Kapitel ADS:IV

IV. Datenstrukturen

- □ Record
- □ Linear List
- □ Linked List
- □ Stack
- □ Queue
- □ Priority Queue
- Dictionary
- □ Direct-address Table
- ☐ Hash Table
- Hash Function

ADS:IV-110 Datenstrukturen © POTTHAST 2018

Definition

Eine Hash Function (*Hashfunktion*)

$$h: U \to \{0, 1, \dots, m-1\}$$

bildet ein Universum U von Schlüsseln beliebigen Typs auf m natürliche Zahlen ab.

Eigenschaften:

- total: Jeder Schlüssel k aus U hat genau einen Funktionswert h(k) in $\{0, 1, \dots, m-1\}$.
- \square surjektiv: Für alle $y \in \{0, 1, \dots, m-1\}$ gibt es mindestens ein $k \in U$, so dass h(k) = y.

ADS:IV-111 Datenstrukturen © POTTHAST 2018

Definition

Eine Hash Function (*Hashfunktion*)

$$h: U \to \{0, 1, \dots, m-1\}$$

bildet ein Universum U von Schlüsseln beliebigen Typs auf m natürliche Zahlen ab.

Eigenschaften:

- \Box total: Jeder Schlüssel k aus U hat genau einen Funktionswert h(k) in $\{0, 1, \dots, m-1\}$.
- \Box surjektiv: Für alle $y \in \{0, 1, \dots, m-1\}$ gibt es mindestens ein $k \in U$, so dass h(k) = y.

Problemspezifikation

Problem: Hashing

Instanz: k. Ein Schlüssel aus U.

Lösung: i. Ein Wert aus $\{0, 1, \dots, m-1\}$, der k deterministisch zugewiesen wird.

Wunsch: Eine Funktionsvorschrift oder ein Algorithmus, der das Hashingproblem für alle $k \in U$ so löst, dass Anwendungsanforderungen erfüllt werden.

Anwendungen

1. Dictionary / Mengen

Ungeordnete Speicherung von Elementen unter einem eindeutigen Schlüssel bei Ausschluss von Duplikaten.

2. Ähnlichkeitssuche / Partitionierung

Unterteilung von Elementen in Äquivalenzklassen, bestehend aus ähnlichen Elementen.

3. Datenintegritätstest / Kryptographie

Sicherstellung der Echtheit einer Nachricht durch Abgleich mit einem Prüfwert.

ADS:IV-113 Datenstrukturen © POTTHAST 2018

Anwendungen

1. Dictionary / Mengen

Ungeordnete Speicherung von Elementen unter einem eindeutigen Schlüssel bei Ausschluss von Duplikaten.

2. Ähnlichkeitssuche / Partitionierung

Unterteilung von Elementen in Äquivalenzklassen, bestehend aus ähnlichen Elementen.

3. Datenintegritätstest / Kryptographie

Sicherstellung der Echtheit einer Nachricht durch Abgleich mit einem Prüfwert.

Anforderungen gemäß Anwendung

1. Simple Uniform Hashing und Normalisierung

Kollisionen sollen schlimmstenfalls zufällig gleichverteilt auftreten, unabhängig von der Verteilung der Schlüssel in U.

2. Ähnlichkeitssensitivität

Kollisionen sollen genau dann auftreten, wenn sich zwei Schlüssel aus U ähnlich sind.

3. Kollisionsresistenz und Unumkehrbarkeit

Kollisionen sollen mit an Sicherheit grenzender Wahrscheinlichkeit unmöglich sein. Aus Hashwerten sollen die ursprünglichen Schlüssel nicht rekonstruiert werden können.

ADS:IV-114 Datenstrukturen © POTTHAST 2018

Anwendungen

1. Dictionary / Mengen

Ungeordnete Speicherung von Elementen unter einem eindeutigen Schlüssel bei Ausschluss von Duplikaten.

2. Ähnlichkeitssuche / Partitionierung

Unterteilung von Elementen in Äquivalenzklassen, bestehend aus ähnlichen Elementen.

3. Datenintegritätstest / Kryptographie

Sicherstellung der Echtheit einer Nachricht durch Abgleich mit einem Prüfwert.

Anforderungen gemäß Anwendung

1. Simple Uniform Hashing und Normalisierung

Kollisionen sollen schlimmstenfalls zufällig gleichverteilt auftreten, unabhängig von der Verteilung der Schlüssel in U.

2. Ähnlichkeitssensitivität

Kollisionen sollen genau dann auftreten, wenn sich zwei Schlüssel aus U ähnlich sind.

3. Kollisionsresistenz und Unumkehrbarkeit

Kollisionen sollen mit an Sicherheit grenzender Wahrscheinlichkeit unmöglich sein. Aus Hashwerten sollen die ursprünglichen Schlüssel nicht rekonstruiert werden können.

ADS:IV-115 Datenstrukturen © POTTHAST 2018

Hash Tables

Problem: Hashing

Instanz: k. Ein Schlüssel aus U.

Lösung: *i*. Ein Wert aus $\{0, 1, ..., m-1\}$, der k deterministisch zugewiesen wird.

Wunsch: Eine Funktionsvorschrift oder ein Algorithmus, der das Hashingproblem

für alle $k \in U$ gemäß Simple Uniform Hashing löst.

ADS:IV-116 Datenstrukturen © POTTHAST 2018

Hash Tables

Problem: Hashing

Instanz: k. Ein Schlüssel aus U.

Lösung: *i*. Ein Wert aus $\{0, 1, ..., m-1\}$, der k deterministisch zugewiesen wird.

Wunsch: Eine Funktionsvorschrift oder ein Algorithmus, der das Hashingproblem

für alle $k \in U$ gemäß Simple Uniform Hashing löst.

Praktische Probleme:

- Das Universum der Schlüssel kann Schlüssel aller Datentypen enthalten.
- Die Schlüsselverteilung unbekannt.

ADS:IV-117 Datenstrukturen © POTTHAST 2018

Hash Tables

Problem: Hashing

Instanz: k. Ein Schlüssel aus U.

Lösung: *i*. Ein Wert aus $\{0, 1, ..., m-1\}$, der k deterministisch zugewiesen wird.

Wunsch: Eine Funktionsvorschrift oder ein Algorithmus, der das Hashingproblem für alle $k \in U$ gemäß Simple Uniform Hashing löst.

Praktische Probleme:

- Das Universum der Schlüssel kann Schlüssel aller Datentypen enthalten.
- □ Die Schlüsselverteilung unbekannt.

Heuristiken für Hashfunktionen:

- Divisionsrestmethode
- Multiplikative Methode
- Universelles Hashing

ADS:IV-118 Datenstrukturen © POTTHAST 2018

Vorverarbeitung

Das Universum U kann auf die natürlichen Zahlen $\mathbb N$ abgebildet werden:

$$h: \mathbf{N} \to \{0, 1, \dots, m-1\}$$

Die Abbildung ist abhängig vom Datentyp der Schlüssel in U.

ADS:IV-119 Datenstrukturen © POTTHAST 2018

Vorverarbeitung

Das Universum U kann auf die natürlichen Zahlen $\mathbb N$ abgebildet werden:

$$h: \mathbf{N} \to \{0, 1, \dots, m-1\}$$

Die Abbildung ist abhängig vom Datentyp der Schlüssel in U.

Beispiel:

- $lue{}$ Sei U die Menge aller Wörter und Schlüssel k= Turing aus U.
- □ Zeichenketten (Strings) werden als Arrays von Zeichen repräsentiert.
- □ Zeichen sind auf Basis einer Kodierungstabelle als natürliche Zahlen kodiert.
- Jedem Zeichen ist ein Codepunkt in der Tabelle zugeordnet.
- □ Eine einfache Kodierungstabelle ist ASCII: sie kodiert 128 Zeichen.
- Zeichenketten können als Zahl zur Basis 128 kodiert werden:

$$k = \underbrace{84}_{\text{T}} \cdot 128^5 + \underbrace{117}_{\text{U}} \cdot 128^4 + \underbrace{114}_{\text{r}} \cdot 128^3 + \underbrace{105}_{\text{i}} \cdot 128^2 + \underbrace{110}_{\text{n}} \cdot 128^1 + \underbrace{103}_{\text{g}} \cdot 128^0$$

ADS:IV-120 Datenstrukturen © POTTHAST 2018

Vorverarbeitung

Das Universum U kann auf die natürlichen Zahlen ${\bf N}$ abgebildet werden:

$$h: \mathbf{N} \to \{0, 1, \dots, m-1\}$$

Die Abbildung ist abhängig vom Datentyp der Schlüssel in U.

Beispiel:

- $lue{}$ Sei U die Menge aller Wörter und Schlüssel k= Turing aus U.
- □ Zeichenketten (Strings) werden als Arrays von Zeichen repräsentiert.
- □ Zeichen sind auf Basis einer Kodierungstabelle als natürliche Zahlen kodiert.
- Jedem Zeichen ist ein Codepunkt in der Tabelle zugeordnet.
- □ Eine einfache Kodierungstabelle ist ASCII: sie kodiert 128 Zeichen.
- □ Zeichenketten können als Zahl zur Basis 128 kodiert werden:

$$k = 2.917.865.781.095_{10}$$

ADS:IV-121 Datenstrukturen © POTTHAST 2018

Bemerkungen:

□ ASCII steht für "American Standard Code for Information Interchange" und stellt einen frühen Standard zum Austausch von kodiertem Texten dar.

ADS:IV-122 Datenstrukturen © POTTHAST 2018

Divisionsrestmethode

Hashfunktion:

$$h(k) = k \bmod m,$$

wobei k ein Schlüssel aus U und m die Kapazität der Hash Table ist.

Beispiel: Für m = 12 und k = 100 ist h(k) = 4.

Divisionsrestmethode

Hashfunktion:

$$h(k) = k \bmod m,$$

wobei k ein Schlüssel aus U und m die Kapazität der Hash Table ist.

Beispiel: Für m = 12 und k = 100 ist h(k) = 4.

Eigenschaften:

- Sehr schnelle Berechnung; nur eine CPU-Instruktion.
- \Box Die Kapazität m der Hash Table beeinflusst die Kollisionswahrscheinlichkeit:
 - Wenn m gerade ist, dann entspricht die Parität von h(k) der von k.
 - Wenn $m=2^p$, dann entspricht h(k) nur den p niedrigstwertigen Bits.
 - Wenn $m = 2^p 1$ (Mersenne-Zahl) und k ein String zur Basis 2^p , dann haben alle Permutationen einer Zeichenkette denselben Hashwert h(k).
 - → Wenn m prim und stark verschieden von einer Zweierpotenz ist, verteilen sich die Hashwerte nahezu gleichmäßig.

ADS:IV-124 Datenstrukturen © POTTHAST 2018

Bemerkungen:

Der Modulo-Operator \mod (auch %) ist eine Kurzform um die Division mit Rest auszudrücken. Für alle zwei ganzen Zahlen k und $m \neq 0$ gibt es zwei eindeutige ganze Zahlen a und b, so dass k = ma + b, wobei $0 \leq b < |m|$ für den Rest steht, der verbleibt, wenn man k durch m teilt.

ADS:IV-125 Datenstrukturen © POTTHAST 2018

Multiplikative Methode

Hashfunktion:

$$h(k) = \lfloor m(kc \mod 1) \rfloor = \lfloor m(kc - \lfloor kc \rfloor) \rfloor,$$

wobei k ein Schlüssel aus U, m die Kapazität der Hash Table, und 0 < c < 1 eine Konstante ist.

ADS:IV-126 Datenstrukturen © POTTHAST 2018

Multiplikative Methode

Hashfunktion:

$$h(k) = \lfloor m(kc \mod 1) \rfloor = \lfloor m(kc - \lfloor kc \rfloor) \rfloor,$$

wobei k ein Schlüssel aus U, m die Kapazität der Hash Table, und 0 < c < 1 eine Konstante ist.

Eigenschaften:

- $lue{}$ Die Parameter m und c können unabhängig voneinander gewählt werden.
- □ Die Wahl von *m* ist unkritisch.
- □ Die Wahl von c beeinflusst die Kollisionswahrscheinlichkeit:
 - Wenn m eine Zweierpotenz und $c = s/2^w$, wobei $0 < s < 2^w$ bei Wortgröße w ist, wird die Implementierung vereinfacht.
 - Wenn $c = (\sqrt{5} 1)/2 = 0.6180339887...$ (Goldener Schnitt), verteilen sich die Hashwerte nahezu gleichmäßig.
 - → Wähle $c = s/2^w$ nahe zu $(\sqrt{5} 1)/2$ (z.B. 2654435769/2³² bei w = 32)

ADS:IV-127 Datenstrukturen © POTTHAST 2018

Multiplikative Methode

Hashfunktion:

$$h(k) = \lfloor m(kc \mod 1) \rfloor = \lfloor m(kc - \lfloor kc \rfloor) \rfloor,$$

wobei k ein Schlüssel aus U, m die Kapazität der Hash Table, und 0 < c < 1 eine Konstante ist.

Implementierung im Dualsystem für $m = 2^p$:

ADS:IV-128 Datenstrukturen © POTTHAST 2018

Multiplikative Methode

Hashfunktion:

$$h(k) = \lfloor m(kc \mod 1) \rfloor = \lfloor m(kc - \lfloor kc \rfloor) \rfloor,$$

wobei k ein Schlüssel aus U, m die Kapazität der Hash Table, und 0 < c < 1 eine Konstante ist.

Beispiel:

- \square Sei $m=2^3=8$, p=3, w=5, und k=21.
 - Es muss $0 < s < 2^5$ gelten; wähle s = 13, so dass c = 13/32.
- □ Formelbasiert:

 $ks = 21 \cdot 13 = 273 = 8 \cdot 2^5 + 17$

$$kc = 21 \cdot \frac{13}{32} = \frac{273}{32} = 8\frac{17}{32}$$

 $\Rightarrow kc \mod 1 = \frac{17}{32}$
 $\Rightarrow m(kc \mod 1) = 8\frac{17}{32} = \frac{17}{4} = 4\frac{1}{4}$
 $\Rightarrow |m(kc \mod 1)| = 4$

$$\Rightarrow r_0 = 10001_2$$

 $\Rightarrow h(k) = 100_2$

 $\Rightarrow r_1 = 8, r_0 = 17$

$$\Rightarrow h(k) = 4$$

$$\Rightarrow h(k) = 4$$

Universal Hashing

Gedankenspiel:

- □ Sei *h* die für eine Hash-Table-Implementierung festgelegte Hashfunktion.
- \Box Dann kann ein böswilliger Nutzer (Adversary [Gegenspieler]) n Schlüssel aus U wählen, so dass alle ihre mit h berechneten Hashwerte kollidieren.
- → Die Average-Case-Laufzeit kann nicht garantiert werden.

ADS:IV-130 Datenstrukturen © POTTHAST 2018

Universal Hashing

Gedankenspiel:

- □ Sei h die für eine Hash-Table-Implementierung festgelegte Hashfunktion.
- Dann kann ein böswilliger Nutzer (Adversary [Gegenspieler]) n Schlüssel aus U wählen, so dass alle ihre mit h berechneten Hashwerte kollidieren.
- Die Average-Case-Laufzeit kann nicht garantiert werden.

Gegenmaßnahme: Randomisierung

- f Wähle zufällig eine andere Hashfunktion h vor jeder Nutzung.
- Solange der Adversary nicht vorhersagen kann, welche Funktion gewählt wird, kann die Average-Case-Laufzeit erwartet werden.

ADS:IV-131 Datenstrukturen © POTTHAST 2018

Universal Hashing

Gedankenspiel:

- □ Sei h die für eine Hash-Table-Implementierung festgelegte Hashfunktion.
- \Box Dann kann ein böswilliger Nutzer (Adversary [Gegenspieler]) n Schlüssel aus U wählen, so dass alle ihre mit h berechneten Hashwerte kollidieren.
- Die Average-Case-Laufzeit kann nicht garantiert werden.

Gegenmaßnahme: Randomisierung

- \Box Wähle zufällig eine andere Hashfunktion h vor jeder Nutzung.
- Solange der Adversary nicht vorhersagen kann, welche Funktion gewählt wird, kann die Average-Case-Laufzeit erwartet werden.

Probleme:

- □ Anzahl Funktionen von U nach m: $m^{|U|} \rightarrow |U| \lg m$ bits pro Funktion.
- □ Zahlreiche mögliche Hashfunktionen haben nachteilige Eigenschaften.
- → Konstruiere eine handhabbar große Familie von guten Hashfunktionen.

ADS:IV-132 Datenstrukturen © POTTHAST 2018

Universal Hashing: Definition

Sei H eine endliche Familie (Menge) von Hashfunktionen, die U auf $\{0,1,\ldots,m-1\}$ abbilden. Wir nennen H c-universell, wenn für alle Schlüssel $k,l\in U$ die Zahl der Hashfunktionen $h\in H$, so dass h(k)=h(l), höchstens $c/m\cdot |H|$ ist.

 \rightarrow Für ein zufälliges h aus H beträgt die Wahrscheinlichkeit c/m, dass h(k) = h(l).

ADS:IV-133 Datenstrukturen © POTTHAST 2018

Universal Hashing: Definition

- Sei H eine endliche Familie (Menge) von Hashfunktionen, die U auf $\{0,1,\ldots,m-1\}$ abbilden. Wir nennen H c-universell, wenn für alle Schlüssel $k,l\in U$ die Zahl der Hashfunktionen $h\in H$, so dass h(k)=h(l), höchstens $c/m\cdot |H|$ ist.
- \Rightarrow Für ein zufälliges h aus H beträgt die Wahrscheinlichkeit c/m, dass h(k) = h(l).

Satz 3 (Average-Case-Laufzeit III)

In einer Hash Table, in der Kollisionen mit Chaining behandelt und eine zufällige Hashfunktion aus einer Familie c-universeller Hashfunktionen verwendet wird, ist die Average-Case-Laufzeit bei erfolgreicher und erfolgloser Suche in $\Theta(1+c\alpha)$.

Beweis: Analog zu Average-Case-Laufzeit I und II.

Der Hauptunterschied ist, dass der Analyse hier ein anderes Zufallsexperiment zugrundeliegt, nämlich das, eine Funktion h aus H zufällig zu wählen.

ADS:IV-134 Datenstrukturen © POTTHAST 2018

Universal Hashing: Hashfunktion I

Sei Hashfunktion h_a definiert als

$$h_{\mathbf{a}}(\mathbf{k}) = \mathbf{a}^T \mathbf{k} \bmod p,$$

wobei

- $\mathbf{a} = (a_1, \dots, a_s)$ ein Vektor von Zufallszahlen mit $0 \le a_i < p$,
- \Box **k** = (k_1, \ldots, k_s) ein Vektor von Bestandteilen von Schlüssel k,
- \Box a^T die Transposition von a,
- $\mathbf{a}^T \mathbf{k} = \sum_{i=1}^s a_i k_i$ das Skalarprodukt der beiden Vektoren,
- \Box und p eine Primzahl ist.

ADS:IV-135 Datenstrukturen © POTTHAST 2018

Universal Hashing: Hashfunktion I

Sei Hashfunktion h_a definiert als

$$h_{\mathbf{a}}(\mathbf{k}) = \mathbf{a}^T \mathbf{k} \bmod p,$$

wobei

- $\mathbf{a} = (a_1, \dots, a_s)$ ein Vektor von Zufallszahlen mit $0 \le a_i < p$,
- \Box $\mathbf{k} = (k_1, \dots, k_s)$ ein Vektor von Bestandteilen von Schlüssel k,
- \Box a^T die Transposition von a,
- $\mathbf{a}^T \mathbf{k} = \sum_{i=1}^s a_i k_i$ das Skalarprodukt der beiden Vektoren,
- \Box und p eine Primzahl ist.

Beispiel:

w bits (Wortgröße)

K

ADS:IV-136 Datenstrukturen © POTTHAST 2018

Universal Hashing: Hashfunktion I

Sei Hashfunktion h_a definiert als

$$h_{\mathbf{a}}(\mathbf{k}) = \mathbf{a}^T \mathbf{k} \bmod p,$$

wobei

- $\mathbf{a} = (a_1, \dots, a_s)$ ein Vektor von Zufallszahlen mit $0 \le a_i < p$,
- \square $\mathbf{k} = (k_1, \dots, k_s)$ ein Vektor von Bestandteilen von Schlüssel k,
- \Box a^T die Transposition von a,
- $\mathbf{a}^T \mathbf{k} = \sum_{i=1}^s a_i k_i$ das Skalarprodukt der beiden Vektoren,
- \Box und p eine Primzahl ist.

Beispiel:

w bits (Wortgröße)

ADS:IV-137 Datenstrukturen © POTTHAST 2018

Universal Hashing: Hashfunktion I

Sei Hashfunktion h_a definiert als

$$h_{\mathbf{a}}(\mathbf{k}) = \mathbf{a}^T \mathbf{k} \bmod p,$$

wobei

- $\mathbf{a} = (a_1, \dots, a_s)$ ein Vektor von Zufallszahlen mit $0 \le a_i < p$,
- $\mathbf{k} = (k_1, \dots, k_s)$ ein Vektor von Bestandteilen von Schlüssel k,
- \Box a^T die Transposition von a,
- $\mathbf{a}^T \mathbf{k} = \sum_{i=1}^s a_i k_i$ das Skalarprodukt der beiden Vektoren,
- \Box und p eine Primzahl ist.

Beispiel:

<i>k</i> ₁	<i>k</i> ₂		k _s	
•	•		•	
a ₁	<i>a</i> ₂		a_s	
=	=		=	
<i>X</i> ₁	<i>X</i> ₂	•••	$X_{\mathcal{S}}$	= h(k)

Universal Hashing: Hashfunktion I

Sei Hashfunktion h_a definiert als

$$h_{\mathbf{a}}(\mathbf{k}) = \mathbf{a}^T \mathbf{k} \bmod p,$$

wobei

- $\mathbf{a} = (a_1, \dots, a_s)$ ein Vektor von Zufallszahlen mit $0 \le a_i < p$,
- \Box **k** = (k_1, \ldots, k_s) ein Vektor von Bestandteilen von Schlüssel k,
- \Box a^T die Transposition von a,
- \Box $\mathbf{a}^T\mathbf{k} = \sum_{i=1}^s a_i k_i$ das Skalarprodukt der beiden Vektoren,
- \Box und p eine Primzahl ist.

Satz 4 (Universelle Hashfunktionen I)

Die Familie von Hashfunktionen

$$H_1 = \{h_{\mathbf{a}} \mid \mathbf{a} \in \{0, 1, \dots, p-1\}^s\}$$

ist 1-universell, wenn p eine Primzahl ist.

Beweisidee: Abschätzung der Wahrscheinlichkeit, dass $h(\mathbf{k}_1) = h(\mathbf{k}_2)$.

Universal Hashing: Hashfunktion II

Sei Hashfunktion $h_{a,b}$ definiert als

$$h_{a,b}(k) = ((ak+b) \bmod p) \bmod m,$$

wobei

- $a \in \{1, 2, \dots, p-1\} = \mathbf{Z}_p^*,$
- $b \in \{0, 1, \dots, p-1\} = \mathbf{Z}_p,$
- \Box p eine Primzahl,

Universal Hashing: Hashfunktion II

Sei Hashfunktion $h_{a,b}$ definiert als

$$h_{a,b}(k) = ((ak+b) \bmod p) \bmod m,$$

wobei

- $a \in \{1, 2, \dots, p-1\} = \mathbf{Z}_p^*,$
- $b \in \{0, 1, \dots, p-1\} = \mathbf{Z}_p,$
- \Box *p* eine Primzahl,

Satz 5 (Universelle Hashfunktionen II)

Die Familie von Hashfunktionen

$$H_2 = \{h_{a,b} \mid a \in \mathbf{Z}_p^* \text{ and } b \in \mathbf{Z}_p\}$$

ist 1-universell, wenn p eine Primzahl ist.

Beweisidee: Abschätzung der Wahrscheinlichkeit, dass $h(k_1) = h(k_2)$.

Bemerkungen:

Für jede Zahl $\alpha > 1$ und jede nicht zu kleine natürliche Zahl m enthält das Intervall $[m,\alpha m]$ etwa $(\alpha-1)m/\ln m$ Primzahlen. Es genügt also für häufig genutzte Intervalle, Tabellen mit eine Reihe von Primzahlen bereitzustellen. Auch die Suche nach einer Primzahl in einem Intervall ist möglich.

ADS:IV-142 Datenstrukturen © POTTHAST 2018

Perfect Hashing

Voraussetzung:

- \Box Die Menge $K \subseteq U$ tatsächlich benötigter Schlüssel ist vollständig bekannt.
- K ist statisch; es werden weder Elemente hinzugefügt noch gelöscht.
- Wunsch: Vermeidung von Hashkollisionen.

ADS:IV-143 Datenstrukturen © POTTHAST 2018

Perfect Hashing

Voraussetzung:

- \Box Die Menge $K \subseteq U$ tatsächlich benötigter Schlüssel ist vollständig bekannt.
- □ *K* ist statisch; es werden weder Elemente hinzugefügt noch gelöscht.
- Wunsch: Vermeidung von Hashkollisionen.

Konstruktion

- □ Sei *H* eine Familie universeller Hashfunktionen.
- □ Wenn der *i*-te Slot $n_i > 0$ Elemente erhält: Verteilung der n_i Schlüssel auf $m_i = n_i^2$ Slots mit zufälligem $h_i \in H$.
- ullet Wiederhole den Vorgang solange, bis keine Kollisionen vorliegen und der Gesamtplatz <4n ist.

ADS:IV-144 Datenstrukturen © POTTHAST 2018

Perfect Hashing

Beispiel für $K = \{10, 22, 37, 40, 52, 60, 70, 72, 75\}$ und $h_{3,42}$, p = 101 und m = 9:

Wenn $m_j = n_j = 1$ genügt die Hashfunktion mit a = b = 0

ADS:IV-145 Datenstrukturen © POTTHAST 2018

Perfect Hashing: Analyse

Satz 6 (Perfekte Hashfunktionen I)

Wenn n Schlüssel mit einer Hashfunktion h, die zufällig aus einer Familie universeller Hashfunktionen gezogen wurde, auf $m=n^2$ Slots verteilt werden, ist die Wahrscheinlichkeit für eine Hashkollision kleiner als 1/2.

Beweisidee: Abschätzung der erwarteten Zahl von Kollisionen für n Schlüssel unter universellem Hashing bei n^2 möglichen Slots.

ADS:IV-146 Datenstrukturen © POTTHAST 2018

Perfect Hashing: Analyse

Satz 6 (Perfekte Hashfunktionen I)

Wenn n Schlüssel mit einer Hashfunktion h, die zufällig aus einer Familie universeller Hashfunktionen gezogen wurde, auf $m=n^2$ Slots verteilt werden, ist die Wahrscheinlichkeit für eine Hashkollision kleiner als 1/2.

Beweisidee: Abschätzung der erwarteten Zahl von Kollisionen für n Schlüssel unter universellem Hashing bei n^2 möglichen Slots.

Satz 7 (Perfekte Hashfunktionen II)

Wenn n Schlüssel mit einer Hashfunktion h, die zufällig aus einer Familie universeller Hashfunktionen gezogen wurde, auf m=n Slots verteilt werden, und die Größe der sekundären Hash Tables $m_i=n_i^2$ für $i=0,1,\ldots,m-1$, dann ist die Wahrscheinlichkeit, dass der kumulierte Platzverbrauch der sekundären Hash Tables 4n übersteigt, kleiner als 1/2.

Beweisidee: Abschätzung der erwarteten Summe der benötigten Kapazitäten n_j^2 für alle $j=0,1,\ldots,m-1$ benötigten sekundären Hash Tables.

ADS:IV-147 Datenstrukturen © POTTHAST 2018