Day 5: Mathematical Foundations of Al and Data science

Shankar J Research Scholar, ECED National Institute of Technology Calicut

Mathematical Foundations of Al and Data science

- PhD Scholar, NIT, Calicut
- Former academician- KTU
- Chair, Students Activities, IEEE Kerala Section 2021
- MoC, ATAL, NITI Aayog, Govt of India
- HAM / Amateur Radio VU3FIY

Disclaimer

Materials and resources used are licensed under a <u>Creative Commons Attribution-</u> NonCommercial-ShareAlike 4.0 International License.

What this license means:

Others can share and adapt my work, but only for non-commercial purposes. They must credit me and license their new creations under identical terms.

2	Mathematical Foundations of AI and Data science: Role of linear algebra in Data representation and analysis – Matrix decomposition- Singular Value	
	Decomposition (SVD)- Spectral decomposition- Dimensionality reduction technique-Principal Component Analysis (PCA). (Text-1)	

	Apply advanced mathematical concepts such as matrix operations,	К3	
CO2	singular values, and principal component analysis to analyze and solve		Apply
	engineering problems.		

Symmetric Matrices Orthogonal Matrices

Factor a matrix

Symmetric * orthogonal mat Orthogonal * diagonal * orthogonal mat (SVD)

Optimization

If all linear algebra

FAILS !!!

Probability

Statistics

and

Deep Learning

Linear Algebra

Adding non linear f(x) = x +ve b/w matrices f(x) = 0 -ve

02139

02131

Source: Gilbert Strang MIT Lecture

Why Vectors and Matrices Matter

➤ Maps - each location : latitude and longitude

Vectors and matrices form the mathematical foundation

- ✓ Representing data points in feature spaces (vectors)
- ✓ Storing image pixels as numerical grids (matrices)
- ✓ Transforming data through rotations, scaling, and projections
- ✓ Solving systems of equations in optimisation problems

What is a Vector?

A vector is an ordered list of numbers that can represent a point or direction in space

Basic Vector Operations

a) Addition

If
$$\mathbf{a}=\begin{bmatrix}1\\2\end{bmatrix}$$
 and $\mathbf{b}=\begin{bmatrix}3\\4\end{bmatrix}$, $\mathbf{a}+\mathbf{b}=\begin{bmatrix}1+3\\2+4\end{bmatrix}=\begin{bmatrix}4\\6\end{bmatrix}$

b) Scalar Multiplication

If
$$k=2$$
 and $\mathbf{a}=\begin{bmatrix}1\\2\end{bmatrix}$, $k\mathbf{a}=2 imes\begin{bmatrix}1\\2\end{bmatrix}=\begin{bmatrix}2\\4\end{bmatrix}$

stretches or shrinks a vector

Vector Norms

Vector norms measure the "size" or "length" of vectors and are fundamental to understanding distance metrics in Al and data science

A vector norm is a function that maps a vector to a non-negative real number representing its "length".

L1 Norm (Manhattan Distance): Sum of the absolute values of vector elemer $||x||_1 = |x_1| + |x_2| + ... + |x_n|$

L2 Norm (Euclidean Distance): Square root of the sum of squared eleme $\|x\|_2 = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$

L $^{\infty}$ Norm (Maximum Norm): Maximum absolute value among all eleme $\|x\|_{\infty} = \max(|x_1|, |x_2|, ..., |x_n|)$

Applications in ML and Data Science

Norms are widely used in machine learning for:

- Distance metrics in k-Nearest Neighbours algorithms
- •Loss functions and regularisation (L1/L2 regularisation)
- Measuring model convergence
- Feature normalisation and scaling

If
$$x = [3, -4, 2]$$
,
L1 norm is 9
L2 norm is $\sqrt{29} \approx 5.39$
L ∞ norm is 4

Vector Norms Visualization

Linear Independence vs. Dependence

A basis is a set of linearly independent vectors that span a vector space, providing a coordinate system for that space.

The span of a set of vectors is the set of all possible linear combinations of those vectors

$$(3,2) \in \mathbb{R}^2$$

 $b_1(1,0)$
 $b_2(0,1)$
 $(3,2) = 3b_1 + 2b_2$

Orthogonality and Orthonormal Sets

Two vectors u and v are orthogonal if their dot product is zero: u⋅v=0

An orthogonal set is a collection of vectors where each pair of distinct vectors is orthogonal

If all vectors in an orthogonal set have unit length (norm = 1), then it's an orthonormal set

The Gram-Schmidt process converts a linearly independent set of vectors into an orthogonal or orthonormal set.

This is essential for QR decomposition

What is a Matrix?

A matrix is a rectangular array of numbers arranged in rows and columns

Special Types of Matrices

$$I=egin{bmatrix}1&0&1&\cdots&0\0&1&\cdots&0\dots&dots&\ddots&dots\0&0&\cdots&1\end{bmatrix}$$

Identity matrix:

Diagonal matrix: All non-diagonal elements are zero

Symmetric matrix: A=A^T

c) Transpose

Basic Matrix Operations

$$A^T = egin{bmatrix} 1 & 3 \ 2 & 4 \end{bmatrix}$$

a) Addition/Subtraction

$$A = egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}, \quad B = egin{bmatrix} 5 & 6 \ 7 & 8 \end{bmatrix}$$

$$A+B=egin{bmatrix}1+5&2+6\3+7&4+8\end{bmatrix}=egin{bmatrix}6&8\10&12\end{bmatrix}$$

b) Scalar Multiplication

$$A=egin{bmatrix}A=egin{bmatrix}3&4\end{bmatrix}, & B=egin{bmatrix}7&8\end{bmatrix}\ A+B=egin{bmatrix}1+5&2+6\3+7&4+8\end{bmatrix}=egin{bmatrix}6&8\10&12\end{bmatrix}$$
 $2A=2 imesegin{bmatrix}1&2\3&4\end{bmatrix}=egin{bmatrix}2&4\6&8\end{bmatrix}$

Shankar J

 $A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$

Each column of A is a vector in I

Each row of A is a vector in \mathbb{R}^n

d) Matrix Multiplication

$$A = egin{bmatrix} 1 & 2 \ 3 & 4 \end{bmatrix}, \quad \mathbf{x} = egin{bmatrix} 5 \ 6 \end{bmatrix}$$
 $A\mathbf{x} = egin{bmatrix} 1*5+2*6 \ 3*5+4*6 \end{bmatrix} = egin{bmatrix} 5+12 \ 15+24 \end{bmatrix}_{14} = egin{bmatrix} 17 \ 39 \end{bmatrix}$

Row Matrix	Only one row $(1 imes n)$	[8~9~7~6] (order $1 imes 4$)
Column Matrix	Only one column $(m imes 1)$	$\begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}$ (order 3×1)
Zero/Null Matrix	All elements are zero	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
Singleton Matrix	Only one element $(1 imes 1)$	[4]
Square Matrix	Rows = Columns $(n \times n)$	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
Rectangular Matrix	Rows \neq Columns $(m \times n, m \neq n)$	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$
Diagonal Matrix	Square; non-diagonal elements are zero	$\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$

Scalar Matrix	Diagonal with all diagonal elements equal	$\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$
Identity (Unit) Matrix	Diagonal elements are 1, rest are 0	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Upper Triangular Matrix	Square; all elements below main diagonal are zero	$\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$
Lower Triangular Matrix	Square; all elements above main diagonal are zero	$\begin{bmatrix} 1 & 0 \\ 4 & 3 \end{bmatrix}$
Symmetric Matrix	Square; $A=A^T$	$\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$
Skew-Symmetric Matrix	Square; $A=-A^T$	$\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$

Shankar J

16

Hermitian Matrix	Square; $A=A^\dagger$ (conjugate transpose)	$egin{bmatrix} 2 & i \ -i & 3 \end{bmatrix}$
Skew-Hermitian Matrix	Square; $A=-A^\dagger$	$\begin{bmatrix}0&2+i\\-2+i&0\end{bmatrix}$
Orthogonal Matrix	Square; $AA^T=I$	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

Basis

Range
$$A^{T} = (A^{T})$$

Matrix Multiplication AB

New way -> Lolumns x rows

$$AB = \begin{bmatrix} |a| \\ |k| \end{bmatrix} \begin{bmatrix} |a| \\ |a| \end{bmatrix} = \begin{bmatrix} |a| \\ |a| \end{bmatrix} \begin{bmatrix} |a| \\$$

Shankar .

Matrix decomposition (Factorisations)

A = LU -> elimination -> Solving linear System -> Lower A matrix x Upper & matrix

A = QR -> hram - Schmidt

 $A = X \Lambda X$

A = U \(\subseteq \subseteq \) = (ortho) (drag) (ortho) -> Singular Value Decomposition (SVD)

Linked in

Resources

Shankar J +91 9344775577 https://shankar-jayaraj.github.io/