

Möbius 反演的若干应用

	@September 27, 2022
• Туре	Topic discussion
: ≡ Topic	Combinatorics
Port time	@September 27, 2022
≡ P.S.	

偏序集

数论中的 Möbius 反演公式

基本公式

应用: Wedderburn 小定理

不可约首 1 多项式计数

图论应用 (未完待续)

偏序集

Definition 1.1 Poset is defined as the pair of set P and binary partially ordered relation \leq such that

1. $a \leq a$ for all $a \in P$;

2.
$$(a \leq b) \land (b \leq a)$$
 implies $a = b$;

3.
$$(a \le b) \land (b \le c)$$
 implies $a = c$.

Example 1.2 (\mathbb{Z}, \leq) is a well-defined poset, but it has neither maximal element nor minimal element.

Definition 1.3 An interval is defined as $[x,z]:=\{y\in P\mid x\leq y\leq z\}.$

Remark Interval can be empty.

Definition 1.4 Let A be a ring with identity (e.g., \mathbb{R}). We call $I: P \times P \to A$ an **incidence algebra** if f(x,y)=0 unless $x\leq y$. In other words, I maps the set of intervals in P to A.

Example 1.5 For instance, we have the following incidence algebra:

- e(x, y) := value(x = y);
- $\zeta(x,y) := \text{value}(x \leq y)$.

Here the value is 1 (or resp. 0) whenever the statement is true (or resp. false).

Definition 1.6 I(P) is a \mathbb{Z} -algebra, the binary operation is defined as

1.
$$(f+g)(x,z) := f(x,z) + g(x,z);$$

2.
$$(f*g)(x,z) := \sum_{y \in [x,z]} f(x,y)g(y,z)$$
.

Remark e is the identity of I(P).

* is associative, since

$$egin{aligned} f*(g*h)(x,y),\ &=\sum_{w\in[x,z]}\sum_{z\in[w,y]}f(x,w)g(w,z)h(z,y),\ &=\sum_{x\leq w\leq z\leq y}f(x,w)g(w,z)h(z,y),\ &=(f*g)*h(x,y). \end{aligned}$$

2

Definiton 1.7 We call (P, \leq) locally finite whenever all intervals are finite.

Theorem 1.8 For any locally finite (P, \leq) , take $\forall \in f \in I(P)$, the following statements are equivalent:

- 1. f has a left inversion;
- 2. f has a right inversion;
- 3. $f(x,x) \neq 0$ for all $x \in P$.

▼ Proof of the theorem

- $oxed{1}$ implies $oxed{3}$, since $f_l^{-1}(x,x)f(x,x)=1$.
- $oxed{3}$ implies $oxed{1}$, since f_l^{-1} is uniquely defined by

$$\left\{egin{aligned} f_l^{-1}(x,x)f(x,x) &= 1, \ f_l^{-1}(x,y)f(y,y) &= -\sum_{z \in [x,y)} f_l^{-1}(x,z)f(z,y). \end{aligned}
ight.$$

Remark As $f_l^{-1} \ast f(x,y) = 0$ for distinct pair x,y,

$$\sum_{z \in [x,y]} f_l^{-1}(x,z) f(z,y) = 0.$$

Therefore,

$$f_l^{-1}(x,y)f(y,y) = -\sum_{z \in [x,y)} f_l^{-1}(x,z)f(z,y).$$

 $oxed{2}$ is equivalent to $oxed{3}$ since $(P,\leq)\cong (P,\geq)^{\mathrm{op}}.$

Theorem 1.9 The set of invertible incidence mappings forms a multiplicative group.

▼ Proof of the theorem

It is clear that the set of invertible incidence mappings forms a multiplicative semigroup with identity. Since each elements has a left inversion, we shall prove that f_l^{-1} is also the right inversion. This is due to

$$egin{aligned} ff_l^{-1} &= [(f_l^{-1})_l^{-1}f_l^{-1}][ff_l^{-1}] \ &= (f_l^{-1})_l^{-1}[f_l^{-1}f]f_l^{-1} \ &= [(f_l^{-1})_l^{-1}f_l^{-1}] \ &= e. \end{aligned}$$

Definition 1.9 Möbius function μ is defined as the inversion of ζ .

Theorem 1.10
$$\mu(x,x) = 1$$
, $\mu(x,z) = -\sum_{x < y < z} \mu(x,y)$ if $x < z$.

▼ Proof of the theorem

See Theorem 1.8.

Remark $\mu: P \times P \to \mathbb{Z}$.

Theorem 1.11 (Möbius inversion formula) Let (A,+) be an Abelian group, (P,\leq) be locally finite. Moreover, $\{z\in P\mid z\leq x\}$ is finite for all $x\in P$. Taking $f,g:P\to A$, we have the following equivalent statements.

- 1. $g(x) = \sum_{y \leq x} f(y)$ for all $x \in P$;
- 2. $f(x) = \sum_{y < x} g(y) \mu(y,x)$ for all $x \in P$.

▼ Proof of the theorem

1 implies 2, since

$$egin{aligned} \sum_{y \leq x} g(y) \mu(y,x) &= \sum_{z \leq y \leq x} f(z) \mu(y,x) \ (ext{fix } z, ext{sum } y) &= \sum_{z \leq x} f(z) \delta(z,x) \ &= f(x). \end{aligned}$$

Here \boldsymbol{x} is given.

2 implies 11, since

$$egin{aligned} \sum_{y \leq x} f(y) &= \sum_{z \leq y \leq x} g(z) \mu(z,y) \ (ext{fix } z, ext{ sum } y) &= \sum_{z \leq x} g(z) \delta(z,x) \ &= g(x). \end{aligned}$$

Here x is given.

数论中的 Möbius 反演公式

基本公式

Definition 2.1.1 正整数数关于整除构成偏序 $(\mathbb{Z}_{\geq 1}, \mid)$, $a \mid b$ 若且仅若 $b \in a\mathbb{Z}_{\geq 1}$.

Theorem 2.1.2 记 $\mathbb P$ 为素数集, 即 $\mathbb Z_{\geq 1}$ 中非 1 的极小元之集. 则存在双射 $\mathbb Z_{\geq 1}$ \to $\oplus_{\mathbb Z_{\geq 1}} \mathbb Z_{\geq 1}$.

▼ Proof of the theorem

记 p_k 为第 k 个素数, 则

$$(n_i)_{i\in\mathbb{Z}_i} oigoplus_{i\geq 1}p_i^{n_i-1},$$

为良定义的双射 ($\mathbb{Z}_{\geq 1}$ 为唯一因子分解环).

Theorem 2.1.3 $(\mathbb{Z}_{\geq 1}, |)$ 在 Theorem 2.1.2 的双射下同构于以下偏序 (P, \leq) , 其中

- $P=\oplus_{\mathbb{Z}_{\geq 1}}\mathbb{Z}_{\geq 1}$;
- $(a_i)_{i\geq 1} \leq (b_i)_{i\geq 1}$ 若且仅若 $a_i \leq b_i$ 对一切 $i\in\mathbb{N}$ 成立.

▼ Proof of the theorem

显然.

Theorem 2.1.4 对一族局部有限偏序集 $(P_i, \leq_i)_{i \in I}$,定义其直和上的偏序 $(x_i)_{i \in I} \leq (y_i)_{i \in I}$ 若且仅若 $x_i \leq_i y_i$ 对一切 $i \in I$ 成立. 则直和上的 Möbius 函数为

$$\mu(x,y)=(\mu_i(x_i,y_i))_{i\in I}$$
 .

其中, 直和 $\bigoplus_{i \in I} P_i$ 中的元素除有限项外均为 $\min(P_i)$.

▼ Proof of the theorem

若I为有限集,则直和与直积无异.注意到

$$\sum_{(z_i)_{i \in I} \in [(x_i)_{i \in I}, (y_i)_{i \in I}]} = \sum_{z_1 \in [x_1, y_1]} \cdots \sum_{z_n \in [x_n, y_n]}$$

即可.

若 I 为无限集, 记 (\mathcal{P}, \subset) 为 I 中有限子集依包含关系所称之偏序. 对 \mathcal{P} 上任意给定的链 \mathscr{C} , 不妨设 \mathscr{C} 中元素两两不同, 则 $|\{J\in\mathscr{C}\mid J\subset I\}|<\infty$ 对一切 $I\in\mathscr{C}$ 均成立.

对任意 $I_1,I_2\in\mathscr{P}$, 显然 Möbius 函数可自然延拓到 $I_1\cup I_2$ 上. 兹有断言, 上述 Möbius 函数可在 $\cup\mathscr{C}$ 上定义. 若不然, 则存在 $I_0\in\mathscr{C}$ 使得上述 Möbius 函数无法在 $\cup\{I\in\mathscr{C}\mid I\subset I_0\}$ 上定义; 而 $\cup\{I\in\mathscr{C}\mid I\subset I_0\}$ 为有限并, 从而矛盾.

根据 Zorn 引理, 即得在直和上可定义的 Möbius 函数.

Example 2.1.5 求解 $(\mathbb{Z}_{>1}, |)$ 上的 Möbius 函数.

▼ Solution

Theorem 2.1.2-4 给出同构 $(\mathbb{Z}_{\geq 1}, |) \cong (\bigoplus_{\mathbb{Z}_{\geq 1}} \mathbb{Z}_{\geq 1}, \leq)$. 上的 Möbius 函数. 后者的导出代数可同构于其分量形式, 因此

$$egin{aligned} \mu_{\mathbb{Z}\geq 1} \left(\prod_{p_i\in\mathbb{P}} p_i^{m_i},\prod_{p_i\in\mathbb{P}} p_i^{n_i}
ight) \ =& \mu_P \left(igoplus_{p_i\in\mathbb{P}} m_i,igoplus_{p_i\in\mathbb{P}} n_i
ight) \ =& \prod_{i\geq 1} \mu_{P_i}(m_i,n_i) \ =& \prod_{i\geq 1} \mu_{\mathbb{Z}_{\geq 1}}(p_i^{m_i},p_i^{n_i}). \end{aligned}$$

注意到偏序集 $(\mathbb{Z}_{\geq 1}, \leq)$ 上的 Möbius 函数为

6

$$\mu(i,j) = egin{cases} 1 & i=j, \ -1 & i=j-1, \ 0 & ext{else.} \end{cases}$$

As a result, $\mu(i,j) = \mu(i+k,j+k)$ for any $k \in \mathbb{Z}_{\geq 0}.$ It yields that

$$\mu_{\mathbb{Z}_{\geq 1}}(x,y) = \mu_{\mathbb{Z}_{\geq 1}}\left(rac{x}{\gcd(x,y)},rac{y}{\gcd(x,y)}
ight).$$

Definition 2.1.6 For simplicity, we define $\mu(n):=\mu_{\mathbb{Z}_{\geq 1}}(1,n)$ in **Example 2.1.5**. It yields that

- $\mu(n)=+1$ if n is a square-free positive integer with an even number of prime factors.
- $\mu(n)=-1$ if n is a square-free positive integer with an odd number of prime factors,
- $\mu(n) = 0$ if n has a squared prime factor.

应用: Wedderburn 小定理

Theorem 2.2.1 (Wedderburn 小定理) 有限整环必为域.

▼ Proof of the theorem

Part 1 显然,有限整环中的任意非零非单位元 a 一定有逆元 $a^{o(a)-1}$,其中 o(a) 为乘法阶,从而为体 (即除环).不妨设 K 为有限体,记 $C(K):=\{x:xy=yx(\forall y\in K)\}$ 为其中心,q=|C(K)|.由于

$$\pi:K o K/C(K), x\mapsto x+C(K)$$

诱导出商环上的同态, 故可视 K 为 C(K) 上之向量空间. 记 $n:=\dim_{C(K)}K$ 为其维数, 下证明 n=1.

Part ②记 $N(x):=\{y\in K: xy=yx\}$. 易见 N(x) 为体, 从而为 C(K) 上之向量空间, 记 $n(x):=\dim_{C(K)}N(x)$. 视诸乘法群角度有 $N(x)^*\leq K^*$,故 $(q^{n(x)}-1)\mid (q^n-1)$. 由关系

$$q^l-1\equiv q^{l+p}-1 \mod (q^p-1)$$

可知 $n(x)\mid n$. 将 K^* 中元素划分为共轭类, x 共轭元之数量为 $\frac{|K^*|}{|N(x)^*|}=\frac{q^n-1}{q^{n(x)}-1}$. 据中心公式有

$$q^n-1 = q-1 + \sum_{x \in R} rac{q^n-1}{q^{n(x)}-1}.$$

其中 R 为分别选定的代表元系之集合.

Part 3 若 $n \neq 1$, 下引入分圆多项式

$$egin{aligned} \Phi_r(x) := & \prod_{1 \leq d \leq r, \gcd(d,r) = 1} (x - e^{2\pi i d/r}) \ = & (x^r - 1) \prod_{k \geq 1} \left[\prod_{rak{R}
extcape z^k} (x^{r/(p_1 \cdots p_k)} - 1)
ight]^{-1} \ = & \prod_{d \mid r} (x^d - 1)^{\mu(r/d)}, \end{aligned}$$

限定 $^*:p_1\cdots p_k\mid r,p_1,\ldots,p_k$ 为互不相同之素数 (若存在).

其中 $\mu(m)=0$ 若且仅若 m 有素数平方因子, $\mu(m)=(-1)^{k(m)}$ 若且仅若 m 无素数平方因子且素因数个数为 k(m). 最末二行变换可通过容斥原理证明: 其实质乃 Möbius 反演定理.

注意到对任意 $d\mid n$, $\Phi_n(x)$ 之零点为 $x^n-1=0$ 之根, 同时并非 $x^d-1=0$ 之根. 因此 $\Phi_n(q)\mid \frac{q^n-1}{q^{n(x)}-1}$. 从而 $\Phi_n(q)\mid q-1$. 注意到

$$|\Phi_n(q)|=\prod_{1\leq d\leq r,\gcd(d,r)=1}|q-e^{2\pi id/r}|\geq |q-1|^{arphi(q)}>q-1.$$

因此矛盾, 故 n=1.

不可约首 1 多项式计数

Definition 3.1 We denote \mathbb{F}_q as a **finte field** with q elements.

Theorem 3.2 $q=p^n$ is a always a prime power. Moreover, \mathbb{F}_q is unique under isomorphism.

▼ Proof of the theorem

Part 1 Let $\operatorname{char}(\mathbb{F}_q)$ be the minimal positive integer n such that nq=0 for each $x\in\mathbb{F}_q$. Here nq is the summation of n q's. If $\operatorname{char}(\mathbb{F}_q)$ is not prime, i.e., $p_1\cdot p_2\cdot m$, then there exists $y\in\mathbb{F}_q$ such that $p_2\cdot my\in\mathbb{F}_q\setminus\{0\}$. Hence, for each $z\in\mathbb{F}_q$ we have

$$p_1 z = p_1 (p_2 \cdot my) (p_2 \cdot my)^{-1} z = 0.$$

It yields that $\operatorname{char}(\mathbb{F}_q)=p_1$. As a result, char of a finite field is always a prime. Note $\operatorname{char}(\mathbb{F}_q)=p$.

Part $oxed{2}$ Take $\{v_1,\ldots,v_n\}$ as a basis of \mathbb{F}_q , then $|\mathbb{F}_q|=p^n$.

Part 3 We claim that $(\mathbb{F}_q\setminus\{0\},\cdot)$ is also cyclic. Since X^d-1 has at most d roots, there is at most 1 cyclic group in order d. When $(\mathbb{F}_q\setminus\{0\},\cdot)$ is cyclic, there is exactly one subgroup in order d for every $d\mid X$. Since each element belongs to a cyclic group, $(\mathbb{F}_q\setminus\{0\},\cdot)$ has at most unique cyclic group in any given order if and only if it is cyclic.

Part 4 It is clear that \mathbb{F}_{p^n} is generated by roots of $X^{p^n}-x$. Since $X^{p^n}-X$ has atmost p^n roots, \mathbb{F}_{p^n} is the splitting field of $X^{p^n}-X$ over \mathbb{F}_p . Hence finite fields are unique under isomorphisms.

Theorem 3.3 Let f(x) be an irreducible polynomial in $\mathbb{F}_q[x]$, $\mathbb{F}_q[x]/\langle f(x)
angle\cong \mathbb{F}_{q^{\deg f}}$.

▼ Proof of the theorem

Trivial.

Theorem 3.4 $x^{q^n}-x$ is the product of monic polynomials in $\mathbb{F}_q[x]$ whose degree is a factor of n.

▼ Proof of the theorem

Let E be splitting field of $x^{q^n}-x$ on \mathbb{F}_q . Then \mathbb{F}_q consists of roots of $x^{q^n}-x$. Take g(x) as a irreducible monic in $\mathbb{F}_q[x]$ and denote u as one of its roots. It is clear that g(x) is the minimal polynomial of u.

As a result, $g(x) \mid (x^{q^n} - x)$ whenever $u^{q^n} = u$, whenever $F_q(u) \subseteq R$, whenever $\deg g \mid n$.

We define the equivalent classes in \mathbb{F}_{q^n} , $x\sim y$ whenever x and y has the same minimal polynomial. By definition of irreducible polynomial, such equivalent relation

is well-defined.

Example 3.5 Let M(q,n) be number of irreducible polynomials of degree n in $\mathbb{F}_q[x]$. Then

$$q^n = \sum_{d|n} d \cdot M(q,d).$$

The Möbius inversion formula shows that

$$M(q,n) = rac{1}{n} \sum_{d|n} \mu(d) q^{n/d}.$$

For instance, if $n=p^m$ is a prime power, then $M(q,n)=rac{q^{p^m}-q^{p^{m-1}}}{p^m}.$

图论应用 (未完待续)