Dynamic Panel Data Models

Laura Magazzini

Sant'Anna School of Advanced Studies

laura.magazzini@santannapisa.it

Dynamic panel data models

Notation & Assumptions

- One of the advantage of panel data is that allows the study of dynamics
- For a randomly drawn cross section observation, the basic linear multivariate dynamic panel data model can be written as (t = 2, 3, ..., T)

$$y_{it} = \rho y_{it-1} + x'_{it}\beta + c_i + u_{it}$$

- \triangleright As usual u_{it} denotes the idiosyncratic error term
- ▷ c_i captures individual heterogeneity
- ▶ More complicated dynamic structures can be accommodated in this framework (e.g., additional lags of the dependent variables and/or a distributed lag structure for the variables in x)

Why a dynamic model?

$$y_{it} = \rho y_{it-1} + x'_{it}\beta + c_i + \tau_t + u_{it}$$

- In panel data: correlation of the dependent variable over time
- From a policy perspective, it is of interest to distinguish among the two explanations (Hsiao, 2003; Cameron Trivedi, 2005)
 - **1** True state dependence when y_{it-1} has a causal effect on y_{it}
 - $\rho \neq 0$: y_{it} is determined by y_{it-1} ; changes in x_{it} also have a long-lasting effect
 - ② Unobserved heterogeneity: correlation can arise even absent a causal relation ($\rho=0$), driven by unobserved characteristics at the unit level, u_i
- Dynamic models are of interest in a wide range of economic applications including

Partial adjustment framework

- y^* as (unobservable) desired value of unit i at time t
- The adjustment process is defined as

$$y_{it} - y_{it-1} = \theta(y_{it}^* - y_{it-1}) + u_i + e_{it}$$

with θ the coefficient of adjustment, that is the proportion of the gap between the observed and desired outcome that is closed over the period

The desired outcome is then specified as a function of x_{it}

$$y_{it}^* = x_{it}'\beta + \tau_t$$

• Substitute to obtain the dynamic specification:

$$y_{it} - y_{it-1} = \theta(y_{it}^* - y_{it-1}) + u_i + e_{it}$$

$$y_{it} - y_{it-1} = \theta(x_{it}'\beta + \tau_t - y_{it-1}) + u_i + e_{it}$$

$$y_{it} = (1 - \theta)y_{it-1} + x_{it}'(\theta \beta) + \theta \tau_t + u_i + e_{it}$$

$$y_{it} = \rho y_{it-1} + x_{it}'\delta + d_t + u_i + e_{it}$$

Correlation in the error term

 One of the most famous application of dynamic panel data considered a Cobb-Douglas production function with autocorrelated productivity shocks (Blundell & Bond, 2000)

$$y_{it} = \beta_n n_{it} + \beta_k k_{it} + \gamma_t + (\eta_i + v_{it} + m_{it})$$

- $\forall v_{it} = \rho r_{it-1} + e_{it}$ an AR (productivity) shock (with $\rho < 1$ and e_{it} homosk. and uncorrelated)
- \triangleright m_{it} reflecting measurement error (homosk. and uncorrelated)
- The model can be written as a dynamic specification by considering $y_{it} \rho y_{it-1}$

Roadmap

- Why "standard" methods (OLS, FE) fail endogeneity issue
- Estimation by GMM: the idea of "internal" instrument
 - ▶ Anderson & Hsiao (1981)
 - ▶ Arellano & Bond (1991)
 - ▶ Ahn & Schmidt (1995)
 - ▶ Blundell & Bond (1998)
- Models with x
- Testing GMM assumptions
- Problems with GMM estimation
- Other estimation framework