Utilization of Reductions and Abstraction Elimination in Typed Genetic Programming

Tomáš Křen, Roman Neruda

Charles University, Faculty of Mathematics and Physics & Institute of Computer Science, Academy of Sciences of the Czech Republic

Presentation outline

- Types & lambda calculus: Why to use them in GP?
- Related work
- Generating and reductions
- Crossover operators for lambda terms : problems with local variables
- Experiment

Types in GP

- Types help us overcome the closure requirement.
 - No longer need for "everything fitting into everything".
- But they also establish new requirements
 - e.g. function arguments must obey type requirements...
 - These requirements make the programs more reasonable,
 - and reduce the search space.

Lambda calculus

- Simple yet powerful (mathematical) functional programming language
- It uses anonymous functions very often.
- Roughly speaking:

s-expressions + anonymous functions = lambda calculus

Benefits of using Functional programing for GP

 Complex and/or general programming constructs can be described as higher-order functions

 Types provide rigorous way to talk about (sub)programs and to enforce constraints.

Related work

- Yu: PolyGP
 - uses lambda term representation, but restricts the use of outer local variables in the body of an anonymous function.
 - Hindley-Milner type system
- Briggs and O'Neill: Purely combinator approach
 - purely combinator approach
 - no anonymous functions, no local variables
 - Hindley-Milner type system
- Binard and Felty
 - Even stronger type system (System F) → non-standard algorithm
 - Genes (i.e. subtrees) have fitness

Our approach to typed GP over lambda calculus

- Simple type system (Simply typed lambda calculus)
 - with future generalizations in mind (н-м, н-м with type classes)
- ..but complete generating

Anonymous functions

Generalization of the standard GP

Tree generating terminology

Expansion

- In each step an *unfinished node* is replaced by a more specific tree:

0 or more unfinished nodes for subtrees

Local context (aka Γ)

- Set of symbol names accompanied with types
- "T ∪ F is an initial/global context"
- We can add local variables to a context

Expansions for Simply typed lambda calculus

	No types	Types, no contexts	Simply typed lambda calculus	
Unfinished node	\circ	(α)	(T][[])	
Expansion(s)	() → (f) ()()	$f: \tau_1 \longrightarrow \tau_n \longrightarrow \alpha$ inputs types ouput type	atomic types: $\begin{array}{c c} (\alpha & \Gamma) \\ \downarrow \\ \downarrow \\ \hline \\ (\mathbf{T}_1 & \Gamma) \cdots (\mathbf{T}_n & \Gamma) \\ \end{array}$ $(\mathbf{f}: \mathbf{T}_1 \rightarrow \cdots \rightarrow \mathbf{T}_n \rightarrow \alpha) \in \Gamma$	·

Generating and reductions

• Reduction: transformation of one term into another

```
beta reduction:  (\lambda\,x\,.\,M)N \to_\beta M[x:=N]  eta reduction:  (\lambda\,x\,.\,(M\,\,x)) \to_\eta M \qquad \text{if } x \not\in FV(M)
```

- From reduction arises notion of term equivalence (relative to that reduction)
- Normal form: term that can't be further reduced
- Described method generates long normal form (Inf)
 - Each Inf term represent whole beta-eta-equivalence class
 - This reduces the search space

Crossover operator for lambda terms

- Generalization of simple tree swapping crossover
- We need to swap subtrees with a same type
 - but that is simple
- Local variables cause the trouble!

Abstraction elimination

- An algorithm for getting rid of local variables and anonymous function
 - Input: an arbitrary lambda term
 - Output: equivalent S-expression (with no local variables or anonymous functions) that may contain additional new function nodes S,K and I which are defined as:

```
\mathbf{S} = \lambda \, f \, g \, x \cdot f \, x \, (g \, x) "function(f,g,x){ return f(x, g(x)) }" \mathbf{K} = \lambda \, x \, y \cdot x i.e. "function(x,y){ return x }" \mathbf{I} = \lambda \, x \cdot x "function(x){ return x }"
```

Hybrid crossover

- Each generated term is transformed by abstraction elimination
- So now all terms are typed S-expressions
- So now we only need to swap subtrees with the same type

- Hybrid because
 - lambda term representation during generation phase
 - Advantage: reduced search space during generation phase
 - Pure combinator representation during the rest

Possible disadvantage: up to quadratic increase in term size

Unpacking crossover

- All terms are kept in small βη-normal form
- ...and transformed right before crossover
- After the tree swapping both children are again normalized

So the quadratic increase is only temporary

Experiment

- We compare performance of hybrid and unpacking crossover.
- Even parity problem
 - Similar function and terminal set as in PolyGP by T. Yu


```
\begin{split} \tau_{\text{o}} &= [Bool] \rightarrow Bool \\ \Gamma_{\text{o}} &= \{and : Bool \rightarrow Bool \rightarrow Bool, \\ or : Bool \rightarrow Bool \rightarrow Bool, \\ nand : Bool \rightarrow Bool \rightarrow Bool, \\ nor : Bool \rightarrow Bool \rightarrow Bool, \\ nor : Bool \rightarrow Bool \rightarrow Bool, \\ foldr : (Bool \rightarrow Bool \rightarrow Bool) \\ \rightarrow Bool \rightarrow [Bool] \rightarrow Bool, \\ head' : [Bool] \rightarrow Bool, \\ tail' : [Bool] \rightarrow [Bool] \} \end{split}
```

Results

Results

Parent #1, fitness: 0.8125

Parent #2, fitness: 0.5

$$\lambda \ x \ . \ foldr \ (\mathbf{S}(\mathbf{S}(\mathbf{K} \ \mathbf{S})(\mathbf{S}(\mathbf{K}(\mathbf{S}(\mathbf{K} \ nor)))and))nor)$$

$$(nor \ (head' \ x) \ (head' \ x)) \ \ (tail' \ x)$$

$$=_{\beta\eta}$$

$$\lambda x$$
. $foldr (\lambda y z . nor (and y z) (nor y z))$
 $(nor (head' x) (head' x)) (tail' x)$

Which is equivalent to:

 λx . foldr xor (not (head' x)) (tail' x)

GP approach	I(M,i,z)
PolyGP	14,000
Our approach (hybrid)	28,000
GP with Combinators	58,616
GP with Iteration	60,000
Our approach (unpacking)	114,000
Generic GP	220,000
OOGP	680,000
GP with ADFs	1,440,000

Results comparison

Conclusions

- How to generate lambda terms in Inf
 - Why? It reduces search space
- How to crossover terms containing local variables using abstraction elimination technique
 - Hybrid vs. Unpacking: Hybrid wins
- Future work
 - More experiments
 - More elaborate analysis (Price's covariance for crossover,...)
 - Stronger type systems (H-M, H-M with type classes)

Thank you for your attention!

Any questions?