

Determining the layer structure and thickness using model-based white light interferometry

Yian Cheng, Mingqian Ma, Changwen Xu Nov. 26th 2024

Introduction: Thin Film Measurement

- Thin films are extremely thin (<1µm) layers of material applied to a substrate like metal or glass
- Thin films play a key role in various industries like optics, electronics and material science, the thinness allow them have different properties than the bulk materials
- Thickness control is critical as it changes several properties of the film and the device
- We want to accurately measure the film thickness

Methods to Measure Thin Film Thickness

Stylus profilometry

Atomic Force Microscopy (AFM)

White Light Interference

Advantages:

- Non-intrusive
- Cheap and fast
- Easy to set up

Inverse Problem: Create a fast and accurate model that can predict the structure and thicknesses of each layer of thin films based on the output of the signal

Dataset Generation

Table 1: Datasets generated with eight specific structures

Dataset	Layers	Substrate
0	SiO ₂ /Si ₃ N ₄ /SiO ₂	BK7
1	$SiO_2/Si_3N_4/SiO_2/Si_3N_4$	Glass
2	$SiO_2/Si_3N_4/SiO_2/p - Si/SiO_2$	BK7
3	$SiO_2/Si_3N_4/SiO_2/p - Si/Si_3N_4$	Glass
4	SiO ₂ /Si ₃ N ₄ /SiO ₂	Si
5	$SiO_2/Si_3N_4/SiO_2/Si_3N_4$	Si
6	$SiO_2/Si_3N_4/SiO_2/p - Si/SiO_2$	Si
7	$SiO_2/Si_3N_4/SiO_2/p - Si/Si_3N_4$	Si

- Setup the parameter with different NA and wavelengths
- Generate layer structure and thicknesses and randomly select few combinations
- Simulation of the data with reflection coefficient matrix and TMM generation
- Random noises added

Dataset Visualization (1)

Dataset Visualization (2)

Signal Denoising - UNet

Applying U-Net to denoise the signal

- Fully Convoluted Model
- Encode the signal then reconstruct
- Filtering various noise: Poisson, Gaussian noise

Signal Denoise Result - UNet

Model

Separate Model

Regression on a single architecture

Table 1: Mean Squared Error (MSE) of MLP and CNN on the test set of the four datasets we generated.

Dataset	Feature	MLP	CNN
I4D Small	No noise Noise	0.0126 0.0134	0.0070 0.0091
I4D Large	No noise Noise	0.0128 0.0134	0.0014 0.0077
I4D Cropped Small	No noise Noise	0.0128 0.0129	0.0125 0.0127
I4D Cropped Large	No noise Noise	0.0124 0.0131	0.0107 0.0126

Classification on eight architectures

CNN test accuracy:

- Trained on non-noisy data: 93.14%
- Trained on noisy data: 72.92%

MLP test accuracy:

• Trained on non-noisy data: 33.86%

Regression on eight architectures

Table 2: Mean Squared Error (MSE) of CNN on the test set of the eight datasets we generated.

Datasat	Input feature		
Dataset	No noise	With Noise	
0	0.0014	0.0077	
1	0.0003	0.0051	
2	0.0036	0.0056	
3	0.0008	0.0057	
4	0.0001	0.0035	
5	0.0006	0.0054	
6	0.0010	0.0055	
7	0.0006	0.0049	

Integrated Model

Integrated Model

- Test classification accuracy: 92.89%
- Test regression MSE: 0.2471

UNet + CNN

Table 3: Model performance of integrating UNet and CNN.

Input feature	Classification accuracy	Regression MSE
No noise	93.14%	0.0014
Noise	72.92%	0.0077
UNet denoised	71.72%	0.0075

Conclusion

We build a system which is a pipeline of models that can quickly identify the structure type and the thickness of each layer.

The model requires minimal data amount to achieve the purpose, even for data with noise injected.

Discussion and Future Work

- Q: Why hard to apply a universal model for different structures' regression?
 A: Inhomogeneity of different structures (#layers, optics property) make it
 - A: Inhomogeneity of different structures (#layers, optics property) make it hard to train an universal regression model.
- Q: Possible way to solve?
 A: Universal Architecture to capture the material properties and enable varying regression for different structures (predetermined).
- Q: Industrial standard of error tolerance?
 A: For single-layer film measurement, typical ellipsometry can achieve very accurate data of 0.1nm. However, the error goes to 1nm when the layers stack up. For multi-layer, it want to get several nm of error.

