112學年度丁程科學系大學部專題研究競賽

事題名稱

運用DON與PPO演算法於離散 動作空間問題-以象棋為例

系統架構流程圖

王瑞辰 專題牛

陳牧言 指導教授

Experience Replay

研究動機

2017年之後,AI的發展速度呈指數性上 升。強化式學習在解決複雜問題上取得了令 人矚目的成就。我希望由這個專題,探索相 關技術與理論。

選擇PPO和DQN兩種不同演算法以及個別 使用變體神經網絡處理象棋這項複雜的離散 動作空間問題,個別對其產生的model進行比 較,讓一般人也能從中學習AI的思考模式。

神經網絡相關模型

MLP (Multilayer Perceptron)

由多個神經元 層組成,包括輸入 層、隱藏層以及輸 出層。每個神經元 都與前後層的神經 元相連接,利用反

MLP通常用多個全連接層作為神經元之 間的連接方式。

Transformer

為編碼器-解 碼器架構,由多頭 注意力機制(堆疊 多個self-attention 組成)、前饋神經

網絡、殘差連接和歸一化層複合組成。主要用 於處理或生成順序輸入資料資料。

self-attention:透過增強減弱權重,關注 資料中最重要的部分。根據query、key和 value自適應的更改權重大小。

成果展現

東馬象士士象馬東 **(4)** 炮車 相任師任相馬重

相關數值圖表 demo影片

視覺化 選擇動作 model 更 Training 設計和調 整reward Function 棋盤當下 化 象棋規 pygame 轉換為張量 狀態 遊戲呈現 則製作 調整網絡 盤 架構 model 選擇動作 Training 視覺化 important sampling 使用者操作流程

演算法比較

- DON關注值函數的學習,選擇最高O值的動作。 PPO關注策略的學習,由動作的概率選擇策略。
- DON由O network和Target network組成。 PPO由Policy Network和Value Network組成。
- DQN會使用非當次迭代的經驗樣本。 PPO只會使用當次迭代的經驗樣本。
- DQN通過最小化Q值的均方誤差更新參數。 PPO 通過最大化優勢函數和KL散度更新參數。

未來展望

象棋的動作維度很多,導致開局選擇動作的正確率不佳 到了殘局才有較好的表現。希望未來當我對象棋與神經網絡 有更深了解後,能訓練出媲美AlphaZero的model,在變幻莫 測的棋局給予精準的策略選擇。

更進一步發展擁有語音教學模式的AI,協助所有對象棋 有興趣的玩家能學習如何針對不同的棋局做出決策,並推廣 這項古老的遊戲。