WO 2004/059726 PCT/US2002/041182

Claims

1	1. A method for fabricating an antifuse structure (100) integrated with a semiconductor
2	device, the method comprising the steps of:
3	forming a region of semiconducting material (11) overlying an insulator (3)
4	disposed on a substrate (10);
5	performing an etching process to expose a plurality of corners (111-114) in the
6	semiconducting material;
7	forming a plurality of elongated tips (111t, 112t, 113t, 114t) of the
8	semiconducting material at the respective corners;
9	forming an oxide layer (51) on the semiconducting material and overlying the
10	corners, the oxide layer having a nominal thickness and a reduced thickness at the corners
11	less than the nominal thickness; and
12	forming a layer of conducting material (60) in contact with the oxide layer (51) at
13	the corners,
14	thereby forming a plurality of possible breakdown paths at said corners, between
15	the semiconducting material and the layer of conducting material through the oxide layer.
1	2. A method according to claim 1, characterized in that the step of forming the elongated
2	tips comprises
3	oxidizing the exposed corners (111, 112, 113, 114) to form an oxide (31)
4	thereon; and
5	removing the oxide (31) formed in said oxidizing step, prior to said step of
6	forming an oxide layer (51).
1	3. A method according to claim 1 or claim 2, characterized in that the region of
2	semiconducting material (11) is a fin formed in a FINFET process.

WO 2004/059726 PCT/US2002/041182

4. A method according to claim 1 or claim 2, characterized in that the region of semiconducting material (211) is a gate region formed in a planar CMOS process.

- 5. A method according to claim 3 or claim 4, further comprising the step of doping the region of semiconducting material (11, 211).
- 6. A method according to claim 2, characterized in that said oxidizing step is performed in accordance with a low-temperature oxidation process.
- 7. A method according to any preceding claim, characterized in that the breakdown paths are electrically in parallel.
- 8. A method according to any preceding claim, further comprising the step of applying a voltage to the antifuse structure, thereby converting at least one of the breakdown paths to a conducting path (103, 280) through the oxide layer (51, 251).
- 9. A method according to claim 8, characterized in that the voltage is applied in accordance with a burn-in process for the device.

1

2

1

2

3

4

5

6

7

8

- 10. A method according to claim 8, characterized in that the device has a nominal voltage, and the applied voltage is approximately 1.5 times the nominal voltage.
 - 11. An antifuse structure (100) integrated with a semiconductor device, the structure comprising:

a region of semiconducting material (11) overlying an insulator (3) disposed on a substrate (10), the semiconducting material having a plurality of corners (111-114) with a plurality of elongated tips (111t, 112t, 113t, 114t) of the semiconducting material at the respective corners;

an oxide layer (51) on the semiconducting material and overlying the corners, the oxide layer having a nominal thickness and a reduced thickness at the corners less than the

WO 2004/059726 PCT/US2002/041182

9	nominal thickness; and
10	a layer of conducting material (60) in contact with the oxide layer (51) at the corners,
11	characterized in that a plurality of possible breakdown paths are disposed at said
12	corners, between the semiconducting material and the layer of conducting material through the
13	reduced thickness of the oxide layer.
1	12. An antifuse structure according to claim 11, characterized in that the elongated tips are
2	formed by oxidation of the exposed corners (111, 112, 113, 114).
1	13. An antifuse structure according to claim 11 or claim 12, characterized in that the region of
2	semiconducting material (11) is a fin formed in a FINFET process.
1	14. An antifuse structure according to claim 11 or claim 12, characterized in that the region of
2	semiconducting material (211) is a gate region formed in a planar CMOS process.
1	15. An antifuse structure according to claim 13 or claim 14, characterized in that the region of
2	semiconducting material (11, 211) is a region of doped material.
1	16. An antifuse structure according to any preceding claim, characterized in that the breakdown
2	paths are electrically in parallel.
1	17. An antifuse structure according to any preceding claim, characterized in that at least one of
2	the breakdown paths is a conducting path (103, 280) through the oxide layer (51, 251) formed
3	by application of a voltage thereto.
1	18. An antifuse structure according to claim 17, characterized in that the applied voltage is a
2	burn-in voltage for the device.
i	19. An antifuse structure according to claim 18, characterized in that the device has a nominal
2	voltage, and the applied voltage is approximately 1.5 times the nominal voltage.