Глава 4. Алгебраические структуры

4.1. Алгебраические операции и их свойства

Бинарные и п-местные алгебраические операции

Пусть A — непустое множество.

Определение 4.1. Отображение множества $A \times A$ в A называется бинарной алгебраической операцией на множестве A.

Примерами бинарных алгебраических операций являются обычное сложение и умножение на множестве целых чисел, объединение и пересечение на булеане непустого множества.

Определение 4.2. Отображение множества A^n в A называется n-арной (n-местной) алгебраической операцией на множестве A, а число n ($n \ge 1$) — рангом операции. Выделение (фиксация) некоторого элемента множества A называется нульарной (нульместной) операцией на множестве A, число 0 — рангом нульарной операции.

Определение 4.3. Частичная функция из множества A^n в A называется частичной n-арной алгебраической операцией на множестве A.

- **Пример 4.1.** 1. Пусть $A \neq \emptyset$. Отображение, ставящее в соответствие каждому подмножеству $X \in P(A)$ его дополнение \overline{X} , является унарной алгебраической операцией на P(A).
- 2. Операция деления рациональных чисел является частичной бинарной алгебраической операцией на множестве рациональных чисел.
- 3. Операция, ставящая в соответствие каждому кортежу натуральных чисел длины n наибольший общий делитель этих чисел, является n-арной алгебраической операцией на множестве N.

Для обозначения n-арной алгебраической операции используется та же форма записи, что и для произвольных отображений. Если f есть n-арная алгебраическая операция на множестве A и $((x_1, x_2, ..., x_n), x_{n+1}) \in f$, то пишут $x_{n+1} = f(x_1, x_2, ..., x_n)$ и говорят, что x_{n+1} является значением операции f при значениях аргументов $x_1, x_2, ..., x_n$.

Свойства бинарных алгебраических операций

Пусть * и \circ – произвольные бинарные алгебраические операции на непустом множестве A.

Определение 4.4. Бинарная алгебраическая операция * называется *коммутативной*, если $(\forall a, b \in A)$ a * b = b * a.

Определение 4.5. Бинарная алгебраическая операция * называется acco- *циативной*, если $(\forall a, b, c \in A)$ a*(b*c) = (a*b)*c.

Если операция * ассоциативна, то можно опускать скобки и писать a*b*c вместо a*(b*c) или (a*b)*c.

Определение 4.6. Бинарная алгебраическая операция \circ называется *дистрибутивной* относительно бинарной операции *, если $(\forall a, b, c \in A) (a * b) \circ c = (a \circ c) * (b \circ c)$ и $c \circ (a * b) = (c \circ a) * (c \circ b)$.

- **Пример 4.2.** 1. Сложение и умножение действительных чисел являются коммутативными и ассоциативными бинарными алгебраическими операциями. Умножение действительных чисел дистрибутивно относительно сложения, но сложение не дистрибутивно относительно умножения, так как условие $(\forall a, b, c \in A) \ a + b \cdot c = (a + b) \cdot (a + c)$ не выполняется.
- 2. Операции объединения и пересечения подмножеств непустого множества A коммутативны, ассоциативны и дистрибутивны относительно друг друга на булеане P(A).
- 3. Композиция функций есть ассоциативная бинарная алгебраическая операция. Композиция функций не коммутативна, так как условие $(\forall f, g) \ f \circ g = g \circ f$ не выполняется.

Нейтральные элементы

Пусть * – бинарная алгебраическая операция на непустом множестве A.

Определение 4.7. Элемент $e \in A$ называется *нейтральным* относительно операции *, если ($\forall a \in A$) a * e = e * a = a.

Теорема 4.1. Если нейтральный элемент относительно операции * существует, то он единственен.

Доказательство. Пусть e и e' — нейтральные элементы относительно операции *. Тогда e = e * e' = e', то есть e = e'.

- **Пример 4.3.** 1. Число 0 есть нейтральный элемент относительно сложения действительных чисел. Число 1 есть нейтральный элемент относительно умножения действительных чисел.
- 2. На булеане P(A) пустое множество является нейтральным элементом относительно объединения подмножеств непустого множества A, а P(A) нейтральным элементом относительно пересечения подмножеств.

Симметричные элементы

Пусть * есть бинарная алгебраическая операция на непустом множестве A и элемент $e \in A$ — нейтральный элемент относительно *.

Определение 4.8. Элемент $a' \in A$ называется *симметричным* к элементу $a \in A$ относительно операции *, если a * a' = a' * a = e. В этом случае элемент a называется *симметризуемым*, а элементы a и a' - взаимно симметричными.

Пример 4.4. 1. Любое целое число имеет симметричный к нему элемент относительно сложения – то же число, взятое со знаком минус.

2. Любое ненулевое действительное число a имеет симметричный к нему элемент $\frac{1}{a}$, число нуль не имеет симметричного элемента относительно умножения.

Теорема 4.2. Если операция * ассоциативна и элемент a симметризуем, то существует единственный элемент, симметричный к a.

Доказательство. Пусть a', a''есть элементы, симметричные к элементу a относительно *. Следовательно, a*a'=a'*a=e и a*a''=a''*a=e. Тогда в силу ассоциативности операции * получаем

$$a' = a' * e = a' * (a * a'') = (a' * a) * a'' = e * a'' = a''$$
, то есть $a' = a''$.

Подмножества, замкнутые относительно бинарной алгебраической операции

Пусть * – бинарная алгебраическая операция на непустом множестве A.

Определение 4.9. Подмножество B множества A называется замкнутым относительно операции *, если ($\forall a, b \in B$) $a * b \in B$.

Пустое множество замкнуто относительно любой операции *.

Пример 4.5. Сложение и вычитание являются бинарными алгебраическими операциями на множестве всех действительных чисел. Множество всех положительных действительных чисел замкнуто относительно сложения, но не замкнуто относительно вычитания.

Аддитивная и мультипликативная форма записи бинарной алгебраической операции

Для обозначения бинарной алгебраической операции * наиболее часто используются аддитивная и мультипликативная формы записи. При аддитивной форме записи операцию * называют *сложением*, а ее результат a*b-суммой a и b. При этом вместо a*b пишут a+b. Нейтральный элемент относительно сложения называют *нулевым* элементом (или *нулем*) и обозначают символом 0.

Элемент, симметричный к элементу a, называют npomusonoложным к элементу a и обозначают через -a.

При мультипликативной форме записи операцию * называют умножением, а ее результат a * b – произведением a и b. При этом вместо a * b пишут $a \cdot b$. Нейтральный элемент относительно умножения называют единичным элементом (или единицей) и обозначают символом 1. Элемент, симметричный к элементу a, называют обратным к элементу a и обозначают через a^{-1} .

4.2. Понятие алгебраической структуры

Определение 4.10. Алгебраической структурой (универсальной алгеброй или просто алгеброй) называется упорядоченная пара $\mathcal{A} = \langle A, \Sigma \rangle$, где A – непустое множество и Σ – множество алгебраических операций на A.

Таким образом, алгебра представляет собой непустое множество A вместе с заданной на нем совокупностью операций $\Sigma = \{f_1, ..., f_m, ...\}$, где $f_i \colon A^{n_i} \to A$ и n_i – ранг операции f_i . Множество A называется основным (несущим) множеством или основой (носителем) алгебры; упорядоченная последовательность рангов $(n_1, ..., n_m)$ называется типом алгебры; множество операций Σ называется сигнатурой алгебры.

Если < A, Σ > - алгебра, то также говорят, что множество A есть алгебра относительно операций Σ .

Наиболее частым является случай, когда сигнатура конечна. Если $\Sigma = \{f_1, ..., f_m\}$, то вместо записи $\mathcal{A} = \langle A, \{f_1, ..., f_m\} \rangle$ обычно употребляется запись $\mathcal{A} = \langle A, f_1, ..., f_m \rangle$.

Замечание 4.1. Для обозначения алгебры везде, где это необходимо, используется рукописная прописная буква латинского алфавита, а для обозначения ее носителя – соответствующая печатная прописная буква.

Определение 4.11. Алгебры $\mathcal{A} = \langle A, f_l, ..., f_m \rangle$ и $\mathcal{B} = \langle B, f_1', ..., f_m' \rangle$ называются *однотипными*, если их типы совпадают, то есть ранг операции f_i совпадает с рангом соответствующей ей операции f_i' для i = 1,..., m.

Пример 4.6. 1. Пусть + и · (сложение и умножение) - арифметические операции на множестве действительных чисел. Алгебра $< R, +, \cdot >$ является алгеброй типа (2, 2).

2. Пусть P(A) – булеан непустого множества A и \cup , \cap , $\bar{}$ – операции пересечения, объединения и дополнения над подмножествами множества A. Алгебра $\langle P(A), \cup, \cap, \bar{} \rangle$ является алгеброй типа (2, 2, 1).

Определение 4.12. Пусть алгебры $\mathcal{A} = \langle A, f_l, ..., f_m \rangle$ и $\mathcal{B} = \langle B, f_1', ..., f_m' \rangle$ – однотипные алгебры. Алгебра \mathcal{B} называется *подалгеброй* алгебры \mathcal{A} , если $\mathcal{B} \subseteq A$ и любая операция f_i' (i=1, ..., m) алгебры \mathcal{B} и соответствующая ей операция f_i алгебры \mathcal{A} удовлетворяют условию:

$$(\forall b_1, ..., b_{n_i} \in B) \ f_i'(b_1, ..., b_{n_i}) = f_i(b_1, ..., b_{n_i}),$$
 где n_i – ранг операций f_i' и f_i . (12)

Определение 4.13. Пусть $\mathcal{A} = \langle A, f_I, ..., f_m \rangle -$ алгебра и $B \subseteq A$. Подмножество B множества A называется *замкнутым в алгебре* \mathcal{A} , если B замкнуто относительно каждой операции f_i (i = 1, ..., m) алгебры \mathcal{A} , то есть выполняется условие: ($\forall b_1, ..., b_{n_i} \in B$) $f_i(b_1, ..., b_{n_i}) \in B$, где n_i – ранг операции f_i . (13)

Если f_i – нульарная операция, которая выделяет элемент $a \in A$, то условие (13) принимает вид $a \in B$.

Из определений 4.12 и 4.13 непосредственно вытекает следующая теорема.

Теорема 4.3. Пусть $\mathcal{A} = \langle A, f_I, ..., f_m \rangle$ – алгебра и B – непустое подмножество множества A, замкнутое в алгебре \mathcal{A} . Тогда алгебра $\mathcal{B} = \langle B, f_I, ..., f_m \rangle$ является подалгеброй алгебры \mathcal{A} .

Пример 4.7. Рассмотрим алгебру < N, +, $\cdot >$, где + и $\cdot -$ обычные операции сложения и умножения натуральных чисел. Пусть M - множество четных чисел, то есть $M = \{2k \mid k \in N\}$. Множество M замкнуто относительно операций сложения и умножения натуральных чисел. Действительно,

 $(\forall 2k_1, 2k_2 \in M) 2k_1 + 2k_2 = 2(k_1 + k_2) \in M$ и $2k_1 \cdot 2k_2 = 2(2k_1 \cdot k_2) \in M$, так как множество N замкнуто относительно сложения и умножения. Следовательно, по теореме 4.3 алгебра $< M, +, \cdot >$ является подалгеброй алгебры $< N, +, \cdot >$.

4.3. Алгебры с одной бинарной алгебраической операцией

Рассмотрим алгебры, наиболее часто используемые в теории и на практике.

Пусть A – непустое множество.

Определение 4.14. Алгебра $\mathcal{A} = \langle A, * \rangle$, где * – бинарная алгебраическая операция, называется группоидом.

Таким образом, группоид определяется непустым множеством A и правилом, по которому можно найти значение операции * для любых двух элементов из A.

Если множество A конечно, то эту информацию можно записать в виде таблицы.

Определение 4.15. Пусть на конечном множестве $A = \{a_1, ..., a_n\}$ определена бинарная операция *. Таблица, состоящая из n строк и n столбцов, в которой на пересечении i-й строки и j-го столбца располагается значение операции $a_i * a_i$, называется mаблицей Kэли:

*	a_1	a_2	 a_j	 a_n
a_1	a_1*a_1	a_1*a_2	 a_1*a_j	 a_1*a_n
a_2	a_2*a_1	a_2*a_2	 a_2*a_j	 a_2*a_n
:	:	8		 *
a_i	a_i*a_1	a_i*a_2	 a_i*a_j	 a_i*a_n
:	:	*	 :	 :
a_n	a_n*a_1	a_n*a_2	 a_n*a_j	 a_n*a_n

Замечание 4.2. Артур Кэли (1821 – 1895) – английский математик.

Замечание 4.3. 1. Если операция * коммутативна, то таблица Кэли симметрична относительно главной диагонали.

- 2. Если для некоторого $i \in \{1, 2, ..., n\}$ элемент a_i является нейтральным элементом относительно операции *, то соответствующие этому элементу i-я строка и i-й столбец таблицы Кэли имеют вид $(a_1, a_2, ..., a_n)$.
- 3. Пусть элемент a_i нейтральный элемент относительно операции *. Для элемента a_j существует симметричный к нему элемент относительно *, если в таблице Кэли среди элементов j-й строки и j-го столбца есть элемент a_i .

Определение 4.16. Алгебра $\mathcal{A} = \langle A, * \rangle$, где * – ассоциативная бинарная алгебраическая операция, называется *полугруппой*.

Пример 4.8. Алгебра < N, + > является полугруппой, так как бинарная операция + (обычная операция сложения натуральных чисел) ассоциативна.

Определение 4.17. Алгебра $\mathcal{A} = \langle A, * \rangle$, в которой * является ассоциативной бинарной алгебраической операцией и существует нейтральный элемент e относительно *, называется *моноидом*.

Другими словами, моноидом является полугруппа с нейтральным элементом.

Пример 4.9. Алгебра $< N, \cdot >$ образует моноид, так как бинарная операция умножения ассоциативна и натуральное число 1 является нейтральным элементом относительно умножения.

Определение 4.18. Алгебра $\mathcal{A} = \langle A, * \rangle$ называется *группой*, если выполняются условия (аксиомы):

- 1) * ассоциативная бинарная операция;
- 2) существует нейтральный элемент относительно *;

3) для каждого элемента $a \in A$ существует симметричный к нему элемент $a' \in A$ относительно операции *.

Таким образом, группа – это моноид, в котором каждый элемент симметризуем.

Определение 4.19. Полугруппа, моноид или группа называется *комму- тативной* (коммутативным) или *абелевой* (абелевым), если бинарная алгебраическая операция коммутативна.

Замечание 4.4. Нильс Абель (1802 – 1829) – норвежский математик.

Определение 4.20. Если носитель группы имеет конечную мощность, то группа называется *конечной*, а мощность ее носителя – *порядком* группы. В противном случае группа называется *бесконечной*.

Пример 4.10. Полугруппы < N, + > и < N, \cdot > не являются группами, так как в первой из них не существует нейтральный элемент относительно сложения, а во второй для любого элемента, за исключением числа 1, не существует симметричный к нему элемент.

Пример 4.11. Алгебра < Z, + > образует коммутативную аддитивную группу целых чисел. Действительно, бинарная алгебраическая операция сложения ассоциативна, число 0 есть нейтральный (нулевой) элемент, а симметричным (противоположным) к любому $z \in Z$ является число -z.

Пример 4.12. Алгебра $< R \setminus \{0\}$, $\cdot >$ есть коммутативная мультипликативная группа действительных чисел, так как бинарная алгебраическая операция умножения ассоциативна, нейтральным (единичным) элементом является число 1 и для всякого ненулевого действительного числа r существует симметричный (обратный) к нему элемент $\frac{1}{r}$.

Пример 4.13. Доказать, что множество $R \setminus \{1\}$ образует коммутативную группу относительно операции *, где $a * b = 2 \cdot (a-1) \cdot (b-1) + 1$.

Решение. Покажем, что $R \setminus \{1\}$ замкнуто относительно операции *, то есть $(\forall a, b \in R \setminus \{1\})$ $a * b \in R \setminus \{1\}$.

Действительно, $a*b=1 \Leftrightarrow 2\cdot (a-1)\cdot (b-1)+1=1 \Leftrightarrow \Leftrightarrow (a-1)\cdot (b-1)=0 \Leftrightarrow a=1\lor b=1$. Отсюда

 $(\forall a, b \in R) \ a \neq 1 \land b \neq 1 \Rightarrow a * b \neq 1$. Далее проверим выполнение аксиом группы.

1. Докажем, что операция * ассоциативна, то есть

$$(\forall \ a,b,c \in R \setminus \{1\}) \ (a*b)*c = a*(b*c).$$

Рассмотрим левую и правую части этого равенства:

$$(a*b)*c = (2 \cdot (a-1) \cdot (b-1) + 1)*c = 2 \cdot ((2 \cdot (a-1) \cdot (b-1) + 1) - 1) \cdot (c-1) + 1 + 1 = 4 \cdot (a-1) \cdot (b-1) \cdot (c-1) + 1,$$

$$a*(b*c) = a*(2 \cdot (b-1) \cdot (c-1) + 1) = 2 \cdot (a-1) \cdot ((2 \cdot (b-1) \cdot (c-1) + 1) - 1) + 1 = 4 \cdot (a-1) \cdot (b-1) \cdot (c-1) + 1.$$

Итак, первая аксиома группы выполняется. Легко видеть, что операция * коммутативна, то есть $(\forall a, b \in R \setminus \{1\})$ a * b = b * a.

2. Покажем, что существует нейтральный элемент относительно *, то есть

 $(\forall \ a \in R \setminus \{1\}) \ \exists \ e \in R \setminus \{1\}: \ a * e = e * a = a.$ Рассмотрим равенство $a * e = a \Leftrightarrow 2 \cdot (a - 1) \cdot (e - 1) + 1 = a.$ Выразим из этого равенства e: $2 \cdot (a - 1) \cdot (e - 1) - (a - 1) = 0 \Leftrightarrow (a - 1) \cdot (2e - 2 - 1) = 0 \Leftrightarrow (a - 1) \cdot (2e - 3) = 0 \Leftrightarrow \Leftrightarrow 2e - 3 = 0 \Leftrightarrow e = \frac{3}{2} \in R \setminus \{1\}.$ Следовательно, $e = \frac{3}{2}$ — нейтральный элемент относительно *. Заметим, что a * e = e * a, так как * коммутативна.

3. Докажем, что для каждого элемента из $R \setminus \{1\}$ существует симметричный к нему, то есть $(\forall \ a \in R \setminus \{1\}) \ \exists \ a' \in R \setminus \{1\}$: $a*a' = a'*a = \frac{3}{2}$. Имеем:

$$a*a'=\frac{3}{2} \Leftrightarrow 2\ (a-1)(a'-1)+1=\frac{3}{2} \Leftrightarrow (a-1)\cdot (a'-1)=\frac{1}{4} \Leftrightarrow a'-1=\frac{1}{4\cdot (a-1)} \Leftrightarrow$$

$$\Leftrightarrow a' = \frac{1}{4 \cdot (a-1)} + 1 = \frac{1+4a-4}{4 \cdot (a-1)} = \frac{4a-3}{4 \cdot (a-1)}$$
. Покажем, что $a' \neq 1$. Действитель-

но, в противном случае получаем

$$\frac{4a-3}{4\cdot(a-1)} = 1 \Leftrightarrow \frac{4a-3}{4\cdot(a-1)} - 1 = 0 \Leftrightarrow \frac{4a-3-4a+4}{4a-4} = 0 \Leftrightarrow 1 = 0.$$

Итак, для любого $a \in R \setminus \{1\}$ существует симметричный к нему элемент $a' = \frac{4a-3}{4\cdot (a-1)} \in R \setminus \{1\}$. Таким образом, алгебра $< R \setminus \{1\}$, * > есть коммутативная группа.

4.4. Алгебры с двумя бинарными алгебраическими операциями

Среди алгебр с двумя бинарными алгебраическими операциями особо выделяются кольца и поля.

Определение 4.21. Алгебра $\mathcal{A} = \langle A, +, \cdot \rangle$ называется *ассоциативным кольцом с единицей*, если выполняются следующие условия (аксиомы):

- 1) алгебра < A, +> есть коммутативная аддитивная группа;
- 2) алгебра $< A, \cdot >$ есть мультипликативный моноид;
- 3) умножение дистрибутивно относительно сложения, то есть $(\forall a,b,c \in A)(a+b) \cdot c = a \cdot c + b \cdot c$ и $c \cdot (a+b) = c \cdot a + c \cdot b$.

Замечание 4.5. В дальнейшем под словом «кольцо» будем подразумевать ассоциативное кольцо с единицей.

Элементы множества A называются элементами кольца $\mathcal{A} = \langle A, +, \cdot \rangle$.

Определение 4.22. Группа < A, +> называется аддитивной группой кольца $\mathcal{A} = < A, +, \cdot>$. Нейтральный элемент относительно сложения называется нулем кольца и обозначается через 0 или $0_{\mathcal{A}}$.

Определение 4.23. Моноид < A, $\cdot >$ называется *мультипликативным моноидом кольца* $\mathcal{A} = < A$, +, $\cdot >$. Нейтральный элемент относительно умножения называется *единицей кольца* \mathcal{A} и обозначается через 1 или 1_{\mathcal{A}}.

Определение 4.24. Кольцо называется коммутативным, если операция умножения коммутативна, т.е. $(\forall a, b \in A)$ $a \cdot b = b \cdot a$.

Пример 4.14. Алгебра $\langle Z, +, \cdot \rangle$ образует коммутативное кольцо целых чисел.

Определение 4.25. Полем называется коммутативное кольцо, в котором нуль кольца отличен от единицы кольца и для каждого ненулевого элемента существует обратный к нему относительно операции умножения.

Пример 4.15. Кольцо целых чисел $< Z, +, \cdot >$ полем не является, так как ни один ненулевой элемент, кроме 1, не обладает обратным к нему.

Пример 4.16. Множества Q, R и C образуют бесконечные поля относительно обычных операций сложения и умножения, которые соответственно называются полем рациональных чисел, полем действительных чисел и полем комплексных чисел.

Пример 4.17. Выяснить, образует ли алгебра
$$< \left\{ \begin{pmatrix} x & y \\ y & x \end{pmatrix} | x, y \in R \right\}, +, \cdot >$$

кольцо, поле?

Решение. Докажем сначала, что операции сложения и умножения матриц являются бинарными алгебраическими операциями на множестве

 $M = \left\{ \begin{pmatrix} x & y \\ y & x \end{pmatrix} | x, y \in R \right\}$. Для этого достаточно показать замкнутость множества Mотносительно этих операций.

$$\begin{pmatrix} \forall \begin{pmatrix} x_1 & y_1 \\ y_1 & x_1 \end{pmatrix}, \begin{pmatrix} x_2 & y_2 \\ y_2 & x_2 \end{pmatrix} \in M \end{pmatrix} \begin{pmatrix} x_1 & y_1 \\ y_1 & x_1 \end{pmatrix} + \begin{pmatrix} x_2 & y_2 \\ y_2 & x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 & y_1 + y_2 \\ y_1 + y_2 & x_1 + x_2 \end{pmatrix} \in M,$$

$$\begin{pmatrix} x_1 & y_1 \\ y_1 & x_1 \end{pmatrix} \cdot \begin{pmatrix} x_2 & y_2 \\ y_2 & x_2 \end{pmatrix} = \begin{pmatrix} x_1 \cdot x_2 + y_1 \cdot y_2 & x_1 \cdot y_2 + y_1 \cdot x_2 \\ y_1 \cdot x_2 + x_1 \cdot y_2 & y_1 \cdot y_2 + x_1 \cdot x_2 \end{pmatrix} \in M.$$

Следовательно, операции «+» и «·» – бинарные алгебраические операции на M.

Сложение произвольных матриц (если оно определено) коммутативно и ассоциативно. Значит, «+» коммутативно и ассоциативно на M. Очевидно, что

матрица
$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in M$$
 есть нейтральный элемент относительно «+», а $\begin{pmatrix} -x & -y \\ -y & -x \end{pmatrix} \in M$ — противоположный элемент для произвольной матрицы $\begin{pmatrix} x & y \\ y & x \end{pmatrix}$

из множества M. Следовательно, < M, + > - коммутативная группа.

Умножение произвольных матриц (если оно определено), а значит и матриц из множества M, является ассоциативной операцией. Пусть $\begin{pmatrix} x & y \\ y & x \end{pmatrix}$ – произ-

вольная матрица из множества
$$M$$
.
$$\begin{pmatrix} x & y \\ y & x \end{pmatrix} \cdot \begin{pmatrix} a & b \\ b & a \end{pmatrix} = \begin{pmatrix} x & y \\ y & x \end{pmatrix} \Leftrightarrow \begin{pmatrix} xa + yb & xb + ya \\ ya + xb & yb + xa \end{pmatrix} = \begin{pmatrix} x & y \\ y & x \end{pmatrix} \Leftrightarrow \begin{cases} xa + yb = x \\ ya + xb = y \end{cases} \Rightarrow$$

$$\Rightarrow b = \frac{y - ya}{x}$$
 при $x \neq 0$. Отсюда $xa + \frac{y^2 - y^2a}{x} = x$. Выполним преобразования:

$$x^2a + y^2 - y^2a = x^2 \iff y^2(1-a) = x^2(1-a) \iff 1-a = 0 \implies a = 1 \implies b = \frac{y-y}{x} = 0.$$

Если x=0, то $\begin{cases} yb=0 \\ ya=y \end{cases}$. Так как y – произвольное действительное число, то

и в этом случае получаем, что a=1 и b=0. Получили, что

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in M$$
 — нейтральный элемент относительно «·». Следовательно,

 $< M, \cdot > -$ моноид.

Известно, что умножение дистрибутивно относительно сложения для произвольных матриц (если операции имеют смысл), в частности, и для матриц из множества M.

Таким образом, алгебра $< M, +, \cdot > -$ кольцо.

$$\left(\forall \begin{pmatrix} x_1 & y_1 \\ y_1 & x_1 \end{pmatrix}, \begin{pmatrix} x_2 & y_2 \\ y_2 & x_2 \end{pmatrix} \in M \right) \begin{pmatrix} x_2 & y_2 \\ y_2 & x_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 & y_1 \\ y_1 & x_1 \end{pmatrix} = \begin{pmatrix} x_2 \cdot x_1 + y_2 \cdot y_1 & x_2 \cdot y_1 + y_2 \cdot x_1 \\ y_2 \cdot x_1 + x_2 \cdot y_1 & y_2 \cdot y_1 + x_2 \cdot x_1 \end{pmatrix} = \begin{pmatrix} x_1 & y_1 \\ y_1 & x_1 \end{pmatrix} \cdot \begin{pmatrix} x_2 & y_2 \\ y_2 & x_2 \end{pmatrix} .$$

Получили, что «·» – коммутативно. Следовательно, кольцо коммутативно. Нуль кольца отличен от единицы кольца: $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Выясним, для каждого ли ненулевого элемента из множества M существует обратный к нему. Легко видеть, что роль обратного элемента к матрице из M играет обратная к ней матрица.

$$\left(\forall \begin{pmatrix} x & y \\ y & x \end{pmatrix} \in M\right) \exists \begin{pmatrix} x & y \\ y & x \end{pmatrix}^{-1} \iff \begin{vmatrix} x & y \\ y & x \end{vmatrix} \neq 0 \iff x^2 - y^2 \neq 0 \iff x^2 \neq y^2 \iff x \neq \pm y.$$

Значит, множество M содержит ненулевые матрицы, например матрицу $\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$, для которых не существуют обратные к ним.

Итак, алгебра $< M, +, \cdot >$ образует коммутативное кольцо, но не является полем.

4.5. Конечные поля

Наряду с бесконечными полями, существуют конечные поля, называемые *полями Галуа* в честь французского математика Эвариста Галуа́ (1811 – 1832), который в возрасте около 20 лет создал основы современной алгебры и, в частности, открыл конечные поля. Конечные поля играют центральную роль в криптографии, в математических моделях микромира и др. Рассмотрим основные построения теории конечных полей Галуа.

Определим сначала бинарное отношение делимости на множестве Z.

Определение 4.26. Целое число *х делится* на целое число *у*, если существует $z \in Z$ такое, что $x = y \cdot z$. При этом пишут x : y и говорят, что «*х* делится на *у*», или «*х* кратно *y*», или «*у* делит *x*».

Предложение «у делит x» записывают также в виде $y \mid x$.

Далее рассмотрим еще одно бинарное отношение \equiv на множестве Z.

Определение 4.27. Целые числа x и y называются *сравнимыми по модулю* n ($n \in N$), если разность (x - y) делится на n.

Если целое число x сравнимо с целым числом y по модулю n, то пишут $x \equiv y \pmod{n}$.

Покажем, что отношение сравнимости по модулю n обладает свойствами рефлексивности, симметричности и транзитивности, то есть является отношением эквивалентности. Действительно:

- 1) ($\forall x \in \mathbb{Z}$) x x = 0 : $n \Rightarrow x \equiv x \pmod{n} \Rightarrow \equiv -$ рефлексивное отношение;
- 2) ($\forall x, y \in Z$) $x \equiv y \pmod{n} \Rightarrow y \equiv x \pmod{n}$, так как $(x y) \in n \Rightarrow y x = x \pmod{n}$
- = -(x y) **:** *n*. Следовательно, отношение ≡ симметрично.
- 3) ($\forall x, y, z \in Z$) $x \equiv y \pmod{n} \land y \equiv z \pmod{n} \Rightarrow x \equiv z \pmod{n}$, так как если $(x y) \vdots n \land (y z) \vdots n$, то $(x y) + (y z) = x z \vdots n$. Следовательно, отношение \equiv транзитивно.

По теореме 3.1 отношение эквивалентности \equiv определяет разбиение множества Z на классы эквивалентности, которые называются *классами вычетов по модулю п* и обладают следующими **свойствами**:

- 1) любые два класса вычетов по модулю n либо совпадают, либо не пересекаются. Объединение всех классов вычетов по модулю n совпадает с множеством Z;
- 2) пусть A и B классы вычетов по модулю n, $a \in A$ и $b \in B$. Классы A и B совпадают тогда и только тогда, когда $a \equiv b \pmod{n}$;
- 3) если A класс вычетов по модулю n и a произвольный элемент множества A, то $A = \{a + n \cdot k \mid k \in Z\}$.

Пример 4.18. Пусть A — класс вычетов по модулю 2, и целое число 5 является представителем этого класса. Тогда

$$A = \{5 + 2 \cdot k \mid k \in Z\} = \{\dots, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, \dots\}.$$

Выясним, какова мощность фактор-множества Z / \equiv , то есть сколько существует классов вычетов по модулю n.

Утверждение 4.1. Целые числа x и y сравнимы по модулю n тогда и только тогда, когда при делении на n они дают одинаковые остатки.

Существуют n различных остатков при делении целых чисел на n:

[0, 1, 2, ..., n-1]. Согласно утверждению 4.1 получаем, что |Z| = n.

Итак, множество целых чисел по отношению сравнимости по модулю n разбивается на n классов эквивалентности, которые обозначим следующим образом: $\bar{0}, \bar{1}, \dots, \overline{n-1}$. Фактор-множество Z/\equiv обозначим через Z_n .

Определение 4.28. Введем на множестве $Z_n = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$ бинарные операции сложения и умножения следующим образом: $\overline{x+y} = \overline{x+y}$ и $\overline{x} \cdot \overline{y} = \overline{x\cdot y}$.

Определение операций сложения и умножения на множестве Z_n корректно, так как если $x_1 \equiv x \pmod n$ и $y_1 \equiv y \pmod n$, то $x_1 + y_1 \equiv (x + y) \pmod n$ и $x_1 \cdot y_1 \equiv x \cdot y \pmod n$.

Алгебра $\mathcal{Z}_n = \langle Z_n, +, \cdot \rangle$ является коммутативным кольцом, которое называется кольцом вычетов по модулю n.

Пример 4.19. Рассмотрим кольцо $\mathcal{Z}_2 = \langle Z_2, +, \cdot \rangle$, где $Z_2 = \{\bar{0}; \bar{1}\}$. Приведем таблицы Кэли операций сложения и умножения в кольце \mathcal{Z}_2 , где для простоты вместо $\bar{0}$ и $\bar{1}$ будем писать 0 и 1:

+	0	1	*	0	1
0	0	1	0	0	0
1	1	0	1	0	1

Кольцо \mathbb{Z}_2 коммутативно, нулем кольца является класс вычетов $\overline{0}$, который отличен от единицы кольца — класса вычетов $\overline{1}$. Кроме того, единственный ненулевой элемент $\overline{1}$ кольца \mathbb{Z}_2 имеет обратный к нему — этот же класс $\overline{1}$, так как $\overline{1} \cdot \overline{1} = \overline{1}$. Следовательно, $\mathbb{Z}_2 = \langle Z_2, +, \cdot \rangle$ является полем. Оно имеет большое значение для приложений.

Следующая теорема говорит о том, что существует много конечных полей.

Теорема 4.4. Кольцо \mathcal{Z}_n является полем тогда и только тогда, когда n- простое число.

4.6. Булевы алгебры

Рассмотрим понятие булевой алгебры, имеющее большое число приложений в программировании и вычислительной технике. Оно возникло в трудах ирландского математика и логика Джорджа Буля (1815 – 1864) как аппарат символической логики.

Определение 4.29. Алгебра $\mathcal{A} = \langle A, \oplus, *, ^- \rangle$ типа (2, 2, 1) называется *булевой алгеброй*, если выполняются следующие условия (аксиомы):

А1. Существуют различные элементы $e_1, e_2 \in A$, являющиеся нейтральными относительно бинарных операций \oplus , * соответственно, то есть

$$(\forall \ a \in A) \ \exists \ e_1, \, e_2 \in A \colon a \oplus e_1 = e_1 \oplus a = a \land a \ast e_2 = e_2 \ast a = a.$$

А2. Операции ⊕, * ассоциативны, то есть

$$(\forall a,b,c \in A) (a \oplus b) \oplus c = a \oplus (b \oplus c) \land (a*b)*c = a*(b*c).$$

А3. Операции \oplus , * коммутативны, то есть $(\forall a, b \in A) \ a \oplus b = b \oplus a \land a * b = b * a$.

А4. Операции \oplus , * дистрибутивны относительно друг друга, то есть $(\forall a,b,c \in A) \ a \oplus (b*c) = (a \oplus b) * (a \oplus c) \land a * (b \oplus c) = (a*b) \oplus (a*c)$. **А5.** $(\forall a \in A) \exists \ a \in A : a \oplus \ a = e_2, \ a*a = e_1$.

Замечание 4.6. Аксиома А5 может побудить к ошибочному заключению о том, что элемент \overline{a} является симметричным к элементу a, однако это неверно. Если бы \overline{a} был симметричным элементом к a, то $a \oplus \overline{a} = e_1$ и $a * \overline{a} = e_2$. Сравнивая с аксиомой А5, заключаем, что \overline{a} не является симметричным элементом к a ни для одной из бинарных операций.

Бинарную операцию \oplus называют *сложением*, бинарную операцию * – *умножением*, элементы $a \oplus b$ и a * b – *суммой* и *произведением*, соответственно. Унарную операцию « » называют *дополнением*, а элемент a – *дополнением* κ элементу a.

Существует несколько альтернативных способов записи бинарных операций сложения и умножения:

\oplus	*
V	^
+	
C	\cap

Определение 4.30. Для любого выражения булевой алгебры *двойственным выражением* (или *дуализмом*) называется выражение, полученное из исходного, заменой \oplus на *, * на \oplus , e_1 на e_2 , e_2 на e_1 .

Заметим, что каждая из аксиом булевой алгебры — это пара аксиом. Внутри каждой пары каждая аксиома является двойственным выражением по отношению к другой.

Пример 4.20. Наиболее простой из булевых алгебр является алгебра $<\{0,1\},\lor,\land,$ >, в которой две бинарные операции \lor (дизъюнкция), \land (конъюнкция) и одна унарная операция (отрицание) задаются таблицами Кэли:

>	0	1
0	0	1
1	1	1

^	0	1
0	0	0
1	0	1

a	\overline{a}
0	1
1	0

Эта булева алгебра носит название *двоичной алгебры логики*. В ней роль операции сложения играет дизъюнкция, роль операции умножения – конъюнкция, роль операции дополнения – отрицание. Элемент 0 является нейтральным элементом относительно дизъюнкции, а элемент 1 – нейтральным элементом относительно конъюнкции.

Пример 4.21. Пусть A – непустое множество. Тогда < P(A), \cup , \cap , > есть булева алгебра, носящая название *алгебры множеств* (или *алгебры Кантора*). Носителем ее является булеан множества A, сигнатурой – операции объ

единения, пересечения подмножеств множества A, дополнения данного подмножества до множества A, играющих соответственно роли сложения, умножения и дополнения. Пустое множество является нейтральным элементом относительно объединения, а само множество A — нейтральным элементом относительно пересечения.

Свойства булевой алгебры

Утверждение 4.2 (принцип двойственности). Для любой теоремы булевой алгебры двойственная теорема также верна.

Теорема 4.5. Нейтральные элементы e_1 и e_2 относительно \oplus и * соответственно единственны.

Теорема 4.6. $(\forall a \in A) \exists ! \overline{a} \in A : a \oplus \overline{a} = e_2, \ a * \overline{a} = e_1.$

Замечание 4.7. Знак «!» означает слово «единственный».

Теорема 4.7 (закон идемпотентности).

$$(\forall a \in A) a \oplus a = a, \ a * a = a.$$

Теорема 4.8 (закон идентичности).

$$(\forall a \in A) \ a \oplus e_2 = e_2, \quad a * e_1 = e_1 * a = e_1.$$

Теорема 4.9 (закон абсорбции или поглощения).

$$(\forall a,b \in A)a \oplus (a*b) = a, \ a*(a \oplus b) = a.$$

Теорема 4.10 (закон инволюции).

$$(\forall a \in A) \overline{a} = a$$
.

Теорема 4.11 (законы де Моргана).

$$(\forall a, b \in A) \ \overline{a \oplus b} = \overline{a} * \overline{b}, \quad \overline{a * b} = \overline{a} \oplus \overline{b}.$$

Teopema 4.12.
$$\overline{e_1} = e_2$$
, $\overline{e_2} = e_1$.

Докажем, например, теорему 4.11, в частности, $\overline{a \oplus b} = \overline{a} * \overline{b}$.

Из аксиомы А5 следует, что для этого достаточно показать выполнение равенства $(a \oplus b) \oplus (\overline{a} * \overline{b}) = e_2$. Действительно, $(a \oplus b) \oplus (\overline{a} * \overline{b}) = ((a \oplus b) \oplus \overline{a}) * ((a \oplus b) \oplus \overline{b}) = (\overline{a} \oplus (a \oplus b)) * ((a \oplus b) \oplus \overline{b}) = ((\overline{a} \oplus a) \oplus b) * (a \oplus b) * (a \oplus b) * (a \oplus e_2) = e_2 * e_2 = e_2 \Rightarrow \overline{a \oplus b} = \overline{a} * \overline{b}$.

Второй закон де Моргана верен по принципу двойственности.

4.7. Гомоморфизмы алгебр

Пусть $\mathcal{A} = \langle A, f_I, ..., f_m \rangle$ и $\mathcal{B} = \langle B, f_1, ..., f_m \rangle$ – однотипные алгебры, то есть для любого $i \in \{1, ..., m\}$ операция f_i алгебры \mathcal{A} и соответствующая ей операция f_i алгебры \mathcal{B} имеют одинаковые ранги. Говорят, что отображение h носителя A в носитель B сохраняет операцию f_i алгебры \mathcal{A} , если

$$(\forall a_1,..., a_{n_i} \in A) \ h \ (f_i(a_1, ..., a_{n_i})) = f_i^{'}(h(a_1), ..., h(a_{n_i})),$$
 где n_i – ранг операции f_i .

Определение 4.31. *Гомоморфизмом* алгебры \mathcal{A} в (на) однотипную алгебру \mathcal{B} называют такое отображение h носителя A в (на) носитель B, которое сохраняет все операции алгебры \mathcal{A} , то есть для любой операции f_i (i=1,...,m) алгебры \mathcal{A} выполняется условие (*).

Определение 4.32. Гомоморфизм h алгебры \mathcal{A} в алгебру \mathcal{B} называется *мо-номорфизмом* (или *вложением*), если h является инъективным отображением носителя A в носитель B.

Определение 4.33. Гомоморфизм алгебры \mathcal{A} на алгебру \mathcal{B} называется эпиморфизмом.

Определение 4.34. Гомоморфизм h алгебры \mathcal{A} на алгебру \mathcal{B} называют *изоморфизмом*, если h есть инъективное отображение носителя A на носитель B.

Определение 4.35. Алгебры \mathcal{A} и \mathcal{B} называются *изоморфными*, если существует изоморфизм алгебры \mathcal{A} на алгебру \mathcal{B} . При этом пишут $\mathcal{A} \cong \mathcal{B}$.

Другими словами, отображение h является изоморфизмом алгебры $\mathcal A$ на алгебру $\mathcal B$, если h — биективное отображение носителя A на носитель B.

Определение 4.36. Гомоморфизм алгебры \mathcal{A} в себя называется эндоморфизмом.

Определение 4.37. Изоморфизм алгебры \mathcal{A} на себя называется *автоморфизмом*.

На рис. 4.1 представлена схема определения частного случая гомоморфизма.

Рис. 4.1

Пример 4.22. Дано отображение

 $h: \langle \{y = ax + b | a, b \in R, a \neq 0\}, \circ \rangle \rightarrow \langle R \setminus \{0\}, \cdot \rangle$, где $y = ax + b \mapsto a$.

Выяснить, является ли h гомоморфизмом. Если да, то какой частный случай гомоморфизма имеет место.

Решение. Пусть $A = \{y = ax + b | a, b \in R, a \neq 0\}$. Проверим, сохраняет ли hоперацию о, то есть выполняется ли условие:

$$(\forall a_1 x + b_1, a_2 x + b_2 \in A) h((a_1 x + b_1) \circ (a_2 x + b_2)) = h(a_1 x + b_1) \cdot h(a_2 x + b_2).$$

Преобразуя левую и правую части равенства, получим:

$$h((a_1x+b_1)\circ(a_2x+b_2))=h(a_1(a_2x+b_2)+b_1)=h((a_1a_2)x+(a_1b_2+b_1))=a_1a_2,$$
(15)

$$h(a_1x + b_1) \cdot h(a_2x + b_2) = a_1a_2. \tag{16}$$

Из (15) и (16) следует, что h – гомоморфизм алгебры $<\{y = ax + b \mid a, b \in R, a \neq 0\}, \circ > B$ алгебру $< R \setminus \{0\}, \cdot > .$

Далее выясним, является ли отображение h инъективным или сюръективным.

$$h$$
 – инъекция \Leftrightarrow $(\forall a_1x+b_1,a_2x+b_2\in A)h(a_1x+b_1)=$ $=h(a_2x+b_2)\Rightarrow a_1x+b_1=a_2x+b_2$.

Это условие не выполняется, так как для любых $b_1 \neq b_2$

 $h(a_1x+b_1) = h(a_2x+b_2)$. Следовательно, отображение h не является инъективным.

h – сюръекция \Leftrightarrow $Im h = R \setminus \{0\}$.

Имеем, $(\forall r \in R \setminus \{0\}) h^{-1}(r) = \{rx + b \mid b \in R\} \neq \emptyset$. Значит, h – сюръекция.

Таким образом, h – эпиморфизм алгебры $< \{ y = ax + b \mid a, b \in R, a \neq 0 \}, \circ >$ на алгебру $\langle R \setminus \{0\}, \rangle$ (см. рис. 4.1).

Пример 4.23. Дано отображение $h: < R, +> \to < R_+, \cdot>$, где $x \mapsto 3^x$ (R_+ множество положительных действительных чисел).

Pешение. Проверим, сохраняет ли h операцию +, то есть выполняется ли условие: $(\forall a, b \in R) h(a+b) = h(a) \cdot h(b)$.

Преобразуя левую и правую части равенства, получим:

$$h(a+b) = 3^{a+b}$$
, (17)

$$h(a) \cdot h(b) = 3^a \cdot 3^b = 3^{a+b}. \tag{18}$$

Из (17) и (18) следует, что h – гомоморфизм алгебры $\langle R, + \rangle$ в алгебру $\langle R_{\perp}, \cdot \rangle$.

Далее, $(\forall a,b \in R)$ $3^a = 3^b \Rightarrow a = b$. Следовательно, h – инъекция.

Имеем: $(\forall c \in R_+) h^{-1}(c) = \log_3 c$. Следовательно, h – сюръекция.

Значит, h является изоморфизмом алгебры < R, +> на алгебру $< R_{+}, \cdot>$.

4.8. Алгебраические системы. Решетки

На непустом множестве A, наряду с алгебраическими операциями, можно рассматривать и множество отношений.

Определение 4.38. Алгебраической системой называется упорядоченная пара $\mathcal{A} = \langle A, \Sigma \rangle$, где A – непустое множество и $\Sigma = \Omega \cup \Omega'$, Ω – множество алгебраических операций на A, Ω' – множество отношений на A.

Множество A называется *основным множеством* или *носителем* алгебраической системы, а множество операций и отношений Σ – *сигнатурой* алгебраической системы.

Если множество отношений Ω' пусто, то алгебраическая система $< A, \Sigma > = < A, \Omega >$ является алгеброй. Следовательно, *алгебры можно счи- тать частным случаем алгебраических систем*. Если множество алгебраических операций Ω пусто, то алгебраическая система $< A, \Sigma > = < A, \Omega' >$ называется *моделью*.

Рассмотрим пример алгебраической системы, который широко используется в математической информатике.

Определение 4.39. *Решеткой* называется алгебраическая система $\mathcal{A} = \langle A, \leq, \cup, \cap \rangle$, сигнатура которой состоит из одного бинарного отношения \leq частичного порядка и двух бинарных алгебраических операций \cup (объединения) и \cap (пересечения), где бинарные операции определяются следующим образом: $(\forall x, y \in A) \ x \cup y = sup\{x, y\}, x \cap y = inf\{x, y\}.$

Другими словами, решеткой является частично упорядоченное множество $< A, \le >$, в котором определены две бинарные алгебраические операции \cup и \cap по вышеуказанным правилам.

Замечание 4.8. Операции \cup и \cap здесь понимаются как абстрактные операции алгебраической системы и отличаются от теоретико-множественных операций объединения и пересечения, определенных в параграфе 1.3, хотя в частных случаях могут с ними совпадать (см. пример 4.24).

Замечание 4.9. Операции \cup и \cap коммутативны и ассоциативны.

Замечание 4.10. Если в алгебраической системе \mathcal{A} ведены операции \cup и \cap , то отношение \leq можно по этим операциям восстановить следующим образом: $x \leq y \Leftrightarrow x \cup y = y$ или $x \leq y \Leftrightarrow x \cap y = x$.

Наименьший элемент решетки (если он существует) называют *нулем* и обозначают через 0. Наибольший элемент решетки (если он существует) называют единицей и обозначают через 1. **В конечных решетках всегда имеются** 0 и 1.

Пример 4.24. Пусть A – непустое множество, а P(A) – его булеан. Алгебраическая система < P(A), \subseteq , \cup , \cap > является решеткой. Здесь \cup и \cap являются обычными теоретико-множественными операциями объединения и пересечения.

Диаграмма Хассе частично упорядоченного множества $A = \{1, 2, 3\}$ изображена на рис. 4.2. По диаграмме легко видеть, что в этом случае нулем решетки $\langle P(A), \subseteq, \cup, \cap \rangle$ является \emptyset , а единицей – само множество $A = \{1, 2, 3\}$.

Пример 4.25. Любое линейно упорядоченное мно-

Рис. 4.2

жество $< A, \le >$, в частности $< R, \le >$, является решеткой, если в нем определить операции \cup и \cap по правилам:

 $(\forall x, y \in A) \ x \cup y = max\{x, y\}, \ x \cap y = min\{x, y\}.$

Определение 4.40. Решетка $\mathcal{A} = \langle A, \leq \rangle$ называется *дистрибутивной*, если операции объединения и пересечения дистрибутивны относительно друг друга: $(\forall x, y, z \in A) \ x \cap (y \cup z) = (x \cap y) \cup (x \cap z), \ x \cup (y \cap z) = (x \cup y) \cap (x \cup z).$

Пример 4.26. Рассмотрим решетку, диаграмма Хассе которой изображена на рис. 4.3. Она не является дистрибутивной, так как $b \cap (d \cup c) = b \cap e = b$, тогда как $(b \cap d) \cup (b \cap c) = a \cup a = a$.

Пример 4.27. Решетка $< P(A), \subseteq, \cup, \cap >$ из примера 4.24 является дистрибутивной, так как обычные теоретикомножественные операции объединения и пересечения дистрибутивны относительно друг друга.

Рис. 4.3

Понятие булевой алгебры является частным случаем понятия решетки.

Определение 4.41. *Булевой алгеброй* называется дистрибутивная решетка $\mathcal{A} = \langle A, \leq, \cup, \cap \rangle$, в которой имеются различные нуль и единица и $(\forall x \in A) \exists x \in A : x \cup x = 1, x \cap x = 0$. При этом элемент x называется дополнением элемента x.

Пример 4.28. Решетка $< P(A), \subseteq, \cup, \cap >$ из примера 4.24 является булевой алгеброй, так как в ней имеются нуль \emptyset и единица $A, \emptyset \neq A$ и $(\forall X \in P(A)) \exists \overline{X} \in P(A): X \cup \overline{X} = A, X \cap \overline{X} = \emptyset$.