Математическая логика и теория алгоритмов

Сергей Григорян

23 сентября 2024 г.

Содержание

1	Лег	кция 1	3
	1.1	Инфа	3
	1.2	Синтаксис \leftrightarrow Семантика	3
	1.3	Правильные скобочные п-ти (ПСП)	5
	1.4	OHP 1 \Rightarrow OHP 3	5
	1.5	OHP $2 \Rightarrow$ OHP $1 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	5
	1.6	OHP $3 \Rightarrow$ OHP $2 \dots $	5
2	Лен	хция 1++	6
	2.1	Синтаксис ↔ Семантика	6
	2.2	Формулы с 1-ой бинарной связкой *	
		(Правильные алгебраические выр-я)	6
3	Лен	кция 2	7
	3.1	Булевы функции	7
	3.2	Пропозициональные ф-лы \leftrightarrow Булевы ф-ции	9
4	Лен	кция 3	10
	4.1	Мн-ны Жегалкина	10
	4.2		13
	4.3	Препятствие 2: $C \subset P_0$	13
	4.4		

1 Лекция 1

1.1 Инфа

Лектор: Мусатов

Книги: Верещагин Н. К., Шень А. "Лекции по мат. логике":

№ 1 Начало теории мн-в

№ 2 Языки и исчисления

№ 3 Вычислимые ф-ции

1.2 Синтаксис \leftrightarrow Семантика

Определение 1.1. Синтаксис - правила составления форм. выр-ий.

<u>Определение</u> **1.2.** Семантика - соспоставление форм выр-ия некоторого смысла.

<u>Определение</u> **1.3. Алфавит** - мн-во символов. (Непустое, обычно конечное)

<u>Определение</u> **1.4.** Слово - конечная последовательность символов алфавита. (Может быть пустым)

 Π устое слово - ε

Определение 1.5. Язык - любое мн-во слов.

 $\overline{\Pi}$ устой язык - \emptyset

Синглетон - $\{\varepsilon\}$

Операции над словами:

- Конкатенация: u * v
- Возведение в степень: $u^n = u * u * \cdots * u$ n раз $(u^0 = \varepsilon)$
- Обращение: $u^R = u_n u_{n-1} \cdots u_1$, если $u = u_1 u_2 \cdots u_n$

$$(ab)^R = b^R a^R.$$

Отношения над словами:

- Префикс $u \sqsubset v \iff \exists w \colon uw = v$
- Суффикс $u \sqsupset v \iff \exists w \colon wu = v$
- Подслово $u(\mathrm{subset})v \iff \exists t,w\colon tuw=v$
- Подп-ть $u \subset v \iff$ вычеркнута часть символов v и получили u

Операции над языками:

- 0) Теоретико-множ.
- 1) Конкатенация:

$$L*M = \{u*v | u \in L, v \in M\}.$$

$$L*\emptyset = \emptyset.$$

Пример.

$$L = \{a, ab\}, M = \{a, ba\}, LM = \{aa, aba, abba\}.$$

2) $L^n = L * L * \cdots * L - n$ раз

$$L^0 = \{\varepsilon\}.$$

3) Итерация/Звезда Клини:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{k=0}^{\infty} L^k.$$

$$L^{+} = \bigcup_{k=1}^{\infty} L^{k} = L^{*} * L.$$

$$L^* = L^+ * \{\varepsilon\}.$$

1.3 Правильные скобочные п-ти (ПСП)

Определение 1.6. ПСП - это п-ть скобок, разбитых на пары, и в каждой паре "("раньше ")".

Определение 1.7. Π С Π - это п-ть, получ. из правил:

- 1. ε это ПСП;
- 2. $s \Pi C\Pi \Rightarrow (s) \Pi C\Pi$;
- 3. $s, t \Pi C\Pi, \Rightarrow st \Pi C\Pi$.

Определение 1.8. Баланс СП - (кол-во "(") - (кол-во ")")

Определение 1.9. ПСП - СП, для кот. баланс всей п-ти = 0, а любого др. префикса ≥ 0

1.4 OIIP $1 \Rightarrow OIIP 3$

Все скобки разбиты на пары \Rightarrow баланс = 0.

"("левее ")" \Rightarrow в любом префиксе из каждой пары, ни одной, обе или только "(". В любом случае итоговый баланс префикса ≥ 0 .

1.5 OMP $2 \Rightarrow$ OMP 1

Скобки, добавленные по правилу (s), будут в паре.

1.6 OPP $3 \Rightarrow OPP 2$

Д-во: индукция по длине СП

База: $s = \varepsilon \Rightarrow$ подх. по опр. 2

Осн. случ.: $|s| > 0 \Rightarrow$ первый символ "(".

Рассм. кратчайший непустой префикс с балансом = 0:

- Случай 1: Это вся п-ть: $s=(s')\Rightarrow$ для s' верно ОПР 3 (т. к. любой другой баланс по случаю $\geq 1)\Rightarrow$ и ОПР 2.
- Случай 2: Это собств. префикс (\neq всей строке): s=(s')t. И для s', и для t выполнено ОПР $3\Rightarrow$ ОПР 2.

2 Лекция 1++

2.1 Синтаксис \leftrightarrow Семантика

Синтакис	Семантика
Пропозициональные формулы	Булевы ф-ции
Пропозициональные переменные	
Знаки логических действий (\land,\lor,\to,\lnot)	
Скобки	

2.2 Формулы с 1-ой бинарной связкой * (Правильные алгебраические выр-я)

Рекурсивное правила:

- 1) p переменная $\Rightarrow p$ ПАВ (правильное алг. выр-е).
- 2) $\phi, \psi \Pi AB \Rightarrow (\phi * \psi) \Pi AB$.

Пример.
$$((a * b) * (c * (d * e)))$$

Теорема 2.1. Между ПАВ и деревьями синт. разбора \exists взаимно однозначное соотв. (биекция)

Мы докажем: для любого ПАВ η , не являющегося перменной, $\exists !$ пара (ϕ, ψ) , т. ч. $\eta = (\phi * \psi)$

Доказательство. Индукция по построению.

База: p - переменная $\Rightarrow 2$ префикса: ε и p, баланс = 0

Переход: Пусть для ϕ и ψ лемма верна. Докажем для $(\phi * \psi)$

Префиксы	Баланс
ε	0
$(\phi', \phi' \sqsubset \phi$	$1 + \operatorname{bal}(\phi') > 0$
$(\phi * \psi', \psi' \sqsubset \psi$	$1 + 0 + \operatorname{bal}(\psi') > 0$
$(\phi * \psi)$	0

<u>Лемма</u> **2.3.** ϕ u ψ восстанавливаются однозначно.

Доказательство. От противного: пусть $(\phi * \psi) = (\zeta * \xi)$

Случай 1) ϕ - собств. префикс ζ , $\phi \neq \varepsilon$. Тогда в конце ϕ баланс = 0 (т. к. ϕ - ПАВ), и > 0 (т. к. ζ - ПАВ, которое на момент конца ϕ не кончилось) \Rightarrow !!! (противоречие)

Случай 2) $\phi = \zeta$. Однако тогда и $\psi = \xi$ (сократили одинаковые символы)

Для пропозициональных формул (П Φ):

Рекурс. опр.:

- 1) p переменная $\Rightarrow p$ П Φ
- 2) $\phi, \psi \Pi \Phi \Rightarrow (\phi \wedge \psi), (\phi \vee \psi), (\phi \rightarrow \psi) \Pi \Phi$.
- 3) $\phi \Pi \Phi \Rightarrow \neg \phi \Pi \Phi$

<u>Лемма</u> **2.4** (О балансе). *Баланс префикса* $\Pi \Phi \geq 0$, *при этом* = 0 *только* для ε , всей $\Pi \Phi$ или ¬¬...¬.

Замечание. Однозначность разбора: для любой $\Pi\Phi$ сущ. единств. правило из (1-3) и единств. сост., из кот. она получ.

3 Лекция 2

3.1 Булевы функции

Булевы значения: $\{0,1\}$

Булева ф-ция от k переменных $f:\{0,1\}^k \to \{0,1\}$

 $\Rightarrow f$ принимает на вход 2^k различных кортежей. Каждому кортежу может быть сопоставлено 2 значения \Rightarrow .

Общее число ф-ций - 2^{2^k}

Пример. $k = 1 \Rightarrow 2^{2^k} = 4$

p	\perp	p	$\neg p$	T
0	0	0	1	1
1	0	1	0	1

Пример. $k = 0 \Rightarrow 2^{2^0} = 2 \ 2 \ \phi$ -чии:

$$\begin{cases}
f(\varepsilon) = 0(\bot) \\
f(\varepsilon) = 1(T)
\end{cases}$$

Пример. $k = 2 \Rightarrow 2^{2^2} = 16$

p	q		T	$p = pr_1$	$q = pr_2$	$\neg p$	$\neg q$	\wedge	V	\oplus	$p \rightarrow q$	$q \rightarrow p$	\leftrightarrow	\rightarrow	\leftarrow
0	0	0	1	0	0	1	1	0	0	0	1	1	1	0	0
0	1	0	1	0	1	1	0	0	1	1	1	0	0	0	1
1	0	0	1	1	0	0	1	0	1	1	0	1	0	1	0
1	1	0	1	1	1	0	0	1	0	0	1	1	1	0	0
								min	max	$xor (\neq)$	\leq	<u> </u>	=		

<u></u>	<u></u>
1	1
0	1
0	1
0	0
Стрелка Пирса (NOR)	Штрих Шеффера (NAND)

Обозначение. $k>2,\ \wedge_k,\vee_k,\oplus_k,\ (\oplus_k$ - ф-ция чётности (PARITY))

Обозначение.

$$maj(p,q,r) = \begin{cases} 1, p+q+r \ge 2\\ 0, p+q+r \le 1 \end{cases}$$

Функция большинства

 maj_{2k+1} - задаётся аналогичным образом

Пороговые функции:

$$thr_{k,n}(p_1,\ldots,p_n) = egin{cases} 1,\sum_{i=1}^n p_i \geq k \ 0,$$
 иначе

Тернарный оператор:

$$p?q \colon r = \begin{cases} q, p = 1 \\ r, p = 0 \end{cases}$$

3.2 Пропозициональные ф-лы \leftrightarrow Булевы ф-ции

- Переход \Longrightarrow : Вычисление (По табл. истинности)
- Переход = : Представление

Правила вычисления знач. ф-лы:

Обозначение.

$$p_1, p_2, \ldots, p_n$$
 - переменные. a_1, a_2, \ldots, a_n - значения переменных $(0/1)$ $[\phi](a_1, a_2, \ldots, a_n)$ - знач. ϕ -лы ϕ на арг-тах (a_1, a_2, \ldots, a_n)

Определение 3.1. 1) $[p_i](a_1, a_2, \dots, a_n) = a_i$

- 2) $[\neg \psi](a_1, a_2, \dots, a_n) = neg([\psi](a_1, \dots, a_n))$
 - ¬ символ из ф-лы
 - neg булева ф-ция

3)
$$[(\eta \wedge \xi)](a_1, a_2, \dots, a_n) = and([\eta](a_1, a_2, \dots, a_n), [\xi](a_1, a_2, \dots, a_n))$$

(\vee - or, \rightarrow - implies)

Булева ф-ция получается из пропоз. ф-лы, если провести вычисл. для всех (a_1,a_2,\ldots,a_n)

Определение 3.2. Литерал - перменная или отрицание переменной. $(p, \neg q)$

Определение 3.3. Конъюнкт - конъюнкция литералов $(p \land \neg q \land r)$

Определение 3.4. Дизъюнкт - дизъюнкция литералов ($p \lor \neg q \lor r)$

Определение 3.5. Конъюнктивная нормальная форма (КНФ) - конъюнкция дизъюнктов $((\neg p \lor \neg q \lor r) \land (q \lor \neg s))$

Определение 3.6. Дизъюнктивная нормальная форма (ДНФ) - дизъюнкция конъюнктов $((p \land \neg q \land r) \lor (\neg p \land s))$

Теорема 3.1. Любая булева ϕ -ция выразима как $KH\Phi$ и как $\mathcal{Z}H\Phi$

p	q	r	Значения ф-ции	ДНФ	КНФ
0	0	0	0		$(p \vee q \vee r) \wedge$
0	0	1	1	$(\neg p \wedge \neg q \wedge \neg r) \vee$	
0	1	0	1	$(\neg p \land q \land \neg r) \lor$	
0	1	1	0		$(p \vee \neg q \vee \neg r) \wedge$
1	0	0	0		$(\neg p \lor q \lor r) \land$
1	0	1	0		$(\neg p \lor q \lor \neg r) \land$
1	1	0	1	$(p \land q \land \neg r) \lor$	
1	1	1	0		$(\neg p \lor \lor \neg q \lor \neg r) \land$

Пример.

$$f \equiv 0 \Rightarrow f = p \land \neg p$$

4 Лекция 3

Пропозициональные ф-лы	\leftrightarrow	Булевы ф-ции
	\rightarrow	Семантика табл. истины
КНФ/ДНФ	\leftarrow	

4.1 Мн-ны Жегалкина

Вместо \neg , \wedge , \vee используем $*(\wedge)$, \oplus

Особенности мн-нов над булевыми переменными:

- 1) $x^2 = x$
- $2) \quad x \oplus x = 0$

Эти особенности можно отразить в определении.

Определение 4.1. Пусть x_1, \dots, x_n - переменные.

Тогда **одночленом Жегалкина** наз-ся произведение каких-то переменных (В том числе 1 = произведению пустого мн-ва переменных).

Многочленом Жегалкина наз-ся сумма каких-то одночленов. (В том числе 0= сумма пустого мн-ва одночленов)

(Порядок произведения и суммы не важен)

$$\neg p = p \oplus 1$$

$$p \wedge q = pq$$

$$p \lor q = \neg(\neg p \land \neg q) = (p \oplus 1)(q \oplus 1) \oplus 1 = p \oplus q \oplus pq$$

$$p \to q = \neg p \lor q = (p \oplus 1) \oplus q \oplus (p \oplus 1)q = pq \oplus p \oplus 1$$

$$maj_3(p,q,r) = \begin{cases} 1, p+q+r \ge 2\\ 0, p+q+r \le 1 \end{cases} = pq \oplus qr \oplus pr$$

 $\overline{\text{Теорема}}$ 4.1. Любую булеву ф-цию можно однозначно представить как мн-н Жегалкина. (С точностью до порядка множителей и слагаемых)

Кол-во булевых ф-ций $=2^{2^n}$

Кол-во одночленов $=2^n$

Кол-во многочленов $=2^{2^n}$

 $M_{H-H} \mapsto \Phi$ -ция (вычисл.)

Почему 2 мн-на не могут дать одну ф-цию?

Доказательство. Пусть не так, и есть 2 мн-на $P \neq Q$: $\forall x \colon P(x) = Q(x)$

Рассм.
$$S(x) = P(x) \oplus Q(x) \not\equiv 0$$
 (как мн-н)

Тогда
$$\forall x \colon S(x) = 0$$

Рассм. одночлен, в кот. меньше всего множителей. Если таких несколько, то любой из них.

Б. О. О. это $x_1x_2\dots x_k$. Рассм. $a=(1,1,1,\dots,1,0,0,0,\dots,0)$ (k ед-ц, (n-k) нулей).

$$S(a) = x_1 x_2 \dots x_k \oplus (\dots)$$

 $S(a)=1*\ldots*1\oplus(\ldots)=1$ (т. к., в ост. слагаемых есть перменные, кроме $x_1\ldots x_k$)

Ho,
$$\forall x \colon S(x) = 0 \Rightarrow$$
 противоречие.

Рис. 1:

Все ф-ции можно выразить через: \neg , \wedge , \vee (КН Φ /ДН Φ). Даже можно через \neg , \wedge или \neg , \vee (используем законы Де Моргана).

Мн-н Жегалкина позволяет выразить все ф-ции через \land, \oplus и 1 А можно ли выразить всё через \land, \lor, \rightarrow ? **ОТВЕТ: НЕТ.**

Причина: т. к.:

- $1 \land 1 = 1$
- $1 \lor 1 = 1$
- $1 \to 1 = 1$

 \Rightarrow Значение такой ф-лы, на $(1,1,\dots,1)=1.$ Те ф-ции, где $f(1,1,\dots,1)=0$ выр-ть нельзя.

Обозначение. Класс ф-ций, coxp. eduницу, обозначается как P_1

Определение арг-ов f) - это 4.2. Суперпозиция ф-ций f, g_1, \dots, g_k (где k - число

$$h(x_1, x_2, \dots, x_n) = f(g_1(x_1, \dots, x_n), \dots, g_k(x_1, \dots, x_n))$$
 (1)

Более формально:

Суперпозиция нулевого порядка - это проекторы:

$$pr_i(x_1,\ldots,x_n)=x_i$$

Суперпозиция порядка (m+1) - это f (см. (1)), где f - одна из базовых ф-ций, g_1, g_2, \ldots, g_k - суперпозиции порядка $\leq m$.

Теорема 4.2. Все базовые ф-ции сохр. $1 \Rightarrow$ все суперпозиции тоже.

Определение 4.3. Пусть C - мн-во ф-ций. Тогда мн-во всех суперпозиций ф-ций из C наз-ся замыканием C и обозначается [C]

Когда [C] - это все функции? (Если это так, то C наз-ся полной системой)

4.2 Препятствие 1: $C \subset P_1$

Определение 4.4. P_0 - класс ф-ций, сохр. 0, т. е. таких, что

$$f(0,\ldots,0)=0$$

Аналогичная теорема верна для P_0 (Все баз. ф-ции, сохр. $0 \Rightarrow$ все суперпоз-ции тоже)

4.3 Препятствие **2**: $C \subset P_0$

<u>Пример</u>. \land, \lor, \oplus

Определение 4.5. *М* - монотонная ф-ции:

$$f$$
 - монотонна, если $\forall (a_1, \dots, a_n), \forall (b_1, \dots, b_n) : (a_i \leq b_i), \forall i = 1, \dots, n \Rightarrow (f(a_1, \dots, a_n) \leq f(b_1, \dots, b_n))$

<u>Пример.</u> \vee , \wedge - монот.

 $\neg, \rightarrow, \oplus$ - немонот.

Утверждение 4.1. Суперпозиция монот. ф-ций монотонна.

Доказательство.
$$f(g_1(x_1, x_2, \dots, x_n), \dots, g_k(x_1, \dots, x_n))$$

 $g_i - \uparrow, \forall i = 1, \dots, k \Rightarrow f \uparrow$

4.4 Препятствие **3**: $C \subset M$