Table of Contents

	1
Part 1 A	1
Part 1 B	2
Part 1 Conclusions	
Part 2 A	5
Part 2 B	1
Part 2 C	
Part 2 D	6
Assignment 2 Finite Difference Method	
Chantel Lepage 100999893	
close all	
clear all	

Part 1 A

```
L=150;
W = 100;
G=sparse(L*W,L*W);
V=zeros(L*W,1);
for i=1:L
    for j=1:W
        n=j+(i-1)*W;
        nxm = j+(i-2)*W;
        nxp = j+(i)*W;
        nym = (j-1)+(i-1)*W;
        nyp = (j+1)+(i-1)*W;
        if i==1 %left edge
            G(n,n)=1;
            V(n)=1;
        elseif i==L %right edge
            G(n,n)=1;
            V(n)=1;
        elseif j==W %top edge
            G(n,n) = -3;
        elseif j==1 %bottom edge
            G(n,n) = -3;
        else %inside parts
            G(n,n) = -4;
            G(n,nxm) = 1;
            G(n, nxp) = 1;
            G(n,nym) = 1;
            G(n,nyp) = 1;
        end
```

```
end
end
phiVec = G\setminus V;
phi=zeros(L,W);
for i=1:L
    for j=1:W
        n=j+(i-1)*W;
        phi(i,j)= phiVec(n);
    end
end
figure(1)
surf(phi)
colorbar
xlabel('x');
ylabel('y');
zlabel('V(x,y)');
title('V(x,y)');
```


Part 1 B

L=150; W=L*2/3;

```
G=sparse(L*W,L*W);
V=zeros(L*W,1);
for i=1:L
    for j=1:W
        n=j+(i-1)*W;
        nxm = j+(i-2)*W;
        nxp = j+(i)*W;
        nym = (j-1)+(i-1)*W;
        nyp = (j+1)+(i-1)*W;
        if i==1 %left edge
            G(n,n)=1;
            V(n)=1;
        elseif i==L %right edge
            G(n,n)=1;
            V(n)=0;
        elseif j==W %top edge
            G(n,n) = -3;
            G(n,nxp)=1;
            G(n,nxm)=1;
            G(n,nym)=1;
        elseif j==1 %bottom edge
            G(n,n) = -3;
            G(n, nxp) = 1;
            G(n,nyp) = 1;
            G(n,nxm) = 1;
        else
               %inside parts
            G(n,n) = -4;
            G(n,nxm) = 1;
            G(n, nxp) = 1;
            G(n,nym) = 1;
            G(n,nyp) = 1;
        end
    end
end
for i=1:L
    for j=1:W
        n=j+(i-1)*W;
        phi(i,j)= phiVec(n);
    end
end
figure(2)
surf(phi)
pause(0.01)
xlabel('x');
ylabel('y');
zlabel('V(x,y)');
title('V(x,y)');
[x,y] = meshgrid(-75:2:75,0:2:100);
a = 100;
```

```
b=75;
V=0;
for k=1:100 %using k instead of n to aviod confusion
    if rem(k,2)==1
        V=V+(4/pi)*(cosh(k*pi*x/a).*sin(k*pi*y/a)) ./ (k*cosh(k*pi*b/a));
    figure(3)
        surf(y,x,V)
        title('Surface plot of analytical solution')
        pause(0.01)
    end
end
```


Part 1 Conclusions

For part a the linear output shows us that the voltage changes linearly in x and constant in y. These results make sense as the conduction was distributed evenly in this example. With the numerical solutions the advatage with it is that it runs very quickly; however, it can take up a lot of space due to the sizes of matrices that are being used. With analytical solutions it does not require large amounts of space; however, they can take more time to run.

Part 2 A

```
L=150;

W=100;

G=sparse(L*W,L*W);

V=zeros(L*W,1);

sigmaOut=1;

sigmaIn=1e-2;

midX = L/2;

midY = W/2;

boxL = L/4;

boxW = W*2/3;

leftEdge = midX - boxL/2;

rightEdge = midX + boxL/2;
```

```
topEdge = midY + boxW/2;
bottomEdge = midY - boxW/2;
for i=1:L
    for j=1:W
        n=j+(i-1)*W;
        nxm = j+(i-2)*W;
        nxp = j+(i)*W;
        nym = (j-1) + (i-1)*W;
        nyp = (j+1)+(i-1)*W;
          if i == 1
            G(n,n) = 1;
            V(n) = 1;
            sigmaMap(i,j) = sigmaOut;
        elseif i == L
            G(n,n) = 1;
            V(n) = 0;
            sigmaMap(i,j) = sigmaOut;
        elseif (j == W)
            G(n,n) = -3;
            if(i>leftEdge && i<rightEdge)</pre>
                G(n,nxm) = sigmaIn;
                G(n,nxp) = sigmaIn;
                G(n,nym) = sigmaIn;
                 sigmaMap(i,j) = sigmaIn;
            else
                G(n,nxm) = sigmaOut;
                G(n, nxp) = sigmaOut;
                G(n,nym) = sigmaOut;
                 sigmaMap(i,j) = sigmaOut;
            end
        elseif (j == 1)
            G(n,n) = -3;
            if(i>leftEdge && i<rightEdge)</pre>
                G(n,nxm) = sigmaIn;
                G(n,nxp) = sigmaIn;
                G(n,nyp) = sigmaIn;
                 sigmaMap(i,j) = sigmaIn;
            else
                G(n,nxm) = sigmaOut;
                G(n,nxp) = sigmaOut;
                G(n,nyp) = sigmaOut;
                 sigmaMap(i,j) = sigmaOut;
            end
        else
            G(n,n) = -4;
            if( (j>topEdge || j<bottomEdge) && i>leftEdge &&
 i<rightEdge)</pre>
                G(n,nxp) = sigmaIn;
                G(n,nxm) = sigmaIn;
                G(n,nyp) = sigmaIn;
                G(n,nym) = sigmaIn;
```

```
sigmaMap(i,j) = sigmaIn;
            else
                G(n,nxp) = sigmaOut;
                G(n,nxm) = sigmaOut;
                G(n,nyp) = sigmaOut;
                G(n,nym) = sigmaOut;
                sigmaMap(i,j) = sigmaOut;
            end
        end
    end
end
phiVec = G\V;
phi=zeros(L,W);
for i=1:L
    for j=1:W
        n=j+(i-1)*W;
        phi(i,j)= phiVec(n);
    end
end
[Ey,Ex] = gradient(phi);
E = gradient(phi);
J = sigmaMap.* E;
figure(4)
surf(sigmaMap)
xlabel('x');
ylabel('y');
zlabel('V(x,y)')
title('Sigma Charge Density Plot');
figure(5)
surf(phi)
xlabel('x');
ylabel('y');
zlabel('V(x,y)')
title('Voltage Plot');
figure(6)
surf(Ex)
xlabel('x');
ylabel('y');
zlabel('V(x,y)')
title('Electric Field Plot for x');
figure(7)
surf(Ey)
xlabel('x');
ylabel('y');
zlabel('V(x,y)')
title('Electric Field Plot for y');
```

```
figure(8)
surf(J)
xlabel('x');
ylabel('y');
zlabel('V(x,y)')
title('Current Density');
```


Part 2 B

```
I = zeros(1,10);
for k =1:10
   L = 30;
   W = 20;
   G = sparse(L*W,L*W);
   V= zeros(L*W,1);
   scale=k;
   scaleA = 1/scale;
   scaleB = scaleA^2;
    scaleL = L*scale;
    scaleW = W*scale;
    sigmaMap=zeros(scaleL,scaleW);
    sigmaOut = 1;
    sigmaIn = 1e-2;
   midX = L/2;
   midY = W/2;
   boxL = L/4;
   boxW = W*2/3;
   leftEdge = midX - boxL/2;
   rightEdge = midX + boxL/2;
    topEdge = midY + boxW/2;
   bottomEdge = midY - boxW/2;
   for i = 1:scaleL
        for j = 1:scaleW
            n = j + (i-1)*scaleW;
            nxm = j+(i-2)*scaleW;
            nxp = j+i*scaleW;
            nyp = j+1+ (i-1)*scaleW;
            nym = j-1+ (i-1)*scaleW;
            if i == 1
                G(n,n) = 1/scaleB;
                V(n) = 1;
                sigmaMap(i,j) = sigmaOut;
            elseif i == scaleL
                G(n,n) = 1/scaleB;
                V(n) = 0;
                sigmaMap(i,j) = sigmaOut;
            elseif (j == scaleW)
                G(n,n) = -3/scaleB;
                if(i/scale>leftEdge && i/scale<rightEdge)</pre>
                    G(n,nxm) = sigmaIn/scaleB;
                    G(n,nxp) = sigmaIn/scaleB;
                    G(n,nym) = sigmaIn/scaleB;
```

```
sigmaMap(i,j) = sigmaIn;
                else
                    G(n,nxm) = sigmaOut/scaleB;
                    G(n, nxp) = sigmaOut/scaleB;
                    G(n,nym) = sigmaOut/scaleB;
                     sigmaMap(i,j) = sigmaOut;
                end
            elseif (j == 1)
                G(n,n) = -3/scaleB;
                if(i/scale>leftEdge && i/scale<rightEdge)</pre>
                    G(n,nxm) = sigmaIn/scaleB;
                    G(n,nxp) = sigmaIn/scaleB;
                    G(n,nyp) = sigmaIn/scaleB;
                    sigmaMap(i,j) = sigmaIn;
                else
                    G(n,nxm) = sigmaOut/scaleB;
                    G(n,nxp) = sigmaOut/scaleB;
                    G(n,nyp) = sigmaOut/scaleB;
                     sigmaMap(i,j) = sigmaOut;
                end
            else
                G(n,n) = -4/scaleB;
                if( (j/scale>topEdge | | j/scale<bottomEdge) && i/</pre>
scale>leftEdge && i/scale<rightEdge)</pre>
                    G(n,nxp) = sigmaIn/scaleB;
                    G(n,nxm) = sigmaIn/scaleB;
                    G(n,nyp) = sigmaIn/scaleB;
                    G(n,nym) = sigmaIn/scaleB;
                    sigmaMap(i,j) = sigmaIn;
                else
                    G(n,nxp) = sigmaOut/scaleB;
                    G(n,nxm) = sigmaOut/scaleB;
                    G(n,nyp) = sigmaOut/scaleB;
                    G(n,nym) = sigmaOut/scaleB;
                     sigmaMap(i,j) = sigmaOut;
                end
            end
        end
    end
   phiVec = G\V;
   phi=zeros(scaleL,scaleW);
    for i=1:scaleL
        for j=1:scaleW
            n=j+(i-1)*scaleW;
            phi(i,j)= phiVec(n);
        end
    end
    [Ey,Ex] = gradient(phi);
    E = gradient(phi);
   J = sigmaMap.* E;
```

```
region = L*W;
    I(k) = (sum(sum(J))/(scaleL*scaleW))/region;
end

x = linspace(1,10,10);

figure(9)
plot(x,I);
title('Mesh Density')
xlabel('x)')
ylabel('y')
```


Part 2 C

```
I = zeros(1,10);
sigmaMap = zeros(L,W);

for k =1:10
    bottle=k;
    L=150;
    W=100;
    G=sparse(L*W,L*W);
    V=zeros(L*W,1);
```

```
sigmaOut=1;
sigmaIn=1e-2;
midX = L/2;
midY = W/2;
boxW = W*2/3;
spaceW = W - boxW;
boxL = L/4;
boxW = spaceW/bottle;
leftEdge = midX - boxL/2;
rightEdge = midX + boxL/2;
topEdge = midY + boxW/2;
bottomEdge = midY - boxW/2;
for i=1:L
    for j=1:W
        n=j+(i-1)*W;
        nxm = j+(i-2)*W;
        nxp = j+(i)*W;
        nym = (j-1)+(i-1)*W;
        nyp = (j+1)+(i-1)*W;
          if i == 1
            G(n,n) = 1;
            V(n) = 1;
            sigmaMap(i,j) = sigmaOut;
        elseif i == L
            G(n,n) = 1;
            V(n) = 0;
            sigmaMap(i,j) = sigmaOut;
        elseif (j == W)
            G(n,n) = -3;
            if(i>leftEdge && i<rightEdge)</pre>
                G(n,nxm) = sigmaIn;
                G(n, nxp) = sigmaIn;
                G(n,nym) = sigmaIn;
                sigmaMap(i,j) = sigmaIn;
            else
                G(n,nxm) = sigmaOut;
                G(n,nxp) = sigmaOut;
                G(n,nym) = sigmaOut;
                sigmaMap(i,j) = sigmaOut;
            end
        elseif (j == 1)
            G(n,n) = -3;
            if(i>leftEdge && i<rightEdge)</pre>
                G(n,nxm) = sigmaIn;
                G(n,nxp) = sigmaIn;
                G(n,nyp) = sigmaIn;
                sigmaMap(i,j) = sigmaIn;
```

```
else
                     G(n,nxm) = sigmaOut;
                     G(n,nxp) = sigmaOut;
                     G(n,nyp) = sigmaOut;
                     sigmaMap(i,j) = sigmaOut;
                 end
            else
                 G(n,n) = -4;
                 if( (j>topEdge || j<bottomEdge) && i>leftEdge &&
 i<rightEdge)</pre>
                     G(n,nxp) = sigmaIn;
                     G(n,nxm) = sigmaIn;
                     G(n,nyp) = sigmaIn;
                     G(n,nym) = sigmaIn;
                     sigmaMap(i,j) = sigmaIn;
                 else
                     G(n,nxp) = sigmaOut;
                     G(n,nxm) = sigmaOut;
                     G(n,nyp) = sigmaOut;
                     G(n,nym) = sigmaOut;
                     sigmaMap(i,j) = sigmaOut;
                 end
            end
        end
    end
    phiVec = G\backslash V;
    phi=zeros(L,W);
    for i=1:L
        for j=1:W
            n=j+(i-1)*W;
            phi(i,j)= phiVec(n);
        end
    end
    [Ey,Ex] = gradient(phi);
    E = gradient(phi);
    J = sigmaMap.* E;
    region = L*W;
    I(k) = (sum(sum(J))/(L*W))/region;
end
x = 1./linspace(1,10,10);
figure(10)
plot(x,I);
title('Current for Bottl-neck')
xlabel('x)')
ylabel('y')
```


Part 2 D

```
I = zeros(1,10);
for k =1:10
    sigma(k) = 1/(k);
    L=150;
    W = 100;
    G=sparse(L*W,L*W);
    V=zeros(L*W,1);
    sigmaOut=1;
    sigmaIn=sigma(k);
    midX = L/2;
    midY = W/2;
    boxL = L/4;
    boxW = W*2/3;
    leftEdge = midX - boxL/2;
    rightEdge = midX + boxL/2;
    topEdge = midY + boxW/2;
    bottomEdge = midY - boxW/2;
```

```
for i=1:L
       for j=1:W
           n=j+(i-1)*W;
           nxm = j+(i-2)*W;
           nxp = j+(i)*W;
           nym = (j-1) + (i-1)*W;
           nyp = (j+1)+(i-1)*W;
             if i == 1
               G(n,n) = 1;
               V(n) = 1;
               sigmaMap(i,j) = sigmaOut;
           elseif i == L
               G(n,n) = 1;
               V(n) = 0;
               sigmaMap(i,j) = sigmaOut;
           elseif (j == W)
               G(n,n) = -3;
               if(i>leftEdge && i<rightEdge)</pre>
                   G(n,nxm) = sigmaIn;
                   G(n, nxp) = sigmaIn;
                   G(n,nym) = sigmaIn;
                   sigmaMap(i,j) = sigmaIn;
               else
                   G(n,nxm) = sigmaOut;
                   G(n,nxp) = sigmaOut;
                   G(n,nym) = sigmaOut;
                    sigmaMap(i,j) = sigmaOut;
               end
           elseif (j == 1)
               G(n,n) = -3;
               if(i>leftEdge && i<rightEdge)</pre>
                   G(n,nxm) = sigmaIn;
                   G(n, nxp) = sigmaIn;
                   G(n,nyp) = sigmaIn;
                   sigmaMap(i,j) = sigmaIn;
               else
                   G(n,nxm) = sigmaOut;
                   G(n,nxp) = sigmaOut;
                   G(n,nyp) = sigmaOut;
                   sigmaMap(i,j) = sigmaOut;
               end
           else
               G(n,n) = -4;
               if( (j>topEdge | | j<bottomEdge) && i>leftEdge &&
i<rightEdge)
                   G(n,nxp) = sigmaIn;
                   G(n,nxm) = sigmaIn;
                   G(n,nyp) = sigmaIn;
                   G(n,nym) = sigmaIn;
                   sigmaMap(i,j) = sigmaIn;
                   G(n,nxp) = sigmaOut;
                   G(n,nxm) = sigmaOut;
```

```
G(n,nyp) = sigmaOut;
                     G(n,nym) = sigmaOut;
                     sigmaMap(i,j) = sigmaOut;
                 end
            end
        end
    end
    phiVec = G\backslash V;
    phi=zeros(L,W);
    for i=1:L
        for j=1:W
            n=j+(i-1)*W;
            phi(i,j)= phiVec(n);
        end
    end
    [Ey,Ex] = gradient(phi);
    E = gradient(phi);
    J = -sigmaMap.* E;
    region = L*W;
    I(k) = (sum(sum(J))/(L*W))/region;
end
figure (11)
   plot(sigma,I);
    title('Sigma Charge Density')
    xlabel('x)')
    ylabel('y')
```


Published with MATLAB® R2016a