VI - Suites numériques

REPRENDRE Chap 3 Éric

I - Suites usuelles

II - Comportement des suites

À Savoir

Soit (u_n) une suite de nombres réels.

- * La suite (u_n) est croissante si pour tout $n \in \mathbb{N}$, $u_{n+1}-u_n \geqslant 0$.
- * La suite (u_n) est décroissante si pour tout $n \in \mathbb{N}$, $u_{n+1} u_n \leq 0$.

TODO

À Savoir

Soit (u_n) une suite de réels.

- * La suite (u_n) est majorée s'il existe un réel M tel que pour tout $n \in \mathbb{N}$, $u_n \leq M$.
- * La suite (u_n) est minorée s'il existe un réel m tel que pour tout $n \in \mathbb{N}, u_n \geqslant m$.

TODO

À Savoir

La suite (u_n) est convergente s'il existe un réel ℓ tel que $\lim_{n\to +\infty} u_n = \ell$.

TODO

III - Opérations sur les limites

À Savoir

Soit (u_n) et (v_n) deux suites de réels telles que, pour tout n entier naturel, $u_n \leq v_n$.

Si (u_n) converge et si (v_n) converge, alors

$$\lim_{n \to +\infty} u_n \leqslant \lim_{n \to +\infty} v_n.$$

TODO

TODO: Calculs de limites

À Savoir

Théorème d'encadrement Soit (u_n) , (v_n) et (w_n) trois suites de réels tells que pour tout n entier naturel,

$$v_n \leqslant u_n \leqslant w_n$$
.

Si (v_n) et (w_n) convergent vers une même limite ℓ , alors (u_n) converge et

$$\lim_{n \to +\infty} u_n = \ell.$$

TODO

Chapitre VI - Suites numériques ECT 2

IV - Existence de limites

À Savoir

Théorème de la limite monotone Soit (u_n) une suite de réels.

- * Si (u_n) est croissante et majorée, alors (u_n) converge.
- * Si (u_n) est décroissante et minorée, alors (u_n) converge.

TODO