

AMENDMENTS TO THE CLAIMS

1-18 canceled.

1 19. (previously presented) An apparatus for evaluating electrical properties of an earth
2 formation surrounding a borehole, the apparatus comprising:
3 (a) a transmitting antenna assembly for conveying a radio frequency
4 electromagnetic field into said earth formation; and
5 (b) a receiving antenna assembly for receiving a signal resulting from
6 interaction of said electromagnetic field with said earth formation;
7 wherein at least one of the antenna assemblies includes at least one of: (I) a
8 magnetic core formed from a material having high internal magnetostrictive
9 damping, and, (II) low magnetostriction.

10

1 20. (previously presented) The apparatus of claim 19 wherein said material has a high
2 internal damping and further comprises a powdered soft magnetic material.

3

1 21. (previously presented) The apparatus of claim 20 wherein the powdered soft magnetic
2 material is non-conductive and has a maximum grain size to substantially reduce
3 intragranular power loss at a frequency of said radio frequency magnetic field.

4

1 22. (previously presented) The apparatus of claim 20 wherein the powdered soft magnetic
2 material has a maximum grain size less than half a wavelength of an acoustic

3 wave having a frequency of said radio frequency magnetic field.

4

1 23. (previously presented) The apparatus of claim 19 wherein said material has a high
2 internal damping and further has a large area within a hysteresis loop associated
3 with magnetostrictive deformation of the material.

4

1 24. (previously presented) The apparatus of claim 20 wherein said at least one antenna
2 core further comprises a non-conductive bonding agent having substantial
3 acoustic decoupling between grains.

4

1 25. (previously presented) The apparatus of claim 19 wherein said apparatus is adapted to
2 be conveyed on one of (i) a wireline, and, (ii) a drilling tubular.

3

1 26. (previously presented) The apparatus of claim 19 wherein said material has a low
2 magnetostriiction and comprises an amorphous metal.

3

1 27. (previously presented) A method of determining a resistivity parameter of an earth
2 formation surrounding a borehole, the method comprising:
3 (a) using a transmitting antenna assembly on a tool conveyed in said borehole
4 for transmitting a radio frequency electromagnetic field into said earth
5 formation;
6 (b) using a receiving antenna assembly for receiving a signal resulting from

interaction of said electromagnetic field with said earth formation; using a core for at least one of the antenna assemblies for enhancing the received signals, said core formed from a material having at least one of (I) high internal magnetostrictive damping, and, (II) low magnetostriction.

11

1 28. (previously presented) The method of claim 27 wherein said material has a high
2 internal damping, the method further comprising using a powdered soft magnetic
3 material as said material with high internal damping.

4

1 29. (previously presented) The method of claim 28 further comprising selecting the
2 powdered soft magnetic material to be substantially non-conductive and having a
3 maximum grain size to substantially reduce intragranular power loss at a
4 frequency of said radio frequency magnetic field.

5

1 30. (previously presented) The method of claim 28 further comprising selecting the
2 powdered soft magnetic material as having a maximum grain size less than half a
3 wavelength of an acoustic wave having a frequency of said radio frequency
4 magnetic field.

5

1 31. (previously presented) The method of claim 27 wherein said material has high
2 internal damping, the method further comprising selecting said material as having
3 a large area within a hysteresis loop associated with magnetostrictive deformation

4 of the material.

5

1 32. (previously presented) The method of claim 28 further comprising using in said at
2 least one antenna core a non-conductive bonding agent having substantial acoustic
3 decoupling between grains.

4

1 33. (previously presented) The method of claim 27 wherein said material has a low
2 magnetostriction, the method further comprising selecting an amorphous metal for
3 use as said material.

4

1 34. (previously presented) The method of claim 27 wherein said tool is conveyed into the
2 borehole on one of (i) a wireline, and, (ii) a drilling tubular.

3

1 35. (previously presented) An apparatus for evaluating electrical properties of an earth
2 formation surrounding a borehole, the apparatus comprising:

3 (a) a transmitting antenna assembly for conveying an electromagnetic field
4 into said earth formation; and

5 (b) a receiving antenna assembly for receiving a signal resulting from
6 interaction of said electromagnetic field with said earth formation;

7 wherein at least one of said antenna assemblies includes at least one magnetic
8 core formed from a non-ferritic powdered soft magnetic material having high
9 saturation flux density and a non-conductive bonding agent, said magnetic core

10 having a magnetic permeability μ_m less than 500 and wherein said saturation flux
11 density is greater than about 0.4 T.

12

1 36. (previously presented) The apparatus of claim 35, wherein the magnetic core further
2 comprising dimensions which are related to the direction of an RF magnetic field
3 produced by the transmitter coil and to the magnetic permeability of the powdered
4 soft magnetic material.

5

1 37. (previously presented) The apparatus of claim 35 wherein the powdered soft
2 magnetic material is conductive and has a maximum grain size to substantially
3 prevent intragranular power loss of said transmitted electromagnetic signal.

4

1 38. (previously presented) The apparatus of claim 35 wherein an effective demagnetizing
2 factor of the magnetic core in a direction of the radio frequency magnetic field
3 substantially exceeds the inverse magnetic permeability of the powdered soft
4 magnetic material.

5

1 39. (previously presented) The apparatus of claim 36, wherein the core has an effective
2 permeability, μ , less than 5, as defined by a first equation,

$$3 \quad \mu = 1 + (\mu_m - 1) / ((\mu_m - 1) \cdot D + 1),$$

4 wherein D, the demagnetizing factor can be estimated from an elliptic equivalent
5 of the cross-section of the core, as defined by a second equation,