Elektrotechnik:

Ladung: $Q = I \cdot t = C \cdot U$

Ladungsdichte: $\rho = e_0 \cdot n$

Stromdichte: $J = \frac{I}{A}$

Wärmeenergie: $W = U \cdot Q$

ohmsches Gesetz: $U = R \cdot I$

ohmscher Leitwert: $G = \frac{I}{II}$

spezifischer Widerstand: $R = \rho \cdot \frac{l}{4}$

Leitfähigkeit: $\Upsilon = \frac{1}{0}$

Temperaturabhängigkeit Widerstand:

$$R_2 = R_1 \cdot [1 + \alpha_1(\vartheta_2 - \vartheta_1)] \quad [\alpha] = K^{-1}$$

Energie: $W = U \cdot O = U \cdot I \cdot t$

Leistung:
$$P = \frac{W}{t} = U \cdot I = I^2 \cdot R = \frac{U^2}{R}$$

Wirkungsgrad: $\eta = \frac{P_{ab}}{P_{TU}}$

$$\Delta P_{\%} = \frac{P_2 - P_1}{P_1} \cdot 100\%$$
 $P_V = P_{zu} - P_{ab}$

Serienschaltung:

$$R_{qes} = R_1 + R_2 + R_3$$

$$\frac{1}{G_{aes}} = \frac{1}{G_1} + \frac{1}{G_2} + \frac{1}{G_3}$$

$$Q_{ges} = Q_1 = Q_2 = Q_3 \rightarrow \frac{1}{C_{ges}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

$$L = L_1 + L_2 + L_3$$

Parallelschaltung:

$$\frac{1}{R_{ges}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \qquad R_{ges} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$G_{qes} = G_1 + G_2 + G_3$$

$$Q_{aes} = Q_1 + Q_2 + Q_3 \rightarrow C_{aes} = C_1 + C_2 + C_3$$

$$\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$$

Umrechnung Spannungs-/Strom-Quelle:

$$UQ \rightarrow IQ$$
: $I_0 = \frac{U_0}{R_i}$ $IQ \rightarrow UQ$: $U_0 = I_0 \cdot R_i$

Unbelasteter Spannungsteiler:

$$\frac{U_{\mu}}{U} = \frac{R_{\mu}}{\Sigma R_{II}}$$

Belasteter Spannungsteiler:

$$R_{2L} = \frac{R_2 \cdot R_L}{R_2 + R_L}$$

Querstromverhältnis: $q = \frac{l_q}{l_I} = \frac{R_L}{R_2}$

Stromteiler:

$$\frac{I_1}{I_2} = \frac{G_1}{G_2} = \frac{R_2}{R_1} \qquad \frac{I_1}{I_{ges}} = \frac{Gegenzweig\ R}{R_{ges\ von\ Zweigen}} = \frac{G_1}{G_{ges\ von\ Zweigen}}$$

Spannungsfehlerschaltung:

$$R = \frac{U - U_{iA}}{I} = \frac{U}{I} - R_{iA} \qquad U_{ia} = I \cdot R_{iA}$$

$$R = \frac{U}{I - I_{iV}} = \frac{U}{I - \frac{U}{R_{iV}}} \qquad I_{iV} = \frac{U}{R_{iV}}$$

Brückenschaltung:

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$
 (wenn Brücke abgeglichen)

Schleifdrahtmessbrücke:

$$R_{x} = R_{N} \cdot \frac{l_{1}}{l_{2}}$$

Stern- Dreiecks- Transformation:

Umrechnung von ∆ in Stern

$$R = \frac{R_1 \cdot R_2 + R_2 \cdot R_3 + R_3 \cdot R_1}{gegen\"{u}berliegender} R}$$

Ersatzspannungs- und Stromquelle:

Leerlaufspannung U₀: U₀ berechnen (Spannungsteiler)

Innenwiderstand Ri: (Spannungsquelle kurzschließen)

(Stromquelle durch Leerlauf ersetzen)

Kurzschlussstrom I_K: $I_K = \frac{U}{R_A}$ (manche R ignorieren)

Zusammenhang: $U_0 = R_i \cdot I_K$

Leistung maximal: $P = \frac{(U_0)^2}{A \cdot P}$

Innere Verlustleistung: $P_V = I^2 \cdot R_i$

Lösungsmethoden bei komplexer Schaltung:

Maschen und Knotensatz:

Kirchhoff 1: $I_1 + I_2 + I_3 = 0$

Kirchhoff 2: $U_1 + U_2 + U_3 = 0$ (g. Pfeil \rightarrow -U)

 $m = z - (k-1) \qquad K = k-1$

Überlagerungssatz:

Spannungsquelle kurzschließen: $R_i = 0$

Stromquelle durch Leerlauf ersetzen $R_i \rightarrow \infty$

Jeweils: 1. Spannungen zeichnen

2.Ströme einzeichnen (gleich gepfeilt) Wichtig für spätere Vorzeichen!

3.Rechnen

Knotenpotentialanalyse: (mit Leitwert)

- 1. Knoten beschriften
- 2. Bezugsknoten wählen ($\varphi_0 = 0V$) nicht in Matrix
- 3. ggf. Spannungsquelle mit Widerstand tauschen
- 4. Bekannte potentiale kennzeichnen (Fuß von Pfeil)
- 5. Matrix aufstellen für alle φ und unbekannte Knoten
- 6. Auf Ergebnisseite die Ströme eintragen
- 7. Äquivalentumformung der bekannten ϕ
- 8. Matrix berechnen
- 9. Hilfe: $U = (\varphi_{Herkunft} \varphi_{Hinkunft})$

Maschenstromanalyse: (mit Widerstand)

- 1. Baum einzeichnen, sodass keine Stromquelle drin ist und alle Knoten erfasst werden
- 2. Komplemente sind Zweige zwischen Baum, die Ströme von denen werden in der Matrix aufgestellt (wenn sie unbekannt sind)
- 3. Komplemente entsprechen auch die Maschen Maschenrichtung → Komplementstrom-Richtung
- 4. Koppelleitwerte: gleichgepfeilt +, gegengepfeilt -
- 5. Spannungsquellen: gleichgepfeilt -, gegengepfeilt +
- 6. Stromquellen dann äquivalent umformen
- 7. Matrix errechnen

Kondensatoraufgabe:

Berechnung uc(t)

- 1. U_A berechnen
- 2. R_E berechnen (nach der Veränderung) Spannungsquelle kurzschließen Kondensator Klemmen sind Bezugspunkte
- 3. U_E berechnen
- 4. τ berechnen mit Formel
- 5. mit großer Formel uc(t) berechnen

Berechnung ic(t)

- 1.Formel von oben verwenden
- $2.u_c(t)$ ermitteln \rightarrow siehe oben

$$3.i_c(t) = C \cdot (U_A - U_E) \cdot e^{-\frac{t}{\tau}} \cdot \left(-\frac{1}{\tau}\right)$$

(Kettenregel)

- 4. au mit Formel ersetzen
- 5. C rauskürzen

Kondensator:

Kapazität:
$$C = \frac{\varepsilon_0 \cdot \varepsilon_r \cdot A}{d}$$

Elektrische Feldstärke: $E = \frac{U}{d}$

$$i_c(t) = \frac{dQ}{dt} = C \cdot \frac{du_c(t)}{dt}$$

Energie:
$$dW = \frac{I^2 \cdot t}{C} \cdot dt$$
 $W = \frac{1}{2} \cdot C \cdot U^2$

$$u_c(t) = U_E + (U_A - U_E) \cdot e^{-\frac{t}{\tau}}$$

$$\mathsf{mit} \ \tau = R_E \cdot \mathcal{C}$$

Spule:

Induktivität:
$$L = \mu_0 \cdot \mu_r \cdot n^2 \cdot \frac{\pi \cdot d^2}{4 \cdot z}$$

Feldstärke:
$$H = \frac{n \cdot I}{z}$$

Gesamtfluss:
$$\psi = n \cdot \Phi = L \cdot I$$

$$i_L(t) = I_E + (I_A - I_E) \cdot e^{-\frac{t}{\tau}}$$

$$u_L(t) = L \cdot \frac{di_L(t)}{dt} = (I_E - I_A) \cdot R_E \cdot e^{-\frac{t}{\tau}}$$

mit
$$\tau = \frac{L}{R_E}$$

Mechanik:

$$P_{mech} = M \cdot \omega = F \cdot r \cdot 2\pi \cdot f$$

$$A = r^2 \cdot \pi = \frac{\pi \cdot d^2}{4}$$

Einheitentabelle / Präfixe / Mathemerkhilfen

Basisgröße	Basiseinheit	Kurzzeichen	Zeichen
Länge	Meter	m	1
Masse	Kilogramm	kg	m
Zeit	Sekunde	S	t
Elektrische Stromstärke	Ampere	A	1
Temperatur	Kelvin	K	Т
Stoffmenge	Mol	Mol	n
Lichtstärke	Candela	cd	I _V
Kraft	Newton	$1 N = 1 kg \cdot m \cdot s^{-2} = 1 V \cdot A \cdot s \cdot m^{-1}$	F
Energie	Joule	$1 J = 1 kg \cdot m^2 \cdot s^{-2} = 1 V \cdot A \cdot s = 1Nm$	W
Leistung	Watt	$1 W = 1 kg \cdot m^2 \cdot s^{-3} = 1 V \cdot A$	Р
Ladung	Coulomb	1 C = 1 A · s	Q
Spannung	Volt	$1 \text{ V} = 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-3} \cdot \text{A}^{-1} = 1 \text{ W} \cdot \text{A}^{-1}$	U
Widerstand	Ohm	$1 \Omega = 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-3} \cdot \text{A}^{-2} = 1 \text{ V} \cdot \text{A}^{-1}$	R
Leitwert	Siemens	$1 \text{ S} = 1 \text{ kg}^{-1} \cdot \text{m}^{-2} \cdot \text{s}^3 \cdot \text{A}^2 = 1 \text{ V}^{-1} \cdot \text{A} = \Omega^{-1}$	G
Kapazität	Farad	$1 F = 1 kg^{-1} \cdot m^{-2} \cdot s^4 \cdot A^2 = 1 C \cdot V^{-1} = 1 As \cdot V^{-1}$	С
Induktivität	Henry	$1 \text{ H} = 1 \text{ kg} \cdot \text{m}^2 \cdot \text{s}^{-2} \cdot \text{A}^{-2} = 1 \text{ Wb} \cdot \text{A}^{-1} = 1 \text{ Vs} \cdot \text{A}^{-1}$	L
Magnetischer Fluss	Weber	1 Wb = 1 kg · m ² · s ⁻² · A ⁻¹ = 1 V · s	Φ (ψ)
Induktion	Tesla	$1 T = 1 kg \cdot s^{-2} \cdot A^{-1} = 1 Wb \cdot m^{-2}$	В
Magnetische Feldstärke		[H] = A · m ⁻¹	Н
spezifischer Widerstand		$[\rho] = \Omega \cdot mm^2 \cdot m^{-1}$	ρ "rho"
Leitfähigkeit		$[\Upsilon] = \mathbf{m} \cdot \Omega^{-1} \cdot \mathbf{mm}$	Υ
Drehmoment		[M] = Nm	M
Winkelgeschwindigkeit		$[\omega] = \text{rad} \cdot \text{s}^{-1}$	ω
Frequenz		$[f] = 1/s = s^{-1}$	f

10 ²⁴	Yotta	Υ
10 ²¹	Zetta	Z
10 ¹⁸	Exa	Е
10 ¹⁵	Peta	Р
10 ¹²	Tera	Т
10 ⁹	Giga	G
10 ⁶	Mega	Μ
10 ³	Kilo	k
10 ²	Hekto	h
10 ¹	Deka	da

10-1	Dezi	d
10-2	Zenti	С
10 ⁻³	Milli	m
10 ⁻⁶	Mikro	μ
10 ⁻⁹	Nano	n
10 ⁻¹²	Piko	р
10 ⁻¹⁵	Femto	f
10 ⁻¹⁸	Atto	а
10 ⁻²¹	Zepto	Z
10 ⁻²⁴	Yokto	Υ

Differenztialrechnung:

Produktregel: $f(x) = u \cdot v \rightarrow f'(x) = u' \cdot v + u \cdot v'$

Quotientenregel: $f(x) = \frac{u}{v} \rightarrow f'(x) = \frac{u' \cdot v - u \cdot v'}{v^2}$

 $\text{Kettenregel: } f \big(g(x) \big) \ \to \ f' \cdot (\mathbf{g}(\mathbf{x})) \cdot \mathbf{g}' \left(\mathbf{x} \right)$

Potenzgesetze:				
$a^m \cdot a^n = a^{m+n}$	$\frac{a^m}{a^n} = a^{m-n}$			
$a^n \cdot b^n = (ab)^n$	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$			
$(a^m)^n = a^{m \cdot n}$				

Formelsammlung Elektrotechnik

Mehrfacher Spannungsteiler:

$$\frac{U_1}{U_2} = \frac{U_1}{U_{CD}} \cdot \frac{U_{CD}}{U_{AB}} \cdot \frac{U_{AB}}{U_2} \rightarrow \frac{groß}{klein}$$

