Determinantes

El determinante es una función cuya entrada es una matriz cuadrada y devuelve un escalar.

Notación. El determinante de una matriz A se denota $\det(A)$ ó bien |A|.

- En el caso $[2 \times 2]$, si $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ entonces
- El caso $[3 \times 3]$, la **Regla de Sarrus**:

Si
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 entonces calculamos su deter-

minante tomando las dos primeras columnas y aumentando A con ellas de forma que obtenemos

de aquí sumamos las diagonales de arriba hacia abajo y restamos las diagonales de abajo hacia arriba de forma que

$$\det(A) = aei + bfq + cdh - qec - hfa - idb.$$

Propiedades

- I) Escalares: $\det(cA) = c^{\# \text{filas} A} \det(A)$.
- II) Traspuestas: $\det(A) = \det(A^{\mathsf{T}})$.
- III) Multiplicatividad: $\det(AB) = \det(A)\det(B)$.
- IV) Inversas: $\det(A^{-1}) = \frac{1}{\det(A)}$.

El siguiente resultado es parte del teorema resumen que hemos visto la lección pasada.

Teorema 1 (Adendo al Tma. Resumen). Una matriz A es invertible si y sólo si $\det(A) \neq 0$.

Práctica

Considere las matrices
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ -I = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Calcule sus determinantes. Ahora sume ambas matrices y calcule el determinante del resultado.

Ejercicio 2. En general, is e cumple que $\det(A+B)$ = $\det(A) + \det(B)$? ¿Puede encontrar un ejemplo donde sí se cumpla y uno donde no?

Determinantes de orden superior

Para matrices en \mathcal{M}_4 o de tamaño más grande existen dos maneras de calcular sus determinantes.

Expansión por menores (Laplace)

Ejemplo 3. Calculamos el determinante de A = $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ expandiendo por la primera fila.

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}.$$

Estas *submatrices* llevan el siguiente nombre:

Definición. El menor (i,j) de una matriz A se obtiene al eliminar de \overline{A} la fila i y la columna j.

El proceso en concreto es:

- I) Tomamos una entrada de la fila escogida.
- II) Eliminamos el resto de la fila y columna que la contienen para obtener un menor.
- III) Tomamos el determinante de ese menor.
- IV) Lo multiplicamos por la entrada en cuestión.

$$\approx \begin{pmatrix} a & \times & \times \\ \times & e & f \\ \times & h & i \end{pmatrix} + \begin{pmatrix} \times & b & \times \\ d & \times & f \\ g & \times & i \end{pmatrix} + \begin{pmatrix} \times & \times & a \\ d & e & \times \\ g & h & \times \end{pmatrix}$$

Para los signos, seguimos la convención de que la entrada (1,1) es +, y los vecinos de + son - y vice-versa. Obtenemos una matriz de signos:

Aquí + es **no** cambiar de signo, pero - **sí** es cambiarlo.

Práctica

Calcule con alguien det(A) si

$$A = \begin{pmatrix} -10 & 7 & 3\\ 0 & 8 & 0\\ 6 & -4 & 0 \end{pmatrix}.$$

columna.

Reducción y Determinantes

Primero veamos lo siguiente:

Teorema 4. Si A es triangular o diagonal, su determinante es el producto de su diagonal.

Ejemplo 5. Consideremos las matrices

$$A = \begin{pmatrix} 2 & 3 & 5 \\ 0 & 7 & 11 \\ 0 & 0 & 13 \end{pmatrix}, B = \begin{pmatrix} k & 0 & 0 \\ -k & 3 & 0 \\ 2k & 0 & 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 9 \end{pmatrix}.$$

Si calculamos sus determinantes expandiendo vemos que

$$\det(A) = 2 \begin{vmatrix} 7 & 11 \\ 0 & 13 \end{vmatrix} + 0 = 2 \cdot 7 \cdot 13.$$

Análogamente

$$\det(B) = k \begin{vmatrix} 3 & 0 \\ 0 & 1 \end{vmatrix} + 0 = 3k.$$

Lo mismo ocurre con D ya sea expandiendo por cualquier fila o columna.

- Ya sabemos reducir matrices.
- Basta con reducir a forma triangular.
- Pero, ¿cambiará el determinante cuando se hacen operaciones de fila? ¡Sí!

Ocurre lo siguiente:

Ejemplo 6. Si
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$$
 y aplicamos $F_1 \leftrightarrow F_2$ para obtener $B = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$, entonces $\det(B) = -\det(A)$.

Intercambiar filas cambia el signo del determi-

Ejemplo 7. Si
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$$
 y aplicamos $6F_1$ para obtener $B = \begin{pmatrix} 6 & 12 \\ 3 & 5 \end{pmatrix}$, entonces $\det(B) = 6 \cdot \det(A)$.

Reescalar filas multiplica el determinante por el mismo escalar.

Finalmente, a la hora de combinar filas, no le hacemos ningún cambio al determinante.

Ejercicio 8. Supongamos que $A \in \mathcal{M}_4$ tiene determinante 12. Aplicamos las siguientes operaciones:

1.
$$A \mapsto A^{\mathsf{T}}$$
.

3.
$$F_3 - F_2$$
, $F_1 + F_2$.

2.
$$6F_2$$
, $\frac{1}{2}F_3$.

2.
$$6F_2, \frac{1}{2}F_3$$
. 4. $B \mapsto B^{\mathsf{T}}, F_1 \leftrightarrow F_4$.

¿Cuál es el determinante de la matriz resultante?

La Regla de Cramer

Este es otro método para resolver sistemas lineales.

• En el caso $[2 \times 2]$ los sistemas son de la forma

$$A\vec{x} = \vec{b}$$
: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} e \\ f \end{pmatrix}$

La solución del sistema será:

$$x = \frac{\begin{vmatrix} \begin{pmatrix} e & b \\ f & d \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} \begin{pmatrix} a & b \\ c & d \end{vmatrix} \end{vmatrix}}, y = \frac{\begin{vmatrix} \begin{pmatrix} a & e \\ c & f \end{vmatrix} \end{vmatrix}}{\begin{vmatrix} \begin{pmatrix} a & b \\ c & d \end{vmatrix} \end{vmatrix}}$$

■ En el caso $[3 \times 3]$ ocurre que:

$$A\vec{x} = \vec{b}$$
: $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} j \\ k \\ l \end{pmatrix}$.

Aquí la solución será:

$$x = \frac{\begin{vmatrix} \begin{pmatrix} j & b & c \\ k & e & f \\ l & h & i \end{pmatrix} \end{vmatrix}}{\begin{vmatrix} \begin{pmatrix} a & b & c \\ d & k & f \\ d & e & f \\ g & h & i \end{pmatrix} \end{vmatrix}}, y = \frac{\begin{vmatrix} \begin{pmatrix} a & j & c \\ d & k & f \\ g & l & i \end{pmatrix} \end{vmatrix}}{\begin{vmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \end{vmatrix}}, z = \frac{\begin{vmatrix} \begin{pmatrix} a & b & j \\ d & e & k \\ g & h & l \end{pmatrix} \end{vmatrix}}{\begin{vmatrix} \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \end{vmatrix}}$$

El proceso es

- I) Tomamos una variable.
- II) Eliminamos de A la columna que le corresponde.
- III) En tal columna incluimos el vector de constantes b.
- IV) Calculamos el determinante de la nueva matriz y lo dividimos por $\det(A)$.

Práctica

Suponga que en un sistema conocemos la siguiente información:

$$A\vec{x} = \vec{b}: \begin{pmatrix} 3 & 0 & \times \\ 0 & -2 & \times \\ -15 & 0 & \times \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

Si \vec{x} es solución del sistema \vec{y} det $(\vec{A}) = 12$, zcuánto vale z?