# MATH405: Linear Algebra

## Michael Li

## Contents

| 1        | Vect                     | or Space                                             | 2  |  |
|----------|--------------------------|------------------------------------------------------|----|--|
|          | 1.1                      | Definitions                                          | 4  |  |
|          | 1.2                      | Basis                                                | Ę  |  |
|          | 1.3                      | Dimension                                            | (  |  |
|          |                          | 1.3.1 Toolbox Corollaries and Results                |    |  |
|          |                          | Direct Sums                                          |    |  |
| <b>2</b> | Matrices 10              |                                                      |    |  |
|          | 2.1                      | Linear Equations                                     | 11 |  |
| 3        | Map                      | pings                                                | 12 |  |
|          |                          | Consequences of Properties of Linear Transformations | 13 |  |
|          |                          | Kernel                                               |    |  |
|          |                          | 3.2.1 Consequences of Kernel                         |    |  |
|          |                          | Compositions and Inverse Linear Mappings             |    |  |
| 4        | Linear Maps and Matrices |                                                      |    |  |
|          | 4.1                      | Bases, Matrices, and Linear Maps                     | 16 |  |
| 5        | Scala                    | ar Products and Orthogonality                        | 19 |  |
|          | 5.1                      | Scalar Products                                      | 19 |  |
|          |                          | Orthonormal Basis                                    |    |  |
|          |                          | Application to Linear Equations: Rank                |    |  |
|          |                          | Scalar Products under Complex Numbers                |    |  |
|          |                          | General Orthogonal Bases                             |    |  |

## 1 Vector Space

Goals of this course is to discuss

- Vector spaces
- Linear transformations between vector spaces
- Other operations on vector spaces

#### 1.1 Definitions

**Definition - Field**: A set of numbers containing 0,1 that can be added, subtracted, multiplied, and divided (except cannot divide by 0) that satisfy the following **Field Axioms** 

- 1.  $a, b \in K \implies a + b, ab \in K$
- 2. +,  $\times$  are commutative so a + b = b + a and ab = ba
- 3. +,  $\times$  are associative so (a+b)+c=a+(b+c) and a(bc)=(ab)c
- 4. Distributive Law: a(b+c) = ab + ac
- 5. Additive Identity: a + 0 = 0 + a = a
- 6. Multiplicative Identity:  $a \cdot 1 = 1 \cdot a = a$
- 7. Additive Inverse:  $\forall a \in K, \exists b \text{ such that } a+b=0, \text{ namely } b=-a \text{ which is unique}$
- 8. Multiplicative Inverse:  $\forall a \in K, \exists b \text{ such that } ab = 1, \text{ name } b = 1/a \text{ which is unique}$

**Example:** R, Q are fields. Z is not a field since there is no multiplicative inverse of 2

**Example:**  $C = \{a + bi \mid a, b \in R\}$ , where  $i = \sqrt{-1}$  is a field under

- +: (a+bi) + (c+di) = (a+c) + (b+d)i
- $\times$ : (a+bi)(c+di) = (ac-bd) + (ad+bc)i

**Example**:  $F_2 = \{0, 1\}$  is a field under

- +: where
  - 0 + 0 = 0
  - 0+1=1+0=1
  - 1 + 1 = 0
- $\times$  : where
  - $0 \cdot 0 = 0$
  - $0 \cdot 1 = 1 \cdot 0 = 0$
  - $1 \cdot 1 = 1$

**Example**: For a prime p, let  $F_p = \{0, \dots, p-1\}$ . Then  $F_p$  is a field under

- $+: a+b \pmod{p}$
- $\times : ab \pmod{p}$

**Definition - Vector Space**: For an arbitrary field K, a K-vector space is a set V, with a distinguished element O, such that any 2 elements in V can be added and scalar multiplied by  $c \in K$ 

- $u, v \in V \implies u + v \in V$
- $c \in K, u \in V \implies cu \in V$

Satisfying the following properties

- 1. Commutative Addition: u + v = v + u
- 2. Associative Addition: (u+v)+w=u+(v+w)

- 3. Additive Identity: u + O = u
- 4. Additive Inverse:  $\forall u \in V, \exists v \in V \text{ such that } u + v = O, \text{ namely } v = -u \text{ which is unique}$
- 5. Distributive Laws:  $\forall a, b \in K, a(u+v) = au + av$  and (a+b)u = au + bu
- 6. Commutative Scalar Multiplication: (ab)u = a(bu)
- 7. Multiplicative Identity:  $1 \cdot u = u$

**Example:**  $\mathbb{R}^3$  is an  $\mathbb{R}$ -vector space defined by the operations

$$R^3 = \{(x, y, z) \mid x, y, z \in R\}$$

- +: add componentwise so (a,b,c)+(d,e,f)=(a+d,b+e,c+f)
- Scalar  $\times$ : for  $r \in R$ , r(a, b, c) = (ra, rb, rc)
- Additive Identity is O = (0, 0, 0)

**Example**: For any field  $K, K^2$  is a K-vector space defined by the operations

$$K^2 = \{(x,y) \mid x,y \in K\}$$

- +: add componentwise so (a,b) + (c,d) = (a+c,b+d)
- Scalar  $\times$ : for  $k \in K$ , k(a,b) = (ka,kb)
- Additive Identity is O = (0,0)

**Example:** R is an R-vector space since clearly the necessary properties hold

**Example** R is a Q-vector space since clearly the necessary properties hold

• Notably, for  $q \in Q$  and  $r \in R$ , we have  $qr \in R$ . Thus scalar multiplication is closed

**Example:** For any field K, the set  $\{O\}$  is a K-vector space

**Example**: Let X be any non-empty set and let  $\mathcal{F}(X)$  be the set of all functions  $f: X \to R$ . Then  $\mathcal{F}$  is an R-vector space under the operations

- +: for  $f, g \in \mathcal{F}(X)$ , define f + g := (f + g)(x)
- Scalar  $\times$ : let  $r \in R$ , then define rf := r(f(x))
- Additive Identity is O = f(x) = 0, the function that takes any x to 0

**Example:** Take X = N and let  $F(X) = \{$  all functions  $f: N \to R \}$  is a vector space

• Note:  $f: N \to R$  is a sequence  $(a_0, \ldots, a_n)$  where  $a_n = f(n)$ 

**Lemma 1 - Cancellation**: For  $u, v, w \in V$  and if u + v = w + v, then u = w

*Proof*:  $v \in V$  has an additive inverse, namely -v. Thus we have

$$u + v - v = w + v - v \implies u = w$$

**Lemma 2 - Unique Additive Inverse**: For all  $v \in V$ , there is a unique additive inverse, namely -v

*Proof*: Suppose u, w are both additive inverses of v. Then we have

$$v + u = v + w \implies u = w$$

**Lemma 3 - 0 Times a Vector**: For all  $v \in V$ , 0v = O

*Proof*: 
$$v = 1v = (0+1)v = 0v + 1v = 0v + v \implies 0v = 0$$

**Lemma 4 - (-1)v** is the Additive Inverse: For all  $v \in v, (-1)v$  is the unique additive inverse of v

Proof: (-1)v + v = (-1+1)v = 0v = 0. Thus (-1)v is the additive inverse of v, which is unique by Lemma 2

**Definition - Subspace**: For a K-vector space V and a non-empty subset  $W \subseteq V$ , W is a subspace if it satisfies

- $w_1, w_2, \in W \implies w_1 + w_2 \in W$
- $\forall a \in K, w \in W \implies aw \in W$
- O ∈ W

**Theorem 1**: Every subspace of a K-vector space is a K-vector space

*Proof*: We need to show that  $W \subseteq V$  satisfies all the necessary properties of a vector space

1. Verify  $O \in W$ 

Since W is non-empty and closed under scalar multiplication, take  $0w = O \in W$  by Lemma 3

- 2.  $u, v \in W \implies u + v \in W$  and  $a \in K, v \in W \implies aw \in W$  by definition of subspace
- 3. Every  $w \in W$  has an additive inverse, namely -w

Since W is closed under scalar multiplication,  $(-1)w = -w \in W$  by Lemma 4

4. Other conditions (associative addition, commutative addition, etc.) hold because  $u, v, w \in W \implies u, v, w \in V$ For example, choose  $u, v \in W$ , then u + v = v + u, since  $u, v \in V$ . Thus commutative addition is satisfied

**Example:** Take  $(5,3,2) \in \mathbb{R}^3$ . Then let  $W = \{r(5,3,2) \mid r \in \mathbb{R}\}$ 

Then W is an R-vector space. We prove this by showing that W is a subspace of  $\mathbb{R}^3$ 

• +: Choose 2 arbitrary elements of W, r(5,3,2) and s(5,3,2) for  $r,s \in R$ 

Then 
$$r(5,3,2) + s(5,3,2) = (r+s)(5,3,2) \in W$$

•  $\times$ : Choose  $r(5,3,2) \in W$  and take  $s \in R$ 

Then 
$$s(r(5,3,2)) = (sr)(5,3,2) \in W$$

**Example:** Let  $U = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 3y = 0\}$ . We show that U is a vector space by showing it's a subspace of  $\mathbb{R}^3$ 

• +: Take  $(x_1, y_1, z_1)$  and  $(x_2, y_2, z_2) \in U \implies 2x_1 + 3y_1 = 0$  and  $2x_2 + 3y_2 = 0$ 

Then 
$$2(x_1 + x_2) + 3(y_1 + y_2) = 0$$

Thus 
$$(x_1 + x_2, y_1 + y_2, z_1 + z_2) \in U$$

•  $\times$ : Let  $(x, y, z) \in U$  and  $r \in R$ 

Then 
$$2x + 3y = 0 \implies r(2x + 3y) = 2rx + 3ry = 0$$

Thus  $r(x, y, z) \in U$ 

**Example:** Consider  $\sin(x)$ ,  $\cos(x) \in \mathcal{F}(R)$  and let  $W = \{a\sin(x) + b\cos(x) \mid a, b \in R\}$ . Then W is a subspace of  $\mathcal{F}(R)$ 

- +: Take  $a_1 \sin(x) + b_1 \cos(x)$  and  $a_2 \sin(x) + b_2 \cos(x) \in W$ . Then  $(a_1 + a_2) \sin(x) + (b_1 + b_2) \cos(x) \in W$
- $\times$ : Take  $r \in R$ . Then  $r(a\sin(x) + b\cos(x)) = (ra)\sin(x) + (rb)\cos(x) \in W$

#### 1.2 Basis

**Definition - Linear Combination**: For vectors  $\{v_1, \dots, v_n\} \subseteq V$ , a **linear combination** of  $\{v_1, \dots, v_n\}$  is a vector of the form  $a_1v_1 + \dots + a_nv_n \qquad a_i \in K$ 

**Definition - Span**: span( $\{v_1, \ldots, v_n\}$ ) = { all linear combinations of  $\{v_1, \ldots, v_n\}$ }

**Proposition 1**:  $W = \text{span}(\{v_1, \dots, v_n\})$  is a subspace of V and thus is itself a K-Vector Space

*Proof*: We show that W satisfies the necessary criteria to be a subspace of V

• +: Let  $a = a_1v_1 + \cdots + a_nv_n \in W$  and  $b = b_1v_1 + \cdots + b_nv_n \in W$ 

Then  $a + b = (a_1 + b_1)v_1 + \dots + (a_n + b_n)v_n \in W$ 

Thus W is closed under addition

• Scalar  $\times$ : Let  $a = a_1v_1 + \cdots + a_nv_n \in W$  and let  $c \in K$ 

Then  $ca = (ca_1)v_1 + \cdots + (ca_n)v_n \in W$ 

Thus W is closed under scalar multiplication

**Example:** Take (5,3,1) and  $(4,0,-2) \in \mathbb{R}^3$  span $(\{(5,3,1),(4,0,-2)\})$  is a plane in  $\mathbb{R}^3$  passing through (0,0,0)

**Example**: Take (5, 3, 1) and  $(10, 6, 2) \in \mathbb{R}^3$ 

 $\text{span}(\{(5,3,1),(10,6,2)\})$  is a line in  $\mathbb{R}^3$  passing through (0,0,0)

• Note: (10,6,2) = 2(5,3,1). Thus span $(\{(5,3,1),(10,6,2)\}) = a_1(5,3,1) + a_2(10,6,2) = (a_1 + 2a_2)(5,3,1)$ 

**Definition - Linearly Independent**:  $\{v_1, \dots, v_n\}$  is **linearly independent** if whenever  $a_1v_1 + \dots + a_nv_n = 0$ , then  $a_1 = \dots = a_n = 0$ 

• Otherwise  $\{v_1, \ldots, v_n\}$  is linearly dependent

**Proposition 2**:  $\{v_1, \ldots, v_n\}$  is linearly independent if and only if no  $v_i$  is a linearly combination of the other n-1 vectors

*Proof*:  $\implies$  Assume  $\{v_1, \ldots, v_n\}$  is linearly independent

BWOC, assume some  $v_i = a_1v_1 + \cdots + a_nv_n$  for some  $v_i \notin \{v_1, \dots, v_n\}$ 

Then we have

$$O = a_1 v_1 + \dots + a_n v_n + (-1)v_i$$

Since  $v_i$  is a linear combination of  $\{v_1, \ldots, v_n\}$ , the above equation shows that  $\{v_1, \ldots, v_n\}$  is linearly dependent. Contradiction

Thus  $v_i$  cannot be written as a linear combination of the other vectors

 $\iff$  Assume by way of contraposition that  $\{v_1,\ldots,v_n\}$  is not linearly independent

Thus choose  $a_1, \ldots, a_n \in K$ , not all 0 such that

$$a_1v_1 + \dots + a_nv_n = O$$

WLOG, assume  $a_1 \neq 0$ . Then  $v_2 a_2 + \cdots + a_n v_n = a_1 v_n$ 

Since  $a_1 \neq 0$  and K is a field, we have

$$v_1 = \frac{a_2}{-a_1}v_2 + \dots + \frac{a_n}{-a_1}v_n$$

Thus we have shown that  $v_1$  is a linear combination of the other n-1 vectors

Corollary 3:  $\{v_1, \ldots, v_n\}$  is linearly independent if and only if for each  $i, v_i \notin \text{span}(\{v_1, \ldots, v_n\} \setminus \{v_i\})$ 

*Proof*: This follows from the previous proposition

**Definition - Spans**: Let W be a K-Vector Space and  $\{v_1, \ldots, v_n\} \subseteq W$ . If  $\operatorname{span}(\{v_1, \ldots, v_n\}) = W$ , then  $\{v_1, \ldots, v_n\}$  spans W, so every  $w \in W$  is a linear combination of  $\{v_1, \ldots, v_n\}$ 

**Definition - Basis:**  $\{v_1, \ldots, v_n\}$  is a **basis** of W if it spans W and is linearly independent

**Example:**  $\{(5,3,1),(4,0,-2)\}$  is a basis for span $(\{(5,3,1),(4,0,-2)\})$ 

**Example:**  $\{(5,3,1),(10,6,2)\}$  is not a basis for span $(\{(5,3,1),(10,6,2)\})$  since it is not linearly independent

**Proposition 4**: Let  $\{v_1, \ldots, v_n\}$  be a basis for W and let  $w \in W$  be arbitrary. Then w can be written uniquely as

$$w = a_1 v_1 + \dots + a_n v_n$$
  $a_i \in K$ 

*Proof*: Since  $\{v_1, \ldots, v_n\}$  spans W, every  $w \in W$  is a linear combination of  $\{v_1, \ldots, v_n\}$ 

For uniqueness, suppose

$$w = a_1 v_1 + \dots + a_n v_n = b_1 v_1 + \dots + b_n v_n$$

Then we have

$$O = (b_1 - a_1)v_1 + \cdots (b_n - a_n)$$

Since  $\{v_1, \ldots, v_n\}$  is linearly independent, we must have  $b_i - a_i = 0$ , and thus  $b_i = a_i$  for each i

Thus each  $w \in W$  can be written uniquely as a linear combination of  $\{v_1, \ldots, v_n\}$ 

**Example:** Let  $W = \text{span}(\{\sin(x), \cos(x)\} = \{a\sin(x) + b\cos(x) \mid a, b \in R\}$ 

We know that W is an R-Vector Space

 $\{\sin(x),\cos(x)\}\$  is linearly independent. Otherwise  $\sin(x)=r\cos(x)$  for all  $x\in X$  and some  $r\in R$ . However, this cannot hold for when  $x=\pi/2$  since  $\sin(\pi/2)=1\neq r\cos(\pi/2)=r0$ 

#### 1.3 Dimension

Let  $\{v_1, \ldots, v_n\} \subseteq V$  and let  $W = \operatorname{span}(\{v_1, \ldots, v_n\})$ 

Now let  $X = \{w_1, \dots, w_m\} \subseteq W$ . Then there are 2 desirable properties of X

- X is Big: X spans W if span(X) = W, i.e. all  $w \in W$  is a linear combination of elements from X
- X is Small: X is linearly independent, i.e. no element in X is a linear combination of the remaining elements

**Note**: the empty set  $\emptyset$  is linearly independent since no element in  $\emptyset$  is a linear combination of the others. More notably,  $\emptyset$  is a basis for  $\{O\}$ 

**Shrinking Lemma**: Let  $X = \{w_1, \dots, w_m\} \subseteq W$  and spans W but X is not linearly independent. Then  $X \setminus \{w_i\}$  still spans W for some  $w_i \in X$ 

*Proof*: Since X is not linearly independent, we know that some  $w_i$  is a linear combination of elements in  $X \setminus \{w_i\}$ . Suppose

$$w_i = a_1 w_1 + \dots + a_m w_m$$
 without  $w_i$  occurring

Then take arbitrary  $u \in W$  where

$$u = b_1 w_1 + \dots + b_m w_m$$

Replacing  $w_i$  above with the previous equation, we see that u is a linear combination of  $X \setminus \{w_i\}$ 

Thus  $X \setminus \{w_i\} = \operatorname{span}(W)$ 

**Shrinking Theorem**: Let  $X = \{w_1, \dots, w_m\}$  span W. Then for some subset  $Y \subseteq X$  is a basis of W

Proof:

Case 0: If X is linearly independent, then X is a basis by definition

Otherwise, apply the shrinking lemma to get  $X_1 = X \setminus \{w_i\}$ , which spans W

Case 1: If  $X_1$  is linearly independent, then  $X_1$  is a basis

. . .

Since X is finite (it has m elements), we will stop eventually. Either

- Some  $X_i$  is linearly independent. Thus  $X_i$  is a basis for W
- Otherwise if we hit case m:  $X_m = \emptyset$ , which is linearly independent, and thus  $X_m$  spans  $W = \{O\}$

Corollary: If  $W = \text{span}(\{v_1, \dots, v_n\})$ , then some subset of  $\{v_1, \dots, v_n\}$  is a basis

• Note: In particular, W has to have a basis

**Enlarging Lemma**: Suppose  $X = \{w_1, \dots, w_m\} \subseteq W$  and is linearly independent but doesn't span W. Then for any  $w \in W \setminus \text{span}(X), X \cup \{w\}$  is still linearly independent

*Proof*: Suppose  $a_1w_1 + \cdots + a_mw_m + bw = O$ . We show that  $a_1 = \cdots = a_m = b = 0$ 

Suppose BWOC,  $b \neq 0$ , then we can solve for w

$$w = \frac{-a_1}{b}w_1 + \dots + \frac{-a_m}{b}w_m$$

Which means that  $w \in \text{span}(X)$ . Contradiction

Thus b = 0. This gives

$$a_1w_1 + \dots + a_mw_m + 0w = O$$

Since  $X = \{w_1, \dots, w_m\}$  is linearly independent, we also have  $a_1 = \dots = a_m = 0$ 

Thus  $X \cup \{w\}$  is linearly independent

**Main Question**: does the enlarging process above terminate? After some steps, do we get a set  $\{w_1, \ldots, w_m\}$  that spans W?

**Exchanging Lemma**: Let  $X = \{v_1, \ldots, v_n\}$  be any basis for W. Choose any  $w \in W$  but  $w \notin \text{span}(\{v_k, \ldots, v_n\})$ . Then  $\exists v_i, i < k$ , such that  $Y = (X \setminus \{v_i\}) \cup \{w\}$  is still a basis

• Note: If k > n, then  $\{v_k, \ldots, v_n\} = \emptyset$ 

*Proof*: First we show that span(Y) = W. Since X spans W, we can write

$$w = a_1 v_1 + \dots + a_n v_n \implies v_1 = \frac{1}{a_1} w + \frac{-a_2}{a_1} v_2 + \dots + \frac{-a_m}{a_1} v_m$$

Since  $w \notin \text{span}(\{v_k, \dots, v_n\})$ , we must have  $a_i \neq 0$  for some i < k

WLOG, let  $a_1 \neq 0$ . We show that Y spans W

Since X spans W, for arbitrary  $u \in W$ , we have

$$u = d_1 v_1 + \dots + d_n v_n$$

Replacing  $v_1$  above with the previous equation, we see that u is a linear combination of elements of Y and thus  $u \in \text{span}(Y)$ 

Thus  $\operatorname{span}(Y) = W$ 

Next we show that Y is linearly independent

Suppose we have

$$cw + b_2v_2 + b_nv_n = O$$

We show that  $c = b_2 = \cdots = b_n = 0$ 

- If  $c=0 \implies b_2=\cdots=b_n=0$  since  $\{b_2,\ldots,b_n\}$  is linearly independent
- Otherwise suppose  $c \neq 0$ , then we can solve for w

$$w = \frac{-b_2}{c}v_2 + \dots + \frac{-b_n}{c}v_n \implies v_1 = \frac{1}{a_1}(\frac{-b_2}{c}v_2 + \dots + \frac{-b_n}{c}v_n) + \frac{-a_1}{a_1}v_2 + \dots + \frac{-a_m}{a_1v_m}$$

Thus  $v_1$  is a linear combination of  $\{v_2, \ldots, v_n\}$ . Contradiction since we said X was linearly independent. Thus c=0

**Theorem**: Let  $X = \{v_1, \dots, v_n\}$  be a basis for W, and let  $\{w_1, \dots, w_m\} \subseteq W$  be linearly independent. Then  $m \leq n$ 

*Proof*: If m < n, we are done

Now assume  $m \geq n$ , we show that m = n

Since  $\{w_1, \ldots, w_m\}$  is linearly independent, we have that  $w_1 \neq O = \operatorname{span}(\emptyset)$ 

Now apply the Exchanging Lemma to the basis X, with k > n and  $w_1$  Then  $\exists v_i$  such that  $X_1 = (X \setminus \{v_i\}) \cup \{w_1\}$  is a basis

After reindexing, we see that  $X_1$  has n-1 vectors from X and 1 vector from  $w_1$ 

Now take k = n. Since  $\{w_1, \dots, w_m\}$  is linearly independent,  $w_2 \notin \text{span}(\{w_1\})$ 

Thus applying the Exchanging Lemma again, there exists j < k = n such that  $X_2 = (X_1 \setminus \{v_i\}) \cup \{w_2\}$  is a basis

Reindexing again, we get that  $X_2 = \{v_1, \dots, v_{n-2}, w_1, w_2\}$  is a basis

After n steps,  $X_n$  has no elements from X and  $X_n = \{w_1, \dots, w_n\}$  is a basis

Furthermore, we see that  $w_m \in \text{span}(\{w_1, \dots, w_n\})$ , contradicting that  $\{w_1, \dots, w_m\}$  is linearly independent

Thus m = n

Corollary: If W is any K-vector space and some basis of W has n elements, then every basis of W has n elements

**Definition - Finite Dimensional:** Let W be a K-vector space. Then W is **finite dimensional** if some basis for W is finite

**Definition - Dimension:** Number of elements in any basis for a vector space W

Corollary: Suppose  $\dim(W) = n$  and  $X = \{w_1, \dots, w_n\}$  are any *n*-vectors

- 1. If X spans W, then X is a basis for W
- 2. If X is linearly independent, then X is a basis for W

*Proof*:

1. By Shrinking Theorem, there exists a basis  $Y \subseteq X$ 

However, |Y| < n contradicts that  $\dim(W) = n$ 

Thus Y = X, i.e. X is a basis

2. By Enlarging Lemma, we can expand X to a basis Y

However, |Y| > n contradicts that  $\dim(W) = n$ 

Thus Y = X, i.e. X is a basis

#### 1.3.1 Toolbox Corollaries and Results

The following are useful corollaries that can be used to prove additional interesting results

Let V be a K-Vector Space with  $\dim(V) = n$ , i.e. V has some basis with n elements

- 1. Every basis for V has n elements
- 2. If  $X \supseteq V$  and span(X) = V, then X has at least n elements and some subset  $Y \subseteq X$  is a basis for V
- 3. If  $Z \subseteq V$  is linearly independent, then Z has at most n elements and Z can be extended to a basis  $Y \supseteq Z$  for V

**Example:** Let  $V = R^3$ . Since  $\dim(V) = 3$ , V has a basis with 3 elements

• Consider the **Standard Basis**:  $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ 

Suppose  $X = \{v_1, v_2, v_3\} \subseteq V$  for arbitrary vectors

- If  $\operatorname{span}(X) = V$  then X is a basis
- If X is linearly independent, since |X| = 3, X is a basis for V

**Example:** Describe all subspaces  $W \subseteq \mathbb{R}^3$ 

**Note**: Since  $\dim(V) = 3$ , we must have  $\dim(W) \leq \dim(V) = 3$ 

- Case 0:  $\dim(W) = 0$ 
  - Clearly  $W = \{O\}$
- Case 1:  $\dim(W) = 1$

W is a line going through (0,0,0)

Thus a basis for W will be  $\{w\}$  for any nonzero  $w \in W$ 

• Case 2:  $\dim(W) = 2$ 

W is a plane containing (0,0,0)

Thus a basis for W will be any 2 element set  $\{w_1, w_2\} \subseteq W$  such that

- Neither element is O
- $-w_2$  is not a scalar multiple of  $w_1$
- Case 3:  $\dim(W) = 3$

Only possibility is  $W = V = R^3$ 

**Examples:** Consider subspaces of  $\mathcal{F}(R)$  and look at small subspaces

•  $W = \text{span}(\{e^x\}) = \{re^x \mid r \in R\}$ 

This can be thought of as a 1-dimensional subpsace of  $\mathcal{F}(R)$ 

•  $V = \text{span}(\{\sin(x), \cos(x)\}) = \{a\sin(x) + b\cos(x) \mid a, b \in R\}$ 

Clearly  $\dim(V) = 2$ 

Consider  $f(x) = \sin(x)$   $g(x) = \cos(x)$   $h(x) = 3\sin(x) - 2\cos(x)$ 

Since h = 3f + (-2)g,  $\{f, g, h\}$  is not linearly independent

Thus  $\operatorname{span}(\{f, g, h\}) = \operatorname{span}(\{f, g\})$ 

#### 1.4 Direct Sums

Let V be a K-Vector Space with  $\dim(V) = n$ . Let  $W \subseteq V$  be a subspace of V. Then  $\dim(W) \leq n$ 

Now choose another subspace  $U \subseteq V$ 

**Note**:  $W \cap U \neq \emptyset$  since both must contain O

Thus the smallest we can make  $W \cap U$  is  $\{O\}$ 

Furthermore, it can be shown that both  $U \cap W$  and U + W are both subspaces of V

**Definition - Direct Sum**:  $U \oplus W$  is called a **direct sum** if

•  $U \oplus W = U + W$ 

• 
$$U \cap W = \{O\}$$

We often look at cases where  $V = U \oplus W$ 

**Example:** Consider  $R^3$  and let W be any plane containing (0,0,0)

If U is any line through (0,0,0) such that  $U \notin W$ , then  $R^3 = W \oplus U$ 

**Theorem**: Let V be a K-Vector Space with  $\dim(V) = n$ . Let  $W \subseteq V$  be any subspace of V. Then there exists a subspace  $U \subseteq V$  such that

$$V = U \oplus W$$

*Proof*: Choose any basis  $Z = \{w_1, \ldots, w_m\}$  of W (we know that  $m \leq n$ )

Now extend Z to  $Y = Z \cup \{u_1, \dots, u_r\}$ , which is a basis for V

Let  $U = \text{span}(\{u_1, \dots, u_r\})$ . Then U is a subspace of V and  $\{u_1, \dots, u_r\}$  is a basis for U

• Show that  $U \cap W = \{O\}$ 

Choose  $v \in U \cap W$ 

Then we have  $v = a_1u_1 + \cdots + a_ru_r = b_1w_1 + \cdots + b_mw_m$ 

Since Y is a basis for V, then  $\{u_1, \ldots, u_r, b_1, \ldots, b_m\}$  is linearly independent

Thus 
$$v - v = a_1 u_1 + \dots + a_r u_r - b_1 w_1 - \dots - b_m w_m = 0 \implies a_1 = \dots = a_r = b_1 = \dots = b_m = 0$$

Thus v = O

• Show that V = U + W

Choose any  $v \in V$ 

Since Y is a basis for V

$$v = \underbrace{a_1 u_1 + \dots + a_r u_r}_{u \in U} + \underbrace{b_1 w_1 + \dots + b_m w_m}_{w \in W}$$

Thus  $v = u + w \implies V = U + W$ 

## 2 Matrices

**Definition - m**  $\times$  **n Matrix**: Entries  $\in K$  of the form

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & \cdots & a_{mn} \end{bmatrix}$$

**Example**:  $A = \begin{bmatrix} 4 & 0 & 2 \\ -1 & 3 & 6 \end{bmatrix}$  is a  $2 \times 3$  matrix with entries  $\in Q$ 

Note: Any  $2 \times 3$  matrices can be added together componentwise or multiplied by a scalar, resulting in a  $2 \times 3$  matrix

• Here the additive identity is  $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 

• Here the additive inverse of A (from previous example) is  $-A = \begin{bmatrix} -4 & 0 & -2 \\ 1 & -3 & -6 \end{bmatrix}$ 

Thus  $\mathrm{Mat}_{2\times 3}(K)$ , the set of all  $2\times 3$  matrices with entries in K is a K-Vector Space

Here the basis is  $B = \{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \}$ 

- Clearly spans since any  $2 \times 3$  matrix  $\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{bmatrix}$  can be written as a linear combination of elements in B
- Clearly B is linearly independent since the only way to write O is to take each scalar  $a_i = 0$

Thus  $\dim(\operatorname{Mat}_{2\times 3}(K)) = 6$ 

**Upshot**: We can generalize the discussion above to show that  $\operatorname{Mat}_{m \times n}(K)$  is a K-Vector Space of  $\dim = m \times n$ 

**Example**:  $\left\{\begin{bmatrix} a & b \\ b & d \end{bmatrix}\right\}$ , **symmetric 2** × **2 matrices**, is a subspace of  $\operatorname{Mat}_{2\times 2}(K)$ , which has dimension 4

**Non-Example**: Mat(K) is NOT a Vector Space since addition between  $2 \times 2$  and  $3 \times 3$  matrices is not defined

**Notation**:  $A_i = (a_{i1}, \dots, a_{in})$ , the *i*th row vector, is a  $1 \times n$  matrix

**Notation**:  $A^j = (a_{1j}, \dots, a_{mj})$ , the jth column vector, is a  $m \times 1$  matrix

**Definition - Transpose**: Given an  $m \times n$  matrix A, the **transpose**  ${}^tA$  is an  $n \times m$  matrix that swaps the rows and columns, and vice versa

• Note: If A is a square  $n \times n$  matrix, then  ${}^tA$  is also a square  $n \times n$  matrix

Example:  $t \begin{bmatrix} 4 & 0 & 3 \\ -1 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 0 & 3 \\ 2 & 6 \end{bmatrix}$ 

**Definition - Matrix Multiplication**: An  $m \times n$  matrix A can multiply with an  $n \times k$  matrix B where

$$C_{il} = \sum_{d=1}^{n} a_{ij} b_{d,l}$$

- Note: If A, B are both  $n \times n$  matrices, then AB is an  $n \times n$  matrix
- Upshot: Square matrices are closed under transposition and matrix multiplication

Example:  $\begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 22 \\ 4 \end{bmatrix}$ 

### 2.1 Linear Equations

Consider

$$5x_1 + 3x_2 - 6x_3 = 8$$
$$x_1 - 2x_2 + x_3 = 4$$

We can represent this using

$$A = \begin{bmatrix} 5 & 3 & -6 \\ 1 & -2 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad B = \begin{bmatrix} 8 \\ 4 \end{bmatrix} \implies AX = B$$

## 3 Mappings

**Definition - Function**: Mapping between 2 sets D, R such that for each  $x \in D$ , there exists a unique  $y \in R$  such that f(x) = y

$$F:D\to R$$

• Note: D here is the domain of F and R is the range of F

**Definition - Image**:  $F(D) = \{F(x) \mid x \in D\} \subseteq R$ 

**Example:**  $F: R \to R$   $F(x) = x^2$ 

- Domain(F) = Range(F) = R
- Image of  $F = \{y \in R \mid y \ge 0\} = [0, \infty)$

**Example:**  $G[0,\infty) \to R$   $G(x) = \sqrt{x}$ 

• Image of  $G = [0, \infty)$ 

**Example**:  $\mathcal{F} = \text{all functions } F : \to R$ 

Let S be all "infinitely" differentiable functions

Let  $\frac{d}{dx}: S \to S$  where  $\frac{d}{dx}(f) = f'$ 

Thus  $\frac{d}{dx}$  is a function

Example:  $t: \operatorname{Mat}_{2\times 3}(K) \to \operatorname{Mat}_{3\times 2}(K)$ 

Then  $t(A) = {}^{t} A$  is a function

**Definition - Onto:** A function  $F: D \to R$  is **onto** if Image of F = R

**Definition - 1-1:** A function  $F: D \to R$  is **1-1** if different elements from D get mapped to different elements of R

$$F(d) = F(e) \implies d = e$$

**Definition - Bijection**: A function that is both onto and 1-1

**Definition - Inverse Function**: If  $F: D \to R$  is a bijection, there exists an inverse function  $F^{-1}: R \to D$  such that

$$\forall r, \in R, F(F^{-1}(r)) = r$$

$$\forall d, \in D, F^{-1}(F(d)) = d$$

**Definition - Linear Transformation**: For fixed K-Vector Spaces V, W, a linear transformation  $T: V \to W$  is a function satisfying

- 1.  $\forall v_1, v_2 \in W, T(v_1 + v_2) = T(v_1) + T(v_2)$
- 2.  $\forall c \in K, v \in W, T(cv) = cT(v)$

#### Examples

- 1.  $F: R \to R, F(x) = x^2$ 
  - Not onto since  $x^2$  cannot be negative

- Not 1-1 since  $1^2 = (-1)^2 = 1$
- Not a linear transformation since  $(1+2)^2 = 9 \neq 1^2 + 2^2$
- 2.  $F: [0, \infty) \to R, F(x) = \sqrt{x}$ 
  - Not onto since  $x^2$  cannot be negative
  - 1-1 since  $\sqrt{x} = \sqrt{y} \implies x = y$
  - Not a linear transformation since  $[0, \infty)$  isn't a Vector Space
- 3. Let S be the set of all infinite differentiable functions. Consider  $\frac{d}{dx}: S \to S$  where  $\frac{d}{dx}(f) = f'$ 
  - Onto by the Fundamental Theorem of Calculus
  - Not 1-1 since f and f + 5 share the same derivative
  - Is a linear transformation by addition and scalar multiplication properties of derivatives
- 4. Let C be the set of continuous functions on [0,1]. Consider  $I:C\to R, I(f)=\int_0^1 f(t)\,dt$ 
  - Onto since we can generate any value of R by taking the integral of the constant function
  - Not 1-1 since the definite integral of 2 functions could yield the same result
  - Is a linear transformation by additional and scalar multiplication properties of integrals
- 5.  $I^*: G \to C, I^*(f) = \int_0^x f(t) dt$ 
  - Not onto since not all functions of f(0) = 0
  - 1-1 since indefinite integral yields a unique function
  - Is a linear transformation by additional and scalar multiplication properties of integrals
- 6. Fix (4,0,2) and consider  $T_{(4,0,2)}: \mathbb{R}^3 \to \mathbb{R}^3, T_{(4,0,2)}((x,y,z)) = (x+4,y,z+2)$ 
  - · Clearly onto
  - Clearly 1-1
  - Not a linear transformation since  $T_{(4,0,2)}((0,0,0)+(1,1,1))=(5,0,3)\neq T_{(4,0,2)}((0,0,0))+T_{(4,0,2)}((1,1,1))$
- 7.  $E_{\pi}: \mathbb{R}^3 \to \mathbb{R}^3, E_{\pi}((x, y, z)) = (\pi x, \pi y, \pi z)$ 
  - · Clearly onto
  - Clearly 1-1
  - Is a linear transformation since  $E_{\pi}((a,b,c)+(d,e,f)) = (\pi(a+d),\pi(b+e),\pi(c+f)) = E_{\pi}((a,b,c)) + E_{\pi}((d,e,f))$

#### 3.1 Consequences of Properties of Linear Transformations

**Proposition**: For any linear transformation  $T: V \to W$ , we have that

$$T(O_V) = O_W$$

Proof: Let  $w = T(O_V)$ 

Since  $O_V = 0 * O_V$ , we have that

$$T(O_V) = T(0 * O_V) = 0 * T(O_V) = 0 * w = O_W$$

**Proposition**:  $T(a_1v_1 + \cdots + a_nv_n) = a_1T(v_1) + \cdots + a_nT(v_n)$ 

*Proof*: Follows from linearly properties of linear transformations

• Note: If  $x = \{v_1, \dots, v_n\}$  is a basis for V and if  $w_1, \dots, w_n$  are arbitrary vectors in W, then there is a unique linear transformation  $T: V \to W$  such that

$$T(v_1) = w_1, \ldots, T(v_n) = w_n$$

**Lemma**: Im(T) is a subspace of W

*Proof*: We show the necessary conditions for a subspace

•  $+: w_1, w_2 \in \operatorname{Im}(T) \implies \exists v_1, v_2 \in V \text{ such that } T(v_1) = w_1 \text{ and } T(v_2) = w_2$ 

Then 
$$w_1 + w_2 = T(v_1) + T(v_2) = T(\underbrace{v_1 + v_2}_{\in V}) \in \text{Im}(T)$$

•  $\times: w \in \text{Im}(T) \implies \exists v \in V \text{ such that } T(v) = w$ Then for  $c \in K$ , we have  $cw = c(Tv) = T(\underbrace{cv}_{\in V}) \in \text{Im}(T)$ 

**Definition - Pull Back**: Suppose  $Y = \{w_1, \dots, w_m\} \subseteq \text{Im}(T)$ . Then a **pull-back** is any set  $\{v_1, \dots, v_m\} \subseteq V$  such that

$$T(v_1) = w_1, \dots, T(v_m) = w_m$$

**Lemma**: If  $\{w_1, \ldots, w_m\}$  is linearly independent in Im(T) (or in W), then any pull back  $\{v_1, \ldots, v_m\} \subseteq V$  is linearly independent in V

Proof: Let  $a_1v_1 + \cdots + a_mv_m = O_V$ 

Thus  $T(a_1, v_1 + \cdots + a_m v_m = O_V) = a_1 w_1 + \cdots + a_m w_m = O_W$ 

Since  $\{w_1, \ldots, w_m\}$  is linearly independent, we have  $a_1 = \cdots = a_m = 0$  as desired

**Pull Back Property**: Suppose  $\{w_1, \ldots, w_m\}$  is a basis for Im(T), and let  $\{v_1, \ldots, v_m\} \subseteq V$  be any pull back. Furthermore, let  $S = \text{span}(\{v_1, \ldots, v_m\}) \subseteq V$  be a subspace. Then  $\{v_1, \ldots, v_m\}$  is a basis for S

*Proof*: By the previous lemma,  $\{v_1, \ldots, v_m\}$  is linearly independent

Furthermore,  $\{v_1, \ldots, v_m\}$  spans S by definition

Corollary: If  $T: V \to W$  is any linearly transformation and if  $\dim(V) = n$ , then  $\dim(\operatorname{Im}(T)) \leq n$ 

*Proof*: BWOC, suppose  $\dim(\operatorname{Im}(T)) > n$ , thus we can create a set of n+1 linearly independent elements in  $\operatorname{Im}(T)$ .

By the Pull Back Property, this pulls back to n+1 linearly independent elements in V. Contradiction since  $n+1>n=\dim(V)$ 

Note:  $T: V \to W$  where  $T(v) = \{O_W\}$  is a linearly transformation with  $\dim(\operatorname{Im}(T)) = 0$ , regardless of the value of  $\dim(V)$ 

#### 3.2 Kernel

**Definition - Kernel**: For  $T: V \to W$ , the **kernel**  $Ker(T) = \{v \in V \mid T(v) = O_W\}$ 

**Proposition**: Ker(T) is a subspace of V

Proof: Clearly  $O_V \in \text{Ker}(T)$ 

- +: For  $v_1, v_2 \in \text{Ker}(T)$ , we see that  $T(v_1 + v_2) = T(v_1) + T(v_2) = O_W + O_W = O_W$ . Thus  $v_1 + v_2 \in \text{Ker}(T)$
- $\times$ : For  $c \in K$  and  $v \in \text{Ker}(T)$ , we see that  $T(cv) = cT(v) = O_W$ . Thus  $cv \in \text{Ker}(V)$

**Proposition**: Let  $T: V \to W$  be any linear transformation. For any basis  $B = \{w_1, \dots, w_m\} \subseteq \text{Im}(T)$  and for any pullback  $\{v_1, \dots, v_m\} \subseteq V$ , we have

$$V = \operatorname{Ker}(T) \oplus S$$
  $S = \operatorname{span}(\{v_1, \dots, v_m\})$ 

*Proof*: We need to show V = Ker(T) + S and  $\text{Ker}(T) \cap S = \{O_V\}$ 

• Take arbitrary  $v \in V \implies T(v) \in \text{Im}(T) = a_1 w_1 + \cdots + a_m w_m$ 

Let  $s = a_1 v_1 + \cdots + a_m v_m \in S$ .

Then 
$$T(s) = T(v) \implies T(v - s) = T(v) - T(s) = O_W \implies v - s \in \text{Ker}(T)$$

Let  $u = v - s \in Ker(T)$ 

Thus clearly v = u + s for  $u \in \text{Ker}(T)$  and  $s \in S$ 

• Clearly  $O_V \in \text{Ker}(T) \cap S$  since both are subspaces of V

Take any arbitrary  $v \in \text{Ker}(T) \cap S$ 

$$v \in S \implies v = b_1 v_1 + \cdots + b_m v_m \implies T(v) = b_1 w_1 + \cdots + b_m w_m$$

Since  $v \in \text{Ker}(T)$ , we have that  $T(v) = O_W \implies b_1 = \cdots = b_m = 0$  since  $\{w_1, \ldots, w_m\}$  is linearly independent

Thus we have  $v = 0v_1 + \cdots + 0v_m = O_V \implies \operatorname{Ker}(T) \cap S = \{O_V\}$ 

Thus we have shown the necessary properties for  $V = \operatorname{Ker}(T) \oplus S$ 

**Theorem**:  $\dim(V) = \dim(\operatorname{Ker}(T)) + \dim(\operatorname{Im}(T))$ 

*Proof*: Choose a basis  $B = \{w_1, \dots, w_m\}$  for Im(T) and a pullback  $\{v_1, \dots, v_m\}$ 

Let  $S = \operatorname{span}(\{v_1, \dots, v_m\})$ 

Since  $V = \text{Ker}(T) \oplus S$ , we have  $\dim(\text{Ker}(T)) + \dim(S) = \dim(\text{Ker}(T)) + \dim(\text{Im}(T)) = \dim(V)$ 

#### 3.2.1 Consequences of Kernel

Corollary 1: For linear  $T: \mathbb{R}^3 \to \mathbb{R}^4$ , T is NOT onto

*Proof*:  $\dim(\operatorname{Im}(T)) \leq \dim(R^3) = 3 < 4 \implies \operatorname{Im}(T) \neq R^4 \implies T$  is NOT onto

Corollary 2: For linear  $T: \mathbb{R}^4 \to \mathbb{R}^3$ , T is NOT 1-1

Proof: 
$$\dim(\operatorname{Ker}(T)) + \underbrace{\dim(\operatorname{Im}(T))}_{\leq 3} = \dim(R^4) = 4 \implies \dim(\operatorname{Ker}(T)) \geq 1$$

Thus  $\operatorname{Ker}(T)$  has something non-zero mapped to  $O_W \implies T$  is NOT 1-1

**Definition - Isomorphism:**  $T:V\to W$  such that T is linear transformation and a bijection

Corollary 3:  $\dim(V) = \dim(W)$  and  $T: V \to W$  is a linear transformation and 1-1  $\Longrightarrow T$  is an isomorphism (i.e. T is onto)

Proof:  $\dim(\text{Ker}(T)) + \dim(\text{Im}(T)) = \dim(V)$ 

But we know that  $\dim(\operatorname{Ker}(T)) = 0 \implies \dim(\operatorname{Im}(T)) = \dim(V) = \dim(W)$ 

Furthermore  $\operatorname{Im}(T)$  is a subspace of W and  $\operatorname{dim}(\operatorname{Im}(T)) = \operatorname{dim}(W) \implies T$  is onto

Corollary 4:  $\dim(V) = \dim(W)$  and  $T: V \to W$  is a linear transformation and onto  $\implies T$  is an isomorphism (i.e. T is 1-1)

Proof:  $\dim(\text{Ker}(T)) + \dim(\text{Im}(T)) = \dim(V)$ 

But we know that  $\dim(\operatorname{Im}(T)) = \dim(V) \implies \dim(\operatorname{Ker}(T)) = 0$ 

#### 3.3 Compositions and Inverse Linear Mappings

Consider Vector Spaces U, V, W and linear transformations  $T: U \to V$  and  $S: V \to W$ 

**Proposition**:  $S \circ T : V \to W$  is a linear transformation

Proof:

• +: For  $u_1, u_2 \in U$  we have that

$$S \circ T(u_1 + u_2) = S(T(u_1 + u_2))$$

$$= S(T(u_1) + T(u_2))$$

$$= S(T(u_1)) + S(T(u_2))$$

$$= S \circ T(u_1) + S \circ T(u_2)$$

•  $\times$ : For  $u \in U$  and  $c \in K$ 

$$S \circ T(cu) = S(T(cu))$$

$$= S(cT(u))$$

$$= cS(T(u))$$

$$= cS \circ T(u)$$

Thus  $S \circ T : V \to W$  is a linear transformation

**Definition - Inverse Mapping:**  $T^{-1}: W \to V$  where  $T^{-1}(w) =$  the unique  $v \in V$  such that T(v) = w

**Proposition**:  $T^{-1}: W \to V$  is a linear transformation (and thus an isomorphism) *Proof*:

• +: Take  $w_1, w_2 \in W$  such that  $T(v_1) = w_1$  and  $T(v_2) = w_2$  for  $v_1, v_2 \in V$ . Then we see that

$$T(v_1 + v_2) = T(v_1) + T(v_2) = w_1 + w_2$$

However, by definition of inverse mapping,  $v_1 + v_2$  is the unique element such that  $T(v_1 + v_2) = w_1 + w_2$ Thus by definition of  $T^{-1}$ , we have that  $T^{-1}(w_1 + w_2) = v_1 + v_2 = T^{-1}(w_1) + T^{-1}(w_2)$ 

•  $\times$  : Similar

## 4 Linear Maps and Matrices

**Definition - L<sub>A</sub>**: For a  $m \times n$  matrix  $A, L_A$  determines a linear transformation from  $R^n \to R^m$ 

**Example:** Consider  $L_A: R^3 \to R^2$  where  $A = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 4 & 2 \end{bmatrix}$ 

Then we see that 
$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2x + 3y + z \\ 4y + 2z \end{bmatrix}$$

It can be clearly shown that  $L_A$  is a linear transformation (follows from logic of dot products)

#### 4.1 Bases, Matrices, and Linear Maps

For a given transformation  $T: V \to W$ , the matrix of T with respect to the standard basis is given by

$$A = (T(E_1), \dots, T(E_n))$$

Example: 
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
  $T(x,y) = (5x + y, x - y, x)$ 

$$T(E_1) = (5, 1, 1)$$
  $T(E_2) = (1, -1, 0)$ 

Thus we see that 
$$A = \begin{bmatrix} 5 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}$$

• 
$$T(^{t}(3,2)) = \begin{bmatrix} 5 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = ^{t} (17,1,3)$$

**Example:**  $T: \mathbb{R}^2 \to \mathbb{R}^2$  where we stretch the x-coordinate by 2

$$T(^{t}(1,0)) = ^{t}(2,0)$$
  $T(^{t}(0,1)) = ^{t}(0,1)$ 

Thus we see that  $A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ 

**Example:**  $S \circ T : \mathbb{R}^2 \to \mathbb{R}^2$  where we first stretch by x by 3 then stretch y by 3

$$T(^{t}(1,0)) = ^{t}(2,0)$$
  $T(^{t}(0,1)) = ^{t}(0,3)$ 

Thus we see that  $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ 

• Note: we see that applying functions just corresponds to matrix multiplication  $\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ 

**Example**: Fix  $\theta \in R$ , then rotate by  $\theta$ 

$$R_{\theta}(t(1,0)) = t(\cos(\theta), \sin(\theta))$$
  $R_{\theta}(t(0,1)) = t(-\sin(\theta), \cos(\theta))$ 

Thus 
$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Thus given any 
$$t(x,y) \in R^2$$
, we see that  $T_{\theta}(t(x,y)) = \begin{bmatrix} x\cos(\theta) - y\sin(\theta) \\ x\sin(\theta) + y\cos(\theta) \end{bmatrix}$ 

**Example:** Stretch x by 2, rotate by  $\pi/4$ , and stretch y by 3

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

**Note**: Given  $T: K^n \to K^m$ , the matrix A for T depends on our choosing of bases for  $K^n$  and  $K^m$ 

**Example:**  $T: \mathbb{R}^2 \to \mathbb{R}^3$  T(x,y) = (5x + y, x - y, x)

Let 
$$B = \{\underbrace{(1,4)}_{v_1},\underbrace{(3,0)}_{v_2}\}$$
 be a basis for  $R^2$  and  $B' = \{\underbrace{(3,0,0)}_{w_1},\underbrace{(0,5,0)}_{w_2},\underbrace{(0,0,1)}_{w_3}\}$  be a basis for  $R^3$ 

We can define a matrix of T with respect to B and B'

$$M_{B'}^B(T) = (\underbrace{T(v_1) \qquad T(v_2)}_{\text{in terms of } w_1, w_2, w_3})$$

$$T(v_1) = T(1,4) = (9,-3,1) = 3w_1 - \frac{3}{5}w_2 + w_3$$

$$T(v_2) = T(1,4) = (15,3,3) = 5w_1 + \frac{3}{5}w_2 + 3w_3$$

Thus we see that 
$$M_{B'}^B(T) = \begin{bmatrix} 3 & 5 \\ -3/5 & 3/5 \\ 1 & 3 \end{bmatrix}$$

**Upshot**: Any vector, written in B coordinates, when multiplied by this matrix, yields an answer in B' coordinates. Thus for  $v = av_1 + bv_2$ , we have

$$T(v) = (3a+5b)w_1 + (-3/5a+3/5b)w_2 + (a+3b)w_3$$

- As a sanity check, for  $v = (5,8) \in \mathbb{R}^2$ 
  - Normal Transformation: T(v) = (33, -3, 5)

- Linear Map: writing v in terms of  $v_1, v_2$ , we get  $(5, 8) = a(1, 4) + b(3, 0) \implies (5, 8) = 2(1, 4) + 2(3, 0)$ Thus we have

$$M_{B'}^B(T) \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ -3/5 & 3/5 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 11 \\ -3/5 \\ 5 \end{bmatrix} \implies 11(3,0,0) - 3/5(0,5,0) + 5(0,0,1) = (33,-3,5)$$

**Example:** Consider  $P_n = \{a_0 + a_1x + \dots + a_nx^n \mid a_i \in R\}$ 

It's easily verifiable that  $P_n$  is a subspace of  $\mathcal{F}(R)$ . Furthermore, the basis for  $P_n$  is  $\{1, x, \dots, x^n\} \implies \dim(P_n) = n+1$ 

Let  $D: P_2 \to P_2$  be the derivative

$$D(a_0 + a_1x + a_2x^2 = a_1 + 2a_2x)$$

Easily verifiable that D is a linear transformation. Consider what is the matrix of D with respect to  $B = \{1, x, x^2\}$ ?

$$A = \begin{bmatrix} D(1) & D(x) & D(x^2) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus we see that for  $p(x) = 5 + 3x + 4x^2$ , D(p(x)) = 3 + 8x = 5(0,0,0) + 3(0,1,0) + 4(0,2,0)

**Upshot**: For a linear transformation  $T: V \to W$ , with  $\dim(V) = n$  and  $\dim(W) = m$ , if  $B = \{v_1, \dots, v_n\}$  and  $B' = \{w_1, \dots, w_m\}$  are bases for V, W, then

$$M_{B'}^B(T) = \begin{bmatrix} T(v_1) & T(v_2) & \cdots & T(V_n) \end{bmatrix}$$

is a  $m \times n$  matrix with column vectors containing coefficients of  $T(v_1)$  WRT B'

Furthermore, for any  $v \in V, v = x_1v_1 + \cdots + x_nv_n$ , we have

$$M_{B'}^B(T) \begin{bmatrix} x_1 \\ \cdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \cdots \\ y_m \end{bmatrix}$$

Thus  $T(v) = y_1 w_1 + \cdots + y_m w_m$  (Note coordinate is WRT to B')

**Definition - Change of Basis**: Let  $B = \{v_1, \dots, v_n\}$  and  $B' = \{w_1, \dots, w_n\}$  be basis for the same vector space V, and let  $T: V \to V$  be the identity mapping. Then

$$M_{B'}^{B}(\mathrm{id}) = \underbrace{\left[\mathrm{id}(v_1) \quad \mathrm{id}(v_2) \quad \cdots \quad \mathrm{id}(v_n)\right]}_{\mathrm{WRT } B'}$$

is the Change of Basis matrix for V

**Example**: Let  $V = P_1 = \{a_0 + a_1x \mid a_i \in R\}$  and let  $B = \{1, x\}$  and  $B' = \{3 + x, 5 + 2x\}$ , which are both bases for V

$$1 = a(3+x) + b(5+2x) \implies a = 2, b = -1 \implies 1 = 2(3+x) - (5+2x)$$

$$x = c(3+x) + d(5+2x) \implies c = -5, d = 3 \implies x = -5(3+x) + 3(5+2x)$$

$$M_{B'}^{B}(\mathrm{id}) = \underbrace{\begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix}}_{\mathrm{WRT} \ B'}$$

Furthermore, consider

$$M_B^{B'}(\mathrm{id}) = \underbrace{\left[\mathrm{id}(w_1) \quad \mathrm{id}(w_2)\right]}_{\mathrm{WRT } B} = \begin{bmatrix} 3 & 5\\ 1 & 2 \end{bmatrix}$$

Finally, we see that  $M_B^{B'}(M_{B'}^B(\mathrm{id})) = \mathrm{id}$ 

Thus the inverse of  $M_{B'}^B$  is  $M_{B'}^{B'}$ 

## 5 Scalar Products and Orthogonality

#### 5.1 Scalar Products

**Definition - Scalar Product:** For a Vector Space V, we define  $<,>:V\times V\to K$ 

• Example: Think of dot products in  $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ 

#### Properties of Scalar Products

- 1.  $\langle v, w \rangle = \langle w, v \rangle$
- $2. < v, w_1 + w_2 > = < v, w_1 > + < v, w_2 >$
- 3. < v, cw > = c < v, w > < cv, w > = c < v, w >

#### Consequences of Properties

•  $\forall v_1, v_2, w \in V, \langle v_1 + v_2, w \rangle = \langle v_1, w \rangle + \langle v_2, w \rangle$ 

*Proof*: Follows from applying properties 1 and 2

•  $\forall v \in V, < v, O_v >= 0 = < O_v, v >$ 

*Proof*: For any  $w \in V$ , we have  $\langle v, O_V \rangle = \langle v, 0w \rangle = 0 \langle v, w \rangle$ 

**Definition - Non-Degenerate**: Scalar product that satisfies  $\forall v \neq 0, \exists w \in V \text{ such that } < v, w > \neq 0$ 

**Example**:  $\mathcal{F}([0,1])$ , all functions  $f:[0,1] \to R$ 

Let C([0,1]) be the set of all continuous functions  $f:[0,1]\to R$ , which is clearly an R subspace

Now define  $\langle f, g \rangle = \int_0^1 f(x)g(x) dx$ . We claim that this is a scalar product

Proof:

- $\int_0^1 f(x)g(x) dx = \int_0^1 g(x)f(x) dx$  so property 1 holds
- $\int_0^1 f(x)(g_1(x) + g_2(x)) dx = \int_0^1 f(x)g_1(x) dx + \int_0^1 f(x)g_2(x) dx$  so property 2 holds
- $\int_0^1 f(x)cg(x) dx = c \int_0^1 f(x)g(x)$  so property 3 holds

We also claim that  $\langle f, g \rangle$  is non-degenerate since for  $f \neq 0$ , we have  $\langle f, f \rangle = \int_0^1 f(x)^2$ , which is always  $\geq 0$  and is continuous

**Example**: f(x) = 2x + 3  $g(x) = x^2$ 

$$\langle 2x+3, x^2 \rangle = \int_0^1 (2x+3)x^2 dx = 3/2$$

**Defintion - Orthogonal**: Elements  $v, w \in V$  are **orthogonal**, denote  $v \perp w$ , if  $\langle v, w \rangle = 0$ 

**Definition - Orthogonal Complement:** Suppose  $W \subseteq V$  is a subspace, then the **orthogonal complement** of W is

$$W^{\perp} = \{ v \in V \mid v \perp w \} \qquad \text{for } w \in W$$

• Note:  $W^{\perp} \subseteq V$  is a subspace

**Definition - Positive Definite**: Scalar product that satisfies  $\forall v \neq 0, \langle v, v \rangle \geq 0$ . Otherwise  $\langle v, v \rangle = 0 \implies v = 0$ 

**Definition - Length:**  $||v|| = \sqrt{\langle v, v \rangle}$ 

• Length between v and w: ||v-w||

- ||c|| = |c|||v||

Pythagoras Theorem: For  $v \perp w$ ,

$$||v + w||^2 = ||v||^2 + ||w||^2$$

*Proof*:

$$||v + w||^2 = \langle v + w, v + w \rangle$$

$$= \langle v, v \rangle + 2 \langle v, w \rangle + \langle w, w \rangle$$

$$= ||v||^2 + ||w, w||^2$$

**Parallelogram Law**: For any  $v, w \in V$ , we have

$$||v + w||^2 + ||v - w||^2 = 2||v||^2 + 2||w||^2$$

*Proof*: Follows from the definition/properties of length

**Definition - Unit Vector**:  $v \in V$  such that ||v|| = 1

• If  $v \neq O$ , then  $(\frac{1}{\|v\|})v$  is a unit vector

**Definition - Projection**:  $\operatorname{proj}_w v$  represents v as a scalar multiple of w where  $\operatorname{proj}_w v = (\frac{\langle v, w \rangle}{\langle w, w \rangle})w$ 

- Definition comes from creating a right triangle where  $v cw \perp cw \implies \langle v cw, cw \rangle = 0$ Thus we have  $\langle v, cw \rangle - \langle cw, cw \rangle = c \langle v, w \rangle - c^2 \langle w, w \rangle \Longrightarrow c = \frac{\langle v, w \rangle}{\langle w, w \rangle}$
- Special case where  $< w, w>=1 \implies \operatorname{proj}_w v = < v, w>w$

**Schwartz Inequality**: For any  $v, w \in V$  we have

Proof: If w = O, then  $|\langle v, w \rangle| \le 0$ 

Otherwise, using the definition of projection, we have  $cw \perp v - cw$ . Thus we see

$$||v||^{2} = ||v - cw||^{2} + ||cw||^{2}$$

$$\implies ||cw^{2}|| \le ||v^{2}||$$

$$c^{2}||w||^{2} \le ||v||^{2}$$

$$\frac{\langle v, w \rangle^{2}}{\langle w, w \rangle^{2}} ||w||^{2} \le ||v||^{2}$$

$$\implies \langle v, w \rangle^{2} \le ||v||^{2} ||w||^{2}$$

**Triangle Inequality**: For  $v, w \in V$ , we have

$$||v + w|| \le ||v|| + ||w||$$

Proof:

$$||v + w||^{2} = \langle v + w, v + w \rangle$$

$$= ||v||^{2} + 2 \langle v, w \rangle + ||w||^{2}$$

$$\leq ||v||^{2} + 2||v|| ||w|| + ||w||^{2}$$

$$\leq (||v|| + ||w||)^{2}$$

$$\implies ||v + w|| \leq ||v|| + ||w||$$

**Proposition**: Suppose  $\{w_1, \ldots, w_r\} \subseteq V$  is pairwise orthogonal and assume that each  $w_i \neq O$ . Then  $\{w_1, \ldots, w_r\}$  is linearly independent

*Proof*: Let  $a_1w_1 + \cdots + a_rw_r = O_V$ . Then we have

 $\langle w_i, a_1w_1 + \cdots + a_rw_r \rangle = \langle w_i, a_1w_1 \rangle + \cdots + \langle w_i, a_nw_n \rangle = 0$  since each w is pairwise orthogonal

Thus  $\langle w_i, a_i w_i \rangle = 0 \implies a \langle w_i, w_i \rangle = 0 \implies a_i = 0$  since  $\langle w_i, w_i \rangle > 0$  since positive definite

Let  $W = \operatorname{span}(\{w_1, \dots, w_r\}) \subseteq V$ . Then clearly  $\dim(W) = r$ 

Now take  $v \in V$  and define  $\underset{W}{\text{proj}} v = \sum_{i=1}^{r} c_i w_i$  where  $c_i w_i = \underset{w}{\text{proj}}_{w_i} v$ 

Clearly  $\operatorname{proj}_W v \in W$ 

**Proposition**:  $\left(v - \sum_{i=1}^{r} c_j w_j\right) \perp \text{ each } w_i$ 

*Proof*: Fix i, then

$$\sum_{j=1}^{r} c_j w_j = c_i w_i + \sum_{j \neq i} c_j w_j$$

Now take

$$v - \sum_{j=1}^{r} c_j w_j = (v - c_i w_i) - \sum_{j \neq i} c_j w_j$$

and take the inner product with  $w_i$ 

$$\underbrace{\langle w_i, v - c_i w_i \rangle}_{\text{Ob/c of projection}} - \langle w_i, \sum_{j \neq i} c_j w_j \rangle$$

Thus we have  $w_i \perp v - \sum_{j=1}^r c_j w_j$ 

Corollary:  $(v - \sum_{j=1}^{r} c_j w_j) \perp \text{ every } w \in W$ 

*Proof*: Since each  $w_i$  in the basis is orthogonal to  $v - \sum_{j=1}^{r} c_j w_j$ , we must have

$$< w, v - \sum_{j=1}^{r} c_j w_j > = 0$$

Corollary: 
$$(v - \sum_{j=1}^{r} c_j w_j) \in W^{\perp}$$

**Geometric Interpretation**: For any  $v \in V$ ,  $\operatorname{proj}_W v$  is the closest point to v in W

$$\|v - \operatorname*{proj}_{w} v\| \leq \|v - w\|$$

*Proof*: Choose any  $w \in W = \text{span}(\{v_w, \dots, w_r\})$ , then  $w = \sum_{i=1}^r a_i w_i$ . Then we have

$$||v - w||^2 = ||v - \sum_{i=1}^r a_i w_i||^2$$

$$= ||v - \sum_{i=1}^r c_i w_i| + \sum_{i=1}^r (c_i a_i) w_i||^2$$

$$= ||v - \sum_{i=1}^r c_i w_i||^2 + ||\sum_{i=1}^r (c_i - a_i) w_i||^2 \quad \text{by Pythagoras}$$

Thus 
$$||v - w||^2 \ge ||v - \sum_{c_i}^{w_i}||^2 \implies ||v - w|| \ge ||v - \sum_{i=1}^r c_i w_i||^2$$

Corollary: Suppose  $w \in W$ , then  $\operatorname{proj}_W w$  is the element of W closest to w

But we have 
$$w = \sum_{i=1}^{r} c_i w_i \implies c_i = \frac{\langle w, w_1}{\|w_i\|^2}$$

#### 5.2 Orthonormal Basis

**Definition - Orthonormal Basis**:  $\{w_1, \ldots, w_r\} \subseteq W$  is an **orthonormal basis** if

- 1.  $\{w_1, \ldots, w_r\}$  are pairwise orthogonal and non are zero
- 2.  $||w_i|| = 1$

Corollary: If  $\{w_1, \dots, w_r\}$  is orthonormal, then  $\forall w \in W, w = \sum_{i=1}^r \langle w, w_i \rangle w_i$ 

**Gram-Schmidt Process**: Turn any basis  $B = \{v_1, \dots, v_n\}$  into an orthnonormal basis  $B' = \{u_1, \dots, u_n\}$ 

- 1. Given  $v_w$ , let  $u_1 = \frac{1}{\|v_1\|} v_1$ . Then we have  $\text{span}(\{u_1\}) = \text{span}(\{v_1\})$
- 2. Let  $p_2 = v_2 \text{proj}_{u_1} v_2 = v_2 \langle v_2, u_1 u_1 \rangle$ Now let  $u_2 = \frac{1}{\|p_2\|} p_2$ . Then  $\text{span}(\{u_1, u_2\}) = \text{span}(\{v_1, v_2\})$
- 3. Let  $p_3 = v_3 \text{proj}_{\text{span}(\{u_1, u_2\})} v_3 = v_3 \langle v_3, u_1 \rangle u_1 \langle v_3, u_2 \rangle u_2$ Now let  $u_3 = \frac{1}{\|p_3\|} p_3$ . Then  $\text{span}(\{u_1, u_2, u_3\}) = \text{span}(\{v_1, v_2, v_3\})$

4. ...

**Upshot**: Any finite R Vector Space V with a positive definite inner product has an orthonormal basis

**Theorem** Let B ve a finite dimension R Vector Space with a positive definite scalar product. Then for any subspace  $W \subseteq S$ 

$$V=W\oplus W^\perp$$

Proof:

• Show that  $V = W + W^{\perp}$ 

Choose  $v \in V$  and let  $w^* = \operatorname{proj}_W v \in W$ . Then  $v - w^* \in W^{\perp}$ 

Thus 
$$v = \underbrace{w^*}_{\in W} + \underbrace{(v - w^*)}_{\in W^{\perp}}$$

• Show that  $W \cap W^{\perp} = \{O\}$ 

Choose  $w \in W \cap W^{\perp}$ 

Since  $w \in W^{\perp}$ , w is orthogonal to all vectors in W

In particular,  $w \perp w \implies < w, w >= 0 \implies w = O$  since the scalar product is positive definite

Corollary: If  $W \subseteq V$  is a subspace, then

$$\dim(V) = \dim(W) + \dim(W^{\perp})$$

### 5.3 Application to Linear Equations: Rank

Let A be an  $m \times n$  matrix with entries in R

- Let  $C_A \subseteq \mathbb{R}^m$  be the span of column vectors of A
- Let  $R_A \subseteq R^n$  be the span of row vectors of A
- Let  $Null(A) = \{v \in R^m \mid Av = O\}$

Recall that any  $m \times n$  matrix A describes a linear transformation  $L_A : \mathbb{R}^n \to \mathbb{R}^m$  where  $L_a(v) = Av \in \mathbb{R}^m$ 

Thus  $Im(L_A) = C_A$ 

Furthermore,  $Ker(L_A) = \{v \in \mathbb{R}^n \mid Av = O\} = Null(A)$ 

Thus we have

$$\dim(R^n) = \dim(\operatorname{Im}(L_A)) + \dim(\operatorname{Ker}(L_A))$$
$$= \dim(C_A) + \dim(\operatorname{Null}(A))$$

Now consider using scalar products

Take  $v \in \text{Null}(A)$ . Thus Av = O

Thus 
$$A_i \cdot v = 0 \iff A_i \perp v \iff v \perp \text{all } u \in R_A \implies v \in (R_A)^{\perp}$$

Thus  $Null(A) = Ker(A) = (R_A)^{\perp}$ 

Thus  $R_A \subseteq R^n$  is a subspace of  $R^n$ .

Thus we have

$$\dim(R^n) = \dim(R_A) + \dim((R_A)^{\perp})$$
$$n = \dim(R_A) + \dim(\text{Null}(A))$$

Thus we have  $\dim(R_A) = \dim(C_A)$ 

**Definition - Rank**: The rank of a matrix A is  $\dim(R_A) = \dim(C_A)$ 

#### 5.4 Scalar Products under Complex Numbers

We want a positive definite scalar product for C

Take the complex conjugate

$$(a+bi)(a-bi) = a^2 = b^2$$

Then we see that

$$||z|| = \sqrt{\langle z, \bar{z} \rangle} \in R$$

**Definition - Hermitian Inner Product**: For  $(y_1, \ldots, y_n)$  and  $(z_1, \ldots, z_n) \in C^n$ , define

$$\langle y, z \rangle = y_1 \overline{z_1} + \dots + y_n \overline{z_n}$$

• Note: This is NOT a scalar product

Now we list the properties of the Hermitian Inner Product

- $\langle w, v \rangle = \overline{\langle v, w \rangle}$
- $\langle v, w_1 + w_2 \rangle = \langle v, w_1 \rangle + \langle v, w_2 \rangle$
- $\langle cv, w \rangle = c \langle v, w \rangle$  AND  $\langle v, cw \rangle = \overline{c} \langle v, w \rangle$

Proposition: The Hermitian Inner Product is positive definite

Proof: We look at

$$< v, v > = x_1 \overline{x_1} + \dots + x_n \overline{x_n} = ||x_1||^2 + \dots + ||x_n||^n \in R$$

We see that  $\langle v, v \rangle \geq 0$ . If it happens that  $\langle v, v \rangle = 0 \implies x_1 = \cdots = x_n = 0$ 

#### 5.5 General Orthogonal Bases

Now we relax the assumption of <, > being positive definite

Suppose V be a finite dimension Vector Space over R and let <,> be a scalar product, not necessarily positive definite. Then V has an orthogonal basis

• Note: Not orthonormal, since we could have the mapping to 0, and thus  $v_i \perp v_j$ 

Consider the trivial case: Let  $\langle v, w \rangle = 0$  for all  $v, w \in V$ 

Then any basis for V is an orthogonal basis