Project1-生存分析案例报告

一、数据导入

首先,我导入了一份客户相关的数据,里面包括每位客户的 ID、开始和结束日期、是否流失的标记(churn)和持续时间(tenure)等。在导入数据的过程中要进行基础清洗,比如:处理特殊空格、进行类型转换、根据指定条件进行初步筛选。

然后,进行针对生存分析任务的预处理,形成 silver data,这个过程包括:保留关键特征、处理缺失值以及保证数据有效性,举例而言,时间列不能出现负值。

最后,生成一个数据状态简报:

数据状态简报:

 样本量
 3875

 事件发生率
 42.7%

 平均持续时间
 18.0月

 特征维度
 17

 dtype: object

数据结构示例:

	tenure	Churn	gender	Partner	Dependents
0	1	0	Female	Yes	No
2	2	1	Male	No	No
4	2	1	Female	No	No

二、Kaplan-Meier 生存曲线

Kaplan-Meier 是一种很经典的生存分析方法,它用来估计在每个时间点,客户还"活着" (即还在使用服务、没有流失)的比例。

我用 lifelines 库来做了拟合,并画出了生存曲线:

kmf = KaplanMeierFitter()

从图中可以看出,随着时间的推移,客户流失逐渐增加,曲线也逐步下降。如果某一段时间曲线比较平坦,那就说明那个时间段流失较少,客户相对稳定。

我不仅做了整体的拟合,还做了单个协变量的拟合以及 logrank 检验,见下图:

<Figure size 640x480 with 0 Axes>


```
Log-rank检验结果 (OnlineSecurity):
                                                                           test_statistic p \ 485.975805 1.070135e-107 660.525069 1.148535e-145 11.060731 8.817539e-04
                 No internet service
      No internet service Yes
-log2(p)
No internet service 355.348514
Yes 481.479779
Yes 18 147777
    No No internet service 1-log2(P)
No No internet service 481.479779
No internet service Yes 481.479779
(Figure size 640x480 with 0 Axes)
```

]: # (3)cox_proportional_hazards

包含:列名兼容性处理、数据验证增强、错误引导提示"""

三、Cox 比例风险模型

接下来,我们用到了 Cox 比例风险模型。这种模型可以帮我们判断,到底是哪些因素在影响客户是否流失。

cph = CoxPHFitter() cph.fit(data_cox, duration col='duration', event col='churn')

模型的输出会告诉我们每个变量对流失风险的影响程度:

- 如果某个变量的"风险比"大于 1, 说明它会增加流失的可能;
- 小于 1,则是降低流失风险;
- 同时还能看到每个变量的显著性。

这一步非常关键,因为它能帮我们找出哪些客户特征值得关注,或者哪些行为可能预示着即将流失。

以下是分析示例:

	coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp	z	р	log2(p)
internetservice_fiber_optic	1.03	2.80	0.05	0.93	1.13	2.54	3.09	0.00	20.50	< 0.005	307.85
contract_one_year	-1.23	0.29	0.08	-1.39	-1.07	0.25	0.34	0.00	-15.12	< 0.005	169.25
gender_male	-0.04	0.96	0.05	-0.13	0.05	0.88	1.06	0.00	-0.77	0.44	1.19

四、AFT模型(加速失效时间)

在 Cox 模型之后,我们还用了一种叫 AFT(Accelerated Failure Time)的模型,中文叫加速失效时间模型。

它和 Cox 模型不太一样,它更关注的是客户到底还能"活"多久,也就是预测他们还能保留 多少时间。

我们用 Weibull 分布做了拟合:

aft = WeibullAFTFitter() aft.fit(data_aft, duration_col='duration', event_col='churn')

这个模型对预测客户剩余生命周期很有帮助,适合用在做个性化分析或未来时间预测上。 输出结果示例见下图

	Ē:	coef	evn(coef) se(coef)	1		
naram	covariate	coei	cyb(coe)	, 50(0001)	1		
	contract one year	2 077421	7.983848	0 122979			
arpina_	internetservice_fiber_optic						
	Intercept		219.780680				
hoto	Intercept	-0.291916					
Deca_	Intercept	-0.231310	0.740031	0.013827			
		coef lowe	r 95% coef	upper 95%	\		
param	covariate				,		
alpha	contract_one_year	1.8	36387	2.318454			
	internetservice_fiber_optic	-1.6	80421	-1.356817			
	Intercept	5.2	45210	5.540050			
beta_	Intercept	-0.330777		-0.253055			
param	covariate	exp(coef)	lower 95%	exp(coef)	upper 95%	1	
	contract_one_year		6.273828		10.159959		
arpina_	internetservice fiber optic						
	Internetservice_riber_optic		189.655686		254.690743		
heta	Intercept		0.718365		0.776425		
	2. Tree cept		0.710303		01770423		
		cmp to	Z	р	\		
param	covariate						
alpha_		0.0 1					
	internetservice_fiber_optic						
	Intercept			.000000e+00			
beta_	Intercept	0.0 -1	4.722879 4	.596637e-49			
		-log2(p)				
param	covariate						
alpha_	contract_one_year	210.25087	6				
	internetservice_fiber_optic	248.632480					
	Intercept	in					

五、客户生命周期价值(CLV)预测

最后一步, CLV (Customer Lifetime Value) , 主要功能包括:

生存概率预测:评估客户在未来每个月的留存概率。

财务价值计算:结合利润和折现率,计算客户未来现金流的净现值(NPV)。

可视化仪表盘: 生成生存曲线和累积价值的直观图表。

运行结果示例如下图:

CLV 是一个很实用的指标,它告诉我们:哪些客户值得长期维护;哪些客户看起来不活跃,但其实潜力很大。

总结

这次的分析,我们围绕客户流失问题,从多个角度进行了解读和预测,形成了一套完整的 生存分析流程:

- 1. 数据准备:构建生命周期和流失信息
- 2. 生存曲线(KM):观察整体流失趋势
- 3. Cox 模型:分析变量对流失风险的影响
- 4. AFT 模型: 预测个体的生命周期
- 5. CLV 计算:评估每个客户带来的长期价值

这套方法具有复用性,可用于处理其他生存分析案例