ANSWER KEY- XII/XIII(ASEEM/ANANT) - (PST-5) DATE: 17-01-2016 CODE-1

| PHYSICS       |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|---------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| QUS.          | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| ANS.          | 3  | 4  | 1  | 3  | 1  | 1  | 1  | 3  | 4  | 1  | 3  | 2  | 2  | 4  | 3  |
| QUS.          | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| ANS.          | 3  | 2  | 3  | 1  | 3  | 1  | 1  | 2  | 4  | 1  | 3  | 2  | 2  | 2  | 4  |
| CHEMISTRY     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| QUS.          | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |
| ANS.          | 1  | 2  | 3  | 3  | 1  | 1  | 2  | 3  | 4  | 3  | 4  | 1  | 1  | 4  | 3  |
| QUS.          | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| ANS.          | 3  | 4  | 2  | 1  | 2  | 1  | 1  | 3  | 2  | 2  | 4  | 3  | 1  | 2  | 3  |
| M ATHEM ATICS |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| QUS.          | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |
| ANS.          | 2  | 1  | 1  | 4  | 3  | 3  | 2  | 1  | 2  | 4  | 3  | 1  | 1  | 3  | 2  |
| QUS.          | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| ANS.          | 2  | 3  | 2  | 3  | 1  | 4  | 3  | 1  | 1  | 1  | 4  | 1  | 3  | 1  | 2  |

Note:-

Solutions can be downloaded from the website or will be displayed on the notice board!

# ANSWER KEY- XII/XIII(ASEEM/ANANT) - (PST-5) DATE: 17-01-2016 CODE-2

| PHYSICS     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|-------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| QUS.        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |
| ANS.        | 3  | 2  | 3  | 1  | 3  | 1  | 1  | 2  | 4  | 1  | 3  | 2  | 2  | 2  | 4  |
| QUS.        | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| ANS.        | 3  | 4  | 1  | 3  | 1  | 1  | 1  | 3  | 4  | 1  | 3  | 2  | 2  | 4  | 3  |
| CHEMISTRY   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| QUS.        | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 |
| ANS.        | 3  | 4  | 2  | 1  | 2  | 1  | 1  | 3  | 2  | 2  | 4  | 3  | 1  | 2  | 3  |
| QUS.        | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
| ANS.        | 1  | 2  | 3  | 3  | 1  | 1  | 2  | 3  | 4  | 3  | 4  | 1  | 1  | 4  | 3  |
| MATHEMATICS |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| QUS.        | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 |
| ANS.        | 2  | 3  | 2  | 3  | 1  | 4  | 3  | 1  | 1  | 1  | 4  | 1  | 3  | 1  | 2  |
| QUS.        | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
| ANS.        | 2  | 1  | 1  | 4  | 3  | 3  | 2  | 1  | 2  | 4  | 3  | 1  | 1  | 3  | 2  |

## Note:-

Solutions can be downloaded from the website or will be displayed on the notice board!

# CLASS-XII/XIII- (ASEEM/ANANT)

# **Hints & Solution**

### PART - I ( PHYSICS)

- 1. The current I in the straight ..........
- I is continuously decreasing, so magnetic [Sol. field is downward direction is decreasing, hence direction of induced current will be clockwise.]
- 2. The dimensions of magnetic flux is .......
- ILB = F[Sol.

$$B = \frac{F}{IL} = \frac{MLT^{-2}}{II} = MT^{-2}I^{-1}$$

Magnetic flux

$$\phi = BA = (MT^{-2}I^{-1})(L^2)$$

- 3. For the solenoids shown in the ......
- Increasing the resistance causes a [Sol. decrease in the current on the left. This reduces the field strength for the solenoid B =  $\mu_0$ nl. By the right-hand rule, the field through the solenoid is directed to the RIGHT. Hence, in the right-hand circuit, since there will be fewer field lines directed to the right, there is an induced electric field that will produce a current in the wires to "replace" the lost field lines. This means that current will be directed with the same orientation as the current in the left circuit... the galvanometer will deflect to the LEFT.]
- 4. A bar magnet with its north (N) and .........
- [Sol. Magnetic field lines in right direction are decreasing, so direction of I will be clockwise. The part of the loop facing the north pole of magnet behaves as a south pole, so net force will be in right direction. ]

5. A circular loop wire of radius r rotates .......

DATE: 17-01-2016

Since area vector rotates in xy plane, there-[Sol. fore flux is due to By only. At any instant  $\phi$  (t) =  $\pi r^2 B_v \cos \omega t$ 

$$|E_{ind}| = \pi r^2 B_v \omega \sin \omega t$$

- A uniform magnetic field B is ...... 6.
- [Sol  $A_1 = I^2$

For circle;  $2\pi R = 4I$ 

$$R = \frac{2l}{\pi}$$

$$A_2 > A_1$$

$$A_2 = \pi R^2 = \pi \times \frac{4l^2}{\pi^2} = P\left(\frac{4}{\pi}\right)$$

$$\phi_2 > \phi_1$$

So current flows clockwise (by lenz law) ]

How many times will the mean ....... 11.

**Sol.** 
$$PV = nRT$$
  $\Rightarrow T = 16T_0$ 

$$\Rightarrow$$
  $V_{rms}^2 = \frac{3RT}{M} = 16 V_{rms}^2$ .]

12. An enclosed one mole of an ......

[Sol. 
$$W = \frac{1}{2}(p_0 + 2p_0) \times (2v_0 - v_0) = \frac{3}{2}p_0v_0$$

$$\Delta V = \frac{3}{2} \text{ nRT} \Delta T = \frac{3}{2} [4p_0 p_0 - p_0 v_0] = \frac{9}{2} p_0 v_0$$

$$\Delta Q = 6p_0 v_0$$

$$c = \frac{\Delta Q}{n\Delta T} = \frac{9p_0v_0}{\frac{3p_0v_0}{R}} = 2R$$

13. An ideal gas at pressure ......

[Sol. 
$$T_B = T_C$$

$$\frac{P_{\rm B}V_{\rm B}}{nR} = \frac{P_{\rm C}V_{\rm C}}{nR}$$

$$P_{B}V_{B} = P_{C}V_{C}$$
$$2P_{0} \times V_{0} = P_{0} \times V_{C}$$

$$2P_0 \times V_0 = P_0 \times V$$

$$V_C = 2V_0$$

$$T_{C} = \frac{P_{0} \times 2V_{0}}{nR}$$
;  $T_{A} = \frac{P_{0}V_{0}}{nR}$ 

$$\Delta U = -\frac{3}{2} P_0 V_0$$

$$\Delta \omega = -P_0V_0$$

$$\Delta Q = -\frac{5}{2} P_0 V_0 ]$$

**15.** Two different isotherms representing......

[Sol. PV = 
$$\frac{m}{M}$$
 RT

 $V \alpha m$ 

$$V_1 < V_2 \Rightarrow m_1 < m_2$$

**16.** One mole of an ideal gas at pressure .......

**[Sol.** For isothermal process  $V_f = 2V_0$ 

$$\therefore$$
  $P_f = P_0/2$ 

For isobaric process

$$V_f = V_0/2$$
,  $T_f = \frac{V_0}{2 \times 2V_0} \cdot T_0 = \frac{T_0}{4}$ 

For P  $\propto$  V process

P-V must be straight line

 $_{\mathbb{T}} \propto V^2 \quad \Rightarrow \quad V-T \text{ must be parabolic}$ 

$$P^2 \propto T \implies P-T$$
 must be parabolic ]

**17.** Consider a gas confined to a .......

[Sol. 
$$P_{gas} = P_{atm} + \frac{F}{A}$$
]

**18.** 1 mole of a monoatomic gas .........

**[Sol.** PT=const PV = nRT, 
$$T = \left(\frac{PV}{nR}\right)$$

$$\frac{P^2V}{nR}$$
 = const  $C = \frac{3R}{2} + 2R = \frac{7R}{2}$ 

$$P^2V = k'$$
;  $C = 3.5 R$ ;  $PV^{1/2} = k$ 

$$C = C_v + \frac{R}{1-n}$$
;  $C = \frac{3}{2}R + \frac{R}{1-\frac{1}{2}}$ ]

**19.** A given mass of a gas expands from .......

Sol.



Area under the curve  $W_1 > W_2 > W_3$ ]

**20.** In an H<sub>2</sub> gas process,  $PV^2$  = constant .......

**Sol.** 
$$\omega = \frac{nR}{(1-2)} \Delta T = \frac{P_1 V_1 - P_2 V_2}{2-1} = \frac{P_1 V_1 - P_2 V_2}{1}$$

$$\Delta \mathsf{U} = \frac{\mathsf{n} \mathsf{R}}{(\gamma - 1)} \Delta \mathsf{T} = \frac{\mathsf{n} \mathsf{R} \Delta \mathsf{T}}{(\gamma - 1)} = \frac{\mathsf{P}_2 \mathsf{V}_2 - \mathsf{P}_1 \mathsf{V}_1}{\gamma - 1}$$

$$\frac{\omega}{\Delta U} = 1 - \gamma = 1 - \frac{7}{5} = \frac{-2}{5} = -0.4$$
 Ans.]

**21.** The diagram shows part of the .......

$$= MS + VS \times LC = 2.7 + 0.04 = 2.74$$

**22.** A projectile is thrown with velocity .......

[Sol. 
$$R = \frac{20^2 \times \sin 120^\circ}{g} = 20\sqrt{3} = \frac{\Delta R}{R}$$

$$= \frac{24U}{U} \implies \Delta R = \frac{2 \times 5}{100} \times 200\sqrt{3} = 2\sqrt{3}$$

$$20\sqrt{3} - 2\sqrt{3} < R < 20\sqrt{3} + 2\sqrt{3}$$

$$\Rightarrow$$
 31.1m < R < 38.1 m ]

**23.** The dimensions of  $\frac{a}{b}$  in the equation ......

[Sol. [a] = 
$$T^2$$
 [x] = L

[P] = ML<sup>-1</sup>T<sup>-2</sup> = 
$$\frac{T^2}{\lceil b \rceil L}$$

[b] = 
$$\frac{T^2}{MI^{-1}T^{-2}I}$$
 = M<sup>-1</sup>T<sup>4</sup>

$$\therefore \frac{[a]}{[b]} = \frac{T^2}{M^{-1}T^4} = MT^{-2}$$
]

**24.** If energy (E), velocity (V) and time (T) ......

**[Sol.** [surface tension] = [force/length] =  $M^1L^0T^2$ suppose [surface tension] =  $E^a V^b T^c$ 

$$M^{1}L^{0}T^{-2} = [M^{1}L^{2}T^{-2}]^{a} [L^{1}T^{-1}]^{b} [T]^{c}$$

Matching dimensions of M  $\Rightarrow$  a = 1

Matching dimensions of L

$$\Rightarrow$$
 2a + b = 0  $\Rightarrow$  b = -2

Matching dimensions of T

$$\Rightarrow$$
 -2a - b + c  $\Rightarrow$  c = -2

$$\therefore$$
 [surface tension] = EV<sup>-2</sup> T<sup>-2</sup>]

#### **CHEMISTRY PART - II**

- **31.** Chile saltpetre is......
- Sol. Nitrogen is found in the form of nitrate NaNO<sub>3</sub> Indian salt petre KNO<sub>3</sub> Chile salt petre
- 32. Conductivity (unit Siemen's) .....

Sol. [2] 
$$C = \frac{K[A]A}{l}$$
,  $K = \frac{C \times l}{[A]A} = \frac{Sm}{mol \ m^{-3} \ m^2} = Sm^2 mol^{-1}$ .

- 33.  $Na_2CO_3$  can be manufactured .....
- Sol. Solvays process
- 34. The solubility of the alkali.......
- Sol. Solubility of alkalimetal carbonate increase down the group due to increase in ionic character
- 35. In the manufacture of iron ......

Sol. [1] 
$$SiO_2 + CaO \rightarrow CaSiO_3$$
Impurity Flux Slag

Lime stone decomposes to give CaO which combines with  $SiO_2$  (Impurity) to form slag  $CaCO_3 \rightarrow CaO(s) + CO_2(g)$ 

36. If hydrogen electrode ....

Sol.[1]

Both electrodes are hydrogen electrode

Anode 
$$\frac{1}{2}H_2(g) \rightarrow H^+ + e^-$$

Cathode 
$$H^+ + e^- \rightarrow \frac{1}{2}H_2(g)$$

$$\frac{1}{2}H_2)_A + H^+)_C \rightarrow H^+)_A + \frac{1}{2}H_2)_C$$

$$E_{cell}^{\circ}=0$$

$$\Rightarrow \, E_{cell} = 0 \, - \, \frac{0.0591}{1} log \frac{\left[H^{+}\right]_{A} \left(P_{H_{2}}\right)_{C}^{1/2}}{\left[H^{+}\right]_{C} \left(P_{H_{2}}\right)_{A}^{\frac{1}{2}}}$$

$$E_{cell} = -0.059 \log \frac{10^{-6}}{10^{-3}} = -0.059 \log 10^{-3}$$

As pressure of gas is 1 bar

- 37. Which of the following.......
- Sol. [2] *AI* is highly electropositive. It can be obtained by electrolytic reduction.
- 38. 50 *ml* of 1 *M* oxalic acid......

Sol. [3] 
$$W = \frac{126 \times 1 \times 50}{1000} \implies 6.3$$

(Molecular weight of oxalic acid ⇒163)

$$0.5 gm \rightarrow \frac{6.3}{2}$$

$$1 gm \rightarrow \frac{6.3}{2 \times 0.5} \times 1 \Longrightarrow 6.3 gm.$$

39. In order to .......

Sol. [4] 
$$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$$
 
$$3Cu_2O + CH_4 \longrightarrow 6Cu + 2H_2O + CO$$
 (From green logs of wood)

- 40. On electrolysing a .....
- Sol. [3] In between dilute  $H_2SO_4$  and platinum electrode  $O_2$  gas evolve at anode.
- 41. On dissolving moderate ......

Sol. M+ 
$$(x + y)$$
 NH<sub>3</sub>  $[M(NH_3)_X]^+ + [e(NH_3)_y]^-$ 

$$M^{+}(am) + e^{-} + NH_{3} (\ell) \rightarrow MNH_{2(am)} + 1/2$$
  
 $H_{2}(g)$ 

Due to free electron, liquid ammonia becomes paramagnetic.



42. When 9.65 coulombs .....

Sol. [1] 
$$W_{Ag} = \frac{E_{Ag} \times Q}{96500} = \frac{108 \times 9.65}{96500}$$
  
= 1.08 × 10<sup>-2</sup> gm = 10.8 mg



- 45. When lead storage battery is charged.......
- storage batteries Sol. Lead used is automobiles (Cars/bikes)

H<sub>2</sub>SO<sub>4</sub>(conc.) about 38% sol. of H<sub>2</sub>SO<sub>4</sub> is taken.

$$Pb(s) + PbO_2 + 4H^+ + 2(aq) 2PbSO_4(s) + 2H_2O(\ell)$$

$$E_{cell} = 2.05 V$$

During the working of the cell discharge 52. The correct name of..... H<sub>2</sub>SO<sub>4</sub> will be consumed so it's conc in the solution hence density of the solution will decrease during charging of the cell PbSO<sub>4</sub> will get converted into Pb(s) and, PbO<sub>2</sub>(s) and H<sub>2</sub>SO<sub>4</sub> will be produced.

- 46. A solution containing one mole .....
- Sol. [3] A cation having highest reduction potential will be reduced first and so on. However,  $Mg^{2+}$  in 54. aqueous solution will not be reduced Sol.[2] . Instead water would be reduced in preference.

- 47. For the adsorption of a .....
- Sol. The constant k and n can be determined as explained below: Taking logarithms on both sides of

Eq. 
$$(x/m) = kp^{1/n}$$
 we get  $log (x/m) = log k + (1/n) log p$ .



- 48. In this reaction, dilute  $H_2SO_4$  ...
- Sol. When catalysts and reactants are in same phase then the process is said to be homogeneous catalysis and

Eg : (i) 
$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{dil.H_2SO_4} C_6H_{12}O_6(aq) + C_6H_{12}O_6(aq)$$
Sucrose Fructose Glucose

49. Electrode potential .....

**Sol.** [1] 
$$E_{\text{cell}}^o = E_{\text{cathode}}^o - E_{\text{anode}}^o = 0.34 - (-0.76) = 1.10 \ V$$
.

- 51. Primary and secondary alcohols ...... Sol. [1]  $R - CH_2OH \xrightarrow{Cu} R - CHO + H_2$

Sol Correct formula of potassium ferrocyanide Isomerise

- 53. Amongst  $Ni(CO)_4$ ,  $[Ni(CN)_4]^{2-}$  ......
- Sol.  $Ni(CO)_4 - sp^3 - no unpaired e^{-1}$ [ni(CN)<sub>4</sub>]<sup>2-</sup> - dsp<sup>2</sup> no unpaired e<sup>-</sup>  $[NiCl_4]^{2-}$  sp<sup>3</sup> – 2 unpaired e<sup>-</sup>
- Cuprammonium ion......
- Copper complexes usually involve with four coordination number and have square planar in

[Cu(NH<sub>3</sub>)<sub>4</sub>]<sup>2+</sup> - central atom is in dsp<sup>2</sup> hybridisation as NH<sub>3</sub> being strong field ligand promotes one e<sup>-</sup> to higher energy orbital.

55. In the following reaction 'A' is.....

Sol. 
$$C_2H_5MgBr + H_2C - CH_2 \xrightarrow{H_2O}$$

$$C_2H_5CH_2CH_2OH + MgBr(OH)$$
(A)

n-butyl alcohol

Types of isomerism shown by ......

Sol. [4]  $NO_2$  is ambident and can be linked either to N side as  $(-NO_2)$  or to O -side as (-ONO). Also  $NO_2$  in coordination sphere can be replaced by counter ion

57. Phenol is treated with .....



2,4,6 tribromophneo

60. The reaction, water .....

Sol. [3] 
$$\underbrace{CO + H_2}_{\text{water gas}} + H_2 \xrightarrow{Cr_2O_2/ZnO} CH_3OH$$

#### **PART-III (MATHS)**

The upper  $\left(\frac{3}{4}\right)$  th portion of ......... 61.



Sol.

Let height of tower be x

In ∆ABD

$$\tan \left(\theta + \alpha\right) = \frac{x}{40}$$

in ∆ABC

$$\tan \theta = \frac{x}{160}$$

$$\tan \alpha = \tan(\theta - \alpha) - \theta$$

$$\frac{\frac{\mathsf{X}}{40} - \frac{\mathsf{X}}{160}}{\mathsf{X}^2} = \frac{3}{5} \left( \because \tan \alpha = \frac{3}{5} \right)$$

$$\frac{\frac{x}{40} - \frac{x}{160}}{1 + \frac{x^2}{40 \times 160}} = \frac{3}{5}$$

On solving

$$6400 + x^2 = 200x$$

$$X^2 - 200x + 6400 = 0$$

Solve and get

$$X = 40$$

hat you conceive 62. If a, b, c are in H.P.

[1] b = H.M. of a and c < A.M. of a and c Sol. (as a and c are distinct)

$$\Rightarrow b < \frac{a+c}{2} \Rightarrow b - c < a - b \Rightarrow \frac{1}{b-c} > \frac{1}{a-b}$$

63. The coordinates of the .....

Sol. [1]

Any point on the parabola is  $(x, x^2 + 7x + 2)$ 

Its distance from the line y = 3x - 3 is given

$$P = \left| \frac{3x - (x^2 + 7x + 2) - 3}{\sqrt{9 + 1}} \right| = \left| \frac{x^2 + 4x + 5}{\sqrt{10}} \right| =$$

$$\frac{x^2 + 4x + 5}{\sqrt{10}} \qquad \text{(as } x^2 + 4x + 5 > 0 \text{ for all } x \in R)$$

$$\frac{dP}{dx} = 0 \Rightarrow x = -2$$

The required point  $\equiv$  (-2, -8).

64. If  $z_1$  and  $z_2$  are ......

[4]  $|z_1 - z_2|^2 = |z_1|^2 + |z_2|^2 - 2|z_1| \cdot |z_2| \cos \theta$ , Sol where  $\theta = |argz_1 - argz_2|$ .

Hence for the given relation  $\theta = 0$ 

 $\Rightarrow$  argz<sub>1</sub> – argz<sub>2</sub> = 0.

65. From a moving point .....

Sol

Clearly PO is the diameter of circumcircle.

Hence locus of circumcentre is  $x^2 + y^2 = 1$ .

Let a, b and c be ..... 66.

Sol. [3]

$$a + b + c = 6 \implies a + \frac{b}{2} + \frac{b}{2} + \frac{c}{3} + \frac{c}{3} + \frac{c}{3} = 6$$

Now by applying  $A.M. \ge G.M.$ , we get

$$\frac{a + \frac{b}{2} + \frac{b}{2} + \frac{c}{3} + \frac{c}{3} + \frac{c}{3}}{6} \ge \left(a \cdot \frac{b^2}{4} \cdot \frac{c^3}{27}\right)^{1/6}$$

$$\Rightarrow \ 1 \ge \left(\frac{ab^2c^3}{108}\right)^{1/6} \ \Rightarrow ab^2c^3 \le 108 \ .$$

67. If normal drawn at .....

Sol. (B) 
$$P \equiv (t_1^2, 2t_1)$$
;  $Q \equiv (t_2^2, 2t_2)$ 

$$\Rightarrow t_2 = -t_1 - \frac{2}{t_1} \Rightarrow t_1^2 + t_1t_2 + 2 = 0$$

$$\Rightarrow$$
  $t_2^2$  –8  $\geq$  0 as  $t_1 \in R$ 

$$\Rightarrow$$
  $t_2^2 \ge 8$ . Now  $OQ^2 = t_2^4 + 4t_2^2 \ge 64 + 32 = 96$ 

$$\Rightarrow$$
 OQ  $\geq$  4 $\sqrt{6}$ 

68. A circle C<sub>2</sub> passes .......

Sol.

Let the radius of the circle be r.

Clearly AP=BP=OP=r

$$\Rightarrow AP^2 + OP^2 = OA^2 = 2$$

$$\Rightarrow AP = 1 \Rightarrow r = 1$$



For a complex ..... 69.

[2] z lies on the line segment joining the Sol. complex numbers -1 and 1.

70. A person standing on the .....

Sol. Let height of tower be x

In  $\triangle ABC$ 

$$\frac{h}{x} = \tan 60^{\circ}$$





$$\frac{h}{x+40} = \tan 30^{\circ}$$

$$\sqrt{3}\,h=x+40$$

From (1) and (2)

$$3x = x + 40 \implies 2x = 40 x = 20$$

71. The value of ......

Sol. [3] 
$$\frac{1}{6.10} + \frac{1}{10.14} + \frac{1}{14.18} + \dots \infty$$

$$= \frac{1}{4} \left[ \frac{4}{6.10} + \frac{4}{10.14} + \frac{4}{14.18} + \dots \infty \right]$$

$$= \frac{1}{4} \left[ \left( \frac{1}{6} - \frac{1}{10} \right) + \left( \frac{1}{10} - \frac{1}{14} \right) + \left( \frac{1}{14} - \frac{1}{18} \right) + \dots \infty \right]$$

$$=\frac{1}{4}\times\frac{1}{6}=\frac{1}{24}$$
.

**72.** Two circles of radii 'a' ........

Sol 1



$$\Rightarrow C_1$$
 is

 $(\sqrt{1-2a}, a)$  and  $C_2$  is

$$(\sqrt{1-2b}, b)$$

$$\Rightarrow$$
 C<sub>1</sub>C<sub>2</sub> = a +

$$b = a + \frac{1}{2}$$

$$\Rightarrow$$
 1 – 2a +

$$\left(a-\frac{1}{2}\right)^2=\left(a+\frac{1}{2}\right)^2$$

$$\Rightarrow$$
 a =  $\frac{1}{4}$ .

**73.** If one end of the diameter .....

**Sol.** [1]

Let other end of diameter (h, k)

Hence centre is  $\left(\frac{3+h}{2}, \frac{k+4}{2}\right)$ . This circle

touches x-axis means  $r = \frac{k+4}{2}$ 

$$= \sqrt{\left(\frac{3+h}{2}-3\right)^2 + \left(\frac{k+4}{2}-4\right)^2}$$
 gives the equation of parabola.

**74.** Let r<sup>th</sup> term of a series ......

Sol. Tr can be written as

$$T_r = \frac{r}{(r^2 - 1)^2 - r^2} = \frac{1}{2} \left( \frac{1}{r^2 - 1 - r} - \frac{1}{r^2 - 1 + r} \right)$$

$$\sum_{r=1}^{\infty} T_r = \frac{1}{2} \sum_{r=1}^{\infty} \left( \frac{1}{r^2 - 1 - r} - \frac{1}{r^2 - 1 + r} \right)$$

$$= \frac{1}{2} \left[ (-1-1) + \left( 1 - \frac{1}{5} \right) + \left( \frac{1}{5} - \frac{1}{11} \right) + \left( \frac{1}{11} - \frac{1}{19} \right) + \dots \right]$$

$$\left( \text{as } \lim_{r \to \infty} \frac{1}{r^2 - 1 + r} = 0 \right)$$

$$= -\frac{1}{2}.$$

**75.** The line  $x + y = 5 \dots$ 

Sol. Since AB is fixed and AC is perpendicular to BC. So, locus of C is a circle whose diameter is AB. So, family of circles passing through AB is

$$x^2 + y^2 - 6x - 8y + 21 + \lambda(x + y - 5) = 0$$

$$\Rightarrow x^2 + y^2 - (6 - \lambda)x - (8 - \lambda)y + 21 - 5\lambda = 0$$

So, centre is 
$$\left(\frac{6-\lambda}{2}, \frac{8-\lambda}{2}\right)$$

Since AB is diameter so centre must lie on AB

$$\Rightarrow \frac{6-\lambda}{2} + \frac{8-\lambda}{2} = 5 \Rightarrow \lambda = 2$$

$$\therefore$$
 Locus is  $x^2 + y^2 - 4x - 6y + 11 = 0$ .

**76.** Consider a square ......

**Sol.** [2]

Clearly mid-point of OB is one centre of the circle and radius is equal  $\frac{|z_0|}{2}$ 

 $\Rightarrow$  Required equation is;

$$\left|z - \frac{z_0}{2} \left(1 + i\right)\right| = \frac{\left|z_0\right|}{2}$$



- 77. A tower stands at .....
- **Sol.** In the  $\triangle$  AOB,  $\angle$  AOB = 60°, and  $\angle$ OBA =  $\angle$  OAB (since OA =

 $\mbox{OB = AB radius of same circle).} \ \ . . . \ \Delta \ \mbox{AOB is a} \label{eq:aobs}$  equilateral

triangle. Let the height of tower is h m. Given distance between two point A & B lie on boundary of circular park, subtends an angle of 60° at the foot of the tower AB i.e. AB = a. A tower OC stands at the centre of a circular park. Angle of elevation of the top of the tower from A and B is 30°. In  $\Delta$  OAX

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{a} \Rightarrow h = \frac{a}{\sqrt{3}}$$

- **78.** The centre of the circle .......
- Sol. 2

Centre of the required circle is the reflection of the point (0, 0) in the line y = 81. mx + m.

Let C (h, k) be the centre of the reflected circle

$$\Rightarrow \frac{k}{h} = -\frac{1}{m} \dots (1)$$

And 
$$\frac{k}{2} = m \frac{h}{2} + m \dots (2)$$

$$\Rightarrow$$
 k = m(-km) + 2m  $\Rightarrow$  k =  $\frac{2m}{1+m^2}$ 

$$\therefore \ C \ (h, \, k) \ is \left( -\frac{2m^2}{1+m^2}, \ \frac{2m}{1+m^2} \right).$$

- **79.** The value of the .......
- Sol. [3]

$$t_n = (n+1)\left(n + \frac{1}{\omega}\right)\left(n + \frac{1}{\omega^2}\right)$$

= 
$$n^3 + n^2 \left( \frac{1}{\omega^2} + \frac{1}{\omega} + 1 \right) + n \left( 1 + \frac{1}{\omega^2} + \frac{1}{\omega} \right) + 1$$

= 
$$n^3 + n^2(\omega + \omega^2 + 1) + n(\omega + \omega^2 + 1) + 1$$
  
=  $n^3 + 1$ 

$$\therefore S_n = \sum_{r=1}^n t_r = \sum_{r=1}^n (r^3 + 1) = \frac{n^2 (n+1)^2}{4} + n .$$

- **80.** If at x = 1, y = 2x .....
- Sol. [1]

For 
$$x = 1$$
,  $y = a + b + c$ .

Tangent at (1, 
$$a + b + c$$
) is  $y - (a + b + c) = (2a + b)(x - 1)$ 

$$\Rightarrow$$
 v = (2a + b)x + c – a

Comparing with y = 2x, c = a, b = 2(1 - a)

Which are true for choice (A) only.

- **81.** The point of intersection ......
- Sol. 4

Let (h, k) be point of intersection of the tangents

Then equation of chord of contact is xh + yk = 10

Compare this with x + y = 2

$$\frac{h}{1} = \frac{k}{1} = \frac{10}{2} \implies h = 5; k = 5.$$

**82.** If normals are drawn form .......

**Sol.** 3

Equation of normal:

$$y = mx - 2am - am^3$$

Put 
$$y = 0$$

We get 
$$x_1 = 2a + am_1^2$$

$$x_2 = 2a + am_2^2$$

$$x_3 = 2a + am_3^2$$

where  $x_1$ ,  $x_2$ ,  $x_3$  are the intercepts on the axis of he parabola, The normal passes through (h,k)

$$\Rightarrow$$
 am<sup>3</sup> + (2a – h) m + k = 0

$$m_1 + m_2 + m_3 = 0$$

$$m_1 m_2 + m_2 m_3 + m_3 m_1 = \frac{2a - h}{a}$$

$$\Rightarrow \frac{m_1^2 + m_2^2 + m_3^2 = (m_1 + m_2 + m_3)^2}{-2(m_1 m_2 + m_2 m_3 + m_3 m_1)}$$
$$= -2\frac{(2a - h)}{a}$$

$$\Rightarrow$$
x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> = 6a - 2( 2a-h) = 2 ( h + a)

**83.** If z is a complex number ......

Sol 1

$$|z - \bar{z}| =$$
straight line AB



$$|z - \overline{z}| \le |z| (arg z - arg \overline{z})$$

**84.** If a, b, c are in A.P a, x, ......

Sol. 1

a, b, c are in A.P.  $\Rightarrow$  2b = a + c.

a, x, b are in G.P.  $\Rightarrow x^2 = ab$ 

b, y, c are in G.P.  $\Rightarrow$  y<sup>2</sup> = bc

$$\Rightarrow$$
 2b =  $\frac{x^2}{b} + \frac{y^2}{b}$   $\Rightarrow$  2b<sup>2</sup> =  $x^2 + y^2$ 

Hence in A.P. .

85. Let P be any moving .....

Sol. 1

Let P be  $(1 + \sqrt{2} \cos \theta, \sqrt{2} \sin \theta)$  and C is (1, 0).

Circum centre of triangle ABC lies on midpoint of PC

 $\Rightarrow$  2h = 1 +  $\sqrt{2}\cos\theta$  + 1 and 2k =  $\sqrt{2}\sin\theta$ 

$$\Rightarrow [2(h-1)]^2 + (2k)^2 = 2$$

$$\Rightarrow$$
 2(h - 1)<sup>2</sup> + k<sup>2</sup> - 1 = 0  $\Rightarrow$  2x<sup>2</sup> + 2y<sup>2</sup> - 4x  
+ 1 = 0

**86.** The parametric ......

**Sol**. [4]

No choice among (A), (B), (C) is giving all points on parabola  $y^2 = x$ 

**87.** If z<sub>1</sub> and z<sub>2</sub> are two ......

Sol. [1] We have 
$$|z_1| = |z_2| + |z_1 - z_2|$$

$$\Rightarrow |z_1 - z_2|^2 = (|z_1| - |z_2|)^2$$

$$\Rightarrow |z_1|^2 + |z_2|^2 - 2|z_1| |z_2| \cos(\theta_1 - \theta_2) = |z_1|^2 + |z_2|^2 - 2|z_1| |z_2|$$

$$\Rightarrow$$
 cos( $\theta_1 - \theta_2$ ) = 1  $\Rightarrow$   $\theta_1 - \theta_2$  = 0  $\Rightarrow$  arg

$$(z_1) - arg(z_2) = 0 \Rightarrow \frac{z_1}{z_2}$$
 is purely real

$$\Rightarrow Im \left(\frac{z_1}{z_2}\right) = 0$$
.

Length of focal chord will be  $t^2 + 1 +$ 

$$\frac{1}{t^2} + 1 = \frac{25}{4}$$

$$\Rightarrow$$
 t +  $\frac{1}{t}$  =  $\pm \frac{5}{2}$ 

 $\Rightarrow$  t = ± 2. Since slope is positive, so t = 2 and end points will be (4, 4),  $\left(\frac{1}{4}, -1\right)$ 

Slope is 
$$\frac{4}{3}$$
.

Common tangents are easily find with the help of given alternative.

Sol.

$$BD = AB = 7 + x$$

Also AB = x tan 
$$60^{\circ}$$
 =  $x\sqrt{3}$ 

$$\therefore x\sqrt{3} = 7 + x$$

$$x = \frac{7}{\sqrt{3} - 1}$$

$$AB = \frac{7\sqrt{3}}{2}(\sqrt{3} + 1)$$



SPECTRUM