Příklad (indukce)

Dokažte matematickou indukcí případy rekurence $t(n) \leq cn^{\alpha} + \sum_{i=1}^{k} t(a_i n)$ $(t(n) \leq C,$ pro $n \leq n_0, \forall i: a_i < 1)$ dle srovnání $S_{\alpha} = \sum a_i^{\beta}$ s 1, užitečné je dokazovat vztah $t(n) \leq c_1 n^{\alpha} + c_2 n^{\beta}$, kde $\sum a_i^{\beta} = 1$, případně $t(n) \leq c_1 n^{\alpha} + c_2 n^{\alpha} \log n$, vhodná c_i zjistěte v průběhu důkazu. Hodí se za indukční předpoklad brát, že tvrzení platí pro všechna menší n.

 $D\mathring{u}kaz\ (S_{\alpha} < 1)$

Nejprve se domluvme, že přirozená čísla (konkrétně n) jsou od 1, protože jinak je to jen o přečíslování. Nyní začneme s $S_{\alpha} \leq 1$: Nechť $c_1 = \max\{c, C\}$. Tím jsme vlastně dokázali první krok indukce, jelikož zřejmě $(c_2 \geq 0)$:

$$\forall n \le n_0 : t(n) \le C \le c_1 \cdot n^{\alpha} + c_2 \cdot n^{\alpha},$$

$$\forall n \le n_0 : t(n) \le C \le c_1 \cdot n^{\alpha} + c_2 \cdot n^{\alpha} \cdot \log n.$$

Nechť nejprv $S_{\alpha} < 1$. Potom předpokládejme jako indukční krok, že

$$\forall n_1 < n : t(n_1) \le c_1 \cdot n_1^{\alpha} + c_2 \cdot n_1^{\alpha}.$$

Potom je

$$t(n) \le (cn^{\alpha}) + \left(\sum_{i=1}^{k} t(a_i n)\right) \le (c_1 n^{\alpha}) + \left(\sum_{i=1}^{k} c_1 a_i^{\alpha} n^{\alpha} + c_2 a_i^{\alpha} n^{\alpha}\right) = c_1 n^{\alpha} + S_{\alpha}(c_1 + c_2) n^{\alpha}.$$

Tedy když zvolím^a $c_2 \geq S_{\alpha}(c_1 + c_2)$, což můžu díky $S_{\alpha} < 1$, tak opravdu dostanu $t(n) \leq c_1 n^{\alpha} + c_2 n^{\alpha} (= (c_1 + c_2) \cdot n^{\alpha})$. To je zřejmě $O(n^{\alpha})$, protože se to od n^{α} liší jen konstantakrát.

 $[^]ac_2$ sice jak tady, tak i dále, volím uvnitř indukčního kroku, ale volím ho nezávisle na n, tedy všude stejné, konstantní.

 $D\mathring{u}kaz\;(S_{\alpha}=1)$ Obdobně pro $S_{\alpha}=1$ indukčně předpokládejme, že

$$\forall n_1 < n : t(n_1) \le c_1 \cdot n_1^{\alpha} + c_2 \cdot n_1^{\alpha} \log n_1.$$

Potom je:

$$t(n) \le (cn^{\alpha}) + \left(\sum_{i=1}^{k} t(a_{i}n)\right) \le (c_{1}n^{\alpha}) + \left(\sum_{i=1}^{k} c_{1}a_{i}^{\alpha}n^{\alpha} + c_{2}a_{i}^{\alpha}n^{\alpha}\log(a_{i}n)\right) =$$

$$= c_{1}n^{\alpha} + c_{1}n^{\alpha} + \sum_{i=1}^{k} c_{2}a_{i}^{\alpha}n^{\alpha}\log(n) + c_{2}a_{i}^{\alpha}n^{\alpha}\log(a_{i}) =$$

$$= c_{1}n^{\alpha} + c_{1}n^{\alpha} + c_{2}n^{\alpha}\log(n) + \sum_{i=1}^{k} c_{2}a_{i}^{\alpha}n^{\alpha}\log(a_{i}).$$

Jelikož $\forall i : 0 < a_i < 1$, tj. $\log a_i < 0$, tak

$$0 > K := \sum_{i=1}^{k} c_2 \cdot a_i^{\alpha} \cdot n^{\alpha} \log(a_i).$$

To znamená, že můžeme volit

$$c_2 \ge c_2 + \frac{Kc_2 + c_1}{\log(n)}.$$
 (Např. $c_2 = \frac{c_1}{-K}.$)

A splníme tak

$$t(n) \le c_1 \cdot n^{\alpha} + c_2 \cdot n^{\alpha} \log n$$

což je $O(n^{\alpha} \log n)$, protože

$$c_1 \cdot n^{\alpha} + c_2 \cdot n^{\alpha} \log n \le (c_1 + c_2) \cdot n^{\alpha} \log n$$

a konstanty se nepočítají.

 $D\mathring{u}kaz (S_{\alpha} > 1)$

Tentokrát chceme pouze $c_2 > 0$ $(c_2 + c_1) = \max\{c, C\}$, aby byl splněn první krok indukce $(\sum_{i=1}^k a_i^{\beta} = 1)^a$:

$$\forall n \le n_0 : t(n) \le C \le (c_1 + c_2) \cdot n^{\alpha} < c_1 \cdot n^{\alpha} + c_2 \cdot n^{\beta}.$$

Nyní předpokládejme indukční předpoklad:

$$\forall n_1 < n : t(n_1) \le c_1 \cdot n_1^{\alpha} + c_2 \cdot n_1^{\beta}.$$

To znamená, že

$$t(n) \le (cn^{\alpha}) + \left(\sum_{i=1}^k t(a_i n)\right) \le (cn^{\alpha}) + \left(\sum_{i=1}^k c_1 a_i^{\alpha} n^{\alpha} + c_2 a_i^{\beta} n^{\beta}\right) = cn^{\alpha} + c_2 n^{\beta} + S_{\alpha} c_1 n^{\alpha}.$$

Nyní zvolíme $c_1 \ge c_1 \cdot S_\alpha + c$ (tj. např $c_1 = \frac{-c}{S_\alpha - 1}$) a k tomu c_2 , aby byla splněna podmínka s 1. kroku indukce (např. $c_2 = -c_1 + c + C$) a dostáváme opravdu:

$$t(n) \le c_1 \cdot n^{\alpha} + c_2 \cdot n^{\beta} \qquad (\le c_2 \cdot n^b),$$

tudíž opravdu t(n) je $O(n^{\beta})$, protože konstantu můžeme zanedbat.

 a Že takové $\alpha < \beta < \infty$ existuje, zjistíme z toho, že exp je spojitá, součet spojitých je spojitá, násobek spojité je spojitá a složení spojitých je spojitá, tedy

$$f(x) := \sum_{i=1}^{k} \exp^{x \cdot \log_e(a_i)} = \sum_{i=1}^{k} a_i^x$$

je spojitá a víme, že $S_{\alpha} > 1$ a $\lim_{x \to \infty} f(x) = 0$, jelikož $\lim_{x \to \infty} a^x = 0$, a < 1, tedy ze spojitosti (potažmo Darbouxovy vlastnosti) víme, že $\exists \beta, \infty > \beta > \alpha : 0 < f(\beta) = 1 < S_{\alpha}$.