Evaluation - Chap 9

TMATH1

Partie A

On considère la fonction f définie sur l'ensemble]0; $+\infty[$ par

$$f(x) = 1 + x^2 - 2x^2 \ln(x).$$

On admet que f est dérivable sur l'intervalle et on note f' sa fonction dérivée

- 1. Justifier que $\lim_{x\to 0} f(x) = 1$ et, en remarquant que $f(x) = 1 + x^2(1 2\ln(x))$, justifier que $\lim_{x\to +\infty} f(x) = -\infty$.
- 2. Montrer que pour tout réel x de l'intervalle]0; $+\infty[$, $f'(x) = -4x \ln(x)$.
- 3. Étudier le signe de f'(x) sur l'intervalle]0; $+\infty[$, puis dresser le tableau de variation de la fonction sur l'intervalle]0; $+\infty[$.
- 4. Démontrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle $[1; +\infty[$ et que $\alpha \in [1; e].$

On admet dans la suite de l'exercice, que l'équation f(x) = 0 n'admet pas de solution sur l'intervalle [0; 1].

5. On donne la fonction ci-dessous écrit en Python. L'instruction from lycee import * permet d'accéder à la fonction ln.

Il écrit dans la console d'exécution :

```
>>> dichotomie(1)
```

Parmi les quatre propositions ci-dessous, recopier celle affichée par l'instruction précédente? Justifier votre réponse (on pourra procéder par élimination)

Proposition A: (1.75, 1.90312500000000002) Proposition B: (1.85, 1.90312500000000002) Proposition C: (2.75, 2.90312500000000002) Proposition D: (2.85, 2.90312500000000002)

Partie B

On considère la fonction g définie sur l'intervalle]0; $+\infty[$, par

$$g(x) = \frac{\ln(x)}{1 + x^2}.$$

On admet que g est dérivable sur l'intervalle]0; $+\infty[$ et on note g' sa fonction dérivée. On note \mathcal{C}_g la courbe représentative de la fonction g dans le plan rapporté à un repère $(0; \vec{i}, \vec{j})$.

- 1. Démontrer que pour tout réel x de l'intervalle]0; $+\infty[, g'(x) = \frac{f(x)}{x(1+x^2)^2}$.
- 2. Démontrer que la fonction g admet un maximum en $x=\alpha$. On admet que $g(\alpha)=\frac{1}{2\alpha^2}$.
- 3. On note T_1 la tangente à C_g au point d'abscisse 1 et on note T_α la tangente à C_g au point d'abscisse α .

Déterminer, en fonction de α , les coordonnées du point d'intersection des droites T_1 et T_{α} .