US Patent & Trademark Office Patent Public Search | Text View

United States Patent

Kind Code

Date of Patent

August 12, 2025

Inventor(s)

Pickering; Samuel Thomas et al.

Block transfer apparatus and improved clamping assembly for use therewith

Abstract

A block transfer apparatus for transferring a block between an upstream and downstream clamps of a block delivery system. The apparatus includes: a frame pivotally mounted to a support; a clamping assembly mounted to the frame and linearly extendable relative thereto, and including a pair of gripper jaws for clamping opposing sides of the block. The apparatus receives a block in the gripper jaws in an approximate position; rotates to a drop position and releases the block allowing it to self-datum onto first and second orthogonal datum surfaces. The apparatus re-clamps the block after the drop by applying a clamping force to opposing sides of the block to register the block against a third datum surface to thereby datum the position of the block with respect to the clamping assembly; and presents the block clamped in the datumed position for transfer to the downstream clamp.

Inventors: Pickering; Samuel Thomas (Kalamunda, AU), Newcombe; David

James (Cottesloe, AU), Hauri; Rudolf Hans (City Beach, AU)

Applicant: FASTBRICK IP PTY LTD (High Wycombe, AU)

Family ID: 1000008751028

Assignee: FASTBRICK IP PTY LTD (High Wycombe, AU)

Appl. No.: 17/920335

Filed (or PCT

April 22, 2021

Filed):

PCT No.: PCT/AU2021/050361

PCT Pub. No.: WO2021/212176

PCT Pub. Date: October 28, 2021

Prior Publication Data

Document IdentifierUS 20230167650 A1

Publication Date
Jun. 01, 2023

Foreign Application Priority Data

AU 2020901272 Apr. 22, 2020

Publication Classification

Int. Cl.: E04G21/22 (20060101); B25J9/16 (20060101); B25J11/00 (20060101); B25J13/08

(20060101); **B25J15/00** (20060101); **B25J15/02** (20060101)

U.S. Cl.:

CPC **E04G21/22** (20130101); **B25J9/1694** (20130101); **B25J11/00** (20130101); **B25J13/089**

(20130101); **B25J15/0033** (20130101); **B25J15/0253** (20130101);

Field of Classification Search

CPC: B25J (9/1694); B25J (11/00); B25J (13/089); B25J (15/0033); B25J (15/0253); B65G

(47/248); B65G (47/252); B65G (47/84); B65G (47/842); B65G (47/847); B65G

(47/904); E04G (21/22)

References Cited

U.S. PATENT DOCUMENTS

Patent No.	Issued Date	Patentee Name	U.S. Cl.	CPC
428096	12/1889	Hathaway	N/A	N/A
1411172	12/1921	Kaye	N/A	N/A
1633192	12/1926	Reagan	N/A	N/A
1829435	12/1930	Barnhart	N/A	N/A
2599552	12/1951	Harney	N/A	N/A
3438171	12/1968	Demarest	N/A	N/A
3746570	12/1972	McIntosh	N/A	N/A
3757484	12/1972	Williamson et al.	N/A	N/A
3790428	12/1973	Lingl	N/A	N/A
3791559	12/1973	Foye	N/A	N/A
3834973	12/1973	Kummerow	N/A	N/A
RE28305	12/1974	Williamson et al.	N/A	N/A
3930929	12/1975	Lingl	N/A	N/A
3950914	12/1975	Lowen	N/A	N/A
4033463	12/1976	Cervin	N/A	N/A
4067766	12/1977	Larger	N/A	N/A
4106259	12/1977	Taylor-smith	N/A	N/A
4221258	12/1979	Richard	N/A	N/A
4245451	12/1980	Taylor-smith	N/A	N/A
4303363	12/1980	Cervin	N/A	N/A
4523100	12/1984	Payne	N/A	N/A
4635985	12/1986	Rooke	N/A	N/A

4708562	12/1986	Melan et al.	N/A	N/A
4714339	12/1986	Lau	N/A	N/A
4758036	12/1987	Legille et al.	N/A	N/A
4765789	12/1987	Lonardi et al.	N/A	N/A
4786227	12/1987	Kremer	266/281	F27D 1/1621
4790651	12/1987	Brown et al.	N/A	N/A
4827689	12/1988	Lonardi et al.	N/A	N/A
4829737	12/1988	Anliker	N/A	N/A
4852237	12/1988	Tradt et al.	N/A	N/A
4911595	12/1989	Kirchen et al.	N/A	N/A
4945493	12/1989	Huang et al.	N/A	N/A
4952772	12/1989	Zana	N/A	N/A
4954762	12/1989	Miyake et al.	N/A	N/A
4969789	12/1989	Searle	N/A	N/A
5004844	12/1990	Van Leeuwen et al.	N/A	N/A
5013986	12/1990	Gauggel	N/A	N/A
5018923	12/1990	Melan	414/744.5	E04G 21/22
5049797	12/1990	Phillips	N/A	N/A
5080415	12/1991	Bjornson	N/A	N/A
5193723	12/1992	Everett et al.	N/A	N/A
5196900	12/1992	Pettersen	N/A	N/A
5284000	12/1993	Milne et al.	N/A	N/A
5321353	12/1993	Furness	N/A	N/A
5403140	12/1994	Carmichael et al.	N/A	N/A
5413454	12/1994	Movsesian	N/A	N/A
5419669	12/1994	Kremer et al.	N/A	N/A
5420489	12/1994	Hansen et al.	N/A	N/A
5469531	12/1994	Faure et al.	N/A	N/A
5497061	12/1995	Nonaka et al.	N/A	N/A
5523663	12/1995	Tsuge et al.	N/A	N/A
5527145	12/1995	Duncan	N/A	N/A
5557397	12/1995	Hyde et al.	N/A	N/A
5581975	12/1995	Trebbi	N/A	N/A
5737500	12/1997	Seraji et al.	N/A	N/A
5743374	12/1997	Monsees	414/349	B65H 1/30
5838882	12/1997	Gan et al.	N/A	N/A
5895690	12/1998	Greisel	N/A	N/A
6018923	12/1999	Wendt	N/A	N/A
6049377	12/1999	Lau et al.	N/A	N/A
6101455	12/1999	Davis	N/A	N/A
6112955	12/1999	Lang	N/A	N/A
6134507	12/1999	Markey, Jr. et al.	N/A	N/A
6166809	12/1999	Pettersen et al.	N/A	N/A
6166811	12/1999	Long et al.	N/A	N/A
6172754	12/2000	Niebuhr	N/A	N/A
6213309	12/2000	Dadisho	N/A	N/A
6285959	12/2000	Greer	N/A	N/A

6310644	12/2000	Keightley	N/A	N/A
6330503	12/2000	Sharp et al.	N/A	N/A
6370837	12/2001	Mcmahon et al.	N/A	N/A
6427122	12/2001	Lin	N/A	N/A
6429016	12/2001	Mcneil	N/A	N/A
6512993	12/2002	Kacyra et al.	N/A	N/A
6516272	12/2002	Lin	N/A	N/A
6584378	12/2002	Anfindsen	N/A	N/A
6611141	12/2002	Schulz	N/A	N/A
6618496	12/2002	Tassakos et al.	N/A	N/A
6628322	12/2002	Cerruti	N/A	N/A
6643002	12/2002	Drake, Jr.	N/A	N/A
6664529	12/2002	Pack et al.	N/A	N/A
6681145	12/2003	Greenwood et al.	N/A	N/A
6683694	12/2003	Cornil	N/A	N/A
6704619	12/2003	Coleman et al.	N/A	N/A
6741364	12/2003	Lange et al.	N/A	N/A
6825937	12/2003	Gebauer et al.	N/A	N/A
6850946	12/2004	Rappaport et al.	N/A	N/A
6859729	12/2004	Breakfield et al.	N/A	N/A
6864966	12/2004	Giger	N/A	N/A
6868847	12/2004	Ainedter et al.	N/A	N/A
6873880	12/2004	Hooke et al.	N/A	N/A
6917893	12/2004	Dietsch et al.	N/A	N/A
6935036	12/2004	Barber et al.	N/A	N/A
6957496	12/2004	Raab et al.	N/A	N/A
6965843	12/2004	Hobden et al.	N/A	N/A
6970802	12/2004	Ban et al.	N/A	N/A
6996912	12/2005	Raab et al.	N/A	N/A
7050930	12/2005	Hobden et al.	N/A	N/A
7051450	12/2005	Barber et al.	N/A	N/A
7069664	12/2005	Barber et al.	N/A	N/A
7107144	12/2005	Capozzi et al. Ainedter	N/A	N/A
7111437	12/2005		N/A	N/A
7130034	12/2005	Barvosa-carter et al.	N/A	N/A
7142981	12/2005	aı. Hablani	N/A	N/A
7145647	12/2005	Suphellen et al.	N/A	N/A
7153454	12/2005	Khoshnevis	N/A	N/A
7174651	12/2006	Barber et al.	N/A	N/A
7230689	12/2006	Lau	N/A	N/A
7246030	12/2006	Raab et al.	N/A	N/A
7269910	12/2006	Raab et al.	N/A	N/A
7347311	12/2007	Rudge	N/A	N/A
7519493	12/2008	Atwell et al.	N/A	N/A
7551121	12/2008	Oconnell et al.	N/A	N/A
7564538	12/2008	Sakimura et al.	N/A	N/A
7570371	12/2008	Storm	N/A	N/A
7576836	12/2008	Bridges	N/A	N/A
7576847	12/2008	Bridges	N/A	N/A
		_		

7591078	12/2008	Crampton	N/A	N/A
7639347	12/2008	Eaton	N/A	N/A
7693325	12/2009	Pulla et al.	N/A	N/A
7701587	12/2009	Shioda et al.	N/A	N/A
7743586	12/2009	Hancock	N/A	N/A
7774159	12/2009	Cheng et al.	N/A	N/A
7800758	12/2009	Bridges et al.	N/A	N/A
7804602	12/2009	Raab	N/A	N/A
RE42055	12/2010	Raab et al.	N/A	N/A
RE42082	12/2010	Raab et al.	N/A	N/A
7881896	12/2010	Atwell et al.	N/A	N/A
7967549	12/2010	Geist et al.	N/A	N/A
7993289	12/2010	Quistgaard et al.	N/A	N/A
8036452	12/2010	Pettersson et al.	N/A	N/A
8054451	12/2010	Karazi et al.	N/A	N/A
8060344	12/2010	Stathis	N/A	N/A
8145446	12/2011	Atwell et al.	N/A	N/A
8166727	12/2011	Pivac et al.	N/A	N/A
8169604	12/2011	Braghiroli et al.	N/A	N/A
8185240	12/2011	Williams et al.	N/A	N/A
8229208	12/2011	Pulla et al.	N/A	N/A
8233153	12/2011	Knuettel	N/A	N/A
8244030	12/2011	Pettersson et al.	N/A	N/A
8248620	12/2011	Wicks et al.	N/A	N/A
8269984	12/2011	Hinderling et al.	N/A	N/A
8327555	12/2011	Champ	N/A	N/A
8337407	12/2011	Quistgaard et al.	N/A	N/A
8345926	12/2012	Clark et al.	N/A	N/A
8346392	12/2012	Walser et al.	N/A	N/A
8405716	12/2012	Yu et al.	N/A	N/A
8467072	12/2012	Cramer et al.	N/A	N/A
8537372	12/2012	Siercks et al.	N/A	N/A
8537376	12/2012	Day et al.	N/A	N/A
8558992	12/2012	Steffey	N/A	N/A
8593648	12/2012	Cramer et al.	N/A	N/A
8595948	12/2012	Raab et al.	N/A	N/A
8606399	12/2012	Williams et al.	N/A	N/A
8634950	12/2013	Simonetti et al.	N/A	N/A
8644964	12/2013	Hendron et al.	N/A	N/A
8668074	12/2013	Davidson	N/A	N/A
8670114	12/2013	Bridges et al.	N/A	N/A
8677643	12/2013	Bridges et al. Pulla et al.	N/A	N/A
8792709	12/2013		N/A	N/A
8803055	12/2013	Lau et al.	N/A	N/A
8812155	12/2013	Brethe	N/A	N/A
8825208	12/2013	Benson	700/247	E04F 21/02
8832954	12/2013	Atwell et al.	N/A	21/02 N/A
8848203	12/2013	Bridges et al.	N/A N/A	N/A N/A
8875409	12/2013	Kretschmer et al.	N/A N/A	N/A
00/J 1 0J	12/2013	Miciscillici el al.	1 1 / <i>[</i>]	1 1/ 1

8898919	12/2013	Bridges et al.	N/A	N/A
8902408	12/2013	Bridges	N/A	N/A
8913814	12/2013	Gandyra	N/A	N/A
8931182	12/2014	Raab et al.	N/A	N/A
8942940	12/2014	York	N/A	N/A
8965571	12/2014	Peters et al.	N/A	N/A
8996244	12/2014	Summer et al.	N/A	N/A
8997362	12/2014	Briggs et al.	N/A	N/A
9020240	12/2014	Pettersson et al.	N/A	N/A
9028908	12/2014	DeTar	N/A	N/A
9033998	12/2014	Schaible et al.	N/A	N/A
RE45565	12/2014	Bridges et al.	N/A	N/A
9046360	12/2014	Atwell et al.	N/A	N/A
9074381	12/2014	Drew	N/A	N/A
9109877	12/2014	Thierman	N/A	N/A
9146315	12/2014	Bosse et al.	N/A	N/A
9151830	12/2014	Bridges	N/A	N/A
9163922	12/2014	Bridges et al.	N/A	N/A
9170096	12/2014	Fowler et al.	N/A	N/A
9188430	12/2014	Atwell et al.	N/A	N/A
9207309	12/2014	Bridges	N/A	N/A
9223025	12/2014	Debrunner et al.	N/A	N/A
9229108	12/2015	Debrunner et al.	N/A	N/A
9266238	12/2015	Huettenhofer	N/A	N/A
9267784	12/2015	Atwell et al.	N/A	N/A
9278448	12/2015	Freeman	N/A	N/A
9279661	12/2015	Tateno et al.	N/A	N/A
9303988	12/2015	Tani	N/A	N/A
9353519	12/2015	Williams	N/A	N/A
9354051	12/2015	Dunne et al.	N/A	N/A
9358688	12/2015	Drew	N/A	N/A
9367741	12/2015	Le Marec	N/A	N/A
9377301	12/2015	Neier et al.	N/A	N/A
9383200	12/2015	Hulm et al.	N/A	N/A
9395174	12/2015	Bridges	N/A	N/A
9405293	12/2015	Meuleau	N/A	N/A
9423282	12/2015	Moy	N/A	N/A
9437005	12/2015	Tateno et al.	N/A	N/A
9443308	12/2015	Pettersson et al.	N/A	N/A
9452533	12/2015	Calkins et al.	N/A	N/A
9454818	12/2015	Cramer	N/A	N/A
9476695	12/2015	Becker et al.	N/A	N/A
9481007	12/2015	Rzonca	N/A	N/A
9482524	12/2015	Metzler et al.	N/A	N/A
9482525	12/2015	Bridges	N/A	N/A
9482746	12/2015	Bridges Maryfield et al	N/A	N/A
9494686	12/2015	Maryfield et al.	N/A	N/A
9513100	12/2015	Raab et al.	N/A	N/A
9536163 9541371	12/2016 12/2016	Veeser et al.	N/A N/A	N/A N/A
JJ 4 1J/1	12/2010	Pettersson et al.	1 \ / <i>I</i> \	1 V / <i>F</i> 1

9561019	12/2016	Mihailescu et al.	N/A	N/A
9607239	12/2016	Bridges et al.	N/A	N/A
9618620	12/2016	Zweigle et al.	N/A	N/A
9658061	12/2016	Wilson et al.	N/A	N/A
9671221	12/2016	Ruhland et al.	N/A	N/A
9679385	12/2016	Suzuki et al.	N/A	N/A
9686532	12/2016	Tohme	N/A	N/A
9708079	12/2016	Desjardien et al.	N/A	N/A
9715730	12/2016	Suzuki	N/A	N/A
9720087	12/2016	Christen et al.	N/A	N/A
9734609	12/2016	Pulla et al.	N/A	N/A
9739595	12/2016	Lau	N/A	N/A
9746308	12/2016	Gong	N/A	N/A
9757859	12/2016	Kolb et al.	N/A	N/A
9768837	12/2016	Charvat et al.	N/A	N/A
9772173	12/2016	Atwell et al.	N/A	N/A
9803969	12/2016	Gong	N/A	N/A
9816813	12/2016	Lettau et al.	N/A	N/A
9829305	12/2016	Gong	N/A	N/A
9835717	12/2016	Bosse et al.	N/A	N/A
9844792	12/2016	Pettersson et al.	N/A	N/A
9879976	12/2017	Bridges et al.	N/A	N/A
9897442	12/2017	Pettersson et al.	N/A	N/A
9903939	12/2017	Charvat et al.	N/A	N/A
9909855	12/2017	Becker et al.	N/A	N/A
9915733	12/2017	Fried et al.	N/A	N/A
9921046	12/2017	Gong	N/A	N/A
9958268	12/2017	Ohtomo et al.	N/A	N/A
9958545	12/2017	Eichenholz et al.	N/A	N/A
9964398	12/2017	Becker et al.	N/A	N/A
9964402	12/2017	Tohme et al.	N/A	N/A
9967545	12/2017	Tohme	N/A	N/A
9989353	12/2017	Bartmann et al.	N/A	N/A
10012732	12/2017	Eichenholz et al.	N/A	N/A
10030972	12/2017	Iseli et al.	N/A	N/A
10041793	12/2017	Metzler et al.	N/A	N/A
10054422	12/2017	Böckem et al.	N/A	N/A
10058394	12/2017	Johnson et al.	N/A	N/A
10073162	12/2017	Charvat et al.	N/A	N/A
10074889	12/2017	Charvat et al.	N/A	N/A
10082521	12/2017	Atlas et al.	N/A	N/A
10090944	12/2017	Charvat et al.	N/A	N/A
10094909	12/2017	Charvat et al.	N/A	N/A
10126415	12/2017	Becker et al.	N/A	N/A
10189176	12/2018	Williams	N/A	N/A
10220511	12/2018	Linnell et al.	N/A	N/A
10240949	12/2018	Peters et al.	N/A	N/A
10315904	12/2018	Landler	N/A	N/A
10635758	12/2019	Pivac	N/A	B25J
				9/1651

10865578	12/2019	Pivac et al.	N/A	N/A
10876308	12/2019	Pivac et al.	N/A	N/A
11106836	12/2020	Pivac et al.	N/A	N/A
11401115	12/2021	Pivac et al.	N/A	N/A
2002/0030145	12/2001	Lang	N/A	N/A
2002/0176603	12/2001	Bauer et al.	N/A	N/A
2003/0048459	12/2002	Gooch	N/A	N/A
2003/0090682	12/2002	Gooch et al.	N/A	N/A
2003/0120377	12/2002	Hooke et al.	N/A	N/A
2003/0206285	12/2002	Lau	N/A	N/A
2004/0078137	12/2003	Breakfield et al.	N/A	N/A
2004/0093119	12/2003	Gunnarsson et al.	N/A	N/A
2004/0200947	12/2003	Lau	N/A	N/A
2005/0007450	12/2004	Hill et al.	N/A	N/A
2005/0057745	12/2004	Bontje	N/A	N/A
2005/0060092	12/2004	Hablani	N/A	N/A
2005/0086901	12/2004	Chisholm	N/A	N/A
2005/0131619	12/2004	Rappaport et al.	N/A	N/A
2005/0196484	12/2004	Khoshnevis	N/A	N/A
2005/0252118	12/2004	Matsufuji	N/A	N/A
2006/0167587	12/2005	Read	N/A	N/A
2006/0215179	12/2005	Mcmurtry et al.	N/A	N/A
2007/0024870	12/2006	Girard et al.	N/A	N/A
2007/0229802	12/2006	Lau	N/A	N/A
2007/0284215	12/2006	Rudge	N/A	N/A
2008/0030855	12/2007	Lau	N/A	N/A
2008/0189046	12/2007	Eliasson et al.	N/A	N/A
2009/0038258	12/2008	Pivac et al.	N/A	N/A
2009/0074979	12/2008	Krogedal et al.	N/A	N/A
2010/0025349	12/2009	Khoshnevis	N/A	N/A
2010/0138185	12/2009	Kang	N/A	N/A
2010/0274390	12/2009	Walser et al.	N/A	N/A
2010/0281822	12/2009	Murray	N/A	N/A
2011/0066393	12/2010	Groll et al.	N/A	N/A
2011/0153524	12/2010	Schnackel	N/A	N/A
2011/0208347	12/2010	Otake et al.	N/A	N/A
2012/0038074	12/2011	Khoshnevis	N/A	N/A
2012/0099096	12/2011	Bridges et al.	N/A	N/A
2012/0136524	12/2011	Everett et al.	N/A	N/A
2012/0265391	12/2011	Letsky	N/A	N/A
2012/0277898	12/2011	Kawai et al.	N/A	N/A
2013/0028478	12/2012	St-pierre et al.	N/A	N/A
2013/0068061	12/2012	Yoon	N/A	N/A
2013/0103192	12/2012	Huettenhofer	N/A	N/A
2013/0104407	12/2012	Lee	N/A	N/A
2013/0222816	12/2012	Briggs et al.	N/A	N/A
2013/0250285	12/2012	Bridges et al.	N/A	N/A
2013/0286196	12/2012	Atwell	N/A	N/A
2014/0002608	12/2013	Atwell et al.	N/A	N/A
2014/0067121	12/2013	Brooks et al.	N/A	N/A

2014/0076923 12/2013 Clark N/A 2014/0176677 12/2013 Valkenburg et al. N/A 2014/0192187 12/2013 Atwell et al. N/A 2014/0309960 12/2013 Vennegeerts et al. N/A 2014/0343727 12/2013 Calkins et al. N/A 2014/0348388 12/2013 Metzler et al. N/A	N/A N/A N/A N/A N/A N/A
2014/0192187 12/2013 Atwell et al. N/A 2014/0309960 12/2013 Vennegeerts et al. N/A 2014/0343727 12/2013 Calkins et al. N/A	N/A N/A N/A N/A
2014/0309960 12/2013 Vennegeerts et al. N/A 2014/0343727 12/2013 Calkins et al. N/A	N/A N/A N/A N/A
2014/0343727 12/2013 Calkins et al. N/A	N/A N/A N/A
	N/A N/A
	N/A
2014/0366481 12/2013 Benson N/A	
2015/0082740 12/2014 Peters et al. N/A	
2015/0100066 12/2014 Kostrzewski et al. N/A	N/A
2015/0134303 12/2014 Chang et al. N/A	N/A
2015/0153720 12/2014 Pettersson et al. N/A	N/A
2015/0158181 12/2014 Kawamura et al. N/A	N/A
2015/0241203 12/2014 Jordil et al. N/A	N/A
2015/0258694 12/2014 Hand et al. N/A	N/A
2015/0276402 12/2014 Grsser et al. N/A	N/A
2015/0280829 12/2014 Breuer N/A	N/A
2015/0293596 12/2014 Krausen et al. N/A	N/A
2015/0309175 12/2014 Hinderling et al. N/A	N/A
2015/0314890 12/2014 Desjardien et al. N/A	N/A
2015/0352721 12/2014 Wicks et al. N/A	N/A
2015/0355310 12/2014 Gong et al. N/A	N/A
2015/0367509 12/2014 Georgeson N/A	N/A
2015/0371082 12/2014 Csaszar et al. N/A	N/A
2015/0377606 12/2014 Thielemans N/A	N/A
2016/0005185 12/2015 Geissler N/A	N/A
2016/0093099 12/2015 Bridges N/A	N/A
2016/0153786 12/2015 Liu et al. N/A	N/A
2016/0187130 12/2015 Metzler et al. N/A	N/A
2016/0187470 12/2015 Becker et al. N/A	N/A
2016/0223364 12/2015 Peters et al. N/A	N/A
2016/0242744 12/2015 Mihailescu et al. N/A	N/A
2016/0263767 12/2015 Williams N/A	N/A
2016/0274237 12/2015 Stutz N/A	N/A
2016/0282107 12/2015 Roland et al. N/A	N/A
2016/0282110 12/2015 Vagman et al. N/A	N/A
2016/0282179 12/2015 Nazemi et al. N/A	N/A
2016/0288331 12/2015 Sivich et al. N/A	N/A
2016/0313114 12/2015 Tohme et al. N/A	N/A
2016/0327383 12/2015 Becker et al. N/A	N/A
2016/0340873 12/2015 Eidenberger et al. N/A	N/A
2016/0341041 12/2015 Puura et al. N/A	N/A
2016/0349746 12/2015 Grau N/A	N/A
2016/0363436 12/2015 Clark et al. N/A	N/A
2016/0363659 12/2015 Mindell et al. N/A	N/A
2016/0363663 12/2015 Mindell et al. N/A	N/A
2016/0363664 12/2015 Mindell et al. N/A	N/A
2016/0364869 12/2015 Siercks et al. N/A	N/A
2016/0364874 12/2015 Tohme et al. N/A	N/A
2017/0066157 12/2016 Peters et al. N/A	N/A

2017/0082436	2017/0067739	12/2016	Siercks et al.	N/A	N/A
2017/0091923 12/2016 Siercks et al. N/A N/A 2017/0108258 12/2016 Brown N/A N/A N/A 2017/0122736 12/2016 Brown N/A N/A N/A 2017/01622736 12/2016 Dold et al. N/A N/A N/A 2017/016399 12/2016 Stubbs N/A N/A N/A 2017/0176572 12/2016 Charvat et al. N/A N/A 2017/0179570 12/2016 Charvat et al. N/A N/A N/A 2017/0179570 12/2016 Charvat et al. N/A N/A N/A 2017/0179570 12/2016 Charvat et al. N/A N/A N/A 2017/0191822 12/2016 Becker et al. N/A N/A N/A 2017/0236299 12/2016 Pettersson et al. N/A N/A N/A 2017/0236299 12/2016 Pettersson et al. N/A N/A 2017/0236299 12/2016 Petters et al. N/A N/A 2017/0236102 12/2016 Petters et al. N/A N/A 2017/0236102 12/2016 Petters et al. N/A N/A 2017/0304757 12/2016 Hinderling et al. N/A N/A 2017/0314909 12/2016 Dang N/A N/A 2017/0314909 12/2016 Shah N/A N/A 2017/0314918 12/2016 Shah N/A N/A 2018/003493 12/2017 Bernhard et al. N/A N/A 2018/003493 12/2017 Bernhard et al. N/A N/A 2018/003684 12/2017 Siercks et al. N/A N/A 2018/0036864 12/2017 Shibazaki N/A N/A 2018/0036601 12/2017 Shibazaki N/A N/A 2018/0156601 12/2017 Tirohlich et al. N/A N/A 2018/0156601 12/2017 Dentai N/A N/A 2018/0156601 12/2017 Dentai N/A N/A 2018/0156601 12/2017 Edelman et al. N/A N/A 2018/0120348 12/2018 Parkes N/A N/A 2019/012446 12/2018 Parkes N/A N/A 2019/012446 12/2018 Parkes N/A N/A 2019/012466 12/2018 Parkes N/A N	2017/0082436	12/2016	Siercks et al.	N/A	N/A
2017/0108528	2017/0091922	12/2016	Siercks et al.	N/A	N/A
2017/0122733 12/2016 Brown N/A N/A 2017/0122736 12/2016 Dold et al. N/A N/A N/A 2017/0166399 12/2016 Kim et al. N/A N/A 2017/0173796 12/2016 Kim et al. N/A N/A N/A 2017/0176572 12/2016 Charvat et al. N/A N/A 2017/0179570 12/2016 Charvat et al. N/A N/A N/A 2017/0179603 12/2016 Becker et al. N/A N/A N/A 2017/019603 12/2016 Becker et al. N/A N/A N/A 2017/0227355 12/2016 Becker et al. N/A N/A N/A 2017/0236299 12/2016 Pettersson et al. N/A N/A 2017/0236299 12/2016 Petters et al. N/A N/A 2017/0254102 12/2016 Petters et al. N/A N/A 2017/0269203 12/2016 Trishaun N/A N/A 2017/0314909 12/2016 Dang N/A N/A 2017/0313373 12/2016 Dang N/A N/A 2017/0343336 12/2016 Boang N/A N/A 2017/0343336 12/2016 Becker et al. N/A N/A 2018/0003493 12/2017 Bernhard et al. N/A N/A 2018/0003493 12/2017 Siercks et al. N/A N/A 2018/003395 12/2017 Fröhlich et al. N/A N/A 2018/0038684 12/2017 Fröhlich et al. N/A N/A 2018/0052233 12/2017 Frank et al. N/A N/A 2018/015601 12/2017 Tiwari et al. N/A N/A 2018/015601 12/2017 Dontai N/A N/A 2018/015601 12/2017 Dontai N/A N/A 2018/0150601 12/2017 Tiwari et al. N/A N/A 2018/0150601 12/2017 Dontai N/A N/A 2018/0202796 12/2017 Dontai N/A N/A 2018/020348 12/2018 Denjamin et al. N/A N/A 2018/0300433 12/2017 Dontai N/A N/A 2018/0300433 12/2018 Denjamin et al. N/A N/A 2019/0032348 12/2018 Denjamin et al. N/A N/A 2019/0032348	2017/0091923	12/2016	Siercks et al.	N/A	N/A
2017/0122736 12/2016 Dold et al. N/A N/A 2017/01663399 12/2016 Stubbs N/A N/A 2017/0173796 12/2016 Kim et al. N/A N/A 2017/0179570 12/2016 Charvat et al. N/A N/A 2017/0179503 12/2016 Charvat et al. N/A N/A 2017/0191822 12/2016 Becker et al. N/A N/A 2017/0236299 12/2016 Pettersson et al. N/A N/A 2017/0254102 12/2016 Petters et al. N/A N/A 2017/0269203 12/2016 Trishaun N/A N/A 2017/0314918 12/2016 Trishaun N/A N/A 2017/0314918 12/2016 Bah N/A N/A 2017/0314918 12/2016 Shah N/A N/A 2017/03333137 12/2016 Rossler N/A N/A 2018/003493 12/2017 Bernhard et al. N/A N/A 20	2017/0108528	12/2016	Atlas et al.	N/A	N/A
2017/0166399 12/2016 Stubbs N/A N/A 2017/0173796 12/2016 Kim et al. N/A N/A 2017/0176572 12/2016 Charvat et al. N/A N/A 2017/0179570 12/2016 Charvat et al. N/A N/A 2017/019603 12/2016 Decker et al. N/A N/A 2017/0227355 12/2016 Pettersson et al. N/A N/A 2017/0236299 12/2016 Petters et al. N/A N/A 2017/0269203 12/2016 Peters et al. N/A N/A 2017/0269203 12/2016 Trishaun N/A N/A 2017/0314909 12/2016 Dang N/A N/A 2017/0314918 12/2016 Bah N/A N/A 2017/0333137 12/2016 Roessler N/A N/A 2018/003493 12/2017 Bernhard et al. N/A N/A 2018/003935 12/2017 Atwell et al. N/A N/A <t< td=""><td>2017/0122733</td><td>12/2016</td><td>Brown</td><td>N/A</td><td>N/A</td></t<>	2017/0122733	12/2016	Brown	N/A	N/A
2017/0173796 12/2016 Kim et al. N/A N/A 2017/0176572 12/2016 Charvat et al. N/A N/A 2017/0179570 12/2016 Charvat N/A N/A 2017/019603 12/2016 Charvat et al. N/A N/A 2017/0191822 12/2016 Becker et al. N/A N/A 2017/0236299 12/2016 Pettersson et al. N/A N/A 2017/0236299 12/2016 Petters et al. N/A N/A 2017/0236290 12/2016 Trishaun N/A N/A 2017/0314909 12/2016 Trishaun N/A N/A 2017/0314918 12/2016 Dang N/A N/A 2017/034336 12/2016 Shah N/A N/A 2017/034336 12/2016 Roessler N/A N/A 2018/003493 12/2017 Bernhard et al. N/A N/A 2018/0038684 12/2017 Fröhlich et al. N/A N/A	2017/0122736	12/2016	Dold et al.	N/A	N/A
2017/0176572 12/2016 Charvat et al. N/A N/A 2017/0179570 12/2016 Charvat N/A N/A N/A 2017/0179603 12/2016 Charvat et al. N/A N/A 2017/0179603 12/2016 Becker et al. N/A N/A 2017/02355 12/2016 Pettersson et al. N/A N/A 2017/0236299 12/2016 Petters et al. N/A N/A N/A 2017/0254102 12/2016 Peters et al. N/A N/A N/A 2017/0269203 12/2016 Trishaun N/A N/A N/A 2017/0307757 12/2016 Hinderling et al. N/A N/A N/A 2017/0314909 12/2016 Dang N/A N/A N/A 2017/03134918 12/2016 Shah N/A N/A 2017/0333137 12/2016 Roessler N/A N/A 2018/0033493 12/2016 Lettau N/A N/A 2018/003493 12/2017 Bernhard et al. N/A N/A 2018/001384 12/2017 Siercks et al. N/A N/A 2018/003493 12/2017 Fröhlich et al. N/A N/A 2018/0038684 12/2017 Fröhlich et al. N/A N/A 2018/003669 12/2017 Frank et al. N/A N/A 2018/015233 12/2017 Trwari et al. N/A N/A 2018/0156601 12/2017 Tiwari et al. N/A N/A 2018/0156601 12/2017 Tasch et al. N/A N/A 2018/0156601 12/2017 Tasch et al. N/A N/A 2018/0150601 12/2017 Tasch et al. N/A N/A 2018/0150601 12/2017 Tasch et al. N/A N/A 2018/020916 12/2017 Mindell et al. N/A N/A 2018/020916 12/2017 Mindell et al. N/A N/A 2018/030343 12/2017 Maxam et al. N/A N/A 2019/032348 12/2018 Parkes N/A N/A 2019/032446 12/2018 Parkes N/A N/A 2019/032348 12/2018 Parkes N/A N/A 2019/032348 12/2018 Parkes N/A N/A 2019/032669 12/2018 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019	2017/0166399	12/2016	Stubbs	N/A	N/A
2017/0179570 12/2016 Charvat N/A N/A 2017/0179603 12/2016 Charvat et al. N/A N/A 2017/0227355 12/2016 Becker et al. N/A N/A 2017/0236299 12/2016 Pettersson et al. N/A N/A 2017/0264102 12/2016 Peters et al. N/A N/A 2017/0307757 12/2016 Trishaun N/A N/A 2017/0314909 12/2016 Dang N/A N/A 2017/0314918 12/2016 Shah N/A N/A 2017/0343336 12/2016 Lettau N/A N/A 2018/003493 12/2017 Bernhard et al. N/A N/A 2018/0037384 12/2017 Siercks et al. N/A N/A 2018/0038684 12/2017 Atwell et al. N/A N/A 2018/0046096 12/2017 Frank et al. N/A N/A 2018/0120171 12/2017 Tiwari et al. N/A N/A	2017/0173796	12/2016	Kim et al.	N/A	N/A
2017/0179603 12/2016 Charvat et al. N/A N/A 2017/0191822 12/2016 Becker et al. N/A N/A 2017/0236299 12/2016 Pettersson et al. N/A N/A 2017/0236299 12/2016 Petters et al. N/A N/A 2017/0269203 12/2016 Trishaun N/A N/A 2017/0314909 12/2016 Benderling et al. N/A N/A 2017/0314918 12/2016 Dang N/A N/A 2017/0314918 12/2016 Roessler N/A N/A 2017/03143333 12/2016 Roessler N/A N/A 2018/003493 12/2017 Bernhard et al. N/A N/A 2018/0023935 12/2017 Atwell et al. N/A N/A 2018/003684 12/2017 Frank et al. N/A N/A 2018/0046096 12/2017 Frank et al. N/A N/A 2018/012571 12/2017 Tiwari et al. N/A N/A	2017/0176572	12/2016	Charvat et al.	N/A	N/A
2017/0191822 12/2016 Becker et al. N/A N/A 2017/0227355 12/2016 Pettersson et al. N/A N/A 2017/0236299 12/2016 Valkenburg et al. N/A N/A 2017/0264102 12/2016 Peters et al. N/A N/A 2017/0269203 12/2016 Trishaun N/A N/A 2017/0307757 12/2016 Hinderling et al. N/A N/A 2017/0314909 12/2016 Dang N/A N/A 2017/0333137 12/2016 Roessler N/A N/A 2017/0343336 12/2016 Lettau N/A N/A 2018/003493 12/2017 Bernhard et al. N/A N/A 2018/0017384 12/2017 Siercks et al. N/A N/A 2018/0023935 12/2017 Atwell et al. N/A N/A 2018/0036684 12/2017 Fröhlich et al. N/A N/A 2018/0052233 12/2017 Tiwari et al. N/A N/A </td <td>2017/0179570</td> <td>12/2016</td> <td>Charvat</td> <td>N/A</td> <td>N/A</td>	2017/0179570	12/2016	Charvat	N/A	N/A
2017/0227355 12/2016 Pettersson et al. N/A N/A 2017/0236299 12/2016 Valkenburg et al. N/A N/A N/A 2017/0254102 12/2016 Peters et al. N/A N/A N/A 2017/0269203 12/2016 Trishaun N/A N/A N/A 2017/0307757 12/2016 Hinderling et al. N/A N/A N/A 2017/0314909 12/2016 Dang N/A N/A N/A 2017/0314918 12/2016 Shah N/A N/A N/A 2017/03433137 12/2016 Lettau N/A N/A N/A 2018/003493 12/2017 Bernhard et al. N/A N/A 2018/0017384 12/2017 Siercks et al. N/A N/A N/A 2018/0033935 12/2017 Atwell et al. N/A N/A 2018/0036684 12/2017 Fröhlich et al. N/A N/A 2018/0036684 12/2017 Shibazaki N/A N/A 2018/0052233 12/2017 Frank et al. N/A N/A 2018/01052233 12/2017 Tiwari et al. N/A N/A 2018/012571 12/2017 Becker et al. N/A N/A 2018/012571 12/2017 Tiwari et al. N/A N/A 2018/0156601 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Tasch et al. N/A N/A 2018/0156601 12/2017 Ziegenbein N/A N/A 2018/0209166 12/2017 Ziegenbein N/A N/A 2018/0209166 12/2017 Ziegenbein N/A N/A 2018/0300433 12/2017 Mindell et al. N/A N/A 2019/0024846 12/2018 Benjamin et al. N/A N/A 2019/0024846 12/2018 Benjamin et al. N/A N/A 2019/0025486 12/2018 Pivac et al. N/A N/A 2019/0026903 12/2018 Pivac et al. N/A N/A 2019/0026904 12/2018 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A 2020/0206924	2017/0179603	12/2016	Charvat et al.	N/A	N/A
2017/0236299 12/2016	2017/0191822	12/2016	Becker et al.	N/A	N/A
2017/0254102	2017/0227355	12/2016	Pettersson et al.	N/A	N/A
2017/0269203 12/2016 Trishaun N/A N/A 2017/0307757 12/2016 Hinderling et al. N/A N/A N/A 2017/0314909 12/2016 Dang N/A N/A N/A 2017/0314918 12/2016 Shah N/A N/A N/A 2017/0333137 12/2016 Roessler N/A N/A N/A 2017/0343336 12/2016 Lettau N/A N/A N/A 2018/0003493 12/2017 Bernhard et al. N/A N/A 2018/0017384 12/2017 Siercks et al. N/A N/A N/A 2018/0038684 12/2017 Atwell et al. N/A N/A 2018/0046096 12/2017 Shibazaki N/A N/A 2018/0052233 12/2017 Frank et al. N/A N/A N/A 2018/01052233 12/2017 Frank et al. N/A N/A N/A 2018/012571 12/2017 Tiwari et al. N/A N/A 2018/0156601 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Becker et al. N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/020796 12/2017 Edelman et al. N/A N/A 2018/020796 12/2017 Ziegenbein N/A N/A 2018/02039010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0032348 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/032486 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al.	2017/0236299	12/2016	Valkenburg et al.	N/A	N/A
2017/0307757 12/2016 Hinderling et al. N/A N/A 2017/0314909 12/2016 Dang N/A N/A 2017/0314918 12/2016 Shah N/A N/A 2017/0343336 12/2016 Lettau N/A N/A 2018/0003493 12/2017 Bernhard et al. N/A N/A 2018/0017384 12/2017 Siercks et al. N/A N/A 2018/0038684 12/2017 Fröhlich et al. N/A N/A 2018/0046096 12/2017 Shibazaki N/A N/A 2018/0108178 12/2017 Trank et al. N/A N/A 2018/0108178 12/2017 Murugappan et al. N/A N/A 2018/011971 12/2017 Tiwari et al. N/A N/A 2018/012971 12/2017 Tixach et al. N/A N/A 2018/0130149469 12/2017 Tasch et al. N/A N/A 2018/0180156601 12/2017 Tasch et al. N/A N/A	2017/0254102	12/2016	Peters et al.	N/A	N/A
2017/0314909 12/2016 Dang N/A N/A 2017/0314918 12/2016 Shah N/A N/A N/A 2017/0333137 12/2016 Lettau N/A N/A N/A 2017/0343336 12/2016 Lettau N/A N/A N/A 2018/0003493 12/2017 Bernhard et al. N/A N/A 2018/0013935 12/2017 Atwell et al. N/A N/A N/A 2018/0038684 12/2017 Fröhlich et al. N/A N/A 2018/0046096 12/2017 Frank et al. N/A N/A N/A 2018/0052233 12/2017 Frank et al. N/A N/A N/A 2018/0152233 12/2017 Frank et al. N/A N/A N/A 2018/0152601 12/2017 Tiwari et al. N/A N/A N/A 2018/0156601 12/2017 Becker et al. N/A N/A N/A 2018/0156601 12/2017 Fasch et al. N/A N/A 2018/0180416 12/2017 Edelman et al. N/A N/A 2018/0180416 12/2017 Edelman et al. N/A N/A 2018/020796 12/2017 Ziegenbein N/A N/A 2018/0209156 12/2017 Pettersson N/A N/A 2018/02039010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/032486 12/2018 Parkes N/A N/A 2019/032486 12/2018 Pivac et al. N/A N/A 2019/032486 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A	2017/0269203	12/2016	Trishaun	N/A	N/A
2017/0314918 12/2016 Shah N/A N/A 2017/0333137 12/2016 Roessler N/A N/A N/A 2017/0343336 12/2017 Bernhard et al. N/A N/A 2018/0017384 12/2017 Siercks et al. N/A N/A 2018/0023935 12/2017 Atwell et al. N/A N/A 2018/0034694 12/2017 Fröhlich et al. N/A N/A 2018/0052233 12/2017 Shibazaki N/A N/A N/A 2018/0052233 12/2017 Frank et al. N/A N/A N/A 2018/01571 12/2017 Tiwari et al. N/A N/A N/A 2018/01571 12/2017 Tiwari et al. N/A N/A N/A 2018/0156601 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Tasch et al. N/A N/A 2018/0180416 12/2017 Edelman et al. N/A N/A 2018/0202796 12/2017 Edelman et al. N/A N/A 2018/02039010 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Mindell et al. N/A N/A 2018/030433 12/2017 Maxam et al. N/A N/A 2019/0025446 12/2018 Benjamin et al. N/A N/A 2019/002348 12/2018 Parkes N/A N/A 2019/0024846 12/2018 Parkes N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2017/0307757	12/2016	Hinderling et al.	N/A	N/A
2017/0333137 12/2016 Roessler N/A N/A 2017/0343336 12/2016 Lettau N/A N/A 2018/0003493 12/2017 Bernhard et al. N/A N/A 2018/0017384 12/2017 Siercks et al. N/A N/A 2018/0023935 12/2017 Atwell et al. N/A N/A 2018/0038684 12/2017 Fröhlich et al. N/A N/A 2018/0046096 12/2017 Shibazaki N/A N/A 2018/0152233 12/2017 Frank et al. N/A N/A 2018/0121571 12/2017 Tiwari et al. N/A N/A 2018/01249469 12/2017 Becker et al. N/A N/A 2018/0149469 12/2017 Becker et al. N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/0180416 12/2017 Edelman et al. N/A N/A 2018/020796 12/2017 Pettersson N/A N/A	2017/0314909	12/2016	Dang	N/A	N/A
2017/0343336 12/2016 Lettau N/A N/A 2018/0003493 12/2017 Bernhard et al. N/A N/A 2018/0017384 12/2017 Siercks et al. N/A N/A 2018/0023935 12/2017 Atwell et al. N/A N/A 2018/0046096 12/2017 Fröhlich et al. N/A N/A 2018/0052233 12/2017 Frank et al. N/A N/A 2018/018178 12/2017 Al. N/A N/A 2018/0121571 12/2017 Tiwari et al. N/A N/A 2018/0149469 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Tasch et al. N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/0180416 12/2017 Tasch et al. N/A N/A 2018/0202796 12/2017 Ziegenbein N/A N/A 2018/0239010 12/2017 Pettersson N/A N/A	2017/0314918	12/2016	Shah	N/A	N/A
2018/0003493 12/2017 Bernhard et al. N/A N/A 2018/0017384 12/2017 Siercks et al. N/A N/A 2018/0023935 12/2017 Atwell et al. N/A N/A 2018/0038684 12/2017 Fröhlich et al. N/A N/A 2018/0052233 12/2017 Frank et al. N/A N/A 2018/0108178 12/2017 Murugappan et al. N/A N/A 2018/0121571 12/2017 Tiwari et al. N/A N/A 2018/01249469 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Tasch et al. N/A N/A 2018/0170719 12/2017 Edelman et al. N/A N/A 2018/0202796 12/2017 Edelman et al. N/A N/A 2018/0239010 12/2017 Pettersson N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A <	2017/0333137	12/2016	Roessler	N/A	N/A
2018/0017384 12/2017 Siercks et al. N/A N/A 2018/0023935 12/2017 Atwell et al. N/A N/A N/A 2018/0038684 12/2017 Fröhlich et al. N/A N/A N/A 2018/0046096 12/2017 Shibazaki N/A N/A N/A 2018/0052233 12/2017 Frank et al. N/A N/A N/A N/A 2018/01878 12/2017 Tiwari et al. N/A N/A N/A 2018/0121571 12/2017 Tiwari et al. N/A N/A N/A 2018/0149469 12/2017 Becker et al. N/A N/A N/A 2018/0156601 12/2017 Pontai N/A N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/01202796 12/2017 Edelman et al. N/A N/A 2018/0202796 12/2017 Ziegenbein N/A N/A 2018/0239010 12/2017 Pettersson N/A N/A 2018/039010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0251210 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2	2017/0343336	12/2016	Lettau	N/A	N/A
2018/0023935 12/2017 Atwell et al. N/A N/A 2018/0036684 12/2017 Fröhlich et al. N/A N/A 2018/0046096 12/2017 Shibazaki N/A N/A 2018/0052233 12/2017 Frank et al. N/A N/A 2018/0108178 12/2017 Murugappan et al. N/A N/A 2018/012571 12/2017 Tiwari et al. N/A N/A 2018/0149469 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Pontai N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/0202796 12/2017 Edelman et al. N/A N/A 2018/0209156 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Mindell et al. N/A N/A 2018/030433 12/2017 Maxam et al. N/A N/A 2019/0032348 12/2018 Benjamin et al. N/A N/A <	2018/0003493	12/2017	Bernhard et al.	N/A	N/A
2018/0038684 12/2017 Fröhlich et al. N/A N/A 2018/0046096 12/2017 Shibazaki N/A N/A 2018/0052233 12/2017 Frank et al. N/A N/A 2018/0108178 12/2017 Murugappan et al. N/A N/A 2018/0121571 12/2017 Tiwari et al. N/A N/A 2018/0149469 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Pontai N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/0203966 12/2017 Edelman et al. N/A N/A 2018/020396 12/2017 Pettersson N/A N/A 2018/0203910 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Mindell et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A	2018/0017384	12/2017	Siercks et al.	N/A	N/A
2018/0046096 12/2017 Shibazaki N/A N/A 2018/0052233 12/2017 Frank et al. N/A N/A 2018/0108178 12/2017 Murugappan et al. N/A N/A 2018/0121571 12/2017 Tiwari et al. N/A N/A 2018/0149469 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Pontai N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/0180416 12/2017 Edelman et al. N/A N/A 2018/0202796 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Maxam et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0184555 12/2018 Pivac et al. N/A N/A	2018/0023935	12/2017	Atwell et al.	N/A	N/A
2018/0052233 12/2017 Frank et al. N/A N/A 2018/0108178 12/2017 Murugappan et al. N/A N/A 2018/0121571 12/2017 Tiwari et al. N/A N/A 2018/0149469 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Pontai N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/0180416 12/2017 Edelman et al. N/A N/A 2018/0202796 12/2017 Pettersson N/A N/A 2018/0209156 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/032348 12/2018 Pivac et al. N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A <td>2018/0038684</td> <td>12/2017</td> <td>Fröhlich et al.</td> <td>N/A</td> <td>N/A</td>	2018/0038684	12/2017	Fröhlich et al.	N/A	N/A
2018/0108178 12/2017 Murugappan et al. N/A N/A 2018/0121571 12/2017 Tiwari et al. N/A N/A 2018/0149469 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Pontai N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/0180416 12/2017 Edelman et al. N/A N/A 2018/0202796 12/2017 Ziegenbein N/A N/A 2018/0209156 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/032348 12/2018 Parkes N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A	2018/0046096	12/2017	Shibazaki	N/A	N/A
al. 2018/0121571 12/2017 Tiwari et al. N/A N/A 2018/0149469 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Pontai N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/0180416 12/2017 Edelman et al. N/A N/A 2018/0202796 12/2017 Ziegenbein N/A N/A 2018/02039010 12/2017 Pettersson N/A N/A 2018/0300433 12/2017 Mindell et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/00224846 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A N/A N/A N/A N/A N/A N/A N	2018/0052233	12/2017	Frank et al.	N/A	N/A
al. 2018/0121571 12/2017 Tiwari et al. N/A N/A 2018/0149469 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Pontai N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/0180416 12/2017 Edelman et al. N/A N/A 2018/0202796 12/2017 Ziegenbein N/A N/A 2018/0209156 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/0032348 12/2018 Linnell et al. N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0251210 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A Pivac et al. N/A N/A N/A	2019/0109179	12/2017	Murugappan et	NI/A	NI/A
2018/0149469 12/2017 Becker et al. N/A N/A 2018/0156601 12/2017 Pontai N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/0180416 12/2017 Edelman et al. N/A N/A 2018/0202796 12/2017 Ziegenbein N/A N/A 2018/0209156 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/032348 12/2018 Parkes N/A N/A 2019/0184555 12/2018 Pivac et al. N/A N/A 2019/0251210 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0173777 12/2019 Pivac et al. N/A N/A	2010/01001/0	12/2017	al.	1 \ // A	11/71
2018/0156601 12/2017 Pontai N/A N/A 2018/0170719 12/2017 Tasch et al. N/A N/A 2018/0180416 12/2017 Edelman et al. N/A N/A 2018/0202796 12/2017 Ziegenbein N/A N/A 2018/0209156 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/0184555 12/2018 Linnell et al. N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A <tr< td=""><td>2018/0121571</td><td>12/2017</td><td>Tiwari et al.</td><td>N/A</td><td>N/A</td></tr<>	2018/0121571	12/2017	Tiwari et al.	N/A	N/A
2018/0170719 12/2017 Tasch et al. N/A N/A 2018/0180416 12/2017 Edelman et al. N/A N/A 2018/0202796 12/2017 Ziegenbein N/A N/A 2018/0209156 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/0184555 12/2018 Linnell et al. N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2018/0149469	12/2017	Becker et al.	N/A	N/A
2018/0180416 12/2017 Edelman et al. N/A N/A 2018/0202796 12/2017 Ziegenbein N/A N/A 2018/0209156 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/0184555 12/2018 Linnell et al. N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2018/0156601	12/2017	Pontai	N/A	N/A
2018/0202796 12/2017 Ziegenbein N/A N/A 2018/0209156 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/0184555 12/2018 Linnell et al. N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2018/0170719	12/2017		N/A	N/A
2018/0209156 12/2017 Pettersson N/A N/A 2018/0239010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/0184555 12/2018 Linnell et al. N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0251210 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2018/0180416	12/2017	Edelman et al.	N/A	N/A
2018/0239010 12/2017 Mindell et al. N/A N/A 2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/0184555 12/2018 Linnell et al. N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2018/0202796	12/2017	Ziegenbein	N/A	N/A
2018/0300433 12/2017 Maxam et al. N/A N/A 2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/0184555 12/2018 Linnell et al. N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0351210 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2018/0209156	12/2017		N/A	N/A
2019/0026401 12/2018 Benjamin et al. N/A N/A 2019/0032348 12/2018 Parkes N/A N/A 2019/0184555 12/2018 Linnell et al. N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0251210 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac et al. N/A N/A 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2018/0239010	12/2017	Mindell et al.	N/A	N/A
2019/0032348 12/2018 Parkes N/A N/A 2019/0184555 12/2018 Linnell et al. N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0251210 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac N/A N/A 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2018/0300433	12/2017	Maxam et al.	N/A	N/A
2019/0184555 12/2018 Linnell et al. N/A N/A 2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0251210 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac N/A E04G 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2019/0026401	12/2018	Benjamin et al.	N/A	N/A
2019/0224846 12/2018 Pivac et al. N/A N/A 2019/0251210 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac N/A E04G 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2019/0032348	12/2018		N/A	N/A
2019/0251210 12/2018 Pivac et al. N/A N/A 2019/0316369 12/2018 Pivac N/A E04G 21/22 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2019/0184555	12/2018	Linnell et al.	N/A	N/A
2019/0316369 12/2018 Pivac N/A E04G 21/22 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2019/0224846		Pivac et al.	N/A	N/A
2019/0316369 12/2018 Pivac N/A 21/22 2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2019/0251210	12/2018	Pivac et al.	N/A	N/A
2020/0173777 12/2019 Pivac et al. N/A N/A 2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2019/0316369	12/2018	Divac	NI/A	E04G
2020/0206923 12/2019 Pivac et al. N/A N/A 2020/0206924 12/2019 Pivac et al. N/A N/A	2013/0310303	12/2010	Tivac	11/11	21/22
2020/0206924 12/2019 Pivac et al. N/A N/A					
2020/0215688 12/2019 Pivac et al. N/A N/A					
	2020/0215688	12/2019	Pivac et al.	N/A	N/A

2020/0215692	12/2019	Pivac et al.	N/A	N/A
2020/0215693	12/2019	Pivac et al.	N/A	N/A
2021/0016437	12/2020	Pivac et al.	N/A	N/A
2021/0016438	12/2020	Pivac et al.	N/A	N/A
2021/0080582	12/2020	Pivac et al.	N/A	N/A
2021/0291362	12/2020	Pivac et al.	N/A	N/A
2021/0370509	12/2020	Pivac et al.	N/A	N/A
2021/0379775	12/2020	Pivac et al.	N/A	N/A
2022/0058300	12/2021	Pivac et al.	N/A	N/A
2024/0328180	12/2023	Pickering	N/A	N/A

FOREIGN PATENT DOCUMENTS

Patent No.	Application Date	Country	CPC
645640	12/1993	AU	N/A
673498	12/1989	CH	N/A
2730976	12/2004	CN	N/A
2902981	12/2006	CN	N/A
2923903	12/2006	CN	N/A
101100903	12/2007	CN	N/A
201184054	12/2008	CN	N/A
101360873	12/2008	CN	N/A
101476883	12/2008	CN	N/A
100557169	12/2008	CN	N/A
101694130	12/2009	CN	N/A
201972413	12/2010	CN	N/A
102359282	12/2011	CN	N/A
202248944	12/2011	CN	N/A
202292752	12/2011	CN	N/A
102995911	12/2012	CN	N/A
202925913	12/2012	CN	N/A
103363902	12/2012	CN	N/A
103698769	12/2013	CN	N/A
203701626	12/2013	CN	N/A
104141391	12/2013	CN	N/A
104153591	12/2013	CN	N/A
104493810	12/2014	CN	N/A
204295678	12/2014	CN	N/A
104612411	12/2014	CN	N/A
204311767	12/2014	CN	N/A
103774859	12/2014	CN	N/A
103753586	12/2014	CN	N/A
105113373	12/2014	CN	N/A
105178616	12/2014	CN	N/A
105257008	12/2015	CN	N/A
105544998	12/2015	CN	N/A
205290958	12/2015	CN	N/A
104806028	12/2015	CN	N/A
205668271	12/2015	CN	N/A
205840368	12/2015	CN	N/A

205990775	12/2016	CN	N/A
206185879	12/2016	CN	N/A
206189878	12/2016	CN	N/A
105089274	12/2016	CN	N/A
105064699	12/2016	CN	N/A
107217859	12/2016	CN	N/A
107237483	12/2016	CN	N/A
107357294	12/2016	CN	N/A
107605167	12/2017	CN	N/A
206838382	12/2017	CN	N/A
206844687	12/2017	CN	N/A
107654077	12/2017	CN	N/A
107675891	12/2017	CN	N/A
107740591	12/2017	CN	N/A
106088632	12/2017	CN	N/A
107762165	12/2017	CN	N/A
207063553	12/2017	CN	N/A
106088631	12/2017	CN	N/A
107975245	12/2017	CN	N/A
108061551	12/2017	CN	N/A
108222527	12/2017	CN	N/A
108301628	12/2017	CN	N/A
108331362	12/2017	CN	N/A
106150109	12/2017	CN	N/A
108396977	12/2017	CN	N/A
108457479	12/2017	CN	N/A
108708560	12/2017	CN	N/A
208023979	12/2017	CN	N/A
106881711	12/2018	CN	N/A
107083845	12/2018	CN	N/A
108016585	12/2018	CN	N/A
209701519	12/2018	CN	N/A
3430915	12/1985	DE	N/A
4038260	12/1990	DE	N/A
4207384	12/1992	DE	N/A
19509809	12/1994	DE	N/A
4417928	12/1994	DE	N/A
29601535	12/1996	DE	N/A
19600006	12/1996	DE	N/A
19603234	12/1996	DE	N/A
19743717	12/1998	DE	N/A
19849720	12/1999	DE	N/A
10230021	12/2002	DE	N/A
102006030130	12/2006	DE	N/A
102009018070	12/2009	DE	N/A
102009042014	12/2010	DE	N/A
202012100646	12/2012	DE	N/A
102013019869	12/2014	DE	N/A
190076	12/1985	EP	N/A
370682	12/1989	EP	N/A

456020	12/1994	EP	N/A
493020	12/1994	EP	N/A
495525	12/1994	EP	N/A
836664	12/1998	EP	N/A
674069	12/1998	EP	N/A
1918478	12/2007	EP	N/A
2112291	12/2008	EP	N/A
2219528	12/2009	EP	N/A
2249997	12/2009	EP	N/A
2353801	12/2010	EP	N/A
2199719	12/2013	EP	N/A
3084719	12/2015	EP	N/A
2296556	12/2007	ES	N/A
2230825	12/1973	FR	N/A
2524522	12/1982	FR	N/A
119331	12/1917	GB	N/A
2198105	12/1922	GB	N/A
673472	12/1951	GB	N/A
682010	12/1951	GB	N/A
839253	12/1959	GB	N/A
1067604	12/1966	GB	N/A
1465068	12/1976	GB	N/A
2268536	12/1993	GB	N/A
125079	12/2000	GB	N/A
2422400	12/2005	GB	N/A
64006719	12/1988	JP	N/A
H07101509	12/1998	JP	N/A
2000127077	12/1999	JP	N/A
2005283600	12/2004	JP	N/A
4294990	12/2008	JP	N/A
2009521630	12/2008	JP	N/A
5508895	12/2013	JP	N/A
87054	12/1988	LU	N/A
87381	12/1989	LU	N/A
88144	12/1993	LU	N/A
85392	12/2008	RU	N/A
9702397	12/1996	WO	N/A
2001076830	12/2000	WO	N/A
2004020760	12/2003	WO	N/A
2004083540	12/2003	WO	N/A
2005014240	12/2004	WO	N/A
2005017550	12/2004	WO	N/A
2005070657	12/2004	WO	N/A
2004011734	12/2004	WO	N/A
2006111827	12/2005	WO	N/A
2007076581	12/2006	WO	N/A
2008124713	12/2007	WO	N/A
2009026641	12/2008	WO	N/A
2009026642	12/2008	WO	N/A
2009044002	12/2008	WO	N/A

2010020457	12/2009	WO	N/A
2011077006	12/2010	WO	N/A
2013088154	12/2012	WO	N/A
2013134559	12/2012	WO	N/A
2017162630	12/2016	WO	N/A
2018009978	12/2017	WO	N/A
2018009980	12/2017	WO	N/A
2018009985	12/2017	WO	N/A
2018009986	12/2017	WO	N/A
WO-2018009981	12/2017	WO	B25J 13/089
2018052469	12/2017	WO	N/A
2018099323	12/2017	WO	N/A
2019006511	12/2018	WO	N/A
2019014701	12/2018	WO	N/A
2019014702	12/2018	WO	N/A
2019014705	12/2018	WO	N/A
2019014706	12/2018	WO	N/A
2019014707	12/2018	WO	N/A
2019033165	12/2018	WO	N/A
2019033166	12/2018	WO	N/A
2019033170	12/2018	WO	N/A
2019068128	12/2018	WO	N/A
2019071313	12/2018	WO	N/A
2020014737	12/2019	WO	N/A
2020047574	12/2019	WO	N/A
2020136563	12/2019	WO	N/A
2020210863	12/2019	WO	N/A

OTHER PUBLICATIONS

Examination report dated Sep. 30, 2023 on Australian Patent Application No. AU2018348785. cited by applicant

Examination report dated Sep. 30, 2023 on UAE Patent Application No. P60005242020. cited by applicant

Examination report issued Mar. 31, 2023 on Saudi Arabian Patent Application No. 522440994. cited by applicant

Boston Dynamics: "Introducing Spot (previously SpotMini)", Jun. 28, 2016, YouTube video, 1 page (screenshot of video); video retrieved at https://www.youtube.com/watch?v=tf7IEVTDjng. cited by applicant

Delgado, R. et al.: "Development and Control of an Omnidirectional Mobile Robot on an EtherCAT Network", International Journal of Applied Engineering Research, vol. 11, No. 21, 2016, pp. 10586-10592, XP055574484 *. cited by applicant

Dorfler, K. et al.: "Mobile Robotic Brickwork', Automation of a Discrete Robotic Fabrication Process Using an Autonomous Mobile Robot Robotic Fabrication in Architecture", Art and Design 2016, Feb. 4, 2016 (Feb. 4, 2016), pp. 204-217, XP055567451*. cited by applicant Egerstedt, M. et al.: "Control of Mobile Platforms using a Virtual Vehicle Approach", IEEE Transactions on Automatic Control, vol. 46, No. 11, Nov. 2001 (Nov. 1, 2001), XP055567515*. cited by applicant

Examination Report mailed Apr. 18, 2021 in GCC Patent Application No. 2018-35644, 5 pages. cited by applicant

Examination Report mailed Apr. 30, 2021 in GCC Patent Application No. 2018-35643, 3 pages.

cited by applicant Examination Report mailed Jun. 29, 2021 for India Patent Application No. 201927004006, 6 pages.

cited by applicant

Examination Report mailed Sep. 30, 2021 for Australian Patent Application No. 2017295316, 3

pages. cited by applicant Extended European Search Report mailed Jun. 4, 2021 for European Patent Application No. 18865644.1, 7 pages. cited by applicant

Extended European Search Report mailed Mar. 16, 2021 for European Patent Application No. 18834565.6, 19 pages. cited by applicant

Extended European Search Report mailed Mar. 17, 2021 for European Patent Application No. 18835861.8, 12 pages. cited by applicant

Extended European Search Report mailed Mar. 18, 2021 for European Patent Application No. 18834673.8, 14 pages. cited by applicant

Extended European Search Report mailed Mar. 18, 2021 for European Patent Application No. 18834893.2, 12 pages. cited by applicant

Extended European Search Report mailed Mar. 18, 2021 for European Patent Application No. 18835737.0, 10 pages. cited by applicant

Extended European Search Report mailed Mar. 30, 2021 for European Patent Application No. 18845794.9, 13 pages. cited by applicant

Extended European Search Report mailed Mar. 5, 2021 for European Patent Application No. 18828425.1, 7 pages. cited by applicant

Fastbrick Robotics, Fastbrick Robotics: Hadrian 105 First Look Revealed, Nov. 16, 2015 (Nov. 16, 2015), XP054978174, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=7Zw7qHxMtrY> [retrieved on Nov. 16, 2015] *. cited by applicant

Fastbrick Robotics: Hadrian 105 Demonstrative Model Animation, Jun. 29, 2015 (Jun. 29, 2015), XP054979424, Retrieved from the Internet <URL:https://www.youtube.com/watch?

v=Rebqcsb61gY> [retrieved on Mar. 7, 2018] *. cited by applicant

Fastbrick Robotics: Hadrian 105 Time Lapse, Fastbrick Robotics Time Lapse, May 22, 2016 (May 22, 2016), XP054978173, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=4YcrO8ONcfY> [retrieved on May 22, 2016] *. cited by applicant

Fastbrick Robotics: Hadrian X Digital Construction System, published on Sep. 21, 2016 < URL: https://www.youtube.com/watch?v=5bW1vuCgEaA >. cited by applicant

Feng, C. et al.: "Vision Guided Autonomous Robotic Assembly and as-built Scanning on Unstructured Construction Sites", Automation in Construction, vol. 59, Nov. 2015 (Nov. 1, 2015), pp. 128-138, XP055567454 *. cited by applicant

Gander H et al: "Application of a floating point digital signal processor to a dynamic robot measurement system", Instrumentation and Measurement Technology Conference, 1994. IMTC/94. Conference Proceedings. 10.SUP.th .Anniversary. Advanced Technologies in I & M., 1994 IEEE Hamamatsu, Japan May 10-12, 1994, New York, NY, USA, IEEE, May 10, 1994 (May 10, 1994), pp. 372-375, XP010121924, DOI: 10.1109/IMTC.1994.352046, ISBN: 978-0-7803-1880-9, *whole document*. cited by applicant

Gao, X. et al.: "Complete Solution Classification for the Perspective-Three-Point Problem", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, No. 8, Aug. 2003 (Aug. 1, 2003), pp. 930-943, XP011099374 *. cited by applicant

Garrido, S. et al., "FM2: A real-time fast marching sensor based motion planner", Advanced Intelliget Mechatronics, 2007 IEEE/ASME International Conference on, IEEE, PI, Sep. 1, 2007 (Sep. 1, 2007), pp. 1-6. cited by applicant

Giftthaler, M. et al., "Efficient Kinematic Planning for Mobile Manipulators with Non-holonomic Constraints Using Optimal Control", 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, May 29-Jun. 3, 2017. cited by applicant

```
Heintze, H., "Design and Control of a Hydraulically Actuated Industrial Brick Laying Robot," 264 pages. cited by applicant
```

Heintze, J. et al., "Controlled hydraulics for a direct drive brick laying robot," Automation in Construction 5 (1996), pp. 23-29. cited by applicant

Helm, V. et al.: "Mobile Robotic Fabrication on Construction Sites: dimRob", IEEE /RSJ International Conference on Intelligent Robots and Systems, Oct. 7, 2012 (Oct. 7, 2012), Vilamoura, Portugal, pp. 4335-4341, XP032287463 *. cited by applicant http://www.new-technologies.org/ECT/Other/brickrob.htm. "Emerging Construction Technologies." Dec. 1, 2006. cited by applicant

Huang, S. et al., "Applying High-Speed Vision Sensing to an Industrial Robot for High-Performance Position Regulation under Uncertainties," Sensors, 2016, 16, 1195, 15 pages. cited by applicant

International Search Report and Written Opinion for International Application No. PCT/AU2021/050732; Date of Mailing: Sep. 21, 2021; 10 pages. cited by applicant International Preliminary Report on Patentability for International Application No. PCT/AU2017/050731; Date of Mailing: Jan. 15, 2019; 5 pages. cited by applicant International Preliminary Report on Patentability for International Application No. PCT/AU2017/050738; Date of Mailing: Jan. 15, 2019; 13 pages. cited by applicant International Preliminary Report on Patentability for International Application No. PCT/AU2017/050739; Date of Mailing: Jan. 15, 2019; 6 pages. cited by applicant International Preliminary Report on Patentability for International Application No. PCT/AU2018/050733; Date of Mailing: Jan. 21, 2020; 6 pages. cited by applicant International Preliminary Report on Patentability for International Application No. PCT/AU2018/050734; Date of Mailing: Jan. 21, 2020; 9 pages. cited by applicant International Preliminary Report on Patentability for International Application No. PCT/AU2018/050737; Date of Mailing: Jan. 21, 2020; 6 pages. cited by applicant International Preliminary Report on Patentability for International Application No. PCT/AU2018/050739; Date of Mailing: Jan. 21, 2020; 6 pages. cited by applicant International Preliminary Report on Patentability for International Application No. PCT/AU2018/050740; Date of Mailing: Jan. 21, 2020; 6 pages. cited by applicant International Search Report and Written Opinion for International Application No. PCT/AU2017/050730; Date of Mailing: Aug. 23, 2017; 17 pages. cited by applicant International Search Report and Written Opinion for International Application No. PCT/AU2017/050731; Date of Mailing: Aug. 31, 2017; 8 pages. cited by applicant International Search Report and Written Opinion for International Application No. PCT/AU2017/050738; Date of Mailing: Oct. 17, 2017; 19 pages. cited by applicant International Search Report and Written Opinion for International Application No. PCT/AU2017/050739; Date of Mailing: Sep. 28, 2017; 9 pages. cited by applicant International Search Report and Written Opinion for International Patent Application No. PCT/AU19/50742; Date of Mailing Sep. 23, 2019; 5 pages. cited by applicant International Search Report and Written Opinion for International Patent Application No. PCT/AU19/50743; Date of Mailing mailed Oct. 1, 2019; 10 pages. cited by applicant International Search Report and Written Opinion for International Patent Application No. PCT/AU20/50367; Date of Mailing Jun. 29, 2020; 15 pages. cited by applicant International Search Report and Written Opinion for International Patent Application No. PCT/AU20/50368; Date of Mailing Jun. 25, 2020; 11 pages. cited by applicant Kazemi, M. et al.: "Path Planning for Image-based Control of Wheeled Mobile Manipulators", 2012 IEEE /RSJ International Conference on Intelligent Robots and Systems, Oct. 7, 2012 (Oct. 7, 2012), Vilamoura, Portugal, XP055567470 *. cited by applicant Kleinigger, M. et al.: "Application of 6-DOF sensing for robotic disturbance compensation",

```
Automation Science and Engineering (CASE), 2010 IEEE Conference on, IEEE, Piscataway, NJ, USA, Aug. 21, 2010 (Aug. 21, 2010, pp. 344-349, XP031762876, ISBN: 978-1-4244-5477-1, *abstract*, *sections 1 to 3*. cited by applicant
```

Kleinkes, M. et al.: "Laser Tracker and 6DoF measurement strategies in industrial robot applications", CMSC 2011: Coordinate Metrology System Conference, Jul. 25, 2011 (Jul. 25, 2011), XP055456272 *. cited by applicant

Koren et al.: "End-effector guidance of robot arms", CIRP Annals—Manufacturing Technology, vol. 36, No. 1, 1987, pp. 289-292, XP055456270 *. cited by applicant

Kwon, S. et al., "On the Coarse/Fine Dual-Stage Manipulators with Robust Perturbation Compensator," IEEE, May 21-26, 2001, pp. 121-126. cited by applicant

Kyle in CMSC: Charlotte-Concord, Jul. 21-25, 2008. cited by applicant

Latteur, et al., "Drone-Based Additive Manufacturing of Architectural Structures," IASS Symposium 2015, Amsterdam, The Netherlands; Aug. 17-20, 2015; 12 pages. cited by applicant Lippiello, V. et al.: "Position-Based Visual Servoing in Industrial Multirobot Cells Using a Hybrid Camera Configuration", IEEE Transactions on Robotics, vol. 23, No. 1, Feb. 2007 (Feb. 1, 2007), XP011163518 *. cited by applicant

Liu, Z. et al.: "EtherCAT Based Robot Modular Joint Controller", Proceeding of the 2015 IEEE International Conference on Information and Automation, Aug. 2015 (Aug. 1, 2015), Lijiang, China, pp. 1708-1713, XP033222650 *. cited by applicant

Mercedes-Benz: "Mercedes-Benz "Chicken" Magic Body Control TV commercial", YouTube, Sep. 23, 2013, 1 page. Retrevied from the internet: https://www.youtube.com/watch? v+nLwML2PagbY>. cited by applicant

Notice of Acceptance of Patent Application received for priority Australian Patent Application No. 2017294796, mailed May 15, 2019 (158 pages). cited by applicant

Office Action mailed Apr. 21, 2021 in Japanese Patent Application No. 2019-523148, 4 pages. cited by applicant

Office Action mailed Aug. 20, 2021 for Japanese Patent Application No. 2019-523147, 3 pages. cited by applicant

Office Action mailed Jul. 5, 2021 for Japanese Patent Application No. 2019-523145, 4 pages. cited by applicant

Office Action mailed May 24, 2021 for Chinese Patent Application No. 201880067520.0, 8 pages. cited by applicant

Office Action mailed Sep. 3, 2021 for Chinese Patent Application No. 201780056460.8, 9 pages. cited by applicant

Partial Supplementary European Search Report mailed Apr. 14, 2020 in European Patent Application No. 17826696.1, 10 pages. cited by applicant

Pless, R.: "Using Many Cameras as One", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun. 18, 2003 (Jun. 18, 2003), Madison, WI, USA, pp. 1-7, XP055564465 *. cited by applicant

Posada et al.: "High accurate robotic drilling with external sensor and compliance model-based compensation", Robotics and Automation (ICRA), 2016 IEEE International Conference, May 16, 2016 (May 16, 2016), pp. 3901-3907, XP032908649 *. cited by applicant

Pritschow, G. et al., "A Mobile Robot for On-Site Construction of Masonry," Inst. Of Control Tech. for Machine Tools and Manuf. Units, pp. 1701-1707. cited by applicant

Pritschow, G. et al., "Application Specific Realisation of a Mobile Robot for On-Site Construction of Masonry," Automation and Robotics in Construction XI, 1994, pp. 95-102. cited by applicant Pritschow, G. et al., "Configurable Control System of a Mobile Robot for ON-Site Construction of Masonry," Inst. Of Control Technology for Machine Tools and Manuf. Units, pp. 85-92. cited by applicant

Pritschow, G. et al., "Technological aspects in the development of a mobile bricklaying robot,"

Automation in Construction 5 (1996), pp. 3-13. cited by applicant

Riegl Laser Measurement Systems. "Long Range & High Accuracy 3D Terrestrial Laser Scanner System—LMS-Z420i." pp. 1-4. cited by applicant

Salcudean, S. et al., "On the Control of Redundant Coarse-Fine Manipulators," IEEE, pp. 1834-1840. cited by applicant

Sandy, T. et al.: "Autonomous Repositioning and Localization of an In Situ Fabricator", 2016 IEEE International Conference on Robotics and Automation (ICRA), May 16, 2016 (May 16, 2016), pp. 2852-2858, XP055567467 *. cited by applicant

Siciliano, B. et al., "Robotics—chapters 2-4" Robotics, Dec. 31, 2009 (Dec. 31, 2009), Springer London, London, pp. 39-189. cited by applicant

Skibniewski, M.J., "Current Status of Construction Automation and Robotics in the United States of America," The 9th International Symposium on Automation and Robotics in Construction, Jun. 3-5, 1992, 8 pages. cited by applicant

Trimble ATS. "Advanced Tracking Sensor (ATS) with target recognition capability for stakeless machine control survey applications." pp. 1-4. cited by applicant

Vincze, M. et al., "A Laser Tracking System to Measure Position and Orientation of Robot End Effectors Under Motion," The International Journal of Robotics Research, vol. 13, No. 4, Aug. 1994, pp. 305-314. cited by applicant

Warszawski, A. et al., "Implementation of Robotics in Building: Current Status and Future Prospects," Journal of Construction Engineering and Management, Jan./Feb. 1998, 124(1), pp. 31-41. cited by applicant

Willmann, J. et al.: "Robotic Timber Construction—Expanding Additive Fabrication to New Dimensions", Automation in Construction, vol. 61, 2016, pp. 16-23, XP029310896 *. cited by applicant

Xu, H. et al.: "Uncalibrated Visual Servoing of Mobile Manipulators with an Eye-to-hand Camera", Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics, Dec. 3, 2016 (Dec. 3, 2016), Qingdao, China, pp. 2145-2150, XP033071767 *. cited by applicant Yu, S.N. et al., "Feasibility verification of brick-laying robot using manipulation trajectory and the laying pattern optimization," Dept. of Mech. Eng., Automation in Construction (2009), pp. 644-655. cited by applicant

Zaki, T., "Parametric modeling of Blackwall assemblies for automated generation of shop drawings and detailed estimates using BIM", Master's Thesis, May 23, 2016, pp. 1-151. cited by applicant Examination report dated Sep. 13, 2022 on Chinese Patent Application No. 201880066756.2, 11 pages. cited by applicant

IPRP dated Jan. 10, 2023 on International Patent Application No. PCT/AU2021/050732, 5 pages. cited by applicant

Examination Report dated Jul. 4, 2024 on European Patent Application No. 21837579.8. cited by applicant

International Preliminary Report on Patentability received for counterpart International Application No. PCT/AU2023/050325, mailed Oct. 31, 2024, 6 pages. cited by applicant

International Preliminary Report on Patentability received in International Patent Application No. PCT/AU2021/050361, mailed Oct. 25, 2022. cited by applicant

Primary Examiner: Rodriguez; Saul

Assistant Examiner: Tighe; Brendan P

Attorney, Agent or Firm: Perkins Coie LLP

Background/Summary

CROSS-REFERENCE TO RELATED APPLICATIONS

- (1) The present application is a United States national phase entry of International Application No. PCT/AU2021/050361 titled "BLOCK TRANSFER APPARATUS AND IMPROVED CLAMPING ASSEMBLY FOR USE THEREWITH" and filed on April 22, 2022, which claims priority from Australian Provisional Application No. 2020901272 titled "BLOCK TRANSFER APPARATUS AND IMPROVED CLAMPING ASSEMBLY FOR USE THEREWITH" and filed on 22 Apr. 2020, the contents of which are hereby incorporated by reference in their entireties. BACKGROUND OF THE INVENTION
- (2) The present invention relates to a block transfer apparatus and improved clamping assembly for use therewith. In one particular example, the block transfer apparatus and clamping assembly is suitable for use by a robotic block laying machine.

DESCRIPTION OF THE PRIOR ART

- (3) The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that the prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.
- (4) Autonomous and semi-autonomous industrial robotic equipment is increasingly being used in outside work environments such as on construction sites, building sites, mining sites, and industrial sites. For example, WO 2007/076581 describes an automated brick laying system for constructing a building from a plurality of bricks comprising a robot provided with a brick laying and adhesive applying head, a measuring system, and a controller that provides control data to the robot to lay the bricks at predetermined locations. The measuring system measures in real time the position of the head and produces position data for the controller. The controller produces control data on the basis of a comparison between the position data and a predetermined or pre-programmed position of the head to lay a brick at a predetermined position for the building under construction. The controller can control the robot to construct the building in a course by course manner where the bricks are laid sequentially at their respective predetermined positions and where a complete course of bricks for the entire building is laid prior to laying of the bricks for the next course.
- (5) In one example of a robotic construction robot developed by the applicant there is provided a telescoping articulated boom that is mounted on a truck, and a conveying system that transports bricks along the boom to an end effector known as the layhead, which lays the bricks at predetermined locations. When the brick arrives at the layhead via the boom, it is clamped while adhesive is applied and then it is rotated 180 degrees and presented for pickup by a robot arm that places the brick at a desired location, preferably with sub-mm accuracy. When a brick is laid, it is assumed that the brick is held in a certain pose with respect to the robot arm. In order for the robot arm to place a brick at the desired location, it must pick up the brick in the correct location from the clamp.
- (6) One problem is that the exact location of the brick with respect to the clamp in the layhead is not accurately known. It may be translated or rotated slightly away from an ideal pickup location of the robot arm. A camera-based vision system may be used to determine the exact 6 DOF location of the brick in space. However, this is a challenging task, as there are spatial constraints at the layhead to place cameras and sensors (without affecting the required functionality) and processing must be performed quickly (e.g. less than 2 seconds) to ensure rapid bricklaying. Further this task is made more difficult due to the varied range of outdoor conditions the robot is required to operate in—this includes temperatures ranging from 0-50° C., rain, dust, wind as well as full daylight, twilight and

dark night lighting conditions. This places significant demands on the vision system for determining the location of the brick to enable precise placement of the brick.

(7) There is thus a need to develop an improved system for clamping a brick or block such that its location with respect to the clamp is known without requiring vision-based processing techniques, or to at least provide a useful alternative to existing systems.

SUMMARY OF THE PRESENT INVENTION

- (8) In one broad form, an aspect of the present invention seeks to provide a block transfer apparatus for transferring a block between an upstream clamp of a block delivery system and a downstream clamp of the block delivery system, the block transfer apparatus including: a) a frame pivotally mounted to a support; and, b) a clamping assembly mounted to the frame and linearly extendable relative thereto, the clamping assembly including a pair of gripper jaws for clamping opposing sides of the block; wherein, the block transfer apparatus is configured to: i) receive a block from the upstream clamp, wherein the block is initially clamped in the gripper jaws in an approximate position; ii) rotate to a drop position whereby the gripper jaws release the block and allow it to self-datum onto first and second orthogonal datum surfaces to thereby register an end and top or bottom face of the block in corresponding first and second orthogonal planes; iii) re-clamp the block after the drop by applying a clamping force to opposing sides of the block so as to register the block against a third datum surface defining a third plane orthogonal to both the first and second planes to thereby datum the position of the block with respect to the clamping assembly; and, iv) present the block clamped in the datumed position for transfer to the downstream clamp.
- (9) In one embodiment, the first datum surface that registers an end of the block is provided as part of the clamping assembly at one of: a) a distal end of the gripper jaws; and, b) a proximal end of the gripper jaws to either the jaw or a jaw support structure.
- (10) In one embodiment, the second datum surface that registers a top or bottom surface of the block is at least one of: a) provided as part of the clamping assembly along an upper lengthwise extending edge of the gripper jaws; and, b) provided as part of the frame in the form of a lengthwise extending bar or plate mounted to the support that is parallel to the gripper jaws.
- (11) In one embodiment, the third datum surface is provided by a first of the two gripper jaws.
- (12) In one embodiment, the first gripper jaw has a pair of spaced apart first gripper pads rigidly attached to an inner surface of the jaw.
- (13) In one embodiment, the first gripper pads extend lengthwise along the first gripper jaw.
- (14) In one embodiment, a second of the two gripper jaws includes a plurality of second gripper pads attached to flexible finger members spaced apart along the length of the jaw that allow the pads to flex laterally and compensate for variations in flatness of the side of the block along its length.
- (15) In one embodiment, an at least one row of second gripper pads of the second gripper jaw is located approximately midway between the pair of spaced apart first gripper pads such that when a clamping force is applied to the block it is urged into planar alignment with the third datum surface.
- (16) In one embodiment, the gripper jaws are configured to accommodate blocks of varying length.
- (17) In one embodiment, the gripper jaws are configured to one of: a) clamp blocks of varying length at different pre-defined positions along the length of the gripper jaws; and, b) clamp blocks of varying length at the same position along the length of the gripper jaws.
- (18) In one embodiment, the drop position coincides with the clamping assembly being rotated to a relative angle to the ground of at least one of: a) between 30 to 60 degrees; b) between 35 to 55 degrees; c) between 40 to 50 degrees; and, d) approximately 45 degrees.
- (19) In one embodiment, the support comprises a distal end of a boom used for transferring blocks therealong.
- (20) In one embodiment, the upstream clamp forms part of a shuttle for delivering a block along the boom.
- (21) In one embodiment, the downstream clamp is an end effector of a robotic block placement arm

that is programmed to place blocks during construction of a building structure.

- (22) In one embodiment, the block transfer apparatus includes a distance range sensor for use in determining the proximity between the clamping assembly and the block held by the upstream clamp.
- (23) In another broad form, an aspect of the present invention seeks to provide a block delivery system for delivering blocks for placement during construction of a building structure, the block delivery system including: a) a boom for transferring blocks therealong; b) an upstream clamp forming part of a shuttle that delivers blocks along the boom; c) a downstream clamp associated with an end effector of a robotic block placement arm that is programmed to place blocks during construction of the building structure; and, d) a block transfer apparatus for transferring a block between the upstream clamp and the downstream clamp, the block transfer apparatus including: i) a frame pivotally mounted to a distal end of the boom; and, ii) a clamping assembly mounted to the frame and linearly extendable relative thereto, the clamping assembly including a pair of gripper jaws for clamping opposing sides of the block; wherein, the block transfer apparatus is configured to: (1) receive a block from the upstream clamp, wherein the block is initially clamped in the gripper jaws in an approximate position; (2) rotate to a drop position whereby the gripper jaws release the block and allow it to self-datum onto first and second orthogonal datum surfaces to thereby register an end and top or bottom face of the block in corresponding first and second orthogonal planes; (3) re-clamp the block after the drop by applying a clamping force to opposing sides of the block so as to register the block against a third datum surface defining a third plane orthogonal to both the first and second planes to thereby datum the position of the block with respect to the clamping assembly; and, (4) present the block clamped in the datumed position for transfer to the downstream clamp.
- (24) In another broad form, an aspect of the present invention seeks to provide a clamping assembly for clamping a block, the clamping assembly including a pair of gripper jaws including datum surfaces in first and second orthogonal planes to locate the block relative thereto, the clamping assembly configured to locate an end and top or bottom face of the block in the first and second orthogonal planes and then apply a clamping force to opposing sides of the block so as to locate the block in a third plane orthogonal to both the first and second planes to thereby datum the position of the block with respect to the clamping assembly.
- (25) In one embodiment, the datum surfaces form a V-shaped wedge into which the block is located.
- (26) In one embodiment, each gripper jaw includes at least one first datum surface extending at least partially between top and bottom surfaces of the gripper jaw and towards the opposing gripper jaw for locating an end of the block.
- (27) In one embodiment, the at least one first datum surface is provided by one of: a) a surface integral with each gripper jaw; and, b) a plate element mounted to a surface integral with each gripper jaw.
- (28) In one embodiment, each gripper jaw includes at least one second datum surface that is parallel to a top or bottom surface of the gripper jaw and projects towards the opposing gripper jaw for locating the top or bottom surface of the block.
- (29) In one embodiment, the at least one second datum surface is provided by one of: a) the top or bottom surface of each gripper jaw; and, b) plate elements mounted to the top or bottom surfaces of each gripper jaw.
- (30) In one embodiment, the at least one second datum surface is discontinuous.
- (31) In one embodiment, the gripper jaws are configured to accommodate blocks of varying length.
- (32) In one embodiment, the gripper jaws are configured to clamp blocks of varying length at different pre-defined positions along the length of the gripper jaws.
- (33) In one embodiment, each gripper jaw includes a plurality of first datum surfaces spaced apart along a lengthwise direction thereof.

- (34) In one embodiment, the plurality of spaced apart first datum surfaces are further stepped apart laterally with respect to each gripper jaw so as not to overlap in the lengthwise direction thereof.
- (35) In one embodiment, an end of blocks of varying length are each located on one of the plurality of first datum surfaces of each gripper jaw.
- (36) In one embodiment, a first of the pair of gripper jaws has a plurality of first gripper pads arranged to define the third plane for locating a side face of the block when clamped.
- (37) In one embodiment, a second of the pair of gripper jaws has a plurality of second gripper pads arranged co-linearly in a lengthwise direction thereof such that when a clamping force is applied to the block the plurality of second gripper pads act to urge the block into planar alignment with the third plane defined by the plurality of first gripper pads.
- (38) In one embodiment, the plurality of first gripper pads comprise a pair of spaced apart rows of first gripper pads extending in a lengthwise direction of the first gripper jaw and wherein the second gripper pads are located on the second gripper jaw approximately midway between the spaced apart rows of first gripper pads.
- (39) In one embodiment, the first and second gripper pads are arranged on stepped surfaces of each gripper jaw so that each different length of block clamped by the assembly is contacted by a different plurality of first and second gripper pads.
- (40) In one embodiment, any block clamped by the assembly will be in contact with at least four first gripper pads and at least two second gripper pads when a clamping force is applied.
- (41) In one embodiment, the block is allowed to drop into the wedge under gravity to locate onto the datum surfaces defining the first and second orthogonal planes.
- (42) In one embodiment, the clamping assembly is pivotable and the drop is performed when the gripper jaws have been pivoted to a relative angle to the ground of at least one of: a) between 30 to 60 degrees; b) between 35 to 55 degrees; c) between 40 to 50 degrees; and, d) approximately 45 degrees.
- (43) In one embodiment, the block is: a) initially clamped in the gripper jaws in an approximate position; b) rotated to a drop position whereby the gripper jaws release the block and allow it to drop into the wedge; and, c) re-clamped when the block is located in the wedge so that the block is located in a datumed position.
- (44) In another broad form, an aspect of the present in invention seeks to provide a block transfer apparatus for transferring a block between an upstream clamp of a block delivery system and a downstream clamp of the block delivery system, the block transfer apparatus including: a) a frame pivotally mounted to a support; and, b) a clamping assembly mounted to the frame and linearly extendable relative thereto, the clamping assembly including a pair of gripper jaws including datum surfaces in first and second orthogonal planes to locate the block relative thereto, wherein the clamping assembly is configured to at least: i) receive a block from the upstream clamp, wherein the block is initially clamped in the gripper jaws in an approximate position; ii) rotate to a drop position whereby the gripper jaws release the block and allow it to drop into a V-shaped wedge formed by the datum surfaces to thereby locate an end and top or bottom face of the block in the first and second orthogonal planes; iii) re-clamp the block after the drop by applying a clamping force to opposing sides of the block so as to locate the block in a third plane orthogonal to both the first and second planes to thereby datum the position of the block with respect to the clamping assembly. iv) present the block clamped in the datumed position for transfer to the downstream clamp.
- (45) In one embodiment, the support comprises a distal end of a boom used for transferring blocks therealong.
- (46) In one embodiment, the upstream clamp forms part of a shuttle for delivering a block along the boom.
- (47) In one embodiment, the downstream clamp is an end effector of a robotic block placement arm that is programmed to place blocks during construction of a building structure.

- (48) In one embodiment, the block transfer apparatus includes a distance range sensor for use in determining the proximity between the clamping assembly and the block held by the upstream clamp.
- (49) In yet a further broad form, an aspect of the present invention seeks to provide a block delivery system for delivering blocks for placement during construction of a building structure, the block delivery system including: a) a boom for transferring blocks therealong; b) an upstream clamp forming part of a shuttle that delivers blocks along the boom; c) a downstream clamp associated with an end effector of a robotic block placement arm that is programmed to place blocks during construction of the building structure; and, d) a block transfer apparatus for transferring a block between the upstream clamp and the downstream clamp, the block transfer apparatus including: i) a frame pivotally mounted to a distal end of the boom; and, ii) a clamping assembly mounted to the frame and linearly extendable relative thereto, the clamping assembly including a pair of gripper jaws including datum surfaces in first and second orthogonal planes to locate the block relative thereto, wherein the clamping assembly is configured to at least: (1) receive a block from the upstream clamp, wherein the block is initially clamped in the gripper jaws in an approximate position; (2) rotate to a drop position whereby the gripper jaws release the block and allow it to drop into a V-shaped wedge formed by the datum surfaces to thereby locate an end and top or bottom face of the block in the first and second orthogonal planes; (3) re-clamp the block after the drop by applying a clamping force to opposing sides of the block so as to locate the block in a third plane orthogonal to both the first and second planes to thereby datum the position of the block with respect to the clamping assembly; and, (4) present the block clamped in the datumed position for transfer to the downstream clamp.
- (50) It will be appreciated that the broad forms of the invention and their respective features can be used in conjunction and/or independently, and reference to separate broad forms is not intended to be limiting.

Description

BRIEF DESCRIPTION OF THE DRAWINGS

- (1) Various examples and embodiments of the present invention will now be described with reference to the accompanying drawings, in which:
- (2) FIG. **1**A is a perspective view of an example of a clamping assembly;
- (3) FIG. **1**B is a further perspective view of the clamping assembly of FIG. **1**A;
- (4) FIG. 1C is a side view of the clamping assembly of FIG. 1A;
- (5) FIG. **1**D is a top view of the clamping assembly of FIG. **1**A;
- (6) FIG. **2** is a perspective view of a block transfer apparatus incorporating the clamping assembly of FIGS. **1**A to **1**D;
- (7) FIG. **3**A is a schematic bottom view of a clamping assembly shown in use clamping a first block type;
- (8) FIG. **3**B is a schematic top view of the clamping assembly of FIG. **3**A;
- (9) FIG. **3**C is a sectional view of the clamping assembly taken through section A-A of FIG. **3**A;
- (10) FIG. **4**A is a schematic bottom view of a clamping assembly shown in use clamping a second block type;
- (11) FIG. **4**B is a schematic top view of the clamping assembly of FIG. **4**A;
- (12) FIG. **4**C is a sectional view of the clamping assembly taken through section B-B of FIG. **4**A;
- (13) FIG. **5**A is a schematic bottom view of a clamping assembly shown in use clamping a third block type;
- (14) FIG. 5B is a schematic top view of the clamping assembly of FIG. 5A;
- (15) FIG. 5C is a sectional view of the clamping assembly taken through section C-C of FIG. 5A;

- (16) FIG. **6**A is a schematic bottom view of a clamping assembly shown in use clamping a fourth block type;
- (17) FIG. **6**B is a schematic top view of the clamping assembly of FIG. **6**A;
- (18) FIG. **6**C is a sectional view of the clamping assembly taken through section D-D of FIG. **6**A;
- (19) FIGS. 7A to 7Q provide a detailed sequence of schematic views of a block transfer apparatus illustrating controlled movements thereof;
- (20) FIG. **8**A is a perspective view of a further example of a block transfer apparatus;
- (21) FIG. 8B is a further perspective view of the block transfer apparatus of FIG. 8A;
- (22) FIG. **8**C is a top view of the block transfer apparatus of FIG. **8**A;
- (23) FIG. **8**D is a front view of the block transfer apparatus of FIG. **8**A;
- (24) FIGS. **9**A to **9**F provide a detailed sequence of schematic views of the block transfer apparatus of FIG. **8**A illustrating controlled movements thereof;
- (25) FIG. **10**A is a perspective view of a further example of a block transfer apparatus;
- (26) FIG. **10**B is a front view of the block transfer apparatus of FIG. **10**A;
- (27) FIG. 10C is a further perspective view of the block transfer apparatus of FIG. 10A; and,
- (28) FIGS. **11**A to **11**E provide a detailed sequence of schematic views of the block transfer apparatus of FIG. **10**A illustrating controlled movements thereof.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

- (29) An example of a clamping assembly **10** for clamping a block will now be described with references to FIGS. **1**A to **1**D.
- (30) The term "block" used herein is a piece of material, typically in the form of a polyhedron, such as a cuboid having six quadrilateral and more typically substantially rectangular faces. The block is typically made of a hard material and may include openings or recesses, such as cavities or the like. The block is configured to be used in constructing a structure, such as a building or the like and specific example blocks include bricks, besser blocks, concrete masonry units or similar.
- (31) In this example, the clamping assembly **10** includes a pair of gripper jaws **20**, **30** including datum surfaces **21**, **31** and **22**, **32** in first and second orthogonal planes to locate the block relative thereto. The clamping assembly **10** is configured to locate an end and top or bottom face of the block in the first and second orthogonal planes and then apply a clamping force to opposing sides of the block so as to locate the block in a third plane orthogonal to both the first and second planes to thereby datum the position of the block with respect to the clamping assembly **10**.
- (32) An advantage of the above-described clamping assembly **10** is its ability to provide a reliable and repeatable mechanical datum for the block it is clamping. This is particularly useful in a robotic system in which the clamping assembly may be used to clamp a block and transfer it for pick up by a robotic arm. As the position and orientation of the block is known relative to the clamping assembly, the block may be accurately transferred to the robotic arm and the robotic arm may be programmed to pick up the block from a precise location with respect to the clamping assembly. This enables a further clamp (i.e. end effector) of the robotic arm to pick up a block in the same position every time which is important to ensure that the block is placed accurately at its target destination. The ability to mechanically datum the block in the gripper jaws removes the need for a vision system to image the block in the clamping assembly in order to determine its precise 6 DOF location. By eliminating the need for a camera-based vision system, the robotic block transfer system is made more reliable and efficient.
- (33) A number of further features will now be described.
- (34) In one example, the datum surfaces form a V-shaped wedge into which the block is located. This corresponds to the intersection of the X and Z planes in FIGS. **1**C and **1**D. As will be described in further detail below, typically the block is allowed to drop into the wedge under the force of gravity when the clamping assembly is oriented at an acute angle, typically around 45 degrees to the ground.
- (35) Typically, each gripper jaw includes at least one first datum surface extending at least partially

between top and bottom surfaces of the gripper jaw and towards the opposing gripper jaw for locating an end of the block. The at least one first datum surface is provided by one of a surface integral with each gripper jaw or a plate element mounted to a surface integral with each gripper jaw. In an example configuration, a thin wear plate/strip, for example made from Steel or the like is fixed to the surface integral with each gripper jaw. These strips or inserts can be replaced periodically when the datum surface starts to wear and this obviates the need to replace the entire gripper jaw.

- (36) Further, each gripper jaw includes at least one second datum surface that is parallel to a top or bottom surface of the gripper jaw and projects towards the opposing gripper jaw for locating the top or bottom surface of the block. The at least one second datum surface is provided by one of the top or bottom surface of each gripper jaw or plate elements mounted to the top or bottom surfaces of each gripper jaw. It will be appreciated therefore that the datum surfaces could be surfaces machined into the body of each gripper jaw, whilst in other embodiments the datum surfaces may be provided by additional plate elements fixed to surfaces of the gripper jaw.
- (37) In one example, the at least one second datum surface is discontinuous. In this regard, the top or bottom surface of each gripper jaw and/or plate elements fixed thereto may be segmented so as to provide gaps suitable for a gripper of a robotic arm to grip the block whilst it is held by the clamping assembly to effect transfer to the robotic arm. It is to be appreciated that in order to datum the block in the at least one second datum plane contact with one or more surface segments or plate elements may be used. In some examples, depending on the length of block being clamped, more than one surface segment or plate element providing the second datum surface will be in contact with the block whereas for shorter blocks only one surface segment or plate element may contact the block.
- (38) The gripper jaws of the clamping assembly may therefore be configured to accommodate blocks of varying length. In one example, the jaws may accommodate one or more of a full-size block of length L, a three-quarter size block of length 0.75 L, a half-size block of length 0.5 L and a quarter-size block of length 0.25 L.
- (39) Typically, the gripper jaws are configured to clamp blocks of varying length at different predefined positions along the length of the gripper jaws. In this regard, each gripper jaw may include a plurality of first datum surfaces spaced apart along a lengthwise direction thereof. The plurality of spaced apart first datum surfaces are typically further stepped apart laterally with respect to each gripper jaw so as not to overlap in the lengthwise direction thereof. In this arrangement, an end of blocks of varying length are each located on one of the plurality of first datum surfaces of each gripper jaw. Accordingly, when a particular block type is held by the clamping assembly in a datumed configuration, only one of the plurality of first datum surfaces will be in contact with the block.
- (40) The clamping method of the gripper jaws will now be described. Typically, a first of the pair of gripper jaws has a plurality of first gripper pads arranged to define the third plane for locating a side face of the block when clamped. The plurality of first gripper pads may be mounted onto an inner face of the first gripper jaw or into recesses formed therein such that the pads protrude slightly past the inner face. In one example, the plurality of first gripper pads comprise a pair of spaced apart rows of first gripper pads extending in a lengthwise direction of the first gripper jaw. In a preferred arrangement, at least four first gripper pads will contact a first side face of the block when clamping. Typically, this comprises two first gripper pads in the first row and two first gripper pads in the second row. This arrangement will provide four points of contact typically whereby the gripper pads in the first and second rows are equally spaced apart in the lengthwise direction.
- (41) A second of the pair of gripper jaws typically has a plurality of second gripper pads arranged co-linearly in a lengthwise direction thereof such that when a clamping force is applied to the block the plurality of second gripper pads act to urge the block into planar alignment with the third plane

defined by the plurality of first gripper pads. In this regard, the second gripper pads are typically located on the second gripper jaw approximately midway between the spaced apart rows of first gripper pads. In this way, the line of action of the clamping force through the second gripper pads will be midway between the corresponding lines of action of the clamping force through the first gripper pads. This arrangement assists in providing planar alignment in the third plane (i.e. Y-plane) and prevents the block from being angularly misaligned in the jaws.

- (42) The first and second gripper pads are arranged on stepped surfaces of each gripper jaw so that each different length of block clamped by the assembly is contacted by a different plurality of first and second gripper pads.
- (43) In one example, any block clamped by the assembly will be in contact with at least four first gripper pads and at least two second gripper pads when a clamping force is applied. In other arrangements it may be possible to for a block to be in contact with only three first gripper pads and one second gripper pad.
- (44) It is to be understood that when a block is clamped by the above-described clamping assembly it may be held initially in an undatumed and unknown position. In order to datum the block in the jaws, typically the block is allowed to drop into the wedge under gravity to locate onto the datum surfaces defining the first and second orthogonal planes.
- (45) In order to effect this drop, typically the clamping assembly is pivotable (either directly or indirectly) and the drop is performed when the gripper jaws have been pivoted to a relative angle to the ground of at least one of: between 30 to 60 degrees; between 35 to 55 degrees; between 40 to 50 degrees; and, approximately 45 degrees. As the jaws must be opened in order to allow the block to drop, the angle is chosen for a particular block type to ensure that the block is not inadvertently dropped out of the clamping assembly.
- (46) In operation, in one example, the block is initially clamped in the gripper jaws in an approximate position. It is then rotated to a drop position whereby the gripper jaws release the block and allow it to drop into the wedge. The block is then re-clamped when it is located in the wedge so that the block is then clamped in a datumed position.
- (47) In another broad form there is provided a block transfer apparatus for transferring a block between an upstream clamp of a block delivery system and a downstream clamp of the block delivery system. The block transfer apparatus includes a frame pivotally mounted to a support; and, a clamping assembly mounted to the frame and linearly extendable relative thereto, the clamping assembly including a pair of gripper jaws including datum surfaces in first and second orthogonal planes to locate the block relative thereto. The clamping assembly is configured to at least: receive a block from the upstream clamp, wherein the block is initially clamped in the gripper jaws in an approximate position; rotate to a drop position whereby the gripper jaws release the block and allow it to drop into a V-shaped wedge formed by the datum surfaces to thereby locate an end and top or bottom face of the block in the first and second orthogonal planes; re-clamp the block after the drop by applying a clamping force to opposing sides of the block so as to locate the block in a third plane orthogonal to both the first and second planes to thereby datum the position of the block with respect to the clamping assembly. Finally, the block transfer apparatus presents the block clamped in the datumed position for transfer to the downstream clamp.
- (48) In one example, the support comprises a distal end of a boom used for transferring blocks therealong and the upstream clamp forms part of a shuttle for delivering a block along the boom.
- (49) The downstream clamp may be an end effector of a robotic block placement arm that is programmed to place blocks during construction of a building structure.
- (50) In some arrangements, the block transfer apparatus includes a distance range sensor for use in determining the proximity between the clamping assembly and the block held by the upstream clamp. Any suitable distance range sensing technology such as ultrasonic, laser etc may be used. Feedback from the distance sensor can be used to control the block transfer apparatus to pick up the block from the upstream clamp.

- (51) In a further broad form, there is provided a block delivery system for delivering blocks for placement during construction of a building structure. The block delivery system includes a boom for transferring blocks therealong; an upstream clamp forming part of a shuttle that delivers blocks along the boom; a downstream clamp associated with an end effector of a robotic block placement arm that is programmed to place blocks during construction of the building structure; and, a block transfer apparatus for transferring a block between the upstream clamp and the downstream clamp, the block transfer apparatus including: a frame pivotally mounted to a distal end of the boom; and, a clamping assembly mounted to the frame and linearly extendable relative thereto, the clamping assembly including a pair of gripper jaws including datum surfaces in first and second orthogonal planes to locate the block relative thereto, wherein the clamping assembly is configured to at least: receive a block from the upstream clamp, wherein the block is initially clamped in the gripper jaws in an approximate position; rotate to a drop position whereby the gripper jaws release the block and allow it to drop into a V-shaped wedge formed by the datum surfaces to thereby locate an end and top or bottom face of the block in the first and second orthogonal planes; re-clamp the block after the drop by applying a clamping force to opposing sides of the block so as to locate the block in a third plane orthogonal to both the first and second planes to thereby datum the position of the block with respect to the clamping assembly; and, present the block clamped in the datumed position for transfer to the downstream clamp.
- (52) Referring again to FIGS. **1**A to **1**D, the clamping assembly **10** will be described in further detail. The clamping assembly **10** includes a frame **11** to which the gripper jaws **20**, **30** are slidably mounted onto rails **14**, **16** via bearing blocks or rail guides for linear movement in a lateral direction in order to open and close the jaws. The jaws **20**, **30** are belt driven by a servo motor **17** that turns a lead screw **15** connecting the jaws to thereby move the jaws along the rails **14**, **16** in order to apply and release a clamping force to a block. Further bearing blocks or rail guides **12**, **13** are also mounted to one side of the frame **11** and these guides are engageable onto rails of a block transfer apparatus as will be described in further detail below.
- (53) As shown in FIGS. **1**A and **1**B, first gripper jaw **20** includes two rows of spaced apart gripper pads 41, 42 along the length of the first griper jaw 20, whilst second gripper jaw 30 includes a single row of spaced apart gripper pads 43 along the length of second gripper jaw 30. These gripper pads exert a clamping force onto a block when clamped and are arranged so that the gripper pads **43** of the second gripper jaw **30** urge the block into planar alignment in a Y-plane defined by the gripper pads **41**, **42** of the first gripper jaw **20** in contact with the block. In this regard, the single row of gripper pads **43** of the second gripper jaw **30** are typically located approximately midway between the height of the two rows defined respectively by gripper pads **41**, **42** of the first gripper jaw **20**. This arrangement prevents angular misalignment or twisting of the block in the jaws. (54) Each gripper jaw **20**, **30** of the clamping assembly has a body extending in a lengthwise direction. In plan view, the gripper jaws **20**, **30** each have a central portion **25**, **35** and fore and aft portions 26, 36 and 27, 37 that are inwardly tapered from the central portion 25, 35 towards respective opposing ends of each jaw **20**, **30**. Internally, the body of each gripper jaw has a central recessed portion, from which the body defines a stepped profile in opposing directions towards respective ends of each jaw. The inner face of each jaw therefore defines a number of laterally stepped apart recessed portions, each defining a recessed inner surface and corresponding lip segment as will be described in further detail below with respect to the schematic views shown in FIGS. **3**A to **3**C, **4**A to **4**C, **5**A to **5**C and **6**A to **6**C.
- (55) In FIG. **1**D, it is to be noted that the clamping assembly **10** includes a plurality of first datum surfaces **21**, **31** that are stepped apart in a lengthwise direction of the gripper jaws **20**, **30**. Advantageously, this enables the clamping assembly **10** to be able to clamp and datum blocks of varying length which increases its utility. There may also be provided a plurality of second datum surfaces **22**, **32** as shown that have gaps between them suitable for a clamp of a robot to grip the block whilst held by the clamping assembly **10** for transfer thereto.

- (56) An example of a block transfer apparatus **200** is provided in FIG. **2**. In this example, the block transfer apparatus **200** includes a lengthwise extending frame or bracket **210** to which the clamping assembly **10** is translatably mounted for linear extension and retraction therealong about rails **215**, **216**. The rail guides **12**, **13** mounted to the frame **11** of the clamping assembly **10** receive the rails **215**, **216** therein and the clamping assembly **10** is belt driven along the rails by servo motor **220**. In use, the block transfer apparatus **200** is pivotally mounted to a support (such as a distal end of a boom) to enable controlled rotation about pivot axis P. In the example shown, the bracket **210** has structural cross bracing support **212** attached thereto and a pivot mount **213** is provided on this support. On the opposing side, a pivot mount **214** which may be in the form of a high precision reduction gearing is provided mounted to the bracket **210**. Mounted beneath the bracket **210** is an adhesive applicator **230** for dispensing construction adhesive onto the block **1**. In use, the block is translated beneath nozzles of the adhesive applicator in order to apply adhesive along a substantial length of the block surface. Further details of operation of the block transfer apparatus **200** are described below with references to FIGS. **7A** to **7Q**.
- (57) Referring now to FIGS. **3**A to **3**C, **4**A to **4**C, **5**A to **5**C and **6**A to **6**C, there are shown detailed schematic representations of a clamping assembly **100** for use in clamping various block types in a datumed position. In these figures, the nomenclature of first and second gripper jaws is the opposite of that used with respect to FIGS. **1**A to **1**D.
- (58) In the below description, each gripper jaw of the clamping assembly has a body extending in a lengthwise direction. In plan view, the gripper jaws have a central portion and fore and aft portions that are inwardly tapered from the central portion towards respective opposing ends of each jaw. Internally, the body of each gripper jaw has a central recessed portion, from which the body defines a stepped profile in opposing directions towards respective ends of each jaw. The inner face of each jaw therefore defines a number of laterally stepped apart recessed portions, each defining a recessed inner surface and corresponding lip segment.
- (59) It is to be understood that at least some of the lips define the plurality of first datum surfaces spaced apart along a lengthwise direction of each jaw and stepped apart laterally so as not to overlap in the lengthwise direction thereof.
- (60) In FIGS. **3**A to **3**C, the clamping assembly **100** is shown clamping a quarter-length block **1** having a single core or cavity therethrough, although this is for purposes of illustration only. (61) In this arrangement, the block **1** is clamped in the central recessed portion of the jaws **110**, **150** between first recessed inner surfaces **111**, **151**. The end face **3** of the block **1** is in contact with first lip segments **121**, **161** that define first datum surfaces in the X-plane. In this example, first insert wear strips **140**, **180** are fixed onto the corresponding first lip segments **121**, **161** and the block **1** is held in contact with these strips. A top or bottom face **6** of the block **1** is in contact with plate elements **144**, **184** that are fixed to the top surface of respective jaws **110**, **150** proximate the central portion thereof. These plate elements **144**, **184** project inwardly so as to at least partly extend above the central recessed portion of the jaws. The plate elements **144**, **184** define second datum surfaces in the Z-plane and accordingly in the clamped configuration shown, the block **1** is datumed in the X and Z planes.
- (62) Respective sides **4** and **5** of the block **1** are clamped respectively by first gripper pads **130**, **131** and **130**′, **131**′ that are fixed proximal first recessed inner surface **111** of the first gripper jaw **110** and second gripper pads **170**, **171** that are fixed proximal first recessed inner surface **151** of the second gripper jaw **150**. As shown in FIG. **3B**, the first gripper pads are arranged in spaced apart rows with first gripper pads **130**, **131** being in an upper row and first gripper pads **130**′, **131**′ being in a lower row so as to position first gripper pad **130** above first gripper pad **130**′ and first gripper pad **131** above first gripper pad **131**′. The second gripper pads **170**, **171** are arranged co-linearly in a single row that is centrally disposed between the two rows of first gripper pads.
- (63) In this way, when a clamping force is applied to the block **1**, the plurality of second gripper pads **170**, **171** act to urge the block into planar alignment with a third plane (the Y-plane) defined

by the surfaces of the plurality of first gripper pads **130**, **131**, **130**′, **131**′. This arrangement of gripper pads prevents angular misalignment when the block is clamped as side face **4** of the block **1** has four points of contact and side face **5** has two points of contact disposed midway between the opposing points of contact on the other side. As such, in this configuration the position of the block **1** is datumed in the X, Y and Z planes relative to the clamping assembly **100**.

- (64) In FIGS. 4A to 4C, the clamping assembly **100** is shown clamping a half-length block **1** having a two cores or cavities therethrough, although this is for purposes of illustration only. (65) In this arrangement, the block **1** is clamped by respective fore and aft portions of each gripper jaw **110**, **150**, between second recessed inner surfaces **112**, **152** in the aft portion and second recessed inner surfaces **113**, **153** in the fore portion. The end face **3** of the block **1** is in contact with second lip segments **123**, **163** that define first datum surfaces in the X-plane. In this example, second insert wear strips **141**, **181** are fixed onto the corresponding second lip segments **123**, **163** and the block **1** is held in contact with these strips. A top or bottom face **6** of the block **1** is in contact with plate elements **145**, **185** that are fixed to the top surface of respective fore portions of the gripper jaws **110**, **150** so as to project inwardly past the second recessed inner surfaces **113**, **153**. In addition, the top or bottom face **6** of the block **1** is also in contact with plate elements **146**, **186** that are fixed to the top surface of respective aft portions of the gripper jaws **110**, **150** so as to project inwardly past the second recessed inner surfaces **112**, **152**. The plate elements **145**, **146**, **184**, **186** define second datum surfaces in the Z-plane and accordingly in the clamped configuration shown, the block **1** is datumed in the X and Z planes.
- (66) Side **4** of the block **1** is clamped respectively by first gripper pads **132**, **132**′ that are fixed proximal second recessed inner surface **112** of the first gripper jaw **110** and first gripper pads **133**, **133**′ that are fixed proximal second recessed inner surface **113** of the first gripper jaw **110**. Side **5** of the block **1** is clamped respectively by second gripper pad **172** that is fixed proximal second recessed inner surface **152** of the second gripper jaw **150**, and second gripper pad **173**, that is fixed proximal second recessed inner surface **153** of the second gripper jaw **150**. The respective first and second gripper pads are arranged substantially as previous described, except spaced apart further in a lengthwise direction of the gripper jaws. As the block **1** is clamped, the plurality of second gripper pads **172**, **173** act to urge the block into planar alignment with a third plane (the Y-plane) defined by the surfaces of the plurality of first gripper pads **132**, **133**, **132**′, **133**′. As such, in this configuration the position of the block **1** is datumed in the X, Y and Z planes relative to the clamping assembly **100**.
- (67) In FIGS. 5A to 5C, the clamping assembly **100** is shown clamping a three quarter-length block **1** having a three cores or cavities therethrough, although this is for purposes of illustration only. (68) In this arrangement, the block **1** is clamped by respective fore and aft portions of each gripper jaw **110**, **150**, between third recessed inner surfaces **114**, **154** in the aft portion and third recessed inner surfaces **115**, **155** in the fore portion. The end face **3** of the block **1** is in contact with third lip segments **125**, **165** that define first datum surfaces in the X-plane. In this example, third insert wear strips **142**, **182** are fixed onto the corresponding third lip segments **125**, **165** and the block **1** is held in contact with these strips. A top or bottom face **6** of the block **1** is in contact with plate elements **145**, **185** that are fixed to the top surface of respective fore portions of the gripper jaws **110**, **150** so as to project inwardly past the third recessed inner surfaces **115**, **155**. In addition, the top or bottom face **6** of the block **1** is also in contact with plate elements **146**, **186** that are fixed to the top surface of respective aft portions of the gripper jaws **110**, **150** so as to project inwardly past the third recessed inner surfaces **114**, **154**. The plate elements **145**, **146**, **184**, **186** define second datum surfaces in the Z-plane and accordingly in the clamped configuration shown, the block **1** is datumed in the X and Z planes.
- (69) Side **4** of the block **1** is clamped respectively by first gripper pads **134**, **134**′ that are fixed proximal third recessed inner surface **114** of the first gripper jaw **110** and first gripper pads **135**′ that are fixed proximal third recessed inner surface **115** of the first gripper jaw **110**. Side **5** of

the block 1 is clamped respectively by second gripper pad 174 that is fixed proximal third recessed inner surface 154 of the second gripper jaw 150, and second gripper pad 175 that is fixed proximal third recessed inner surface 155 of the second gripper jaw 150. The respective first and second gripper pads are arranged substantially as previous described, except spaced apart further in a lengthwise direction of the gripper jaws than the previous examples. As the block 1 is clamped, the plurality of second gripper pads 174, 175 act to urge the block into planar alignment with a third plane (the Y-plane) defined by the surfaces of the plurality of first gripper pads 134, 135, 134′, 135′. As such, in this configuration the position of the block 1 is datumed in the X, Y and Z planes relative to the clamping assembly 100.

- (70) In FIGS. **6**A to **6**C, the clamping assembly **100** is shown clamping a full-length block **1** having a four cores or cavities therethrough, although this is for purposes of illustration only.
- (71) In this arrangement, the block 1 is clamped by respective fore and aft portions of each gripper jaw 110, 150, between fourth recessed inner surfaces 116, 156 in the aft portion and fourth recessed inner surfaces 117, 157 in the fore portion. The end face 3 of the block 1 is in contact with fourth lip segments 127, 167 that define first datum surfaces in the X-plane. In this example, fourth insert wear strips 143, 183 are fixed onto the corresponding fourth lip segments 127, 167 and the block 1 is held in contact with these strips. A top or bottom face 6 of the block 1 is in contact with plate elements 145, 185 that are fixed to the top surface of respective fore portions of the gripper jaws 110, 150 so as to project inwardly past the fourth recessed inner surfaces 117, 157. In addition, the top or bottom face 6 of the block 1 is also in contact with plate elements 146, 186 that are fixed to the top surface of respective aft portions of the gripper jaws 110, 150 so as to project inwardly past the fourth recessed inner surfaces 116, 156. The plate elements 145, 146, 184, 186 define second datum surfaces in the Z-plane and accordingly in the clamped configuration shown, the block 1 is datumed in the X and Z planes.
- (72) Side **4** of the block **1** is clamped respectively by first gripper pads **136**, **136**′ that are fixed proximal fourth recessed inner surface **116** of the first gripper jaw **110** and first gripper pads **137**, **137**′ that are fixed proximal fourth recessed inner surface **117** of the first gripper jaw **110**. Side **5** of the block **1** is clamped respectively by second gripper pad **176** that is fixed proximal fourth recessed inner surface **156** of the second gripper jaw **150**, and second gripper pad **177** that is fixed proximal fourth recessed inner surface **157** of the second gripper jaw **150**. The respective first and second gripper pads are arranged substantially as previous described, except spaced apart further in a lengthwise direction of the gripper jaws than the previous examples. As the block **1** is clamped, the plurality of second gripper pads **176**, **177** act to urge the block into planar alignment with a third plane (the Y-plane) defined by the surfaces of the plurality of first gripper pads **136**, **137**, **136**′, **137**′. As such, in this configuration the position of the block **1** is datumed in the X, Y and Z planes relative to the clamping assembly **100**.
- (73) Referring now to FIGS. 7A to 7Q, the controlled operation of the block transfer apparatus **200** shall be described in the context of a block delivery system **300** for delivering blocks for placement during construction of a building structure.
- (74) In this example, operation of the block transfer between the downstream and upstream clamps **55**, **80** of the block delivery system **300** via the block transfer apparatus **200** shall be described. In FIG. **7**A, a block **1** is being transferred to the downstream clamp **80** which is a robotic gripper of a robotic block placement arm (not shown). As soon as the downstream clamp **80** has gripped the block **1**, the clamping assembly **10** of the block transfer apparatus **200** may release the block. In this block handover position, the block transfer apparatus **200** is in a horizontal orientation with the clamping assembly **10** fully extended in the longitudinal direction.
- (75) In FIG. 7B, the block transfer apparatus **200** releases the block and begins to rotate away from the downstream clamp **80** about support **52** which is a mount at the distal end of boom **50**, the support **52** defining a rotation or pivot axis about which the block transfer apparatus **200** is able to pivot. In this initial phase of rotation, the clamping assembly **10** remains at full extension.

- (76) In FIG. 7C, as rotation of the block transfer apparatus **200** continues, the clamping assembly **10** begins to retract and move linearly along rails of the frame or bracket **210** of the block transfer apparatus **200**. In FIG. 7D, retraction of the clamping assembly **10** continues whilst the block transfer apparatus **200** is rotating and in this state the clamping assembly **10** is now retracted sufficiently to be within the envelope of the frame or bracket **210**.
- (77) In FIG. **7**E, the clamping assembly **10** is shown fully retracted with respect to frame **210** as the block transfer apparatus **200** approaches a nearly vertical orientation. In FIG. **7**F, the block transfer apparatus **200** has rotated past vertical and the clamping assembly **10** has begun to extend away from its fully retracted position. In this state, the orientation of the clamping assembly **10** has "flipped" over from the initial orientation shown in FIG. **7**A.
- (78) The block transfer apparatus **200** continues rotation until the longitudinal axis of the frame **210** is aligned with the lengthwise direction of the boom **50** as shown in FIG. 7F. In this state, the clamping assembly **10** is nearly fully extended so as to reach into the opening **51** of the distal end of the boom **50**. Typically, there is a recess or cut-out in the underside portion of the distal end of the boom so that the block transfer apparatus **200** can enter the envelope of the boom without any physical clash. Depending on the size of the cut-out, the clamping assembly **10** may be able to reach full extension during rotation. Otherwise, the block transfer apparatus **200** rotates into alignment with the boom **50** first and then extends the clamping assembly **10** into the boom **50**. (79) As shown in FIG. 7H, the clamping assembly **10** is then fully extended into a position whereby it clamps a block held by the downstream clamp **55** disposed inside the boom **50**. The downstream clamp **55** typically forms part of a shuttle mechanism that delivers blocks internally through the boom **50**. Once the clamping assembly **10** has clamped the block, the downstream clamp **55** may release its grip of the block. It is to be understood that the position of the block with respect to the gripper jaws of the clamping assembly **10** is not precisely known at this stage. (80) In FIGS. 7I and 7J, the clamping assembly **10** is shown beginning to retract away from its
- (80) In FIGS. 7I and 7J, the clamping assembly **10** is shown beginning to retract away from its fully extended position whilst the frame **210** remains in alignment with the boom **50**. In FIG. 7J, the clamping assembly **10** has retracted sufficiently so that it is within the cut-out portion of the underside of the distal end of the boom in a safe position for rotation of the block transfer apparatus **200** to begin.
- (81) In FIG. 7K, the block transfer apparatus **200** is rotated to a horizontal orientation whilst the clamping assembly **10** remains in an extended state (retracted only a sufficient amount to clear the distal end of the boom upon exit thereof). An adhesive applicator (see FIG. **2**A) mounted to the block transfer apparatus **200** then begins dispensing adhesive onto an upper face of the block whilst the clamping assembly **10** retracts the block and thereby translates it linearly beneath nozzles of the adhesive applicator. Once the adhesive dispensing is complete and when the clamping assembly **10** is nearly fully retracted as shown in FIG. **7**L the block transfer apparatus **200** rotates to a drop position in which the block is datumed.
- (82) The drop position is shown in FIG. 7M. In this example, the block transfer apparatus **200** and clamping assembly **10** are oriented at an angle to the ground of approximately 45 degrees. In this position, the clamping assembly **10** releases its clamp of the block and allows it to drop under gravity into the wedge **70** defined by the first and second datum surfaces as previously described which thereby datums the block in the clamping assembly **10** with respect to the X and Z planes as shown. Once the drop has been performed and the block is datumed in these planes, the gripper jaws of the clamping assembly **10** re-clamp the block to thereby locate the block in a third plane orthogonal to both the first and second planes to thereby fully datum the position of the block with respect to the clamping assembly **10**.
- (83) After the drop is complete and the block is re-clamped in the gripper jaws, the block transfer apparatus **200** commences further rotation at a safe speed as shown in FIG. **7**N. The block transfer apparatus **200** continues to rotate whilst the clamping assembly **10** is extended to the edge of the frame **210** as shown in FIG. **7**O. Rotation speed is then decreased whilst the clamping assembly **10**

continues to extend beyond the frame 210 as shown in FIG. 7P.

- (84) In FIG. 7Q, the final stage of rotation of the block transfer apparatus **200** and extension of the clamping assembly **10** is completed resulting in the block being held out in a substantially horizontal position for transfer to the upstream clamp **80** as shown in FIG. **7A**. The cycle then repeats as further blocks are transferred by the block delivery system for laying by the robotic placement arm on a construction site in order to construct a building. It is to be noted that in the transfer position shown in FIG. **7A**, the clamping assembly **10** has been flipped 180 degrees from its orientation when adhesive was applied to the block in FIG. **7L**. As such the block is now oriented in the clamping assembly **100** such that the face with adhesive applied is now facing downward ready for laying.
- (85) A second example of a block transfer apparatus **500** shall now be described with reference to FIGS. **8**A to **8**D and **9**A to **9**F.
- (86) In this example, the block transfer apparatus **500** is for transferring a block **1** between an upstream clamp (not shown) of a block delivery system and a downstream clamp **80** of the block delivery system. The block transfer apparatus **500** includes a frame **510** pivotally mounted to a support and a clamping assembly **400** mounted to the frame **510** and linearly extendable relative thereto, the clamping assembly **400** including a pair of gripper jaws **420**, **430** for clamping opposing sides of the block.
- (87) The block transfer apparatus **500** is configured to receive a block **1** from the upstream clamp, wherein the block **1** is initially clamped in the gripper jaws **420**, **430** in an approximate position; rotate to a drop position whereby the gripper jaws **420**, **430** release the block **1** and allow it to self-datum onto first and second orthogonal datum surfaces **424**, **434** and **518** to thereby register an end and top or bottom face of the block in corresponding first and second orthogonal planes; re-clamp the block **1** after the drop by applying a clamping force to opposing sides of the block so as to register the block **1** against a third datum surface **422**, **423** defining a third plane orthogonal to both the first and second planes to thereby datum the position of the block **1** with respect to the clamping assembly **400**; and, present the block **1** clamped in the datumed position for transfer to the downstream clamp **80**.
- (88) In this example, the clamping assembly **400** includes a frame **411** to which the gripper jaws **420**, **430** are slidably mounted onto rails **441**, **442** via bearing blocks or rail guides for linear movement in a lateral direction in order to open and close the jaws. The jaws **420**, **430** may be belt driven by a servo motor that turns a lead screw **443** connecting the jaws to thereby move the jaws along the rails **441**, **442** in order to apply and release a clamping force to a block.
- (89) The first gripper jaw **420** includes two rows of spaced apart gripper pads **422**, **423** rigidly mounted to an inner face **421** along the length of the first gripper jaw **420**, whilst the second gripper jaw **430** includes a single row of spaced apart gripper pads **431**, **431**' mounted to a distal end of flexible fingers or battens **432**, **432**' along the length of second gripper jaw **430**. The gripper pads exert a clamping force onto a block when clamped and are arranged so that the gripper pads **431**, **431**' of the second gripper jaw **430** urge the block into planar alignment in a Y-plane defined by the gripper pads **422**, **423** of the first gripper jaw **420** in contact with the block. In this regard, the single row of gripper pads **431**, **431**' of the second gripper jaw **430** are typically located approximately midway between the height of the two rows defined respectively by gripper pads **422**, **423** of the first gripper jaw **420**. This arrangement prevents angular misalignment or twisting of the block in the jaws.
- (90) The flexible finger members or battens **432**, **432**′ spaced apart along the length of the second gripper jaw **430**, allow the pads **431**, **431**′ to flex laterally and compensate for variations in flatness of the side of the block along its length (which may for instance be slightly bowed) as well as any lateral flex in the gripper jaws themselves. This ensures an equal clamping force is applied along the length of the block as each finger will flex to a different degree depending on the variation in flatness. Some of the flexible fingers **432**′ are partially restrained by retaining clips **433** that act to

pretension the finger members. Each flexible finger is located at its base into a recessed portion **436** of the second gripper jaw **430**.

- (91) The block transfer apparatus **500** further includes a lengthwise extending frame **510** to which the clamping assembly **400** is translatably mounted for linear extension and retraction therealong about rails **515**, **516**. Rail guides or bearing blocks mounted to the frame **411** of the clamping assembly **400** receive the rails **515**, **516** therein and the clamping assembly **400** is belt driven along the rails by servo motor **520**. In use, the block transfer apparatus **500** is pivotally mounted to a support (such as a distal end of a boom) to enable controlled rotation about pivot axis P. In the example shown, the frame **510** has structural cross bracing support **512** attached thereto and a pivot mount **513** is provided on this support. On the opposing side, a pivot mount **514** which may be in the form of a high precision reduction gearing is provided mounted to the frame **510**. Additionally, a datum bar or plate **517** is mounted to the structural support **512** so that it extends in a direction parallel to the lengthwise direction of the gripper jaws **420**, **430**. This datum bar **517** is used to datum the top or bottom face of the block as will be described in further detail below. In this example, the distal ends **424**, **434** of the gripper jaws provide datum surfaces which register an end face of the block.
- (92) Referring now to FIGS. **9**A to **9**F, the controlled operation of the block transfer apparatus **500** shall be described in the context of a block delivery system for delivering blocks for placement during construction of a building structure.
- (93) In this example, operation of the block transfer between the downstream and upstream clamps of the block delivery system via the block transfer apparatus **500** shall be described.
- (94) In FIG. **9**A, the block transfer apparatus **500** is shown with its clamping assembly **400** extended out and reaching into a boom **50** to receive a block **1** from a downstream clamp (not shown) such as a shuttle clamp that runs along the boom element **50**. In this example, the clamping assembly **400** has been rotated about axis **52** in a counter-clockwise direction through a recess or cut-out in the underside portion of the distal end of the boom so that the block transfer apparatus **500** can enter the envelope of the boom without any physical clash. Depending on the size of the cut-out, the clamping assembly **400** may be able to reach full extension during rotation. Otherwise, the block transfer apparatus **500** rotates into alignment with the boom **50** first and then extends the clamping assembly **400** into the boom **50**. Once the clamping assembly **400** has clamped the block, the downstream clamp may release its grip of the block. It is to be understood that the position of the block with respect to the gripper jaws of the clamping assembly **400** is not precisely known at this stage.
- (95) In FIGS. **9**B and **9**C, the clamping assembly **400** is shown rotating out of the boom in a clockwise direction and starting to retract away from its fully extended position in preparation for the block datuming operation. In FIG. **9**D, when the block transfer apparatus **500** is in the drop position (oriented at an angle to the ground of approximately 45 degrees), the clamping assembly **400** releases its clamp of the block and allows it to drop under gravity so that the block self-datums onto first and second orthogonal datum surfaces (**424**, **434**) and **518** to thereby register an end and top or bottom face of the block in corresponding first and second orthogonal planes. This datums the blocks with respect to the X and Z planes as depicted in FIGS. **8**C and **8**D. Once the drop has been performed and the block is datumed in these planes, the gripper jaws of the clamping assembly **400** re-clamp the block by applying a clamping force to opposing sides of the block so as to register the block against a third datum surface defining a third plane (Y plane) orthogonal to both the first and second planes to thereby datum the position of the block with respect to the clamping assembly **400**.
- (96) After the drop is complete and the block is re-clamped in the gripper jaws, the block transfer apparatus **500** commences further rotation in a clockwise direction whilst concurrently extending the clamping assembly **400** out in a horizontal disposition as shown in FIG. **9**E. In this example, during extension, the block may be translated over a transfer adhesive applicator to apply adhesive

- to the bottom surface of the block. In this position, the block is held out for transfer to the upstream clamp **80** (e.g. end effector of robotic block placement arm) as shown in FIG. **9**F from which it is subsequently laid in position.
- (97) A third example of a block transfer apparatus **700** shall now be described with reference to FIGS. **10**A to **10**C and **11**A to **11**E.
- (98) In this example, the block transfer apparatus **700** is for transferring a block **1** between an upstream clamp of a block delivery system and a downstream clamp of the block delivery system as previously described. The block transfer apparatus **700** includes a frame **710** pivotally mounted to a support and a clamping assembly **600** mounted to the frame **710** and linearly extendable relative thereto, the clamping assembly **600** including a pair of gripper jaws **620**, **630** for clamping opposing sides of the block.
- (99) The block transfer apparatus **700** is configured to receive a block **1** from the upstream clamp, wherein the block **1** is initially clamped in the gripper jaws **620**, **630** in an approximate position; rotate to a drop position whereby the gripper jaws **620**, **630** release the block **1** and allow it to self-datum onto first and second orthogonal datum surfaces **626**, **718** to thereby register an end and top or bottom face of the block in corresponding first and second orthogonal planes; re-clamp the block **1** after the drop by applying a clamping force to opposing sides of the block so as to register the block **1** against a third datum surface **622**, **623** defining a third plane orthogonal to both the first and second planes to thereby datum the position of the block **1** with respect to the clamping assembly **600**; and, present the block **1** clamped in the datumed position for transfer to the downstream clamp.
- (100) In this example, the clamping assembly **600** includes a frame **611** to which the gripper jaws **620**, **630** are slidably mounted onto rails **641**, **642** via bearing blocks or rail guides for linear movement in a lateral direction in order to open and close the jaws. The jaws **620**, **630** may be belt driven by a servo motor that turns a lead screw **643** connecting the jaws to thereby move the jaws along the rails **641**, **642** in order to apply and release a clamping force to a block.
- (101) The first gripper jaw **620** includes two rows of spaced apart gripper pads **622**, **623** rigidly mounted to an inner face **621** along the length of the first gripper jaw **620**, whilst the second gripper jaw **630** includes two rows of spaced apart gripper pads **632**, **634** mounted to a distal end of flexible fingers or battens **633**,635 along the length of second gripper jaw **630**. The gripper pads exert a clamping force onto a block when clamped and are arranged so that the gripper pads **632**, **634** of the second gripper jaw **630** urge the block into planar alignment in the third datum plane defined by the gripper pads **622**, **623** of the first gripper jaw **620** in contact with the block. In this regard, the two rows of gripper pads **632**, **634** of the second gripper jaw **630** are close together and are typically located approximately midway between the height of the two rows defined respectively by gripper pads **622**, **623** of the first gripper jaw **420**. This arrangement prevents angular misalignment or twisting of the block in the jaws.
- (102) The flexible finger members or battens **633**, **635** spaced apart along the length of the second gripper jaw **430**, allow the pads **634**, **636** to flex laterally and compensate for variations in flatness of the side of the block along its length (which may for instance be slightly bowed). This ensures an equal clamping force is applied along the length of the block as each finger will flex to a different degree depending on the variation in flatness. Each flexible finger is located at its base into a respective upper and lower cap **636**, **637** mounted along respective top and bottom edges of the second gripper jaw **430** so as to pretension the gripper pads. In this arrangement, the gripper pads **432**, **434** alternate in position between the first and second rows.
- (103) The block transfer apparatus **700** further includes a lengthwise extending frame **710** to which the clamping assembly **600** is translatably mounted for linear extension and retraction therealong about rails **715**, **716**. Rail guides or bearing blocks mounted to the frame **611** of the clamping assembly **600** receive the rails **715**, **716** therein and the clamping assembly **600** is belt driven along the rails by a servo motor. In use, the block transfer apparatus **700** is pivotally mounted to a support

(such as a distal end of a boom) to enable controlled rotation about pivot axis P. In the example shown, the frame **710** has U-shaped support **712** mounted to the frame **710** to which a datum bar or plate **717** is mounted so that it extends in a direction parallel to the lengthwise direction of the gripper jaws **620**, **630**. This datum bar **717** is used to datum the top or bottom face of the block as will be described in further detail below. In this example, a datum bracket **626** is mounted to a proximate end of the support structure of gripper jaw **620** and this bracket provides a datum surface which registers an end face of the block. In other examples, another datum bracket **626** could be installed in a similar manner in association with gripper jaw **630**.

- (104) Referring now to FIGS. **11**A to **11**E, the controlled operation of the block transfer apparatus **700** shall be described in the context of a block delivery system for delivering blocks for placement during construction of a building structure.
- (105) In this example, operation of the block transfer between the downstream and upstream clamps of the block delivery system via the block transfer apparatus **700** shall be described. (106) In FIG. **11**A, the block transfer apparatus **700** is shown with its clamping assembly **600** extended out and reaching into a boom **50**′ to receive a block **1** from a downstream clamp **55**′ such as a shuttle clamp that runs along the boom element **55**′. In this example, the clamping assembly **600** has been rotated about axis **52**′ in a clockwise direction through a recess or cut-out in the topside portion of the distal end of the boom so that the block transfer apparatus **700** can enter the envelope of the boom without any physical clash. Depending on the size of the cut-out, the clamping assembly **600** may be able to reach full extension during rotation. Otherwise, the block transfer apparatus **700** rotates into alignment with the boom **50**′ first and then extends the clamping assembly **600** into the boom **50**′. Once the clamping assembly **600** has clamped the block, the downstream clamp **55**′ may release its grip of the block. It is to be understood that the position of the block with respect to the gripper jaws of the clamping assembly **600** is not precisely known at this stage.
- (107) In FIG. 11B, the clamping assembly 600 is shown rotating out of the boom in a counter-clockwise direction and starting to retract away from its fully extended position in preparation for the block datuming operation. In FIG. 11C, when the block transfer apparatus 700 is in the drop position (oriented at an angle to the ground of approximately 45 degrees), the clamping assembly 600 releases its clamp of the block and allows it to drop under gravity so that the block self-datums onto first and second orthogonal datum surfaces 626 and 718 to thereby register an end and top or bottom face of the block in corresponding first and second orthogonal planes. Once the drop has been performed and the block is datumed in these planes, the gripper jaws of the clamping assembly 600 re-clamp the block by applying a clamping force to opposing sides of the block so as to register the block against a third datum surface defining a third plane orthogonal to both the first and second planes to thereby datum the position of the block with respect to the clamping assembly 600.
- (108) After the drop is complete and the block is re-clamped in the gripper jaws, the block transfer apparatus **700** commences further rotation in a counter clockwise direction whilst concurrently extending the clamping assembly **600** out in a horizontal disposition as shown in FIGS. **11**D and **11**E. In this example, during extension, the block may be translated over a transfer adhesive applicator to apply adhesive to the bottom surface of the block. In this position, the block is held out for transfer to the upstream clamp (not shown).
- (109) In at least one example, the above-described clamping assembly provides a reliable and repeatable means to datum a position of a block being clamped relative thereto. In a robotic system, this enables the clamping assembly or block transfer apparatus to which it may be mounted to present a block for transfer to a robotic arm in a known position and orientation. This mechanical system for self-datuming a block enables confidence in the geometric block position and orientation without requiring a camera-based vision system to image the block in the clamping assembly and determine the pose thereof which has inherent limitations in outdoor operating

environments in which vibration, light and inconsistent block geometry can cause issues.

- (110) Throughout this specification and claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers or steps but not the exclusion of any other integer or group of integers. As used herein and unless otherwise stated, the term "approximately" means $\pm 20\%$.
- (111) Persons skilled in the art will appreciate that numerous variations and modifications will become apparent. All such variations and modifications which become apparent to persons skilled in the art, should be considered to fall within the spirit and scope that the invention broadly appearing before described.

Claims

- 1. A block transfer apparatus for transferring a block between an upstream clamp of a block delivery system and a downstream clamp of the block delivery system, the block transfer apparatus including: a frame pivotally mounted to a support; and, a clamping assembly mounted to the frame and linearly extendable relative thereto, the clamping assembly including a pair of gripper jaws that clamp opposing lateral sides of the block; wherein, the block transfer apparatus is configured to: receive a block from the upstream clamp, wherein the opposing lateral sides of the block are initially clamped in the gripper jaws in an approximate position; rotate to a drop position whereby the gripper jaws release the block and allow it to self-datum onto first and second orthogonal datum surfaces to thereby register an end and top or bottom face of the block in corresponding first and second orthogonal planes; re-clamp the block after the drop by applying a clamping force to the opposing lateral sides of the block so as to register the block against a third datum surface defining a third plane orthogonal to both the first and second planes to thereby datum the position of the block with respect to the clamping assembly; and, present the block clamped in the datumed position for transfer to the downstream clamp.
- 2. The block transfer apparatus according to claim 1, wherein the first datum surface that registers an end of the block is provided as part of the clamping assembly at one of: a distal end of the gripper jaws; and, a proximal end of the gripper jaws to either the jaw or a jaw support structure.
- 3. The block transfer apparatus according to claim 1, wherein the second datum surface that registers a top or bottom surface of the block is at least one of: provided as part of the clamping assembly along an upper lengthwise extending edge of the gripper jaws; and, provided as part of the frame in the form of a lengthwise extending bar or plate mounted to the support that is parallel to the gripper jaws.
- 4. The block transfer apparatus according to claim 3, wherein the third datum surface is provided by a first of the two gripper jaws.
- 5. The block transfer apparatus according to claim 4, wherein the first gripper jaw has a pair of spaced apart first gripper pads rigidly attached to an inner surface of the jaw.
- 6. The block transfer apparatus according to claim 5, wherein the first gripper pads extend lengthwise along the first gripper jaw.
- 7. The block transfer apparatus according to claim 4, wherein a second of the two gripper jaws includes a plurality of second gripper pads attached to flexible finger members spaced apart along the length of the jaw that allow the pads to flex laterally and compensate for variations in flatness of the side of the block along its length.
- 8. The block transfer apparatus according to claim 7, wherein an at least one row of second gripper pads of the second gripper jaw is located approximately midway between the pair of spaced apart first gripper pads such that when a clamping force is applied to the block it is urged into planar alignment with the third datum surface.
- 9. The block transfer apparatus according to claim 1, wherein the gripper jaws are configured to

accommodate blocks of varying length.

- 10. The block transfer apparatus according to claim 9, wherein the gripper jaws are configured to one of: clamp blocks of varying length at different pre-defined positions along the length of the gripper jaws; and, clamp blocks of varying length at the same position along the length of the gripper jaws.
- 11. The block transfer apparatus according to claim 1 wherein the drop position coincides with the clamping assembly being rotated to a relative angle to the ground of at least one of: between 30 to 60 degrees; between 35 to 55 degrees; between 40 to 50 degrees; and, approximately 45 degrees.
- 12. The block transfer apparatus according to claim 1, wherein the support comprises a distal end of a boom used for transferring blocks therealong.
- 13. The block transfer apparatus according to claim 1, wherein the upstream clamp forms part of a shuttle for delivering a block along the boom.
- 14. The block transfer apparatus according to claim 1, wherein the downstream clamp is an end effector of a robotic block placement arm that is programmed to place blocks during construction of a building structure.
- 15. The block transfer apparatus according to claim 1, wherein the block transfer apparatus includes a distance range sensor for use in determining the proximity between the clamping assembly and the block held by the upstream clamp.
- 16. A block delivery system for delivering blocks for placement during construction of a building structure, the block delivery system including: a boom for transferring blocks therealong; an upstream clamp forming part of a shuttle that delivers blocks along the boom; a downstream clamp associated with an end effector of a robotic block placement arm that is programmed to place blocks during construction of the building structure; and, a block transfer apparatus for transferring a block between the upstream clamp and the downstream clamp, the block transfer apparatus including: a frame pivotally mounted to a distal end of the boom; and, a clamping assembly mounted to the frame and linearly extendable relative thereto, the clamping assembly including a pair of gripper jaws that clamp opposing lateral sides of the block; wherein, the block transfer apparatus is configured to: receive a block from the upstream clamp, wherein the opposing lateral sides of the block are initially clamped in the gripper jaws in an approximate position; rotate to a drop position whereby the gripper jaws release the block and allow it to self-datum onto first and second orthogonal datum surfaces to thereby register an end and top or bottom face of the block in corresponding first and second orthogonal planes; re-clamp the block after the drop by applying a clamping force to the opposing lateral sides of the block so as to register the block against a third datum surface defining a third plane orthogonal to both the first and second planes to thereby datum the position of the block with respect to the clamping assembly; and, present the block clamped in the datumed position for transfer to the downstream clamp.