1. The pair of linear equations $2x = 5y + 6$ and $15y = 6x - 18$ represents two lines which are:
(a) intersecting
(b) parallel
(c) coincident
(d) either intersecting or parallel
2. In the given figure, TA is a tangent to the circle with center O such that $OT = 4$ cm, $\angle OTA = 30^{\circ}$, then the length of TA is:
(a) $2 \times \sqrt{3}$ cm
(b) 2cm
(c) $2 \times \sqrt{2}$ cm
(d) $\sqrt{3}$ cm
3. The ratio of HCF to LCM of the least composite number and the least prime number is:
(a) 1:2
(b) 2:1
(c) 1:1
(d) 1:3
4. If a pole 6 m high casts a shadow $2 \times \sqrt{3}$ m long on the ground, then sun's elevation is:
(a) 60°
(b) 45°
(c) 30°
(d) 90°
5. In the given figure, $\triangle ABC \sim \triangle QPR$, If $AC = 6$ cm, $BC = 5$ cm, $QR = 3$ cm $and PR = x$; then the value of x is:
(a) 3.6cm

Figure 1: image1

- (b) 2.5cm
- (c) 10cm
- (d) 3.2cm
- 6. The distance of the point (-6, 8) from origin is:
 - (a) 6
 - (b) -6
 - (c) 8
 - (d) 10
- 7. The next term of the A.P,: $\sqrt{70}$, $\sqrt{28}$, $\sqrt{63}$ is:
 - (a) $\sqrt{70}$

Figure 2: image2

- (b) $\sqrt{80}$
- (c) $\sqrt{97}$
- (d) $\sqrt{112}$
- 8. $(\sec^2 \theta 1)(\csc^2 \theta 1)$ is equal to:
 - (a) -1
 - (b) 1
 - (c) 0
 - (d) 2
- 9. Two dice are thrown together. The probability of getting the difference of numbers on their upper faces equal to 3 is:
 - (a) $\frac{1}{9}$
 - (b) $\frac{2}{9}$

 - (c) $\frac{1}{6}$ (d) $\frac{1}{12}$
- 10. A Card is drawn at random from a well-shuffled pack of 52 cards. The probability that the card drawn is not an ace is:

- (a) $\frac{1}{13}$ (b) $\frac{9}{13}$ (c) $\frac{4}{13}$ (d) $\frac{12}{13}$

- 11. The roots of the equation $x^2 + 3x 10 = 0$ are:
 - (a) 2, -5
 - (b) -2, 5
 - (c) 2,5
 - (d) -2, -5
- 12. If α, β are zeroes of the polynomial $x^2 1$, then the value of $(\alpha + \beta)$ is:
 - (a) 2
 - (b) 1
 - (c) -1
 - (d) 0

- 13. If α, β are the zeroes of the polynomial $p(x) = 4x^2 3x 7$, then $\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to:
 - (a) $\frac{7}{3}$
 - (b) $-\frac{7}{3}$
 - (c) $\frac{3}{7}$
 - (d) $-\frac{3}{7}$
- 14. What is the area of a semi-circle of diameter (d)?
 - (a) $\frac{1}{16} \times \pi \times d^2$
 - (b) $\frac{1}{4} \times \pi \times d^2$

 - (c) $\frac{1}{8} \times \pi \times d^2$ (d) $\frac{1}{2} \times \pi \times d^2$
- 15. For the following distribution:

Marks Below	10	20	30	40	50	60
Number of Students	3	12	27	57	75	80

The modal class is:

- (a) 10 20
- (b) 20 30
- (c) 30 40
- (d) 50 60

16. In the given figure, PT is a tangent at T to the circle with centre (o). If $\angle TPO = 25^{\circ}$, then x is equal to:

Figure 3: image3

- (a) 25°
- (b) 65°
- (c) 90°
- (d) 115°

17. In the given figure, $PQ \parallel AC$. If BP = 4 cm, AP = 2.4 cm, and BQ = 5 cm, then the length of BC is:

Figure 4: image4

- (a) 8cm
- (b) 3cm
- (c) 0.3cm
- (d) $\frac{25}{3}$ cm
- 18. The points (-4,0), (4,0), and (0,3) are the vertices of a:
 - (a) right triangle
 - (b) isosceles triangle
 - (c) equilateral triangle
 - (d) scalene triangle

19. DIRECTIONS: In questions number 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option out of the following: Assertion (A): The probability that a leap year has 53 Sundays is $\frac{2}{7}$.

Reason (R): The probability that a non-leap year has 53 Sundays is $\frac{5}{7}$.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true but Reason (R) is false.
- (d) Assertion (A) is false but Reason (R) is true.