Comutação de Pacotes versus Comutação de Circuitos

A comutação de pacotes é melhor sempre?

- Grande para dados esporádicos
 - melhor compartilhamento de recursos
 - não há estabelecimento de chamada
- Congestão excessiva: atraso e perda de pacotes
 - protocolos são necessários para transferência confiável, controle de congestionamento
- Q: Como obter um comportamento semelhante ao de um circuito físico?
 - garantias de taxa de transmissão são necessárias para aplicações de aúdio/vídeo
 - problema ainda sem solução (capítulo 6)

Redes de Comutação de Pacotes: roteamento

- *Objetivo*: mover pacotes entre roteadores da origem ao destino
 - iremos estudar vários algoritmos de seleção de caminhos (capítulo 4)
- redes datagrama:
 - o endereço de destino determina o próximo salto
 - rotas podem mudar durante uma sessão
 - analogia: dirigir perguntando o caminho
- rede de circuitos virtuais:
 - cada pacote leva um número (virtual circuit ID), o número determina o próximo salto
 - o caminho é fixo e escolhido no *instante de estabelecimento da conexão*,
 permanece fixo durante toda a conexão
 - routers maintain per-call state

Redes de acesso e meios físicos

Q: Como conectar o sistema final ao roteador de borda?

- redes de acesso residencial
- redes de acesso institucionais (escolas, bancos, empresas)
- redes de acesso móvel

Lembre-se:

- a banda passante do canal de acesso define sua capacidade de transmissão de dados
- o compartilhamento reduz a banda disponível?

Acesso residencial: redes ponto-a-ponto

- Modem discado
 - até 56Kbps com acesso direto ao roteador (ao menos em tese)
- <u>ISDN</u>: rede digital de serviços integrados 128Kbps com conexão digital ao roteador passando pela rede pública de telefonia
- <u>ADSL</u>: asymmetric digital subscriber line
 - até 1 Mbps de uplink
 - até 8 Mbps de downlink
 - geralmente é comercializado em taxas mais baixas (speedy)
 - acesso ao roteador através de um backbone

Acesso residencial: cable modems

- HFC: híbrido fibra e coaxial
 - assimétrico: até 10Mbps upstream, 1
 Mbps downstream
- rede de cabo e fibra liga residências ao roteador do ISP
 - acesso compartilhado das casas o um condomínio ou de um bairro
 - problemas: congestão, dimensionamento
- deployment: companhias de TV a cabo

Acesso residencial: cable modems

Diagrama: http://www.cabledatacomnews.com/cmic/diagram.html

Acesso institucional: redes de área local

 companhias/univ local area network (LAN) conecta sistemas finais ao roteador de acesso

• Ethernet:

- cabo compartilhado ou dedicado conecta sistemas finais e o roteador
- 10 Mbs, 100Mbps, Gigabit
 Ethernet
- deployment: instituições e residências em breve

Redes de Acesso Wireless

 acesso wireless compartilhado conecta sistemas finais ao roteador de acesso

wireless LANs:

- utiliza ondas de rádio
- padrão IEEE 802.11
- e.g., Lucent Wavelan 10 Mbps

wide-area wireless access

CDPD: acesso wireless ao roteador do ISP via telefonia celular

Redes Residenciais

Componentes típicos de uma rede residencial:

- ADSL ou cable modem
- roteador/firewall
- Ethernet

Meios Físicos

- enlace físico: meio de transmissão de sinais físicos que representam a informação
- meios guiados:
 - os sinais se propagam me meios sólidos com caminho fixo: cobre, fibra
- meios não guiados:
 - propagação livre: ex. rádio

Twisted Pair (TP)

- dois fios de cobre isolados
 - Categoria 3: taxas de transmissão até 10 Mbps
 Categoria 5: 100Mbps ethernet

Meio Físico: coaxial, fibra

Cabo Coaxial:

- núcleo de fio (portador de sinal) dentro de uma blindagem de fio (shield)
 - bandabase: um único sinal presente no cabo
 - broadband: multiplos sinais no cabo
- bidirecional
- uso comum em redes de 10Mbs Ethernet

Cabo de fibra óptica:

- fibra de vidro transportando pulsos de luz
- alta velocidade de operação:
 - 100Mbps Ethernet
 - alta velocidade com transmissão ponto-a-ponto (e.g., 5 Gps)
- baixa taxa de erros e imunidade a ruídos

Meio Físico: radio

- sinal transportado como campo eletromagnético
- não há fios físicos
- bidirecional
- o ambiente afeta a propagação:
 - reflexão
 - obstrução por objetos
 - interferência

Tipos de canais de rádio:

- microwave
 - canais de até 155 Mbps
- LAN (e.g., waveLAN)
 - 2Mbps, 11Mbps
- wide-area (e.g., celular)
 - e.g. CDPD, 10's Kbps
- satélite
 - até 50Mbps por canal (ou vários canais menores)
 - 270 ms de atrado fim-a-fim
 - geosynchronous versus LEOS

Atraso em Redes de Pacotes

- pacotes sofrem atrasos durante a transmissão fim-a-fim
- quatro fontes de atraso em cada nó da rede

- processamento nodal :
 - examina erros de bits
 - escolhe enlace de saída
- enfileiramento
 - tempo esperando para transmissão no enlace de saída
 - depende do nível de congestão do roteador

Atraso em Redes de Pacotes

Atraso de transmissão:

- R=capacidade do enlace (bps)
- L=tamanho do pacote (bits)
- tempo para enviar bits no enlace = L/R

Atraso de propagação:

- d = comprimento do enlace físico
- s = velocidade de propagação no meio (~2x10⁸ m/sec)
- atraso de propagação = d/s

Atraso de filas

- R=capacidade do enlace (bps)
- L=tamanho do pacote (bits)
- a=taxa média de chegada de pacotes

intensidade de tráfego = La/R

- La/R ~ 0: atraso médio de fila pequeno
- La/R -> 1: atraso se torna grande
- La/R > 1: mais trabalho chega do que a capacidade de transmissão. O atraso médio cresce indefinidamente!

Rotas e atrasos na Internet "real"

traceroute: roteadores, rt delays on source-dest path também: pingplotter, vários programas windows

```
1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor.vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 jn1-so7-0-0.wae.vbns.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms
9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms 13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms
16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
18 * * *
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms
```

Camadas de Protocolos

Redes são complexas

- muitos componentes:
 - hosts
 - roteadores
 - enlaces de vários tipos
 - aplicações
 - protocolos
 - hardware, software

Questão:

Há alguma esperança de organizar a arquitetura de uma rede?

Ou pelo menos nossa discussão sobre redes?

Organização de uma viagem aérea

passagem (compra) passagem (reclamação)

bagagem (verificação) bagagem (receber)

portões (carga) portões (descarga)

decolagem aterrisagem

navegação aérea navegação aérea

roteamento da aeronave

• uma série de passos

Organização de uma viagem aérea: uma visão diferente

passagem (compra)	passagem (reclamação)
bagagem (verificação)	bagagem (receber)
portões (carga)	portões (descarga)
decolagem	aterrisagem
navegação aérea	navegação aérea
roteamento da aeronave	

Camadas: cada camada implementa um serviço

- através de suas próprias ações internas da camada
- confiando em serviços fornecidos pela camada inferior

Viagem aérea em camadas: serviços

Transporte de pessoas e bagagem de balcão a balcão

entrega entre centros de despacho de bagagem

transporte de pessoas entre portões de embarque

encaminhamento do avião de aeroporto a aeroporto

roteamento da aeronave da origem ao destino

Implementação Distribuída da funcionalidade das camadas

Porque camadas?

Convivendo com sistemas complexos:

- a estrutura explícita permite identificação, o relacionamento das partes de um sistema complexo
 - um modelo de referencia em camadas permite a discussão da arquitetura
- modularização facilita a manutenção, atualização do sistema
 - as mudanças na implementação de uma camada são transparentes para o resto do sistema
 - ex., novas regras para embarque de passageiros não afetam os procedimentos de decolagem
- a divisão em camadas é considerada perigosa?

Pilha de protocolos da Internet

- aplicação: suporta as aplicações de rede
 - ftp, smtp, http
- transporte: transferência de dados host-host
 - tcp, udp
- rede: roteamento de datagramas da origem ao destino
 - ip, protocolos de roteamento
- enlace: transferência de dados entre elementos vizinhos da rede
 - ppp, ethernet
- física: bits "nos fios dos canais"

aplicação
transporte
rede
enlace
física

Divisão em camadas: comunicação lógica

Cada camada:

- distribuída
- "entidades"
 implementam as
 funções da camada
 em cada nó
- entidades realizam ações, trocam mensagens entre pares

Divisão em camadas: comunicação lógica

Ex.: transporte

- apanha dados da aplicaçãop
- acrescenta endereço, verificação de erros e outras informações para montar um "datagrama"
- envia datagrama ao parceiro
- espera pelo reconhecimento do parceiro
- analogia: correio

Divisão em camadas: comunicação física

Camadas de Protocolos e dados

- Cada camada recebe dados de cima
- acrescenta um cabeçalho de informação para criar uma nova unidade de dados
- passa a nova unidade de dados para a camada abaixo

Estrutura da Internet: rede de redes

- grosseiramente hierárquica
- provedores de backbone nacionais e internacionais (NBPs)
 - ex. BBN/GTE, Sprint, AT&T, IBM, UUNet
 - interconectam-se (peer) entre si
 provadamente, ou em um Network
 Access Point (NAPs) público
- ISPs regionais
 - conectam-se nos NBPs
- ISPs locais
 - conectam-se nos ISPs regionais

Provedor de Backbone Nacional

ex. Sprint US backbone network

1961-1972: primeiros princípios da comutação de pacotes

- 1961: Kleinrock teoria das filas mostra a efetividade da comutação de pacotes
- 1964: Baran comutação de pacotes em redes militares
- 1967: ARPAnet concebida pela Advanced Research Projects Agency
- 1969: primeiro nó da ARPAnet operacional

• 1972:

- ARPAnet é demonstrada publicamente
- NCP (Network Control Protocol) primeiro protocolo host-host
- primeiro programa de email
- ARPAnet cresce para 15
 nós

1972-1980: Inter-redes, redes novas e proprietárias

- 1970: ALOHAnet rede via satelite no Hawai
- 1973: tese de PhD de Metcalfe s propõem a rede Ethernet
- 1974: Cerf and Kahn arquitetura para interconexão de redes
- final dos anos 70: arquiteturas proprietárias: DECnet, SNA, XNA
- final dos anos 70: comutação com pacotes de tamanho fixo (precursos do ATM)
- 1979: ARPAnet cresce para 200 nós

Cerf and Kahn's princípios de interconexão de redes:

- minimalismo, autonomiamy não se exigem mudanças
 internas para interconexão de
 redes
- modelo de serviço: melhor esforço
- roteadores "stateless"
- controle descentralizado

define a arquitetura da Internet de hoje

1980-1990: novos protocolos, uma proliferação de redes

- 1983: desenvolvimento do TCP/IP
- 1982: smtp é definido
- 1983: DNS definido para tranlação de nomes em endereços IP
- 1985: ftp é definido
- 1988: Controle de congestionamento do TCP

- novas redes nacionais:
 Csnet, BITnet, NSFnet,
 Minitel
- 100.000 hosts conectados à confederação de redes

anos 90: comercialização, a WWW

- Início dos anos 90: ARPAnet descomissionada
- 1991: NSF retira restrições sobre o uso comercial da NSFnet (descomissionada em 1995)
- Início dos anos 90: WWW
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, http: Berners-Lee
 - 1994: Mosaic, depois Netscape
- Final dos anos 90: comercialização da WWW

Final dos anos 90:

- est. 50 milhões de computadores na Internet
- est. 100 milhões de usuários
- enlaces de backbone operando a 1 Gbits/s

Introdução: Sumário

Cobriu uma "tonelada" de material!

- Internet overview
- o que é um protocolo?
- borda da rede, núcleo, rede de accesso
 - comutação de pacotes versus comutação de circuitos
- performance: perda, atraso
- camadas e modelos de serviços
- backbones, NAPs, ISPs
- história

Você agora tem:

- contexto, visão geral, sentimento das redes
- mais profundidade e detalhes virão mais tarde no curso