Comprehensive Examination CSE - 2019 Batch

S.NO.	Questions	Choices	Answers
	Given the following state table of an FSM with two states A and B, one input and one output:	_	
	Present Present State Input Next State A Next State B Output	<u></u>	
	State A B 0 0 0 0 1	3	
	0 1 0 1 0 0	2.	
	1 0 0 0 1 0	4	
1	1 1 0 1 0 0 0 0 1 0 1 0	3.	1.0
	0 1 1 0 0 1	5	
	1 0 1 0 1 1	3	
	1 1 1 0 0 1	4.	
	If the initial state is A=0, B=0, what is the minimum length of an input string which will take the machine to the state A=0, B=1 with Output = 1?	6	
		1. {a(cd)^nb n>=1}	
2	(a+b)(cd)*(a+b) denotes the following set	2. $\{a(cd)^n = 1\} U\{b(cd)^n n = 1\}$	3.0
2		3. $ \{a(cd)^na n>=0\} U \{a(cd)^nb n>=0\} U \{b(cd)^na n>=0\} U \{b(cd)^nb n>=0\} U \{b(cd)$	
		4. {ac^nd^nb n>=1}	
		1.	
		(11101000)	
		2.	
	-24 is 2's complement form is	01111111	
3			1.0
		3.	
		01001000	
		4. 00111111	
		1.	_
		2 input ANDs only	
		2.	
	A DESCRIPTION OF THE PROPERTY	2 input X-ORs and 4-input AND gates only	
4	A 2 bit binary multiplier can be implemented using		2.0
		3. XOR gates and shift registers	
		4.	
		Two (2) input NORs and one XNOR gate	
		1.	+-+
		Address registrar	
		2. Program counter	
	A registrar stores the intermediate arithmetic and logic results in it.	3.	
5		Index registrar	4.0
		4.	
		Accumulator	
l			J

S.NO.	Questions	Choices	Answers
	•	1. Structure	
		2. Memory	
6	A class is a	3. Template	3.0
		4. Function	
		1. default constructor	
		2. parameterized constructor	
7	A constructor without any arguments is	3. none	1.0
		4. overloading	
		1. that takes all default arguments	+
		2. have to be called explictly	
8	A default constructor is one that	3. gets called automatically	1.0
		4. does take many parameters	
		1.	
		n 2. n/2	
9	A finite automata that will accept only string X of length n will have many states		3.0
		3. n+1	
		4. infinite	
		1. the data members of the derived class of A.	
		2. public data members and member functions.	
10	A friend function to a class A cannot access	3. protected data members and member functions.	1.0
		4. private data members and member functions.	
		Can closely model objects in the real world.	
		2. bring together all aspects of an entity in one place.	
11	A property which is not true for classes is that they	3. permit data to be hidden from other classes.	2.0
		4. are removed from memory when not in use.	
		1. 3	+
		2. 4	
12	A quadruple is a record structure with fields.	3. 1	2.0
		4. 2	
		I. Zero addressing	
		2.	
13	A Stack-organised Computer uses instruction of	Two-addressing	1.0
		3. Indirect addressing	1.0
		4. Index addressing	
		_	+
		1. Restricted to methods of the same class	
14	Access to private data is	2. Restricted to methods of other classes	1.0
		3. Available to methods of the same class and other classes	
		Not an issue because the program will not compile	
		1. constant	
15	All member functions are to it's class by default	2. non static	4.0
13	an memori functions are to its class by default	3. dynamic	7.0
		4. static	
		1. The LR(1) parser for G has S-R conflicts.	
		2. The LR(0) parser for G has S-R conflicts.	
16	An LALR(1) parser for a grammar G can have shift-reduce (S-R) conflicts if and only if	3. The LALR(1) parser for G has reduce-reduce conflicts	1.0
		4. The SLR(1) parser for G has S-R conflicts.	
		I. Is optimized to occupy less space	+
		2. Optimized the code	
17	An optimizing compiler	3. Is optimized to take less time for execution	2.0
		4. Secured Code	

S.NO.	Questions	Choices	Answers
		Exactly one leftmost derivation for a string w	
	An unambiguous grammar has	2. At most one leftmost and one rightmost derivation for a string w	
18		At most one rightmost derivation for a string w	1.0
		Exactly one leftmost and rightmost derivation for a string w	
		Exactly one leftmost derivation for a string w	
		At most one leftmost and one rightmost derivation for a string w	
19	An unambiguous grammar has	3. At most one rightmost derivation for a string w	1.0
		4. Exactly one leftmost and rightmost derivation for a string w	
		1. integrated circuits	
20	ACCIL EDGDIG ALL I	2. binary coding schemes	1.0
20	ASCII, EBCDIC, and Unicode are examples of	3. two-state systems	1.0
		4. adapter cards	
		1. {b^na^mc^p n,m,p>=1}	
21	baa*c denotes the set	2. {ba^nc n>=0}	3.0
21	baare denotes the set	3. {ba^nc n>=1}	3.0
		4. {w w is a string of a,b,c}	
		1. encoder	
22	PCD to cover compart is a	2. carry look ahead	1.0
22	BCD to seven segment is a	3. comparator	1.0
		4. decoder	
		1. 2	
23	Calculate the person months for a project that was completed in two months with two people	2. 4	2.0
20	working on it.	3. 1	
		4. 8	
		1. sizeof(int) * 2	
24	class A { int a; static float b; } ; What is the size of class A?	2. sizeof(int) + sizeof(float)	2.0
		3. sizeof(int) 4. sizeof(float)	
		, , ,	ļ
		nothing initializes the data member with 0	
25	class n{ int a=0;}obj; what will happen?	2. initializes the data member with 0 3. error	3.0
		4. initializes the object with 0	
		deep copy shallow copy	
26	class n{ public: int *a;}o,p; assigning o=p is called?	3. error	2.0
		4. constructor	
		1. error	_
		2. 10	
27	class n{ public: int a;}	3. 1	1.0
	obj; obj.a=10; cout << a;	4. 0	

	1.0	
	2. error	
class n{ public: int a=7;}p,q; cout<< n.a;	3. depends on compiler	2.0
	4. 7	
	I.	
	2. 5	
accepting the language is	3.	4.0
	8	
	4.9	
	I. index addressing mode	
	2	
Content of the program counter is added to the address part of the instruction in order to obtain the	register mode.	4.0
enective address is caned.	3. implied mode.	4.0
	<u>4.</u>	
	relative address mode.	
	1. are directly accessible in the derived class	
	2. are visible in the derived class	
Data Members of the base class that are marked private:	3. exist in memory when the object of the derived class is created the derived class	4.0
	3	
Decimal number 9 in Gray code is		2.0
	4.	
	1110	
	There is no relationship between the phase in which a defect is	+
	discovered and its repair cost	
During a software development project two similar requirements defects were detected. One was	2. The most expensive defect to correct is the one detected during the implementation phase.	
detected in the requirements phase, and the other during the implementation phase. Which of the following statements is mostly likely to be true?		2.0
. ,	requirements phase.	
	The cost of fixing either defect will usually be similar.	
	1. people, product, process, project	
Effective coftware project management feauess on four Da which are	2. people, product, performance, process	1.0
Enceuve software project management focuses on four r s willen are	3. people, performance, payoff, product	1.0
	4. people, process, payoff, product	
	1. Indexed Allocation and used in Windows OS	
EAT file quetem is	2. used in Windows OS	1.0
PAT THE SYSTEM IS	3. about storage in RAM	1.0
	4. Indexed Allocation.	
	1. helper	
	2. header	
riles wnose names end in .h are called files	3. handy	2.0
	4. helping	
	Consider the regular language L = (111 + 11111)*. The minimum number of states in any DFA accepting the language is Content of the program counter is added to the address part of the instruction in order to obtain the effective address is called. Data Members of the base class that are marked private: Decimal number 9 in Gray code is During a software development project two similar requirements defects were detected. One was detected in the requirements phase, and the other during the implementation phase. Which of the following statements is mostly likely to be true? Effective software project management focuses on four P's which are FAT file system is	Consider the regular language L = (113 + 11111)*. The minimum number of states in any DFA Consider the regular language L = (113 + 11111)*. The minimum number of states in any DFA Consider the regular language L = (113 + 11111)*. The minimum number of states in any DFA Consider the regular language L = (113 + 11111)*. The minimum number of states in any DFA Local direction of the program counter is added to the address part of the instruction in order to obtain the effective address is called. Content of the program counter is added to the address part of the instruction in order to obtain the effective address is called. Content of the program counter is added to the address part of the instruction in order to obtain the effective address is called. Content of the program counter is added to the address part of the instruction in order to obtain the efficiency accessible in the derived class. Line of the derived class is created in the requirements place, and the other derived class is created in the requirements place, and the other derived place is in memory when the object of the derived class is created in the requirements place, and the other derived place is in the requirements place, and the other derived place is in the requirements place. During a continue the requirements place, and the other during the implementation place. Which of the following statements is morely likely to be mac? Line of the requirements place, and the other during the implementation place. Which of the following statements is morely likely to correct is the one detected during the significant place. The more repressive defect to correct is the one detected during the significant place. The more repressive defect to correct is the one detected during the significant place. The more repressive defect to correct is the one detected during the signif

S.NO.	Questions	Choices	Answers
		1. type-1	
		2.	
27	Finite automata recognizesgrammars	type-3	2.0
37	Ç	3. type-0	2.0
		4.	
		type-2	
		1. Boolean values	
		Boolean values	
		2.	
38	Floating point representation is used to store	real integers	2.0
		3. integers	
		4. whole numbers	
			\vdash
		1. Only parameters of the basic type	
39	Function templates can accept	2. Only one parameter	1.0
		3. Any type of parameters	
		Only parameters of the derived type	
		1. Use-case Diagram	
40	Evantianal magninuments of a green in modelled uning	2. Sequence Diagram	1.0
40	Functional requirements of a system is modelled using	3. Class Diagram	1.0
		4. Package Diagram	
		1. N^2	
		2	
۱,	Given an arbitrary non-deterministic finite automaton (NFA). with N states, the maximum number	2. 2N	
41	of states in an equivalent minimized DFA is at least.	3.	3.0
		2^N	
		4. N!	
		1. 1, 2 and 3	
	Given the language $L = \{ab, aa, baa\}$, which of the following strings are in L^* ?		
	1) abaabaaabaa	2. 2, 3 and 4	
42	2) aaaabaaaa 3) baaaaabaaaab	3.	3.0
	4) baaaaabaa	1, 2 and 4	
		4.	
		1, 3 and 4	
		1. not possible	
10		2. compile time polymorphism	
43	Having more than one constructor in a class is	3. constructor overriding	3.0
		4. error	
		1.	
		16	
	How many DFAs exit with two state over the input alphabet (a,b)	2. 26	
44	John Man J 2118 Gran Hai Hoo Sale Color and Impart apparent (4,0)	3.	4.0
		32	
		4. 64	
		1. 16	
		2. 64	
45	How many possible outputs would a decoder have with a 6-bit binary input?	3. 128	2.0
		4. 32	
		I	1

S.NO.	Questions	Choices	Answers
	-	1. 2	
16		2. 4	2.0
46	How many select lines would be required for an 8-line-to-1-line multiplexer?	3. 3	3.0
		4. 8	
		1. three	
47	How many stages are there in process improvement?	2. four	4.0
47	now many stages are there in process improvement:	3. five	4.0
		4. six	
		1. 12	
		2.	
48	How many two state FA can be drawn over alphabet {0,1} which accepts(0+1)*	14	3.0
		3. 20	
		4. 15	
		1. delete(var-name);	
		2. dalloc(var-name);	
49	How will you free the allocated memory ?	3. free(var-name);	3.0
		4. remove(var-name);	
		1. for (;;)	
		2. if (1)	
50	Identify the invalid statement from the following	3. break(0)	3.0
		4. while(false)	
		1. (10011000)	
		2.	
	If a register containing binary data (11001100) is subjected to arithmetic shift left operation, then	(11001100)	
51	the content of the register after 'ashl' shall be	3. (1101100)	1.0
		4.	
		(10011001)	
		1. intranet	
	If a university sets up web-based information system that faculty could access to record student	2. ERP	
52	grades and to advise students, that would be an example of an	3. extranet	1.0
		4. CRM	
		1. n+2	
		2	
53	If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson construction will havestates.	n+1)	2.0
	Sales	3.	2.0
		n 4. n-1	
		1. n+2	
		2.	
	If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson construction will havestates.		2.0
		3. n	
		4. n-1	
		1.	
		<u>m+2</u>	
	If there is a complete DFA M1 recognizing a language L1 and has m states out of which two are	2. m	
55	final states then the machine M recognizing L1 complement will have final states.	3.	1.0
		m-2	
		4. 2	
		-	

S.NO.	Questions	Choices	Answers
	If X is the name of the class, what is the correct way to declare copy constructor of X ?	1. X(class X* arg)	
		2. X(X& arg)	
56		·	2.0
		4. X(X arg)	
		1. all parameters to the left of that variable must have default values	
		2. all parameters to the right of that variable must have default values	
57	If you assign a default value to any variable in a function prototype's parameter list, then	3. all other parameters in the function prototype must have default values	2.0
		4. no other parameters in that prototype can have default values	
		. , ,	
		1. text	
•	If you want to use a class to define objects in many different programs, you should define the class	2. source	
	in a C++ file	3. header	3.0
		4. program	
		1. to convert the 4-bit BCD into Gray code	
		2. to convert the 4-bit BCD into 7-bit code	
59	In a BCD-to-seven-segment converter, why must a code converter be utilized?		2.0
		3. to convert the 4-bit BCD into 10-bit code	
		4. No conversion is necessary	
		1. new	
		2. this	
60	In C++, dynamic memory allocation is accomplished with the operator	3. malloc	1.0
		4. delete	
		1. malloc()	
		2. delete	
61		3. new	3.0
		4. this	
		1. Software Product Engineering	
		2. Software Quality Assurance	
62	In CMM, the life cycle activities of requirements analysis, design, code, and test are described in		1.0
		3. Software Subcontract Management	
		4. Software Quality Management	
		1.	
		9's complement	
		2. 2's complement	
63	In computers, subtraction is generally carried out by	3. 10's complement	2.0
		_	
		4. 1's complement	
		1. The value of x is assigned to y or the value of y is assigned t o x.	
	The second of th	2. The value of x is assigned to y and the value of y is assigned t o x.	2.0
64	In the types of Three-Address statements, copy statements of the form $x := y$ means	3. The value of y is assigned to x.	3.0
		4. The value of x is assigned to y.	
		one for the primary functions and one for the auxiliary functions	
		2. one for the public data and one for the private data	
65	Many programmers separate a class into two files:		4.0
		3. one for the void functions and one for the other functions	
		4. one for the declarations and one for the implementations	
		1. Useless Code	
66	Multiplication of a positive integer by a power of two can be replaced by left shift, which executes	2. Strength Reduction	2.0
	faster on most machines. This is an example of	3. Induction Variable	2.0
		4. Loop unwinding	

S.NO.	Questions	†	Answers
		1. input data select lines	
(m la		2. the internal OR gate	
67 C	One can safely state that the output lines for a demultiplexer are under the direct control of the:	3. the internal AND gates	1.0
		4. Input data line	
\dashv		1. Three arguments	+
		2. Two arguments	
68	Overloading a prefix increment operator by means of a member function takes	3. No argument	3.0
		4. One argument	
\rightarrow		different names and different argument lists	+
69 C	Overloading involves writing two or more functions with	2. different names and the same argument list	4.0
		3. the same name and the same argument list	
		4. the same name and different argument lists	
		1. malloc() and calloc()	
70		2. malloc() and memalloc()	1.0
70 S	specify the 2 library functions to dynamically allocate memory?	3. alloc() and memalloc()	1.0
		4. memalloc() and faralloc()	
\dashv		1. Project Organization Monitoring Adopting	
		2. Planning Origanizing Monitoring Adjusting	
71 S	state the acronym of POMA in software project management	project oriented maintenance and administration	2.0
		4. Project Orientation Mapping Adjusting	
\dashv		1. inheritance	+
		2. reusability	
72 T	Cemplates improve	3. class	2.0
		4. functions	
\rightarrow			
		1. p	
73 T	The Epsilon-Closure of any state q will contain the state irrespective of q.	2. Epsilon	3.0
		3. q	
		4. Final State	
		1. 0.1111	
		2.	
		0.0111	
74 T	The binary value for 0.4375 is	3.	2.0
		0.0011	
		4. 0.1010	
\dashv		appears inside the definition of the derived class	+
		2. ppears inside the definition of the derived class constructor	
75 T	The call to the parameterized constructor of base class in the derived class	3. appears at the statement where the derived class object is created	2.0
		appears in the member initialization list of the derived class	
		constructor	
		1. Software reuse	
		2. Software Security	
76 T	The fundamental notions of software engineering does not account for ?	3. Software Validation	3.0
		4. Software processes	
		<u>I</u>	

S.NO.	Questions	Choices	Answers
	-	Context-sensitive but not context-free	
		2. Recursive but not Context-free	
77	The language is $L=\{0^p1^q0^r p,q,r^{-3}0, p^{-1}r\}$ is	3. Regular	4.0
		4. Context-free	
		1. strnstr()	
		2. strrchr()	
78	The library function used to find the last occurrence of a character in a string is	3. laststr()	2.0
		4. strstr()	
		1.	
		Electronic Switching System	
79	The major source of data for other systems are:	2. Transaction Processing Systems	2.0
		3. Decision Support System	
		4. Management Information System	
		1. private	
		2. protected	
80	The members of a class in c++ by default, are	3. public	1.0
		4. mandatory to specify	
		1. Infinite	
		2. One	
81	The minimum length for strings in the regular expression (10* + 001*)* is	3. Zero	3.0
		4. Two	
		1. 10's Complement	
		2. 2's complement	
		3.	
82	The negative numbers in the binary system can be represented by	Sign magnitude	2.0
		4.	
		I's complement	
		1.	
		8 half-adders, 8 full-adders	
		2.	
83	The number of full and half-adders required to add 16-bit numbers is	1 half-adders, 15 full-adders	2.0
		3.	
		16 half-adders, 0 full-adders	
		4. 4 half-adders, 12 full-adders	
		1. m-n	
		2.	
0.4	The number of states in a machine M recognizing L1UL2 will be where n	m+n	
84	is the number of states in M1 and m is the number of states in M2.	3.	2.0
		m+n+1	
		4. n-m	

S.NO.	Questions	Choices	Answers
85	The number of states in a machine M recognizing L1UL2 will be where n is the number of states in M1 and m is the number of states in M2 .	1. m-n 2. m+n 3. m+n+1 4. n-m	2.0
86	The number of states in DFA is the number of states in NFA for the same Language.	1. Greater then 2. equal to 3. less then 4. greater then or equal to	3.0
87	The processor 80386/80486 and the Pentium processor uses bits address bus:	 36 32 16 4.64 	2.0
88	The set of all strings over the alphabet $\{a,b\}$ (including epsilon) is denoted by	1. (a+b)^+ 2. a^+b^+	4.0
89	The set of fundamental assumptions about what products the organization should produce, how and where it should produce them, and for whom they should be produced is	organizational culture. behavioral model. rational model. agency theory.	1.0
90	The set of fundamental assumptions about what products the organization should produce, how and where it should produce them, and for whom they should be produced is	organizational culture. behavioral model. rational model. agency theory.	1.0
91	The special memory used to store the micro routines of a computer is	1. Control table 2. Control store 3. Control mart 4. Control shop	2.0
92	The system having memory elements are called.	sequential circuits complex circuits combinational circuits description of the sequence of th	1.0

s.no.	Questions	Choices	Answers
		1.6	
		2. 31	
93	The term m45 should be made up of at least literals.	3. 4	2.0
		4. 5	
		Team, Organization, contractor	
		2. Project, Strategic, Activity	
94	L		4.0
		3. Hoject, Activity, WBS	
		4. Project, Organization, Team	
		1. priming	
		2. pretest	
	The while loop is referred to as a(n) loop because the loop condition is tested at the beginning of the loop	3. initial	2.0
		4. beginning	
		1. global variable in the C++ language	
		2. function in the C++ language	
96	The word ease used in the switch statement represents a		3.0
		3. keyword in the C++ language	
		4. data type in the C++ language	
		1. void and free	
	Two access anadifiers in C++ are	2. public and private	
97		3. int and double	2.0
		4. formal and informal	
		1. Actors	
		2. Objects	
98	Usecase analysis focuses upon	3. Data	1.0
		4. Entities	
		1. Local	
99	Variables inside parenthesis of functions declarations havelevel access.	2. Global	1.0
		3. Module	
		4. Universal	
		1. A type of memory used in super computers	
		2. An illusion of extremely large main memory	
100	Virtual memory is	3. An extremely large main memory	2.0
		4. An extremely large secondary memory	
		1.	
		IGP	
		2. EGP	
		3.	
101	WEB PAGE. WHICH PROTOCOL PROVIDES THIS MESSAGE?		4.0
		SNMP	
		4.	
		ICMP	

S.NO.	Questions	Choices	Answers	
		1.		
		1 and 2		
		2.		
	What are the minimum number of 2-to-1 multiplexers required to generate a 2- input AND gate and a 2-input Ex-OR gate?	1 and 3		
102	gate and a 2 input 21t of tigate.		1.0	
		3.		
		1 and 1		
		4. 2 and 2		
		1. ptr is array of pointers to 10 integers		
		2. ptr is a pointer to an array of 10 integers		
103	What does the following declaration mean? int (*ptr)[10];	3. ptr is an array of 10 integers	2.0	
		4. ptr is an pointer to array		
		1. A Flip flop		
		2. A counter		
104	What is an Accumulator?	3. A Sequential Logic Circuit	3.0	
		4. A Combinational Logic Circuit	\perp	
		A Combinational Logic Circuit		
105	What is an ALU?	2. A Sequential Logic Circuit	2,3	
103	What is all ALC.	3. A Combination of Combinational Circuit and Sequential Circuit	2,3	
		4. A flip flop		
		1. Last two sum bits are different		
		2. Last two carrys are same		
106	What is the condition for setting the Overflow flag in status register?	3. Last two sum bits are same	3.0	
		4. Last two carrys are different		
		1. n/2		
		2. n-1		
107	What is the maximum number of reduce moves that can be taken by a bottom-up parser for a	3. 2n-1	2.0	
		4. 2^n		
		1. 50-20-30		
		2. 50-30-20		
108	What is the recommended distribution of effort for a software project?	3. 30-40-30	4.0	
		4. 40-20-40		
		1. no return type		
		2. int		
109		3. void	1.0	
	What is the return type of the conversion operator function?	4. float		
		4. Hoat		
		1. S0 = 1, S1 = 0, S2 = 1		
	What is the status of the inputs S0, S1, and S2 of the 74151 eight-line multiplexer in order for the	2. S0 = 1, S1 = 1, S2 = 0		
110	output Y to be a copy of input 15?	3. S0 = 0, S1 = 1, S2 = 0	1.0	
		4. S0 = 0, S1 = 0, S2 = 1		
		cannot access any of its class data members	\vdash	
		2. cannot modify values of its class data members		
111	What is true about constant member function of a class?	cannot modify values of its class data members which are mutable	2.0	
		4. can modify values of its class data members		

When there is complete DFA with Five states out of which two are final states if F is modified When there is complete DFA with Five states out of which two are final states if final states. When there is more than one final state in the reduced FA, then its regular expression will contain operator surely When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of When Weel of the following code #include void main() { int i; int a[3]=5; for 2, 5, 0, 0 3, 5 garbage garbage 4, 5 mult mult I. Memory Read cycle 2. Stell mult I. Memory write cycle 4. Memory write cycle 1. Two 2. Three 3. John Memory write cycle 4. Any number I. 3 3 Only one 4. Any number I. 3 3 4, 7 I. dot 2. binary + 3. star 4. many 4. MI AND M2 3. M2 4. MI I. Two level directory structure	3.0
Max will be the cuptor of the following code #include void main() { int i; int a [3]=5; for a .5 garbage garbage 4.5 mull null	3.0
(i=2;i=0;i-) { printf(?%dur2,a[i]); } } When an instruction is read from the memory, it is called I. Memory Read cycle 2 teach cycle 3. Instruction cycle 4. Memory write cycle 1. Two 1. Two 2. Three Three Three 3. Only one 4. Any number When FA M is given which recognizes language L and reverse of L is found by using M then there can be	3.0
When an instruction is read from the memory, it is called	3.0
When an instruction is read from the memory, it is called Comparison of the composition of the compositio	3.0
When an instruction is read from the memory, it is called Comparison of the composition of the compositio	3.0
113 When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states 1. Two	3.0
113 When FA M is given which recognizes language L and reverse of L is found by using M then there can be Final states 1. Two	3.0
Instruction cycle 4. Memory write cycle 1. Two 2. Three Three 3. Only one 4. Any number 4. Any number 4. Any number 1. 3 2. 2 2. 1 1. 3 3. 2 3. 3 3. 3 5. 4. 7 1. 4 When there is more than one final state in the reduced FA, then its regular expression will contain operator surely When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	
When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states 1. Trow	
When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least	
When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least	
When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states	
When FA M is given which recognizes language L and reverse of L is found by using M then there can beFinal states	
When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least final states. 1. 3 2. 2 2 3. 5 4. 7 1. dot 2. binary + 3. star 4. unary + 1. MI OR M2 2. MI AND M2 3. M2 4. M1 1. MI OR M2 4. M1 4. M1 1. MI OR M2 4. MI 4. MI 1. MI OR M2 4. MI 4. MI 1. MI OR M2 2. MI AND M2 3. M2 4. MI 5. MI AND M2 6. MI AND M2 7. MI AND M2 8. MI AND M2 9. M	
Only one 4. Any number When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least final states. 116 When there is more than one final state in the reduced FA, then its regular expression will contain operator surely When there is more than one final state in the reduced FA, then its regular expression will contain operator surely 1. dot 2. binary + 3. star 4. unary + 1. M1 OR M2 2. M1 AND M2 3. M2 4. M1	3.0
When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least final states. When there is more than one final state in the reduced FA, then its regular expression will contain operator surely When there is more than one final state in the reduced FA, then its regular expression will contain a state operator surely When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	3.0
When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least final states. 116	3.0
When there is complete DFA with Five states out of which two are final states if F is modified such that it recognizes complement of the original language then there will be at least final states. 116	3.0
such that it recognizes complement of the original language then there will be at least final states. 3. 4. 7 When there is more than one final state in the reduced FA, then its regular expression will contain operator surely When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of M1	3.0
such that it recognizes complement of the original language then there will be at least final states. 3. 4. 7 When there is more than one final state in the reduced FA, then its regular expression will contain operator surely When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	3.0
When there is more than one final state in the reduced FA, then its regular expression will contain operator surely When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of Men we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of M1 AND M2 M2 M4. M1	
When there is more than one final state in the reduced FA, then its regular expression will contain operator surely When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of Means the reduced FA, then its regular expression will contain 1. dot 2. binary + 3. star 4. unary + 1. M1 OR M2 2. M1 AND M2 3. M2 4. M1	
When there is more than one final state in the reduced FA, then its regular expression will contain operator surely When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	
When there is more than one final state in the reduced FA, then its regular expression will contain operator surely 2. binary + 3. star 4. unary + 1. M1 OR M2 2. M1 AND M2 3. M2 4. M1	
When there is more than one final state in the reduced FA, then its regular expression will contain operator surely 3. star 4. unary + 1. M1 OR M2 2. M1 AND M2 3. M2 4. M1	
operator surely 3. star 4. unary + 1. M1 OR M2 2. M1 AND M2 3. M2 4. M1	
When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	4.0
When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	
When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a machine with final state same as that of	
machine with final state same as that of 3. M2 4. M1	
4. M1	2.0
1. Two level directory structure	
2. Acyclic directory structure 118 Which directory implementation is used in most Operating System? 2. Single level directory etracture	4.0
5. Single level directory structure	
4. Tree directory structure	
1. double funct(char x)	
2. void funct();	
Which is not a proper prototype? 3. char x();	1.0
4. intfunct(char x, char y);	
191.168.1.1/24	
171.100.1.1/24	
2.	
191.168.1.1/16	
WHICH OF THE BELOW IS CALLED CLASSLESS ADDRESS?	2.0
3.	
191.168.1.1/8	
4.	
191.168.1.1/4	

S.NO.	Questions	Choices	Answer
		1. SMTPMP	
101	NAMES OF THE PER OWNS VOT AN ENGAGE	2. IMAP	4.0
121	WHICH OF THE BELOW IS NOT AN EMAIL PROTOCOL?	3. POP	4.0
		4. SNMP	
		1. call displayName	
		2. call displayName ()	
122	Which of the following calls a function named displayName, passing it no actual arguments?	3. displayName	4.0
		4. displayName()	
		1. nondeterministic PDA to deterministic PDA	+
	2. n	2. nondeterministic FSA to deterministic FSA	
123	Which of the following conversion is not possible (algorithmically)?		1.0
		3. regular grammar to context-free grammar	
		4. nondeterministic TM to deterministic TM	
		1. Leftmost derivation	
		Leftmost derivation traced out in reverse	
124	Which of the following derivations does a top-down parser use while parsing an input string? The	3. Rightmost derivation	1.0
		Rightmost derivation traced out in reverse	
		1. compare();	+
	Which of the following functions compares two strings?	2. cmp();	
125		3. stringcompare();	4.0
		4. stremp();	
		1. a;	
		2. *a;	
126	Which of the following gives the memory address of a variable pointed to by pointer a?	3. &a	3.0
		4. address(a);	
		1. Quadraples	
		2. Postfix notation and Three address code	
127	which of the following intermediate language can be used in intermediate code generation?		1,3,2
		3. Triples	
		Infix notation and two address code	
		1. void funct(int) { printf(?Hello"); }	
128	Which of the following is a complete function?	2. int funct();	4.0
120	which of the following is a complete function.	3. void funct(x) { printf(?Hello"); }	1.0
		4. int funct(int x) { return x=x+1; }	
		1. void ~Country()	
		2. int ~Country(Country obj)	
129	Which of the following is a valid destructor of the class name "Country"	3. int ~Country()	4.0
		4. Country()	
		1. void * operator new () { }	
which of the following		2. int operator ++() { }	
	which of the following is an incorrect definition inside a class ?		2.0
130	which of the following is an incorrect definition histor a class:	3. void operator delete(void * ptr) { }	

S.NO.	Questions	Choices	Answers
	- Carrier - Carr	The output toggles if one of the inputs is held HIGH.	
131	Which of the following is correct for a gated D flip-flop?	2. Only one of the inputs can be HIGH at a time.	4.0
		3. The output complement follows the input when enabled.	
		4. Q output follows the input D when the enable is HIGH.	
		Collaborative technologies	
		2. Knowledge asset management	
132	Which of the following is not a technology driver for an information system?	3. Enterprise applications	2.0
		4. Object technologies	
		1. Copy Constructor	+-+
		2. Friend Constructor	
133	Which of the following is not a type of constructor?	3. Default Constructor	2.0
		4. Parametrized Constructor	
		1. /*	+1
		2. //	
134	Which of the following is the insertion operator?	3, <<	4.0
		4.>>	
		Hardware and software costs	
		Effort costs (the costs of paying software engineers and managers)	
135	Which of the following is/are main parameters that you should use when computing the costs of a software development project?	Travel and training costs 3. Travel and training costs	4.0
	software development project?		
		4. All the parameters required given in the option.	\perp
		1. internal	
136	Which of the following language feature is not an access specifier in C++?	2. protected	1.0
		3. public	
		4. private	\perp
		1. (aaa+ab+a)+(bbb+bb+a)	
		2. ((a+b) (a+b) (a+b))*	
	Which of the following regular expression denotes a language comprising of all possible strings over {a,b} of length n where n is a multiple of 3?	3.	2.0
		(aaa+bbb)*	
		4. (a+b+aa+bb+aba+bba)*	
		1. r* s* = r* + s*	+1
		$2. (r + s)^* = (r^*s^*)^*$	
	Which of the Cillumina and the committee identification of the		
	Which of the following regular expression identities are true?	3. $(r + s)^* = r^* + s^*$	2.0
138			2.0
		4. $(r + s)^* = r^* s^*$	
		1. int f2() { static int i; i++; return i; }	+
		2. int f3(static int i) { return 300;}	
139	Which of the following results in a compile-time error?	3. static int f1() { return 300; }	3.0
		4. static int a;	
		sweet lift d,	

S.NO.	Questions	Choices	Answers
		1. FCFS	
140	Which of the following scheduling algorithm comes under preemptive scheduling?	2. Round Robin	2.0
140	Which of the following scheduling algorithm comes under preemptive scheduling?	3. Multilevel Queue Scheduling	2.0
		4. Largest Job First	
		1 (underscore)	
		2 (hyphen)	
141	Which of the following special symbol is allowed in a variable name?	3. (pipeline)	1.0
		4. * (asterisk)	
		1. For $R = R1^*$, $L(R)$ is empty if and only if $L(R1)$ is empty	
		2. For $R = (RI)$, $L(R)$ is empty if and only if $L(RI)$ is empty	
142	Which of the following statement is false?	3. For $R = R1R2$, $L(R)$ is empty if and only if either $L(R1)$ or $L(R2)$ is empty. 4. If $R = R1 + R2$, $L(R)$ is empty if and only if both $L(R1)$ and $L(R2)$ are empty.	1.0
		I. If there is a PDA by acceptance state that accept L, then there is also a PDA by empty stack that accept L	
143	Which of the following statement is false?	2. If there is a NPDA that accept L, then there is also a DPDA that accept L.	
143		3. If there is a PDA by empty stack, then there is also a CFG G that accept L.4. If there is a CFG G that accepts L, then there is also a PDA that accept L.	
		Turing recognizable languages are closed under union and complementation.	
144	Which of the following statements is/are FALSE ?	Turing decidable languages are closed under intersection and complementation	
144		Turing recognizable languages are closed under union and intersection.	
		 For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine. 	i
145	Which of the following suffices to convert an arbitrary CFG to an LL(1) grammar?	1. Removing left recursion alone 2. Factoring the grammar alone 3. Removing left recursion and factoring the grammar 4. Proposition left recursion left factoring and embiguity of the grammar.	4.0
		Removing left recursion, left factoring and ambiguity of the grammar I. this.x	
146	Which of the following ways are legal to access a class data member using this pointer?	2. *this.x 3. this->x 4. *this-x	3.0
147	Which one of the following is a top-down parser?	1. An LR(k) parser. 2. An LALR(k) parser 3. Operator precedence parser. 4. Recursive descent parser.	4.0
		1	1

S.NO.	Questions	Choices	Answers
		1. Master schedule.	
		2. Staff appraisals.	
148	Which one of the following is a valid project Key Performance Indicator (KPI)?	3. Management buy in.	4.0
		4. Milestone achievement.	
		1. virtual void Display(void){0};	
		2. void Display(void) = 0;	
149	Which one of the following is the correct way to declare a pure virtual function?	3. virtual void Display(void) = 0;	3.0
		4. virtual void Display = 0;	
		1	
		The set of all strings containing at least two 0's	
		2. The set of all strings that begin and end with either 0 or 1.	
150	4	3.	1.0
		The set of all strings containing at most two 0's.	
		4. The set of all strings containing the substring 00.	
		1. Build & Fix Model	
151	Which one of the following models is not suitable for accommodating any change?	2. RAD Model	3.0
101	Which one of the following models is not suitable for accommodating any change?	3. Waterfall Model	5.0
		4. Prototyping Model	
		1. 0*(11*0)*	
	Which one of the following regular expressions over {0,1} denotes the set of all strings not	2. 0*1*01	
		3. 0*(10+1)*	1234.0
		4.	
		0*1010*	
		To identify the health and safety strategies and procedures to be used	
		on the project	
		2. To establish the extent of work required prior to project	
153	Which one of the following statements best defines the purpose of a Product Breakdown Structure	commissioning and the handover	4.0
	(PBS)?	To define how the products are produced by identifying derivations and dependencies	
		4. To define the hierarchy of deliverables that are required to be	
		produced on the project	
		1. The project team.	
1.54	NA A D I A NA A NA A NA A NA A NA A NA A	2. The chief executive.	2.0
154	Who owns the Project Management Plan (PMP)?	3. The project manager.	3.0
		4. The project support office.	
		1. a*b*	
	Write the regular expression to denote the language L over ? = { a,b} such that all the string do not	2. b*a*)	
155	contain the substring " ab".	3. (ab)*	24.0
		4. (ba)*	
		1.	
		Von-Neuman architecture	
		2.	
		RISC architecture	
156	Zero address instruction format is used for		4.0
		3.	
		CISC architecture	
		2.2.2	
		4. Stack-organized architecture	
		Saak organized defineethe	
			ı

S.NO.	Questions	Choices	Answers
		1.	
		Steeper	
	In a slab under stoody state conduction if the thermal conductivity increases along the thickness, the	<u>2.</u>)	
157		Flatter	3.0
137	temperature gradient along the direction will become	3.	3.0
		Constant	
		4.	
		mixed pattern	
		1.	
	2.	2 sec	
		2.	
	The temperature of a gas stream is to be measured by a thermocouple whose junction can be approximated as 1-mm-dia sphere. The properties of the junction are $k = 35 \text{ W/m}^{\circ}\text{C}$, $\rho = 8500 \text{ kg/m}^{3}$,	10 sec	
158	approximated as 1-mm-dia sphere. The properties of the junction are $k = 35$ W/m °C, $\rho = 8500$ kg/m ³ , and $C_p = 320$ J/kg °C, and the convection heat transfer coefficient between the junction and the gas is $h = 320$ J/kg °C, and the convection heat transfer coefficient between the junction and the gas is $h = 320$ J/kg °C, and the convection heat transfer coefficient between the junction and the gas is $h = 320$ J/kg °C, and the convection heat transfer coefficient between the junction and the gas is $h = 320$ J/kg °C.	3.	3.0
	210 W/m ² °C. The time taken by the thermocouple to read 99 percent of the initial temperature difference	28 sec	
		4.	
	6	63 sec	
		1.	
		increase	
		2.	
159	Assuming flow to be laminar, if the diameter of the pipe is halved, then the pressure drop will	decrease	1.0
	6	3.	
		remain same	
		4.	
		be quadrupled	
		1.	
		ML ⁻¹ T ⁻¹	
		2.	
4.60		MLT ⁻¹	
160	Dimension of absolute viscosity is	3.	1.0
		ML ⁻¹ T	
		4.	
		MLT	
		1.Octal code	
		2.Grey code	
	Which of the following is minimum error code?	3.Binary code	
161		4.	2.0
		Excess 3 code	
		1.	
		4 circuits	
		2.	
	When used with an IC, what does the term "QUAD" indicate?	2 circuits	
162		3.	1.0
		8 circuits	
		4.	
		6 circuits	
		1	

S.NO.	Questions	Choices	Answers
		1.	
		1011)	
		2.	
163	Adding 1001 and 0010 gives		1.0
		3.	
		0	
		4.	
		1010	
			<u> </u>
		1.	
		2.	
164	Radix of binary number system is?		3.0
	· · · · —	3.	
		4.	
		4. A&B	
		1. is connected to Q	<u> </u>
		2.R is connected to Q	
165	SR Flip flop can be converted to T-type flip-flop if?	3.Both S and R are shortend	4.0
		4.S and R are connected to Q and Q' respectively	
			<u> </u>
		JK flip-flop does not need a clock pulse	
		2.	
		there is feedback in JK flip-flop	
		mere is rectoack in 3K hip-hop	
166	The main difference between JK and RS flip-flop is that?	3.	3.0
		JK flip-flop accepts both inputs as 1	
		4.	
		JK flip-flop is acronym of junction cathode multivibrator	
		Set of capacitor used to register input instructions in a digital computer	├──
		2.Set of paper tapes and cards put in a file	
	Register is a	3.	
167	Register is a	Temporary storage unit within the CPU having dedicated or general	3.0
		purpose use	
		4.Part of the auxiliary memory	
		1.	
		addition	
		2.	
168	Magnitude comparator compares using operation of	subtraction	xnor1
100	magnitude comparator compares using operation or	3.	AHOI I
		multiplication	
		4.	
		division	
		<u> </u>	1

.NO.	Questions	Choices	Answer
		1.	
		Both input zero	
		2.	
		zero at R and one at S	
169	An SR flip flop cannot accept the following input entry		4.0
		3.	
		zero at S and one at R	
		4.	
		Both inputs one	
			<u> </u>
		1.	
		equal	
		2.	
170	One operation that is not given by magnitude comparator	less	2.0
	One operation that is not given by magnitude comparator	3.	
		greater	
		4.	
		addition	
		1.	
		a*	
		2.	
		a	
171	Automaton accepting the regular expression of any number of a 's is:	3.	1.0
		a*b*	
		4.	
		abc	
		1.	-
		Q	
		2.	
172	Let L be a set accepted by a nondeterministic finite automaton. The number of states in non-deterministic finite automaton is $ Q $. The maximum number of states in equivalent finite	2 Q	4.0
1/2	automaton that accepts L is	3.	1.0
		2 raise to power Q *1	
		4.	
		2 raise to power Q	
		1.	
		4	
		2.	
		2	
173	Number of final state require to accept Φ(phi) in minimal finite automata.		4.0
	1 1 4 /	3.	
		1	
		4.	
		0	

S.NO.	Questions	Choices	Answer
		1. the machine code corresponding to the processor of the PC used for application development	
174	The embedded c program is converted by cross compiler to	2. the machine code corresponding to a processor which is different from the processor of the PC used for application development 3.	2.0
		the machine code for all the microcontrollers 4. assemble code of the PC used for application development	
		1. (1*0)*1* 2.	
175	The regular expression $0*(10*)*$ denotes the same set as	0 + (0 + 10)* 3. (0 + 1)* 10(0 + 1)* 4.	1.0
		(0+1)* 1. 1 and 4 only	
176	Which of the following statements is/are FALSE? (1) For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine. (2) Turing recognizable languages are closed under union and complementation.	2. 1 and 3 only 3. 2 only	3.0
	(4) Turing recognizable languages are closed under union and intersection.	4. 3 only 1.	
		both are under union	
		both are under same language	
177	Two automata are equal when	3.	2.0
		both are having equal number of states 4.	
		both are having same number of final states	

S.NO.	Questions	Choices	Answer
		1.	
		2 states	
		2.	
	What about 1 and 1	4 states	
178	What is the minimum number of states needed to a DFA over Σ = (a, b) which accept those words from Σ such that the number of a is even and the number of b is divisible by three.	3.	3.0
		6 states	
		4.	
		5 states	
		1.	
		yx	
		2.	
	gg	xyx	
179	$L = (x)^*(x yx)$, then which of the following is not a legal string within L?	3.	4.0
	• • • • • • • • • • • • • • • • • • •	x	
		4.	
		x y x y x	
			<u> </u>
		1.	
		(a + b)	
		2.)	
	The CFG s> as bs a b	$(a+b)(a+b)^*$	2.0
		3.	2.0
	is equivalent to regular expression	(a+b)(a+b)	
		4.	
		(a + b) (a + b)(a + b) (a + b)	
		1.	
		Pumping Lemma	
		2.	
		RE	
		3.	
181	is used to check whether the language is not regular.		1.0
		MN Theorem	
		4.	
		Pigeon hole principle	
		1.)	
		the instruction set architecture	
		2.	
	The minimum number of page frames that must be allocated to a running process in a virtual	page size	
182	memory environment is determined by		1.0
		3.	
		physical memory size	
		4.	
		number of processes in memory	1

s.no.	Questions	Choices	Answers
		1.	
		11	
	A computer has a 256 KByte, 4-way set associative, write back data cache with block size of 32 Bytes. The processor sends 32 bit addresses to the cache controller. Each cache tag directory entry	2.	
102	contains, in addition to address tag, 2 valid bits, 1 modified bit and 1 replacement bit. The size of	14	4.0
	the cache tag directory is	3.	
		27	
		4.	
		16	
		1.)	
		before the CPU time slice expires	
		2.	
184	Pre-emptive scheduling is the strategy of temporarily suspending a running process	to allow starving processes to run	1.0
		3.	
		when it requests IO	
		4.	
		None of mentioned 1.	
		Are easier to develop than single programming systems	
		2.	
		Execute each job faster	
105			
185	Multiprogramming systems	3.	3.0
		Execute more jobs in the same time	
		4.	
		Are used only on large main frame computers	
		1	
		1.	
		4	
		2.	
	The DMA controller has registers	2	
186		3.	3.0
		3	
		4.	
		1	
		1.	
		X	
	The truth table X Y f(X,Y)		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.	
	1 0 1	X+Y	
107	1 1 1		1.0
	represents the Boolean function	3.	
		Y	
		X'Y' 4. Y	

	Questions	Choices	Answers
		1.	
		(a+b+aa+bb+aba+bba)*	
		2.	
		(aaa+bbb)*	
188	Which of the following regular expression denotes a language comprising of all possible strings over $\Sigma = \{a,b\}$ of length n where n is a multiple of 3?	3.	3.0
ľ	surings over Z= {a,b} or rength if where it is a multiple of 5:	((a+b) (a+b) (a+b))*	
		4.	
		(aaa+ab+a)+(bbb+bb+a)	
\dashv		LANDA ALIA DEL	_
		1.NFA is more powerful than DFA	
		2.DFA is more powerful than NFA	
189	Which of the following statement is true?	3.	3.0
		NFA and DFA have equal power	
		4.None	
\dashv			
190	Assume that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64. Which of the following most closely approximates the maximum input size of a problem that can	1.256 2.2048 3.1024 4.512	4.0
	be solved in 6 minutes?		
		1.	
		symmetric key encryption algorithm	
		2.	
		asymmetric key encryption algorithm	
191	ElGamal encryption system is:	3.	2.0
		not an encryption algorithm	
		4.	
		none of the mentioned	
\dashv			
		1.	
	#include < stdio.h >	var=100	
]	int main() {	2.	
	typedef auto int AI; AI var=100;	var=AI	
192	printf("var=%d",var);	3.	4.0
	return 0; }	var=0	
	Find the output	4.	
		Error	
\dashv		1.	+
	#include < stdio.h > int main()	myName=ABCDEFG(size=7)	
ľ	{	2.	
193	typedef char* string; string myName="ABCDEFG";	Error	4.0
193	printf("myName=%s (size=%d)",myName,sizeof(myName)); return 0;	3.	4.0
	}	myName=ABCDEFG(size=4)	
	Find the output	4.)	
		myName=ABCDEFG(size=8)	
\dashv	W. J. L. & J. L. S.	1.	+
	#include < stdio.h > int main()	Error	
	{ typedef int AAA,BBB,CCC,DDD;		
	AAA aaa=10;	2.	
194	BBB bbb=20; CCC ccc=30;	10,10,10,10	3.0
	DDD ddd=40; printf("%d,%d,%d,%d",aaa,bbb,ccc,ddd);	3.	
	return 0;	10,20,30,40	
	}	4.	
		1	1
]	Find the output	AAA,BBB,CCC,DDD	

S.NO.	Questions	Choices	Answers
	#include < stdio.h >	1.	
	int main() {	10012,12100	
	typedef struct {	2.	
	int empid; int bsal;	0,0	
195	}EMP;	3.	1.0
	EMP E={10012,15100}; printf("%d,%d",E.empid,E.bsal);	Error	
	return 0;	4.	
	Find the output	10012,10012	
	rina nie output	1.	
	#include < stdio.n >	0 1 2 255	
	{ unsigned char var=0;	2.	
196	{	255	1.0
190	printf("%d ",var);	3.	1.0
	}	256	
	Find the output	<mark>4.</mark>	
		blank screen as output	
	#include <stdio.h></stdio.h>		
	#define MOBILE 0x01 #define LAPPY 0x02	1.	
		I have purchased:	
	f .	2.	
		I have purchased:Mobile, Lappy	
197	item =LAPPY;	3.	2.0
		I have purchased:Mobile,	
	<pre>printf("Mobile, "); } if(item & LAPPY){</pre>	4.	
		I have purchased:Lappy	
	return 1;		
	}		
		1.	
		13	
	{	2.	
198	char flag=0x0f; flag &= ~0x02;	d	1.0
170	riag &= ~vxuz; printf("%d",flag);	3.	1.0
	return 0;	22	
	Predict the Output.	4.	
	Treate are output.	10	
		1.	
	#include <stdio.h></stdio.h>	c = 12	
	int main()		
	{ int a=10; int h=0;	2.	
199	<pre>int b=2; int c;</pre>	c = 10	3.0
177	<pre>c=(a & b); printf("c= %d",c);</pre>	3.	3.0
	return 0;	c = 2	
	}	4.	
	Find the output.	c = 0	
		<u> </u>	

.NO.	Questions	Choices	Answer
		1.	
	#include <stdio.h> #define FUN(x,y) x##y</stdio.h>	Error	
	int main()	2. 1010	
200	tint a1=10,a2=20; printf("%d%d",FUN(a,1),FUN(a,2));	3.	4.0
	print(/ / / / / / / / / / / / / / / / / / /	2020	
	Find the output	4.	
	r ind the output	1020	
		1.	
	#include <stdio.h> #define LARGEST(x,y) (x>=y)?x:y</stdio.h>	a=10,b=20,largest=20	
	rateline LARGEST(X,y) (x>-y):X.y	2.	
	int a=10,b=20,1=0;	a=11,b=21,largest=20	
201	l=LARGEST(a++,b++);	3.	4.0
	printf("a=%d,b=%d,largest=%d",a,b,1); return 0;	a=11,b=21,largest=21	
	}	4.	
	Find the output	a=11,b=22,largest=21	
\neg		1.	
	#include <stdio.h></stdio.h>	Error	
	#define MAX 100 int main()	2.	
	{ #define MAX 20	MAx=100	3.0
202	printf("MAX=%d",MAX); return 0;	3.	3.0
	}	MAx=20	
	Find the output	4.	
		MAX=10020	
		1.	
	#include <stdio.h></stdio.h>	Error	
	#define MAX 10 int main()	2.	
	{ int array[MAX]={1,2,3},tally; for(tally=0;tally< sizeof(array)/sizeof(int);tally+=1)	1 3 4 5 6 7 8 9 10 11 3.	3.0
203	printf("%d ",*(tally+array)); return 0;	123000000	3.0
	Find the output	4.	
ľ	rina die output	000000000	
		I.	
	#include <stdio.h> #define MAX 99</stdio.h>	990	
	int main() {	2.	
204	printf("%d",MAX); #undef MAX	9999	3.0
	printf("%d",MAX); return 0;	3.	
	}	Error 4.	
	Find the output	MAXMAX	
\dashv		1.	-
		IncludeHelp	
	#include <stdio.h> #define TEXT IncludeHelp</stdio.h>	2.	
	first main() {	TEXT	
205	printf("%s",TEXT); return 0;	3.	3.0
	}	Error	
	Find the output	4.	
		TEXT IncludeHelp	
		I and the second	1

S.NO.	Questions	Choices	Answers
	#include <stdio.h> #define TRUE 1</stdio.h>	1.	
206	int main()	1	
	if(TRUE)	2.	
	<pre>printf("1"); printf("2");</pre>	Error Carlon Car	2.0
200	else printf("3");	3.	2.0
	printf("4"); return 0;	2	
	}	4.	
	Find the output.	12	
		1.	
	#include <stdio.h></stdio.h>	Hello	
	#define TRUE 1	2.	
		Hello Hello Hello (infinite times)	
207	int loop=10; while(printf("Hello ") && loop);	3.	4.0
		Hello (10 times)	
	Find the output	4.	
		Hello (11 times)	
		1.	-
	#include <stdio.h></stdio.h>	VAR2+10	
	#define VAR1 VAR2+10 #define VAR2 VAR1+20	2.	
		VAR1+20	
208	int main() {	3.	3.0
	printf("%d",VAR1); return 0;		
	}	Error	
	Find the output	4.	
		10	
	#include <stdio.h> #include < string.h ></stdio.h>		
	struct student	1.	
	{	Mike Thomas	
	}std;	2.	
	{	2. Mike Mike	
209	strcpy(tempStd->name, "Thomas"); return tempStd->name;		3.0
	}	3.	
	int main()	Thomas Thomas Thomas	
	{ strcpy(std.name, "Mike ");	4.	
	printf("%s%s",std.name,fun(&std)); return 0;	ThomasMike	
	}		
	Find the output		
	#include <stdio.h></stdio.h>	1.	
		<u>Inclu</u>	
	{ chars1∏="IncludeHeln":	2.	
210	char s2[10];	IncluGARBAGE_VALUE	
210	strncpy(s2,s1,5);	3.	1.0
	nrintf("10/a" a2):	Error	
	}	4.	
	Find the output	IncludeHelp	
		<u> </u>	

S.NO.	Questions	Choices	Answers
		1.	
	#include <stdio.h> #include <string.h></string.h></stdio.h>	IncludeHelp.Com	
	int main() {	2. udeHelp	
211	char str1[]="IncludeHelp",str2[]=".Com"; printf("%s",str1+strlen(str2));	3.	2.0
	return 0;	Error	
	Find the output	4.	
		IncludeHelp4	
		1.	
	#include <stdio.h></stdio.h>	50501150	
	#include <string.h> int main()</string.h>	2.	
	{	1150	
212	char str[50]="IncludeHelp"; printf("%d%d",strlen(str),sizeof(str));	3.	2.0
	return 0; }	1111	
	Find the output	4.	
		5011	
	#include <stdio.h></stdio.h>	1.	
	#include <string.h> int main()</string.h>	0	
	{ { int val=0;	2.	
213	char str[]="IncludeHelp.Com";	1	3.0
213	val=strcmp(str,"includehelp.com");	3.	3.0
	printf("%d",val); return 0;	-1	
	}	4.	
	Find the output	Error	
	#include <stdio.h></stdio.h>	1.	
	#define OFF 0 #if debug == OFF	1122	
	int a=11; #endif	2. Error	
214	int main()	3.	1.0
	{ int b=22;	1111	
	printf("%d%d",a,b); return 0;	4.	
	}	2222	
	Find the output	1.	<u> </u>
	#include <stdio.h></stdio.h>	Garbage	
	int main() {	2.	
	char *text="Hi Babs.";	В	
215	char x=(char)(text+3);	3.	4.0
	printf("%c\n",x);	Error	
	return 0;	<u>4.</u>	
	Find the output	Null	
	#include <stdio.h></stdio.h>	1.	
	int main()	Garbage	
	{ char *text="Hi Babs.";	2.	
216	char x=(char)(text[3]);	В	2.0
	printf("%c\n",x);	3.	
	return 0;	Error .	
	Find the output	4.	
		Null	

S.NO.	Questions	Choices	Answers
		1.	
	#include <stdio.h></stdio.h>	Complie time error	
217	int main()	2.	
	int anyVar=10;	10	2.0
	printf("%d",10); return 0;	3.	2.0
	} extern int anyVar;	Run Time error	
	Find the output	4.	
	·	No output	
	#include <stdio.h></stdio.h>	1.	
		Error	
	{	2.	
	const that er (nout)x,	2.3,2	
218	const char c2=(int)x;	3.	2.0
	printf("%d,%d\n",c1,c2);	2.3000000,2	
	return 0;	<mark>4.</mark>	
	Find the output	2,2	
	#include <stdio.h></stdio.h>	1.	
	struct sample	о	
	{ int a;	2.	
	}sample;	100	
219	int main()	3.	2.0
	sample.a=100; printf("%d",sample.a);	ERROR	
	return 0;	4.	
		arning	
	Find the output #include <stdio.h></stdio.h>		
	char* funl(void)		
	char str[]="Hello"; return str;	1.	
	}	ERROR	
	char* fun2(void)	2.	
220	char *str="Hello";	Hello,Hello	4.0
		3.	
	5	Hello,Garbage	
	printit(/0s,/0s ,run1(),run2()),	4.)	
	}	Garbage, Hello	
	Find the output		<u> </u>
	#include <stdio.h> char* strFun(void)</stdio.h>	1.	
	char *str="IncludeHelp";	str value= Garbage value	
	char "str="IncludeHelp"; return str;	2.	
	} int main()	str value = IncludeHelp	
221	{ char *x;	3.	2.0
	4 E O	Error	
	return 0;	4.	
	Find the output	No output	
	ι πα αιν ναφαί	<u> </u>	ı

	Answers
	2.0
p	
r	
	2.0
	3.0
	3.0
	4.0
	7.0
	1
-	

S.NO.	Questions	Choices	Answer
		1.	
		Error	
		2.	
		A,A,A	
		B,B,B	
		C,C,C	
		D,D,D	
		E,E,E	
	#include <stdio.h> int main()</stdio.h>	3.)	
	<pre>{ static int x[]={'A',B',C',D',E'},tally; for(tally=0;tally< sizeof(x)/sizeof(int); tally+=1)</pre>	B,B,B	
227	$printf("\%c,\%c,\%c\n",*(x+tally)+1,x[tally]+1,*(tally+x)+1);$	c,c,c	3.0
	return 0; }	D,D,D	
	Find the output	E,E,E	
	-	F,F,F	
		4.	
		E,E,E	
		D,D,D	
		c,c,c	
		B,B,B	
		A,A,A	
		1.	
	#include <stdio.h> int main()</stdio.h>	\0IncludeHelpTRUE	
	{ char result,str[]="\0IncludeHelp";	2.	
	result=printf(""%s",str); if(result)	\0IncludeHelpFALSE	
228	printf("TRUE");	3.	4.0
	else printf("FALSE");	Error	
	return 0;	4.	
	Find the output	FALSE	
		1.	-
		IncludeHelp	
	#include <stdio.h></stdio.h>		
	int main() {	2.)	
229	char str[8]="IncludeHelp"; printf("%s",str);	IncludeH	3.0
	return 0;	3.	
	<u> </u>	Error	
	Find the output	4.	
		No output	
		1.	
		HelloFriends	
		HelloFriends	
	#include <stdio.h> int main()</stdio.h>	2.	
	{ char str[]="Hello%s%dFriends";	Hello%s%dFriends	
220	printf(str);	Hello%s%dFriends	2.0
230	printf("\n"); printf("%s",str);	3.	3.0
	return 0;	Hello(null)0Friends	
	Find the output		
	n ma are output	Hello%s%dFriends	
		4.	
		Garbage value	

S.NO.	Questions	Choices	Answer
		1.	
	#include <stdio.h> int main()</stdio.h>	value is = %d	
231	{ char str[]="value is =%d";	2.	
	int a='7';	value is = %c	
	str[11]='c'; printf(str,a);	3.	4.0
	return 0;	value is = 55	
		4.	
	Find the output	value is $= 7$	
		1.)	
		A 0 0 0 0 0 0 0 0 0	
	#include <stdio.h> int main()</stdio.h>		
	{	2.	
222	char X[10]={'A'},i; for(i=0; i<10; i++)	Α	4.0
232	printf("%d ",X[i]); return 0;	3.	4.0
	}	A 32 32 32 32 32 32 32 32 32	
	Find the output	4.	
		Error	
		1.	
	#include <stdio.h></stdio.h>	Error	
	int main()	2.	
222	char *str="IncludeHelp";	IncludeHelp	2.0
233	printf("%c\n",*&*str); return 0;	3.	3.0
	}	ī	
	Find the output	4.	
		*[
		1.	
		4, 4, 4	
		1, 4	
	#include <stdio.h></stdio.h>	2.	
	int main() { float a=125.50;		
	int b=125.50;	4, 4, 8	
234	char c='A';	1, 1	4.0
234	printf("%d,%d,%d\n",sizeof(a),sizeof(b),sizeof(125.50)); printf("%d,%d\n",sizeof(c),sizeof(65));	3.	4.0
	return 0;	4, 4, 4	
	}	1, 1	
	What will be the output on a 32 bit compiler.	<mark>4.</mark>	
		4, 4, 8	
		1, 4	
		1.)	
	Hinaluda zardia k		
	#include <stdio.h> int main()</stdio.h>	Condition is True	
	{ if((-100 && 100) (20 && -20))	2.	
235	printf("%s","Condition is true.");	Condition is False	1.0
233	printf("%s","Condition is false.");	3.	1.0
	return 0;	No output	
	Find the output	4.	
	Find the output	Error	

S.NO.	Questions	Choices	Answers
	#include <stdio.h> int main()</stdio.h>		
	{	1.	
	if(10L == a)	10	
	printf("10L"); else if(10==a)	2.	
	printf("10");	10L)	
236	else printf("0");	3.	2.0
	return 0;	10L10	
	}	4.	
	Find the output.	Error	
	#include <stdio.h> int main()</stdio.h>	1.	
		Hello	
	if(a==10)	2.	
	{ printf("Hello");	HelloOK	
237	nrintf("Ok")		4.0
) alca		
	{ nrintf("Hii"):	OK	
	return 0;	<u>4.</u>	
	}	Error	
	Find the output.	1.	
		1.234	
	#include <stdio.h> int main()</stdio.h>	2.	
	int a=15;		
238	float b=1.234;	1.234000	3.0
	printf("%*f",a,b); return 0;	3.	5.0
	}	1.234000	
	Predict the output?	4.	
		Error	
	#include <stdio.h></stdio.h>		
	int main()	1.	
	int i;	0IHelp 1IHelp 2IHelp 3IHelp 4IHelp	
	for(i=0; i< 5; i++) {		
	if(i*i > 30)	2.	
239	else	0IHelp 1IHelp 2IHelp 4IHelp	1.0
	lbl:	3.	
	printf("IHelp ");	1 IHelp	
	}	4.	
	return 0:	Error	
	Condition of the control		
	Find the output	1.	
	#include <stdio.h></stdio.h>	size of array is = 20	
	int main()		
	int MAY-10:	2.)	
240	int array[MAX]; printf("size of array is = %d",sizeof(array);	size of array is = 40	2.0
0	return 0;	3.	
	}	size of array is = 4	
	Find the output	4.	
		Error	

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>	1.	
241	{	No output	
	int pn=100; if(pn>20)	2.	
	if(pn<20) printf("Heyyyyy");	<mark>Hiiiii</mark>	2.0
	else	3.	2.0
	printf("Hiiiii"); return 0;	Неууууу	
	}	4.	
	Find the output.	НеуууууНііііі	
	#include <stdio.h></stdio.h>	1.	
	int main()	ERROR	
	int var=100;	2.	
	{ int var=200;	200200	
242	printf("%d",var); }	3.	4.0
	printf("%d",var);	100100	
	return 0; }	4.	
	Find the output	200100	
		1.	
		value of var = 250	
	#include <stdio.h> int main()</stdio.h>	includehelp.com	
	{	2.	
	int var=250; printf("value of var = %d\n",var);	value of var = 250	
243	200+50; "includehelp.com";	includehelp	2.0
	printf("%s\n","includehelp"); return 0;	3.	
	Feturi 0; }	Error	
	Find the output	4.	
		value of var = 250	
		Garbage	
	#include <stdio.h> int main()</stdio.h>	1.	
		Error	
	char cVal;	<u>2.</u>	
	void *ptr; // void pointer iVal=50; cVal=65;	value =50,size= 4	
	ptr=&iVal	value =65,size= 4	
244	printf("value =%d,size= %d\n",*(int*)ptr,sizeof(ptr));	3.	2.0
	ptr=&cVal	value =50,size= 4	
	printf("value =%d,size= %d\n",*(char*)ptr,sizeof(ptr)); return 0;	value =65,size= 1	
	}	4.	
	Find the autust	Garbage value	
	1	1.	-
	#include <stdio.h> int main()</stdio.h>	0 1 0 0 0	
	{ static int var[5];	2.	
	int count=0;		
245	var[++count]=++count;	0 2 0 0 0	3.0
	for(count=0;count<5;count++) printf("%d ",var[count]);	3.	
	return 0;	00200	
	}	4.	
	Find the output	0 0 0 0 0	
			•

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>	1.	
	int main() {	12, 12	
	struct sample { int a;	2.	
	int b;	12, 0	
246	sample *s; }t;	3.	4.0
	printf("%d,%d",sizeof(sample),sizeof(t.s));	Error	
	return 0;	4.	
	}		
	Find the output	12, 4	
	#include <stdio.h> int main()</stdio.h>	1.	
	{	Name: Mike, Age: 26	
	struct std {	2.	
	char name[30]; int age;	Name: Garbage, Age: Garbage	
247	} ;	3.	1.0
	struct std s1={"Mike",26}; struct std s2=s1;	Name: Null, Age: 26	
	printf("Name: %s, Age: %d\n",s2.name,s2.age);	4.	
	}		
	Find the output	Error	
	#include <stdio.h></stdio.h>	1.	
	int main() {	ERROR	
	typedef struct tag{ char str[10];	2.	
	int a;		
	}har;	IHelp, 10	
248	har h1,h2={"IHelp",10}; h1=h2;	3.	4.0
	h1.str[1]='h';	IHelp, 0	
	printf("%s,%d",h1.str,h1.a); return 0;	4.	
	}	Ihelp, 10	
	Find the output		
	#include <stdio.h></stdio.h>	1.	
	int main()	10,10	
	union test	2.	
	{ int i;	10,0	
249	int j;		4.0
	};	3.	
	union test var=10; printf("%d,%d\n",var.i,var.j);	0,10	
	}	4.	
	Find the output	Error	
	#include <stdio.h></stdio.h>		
	int main() {	1.	
	union values	A,B,0	
	{ int intVal;	2.	
	char chrVal[2];i };	A,B,16961	
250		3.	2.0
	union values val; val.chrVal[0]='A'; val.chrVal[1]='B';	B,B,66	
	printf("\n%c,%c,%d",val.chrVal[0],val.chrVal[1],val.intVal);	4.	
	return 0;		
	}	A,A,65	
	Find the output	1	1

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>	CHAICES	
	int main()		
	union values	1.	
	{ 	44,44,300	
	unsigned char a; unsigned char b;	2.	
	unsigned int c;		
251	};	1,2,300	1.0
251	union values val;	3.	1.0
	val.a=1; val.b=2;	2,2,300	
	val.c=300;	4.	
	printf("%d,%d,%d",val.a,val.b,val.c);		
	return 0;	256,256,300	
	}		
	Find the output		
		1.	
	#include <stdio.h></stdio.h>	2004	
	int main()	2.	
	void *ptr;	2001	
252	++ptr; printf("%u",ptr);	3.	2.0
	return 0;		
	}	2000	
	Find the output	4.	
		ERROR	
	#include <stdio.h></stdio.h>	1.	
	struct employee { int empId;	Id: 3, Age: 24, Name: Mike	
	char *name;		
	int age; };	2.	
	int main()	Id: 3, Age: 23, Name: Mike	
253	{ struct employee emp []={ {1,"Mike",24}, {2,"AAA",24}, {3,"BBB",25}, {4,"CCC",30} };	3.	3.0
		Id: 3, Age: 30, Name: AAA	
	printf("Id: %d, Age: %d, Name: %s", emp[2].empId,3[emp].age,(*(emp+1)).name); return 0;	4.	
	}		
	Find the output	Error	
		1.	
	#include <stdio.h></stdio.h>	Case-2	
	void main() {	2.	
	int a=2;	Message	
	switch(a) {		
	printf("Message\n"); default:	3.	
254	printf("Default\n");	Message	4.0
	case 2: printf("Case-2\n");	Case-2	
	case 3:	4.	
	printf("Case-3\n");	Case-2	
	printf("Exit from switch\n");		
	} Find the output	Case-3	
	•	Exit from switch	
		<u></u>	

S.NO.	Questions	Choices	Answers
	#include <stdio.h> void main(){</stdio.h>		
	static int staticVar;		
	int j;		
	$for(j=0;j<=5;j+=2)$ switch(j){	1.)	
	case 1:	0	
	staticVar++; break;	2.	
	case 2:		
255	staticVar+=2;		1.0
255	case 4: staticVar%=2;	3.	1.0
	j=-1;	2	
	continue; default:		
	staticVar;	4.	
	continue;	Error	
	} printf("%d",staticVar);		
	}		
	Find the output		
	rind the output	1.	1
	Him du de casti e la	2	
	#include <stdio.h> void main() {</stdio.h>	2.	
	int a=0;	1	
256	a=5 2 1; printf("%d",a);		2.0
	printit(/ou ,a), }	3.	[· ·
	, 	0	
	Find the output.	4.	
		8	
	#include <stdio.h></stdio.h>		
	void main(){	1.	
	int a=1; switch(a/2)		
	{	Case NULL	
	case NULL: printf("Case NULL\n");	2.	
	break;	Case ZERO	
257	case 0:		4.0
	printf("Case ZERO\n"); break;	3.	
	default:	Case DEFAULT	
	printf("DEFAULT\n"); break;	4.	
	}	Error	
	}	EHO	
	Find the output		
		1.	
	#include <stdio.h></stdio.h>	Case-2	
	void main() {		
	int a=2;	2.)	
	int b=a;	Error: case expression not constant	
	switch(b)	3.	
	{		
258	case a: printf("Case-a\n"); break;	Message	2.0
	case 3:	Case-2	
	printf("Case-3\n"); break; default:	4.	
	printf("No option\n"); break;		
, ,	} printf("Exit from switch");	Case-2	
	DIBLUCEXU ITOM SWITCH T	Case-3	
	}	Case-5	
	} Find the output	Exit from switch	

.NO.	Questions	Choices	Answei
	#include <stdio.h></stdio.h>	1.	
	void main() {	After loop cnt= 1	
	int cnt=1; while(cnt>=10)	2.	
	{		
259	printf("%d,",cnt); cnt+=1;	After loop ent= 2	1.0
	} printf("\nAfter loop cnt=%d",cnt);	3.	
	printf("\n"); }	After loop cnt= 2	
	Find the output	4.	
		11	
		1.	
		ABCDE	
		2.	
	#include <stdio.h></stdio.h>	ABCD	
	void main() {	ABCD	
	int i,j,charVal='A';	ABCD	
	for(i=5;i>=1;i)	ABCD	
260	for(j=0;j< i;j++) printf("%c ",(charVal+j));	3.	3.0
	<pre>printf("\n");</pre>	ABCD	
	} }	АВС	
	Identify the output	АВ	
		A	
		4.	
		ABCDE	
		A B C D	
		A B C	
		A B	
		A	
	#include <stdio.h></stdio.h>		
	void main() {	1.	
	int i=1; while (i<=5)	Error	
	{ printf("%d",i);	2.	
	if (i=5)	12345includehelp.com	
261	goto print; i++;	3.	1.0
	}	1234includehelp.com	
	fun() {	4.	
	print: printf("includehelp.com");	lincludehelp.com 2includehelp.com 3includehelp.com 4includehelp.com	
	printi(includenelp.com); }	5includehelp.com	
	Find the output		
		1.	
	#include <stdio.h> void main() {</stdio.h>	Value of intVar=23, x=21	
	int intVar=20,x;	2.	
262	x=++intVar,intVar++,++intVar; printf("Value of intVar=%d, x=%d",intVar,x);	Value of intVar=23, x=23	1.0
	}	3.	
	Find the output	Value of intVar=21, x=21	
	rind the output	· · · · · · · · · · · · · · · · · · ·	1

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>	1.	
	void main() {	#0#1#2#3#4#5#6###	
	int tally; for(tally=0;tally<10;++tally)	2.	
	{	#0#1#2#3#4#5#6#7#8#9#10	
263	printf("#"); if(tally>6)	3.	1.0
	continue; printf("%d",tally);	#0#1#2#3#4#5##7#8#9#10	
	}	4.	
	}	#0#1#2#3#4#5#	
	Find the output	#U#1#2#3# 4# 3#	
		1.)	
		34	
	#include <stdio.h></stdio.h>	2.	
	void main() { unsigned char c=290;	290	
264	printf("%d",c);	3.	1.0
	<i>}</i>	Garbage value	
	Find the output	4.	
		Error	
		1.	
	#include <stdio.h></stdio.h>	0 1 2 infinity	
	void main()	2.	
	{ char cnt=0;	1 2 2 127	
265	for(;cnt++;printf("%d",cnt)); printf("%d",cnt);	3.	4.0
	}	0	
	Find the output	4.	
		n	
		1.	
	#include <stdio.h< #include="" <string.h=""></stdio.h<>	Hello	
	int main()	2.)	
	{	Error	
266	char str[]; strcpy(str,"Hello"); printf("%s",str);	3.	2.0
	printf("%s",str); return 0;	NULL	
	}	4.	
	Find the output	NO OUTPUT	
		1.)	-
		sum=30	
	#include		
	#define SUM(x,y) int s; s=x+y; printf("sum=%d\n",s);	2.	
	int main()	10,20	
267	¹ SUM(10,20);	3.	1.0
	return 0;	Error	
	Find the output	4.	
	This the output	sum=0	
		1.)	
	#include	11, 11	
	int main() {	2.	
	char ch=10;	10, 11	
268	<pre>void *ptr=&ch printf("%d,%d",*(char*)ptr,++(*(char*)ptr));</pre>	3.	1.0
_55	retum 0;	Error	
ŀ	3		
		4	
	Find the output	4. 10, 10	

S.NO.	Questions	Choices	Answer
	#include	1.	
	int main() {	ВВВВВ	
	char *str []={"AAAAA","BBBBB","CCCCC","DDDDD"}; char **sptr []={str+3,str+2,str+1,str};	2.	
260	char ***pp;	cccc	2.0
269	pp=sptr; ++pp;	3.	3.0
	printf("%s",**++pp+2);	BBB	
	return 0; }	4.	
	Find the output	Error	
		1.)	
	#include	5	
	minimain()	2.	
	{ int a=10,b=2;	5.0	
270	int *pa=&a,*pb=&b printf("value = %d", *pa/*pb);	3.	1.0
	return 0;	ERROR	
	,	4.	
	Find the output	No output	
	#include void fun(int *ptr)	1.	
	{ *ptr=100;	100,100	
	} int main()	2.	
	{	50,50	2.0
271	int num=50; int *pp=#	3.	3.0
	fun(& *pp); printf("%d,%d",num,*pp);	50,100	
	return 0;	4.	
	Find the output	Error in function calling	
	Tilla die output	1.	
	#include #define FUN(x) x*x	2	
	int main()	2.	
	int val=0;	12864	
2/2	val=128/FUN(8); printf("val=%d",val); return 0:	3.	2.0
	return 0; }	40	
	Find the output	4.	
	i ind the output	1	
		1.	
		43	
	#include int main ()	2.	
	{ static int a[]={10, 20, 30 40, 50};	140	
272	static int **p[]= {a, a+3, a+4, a+1, a+2}; int **ptr=p;	3.	2.0
	ptr++;	89	
	printf ("%d%d", ptr p, **ptr); }		
	The output of the program is	4.	
		78	
		1.	
	#include <stdio.h></stdio.h>	Hello	
	#define TRUE 1 int main()	2.	
		ERROR	
274	{	3.	3.0
	<pre>printf("Hello"); }</pre>	No output	
	} Find the output	4.	
I	•		
		Garbage	

S.NO.	Questions	Choices	Answers
		1.	
	#include <stdio.h> enum numbers</stdio.h>	0, 1, 2, 3, 3, 4, 5, 0, 1	
	{ zero, one, two, three , four=3,five,six,seven=0,eight	2.	
275	}; void main()	0, 1, 2,3,3,1,2,3,4	1.0
	{	3.	
	}	0,1,2,3,3,1,2,3,4 4.	
	What will be the output.	0, 1, 2, 3, 3, 4, 5, 0, 9	
		1.	
	#include <stdio.h></stdio.h>	-5	
	int main() { char val=250;	2. -6	
276	int ans; ans= val+ !val + ~val + ++val;	3.	2.0
	printf("%d",ans); return 0;	0	
	} Find the output.	4.	
	•	6	
		1.	
		1, 0.8, 0.75	
	#include <stdio.h> int main()</stdio.h>	2.	
	{	0, 0.7, 0.75	
277	a=3.0f; b=4.0f;	3.	3.0
2,77	printf("%.0f,%.1f,%.2f",a/b,a/b,a/b);	0, 0.8, 0.75	5.0
	}	4.	
	Find the output.	Error: Invalid format Specifier	
		Zinon in tank specials	
		1.	
		value of a=10	
	#include <stdio.h> int main(){</stdio.h>	2.	
278	(int)a = 10;	value of a=10.000000	4.0
2/8	printf("value of a=%d",a); return 0;	3.	4.0
	} Find the output	value of a=0	
		4.	
		L-Value required	
		1.	
	#include <stdio.n></stdio.n>	0 0 1 2 1	
	int main() {	2.	
279	m=i++&&j++&&k++ l++;	00132	3.0
419	printf("%d %d %d %d %d",i,j,k,l,m); return 0;	3.	5.0
		00131	
	Find the output	4.	
		01131	
		<u>1.</u>	
	#include <stdio.h></stdio.h>	<mark>24, 24</mark>	
	int main() {	2.	
280	static int x=intVar;	24, 0	3.0
	printf("%d,%d",intVar,x); return 0;	3.	
	}	Error: Illegal Initialization	
	Find the output of this program, (program name is: static_ec.c)	4.	
		Run time error	
l			

clude <stdio.h> main() nt ok=-100; 100; printf("%d",ok); eturn 0; d the output. clude <stdio.h> main() nt var; par=10; printf("value of var= %d\n",var); printf("value of var= %d\n",var); eturn 0; d the output</stdio.h></stdio.h>	1. ERROR 2. value of var= -10 value of var= 10 3. value of var= 10 value of var= 10	3.0
main() nt ok=-100; 100; printf("%d",ok); eturn 0; d the output. clude <stdio.h> main() nt var; par=10; printf("value of var= %d\n",var); printf("value of var= %d\n",var); printf("value of var= %d\n",var); eturn 0;</stdio.h>	2100 3. 100 4. Error 1. ERROR 2. value of var= -10 value of var= 10 3. value of var= 10 value of var= 10 4.	
nt ok=-100; 100; printf("%d",ok); eturn 0; d the output. clude <stdio.h> main() nt var; par=10; printf("value of var= %d\n",var); printf("value of var= %d\n",var); printf("value of var= %d\n",var); eturn 0;</stdio.h>	-100 3. 100 4. Error 1. ERROR 2. value of var= -10 value of var= 10 3. value of var= 10 value of var= 10 4.	
clude <stdio.h> main() nt var; var=10; vrintf("value of var= %d\n",var); var=++10; vrintf("value of var= %d\n",var); eturn 0;</stdio.h>	3. 100 4. Error 1. ERROR 2. value of var= -10 value of var= 10 3. value of var= 10 value of var= 10	
clude <stdio.h> main() nt var; rar=-10; orintf("value of var= %d\n",var); rar=++10; orintf("value of var= %d\n",var); etum 0;</stdio.h>	1. ERROR 2. value of var= -10 value of var= 10 3. value of var= 10 value of var= 10	
clude <stdio.h> main() nt var; var=10; varif("value of var= %d\n",var); var=+ +10; vintf("value of var= %d\n",var); eturn 0;</stdio.h>	4. Error 1. ERROR 2. value of var= -10 value of var= 10 3. value of var= 10 value of var= 10 4.	3.0
clude <stdio.h> main() nt var; var=10; varif("value of var= %d\n",var); var=+ +10; vintf("value of var= %d\n",var); eturn 0;</stdio.h>	Error 1. ERROR 2. value of var= -10 value of var= 10 3. value of var= 10 value of var= 10 4.	3.0
main() nt var; yar=10; printf("value of var= %d\n",var); yar=++10; printf("value of var= %d\n",var); eturn 0;	1. ERROR 2. value of var= -10 value of var= 10 3. value of var= 10 value of var= 10 4.	3.0
main() nt var; yar=10; printf("value of var= %d\n",var); yar=++10; printf("value of var= %d\n",var); eturn 0;	ERROR 2. value of var= -10 value of var= 10 3. value of var= 10 value of var= 10 4.	3.0
main() nt var; yar=10; printf("value of var= %d\n",var); yar=++10; printf("value of var= %d\n",var); eturn 0;	2. value of var= -10 value of var= 10 3. value of var= 10 value of var= 10 4.	3.0
main() nt var; yar=10; printf("value of var= %d\n",var); yar=++10; printf("value of var= %d\n",var); eturn 0;	value of var= -10 value of var= 10 3. value of var= 10 value of var= 10 4.	3.0
main() nt var; yar=10; printf("value of var= %d\n",var); yar=++10; printf("value of var= %d\n",var); eturn 0;	value of var= 10 3. value of var= 10 value of var= 10 4.	3.0
var=10; vrintf("value of var= %d\n",var); var=++10; vrintf("value of var= %d\n",var); eturn 0;	3. value of var= 10 value of var= 10 4.	3.0
orintf("value of var= %d\n",var); var=+ +10; orintf("value of var= %d\n",var); eturn 0;	value of var= 10 value of var= 10 4.	3.0
orintf("value of var= %d\n",var); eturn 0;	value of var= 10 value of var= 10 4.	3.0
eturn 0;	value of var= 10 4.	
d the output	4.	
d the output		
	value of var= 10	
	value of var= 11	
	1.	
	x=100	
	x=100	
clude <stdio.h></stdio.h>	2.)	
main() { nt x;	x=100	
x=100,30,50;	x=50	
x=(100,30,50);	3.	2.0
rrintf("x=%d\n",x); eturn 0;	x=50	
d the output	x=50	
	4.	
	x=50	
	x=100	
	1	
clude <stdio.h> d main()</stdio.h>		
switch(a){		
printf("Hello\n");		3.0
default: printf("OK\n");		
	OK .	
d the output	4.	
	Error	
	I.)	
clude <stdio.h></stdio.h>	var : E, 69	
d main()	2.	
insigned short var='B';	var : E, 68	
var++;	3.	1.0
printt("var : %c , %d ", var,var);	var : D, 69	
d the output	4.	
- · · · · · · · · · · · · · · · · · · ·		
e d max	main() { it x;	Selude Satio h Satio

S.NO.	Questions	Choices	Answers
	#include <stdio.h> void main()</stdio.h>		
	{	1.	
	int a=2; switch(a/2*1.5)	One	
	{ case 1:	2.	
	printf("One"); break;	Two	
286	case 2: printf("Two");	3.	4.0
	break;	Other	
	default: printf("Other");	4.	
	break;	Error	
	}		
	Find the output		
	#include <stdio.h> void main()</stdio.h>		
	{ short a=2;	1.	
	switch(a)	One	
	{ case 1L:	2.	
287	printf("One\n"); break;	Two	2.0
207	<pre>case 2L: printf("Two\n");</pre>	3.	2.0
	break; default:	Else	
	<pre>printf("Else\n");</pre>	4.	
	break;	Error	
	} Find the output		
	#include <stdio.h></stdio.h>	1.	
	woid main()	2 nd	
	{ short day=2;	2.	
	switch(day)	22 nd	
288	case 2: case 22: printf("%d nd",day);	3.	3.0
200	break;	Error	3.0
	default: printf("%d th",day);	4.	
	break; }	2 nd	
	Find the output	22 nd	
		1.	
		Addition is = 20	
	#include <stdio.h> int main(){</stdio.h>		
	int a,b,c; a=0x10; b=010;	2.	
289	c=a+b; printf("\nAddition is= %d",c);	Addition is = 24	2.0
207	return 0;	J.	2.0
	}	Addition is = Garbage	
	Find the output.	4.	
		Error	
		1.	
		AABB1	
	What are continued	AABB1	
	#include <stdio.h> void main()</stdio.h>	2.	
	{ int x;	1	
	x= (printf("AA") printf("BB")); printf("%d",x);	1	
290	printf("\n");	3.	4.0
	x= (printf("AA")&&printf("BB"));	AABB1	
	printf("%d",x); }	AAI	
	Find the output	4.	
	F **:	AAI	
		AABB1	
			<u> </u>

S.NO.	Questions	Choices	Answers
291	$a = array(null => 'a', true => 'b', false => 'c', 0 => 'd', 1 => 'e', " => 'f'); echo count($a), "\n"; What will be printed?$	1.2 2.3 3.4 4.5	2.0
292	\$a = array(); if (\$a[1]) null; echo count(\$a), "\n"; What will be printed?	1.0 2.1 3.2 4.Code wont work	1.0
		1.)	
		Incremental development	
		2.	
		Agile	
293	What is the most common approach for the development of application system now?	3.	1.0
		Waterfall	
		4.	
		None of the options	
		1.	
		RAW	
		2.	
294	data type can store unstructured data	CHAR	1.0
	and type the state and the and	3.	1.0
		NUMERIC	
		4.	
		VARCHAR	
		1.	
		infrastructure mode	
		2.	
		ad-hoc mode	
295	A wireless network interface controller can work in	3.	3.0
		both infrastructure and ad-hoc mode	
		4.	
		none	
		1.	
		The omitted value takes "undefined"	
		2.	
	Consider the code snippet given below		
296	var count = [1,,3];	This results in an error	1.0
	What is the observation made?	3.	
		This results in an exception	
		4.	
		Can't predict	
		1.	
		x = (-y); w = (x = (y = z));	
		q = a?b:(c?d:(e?f:g));	
	Consider the following investment statements	2.	
	Consider the following javascript statements	x = a?b:(c?d:(e?f:g)); $q = \sim(-y); w = (x = (y = z));$	
297	x = ~-y; w = x = y = z; q = a?b:c?d:e?f:g;	3.	4.0
	The above code snippet is equivalent to:	$x = (x = (y = z)); w = \sim (-y);$ $x = a^2b^2(a^2d^2(a^2f^2a^2));$	
		<pre>q = a?b:(c?d:(e?f:g)); 4.</pre>	
		x = (-y); w = (x = (y = z));	
		q = (c?d:(e?f:g));	

S.NO.	Questions	Choices	Answers
		1.	
		text==pattern	
		2.	
		text.equals(pattern)	
298	var text = "testing: 1, 2, 3"; // Sample text var pattern = $/\d+/g$ // Matches all instances of one or more digits	3.	4.0
	In order to check if the pattern matches with the string "text", the statement is	text.test(pattern)	
		4.	
		pattern.test(text)	
		1.	
		Partial Key	
		2.	
		Candidate Key	
299	is the minimal super key	3.	2.0
ı		Surrogate Key	
		4.	
		Unique Key	
300	is a built - in JavaScript function which can be used to execute another function after a given time interval.	1.Timeout() 2.TimeInterval() 3.setTimeout() 4.All of the above	3.0
	g	I.	
		alter	
		2.	
		update	
301	command can be used to modify a column in a table	3.	1.0
		set	
		4.	
		create	
		1.	
		Constraints	
		2.	
		Stored Procedure	
302	is preferred method for enforcing data integrity	3.	1.0
		Triggers	
		4.	
		Cursors	
		1.	
		very low	
		2.	
		low	
303	66.6% risk is considered as	3.	4.0
		moderate	
		4.	
		high	
304	8086 microprocessor is interfaced to 8253 a programmable interval timer. The maximum number by which the clock frequency on one of the timers is divided by	1.216 2.28 3.210 4.220	1.0
	· · · · · · · · · · · · · · · · · · ·		

S.NO.	Questions	Choices	Answers
		1.	
		User Interfaces	
		2.	
		Web Services	
305	Which activity most easily lends itself to incremental design?	3.	3.0
		Enterprise resource planning	
		4.	
		Embedded Sofftware	
		1.Gantt Chart 2.	
		Structure Chart	
		3.	
306	Graphical representation of the project, showing each task and activity as horizontal bar whose length is proportion to time taken for a completion of that activity is called	Pert Chart	1.0
	tengin is proportion to time taken for a completion of that activity is called	4.	
		Time Line	
		1.	
		Software suffers from exposure to hostile environments	
		2.	
		Defects are more likely to arise after software has been used often	
3017.	Software deteriorates rather than wears out because	3.	3.0
		Multiple change requests introduce errors in component	
		interactions	
		4.	
		Software spare parts become harder to order	
		1.Estimation and planning 2.	
		Analysis and design	
		3.	
3018	The 40-20-40 rule suggests that the least amount of development effort can be spent on	Coding	3.0
		4.	
		Testing	
		1.	
		A reasonable approach when requirements are well defined	
		2.	
		A Useful approach when a customer cannot define requirements	
3019.	The prototyping model of software development is	clearly	2.0
3012	The prototyping model of software development is	3.	2.0
		The best approach to use projects with larger development teams	
		4.	
		A risky model that rarely produces a meaningful product	
		1.	
		component analysis	
		2.	
		requirements modification	
310	In reuse-oriented software engineering the last stage is	3.	3.0
		system validation	
		4.	
		system design	

S.NO.	Questions	Choices	Answers
		1.	
		Feasibility study	
		2.	
311	Which of the following is not a part/product of requirements engineering?	Requirements validation	4.0
		3.	
		System models	
		4.	
		Architectural design	
		1.	
ı		you decide what software you will use to program 2.	
		you develop a prototype and show it to the client	
3 112 s	oftware Specification is the process where		3.0
		You find out what services are required from the system	
		4.	
		none	
		1.	-
		everything is coded at once, so the customer receives the full	
		product	
		2.	
		replacement systems are easily developed with full features that clients expected from the old system	
3 113 V	hat is an advantage of incremental delivery?	3.	3.0
		Customers can use prototypes and gain experience that informs	
		their requirements for later systems	
		4.	
		none of the mentioned	
		1.waterfall model 2.	
		Incremental model	
2 1:4		3.	4.0
3 I.H.	Phis is a software development process model	Boehm's Spiral model	4.0
		4.	
		all	
		1.	
		architectural design	
		2.	
31 ¹ 5:	What is the type of software design that defines interfaces between system	Interface Design	2.0
	components?	3.	
		component Design	
		4.	
		database design	
		1.	
		454	
	The size of the data count register of a DMA controller is 16 bits. The appropriate to the first of the data count register of a DMA controller is 16 bits.		
	The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The		
316	minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is		3.0
		3.	
		456	
		4.	
		457	
ı			

.NO.	Questions	Choices	Answer
	•	1.	
		D type flip-flop	
		2.	
	Frankish of the Cilliania of in Clark the second should be found from the second second of	R S type flip-flop	
317	For which of the following flip-flop the output clearly defined for all combinations of two inputs?		3.0
		3.	
		J K flip-flop	
		4.	
		T flip-flop	
		1.	
		Next State	
		2.	
		Present State	
	In excitation table of D flipflop next state is equal to		
318		3.	4.0
		Previous State	
		4.	
		D State	
		1	-
		1.	
		33	
	A computer system implements 8 kilobyte pages and a +32-bit physical address space. Each page	2.	
	table entry contains a valid bit, a dirty bit, three permission bits, and the translation. If the	35	
319	maximum size of the page table of a process is 24 megabytes, the length of the virtual address supported by the system is bits.	3.	4.0
	, ,	34	
		4	
		**	
		36 1.	1
		Mapping	
		2.	
320	A graphical display of the fundamental products in a truth-table is known as	Graphing	4.0
		3.	
		T-map	
		4.	
		Karnaugh-Map	
		1.	
		30	
		2.	
	A processor can support a maximum memory of 4 GB, where the memory is word-addressable (a	31)	
321	word consists of two bytes). The size of the address bus of the processor is at leastbits	3.	2.0
		32	
		4.	
		33	
		<u>I</u>	1

S.NO.	Questions	Choices	Answers
		1.	
		Indirect addressing	
	A Stack-organized Computer uses instruction of	2. Two-addressing	
322		3.	3.0
		Zero addressing	
		4.	
		Index addressing	
		1.	
		19	
		2.	
	A 4-way set-associative cache memory unit with a capacity of 16 KB is built using a block size of 8 words. The word length is 32 bits. The size of the physical address space is 4 GB. The number of	20	
323	bits for the TAG field is	3.	2.0
		21	
		4.	
		22	
		1.	
		Encoder	
		2.	
	A circuit that converts n inputs to 2^n outputs is called	Decoder	
324		3.	1.0
		Comparator	
		4.	
		Carry Look Ahead	
		1.	
		849	
		2.	
	24. The effective address in the relative address mode, when an instruction is read from the	850	
325	memory is	3.	2.0
		801	
		4.	
		802	
		1.	
		It makes it seem like there's more memory in the computer	
		2.	
		It reduces the number of memory copies required	
	Buffering is useful because		
326		3.	4.0
		It allows all device drivers to use the same code	
		4.	
		It allows devices and thee CPU to operate asynchronously	

Questions	Choices	Answer
stage instruction pipeline, where all stages are perfectly balanced. Assume that there he overhead of pipelining. When an application is executing on this 6-stage pipeline, whieved with respect to non-pipelined execution if 25% of the instructions incur 2	1. 1 2.	3.0
	4.5	
ffers each of size equal to disk block size, out of which one buffer is reserved for	Relation r(R) is in the outer loop. 2. Relation s(S) is in the outer loop. 3. Join selection factor between r(R) and s(S) is more than 0.5 4. Join selection factor between r(R) and s(S) is less than 0.5.	1.0
word wide. When a write request is made, the bus is occupied for 100 nanoseconds a, address, and control signals. During the same 100 ns, and for 500 ns thereafter, memory module executes one cycle accepting and storing the data. The (internal) ifferent memory modules may overlap in time, but only one request can be on the bunch maximum number of stores (of one word each) that can be initiated in 1	1. 5535 2. 865335 3. 53892 4. 10000	4.0
the same input, a program running on P2 takes 25% less time but incurs 20% more cles per instruction) as compared to the program running on P1 If the clock		2.0
	1. relative address mode. 2. index addressing mode. 3. register mode 4.	1.0
	processors P1 and P2 executing the same instruction set. Assume that under identical the same input, a program running on P2 takes 25% less time but incurs 20% more cles per instruction) as compared to the program running on P1 If the clock P1 is 1GHz, then the clock frequency of P2 (in GHz) is	in (relation algebra) between relations (R) and s(S) using the nasted loop method. It (relation algebra) between relations (R) and s(S) using the nasted loop method. If (relation algebra) between relations (R) and s(S) using the nasted loop method. If (relation algebra) between relations (R) and s(S) using the nasted loop method. If (relation algebra) between relations (R) and s(S) using the nasted loop method. If (relation size or a size of the court loop. Relation (R) is in the outer loop. Relation (R) is in the outer loop. Relation (R) is in the outer loop. Join selection factor between (R) and s(S) is more than 0.5 d. Join selection factor between (R) and s(S) is note than 0.5 d. Join selection factor between (R) and s(S) is less than 0.5. It (SS) It (SS)

S.NO.	Questions	Choices	Answers
5(0.	Questions	1.	7 HIS WEIS
		8	
	How many address bits are needed to select all memory locations in the 16K × 1 RAM?	10	
332		3.	3.0
		14	
		4	
		16	
		1.	
		Width of tag comparator	
	If the associativity of a processor cache is doubled while keeping the capacity and block size unchanged, which one of the following is guaranteed to be NOT affected?	Width of set index decoder	
333		3.	4.0
		Width of way selection multiplexer	
		4	
		Width of processor to main memory data bus	
		1.	
		11 bits	
		2.	
	If the main memory is of 8K bytes and the cache memory is of 2K words. It uses associative	21 bits	
334	mapping. Then each word of cache memory shall be		3.0
		3	
		16 bits	
		4.	
		20 bits	
		1.	\vdash
		interrupt of lower priority	
		3. 14 4. 16 1. Width of tag comparator 2. Width of set index decoder 3. Width of way selection multiplexer 4. Width of processor to main memory data bus 1. 11 bits 2. 2. 1 bits 3. 16 bits 4. 20 bits 1. interrupt of lower priority 2. interrupt of higher priority	
		2.	
		interrupt of higher priority	
	If two interrupts, one of higher priority and other of lower priority occur simultaneously, then the		
335			2.0
		both the interrupts	
		4.	
		none of the mentioned	
		1.	
		omary sequence	
		2.	
336	Minterms are arranged in map in a sequence of	gray code	2.0
330			2.0
		ibinary variables	
		4.	
		BCD code	

S.NO.	Questions	Choices	Answers
		1.	
		As an alternative to register allocation at compile time	
		2.	
337	Register renaming is done is pipelined processors	For efficient access to function parameters and local variables	3.0
331		3.	3.0
		To handle certain kinds of hazards	
		4.	
		As part of address translation	
		1.	
		X + Y + Z	
		2.	
		XY + YZ	
338	Simplified form of the boolean expression $(X + Y + XY) (X + Z)$ is		3.0
330		3.	3.0
ı		X + YZ	
		4.	
		XZ + Y	
		1.	
ı		1	
ı		2.	
	The 16-bit 2's complement representation of an integer is 1111 1111 1111 0101, its decimal representation is	2	
339		3.	4.0
		3	
		4.	
		-11	
		1.	
		Absolute	
		2.	
	The addressing mode used in an instruction of the form ADD R1, R2 is	Indirect	
340		3.	3.0
		Index	
		4.	
		Register	
		1	_
		1.	
		10 address, 16 data lines	
		2.	
	The capacity of a memory unit is defined by the number of words multiplied by the number of	11 address, 8 data lines	
341	bits/word. How many separate address and data lines are needed for a memory of 4 K \times 16?	3.	4.0
ı		12 address, 12 data lines	
		4.	
		12 address, 16 data lines	

SNO. Questions Inered by host to get input 2. read by controller to get input 3. written by host to send output 4. written by host to start a command I. Flash memory 2. Plant her Firmware are stored in read-only memory or chips. 343 The Firmware are stored in read-only memory or chips. Inherenation of the performance of cache memory is frequently measured in terms of a quantity called miss ratio 3. average ratio 4. ratio	3.0
The data-in register of I/O port is The data-in read by controller to get input 3. Written by host to send output 4. Written by host to send output 4. Written by host to send output 4. Plash memory 2. Dynamic random access memory 3. BEPROM 4. Random-access memory 1. In hit ratio 2. miss ratio 3. average ratio 4.	
The data-in register of I/O port is The virtlen by host to send output 4. The price in put The data-in register of I/O port is The photon to send output 4. The price in put The data-in register of I/O port is The photon to send output 4. The price in put The data-in register of I/O port is The photon to send output 4. The price in put The data-in register of I/O port is The photon to send output 4. The price in put The data-in register of I/O port is The photon to send output 4. The price in put The data-in register of I/O port is The photon to send output 4. The performance are stored in read-only memory orchips.	
3.3.3.3.4.3.4.4 The performance of cache memory is frequently measured in terms of a quantity called 3.4.4 Written by host to send output 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	
3.3. written by host to send output 4.4. written by host to start a command 1. Flash memory 2. Dynamic random access memory 3. EEPROM 4. Random-access memory 4. Random-access memory 5. Linhit ratio 6. Linhit ratio 7. Linhit ratio 8. Against a command 8. Against a command 9. Commander and the start a comma	
4. written by host to start a command 1. Flash memory 2. Dynamic random access memory 3. EEPROM 4. Random-access memory 1. hit ratio 2. miss ratio 3. average ratio 4.	3.0
4. written by host to start a command 1. Flash memory 2. Dynamic random access memory 3. EEPROM 4. Random-access memory 1. hit ratio 2. miss ratio 3. average ratio 4.	3.0
The Firmware are stored in read-only memory or chips. The Firmware are stored in read-only memory or chips. The performance of cache memory is frequently measured in terms of a quantity called The performance of cache memory is frequently measured in terms of a quantity called The performance of cache memory is frequently measured in terms of a quantity called The performance of cache memory is frequently measured in terms of a quantity called average ratio 4.	3.0
1. Flash memory 2. Dynamic random access memory 3. EEPROM 4. Random-access memory 1. hit ratio The performance of cache memory is frequently measured in terms of a quantity called The performance of cache memory is frequently measured in terms of a quantity called average ratio 4.	3.0
The Firmware are stored in read-only memory or chips. The Firmware are stored in read-only memory or chips. The Firmware are stored in read-only memory or chips. EEPROM 4. Random-access memory 1. hit ratio 2. miss ratio 3. average ratio 4.	3.0
The Firmware are stored in read-only memory orchips. 2. Dynamic random access memory 3. EEPROM 4. Random-access memory 1. hit ratio 2. miss ratio 3. average ratio 4.	3.0
The Firmware are stored in read-only memory orchips. The performance of cache memory is frequently measured in terms of a quantity called The performance of cache memory is frequently measured in terms of a quantity called The performance of cache memory is frequently measured in terms of a quantity called average ratio 4.	3.0
343 3. EEPROM 4. Random-access memory 1. hit ratio The performance of cache memory is frequently measured in terms of a quantity called miss ratio 3. average ratio 4.	3.0
3. EEPROM 4. Random-access memory 1. hit ratio 2. miss ratio 3. average ratio 4.	3.0
4. Random-access memory 1. hit ratio 2. miss ratio 3. average ratio 4.	
Random-access memory 1. hit ratio The performance of cache memory is frequently measured in terms of a quantity called miss ratio 3. average ratio 4.	
The performance of cache memory is frequently measured in terms of a quantity called miss ratio 3. average ratio 4.	
The performance of cache memory is frequently measured in terms of a quantity called miss ratio 3. average ratio 4.	
The performance of cache memory is frequently measured in terms of a quantity called miss ratio 3. average ratio 4.	
The performance of cache memory is frequently measured in terms of a quantity called miss ratio 3. average ratio 4.	
The performance of cache memory is frequently measured in terms of a quantity called miss ratio 3. average ratio 4.	
The performance of cache memory is frequently measured in terms of a quantity called miss ratio 3. average ratio 4.	
miss ratio 3. average ratio 4.	
average ratio 4.	1.0
4.	
ratio	
-256	
2.	
120	
The smallest integer than can be represented by an 8-bit number in 2?s complement form is -128	2.0
3.	
-127	
4.	
1.	
JK flip flop needs a clock pulse	
2.	
The main difference between JK and RS flip-flop is that 346 There is a feedback in JK flip-flop 3.	3.0
The state of the s	
JK flip-flop accepts both inputs as 1	
4.	
JK flip-flop is acronym of Junction cathode multi-	
	vibrator

S.NO.	Questions	Choices	Answers
		I.	
		Clock rate	
		2.	
347	The rate at which a computer clock deviates from a perfect reference clock is called as	Clock speed	3.0
		3.	
		clock drift rate	
		4.	
		Transmission Bandwidth	
		1.	
		21	
	The little call of the call of	2.22	
348	The width of the physical address on a machine is 40 bits. The width of the tag field in a 512 KB 8-way set associative cache is bits		4.0
		3.	
		23	
		4.	
		24	
		1.	
		3	
		2.	
240	To build a mod-19 counter the number of flip-flops required is	5	2.0
349		3.	2.0
		7	
		4.	
		9	
		1.	
		69282	
		2.	
		69272	
	Using 10's complement 72532- 3250 is		
350		3.	1.0
		69252	
		4.	
		69232	
		1.	+
		How they are initiated	
		2.	
251	What is the main difference between traps and interrupts?	The kind of code that's used to handle them	1.0
351		3.	1.0
		Whether or not the scheduler is called	
		4.	
		How the operating system returns from them	
		opening system retains from them	
1			

S.NO.	Questions	Choices	Answers
		1.	
		Memory Read cycle	
		2.)	
352	When an instruction is read from the memory, it is called	Fetch cycle	3.0
		3.	
		Instruction cycle	
		4.	
		Memory write cycle	
		I.	
		move R1, R2	
		2	
		2. move LOC1, LOC2	
353	Which amongst the following refers to Absolute addressing mode	move EOC1, EOC2	1.0
		2	
		3.	
		move LOC1, R2	
		4.	
		move LOC2, R1	
		1.	
		RAID level 1	
		2.	
354	Which level of RAID refers to disk mirroring with block striping?	RAID level 2	1.0
		3.	
		RAID level 0	
		4.	
		RAID level 3	
		1.	
		1 ⊕ 0 = 1	
		2.	
	Which of the following logic expression is incorrect?	1 ⊕ 1 ⊕ 0 = 1	
355			2.0
		3.	
		1 ⊕ 1 ⊕ 1 = 1	
		4. 1 ⊕ 1 = 0	
		1 0 1 - 0	
		I.	
		FIFO	
256	Which of the following paging algorithms is most likely to be used in a virtual memory system?	2.	
356		Second chance	3.0
		3.	
		Least Recently Used	
		4.	
		Least Frequently Used	1

S.NO.	Questions	Choices	Answers
	-	1.	
		expansion bus	
		2.	
357	which one of the following connects high-speed high-bandwidth device to memory subsystem and	DCI l	1.0
551		3.	1.0
		SCSI bus	
		4.	
		none of the mentioned	
		1.	
		Distributed parity	
		2.	
	Which one of these is characteristic of RAID 5?	No Parity	
358	which one of these is characteristic of KAID 3:		1.0
		3.	
		All parity in a single disk	
		4.	
		Double Parity	
		1.	
		RAID 1	
		2.	
		RAID 4	
359	Which two RAID types use parity for data protection?		4.0
		RAID 1+0	
		4.	
		RAID 5	
		1.	
		-10111	
		2.	
		-10011	
360	X=1010100 and Y=1000011 using 1's complement Y-X is		3.0
		3.	
		-10001	
		4.	
		-11001	
		1.	
		Zero	
	The minimum number of NAND cotes acquired to involve at the Destruction A 1 AD1.	2.	
361	The minimum number of NAND gates required to implement the Boolean function. $A + AB' + AB'C$ is equal to		1.0
-01		3.	
		4	
		4.	
		7	
		1	1

S.NO.	Questions	Choices	Answers
		1.	
		ab + (cd)' + cd + bd'	
		2.	
		a(b+c)+cd	
	Which of the following boolean expressions is not logically equivalent to all of the rest?	3.	
362	· · · · · · · · · · · · · · · · · · ·	ab + ac + (cd)'	3.0
		4.	
		bd' + c'd' + ab + cd	
		1	
		1.	
		Encoder	
		2.	
262	Which of the following unit will choose to transform decimal number to binary code ?	Decoder	1.0
363		3.	1.0
		Multiplexer	
		4.	
		Counter	
		1.Width of tag comparator	
	If the associativity of a processor cache is doubled while keeping the capacity and block size	2. Width of set index decoder	
364	unchanged, which one of the following is guaranteed to be NOT affected?		4.0
		3. Width of way selection multiplexer	
		4. Width of processor to main memory data bus	
		1.	
		Hash function	
		2.	
	The correspondence between the main memory blocks and those in the cache is given by	Mapping function	
365	The correspondence between the main memory blocks and those in the cache is given by	3.	2.0
		Locale function	
		4.	
		Assign function	
		1.	
		33)	
	The stage delays in a 4-stage pipeline are 800, 500, 400 and 300 picoseconds. The first stage (with	2.	
	delay 800 picoseconds) is replaced with a functionally equivalent design involving two stages with	34	
366	respective delays 600 and 350 picoseconds. The throughput increase of the pipeline is	3.	1.0
		35	
		4.	
		32	
		1.	\vdash
		driver	
		2.	
	What is the software that runs a computer, including scheduling tasks, managing storage, and	application suitex 3.	
367	handling communication with peripherals?	operating system	3.0
		operang system	
		4.	
		bluetooth technology	

S.NO.	Questions	Choices	Answers
		1.2n	
368		2.	
	For an undirected graph with n vertices and e edges, the sum of the degree of each vertex isequal	(2n-1)/2	3.0
	to	3.2e	
		4.	
		pow(e,2)/2 1.	
		higher-age	
		2.	
369		increase-age	3.0
307	Which attribute is used to extend the lifetime of a cookie?	3.	3.0
		max-age	
		4.	
		lifetime	
		1.	
		Internal Style	
		2.	
		Inline Style	
370	ch2 at da="aalambha"N am Dhac/b2N is		2.0
	<h2 style="color:blue">I am Blue</h2> is way of styling HTML elements	3.	
		External Style	
		4.	
		Default	
		1.	
		Web 1.0	
		2.	
		Web 2.0	
371	is referred to as Static Web	3.	1.0
		Web 3.0	
		4.	
		Web 4.0	
		1.	
		10, 8, 7, 3, 2, 1, 5 2.	
372	A priority queue is implemented as a Max-Heap. Initially, it has 5 elements. The level-order	10, 8, 7, 2, 3, 1, 5	1.0
	traversal of the heap is: 10, 8, 5, 3, 2. Two new elements 1 and 7 are inserted into the heap in that order. The level-order traversal of the heap after the insertion of the elements is:	3.	1.0
	•	10, 8, 7, 1, 2, 3, 5	
		4.	
		10, 8, 7, 5, 3, 2, 1	
		1.	
		full binary tree	
	A binary tree in which if all its levels except possibly the last, have the maximum number of nodes	2.	
373	A binary tree in which it all its levels except possibly the last, have the maximum number of nodes and all the nodes at the last level appear as far left as possible, is known as	AVL tree 3.	1.0
		threaded tree	
		threaded free 4.	
		complete binary tree	<u> </u>

S.NO.	Questions	Choices	Answers
		1.	
		34	
		2.	
274		99	4.0
374	A binary tree T has 20 leaves. The number of nodes in T having two children is	3.	4.0
		7	
		<u>4.</u>	
		19	
		1.	
		3	
		2.	
	A process executes the code fork ();	4	
	fork (); fork ();	3.	3.0
	The total number of child processes created is	<mark>7</mark>	
		4.	
		8	
		1.	$\vdash \vdash \vdash$
		both as a server and a client	
		2.	
376	A Search engine can serve as	As Client always	1.0
370		3.	1.0
		As Server always	
		4.	
		Neither client nor server 1.	
		Generalization	
		2.	
		Association	
377	An object of class A receives a message with an argument that is an instance of class B. Identify the type of relationship between class A and Class B:	3.	1.0
	the type of telationship between class A and Class B.	Aggregation	
		4.	
		Realization	
		1.	\vdash
		505	
		lient always 1.0 erver always er client nor server ralization ciation 1.0	
	Consider an undirected group C where celf loans are all lives I The consider an incident of the constant of th	506	
378	Consider an undirected graph G where self-loops are not allowed. The vertex set of G is $\{(i,j): 1=i=12, 1=j=12\}$. There is an edge between (a,b) and (c,d) if $ a-c =1$ and $ b-d =1$. The	3.	2.0
	number of edges in this graph is	507	
		4.	
		508	
		1.	\vdash
		1/8	
		2.	
379	Consider an undirected random graph of eight vertices. The probability that there is an edge		3.0
3/9	between a pair of vertices is ½. What is the expected number of unordered cycles of length three?	3.	5.0
		4	
		r. 8	
		U .	

S.NO.	Questions	Choices	Answers
	·	1.	
	Consider the C function given below. int f(int j)	The function returns 0 for all values of j.	
	{	2.	
	static int $i = 50$; int k ;	The function prints the string something for all values of j.	
380	if (i == j) {		4.0
	<pre>printf("something"); k = f(i);</pre>	3.	
	return 0;	The function returns 0 when $j = 50$.	
	} else return 0;	<u>4.</u>	
	} Which one of the following is TRUE?	The function will exhaust the runtime stack or run into an infinite loop	
		when $j = 50$.	
		1.	
ı		ABCD EFGH	
	Consider the following function written the C programming language. void foo (char * a) {	2.	
	if (* a & & * a ! =' '){	ABCD	
381	putchar (*a); }	3.	1.0
	}	HGFE DCBA	
	The output of the above function on input 'ABCD EFGH' is	HUPE DUBA	
		<mark>4.</mark>	
		DCBA	
		1.	
		+ - 1 6 7 * 2 ? 5 - 3 4 *	
		2.	
	Consider the following New-order strategy for traversing a binary tree: 1) Visit the root;	+ 1 * 6 7 ? 2 - 5 * 3 4	
382	2)Visit the right subtree using New-order; 3)Visit the left subtree using New-order;	3.	3.0
	The New-order traversal of the expression tree corresponding to the reverse polish expression 3 4 * $5 - 2 ? 6 7 * 1 + -$ is given by:	-+1*76?2-5*43	
		4.	
		. 1 7 6 * + 2 5 4 3 * - ? -	
		1.	-
	Consider the following program:	2	
	int f(int *p, int n)	2	
	if $(n \le 1)$ return 0;	1	
383	else return max (f (p+1, n-1),p[0]-p[1]); }	3	3.0
	int main() {	2	
	int a[] = {3,5,2,6,4}; printf("%d", f(a,5));	4	
	The value printed by this program is	4.	
	The value printed by this program is	4	
		1.	
	Consider the following recursive C function.	15	
	Void get (int n) {if (n<1) return;	2.	
384	get (n-1)	25	2.0
	get (n-3); printf ("%d",n);	3.	[
	If get(6) function is being called in main () then how many times will the get() function be invoked before returning to the main ()?	43	
	· · · · · · · · · · · · · · · · · · ·	4.	
		24	

S.NO.	Questions	Choices	Answers
		1.	
	Consider the function func shown below:	7	
	int func(int num) {	2.	
	int count = 0; while (num) {	8	
	count++; num>>= 1;	3.	3.0
	} return (count);	9	
	}	4.	
	The value returned by func(435)is	0	
		1.	
		80 30 62 114 77 9 99	
		2.	
386	For the array (77,62,114,80,9,30,99), write the order of the elements after two passes using the	114 30 62 77 9 99 3.	2.0
	Radix sort	9 114 30 62 77 80 99	
		4.	
		9 30 62 77 80 99 114	
		1.	
		list>	
		2.)	
		< <u>0l></u>	
387	How can you make a list that lists the items with numbers?	3.	2.0
		<dl></dl>	
		4.	
		1.	
		using System.out.println 2.	
		using Document.Write("Hello World")	
388	How do you write "Hello World" in PHP?	3.	4.0
	now do you write Hello world III III.	"Hello World"	
		4.)	
		using echo("Hello World")	
		1.	
		UDP	
		2.	
		TCP	
389	HTTP is implemented over	3.	2.0
		SMTP	
		4.	
		РОР	
		1.	
		isolated 2.	
200		complete	2.0
390	If every node u in G adjacent to every other node v in G, A graph is said to be	3.	2.0
		finite	
		4.	
		strongly connected	

Questions	Choices	Answers
	1. A tree has no bridges 2.	
	A bridge cannot be part of a simple cycle 3.	4.0
ing statements is title:	Every edge of a clique with size 3 is a bridge (A clique is any compete sub graph of a graph) 4.	
	A graph with bridges cannot have a cycle	
	GET)	
	2.	
TP, which method gets the resource as specified in the URI	POST	3.0
r, which method gets the resource as specified in the OKI	3. PUT	
	4.	
	TRACE	
	Providing the library for the Java program	
	2.	
ackage is a grouping mechanism with the purpose of	Controlling the visibility of the classes, interfaces and methods	2.0
	3.	2.0
	Replacing header file used in C/C++	
	4.	
	An application framework 1.	
	full: (REAR+1) mod n==FRONT empty: REAR ==FRONT 2.	
on a simple group of acceptate (n. 2.1) also contains instrumented with an array of a also contains	(REAR) mod n==FRONT	
se a circular queue of capacity (n? 1) elements is implemented with an array of n elements. e that the insertion and deletion operations are carried out using REAR and FRONT as ndex variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue	empty: REAR ==FRONT 3.	1.0
d queue empty are	(REAR+1) mod n==Rear	
	empty: REAR ==FRONT 4.	
	full: (FRONT+1) mod n==FRONT empty: REAR ==FRONT	
	1. a != n	
llowing function computes the maximum value contained in an integer array size n (n $>= 1$). κ (int *p, int n) {	2.	
, b=n-1;) {	b != 0	1.0
$\leq p[b]) \{ a = a+1; \}$ $p = b-1; \}$	3.	4.0
p[a];	b > (a+1) 4.	
ssing loop condition is	b!=a	
	1.	
		
	2. <ins></ins>	
llowing HTML element helps making animated text	3.	4.0
	<mark></mark>	
	4.	
	<marquee></marquee>	
llow	ring HTML element helps making animated text	2. <ins> <ing 3.="" <mark="" animated="" element="" helps="" html="" making="" text=""> 4.</ing></ins>

S.NO.	Questions	Choices	Answers
		1.	
		63	
		2.	
397	The number of ways in which the numbers 1, 2, 3, 4, 5, 6, 7 can be inserted in an empty binary	64	2.0
371	The number of ways in which the numbers 1, 2, 3, 4, 5, 6, 7 can be inserted in an empty binary search tree, such that the resulting tree has height 6, is	3.	2.0
		65	
		4.	
		66	
		1.	
		To cache page translation information	
		2.	
398	The purpose of a TLB is	To cache frequently used data 3.	2.0
	The purpose of a TED is	To hold register values while a process is waiting to be run	
		4.	
		To hold the start and length of the page table	
		1.	
		2.	
399		<h>></h>	3.0
399	The following HTML element is used to display horizontal line	3.	3.0
		<hr/> >	
		4.	
		<h2></h2>	
		1.	
	static	static	
		2.	
400	To prevent any method from overriding, the method has to declared as,	const	3.0
400			3.0
		3.	
		<mark>final</mark> 4.	
		extends	
		I.	
		multiprogramming	
		2.	
401		multiuser interfacing	1.0
401	Use of allows for some processes to be waiting on I/O while another process executes.	3.	1.0
		Random scheduling	
		4.	
		Variable cpu cycles	
		1.	
		ServletRequest and ServletResponse 2.	
		2. HttpServletRequest and HttpServletResponse	
402	What are the parameters of the service method?	import retroquest and ratport victicsponse	2.0
	mad are the parameters of the service method:	3.	
		HttRequest and HttpResponse	
		4. Paguest and Pagnonce	
		Request and Response	

.NO.	Questions	Choices	Answ
		1.	
		Java Scripting Pages	
		2.	
03		Java Service Pages	3.0
03	What does JSP stand for?	3.	3.0
		Java Server Pages	
		4.	
		Java Script Program	
		1.)	
		5, undefined, undefined	
		2.	
	What does the following bit of JavaScript print out?	5,3,undefined	
04	var a = [1,3,4,5];	3.	1.0
	console.log([a[4], a[1], a[5]]);	5,0,undefined	
		3,0,undermed	
		4.	
		5,null,undefined	
		<u>l.</u>)	
		Used to separate cell walls from their contents	
		2	
		5,null,undefined 1. Used to separate cell walls from their contents 2. Used to set space between cells 3. Used to provide width to a cell 4.	
05		Used to set space between cells	2.0
0.5	What is cell padding?	3.	2.0
		Used to provide width to a cell	
		4.	
		Used to merge two cells	
		1.)	
		<input type="text"/>	
		2.	
106	What is the correct HTML for making a text input field?	<textfield> 3.</textfield>	1.0
	what is the correct HTML for making a text input heig?	<input type="textfield"/>	
		4.	
		<pre>" <textinput type="text"></textinput></pre>	
		1.	
	What will be printed as the output of the following program?	I = 0	
	public class testiner	2.	
	{ public static void main(String args[])	I = 1)	
07	$\{ \\ \text{int } i=0; \\$	3.	2.0
	i = i+++ i; System.out.println(" I = " +i);	I=2	
	}	4.	
	}	I = 3	

S.NO.	Questions	Choices	Answers
		1.	
		getYear()	
		2.	
408		getYYYY()	1.0
.00	Which method is used to get the year of a date object in YYYY format in Javascript.		1.0
		get4Year()	
		1.	
		Text	
		2.	
		Password	
409	Which of the following input controls that cannot be placed using <input/> tag?	3.	4.0
		Submit	
		4.	
		Textarea	
		1.	
		 body:color=black	
		2.	
		{body;color:black}	
410	Which is the correct CSS syntax?	3	4.0
		{body.color-black(body)	
		4.	
		body {color: black}	
		1.	
		n + 9378 2.	
411			2.0
411	Which of the following asymptotic notation is the worst among all?	3.	2.0
		2^ n - 1	
		1.	
		(i) and (ii) only	
	Which of the following is/are example(s) of stateful application layer protocols?	2.	
	(i)HTTP (ii)FTP		3.0
	(iii)TCP		
	(iv)POP3	4.	
		(iv) only	
		1.	
		valign	
		getFullYear() 4. get4Year() 1. Text 2. Password 3. Submit 4. Textarea 1. body:color=black 2. {body:color=black} 3. {body:color=black(body} 4. body {color: black} 1. n + 9378 2. 2² n-1 3. 2² n-1 4. 2n ? 1 1. (i) and (ii) only 2. (ii) and (iii) only 3. (iii) and (iii) only 4. (iv) only 1. valign 2. bgcolor	
		bgcolor	
413	Which of these is not a valid attribute of > element?		4.0
		align	

S.NO.	Questions	Choices	Answers
		1.	
		GET 2.	
	Which of these methods has no restrictions on content size when a form is submitted.		2.0
414		GET 2. HEAD 3. POST 4. PUT 1. Google 2. Archie 3. AltaVista 4. WAIS 1. 45 2. 67 3. 34 4. 78 1. Browser enriched mail client 2. HTML-enabled mail client	3.0
		POST	
		4	
		Google	
		2.	
	Which are in the first search areins in intermet?	Archie	
415	Which one is the first search engine in internet?	3.	2.0
		AltaVista	
		4.	
		WAIS	
		1.	
		45	
		2.	
		67)	
416	While inserting the elements 71,65,84,69,67,83 in an empty binary search tree (BST) in the sequence shown, the element in the lowest level is	3.	2.0
		n the 3. 2.0 34 4. 78	
		4.	
		78	
		I.	
		Browser enriched mail client	
		2.	
		HTML-enabled mail client	
417	A mailer that transforms a message body of an e-mail into a web page is called a	3.	2.0
		Rich Text mail client	
		4.	
		client server mail client	
		1.	
		a prompt	
		2.	
		an error message	
418	An incorrectly typed command will cause the operating system to display	3.	2.0
		a question mark	
		4.	
		causes exception	
		1.	
		<pre><td< td=""><td></td></td<></pre>	
		2.	
		ctd leftalign>	
419	Choose the correct HTML to left-align the content inside a table cell	3.	4.0
	2	<pre>s. </pre>	
		4.	
		dign="left">	
		The digital little	

S.NO.	Questions	Choices	Answers
		1.	
	Consider the below code fragment: if $f(\text{fork } k(\cdot) = 0)$	u = x + 10 and $v = y$	
	{	2.	
420	s else {	u = x + 10 and $v! = y$	3.0
	a= a ? 5; printf("%d %d \n", 0, &a);	3.	
	Let u, v be the values printed by parent process and x, y be the values printed by child process. Which one of the following is true?	u + 10= x and v = y 4.	
		u + 10= x and v != y 1.	
	Consider the following C code segment: int a, b, c = 0; void prtFun(void);	31 41 42	
	main() { static int a = 1; /* Line 1 */ prtFun(); a += 1;	2. 42	
	priFun() printf("\n %d %d", a, b); }	61 61 3.	4.0
	void prtFun(void) { static int a=2; /* Line 2 */ int b=1; a+=++b; printf("n %d %d", a, b);	42) 62) 20) 4.	
	What output will be generated by the given code segment if: Line 1 is replaced by auto int a = 1; Line 2 is replaced by register int a = 2;	42 42 20	
	Consider the following C program. #include <stdio.h> int f1 (void); int f2 (void); int x = 10;</stdio.h>	1. 434 2.	
	int main () {	230	2.0
	int x=1; x+=f1()+f2()+f3()+f2(); printf("%d", x); return 0;	3. 43	2.0
	} int fl(){int x=25; x++; return x;} int f2(){static int x =50; x++; return x;} int f3(){x*=10; return x}; The output of the program is	4. 432	
		1.	
	Consider the following program: int f(int *p, int n)	1	
	{ if (n <= 1) return 0;	2.	
423	else return max (f (p+1, n-1),p[0]-p[1]); } int main()	3.	3.0
	int main() { int a[] = {3,5,2,6,4};	3	
	Int a[] = {3,3,4,0,4}; printf("%d", f(a,5)); }	4.	
	The value printed by this program is	4	

s.no.	Questions	Choices	Answers
	Find the output of the following program?		
	#include <iostream.h></iostream.h>		
	using namespace std;	1.	
	void myFunction(int& x, int* y, int* z) { static int temp=1;	3 3 3 2	
	temp += (temp + temp) - 1;	2.	
	x += *(y++ *z) + temp - ++temp; *y=x;	3 2 3 3	
424	x=temp; *z= x;	3.	gar3
	cout <xx<*y<*z<<temp;< td=""><td>3 2 3 2</td><td></td></xx<*y<*z<<temp;<>	3 2 3 2	
	int main() (4.	
	int main() { int i = 0;	3 1 3 3	
	$\inf j = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\};$ i=i++-++i;		
	myFunction(i, j, &i); return 0;		
	}		
		1.	
		save	
		2.	
4=-		dontresize	
425	If you don't want the frame windows to be resizeable, simply add what to the lines?	3.	3.0
		noresize	
		4.	
		Delete	
		1.	
		BSD Unix	
		2.	
		Windows	
426	Sockets originate from	3.	1.0
		Linux	
		4.	
		Mac	
		1.	
		10,20,15,23,25,35,42,39,30	
		2.	
		15,10,25,23,20,42,35,39,30	
427	The preorder traversal sequence of a binary search tree is 30, 20, 10, 15, 25, 23, 39, 35, 42. Which one of the following is the postorder traversal sequence of the same tree?	3.	4.0
	one of the following is the postorder traversal sequence of the same tree?	15,20,10,23,25,42,35,39,30	
		4.	
		15,10,23,25,20,35,42,39,30	
			ļ
	What will be the output of the following C program?	1.	
	void count(int n) { static int d=1;	312213444	
	printf("%d ", n); printf("%d ", d);	2.	
	d++;	312111222	1.0
428	if(n>1) count(n-1); printf("%d ", d);	3.	1.0
	} void main(){	3 1 2 2 1 3 4	
	count(3);		
	,	4.	
		3121112	

S.NO.	Questions	Choices	Answers
		In the section	
		2. In the section	
429	Where in an HTML document is the correct place to refer to an external style sheet?	3.	head
		At the end of the document 4.	
		At the top of the document	
		1. title,body,form and script	
		2.	
430	Which of the following is included in the head section of HTMI	title,meta tag,script and CSS 3.	2.0
		title, meta tag,css and form 4.	
		title, body,script and CSS	
		1.	
		CGI 2.	
		HTML	
431		<u>3.</u>	3.0
		JavaScript	
		4. CSS	
		1.	
		2.	
		<tdleft></tdleft>	
432	Which of the following in HTML is used to left align the content inside a table cell?	3.	4.0
		4.	
		1. A cookie is a piece of code that has the potential to compromise the	
		security of an internet user	
		2.	
433	Which one of the following statements is NOT correct about HTTP cookies?	A cookie gains entry to the user's work area through an HTTP header	1.0
		3. A cookie has an expiry date and time	
		4. Cookies can be used to track the browsing pattern of a user at a particular	
		site 1.	
	Consider the following program: int f(int *p, int n)	1	
	{ if $(n \le 1)$ return 0; else return max $(f(p+1, n-1),p[0]-p[1])$;	2.	
131	int main()	3.	3.0
	$\{\inf a = \{3,5,2,6,4\};$	3	
	printf("%d", f(a,5)); }	4.	
	The value printed by this program is	4	

S.NO.	Questions	Choices	Answer
		1.	
		GET	
		2.	
		HEAD	
435	Which of these methods has no restrictions on content size when a form is submitted.	3.	3.0
		POST	
		4.	
		PUT	
		1.	
		Stack Stack	
		2.	
12.6	datastructure used in pushdown automata.	array	
436		3.	1.0
		queue	
		4.	
		linked list	
	Consider the following:		
		1.Inorder successor of the root 2.	
	temp=root->left;		
	while(temp->right!=NULL)	Maximum element in the right subtree of root	
437	temp=temp->right;	3.	4.0
437	return temp;	Minimum element in the right subtree of root	4.0
		<mark>4.</mark>	
		Inorder predecessor of the root	
	The above code snippet for a BST with the address of the root node in pointer 'root' returns	1.	1
		Class attribute	
		2	
		name attribute	
438	is used to define a special CSS style for a group of HTML elements		1.0
430		3.	1.0
		group attribute	
		4.	
		id attribute	
		1.	
		method attribute	
		2.	
439	The attribute defines the action to be performed when the form is submitted	action attribute	2.0
439		3.	2.0
		onSubmit attribute	
		4.	
		onClick attribute	
		1.	+
		S1 is a serializable schedule	
		2.	
	Consider a schedule S1 given below; R1(A); W1(A); R2(B); R2(A); R1(B); W2(A+B); W1(B); where R1 and W1 are		
	read and write operations of transaction 11 and R2 and W2 are read and		4.0
	write operations of transaction T2.	3.	1
	Which of the following is correct regarding schedule S1?	S1 is a conflict serializable schedule	
		4.	
			1
		S1 is a view serializable schedule	

S.NO.	Questions	Choices	Answers
		1.	
		switching algebra	
		2.	
		arithmetic algebra	
	Boolean algebra is also called		
441		2	1.0
		3.	
		linear algebra	
		4.	
		algebra	
		1.	
		generate code	
		2.	
		provide thorough testing	
442	Software prototyping helps to	3.	2.0
		explore possible software solutions	
		4.	
		collect initial software requirements	
		1.	
		Primary	
		2.	
		Validation	
443	Activities such as documentation and software configuration management are what kind of process activities?	3.	4.0
		Design	
		4.	
		supporting	
		1.	
		quickest to complete	
		2.	
		highest-priority	
444	In incremental delivery the services are typically delivered first		2.0
		3.	
		cheapest	
		4.	
		most fun to code	
		1.	
		degrade	
		2.	
	In incremental development system structure tends to as many new	improve	
445	increments are added.	3.	1.0
		develop its own AI	
		4.	
		shrink	

relopers	3.0
relopers	3.0
relopers	3.0
relopers	3.0
relopers	5.0
	2.0
engineering	
ion of a software process	
ner in Powerpoint	1.0
software's components	
software product	
ctural design	
ce Design	4.0
nt Design	
e design	
	2.0
	2.0
Engineering	
Engineering	
Engineering	
Engineering	4.0
_	se design Engineering

S.NO.	Questions	Choices	Answers
		1.	
		Requirements Definition	
		2.	
		System and Software Design	
452	Which is not part of the waterfall method?	3.	4.0
		Implementation and Unit Testing	
		4.	
		System Validation	
		1.	
		It is possible to gather more of the requirements up front	
		2.	
452	Which statement best describes a benefit of Incremental development over the	Time to market is faster because there is less overhead	2.0
453	waterfall model	3.	3.0
		It is easier to get customer feedback on the development work that's been done	
		4.	
		It is easier to reuse existing components.	
		1.	
		Picture quality	
		2.	
	adds to the costs of Software Development because it usually means that work that	Production	
454	has been completed has to be redone	3.	4.0
		Software speed	
		4.	
		Change	
		1.	
	Given the following structure template, choose the correct syntax for accessing the 5th subject marks of the 3rd student:	stud[2].marks[4]	
	struct stud	stud[2].marks[4]	
	{	2.	
455	int marks[6];	stud[4].marks[2]	2.0
433	char sname[20];		3.0
	char rno[10];	3.	
	}s[10];	s[2].marks[4]	
		4.	
		s[4].marks[2]	
		a float	
		2.	
456	By default, any real number in C is treated as	a double	1.0
.55		3.	
		a long double	
		4.	
		depends on the memory model	
		1.	
		Analyze results	
		2.	
		Plan test	
457	is the 1st step in the testing process	3.	2.0
		Release product	
		4.	
		Conduct tests	

S.NO.	Questions	Choices	Answers
	A set of documents in which a given document can contain text, graphics video and	Hypermedia message Hypertext document	
158	audio clips as well as embedded references to other documents world wide web pages are called as	3. Hypermedia Documents 4. Path rectangular grid of Pixels	3.0
459	A software requirements specification (SRS) document should avoid discussing which one of the following?	1. User interface issues 2. Non-functional requirements 3. Design specification	1.0
460	Consider a B+ tree in which the search Answer is 12 bytes long, block size is 1024 bytes,record pointer is 10 bytes long and block pointer is 8 bytes long. The maximum number of keys that can be accommodated in each non-leaf node of the tree is	4.Interfaces with third party softwareKey 1. 40 2. 50 3. 60 4. 70	2.0
461	Extreme Programming process model includes framework activities such as	1. analysis, design,coding,testing 2. planning,analysis,design,coding 3. planning,analysis,coding,testing 4. planning, design, coding, testing	4.0
(462)	For automatic objects, constructors and destructors are called each time the objects —	1. enter and leave scope 2. inherit parent class 3. are constructed 4. are destroyed	1.0
463	Important capability needed for an agile software developer is	1. Trust 2. Competence 3. Decision-making 4. HardworkKey	3.0

S.NO.	Questions	Choices	Answers
		1.	
		Analysis	
		2.	
		Coding	
464	In which phase is Agile Modeling(AM) carried out	3.	3.0
		Planning Pla	
		4.	
		TestingKey	
		1.	
		Machine language	
		2.	
465	Mnemonic codes and variable names are used in	Assembly language	2.0
		3.	
		high level language	
		4.	
		Used nowhere	
		1.	
		The linear sequential model	
		2.	
		Fountain model	
466	Waterfall model of software development is also termed as	3.	1.0
		Spiral model	
		4.	
		Concurrent development model	
		1.	
		Fire Dispatch Systems	
		2.	
		Nuclear Reactors	
467	Which of the following is not a Life-critical System?	3.	4.0
		Power Utilities	
		4.	
		Inventory Management	
		1.	
		A destructor has void return type.	
		2.	
		A destructor has integer return type.	
468	Which of the following statement is correct about destructors?	3.	3.0
		A destructor has no return type.	
		4.	
		A destructors return type is always same as that of main()	
	#include <iostream.h></iostream.h>	1.	
	using namespace std;	20	
	int main() {	2.	
	int x=20; if(!(!x)&&x)	10	
469	cout< else	3.	1.0
	x=10;	1	
	cout< return 0; }	4.	
	}	0	

S.NO.	Questions	Choices	Answers
	Find the output of the following program?		
	#include <iostream.h></iostream.h>	1.	
	using namespace std; typedef int * IntPtr;	62010206	
	m mam() {		
	IntPtr A, B, C; int D,E; A = new int(3);	2.	
470	B = new int(6);	<mark>72010107</mark>	2.0
	C = new int(9); D = 10; E = 20;	3.	
	*A = *B;	71020106	
	B = &E D = (*B)++;	4.	
	*C= (*A)++ * (*B); E= *C++ - *B;	10720107	
	cout<**A<**B<**C< return 0; }		
		1.	-
		a->next=c	
		2.	
		b->next=c	
471	If a, b, c, are three nodes connected in sequence in a singly linked list, find the valid statement that may help to change this list to a circular linked list?	3.	4.0
		a->next=c	
		4.	
		c->next=b	
		1.	
		After the CPU time slice expires	
		2.	
472	Round Robin scheduling is the strategy of temporarily suspending a running process	to allow starving processes to run 3.	1.0
		when it requests IO	
		4.	
		when OS wait	
		1.	
		if there are more than two processes competing for that resource	
		2.	
473	With a single resource, deadlock occurs	if there are only two process completing for that resource	1.0
		3. if there is a single process competing for that resource	
		4.	
		it never occur in this case	
		1.	+
		Distributed	
		2.	
		Network	
474	OS pays more attention on the meeting of the time limits.	3.	3.0
		Real time	
		4.	
		Desktop	

S.NO.	Questions	Choices	Answers
		1.	
		121	
		2.	
	Consider a software program that is artificially seeded with 100 faults. While testing this program, 159 faults are detected, out of which 75 faults are from those artificially seeded faults. Assuming	175	
475	that both are and seeded faults are of same nature and have same distribution, the estimated number of undetected real fault is	3.	4.0
	number of undetected real fault is	432	
		4.	
		428	
		1.	
		s1 == s2	
	Given the code	2.	
	String $s1 = ? VIT?$;	s1 = s2	
	String s2 = ? VIT ?; String s3 = new String (s1);	3.	13.0
	Which of the following would equate to true?	s3 == s1	
		4.	
		s3=s1	
		1.	
		0	
		2.	
		3	
477	Suppose T is a binary tree with 14 nodes. What is the minimum possible depth of T?	3.	2.0
		4	
		4.	
		5	
		1.	
		<form></form>	
		2.	
		<title></td><td></td></tr><tr><td>478</td><td>The following HTML element contains meta data which is not displayed inside the document</td><td>3.</td><td rowspan=3>2.0</td></tr><tr><td></td><td></td><td></td></tr><tr><td></td><td></td><td>4.</td></tr><tr><td></td><td></td><td><frame></td><td></td></tr><tr><td></td><td></td><td>1.</td><td></td></tr><tr><td></td><td></td><td><STYLESHEET></td><td></td></tr><tr><td></td><td></td><td>2.</td><td></td></tr><tr><td></td><td></td><td><STYLE></td><td></td></tr><tr><td>479</td><td>To link your Web page to a style sheet, you must use the tag</td><td>3.</td><td>3.0</td></tr><tr><td></td><td></td><td>link></td><td rowspan=2></td></tr><tr><td></td><td></td><td>4.</td></tr><tr><td></td><td></td><td><web></td><td></td></tr><tr><td></td><td></td><td>1.</td><td></td></tr><tr><td></td><td></td><td><0 ></td><td></td></tr><tr><td></td><td></td><td><u>2.</u></td><td></td></tr><tr><td></td><td></td><td></td><td></td></tr><tr><td>480</td><td>Which of these will create a shuffled list?</td><td>3.</td><td>1.0</td></tr><tr><td></td><td></td><td><dl></td><td></td></tr><tr><td></td><td></td><td>4.</td><td></td></tr><tr><td></td><td></td><td>Nested list</td><td></td></tr><tr><td></td><td></td><td><u> </u></td><td></td></tr><tr><td></td><td></td><td></td><td></td></tr><tr><td>1</td><td></td><td></td><td></td></tr></tbody></table></title>	

S.NO.	Questions	Choices	Answers
		1.	
		Stream Control Transmission Protocol (SCTP).	
		2.	
		Transport Layer Security (TSL).	
481	Which one of the following is a cryptographic protocol used to secure HTTP connection?	3.	2.0
		Explicit Congestion Notification (ECN).	
		4.	
		Resource Reservation Protocol.	
		1.	
		Bubble Sort 2.	
		Merge Sort	
482	Which of the following is example of in-place algorithm?	3.	3.0
		Insertion Sort	
		4.	
		1.	
		79n²+43n	
		2.	
		$65n^3 + 34n$	
483	Which of these is asymptotically bigger?	3.	2.0
		6*2 ⁿ	
		4.	
		5*2n	
484	bit in ICW1 indicates whether the 8259A is cascade mode or notmessages are typically used for diagnostic or control purposes or generated in response to	1.LTIM=0 2.LTIM=1 3.SNGL=1 4.SNGL=0	4.0
485	errors in IP operations.	1.ICMP 2.TCP 3.UDP 4.IP	1.0
486	gives the number of bits that can be transmitted over a network in a fixed time period.	1.Latency 2.Jitter 3.Bandwidth 4.Delay	3.0
487	cryptography refers to encryption methods in which both the sender and receiver share the same key.	1.Symmetric 2.Asymmetric 3.Ceaser key 4.Asymmetric key	1.0
488	is responsible for the final encapsulation of higher-level messages into frames that are sent over the network using the physical layer.	1.Data link layer 2.Network layer 3.Application layer 4.Session layer	1.0
489	appends to the address a slash character and the decimal number of leading bits of the routing prefix.	1.CIDR 2.TCP 3.UDP 4.IP	1.0
490	is assigned to an organization by a global authority.	1.Subnet ID 2.Supernet ID 3.Host ID 4.Network ID	4.0
		1.	
		Cartesian product	
		2.	
401	and discost he relation that has attailing as FD1 and D2	Difference	1.0
491	produces the relation that has attributes of R1 and R2	3.	1.0
		Intersection	
		4.	
		Product	
492	should keep track of multiple file downloads requested by a particular FTP application, or	1.Transport layer 2.Application layer 3.Presentation layer 4.Session layer	1.0
492	multiple telnet connections from a single terminal client, or web page retrievals from a web server. functions as a request-response protocol in the client-server computing model.	1.HTTP 2.IP 3.TCP 4.UDP	1.0
	The state of the s	1.	
		time division multiplexing	
		2.	
		orthogonal frequency division multiplexing	
494	is commonly used in wireless LAN.	3.	2.0
		space division multiplexing	
		4.	
		long division multiplexing	

S.NO.	Questions	Choices	Answers
		L)	
		Long term	
		2.	
405		Short trem	1.0
495	scheduler selects the jobs from the pool of jobs and loads into the ready queue.	3.	1.0
		Medium term	
		4.	
		None of these	
		1.	
		Long term scheduler	
		2.	
406		Short term scheduler (CPU Scheduler)	4.0
496	does the job of allocating a process to the processor.	3.	4.0
		Medium term scheduler	
		4.	
		Dispatcher	
497	has a dedicated communication path between stations	1.Circuit switching 2.Frame relay 3.Packet switching 4.ATM	1.0
		Translation Look-aside buffer	
		2.	
498	is a high speed cache used to hold recently referenced page table entries as a part of	Inverse page table	1.0
	paged virtual memory	3.	
		Segmented page table	
		4.	
		Hierarchical page table	
		1.	
		Best Fit	
		2.	
499		Worst Fit	1.0
	memory management scheme will produce least fragement	3.	
		First Fit	
		4.	
		None of these	
		1.	
		AR (Address Register)	
		2.	
500	register keeps tracks of the instructions stored in program stored in memory.	XR (Index Register)	3.0
		3.	[]
		PC (Program Counter)	
		4.	
		AC (Accumulator)	
		1.	
		Replace the page that will not be used for a longest period of time	
		2.	
501	states that it is Optimal Replacement algorithm	Replace the page that will not be used for a shortest period of time	1.0
501	states that it is Optimal Replacement algorithm	3.	1.0
		Replace the page that will be used for a longest period of time	
		4.	
		Replace the page that will be used for a shortest period of time	
502	algorithm is used for the flow control of data between sender and receiver.	1.Dijkstra 2.RIP 3.Leaky bucket 4.Go Back N	4.0
1			

S.NO.	Questions	Choices	Answers
		1.	
		Web Servers	
		2.	
503	programs automatically connects to web sites and download documents and save	Web Downloading Utilities	2.0
303	them to local drive	3.	2.0
		Stay Connected	
		4.	
		Offline Browsers	
504	signal prevent the microprocessor from reading the same data more than one	1.pipelining 2.handshaking 3.controlling 4.signaling	2.0
505	function in PHP returns a list of response headers sent (or ready to send)	1.header() 2.headers_list() 3.header_sent() 4.header_send() 1.	2.0
		Prototype	
		2.	
506	is an initial version of a software system that is used to demonstrate concepts, try out design options, and find out more about the problem and its possible solutions.	Architectural Design	1.0
		3.	
		Subsystem	
		4.	
		Module	
		1.	
		Process	
		2.	
		Thread	
507	is a basic unit of CPU utilization	3.	2.0
		Process Control Block	
		4.	
		Program Counter	
		1.Transaction	
		2.Optimization	
508	is a logical unit of access to a DBMS	3.Schema	1.0
		4.Data	
		1.	
		Q needs to send at least 2 HTTP requests to S, each necessarily in a separate TCP connection to server S	
		2.	
	A graphical HTML browser resident at a network client machine Q accesses a static HTML	Q needs to send at least 2 HTTP requests to S, but a single TCP connection to server S is sufficient	
500	webpage from a HTTP server S. The static HTML page has exactly one static embedded image which is also at S. Assuming no caching, which one of the following is correct about the HTML	3.	2.0
	webpage loading (including the embedded image)?	A single HTTP request from Q to S is sufficient, and a single TCP	
		connection between Q and S is necessary for this	
		4.	
		A single HTTP request from Q to S is sufficient, and this is possible	
		without any TCP connection between Q and S 1.	
		1,048,576 locations	
		2.	
510	A 20-bit address bus can locate	2,097,152 locations	1.0
	<u>—</u>	3.	
		4,194,304 locations	
		4.	
		8,388,608 locations	
511	A 32-bit address bus allows access to a memory of capacity	1.1 GB 2.16 MB 3.64 MB <mark>4.4 GB</mark>	4.0

Solid A comparation of timused memory reserved for dynamic allocation is called Solid A compatron of timused memory reserved for dynamic allocation is called Solid	S.NO.	Questions	Choices	Answers
STEE A District of roctor in his mustimum of			1.	
A Betwee of order m has maximum of			m	
A Particle of order in his maximum of shiddren 1			2.	
Signature Sign			m+1	
A contact Shift self-complementary code is used to expresent the 90 decimal digits 0 through 9.	512	A B-tree of order m has maximum of children	3.	1.0
Side A contractive Cost Estimation Model			m - 1	
State A binary code that progresses such that only one bit changes between two successive codes is: A craim 5-bit self-complementary code is used to represent the 10 decimal fights 0 through 5.			4.	
Second Commence Second Com			m/2	
Second Commence Second Com	513	A binary code that progresses such that only one bit changes between two successive codes is:	1.Gray code 2.excess-3 code 3.8421 code 4.nine's-complement code	1.0
Representation for (375)** A client process P needs to make a TCP connection to a server process S. Consider the following studions the server process S executes a socked), a brind) and a literal system call in that order, inclinations the server process S executes a socked), a brind) and a literal system call in that order, inclinate and the place? Some of the process P needs to make a TCP connection to a server process S. The server process as conclusions and substantial that order, inclinations the server process S. The server process as conclusions and secured any security system call. Which one of the following events could take place? Some of the place of the place of the place of the place of the place? Common Cost Estimation Model.		A certain 5-bit self-complementary code is used to represent the 10 decimal digits 0 through 9.		4.0
A client process P needs to make a TCP connection to a server process S. Consider the following station: the server process S executes a socket), a bindly and a listently system call in that order, following which it is prempted. Subsequently, the client process P executes as socket) system call. Which one of the following events could take place? 515 [following which it is prempted. Subsequently, the client process P executes as socked) system of the connect to system call. Which one of the following events could take place? 516 A COCOMO model is 517 A collection of unused memory reserved for dynamic allocation is called 518 A computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a place of 2Mbps. It is initially filled to capacity with 16Megabits. What is the maximum duration for yaken call results and an inverted feedback path 3. Johnson counter has more filled by a seconds 520 A data structure where elements can be added or removed at either end but not in the middle 521 A fault simulation testing technique is 522 A fault simulation testing technique is 523 A fault simulation testing technique is	314		4.11101 11011 11001	4.0
A client process P needs to make a TCP connection to a server process S. Consider the following situation: the server process S executes a socket(), a bindy and a listeaty system call in that order, solidowing which it is preempted. Subsequently, the client process P executes a socket() system call in that order, solidowing which it is preempted. Subsequently, the client process P executes a socket() system call in the content of system call results in a core dump executed any accept() system call. Which one of the following events could take place? A COCOMO model is 1. Common Cost Estimation Model. 2. Constructive Cost Estimation Model. 3. Complete Cost Estimation Model. 4. Comprehensive Cost Estimation Model. 4. Comprehensive Cost Estimation Model. 517 A collection of unused memory reserved for dynamic allocation is called A comparison between ring and Johnson counters indicates that: A comparison between ring and Johnson counters indicates that: A comparison between ring and Johnson counters indicates that: A comparison between ring and Johnson counters indicates that: A comparison between ring and Johnson counters indicates that: A comparison between ring and Johnson counters indicates that: A comparison between ring and Johnson counters indicates that: A comparison between ring and Johnson counters indicates that: A comparison between ring and Johnson counters indicates that: 1. In seconds 3. Seconds 4. Seconds 4. Seconds 4. Seconds 5. Seconds 5. Seconds 5. Seconds 5. A fault simulation testing technique is 5. A fault simulation testing technique is 5. Sires stesting 5. Limited lists 2. Stacks 3. Queues 4. Deque 5. Sires stesting 5. Limited lists 2. Stacks 3. Queues 4. Deque 5. Sires stesting 5. Limited lists 2. Stacks 3. Queues 4. Deque 5. Sires stesting 5. Limited lists 2. Stacks 3. Queues 4. Deque 5. Sires stesting 5. Limited lists 2. Stacks 3. Queues 4. Deque			1.	
A client process P needs to make a TCP commettent to a server process S. Consider the following sistation the server process S. Consider the following system call blocks 10			connect () system call returns successfully	
intation: the server process Sexecutes a socked), a bind(a) and a listent) system call in that order, following which it is precupited, Subsequently, the client process Pexceuted any accept(s) system call to connect to the server process has not executed any accept(s) system call. Which one of the following events could take place? In comment (s) system call results in a core dump In common Cost Estimation Model. 2 Constructive Cost Estimation Model. 3 Complete Cost Estimation Model. 4 Comprehensive Cost Estimation Model. 4 Comprehensive Cost Estimation Model. 5 Comprehensive Cost Estimation Model. 5 Comprehensive Cost Estimation Model. 4 Comprehensive Cost Estimation Model. 5 Comprehensive Cost Estimation Model. 6 Comprehensive Cost Estimation Model. 7 Comprehensive Cost Estimation Model. 8 Computer on a 10 Modes past cost cost cost cost cost cost cost co		A livet array D and to make TOD array time to a graph of Considerate Ciliaria	2.	
Solidowed by connect) system call. Which one of the following events could take place? Sometic () system call returns an error () Sometic () Someti		situation: the server process S executes a socket(), a bind() and a listen() system call in that order,	connect () system call blocks	
4. connect () system call results in a core dump 1. Common Cost Estimation Model. 2. Comstructive Cost Estimation Model. 3. Complete Cost Estimation Model. 4. Comprehensive Cost Estimation Model. 4. Compre			3.	3.0
connect () system call results in a core dump 1. Common Cost Estimation Model. 2. Constructive Cost Estimation Model. 3. Complete Cost Estimation Model. 4. Comprehensive Cost Estimation Model. 4. Comprehensive Cost Estimation Model. 1. A collection of unused memory reserved for dynamic allocation is called 1. Heap? Static 3 array 4 stack dynamic 1.A ring counter has fewer filp-flops but requires more decoding circuitry 2.A ring counter has fewer filp-flops but requires more decoding circuitry 2.A ring counter has mirerated feetback path 3.A Johnson counter has an inverted feetback path 3.		executed any accept() system call. Which one of the following events could take place?	connect () system call returns an error	
Solid Common Cost Estimation Model. Common Cost Estimation Model. Common Cost Estimation Model. Complete Cost Estimation Model. Complete Cost Estimation Model. Complete Cost Estimation Model. Complete Cost Estimation Model. Comprehensive Cost Estimation Model. Comprehens			4.	
2. Constructive Cost Estimation Model. 3. Complete Cost Estimation Model. 4. Comprehensive Cost Estimation Model. 4. Comprehensive Cost Estimation Model. 517 A collection of unused memory reserved for dynamic allocation is called 518 A comparison between ring and Johnson counters indicates that: 619 A comparison between ring and Johnson counters indicates that: 610 A computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a rate of 2Mbps. It is initially filled to capacity with 16Megabits. What is the maximum duration for which the computer can transmit at the full 10Mbps? 510 A data structure where elements can be added or removed at either end but not in the middle 511 I.			connect () system call results in a core dump	
2. Constructive Cost Estimation Model. 3. Complete Cost Estimation Model. 4. Comprehensive Cost Estimation Model. 4. Comprehensive Cost Estimation Model. 517 A collection of unused memory reserved for dynamic allocation is called 518 A comparison between ring and Johnson counters indicates that: 619 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 611 A comparison between ring and Johnson counters indicates that: 612 A comparison between ring and Johnson counters indicates that: 613 A comparison between ring and Johnson counters indicates that: 614 A comparison between ring and Johnson counters indicates that: 615 A comparison between ring and Johnson counters indicates that: 616 A comparison between ring and Johnson counters indicates that: 617 A comparison between ring and Johnson counters indicates that: 618 A comparison between ring and Johnson counters indicates that: 619 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A comparison between ring and Johnson counters indicates that: 610 A c			1.	
Constructive Cost Estimation Model. 3. Complete Cost Estimation Model. 4. Comprehensive Cost Estimation Model. 4. Comprehensive Cost Estimation Model. 517 A collection of unused memory reserved for dynamic allocation is called 518 A comparison between ring and Johnson counters indicates that: 519 A comparison between ring and Johnson counters indicates that: 519 Interest of 2Mbps. It is initially filled to capacity with 16Megabits. What is the maximum duration for which the computer can transmit at the full 10Mbps? 520 A data structure where elements can be added or removed at either end but not in the middle 521 Interest filled at a seconds 522 A fault simulation testing technique is 533 Black box testing 540 Interest filled at a fault simulation testing technique is 551 Interest filled at a fault simulation testing technique is			Common Cost Estimation Model.	
Constructive Cost Estimation Model. 3. Complete Cost Estimation Model. 4. Comprehensive Cost Cost Cost Cost Cost Cost Cost Cost			2.	
A computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a rate of 2Mbps. It is initially filled to capacity with 16Megabits. What is the maximum duration for which the computer can transmit at the full 10Mbps? A data structure where elements can be added or removed at either end but not in the middle A fault simulation testing technique is A fault simulation testing technique is A comparison between ring and Johnson counters indicates that: Comprehensive Cost Estimation Model. Let a computer sate a figure 2. States 3 array 4. State dynamic place in counter has an inverted feedback path 3. Johnson counter has an inverted feedback path in the seconds counter has an inverted feedback path in the seconds counter has an inverted feedback path in the seconds counter has an inverted feedback path in the seconds counter has an inverted feedback path in the seconds counter has an inverted feedback path in the seconds counter has an inverted feedback path in the seconds counter has an inverted feedback path in the seconds counter has an inverted feedback path in the seconds counter has an inverted feedback path in the seconds counter has an inverted feedback path 4.0 and the seconds counter has an inverted feedback path in the seconds counter has an inverted feedback path in the seconds counter has an inverted feedback path in the seconds counter has an inverted feedback path 3. Johnson counter has an inverted feedback path 3. Johnson counter has an inverted feedback path 4.0 and 5.0 are seconds counter has an inverted feedback path 4.0 and 5.0 are seconds counter has an inverted feedback path 3. Johnson counter has an inverted feedback path 4.0 are seconds counter has an inverted feedback path 4.0 are seconds counter has an inverted feedback path 4.0 are seconds counter has an inverted feedback path 4.0 are seconds counter has an inverted feedback path 4.0 are seconds counter has an inverted feedback path 4.0 are seconds counter has an inverted feedback path 4.0 are seconds cou				
Complete Cost Estimation Model. 4. Comprehensive Cost Estimation Model. 517 A collection of unused memory reserved for dynamic allocation is called 1. Heap 2. Static 3 array 4. stack dynamic 1. A ring counter has a inverted feedback path 3. A Johnson counter has an inverted feedback path 3. A Johnson counter has no returned has an inverted feedback path 3. A Johnson counter has an inverted feedback path 3. Johnson counter has an inverted feedback path 3. Johnson counter has an inverted feedback path 4. Johnson counter has nor lip-flops but requires more decoding circuitry 2. Johnson counter has no inverted feedback path 4. Johnson counter has no inverted feedbac	516	A COCOMO model is		2.0
4. Comprehensive Cost Estimation Model. 517 A collection of unused memory reserved for dynamic allocation is called 518 A comparison between ring and Johnson counters indicates that: 518 A comparison between ring and Johnson counters indicates that: 519 A computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a rate of 2Mbps. It is initially filled to capacity with 16Megabits. What is the maximum duration for which the computer can transmit at the full 10Mbps? 510 A data structure where elements can be added or removed at either end but not in the middle 511 A fault simulation testing technique is 512 A fault simulation testing technique is 513 A compatible to a contract the full token bucket. The token bucket is filled at a counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has more flip-flops but less decodi				
Comprehensive Cost Estimation Model. 517 A collection of unused memory reserved for dynamic allocation is called 1. Heap 2. Static 3. array 4. stack dynamic 1. A ring counter has fewer flip-flops but requires more decoding circuitry 2. Ar ring counter has an inverted feedback path 3. A Johnson counter has no equation and possible less decoding circuitry 4. A Johnson counter has an inverted feedback path 3. A				
1.1 A collection of unused memory reserved for dynamic allocation is called 1.1 Heap 2. Static 3. array 4. stack dynamic 1.2 A collection of unused memory reserved for dynamic allocation is called 1.4 A comparison between ring and Johnson counters indicates that: 1.5 A comparison between ring and Johnson counters indicates that: 1.6 A comparison between ring and Johnson counters indicates that: 1.7 In the same of the floor plots but less decoding circuitry 4. A Johnson counter has an inverted feedback path 3. A Johnson counter has an inverted feedback path 3. A Johnson counter has an inverted feedback path 3. A Johnson counter has an inverted feedback path 3. Johnson counter has more flip-flops but test decoding circuitry 4. A Johnson counter has an inverted feedback path 3. Johnson counter has more flip-flops but test decoding circuitry 4. A Johnson counter has an inverted feedback path 4. Seconds 2. Seconds 4. 2. Seconds 3. 3. Seconds 4. 4. Seconds 4. 8. Seconds 4. 8. Seconds 4. 8. Seconds 4. 8. Seconds 5. 5.20 A data structure where elements can be added or removed at either end but not in the middle 5. 1. Mutation testing 2. 5.21 A fault simulation testing technique is 3. 8. Black box testing 4. 8. Seconds 4. 9. Seconds 4. 8. Seconds 5. 9. Stress testing 5. 1. Stress testing 6. 1. Stress testing 6. 1. Stress testing 7. 1. Stress testing 8. 1. Stress testing 9. 1.				
1. A ring counter has fewer flip-flops but requires more decoding circuitry 2.A ring counter has an inverted feedback path 3.1 Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has an inverted feedback path 3.1 Johnson counter has an inverted feedback path 4.1 Johnson counter has an inverted feedback path 5.1 in flow feedback path 5.1 in flow feedback path 5.2 in flow feedback path 5.2 in flow feedback path 5.3 in flow fee			Comprehensive Cost Estimation Model.	
solute has an inverted feedback path 3.A Johnson counter has an inverted feedback path 3.A Johnson counter has more flip-flops but less decoding circuitry 4.A Johnson counter has an inverted feedback path 1. 1. 1.6 seconds 2. 2. 2. 2 seconds 3. 3. 5 seconds 4. 8 seconds 520 A data structure where elements can be added or removed at either end but not in the middle 1. Ilinked lists 2.Stacks 3.Queues 4.Deque 4.0 4. fault simulation testing technique is 3. Black box testing 1.0 518 A comparison between ring and Johnson counters indicates that: circuitry 2.A ring counter has an inverted feedback path 3.A Johnson counter has an inverted fee	517	A collection of unused memory reserved for dynamic allocation is called		1.0
A computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a a fate of 2Mbps. It is initially filled to capacity with 16Megabits. What is the maximum duration for which the computer can transmit at the full 10Mbps? 3. 5 seconds 4. 8 seconds 5 2. 2 seconds 1. 1. 1. 1. 1. 1. 1. 1.	518	A comparison between ring and Johnson counters indicates that:	circuitry 2.A ring counter has an inverted feedback path 3.A Johnson	4.0
A computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a rate of 2Mbps. It is initially filled to capacity with 16Megabits. What is the maximum duration for which the computer can transmit at the full 10Mbps? 5 seconds 4. 8 seconds 5 seconds 1. Mutation testing 2. Stress testing 3. Black box testing				
A computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a rate of 2Mbps. It is initially filled to capacity with 16Megabits. What is the maximum duration for which the computer can transmit at the full 10Mbps? 5 seconds 4. 8 seconds 5 A data structure where elements can be added or removed at either end but not in the middle 1. Inked lists 2.Stacks 3.Queues 4.Deque 4.0 Mutation testing 2. Stress testing 3. Black box testing			1.	
A computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a rate of 2Mbps. It is initially filled to capacity with 16Megabits. What is the maximum duration for which the computer can transmit at the full 10Mbps? 5 seconds 4. 8 seconds 5 A data structure where elements can be added or removed at either end but not in the middle 1. In Mutation testing 2. Stress testing 3. A fault simulation testing technique is 1.0 Black box testing			1.6 seconds	
The computer of a tomps freed at a structure with 16Megabits. What is the maximum duration for which the computer can transmit at the full 10Mbps? 520 A data structure where elements can be added or removed at either end but not in the middle 1. Inked lists 2.Stacks 3.Queues 4.Deque 1. Mutation testing 2. Stress testing 521 A fault simulation testing technique is 1.0 Black box testing			2.	
which the computer can transmit at the full 10Mbps? 5 seconds 4. 8 seconds 5. 1. linked lists 2.Stacks 3.Queues 4.Deque 1. Mutation testing 2. Stress testing 3. Black box testing		A computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a	2 seconds	
5 seconds 4. 8 seconds 520 A data structure where elements can be added or removed at either end but not in the middle 1. linked lists 2.Stacks 3.Queues 4.Deque 1. Mutation testing 2. Stress testing 3. Black box testing			3.	2.0
8 seconds 520 A data structure where elements can be added or removed at either end but not in the middle 1. linked lists 2. Stacks 3. Queues 4. Deque 1. Mutation testing 2. Stress testing 3. Black box testing		and the same and t	5 seconds	
A fault simulation testing technique is A data structure where elements can be added or removed at either end but not in the middle 1. Ininked lists 2.Stacks 3.Queues 4.Deque 4.0 Mutation testing 2. Stress testing 3. Black box testing			4.	
1. Mutation testing 2. Stress testing 3. Black box testing			8 seconds	
1. Mutation testing 2. Stress testing 3. Black box testing	520	A data structure where elements can be added or removed at either end but not in the middle	1.linked lists 2.Stacks 3.Queues 4.Deque	4.0
2. Stress testing 3. Black box testing		and the state of t	1.	
A fault simulation testing technique is 3. Black box testing			Mutation testing	
A fault simulation testing technique is 3. Black box testing			2.	
Black box testing			Stress testing	
	521	A fault simulation testing technique is	3.	1.0
			Black box testing	
			-	
White box testing				
	500	A commendation of the control of the	_	1.0
522 A grammar that produces more than one parse tree for some sentence is called 1.Ambiguous 2.Irregular 3.Regular 4.Unambiguous 1.0	522	A grammar that produces more than one parse tree for some sentence is called	I.Ambiguous 2.Irregular 3.Regular 4.Unambiguous	1.0

.NO.	Questions	Choices	Answei
	•	1.	
		Instruction code	
		2.	
		Micro-operation	
523	A group of bits that tell the computer to perform a specific operation is known as	3.	1.0
		Accumulator	
		4.	
		Register	
524	A J-K flip-flop is in a "no change" condition when	1.J = 1, K = 1 2.J = 1, K = 0 3.J = 0, K = 1 4.J = 0, K = 0	4.0
		1.	
		aaa	
		2.	
525	A language is represented by a regular expression (a)*(a+ba). Which of the following string does	aba	3.0
23	not belong to the regular set represented by the above expression.	3.	3.0
		ababa	
		4.	
		aa	
		1.	
		block HTTP traffic during 9:00PM and 5:00AM	
		2.	
		block all ICMP traffic	
-26		3.	1.0
526	A layer-4 firewall cannot	stop incoming traffic from a specific IP address but allow outgoing	
		traffic to same IP	
		4.	
		block TCP traffic from a specific user on a specific IP address on multi-	
		user system during 9:00PM and 5:00AM	
527	A linear collection of data elements where the linear node is given by means of pointer is called	1.primitive list 2.node list 3.linked list 4.array	3.0
-	- India concentration of data visited and india node to given by means of pointer to cance	1.	5.0
		Definite blocking	
		2	
		2.	
528	A major problem with priority scheduling is	Starvation	2.0
020	A major problem with priority scheduling is	3.	2.0
		Low priority	
		4.	
		None of these	
		1.	
		15 states	
		2.	
		7 states	
529	A minimum state DFA accepting the language L={w/w belongs {0,1}*} number of 0s and 1s in ware divisible by 3 and 5, respectively) has	3.	1.0
		9 states	
		4.	
		8 states	
520	A network that contains multiple hubs is most likely configured in which topology?	1.Mesh 2.Tree 3.Bus 4.Star	2.0
730			1=
330			
530			

S.NO.	Questions	Choices	Answers
		1.	
		True	
		2.	
		False	
531	A NFA converted to DFA has more than one final state.	3.	1.0
		may be true	
		4.	
		always true	
		·	
		1. Where each record in table A can have one or more matching records in table B	
		2. Where each record in table B can have one or more matching records	
532	A one to many relationship (of table A to Table B) is	in table A	1.0
		3. Where each record in Table B is required to have a match in table A	
		4. Where each record in table A is required to have a match in table B	
		1.can reduce the cost of using an information utility 2.allows	
533	A packet switching network	communications channel to be shared among more than one user 3.can reduce the cost of using an information utility and allows	3.0
		communications channel to be shared among more than one user 4.is	
		free 1.	
		when the page is not in the main memory	
		2.	
534	A page fault occurs	when the page is in the cache memory	1.0
		3.	
		when the process enters the blocked state	
		4.	
		when the process is in the ready state	
535	A parameterized constructor with all arguments initialized is same as	1.default constructor 2.parameterized constructor 3.overriding	1.0
333	T parameterized constructor with an arguments into azed is same as	4.overloading	1.0
		an computating DDD frames incide athermat frames	
		encapsulating PPP frames inside ethernet frames	
		2.	
526	A point-to-point protocol over ethernet is a network protocol for	encapsulating ethernet frames inside PPP frames	1.0
330	A point-to-point protocol over emernet is a network protocol for	3.	1.0
		for security of ethernet frames	
		4.	
		for security of PPP frames	
		1.Many to many relationships between the tables that connect them	
537	A primary key, if combined with a foreign key creates	2.Network model between the tables connect them 3.one to many	4.0
		relationship between the tables that connect them 4.Parent child relationship between the tables that connect them	
		1.	
		be loyal to the organization	
		2.	
		build trust from customers	
538	A professional software engineer must:	3.	4.0
		socialize with customers	
		4.	
		be loyal to the organization and build trust from customers	

S.NO.	Questions	Choices	Answers
		1.	
		Partial Dependencies	
		2.	
530	A relation R is said to be in 2NF when it does not have	Transitive Dependencies	1.0
339	A relation K is said to be in 21st which it does not have	3.	1.0
		Multivalued Attributes	
		4.	
		Both Partial dependencies and Multivalued Dependencies	
		1.the same as a flat file database	
		2.one that consists of two or more tables that are joined in some way	
540	A relational database is	3.one that consists of two or more tables	4.0
		4.a database that is able to process tables, queries, forms, reports and macros	
541	A ring counter is same as.	1.up-down counter 2.parallel adder 3.shift register 4.ALU	3.0
341	A ring counter is same as:	1.	3.0
		attribute	
		2.	
		degree	
542	A set of possible data values is called	3.	4.0
		domain	
		4.	
		tuple	
543	A shift register can be used for.	Digital delay line 2.Serial to parallel conversion 3.All of these Parallel to serial conversion	4.0
		1.	
		analog modulation	
		2.	
		digital modulation	
544	A single channel is shared by multiple signals by	3.	3.0
		multiplexing	
		4.	
		none of the mentioned	
		1.Database	
		2.DBMS	
545	A software package designed to store and manage databases	3.Data Model	2.0
		4.Data	
		1.Three-address Instruction	
		2. Two-address Instruction	
546	A stack organized computer has		4.0
		3.One-address Instruction	
		4. Zero-address Instruction	
		1.	1
		TRUE	
547	2.0	2.)	2.0
		False	
		3. 4.	
548	A static data member is given a value	1. Within the class definition 2.Outside the class definition 3. When the program is exeuted 4. Never	2.0
540	A synchronous sequential circuit is made up of.	1.combinational gates 2.flip-flops 3.both flip-flops and latches 4.both	4.0
J T J	1. 1. 2) nomenous soquentiai encair is made up on	combinational gates and flip-flops	1

.NO.	Questions	Choices	Answei
		1.	
		196	
		2.	
	A system uses FIFO policy for page replacement. It has 4 page frames with no pages loaded to	192	
550	begin with. The system first accesses 100 distinct pages in some order and accesses the same 100 pages but now in the reverse order how many page faults will occur?	3.	1.0
	P-9	197	
		4.	
		195	
		1.	
		Secondary key	
		2.	
		Alternate key	
51	A table can have only one	3.	4.0
		Unique key	
		4.	
		Primary key	
		1.	
		allows easy storage and retrieval of file names	
		2.	
		is not essential when we have millions of files	
52	A tree sturctured file directory system		1.0
		3.	
		is a much debated unnecessary feature	
		4.	
		none of these	
553	A value that has no defined value is expressed in PHP with the following keyword:	1.undef 2.null 3.Cant Define 4.There is no such concept in PHP	2.0
554	A variable P is called pointer if	1.P contains the address of an element in DATA 2.P contain the DATA and the address of DATA 3.P can store only memory addresses 4.P points to the address of first element in DATA	1.0
555	A variable P is called pointer if	1.P contains the address of an element in DATA 2.P contain the DATA and the address of DATA 3.P can store only memory addresses 4.P	1.0
		points to the address of first element in DATA 1.	_
		virtual table	
		2.	
		subset of the table	
56	A view is a	3.	1.0
		base table	
		4.	
		super table	
		1.	-
		Disk stack	
		2.	
		Removable disk	l
57	A Winchester disk is a	3.	1.0
		Flexible disk	
		4.	
		l"	
		None of these	

S.NO.	Questions	Choices	Answers
		1.	
		7	
		2.	
558	A complete binary min-heap is made by including each integer in [1;1023] exactly once. The depth of a node in the heap is the length of the path from the root of the heap to that node. Thus,	8	2.0
330	the root is at depth 0. The maximum depth at which integer 9 can appear is	3.	2.0
		9	
		4.	
		10	
559	Abstraction is	1.Having public members 2.having private member and public function 3.friend function 4.friend classes	2.0
		1. developer	
		2.	
560	2.0	end users 3.	2.0
		test team 4.	
		systems engineers	
		1.	
		ROM	
		2.	
		SRAM	
561	Access time is faster for	3.	2.0
		DRAM	
		4.	
		ERAM	
		1.cyan+ magenta+ Yellow= white 2.Red + Green + Blue = white	
562	Additive rule	3.cyan+ Green+ Yellow= white 4.cyan+ magenta+ Yellow= Black	2.0
		1. 0023H	
		2	
		0024H	
563	Address line for TRAP is?	3.	2.0
		0033H	
		4.	
		0099Н	
		I.	
		address latch enable	
		2.	
	AVD - 1.6	address level enable	
564	ALE stands for	3.	1.0
		address leak enable	
		4.	
		address leak extension	
565	ALGORITHM HAS THE TO THE PROBLEM IN NUMBER OF STEPS	I.SOLUTION & FINITE 2.PROBLEM & INFINITE 3.SOLUTION & INFINITE 4.PROBLEM & FINITE	1.0
566	All devices/host connect to a central switch in topology.	1.Star 2.Ring 3.Bus 4.Tree	1.0
		1.	
		Bottom up testing	
		2.	
567	All the modules of the system are integrated and tested as complete system in the case of	Top-down testing	4.0
		3.	
		Sandwich testing	
		4.	
		Big-Bang testing	

S.NO.	Questions	Choices	Answers
		1.	
		SLR , LALR	
		2.	
568	Among simple LR (SLR), canonical LR, and look-ahead LR (LALR), which of the following pairs identify the	CLR , LALR	3.0
308		3.	3.0
		SLR, CLR	
		4.	
		SLR	
		1.	
		0	
		2.	
		1	
569	An activity is said to be critical if slack time is equal to	3.	1.0
		2	
		4.	
		3	
		1.Elimination of the data redundancy 2.Ability to associate related data	
570	An advantage of the database approach is	3.Increase security 4.All of the options	4.0
		1.relation	
571	An Entity from an ER diagram can be represented in the relational model by a	2.domain	1.0
371	An Entity from an ER diagram can be represented in the relational model by a	3.functional dependency	1.0
		4.single attribute	
		1.short frame	
		2.runt frame	
572	An ethernet frame that is less than the IEEE 802.3 minimum length of 64 octets is called	3.mini frame	2.0
		4.man frame	
573	An intermediate code form is	1.Postfix notation 2.Syntax trees 3.Three address code 4.Postfix notation,	4.0
		Syntax trees and Three address code 1.	
		255.255.0.0	
		2.	
		255.255.64.0	
	An organization has a class B network and wishes to form subnets for 64 departments. The subnet mask would be:	3.	4.0
		255.255.128.0	
		4.	
		255.255.252.0	
	Any code inside a local that always computes the control of the Co		
575	Any code inside a loop that always computes the same value can be moved before the loop. This is called	1.Loop invariant computation 2.Interchange of statements 3.inducation variable 4.Algebraic Transformation	1.0
		1.	
		types of messages exchanged	
		2.	
		message format, syntax and semantics	
576	Application layer protocol defines	3.	4.0
		rules for when and how processes send and respond to messages	
		4.	
		all of the mentioned	
		<u>I</u>	1
ł			

s.no.	Questions	Choices	Answers
		1.	
		two levels	
		2.	
577	Architecture of the database can be viewed as	four levels	3.0
		3.	
		three levels	
		4.	
		one level	
		1.	
		->, %, +, =	
		2.	
578	Arrange the operators according to their precedence: $+, \%, ->, =$	=, +, %, ->	1.0
3/6	Arrange the operators according to their precedence. ±, /0, -/, -	3.	1.0
		%, +, =, ->	
		4.	
		9%, ->, =, +	
		1.)	
		1000	
		2.	
	Assume that a table R with 1000 records is to be joined with another table S with 10000 records.	10000	
	What is the maximum number of records that would result in if we join R with S and the equi-join attribute of S is the primary key?	3.	1.0
	autouc 0.5 % are primary key.	1,00,00,000	1
		4.	
		11000	
		1.Derived class constructor followed by Base class constructor. 2.Base	1
580	Assume that we have constructor functions for both base class and derived class. Now consider the declaration in main(). Base * P = New Derived; in what sequence will the constructor be called?	class constructor followed by derived class constructor. 3.Base class constructor will not be called. 4.Derived class constructor will not be	2.0
581	Assume the base address of CS is 3000H and IP is 2000H. Calculate the memory address.	called. 1.32000H 2.3000H 3.30000H 4.2000H	1.0
301	Assume the base address of Co is 300011 and it is 200011. Calculate the memory address.	1.	1.0
		ksort()	
		2.	
		asort()	
582	Assume you would like to sort an array in ascending order by value while preserving key associations. Which of the following PHP sorting functions would you use?	3.	2.0
		krsort()	
		4.	
		sort()	
		1.	+-
		17-JUL-00	
		2.	
		10-JUL-00	
	Assuming today is , 10 July 2000, what is returned by this statement: SELECT to_char(Last_DAY(sysdate), 'DD-MON-RR') FROM dual;	3.	4.0
		31-DEC-00	
		4.	
		31-JUL-00	
504	Discours councils all contists are not be as = 12 - 3 to	1.sorted linked list 2.sorted binary trees 3.sorted linear array 4.pointer	4.0
584	Binary search algorithm can not be applied to	array	4.0
585	Bit stuffing refers to	1.inserting a '0' in user data stream to differentiate it with a flag 2.inserting a '0' in flag data stream to avoid ambiguity 3.appending a	1.0
		nibble to the flag sequence 4.appending a nibble to the user data stream	1

	Questions	Choices	Answers
		1.	
		digital modulation	
		2.	
		amplitude modulation	
586 E	Bits can be send over guided and unguided media as analog signal using	3.	1.0
		frequency modulation	
		4.	
		phase modulation	
		1.	
		true	
587	2.0		2.0
367		2.	2.0
		false	
-		3. 4.	
		2.0 _{True}	
588 E	By following modern system engineering practices simulation of reactive systems is no longer necessary.		2.0
		FALSE	
_		3. 4.	
		1.	
		CPU and RAM	
		2.	
589	Cache memory acts between	RAM and ROM	1.0
369	ache memory acts between	3.	1.0
		CPU and Hard Disk	
		4.	
		None of these	
		1.	
		59	
		2.	
C	Calculate the block number in free storage management of files system with number of bits per	51	
590 V	vord is 8, the bit vector is	3.	1.0
0	0001101010101, offset of first 1 bit is 3	45	
		4.	
		53	
			ļ
		1.	
		6.2 micro second	
		2.	
501	Calculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is	7.8 micro second	
591 tl	he hit-ratio in paging hardware with TLB	3.	3.0
		2.2 micro second	
		4.	
		3.2 micro second	
		1.	
		a Unary operator	
		2.	
		a Binary operator	
592	Cartesian product in relational algebra is		2.0
		3.	
		a Ternary operator	
		4.	
		not defined	L

S.NO.	Questions	Choices	Answers
		1.	
		True	
	Change cannot be easily accommodated in most software systems, unless the system was designed with change in mind.	2.	1.0
		False	
		3. 4.	
		1.	
		Preventative maintenance.	
		2.	
-	Changes made to an information system to add the desired but not necessarily the	Adaptive maintenance.	
594	required features is called	3.	4.0
		Corrective maintenance.	
		4.	
		Perfective maintenance.	
595	Class IP addresses are used for large organizations	1.A 2.B 3.D 4.C	1.0
	class n { int a;}; how much memory the compiler allocates for this class	1.0 2.2 3.depends on compiler 4.4	4.0
		1.)	
		true	
597	1.0	2.	1.0
		false	
		3. 4.	
		I.)	
		true	
	Classes and components that exhibit functional, layer, or communicational cohesion are relatively easy to implement, test, and maintain.	2.	1.0
		false	
599	Compile time polymorphism is	1. 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1.0
399	Compile time polymorphism is	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.0
		giving programming versatility to the user by providing facilities as	
		pointers to memory counters for loop control	
		2.	
		to reduce no. of bits in the field of instruction	
600	Computers use addressing mode techniques for	3.	4.0
		specifying rules for modifying or interpreting address field of the	
		instruction	
		4.	
		All of these	
\dashv		1.	
		1.0rely on basis path testing	
		exercise the logical conditions in a program module	
601	Condition testing is a control structure testing technique where the criteria used to design test cases is that they		1.0
	is that they	select test paths based on the locations and uses of variables	
		4.	
		focus on testing the validity of loop constructs	
\dashv		1.	
	Consider 2 scenarios:	Both are true	
	C1: For DFA (φ, Σ, δ, qo, F),	2.	
	if F = ϕ , then L = Σ^*	Both are False	
602	C2: For NFA $(\phi, \Sigma, \delta, qo, F)$, if $F = \phi$, then $L = \Sigma^*$	3.	3.0
	Where F = Final states set ϕ = Total states set	C1 is true, C2 is false	
	Choose the correct option ?	4.	
I		C1 is false, C2 is true	1
603	Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly two children are	1.199 2.200 3.Any number between 0 and 199 4.Any number between 100 and 200	1.0

S.NO.	Questions	Choices	Answers
		1. 8 2.	
604	Consider a DFA over Σ = {a, b} accepting all strings which have number of a's divisible by 6 and number of b's divisible by 8. What is the minimum number of states that the DFA will have?	3. 15 4.	4.0
605	Consider a hash table with 9 slots. The hash function is $h(k) = k \mod 9$. The collisions are resolved by chaining. The following 9 keys are inserted in the order: 5, 28, 19, 15, 20, 33, 12, 17, 10. The maximum, minimum, and average chain lengths in the hash table, respectively, are	1.3, 3, and 3 2.3, 0, and 1 3.4, 0, and 1 4.3, 0, and 2	2.0
606	Consider an instance of TCP's Additive Increase Multiplicative Decrease(AIMD) algorithm where the window size at the start of the slow start phase is 2 MSS and the threshold at the start of the first transmission is 8 MSS. Assume that a time out occurs during the fifth transmission. Find the congestion window size at the end of the tenth transmission.	3. 7 MSS 4. 12 MSS	3.0
	Consider an undirected graph G with 100 nodes. The maximum number of edges to be included is Consider S->SS a what is the number of different derivation trees for aaaaa	1.2451 2.4950 3.9900 4.4851) 1. 5 2. 3 3. 14 4. 7	3.0
609	Consider the CFG with {S,A,B} as the non-terminal alphabet, {a,b} as the terminal alphabet, S as the start symbol and the following set of production rules S> aB	1. aaaabb 2. aabbbb 3. aabbab 4. abbbba	3.0
610	Consider the data of previous question. Suppose that the sliding window protocol is used with the sender window size of 2 ^{^i} where is the number of bits identified in the previous question and acknowledgments are always piggybacked. After sending 2 ^{^i} frames, what is the minimum time the sender will have to wait before starting transmission of the next frame? (Identify the closest choice ignoring the frame processing time).	1. 16ms 2. 18ms 3. 20ms 4.	3.0

S.NO.	Questions	Choices	Answers
		1.	
		0	
		2.	
	Consider the DFAs M and N given above. The number of states in a minimal DFA that accepts the	1	
	language $L(M) \cap L(N)$ is	3.	1.0
		2	
		4.	
		3	
	Consider the following array of elements. {89,19,50,17,12,15,2,5,7,11,6,9,100}. The minimum number of interchanges needed to convert it into a max-heap is	1.4 2.2 3.5 4.3	4.0
	Consider the following C code segment.		
	<pre>for (i = 0, i<n; i++)<="" pre=""></n;></pre>		
	<pre>for (j=0; j<n; j++)="" pre="" {<=""></n;></pre>		
613	if (1%2) {	4.0	4.0
	x += (4*j + 5*i); y += (7 + 4*j);	There is scope of dead code elimination in this code	
	}		
_	Which one of the following is false?		
	Consider the following C declaration struct {		
	short s [5] union {		
614	float y; long z;	1.10 bytes 2.18 bytes 3.22 bytes 4.14 bytes	2.0
	}u; } t;		
	Assume that objects of the type short, float and long occupy 2 bytes, 4 bytes and 8 bytes, respectively. The memory requirement for variable t, ignoring alignment		
	considerations, is		
		1.	
	Consider the following code segment.	6	
	x = u - t; y = x * v;	8	
615	x = y + w; y = t - z;	3.	4.0
	y = x * y;	0	
	The minimum number of total variables required to convert the above code segment to static single assignment form is	4.	
		10	
		1.	
		true false	
		2.	
	Consider the following code snippet	false true	
616	var al = [,,,]; var a2 = new Array(3); 0 in al	3.	1.0
	0 in a2	true true	
	Result of Javascript is:	4.	
		false true	
	Consider the following code snippet: var $a = [1,2,3,4,5]$; a.slice(0,3); What is the possible output	1.Returns [1,2,3] 2.Returns [4,5] 3.Returns [1,2,3,4] 4.Returns	1.0
	for the above code snippet?	[1,2,3,4,5]	
	Consider the following code snippet	1. Potrum [1.40 6.25]	
	<pre>function oddsums(n) { let total = 0, result=[];</pre>	Returns [1,4,9,16,25]	
	<pre>for(let x = 1; x <= n; x++) {</pre>	2. Potumo [1 2 2 4 5]	
618	<pre>let odd = 2*x-1; total += odd; result.push(total);</pre>	Returns [1,2,3,4,5]	1.0
	resurt.push(total); } return result;	3. Returns [3 6 9 12 15]	
	}	Returns [3,6,9,12,15]	
	What would be the output if	Returns [1,3,5,7,9]	
	oddsums (5);	1,0,0,1,7,1	
619	Consider the following code: $var a = []$; $a.unshift(1)$; $a.unshift(22)$; $a.shift()$; $a.shi$	1.1 2.[4,5] 3.[3,4,5] 4.Exception	1.0

S.NO.	Questions	Choices	Answers
	Consider the following function		
	double f(double x) {		
	if (abs($x*x - 3$) < 0.01) return x; else return f($x/2 + 1.5/x$);	1.1.723 <mark>2.1.732</mark> 3.0.732 4.1.733	2.0
	}		
	Give a value q (to 2 decimals) such that f(q) will return q:	1.	
	Consider the following javascript code snippet :		
	<pre>var a = []; a.unshift(1);</pre>	2.	
	a.unshift(22); a.shift();	[4,5]	1.0
	<pre>a.unshift(3,[4,5]); a.shift();</pre>	3.	
	<pre>a.shift(); a.shift();</pre>	[3,4,5]	
	The final output for the shift() is	4.	
		Exception	
		1	
	Consider the following program in C language:	1.	
	#include main()	Compilation fails. 2.	
	{	Execution results in a run-time error.	
	int i; int *pi = &i	3.	4.0
	scanf(?%d?,pi); printf(?%d\n?, i+5);	On execution, the value printed is 5 more than the address of variable i	
	}	4.	
	Which one of the following statements is TRUE?	On execution, the value printed is 5 more than the integer value entered	
	Consider the following statements for priority queue: S1: It is a data structure in which the intrinsic ordering of the elements does determine the result		
(22	of its basic operations.	1.Both S1 and S2 are incorrect 2.S1 is correct and S2 is incorrect 3.Both	4.0
	S2 : The elements of a priority queue may be complex structures that are ordered on one or several fields.	S1 and S2 are correct 4.S1 is incorrect and S2 is correct	
	Which of the following is correct?		
	Consider the following two sets of LR(1) items of an LR(1) grammar.	1.	
	X -> c.X, c/d	1 only	
	X -> .cX, c/d X -> .d, c/d	2.	
	X -> c.X, \$ X -> .cX, \$	2 only	
624	X -> .d, \$	•	4.0
	Which of the following statements related to merging of the two sets in the corresponding LALR parser is/are FALSE?	3.	
		1 and 4 only	
	 Cannot be merged since look aheads are different. Can be merged but will result in S-R conflict. 	4.	
	3. Can be merged but will result in R-R conflict. 4. Cannot be merged since goto on c will lead to two different sets.	1,2,3,4	
	Consider the following two sets of LR(1) items of an LR(1) grammar.	1.	
	X -> c.X, c/d X -> .cX, c/d	1 only	
	X -> .d, c/d	2.	
	X -> c.X, \$ X -> .cX, \$	2 only	
625	X -> .d, \$	3.	4.0
	Which of the following statements related to merging of the two sets in the corresponding LALR parser is/are FALSE?	3 and 4 only	
	Cannot be merged since look aheads are different.	4.	
	2. Can be merged but will result in S-R conflict.	1,2,3,4	
	 Can be merged but will result in R-R conflict. Cannot be merged since goto on c will lead to two different sets. 	1,2,2,4	
		1.	
		LL(1)	
		2.	
	Consider the grammar shown below.	SLR(1) but not LL(1)	
626	s - c c c c c d	3.	1.0
	The grammar is	LALR(1) but not SLR(1)	
		4.	
		LR(1) but not LALR(1)	
ĺ			

S.NO.	Questions	Choices	Answers
		1.	
	Consider the grammar with the following translation rules and E as the start symbol.	200	
	E - E1 # T { E.value = E1.value * T.value }	2.	
627	T { E.value = T.value } T - T1 & F { T.value = T1.value + F.value }	180	3.0
027	F{ T.value = F.value } F - num { F.value = num.value }	3.	3.0
	Compute E.value for the root of the parse tree for the expression: 2 # 3 & 5 # 6 & 4.	160	
	Compute E. value for the root of the parse are for the expression. 2 # 3 tt 5 # 5 tt 5 # 5 tt 4.	4.	
		40	
		1.	
		n1 <n2<n3< td=""><td></td></n2<n3<>	
	Consider the grammar	2.	
628	S (S) a	n1=n3 <n2< td=""><td>2.0</td></n2<>	2.0
028	Let the number of states in SLR(1), LR(1) and LALR(1) parsers for the grammar be n1, n2 and n3 respectively. The following relationship holds good	3.	2.0
		n1=n2=n3	
		4.	
		n1>n2>n3	
	Consider the intermediate code given below:	1.	
	1. i = 1	5 and 7	
	2. j = 1 3. t1 = 5 * i	2.	
_	4. t2 = t1 + j 5. t3 = 4 * t2	6 and 7	
629	6. $t4 = t3$ 7. $a[t4] = -1$	3.	2.0
	8. $j = j + 1$ 9. if $j \le 5$ goto(3)	5 and 2	
	10. i = i + 1 11. if i < 5 goto(2)	4.	
	The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are	7 and 8	
		1.	\vdash
		mn	
		2.	
		m+n	
630	Consider the join of a relation R with relation S. If R has m tuples and S has n tuples, then the maximum size of join is:	3.	1.0
		(m+n)/2	
		4.	
		2(m+n)	
		I.	\Box
		mn	
		2.	
	Consider the join of a relation R with relation S. If R has m tuples and S has n tuples, then the	m + n	
631	maximum size of join is:	3.	1.0
		(m+n)/2	
		4.	
		2(m+n)	
		1.	П
		3	
		2.	
(22	Consider the regular language L = (111 + 11111)*. The minimum number of states in any DFA accepting this	5	
632	languages is:	3.	4.0
		8	
		4.	
		9	
			ļ

	,	
	1.	
	2NF	
	2.	
Consider the relation R1(employee_name, project_name, dependent_name). If {{employee_name}>-> project_name}, {employee_name>-> dependent_name}}, what is the highest normal form		1.0
it satisfies?		
Consider the translation scheme shown below	2	
	95+2+	
R → + T {print ('+');} R ε T → num {print (num.val);}		2.0
Here num is a token that represents an integer and num.val represents the corresponding integer value. For an		
input string '9 + 5 + 2', this translation scheme will print	4.	
	++952	
Consider two strings A ='aparr' and B = 'paparro'. Let x be the length of the LCS between A and B	1,10,004,004,00	
and let y be the number of such longest common subsequences between A and B. Then $x + 10y =$		2.0
Count function in SQL returns the number of		
		1.0
	4.	
	columns	
	1.	
	Batch	
	2.	
	Real Time	
CPU Scheduling is the basis of operating system	3.	2.0
	Multi-programming	
	4.	
	network	
	1.	
	Error	
	2.	
	Table created	
create table student_\$(id number(4), namee varchar2(10)); reponse would be	3.	2.0
	Table created with error	
	4.	
	Table created with data	
Creating additional function similar to template function is called	1.implicit specialization 2.explicit specialization 3.abstraction 4.template	4.0
	1.which is written in a language that is same as the source language.	
Cross-compiler is a compiler	of computer. 3.that generates object code for its host machine. 4.which is	2.0
	written in a language that is different from the source language.	
	Consider the translation scheme shown below S - 7 P T - num (print (**); B E T - num (print (num,val);) Here num is a token that represents an integer and num,val represents the corresponding integer value. For an input atting \$9 + 5 + 2\$, this translation scheme will print Consider two strings A = 'apprr' and B = 'paprapr'. Let x be the length of the LCS between A and B and let y be the number of such longest common subsequences between A and B. Then x + 10y = Count function in SQL returns the number of CPU Scheduling is the basis of operating system Create table student_\$(id number(4), namee varchar2(10)); reponse would be Creating additional function similar to template function is called	### Part of the property of the property of the property of the LCS between A and B. Then x in 10, — **Consider two transition achieves above below **Description of the property of the property of the LCS between A and B. Then x in 10, — **Consider two variety A "injury" and B " hoppings". Let x be the length of the LCS between A and B. Then x in 10, — **Consider two variety A "injury" and B " hoppings". Let x be the length of the LCS between A and B. Then x in 10, — **Consider two variety A "injury" and B " hoppings". Let x be the length of the LCS between A and B. Then x in 10, — **Consider two variety A "injury" and B " hoppings". Let x be the length of the LCS between A and B. Then x in 10, — **Consider two variety A "injury" and B " hoppings". Let x be the length of the LCS between A and B. Then x in 10, — **Consider two variety A "injury" and B " hoppings". Let x be the length of the LCS between A and B. Then x in 10, — **Consider two variety A "injury" and B " hoppings". Let x be the length of the LCS between A and B. Then x in 10, — **Let x injury and a construction in SQL returns the number of a construction in SQL returns the nu

S.NO.	Questions	Choices	Answers
		I.	
		to find some insecurity in a cryptographic scheme	
		2.	
641	Cryptanalysis is used	to increase the speed	1.0
		3.	
		to encrypt the data	
		4.	
		none of the mentioned	
		1.)	
		fixed size bit string	
		2.	
(42		variable size bit string	1.0
642	Cryptographic hash function takes an arbitrary block of data and returns	3.	1.0
		both (a) and (b)	
		4.	
		None	
	Currently there is no single standard file type that can be used to play audio using the audio element consistently on all browsers. Which is the solution that the audio element provides to resolve this conflict?	1.Use JavaScript to determine the web browser in use 2.Use Adobe Flash to play the audio 3.Include multiple audio file formats in the src attribute 4.No Solution	
		1. rely on basis path testing	
		2.	
644	1.0	exercise the logical conditions in a program module 3.	1.0
044		select test paths based on the locations and uses of variables	1.0
		4	
		focus on testing the validity of loop constructs	
		1.	
		data is defined separately and not included in programs.	
		2.	
		programs are not dependent on the physical attributes of data	
645	Data independence means	3.	4.0
		programs are not dependent on the logical attributes of data	
		4.	
		programs are not dependent on both physical and logical attributes of	
		data	
646	Data Members of the base class that are marked private:	1.does exist in memory when the object of the derived class is created 2.exist in memory when the object of the derived class is created	2.0
040	Data vicinions of the base class that are market private.	the derived class 3.are visible in the derived class 4.are directly accessible in the derived class	2.0
		1.does exist in memory when the object of the derived class is created	
647	Data Members of the base class that are marked private:	2.exist in memory when the object of the derived class is created the derived class 3.are visible in the derived class 4.are directly	2.0
		accessible in the derived class	<u> </u>
		1.	
		Physical file	
		2.	
6/10	Data Stora Symbol in DED rapracants a	Data Structure	2.0
U+0	Data Store Symbol in DFD represents a	3.	2.0
		Logical file	
		<mark>4.</mark>	
		ALL	
			+
	DB, DW and DD directives are used to place data in particular location or to simplyallocate space without preassigning anything to space. The DW and DD directories are used to generate	1.f ull address of labels 2.offsets of full address of labels and variables 3.full address of variables 4.offsets	2.0

3. allows deadlock to be detected in paging schemes 4. is present only in Windows NT 1.All of the options 2.minimizing update anomalies 3.minimizing redundancy 4.minimizing insertion/deletion anomalies 1. String instructions 2. Stack instructions.	S.NO.	Questions	Choices	Answers
Distribute properties of relational database design metads: Distribute properties of relational database design metads: Distribute properties of relational metage sorts - fundament				
ODE CLE search for CL			Data Control Language	
Distance				
Data Contrait Level 4 Data Contrait Level 4 Data Contrait Level 5 Data Contrait Level 6 Data Contrait Level 7	650		Data Console Language	1.0
A Date Control Level 1. Date Control Level 1. Date structure of the independent of the physical memory allocation 1. Demand paged memory allocation 2. allows the virtual address space to be a multiple of the physical memory allocation 3. allows deadlock to be detected in paging schemes 4. spresent only in Windows NT 1. Destrable properties of relational database design include 2. Intimizating update amountles 2. Intimizating update amountles 3. Intimizating productions permanents 4. String instructions 3. Artitiment's insuractions 4. Branch instructions 4. Branch instructions 4. Description of logical structure of database. 2. Addition of new structures in the database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 5. Description of the suble along with values 6. Source of the spitons.	050	DCL status to		1.0
Duas Control Level Duas Control Level			Data Console Level	
Second S				
Section of the properties of relational dutabase design include 1.0			Data Control Level	
Demand paged memory allocation 2.			1.	
Demand paged memory allocation				
Second paged memory allocation Size Second paged memory Size				
Second paged memory allocation Size Second paged memory Size	ı		allows the virtual address space to be a multiple of the physical memory	
allows deadlock to be detected in paging schemes 4. is present only in Windows NT LAII of the options 2. minimizing update amonalies 3. minimizing redundancy 4. minimizing insertion/deletion anomalies 1.0 String instructions 2. Stack instructions 3. Arithmetic instructions 4. Branch instructions 5.2 Divide and conquire mechanism is used in 1.0 Description of logical structure of database. 2. Addition of new structure in the database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 3. None of the options 4. changes the structure of the tuble along with values 3. None of the options 4. changes the structure of the tuble	651	Demand paged memory allocation		1.0
A is present only in Windows NT			3.	
is present only in Windows NT LAN of the options 2. minimizing update amonalies 3. minimizing insertion/deletion anomalies 3. minimizing insertion/deletion anomalies 1. String instructions 2. Stuck instructions 3. Arithmetic instructions 4. Branch instructions 4. Branch instructions 5. Divide and conquire mechanism is used in 1. Description of logical structure of database. 2. 2. Marking the form of logical structure of database. 3. Addition of new structures in the database system. 5. Manipulation & processing of database. 4. Definition of physical structure of database system. 5. Drops colly the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table			allows deadlock to be detected in paging schemes	
Desirable properties of relational database design include 1.0 2.0			4.	
Description of logical structure of database system. Description of physical structure of database system. Description of physical structure of database system. Description of the table along with values from the table alon			is present only in Windows NT	
3.minimizing redundancy 4.minimizing insertion/deletion anomalies 1. String instructions 2. Stack instructions 3. Arithmetic instructions 4. Branch instructions 4. Description of logical structure of database. 2. Addition of new structures in the database system. 5. Description of physical structure of database system. 5. Despiration of physical structure of database system. 5. Despiration of physical structure of database system. 5. Despiration of physical structure of database system. 5. Description of logical structure of database system. 5. Definition of physical structure of database system. 5. Description of logical structure of database system. 5. Definition of physical structure of database system. 5. Description of logical structure of database system. 5. Definition of physical structure of database system. 5. Description of logical structure of database system. 5. Definition of physical structure of database system. 5. Description of logical structure of database system. 5. None of the table along with values. 6. None of the options 4. Changes the structure of the table 6. Changes the structure of the table			1.All of the options	
Siminarizaring redundancy Aminimizing insertion delection anomalies String instructions		Desirable properties of relational database design include	2.minimizing update anomalies	
String instructions 2.	652		3.minimizing redundancy	1.0
String instructions 2. Stack instructions. 3. Arithmetic instructions 4. Branch instructions 4. Branch instructions 555 DML is provided for 3. Manipulation & processing of database system. 566 Drop SQL clause 570 Drop SQL clause 581 Drop SQL clause 583 Dricction flag is used with 583 Drop SQL clause 584 Drop SQL clause 585 D			4.minimizing insertion/deletion anomalies	
Direction flag is used with 2. Stack instructions. 3. Arithmetic instructions 4. Branch instructions 4. Branch instructions 554 Divide and conquire mechanism is used in 1. Selection sort 2.merge sort 3.quick and merge sorts 4.indexed sequential search 1. Description of logical structure of database. 2. Addition of new structures in the database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 5. Direction flag is used with 5. Description of logical structure of database. 4. Definition of physical structure of database system. 5. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table			I.	
Stack instructions. 3. Arithmetic instructions 4. Branch instructions 1. selection sort 2.merge sort 3.quick and merge sorts 4.indexed sequential search 552 DML is provided for 553 DML is provided for 554 Divide and conquire mechanism is used in 555 DML is provided for 556 DML is provided for 557 DML is provided for 558 DML is provided for 559 DML is provided for 550 DML is provided for 551 DML is provided for 552 DML is provided for 553 DML is provided for 554 Definition of physical structure of database system. 555 DML is provided for 555 DML is provided for 556 Drop SQL clause 557 Drop SQL clause 558 Drop SQL clause 558 Drop SQL clause 559 Drop SQL clause 51 Drops only the values from the table 52 Drop SQL clause 550 Drop SQL clause 551 Drop SQL clause 552 Drop SQL clause 553 Drop SQL clause 554 Drop SQL clause 555 Drop SQL clause 555 Drop SQL clause 556 Drop SQL clause 557 Drop SQL clause 558 Drop SQL clause 559 Drop SQL clause 550 Drop SQL clause 550 Drop SQL clause 550 Drop SQL clause 551 Drop SQL clause 552 Drop SQL clause 553 Drop SQL clause 554 Drop SQL clause 555 Drop SQL clause 555 Drop SQL clause 556 Drop SQL clause 557 Drop SQL clause 558 Drop SQL clause 559 Drop SQL clause 550 Drop SQL clause 551 Drop SQL clause 551 Drop SQL clause 552 Drop SQL clause 553 Drop SQL clause 553 Drop SQL clause 554 Drop SQL clause 555 Drop SQL clause 555 Drop SQL clause 556 Drop SQL clause 557 Drop SQL clause 557 Drop SQL clause 558 Drop SQL clause 559 Drop SQL clause 550			String instructions	
553 Direction flag is used with 3, Arithmetic instructions 4. Branch instructions 1. Description of logical structure of database. 2. Addition of new structures in the database system. 555 DML is provided for 3, Manipulation & processing of database. 4. Definition of physical structure of database system. 566 Drop SQL clause 570 Drop SQL clause 580 Drop SQL clause 581 Drop SQL clause 582 Drop SQL clause 583 None of the options 484 changes the structure of the table 2.0 drops structure of the table 3.1 None of the options 4. changes the structure of the table			2.	
Arithmetic instructions 4. Branch instructions 5.2 Divide and conquire mechanism is used in 5.2 Lesclection sort 2.merge sort 3.quick and merge sorts 4.indexed sequential search 1. Description of logical structure of database. 2. Addition of new structures in the database system. 3.0 Manipulation & processing of database. 4. Definition of physical structure of database system. 1. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table			Stack instructions.	
4. Branch instructions 1. selection sort 2.merge sort 3.quick and merge sorts 4.indexed sequential search 1. Description of logical structure of database. 2. Addition of new structures in the database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 1. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table	653	Direction flag is used with	3.	1.0
Branch instructions 1. selection sort 2. merge sort 3. quick and merge sorts 4. indexed sequential search 1. Description of logical structure of database. 2. Addition of new structures in the database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 1. Description of logical structure of database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 5. Drop SQL clause 5. None of the options 4. changes the structure of the table 4. changes the structure of the table			Arithmetic instructions	
1.			4.	
Sequential search 1. Description of logical structure of database. 2. Addition of new structures in the database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 1. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table			Branch instructions	
Sequential search 1. Description of logical structure of database. 2. Addition of new structures in the database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 1. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table			1 colorion cont 2 money cont 2 mile and money cont 4 indexed	
Description of logical structure of database. 2. Addition of new structures in the database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 1. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table	654	Divide and conquire mechanism is used in		3.0
2. Addition of new structures in the database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 1. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table				
Addition of new structures in the database system. 3. Manipulation & processing of database. 4. Definition of physical structure of database system. 1. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table			Description of logical structure of database.	
3. Manipulation & processing of database. 4. Definition of physical structure of database system. 1. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table				
Manipulation & processing of database. 4. Definition of physical structure of database system. 1. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table	655	DML is provided for		3.0
4. Definition of physical structure of database system. 1. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table	033			3.0
Definition of physical structure of database system. 1. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table			Manipulation & processing of database.	
Drop SQL clause 1. Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table				
Drops only the values from the table 2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table			Definition of physical structure of database system.	
2. drops structure of the table along with values 3. None of the options 4. changes the structure of the table			1.	
drops structure of the table along with values 3. None of the options 4. changes the structure of the table			Drops only the values from the table	
Drop SQL clause 3. None of the options 4. changes the structure of the table			2.	
None of the options 4. changes the structure of the table		D. COL. I	drops structure of the table along with values	2.6
4. changes the structure of the table	656	Drop SQL clause	3.	2.0
changes the structure of the table			None of the options	
			4.	
Duality principle is used when SE is 1.square 2.symmetric 3.asymmetricd 4.translated 2.0			changes the structure of the table	
	657	Duality principle is used when SE is	1.square 2.symmetric 3.asymmetricd 4.translated	2.0

		1.	
		applications, data, technology infrastructure	
		2.	
658	1.0	communications, organization, financial infrastructure 3.	1.0
		network, database, reporting structure	
		4.	
\dashv		systems, requirements, data structure	
		1.6	
659 F	Each counter of IC 8254 can work indiffernt modes of operation	2.5	1.0
		3.4	1.0
		4.3	
		1.	
		symmetric key encryption algorithm	
		2.	
		asymmetric key encryption algorithm	
660 E	ElGamal encryption system is	3.	2.0
		not an encryption algorithm	
		4.	
		none of the mentioned	
\dashv		1.	1
		Ultraviolet rays	
		2.	
		infrared rays	
661 E	EPROM is generally erased by using	3.	1.0
		12 V electrical pulse	
		4.	
		24 V electrical pulse	
\dashv			
		1.	
		pure ethernet	
		2.	
662 1	Ethernet in metropolitan area network (MAN) can be used as	ethernet over SDH	4.0
002		3.	4.0
		ethernet over MPLS	
		4.	
		combination of all of the above mentioned	
\Box		1.	
		reduce the granularity of the plan 2.	
		analyze requirements in depth	
663	3.0	3.	3.0
		get all team members to "sign up" to the plan	
		4.	
ightharpoonup		begin design	
		1.	
		Are not iterative in nature	
		2.	
664	2.0	Can easily accommodate product requirements changes	2.0
004		3.	2.0
		Generally produce throwaway systems	
		4.	
		Are not specific to applications	
			-1

S.NO.	Questions	Choices	Answers
		1. can be avoided by paging	
665	Eutomal Enamentation of the file austern	2. occurs only if the file system is used improperly	4.0
000	External Fragmentation of the file system	3. can be removed by compaction	4.0
		4.can be avoided by Segmentation	
	Find the output	1.	
		012345678910	
	#include < stdio.h >	2.	
	int main() {	0 1 2 3 infinte times	
666	int tally=0; for(;;)	3.	3.0
	(if(tally==10)	1 2 3 4 5 6 7 8 9 10	
	break;	4.	
	<pre>printf("%d ",++tally); }</pre>	123456789	
	return 0; }		
		1.	
	Find the output	Error	
	#include <stdio.h></stdio.h>	2.	
	int main()	65	
667	{ int x=65;	3.	3.0
	const unsigned char c=(int)x;	A	
	printf("%c\n",c);	4.	
	return 0;	NULL	
	}		
	Find the output		
		1.	
	#include <stdio.h> struct sample</stdio.h>	Error	
	{	2.0,A,10.5 3.	
668	int a=0; char b='A';	0,A,10.500000	1.0
	float c=10.5; };	4.	
	int main() {	No Error, No Output	
	struct sample s; printf("%d,%c,%f",s.a,s.b,s.c);		
	return 0;		
	}	1.	
		Error	
		2.	
	Find the output:	101,	
	#include <stdio.h></stdio.h>	Value is = 103	
669	int main() {	3.	3.0
007	int a=100; printf("%d\n"+1,a);	d	3.0
	printf("Value is = %d"+3,a);	ue is = 100	
	return 0; }	4.	
		100	
		100	

S.NO.	Questions	Choices	Answer
		1.	
	Find the output:	23	
	#include <stdio.h></stdio.h>	2.	
	int main()	Error	
670	int a=23;	3.	1.0
	; ;printf("%d",a);	;23;	
	; return 0;	4.	
	}	;23	
		1.	-
	Find the output:	B	
		2.	
	#include <stdio.h> void main()</stdio.h>	A	3.0
0/1	{ const char var='A';	3.	3.0
	++var; printf("%c",var);	ERROR	
	}	4.	
		66	
		1.	
		44	
	FIND THE OUTPUT:	2.	
	#include <stdio.h></stdio.h>	45	
672	void main() {	3.	2.0
	int $x=10$; x+=(x++)+(++x)+x;	46	
	printf("%d",x);	4.	
	<i>§</i>	 47	
			<u> </u>
		1.	
		x= 60	
	Find the output:	2.	
	#include <stdio.h> void main()</stdio.h>	x= 70	4.0
075	{ int x=(20 40) && (10);	3.	1.0
	printf("x=%d",x);	x= 0	
	}	<mark>4.</mark>	
		x= 1	
		1.	
		ERROR: can not modify var.	
	Find the output:	2.	
	#include <stdio.h></stdio.h>	ERROR: L-Value required	
674	void main() {	3.	2.0
	char var=10;	12	
	printf("var is = %d",++var++); }	4.	
		ERROR: Expression syntax	
675	First desirative approximation can that the of a second in the		2.0
675	First derivative approximation says that values of constant intensities must be	1.1 2.0 3.positive 4.negative 1.For the given PS and NS what will be the inputs 2.For the given PS	
676	Flip-flop excitation tables shows that	and NS what will be the outputs 3.For the given PS and NS what will be the type of flip-flops 4.For the given PS and NS what will be the values	4.0
	Following can be used to implement a SOP function without changing it into minterms	of NS and PS respectively 1.MUX 2.PLA 3.ROM 4.DeMUX	4.0
450			

S.NO.	Questions	Choices	Answers
		1.	
		The waterfall model	
		2.	
678	For a well understood data processing application it is best to use	prototyping model	1.0
		3.	
		the evolutionary model	
		4.	
		the spiral model	
		1. 3.0	
		2.	
679	For purposes of behavior modeling a state is any	data object hierarchy.	3.0
		3. observable mode of behavior.	
		4.	
		well defined process.	-
		A field in a table that matches a key field in another table	
		2.	
		A field in a table that contains data that is also contained elsewhere in	
680	Foreign Key is	another table	1.0
000	Totaga Rey is	3.	1.0
		A key that consists of more than one field	
		4.	
		A field in a table that has the same name as a key field in another table	
		1.	
		i=2	
		2.	
_	Frames of 1000 bits are sent over a 10 ⁶ bps duplex link between two hosts. The propagation time is 25ms. Frames are to be transmitted into this link to maximally pack them in transit (within the	i=3	
001	link). What is the minimum number of bits, i will be required to represent the sequence numbers	3.	4.0
	distinctly? Assume that no time gap needs to be given between transmission of two frames.	i=4	
		4.	
		i=5	
		1.	
		20	
		2.	
		21	
682	FTP server listens for connection on port number	3.	2.0
		22	
		4.	
		23	
692	Functions that combines to produce $f(x,y)$	1.illumination and frequency 2.intensity and reflectance 3.illumination	4.0
003	runctions that combines to produce $f(x,y)$	and radiance 4.illumination and reflectance	4.0
		Consumes less power	
		2.	
		has higher speed	
684	Generally Dynamic RAM is used as main memory in a computer system as it	as nigner speed 3.	2.0
		has lower cell density	
		4.	
		needs refreshing circuitry	

S.NO.	Questions	Choices	Answers
		1.	
		waterfall, componet-based, iterative	
		2.	
685	Generic process models are:	waterfall, structural, component-based 3.	4.0
		sequential, waterfall, iterative	
		4.	
		component-based, object-oriented, iterative	
		1.	
		strstr()	
		2.	
		extract	
686	Given a comma-separated list of values in a string, which function from the given list can create an array of each individual value with a single call in PHP?	3.	3.0
		explode()	
		4.	
		strtok()	
687	Given a hash table T with 25 slots that stores 2000 elements, the load factor a for T is	1.80 2.0.0125 3.8000 4.1.25	2.0
		substr(\$email, strpos(\$email, "@"));	
		2.	
	Given a variable \$email containing the string user@example.com, which of the following PHP	strstr(\$email, "@");	
	statements would extract the string example.com?	3.	4.0
		strchr(\$email, "@");	
		4.	
		substr(\$email, strpos(\$email, "@")+1);	
	Given an array that represents elements of arithmetic progression in order. It is also given that one		
	element is missing in the progression, the worst case time complexity to find the missing element efficiently is:	1.theta(n) 2.theta(nLogn) 3.theta(Logn) 4.theta(1)	3.0
690	Given CF=0, BX=00111011 01110101 ROR BX,1. The result is	1.CF=1 BX=10011101 10111010 3.CF=0 BX=01001110 11011101 4.CF=0 BX=01010011 10110111	1.0
		1.	
		An attributes of an entity can have more that one value	
		2.	
601	C' de la ED. Le de la Le de CH. C. NGODDECTO	An attribute of an entity can be composite	2.0
691	Given the basic ER and relational models, which of the following is INCORRECT?	3. In a row of a relational table, an attribute can have more than one value	3.0
		4.	
		In a row of a relational table, an attribute can have exactly one value or a	
		NULL value	
692	Given the Code segment CS = 1000H and the offset BX=0050H. Calculated physical address is	1.10000H <mark>2.10050H</mark> 3.11050H 4.11000H	2.0
693	Given the Extra segment ES = 52B9H and the offset BX=D470H. Calculated physical address is	1.60000H 2.70000H 3.11000H 4.11050H	4.0
694	Given the frequency f=1.5MHZ for 8253 timer the value of time period T is	1.10ms <mark>2.0.66us</mark> 3.1ms 4.100ms	2.0
		1.	
		A is a key for R	
		Z. DE is a low for P	
695	Given the functional dependencies, $\{AB \rightarrow CDE \text{ and } A \rightarrow E\}$, for relation schema $R = (A,B,C,D,E)$ we can infer the following:	BE is a key for R	3.0
	(7,15,0,1,15) we can inter the following:	3. AB is a key for R	
		4.	
		B is a key for R	

S.NO.	Questions	Choices	Answers
		1.	
		1, 2 and 3	
	Given the language L = {ab, aa, baa}, which of the following strings are in L*?	2.	
606	1) abaabaaabaa	1, 2 and 4	2.0
696	2) aaaabaaaa 3) baaaaabaaaab	3.	2.0
	4) baaaaabaa	1, 3 and 4	
		4.	
		2, 3 and 4	
		1.	
		DDL	
		2.	
		TCL	
697	Grant and revoke are statements.	3.	3.0
		DCL	
		4.	
		DML	
		1.	
		coaxial cable	
		2.	
		twisted pair cable	
698	High speed ethernet works on	3.	3.0
		optical fiber	
		4.	
		none of the mentioned	
699	How can we count the number of elements in an array?	1.Using sizeof() 2.count() 3.Writing a user defined function and using array_search() 4.using sizeof() and count()	4.0
700	How can you specify default text in an input field?	1.Using JavaScript 2.Using the 'text' attribute 3.Using the 'placeholder'	4.0
701	How do I create PHP arrays in a HTML ?	element 4.Using the 'placeholder' attribute 1.< input name= MyArray[]/> 2.< input ="MyArray[]" /> 3.< input	3.0
701	now do recede iiii anays ma iiivit.	name="MyArray[]" /> 4.< input MyArray[] /> 1.One is not a method of the String object. 2.substr() takes three	5.0
702	How do substring() and substr() differ?	arguments, substring() only two. 3.Only one accepts a desired string length as an argument. 4.Besides the spelling, nothing.	3.0
703	How do we access the value of 'd' later? $a = array('a', 3 => 'b', 1 => 'c', 'd');$	1.\$a[0] 2.\$a[1] 3.\$a[2] 4.\$a[4]	4.0
704	How do we prevent margins, borders and padding from overlapping?	1.Setting zero paddings and margins 2.By displaying our list as block elements 3.Using table cells 4.By displaying our list as inline elements	2.0
705	How do we submit form data without a Sumbit button?	1.Using header() function 2.Using Javascript 3.Using	4.0
706	How do you check queue is full in array implementation	fdf_set_submit_form_action() fucntion 4.using header() and javascript 1.if(rear==size) 2.if(front==size) 3.if(rear==-1) 4.if(front==-1)	1.0
	How do you get information from a form that is submitted using the "get" method?	1.Request.QueryString; 2.\$_GET[]; 3.Request.Form; 4.\$_POST[];	2.0
	How is a J-K flip-flop made to toggle? How many bits are required to store one BCD digit?	1.J = 0, K = 0 2.J = 0, K = 1 3.J = 1, K = 0 4.J = 1, K = 1 1.1 2.2 3.3 4.4	4.0
		1.	
		six	
		2.	
		seven	
710	How many diagrams are here in Unified Modelling Language?	3.	4.0
		eight	
		4.	
		nine	
711	How many different states does a 3-bit asynchronous counter have?	1.2 2.4 <mark>3.8</mark> 4.16	3.0
712	How many flip-flops are required to construct a mod10 counter?	1.10 2.8 3.5 4.4	4.0
_	How many flip-flops are required to make a MOD-32 binary counter? How many instances of an abstract class can be created?	1.3 2.4 <mark>3.5 4.6</mark> 1.13 2.5 3.1 4.0	3.0 4.0
	·		

716 Ho 717 Ho 718 Ho 719 Ho 720 Ho 721 Ho	w many minimum states are required in a DFA to find whether a given binary string has odd number of 0's not, there can be any number of 1's. by many nodes in a tree have no ancestors. by many operating modes are available in 8253A. by many transistors does the 8086 have by to create a Date object in JavaScript? by to create a memory without a name during the execution of the program?	1. 2. 2 3. 3 4. 4 1.2 2.n 3.1 4.0 1.1 2.2 3.6 4.3 1.29,000 2.10,000 3.129,000 4.110,000 1.dateObjectName = new Date([parameters]) 2.dateObjectName.new Date([parameters]) 3.dateObjectName := new Date([parameters])	2.0 3.0 3.0 1.0
717 Ho 718 Ho 719 Ho 720 Ho 721 Ho 722 Ho	ow many operating modes are available in 8253A. ow many transistors does the 8086 have ow to create a Date object in JavaScript? ow to create a memory without a name during the execution of the program?	1.1 2.2 3.6 4.3 1.29,000 2.10,000 3.129,000 4.110,000 1.dateObjectName = new Date([parameters]) 2.dateObjectName.new Date([parameters]) 3.dateObjectName := new Date([parameters])	3.0
717 Ho 718 Ho 719 Ho 720 Ho 721 Ho	ow many operating modes are available in 8253A. ow many transistors does the 8086 have ow to create a Date object in JavaScript? ow to create a memory without a name during the execution of the program?	1.1 2.2 3.6 4.3 1.29,000 2.10,000 3.129,000 4.110,000 1.dateObjectName = new Date([parameters]) 2.dateObjectName.new Date([parameters]) 3.dateObjectName := new Date([parameters])	3.0
718 Ho 719 Ho 720 Ho 721 Ho 722 Ho	ow many transistors does the 8086 have ow to create a Date object in JavaScript? ow to create a memory without a name during the execution of the program?	1.29,000 2.10,000 3.129,000 4.110,000 1.dateObjectName = new Date([parameters]) 2.dateObjectName.new Date([parameters]) 3.dateObjectName := new Date([parameters])	
719 Ho 720 Ho 721 Ho 722 Ho	ow to create a Date object in JavaScript? ow to create a memory without a name during the execution of the program?	I.dateObjectName = new Date([parameters]) 2.dateObjectName.new Date([parameters]) 3.dateObjectName := new Date([parameters])	1.0
721 Ho		4.dateObjectName Date([parameters])	1.0
722 Ho		1.malloc() 2.Queue 3.stack 4.list	1.0
	ow will you free the allocated memory?	1.remove(var-name); 2.free(var-name); 3.delete(var-name); 4.dalloc(var-name);	2.0
nev	ow will you handle the overflow condition of a linked queue through code(note: new_node is a wly created node in a memory)	1.if(rea—size) 2.if(new_node==0) 3.if(front==size) 4.if(new_node==null)	1.0
723 HT	TTP client requests by establishing a connection to a particular port on the server.	1. user datagram protocol 2. transmission control protocol 3. broader gateway protocol 4. RIP	2.0
724 IC	8237 hasmany pins	1. 40 2. 28 3. 24 4. 20	1.0
725 IC	8257 hasmany channels for data transfer	1. 1 2. 2 3. 3 4.	4.0
726 Ide	entify different segments in a program	1.only code segment 2.data and code segment 3.only data segment 4.data, code, stack and extra segments	4.0
	entify the accurate control word for operate counter 0, Read/Write LSB only, Mode 2, BCD untdown.	1.00010111B 2.0001X111B 3.00010101B 4.00110111B	2.0
-	entify the addressing mode for the instruction MOV AH,47H	1.Immediate addressing mode 2.Direct addressing mode 3.Based addressing mode 4.Indirect addressing mode	2.0
	entify the proper data direction and modes of operation of the 8255 ports if the control word itten into it is 9BH.	1.Port A as output 2.Port C lower as output 3.Port C upper as input 4.Port B as output	3.0

S.NO.	Questions	Choices	Answers
		1.	
		1024	
		2.	
		1023	
	If a class B network on the Internet has a subnet mask of 255.255.248.0, what is the maximum number of hosts per subnet?	3.	3.0
	·	2046	
		4.	
		2047	
731	If a class C is derived from class B, which is derived from class A, all through public inheritance, then a class C member function can access	1. protected and public data only in C and B 2. protected and public data	4.0
	then a class C member function can access	only in C. 3.private data in A and B. 4.protected data in A and B. 1.The object cannot be created 2.Only its member functions and friends	
732	If a constructor function is defined in private section of a class, then	may declare objects of the class 3.Only its friends may declare objects of the class 4.Only its member functions may declare objects of the class	2.0
722	ADD AT 1 is single of the state of the single of the state of the single	1.CF=0,PF=0,AF=1,ZF=0,SF=1,OF=1 . 2.CF=0,PF=1,AF=0,ZF=0,SF=1,OF=1	4.0
133	If AL= 7FH and instruction ADD AL,1 is given, specify the contents of the six status flag	3.CF=0,PF=1,AF=1,ZF=0,SF=1,OF=1	4.0
734	If AL=C0H, Determine the content of the register AL after SAL AL,1 instruction is executed.	4.CF=0,PF=0,AF=1,ZF=0,SF=1,OF=0 1.E0H	2.0
	, , , , , , , , , , , , , , , , , , , ,	1.	
		10	
		2.	
		_	
	If all page frames are initially empty, and a process is allocated 3 page frames in real memory and references its pages in the order 1 2 3 2 4 5 2 3 2 4 1 and the page replacement is FIFO, the total	7	4.0
	number of page faults caused by the process will be	3.	4.0
		8	
		4.	
		9	
		1.	
		Functional Cohesion	
		2.	
		Temporal Cohesion	
736	If all tasks must be executed in the same time-span, what type of cohesion is being exhibited?	3.	2.0
		Functional Cohesion	
		4.	
		Sequential Cohesion	
		1.Class C is friend of Class A 2.Class A is friend of Class C 3.Class A	
737	If class A is friend of class B and if class B is friend of class C, which of the following is true?	and Class C don't have any friend relationship 4.Class A and Class C are mutual friends	4.0
		1.	
		correct.	
		2.	
	If every requirement stated in the Software Requirement Specification (SRS) has only one	unambiguous.	
	interpretation, SRS is said to be	3.	2.0
		consistent.	
		4.	
		verifiable.	
	If inspected in a browser, what will be the total width of the div in the following code snippet?		
739	#container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px 40px 10px;}	1.664px 2.660px 3.644px 4.600px	1.0
\neg	1 1 2	1.	
		regular	
		2.	
740	If Land Large requirely equipment by the state	context-free	4.0
740	If L and L' are recursively enumerable, then L is	3.	4.0
		context-sensitive	
		1	
		4.	
		4. recursive	

	Questions	Choices	Answers
741	If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson construction will have states.	1. n 2. n+1 3. n+2 4. n-1	2.0
742	If p and q are assigned the values 2 and 3 respectively then the statement $P = q++$	1.assigns a value 5 to p <mark>2.assigns a value 3 to p</mark> 3.gives an error message 4.assigns a value 4 to p	2.0
743	If para1 is the DOM object for a paragraph, what is the correct syntax to change the text within the paragraph?	1."New Text"? 2.para1.value="New Text"; 3.para1.firstChild.nodeValue= "New Text"; 4.para1.nodeValue="New Text";	2.0
744	If the class name is X, what is the type of its "this" pointer?	1.X* 2.const X* const 3.X& 4.X* const	3.0
745	If the disk size is 2^30 bytes and block size is 2^12 bytes then find how many such blocks are there?	2^42 2. 2^18 3. 2^360 4. 2^30	2.0
746	If the PIC outputs the type number of C8H, the CPU will retrive the vector stored in the address	1.00320H - 00323H 2.00324H - 00327H 3.00223H - 00226H 4.00140H - 00143H	
747	If the size of logical address space is 2 to the power of m, and a page size is 2 to the power of n addressing units, then the high order bits of a logical address designate the page number, and the low order bits designate the page offset.	1. m,n 2. n,m 3. m-n,m 4.	4.0
748	If there are n relations how many number of join conditions has to be applied to retrieve the data from all the n relations?	1. N+1 2. N 3. N-1 4. A Number in the range 0 toN.	3.0
749	If we create a file by 'ifstream', then the default mode of the file is	1.ios :: out 2.ios :: in 3.ios :: app 4.ios :: binary	1.0
750	If X->Y and X->Z then	1. Y->Z 2. Z->Y 3. X->YZ	3.0

NO.	Questions	Choices	Answ
		1.	
		True	
		2.	
751	If x> y then y> x. This statement is	False	3.0
		3.	
		Can't Say	
		4.	
		Doesn't hold	
		1.	
		X> Y	
		2.	
152	IF Y is a subset of X then	Y>X	2.0
32	II I IS a Subset of A then	3.	2.0
		Y>> X	
		4.	
		X is a sub set of Y	
53	If you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the order of the characters when you dequeue all the elements?	1.'r', 'a', 't' 2.'t', 'a', 'r' 3.'r', 't', 'a' 4.'t', 'r', 'a'	1.0
	order of the characters when you dequede an the cicinents.	1.)	\vdash
		multiplication	
		2.	
		addition	
54	IMUL source is a signed	3.	1.0
		subtraction	
		4.	
		division	
		Coprocessor is interfaced in MAX mode 2.Coprocessor is interfaced in	1
755	In 8086 microprocessor one of the following statements is not true	MIN mode 3.I/O can be interfaced in MAX / MIN mode 4.Supports pipelining	2.0
56	In 8086 microprocessor the following has the highest priority among all type interrupts	1.TYPE 255 2.DIV 0 3.NMI 4.OVER FLOW	3.0
		1.	
		TRAP	
		2.	
157	In 2006 Francis Co. No. and all list areas	RST6.5	1.0
57	In 8086, Example for Non maskable interrupts are	3.	1.0
		INTR	
		4.	
		RST6.6	
		1.	
		always be evaluated	
		2.	
		be evaluated only if the definition is L-attributed	
58	In a bottom-up evaluation of a syntax directed definition, inherited attributes can	3.	2.0
		be evaluated only if the definition has synthesized attributes	
		4.	
		never be evaluated	
		1.components are arranged hierarchically 2.there is no beginning and no	
	In a circular linked list	end 3.forward and backward traversal within the list is permitted	2.0
159	in a cricular mirecu rist	4.components are arranged from top to bottom	

1. parsing of the program 2. the code generation 3. the lexical analysis of the program 4. dataflow analysis 1. Student credit hours 2. Course prerequisites 3. Parking sticker assignments 4. Final exam schedules 1.A tree has no bridge 2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	a bridge (A clique is any
2. the code generation 3. the lexical analysis of the program 4. dataflow analysis 1. Student credit hours 2. Course prerequisites 3. Parking sticker assignments 4. Final exam schedules 1.A tree has no bridge (2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
3. the lexical analysis of the program 4. dataflow analysis 1. Student credit hours 2. Course prerequisites 3. Parking sticker assignments 4. Final exam schedules 1.A tree has no bridge (2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
3. the lexical analysis of the program 4. dataflow analysis 1. Student credit hours 2. Course prerequisites 3. Parking sticker assignments 4. Final exam schedules 1.A tree has no bridge (2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
the lexical analysis of the program 4. dataflow analysis 1. Student credit hours 2. Course prerequisites 3. Parking sticker assignments 4. Final exam schedules 1.A tree has no bridge 2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
4. dataflow analysis 1. Student credit hours 2. Course prerequisites 3. Parking sticker assignments 4. Final exam schedules 1.A tree has no bridge 2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
dataflow analysis 1. Student credit hours 2. Course prerequisites 3. Parking sticker assignments 4. Final exam schedules 1.A tree has no bridge 2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
1. Student credit hours 2. Course prerequisites 3. Parking sticker assignments 4. Final exam schedules 1.A tree has no bridge 2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
Student credit hours 2. Course prerequisites 3. Parking sticker assignments 4. Final exam schedules 1. A tree has no bridge 2. A bridge cannot 3. Every edge of a clique with size>=3 is complete subgraph of a graph) 4. A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
Student credit hours 2. Course prerequisites 3. Parking sticker assignments 4. Final exam schedules 1. A tree has no bridge 2. A bridge cannot 3. Every edge of a clique with size>=3 is complete subgraph of a graph) 4. A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
2. Course prerequisites 3. Parking sticker assignments 4. Final exam schedules 1.A tree has no bridge (2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
Course prerequisites 3. Parking sticker assignments 4. Final exam schedules 1.A tree has no bridge 2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
3. Parking sticker assignments 4. Final exam schedules 1.A tree has no bridge 2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
3. Parking sticker assignments 4. Final exam schedules 1.A tree has no bridge 2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	t be part of a simple cycle a bridge (A clique is any
4. Final exam schedules 1.A tree has no bridge 2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	a bridge (A clique is any
Final exam schedules 1.A tree has no bridge 2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	a bridge (A clique is any
1.A tree has no bridge 2.A bridge cannot 3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	a bridge (A clique is any
3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	a bridge (A clique is any
3.Every edge of a clique with size>=3 is complete subgraph of a graph) 4.A graph cycle 1. from I/O to memory 2. from memory to I/O	a bridge (A clique is any
cycle 1. from I/O to memory 2. from memory to I/O	n with bridges cannot have a
from I/O to memory 2. from memory to I/O	
2. from memory to I/O	
from memory to I/O	
	l l
	1.0
from memory to I/O	
4.	
from I/O to I/O	
	kable and vectored 3.maskable
and vectored 4.non-maskable and non-ve	ectored 3.0
1.	
For shortest path routing between LANs	
2.	
For avoiding loops in the routing paths	
kets may have to	2.0
rage-routing?	
For minimizing collisions	
	butes 3. Canonical atrributes 2.0
1.	
500 metres of cable.	
eed is 200	
3.	3.0
20 metres of cable.	
4.	
50 metres of cable.	
and pack r br	3. from memory to I/O 4. from I/O to I/O 1.maskable and non-vectored 2.non-maskand vectored 4.non-maskable and non-vectored 2.non-maskable and non-vectored 4.non-maskable and non-vectored 4.non-maskable and non-vectored 5.non-maskable and non-vectored 4.non-maskable and non-vectored

S.NO.	Questions	Choices	Answers
		segmentation and page tables are stored in the cache and do not add any substantial overhead 2.	
768	In a virtual memory environment	slow down the computer system considerable 3.	1.0
		segmentation and page tables are stored in the RAM 4. only page table is stored in cache	
769	In access lists and groups which one of the following is correct for the 'RWX' notation of the order 'group, owner, public'	1. 111110001 2. 110111001 3. 001111110 4.	2.0
770	In an array representation of binary tree, the left child of i th node is located at	001110111 1.2i+2 2.(i-1)/2 3.(i-2)/2 4.2i+1	4.0
	In an array representation of binary tree, the right child of i th node is located at	1.(i-2)/2 2.(i-1)/2 <mark>3.2i+2</mark> 4.2i+1	3.0
772	In an E-R diagram an entity set is represent by a	1. rectangle 2. ellipse 3. diamond box 4. circle	1.0
773		1. rectangle 2. square 3. ellipse 4. triangle	3.0
774	In any undirected graph, the sum of the degrees of all nodes is:	1.is twice number of edges 2.is always ODD 3.need not be even 4.must be even	1.0
	In Assembly language programming, minimum number of operands required for an instruction is/are	1. Zero 2. One 3. Two 4.	1.0
776	In asynchronous serial communication the physical layer provides	1.start and stop signalling 2.flow control 3.both (a) and (b) 4.none of the mentioned	3.0
	In binary heap, whenever the root is removed then the	1.To make sure that it is still complete binary tree 2.It is the easiest possible way 3.Because left and right subtree might be missing	1.0

S.NO.	Questions	Choices	Answers
		1.not Null	
55 0		2.Null	
778	In case of entity integrity, the primary key may be	3.a foreign key	1.0
		4.any value	
		1.	
		cannot be a member of the software team	
		2.	
779	3.0	cannot be a customer	2.0
		3.	
		controls and facilitates the process	
		4. must be an outsider	
		1 Major difference between I AN and WAN is that the later uses	
780	In context of OSI or TCP/IP computer network models, which of the following is false?	switching element 2.Network layer is connection oriented 3.A repeater is used just to forward bits from one network to another one 4.A gateway is	2.0
		used to connect incompatible networks	
		1.	
		transpositional ciphers	
		2.	
781	In cryptography, the order of the letters in a message is rearranged by	substitution ciphers	1.0
701	in exprography, the order of the fetters in a incosage is realranged by	3.	1.0
		both (a) and (b)	
		4.	
		none of the mentioned	
		1.	
		Half the baud rate.	
		2.	
		Twice the baud rate.	
782	In Ethernet when Manchester encoding is used, the bit rate is:	3.	1.0
		Same as the baud rate.	
		4.	
		Grows exponentially	
		1.	
		transmission control protocol	
		2.	
783	In FTP protocol, client contacts server using as the transport protocol.	user datagram protocol	1.0
703	as the transport protocol.	3.	1.0
		datagram congestion control protocol	
		4.	
		stream control transmission protocol	
70.1		1.two leaf nodes in the general tree 2.its right child and sibling in the	1.6
784	In general tree to binary tree conversion, the two links of the binary tree node points to	genral tree 3.its left child and sibling in the general tree 4.its left and right child in the general tree	4.0
		1.	
		multiple HTTP requests are sent on a single TCP connection without waiting for the corresponding responses	
		2.	
785	In HTTP pipelining	multiple HTTP requests can not be sent on a single TCP connection	1.0
		3.	
		multiple HTTP requests are sent in a queue on a single TCP connection	
		4.	
		none of the mentioned	

S.NO.	Questions	Choices	Answer
		Shortest Remaining Time Next (SRTN) Scheduling 2.	
786	In interactive environments such as time-sharing systems, the primary requirement is to provide reasonably good response time and in general, to share system resources equitably. In such situations, the scheduling algorithm that is most popularly applied is	Priorities Based Preemptive Scheduling 3. Round Robin Scheduling	3.0
		4. First Come First Serve	
787	In javascript, RegExp Object Method test() is used to search a string and returns	1.true or false 2.found value 3.index 4.Matched or not matched 1.The item is somewhere in the middle of the array 2.The item is not in	1.0
788	In linear search algorithm the Worst case occurs when	the array at all 3.The item is the last element in the array 4.The item is the last element in the array or is not there at all	4.0
789	In max mode, control bus signal So,S1 and S2 are sent out in form	shared 2. decoded 3.	3.0
		encoded 4. unshared	
		the first column will take precedence the column is skipped	
790	In mysql_fetch_array(),if two or more columns of the result have the same field names, what action is taken?	3. the last column will take precedence 4. an error is thrown.	3.0
791	In operator precedence parsing , precedence relations are defoned	1.To delimit the handle 2.For all pair of terminals 3.For all pair of non terminals 4.Only for a certain pair of terminals	3.0
792	In PHP, array values are keyed by values (called indexed arrays) or using values (called associative arrays). Of course, these key methods can be combined as well.	1. Float, string 2. Positive number, negative number 3. String, Boolean 4. Integer, String	4.0
	In PHP, which of the following function is used to insert content of one php file into another php file before server executes it	1.include[] 2.#include() 3.include() 4.#include{}	3.0
794	In Priority Scheduling a priority number (integer) is associated with each process. The CPU is allocated to the process with the highest priority (smallest integer = highest priority). The problem of, Starvation ? low priority processes may never execute, is resolved by	Terminating the process. Aging Mutual Exclusion 4. Semaphore	2.0
	In software engineering development, if there are no applicable theories, people often use adhoc	1. True 2.	1.0

S.NO.	Questions	Choices	Answers
		1.	
	2.0	true	
796	2.0	2.	1.0
		false	
		3. 4.	
		The operand is inside the instruction	
		2.	
		The address of the operand is inside the instruction	
797	In the absolute the addressing mode	3.	1.0
		The register containing the address of the operand is specified inside the	
		instruction	
		4.	
		The location of the operand is implicit	
		1.view level	
. 		2.conceptual level	
798	In the architecture of a database system external level is the	3.logical level	1.0
		4.physical level	
		I.In both AST and CFG, let node N2 be the successor of node N1. In the	
	In the context of abstract-syntax-tree (AST) and control-flow-graph (CFG), which one of the	input program, the code corresponding to N2 is present after the code corresponding to N1 2.For any input program, neither AST nor CFG will	4.0
	following is True?	statement in the input program 4. The maximum number of successors of	
000		a node in an AST and a CFG depends on the input program	
	In the context of object-oriented software engineering a component contains	4.0	4.0
801	In the following code snippet, what is the correct value of the left margin? margin: 10px 5px 20px 15px;	1.10px 2.5px 3.20px 4.15px	4.0
		1.	
		Greater than 100	
		2.	
	In the multi-programming environment, the main memory consisting of number of	only one	4.0
002	process.	3.	
		Greater than 50	
		4.	
		More than one	
		1.	
		uniform resource identifier	
		2.	
803	In the network HTTP resources are located by	unique resource locator	1.0
	·	3.	
		unique resource identifier	
		4.	
		unique resource identifier	<u> </u>
		1.	
		a file	
		2.	
804	In the operation read_item(x), what does x mean?	a record	4.0
		3.	
		a disk block	
		4.	
		all of the options	

805 In the running state 806 In the slow start phase of the TCP congestion control algorithm	orithm, the size of the congestion window	only the process which has control of the processor is found all the processes waiting for I/O to be completed are found all the processes waiting for the processor are found everything in these options are found l. does not increase . increases linearly 3.	1.0
In the slow start phase of the TCP congestion control alor	orithm, the size of the congestion window	2. all the processes waiting for I/O to be completed are found 3. all the processes waiting for the processor are found 4. everything in these options are found 1. does not increase 2. increases linearly	1.0
In the slow start phase of the TCP congestion control alor	orithm, the size of the congestion window	all the processes waiting for I/O to be completed are found 3. all the processes waiting for the processor are found 4. everything in these options are found 1. does not increase 2. increases linearly	1.0
In the slow start phase of the TCP congestion control alor	orithm, the size of the congestion window	3. all the processes waiting for the processor are found 4. everything in these options are found 1. does not increase 2. increases linearly	1.0
In the slow start phase of the TCP congestion control alor	orithm, the size of the congestion window	all the processes waiting for the processor are found 4. everything in these options are found 1. does not increase 2. increases linearly	1.0
806 In the slow start phase of the TCP congestion control algo	orithm, the size of the congestion window	4. everything in these options are found 1. does not increase 2. increases linearly	
806 In the slow start phase of the TCP congestion control algorithm	orithm, the size of the congestion window	everything in these options are found 1. does not increase 2. increases linearly	
806 In the slow start phase of the TCP congestion control algo	orithm, the size of the congestion window	1. does not increase 2. increases linearly	
806 In the slow start phase of the TCP congestion control algo	orithm, the size of the congestion window	does not increase 2. increases linearly	
In the slow start phase of the TCP congestion control algorithms	orithm, the size of the congestion window	2. increases linearly	
In the slow start phase of the TCP congestion control algorithms.	orithm, the size of the congestion window	increases linearly	
In the slow start phase of the TCP congestion control algorithms	orithm, the size of the congestion window	7	1
In the slow start phase of the TCP congestion control algorithms.	orithm, the size of the congestion window	7	
			4.0
		increases quadratically	
		4.	
		increases exponentially	
		1.	
		In the first loop	3.0
		2.	
807 In the spiral model 'risk analysis' is performed		in the first and second loop	3.0
in the spiral model 11sk analysis is performed		3.	3.0
		In every loop	3.0
		4.	
		before using spiral model	
		1.	
		entire IP packet	
		2.	3.0
		IP header	
In tunnel mode IPsec protects the		3.	1.0
		IP payload	
		4.	
		none of the mentioned	
		1.Control Coupling	+-
		2.Stamp Coupling	
In what type of coupling, the complete data structure is pa	assed from one module to another?	3.External Coupling	2.0
		4.Content Coupling	
			↓
		1.	
		Absolute	
		2.	
Olo Itankish address:	in the instance.	Immediate	2.0
810 In which addressing mode the operand is given explicitly	in the instruction	3.	2.0
		Indirect	
		4.	
		Direct	1
			1
811 In which case is it mandatory to provide a destructor in a		1.Class for which copy constructor is defined 2.Class for which two or	
1	class?	1.Class for which copy constructor is defined 2.Class for which two or more than two objects will be created 3.Almost in every class 4.Class whose objects will be created dynamically	4.0

S.NO.	Questions	Choices	Answers
		1.	
		active mode	
		2.	
012	In which mode FTP, the client initiates both the control and data connections.	passive mode	2.0
012		3.	2.0
		active mode and passive mode	
		4.	
		none of the mentioned	
813	In which topology, if there are n devices in a network, each device has n-1 ports for cables?	1.Mesh 2.Star 3.Ring 4.Bus	1.0
		1.	
		1978	
		2.	
814	In which year, 8086 was introduced?	1979	1.0
		3.	
		1977	
		4.	
		1981	
		1.)	
		TRUE	
815	2.0	2.	1.0
		FALSE	
		3. 4.	
		1.	
		multiple access point are inter-connected with each other	
		2.	
		there is no access point	
816	In wireless distribution system	3.	1.0
		only one access point exists	
		4.	
		none of the mentioned	
		1.	
		connected basic service sets	
		2.	
		all stations	
817	In wireless network an extended service set is a set of	3.	1.0
		all access points	
		4.	
		all nodes	
		1.	
		Floppy disk	
		2.	
		Magnetic tape	
818	Information retrieval is faster from	3.	3.0
		Hard disk	
		4.	
		CD	

S.NO.	Questions	Choices	Answers
		1.	
		missing Select keyword	
		2.	
819	Insert into Emp(101, 'XXX') gives the following error	Missing Values	2.0
		3. both of the errors	
		4.	
		No of the errors	
		1.	
	int main() [x=100,y=200	
	int x,y;	2.	
820	x=(100,200); y=100,200;	x=200,y=200	4.0
	printf("x=%d,y=%d",x,y);	3.	
	return 0;	ERROR	
	<mark>}</mark>	4.	
	Find the output	x=200,y=100	
		1.	
		Sequence Diagram + Collaboration Diagram	
		2.	
821	Interaction Diagram is a combined term for	Activity Diagram + State Chart Diagram 3.	1.0
		Deployment Diagram + Collaboration Diagram	
		4.	
		None	
		1moz-opacity:x 2.filter: alpha(opacity=x) 3.filter: beta(opacity=x) 4	<u> </u>
822	Internet Explorer uses property to create transparent images.	IE-opac:y	2.0
823	Interpolation search is an improved variant of binary search. It is necessary for this search algorithm to work that data collection should be	1.in sorted form and equally distributed 2.in sorted form and but not equally distributed 3.equally distributed but not sorted 4.unsorted and not	1.0
		evenly distributed 1.	
		transport layer	
		2.	
		network layer	
824	IPSec is designed to provide the security at the	3.	2.0
		application layer	
		4.	
		session layer	
825	It is difficult to design asynhronous sequential circuit because.	1.External clock is to be provided 2.It is using Flip flops 3.It is more	4.0
		complex 4.Generally they involve stability problem 1.	
		True	
826	It is ok to have a single ideal approach to develop a software.	2.	2.0
		False	
		3. 4.	
		1.	
		False	
827	It would be ideal if all of computer science theories can be used in software engineering.	2.	2.0
		True	
		3. 4.	<u> </u>
828	JavaScript RegExp Object has modifier 'i' to	1.Perform case-sensitive matching 2.Perform case-insensitive matching 3.Perform both case-sensitive & case-insensitive matching 4.None of the	2.0
		these	

S.NO.	Questions	Choices	Answers
		1. Cartesian Product	
829	Join is equal to	Combination of Union and Cartesian product	3.0
		Combination of selection and Cartesian product 4. Combination of intersection and Cartesian product	
830	K-map follow following code for marking adjacent variables	1.84-2-1 2.Gray Code 3.2421 4.8421	2.0
		1. P Only	
	Let G be a weighted connected undirected graph with distinct positive edge weights. If every edge weight is increased by the same value, then which of the following statements is/are TRUE? P: Minimum spanning tree of G does not change. Q: Shortest path between any pair of vertices does not change	2. Q Only 3.	1.0
		Neither P nor Q 4. Both P and Q	
832	Let E1 and E2 be two entities in an E/R diagram with simple single-valued attributes. R1 and R2 are two relationships between E1 and E2, where R1 is one-to-many and R2 is many-to-many. R1 and R2 do not have any attributes of their own. What is the minimum number of tables required to represent this situation in the relational model?	1. 2 2. 3 3. 4 4. 5	2.0
833	Let G be a graph with n vertices and m edges, What is the tightest upper bound on the running time on Depth First Search of G? Assume that the graph is represented using adjacency matrix	1.O(n) 2.O(m+n) 3.O(mn) 4.O(n^2)	4.0
834	Let G be the CFG, I be the number of left most derivations, r be the number of right most derivations and P be the number of parse trees. Assume I, r and P are computed for a particular string. For a given CFG 'G' and given string 'w', what is the relation between I, P, r?	1. I=P=r 2. I<=P>=r 3. I>=P<=r 4. I<=P<=r	1.0
835	Let $G(x)$ be the generator polynomial used for CRC checking. What is the condition that should be satisfied by $G(x)$ to detect odd number of bits in error?	1. G(x) contains more than two terms 2. G(x) does not divide 1+x^k, for any k not exceeding the frame length 3. 1+x is a factor of G(x) 4. G(x) has an odd number of terms.	3.0

Let L1 be a recursive language, and let L2 be a recursively enumerable but not a recursive language. Which one of the following is TRUE? L1'> Complement of L1 L2'> Complement of L2 L1' and L2' are recursively enumerable 4. L1' is recursively enumerable and L2' is not recursively enumerable 4. L1' is recursively enumerable 4. L1' is recursively enumerable and L2' is recursively enumerable and L2' is respectively, Which one of the following holds? Let T(n) be the function defined by T(n) = 1 and T(n) = 2T (n/2) + n, which of the following is TRUE? 1. L1' is recursive and L2' is not recursively enumerable and L2' is not recursively enumerable 4. L1' is recursively enumerable and L2' is not recursively enumerable 4. L1' is recursively enumerable and L2' is not recursively enumerable 4. L1' is recursively enumerable 4. L1' is recursively enumerable and L2' is not recursively enumerable 4. L1' is recursively enumerable and L2' is not recursively enumerable 4. L1' is recursively enumerable 4.	ly enumerable 2.0
Let L1 be a recursive language, and let L2 be a recursively enumerable but not a recursive language. Which one of the following is TRUE? L1'> Complement of L1 L2'> Complement of L2 L1' is recursively enumerable and L2' is not recursively enumerable and L2' is recursively enumerable and L2' is recursively enumerable and L2' is respectively, Which one of the following holds? Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot, Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively, Which one of the following holds? Let T(n) be the function defined by T(n) = 1 and T(n) = 2T (n/2) + n, which of the following is TRUE?	ly enumerable 2.0 s recursive
Let L1 be a recursive language, and let L2 be a recursively enumerable but not a recursive language. Which one of the following is TRUE? L1'> Complement of L1 L2'> Complement of L2 L1' is recursively enumerable 4. L1' is recursively enumerable and L2' is not recursively enumerable 4. L1' is recursively enumerable 4. L1' is recursively enumerable and L2' is recursively enumerable and L2' is recursively enumerable 4. L1' is recursively enumerable 4. L1' is recursively enumerable and L2' is respectively, which one of the following holds? Let T (n) be the function defined by T (n) = 1 and T (n) = 2T (n/2) + n, which of the following is TRUE?	2.0
one of the following is TRUE? L1'> Complement of L1 L2'> Complement of L2 L1' and L2' are recursively enumerable 4. L1' is recursively enumerable and L2' is Barry Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot, Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively, Which one of the following holds? Barry Let T(n) be the function defined by T(n) = 1 and T(n) = 2T (n/2) + n, which of the following is TRUE?	2.0
3. Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot, Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively, Which one of the following holds? Let T(n) be the function defined by T(n) = 1 and T(n) = 2T (n/2) + n, which of the following is TRUE?	s recursive
Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot, Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively, Which one of the following holds? Let T(n) be the function defined by T(n) = 1 and T(n) = 2T (n/2) + n, which of the following is TRUE? L1' and L2' are recursively enumerable 4. L1' is recursively enumerable and L2' is L1' is recursively enumerable and L2' is L1' is recursively enumerable 4. L1' is recursively enumerable 4. L1' is recursively enumerable and L2' is	
4. L1' is recursively enumerable and L2' is Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot, Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively, Which one of the following holds? Let T(n) be the function defined by T(n) = 1 and T(n) = 2T (n/2) + n, which of the following is TRUE? 1.T(n) = O(n) 2.T(n) = O(log2n) 3.T(n)	
Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot, Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively, Which one of the following holds? Let T(n) be the function defined by T(n) = 1 and T(n) = 2T (n/2) + n, which of the following is TRUE? Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot, 1.t1=5 2.t1>t2 3.t1 4.t1=t2 1.T(n) = O(n) 2.T(n) = O(log2n) 3.T(n)	
Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot, Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively, Which one of the following holds? Let T(n) be the function defined by T(n) = 1 and T(n) = 2T (n/2) + n, which of the following is TRUE? 1.T(n) = O(n) 2.T(n) = O(log2n) 3.T(n)	
 Let t1 and t2 be the number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 1.t1=5 2.t1>t2 3.t1 4.t1=t2 Respectively, Which one of the following holds? Let T(n) be the function defined by T(n) = 1 and T(n) = 2T (n/2) + n, which of the following is TRUE? Let T(n) be the function defined by T(n) = 1 and T(n) = 2T (n/2) + n, which of the following is TRUE? 	2.0
which of the following is TRUE?	
	= O(n) 4.T(n) = O(n2) 3.0
n+1	
2.	
Let w be any string of length n is {0,1}*. Let L be the set of all substrings of w. What is the minimum number of	1.0
states in a non-deterministic finite automaton that accepts L? 3.	
n-1	
4.	
2n+1	
1.Peephole optimization 2.DFA and Co	Instant folding 3.Basic Code
Local and loop optimization in turn provide motivation for Analysis 4.Data flow analysis	4.0
841 LOCK prefix is used most often 1.during normal execution. 2.during DN	MA accesses 3.during interrupt 3.0
842 Logical addressing is used in layer servicing. 4.during memory accesses 1.Network 2.Transport 3.Physical 4.Ses	
Logical addressing is used iniayer layer l	31011
rely basis path testing	
2	
1.0 exercise the logical conditions in a prog	ram module 2.0
	fair module
3. select test paths based on the locations a	and uses of variables
4.	
focus on testing the validity of loop co	onstructs
backup and low volume data	
2.	
backup and high volume data	
844 Magnetic tapes are good storage media for	2.0
wagnetic tapes are good storage media for 3.	2.0
storing original but low volume data	
4.	
storing original but high volume data	
845 Manager salary details are hidden from the employee. This is 1. Conceptual level data hiding 2. Physical Manager salary details are hidden from the employee. This is	cal level data hiding 3.External 1.0
level data hiding 4. None of mentioned	1.0
TRUE	
846 1.0 2.	2.0
FALSE	
3. 4.	

.NO.	Questions	Choices	Answei
		1.	
		P-4. Q-1, R-2, S-3	
	Match all items in Group 1 with correct options from those given in Group 2.	2.	
	Group 1 Group 2	P-3, Q-1, R-4, S-2	
847	P. Regular expression 1. Syntax analysis	3.	2.0
	Q. Pushdown automata 2. Code generation R. Dataflow analysis 3. Lexical analysis	P-3, Q-4, R-1, S-2	
	S. Register allocation 4. Code optimization		
		4.	
		P-2, Q-1, R-4, S-3	
	Make the fellowing.	1.	
	Match the following:	a	
	List-I List-II A. Lexical analysis 1. Graph coloring	2.	
	B. Parsing 2. DFA minimization C. Register allocation 3. Post-order traversal	h	
848	D. Expression evaluation 4. Production tree	2	2.0
	Codes:		
	A B C D (a) 2 3 1 4	<mark>c</mark>	
	(b) 2 1 4 3 (c) 2 4 1 3	4.	
	(d) 2 3 4 1	d	
849	Memory elements in clocked sequential circuits are called.	1.latches 2.gates 3.signals 4.flipflop	4.0
		1.	
		Read only memory	
		2.	
		Programmable Memory	
850	Memory unit accessed by content is called		4.0
		3.	
		Virtual Memory	
		4.	
		Associative Memory	
	Mode of communication in which transmission takes place in both directions, but only in one		
851	direction at a time is called	1.simplex 2.four wired 3.full duplex 4.half-duplex	4.0
		1.	
		adaptive maintenance	
		2.	
		corrective maintenance	
852	Modifying the software to match changes in the ever changing environment is called	3.	1.0
		perfective maintenance	
		4.	
		preventive maintenance	
		1.	
		Component reuse is common in the software world.	
		2.	
		4.0Reusable components are too expensive to use.	
853	Most software continues to be custom built because	3.	1.0
		Software is easier to build without using someone else's components	
		<mark>4.</mark>	
		Off-the-shelf software components are unavailable in many application	
		domains.	

S.NO.	Questions	Choices	Answers
		1. Optical Mark Reader 2.	
854	Multiple choice examination answer sheets can be evaluated automatically by	Optical Character Reader 3.	1.0
		Magnetic tape reader	
		4. Magnetic ink character reader.	
		1. persistent HTTP	
855	Multiple object can be sent over a TCP connection between client and server in	2.nonpersistent HTTP3.	1.0
		both persistent HTTP and nonpersistent HTTP 4. p-persistent HTTP	
856	Multiple variable declaration of same data type can be avoided by?	1.array 2.identifiers 3.functions 4.Pointer	1.0
0.50	wantiple variable decimation of same data type can be avoided by:	1.	1.0
		frame filter 2.	
		packet filter	
857	Network layer firewall works as a	3.	2.0
		both (a) and (b)	
		4.	
		none of the mentioned	
	Network models are complicated by physical keys, but the relation model is	1.Slower because it uses logical keys 2.Slower because it uses physical keys 3.Faster because it uses physical keys 4.Faster because it uses logical keys 1.Banyan (VINES) 2.Microsoft NT advanced server 3.SCO Unix	4.0
859	Network operating system that does not support symmetric multi-processing (SMP) is	4.Novell Network 3.X 1.DeMorgan's Theorem 2.Associative Law 3.Commutative Law	4.0
860	NOR Gate does NOT follow	4.Distributive Law 1.Minimise Errors 2.Improve Security 3.Eliminate redundancy	4.0
	Normalisation of database is used to Number of the times the instruction sequence below will loop before coming out of loop is, MOV	4.Improve security	3.0
862	Number of the times the instruction sequence below will loop before coming out of loop is, MOV AL, 00h A1: INC AL JNZ A1	1.255 2.01 3.00 <mark>4.256</mark>	4.0
		Object Database Connectivity. 2.	
		Oral Database Connectivity.	
863	ODBC stands for	3.	4.0
		Oracle Database Connectivity.	
		4. Open Database Connectivity.	
864	One application of a digital multiplexer is to facilitate:	1.data generation 2.serial-to-parallel conversion 3.data selector 4.parity checking	1.0
		1.	
		unit testing.	
		2. beta testing.	
865	One of the fault base testing techniques is	3.	4.0
		Stress testing.	
		4.	
		mutation testing.	

S.NO.	Questions	Choices	Answers
		1.	
		It can be used to priortize packets	
		2.	
866	One of the header fields in an IP datagram is the Time to Live (TTL) field. Which of the following	It can be used to reduce delays	4.0
	statements best explains the need for this field?	3.	
		It can be used to optimize throughput	
		4.	
		It can be used to prevent packet looping	
867	One of the main advantage of using src attribute is	1.It becomes self-cached 2.It makes the HTML file modular 3.It restricts manipulation in the HTML file 4.It simplifies the HTML files	4.0
		1.	
		make parsing and semantic analysis simpler	
		2.	
		improve error recovery and error reporting	
868	One of the purposes of using intermediate code in compilers is to	3.	3.0
		increase the chances of reusing the machine-independent code optimizer	
		in other compilers.	
		4.	
		improve the register allocation.	
869	overloading + operator requires return type as object because,	1.reference parameter has to be returned 2.binary addition requires that 3.all overloading functions require that	3.0
		1.different names and different argument lists 2.different names and the	
870	Overloading involves writing two or more functions with	same argument list 3.the same name and different argument lists 4.the same name and the same argument list	3.0
871	Overloading the function operator	1.usually make use of a constructor that takes arguments. 2.allows you to create objects that act syntactically like functions. 3.requires a class with	3.0
0/1	Overloading the function operator	an overloaded operator. 4.requires a class with an overloaded [] operator.	
		1.	
		TCP, but not UDP	
		2.	
872	Packets of the same session may be routed through different paths in:	TCP and UDP	2.0
		3.	
		UDP, but not TCP	
		4.	
		Neither TCP nor UDP	
		1.	
		solves the memory fragmentation problem	
		2.	
		allows modular programming	
873	Paging	3.	1.0
		allows structured programming	
		4.	
		avoids deadlock	
		1.	
		Many-to-one model	
		2.	
		Many-to-many	
874	Parallelism and concurrency is fully achieved in which of the following thread model	3.	1.0
		one-to-one model	
		4.	
		All the models	
ı.			

S.NO.	Questions	Choices	Answers
		1.	
		Mapping Mapping	
		2.	
875	Passing the request from one schema to another in DBMS architecture is called as	Communication	1.0
073	a assing the request from one senema to another in 2000s architecture is cance as	3.	1.0
		Relational	
		4.	
		network	
876	Pee hole optimization	1.Local optimization 2.Loop optimization 3.Constant folding 4.Data flow analysis	v 3.0
		1.	
		true	
877	2.0	2.	4.0
		false	
		3. 4.	
		1.	
		mechanical specifications of electrical connectors and cables	
		2.	
878	Physical layer provides	electrical specification of transmission line signal level	4.0
		3.	
		specification for IR over optical fiber	
		4.	
		all of the mentioned	
		1.	
	Pick an incorrect declaration:	2.	
	1. int x[5];		4.0
	2. int x[5]={1,2,3,4,5};	3.	4.0
	3. int $x[5] = \{1,2\}$	3	
	4. int x[];	4.	
		4	
880	Pick the odd one out.	1.[] 2.() 3.:: 4.~	3.0
		1.	
		Coupling objects together more tightly	
881	Polymorphism reduces the effort required to extend an object system by	2. 2.0enabling a number of different operations to share the same name.	4.0
		3.	
		making objects more dependent on one another 4.	
002	Development of the development	removing the barriers imposed by encapsulation.	1.0
	Popular application of flip-flop are. Postorder Tree travsersal is recursive	1.Shift registers 2.Transfer register 3.Counters 4.All of these 1.LDR 2.LRD 3.DLR 4.DRL	4.0 2.0
		1. Value is =1250 2.	
	PREDICT THE OUTPUT:	Value is =80	
884	#include <stdio.h> void main()</stdio.h>	3.	2.0
004	{ int a=10,b=2,x=0;	Value is =125	2.0
	x=a+b*a+10/2*a; printf("value is =%d",x);	4.	
	}	Error	
885	Prim's algorithm is a method available for finding out the minimum cost of a spanning tree. Its time complexity is given by:	1.O(1) 2.O(n*n) 3.O(n logn) 4.O(n)	3.0
		1.	
		true	
886	Program flow graphs are identical to program flowcharts.	2.	2.0
		false	
		3. 4.	

S.NO.	Questions	Choices	Answers
		1.	
		interrupt recognized	
		2.	
		execution of RST instruction	
887	PSW is saved in stack when there is a	3.	1.0
		Execution of CALL instruction	
		4.	
		All of these	
		1.	
	Quantitative methods for assessing the quality of proposed architectural designs are readily	TRUE	
888	available.	2.	2.0
		FALSE	
		3. 4.	
		<u>L</u>	
		Relational Algebra	
		2.	
000	0. 7	Tuple Relational Calculus	4.0
889	Query Tree uses	3.	4.0
		Domain Relational Calculus	
		4.	
		All of the options	
890	Relations produced from an E - R model will always be in	1.3 NF 2.B CNF 3.2 NF 4.1 NF	1.0
891	Relocating bits used by relocating loader are specified by	1.Relocating loader itself 2.Linker 3.Assembler 4.Macro processor	2.0
		1.	
		FIFO Page replacement algorithm	
		2.	
	Replace the page that has not be used for the longest period of time. This principle is adopted by	Optimal Page replacement algorithm	
892		3.	4.0
		Round robin scheduling algorithm	
		4.	
		LRU Page replacement algoorithm	
		1.	
		Allows multiple tasks to simultaneously use resource	
		2.	
893	Resource locking	Forces only one task to use any resource at any time	2.0
		3.	
		Can easily cause a dead lock condition	
		4.	
		Is not used for disk drives	
		1.	
		Client	
		2.	
		Investor	
894	Risk management is one of the most important jobs for a	3.	4.0
		Production team	
		4.	
		Project manager	
895	Routine is not loaded until it is called. All routines are kept on disk in a relocatable load format. The main program is loaded into memory & is executed. This type of loading is called	1.Static loading 2.Dynamic loading 3.Dynamic linking 4.Overlays	3.0
		ı	1
i			

S.NO.	Questions	Choices	Answers
		1.	
		Static loading	
		2.	
896	Routine is not loaded until it is called. All routines are kept on disk in a relocatable load format.	Dynamic loading	3.0
	The main program is loaded into memory & is executed. This type of loading is called	3.	
		Dynamic linking	
		4.	
		Overlays	
897	Run time polymorphism is achieved by	1.friend function 2.virtual function 3.operator overloading 4.function overloading	2.0
		1.	
		All palindromes	
		2.	
		All odd length palindromes.	
898	S -> aSa bSb a b; The language generated by the above grammar over the alphabet {a,b} is the set of	3.	2.0
		Strings that begin and end with the same symbol	
		4.	
		All even length palindromes	
		1.	
		true	
899	1.0	2.	2.0
		false	
		3. 4.	
		1.	
		Displays the department ID along with the average salary of employees	
		in each department if their average of salary is greater than 8000.	
		2.	
	SELECT department_id, AVG(salary) FROM employees WHERE AVG(salary) > 8000 GROUP BY department_id	Displays a error	2.0
		3.	
		Displays the department ID along with the average salary of employees	
		4.	
		None of the options	
		1.	
		Displays a error	
		2.	
		Displays the department ID along with the number of employees in each department.	
901	SELECT department_id, COUNT(last_name) FROM employees;	3.	2.0
		None of the options	
		4.	
		Dsiplays department ID and a null value	<u> </u>
		Displays the employee_id and name of employees who gets minimum salary in their department	
		2.	
	SELECT employee_id, last_name FROM employees WHERE salary = (SELECT MIN(salary)	Error	
902	FROM employees GROUP BY department_id);	3.	1.0
		None of the options	
		4.	
		Displays the employee_id, name of employees and their salary	
			•

S.NO.	Questions	Choices	Answers
		1.)	
		Displays number of days an employee has worked in the company.	
		2.	
903	SELECT last_name, SYSDATE-hire_date FROM_employees;	Displays number of months an employee has worked in the company.	1.0
703	obered instantine, of object into international employees,	3.	1.0
		Error	
		4.	
		None of the mentioned	
		1.	
		the selection operation in relational algebra	
		2.	
		the selection operation in relational algebra, except that select in SQL	
904	Select operation in SQL is equivalent to	retains duplicates	4.0
		3.	
		the projection operation in relational algebra	
		4.	
		the projection operation in relational algebra, except that select in SQL retains duplicates	
		1.	+
		r1(x), w2(y)	
		2.	
		r1(x), w1(x)	
905	Select the conflicting operation:	3.	3.0
		w1(y), w2(x)	
		4.	
		r1(x), w2(x)	
906	SELECT THE HIGHEST PRIORITY OPERATOR	1.&& 2., 3.?: <mark>4.++</mark>	4.0
	Shift reduce parsers are	1. Vertical parser 2.top down and bottom up parser 3.Bottom up parser	3.0
	-	4.Top down parser 1.the nodes 2.the server 3.the hubs 4.a separate PC that managers the	
	Simple network management protocol (SNMP) is implemented with a daughter board in	network	3.0
909	Skewed binary trees can be efficiently represented using	Arrays 2.Linked lists 3.Stacks 4.Queues 1.	2.0
		True	
910	2.0	2.	1.0
		False	
		3.4.	
		3; 4.	
		True	
911	Software engineering includes system engineering.	2.)	1.0
		False	
		3. 4. 1.Customer visible usage scenarios	+
		2.	
912	4.0	Important software features	2.0
1.2		3.System inputs and outputs 4.	
		ALL	
		1.	+
		True	
913	Software is a product and can be manufactured using the same technologies used for other engineering artifacts.	2.	2.0
		False	
L		3. 4.	
1			

S.NO.	Questions	Choices	Answers
	-	1.	
		true	
914	Software validation is achieved through a series of tests performed by the user once the software is deployed in his or her work environment.	2 <mark>.</mark>	2.0
		false	
		3. 4.	
		1.	
		they enhance the portability of the compiler to other target processors	
		<mark>2.</mark>	
		program analysis is more accurate on intermediate code than on machine	
015		code a	
915	Some code optimizations are carried out on the intermediate code because	3.	1.0
		the information from dataflow analysis cannot otherwise be used for optimization	
		4.	
		the information from the front end cannot otherwise be used for	
		optimization	
		1.The information from data flow analysis cannot otherwise be used for	
916	Some code optimizations are carried out on the intermediate code because	optimization 2.They enhance the portability of the complier to other target processors 3.The information from the front end cannot otherwise	2.0
		be used for optimization 4.Program analysis is name accurate on intermediate code than on machine code	
917	Specify the 2 library functions to dynamically allocate memory?	1.alloc() and memalloc() 2.malloc() and calloc() 3.memalloc() and	2.0
		faralloc() 4.malloc() and memalloc() 1.	
		join operation done on a non-key attribute	
		2.	
		outer join operation	1.0
918	Spurious tuples are formed because of	3.	
		transitive dependencies	
		-	
		4.	
		inner join	
		<u>1.</u>	
		White box testing	
		2.	
010	CDC is also becomes a series of	Stress testing	4.0
919	SRS is also known as specification of	3.	4.0
		Integrated testing	
		4.	
		Black box testing	
		1.	
		12	
		2.	
	Station A needs to send a message consisting of 9 packets to Station B using a sliding window	14	
920	(window size 3) and go-back-n error control strategy. All packets are ready and immediately available for transmission. If every 5th packet that A transmits gets lost (but no acks from B ever	3.	3.0
	available for transmission. If every 5th packet that A transmits gets lost (but no acks from B ever get lost), then what is the number of packets that A will transmit for sending the message to B?	16	
		4.	
<u> </u>		18	
1			

S.NO.	Questions	Choices	Answers
921	Station A uses 32 byte packets to transmit messages to Station B using a sliding window protocol. The round trip delay between A and B is 80 milliseconds and the bottleneck bandwidth on the path between A and B is 128 kbps. What is the optimal window size that A should use?	1. 20 2. 40 3. 160 4. 320	2.0
922	2.0	1. true 2. false 3. 4.	4.0
923	String length is found by the condition	1.str[i]!=NULL 2.str[i]!=sizeof(str) 3.str[i]>='\0' 4.str[i]!='\0'	4.0
924	Suppose a circular queue of capacity $(n-1)$ elements is implemented with an array of n elements. Assume that the insertion and deletion operation are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are	1.Full: (FRONT+1) mod n == REAR, empty: REAR == FRONT 2.Full: REAR == FRONT, empty: (REAR+1) mod n == FRONT 3.Full: (REAR+1) mod n == FRONT, empty: (FRONT+1) mod n == REAR 4.Full: (REAR+1) mod n == FRONT, empty: REAR == FRONT	4.0
925	Suppose a circular queue of capacity $(n-1)$ elements is implemented with an array of n elements. Assume that the insertion and deletion operation are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are	1.Full: (REAR+1) mod n == FRONT, empty: REAR == FRONT2.Full: (REAR+1) mod n == FRONT, empty: (FRONT+1) mod n == REAR 3.Full: REAR == FRONT, empty: (REAR+1) mod n == FRONT4.Full: (FRONT+1) mod n == REAR, empty: REAR == FRONT	1.0
926	Suppose P, Q, R, S, T are sorted sequences having lengths 20, 24, 30, 35, 50 respectively. They are to be merged into a single sequence by merging together two sequences at a time, The number of comparisons that will be needed in the worst case by the optimal algorithm for doing this is	1.672 2.740 <mark>3.358</mark> 4.354	3.0
927	Suppose P, Q, R, S, T are sorted sequences having lengths 20,24,30,35,50 respectively. They are to be merged into a single sequence by merging together two sequences at a time. The number of comparisons that will be needed in the worst case by the optimal algorithm for doing this is	1.368 2.338 3.348 4.358	4.0
928	Suppose the round trip propagation delay for a 10 Mbps Ethernet having 48-bit jamming signal is 46.4 micro sec. The minimum frame size is:	94 2. 416 3. 464 4.	4.0
929	Suppose x is dead, that is, never subsequently used, at the point where the statement x=y+z appears in a basic block. Then this statement may be safely removed without changing the value of the basic block. This transformation is known as	1.Common subexpression elimination 2.Dead code elimination 3.Renaming temporary variables 4.Loop invarient	2.0
930	Suppose you want to delete the name that occurs before 'Vellore' in an alphabetical listing. Which of the following data structures shall be most efficient for this operation?	1.Circular linked list 2.Dequeue 3.Linked list 4.Doubly linked list	2.0
931	Symantec Antivirus is a customized product.	1. True 2. False 3. 4.	2.0
932	Synchronous counters eliminate the delay problems encountered with asynchronous (ripple) counters because the.	1.input clock pulses are applied simultaneously to each stage 2.input clock pulses are applied only to the first and last stages 3.input clock pulses are applied only to the last stage 4.input clock pulses are not used to activate any of the counter stages	4.0
933	Syntax for creating a RegExp object: (i). var txt=new RegExp(pattern,modifiers); (ii). var	1.(i) only 2.(ii) only <mark>3.Both (i) and (ii) 4.</mark> None of these	3.0
	txt=/pattern/modifiers; Which of the above mentioned syntax is correct? Synthesized attribute can be easily simulated by a	1.LR grammar 2.Ambiguous grammar 3.LL grammar 4.LF grammer	1.0
935	System prototypes allow users	to see how well the system supports their work to start working on the system to put the system to production 4.	1.0

S.NO.	Questions	Choices	Answers
		<u>I.</u>	
		<mark>State diagram</mark>	
026		2.	
		Activity diagram	1.0
936	System reactions to external events is depicted by	3.	1.0
		Usecase diagram	
		4.	
		Sequence diagram	
		I.)	
		TRUE	
937	2.0	2.	1.0
		FALSE	
		3. 4.	
		<u>1.</u>	
	1.0	true	
938		2.	1.0
		false	
		3. 4.	
		True	
939	1.0	2.	3.0
		False	
		3. 4.)	
940	Theis neither an input nor an output; it is an internal bit programmed via the PC4(Port A) or PC2(Port B)bits	1.IFB 2.INTR 3.INTE 4.NMI	3.0
941	The instruction is used to specify the number of stop bits, data bits,parity bit, and baud rate	1.bit set/reset 2.Mode 3.Command 4.Code	2.0
	clock factor for the 8251 UART	1.	
		1 Kbyte	
		2.	
		64 Kbyte	
942	The 1 MB byte of memory can be divided into segment	3.	2.0
		33 Kbyte	
		4.	
		34 Kbyte	
		1.	
		the condition of result of ALU operation	
		2.	
		the condition of memory	
943	The 16 bit flag of 8086 microprocessor is responsible to indicate	3.	1.0
		the result of addition	
		4.	
		the result of subtraction	
	The 16-bit data segment value is 1000H and the offset is 2000H. calculated physical address is		-
944	-	1.10000H 2.11000H <mark>3.12000H</mark> 4.12500H	3.0
945	The 16-bit stack segment value is 5D27H and the offset is 2C30H. calculated physical address is	1.5FFEOH 2.5FAE0H 3.5FEA0H 4.12500H	3.0
			

S.NO.	Questions	Choices	Answers
946	The bus controller device decodes the signals to produce the control bus signal	1. internal 2. data 3. external 4. address	3.0
947	The translates internet domain and host names to IP address.	domain name system 2. routing information protocol 3. network time protocol 4. internet relay chat	1.0
948	The method of an Array object adds and/or removes elements from an array.	1. Slice 2. Reverse 3. Shift 4. Splice	4.0
	Theensures that only one IC is active at a time to avoid a bus conflict caused by two ICs writing different data to the same bus	1.control bus 2.control instructions 3.address decoder 4.CPU	3.0
	The property specifies the stack order of an element	1.d-index 2.s-index 3.x-index 4.z-index	4.0
951	The access method used for magnetic tape is	1. Direct 2. Random 3. Sequential 4. None of these	3.0
952	The address resolution protocol (ARP) is used for:	1. Finding the IP address using DNS 2. Finding the IP address of the default gateway 3. Finding the IP address that corresponds to a MAC address 4. Finding the MAC address that corresponds to an IP address	4.0
953	The advantage of DBMS over file systems is	1.) redundancy 2. data dependence 3. multiple user 4. single user	1.0

S.NO.	Questions	Choices	Answers
		<u>I.</u>	
		data, hardware, software, people	
954	1.0	2.	1.0
751		data, documentation, hardware, software	1.0
		3. data, hardware, software, procedures	
		4.documentation, hardware, people, procedures	
		<u>l.</u>)	
		base 64 encoding	
		2.	
055		base 32 encoding	1.0
955	The ASCII encoding of binary data is called	3.	1.0
		base 16 encoding	
		4.	
		base 8 encoding	
		1.	
		seek time	
		2.	
		turnaround time	
956	The average time required to reach a storage location in memory and obtain its contents is called the	3.)	3.0
		access time	
		4.	
		transfer time	
		1.	
		Bucket Hash	
		2.	
957	The best index for exact match query is	Quad tree	1.0
		3.	
		B Tree	
		4.	
		B+ Tree	
		1.software developers do not need to do any testing	
958	1.0	2.a test team will test the software more thoroughly	4.0
750		3.testers do not get involved with the project until testing begins	1.0
		4.arguments between developers and testers are reduced	
		1.	
		examine the system model for errors	
		<u>2.</u>	
	4.0	have the customer look over the requirements	
959		3.	2.0
		send them to the design team and see if they have any concerns	
		4.	
		use a checklist of questions to examine each requirement	
		1.	
		8	
		2.)	
		6	
960	The BIU contains FIFO register of size bytes	3.	2.0
		4	
1		4.	
		12	

s.no.	Questions	Choices	Answer
		L.	
		queue	
		2.	
		register	
961	The BIU prefetches the instruction from memory and store them in	3.	1.0
		memory	
		4.	
		stack	
		1.ppears inside the definition of the derived class constructor 2.appears	
962	The call to the parameterized constructor of base class in the derived class	in the member initialization list of the derived class constructor 3.appears inside the definition of the derived class 4.appears at the statement where	4.0
	·	the derived class object is created	
		1.ppears inside the definition of the derived class constructor 2.appears	
963	The call to the parameterized constructor of base class in the derived class	in the member initialization list of the derived class constructor 3.appears inside the definition of the derived class 4.appears at the statement where	4.0
		the derived class object is created	
964	The combination of Sixteen adjacent squares in four variable K-map represent the function equal	1.Four literal 2.One literal 3.Unity 4.Zero	3.0
965	The counters of 8253 can be operated in modes of operation.	1.4 2.3 3.6 4.5	3.0
	· ·	1.	
		cycles in the program	
		2	
966	The cyclomatic complexity metric provides the designer with information regarding the number of	errors in the program	4.0
		3.0 independent logic paths in the program	
		4.	
		statements in the program	
	The data structure required for Breadth First Traversal on a graph is	1.tree 2.array 3.stack 4.queue 1.NAME VALUE ADDRESS 2.BITS BYTES WORD 3.SIZE LIMITS	4.0
968	THE DATA TYPE IS ALL ABOUT	RESTRICTIONS 4.TYPE SIZE RANGE	4.0
969 970	The decimal equivalent of hexadecimal number of 'A580' is The default copy constructor performs	1.43286	2.0
970	The default copy constructor performs The degree sequence of a simple graph is the sequence of the degrees of the nodes in the graph in	2.5hanow Copy 5.5on Copy 4.fraid Copy	2.0
971	decreasing order. Which of the following sequences can not be the degree sequence of any graph? I. 7, 6, 5, 4, 4, 3, 2, 1 II. 6, 6, 6, 6, 3, 3, 2, 2 III. 7, 6, 6, 4, 4, 3, 2, 2 IV. 8, 7, 7, 6, 4, 2, 1, 1	1.IV only 2.III and IV 3.I and II 4.II and IV	4.0
	1. 7, 0, 5, 7, 7, 5, 2, 1 11. 0, 0, 0, 5, 5, 2, 2 111. 7, 0, 0, 7, 7, 5, 2, 2 1 1 1 0, 7, 7, 0, 7, 2, 1, 1	1.	
		Architectural design	
		Architectural design	
		2.	
072	The design process related to date structures and their representation is	2. Interface design	4.0
972	The design process related to data structures and their representation is	2. Interface design	4.0
972	The design process related to data structures and their representation is	2. Interface design	4.0
972	The design process related to data structures and their representation is	2. Interface design 3.	4.0
972	The design process related to data structures and their representation is	2. Interface design 3. Component design 4.	4.0
972	The design process related to data structures and their representation is	2. Interface design 3. Component design 4. Database design	4.0
		2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All	
972	The design process related to data structures and their representation is The difference between linear array and a record is	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a	3.0
973		2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items	
973	The difference between linear array and a record is	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array	3.0
973	The difference between linear array and a record is The Document object is which part of the object?	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array 1. Tree 2. System 3. Window 4. Screen	3.0
973	The difference between linear array and a record is The Document object is which part of the object?	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array 1. Tree 2. System 3. Window 4. Screen	3.0
973	The difference between linear array and a record is The Document object is which part of the object?	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array 1.Tree 2.System 3.Window 4.Screen 1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree 1.	3.0
973	The difference between linear array and a record is The Document object is which part of the object?	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array 1.Tree 2.System 3.Window 4.Screen 1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree 1.	3.0
973 974 975	The difference between linear array and a record is The Document object is which part of the object?	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array 1.Tree 2.System 3.Window 4.Screen 1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree 1. depicts relationships between data objects 2. depicts functions that transform the data flow	3.0
973 974 975	The difference between linear array and a record is The Document object is which part of the object? The efficient data structure to insert/delete a number in a stored set of numbers is	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array 1.Tree 2.System 3.Window 4.Screen 1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree 1. depicts relationships between data objects 2. depicts functions that transform the data flow 3.	3.0 3.0 2.0
973 974 975	The difference between linear array and a record is The Document object is which part of the object? The efficient data structure to insert/delete a number in a stored set of numbers is	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array 1.Tree 2.System 3.Window 4.Screen 1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree 1. depicts relationships between data objects 2. depicts functions that transform the data flow	3.0 3.0 2.0
973 974 975	The difference between linear array and a record is The Document object is which part of the object? The efficient data structure to insert/delete a number in a stored set of numbers is	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array 1.Tree 2.System 3.Window 4.Screen 1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree 1. depicts relationships between data objects 2. depicts functions that transform the data flow 3.	3.0 3.0 2.0
973 974 975	The difference between linear array and a record is The Document object is which part of the object? The efficient data structure to insert/delete a number in a stored set of numbers is	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array 1.Tree 2.System 3.Window 4.Screen 1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree 1. depicts relationships between data objects 2. depicts functions that transform the data flow 3. indicates how data are transformed by the system	3.0 3.0 2.0
973 974 975	The difference between linear array and a record is The Document object is which part of the object? The efficient data structure to insert/delete a number in a stored set of numbers is The entity relationship diagram	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array 1.Tree 2.System 3.Window 4.Screen 1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree 1. depicts relationships between data objects 2. depicts functions that transform the data flow 3. indicates how data are transformed by the system 4.	3.0 3.0 2.0
973 974 975 976	The difference between linear array and a record is The Document object is which part of the object? The efficient data structure to insert/delete a number in a stored set of numbers is	2. Interface design 3. Component design 4. Database design 1.A record form a hierarchical structure but a linear array does not 2.All of above 3.An array is suitable for homogeneous data but the data items in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array 1.Tree 2.System 3.Window 4.Screen 1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree 1. depicts relationships between data objects 2. depicts functions that transform the data flow 3. indicates how data are transformed by the system 4. indicates system reactions to external events	3.0 3.0 2.0

s.no.	Questions	Choices	Answers	
		1.		
		Pascal		
		2.		
079	The automod greature has analyticature is anacted using from	Dennis Ritchie	10	
9/8	The external system bus architecture is created using from architecture	3.	4.0	
		Charles Babbage		
		4.		
		Von Neumann		
		1.		
		data centric architecture		
		2.		
		service oriented architecture		
979	The file transfer protocol is built on	3.)	3.0	
		client server architecture		
		4.		
		peer to peer architecture		
000			3.0	
	The first processor to include Virtual memory in the Intel microprocessor familywas The following is not a Relational Model Constraint	1.Pentium 2.80486 3.80286 4.80386 1.Referential Integrity Constraint 2.Check Constraint 3.Foreign Key	1.0	
981	The following is not a Relational Model Constraint	Constraint 4.Entity Integrity Constraint 1.	1.0	
		Equi-join		
		2.		
982	The following SQL is which type of join: SELECT CUSTOMER_T. CUSTOMER_ID,	Natural join	4.0	
962	The following SQL is which type of join: SELECT CUSTOMER_T. CUSTOMER_ID, ORDER_T. CUSTOMER_ID, NAME, ORDER_ID FROM CUSTOMER_T,ORDER_T;	3.		
		Outer join		
		4.		
		Cartesian join		
		1.		
		Define the specification for computer-based system 2.		
		Develop defect free computer-based systems		
002	4.0	3.		
983			1.0	
		Verify the correctness of computer-based systems		
		4.		
		ALL		
		<u>1.</u>)		
		<u>Itrim</u>		
		2.		
		lpad		
984	The function used to remove the leading spaces is	3.	1.0	
		rpad		
		4.		
		rtrim		
		<u>I.</u>		
985	The good of modules are in coming in to the relate the construction of the Constructio	TRUE		
	The goal of product engineering is to translate the customer's desire for a set of defined capabilities into a working product.	2.	1.0	
		FALSE		
		3. 4.		

S.NO.	Questions	Choices	Answers
		L.	
		ambiguous	
		2.	
		left-recursive	
986	The grammar A \rightarrow AA (A) ϵ is not suitable for predictive-parsing because the grammar is	3.	2.0
		right-recursive	
		4.	
		an operator-grammar	
		1.	
		LL(1) but not LR(1)	
		2.	
		LR(1)but not LR(1)	
987	The grammar $S \rightarrow aSa \mid bS \mid c$ is	3.	3.0
		Both LL(1)and LR(1)	
		4.	
		Neither LL(1)nor LR(1)	
		1.	
		Polling	
		2.	
988	The Hardware mechanism that enables a device to notify the CPU is called	Interrupt)	2.0
700	The nativate incentalism that chaotes a device to notify the CF of is called	3.	2.0
		Systems Call	
		4.	
		None of these	
		I.	
		Inter process communication	
		2.)	
000		Thrashing	2.0
989	The high paging activity is called	3.	2.0
		Context Switching	
		4.	
		Working Set	
		L)	
		DMA Controller	
		2.	
		Interrupt Controller	
990	The IC 8237 is a	3.	1.0
		Keyboard controller	
		4.	
		Serial Interface Controller	
		1.	
		24	
		2.)	
		28)	
991	The IC 8251 A hasmany pins	3.	3.0
		40	
		4.	
		30	
		<u> </u>	

S.NO.	Questions	Choices	Answers
		L.	
		24	
		28	
992	The IC 8254 hasmany pins	3.	1.0
		34	
		4.	
		40	
		1.	
		1	
		2.	
993	The IC 8254 hasmany 16 bit counters	2	3.0
		3.	
		4	
		4	
		1.	
		20	
		2.	
		30	
994	The IC 8279 hasmany pins	3.	4.0
		40	
		4.	
		10	
		l.)	
		IC 8251A	
		2. IC8259	
995	The IC Number for USART is	3.	1.0
		IC5255	
		4.	
		IC 8254	
		L.	
		on the property of locality of reference	
		2.	
		on the heuristic 90-10 rule	
996	The idea of cache memory is based	3.	1.0
		on the fact that references generally tend to cluster	
		4.	
		all of these	
		1.	
		accuracy	
		2.	
997	The importance of software design can be summarized in a single word	complexity	3.0
		3. 4.0efficiency	
		4. quality	
			1

S.NO.	Questions	Choices	Answers
		1.	
		Build & FIX Model & Waterfall Model	
		2.	
	The Incremental Model is a result of combination of elements of which two models?	Linear Model & RAD Model	
998	The incremental winder is a result of combination of elements of which two models:	3.	3.0
		Linear Model & Prototyping Model	
		4.	
		Waterfall Model & RAD Model	
		1.	
		A reasonable approach when requirements are well defined.	
		2.	
999	The incremental model of software development is	A good approach when a working core product is required quickly.	2.0
		3.	
		The best approach to use for projects with large development teams.	
		4.	
		A revolutionary model that is not used for commercial products.	
		1.	
		8 bit	
		<u>2.</u>	
		16 bit	
1000	The intel 8086 microprocessor is a processor	3.	2.0
		32 bit	
		4.	
		4bit	
	The internal block diagram of 80286 contains functional parts. The interrupt cycle ends when the instruction is executed	1.6 2.4 3.2 4.8 1.IRET 2.CALL 3.PUSH 4.POP	3.0
		I.	
		Is always regular and context free	
		2.	3.0
		Is always regular	
1003	The intersection of CFL and regular language	3.	3.0
		Is always context free	
		4.	
		Need not be regular	
		1.	
		8 bits	
		2.	
		4 bits	
1004	The IP is bits in length	3.	4.0
		16 bits	
		<mark>4.</mark>	
		32 bits	
		1.	
		Both a and b are equal in value, type and reference address	
		2.	
		Both a and b are equal in value	
1005	The javascript statement a===b refers to	3.	3.0
		Both a and b are equal in value and type	
		4.	
		There is no such statement	
l			

The kernel keeps track of the state of each task by using a data structure called	1.0
The kernel keeps track of the state of each task by using a data structure called	1.0
The kernel keeps track of the state of each task by using a data structure called	1.0
1006 Proceeds because track of the state of each task by using a data structure called	1.0
Memory control block 4. None of these ID Regular 2. context free 3. Recursive 4. Deterministic context free 1. Deterministic context free 2. in on recursive 2. is recursive and is a deterministic CFL 3. is a regular language 4. is not a deterministic CFL but a CFL Machine language 4. is not a deterministic CFL but a CFL Machine language 5. Application software 3. System program 4. None of these	1.0
1007 The language accepted by a Pushdown Automation in which the stack is limited to 10 items is best described as 1. Regular 2. context free 3. Recursive 4. Deterministic context free 3. Recursive 4. Deterministic context free 2. Context free 3. Recursive 4. Deterministic context free 5. Co	
None of these None of these	
Interpretation of these computer can understand and execute is called	
Regular 2. context free 3. Recursive 4. Deterministic context free 3. Recursive 4. Deterministic context free 4. Deterministic context free 5. In not recursive 2. is recursive and is a deterministic CFL 3. is a regular language 4. is not a deterministic CFL but a CFL Machine language 2. Application software 3. System program 4. None of these	
The language accepted by a Pushdown Automation in which the stack is limited to 10 items is best described a context free 3.	
the language accepted by a Pushdown Automation in which the stack is limited to 10 items is best described as a second se	
The language accepted by a Pushdown Automation in which the stack is limited to 10 items is best described a. Recursive 4. Deterministic context free 1. not recursive 2. is recursive and is a deterministic CFL 3. is a regular language 4. is not a deterministic CFL but a CFL I. Machine language 2. Application software 3. System program 4. None of these	
3. Recursive 4. Deterministic context free 1. not recursive 2. is recursive and is a deterministic CFL 3. is a regular language 4. is not a deterministic CFL but a CFL In Machine language 2. Application software 3. System program 4. None of these	
4. Deterministic context free 1. not recursive 2. is recursive and is a deterministic CFL 3. is a regular language 4. is not a deterministic CFL but a CFL 1. Machine language 2. Application software 3. System program 4. None of these	2.0
Deterministic context free Deterministic context free	2.0
1008 The language L= {0'21' ≥0 } over the alphabet {0,1,2} is: 1009 The language that the computer can understand and execute is called	2.0
not recursive 2. is recursive and is a deterministic CFL 3. is a regular language 4. is not a deterministic CFL but a CFL Machine language 2. Application software 3. System program 4. None of these	2.0
The language L= {0'21' i≥0 } over the alphabet {0,1,2} is: The language L= {0'21' i≥0 } over the alphabet {0,1,2} is: 3. is a regular language 4. is not a deterministic CFL but a CFL Machine language 2. Application software 3. System program 4. None of these	2.0
The language L= {0'21' ≥0 } over the alphabet {0,1, 2} is: 1008 The language L= {0'21' ≥0 } over the alphabet {0,1, 2} is: 3. is a regular language 4. is not a deterministic CFL but a CFL Machine language 2. Application software 3. System program 4. None of these	2.0
The language L= {0 21 ≥0 } over the alphabet {0,1,2} is: Solution Solution	2.0
is a regular language 4. is not a deterministic CFL but a CFL I. Machine language 2. Application software 3. System program 4. None of these	2.0
4. is not a deterministic CFL but a CFL I, Machine language 2. Application software 3. System program 4. None of these	
is not a deterministic CFL but a CFL 1.	
1009 The language that the computer can understand and execute is called The language that the computer can understand and execute is called System program 4. None of these	
The language that the computer can understand and execute is called The language that the computer can understand and execute is called Application software 3. System program 4. None of these	
The language that the computer can understand and execute is called 3. System program 4. None of these	
The language that the computer can understand and execute is called 3. System program 4. None of these	
The language that the computer can understand and execute is called 3. System program 4. None of these	
The language that the computer can understand and execute is called 3. System program 4. None of these	
4. None of these	1.0
None of these	
1	
Regular language	
2 <mark>.</mark>	
context free but not regular	
1010 The language {a ^m b ⁿ C ^{m+n} m, n ≥ 1} is 3.	2.0
context sensitive but not context free	
4.	
type-0 but not context sensitive	
1.	_
2.	
The length of the shortest string NOT in the language (over $\Sigma = \{a, b\}$) of the following regular expression is	
1011	2.0
a*b*(ba)*a* 4	
4.	
5	
1012 The length property belongs to which of the following objects? 1. Window 2. Element 3. History 4. Document	2.0
The levels of hierarchy in inheritance helps to handle 1.flexibility 2.complexity 3.detailed information 4.security	4.0

S.NO.	Questions	Choices	Answers
		1. Deterministic pushdown automata	
1014	The lexical analysis for a modern language such as Java needs the power of which one of the following machine models in a necessary and sufficient sense?	Finite state automata 3.	2.0
		Non-deterministic pushdown automata 4.	
1015	The liberary function used to find the lost economics of a character in a string is	Turing machine	3.0
1015	The library function used to find the last occurrence of a character in a string is	1.strnstr() 2.laststr() 3,strrchr() 4.strstr() 1.	3.0
		A reasonable approach when requirements are well defined. 2.	
1016	The linear sequential model of software development is	A good approach when a working program is required quickly. 3.	1.0
		The best approach to use for projects with large development teams. 4.	
		An old fashioned model that cannot be used in a modern context.	
		Classical life cycle model 2.	
1017	The linear sequential model of software development is also known as the	Spiral model 3.	3.0
		Waterfall model 4.	
		Incremental Model	
		I. Accumulator	
	The load instruction is mostly used to designate a transfer from memory to a processor register	2. Instruction Register	
1018	known as	3. Program counter	1.0
		4. Memory address Register	
1019	The main purpose of a data link content monitor is to	1.detect problems in protocols 2.determine the type of switch used in a data link 3.determine the flow of data 4.determine the type of switching used in data link	1.0
		1. 7	
1022		2. 8	2.0
1020	The maximum number of superkeys for the relation schema R(E,F,G,H) with E as the key is	3. 9	2.0
		4. 6	
		6	

1021 The maximum size of psychod field in reherms frame is 1022 1024	S.NO.	Questions	Choices	Answers
1822 The maximum size of psyload field in cheerer fame is 2000 cytos 3 1000 cytos				
1200 bytes 120				
	1021			
1022 The meximum window atto: for data transmission bring the addretive reject protocol with orbit 2 m		The maximum size of payload field in ethernet frame is		4.0
Page				
1022 The mentionent window size for data tenominsion using the selective reject protected with n-bit of particular sequence tunbbon is: 1023 The MC 1488 is 1.0 1.				
1022 The maximum window size for data transmission using the selective report protocol with n-bit 2-3				
The maximum window size for data transmission using the electric reject probood with relation transmission window size for data transmission using the electric reject probood with relation transmission window size for data transmission using the electric reject probood with relation and probability frames exquiring months of the members of a class of the MC 1488 is 1022				
1022 The meximum window size for data transmission using the selective reject protocol with white famine sequence numbers is: 1023 The MC 1486 is 1024 The MC 1486 is 1025 The meximum window size for data transmission using the selective reject protocol with white famine sequence numbers is: 1025 The MC 1486 is 1026 The meximum window size for data transmission using the selective reject protocol with white him as sequence numbers is: 1026 The MC 1486 is 1027 The MC 1486 is 1028 The meximum window size for data transmission using the selective reject protocol with white him as sequence numbers is: 1029 The meximum window size for data transmission using the selective reject protocol with white him as sequence numbers is: 1020 The meximum window size for data transmission using the selective reject protocol with white him as sequence numbers is: 1021 The meximum window size for data transmission using the selective reject protocol with white him as sequence numbers is: 1022 The meximum window size for data transmission using the selective reject protocol with white him as sequence numbers is: 1023 The meximum window size for data transmission using the selective reject protocol with white him as sequence numbers is: 1024 The meximum window size for data transmission using the selective reject protocol with white him as sequence numbers is: 1025 The meximum window size for data transmission using the selective reject protocol with white him as sequence numbers is: 1026 The meximum window size for data transmission using the selective reject protocol with white him as sequence numbers is: 1027 The meximum window size for data transmission using the selective reject protocol with white him as sequence numbers is: 1028 The meximum window size for data transmission using the selective reject protocol with white him as sequence numbers is: 1029 The meximum window size for data transmission using the sequence numbers is: 1020 The meximum window size for data transmission using the sequence numbers is				
Parameter Para				
Figure Parameters is:				
2021 The MC 1488 is 2011 10 20 20 20 20 20	1022	The maximum window size for data transmission using the selective reject protocol with n-bit frame sequence numbers is:		2.0
Book Post				
THE MC 1488 is THE				
THE MC 1488 is THE				
2. RS-232 to TTI. level converter 3. Bidirectional Level converter 4. Unidirectional level converter 4. Pragmentation 3. Demand Paging 4. Page Replacement 4. Page Replacement 4. Page Replacement 5. Secondary memory 2. Secondary memory 4. Secondary memory 5. Secondary memory 6. Secondary memory 7. Secondary memory 8. Secondary memory 9. Secondary memory 1. Secondary				
RS-232 to TTL level converter 1,0			TTL to RS 232C Level converter	
1024 The mechanism that bring a page into memory only when it is needed is called			2.	
Bidirectional Level converter 4. Unidirectional level converter 1. Segmentation 2. Fragmentation 3. Demand Paging 4. Page Replacement 1025 The members of a class, by default, are 1026 The members of a class, by default, are 1027 The memory unit that communicates directly with the CPU is called the 1028 The memory unit that communicates directly with the CPU is called the 1029 The memory unit that communicates directly with the CPU is called the 1020 The memory unit that communicates directly with the CPU is called the 1021 The memory unit that communicates directly with the CPU is called the 1022 The memory unit that communicates directly with the CPU is called the 103 Shared memory 4. auxiliary memory 104 The microprocessor can read/write 16 hit data from or to 105 The microprocessor can read/write 16 hit data from or to 106 June 107 June 1			RS-232 to TTL level converter	
1024 The mechanism that bring a page into memory only when it is needed is called	1023	The MC 1488 is	3.	1.0
Unidirectional level converter			Bidirectional Level converter	
1024 The mechanism that bring a page into memory only when it is needed is called			4.	
Segmentation 2. Fragmentation 3. Demand Paging 4. Page Replacement 1025 The members of a class, by default, are 1. private 2 protected 3 public 4 mandatory to specify 2. Secondary memory 2. Secondary memory 3. shared memory 4. auxiliary memory 1.027 The microprocessor can read/write 16 bit data from or to 1.028 The microprocessor can read/write 16 bit data from or to 1.029 The microprocessor can read/write 16 bit data from or to 1.029 The microprocessor can read/write 16 bit data from or to 1.020 The microprocessor can read/write 16 bit data from or to 1.020 The microprocessor can read/write 16 bit data from or to 1.020 The microprocessor can read/write 16 bit data from or to 1.021 The microprocessor can read/write 16 bit data from or to 1.022 The microprocessor can read/write 16 bit data from or to 1.024 The microprocessor can read/write 16 bit data from or to 1.024 The microprocessor can read/write 16 bit data from or to 1.025 The microprocessor can read/write 16 bit data from or to 1.025 The microprocessor can read/write 16 bit data from or to 1.026 The microprocessor can read/write 16 bit data from or to 1.027 The microprocessor can read/write 16 bit data from or to 1.027 The microprocessor can read/write 16 bit data from or to 1.028 The microprocessor can read/write 16 bit data from or to 1.029 The microprocessor can read/write 16 bit data from or to			Unidirectional level converter	
1024 The mechanism that bring a page into memory only when it is needed is called			1.	
1024 The mechanism that bring a page into memory only when it is needed is called			Segmentation	
1024 The mechanism that bring a page into memory only when it is needed is called			2.	
Demand Paging 4. Page Replacement 1.private 2.protected 3.public 4.mandatory to specify 2. Secondary memory 2. Secondary memory 3. Shared memory 4. auxiliary memory 1.p memory 2. Lo main memory 2. Lo main memory 2. Secondary memory 4. auxiliary memory 4. auxiliary memory 1.p memory 2. Lo mornory 4. auxiliary memory 1.p memory 2. Lo mornory 4. auxiliary memory 1.p memory 2. Lo mornory 4. auxiliary memory 1.p memory 2. Lo mornory 4. auxiliary memory 1.p memory 2. Lo mornory 4. Auxiliary memory 4. Aux	1024			2.0
4. Page Replacement 1025 The members of a class, by default, are 1. private 2-protected 3-public 4.mandatory to specify 1. main memory 2. Secondary memory 2. Secondary memory 4. auxiliarry memory 1. memory 4. memory 1. memory 4. private 2-protected 3-public 4.mandatory to specify 1. main memory 2. Secondary memory 4. auxiliarry memory 1. memory 2. The microprocessor can read/write 16 bit data from or to 1. memory 2. limentory 3. shared memory 4. auxiliarry memory 1. memory 2. limentory 3. processor 4. processor 4. limentory 4. auxiliarry memory 1. processor 4. limentory 4. auxiliarry memory 1. processor 4. limentory 4. auxiliarry memory 4. auxi	1024		<mark>.5.</mark>	3.0
Page Replacement Page Replac				
The members of a class, by default, are 1. private 2. protected 3. public 4. mandatory to specify 1. main memory 2. Secondary memory 1.026 The memory unit that communicates directly with the CPU is called the 3. shared memory 4. auxiliary memory 2. I.// memory 4. private 2. protected 3. public 4. mandatory to specify 3. one of the memory 4. private 2. protected 3. public 4. mandatory to specify 3. one of the memory 4. private 2. protected 3. public 4. mandatory to specify 3. one of the memory 4. private 2. protected 3. public 4. mandatory to specify 3. one of the memory 4. private 2. protected 3. public 4. mandatory to specify 3. one of the memory 4. private 2. protected 3. public 4. mandatory to specify 3. one of the memory 4. protected 3. public 4. mandatory to specify 3. one of the memory 4. protected 3. public 4. mandatory to specify 3. one of the memory 4. protected 3. public 4. mandatory to specify 3. one of the memory 4. protected 3. public 4. mandatory to specify 5. one of the memory 4. protected 3. public 4. mandatory to specify 5. one of the memory 4. protected 3. public 4. mandatory to specify 5. one of the memory 4. protected 3. public 4. mandatory to specify 5. one of the memory 4. protected 3. public 4. mandatory to specify 5. one of the memory 6. one of the memory 8. one of the memory 9. one of the memory 1. one of the memory 2. one of the memory 1. one of the memory 2. one of the memory 3. one of the memory 4. one of the memory 1. on				
1026 The memory unit that communicates directly with the CPU is called the 1.0				
main memory 2. Secondary memory 1.026 The memory unit that communicates directly with the CPU is called the 3. shared memory 4. auxiliary memory 1. memory 2. 1/O device 1/O device 3. processor 4.	1025	The members of a class, by default, are		3.0
2. Secondary memory The memory unit that communicates directly with the CPU is called the 3. shared memory 4. auxiliary memory 1. memory 2. I/O device 3. I/O device 3. processor 4.				
The memory unit that communicates directly with the CPU is called the 1.0				
The memory unit that communicates directly with the CPU is called the 3. shared memory 4. auxiliary memory 1. memory 2. I / O device 1 / O device 3. processor 4. 4.				3.0
3. shared memory 4. auxiliary memory	1026			1.0
1.027 The microprocessor can read/write 16 bit data from or to 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 2.0 3.0 4.0 3.0 4.				
1.0				
1.				
1027 The microprocessor can read/write 16 bit data from or to 1.0				
1027 The microprocessor can read/write 16 bit data from or to 2.				
1/O device				
The microprocessor can read/write 16 bit data from or to				
processor 4.	1027			1.0
4.				
register				
			register	

mines whether the specified condition exists or not by testing the arithmetic operations required to evaluate the polynomial $P(X) = X^5 + P(X) + P($	1. carry flag 2. conditional flag 3. common flag 4. sign flag 1.6 2.9 3.8 4.7 1.6 2.7 3.8 4.9 1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d 1. Hardware	2.0 4.0 2.0
arithmetic operations required to evaluate the polynomial $P(X) = X^5 + 2$ on value of X using only one temporary variable is. arithmetic operations required to evaluate the polynomial for a given value of X using only one temporary variable.	2. conditional flag 3. common flag 4. sign flag 1.6 2.9 3.8 4.7 1.6 2.7 3.8 4.9 1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d 1.	4.0
arithmetic operations required to evaluate the polynomial $P(X) = X^5 + 2$ on value of X using only one temporary variable is. arithmetic operations required to evaluate the polynomial for a given value of X using only one temporary variable.	3. common flag 4. sign flag 1.6 2.9 3.8 4.7 1.6 2.7 3.8 4.9 1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d 1.	4.0
arithmetic operations required to evaluate the polynomial $P(X) = X^5 + 2$ on value of X using only one temporary variable is. arithmetic operations required to evaluate the polynomial for a given value of X using only one temporary variable.	3. common flag 4. sign flag 1.6 2.9 3.8 4.7 1.6 2.7 3.8 4.9 1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d 1.	4.0
arithmetic operations required to evaluate the polynomial $P(X) = X^5 + 2$ on value of X using only one temporary variable is. arithmetic operations required to evaluate the polynomial for a given value of X using only one temporary variable.	common flag 4. sign flag 1.6 2.9 3.8 4.7 1.6 2.7 3.8 4.9 1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d 1.	4.0
en value of X using only one temporary variable is. arithmetic operations required to evaluate the polynomial for a given value of X using only one temporary variable.	4. sign flag 1.6 2.9 3.8 4.7 1.6 2.7 3.8 4.9 1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d 1.	+
en value of X using only one temporary variable is. arithmetic operations required to evaluate the polynomial for a given value of X using only one temporary variable.	4. sign flag 1.6 2.9 3.8 4.7 1.6 2.7 3.8 4.9 1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d 1.	+
en value of X using only one temporary variable is. arithmetic operations required to evaluate the polynomial for a given value of X using only one temporary variable.	sign flag 1.6 2.9 3.8 4.7 1.6 2.7 3.8 4.9 1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d 1.	+
en value of X using only one temporary variable is. arithmetic operations required to evaluate the polynomial for a given value of X using only one temporary variable.	1.6 2.9 3.8 4.7 1.6 2.7 3.8 4.9 1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d 1.	+
en value of X using only one temporary variable is. arithmetic operations required to evaluate the polynomial for a given value of X using only one temporary variable.	1.6 2.7 3.8 4.9 1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d 1.	+
arithmetic operations required to evaluate the polynomial for a given value of X using only one temporary variable.	1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d 1.	2.0
	1.2d - 1 2.d + 1 3.2d + 1 - 1 4.d 1.	
indus in a smary acc of depin a (1000 at 1000) is	L	2.0
	Hardware Control of the Control of t	12.0
	2.	
	Software	1.0
agement Unit) is a	3.	1.0
	Firmware	
	4.	
	Malware	
	I.	+
n is such that all system requirements are defined by consensus of a	TRUE	
nd developers.	2.)	2.0
	FALSE	
	3. 4.	
ent returns the value	1.2(2.9) 3.3 4.8	4.0
	<u></u>	
	0	
	2.	
nemory required for a Push Down Machine (PDM) to behave like a Finit	2	
nemory required for a rush Down Machine (PDM) to behave like a runto	3.	1.0
	4	
es needed to shift one byte of data from input to the output of a 4-bit shift	1.10 2.12 <mark>3.</mark> 16 4.32	3.0
ts in a graph with n nodes and 1 edge are	1.n 2.n-2 <mark>3.n-</mark> 1 4.n-3	3.0
	1.n 2.n-2 <mark>3.n-1</mark> 4.n-3	3.0
ts in a graph with n nodes and 1 edge are	1.2 2.1 <mark>3.3</mark> 4.4 1.	3.0
ts in a graph with n nodes and 1 edge are vailable in internal block diagram of 8253 is		
	Greater	
	<mark>2.</mark>	
	less	
vailable in internal block diagram of 8253 is		2.0
	3.	
vailable in internal block diagram of 8253 is	greater equal	i .
vailable in internal block diagram of 8253 is	greater equal	
vailable in internal block diagram of 8253 is	greater equal 4.	
vailable in internal block diagram of 8253 is	greater equal	
vailable in internal block diagram of 8253 is FA isthan the number of states in NFA for the same Language.	greater equal 4. equal	4.0
vailable in internal block diagram of 8253 is FA isthan the number of states in NFA for the same Language. the following C statement is	greater equal 4.	4.0
vailable in internal block diagram of 8253 is FA isthan the number of states in NFA for the same Language.	greater equal 4. equal	4.0
vailable in internal block diagram of 8253 is FA isthan the number of states in NFA for the same Language. the following C statement is i, &i);	greater equal 4. equal 2.0 Ans 10	
V		1

NO.	Questions	Choices	Answ
		1.	
		bit-by-bit delivery	
		2.	
44	The physical layer concerns with	process to process delivery	1.0
	The purposes to the time of the purpose of the purp	3.	1.0 1.0
		application to application delivery	
		4.	
		Hop by hop delivery	
_		1.	
		line coding	
		2.	
		channel coding	
45	The physical layer is responsible for	3.	<mark>4.0</mark>
		modulation	
			1.0
		4.	
		all of the mentioned	
		<u>L.</u>	
		data link layer	
		2.	
		2. network layer	
46	The physical layer translates logical communication requests from the into hardware specific operations.	3.	1.0
	•	trasnport laver	
		application layer	
		1.	
		decrements the total length by 1	
		trasnport layer 4. application layer 1.	
47	The second selection of the second selection of the selec	increments the total length by I	1.0
+/	The pop() method of the array in javascript does which of the following task?	3.	1.0
		prints the first element but no effect on the length	
		4.	
		don't return the value of deleted element	
		1.	
		physical signalling sublayer	
		2.	
		physical data sublayer	
48	The portion of physical layer that interfaces with the media access control sublayer is called	3.	1.0
		physical address sublayer	
		4.	
		none of the mentioned	
49	The postfix expression for * + a b - c d is?	1.ab + cd - * 2.ab + cd * - 3.ab + - cd * 4.ab cd + - *	1.0
50	The postfix form of the expression $(A+B)*(C*D-E)*F / G$ is	1.AB + CD* E - *F *G / 2.AB + CD* E - F **G / 3.AB+ CD*E - FG /** 4.AB + CDE * - * F *G /	3.0
51	The preorder traversal sequence of a binary search tree is 30,20,10,15,25,23,39,35,42. Which one of the following is the postorder traversal sequence of the same tree?	1.10,20,15,23,25,35,42,39,30 2.15,10,25,23,20,42,35,39,30	4.0
	of the following is the postorder traversal sequence of the same tree?	3.15,20,10,23,25,42,35,39,30 4.15,10,23,25,20,35,42,39,30	

S.NO.	Questions	Choices	Answers
	C	1.	
		reading	
		2.	
		writing	
1052	The process of retaining data for future use is called	3.	3.0
		storing	
		4.	
		coding	
		1.	
		Association	
		2.	
	The project planner examines the statement of scope and extracts all important software functions	Decomposition	
1053	which is known as	3.	3.0
		Planning process	
		4.	
		ALL	
		1.	
		Another name for component-based development.	
		2.	
		Another name for component-based development.	
1054	3.0	3.	4.0
100.			
		A high speed adaptation of the linear sequential model.	
		4.	
		ALL	
		1.attribute	
1055	The RDBMS terminology for a row is	2.relation	4.0
		3.degree	
		4.tuple	
		1.	
		may be different	
		2.	
		must be different	
1056	The recognizing capabilities of NDFSM and DFSM	3.	3.0
		must be same	
		4.	
		none of the mentioned	
1057	The relational model uses some unfamiliar terminology. A tuple is equivalence to a:	1.record 2.field 3.file 4.database	1.0
		1.	
		Interrupt	
		2.	
	The control of control of CDU and a sixty of the sixty of	Swapping	
1058	The removal of process from active contention of CPU and reintroduce them into memory later is known as	3.	2.0
		Signal	
		4.	
		Thread	
1059	The restriction while using the binary search is ?	1.List should be small in number 2.List should be large in number 3.List should be sorted 4.No restriction	3.0
	The result evaluating the postfix expression (10 5 + 60 6 / * 8 –) is	1.284 2.142 3.213 4.71	2.0
	The searching technique that takes O (1) time to find a data is	1.Binary Search 2.Linear Search 3.Tree Search 4.Hashing	4.0
ı			

.NO.	Questions	Choices	Answei
		I.	
		S < STBR	
		2.	
		S > STBR	
1062	The segment number S is legal if	3.	3.0
		S < STLR	
		4.	
		S > STLR	
1063	The simplest image processing technique is	1.coordinates transformation 2.intensity transformation 3.spatial transformation 4.domain transformation	1.0
	The situation when in a linked list START=NULL is	1.overflow 2.underflow 3.housefull 4.saturated	2.0
-	The smallest element of an array's index is called its	1.lower bound 2.range	1.0
.003	The smallest element of an array's muck is called its	D. extract 3.upper bound 4.ion	1.0
		1.	
		2 states	
		<u>2.</u>	
		3 states	
.066	The smallest finite automation which accepts the language $\{x \mid length \ of \ x \ is \ divisible \ by \ 3\}$ has :	3.	3.0
		4 states	
		4.	
		5 states	
		1. Counting the average memory needed by the algorithm 2. Counting the minimum memory needed by the algorithm 3. Counting the maximum	
1067	The space factor when determining the efficiency of algorithm is measured by	memory needed by the algorithm 4. Counting the maximum disk space	3.0
		needed by the algorithm	
		1.	
	4.0	Ends with the delivery of the software product	
1068	т.	2.	2.0
		Is not more chaotic than the incremental model 3.Do not Include project risks evaluation during each iteration 4.Includes	
		feasibility risks	
		1.	
		IBM	
		2.)	
		Barry Boehm	
069	The spiral model was originally proposed by	3.	2.0
		Pressman	
		4.	
		Royce	
		1.)	
		Specifies a range to test	
		2.	
		specifies between which tables the data is present	
070	The SQL BETWEEN operator	3.	1.0
		specifies the columns between which columns the data is present	
		4.	
		None of the options	1

S.NO.	Questions	Choices	Answers
	-	1.	
		depicts relationships between data objects	
		2.	
		depicts functions that transform the data flow	
1072	The state diagram	3.	1.0
		indicates how data are transformed by the system	
		<u>4.</u>)	
		indicates system reactions to external events	
1073	The status that cannot be operated by direct instructions is	1.Z 2.Cy 3.P 4.AC	4.0
1074	The stream insertion operator should be overloaded as	1.friend functions 2.member function 3.non member functions 4.static functions	4.0
1075	The stream insertion operator should be overloaded as	1.friend functions 2.member function 3.non member functions 4.static functions	4.0
1076	The stable and defendence of the stable of t	1.circuit switching 2.Message Switching 3.Packet switching 4.Frame	1.0
1076	The switching method fixes the path from source to destination is	Relay	
1077	The syntax of Eval is	1.[objectName.]eval(numeriC) 2.[objectName.]eval(string) 3. [EvalName.]eval(string) 4.[EvalName.]eval(numeriC)	2.0
		1.	
		detailed view	
		2.	
		domain view	
1078	The system engineering process usually begins with the	2	1.0
		4.0 _{element} view	
		<u>4.</u>)	
		world view	
		1.	
		Function, performance and constraints of a computer-based system	
		r unction, performance and constraints of a computer-based system	
1079	1.0	implementation of each allocated system	3.0
		3.	
		element software architecture	
		4.time required for system simulation	
	The tightest upper bound for the worst case performance of quicksort implemented on an array of	1.T(n! logn) 2.O(n logn) 3.O(n^2) 4.O(n^3)	3.0
	n elements by always chosing the pivot as the central element is The time complexity to build a heap with a list of n numbers is	1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2)	2.0
_	The topology with highest reliability is	1.ring topology 2.star topology 3.bus topology 4.mesh topology	4.0
		1.	
		28	
		2.	
	The total number of pins for the IC 8255 is	40	
1083	The total number of pins for the 10 0255 is	3.	2.0
		30	
		4.	
		20	L
1084	The two statements that can be used to change the flow of control are	1.switch and do-while 2.if and while 3.if and switch 4.break and	3.0
		continue 1.	
		none of the options	
		2.	
1025	The UNION SQL clause can be used with	the SELECT clause only	2.0
1003	The Ortion SQL clause can be used Will	3.	2.0
		the UPDATE clause only	
		4.	
		the DELETE and UPDATE clauses	
igwdown			

S.NO.	Questions	Choices	Answer
		1.	
		debug programs following the detection of run-time errors	
		2.	
1086	The use of traceability tables helps to	determine the performance of algorithm implementations	3.0
		3.	
		identify, control, and track requirements changes	
		4.Analyze design changes 1.AX=1101 1010 1111 1111 2.AX=1101 1010 0000 0000	
1087	The value in AL=11011010 after the operation of CBW, the result is	. 3.AX=1101 1010 1111 1111 2.AX=1101 1010 0000 0000 . 3.AX=1111 1111 1101 1010 4.AX=0000 0000 1101 1010	3.0
		1.	
		Object oriented file implementation	
		2.	
1088	The virtual file system provides us the following	Structured programming file implementation	2.0
1000	The virtual life system provides us the following	3.	2.0
		Linked file allocation	
		4.	
		Indexed file allocation	
		1.	
		encoding	
		2.	
		decoding	
1089	The work of EU is	3.	3.0
		processing	
		4.	
		calculations	
		size of the budget 2.	
		size of the product being built	
1090	2.0	3.	3.0
		software process being used 4.	
		stakeholders needs	
1091	The worst case running time to search for an element in a balanced binary search tree with n*2^n elements is	1.theta(n log n) 2.theta(n*2^n) 3.theta(n) 4.theta(log n)	3.0
1092	The worst case running time to search for an element in a balanced in a binary search tree with n*2^n elements is	1.theta(n log n) 2.theta(n*2^n) 3.theta(n) 4.theta(log n)	3.0
		1.	
		(1-p)^(n-1)	
		2.	
		np(1-p)^(n-1)	
1093	There are n stations in a slotted LAN. Each station attempts to transmit with a probability p in each time slot. What is the probability that only one station transmits in a given time slot?	3.	2.0
		p(1-p)^(n-1)	
		4.	
		1-(1-p)^(n-1)	
1094	There is no connection setup phase in	1.Frame relay 2.Virtual Circuit Switching 3.Datagram 4.ATM	3.0
.074	There is no confection social prince in	1.	3.0
		when excessive swapping takes place	
		2.	
		when you thrash your computer	
1095	Thrashing occurs	3.	1.0
		whenever deadlock occurs	
			I
		4.	
		4. when no swapping takes place	

	Questions	Choices	Answe
096	Thresholding function in contrast stretching creates	1.binary image 2.high quality image 3.low quality image 4.enhanced image	1.0
1097	To create an alias Objects have to be passed by	1.address 2.reference 3.value 4.field by field	2.0
1098	To Delete an item from a Queue identify the correct set of statements	1.Q[REAR] = item; REAR ++ 2.item = Q[FRONT]; FRONT++ 3.item = Q[REAR]; FRONT ++ 4.item = Q[FRONT]; REAR ++	2.0
1099	To determine the architectural style or combination of styles that best fits the proposed system, requirements engineering is used to uncover	algorithmic complexity characteristics and constraints control and data design patterns	2.0
1100	To interface memory with the microprocessor, connect register the lines of the address bus must be added to address lines of the chip.	1. single 2. memory 3. multiple 4. triple	2.0
1101	To operate correctly, starting a ring counter requires	1.presetting all the flip-flops 2.clearing one flip-flop and presetting all the others 3.presetting one flip-flop and clearing all the others)4.clearing all the flip-flops	1.0
1102	Today the increased power of the personal computer has brought about an abandonment of the practice of team development of software	1. True 2. false 3. 4.	1.0
1103	Trigger is a	1.Statement that enables to start any DBMS 2.Statement that is executed by the user when debugging an application program 3.Statement that is executed automatically by the system as a side effect of a modification to the database 4.Condition the system tests for the validity of the database user	3.0
1104	Two computers C1 and C2 are configured as follows. C1 have IP address as 203.197.2.53 and netmask 255.255.128.0. C2 have IP address as 203.197.75.201 and netmask 255.255.192.0. Which one of the following statements is true?	1. C1 and C2 both assume they are on the same network 2. C2 assumes C1 is on same network, but C1 assumes C2 is on a different network 3. C1 assumes C2 is on same network, but C2 assumes C1 is on a different network 4. C1 and C2 both assume they are on different networks.	3.0
1105	Two sets of functional dependencies E and F are equivalent if $E+=F+$. This statement is	1. True 2. False 3. Cant Say	1.0
		 4.	

S.NO.	Questions	Choices	Answei
	-	1.	
		customers	
		2.	
		3.0experienced programmers	
1107	Usability questionnaires are most meaningful to the interface designers when completed by	3.	2.0
		product users)	
		4.	
		project managers	
1108	Using linked list node representation, inserting a node in general tree is performed efficently	1.not possible 2.by merging with an existing node 3.after introducing a new link 4.after converting to binary tree	2.0
1109	Using the 8259A, the INT input of the 8086 can be expanded to accomodeate up toprioritized interrupt inputs	1.60 2.64 3.16 4.32	2.0
	Usually a pure virtual function	1. Will be called only to delete an object 2.Is defined only in derived class	2.0
1110	Osuany a pure virtual function	3.Will never be called 4.Has complete function body	2.0
		1.	
		RAM	
		2.	
		Cache Memory	
1111	Virtual memory is the portion of	3.	3.0
		Hard Disc	
		4.	
		None of these	
			ļ
		1.	
		A5/2 cipher	
		2.	
		b5/4 cipher	
1112	Voice privacy in GSM cellular telephone protocol is provided by	3.	1.0
		b5/6 cipher	
		4.	
		b5/8 cipher	
		1.COMPACT DISK 2.HARD DISK 3.RANDOM ACCESS MEMORY	
1113	VOLATILE MEMORY IS?	4.READ ONLY MEMORY	3.0
		1.	
		architecture, interface, component	
		2.	
		cost, risk, schedule	
1114	1.0	3.	1.0
		Information, function, behavior	
		4.	
		NONE	
			<u> </u>
		1.	
		Risk monitoring	
		2.	
		Risk planning	
1115	the risk?	3.	1.0
		Risk analysis	
		4.	
		Risk identification	
- 1			

S.NO.	Questions	Choices	Answers
		1.	
		too slow	
		2.	
		unreliable	
1116	What characteristic of RAM memory makes it not suitable for permanent storage?	unrenable	3.0
		3.	
		it is volatile	
		4.	
		too bulky	
		1.'c' means argument count 'v' means argument vector 2.'c' means	-
1117	What do the 'c' and 'v' in argy stands for?	argument count 'v' means argument vertex 3.'c' means argument	1.0
1117	white do the c and v in argy stands for.	configuration 'v' means argument visibility 4.'c' means argument control 'v' means argument vector	1.0
		1.Match one or more characters that are not open paranthesis 2.Match	
1118	What does $/[^{(]}*$ regular expression indicate?	zero or more characters that are open paranthesis 3.Match zero or more	2.0
		characters that are not open paranthesis 4. Match one or more characters that are open paranthesis	
		1.Used to convert a string to an array 2.Used to split a given string into	
1119	What does explode function in php do	the number of chunks specified 3.Used to split a string by a string 4.Used to split string into two equal halves	1.0
1120	What does microprocessor speed depends on	1.Clock 2.Address bus width 3.Data bus width 4.Size of register	2.0
_	What does parseFloat(9+10) evaluates to in JavaScript?	1.19 2.910 3.9109 4.91	1.0
1122	What does the following declaration mean?	1.ptr is array of pointers to 10 integers 2.ptr is a pointer to an array of 10 integers 2.ptr is an array of 10 integers 4.ptr is an array of 10 integers 5.ptr is an array of 10 integers 5.ptr is an array of 10 integers 5.ptr is a pointer to an array of 10 integers 5.ptr is a pointer to an array of 10 integers 5.ptr is a pointer to an array of 10 integers 5.ptr is a pointer to an array of 10 integers 5.ptr is a pointer to an array of 10 integers 5.ptr is a pointer to an array of 10 integers 5.ptr is a pointer to an array of 10 integers 5.ptr is a pointer to an array of 10 integers 5.ptr is a pointer to an array of 10 integers 5.ptr is a pointer to a p	2.0
	int (*ptr)[10];	integers 3.ptr is an array of 10 integers 4.ptr is an pointer to array 1.	H
		1 => 'b'	
		1 => 6	
	What elements will the following script output?	2.	
		True => 'a', a => 'b'	
1123	<pre><?php \$array = array (true => 'a', 1 => 'b');</pre>	3.	3.0
	var_dump (\$array);	NULL	
	?>	NOLL	
		4.	
		0 => 'a', 1 => 'b'	
1124	What gets printed? \$str = 'a\\b\n'; echo \$str;	1.ab(newline) 2.a\b(newline) 3.a\b\n 4.a\\b(newline)	3.0
1125	What happens if no file path is given in include() function?	1.PHP continues to execute the script. 2.Results in a fatal error	3.0
1123	white happens it no the path is given in include() function.	3.Include_path is made use of 4.It haults the script.	5.0
		1.	
		Software is set of programs	
		2.	
		Software is documentation and configuration of data	
1126	What is a Software ?	3.	3.0
1120	what is a software:		3.0
		Software is set of programs and Software is documentation and configuration of data	
		4.	
		Software is a set of documents.	
		1.none of them 2.A master clock triggers all the flip-flops at a time 3.all	
1127	What is asynchronous counter.	the flip-flop are combined to common clock 4.each flip-flop has it own	4.0
		clock	\vdash
		block cipher	
		2.	
		stream cipher	
1128	What is data encryption standard (DES)?	3.	1.0
		bit cipher	
		4.	
		none of the mentioned	
			•

	Questions	Choices	Answers
1 1		1.	
1		idle time between frames	
i		2.	
i		idle time between frame bits	
1129 W	What is interframe gap?	3.	1.0
i		idle time between packets	
i		4.	
i		none of the mentioned	
$\vdash \vdash$		1.Shifting the data in all flip-flops simultaneously 2.Loading data in two	
1130 W	What is meant by parallel-loading the register?	of the flip-flops 3.Loading data in all flip-flops at the same time	3.0
1131 W	What is the best case for linear search	4.Momentarily disabling the synchronous SET and RESET inputs 1.O(n) 2.O(1) 3.O(log n) 4.O(2n)	2.0
1132 W	What is the code to start displaying the time when document loads?	1.onload = displayTime; 2.window. = displayTime; 3.window.onload =	3.0
$\vdash \vdash$		displayTime; 4.window.onload = start; 1.MSB of the result is One 2.MSB of the result is zero 3.LSB of the	2.0
1133 W	What is the condition for resetting(s=0) the S flag in status register?	result is one 4.LSB of the result is zero	2.0
1134 W	What is the correct CSS syntax for making all the elements bold?	1.p {font-weight:bold;} 2.p style="text-size:bold" 3.p {text-size:bold} 4.p style="font-size:bold">	1.0
		1.mysqli_db(host,username,password,dbname);	
		2.mysqli_connect(host,username,password,dbname);	
1135 V	What is the correct way to connect to a MySQL database?	3.mysqli_open(host,username,password,dbname);	2.0
[]		4.	
i		mysqli connect(,,)	
1136 V	What is the data structures used to perform recursion?	1.list 2.queue 3.stack 4.Tree	3.0
1137 W	What is the default execution time set in set_time_limit()?	1.20 secs 2.30 secs 3.40 secs 4.50 secs	2.0
1138 W	What is the default size of a file set in upload_max_filesize?	1.1 MB 2.2 MB 3.2.5 MB 4.3 MB	2.0
1139 W	What is the difference between echo and print?	1. They both behave the same. 2. Print can take multiple parameters where as echo cannot 3. Echo can take multiple parameters where as print cannot 4. Print is a function where as echo is not.	3.0
1140 W	What is the following style an example of? img[alt~="Pie"]	Attribute Match 2.Exact Value Match 3.Contains Value Match Subcode Match	3.0
		1.	
i		1 NF	
		2.	
		2 NF	
	What is the highest normal form level satisfied by the following table design? $R = \{A_1,A_2,A_3,A_4,A_4\}$ $F = \{A_1->A_3,A_3->A_4\}$ Key $= \{A_1,A_2\}$	3.	2.0
		3 NF	
i			
i		4.	
$\vdash \vdash$		BCNF 1.	
i			
		n/2	
		2.	
1142 W	What is the maximum number of reduce moves that can be taken by a bottom-up parser for a grammar with no	n-1	2.0
	psilon- and unit-production (i.e., of type A -> ε and A -> a) to parse a string with n tokens?	3.	2.0
		2n-1	
		4.	
		2^n	
$\vdash \vdash$		1.	
		Any size	
		2.	
1143 V	What is the maximum size of data that the application layer can pass on to the TCP layer below?	2^16 bytes-size of TCP header	1.0
		3.	
		2^16 bytes	
		4.	
		1500 bytes	
	· · · · · · · · · · · · · · · · · · ·	1	
1144 W	What is the minimum number of NAND gates required to implement A + AB` + AB`C?	1.0 2.1 3.2 4.3	1.0
	What is the minimum number of NAND gates required to implement A + AB` + AB`C? What is the most essential purpose of paranthesis in regular expressions?	1.0 2.1 3.2 4.3 1.Define pattern matching techniques 2.Define subpatterns within the complete pattern 3.Define portion of strings in the regular expression	2.0

.NO.	Questions	Choices	Answe
	what is the need of segmenting the memory in 8086	1.Increase the memory accessibility 2.Increase the memory addressibility	_
		3.easy to retrieve data 4.faster access 1.	
		a, d, c, b	
	What is the normal order of activities in which traditional software testing is organized? a.	2.	
147	integration testing b. system testing c. unit testing d.validation testing	b, d, a, c	1.0
		3.0 _c , a, d, b	
		4.	
		d, b, c, a	
		Requirements Definition, System & Software Design, Implementation & Unit Testing, Integration & System Testing, Operation & Maintenance.	
		2.	
		Requirements Definition, Integration & System Testing, System &	
		Software Design, Implementation & Unit Testing, Operation &	
		Maintenance.	
148	What is the order of the stages in the waterfall mode?	3.	1.0
		System & Software Design, Requirements Definition, Operation & Maintenance, Implementation & Unit Testing, Integration & System	
		Testing.	
		4.	
		Implementation & Unit Testing, Requirements Definition, System &	
		Software Design, Integration & System Testing, Operation & Maintenance.	
		Maintenance.	
		1.	
		10***24000	
		2.	
		****24000	
149	what is the output for the following function? LPAD(salary,10,1*1)	3.	2.0
		24000****	
		4.	
		error	
		1.	
		1,2	
	What is the output?	2.	
	#include <stdio.h></stdio.h>	3,2	
150	void main() {	3.	1.0
	int a=3,b=2; a=a=-b==0;	0,0	
	printf("%d,%d",a,b);		
	}	4.	
		2,3	
		1.	
		Used to register a global variable	
		2.	
		Used to initialize a session	
151	What is the purpose of \$_SESSION[]?	3.	3.0
		Used to store variables of the current session	
		4.	
		Used to initialize a cookie	
	What is the result of the following code snippet? window.location ==== document.location	1. False 2. True 3.0 4.1	2.0
152		1. Find the last occurrence of the string within a string 2. Find the first occurrence of the string within a string 3. Find both last and first	2.0
	What is the strpos() function used for?		
153		occurence 4.Search for all occurrence within a string	1.0
153 154	What is the strpos() function used for? What is the time complexity for binary search What is the time complexity for insertion sort		1.0 3.0

S.NO.	Questions	Choices	Answers
		1.	
		security algorithm for ethernet	
		2.	
1157	What is Wired Equivalent Privacy(WEP)?	security algorithm for wireless networks	2.0
		3.	
		security algorithm for USB	
		4. None	
		1.	
		wi-fi protected access	
		2.	
1158	What is WPA?	wired protected access	1.0
		3.	
		wired process access	
		4.	
		wi-fi process access	
		1.	
		Read/Write. Creates a new file. Returns FALSE and an error if file already exists	
		2.	
		Write only. Creates a new file. Returns TRUE and an error if file already	
1159	What is x+ mode in fopen() used for?	exists	1.0
		3.	
		Read/Write. Opens and clears the contents of file	
		4.	
		Write. Opens and clears the contents of file	
1160	What keyword covers unhandled possibilities?	1. other 2.default 3.contingency 4.all	2.0
	What kind of schema it is?	1.Relaional	
1161	Student(sid, sname, dob, address, pincode)	2.Logical Schema	1.0
		3.Conceptual Schema	
		4.External View	
		1.	
		GD library	
		2.	
1162	What library do you need in order to process images?	ZIP library	1.0
1162	What library do you need in order to process images?	ZIP library 3.	1.0
1162	What library do you need in order to process images?	ZIP library 3. Win32 API library	1.0
1162	What library do you need in order to process images?	ZIP library 3. Win32 API library 4.	1.0
1162	What library do you need in order to process images?	ZIP library 3. Win32 API library 4. BOGUS library	1.0
1162	What library do you need in order to process images?	ZIP library 3. Win32 API library 4. BOGUS library 1.	1.0
1162	What library do you need in order to process images?	ZIP library 3. Win32 API library 4. BOGUS library	1.0
1162	What library do you need in order to process images?	ZIP library 3. Win32 API library 4. BOGUS library 1. num is unsigned integer 2.	1.0
	What library do you need in order to process images? What type of declaration is this:	ZIP library 3. Win32 API library 4. BOGUS library 1. num is unsigned integer 2. num is unsigned float	
1163		ZIP library 3. Win32 API library 4. BOGUS library 1. num is unsigned integer 2. num is unsigned float 3.	4.0
1163	What type of declaration is this:	ZIP library 3. Win32 API library 4. BOGUS library 1. num is unsigned integer 2. num is unsigned float 3. num is unsigned character	
1163	What type of declaration is this:	ZIP library 3. Win32 API library 4. BOGUS library 1. num is unsigned integer 2. num is unsigned float 3. num is unsigned character 4.	
1163	What type of declaration is this:	ZIP library 3. Win32 API library 4. BOGUS library 1. num is unsigned integer 2. num is unsigned float 3. num is unsigned character	
1163	What type of declaration is this:	ZIP library 3. Win32 API library 4. BOGUS library 1. num is unsigned integer 2. num is unsigned float 3. num is unsigned character 4.	

S.NO.	Questions	Choices	Answers
		1.	
	What will be the output?	Declaration Error	
	#include <stdio.h> int main()</stdio.h>	2.	
1165	{ extern int ok;	value of ok = 1000	2.0
	printf("value of ok = %d",ok); return 0;	3.	
	extern int ok=1000;	value of ok = 0	
	exem in or 1000,	4.	
1166		Linking Error	2.0
1166	What will be the result of the expression 13 & 25	1.25 2.38 3.9 4.12 1.	3.0
		High paging activity	
		2.	
		Thrasing happens	
1167	What will be the status of a computer during storage compaction	3.	4.0
		Working set model developed	
		4.	
		It will sit idle	
1160		1.Error Page 2.Remains in the same page 3.about:blank 4.Open the first	2.0
1168	What will happen if the first argument of open() is omitted?	page in the history	3.0
		1.	
	What will the following script output?	78	
	php<br \$array = array (1, 2, 3, 5, 8, 13, 21, 34, 55);	2.	
1160	sum = 0;	19	1.0
	for (\$i = 0; \$i < 5; \$i++) { \$sum += \$array[\$array[\$i]];	3.	
	} echo \$sum;	NULL .	
	?>	4.	
		5	
1170	What would be the output of the below code fragment? var a = ["s","a","v","e"]; document.write(a.join(""));	1.Undefined 2.save 3.vase 4.S	2.0
		1.	
	10	true	
1171	1.0	2.	1.0
		false	
		3. 4.	-
		Primary Key constraint	
		2.	
		Referential Integrity Constraint	
1172	When a new row is inserted the constraints that can be violated are	3.	1.0
		all of the options	
		4.	
		Domain Constraint	
		Bolliam Constraint	
		1.	
		3.0high coupling 2.	
1173	When a single item that triggers other data flow along one of many paths of a data flow diagram,	poor modularity 3.	1.0
11/3	characterizes the information flow.	transaction flow	1.0
		4	
		transform flow	

S.NO.	Questions	Choices	Answers
		I.	
		HTTP protocol 2.	
		FTP protocol	
1174	When displaying a web page, the application layer uses the	3.	1.0
		SMTP protocol	
		4.	
		IMAP Protocol	
1175	When operated in slave mode, the PIC outputs its type number only if the cascaded address received on CAS0-CAS2 matches the address programmed in bits D0-D2	1.ICW1 2.ICW2 3.ICW3 4.ICW4	4.0
	received on CA30-CA32 matches the address programmed in ons D0-D2	1.	
		4.0low coupling 2.	
1176	When the overall flow in a segment of a data flow diagram is largely sequential and follows	good modularity	3.0
1170	straight-line paths, is present.	3.	3.0
		transaction flow 4.	
	When the pre-order and post-order traversal of a Binary Tree generates the same output, the tree	transform flow	
1177	can have maximum	1.Three nodes 2.Two nodes 3.One node 4.Any number of nodes	3.0
		1. automata	
		2.	
		finite automata	
1178	When there are infinite distinguishable strings then there cannot be a	3.	2.0
		regular expression	
		4.	
		both finite automata and regular expression	
		1.	
		Prints an exception error	
		2.	
1179	When there is an indefinite or an infinity value during an arithmetic value computation, javascript	Prints an overflow error	3.0
		3. Displays "Infinity"	
		4.	
		Prints the value as such	
1180	When used with the datalist element, what is the list attribute in HTML5 used to accomplish?	1.Local databases 2.Drop down lists 3.Autocompletion 4.Global	3.0
1100		Databases 1.	5.0
		M2	
		2.	
	When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a	M1 and M2	
1181	machine with final state same as that of	3.	2.0
		M1	
		4.	
		M1 or M2	
		1.	
		Primary Key 2.	
	when you were asked to design a relation was some as record a situation when you	2. Not Null	
	when you were asked to design a relation, you come across a situation, where passport number is to be included for the people. All the students wont be having passport. So what constraint you	3.	4.0
	would be using?	Default	
		4.	
		Unique	
		1	

	Questions	Choices	Answe
		1.	
		Register values	
		2.	
		File descriptors	
183	Which of the following is shared between all of the threads in a process? Assume a kernel level thread implementation	3.	2.0
		Scheduler priority	
		4.	
		Local variables	
184	Which buffer is a parallel to serial converter that receives a parallel byte for conversion into a serial signal and further transmission onto the communication channel.	1.Transmit buffer 2.Receive buffer 3.Data bus buffer 4.Modem control	1.0
	serial signal and future transmission one the communication channel.	1.	+
		INSTR	
		2.	
185	Which character function can be used to return a specified portion of a character string?	SUBSTRING	3.0
		3.	
		SUBSTR	
		4.	
		POS	
		1.image-background:url('R4R_Logo.jpg') 2.background-	
186	Which command we use to set an image on background?	image:url('R4R_Logo.jpg') 3.bg-image:url('R4R_Logo.jpg') 4.background-image:href('R4R_Logo.jpg')	2.0
187	Which Data structure is best suited for the UNDO operation in Windows	1.Both Stack and Queues 2.Queues 3.Stack 4.Arrays	3.0
		1.	
		External	
		2.	
		Conceptual	
188	Which database level is closest to the users?		1.0
		3.	
		Internal	
		4.	
		Physical	
		1.	1
		NEXT DAY	
		2.	
100	WILLIAM CONTROL TO THE TAXABLE CONTROL OF	LAST_DAY	
189	Which date function is used to obtain the date of next Wednesday	3.	3.0
		NEXT_DATE	
		4.	
		All of the options	
		1.	
		Architectural design	
		2.	
		Component-level design	
190	4.0	3.	3.0
		Data design	
		4.	
		Interface design	

S.NO.	Questions	Choices	Answer
		1.	
		Single level directory structure	
		2.	
		Two level directory structure	
1191	Which directory implementation is used in most of the Operating Systems?	3.	3.0
		Tree directory structure	
		4.	
		Acyclic directory structure	
		,	
		1.	
		Single level directories	
		2.	
		Two level directories	
1192	Which directory implementation method creates more dangling pointers?	3.	4.0
		Tree Structured Diretories	
		4.	
		Acyclic graph directories	
1193	Which element is used to draw graphics images on a web page?	1.script 2.audio 3.embed 4.canvas	4.0
		1.	
		Unit Testing	
	IVII. 1-1111111111111	2.	
		Integration Testing	
1194		3.	2.0
		Acceptance Testing	
		4.	
		Regression Testing	
1105			1.0
	Which header file should be included to use functions like malloc() and calloc()? Which Instruction word is used to specify the number of stop bits, data bits, parity bit and the baud	1.string.h 2.dos.h 3.memory.h 4.stdlib.h 1.Mode 2.Command followed by Mode 3.Command 4.Mode followed	4.0
1196	rate clock factor for the 8251A USART	by command	4.0
		1.	
		SQL cannot support object-orientation	
		<u>2.</u>)	
		The same query can be written in many ways, each with vastly different	
1197	Which is a major problem with SQL?	execution plans.	2.0
		3.	
		SQL syntax is too difficult for non-computer professionals to use	
		4.	
		SQL creates excessive locks within the database	
		1.	
		Safe State	
		2.	
1198	Which is not related to deadlock avoidance?	Unsafe State	3.0
	and the second s	3.	[
		Safe Sequence	
		4.)	
		Resource sequence	

S.NO.	Questions	Choices	Answers
		1.	
		Entry level personnel	
		2.	
1199	Which is one of the most important stakeholder from the following?	Middle level stakeholder	4.0
	·	3.	
		Managers	
		Users of the software	
		1.	
		var txt = new Array(1:"tim",2:"kim",3:"jim")	
		2.	
1200	Which is the correct way to write a JavaScript array?	var txt = new Array:1=("tim")2=("kim")3=("jim") 3.	3.0
		var txt = new Array("tim","kim","jim")	
		4.	
		var txt = new Array="tim","kim","jim"	
		t.	
		Stack	
		2.	
		Queue	
1201	Which is used to store critical pieces of data during subroutines and interrupts	3.	1.0
		Accumulator	
		4.	
		Data register	
1202	Which item is an example of a physical network address?	1.IP address 2.MAC address 3.Workstation name 4.www.proprofs.com	2.0
	Which JavaScript function is most useful for finding errors?	1.Confirm 2.Prompt 3.Debug 4.Alert	3.0
		1.	
		Software interrupts	
		2.	
1204	Which method bypasses the CPU for certain types of data transfer?	Interrupt-driven I/O	4.0
1204	Which method bypasses the CPU for certain types of data transfer?	Interrupt-driven I/O 3.	4.0
1204	Which method bypasses the CPU for certain types of data transfer?	Interrupt-driven I/O 3. Polled I/O	4.0
1204	Which method bypasses the CPU for certain types of data transfer?	Interrupt-driven I/O 3. Polled I/O 4.	4.0
1204	Which method bypasses the CPU for certain types of data transfer?	Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA)	4.0
1204	Which method bypasses the CPU for certain types of data transfer?	Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1.	4.0
1204	Which method bypasses the CPU for certain types of data transfer?	Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA)	4.0
		Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1.	
	Which method bypasses the CPU for certain types of data transfer? Which method is used for loading the driver in Java JDBC.	Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3.	1.0
		Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName()	
		Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement()	
		Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4.	
		Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection()	
		Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class forName() 3. createStatement() 4. getConnection()	
		Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString)	
1205		Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString) 2.	
1205	Which method is used for loading the driver in Java JDBC.	Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString) 2. stringVariable.find(subString)	1.0
1205	Which method is used for loading the driver in Java JDBC.	Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString) 2. stringVariable.find(subString) 3.	1.0
1205	Which method is used for loading the driver in Java JDBC.	Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString) 2. stringVariable.find(subString) 3. stringVariable.indexOf(subString)	1.0
1205	Which method is used for loading the driver in Java JDBC.	Interrupt-driven I/O 3. Polled I/O 4. Direct memory access (DMA) 1. getDriver() method 2. class.forName() 3. createStatement() 4. getConnection() 1. stringVariable.substring(subString) 2. stringVariable.find(subString) 3. stringVariable.indexOf(subString) 4.	1.0

S.NO.	Questions	Choices	Answe
		1.	
		Waterfall Model	
		2.	
		Prototyping Model	
1207	Which model can be selected if user is involved in all the phases of SDLC?	3.)	3.0
		RAD Model	
		4.	
		Prototyping Model and RAD model	
		1.	
		design model	
		2.	
1208	3.0	implementation model	2.0
		3. user model	
		4.	
		client model	
		1.	<u> </u>
		CDMA	
		2.)	
		CSMA/CA	
1209	Which multiple access technique is used by IEEE 802.11 standard for wireless LAN?	3.	2.0
		ALOHA	
		4.	
		CSMA/CD	
	Which of the below given sorting techniques has highest best-case runtime complexity?	1.bubble sort 2.insertion sort 3.quick sort 4.selection sort 1.const int a=90; 2.const int f1() { return 100; } 3.int f2() const { return	3.0
1211	Which of the following (in file scope) leads to a compile-time error?	200; } 4.const int f3(const int i) { return 300;}	3.0
		1. 3.0Develop overall project strategy	
		2.	
		Identify the functionality to deliver in each software increment	
1212	Which of the following activities is not one of the four things that need to be accomplished by the generic planning task set?	3.	4.0
		Create a detailed schedule for the complete software project	
		4. Pevise a means of tracking progress on a regular basis	
		I.	
		1 and 4	
	Which of the following addressing modes are suitable for program	2.	
	relocation at run time?	1 and 2	
	1. Absolute addressing	3	4.0
	Based addressing Relative addressing		
	4. Indirect addressing	2 and 3	
		4.	
		1,2 and 4	
1214	Which of the following algorithm design technique is used in the quick sort algorithm?	Greedy method 2.Backtracking 3.Divide and conquer 4.Dynamic	3.0
1214	minen of the following algorithm design technique is used in the quick soft algorithm?	programming	
1215	Which of the following algorithm is Minimum Spanning Tree in graph	1.Dijiktra's algorithm 2.AVL Tree algorithm 3.Kruskal's algorithm 4.Merge algorithm	3.0
	Which of the following algorithm is used to find the shortest path between two nodes in graph	1.Dijiktra's algorithm 2.Prim's algorithm 3.Kruskal's algorithm 4.Merge algorithm	1.0
1216			

S.NO.	Questions	Choices	Answers
		1.	
	Which of the following are decidable?	I and II	
	Whether the intersection of two regular languages is infinite	<u>2.</u>)	
	II. Whether a given context-free language is regular	I and IV	
1217		3.	3.0
	III. Whether two push-down automata accept the same language	II and III	
	IV. Whether a given grammar is context-free	4.	
		I and III	
		<u>l.</u>	
		enctype='multipart/form-data')	
		2.	
		enctype='singlepart/data'	
1218	Which of the following attribute is needed for file upload via form?	3.	1.0
		enctype='file'	
		4.	
		enctype='form-data/file'	
		1.	-
		Column	
		2.	
1219	Which of the following can be a valid column name?	1966_Invoices	3.0
		3.	
		Catch_#22	
		4.	
		#Invoices	
1220	Which of the following can't be done with client-side JavaScript?	1. Validating a form 2. Sending a form's contents by email 3. Storing the form's contents to a database file on the server 4. Testing the form	3.0
1221	Which of the following case does not exist in complexity theory?	1.Average case 2.Worst case 3.Best case 4.Null case	4.0
1222	Which of the following command words need to be programmed to operate a single PIC in fully nested mode with an 8086 microprocessor	1.ICW1 and ICW2 2.ICW1, ICW2 and ICW4 3.ICW2 and ICW3 4.ICW1 and ICW4	2.0
	Which of the following correctly describes C++ language?	1.Statically typed language 2.Dynamically typed language 3.Both	4.0
1223	which of the following correctly describes C++ language.	Statically and dynamically typed language 4.Type-less language 1.	1.0
		It is the position in a sentential form where the next shift or reduce	
		operation will occur	
		2.	
		It is non-terminal whose production will be used for reduction in the next	
		step	
1224	Which of the following describes a handle (as applicable to LR-parsing) appropriately?	3.	4.0
		It is a production that may be used for reduction in a future step along	
		with a position in the sentential form where the next shift or reduce operation will occur	
		4.	
		It is the production p that will be used for reduction in the next step	
		along with a position in the sentential form where the right hand side of the production may be found	
100-			1.0
1225	Which of the following explains cookies nature?	Non Volatile 2.Volatile 3.Intransient 4.Transient 1.	4.0
		Contiguous allocation	
		2.	
1226	Which of the following file access method needs a relative block number 'n'?	Linked allocation	3.0
-20		3.	
		Direct access	
		4.	
		Sequential access	
		ı	

S.NO.	Questions	Choices	Answei
		1.	
		break()	
		2.	
		quit()	
1227	Which of the following function is used to terminate the script execution in PHP?	3.	3.0
		die()	
		4.	
		exit()	
1228	Which of the following function sets first n characters of a string to a given character?	1.strset() 2.strnset() 3.strinit() 4.strcset() 1.	2.0
		1 and 3 only	
	Which of the following grammar rules violate the requirements of an operator grammar ? P, Q, R are nonterminals, and r, s, t are terminals.	2.	
1229		1 only	1.0
122)	2. $P \rightarrow Q s R$	3.	1.0
	 P → ε P → Q t R r 	2 and 3 only	
		4.	
		1,2,3 and 4 only	
1220	This can be seen that the second of the seco	1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	1.0
1230	which of the following intermediate language can be used in intermediate code generation?	notation and two address code	1.0
		All Statements Coverage	
		2.	
		Control Structure Coverage	
1231	Which of the following is a black box testing strategy?	3.	3.0
		Cause-Effect Graphs	
		4.	
		ALL	
		1. 	
		<u>=</u>	
		2.	
		LIKE	
1232	Which of the following is a comparison operator in SQL?	3.	4.0
		BETWEEN	
		4.	
		all of the options	
		1.	
		system context model	
		2.	
	Which of the following is a dynamic model that shows how the system interacts with its	interaction model	
1233	environment as it is used?	3.	2.0
		environmental model	
		4.	
		both system context and interaction	
		2 - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	<u> </u>

S.NO.	Questions	Choices	Answer
		I.	
		SELECT NULL FROM EMPLOYEE;	
		CELECT NAME EDOM EMPLOYEE	
1224	Which of the full projection in COL9	SELECT NAME FROM EMPLOYEE;	2.0
1234	Which of the following is a legal expression in SQL?	3.	2.0
		SELECT NAME FROM EMPLOYEE WHERE SALARY = NULL;	
		4.	
		None of the options	
		1.	
		difficult to update	
		2.	
		lack of data independence	
1235	Which of the following is a problem of file management system?	3.	4.0
		data redundancy	
		4	
		all options given	
		1.	
		PERT	
		2.	
1236	Which of the following is a project scheduling method that can be applied to software development?	CPM	4.0
1230	асторинат.	3.	1.0
		CMM	
		4,	
		both PERT and CPM	
1237	Which of the following is a wrong example of network layer	1.X.25 level 2-ISO 2.Source routing and Domains Naming Usenet 3.X.25 packet land protocols (PLP-ISO) 4.Internet protocol (I/P) ARPA	1.0
1237	which of the following is a wrong example of network tayer	NET	
1238	which of the following is an incorrect definition inside a class?	1.void * operator new(size_t size) { } 2.void * operator new () { } 3.void operator delete(void * ptr) { } 4.int operator ++() { }	
1239	which of the following is an incorrect definition inside a class?	1.void * operator new () { } 3.void operator delete(void * ptr) { } 4.int operator ++() { }	2.0
		operator defecte(void pa) () time operator () ()	
1240		1.It is a class of which stream is an object. 2.Using cin, the data can be	1.0
	Which of the following is false for cin?	1.It is a class of which stream is an object. 2.Using cin, the data can be read from user's terminal. 3.It represents standard input. 4.It is an object of istream class.	1.0
	Which of the following is false for cin?	read from user's terminal. 3.It represents standard input. 4.It is an object	1.0
	Which of the following is false for cin?	read from user's terminal. 3.It represents standard input. 4.It is an object of istream class.	1.0
	Which of the following is false for cin?	read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1.	1.0
		read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control	
1241	Which of the following is false for cin? Which of the following is golden rule for interface design?	read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control 2.	4.0
1241		read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control 2. Reduce the user's memory load	
1241		read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control 2. Reduce the user's memory load 3.	
1241		read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control 2. Reduce the user's memory load 3. Make the interface consistent	
1241		read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control 2. Reduce the user's memory load 3. Make the interface consistent 4.	
1241		read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control 2. Reduce the user's memory load 3. Make the interface consistent 4. ALL	
1241		read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control 2. Reduce the user's memory load 3. Make the interface consistent 4. ALL	
1241		read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control 2. Reduce the user's memory load 3. Make the interface consistent 4. ALL 1. Cache memory 2.	
		read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control 2. Reduce the user's memory load 3. Make the interface consistent 4. ALL 1. Cache memory 2. Secondary memory	
	Which of the following is golden rule for interface design?	read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control 2. Reduce the user's memory load 3. Make the interface consistent 4. ALL 1. Cache memory 2. Secondary memory 3.	4.0
	Which of the following is golden rule for interface design?	read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control 2. Reduce the user's memory load 3. Make the interface consistent 4. ALL 1. Cache memory 2. Secondary memory 3. Registers	4.0
	Which of the following is golden rule for interface design?	read from user's terminal. 3.It represents standard input. 4.It is an object of istream class. 1. Place the user in control 2. Reduce the user's memory load 3. Make the interface consistent 4. ALL 1. Cache memory 2. Secondary memory 3.	4.0

Assignment 4. Project 1. Isotraction cache 2. Isotraction register 3. Instruction register 4. Which of the following is not a form of memory? 3. Instruction register 4. Translationa-side buffer 4. Translationa-side buffer 6. Isotraction register 7. Instruction register 8. Instruction register 9. Instruction register	S.NO.	Questions	Choices	Answers
2- Semi-Join 2- S				
Scoil-Voin			Join	
Note of the following is not a binary operator in relational algebra?				
Assignment 4. Project 1. Instruction cache 2. Instruction register 3. Instruction register 3. Instruction register 3. Instruction register 4. Instruction register 5. Instruction register 6. Instruction register 7. Instruction register 8. Instruction opeode 8. Instruction opeode 9. Instruction 9. Instructio	1243	Which of the following is not a hinary operator in relational algebra?		4.0
1244 Which of the following is not a form of memory?		which of the following is not a official of the following in following in following is not a official of the following is		1.0
Project Proj				
Part				
Part			Project	
2 Instruction register 3 Instruction register 3 Instruction opcode 4 Tansilation avoide buffer 1 Instruction opcode 1 Instructi			1.	
Part Which of the following is not a form of memory?			Instruction cache	
1244 Which of the following is not a form of memory?			2.	
Instruction opcode 4. Translation-a-side buffer 1. atomicity 2. consistency 3. dirty read 4. durability 1. 2. tomic file following is not a property of a transaction? 3. dirty read 4. durability 1. evaluations to be performed 2. amount of technical work 3. audits and reviews to be performed 4. documents to be produced by the SQA group 1247 Which of the following is not a valid attribute of the INPUT tag? 1248 Which of the following is not a valid attribute of the INPUT tag? 1249 Which of the following is not a valid attribute of the INPUT tag? 1240 Which of the following is not a valid attribute of the INPUT tag? 1240 Which of the following is not a valid attribute of the INPUT tag? 1250 Which of the following is not an example of infrastructure components that may need to be integrated into the software architecture? 1250 Which of the following is not an example of infrastructure components that may need to be integrated into the software architecture? 1250 Which of the following is not characteristics of a relational database model 1251 Which of the following is not characteristics of a relational database model 1252 Which of the following is not considered as a risk in project management? 1253 Which of the following is not considered as a risk in project management? 1254 Which of the following is not considered as a risk in project management? 1255 Which of the following is not considered as a risk in project management? 1256 Which of the following is not considered as a risk in project management? 1257 Which of the following is not considered as a risk in project management? 1258 Which of the following is not considered as a risk in project management? 1258 Product competition 1259 Product competition	1044		Instruction register	2.0
1. Translation-a-ide buffer 1. It atomicity 2. consistency 3. Setting the following is not a property of a transaction? 4. durability 1. evaluations to be performed 2. smooth of technical work 3. audits and reviews to be performed 4. december to be produced by the SQA group 1247 Which of the following is not a SQA plan for a project? 3. audits and reviews to be performed 4. december to be produced by the SQA group 1248 Which of the following is not a valid attribute of the INPUT tag? 1. Instruction of the following is not a valid attribute of the INPUT tag? 1. Instruction of the following is not a valid attribute of the INPUT tag? 1. Instruction of the following is not a valid attribute of the INPUT tag? 1. Instruction of the following is not a valid attribute of the INPUT tag? 1. Instruction of the following is not an example of infrastructure components? 1. Communications components 2. Database components 4. Memory management components 4. Memory management components 4. Specification delays 5. Specification delays 6. Product competition 7. Specification delays 7. Product competition 8. Product competition 8. Product competition 9. Product competition 9. Product competition 9. Product competition	1244	Which of the following is not a form of memory?	3.	3.0
Trunslation-a-side buffer 1. atomicity 2. consistency 3. dirty read 4. durability 1. atomicity 2. mount of the following is not a property of a transaction? 3. dirty read 4. durability 1. atomicity 2. amount of technical work 3. audits and reviews to be performed 4. documents to be produced by the SQA group 1247 Which of the following is not a valid attribute of the INPUT tag? 11 In 2 NAME 3.SIZE 4.MAXLENGTH 4. Communications components 4. Communications components 5. Communications components 6. Communications components 7. Communications components 8. Abstract components 9. Abstract components 1. Communications components 2. Dashase components 3. Abstract components 4. Onterface components 4. Onterface components 6. Specification delays 7. Product components 8. Specification delays 8. Product composition 9. Product composition 1. Specification delays 9. Product composition 1. Specification delays 1. Product composition 1. Specification delays 1. Product composition 1. Specification delays 1. Product composition 1. Specification delays 2. Product composition 1. Specification delays 2. Product composition			Instruction opcode	
1246 Which of the following is not a property of a transaction? 2 2 2 2 2 2 2 2 2			4.	
atomicity 2. consistency 3. dirty read 4. durability 1. evaluations to be performed 2. amount of technical work 3. audits and reviews to be performed 4. documents to be performed 5. TEXT_NAME 3.SIZE 4.MAXLENGTH 6. TEXT_NAME 3.SIZE 4.MAXLENGTH 6. TEXT_NAME 3.SIZE 4.MAXLENGTH 7. Communications components 8. documents to be following is not a valid attribute of the INPUT tag? 8. TEXT_NAME 3.SIZE 4.MAXLENGTH 8. Database components 9. Database components 9. Database components 9. Database components 1. Communications components 1. Communications components 1. Specification delays 1. Specification delays 2. Product competition 1. Specification delays 2. Product competition 3. Which of the following is not considered as a risk in project management? 3. Specification delays 2. Product competition 3. Specification of the following is not considered as a risk in project management? 9. Product competition 9. Product competiti			Translation-a-side buffer	
2. consistency 3. dirty read 4. durability 1. evaluations to be performed 2. amount of technical work 3. audits and reviews to be performed 4. documents to be performed 5. documents to be performed 6. documents to be performed 8. documents to be performed 8. documents to be performed 9. documents to be p			1.	
245 Which of the following is not a property of a transaction? 3			atomicity	
1245 Which of the following is not a property of a transaction? 3 diffy read 4. durability 1. evaluations to be performed 2. amount of technical work 3. audits and reviews to be performed 4. documents to be produced by the SQA group 1247 Which of the following is not a SQA plan for a project? 1248 Which of the following is not a valid attribute of the INPUT tag? 1. I. TEXT 2. NAME 3. SIZE 4.MAXLENGTH 1. Communications components 1. Communications components 2. Database components 4. Memory management components 4. Memory management components 4. Memory management components 4. Specification delays 2. Product competition 3. Which of the following is not considered as a risk in project management? 3. Specification delays 2. Product competition 3. See Product competition 3. Specification delays 4. Specification delays 5. Specification delays 6. Specification delays 7. Specification delays 8. Specificatio			2.	
dirty read 4. durability 1. evaluations to be performed 2. amount of technical work 3. audits and reviews to be performed 4. documents to be produced by the SQA group 1247 Which of the following is not a valid attribute of the INPUT tag? 1248 Which of the following is not a valid attribute of the INPUT tag? 1249 Which of the following is NOT a valid PHP comparison operator? 1249 Which of the following is NOT a valid PHP comparison operator? 1240 Which of the following is not an example of infrastructure components that may need to be integrated into the software architecture? 1240 Which of the following is not an example of infrastructure components that may need to be integrated into the software architecture? 1250 Which of the following is not characteristics of a relational database model 1. Complex logical relationships 2. Treelike structure 3. Tables 4. Records 2 Specification delays 2. Product competition 3.			consistency	
4. durability 1. evaluations to be performed 2. amount of technical work 3. audits and reviews to be performed 4. documents to be performed 4. documents to be performed 4. documents to be performed 4. ITENT_NAME 3.SIZE 4.MAXLENGTH 4. Which of the following is not a valid attribute of the INPUT tag? 4. ITENT_NAME 3.SIZE 4.MAXLENGTH 5. ITENT_NAME 3.SIZE 4.MAXLENGTH 6. ITENT_NAME 3.SIZE 4.MAXLENGTH 7. ITENT_NAME 3.SIZE 4.MAXLENGTH 7. ITENT_NAME 3.SIZE 4.MAXLENGTH 8. ITENT_NAME 3.SIZE 4.MAXLENGTH 9. ITENT_NAME 3.SIZE 4.MAXLEN	1245	Which of the following is not a property of a transaction?	3.	4.0
durability 1. evaluations to be performed 2. amount of technical work 3. audits and reviews to be performed 4. documents to be produced by the SQA group 1247 Which of the following is not a valid attribute of the INPUT tag? 1248 Which of the following is NOT a valid PHP comparison operator? 1. 2. 1. 2. Communications components 2. Database components 3. 4. Henry management components 4. Memory management components 1. Specification delays 2. Product competition 3. Which of the following is not considered as a risk in project management? 4. Product competition 3. 4. Product competition			dirty read	
1. evaluations to be performed 2. amount of technical work 3. audits and reviews to be performed 4. documents to be produced by the SQA group 1247 Which of the following is not a valid attribute of the INPUT tag? 1248 Which of the following is NOT a valid PHP comparison operator? 1. I. EXT 2.NAME 3.SIZE 4.MAXLENGTH 4. Communications components 2. Communications components 2. Database components 4. Communications components 3. 4. Onterface components 4. Memory management components 4. Memory management components 1. Specification delays 2. Product competition 3. Which of the following is not considered as a risk in project management? 4. Product competition 3. Product competition 4. Product competition 5. Product competition 6. Product competition 7. Product competition 7. Product competition 7. Product competition 7. Product competition 8. Product competition 9. Product competition 9			4.	
1. evaluations to be performed 2. amount of technical work 3. audits and reviews to be performed 4. documents to be produced by the SQA group 1247 Which of the following is not a valid attribute of the INPUT tag? 1248 Which of the following is NOT a valid PHP comparison operator? 1. I. EXT 2.NAME 3.SIZE 4.MAXLENGTH 4. Communications components 2. Communications components 2. Database components 4. Communications components 3. 4. Onterface components 4. Memory management components 4. Memory management components 1. Specification delays 2. Product competition 3. Which of the following is not considered as a risk in project management? 4. Product competition 3. Product competition 4. Product competition 5. Product competition 6. Product competition 7. Product competition 7. Product competition 7. Product competition 7. Product competition 8. Product competition 9. Product competition 9			durability	
evaluations to be performed 2. amount of technical work 3. audits and reviews to be performed 4. documents to be produced by the SQA group 1247 Which of the following is not a valid attribute of the INPUT tag? 1248 Which of the following is not a valid attribute of the INPUT tag? 1249 Which of the following is not a valid PHP comparison operator? 1240 Which of the following is not an example of infrastructure components that may need to be integrated into the software architecture? 1240 Which of the following is not an example of infrastructure components that may need to be integrated into the software architecture? 1250 Which of the following is not characteristics of a relational database model 1251 Which of the following is not considered as a risk in project management? 1251 Which of the following is not considered as a risk in project management? 1262 Product competition 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.				
2. amount of technical work 3. audits and reviews to be performed 4. documents to be produced by the SQA group 1247 Which of the following is not a valid attribute of the INPUT tag? 1.FEXT 2.NAME 3.SIZE 4.MAXLENGTH 4. Which of the following is NOT a valid PHP comparison operator? 1.1 = 2.> 3. &&& 4.== 1. Communications components 2. Database components 3. 4. Olinterface components 4. Memory management components 4. Memory management components 4. Memory management components 5. Specification delays 6. Product competition 6. Specification delays 7. Product competition 7. Specification delays 7. Product competition 8. A. Mich of the following is not considered as a risk in project management? 8. A. Mich of the following is not considered as a risk in project management? 8. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not considered as a risk in project management? 9. A. Mich of the following is not a solid attribute of the INPUT tag? 9. A. Mich of the following is not a valid attribute of the INPUT tag? 9. A. Mich of the following is not a valid attribute of the INPUT tag? 9. A. Mich of the followi				
1246 Which of the following is not a SQA plan for a project? 3. audits and reviews to be performed 4. documents to be produced by the SQA group 1247 Which of the following is not a valid attribute of the INPUT tag? 1.TEXT_NAME 3.SIZE 4.MAXLENGTH 4. Communications components 2. Communications components 2. Database components 3. 4. Uniterrated into the software architecture? 3. 4. Uniterrated into the software architecture? 4. Memory management components 4. Memory management components 1. Specification delays 2. Product competition 3. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 4. Product competition 3. Audit and reviews to be performed 4. Audits and reviews to be performed 4. Demonstrates to be produced by the SQA group 5. LEXIT NAME 3. SIZE 4.MAXLENGTH 5. LEXIT NAME 3. SIZE 4.MAXLENGTH 6. LEXIT N				
1246 Which of the following is not a SQA plan for a project? 3. audits and reviews to be performed 4. documents to be produced by the SQA group 1247 Which of the following is not a valid attribute of the INPUT tag? 1.TEXT_NAME 3.SIZE 4.MAXLENGTH 4. Communications components 2. Communications components 2. Database components 3. 4. Uniterrated into the software architecture? 3. 4. Uniterrated into the software architecture? 4. Memory management components 4. Memory management components 1. Specification delays 2. Product competition 3. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 4. Product competition 3. Audit and reviews to be performed 4. Audits and reviews to be performed 4. Demonstrates to be produced by the SQA group 5. LEXIT NAME 3. SIZE 4.MAXLENGTH 5. LEXIT NAME 3. SIZE 4.MAXLENGTH 6. LEXIT N			amount of technical work	
audits and reviews to be performed 4. 4. documents to be produced by the SQA group 1247 Which of the following is not a valid attribute of the INPUT tag? 1.TEXT 2.NAME 3.SIZE 4.MAXLENGTH 4. 1248 Which of the following is NOT a valid PHP comparison operator? 1.1=2>= 3.&&& 4.=== 3 1. Communications components 2. Database components 3. 4.Ointerface components 4. Memory management components 4. Memory management components 5. Specification delays 2. Product competition 3. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 4.	1246	Which of the following is not a SQA plan for a project?		2.0
4. documents to be produced by the SQA group 1247 Which of the following is not a valid attribute of the INPUT tag? 1.1EXT 2.NAME 3.SIZE 4.MAXLENGTH 4. Which of the following is NOT a valid PHP comparison operator? 1.1= 2.>= 3.&& 4.== 1. Communications components 2. Database components 3. 4.0Interface components 4. Memory management components 4. Memory management components 1.Complex logical relationships 2.Treelike structure 3.Tables 4.Records 2. Specification delays 2. Product competition 3. Which of the following is not considered as a risk in project management? 3. Which of the following is not considered as a risk in project management? 3. Which of the following is not considered as a risk in project management? 3. 4. 4. 4. 4. 4. 4. 4. 4. 4.				
documents to be produced by the SQA group				
Which of the following is not a valid attribute of the INPUT tag? 1.TEXT 2.NAME 3.SIZE 4.MAXLENGTH 4. Which of the following is NOT a valid PHP comparison operator? 1.!= 2.>= 3.&& 4.== 1. Communications components 2. Database components 3. 4. Ultrefface components 4. Memory management components 1. Specification delays 2. Product competition 1. Specification delays 2. Product competition 4. Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management?				
1248 Which of the following is NOT a valid PHP comparison operator? 1.!= 2.>= 3.&& 4.=== 3	1047	Will Cal City of the Company of the Division of the Company of the		1.0
1. Communications components 2. Database components 3. 4.0Interface components 4. Memory management components 4. Memory management components 5. Specification delays 6. Product competition 6. Specification 6.				3.0
Which of the following is not an example of infrastructure components that may need to be integrated into the software architecture? Database components 4. Memory management components 1. Complex logical relationships 2. Treelike structure 3. Tables 4. Records 2 1. Specification delays 2. Product competition Which of the following is not considered as a risk in project management? 4. Which of the following is not considered as a risk in project management? 3. 4.0 Interface components 4. Memory management components 1. Specification delays 2. Product competition 3. 4.0 Interface components 4. Memory management components 1. Specification delays 2. Product competition 3. 4.0 Interface components 4. Memory management components 1. Specification delays 2. Product competition 3. 4.0 Interface components 4. Memory management components 4. Memory management components 1. Specification delays 2. Product competition 3. 4.0 Interface components 4. Memory management components 4. Memory management components 4. Memory management components 3. 4.0 Interface components 4. Memory management components 5. A.0 Interface components 4. Memory management components 4. Memory management components 5. A.0 Interface components 6. A.0 Interface components 8. A.0 Interface components 9. A.0 Interface components 9. A.0 Interface components 9. A.0 Interface components 1. Complex logical relationships 2. Treelike structure 3. Tables 4. Records 2. A.0 Interface components 1. Complex logical relationships 2. Treelike structure 3. Tables 4. Records 3. A.0 Interface components 4. A.0 Interface components 4. A.0 Interface components 5. A.0 Interface components 6. A.0 Interface components 9.	1240	which of the following is 1001 a valid FITE comparison operator:		3.0
Which of the following is not an example of infrastructure components that may need to be integrated into the software architecture? Database components 4. Memory management components 1. Specification delays 2. Product competition Which of the following is not considered as a risk in project management? Which of the following is not considered as a risk in project management? Database components 1. Specification delays 2. Product competition 3. 4			Communications components	
integrated into the software architecture? 3. 4.0 Interface components 4. Memory management components 1250 Which of the following is not characteristics of a relational database model 1. Complex logical relationships 2. Treelike structure 3. Tables 4. Records 2 1. Specification delays 2. Product competition 3. 4			2.	
integrated into the software architecture? 3. 4.0 Interface components 4. Memory management components 1. Complex logical relationships 2. Treelike structure 3. Tables 4. Records 2 1. Specification delays 2. Product competition 3. Which of the following is not considered as a risk in project management? 3. 4.0 Interface components 4. Memory management components 2. Product competition 3.	1240	Which of the following is not an example of infrastructure components that may need to be	Database components	2.0
4. Memory management components 1250 Which of the following is not characteristics of a relational database model 1. Complex logical relationships 2. Treelike structure 3. Tables 4. Records 2 1. Specification delays 2. Product competition 1251 Which of the following is not considered as a risk in project management? 3.	1249	integrated into the software architecture?	3.)	2.0
Memory management components 1250 Which of the following is not characteristics of a relational database model 1. Complex logical relationships 2. Treelike structure 3. Tables 4. Records 2 1. Specification delays 2. Product competition 1251 Which of the following is not considered as a risk in project management? 3.			The state of the s	
1250 Which of the following is not characteristics of a relational database model 1. Complex logical relationships 2. Treelike structure 3. Tables 4. Records 2 1. Specification delays 2. Product competition 1251 Which of the following is not considered as a risk in project management? 3.				
1. Specification delays 2. Product competition 1251 Which of the following is not considered as a risk in project management? 3.				
Specification delays 2. Product competition 3.	1250	Which of the following is not characteristics of a relational database model		2.0
2. Product competition 3.				
Product competition Which of the following is not considered as a risk in project management? 3.				
1251 Which of the following is not considered as a risk in project management? 3.				
	1251	Which of the following is not considered as a risk in project management?		4.0
resuing				
4.			_	
Staff turnover				
Statt utiliover			Gran rainovo	

S.NO.	Questions	Choices	Answers
		1. Magnetic tape	
		2.	
		Printer	
1252	Which of the following is not hardware:	3.	4.0
		VDU terminal	
		4.	
		Assembler	
		1.	
		All design should be as simple as possible, but no simpler 2.	
		A software system exists only to provide value to its users.	
1253	Which of the following is not one of Hooker's core principles of software engineering practice?	3.	3.0
		Pareto principle (20% of any product requires 80% of the effort)	
		4. 3.0Remember that you produce others will consume	
		1.	
		Create unit tests before you begin coding	
		2. 3.0Create a visual layout that aids understanding	
1254	Which of the following is not one of the principles of good coding?	3.	4.0
		Keep variable names short so that code is compact 4.	
		Write self-documenting code, not program documentation	
1255	Which of the following is not possible using PHP?	1.Deleting files from the server 2.Redirect a visitor to another page 3.Set	4 0
1233	which of the following is not possible using 1111.	the value of the window statusbar 4. Obtain the IP address of a Visitor 1.	1.0
		File permissions	
		<mark>2.</mark>	
1256	Which of the following is not the established of FCD9	Program Counter	4.0
1236	Which of the following is not the attribute of FCB?	3.	4.0
		Access Control List	
		4. Pointers to file control blocks	
\dashv		They should be declared in the public section.	_
1257	Which of the following is not the characteristic of constructor?	2. They do not have return type. 3. They can not be inherited. 4. They can be virtual.	4.0
		1.	
		Functional Cohesion	
		2.	
1258	Which of the following is the best type of module cohesion?	Temporal Cohesion	3.0
		3. Functional Cohesion	
		4.	
		Sequential Cohesion	
\longrightarrow		1.	
		Control Coupling	
		2.	
		Stamp Coupling	
1259	Which of the following is the worst type of module coupling?	3.	3.0
		External Coupling	
		4.	
		Content Coupling	

S.NO.	Questions	Choices	Answers
		1.	
		Every subset of a regular set is regular.	
		2.	
1260	White our car is TDUTO	Every finite subset of a non-regular set is regular.	1.0
1260	Which of the following is TRUE?	3.	1.0
		Every finite subset of a non-regular set is regular.	
		4.	
		Infinite union of finite sets is regular.	
		1.	
		The complement of a recursive language is recursive.	
		2.	
ı		The complement of a recursively enumerable language is recursively	
1261	Which of the following is true?	enumerable	1.0
1201	William of the following is true:	3.	1.0
		The complement of a recursive language is either recursive or recursively enumerable	
		4.	
		The complement of a context-free language is context-free	
		1.	
		Every relation in 2NF is also in BCNF	
		2.	
1272	Military City City City City City City City Cit	A relation R is in 3NF if every non-prime attribute of R is fully functionally dependent on every key of R	2.0
1262	Which of the following is TRUE?	3.	3.0
		Every relation in BCNF is also in 3NF	
		4.	
		No relation can be in both BCNF and 3NF	
		1.	
		Segmentation is faster than paging	
		2.	
		Paging is faster than segmentation	
1263		3.	2.0
	Which of the following is true?	Pages are unequal sized pieces	
		4.	
		Segments are equal sized pieces	
1264	Which of the following is useful in traversing a given graph by breadth first search?		2.0
1204	which of the following is useful in naversing a given graph by theadth first search?	1.List 2.Queue 3.Set 4.Stack	2.0
		Do not allows developers to make changes to the delivered increment	
	Which of the following is valid reason for collecting customer feedback concerning delivered	2.	
1265	which of the following is valid reason for confecung customer reedback concerning derivered software?	2.0 Delivery schedule can be revised to reflect changes 3.	<mark>4.0</mark>
		Developers can not identify changes to incorporate into next increment	
		Delivery schedule can't be revised to reflect changes	
		1.	
		Create	
		2.	
		Drop	
1266	Which of the following is/are the DDL statements?	3.	4.0
		Alter	
		4.	
		All of the options	

A comment existence	S.NO.	Questions	Choices	Answers
Note of the following manner or corrections? 1,	Si. (O.	<i>Questions</i>		1115,4615
Note of the following manner or corrections? 1,			L1 and L3 only	
Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing memory allocarian scheme suffers from External Fingmentation* Local Content of the Collowing scheme in th				
1200 Which of the following ment certainly implies the need for an entre table to implement? 1,			3.	2.0
Li only	1207	$L2 = \{a^mb^na^mb^n \mid m, n \ge 1\}$	L3 only	2.0
1268 Which of the following memory allocation scheme suffers from Examal fragmentation: 2		$L3 = \{a^mb^n \mid m = 2n + 1\}$	4.	
1268 Which of the following memory allocation scheme suffices from External Engineratation 1			L1 only	
Segmentation 2. Prove Demand Paging 3. Provided the following memory allocation scheme suffers from External fragmentation: 3. Provided the following memory allocation scheme authors from External fragmentation: 4. A brunary relationship 5. A returning elationship 6. A following generation is unself at we are interested in only certain columns of a table? 1270 Which of the following appearation is used at we are interested in only certain columns of a table? 1271 Which of the following appearation is used at we are interested in only certain columns of a table? 1272 Which of the following appearation is used at we are interested in only certain columns of a table? 1273 Which of the following appearation has an associatively from Right to Left? 1274 Which of the following appearation has an associatively from Right to Left? 1275 Which of the following appearation has an associatively from Right to Left? 1276 Which of the following appearation has an associatively from Right to Left? 1277 Which of the following appearation has an associatively from Right to Left? 1278 Which of the following appearation has an associatively from Right to Left? 1279 Which of the following appearation has an associatively from Right to Left? 1270 Which of the following appearation has an associatively from Right to Left? 1271 Which of the following appearation has an associatively from Right to Left? 1272 Which of the following appearation has an associative from risinglement in many web-based appearation for CFOs 2. Analyzing problem for CFOs 2. Analyzing problem for FSAs 3. Finiteness problem for FSAs 3. Finiteness problem for FSAs 3. Finiteness problem for FSAs				
2 2 2 2 2 2 2 2 2 2			1.	
Pure Demand Paging 1. A maging 1. A binary relationship 2. A binary relationship 3. A recursive relationship 4. A require relationship 5. A require relationship 6. A require relationship 7. A require relationship 8. A require relationship 9. A require relationship 1. PROJECTION 2. SELECTION 2. SELECTION 3. (NION 4. (N			Segmentation	
1200 Which of the following memory allocation whene suffers from External Engineerature? 1,			2.	
1200 Which of the following memory allocation wheme suffers from External Engineeration? 2,			Pure Demand Paging	
Swapping 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	1268			1.0
4. Paging 1. A himsey relationship 2. A kernary relationship 3. A recursive relationship 4. An identifying relationship 4. PROJECTION 5. RELECTION 5. RELECTION 6. RELECTION 7. Which of the following operation is used if we are interested in only certain columns of a table? 8. SELECTION 9. UNION 9. UN				
1269 Which of the following most certainly implies the need for an entire table to implement? 1. A binary relationship 1. A binary relationship 2. A formery relationship 3. A recursive relationship 4. An identifying relationship 4. A			swapping	
1209 Which of the following most certainly implies the need for an entire table to implement? 1,			4.	
A binary relationship A Kernary Relationship A Recursive relationship A rec			paging	
A binary relationship 2 A binary relationship 3			1	
A ternary relationship A ternary relationship A recursive relationship 4. An identifying relationship 4. An identifying relationship 1270 Which of the following name does not relate to stacks? I. FIFO lists 2.LIFO list 3.Pash-down lists 4.Piles 1.0 PROJECTION 2. SELECTION 3. UNION 4. JOIN 1277 Which of the following operation is used if we are interested in only certain columns of a table? 3. UNION 4. JOIN 1272 Which of the following operator can be overloaded through friend function? 1.				
A Semary relationship A Remary relationship A recursive relationship 4. A recursive relationship 1270 Which of the following mane does not relate to stacks? 1281			A binary relationship	
1209 Which of the following most certainly implies the need for an entire table to implement? 3. A recursive relationship 4. An identifying relationship 1.			2.	
1209 Which of the following most certainly implies the need for an entire table to implement? 3. A recursive relationship 4. An identifying relationship 1.			A ternary relationship	
A recursive relationship 4. An identifying relationship 4. An identifying relationship 4. An identifying relationship 5. FIFO lists 2.LIFO list 3.Push-down lists 4.Piles 1.0 PROJECTION 2. SELECTION 3. UNION 4. JOIN 1272 Which of the following operation is used if we are interested in only certain columns of a table? 3. UNION 4. JOIN 4. JOIN 1273 Which of the following operator can be overloaded through friend function? 1. > 2 = 3()6.* 1. architecture 2. repository pattern 3. which of the following apartern is the basis of interaction management in many web-based systems? 1. different operating system 1. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for FSAs 4.	1269	Which of the following most certainly implies the need for an entire table to implement?		4.0
4. An identifying relationship 1270 Which of the following name does not relate to stacks? 1.FIFO lists 2.LIFO list 3.Push-down lists 4.Piles 1. PROJECTION 2. SELECTION 3. UNION 4. JOIN 1271 Which of the following operation is used if we are interested in only certain columns of a table? 3. UNION 4. JOIN 1272 Which of the following operator can be overloaded through friend function? 1.52 = 3.() 4.7 4.0 1.74 Which of the following operators has an associativity from Right to Left? 4. Join architecture 2. repository pattern 3. architecture 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs 3. Finiteness problem for FSAs 4. Finiteness problem for FSAs 4.				
An identifying relationship 1270 Which of the following name does not relate to stacks? 1. FIFO lists 2.LIFO list 3.Push-down lists 4.Ptles 1. PROJECTION 2. SELECTION 3. UNION 4. JOIN 1272 Which of the following operation is used if we are interested in only certain columns of a table? 3. UNION 4. JOIN 1272 Which of the following operator can be overloaded through friend function? 1. **2 - 3.0 **4** 1. **architecture 2. **repository pattern* 2. **repository pattern* 4. **different operating system* 1. **Membership problem for CFGs 2. **Ambiguity problem for CFGs 3. **Ambiguity problem for CFGs 4. **Ambiguity problem for CFGs 5. **Finiteness problem for FSAs 4. **Finiteness problem for FSAs			A recursive relationship	
1270 Which of the following name does not relate to stacks? 1.FIFO list 3.Push-down lists 4.Piles 1.0			4.	
1271 Which of the following operation is used if we are interested in only certain columns of a table? 3.			An identifying relationship	
1271 Which of the following operation is used if we are interested in only certain columns of a table? 3. UNION 4. JOIN 1272 Which of the following operator can be overloaded through friend function? 1.> 2,= 3,()4.* 4. JOIN 1.0 Which of the following operators has an associativity from Right to Left? 1.+ 2,= 3,<-4,<	1270	Which of the following name does not relate to stacks?	1 FIFO lists 2 I IFO list 3 Push-down lists 4 Piles	1.0
2. SELECTION 3. UNION 4. UNION	1270	which of the following name does not relate to stacks:		1.0
2. SELECTION 3. UNION 4. UNION			PROJECTION	
1271 Which of the following operation is used if we are interested in only certain columns of a table? SELECTION 3. UNION				
1271 Which of the following operation is used if we are interested in only certain columns of a table? Variable of the following operator can be overloaded through friend function? 1> 2= 3.()4.* 4.0 1272 Which of the following operators has an associativity from Right to Left? 1= 2= 3.< 4.<= 3.0 Interpretation of the following operators has an associativity from Right to Left? 1			2.	
UNION 4. JOIN 1272 Which of the following operator can be overloaded through friend function? 1>23.()4.* I>23.()4.* I>23.(>4.* II>23.(-3.*			SELECTION	
4. JOIN 1272 Which of the following operator can be overloaded through friend function? 1. > 2 - 3.() 4.* 1. + 2 - = 3. < 4.<= 3.0 1. architecture 2. repository pattern systems? 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.	1271	Which of the following operation is used if we are interested in only certain columns of a table?	3.	1.0
4. JOIN 1272 Which of the following operator can be overloaded through friend function? 1. > 2 - 3.() 4.* 1. + 2 - = 3. < 4.<= 3.0 1. architecture 2. repository pattern systems? 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			UNION	
IOIN				
Which of the following operators has an associativity from Right to Left? 1> 2.= 3.()4.* 1> 2.= 3.()4.* 1> 2.= 3.()4.* 1> 3.0 1				
1. 2. = 3. < 4. < = 3.0 Which of the following operators has an associativity from Right to Left? 1.			JOIN	
Which of the following pattern is the basis of interaction management in many web-based Which of the following pattern is the basis of interaction management in many web-based The propository pattern The proposition proposition pattern is the basis of interaction management in many web-based The proposition pattern is the basis of interaction management in many web-based The proposition pattern is the basis of interaction management in many web-based The proposition pattern is the basis of interaction management in many web-based The proposition pattern is the basis of interaction management in many web-based The proposition pattern is the basis of interaction management in many web-based The proposition pattern is the basis of interaction management i				4.0
Which of the following pattern is the basis of interaction management in many web-based 2. Which of the following pattern is the basis of interaction management in many web-based repository pattern 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.	1273	Which of the following operators has an associativity from Right to Left?		3.0
Which of the following pattern is the basis of interaction management in many web-based systems? 2. repository pattern 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			1.	
Which of the following pattern is the basis of interaction management in many web-based systems? Which of the following pattern is the basis of interaction management in many web-based 3. model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAS 4.			architecture	
3.0 model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			2.	
3.0 model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.		Which of the following pattern is the basis of interaction management in many web-based	repository pattern	
model-view-controller 4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.				3.0
4. different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			3.	
different operating system 1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			model-view-controller	
1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			4.	
1. Membership problem for CFGs 2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			different operating system	
2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.				$\vdash \vdash \vdash$
2. Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.			Membership problem for CFGs	
Ambiguity problem for CFGs. 3. Finiteness problem for FSAs 4.				
1275 Which of the following problems is undecidable? 3. Finiteness problem for FSAs 4.				
Finiteness problem for FSAs 4.			Ambiguity problem for CFGs.	
4.	1275	Which of the following problems is undecidable?	3.	2.0
4.			Finiteness problem for FSAs	
Equivalence problem for FSAs.				
			Equivalence problem for FSAs.	
			1	

S.NO.	Questions	Choices	Answers
		Deciding if a given context-free grammar is ambiguous.	
1276		Deciding if a given string is generated by a given context-free grammar3.	1.0
12/6	Which of the following problems is undecidable?	Deciding if the language generated by a given context-free grammar is empty	1.0
		4. Deciding if the language generated by a given context-free grammar is finite.	
		Change management	
	Which of the following process is concerned with analyzing the costs and benefits of proposed changes?	Version management 3.	1.0
		System building 4.	
		Release management	
1278	Which of the following property allows you to specify an element's position with respect to the browser window?	1.relative 2.fixed 3.static 4.absolute	1.0
		Product risk Project risk	
1279	NATION OF THE RESERVE	3. Business risk 4.	1.0
		Programming risk	
		People risks 2.	
1280	Which of the following risks are derived from the organizational environment where the software is being developed?	Technology risks 3. Estimation risks	4.0
		4. Organizational risks	
		1. Managerial risks 2.	
	Which of the following risks are derived from the software or hardware technologies that are used to develop the system?	Technology risks 3. Estimation risks	2.0
		4. Organizational risks	
1282	Which of the following statements about queues is incorrect?	1.Queues are first-in, first-out (FIFO) data structures 2.Queues can be implemented using arrays 3.Queues can be implemented using linked lists 4.New nodes can only be added at the front of the queue	4.0
1283	Which of the following statements are true in c++?	Class members are public by default. 2.Structures can not have functions as members. 3.Classes can not have data as public members. 4.Structures can have functions	1.0

s.no.	Questions	Choices	Answers
		1.	
	Which of the following statements are TRUE?	I and II	
	I. There exist parsing algorithms for some programming languages	2.	
1284	whose complexities are less than $O(n^3)$. II. A programming language which allows recursion can be implemented	I and IV	2.0
1204	with static storage allocation. III. No L-attributed definition can be evaluated in The framework	3.	2.0
	of bottom-up parsing.	III and IV	
	IV. Code improving transformations can be performed at both source language and intermediate code level.	4.	
		I, II and III	
1285	Which of the following statements best describes the operation of a synchronous up-/down-counter?	1.In general, the counter can be reversed at any point in its counting sequence. 2.The counter can be reversed, but must be reset before counting in the other direction. 3.The counter can count in either direction, but must continue in that direction once started. 4.The count sequence cannot be reversed, once it has begun, without first resetting the counter to zero.	1.0
		1. It is a degree to which software running on one platform can easily be converted to run on another platform.	
		2.	
		It can be enhanced by using languages, OS' and tools that are universally available and standardized.	
	Which of the following statement as 12 and 120 at 1	3.	
1286	Which of the following statements explains portability in non-functional requirements?	The ability of the system to behave consistently in a user-acceptable manner when operating within the environment for which the system was intended.	1.0
		4.	
		It is a degree to which software running on one platform can easily be converted to run on another platform as well as It can be enhanced by using languages, OS' and tools that are universally available and standardized.	
		1.	
		Every NFA can be converted to an equivalent DFA	
		2.	
1287	Which of the following statements is false?	Every non-deterministic Turing machine can be converted to an equivalent deterministic Turing machine	4.0
1207	THIS OF THE POWER STATE OF THE	3.	
		Every regular language is also a context-free language	
		4.	
		Every subset of a recursively enumerable set is recursive	
1288	Which of the following statements is NOT valid about operator overloading?	1. Overloaded operator must have at least one operand of its class type. 2. Only existing operators can be overloaded. 3. The overloaded operators follow the syntax rules of the original operator. 4. The arity of the operator can be changed	3.0
1289	Which of the following statements is NOT valid about operator overloading?	1.Overloaded operator must have at least one operand of its class type. 2.Only existing operators can be overloaded. 3.The overloaded operators follow the syntax rules of the original operator. 4.The arity of the operator can be changed	4.0
1290	Which of the following statements is true?	I.An INPUT field of type password provides excellent security 2.An INPUT field of type password provides a masked field but no real security 3.A maximum length can not be set for a password field 4.A password INPUT field can only be included in a FORM that uses the get METHOD	4.0
1291	Which of the following statements is true?	1.Quadraples have some disadvantages over triples notation for an optimizing compiler 2.For optimizing compiler, moving a statement that defines a temporary value requires us to change all references to that statements. It is an overhead for triples notation 3.For optimizing compiler, triples notation has important benefit where statements are often moved around as it incurs no movements or change 4.All the statements are false	2.0
1292	Which of the following statements is/are TRUE for an undirected graph?P:Number of odd degree vertices is even,Q: Sum of degrees of all vertices is even	1.P Only 2.Q Only 3.Both P and Q 4.Neither P nor Q	1.0
1293	Which of the following statements is/are TRUE for an undirected graph?P:Number of odd degree	1.P Only 2.Q Only 3.Both P and Q 4.Neither P nor Q	1.0
	vertices is even,Q: Sum of degrees of all vertices is even		I

S.NO.	Questions	Choices	Answers
		1.	
		Avoidance strategies	
		2.	
1204	Which of the following strategies means that the impact of the risk will be reduced?	Minimization strategies	2.0
1294		J.	2.0
		Contingency plans	
		4.	
		ALL	
		1.	
		socket	
		2.	
		bind	
1295	Which of the following system calls results in the sending of SYN packets?	3.	4.0
		listen	
		4.	
		connect	
		1.	
		Branching	
		2.	
	Which of the following term is best defined by the statement "The creation of a new codeline from a version in an existing codeline"?	Merging	
1296		3.	1.0
		Codeline	
		4.	
		Mainline	
		1.	
		Underestimated development time	
		2.	
	which of the following term is best defined by the statement. Derive traceability information to	Organizational restructuring	
1297	maximize information hiding in the design."?	3.	3.0
		Requirements changes	
		4.	
		None	
		1.	
		Technology change	
		2.	
	which of the following term is best defined by the statement. The anderlying technology on	Product competition	
1298	which the system is built is superseded by new technology."?	3.	1.0
		Requirements change	
		4.	
		None	
		1.	
		Staff turnover	
		2.	
	Which of the following term is best defined by the statement: "There will be a change of	Technology change	
1299	organizational management with different priorities."?	3.	3.0
		Management change	
		4.	
		Product competition	

S.NO.	Questions	Choices	Answer
		1. Competence 2.	
1300	Which of the following traits need to exist among the members of an agile software team?	Decision-making ability 3.	4.0
		4.0Mutual trust and respect 4.	
	Which of the following tree may have smaller elements in its left subtree and larger element in its	ALL	_
1301	right subtree	1.B+ Tree 2.AVL Tree 3.Binary tree 4.Binary search Tree	4.0
1302	Which of the following ways below is correct to write a CSS?	1.p {color:red;text-align:center}; 2.p {color:red;text-align:center} 3.p {color:red;text-align:center;} 4.p (color:red;text-align:center;)	3.0
		1. direct access from a magnetic tape	
		2.	
		direct access from a hard disk	
1303	Which of the following would cause quickest access	3.	2.0
		direct access from a floppy disk	
		4.	
		direct access from a cassette tape	
		I.	
		I and II only	
	Which of the regular expressions given below represent the following DFA?	2. I and III only	
1304	I) 0*1(1+00*1)*	3.	3.0
	II) 0*1*1+11*0*1 III) (0+1)*1	II and III only	
		4.	
		г,п,т	
1305	Which of these contains an executable statement?	1.// var a = 0; // var b = 0; 2./* var a = 0; // var b = 0; */3./* var a = 0; */ var b = 0; 4.// var a = 0; /* var b = 0; */	3.0
		1.	
		Adequacy	
		2.	
1306	Which of these does not belong to the basic principles of good product design?	Feasibility	4.0
1300	which of these does not belong to the basic principles of good product design :	3.	4.0
		Portability	
		4. Economy	
		t.	-
		cost estimation	
	Which of these framework activities is not normally associated with the user interface design processes?	2. 1.0interface construction	3.0
		3. interface validation	
		4.	

S.NO.	Questions	Choices	Answer
		1.	
		Software engineering belongs to Computer science	
		2.	
		Software engineering is a part of more general form of System Engineering	
1308	Which of these is incorrect?	3.	3.0
		Computer science belongs to Software engineering	
		4.	
		Software engineering is concerned with the practicalities of developing and delivering useful software	
		1.	
		Behavioral elements	
		2.	
		Class-based elements	
1309	Which of these is not an element of an object-oriented analysis model?		4.0
		3.)	
		Data elements	
		4.	
		Scenario-based elements	
1310	Which of these sets of HTML5 attributes can be used for form validation?	1.required, pattern, min and max 2.auto, fixed, number 3.number, text, currency 4.input, radio,checkbox	1.0
1311	Which one is not a self complementary code?	1.8 4 -2 -1 2.4 8 1 2 3.4 4 3 -2 4.2 4 2 1	3.0
		1.Network Model	
1312	Which one of the following is currently the most popular data model?	2.Object Model 3.Notation Model	4.0
		4.Relational Model	
	Which one of the file allocation scheme cannot be adopted for dynamic storage allocation	1.	
		Linked allocation	
		anocaton	
		2.,	2.0
1313		Fixed Indexed allocation	
1313		3.	
		Variable Indexed allocation	
		4.	
		Contiguous allocation	
_		1.	
		RSA algorithm	
		2.	
1314	Which one of the following algorithm is not used in asymmetric-key cryptography?	diffie-hellman algorithm	3.0
1314	which one of the following algorithm is not used in asymmetric-key cryptography:	3.	3.0
		electronic code book algorithm	
		4.	
		ECC	
_		1.	-
		HTTP	
		2.	
	Which one of the following allows a user at one site to establish a connection to another site and	FTP	
1315	then pass keystrokes from local host to remote host?	3.	3.0
		telnet	
		4.	
		none of the mentioned	
		1.namespaces provide facilities for organizing the names in a program to	\vdash
1316	Which one of the following correctly describes the meaning of 'namespace' feature in C++?	avoid name clashes 2.Namespaces refer to space between the names in a program 3.Namespaces refer to the memory space allocated for names used in a program 4.Namespaces refer to the space for names.	1.0

S.NO.	Questions	Choices	Answers
		collision detection 2.	
1317	Which one of the following event is not possible in wireless LAN.	Acknowledgement of data frames 3.	1.0
		multi-mode data transmission 4. none of the mentioned	
		stream control transmission protocol (SCTP) transport layer security (TSL)	
1318	Which one of the following is a cryptographic protocol used to secure HTTP connection?	3. explicit congestion notification (ECN) 4. resource reservation protocol	2.0
1319	Which one of the following is a requirement that fits in a developer's module?	1. Availability 2. Testability 3. Usability 4. Flexibility	2.0
1320	Which one of the following is an internet standard protocol for managing devices on IP network?	dynamic host configuration protocol simple network management protocol internet message access protocol d. media gateway protocol	2.0
1321	Which one of the following is FALSE?	A basic block is a sequence of instructions where control enters the sequence at the beginning and exits at the end. 2. Available expression analysis can be used for common subexpression elimination. 3. Live variable analysis can be used for dead code elimination. 4. x = 4 * 5 => x = 20 is an example of common subexpression elimination.	2.0

S.NO.	Questions	Choices	Answers
		1.	
1222		There is unique minimal DFA for every regular language	
		2. Every NFA can be converted to an equivalent PDA	
		3.	
1322	Which one of the following is FALSE?	Complement of every context-free language is recursive	4.0
		4.	
		Every nondeterministic PDA can be converted to an equivalent	
		deterministic PDA	
		1.	
		Elicitation	
		2.	
1222	Which one of the following is not a step of requirement engineering?	Design a model	2.0
1323		3.	2.0
		Analysis	
		4.	
		Documentation	
		1.	
		FAT	
		2.	
1324	Which one of the following is not a windows file system?	NTFS	4.0
1321		3.	1.0
		FAT32	
		4.	
		EXT	
		1.	3.0
		media gateway protocol	
		2.	
1325	Which one of the following is not an application layer protocol?	dynamic host configuration protocol 3.	
		resource reservation protocol	
		4.	
		session initiation protocol	
		1.	
		application layer protocols are used by both source and destination	3.0
		devices during a communication session	
		2.	
1326		application layer protocols implemented on the source and destination host must match	
		3.	
		both the options	
		4.	
		1.	
		Killing a process	4.0
	Which one of the following is not the process of Deadlock Recovery?	2.	
1327		Rollback to the previous state	
		3.	
		Selecting a Victim	
		4.	
		Delaying the process	
	<u>I</u>	1	-

es the system after a failure 2T(n/2)+cn 2.T(n)=T(n-1)+T(0)+cn 3.T(n)=T(n/2)+cn 2T(n-2)+cn the previous session 2.Start a new session 3.Check whether a sion exists 4.Handle the session refixes appear only at the bottom of the stack and not inside	2.0
ically tunes the database as the system after a failure 2T(n/2)+cn 2.T(n)=T(n-1)+T(0)+cn 3.T(n)=T(n/2)+cn 2T(n-2)+cn the previous session 2.Start a new session 3.Check whether a sion exists 4.Handle the session refixes appear only at the bottom of the stack and not inside refixes appear only at the top of the stack and not inside k contains only a set of viable prefixes k never contains viable prefixes	1.0
es the system after a failure 2T(n/2)+cn 2.T(n)=T(n-1)+T(0)+cn 3.T(n)=T(n/2)+cn 2T(n-2)+cn the previous session 2.Start a new session 3.Check whether a sion exists 4.Handle the session refixes appear only at the bottom of the stack and not inside refixes appear only at the top of the stack and not inside k contains only a set of viable prefixes k never contains viable prefixes	1.0
2T(n/2)+cn 2.T(n)=T(n-1)+T(0)+cn 3.T(n)=T(n/2)+cn 2T(n-2)+cn the previous session 2.Start a new session 3.Check whether a sion exists 4.Handle the session refixes appear only at the bottom of the stack and not inside refixes appear only at the top of the stack and not inside k contains only a set of viable prefixes k never contains viable prefixes	3.0
the previous session 2.Start a new session 3.Check whether a sion exists 4.Handle the session refixes appear only at the bottom of the stack and not inside refixes appear only at the top of the stack and not inside k contains only a set of viable prefixes k never contains viable prefixes	3.0
refixes appear only at the bottom of the stack and not inside refixes appear only at the top of the stack and not inside k contains only a set of viable prefixes k never contains viable prefixes	
refixes appear only at the bottom of the stack and not inside refixes appear only at the top of the stack and not inside k contains only a set of viable prefixes k never contains viable prefixes	3.0
refixes appear only at the top of the stack and not inside k contains only a set of viable prefixes k never contains viable prefixes	3.0
k contains only a set of viable prefixes k never contains viable prefixes	3.0
k contains only a set of viable prefixes k never contains viable prefixes	
k never contains viable prefixes	
0	
0	
1	ı
1	
	2.0
00	
1	
of all strings containing the substring 00.	
of all strings containing at most two 0's.	
	3.0
of all strings containing at least two 0's.	
of all strings that begin and end with either 0 or 1.	
Fix Model	
	4.0
oing Model	
-	
odel	
II Model	
hase shift keying modulation	
	4.0
are phase shift keying modulation	
are amplitude modulation	
e mentioned	
	l
of F	f all strings containing at most two 0's. f all strings containing at least two 0's. f all strings that begin and end with either 0 or 1. Fix Model mg Model del Model ase shift keying modulation re phase shift keying modulation re amplitude modulation

.NO.	Questions	Choices	Answe
1336		simple mail transfer protocol	1.0
		2.	
	Which one of the following protocol delivers/stores mail to reciever server?	post office protocol	
		3.	
		internet mail access protocol	
		4.	
		hypertext transfer protocol	
_		1.	
		a and b	
		2.	
		b and c	
337	Which one of the following regular expressions over $\{0, 1\}$ denotes the set of all strings not containing 100 as a substring (a) $0*(11)*0*$ (b) $(0*1010)*$ (c) $0*1*010$ (d) $0*(10)*01*$		14.0
	containing 100 as a substring (a) 0*(11)*0* (b) (0*1010)* (c) 0*1*010 (d) 0*(10)*01*	3.	
		only c	
		4.	
		only b	
		1.	
		Any relation with two attributes is in BCNF	
		2.	
		A relation in which every key has only one attribute is in 2NF	
		3.	
338	Which one of the following statements if FALSE?		4.0
		A prime attribute can be transitively dependent on a key in a 3 NF relation.	
		4.	
		A prime attribute can be transitively dependent on a key in a BCNF	
		relation.	
339	Which one of the following uses 8B/6T encoding scheme	1.100 Base-T1 2.100 Base-T4 3.100 Base TX 4.100 Base-FX	2.0
	Which property is used to obtain browser vendor and version information?	1.modal 2.version 3.browser 4.navigator	4.0
		1.	
		session initiation protocol	1.0
		2.	
		session modelling protocol	
341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	3.	
		session maintenance protocol	
		4.	
		none of the mentioned	
			_
		1.	
		Why does computer hardware cost so much?	
		2.	
		Why does software take a long time to finish?	1.0
342	Which question no longer concerns the modern software engineer?	3.	
		Why does it cost so much to develop a piece of software?	
		4.	
		Why can't software errors be removed from products prior to delivery?	
		Why can't software errors be removed from products prior to delivery?	<u> </u>
	Which searching technique is better, if unsorted array is given as input Which segments of a seven-segment display would be active to display the decimal digit 2?	Why can't software errors be removed from products prior to delivery? 1.Radix search 2.Linear search 3.Binary search 4.Indexd sequential search	2.0

S.NO.	Questions	Choices	Answer
		1.	
		Sum	
		2.	
		Count	
1345	Which SQL functions is used to count the number of rows in a SQL query?	3.	2.0
		Max	
		4.	
		ALL	
		1.	
		goto xyz	
		2.	
		int x = 20	
1346	Which statement does not require semicolon?		3.0
		3.	
		#define MAX 100	
		4.	
		do {} while(count<=100)	
		1.Standard form must consists of minterms 2.All standard form are	
1347	Which statement is true:	canonical forms 3.Canonical form can consist of a term with a literal missing 4.All canonical form are standard form	1.0
		1.	
		coaxial cable	
		2.	
1249	Which transmission media has the highest transmission speed in a network?	twisted pair cable	3.0
1340	which transmission media has the ingliest transmission speed in a network?	3.	
		optical fiber	
		4.	
		electrical cable	
		1.	
		form	2.0
		2.	
		frame	
1349	Which of these is a stand alone tag?	3.	
		table	
		4.	
		anchor	
1350	While inserting the elements 71,65,84,69,67,83 in an empty binary search tree(BST)in the	1.65 2.67 3.83 4.69	2.0
	sequence shown, the element in the lowest level is	1.	
	Why 'critical section' is not imposed on file systems instead 'file locks' when more than one process tries to access the file?	Time consuming	
		2.	
		Process entered in to critical section may close the file	3.0
1351		3.	
		we cannot satify the three conditions of mutual exclusion, progress and	
		bounded waiting	
		4.	
			1
		we cannot use semaphore	

S.NO.	Questions	Choices	Answers
	WiMAX MAC layer provides an interface between	higher transport layers and physical layer	
1352		application layer and network layer 3.	1.0
		data link layer and network layer 4.	
		none of the mentioned 1.	
		simplex communication 2.	
1353		half duplex communication 3.	2.0
		full duplex communication 4.	
		none of the mentioned	
		wireless maximum communication 2.	
1354	WiMAY stands for	worldwide interoperability for microwave access 3.	2.0
		worldwide international standard for microwave access 4.	
		none of the mentioned	
	WiMAX uses the	orthogonal frequency division multiplexing 2.	1.0
1355		time division multiplexing 3.	
		space division multiplexing 4.	
		all of the mentioned 1.	
		radio waves 2.	4.0
1356		microwaves 3.	
		infrared 4.	
		all of the mentioned	
	Write Through technique is used in which memory for updating the data	Virtual memory 2.	4.0
1357		Main memory 3.	
		Auxiliary memory 4.	
		Cache memory 1.getElementById() 2.getElementsByTagName()	
1358	You can find the element you want to manipulate by way?	3.getElementsByClassName() 4.All of the these	4.0

S.NO.	Questions	Choices	Answers
1359	You have an array of n elements, Suppose you implement quicksort by always choosing the central element of the array as the pivot, Then the tightest upper bound for the worst case performance is	1.O(log n) 2.O(n) 3.O(n^2) 4.O(1)	3.0
1360	You have to sort a list L consisting of a sorted list followed by a few "random" elements. Which of the following sorting methods would be especially suitable for such a task?	1.Bubble sort 2.Selection sort 3.Quick sort 4.Insertion sort	4.0
1361	You need to check the size of a file in PHP function. \$size = X(filename); Which function will suitably replace 'X'?	1. filesize 2. size 3. sizeofFile 4. getSize	1.0
1362	'Aging registers' are	Counters which indicate how long ago their associated pages have been referenced. Registers which keep track of when the program was last accessed 3. Counters to keep track of last accessed instruction Counters to keep track of the latest data structures referred	1.0