Real Analysis HW #9

Jack Krebsbach

Nov 28th

Question 1

Let $g: A \to \mathbb{R}$ and $f: A \to \mathbb{R}$. Suppose that $\lim_{x \to a} f(x) = 0$.

- (a) Show that $\lim_{x\to a} f(x)g(x) = 0$ for any function g as above IS NOT TRUE.
- (b) Assume that *g* is a bounded function on *A*. Show that $\lim_{x\to c} g(x)f(x) = 0$.

Question 2

Let a and b be real numbers with $a \ne 0$. Use the definition of continuity to prove that the function f defined by f(x) = ax + b is continuous at every real number.

Proof: Let $\epsilon > 0$ and $c \in \mathbb{R}$. Choose $\delta = \epsilon/a$. If we have $|x - c| < \delta$ it follows

$$|f(x) - f(c)| = |ax + b - (ac + b)| = |ax + b - ac - b| = |ax - ac| = |a(x - c)| < |a\frac{\epsilon}{a}| < \epsilon.$$

Thus, f(x) = ax + b is continuous at every real number.

⊜

Question 3

Use the definition of limit to prove that $\lim_{x\to c} x^2 = c^2$ for every real number c.

Proof: Let $\epsilon > 0$. Choose $\delta = \min\{1, \epsilon/(2c+1)\}$. If we have $0 < |x-c| < \delta$ it follows that,

$$|f(x) - L| = |x^2 - c^2| = |x + c||x - c| < (2c + 1)\frac{\epsilon}{2c + 1} = \epsilon$$

Thus, $\lim_{x\to c} x^2 = c^2$ for every real number c.

☺

Question 4

Find constants *a* and *b* so that the function *f* defined by

$$f(x) = \begin{cases} 3ax^2 + 1 & 0 \le x \le 1\\ ax + b & 1 < x < 2\\ 2bx + a & 2 \le x \le 4 \end{cases}$$

has a limit at each point of [0, 4]. Be sure to show the limit exists.

Question 5

Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and suppose that f(x) = 0 for each irrational number x in [a, b]. Prove that f(x) = 0 for all $x \in [a, b]$.

Question 6

CHAT GPT CHALLENGE: Let $f : [a, b] \to \mathbb{R}$ be a continuous function on [a, b], and suppose that f(x) = 0 for each rational number x in [a, b]. We aim to show that f(x) = 0 for all $x \in [a, b]$.

Assume, for the sake of contradiction, that there exists $c \in [a, b]$ such that $f(c) \neq 0$. Since f is continuous, for any $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x \in [a, b]$, if $|x - c| < \delta$, then $|f(x) - f(c)| < \epsilon$.

Consider the case when $\epsilon = |f(c)|$. By continuity, there exists $\delta > 0$ such that for all $x \in [a,b]$, if $|x-c| < \delta$, then |f(x) - f(c)| < |f(c)|. This implies

$$-f(c) < f(x) - f(c) < f(c).$$

Adding f(c) to all parts of the inequality yields 0 < f(x) for x in the interval $(c - \delta, c) \cap [a, b]$. Similarly, subtracting f(c) from all parts of the inequality yields f(x) < 0 for x in the interval $(c, c + \delta) \cap [a, b]$. Now, consider the set of rational numbers in [a, b]. Since $\mathbb Q$ is dense in $\mathbb R$, there exist rational numbers in both $(c - \delta, c) \cap [a, b]$ and $(c, c + \delta) \cap [a, b]$. However, we have shown that for any rational x in these intervals, f(x) has opposite signs, which is a contradiction.

Therefore, our assumption that there exists c such that $f(c) \neq 0$ is false, and we conclude that f(x) = 0 for all $x \in [a, b]$.