Geometría III

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Geometría III

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2023-2024

Índice general

1.	El Espacio Afín		5
	1.1.	Subespacios afines	8
	1.2.	Sistemas de referencias afines	12
		1.2.1. Cambio de sistema de referencia	16
	1.3.	Aplicaciones afines	16
		1.3.1. Determinación de una aplicación afín	19
		1.3.2. Aplicaciones afines notables	22
	1.4.	Relación de Ejercicios	26
2.	Rela	aciones de Ejercicios	27
	2.1.	El Espacio Afín	27

Geomtría III Índice general

1. El Espacio Afín

Definición 1.1 (Espacio afín). Sea $\mathcal{A} \neq \emptyset$ un conjunto y $V(\mathbb{K})$ un espacio vectorial¹. Diremos que \mathcal{A} es un espacio afín si

$$\exists \overrightarrow{\cdot}: \mathcal{A} \times \mathcal{A} \longrightarrow V \\ (P,Q) \longmapsto \overrightarrow{PQ}$$

que cumple lo siguiente:

- 1. $\forall P, Q, R \in \mathcal{A}$, entonces $\overrightarrow{PQ} + \overrightarrow{QR} = \overrightarrow{PR}$
- 2. Fijado $P \in \mathcal{A}$, existe una biyección

$$\varphi_p: \mathcal{A} \longrightarrow V$$

$$Q \longmapsto \overrightarrow{PQ}$$

Esta propiedad, por la definición de biyección tenemos que es:

- a) Inyectividad: $\overrightarrow{PQ} = \overrightarrow{PR} \Longrightarrow Q = R$,
- b) Sobreyectividad: $\forall v \in V, \exists Q \mid \overrightarrow{PQ} = v.$

A los elementos de \mathcal{A} los llamaremos puntos, y a los elementos de V los llamaremos vectores. Al espacio vectorial V lo llamaremos espacio de direcciones de \mathcal{A} . Por ello, a veces notaremos $V = \overrightarrow{\mathcal{A}}$.

Ejemplo. Algunos ejemplos de espacios afines son:

1. En $\mathbb{R}^3,$ tenemos que la aplicación $\overrightarrow{\cdot}$ es:

$$\overrightarrow{\cdot}: \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \overrightarrow{\mathbb{R}^3}$$

$$(P,Q) \longmapsto \overrightarrow{PQ} = Q - P$$

2. Para cualquier espacio vectorial $V(\mathbb{K})$, tenemos que la aplicación $\overrightarrow{\cdot}$ es:

$$\overrightarrow{\cdot}: V \times V \longrightarrow V \\ (u, v) \longmapsto \overrightarrow{uv} = v - u$$

Veamos las dos propiedades:

¹Por norma general, usaremos $\mathbb{K} = \mathbb{R}$. De forma excepcional, podremos usar $\mathbb{K} = \mathbb{C}$.

a) $\forall u, v, w \in V$, se tiene que:

$$\overrightarrow{uv} + \overrightarrow{vw} = v - u + w - v = w - u = \overrightarrow{uw}$$

b) Fijado $v \in V$, tenemos la siguiente biyección:

$$\varphi_v: V \longrightarrow V \\ w \longmapsto w - v$$

Por este ejemplo, tenemos que todo espacio vectorial se puede ver como espacio afín, y decimos que es su <u>estructura afín canónica</u>.

Algunas consecuencias de la definición de espacio afín son:

1.
$$\overrightarrow{PQ} = \overrightarrow{0} \iff Q = P$$

Suponemos Q = P. Entonces,

$$\overrightarrow{PQ} + \overrightarrow{QP} = \overrightarrow{PP} + \overrightarrow{PP} = \overrightarrow{PP} \Longrightarrow \overrightarrow{PP} = \overrightarrow{0}$$

Como tenemos que φ_P es inyectiva, tenemos que ese punto es único, por lo que se da la doble implicación.

$$2. \overrightarrow{PQ} = -\overrightarrow{QP}$$

$$\overrightarrow{PQ} + \overrightarrow{QP} = \overrightarrow{PP} = \overrightarrow{0}$$

3. Sean los puntos P_1, \ldots, P_k . Entonces:

$$\sum_{i=1}^{k-1} \overrightarrow{P_i P_{i+1}} = \overrightarrow{P_1 P_k}$$

Se demuestra fácilmente por inducción sobre k.

4. Igualdad del paralelogramo: $\overrightarrow{P_1P_2} = \overrightarrow{Q_1Q_2} \Longrightarrow \overrightarrow{P_1Q_1} = \overrightarrow{P_2Q_2}$

$$\overrightarrow{P_1Q_1} = \overrightarrow{P_1P_2} + \overrightarrow{P_2Q_1} = \overrightarrow{P_2Q_1} + \overrightarrow{Q_1Q_2} = \overrightarrow{P_2Q_2}$$

Cabe destacar que podemos operar entre puntos y vectores considerando la inversa de la biyección descrita para el espacio afín:

$$\begin{array}{ccc} \varphi_p^{-1} : \overrightarrow{\mathcal{A}} & \longrightarrow & \mathcal{A} \\ v & \longmapsto & \varphi_p^{-1}(v) = Q \end{array}$$

donde tenemos que $\varphi_p^{-1}(v) = Q \iff \overrightarrow{PQ} = v$. De tal forma, notamos Q = P + v o, equivalentemente, v = Q - P. De esta notación, deducimos las siguientes propiedades:

1. $\forall P \in \mathcal{A}$, tenemos que $P + \overrightarrow{0} = P$.

$$P + \overrightarrow{0} = P + \overrightarrow{QQ} = P + Q - Q = P$$
 $\forall Q \in \mathcal{A}$

- 2. $\forall P \in \mathcal{A}, u, v \in \overrightarrow{\mathcal{A}}$, se tiene que $P + (u + v) = (P + u) + v = R \in A$.
- 3. Sea $P, Q, R \in \mathcal{A}, u, v \in \overrightarrow{\mathcal{A}}$. Se tiene lo siguiente:

$$\left. \begin{array}{rcl} P + u & = & Q \\ P + v & = & R \end{array} \right\} \Longrightarrow \overrightarrow{QR} = v - u$$

$$\overrightarrow{QR} = R - Q = P + v - P - u = v - u$$

Definición 1.2 (Traslación). Dado un vector $v \in \overrightarrow{A}$, definimos la traslación según v de la siguiente forma:

$$\begin{array}{ccc} t_v: \mathcal{A} & \longrightarrow & \mathcal{A} \\ p & \longmapsto & p+v \end{array}$$

Se tiene el siguiente resultado:

Proposición 1.1. Las traslaciones son movimientos biyectivos.

Demostración. Sea t_v la traslación a considerar.

Demostremos en primer lugar que es inyectiva. Sean $P, Q \in \mathcal{A}$ tal que se cumple que $t_v(P) = t_v(Q)$. Entonces, P + v = Q + v, por lo que P = Q y se tiene que es inyectiva.

Veamos ahora que es sobreyectiva. $\forall Q \in \mathcal{A}, \exists P \in \mathcal{A} \text{ tal que } P + v = Q \text{ definiendo } P \text{ como } Q - v.$

Algunas propiedades que se deducen directamente de la definición son:

- 1. $t_{\overrightarrow{0}} = Id_{\mathcal{A}}$.
- $2. \ t_v \circ t_w = t_w \circ t_v = t_{v+w}.$
- 3. $t_v \circ t_{-v} = Id_{\mathcal{A}}$
- 4. $\{t_v\}_{v\in \overrightarrow{\mathcal{A}}}$ es un grupo abeliano.

Definición 1.3 (Centro de Gravedad). Sea \mathcal{A} un espacio fín con $\overrightarrow{\mathcal{A}}$. Sea una familia de puntos $P_1, \ldots, P_k \in \mathcal{A}$, con $k \in \mathbb{N}$. Definimos el centro de gravedad $G \in \mathcal{A}$ como

$$G = O + \frac{1}{k} \sum_{i=1}^{k} \overrightarrow{OP_i}, \quad \forall O \in \mathcal{A}$$

Veamos que la definición no depende del punto O escogido. Escogemos ahora $O' \in \mathcal{A}$ en vez de O. Entonces:

$$G = O' + \frac{1}{k} \sum_{i=1}^{k} \overrightarrow{O'P_i} = O' + \frac{1}{k} \sum_{i=1}^{k} (\overrightarrow{O'O} + \overrightarrow{OP_i}) = O' + \overrightarrow{O'O} + \frac{1}{k} \sum_{i=1}^{k} \overrightarrow{OP_i}$$
$$= O' + O - O' + \frac{1}{k} \sum_{i=1}^{k} \overrightarrow{OP_i} = O + \frac{1}{k} \sum_{i=1}^{k} \overrightarrow{OP_i}$$

1.1. Subespacios afines

Definición 1.4 (Subespacios afines). Sea \mathcal{A} un espacio afín con $\overrightarrow{\mathcal{A}}$ espacio de direcciones. Un subconjunto $S \subseteq \mathcal{A}$ diremos que es un subespacio afín de \mathcal{A} si $\exists p \in \mathcal{A}$ y subespacio vectorial $\overrightarrow{F} \subseteq \overrightarrow{\mathcal{A}}$ tal que

$$S = p + \overrightarrow{F} = \{ p + v \mid v \in \overrightarrow{F} \}$$

Algunas propiedades de los subespacios afines son:

- 1. $\overrightarrow{F} = \{\overrightarrow{PQ} \mid Q \in S\}.$
 - ⊂) Si $v \in \overrightarrow{F}$, entonces definimos $Q := P + v \in S$. Por tanto, $v = Q P = \overrightarrow{PQ}$, con $Q \in S$.
 - ⊃) Dado $Q \in S$, tenemos que $Q = P + \overrightarrow{PQ} \in S$, por lo que $\overrightarrow{PQ} \in \overrightarrow{F}$.
- 2. $\overrightarrow{F} = \left\{ \overrightarrow{P_1P_2} \mid P_1, P_2 \in S \right\}$

$$\overrightarrow{P_1P_2} = \overrightarrow{P_1P} + \overrightarrow{PP_2} \in \overrightarrow{F}$$

3. Consideramos F', F'' subespacios vectoriales de \overrightarrow{F} . Entonces,

$$Q + F' = P + F'' = S \Longrightarrow F' = F''$$

de ahí, que denotemos $\overrightarrow{F} = \overrightarrow{S}$ y, por tanto,

$$S = p + \overrightarrow{S}$$

Definición 1.5. La dimensión de un espacio afín \mathcal{A} es la dimensión de su variedad de direcciones

$$\dim \mathcal{A} := \dim \overrightarrow{\mathcal{A}}$$

A veces, lo notaremos como \mathcal{A}^n , con $n = \dim \mathcal{A}$.

Algunos subespacios afines $S \subset \mathcal{A}$ con determinadas dimensiones tienen nombre concreto, que son:

- $\dim S = 0$: Punto.
- $\dim S = 1$: Recta.
- $\dim S = 2$: Plano.
- $\dim S = \dim \mathcal{A} 1$: Hiperplano.

Proposición 1.2. Dados $P, Q \in \mathcal{A}, P \neq Q$, tenemos que \exists_1 recta r tal que $P, Q \in r$. Demostración. El espacio de direcciones es $\overrightarrow{r} = \mathcal{L}\left(\overrightarrow{PQ}\right)$. Por tanto, tenemos que existe una recta $r = P + \mathcal{L}\left(\overrightarrow{PQ}\right)$.

Supongamos que existe otra recta $r' = P + \mathcal{L}(v)$. Como $\overrightarrow{PQ} \in \overrightarrow{r'}$, entonces podemos tomar $\mathcal{L}(v) = \mathcal{L}\left(\overrightarrow{PQ}\right)$, por lo que tienen la misma variedad de direcciones y, por tanto, es la misma recta.

Operaciones con subespacios afines

Proposición 1.3 (Intersección). Sea \mathcal{A} espacio afín. Consideramos $\{S_i\}_{i\in I}$ una familia de subespacios afínes de \mathcal{A} . Si $\bigcap_{i\in I} S_i \neq \emptyset$, se tiene que $\bigcap_{i\in I} S_i$ es un subespacio afín con variedad de direcciones

$$\overrightarrow{\bigcap_{i \in I} S_i} = \bigcap_{i \in I} \overrightarrow{S_i}$$

Demostración. Demostremos que $\bigcap_{i \in I} S_i = p + \bigcap_{i \in I} \overrightarrow{S}_i$.

- \subset) Tomamos $q \in \bigcap_{i \in I} S_i$, por lo que $\overrightarrow{pq} \in \bigcap_{i \in I} \overrightarrow{S_i}$. Por tanto, queda demostrada esta inclusión.
- \supset) Sea $q \in p + \bigcap_{i \in I} \overrightarrow{S_i}$. Entonces, q = p + v con $v \in \bigcap_{i \in I} \overrightarrow{S_i}$. Por tanto, $q \in S_i$, $\forall i \in I$ y, por consiguiente, $q \in \bigcap_{i \in I} S_i$.

Definición 1.6 (Suma afín). Sea \mathcal{A} espacio afín. Consideramos S, T subespacios afines.

Llamamos suma afín de S y T (o subespacio afín generado por S y T), denotado por $S \vee T$, al subespacio afín más pequeño que contiene a S y T.

De la propia definición se deduce la forma de calcularla:

$$\Gamma = \{ F \subset \mathcal{A} \mid F \text{ subespacio afín de } \mathcal{A} \land (S \cup T) \subset F \}$$

$$\bigcap_{F\in\Gamma}F=S\vee T$$

Además, $S \vee T$ es un espacio afín ya que es una intersección no vacía, ya que $(S \cup T) \subset (S \vee T)$.

Proposición 1.4. Sea \mathcal{A} espacio afín. Consideramos S,T subespacios afines dados por $S=p+\overrightarrow{S}$, $T=q+\overrightarrow{T}$. Tenemos que

$$S \vee T = p + \left[\mathcal{L} \left(\overrightarrow{pq} \right) + \overrightarrow{S} + \overrightarrow{T} \right]$$

Demostración. Definimos previamente $X := p + \left[\mathcal{L}\left(\overrightarrow{pq}\right) + \overrightarrow{S} + \overrightarrow{T}\right] = p + \overrightarrow{X}$. Veamos que $S \vee T = X$.

 \subset) Como $\overrightarrow{S} \subset \mathcal{L}(\overrightarrow{pq}) + \overrightarrow{S} + \overrightarrow{T} = \overrightarrow{X}$ y $p \in S$ (y por tanto en X), tenemos que:

$$S = p + \overrightarrow{S} \subset p + \overrightarrow{X} = X$$

Como $\overrightarrow{T} \subset \mathcal{L}(\overrightarrow{pq}) + \overrightarrow{S} + \overrightarrow{T} = \overrightarrow{X}$ y $q \in T$ (y por tanto en X), tenemos que:

$$T = q + \overrightarrow{T} \subset q + \overrightarrow{X} = p + \overrightarrow{X} = X$$

Como $S, T \subset X$, entonces $S \vee T \subset X$.

 \supset) Veamos que $\overrightarrow{X} \subset \overrightarrow{S \vee T}$.

Como $S, T \subset S \vee T$, entonces $\overrightarrow{S}, \overrightarrow{T} \subset \overrightarrow{S \vee T}$, por lo que $\overrightarrow{S} + \overrightarrow{T} \subset \overrightarrow{S \vee T}$.

Además, como $p, q \in S \cup T \subset S \vee T$, tenemos que $\overrightarrow{pq} \in \overrightarrow{S \vee T}$, por lo que $\mathcal{L}\{\overrightarrow{pq}\} \subset \overrightarrow{S \vee T}$.

Por tanto, $\overrightarrow{X} \subset \overrightarrow{S \vee T}$. Además, como $p \in S$, tenemos que $p \in S \vee T$. Por tanto, se tiene que $X \subset S \vee T$.

Notación. Sea \mathcal{A} un espacio afín, y consideramos $q_0, \ldots, q_k \in \mathcal{A}$. Definimos el subespacio afín generado por los puntos $\{q_i\}$ como:

$$\bigvee_{i=0}^{k} \{q_i\} = \langle q_0, \dots, q_k \rangle$$

Proposición 1.5. Sea \mathcal{A} espacio afín. Consideramos S, T subespacios afines dados por $S = p + \overrightarrow{S}$, $T = q + \overrightarrow{T}$. Tenemos que

$$S \cap T \neq \emptyset \iff \overrightarrow{pq} \in \left(\overrightarrow{S} + \overrightarrow{T}\right)$$

Demostración.

 \implies) Sea $p_0 \in S \cap T$. Entonces, $\overrightarrow{p_0p} \in \overrightarrow{S}$ y $\overrightarrow{p_0q} \in \overrightarrow{T}$. Por tanto,

$$\overrightarrow{pq} = \overrightarrow{p_0p} + \overrightarrow{p_0q} \in (\overrightarrow{S} + \overrightarrow{T})$$

Corolario 1.5.1. Sea $\mathcal A$ espacio afín. Consideramos S,T subespacios afines. Se tiene que

$$\overrightarrow{S \vee T} = \overrightarrow{S} + \overrightarrow{T} \Longleftrightarrow S \cap T \neq \emptyset$$

Teorema 1.6 (Dimensiones). Sea \mathcal{A} espacio afín. Consideramos S, T subespacios afines de \mathcal{A} de dimensión finita. Entonces, tenemos que:

• $Si S \cap T \neq \emptyset$, entonces,

$$\dim (S \vee T) + \dim (S \cap T) = \dim S + \dim T$$

• $Si \ S \cap T = \emptyset$, entonces,

$$\dim(S\vee T)+\dim\left(\overrightarrow{S}\cap\overrightarrow{T}\right)=\dim S+\dim T+1$$

Demostración. Distinguimos para cada caso:

П

■ Si $S \cap T \neq \emptyset$, entonces como $S \cap T \neq \emptyset$, tenemos que es un subespacio afín. Además,

$$\dim(S \cap T) = \dim\left(\overrightarrow{S \cap T}\right) = \dim\left(\overrightarrow{S} \cap \overrightarrow{T}\right) = \dim\overrightarrow{S} + \dim\overrightarrow{T} - \dim\left(\overrightarrow{S} + \overrightarrow{T}\right)$$
$$= \dim S + \dim T - \dim\left(\overrightarrow{S \vee T}\right) = \dim S + \dim T - \dim\left(S \vee T\right)$$

• Si $S \cap T = \emptyset$, entonces por la definición de $S \vee T$, tenemos que:

$$\dim(S \vee T) = \dim\left(\overrightarrow{S} \vee \overrightarrow{T}\right) = \dim\left(\mathcal{L}\left(\overrightarrow{pq}\right) + \overrightarrow{S} + \overrightarrow{T}\right) =$$

$$= 1 + \dim\left(\overrightarrow{S} + \overrightarrow{T}\right) - \dim\left(\overrightarrow{S} \wedge \overrightarrow{T}\right)$$

$$= 1 + \dim\overrightarrow{S} + \dim\overrightarrow{T} - \dim\left(\overrightarrow{S} \cap \overrightarrow{T}\right)$$

$$= 1 + \dim S + \dim T - \dim\left(\overrightarrow{S} \cap \overrightarrow{T}\right)$$

donde hemos aplicado que $\mathcal{L}(\overrightarrow{pq}) \cap (\overrightarrow{S} + \overrightarrow{T}) = \{0\}$ por la Proposición 1.5.

Definición 1.7. Sea \mathcal{A} espacio afín. Consideramos S, T subespacios afines. Decimos que S y T son secantes si tienen intersección no nula:

$$S$$
 y T son secantes $\iff S \cap T \neq \emptyset$

Definición 1.8 (Paralelismo). Sea \mathcal{A} espacio afín. Consideramos S, T subespacios afínes. Decimos que

$$S$$
es paralelo a $T \Longleftrightarrow \overrightarrow{S} \subset \overrightarrow{T}$

Por doble inclusión, diremos que son S y T son paralelos, notado como $S\|T$, si y solo si $\overrightarrow{S} = \overrightarrow{T}$:

$$S||T \Longleftrightarrow \overrightarrow{S} = \overrightarrow{T}$$

Notemos que si S paralelo a T y son secantes $(S \cap T \neq \emptyset)$, entonces $S \subset T$. Además, supuesto $S \cap T \neq \emptyset$, se tiene que $S || T \iff S = T$.

Definición 1.9. Sea \mathcal{A} espacio afín. Consideramos S, T subespacios afines. Decimos que S y T se cruzan si se dan a la vez las siguientes condiciones:

- 1. S no es paralelo a T,
- 2. T no es paralelo a S,
- 3. No son secantes $(S \cap T = \emptyset)$.

Definición 1.10. Sea \mathcal{A} espacio afín. Consideramos S,T subespacios afines. Decimos que S y T son complementarios si y solo si

$$\overrightarrow{\mathcal{A}} = \overrightarrow{S} \oplus \overrightarrow{T}$$

Proposición 1.7. Sea \mathcal{A} espacio afín. Consideramos S, T subespacios afines dados por $S = p + \overrightarrow{S}$, $T = q + \overrightarrow{T}$. Si S y T son complementarios, entonces:

$$S \vee T = \mathcal{A} \quad \wedge \quad S \cap T = \{p\}, \ p \in \mathcal{A}$$

Demostración. Calculamos en primer lugar la variedad de direcciones de la suma afín:

 $\overrightarrow{S \lor T} = \mathcal{L}(\overrightarrow{pq}) + \overrightarrow{S} + \overrightarrow{T} = \mathcal{L}(\overrightarrow{pq}) + \overrightarrow{\mathcal{A}} = \overrightarrow{\mathcal{A}}$

Por tanto, $S \lor T = p + \overrightarrow{A} = A$. Veamos ahora el valor de la intersección.

Como $\overrightarrow{A} = \overrightarrow{S} + \overrightarrow{T}$, la Proposición 1.5 nos asegura que $S \cap T \neq \emptyset$. Por la fórmula de dimensiones, tenemos que:

$$\dim(S \cap T) = \dim S + \dim T - \dim(S \vee T) = \dim S + \dim T - \dim \mathcal{A} =$$

$$= \dim \overrightarrow{S} + \dim \overrightarrow{T} - \dim \overrightarrow{\mathcal{A}} = \dim \overrightarrow{S} + \dim \overrightarrow{T} - \dim(\overrightarrow{S} + \overrightarrow{T}) =$$

$$= \dim \overrightarrow{S} + \dim \overrightarrow{T} - \dim \overrightarrow{S} - \dim \overrightarrow{T} + \dim(\overrightarrow{S} \cap \overrightarrow{T}) = 0$$

donde he aplicado que $\dim(\overrightarrow{S} \cap \overrightarrow{T}) = 0$ por ser $\overrightarrow{A} = \overrightarrow{S} \oplus \overrightarrow{T}$. Por tanto, como $\dim(S \cap T) = 0$, tenemos que la intersección es un punto.

1.2. Sistemas de referencias afines

Definición 1.11. Sea \mathcal{A} espacio afín, y consideramos $k \in \mathbb{N}$. Diremos que los puntos $\{p_0, \ldots, p_k\}$, con $p_i \in \mathcal{A}$, son afínmente independientes si y solo si $p_0 \vee p_1 \vee \cdots \vee p_k$ es un subespacio afín de dimensión k.

Proposición 1.8. Sea \mathcal{A} espacio afín, y consideramos $k \in \mathbb{N}$. Los puntos $\{p_0, \ldots, p_k\}$, con $p_i \in \mathcal{A}$, son afínmente independientes si y solo si se tiene que el conjunto $\{\overrightarrow{p_0p_1}, \ldots, \overrightarrow{p_0p_k}\}$ es linealmente independiente.

Notemos que no es relevante el orden para ser considerados afínmente independientes.

Definición 1.12. Sea \mathcal{A} espacio afín. Si $\mathcal{R} = \{p_0, \dots, p_n\}$ es un conjunto de puntos afínmente independientes, diremos que \mathcal{R} es un sistema de referencia afín.

Por la Proposición 1.8, dar un sistema de referencia afín es equivalente a dar un punto p_0 y una base $\mathcal{B} = \{v_1, \dots, v_n\}$ de $\overrightarrow{\mathcal{A}}$, de forma que

$$\mathcal{R} = \{p_0, p_0 + v_1, p_0 + v_2, \dots, p_0 + v_n\} = \{p_0, \mathcal{B}_{\mathcal{R}} = \{v_1, \dots, v_n\}\}\$$

Diremos que p_0 es el origen del sistema de referencia, y $\mathcal{B}_{\mathcal{R}}$ es la base asociada al sistema de referencia.

Fijado $\mathcal{R} = \{p_0, p_1, \dots, p_n\}$, tenemos que existe una biyección

$$f_{\mathcal{R}}: \mathcal{A} \longrightarrow \mathbb{R}^n$$
 $q \longmapsto q_{\mathcal{R}} = (x_1, \dots, x_n)$

tal que $\overrightarrow{p_0 q} = x_1 v_1 + \dots + x_n v_n = x_1 \overrightarrow{p_0 p_1} + \dots + x_n \overrightarrow{p_0 p_n}$. Equivalentemente, esto será si y solo si $q = p_0 + x_1 v_1 + \dots + x_n v_n$.

Diremos que (x_1, \ldots, x_n) son las coordenadas de q en \mathcal{R} , y lo notaremos de la forma $p_{\mathcal{R}} = (x_1, \ldots, x_n)$.

Definición 1.13. Sea \mathbb{R}^n . Notamos como sistema de referencia usual de \mathbb{R}^n a:

$$\mathcal{R}_0 = \{(0, \dots, 0), \mathcal{B}_u\}$$

donde \mathcal{B}_u denota la base usual.

Tenemos que, dado $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, tenemos que:

$$\overrightarrow{0x} = x = (x_1, \dots, x_n) = x_1 e_1 + \dots x_n e_n$$

por tanto, las componentes de un punto de \mathbb{R}^n coinciden con sus coordenadas en el sistema de referencia usual.

Lema 1.9. Sea \mathcal{R} un sistema de referencia en un espacio afín \mathcal{A} , con base asociada \mathcal{B} . Entonces,

1.
$$(p+v)_{\mathcal{R}} = p_{\mathcal{R}} + v_{\mathcal{B}}, \quad \forall p \in A, v \in \overrightarrow{\mathcal{A}}.$$

2.
$$(\overrightarrow{pq})_{\mathcal{B}} = q_{\mathcal{R}} - p_{\mathcal{R}}, \quad \forall p, q \in \mathcal{A}.$$

Demostración. Sea $\mathcal{B} = \{v_1, \dots, v_n\}$ base asociada a \mathcal{R} , y tomamos a_0 como el origen del sistema.

1. Por definición de coordenadas en un sistema de referencia, se tiene que:

$$p_{\mathcal{R}} = (x_1, \dots, x_n) \Longleftrightarrow p = a_0 + x_1 v_1 + \dots + x_n v_n$$
$$(p+v)_{\mathcal{R}} = (z_1, \dots, z_n) \Longleftrightarrow p + v = a_0 + z_1 v_1 + \dots + z_n v_n$$

Por definición de las coordenadas en un espacio vectorial, tenemos que:

$$v_{\mathcal{B}} = (y_1, \dots, y_n) \Longleftrightarrow v = y_1 v_1 + \dots + y_n v_n$$

Por la igualdad triangular, tenemos que:

$$\overrightarrow{a_0(p+v)} = \overrightarrow{a_0p} + \overrightarrow{p(p+v)} = \overrightarrow{a_0p} + (p+v) - p = \overrightarrow{a_0p} + v$$

Entonces:

$$\overrightarrow{a_0(p+v)} = \overrightarrow{a_0(a_0 + z_1v_1 + \dots + z_nv_n)} = z_1v_1 + \dots + z_nv_n$$

$$\overrightarrow{a_0p} + v = \overrightarrow{a_0(a_0 + x_1v_1 + \dots + x_nv_n)} + (y_1v_1 + \dots + y_nv_n) =$$

$$= (x_1v_1 + \dots + x_nv_n) + (y_1v_1 + \dots + y_nv_n) =$$

$$= (x_1 + y_1)v_1 + \dots + (x_n + y_n)v_n$$

Como $\overrightarrow{a_0(p+v)} = \overrightarrow{a_0p} + v$, por la unicidad de coordenadas de un vector en la misma base, tenemos que ambos resultados son iguales. Por tanto, sumando el origen,

$$a_0 + z_1 v_1 + \dots + z_n v_n = a_0 + (x_1 + y_1) v_1 + \dots + (x_n + y_n) v_n \Longrightarrow (p + v)_{\mathcal{R}} = p_{\mathcal{R}} + v_{\mathcal{B}}$$

2. Por definición de coordenadas en un sistema de referencia, se tiene que:

$$p_{\mathcal{R}} = (x_1, \dots, x_n) \iff p = a_0 + x_1 v_1 + \dots + x_n v_n$$

 $q_{\mathcal{R}} = (y_1, \dots, y_n) \iff q = a_0 + y_1 v_1 + \dots + y_n v_n$

Por definición de las coordenadas en un espacio vectorial, tenemos que:

$$(\overrightarrow{pq})_{\mathcal{B}} = (z_1, \dots, z_n) \Longleftrightarrow \overrightarrow{pq} = z_1 v_1 + \dots + z_n v_n$$

Por la igualdad triangular, tenemos que:

$$q - p = \overrightarrow{pq} = \overrightarrow{pa_0} + \overrightarrow{a_0q}$$

Entonces:

$$\overrightarrow{pq} = z_1 v_1 + \dots + z_n v_n$$

$$\overrightarrow{pa_0} + \overrightarrow{a_0 q} = (a_0 + x_1 v_1 + \dots + x_n v_n) a_0 + \overrightarrow{a_0 (a_0 + y_1 v_1 + \dots + y_n v_n)} =$$

$$= -(x_1 v_1 + \dots + x_n v_n) + (y_1 v_1 + \dots + y_n v_n) =$$

$$= (y_1 - x_1) v_1 + \dots + (y_n - x_n) v_n$$

Como $\overrightarrow{pq} = \overrightarrow{pa_0} + \overrightarrow{a_0q}$, por la unicidad de coordenadas de un vector en la misma base, tenemos que ambos resultados son iguales. Por tanto,

$$z_1v_1 + \dots + z_nv_n = (a_0 - a_0) + (y_1 - x_1)v_1 + \dots + (y_n - x_n)v_n \Longrightarrow (\overrightarrow{pq})_{\mathcal{B}} = q_{\mathcal{R}} - p_{\mathcal{R}}$$

Veamos ahora cómo calcular las ecuaciones de un subespacio afín en un sistema de referencia dado.

Sea \mathcal{A}^n un espacio afín, y sea S un subespacio afín de \mathcal{A} , con $\mathcal{B}_{\overrightarrow{S}} = \{w_1, \dots, w_k\}$ base de \overrightarrow{S} , y elegimos $p_0 \in S$. Consideramos también \mathcal{R} un sistema de referencia de \mathcal{A} . Tenemos que cualquier punto $p \in S$ es de la forma:

$$p = p_0 + \lambda_1 w_1 + \dots + \lambda_k w_k$$
$$p_{\mathcal{R}} = p_{0\mathcal{R}} + \lambda_1 w_{1\mathcal{B}_{\mathcal{R}}} + \dots + \lambda_k w_{k\mathcal{B}_{\mathcal{R}}}$$

Consideramos las coordenadas de $p_{0\mathcal{R}} = (c_1, \ldots, c_n)$ y los vectores de $\mathcal{B}_{\overrightarrow{S}}$ en la base $\mathcal{B}_{\mathcal{R}}$ como $(w_i)_{\mathcal{B}_{\mathcal{R}}} = (d_{1i}, \ldots, d_{ni})$ para $i = 1, \ldots, k$.

Entonces, si escribo las coordenadas de $p_{\mathcal{R}}$ como $p_{\mathcal{R}} = (x_1, \dots, x_n)$, se obtienen las llamadas Ecuaciones paramétricas de S en el sistema de referencia \mathcal{R} :

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} + \lambda_1 \begin{pmatrix} d_{11} \\ \vdots \\ d_{n1} \end{pmatrix} + \dots + \lambda_k \begin{pmatrix} d_{1k} \\ \vdots \\ d_{nk} \end{pmatrix}$$

Despejando los parámetros y sustituyendo en el resto de ecuaciones, obtenemos las ecuaciones implícitas (o cartesianas) de S en \mathcal{R} :

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = r_1 \\ \vdots & \vdots \\ a_{(n-k)1}x_1 + \dots + a_{(n-k)n}x_n = r_{n-k} \end{cases}$$

Es importante notar que habrá n-k ecuaciones.

Ejemplo. Sea \mathcal{R} un sistema de referencia en \mathbb{R}^2 con origen en $a_0 = (1,0)$ y base $\mathcal{B} = \{(1,1), (-2,2)\}.$

Calculamos las ecuaciones de la recta afín que pasa por el punto (1,1) y tiene vector director el (1,0).

Si $p \in S$ es un punto arbitrario de la recta, sean sus coordenadas $p_{\mathcal{R}} = (x, y)$. Entonces $p = (1, 1) + \lambda(1, 0)$, por lo que:

$$p_{\mathcal{R}} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}_{\mathcal{R}} + \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix}_{\mathcal{B}}$$

Calculamos las coordenadas que me faltan. Sea $(1,1)_{\mathcal{R}} = (c_1,c_2)$. Entonces:

$$(1,1) = (1,0) + c_1(1,1) + c_2(-2,2) \Longrightarrow \begin{cases} 0 = c_1 - 2c_2 \Longrightarrow c_1 = \frac{1}{2} \\ 1 = c_1 + 2c_2 \Longrightarrow c_2 = \frac{1}{4} \end{cases}$$

Entonces, $(1,1)_{\mathcal{R}} = \left(\frac{1}{2}, \frac{1}{4}\right)$. Sea $(1,0)_{\mathcal{B}} = (d_{11}, d_{12})$. Entonces:

$$(1,0) = d_{11}(1,1) + d_{12}(-2,2) \Longrightarrow \begin{cases} 1 = d_{11} - 2d_{12} \Longrightarrow d_{12} = -\frac{1}{4} \\ 0 = d_{11} + 2d_{12} \Longrightarrow d_{11} = \frac{1}{2} \end{cases}$$

Entonces, $(1,0)_{\mathcal{B}} = \left(-\frac{1}{4}, \frac{1}{2}\right)$, por lo que sus ecuaciones paramétricas son:

$$p_{\mathcal{R}} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{4} \end{pmatrix} + \lambda \begin{pmatrix} -\frac{1}{4} \\ \frac{1}{2} \end{pmatrix}$$

Para obtener las ecuaciones cartesianas, tenemos que:

$$x = \frac{1}{2} - \lambda \cdot \frac{1}{4} \Longrightarrow \lambda = -4x + 2$$
$$y = \frac{1}{4} + \lambda \cdot \frac{1}{2} \Longrightarrow \lambda = 2y - \frac{1}{2}$$

Igualando los valores de λ , obtenemos la ecuación implícita:

$$-4x + 2 = 2y - \frac{1}{2} \Longrightarrow 2y + 4x = \frac{5}{2}$$

1.2.1. Cambio de sistema de referencia

Consideramos dos sistemas de referencia, $\mathcal{R} = \{a_0, \mathcal{B}\}$ y $\mathcal{R}' = \{a'_0, \mathcal{B}'\}$ en un espacio afín \mathcal{A}^n . Entonces, si $p \in \mathcal{A}$, podemos considerar

$$\begin{cases} p_{\mathcal{R}} &= (x_1, \dots, x_n) \\ p_{\mathcal{R}'} &= (y_1, \dots, y_n) \end{cases}$$

Si $p = a_0 + \overrightarrow{a_0 p}$, tenemos que $p_{\mathcal{R}'} = a_{0\mathcal{R}'} + (\overrightarrow{a_0 p})_{\mathcal{B}'}$. Sea la matriz de cambio de base de \mathcal{B} a \mathcal{B}' la siguiente:

$$A = M(\mathcal{B}, \mathcal{B}') = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

Entonces, si llamamos $a_{0\mathcal{R}'} = (b_1, \ldots, b_n)$, entonces,

$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} + \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Equivalentemente, podemos expresarlo como:

$$\begin{pmatrix} \frac{1}{y_1} \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} \frac{1}{b_1} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} \frac{1}{x_1} \\ \vdots \\ x_n \end{pmatrix}$$

1.3. Aplicaciones afines

Definición 1.14. Sean $\mathcal{A}, \mathcal{A}'$ dos espacios afines. Diremos que $f : \mathcal{A} \to \mathcal{A}'$ es una aplicación afín si $\exists a \in \mathcal{A}$ tal que

$$\overrightarrow{f_a}: \overrightarrow{\mathcal{A}} \longrightarrow \overrightarrow{\mathcal{A}'}$$

$$\overrightarrow{aq} \longmapsto \overrightarrow{f(a)f(q)}$$

es una aplicación lineal.

Figura 1.1: Diagrama conmutativo de una aplicación lineal.

Veamos que la aplicación lineal asociada a una aplicación afín no depende del punto $a \in \mathcal{A}$ dado:

Lema 1.10. Sean $\mathcal{A}, \mathcal{A}'$ dos espacios afines, y sea $f : \mathcal{A} \to \mathcal{A}'$ una aplicación afín. Entonces:

$$\overrightarrow{f_a} = \overrightarrow{f_b} \qquad \forall b \in \mathcal{A}$$

Demostración. Supongamos que $\exists a \in \mathcal{A}$ tal que

$$\overrightarrow{f_a}: \overrightarrow{\mathcal{A}} \longrightarrow \overrightarrow{\mathcal{A}'}$$

$$\overrightarrow{aq} \longmapsto \overrightarrow{f(a)f(q)}$$

es una aplicación lineal. Entonces, $\forall b \in \mathcal{A}$,

$$\overrightarrow{f_b}(\overrightarrow{bx}) = \overrightarrow{f(b)f(x)} = \overrightarrow{f(b)f(a)} + \overrightarrow{f(a)f(x)} = -\overrightarrow{f_a}(\overrightarrow{ab}) + \overrightarrow{f_a}(\overrightarrow{ax}) = \overrightarrow{f_a}(\overrightarrow{ax} - \overrightarrow{ab}) = \overrightarrow{f_a}(\overrightarrow{bx})$$

Como el resultado anterior es cierto para todo $b \in \mathcal{A}$, tenemos que $\overrightarrow{f} = \overrightarrow{f_a} = \overrightarrow{f_b}$. Notamos entonces \overrightarrow{f} como la aplicación lineal asociada a f.

Corolario 1.10.1. Sean A, A' dos espacios afines, y sea $f : A \to A'$ una aplicación afín. Entonces, se tienen:

$$\begin{cases} \overrightarrow{f}(\overrightarrow{xy}) = \overrightarrow{f(x)}f(\overrightarrow{y}) \\ f(p+v) = f(p) + \overrightarrow{f}(v) \end{cases}$$

Ejemplo. Algunos ejemplos de aplicaciones afines son:

- 1. $Id_{\mathcal{A}}$, con aplicación lineal asociada $Id_{\overrightarrow{\mathcal{A}}}$
- 2. Sea S un subespacio afín de A. Entonces, $i_S:S\to A$ aplicación inclusión es afín, con $\overrightarrow{i_S}=\overrightarrow{i_S}$, monomorfismo inclusión.
- 3. Las aplicaciones constantes $f_q: \mathcal{A} \to \mathcal{A}'$, donde $f_q(p) = q$ para todo $p \in \mathcal{A}$. Tenemos que $\overrightarrow{f_q} = 0$ aplicación lineal nula (constante en 0). Esto se ve debido a que:

$$\overrightarrow{f}(\overrightarrow{p_1p_2}) = \overrightarrow{f(p_1)f(p_2)} = \overrightarrow{qq} = \overrightarrow{0}$$

- 4. Sean V, V' son espacios vectoriales (que por consiguiente también tienen estructura de espacio afín). Si $f: V \to V'$ es una aplicación lineal, entonces es afín con $\overrightarrow{f} = f$.
- 5. φ_p es una aplicación afín, con $\overrightarrow{\varphi_p} = Id_{\overrightarrow{A}}$. Veámoslo:

$$\overrightarrow{\varphi_p}(\overrightarrow{pq}) = \overrightarrow{\varphi_p(p)\varphi_p(q)} = \overrightarrow{\overrightarrow{0}}\overrightarrow{pq} = \overrightarrow{pq} - \overrightarrow{0} = \overrightarrow{pq} = Id_{\overrightarrow{A}}(\overrightarrow{pq})$$

6. Fijado $v_0 \in \overrightarrow{A}$, tenemos que la traslación t_{v_0} es una aplicación afín. Su aplicación lineal asociada es la identidad en \overrightarrow{A} , ya que:

$$\overrightarrow{t_{v_0}}(\overrightarrow{pq}) = \overrightarrow{(p+v_0)(q+v_0)} = \overrightarrow{pq} = Id_{\overrightarrow{\mathcal{A}}}(\overrightarrow{pq})$$

Teorema 1.11. Sean A, A' dos espacios afines, y consideramos $f, g : A \to A'$ aplicaciones afines. Entonces:

$$f = g \iff \overrightarrow{f} = \overrightarrow{g} \quad \land \quad \exists a \in \mathcal{A} \mid f(a) = g(a)$$

Demostración.

- \Longrightarrow) Trivialmente por ser f = g.
- \Leftarrow Sea $a \in \mathcal{A}$ el punto en el que f(a) = g(a). Consideramos el punto $q \in \mathcal{A}$ tal que $q = a + \overrightarrow{aq}$. Entonces:

$$f(q) = f(a) + \overrightarrow{f}(\overrightarrow{aq}) = g(a) + \overrightarrow{g}(\overrightarrow{aq}) = g(q)$$

Respecto a la figura 1.1, se puede ampliar con las aplicaciones inversas de φ , ya que por definición esta es biyectiva.

Figura 1.2: Diagrama conmutativo de una aplicación lineal con inversas.

Tenemos por tanto el siguiente resultado, directo de la definición de aplicación afín:

Proposición 1.12. Sean A, A' dos espacios afines, y consideramos $f : A \to A'$ aplicación afín. Entonces:

f inyectiva (sobreyectiva, biyectiva) $\iff \overrightarrow{f}$ inyectiva (sobreyectiva, biyectiva).

Demostración. En la figura 1.2 vemos claro que $f = (\varphi_{f(a)})^{-1} \circ \overrightarrow{f} \circ \varphi_a$, con ambas $\varphi_a, (\varphi_{f(a)})^{-1}$ biyectivas. Entonces, tenemos directamente el resultado.

Entonces, tenemos el siguiente corolario:

Proposición 1.13. Sean A, A', A'' tres espacios afines, y consideramos las aplicaciones afines $f: A \to A', g: A' \to A''$.

Entonces, $g \circ f : \mathcal{A} \to \mathcal{A}''$ es una aplicación afín con $\overrightarrow{g \circ f} = \overrightarrow{g} \circ \overrightarrow{f}$.

Figura 1.3: Diagrama conmutativo de la composición de aplicaciones lineales.

Corolario 1.13.1. Sean A, A' espacios afines, y consideramos S subespacio afín de A. Sea $f: A \to A'$ aplicación afín.

Entonces, f(S) es un subespacio afín de \mathcal{A}' , con $\overrightarrow{f(S)} = \overrightarrow{f}(\overrightarrow{S})$.

Demostración. Esto se debe a que $f(S) = f_{|S|} = f \circ i_S$, con ambas aplicaciones afines. Entonces, como la composición de aplicaciones afines es afín, tenemos que

$$\overrightarrow{f(S)} = \overrightarrow{f \circ i_S} = \overrightarrow{f} \circ \overrightarrow{i_S} = \overrightarrow{f} \circ \overrightarrow{i_S} = \overrightarrow{f} |_{\overrightarrow{S}} = \overrightarrow{f} \left(\overrightarrow{S}\right)$$

Corolario 1.13.2. Sean A, A' espacios afines, y consideramos S' subespacio afín de A'. Sea $f: A \to A'$ aplicación afín.

Si $f^{-1}(S') \neq \emptyset$, entonces, $f^{-1}(S')$ es un subespacio afín de A, con

$$\overrightarrow{f^{-1}(S')} = \overrightarrow{f}^{-1} \left(\overrightarrow{S'} \right)$$

1.3.1. Determinación de una aplicación afín

Veamos en primer lugar que una aplicación afín la podemos definir mediante las imágenes de los puntos que forman un sistema de referencia:

Teorema 1.14 (Fundamental de la Geometría Afín). Sean \mathcal{A}^n , \mathcal{A}' espacios afines. Dado $\mathcal{R} = \{p_0, \ldots, p_n\}$ sistema de referencia en \mathcal{A} y $\{q_0, \ldots, q_n\}$ puntos de \mathcal{A}' , tenemos que $\exists_1 f$ aplicación afín tal que:

$$f: \mathcal{A} \longrightarrow \mathcal{A}'$$

$$p_i \longmapsto q_i \quad \forall i = 0, \dots, n$$

Demostración. Como $\mathcal{B} = \{\overrightarrow{p_0p_1}, \dots, \overrightarrow{p_0p_n}\}$ es una base de $\overrightarrow{\mathcal{A}}$, y sabemos que una aplicación lineal viene determinada por las imágenes de los elementos de la base, tenemos que:

$$\exists_{1} \overrightarrow{f} : \overrightarrow{A} \longrightarrow \overrightarrow{A'} \atop \overrightarrow{p_{0}p_{i}} \longmapsto \overrightarrow{q_{0}q_{i}} \qquad \forall i = 0, \dots, n$$

Definimos la aplicación f tal que $f(p) = q_0 + \overrightarrow{f}(\overrightarrow{p_0p})$. Veamos que cumple la condición pedida:

- Para i = 0, tenemos que $f(p_0) = q_0 + \overrightarrow{f}(\overrightarrow{0}) = q_0 + \overrightarrow{0}' = q_0$.
- Para i = 1, ..., n, tenemos que $f(p_i) = q_0 + \overrightarrow{f}(\overrightarrow{p_0 p_i}) = q_0 + \overrightarrow{q_0 q_i} = q_i$.

Veamos ahora que f es afín, con aplicación lineal asociada \overrightarrow{f} . Como \overrightarrow{f} es una aplicación lineal, tan solo falta demostrar que $\overrightarrow{f}(\overrightarrow{pq}) = \overrightarrow{f(p)f(q)}$

$$\overrightarrow{f(p)f(q)} = f(q) - f(p) = g_{\mathcal{S}} + \overrightarrow{f}(\overrightarrow{p_0q}) - g_{\mathcal{S}} - \overrightarrow{f}(\overrightarrow{p_0p}) \stackrel{(*)}{=} \overrightarrow{f}(\overrightarrow{p_0q} - \overrightarrow{p_0p}) = \overrightarrow{f}(\overrightarrow{pq})$$

donde en (*) he aplicado que \overrightarrow{f} es una aplicación lineal. Por tanto, la existencia está demostrada.

Demostremos ahora la unicidad. Sea $g: \mathcal{A} \to \mathcal{A}'$ otra aplicación afín que cumple la misma condición. Entonces, comprobemos que las imágenes de \overrightarrow{f} y \overrightarrow{g} coinciden para los elementos de la base \mathcal{B} :

$$\overrightarrow{g}(\overrightarrow{p_0p_i}) = \overrightarrow{g(p_0)g(p_i)} = \overrightarrow{q_0q_i} = \overrightarrow{f}(\overrightarrow{p_0p_i}) \qquad \forall i = 1, \dots, n$$

Por tanto, como coinciden las imágenes para los elementos de la base, tenemos que $\overrightarrow{g} = \overrightarrow{f}$. Además, $\forall i = 0, ..., n$ se tiene que $f(p_i) = q_i = g(p_i)$. Entonces, por el teorema 1.11, tenemos que f = g, y queda demostrada la unicidad.

Veamos ahora cómo podemos expresar una aplicación afín en función de los sistemas de referencia. Sean \mathcal{A} , \mathcal{A}' don espacios afines con sistemas de referencia dados por $\mathcal{R} = \{p_0, \dots, p_n\} = \{p_0, \mathcal{B}\}, \ \mathcal{R}' = \{q_0, \dots, q_m\} = \{q_0, \mathcal{B}'\}$ respectivamente. Entonces, dado $q = p_0 + \overrightarrow{p_0q} \in \mathcal{A}$, se tiene que $f(q) = f(p_0) + \overrightarrow{f}(\overrightarrow{p_0q})$. Entonces, en los sistemas de referencia, tenemos:

$$f(q)_{\mathcal{R}'} = f(p_0)_{\mathcal{R}'} + \overrightarrow{f}(\overrightarrow{p_0q})_{\mathcal{B}'} = f(p_0)_{\mathcal{R}'} + M\left(\overrightarrow{f}, \mathcal{B}, \mathcal{B}'\right)(\overrightarrow{p_0q})_{\mathcal{B}} = f(p_0)_{\mathcal{R}'} + M\left(\overrightarrow{f}, \mathcal{B}, \mathcal{B}'\right)q_{\mathcal{R}'}$$

Matricialmente, se tendría que:

$$\left(\frac{1}{f(q)_{\mathcal{R}'}}\right) = \left(\begin{array}{c|c} 1 & 0 \\ \hline f(p_0)_{\mathcal{R}'} & M\left(\overrightarrow{f}, \mathcal{B}, \mathcal{B}'\right) \end{array}\right) \left(\begin{array}{c} 1 \\ \hline q_{\mathcal{R}} \end{array}\right)$$

Sean $f(q)_{\mathcal{R}'} = (y_1, \dots, y_m)$, $f(p_0)_{\mathcal{R}'} = (b_1, \dots, b_m)$, $q_{\mathcal{R}} = (x_1, \dots, x_n)$ y, por último, sean $\overline{f}(v_i)_{\mathcal{B}'} = \overline{f}(\overline{q_0q_i})_{\mathcal{B}'} = (a_{1i}, \dots, a_{mi})$. Entonces, tenemos que la ecuación anterior se expresa matricialmente como:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} + \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Equivalentemente, podemos expresarlo como:

$$\begin{pmatrix} \frac{1}{y_1} \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} \frac{1}{b_1} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_m & a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} \frac{1}{x_1} \\ \vdots \\ x_n \end{pmatrix}$$

Ejemplo. Sea el espacio afín \mathbb{R}^3 , y consideramos el plano afín dado por la ecuación $\pi \equiv x + y - z = 1$. Hallar la aplicación afín $f : \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(0,0,0) = (1,1,0) y f(p) = p, $\forall p \in \pi$.

Tenemos que $\overrightarrow{\pi} \equiv x + y - z = 0$. Tomemos como los dos primeros vectores del sistema de referencia dos vectores linealmente independientes del plano:

$$v_1 = (1, -1, 0)$$
 $v_2 = (1, 0, 1)$

Para obtener una base, tenemos que nos falta un vector. Notemos q = (0, 0, 0), y sea $p_0 = (\frac{1}{2}, \frac{1}{2}, 0) \in \pi$, y tenemos que $v_3 = \overrightarrow{p_0q} = q - p_0 = (-\frac{1}{2}, -\frac{1}{2}, 0)$. Entonces, tomando el sistema de coordenadas $\mathcal{R} = \{p_0, p_1, p_2, q\} = \{p_0, \mathcal{B} = \{v_1, v_2, v_3\}\}$, se tiene que $p_{0\mathcal{R}} = (0, 0, 0)$. Además, tenemos que:

$$\overrightarrow{f}(v_i) = \overrightarrow{f}(\overrightarrow{p_0}\overrightarrow{p_i}) = \overrightarrow{f(p_0)}\overrightarrow{f(p_i)} \stackrel{(*)}{=} \overrightarrow{p_0}\overrightarrow{p_i} = v_i \qquad \forall i = 1, 2$$

donde en (*) he aplicado que $v_1, v_2 \in \overrightarrow{\pi}$, por lo que $p_0, p_1, p_2 \in \pi$. Además,

$$\overrightarrow{f}(v_3) = \overrightarrow{f}(\overrightarrow{p_0q}) = \overrightarrow{f(p_0)f(q)} = \overrightarrow{p_0f(q)} = f(q) - p_0 = (1,1,0) - \left(\frac{1}{2},\frac{1}{2},0\right) = \left(\frac{1}{2},\frac{1}{2},0\right) = -v_3$$

Por tanto, tenemos que la matriz que describe \overrightarrow{f} es:

$$M(\overrightarrow{f}, \mathcal{B}, \mathcal{B}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Como $f(p_0) = p_0$, tenemos que $f(p_0)_{\mathcal{R}} = (0, 0, 0)$. Por tanto,

$$M(f, \mathcal{R}, \mathcal{R}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Buscamos ahora expresarlo en el sistema de referencia canónico \mathcal{R}_0 . Tenemos que f(0,0,0)=(1,1,0). Buscamos ahora $M(\overrightarrow{f},\mathcal{B}_u,\mathcal{B}_u)$. Esta es:

$$M(\overrightarrow{f}, \mathcal{B}_{u}, \mathcal{B}_{u}) = M(\mathcal{B}, \mathcal{B}_{u}) \cdot M(\overrightarrow{f}, \mathcal{B}, \mathcal{B}) \cdot M(\mathcal{B}_{u}, \mathcal{B}) =$$

$$= \begin{pmatrix} 1 & 1 & -1/2 \\ -1 & 0 & -1/2 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1/2 \\ -1 & 0 & -1/2 \\ 0 & 1 & 0 \end{pmatrix}^{-1} =$$

$$= \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Por tanto,

$$M(f, \mathcal{R}_0, \mathcal{R}_0) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \hline 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

1.3.2. Aplicaciones afines notables

Estas son las traslaciones, homotecias, proyecciones y simetrías. Para clasificarlas, se emplea la noción de punto fijo, descrita a continuación.

Definición 1.15 (Punto fijo). Sea \mathcal{A} un espacio afín, y consideramos $f: \mathcal{A} \to \mathcal{A}$ una aplicación afín. Decimos que $p \in \mathcal{A}$ es un punto fijo de f si y solo si f(p) = p. También decimos que f deja invariante a p.

Denotamos por \mathcal{P}_f al conjunto de puntos fijos de f:

$$\mathcal{P}_f = \{ p \in \mathcal{A} \mid f(p) = p \} \subset \mathcal{A}$$

Traslaciones

Recordamos que están descritas en la Definición 1.2.

Veamos este teorema, que es la generalización de un resultado de gran utilidad que veremos más adelante.

Teorema 1.15. Sean A, A' espacios afines, y consideramos f, g: $A \to A'$ aplicaciones afines. Entonces:

$$\exists v_0 \in \mathcal{A}' \mid f = t_{v_0} \circ g \iff \overrightarrow{f} = \overrightarrow{g}$$

Además, en ese caso $v_0 = \overrightarrow{g(p)f(p)} \in \overrightarrow{A}$ para todo $p \in A$ (el vector v no depende de $p \in A$).

Demostración.

 \iff Sea $v_0 = \overrightarrow{g(p)f(p)} \ \forall p \in \mathcal{A}'$. Veamos que no depende del valor de p:

$$\overrightarrow{g(p)f(p)} = \overrightarrow{g(p')f(p')} \Longleftrightarrow f(p) - g(p) = f(p') - g(p') \Longleftrightarrow$$

$$\Longleftrightarrow \overrightarrow{f(p')f(p)} = \overrightarrow{g(p')g(p)} \Longleftrightarrow \overrightarrow{f(p'p)} = \overrightarrow{g(p'p)} \Longrightarrow \overrightarrow{p'p} = \overrightarrow{p'p}$$

lo cual es cierto para todo $p, p' \in \mathcal{A}$. Además, en (*) he aplicado que $\overrightarrow{f} = \overrightarrow{g}$. Por tanto, tenemos que $v_0 \in \overrightarrow{\mathcal{A}}'$ no depende del valor de p escogido.

Veamos que $f = t_{v_0} \circ g$:

$$(t_{v_0} \circ g)(p) = t_{v_0}(g(p)) = g(p) + v_0 = g(p) + \overline{g(p)f(p)} = f(p) \qquad \forall p \in \mathcal{A}$$

 \Longrightarrow) Se tiene que:

$$\overrightarrow{f} = \overrightarrow{t_{v_0}} \circ \overrightarrow{g} = \overrightarrow{t_{v_0}} \circ \overrightarrow{g} = Id_{\overrightarrow{A'}} \circ \overrightarrow{g} = \overrightarrow{g}$$

Veamos ahora el valor de v_0 . Tenemos que $f(p) = t_{v_0}(g(p)) = g(p) + v_0$, por lo que $v_0 = f(p) - g(p) = g(p) + g(p)$.

En el teorema anterior, tomando $g = Id_{\mathcal{A}}$, tenemos el siguiente resultado, que nos es de gran utilidad para caracterizar las traslaciones.

Corolario 1.15.1. Sea A un espacio afín, $y f : A \to A$ una aplicación. Entonces:

$$\exists v_0 \in \overrightarrow{\mathcal{A}} \mid f = t_{v_0} \iff f \text{ es af\'en } \wedge \overrightarrow{f} = Id_{\overrightarrow{\mathcal{A}}}$$

Además, en ese caso $v_0 = \overrightarrow{pf(p)} \in \overrightarrow{A}$ para todo $p \in A$ (el vector v no depende $de \ p \in A$).

Además, es importante notar que:

$$\mathcal{P}_{t_v} \neq \emptyset \iff v = \overrightarrow{0}$$
.

Homotecias afines

Definición 1.16 (Homotecia afín). Sea \mathcal{A} un espacio afín. Definimos la homotecia afín de centro $o \in \mathcal{A}$ y razón (o radio) $k \in \mathbb{R}$, como:

$$H_{o,k}: \mathcal{A} \longrightarrow \mathcal{A}$$
 $p \longmapsto o + k \cdot \overrightarrow{op}$

Observación. A menudo, se establece la condición de que $k \neq 0, 1$, ya que son casos particulares.

- En el caso de k=1, tenemos que $H_{o,1}=Id_{\mathcal{A}}$.
- En el caso de k = 0, tenemos que $H_{o,0} = o$ aplicación constante en o.

El siguiente resultado se estudia para valores de $k \neq 0, 1$, ya que como hemos visto, estos son casos particulares que ya conocemos.

Proposición 1.16. Sea A un espacio afín, $y f : A \to A$ una aplicación. Entonces, dado $k \in \mathbb{R} \setminus \{0,1\}$, tenemos:

$$\exists o \in \mathcal{A} \mid f = H_{o,k} \iff f \text{ es afin } \wedge \overrightarrow{f} = kId_{\overrightarrow{A}}$$

Además, el único punto fijo de f es su centro $o \in A$, que cumple que

$$o = p + \frac{1}{1 - k} \overrightarrow{pf(p)} \qquad \forall p \in \mathcal{A}$$

Demostración.

⇒) En primer lugar, tenemos que:

$$H_{o,k}(o) = o + k \overrightarrow{0} = o \qquad \forall k \in \mathbb{R}$$

Veamos cuál es su aplicación lineal asociada:

$$\overrightarrow{H_{o,k}}(\overrightarrow{op}) = \overrightarrow{H_{o,k}}(o)\overrightarrow{H_{o,k}}(\overrightarrow{p}) = \overrightarrow{oH_{o,k}}(\overrightarrow{p}) = o + k\overrightarrow{op} - o = k\overrightarrow{op} = kI_{\overrightarrow{A}}(\overrightarrow{op})$$

Por tanto, tenemos que $H_{o,k}$ es una aplicación afín con aplicación afín asociada la identidad de razón $k, kI_{\overrightarrow{A}}$.

Veamos ahora que el centro cumple dicha expresión:

$$p + \frac{1}{1-k}\overrightarrow{pf(p)} = p + \frac{1}{1-k}[f(p)-p] = p + \frac{1}{1-k}[o+k\overrightarrow{op}-p] = p + \frac{1}{1-k}[(1-k)(o-p)] = o$$

 \iff Sea $o = p + \frac{1}{1-k} \cdot \overrightarrow{pf(p)} \in \mathcal{A} \ \forall p \in \mathcal{A}$. Veamos que o no depende del valor de p dado. Sea $p' \in \mathcal{A}$. Entonces:

$$p + \frac{1}{1-k} \cdot \overrightarrow{pf(p)} = p' + \frac{1}{1-k} \cdot \overrightarrow{p'f(p')} \iff$$

$$\iff p - p' = \frac{\overrightarrow{p'f(p')} - \overrightarrow{pf(p)}}{1-k} = \frac{f(p') - p' - f(p) + p}{1-k} = \frac{p - p' - \overrightarrow{f(p')f(p)}}{1-k} =$$

$$\stackrel{(*)}{=} \frac{\overrightarrow{p'p} - \overrightarrow{f(p'p)}}{1-k} = \frac{\overrightarrow{p'p} - k \cdot \overrightarrow{p'p}}{1-k} = \overrightarrow{p'p} = p - p'$$

donde en (*) he aplicado el valor de \overrightarrow{f} . Veamos que f(o) = o, es decir, que f es un punto fijo:

$$f(o) = f(p) + \frac{1}{1-k} \cdot \overrightarrow{f}(\overrightarrow{pf(p)}) = f(p) + \frac{1}{1-k} \cdot k \cdot \overrightarrow{pf(p)} = \frac{(1-k)f(p) + kf(p) - kp}{1-k} = \frac{f(p) - kp}{1-k} = \frac{f(p) - kp + p - p}{1-k} = \frac{f(p) - p + (1-k)p}{1-k} = p + \frac{1}{1-k} \overrightarrow{pf(p)} = o$$

Veamos ahora que f es una homotecia:

$$f(p) = f(o) + \overrightarrow{f}(\overrightarrow{op}) = o + k\overrightarrow{op} = H_{o,k}(p) \quad \forall p \in \mathcal{A}$$

Por tanto, tenemos que $\exists o \in \mathcal{A}$ tal que $f = H_{o,k}$.

Veamos ahora que el único punto fijo es el centro:

$$f(p) = p \iff o + k\overrightarrow{op} = p \iff o + kp - ko = p \iff (1 - k)o = (1 - k)p \iff p = o$$

Por tanto, hemos demostrado que una homotecia de razón $k \neq 0, 1$ tan solo tiene un punto fijo, que es su centro.

Definición 1.17. Una aplicación afín se dice que es una dilatación si y solo si es una homotecia o una traslación.

Proyecciones y Simetrías

Notación. Antes de presentar las proyecciones y las simetrías en el espacio afín, recordamos cómo las notamos en el caso de espacios vectoriales.

Sea \overrightarrow{V} un espacio vectorial, y consideramos $\overrightarrow{U}, \overrightarrow{W} \subset \overrightarrow{V}$ subespacios vectoriales de \overrightarrow{V} tal que $\overrightarrow{V} = \overrightarrow{U} \oplus \overrightarrow{W}$. La proyección sobre \overrightarrow{U} se nota por $\pi_{\overrightarrow{U}}$, mientras que la simetría sobre \overrightarrow{U} se nota por $\sigma_{\overrightarrow{U}}$.

Definición 1.18 (Proyección). Sea \mathcal{A} un espacio afín, y sean S, T subespacios afines complementarios de \mathcal{A} . Entonces, por la Proposición 1.7, tenemos que $S \cap T = \{p_0\}$. Entonces, definimos la proyección afín en S paralela a T como:

$$\begin{array}{ccc}
\pi_S : \mathcal{A} & \longrightarrow & S \\
q & \longmapsto & p_0 + \pi_{\overrightarrow{S}} \left(\overrightarrow{p_0 q} \right)
\end{array}$$

Figura 1.4: Representación gráfica de la proyección afín, donde se ve que el vector $\overrightarrow{p_0}$ $\overrightarrow{\pi_S(q)} = \overrightarrow{\pi_S}(\overrightarrow{p_0q})$ no contiene la componente en \overrightarrow{T} , por ser la proyección en \overrightarrow{S} .

Respecto a las proyecciones, tenemos los siguientes resultados:

Proposición 1.17. Sea A un espacio afín, y sean S,T subespacios afines complementarios de A. Entonces:

- 1. $\pi_S: \mathcal{A} \to S$ es una aplicación afín, con $\overrightarrow{\pi_S} = \pi_{\overrightarrow{S}}$.
- 2. $\mathcal{P}_{\pi_S} = Im(\pi_S) = S$.
- 3. $\pi_S \circ \pi_S = \pi_S$ (idempotencia).

Demostración. Demostramos cada resultado por separado:

1. Veamos que la dada es la aplicación lineal asociada:

$$\overrightarrow{\pi_S}(\overrightarrow{pq}) = \overrightarrow{\pi_S(p)\pi_S(q)} = \overrightarrow{(p_0 + \pi_{\overrightarrow{S}}(\overrightarrow{p_0p}))(p_0 + \pi_{\overrightarrow{S}}(\overrightarrow{p_0q}))} = \pi_{\overrightarrow{S}}(\overrightarrow{p_0q}) - \pi_{\overrightarrow{S}}(\overrightarrow{p_0p}) = \pi_{\overrightarrow{S}}(\overrightarrow{pq})$$
donde he empleado que las proyecciones vectoriales son aplicaciones lineales.

2. Veamos los puntos fijos de las proyecciones:

$$\pi_S(q) = q \iff p_0 + \pi_{\overrightarrow{S}}(\overrightarrow{p_0q}) = q \iff \pi_{\overrightarrow{S}}(\overrightarrow{p_0q}) = \overrightarrow{p_0q} \iff \overrightarrow{p_0q} \in \overrightarrow{S} \iff q \in S$$
 donde he aplicado que los vectores propios de $\pi_{\overrightarrow{S}}$ con valor propio 1 son los vectores de \overrightarrow{S} .

3. Tenemos que $\pi_S(q) \in S$ para todo $q \in A$. Por tanto, es un punto fijo, por lo que:

$$(\pi_S \circ \pi_S)(q) = \pi_S(\pi_S(q)) = \pi_S(q) \qquad \forall q \in \mathcal{A}$$

Definición 1.19 (Simetría afín). Sean S, T subespacios afines complementarios de A. Entonces, por la Proposición 1.7, tenemos que $S \cap T = \{p_0\}$. Entonces, definimos la simetría (o reflexión) afín en S paralela a T como:

$$\sigma_{S}: \mathcal{A} \longrightarrow \mathcal{A}$$

$$q \longmapsto p_{0} + \sigma_{\overrightarrow{S}}(\overrightarrow{p_{0}q}) = p_{0} + \pi_{\overrightarrow{S}}(\overrightarrow{p_{0}q}) - \pi_{\overrightarrow{T}}(\overrightarrow{p_{0}q})$$

Figura 1.5: Representación gráfica de la simetría afín.

Respecto a las simetrías, tenemos los siguientes resultados:

Proposición 1.18. Sea A un espacio afín, y sean S,T subespacios afines complementarios de A. Entonces:

- 1. $\sigma_S: \mathcal{A} \to \mathcal{A}$ es una aplicación afín, con $\overrightarrow{\sigma_S} = \sigma_{\overrightarrow{S}}$.
- 2. $\mathcal{P}_{\pi_S} = S$.
- 3. $\sigma_S \circ \sigma_S = Id_{\mathcal{A}} \ (involuci\acute{o}n).$

Demostración. Demostramos cada resultado por separado:

1. Veamos que la dada es la aplicación lineal asociada:

$$\overrightarrow{\sigma_S}(\overrightarrow{pq}) = \overrightarrow{\sigma_S}(p)\overrightarrow{\sigma_S}(q) = (p_0 + \overrightarrow{\sigma_S}(\overrightarrow{p_0p}))(p_0 + \overrightarrow{\sigma_S}(\overrightarrow{p_0q})) = \overrightarrow{\sigma_S}(\overrightarrow{p_0q}) - \overrightarrow{\sigma_S}(\overrightarrow{p_0p}) = \overrightarrow{\sigma_S}(\overrightarrow{pq})$$
donde he empleado que las simetrías vectoriales son aplicaciones lineales.

2. Veamos los puntos fijos de las simetrías:

$$\sigma_S(q) = q \iff p_0 + \sigma_{\overrightarrow{S}}(\overrightarrow{p_0q}) = q \iff \sigma_{\overrightarrow{S}}(\overrightarrow{p_0q}) = \overrightarrow{p_0q} \iff \overrightarrow{p_0q} \in \overrightarrow{S} \iff q \in S$$
 donde he aplicado que los vectores propios de $\sigma_{\overrightarrow{S}}$ con valor propio 1 son los vectores de \overrightarrow{S} .

3. En primer lugar, tenemos que $\overrightarrow{\sigma_S} \circ \overrightarrow{\sigma_S} = \sigma_{\overrightarrow{S}} \circ \sigma_{\overrightarrow{S}} = Id_{\overrightarrow{A}}$. Además, $\exists a \in \mathcal{A}$ tal que $\sigma_S(a) = Id_{\mathcal{A}}(a) = a$, ya que σ_S tiene puntos fijos. Por tanto, por el Teorema 1.11, se tiene.

1.4. Relación de Ejercicios

Para ver ejercicios relacionados con este tema, consultar la sección 2.1.

2. Relaciones de Ejercicios

2.1. El Espacio Afín.

Ejercicio 2.1.1. Sea $\mathcal{A} = \{p\}$ un conjunto con un único elemento. Encuentra qué ha de cumplir un espacio vectorial V para que \mathcal{A} pueda dotarse de estructura de espacio afín de forma que V sea su espacio de direcciones.

Por la segunda condición de espacio afín, es necesario que exista una biyección $\varphi_p: \mathcal{A} \to V$. Por tanto, es necesario que $1 = |\mathcal{A}| = |V|$. Por tanto, se tiene que

$$\overrightarrow{A} = V = \{0\}.$$

Ejercicio 2.1.2. Sea V un espacio vectorial real. Se considera la siguiente aplicación $\Phi: V \times V \to V$ dada por $\Phi(u,v) = 2u - v$, que denotaremos por $\Phi(u,v) = \overrightarrow{uv}$. Estudiar si Φ induce o no una estructura de espacio afín en V.

Consideramos $u, v, w \in V$. Veamos que para dicha aplicación no se cumple la igualdad triangular:

$$\overrightarrow{uv} + \overrightarrow{vw} = 2u - v + 2v - w = 2u + v - w \neq 2u - w = \overrightarrow{uw}$$

Por tanto, no induce una estructura de espacio afín.

Ejercicio 2.1.3. En el espacio $\mathcal{P}_2(\mathbb{R})$ de polinomios de grado 2 con coeficientes reales, justifica si los siguientes subconjuntos son subespacios afines de $\mathcal{P}_2(\mathbb{R})$. En caso afirmativo, encuentra el subespacio afín paralelo que pasa por el polinomio $p_0(x) = 1 + x^2$.

1.
$$S = \{a_0^3 + a_1x - x^2 \mid a_0, a_1 \in \mathbb{R}\}.$$

$$S = -x^2 + \{a_0^3 + a_1 x \mid a_0, a_1 \in \mathbb{R}\} \stackrel{(*)}{=} -x^2 + \{b_0 + a_1 x \mid b_0, a_1 \in \mathbb{R}\} = -x^2 + \mathcal{L}\{1, x\}$$

donde en (*) he aplicado que $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^3$ es una biyección, por lo que $\forall a_0^3 \in \mathbb{R}, \ \exists_1 b_0 \in \mathbb{R} \mid a_0^3 = b_0$.

Por tanto, sí es un plano afín con variedad de direcciones $\mathcal{L}\{1,x\}$.

El subespacio afín paralelo que pasa por el polinomio $p_0(x) = 1 + x^2$ es:

$$S' = p_0 + \mathcal{L}\{1, x\} = \{1 + x^2 + b_0 + a_1 x \mid b_0, a_1 \in \mathbb{R}\}\$$

2. $T = \{p(x) \in P_2(\mathbb{R}) \mid p(1) = 2, p'(0) = 1\}.$

Notando $p(x) = a_0 + a_1x + a_2x^2$, se tiene que las ecuaciones cartesianas son:

$$p'(0) = 1 = a_1$$

 $p(1) = 2 = a_0 + a_1 + a_2 \Longrightarrow a_0 = 1 - a_2$

Por tanto, $p(x) = 1 - a_2 + x + a_2x^2 = 1 + x + a_2(x^2 - 1)$, por lo que:

$$T = \{1 + x + a_2(x^2 - 1) \mid a_2 \in \mathbb{R}\} = 1 + x + \mathcal{L}\{x^2 - 1\}$$

Por tanto, se trata de una recta afín con variedad de direcciones $\mathcal{L}(x^2-1)$.

El subespacio afín paralelo que pasa por el polinomio $p_0(x)=1+x^2$ es:

$$T' = p_0 + \mathcal{L}\{x^2 - 1\} = \{1 + x^2 + a_2(x^2 - 1) \mid a_2 \in \mathbb{R}\}\$$

Ejercicio 2.1.4. En el espacio $\mathcal{M}_2(\mathbb{C})$ de matrices cuadradas de orden 2 con coeficientes complejos, justifica si los siguientes subconjuntos son subespacios afines de $\mathcal{M}_2(\mathbb{C})$ y, en caso afirmativo, encuentra el subespacio afín paralelo que pasa por la matriz $\begin{pmatrix} 1 & i \\ i & 0 \end{pmatrix}$.

1. $S = \{ A \in \mathcal{M}_2(\mathbb{C}) \mid tr(A) = 1 + i \},$

Empezamos con el primer subconjunto. Tenemos que:

$$S = \left\{ \begin{pmatrix} z_1 & z_2 \\ z_3 & z_4 \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}) \mid z_1 + z_4 = 1 + i \right\} =$$

$$= \left\{ \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} + \begin{pmatrix} z_1 & z_2 \\ z_3 & -z_1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}) \mid z_1, z_2, z_3 \in \mathbb{C} \right\} =$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} + \left\{ \begin{pmatrix} z_1 & z_2 \\ z_3 & -z_1 \end{pmatrix} \mid z_1, z_2, z_3 \in \mathbb{C} \right\}$$

Por tanto, sí es un subespacio afín. El subespacio afín paralelo pedido es:

$$S' = \begin{pmatrix} 1 & i \\ i & 0 \end{pmatrix} + \left\{ \begin{pmatrix} z_1 & z_2 \\ z_3 & -z_1 \end{pmatrix} \mid z_1, z_2, z_3 \in \mathbb{C} \right\}$$

2. $T = \{A \in \mathcal{M}_2(\mathbb{C}) \mid det(A) = 1\}.$

Ahora tenemos que:

$$T = \left\{ \begin{pmatrix} z_1 & z_2 \\ z_3 & z_4 \end{pmatrix} \in \mathcal{M}_2(\mathbb{C}) \mid z_1 z_4 - z_2 z_3 = 1 \right\}$$

TERMINAR

Por tanto, no es un subespacio afín.

Ejercicio 2.1.5. Sean $a, b : \mathbb{R} \to \mathbb{R}$ funciones continuas. Definimos los siguientes conjuntos:

$$V = \{ f \in C^{1}(\mathbb{R}) \mid f'(x) + a(x)f(x) = 0, \ \forall x \in \mathbb{R} \},$$

$$\mathcal{A} = \{ f \in C^{1}(\mathbb{R}) \mid f'(x) + a(x)f(x) = b(x), \ \forall x \in \mathbb{R} \},$$

donde $C^1(\mathbb{R})$ es el espacio vectorial real de las funciones de clase C^1 sobre los reales. Se pide lo siguiente:

1. Demostrar que V es un espacio vectorial real.

Como tenemos que $C^1(\mathbb{R})$ es un espacio vectorial, comprobemos que V es un subespacio vectorial suyo. Sean $f, g \in V$:

a) Veamos si $f + g \in V$:

$$(f+g)'(x)+a(x)(f+g)(x) = f'(x)+g'(x)+a(x)f(x)+a(x)g(x) = 0+0 = 0$$

b) Veamos si, dado $c \in \mathbb{R}$, se tiene que $cf \in V$:

$$(cf')(x) + a(x)(cf')(x) = c[f'(x) + a(x)f(x)] = 0$$

Por tanto, V es un subespacio vectorial real, y por tanto es un espacio vectorial real.

2. Supongamos sabido que $\mathcal{A} \neq \emptyset$. Probar que \mathcal{A} es un espacio afín sobre V cuando, para cada par de funciones $f,g \in A$, definimos $\overrightarrow{fg} = g(x)f(x)$.

En primer lugar, se ha de dar la igualdad triangular:

$$\overrightarrow{fg} + \overrightarrow{gh} = g(x)f(x) + g(x)h(x)$$

TERMINAR

Ejercicio 2.1.6 (Producto de espacios afines). Sean A_1 y A_2 dos espacios afines sobre espacios vectoriales reales V_1 y V_2 . Se pide lo siguiente:

1. Demostrar que el producto cartesiano $A_1 \times A_2$ es un espacio afín sobre $V_1 \times V_2$ cuando definimos:

$$\overrightarrow{(p_1, p_2)(q_1, q_2)} = (\overrightarrow{p_1q_1}, \overrightarrow{p_2q_2}).$$

Veamos que $\overrightarrow{\cdot}$ cumple las dos condiciones necesarias para que sea un espacio afín:

a) Comprobamos la igualdad triangular:

$$\overrightarrow{(p_1, p_2)(q_1, q_2)} + \overrightarrow{(q_1, q_2)(t_1, t_2)} = (\overrightarrow{p_1q_1}, \overrightarrow{p_2q_2}) + (\overrightarrow{q_1t_1}, \overrightarrow{q_2t_2}) =
= (\overrightarrow{p_1q_1} + \overrightarrow{q_1t_1}, \overrightarrow{p_2q_2} + \overrightarrow{q_2t_2}) \stackrel{(*)}{=} (\overrightarrow{p_1t_1}, \overrightarrow{p_2t_2}) = \overrightarrow{(p_1, p_2)(t_1, t_2)}$$

donde en (*) he aplicado que V_1, V_2 son, en concreto, espacios afines.

b) Comprobamos ahora que, fijado $p_1 \in \mathcal{A}_1, p_2 \in \mathcal{A}_2$, se tiene que la siguiente aplicación es biyectiva:

$$\varphi_{p_1,p_2}: \mathcal{A}_1 \times \mathcal{A}_2 \longrightarrow V_1 \times V_2$$

$$(q_1, q_2) \longmapsto (p_1, p_2)(q_1, q_2)$$

Vemos ahora que, para i = 1, 2, la siguiente aplicación es biyectiva:

$$\begin{array}{ccc} \varphi_{p_i} : \mathcal{A}_i & \longrightarrow & V_i \\ q_i & \longmapsto & \overrightarrow{p_i q_i} \end{array}$$

Tenemos además lo siguiente:

$$\overrightarrow{(p_1, p_2)(q_1, q_2)} = (q_1, q_2) - (p_1, p_2) = (q_1 - p_1, q_2 - p_2) = (\overrightarrow{p_1 q_1}, \overrightarrow{p_2 q_2})$$

Por tanto, tenemos que la función queda como:

$$\varphi_{p_1,p_2}: \mathcal{A}_1 \times \mathcal{A}_2 \longrightarrow V_1 \times V_2$$

$$(q_1, q_2) \longmapsto (\overrightarrow{p_1q_1}, \overrightarrow{p_2q_2})$$

Esta es claramente biyectiva, por serlo en cada una de las variables.

2. Supongamos que dim $(A_1) = m$ y dim $(A_2) = n$. Sea $\mathcal{R}_i = \{o_i, \mathcal{B}_i\}$ un sistema de referencia en A_i , i = 1, 2. Pongamos $\mathcal{B}_1 = \{u_1, \dots, u_m\}$ y $\mathcal{B}_2 = v_1, \dots, v_n$. Demostrar que el par $\mathcal{R}_1 \times \mathcal{R}_2 = \{(o_1, o_2), \mathcal{B}_1 \times \mathcal{B}_2\}$, donde

$$\mathcal{B}_1 \times \mathcal{B}_2 = \{(u_1, 0), \dots, (u_m, 0), (0, v_1), \dots, (0, v_n)\},\$$

es un sistema de referencia en $\mathcal{A}_1 \times \mathcal{A}_2$. A partir de aquí concluir el siguiente resultado: dim $(\mathcal{A}_1 \times \mathcal{A}_2) = n + m$.

Para ver que es un sistema de referencia, hemos de ver dos aspectos. En primer lugar, es necesario que el origen $(o_1, o_2) \in \mathcal{A}_1 \times \mathcal{A}_2$, lo cual es evidente ya que $o_i \in \mathcal{A}_i$ para i = 1, 2. Veamos ahora que $\mathcal{B}_1 \times \mathcal{B}_2$ es una base:

$$(0,0) = a_1(u_1,0) + \dots + a_m(u_m,0) + b_1(0,v_1) + \dots + b_n(0,v_n) =$$

= $(a_1u_1 + \dots + a_mu_m, b_1v_1 + \dots + b_nv_n)$ $a_i, b_i \in \mathbb{R}$

Por tanto, como ambas son una base en el respectivo espacio vectorial, tenemos que $a_i, b_j = 0, \ \forall i, j$, es decir, $\mathcal{B}_1 \times \mathcal{B}_2$ es una base de $V_1 \times V_2$.

Por tanto, tenemos que $\mathcal{R}_1 \times \mathcal{R}_2$ es un sistema de referencia. Además, como la base asociada tiene n+m vectores linealmente independientes, implica que $\dim \overrightarrow{\mathcal{A}_1 \times \mathcal{A}_2} = n+m$ y, por tanto, $\dim \mathcal{A}_1 \times \mathcal{A}_2 = n+m$.

3. Sea $(p_1, p_2) \in \mathcal{A}_1 \times \mathcal{A}_2$. ¿Cómo se relacionan las coordenadas de (p_1, p_2) en $\mathcal{R}_1 \times \mathcal{R}_2$ con las coordenadas de p_i en \mathcal{R}_i , i = 1, 2?

Sea $p_{1\mathcal{R}_1}=(a_1,\ldots,a_m)$ y $p_{2\mathcal{R}_2}=(b_1,\ldots,b_n)$. Entonces, por definición de coordenadas tenemos que $p_1=o_1+a_1u_1+\cdots+a_mu_m$. Análogamente, tenemos que $p_2=o_2+b_1v_1+\cdots+b_nv_n$. Por tanto, tenemos que:

$$(p_1, p_2) = (o_1 + a_1 u_1 + \dots + a_m u_m, o_2 + b_1 v_1 + \dots b_n v_n) =$$

= $(o_1, o_2) + a_1(u_1, 0) + \dots a_m(u_m, 0) + b_1(0, v_1) + \dots b_n(0, v_n)$

Por tanto, tenemos que $(p_1, p_2)_{\mathcal{R}_1 \times \mathcal{R}_2} = (a_1, \dots, a_m, b_1, \dots, b_n)$. Como podemos ver, se concatenan las coordenadas.

Ejercicio 2.1.7. En \mathbb{R}^3 consideramos el conjunto $\mathcal{R} = \{a_0, a_1, a_2, a_3\}$ formado por los puntos:

$$a_0 = (1, 2, 1),$$
 $a_1 = (2, 1, 0),$ $a_2 = (0, 1, 0),$ $a_3 = (1, -1, 2).$

Demostrar que \mathcal{R} es un sistema de referencia afín de \mathbb{R}^3 . Calcular las coordenadas afines del punto p = (0,0,0) en este sistema de referencia.

Consideramos los siguientes vectores:

$$\overrightarrow{a_0a_1} = (1, -1, -1)$$
 $\overrightarrow{a_0a_2} = (-1, -1, -1)$ $\overrightarrow{a_0a_3} = (0, -3, 1)$

Para ver que esos tres vectores son linealmente independientes, comprobamos que el siguiente determinante no es nulo:

$$\begin{vmatrix} 1 & -1 & 0 \\ -1 & -1 & -3 \\ -1 & -1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 0 \\ -1 & -1 & -3 \\ 0 & 0 & 4 \end{vmatrix} = 4 \cdot (-1 - 1) = -8 \neq 0$$

Por tanto, tenemos que esos tres vectores son linealmente independientes, por lo que los puntos de \mathcal{R} son afínmente independientes, tiendo entonces efectivamente que forman un sistema de referencia, con origen a_0 y base asociada la siguiente: $\mathcal{B} = \{\overrightarrow{a_0a_1}, \overrightarrow{a_0a_2}, \overrightarrow{a_0a_3}\}.$

Veamos ahora las coordenadas de p en \mathcal{R} :

$$\overrightarrow{a_0(0,0,0)} = (-1, -2, -1) = b_1 \overrightarrow{a_0 a_1} + b_2 \overrightarrow{a_0 a_2} + b_3 \overrightarrow{a_0 a_3} =$$

$$= b_1(1, -1, -1) + b_2(-1, -1, -1) + b_3(0, -3, 1) =$$

$$= (b_1 - b_2, -b_1 - b_2 - 3b_3, -b_1 - b_2 + b_3)$$

Por tanto, quedan las siguientes ecuaciones:

$$\begin{cases}
b_1 - b_2 &= -1 \\
-b_1 - b_2 - 3b_3 &= -2 \\
-b_1 - b_2 + b_3 &= -1
\end{cases}
\Rightarrow
\begin{cases}
b_1 = \frac{1}{8} \\
b_2 = \frac{9}{8} \\
b_3 = \frac{1}{4}
\end{cases}$$

Por tanto, tenemos que $p_{\mathcal{R}} = \left(\frac{1}{8}, \frac{9}{8}, \frac{1}{4}\right)$.

Ejercicio 2.1.8. Consideremos el punto $p = (1, 2, 3) \in \mathbb{R}^3$. Encontrar un sistema de referencia \mathcal{R} de \mathbb{R}^3 de forma que $p_{\mathcal{R}} = (1, 0, 2)$. ¿Es el sistema de referencia anterior único?

Sea $p_0 \in \mathbb{R}^3$ y una base $\mathcal{B} = \{v_1, v_2, v_3\}$. Buscamos un sistema de referencia $\mathcal{R} = \{p_0, \mathcal{B}\}$ tal que $p_{\mathcal{R}} = (1, 0, 2)$. Tenemos que la fórmula de cambio de sistema de referencia es:

$$p_{\mathcal{R}} = (0)_{\mathcal{R}} + M(\mathcal{B}_u, \mathcal{B}) \cdot p_{\mathcal{R}_0}$$

Esto es:

$$\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Equivalentemente,

$$\begin{pmatrix} \frac{1}{1} \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{x} & 0 & 0 & 0 \\ \hline x & a_1 & b_1 & c_1 \\ y & a_2 & b_2 & c_2 \\ z & a_3 & b_3 & c_3 \end{pmatrix} \begin{pmatrix} \frac{1}{1} \\ 2 \\ 3 \end{pmatrix}$$

Por tanto, tengo 12 incógnitas y 3 ecuaciones linealmente independientes. Por tanto, el sistema de referencia no es único. Una posible solución es usar $\mathcal{B} = \mathcal{B}_u$, y calcular el nuevo origen:

$$\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + Id_3 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

De forma que obtenemos x = 0, y = -2, z = -1. El sistema de referencia pedido es:

$$\mathcal{R} = \{(0, -2, -1), \mathcal{B}_u\}$$

Otra posible solución es usar como matriz de cambio de base, $-Id_3$. De esta forma, si $\mathcal{B}_u = \{e_1, e_2, e_3\}$, tenemos que $\mathcal{B} = \{-e_1, -e_2, -e_3\}$. Así, se tiene que el nuevo origen tiene de coordenadas (2, 2, 5), por lo que otro posible sistema de coordenadas que cumpla lo pedido es:

$$\mathcal{R} = \{(2, 2, 5), \{-e_2, -e_2, -e_3\}\}$$

Ejercicio 2.1.9. En \mathbb{R}^2 consideremos los conjuntos $\mathcal{R} = \{(1,1), (1,-1), (2,1)\}$ y $\mathcal{R}' = \{(1,2), (2,2), (2,0)\}.$

1. Comprueba que son sistemas de referencia de \mathbb{R}^2 .

Para que \mathcal{R} sea un sistema de referencia, es necesario que $\{(1,1)(1,-1), (1,1)(2,1)\}$ sea una base:

$$\mathcal{B} = \{ (1,1)(1,-1), (1,1)(2,1) \} = \{ (0,-2), (1,0) \}$$

Como \mathcal{B} es una base, tenemos que \mathcal{R} es un sistema de referencia.

Para \mathcal{R}' , es necesario que $\{(1,2)(2,2), (1,2)(2,0)\}$ sea una base:

$$\mathcal{B}' = \{ (1,2)(2,2), (1,2)(2,0) \} = \{ (1,0), (1,-2) \}$$

Como \mathcal{B}' es una base, tenemos que \mathcal{R}' es un sistema de referencia.

2. Calcula las ecuaciones que representan el cambio de sistema de referencia de \mathcal{R} a \mathcal{R}' y las de \mathcal{R}' a \mathcal{R} .

Dado $p \in \mathcal{A}$, sean las coordenadas en ambos sistemas de referencia los siguientes:

$$p_{\mathcal{R}} = (x, y)$$
 $p_{\mathcal{R}'} = (s, t)$

Entonces, por definición de sistema de referencia, tenemos que:

$$\begin{cases} p = (1,1) + x(0,-2) + y(1,0) = (1+y,1-2x) \\ p = (1,2) + s(1,0) + t(1,-2) = (1+s+t,2-2t) \end{cases}$$

Igualando componentes, tenemos que:

$$\begin{cases} 1+y &= 1+s+t \\ 1-2x &= 2-2t \end{cases}$$

Por tanto, tenemos que el cambio de variable de \mathcal{R}' a \mathcal{R} es:

$$\begin{cases} x = \frac{1}{2}(-1+2t) \\ y = s+t \end{cases}$$

Matricialmente, tenemos que el cambio de variable de \mathcal{R}' a \mathcal{R} es:

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} ^{-1/2} \\ 0 \end{array}\right) + \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{c} s \\ t \end{array}\right)$$

El cambio de variable de \mathcal{R} a \mathcal{R}' es:

$$\begin{cases} s = -\frac{1}{2} - x + y \\ t = \frac{1}{2}(1 + 2x) \end{cases}$$

3. Calcula las coordenadas del punto (0,1) en los sistemas de referencia \mathcal{R} y \mathcal{R}' . Sea $(0,1)_{\mathcal{R}}=(x,y)$. Entonces, tenemos que:

$$(0,1) = (1,1) + x(0,-2) + y(1,0) = (1+y,1-2x)$$

Por tanto, x = 0, y = -1. Es decir, $(0, 1)_{\mathcal{R}} = (0, -1)$.

Aplicando el cambio de sistema de referencia de \mathcal{R} a \mathcal{R}' , tenemos las coordenadas que nos faltan: $(0,1)_{\mathcal{R}'} = \left(-\frac{3}{2},\frac{1}{2}\right)$

Ejercicio 2.1.10. Sea $C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ la circunferencia unidad de \mathbb{R}^2 y el sistema de referencia $\mathcal{R} = \{(1,-1),(1,0),(2,0)\}$ de \mathbb{R}^2 . Calcula la ecuación de C en el sistema de referencia \mathcal{R} .

Sea $p = (x, y) \in \mathbb{R}^2$, y consideramos sus coordenadas en \mathcal{R} , $p_{\mathcal{R}} = (s, t)$. Entonces,

$$p = (x, y) = (1, -1) + s(1, -1)(1, 0) + t(1, -1)(2, 0) = (1, -1) + s(0, 1) + t(1, 1)$$

Por tanto,

$$\begin{cases} x = 1+t \\ y = -1+s+t \end{cases}$$

Tenemos por tanto que:

$$p \in C \iff x^2 + y^2 = 1 \iff (1+t)^2 + (-1+s+t)^2 = 1$$

Es decir,

$$C = \{(s,t)_{\mathcal{R}} \in \mathbb{R}^2 \mid (1+t)^2 + (-1+s+t)^2 = 1\}$$

Ejercicio 2.1.11. En un plano afín \mathcal{A} se consideran dos puntos $a_1, a_2 \in \mathcal{A}$ y una base $\mathcal{B} = \{e_1, e_2\}$. Sea también $\mathcal{B}' = \{e_1 + e_2, e_1 - e_2\}$. Considérense los sistemas de referencia $\mathcal{R} = \{a_1, \mathcal{B}\}$ y $\mathcal{R}' = \{a_2, \mathcal{B}'\}$. Si el vector $(\overrightarrow{a_1a_2})_{\mathcal{B}} = (1, 1)$, calcula:

1. Las ecuaciones de cambio de sistema de referencia de \mathcal{R} a \mathcal{R}' y de \mathcal{R}' a \mathcal{R} .

Como $(\overline{a_1a_2})_{\mathcal{B}} = (1,1)$, tenemos que $\overline{a_1a_2} = a_2 - a_1 = e_1 + e_2$. Por tanto, tenemos que las coordenadas de a_1, a_2 en respectivos sistemas de referencia son::

$$a_2 = a_1 + e_1 + e_2 \Longrightarrow (a_2)_{\mathcal{R}} = (1, 1)$$

 $a_1 = a_2 - e_1 - e_2 \Longrightarrow (a_1)_{\mathcal{R}'} = (-1, 0)$

Además, las matrices de cambio de base son:

$$M(\mathcal{B}',\mathcal{B}) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 $M(\mathcal{B},\mathcal{B}') = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Por tanto, dado $p \in \mathcal{A}$, con $p_{\mathcal{R}} = (x, y), p_{\mathcal{R}'} = (s, t)$, tenemos que las ecuaciones de cambio de sistema de referencia de \mathcal{R}' a \mathcal{R} son:

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right) + \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} s \\ t \end{array}\right)$$

Las ecuaciones de cambio de sistema de referencia de \mathcal{R} a \mathcal{R}' son:

$$\left(\begin{array}{c} s \\ t \end{array}\right) = \left(\begin{array}{c} -1 \\ 0 \end{array}\right) + \frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right)$$

2. Las coordenadas de a_1 y a_2 en cada sistema de referencia.

Como hemos visto antes, tenemos que $(a_2)_{\mathcal{R}} = (1,1)$, $(a_1)_{\mathcal{R}'} = (-1,0)$. Además, tenemos que $a_2 = a_2 + 0$ y $a_1 = a_1 + 0$, por lo que $(a_2)_{\mathcal{R}'} = (0,0)$, $(a_1)_{\mathcal{R}} = (0,0)$. Es decir,

$$(a_1)_{\mathcal{R}} = (0,0)$$
 $(a_2)_{\mathcal{R}} = (1,1)$
 $(a_1)_{\mathcal{R}'} = (-1,0)$ $(a_2)_{\mathcal{R}'} = (0,0)$

3. El valor de $t \in \mathbb{R}$ para que el punto p de coordenadas $p_{\mathcal{R}} = (t, 2)$ esté alineado con a_1 y a_2 . ¿Cuáles son las coordenadas de este punto respecto de \mathcal{R}' ?

Tenemos que $p_{\mathcal{R}} - (a_1)_{\mathcal{R}} = (t, 2) = (\overline{a_1 p})_{\mathcal{B}}$. Además, $(\overline{a_1 a_2})_{\mathcal{B}} = (1, 1)$. Para que los tres puntos estén alineados, ambos vectores han de ser proporcionales, por lo que t = 2.

Usando las ecuaciones de cambio de sistema de referencia de \mathcal{R} a \mathcal{R}' , tenemos que $p_{\mathcal{R}'} = (1,0)$.

Ejercicio 2.1.12. Sea \mathcal{R} un sistema de referencia de un espacio afín tridimensional \mathcal{A} . Demuestra que $\mathcal{R}' = \{a_0, a_1, a_2, a_3\}$ con

$$(a_0)_{\mathcal{R}} = (1,0,1), \quad (a_1)_{\mathcal{R}} = (-1,0,1), \quad (a_2)_{\mathcal{R}} = (1,1,1), \quad (a_3)_{\mathcal{R}} = (2,1,2),$$

es otro sistema de referencia. ¿Cuáles son las coordenadas del origen de \mathcal{R} en el sistema de referencia \mathcal{R}' ?

Notemos
$$\mathcal{R} = \{b_0, b_1, b_2, b_3\} = \{b_0, \mathcal{B}\}, \, \mathcal{R}' = \{a_0, \mathcal{B}'\}.$$

Veamos los vectores de la base asociada a \mathcal{R}' , para saber si sus vectores son linealmente independientes. Tenemos que:

$$(a_1)_{\mathcal{R}} - (a_0)_{\mathcal{R}} = (-2, 0, 0) = (\overline{a_0 a_1})_{\mathcal{B}}$$
$$(a_2)_{\mathcal{R}} - (a_0)_{\mathcal{R}} = (0, 1, 0) = (\overline{a_0 a_2})_{\mathcal{B}}$$
$$(a_3)_{\mathcal{R}} - (a_0)_{\mathcal{R}} = (1, 1, 1) = (\overline{a_0 a_3})_{\mathcal{B}}$$

Como esos tres vectores son linealmente independientes, tenemos que \mathcal{R}' es un sistema de referencia. La ecuación de cambio de sistema de referencia de \mathcal{R} a \mathcal{R}' es:

$$p_{\mathcal{R}'} = (b_0)_{\mathcal{R}'} + M(\mathcal{B}, \mathcal{B}') p_{\mathcal{R}} = (b_0)_{\mathcal{R}'} + M(\mathcal{B}', \mathcal{B})^{-1} p_{\mathcal{R}} =$$

$$= (b_0)_{\mathcal{R}'} + \begin{pmatrix} -2 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} p_{\mathcal{R}} = (b_0)_{\mathcal{R}'} + \begin{pmatrix} -1/2 & 0 & 1/2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} p_{\mathcal{R}}$$

Usando $p = a_0$ (podríamos usar cualquier otro punto), tenemos:

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = (b_0)_{\mathcal{R}'} + \begin{pmatrix} -1/2 & 0 & 1/2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = (b_0)_{\mathcal{R}'} + \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

Por tanto, $(b_0)_{\mathcal{R}'} = (0, -1, 1)$.

Ejercicio 2.1.13. Demuestra que toda recta afín de \mathbb{R}^3 es la intersección de dos planos afines. ¿Es cierta esta afirmación en \mathbb{R}^n , para cualquier $n \ge 4$?

Sea la recta afín $r = p + \mathcal{L}\{u\}$. Extendemos la base de \overrightarrow{r} a una base del espacio; es decir, $\mathbb{R}^3 = \mathcal{L}\{u, v, w\}$, con los tres vectores linealmente independientes. Sean ahora los siguientes planos:

$$\pi_1 = p + \mathcal{L}\{u, v\} \qquad \pi_2 = p + \mathcal{L}\{u, w\}$$

Entonces $\pi_1 \cap \pi_2 = p + \mathcal{L}\{u\}$, por lo que se tiene.

Este razonamiento también es válido para \mathbb{R}^n , con $n \ge 4$. Esto se debe a que, al extender a una base del espacio, tomamos $\mathbb{R}^n = \mathcal{L}\{u, v, w, e_4, \dots, e_n\}$, donde tan solo usaremos los tres primeros vectores para construir los dos planos descritos anteriormente.

Ejercicio 2.1.14. Sean \mathcal{R} un sistema de referencia de un espacio afín \mathcal{A} y $S \subset \mathcal{A}$ un subespacio afín. Si S está definido por las ecuaciones

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

en el sistema de referencia \mathcal{R} , entonces demuestra que las ecuaciones de \overrightarrow{S} vienen dadas por

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0, \end{cases}$$

en coordenadas respecto de la base asociada a \mathcal{R}

Sea \mathcal{B} la base asociada a \mathcal{R} . Por ser S un espacio afín, tenemos que fijado un punto $p \in S$, existe una biyección $\varphi_p : S \to \overrightarrow{S}$ dada por $\varphi_p(q) = \overrightarrow{pq}$. Por tanto, dado $v \in \overrightarrow{S}$, se tiene que $\exists q \in S$ tal que $v = \overrightarrow{pq}$. Buscamos demostrar que, si $v_{\mathcal{B}} = (\overrightarrow{pq})_{\mathcal{B}} = (x_1, \ldots, x_n)$, entonces cumple las ecuaciones cartesianas descritas.

Tenemos que $(x_1, \ldots, x_n) = (\overrightarrow{pq})_{\mathcal{B}} = q_{\mathcal{R}} - p_{\mathcal{R}}$. Sean las coordenadas de $p, q \in S$ las siguientes: $q_{\mathcal{R}} = (c_1, \ldots, c_n), p_{\mathcal{R}} = (d_1, \ldots, d_1)$. Entonces, como ambos puntos pertenecen a S, sus coordenadas en \mathcal{R} cumplen las ecuaciones cartesianas dadas:

$$q \in S, \ q_{\mathcal{R}} = (c_1, \dots, c_n) \Longrightarrow \begin{cases} a_{11}c_1 + a_{12}c_2 + \dots + a_{1n}c_n = b_1, \\ \dots \\ a_{m1}c_1 + a_{m2}c_2 + \dots + a_{mn}c_n = b_m, \end{cases}$$

$$p \in S, \ p_{\mathcal{R}} = (d_1, \dots, d_n) \Longrightarrow \begin{cases} a_{11}d_1 + a_{12}d_2 + \dots + a_{1n}d_n = b_1, \\ \dots \\ a_{m1}d_1 + a_{m2}d_2 + \dots + a_{mn}d_n = b_m, \end{cases}$$

Igualando los valores de b_i para todo $i \in \{1, \dots m\}$, tenemos:

$$\begin{cases} a_{11}c_1 + a_{12}c_2 + \dots + a_{1n}c_n = a_{11}d_1 + a_{12}d_2 + \dots + a_{1n}d_n, \\ \dots \\ a_{m1}c_1 + a_{m2}c_2 + \dots + a_{mn}c_n = a_{m1}d_1 + a_{m2}d_2 + \dots + a_{mn}d_n, \end{cases}$$

Llevando todo al término de la izquierda y sacando factor común, tenemos:

$$\begin{cases} a_{11}(c_1 - d_1) + a_{12}(c_2 - d_2) + \dots + a_{1n}(c_n - d_n) = 0, \\ \dots \\ a_{m1}(c_1 - d_1) + a_{m2}(c_2 - d_2) + \dots + a_{mn}(c_n - d_n) = 0, \end{cases}$$

Precisamente, tenemos que

$$(x_1,\ldots,x_n)=(\overrightarrow{pq})_{\mathcal{B}}=q_{\mathcal{R}}-p_{\mathcal{R}}=(c_1-d_1,\ldots,c_n-d_n)$$

Por tanto, se tiene demostrado que las ecuaciones dadas son las ecuaciones cartesianas de \overrightarrow{S} respecto a \mathcal{B} .

Ejercicio 2.1.15. Sea \mathcal{A} un espacio afín con sistema de referencia \mathcal{R} y S el conjunto de puntos $p \in \mathcal{A}$ tales que $p_{\mathcal{R}} = (x_1, \dots, x_n)$ es solución del sistema de ecuaciones lineales

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

Demuestra que S es un subespacio afín de A.

Sea \mathcal{B} la base asociada a \mathcal{R} . Supongamos $S \neq 0$ (no se puede probar por falta de información en el enunciado). Sea por tanto $p \in S$ con $p_{\mathcal{R}} = (d_1, \ldots, d_n)$, que cumple las ecuaciones dadas. Consideramos $q \in S$. Entonces, tenemos que:

$$q_{\mathcal{R}} - p_{\mathcal{R}} = (\overrightarrow{pq})_{\mathcal{B}} \in \overrightarrow{\mathcal{A}}$$

Sean las coordenadas de \overrightarrow{pq} las siguientes:

$$(\overrightarrow{pq})_{\mathcal{B}} = (x'_1, \dots, x'_n) := (x_1, \dots, x_n) - (d_1, \dots, d_n)$$

Veamos ahora que $a_{i1}x_1' + a_{i2}x_2' + \cdots + a_{in}x_n' = 0$ para todo $i \in \{0, \dots, m\}$:

$$a_{i1}x'_1 + a_{i2}x'_2 + \dots + a_{in}x'_n =$$

$$= a_{i1}(x_1 - d_1) + a_{i2}(x_2 - d_2) + \dots + a_{in}(x_n - d_n) =$$

$$= b_i - b_i = 0$$

Por tanto, tenemos que:

$$S = \left\{ (x_1, \dots, x_n) \middle| \begin{array}{c} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{array} \right\} =$$

$$= (d_1, \dots, d_n) + \left\{ (x'_1, \dots, x'_n) \middle| \begin{array}{c} a_{11}x'_1 + a_{12}x'_2 + \dots + a_{1n}x'_n = 0, \\ \dots \\ a_{m1}x'_1 + a_{m2}x'_2 + \dots + a_{mn}x'_n = 0, \end{array} \right\}$$

Hemos deducido que S es un subespacio afín, y tenemos las ecuaciones cartesianas de \overrightarrow{S} .

Ejercicio 2.1.16. Calcula la suma e intersección de los siguientes subespacios afines de \mathbb{R}^3 :

1.
$$S_1 = (1, 2, -1) + \mathcal{L}\{(1, 0, -2)\}$$
 y $S_2 \equiv \begin{cases} 2x + z = 1, \\ 4x + y + 2z = 4. \end{cases}$

Calculamos en primer lugar un vector director de S_2 . Sea $\overrightarrow{S_2} = \mathcal{L}\{(1,0,-2)\}$. Además, $(1,2,-1) \in S_2$, por lo que $S_2 = (1,2,-1) + \mathcal{L}\{(1,0,-2)\}$.

Por tanto, $S_1 = S_2$, y deducimos que:

$$S_1 \cap S_2 = S_1 = S_2$$
 $S_1 \vee S_2 = S_1 = S_2$

2.
$$S_1 \equiv 2x - y + 3z = 1 \text{ y } S_2 = (1, 2, 0) + \mathcal{L}\{(-1, 1, 1)\}.$$

Tenemos que $\overrightarrow{S_1} = \mathcal{L}\{(-1,1,1),(1,2,0)\}$. Además, $(1,2,1) \in S_1$. Por tanto,

$$S_1 = (1, 2, 1) + \mathcal{L}\{(-1, 1, 1), (1, 2, 0)\}$$

Veamos si $(1,2,1)(1,2,0) \in \overrightarrow{S_1} + \overrightarrow{S_2}$. Tenemos que (1,2,1)(1,2,0) = (0,0,-1), y $\overrightarrow{S_1} + \overrightarrow{S_2} = \overrightarrow{S_1} = \mathcal{L}\{(-1,1,1), (1,2,0)\}$. Como los tres vectores son linealmente independientes, tenemos que $(1,2,1)(1,2,0) \notin \overrightarrow{S_1} + \overrightarrow{S_2}$, por lo que

$$S_1 \cap S_2 = \emptyset$$

Gráficamente, esto era esperable, ya que S_2 es paralelo a S_1 pero difieren en un punto $(1,2,0) \in S_2 \setminus S_1$, por lo que no se cortan.

Calculemos ahora la suma:

$$S_1 \vee S_2 = (1, 2, 0) + \mathcal{L}\{(0, 0, -1), (-1, 1, 1), (1, 2, 0)\} = (1, 2, 0) + \overrightarrow{\mathbb{R}^3} = \mathbb{R}^3$$

Por tanto,

$$S_1 \cap S_2 = \emptyset \qquad S_1 \vee S_2 = \mathbb{R}^3$$

3. $S_1 = (-1, 0, 1) + \mathcal{L}\{(1, 1, 1)\}$ y $S_2 = (1, 1, 1) + \mathcal{L}\{(-1, -1, -1)\}$.

En primer lugar, notemos que $\overrightarrow{S_1} = \overrightarrow{S_2}$, por lo que $S_1 || S_2$.

Tenemos que $(-1,0,1)(1,1,1) = (2,1,0) \notin \overrightarrow{S_1} + \overrightarrow{S_2} = \overrightarrow{S_1}$. Por tanto, $S_1 \cap S_2 = \emptyset$.

Calculemos ahora la suma:

$$S_1 \vee S_2 = (1, 1, 1) + \mathcal{L}\{(2, 1, 0), (1, 1, 1)\}$$

Por tanto,

$$S_1 \cap S_2 = \emptyset$$
 $S_1 \vee S_2 = (1, 1, 1) + \mathcal{L}\{(2, 1, 0), (1, 1, 1)\}$

Gráficamente, estos resultados eran de esperar. Son dos rectas paralelas y no coincidentes, por lo que su intersección es nula y la suma es el plano que las contiene.

4. $S_1 \equiv 2x - y + z = 1 \text{ y } S_2 = (1, 2, 3) + \mathcal{L}\{(1, 0, -1)\}.$

Calculamos unas ecuaciones cartesianas de S_2 en \mathcal{R}_0 . Sea $(x, y, z) \in S_2$ un punto arbitrario de la recta, por lo que:

$$(x, y, z) = (1, 2, 3) + \lambda(1, 0, -1) = (1 + \lambda, 2, 3 - \lambda)$$
 $\lambda \in \mathbb{R}$

Por tanto, tenemos que
$$S_2 \equiv \left\{ \begin{array}{l} x-1=3-z, \\ y=2. \end{array} \right\} = \left\{ \begin{array}{l} x+z=4, \\ y=2. \end{array} \right.$$

Como estamos trabajando en el mismo sistema de referencia \mathcal{R}_0 , tenemos que:

$$S_1 \cap S_2 \equiv \begin{cases} 2x - y + z = 1, \\ x + z = 4, \\ y = 2. \end{cases}$$

Resolviendo el sistema, llegamos a que $S_1 \cap S_2 = \{(-1, 2, 5)\}.$

Para calcular la suma, usamos la fórmula de las dimensiones, sabiendo que la intersección es no nula:

$$\dim(S_1 \vee S_2) = \dim S_1 + \dim S_2 - \dim(S_1 \cap S_2) = 2 + 1 - 0 = 3$$

Por tanto, $S_1 \vee S_2 = \mathbb{R}^3$.

5.
$$S_1 \equiv x + y + z = 1$$
 y $S_2 \equiv \begin{cases} x + y + z = 2, \\ 2y - z = 3. \end{cases}$

Directamente de las ecuaciones cartesianas vemos que $\overrightarrow{S_2} \subset \overrightarrow{S_1}$, pero no hay puntos comunes a los subespacios afines; es decir, $S_1 \cap S_2 = \emptyset$.

Aplicamos la fórmula de las dimensiones para calcular la suma:

$$\dim(S_1 \vee S_2) = \dim S_1 + \dim S_2 - \dim(\overrightarrow{S_1} \cap \overrightarrow{S_2}) + 1 = 2 + 1 - 1 + 1 = 3$$

Por tanto, tenemos que:

$$S_1 \cap S_2 = \emptyset \qquad \qquad S_1 \vee S_2 = \mathbb{R}^3$$

Ejercicio 2.1.17. Calcula las ecuaciones paramétricas y cartesianas de los siguientes subespacios afines de \mathbb{R}^3 :

1. La recta r_1 que pasa por los puntos (1,2,1) y (1,0,2).

Tenemos que el vector director es $\overline{(1,2,1)(1,0,2)} = (0,-2,1)$. Por tanto, la recta es $r_1 = (1,2,1) + \mathcal{L}\{(0,-2,1)\}$.

Las ecuaciones paramétricas son:

$$\begin{cases} x = 1 \\ y = 2 - 2\lambda \\ z = 1 + \lambda \end{cases} \quad \lambda \in \mathbb{R}$$

Despejando λ e igualando, tenemos que $\frac{y-2}{-2} = \frac{z-1}{1}$. Por tanto, las ecuaciones cartesianas son:

$$r_1 \equiv \left\{ \begin{array}{l} x = 1 \\ \\ \frac{y - 2}{-2} = \frac{z - 1}{1} \end{array} \right.$$

2. El plano π_1 que pasa por los puntos (-1, -2, 1), (0, 1, 1) y (1, 0, 2).

Buscamos dos vectores linealmente independientes que pertenezcan al plano. Sean estos vectores los siguientes:

$$\frac{(-1, -2, 1)(0, 1, 1)}{(-1, -2, 1)(1, 0, 2)} = (1, 3, 0)$$

Por tanto, el plano es π_1 : $(0,1,1) + \mathcal{L}\{(1,3,0),(2,2,1)\}.$

Las ecuaciones paramétricas son:

$$\begin{cases} x = \alpha + 2\beta \\ y = 1 + 3\alpha + 2\beta \\ z = 1 + \beta \end{cases} \quad \alpha, \beta \in \mathbb{R}$$

Para obtener las ecuaciones cartesianas, hay dos opciones:

Opción 1 Despejamos en primer lugar α e igualamos, obteniendo el siguiente sistema de ecuaciones equivalente:

$$\begin{cases} x - 2\beta = \frac{1}{3}(y - 1 - 2\beta) \\ z = 1 + \beta \end{cases} \beta \in \mathbb{R}$$

Despejamos ahora β e igualamos, obteniendo entonces la ecuación cartesiana del plano:

$$\frac{1}{4}(3x - y + 1) = z - 1 \Longrightarrow 3x - y + 1 = 4z - 4$$

Por tanto, la ecuación cartesiana del plano es $\pi_1 \equiv 3x - y - 4z + 5 = 0$.

Opción 2 Usando una manera similar a la que usábamos para obtener las ecuaciones cartesianas de un plano vectorial, usamos que cualquier tercer vector del plano (0,1,1)(x,y,z) = (x,y-1,z-1) ha de ser linealmente dependiente a los otros dos:

$$\begin{vmatrix} 1 & 2 & x \\ 3 & 2 & y - 1 \\ 0 & 1 & z - 1 \end{vmatrix} = 0 = 2(z - 1) + 3x - (y - 1) - 6(z - 1) = 3x - y - 4z + 5$$

Por tanto, la ecuación cartesiana del plano es $\pi_1 \equiv 3x - y - 4z + 5 = 0$. Como podemos ver, esta forma es más cómoda, ya que solo hay que calcular un determinante. 3. El plano π_2 que pasa por el punto (1,2,1) y contiene la recta $r_2 = (1,1,1) + \mathcal{L}\{(0,1,1)\}.$

Al contener a la recta, tenemos que $(1,1,1) \in \pi_2$ y $(0,1,1) \in \overrightarrow{\pi_2}$. El otro vector que buscamos es (0,1,1)(1,1,1) = (1,0,0). Por tanto, el plano es $\pi_2 = (1,1,1) + \mathcal{L}\{(0,1,1),(1,0,0)\}$.

Sus ecuaciones cartesianas son:

$$\begin{cases} x = 1 + \beta \\ y = 1 + \alpha \\ z = 1 + \alpha \end{cases} \quad \alpha, \beta \in \mathbb{R}$$

Para la ecuación cartesiana, aunque en este caso es fácil ver que es $\pi_2 \equiv y - z = 0$, calculamos el determinante:

$$\begin{vmatrix} 1 & 0 & x-1 \\ 0 & 1 & y-1 \\ 0 & 1 & z-1 \end{vmatrix} = 0 = z-1 - (y-1) = z-y$$

Como hemos visto, la ecuación cartesiana es $\pi_2 \equiv y - z = 0$.

4. La recta r_3 intersección entre los planos $\pi_3 = (1, 1, 1) + \mathcal{L}\{(-1, 0, 2), (-1, -2, 1)\}$ y $\pi_4 \equiv x + y + z = 1$.

En primer lugar, obtengo la ecuación cartesiana de π_3 :

$$\begin{vmatrix} -1 & -1 & x - 1 \\ 0 & -2 & y - 1 \\ 2 & 1 & z - 1 \end{vmatrix} = \begin{vmatrix} -1 & -1 & x - 1 \\ 0 & -2 & y - 1 \\ 0 & -1 & 2x + z - 3 \end{vmatrix} = 0 =$$

$$= 2(2x + z - 3) - (y - 1) = 4x + 2z - y - 5 = 0$$

Por tanto, tenemos que $\pi_3 \equiv 4x - y + 2z = 5$, por tanto, tenemos que la recta pedida es:

$$r_3 = \pi_3 \cap \pi_4 \equiv \begin{cases} x + y + z = 1 \\ 4x - y + 2z = 5 \end{cases}$$

Resolviendo el sistema, tenemos que un punto de la recta es (0, -1, 2), y su vector director es (3, 2, -5). Por tanto, tenemos que $r_3 = (0, -1, 2) + \mathcal{L}\{(3, 2, -5)\}$. Sus ecuaciones paramétricas son:

$$\begin{cases} x = 3\lambda \\ y = -1 + 2\lambda \\ z = 2 - 5\lambda \end{cases} \qquad \lambda \in \mathbb{R}$$

Ejercicio 2.1.18. Calcula las ecuaciones paramétricas e implícitas de los subespacios afines $S = \langle \{(1,1,0,1), (1,-1,1,0)\} \rangle$ y $T = \langle \{(1,1,0,1), (1,0,1,0), (0,1,0,1)\} \rangle$ de \mathbb{R}^4 . Calcula $S \cap T$ y $S \vee T$.

Tenemos que S es la recta que une ambos puntos. Su vector director es

$$\overrightarrow{(1,1,0,1)(1,-1,1,0)} = (0,-2,1,-1)$$

Entonces, $S = (1, 1, 0, 1) + \mathcal{L}\{(0, -2, 1, -1)\}.$

Las ecuaciones paramétricas de S son:

$$\begin{cases} x = 1 \\ y = 1 - 2\lambda \\ z = \lambda \\ t = 1 - \lambda \end{cases} \quad \lambda \in \mathbb{R}$$

Sus ecuaciones cartesianas son:

$$S \equiv \left\{ \begin{array}{l} x = 1 \\ \\ \frac{y-1}{-2} = \frac{z-0}{1} = \frac{t-1}{-1} \end{array} \right\} = \left\{ \begin{array}{l} x = 1 \\ \\ \frac{1-y}{2} = z = 1-t \end{array} \right.$$

Trabajemos ahora con T. Tenemos que es el plano que contiene a los 3 puntos. Dos vectores de \overrightarrow{T} son:

$$\overrightarrow{(1,1,0,1)(1,0,1,0)} = (0,-1,1,-1)
 \overrightarrow{(1,1,0,1)(0,1,0,1)} = (-1,0,0,0)$$

Por tanto, $T = (1, 1, 0, 1) + \mathcal{L}\{(0, -1, 1, -1), (-1, 0, 0, 0)\}.$

Las ecuaciones paramétricas de T son:

$$\begin{cases} x = 1 - \beta \\ y = 1 - \alpha \\ z = \alpha \\ t = 1 - \alpha \end{cases} \quad \alpha, \beta \in \mathbb{R}$$

Sus ecuaciones cartesianas son:

$$T \equiv 1 - y = z = 1 - t$$

Calculamos ahora la intersección, que sabemos que es no nula ya que el punto $(1,1,0,1) \in S \cap T$. Las ecuaciones cartesianas de la intersección son:

$$S \cap T \equiv \left\{ \begin{array}{l} x = 1 \\ 1 - y = z = 1 - t = \frac{1 - y}{2} \end{array} \right\} = \left\{ \begin{array}{l} x = 1 \\ z + y = 1 \\ z + t = 1 \\ 2z + y = 1 \end{array} \right\}$$

Veamos si esas 4 ecuaciones son linealmente independientes. Tenemos que el rango de la matriz de coeficientes es:

$$rg\left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 1\\ 0 & 1 & 2 & 0 \end{array}\right) = 4$$

Por tanto, las 4 son linealmente independientes y el sistema es de Cramer, es decir, SCD. Por tanto, tan solo hay un punto que cumple el sistema, por lo que

$$S \cap T = \{(1, 1, 0, 1)\}$$

Calculemos el valor de la suma:

$$\dim(S \vee T) = \dim S + \dim T - \dim(S \cap T) = 1 + 2 - 0 = 3$$

Tenemos que:

$$S \vee T = (1, 1, 0, 1) + \mathcal{L}\{(0, -2, 1, -1), (0, -1, 1, -1), (-1, 0, 0, 0)\}$$

Las ecuaciones paramétricas de $S \vee T$ son:

$$\begin{cases} x = 1 - \gamma \\ y = 1 - 2\alpha - \beta \\ z = \alpha + \beta \\ t = 1 - \alpha - \beta \end{cases} \qquad \alpha, \beta, \gamma \in \mathbb{R}$$

Las ecuaciones de cartesianas de $S \vee T$ son:

$$\begin{vmatrix} 0 & 0 & -1 & x - 1 \\ -2 & -1 & 0 & y - 1 \\ 1 & 1 & 0 & z \\ -1 & -1 & 0 & t - 1 \end{vmatrix} = 0 = - \begin{vmatrix} -2 & -1 & y - 1 \\ 1 & 1 & z \\ -1 & -1 & t - 1 \end{vmatrix} = - \begin{vmatrix} -2 & -1 & y - 1 \\ 1 & 1 & z \\ 0 & 0 & z + t - 1 \end{vmatrix} =$$
$$= -(z + t - 1)(-2 + 1) = z + t - 1 = 0$$

Por tanto, $S \vee T \equiv z + t = 1$.

Ejercicio 2.1.19. Sea L la recta de \mathbb{R}^2 que tiene por ecuación cartesiana x-y=1 en el sistema de referencia $\mathcal{R} = \{(1,-1),(2,1),(0,2)\}$. Calcula su ecuación cartesiana en el sistema de referencia usual.

Tenemos que la base asociada a \mathcal{R} es $\mathcal{B} = \{(1,2), (-1,3)\}$. Consideraos ahora el punto $p = (x,y)_{\mathcal{R}} = (s,t)_{\mathcal{R}_0}$. Tenemos que las ecuaciones de cambio de sistema de referencia de \mathcal{R} a \mathcal{R}_0 son:

$$\begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}_{\mathcal{R}_0} + \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1+x-y \\ -1+2x+3y \end{pmatrix}$$

De la primera ecuación, tenemos que s = 1 + x - y = 2.

Por tanto, como una recta en \mathbb{R}^{2} viene determinada por una única ecuación cartesiana, tenemos que es:

$$L = \{(s, t) \in \mathbb{R}^2 \mid s = 2\}.$$

Ejercicio 2.1.20. Calcula las ecuaciones cartesianas de los siguientes subespacios afines de \mathbb{R}^4 :

1. La recta r que pasa por los puntos (0, -1, 1, 1) y (1, 1, 0, 2). Tenemos que el vector director es (1, 2, -1, 1). Por tanto, la recta es:

$$r = (0, -1, 1, 1) + \mathcal{L}\{(1, 2, -1, 1)\}$$

Para obtener las ecuaciones cartesianas, sea (x, y) un punto arbitrario de la recta. Entonces, necesitamos que:

$$rg\left(\begin{array}{cc} 1 & x-0\\ 2 & y+1\\ -1 & z-1\\ 1 & t-1 \end{array}\right) = 1$$

Para ello, necesitamos que estos tres determinantes sean nulos:

$$\begin{vmatrix} 1 & x \\ 2 & y+1 \end{vmatrix} = 0 = y+1-2x \Longrightarrow -2x+y+1 = 0$$

$$\begin{vmatrix} 1 & x \\ -1 & z-1 \end{vmatrix} = 0 = z-1+x \Longrightarrow x+z-1 = 0$$

$$\begin{vmatrix} 1 & x \\ 1 & t-1 \end{vmatrix} = 0 = t-1-x \Longrightarrow -x+t-1 = 0$$

Por tanto, las ecuaciones cartesianas de r son:

$$r \equiv \begin{cases} -2x + y + 1 = 0 \\ x + z - 1 = 0 \\ -x + t - 1 = 0 \end{cases}$$

2. El plano π que pasa por los puntos (0, -1, 0, -1), (1, 0, 1, 1) y (2, 1, 0, 2). Tenemos que dos vectores de la variedad de direcciones son (1, 1, 1, 2) y (2, 2, 0, 3). Por tanto, tenemos que el plano es

$$\pi = (0, -1, 0, -1) + \mathcal{L}\{(1, 1, 1, 2), (2, 2, 0, 3)\}.$$

Para obtener las ecuaciones cartesianas, sea (x, y) un punto arbitrario del plano. Entonces, necesitamos que:

$$rg\left(\begin{array}{ccc} 1 & 2 & x-0\\ 1 & 2 & y+1\\ 1 & 0 & z-0\\ 2 & 3 & t+1 \end{array}\right) = 2$$

Para ello, necesitamos que estos dos determinantes sean nulos:

$$\begin{vmatrix} 1 & 2 & x - 0 \\ 1 & 0 & z - 0 \\ 2 & 3 & t + 1 \end{vmatrix} = 0 = 4z + 3x - 3z - 2(t + 1) = 3x + z - 2t - 2$$

$$\begin{vmatrix} 1 & 2 & x - 0 \\ 1 & 2 & y + 1 \\ 1 & 0 & z - 0 \end{vmatrix} = 0 = 2z + 2(y + 1) - 2x - 2z \Longrightarrow 0 = -x + y + 1$$

Por tanto, las ecuaciones cartesianas de π son:

$$\pi \equiv \begin{cases} 3x + z - 2t - 2 = 0 \\ -x + y + 1 = 0 \end{cases}$$

3. El hiperplano S que contiene al plano $(0, 1, 1, 0) + \mathcal{L}(\{(1, -1, 0, 0), (0, 0, 1, -1)\})$ y pasa por el punto (2, 0, 2, 0).

Tenemos que el siguiente vector pertenece a la variedad de direcciones:

$$\overrightarrow{(0,1,1,0)(2,0,2,0)} = (2,-1,1,0)$$

Por tanto, tenemos que:

$$S = (0, 1, 1, 0) + \mathcal{L}(\{(1, -1, 0, 0), (0, 0, 1, -1), (2, -1, 1, 0)\})$$

Para obtener las ecuaciones cartesianas, necesitamos que el siguiente determinante sea nulo:

$$\begin{vmatrix} 1 & 0 & 2 & x - 0 \\ -1 & 0 & -1 & y - 1 \\ 0 & 1 & 1 & z - 1 \\ 0 & -1 & 0 & t - 0 \end{vmatrix} = 0 = \begin{vmatrix} 1 & 0 & 2 & x - 0 \\ 0 & 0 & 1 & y - 1 + x \\ 0 & 1 & 1 & z - 1 \\ 0 & -1 & 0 & t - 0 \end{vmatrix} = \begin{vmatrix} 0 & 1 & y - 1 + x \\ 1 & 1 & z - 1 \\ -1 & 0 & t - 0 \end{vmatrix} =$$
$$= (1 - z) + (y - 1 + x) - t = x + y - z - t = 0$$

Por tanto, la ecuación cartesiana del hiperplano es:

$$S \equiv x + y - z - t = 0$$

4. El subespacio afín T que pasa por los puntos (1, 1, -1, 0), (0, 0, 0, 1), (1, 0, 0, 0) y (0, 2, -2, 1).

Tenemos los siguientes vectores del espacio de direcciones:

$$\overrightarrow{(0,0,0,1)(1,1,-1,0)} = (1,1,-1,-1)
 \overrightarrow{(0,0,0,1)(1,0,0,0)} = (1,0,0,-1)
 \overrightarrow{(0,0,0,1)(0,2,-2,1)} = (0,2,-2,0)$$

Por tanto, tenemos que el subespacio afín buscado es:

$$T = (0,0,0,1) + \mathcal{L}\{(1,1,-1,-1),(1,0,0,-1),(0,1,-1,0)\}$$

No obstante, el primer vector del sistema de generadores es combinación lineal de los otros dos, por lo que:

$$T = (0,0,0,1) + \mathcal{L}\{(1,0,0,-1),(0,1,-1,0)\}$$

Para las ecuaciones cartesianas del plano, necesitamos que:

$$rg\left(\begin{array}{ccc} 1 & 0 & x-0\\ 0 & 1 & y-0\\ 0 & -1 & z-0\\ -1 & 0 & t-1 \end{array}\right) = 2$$

Para ello, necesitamos que estos dos determinantes sean nulos:

$$\begin{vmatrix} 1 & 0 & x - 0 \\ 0 & 1 & y - 0 \\ 0 & -1 & z - 0 \end{vmatrix} = 0 = z + y$$

$$\begin{vmatrix} 1 & 0 & x - 0 \\ 0 & -1 & z - 0 \\ -1 & 0 & t - 1 \end{vmatrix} = 0 = -t - 1 - x$$

Por tanto, las ecuaciones cartesianas del plano son:

$$T \equiv \left\{ \begin{array}{l} y+z=0\\ x+t+1=0 \end{array} \right.$$

Ejercicio 2.1.21 (Producto de aplicaciones afines). Sean A_i , A'_i espacios afines y $f_i: \mathcal{A}_i \to \mathcal{A}_i'$ aplicaciones afines para cada i=1,2. Demostrar que la aplicación

$$\begin{array}{ccc} f_1 \times f_2 : \mathcal{A}_1 \times \mathcal{A}_2 & \longrightarrow & \mathcal{A}'_1 \times \mathcal{A}'_2 \\ & (p_1, p_2) & \longmapsto & (f_1(p_1), f_2(p_2)) \end{array}$$

es una aplicación afín y $\overrightarrow{f_1 \times f_2} = \overrightarrow{f_1} \times \overrightarrow{f_2}$. Para que sea una aplicación afín, es necesario encontrar una aplicación lineal asociada $\overrightarrow{f_1 \times f_2}$ que cumpla que:

$$\overrightarrow{f_1 \times f_2}[(p_1, p_2)(q_1, q_2)] = \overrightarrow{(f_1 \times f_2)(p_1, p_2) \ (f_1 \times f_2)(q_1, q_2)} = \overrightarrow{(f_1(p_1), f_2(p_2))(f_1(q_1), f_2(q_2))}$$

Veamos que $\overrightarrow{f_1} \times \overrightarrow{f_2}$ cumple lo pedido:

$$(\overrightarrow{f_1}\times\overrightarrow{f_2})[\overrightarrow{(p_1,p_2)(q_1,q_2)}] = (\overrightarrow{f_1}\times\overrightarrow{f_2})[(q_1,q_2)-(p_1,p_2)] = (\overrightarrow{f_1}\times\overrightarrow{f_2})(q_1-p_1,q_2-p_2) = (\overrightarrow{f_1}\times\overrightarrow{f_2})(\overrightarrow{p_1q_1},\overrightarrow{p_2q_2}) = (\overrightarrow{f_1(p_1)f_1(q_1)},\overrightarrow{f_2(p_2)f_2(q_2)}) = (f_1(q_1)-f_1(p_1),f_2(q_2)-f_2(p_2)) = (f_1(q_1),f_2(q_2))-(f_1(p_1),f_2(p_2)) = (f_1(p_1),f_2(p_2))(f_1(q_1),f_2(q_2))$$

Por tanto, hemos visto que, efectivamente, $f_1 \times f_2$ es una aplicación afín con $\overrightarrow{f_1 \times f_2} = \overrightarrow{f_1} \times \overrightarrow{f_2}$.

Ejercicio 2.1.22. Dadas $f: \mathcal{A} \to \mathcal{A}'$ aplicación afín, $q \in \mathcal{A}$ y $h: \overrightarrow{\mathcal{A}} \to \overrightarrow{\mathcal{A}}'$ aplicación lineal, probar que la aplicación

$$g: \mathcal{A} \longrightarrow \mathcal{A}'$$

$$p \longmapsto f(p) + h(\overrightarrow{qp})$$

es la única aplicación afín con g(q) = f(q) y $\overrightarrow{g} = h + \overrightarrow{f}$.

Veamos en primer lugar que g cumple dichos resultados. Es directo ver que $g(q) = f(p) + h(\overrightarrow{0}) = f(p)$. Comprobemos ahora que la aplicación lineal asociada es la correcta:

$$\overrightarrow{g}(\overrightarrow{p_1p_2}) = \overrightarrow{g(p_1)g(p_2)} = \overrightarrow{[f(p_1) + h(\overrightarrow{qp_1})][f(p_2) + h(\overrightarrow{qp_2})]} =$$

$$= f(p_2) + h(\overrightarrow{qp_2}) - f(p_1) - h(\overrightarrow{qp_1}) = \overrightarrow{f(p_1)f(p_2)} + h(\overrightarrow{qp_2} + \overrightarrow{p_1q}) =$$

$$= \overrightarrow{f}(\overrightarrow{p_1p_2}) + h(\overrightarrow{p_1p_2}) = (h + \overrightarrow{f})(\overrightarrow{p_1p_2})$$

Por tanto, como esto es válido para todo $p_2, p_2 \in \mathcal{A}$, tenemos que $\overrightarrow{g} = h + \overrightarrow{f}$. Por tanto, g cumple las dos condiciones dadas. Veamos ahora que es única. Supongamos que existe una aplicación afín $g': \mathcal{A} \to \mathcal{A}'$ con g'(q) = f(q) y $\overrightarrow{g'} = h + \overrightarrow{f}$, y busquemos el valor de g'(p), para cualquier $p \in \mathcal{A}$. De la definición de aplicación afín asociada, tenemos que:

$$\overrightarrow{g'}(\overrightarrow{qp}) = \overrightarrow{g'(q)g'(p)} = \overrightarrow{f(q)g'(p)} = g'(p) - f(q)$$

Ahora, como hemos supuesto que $\overrightarrow{g'} = h + \overrightarrow{f}$, tenemos que:

$$\overrightarrow{g'}(\overrightarrow{qp}) = (h + \overrightarrow{f})(\overrightarrow{qp}) = h(\overrightarrow{qp}) + \overrightarrow{f}(\overrightarrow{qp}) = h(\overrightarrow{qp}) + \overrightarrow{f(q)f(p)} = h(\overrightarrow{qp}) + f(p) - f(q)$$

Igualando ambos resultados, tenemos que:

$$g'(p) - f(q) = h(\overrightarrow{qp}) + f(p) - f(q) \Longrightarrow g'(p) = f(p) + h(\overrightarrow{qp}) \qquad \forall p \in \mathcal{A}$$

Por tanto, podemos ver que $g'(p) = g(p) \ \forall p \in \mathcal{A}$, por lo que g' = g. Por tanto, queda demostrado que g es la única aplicación que cumple dichos resultados.

Ejercicio 2.1.23. Dada la siguiente aplicación afín:

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x, y, z) \longmapsto (x - 2y + z - 1, x + y + z + 1)$$

Calcular:

1. La imagen de la recta $L_1 = (1, 1, 2) + \mathcal{L}\{(2, 0, 1)\}.$

Opción 1) Calculamos las ecuaciones paramétricas de la recta:

$$\begin{cases} x = 1 + 2\lambda \\ y = 1 \\ z = 2 + \lambda \end{cases} \quad \lambda \in \mathbb{R}$$

La imagen de L_1 por f tiene por ecuaciones paramétricas:

$$\begin{cases} x = (1+2\lambda) - 2(1) + (2+\lambda) - 1 = 3\lambda \\ y = (1+2\lambda) + 1 + (2+\lambda) + 1 = 5 + 3\lambda \end{cases} \lambda \in \mathbb{R}$$

Por tanto, $f(L_1) = (0,5) + \mathcal{L}\{(3,3)\} = (0,5) + \mathcal{L}\{(1,1)\}.$

Opción 2) Tenemos que todos los puntos de L_1 son de la forma $p = p_0 + \lambda v$, con $p_0 = (1, 1, 2)$ y v = (2, 0, 1). Por tanto, y usando que \overrightarrow{f} es lineal, tenemos que $f(p) = f(p_0) + \lambda \overrightarrow{f}(v)$. Por tanto, $f(L_1) = f(p_0) + \mathcal{L}\{\overrightarrow{f}(v)\}$. Expresando f de forma matricial, tenemos que:

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Longrightarrow M(\overrightarrow{f}, \mathcal{B}_u, \mathcal{B}_u) = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Por tanto, deducimos que $\overrightarrow{f}(2,0,1)=(3,3)$ y f(1,1,2)=(0,5), por lo que:

$$f(L_1) = (0,5) + \mathcal{L}\{(3,3)\} = (0,5) + \mathcal{L}\{(1,1)\}$$

Es decir, es una recta.

Optaremos por la opción 2, ya que se puede realizar de forma mecánica sin necesidad de escribir tantos pasos.

2. La imagen de la recta $L_2 = (0, 1, 1) + \mathcal{L}\{(1, 0, -1)\}.$

Tenemos que f(0,1,1)=(-2,3) y $\overrightarrow{f}(1,0,-1)=(0,0)$. Por tanto, tenemos que:

$$f(L_2) = (-2,3) + \mathcal{L}\{0\} = (-2,3)$$

Es decir, la imagen de L_2 es un punto.

3. La preimagen del punto (1,3).

Tenemos que $f^{-1}(1,3) = \{(x,y,z) \mid f(x,y,z) = (1,3)\}$. Es decir, son las soluciones de este sistema:

$$\left\{ \begin{array}{l} 1 = x - 2y + z - 1 \\ 3 = x + y + z + 1 \end{array} \right\} \Longrightarrow \left\{ \begin{array}{l} 2 = x - 2y + z \\ 2 = x + y + z \end{array} \right\}$$

Restando, tenemos que 0=-3y, por lo que y=0. La solución del sistema es:

$$\begin{cases} x = \lambda \\ y = 0 \\ z = 2 - \lambda \end{cases} \quad \lambda \in \mathbb{R}$$

Es decir, $f^{-1}(1,3) = (0,0,2) + \mathcal{L}\{(1,0,-1)\}.$

Ejercicio 2.1.24. Demuestra que la siguiente aplicación afín es una homotecia y calcula su centro.

$$\begin{array}{ccc} f: \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ (x,y) & \longmapsto & (1-2x, 3-2y) \end{array}$$

Ejercicio 2.1.25. Calcula el subespacio afín de los puntos fijos de la aplicación afín $f: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $f(x, y, z) = \left(x + 3y + \frac{3}{2}, -2y - \frac{3}{2}, -4x - 4y - z - 2\right)$.

Ejercicio 2.1.26. En \mathbb{R}^2 consideremos el sistema de referencia $\mathcal{R} = \{(0, -1), (3, 0), (-2, 1)\}$ y la aplicación $f : \mathbb{R}^2 \to \mathbb{R}^2$ que en coordenadas (x, y) respecto de \mathcal{R} se escribe como f(x, y) = (x - 2y, -x + y). Escribe la expresión de f en el sistema de referencia usual de \mathbb{R}^2 .

Ejercicio 2.1.27. Calcula la aplicación afín $f: \mathbb{R}^3 \to \mathbb{R}^3$ que tiene como puntos fijos a los del plano x+y-z=-1 y tal que f(0,0,0)=(1,1,1). ¿Es f biyectiva?

Ejercicio 2.1.28. Consideremos los sistemas de referencia de \mathbb{R}^2 dados por

$$\mathcal{R} = (1,1), (2,1), (2,2)$$
 y $\mathcal{R}' = (1,0), (0,0), (-1,-1).$

Sea f la única aplicación afín tal que

$$f(1,1) = (3,3),$$
 $f(2,1) = (3,-1),$ $f(2,2) = (2,0).$

Calcula las ecuaciones que representan a f respecto de los sistemas de referencia \mathcal{R} (en el dominio) y \mathcal{R}' (en el codominio), y las ecuaciones que representan a f respecto de los sistemas de referencia usuales. ¿Cuál es la imagen del punto (5,5)?

Ejercicio 2.1.29. Sean \mathcal{A} un espacio afín, $f: \mathcal{A} \to \mathcal{A}$ una aplicación afín y $S = p_0 + \mathcal{L}(v_0)$ una recta en \mathcal{A} . Demuestra que f(S) = S si y solo si $\overline{p_0}$ $f(p_0) \in \mathcal{L}(v_0)$ y v_0 es un vector propio de \overrightarrow{f} de autovalor no nulo.

Ejercicio 2.1.30. Sean \mathcal{A} un plano afín, $f: \mathcal{A} \to \mathcal{A}$ una aplicación afín y R_1, R_2, R_3 tres rectas distintas donde no hay dos paralelas. Prueba que si $f(R_i)||R_i, i = 1, 2, 3$, entonces f es una traslación o una homotecia.

Ejercicio 2.1.31. Sea $f: \mathcal{A} \to \mathcal{A}$ una aplicación afín de un espacio afín \mathcal{A} en sí mismo. Consideremos el subespacio vectorial $\mathcal{W} = \{v \in \overrightarrow{A} \mid \overrightarrow{f(v)} = v\}$. Demuestra que

- 1. Si $W = \{\overrightarrow{0}\}$ entonces f tiene un único punto fijo.
- 2. Si $W \neq \{\overrightarrow{0}\}$ entonces el conjunto de puntos fijos de f es vacío o un subespacio afín cuyo espacio de direcciones es W.

Ejercicio 2.1.32. Consideremos k+1 puntos p_0, p_1, \ldots, p_k de un espacio afín \mathcal{A} . Definimos el baricentro de estos puntos como

$$b = p_0 + \frac{1}{k+1} \sum_{i=1}^r \overrightarrow{p_0 p_i}.$$

Demuestra que b no depende del punto inicial p_0 elegido. (Cuando k = 1 el punto b se le denomina el punto medio de p_0 y p_1).

Ejercicio 2.1.33. Sea $f: \mathcal{A} \to \mathcal{A}'$ una aplicación afín entre dos espacios afines. Si $b \in A$ es el baricentro de los puntos $p_0, p_1, \ldots, p_k \in \mathcal{A}$, demuestra que f(b) es el baricentro de los puntos $f(p_0), f(p_1), \ldots, f(p_k)$.

Ejercicio 2.1.34. Un triángulo en un espacio afín son tres puntos afínmente independientes. Prueba que las tres medianas de un triángulo se cortan en el baricentro de sus vértices, donde se llama mediana a cada recta que pasa por un vértice y el punto medio de los otros dos.

Ejercicio 2.1.35. Sea T_1 un triángulo en un plano afín \mathcal{A} y T_2 el triángulo cuyos vértices son los tres puntos medios de los vértices de T_1 . Prueba que T_1 y T_2 tienen lados paralelos e igual baricentro. Calcula el centro y razón de la homotecia en \mathcal{A} que transforma T_2 en T_1 .

Ejercicio 2.1.36. Sean \mathcal{A} un espacio afín y $a_0, a_1, a_2 \in A$ los vértices de un triángulo con baricentro $b \in A$. Sean $a_3, a_4 \in \mathcal{A}$ los puntos intersección del lado que contiene a a_1 y a_2 con las rectas paralelas a los otros dos lados pasando por b. Demuestra que, salvo reordenación de los puntos a_3, a_4 , se tiene que

$$\overrightarrow{a_1a_3} = \overrightarrow{a_3a_4} = \overrightarrow{a_4a_2} = \frac{1}{3} \cdot \overrightarrow{a_1a_2}$$

Ejercicio 2.1.37. Sean \mathcal{A} un espacio afín de dimensión mayor o igual a dos y $f: \mathcal{A} \to \mathcal{A}$ una aplicación biyectiva (no necesariamente afín) que lleva rectas en rectas paralelas. Demuestra que

1. Toda recta que pasa por un punto fijo es una recta fija.

Sea $r = p + \overrightarrow{r}$ una recta, es decir, dim $\overrightarrow{r} = 1$ y $p \in \mathcal{A}$. Entonces, como f lleva rectas en rectas paralelas, tenemos que

$$f(r) = f(p) + \overrightarrow{r} = s + \overrightarrow{r} \qquad \forall s \in f(r)$$

Sea ahora p_0 el punto fijo, es decir, $f(p_0) = p_0$. Entonces:

$$f(r) = f(p_0) + \overrightarrow{r} = p_0 + \overrightarrow{r} = r$$

Por tanto, como f(r) = r, tenemos que f es una recta fija.

2. La recta que pasa por un punto y su imagen es una recta fija.

Sea ahora $r = p + \overrightarrow{r}$ una recta con $p_0, f(p_0) \in r$. Entonces, como ambos puntos están en la recta, tenemos que:

$$r = p_0 + \overrightarrow{r}$$
 $r = f(p_0) + \overrightarrow{r}$

Calculemos ahora f(r) para ver si es fija:

$$f(r) = f(p_0 + \overrightarrow{r}) = f(p_0) + \overrightarrow{r} = r$$

3. Si f tiene dos puntos fijos ha de ser la identidad.

Sean $p_0, p_1 \in \mathcal{A}$ los puntos fijos, es decir, $f(p_0) = p_0$ y $f(p_1) = p_1$.

- 4. Si f tiene un único punto fijo ha de ser una homotecia.
- 5. Si f no tiene ningún punto fijo ha de ser una traslación.

Ejercicio 2.1.38. Sean T_1, T_2 dos triángulos de un espacio afín \mathcal{A} , con vértices respectivos a_1, b_1, c_1 y a_2, b_2, c_2 . Supongamos que los triángulos no tienen vértices comunes y las tres rectas $R_{a_1a_2}$, $R_{b_1b_2}$ y $R_{c_1c_2}$ son paralelas o se cortan en el mismo punto. Demuestra que si

$$R_{a_1b_1} \| R_{a_2b_2} \quad \text{y} \quad R_{a_1c_1} \| R_{a_2c_2}$$

entonces $R_{b_1c_1}||R_{b_2c_2}$.

Ejercicio 2.1.39. Sea \mathcal{A} un espacio afín. Sea la aplicación $f: \mathcal{A} \to \mathcal{A}$ biyectiva y lleva rectas de \mathcal{A} en rectas paralelas, es decir:

$$r \| f(r) \qquad \forall r \subset \mathcal{A}, \ \dim r = 1$$

Demostrar que f es una dilatación.