Sam D. Buchanan

Research Assistant Professor Toyota Technological Institute at Chicago 6045 South Kenwood Ave, 411 Chicago, IL 60637 sam@ttic.edu sdbuchanan.com +1 (913) 522-9979

Professional Experience

2022- Research Assistant Professor

Toyota Technological Institute at Chicago

Education

2022 PhD, Electrical Engineering

Columbia University in the City of New York

Advisor: John Wright

THESIS: Deep Networks Through the Lens of Low-Dimensional Structure: Towards Mathematical and Computational Principles for Nonlinear Data

2017 MS, Electrical Engineering

Columbia University in the City of New York

BS, Electrical Engineering (with distinction)

University of Kansas

Awards and Honors

- Eli Jury Award, Columbia University Electrical Engineering Department
- NDSEG Fellow, US Department of Defense (award rate: $\approx 7\%$)
- Tesla Scholar, Columbia University Electrical Engineering Department

Publications

Preprint

Y. Yu*, T. Chu*, S. Tong, Z. Wu, D. Pai, S. Buchanan, and Y. Ma, "Emergence of segmentation with minimalistic white-box transformers," Aug. 2023. arXiv: 2308. 16271 [cs.CV]

Y. Yu, S. Buchanan, D. Pai, T. Chu, Z. Wu, S. Tong, B. D. Haeffele, and Y. Ma, "White-box transformers via sparse rate reduction," Jun. 2023. arXiv: 2306.01129 [cs.LG]

S. Buchanan, J. Yan, E. Haber, and J. Wright, "Resource-efficient invariant networks: Exponential gains by unrolled optimization," Mar. 2022. arXiv: 2203.05006 [cs.CV].

Conference

- B. Yi, W. Zeng, S. Buchanan, and Y. Ma, "Canonical factors for hybrid neural fields," *International Conference on Computer Vision (ICCV)*, Oct. 2023
- T. Wang, S. Buchanan, D. Gilboa, and J. Wright, "Deep networks provably classify data on curves," *Advances in Neural Information Processing Systems*, vol. 34, Curran Associates, Inc., 2021, pp. 28 940–28 953.
 - S. Buchanan, D. Gilboa, and J. Wright, "Deep networks and the multiple manifold problem," *International Conference on Learning Representations*, 2021.
- D. Gilboa, S. Buchanan, and J. Wright, "Efficient dictionary learning with gradient descent," *Proceedings of the 36th International Conference on Machine Learning*, ser. Proceedings of Machine Learning Research, vol. 97, PMLR, 2019, pp. 2252–2259.
- S. Buchanan, T. Haque, P. Kinget, and J. Wright, "Efficient model-free learning to overcome hardware nonidealities in analog-to-information converters," 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Apr. 2018, pp. 3574–3578.

Invited Talks

"Deep Networks and the Multiple Manifold Problem", U Michigan CSP Seminar, December.

"Deep Networks and the Multiple Manifold Problem", SIAM MDS 2022 Minisymposium "The Role of Data Geometry in High-Dimensional Learning", September.

"Deep Networks Through the Lens of Low-Dimensional Structure", Talks at TTIC, April.

"Deep Networks Through the Lens of Low-Dimensional Structure", Johns Hopkins MINDS Seminar, March.

Teaching

Tutorial, Learning Nonlinear and Deep Low-Dimensional Representations from High-Dimensional Data: From Theory to Practice

ICASSP 2023 Short Course, June 2023

Tutorial, Learning Low-Dimensional Structure via Deep Networks *SLowDNN Workshop 2023 Tutorial*, January 2023

Tutorial, Low-Dimensional Models for High-Dimensional Data: From Linear to Nonlinear, Convex to Nonconvex, and Shallow to Deep

ICASSP 2022 Short Course, May 2022

Teaching Assistant, Sparse Representation and High-Dimensional Geometry (ELEN 6886)

Columbia University

Developed a suite of theoretical and computational exercises for the textbook High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications.

Professional Service

2023 Web Chair, Inaugural Conference on Parsimony and Learning (CPAL)

Hong Kong University, Hong Kong

Organizer, Collaboration on the Theoretical Foundations of Deep Learning Annual Meeting

TTIC, Chicago

Tutorial Chair, 3rd Workshop on Seeking Low-Dimensionality in Deep Neural Networks

MBZUAI, Abu Dhabi

Journal Reviewing

TPAMI, TMLR

Conference Reviewing

CVPR 19*, 21*; ICLR 22*, 23, 24; ICML 21*, 22, 23; NeurIPS 20*, 21, 22*, 23

^{*}denotes a designation of reviewer quality ("outstanding reviewer", etc.)