ELEC 378 — Machine Learning: Concepts & Techniques Final Exam

Take-Home Due: 11:59pm May 2, 2023

INSTRUCTIONS

- 1. This exam is CLOSED BOOK, CLOSED NOTES, and CLOSED ANY OTHER RESOURCE (including calculators and computers), except that you are allowed TWO $8\frac{1}{2} \times 11$ inch sheets of notes (both sides).
- 2. You have 3 hours to complete the exam; take it at one sitting. You should write in an exam booklet or on sheets of blank paper.
- 3. This test is to be completed on your own NO COLLABORATION WITH OTHERS ALLOWED.
- 4. Include your note sheets at the end of your test. Minus 10 points if you don't include them.
- 5. Write clearly; if we can't read it, you won't get credit. Show your work.
- 6. Sign the pledge when you are finished.
- 7. **Submit the test on Gradescope.** Late tests will *not* be accepted.

NOTATION

- A training data set for supervised learning consists of n labeled data points $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$ with each $\mathbf{x}_i \in \mathbb{R}^p$.
- A training data set for unsupervised learning consists of n unlabeled data points $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ with each $\mathbf{x}_i \in \mathbb{R}^p$.

1. QUIKKIESTM (5 points each; 40 points total)

- (a) What's the difference between regression and classification, **and** why do we approach these two similar problems with different methods?
- (b) Suppose the optimal parameters of an SVM are learned via gradient descent to be $\mathbf{w} = \begin{bmatrix} 6 & 3 \end{bmatrix}^{\mathsf{T}}$ and b = -9, where $\hat{y}_i = \mathrm{sign}(\langle \mathbf{w}, \mathbf{x}_i \rangle + b)$ is the SVM's prediction of the label y_i of data point $\mathbf{x}_i \in \mathbb{R}^2$. What are the slope and intercept of the hyperplane parameterized by \mathbf{w} and b? Plot the hyperplane in \mathbb{R}^2 along with a possible dataset from which this hyperplane could be learned.
- (c) What does it mean to "do PCA"? Describe explicitly all necessary computations, and explain how and why PCA can be used for dimensionality reduction.
- (d) The binary SVM requires each data point to have one of two possible labels, $y_i \in \{+1, -1\}$. How can you apply such a binary model to implement multiclass classification, where each data point has one of K > 2 arbitrary labels, $y_i \in \{c_1, \ldots, c_K\}$?
- (e) How can you use a linear classifier to learn the decision boundary of a binary labeled dataset whose two classes are nonlinearly separable?
- (f) Both SVM and logistic regression learn a hyperplane with parameters \mathbf{w} and b to make predictions of the form $\hat{y}_i = \sigma(\langle \mathbf{w}, \mathbf{x}_i \rangle + b)$, where \mathbf{x}_i is a data point, σ is some non-linear function, and \mathbf{w} and b are learned from training data so that the prediction \hat{y}_i is close to the ground truth label y_i . What is σ in SVM? What is σ in logistic regression? And what is one key difference between the hyperplanes learned by these two linear classifiers?
- (g) What is the purpose of cross validation? Describe a scenario in which you would use it and how it is implemented in practice.
- (h) Both the kernel SVM and deep neural network models can learn nonlinear decision boundaries. When should you choose a kernel SVM over a deep neural network, and vice versa?

2. Playing with Perceptrons (25 points)

In each part of this problem, consider the labeled training data set

$$\mathbf{x}_{1} = \begin{bmatrix} 0 & 0 \end{bmatrix}^{\mathsf{T}}, \ y_{1} = 0$$
 $\mathbf{x}_{2} = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathsf{T}}, \ y_{2} = 1$
 $\mathbf{x}_{3} = \begin{bmatrix} 0 & 1 \end{bmatrix}^{\mathsf{T}}, \ y_{3} = 1$
 $\mathbf{x}_{4} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathsf{T}}, \ y_{4} = 0.$

- (a) Plot the training data $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$ in \mathbb{R}^2 , and label each data point \mathbf{x}_i with its label y_i . What is p?
- (b) Is it possible to find parameters \mathbf{w} , b and nonlinearity σ so that a single layer perceptron prediction $\hat{y}_i = \sigma(\langle \mathbf{w}, \mathbf{x}_i \rangle + b)$ correctly predicts the label of each of the data points $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$? If so, provide the corresponding \mathbf{w} , b, and σ . If not, justify why.
- (c) Let $\phi(\mathbf{x}_i) = (x_i[1] 1/2)(x_i[2] 1/2) \in \mathbb{R}$, where $\mathbf{x}_i = \begin{bmatrix} x_i[1] & x_i[2] \end{bmatrix}^\mathsf{T}$. Plot the transformed training data $\phi(\mathbf{x}_1), \phi(\mathbf{x}_2), \phi(\mathbf{x}_3), \phi(\mathbf{x}_4)$ in \mathbb{R} and label each transformed data point $\phi(\mathbf{x}_i)$ with its (unchanged) label y_i . What are n and p in the transformed training data?
- (d) Is $\phi(\mathbf{x}_i)$ a linear or nonlinear transform of the data point \mathbf{x}_i ? Justify your answer with a proof.
- (e) Is it possible to find parameters v, c and nonlinearity σ so that a single layer perceptron prediction $\hat{z}_i = \sigma(v \cdot \phi(\mathbf{x}_i) + c)$ correctly predicts the label of each of the transformed data points $\phi(\mathbf{x}_1), \phi(\mathbf{x}_2), \phi(\mathbf{x}_3), \phi(\mathbf{x}_4)$? If so, provide the corresponding v, c, and σ . If not, justify why.

3. Inner Product Classifier (35 points)

Let $\{\mathbf{x}_i, y_i\}_{i=1}^n$ be labeled training data with data points $\mathbf{x}_i \in \mathbb{R}^p$ and binary labels $y_i \in \{0, 1\}$. Consider a **linear classifier** that predicts the label \widehat{y} of a data point \mathbf{x} as $\widehat{y} = u(\langle \mathbf{x}, \mathbf{w} \rangle - b)$, where $\mathbf{w} \in \mathbb{R}^p$ and $b \in \mathbb{R}$ are learned from the training data, u(z) is the unit step function, and $\langle \cdot, \cdot \rangle$ is the inner (dot) product:

$$\widehat{y} = u(\langle \mathbf{x}, \mathbf{w} \rangle - b)
= \begin{cases} 1, & \langle \mathbf{x}, \mathbf{w} \rangle - b \ge 0 \\ 0, & \langle \mathbf{x}, \mathbf{w} \rangle - b < 0 \end{cases}
= \begin{cases} 1, & \langle \mathbf{x}, \mathbf{w} \rangle \ge b \\ 0, & \langle \mathbf{x}, \mathbf{w} \rangle < b \end{cases}$$
(1)

- (a) If this model makes the prediction $\hat{y}_i = u(\langle \mathbf{x}_i, \mathbf{w} \rangle b)$ for data point \mathbf{x}_i with ground-truth label y_i , one can measure the model error by computing $\frac{1}{2}(y_i \hat{y}_i)^2$. Why may this quantity be preferred over defining the model error as $|y_i \hat{y}_i|$ when it comes to learning the parameters via gradient descent?
- (b) The model error for the entire training data set is given by

$$\ell(\mathbf{w}, b) = \sum_{i=1}^{n} \frac{1}{2} (y_i - \widehat{y}_i)^2$$
$$= \frac{1}{2} \sum_{i=1}^{n} (y_i - u(\langle \mathbf{x}_i, \mathbf{w} \rangle - b))^2,$$

which depends on the model parameters **w** and *b*. In order to find parameters **w** and *b* that minimize the loss $\ell(\mathbf{w}, b)$ via gradient descent, why may one prefer to replace the unit step function with the sigmoid function, that is, to define $u(z) = \sigma(z) = \frac{1}{1+e^{-z}}$?

- (c) On the other hand, what issues may arise in making predictions of the form $\hat{y} = \sigma(\langle \mathbf{x}, \mathbf{w} \rangle + b)$ on the training data described above when using $\sigma(z) = \frac{1}{1+e^{-z}}$?
- (d) For the remaining parts, let $\hat{y} = \sigma(\langle \mathbf{x}, \mathbf{w} \rangle + b)$ be the model prediction with $\sigma(z) = \frac{1}{1 + e^{-z}}$ and parameters \mathbf{w} and b chosen to minimize the loss $\ell(\mathbf{w}, b) = \sum_{i=1}^{n} \frac{1}{2} (y_i \hat{y}_i)^2$. What makes this situation different than the logistic regression model?
- (e) Gradient descent can be used to learn the parameters \mathbf{w} and b by computing

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \mu \nabla_{\mathbf{w}} \ell(\mathbf{w}, b)$$
$$b_{t+1} = b_t - \mu \nabla_b \ell(\mathbf{w}, b)$$

for $t=0,\ldots,T$, where T is a fixed integer, μ is a fixed real number, and \mathbf{w}_0 and b_0 are randomly chosen. One can show that

$$\frac{d}{dz}\sigma(z) = \sigma(z)(1 - \sigma(z)),$$

and thus

$$\nabla_{\mathbf{v}}\sigma(f(\mathbf{v})) = \sigma(f(\mathbf{v}))(1 - \sigma(f(\mathbf{v})))\nabla_{\mathbf{v}}f(\mathbf{v})$$

for differentiable $f: \mathbb{R}^p \to \mathbb{R}$. Use this result to find expressions for $\nabla_{\mathbf{w}} \ell(\mathbf{w}, b)$ and $\nabla_b \ell(\mathbf{w}, b)$.

- (f) Suppose we replace the data $\mathbf{x}_i \in \mathbb{R}^p$ with a nonlinear function $\phi(\mathbf{x}_i) \in \mathbb{R}^P$, $P \gg p$, to provide the linear classifier some nonlinear capabilities. Explain why, as defined above, it is not necessarily possible to form a prediction on the transformed data using less than O(P) computations for an arbitrary nonlinear $\phi : \mathbb{R}^p \to \mathbb{R}^P$.
- (g) Suppose that there exists $\boldsymbol{\alpha} \in \mathbb{R}^n$ such that $\mathbf{w} = \mathbf{X}^{\mathsf{T}} \boldsymbol{\alpha} = \sum_{i=1}^n \alpha_i \mathbf{x}_i$, where $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix}^{\mathsf{T}}$ is the data matrix. Does this assumption alone allow you to apply the so-called "kernel trick" to the nonlinear classifier proposed above, thus reducing the computational complexity of forming predictions on the transformed data $\phi(\mathbf{x}_i)$ from O(P) to O(p)? If so, explicitly show how the prediction \hat{y}_i can be formed on the transformed data $\phi(\mathbf{x}_i)$ without explicitly transforming the data for arbitrary ϕ as defined above. If not, provide any additional assumptions on the classifier and/or the transform ϕ that are necessary for the kernel trick to work.