

L'enjeu de Stalingrad

Nous sommes en 1942. La guerre est à son apogée. Les troupes de l'armée allemande ont pris d'assaut la ville de Stalingrad, là où va se jouer le sort du monde. Vous êtes des ingénieurs affectés à la cellule de transmission et télécommunication du QG située au nord de la ville. Le général Georgi Joukov prend le commandement de la situation affecté par Staline. Plusieurs missions vous ont été déléguées. Chaque résultat de mission va être attribué à une section militaire. Pour cela, les résultats de chaque mission doivent être codés dans des fichiers sources séparés et doivent avoir des exécutables séparés. D'autre part, toutes les entrées et sorties des missions se feront par des fichiers texte. Des instructions et des éclaircissements vous seront communiqués dans ce document.

Mission 1: ***

L'équipe de surveillance prépare un appareil qui survolera la ville et enregistrera des photos et des vidéos. La capacité de quantification de la caméra utilisée est de **NB_Profondeur** (niveau de gris), de résolution **N** x M, et d'une fréquence de **FPS** images par seconde. Votre programme affiche en sortie (fichier texte) :

- Le nombre de bits nécessaires pour représenter une image
- La taille d'une image en niveau de gris (en Mo)
- La taille d'une image couleur (en Mo)
- La taille d'une séquence vidéo couleur si la durée est de **Durée** minutes (en Go).
- Si on applique une quantification sur **NB_Bit** sur une image qui possède **NB_Profondeur** valeurs, quelle sera la taille de l'intervalle ?

Architecture des fichiers entrés et sortis (les chiffres sont aléatoires et non représentatifs)

Equipe_x_mission1_out.txt		
Signification	Input	
Niveau de gris différents	126	
La résolution de l'image	200x150	
La fréquence de la vidéo	26	
Durée de la vidéo	5 minutes	
Limitation de quantification	4	
(en bits)		

Equipe_x_mission2_out.txt		
Signification	Output	
Nombre de bits pour	3	
représenter l'image (en bits)		
Taille de l'image en niveau	20,26	
de gris		
Taille de l'image couleur	60,78	
La taille de la vidéo	0,74	
Quantification intervalle	0-20	
	21-40	
	41-60	

1^{er} année Master ISII Multimédia - Projet

En résumé:

Equipe_x_mission1_in.txt	Equipe_x_mission1_out.txt
126	3
200x150	20,26
26	60,78
5 minutes	0,74
4	0-20
	21-40
	41-60

Les noms des fichiers .exe et .c sont : equipe_x_mission1.exe / equipe_x_mission1.c

Mission 2: ***

Une des troupes de défense utilise l'algorithme de compression « RLC ». Elle nous a envoyé un fichier compressé **Equipe_x_Mission2_in.txt**. Votre mission est d'afficher en clair le texte en entrée et de le sauvegarder dans un fichier **Equipe_x_Mission2_out.txt** pour qu'il soit envoyé à vos supérieures. Par ailler, vos supérieures vont leur répondre en utilisant le même algorithme de compression. Pour cela, ils vont écrire un texte en clair dans un fichier **Equipe_x_Mission2_rep_in.txt** et votre programme doit le compresser et l'écrire dans un fichier **Equipe_x_Mission2_rep_out.txt** qui sera donné à une patrouille relai pour le communiquer à destination. Pour justifier le bon taux de compression, afficher à la fin du fichier texte la taille initiale - la taille du fichier compressé (en octet).

NB: cette mission ne comporte pas des caractères nombre.

On peut trouver plusieurs lignes dans le fichier d'entrée, chaque ligne est traiter à part dans le fichier de sortie.

En résumé:

Equipe_x_mission2_in.txt	Equipe_x_mission2_out.txt
#4ABQ#4E#5F	AAAABQEEEEFFFFF

Equipe_x_mission2_rep_in.txt	Equipe_x_mission2_rep_out.txt
AAAABQEEEEFFFFF	#4ABQ#4E#5F
	12-11

Les noms des fichiers .exe et .c sont : equipe_x_mission2.exe / equipe_x_mission2.c

1^{er} année Master ISII Multimédia - Projet

Mission 3: ***

Une section de l'armement applique l'algorithme de Codage Topologique pour compresser les fichiers transmis. Le QG a reçu un fichier **Equipe_x_Mission3_in.txt** qui contient en 1ère ligne la lettre dominante et la 2éme ligne le code de la compression. L'objectif est d'afficher en clair le texte envoyé par cette section et l'écrire dans un fichier **Equipe_x_Mission3_out.txt**.

La réponse à cette section doit être faite par le même algorithme. Par conséquent, un fichier **Equipe_x_Mission3_rep_in.txt** contiendra la réponse des supérieures. Le résultat de la compression sera enregistré dans le fichier **Equipe_x_Mission3_rep_out.txt**. La 1ère ligne contiendra la lettre dominante extraite automatiquement depuis le texte d'entrée. La 2éme ligne contiendra le texte compressé.

On peut trouver plusieurs lignes dans le fichier d'entrée, chaque ligne est traiter à part dans le fichier de sortie.

En résumé:

Equipe_x_mission3_in.txt	Equipe_x_mission3_out.txt
В	BBCDB
11001+CD	

Equipe_x_mission3_rep_in.txt	Equipe_x_mission3_rep_out.txt
AACDB	A
	11000+CDB

Les noms des fichiers .exe et .c sont : equipe_x_mission3.exe / equipe_x_mission3.c

Université d'Alger 1 Faculté des sciences Département Maths-info

1^{er} année Master ISII Multimédia - Projet

Mission 4: *****

Afin de lancer une offensive capitale. Le QG doit envoyer des instructions importantes aux troupes situées dans les 1ères lignes. Ces instructions doivent être compressées par l'algorithme 'Huffman'. Le fichier d'entrée **Equipe_x_Mission4_in.txt** contient un texte en clair et le fichier de sortie **Equipe_x_Mission4_out.txt** contient en premier la longueur moyenne, puis chaque ligne un caractère et son code comme illustré dans l'exemple suivant :

Equipe_x_mission4_in.txt	Equipe_x_mission4_out.txt
Start the attack on the north side.	2,26
	a 001
	s 010
	S 011
	t 100
	r 101

Le point faible est codé avec la valeur 1 et le point fort avec la valeur 0.

La taille maximale du texte est de 200 caractères.

Les noms des fichiers .exe et .c sont : equipe_x_mission4.exe / equipe_x_mission4.c

Gestion des exceptions et erreurs :

Toutes les exceptions ou erreurs sont gérées comme suite :

Ecrire dans le fichier de sortie de la mission la chaine «Erreur : Type» (Type : un message explicite qui décrit l'erreur).

Exemples:

- Mission1 : si la 2^{ème} ligne = 200xa. Ecrire "Erreur : les dimensions de l'image doivent êtres en nombre".
- Mission1 : si la 4éme ligne du fichier d'entrée = ab minutes. Le fichier de sortie aura cette forme

Equipe_x_mission1_in.txt	Equipe_x_mission1_out.txt
126	3
200x150	20,26
26	60,78
ab minutes	Erreur : la durée doit être un nombre
4	0-20
	21-40
	41-60

• Mission 2: Si le fichier « Equipe_x_mission2_rep_in.txt » n'existe pas. Votre exécutable doit créer le fichier Equipe_x_mission2_rep_out.txt et écrire "Erreur : le fichier Equipe_x_mission2_rep_in.txt n'existe pas"

Il existe plusieurs types d'erreurs, votre programme doit gérer le maximum pour être le plus performant (Tous est écrit sur le fichier texte de sortie).

Université d'Alger 1 Faculté des sciences Département Maths-info

1^{er} année Master ISII Multimédia - Projet

Mission 5: $\star\star\star$

Un rapport résumant les missions de votre équipe doit être rédigé. Le rapport contiendra les sections suivantes :

- Page de garde
- Sommaire
- Liste des figures (si vous utilisez des figures)
- Liste des tableaux (si vous utilisez des tableaux)
- Liste des symboles (si vous utilisez des symboles)
- Introduction
- Membres de l'équipe (Photo d'identité, Matricule, Nom, Prénom, Groupe)
- Mission 1
- Mission 2
- Mission 3
- Mission 4
- Planning prévisionnel (estimation qui contient la planification de chaque tâche avec son responsable)
- Planning réel
- Conclusion
- Références

Directives:

- Tous les membres de l'équipe (trinôme) doivent appartenir au même groupe de TP.
- Les fichiers .c et .exe doivent être envoyés dans un fichier. Zip en respectant le nommage des fichiers par mail ". Toute mission ne respectant pas le format de nommage ne sera pas corrigée.
- Le fichier Word (Rapport) doit être envoyé avec le fichier. Zip.
- Le plagia est lourdement sanctionné.
- Chaque équipe recevra un grade suivant le nombre d'étoiles.

Université d'Alger 1 Faculté des sciences Département Maths-info

1^{er} année Master ISII Multimédia - Projet

Catégorie	Grade	Étoile
Officiers-généraux	Général de corps d'armée	16.5
	Général-Major	16
	Général	15
Officiers-supérieurs	Colonel	14
	Lieutenant-colonel	13
	Commandant	12
Officiers	Capitaine	11
	Lieutenant	10
	Sous-lieutenant	9
	Aspirant	8
	Élève-officier	7
Sous-officiers	Adjudant-chef	6
	Adjudant	5
	Sergent-chef	4
	Sergent	3
Hommes de troupe	Caporal-chef	2
	Caporal	1
	Soldat	0

NB: Le Projet est à remettre au plus tard le Samedi 26 janvier par mail « hamouchene.university@gmail.com »

- 1. Le mail contiendra des dossiers. Chaque dossier contient les fichiers de la mission .c et .exe.
- 2. Un dossier nommé 'Executable' qui contient tous vos .exe.
- 3. Tous les exécutables doivent fonctionnés avec les fichiers .text pour lire et écrire les données.
- 4. Le fonctionnement du programme, la qualité du code et l'optimisation de vos algorithmes seront pris en considération.
- 5. Un rapport est à envoyer.
- 6. Votre fichier zip au final contiendra
 - a. Mission1\equipe_x_mission1.exe
 - b. Mission1\equipe_x_mission1.c
 - c. Mission2\equipe_x_mission2.exe
 - d. Mission2\equipe_x_mission2.c
 - e. ...
 - f. Executble\equipe_x_mission1.exe
 - g. Executble\equipe_x_mission2.exe
 - h. ...
 - i. Equipe_x_Rapport.docx
- 7. Ce travail est en groupe et sera comptabilisé sûr votre note d'interrogation.
- 8. Tout plagia détecté sera pénalisé.