

TOSOEO. SEDECT

MEASLES HA INSERT FOR THE HIV-L JUNCTION

Fig. 18

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 10

CONTROL CAUSTA

				7	1101	•			
~	· · ·			· ·	4/24				
TITER (ML)		0.3	0.7	2.3	0.3	0.5	0.8	3.0	2.0
AT 39°C 10 TCD50	TER ML) a	9.4	7.4	7.9	7.9	9.2	8.5	7.7	8.7
REDUCTION IN TITER AT 39°C (LOG ₁₀ TCID ₅₀ /ML) ^b	MEAN PEAK TITER (LOG ₁₀ TCID ₅₀ /ML) ^a					· .	,		
		$rHPIV3 = \frac{3}{4} \left[N PlCD/V M F HN L S' S' \right]$	$r_{HPIV3\ IHNNP}^{3'}$ N EHNPINISPICON M F HN L	r_{HPIV3} IHN P.M. PICONEHNPING M F HN L	r_{HPIV3} 2HN N_{P} $\sim 10^{3}$ $\sim 10^{3$	r_{HPIV3} 2HN p_{rM} $ N P_{CDM}$ $ HN N N N N N N N N N N N N N $	** THPIV3 IHIN N-P 2HIN P-M WHINPING PICON HINPING M F HN L	HPIV3 IHN N-P2HN P-M HA HIN-L	V3 1HNN-P2HNP-M3918GUEN-L N KHNPIVIAPICONKHNPIVZ M F HN V///GU3918n1////

Fig. 11

DOVERDE DECEN

RPIV3 KANSA

ć

FORDED POSEEVED

LEADER— CENESTIAN OF RSV G OR F AS AN ADDITIONAL GENE UNIT IN A PROMOTER-PROXIMAL POSITION CENESTIAN
--

BAH PIV3-G1 LEADER -B/H PIV3-F1 LEADER

rig. 13

Fig. 1.

LUENTE OF CHURCH

RECOMBINANT BOVINE/HUMAN PIV3.1 EXPRESSING HPIV2 F AND HN FROM SUPERNUMERARY GENES BsiWI BsiWI BsiWI HMI HINI SgrAI BsiWI BsiWI BsiWI Not I SgrAI SgrAI Not I Not I Not I SgrAI SgrAI Not I SgrAI AscI Not I Asc I AscI Asc I Asc I Asc I Blp I #6: rB/HPIV3.1-2HN,2F #4: rB/HPIV3.1-2HN #5: rB/HPIV3.1-2F #3: rB/HPIV3.1 #2: rB/HPIV3 #1: rBPIV3

Fig. 15

TONORO" ROSELOO

Fig. 17

21/24

23/24

A. GENETIC STRUCTURES OF PIV3-2 CHIMERIC VIRUSES COMPARED WITH PIV3 PARENT AND PPIV3-1 rPIV3-2TMcp45 rPIV3-2CTcp45 $_{rPIV3-2} \parallel \mid N \mid \mid \mid \mid P/C/V \mid \mid \mid \mid$ (THEORETICAL, NOT RECOVERED) rPIV3-1 rPIV3-1cp45 (FROM PREVIOUS WORK: CONTROL VIRUS) PIV3 LEADER/TRAILER/GE-I-GS □ PIV3 ORF ☑ PIVI ORF PIV3 NON-CODING SEQUENCE PIV2 ORF **∆** cp45 MUTATIONS B. CHIMERIC PIV3-2 F AND HN CONSTRUCTS WITH TRANSMEMBRANE AND CYTOPLASMIC DOMAINS DERIVED FROM PIV3 F AND HN 494 *PIV3-PIV2FTM* PIV3 F TRANSMEMBRANE PIV3 F 5'-ntr + CYTOPLASMIC DOMAINS PIV3 F 3'-ntr ... caa gca ctg aaclasti late FAX PEXECPALATE Ata att att aca aac aaa taalleat ate tae aga . PIV3-PIV2HNTM 1 PIV3 HN TRANSMEMBRANE 487 PIV3 HN 5'-ntr 1+CYTOPLASMIC DOMAINS PIV3 HN 3'-ntr ttc aga ttc gag atg gag tac ... att agt tcc atc PA EAGLICTItca taa tta acc ata ECTODOMAIN OF PIV2 HN EXTRA NUCLEOTIDES C. CHIMERIC PIV3-2 F AND HN CONSTRUCTS WITH CYTOPLASMIC DOMAIN DERIVED FROM PIV3 F AND HN 517 PIV3 F *PIV3-PIV2FCT* CYTOPLASMIC 513 **-540** PIV3 F 5'-ntr DOMAIN PIV3 F 3'-ntr FACILITY ATC and tat tac ... ata anc ann tan cat atc tac aga caa oca cto aac#AHG/2AT ECTODOMAIN & TRANSMEMBRANE DOMAIN OF PIV2 F PIV3-PIV2HNCT 487 PIV3 HN CYTOPLASMIC DOMAIN PIV3 HN 5'-ntr PIV3 HN 3'-ntr ... tcc aaa ttc gaglatg gaa tac ... ctc act att aag leef sice AAItca taa tta acc ata .

ECTODOMAIN OF PIV2 HN

Fig. 21