Flexible Face Detection with Haar-like Features

Department of Information and Intelligent Systems (Prof. Ayumi Shinohara) Matthew Barga (Purdue University)

Introduction

Face detection has come a long way and there are currently many algorithms and techniques in practice that can consistently and successfully detect faces from a frontal view. This success is due much in part to the use of Haar features introduced by Viola et al. [3]. However, there is still progress to be made in the creation of more flexible methods, capable not only of frontal face detection, but efficient detection from any pose or angle.

Methods

All programming was performed using the OpenCV library in C language. The method that OpenCV uses for detection is based on the Viola-Jones method [3]. The method works based on Haar features, which are calculated by subtracting average dark-region successive checks for Haar features [1]. In pixel values from average light-region pixel values [2]. The calculated difference is compared with a threshold, and if the difference is large enough, the feature is present. Many of these features have been collected in a cascade. An image is passed to the cascade and each feature is checked against the image. If the image fails one of the features, a face is said to be not present. In this way, if an image passes a number of these features, a face is said to be present.

There are also methods in practice to detect faces not only from the frontal view, but from any angle or pose [4]. The successful detection rate of these methods however is much lower. In order to create a flexible algorithm capable of detecting faces from a wider range of poses, many techniques can be used. This can include inclusion of a wider range of Haar-features used to detect a Rapid object detection using a boosted profile face [4].

Fig. 1: Example of basic Haar-features used in face detection.

I have looked into the effect of adding simple methods to a basic face detection algorithm that can detect the widest range of faces, without a large affect on processing time. One of these methods is rotation of an image through a range of angles and then this way rotated faces can be successfully detected.

Conclusion

The rotation method has proved to be fairly effective and the detection rate of rotated faces is comparable to that of a normal vertical frontal face detection. In the future, I would like to investigate the effect of implementing new Haar features for detection of a range of poses.

Reference

[1]Zhaomin Zhu, et. al. Multi-view Face Detection and Recognition using Haar-like Features [2] Robin Hewitt Seeing With OpenCV: Finding Faces in Images (2007) [3]P. Viola and M. Jones cascade of simple features (2001) [4] Geovany A. Ramirez, et. al Multi-pose Face Detection with Asymmetric Haar Features