Géométrie dans le plan

Exercice 1.

Soit D la droite passant par le point A (3, -1) et de vecteur directeur $\vec{u} = (3, -4)$.

- 1. Déterminer la distance du point M_0 (1,1) à la droite D.
- 2. Déterminer le projeté orthogonal de M_0 sur D.

Allez à : Correction exercice 1 :

Exercice 2.

Soit D la droite du plan d'équation 2x - y = 3. Soit $M_0(-1, -1)$ un point du plan

- 1. Déterminer la distance du point M_0 à la droite D.
- 2. Déterminer le projeté orthogonal de M_0 sur D.

Allez à : Correction exercice 2 :

Exercice 3.

Soit $(0, \vec{i}, \vec{j})$ un repère du plan. Soit \mathcal{D} la droite d'équation x + y = 1, soit A(a, b) un point, déterminer l'image de A par la symétrie orthogonale par rapport à \mathcal{D} , on notera s cette symétrie.

Allez à : Correction exercice 3 :

Exercice 4.

Soit D la droite du plan passant par le point M_0 (1, -1) et dirigée par le vecteur $\vec{u} = (2,3)$. Déterminer le symétrique d'un point A(a, b) par rapport à la droite D.

Allez à : Correction exercice 4 :

Exercice 5.

Montrer que l'ensemble des $z \in \mathbb{C}$ tels que soient alignés les points d'affixe z, iz et i est un cercle de centre $\Omega\left(\frac{1}{2}, \frac{1}{2}\right)$ dont on donnera le rayon.

Allez à : Correction exercice 5 :

Exercice 6.

- 1. Soit $v \in \mathbb{R}^2$.
 - a. Montrer qu'il existe $v^{\perp} \in \mathbb{R}^2$ tel que pour tout $w \in \mathbb{R}^2$, l'on ait :

$$\det(v, w) = < v^{\perp}, w >$$

(où $< v^{\perp}$, w > est le produit scalaire de v^{\perp} et w).

- b. On suppose v non nul. Montrer que (v, v^{\perp}) est une base orthogonale.
- 2. Soient A, B et C des points d'affixes respectives a, b et c.
 - a. Exprimer $det(\overrightarrow{AB}, \overrightarrow{AC})$ à l'aide de a, b et c.
 - b. A quelle condition sur a, b et c les points A, B et C sont-ils alignés ?

Allez à : Correction exercice 6 :

Exercice 7.

Soit $\lambda \in \mathbb{R}$ et A, B deux points du plan, déterminer l'ensemble des points M tels que :

$$\overrightarrow{AM}$$
. $\overrightarrow{BM} = \lambda$

Selon les valeurs de λ .

On pourra faire intervenir *I* le milieu de [*A*, *B*].

Allez à : Correction exercice 7 :

Exercice 8.

Soit h une homothétie de rapport k et h' une homothétie de rapport k' et de centres respectifs Ω , d'affixe ω , et Ω' , d'affixe ω' .

- 1. Soit t une translation de vecteur \vec{u} . Montrer que les composés $h \circ t$ et $t \circ h$ sont des homothéties de rapport k.
- 2. Si $kk' \neq 1$, montrer que $h \circ h'$ est une homothétie de rapport kk' et que les centres de h, h' et $h \circ h'$ sont alignés.
- 3. Si kk' = 1, montrer que $h \circ h'$ est une translation.

Allez à : Correction exercice 8 :

Exercice 9.

Soit $z \in \mathbb{C}$. Soient M, d'affixe z, N, d'affixe iz et P d'affixe 2i.

Montrer que si M, N et P sont alignés l'ensemble des points d'affixe z sont sur un cercle de centre Ω d'affixe 1 + i, et dont on précisera le rayon.

Allez à : Correction exercice 9 :

Exercice 10.

On rappelle que

$$j = e^{\frac{2i\pi}{3}}$$
; $j^2 = \overline{j}$ et que $j^3 = 1$

Soit r une transformation du plan qui a un point M associe le point M' d'affixe M' = r(M) d'affixe $z' = -j^2z + 1 + j^2$

Soit s une transformation du plan qui a un point M d'affixe z associe le point M' = s(M) d'affixe $z' = -j^2\overline{z} + 1 + j^2$

- 1. Montrer que r est une rotation du plan dont on donnera l'affixe du centre Ω et l'angle de la rotation.
- 2. Montrer que Ω est un point fixe de s.
- 3. Montrer que s est une symétrie orthogonale. (on ne demande pas l'axe de la symétrie).
- 4. Calculer l'affixe z'' du point $M'' = r \circ s(M)$, où M est un point d'affixe z. Que peut-on en déduire de $r \circ s$?

Allez à : Correction exercice 10 :

Exercice 11.

On note A le point d'affixe 4 + 2i et O le point d'affixe 0.

Calculer les affixes des points *B* tels que le triangle *OAB* soit équilatéral.

Allez à : Correction exercice 11 :

Exercice 12.

On rappelle l'identification canonique de \mathbb{R}^2 et de \mathbb{C} par l'application affixe et sa réciproque :

$$\mathbb{R}^2 \to \mathbb{C} \qquad \mathbb{C} \to \mathbb{R}^2$$

$$(x,y) \mapsto x + iy \qquad \text{et} \qquad z \mapsto (Re(z), Im(z))$$

- 1. Rappeler l'effet sur C des transformations du plan suivantes :
 - a) Pour tout $a \in \mathbb{C}$, la translation du vecteur d'affixe a.
 - b) Pour tout $(a, \lambda) \in \mathbb{C} \times \mathbb{R}$, l'homothétie de rapport λ et de centre d'affixe a.
 - c) Pour tout $(a, \theta) \in \mathbb{C} \times \mathbb{R}$, la rotation d'angle θ et de centre d'affixe a.
 - d) Pour tout $(a, \theta) \in \mathbb{C} \times \mathbb{R}$, la symétrie par rapport à un axe formant un angle θ avec l'axe réel et passant par un point d'affixe a.
- 2. Montrer que la composée de deux symétries est une translation ou une rotation.

3. Montrer que la composée de deux rotations est une translation ou une rotation.

Allez à : Correction exercice 12 :

Corrections

Correction exercice 1:

1. Soit M(x, y) un point de D, les vecteurs \overrightarrow{AM} et \overrightarrow{u} sont colinéaires

$$\det(\overrightarrow{AM}, \overrightarrow{u}) = 0 \Leftrightarrow \begin{vmatrix} x - 3 & 3 \\ y + 1 & -4 \end{vmatrix} = -4(x - 3) - 3(y + 1) = 0 \Leftrightarrow -4x - 3y + 9 = 0$$

Donc la distance de M_0 à D est

$$d = \frac{|-4 \times 1 - 3 \times 1 + 9|}{\sqrt{3^2 + (-4)^2}} = \frac{2}{5}$$

2. On appelle H ce projeté orthogonal et $\vec{v} = (4,3)$ un vecteur orthogonal à D

$$\overrightarrow{AM_0}$$
. $\vec{v} = (1-3) \times 4 + (1+1) \times 3 = -2$

Et

$$\overrightarrow{AM_0} \cdot \overrightarrow{v} = (\overrightarrow{AH} + \overrightarrow{HM_0}) \cdot \overrightarrow{v} = \overrightarrow{AH} \cdot \overrightarrow{v} + \overrightarrow{HM_0} \cdot \overrightarrow{v} = \overrightarrow{HM_0} \cdot \overrightarrow{v}$$
 (*)

Comme $\overrightarrow{HM_0}$ et \vec{v} sont colinéaires, il existe $\lambda \in \mathbb{R}$ tel que :

$$\overrightarrow{HM_0} = \lambda \vec{v} \quad (**)$$

Ce que l'on remplace dans (*)

$$-2 = \lambda \|\vec{v}\|^2 \Leftrightarrow \lambda = \frac{-2}{25}$$

On remplace cela dans (**)

$$\begin{cases} 1 - x_H = \frac{4 \times (-2)}{25} \\ 1 - y_H = \frac{3 \times (-2)}{25} \end{cases} \Leftrightarrow \begin{cases} x_H = \frac{33}{25} \\ y_H = \frac{31}{25} \end{cases}$$

Allez à : Exercice 1

Correction exercice 2:

1. *D* a pour équation 2x - y - 3 = 0

$$d = \frac{|2 \times (-1) - (-1) - 3|}{\sqrt{2^2 + (-1)^2}} = \frac{4}{\sqrt{5}}$$

2. Soient *H* ce point, *A* (1, -1) un point de *D* et $\vec{u} = (1,2)$ un vecteur directeur de *D*

$$\begin{cases}
\overrightarrow{AH} // \overrightarrow{u} \Leftrightarrow \left\{ \det(\overrightarrow{AH}, \overrightarrow{u}) = 0 \\ \overrightarrow{M_0H} \perp \overrightarrow{u} \right. \Leftrightarrow \left\{ \frac{|x-1|}{|y+1|} = 0 \\ (x+1) \times 1 + (y+1) \times 2 = 0 \right. \Leftrightarrow \left\{ \frac{|x-1|}{|x+1|} = 0 \\ (x+1) \times 1 + (y+1) \times 2 = 0 \right. \Leftrightarrow \left\{ \frac{2(x-1) - (y+1) = 0}{|x+1+2y+2|} \right. \\ \Leftrightarrow \left\{ \frac{2x-y=3}{|x+2y|} = 3 \right.
\end{cases}$$

$$\begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} = 5 \neq 0$$

Il s'agit d'un système de Cramer donc

$$\begin{cases} x = \frac{\begin{vmatrix} 3 & -1 \\ -3 & 2 \end{vmatrix}}{5} = \frac{3}{5} \\ y = \frac{\begin{vmatrix} 2 & 3 \\ 1 & -3 \end{vmatrix}}{5} = \frac{-9}{5} \end{cases}$$

Donc
$$H\left(\frac{5}{3}, \frac{1}{3}\right)$$

Correction exercice 3:

Soient A' = s(A) de coordonnées (a', b'), I le milieu de [A, A'], B (1,0) un point de \mathcal{D} et $\vec{u} = (-1,1)$ un vecteur directeur de \mathcal{D} . Les vecteurs \vec{Bl} et \vec{u} sont colinéaires et les vecteurs $\vec{AA'}$ et \vec{u} sont orthogonaux. On a

Soient A' = s(A) de coordonnées (a', b'), I le milieu de [A, A'], B (1,0) un point de \mathcal{D} et $\vec{u} = (-1,1)$ un vecteur directeur de \mathcal{D} . Les vecteurs \vec{BI} et \vec{u} sont colinéaires et les vecteurs $\vec{AA'}$ et \vec{u} sont orthogonaux. On a

$$\begin{cases}
\det(\overrightarrow{BI}, \overrightarrow{u}) = 0 \\
\overrightarrow{AA'}. \overrightarrow{u} = 0
\end{cases}
\Leftrightarrow
\begin{cases}
\begin{vmatrix}
\frac{a+a'}{2} - 1 & -1 \\
\frac{b+b'}{2} & 1
\end{vmatrix} = 0 \\
(a'-a) \times (-1) + (b'-b) \times 1 = 0
\end{cases}
\Leftrightarrow
\begin{cases}
\frac{a+a'}{2} - 1 + \frac{b+b'}{2} = 0 \\
-a'+a+b'-b = 0
\end{cases}$$

$$\Leftrightarrow
L_1 \begin{cases} a'+b' = 2-a-b \\
-a'+b' = -a+b
\end{cases}$$

 $L_1 - L_2$ donne 2a' = 2 - 2b, soit a' = 1 - b et $L_1 + L_2$ donne 2b' = 2 - 2a, soit b' = 1 - a.

Allez à : Exercice 3

Correction exercice 4:

Soit H(a',b') le projeté orthogonal de A sur D.

$$\begin{cases}
\overrightarrow{AH} \perp \overrightarrow{u} \Leftrightarrow \begin{cases}
\overrightarrow{AH} \cdot \overrightarrow{u} = 0 \\
\det(\overrightarrow{M_0H} / / \overrightarrow{u}) = 0
\end{cases} \Leftrightarrow
\begin{cases}
2(a' - a) + 3(b' - b) = 0 \\
\begin{vmatrix} a' - 1 & 2 \\ b' + 1 & 3 \end{vmatrix} = 0
\end{cases} \Leftrightarrow
\begin{cases}
2a' + 3b' = 2a + 3b \\
3a' - 2b' = 5
\end{cases}$$

$$\begin{vmatrix} 2 & 3 \\ 3 & -2 \end{vmatrix} = -13$$

Donc il s'agit d'un système de Cramer

$$a' = \frac{\begin{vmatrix} 2a+3b & 3\\ 5 & -2 \end{vmatrix}}{-13} = \frac{4a+6b+15}{13} \quad \text{et} \quad b' = \frac{\begin{vmatrix} 2 & 2a+3b\\ 3 & 5 \end{vmatrix}}{-13} = \frac{6a+9b-10}{13}$$

Soit A'(a'',b'') le symétrique de A.

$$\overrightarrow{OA'} = \overrightarrow{OH} + \overrightarrow{HA'} = \overrightarrow{OH} + \overrightarrow{AH}$$

Donc

$$a'' = a' + a' - a = 2a' - a = 2\frac{4a + 6b + 15}{13} - a = \frac{-5a + 12b + 12}{13}$$
$$b'' = b' + b' - b = 2b' - b = 2\frac{6a + 9b - 10}{13} - b = \frac{12a + 5b - 20}{13}$$

Allez à : Exercice 4

Correction exercice 5:

Première méthode

Soit M le point d'affixe z, N le point d'affixe iz et A le point d'affixe i, ces trois points sont alignés si et seulement si $\det(\overrightarrow{AM}, \overrightarrow{AN}) = 0$, ou, ce qui est équivalent à ce que

$$Im\left(\overline{(z-i)}(iz-i)\right) = 0 \Leftrightarrow \overline{(z-i)}(iz-i) \in \mathbb{R} \Leftrightarrow (\overline{z}+i)(iz-i) = (z-i)(-i\overline{z}+i) = 0$$

$$\Leftrightarrow i|z|^2 - i\overline{z} - z + 1 = -i|z|^2 + iz - \overline{z} + 1 \Leftrightarrow 2i|z|^2 - i\overline{z} - z - iz + \overline{z} = 0$$

$$\Leftrightarrow 2i|z|^2 + (1-i)\overline{z} - (1+i)z = 0 \Leftrightarrow |z|^2 + \frac{1-i}{2i}\overline{z} - \frac{1+i}{2i}z = 0$$

$$\Leftrightarrow |z|^2 + \frac{-1-i}{2}\overline{z} - \frac{1-i}{2}z = 0 \Leftrightarrow |z|^2 = \frac{1+i}{2}\overline{z} + \frac{1-i}{2}z$$

$$\begin{aligned} \left\| \overline{\Omega M} \right\|^2 &= \left| z - \frac{1+i}{2} \right|^2 = \left(z - \frac{1+i}{2} \right) \left(\overline{z} - \frac{1-i}{2} \right) = |z|^2 - \frac{1-i}{2} z - \frac{1+i}{2} \overline{z} + \frac{(1+i)(1-i)}{4} \\ &= \frac{1+i}{2} \overline{z} + \frac{1-i}{2} z - \frac{1-i}{2} z - \frac{1+i}{2} \overline{z} + \frac{(1+i)(1-i)}{4} = \frac{1+1}{4} = \frac{1}{2} \end{aligned}$$

Donc l'ensemble des solutions est le cercle centre $\Omega\left(\frac{1}{2},\frac{1}{2}\right)$ de rayon $\frac{1}{\sqrt{2}}$.

Deuxième méthode

Soit M le point d'affixe z, N le point d'affixe iz et A le point d'affixe i, ces trois points sont alignés si et seulement si \overrightarrow{AM} et \overrightarrow{AN} sont colinéaires, ce qui équivaut à ce qu'il existe $\lambda \in \mathbb{R}$ tel que

$$\overrightarrow{AM} = \lambda \overrightarrow{AN} \Leftrightarrow z - i = \lambda (iz - i) \Leftrightarrow z - i\lambda z = i - i\lambda \Leftrightarrow z = \frac{i(1 - \lambda)}{1 - i\lambda}$$

$$\|\overrightarrow{\Omega M}\| = \left|z - \frac{1 + i}{2}\right| = \left|\frac{i(1 - \lambda)}{1 - \lambda i} - \frac{1 + i}{2}\right| = \left|\frac{2i(1 - \lambda) - (1 + i)(1 - \lambda i)}{2(1 - \lambda i)}\right|$$

$$= \frac{1}{2} \left|\frac{2i(1 - \lambda) - (1 - \lambda i + i + \lambda)}{1 - \lambda i}\right| = \frac{1}{2} \left|\frac{-1 - \lambda + i(2 - 2\lambda + \lambda - 1)}{1 - \lambda i}\right|$$

$$= \frac{1}{2} \left|\frac{-1 - \lambda + i(1 - \lambda)}{1 - \lambda i}\right| = \frac{1}{2} \frac{\sqrt{(1 - \lambda)^2 + (1 + \lambda)^2}}{\sqrt{1 + \lambda^2}} = \frac{1}{2} \frac{\sqrt{1 - 2\lambda + \lambda^2 + 1 + 2\lambda + \lambda^2}}{\sqrt{1 + \lambda^2}}$$

$$= \frac{1}{2} \frac{\sqrt{2 + 2\lambda^2}}{\sqrt{1 + \lambda^2}} = \frac{\sqrt{2}}{2} \frac{\sqrt{1 + \lambda^2}}{\sqrt{1 + \lambda^2}} = \frac{1}{\sqrt{2}}$$

Et l'ensemble des points est le cercle de centre $\Omega\left(\frac{1}{2},\frac{1}{2}\right)$ et de rayon $\frac{1}{\sqrt{2}}$.

Allez à : Exercice 5

Correction exercice 6:

1. On pose w = (x, y) et $v = (\alpha, \beta)$ on cherche $v^{\perp} = (a, b)$ tel que a.

Pour que cette égalité soit vraie pour tout w = (x, y), on doit poser

$$v^{\perp} = (-\beta, \alpha)$$

b. $\langle v, v^{\perp} \rangle = \alpha(-\beta) + \beta\alpha = 0$, ces deux vecteur sont orthogonaux, ils ne sont pas proportionnels par conséquent ils forment une base orthogonale du plan.

2.

$$\det(\overrightarrow{AB}, \overrightarrow{AC}) = Im\left((\overline{b} - \overline{a})(c - \overline{a})\right) = Im(\overline{b}c - \overline{b}a - \overline{a}c + |a|^2) = Im(\overline{b}c - \overline{b}a - \overline{a}c)$$

b. Les points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{BC} sont colinéaires, autrement dit si le déterminant de ces vecteurs est nul, la condition nécessaire et suffisante recherchée est

$$Im(\overline{b}c - \overline{b}a - \overline{a}c) = 0 \Leftrightarrow \overline{b}c - \overline{b}a - \overline{a}c \in \mathbb{R} \Leftrightarrow \overline{b}c - \overline{b}a - \overline{a}c = b\overline{c} - b\overline{a} - a\overline{c}$$

$$\Leftrightarrow \overline{b}c - b\overline{c} + b\overline{a} - \overline{b}a + a\overline{c} - \overline{a}c = 0 \Leftrightarrow 2iIm(\overline{b}c) + 2iIm(b\overline{a}) + 2iIm(a\overline{c})$$

$$= 0 \Leftrightarrow Im(\overline{b}c) + Im(b\overline{a}) + Im(a\overline{c}) = 0$$

Allez à : Exercice 6

Correction exercice 7:

$$\overrightarrow{AM}.\overrightarrow{BM} = \lambda \Leftrightarrow (\overrightarrow{AI} + \overrightarrow{IM}).(\overrightarrow{BI} + \overrightarrow{IM}) = \lambda \Leftrightarrow \overrightarrow{AI}.\overrightarrow{BI} + \overrightarrow{AI}.\overrightarrow{IM} + \overrightarrow{IM}.\overrightarrow{BI} + \overrightarrow{IM}.\overrightarrow{IM} = \lambda$$

Comme I est le milieu de $[A, B], \overrightarrow{AI} = -\overrightarrow{BI}$

$$\overrightarrow{AM}.\overrightarrow{BM} = \lambda \Leftrightarrow -\overrightarrow{BI}.\overrightarrow{BI} - \overrightarrow{BI}.\overrightarrow{IM} + \overrightarrow{IM}.\overrightarrow{BI} + \left\|\overrightarrow{IM}\right\|^2 = \lambda \Leftrightarrow -\left\|\overrightarrow{BI}\right\|^2 + \left\|\overrightarrow{IM}\right\|^2 = \lambda \Leftrightarrow \left\|\overrightarrow{IM}\right\|^2$$
$$= \lambda + \left\|\overrightarrow{BI}\right\|^2$$

Si $\lambda > -\|\overrightarrow{BI}\|^2$ alors l'ensemble des solutions est le cercle de centre I et de rayon $\sqrt{\lambda + \|\overrightarrow{BI}\|^2}$

Si $\lambda = -\|\overrightarrow{BI}\|^2$ alors l'ensemble des solutions est le point *I*.

Si $\lambda < -\|\overrightarrow{BI}\|^2$ alors l'ensemble des solutions est l'ensemble vide.

Allez à : Exercice 7

Correction exercice 8:

1. Si t est la translation de vecteur \vec{u} et soit a l'affixe du vecteur \vec{u} . Soit M un point d'affixe z, M' = t(M) le point d'affixe z' et $M'' = h \circ t(M)$ le point d'affixe z'', donc il existe $k \in \mathbb{R} \setminus \{1\}$ et $b \in \mathbb{C}$ tels que z'' = kz' + b

On a

$$\begin{cases} M' = t(M) \\ h \circ t(M) = h(t(M)) \end{cases} \Leftrightarrow \begin{cases} z' = z + a \\ z'' = kz' + b \end{cases} \Leftrightarrow \begin{cases} z' = z + a \\ z'' = k(z + a) + b \end{cases} \Leftrightarrow \begin{cases} z' = z + a \\ z'' = kz + ka + b \end{cases}$$

On en déduit que $h \circ t$ est une homothétie de rapport k.

Question non demandée : quel est son centre ?

Pour cela on cherche son point fixe Ω_1 d'affixe ω_1

$$\omega_1 = k\omega_1 + ka + b \Leftrightarrow \omega_1(1-k) = ka + b \Leftrightarrow \omega_1 = \frac{ka+b}{1-k}$$

Si de plus on exprimer l'affixe de ce centre en fonction de l'affixe de Ω le centre de h d'affixe ω . Le centre de h est le point fixe de h d'affixe $\omega = \frac{b}{1-k}$ (voir cours ou refaire cette petite démonstration) donc $b = \omega(1-k)$, ce que l'on remplace dans

$$\omega_1 = \frac{ka+b}{1-k} = \frac{ka+\omega(1-k)}{1-k} = \omega + \frac{ka}{1-k}$$

Si t est la translation de vecteur \vec{u} et soit a l'affixe du vecteur \vec{u} . Soit M un point d'affixe z, M' = h(M) le point d'affixe z' et $M'' = t \circ h(M)$ le point d'affixe z'', donc il existe $k \in \mathbb{R} \setminus \{1\}$ et $b \in \mathbb{C}$ tels que z' = kz + b

$$\begin{cases} M' = h(M) \\ t \circ h(M) = t(h(M)) \end{cases} \Leftrightarrow \begin{cases} z' = kz + b \\ z'' = z' + a \end{cases} \Leftrightarrow \begin{cases} z' = kz + b \\ z'' = kz + b + a \end{cases}$$

On en déduit que $t \circ h$ est une homothétie de rapport k.

Question non demandée : quel est son centre ?

Pour cela on cherche le point fixe Ω_2 d'affixe ω_2

$$\omega_2 = k\omega_2 + a + b \Leftrightarrow \omega_2 = \frac{a+b}{1-k}$$

Si de plus on exprimer l'affixe de ce centre en fonction de l'affixe de Ω le centre de h d'affixe ω . Le centre de h est le point fixe de h d'affixe $\omega = \frac{b}{1-k}$ (voir cours ou refaire cette petite démonstration) donc $b = \omega(1-k)$, ce que l'on remplace dans

$$\omega_2 = \frac{a+b}{1-k} = \frac{a+\omega(1-k)}{1-k} = \omega + \frac{a}{1-k}$$

Allez à : Exercice 8

2. Soit M un point d'affixe z, M' = h'(M) le point d'affixe z' et $M'' = h \circ h'(M)$ le point d'affixe z''.

Il existe $k, k' \in \mathbb{R}$ avec $kk' \neq 1$ et $b, b' \in \mathbb{C}$ tels que

$$\begin{cases} z' = k'z + b' \\ z'' = kz' + b \end{cases}$$

Donc z'' = k(k'z + b) + b' = kk'z + kb + b'

Ce qui montre que $h \circ h'$ est une homothétie de rapport kk' car $kk' \neq 1$.

Le centre de h a pour affixe ω et celui de h' a pour affixe ω' tels que

$$\begin{cases} \omega = \frac{b'}{1 - k'} \\ \omega' = \frac{b}{1 - k} \end{cases} \Leftrightarrow \begin{cases} b = (1 - k')\omega' \\ b' = (1 - k)\omega \end{cases}$$

On en déduit que

$$z'' = kk'z + kb + b' = kk'z + k(1 - k')\omega' + (1 - k)\omega$$

Le centre de $h \circ h'$ est le point fixe Ω'' d'affixe ω''

$$\omega'' = kk'\omega'' + k(1 - k')\omega' + (1 - k)\omega \Leftrightarrow \omega'' = \frac{k(1 - k')\omega' + (1 - k)\omega}{1 - kk'}$$

$$\omega'' - \omega = \frac{k(1 - k')\omega' + (1 - k)\omega}{1 - kk'} - \omega = \frac{k(1 - k')\omega' + (1 - k)\omega - (1 - kk')\omega}{1 - kk'}$$

$$= \frac{k(1 - k')\omega' - k\omega + kk'\omega}{1 - kk'} = \frac{k\omega'(1 - k') - k\omega(1 - k')}{1 - kk'}$$

$$= \frac{k(1 - k')}{1 - kk'}(\omega' - \omega)$$

Ce qui signifie que les vecteurs $\overline{\Omega\Omega''} = \frac{k(1-k')}{1-kk'}\overline{\Omega\Omega'}$

Donc les trois centres sont alignés.

Allez à : Exercice 8

3. Soit M un point d'affixe z, M' = h'(M) le point d'affixe z' et $M'' = h \circ h'(M)$ le point d'affixe z''. Il existe $k, k' \in \mathbb{R}$ avec $kk' \neq 1$ et $b, b' \in \mathbb{C}$ tels que

$$\begin{cases} z' = k'z + b' \\ z'' = kz' + b \end{cases}$$

Donc
$$z'' = k(k'z + b) + b' = kk'z + kb + b' = z + kb + b'$$

Ce qui montre que $h \circ h'$ est une translation de vecteur \vec{u} d'affixe kb + b'

On peut, si on veut exprimer l'affixe de ce vecteur en fonction de ω et de ω' les affixes des centres des deux homothéties. On a

$$\begin{cases} \omega = \frac{b'}{1 - k'} \\ \omega' = \frac{b}{1 - k} \end{cases} \Leftrightarrow \begin{cases} b = (1 - k')\omega' \\ b' = (1 - k)\omega \end{cases}$$

On en déduit que

$$z'' = kk'z + kb + b' = z + (k-1)\omega' + (1-k)\omega = z + (1-k)(\omega - \omega')$$

Allez à : Exercice 8

Correction exercice 9:

M, N et P sont alignés si et seulement si $\overrightarrow{PM} = \lambda \overrightarrow{PN}$ ce qui équivaut à

$$z - 2i = \lambda(iz - 2i) \Leftrightarrow z - i\lambda z = 2i - 2i\lambda \Leftrightarrow z = 2i\frac{1 - \lambda}{1 - i\lambda}$$

$$|z - (1+i)| = \left|2i\frac{1 - \lambda}{1 - i\lambda} - (1+i)\right| = \left|\frac{2i(1 - \lambda) - (1 - i\lambda)(1+i)}{1 - i\lambda}\right|$$

$$= \left|\frac{2i(1 - \lambda) - (1 + i - i\lambda + \lambda)}{1 - i\lambda}\right| = \left|\frac{-(1 + \lambda) + i(2 - 2\lambda + \lambda - 1)}{1 - i\lambda}\right|$$

$$= \left|\frac{-(1 + \lambda) + i(1 - \lambda)}{1 - i\lambda}\right| = \frac{\sqrt{(1 + \lambda)^2 + (1 - \lambda)^2}}{\sqrt{1 + \lambda^2}}$$

$$= \frac{\sqrt{1 + 2\lambda + \lambda^2 + 1 - 2\lambda + \lambda^2}}{\sqrt{1 + \lambda^2}} = \frac{\sqrt{2 + 2\lambda^2}}{\sqrt{1 + \lambda^2}} = \sqrt{2}$$

Les points M sont sur le cercle de centre Ω d'affixe 1 + i et de rayon $\sqrt{2}$.

Allez à : Exercice 9

Correction exercice 10:

1. $-j^2 = e^{i\pi}e^{\frac{4i\pi}{3}} = e^{\frac{7i\pi}{3}} = e^{\frac{i\pi}{3}}$ donc r est une rotation d'angle $\frac{\pi}{3}$, son point fixe vérifie $r(\Omega) = \Omega$ donc $\omega = -j^2\omega + 1 + j^2$, ce qui entraine que :

$$\omega = \frac{1 + j^2}{1 + j^2} = 1$$

2. L'affixe de $s(\Omega)$ est

$$-j^2 \times \overline{1} + 1 + j^2 = -j^2 + 1 + j^2 = 1$$

Ce qui montre que

$$s(\Omega) = \Omega$$

Autrement dit Ω est un point fixe de s.

3. L'affixe de l'image par s d'un point M est de la forme $a\overline{z} + b$, de plus

$$a\overline{b} + b = -j^2\left(\overline{1+j^2}\right) + 1 + j^2 = -j^2(1+j) + 1 + j^2 = -j^2 - j^3 + 1 + j^2 = 0$$

Donc s est une symétrie orthogonale.

4. Soit M' = s(M) d'affixe $z' = -j^2\overline{z} + 1 + j^2$. Soit $M'' = r(M') = r \circ s(M)$ d'affixe $z'' = -j^2z' + 1 + j^2$, on a

 $z'' = -j^2 z' + 1 + j^2 = -j^2 (-j^2 \overline{z} + 1 + j^2) + 1 + j^2 = j^4 \overline{z} - j^2 - j^4 + 1 + j^2 = j \overline{z} + 1 - j$

C'est de la forme $a\overline{z} + b$, il reste à vérifier que $a\overline{b} + b = 0$ pour montrer qu'il s'agit d'une symétrie orthogonale.

$$a\overline{b} + b = j(\overline{1-j}) + 1 - j = j(1-j^2) + 1 - j = j - j^3 + 1 - j = 0$$

 $r \circ s$ est une symétrie orthogonale.

Allez à : Exercice 10

Correction exercice 11:

D'après le dessin il y a deux solutions

Première méthode (Mauvaise)

On appelle I le point d'affixe 2 + i, c'est le milieu de [0, A]

Les solutions sont sur la perpendiculaire à (OA), un point M(x, y) de cette droite vérifie

$$\overrightarrow{IM}$$
. $\overrightarrow{OA} = 0 \Leftrightarrow (x-2) \times 4 + (y-1) \times 2 = 0 \Leftrightarrow 4x + 2y - 10 = 0 \Leftrightarrow 2x + y - 5 = 0$

Pour que le triangle OAB soit équilatéral, on doit rajouter la condition $\|\overrightarrow{OB}\| = \|\overrightarrow{OA}\| = \|\overrightarrow{AB}\|$

$$\|\overrightarrow{OA}\| = \sqrt{4^2 + 2^2} = \sqrt{20} = 2\sqrt{5}$$

$$\|\overrightarrow{OB}\| = \sqrt{x^2 + y^2}$$

Si ces deux distances sont égales la troisième $\|\overrightarrow{AB}\|$ sera égale au deux premières.

Donc

$$x^2 + y^2 = 20$$

Il s'agit donc de trouver les points B vérifiant :

$$\begin{cases} 2x + y - 5 = 0 \\ x^2 + y^2 = 20 \end{cases}$$

D'après la première équation, y = -2x + 5, ce que l'on remplace dans la seconde.

$$x^{2} + (-2x + 5)^{2} = 20 \Leftrightarrow x^{2} + 4x^{2} - 20x + 25 = 20 \Leftrightarrow 5x^{2} - 20x + 5 = 0 \Leftrightarrow x^{2} - 4x + 1$$

$$= 0$$

Les racines de cette équation sont

$$x_1 = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3}$$
 et $x_2 = 2 - \sqrt{3}$

On en déduit les ordonnées des points *B* solutions

$$y_1 = -2(2+\sqrt{3}) + 5 = 1 - 2\sqrt{3}$$
 et $y_2 = -2(2-\sqrt{3}) + 5 = 1 + 2\sqrt{3}$

Donc les deux solutions sont

$$B_1 \left(2 + \sqrt{3}, 1 - 2\sqrt{3}\right)$$
 et $B_2 \left(2 - \sqrt{3}, 1 + 2\sqrt{3}\right)$

Deuxième solution (La bonne)

Soit
$$\theta = (\overrightarrow{OA}, \overrightarrow{OB}) = \pm \frac{\pi}{3} + 2k\pi, \ k \in \mathbb{Z}$$

Par conséquent l'affixe z de B vérifie

$$z = e^{i\theta}(4+2i)$$

Autrement dit $\overrightarrow{OB} = R_{\theta}(\overrightarrow{OA})$, où R_{θ} est la rotation de centre O et d'angle θ .

Si $\theta = \frac{\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$ alors

$$z = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)(4+2i) = 2 + i + 2i\sqrt{3} - \sqrt{3} = 2 - \sqrt{3} + i\left(1 + 2\sqrt{3}\right)$$

Si $\theta = -\frac{\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$ alors

$$z = \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)(4+2i) = 2 + i - 2i\sqrt{3} + \sqrt{3} = 2 + \sqrt{3} + i\left(1 - 2\sqrt{3}\right)$$

Donc les deux solutions sont

$$B_1 (2 + \sqrt{3}, 1 - 2\sqrt{3})$$
 et $B_2 (2 - \sqrt{3}, 1 + 2\sqrt{3})$

Allez à : Exercice 11

Correction exercice 12:

1.

a) Soit M'(x', y') l'image de M(x, y) par $t_{\vec{u}}$ la translation de vecteur \vec{u} dont les coordonnés sont (a_1, a_2) avec $a = a_1 + ia_2$.

On a:

$$\overrightarrow{MM'} = \overrightarrow{u} \Leftrightarrow \begin{cases} x' - x = a_1 \\ y' - y = a_2 \end{cases} \Leftrightarrow \begin{cases} x' = x + a_1 \\ y' = y + a_2 \end{cases}$$

Ce qui montre qu'à un point M d'affixe z la translation de vecteur $\vec{u} = (a_1, a_2)$ on associe le point M' d'affixe z + a.

Allez à : Exercice 12

b) Soit M'(x', y') l'image de M(x, y) par l'homothétie de centre $\Omega(a_1, a_2)$ (avec $a = a_1 + ia_2$) et de rapport λ , on a :

$$\overrightarrow{\Omega M'} = \lambda \overrightarrow{\Omega M} \Leftrightarrow \begin{cases} x' - a_1 = \lambda(x - a_1) \\ y' - a_2 = \lambda(y - a_2) \end{cases} \Leftrightarrow \begin{cases} x' = a_1 + \lambda(x - a_1) \\ y' = a_2 + \lambda(y - a_2) \end{cases} \Leftrightarrow \begin{cases} x' = a_1(1 - \lambda) + \lambda x \\ y' = a_2(1 - \lambda) + \lambda y \end{cases}$$

Ce qui montre qu'à un point d'affixe M d'affixe z l'homothétie de centre Ω (a_1, a_2) (avec $a = a_1 + ia_2$) et de rapport λ on associe le point M' d'affixe $\lambda z + (1 - \lambda)a$.

Allez à : Exercice 12

c) Soit M'(x', y') l'image de M(x, y) par la rotation de centre Ω le point d'affixe $a = a_1 + ia_2$, donc l'angle entre les vecteurs $\overrightarrow{\Omega M}$ et $\overrightarrow{\Omega M'}$ est θ .

$$\overrightarrow{\Omega M} = (x - a_1, y - a_2)$$
 et $\overrightarrow{\Omega M'} = (x' - a_1, y' - a_2)$

Au vecteur $\overrightarrow{\Omega M}$ on associe le complexe z - a (avec z = x + iy) et au vecteur $\overrightarrow{\Omega M'}$ on associe le vecteur z' - a (avec z' = x' + iy'). L'angle entre $\overrightarrow{\Omega M}$ et $\overrightarrow{\Omega M'}$ est θ donc $z' - a = e^{i\theta}(z - a)$

Autrement dit l'image de M(x, y) par la rotation de centre Ω le point d'affixe a est le point M' d'affixe

$$z' = a + e^{i\theta}(z - a)$$

Au vecteur $\overrightarrow{\Omega M}$ on associe le complexe z - a (avec z = x + iy) et au vecteur $\overrightarrow{\Omega M'}$ on associe le vecteur z' - a (avec z' = x' + iy'). L'angle entre $\overrightarrow{\Omega M}$ et $\overrightarrow{\Omega M'}$ est θ donc $z' - a = e^{i\theta}(z - a)$

Autrement dit l'image de M(x, y) par la rotation de centre Ω le point d'affixe a est le point M' d'affixe

$$z' = a + e^{i\theta}(z - a)$$

Allez à : Exercice 12 d)

Un vecteur directeur de la droite passant par A faisant un angle θ avec l'axe des abscisses est $\overrightarrow{u(\theta)} = (\cos(\theta), \sin(\theta))$ et donc d'affixe $\cos(\theta) + i\sin(\theta) = e^{i\theta}$.

Le point *I*, milieu de [M, M'] a pour affixe $\frac{z+z'}{2}$, *A* est le point d'affixe a.

M' est le symétrique de M par la symétrie par rapport à la droite passant par A faisant un angle θ avec l'axe des abscisses si et seulement si $\overline{MM'}$ est orthogonal à $\overline{u(\theta)}$ et si \overline{IA} est colinéaire à $\overline{u(\theta)}$, autrement dit si et seulement si $\overline{MM'}$. $\overline{IA} = 0$ et si $\det\left(\overline{IA}, \overline{u(\theta)}\right) = 0$ Nous allons utiliser les complexes, rappelons que si \overline{u} a pour affixe a et v a pour affixe a alors:

$$Re(\overline{a}b) = \vec{u}.\vec{v}$$
 et $Im(\overline{a}b) = \det(\vec{u},\vec{v})$

$$\begin{cases} \overrightarrow{MM'}.\overrightarrow{u(\theta)} = 0 \\ \det\left(\overrightarrow{IA},\overrightarrow{u(\theta)}\right) = 0 \end{cases} \Leftrightarrow \begin{cases} Re\left(\overline{(z'-z)}e^{i\theta}\right) = 0 \\ Im\left(\overline{(a-\frac{z+z'}{2})}e^{i\theta}\right) = 0 \end{cases} \Leftrightarrow \begin{cases} \overline{(z'-z)}e^{i\theta} \in i\mathbb{R} \\ \overline{(a-\frac{z+z'}{2})}e^{i\theta} \in \mathbb{R} \end{cases}$$

$$\Leftrightarrow \begin{cases} \overline{(z'-\overline{z})}e^{i\theta} = -(z'-z)\overline{e^{i\theta}} \\ \overline{(a-\frac{z+z'}{2})}e^{i\theta} = \overline{(a-\frac{z+z'}{2})}e^{i\theta} \end{cases}$$

$$\Leftrightarrow \begin{cases} \overline{(z'-\overline{z})}e^{i\theta} = -(z'-z)e^{-i\theta} \\ \overline{(2\overline{a}-\overline{z}-\overline{z'})}e^{i\theta} = (2a-z-z')e^{-i\theta} \end{cases}$$

$$\Leftrightarrow L_1\begin{cases} \overline{(z'-\overline{z})}e^{2i\theta} = -z'+z \\ \overline{(2\overline{a}-\overline{z}-\overline{z'})}e^{2i\theta} = 2a-z-z' \end{cases}$$

Le but est de trouver z' en fonction du reste, il suffit de calculer $L_1 + L_2$

$$(2\overline{a} - 2\overline{z})e^{2i\theta} = 2a - 2z'$$

Ce qui donne

$$z' = a - (\overline{a} - \overline{z})e^{2i\theta}$$

Si M' est le symétrique de M, d'affixe z, par la symétrie par rapport à la droite passant par A faisant un angle θ avec l'axe des abscisses, alors M' est le point d'affixe

$$z' = a - (\overline{a} - \overline{z})e^{2i\theta}$$

Allez à : Exercice 12

2. Si on appelle $s: \mathbb{C} \to \mathbb{C}$ l'application qui à z, l'affixe d'un point M, associe z' = s(z), d'affixe M' le symétrique de M par la symétrie par rapport à la droite passant par A, d'affixe a et faisant un angle θ avec l'axe des abscisses, on a

$$z' = s(z) = a - (\overline{a} - \overline{z})e^{2i\theta}$$

Si on appelle $s': \mathbb{C} \to \mathbb{C}$ l'application qui à z', l'affixe d'un point M', associe z'' = s(z), d'affixe M'' le symétrique de M' par la symétrie par rapport à la droite passant par A', d'affixe a' et faisant un angle θ avec l'axe des abscisses, on a

$$s'(z') = a' - (\overline{a'} - \overline{z'})e^{2i\theta'}$$

L'image d'un point M par composée de la symétrie par rapport à la droite passant par A, d'affixe a, et faisant un angle θ par rapport à l'axe des abscisses et la symétrie par rapport à la droite passant par A', d'affixe a', et faisant un angle θ' avec l'axe des abscisses est le point M'', d'affixe z'' qui vérifie

$$z'' = s' \circ s(z) = s'(z') = a' - \left(\overline{a'} - \overline{z'}\right)e^{2i\theta'} = a' - \left(\overline{a'} - \overline{a} - (\overline{a} - \overline{z})e^{2i\theta}\right)e^{2i\theta'}$$
$$= a' - \left(\overline{a'} - \overline{a} + (a - z)e^{-2i\theta}\right)e^{2i\theta'} = a' - \left(\overline{a'} - \overline{a}\right)e^{2i\theta'} - (a - z)e^{2i(\theta' - \theta)}$$

Si $\theta' = \theta[\pi] \Leftrightarrow \theta' = \theta + k\pi, k \in \mathbb{Z}$ (ce qui est équivalent à dire que $2(\theta' - \theta) = 2k\pi, k \in \mathbb{Z}$) alors $z'' = a' - (\overline{a'} - \overline{a})e^{2i\theta} - (a - z) = z + a' - a - (\overline{a'} - \overline{a})e^{2i\theta}$

Ce qui montre que $s' \circ s(z)$ est l'affixe d'un point M'' tel que

$$\overrightarrow{MM''} = \overrightarrow{u}$$

 $a' - a - (\overline{a'} - \overline{a})e^{2i\theta}$ étant l'affixe du vecteur \vec{u} .

Si $\theta \neq \theta' [\pi] \Leftrightarrow \theta - \theta' \neq k\pi, k \in \mathbb{Z}$, alors

$$z'' = a' - \left(\overline{a'} - \overline{a}\right)e^{2i\theta'} + (z - a)e^{2i(\theta' - \theta)} = a' - \left(\overline{a'} - \overline{a}\right)e^{2i\theta'} - ae^{2i(\theta' - \theta)} + ze^{2i(\theta' - \theta)}$$

Pour pouvoir affirmer qu'il s'agit de l'affixe d'un point M'' qui soit l'image d'un point M par une rotation de centre b et d'angle α , il faut montrer que

$$z'' = b + (z - b)e^{i\alpha} = b(1 - e^{i\alpha}) + ze^{i\alpha}$$

Il suffit de poser

$$\begin{cases} b \left(1 - e^{i\alpha} \right) = a' - \left(\overline{a'} - \overline{a} \right) e^{2i\theta'} - ae^{2i(\theta' - \theta)} \\ e^{i\alpha} = e^{2i(\theta' - \theta)} \\ \Leftrightarrow \begin{cases} b \left(1 - e^{2i(\theta' - \theta)} \right) = a' - \left(\overline{a'} - \overline{a} \right) e^{2i\theta'} - ae^{2i(\theta' - \theta)} \\ e^{i\alpha} = e^{2i(\theta' - \theta)} \end{cases} \\ \Leftrightarrow \begin{cases} b = \frac{a' - \left(\overline{a'} - \overline{a} \right) e^{2i\theta'} - ae^{2i(\theta' - \theta)}}{1 - e^{2i(\theta' - \theta)}} \\ \alpha = 2(\theta' - \theta) + 2k\pi, k \in \mathbb{Z} \end{cases}$$

Cela montre que, dans ce cas, la composée de deux symétries est bien une rotation.

Certes l'expression de b, l'affixe du centre, est assez obscure mais nous allons voir que ce point est bien celui que vous avez vu au lycée.

Pour introduire un peu de symétrie dans l'expression de b, on va multiplier le numérateur et le dénominateur par $e^{2i\theta}$

$$b = \frac{e^{2i\theta} \left(a' - \left(\overline{a'} - \overline{a} \right) e^{2i\theta'} - a e^{2i(\theta' - \theta)} \right)}{e^{2i\theta} \left(1 - e^{2i(\theta' - \theta)} \right)} = \frac{a' e^{2i\theta} - \left(\overline{a'} - \overline{a} \right) e^{2i(\theta + \theta')} - a e^{2i\theta'}}{e^{2i\theta} - e^{2i\theta'}}$$

Remarque: (non demandée par l'énoncé)

Déterminons le point d'intersection des droites D_{θ} , droite passant par le point A, d'affixe a et faisant en angle θ avec l'axe des abscisse et la droite $D_{\theta'}$ (droite passant par le point A', d'affixe a') et faisant en angle θ' avec l'axe des abscisse. Soit $B \in D_{\theta} \cap D_{\theta'}$

$$\begin{split} B \in D_{\theta} \cap D_{\theta'} &\iff \exists \lambda \in \mathbb{R}, \exists \lambda' \in \mathbb{R}, \\ \left\{ \overrightarrow{AB} = \lambda \overrightarrow{u(\theta)} \right\} &\iff \begin{cases} b - a = \lambda e^{i\theta} \\ b - a' = \lambda' e^{i\theta'} \end{cases} &\iff \begin{cases} b = a + \lambda e^{i\theta} \\ b = a' + \lambda' e^{i\theta'} \end{cases} \\ &\iff \begin{cases} b = a + \lambda e^{i\theta} \\ a + \lambda e^{i\theta} = a' + \lambda' e^{i\theta'} \end{cases} \end{split}$$

Le but est de trouver λ (ou λ') afin de trouver B. Seulement voilà, il n'y a qu'une équation et deux inconnue ($a + \lambda e^{i\theta} = a' + \lambda' e^{i\theta'}$). Mais il s'agit d'une inconnue complexe, cette équation est en fait deux équations l'équation de l'égalité des parties réelles et l'égalité des parties imaginaires. Il y a un moyen de trouver λ (où λ') avec une petite astuce, considérons le conjugué de cette équation $\overline{a + \lambda e^{i\theta}} = \overline{a' + \lambda' e^{i\theta'}} \Leftrightarrow \overline{a} + \lambda e^{-i\theta} = \overline{a'} + \lambda' e^{-i\theta'}$ car λ et λ' sont réels. Par conséquent λ et λ' vérifient

$$\begin{cases} a + \lambda e^{i\theta} = \underline{a'} + \lambda' e^{i\theta'} \\ \overline{a} + \lambda e^{-i\theta} = \overline{a'} + \lambda' e^{-i\theta'} \end{cases} \Leftrightarrow \begin{cases} \lambda e^{i\theta} - \lambda' e^{i\theta'} = \underline{a'} - \underline{a} \\ \lambda e^{-i\theta} - \lambda' e^{-i\theta'} = \overline{a'} - \overline{a} \end{cases}$$

Appliquons le bon vieux théorème de Cramer (à condition que cela marche)

$$\begin{vmatrix} e^{i\theta} & -e^{i\theta'} \\ e^{-i\theta} & -e^{-i\theta'} \end{vmatrix} = -e^{i(\theta-\theta')} + e^{-i(\theta-\theta')} = -\left(e^{i(\theta-\theta')} - e^{-i(\theta-\theta')}\right) = -2i(\sin(\theta-\theta')) \neq 0$$

$$\operatorname{Car} \theta - \theta' \neq k\pi, k \in \mathbb{Z}$$

On peut y aller avec le théorème de Cramer (qui marche même avec des complexes)

$$\begin{cases} \lambda = \frac{\left| \frac{a' - a - e^{i\theta'}}{\overline{a'} - \overline{a} - e^{-i\theta'}} \right|}{\left| \frac{e^{i\theta}}{e^{-i\theta}} - e^{-i\theta'}} = \frac{-e^{-i\theta'}(a' - a) + e^{i\theta'}(\overline{a'} - \overline{a})}{-e^{i(\theta - \theta')} + e^{-i(\theta - \theta')}} \\ \lambda' = \frac{\left| \frac{-e^{i\theta'}}{e^{-i\theta}} - e^{-i\theta'} \right|}{\left| \frac{e^{i\theta}}{e^{-i\theta}} - e^{i\theta'}} = \frac{-(\overline{a'} - \overline{a})e^{i\theta'} + (a' - a)e^{-i\theta'}}{-e^{i(\theta - \theta')} + e^{-i(\theta - \theta')}} \end{cases}$$

Par conséquent L'affixe de *B* est

$$\begin{split} b &= a + \frac{-e^{-i\theta'} \left(a' - a\right) + e^{i\theta'} \left(\overline{a'} - \overline{a}\right)}{-e^{i(\theta - \theta')} + e^{-i(\theta - \theta')}} e^{i\theta} \\ &= \frac{a \left(-e^{i(\theta - \theta')} + e^{-i(\theta - \theta')}\right) + \left(-e^{-i\theta'} \left(a' - a\right) + e^{i\theta'} \left(\overline{a'} - \overline{a}\right)\right) e^{i\theta}}{-e^{i(\theta - \theta')} + e^{-i(\theta - \theta')}} \\ &= \frac{-ae^{i(\theta - \theta')} + ae^{-i(\theta - \theta')} - e^{i(\theta' - \theta)} \left(a' - a\right) + e^{i(\theta + \theta')} \left(\overline{a'} - \overline{a}\right)}{-e^{i(\theta - \theta')} + e^{-i(\theta - \theta')}} \\ &= \frac{ae^{i(\theta - \theta')} - ae^{i(\theta' - \theta)} - a'e^{i(\theta' - \theta)} + ae^{i(\theta' - \theta)} - \overline{a'}e^{i(\theta - \theta')} + \overline{a}e^{i(\theta - \theta')}}{-e^{i(\theta - \theta')} + e^{-i(\theta - \theta')}} \\ &= \frac{ae^{i(\theta - \theta')} - a'e^{i(\theta' - \theta)} - \overline{a'}e^{i(\theta - \theta')} + \overline{a}e^{i(\theta - \theta')}}{-e^{i(\theta - \theta')} + e^{-i(\theta - \theta')}} \\ &= \frac{ae^{i(\theta - \theta')} - a'e^{i(\theta' - \theta)} - \overline{a'}e^{i(\theta - \theta')} + \overline{a}e^{i(\theta - \theta')}}{-e^{i(\theta - \theta')} + e^{-i(\theta - \theta')}} \times \frac{e^{i(\theta + \theta')}}{e^{i(\theta + \theta')}} \\ &= \frac{-ae^{2i\theta'} + \left(\overline{a'} - \overline{a}\right)e^{2i(\theta + \theta')} + a'e^{2i\theta}}{-e^{2i\theta} + e^{2i\theta'}} = \frac{a'e^{2i\theta} - \left(\overline{a'} - \overline{a}\right)e^{2i(\theta + \theta')} - ae^{2i\theta'}}{e^{2i\theta} - e^{2i\theta'}} \end{split}$$

C'est justement le centre de la rotation.

Allez à : Exercice 12

3. On a vu que l'image de M d'affixe z par la rotation r de centre Ω le point d'affixe a et d'angle θ est le point M' d'affixe $z' = a + e^{i\theta}(z - a)$

Donc l'image de M', d'affixe z' par la rotation r' de centre Ω' le point d'affixe a' et d'angle θ' est le point M'' d'affixe $z'' = a' + e^{i\theta'}(z' - a')$

Donc l'image d'un point M, d'affixe z par $r' \circ r$ est le point M'' d'affixe

$$z'' = a' + e^{i\theta'}(z' - a') = a' + e^{i\theta'}(a + e^{i\theta}(z - a) - a') = a' + (a - a')e^{i\theta'} + e^{i(\theta + \theta')}(z - a)$$

Si $\theta + \theta' = 0$ [2 π] alors

$$z'' = a' + (a - a')e^{i\theta'} + z - a = z + (a - a')(e^{i\theta'} - 1)$$

Et alors $r' \circ r$ la translation de vecteur \vec{u} d'affixe $(a - a')(e^{i\theta'} - 1)$

Si $\theta + \theta' \neq 0$ [2 π] alors

$$z'' = a' + (a - a')e^{i\theta'} + e^{i(\theta + \theta')}(z - a) = a' + (a - a')e^{i\theta'} - ae^{i(\theta + \theta')} + ze^{i(\theta + \theta')}$$

Pour pouvoir affirmer qu'il s'agit de l'affixe d'un point M'' qui soit l'image d'un point M par une rotation de centre b et d'angle α , il faut montrer que

$$z'' = b + (z - b)e^{i\alpha} = b(1 - e^{i\alpha}) + ze^{i\alpha}$$

Il suffit de poser

$$\begin{cases} b \left(1 - e^{i\alpha} \right) = a' + (a - a')e^{i\theta'} - ae^{i(\theta + \theta')} \\ e^{i\alpha} = e^{i(\theta + \theta')} \\ \Leftrightarrow \begin{cases} b \left(1 - e^{i(\theta + \theta')} \right) = a' + (a - a')e^{i\theta'} - ae^{i(\theta + \theta')} \\ e^{i\alpha} = e^{i(\theta + \theta')} \end{cases} \\ \Leftrightarrow \begin{cases} b = \frac{a' + (a - a')e^{i\theta'} - ae^{i(\theta + \theta')}}{1 - e^{i(\theta + \theta')}} \\ \alpha = \theta + \theta' + 2k\pi, k \in \mathbb{Z} \end{cases}$$

Cela montre que, dans ce cas, la composée de deux rotations est bien une rotation d'angle $\theta + \theta'$.

Ouestion non demandée : où est le centre ?

Certes, il s'agit du point *B* d'affixe *b*, mais encore.

Transformons un peu b

$$b = \frac{a' + (a - a')e^{i\theta'} - ae^{i(\theta + \theta')}}{1 - e^{i(\theta + \theta')}} = \frac{a' + (a - a')e^{i\theta'} - ae^{i(\theta + \theta')}}{e^{i\frac{\theta + \theta'}{2}} \left(e^{-i\frac{\theta + \theta'}{2}} - e^{i\frac{\theta + \theta'}{2}}\right)}$$
$$= \frac{a'e^{-i\frac{\theta + \theta'}{2}} + (a - a')e^{i\frac{\theta - \theta'}{2}} - ae^{i\frac{\theta + \theta'}{2}}}{e^{-i\frac{\theta + \theta'}{2}} - e^{i\frac{\theta + \theta'}{2}}}$$

Ainsi, l'expression

Donc

$$\begin{split} b-a &= \frac{a'e^{-i\frac{\theta+\theta'}{2}} + (a-a')e^{i\frac{\theta-\theta'}{2}} - ae^{i\frac{\theta+\theta'}{2}}}{e^{-i\frac{\theta+\theta'}{2}} + ae^{i\frac{\theta-\theta'}{2}} - a'e^{i\frac{\theta+\theta'}{2}} - ae^{i\frac{\theta+\theta'}{2}} - a(e^{-i\frac{\theta+\theta'}{2}} - a(e^{-i\frac{\theta+\theta'}{2}} - ae^{i\frac{\theta+\theta'}{2}}) - a(e^{-i\frac{\theta+\theta'}{2}} - ae^{i\frac{\theta+\theta'}{2}})\\ &= \frac{a'e^{-i\frac{\theta+\theta'}{2}} + ae^{i\frac{\theta-\theta'}{2}} - a'e^{i\frac{\theta+\theta'}{2}} - ae^{i\frac{\theta+\theta'}{2}} + ae^{i\frac{\theta+\theta'}{2}}}{e^{-i\frac{\theta+\theta'}{2}} - ae^{i\frac{\theta+\theta'}{2}}} = \frac{(a-a')e^{i\frac{\theta-\theta'}{2}} - (a-a')e^{i\frac{\theta+\theta'}{2}}}{e^{-i\frac{\theta+\theta'}{2}} - e^{i\frac{\theta+\theta'}{2}}}\\ &= \frac{(a-a')\left(e^{i\frac{\theta-\theta'}{2}} - e^{i\frac{\theta+\theta'}{2}}\right)}{e^{-i\frac{\theta+\theta'}{2}} - e^{i\frac{\theta+\theta'}{2}}} = (a-a')e^{i\frac{\theta}{2}} - e^{i\frac{\theta+\theta'}{2}}\\ &= (a-a')e^{i\frac{\theta}{2}} - e^{i\frac{\theta+\theta'}{2}} - e^{i\frac{\theta+\theta'}{2}} \\ &= (a-a')e^{i\frac{\theta}{2}} - e^{i\frac{\theta+\theta'}{2}} - e^{i\frac{\theta+\theta'}{2}} - e^{i\frac{\theta+\theta'}{2}} \\ &= (a-a')e^{i\frac{\theta}{2}} - e^{i\frac{\theta+\theta'}{2}}$$

Ce qui montre que les droites vecteurs $\overrightarrow{\Omega B}$ et $\overrightarrow{\Omega' \Omega}$ font un angle $\frac{\theta}{2} \operatorname{car} \frac{\sin(\frac{\theta'}{2})}{\sin(\frac{\theta+\theta'}{2})} \in \mathbb{R}^+$.

De même (ou presque) en changeant les rôles de α et α' ainsi que ceux de θ et θ' .

$$b - a' = e^{i\frac{\theta'}{2}}(a' - a) \frac{\sin\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta + \theta'}{2}\right)}$$

Ce qui montre que les droites vecteurs $\overrightarrow{\Omega'B}$ et $\overrightarrow{\Omega\Omega'}$ font un angle $\frac{\theta'}{2}$ car $\frac{\sin(\frac{\theta}{2})}{\sin(\frac{\theta+\theta'}{2})} \in \mathbb{R}^+$.

Cela permet de placer le point.

Allez à : Exercice 12