Ec. Exponențiale - Formule

I. De tipul $a^{f(x)} + a^{g(x)} = b$:

Se da factor comun $a^{k x}$

II. De tipul $a^{f(x)} = b$:

$$\Rightarrow f(x) = \log_a b$$

III. De tipul $A a^{2f(x)} + B a^{f(x)} + C = 0$:

Notam
$$a^{f(x)} = t$$
, $t > 0$

$$A t^2 + B t + C = 0$$

•••

IV. De tipul $A a^{2f(x)} + B (a b)^{f(x)} + C b^{2f(x)} = 0$:

Impartim cu $|:b^{2f(x)}|$

$$A\left(\frac{a}{h}\right)^{2f(x)} + B\left(\frac{a}{h}\right)^{f(x)} + C = 0$$

Notam
$$\left(\frac{a}{b}\right)^{f(x)} = t$$
, $t > 0$

...

V. De tipul $A\left(a+b\sqrt{d}\right)^{f(x)}+B\left(a-b\sqrt{d}\right)^{f(x)}=C$:

$$(a + b\sqrt{d})(a - b\sqrt{d}) = 1$$

Notam
$$(a+b\sqrt{d})^{f(x)}=t$$
 , $t>0$

$$=> \left(a - b\sqrt{d}\right)^{f(x)} = \frac{1}{t}$$

•••

VI. Ec. cu descompunere in factori

VII. De tipul $f(x)^{g(x)} = f(x)^{h(x)}$:

I.
$$g(x) = h(x), f(x) > 0$$

II.
$$f(x) = 1$$

III.
$$f(x) = 0$$
, $g(x) > 0$, $h(x) > 0$

IV.
$$f(x) = -1$$
, Cu verificare!!!

VIII. Ec. cu solutie unica:

- Verificam sa nu existe termini cu semn negativ (-)
- Aducem exponentialele la accelasi exponent
- Impartim cu cel mai mare $a^{f(x)}$
- Identificam solutia unica (x)

!!!
$$x^{2} + x + 1 = 0$$

 $=> x^{3} - 1 = (x - 1)(x^{2} + x + 1)$
 $=> x^{3} = 1$

$$\begin{cases} x^{0}, n \text{ de forma } 3k + 0 \\ x^{1}, n \text{ de forma } 3k + 1 \\ x^{2}, n \text{ de forma } 3k + 2 \end{cases}$$

Schema lui Horner : (pentru polinoamele cu grad ≥ 3)

$$ax^3 + bx^2 + cx + d = 0$$

Valorile lui	_	_	_	_	Trebuie sa
x cu care	x^3	x^3	x^3	x^3	dea 0
incercam					uea o
	а	l-	_	ا	
		b	С	a a	
x_1		а	$(x_1*a)+b$		

 $!!! e^x \ge x + 1 \quad \forall \, x \in \mathbb{R}$