

WHAT IS MACHINE

LEARNING

DATA SCIENCE AND MACHINE LEARNING

Machine Learning is a method of teaching computers to make predictions based on some data.

DATA SCIENCE AND MACHINE LEARNING

TYPICAL WORKFLOW

INTRODUCTION

MOTIVATION: MACHINE LEARNING IN R

The **good** news:

- CRAN serves hundreds of packages for machine learning
- Often compliant to the unwritten interface definition:

```
model = fit(target ~ ., data = train.data, ...)
predictions = predict(model, newdata = test.data, ...)
```

The bad news:

- Some packages' API is "just different"
- Functionality is always package or model-dependent, even though the procedure might be general
- No meta-information available or buried in docs

Our goal: A domain-specific language for ML concepts!

MOTIVATION: MLR

- Project home page: https://github.com/mlr-org/mlr
 - Cheatsheet for an quick overview
 - Tutorial for mlr documentation with many code examples
 - Ask questions in the GitHub issue tracker
- 8-10 main developers, quite a few contributors, 4 GSOC projects in 2015/16 and one in 2017
- About 30K lines of code, 8K lines of unit tests

MOTIVATION: MLR

• Unified interface for the basic building blocks: tasks, learners, hyperparameters, . . .

BASIC FEATURES OF MLR

- Tasks and Learners
- Train, Test, Resample
- Performance
- Benchmarking
- Hyperparameter Tuning
- Nested Resampling
- Parallelization

LEARN MORE

- Extensive Tutorial covers *all* features in mlr: https://mlr-org.github.io/mlr/
- Tuning
- Resampling (with blocking)
- Visualization Topics
- Multilabel Classification, Survival Analysis, Clustering
- Handling Spatial Data
- Functional Data
- Create Custom Learners and Measures
- ...

GETTING HELP

- Ask questions on Stackoverflow: https://stackoverflow.com/questions/tagged/mlr
- Found bugs? Report them: https://github.com/mlr-org/mlr/issues

You want to contribute? - Open a PR on github and join our slack: https://mlr-org.slack.com/

FIRST DATA ANALYSIS

TITANIC - MACHINE LEARNING FROM DISASTER

- Titanic sinking on April 15, 1912
- Data provided on Kaggle: https://www.kaggle.com/c/titanic
- 809 out of 1309 passengers died
- Task:
 - Can we predict who survived?
 - Why did people die / Which groups?

TITANIC - DATA SET

Data Dictionary:

Survived Survived, 0 = No, 1 = Yes

Pclass Ticket class, from 1st to 3rd

Sex Sex

Age in years

Sibsp # of siblings/ spouses
Parch # of parents/ children

Ticket Ticket number
Fare Passenger fare

Cabin number

Embarked Port of Embarkation

TITANIC - DATA SET

```
load("titanic.rda")
str(data)
## 'data.frame': 1309 obs. of 11 variables:
   $ Pclass : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 ...
##
   $ Survived: Factor w/ 2 levels "0","1": 2 2 1 1 1 2 2 1 ...
##
##
   $ Name
              : chr "Allen. Miss. Elisabeth Walton" "Allison. Ma"..
##
   $ Sex
              : Factor w/ 2 levels "female", "male": 1 2 1 2 1 2 1 ...
    $ Age
              : num 29 0.917 2 30 ...
##
##
   $ Sibsp
              : num 0 1 1 1 1 0 1 0 ...
   $ Parch
              : num 0 2 2 2 2 0 0 0 ...
##
##
   $ Ticket
              : Factor w/ 929 levels "110152", "110413", ...: 188 50 ...
   $ Fare
              : num 211 152 152 152 ...
##
   $ Cabin
              : Factor w/ 187 levels "", "A10", "A11", ...: 45 81 81 8...
##
   $ Embarked: Factor w/ 4 levels "", "C", "Q", "S": 4 4 4 4 4 4 4 4 ...
##
```

TITANIC - DATA SET

```
library(mlr)
print(summarizeColumns(data)[, -c(5, 6, 7)], digits = 0)
                          na mean min max nlevs
##
          name
                    type
## 1
       Pclass
                  factor
                               NA 277
                                       709
## 2
     Survived
                  factor
                              NA 500
                                       809
## 3
          Name character
                               NA
                                   1
                                            1307
## 4
          Sex
                  factor
                               NA 466
                                      843
## 5
           Age
                numeric 263
                               30
                                        80
                                               0
## 6
         Sibsp
                numeric
                                        8
                                               0
## 7
       Parch
                 numeric
                                0
                                         9
                                               0
## 8
       Ticket
                factor
                               NA
                                        11
                                             929
## 9
          Fare
                 numeric
                               33
                                       512
                                               0
## 10
         Cabin
                               NA
                                    1 1014
                                             187
                factor
                                      914
## 11 Embarked
                  factor
                               NA
                                               4
```

Set empty factor levels to NA:

```
data$Embarked[data$Embarked == ""] = NA
data$Embarked = droplevels(data$Embarked)
data$Cabin[data$Cabin == ""] = NA
data$Cabin = droplevels(data$Cabin)
```

```
library(BBmisc)
library(stringi)
# Price per person, multiple tickets bought by one person
data$farePp = data$Fare / (data$Parch + data$Sibsp + 1)
# The deck can be extracted from the the cabin number
data$deck = as.factor(stri sub(data$Cabin, 1, 1))
# Starboard had an odd number, portside even cabin numbers
data$portside = stri_extract_last_regex(data$Cabin, "[0-9]")
data$portside = as.numeric(data$portside) \( \frac{\pi}{\pi} \) 2
# Drop stuff we cannot easily model on
data = dropNamed(data,
  c("Cabin", "PassengerId", "Ticket", "Name"))
```

```
print(summarizeColumns(data)[, -c(5, 6, 7)], digits = 0)
##
                      na mean min max nlevs
         name
                 type
## 1
       Pclass factor
                             NA 277 709
## 2
     Survived factor
                             NA 500 809
## 3
          Sex factor
                             NA 466 843
## 4
          Age numeric
                      263
                             30
                                  0 80
## 5
        Sibsp numeric
                                  0 8
## 6
     Parch numeric
                             0
## 7
         Fare numeric
                             33
                                  0 512
## 8
     Embarked factor
                             NA 123 914
## 9
       farePp numeric
                             21
                                  0 512
## 10
         deck factor 1014
                             NΑ
                                  1 94
## 11 portside numeric 1020
                              0
                                  0
                                     1
                                            0
```

- Impute missing numeric values with median, missing factor values with a separate category
- NB: This is really naive, we should probably embed this in cross-validation

```
data = impute(data, cols = list(
   Age = imputeMedian(),
   Fare = imputeMedian(),
   Embarked = imputeConstant("__miss__"),
   farePp = imputeMedian(),
   deck = imputeConstant("__miss__"),
   portside = imputeConstant("_miss__")
))

data = data$data
data = convertDataFrameCols(data, chars.as.factor = TRUE)
```

TITANIC - TASK

```
task = makeClassifTask(id = "titanic", data = data,
 target = "Survived", positive = "1")
print(task)
## Supervised task: titanic
## Type: classif
## Target: Survived
## Observations: 1309
## Features:
## numerics factors ordered functionals
##
                                    0
## Missings: FALSE
## Has weights: FALSE
## Has blocking: FALSE
## Has coordinates: FALSE
## Classes: 2
## 0 1
## 809 500
## Positive class: 1
```

WHAT LEARNERS ARE AVAILABLE?

Classification

- LDA, QDA, RDA, MDA
- Trees and forests
- Boosting (different variants)
- SVMs (different variants)
- (Deep) Neural Networks
- ..

Clustering

- K-Means
- EM
- DBscan
- X-Means
- ...

Regression

- · Linear, lasso and ridge
- Boosting
- · Trees and forests
- Gaussian processes
- (Deep) Neural Networks
- ...

Survival

- · Cox-PH
- Cox-Boost
- Random survival forest
- Penalized regression
- ...

WHAT LEARNERS ARE AVAILABLE?

We can explore them on the webpage:

mir 2.13 Get Sta	rted Basics 🕶	Advan	ced 🕶	Ext	endin	ig → Ap	pendix 🕶	mlr-org Packages ▼ Search
Class / Short Name / Name	Packages	Num.	Fac.	Ord.	NAs	Weights	Props	Note
classif.ada ada	ada rpart	х	X				prob twoclass	xval has been set to 0 by default for spec
ada Boosting								
classif.adaboostm1 adaboostm1 ada Boosting M1	RWeka	Х	Х				prob twoclass multiclass	NAs are directly passed to WEKA with na.ac
classif.bartMachine bartmachine	bartMachine	х	Х		Х		prob twoclass	use_missing_data has been setto TRUE
Bayesian Additive Regression Trees								
classif.binomial binomial	stats	Х	Х			Х	prob twoclass	Delegates to glm with freely choosable bind
Binomial Regression								

WHAT LEARNERS ARE AVAILABLE?

Or ask mlr

```
tab = listLearners(task, warn.missing.packages = FALSE)
tab[1:5, c("class", "package")]
##
                   class
                              package
## 1
             classif.ada
                             ada, rpart
## 2 classif.adaboostm1
                                 RWeka
## 3 classif.bartMachine bartMachine
## 4
        classif.binomial
                                 stats
## 5
        classif.boosting adabag, rpart
```

TITANIC - LEARNER

```
lrn = makeLearner("classif.kknn", k = 3, predict.type = "prob")
print(lrn)

## Learner classif.kknn from package kknn
## Type: classif
## Name: k-Nearest Neighbor; Short name: kknn
## Class: classif.kknn
## Properties: twoclass,multiclass,numerics,factors,prob
## Predict-Type: prob
## Hyperparameters: k=3
```

TITANIC - TRAIN

```
set.seed(123)
n = getTaskSize(task)
train.i = sample(n, size = 2/3 * n)
test.i = setdiff(1:n, train.i)
str(train.i)
## int [1:872] 377 1032 535 1154 1228 60 689 1162 ...
str(test.i)
## int [1:437] 4 6 8 11 12 18 22 27 ...
mod = train(lrn, task, subset = train.i)
```

TITANIC - MODEL

```
## Model for learner.id=classif.kknn; learner.class=classif.kknn
## Trained on: task.id = titanic; obs = 872; features = 10
## Hyperparameters: k=3

# retrieve model as returned from the third party package
# [NB: knn does not have a training step, mlr just returns the
# training data which is required in the predict step]
rmodel = getLearnerModel(mod)
```

TITANIC - PREDICT

```
pred = predict(mod, task = task, subset = test.i)
head(as.data.frame(pred))
     id truth prob.0 prob.1 response
##
           0 0.6621 0.338
## 4 4
## 6 6 1 0.7358 0.264
## 8 8 0 1.0000 0.000
## 11 11 0 0.7358 0.264
## 12 12 1 0.0000 1.000
## 18 18 1 0.0737 0.926
head(getPredictionProbabilities(pred))
## [1] 0.338 0.264 0.000 0.264 1.000 0.926
```

TITANIC - PERFORMANCE

```
performance(pred, measures = list(mlr::acc, mlr::auc))
## acc auc
## 0.725 0.786
```

TITANIC - EXTERNAL VALIDATION SET

You can also predict on data not included in the task:

```
test.data = dropNamed(data[test.i, ], "Survived")
pred = predict(mod, newdata = data[test.i, ])
performance(pred, measures = list(mlr::acc, mlr::auc))
## acc auc
## 0.725 0.786
```

EXERCISE 1

RESAMPLING

HOLD-OUT IN MLR

```
task = iris.task
n = getTaskSize(task)
ratio = 2/3
set.seed(123)
train.inds = sample(1:n, n * ratio)
test.inds = setdiff(1:n, train.inds)
lrn.knn1 = makeLearner("classif.knn", k = 1)
mod = train(lrn.knn1, task, subset = train.inds)
preds = predict(mod, task, subset = test.inds)
preds = predict(mod, newdata = iris[test.inds, ]) # alternative
mlr::performance(preds, mmce)
## mmce
## 0.08
```

CROSS-VALIDATION IN MLR

```
# Define learner:
lrn = makeLearner("classif.randomForest", predict.type = "prob")
# Define resampling strategy:
rdesc = makeResampleDesc("CV", iters = 3, stratify = TRUE)
r = resample(lrn, spam.task, rdesc,
 measure = list(mlr::acc, mlr::auc))
print(r)
## Resample Result
## Task: spam-example
## Learner: classif.randomForest
## Aggr perf: acc.test.mean=0.952,auc.test.mean=0.985
## Runtime: 14.5019
```

CROSS-VALIDATION IN MLR

```
head(r$measures.test)
           acc
                auc
## 1
       1 0.949 0.982
## 2
     2 0.956 0.988
## 3
     3 0.950 0.986
head(as.data.frame(r$pred))
      id truth prob.nonspam prob.spam response iter set
## 1 1814 nonspam
                       0.684
                                0.316
                                      nonspam
                                                 1 test
## 2 1818 nonspam
                       0.960
                             0.040
                                      nonspam
                                                1 test
## 3 1822 nonspam
                       0.922 0.078
                                      nonspam
                                                1 test
## 4 1828 nonspam
                       0.982 0.018 nonspam
                                                1 test
## 5 1829 nonspam
                       0.958
                              0.042 nonspam
                                                1 test
## 6 1843 nonspam
                       0.948
                               0.052
                                      nonspam
                                                1 test
```

PARAMETER OF MAKERESAMPLINGDESC

Methods	Parameter
CV	iters (Number of iterations)
L00	
RepCV	reps (Repeats for repeated CV)
	folds (Folds in the repeated CV)
Bootstrap	iters (Number of iterations)
Subsample	iters (Number of iterations)
	split (Proportion of training cases)
Holdout	<pre>split (Proportion of training cases)</pre>

For instance 10-fold cross validation:

```
makeResampleDesc(method = "CV", iters = 10)

## Resample description: cross-validation with 10 iterations.
## Predict: test
## Stratification: FALSE
```

POSSIBLE WAYS TO USE CROSS VALIDATION

1. Explicitly define resampling:

Other pre defined objects are cv2, cv3 and cv5.

POSSIBLE WAYS TO USE CROSS VALIDATION

2. Use crossval:

```
res3 = crossval("classif.randomForest", iris.task, iters = 10,
    show.info = FALSE)
res3
```

Resample Result
Task: iris-example

Learner: classif.randomForest
Aggr perf: mmce.test.mean=0.053

Runtime: 0.449039

Similar functions are repcv, holdout, subsample, bootstrapB632 and bootstrapB632plus.

```
# quick way to compare learners with identical train/test splits
task = iris.task
learners = list(
 makeLearner("classif.knn", k = 3),
 makeLearner("classif.lda"),
 makeLearner("classif.naiveBayes")
benchmark(learners, task, resamplings = cv3)
##
         task.id
                         learner.id mmce.test.mean
                     classif.knn
## 1 iris-example
                                       0.0533
## 2 iris-example
                        classif.lda
                                        0.0200
## 3 iris-example classif.naiveBayes
                                        0.0400
```

```
tasks = list(iris.task, sonar.task, pid.task)
bm = benchmark(learners, tasks, resampling = cv3)
print(bm)
##
                         task.id
                                          learner.id mmce.test.mean
## 1
                    iris-example
                                        classif.knn
                                                             0.0467
## 2
                    iris-example
                                        classif.lda
                                                             0.0200
## 3
                    iris-example classif.naiveBayes
                                                             0.0400
## 4 PimaIndiansDiabetes-example
                                        classif.knn
                                                             0.2930
## 5 PimaIndiansDiabetes-example
                                        classif.lda
                                                             0.2357
## 6 PimaIndiansDiabetes-example classif.naiveBayes
                                                             0.2500
## 7
                                        classif.knn
                                                             0.1877
                   Sonar-example
## 8
                   Sonar-example
                                        classif.lda
                                                             0.2788
## 9
                   Sonar-example classif.naiveBayes
                                                             0.3028
```

```
# aggregated data:
getBMRAggrPerformances(bm, as.df = TRUE)
##
                         task.id
                                         learner.id mmce.test.mean
## 1
                    iris-example
                                        classif.knn
                                                             0.0467
## 2
                    iris-example
                                        classif.lda
                                                             0.0200
## 3
                    iris-example classif.naiveBayes
                                                             0.0400
## 4 PimaIndiansDiabetes-example
                                       classif.knn
                                                             0.2930
   5 PimaIndiansDiabetes-example
                                       classif.lda
                                                             0.2357
## 6 PimaIndiansDiabetes-example classif.naiveBayes
                                                             0.2500
## 7
                   Sonar-example
                                        classif.knn
                                                             0.1877
## 8
                   Sonar-example
                                        classif.lda
                                                             0.2788
## 9
                   Sonar-example classif.naiveBayes
                                                             0.3028
```

```
# complete data:
head(as.data.frame(bm), 10)
##
                         task.id
                                         learner.id iter
                                                          mmce
## 1
                    iris-example
                                        classif.knn
                                                       1 0.040
## 2
                    iris-example
                                        classif.knn
                                                       2 0.020
## 3
                    iris-example
                                        classif.knn
                                                       3 0.080
## 4
                    iris-example
                                        classif.lda
                                                       1 0.020
## 5
                    iris-example
                                        classif.lda
                                                       2 0.020
## 6
                    iris-example
                                        classif.lda
                                                       3 0.020
## 7
                    iris-example classif.naiveBayes
                                                       1 0.040
## 8
                    iris-example classif.naiveBayes
                                                       2 0.040
## 9
                    iris-example classif.naiveBayes
                                                       3 0.040
## 10 PimaIndiansDiabetes-example
                                        classif.knn
                                                       1 0.301
```

plotBMRBoxplots(bm, pretty.names = FALSE)

plotBMRSummary(bm, pretty.names = FALSE)

TUNING

- Many parameters or decisions for an ML algorithm are not decided by the (usually loss-minimizing) fitting procedure
- Our goal is to optimize these w.r.t. the estimated prediction error (often this implies an independent test set), or by cross-validation
- The same applies to preprocessing, feature construction and other model-relevant operations. In general we might be interested in optimizing a machine learning "pipeline"

- Our learning method or are there actually several?
- The performance measure determined by the application
- Resampling procedure for measuring the performance
- Hyperparameters plus regions-of-interest

- Optimize hyperparameters for learner w.r.t. prediction error
- Tuner proposes configuration, eval by resampling, tuner receives performance, iterate

- Our optimization problem is derivative-free, we can only ask for the quality of selected points (black-box problem)
- Our optimization problem is stochastic in principle. We want to optimize expected performance and use resampling
- Evaluation of our target function will probably take quite some time; Parallelization is often mandatory
- Categorical and dependent parameters complicate the problem

GRID SEARCH

• Try all hyperparameters combinations on a multi-dimensional discretized grid

GRID SEARCH

Advantages

- Very easy to implement, therefore very popular
- All parameter types possible
- Parallelization is trivial

Disadvantages

- Combinatorial explosion, inefficient
- Searches large irrelevant areas
- Which values / discretization?

RANDOM SEARCH

- Small variation of grid search
- Instead of evaluating all hyper-parameter configurations on the grid, we uniformly sample from the region-of-interest

RANDOM SEARCH

Advantages

- Very easy to implement, therefore very popular
- All parameter types possible
- Parallelization is trivial
- Anytime algorithm we can always increase the budget when we are not satisfied
- Often better than grid search, as each individual parameter has been tried with *m* different values, when the search budget was *m*. Mitigates the problem of discretization.

Disadvantages

 As for grid search, many evaluations in areas with low likelihood for improvement

ADVANCED TUNING TECHNIQUES

- Simulated Annealing
- Genetic Algorithm / CMAES
- Iterated F-Racing
- Model-based Optimization / Bayesian Optimization

HYPERPARAMETERS IN MLR

```
lrn = makeLearner("classif.rpart")
getParamSet(lrn)
##
                              Def
                                    Constr Req Tunable Trafo
                     Type len
## minsplit
                  integer
                               20 1 to Inf
                                                  TRUE
## minbucket
                  integer -
                                 - 1 to Inf -
                                                  TRUE
## cp
                  numeric - 0.01
                                    0 to 1 -
                                                  TRUE
## maxcompete
                  integer -
                                 4 0 to Inf -
                                                  TRUE
## maxsurrogate
                  integer -
                                5 0 to Inf -
                                                  TRUE
## usesurrogate
                 discrete -
                                     0.1.2
                                                  TRUE
## surrogatestyle discrete -
                                       0,1
                                                  TRUE
## maxdepth
                               30
                                   1 to 30
                                                  TRUE
                  integer
## xval
                  integer
                               10 0 to Inf
                                                 FALSE
## parms
                  untyped
                                                  TRUE
```

HYPERPARAMETERS IN MLR

Either set them in constructor, or change them later:

```
lrn = makeLearner("classif.ksvm", C = 5, sigma = 3)
lrn = setHyperPars(lrn, C = 1, sigma = 2)
```

TUNING IN MLR

- Create a set of parameters
- Here we optimize an RBF SVM on logscale

```
lrn = makeLearner("classif.ksvm",
    predict.type = "prob")

# this is actually a bad way to encode the SVM space, see a few slides later
# how to do this properly
par.set = makeParamSet(
    makeNumericParam("C", lower = 0.001, upper = 100),
    makeNumericParam("sigma", lower = 0.001, upper = 100)
)
```

TUNING IN MLR

Optimize the hyperparameter of learner

```
tune.ctrl = makeTuneControlRandom(maxit = 50L)
tr = tuneParams(lrn, task = sonar.task, par.set = par.set,
  resampling = hout, control = tune.ctrl,
  measures = mlr::auc)
```

TUNING IN MLR

```
tr$x
## $C
## [1] 5.23
##
## $sigma
## [1] 3.05
tr$y
## auc.test.mean
##
         0.633
head(as.data.frame(tr$opt.path), 3L)[, c(1,2,3,7)]
       C sigma auc.test.mean exec.time
##
## 1 73.8 86.0
                        0.5 0.047
## 2 71.7 91.9
                        0.5 0.040
## 3 60.4 44.6
                        0.5 0.046
```

PARAMETER TYPES

```
makeNumericParam("x" ,lower = -1, upper = 1)
makeIntegerParam("x" ,lower = -1L, upper = 1L)
makeDiscreteParam("x" ,values = c("a", "b", "c"))
makeLogicalParam("x")
```

and vector-types exist for all param types

```
makeNumericVectorParam("x" , len = 3L, lower = -1, upper = 1)

## Type len Def Constr Req Tunable Trafo
## 1 numericvector 3 - -1 to 1 - TRUE -
```

DEPENDENT PARAMS AND TRAFOS

```
lrn = makeLearner("classif.ksvm")
ps = makeParamSet(
   makeDiscreteParam("kernel", values = c("polydot", "rbfdot")),
   makeNumericParam("C", lower = -15, upper = 15,
        trafo = function(x) 2^x),
   makeNumericParam("sigma", lower = -15, upper = 15,
        trafo = function(x) 2^x,
   requires = quote(kernel == "rbfdot")),
   makeIntegerParam("degree", lower = 1, upper = 5,
   requires = quote(kernel == "polydot"))
)
```

PARALLEL MLR

- Many tasks in statistics are embarrassingly parallel (independence assumptions, resampling, ...)
- R is mostly single-threaded (matrix operations may be parallel, depending on your installation)
- Multiple backends for explicit parallelization available:
 - Multicore (packages parallel/multicore)
 - Socket and MPI cluster (packages parallel/snow/Rmpi)
 - HPC-Clusters (package batchtools): SLURM, Torque/PBS, SGE, LSF, Docker, SSH makeshift clusters, . . .

- We use parallelMap in mlr an abstraction for all backends
- Initialize with parallelStart()
- Parallelize function call with parallelMap()/parallelLapply()/...
- Stop with parallelStop()

```
parallelStartSocket(4)
parallelMap(function(x) x^2, 1:10)
parallelStop()
```

- The first loop which is marked as parallel executable will be automatically parallelized
- Which loop is suited best for parallelization depends on the number of iterations
- Levels allow fine grained control over the parallelization
 - mlr.resample: Each resampling iteration (a train / test step) is a parallel job.
 - mlr.benchmark: Each experiment "run this learner on this data set" is a parallel job.
 - mlr.tuneParams: Each evaluation in hyperparameter space "resample with these parameter settings" is a parallel job. How many of these can be run independently in parallel depends on the tuning algorithm.
 - mlr.selectFeatures: Each evaluation in feature space "resample with this feature subset" is a parallel job.

```
lrns = list(makeLearner("classif.rpart"), makeLearner("classif.svm"))
rdesc = makeResampleDesc("Bootstrap", iters = 100)
parallelStartSocket(4)
## Starting parallelization in mode=socket with cpus=4.
bm = benchmark(learners = lrns, tasks = iris.task, resamplings = rdesc)
## Exporting objects to slaves for mode socket: .mlr.slave.options
## Mapping in parallel: mode = socket; cpus = 4; elements = 2.
parallelStop()
## Stopped parallelization. All cleaned up.
```

Parallelize the bootstrap instead:

```
parallelStartSocket(4, level = "mlr.resample")
## Starting parallelization in mode=socket with cpus=4.
bm = benchmark(learners = lrns, tasks = iris.task, resamplings = rdesc)
## Task: iris-example, Learner: classif.rpart
## Exporting objects to slaves for mode socket: .mlr.slave.options
## Resampling: OOB bootstrapping
## Measures:
                         mmce
## Mapping in parallel: mode = socket; cpus = 4; elements = 100.
##
## Aggregated Result: mmce.test.mean=0.059
##
## Task: iris-example, Learner: classif.svm
## Exporting objects to slaves for mode socket: .mlr.slave.options
## Resampling: OOB bootstrapping
```

EXERCISE 2