.$
 - b) Dado $x = (0, -20, 7, 15) \in \mathbb{R}^4$ en la base estándar. Encontrar la representación de $x \in \mathbb{R}^4$ en la base $\beta' = \{(9, -3, 15, 4), (3, 0, 0, 1), (0, -5, 6, 8), (3, -4, 2, -3)\}.$
- 2. Determinar la matriz de cambio de base de $\beta = \{(1,3,2), (2,-1,2), (5,6,1)\}$ a $\beta' = \{e_1, e_2, e_3\}$.
- 3. Consideremos la base canónica de $V = \mathbb{R}^2$ dada por $\mathcal{B} = \{e_1, e_2\}$ y la transformación lineal $T : \mathbb{R}^2 \to \mathbb{R}^2$ que aplica los vectores e_1 y e_2 como sigue:

$$T(e_1) = e_1 + e_2,$$
 $T(e_2) = 2 \cdot e_1 - e_2.$

Obtener:

- a) $T(3 \cdot e_1 4 \cdot e_2)$ y $T^2(3 \cdot e_1 4 \cdot e_2)$,
- b) las matrices asociadas a T y T^2 en la base \mathcal{B} ,
- c) $T(v), \forall v \in V$.
- 4. Sean $T_{1,2}: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $T_1((x,y,z)) = (x,y,0)$ y $T_2((x,y,z)) = (x,y,y)$. Hallar $T_1 \circ T_2$ y $T_2 \circ T_1$. Analizar si son epimorfismos, monomorfismos, isomorfismos o ninguna de ellas.
- 5. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $T(v) = (x+y, x+z, \alpha(v))$, donde v = (x,y,z) y $\alpha: \mathbb{R}^3 \to \mathbb{R}$. Determinar, si es posible, α de modo que T resulte lineal.
- 6. Una matriz $n \times n$, $A = (a_{ij})_{i,j=1}^n$ con entradas en \mathbb{C} tal que $A = \overline{A}^t$, i.e. $a_{ij} = \overline{a_{ji}}$, para todos $i, j = 1, \dots, n$, se dice *Hermitiana*.

Sea W el conjunto de todas las matrices Hermitianas 2×2 .

- a) Verificar que W es un espacio vectorial sobre \mathbb{R} .
- b) Verificar que la aplicación

$$(x, y, z, t) \mapsto \begin{bmatrix} t + x & y + iz \\ y - iz & t - x \end{bmatrix}$$

es un isomorfismo de \mathbb{R}^4 en W.