

PRUEBA - Operatoria de números complejos

Fecha: Martes 8 de Abril, 2025.

Objetivo

- Describir números complejos en su binomial o como par ordenado.
- Resolver y reducir expresiones que involucran operatoria básica entre números complejos.
- Calcular el módulo de un número complejo.
- Ubicar un número complejo en el plano de Argand.

Instrucciones generales

Tiene 1 hora y 30 minutos para responder la evaluación. Esta es individual y debe usar solo sus materiales personales para trabajar durante este periodo, no los solicite a un compañero durante la evaluación.

I. Opciones múltiples

Instrucciones

Lea atentamente cada enunciado y escoja la alternativa correcta en cada caso.

Criterios de evaluación

En la corrección de esta sección, se asignará 2 puntos al marcar la alternativa correcta. Las alternativas corregidas serán consideradas incorrectas, es decir, marque solo una alternativa por enunciado.

→0 **←**0 **←**

- Si z = 1 + 2i y w = -2 + i, entonces $\frac{z}{w}$ corresponde a:
 - a) $\frac{-5+i}{3}$
 - b) $-\frac{5}{3}i$
 - c) -i
 - *d*) 2
 - *e*) −2*i*
- La suma de la parte real e imaginaria del número 3 2*i* es:
 - a) 3 2i
 - **b**) 5
 - c) 1
 - *d*) –1
 - e) i

Respecto del número complejo que aparece en la imagen, es correcto afirmar que:

- I. Solo tiene parte real.
- II. Su parte real es positiva.
- III. Su parte imaginaria es positiva.
- a) Solo I.
- b) Solo II.
- c) Solo III.
- d) Solo I y II.
- e) I, II y III.
- El valor de i^{2019} es:
 - *a*) 1
 - *b*) *i*
 - *c*) –1
 - *d*) −*i*
 - *e*) 3
- La representación en el plano de Argand de un número complejo se encuentra en el tercer cuadrante. Entonces, es correcto afirmar que:
 - I. Su parte imaginaria es positiva.
 - II. Su parte real es negativa.
 - III. El resultado de la multiplicación entre su parte real y su parte imaginaria es positiva.
 - a) Solo I.
 - b) Solo II.
 - c) Solo III.
 - d) Solo II y III.
 - e) I, II y III.

- Si el módulo de un número complejo es tal que |z| = 5 y su parte real es 4, se puede decir sobre su parte imaginaria que:
 - I. Im(z) = 3
 - II. Im(z) = -3
 - III. $Im(z) = \pm 3i$
 - a) Solo I.
 - b) Solo II.
 - c) Solo III.
 - d) Solo I y II.
 - e) Solo I y III.
- ¿Cuáles de los siguientes números es (son) solución(es) de la ecuación cuadrática $x^2 + x + 1 = 0$?
 - I. $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$
 - II. $-\frac{1}{2} \frac{\sqrt{3}}{2}i$
 - III. $\frac{1}{2} + \frac{\sqrt{3}}{2}i$
 - a) Solo I.
 - b) Solo II.
 - c) Solo III.
 - d) Solo I y II.
 - e) Solo II y III.
- Si z = 3i 5, la expresión 2z + 3iz z 4iz es:
 - *a*) *z*
 - b) -iz
 - c) 3i + 6
 - *d*) 8i 2
 - e) 4i

- 9 La parte imaginaria de la expresión (i-1)(i+1)(2i-1)(2i+1) es:
 - *a*) 6
 - *b*) −6
 - *c*) 0
 - *d*) 1
 - *e*) -1
- El número $(i^{36} i^{54})^2$ es equivalente a:
 - *a*) 0
 - **b**) 2
 - c) 4
 - *d*) −2*i*
 - e) 2i
- El número complejo $\frac{i-1}{i+2}$ es equivalente a:
 - a) $\left(0,-\frac{2}{5}\right)$
 - $b) \quad \left(-\frac{2}{5}, \frac{1}{5}\right)$
 - c) $\frac{1}{5} \frac{3}{5}i$
 - $d) \quad -\frac{1}{5} + \frac{3}{5}i$
 - $e) -\frac{3}{5} + \frac{1}{5}i$
- La expresión $(2i)^{28}$ es:
 - a) 4^{28}
 - *b*) i^{28}
 - c) $(-i)^{28}$
 - d) -2^{28}
 - *e*) 2²⁸