Eko Didik Widianto

Sistem Komputer - Universitas Diponegoro

Widianto

Rangkaian Multi-Keluaran

Ringkasan

- Sebelumnya dibahas tentang implementasi fungsi logika menjadi suatu rangkaian logika (disebut proses sintesis), baik menggunakan tabel kebenaran, maupun aljabar Boolean
 - Aljabar Boolean: aksioma, teorema, dan hukum
 - Diagram Venn
 - Manipulasi aljabar
 - Sintesis ekspresi logika dari tabel kebenaran
 - Bentuk kanonik: minterm/SOP dan maxterm/POS beserta notasinya
 - Konversi SOP <-> POS
 - Rangkaian AND-OR, OR-AND
 - Rangkaian NAND-NAND, NOR-NOR
- Rangkaian optimal diperoleh dengan penyederhanaan ekspresi logika secara Aljabar

. .

iserisi

- Dibahas proses sintesis rangkaian logika minimal menggunakan peta Karnaugh untuk menyederhanakan persamaan fungsi logika
 - Peta Karnaugh juga digunakan untuk merancang rangkaian multikeluaran minimal
- Pokok Bahasan:
 - peta Karnaugh: 2 variabel, 3-variabel, 4-variabel, 5-variabel dan 6-variabel
 - strategi minimisasi rangkaian SOP (pengelompokan minterm)
 - kondisi don't care dan rangkaian dengan spesifikasi tidak lengkap
 - minimisasi POS (pengelompokan Maxterm)
 - literal, implicant, *cover*, *cost*, implicant utama dan fungsi minimum
 - implementasi rangkaian logika SOP optimal dengan AND-OR dan/atau NAND-NAND
 - implementasi rangkaian logika POS optimal dengan OR-AND dan/atau NOR-NOR
 - rangkaian multi-keluaran

- Setelah mempelajari bab ini, mahasiswa akan mampu:
 - 1. [C2] memahami prinsip-prinsip penyederhanaan fungsi logika menggunakan peta Karnaugh;
 - 2. [C3] menggunakan Don't care dalam peta Karnaugh;
 - 3. [C6] mendesain rangkaian logika SOP minimal menggunakan peta Karnaugh:
 - 4. [C6] mendesain rangkaian logika POS minimal menggunakan peta Karnaugh:
 - 5. [C6] mendesain rangkaian logika minimal dengan menggabungkan beberapa fungsi dalam satu rangkaian multi-keluaran;
- Link
 - ► Website: http://didik.blog.undip.ac.id/2014/02/25/ tkc205-sistem-digital-2013-genap/
 - Email: didik@undip.ac.id

Bahasan

@2014.Eko Didik

Widianto

Rangkaian

Multi-Keluaran

Peta Karnaugh Karnaugh Map Grouping K-Map Literal, Implicant, Cover dan Cost Rangkaian POS Optimal Fungsi Tidak Lengkap

Rangkaian Multi-Keluaran

Ringkasan

Lisensi

Rangkaian Optimal

- Rangkaian optimal
 - Cost rangkaian sekecil mungkin: jumlah gerbang (dan transistor), jumlah jalur
 - Fungsional terpenuhi
 - Constraint terpenuhi: delay, fanout (driving), area
- Rangkaian optimal biasanya minimal
- Rangkaian optimal bisa diperoleh dengan teknik:
 - Penyederhanaan fungsi logika
 - Menggunakan prinsip-prinsip Aljabar Boolean
 - Menggunakan Karnaugh Map
 - Penggunaan gerbang secara bersama untuk beberapa fungsi sekaligus, membentuk rangkaian multi-keluaran

@2014 Fko Didik

Widianto

Peta Karnaugh

Rangkaian Multi-Keluaran

Bahasan

Peta Karnaugh Karnaugh Map

@2014.Eko Didik

Widianto

Karnaugh Map

@2014,Eko Didik Widianto

SOP: menggunakan hukum 14a $(x \cdot y + x \cdot \overline{y} = x)$

Peta Karnaugh Karnaugh Map Grouping K-Map

POS: menggunakan hukum 14b $((x + y) \cdot (x + \overline{y}) = x)$

Cost

Rangkaian POS Ontimal

▶ Beberapa minterm atau maxterm dapat digabungkan menggunakan hukum 14a atau 14b jika berbeda hanya di satu variabel saja $f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 + x_1 x_2 \overline{x}_3$ m_1 dan m_5 berbeda di x_1 , dan m_4 dan m_6 berbeda di x_2

Rangkaian Multi-Keluaran

 $f = \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 \overline{x}_3$ $= (\overline{x}_1 + x_1) \overline{x}_2 x_3 + x_1 (\overline{x}_2 + x_2) \overline{x}_3$

3

 $= \overline{x}_2 x_3 + x_1 \overline{x}_3$

Lisensi

 $f(x_1,x_2,x_3)=(x_1+x_2+x_3)(x_1+\overline{x}_2+x_3)(x_1+\overline{x}_2+\overline{x}_3)(\overline{x}_1+\overline{x}_2+\overline{x}_3)$ M_0 dan M_2 berbeda di x_2 , dan M_4 dan M_7 berbeda di x_1

$$f = ((x_1 + x_3) + x_2 \overline{x}_2) (x_1 \overline{x}_1 + (\overline{x}_2 + \overline{x}_3))$$

= $(x_1 + x_3) (\overline{x}_2 + \overline{x}_3)$

Peta Karnaugh

▶ Peta Karnaugh (K-map) menyediakan cara sistematik dan grafis untuk mencari rangkaian SOP dan POS minimal

- K-map SOP
 - mengelompokkan minterm-minterm bernilai 1 yang saling berdekatan, yang hanya mempunyai perbedaan di satu variabel saja
 - membentuk rangkaian AND-OR
- K-map POS
 - mengelompokkan Maxterm-Maxterm bernilai 0 yang saling berdekatan
 - membentuk rangkaian OR-AND minimal

@2014.Eko Didik

Karnaugh Map

Widianto Peta Karnaugh

Rangkaian Multi-Keluaran

Representasi Peta Karnaugh

- K-map juga merupakan alternatif untuk menyatakan suatu fungsi logika selain tabel kebenaran dan ekspresi logika
 - K-map disusun atas sel-sel. Satu sel, satu minterm

x ₁	x ₂	f(x ₁ ,x ₂)	minterm
0	0	m ₀	$\overline{x}_1\overline{x}_2$
0	1	m_1	
1	0	m_2	X1X2
1	1	m_3	X ₁ X ₂

x_2 x_1	0	1
0	m ₀	m ₂
1	m ₁	m ₃

@2014.Eko Didik

Widianto

Peta Karnaugh Karnaugh Map

Bahasan

Peta Karnaugh

Grouping K-Map

@2014.Eko Didik

Widianto

Grouping K-Map

- Minterm-minterm yang berdekatan dapat dikombinasikan karena mereka hanya berbeda di satu variabel saja, disebut Grouping
- ► Grouping dilakukan dengan melingkari nilai '1' yang berdekatan
- Melingkari dua nilai '1' bersama, berarti mengeliminasi satu term dan satu variabel dari ekspresi output
 - Variabel yang dieliminasi adalah yang mempunyai perbedaan nilai di grup, vertikal/horizontal
 - ► Group merah: x_1 dieliminasi, Grup biru: x_2 dieliminasi

x ₁	x ₂	f(x ₁ ,x ₂)
0	0	1
0	1	0
1	0	1
1	1	1
		Tracket days

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

Karnaugh Map Grouping K-Map Literal, Implicant, Cover dar

Widianto

angkaian POS Optimal ungsi Tidak Lengkap

Rangkaian Multi-Keluaran

Ringkasa

isensi

Ketentuan dan Tips Grouping

- Hanya dapat mengkombinasikan nilai 1 yang berdekatan
- Hanya dapat menggabungkan 2ⁿ minterm (1,2,4,8,16, dst)
- Bentuk grup sebesar mungkin
 - grup 2 minterm menghilangkan 1 variabel
 - grup 4 minterm menghilangkan 2 variabel
 - grup 8 minterm menghilangkan 3 variabel
- Group yang sudah dicover oleh group lain tidak perlu digabungkan lagi

@2014 Fko Didik

Widianto Peta Karnaugh

Grouping K-Map

Rangkaian Multi-Keluaran

Contoh Grouping Fungsi 2 Variabel

Sederhanakan: $f(x_1, x_2) = \sum m(0, 3) \text{ dan } f(x_1, x_2) = \sum m(1, 2)$

- $f(x_1, x_2) = \sum m(0,3) = \overline{x}_1 \overline{x}_2 + x_1 x_2$
 - fungsi SOP tidak dapat disederhanakan
- $f(x_1, x_2) = \sum m(1, 2) = x_1 \overline{x}_2 + \overline{x}_1 x_2$
 - fungsi SOP tidak dapat disederhanakan

@2014.Eko Didik Widianto

Peta Karnaugh Grouping K-Map

Contoh Grouping Fungsi 2 Variabel

• Sederhanakan: $f(x_1, x_2) = \sum m(0, 1) \operatorname{dan} f(x_1, x_2) = \sum m(1, 3)$

- $f(x_1, x_2) = \sum m(0, 1) = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 = \overline{x}_1, x_2$ dieliminisi
- $f(x_1, x_2) = \sum m(1, 3) = \overline{x}_1 x_2 + x_1 x_2 = x_2, x_1 \text{dieliminasi}$

@2014.Eko Didik Widianto

Contoh Grouping Fungsi 2 Variabel

• Sederhanakan: $f(x_1, x_2) = \sum m(0, 1, 2) \operatorname{dan} f(x_1, x_2) = \sum m(1, 2, 3)$

- $f(x_1, x_2) = \sum m(0, 1, 2) = \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2 + x_1 \overline{x}_2 = \overline{x}_1 + \overline{x}_2$
- $f(x_1, x_2) = \sum m(1, 2, 3) = \overline{x}_1 x_2 + x_1 \overline{x}_2 + x_1 x_2 = x_1 + x_2$

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Karnaugh Map

Grouping K-Map

Literal Implicant Cover da

langkaian POS Optimal ungsi Tidak Lengkap

Hangkalan Multi-Keluarai

riirigitasa

:---:

K-Map 3 Variabel

K-map disusun sehingga minterm yang berdekatan hanya mempunyai perbedaan 1 variabel

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	minterm <i>m_j</i>
0	0	0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$
0	0	1	$m_1 = \overline{x}_1 \overline{x}_2 x_3$
0	1	0	$m_2 = \overline{x}_1 x_2 \overline{x}_3$
0	1	1	$m_3 = \overline{x}_1 x_2 x_3$
1	0	0	$m_4 = x_1 \overline{x}_2 \overline{x}_3$
1	0	1	$m_5 = x_1 \overline{x}_2 x_3$
1	1	0	$m_6 = x_1 x_2 \overline{x}_3$
1	1	1	$m_7 = x_1 x_2 x_3$

@2014.Eko Didik

Widianto

► Sederhanakan $f(x_1, x_2, x_3) = \sum m(0, 1, 2, 5)$

@2014.Eko Didik Widianto

• Sederhanakan $f(x_1, x_2, x_3) = \sum m(0, 2, 4, 7)$

▶ menghasilkan $f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_3 + \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$

@2014.Eko Didik

Widianto

• Sederhanakan: $f(x_1, x_2, x_3) = \sum m(1, 3, 5, 7)$, $f(x_1, x_2, x_3) = \sum m(0, 2, 3, 6, 7)$

@2014.Eko Didik Widianto

Desain Rangkaian Logika

Dari sebuah K-map, implementasi rangkaian logika bisa mempunyai dua bentuk, yaitu:

- 1. Jika diinginkan rangkaian logika dengan AND-OR atau NAND-NAND, maka persamaan logika SOP minimal dapat diperoleh dengan mengelompokkan minterm bernilai 1;
- 2. Jika diinginkan rangkaian logika dengan OR-AND atau NOR-NOR, maka persamaan logika POS minimal dapat diperoleh dengan mengelompokkan Maxterm bernilai 0;

@2014.Eko Didik Widianto

Grouping K-Map

Peta Karnaugh

Rangkaian Multi-Keluaran

► Rancang rangkaian NAND-NAND dari fungsi $f(x_1, x_2, x_3) = \sum m(0, 1, 3, 4, 5, 7)$ dan $f(x_1, x_2, x_3) = \prod M(2, 7)$

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Peta Karnaugh Karnaugh Map Grouping K-Map

Cost
Rangkaian POS Optimal

Rangkaian

Ringkasan

Ŭ

isensi

K-Map 4 Variabel

Bentuk K-map 4 variabel:

Kedua sel tepi saling berdekatan

@2014.Eko Didik Widianto

Contoh: Grouping K-Map 4 Variabel

Sederhanakan $f(x_1, x_2, x_3, x_4) = \sum m(2, 3, 8 - 11, 13)$

$x_3 x_4^{x_1^{x_1^{x_1^{x_1^{x_1^{x_1^{x_1^{x_1$	^x 2 00	01	11	10
00	0	0	0	1
01	0	0	1	1
11	1	0	0	1
10	1	0	0	1

@2014.Eko Didik Widianto

Grouping K-Map 4 Variabel

► Sederhanakan fungsi $f(x_1, x_2, x_3, x_4) = \prod M(0, 2, 4, 8 - 12, 14)$ dengan K-map

x ₃ x ₄	⁶ 2 00	01	11	10
00	0	0	0	0
01	1	1	1	0
11	1	1	1	0
10	0	1	0	0

▶ Menghasilkan $f(x_1, x_2, x_3, x_4) = \overline{x}_1 x_4 + x_2 x_4 + x_1 \overline{x}_2 x_3$

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran @2014.Eko Didik

Widianto

Peta Karnaugh
Karnaugh Map
Grouping K-Map

Cost Rangkaian POS Optimal

Rangkaian Multi-Keluara

Hingkasa

icanci

Umpan Balik: Grouping K-Map 4 Variabel

Sederhanakan:

- $f(x_1, x_2, x_3) = \sum m(3-7, 9, 11, 12-15)$
- $f(x_1, x_2, x_3) = \sum m(0-4, 6, 9, 11, 12, 14)$
- $f(x_1, x_2, x_3) = \sum m(0, 2, 5, 7, 8, 10, 13, 15)$

@2014.Eko Didik

Widianto

Peta Karnaugh Grouping K-Map

Multi-Keluaran

Ringkasan

K-Map 5 Variabel

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

Widianto

Peta Karnaugh Kamaugh Map

Grouping K-Map

Cost Rangkaian POS Optimal

Rangkaian Multi-Keluara

Ringkas

10

m₁₇

m₁₉

m₂₃

m₂₁

icanci

► Sederhanakan fungsi $f(x_1, x_2, x_3, x_4, x_5) = \sum m(4, 5, 10, 12 - 14, 16 - 19, 24 - 27, 30)$

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Peta Karnaugn Karnaugh Map Grouping K-Map

Cost Rangkaian POS Optimal

Rangkaian Multi-Keluara

Ringkasa

isensi

K-map 6 Variabel

- Bagaimana K-Map 6 Variabel? Tidak berguna dari sudut pandang praktis
 - Akan membutuhkan perangkat CAD, salah satunya bmin http://bukka.eu/bmin/0.5.0
- ► Contoh: $f(f, e, d, c, b, a) = \sum m(21, 23, 29, 31, 53, 55, 61, 63) = ace$

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Peta Karnaugh Karnaugh Map Grouping K-Map

Cost Rangkaian POS Optimal

Rangkaian Multi-Keluara

niiigkasa

isensi

Bahasan

Peta Karnaugh

Literal, Implicant, Cover dan Cost

@2014.Eko Didik

Widianto

Literal, Implicant, Cover dan

Terminologi

- Literal = variabel di suatu term
 - ► Contoh: $\overline{x}_1 x_2 x_3 \overline{x}_4$ (term dg 4 literal), $x_2 x_3$ (term dg 2 literal)
- ▶ *Implicant*: sebarang term bernilai '1' atau grup term bernilai '1' yang dapat digabungkan di K-map
 - minterm adalah implicant dasar. Untuk fungsi n-variabel, minterm adalah *implicant* dengan n literal
- Prime Implicant: implicant yang tidak bisa digabungkan dengan implicant lain untuk menghilangkan sebuah variabel
 - Literal dalam prime implicant tidak dapat dihapus untuk mendapatkan implicant valid
- **Cover**: suatu himpunan *implicant* yang menghasilkan nilai fungsi '1'
- Cost: jumlah gerbang ditambah jumlah total masukan ke semua gerbang dalam rangkaian logika

Widianto

Peta Karnaugh Literal, Implicant, Cover dan

Rangkaian Multi-Keluaran

Implicant dan Prime Implicant

Terdapat 10 implicant valid

- 7 buah minterm
- 1 term 3-literal (grup 2 minterm)
- 2 term 2-literal (grup 4 minterm)
- Terdapat 3 prime implicant
 - $\triangleright X_1 \overline{X}_2, \overline{X}_2 X_3, X_1 \overline{X}_3 X_4$
 - Tidak bisa disederhanakan lagi?
 - Untuk x₁x̄₂, jika sebuah literal dihapus menyisakan x1 atau \overline{x} 2, padahal x_1 bukan implicant valid karena {1,1,0,0} menghasilkan f = 0

@2014.Eko Didik Widianto Peta Karnaugh

Literal, Implicant, Cover dan

Rangkaian Multi-Keluaran

- Cover untuk $f(x_1, x_2, x_3, x_4) = \sum m(2, 3, 8, 9, 10, 11, 13)$
 - Persamaan dengan semua minterm
 - 2. $f = x_1 \overline{x}_2 + \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_3 x_4$ merupakan cover valid
 - 3. $f = x_1 \overline{x}_2 + \overline{x}_2 x_3 + x_1 \overline{x}_3 x_4$ merupakan cover valid yang berisi prime implicant
- Cost untuk setiap cover: (asumsi input utama baik terinvers atau tidak mempunyai cost 0)
 - 1. jumlah gerbang=7+1, jumlah input semua gerbang=7*4+7*1, total=8+28+7=43
 - 2. jumlah gerbang=3+1, jumlah input semua gerbang=8+3, total=4+11=15
 - 3. jumlah gerbang=3+1, jumlah input semua gerbang=7+3, total=4+10=14
- Cover yang berisi prime implicant cenderung menghasilkan implementasi dengan cost terendah

Menghitung Cost Rangkaian

Fungsi
$$f = x_1\overline{x}_2 + \overline{x}_2x_3 + x_1\overline{x}_3x_4$$

NOT tidak diperhitungkan

Gerbang	#Gerbang	#Masukan	Keterangan
AND-3	1	$1 \times 3 = 3$	$\rightarrow X_1 \overline{X}_3 X_4$
AND-2	2	$2 \times 2 = 4$	$\rightarrow x_1 \overline{x}_2 \operatorname{dan} \overline{x}_2 x_3$
OR-3	1	$1 \times 3 = 3$	
Total	4	10	
C	ost = 4 + 10 =	= 14	

@2014.Eko Didik Widianto

Literal, Implicant, Cover dan

Jika Gerbang NOT Diperhitungkan

Gerbang	#Gerbang	#Masukan	Keterangan
AND-3	1	$1 \times 3 = 3$	$\rightarrow x_1 \overline{x}_3 x_4$
AND-2	2	$2\times 2=4$	$\rightarrow x_1 \overline{x}_2 \text{ dan } \overline{x}_2 x_3$
NOT	2	$2 \times 1 = 2$	$ ightarrow$ 1 masukan, x_2 dan x_3
OR-3	1	$1 \times 3 = 3$	
Total	6	12	Cost= 6 + 12 = 18
0 1			
Gerbang	#Gerbang	#Masukan	Keterangan
AND-3	#Gerbang 1	#Masukan $1 \times 3 = 3$	Keterangan $\rightarrow x_1 \overline{x}_3 x_4$
J	#Gerbang 1 2		9
AND-3	1	1 × 3 = 3	$\rightarrow x_1 \overline{x}_3 x_4$
AND-3 AND-2	1 2	$1 \times 3 = 3$ $2 \times 2 = 4$	$\rightarrow x_1 \overline{x}_3 x_4$ $\rightarrow x_1 \overline{x}_2 \text{ dan } \overline{x}_2 x_3$

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Karnaugh Map
Grouping K-Map

Literal, Implicant, Cover dan Cost Bangkajan POS Ontimal

Rangkaian

Ringkasan

3

sensi

13

Prime Implicant Esensial dan Non-Esensial

SOP minimum hanya mengandung prime implicant (namun tidak semua prime implicant)

- ► Essential: diperlukan untuk membentuk SOP minimum
- Nonessensial: tidak diperlukan untuk SOP minimum, sehingga dapat dihilangkan

- Prime implicant: $x_1\overline{x}_2$, \overline{x}_2x_3 , $x_1\overline{x}_3x_4$ dan $x_2\overline{x}_3x_4$
- ► Esensial: $x_1\overline{x}_2$, \overline{x}_2x_3 , dan $x_2\overline{x}_3x_4$
- ▶ non-esensial: $x_1\overline{x}_3x_4$
- $f_{min} = x_1 \overline{x}_2 + \overline{x}_2 x_3 + x_2 \overline{x}_3 x_4, x_1 \overline{x}_3 x_4$ dihilangkan

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran @2014.Eko Didik

Widianto

Karnaugh Map Grouping K-Map Literal, Implicant, Cover dan Cost

Peta Karnaugh

angkaian POS Optima ungsi Tidak Lengkap

Rangkaian Multi-Keluaran

ingkasan

isensi

Contoh

- Prime implicant: $x_1\overline{x}_2$, \overline{x}_2x_3 , $\overline{x}_1x_2\overline{x}_3$, $\overline{x}_1x_2\overline{x}_3$, $\overline{x}_1x_2x_4$ dan $\overline{x}_1x_3x_4$
- ▶ Esensial: $x_1\overline{x}_2$, \overline{x}_2x_3 , dan $\overline{x}_1x_2\overline{x}_3$
- ▶ non-esensial: $\overline{x}_1 x_2 x_4$, $\overline{x}_1 x_3 x_4$ (harus dipilih salah satu)

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Karnaugh Map Grouping K-Map Literal, Implicant, Cover dan

Rangkaian POS Optimal

Multi-Keluara

Ringkasan

Langkah Penyederhanaan

- SOP minimum berisi semua prime implicant esensial dan beberapa prime implicant non-esensial
- Langkah menemukan rangkaian dengan cost minimum:
 - 1. Cari semua prime implicant dari f
 - 2. Cari set prime implicant esensial
 - 3. Jika set tersebut telah meng-cover semua valuation dimana f=1, maka set ini adalah cover dari f yang diinginkan. Jika tidak, tentukan prime implicant non-esensial yang harus ditambahkan agar minimum
- Menentukan prime implicant non-esensial? heuristik (mencoba semua kemungkinan untuk mendapatkan cover dengan cost minimum)

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

Widianto

Peta Karnaugh
Karnaugh Map
Grouping K-Map
Literal Implicant Cover dan

Cost Rangkaian POS Optimal

Rangkaian

Multi-Keluaran

migitasa

Latihan

- Cari semua prime implicant dari f
- Cari set prime implicant esensial Cari cover dengan cost terendah
- dari semua kombinasi prime implicant non-esensial

@2014.Eko Didik

Widianto

Literal, Implicant, Cover dan

Rangkaian

Bahasan

Peta Karnaugh

Rangkaian POS Optimal

@2014.Eko Didik

Widianto

Rangkaian POS Optimal

Minimisasi Ekspresi POS

- Menggunakan prinsip dualitas
- ▶ K-map dapat langsung dibentuk baik dari ekspresi ∑ m maupun $\prod M$
 - Grouping Maxterm yang bernilai 0 sebesar mungkin
 - Bentuk persamaan POS dari himpunan Maxterm minimum
 - Prinsip prime implicant esensial berlaku? berlaku, dengan pengertian implicant adalah Maxterm atau group Maxterm

@2014.Eko Didik

Widianto

Peta Karnaugh

Rangkaian POS Optimal

Rangkaian Multi-Keluaran

Representasi K-map POS

x ₁	x ₂	f(x ₁ ,x ₂)	Maxterm
0	0	M ₀	x ₁ +x ₂
0	1	M ₁	$x_1 + \overline{x}_2$
1	0	M ₂	\overline{x}_1+x_2
1	1	M ₃	x ₁ +x ₂

x_2 x_1	0	1
0	M ₀	M ₂
1	M ₁	Мз

@2014,Eko Didik Widianto

Rangkaian POS Optimal

Contoh K-map POS

▶ Nyatakan fungsi sederhana dari POS $f(x_1, x_2) = \prod M(1,3)$

- Menghasilkan $f(x_1, x_2) = \prod M(1,3) = \overline{x}_2$
- Bukti:

$$f(x_1, x_2) = (x_1 + \overline{x}_2)(\overline{x}_1 + \overline{x}_2)$$

= \overline{x}_2

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Karnaugh Map Grouping K-Map

Rangkaian POS Optimal

Rangkaian Multi-Keluara

Ringkasan

ensi

POS Minimal dari $\sum m$ atau $\prod M$

Diberikan:

$$f(x_1, x_2, x_3) = \sum m(0, 1, 2, 5)$$

$$f = \sum m(0,1,2,5)$$
= $(\overline{x}_1 + x_3)(\overline{x}_2 + \overline{x}_3)$; POS
= $\overline{x}_1\overline{x}_3 + \overline{x}_2x_3$; SOP
= $\prod M(3,4,6,7)$

Diberikan:

$$f(x_1, x_2, x_3) = \prod M(1, 4, 5)$$

$$f = \prod M(1,4,5)$$
= $(\overline{x}_1 + x_2)(x_2 + \overline{x}_3)$; POS
= $x2 + \overline{x}_1\overline{x}_3$; SOP
= $\sum m(0,2,3,6,7)$

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Peta Karnaugh Karnaugh Map

Literal, Implicant, Cover da Cost Rangkajan POS Optimal

Fungsi Tidak Lengkap

Rangkaian

Multi-Keluaran

ı ııııgkasarı

Desain Rangkaian SOP dan POS

▶ Diketahui fungsi SOP $f(x_1, x_2, x_3) = \sum m(0, 1, 2, 5)$. Desain rangkaian NAND-NAND dan NOR-NOR

Cost?

@2014.Eko Didik Widianto

Rangkaian POS Optimal

Memilih Desain? SOP atau POS

▶ Desain rangkaian sederhana untuk $f(x_1, x_2, x_3) = \prod M(1, 4, 5)$

Cost? Mana yang dipilih?

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Peta Karnaugh
Karnaugh Map
Grouping K-Map

Rangkaian POS Optimal Fungsi Tidak Lengkap

Multi-Keluara

· iiiigitao

Ketentuan Rangkaian POS

- POS minimum berisi semua implicant utama esensial
- Langkah menemukan rangkaian dengan cost minimum:
 - Mencari semua implicant utama dari fungsi f
 - 2. Mencari himpunan implicant utama esensial
 - 3. Jika himpunan tersebut telah meng-cover semua Maxterm bernilai 0, maka set ini adalah cover dari f yang diinginkan. Jika terdapat Maxterm bernilai 0 yang belum ter-cover, maka perlu dipilih implicant utama non-esensial yang harus ditambahkan ke dalam fungsi agar fungsi valid, namun tetap minimum.

Penentuan implicant utama non-esensial dapat dilakukan secara heuristik, yaitu mencoba semua kemungkinan untuk mendapatkan cover dengan biaya rangkaian minimal

ര2014 Fko Didik

Widianto Peta Karnaugh

Rangkaian POS Optimal

Rangkaian Multi-Keluaran

POS 4-Variabel Minimal

$$(x_1, x_2, x_3, x_4) = \sum m(2,3,8,9,10,11,11)$$

$$= \prod M(0,1,4,5,6,7,12,11)$$

Prime implicant: $x_1 + x_3$, $\overline{x}_2 + \overline{x}_3$, $\overline{x}_2 + x_4 \operatorname{dan} x_1 + \overline{x}_2$

Esensial: $x_1 + x_3$, $\overline{x}_2 + \overline{x}_3$, dan $\overline{x}_2 + x_4$

▶ non-esensial: $x_1 + \overline{x}_2$ (biru)

$$f_{min} = (x_1 + x_3) (\overline{x}_2 + \overline{x}_3) (\overline{x}_2 + x_4)$$

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Peta Karnaugh

Karnaugh Map
Grouping K-Map
Literal, Implicant, Cover d
Dost
Rangkaian POS Optimal
Funosi Tidak Lengkan

Rangkalan Multi-Keluaran

Ringkasan

isensi

10

Latihan di Rumah

- Persamaan SOP dan POS
- Cari semua prime implicant dari f
- Cari set prime implicant esensial
- Cari cover dengan cost terendah dari semua kombinasi prime implicant non-esensial

@2014.Eko Didik

Widianto

Rangkaian POS Optimal

Rangkaian

Multi-Keluaran

Bahasan

Peta Karnaugh

Fungsi Tidak Lengkap

@2014.Eko Didik

Widianto

Fungsi Tidak Lengkap

Fungsi Tidak Lengkap

- Dalam sistem digital, sering terjadi beberapa kondisi input yang tidak akan pernah terjadi
- ► Kombinasi input seperti itu disebut kondisi don't care
- Dalam desain rangkaian, kondisi don't care dapat diabaikan (keluaran untuk kondisi tersebut dapat diberikan 0 atau 1 di tabel kebenaran)
- Fungsi yang mengandung kondisi don't care disebut fungsi yang dispesifikasikan tidak lengkap (*incompletely* specified)

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran @2014,Eko Didik

Widianto
Peta Karnaugh

Karnaugh Map Grouping K-Map Literal, Implicant, Cover da

Rangkaian POS Optimal Fungsi Tidak Lengkap

Rangkaian Multi-Keluaran

ngkasar

Contoh Kondisi Don't Care

- ▶ Diinginkan sistem untuk mendeteksi suhu ekstrem di bawah 10°C dan di atas 80°C. Deteksi suhu menggunakan dua buah sensor suhu, yang masing-masing dapat menghasilkan nilai 1 jika suhu > 10°C dan jika suhu > 80°C. Jika suhu di bawah 10°C dan di atas 80°C, maka sebuah lampu akan menyala. Nyatakan deskripsi sistem tersebut dalam tabel kebenaran
- ▶ **Solusi**. Jika x_1 menyatakan suhu > $10^{\circ}C$ dan x_2 suhu > $80^{\circ}C$, maka

<i>X</i> ₁	<i>X</i> ₂	f	keterangan
0	0	1	suhu< 10°C
0	1	d	tidak pernah terjadi
1	0	0	10° <i>C</i> < <i>suhu</i> < 80° <i>C</i>
1	1	1	suhu> 10° <i>C</i>

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran @2014,Eko Didik

Widianto

Karnaugh Map Grouping K-Map Literal, Implicant, Cover da Cost

Peta Karnaugh

Rangkaian POS Optima Fungsi Tidak Lengkap

Rangkaian Multi-Keluaran

iiigitasa

Contoh Don't Care

Di K-Map, masukan don't care bisa diberi nilai 0 atau 1 sedemikian sehingga diperoleh fungsi yang optimal

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	f
0	0	0	1
0	0	1	1
0	1	0	d
0	1	1	d
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Asumsi fungsi 3 variabel. Kombinasi masukan $\{x_1x_2x_3\} = 010 \mid 011$ tidak pernah terjadi, selebihnya $f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6)$

$$f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6) + d(2, 3);$$
 atau

$$f = \prod M(0,7) \cdot D(2,3)$$

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Peta Karnaugh

Karnaugh Map
Grouping K-Map
Literal, Implicant, Cover da
Cost
Rangkaian POS Optimal
Funosi Tidak Lenokap

Rangkaian Multi-Keluaran

Ringkasai

Contoh Don't Care 4 variabel

- SOP: $f(x_1, x_2, x_3, x_4) = \sum m(2, 4, 5, 6, 10) + D(12, 13, 14, 15)$
- ▶ POS: $f(x_1, x_2, x_3, x_4) = \prod M(0, 1, 3, 7, 8, 9, 11) \cdot D(12, 13, 14, 15)$
- SOP: $f_{min} = x_2\overline{x}_3 + x_3\overline{x}_4$, POS: $f_{min} = (x_2 + x_3)(\overline{x}_3 + \overline{x}_4)$
- Jika don't care tidak disertakan: misalnya menganggap nilainya selalu 0
 - ► SOP: $f = \overline{x}_1 x_2 \overline{x}_3 + \overline{x}_1 x_3 \overline{x}_4 + \overline{x}_2 x_3 \overline{x}_4$
 - POS: $f = (x_2 + x_3)(\overline{x}_3 + \overline{x}_4)(\overline{x}_1 + \overline{x}_2)$
 - Cost mungkin lebih tinggi

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Peta Karnaugh
Karnaugh Map
Grouping K-Map

Rangkaian POS Optimal Fungsi Tidak Lengkap

Rangkaian Multi-Keluaran

Ringkasan

_

ensi

Fungsi Tidak Lengkap

 $f_{min} = x_2\overline{x}_3 + x_3\overline{x}_4 \text{ dan } f_{min} = (x_2 + x_3)(\overline{x}_3 + \overline{x}_4)$

Rangkaian dengan Banyak Keluaran

- Sebelumnya dibahas fungsi dengan keluaran tunggal berikut dengan implementasi rangkaiannya
- Dalam prakteknya, beberapa fungsi tunggal tersebut merupakan bagian dari rangkaian logika yang lebih besar
- Rangkaian-rangkaian dari fungsi tersebut mungkin dapat dikombinasikan ke dalam rangkaian tunggal dengan cost lebih rendah dengan keluaran lebih dari satu
 - Pemakaian bersama blok gerbang oleh beberapa rangkaian fungsi tunggal

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran @2014,Eko Didik

Peta Karnaugh

Rangkaian Multi-Keluaran

Ringkasan

- - @2014.Eko Didik Widianto
- Rangkaian Multi-Keluaran

	f_1 ($(x_1, x_2, x_3, x_4) =$	$\sum m(2,3,5,6,8,$	(13) + d(7, 9, 11, 12)
--	---------	--------------------------	---------------------	------------------------

•	$f_2(x_1, x_2, x_3, x_4)$	$= \prod$	M(0, 1)	1, 4, 5,	, 10, 11	, 14) ·	D(2,3)
---	---------------------------	-----------	---------	----------	----------	---------	--------

x ₃ x ₄	^x 2 00	⁶ 2 00 01		10			
00	0	0	1	1			
01	0	1	1	1			
11	1	1	0	0			
10	10 1		0	0			
f ₁							

x ₃ x ₄	^x 2 00	01	11	10	
00	0	0	1	1	
01	01 0		1	1	
11	1	1	1	0	
10 1		1	0	0	
		f	2		

Rangkaian Terpisah

- $f_1 = x_1\overline{x}_3 + \overline{x}_1x_3 + x_2\overline{x}_3x_4$, Cost=4 gerbang + 10 input(=14)
- ▶ $f_2 = x_1 \overline{x}_3 + \overline{x}_1 x_3 + x_2 x_3 x_4$, Cost=4 gerbang + 10 input (=14)
- Cost total jika kedua fungsi diimplementasikan terpisah: 8 gerbang + 20 input (=28)
- Jika gerbang NOT diperhitungkan?

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

Widianto

Peta Karı

Rangkaian Multi-Keluaran

Ringkasan

Contoh Rangkaian Multi-Keluaran

 Mengkombinasikan (prime) implicant yang sama dari dua/lebih fungsi mungkin bisa mengurangi cost

▶ Rangkaian multi-keluaran: $\begin{cases} f_1 \\ f_2 \end{cases} = x_1 \overline{x}_3 + \overline{x}_1 x_3 + \begin{cases} x_2 \overline{x}_3 x_4 \\ x_2 x_3 x_4 \end{cases}$

- Cost=6 gerbang + 16 input (=22), jika tanpa NOT
- Dengan NOT: biaya total = 28

Rangkaian Logika Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Perakai

Rangkaian Multi-Keluaran

Ringkasan

Contoh Rangkaian Multi-Keluaran

Di contoh sebelumnya, terdapat prime implicant yang bersama. Kalau tidak ada yang bersama?

x ₃ x ₄	⁶² 00	01	11	10	x ₃ x ₄	^{K2} 00	01	11	10
00	0	0	0	0	00	0	0	0	0
01	1	1	1	0	01	1	0	1	1
11	1	1	1	0	11_	1	0	1	1
10	0	1	0	0	10	0	1	0	0
f ₁ optimal							f	optin	nal

- $f_1 = \overline{X}_1 X_4 + X_2 X_4 + \overline{X}_1 X_2 X_3$, Cost=4 gerbang + 10 input(=14)
- $f_2 = x_1x_4 + \overline{x}_2x_4 + \overline{x}_1x_2x_3\overline{x}_4$, Cost=4 gerbang + 11 input (=15)
- ► Tidak ada gerbang prime implicant yang dapat dishared. sehingga cost total dari kombinasi 2 rangkaian adalah 8 gerbang + 21 input (=29)

Widianto

Rangkaian Multi-Keluaran

Ringkasan

Contoh Rangkaian Multi-Keluaran

 Tapi ada alternatif realisasi lainnya: menggunakan implicant bersama antara 2 fungsi

x ₃ x ₄ x ₁	^{K2} 00	01	11	10	x ₃ x ₄	^K 2 00	01	11	10
00	0	0	0	0	00	0	0	0	0
01	1	1	1	0	01	1	0	1	1
11	1	1	1	0	11_	1	0	1	1
10	0	1	0	0	10	0	1	0	0

Gabungan f₁ f₂ optimal

$$f_1 = X_1 X_2 X_4 + \overline{X}_1 X_2 X_3 \overline{X}_4 + \overline{X}_1 X_4$$

Rangkaian multikeluaran:

$$\left\{\begin{array}{c}f_1\\f_2\end{array}\right\} = X_1 X_2 X_4 + \overline{X}_1 X_2 X_3 \overline{X}_4 + \left\{\begin{array}{c}\overline{X}_1 X_4\\\overline{X}_2 X_4\end{array}\right\}$$

Cost gabungan total= 6 gerbang + 17 input (=23)

Rangkaian Logik Optimal: Peta Karnaugh & Rangkaian Multi-Keluaran

@2014,Eko Didik Widianto

Peta Karnaugh

Rangkaian Multi-Keluaran

Ringkasan

Lisens

- Yang telah kita pelajari hari ini:
 - Penyederhanaan fungsi logika menggunakan peta Karnaugh melalui Grouping minterm untuk rangkaian SOP atau Maxterm untuk POS, baik fungsi 2-variabel sampai 6-variabel
 - Terminologi dalam K-map, yaitu implicant, prime implicant (esensial, non-esensial), cover dan cost beserta contoh penggunaan istilah-istilah tersebut
 - Fungsi tidak lengkap dengan masukan don't care
 - Rangkaian multi-keluaran untuk mengoptimalkan penggunaan gerbang
- Yang akan kita pelajari di pertemuan berikutnya adalah penyederhanaan fungsi logika menggunakan Quine-McKluskey untuk memperoleh rangkaian yang optimal. Juga akan dibahas rangkaian multi-level
 - ► Pelajari: http://didik.blog.undip.ac.id/2014/02/25/ tkc205-sistem-digital-2013-genap/

Creative Common Attribution-ShareAlike 3.0 Unported (CC **BY-SA 3.0)**

- Anda bebas:
 - untuk Membagikan untuk menyalin, mendistribusikan, dan menyebarkan karya, dan
 - untuk Remix untuk mengadaptasikan karya
- Di bawah persyaratan berikut:
 - Atribusi Anda harus memberikan atribusi karya sesuai dengan cara-cara yang diminta oleh pembuat karya tersebut atau pihak yang mengeluarkan lisensi. Atribusi yang dimaksud adalah mencantumkan alamat URL di bawah sebagai sumber.
 - ▶ **Pembagian Serupa** Jika Anda mengubah, menambah, atau membuat karya lain menggunakan karya ini. Anda hanya boleh menyebarkan karya tersebut hanya dengan lisensi yang sama, serupa, atau kompatibel.
- ▶ Lihat: Creative Commons Attribution-ShareAlike 3.0 Unported License
- ► Alamat URL: http://didik.blog.undip.ac.id/2014/02/25/tkc205-sistemdigital-2013-genap/