

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF HANOI

Network Simulation

Dr. NGUYEN-Minh Huong

Course Information

- Prerequisites:
 - Basic Programming
 - Computer Networks
- Materials: NS-3 tutorial
- Class organizing:
 - Groups: 5-6 students/group
 - Attendance check: fingerprint, exercise submission...
 - Online classes: google classroom classcode 7ozrrxr
- Assessment:
 - Attendance (absent >30% not allow to join final examination)
 - Project Report (40%)
 - Final exam: Presentation (60%)

Course plan

- I. Introduction to Network Simulation
- 2. Computer Networks revise
- 3. Network models in NS-3
- 4. Design simulation scenarios
- 5. Implement simulation scenario in NS-3
- 6. Logging and analyze results

Lecture I: Introduction

- What is Network Simulation?
- Why NS is necessary?
- The tool: NS-3
- Practical time

What is Network Simulation?

- Research method of computer networks
- Modeling the behavior of a network:
 - Interaction between network entities (?)

What is Network Simulation?

- Roles:
 - Network design
 - Analyzing network performance
 - Testing behavior of various applications:
 - Modeling network topology
 - Modeling, visualizing and logging application flow (traffic)

What is Network Simulation?

Tools:

- Network simulator: a software modeling network entities
- Network emulation: a test network with real devices

Why NS is necessary?

- Wireless technology increasing rapidly
- Unproven protocols must be tested before executed in real world and in large scale
- Network simulation is useful and economic

The tool NS-3

What?

- IIINS-3
- A discrete-event network simulator
- C++ or Python
- Why?
 - Open-source project
 - On-going contribution
 - Available model set:
 - Internet protocols
 - Wireless networks: Wifi, Wave, LTE...

How NS-3 simulates Computer Networks?

- Computer networks:
 - Computers interconnect by a single technology
 - Uses:
 - Business application
 - Resource sharing
 - VPN
 - Client-Server model
 - Home applications
 - Internet
 - Peer-to-peer communication
 - E-commerce
 - Mobile networks

Textbook: Andrews S. Tannebaum, Computer Networks, 4th edition, Prentice Hall, 2002.

Computer Networks

- Network hardware
 - Transmission technology: broadcast, multicast and unicast
 - Scale:
 - Personal Area Networks (PANs)
 - Local Area Networks (LANs)
 - Metropolitan Area Networks (MANs)
 - Wide Area Networks (WANs)
 - Internetworks

Examples

Computer Networks

- Network Software:
 - Layers, protocols and interfaces

Reference Model

ISO/OSI model

NS-3 Key Abstractions

OSI model

Classes in NS-3

The tool NS-3

- How to use?
 - NS-3 tutorial:
 https://www.nsnam.org/docs/release/3.32/tutorial/ns-3-tutorial.pdf
 - A C++ project

The tool NS-3

- Resources:
 - The Web: https://www.nsnam.org/documentation/
 - Source code management system: GitLab.com
 - Build system: Waf
 - Development Environment: Unix-like

Practical time

- Download and Install NS-3.39
- Run first.cc in tutorial

Practical time

- Download and Install NS-3.39
 - Prequisites:
 - Gcc/g++ 4.9 or greater or clang compiler
 - Python 3.5 or greater
 - Installation:
 - Using bake
 - Using Git (Manual installation):
 - git clone https://gitlab.com/nsnam/ns-3-allinone.git
 - Cd into ns-3-allinone and run ./download.py -n ns-3.39
 - Cd into ns-3.39, configure and build:
 - ./ns3 configure
 - ./ns3 build

https://www.nsnam.org/wiki/Installation#Installation

Notes: suggestions for installation

- Ubuntu: follow tutorial
- Window:
 - install Ubuntu application
 - Install ns-3 on Ubuntu app
- MacOS:
 - Install Docker, pull Ubuntu image
 - Run Ubuntu container
 - Install ns-3 on a Ubuntu container
- Trouble shooting:
 - 'pybindgen(ns3 module antenna)' failed: https://www.nsnam.org/wiki/Ns-3.35_errata

Practical time

- Configuration and Run with ./ns3
 - Configuring: ./ns3 configure
 - Running the file ns-3.39/scratch/scratch-simulator.cc
 ./ns3 --run scratch-simulator

Practical time

Labwork I:

Consider a C program ../ns-3.34/example/tutorial/first.cc

- I. Run the program
- 2. Explain the scenario
- 3. What protocols are implemented in the example?
- 4. What are the sender and receiver? How network traffic is generated?