Fasit/løsningsforslag — Prøveeksamen MAT121 V22

I flervalgsoppgavene er riktig(e) svar angitt med skravert firkant.

Oppgave 1. La

$$A = \begin{bmatrix} 10 & -9 \\ 9 & 8 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & 4 & 8 \\ 4 & 0 & 2 \\ 8 & 2 & 4 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 4 & 4 \\ 8 & 2 & 4 \\ 8 & 8 & 2 \end{bmatrix},$$

$$D = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}, \qquad E = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 7 & 8 & 9 \end{bmatrix}.$$

Kryss av for de korrekte utsagnene om disse matrisene. Velg ett eller flere alternativer:

- \square A er symmetrisk
- \blacksquare B er symmetrisk
- \square Cer symmetrisk
- \square D er symmetrisk
- \blacksquare E er symmetrisk
- $\blacksquare D^T D$ er symmetrisk

Merknad. Du trenger ikke regne ut D^TD . For en hvilken som helst matrise D er D^TD symmetrisk, fordi $(D^TD)^T = D^T(D^T)^T = D^TD$.

Oppgave 2. Vi betrakter ligningssystemet

$$2x_1 + (k-1)x_2 = 1$$
$$8x_1 + k^2x_2 = 5$$

der k er et reelt tall. For hvilke verdier av k er systemet inkonsistent? Velg ett alternativ:

- \square ingen k
- $\square k = 1$
- $\square k = -1$
- \square alle k
- $\blacksquare k=2$
- $\square k = 0$

Løsning. Vi radreduserer utvidet koeffisientmatrise:

$$\begin{bmatrix} 2 & k-1 & 1 \\ 8 & k^2 & 5 \end{bmatrix} \sim \begin{bmatrix} 2 & k-1 & 1 \\ 0 & k^2-4(k-1) & 1 \end{bmatrix} = \begin{bmatrix} 2 & k-1 & 1 \\ 0 & (k-2)^2 & 1 \end{bmatrix}$$

Vi har derfor inkonsistens hvis og bare hvis $(k-2)^2=0$, dvs. når k=2.

Oppgave 3. La A, B, C være 3×3 -matriser med

$$det(A) = -1$$
, $det(B) = 48$ og $det(C) = 2$.

Hva er verdien av $\det(AB(2C)^{-1}A)$?

 \square ingen av de andre alternativene

3

 \Box 12

 \Box -48

 \square 32

 $\Box \frac{3}{4}$

 $L \emptyset sning.$ Vi bruker multiplikasjonsteoremet for determinanter (Teorem 6, avsnitt 3.2) og finner

$$\begin{split} \det(AB(2C)^{-1}A) &= \det(A)\det(B)\det\left((2C)^{-1}\right)\det(A) \\ &= [\det(A)]^2\det(B)\frac{1}{\det(2C)} = (-1)^248\frac{1}{2^3\det(C)} = \frac{48}{16} = 3. \end{split}$$

Her brukte vi også følgende generelle fakta:

- Hvis D er inverterbar, så er $\det(D^{-1}) = \frac{1}{\det(D)}$ (følger fra multiplikasjonsteoremet siden $DD^{-1} = I$).
- Hvis D er 3×3 , og vi ganger D med en faktor k, så blir determinanten ganget med k^3 , dvs. $\det(kD) = k^3 \det(D)$.

Oppgave 4. Vi betrakter ligningssystemet $A\mathbf{x} = \mathbf{b}$, der

$$A = \begin{bmatrix} 2 & 1 & 9 & 3 \\ 1 & 0 & 5 & 0 \\ 0 & 1 & -1 & 1 \\ 2 & -1 & 11 & -3 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ -1 \\ 2 \\ -4 \end{bmatrix}.$$

Hvilket av følgende utsagn er USANT?

- □ Systemet er konsistent.
- ☐ Systemet har uendelig mange løsninger.
- \blacksquare Løsningsmengden er et underrom av \mathbb{R}^4 .
- \Box $(x_1, x_2, x_3, x_4) = (-1, 2, 0, 0)$ er en løsning.
- \square Alle løsningene er på formen $(x_1, x_2, x_3, x_4) = (-1 5s, 2 + s, s, 0)$, der $s \in \mathbb{R}$.

Løsning. Siden $\mathbf{b} \neq \mathbf{0}$, er $\mathbf{x} = \mathbf{0}$ ikke en løsning. Derfor er løsningsmengden ikke et underrom av \mathbb{R}^4 (et underrom må inneholde nullvektoren).

Alternativt kan man bruke eliminasjon: Løse systemet ved radreduksjon og se at alle de andre alternativene er sanne:

$$\begin{bmatrix} 2 & 1 & 9 & 3 & 0 \\ 1 & 0 & 5 & 0 & -1 \\ 0 & 1 & -1 & 1 & 2 \\ 2 & -1 & 11 & -3 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 & 0 & -1 \\ 2 & 1 & 9 & 3 & 0 \\ 0 & 1 & -1 & 1 & 2 \\ 2 & -1 & 11 & -3 & -4 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 0 & 5 & 0 & -1 \\ 0 & 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Oppgave 5. Vektoren $\mathbf{v} = \begin{bmatrix} 4 \\ 1 \\ -1 \end{bmatrix}$ er en egenvektor for matrisen $A = \begin{bmatrix} -7 & 24 & -16 \\ -2 & 7 & -4 \\ 2 & -6 & 5 \end{bmatrix}$
Hva er den tilsvarende egenverdien? □ -7 □ 7 □ 5 ■ 3 □ -1 □ ingen av de andre alternativene
Løsning. Vi regner ut $A\mathbf{v} = \begin{bmatrix} 12 \\ 3 \\ -3 \end{bmatrix} = 3\mathbf{v}$, som viser at egenverdien er 3.
Oppgave 6. La A være en 15×20 -matrise slik at løsningsrommet til $A\mathbf{x} = 0$ har en basis med 8 vektorer. Hva er da dimensjonen til $\operatorname{Col}(A)$ (søylerommet til A)? $\begin{array}{c} \mathbb{D} & 8 \\ \blacksquare & 12 \\ \square & 15 \\ \square & 20 \\ \square & 7 \\ \square & \text{ingen av de andre alternativene} \end{array}$ $L \emptyset sning.$ Vi bruker rangteoremet (Teorem 14, avsnitt 4.5), som sier at
$\dim\left(\operatorname{Col}(A)\right) + \dim\left(\operatorname{Nul}(A)\right) = \text{antall søyler i } A = 20.$ Den gitte informasjonen sier at $\dim\left(\operatorname{Nul}(A)\right) = 8$, så det følger at $\dim\left(\operatorname{Col}(A)\right) = 20 - 8 = 12$.
Oppgave 7. La A være en 2×3 -matrise, og la $\mathbf{x} \in \mathbb{R}^3$. Hvilket av følgende utsagn er USANT? \square Nul (A) kan være en linje i \mathbb{R}^3 . \square Nul (A) kan være et plan \mathbb{R}^3 . \square Nul (A) kan være hele \mathbb{R}^3 . \square Nul (A) er et underrom av \mathbb{R}^3 . \square Ligningen $A\mathbf{x} = 0$ har uendelig mange løsninger. \blacksquare Radrommet til A kan ha en basis bestående av 3 vektorer.

Løsning. Radrommet er et underrom av \mathbb{R}^2 , så en basis for radrommet kan bestå av høyst 2 vektorer. Det siste alternativet er derfor usant.

Det er også lett å se (som en sjekk) at de øvrige usagnene er sanne. Nul(A) er et underrom av \mathbb{R}^3 (Teorem 2, avsnitt 4.2). Trappeformen til A kan ha 0, 1 eller 2 pivoter, hvilket tilsvarer at antallet frie variable er henholdsvis 3, 2 eller 1 (antallet søyler minus antallet pivoter), som i sin tur tilsvarer at Nul(A) har dimensjon 3, 2 eller 1, og dette betyr at de tre første alternativene kan inntreffe. Siden Nul(A) ikke kan ha dimensjon 0 (det kan ikke være 3 pivoter), må det være uendelig mange løsninger av A**x** = **0**.

Oppgave 8. La H være underrommet av \mathbb{R}^4 utspent av vektorene

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \\ 1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 3 \\ -4 \\ 1 \\ -5 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 4 \\ -4 \\ 4 \\ -4 \end{bmatrix}.$$

Hva er dimensjonen til H?

- \Box 0
- \Box 1
- 2 □ 3
- \Box 4
- \Box ingen av de andre alternativene

Løsning. { $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ } inneholder en delmengde som er en basis for H (Teorem 5, avsnitt 4.3). For å finne en slik basis, setter vi $B = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4]$. Da er Col(B) = H. Vi reduserer til trappeform:

$$B = \begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & -4 & -4 \\ 3 & 2 & 1 & 4 \\ 1 & 2 & -5 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & -4 & -4 \\ 0 & 2 & -8 & -8 \\ 0 & 2 & -8 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 1 & -4 & -4 \\ 0 & 0 & 0 & -0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Pivotene i trappeformen er i søylene 1 og 2, så de tilsvarende søylene $\mathbf{v}_1, \mathbf{v}_2$ i B gir en basis for $\operatorname{Col}(B) = H$. Dimensjonen til H er derfor 2.

Oppgave 9. La A være en 3×3 -matrise. Hvilken av følgende betingelser impliserer IKKE at A er inverterbar?

- \square A^T er inverterbar.
- \square Det finnes et positivt heltall k slik at $\det(A^k) \neq 0$.
- \square Det finnes en 3×3 -matrise B slik at AB = I.
- \square Ligningen $A\mathbf{x} = \mathbf{b}$ er konsistent for enhver $\mathbf{b} \in \mathbb{R}^3$.
- Det finnes lineært uavhengige $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^3$ slik at $A\mathbf{v}_i \neq \mathbf{0}$ for hver i.

Løsning. Det greieste her er å eliminere alle svarene som faktisk impliserer at A er inverterbar: Fra inverterbarhetsteoremet (Teorem 8, avsnitt 2.3 og Teorem 4, avsnitt 3.2) har vi at alternativene 1–4 impliserer inverterbarhet (for alternativ 2 bruker vi også multiplikasjonsteoremet til å se at $\det(A^k) = [\det(A)]^k$).

Det er enkelt å finne eksempler der alternativ 5 er oppfylt, men A ikke er inverterbar. Gitt lineært uavhengige $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^3$, sett $B = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$, så B er inverterbar. Videre, velg en hvilken som helst $\mathbf{b} \in \mathbb{R}^3$, $\mathbf{b} \neq \mathbf{0}$, og sett $C = [\mathbf{b} \ \mathbf{b} \ \mathbf{b}]$, så C er ikke inverterbar. Da finnes en entydig bestemt matrise A slik at AB = C (nemlig $A = CB^{-1}$). Multiplikasjonsteoremet impliserer at $\det(A) = 0$, så A er ikke inverterbar. Men vi har altså $A\mathbf{v}_i = \mathbf{b} \neq \mathbf{0}$ for i = 1, 2, 3.

Oppgave 10. La $\mathcal{A} = \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ og $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$ være basiser for et vektorrom V. Anta at

$$\mathbf{a}_1 = \mathbf{b}_1 - 2\mathbf{b}_2, \quad \mathbf{a}_2 = -\mathbf{b}_2 + \mathbf{b}_3 \quad \text{og} \quad \mathbf{a}_3 = 4\mathbf{b}_1 + \mathbf{b}_2 - \mathbf{b}_3.$$

La videre

$$\mathbf{x} = 3\mathbf{a}_1 + 5\mathbf{a}_2 + \mathbf{a}_3.$$

Variabelskiftematrisen $\underset{\mathcal{B} \leftarrow \mathcal{A}}{\mathcal{P}}$ fra \mathcal{A} til \mathcal{B} , og koordinatvektoren $[\mathbf{x}]_{\mathcal{B}}$, er da gitt ved

$$\Box \mathcal{P}_{\beta \leftarrow \mathcal{A}} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & -1 & 1 \\ 4 & 1 & -1 \end{bmatrix}, \quad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$$

$$\Box \mathcal{P}_{\beta \leftarrow \mathcal{A}} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & -1 & 1 \\ 4 & 1 & -1 \end{bmatrix}, \quad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 0 \\ 5 \end{bmatrix}$$

$$\Box \mathcal{P}_{\beta \leftarrow \mathcal{A}} = \begin{bmatrix} 4 & 1 & 0 \\ -1 & 1 & -2 \\ 0 & 1 & -1 \end{bmatrix}, \quad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$$

$$\Box \mathcal{P}_{\beta \leftarrow \mathcal{A}} = \begin{bmatrix} 1 & 0 & 4 \\ -2 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}, \quad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$$

$$\Box \mathcal{P}_{\beta \leftarrow \mathcal{A}} = \begin{bmatrix} 1 & 0 & 4 \\ -2 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}, \quad [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 7 \\ -10 \\ 4 \end{bmatrix}$$

 \square ingen av de andre alternativene

Løsning. Variabelskiftematrisen $\underset{\mathcal{B} \leftarrow \mathcal{A}}{\mathcal{P}}$ er bestemt ved at vi for en generell $\mathbf{x} \in V$ har $[\mathbf{x}]_{\mathcal{B}} = \underset{\mathcal{B} \leftarrow \mathcal{A}}{\mathcal{P}} [\mathbf{x}]_{\mathcal{A}}$. Tar vi her $\mathbf{x} = \mathbf{a}_i$ for i = 1, 2, 3, ser vi at

$$\mathcal{P}_{\mathcal{B}\leftarrow\mathcal{A}} = \begin{bmatrix} [\mathbf{a}_1]_{\mathcal{B}} & [\mathbf{a}_2]_{\mathcal{B}} & [\mathbf{a}_3]_{\mathcal{B}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 4 \\ -2 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix}.$$

For \mathbf{x} som gitt i oppgaven har vi $[\mathbf{x}]_{\mathcal{A}} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$, og derfor

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 4 \\ -2 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ -10 \\ 4 \end{bmatrix}.$$

Oppgave 11. La W være planet i \mathbb{R}^3 gitt ved ligningen $x_1 = x_2 + x_3$. La $\mathbf{b} = \begin{bmatrix} 6 \\ 2 \\ 7 \end{bmatrix}$.

Hvilken av følgende vektorer er den ortogonale projeksjonen av $\mathbf b$ på W?

- $\Box \begin{bmatrix} \frac{\sqrt{6}}{1} \\ \frac{1}{\sqrt{6}} \end{bmatrix} \\
 \Box \begin{bmatrix} 6 \\ 1 \\ 5 \end{bmatrix} \\
 \blacksquare \begin{bmatrix} 7 \\ 1 \\ 6 \end{bmatrix} \\
 \Box \begin{bmatrix} 7 \\ 7 \\ 0 \end{bmatrix}$
- $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$
- \square Ingen av de andre alternativene.

Løsning. Fra $x_1 = x_2 + x_3$ får vi parameterfremstillingen

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 + x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$= \mathbf{u}_1$$

som gir oss en basis $\{\mathbf{u}_1, \mathbf{u}_2\}$ for W. Vi bruker Gram-Schmidt på denne for å finne en ortogonal basis $\{\mathbf{v}_1, \mathbf{v}_2\}$. Sett $\mathbf{v}_1 = \mathbf{u}_1$ og

$$\mathbf{v}_2 = \mathbf{u}_2 - \frac{\mathbf{u}_2 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 = \mathbf{u}_2 - \frac{1}{2} \mathbf{u}_1 = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ 1 \end{bmatrix}.$$

For å unngå brøker kan vi gange \mathbf{v}_2 med en faktor 2, som gir oss en ortogonal basis $\{\mathbf{w}_1,\mathbf{w}_2\}$, der

$$\mathbf{w}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{w}_2 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}.$$

Projeksjonen blir da

$$\widehat{\mathbf{b}} = \frac{\mathbf{b} \cdot \mathbf{w}_1}{\mathbf{w}_1 \cdot \mathbf{w}_1} \mathbf{w}_1 + \frac{\mathbf{b} \cdot \mathbf{w}_2}{\mathbf{w}_2 \cdot \mathbf{w}_2} \mathbf{w}_2 = \frac{8}{2} \mathbf{w}_1 + \frac{18}{6} \mathbf{w}_2 = 4 \mathbf{w}_1 + 3 \mathbf{w}_2 = \begin{bmatrix} 7\\1\\6 \end{bmatrix}.$$

(Som en sjekk kan vi også se at
$$\mathbf{b} - \widehat{\mathbf{b}} = \begin{bmatrix} -1\\1\\1 \end{bmatrix}$$
 er ortogonal til $W.$)

Oppgave 12. La \mathbb{P}_1 være vektorrommet av førstegradspolynomer, med basis $\{1, t\}$. La $T: \mathbb{P}_1 \to \mathbb{P}_1$ være den lineære avbildningen definert ved

$$T(1) = 1 + kt$$
 og $T(t) = 2 - t$,

der k er et reelt tall. For hvilken verdi av k er $\lambda = 2$ en egenverdi for T?

- \square ingen k
- $\blacksquare k = \frac{3}{2}$
- $\square k = \tilde{1}$
- $\square k = -1$
- \square alle k
- $\square k = -\frac{1}{2}$

 $L \emptyset sning$. Vi husker at matrisen til T relativt basisen $\mathcal{B} = \{1, t\}$ for \mathbb{P}_1 , det er matrisen $M = [T]_{\mathcal{B}}$ med egenskapen at

$$[T(p)]_{\mathcal{B}} = M[p]_{\mathcal{B}}$$

for alle $p \in \mathbb{P}_1$. Ved å sette inn basisvektorene p(t) = 1 og p(t) = t finner vi da at

$$M = \begin{bmatrix} [T(1)]_{\mathcal{B}} & [T(t)]_{\mathcal{B}} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ k & -1 \end{bmatrix}.$$

Videre har vi at egenverdiene til T er sammenfallende med egenverdiene til M. Så vi må sjekke når 2 er en egenverdi for M. Det karakteristiske polynomet til M er

$$\begin{vmatrix} 1 - \lambda & 2 \\ k & -1 - \lambda \end{vmatrix} = \lambda^2 - 1 - 2k$$

og med $\lambda=2$ blir dette lik 3-2k, som er lik null hvis og bare hvis k=3/2.

(Som en sjekk: Med k=3/2 finner vi en tilsvarende egenvektor $\begin{bmatrix} 2\\1 \end{bmatrix}$ for M, som tilsvarer polynomet p(t)=2+t. Vi ser at T(2+t)=2(1+kt)+2-t=4+(2k-1)t=4+2t=2(2+t).

Langsvaroppgaver (svar må begrunnes og mellomregninger vises):

Oppgave 13. La
$$A = \begin{bmatrix} 3 & -2 & 2 \\ -2 & 3 & -2 \\ 2 & -2 & 3 \end{bmatrix}$$
.

- (a) Det oppgis at $\lambda = 1$ er en egenverdi for A. Finn en basis for det tilsvarende egenrommet.
- (b) Bestem maksimumsverdien M av den kvadratiske formen

$$3x_1^2 + 3x_2^2 + 3x_3^2 - 4x_1x_2 + 4x_1x_3 - 4x_2x_3$$

under føringen

$$x_1^2 + x_2^2 + x_3^2 = 1.$$

Finn videre et punkt (x_1, x_2, x_3) der denne maksimumsverdien antas.

$$L \emptyset sning. \qquad \text{(a) Siden } A-I = \begin{bmatrix} 2 & -2 & 2 \\ -2 & 2 & -2 \\ 2 & -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ er l} \emptyset sningene \text{ av}$$

 $A\mathbf{x} = \mathbf{x}$ gitt ved

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 - x_3 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \underbrace{\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}}_{=:\mathbf{u}_1} + x_3 \underbrace{\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}}_{=:\mathbf{u}_2}$$

og $\{\mathbf{u}_1, \mathbf{u}_2\}$ er en basis for egenrommet.

(b) Den kvadratiske formen er $\mathbf{x}^T A \mathbf{x}$, og føringen er $\mathbf{x}^T \mathbf{x}$, så ifølge Teorem 6 i avsnitt 7.3 er maksimumsverdien M lik den største egenverdien, og denne antas når \mathbf{x} er lik en tilsvarende egenvektor med lengde 1.

Vi må derfor finne alle egenverdiene, dvs. røttene til det karakteristiske polynomet

$$p(\lambda) := \begin{vmatrix} 3 - \lambda & -2 & 2 \\ -2 & 3 - \lambda & -2 \\ 2 & -2 & 3 - \lambda \end{vmatrix}$$

$$= (3 - \lambda) \begin{vmatrix} 3 - \lambda & -2 \\ -2 & 3 - \lambda \end{vmatrix} + 2 \begin{vmatrix} -2 & -2 \\ 2 & 3 - \lambda \end{vmatrix} + 2 \begin{vmatrix} -2 & 3 - \lambda \\ 2 & -2 \end{vmatrix}$$

$$= (3 - \lambda)(\lambda^2 - 6\lambda + 5) + 2(2\lambda - 2) + 2(2\lambda - 2)$$

$$= -\lambda^3 + 9\lambda^2 - 15\lambda + 7.$$

Ut fra opplysningen gitt i punkt (a), skal $\lambda=1$ være en rot, og vi ser at det stemmer. Så vi kan faktorisere

$$p(\lambda) = (1 - \lambda)(\lambda^2 + b\lambda + c).$$

Ved å ekspandere høyresiden og sammenligne koeffisienter, finner vi at b = -8 og c = 7. Ved å faktorisere $\lambda^2 - 8\lambda + 7 = (\lambda - 1)(\lambda - 7)$ finner vi dermed

$$p(\lambda) = (1 - \lambda)^2 (7 - \lambda),$$

hvilket gir oss egenverdiene $\lambda=1$ og $\lambda=7$. Maksimumsverdien M er dermed lik 7. For å finne et punkt der denne verdien antas, må vi finne en tilsvarende egenvektor med lengde 1. Vi løser $(A-7I)\mathbf{x}=\mathbf{0}$:

$$A - 7I = \begin{bmatrix} -4 & -2 & 2 \\ -2 & -4 & -2 \\ 2 & -2 & -4 \end{bmatrix} \sim \begin{bmatrix} -2 & -4 & -2 \\ -4 & -2 & 2 \\ 2 & -2 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & 6 & 6 \\ 0 & -6 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

som gir en egenvektor $\begin{bmatrix} 1\\-1\\1 \end{bmatrix}$. Divisjon med lengden $\sqrt{3}$ gir konklusjonen:

Maksimum er
$$M=7$$
 og antas i $(x_1,x_2,x_3)=\pm\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$

Oppgave 14. Anta at V, W er vektorrom, $T: V \to W$ er en lineær avbildning og $\mathbf{v}_1, \dots, \mathbf{v}_p \in V$. Hvis $T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)$ er lineært uavhengige, må da $\mathbf{v}_1, \dots, \mathbf{v}_p$ være lineært uavhengige? Svaret må begrunnes (bevis eller moteksempel).

Løsning. La oss anta at (i V)

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots c_p\mathbf{v}_p = \mathbf{0},$$

der cene er reelle tall. Anvender vi nå T på begge sider av ligningen og bruker lineariteten av T, så får vi (iW)

$$c_1T(\mathbf{v}_1) + c_2T(\mathbf{v}_2) + \dots c_pT(\mathbf{v}_p) = \mathbf{0}.$$

Men pr. antagelse er $T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)$ lineært uavhengige, så det følger at

$$c_1 = c_2 = \dots = c_p = 0.$$

Dette viser at $\mathbf{v}_1, \dots, \mathbf{v}_p$ er lineært uavhengige.