

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

Bimodules and universal enveloping algebras associated to SVOAs

Shun Xu

School of Mathematical Sciences, Tongji University, Shanghai, 200092, China

ARTICLE INFO

Article history: Received 5 November 2024 Received in revised form 11 May 2025 Available online 20 June 2025 Communicated by A. Conca

MSC: 17B69

Keywords: Vertex operator superalgebras Bimodules Universal enveloping algebras

ABSTRACT

For a vertex operator superalgebra V and $n,m \in (1/2)\mathbb{Z}_+$, let $A_n(V) := V/O_n(V)$ denote the associative algebra, and $A_{n,m}(V) := V/O_{n,m}(V)$ denote the $A_n(V) - A_m(V)$ -bimodule, as constructed by W. Jiang and C. Jiang [10], where $O_n(V)$ and $O_{n,m}(V)$ are specific subspaces of V. We introduce a novel representation-theoretic method for constructing subspaces $\mathcal{O}_{n,m}(V)$ of V, similar to our previous work [8], and set $\mathcal{O}_n(V) = \mathcal{O}_{n,n}(V)$. We demonstrate that $\mathcal{O}_{n,m}(V) = O_{n,m}(V)$ and $\mathcal{O}_n(V) = O_n(V)$ through a method that is notably simpler and more straightforward compared to the approach detailed in [6] (also see [8]). Moreover, we offer a simpler definition for the bimodules $A_{n,m}(V)$, contributing towards the resolution of a conjecture proposed by Dong and Jiang [2] regarding superalgebras. Additionally, we demonstrate that the $A_n(V) - A_m(V)$ -bimodule $A_{n,m}(V)$ is a quotient of $U(V)_{n-m}$, where U(V) denotes the universal enveloping algebra of V, employing a method distinct from [6] (see also [8]), which is unified and simpler.

© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

1. Introduction

Let V be a vertex operator superalgebra. To study the representation theory of V, the associative algebra A(V) is constructed by Kac and Wang [11] (see also [13]). A bijective correspondence was established between the (isomorphism classes of) irreducible admissible V-modules and irreducible A(V)-modules. For an admissible V-module $M = \bigoplus_{n \in (1/2)\mathbb{Z}_+} M(n)$, M(0) becomes an A(V)-module. To study more M(n), W. Jiang and C. Jiang [10] (see also [4,3]) constructed associative algebras $A_n(V)$ for each $n \in (1/2)\mathbb{Z}_+$, where $A_0(V) = A(V)$, such that for $0 \le k \in (1/2)\mathbb{Z} \le n$, M(k) is an $A_n(V)$ -module. Let U be an $A_m(V)$ -module which cannot factor through $A_{m-1/2}(V)$, in [10], a Verma-type admissible V-module $\bar{M}(U)$ is constructed such that $\bar{M}(U)(m) = U$ and $\bar{M}(U)(0) \ne 0$. However, we do not know the explicit form of $\bar{M}(U)(k)$ for $k \ne m$. To overcome this issue, for $n, m \in (1/2)\mathbb{Z}_+$, in [10] (see also [5,2]), they constructed the $A_n(V) - A_m(V)$ -bimodule $A_{n,m}(V)$ such that $\bigoplus_{n \in (1/2)\mathbb{Z}_+} A_{n,m}(V) \otimes_{A_m(V)} U$ is isomorphic to $\bar{M}(U)$. The bimodule $A_{n,m}(V)$ is defined as the quotient of V by $O_{n,m}(V)$, and the associative algebra $A_n(V)$ is defined as the quotient of V by $O_{n,m}(V)$ are spans of certain specifically defined

E-mail address: shunxu@tongji.edu.cn.

products within V. To study the representation-theoretic significance of $O_n(V)$ and $O_{n,m}(V)$, we define a subspace $\mathcal{O}_{n,m}(V)$ of V in an extrinsic manner, utilizing representation theory:

$$\mathcal{O}_{n,m}(V) = \{ u \in V \mid o_{m-n}(u)|_{\Omega_m(M)} = 0 \text{ for all weak } V\text{-modules } M \}.$$

Set $\mathcal{O}_n(V) = \mathcal{O}_{n,n}(V)$. For the non-super case, Han [6] proved that $\mathcal{O}_{n,m}(V) = O_{n,m}(V)$ and $\mathcal{O}_n(V) = O_n(V)$. For the twisted case of vertex operator algebra, see our previous work [8]. For any vertex operator algebra V, finite automorphism g of V of order T and $m, n \in (1/T)\mathbb{Z}_+$, we construct a family of associative algebras $\mathcal{A}_{g,n}(V) := V/\mathcal{O}_{g,n}(V)$ and $\mathcal{A}_{g,n}(V) - \mathcal{A}_{g,m}(V)$ -bimodules $\mathcal{A}_{g,n,m}(V) := V/\mathcal{O}_{g,n,m}(V)$ from the point of view of representation theory, where $\mathcal{O}_{g,n}(V)$ and $\mathcal{O}_{g,n,m}(V)$ are defined similarly to the non-twisted case. We prove that the algebra $\mathcal{A}_{g,n}(V)$ is identical to the algebra $\mathcal{A}_{g,n}(V) := V/\mathcal{O}_{g,n}(V)$ constructed by Dong, Li and Mason [3], and that the bimodule $\mathcal{A}_{g,n,m}(V)$ is identical to $\mathcal{A}_{g,n,m}(V) := V/\mathcal{O}_{g,n,m}(V)$ which was constructed by Dong and Jiang [1]. Returning to the case of vertex operator superalgebras, in this paper, we show that $\mathcal{O}_{n,m}(V) = \mathcal{O}_{n,m}(V)$ and $\mathcal{O}_{n}(V) = \mathcal{O}_{n}(V)$ through a method that is notably simpler and more straightforward compared to the approach detailed in [6] (also see [8]), thus providing a unified definition for $\mathcal{A}_n(V)$ and $\mathcal{A}_{n,m}(V)$ (see Theorem 3.2).

Another important associative algebra related to a vertex operator superalgebra V is its universal enveloping algebra U(V). This algebra is crucial because any weak V-module M can be naturally regarded as a U(V)-module, and the structure of M as a weak V-module is fully determined by its U(V)-module structure. When V is a vertex operator algebra, Frenkel and Zhu [5] noted that the Zhu algebra A(V) is isomorphic to a quotient of $U(V)_0$. It has been established in [9] (see also [7,5]) that $A_n(V)$ is a quotient algebra of $U(V)_0$ for any $n \in \mathbb{Z}_+$. Additionally, Han [6] demonstrated that the $A_n(V) - A_m(V)$ -bimodule $A_{n,m}(V)$ is a quotient of $U(V)_{n-m}$ for any $n, m \in \mathbb{Z}_+$. In our previous work [8], we generalized the above approach to the twisted case. We also prove that the $A_g(V) - A_g(V)$ -bimodule $A_g(V) - A_g(V)$ -bimodule $A_g(V) - A_g(V)$ -bimodule $A_g(V) - A_g(V)$ -bimodule $A_g(V) - A_g(V)$ -bimodule and universal enveloping algebra $U(V[g])_{n-m}^{-m-1/T}$, where $U(V[g])_k$ is the subspace of degree k of the $(1/T)\mathbb{Z}$ -graded universal enveloping algebra U(V[g]) of V with respect to g and $U(V[g])_k^l$ is some subspace of $U(V[g])_k$. Whether in the untwisted case or the twisted case, their strategy is to first prove the algebra isomorphism [9,7] and then apply the universal property of Verma-type admissible V-modules to prove the bimodule isomorphism [6,8]. Returning to the case of vertex operator superalgebras, in this paper, we demonstrate that the $A_n(V) - A_m(V)$ -bimodule $A_{n,m}(V)$ is a quotient of $U(V)_{n-m}$ employing a method distinct from [6] (see also [8]), which is unified and simpler (see Theorem 6.4).

In our previous work [8], we show that all these bimodules $A_{g,n,m}(V)$ associated to the vertex operator algebra V can be defined in a simpler way. In this paper, we will do similar things for the bimodules $A_{n,m}(V) = V/O_{n,m}(V)$ associated to the vertex operator superalgebra V. For technical reasons, $O_{n,m}(V)$ is defined as the sum of three subspaces $O'_{n,m}(V)$, $O''_{n,m}(V)$, and $O'''_{n,m}(V)$. However, it has been conjectured that $O_{n,m}(V) = O'_{n,m}(V)$ (see [2]). We advance toward this conjecture by proving that $O''_{n,m}(V)$ is superfluous and that $O'_{n,m}(V)$ can be replaced by its subspace $V^{\bar{s}} + L_{n,m}(V)$, where $\widehat{m} - \widehat{n} \neq \bar{s}$. Thus,

$$O_{n,m}(V) = V^{\bar{s}} + L_{n,m}(V) + O''_{n,m}(V)$$
 (see Theorem 4.7),

where $\overline{\hat{m} - \hat{n}} \neq \bar{s}$. This refinement simplifies the definition of the bimodules $A_{n,m}(V)$.

The organization of this paper is as follows. In Section 2, we review the definitions of vertex operator superalgebras, weak modules, and admissible modules. In Section 3, we define a subspace $\mathcal{O}_{n,m}(V)$ of V from a representation-theoretic perspective and set $\mathcal{O}_n(V) = \mathcal{O}_{n,n}(V)$. We demonstrate using a simpler approach than [6] (see also [8]) that $\mathcal{O}_{n,m}(V) = O_{n,m}(V)$ and $\mathcal{O}_n(V) = O_n(V)$. In Section 4, we provide a simplified definition of the bimodules $A_{n,m}(V)$, making progress toward the conjecture of Dong and Jiang [2]. In Section 5, we review the definition of the universal enveloping algebra U(V) for vertex operator superalgebras V. In Section 6, we show that the $A_n(V)-A_m(V)$ -bimodule $A_{n,m}(V)$ is a quotient of $U(V)_{n-m}$

for any $n, m \in (1/2)\mathbb{Z}_+$, employing a method distinct from that used in [6] (see also [8]), which is unified and simpler.

2. Basics

We recall definitions of the vertex operator superalgebras, weak modules and admissible modules in this section. For $k \in \mathbb{Z}$, let \bar{k} denote the image of k in $\mathbb{Z}/2\mathbb{Z}$.

Definition 2.1. A vertex operator superalgebra is a 4-tuple $(V, Y, \mathbf{1}, \omega)$, where $V = \bigoplus_{n \in (1/2)\mathbb{Z}} V_n = V^{\overline{0}} \bigoplus V^{\overline{1}}$ is a $(1/2)\mathbb{Z}$ -graded vector space with dim $V_n < \infty$ for all n and $V_n = 0$ for $n \ll 0$, where $V^{\overline{0}} = \bigoplus_{n \in \mathbb{Z}} V_n$ and $V^{\overline{1}} = \bigoplus_{n \in (1/2) + \mathbb{Z}} V_n$. $\mathbf{1} \in V_0$, $\omega \in V_2$ and Y is a linear map from V to End $V\left[\left[z, z^{-1}\right]\right]$ sending $u \in V$ to $Y(u, z) = \sum_{n \in \mathbb{Z}} u_n z^{-n-1}$ satisfying the following axioms:

- (1) $Y(\mathbf{1}, z) = \mathrm{id}_V$ and $u_n \mathbf{1} = \delta_{n,-1} u$ for any $n \ge -1$ and $u \in V$;
- (2) $u_n v \in V^{\overline{i+j}}$ for any $u \in V^{\overline{i}}$, $v \in V^{\overline{j}}$ and $n \in \mathbb{Z}$; for any $u, v \in V$, $u_n v = 0$ for $n \gg 0$;
- (3) the Virasoro algebra relations hold: $[L(m), L(n)] = (m-n)L(m+n) + \frac{m^3 m}{12}c_V$ for $m, n \in \mathbb{Z}$, where $c_V \in \mathbb{C}$ and $L(m) = \omega_{m+1}$ for $m \in \mathbb{Z}$; $L(0)|_{V_m} = m \operatorname{id}_{V_m}$ for $m \in (1/2)\mathbb{Z}$ and $Y(L(-1)u, z) = \frac{d}{dz}Y(u, z)$ for $u \in V$;
- (4) for any $u, v \in V, m, l, n \in \mathbb{Z}$, the Jacobi identity holds:

$$\sum_{i\geq 0} (-1)^i \binom{l}{i} \left(u_{m+l-i} v_{n+i} - (-1)^{\tilde{u}\tilde{v}} (-1)^l v_{n+l-i} u_{m+i} \right) = \sum_{i\geq 0} \binom{m}{i} \left(u_{l+i} v \right)_{m+n-i},$$

where $\tilde{x}=0$ for $x\in V^{\overline{0}}$ and $\tilde{x}=1$ for $x\in V^{\overline{1}}$. Whenever \tilde{x} appears, we always assume that $x\in V^{\overline{0}}$ or $V^{\overline{1}}$.

For any $n \in (1/2)\mathbb{Z}$, elements in V_n are said to be *homogeneous*, and if $u \in V_n$, we define wt u = n. As a convention, whenever wt u appears, we always assume that u is homogeneous.

Definition 2.2. A weak V-module is a vector space M equipped with a linear map from V to End M $[[z, z^{-1}]]$ sending $u \in V$ to $Y(u, z) = \sum_{n \in \mathbb{Z}} u_n z^{-n-1}$ satisfying the following axioms:

- (1) $Y_M(\mathbf{1}, z) = id_M;$
- (2) for any $u \in V, w \in M, u_n w = 0$ for $n \gg 0$;
- (3) for any $u, v \in V, m, l, n \in \mathbb{Z}$, the following Jacobi identity holds on M:

$$\sum_{i\geq 0} (-1)^i \binom{l}{i} \left(u_{m+l-i} v_{n+i} - (-1)^{\tilde{u}\tilde{v}} (-1)^l v_{n+l-i} u_{m+i} \right) = \sum_{i\geq 0} \binom{m}{i} \left(u_{l+i} v_{m+n-i} \right). \tag{2.1}$$

Definition 2.3. An admissible V-module M is a weak V-module that carries a $(1/2)\mathbb{Z}_+$ -grading $M = \bigoplus_{n \in (1/2)\mathbb{Z}_+} M(n)$ with $u_m M(n) \subseteq M(\text{wt } u + n - m - 1)$ for any $u \in V, m \in \mathbb{Z}$ and $n \in (1/2)\mathbb{Z}_+$.

3. $A_n(V) - A_m(V)$ -Bimodules $A_{n,m}(V)$

Let $(V, Y, \mathbf{1}, \omega)$ be a vertex operator superalgebra. For any weak V-module M and $n \in (1/2)\mathbb{Z}$, we define a linear map $o_n(\cdot): V \to \operatorname{End} M$ by $o_n(v) = v_{\operatorname{wt} v - 1 + n}$, and set $o(\cdot) = o_0(\cdot)$. Note that $o_n(v) = 0$ if $\operatorname{wt} v - 1 + n \notin \mathbb{Z}$. For $n, m \in (1/2)\mathbb{Z}_+$, define

$$\Omega_n(M) = \left\{ w \in M \mid o_{n+i}(v)w = 0 \text{ for all } v \in V \text{ and } 0 < i \in (1/2)\mathbb{Z} \right\}.$$

$$\mathcal{O}_{n,m}(V) = \left\{ u \in V \mid o_{m-n}(u)|_{\Omega_m(M)} = 0 \text{ for all weak V-modules M} \right\}.$$

And set $\mathcal{O}_n(V) = \mathcal{O}_{n,n}(V)$.

For any $n \in (1/2)\mathbb{Z}$, there exists a unique $\hat{n} \in \{0,1\}$ such that $n = \lfloor n \rfloor + \frac{\hat{n}}{2}$, where $\lfloor \cdot \rfloor$ denotes the floor function. This decomposition is utilized whenever we refer to $n \in (1/2)\mathbb{Z}$. For $r, i \in \{0,1\}$, define $\delta_i(r) = 1$ if $i \geq r$ and $\delta_i(r) = 0$ if i < r in this paper. As a convention, set $\delta_i(2) = 0$ for i = 0, 1.

For $u \in V^{\bar{r}}, v \in V$ and $n, m, p \in (1/2)\mathbb{Z}$, define the product $*_{m,n}^n$ on V as follows:

$$u *_{m,p}^{n} v = \sum_{j=0}^{\lfloor p \rfloor} (-1)^{j} \binom{\lfloor m \rfloor + \lfloor n \rfloor - \lfloor p \rfloor + \varepsilon + j}{j} \operatorname{Res}_{z} \frac{(1+z)^{\operatorname{wt} u + \lfloor m \rfloor + \delta_{\tilde{m}}(r) - 1 + r/2}}{z^{\lfloor m \rfloor + \lfloor n \rfloor - \lfloor p \rfloor + \varepsilon + j + 1}} Y(u, z) v,$$

if $\widehat{p} - \widehat{n} = \overline{r}$ and $n, m, p \ge 0$, where $\varepsilon = -1 + \delta_{\widehat{m}}(r) + \delta_{\widehat{n}}(2 - r)$; and $u *_{m,p}^n v = 0$ otherwise. Set $*_m^n = *_{m,m}^n$, $\overline{*}_m^n = *_{m,n}^n$ and $*_n = *_n^n = \overline{*}_n^n$. It is easy to see that

$$\mathbf{1}\bar{*}_{m}^{n}v = v \text{ for } v \in V. \tag{3.1}$$

Let $m, n \in (1/2)\mathbb{Z}_+$, define $O'_{n,m}(V) = V^{\bar{r}} + \operatorname{span}\{u \circ_m^n v \mid u, v \in V\} + L_{n,m}(V)$, where $\overline{\hat{m} - \hat{n}} \neq \bar{r}$, $L_{n,m}(V) = \operatorname{span}\{(L(-1) + L(0) + m - n)u \mid u \in V^{\bar{s}} \text{ such that } \overline{\hat{m} - \hat{n}} = \bar{s}\}$ and for $u, v \in V$,

$$u \circ_m^n v = \begin{cases} \operatorname{Res}_z \frac{(1+z)^{\operatorname{wt}(u) + \lfloor m \rfloor}}{z^{\lfloor m \rfloor + \lfloor n \rfloor + 2}} Y(u, z) v, & \text{if } u \in V^{\overline{0}}, \\ \operatorname{Res}_z \frac{(1+z)^{\operatorname{wt}(u) + \lfloor m \rfloor + \delta_{\hat{m}}(1) - 1/2}}{z^{\lfloor m \rfloor + \lfloor n \rfloor + \delta_{\hat{m}}(1) + \delta_{\hat{n}}(1) + 1}} Y(u, z) v, & \text{if } u \in V^{\overline{1}}. \end{cases}$$

Set $O_n(V) = O'_{n,n}(V)$ and $A_n(V) = V/O_n(V)$. For any $u, a, b, c \in V$ and any $p_1, p_2, p_3 \in (1/2)\mathbb{Z}_+$, we define $O''_{n,m}(V)$ as the linear span of

$$u *_{m,p_3}^n \left(\left(a *_{p_1,p_2}^{p_3} b \right) *_{m,p_1}^{p_3} c - a *_{m,p_2}^{p_3} \left(b *_{m,p_1}^{p_2} c \right) \right).$$

Define $O_{n,m}^{\prime\prime\prime}(V) = \sum_{p_1,p_2 \in (1/2)\mathbb{Z}_+} \left(V *_{p_1,p_2}^n O_{p_2,p_1}^{\prime}(V)\right) *_{m,p_1}^n V$, $O_{n,m}(V) = O_{n,m}^{\prime}(V) + O_{n,m}^{\prime\prime}(V) + O_{n,m}^{\prime\prime\prime}(V)$ and $A_{n,m}(V) = V/O_{n,m}(V)$. Take $u = \mathbf{1}$ and $p_3 = n$, by (3.1), we obtain

$$(a *_{p_1, p_2}^n b) *_{m, p_1}^n c - a *_{m, p_2}^n (b *_{m, p_1}^{p_2} c) \in O''_{n, m}(V).$$

$$(3.2)$$

The subsequent theorem is derived from [10, Theorem 3.2, Theorem 3.5, Theorem 3.7 and Theorem 4.7].

Theorem 3.1. (1) The product $*_n$ induces an associative algebra structure on $A_n(V)$ with the identity element given by $\mathbf{1} + O_n(V)$.

- (2) For a weak V-module M, $\Omega_n(M)$ is an $A_n(V)$ -module induced by the map $a \mapsto o(a)$ for $a \in V^{\bar{0}}$. If $M = \bigoplus_{k \in (1/2)\mathbb{Z}_+} M(k)$ is an admissible V-module, then $\bigoplus_{0 \leq k \in (1/2)\mathbb{Z} \leq n} M(k) \subseteq \Omega_n(M)$, and M(k) is an $A_n(V)$ -module for $0 \leq k \in (1/2)\mathbb{Z} \leq n$.
 - (3) For any $A_n(V)$ -module U, there exists an admissible V-module $\bar{M}(U)$ such that $\bar{M}(U)(n) = U$.
- (4) $A_{n,m}(V)$ is an $A_n(V) A_m(V)$ -bimodule for $n, m \in (1/2)\mathbb{Z}_+$, where the left and right actions of $A_n(V)$ and $A_m(V)$ are induced by $\bar{*}_m^n$ and $*_m^n$, respectively.

Let U be an $A_m(V)$ -module. Define $M(U) = \bigoplus_{n \in (1/2)\mathbb{Z}_+} A_{n,m}(V) \otimes_{A_m(V)} U$. Then M(U) is $(1/2)\mathbb{Z}_+$ -graded with $M(U)(n) = A_{n,m}(V) \otimes_{A_m(V)} U$ for the convention that M(U)(i) = 0 if i < 0. For $u, v \in V, w \in U$, $p \in \mathbb{Z}$, and $n \in (1/2)\mathbb{Z}_+$, set d = n + wt u - p - 1, define a linear map u_p on M(U)(n) mapping to M(U)(d) by $u_p((v + O_{n,m}(V)) \otimes w) = (u *_{m,n}^d v + O_{d,m}(V)) \otimes w$, if $d \ge 0$; and $u_p((v + O_{n,m}(V)) \otimes w) = 0$

otherwise. Then we form a generating function $Y_{M(U)}(u,z) = \sum_{p \in \mathbb{Z}} u_p z^{-p-1}$. And M(U) is an admissible V-module by [10, Theorem 6.13].

Theorem 3.2. For any $n, m \in (1/2)\mathbb{Z}_+$, $O_n(V) = \mathcal{O}_n(V)$ and $O_{n,m}(V) = \mathcal{O}_{n,m}(V)$.

Proof. Consider the admissible V-module $M(A_m(V)) = \bigoplus_{k \in (1/2)\mathbb{Z}_+} A_{k,m}(V)$. By Theorem 3.1 (2), we have

$$A_{m,m}(V) = M(A_m(V))(m) \subseteq \Omega_m(M(A_m(V))).$$

For any $u \in \mathcal{O}_{n,m}(V)$, by the definition of $\mathcal{O}_{n,m}(V)$ and Theorem 3.1 (4), we have

$$0 = o_{m-n}(u) \left(\mathbf{1} + O_{m,m}(V) \right) = u *_{m}^{n} \mathbf{1} + O_{n,m}(V) = u + O_{n,m}(V),$$

which implies $\mathcal{O}_{n,m}(V) \subseteq O_{n,m}(V)$. By [10, Corollary 6.3], $O_{n,m}(V) \subseteq \mathcal{O}_{n,m}(V)$. Thus $\mathcal{O}_{n,m}(V) = O_{n,m}(V)$. Consider admissible V-module $\bar{M}(A_n(V))$ from Theorem 3.1 (3), so $\bar{M}(A_n(V))(n) = A_n(V) \subseteq \Omega_n(\bar{M}(A_n(V)))$ by Theorem 3.1 (2). For any $u \in \mathcal{O}_n(V)$, we have

$$0 = o(u)(\mathbf{1} + O_n(V)) = u *_n \mathbf{1} + O_n(V) = u + O_n(V),$$

which implies $\mathcal{O}_n(V) \subseteq O_n(V)$, then $O_n(V) = \mathcal{O}_n(V)$. \square

According to [6, Remark 3.4], it is hard to give a direct proof of $O_n(V) = \mathcal{O}_n(V)$ and $O_{n,m}(V) = \mathcal{O}_{n,m}(V)$. However, we provide a simple and direct proof in Theorem 3.2.

4. Refining bimodules

In this section, we will provide a refined definition of the $A_n(V)-A_m(V)$ -bimodule $A_{n,m}(V)$ using method in our previous work [8, Section 6] (see also [6]).

Notation 4.1. For the purposes of this discussion, we adopt the following conventions:

- (1) For $m \in (1/2)\mathbb{Z}_+$ and $i \in \mathbb{Z}$, define $\binom{m}{i}$ to be 1 if i = 0, and 0 if i < 0.
- (2) For $k, l \in (1/2)\mathbb{Z}$, we define the sum $\sum_{i=k}^{l} a_i$ as $\sum_{i \in \mathbb{Z}_{k,l}} a_i$, where $\mathbb{Z}_{k,l} = \mathbb{Z} \cap [l,k]$, if $l \leq k$; and $\mathbb{Z}_{k,l} = \mathbb{Z} \cap [k,l]$ otherwise.
- (3) For $n \in (1/2)\mathbb{Z}_+$, $a \in V^{\bar{r}}$, and $b \in V$, set $q = -1 + \lfloor n \rfloor + \delta_{\hat{n}}(r) + r/2$, define

$$f_i(a,b) = \frac{(1+z)^{\operatorname{wt} a+q}}{z^i} Y(a,z)b \text{ for } i \in \mathbb{Z}.$$

In the subsequent lemmas, Notation 4.1(2) will be utilized. Setting T=2 in [8, Lemma 6.2], then we have:

Lemma 4.2. Let $n \in (1/2)\mathbb{Z}$ and $l \in \mathbb{Z}$. Then, the following identity holds:

$$\sum_{j=0}^{n+1+l} (-1)^j \binom{l}{j} \sum_{i=0}^{n+1+l-j} (-1)^i \binom{-l+i+j-1}{i} \frac{1}{z^{i+j}} = 1.$$

Lemma 4.3. Let $n, k \in (1/2)\mathbb{Z}_+$, $a \in V^{\bar{r}}$, $b \in V$ and $l, j \in \mathbb{Z}$, set $q = -1 + \lfloor n \rfloor + \delta_{\hat{n}}(r) + r/2$, then the following identity holds:

$$a *_{n,k+1+q+l-j}^{k} b = \sum_{i=0}^{k+1+q+l-j} (-1)^{i} {\binom{-l+i+j-1}{i}} \operatorname{Res}_{z} f_{i+j-l}(a,b).$$

Proof. Observe that $\lfloor k+1+q+l-j \rfloor = \lfloor n \rfloor + \lfloor k+r/2 \rfloor + \delta_{\hat{n}}(r) + l-j$ and $\lfloor k \rfloor - \lfloor k+r/2 \rfloor + \delta_{\hat{k}}(2-r) = 0$. The lemma follows from the definition of the product $*_{m,p}^n$ and Notation 4.1 (2)-(3). \square

Let $m \in (1/2)\mathbb{Z}_+$, set $M^{(m)} = \bigoplus_{n \in (1/2)\mathbb{Z}_+} V/O''_{n,m}(V)$, which is clearly $(1/2)\mathbb{Z}_+$ -graded with $M^{(m)}(n) = V/O''_{n,m}(V)$. For $u,v \in V$ and $p \in \mathbb{Z}$, set d = n + wt u - p - 1, define a linear map u_p on M(U)(n) mapping to M(U)(d) by $u_p\left(v + O''_{n,m}(V)\right) = u *_{m,n}^d v + O''_{d,m}(V)$, if $d \geq 0$; and $u_p\left(v + O''_{n,m}(V)\right) = 0$ otherwise. By (3.2), we know $V *_{m,k}^n O''_{k,m}(V) \subseteq O''_{n,m}(V)$ for $k \in (1/2)\mathbb{Z}_+$. Thus, this action is well-defined. Then we form a generating function $Y_{M^{(m)}}(u,z) = \sum_{p \in \mathbb{Z}} u_p z^{-p-1}$.

Lemma 4.4. Let $m \in (1/2)\mathbb{Z}_+$. Then

- (1) for any $u \in V$ and $p \in \mathbb{Z}$, $u_n(M^{(m)}(n)) = 0$ if p > wt u + n 1;
- (2) $Y_{M^{(m)}}(\mathbf{1}, z) = id;$
- (3) for any $a \in V^{\bar{r}}, b \in V^{\bar{s}}$ and $n \in (1/2)\mathbb{Z}_+$, we have

$$\left(z_{2}+z_{0}\right)^{\operatorname{wt} a+q}Y_{M^{(m)}}\left(Y\left(a,z_{0}\right)b,z_{2}\right)=\left(z_{0}+z_{2}\right)^{\operatorname{wt} a+q}Y_{M^{(m)}}\left(a,z_{0}+z_{2}\right)Y_{M^{(m)}}\left(b,z_{2}\right)$$

or equivalently, for any $l \in \mathbb{Z}$,

$$\begin{split} &\operatorname{Res}_{z_{0}} z_{0}^{l} \left(z_{2} + z_{0}\right)^{\operatorname{wt} a + q} z_{2}^{\operatorname{wt} b - q} Y_{M^{(m)}} \left(Y\left(a, z_{0}\right) b, z_{2}\right) \\ &= \operatorname{Res}_{z_{0}} z_{0}^{l} \left(z_{0} + z_{2}\right)^{\operatorname{wt} a + q} z_{2}^{\operatorname{wt} b - q} Y_{M^{(m)}} \left(a, z_{0} + z_{2}\right) Y_{M^{(m)}} \left(b, z_{2}\right) \end{split}$$

on $M^{(m)}(n)$, where $q = -1 + |n| + \delta_{\hat{n}}(r) + r/2$.

Proof. (1) follows from the definition of u_p . And for (2), it is sufficient to show $\mathbf{1}_p = \delta_{p,-1}$ id on $M^{(m)}(n)$ for any $n \in (1/2)\mathbb{Z}_+$. By (1), $\mathbf{1}_p = 0$ on $M^{(m)}(n)$ if p > n-1. Now considering $\mathbb{Z} \ni p \le n-1$, then for any $v \in V$, set $d = \lfloor m \rfloor + \lfloor n-p-1 \rfloor - \lfloor n \rfloor$, we have

$$\begin{split} &\mathbf{1}_{p}(v+O''_{n,m}(V)) = \mathbf{1} *^{n-p-1}_{m,n} v + O''_{n-p-1,m}(V) \\ &= \sum_{i=0}^{\lfloor n \rfloor} (-1)^{i} \binom{d+i}{i} \operatorname{Res}_{z} \frac{(1+z)^{\lfloor m \rfloor}}{z^{d+i+1}} Y(\mathbf{1},z) v + O''_{n-p-1,m}(V) \\ &= \sum_{i=0}^{\lfloor n \rfloor} (-1)^{i} \binom{d+i}{i} \binom{\lfloor m \rfloor}{d+i} v + O''_{n-p-1,m}(V) \\ &= \sum_{i=0}^{\lfloor n \rfloor} (-1)^{i} \binom{\lfloor m \rfloor - p+i-1}{i} \binom{\lfloor m \rfloor}{\lfloor m \rfloor - p+i-1} v + O''_{n-p-1,m}(V) \\ &= \sum_{i=0}^{\lfloor n \rfloor} (-1)^{i} \binom{\lfloor m \rfloor}{p+1} \binom{p+1}{i} v + O''_{n-p-1,m}(V) \\ &= \delta_{p,-1} v + O''_{n-p-1,m}(V) \qquad \qquad \text{(by Notation 4.1 (1))} \\ &= \delta_{p,-1} (v + O''_{n,m}(V)). \end{split}$$

Thus, (2) holds. The idea of the proof of (3) comes essentially from [2, Lemma 5.10] (see also [6, Lemma 3.9]). For $v + O''_{n,m}(V) \in M^{(m)}(n)$, $q = -1 + \lfloor n \rfloor + \delta_{\hat{n}}(r) + r/2$ and let $\alpha \in \{0,1\}$ be such that $\bar{\alpha} = \hat{n} - r - s$, we have

$$\begin{split} &\operatorname{Res}_{z_0} z_0^l \left(z_2 + z_0\right)^{\operatorname{wt} a + q} z_2^{\operatorname{wt} b - q} Y_{M^{(m)}} \left(Y\left(a, z_0\right) b, z_2\right) \left(v + O_{n,m}''(V)\right) \\ &= \sum_{j \in \mathbb{Z}_+} \binom{\operatorname{wt} a + q}{j} z_2^{\operatorname{wt} a + \operatorname{wt} b - j} Y_{M^{(m)}} \left(a_{j+l} b, z_2\right) \left(v + O_{n,m}''(V)\right) \\ &= \sum_{j \in \mathbb{Z}_+} \binom{\operatorname{wt} a + q}{j} \sum_{k \in \alpha/2 + \mathbb{Z}_+} z_2^{l+k-n+1} \sum_{j \in \mathbb{Z}_+} z_j^{l+k-n+1} \left(a_{j+l} b\right)_{\operatorname{wt} a + \operatorname{wt} b - j - l - 2 - k + n} \left(v + O_{n,m}''(V)\right) \\ &= \sum_{k \in \alpha/2 + \mathbb{Z}_+} z_2^{l+k-n+1} \sum_{j \in \mathbb{Z}_+} \binom{\operatorname{wt} a + q}{j} \left(a_{j+l} b\right) *_{m,n}^k v + O_{k,m}''(V) \\ &= \sum_{k \in \alpha/2 + \mathbb{Z}_+} z_2^{l+k-n+1} \left(\operatorname{Res}_z \frac{(1+z)^{\operatorname{wt} a + q}}{z^{-l}} Y(a,z) b\right) *_{m,n}^k v + O_{k,m}''(V) \\ &= \sum_{k \in \alpha/2 + \mathbb{Z}_+} z_2^{l+k-n+1} \operatorname{Res}_z \left(f_{-l}(a,b) *_{m,n}^k v\right) + O_{k,m}''(V) \qquad \text{(by Notation 4.1(3))} \\ &= \sum_{k \in \alpha/2 + \mathbb{Z}_+} z_2^{l+k-n+1} \sum_{j = 0}^{k+1+q+l} \left(-1\right)^j \binom{l}{j} \sum_{i = 0}^{k+1+q+l-j} \left(-1\right)^i \binom{-l+i+j-1}{i} \\ &\times \operatorname{Res}_z \left(f_{i+j-l}(a,b) *_{m,n}^k v\right) + O_{k,m}''(V) \qquad \text{(by Notation 4.1(2)-(3) and Lemma 4.2)} \\ &= \sum_{k \in \alpha/2 + \mathbb{Z}_+} z_2^{l+k-n+1} \sum_{j = 0}^{k+1+q+l} \left(-1\right)^j \binom{l}{j} \left(a *_{n,k+1+q+l-j}^k b\right) *_{m,n}^k v\right) + O_{k,m}''(V) \\ &= \sum_{k \in \alpha/2 + \mathbb{Z}_+} z_2^{l+k-n+1} \sum_{j \in \mathbb{Z}_+} \left(-1\right)^j \binom{l}{j} a *_{m,k+1+q+l-j}^k \left(b *_{m,n}^{k+1+q+l-j} v\right) + O_{k,m}''(V) \\ &= \sum_{j \in \mathbb{Z}_+} \sum_{-n \le i \in -s/2 + \mathbb{Z}_-} \binom{l}{j} \left(-1\right)^j z_2^{i+j-q} a *_{m,n+i}^{-l+i+j-1-q+n} \left(b *_{m,n}^{k+1+q+l-j} v\right) + O_{k,m}''(V) \\ &= \sum_{j \in \mathbb{Z}_+} \binom{l}{j} \left(-1\right)^j a_{\operatorname{wt} a + q + l - j} \sum_{-n \le i \in -s/2 + \mathbb{Z}_-} z_2^{i+j-q} b_{\operatorname{wt} b - 1 - i} \left(v + O_{n,m}''(V)\right) \\ &= \sum_{j \in \mathbb{Z}_+} \binom{l}{j} \left(-1\right)^j a_{\operatorname{wt} a + q + l - j} z_2^{\operatorname{wt} b + j - q} Y_{M^{(m)}} \left(b, z_2\right) \left(v + O_{n,m}''(V)\right) \\ &= \operatorname{Res}_{z_0} z_0^l \left(z_0 + z_2\right)^{\operatorname{wt} a + q} z_2^{\operatorname{wt} b - q} Y_{M^{(m)}} \left(a, z_0 + z_2\right) Y_{M^{(m)}} \left(b, z_2\right) \left(v + O_{n,m}''(V)\right), \end{aligned}$$

proving (3). \square

As an immediate consequence of Lemma 4.4 and [12, Proposition 2.3.3], we have:

Proposition 4.5. For any $m \in (1/2)\mathbb{Z}_+$, $M^{(m)}$ is an admissible V-module.

For $u \in V^{\bar{r}}$ and $v \in V^{\bar{s}}$, if $\overline{\hat{m} - \hat{n}} = \overline{r + s}$, then it follows from [13] (see also [10]) that

$$Y(v,z)u \equiv (-1)^{\tilde{u}\tilde{v}}(1+z)^{-\operatorname{wt} u - \operatorname{wt} v - m + n}Y\left(u, \frac{-z}{1+z}\right)v \bmod L_{n,m}(V),$$

where $n, m \in (1/2)\mathbb{Z}_+$. From [10, Lemma 4.2 and Corollary 4.3], we have:

Lemma 4.6. For $u \in V^{\bar{r}}$ and $v \in V^{\bar{s}}$, if $\overline{\hat{p} - \hat{n}} = \bar{r}$, $\overline{\hat{m} - \hat{p}} = \bar{s}$ and $m + n - p \ge 0$, then

$$u *_{m,p}^{n} v - v *_{m,m+n-p}^{n} u - \text{Res}_{z}(1+z)^{\text{wt } u-1+p-n} Y(u,z) v \in L_{n,m}(V).$$

In particular, taking p = m and v = 1 we have $u *_m^n 1 - u \in L_{n,m}(V)$.

Theorem 4.7. We have $O_{n,m}(V) = V^{\bar{s}} + L_{n,m}(V) + O''_{n,m}(V)$ with $\overline{\hat{m} - \hat{n}} \neq \bar{s}$.

Proof. By Proposition 4.5 and Theorem 3.1 (2), $M^{(m)}(m) = V/O''_{m,m}(V) \subseteq \Omega_m(M^{(m)})$. Note that $O_{n,m}(V) = \left(O_{n,m}(V) \cap V^{\bar{0}}\right) \bigoplus \left(O_{n,m}(V) \cap V^{\bar{1}}\right)$ by $V = V^{\bar{0}} \bigoplus V^{\bar{1}}$ and $V^{\bar{s}} \subseteq O_{n,m}(V)$, where $\overline{\hat{m} - \hat{n}} \neq \bar{s}$. For any $u \in O_{n,m}(V) \cap V^{\bar{r}} = \mathcal{O}_{n,m}(V) \cap V^{\bar{r}}$ (see Theorem 3.2), then by the definition of $\mathcal{O}_{n,m}(V)$,

$$0 = o_{m-n}(u)(\mathbf{1} + O''_{m,m}(V)) = u *_{m}^{n} \mathbf{1} + O''_{n,m}(V),$$

that is $u *_m^n \mathbf{1} \in O''_{n,m}(V)$. If $\overline{\hat{m} - \hat{n}} = \bar{r}$, then by Lemma 4.6.

$$u = u - u *_{m}^{n} \mathbf{1} + u *_{m}^{n} \mathbf{1} \in L_{n,m}(V) + O_{n,m}''(V);$$

otherwise, $u \in V^{\bar{s}}$, where $\overline{\hat{m} - \hat{n}} \neq \bar{s}$. Thus by the definition of $O'_{n,m}(V)$, $O_{n,m}(V) = V^{\bar{s}} + L_{n,m}(V) + O''_{n,m}(V)$, where $\overline{\hat{m} - \hat{n}} \neq \bar{s}$. \square

5. Universal enveloping algebra U(V)

In this section, we recall the universal enveloping algebra associated to SVOAs (cf. [6, Section 4]). Let V be a vertex operator superalgebra. Let $\hat{V} = L(V)/DL(V)$, where $L(V) = V \otimes \mathbb{C}\left[t,t^{-1}\right]$ and $D = 1 \otimes \frac{d}{dt} + L(-1) \otimes 1$. Denote by a(m) the image of $a \otimes t^m \in L(V)$ in \hat{V} . For $a,b \in V$ and $m,k \in \mathbb{Z}$, define the Lie super-bracket as follows:

$$[a(m), b(k)] = \sum_{i=0}^{\infty} {m \choose i} (a_i b) (m+k-i).$$

Then \hat{V} is a $(1/2)\mathbb{Z}$ -graded Lie superalgebra with the degree of a(m) defined to be wt a-m-1 for homogeneous $a \in V$. Let $U(\hat{V})$ be the universal enveloping algebra of the Lie superalgebra \hat{V} . Then the $(1/2)\mathbb{Z}$ -grading on \hat{V} induces a $(1/2)\mathbb{Z}$ -grading on $U(\hat{V}) = \bigoplus_{m \in (1/2)\mathbb{Z}} U(\hat{V})_m$. Following from [6], we set

$$U(\hat{V})_m^k = \sum_{(1/2)\mathbb{Z}\ni i \le k} U(\hat{V})_{m-i} U(\hat{V})_i$$

for $(1/2)\mathbb{Z} \ni k < 0$ and $U(\hat{V})_m^0 = U(\hat{V})_m$, then $U(\hat{V})_m^k \subseteq U(\hat{V})_m^{k+1/2}$ and

$$\bigcap_{k \in -(1/2)\mathbb{Z}_+} U(\hat{V})_m^k = 0, \quad \bigcup_{k \in -(1/2)\mathbb{Z}_+} U(\hat{V})_m^k = U(\hat{V})_m.$$

Thus, $\left\{U(\hat{V})_m^k \mid k \in -(1/2)\mathbb{Z}_+\right\}$ forms a fundamental neighborhood system of $U(\hat{V})_m$. Let $\tilde{U}(\hat{V})_m$ be the completions of $U(\hat{V})_m$, then $\tilde{U}(\hat{V}) = \bigoplus_{m \in (1/2)\mathbb{Z}} \tilde{U}(\hat{V})_m$. For $m \in (1/2)\mathbb{Z}$, define a linear map $J_m(\cdot) : V \to \hat{V}$ by $J_m(u) = u(\text{wt } u + m - 1)$. Note that $J_m(u) = 0$ if wt $u + m - 1 \notin \mathbb{Z}$.

Definition 5.1. The universal enveloping algebra U(V) of V is the quotient of $\widetilde{U}(\hat{V})$ by the two-sided ideal generated by the relations: $\mathbf{1}(i) = \delta_{i,-1}$ for $i \in \mathbb{Z}$ and

$$\sum_{i>0} (-1)^i \binom{l}{i} \left(J_{s-i}(u) J_{t+i}(v) - (-1)^{\tilde{u}\tilde{v}+l} J_{l+t-i}(v) J_{s+i-l}(u) \right) = \sum_{i>0} \binom{d}{i} J_{s+t} \left(u_{l+i}v \right)$$
 (5.1)

for any $u, v \in V$, $s \in (1/2)^{\tilde{u}} + \mathbb{Z}$, $t \in (1/2)^{\tilde{v}} + \mathbb{Z}$, $l \in \mathbb{Z}$, where $d = s + \operatorname{wt} u - l - 1$.

Then U(V) is also a $(1/2)\mathbb{Z}$ -graded associative algebra $U(V) = \bigoplus_{m \in (1/2)\mathbb{Z}} U(V)_m$. Set

$$U(V)_m^k = \sum_{(1/2)\mathbb{Z}\ni i \le k} U(V)_{m-i} U(V)_i$$

for any $(1/2)\mathbb{Z} \ni k < 0$, then $U(V)_0/U(V)_0^k$ is an associative algebra, since $U(V)_0^k$ is a two-sided ideal of $U(V)_0$. Then $U(V)_{n-m}/U(V)_{n-m}^{-m-1/2}$ is a $U(V)_0/U(V)_0^{-n-1/2} - U(V)_0/U(V)_0^{-m-1/2}$ -bimodule for $n,m \in (1/2)\mathbb{Z}_+$.

Remark 5.2. (1) From the construction of U(V) we see that any weak V-module is naturally a U(V)-module with the action induced by the map $u(m) \mapsto u_m$ for any $u \in V$ and $m \in \mathbb{Z}$.

(2) In the following section we shall still use the same notation $J_s(u)$ to denote the image of $J_s(u)$ in U(V) or its quotients.

6. Isomorphisms

By [10, Lemma 6.2], we can obtain the following result.

Lemma 6.1. Let $u, v \in V$ and $m, n, p \in (1/2)\mathbb{Z}_+$. Then

$$J_{m-n}(u *_{m,p}^{n} v) \equiv J_{p-n}(u)J_{m-p}(v) \mod U(V)_{n-m}^{-m-1/2}.$$

Before stating the main result, we need to present two more lemmas.

Lemma 6.2. For $u, v \in V$, $s \in (1/2)^{\tilde{u}} + \mathbb{Z}$, $t \in (1/2)^{\tilde{v}} + \mathbb{Z}$ and $n \in (1/2)\mathbb{Z}_+$, we have

$$J_{s}(u)J_{t}(v) \equiv -\sum_{i\geq 1} (-1)^{i} \binom{s - (1/2)^{\tilde{u}} - \lfloor n \rfloor - 1}{i} J_{s-i}(u)J_{t+i}(v)$$

$$+ \sum_{i\geq 0} \binom{(1/2)^{\tilde{u}} + \lfloor n \rfloor + \operatorname{wt} u}{i} J_{s+t} \left(u_{s+i-(1/2)^{\tilde{u}} - \lfloor n \rfloor - 1} v \right) \operatorname{mod} U(V)_{-s-t}^{-n-1/2}.$$

Proof. It follows from setting l = s - k in (5.1), where $k = (1/2)^{\tilde{u}} + |n| + 1$, that

$$J_{s}(u)J_{t}(v) = -\sum_{i\geq 1} (-1)^{i} \binom{s-k}{i} J_{s-i}(u)J_{t+i}(v)$$

$$+ (-1)^{\tilde{u}\tilde{v}} \sum_{i\geq 0} (-1)^{s+i-k} J_{s+t-k-i}(v)J_{k+i}(u) + \sum_{i\geq 0} \binom{k-1+\operatorname{wt} u}{i} J_{s+t}(u_{s+i-k}v).$$

The lemma follows from the observation that the second term on the right hand side lies in $U(V)_{-s-t}^{-n-1/2}$.

The following result generalizes [9, Lemma 3.1] (see also [7, Lemma 5.2]).

Lemma 6.3. Let $n, m \in (1/2)\mathbb{Z}_+$, for any

$$w = \sum J_{k_1}(u^1) \cdots J_{k_q}(u^q) \in U(V)_{n-m}/U(V)_{n-m}^{-m-1/2},$$

where $u^j \in V, k_j \in (1/2)^{\tilde{u}^j} + \mathbb{Z}$, there exists $u(w) \in V$ such that $w = J_{m-n}(u(w))$.

Proof. Without loss of generality, we may assume that $w = J_{k_1}\left(u^1\right)\cdots J_{k_q}\left(u^q\right)$. We proceed induction on $(q, m-k_q)$, called the *pattern* of w, to show the lemma. Assume that $q \geq 2$ and $k_q < m+1/2$, since it is trivial if q=1 or $k_q \geq m+1/2$. Write w as $J(q-2)J_s(u)J_t(v)$ with $J(q-2)=J_{k_1}\left(u^1\right)\cdots J_{k_{q-2}}\left(u^{q-2}\right)$, $s=k_{q-1}$, $t=k_q$ and $u=u^{q-1}$, $v=u^q$. Then by Lemma 6.2,

$$w \equiv -\sum_{i\geq 1} (-1)^{i} \binom{s - (1/2)^{\tilde{u}} - \lfloor m \rfloor - 1}{i} J(q - 2) J_{s-i}(u) J_{t+i}(v)$$

$$+ \sum_{i\geq 0} \binom{(1/2)^{\tilde{u}} + \lfloor m \rfloor + \operatorname{wt} u}{i} J(q - 2) J_{s+t} \left(u_{s+i-(1/2)^{\tilde{u}} - \lfloor m \rfloor - 1} v \right) \operatorname{mod} U(V)_{n-m}^{-m-1/2}.$$

Note that the pattern of each monomial on the right hand side is strictly less than $(q, m - k_q)$. So the lemma follows from the induction hypothesis. \Box

Theorem 6.4. For any $n, m \in (1/2)\mathbb{Z}_+$, we define a linear map

$$\varphi_{n,m}: A_{n,m}(V) \to U(V)_{n-m}/U(V)_{n-m}^{-m-1/2}$$

sending $u + O_{n,m}(V)$ to $J_{m-n}(u) + U(V)_{n-m}^{-m-1/2}$. Then $\varphi_{n,n}$ is an algebra isomorphism and $\varphi_{n,m}$ is an $A_n(V) - A_m(V)$ -bimodule isomorphism.

Proof. We prove the theorem in three steps.

(Step 1) Show that $\varphi_{n,m}$ is well-defined. Recall from Theorem 4.7 that $O_{n,m}(V) = V^{\bar{s}} + L_{n,m}(V) + O''_{n,m}(V)$, where $\overline{\hat{m} - \hat{n}} \neq \bar{s}$. Then $J_{m-n}(V^{\bar{s}} + L_{n,m}(V)) = 0$ by the definition of $J_{m-n}(\cdot)$. By Lemma 6.1, we get $J_{m-n}(O''_{n,m}(V)) \equiv 0 \mod U(V)^{-m-1/2}_{n-m}$. Thus, $J_{m-n}(O_{n,m}(V)) \subseteq U(V)^{-m-1/2}_{n-m}$.

(Step 2) Show that $\varphi_{n,m}$ is bijective. By Lemma 6.3, $\varphi_{n,m}$ is surjective. For $u \in V$, if $J_{m-n}(u) \in U(V)_{n-m}^{-m-1/2}$, then by Remark 5.2 (1), $o_{m-n}(u)|_{\Omega_m(M)} = 0$ for all weak V-modules M, so $u \in \mathcal{O}_{n,m}(V) = O_{n,m}(V)$ by Theorem 3.2. Thus $\varphi_{n,m}$ is injective.

(Step 3) Show that $\varphi_{n,n}$ is an algebra homomorphism and $\varphi_{n,m}$ is an $A_n(V) - A_m(V)$ -bimodule homomorphism. For any $u, v \in V$,

$$\varphi_{n,m}\left(\left(u+O_{n,m}(V)\right)*_{m}^{n}\left(v+O_{m}(V)\right)\right)$$

$$=\varphi_{n,m}\left(u*_{m}^{n}v+O_{n,m}(V)\right)=J_{m-n}\left(u*_{m}^{n}v\right)+U(V)_{n-m}^{-m-1/2}$$

$$=J_{m-n}(u)J_{0}(v)+U(V)_{n-m}^{-m-1/2}=\left(J_{m-n}(u)+U(V)_{n-m}^{-m-1/2}\right)\cdot\left(J_{0}(v)+U(V)_{0}^{-m-1/2}\right),$$

where the third equality follows from Lemma 6.1. When m = n, $A_n(V) = A_{n,n}(V)$ by Theorem 3.2, we obtain that $\varphi_{n,n}$ is an algebra homomorphism. Then

$$\varphi_{n,m}((u+O_{n,m}(V))*_m^n(v+O_m(V))) = \varphi_{n,m}(u+O_{n,m}(V))\cdot(v+O_m(V)).$$

Thus, $\varphi_{n,m}$ is a right $A_m(V)$ -module homomorphism. Similarly, $\varphi_{n,m}$ is a left $A_n(V)$ -module homomorphism, completing the proof. \square

In the proof of Theorem 6.4, **Step 1** does not rely on Theorem 4.7. We can directly prove that $\varphi_{n,m}$ is well-defined using $O_{n,m}(V) = O'_{n,m}(V) + O''_{n,m}(V) + O'''_{n,m}(V)$. When V is a vertex operator algebra, it was proved in [9] (see also [7]) that $A_n(V)$ and $U(V)_0/U(V)_0^{-n-1}$ are algebra isomorphic. Subsequently, in [6] (see also [8]), it was shown that $A_{n,m}(V)$ and $U(V)_{n-m}/U(V)_{n-m}^{-m-1}$ are bimodule isomorphic. In this paper, we achieve both of these results using a unified and simpler approach (see Theorem 6.4).

Declaration of competing interest

This work is supported by the National Natural Science Foundation of China (No. 12271406).

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 12271406). The author is grateful to his supervisor Professor Jianzhi Han for his guidance.

References

- [1] Chongying Dong, Cuipo Jiang, Bimodules and g-rationality of vertex operator algebras, Trans. Am. Math. Soc. 360 (8) (2008) 4235–4262.
- [2] Chongying Dong, Cuipo Jiang, Bimodules associated to vertex operator algebras, Math. Z. 259 (4) (2008) 799–826.
- [3] Chongying Dong, Haisheng Li, Geoffrey Mason, Twisted representations of vertex operator algebras and associative algebras, Int. Math. Res. Not. 8 (1998) 389–397.
- [4] Chongying Dong, Haisheng Li, Geoffrey Mason, Vertex operator algebras and associative algebras, J. Algebra 206 (1) (1998) 67–96.
- [5] Igor B. Frenkel, Yongchang Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1) (1992) 123–168.
- [6] JianZhi Han, Bimodules and universal enveloping algebras associated to VOAs, Isr. J. Math. 247 (2) (2022) 905–922.
- [7] Jianzhi Han, Yukun Xiao, Associative algebras and universal enveloping algebras associated to VOAs, J. Algebra 564 (2020) 489–498.
- [8] Jianzhi Han, Yukun Xiao, Shun Xu, Twisted bimodules and universal enveloping algebras associated to VOAs, J. Algebra 664 (2025) 1–25.
- [9] Xiao He, Higher level Zhu algebras are subquotients of universal enveloping algebras, J. Algebra 491 (2017) 265–279.
- [10] Wei Jiang, CuiBo Jiang, Bimodules associated to vertex operator superalgebras, Sci. China Ser. A 51 (9) (2008) 1705–1725.
- [11] Victor Kac, Weiqiang Wang, Vertex operator superalgebras and their representations, in: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, South Hadley, MA, 1992, in: Contemp. Math., vol. 175, Amer. Math. Soc., Providence, RI, 1994, pp. 161–191.
- [12] Hai-Sheng Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (2) (1996) 143–195.
- [13] Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Am. Math. Soc. 9 (1) (1996) 237–302.