

Problem 1

Part1:

The rate of stroke-associated mortality is:

the of stroke-associated mortality is:

$$1 - e^{-(x)} = \frac{36.2}{100,000}$$

$$x = -\ln(1 - \frac{36.2}{100,000}) = 0.0003620655$$

The rate of non-stroke associated mortality is:

$$1 - e^{-(x)} = \frac{18}{1,000} - \frac{36.2}{100,000}$$

$$x = -\ln(1 - (\frac{18}{1,000} - \frac{36.2}{100,000})) = 0.0177954$$

$$\lambda_3 = 0.0178, \lambda_7 = 0.0178$$

Part2:

The annual rate of stroke event is:

$$1 - e^{-(\lambda_1 + \lambda_2)} = \frac{15}{1,000}$$
$$\lambda_1 + \lambda_2 = -\ln(1 - \frac{15}{1,000}) = 0.01511364$$

Part3:

$$\frac{\lambda_1}{\lambda_1 + \lambda_2} = 0.9, \ \frac{\lambda_2}{\lambda_1 + \lambda_2} = 0.1$$

The annual rate of transition from "Well" to "Stoke" is:

$$\lambda_1 = 0.9*0.01511364 = 0.01360228 \approx 0.0136$$

The annual rate of transition from "Well" to "Stroke Death" is:

$$\lambda_2 = 0.1*0.01511364 = 0.00151136 \approx 0.0015$$

Part4:

The annual rate of recurrent stroke events is:

$$-\ln(1-0.17)/5 = 0.03726592$$

$$\frac{\lambda_4}{\lambda_4 + \lambda_6} = \frac{\lambda_4}{\text{The ann}}$$

$$\lambda_4 = 0.8$$
The ann

$$\lambda_6 = 0.2$$

Part6:

$$\frac{1}{\lambda_5} = 7/3$$

ost-stroke" to "Stroke" is:

1298

ost-stroke" to "Stroke Death" is:

0075

ce" to "Post-stroke" is:

using anticoagulation:

oke	Post-Stroke	Stroke Death	Non-Stroke Death
136	0	0.0015	0.0178
)	52.14	0	0
298	0	0.0075	0.0178
)	0	0	0
)	0	0	0

The Ma

Well	
Stroke	
Post-S	
Stroke	
Non-S	t

Problen

Part1:

The rate

The rate

T. Control of the con

tr ity is: $-e^{-(x)} = 5$

= -
$$\ln(1-(\frac{1}{1}, \frac{1}{1}) - \frac{100,000}{100,000}) * 1.05) = 0.01869354$$

 $\lambda_3 = 0.0187, \lambda_7 = 0.0187$

55

Part2:

The annual rate of stroke event is:

$$1 - e^{-(\lambda_1 + \lambda_2)} = \frac{15}{1,000}$$

$$\lambda_1 + \lambda_2 = -\ln(1 - \frac{15}{1,000}) = 0.01511364$$

$$\frac{\lambda_1}{\lambda_1 + \lambda_2} = 0.9, \ \frac{\lambda_2}{\lambda_1 + \lambda_2} = 0.1$$

The annual rate of transition from "Well" to "Stoke" is:

 $\lambda_1 = 0.9 \times 0.01511364 = 0.01360228 \approx 0.0136$

The annual rate of transition from "Well" to "Stroke Death" is:

 $\lambda_2 = 0.1 * 0.01511364 = 0.00151136 \approx 0.0015$

rt4:

te annual rate of recurrent stroke event (1-0.17)/5= 0.03726592

rt5:

$$\frac{\lambda_4}{\lambda_6} = 0.8, \frac{\lambda_6}{\lambda_4 + \lambda_6} = 0.2$$

e annual transition rates from state "Po

' to "Stroke" is:

 $\lambda_4 = 0.8 * 0.03726592 * 0.75 = 0.02235955 \approx 0.0224$

The annual transition rates from state "Post-stroke" to "Stroke Death" is: $\lambda_6 = 0.2*0.03726592=0.007453184 \approx 0.0075$

Part6:

The annual rate of transition from "Stroke" to "Post-stroke" is:

$$\frac{1}{\lambda_5}$$
 =7/365*1=0.01917808, λ_5 = 52.14

The Matrix of transition rate with anticoagulation

	Well	Stroke	Post-Stroke	Stroke Death	Non-Stroke Death
Well	0	0.0136	0	0.0015	0.0187
Stroke	0	0	52.14	0	0
Post-Stroke	0	0.0224	0	0.0075	0.0187
Stroke Death	0	0	0	0	0
Non-Stroke Death	0	0	0	0	0