模块六 导数基础

重点知识回顾

一、导数的计算

基本初等函数求导公式	C' = 0	$(x^{\alpha})' = \alpha x^{\alpha - 1}$		$(\sin x)' = \cos x$
	$(\cos x)' = -\sin x$	$(a^x)' = a^x \ln a$, $(e^x)' = e^x$		$(\log_a x)' = \frac{1}{x \ln a}, (\ln x)' = \frac{1}{x}$
和差积商求导准则	[f(x)+g(x)]' = f'(x)+g'(x)		[f(x)-g(x)]' = f'(x)-g'(x)	
	[f(x)g(x)]' = f'(x)g(x) + g'(x)f(x)		$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - g'(x)f(x)}{\left[g(x)\right]^2}$	
复合函数求导准则	$[f(g(x))]' = f'(g(x)) \cdot g'(x)$			

二、导数的几何意义

我们知道, $f'(x_0)$ 的几何意义是曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线斜率,所以 f(x) 在 $(x_0, f(x_0))$ 处的切线 方程为 $y - f(x_0) = f'(x_0)(x - x_0)$.

三、导数的应用

- 1. 导数与函数的单调性
- 一般地,在某个区间 (a,b) 内,如果 f'(x)>0,则函数 f(x) 在 (a,b) 上单调递增;如果 f'(x)<0,则函数 f(x) 在 (a,b) 上单调递减.
- 2. 求极值的基本步骤:
- ①求f'(x),并给出函数的定义域;
- ②解不等式 f'(x) > 0 和 f'(x) < 0 ,得到 f(x) 的单调递增区间,和单调递减区间;
- ③根据函数的单调性给出极值.
- 3. 求函数 f(x) 在 [a,b] 上的最值的基本步骤:
- ①求函数 f(x) 在 [a,b] 上的极值;
- ②将 f(x) 的各极值与 f(a), f(b) 比较,其中最大的一个是最大值,最小的一个是最小值.

第1节 函数图象切线的计算(★★)

内容提要

函数的切线方程相关计算在高考中主要有以下几类题型:

- 1. 求曲线 y = f(x) 在点 $P(x_0, f(x_0))$ 处的切线: 切线的斜率 $k = f'(x_0)$, 结合切点坐标可知切线的方程为 $y f(x_0) = f'(x_0)(x x_0)$.
- 2. 求曲线 y = f(x) 过点 Q(m,n) 的切线: 由于不知道切点坐标,故需设切点为 $P(x_0, f(x_0))$,写出切线方程为 $y f(x_0) = f'(x_0)(x x_0)$,将点 Q(m,n) 代入得到 $n f(x_0) = f'(x_0)(m x_0)$,由此方程解出 x_0 ,得到切点坐标,即可求出切线的方程.
- 3. 已知直线 y = kx + b (k、b 为已知的常数)与含有参数 a 的函数 y = f(x) 的图象相切,求 a 和切点. 这类问题的处理方法是: 如图,设切点横坐标为 x_0 ,可从切线斜率即为 $f'(x_0)$ 以及切点为切线与函数图象交点两方面建立方程组 $\begin{cases} k = f'(x_0) \\ kx_0 + b = f(x_0) \end{cases}$,解此方程组即可求出 a 和 x_0 的值.
- 4. 两个函数 y = f(x) 和 y = g(x) 的图象有公切线,这类题一般先设公切线与两个图象的切点分别为 $P(x_1, f(x_1))$ 、 $Q(x_2, g(x_2))$,再写出 f(x) 在点 P 处和 g(x) 在点 Q 的切线方程,比较系数建立方程组,研究 方程组解的情况.

典型例题

【例 1】函数 $f(x) = \frac{\ln x}{x}$ 在点 (1,0) 处的切线方程为.

【变式 1】(2020 • 新课标 I 卷) 曲线 $y = \ln x + x + 1$ 的一条切线的斜率为 2,则该切线的方程为

【变式 2】已知直线 y = x+1 与曲线 $y = \ln(x+a)$ 相切,则 a = ...

【变式 3】已知 f(x) 是定义在 **R** 上的奇函数,当 x < 0 时, $f(x) = \ln(-2x) + 1$,则曲线 y = f(x) 在 $x = \frac{1}{2}$ 处的 切线方程为()

- (A) y=x-4 (B) y=x (C) y=-2x (D) y=-2x+2

【变式 1】曲线 $y = x^3 - x - 2$ 过点 P(2,4) 的切线方程为.

【变式 2】(2021•新高考 I 卷) 若过点 (a,b) 可以作曲线 $y=e^x$ 的两条切线,则()

- (A) $e^b < a$ (B) $e^a < b$ (C) $0 < a < e^b$ (D) $0 < b < e^a$

【例 3】已知直线 I 是曲线 $y = e^x - 1$ 与 $y = \ln x + 1$ 的公切线,则 I 的方程为_____.

强化训练

- 1. (2022 河南名校联盟 ★) 曲线 $y = x \ln(2x + 5)$ 在点 x = -2 处的切线方程为()
- (A) 4x-y+8=0 (B) 4x+y+8=0 (C) 3x-y+6=0 (D) 3x+y+6=0

- 2. (2022・阜阳期末・★★) 函数 $f(x) = \sin 2x + 4\cos x$ 的图象在 $x = x_0$ 处切线斜率的最小值为 ()
- $(A) -6 \qquad (B) -5 \qquad (C) 2 \qquad (D) 3$

- 3. (2022・成都模拟・★★) 直线 y = kx 2 与曲线 $y = x \ln x$ 相切,则实数 k = ...
- 4. $(2022 \cdot 黄山模拟 \cdot ★★★)若 <math>f(x) = \ln x$ 图象上 (1,0) 处的切线与 $g(x) = \frac{\ln x + a}{x} (a \in \mathbf{R})$ 的图象也相切,则 a = .
- 5. $(2022 \cdot 亳州模拟 \cdot ★★★)$ 已知 f(x) 为偶函数,且当 x > 0 时, $f(x) = e^{2x-1} + \frac{1}{x}$,则 f(x) 在点 $(-\frac{1}{2}, f(-\frac{1}{2}))$ 处的切线方程为_____.
- 6. (2019・江苏・★★) 点 A 在曲线 $y = \ln x$ 上,且该曲线在点 A 处的切线经过点 (-e,-1),则点 A 的坐标是.
- 7. (2022・蓉城名校联盟・ $\star\star$)若过点 ($\frac{1}{2}$,0) 的直线与函数 $f(x)=x\mathrm{e}^x$ 的图象相切,则所有可能的切点的横坐标之和为()
- (A) e+1 (B) $-\frac{1}{2}$ (C) 1 (D) $\frac{1}{2}$
- 8. (2021•广西模拟•★★★) 过点 M(-1,0) 作曲线 $y=2x^3+ax+a$ 的两条切线,这两条切线分别与 y 轴交于 A、B 两点,若 |MA|=|MB|,则 a=(
- (A) $-\frac{25}{4}$ (B) $-\frac{27}{4}$ (C) $-\frac{25}{12}$ (D) $-\frac{49}{12}$
- 9. $(2022 \cdot 新高考 I 卷 \cdot ★★★)$ 若曲线 $y = (x+a)e^x$ 有两条过坐标原点的切线,则 a 的取值范围为.

- 10. (2022・深圳模拟・★★★) 已知 a>0,若过点 P(a,b) 可作曲线 $y=x^3$ 的三条切线,则()

- (A) b < 0 (B) $0 < b < a^3$ (C) $b > a^3$ (D) $b(b-a^3) = 0$

- 11. $(2022 \cdot 金华期末 \cdot ★★★)$ 已知函数 $f(x) = |\ln x|$ 的图象在点 $(x_1, f(x_1)) = (x_2, f(x_2))$ 处的切线互相垂直 且交于点 $P(x_0, y_0)$,则()

- (A) $x_1 x_2 = -1$ (B) $x_1 x_2 = e$ (C) $x_0 = \frac{x_1 + x_2}{2}$ (D) $x_0 = \frac{2}{x_1 + x_2}$
- 12. (2022 •江苏模拟 •★★★★) 若曲线 $y=x^2-1$ 与 $y=a\ln x-1$ (a>0) 存在公切线,则 a 的取值范围是()

- (A) (0,2e] (B) (0,e] (C) $[2e,+\infty)$ (D) (e,2e]