Beagle as a HOL4 external ATP method

Thibault Gauthier

May 21, 2014

- Introduction
 - Two types of provers
 - Problem statement
 - Interaction
- 2 Translation to first-order
 - Monomorphization
 - λ -lifting
 - Defunctionalization
- 3 Demonstration
- 4 Results
- 6 Conclusion

Two types of provers

	HOL4	Beagle
Туре	Interactive	Automated
Expressivity	Higher-order	First-order
Soundness	Small kernel (LCF)	Long optimized code
Family	HOL Light, Proof- Power, Isabelle/HOL	Spass + T

Problem statement

Problem Here are two HOL4 internal provers.

- Metis: first-order

- Cooper: arithmetic

Problem statement

Problem Here are two HOL4 internal provers.

- Metis: first-order

- Cooper: arithmetic

Solution An external prover.

- Beagle: first-order and arithmetic

Interaction

Translation's order

- Monomorphization
- Negation of the conclusion
- Rewriting to conjunctive normal form
- \bullet λ -lifting
- 6 Boolean argument elimination:

$$P(f) \rightarrow f \Rightarrow P(T) \land \neg f \Rightarrow P(F)$$

- Rewriting to a clause set
- Defunctionalization
- Mapping numeral to integers

Monomorphization

Instantiation of polymorphic types (a,...).

Problem

Thm 1: $\forall x : a. D \times 0$ Thm 2: $C = \lambda x : a. D \times 0$

Conjecture : C 2

Monomorphization

Instantiation of polymorphic types (a,...).

Problem

```
Thm 1: \forall x : a. D \times 0 Thm 2: C = \lambda x : a. D \times 0
```

Conjecture: C 2

Matching type of $C: a \rightarrow bool$ and $C: int \rightarrow bool$

```
Thm 1: \forall x : a. D \times 0 Thm 2: C = \lambda x : int. D \times 0
```

Conjecture: C 2

Monomorphization

Instantiation of polymorphic types (a,...).

Problem

```
Thm 1: \forall x : a. D \times 0 Thm 2: C = \lambda x : a. D \times 0
```

Conjecture : C 2

Matching type of $C: a \rightarrow bool$ and $C: int \rightarrow bool$

```
Thm 1: \forall x: a. D \times 0 Thm 2: C = \lambda x: int. D \times 0
```

Conjecture: C 2

Matching type of $D: a \rightarrow int \rightarrow bool$ and $D: int \rightarrow int \rightarrow bool$

```
Thm 1: \forall x : int. \ D \times 0 Thm 2: C = \lambda x : int. \ D \times 0
```

Conjecture: C 2

Problem

Thm 1: $\forall x. D \times 0$ Thm 2: $C = \lambda x. D \times 0$

Conjecture: C 2

Problem

Thm 1: $\forall x. D \times 0$ Thm 2: $C = \lambda x. D \times 0$

Conjecture: C 2

Negation of the conclusion

$$\{\forall x.\ D\ x\ 0\ ,\ C = \lambda x.\ D\ x\ 0\ ,\ \neg(C\ 2)\}$$

Problem

Thm 1: $\forall x. D \times 0$ Thm 2: $C = \lambda x. D \times 0$

Conjecture: C 2

Negation of the conclusion

$$\{\forall x. \ D \times 0, \ C = \lambda x. \ D \times 0, \ \neg (C \ 2)\}$$

 λ -lifting: $\exists Gen. (\forall x. Gen x = D x 0) \land C = Gen$

Problem

Thm 1: $\forall x. D \times 0$ Thm 2: $C = \lambda x. D \times 0$

Conjecture: C 2

Negation of the conclusion

$$\{\forall x. \ D \times 0, \ C = \lambda x. \ D \times 0, \ \neg(C \ 2)\}$$

 λ -lifting: $\exists Gen. (\forall x. Gen x = D x 0) \land C = Gen$

Combinators: C = S(S(KD)I)(K0)

Problem

Thm 1: $\forall x. \ D \times 0$ Thm 2: $C = \lambda x. \ D \times 0$

Conjecture: C 2

Negation of the conclusion

$$\{\forall x.\ D\ x\ 0\ ,\ C = \lambda x.\ D\ x\ 0\ ,\ \neg(C\ 2)\}$$

 λ -lifting: $\exists Gen. (\forall x. Gen x = D x 0) \land C = Gen$

Combinators: C = S(S(KD)I)(K0)

Clause set

$$\{\forall x. \ D \times 0, \ \forall x. \ \textit{Gen} \ x = D \times 0, \ C = \textit{Gen}, \ \neg(C \ 2)\}$$

Let App be the apply functor verifying $App \ f \ x = f \ x$ $(f \ x \mapsto App \ f \ x)$. We defunctionalize a function only when:

- it is not a mapped function

Let App be the apply functor verifying $App \ f \ x = f \ x$ $(f \ x \mapsto App \ f \ x)$. We defunctionalize a function only when:

- it is not a mapped function
- it is quantified universally !h. $h \times y \rightarrow !h. App (App h \times) y$

Let App be the apply functor verifying App f x = f x $(f x \mapsto App f x)$. We defunctionalize a function only when:

- it is not a mapped function
- it is quantified universally !h. $h \times y \rightarrow !h. App (App h \times) y$
- it is used with different number of arguments $\{h \times y \ z \ , \ h \times = j\} \ \longmapsto \ \{App \ (App \ (h \times) \ y) \ z \ , \ h \times = j\}$
- it has the same type as an universally quantified function

Let App be the apply functor verifying App f x = f x $(f x \mapsto App f x)$. We defunctionalize a function only when:

- it is not a mapped function
- it is quantified universally !h. $h \times y \rightarrow !h. App (App h \times) y$
- it is used with different number of arguments $\{h \times y \ z \ , \ h \times = j\} \ \longmapsto \ \{App \ (App \ (h \times) \ y) \ z \ , \ h \times = j\}$
- it has the same type as an universally quantified function

Let App be the apply functor verifying App f x = f x $(f x \mapsto App f x)$. We defunctionalize a function only when:

- it is not a mapped function
- it is quantified universally !h. $h \times y \rightarrow !h. App (App h \times) y$
- it is used with different number of arguments $\{h \times y \ z \ , \ h \times = j\} \ \longmapsto \ \{App \ (App \ (h \times) \ y) \ z \ , \ h \times = j\}$
- it has the same type as an universally quantified function

Defunctionalization

$$\{\forall x.\ D\ x\ 0,\ \forall x.\ \textit{Gen}\ x = D\ x\ 0,\ \textit{C} = \textit{Gen},\ \neg(\textit{C}\ 2)\}$$

$$\{\forall x.\ D\ x\ 0,\ \forall x.\ \textit{App}\ \textit{Gen}\ x = D\ x\ 0,\ \textit{C} = \textit{Gen},\ \neg(\textit{C}\ 2)\}$$

Translation's order

- Monomorphization
- Negation of the conclusion
- 3 Rewriting to conjunctive normal form
- \bullet λ -lifting
- Boolean argument elimination
- Rewriting to a clause set
- Open Defunctionalization
- Mapping numeral to integers

Demonstration

Problem

Thm 1: $\forall x : a. D \times 0$ Thm 2: $C = \lambda x : a. D \times 0$

Conjecture: C 2

Translated problem

$$\{\forall x : a. \ D \ x \ 0, \ \forall x : a. \ App \ Gen_0 \ x = D \ x \ 0, \ C = Gen_0, \}$$

$$\forall x : int. \ D \times 0, \ \forall x : int. \ App \ Gen_1 \times = D \times 0, \ C = Gen_1, \ \neg(C \ 2)$$

Results

Table: With and without monomorphization

Only 56% of higher-order problems are solved. And 79% of arithmetic problems are solved. (containing at least one mapped arithmetic constant)

Summary on the current HOL4-Beagle interaction

Qualities:

- Its translation is correct (preserve satisfiability).
- It proves 81% of conjectures solved by Metis without arithmetic lemmas.
- It uses a well-known format, TFA (TPTP).

Limitations:

- it is incomplete (doesn't preserve unsatisfiability).
- it doesn't reconstruct the proof.
- it doesn't support real and rational arithmetic.
- it was not tested extensively (for example, as part of a lemma mining method).