LLC Resonant Half Bridge Converter

Asia Tech-Day August 17 to 27, 2009

Hong Huang
Applications Engineer

Outline

- Introduction to LLC resonant half bridge converter
 - Benefits
 - Operation principle
 - Design challenges
- Design method
 - Transformer turns ratio selection
 - Magnetizing inductor selection
 - Resonant component selection
- Other design issues for LLC resonant converter
 - Current limiting
 - Soft start
 - OVP and Burst Operation

Design Challenges for DC/DC

- Higher power conversion performance
 - Higher efficiency, smaller heat sink
 - Higher switching frequency, smaller magnetics
 - Less energy storage capacitors, smaller size (e.g., for PFC holdup)
 - Moderate frequency variations
- Wide input voltage variations
 - AC-DC applications: holdup time requirement (PFC from 400V to 300V during holdup)
 - Larger Energy Storage Capacitor high cost, large size, more space
 - Converter ability to tolerate the variations
 - DC-DC applications
 - Telecom, 36 to 75V (32V to 78V)
 - Some applications even asking 4:1 variations
- Wide output voltage trimming

Benefits of LLC Resonant Converter

- ZVS can be achieved by utilizing transformer magnetizing inductor
- Capacitor filter, less voltage stress on rectifiers
- Smaller switching loss due to small turn off current
- Variable switching frequency control, not sensitive to load change
- Frequency variations can be designed narrower compared to SRC
- Wide operation range without reducing normal operation efficiency

- f_{sw} is set at resonant frequency at nominal input and output
- f_{sw} is adjusted by feedback loop at other operation conditions

Operation Principles *At Resonant Frequency*

- Q2 and D2 ON, Q1 and D1 OFF
- Magnetizing current in Lm, im
- Cr resonates with Lr, ir
- Cr and Lr deliver energy to output

Operation Principle *Above Resonant Frequency*

- When switching frequency is above resonant frequency, circuit behaves as SRC
- Secondary current becomes CCM, reverse recovery loss increases

Operation Principle Below Resonant Frequency

- When switching frequency is below resonant frequency, magnetizing inductor begins to participate in resonant and increases voltage gain
- Secondary diode becomes discontinuous

LLC Resonant Converter Gain Function

$$V_{oe} = V_{os,1}^{ms} = \frac{2\sqrt{2}}{\pi} n V_o \qquad R_e = \frac{8}{\pi^2} n^2 R_L$$

$$I_{Re} = I_{os,1}^{ms} = (\frac{\pi}{2\sqrt{2}} I_o)/n \qquad M = \left| \frac{L_n f_n^2}{L_n f_n^2 + (f_n^2 - 1)(1 + j f_n L_n Q_e)} \right|$$

$$M = \frac{L_n f_n^2}{L_n f_n^2 + (f_n^2 - 1)(1 + j f_n L_n Q_e)}$$

RESONANT NORMALIZED NORMALIZED GAIN QUALITY FACTOR INDUCTOR RATIO **FREQUENCY** FREQUENCY $M = \frac{V_o}{V_{DC}/2} \qquad \qquad \int_0^\infty f_0 = \frac{1}{2\pi \sqrt{L_c C_c}} \qquad \qquad Q_e = \frac{\sqrt{L_r/C_r}}{R_c} \qquad \qquad \int_0^\infty f_0 = \frac{f}{f_0} \qquad \qquad L_n = \frac{L_m}{L_r}$

• Unity gain is reached at $V_r = (V_{Lr} - V_{Cr}) = 0$, where input voltage in phase with output voltage, and input voltage applies to load (R_e) directly

Inductive Region, Ir lagging Vge

Capacitive Region, Ir leading Vge

Unity Gain, Vr=0
Voe in phase with Vge

$$I_{\text{Re}}$$

$$I_{\text{m}}$$

$$V_{\text{r}=0}$$

$$V_{\text{r}} = (V_{\text{Lr}} - V_{\text{Cr}})$$

$$V_{\text{Lr}} = V_{\text{Cr}}$$

Working regions (Modes)

- Inductive Region, if resonant network current is lagging input voltage
- Capacitive Region, if resonant network current is leading input voltage
- Resistive Region, if resonant network current is in phase with input voltage (boundary to divide Inductive and capacitive, by let the imaginary part zero of the input impedance)
- Unity gain happens at $(V_{Lr}-V_{Cr})=0$, where input voltage in phase with output voltage, and input voltage applies to load (R_e) directly

- Should operate in ZVS region (Inductive Region, I_r lagging Vge)
- Avoid ZCS region (Capacitive Region, I_r leading Vge)
 - Hard switching of half bridge switches
 - Reverse recovery losses in primary FET body diodes
 - Large spikes on switch node
 - Higher EMI levels
 - Frequency relationship reversed
 - Frequency increases as load increases

Gain Characteristics with Ln and Qe

Q_e is related to output load

Q_e Increasing with Load Current

$$R_e = \frac{8}{\pi^2} n^2 R_L$$

$$f_0 = \frac{1}{2\pi\sqrt{L_r C_r}}$$

$$f_p = \frac{1}{2\pi\sqrt{(L_r + L_m)C_r}}$$

$$f_n = \frac{f}{f_0}$$

Qe increase with Ln constant (designed Lr, Cr, and operational RL),

- Peak-gain becomes lower
- Frequency at peak-gain moving to right
- Better "frequency-selective

Impacts of Circuit Parameters

Gain Change with Ln and Qe

- Ln increase with Qe constant (designed Lr, Cr, and operational RL),
 - flat,
 - magnitude shift-up,
 - frequency value at peak-gain moving towards more left,
 - less "frequency-selective"
 - wide frequency variation from no load to full load (more discussion later)

Ln somewhere 3 to 5 look best balance between peak gain and frequency change – can be initially pick-up

LLC Resonant Converter Operation for design consideration

- Operation/design with no load and minimum gain at a1
- Operation /design with full load and maximum gain at a3
- All gain curves cross at unity at f_n =1, or f= f_0
- Qe design consideration at Heavy load, OCP, Short Circuit

Design Goals for LLC Resonant Converter

- Minimize RMS current under normal operation condition
- Ensure ZVS operation
- Ensure desired operation range

Design Consideration -1: Primary RMS Current at Normal Operation

- Primary current can be easily calculated from the phasor circuit
- Primary side RMS current is summation of magnetizing current and load current
- Larger Lm is better for less conduction losses

Design Consideration -2: Secondary winding RMS Current

$$\omega = 2 \pi f \qquad Vge = Vin/2$$

$$I_{m} \downarrow I_{Re} \qquad V_{Cr} \qquad (V_{Lr} - V_{Cr})$$

$$V_{Lr} = \omega Lr Ir \qquad V_{Cr} = \frac{1}{\omega Cr} Ir$$

$$\begin{split} I_{RMS_S} &= (I_{Re} \times n)/2 = \frac{\pi}{4\sqrt{2}} I_o \Rightarrow I_{peak_S} = \frac{\pi}{4} I_O, \quad center-tapped \\ I_{RMS_S} &= I_{Re} \times n = \frac{\pi}{2\sqrt{2}} I_o \Rightarrow I_{peak_S} = \frac{\pi}{2} I_O, \quad bridge \end{split}$$

 Secondary side current is the difference between resonant tank current and magnetizing current

Design Consideration -3: Zero Voltage Switching

$$\frac{1}{2}(L_m + L_r)I_{m,peak}^2 \ge \frac{1}{2}(2C_{eq})V_{in}^2$$

$$I_{m,peak} = \frac{nV_o}{L_m} \frac{T}{4}$$

$$I_{m,peak} \times t_{dead} \ge 2C_{eq}V_{in}$$

$$L_m \le \frac{T \times t_{dead}}{16C_{eq}}$$

ZVS conditions:

- Enough H-field energy to balance E-field Energy in less than half cycle
- Enough time to make the energy conversion
- Worst operation for ZVS,
 - -V_{o,min}, I_{m,peak} becomes small
 - $-V_{in,max}$, more C_{eq} energy needs to discharge

Trade-off Design of Dead Time

- >Smaller turn off current
- >Smaller magnetizing current
- ➢Increase RMS current due to duty cycle loss

- > Smaller duty cycle loss
- >Larger magnetizing current
- **≻Larger turn off loss**

Trade-off Design of Dead Time

➤ Trade-off between the switching loss and conduction loss on a case of 100ns dead time

Peak Gains with Ln and Qe

- ➤ Initially select Ln in the range of 3 to 5 (gain curve not very flat and able to narrow down the frequency change while there is still enough gain)
- > Find proper Qe to get enough peak gain

Design Flow Chart for LLC Resonant Converter

Design - Over Current Protection

During over load condition, check if the converter enters ZCS region

Design - Soft start

> Soft start is achieved by frequency control

Design - OVP and Burst Operation

Secondary OVP

- Feedback loop fault may cause output over voltage.
- Slow loop response may also cause OVP.
- Independent OVP circuit is needed.

Burst Operation

- To cover no load operation, smaller Ln is needed which increases circulating (magnetizing) current, leading more conduction losses.
- To reduce switching losses, ZVS is still needed at no load. This requires higher magnetizing current, too.
- To maintain output regulation, <u>burst</u> operation at light load and no load is an alternative to balance switching losses and conduction losses.

Feedback Loop Design

- Measure G_m(jω)
- Design $G_c(j\omega)$ based on $G_m(j\omega)$ measurement

Summary

- LLC resonant converter is able to achieve wide operation together with high efficiency
- Due to low switching losses, LLC resonant converter is able to operate at high switching frequencies, while maintaining high efficiency
- LLC resonant converter design needs to find a suitable magnetizing inductor to ensure small conduction losses and switching losses
- By choosing a suitable Ln and Qe value, desired voltage gain can be achieved to input and output voltage variation range

UCC25600 Resonant Half Bridge Controller

- Complete system features
 - Programmable soft start
 - Programmable dead time
 - Programmable maximum/minimum switching frequency
 - 0.4A source, 0.8A sink driving capability
 - Simple ON/OFF control
 - Burst operation at light load condition
- Precise timing control
 - 3% accuracy on minimum switching frequency setting with only external resistor
 - ±50ns matching on dead time
 - Soft start timer range from 1ms to 500ms
- Complete protection functions
 - Two levels over current protection, auto recovery and latch off
 - Bias voltage UVLO and OV protection
 - Over temperature protection
 - Soft start enabled after all fault conditions
- 8 pin SOIC package, simplifies design and layout

Application Circuit

Frequency control with minimum/maximum frequency limiting

Programmable soft start with on/off control

Two level over current protection, auto-recovery and latch up Matching output with 50ns tolerance

Test based on EVM (UCC25600EVM)

Table 1. UCC25600EVM Electrical Performance Specifications

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Input Characteristics					
Voltage range	V _{IN}	375	390	405	V _{DC}
Maximum input current	V _{IN} = 390 V _{DC} , I _{OUT} = 25A			0.88	Α
Switching frequency	V _{IN} = 390 V _{DC} , I _{OUT} = 25A		110		kHz
Output Characteristics					
Output voltage V _{OUT}	V _{IN} : 390 V _{DC} , I _{OUT} : 1A	11.9	12	12.2	V_{DC}
Load current1(1)	V _{IN} : 390 V _{DC}	0		25	Α
Continuous output power	V _{IN} : 390 V _{DC}			300	W
Line regulation	V_{IN} : 375 V_{DC} to 405 V_{DC} , I_{OUT} = 1.0A			5	mV
Load regulation	V _{IN} : 390 V _{DC} , I _{OUT} : 1 - 25A			50	
Load starting burst ⁽¹⁾	V _{IN} : 390 V _{DC}		0.5		Α
Ripple and noise (20 MHz BW)	V _{IN} : 390 V _{DC} , I _{OUT} = 25A			120	m∨pk-pk
Over current threshold, Io_ocp	V _{IN} : 390 V _{DC}		30		Α
Max power limit	V _{IN} : 390 V _{DC}		350		W
Efficiency					
Peak	V _{IN} = 390 V _{DC} , I _{OUT} = 15 A		92.5%		
Full load	V _{IN} = 390 V _{DC} , I _{OUT} = 25 A		91%		
Operation ambient temperature	Full load, forced air cooling 400 LFM			45	С

⁽¹⁾ The EVM output may present saw-tooth waveforms or a voltage higher than the regulation point typically about 13.1 V depending on load levels and the speed when the load is reduced. The saw-tooth waveform is caused by UCC25600 burst operation. The output voltage of 13.1 V is caused by output over voltage protection.

Figure 11. Typical Resonant Tank Current and Resonant Capacitor Voltage

TP6

Test with EVM: Ripple and Hiccup

Figure 7. Typical Output Voltage Ripple Waveform at V_{IN} = 390 V and I_O = 15 A (TP15)

Figure 16. Typical Output Voltage in Burst Operation (TP15)

Test with EVM: Freq and Feedback

Frequency Variation

Feedback Loop Bode Plots

Test with EVM: Efficiency and Load Regulation

Efficiency

Load Regulation

Thank You!

