- **1.** (30 points)
 - (a) (10 points) $y \mid \mu \sim N(\mu, \sigma^2 = 25)$, $\mu \sim N(\mu_0 = -5, \tau_0^2 = 100)$. The marginal likelihood function of \boldsymbol{y} is

BAYESIAN STATISTICS

$$\begin{split} m(\mathbf{y}) &= \int_{-\infty}^{\infty} p(\mathbf{y} \mid \mu) \pi(\mu) d\mu \\ &= \int_{-\infty}^{\infty} \frac{1}{(\sigma \sqrt{2\pi})^n} \exp\left\{-\frac{\sum (y_i - \mu)^2}{2\sigma^2}\right\} \cdot \frac{1}{\tau_0 \sqrt{2\pi}} \exp\left\{-\frac{(\mu - \mu_0)^2}{2\tau_0^2}\right\} d\mu \\ &= \frac{1}{(\sigma \sqrt{2\pi})^n} \frac{1}{\tau_0 \sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left\{-\left(\frac{n}{2\sigma^2} + \frac{1}{2\tau_0^2}\right) \mu^2 + \left(\frac{\sum y_i}{\sigma^2} + \frac{\mu_0}{\tau_0^2}\right) \mu - \frac{\sum y_i^2}{2\sigma^2} - \frac{\mu_0^2}{2\tau_0^2}\right\} d\mu \\ &= \frac{1}{(\sigma \sqrt{2\pi})^n} \frac{1}{\tau_0 \sqrt{2\pi}} \int_{-\infty}^{\infty} \exp\left\{-\left(\frac{n}{2\sigma^2} + \frac{1}{2\tau_0^2}\right) \left(\mu - \frac{\sum \frac{y_i}{\sigma^2} + \frac{\mu_0}{\tau_0^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}\right)^2 - \frac{\sum y_i^2}{2\sigma^2} - \frac{\mu_0^2}{2\tau_0^2} + \frac{\left(\frac{\sum y_i}{\sigma^2} + \frac{\mu_0}{\tau_0^2}\right)^2}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}\right\} d\mu \\ &= \frac{1}{(\sigma \sqrt{2\pi})^n} \frac{1}{\tau_0 \sqrt{2\pi}} \exp\left\{-\frac{\sum y_i^2}{2\sigma^2} - \frac{\mu_0^2}{2\tau_0^2} + \frac{\left(\frac{\sum y_i}{\sigma^2} + \frac{\mu_0}{\tau_0^2}\right)^2}{\frac{2n}{\sigma^2} + \frac{2}{\tau_0^2}}\right\} \int_{-\infty}^{\infty} -\left(\frac{n}{2\sigma^2} + \frac{1}{2\tau_0^2}\right) \left(\mu - \frac{\frac{\sum y_i}{\sigma^2} + \frac{\mu_0}{\tau_0^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}\right)^2 d\mu \\ &= \frac{1}{(\sigma \sqrt{2\pi})^n} \frac{1}{\tau_0 \sqrt{2\pi}} \exp\left\{-\frac{\sum y_i^2}{2\sigma^2} - \frac{\mu_0^2}{2\tau_0^2} + \frac{\left(\frac{\sum y_i}{\sigma^2} + \frac{\mu_0}{\tau_0^2}\right)^2}{\frac{2n}{\sigma^2} + \frac{2}{\tau_0^2}}\right\} \sqrt{2\pi} \frac{1}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}} \\ &= \frac{1}{(\sigma \sqrt{2\pi})^n} \frac{1}{\sqrt{\frac{n\tau_0^2}{\sigma^2} + 1}} \exp\left\{-\frac{\sum y_i^2}{2\sigma^2} - \frac{\mu_0^2}{2\tau_0^2} + \frac{\left(\frac{\sum y_i}{\sigma^2} + \frac{\mu_0}{\tau_0^2}\right)^2}{\frac{2n}{\sigma^2} + \frac{2}{\tau_0^2}}\right\} \right\} \\ &= \frac{1}{(\sigma \sqrt{2\pi})^n} \frac{1}{\sqrt{\frac{n\tau_0^2}{\sigma^2} + 1}} \exp\left\{-\frac{\sum y_i^2}{2\sigma^2} - \frac{\mu_0^2}{2\tau_0^2} + \frac{\left(\frac{\sum y_i}{\sigma^2} + \frac{\mu_0}{\tau_0^2}\right)^2}{\frac{2n}{\sigma^2} + \frac{2}{\tau_0^2}}\right\} \right\} \\ &= \frac{1}{(\sigma \sqrt{2\pi})^n} \frac{1}{\sqrt{\frac{n\tau_0^2}{\sigma^2} + 1}} \exp\left\{-\frac{\sum y_i^2}{2\sigma^2} - \frac{\mu_0^2}{2\tau_0^2} + \frac{\left(\frac{\sum y_i}{\sigma^2} + \frac{\mu_0}{\tau_0^2}\right)^2}{\frac{2n}{\sigma^2} + \frac{2}{\tau_0^2}}\right\} \right\} \\ &= \frac{1}{(\sigma \sqrt{2\pi})^n} \frac{1}{\sqrt{\frac{n\tau_0^2}{\sigma^2} + 1}} \exp\left\{-\frac{\sum y_i^2}{2\sigma^2} - \frac{\mu_0^2}{2\tau_0^2} + \frac{\left(\frac{\sum y_i}{\sigma^2} + \frac{\mu_0}{\tau_0^2}\right)^2}{\frac{2n}{\sigma^2} + \frac{2}{\tau_0^2}}\right\} \right\}$$

Plug in the values we get $m(y) = 5.641 \times 10^{-18}$.

(b) (10 points) Bayes factor

$$BF_{01} = \frac{p(\boldsymbol{y} \mid \mu = -4)}{\int_{-\infty}^{\infty} p(\boldsymbol{y} \mid \mu) \pi(\mu) d\mu} = \frac{\frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left\{-\frac{\sum(y_i - \mu)^2}{2\sigma^2}\right\}}{m(\boldsymbol{y})}$$
$$= \frac{\frac{1}{(5\sqrt{2\pi})^{12}} \exp\left\{-\frac{\sum(y_i + 4)^2}{50}\right\}}{m(\boldsymbol{y})}$$
$$= \frac{3.168 \times 10^{-18}}{5.641 \times 10^{-18}} = 0.562.$$

(c) (10 points) The posterior probability of H_0 :

$$p(H_0 \mid D) = \frac{p(D \mid H_0)p(H_0)}{p(D \mid H_0)p(H_0) + p(D \mid H_1)p(H_1)}$$

$$= \frac{\frac{p(D \mid H_0)}{p(D \mid H_1)}p(H_0)}{\frac{p(D \mid H_0)}{p(D \mid H_1)}p(H_0) + p(H_1)} = \frac{BF_{01}p(H_0)}{BF_{01}p(H_0) + p(H_1)}$$

$$= \frac{(0.562)(0.4)}{(0.562)(0.4) + 0.6} = 0.273.$$

- **2.** (30 points)
 - (a) (10 points) Implement the Metropolis algorithm. The posterior,

$$p(\theta \mid \boldsymbol{y}) \propto p(\boldsymbol{y} \mid \theta)p(\theta)$$
$$\propto \theta^{y_1}(\frac{1}{4} - \theta)^{y_2}(\frac{1}{4} + \theta)^{y_3}(\frac{1}{2} - \theta)^{y_4}$$

```
y \leftarrow c(16,12,41,31)
pf <- function(theta){</pre>
  theta^y[1]*(1/4-theta)^y[2]*(1/4+theta)^y[3]*(1/2-theta)^y[4]
}
1 <- 500
m <- 2000
theta <- rep(NA,m+1)
theta[1]=0.1
n <- 1
for(k in 2:(1+m)){
  thetanew \leftarrow runif(1,0,1/4)
  theta[k] <- theta[k-1]
  r <- min(pf(thetanew)/pf(theta[k-1]),1)
  if(runif(1)<r){</pre>
    theta[k] <- thetanew
    n <- n+1
  }
thetas \leftarrow theta[(l+1):(l+m)]
n/(1+m)
```

The moving rate is 25.88%.

(b) (10 points) Implement Gibbs sample.

Use two latent variables z_1 and z_2 as follows: split the third cell into two with probabilities $\frac{1}{4}$ and θ and split the fourth cell into two with probabilities $\frac{1}{4}$ and $\frac{1}{4} - \theta$.

Then,

$$p(\theta \mid \boldsymbol{y}, \boldsymbol{z}) \propto \theta^{y_1} (\frac{1}{4} - \theta)^{y_2} (\frac{1}{4})^{z_1} \theta^{y_3 - z_1} (\frac{1}{4})^{z_2} (\frac{1}{4} - \theta)^{y_4 - z_2}$$

$$\propto \theta^{y_1 + y_3 - z_1} (\frac{1}{4} - \theta)^{y_2 + y_4 - z_2}$$

$$\propto (4\theta)^{y_1 + y_3 - z_1} (1 - 4\theta)^{y_2 + y_4 - z_2}$$

```
So, if \eta = 4\theta, then the full conditional distributions of (z_1, z_2, \eta) is
          (\eta \mid \boldsymbol{y}, \boldsymbol{z}) \propto \eta^{y_1 + y_3 - z_1} (1 - \eta)^{y_2 + y_4 - z_2} \sim Beta(y_1 + y_3 - z_1 + 1, y_2 + y_4 - z_2 + 1),
         (z_1 \mid \eta, \boldsymbol{y}) \propto Bin(y_3, \frac{1/4}{1/4 + \theta}) = Bin(y_3, \frac{1}{1 + \eta}),
         (z_2 \mid \eta, \boldsymbol{y}) \propto Bin(y_4, \frac{1/4}{1/2 - \theta}) = Bin(y_4, \frac{1}{2 - \eta}).
1 <- 500
m <- 2000
eta <- rep(NA,m+1)
z1 \leftarrow rep(NA,m+1)
z2 \leftarrow rep(NA,m+1)
z1[1] = z2[1] = 0
eta[1] <- 0.1
for(k in 2:(1+m)){
  eta[k] \leftarrow rbeta(1,y[1]+y[3]-z1[k-1]+1,y[2]+y[4]-z2[k-1]+1)
  z1[k]<-rbinom(1,y[3],1/(1+eta[k]))
  z2[k] < -rbinom(1,y[4],1/(2-eta[k]))
}
thetas<-eta[(1+1):(1+m)]/4
z1s<-z1[(l+1):(l+m)]
z2s<-z2[(1+1):(1+m)]
hist(thetas,prob=T,nclass=30)
t < -seq(0,0.25,0.001)
n0<-length(t)
p<-rep(NA,n0)
for(i in 1:n0){
  p[i] < -mean(dbeta(4*t[i],y[1]+y[3]-z1s+1,y[2]+y[4]-z2s+1))*4
lines(t,p,lty=2)
    (c) (10 points)
mean(thetas)
var(thetas)
                                           E(\theta \mid y) = 0.1491752
                                        Var(\theta \mid y) = 0.0003777287.
3. (40 points)
    (a)(c) (20 points)
model;
{
inv_delta0 ~ dgamma(a0,b0)
```

Histogram of thetas


```
delta0 <- 1 / inv_delta0</pre>
inv_tau2 <- 1 / tau2</pre>
theta ~ dnorm(20,inv_tau2)
for( i in 1 : 3 ) {
mu[i] ~ dnorm(theta,inv_delta1)
for( j in 1 : N ) {
y[j , i] ~ dnorm(mu[i],inv_delta0)
}
}
inv_delta1 ~ dgamma(a1,b1)
delta1 <- 1 / inv_delta1</pre>
}
#data
list(N=10,tau2=100,a1=1,a0=1,b0=1,b1=1,
y=structure(
.Data=c(23,28,23,
25,27,20,
21,27,25,
22,29,21,
21,26,22,
22,29,23,
20,27,21,
23,30,20,
19,28,19,
22,27,20),
.Dim=c(10,3))
)
```

#initial list(theta=30,inv_delta0=0.5,inv_delta1=0.5,mu=c(0,0,0))

node	mean	sd	error	5.0%	95.0%	start	sample
delta0	2.668	0.7591	0.005535	1.688	4.077	1001	20000
delta1	12.54	20.89	0.1711	2.543	35.8	1001	20000
theta	23.51	1.956	0.01454	20.38	26.5	1001	20000

(b) (10 points)

(d) (10 points)

Consider the model under $H_0: \delta_1 = 0$:

```
model;
{
inv_delta0 ~ dgamma(a0,b0)
delta0 <- 1 / inv_delta0
inv_tau2 <- 1 / tau2
theta ~ dnorm(20,inv_tau2)</pre>
```

```
for( i in 1 : 3 ) {
for( j in 1 : N ) {
  y[j , i] ~ dnorm(theta,inv_delta0)
}
}
```


DIC=160.705 for $H_0>DIC=118.674$ for $H_a.$ Therefore, $H_a:\delta_1\neq 0$ is better.