Лабораторная работа № 2 Итерационные методы поиска экстремумов

Градиентный спуск — метод нахождения локального экстремума (минимума или максимума) функции с помощью движения вдоль градиента. Для минимизации функции в направлении градиента используются методы одномерной оптимизации, например, метод золотого сечения. Также можно искать не наилучшую точку в направлении градиента, а какую-либо лучше текущей.

Наиболее простой в реализации из всех методов локальной оптимизации. Имеет довольно слабые условия сходимости, но при этом скорость сходимости достаточно мала (линейна).

Описание метода:

Пусть целевая функция имеет вид:

$$F(\vec{x}): \mathbb{X} \to \mathbb{R}$$
.

И задача оптимизации задана следующим образом:

$$F(ec{x}) o \min_{ec{x} \in \mathbb{X}}$$

В случае, когда требуется найти максимум, вместо $F(ec{x})$ используется $-F(ec{x})$

Основная идея метода заключается в том, чтобы идти в направлении наискорейшего спуска, а это направление задаётся антиградиентом $-\nabla F$:

$$\overset{
ightarrow}{x}^{[j+1]} = \overset{
ightarrow}{x}^{[j]} - \lambda^{[j]}
abla F(\overset{
ightarrow}{x}^{[j]})$$

где $\lambda^{[j]}$ выбирается

- постоянной, в этом случае метод может расходиться;
- дробным шагом, то есть длина шага в процессе спуска делится на некое число;
- наискорейшим спуском:
 - 1. Для поиска минимума $F(\vec{x})$ получаем $\lambda^{[j]} = \operatorname{argmin}_{\lambda} F(\vec{x}^{[j+1]}) = \operatorname{argmin}_{\lambda} F(\vec{x}^{[j]} \lambda \nabla F(\vec{x}^{[j]}))$
 - 2. Для поиска максимума $F(\vec{x})$ получаем $\lambda^{[j]} = \operatorname{argmax}_{\lambda} F(\vec{x}^{[j+1]}) = \operatorname{argmax}_{\lambda} F(\vec{x}^{[j]} + \lambda \nabla F(\vec{x}^{[j]}))$

Шаги алгоритма:

- 1. Задают начальное приближение и точность расчёта $ec{x}^0, \;\; arepsilon$
- 2. Рассчитывают $\overrightarrow{x}^{[j+1]} = \overrightarrow{x}^{[j]} \lambda^{[j]} \nabla F(\overrightarrow{x}^{[j]})$, где $\lambda^{[j]} = \operatorname{argmin}_{\lambda} F(\overrightarrow{x}^{[j]} \lambda \nabla F(\overrightarrow{x}^{[j]}))$
- 3. Проверяют условие остановки:
 - ullet Если $|ec{x}^{[j+1]} ec{x}^{[j]}| > arepsilon, |F(ec{x}^{[j+1]}) F(ec{x}^{[j]})| > arepsilon$ или $\|\nabla F(ec{x}^{[j+1]})\| > arepsilon$ (выбирают одно из условий), то j=j+1 и переход к шагу 2.
 - Иначе $\vec{x} = \vec{x}^{[j+1]}$ и останов.

Задание и Ход работы:

- 1. Ознакомиться с понятием градиента (градиент.pdf) и методом градиентного спуска. (Вспомнить дифференцирование функций)
- 2. Написать программу поиска максимумов и минимумов функции F(x,y,z) методом градиентного поиска (с постоянным шагом).

Входные данные в программу: Пользователь вводит диапазон поиска и стартовую точку поиска и выбирает направление поиска (min, max). (Стартовую точку поиска можно генерировать случайно в указанном диапазоне)

Выходные данные: Найденный экстремум — точка и соответствующее значение функции.

Вид функции и Варианты:

$$F(x,y,z) = f1*f2 + f3*f4$$

Вариант	f1	f2	f3	f4
1	xy	yz	$2x^2 + 3$	y
2	x ²	z^2	y + z	y ²
3	xy+1	yz ²	z + 4x	y^3
4	y^2	z^3	xy + 2y	z+1
5	xy	z^2	$2x^2 + 3$	y ²
6	x^2	yz ²	y + z	y^3
7	xy+1	z^3	z + 4x	z+1
8	y^2	yz	xy + 2y	y ³
9	ху	yz ²	$2x^2 + 3$	z+1
10	x ²	yz	y + z	z+1
11	xy+1	yz	z + 4x	y
12	y^2	z^2	xy + 2y	y^2
13	ху	z^3	$2x^2 + 3$	y ³
14	x^2	z^3	y + z	z+1
15	xy+1	z^2	z + 4x	2y ²
16	y^2	1+yz ²	xy + 2y	$2y^3$
17	ху	2yz	$2x^2 + 3$	z+1
18	x^2	$2z^3$	y + z	2+y
19	xy+1	$2z^2$	z + 4x	zy ²
20	y^2	2yz ²	xy + 2y	$3y^3$
21	xy	$3z^2$	$2x^2 + 3$	z+4
22	x^2	2+z ³	y + z	yz+1
23	xy+1	2+z ²	z + 4x	z+y ²
24	y ²	yz ²	xy + 2y	3zy ²
25	ху	$2z^3$	$2x^2 + 3$	zy+y