Figure 6: Synthetic ODN cannot be mixed with DNA vaccine due to interference with expression from plasmid. The figure shows the effect of adding S-ODN to plasmid DNA expressing reporter gene or antigen. ODN 1826 (10 or 100 μg) was added to DNA constructs (10 μg) encoding hepatitis B surface antigen (HBsAg) (pCMV-S, top panel) or luciferase (pCMV-luc, bottom panel) DNA prior to intramuscular (IM) injection into mice. There was an ODN dose-dependent reduction in the induction of antibodies against HBsAg (anti-HBs, end-point dilution titers at 4 wk) by the pCMV-S DNA (top panel) and in the amount of luciferase expressed in relative light units per sec per mg protein (RLU/sec/mg protein at 3 days) from the pCMV-luc DNA (bottom panel). This suggests that the lower humoral response with DNA vaccine plus ODN was due to decreased antigen expression. Each bar represents the mean of values derived from 10 animals (top panel) or 10 muscles (bottom panel) and vertical lines represent the SEM. Numbers below the bars indicate proportion of animals-responding-to-the-DNA-vaccine-(top-panel); all-muscles-injected with pCMV-luc expressed luciferase (bottom panel).

Please re-write the paragraph beginning on page 6, line 13, as follows:

Figure 7: Interference of ODN with pDNA due to backbone and sequence. The figure shows

the interference of ODN with plasmid DNA depends on backbone and sequence. Luciferase activity (RLU/sec/mg protein) in mouse muscles 3 days after they were injected with 10 µg pCMV-luc DNA to which had been added no ODN (none = white bar) or 100 µg of an ODN, which had one of three backbones: phosphorothioate (S = left slanted bars: 1628, 1826, 1911, 1982, 2001 and 2017), phosphodiester (O = thick left slanted bars: 2061), or a phosphorothioate-phosphodiester chimera (SOS = right slanted bars: 1585, 1844, 1972, 1980, 1981, 2018, 2021, 2022, 2023 and 2042). Three S-ODN (1911, 1982 and 2017) and two SOS-ODN (1972 and 2042) did not contain any immunostimulatory CpG motifs. One S-ODN (1628) and three SOS-ODN (1585, 1972, 1981) had poly-G ends and one SOS-ODN (2042) had a poly-G center. The (*) indicates ODN of identical sequence but different backbone: 1826 (S-ODN), 1980 (SOS-ODN) and 2061 (O-ODN). All S-ODN (both CpG and non-CpG) resulted in decreased luciferase activity whereas SOS-ODN did not unless they had poly-G sequences.

Please re-write the paragraph beginning on page 6, line 25, as follows: Figure 8: Temporal and spatial separation of CpG ODN and plasmid DNA. The figure shows the effect of temporal or spatial separation of plasmid DNA and S-ODN on gene expression. Luciferase activity (RLU/sec/mg protein) in mouse muscles 3 or 14 days after they were injected with 10 μ g pCMV-luc DNA. Some animals also received 10 μ g CpG-S ODN which was mixed with the DNA vaccine or was given at the same time but at a different site, or was given 4 days prior to or 7 days after the DNA vaccine. Only when the ODN was mixed directly with the DNA vaccine did it interfere with gene expression.

Please re-write the paragraph beginning on page 7, line 6, as follows:

Figure 9: Immunization of BALB/c mice with CpG-optimized DNA vaccines. The figure shows the enhancement of *in vivo* immune effects with optimized DNA vaccines. Mice were injected with 10 µg of pUK-S, pMAS-S, pMCG16-S or pMCG50-S plasmid DNA bilaterally (50 µl at 0.1 mg/ml in saline) into the TA muscle. The top panel shows the anti-HBs antibody response at 6 weeks (detected as described in methods). Bars represent the group means (n=5) for ELISA end-point dilution titers (performed in triplicate), and vertical lines represent the standard errors of the mean. The numbers on the bars indicate the ratio of IgG2a:IgG1 antibodies at 4 weeks, as determined in separate assays (also in triplicate) using pooled plasma. The bottom panel shows the cytotoxic T lymphocyte activity in specifically restimulated (5 d) splenocytes taken from mice 8 wk after DNA immunization. Bars represent the group means (n=3) for % specific lysis (performed in triplicate) at an effector:target (E:T) ratio of 10:1, dots represent the individual values. Non-specific lytic activity determined with non-antigen-presenting target cells, which never exceeds 10%, has been subtracted from values with HBsAg-expressing target cells to obtain % specific lysis values.

 of bars indicate antibodies of IgG1 subclass (Th2-like) and white portions indicate IgG2a subclass (Thl-like). The numbers above each bar indicate the IgG2a/IgG1 ratio where a ratio >1 indicates a predominantly Thl-like response and a ratio <1 indicates a predominantly Th2-like response (a value of 0 indicates a complete absence of IgG2a antibodies).

Please re-write paragraph beginning on page 8, line 5, as follows:

Figure 11 shows enhancement of *in vivo* immune effects with optimized DNA vaccines. Mice were injected with 10 µg of pUK-S (white bars), pMAS-S (right slanted bars), pMCG16-S (thin right slanted bars) or pMCG50-S (left slanted bars) plasmid DNA bilaterally (50 µl at 0. 1 mg/ml in saline) into the TA muscle. Panel A: The anti-HBs antibody response at 6 weeks (detected as described in methods). Bars represent the group means (n=5) for ELISA end-point dilution titers (performed in triplicate), and vertical lines represent the standard errors of the mean. The numbers on the bars indicate the ratio of IgG2a:IgG1 antibodies at 4 weeks, as determined in separate assays (also in triplicate) using pooled plasma. Panel B: Cytotoxic T lymphocyte activity in specifically restimulated (5 d) splenocytes taken from mice 8 wk after DNA immunization. Bars represent the group means (n=3) for % specific lysis (performed in triplicate) at an effector: target (E:T) ratio of 10:1, dots represent the individual values. Non-specific lytic activity determined with non-antigen-presenting target cells, which never exceeds 10%, has been subtracted from values with HBsAg-expressing target cells to obtain % specific lysis values.

Please re-write the paragraph beginning on page 35, line 8, as follows:

(i) Insertion of the CMV (human cytomegalovirus) major intermediate early promoter/enhancer region

The CMV promoter (from pcDNA3 position 209 to 863) was amplified by PCR using 30 ng pcDNA3 as a template. The forward PCR primer 5'CGT GGA TAT CCG ATG TAC GGG CCA GAT AT 3'(SEQ ID NO:4) introduced an EcoRV site, and the reverse PCR primer 5' AGT CGC GGC CGC AAT TTC GAT AAG CCA GTA AG 3'(SEQ ID NO:5) introduced a NotI site. After digestion with EcoRV and NotI, a 0.7 kb PCR fragment containing the CMV promoter was purified and inserted into the pUK21 polylinker between XbaI and NotI sites. The XbaI sticky end of pUK21 was filled in with the large fragment of T4 DNA polymerase after digestion to create a blunt end. The inserted CMV promoter was confirmed by sequencing. The resulting plasmid was pUK21-Al (Figures 1A and 1B).

Please re-write the paragraph beginning on page 35, line 19, as follows:

(ii) Insertion of the BGH polyA (bovine growth hormone polyadenylation signal)

BGH polyA (from pcDNA3 position 1018 to 1249) was amplified by PCR using pcDNA3 as template. The forward PCR primer 5' ATT CTC GAG TCT AGA CTA GAG CTC GCT GAT CAG CC 3' (SEQ ID NO:6) introduced *Xho*I and *Xba*I sites, and the reverse PCR primer 5' ATT AGG CCT TCC CCA GCA TGC CTG CTA TT 3' (SEQ ID NO:7) introduced a *Stu*I site. After digestion with *Xho*I and *Stu*I, the 0.2 kb PCR fragment containing the BGH polyA was purified, and ligated with the 3.7 kb *Xho*I-*Stu*I fragment of pUK21-Al. The inserted BGH polyA was confirmed by sequencing. The resulting plasmid was pUK21-A2 (Figures 2A and 2B).

Please re-write the paragraph beginning on page 36, line 24, as follows:

(i)-Insertion of the fl-origin-of-replication-region

The fl origin and two unique restriction enzyme sites (*DraI* and *ApaI*) were introduced into pUK21-A2 for later vector construction. fl origin (from pcDNA3 position 1313 to 1729) was amplified by PCR using pcDNA3 as template. The forward PCR primer 5' TAT <u>AGG CCC TAT TTT AAA CGC GCC CTG TAG CGG CGC A 3' (SEQ ID NO:8) introduced EcoO109I and *DraI* sites, and the reverse PCR primer 5' CTA TGG CGC CTT GGG CCC AAT TTT TGT TAA ATC AGC TC 3' (SEQ ID NO:9) introduced *NarI* and *ApaI* site. After digestion with *NarI* and *Eco*O109I, the 0.4 kb PCR fragment containing the fl origin was purified and ligated with the 3.3 kb *NarI-Eco*O109I fragment of pUK21-A2, resulting in pUK21-A (Figures 3A and 3B).</u>

Please re-write the paragraph beginning on page 38, line 22, as follows:

(iii) Replacement of the fl origin with unique restriction enzyme sites

Oligonucleotides 5' AAA TTC GAA <u>AGT ACT GGA CCT GTT AAC A 3'</u> (SEQ ID NO:10)

and its complementary strand 5' CGT <u>GTT AAC AGG TCC AGT ACT TTC GAA TTT 3'</u>

(SEQ ID NO:11) were synthesized, and 5'-phosphorylated. Annealing of these two phosphorylated oligos resulted in 28 base pair double-stranded DNA containing three unique restriction enzyme sites (*Scal*, *AvaII*, *HpaI*), one sticky end and one blunt end. Replacing the 0.4 kb *NarI-DraI* fragment of pUK21-B with this double-stranded DNA fragment resulted in the universal vector pMAS for DNA vaccine development (Figures 4A and 4B and 5).

Please re-write the paragraph beginning on page 44, line 11, as follows:

In contrast to the success with protein antigens, attempts to augment immune responses induced by a HBsAg-expressing DNA vaccine by the addition of CpG-S ODN 1826 failed. Surprisingly, the immune responses decreased with the addition of CpG-S ODN in a dose-dependent manner (Figure 6, top panel). Addition of ODN #1826 to a luciferase reporter gene construct (pCMV-luc, Davis *et al.*, 1993b) resulted in a dose-dependent decrease in luciferase expression (Figure 6, bottom panel). This indicates that the negative effects of the CpG-S ODN on the DNA vaccine were due to reduced gene expression rather than an effect on the immune response against the gene product.

Please re-write the paragraph beginning on page 48, line 15, as follows:

Next, different numbers of CpG-S motifs were inserted into the vector by allowing self-ligation of a 20bp DNA fragment with the sequence 5'

GACTCCATGACGTTCCTGACGTTCCTGACGTTCCTGACGTTG 3'(SEQ-ID-NO:12)

with a complementary strand and inserting different numbers of copies into the *Ava*II site of pMAS. Recombinant clones were screened and the two vectors were chosen for further testing with 16 and 50 CpG-S motifs, and named pMCG16 and pMCG50 respectively.

Please re-write the paragraph beginning on page 51, line 16, as follows: When tested for their ability to induce cytokine (IL-6 and IL-12) secretion from cultured spleen cells, we found that the pMAS-S, pMCG16-S and pMCG50-S vectors had significantly enhanced immune stimulatory activity compared to pUK-S. When used as a DNA vaccine, the anti-HBs response at 4 and 6 weeks was substantially stronger with DNA vaccines from which CpG-N motifs had been deleted, and even more so when 16 CpG-S motifs had been inserted. The vector with 50 CpG-S motifs, however, was less effective at inducing antibody production than that with 16 motifs. (Figure 11, panel A). Removal of CpG-N motifs and addition of CpG-S motifs resulted in a more than three-fold increase in the proportion of IgG2a relative to IgG1 anti-HBs antibodies, indicating an enhanced Th-1 response. This accentuated Th1 response also was demonstrated by the striking progressive increases in CTL responses induced by vectors from which CpG-N motifs were deleted and/or CpG-S motifs added (Figure 11, panel B).

Please re-write the paragraph beginning on page 53, line 20, as follows: Based on our *in vitro* experiments we hypothesized that the presence of CpG-N motifs in DNA vaccines interferes with the induction of the desired immune response. Indeed, the present study demonstrates that elimination of CpG-N motifs from a DNA vaccine leads to improved induction of antibodies. By removing 52 of the CpG-N motifs from a DNA vaccine (45 were deleted and 7 turned into CpG-S motifs) the serologic response was more than doubled; by then adding an additional 16 CpG-S motifs, the response was enhanced nearly 10 fold (Figure 11, panel A). Likewise, CTL responses were improved by removing CpG-N motifs and even more so by adding 16 or 50 CpG-S motifs (Figure 11, panel B). These increased responses are especially notable in view of the fact that the total number of CpG dinucleotides in the mutated vaccines is considerably below the original number.

Please re-write the paragraph beginning on page 54, line 2, as follows: The finding that the vector with 50 CpG-S motifs was inferior to that with 16 motifs for induction of humoral immunity was unexpected, and may be secondary to CpG-induced -production-of-type-I-interferons, and-subsequent reduction in the amount of antigen expressed. The decreased antibody response induced by pMCG50-S seems unlikely to be explained by vector instability since this vector gave the best CTL responses (Figure 11, panel B). Although the pMCG50-S vector was slightly larger than pMCG16-S, the 10 µg dose still contained 93% as many plasmid copies as it did pMCG16-S, so lower copy number is unlikely to account for the reduced antibody levels. The current generation of DNA vaccines are quite effective in mice, but much less effective in primates (Davis, H.L., et al., Proc. Natl. Acad. Sci. USA, 93:7213-7218 (1996); Letvin, N.L., et al., Proc. Natl. Acad. Sci. USA, 94:9378-9383 (1997); Fuller, D.H., et al., J Med. Primatol., 25:236-241 (1996); Lu, S., et al., J Virol., 70:3978-3991 (1996); Liu, M.A., et al., Vaccine, 15:909-919 (1997); Prince, A.M., et al., Vaccine, 15:9196-919 (1997); Gramzinski, R.A., et al., Molec. Med., 4:109-119 (1998)). Our present results indicate that attaining the full clinical potential of DNA vaccines will require using engineered vectors in which CpG-N motifs have been deleted, and CpG-S motifs added.

Please re-write Table 1, beginning on page 56, line 22, as follows:

Table 1.

Primers used for site-directed mutagenesis.

Mutated nucleotides are underlined. Restriction enzyme sites for cloning, are indicated in bold.

Forward primers:

Mu-0F		5' GTCTCTAGACAGCCACTGGTAACAGGATT 3' (845) (SEQ ID NO:23)
Mu-1F	(1144)	5' GTCGTTGTGTCGTCAAGTCAGCGTAATGC 3' (1172) (SEQ ID NO:24)
Mu-2F	(1285)	5' TCGTTTCTGTAATGAAGGAG 3' (1304) (SEQ ID NO:25)
Mu-3F	(1315)	5' AAGGCAGTTCCATAGGATGG 3' (1334) (SEQ ID NO:26)
Mu-(4+5)F	(1348)	5' TCGATCTGCGATTCCAACTCGTCCAACATCAATAC 3' (1382) (SEQ ID
NO:27)		
Mu-6F	(1453)	5' TGGTGAGAATGGCAAAAGTT 3' (1472) (SEQ ID NO:28)
Mu-7F	(1548)	5' CATTATTCATTCGTGATTGCG 3' (1568) (SEQ ID NO:29)
Mu-8F	(1633)	5' ACGTCTCAGGAACACTGCCAGCGC 3' (1656) (SEQ ID NO:30)
Mu-9F	(1717)	5' AGGGATCGCAGTGGTGAGTA 3' (1736) (SEQ ID NO:31)
Mu-10F	(1759)	5' TATAAAATGCTTGATGGTCGG 3' (1779) (SEQ ID NO:32)
Mu-(11+12)F	(1777)	5' GGGAAGAGGCATAAATTCTGTCAGCCAGTTTAGTC 3' (1811) (SEQ ID
NO:33)		
Mu-13F	(1882)	5' TGGCTTCCCATACAAGCGAT 3' (1901) (SEQ ID NO:34)
Mu-14F	(1924)	5' TACATTATCGCGAGCCCATT 3' (1943) (SEQ ID NO:35)
Mu-15F	(1984)	5' TGGCCTCGACGTTTCCCGT 3' (2002) (SEQ ID NO:36)

Reverse primers:

Mu-UK		5 ATCGAATTCAGGGCC_CGTGATACGCCTA 3 (2160) (SEQ ID NO:37)
Mu-1R	(1163)	5' TGACTTGACG <u>AC</u> AC <u>AA</u> CG <u>AC</u> AGCTCATGACCAAAATCCC 3' (1125) (SEQ
ID NO:38)		
Mu-2R	(1304)	5' CTCCTTCATTACAGAAACG <u>A</u> CTTTTTCAAAAATATGGTA 3' (1266) (SEQ
ID NO:39)		
Mu-3R	(1334)	5' CCATCCTATGGAACTGCC <u>T</u> TGGTGAGTTTTCTCCTTC 3' (1298) (SEQ ID
NO:40)		
Mu-(4+5)R	(1367)	5' GAGT <u>T</u> GGAATCGCAG <u>A</u> TCGATACCAGGATCTTGC 3' (1334) (SEQ ID
NO:41)		
Mu-6R	(1472)	5' AACTTTTGCCATTCTCACCAGATTCAGTCGTCACTCA 3' (1436) (SEQ ID
NO:42)		
Mu-7R	(1568)	5' CGCAATCACGAATGAATAA <u>T</u> GGTTTGGTTGATGCGAGTG 3' (1530) (SEQ
ID NO:43)		

Mu-8R	(1652) 5' TGGCAGTGTTCCTGAGACGTTTGCATTCGATTCCTGTT 3' (1615) (SEQ ID
Mu-ox	(1032) 3 TOOCHOTTECTOMOMECOTTTOCHTTECHTT 3 (1013) (SEQTE
NO:44)	
Mu-9R	(1736) 5' TACTCACCACTGCGATCCCTGGAAAAACAGCATTCCAG 3' (1736) (SEQ
ID NO:45)	
Mu-10R	(1779) 5' CCGACCATCAAGCATTTTATACGTACTCCTGATGATGCA 3' (1741) (SEQ
ID NO:46)	
Mu-(11+12)	(1796) 5' CAGAATTTATGCCTCTTCCCACCATCAAGCATTTTATAC 3' (1758) (SEQ
ID NO:47)	
Mu-13R	(1901) 5' ATCGCTTGTATGGGAAGCCAGAGTTGTTT 3' (1882) (SEQ
ID NO:48)	
Mu-14R	(1943) 5' AATGGGCTCGCGATAATGTAGGGCAATCAGGTGCGAC 3' (1907) (SEQ ID
NO:49)	
Mu-15R	(2002) 5' ACGGGAAACGTCGAGGCCACGATTAAATTCCAACATGG 5' (1965) (SEQ ID
NO:50)	

Please re-write Table 2, beginning on page 59, line 1, as follows:

Table 2 Nucleotide and amino acid sequences of the AlwNI-EcoO109I fragment (SEQ ID NO:80)

1 (-	2100	A A CCCCCCTCC	TGATACGCCT	ATTTTTATAG	CMMA A MCMCA	mcccccccc	CCCCAAACCC
kan(wt) kan(wt)	2120	AAGGGCCTCG ACGTTGTGTC	TCAAAATCTC	TGATGTTACA	GTTAATGTCA TTGCACAAGA	TGGGGGGGG TAAAAATATA	GGGGAAAGCC TCATCATGAA
kan(wt)	2060	CAATAAAACT	GTCTGCTTAC	ATAAACAGTA	ATACAAGGGG	TGTTATGAGC	CATATTCAAC
kan (mu)	2000	0.2	01010011110		11111011110000	rorrince	CHIMITCHAC
ORF						M S	ніо
kan(wt)	2000	GGGAAACGTC	GAGGCCGCGA	TTAAATTCCA	ACATGGATGC	TGATTTATAT	GGGTATAAAT
kan(mu)			A				
ORF		RETS	RPR	L N S	N M D A	DLY	G Y K
kan(wt)	1940	GGGCTCGCGA	TAATGTCGGG	CAATCAGGTG	CGACAATCTA	TCGCTTGTAT	GGGAAGCCCG
kan(mu)			Ā				Ā
ORF		WARD	N V G	Q S G	A T I Y	R L Y	G K P
kan(wt)	1880	ATGCGCCAGA	GTTGTTTCTG	AAACATGGCA	AAGGTAGCGT	TGCCAATGAT	GTTACAGATG
kan(mu)							
ORF		D A P E	L F L	K H G	K G S V	A N D	V T D
kan(wt)	1820	AGATGGTCAG	ACTAAACTGG	CTGAC <u>G</u> GAAT	TTATGCCTCT	TCCGACCATC	AAGCATTTTA
kan(mu)				A		C	
ORF		E M V R	L N W	L T E	F M P L	PTI	K H F
kan(wt)	1760	TCCGTACTCC	TGATGATGCA	TGGTTACTCA	CCACTGCGAT	CCC <u>C</u> GGAAAA	ACAGCATTCC
kan(mu)		A				T	
ORF		IRTP	D D A	WLLL	TTAI	P G K	T_A F
kan (wt)	1700	AGGTATTAGA	AGAATATCCT	GATTCAGGTG	AAAATATTGT	TGATGCGCTG	GCAGTGTTCC
kan (mu)							
ORF		Q V L E	E Y P	D S G	E N I V	. D A L	AVF
kan (wt)	1640	TGCGCCGGTT	GCATTCGATT	CCTGTTTGTA	ATTGTCCTTT	TAACAGCGAT	CGCGTATTTC
kan(mu)		AAA					
ORF	1500	L R R L	H S I	P V C	N C P F	N S D	R V F
kan(wt)	1580	GTCTCGCTCA	GGCGCAATCA	CGAATGAATA	ACGGTTTGGT T	TGATGCGAGT	GATTTTGATG
kan (mu)		D 7 7 0	7 O C	D M N	=	D B C	D = D
ORF kan(wt)	1520	R L A Q ACGAGCGTAA	A Q S TGGCTGGCCT	R M N GTTGAACAAG	N G L V TCTGGAAAGA	D A S AATGCATAAA	D F D
kan (mu)	1320	ACGAGCGTAA	1 GGC 1 GGCC 1	GIIGAACAAG	TCTGGAAAGA	AATGCATAAA	CTTTTGCCAT
ORF		DERN	G W P	V E Q	V W K E	мнк	L L P
kan(wt)	1460	TCTCACCGGA	TTCAGTCGTC	ACTCATGGTG	ATTTCTCACT	TGATAACCTT	ATTTTTGACG
kan (mu)	1100	A	11000010010	ACTOATOOTO	militatemer	TONTANCCTT	ATTTTTGACG
ORF		F S P D	s v v	T H G	DFSL	D N L	I F D
kan(wt)	1400	AGGGGAAATT	AATAGGTTGT	ATTGATGTTG	GACGAGTCGG	AATCGCAGAC	CGATACCAGG
kan(mu)					T	T	
ORF		E G K L	I G C	I D V	G R V G	I A D	R Y O
kan(wt)	1340	ATCTTGCCAT	CCTATGGAAC	TGCCTCGGTG	AGTTTTCTCC	TTCATTACAG	AAACGGCTTT
kan(mu)				T			T
ORF		DLAI	L W N	C L G	E F S P	S L Q	K R L
kan(wt)	1280	TTCAAAAATA	TGGTATTGAT	AATCCTGATA	TGAATAAATT	GCAGTTTCAT	TTGATGCTCG
kan(mu)							
ORF		F Q K Y	GID	N P D	M N K L	Q F H	L M L
kan(wt)	1220	ATGAGTTTTT	CTAATCAGAA	TTGGTTAATT	GGTTGTAACA	CTGGCAGAGC	ATTACGCTGA
kan(mu)							
ORF		DEFF					
kan(wt)	1160	CTTGACG <u>GG</u> A	CGGCGCAAGC	TCATGACCAA	AATCCCTTAA	CGTGAGTTTT	CGTTCCACTG
kan(mu)		AC	AA AC				
kan(wt)	1100	AGCGTCAGAC	CCCGTAGAAA	AGATCAAAGG	ATCTTCTTGA	GATCCTTTTT	TTCTGCGCGT
kan(wt)	1040	AATCTGCTGC	TTGCAAACAA	AAAAACCACC	GCTACCAGCG	GTGGTTTGTT	TGCCGGATCA
kan(wt)	980	AGAGCTACCA	ACTCTTTTC	CGAAGGTAAC	TGGCTTCAGC	AGAGCGCAGA	TACCAAATAC
kan(wt)	920	TGTTCTTCTA	GTGTAGCCGT	AGTTAGGCCA	CCACTTCAAG	AACTCTGTAG	CACCGCCTAC
kan(wt)	860	ATACCTCGCT	CTGCTAATCC	TGTTACCAGT	GGCTGCTGCC		

<u>Note</u>: Mutated nucleotides are underlined. The *Alw*NI and *Eco*O109I sites are indicated in bold type. The nucleotide numbering scheme is the same as the backbone vector pUK21.

Please re-write Table 3, beginning on page 60, line 1, as follows:

Plasmid DNA Vectors

Davis et al. (1998)

 Table 3

 Plasmids containing immunostimulatory CpG motifs

Plasmid	Backbone	No. CpG	Species Specificity and ODN Equivalence of
		Motifs	CpG-S Insert
pMCG-16	pMAS	16	mouse-specific CpG motif #1826
pMCG-50	pMAS	50	
pMCG-100	pMAS	100	
pMCG-200	pMAS	200	
pHCG-30	pMAS	30	human-specific CpG motif - no ODN equivalent ²
pHCG-50	pMAS	50	÷
pHCG-100	pMAS	100	
pHCG-200	pMAS	200	
pHIS-40	pMAS	<u>40</u>	human-specific CpG motif.#2006 ³
pHIS-64	pMAS	64	
pHIS-128	pMAS	128	
pHIS-192	pMAS	192	

¹ sequence of 1826 is TCCATGACGTTCCTGACGTT (SEQ ID NO:51)

² sequence used as a source of CpG motifs is GACTT<u>CG</u>TGT<u>CG</u>TTCTTCTGTCGTCTTTAG<u>CG</u>CTTCTCCTG<u>CG</u>TG<u>CG</u>TCCCTTG (SEQ ID NO:14)

 $^{^3}$ sequence of 2006 is TCGTCGTTTTGTCGTTTTGTCGTT (SEQ ID NO:3)

Please re-write Table 4, beginning on page 61, line 1, as follows:

Table 4

Plasmids encoding hepatitis B surface antigen (derived from ayw or adw subtypes of HBV)

Plasmid	Backbone	Insert
pUK-S	pUK21-A2	HBV-S (ayw)
pUKAX-S	pUK21-AX*	HBV-S (ayw)
pMAS-S	pMAS	HBV-S (ayw)
pMCG16-S	pMCG-16	HBV-S (ayw)
pMCG50-S	pMCG-50	HBV-S (ayw)
pMCG100-S	pMCG-100	HBV-S (ayw)
pMCG200-S	pMCG-200	HBV-S (ayw)
pHCG30-S	pHCG-30	HBV-S (ayw)
-pHCG50-S	-pHCG-50	· HBV-S-(ayw)-
pHCG100-S	pHCG-100	HBV-S (ayw)
pHCG200-S	pHCG-200	HBV-S (ayw)
pHIS40-S(ad)	pHIS-40	HBV-S (adw2)
pHIS64-S(ad)	pHIS-64	HBV-S (adw2)
pHIS128-S(ad)	pHIS-128	HBV-S (adw2)
pHIS192-S(ad)	pHIS-192	HBV-S (adw2)

^{*}pUK21-AX was created by deleting f1 origin from pUK21-A

Please re-write Table 5, beginning on page 62, line 1, as follows:

Table 5 Sequence comparison of pUK21-A2 (SEQ ID NO:83) and pGT (SEQ ID NO:84). 75 point-mutations (indicated with *) in pUK21-A2 results in the gene therapy vector (pGT)

pUK21-A2(1) pGT	GAATTCGAGC	TCCCGGGTAC	CATGGCATGC CATGGCATGC	ATCGATAGAT	CTCGAGTCTA	
pUK21-A2(61) pGT	CGCTGATCAG CGCTGATCAG	CCTCGACTGT CCTCGACTGT	GCCTTCTAGT GCCTTCTAGT	TGCCAGCCAT TGCCAGCCAT	CTGTTGTTTG CTGTTGTTTG	CCCCTCCCCC
pUK21-A2 (121) pGT	GTGCCTTCCT	TGACCCTGGA	AGGTGCCACT AGGTGCCACT	CCCACTGTCC	TTTCCTAATA	AAATGAGGAA
pUK21-A2(181) pGT			TAGGTGTCAT TAGGTGTCAT			
pUK21-A2(241) pGT	AGCAAGGGGG	AGGATTGGGA	AGACAATAGC AGACAATAGC	AGGCATGCTG		
pUK21-A2(301) pGT	CCGGAATCAT	GGTCATAGCT	GTTTCCTGTG GTTTCCTGTG	TGAAATTGTT	ATCCGCTCAC	AATTCCACAC
pUK21-A2(361) pGT	AACATCCGGG	CCGCGGAAGC	ATAAAGTGTA ATAAAGTGTA	AAGCCTGGGG	TGCCTAATGA	GTGAGCTAAC
pUK21-A2(421) pGT	TCACATTAAT	TCCGTTCCGC	TCACTGCCCG TCACTGCCCG	CTTTCCAGTC	GGGAAACCTG	CCGTGCCAGC
pUK21-A2(481) pGT	TGCATTAATG TGCATTAATG	AATCGGCCAA AATCGGCCAA	CGCGCGGGGA CGCGCGGGGA	GAGGCGGTTT GAGCCGGTTT	GCGTATTGGG	CGCTCTTCCG
pUK21-A2(541) pGT	CTTCCTCGCT		CTGCGCTCGG CTGCGCTCGG			
pUK21-A2(601) pGT	ACTCAAAGGC	GGTAATACGG	TTATCCACAG TTATCCACAG	AATCAGGGGA	TAACGCAGGA	AAGAACATGT
pUK21-A2(661) pGT	GAGCAAAAGG	CCAGCAAAAG	GCCAGGAACC GCCAGGAACC	GTAAAAAGGC	CGCGTTGCTG	
pUK21-A2(721) pGT	ATAGGCTCCG	CCCCCTGAC	GAGCATCACA GAGCATCACA	AAAATCGACG	CTCAAGTCAG	
pUK21-A2(781) pGT			TACCAGGCGT TACCAGGCGT			
pUK21-A2 (841) pGT			ACCGGATACC ACCGGATACC			
pUK21-A2(901) pGT	CGCTTTCTCA	TAGCTCACGC	TGTAGGTATC TGTAGGTATC	TCAGTTCGGT	GTAGGTCGTT	CGCTCCAAGC
pUK21-A2(961) pGT			CCCGTTCAGC			
pUK21-A2(1021) pGT			AGACACGACT CCCGTTCAGC			
pUK21-A2(1081) pGT	GGATTAGCAG	AGCGAGGTAT	GTAGGCGGTG GTAGGCGGTG	CTACAGAGTT	CTTGAAGTGG	TGGCCTAACT
pUK21-A2(1141) pGT	ACGGCTACAC ACGGCTACAC	TAGAAGAACA TAGAAGAACA	GTATTTGGTA GTATTTGGTA	TCTGCGCTCT TCTGCGCTCT	GCTGAAGCCA GCTGAAGCCA	GTTACCTTCG GTTACCTTCG
pUK21-A2(1201) pGT	GAAAAAGAGT GAAAAAGAGT	TGGTAGCTCT TGGTAGCTCT	TGATCCGGCA TGATCCGGCA	AACAAACCAC AACAAACCAC	CGCTGGTAGC CGCTGGTAGC	GGTGGTTTTT GGTGGTTTTT
pUK21-A2(1261) pGT	GAAAAAGAGT GAAAAAGAGT	TGGTAGCTCT TGGTAGCTCT	TGATCCGGCA TGATCCGGCA	AACAAACCAC AACAAACCAC	CGCTGGTAGC CGCTGGTAGC	GGTGGTTTTT GGTGGTTTTT
pUK21-A2(1321) pGT	TTTCTACGGG	GTCTGACGCT	CAGTGGAACG CAGTGGAACG	AAAACTCACG	TTAAGGGATT	TTGGTCATGA
	_	-	_		-	-

pUK21-A2(1381) pGT			TCAGCGTAAT TCACCGGAAT			
pUK21-A2(1441) pGT			CGAGCATCAA CCAGCATCAA		AATTTATTCA	
pUK21-A2(1501) pGT			AAAGCCGTTT AAAGCCGTTT	CTGTAATGAA	GGAGAAAACT	
pUK21-A2(1561) pGT			CCTGGTATCG CCTGGTATCG		CCGACTCGGC	
pUK21-A2(1621) pGT		AATTTCCCCT	CGTCAAAAAT CATCAAAAAT		AGTGAGAAAT	CACCATGAGT
pUK21-A2(1681) pGT	AACTACTGAA		ATGGCAAAAG ATGGCAAAAG			
pUK21-A2(1741) pGT	AGGCCAGCCA	TTACGCTCGT TTACGCTCAT	CATCAAAATC CATCAAAATC		ACCAAACCGT	
pUK21-A2(1801) pGT	GGATTGAGCC	TGAGCGAGAC	GAAATACGCG GGAATACGCG	ATCGCTGTTA GTCGCTGTTA	AAAGGACAAT	TACAAACAGG
pUK21-A2(1861) pGT	AATGGAATGC		GGAACACTGC GGAACACTGC	CAGCGCATCA	ACAATATTT	CACCTGAATC
pUK21-A2(1921) pGT	AGGATATTCT	TCTAATACCT	GGAATGCTGT GGAATGCTGT			
pUK21-A2(1981) pGT			TAAAATGCTT TAAAATGCTT			
pUK21-A2(2041) pGT			CATCTGTAAC CATCTGTAAC			
pUK21-A2(2101) pGT	CAGAAACAAC	TCCGGCGCGT	CGGGCTTCCC	ATACAAGCGG	TAGATTGTAG	CACCTGATTG
pUK21-A2(2161) pGT			ATTTATACCC ATTTATACCC			
pUK21-A2 (2221) pGT	TCGCGGCCTG		GTTGAATATG GTTGAATATG			
pUK21-A2(2281) pGT			TTCATGATGA TTCATGATGA	TATATTTTTA		
pUK21-A2 (2341) pGT			GGCTTTCCCC GGCTTTCCCC			
pUK21-A2(2401) pGT	AGCCGTATCC	CGAGGCCCTT	TCGTCTCGCG CCGTCTCGCG *	CGTTCCGGTG	ATGCCGGTGA	AAACCTCTGA
pUK21-A2 (2461) pGT	CACATGCAGC	TCCCGGAGAC	GGTCACAGCT GGTCACAGCT	TGTCTGTAAG	CGGATGCCGG	GAGCAGACAA
pUK21-A2 (2521) pGT	GCCCGTCAGG GCCCGTCAGG	GCGCGTCAGC GCGCGTCAGC	GGGTGTTGGC GGGTGTTGGC	GGGTGTCGGG GGGTGTCGGG	GCTGGCTTAA GCTGGCTTAA	CTATGCGGCA CTATGCGGCA
pUK21-A2 (2581) pGT	TCAGAGCAGA	TTGTACTGAG	AGTGCACCAT AGTGCACCAT	AAAATTGTAA	CCGTTAATAT	TTTGTTAAAA
pUK21-A2 (2641) pGT	TTCGCGTTAA	ATTTTTGTTA	AATCAGCTCA AATCAGCTCA	TTTTTTAACC	AATAGACCGA	AATCGGCAAA
pUK21-A2(2701) pGT	ATCCCTTATA	AATCAAAAGA	ATAGCCCGAG ATAGCCCGAG	ATAGAGTTGA	GTGTTGTTCC	AGTTTGGAAC
pUK21-A2 (2761) pGT	AAGAGTCCAC	TATTAAAGAC	CGTGGACTCC CGTGGACTCC	ACCGTCAAAG	GCCGAAAAAC	CGTCTATCAG

pUK21-A2(2821) pGT				CGGGGAAAGC	CGGCGAACGT CGGCGCGCGT	GCCGAGAAAG
pUK21-A2(2881) pGT	GAAGGGAAGA	AACCGAAAGG	AGCGGCCGCT	AAGGCGCTGG AAGCCGCTGG	CAAGTGTAGC CAAGTGTAGC	GGTCACGCTG
pUK21-A2(2941) pGT	CGCGTAACCA		CGCGCTTAAT	GCGCCGCTAC	AGGGCGCGTA AGGGCGCGTA	
pUK21-A2(3001) pGT	TTTGCCGTAT	GCGGTGTGAA	ATACCGCACA	GATCCGTAAG	GAGAAAATAC GAGAAAATAC	CGCATCAGCC
pUK21-A2(3061) pGT	GCCATTCGCC GCCATCCGCC	ATTCAGGCTC	CGCAACTGTT CGCAACTGTT	GGGAAGGCCG GGGAAGGCCG	ATCGGTGCGG ATCGGTGCGG	GCCTCTTCGC GCCTCTCCGC
pUK21-A2(3121) pGT	TATTACGCCA		GGGGGATGTG	CTGCAAGGCG	ATTAAGTTGG ATTAAGTTGG	GTAACGCCAG
pUK21-A2(3181) pGT	GGTTTTCCCA	GTCACGGCGG	TGTAAACCGA		ATTGTAATAC ATTGTAATCC	
pUK21-A2(3241) pGT	AGGGCGAATT		CCACTAGTTC		GTACGGGCCA GTACGGGCCA	
pUK21-A2(3301) pGT	TTGACATTGA	TTATTGACTA	_GTTATTAATA		ACGGGGTCAT ACGGGGTEAT	
pUK21-A2(3361) pGT	TTGACATTGA		GTTATTAATA		ACGGGGTCAT ACGGGGTCAT	
pUK21-A2(3421) pGT	CAACGACCCC	CGCCCATTGA	CGTCAATAAT	GACGTATGTT	CCCATAGTAA CCCATAGTAA	CGCCAATAGG
pUK21-A2(3481) pGT	GACTTTCCAT		GGGTGGAGTA	TTTACGGTAA	ACTGCCCACT ACTGCCCACT	TGGCAGTACA
pUK21-A2(3541). pGT					AATGACGGTA AATGACGGTA	
pUK21-A2(3601) pGT					ACTTGGCAGT ACTTGGCAGT	
pUK21-A2(3661) pGT					TACATCAATG TACATCAATG	
pUK21-A2(3721) pGT					GACGTCAATG GACGTCAATG	
pUK21-A2(3781) pGT					AACTCCGCCC AACTCCGCCC	
pUK21-A2(3841) pGT	AATGGGCGGT	AGGCGTGTAC	GGTGGGAGGT	CTATATAAGC	AGAGCTCTCT AGAGCTCTCT	GGCTAACTAG
pUK21-A2(3901) pGT	AGAACCCACT AGAACCCACT	GCTTACTGGC GCTTACTGGC	TTATCGAAAT TTATCGAAAT	TGCGGCCGCC TGCGGCCGCC	ACGGCGATAT ACGGCGATAT	CGGATCCATA CGGATCCATA
pUK21-A2(3961) pGT	TGACGTCGAC TGACGTCGAC	GCGTCTGCAG GCGTCTGCAG	AAGCTTC AAGCTTC			-

Please re-write Table 6, beginning on page 64, line 1, as follows:

Table 6 ODN used with plasmid DNA

Backbone	ODN code number	Sequence
S-ODN	1826 1628 1911 1982 2017	TCCATGACGTTCCTGACGTT (SEQ ID NO:51) GGGGTCAACGTTGAGGGGGG (SEQ ID NO:52) TCCAGGACTTTCCTCAGGTT (SEQ ID NO:53) TCCAGGACTTCTCTCAGGTT (SEQ ID NO:54) CCCCCCCCCCCCCCCCCCC (SEQ ID NO:55)
O-ODN	2061 2001	TCCATGA <u>CG</u> TTCCTGA <u>CG</u> TT (SEQ ID NO:56) GG <u>CG</u> G <u>CG</u> GCGGCGGCGG (SEQ ID NO:57)
SOS-ODN	1980 1585 1844 1972 2042 1981 2018 2021 2022 2023	TCCATGACGTTCCTGACGTT (SEQ ID NO:58) GGGGTCAACGTTGAGGGGGG (SEQ ID NO:59) TETEECAGCGTGCGCCCATAT (SEQ ID NO:60) GGGGTCTGTGCTTTTGGGGGG (SEQ ID NO:61) TCAGGGGTGGGGGGAACCTT (SEQ ID NO:62) GGGGTTGACGTTTTGGGGGGG (SEQ ID NO:63) TCTAGCGTTTTTAGCGTTCC (SEQ ID NO:64) TCGTCGTTGTCGTTGTCGTT (SEQ ID NO:65) TCGTCGTTTTGTCGTTTTTGTCGTT (SEQ ID NO:66) TCGTCGTTGTCGTTTTTGTCGTT(SEQ ID NO:67)

SOS-ODN had two S-linkages at the 5' end, five S-linkages at the 3' end, and O-linkages in between.

Three ODN used in this study were of the same murine-specific immunostimulatory sequence in three different backbones (1826, 2061 and 1980).

All ODN were synthesized by Hybridon (Milford, MA) or Operon (Alameda, CA). ODN were ethanol precipitated and resuspended in saline prior to use alone or as an additive to the plasmid DNA solution.

Table 10

Please re-write Table 10 beginning on page 68, line 1, as follows:

Inhibitory CpG motifs can block B cell proliferation induced by a stimulatory CpG motif

Oligonucleotide added	cpm
medium	194
1668 (TCCATGACGTTCCTGATGCT) (SEQ ID NO:68)	34,669
1668 + 1735 (GCGTTTTTTTTGCG) (SEQ ID NO:69)	24,452
1720 (TCCATGAGCTTCCTGATGCT) (SEQ ID NO:70)	601
1720 + 1735	1109

Splenic B cells from a DBA/2 mouse were cultured at 5 X 10⁴ cells/100 µl well in 96 well microtiter plates in RPMI as previously described (Krieg, *et al.*, 1995) with or without the indicated phosphorothioate modified oligonucleotides at a concentration of 60 ng/ml for 48 hr. The cells were then pulsed with ³H thymidine, harvested, and the cpm determined by scintillation counting. The stimulatory CpG oligo 1668 was slightly but significantly inhibited by the inhibitory motifs in oligo 1735. The non CpG oligo 1720 is included as a negative control.

Please re-write Table 11, beginning on page 69, line 1, as follows:

Table 11
Inhibitory effects of "bad" CpG motifs on the "good" CpG Oligo 1619
Notes:

The sequence of oligo 1619 is TCCATGT<u>CG</u>TTCCTGATGCT (SEQ ID NO:71) 1949 has only 1 GCG at the 3' end, which has essentially no inhibitory activity

Oligonucleotide added	IL-12 in pg/ml
medium	0
1619 alone	6
1619 + 1949 (TCCATGTCGTTCCTGATGCG) (SEQ ID NO:72)	16
1619 + 1952 (TCCATGTCGTTCCGCGCGCG) (SEQ ID NO:73)	0
_1619 + 1953 (TCCATGTCGTTCCTGCCGCT) (SEQ-ID-NO:74)	0
1619 + 1955 (GCGGCGGGGGGGGGGGCGCCC) (SEQ ID NO:75)	0

Human PBMC were cultured in 96 well microtiter plates at $10^5/200\mu l$ for 24 hr in RPMI containing 10% autologous serum. Supernatants were collected at the end of the culture and tested for IL-12 by ELISA. All wells except the control (medium) contained 60 $\mu g/m l$ of the stimulatory CpG oligodeoxynucleotide 1619; stimulatory (1949) and inhibitory (all other sequences have a strong inhibitory motif) oligos were added to the indicated wells at the same concentration at the beginning of culture. All oligos have unmodified backbones.

TABLICA CARBIA

Please re-write Table 13 beginning on page 71, line 1, as follows:

Table 13 Identification of neutralizing CpG motifs which reduce the induction of cytokine secretion by a CpG-S motif in the same ODN (cisneutralization)

ODN	sequence 5'-3' ¹	ODN-ind	luced cytokine expr	e expression ²
		$I\Gamma$ -6 ²	IL-12	IFN-y
None		\$	206	868
1619	TCCATGTCGTTCCTGATGCT (SEQ ID NO:71)	1405	3130	4.628
1952		559	1615	2135
1953	$\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (SEQ ID NO:74)$	577	1854	2000

¹Dots in the sequence of ODN 1952 and 1953 indicate identity to ODN 1619; CpG dinucleotides are underlined for clarity. ODN without CpG-N or CpG-S motifs had little or no effect on cytokine production. The data shown are representative of 4 experiments.

²All cytokines are given in pg/ml; measured by ELISA on supernatants from DBA/2 spleen cells cultured in 96 well plates at 2 X 10⁷ cells/ml for 24 hr with the indicated ODN at 30 µg/ml. Std. dev. of the triplicate wells was <7%. None of the ODN induced significant amounts of

TOTALLIA TOTALLA

Please re-write Table 14 beginning on page 72, line 1, as follows:

Table 14 Inhibition of CpG-induced cytokine secretion by ODN containing CpG-N motifs

¹BALB/c spleen cells were cultured in 96 well plates at 2 X 10⁷ cells/ml with the indicated 0DN for 24 hr and then the supernatants were assayed for IL-12 by ELISA (pg/ml).

(TCCATGTCGTTCCTGATGCT) (SEQ ID NO: 71) at 30 µg/ml. The data shown are representative of 5 experiments. ²Cells were set up the same as in ¹ except that IL-12 secretion was induced by the addition of the CpG ODN 1619 ¹