Implicit Surfaces Lancer de rayon

$$\forall \mathbf{p} \in S, \mathbf{n} = -\nabla f(\mathbf{p}) / \| \nabla f(\mathbf{p}) \|$$

$$\nabla f(\mathbf{p}) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) \quad \Omega = \left\{ \mathbf{p} \in \mathbf{R}^3, f(\mathbf{p}) > 0 \right\}$$

From mathematics ...

... to the screen

Lancer de rayon

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

► Lancer de rayon

Maillage

Nuages de points

Conclusion

Lancer de rayon

Méthodes analytiques [Wyvill1990, Nishita1994]

Echantillonnage : analyse d'intervalle [Snyder 1992] ou par condition de Lipschitz [Karla1989]

Résolution

Soit $\mathbf{p}(t) = \mathbf{o} + \mathbf{d} t$ l'équation d'un rayon et $f(\mathbf{p}) = 0$ l'équation définissant la surface implicite

On cherche les solutions en *t* du système

$$f(t) = f \circ \mathbf{p}(t) = 0$$

Classification

Selon la nature de $f(\mathbf{p})$

Solutions analytiques

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

Lancer de rayon

Maillage

Nuages de points

Textures

Conclusion

Résolution analytique

Lorsque l'équation de $f(\mathbf{p})$ est algébrique, $f(\mathbf{p}(t))$ est un polynôme en t de même degré que f Si $f(\mathbf{p}(t))$ de degré inférieur ou égal à 4, il existe des solutions analytiques

Exemple

Equation de la sphère $(\mathbf{p}(t)-\mathbf{c})^2-r^2=0$

Equation du rayon $\mathbf{p}(t) = \mathbf{o} + \mathbf{d}t$

Substitution de l'équation du rayon dans l'équation de la sphère et résolution d'une équation du second degré en t

$$\mathbf{d}^2t^2 + 2(\mathbf{o} - \mathbf{c}) \cdot \mathbf{d} t^2 + (\mathbf{o} - \mathbf{c})^2 - r^2 = 0$$

Solutions analytiques

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

► Lancer de rayon Maillage

Nuages de points

Textures

Conclusion

Blobs à squelettes

Fonction potential:
$$f(\mathbf{p}) = \sum_{0 \le i < n} f_i(\mathbf{p}) - T$$
 avec $f_i(\mathbf{p}) = g_i \circ d_i(\mathbf{p})$

Le long du rayon :
$$f \circ \mathbf{p}(t) = \sum_{0 \le i \le n} g_i \circ d_i \circ \mathbf{p}(t) - T$$

 $d_i \circ \mathbf{p}(t)$ est une équation polynomiale en t pour certains squelettes (cylindre, point, segment, cube, ...)

$$d^2(\mathbf{p},\Delta) = (\mathbf{p} - \mathbf{c})^2$$

$$d^{2}(\mathbf{p}, \Delta) = (\mathbf{p} - \mathbf{c})^{2}$$

$$d^{2}(\mathbf{p}, \Delta) = \|\mathbf{p} - \mathbf{a}\|^{2} - ((\mathbf{p} - \mathbf{a}) \cdot \mathbf{u})^{2}$$

$$d^{2}(\mathbf{p}(t),\Delta) = \mathbf{d}^{2}t^{2} + (\mathbf{o} - \mathbf{c}) \cdot \mathbf{d}t + (\mathbf{o} - \mathbf{c})^{2}$$

Segment
$$d^2(\mathbf{p}(t), \Delta) = (\mathbf{o} + \mathbf{d}t - \mathbf{a})^2 - ((\mathbf{o} + \mathbf{d}t - \mathbf{a}) \cdot \mathbf{u})^2$$

Solutions analytiques

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

▶ Lancer de rayonMaillage

Nuages de points

Textures

Conclusion

Algorithme

Résolution analytique par morceaux

Construction des intervalles où les éléments i ont une influence

$$\Omega_i \cap \Delta$$

Calcul de l'équation du potentiel le long du rayon

$$f_i(t) = f_i(d_i(\mathbf{p}(t)))$$

Pour tous les sous intervalles résoudre l'équation

$$\Sigma f_i(t) = 0$$

Si g(r) est de degré n, l'équation du potentiel le long du rayon est de degré 2n

Méthodes par approximation

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

Lancer de rayon

Maillage

Nuages de points

Textures

Conclusion

Cas général

On ne peut pas calculer $f(\mathbf{p}(t))$ Echantillonnage du potentiel et du gradient le long du rayon Approximation de $f(\mathbf{p}(t))$ par des polynômes d'Hermite

Construction des intervalles où les éléments i ont une influence

 $\Omega_i \cap \Delta$

Approximation de l'équation du potentiel le long du rayon \widetilde{f}_i (t) par échantillonnage

Pour tous les sous intervalles résoudre l'équation

$$\Sigma \ \widetilde{f}_i \ (t) = 0$$

Méthodes par échantillonnage

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

► Lancer de rayon Maillage

Nuages de points

Textures

Conclusion

Université Lumière Lyon 2

Progression le long du rayon

Avancer le long de Δ tant que sign $(f(\mathbf{p}_i)) = \text{sign } (f(\mathbf{p}_{i+1}))$

Erreurs selon le choix du pas ε

Fonctions Lipschitziennes

Critère d'exclusion de région de recherche Bornes sur les dérivées successives Par définition :

$$\exists \lambda > 0 \quad \forall (\mathbf{x}, \mathbf{y}) \in \Omega \times \Omega \quad |f(\mathbf{x}) - f(\mathbf{y})| < \lambda |\mathbf{x} - \mathbf{y}|$$

 $f(\mathbf{p}_{i+1})$

 $f(\mathbf{p_i})$

Critère d'autant plus performant que la constante λ est précise

D. Kalra, A. Barr. Guaranteed Ray Intersections with Implicit Surfaces. *Siggraph'89 Proceedings*, **23**(3): 297 – 306, July 1989

J. Hart. Sphere Tracing: a Geometric Method for the Antialiased Ray Tracing of Implicit Surfaces. *The Visual Computer*, **12**(10): 527 – 545, December 1996.

Méthodes par échantillonnage

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

▶ Lancer de rayonMaillage

Nuages de points

Textures

Conclusion

Algorithme

Progression le long de Δ avec un pas ϵ adaptatif

Calculer le potentiel au point $\mathbf{p}(t)$ $f(t) = f(\mathbf{p}(t))$ et le rayon de la sphère vide $r = |f(t)| / \lambda$

Si $f(t) > \varepsilon$ alors avancer d'un incrément r sinon arrêter

Limitations

Critère d'intersection non garanti Ralentissement au voisinage de la silhouette

Améliorations

Critère de Lipschitz portant sur la dérivée seconde

$$\exists \gamma > 0 \quad \forall (\mathbf{x}, \mathbf{y}) \in \Omega \times \Omega \quad |f'(\mathbf{x}) - f'(\mathbf{y})| < \gamma |\mathbf{x} - \mathbf{y}|$$

Analyse d'intervalle

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

▶ Lancer de rayonMaillage

Nuages de points

Textures

Conclusion

Approximation de l'image d'un intervalle

On note f([a, b]) l'image d'un intervalle [a, b] par fOn encadre f([a, b]) par une approximation facile à calculer

Propriétés

Si f est croissante, alors f([a, b]) = [f(a), f(b)]Dans le cas général, on utilise l'arithmétique d'intervalle pour évaluer f([a, b])

$$[a,b] + [a',b'] = [a+a',b+b']$$
$$[a,b] \times [a',b'] = [\min(aa',ab',ca',bb'),\max(aa',ab',ca',bb')]$$

Limitations

L'arithmétique d'intervalle peut être peu précise

Fonction Combinaison d'intervalle x [0,1] 1-x 1-[0,1]=[0,1] $(1-x)^2 (1-[0,1]) \times [0,1] = [0,1]$

Analyse d'intervalle

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

▶ Lancer de rayonMaillage

Nuages de points

Textures

Conclusion

Algorithme

Analyse d'intervalle sur un interval réel [a, b] le long de Δ

Résolution de f(t) = 0

Calculer un encadrement de f([a,b]) par analyse d'intervalle

Si $0 \notin f([a, b])$, il n'existe pas de racine, sinon subdiviser [a, b] et itérer la recherche

Optimisation du lancer de rayon

Surfaces implicites

Modélisation

Animation

Visualisation

Etat de l'art

▶ Lancer de rayon

Maillage

Nuages de points

Textures

Conclusion

Équilibrage de l'arbre de construction

Réécriture et simplification pour accélérer le calcul de $f(\mathbf{p})$

Optimisations du calcul de la distance aux squelettes complexes (cônes, sphères, rectangles, maillages)

Implicit Surfaces 20 mai 2013