

$\begin{array}{c} \text{Optimisation} \\ Lecture \ 10 \ - \ Convexity \end{array}$

Fall semester - 2024

Dr. Eng. Valentin Leplat Innopolis University November 5, 2024

Outline

- 1 Convex Sets
- 2 Convex function
 - Definitions
 - Examples
 - Properties
- 3 The benefits of convexity in optimization
 - What is a convex optimization problem?
 - Properties of a convex problem
- 4 Examples
- 5 Conclusions

Convex Sets

A set $X \subset \mathbb{R}^n$ is convex if and only if

$$z = \lambda x + (1 - \lambda)y \in X$$
 for all $x, y \in X$ and for all $0 \le \lambda \le 1$.

A set $X \subset \mathbb{R}^n$ is convex if and only if

$$z = \lambda x + (1 - \lambda)y \in X$$
 for all $x, y \in X$ and for all $0 \le \lambda \le 1$.

In other words, X is convex if and only if it contains all the segments joining two of its points x and y:

A set $X \subset \mathbb{R}^n$ is convex if and only if

$$z = \lambda x + (1 - \lambda)y \in X$$
 for all $x, y \in X$ and for all $0 \le \lambda \le 1$.

In other words, X is convex if and only if it contains all the segments joining two of its points x and y:

Convex set

Non-convex set

A set $X \subset \mathbb{R}^n$ is convex if and only if

$$z = \lambda x + (1 - \lambda)y \in X$$
 for all $x, y \in X$ and for all $0 \le \lambda \le 1$.

In other words, X is convex if and only if it contains all the segments joining two of its points x and y:

Convex set

Non-convex set

Examples of convex sets:

▶ The sets \emptyset , \mathbb{R}^n , \mathbb{R}^n_+ , \mathbb{R}^n_{++}

A set $X \subset \mathbb{R}^n$ is convex if and only if

$$z = \lambda x + (1 - \lambda)y \in X$$
 for all $x, y \in X$ and for all $0 \le \lambda \le 1$.

In other words, X is convex if and only if it contains all the segments joining two of its points x and y:

Convex set

Non-convex set

Examples of convex sets:

- ▶ The sets \emptyset , \mathbb{R}^n , \mathbb{R}^n_+ , \mathbb{R}^n_{++}
- ▶ Open or closed balls : $\{x \mid ||x-a|| < r\}$ and $\{x \mid ||x-a|| \le r\}$

A set $X \subset \mathbb{R}^n$ is convex if and only if

$$z = \lambda x + (1 - \lambda)y \in X$$
 for all $x, y \in X$ and for all $0 \le \lambda \le 1$.

In other words, X is convex if and only if it contains all the segments joining two of its points x and y:

Convex set

Non-convex set

Examples of convex sets:

- ▶ The sets \emptyset , \mathbb{R}^n , \mathbb{R}^n_+ , \mathbb{R}^n_{++}
- ▶ Open or closed balls : $\{x \mid ||x a|| < r\}$ and $\{x \mid ||x a|| \le r\}$
- ► In ℝ, convex sets are precisely the intervals (segments, half-lines and straight lines, open, closed or mixed)

A set $X \subset \mathbb{R}^n$ is convex if and only if

$$z = \lambda x + (1 - \lambda)y \in X$$
 for all $x, y \in X$ and for all $0 \le \lambda \le 1$.

In other words, X is convex if and only if it contains all the segments joining two of its points x and y:

Convex set

Non-convex set

Examples of convex sets:

- ▶ The sets \emptyset , \mathbb{R}^n , \mathbb{R}^n_+ , \mathbb{R}^n_{++}
- ▶ Open or closed balls : $\{x \mid ||x-a|| < r\}$ and $\{x \mid ||x-a|| \le r\}$
- ► In ℝ, convex sets are precisely the intervals (segments, half-lines and straight lines, open, closed or mixed)
- ▶ The half-spaces open or closed : $\{x \mid c^Tx < b\}$ and $\{x \mid c^Tx \leqslant b\}$, as well as hyper-plans $\{x \mid c^Tx = b\}$

Dr. Eng. Valentin Leplat Convex Sets 4/30

Domain defined by functional constraints

In optimization problems, the feasible domain/set X is often defined by functional constraints:

$$X = \{x \mid h_i(x) = 0 \text{ for } i \in \mathcal{E} \text{ and } h_i(x) \leq 0 \text{ for } i \in \mathcal{I}\}.$$

Domain defined by functional constraints

In optimization problems, the feasible domain/set X is often defined by functional constraints:

$$X = \{x \mid h_i(x) = 0 \text{ for } i \in \mathcal{E} \text{ and } h_i(x) \leq 0 \text{ for } i \in \mathcal{I}\}.$$

We can demonstrate that if

- each function $h_i(x)$, $i \in \mathcal{E}$ defining an equality is affine and
- each function $h_i(x)$, $i \in \mathcal{I}$ defining an inequality \leq is convex

then the feasible set X is convex.

Dr. Eng. Valentin Leplat Convex Sets 5/30

Domain defined by functional constraints

In optimization problems, the feasible domain/set X is often defined by functional constraints:

$$X = \{x \mid h_i(x) = 0 \text{ for } i \in \mathcal{E} \text{ and } h_i(x) \leq 0 \text{ for } i \in \mathcal{I}\}.$$

We can demonstrate that if

- each function $h_i(x)$, $i \in \mathcal{E}$ defining an equality is affine and
- each function $h_i(x)$, $i \in \mathcal{I}$ defining an inequality \leq is convex

then the feasible set X is convex.

(this condition is sufficient but not necessary)

Dr. Eng. Valentin Leplat Convex Sets 5/30

If two sets $X_1 \subseteq \mathbb{R}^n$ and $X_2 \subseteq \mathbb{R}^n$ are convex, their intersection $X_1 \cap X_2 \subseteq \mathbb{R}^n$ is also convex.

If two sets $X_1 \subseteq \mathbb{R}^n$ and $X_2 \subseteq \mathbb{R}^n$ are convex, their intersection $X_1 \cap X_2 \subseteq \mathbb{R}^n$ is also convex.

Consequently, any polyhedron or polytope $X = \{x \mid Ax \leq b\}$ is convex. (intersection of a finite number of half-spaces of \mathbb{R}^n).

6/30

If two sets $X_1 \subseteq \mathbb{R}^n$ and $X_2 \subseteq \mathbb{R}^n$ are convex, their intersection $X_1 \cap X_2 \subseteq \mathbb{R}^n$ is also convex.

Consequently, any polyhedron or polytope $X = \{x \mid Ax \leq b\}$ is convex. (intersection of a finite number of half-spaces of \mathbb{R}^n).

If two sets $X_1 \subseteq \mathbb{R}^n$ and $X_2 \subseteq \mathbb{R}^m$ are convex, their Cartesian Product $X_1 \times X_2 \subseteq \mathbb{R}^{n+m}$ is also convex.

If two sets $X_1 \subseteq \mathbb{R}^n$ and $X_2 \subseteq \mathbb{R}^n$ are convex, their intersection $X_1 \cap X_2 \subseteq \mathbb{R}^n$ is also convex.

Consequently, any polyhedron or polytope $X = \{x \mid Ax \leq b\}$ is convex. (intersection of a finite number of half-spaces of \mathbb{R}^n).

If two sets $X_1 \subseteq \mathbb{R}^n$ and $X_2 \subseteq \mathbb{R}^m$ are convex, their Cartesian Product $X_1 \times X_2 \subseteq \mathbb{R}^{n+m}$ is also convex.

If $X \subseteq \mathbb{R}^n$ is a convex set and $g: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, i.e. : q(x) = Ax + b.

we can show that $q(X) = \{q(x) \mid x \in X\}$, the image of X by q, is convex.

If two sets $X_1 \subseteq \mathbb{R}^n$ and $X_2 \subseteq \mathbb{R}^n$ are convex, their intersection $X_1 \cap X_2 \subseteq \mathbb{R}^n$ is also convex.

Consequently, any polyhedron or polytope $X = \{x \mid Ax \leq b\}$ is convex. (intersection of a finite number of half-spaces of \mathbb{R}^n).

If two sets $X_1 \subseteq \mathbb{R}^n$ and $X_2 \subseteq \mathbb{R}^m$ are convex, their Cartesian Product $X_1 \times X_2 \subseteq \mathbb{R}^{n+m}$ is also convex.

If $X \subseteq \mathbb{R}^n$ is a convex set and $g: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, i.e. : g(x) = Ax + b.

we can show that $q(X) = \{q(x) \mid x \in X\}$, the image of X by q, is convex.

Many operations preserve convexity (including linear transformations, but also sums, etc.) but not the union of two sets.

For two points x_1 and x_2 , we call

• convex combination: points defined by $\lambda_1 x_1 + \lambda_2 x_2$ with $\lambda_1 + \lambda_2 = 1$, $\lambda_1 \ge 0$ and $\lambda_2 \ge 0$.

For two points x_1 and x_2 , we call

- convex combination: points defined by $\lambda_1 x_1 + \lambda_2 x_2$ with $\lambda_1 + \lambda_2 = 1$, $\lambda_1 \ge 0$ and $\lambda_2 \ge 0$.
- conic combination: points defined by $\lambda_1 x_1 + \lambda_2 x_2$ with $\lambda_1 \ge 0$ and $\lambda_2 \ge 0$.

For two points x_1 and x_2 , we call

- convex combination: points defined by $\lambda_1 x_1 + \lambda_2 x_2$ with $\lambda_1 + \lambda_2 = 1$, $\lambda_1 \ge 0$ and $\lambda_2 \ge 0$.
- conic combination: points defined by $\lambda_1 x_1 + \lambda_2 x_2$ with $\lambda_1 \ge 0$ and $\lambda_2 \ge 0$.

A set $K \in \mathbb{R}^n$ is called a *convex cone* if

- 1. for every $x \in K$ and $\lambda \ge 0$, we have $\lambda x \in K$,
- 2. for every $x_1, x_2 \in K$, we have $\lambda_1 x_1 + \lambda_2 x_2 \in K$ for all $\lambda_1, \lambda_2 \ge 0$.

or a convex cone is a set that contains all the conic combinations of the points in the set.

Examples:

 $ightharpoonup \mathbb{R}^r$

Examples:

- $ightharpoonup \mathbb{R}^n_+$
- \blacktriangleright For a vector space V, the empty set, the space V, and any (linear) subspace of V are convex cones.

Examples:

- $ightharpoonup \mathbb{R}^n_+$
- \blacktriangleright For a vector space V, the empty set, the space V, and any (linear) subspace of V are convex cones.
- ► The conic hull of a finite or infinite set of vectors $a_i \in \mathbb{R}^n$: $\{\lambda_1 a_1 + ... + \lambda_m a_m \mid \lambda_i \geq 0\}$ is a convex cone.

Examples:

- $ightharpoonup \mathbb{R}^n_+$
- \blacktriangleright For a vector space V, the empty set, the space V, and any (linear) subspace of V are convex cones.
- ▶ The conic hull of a finite or infinite set of vectors $a_i \in \mathbb{R}^n$: $\{\lambda_1 a_1 + ... + \lambda_m a_m \mid \lambda_i \geq 0\}$ is a convex cone.
- ▶ The norm cone : $\{(x,t) \in \mathbb{R}^{n+1} \mid ||x|| \leq t\}$ is a convex cone ▶ Examples

Examples:

- $ightharpoonup \mathbb{R}^n_+$
- \blacktriangleright For a vector space V, the empty set, the space V, and any (linear) subspace of V are convex cones.
- ► The conic hull of a finite or infinite set of vectors $a_i \in \mathbb{R}^n$: $\{\lambda_1 a_1 + ... + \lambda_m a_m \mid \lambda_i \geq 0\}$ is a convex cone.
- ▶ The norm cone : $\{(x,t) \in \mathbb{R}^{n+1} \mid ||x|| \le t\}$ is a convex cone ▶ Examples
- ▶ The set of PSD symmetric matrices : $\mathbb{S}^n_+ = \{M \in \mathbb{S}^n \mid M \geq 0\}$

Examples:

- $ightharpoonup \mathbb{R}^n_+$
- \blacktriangleright For a vector space V, the empty set, the space V, and any (linear) subspace of V are convex cones.
- ► The conic hull of a finite or infinite set of vectors $a_i \in \mathbb{R}^n$: $\{\lambda_1 a_1 + ... + \lambda_m a_m \mid \lambda_i \geq 0\}$ is a convex cone.
- ▶ The norm cone : $\{(x,t) \in \mathbb{R}^{n+1} \mid ||x|| \leq t\}$ is a convex cone ▶ Examples
- ▶ The set of PSD symmetric matrices : $\mathbb{S}^n_+ = \{M \in \mathbb{S}^n \mid M \geq 0\}$
- ▶ The set of nonnegative continuous functions is a convex cone.

Convex function

There are several definitions of *convex function*. They all boil down to the same thing, but use different arguments to emphasize certain properties.

There are several definitions of *convex function*. They all boil down to the same thing, but use different arguments to emphasize certain properties.

Using only the expression f(x) (0-order).

• $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \forall x, y \in X \text{ with } 0 \le \lambda \le 1$

Dr. Eng. Valentin Leplat Convex

There are several definitions of *convex function*. They all boil down to the same thing, but use different arguments to emphasize certain properties.

Using only the expression f(x) (0-order).

•
$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \ \forall x, y \in X \text{ with } 0 \le \lambda \le 1$$

Assuming f(x) differentiable (order 1).

- $f(y) \ge f(x) + \nabla f(x)^T (y x), \forall x, y \in X$
- $(x-y)^T(\nabla f(x) \nabla f(y)) \ge 0, \forall x, y \in X$

There are several definitions of *convex function*. They all boil down to the same thing, but use different arguments to emphasize certain properties.

Using only the expression f(x) (0-order).

•
$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \ \forall x, y \in X \text{ with } 0 \le \lambda \le 1$$

Assuming f(x) differentiable (order 1).

- $f(y) \ge f(x) + \nabla f(x)^T (y x), \ \forall x, y \in X$
- $(x-y)^T(\nabla f(x) \nabla f(y)) \ge 0, \forall x, y \in X$

Assuming f(x) twice differentiable (order 2).

 $\nabla^2 f(x) \ge 0$

There are several definitions of *convex function*. They all boil down to the same thing, but use different arguments to emphasize certain properties.

Using only the expression f(x) (0-order).

•
$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \forall x, y \in X \text{ with } 0 \le \lambda \le 1$$

Assuming f(x) differentiable (order 1).

- $f(y) \geqslant f(x) + \nabla f(x)^T (y x), \ \forall x, y \in X$
- $(x-y)^T(\nabla f(x) \nabla f(y)) \ge 0, \forall x, y \in X$

Assuming f(x) twice differentiable (order 2).

 $\nabla^2 f(x) \geq 0$

Using the definition of convex set.

ightharpoonup Epigraph of f is convex

There are several definitions of *convex function*. They all boil down to the same thing, but use different arguments to emphasize certain properties.

Using only the expression f(x) (0-order).

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \ \forall x, y \in X \text{ with } 0 \le \lambda \le 1$$

Assuming f(x) differentiable (order 1).

- $f(y) \geqslant f(x) + \nabla f(x)^T (y x), \ \forall x, y \in X$
 - $(x-y)^T (\nabla f(x) \nabla f(y)) \ge 0, \forall x, y \in X$

Assuming f(x) twice differentiable (order 2).

$$\nabla^2 f(x) \geq 0$$

Using the definition of convex set.

ightharpoonup Epigraph of f is convex

A function f is said to be **concave** if and only if -f is convex.

Convex function: definition 1

A function f defined on a domain X is a convex function if and only if \bullet its domain X is a convex set and,

- $f(\lambda x + (1 \lambda)y) \leq \lambda f(x) + (1 \lambda)f(y), \forall x, y \in X \text{ with } 0 \leq \lambda \leq 1.$

11/30

Convex function: definition 1

A function f defined on a domain X is a convex function if and only if \blacktriangleright its domain X is a convex set and,

- $f(\lambda x + (1 \lambda)y) \leq \lambda f(x) + (1 \lambda)f(y), \forall x, y \in X \text{ with } 0 \leq \lambda \leq 1.$

other words, f is convex if it lies below the strings that underlie its graph:

Dr. Eng. Valentin Leplat

Convex function

f defined and differentiable on a domain X is a convex function if and only if ${}^{\blacktriangleright}$ its domain X is a convex set and,

- $f(y) \ge f(x) + \nabla f(x)^T (y x), \forall x, y \in X.$

f defined and differentiable on a domain X is a convex function if and only if \blacktriangleright its domain X is a convex set and,

- $f(y) \ge f(x) + \nabla f(x)^T (y x), \forall x, y \in X.$

In other words, f lies above all its Taylor approximations of order 1:

Dr. Eng. Valentin Leplat

f defined and differentiable on a domain X is a convex function if and only if ${}^{\blacktriangleright}$ its domain X is a convex set and,

- $(x-y)^T(\nabla f(x) \nabla f(y)) \ge 0, \forall x, y \in X.$

f defined and differentiable on a domain X is a convex function if and only if \blacktriangleright its domain X is a convex set and,

- $(x-y)^T(\nabla f(x) \nabla f(y)) \ge 0, \forall x, y \in X.$

In other words, the derivative of f is monotonically increasing:

Dr. Eng. Valentin Leplat

Convex function

f defined and twice differentiable on a domain X is a convex function if and only if ightharpoonup its domain X is a convex set and,

- $\nabla^2 f(x) \geq 0$ for all $x \in X$

f defined and twice differentiable on a domain X is a convex function if and only if $\, \blacktriangleright \,$ its domain X is a convex set and,

• $\nabla^2 f(x) \ge 0$ for all $x \in X$

In other words, this means that the graph of f has positive curvature over its entire domain X:

Dr. Eng. Valentin Leplat

Convex function: definition 5 (epigraph)

A function f defined on a domain X is a convex function if and only if the epigraph of f on X is a convex set.

$$epi(f) = \{(x, y) \in X \times \mathbb{R} \mid x \in X, y \geqslant f(x)\}\$$

Convex function: definition 5 (epigraph)

A function f defined on a domain X is a convex function if and only if \bullet the epigraph of f on X is a convex set.

$$\operatorname{epi}(f) = \{(x, y) \in X \times \mathbb{R} \mid x \in X, y \geqslant f(x)\}\$$

- Examples of convex functions with one variable :
 - $-f(x) = x^{\alpha}$ for $\alpha \ge 1$ or $\alpha \le 0$ is convex over \mathbb{R}_{++} ,
 - $-f(x) = |x|^{\alpha} \text{ for } \alpha \geqslant 1,$
 - $f(x) = e^{\alpha x} \text{ for } \alpha \in \mathbb{R},$
 - $f(x) = -\log x$ is convex over \mathbb{R}_{++} ,
 - $f(x) = x \log x$ is convex over \mathbb{R}_{++} ,

Examples of convex functions with one variable :

```
- f(x) = x^{\alpha} for \alpha \ge 1 or \alpha \le 0 is convex over \mathbb{R}_{++},

- f(x) = |x|^{\alpha} for \alpha \ge 1,

- f(x) = e^{\alpha x} for \alpha \in \mathbb{R},

- f(x) = -\log x is convex over \mathbb{R}_{++},

- f(x) = x \log x is convex over \mathbb{R}_{++},
```

► The constant, linear and affine functions are convex :

```
-f(x) = \alpha
-f(x) = c^{T}x
-f(x) = c^{T}x + \alpha
(only affine functions are both convex and concave)
```

- Examples of convex functions with one variable :
 - $f(x) = x^{\alpha}$ for $\alpha \ge 1$ or $\alpha \le 0$ is convex over \mathbb{R}_{++} ,
 - $-f(x) = |x|^{\alpha}$ for $\alpha \ge 1$,
 - $f(x) = e^{\alpha x} \text{ for } \alpha \in \mathbb{R},$
 - $-f(x) = -\log x$ is convex over \mathbb{R}_{++} ,
 - $-f(x) = x \log x$ is convex over \mathbb{R}_{++} ,
- ► The constant, linear and affine functions are convex :
 - $f(x) = \alpha$
 - $-f(x) = c^T x$
 - $-f(x) = c^T x + \alpha$

(only affine functions are both convex and concave)

- ► The norm function and its square are convex :
 - f(x) = ||x||
 - $-f(x) = ||x||^2$

- Examples of convex functions with one variable :
 - $-f(x)=x^{\alpha}$ for $\alpha \geqslant 1$ or $\alpha \leqslant 0$ is convex over \mathbb{R}_{++} ,
 - $-f(x) = |x|^{\alpha}$ for $\alpha \ge 1$,
 - $f(x) = e^{\alpha x} \text{ for } \alpha \in \mathbb{R},$
 - $-f(x) = -\log x$ is convex over \mathbb{R}_{++} ,
 - $f(x) = x \log x$ is convex over \mathbb{R}_{++} ,
- ► The constant, linear and affine functions are convex :
 - $-f(x)=\alpha$
 - $-f(x) = c^T x$
 - $-f(x) = c^T x + \alpha$

(only affine functions are both convex and concave)

- ► The norm function and its square are convex :
 - f(x) = ||x||
 - $-f(x) = ||x||^2$
- ▶ The quadratic form $f(x) = x^T Q x$ is convex for $Q \ge 0$

Nonnegative linear combination.

- If f is a convex function, αf is also convex for $\alpha > 0$
- If f_1 and f_2 are convex, then their sum $f_1 + f_2$ is convex

These two results imply that $f = \alpha_1 f_1 + ... + \alpha_m f_m$ is a convex function for $f_1, ..., f_m$ convex and $\alpha_i > 0$, i = 1, ..., m.

Nonnegative linear combination.

- If f is a convex function, αf is also convex for $\alpha > 0$
- ▶ If f_1 and f_2 are convex, then their sum $f_1 + f_2$ is convex

These two results imply that $f = \alpha_1 f_1 + ... + \alpha_m f_m$ is a convex function for $f_1, ..., f_m$ convex and $\alpha_i > 0$, i = 1, ..., m.

The maximum (point by point).

If f_1 and f_2 are convex, then their pointwise maximum, defined by

$$f(x) = \max\{f_1(x), f_2(x)\}\$$

is also convex.

Composition with a linear transformation g(x) = Ax + b.

If h(x) is a convex function, the composite function

$$f(x) = h(g(x)) = h(Ax + b)$$
 is also convex.

Composition with a linear transformation g(x) = Ax + b.

If h(x) is a convex function, the composite function

$$f(x) = h(g(x)) = h(Ax + b)$$
 is also convex.

Composite functions: f(x) = h(g(x)).

If h(x) is non-decreasing convex and g(x) convex, then f(x) is convex.

If h(x) is non-increasing convex and g(x) concave, then f(x) is convex.

Dr. Eng. Valentin Leplat

The benefits of convexity in optimization

The optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in X$

is a convex optimization problem if and only if

The optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in X$

is a convex optimization problem if and only if

1. This is a minimization problem.

The optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in X$

is a convex optimization problem if and only if

- 1. This is a minimization problem.
- 2. The objective function f is a convex function over X

The optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in X$

is a convex optimization problem if and only if

- 1. This is a minimization problem.
- 2. The objective function f is a convex function over X
- 3. The feasible set X is a convex set

The optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in X$

is a convex optimization problem if and only if

- 1. This is a minimization problem.
- 2. The objective function f is a convex function over X
- 3. The feasible set X is a convex set

(by extension, a maximization problem will be said to be convex if, once converted into a minimization problem, we obtain a convex problem)

Let be a convex optimization problem

 $\min_{x \in \mathbb{R}^n} f(x)$ such that $x \in X \subseteq \mathbb{R}^n$

Let be a convex optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in X \subseteq \mathbb{R}^n$

► Any local minimum for this problem is also a global minimum.

Let be a convex optimization problem

$$\min_{x \in \mathbb{R}^n} f(x) \text{ such that } x \in X \subseteq \mathbb{R}^n$$

- ▶ Any local minimum for this problem is also a global minimum.
- ► The set of its minima form a convex set

Let be a convex optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in X \subseteq \mathbb{R}^n$

- ▶ Any local minimum for this problem is also a global minimum.
- ▶ The set of its minima form a convex set

Examples

Let be a convex optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in X \subseteq \mathbb{R}^n$

- ▶ Any local minimum for this problem is also a global minimum.
- ▶ The set of its minima form a convex set

Examples

Linear optimization, e.g. in standard form:

$$\min_{x \in \mathbb{R}^n} c^T x \text{ such that } Ax = b \text{ and } x \ge 0$$

Let be a convex optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $x \in X \subseteq \mathbb{R}^n$

- ▶ Any local minimum for this problem is also a global minimum.
- ► The set of its minima form a convex set

Examples

▶ Linear optimization, e.g. in standard form :

$$\min_{x \in \mathbb{R}^n} c^T x \text{ such that } Ax = b \text{ and } x \ge 0$$

▶ Convex quadratic optimization under equality constraints

$$\min_{x \in \mathbb{R}^n} x^T Q x + c^T x \text{ such that } Ax = b$$

(with
$$Q \ge 0$$
)

In the unconstrained case

Problem studied.

 $\min_{x \in \mathbb{R}^n} f(x)$

where f(x) is a convex function.

In the unconstrained case

Problem studied.

$$\min_{x \in \mathbb{R}^n} f(x)$$

where f(x) is a convex function.

The first-order optimality condition

$$\nabla f(x^*) = 0$$

becomes necessary and sufficient. Any second-order condition is unnecessary (the necessary condition $\nabla^2 f(x) \geq 0$ is automatically checked).

In the unconstrained case

Problem studied.

$$\min_{x \in \mathbb{R}^n} f(x)$$

where f(x) is a convex function.

The first-order optimality condition

$$\nabla f(x^*) = 0$$

becomes necessary and sufficient. Any second-order condition is unnecessary (the necessary condition $\nabla^2 f(x) \geq 0$ is automatically checked).

Examples. Unconstrained quadratic convex optimization:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x - c^T x \quad \text{avec } Q \ge 0.$$

In the unconstrained case

Problem studied.

$$\min_{x \in \mathbb{R}^n} f(x)$$

where f(x) is a convex function.

The first-order optimality condition

$$\nabla f(x^*) = 0$$

becomes necessary and sufficient. Any second-order condition is unnecessary (the necessary condition $\nabla^2 f(x) \geq 0$ is automatically checked).

Examples. Unconstrained quadratic convex optimization:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x - c^T x \quad \text{avec } Q \ge 0.$$

This problem is convex, the global minimum is the solution of the system $Qx^* = c$.

In the unconstrained case

Problem studied.

 $\min_{x \in \mathbb{R}^n} f(x)$

where f(x) is a convex function.

The first-order optimality condition

$$\nabla f(x^*) = 0$$

becomes necessary and sufficient. Any second-order condition is unnecessary (the necessary condition $\nabla^2 f(x) \geq 0$ is automatically checked).

Examples. Unconstrained quadratic convex optimization:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x - c^T x \quad \text{avec } Q \ge 0.$$

This problem is convex, the global minimum is the solution of the system $Qx^* = c$.

Application: 2-norm polynomial regression (least squares):

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2^2.$$

Dr. Eng. Valentin Leplat

In the constrained case

Problem studied.

$$\min_{x \in \mathbb{R}^n} f(x)$$
 such that $h_i(x) = 0$ for $i \in \mathcal{E}$ and $h_i(x) \leq 0$ for $i \in \mathcal{I}$

where f(x) is convex, $h_i(x)$ affine for $i \in \mathcal{E}$ and $h_i(x)$ convex for $i \in \mathcal{I}$.

In the constrained case

Problem studied.

 $\min_{x \in \mathbb{R}^n} f(x)$ such that $h_i(x) = 0$ for $i \in \mathcal{E}$ and $h_i(x) \leq 0$ for $i \in \mathcal{I}$

where f(x) is convex, $h_i(x)$ affine for $i \in \mathcal{E}$ and $h_i(x)$ convex for $i \in \mathcal{I}$.

The KKT condition become sufficient (but not necessary!):

 x^* satisfies KKT conditions $\Rightarrow x^*$ (global) minimum.

More precisely, for a point x^*

^aLinear independence constraint qualification

In the constrained case

Problem studied.

 $\min_{x \in \mathbb{R}^n} f(x)$ such that $h_i(x) = 0$ for $i \in \mathcal{E}$ and $h_i(x) \leq 0$ for $i \in \mathcal{I}$

where f(x) is convex, $h_i(x)$ affine for $i \in \mathcal{E}$ and $h_i(x)$ convex for $i \in \mathcal{I}$.

The KKT condition become sufficient (but not necessary!):

 x^* satisfies KKT conditions $\Rightarrow x^*$ (global) minimum.

More precisely, for a point x^*

▶ verifying LICQ^a: KKT conditions necessary and sufficient

^aLinear independence constraint qualification

In the constrained case

Problem studied.

 $\min_{x \in \mathbb{R}^n} f(x)$ such that $h_i(x) = 0$ for $i \in \mathcal{E}$ and $h_i(x) \leq 0$ for $i \in \mathcal{I}$

where f(x) is convex, $h_i(x)$ affine for $i \in \mathcal{E}$ and $h_i(x)$ convex for $i \in \mathcal{I}$.

The KKT condition become sufficient (but not necessary!):

 x^* satisfies KKT conditions $\Rightarrow x^*$ (global) minimum.

More precisely, for a point x^*

- ▶ verifying LICQ^a: KKT conditions necessary and sufficient
- ▶ nor verifying LICQ : KKT conditions sufficient but not necessary

^aLinear independence constraint qualification

In the constrained case

Unlike the unconstrained case, convexity does not make the KKT conditions necessary and sufficient in all cases. However \dots

In the constrained case

Unlike the unconstrained case, convexity does not make the KKT conditions necessary and sufficient in all cases. However ...

Slater's condition: $\exists x \in \mathbb{R}^n$ such that $h_i(x) = 0$ for $i \in \mathcal{E}$ and $h_i(x) < 0$ for $i \in \mathcal{I}$.

In the constrained case

Unlike the unconstrained case, convexity does not make the KKT conditions necessary and sufficient in all cases. However ...

Slater's condition: $\exists x \in \mathbb{R}^n$ such that $h_i(x) = 0$ for $i \in \mathcal{E}$ and $h_i(x) < 0$ for $i \in \mathcal{I}$.

For a convex problem, suppose that the **Slater's condition** is satisfied, the KKT conditions become necessary and sufficient, **without having to consider (LICQ)!** (for all feasible convex problems including only equality constraints, the KKT conditions are necessary and sufficient.)

Examples

Let

$$C = \{(x,y) \mid x \le y\} \text{ and } D = \{(x,y) \mid (x-3)^2 + y^2 \le 2\}.$$

How far apart are these two sets?

Let

$$C = \{(x,y) \mid x \le y\} \text{ and } D = \{(x,y) \mid (x-3)^2 + y^2 \le 2\}.$$

How far apart are these two sets?

The problem can be formulated as follows

min
$$(x_1 - x_2)^2 + (y_1 - y_2)^2$$
 such that $(x_1, y_1) \in \mathcal{C}$ and $(x_2, y_2) \in \mathcal{D}$.

Let

$$C = \{(x,y) \mid x \le y\} \text{ and } D = \{(x,y) \mid (x-3)^2 + y^2 \le 2\}.$$

How far apart are these two sets?

The problem can be formulated as follows

min
$$(x_1 - x_2)^2 + (y_1 - y_2)^2$$
 such that $(x_1, y_1) \in \mathcal{C}$ and $(x_2, y_2) \in \mathcal{D}$.

The optimization problem is convex.

► Any local minimum is global.

Let

$$C = \{(x,y) \mid x \le y\} \text{ and } D = \{(x,y) \mid (x-3)^2 + y^2 \le 2\}.$$

How far apart are these two sets?

The problem can be formulated as follows

min
$$(x_1 - x_2)^2 + (y_1 - y_2)^2$$
 such that $(x_1, y_1) \in \mathcal{C}$ and $(x_2, y_2) \in \mathcal{D}$.

The optimization problem is convex.

- ► Any local minimum is global.
- The optimization problem is convex and the Slater's condition is satisfied!!

Let

$$C = \{(x,y) \mid x \le y\} \text{ and } D = \{(x,y) \mid (x-3)^2 + y^2 \le 2\}.$$

How far apart are these two sets?

The problem can be formulated as follows

min
$$(x_1 - x_2)^2 + (y_1 - y_2)^2$$
 such that $(x_1, y_1) \in \mathcal{C}$ and $(x_2, y_2) \in \mathcal{D}$.

The optimization problem is convex.

- ► Any local minimum is global.
- The optimization problem is convex and the Slater's condition is satisfied!! Checking KKT conditions is both necessary and sufficient.

Conclusions

Summary

We have seen:

- what is a convex set.
- What is a convex function f: 5 definitions.
- ▶ Example of convex functions, and the operations that preserve convexity.
- ▶ What is a convex optimization problem: min problem + convex objective function f + convex feasible set.
- ▶ Properties of a convex problem: Any local minimum for this problem is also a global minimum., and The set of its minima form a convex set.
- ▶ The impact on OC's in the convex case:
 - 1. Unconstrained setting: the first-order optimality condition $\nabla f(x^*)$ becomes necessary and sufficient.

28 / 30

2. Constrained setting: the KKT conditions become **sufficient** (but not necessary). Both sufficient and necessary if LICQ verified or Slater's condition is satisfied.

Dr. Eng. Valentin Leplat Conclusions

Preparations for the next lecture

- ► Review the lecture;
- ▶ Solve the example of exam question.

Goodbye, So Soon

THANKS FOR THE ATTENTION

- ▶ v.leplat@innopolis.ru
- ► sites.google.com/view/valentinleplat/