Методы машинного обучения. Обзор оптимизационных задач

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: k.vorontsov@iai.msu.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-24-25 орг.вопросы по курсу: ml.cmc@mail.ru

BMK МГУ • 15 октября 2024

Содержание

- Обучение с учителем
 - Классификация и регрессия
 - Регуляризация
 - Обучение ранжированию
- 2 Обучение без учителя
 - Восстановление плотности распределения
 - Кластеризация и частичное обучение
 - Обучаемая векторизация объектов
- Пеклассические парадигмы обучения
 - Перенос обучения и многозадачное обучение
 - Обучение с привилегированной информацией
 - Типология задач машинного обучения

Общая оптимизационная задача машинного обучения

Дано: выборка объектов $X^\ell = \{x_1, \dots, x_\ell\}$

Найти: вектор параметров w модели a(x,w)

Критерий: минимум эмпирического риска

$$Q(w,X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}(w,x_i) \rightarrow \min_{w}$$

где $\mathscr{L}(w,x_i)$ — функция потерь модели a(x,w) на объекте x_i , или минимум регуляризованного эмпирического риска

$$Q(w, X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}(w, x_i) + \sum_{j=1}^{r} \tau_j R_j(w) \rightarrow \min_{w}$$

где R_j — регуляризаторы, au_j — коэффициенты регуляризации

Напоминание. Задача обучения бинарной классификации

Обучающая выборка: $X^\ell = (x_i, y_i)_{i=1}^\ell, \;\; x_i \in \mathbb{R}^n, \;\; y_i \in \{-1, +1\}$

Фиксируется модель классификации, например, линейная:

$$a(x, w) = \operatorname{sign} g(x, w) = \operatorname{sign} \sum_{j=1}^{n} w_j f_j(x) = \operatorname{sign} \langle x, w \rangle$$

② Функция потерь — убывающая функция отступа $L(\mathsf{margin})$

$$\mathscr{L}(w,x_i) = [g(x_i,w)y_i < 0] \leqslant L(g(x_i,w)y_i)$$

Метод обучения — минимизация эмпирического риска:

$$Q(w,X^{\ell}) = \sum_{i=1}^{\ell} \left[g(x_i,w)y_i < 0 \right] \leqslant \sum_{i=1}^{\ell} L\left(\frac{g(x_i,w)y_i}{w} \right) \to \min_{w}$$

lacktriangled Проверка модели w^* по тестовой выборке $X^k=(ilde{x}_i, ilde{y}_i)_{i=1}^k$:

$$Q(w^*, X^k) = \frac{1}{k} \sum_{i=1}^k \left[g(\tilde{x}_i, w^*) \tilde{y}_i < 0 \right]$$

Напоминание. Задача обучения многоклассовой классификации

Обучающая выборка:
$$X^\ell=(x_i,y_i)_{i=1}^\ell, \ x_i\in\mathbb{R}^n, \ y_i=y(x_i)\in Y$$

1 Модель классификации, например, *линейная*, $w = (w_y)_{y \in Y}$:

$$a(x, w) = \arg \max_{y \in Y} g(x, w_y) = \arg \max_{y \in Y} \langle x, w_y \rangle$$

Функция потерь — бинарная или её аппроксимация:

$$\mathscr{L}(w, x_i) = \sum_{\mathbf{z} \neq y_i} [g(x_i, \mathbf{w}_{y_i}) < g(x_i, \mathbf{w}_{\mathbf{z}})] \leqslant \sum_{\mathbf{z} \neq y_i} L(M_{iz}(w)),$$

где $M_{iz}(w) = g(x_i, \mathbf{w}_{y_i}) - g(x_i, \mathbf{w}_{z})$ — отступ x_i по классу z

Метод обучения — минимизация эмпирического риска:

$$Q(w, X^{\ell}) = \sum_{i=1}^{\ell} \sum_{\mathbf{z} \neq y_i} L(g(x_i, \mathbf{w}_{y_i}) - g(x_i, \mathbf{w}_{\mathbf{z}})) \to \min_{w}$$

lacktriangled Проверка модели w^* по тестовой выборке $X^k=(ilde{x}_i, ilde{y}_i)_{i=1}^k$

Напоминание. Задача обучения регрессии

Обучающая выборка: $X^\ell=(x_i,y_i)_{i=1}^\ell,\;\;x_i\in\mathbb{R}^n,\;\;y_i=y(x_i)\in\mathbb{R}$

lacktriangle Модель регрессии, например, линейная, $w\in\mathbb{R}^n$:

$$a(x, w) = \langle x, w \rangle = \sum_{j=1}^{n} w_j f_j(x)$$

Функция потерь — квадратичная:

$$\mathscr{L}(w,x_i) = (a(x_i,w) - y_i)^2$$

Метод обучения — метод наименьших квадратов:

$$Q(w,X^{\ell}) = \sum_{i=1}^{\ell} \mathscr{L}(w,x_i) = \sum_{i=1}^{\ell} (a(x_i,w) - y_i)^2 \rightarrow \min_{w}$$

lacksquare Проверка модели w^* по тестовой выборке $X^k = (ilde{x}_i, ilde{y}_i)_{i=1}^k$:

$$Q(w^*, X^k) = \frac{1}{k} \sum_{i=1}^k (a(\tilde{x}_i, w^*) - \tilde{y}_i)^2$$

Квантильная регрессия

Функция потерь,
$$\varepsilon = a(x_i, w) - y_i$$
:

$$L(\varepsilon) = \begin{cases} C_{+}|\varepsilon|, & \varepsilon > 0 \\ C_{-}|\varepsilon|, & \varepsilon < 0; \end{cases}$$

Модель a(x,w)=w: решением является q-кванти́ль $w=y^{(\ell q)}$, где $y^{(1)},\dots,y^{(\ell)}$ — вариационный ряд, $q=\frac{C_-}{C_-+C_+}$.

Модель $a(x,w)=\langle x,w\rangle$: задача линейного программирования после замены переменных $\varepsilon_i^+=\big(a(x_i)-y_i\big)_+,\ \varepsilon_i^-=\big(y_i-a(x_i)\big)_+$:

$$\begin{cases} \sum_{i=1}^{\ell} \left(C_{+} \varepsilon_{i}^{+} + C_{-} \varepsilon_{i}^{-} \right) & \to & \min_{w}; \\ \langle x_{i}, w \rangle - y_{i} = \varepsilon_{i}^{+} - \varepsilon_{i}^{-}; & \varepsilon_{i}^{+} \geqslant 0; & \varepsilon_{i}^{-} \geqslant 0. \end{cases}$$

Робастная (помехоустойчивая) регрессия

Функция Мешалкина:
$$L(\varepsilon) = b \left(1 - \exp \left(-\frac{1}{b} \varepsilon^2 \right) \right), \;\; \varepsilon = a - y$$

Модель регрессии: не обязательно линейная a(x, w)

Постановка оптимизационной задачи:

$$\sum_{i=1}^{\ell} \exp\left(-\frac{1}{b}(a(x_i, w) - y_i)^2\right) \to \max_{w}$$

Численное решение — методом SG или Ньютона-Рафсона

Задачи прогнозирования временных рядов

Дано: $y_0, y_1, \ldots, y_t, \ldots$ — временной ряд, $y_i \in \mathbb{R}$ **Найти:** $\hat{y}_{t+d}(w) = f_{t,d}(y_1, \ldots, y_t; w)$ — модель временного ряда, где $d = 1, \ldots, D$, D — горизонт прогнозирования, w — вектор параметров модели.

Критерий: минимум среднеквадратичной ошибки прогнозов:

$$\sum_{t=T_0}^T (\hat{y}_{t+d}(w) - y_{t+d})^2 \rightarrow \min_{w}$$

Пример: линейная модель авторегрессии.

В роли признаков выступают n предыдущих наблюдений ряда:

$$\hat{y}_{t+1}(w) = \sum_{j=1}^{n} w_j y_{t-j+1}, \quad w \in \mathbb{R}^n$$

В роли объектов $\ell=t-n+1$ моментов истории ряда.

Регуляризаторы, штрафующие сложность линейной модели

Регуляризатор — аддитивная добавка к основному критерию:

$$\sum_{i=1}^{\ell} \mathscr{L}(w,x_i) + \tau$$
 штраф $(w) \rightarrow \min_{w}$

где au — коэффициент регуляризации

L₂-регуляризация:

штра
$$\phi(w) = \|w\|_2^2 = \sum_{j=1}^n w_j^2$$
.

 L_1 -регуляризация (приводит к отбору признаков):

штра
$$\phi(w) = \|w\|_1 = \sum_{j=1}^n |w_j|.$$

 L_0 -регуляризация (приводит к отбору признаков):

штра
$$\phi(w) = \|w\|_0 = \sum_{j=1}^n [w_j \neq 0].$$

Напоминание. L1-регуляризация приводит к отбору признаков

Эквивалентная постановка задачи $\sum\limits_{i=1}^\ell \mathscr{L}(w,x_i) o \min\limits_w$

с регуляризатором в виде ограничения-неравенства:

L1:
$$\sum_{j=1}^{n} |w_j| \leqslant \varkappa$$

L2:
$$\sum_{j=1}^{n} w_j^2 \leqslant \varkappa$$

L1 — это метод LASSO (Least Absolute Shrinkage and Selection Operator) приводит к обнулению некоторых w_j , то есть к отбору признаков

T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning. 2017.

Напоминание. Геометрический смысл L_p -регуляризаторов

Отбор признаков происходит благодаря негладкости нормы:

Негладкие регуляризаторы для отбора и группировки признаков

Общий вид регуляризаторов (μ — параметр селективности):

$$\begin{array}{l} \sum\limits_{i=1}^{\ell} \mathscr{L}(w,x_i) + \sum\limits_{j=1}^{n} R_{\mu}(w_j) \ \rightarrow \ \min_{w}. \end{array}$$

Регуляризаторы с эффектами отбора и группировки признаков:

LASSO (
$$L_1$$
): $R_{\mu}(w) = \mu |w|$

Elastic Net:
$$R_{\mu}(w) = \mu |w| + \tau w^2$$

Support Feature Machine (SFM):

$$R_{\mu}(w) = egin{cases} 2\mu |w|, & |w| \leqslant \mu; \ \mu^2 + w^2, & |w| \geqslant \mu; \end{cases}$$

Relevance Feature Machine (RFM):

$$R_{\mu}(w) = \ln(\mu w^2 + 1)$$

Задачи ранжирования (Learning to Rank, LtR, L2R, LETOR)

Ранжирование нужно везде, где система предоставляет пользователю выбор из большого числа вариантов:

- выдача поисковой системы
- рекомендации книг, фильмов, музыки, и др. товаров
- рекомендации контента в дистанционном образовании
- автоматическое завершение запроса (auto-suggest)
- варианты ответа в диалоговых системах
- варианты перевода в системах машинного перевода

Критерий конструируется по-разному в трёх подходах:

- Point-wise поточечный (аналог регрессии/классификации)
- Pair-wise попарный (качество парных сравнений)
- List-wise списочный (качество ранжированного списка)

Попарный (pair-wise) подход к обучению ранжированию

Дано: $X^{\ell} = \{x_1, \dots, x_{\ell}\}$ — обучающая выборка $i \prec j$ — правильный порядок на парах объектов (x_i, x_j) (например, в поиске два документа в ответ на один запрос)

Найти: модель ранжирования $a\colon X \to \mathbb{R}$ такую, что

$$i \prec j \Rightarrow a(x_i, w) < a(x_j, w)$$

Критерий: число неверно упорядоченных пар объектов (x_i, x_j) или аппроксимированный попарный эмпирический риск:

$$\sum_{i \prec j} \left[a(x_j, w) < a(x_i, w) \right] \leqslant \sum_{i \prec j} L(\underbrace{a(x_j, w) - a(x_i, w)}_{M_{ij}(w)}) \rightarrow \min_{w}$$

где L(M) — убывающая функция парного отступа $M_{ii}(w)$

Задача восстановления плотности распределения

Дано: $X^\ell = \{x_1, \dots, x_\ell\}$ — обучающая выборка

Найти: вектор параметров θ в модели $p(x|\theta)$

Критерий: максимум правдоподобия

$$\sum_{i=1}^{\ell} \ln p(x_i|\theta) \to \max_{\theta}$$

или максимум апостериорной вероятности

$$\sum_{i=1}^{\ell} \ln p(x_i|\theta) + \ln p(\theta|\gamma) \rightarrow \max_{\theta}$$

где γ — вектор гиперпараметров априорного распределения

Задача восстановления смеси плотностей распределения

Дано: $X^\ell = \{x_1, \dots, x_\ell\}$ — обучающая выборка

Найти: параметры w_j , θ_j в модели $p(x|\theta,w) = \sum\limits_{i=1}^K w_j p(x|\theta_j)$

Критерий: максимум правдоподобия

$$\sum_{i=1}^{\ell} \ln p(x_i|\theta,w) \to \max_{\theta,w}$$

или максимум апостериорной вероятности

$$\sum_{i=1}^{\ell} \ln p(x_i|\theta, w) + \ln p(\theta, w|\gamma) \rightarrow \max_{\theta, w}$$

где γ — вектор гиперпараметров априорного распределения

Задача кластеризации (clustering)

Дано: $X^\ell = \{x_1, \dots, x_\ell\}$ — обучающая выборка, $x_i \in \mathbb{R}^n$

Найти:

- центры кластеров параметры $\mu_j \in \mathbb{R}^n$, $j=1,\ldots,K$
- какому кластеру принадлежит каждый объект $a_i \in \{1,\ldots,K\}$

Критерий: минимум суммы внутрикластерных расстояний

$$\sum_{i=1}^{\ell} \|x_i - \mu_{a_i}\|^2 \to \min_{\{a_i\}, \{\mu_j\}}$$

Метрика, как правило, евклидова (но может быть и другая):

$$||x - \mu_j||^2 = \sum_{d=1}^n (f_d(x) - \mu_{jd})^2$$

Одноклассовая классификация (one-class classification)

Задачи детекции выбросов / аномалий / новизны (outlier / anomaly / novelty detection)

Дано: $X^{\ell} = \{x_1, \dots, x_{\ell}\}$ — обучающая выборка, $x_i \in \mathbb{R}^n$

Найти: центр $c \in \mathbb{R}^n$ и радиус r шара, охватывающего всю выборку кроме, быть может, небольшого числа аномальных объектов-выбросов

Критерий: минимизация радиуса шара и суммы штрафов за выход из шара:

$$\tau r^2 + \sum_{i=1}^{\ell} L(\underbrace{r^2 - \|x_i - c\|^2}_{\zeta_i = \mathsf{margin}(c,r)}) \to \min_{c,r},$$

где L(M) — убывающая функция отступа

Задача частичного обучения (semi-supervised learning, SSL)

Дано:

$$X^k = \{x_1, \dots, x_k\}$$
 — размеченные объекты (labeled data); $\{y_1, \dots, y_k\}$, $y_i \in Y$

 $U = \left\{ x_{k+1}, \dots, x_{\ell}
ight\}$ — неразмеченные объекты (unlabeled data).

Найти: классификации $\{a_{k+1},\ldots,a_\ell\}$ неразмеченных объектов

Критерий: без модели классификации (transductive learning):

$$\sum_{i=1}^{\ell} \|x_i - \mu_{a_i}\|^2 + \lambda \sum_{i=1}^{k} \left[a_i \neq y_i \right] \to \min_{\{a_i\}, \{\mu_j\}}$$

Критерий с моделью классификации $a_i = a(x_i, w)$:

$$\sum_{i=1}^{\ell} \|x_i - \mu_{a_i}\|^2 + \lambda \sum_{i=1}^{k} \mathcal{L}(w, x_i, y_i) + \tau R(w) \rightarrow \min_{\{a_i\}, \{\mu_j\}, w}$$

где $\mathscr{L}(w, x_i, y_i)$ — функция потерь для модели $a(x_i, w)$

Частный случай SSL: PU-learning (Positive and Unlabeled)

Примеры задач, когда известны объекты только одного класса:

- обнаружение мошеннических транзакций
- рекомендательные системы, персонализация рекламы
- медицинская диагностика при неизвестном анамнезе
- автоматическое пополнение базы знаний фактами

Модель двухклассовой классификации $a(x_i,w)\in\{-1,+1\}$ Неразмеченные трактуются как негативные с весом $\lambda\ll 1$:

$$\sum_{i=1}^{k} \mathcal{L}(w, x_i, +1) + \frac{\lambda}{\lambda} \sum_{i=k+1}^{\ell} \mathcal{L}(w, x_i, -1) + \tau R(w) \rightarrow \min_{w}$$

Hepaзмeчeнные могут выбираться случайно (Negative Sampling)

Gang Li. A Survey on Positive and Unlabelled Learning. 2013. J.Bekker, J.Davis. Learning From Positive and Unlabeled Data: A Survey. 2020.

Задача обучения автокодировщика (AutoEncoder)

Дано: $X^\ell = \{x_1, \dots, x_\ell\}$ — обучающая выборка

Найти модель векторизации, сохраняющую информацию:

 $f:X\! o\!Z$ — кодировщик (encoder), кодовый вектор $z\!=\!f(x,lpha)$

 $g:Z\! o\! X$ — декодировщик (decoder), реконструкция $\hat{x}\!=\!g(z,\beta)$

Критерий: точность восстановления объектов $g(f(x_i)) = \hat{x}_i \approx x_i$

$$\sum_{i=1}^{\ell} \mathscr{L}\big(\mathbf{g}(f(\mathbf{x}_i,\alpha),\beta),\mathbf{x}_i\big) \to \min_{\alpha,\beta}$$

Квадратичная функция потерь: $\mathscr{L}(\hat{x},x) = \|\hat{x} - x\|^2$

Пример. Линейный автокодировщик: $x \in \mathbb{R}^n$, $z \in \mathbb{R}^m$

$$f(x, A) = \underset{m \times n}{A} x, \qquad g(z, B) = \underset{n \times m}{B} z$$

При $m \ll n$ происходит сжатие данных об объектах

Автокодировщик, частично обучаемый с учителем

Данные: размеченные $(x_i, y_i)_{i=1}^k$, неразмеченные $(x_i)_{i=k+1}^\ell$

Найти: кодировщик f, декодировщик g и предиктор \hat{y} (предсказательную модель классификации, регрессии или др.):

$$\sum_{i=1}^{\ell} \mathscr{L}(g(f(x_i,\alpha),\beta),x_i) + \lambda \sum_{i=1}^{k} \widetilde{\mathscr{L}}(\hat{y}(f(x_i,\alpha),\gamma),y_i) \to \min_{\alpha,\beta,\gamma}$$

$$egin{aligned} z_i &= f(x_i, lpha) - \mathsf{кодировщик} \ \hat{x}_i &= g(z_i, eta) - \mathsf{декодировщик} \ \hat{y}_i &= \hat{y}(z_i, \gamma) - \mathsf{предиктор} \end{aligned}$$

Функции потерь:

$$\mathscr{L}(\hat{x}_i, x_i)$$
 — реконструкция $\widetilde{\mathscr{L}}(\hat{y}_i, y_i)$ — предсказание

Dor Bank, Noam Koenigstein, Raja Giryes. Autoencoders. 2020

Задачи низкорангового матричного разложения

Дано: матрица
$$X=\|x_{ij}\|_{\ell\times n},\ \ (i,j)\in\Omega\subseteq\{1..\ell\} imes\{1..n\}$$

Найти: матрицы
$$Z=\|z_{it}\|_{\ell imes m}$$
 и $B=\|b_{tj}\|_{m imes n}, \ m\ll\ell,n$

Критерий: точность восстановления X произведением ZB:

$$||X - ZB||_{\Omega} = \sum_{(i,j) \in \Omega} \mathscr{L}\left(x_{ij} - \sum_{t} z_{it} b_{tj}\right) \to \min_{Z,B}$$

Применения матричных разложений:

- ullet для восстановления пустых ячеек (missing values) $x_{ii}
 ot\in\Omega$
- ullet для генерации сжатых векторных представлений $x_i\mapsto z_i$
- для векторизации объектов по транзакционным данным
- в рекомендательных системах
- в тематическом моделировании

Графовые (матричные) разложения (graph factorization)

Дано:
$$(i,j) \in E$$
 — выборка рёбер графа $\langle V, E \rangle$, x_{ij} — сходство (близость, similarity) вершин ребра (i,j) Например, $x_{ij} = [(i,j) \in E]$ — матрица смежности вершин.

Найти: векторные представления вершин $z_i \in \mathbb{R}^d$, чтобы близкие (по графу) вершины имели близкие векторы.

Критерий для **не**ориентированного графа (X симметрична):

$$\|X - ZZ^{\mathsf{T}}\|_{E} = \sum_{(i,j)\in E} (x_{ij} - \langle z_i, z_j \rangle)^2 \to \min_{Z}, \quad Z \in \mathbb{R}^{V \times d}$$

Критерий для ориентированного графа (X несимметрична):

$$\|X - ZB^{\mathsf{T}}\|_{E} = \sum_{(i,j) \in E} (x_{ij} - \langle z_i, b_j \rangle)^2 \to \min_{Z,B}, \quad Z, B \in \mathbb{R}^{V \times d}$$

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

Многомерное шкалирование (multidimensional scaling, MDS)

Дано:
$$(i,j) \in E$$
 — выборка рёбер графа $\langle V, E \rangle$, x_{ij} — расстояния (distance) между вершинами ребра (i,j)

Найти: векторные представления вершин $z_i \in \mathbb{R}^d$, чтобы близкие (по графу) вершины имели близкие векторы

Критерий стресса (stress):

$$\sum_{(i,j)\in E} w_{ij} (\rho(z_i,z_j)-x_{ij})^2 \to \min_{Z}, \quad Z\in \mathbb{R}^{V\times d},$$

где $ho(z_i,z_j)=\|z_i-z_j\|$ — обычно евклидово расстояние, w_{ij} — веса (какие расстояния важнее, большие или малые)

Обычно решается методом стохастического градиента (SG)

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

Многомерное шкалирование для визуализации данных

При d=2 осуществляется проекция выборки на плоскость

- Используется для визуализации кластерных структур
- Форму облака точек можно настраивать весами и метрикой
- Недостаток искажения неизбежны
- Наиболее популярный метод для визуализации t-SNE

Laurens van der Maaten, Geoffrey Hinton. Visualizing data using t-SNE. 2008

Перенос обучения (transfer learning)

 $z = f(x, \alpha)$ — универсальная часть модели (векторизация) $y = g(z, \beta)$ — специфичная для задачи часть модели

Базовая задача на выборке $\{x_i\}_{i=1}^\ell$ с функцией потерь \mathscr{L}_i :

$$\sum_{i=1}^{\ell} \mathscr{L}_i(g(f(x_i,\alpha),\beta)) \rightarrow \min_{\alpha,\beta}$$

 $extstyle \mathcal{L}_i^{\prime}$ елевая задача на другой выборке $\{x_i^{\prime}\}_{i=1}^m$, с другими \mathcal{L}_i^{\prime} , g^{\prime} :

$$\sum_{i=1}^{m} \mathcal{L}'_{i}(g'(\mathbf{f}(\mathbf{x}'_{i}, \boldsymbol{\alpha}), \beta')) \rightarrow \min_{\beta'}$$

при $m \ll \ell$ это может быть намного лучше, чем

$$\sum_{i=1}^{m} \mathcal{L}'_i \big(g'(f(x'_i, \alpha), \beta) \big) \rightarrow \min_{\alpha, \beta}$$

Sinno Jialin Pan, Qiang Yang. A Survey on Transfer Learning. 2009

Многозадачное обучение (multi-task learning)

 $z = f(x, \alpha)$ — векторизация, универсальная для всех моделей $g_t(z,\beta)$ — специфичная часть модели для задачи $t\in T$

Одновременное обучение модели f по задачам X_t , $t \in T$:

$$\sum_{t \in \mathcal{T}} \sum_{x_{ti} \in X_t} \mathscr{L}_{ti} \big(g_t \big(f(x_{ti}, \alpha), \beta_t \big) \big) \ \to \ \min_{\alpha, \{\beta_t\}}$$

Обучаемость (learnability): качество решения отдельной задачи $\langle X_t, \mathscr{L}_t, g_t
angle$ улучшается с ростом объёма выборки $\ell_t = |X_t|$.

Learning to learn: качество решения каждой из задач $t \in T$ улучшается с ростом как ℓ_t , так и общего числа задач |T|.

Few-shot learning: для решения новой задачи t достаточно небольшого числа примеров, иногда даже одного.

M. Crawshaw. Multi-task learning with deep neural networks: a survey. 2020 Y. Wang et al. Generalizing from a few examples: a survey on few-shot learning, 2020

Дистилляция моделей или суррогатное моделирование

Обучение сложной модели a(x, w) «долго, дорого»:

$$\sum_{i=1}^{\ell} \mathcal{L}(\mathbf{a}(\mathbf{x}_i, \mathbf{w}), \mathbf{y}_i) \rightarrow \min_{\mathbf{w}}$$

Обучение простой модели b(x, w'), возможно, на других данных:

$$\sum_{i=1}^{k} \mathcal{L}(b(x_i', w'), a(x_i', w)) \rightarrow \min_{w'}$$

Примеры задач:

- замена сложной модели (климат, аэродинамика и др.), которая вычисляется на суперкомпьютере месяцами, «лёгкой» аппроксимирующей суррогатной моделью
- замена сложной нейросети, которая обучается неделями на больших данных, «лёгкой» аппроксимирующей нейросетью с минимизацией числа нейронов и связей

Задача обучения с привилегированной информацией

 x_i^st — информация об объекте x_i , доступная только на обучении

Раздельное обучение модели-ученика и модели-учителя:

$$\begin{array}{ll} \sum\limits_{i=1}^{\ell} \mathscr{L}\big(\mathsf{a}(\mathsf{x}_i, \mathsf{w}), \mathsf{y}_i\big) \to \min_{\mathsf{w}} & \sum\limits_{i=1}^{\ell} \mathscr{L}\big(\mathsf{a}(\mathsf{x}_i^*, \mathsf{w}^*), \mathsf{y}_i\big) \to \min_{\mathsf{w}^*} \end{array}$$

Модель-ученик обучается у модели-учителя:

$$\sum_{i=1}^{\ell} \mathcal{L}(a(x_i, w), y_i) + \mu \mathcal{L}(a(x_i, w), a(x_i^*, w^*)) \rightarrow \min_{w}$$

Совместное обучение модели-ученика и модели-учителя:

$$\sum_{i=1}^{\ell} \mathcal{L}(a(x_i, w), y_i) + \lambda \mathcal{L}(a(x_i^*, w^*), y_i) + \mu \mathcal{L}(a(x_i, w), a(x_i^*, w^*)) \rightarrow \min_{w, w^*}$$

D.Lopez-Paz, L.Bottou, B.Scholkopf, V.Vapnik. Unifying distillation and privileged information. 2016.

Обучение с использованием привилегированной информации

 x_i^* — информация об объекте x_i , доступная только на обучении Варианты LUPI (Learning Using Priveleged Information):

V. Vapnik, A. Vashist. A new learning paradigm: Learning Using Privileged Information // Neural Networks. 2009.

Типология задач машинного обучения

- ① Предварительная обработка (data preparation)
 - извлечение признаков (feature extraction)
 - отбор признаков (feature selection)
 - восстановление пропусков (missing values)
 - фильтрация выбросов (outlier detection)
- Обучение с учителем (supervised learning)
 - классификация (classification)
 - регрессия (regression)
 - ранжирование (learning to rank)
 - прогнозирование (forecasting)
- Обучение без учителя (unsupervised learning)
 - восстановление плотности (density estimation)
 - кластеризация (clustering)
 - одноклассовая классификация (OCC, anomaly detection)
 - поиск ассоциативных правил (association rule learning)
- Частичное обучение (semi-supervised learning)
 - трансдуктивное обучение (transductive learning)
 - обучение с положительными примерами (PU-learning)

Типология задач машинного обучения

- Обучаемая векторизация объектов (representation learning)
 - автокодировщики (autoencoders, feature learning)
 - матричные разложения (matrix factorization)
 - обучение многообразий (manifold learning)
- Перенос обучения (transfer learning)
- Многозадачное обучение (multitask learning)
- Привилегированное обучение (privileged learning, distilling)
- Инкрементное обучение (online/incremental learning)
- Активное обучение (active learning)
- Обучение с подкреплением (reinforcement learning)
- Мета-обучение (meta-learning, AutoML)
- Обучение близости/связей (similarity/relational learning)
- Обучение структуры модели (structure learning)
- Глубокое обучение (deep learning)
 - Порождение структурированных данных (structured output)
 - Состязательное обучение (adversarial learning)