Daniel Capanema

Pontifícia Universidade Católica de Minas Gerais

- Os algoritmos fazem parte do dia-a-dia das pessoas. Exemplos de algoritmos:
 - Instruções para o uso de medicamentos;
 - Indicações de como montar um aparelho;
 - Uma receita de culinária.
- Sequência de ações executáveis para a obtenção de uma solução para um determinado tipo de problema.

- Segundo Dijkstra, um algoritmo corresponde a uma descrição de um padrão de comportamento, expresso em termos de um conjunto finito de ações.
 - Executando a operação a + b percebemos um padrão de comportamento, mesmo que a operação seja realizada para valores diferentes de a e b.
- Conhecido por:
 - Algoritmo de Dijkstra
 - Semáforo

- Definição: um algoritmo é um conjunto finito de instruções precisas para executar uma computação.
 - Um algoritmo pode ser visto como uma ferramenta para resolver um problema computacional bem especificado.
- Um algoritmo pode receber como entrada um conjunto de valores e pode produzir como saída um outro conjunto de valores.
 - Um algoritmo descreve uma sequência de passos computacionais que transforma a entrada numa saída, ou seja, uma relação entrada/saída.
- O vocábulo algoritmo origina do nome al-Khowarizmi.

- Do antropônimo² árabe al-Khuwarizmi (matemático árabe do século IX) formou-se o árabe al-Khuwarizmi 'numeração decimal em arábicos' que passou ao latim medieval algorismus com influência do grego arithmós 'número'; forma histórica 1871 algorithmo.
- 1. Estudo da origem e da evolução das palavras.
- 2. Nome próprio de pessoa ou de ser personificado
- Referência: Dicionário Houaiss da Língua Portuguesa, 2001, 1a edição.

- Dicionário Houaiss da Língua Portuguesa, 2001, 1ª edição:
 - Conjunto das regras e procedimentos lógicos perfeitamente definidos que levam à solução de um problema em um número de etapas.

- Dicionário Webster da Língua Inglesa:
 - An Algorithm is a procedure for solving a mathematical problem in a finite number of steps that frequently involves a repetition of an operation

- Regras são precisas
- Conjunto de regras é finito
- Tempo finito de execução
- Regras são executadas por um computador

- Deve-se definir um repertório finito de regras
 - Linguagem de programação
- A maior parte dos algoritmos utiliza métodos de organização de dados envolvidos na computação
 - Estruturas de dados
- Tempo finito não é uma eternidade
 - A maior parte das pessoas não está interessada em algoritmos que levam anos, décadas, séculos, milênios para executarem
- Existem diferentes "tipos de computadores"
 - § Existem diferentes modelos computacionais

Estático:

 Texto contendo instruções que devem ser executadas em uma ordem definida, independente do aspecto temporal

Dinâmico:

 Execução de instruções a partir de um conjunto de valores iniciais, que evolui no tempo

Dificuldade:

Relacionamento entre o aspecto estático e dinâmico

- Apresente as justificativas:
 - 1. Um programa pode ser visto como um algoritmo codificado em uma linguagem de programação que pode ser executado por um computador. Qualquer computador pode executar qualquer programa?
 - 2. Todos os problemas ligados às ciências exatas possuem algoritmos?
 - 3. Todos os problemas computacionais têm a mesma dificuldade de resolução?
 - 4. Como algoritmos diferentes para um mesmo problema podem ser comparados/avaliados?

Na Grécia antiga, lugares maravilhosos como este ...

Vale perto de Almfiklia. Grécia

...podiam se transformar em cenários de guerra.

• É quando algum filósofo propõe o "problema dos dois exércitos".

- Exército Alfa está em maior número que o exército Gama mas está dividido em duas metades, cada uma numa lateral do vale.
- Cada metade do exército Alfa está em menor número que o exército Gama.
- Objetivo do exército Alfa: coordenar um ataque ao exército Gama para ganhar a guerra.

Exército Alfa
Lateral do vale

O

O

- General do exército Alfa, do lado esquerdo do vale, chama o seu melhor soldado para levar uma mensagem para o general do exército Alfa do lado direito:
 - Vamos atacar conjuntamente o exército Gama amanhã às 6:00h?
 - Observações: A única possibilidade de comunicação entre os dois generais é através de um mensageiro.
 - Os dois generais têm um "relógio perfeitamente sincronizado", ou seja, eles sabem pela posição do sol quando é 6:00h.

 O soldado do exército Alfa atravessa as linhas inimigas e leva a mensagem até o general do outro lado.

 O general do exército Alfa do lado direito concorda em atacar o exército Gama no dia seguinte às 6:00h.

 O soldado do exército Alfa atravessa novamente as linhas inimigas e confirma com seu general o ataque para o dia seguinte.

Após esses quatro passos terem sido realizados com sucesso, vai haver ataque amanhã às 6:00h?

- Um algoritmo é correto se, para cada instância de entrada, ele para com a saída correta
- Um algoritmo incorreto pode não parar em algumas instâncias de entrada, ou então pode parar com outra resposta que não a desejada

 Algoritmos eficientes são os que executam em tempo polinomial

 Algoritmos que necessitam de tempo superpolinomial são chamados de ineficientes

- Problemas que podem ser resolvidos por algoritmo de tempo polinomial são chamados de tratáveis
- Problemas que exigem tempo superpolinomial são chamados de intratáveis

Tratabilidade

 Um problema é decidível se existe algoritmo para resolvê-lo

 Um problema é indecidível se não existe algoritmo para resolvê-lo

Decidibilidade

- Analisar a complexidade computacional de um algoritmo significa prever os recursos de que o mesmo necessitará:
 - Memória
 - Largura de banda de comunicação
 - Hardware
 - Tempo de execução
- Geralmente existe mais de um algoritmo para resolver um problema
- A análise de complexidade computacional é fundamental no processo de definição de algoritmos mais eficientes para a sua solução
- Em geral, o tempo de execução cresce com o tamanho da entrada

- O tempo de computação e o espaço na memória são recursos limitados
 - Os computadores podem ser rápidos, mas não são infinitamente rápidos
 - o A memória pode ser de baixo custo, mas é finita e não é gratuita
- Os recursos devem ser usados de forma sensata, e algoritmos eficientes em termos de tempo e espaço devem ser projetados
- Com o aumento da velocidade dos computadores, torna-se cada vez mais importante desenvolver algoritmos mais eficientes, devido ao aumento constante do tamanho dos problemas a serem resolvidos

• Suponha que para resolver um determinado problema você tem disponível um algoritmo exponencial (2^n) e um computador capaz de executar 10^4 operações por segundo

		2 ⁿ na máquina 10 ⁴
	tempo (s)	tamanho
	0,10	10
	1	13
1 minuto	60	19
1 hora	3.600	25
1 dia	86.400	30
1 ano	31.536.000	38

• Investir em algoritmo:

• Você encontrou um algoritmo quadrático (n²) para resolver o problema

		2 ⁿ na máquina 10 ⁴	2 ⁿ na máquina 10 ⁹	n² na máquina 10⁴	n² na máquina 10 ⁹
	tempo (s)	tamanho	tamanho	tamanho	tamanho
	0,10	10	27	32	10.000
	1	13	30	100	31.623
1 minuto	60	19	36	775	244.949
1 hora	3.600	25	42	6.000	1.897.367
1 dia	86.400	30	46	29.394	9.295.160
1 ano	31.536.000	38	55	561.569	177.583.783

Novo algoritmo oferece uma melhoria maior que a compra da nova máquina

- Algum dia você poderá encontrar um problema para o qual não seja possível descobrir prontamente um algoritmo publicado
- É necessário estudar técnicas de projeto de algoritmos, de forma que você possa desenvolver algoritmos por conta própria, mostrar que eles fornecem a resposta correta e entender sua eficiência

 Porque se você quer trabalhar nas grandes empresas, os problemas que você vai enfrentar são a nível global.

- Imagine trabalhar na Google...
 - Quantos bilhões de acessos o site da Google tem por segundo?
 - Qual é o tamanho da base de dados?

- Metodologia: conjunto de conceitos que traz coesão a princípios e técnicas mostrando quando, como e porque usá-los em situações diferentes.
- A metodologia que usa matemática na resolução de problemas é conhecida como modelagem matemática.
- O processo de modelagem:

- Suponha a malha rodoviária entre as seis cidades A, B, C, D, E, e F.
- Problema: Achar um subconjunto da malha rodoviária representada pela tabela abaixo que ligue todas as cidades e tenha um comprimento total mínimo.

	В	C	D	E	F
A	5	-	10	30-37	30 —
В		5	10	20	_
C			20	-3	30
C				20	
Ε					10

- Tabela já é um modelo da situação do mundo real.
- A tabela pode ser transformada numa representação gráfica chamada GRAFO, que será o modelo matemático.

- Grafo (definição informal): conjunto de pontos chamados de vértices ou nós, e um conjunto de linhas (normalmente não-vazio) conectando um vértice ao outro.
 - Neste caso, cidades s\u00e3o representadas por v\u00e9rtices e estradas por linhas (arestas).

- Qual é o próximo passo?
 - Achar uma solução em termos desse modelo.
 - Nesse caso, achar um grafo G' com o mesmo número de vértices e um conjunto mínimo de arestas que conecte todas as cidades e satisfaça a condição do problema.
- Observação: o modelo matemático é escolhido, em geral, visando a solução.
- A solução será apresentada na forma de um algoritmo.

•		remos várias técnicas de projeto de algoritmos na disciplina. Transformação
	0	Divisão e conquista
	0	Programação dinâmica
	0	Método guloso
	0	Enumeração implícita
	0	Técnicas de retrocesso e critérios de poda
	0	Algoritmos aproximados

- **Objetivo**: preencher todos os espaços em branco do quadrado maior, que está dividido em nove grids, com os números de 1 a 9 (letras).
 - Os algarismos não podem se repetir na mesma coluna, linha ou grid.
- Godoku: é similar ao Sudoku mas formado apenas por letras.

Sudoku

Godoku

 O jogo SuperSudoku é similar ao Sudoku e Godoku formado por números e letras. Cada grid tem 16 entradas, sendo nove dos números (o a 9) e seis letras (A a F).

6	1	В	2			5	3		A	D		8		C	F
		0	8		В	С			7	6	F				5
4	9		D	2			0	8			С	В		7	1
		F			D	8		3	В		1		A	0	E
3	4		5	Α		1	7		F	2		C	0	9	
								6	İ			Α			В
0		E	В	D	6		9	1	4		Α		5		
		6			4		5	9		8	7			E	3
П				В				5	3			E	7		4
F		5				6		Α		4	8			2	
	8		4				C	F	2			1	3		Α
2		7				4		E			6			F	
		C	0	4			2			1	В			5	9
7	E			5		D		4	9		0	3		В	8
5		4		8		7	6		E	F	3		C		
8		1		3	0		В	C		5		7		4	D

- O objetivo é projetar um algoritmo para resolver o problema.
 - Veja que o Sudoku e o Deep Blue têm características bem diferentes!
- Esse projeto envolve dois aspectos:
 - 1. O algoritmo propriamente dito, e
 - 2. A estrutura de dados a ser usada nesse algoritmo.
- Em geral, a escolha do algoritmo influencia a estrutura de dados e vice-versa.
 - É necessário considerar diferentes fatores para escolher esse par (algoritmo e estrutura de dados).
 - Pontos a serem estudados ao longo do curso, começando pela sequência de disciplinas Algoritmos e Estruturas de Dados.

 Um possível algoritmo para resolver o jogo Sudoku é o "Algoritmo de Força Bruta":

Tente todas as possibilidades até encontrar uma solução!

Nessa estratégia, quantas possibilidades existem para a configuração

abaixo?

		3	1					6
	7			3			2	
6		9		8		7		
2					8			
	5	6		1		3	8	
			2					4
		8		6		5		1
	9			4			6	
1					3	2		

458	248	3	1	2579	24579	489	459	6
458	7	145	4509	3	4509	1489	2	589
6	124	9	2	8	245	7	1345	35
2	134	147	345679	579	8	100	1579	579
3	5	6	479	1	479 3	3	8	279
4	138	17	2	579	5679	109	1579	4
3	234	8	79	6	279	5	3479	1
357	9	257	578	4	1257	1	6	378
1	40 2	457	5789	579	3	2	479	789

Legenda: X nº de opções para a posição

• Existem $1^{1} \times 2^{5} \times 3^{32} \times 4^{13} \times 6^{1} = 23875983329839202653175808$ $\approx 23, 8 \times 1024$ possibilidades!

- Estruturas de dados e algoritmos estão intimamente ligados:
 - Não se pode estudar estruturas de dados sem considerar os algoritmos associados a elas;
 - Assim como a escolha dos algoritmos em geral depende da representação e da estrutura dos dados.
- Para resolver um problema é necessário escolher uma abstração da realidade, em geral mediante a definição de um conjunto de dados que representa a situação real.
- A seguir, deve ser escolhida a forma de representar esses dados.

- A escolha da representação dos dados é determinada, entre outras, pelas operações a serem realizadas sobre os dados.
- Considere a operação de adição:
 - Para pequenos números, uma boa representação é por meio de barras verticais (caso em que a operação de adição é bastante simples).
 - Já a representação por dígitos decimais requer regras relativamente complicadas, as quais devem ser memorizadas.
- Quando consideramos a adição de grandes números é mais fácil a representação por dígitos decimais (devido ao princípio baseado no peso relativo a posição de cada dígito).

- Programar é basicamente estruturar dados e construir algoritmos.
- Programas são formulações concretas de algoritmos abstratos, baseados em representações e estruturas específicas de dados.
- Programas representam uma classe especial de algoritmos capazes de serem seguidos por computadores.
- Um computador só é capaz de seguir programas em linguagem de máquina (sequência de instruções obscuras e desconfortáveis).
- É necessário construir linguagens mais adequadas, que facilitem a tarefa de programar um computador.
- Uma linguagem de programação é uma técnica de notação para programar, com a intenção de servir de veículo tanto para a expressão do raciocínio algorítmico quanto para a execução automática de um algoritmo por um computador.

- Caracteriza o conjunto de valores a que uma constante pertence, ou que podem ser assumidos por uma variável ou expressão, ou que podem ser gerados por uma função.
- Tipos simples de dados são grupos de valores indivisíveis (como os tipos básicos integer, boolean, char e real do Pascal).
 - Exemplo: uma variável do tipo boolean pode assumir o valor verdadeiro ou o valor falso, e nenhum outro valor.
- Os tipos estruturados em geral definem uma coleção de valores simples, ou um agregado de valores de tipos diferentes.

- Modelo matemático, acompanhado das operações definidas sobre o modelo.
 - Exemplo: o conjunto dos inteiros acompanhado das operações de adição, subtração e multiplicação.
- TADs são utilizados extensivamente como base para o projeto de algoritmos.
- A implementação do algoritmo em uma linguagem de programação específica exige a representação do TAD em termos dos tipos de dados e dos operadores suportados.
- A representação do modelo matemático por trás do tipo abstrato de dados é realizada mediante uma estrutura de dados.
- Podemos considerar TADs como generalizações de tipos primitivos e procedimentos como generalizações de operações primitivas.
- O TAD encapsula tipos de dados:
 - A definição do tipo e todas as operações ficam localizadas numa seção do programa.

- Considere uma aplicação que utilize uma lista de inteiros.
- Poderíamos definir o TAD Lista, com as seguintes operações:
 - 1. Faça a lista vazia;
 - Obtenha o primeiro elemento da lista; se a lista estiver vazia, então retorne nulo;
 - 3. Insira um elemento na lista.
- Há várias opções de estruturas de dados que permitem uma implementação eficiente para listas (por exemplo, o tipo estruturado arranjo).

- Cada operação do tipo abstrato de dados é implementada como um procedimento na linguagem de programação escolhida.
- Qualquer alteração na implementação do TAD fica restrita à parte encapsulada, sem causar impactos em outras partes do código.
- Cada conjunto diferente de operações define um TAD diferente, mesmo atuem sob um mesmo modelo matemático.
- A escolha adequada de uma implementação depende fortemente das operações a serem realizadas sobre o modelo.

Conceitos Básicos