

Experimental Characterization of Pu Separation by PUREX Process on a Low-Burnup, Pseudo-Fast-Neutron Irradiated DUO₂ for Product Decontamination Factors and Nuclear Forensics

A PhD. Prelims Defense by: Paul Mendoza

Chair: Dr. Sunil Chirayath

Committee Members: Dr. Sean McDeavitt

Dr. Craig Marianno

Dr. Cody Folden III.

Monday, February 27, 2017, 10:00 am

AIEN 304

TEXAS A&M ENGINEERING EXPERIMENT STATION

NUCLEAR SECURITY
SCIENCE & POLICY INSTITUTE

Outline

Introduction

Motivation

Contexts

Background

Objectives

Previous Work

Experiment

Recovery of Pu and U

Experimental Decontamination Factors

Future Work

Motivation

- Current Events
 - Joint Comprehensive Plan of Action
 - Non-safeguarded reactors
 - Islamic State of Iraq and Syria
- Past Events
 - Septemer 11, 2001
- Limited scope of IAEA safeguards
- "the awful arithmetic of the atomic bomb" [1]
- ♦ Need for improved forensic capabilities^[2, 3, 4]

Definitions

- Special Nuclear Material (SNM)
 - ➤ Plutonium, ²³³U, or ²³⁵U
- Nuclear Forensics
 - The investiative activity that surrounds the search for attributes of undetermined radioactive specimens for the purpose of attribution.
- SNM origin attributes/indicators
 - Indicators or clues for SNM origin attribution. Examples include burnup, fluence rate, initial fuel enrichment, fuel age, and fast-to-thermal irradiation ratios
- Decontamination Factors (DF)
 - A measure of the effectiveness with which a product is decontaminated from a contaminant

$$DF_j = \frac{\frac{c_j}{c_{Pu}}|_{\text{initial}}}{\frac{c_j}{c_{Pu}}|_{\text{final}}}$$

National Context

"The United States has developed a nuclear forensics capability that has been demonstrated in real-world incidents of **interdicted materials** and in exercises of actions required after a nuclear detonation. The committee, however, has concerns about the program and finds that without strong leadership, careful planning, and additional funds, these capabilities will decline" [2]

Major areas of concern include:

- Organization
- Sustainability
- * Workforce and Infrastructure
- Procedures and Tools

Forensic Context

- Nature of inverse problems
- Plutonium purification necessary for weapons production

$$^{238}U + n \rightarrow ^{239}U \xrightarrow{\beta^{-}} ^{239}Np \xrightarrow{\beta^{-}} ^{239}Pu$$

 Attribution for unpurified Pu has been previously studied [5, 6, 7]

Nuclear Context

- Weapons-grade Pu can be extracted from reactor discharged fuel with a burnup of about 1 (GWD/tU)
- Pu isotopes produced in irradiated fuel can vary
- Two examples of reactors which can intentionally discharge low burned fuel for extracting weapon-grade Pu are:
 - ➤ Fast Breeder Reactor, CANDU Reactor

Chemical Context

- Plutonium Uranium Redox EXtraction (PUREX)
 - Liquid-liquid solvent extraction
 - Many stages:
- Distribution Coefficient (D): The ratio between the organic and aqueous phases (aka: D-values)

$$D = \frac{c_o}{c_{aq}}$$

- Specific element to element
- Vary widely^[8]
- The fraction of mass, f_o deposited in the organic phase, assuming a volume ratio between the aqueous and organic phases, V_R , is:

$$f_o = (1 + D^{-1}V_R^{-1})^{-1}$$

Chemical Context

- Lack of literature on decontamination factors and distribution coefficients for useful forensic elements (Cs, Sb, Eu, Rb, Sr, Nd, Pm, and Sm)
- With a known process and D-values, DF values for individual elements can be determined

Extraction

$$\begin{array}{l} UO_{2(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow UO_{2}(NO_{3})_{2} \cdot 2TBP_{(o)}^{[9]} \\ Pu_{(aq)}^{4+} + 4NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow Pu(NO_{3})_{4} \cdot 2TBP_{(o)} \end{array}$$

Add clean immiscible organic solvent phase

Shake or stir to allow molecules to partition

Extraction

$$UO_{2(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow UO_{2}(NO_{3})_{2} \cdot 2TBP_{(o)}^{[9]}$$

$$Pu_{(aq)}^{4+} + 4NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow Pu(NO_{3})_{4} \cdot 2TBP_{(o)}$$

Initial:

Add clean immiscible organic solvent phase

$$M_{tot} = c_{A,i} V_A$$

Final
$$(D = \frac{c_{o,f}}{c_{A,f}})$$
:

$$M_{tot} = c_{A,f} V_A + c_{o,f} V_o \label{eq:mtot}$$

Solving for $c_{o,f}$ in terms of D:

$$c_{o,f} = \frac{M_{tot}}{\frac{V_A}{D} + V_o}$$

Solving for $\frac{c_{A,i}}{c_{o,f}}$:

$$\frac{c_{A,i}}{c_{o,f}} = \frac{\frac{V_A}{D} + V_o}{V_A} = \frac{1}{D} + \frac{V_o}{V_A}$$

partition

Extraction

$$UO_{2(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow UO_{2}(NO_{3})_{2} \cdot 2TBP_{(o)}^{[9]}$$

$$Pu_{(aq)}^{4+} + 4NO_{3(aq)}^{-} + 2TBP_{(o)} \leftrightarrow Pu(NO_{3})_{4} \cdot 2TBP_{(o)}$$

Add clean immiscible organic solvent phase

partition

Back-Extraction

$$Pu(NO_3)_4(TBP)_{2(o)} + Fe^{2+}_{(aq)} \leftrightarrow Pu^{3+}_{(aq)} + 4NO^{-}_{3(aq)} + 2TBP_{(o)}^{[10]}$$

Back-Extraction

$$Pu(NO_3)_4(TBP)_{2(o)} + Fe^{2+}_{(aq)} \leftrightarrow Pu^{3+}_{(aq)} + 4NO^-_{3(aq)} + 2TBP_{(o)}^{[10]}$$

Add clean immiscible aqueous solvent phase Initial:

$$M_{org} = c_{o,f}V_o$$

Final
$$(D_2 = \frac{c_{o,f2}}{c_{A2,f}})$$
:

$$M_{org} = c_{A2,f} V_{A2} + c_{o,f2} V_o \label{eq:morg}$$

Solving for $c_{A2,f}$ in terms of D_2 :

$$c_{A2,f} = \frac{M_{org}}{V_{A2} + D_2V_o}$$

Solving for $\frac{c_{A,i}}{c_{A2,f}}$ (note: $c_{A,i}$ is from the *initial* aqueous phase):

$$\frac{c_{A,i}}{c_{A2,f}} = \frac{1}{f_o} \frac{V_{A2} + D_2 V_o}{V_A}$$

partition

Back-Extraction

$$Pu(NO_3)_4(TBP)_{2(o)} + Fe_{(aq)}^{2+} \leftrightarrow Pu_{(aq)}^{3+} + 4NO_{3(aq)}^{-} + 2TBP_{(o)}^{[10]}$$

Add clean immiscible aqueous solvent phase

Decontamination Factors - The Pot of gold

After several cycles of Pu extraction/scrubbing/back-extraction are completed, the effectiveness of a PUREX cycle is described by the decontamination factor (DF):

$$DF_{j} = \frac{\left|\frac{c_{j}}{c_{Pu}}\right|_{initial}}{\left|\frac{c_{j}}{c_{Pu}}\right|_{final}}$$

- DFs are characteristic of different process cycles
- Larger values (10⁷) for industrial scale PUREX (compared to benchtop)^[8, 9]

Introduction Objectives Previous Work Future Work

Previous Work

Irradiation

- 12.9 \pm 0.1 mg of DUO₂ was irradiated
 - High Flux Isotope Reactor at Oak Ridge National Laboratory
- * Burnup was 4.43 \pm 0.31 GWd/tHM^[11]
- * $0.196 \pm \text{mg}$ of total Pu was produced as measured by ICP-MS

Dissolution of the spent fuel pellet

Introduction Objectives Previous Work Future Work

Glovebox

Experiments

- Single stage extraction and back-extraction
 - Purpose: quantify product recovery, D-values and DF values for single stage extraction and back extraction
 - Conditions:

Starting Solution	Extraction Solution	Back extraction solution		
4 M nitric acid	30% vol.% TBP, 70 vol.% kerosene	0.024 M ferrous sulfamate in 0.75 M nitric acid		

- Multi-contact extraction and back-extraction
 - Purpose: Maximize recovery of Pu with 4 extractions, 3 back extractions
 - Conditions:

Starting Solution	Extraction Solution	Back extraction solution		
4 M nitric acid	30% vol.% TBP, 70 vol.% kerosene	0.024 M ferrous sulfamate in 4 M nitric acid		

Previous Experiment Results

Recoveries of U and Pu							
		Pu Recovery	U Recovery				
	Single stage	(83.4±9.5)%	(11.2±1.3)%				
	Multi-contact Cycle 1	$(99.7 \pm 4.2)\%$	$(6.8\pm0.3)\%$				
	Multi-contact Cycle 2	$(93.0\pm4.6)\%$	$(6.6\pm0.3)\%$				
	Overall Experiment 2	$(92.7\pm6.0)\%$	$(0.45\pm0.03)\%$				

Previous Experiment Results

Decontamination Factors

Element (Z)	SS	Error	MC Cycle 1	Error	Isotopes Used
Rb(37)	39.0	5.9	11.8	0.8	⁸⁵ Rb
Sr(38)	283	43	84.6	5.9	⁹⁰ Sr
Mo(42)	5.7	8.0	1.9	0.2	97,98,100 Mo
Ru(44)	59.2	6.4	16.6	2.5	^{101,102,104} Ru
Pd(46)	65	14	8.9	1.2	¹¹⁰ Pd
Cd(48)	74	17	22.1	2.5	¹¹² Cd
Cs(55)	177	28	52.9	3.9	¹³³ Cs
Ce(58)	43	16	11.5	4.9	^{140,142} Ce
Nd(60)	19.2	2.1	5.9	0.4	¹⁴³ Nd
Pm(61)	12.8	1.9	3.9	0.3	¹⁴⁷ Pm
Sm(62)	11.5	1.5	3.6	0.3	¹⁵¹ Sm
Eu(63)	10.0	1.4	3.6	0.3	¹⁵⁴ Eu
U(92)	7.4	1.2	14.7	0.9	²³⁸ U

Conclusions

- Two PUREX experiments were conducted
 - Single stage: Determined DC values for Pu, U and several FP
 - Multi-contact: Utilized Experiment 1 to recover over 92% of Pu while leaving less than 1% of the U
- DF values were measured for 12 FP elements
- DF values were lower than those typically found in industrial scale PUREX plants due to multiple extraction and back-extraction steps without an intermittent scrubbing step.
- This work provide DF data that will be built upon for nuclear forensic investigations of interdicted Pu.

Introduction Objectives Previous Work Future Work

Future Work

Future Work

- Modify Multi-contact extraction, to recover a larger fraction of Pu
- Investigation of how D-values for (Cs, Sb, Eu, Rb, Sr, Nd, Pm, and Sm) change as a function of nitric acid concentration
- Determine statistical uncertainty of D and DF values.
 - Repeat above experiments 3-5 times
- Connect D-values with process information to DF values

Questions?

Previous Experiment Results

Decontamination Factors for multi-contact extraction.

References I

- [1] Dwight D Eisenhower. Atoms for peace speech. Voices of Democracy, 1953.
- [2] Nuclear Forensics: A Capability at Risk (Abbreviated Version). The National Academies Press, Washington, DC, 2010.
- [3] AAAS/APS. Nuclear forensics: Role, state of the art and program needs. Report, AAAS/APS, 2008.
- [4] Kenton J Moody, Ian D Hutcheon, and Patrick M Grant. Nuclear forensic analysis. CRC Press, 2014.
- [5] Sunil S Chirayath, Jeremy M Osborn, and Taylor M Coles. Trace fission product ratios for nuclear forensics attribution of weapons-grade plutonium from fast and thermal reactors. Science & Global Security, 23(1):48–67, 2015.
- [6] Mark Robert Scott. Nuclear forensics: attributing the source of spent fuel used in an RDD event. PhD thesis, Texas A&M University, 2005.
- [7] Alexander Glaser. Isotopic signatures of weapon-grade plutonium from dedicated natural uranium-fueled production reactors and their relevance for nuclear forensic analysis. *Nuclear Science and Engineering*, 163(1):26–33, 2009.

References II

- [8] Sidney M Stoller, Walter Henry Zinn, Stuart MacLain, and Atomic Energy Commission USA. Reactor handbook. 2. Fuel reprocessing. Interscience Publ., 1961.
- [9] M Benedict, H Levi, and T Pigford. Nuclear chemical engineering. *Nucl. Sci. Eng.*; (United States), 82(4), 1982.
- [10] RJM Konings, LR Morss, J Fuger, LR Morss, NM Edelstein, and J Fuger. The chemistry of the actinide and transactinide elements. *Springer, Dordrecht*, 4:2113–224, 2006.
- [11] Mathew Wayne Swinney. Experimental and Computational Assessment of Trace Nuclide Ratios in Weapons Grade Plutonium for Nuclear Forensics Analysis. PhD thesis, 2015.
- [12] Kenneth D Kok. Nuclear engineering handbook, volume 60. CRC Press, 2009.
- [13] Sunil S. Chirayath, Jeremy M. Osborn, and Taylor M. Coles. Trace fission product ratios for nuclear forensics attribution of weapons-grade plutonium from fast and thermal reactors. Science and Global Security, 23(1):48–67, 2015.

Mass Spec

