SOEN 321

Prob. 1 Let x=111 and y=19301. Factor n=21311 using the fact that $x^2 \equiv y^2 \mod n$.

Ans. Note that $x^2 = y^2 \mod n \ -> x^2 - y^2 = 0 \mod n \ -> (x-y)(x+y) = 0 \mod n \ -> (x-y)(x+y) = Kn = Kpq \ for \ some \ integer \ K).$ Let K=k1 K2. Thus we have (x-y)=k1 p & x-y=k2 q Then we can factor n as follows:

Prob. 2 Suppose Bob has an RSA Cryptosystem with a large modulus n for which the factorization cannot be found in a reasonable amount of time. Suppose Alice sends a message to Bob by representing each alphabetic character as an integer between 0 and 25 (i.e., A<->0, B<->1, etc.), and then encrypting each residue modulo n as a separate plaintext character. Describe how Ever can easily decrypt a message which is encrypted in this way.

Ans. Eve can construct a lookup table for all the valid 26 ciphertexts by encrypting the letters A to Z using Bob's public key. Then Eve can use this table (or more precisely the inverse of this table) tp decrypt any ciphertext encrypted by Alice.

Prob. 3. Determine the problems in the following protocol in which A wants to establish a shared session key with B using the help of a trusted authority S

 $A \rightarrow S: A, B$ $S \rightarrow A: K_{AB}$ $A \rightarrow B: A, K_{AB}$

 $gcd(x \pm y,n)=p \text{ or } q.$

Ans. The key is sent in the clear.

Prob. 4 Consider the following authentication protocol

$$A \rightarrow B: T_A, Sig_A(T_A,B)$$

- (i) What is the objective of the time stamp T_A ?
- (ii) After this protocols is executed
 - (a) B is authenticated to A
 - (b) A is authenticated to B
 - (c) Both A and B are authenticated to each other

Ans. The time stamp ensures the freshness of the signature and prevents replay attacks. "A" is authenticated to B.