

ANALISA GANGGUAN ARUS HUBUNG SINGKAT PADA PENYULANG NAKULA GARDU INDUK TALANG KELAPA

Nita Nurdiana

Dosen Tetap Yayasan pada Program Studi Teknik Elektro Fakultas Teknik Universitas PGRI Palembang e-mail: nita78pgri@gmail.com

ABSTRAK

Kontinuitas yang baik sangat diperlukan dalam penyaluran energi listrik dari pembangkit sampai ke konsumen. Peralatan proteksi yang baik mendukung mempengaruhi keandalan sistem sehingga mampu meminimalisir terjadinya gangguan. Gangguan hubung singkat merupakan permasalahan yang paling sering terjadi. Dengan melakukan perhitungan yang masih secara manual pada penyulang Nakula Gardu Induk Talang Kelapa didapat besar arus gangguan hubung singkat pada titik gangguan 10% panjang saluran adalah 186.962 A sedangkan pada titik gangguan 100% panjang saluran adalah 184.396A. Semakin jauh titik gangguan dari sumber maka semakin kecil arus gangguan yang terjadi. Arus gangguan hubung singkat dipengaruhi oleh impedansi sumber, kapasitas dan impedansi transformator daya serta titik gangguan atau panjang penyulang Setting waktu relay untuk proteksi saluran pada titik 1% panjang saluran sebesai 0,71 detik.

<u>Kata Kunci</u>: Arus hubung singkat, panjang saluran, setting relay,

PENDAHULUAN

Sistem distribusi tenaga listrik merupakan bagian yang sangat penting dalam penyalurkan tenaga listrik dari sumber daya yang besar ke pemakaian tenaga. Keandalan sistem dan kontinuitas pelayanan dari gangguan dapat di minimalisisrkan dengan pemasangan peralatan proteksi yang handal. Sistem proteksi yang handal memiliki memiliki tingkat selektifitas, ekonomis, kecepatan bereaksi dan tingkat kepekaan yang tinggi. [Hewitson, L.G., dkk. 2004. Practical Power System Protection. Elsevier. Netherland }

Gangguan hubung singkat merupakan salah satu permasalahan yang sering terjadi pada sistem distribusi 20 KV. Tripnya rele masukan pada penyulang yang disebabkan adanya gangguan menyebabkan keterlambatan atau kegagalan sistem proteksi. Hal ini dapat menyebabkan trip pada penyulang lain yang tidak mengalami gangguan namun mendapat suplai tegangan dari masukan tersebut., sehingga sistem proteksi pada penyulang menjadi kurang handal dan akan mempengaruhi keandalan sistem penyaluran tenaga listrik.

Gardu Induk Talang Kelapa menggunakan transformator daya dengan kapasitas 30 MVA mempunyai tegangan 150 KV pada sisi primer dan 20 KV pada sisi sekunder. Gardu induk talang kelapa yang terdiri dari empat penyulang yaitu Penyulang Srikandi, Yudistira, Sedewa, dan penyulang Nakula. Dalam penelitian ini akan dilakukan analisa gangguan arus hubung singkat hanya pada penyulang Nakula

KAJIAN PUSTAKA

Sistem Tenaga Listrik

Sistem tenaga listrik terdiri atas tiga bagian utama yaitu, sistem pembangkitan, sistem transmisi dan sistem distribusi. Dari ketiga sistem tersebut sistem distribusi merupakan bagian yang letaknya paling dekat dengan konsumen, fungsinya adalah menyalurkan energi listrik dari suatu Gardu Induk distribusi ke konsumen. [Ramadhani Sansan Hari, 2007]

Dalam materi Dasar-Dasar Sistem Proteksi Tegangan Tinggi [PUSDIKLAT PT. PLN,2009:p:1) dinyatakan bahwa sistem proteksi merupakan bagian yang sangat penting dalam suatu instalasi tenaga listrik, selain untuk melindungi peralatan utama bila terjadi gangguan hubung singkat, sistem proteksi juga harus dapat mengeliminiir daerah yang terganggu dan memisahkan daerah yang tidak terganggu, sehingga gangguan tidak meluas dan kerugian yang timbul akibat gangguan tersebut dapat di minimalisasi. Daya Listrik yang dihasilkan dari pembangkit tenaga listrik akan didistribusikan kepada pelanggan listrik melalui beberapa tahapan, seperti pada diagram berikut:

Gambar.1. Jalur Umum Pendistribusian Tenaga Listrik [Sumber: Ramadhani Sansan Hari, 2007]

Gangguan Hubung Singkat

Hubung singkat adalah terjadinya hubungan penghantar bertegangan atau penghantar tidak bertegangan secara langsung melalui media (resistor/beban) yang semestinya sehingga terjadi aliran arus yang tidak normal (sangat besar). Hubung singkat merupakan jenis gangguan yang sering terjadi pada sistem tenaga listrik, terutama pada saluran 3 fasa. Arus hubung singkat yang begitu besar sangat membahayakan peralatan, sehingga untuk mengamankan peralatan dari kerusakan akibat arus hubung singkat maka hubungan kelistrikan pada bagian yang terganggu perlu diputuskan dengan peralatan pemutus tenaga atau *Circuit Breaker* (CB). Perhitungan arus hubung singkat sangat penting untuk menentukan kemampuan pemutus tenaga dan untuk koordinasi pemasangan relai proteksi. [Filia Majesty Posundu, Lily S. Patras, ST,MT, Ir. Fielman Lisi, MT, dan Maickel Tueguh, ST,MT]

Amira, Asnal Efendi, dalam jurnal Teknik Elektro ITP Volume 3 No,2014 membahas Studi Analisa gangguan Hubung singkat 1 fasa ke tanah pada SUTT 150KV untuk setting Relay OCR (Aplikasi GI PIP_Pauh Limo). Nanda Pamadya Putra, Heri Purnomo Ir dan Teguh Utomo,Ir,MT dalam tulisannya yang berjudul Analisa koordinasi Rele Arus Lebih pada

Incoming dan Penyulang 20 KV Gardu Induk Sengkaling menggunakan Pola NonKaskade menjelaskan bagaimana keunggulan setting rele arus lebih menggunakan pola Non Kaskade

Bila gangguan hubung singkat dibiarkan berlangsung dengan lama pada suatu sistem daya, banyak pengaruhpengaruh yang tidak diinginkan yang dapat terjadi (*Stevenson*, 1982: 317):

- Berkurangnya batas-batas kestabilan untuk sistem daya.
- Rusaknya perlengkapan yang berada dekat dengan gangguan yang disebabkan oleh arus tak seimbang, atau tegangan rendah yang ditimbulkan oleh hubung singkat.
- Ledakan-ledakan yang mungkin terjadi pada peralatan yang mengandung minyak isolasi sewaktu terjadinya suatu hubung singkat, dan yang mungkin menimbulkan kebakaran sehingga dapat membahayakan orang yang menanganinya dan merusak peralatan peralatan yang lain.
- Terpecah-pecahnya keseluruhan daerah pelayanan sistem daya itu oleh suatu rentetan tindakan pengamanan yang diambil oleh sistem – system pengamanan yang berbedabeda
- kejadian ini dikenal sebagai "cascading".

METODOLOGI PENELITIAN

Adapun metode yang digunakan dalam penelitian yang digunakan dtunjukkan pada gambar 3.

Gambar 3. Metodologi Penelitian

Empat penyulang yang terdapat pada Gardu Induk Talang Kelapa, dapat dilihat pada gambar 4

Gambar 4. Single-Line Diagram Saluran Distribusi Primer GI. Talang Kelapa Sumber: PT. PLN (persero)

Data Teknis

Tabel 1. Data Trafo gardu Induk Talang Kelapa

Tipe	HYOSUNG	
Daya Terpasang	30.000 KVA	
Tegangan	150/20 KV	
Impedansi	12,5%	
Hubungan Belitan	YNyn0	
Type	MCGG 52	
Rated Voltage	150 KVN PEMBINA LEMBAGA PEND	
Rated Current	300/5 A	
Rated Frequency	50Hz	

Tabel 2. Data Rele Arus Lebih

	Penyulang Nakula
Type	7S J 600
Merk	SIMENS
Setting arus	340 A
Seting waktu	0,12 S

Tabel 3. Data Pada sisi Penyulang

	Penyulang Sadewa
Tegangan Operasi	20 kV
Jumlah Gardu	68 Buah
Jenis Penghantar	$AAAC 150 \text{ mm}^2$
Panjang Saluran	28 KMS
Setting CT	400 / 5 A
Arus Beban Puncak Siang	76 A
Arus Beban Puncak Malam	120 A
Beban Normal Siang	2,1 MW
Beban Puncak Malam	3,3 MW

Arus Gangguan Saat terjadi gangguan	100 A
Penampang Nominal	150 mm
Panjang Saluran	27 km

Tabel 4. Data Impedansi Kabel Jaringan

	AAAC			
mm	Z1,Z2		Z0	
	R1	Jx1	Ro	Jxo
1	2	3	4	5
16	2.0161	0.4036	2.1641	1.6911
25	0.9217	0.3790	1.0697	1.6695
50	0.6452	0.3678	0.7932	1.6553
70	0.4608	0.3572	0.6088	1.6447
95	0.3396	0.3449	0.4876	1.6324
120	0.2688	0.3375	0.4168	1.6251
150	0.2162	0.3305	0.3631	1.6180
185	0.1744	0.3239	0.3224	1.6114
240	0.1344	0.3158	0.2824	1.6003

Sumber : SPLN S2-3:1983

HASIL DAN PEMBAHASAN

Setelah semua data-data yang diperlukan telah didapatkan, maka dapat dilanjutkan dengan melakukan perhitungan dan menganalisa data-data tersebut.

Perhitungan Nilai Arus Sebelum Terjadinya Gangguan

Berdasarkan Tabel 1. Terlihat bahwa GI Talang Kelapa memiliki Trafo Daya 30 MVA, 150 kV dengan panjang saluran 27 km, maka nilai Dayanya adalah

$$P = S Cos \Theta$$

= 30 MVA x 0.85
= 25.5 mW

Arus yang mengalir pada saluran transmisi adalah :

$$I = \frac{P}{\sqrt{3}x \, VR \, x \, cos\theta}$$

$$I = \frac{25.5 \, MW}{\sqrt{3}x \, 150 \, KV \, x \, 0.85} = 115.47 \, A$$

Besar nilai impedansi saluran dengan panjang 27 km adalah :

Zsal =
$$(2162 + j 0.3305)$$
 ohm/km x 27 km
= $5.8374 + j 8.9235$

Sehingga nilai tegangan pada saluran ini adalah

Vs = VR + I.Zsal
=
$$\frac{150 \text{ KV}}{\sqrt{3}}$$
 + 115.47 (5.8374 + j8.9235)
= 87.276KV

$$Vs_{LL} = 87.276_x \sqrt{3}$$

= 151.167 KV

Perhitungan Nilai Impedansi

a. Impedansi Dasar

Nilai impedansi dasar diperoleh dari hasil perbandingan antara tegangan dan daya transformator, nilai ini mengacu pada sisi tegangan sekunder transformator daya

Maka besarnya Nilai Impedansi Dasar

$$Zs = \frac{(20)^2}{30} = 13.31 \, ohm$$

b. Impedansi Sumber

Impedansi sumber diperoleh dengan membandingkan antara tegangan dasar dengan MVA hubung singkat. Tegangan dasar merupakan tegangan sisi sekunder transformator daya, sedangkan MVA hubung singkat diperoleh dari jaringan distibusi yang dipasok dari tegangan tinggi dengan menggunakan transformator daya. Impedansi sumber mempengaruhi nilai impedansi total suatu jaringan.

Impedansi Trafo dengan nilai reaktansi trafo 12.5% adalah

$$Xt1 = Xt2$$
 = 12.5% x $\frac{(150)^2}{(20^2)}$
= j 93.75 ohm

c. Impedansi Saluran

• Pada Titik Gangguan 10 %
$$Z1f, Z2f = 10\% \times 27 \text{ km x } (0,2164 + \text{j } 0,3305)$$
$$= 0.5843 + \text{j } 0.8924$$
$$Z0f = 10\% \times 27 \text{ km x } (0.3631 + \text{j } 1.6180)$$
$$= 0.9804 + \text{j } 4.3686$$
$$Z1eq, Z2eq = Zs + X_T + Z1f$$
$$= 638.0723 + \text{j } 489.7474$$

Z0eg =
$$(3x Rn) + X_T + Z0f$$

= $113.484 + j 98.1186$

• Pada Titik Gangguan 100%

$$Z1 , Z2 = 100\% x 27 km x (0,2164 + j 0,3305)$$

$$= 5.8428 + j 8.9235$$

$$Z0 = 100\% x 27 km x (0.3631 + j 1.6180)$$

$$= 9.804 + j 43.686$$

$$Z1eq , Z2eq = Zs + X_T + Z1f$$

$$= 643.3308 + j 497.7785$$

$$Z0eg = (3x Rn) + X_T + Z0f$$

$$= 122.3037 + j 137.4360$$

Gambar 3. Grafik Perbandingan Impedansi Saluran terhadap Panjang Gelombang

Pada gambar 3 terlihat pada titik gangguan 10% besarnya impedansi total Zeg adalah 637.78 sedangkan pada titik terjauh 100% dari panjang saluran adalah 643.33. hal ini menunjukkan bahwa impedansi total berbanding lurus terhadap panjang saluran. Semakin Panjang saluran maka semakin besar impedansinya.

Perhitungan Nilai Arus gangguang Hubung Singkat

Perhitungan arus gangguan hubung singkat tiga fasa dengan perhitungan impedansi total urutan positif diberbagai titik lokasi terjadinya gangguan, sehingga didapat hasil perhitungan arus hubung singkat tiga fasa. Besarnya arus gangguan yang terjadi pada titik gangguan 10% adalah

$$V_{LN} = \frac{V3\Phi}{\sqrt{3}} = \frac{150.000}{\sqrt{3}} = 86.6 \, KV$$

Tabel 5. Tabel Arus gangguan terhadap Panjang Saluran

	1	
% Panjang	Panjang Saluran	Arus Gangguan
Saluran	(Km)	
1	0.27	187.223
5	1.35	187.107
10	2.7	186.962
15	4.05	186.818
20	5.4	186.674
25	6.75	186.530
30	8.1	186.386
35	9.45	186.242
40	10.8	186.099
450	12.15	185.956
50	13.5	185.813
55 //	14.85	185.670
60	16.2	185.528
65	17.55	185.386
70	18.9	185.244
75	20.25	185.102
80 ZYAY	SAN PEMBIN 21.6 AGA PENDID	184.960
85	22.95	184.819
90	24.3	184.678
95	// - 25.65	184.537
100	27	184.396

Gambar 4. Grafik Perbandingan Impedansi Saluran terhadap Panjang Gelombang

Gambar 4 diatas menggambarkan perbandingan arus gangguan yang terjadi terhadap persentase panjang saluran. Grafik tersebut menunjukkan bahwa persentase panjang saluran berbanding terbalik dengan nilai arus gangguan hubung singkat. Arus gangguan yang terjadi akan semakin kecil pada persentase panjang saluran yang besar.

Perhitungan Setting Relay

1. Setting relay pada sisi 20 KV

Inominal =
$$\frac{KVA}{\sqrt{3}x \ kV}$$
 (3) [Stevenson, Jr., William D. 1996]

Inominal =
$$\frac{30.000 \text{ kVA}}{\sqrt{3} \times 20 \text{ kV}}$$
 = 866.03 A

I set primer =
$$1.05 \times 866.03$$

= 909.33 A

Iset sekunder = I set primer
$$x \frac{1}{c\tau}$$

= 909.39 $x \frac{5}{300}$

$$= 15,157 A$$

Setelan Waktu
$$Tms = \frac{\left\{ \left(\frac{186-962}{909.89} \right)^{0.02} - 1 \right\} \times 0.3}{0.14} = 0.1$$

$$t = \frac{0.1 \times 0.14}{\left\{ \left(\frac{186.862}{909.89} \right)^{0.02} - 1 \right\}} = \frac{0.3 \text{ sekon}}{0.3 \text{ sekon}}$$

2. Pada sisi penyulang

Setelan waktu pada sisi penyulang di ambil pada titik gangguan 1% dari panjang saluran dengan waktu kerja rele +0,4 detik

I set primer =
$$1.05 \times 866.03$$

= 909.33 A

Iset sekunder = I set primer x
$$\frac{1}{c\tau}$$

= 909.39 x $\frac{5}{400}$
= 11.37 A

$$Tms = \frac{\left\{ \left(\frac{187.228}{909.89} \right)^{0.02} - 1 \right\} \times 0.7}{0.14} = 0.24$$

$$t = \frac{0.24 \times 0.14}{\left\{ \left(\frac{187.228}{909.89} \right)^{0.02} - 1 \right\}} = 0.71 \text{ sekon}$$

Dari hasil perhitungan yang telah dilakukan terlihat bahwa pada titik gangguan 10% panjang saluran besar arus gangguan yang terjadi sebesar 186.962 A sedangkan pada titik gangguan 100% sebesar 184.396 A. Hal ini disebabkan semakin panjang saluran impedansi saluran juga semakin besar sehingga arus gangguan yang tejadi mengecil. Setting relay yang dibuat pada sisi 20 KV di set pada0,3 sekon dan pada sisi penyulang di mulai pada panjang saluran 1% dengan waktu 0,71 sekon.

KESIMPULAN

Dari hasil perhitungan yang telah dilakukan pada penyulang Nakula pada Gardu Induk Talang Kelapa, maka disimpulkan bahwa :

- 1. Semakin dekat lokasi gangguan dengan Gardu Induk, semakin besar arus gangguan yang terjadi dan waktu pemutusannya pun semakin cepat.
- 2. Besar kecilnya arus gangguan yang terjadi pada suatu saluran mempengaruhi kerja rele.
- 3. Arus gangguan hubung singkat dipengaruhi oleh impedansi sumber, kapasitas dan impedansi transformator daya serta titik gangguan atau panjang penyulang.

DAFTAR PUSTAKA

1. Amira, Asnal Efendi, membahas "Studi Analisa gangguan Hubung singkat 1 fasa ke tanah pada SUTT 150KV untuk setting Relay OCR (Aplikasi GI PIP_Pauh Limo)" Jurnal Teknik Elektro ITP Volume 3 No,2014 (Diakses 15 November 2015)

http//www.download.portalgaruda.org/article.php

- 2. Filia Majesty Posundu, Lily S. Patras, ST,MT, Ir. Fielman Lisi, MT, dan Maickel Tueguh, ST,MT. "Penentuan Kapasitas CB Dengan Analisa Hubung Singkat Pada Jaringan 70 kV Sistem Minahasa" ejournal.unsrat.ac.idindox.php.elekdankom (akses 10 November 2015)
- 3. Hewitson, L.G, dkk. "Practical Power System Protection" Elsevier. Netherland, 2004
- 4. Nanda Pamadya Putra, Heri Purnomo Ir dan Teguh Utomo,Ir,MT "Analisa koordinasi Rele Arus Lebih pada Incoming dan Penyulang 20 KV Gardu Induk Sengkaling Menguunakan Pola NonKaskade" http://www.digilib.its.ac.id/public/ITS-undergraduate-12837-Paper.pdf (diakses 10 November 2015)
- 5. Stevenson, Jr., William D. 1996. *Analisis Sistem Tenaga Listrik*. Cetakan kelima.Jakarta: Penerbit Erlangga,p:249
- 6. Sarimun, Wahyudi. "Proteksi Sistem Distribusi Tenaga Listrik" Depok. Garamond. 2012
- 7. PUSDIKLAT PT. PLN (Persero) 2012
- 8. SPLN S2-3:1983
- 9. amadhani Sansan Hari, "Sistem Pengaman pada jaringan SUTM 20 KV 3 fasa" 2007 htpp://www.elib.unikom.ac.id/.../sansanhari/..pdf (Diakses Desember 2015)