МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Российский химико-технологический университет имени Д. И. Менделеева

Обыкновенные дифференциальные уравнения и системы (примеры и задачи)

Утверждено Редакционным советом университета в качестве учебного пособия

Москва 2013 УДК 517.91 (075) ББК 22.161.6 O-30

Авторы: Е. Г. Рудаковская, М. Ф. Рушайло, Т. В. Ригер, Т. В. Хлынова, М. С. Казанчян, А. Г. Ситин

Рецензенты:

Доктор физико-математических наук, профессор Российского химико-технологического университета им. Д. И. Менделеева

В. М. Аристов

Доктор технических наук, профессор Российского химико-технологического университета им. Д. И. Менделеева

Л. С. Гордеев

Обыкновенные дифференциальные уравнения и системы (примеры и O-30 задачи): учеб. пособие / Е. Г. Рудаковская, М. Ф. Рушайло, Т. В.

Ригер, Т. В. Хлынова, М. С. Казанчян, А. Г. Ситин; под ред. Е. Г. Рудаковской, М. Ф. Рушайло. – М. : РХТУ им. Д. И. Менделеева, 2013. – 116 с.

ISBN 978-5-7237-1118-1

Предложен цикл практических занятий по темам: дифференциальные уравнения первого, второго и *п*-го порядков, системы линейных дифференциальных уравнений. В каждой теме кратко приведен теоретический материал, разобраны примеры с решениями и предложены примеры для самостоятельного решения с ответами. Пособие может быть использовано на семинарских занятиях, а также для самостоятельной работы, при подготовке к контрольным работам, зачетам и экзаменам.

Предназначается для студентов всех специальностей, обучающихся в РХТУ имени Д. И. Менделеева, так как данный курс является необходимым элементом математического образования студентов технических специальностей, имеющим большое прикладное значение.

УДК 517.91 (075) ББК 22.161.6

ISBN 978-5-7237-1118-1

© Российский химико-технологический университет им. Д. И. Менделеева, 2013

Оглавление

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА 4
§1. Дифференциальные уравнения с разделяющимися переменными 4
§2. Однородные дифференциальные уравнения первого порядка10
§3. Линейные дифференциальные уравнения первого порядка. Уравнения
Бернулли
§4. Дифференциальные уравнения в полных дифференциалах. Уравнения с
интегрирующим множителем24
Глава 2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА 34
§1. Дифференциальные уравнения второго порядка, допускающие понижение
порядка
§2. Линейные дифференциальные уравнения второго порядка42
§3. Решение линейных неоднородных дифференциальных уравнений второго
порядка с постоянными коэффициентами47
$\S4$. Линейные дифференциальные уравнения n -го порядка с постоянными
коэффициентами63
Глава 3. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ СИСТЕМЫ n -го ПОРЯДКА С
ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ72
$\S1$. Линейные дифференциальные системы n -го порядка с постоянными
коэффициентами. Метод исключения
§2. Линейные однородные системы дифференциальных уравнений с
постоянными коэффициентами79
§3. Линейные неоднородные системы дифференциальных уравнений с
постоянными коэффициентами97

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

§1. Дифференциальные уравнения с разделяющимися переменными

1. Основные понятия

Определение 1. Уравнение, связывающее неизвестную функцию y(x), ее аргумент x и производную y'(x) или их дифференциалы dx и dy, называется дифференциальным уравнением первого порядка, т.е.

$$F(x; y(x); y'(x)) = 0 (1)$$

Если из этого уравнения можно выразить y'(x), то уравнение примет вид:

$$y'(x) = f(x; y),$$

при этом его называют уравнением, разрешенным относительно производной.

Определение 2. Решением дифференциального уравнения (1) называется любая дифференцируемая функция $y = \varphi(x)$, которая при ее подстановке в уравнение (1) обращает его в верное равенство. При этом, если она задана явно, то используют термин *решение*, а если неявно, то говорят *интеграл*. График решения называется интегральной кривой. Процесс нахождения решений дифференциального уравнения называется *интегрированием* этого уравнения.

Определение 3. Общим решением (или общим интегралом) дифференциального уравнения называется множество всех без исключения решений этого уравнения. Множество таких решений образуется с помощью произвольной постоянной c:

$$y = \varphi(x;c)$$
 — в явном виде — общее решение и $\Phi(x;y(x);c) = 0$ — в неявном виде — общий интеграл уравнения.

Определение 4. Частным решением, или частным интегралом дифференциального уравнения (1) называется функция $y = \varphi(x; c_0)$ или $\Phi(x; y; c_0) = 0$, полученная из общего решения или общего интеграла при определенном значении произвольной постоянной $c = c_0$.

Определение 5. Поиск частного решения дифференциального уравнения, удовлетворяющего дополнительному *начальному условию:*

$$y(x_0) = y_0,$$

где x_0 и y_0 – заданные числа, называется задачей Коши.

2. Дифференциальные уравнения с разделяющимися переменными

Определение 6. Дифференциальным уравнением с разделяющимися переменными называется уравнение вида:

$$y' = f(x) \cdot g(y) \tag{2}$$

или уравнение вида:

$$f_1(x)g_1(y)dy + f_2(x)g_2(y)dx = 0 (3)$$

Чтобы уравнения (2) и (3) можно было проинтегрировать, необходимо привести их к уравнениям с разделёнными переменными, т.е. при дифференциалах dx и dy должны быть множители, зависящие соответственно от x и от y.

Решим уравнение (2) в общем виде:

$$\frac{dy}{dx} = f(x) \cdot g(y) \mid dx$$

$$dy = f(x) \cdot g(y) dx \mid g(y) \neq 0$$

$$\frac{dy}{g(y)} = f(x) dx$$

$$\int \frac{dy}{g(y)} = \int f(x) dx$$

Пусть $\int \frac{dy}{g(y)} = G(y) + c_1$, а $\int f(x)dx = F(x) + c_2$, тогда выражение

 $G(y) + c_1 = F(x) + c_2$ или G(y) = F(x) + c, где $c = c_2 - c_1$, является интегралом уравнения (2). Остается проверить, что не потеряны решения при делении уравнения на выражения, зависящие от переменных. Решим уравнение g(y) = 0. Если оно имеет решение, являющееся и решением уравнения (2), то оно тоже будет присоединено к общему интегралу этого уравнения.

Решим уравнение (3) в общем виде:

$$f_{1}(x)g_{1}(y)dy + f_{2}(x)g_{2}(y)dx = 0 \quad |: f_{1}(x)g_{2}(y) \neq 0$$

$$\frac{g_{1}(y)}{g_{2}(y)}dy + \frac{f_{2}(x)}{f_{1}(x)}dx = 0 - \text{ уравнение с разделенными переменными}$$

$$\int \frac{g_{1}(y)}{g_{2}(y)}dy + \int \frac{f_{2}(x)}{f_{1}(x)}dx = 0$$

G(y) + F(x) = c — общий интеграл уравнения (3) К полученному интегралу могут быть добавлены решения уравнений: $f_1(x) = 0$

и $g_2(y) = 0$, если они являются для заданного уравнения решениями.

Некоторые дифференциальные уравнения можно привести к уравнениям с разделяющимися переменными. Например, уравнения вида:

$$y' = f(ax + by + k)$$
 или $M(ax + by + k) \cdot y' = P(ax + by + k)$,

где a,b и k – некоторые числа, приводят к виду (2) или (3) с помощью замены:

$$\begin{bmatrix} ax + by + k = z \\ z' = a + by' \end{bmatrix}$$

3. Примеры с решениями

Пример 1. Решить уравнение: $y' = \frac{ye^x}{1+e^x}$

Решение. Данное уравнение является уравнением с разделяющимися переменными вида (2), так как его можно переписать в виде:

$$y' = y \cdot \frac{e^x}{1 + e^x}$$
; $f(x) = \frac{e^x}{1 + e^x}$, $g(y) = y$.

Приведем его к уравнению с разделенными переменными:

$$\frac{dy}{dx} = y \cdot \frac{e^x}{1 + e^x} \cdot dx$$

$$dy = y \cdot \frac{e^x}{1 + e^x} \cdot dx \mid : y \neq 0$$

$$\frac{dy}{y} = \frac{e^x}{1 + e^x} dx$$

Теперь его можно интегрировать:

$$\int \frac{dy}{y} = \int \frac{e^x}{1 + e^x} dx$$
 1) $\int \frac{dy}{y} = \ln|y| + c_1; \ 2$) $\int \frac{e^x}{1 + e^x} dx = \int \frac{d(1 + e^x)}{1 + e^x} = \ln|1 + e^x| + c_2$ $\Rightarrow \ln|y| + c_1 = \ln|1 + e^x| + c_2,$ обозначим $c_2 - c_1 = \ln|c| \Rightarrow$ $\ln|y| = \ln|1 + e^x| + \ln|c| \Rightarrow y = c(1 + e^x)$

Получим общее решение уравнения.

Проверим, не потеряно ли решение y = 0?

Подставим в заданное уравнение y = 0, а тогда и y' = 0. Получим 0 = 0.

Значит, y = 0 – решение данного уравнения, но оно принадлежит полученному общему решению при c = 0.

Ombem: $y = c(1 + e^x)$.

Пример 2. Решить уравнение:

$$6xdx - 6ydy = 3x^2ydy - 2xy^2dx.$$

Pешение. Соберём слагаемые, содержащие dx и dy:

$$6xdx + 2xy^2dx = 3x^2ydy + 6ydy$$
$$2x(3+y^2)dx = 3y(x^2+2)dy \mid : (3+y^2)(x^2+2) \neq 0$$

Это уравнение вида (3), так как:

$$f_1(x) = x^2 + 2$$
, $g_1(y) = 3y$, $f_2(x) = 2x$, $g_2(x) = 3 + y^2$.

Разделим переменные:

$$\frac{2x}{x^2+2}dx = \frac{3y}{3+y^2}dy$$

Интегрируя, получаем:

$$\int \frac{2x}{x^2 + 2} dx = \int \frac{3y}{3 + y^2} dy \Rightarrow \int \frac{d(x^2 + 2)}{x^2 + 2} = \frac{3}{2} \int \frac{d(y^2 + 3)}{3 + y^2}$$

$$c_1 + \ln \left| x^2 + 2 \right| = \frac{3}{2} \ln \left| y^2 + 3 \right| + c_2.$$

$$\frac{1}{2} \ln \left| c \right| + \ln \left| x^2 + 2 \right| = \frac{3}{2} \ln \left| y^2 + 3 \right|, \text{ где } \frac{1}{2} \ln \left| c \right| = c_1 - c_2.$$

$$\ln \left| c \right| + 2 \ln \left| x^2 + 2 \right| = 3 \ln \left| y^2 + 3 \right|$$

$$c(x^2 + 2)^2 = (y^2 + 3)^3 - \text{ это общий интеграл уравнения.}$$

Так как уравнения $x^2 + 2 = 0$ и $y^2 + 3 = 0$ не имеют действительных решений, то при интегрировании уравнения не могли быть потеряны решения.

Omeem: $c(x^2 + 2)^2 = (y^2 + 3)^3$.

Пример 3. Решить задачу Коши:

$$(1+y^2)dx - xydy = 0$$
, $y(1) = 0$.

Решение. Уравнение $(1+y^2)dx - xydy = 0$ является уравнением с разделяющимися переменными вида (3), так как:

$$f_1(x) = -x$$
; $g_1(y) = y$; $f_2(x) = 1$; $g_2(y) = 1 + y^2$.

Разделим переменные, поделив уравнение на $x(1+y^2) \neq 0$:

$$\frac{dx}{x} = \frac{ydy}{1+y^2}$$

Интегрируя, получим:

$$\int \frac{dx}{x} = \int \frac{ydy}{1+y^2}$$

$$\ln|x| + c_1 = \frac{1}{2} \int \frac{d(1+y^2)}{1+y^2}$$

$$\ln|x| + c_1 = \frac{1}{2} \ln|1+y^2| + c_2.$$

Обозначим $c_1 - c_2 = \ln|c|$:

$$\ln|x| + \ln|c| = \frac{1}{2}\ln|1 + y^2|$$

$$cx = \sqrt{1 + y^2} - \text{общий интеграл уравнения.}$$

Используя начальное условие: y(1) = 0, получим частное решение

$$c \cdot 1 = \sqrt{1 + 0^2} \Rightarrow c = 1.$$

Значит, частное решение данного уравнения при заданном начальном условии имеет вид:

$$x = \sqrt{1 + y^2}$$

Omeem: $x = \sqrt{1 + y^2}$.

Пример 4. Решить уравнение:

$$y' = \cos(y - x).$$

Решение. Выполним замену: $y - x = z \Rightarrow z' = y' - 1 \Rightarrow y' = z' + 1$.

Тогда уравнение изменится:

$$z'+1=\cos z \Rightarrow z'=\cos z-1$$
.

Получилось уравнение с разделяющимися переменными вида (2), так как f(x) = 1; $g(z) = \cos z - 1$. Разделим переменные:

$$\frac{dz}{dx} = \cos z - 1 \Rightarrow dz = (\cos z - 1) dx \mid : (\cos z - 1) \neq 0 \Rightarrow \frac{dz}{\cos z - 1} = dx.$$

Интегрируя, получим:

$$\int \frac{dz}{\cos z - 1} = \int dx \Rightarrow \int \frac{dz}{-2\sin^2\frac{z}{2}} = \int dx \Rightarrow -\frac{1\cdot 2}{2} \int \frac{d\left(\frac{z}{2}\right)}{\sin^2\frac{z}{2}} = x + c_2 \Rightarrow ctg\frac{z}{2} + c_1 = x + c_2.$$

Обозначим $c_2 - c_1 = c$, тогда $ctg \frac{z}{2} = x + c$.

Так как z = y - x, то общим интегралом будет: $\cos \frac{y - x}{2} = x + c$.

Решим уравнение $\cos z - 1 = 0 \Rightarrow \cos z = 1 \Rightarrow z = 2\pi k, k \in \mathbb{Z}$. Тогда z' = 0.

Подставим в заданное уравнение и получим тождество: 0+1=1. Значит, $z=2\pi\cdot k$ или $y-x=2\pi\cdot k$ — решение для данного уравнения, но не входит в общий интеграл.

Omeem:
$$\cos \frac{y-x}{2} = x + c; y - x = 2\pi \cdot k, k \in \mathbb{Z}$$
.

4. Примеры

Решить уравнения или задачи Коши:

- 1. $tgx \cdot \sin^2 y dx + \cos^2 x \cdot ctgy dy = 0$;
- 2. $2x \cdot x' = \pi^y \ln \pi$;
- 3. $3y' \ln x + \frac{y^4}{x} = 0, y(e^e) = 1;$
- 4. $y-xy'=2(1+x^2y')$;

5.
$$(1+e^x)yy'=e^x$$
, $y(0)=1$;

6.
$$3e^x tgy dx = \frac{e^x - 1}{\cos^2 y} dy;$$

7.
$$3(y^2+4)\sqrt{\arccos x} = 2y'\sqrt{1-x^2}$$
;

8.
$$4y^3 \sin^2 x dy + dx = 0$$
;

9.
$$\arccos \frac{1}{x} dx = \ln(y + \sqrt{y^2 + 1}) dy, x(0) = 1;$$

10.
$$2e^{2y}y'ctge^{2y}\sqrt{4-x^2}=1$$
, $y(0)=\ln\sqrt{\frac{\pi}{2}}$;

11.
$$y'(3y^2 + 2y + 1) = 3\sqrt{5 - 2x}$$
;

12.
$$\frac{2 + \ln^2 y}{y(1 + \ln^2 y)} \sqrt{\sin x} = x' \cos x;$$

13.
$$xy' = y \ln 7 y$$
;

14.
$$(y^2-1)dx = 2\sqrt{x^2-4}dy$$
;

15.
$$3y^2y' + 16x = 2xy^3$$
, $y(x)$ – ограничено при $x \to +\infty$;

16.
$$(2x+3y-1)dx+(4x+6y-5)dy=0$$
;

17.
$$y' = (x + y)^2$$
;

18.
$$y' = tg^2(x + y), y(0) = 0;$$

19.
$$y' = \sin^2(1 - x + 2y)$$
;

20.
$$y' = y + 2x + 1$$
, $y(0) = 4$;

5. Ответы

1.
$$ctg^2y = tg^2x + c$$
;

2.
$$y = \log_{\pi}(x^2 + c)$$
;

3.
$$y^* = \frac{1}{\sqrt[3]{\ln|\ln x|}};$$

4.
$$y = \frac{2+cx}{1+2x}, y \equiv 2;$$

5.
$$x^* = \ln \left(2e^{\frac{y^2 - 1}{2}} - 1 \right);$$

6.
$$tgy = c \cdot (1 - e^x)^3, x \equiv 0;$$

7.
$$2\sqrt{\arccos^3 x} + arctg \frac{y}{2} = c, x \equiv 1;$$

8.
$$y^4 = ctgx + c, x \equiv \pi n, n \in \mathbb{Z};$$

9.
$$x \arccos \frac{1}{x} - \ln |x + \sqrt{x^2 - 1}| = y \ln(y + \sqrt{y^2 + 1}) - \sqrt{y^2 + 1} + 1;$$

10.
$$x^* = 2\sin(\ln|\sin e^{2y}|);$$

11.
$$y^3 + y^2 + y + \sqrt{(5-2x)^3} = c$$
;

12.
$$arctg(\ln y) + \ln y = 2\sqrt{\sin x} + c, x \equiv \pi n, n \in \mathbb{Z};$$

13.
$$y = \frac{1}{7}e^{cx}$$
;

14.
$$\frac{1+c(x+\sqrt{x^2-4})}{1-c(x+\sqrt{x^2-4})}$$
, $x = \pm 2$, $y = -1$; 19. $tg\left(1-x+2y+\frac{\pi}{4}\right) = ce^{-2x}$;

15.
$$y = 2$$

16.
$$x + 2y + 3\ln|2x + 3y - 7| = c$$
;

17.
$$y = tg(x+c) - x;$$

18.
$$2y^* + \sin(2x + 2y^*) = 2x$$
;

19.
$$tg\left(1-x+2y+\frac{\pi}{4}\right)=ce^{-2x}$$
;

20.
$$y^* = 7e^x - 2x - 3$$
.

Однородные дифференциальные уравнения **§2.** первого порядка

1. Однородное уравнение первого порядка: определение и метод его решения

Определение 1. Уравнение первого порядка вида y' = f(x; y) называется однородным, если его правая часть f(x; y) является однородной функцией нулевого измерения, при любом $\alpha \neq 0$ т.е. справедливо равенство: $f(\alpha x; \alpha y) = f(x; y).$

Замечание 1. Уравнение $y' = f\left(\frac{y}{x}\right)$ является однородным, так как функция $f\left(\frac{y}{x}\right) = f\left(\frac{\alpha y}{\alpha x}\right)$ удовлетворяет определению однородности нулевого измерения.

Определение 2. Уравнение вида

$$M(x; y)dx + N(x; y)dy = 0$$

называется однородным, если M(x; y) и N(x; y) – однородные функции *одного* измерения однородности, т.е. $M(\alpha x; \alpha y) = \alpha^m M(x; y)$ и $N(\alpha x; \alpha y) = \alpha^m N(x; y)$.

Метод решения однородного уравнения

уравнение приводится к уравнению разделяющимися переменными с помощью замены функции y(x) по формуле: $y = z \cdot x$,

где z = z(x) – новая функция, относительно которой и получится уравнение с разделяющимися переменными.

Решение однородного уравнения $y' = f\left(\frac{y}{x}\right)$ в общем виде

После замены получается уравнение:

$$z'x + z = f(z),$$

$$z'x = f(z) - z$$

$$\frac{dz}{dx} \cdot x = f(z) - z \mid dx$$

$$dz \cdot x = (f(z) - z)dx \mid x(f(z) - z) \neq 0$$

Разделим переменные и проинтегрируем полученное равенство:

$$\frac{dz}{f(z)-z} = \frac{dx}{x}$$

$$\int \frac{dz}{f(z)-z} = \int \frac{dx}{x}$$

$$F(z) = \ln|x| + c, \text{ где } F(z) = \int \frac{dz}{f(z)-z}$$

Выполнив обратную замену:

$$z = \frac{y}{x}$$

получим общий интеграл данного уравнения:

$$F\left(\frac{y}{x}\right) = \ln\left|x\right| + c.$$

Далее необходимо проверить, не потеряны ли решения. Если уравнение f(z)-z=0 имеет решения $z=z_i$, то $y=z_ix, x\neq 0$ -решения уравнения $y'=f\left(\frac{y}{x}\right)$, хотя при f(z)=z данное уравнение принимает вид: $\frac{dy}{dx}=\frac{y}{x}$ - уравнение с разделяющимися переменными, решение которого не составит большого труда.

Дифференциальные уравнения, приводящиеся к однородным

1) Уравнение
$$y' = f\left(\frac{\alpha_1 x + \beta_1 y + \gamma_1}{\alpha_2 x + \beta_2 y + \gamma_2}\right)$$
 приводится к однородному.

Для этого выполним замену:

$$\begin{bmatrix} u = y - y_0 \\ t = x - x_0 \end{bmatrix} \Rightarrow \frac{du}{dt} = \frac{dy}{dx} , \text{ где } (x_0; y_0) \text{ решение системы :}$$

$$\begin{cases} \alpha_1 x + \beta_1 y + \gamma_1 = 0 \\ \alpha_2 x + \beta_2 y + \gamma_2 = 0 \end{cases} \text{ если } \Delta = \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} \neq 0.$$

После такой замены получается однородное уравнение относительно неизвестной функции u = u(t), в котором, выполняя замену: $u = z \cdot t$, получается уравнение с разделяющимися переменными.

Если же $\Delta = \begin{vmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{vmatrix} = 0$, то после замены: $u = \alpha_1 x + \beta_1 y$ исходное уравнение

превращается в уравнение с разделяющимися переменными.

2) Некоторые ДУ возможно привести к однородным для новой, пока неизвестной функции u = u(x), если применить замену вида:

$$y = u^m \Rightarrow y' = mu^{m-1} \cdot u'.$$

При этом число m подбирается из условия, чтобы полученное уравнение, если это возможно, стало однородным. Однако если это сделать невозможно, значит рассматриваемое ДУ привести к однородному таким способом нельзя.

2. Примеры с решениями

Пример 1. Решить уравнение:

$$y' = \frac{y}{x} + e^{-\frac{y}{x}}.$$

Решение. Данное уравнение имеет вид

$$y'=f\left(rac{y}{x}
ight)$$
 - однородное. Выполним замену:
$$\left[y=z\cdot x\Rightarrow y'=z'x+z\right]$$

$$z'x+z=\frac{zx}{x}+e^{-\frac{zx}{x}}\Rightarrow z'x=e^{-z}\Rightarrow \frac{dz}{dx}\cdot x=e^{-z}\mid \cdot dx$$

$$dz\cdot x=e^{-z}dx\mid : x(e^{-z})\neq 0\Rightarrow e^{z}dz=\frac{dx}{x}\Rightarrow \int e^{z}dz=\int \frac{dx}{x}$$

$$e^{z}=\ln\left|x\right|+c, \text{ где }z=\frac{y}{x}\Rightarrow e^{\frac{y}{x}}=\ln\left|x\right|+c\Rightarrow \frac{y}{x}=\ln(\ln\left|x\right|+c)$$

$$y=x\ln(\ln\left|x\right|+c)-\text{общее решение уравнения.}$$

При разделении переменных и делении на xe^z могло быть потеряно решение x = 0. Однако функция x = 0 не является решением данного уравнения.

Omeem: $y = x \ln(\ln|x| + c)$

Пример 2. Решить уравнение:

$$xdy = (x + y)dx$$

Решение. Проверим, что функции M(x; y) = (x + y) и N(x; y) = x являются однородными функциями m = 1 измерения.

$$M(\alpha x; \alpha y) = \alpha x + \alpha y = \alpha(x + y) = \alpha \cdot M(x; y); N(\alpha x; \alpha y) = \alpha x = \alpha \cdot N(x; y).$$

Следовательно, уравнение является однородным.

Выполним замену:

$$\begin{bmatrix} y = u \cdot x \\ dy = xdu + udx \end{bmatrix}$$

Тогда получим уравнение с разделяющимися переменными:

$$x(xdu + udx) = (x + ux)dx$$

$$x^{2}du + uxdx = xdx + xudx$$

$$x^{2}du = xdx \mid : x \neq 0$$

$$xdu = dx$$

Разделим переменные:

$$du = \frac{dx}{x}$$

$$\int du = \int \frac{dx}{x}$$

$$u = \ln|x| + c, \text{ где } u = \frac{y}{x}$$

$$\frac{y}{x} = \ln|x| + c$$

$$y = x \ln|x| + cx - \text{общее решение уравнения}$$

Прямой подстановкой в заданное уравнение убедимся, что x = 0 является его решением, но оно было потеряно при делении уравнения на x.

Omeem: $y = x \ln |x| + cx$; $x \equiv 0$.

Пример 3. Решить задачу Коши:

$$y' = \left(\frac{2x+y-1}{x+2y+1}\right); x(1) = 1.$$

Решение. Покажем, что уравнение приводится к однородному уравнению. Решим систему уравнений:

$$\begin{cases} 2x + y - 1 = 0 \\ x + 2y + 1 = 0 \end{cases} \Delta = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3;$$
$$\Delta_1 = \begin{vmatrix} 1 & 1 \\ -1 & 2 \end{vmatrix} = 3; \ \Delta_2 = \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -3;$$

По правилу Крамера:

$$x_0 = \frac{\Delta_1}{\Delta} = \frac{3}{3} = 1$$
; $y_0 = \frac{\Delta_2}{\Delta} = -1$.

Сделаем замену:

$$\begin{cases} u = y - y_0 = y + 1 \\ t = x - x_0 = x - 1 \end{cases} \Rightarrow \begin{cases} y = u - 1 \\ x = t + 1 \end{cases} \Rightarrow \frac{dy}{dx} = \frac{du}{dt} \Rightarrow$$

$$u' = \frac{2t + 2 + u - 1 - 1}{t + 1 + 2u - 2 + 1} \Rightarrow u' = \frac{2t + u}{t + 2u} - \text{однородное уравнение}.$$

Замена:

$$\begin{bmatrix} u = z \cdot t \\ u' = z't + z \end{bmatrix} \Rightarrow z't + z = \frac{2t + zt}{t + 2zt} \Rightarrow z't = \frac{2 + z}{1 + 2z} - z$$

$$z't = \frac{2 + z - z - 2z^{2}}{1 + 2z} \Rightarrow z't = \frac{2(1 - z^{2})}{1 + 2z} \Rightarrow \frac{dz}{dt} \cdot t = \frac{2(1 - z^{2})}{1 + 2z}$$

$$\frac{(1 + 2z)dz}{z^{2} - 1} = -\frac{2dt}{t}$$

$$\begin{bmatrix} \frac{1 + 2z}{z^{2} - 1} = \frac{A}{z - 1} + \frac{B}{z + 1} = \frac{Az + A + Bz - B}{(z - 1)(z + 1)} = \frac{3}{2(z - 1)} + \frac{1}{2(z + 1)} \end{bmatrix}$$

$$\begin{cases} A + B = 2 \\ A - B = 1 \end{cases}; A = \frac{3}{2}, B = \frac{1}{2}$$

$$\frac{3}{2} \int \frac{dz}{z - 1} + \frac{1}{2} \int \frac{dz}{z + 1} = -\int \frac{2dt}{t}$$

$$\frac{3}{2} \ln|z - 1| + \frac{1}{2} \ln|z + 1| = -2 \ln|t| + \frac{1}{2} \ln|C| : \frac{1}{2}$$

$$(z - 1)^{3} \cdot (z + 1) = \frac{c}{t^{4}} \Rightarrow \left(\frac{u}{t} - 1\right)^{3} \left(\frac{u}{t} + 1\right) = \frac{c}{t^{4}} \Rightarrow \frac{(u - t)^{3}(u + t)}{t^{4}} = \frac{c}{t^{4}}$$

$$(u - t)^{3}(u + t) = c \Rightarrow (y + 1 - x + 1)^{3} \cdot (y + 1 + x - 1) = c.$$

 $(y-x+2)^3 \cdot (y+x) = c$ – общий интеграл данного уравнения

При разделении переменных могли быть потеряны решения при делении на z^2-1 . Решим уравнение $z^2-1=0 \Rightarrow z^2=1 \Rightarrow z=\pm 1$.

$$\frac{u}{t} = \pm 1, \frac{y+1}{x-1} = \pm 1 \Longrightarrow \begin{bmatrix} y = x - 2 \\ y = -x \end{bmatrix}$$

Однако эти функции входят в общий интеграл данного уравнения, при c = 0. решение задачи Коши, используя начальное условие v(1) = 1. Подставим в общий интеграл значения x = 1 и y = 1:

$$(1-1+2)^3(1+1) = c \Rightarrow c = 16$$

Таким образом частный интеграл данного уравнения, удовлетворяющий начальным условиям y(1) = 1, будет задаваться формулой:

$$(y-x+2)^3(y+x)=16$$

Omsem: $(y-x+2)^3(y+x)=16$

Пример 4. Решить уравнение:

$$2xdy + (x^2y^4 + 1)ydx = 0.$$

Решение. Покажем, что это уравнение приводится к однородному с помощью подстановки $y = u^m$ и далее интегрируется с использованием замены

$$z = \frac{u}{x}$$
:

$$2xy' + x^2y^5 + y = 0 \Rightarrow 2mxu^{m-1}u' + x^2u^{5m} + u^m = 0.$$

Полученное уравнение будет однородным, если показатели степеней при x и y равны между собой, то есть:

$$1+m-1=2+5m=m \Leftrightarrow 2=-4m \Leftrightarrow m=-\frac{1}{2}$$

Выполним подстановку:

$$\begin{bmatrix} y = u^{-\frac{1}{2}} = \frac{1}{\sqrt{u}} \\ y' = -\frac{1}{2}u^{-\frac{3}{2}} \cdot u' \\ u = y^{-2} = \frac{1}{y^2} \end{bmatrix}$$

$$2x\left(-\frac{1}{2}\right)u^{-\frac{3}{2}}u' + x^2u^{-\frac{5}{2}} + u^{-\frac{1}{2}} = 0 \Leftrightarrow u^{-\frac{5}{2}}(xuu' - x^2 - u^2) = 0$$

$$xuu' = x^2 + u^2 \Leftrightarrow \frac{u}{x}u' = 1 + \left(\frac{u}{x}\right)^2$$

Получилось однородное уравнение. Сделаем замену:

$$\begin{bmatrix} z = \frac{u}{x} \\ u = zx \\ u' = z + xz' \end{bmatrix} \Rightarrow z(z + xz') = 1 + z^2 \Leftrightarrow zx \frac{dz}{dx} = 1 \Rightarrow \int 2z dz = 2 \int \frac{dx}{x}$$

$$z^{2} = 2\ln|x| + \ln|c| \Leftrightarrow z^{2} = \ln|cx^{2}| \Rightarrow u^{2} = x^{2}\ln|cx^{2}| \Rightarrow x^{2}y^{4}\ln|cx^{2}| = 1$$

Получим общий интеграл данного уравнения. Однако заметим, что при разделении переменных было потеряно решение исходного уравнения $x \equiv 0$, которое надо добавить в ответ. Также было потеряно решение $y \equiv 0$.

Omeem:
$$x^2 y^4 \ln |cx^2| = 1, x \equiv 0, y \equiv 0.$$

3. Примеры

Решить уравнения или задачи Коши

1.
$$y' = -\frac{x+y}{x}$$
, $y(2) = 0$;

2.
$$(x-y)ydx - x^2dy = 0$$
;

3.
$$(x^2 + y^2)dx - 2xydy = 0$$
,

a)
$$x(0) = 4$$
, b) $y(1) = 1$;

4.
$$ydx + (2\sqrt{xy} - x)dy = 0;$$

$$5. \quad xdy - ydx = \sqrt{x^2 + y^2} dx;$$

6.
$$y' = \left(\frac{y}{x}\right)^2 + \frac{y}{x} + 1;$$

7.
$$(x^2-3y^2)dx + 2xydy = 0$$
, $y(2) = 1$;

8.
$$2x^3y' = y(2x^2 - y^2)$$
;

9.
$$xy' - y = (x + y) \ln \frac{x + y}{x}$$
;

10.
$$y' = \frac{y}{x} + \cos^2\left(\frac{y}{x}\right)$$
;

4. Ответы

1.
$$y^* = \frac{2}{x} - \frac{x}{2}$$

$$2. \quad y = \frac{x}{\ln|cx|};$$

3.
$$a)(x-2)^2-(y^*)^2=4, b)y^*=\pm x;$$

$$4. \quad x = y \ln^2 |cy|;$$

5.
$$y = \frac{c}{2}x^2 - \frac{1}{2c}, x \equiv 0;$$

6.
$$arctg \frac{y}{x} = \ln|x| + c;$$

7.
$$y^* = x\sqrt{1 - \frac{3x}{8}}$$
;

8.
$$x^2 = y^2 \ln|cx|, y \equiv 0;$$

9.
$$y = x(e^{cx} - 1)$$
;

11.
$$y' = \left(\frac{y}{x}\right)^2 + \frac{2y}{x};$$

12.
$$(2x-y+4)dy-(x-2y+5)dx=0$$
;

13.
$$y' = \frac{1 - 3x - 3y}{1 + x + y}$$
;

14.
$$y' = \frac{1+x+2y}{3+2x+4y}$$
;

15.
$$(y'+1)\ln\frac{y+x}{x+3} = \frac{y+x}{x+3}$$
;

16.
$$y' = \frac{y+2}{x+1} + tg \frac{y-2x}{x+1}$$
;

17.
$$x^3(y'-x)=y^2$$

18.
$$ydx + x(2xy+1)dy = 0$$
;

19.
$$2xy' + y = y^2 \sqrt{x - x^2 y^2}$$
;

20.
$$xyy' = x^4 + 2y^2$$
.

10.

$$\ln|x| + c = tg\left(\frac{y}{x}\right), y = x\left(\frac{\pi}{2} + \pi n\right), n \in \mathbb{Z};$$

11.
$$y = \frac{cx^2}{1 - cx}, y = -x;$$

12.
$$(x+y-1)^3 = c(x-y+3)$$
;

13.
$$3x + y + \ln(x + y - 1)^2 = c$$
;

14.
$$8y-4x+\ln|4x+8y+5|=c$$
;

15.
$$\ln \frac{y+x}{x+3} = 1 + \frac{c}{y+x}$$
;

16.
$$\sin \frac{y-2x}{x+1} = c(x+1);$$

17.
$$y = \frac{x^2}{\ln|cx|} (1 - \ln|cx|), y = x^2;$$

18.
$$x = \frac{1}{y \ln |cy^2|}, x \equiv 0, y \equiv 0;$$
 20. $y^2 = x^4 (2 \ln |x| + c).$
19. $2\sqrt{\frac{1}{xy^2} - 1} = -\ln |cx|, y \equiv 0, xy^2 = 1;$

§3.Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли

1. Определения и методы решения

Определение 1. Уравнение вида:

$$y' + p(x)y = q(x), \tag{1}$$

где p(x) и q(x) — заданные непрерывные функции на (a;b), называется линейным дифференциальным уравнением (ЛДУ). Если $q(x) \equiv 0$ при $x \in (a;b)$, то уравнение имеет вид:

$$y' + p(x)y = 0$$

и называется линейным однородным дифференциальным уравнением (ЛОДУ). А если $q(x) \neq 0$ при $x \in (a;b)$, то уравнение (1) называется линейным неоднородным дифференциальным уравнением (ЛНДУ).

Метод решения ЛНДУ

- 1) Метод вариации произвольной постоянной:
- сначала решить соответствующее ЛОДУ, которое является уравнением с разделяющимися переменными:

$$y' + p(x)y = 0$$

$$\frac{dy}{dx} = -p(x)y$$

$$\int \frac{dy}{y} = -\int p(x)dx$$

$$\ln|y| = -\int p(x)dx + \ln|c|$$

$$\ln|y| = \ln e^{-\int p(x)dx} + \ln|c|$$

$$y = ce^{-\int p(x)dx};$$
(2)

• заменить в формуле (2) постоянную c на неизвестную функцию c(x) и подставить это выражение вместо y в уравнение (1), предварительно найдя y';

- из полученного уравнения найти функцию $c(x; \bar{c})$;
- записать ответ:

$$y(x) = c(x; \overline{c}) \cdot e^{-\int p(x) dx}$$

где \bar{c} –произвольная постоянная.

2) Метод Бернулли:

• выполнить в уравнении (1) замену Бернулли:

$$\begin{bmatrix} y = u \cdot v \\ y' = u'v + uv' \end{bmatrix}$$
:
$$u'v + uv' + p(x)uv = q(x)$$

$$u'v + u(v' + p(x)v) = q(x);$$
(3)

• приравнять к нулю выражение

$$v' + p(x)v = 0$$

и найти отсюда *любое частное* решение v(x):

$$\frac{dv}{dx} = -p(x)v$$

$$\int \frac{dv}{v} = -\int p(x)dx$$

$$\ln|v| = \ln e^{-\int p(x)dx}$$

$$v = e^{-\int p(x)dx}$$

- подставить полученную функцию v = v(x) в уравнение (3) и найти общее решение u = u(x;c) из этого уравнения;
- записать ответ: $y = u(x;c) \cdot v(x)$ где c произвольная постоянная.

Уравнение Бернулли

Определение 2. Уравнение вида

$$y' + p(x)y = q(x)y^{\alpha}$$
, где $\alpha \neq 0$ и $\alpha \neq 1$, (4)

называется уравнением Бернулли с показателем α .

Уравнение (4) приводится к ЛНДУ(1) с помощью замены:

$$z = \frac{1}{y^{\alpha - 1}}, z' = \frac{1 - \alpha}{y^{\alpha}} y'.$$

После этой замены уравнение (1) приводится к следующему:

$$z' + (1 - \alpha) \cdot p(x) \cdot z = q(x) \cdot (1 - \alpha).$$

Это уравнение ЛНДУ относительно функции z(x). Его можно решать также с помощью замены Бернулли. Но можно и уравнение (4), не проводя замену к

функции z, решать методом замены Бернулли непосредственно. При этом функция v(x) будет частным решением уравнения

$$v'-p(x)v=0,$$

а функция u = u(x;c) будет находиться из уравнения

$$u'v(x) = q(x) \cdot (v(x) \cdot u)^{\alpha}$$
.

3амечание 1. При таком решении при $\alpha > 0$ решение $y \equiv 0$ будет всегда потеряно.

Замечание 2. Некоторые дифференциальные уравнения первого порядка становятся линейными или уравнениями Бернулли, если в них поменять ролями искомую функцию y и независимую переменную x.

2. Примеры с решениями

Пример 1. Решить уравнение:

$$y' + \frac{y}{x} = x^3.$$

Решение. Уравнение имеет вид (1), где $p(x) = \frac{1}{x}$; $q(x) = x^3$. Решим его двумя способами.

Способ 1 (метод вариации постоянной)

1) Решим сначала ЛОДУ, соответствующее данному ЛНДУ:

$$y' + \frac{y}{x} = 0$$

Это уравнение с разделяющимися переменными:

$$\frac{dy}{dx} = -\frac{y}{x}$$

$$\int \frac{dy}{y} = -\int \frac{dx}{x}$$

$$\ln|y| = -\ln|x| + \ln|c|$$

 $y = \frac{c}{x}$, где c — произвольная постоянная.

2) Решение данного уравнения ищем в таком же виде, но считаем переменной c = c(x), т.е.

$$y = \frac{c(x)}{x}$$
.

Найдем $y' = \frac{c'(x) \cdot x - c(x)}{x^2}$ и подставим функцию $y = \frac{c(x)}{x}$ в заданное уравнение:

$$\frac{c'(x) \cdot x - c(x)}{x^2} + \frac{c(x)}{x \cdot x} = x^3$$

$$\frac{c'(x) \cdot x}{x^2} - \frac{c(x)}{x^2} + \frac{c(x)}{x^2} = x^3$$

$$\frac{c'(x)}{x} = x^3 \Rightarrow c'(x) = x^4$$

$$c(x) = \int x^4 dx \Rightarrow c(x) = \frac{x^5}{5} + \overline{c},$$

где \bar{c} — произвольная постоянная. Следовательно, общим решением заданного дифференциального уравнения будет:

$$y = \frac{c(x)}{x} = \frac{\frac{x^5}{5} + \overline{c}}{x} \Rightarrow y = \frac{x^4}{5} + \frac{\overline{c}}{x}$$

Способ 2 (метод Бернулли)

Выполним в заданном уравнении замену Бернулли:

$$[y = u \cdot v; y' = u'v + v'u].$$

$$u'v + v'u + \frac{uv}{x} = x^3$$

$$u'v + u\left(v' + \frac{v}{x}\right) = x^3.$$
(*)

1) Найдем функцию *v* из уравнения:

$$v' + \frac{v}{x} = 0 \Rightarrow \frac{dv}{dx} = -\frac{v}{x}$$
$$\int \frac{dv}{v} = -\int \frac{dx}{x} \Rightarrow \ln|v| = -\ln|x| + \ln|c| \Rightarrow v = \frac{c}{x},$$

где c – любое число.

Но так как нас интересует частное решение $v \neq 0$, то выберем значение c = 1:

$$v = \frac{1}{x}$$
.

2) Найдем функцию u(x;c), решая уравнение (*) при $v = \frac{1}{x}$:

$$u' \cdot \frac{1}{x} = \chi^3 \Rightarrow \frac{du}{dx} = \chi^4 \Rightarrow \int du = \int \chi^4 dx \Rightarrow u = \frac{\chi^5}{5} + c,$$

где c – произвольная постоянная.

Следовательно, общее решение заданного уравнения можно записать:

$$y = v(x) \cdot u(x;c) = \frac{1}{x} \left(\frac{x^5}{5} + c \right) = \frac{x^4}{5} + \frac{c}{x} \Rightarrow y = \frac{x^5}{5} + c$$

Ombem: $y = \frac{x^5}{5} + c$.

Пример 2. Решить задачу Коши:

$$y' + y \cdot tgx = \frac{1}{\cos x},$$

$$y(0) = 1.$$

Решение. Заданное уравнение является линейным неоднородным дифференциальным уравнением. Решим его методом Бернулли. Для этого сделаем замену:

$$[y = u \cdot v; y' = u'v + v'u],$$

которая приведет к следующему уравнению:

$$u'v + v'u + uv \cdot tgx = \frac{1}{\cos x}$$

$$u'v + u(v' + v \cdot tgx) = \frac{1}{\cos x}.$$
(**)

1) Функцию v(x) найдем из уравнения:

$$v' + v \cdot tgx = 0$$

$$\frac{dv}{dx} = -v \cdot tgx$$

$$\int \frac{dv}{v} = -\int tgx \cdot dx$$

$$\ln|v| = \ln|\cos x| + \ln|c|,$$

где c – любое число,

$$v = c \cdot \cos x \neq 0$$
,

поэтому возьмем c = 1, т.е.

$$v = \cos x$$
.

2) Найдем функцию u = u(x;c) из уравнения (**) при $v = \cos x$:

$$u'\cos x = \frac{1}{\cos x} \Rightarrow \frac{du}{dx} = \frac{1}{\cos^2 x} \Rightarrow \int du = \int \frac{dx}{\cos^2 x}$$
$$u = tgx + c,$$

где c – произвольная постоянная.

Общее решение данного уравнения:

$$y = u(x;c) \cdot v(x) = \cos x(tgx + c) \implies y = \sin x + c \cdot \cos x.$$

В полученном общем решении найдем c так, чтобы удовлетворялось условие: y(0) = 1:

$$1 = \sin 0 + c \cdot \cos 0 \Rightarrow 1 = c \Rightarrow c = 1$$

Значит, решением задачи Коши является функция

$$y = \sin x + \cos x$$
.

Omeem: $y = \sin x + \cos x$.

Пример 3. Решить уравнение:

$$(2x + y^3)y' = y$$

Решение. Данное уравнение не является линейным относительно функции y(x). Но если учесть, что

$$y' = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{x'},$$

то уравнение можно переписать в виде:

$$(2x + y^{3}) \frac{1}{x'} = y$$

$$yx' = 2x + y^{3}$$

$$x' - \frac{2x}{y} = y^{2},$$
(5)

которое является линейным уравнением относительно функции x(y). Решим полученное уравнение методом вариации постоянной:

1) Сначала решаем ЛОДУ:

$$x' - \frac{2x}{y} = 0 \Rightarrow \frac{dx}{dy} = \frac{2x}{y}$$
$$\int \frac{dx}{x} = \int \frac{2dy}{y} \Rightarrow \ln|x| = 2\ln|y| + \ln|c| \Rightarrow x = cy^{2}.$$

2) Пусть c = c(y), тогда $x = c(y) \cdot y^2$.

Подставим эту функцию в уравнение (5):

$$c'(y) \cdot y^2 + 2c(y)y - \frac{2c(y)y^2}{y} = y^2$$
$$c'(y) \cdot y^2 = y^2 \Rightarrow c'(y) = 1 \Rightarrow c(y) = \int dy \Rightarrow c(y) = y + \overline{c},$$

где \overline{c} – произвольная постоянная.

Следовательно, общее решение уравнения (5) имеет вид:

$$x = y^2(y + \overline{c}) \Rightarrow x = y^3 + \overline{c}y^2$$
.

Чтобы найти общее решение заданного уравнения, заметим, что при переходе от данного уравнения к уравнению (5) могло быть потеряно решение $y \equiv 0$. Действительно, подстановкой в исходное уравнение убеждаемся, что $y \equiv 0$ решение данного уравнения и оно не попадает в общее решение уравнения (5) ни при каком значении \bar{c} . Поэтому записываем его в ответ.

Omeem:
$$x = y^3 + \bar{c}y^2$$
; $y \equiv 0$.

Пример 4. Решить уравнение:

$$y' - y = e^{x} \cdot y^2$$

Решение. Данное уравнение является уравнением Бернулли с показателем $\alpha = 2$. Решим его методом Бернулли. Для этого выполним замену:

$$[y = uv; y' = u'v + v'u].$$

$$u'v + v'u - uv = e^{x}u^{2}v^{2} \Rightarrow u'v + u(v' - v) = e^{x}u^{2}v^{2}.$$
 (***)

1) Функцию v(x) найдем из уравнения:

$$v' - v = 0$$

$$\frac{dv}{dx} = v \Rightarrow \int \frac{dv}{v} = \int dx \Rightarrow \ln|v| = x + c,$$

где c – любое число (пусть c = 0), тогда

$$\ln v = x \Longrightarrow v(x) = e^{x}.$$

2) Найдем функцию u(x;c) из уравнения (***) при $v(x) = e^{x}$:

$$u' \cdot e^x = e^x \cdot u^2 \cdot e^{2x} \Rightarrow u' = u^2 e^{2x} \Rightarrow \frac{du}{dx} = u^2 e^{2x} \Rightarrow \int \frac{du}{u^2} = \int e^{2x} dx \Rightarrow -\frac{1}{u} = \frac{1}{2} e^{2x} - \frac{1}{2} c,$$

где c – произвольная постоянная.

После преобразований получим:

$$u = \frac{2}{c - e^{2x}}.$$

Следовательно, общее решение данного уравнения запишется следующим образом:

$$y = u(x;c) \cdot v(x) = \frac{2e^x}{c - e^{2x}} \Rightarrow y = \frac{2e^x}{c - e^{2x}}.$$

Так как $\alpha = 2 > 0$, то в ответ запишем и потерянное решение $y \equiv 0$.

Omeem:
$$y = \frac{2e^{2x}}{c - e^{2x}}; y \equiv 0.$$

3. Примеры

Решить ДУ или задачи Коши:

1.
$$y' = y \cdot tgx + \cos x$$
;

$$2. \quad y' = \frac{4y}{x} + x\sqrt{y};$$

3.
$$x'y + y = 2x$$
, $y(1) = 0$;

4.
$$(1 + y^2)dx = (\sqrt{1 + y^2} \sin y - xy)dy;$$

5.
$$y' - y \cdot tgx = \frac{1}{\cos x}, x(0) = 0;$$

6.
$$v^2 dx - (2xy + 3)dy = 0$$
;

7.
$$y' + \frac{y}{x} = -xy^2$$
;

8.
$$xy' + y - e^x = 0, y(0) = 1;$$

9.
$$2xyy' - y^2 + x = 0$$
;

10.
$$y' - y = e^{2x}$$
;

11.
$$ydx + \left(x - \frac{1}{2}yx^3\right)dy = 0;$$

12.
$$x(e^y - y') = 2$$
;

13.
$$y'x^3 \sin y = xy' - 2y$$
;

14.
$$xy' + 2y + x^5y^3e^x = 0$$
;

15.
$$(x+1)(y'+y)+y=0$$
;

4. Ответы

1.
$$y = \frac{2x + \sin 2x + c}{4\cos x}$$
;

$$2. \quad y = x^4 \left(\ln \sqrt{|x|} + c \right)$$

3.
$$y^* = \frac{x^2 - 1}{x}$$
;

$$4. \quad x = \frac{c - \cos y}{\sqrt{1 + y^2}};$$

$$5. \quad y^* = \frac{x}{\cos x};$$

6.
$$x = cy^2 - \frac{1}{y}$$
;

7.
$$y = \frac{1}{x^2 + cx}$$
;

8.
$$y^* = \frac{e^x - 1}{x}$$
;

$$9. \quad y^2 = x \ln \left| \frac{c}{x} \right|;$$

16.
$$y = x(y' - x^3 \cos x), y(\pi) = -2\pi^2$$
;

17.
$$y' = y^4 \cos x + y \cdot tgx, y(\pi) = 1;$$

18.
$$2x(x^2 + y)dx = dy$$
;

19.
$$y' = \frac{y}{3x - y^2}$$
;

20.
$$y' - \frac{y}{x} = xe^x$$
, $y(1) = e$;

10.
$$y = ce^x + e^{2x}$$
;

11.
$$x^2 = \frac{1}{y + cy^2}$$
;

12.
$$y = -\ln(cx^2 + x)$$
;

13.
$$x^2(c - \cos y) = y, y \equiv 0;$$

14.
$$y^{-2} = x^4 (2e^x + c), y \equiv 0;$$

15.
$$y = \frac{1}{(x+1)(\ln|x+1|+c)}, y \equiv 0;$$

16.
$$y^* = x(x^2 - 2)\sin x + 2x^2\cos x$$
;

17.
$$y^* = -\frac{\sec x}{\sqrt[3]{3tgx+1}};$$

18.
$$y = ce^{x^2} - x^2 - 1$$
;

19.
$$x = cy^3 + y^2, y \equiv 0$$
;

20.
$$y^* = xe^x$$
.

§4. Дифференциальные уравнения в полных дифференциалах. Уравнения с интегрирующим множителем

1. Определение и метод решения уравнения в полных дифференциалах

Определение 1. Если в уравнении

$$P(x;y)dx + Q(x;y)dy = 0 (1)$$

левая часть есть полный дифференциал некоторой функции u(x; y), то оно называется $\partial u \phi \phi$ ренциальным уравнением в полных $\partial u \phi$ ференциалах. Тогда это уравнение можно переписать в виде: du(x; y) = 0. Следовательно, его общий интеграл есть u(x; y) = c, где c – произвольная постоянная.

Необходимым и достаточным условием того, чтобы выражение P(x;y)dx + Q(x;y)dy было полным дифференциалом функции u(x;y), является равенство:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 для $(x; y) \in D$.

Итак, чтобы решить дифференциальное уравнение (1), надо найти функцию u(x;y), для которой du = P(x;y)dx + Q(x;y)dy, и записать общий интеграл этого уравнения в виде u(x;y) = c.

Алгоритм нахождения функции u(x;y)

Способ 1.

• Составить систему:

$$\begin{cases} u'_x(x; y) = P(x; y) \\ u'_y(x; y) = Q(x; y); \end{cases}$$

• проинтегрировать по x первое уравнение системы (или по y второе уравнение системы):

 $u(x; y) = \int P(x; y) dx + \varphi(y); \quad (*)$

- подставить найденную u(x; y) во второе уравнение системы, что приведет к уравнению для функции $\varphi(y)$. Найти $\varphi(y)$;
- подставить $\varphi(y)$ в формулу (*).

Способ 2.

Функцию u(x; y) можно найти с помощью криволинейного интеграла:

$$u(x; y) = \int_{\check{A}B} P(x; y) dx + Q(x; y) dy,$$

где $A(x_0; y_0) \in D, B(x; y) \in D$, а сам интеграл не зависит от пути интегрирования, так как выполняется равенство:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 для $(x; y) \in D$.

2. Уравнения с интегрирующим множителем

Пусть для дифференциального уравнения (1) условие $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ не выполнено,

т.е. $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$. Тогда (1) не является уравнением в полных дифференциалах. Но в некоторых случаях удается подобрать такую функцию, что при умножении на нее уравнения (1) оно становится уравнением в полных дифференциалах.

Определение 2. Функция $\mu(x; y)$ называется интегрирующим множителем дифференциального уравнения (1), если после умножения (1) на $\mu(x; y)$ получается уравнение

$$\mu(x; y)P(x; y)dx + \mu(x; y)Q(x; y)dy = 0,$$
 (2)

являющееся уравнением в полных дифференциалах.

Замечание 1. Умножение на функцию $\mu(x; y)$ и интегрирование вместо (1) уравнения (2) может привести к потере или появлению лишних решений, обращающих $\mu(x; y)$ в нуль.

Замечание 2. Дифференциальное уравнение (1) может иметь несколько интегрирующих множителей, а может не иметь ни одного.

Условия существования интегрирующего множителя

Интегрирующий множитель $\mu(x; y)$ удовлетворяет дифференциальному уравнению:

$$\frac{\partial}{\partial y}(\mu \cdot P) = \frac{\partial}{\partial x}(\mu \cdot Q).$$

Однако нет общего метода интегрирования такого уравнения. Рассмотрим частные случаи существования интегрирующих множителей вида: $\mu(x)$ и $\mu(y)$.

Теорема 1. Пусть в некоторой области D выполнены условия:

- 1) $P(x; y), Q(x; y), P'_{y}(x; y), Q'_{x}(x; y)$ непрерывны;
- 2) $Q(x; y) \neq 0$;
- 3) $\frac{P'_y Q'_x}{Q} = k(x)$ является функцией, зависящей только от переменной x.

Тогда дифференциальное уравнение (1) имеет интегрирующий множитель, зависящий только от x и вычисляемый по формуле:

$$\mu(x) = e^{\int k(x)dx}.$$

Теорема 2. Пусть в некоторой области D выполнены условия:

- 1) $P(x; y), Q(x; y), P'_{y}(x; y), Q'_{x}(x; y)$ непрерывны;
- 2) $P(x; y) \neq 0$;
- 3) $\frac{Q'_x P'_y}{P} = m(y)$ является функцией, зависящей только от переменной y.

Тогда дифференциальное уравнение (1) имеет интегрирующий множитель, зависящий только от y и вычисляемый по формуле:

$$\mu(y) = e^{\int m(y)dy}.$$

3. Примеры с решениями

Пример 1. Решить уравнение:

$$(\sin x + 3x^2y^2)dx + 2(1+x^3y)dy = 0.$$

Решение. В данном примере

$$P(x; y) = \sin x + 3x^2 y^2$$

 $Q(x; y) = 2(1 + x^3 y),$

откуда получим:

$$\begin{vmatrix} \frac{\partial P}{\partial y} = 6x^2y \\ \frac{\partial Q}{\partial x} = 6x^2y \end{vmatrix} \Rightarrow \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

Значит, данное уравнение в полных дифференциалах. Поэтому существует функция u(x; y), для которой выполняется равенство:

$$du = (\sin x + 3x^2y^2)dx + 2(1+x^3y)dy.$$

Составим и решим систему уравнений:

$$\begin{cases} \frac{\partial u}{\partial x} = \sin x + 3x^2 y^2 \\ \frac{\partial u}{\partial y} = 2(1 + x^3 y). \end{cases}$$

Проинтегрируем по x первое уравнение, считая y постоянным:

$$u(x; y) = \int (\sin x + 3x^2 y^2) dx = -\cos x + x^3 y^2 + \varphi(y).$$

$$u(x; y) = -\cos x + x^3 y^2 + \varphi(y).$$
 (*)

Определим функцию $\varphi(y)$, используя второе уравнение системы:

$$\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} (-\cos x + x^3 y^2 + \varphi(y)) = 2x^3 y + \varphi'(y) = Q(x; y) = 2 + 2x^3 y \Rightarrow \varphi'(y) = 2$$
$$\varphi(y) = \int 2dy = 2y + c_1,$$

где c_1 –произвольная постоянная.

Подставим $\varphi(y)$ в равенство (*):

$$u(x; y) = -\cos x + x^3 y^2 + 2y + c_1$$
.

Таким образом, общим интегралом данного уравнения будет:

$$u(x; y) = c_2 \Rightarrow -\cos x + x^3 y^2 + 2y + c_1 = c_2$$
$$-\cos x + x^3 y^2 + 2y = c_2 - c_1 \Rightarrow -\cos x + x^3 y^2 + 2y = c$$

Omeem: $-\cos x + x^3y^2 + 2y = c$.

Пример 2. Решить задачу Коши:

$$(x + y^2x + \sin x)dx + (x^2y - y^3 + 3)dy = 0, y(0) = 2.$$

Решение. Проверим выполнение условия

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

$$P(x; y) = x + y^2 x + \sin x$$

$$Q(x; y) = x^2 y - y^3 + 3$$

$$\frac{\partial P}{\partial y} = 2xy \text{ и } \frac{\partial Q}{\partial x} = 2xy \Rightarrow \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

Следовательно, заданное уравнение в полных дифференциалах. Составим систему уравнений относительно неизвестной функции u(x; y), для которой выполняется равенство:

$$du = (x + y^2x + \sin x)dx + (x^2y - y^3 + 3)dy:$$

$$\begin{cases} \frac{\partial u}{\partial x} = x + y^2 x + \sin x \\ \frac{\partial u}{\partial y} = x^2 y - y^3 + 3. \end{cases}$$

Тогда:
$$u(x; y) = \int (x + y^2 x + \sin x) dx = \frac{x^2}{2} + \frac{y^2 x^2}{2} - \cos x + \varphi(y),$$

$$u(x; y) = \frac{x^2}{2} + \frac{y^2 x^2}{2} - \cos x + \varphi(y). \tag{**}$$

Найдем функцию $\varphi(y)$, используя второе уравнение системы:

$$\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left(\frac{x^2}{2} + \frac{y^2 x^2}{2} - \cos x + \varphi(y) \right) = yx^2 + \varphi'(y) = Q(x; y) = yx^2 - y^3 + 3,$$

$$\varphi'(y) = 3 - y^3$$

$$\varphi(y) = \int (3 - y^3) dy = 3y - \frac{y^4}{4} + c_1,$$

где c_1 –произвольная постоянная.

$$\varphi(y) = 3y - \frac{y^4}{4} + c_1.$$

Подставим найденную $\varphi(y)$ в (**):

$$u(x; y) = \frac{x^2}{2} + \frac{y^2 x^2}{2} - \cos x + 3y - \frac{y^4}{4} + c_1.$$

Таким образом, общий интеграл данного уравнения можно записать:

$$\frac{x^{2}}{2} + \frac{y^{2}x^{2}}{2} - \cos x + 3y - \frac{y^{4}}{4} + c_{1} = c_{2}$$

$$\frac{x^{2}}{2} + \frac{y^{2}x^{2}}{2} - \cos x + 3y - \frac{y^{4}}{4} = c_{2} - c_{1}$$

$$\frac{x^{2}}{2} + \frac{y^{2}x^{2}}{2} - \cos x + 3y - \frac{y^{4}}{4} = c$$

Найдем число c так, чтобы выполнялось условие: y(0) = 2:

$$c = 0 + 0 - \cos 0 + 6 - 4 = 1, c = 1.$$

Следовательно, решение задачи Коши находится из общего решения при c = 1:

$$\frac{x^2}{2} + \frac{y^2 x^2}{2} - \cos x + 3y - \frac{y^4}{4} = 1.$$
Omsem: $\frac{x^2}{2} + \frac{y^2 x^2}{2} - \cos x + 3y - \frac{y^4}{4} = 1.$

Пример 3. Решить уравнение:

$$(x^3 + xy + 2x^2y^3)dx + (x^2 + 3x^3y^2)dy = 0$$

Решение. Проверим условие $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

$$P(x; y) = x^{3} + xy + 2x^{2}y^{3}; \frac{\partial P}{\partial y} = x + 6x^{2}y^{2}$$

$$Q(x; y) = x^{2} + 3x^{3}y^{2}; \frac{\partial Q}{\partial x} = 2x + 9x^{2}y^{2}$$

$$\Rightarrow \frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}.$$

Следовательно, это уравнение не является уравнением в полных дифференциалах. Проверим выполнение условий теоремы 1 существования интегрирующего множителя $\mu(x)$:

$$\frac{P_y' - Q_x'}{Q} = \frac{x + 6x^2y^2 - 2x - 9x^2y^2}{x^2 + 3x^3y^2} = \frac{-x - 3x^2y^2}{x(x + 3x^2y^2)} = -\frac{1}{x} = k(x).$$

Таким образом, интегрирующий множитель вида $\mu(x)$ существует и находится по формуле:

$$\mu(x) = e^{\int -\frac{1}{x} dx} = e^{-\ln|x|} = e^{\ln\left|\frac{1}{x}\right|} = \frac{1}{x}.$$

$$\mu(x) = \frac{1}{x}.$$

Умножим заданное уравнение на найденную функцию и получим уравнение в полных дифференциалах:

$$(x^2 + y + 2xy^3)dx + (x + 3x^2y^2)dy = 0$$

$$\overline{P}(x;y) = x^2 + y + 2xy^3 \Rightarrow \overline{P}'_y = 1 + 6xy^2
\overline{Q}(x;y) = x + 3x^2y^2 \Rightarrow \overline{Q}'_x = 1 + 6xy^2$$

$$\Rightarrow \overline{P}'_y = \overline{Q}'_x.$$

Поэтому существует u(x; y), для которой

$$du = (x^{2} + y + 2xy^{3})dx + (x + 3x^{2}y^{2})dy:$$

$$\begin{cases} u'_{x} = x^{2} + y + 2xy^{3} \Rightarrow u(x; y) = \int (x^{2} + y + 2xy^{3})dx \\ u'_{y} = x + 3x^{2}y^{2}, \end{cases}$$

$$u(x; y) = \frac{x^{3}}{3} + yx + x^{2}y^{3} + \varphi(y). \tag{***}$$

$$\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} \left(\frac{x^{3}}{3} + yx + x^{2}y^{3} + \varphi(y) \right) = x + 3x^{2}y^{2} + \varphi'(y) = \overline{Q}(x; y) = x + 3x^{2}y^{2},$$

$$\varphi'(y) = 0 \Rightarrow \varphi(y) = c_{1},$$

где c_1 – произвольная постоянная.

Подставим $\varphi(y) = c_1$ в равенство (***):

$$u(x; y) = \frac{x^3}{3} + yx + x^2y^3 + c_1$$

Тогда общий интеграл запишется в виде:

$$\frac{x^3}{3} + yx + x^2y^3 + c_1 = c_2$$
$$\frac{x^3}{3} + yx + x^2y^3 = c_2 - c_1$$
$$\frac{x^3}{3} + yx + x^2y^3 = c.$$

При переходе от заданного уравнения к уравнению в полных дифференциалах было потеряно решение $x \equiv 0$ (при делении на x). Но оно входит в полученное семейство при c=0.

Omsem:
$$\frac{x^3}{3} + yx + x^2y^3 = c$$
.

Пример 4. Решить уравнение:

$$\left(1 + \frac{x}{\sin y}\right) dx + (x \cdot ctgy + 1) dy = 0$$

Pешение. Проверим условие $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

$$P(x; y) = \left(1 + \frac{x}{\sin y}\right) \Rightarrow P'_{y} = -\frac{x \cos y}{\sin^{2} y}$$

$$Q(x; y) = (x \cdot ctgy + 1) \Rightarrow Q'_{x} = ctgy$$

Следовательно, это уравнение не является уравнением в полных дифференциалах. Проверим выполнение условий теоремы 2 существования интегрирующего множителя $\mu(y)$:

интегрирующего множителя
$$\mu(y)$$
:
$$\frac{Q_x' - P_y'}{P} = \frac{\frac{\cos y}{\sin y} + \frac{x \cos y}{\sin^2 y}}{1 + \frac{x}{\sin y}} = \frac{\cos y \left(\frac{\sin y + x}{\sin^2 y}\right)}{\frac{\sin y + x}{\sin y}} = \frac{\cos y (\sin y + x) \cdot \sin y}{\sin^2 y (\sin y + x)} = \frac{\cos y}{\sin y} = m(y).$$

Таким образом, интегрирующий множитель вида $\mu(y)$ существует и находится по формуле:

$$\mu(y) = e^{\int \frac{\cos y}{\sin y} dy} = e^{\ln \sin y} = \sin y.$$

$$\mu(y) = \sin y.$$

Умножим заданное уравнение на $\sin y$ и решим полученное уравнение в полных дифференциалах:

$$(x + \sin y)dx + (x\cos y + \sin y)dy = 0$$

$$\overline{P}(x; y) = x + \sin y \Rightarrow \overline{P}'_y = \cos y$$

$$\overline{Q}(x; y) = x\cos y + \sin y \Rightarrow \overline{Q}'_x = \cos y$$

$$\Rightarrow \overline{P}'_y = \overline{Q}'_x.$$

Поэтому существует u(x; y), для которой выполняется равенство:

$$du = (x + \sin y)dx + (x\cos y + \sin y)dy$$

$$\begin{cases} u'_x = x + \sin y \Rightarrow u(x; y) = \int (x + \sin y)dx \\ u'_y = x\cos y + \sin y, \end{cases}$$

$$u(x; y) = \frac{x^2}{2} + x\sin y + \varphi(y)$$

$$\frac{\partial u}{\partial y} = x\cos y + \varphi'(y) = \overline{Q}(x; y) = x\cos y + \sin y$$

$$\varphi'(y) = \sin y \Rightarrow \varphi(y) = \int \sin y dy = -\cos y + c_1$$

$$\varphi(y) = -\cos y + c_1,$$

$$(****)$$

где c_1 –произвольная постоянная.

Подставим найденную функцию $\varphi(y)$ в выражение (****):

$$u(x; y) = \frac{x^2}{2} + x \sin y - \cos y + c_1.$$

Тогда общий интеграл запишется в виде:

$$\frac{x^{2}}{2} + x\sin y - \cos y + c_{1} = c_{2}$$

$$\frac{x^{2}}{2} + x\sin y - \cos y = c_{2} - c_{1}$$

$$\frac{x^{2}}{2} + x\sin y - \cos y = c.$$

Следовательно, это общий интеграл заданного уравнения.

Omeem:
$$\frac{x^2}{2} + x\sin y - \cos y = c.$$

4. Примеры

Решить ДУ или задачи Коши:

1.
$$(3x^2 + 10xy)dx + (5x^2 - 1)dy = 0$$
;

2.
$$(2x+7^{x-y}\ln 7)dx + (1-7^{x-y}\ln 7)dy = 0$$
;

3.
$$\left(\frac{y}{1+x^2y^2} + \frac{7}{\cos^2 7x}\right) dx + \left(\frac{x}{1+x^2y^2} + 2|y|\right) dy = 0, x(-1) = 0;$$

4.
$$\left(\frac{\sin x}{\sqrt{\cos x}} + 2\cos(2x + 3y)\right) dx + \left(e^y + 3\cos(2x + 3y)\right) dy = 0;$$

5.
$$\left(e^{\sqrt{x}} + \frac{2y}{\sqrt{1 - (xy)^2}}\right) dx + \frac{2xdy}{\sqrt{1 - (xy)^2}} = 0, y(0) = 0;$$

6.
$$\left(\frac{4}{x} + 2ctg(x-y)\right)dx - (2ctg(x-y) + 5^{-y})dy = 0;$$

7.
$$\frac{xdx}{x^2 + y^2} + \left(\frac{y}{x^2 + y^2} + \frac{\ln\sin y}{\cos^2 y}\right)dy = 0;$$

8.
$$\left(7x^6 + \sqrt{\frac{y}{x}}\right)dx + \left(1 + \sqrt{\frac{x}{y}}\right)dy = 0;$$

9.
$$\left(2\cos 2x + 6(2x - 3y)^2\right)dx - \left(\frac{1}{y^2} + 9(2x - 3y)^2\right)dy = 0, y(0) = 1;$$

10.
$$\left(x\cos x - \frac{1}{x^2 y}\right) dx - \left(\frac{1}{\sin^2 y} + \frac{1}{y^2 x}\right) dy = 0;$$

11.
$$y(1+xy)dx - xdy = 0$$
;

12.
$$(x^2 + y)dx - xdy = 0$$
;

13.
$$ydy = (xdy + ydx)\sqrt{1 + y^2}$$
;

14.
$$y^2 dx - (xy + x^3) dy = 0, y(1) = 1;$$

15.
$$(x + y)ydx + (xy + 1)dy = 0$$
;

16.
$$(x^2 + 2x + y)dx = (x - 3x^2y)dy$$
;

17.
$$x^2y(xdy + ydx) = 2ydx + xdy$$
;

18.
$$(x^2 - y^2 + y)dx = x(1 - 2y)dy$$
;

19.
$$(x^2 + 1)(2xdx + \cos ydy) = 2x\sin ydy;$$

5. Ответы

1.
$$x^3 + 5x^2y - y = c$$
;

2.
$$x^2 + y + 7^{x-y} = c$$
;

3.
$$y^*|y^*| + tg7x + arctg(xy^*) = -1;$$

4.
$$e^y - 2\sqrt{\cos x} + \sin(2x + 3y) = c$$
;

5.
$$2\arcsin(xy^*) + 2(\sqrt{x} - 1)e^{\sqrt{x}} = -2;$$

6.
$$\ln \sin^2(x-y) + \frac{5^{-y}}{\ln 5} + 4\ln|x| = c;$$

7.
$$tgy \cdot \ln \sin y - y + \ln \sqrt{x^2 + y^2} = c;$$

8.
$$y + x^7 + 2\sqrt{xy} = c$$
;

9.
$$\sin 2x + (2x - 3y^*)^3 + \frac{1}{y^*} = -26$$

10.
$$ctgy + x\sin x + \cos x + \frac{1}{xy} = c;$$

11.
$$y = 0, \mu = \frac{1}{v^2}, x^2 + \frac{2x}{y} = c;$$

12.
$$x = 0, \mu = \frac{1}{x^2}, x - \frac{y}{x} = c;$$

13.
$$\mu = \frac{1}{\sqrt{1+y^2}}; \sqrt{1+y^2} - xy = c;$$

14.
$$\mu = \frac{1}{x^3}, 2y^* + \left(\frac{y^*}{x}\right)^2 = 3;$$

15.
$$y = 0, \mu = \frac{1}{y}, \frac{x^2}{2} + xy + \ln|y| = c;$$

16.

$$x = 0, \mu = \frac{1}{x^2}, x + \ln x^2 + \frac{3}{2}y^2 - \frac{y}{x} = c;$$

17.
$$y = 0, x = 0, \mu = \frac{1}{x}, x^2 y \ln|cxy| = -1;$$

18.
$$x = 0, \mu = \frac{1}{x^2}, x^2 + y^2 = y + cx;$$

19.

$$\mu = \frac{1}{(x^2 + 1)^2}$$
, $\sin y = (x^2 + 1) \ln |c(x^2 + 1)|$.

Глава 2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

§1. Дифференциальные уравнения второго порядка, допускающие понижение порядка

1. Основные понятия

Определение 1. Уравнение вида:

$$F(x; y(x); y'; y'') = 0 (1)$$

называется дифференциальным уравнением второго порядка. Если из этого уравнения выразить

$$y'' = f(x; y; y'),$$

то оно называется разрешенным относительно второй производной.

Определение 2. Общим решением уравнения (1) называется семейство функций, зависящее от двух произвольных постоянных c_1 и c_2 :

$$y = \varphi(x; c_1; c_2)$$
 или $\Phi(x; y; c_1; c_2) = 0.$

В первом случае его называют общим решением, во втором – общим интегралом уравнения (1).

Определение 3. Задачей Коши для уравнения (1) и заданных начальных условий: $y(x_0) = y_0$, $y'(x_0) = y'_0$ называется поиск частного решения этого уравнения, удовлетворяющего этим начальным условиям:

$$y = f(x; c_1^0; c_2^0),$$

где c_1^0 и c_2^0 – определенные числа, полученные из общего решения при подстановке в него начальных условий.

2. Уравнения второго порядка, допускающие понижение порядка

1) Уравнение не содержит явно у и у'

Пусть дифференциальное уравнение второго порядка имеет вид:

$$y'' = f(x) \tag{2}$$

Тогда, учитывая равенство: $y'' = (y')^{'}$, получим:

$$(y')' = f(x) \Rightarrow y' = \int f(x)dx + c_1 \Rightarrow y = \int \left(\int f(x)dx + c_1\right)dx + c_2$$

Следовательно, общее решение уравнения (2) задается функцией:

$$y = \int \left(\int f(x)dx \right) dx + c_1 x + c_2.$$

2) Уравнение не содержит явно у

Пусть уравнение (1) имеет вид:

$$F(x; y'; y'') = 0 (3)$$

Для решения такого уравнения выполняется замена:

$$\begin{bmatrix} y' = z(x) \\ y'' = z'(x) \end{bmatrix}$$

Эта замена понижает порядок уравнения, приводя уравнение (3) к ДУ первого порядка:

$$F(x; z; z') = 0.$$

Решим полученное уравнение относительно функции z(x). Получим общее решение этого уравнения:

$$z = \varphi(x; c_1),$$

где c_1 — произвольная постоянная.

Далее, подставив в полученное решение z = y', получим дифференциальное уравнение первого порядка:

$$y' = \varphi(x; c_1).$$

Откуда получим:

$$y = \int \varphi(x; c_1) dx + c_2,$$

где c_2 – произвольная постоянная.

Итак, получено общее решение уравнения (3):

$$y = \int \varphi(x; c_1) dx + c_2.$$

3) Уравнение не содержит явно х

Пусть уравнение (1) имеет вид:

$$F(y; y'; y'') = 0 (4)$$

Для решения такого уравнения выполняется замена:

$$\begin{bmatrix} y' = p(y) \\ y'' = p \cdot \frac{dp}{dy} = p \cdot p' \end{bmatrix}$$

Эта замена понижает порядок уравнения, приводя уравнение (4) к ДУ первого порядка:

$$F(y; p; p \cdot p') = 0.$$

Решим полученное уравнение относительно функции p(y). Получим общее решение этого уравнения:

$$p(y) = \phi(y; c_1),$$

где c_1 — произвольная постоянная. Далее, подставив в полученное решение p=y', получим дифференциальное уравнение первого порядка:

$$y' = \varphi(y; c_1).$$

Это уравнение с разделяющимися переменными:

$$\frac{dy}{dx} = \varphi(y; c_1) \Rightarrow \frac{dy}{\varphi(y; c_1)} = dx \Rightarrow \int \frac{dy}{\varphi(y; c_1)} = \int dx + c_2 \Rightarrow \int \frac{dy}{\varphi(y; c_1)} = x + c_2,$$

где c_2 — произвольная постоянная.

Итак, получим общий интеграл уравнения (4):

$$\int \frac{dy}{\varphi(y;c_1)} = x + c_2.$$

3. Примеры с решениями

Пример 1. Решить уравнение:

$$y'' = x + \cos x.$$

Решение. Это уравнение не содержит y u y'. Учитывая равенство $y'' = (y')^{'}$, получим

$$(y')' = x + \cos x$$

$$y' = \int (x + \cos x) dx + c_1$$

$$y' = \frac{x^2}{2} + \sin x + c_1$$

$$y = \int \left(\frac{x^2}{2} + \sin x + c_1\right) dx + c_2$$

$$y = \frac{x^3}{6} - \cos x + c_1 x + c_2,$$

где c_1 и c_2 – произвольные постоянные.

Omeem:
$$y = \frac{x^3}{6} - \cos x + C_1 x + C_2$$
.

Пример 2. Решить уравнение:

$$xy'' = y' \cdot \ln \frac{y'}{x}$$

Решение. Это уравнение не содержит явно у. Поэтому выполним замену:

$$\begin{bmatrix} y' = z(x) \\ y'' = z'(x) \end{bmatrix}$$

Такая замена понижает порядок данного уравнения и приводит к уравнению первого порядка:

$$xz' = z \cdot \ln \frac{z}{x}.$$

Это уравнение является однородным первого порядка вида $y' = f\left(\frac{y}{x}\right)$, так как:

$$z' = \frac{z}{x} \cdot \ln \frac{z}{x}.$$

Выполним замену:

$$\begin{bmatrix} z = u \cdot x \\ z' = u'x + u \end{bmatrix}$$

Тогда получим:

$$u'x + u = u \cdot \ln u. \tag{*}$$

Уравнение получилось с разделяющимися переменными. Получим его решение, разделяя переменные, а затем интегрируя:

$$u'x = u(\ln u - 1)$$

$$\frac{du}{dx} \cdot x = u(\ln u - 1)$$

$$\frac{du}{u(\ln u - 1)} = \frac{dx}{x}$$

$$\int \frac{du}{u(\ln u - 1)} = \int \frac{dx}{x}$$

$$\int \frac{d(\ln u - 1)}{\ln u - 1} = \int \frac{dx}{x}$$

$$\ln |\ln u - 1| = \ln |x| + \ln |c_1|$$

$$\ln u - 1 = c_1 x$$

$$\ln u = c_1 x + 1$$

 $u=e^{c_1x+1}.$

Получили общее решение уравнения (*). Вернемся к переменным y и x:

$$u = \frac{z}{x} \Rightarrow u = \frac{y'}{x}$$
.

Подставив $u = \frac{y'}{x}$ в общее решение, получим дифференциальное уравнение первого порядка:

$$\frac{y'}{x} = e^{c_1 x + 1}$$

$$y' = x \cdot e^{c_1 x + 1}$$

$$y = \int x \cdot e^{c_1 x + 1} dx = \begin{bmatrix} U = x \\ e^{c_1 x + 1} dx = dV \end{bmatrix} V = \frac{1}{c_1} e^{c_1 x + 1}$$

$$y = x \cdot \frac{1}{c_1} e^{c_1 x + 1} - \frac{1}{c_1} \int e^{c_1 x + 1} \cdot dx$$

$$y = \frac{x}{c_1}e^{c_1x+1} - \frac{1}{c_1^2}e^{c_1x+1} + c_2,$$

где c_1 и c_2 – произвольные постоянные.

Получили общее решение данного уравнения.

Ombem:
$$y = \frac{x}{c_1}e^{c_1x+1} - \frac{1}{c_1^2}e^{c_1x+1} + c_2$$
.

Пример 3. Решить уравнение:

$$(y')^2 + 1 = y \cdot y''.$$

Решение. Это уравнение не содержит явно x. Поэтому выполним замену:

$$\begin{bmatrix} y' = p(y) \\ y'' = p \cdot \frac{dp}{dy} = p \cdot p' \end{bmatrix}$$

Такая замена понижает порядок данного уравнения и приводит к дифференциальному уравнению первого порядка:

$$p^2 + 1 = y \cdot p \cdot p'. \tag{**}$$

Это уравнение является уравнением с разделяющимися переменными, так как:

$$p \cdot p' = \frac{p^2 + 1}{v}$$

Получим его решение, разделяя переменные, а затем интегрируя:

$$p\frac{dp}{dy} = \frac{p^2 + 1}{y}$$

$$\frac{pdp}{p^2 + 1} = \frac{dy}{y}$$

$$\int \frac{2pdp}{p^2 + 1} = 2\int \frac{dy}{y}$$

$$\int \frac{d(p^2 + 1)}{p^2 + 1} = 2\ln|y| + \ln|C_1|$$

$$\ln|p^2 + 1| = \ln|C_1 \cdot y^2|$$

$$p^2 + 1 = C_1 \cdot y^2$$

$$p^2 = C_1 y^2 - 1$$

$$p = \pm \sqrt{C_1 y^2 - 1}$$

Получили общее решение уравнения (**). Вернемся к переменным x и y:

$$p = y' \Longrightarrow p = \frac{dy}{dx}.$$

Подставив $p = \frac{dy}{dx}$ в полученное решение, получим дифференциальное уравнение первого порядка с разделяющимися переменными:

$$\frac{dy}{dx} = \pm \sqrt{c_1 y^2 - 1}$$

$$\frac{dy}{\sqrt{c_1 y^2 - 1}} = \pm dx$$

$$\int \frac{dy}{\sqrt{c_1 y^2 - 1}} = \pm \int dx + c_2$$

$$\frac{1}{\sqrt{c_1}} \int \frac{d(\sqrt{c_1} y)}{\sqrt{c_1 y^2 - 1}} = \pm x + c_2$$

$$\frac{1}{\sqrt{c_1}} \ln \left| \sqrt{c_1} y + \sqrt{c_1 y^2 - 1} \right| = \pm x + c_2,$$

где $c_1 > 0$ и c_2 – произвольные постоянные.

Получили общий интеграл данного уравнения.

Omeem:
$$\frac{1}{\sqrt{c_1}} \ln \left| \sqrt{c_1} y + \sqrt{c_1 y^2 - 1} \right| = c_2 \pm x$$
.

Пример 4. Решить задачу Коши:

$$y^2y'' = (y')^3,$$

 $y(0) = 1; y'(0) = 1.$

Решение. Данное уравнение не содержит явно x. Поэтому выполним замену:

$$\begin{bmatrix} y' = p(y) \\ y'' = p \cdot \frac{dp}{dy} = p \cdot p' \end{bmatrix}$$

Такая замена приводит к дифференциальному уравнению первого порядка: $y^2 \cdot p \cdot p' = p^3 \mid : p \neq 0.$

$$y^{2} \cdot p \cdot p' = p^{3} \mid : p \neq 0.$$

$$y^{2} \cdot p' = p^{2} \tag{***}$$

Получили уравнение с разделяющимися переменными. Решим его, разделяя переменные, а затем интегрируя:

$$y^{2} \cdot \frac{dp}{dy} = p^{2}$$

$$\frac{dp}{p^{2}} = \frac{dy}{y^{2}}$$

$$\int \frac{dp}{p^{2}} = \int \frac{dy}{y^{2}}$$

$$-\frac{1}{p} = -\frac{1}{y} - c_{1}$$

$$\frac{1}{p} = \frac{1 + c_{1}y}{y}$$

$$p = \frac{y}{1 + c_{1}y}$$

Получили общее решение уравнения (***). Вернемся к переменным x и y:

$$p = y' \Rightarrow p = \frac{dy}{dx}.$$

Подставив $p = \frac{dy}{dx}$ в полученное решение, получим дифференциальное уравнение первого порядка с разделяющимися переменными:

$$\frac{dy}{dx} = \frac{y}{1+c_1y}$$

$$\frac{1+c_1y}{y}dy = dx$$

$$\int \frac{1+c_1y}{y}dy = \int dx + c_2$$

$$\int \frac{dy}{y} + c_1 \int dy = \int dx + c_2$$

$$\ln|y| + c_1y = x + c_2,$$

где c_1 и c_2 – произвольные постоянные.

Получили общий интеграл данного уравнения. Используем начальные условия: y(0) = 1; y'(0) = 1, чтобы найти значения c_1 и c_2 для частного решения данного уравнения.

$$\begin{cases} \frac{dy}{dx} = \frac{y}{1 + c_1 y} \Rightarrow 1 = \frac{1}{1 + c_1} \Rightarrow 1 + c_1 = 1 \Rightarrow c_1 = 0, \\ \ln|y| + c_1 y = x + c_2 \Rightarrow \ln 1 + 0 \cdot 1 = 0 + c_2 \Rightarrow c_2 = 0. \end{cases}$$

Следовательно, решением задачи Коши является частное решение уравнения, получающееся из общего при подстановке в него значений $c_1 = 0$ и $c_2 = 0$:

$$\ln|y| + 0 = x + 0$$

$$\ln|y| = x \Longrightarrow y = e^x$$

Ответ: $y = e^x$

4. Примеры

Решить уравнения или задачи Коши:

1.
$$y'' \cdot x \cdot \ln x = y'$$
.

2.
$$xy'' - y' = x^2 e^x$$
.

3.
$$(1+x^2) \cdot y'' + 2xy' = 4x^3$$
.

4.
$$y'' \cdot tgy = 2 \cdot (y')^2$$
.

5.
$$y'' \cdot y^3 = 1$$
.

6.
$$y \cdot y'' + (y')^2 - (y')^3 \ln y = 0$$
.

7.

$$y'' \cdot (x^2 + 1) = 2xy'; y(0) = 1, y'(0) = 3.$$

8.

$$y'' = \frac{y'}{x} \cdot (1 + \ln \frac{y'}{x}); y(1) = \frac{1}{2}, y'(1) = 1.$$

9.
$$2y'' = 3y^2$$
; $y(-2) = 1$, $y'(-2) = -1$.

10.
$$y'' + (y')^2 = 2e^{-y}$$
.

11.
$$y'' + y' = xy''$$
.

12.
$$yy'' - (y')^2 = 0$$
; $y(0) = 1$; $y'(0) = 2$.

13.
$$yy'' - (y')^2 = y^2 \ln y$$
.

14.
$$y''(2y+3)-2(y')^2=0$$
.

15.
$$2yy'' = 1 + (y')^2$$
.

16.
$$y'' = (y')^2$$
.

17.

$$y''(e^x + 1) + y' = 0; y(0) = 1; y'(0) = 5.$$

18.

$$yy'' + (y')^3 - (y')^2 = 0; y(1) = 1; y'(1) = -1.$$

19.
$$x^2y'' = x^3 + 4$$
.

20.
$$y'' = 2y^3$$
; $y(0) = 1$; $y'(0) = 1$.

5. Ответы

1.
$$y = c_1 x(\ln x - 1) + c_2$$
.

2.
$$y = e^x(x-1) + c_1x^2 + c_2$$
.

3.
$$y = \frac{x^3}{3} - x + c_1 \cdot arctgx + c_2$$
.

4.
$$ctgy = c_1x + c_2$$
; $y = c$.

5.
$$\frac{1}{c_1} \cdot \sqrt{c_1 y^2 - 1} = x + c_2$$

(или
$$c_1 y^2 = (c_1 x + c_2)^2 + 1$$
).

6.
$$x = c_1 y^2 + y \ln y + c_2$$
; $y = c$.

7.
$$y = x^3 + 3x + 1$$
.

8.
$$y = \frac{x^2}{2}$$
.

9.
$$y = \frac{4}{(x+4)^2}$$
.

10.
$$e^y + c_1 = (x + c_2)^2$$
.

11.
$$y = c_1 \cdot \frac{x^2}{2} - c_1 x + c_2$$
.

12.
$$y = e^{2x}$$
.

13.
$$\ln y = c_1 e^x + c_2 e^{-x}$$
.

14.
$$ln(2y+3) = 2(c_1x + c_2)$$
.

15.
$$4(c_1y-1) = (c_1x+c_2)^2$$
.
16. $x+c_2 = -e^{-(y+c_1)}$.
17. $y = \frac{1}{c_1}x - \frac{1}{c_1}e^{-x} + c_2$.
18. $y^* = x + \ln(y^*)^2$.

Замечание. Дифференциальные уравнения вида F(y'; y'') = 0, не содержащие в явном виде как независимую переменную x, так и искомую функцию y, можно решать как уравнение вида 2) или 3).

§2. Линейные дифференциальные уравнения второго порядка

1. Основные понятия

Определение 1. Уравнение, вида:

$$y'' + p(x)y' + q(x)y = f(x),$$
(1)

где p(x), q(x), f(x) — непрерывные на промежутке (a;b) функции, называется линейным дифференциальным уравнением $(\Pi \Pi Y)$ второго порядка. Если $f(x) \equiv 0$ для всех x из промежутка (a;b), то уравнение (1) называют линейным однородным дифференциальным уравнением $(\Pi \Pi \Pi Y)$:

$$y'' + p(x)y' + q(x)y = 0$$
 (2)

Если $f(x) \neq 0$, то уравнение (1) называют линейным неоднородным дифференциальным уравнением (ЛНДУ).

Определение 2. Две функции $y_1(x)$ и $y_2(x)$ называются линейно зависимыми на промежутке (a;b), если для всех $x \in (a;b)$ их отношение равно постоянной величине, т.е. $\frac{y_1(x)}{y_2(x)} = const.$ В противном случае, если $y_1(x)$

 $\frac{y_1(x)}{y_2(x)} \neq const$, функции называются линейно независимыми на промежутке (a;b).

Определение 3. Если $y_1(x)$ и $y_2(x)$ – линейно независимые решения ЛОДУ, то они образуют фундаментальную систему решений этого уравнения.

Теорема 1. Если $y_1(x)$ и $y_2(x)$ – линейно независимые решения ЛОДУ (2) на промежутке (a;b), то их линейная комбинация

$$y = c_1 y_1(x) + c_2 y_2(x),$$

где c_1 и c_2 – произвольные постоянные, является общим решением этого уравнения.

Теорема 2. Общее решение ЛНДУ второго порядка (1) представляется в виде суммы общего решения y_0 соответствующего ЛОДУ (2) и любого частного решения \bar{y} ЛНДУ (1), т.е. $y = y_0 + \bar{y}$ – общее решение ЛНДУ (1).

Теорема 3. Если $y = \overline{y}_1(x)$ – частное решение ЛНДУ:

$$y'' + p(x)y' + q(x)y = f_1(x),$$

а $y = \overline{y}_2(x)$ — частное решение ЛНДУ:

$$y'' + p(x)y' + q(x)y = f_2(x),$$

то $y = y_1(x) + y_2(x)$ является частным решением ЛНДУ:

$$y'' + p(x)y' + q(x)y = f_1(x) + f_2(x).$$

2. Линейные однородные дифференциальные уравнения с постоянными коэффициентами

Определение 1. Уравнение вида

$$y'' + p \cdot y' + q \cdot y = 0, \tag{3}$$

где p и q — действительные числа, называется линейным однородным дифференциальным уравнением (ЛОДУ) второго порядка с постоянными коэффициентами.

Метод Эйлера для решения ЛОДУ с постоянными коэффициентами

Частные решения такого уравнения получают с помощью замены:

$$\begin{bmatrix} y = e^{kx} \\ y' = ke^{kx} \\ y'' = k^2 e^{kx} \end{bmatrix}$$
(*)

Подставляя в уравнение (3) выражения (*), получим:

$$k^{2}e^{kx} + pk \cdot e^{kx} + q \cdot e^{kx} = 0 \mid : e^{kx} \neq 0,$$

 $k^{2} + pk + q = 0.$ (4)

Уравнение (4) называется *характеристическим* для данного уравнения (3). Оно является квадратным уравнением, поэтому в зависимости от величины дискриминанта $D = p^2 - 4q$ возможны три случая.

1) D > 0. Тогда корни характеристического уравнения (4) действительные и различные $-k_1 \neq k_2$. Они дадут два линейно независимых решения: $y_1 = e^{k_1 x}$ и $y_2 = e^{k_2 x}$. Следовательно, в этом случае по теореме 1 общее решение уравнения (3) можно записать в виде:

$$y = c_1 e^{k_1 x} + c_2 e^{k_2 x}.$$

2) D=0. В этом случае $k_1=k_2$. Поэтому одно решение уравнения (3) будет $y_1=e^{k_1x}$. В качестве второго, линейно независимого с первым, можно взять функцию $y_2=xe^{k_1x}$. Следовательно, в этом случае по теореме 1 общее решение уравнения (3) можно записать в виде:

$$y = c_1 e^{k_1 x} + c_2 x e^{k_1 x},$$

или $y = e^{k_1 x} (c_1 + c_2 x).$

3) D < 0. В этом случае корни уравнения (4) комплексно-сопряженные: $k_{1,2} = \alpha \pm \beta \cdot i$. Тогда в качестве линейно независимых решений можно взять функции $y_1 = e^{\alpha x} \cdot \cos \beta x$ и $y_2 = e^{\alpha x} \cdot \sin \beta x$. Следовательно, в этом случае по теореме 1 общее решение уравнения (3) можно записать в виде:

$$y = c_1 e^{\alpha x} \cdot \cos \beta x + c_2 e^{\alpha x} \cdot \sin \beta x,$$

или $y = e^{\alpha x} (c_1 \cdot \cos \beta x + c_2 \cdot \sin \beta x).$

3. Примеры с решениями

Пример 1. Найти фундаментальную систему решений и общее решение:

$$3y'' - 2y' - y = 0.$$

Решение. Подставляя $y = e^{kx}$, $y' = ke^{kx}$, $y'' = k^2 e^{kx}$ в заданное уравнение, получим характеристическое уравнение:

$$3k^2e^{kx} - 2ke^{kx} - e^{kx} = 0 \mid :e^{kx} \neq 0$$

$$3k^2 - 2k - 1 = 0$$

$$D = 4 + 4 \cdot 3 = 16 > 0;$$

$$k_1 = \frac{2+4}{6} = 1; k_2 = \frac{2-4}{6} = -\frac{1}{3}.$$

Так как корни действительные и различные, то фундаментальную систему решений этого уравнения составят функции:

$$y_1 = e^x, y_2 = e^{-\frac{x}{3}}.$$

Тогда общее решение данного уравнения можно записать в виде линейной комбинации:

$$y = c_1 e^x + c_2 e^{-\frac{x}{3}}.$$

Omsem: $y_1 = e^x$, $y_2 = e^{-\frac{x}{3}}$; $y = c_1 e^x + c_2 e^{-\frac{x}{3}}$.

Пример 2. Решить уравнение:

$$9y'' + 6y' + y = 0.$$

Решение. Характеристическое уравнение:

$$9k^2 + 6k + 1 = 0$$
.

$$D = 36 - 36 = 0$$
.

Корни этого уравнения будут действительными и равными:

$$k_1 = k_2 = \frac{-6 \pm 0}{18} = -\frac{1}{3}.$$

Тогда фундаментальную систему решений этого уравнения составят функции:

$$y_1 = e^{-\frac{x}{3}}; y_2 = xe^{-\frac{x}{3}}.$$

Общее решение запишется как линейная комбинация этих решений:

$$y = c_1 e^{-\frac{x}{3}} + c_2 x e^{-\frac{x}{3}}.$$

Omeem: $y = c_1 e^{-\frac{x}{3}} + c_2 x e^{-\frac{x}{3}}$.

Пример 3. Решить уравнение:

$$y'' + 6y' + 13y = 0.$$

Решение. Характеристическое уравнение:

$$k^2 + 6k + 13 = 0.$$

Решим его: $D = 36 - 4 \cdot 13 = -16 < 0$.

Корни этого уравнения будут комплексно-сопряженными:

$$k_{1,2} = \frac{-6 \pm 4i}{2} = -3 \pm 2i$$
, т.е $\alpha = -3$ и $\beta = 2$.

Фундаментальную систему решений этого уравнения составят функции:

$$y_1 = e^{-3x} \cdot \cos 2x; y_2 = e^{-3x} \cdot \sin 2x.$$

Общее решение запишется как линейная комбинация этих функций:

$$y = c_1 e^{-3x} \cdot \cos 2x + c_2 e^{-3x} \cdot \sin 2x$$
.

Omsem: $y = e^{-3x}(c_1 \cdot \cos 2x + c_2 \cdot \sin 2x)$.

Пример 4. Решить задачу Коши:

$$\begin{bmatrix} y'' - 2y' + y = 0 \\ y(0) = 1; y'(0) = 3 \end{bmatrix}$$

Решение. Характеристическое уравнение:

$$k^2 - 2k + 1 = 0$$

 $D = 4 - 4 = 0$.

Корни этого уравнения действительные и равные:

$$k_1 = k_2 = \frac{2 \pm 0}{2} = 1.$$

Фундаментальную систему решений этого уравнения составят функции:

$$y_1 = e^x$$
; $y_2 = x \cdot e^x$.

Общее решение запишется как линейная комбинация этих функций:

$$y = c_1 e^x + c_2 x e^x.$$

Найдем частное решение, удовлетворяющее начальным условиям y(0) = 1 и y'(0) = 3. Сначала найдем:

$$y' = (c_1e^x + c_2xe^x)' = c_1e^x + c_2e^x + c_2xe^x.$$

Составим систему из двух уравнений, подставляя в общее решение y = 1, x = 0, y' = 3:

$$\begin{cases} 1 = c_1 e^0 + c_2 \cdot 0 \cdot e^0 \\ 3 = c_1 e^0 + c_2 e^0 + c_2 \cdot 0 \cdot e^0 \end{cases} \Rightarrow \begin{cases} 1 = c_1 \\ 3 = c_1 + c_2 \end{cases} \Rightarrow \begin{cases} c_1 = 1 \\ c_2 = 2 \end{cases}$$

Подставим найденные значения $c_1 = 1$ и $c_2 = 2$ в общее решение:

 $y = 1 \cdot e^x + 2 \cdot x \cdot e^x \Rightarrow y = e^x + 2xe^x$ — это и будет решение задачи Коши.

Omeem: $y = e^x (1 + 2x)$.

4. Примеры

Найти фундаментальную систему решений:

1.
$$y'' - 5y' + 6y = 0$$
.

2.
$$y'' - 6y' + 9 = 0$$
.

3.
$$y'' - 3y' = 0$$
.

4.
$$y'' + 4y' + 13y = 0$$
.

5.
$$y'' + 4y' + 4y = 0$$
.

6.
$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 2y = 0.$$

Найти общее решение уравнения:

7.
$$y'' + 2\sqrt{2}y' + 2y = 0$$
.

8.
$$2y'' - 4y' + y = 0$$
.

9.
$$9y'' - 24y' + 16y = 0$$
.

10.
$$y'' - 4y' + 13y = 0$$
.

11.
$$3y'' - y' + y = 0$$
.

12.
$$y'' + 3y' + 2y = 0$$
.

13.
$$y'' - 4y' + 4y = 0$$
.

14.
$$y'' + \pi^2 y = 0$$
.

15.
$$y'' + 8y' + 16y = 0$$
.

16.
$$3y'' + 2y' - 5y = 0$$
.

17.
$$y'' - 2y' + 17y = 0$$
.

18.
$$y'' + 7y' = 0$$
.

19.
$$y'' + 16y = 0$$
.

20.
$$y'' + 5y' - 14y = 0$$
.

Решить задачи Коши или краевые задачи:

21.
$$y'' - 5y' + 4y = 0$$
; $y(0) = 5$, $y'(0) = 8$.

22.
$$y'' + 3y' = 0$$
; $y(0) = 0$, $y(3) = 0$.

23.
$$y'' - 2y' + 2y = 0$$
; $y(0) = 0$, $y'(0) = 1$.

24.
$$9y'' + y = 0; y\left(\frac{3\pi}{2}\right) = 2, y'\left(\frac{3\pi}{2}\right) = 0.$$

25.
$$y'' - 10y' + 25y = 0$$
; $y(0) = 0$, $y'(0) = 1$.

5. Ответы

1.
$$y_1 = e^{2x}, y_2 = e^{3x}$$
.

2.
$$y_1 = e^{3x}, y_2 = xe^{3x}$$

3.
$$y_1 = 1, y_2 = e^{3x}$$
.

4.
$$y_1 = e^{-2x} \cos 3x$$
, $y_2 = e^{-2x} \sin 3x$.

5.
$$y_1 = e^{-2x}$$
, $y_2 = xe^{-2x}$.

6.
$$y_1 = e^{(-3-\sqrt{7})x}, y_2 = e^{(-3+\sqrt{7})x}$$

7.
$$y = c_1 e^{-\sqrt{2}x} + c_2 x e^{-\sqrt{2}x}$$
.

8.
$$y = c_1 e^{\left(1 + \frac{\sqrt{2}}{2}\right)x} + c_2 e^{\left(1 - \frac{\sqrt{2}}{2}\right)x}$$
.

9.
$$y = c_1 e^{4x/3} + c_2 x e^{4x/3}$$
.

10.
$$y = e^{2x}(c_1 \cos 3x + c_2 \sin 3x)$$
.

11.
$$y = e^{\frac{x}{6}} (c_1 \cos \frac{\sqrt{11}}{6} x + c_2 \sin \frac{\sqrt{11}}{6} x).$$

12.
$$y = c_1 e^{-x} + c_2 e^{-2x}$$
.

13.
$$y = e^{2x}(c_1 + c_2 x)$$
.

14.
$$y = c_1 \cos \pi x + c_2 \sin \pi x$$
.

15.
$$y = e^{-4x}(c_1 + c_2 x)$$
.

16.
$$y = c_1 e^x + c_2 e^{-\frac{5}{3}x}$$
.

17.
$$y = e^x(c_1 \cos 4x + c_2 \sin 4x)$$
.

18.
$$y = c_1 + c_2 e^{-7x}$$
.

19.
$$y = c_1 \cos 4x + c_2 \sin 4x$$
.

20.
$$y = c_1 e^{-7x} + c_2 e^{2x}$$
.

21.
$$y = 4e^x + e^{4x}$$
.

22.
$$y \equiv 0$$
.

23.
$$y = e^x \cdot \sin x$$
.

24.
$$y = 2\sin\frac{x}{3}$$
.

25.
$$y = x \cdot e^{5x}$$
.

§3. Решение линейных неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами

1. Решение линейного неоднородного дифференциального уравнения второго порядка

$$y'' + py' + qy = f(x), \tag{1}$$

где p и q – постоянные величины, f(x) – функция специального вида.

Пусть правая часть уравнения (1) имеет специальный вид. Тогда частное решение \bar{y} этого уравнения можно подобрать в зависимости от вида f(x). Такой метод называют методом неопределенных коэффициентов.

1) Пусть $f(x) = e^{\alpha x} \cdot P_n(x)$,

где $P_n(x)$ – многочлен степени n .

Тогда частное решение \bar{y} подбирают в виде:

$$\bar{y} = e^{\alpha x} \cdot x^r \cdot Q_n(x),$$

где а) $Q_n(x)$ — многочлен степени n с неопределенными коэффициентами, которые надо будет определить методом неопределенных коэффициентов;

б) r=0, если число $\alpha \neq k_1$ и $\alpha \neq k_2$ (корням характеристического уравнения);

r=1, если $\alpha=k_1\neq k_2$;

r = 2, если $\alpha = k_1 = k_2$;

2) Пусть $f(x) = A \cdot \cos \beta x + B \cdot \sin \beta x$, где A и B —заданные числа, причем хотя бы одно из чисел A и B не равно нулю. Тогда частное решение \bar{y} подбирают в виде:

$$\overline{y} = x^r \cdot (M \cos \beta x + N \sin \beta x),$$

- где а) M и N неопределенные числа, которые надо будет определить методом неопределенных коэффициентов;
- б) r = 0, если число βi не является корнем характеристического уравнения; r = 1, если число βi является корнем характеристического уравнения.
- 3) Пусть $f(x) = e^{\alpha x} (M_n(x) \cdot \cos \beta x + N_m(x) \cdot \sin \beta x)$, где $M_n(x)$ и $N_m(x)$ многочлены степени n и m соответственно, причем один из этих многочленов может быть равен нулю. Тогда частное решение \bar{y} подбирают в виде:

$$\bar{y} = x^r \cdot e^{\alpha x} \cdot (P_l(x)\cos\beta x + Q_l(x)\sin\beta x),$$

- где а) $P_l(x)$ и $Q_l(x)$ -многочлены степени $l=\max(n,m)$ с неопределенными коэффициентами, которые надо будет определить методом неопределенных коэффициентов;
- б) r = 0, если число $\alpha + \beta i$ не является корнем характеристического уравнения; r = 1, если число $\alpha + \beta i$ является корнем характеристического уравнения.

2. Решение линейного неоднородного дифференциального уравнения второго порядка методом вариации произвольных постоянных

Пусть дано ЛНДУ второго порядка с постоянными коэффициентами

$$y'' + py' + qy = f(x),$$
 (1)

и соответствующее уравнению (1) ЛОДУ:

$$y'' + py' + qy = 0, (2)$$

для которого известна фундаментальная система решений $y_1(x)$ и $y_2(x)$. Тогда общее решение ЛОДУ (2) запишется в виде:

$$y_0 = c_1 y_1(x) + c_2 y_2(x), (3)$$

где c_1 и c_2 – произвольные постоянные.

По методу вариации произвольных постоянных общее решение ЛНДУ (1) ищется в виде (3), считая, что c_1 и c_2 – не постоянные, а некоторые функции от x:

$$y = c_1(x)y_1(x) + c_2(x)y_2(x). (4)$$

Для нахождения $c_1(x)$ и $c_2(x)$ составим систему двух уравнений:

$$\begin{cases} c'_1(x)y_1(x) + c'_2(x)y_2(x) = 0, \\ c'_1(x)y'_1(x) + c'_2(x)y'_2(x) = f(x). \end{cases}$$

Решая эту систему, найдем $c_1'(x)$ и $c_2'(x)$:

$$c_1'(x) = \varphi_1(x)$$
 и $c_2'(x) = \varphi_2(x)$.

Интегрируя полученные равенства, получим:

$$c_1(x) = \int \varphi_1(x)dx + \bar{c}_1; \quad c_2(x) = \int \varphi_2(x)dx + \bar{c}_2,$$

где \overline{c}_1 и \overline{c}_2 – произвольные постоянные.

Подставляя найденные $c_1(x)$ и $c_2(x)$ в формулу (4), получим общее решение ЛНДУ (1):

$$y = (\int \varphi_1(x)dx + \bar{c}_1)y_1(x) + (\int \varphi_2(x)dx + \bar{c}_2)y_2(x).$$

3. Примеры с решениями

Пример 1. Решить уравнение:

$$y'' + 2y' + y = e^{2x},$$

Решение:

1) Решим соответствующее ЛОДУ:

$$y'' + 2y' + y = 0,$$

Его характеристическое уравнение:

$$k^2 + 2k + 1 = 0$$

Решим это уравнение.

$$D = 4 - 4 = 0 \Longrightarrow$$
 корни действительные и равные: $k_1 = k_2 = \frac{-2 \pm 0}{2} = -1$.

Следовательно, общее решение ЛОДУ имеет вид:

$$y_0 = c_1 e^{-x} + c_2 x e^{-x}$$
,

где c_1 и c_2 – произвольные постоянные.

2) Правая часть ЛНДУ: $f(x) = e^{2x}$, т.е. имеет вид: $f(x) = P_0 \cdot e^{2x}$, где $n = 0, \alpha = 2 \neq k_{1,2}$.

Поэтому r = 0 и частное решение данного уравнения ищем в виде:

$$\overline{y} = A \cdot e^{2x}$$
.

Отсюда находим $\bar{y}' = 2A \cdot e^{2x}$, $\bar{y}'' = 4A \cdot e^{2x}$. Подставляя \bar{y} , \bar{y}' , \bar{y}'' вместо y, y', y'' в данное уравнение, получим равенство:

$$4Ae^{2x} + 2 \cdot 2Ae^{2x} + Ae^{2x} = e^{2x} \mid : e^{2x} \neq 0$$

$$4A + 4A + A = 1$$

$$9A = 1 \Rightarrow A = \frac{1}{9}.$$

Следовательно, частное решение данного уравнения $\bar{y} = \frac{1}{9}e^{2x}$.

3) Найдем общее решение данного уравнения, воспользовавшись теоремой 2 (из §2):

$$y = y_0 + \overline{y}$$

$$y = c_1 e^{-x} + c_2 x e^{-x} + \frac{1}{9} e^{2x}.$$
 Omsem: $y = c_1 e^{-x} + c_2 x e^{-x} + \frac{1}{9} e^{2x}.$

Пример 2. Решить уравнение:

$$y'' + 3y' = 2 - x^2.$$

Решение:

1) Решим соответствующее ЛОДУ:

$$y'' + 3y' = 0$$

Его характеристическое уравнение:

$$k^{2} + 3k = 0$$

 $k(k+3) = 0$
 $k_{1} = 0, k_{2} = -3$.

Следовательно, общее решение ЛОДУ имеет вид:

$$y_0 = c_1 e^0 + c_2 e^{-3x}$$
$$y_0 = c_1 + c_2 e^{-3x},$$

где c_1 и c_2 – произвольные постоянные.

2) Правая часть ЛНДУ:

$$f(x) = 2 - x^2$$
, т.е. $f(x) = P_2(x) \cdot e^{0 \cdot x}$, где $n = 2$, $\alpha = 0 = k_1 \neq k_2$.

Поэтому r = 1. Значит, частное решение ЛНДУ ищем в виде:

$$\overline{y} = x(ax^2 + bx + c) \cdot e^{0 \cdot x}$$
$$\overline{y} = ax^3 + bx^2 + cx.$$

Отсюда находим $\bar{y}' = 3ax^2 + 2bx + c$; $\bar{y}'' = 6ax + 2b$. Подставляя \bar{y}'' , \bar{y}' и \bar{y} вместо y'', y' и y в данное уравнение, получим равенство:

$$6ax + 2b + 3(3ax^2 + 2bx + c) = 2 - x^2$$

$$6ax + 2b + 9ax^2 + 6bx + 3c = 2 - x^2$$

Приравниваем коэффициенты при одинаковых степенях:

$$\begin{vmatrix}
 a = -\frac{1}{9} \\
 x^2 : 9a = -1 \\
 x : 6a + 6b = 0 \\
 x^0 : 2b + 3c = 2
\end{vmatrix} \Rightarrow 6b = \frac{6}{9} \Rightarrow 6b = \frac{2}{3} \Rightarrow b = \frac{1}{9} \\
 3c = 2 - \frac{2}{9} \Rightarrow 3c = \frac{16}{9} \Rightarrow c = \frac{16}{27}.$$

Следовательно, частное решение данного ЛНДУ имеет вид:

$$\overline{y} = -\frac{1}{9}x^3 + \frac{1}{9}x^2 + \frac{16}{27}x.$$

3) Найдем общее решение данного уравнения:

$$y = y_0 + \overline{y}$$

$$y = c_1 + c_2 e^{-3x} - \frac{1}{9} x^3 + \frac{1}{9} x^2 + \frac{16}{27} x.$$
 Ombem: $y = c_1 + c_2 e^{-3x} - \frac{1}{9} x^3 + \frac{1}{9} x^2 + \frac{16}{27} x.$

Пример 3. Решить уравнение:

$$y'' + 4y' + 4y = (1 - 4x)e^{-2x}.$$

Решение:

1) Решим соответствующее ЛОДУ:

$$y'' + 4y' + 4y = 0$$

Его характеристическое уравнение:

$$k^2 + 4k + 4 = 0$$

$$D = 16 - 16 = 0.$$

Поэтому корни характеристического уравнения действительные и равные:

$$k_1 = k_2 = \frac{-4 \pm 0}{2} = -2.$$

Следовательно, общее решение ЛОДУ имеет вид:

$$y_0 = c_1 e^{-2x} + c_2 x e^{-2x},$$

где c_1 и c_2 – произвольные постоянные.

2) Правая часть данного ЛНДУ: $f(x) = (1-4x)e^{-2x}$, т.е. $f(x) = P_1(x) \cdot e^{-2x}$, где n=1 и $\alpha=-2=k_1=k_2 \Rightarrow r=2$.

Поэтому частное решение ЛНДУ ищем в виде:

$$\overline{y} = x^2 \cdot (ax + b) \cdot e^{-2x}$$
$$\overline{y} = (ax^3 + bx^2) \cdot e^{-2x}$$

Отсюда находим $\bar{y}' = (3ax^2 + 2bx - 2ax^3 - 2bx^2) \cdot e^{-2x}$,

$$\bar{y}'' = (6ax + 2b - 6ax^2 - 4bx - 6ax^2 - 4bx + 4ax^3 + 4bx^2) \cdot e^{-2x} =$$

$$= (4ax^3 - 12ax^2 + 4bx^2 + 6ax - 8bx + 2b)e^{-2x}.$$

Подставляя \bar{y}'' , \bar{y}' и \bar{y} вместо y'', y' и y в данное уравнение, получим равенство:

$$(4ax^3 - 12ax^2 + 4bx^2 + 6ax - 8bx + 2b)e^{-2x} + 4(3ax^2 + 2bx - 2ax^3 - 2bx^2)e^{-2x} +$$

$$+4(ax^3+bx^2)e^{-2x}=(1-4x)e^{-2x}$$
 |: $e^{-2x}\neq 0$,

$$4ax^{3} - 12ax^{2} + 4bx^{2} + 6ax - 8bx + 2b + 12ax^{2} + 8bx - 8ax^{3} - 8bx^{2} + 4ax^{3} + 4bx^{2} = 1 - 4x$$
$$6ax + 2b = 1 - 4x$$

$$x : 6a = -4$$

$$x_0 : 2b = 1$$
 \Rightarrow
$$\begin{cases} a = -\frac{2}{3} \\ b = \frac{1}{2} \end{cases}$$

Следовательно, частное решение данного ЛНДУ имеет вид:

$$\overline{y} = (-\frac{2}{3}x^3 + \frac{1}{2}x^2)e^{-2x}.$$

3) Найдем общее решение данного уравнения:

$$y = y_0 + \overline{y}$$

$$y = c_1 e^{-2x} + c_2 x e^{-2x} + (-\frac{2}{3}x^3 + \frac{1}{2}x^2)e^{-2x}.$$
Ombem: $y = c_1 e^{-2x} + c_2 x e^{-2x} + (-\frac{2}{3}x^3 + \frac{1}{2}x^2)e^{-2x}.$

Пример 4. Решить уравнение:

$$y'' + 4y' + 5y = 3e^{-2x} \sin x.$$

Решение:

1) Решим соответствующее ЛОДУ:

$$y'' + 4y' + 5y = 0.$$

Его характеристическое уравнение:

$$k^2 + 4k + 5 = 0$$

$$D = 16 - 20 = -4 < 0.$$

Поэтому корни характеристического уравнения комплексно-сопряженные:

$$k_{1,2} = \frac{-4 \pm 2i}{2} = -2 \pm i \ (\alpha = -2, \beta = 1).$$

Следовательно, общее решение ЛОДУ имеет вид:

$$y_0 = c_1 e^{-2x} \cos x + c_2 e^{-2x} \sin x$$

где $c_1^{}$ и $c_2^{}$ – произвольные постоянные.

2) Правая часть данного ЛНДУ:

$$f(x) = 3e^{-2x} \sin x$$
, т.е. $f(x) = e^{-2x} (0 \cdot \cos x + 3\sin x)$, где $\alpha = -2$, $\beta = 1 \Rightarrow \alpha + \beta i = -2 + i = k_1 \Rightarrow r = 1$.

Поэтому частное решение ЛНДУ ищем в виде:

$$\bar{y} = x \cdot e^{-2x} (A\cos x + B\sin x).$$

Отсюда находим \bar{y}'', \bar{y}' и подставляем \bar{y}'', \bar{y}' и \bar{y} вместо y'', y' и y в данное уравнение.

$$\overline{y}' = e^{-2x}(A\cos x + B\sin x) - 2xe^{-2x}(A\cos x + B\sin x) + xe^{-2x}(-A\sin x + B\cos x),$$

$$\overline{y}'' = -2e^{-2x}(A\cos x + B\sin x) + e^{-2x}(-A\sin x + B\cos x) - 2e^{-2x}(+A\cos x + B\sin x) +$$

$$+ 4xe^{-2x}(A\cos x + B\sin x) - 2xe^{-2x}(-A\sin x + B\cos x) + e^{-2x}(-A\sin x + B\cos x) -$$

$$- 2xe^{-2x}(-A\sin x + B\cos x) + xe^{-2x}(-A\cos x - B\sin x) = -4e^{-2x}(A\cos x + B\sin x) +$$

$$+ 2e^{-2x}(-A\sin x + B\cos x) - 4xe^{-2x}(-A\sin x + B\cos x) + 3xe^{-2x}(A\cos x + B\sin x).$$
Подстановка в данное уравнение:
$$- 4xe^{-2x}(A\cos x + B\sin x) + 2e^{-2x}(-A\sin x + B\cos x) - 4xe^{-2x}(-A\sin x + B\cos x) +$$

$$+ 2xe^{-2x}(A\cos x + B\sin x) + 4e^{-2x}(A\cos x + B\sin x) - 8xe^{-2x}(A\cos x + B\sin x) +$$

$$+ 2xe^{-2x}(A\cos x + B\sin x) + 4e^{-2x}(A\cos x + B\sin x) - 8xe^{-2x}(A\cos x + B\sin x) +$$

$$+3xe^{-2x}(A\cos x + B\sin x) + 4e^{-2x}(A\cos x + B\sin x) - 8xe^{-2x}(A\cos x + B\sin x) + 4xe^{-2x}(-A\sin x + B\cos x) + 5xe^{-2x}(A\cos x + B\sin x) = 3e^{-2x} \cdot \sin x.$$

$$+4xe^{-2x}(-A\sin x + B\cos x) + 5xe^{-2x}(A\cos x + B\sin x) = 3e^{-2x} \cdot \sin x.$$

$$+2e^{-2x}(-A\sin x + B\cos x) = 3e^{-2x} \cdot \sin x \quad |e^{-2x} \neq 0,$$

$$2e^{-2x}(-A\sin x + B\cos x) = 3e^{-2x} \cdot \sin x \ | :e^{-2x} \neq 0,$$

$$-2A\sin x + 2B\cos x = 3\sin x$$

$$\begin{cases} \sin x \colon \begin{cases} -2A = 3 \\ \cos x \colon \end{cases} \begin{cases} A = -\frac{3}{2} \\ B = 0. \end{cases}$$

Следовательно, частное решение ЛНДУ:

$$\overline{y} = -\frac{3}{2}e^{-2x} \cdot \cos x.$$

3) Найдем общее решение данного ЛНДУ:

$$y = y_0 + \overline{y}$$

$$y = c_1 e^{-2x} \cos x + c_2 e^{-2x} \sin x - \frac{3}{2} e^{-2x} \cdot \cos x.$$
Ombem: $y = c_1 e^{-2x} \cos x + c_2 e^{-2x} \sin x - \frac{3}{2} e^{-2x} \cdot \cos x.$

Пример 5. Решить уравнение:

$$y'' + y = (2x+3) \cdot \sin x + \cos x.$$

Решение:

1) Решим соответствующее ЛОДУ:

$$y'' + y = 0.$$

Его характеристическое уравнение:

$$k^{2} + 1 = 0$$

 $k^{2} = -1$
 $k_{1,2} = \pm i \quad (\alpha = 0, \beta = 1)$

Следовательно, общее решение ЛОДУ имеет вид:

$$y_0 = c_1 \cos x + c_2 \sin x,$$

где c_1 и c_2 – произвольные постоянные.

2) Правая часть данного ЛНДУ:

$$f(x) = (2x+3)\sin x + \cos x$$
, т.е. $f(x) = P_1(x)\sin x + Q_0(x)\cos x$, где $\alpha = 0, \beta = 1, n = 1, m = 0 \Rightarrow l = \max(0,1) = 1, \pm \beta i = k_{1,2} \Rightarrow r = 1$.

Значит, частное решение данного уравнения ищем в виде:

$$\overline{y} = x((ax+b)\cos x + (cx+d)\sin x)$$
$$\overline{y} = (ax^2 + bx)\cos x + (cx^2 + dx)\sin x.$$

Отсюда находим \bar{y}', \bar{y}'' :

$$\overline{y}' = (2ax+b)\cos x + (ax^2+bx)(-\sin x) + (2cx+d)\sin x + (cx^2+dx)\cos x =$$

$$= (2ax+b+cx^2+dx)\cos x + (2cx+d-ax^2-bx)\sin x.$$

$$\overline{y}'' = (2a+2cx+d)\cos x + (2ax+b+cx^2+dx)(-\sin x) + (2c-2ax-b)\sin x +$$

$$+ (2cx+d-ax^2-bx)\cos x = (2a+2cx+d+2cx+d-ax^2-bx)\cos x +$$

$$(-2ax-b-cx^2-dx+2c-2ax-b)\sin x = (2a+4cx+2d-ax^2-bx)\cos x +$$

$$(-4ax-2b-cx^2-dx+2c)\sin x.$$

Подстановка в данное ЛНДУ:

$$(2a + 4cx + 2d - ax^2 - bx)\cos x + (-4ax - 2b - cx^2 - dx + 2c)\sin x + (ax^2 + bx)\cos x + (cx^2 + dx)\sin x = (2x + 3)\sin x + \cos x.$$

$$\cos x(2a + 4cx + 2d - ax^2 - bx + ax^2 + bx) + \sin x(-4ax - 2b - cx^2 - dx + 2c + cx^2 + dx) =$$

$$= (2x + 3)\sin x + \cos x.$$

$$\cos x(2a + 4cx + 2d) + \sin x(-4ax - 2b + 2c) = (2x + 3)\sin x + \cos x.$$

$$\sin x: \begin{cases} -4ax - 2b + 2c = 2x + 3 \\ -2b + 2c = 3 \end{cases} d = -\frac{1}{2}$$

$$\cos x: \begin{cases} 2a + 4cx + 2d = 1 \\ 4c = 0 \end{cases} \begin{cases} 2a + 2d = 1 \\ b = -\frac{3}{2} \end{cases}$$

Следовательно, частное решение ЛНДУ:

$$\bar{y} = (-\frac{1}{2}x^2 - \frac{3}{2}x)\cos x + x \cdot \sin x.$$

3) Найдем общее решение ЛНДУ:

$$y = y_0 + \overline{y}$$

$$y = c_1 \cos x + c_2 \sin x + x \sin x - (\frac{1}{2}x^2 + \frac{3}{2}x)\cos x.$$
Ombem: $y = c_1 \cos x + c_2 \sin x + x \sin x - (\frac{1}{2}x^2 + \frac{3}{2}x)\cos x.$

Пример 6. Решить задачу Коши:

$$y'' + y' - 2y = \cos x - 3\sin x$$
.
 $y(0) = 1, y'(0) = 2$.

Решение:

1) Найдем общее решение соответствующего ЛОДУ:

$$y'' + y' - 2y = 0.$$

Его характеристическое уравнение:

$$k^2 + k - 2 = 0$$

 $D = 1 + 4 \cdot 2 = 9 > 0.$

Корни этого уравнения действительные и различные:

$$k_{1,2} = \frac{-1 \pm 3}{2};$$

 $k_1 = -2; k_2 = 1.$

Следовательно, общим решением ЛОДУ является функция:

$$y_0 = c_1 e^{-2x} + c_2 e^x,$$

где c_1 и c_2 – произвольные постоянные.

2) Правая часть данного ЛНДУ:

$$f(x) = \cos x - 3\sin x$$
, $\text{ r.e. } f(x) = 1 \cdot \cos x - 3\sin x$,

 $A=1, B=-3, \beta=1 \Rightarrow \pm \beta i=\pm i \neq k_{1,2} \Rightarrow r=0.$ Тогда частное решение \bar{y} данного ЛНДУ надо подбирать в виде:

$$\overline{y} = M \cos x + N \sin x$$
,

где M и N – некоторые числа, которые определяются методом неопределенных коэффициентов.

Найдём \bar{y}' и \bar{y}'' и подставим \bar{y}'' , \bar{y}' и \bar{y} вместо y'', y' и y в заданное ЛНДУ:

$$\bar{y}' = -M \sin x + N \cos x$$
; $\bar{y}'' = -M \cos x - N \sin x$.

 $-M\cos x - N\sin x + (-M)\sin x + N\cos x - 2M\cos x - 2N\sin x = \cos x - 3\sin x$. Приравняем коэффициенты при $\cos x$ и $\sin x$:

$$\sin x : -M + N - 2M = 1
\cos x : -N - M - 2N = -3$$

$$\Rightarrow \begin{cases} N - 3M = 1
-3N - M = -3 \end{cases} \Rightarrow \begin{cases} N = 1 + 3M
-3 - 9M - M = -3 \end{cases} M = 0.$$

Следовательно, частным решением данного ЛНДУ является $\bar{y} = \sin x$.

3) Найдем общее решение заданного ЛНДУ:

$$y = y_0 + \overline{y}$$
$$y = c_1 e^{-2x} + c_2 e^x + \sin x.$$

4) Решим задачу Коши: найдем частное решение ЛНДУ, удовлетворяющее заданным начальным условиям:

$$y(0) = 1, y'(0) = 2$$

$$y = c_1 e^{-2x} + c_2 e^x + \sin x.$$

$$y' = -2c_1 e^{-2x} + c_2 e^x + \cos x.$$

Подставим в эти функции x = 0, y = 1 и y' = 2:

$$\begin{cases} 1 = c_1 e^0 + c_2 e^0 + \sin 0 \\ 2 = -2c_1 e^0 + c_2 e^0 + \cos 0 \end{cases} \Rightarrow \begin{cases} 1 = c_1 + c_2 \\ 2 = -2c_1 + c_2 + 1 \end{cases} \Rightarrow \begin{cases} c_1 + c_2 = 1 \\ -2c_1 + c_2 = 1 \end{cases} \Rightarrow \begin{cases} c_1 = 0 \\ c_2 = 1. \end{cases}$$

Следовательно, частное решение ЛНДУ, удовлетворяющее заданным начальным условиям, задается функцией:

$$y = e^x + \sin x$$
.

Omeem: $y = e^x + \sin x$.

Пример 7. Решить уравнение:

$$y'' + 3y' + 2y = (1+x)e^x - 2x.$$

Решение:

1) Решим соответствующее ЛОДУ:

$$y'' + 3y' + 2y = 0.$$

Его характеристическое уравнение:

$$k^{2} + 3k + 2 = 0$$

$$D = 9 - 4 \cdot 2 = 1 > 0,$$

$$k_{1,2} = \frac{-3 \pm 1}{2};$$

$$k_{1} = -2; k_{2} = -1.$$

Следовательно, общее решение ЛОДУ имеет вид:

$$y_0 = c_1 e^{-2x} + c_2 e^{-x},$$

где c_1 и c_2 – произвольные постоянные.

2) Правая часть данного ЛНДУ состоит из двух различных по виду слагаемых:

$$f_1(x) = (1+x)e^x$$
 и $f_2(x) = -2x$.

Поэтому частное решение будет складываться из двух функций $\bar{y}_1(x)$ и $\bar{y}_2(x)$, каждая из которых будет частным решением для уравнений:

а)
$$y'' + 3y' + 2y = f_1(x)$$
 и б) $y'' + 3y' + 2y = f_2(x)$.

a)
$$y'' + 3y' + 2y = (1+x)e^x$$
 (*)

$$f_1(x) = (1+x)e^x$$
, r.e. $f_1(x) = P_1(x)e^x$.

где $n=1, \alpha=1 \neq k_{1,2} \Longrightarrow r=0.$

Поэтому \bar{y}_1 ищем в виде:

$$\bar{y}_1 = (ax+b)e^x$$
 $\bar{y}_1' = (a+ax+b)e^x$
 $\bar{y}_1'' = (a+a+ax+b)e^x = (2a+ax+b)e^x$.

Подставим найденные производные в уравнение (*):

$$(2a+ax+b)e^{x} + 3(a+ax+b)e^{x} + 2(ax+b)e^{x} = (1+x)e^{x} : e^{x} \neq 0$$

$$2a+ax+b+3a+3ax+3b+2ax+2b=1+x$$

$$6ax+5a+6b=1+x$$

$$x: 6a=1$$

$$x^{0}: 5a+6b=1$$

$$\Rightarrow \begin{cases} a = \frac{1}{6} \\ 6b = 1 - \frac{5}{6} \end{cases} \Rightarrow \begin{cases} a = \frac{1}{6} \\ b = \frac{1}{36} \end{cases}$$

Следовательно, частное решение для уравнения (*):

$$\overline{y}_{1}(x) = \left(\frac{1}{6}x + \frac{1}{36}\right)e^{x}.$$

$$6) \quad y'' + 3y' + 2y = -2x$$

$$f_{2}(x) = -2x, \text{ t.e. } f_{2}(x) = P_{1}(x)e^{0x},$$

$$\text{где } \alpha = 0 \neq k_{1,2} \Rightarrow r = 0, n = 1.$$

$$(**)$$

Поэтому частное решение \bar{y}_2 ищем в виде:

$$\overline{y}_2 = cx + d$$

$$\overline{y}'_2 = c$$

$$\overline{y}''_2 = 0.$$

Подставим найденные производные в уравнение (**):

$$3c + 2cx + 2d = -2x$$

$$x: 2c = -2$$

$$x^{0}: 3c + 2d = 0$$

$$\Rightarrow \begin{cases} c = -1 \\ 2d = 3 \end{cases} \Rightarrow \begin{cases} c = -1 \\ d = \frac{3}{2}. \end{cases}$$

Следовательно, частное решение для уравнения (**):

$$\overline{y}_2(x) = -x + \frac{3}{2}.$$

Значит, ЛНДУ частным решением ДЛЯ данного будет сумма $\overline{y}_1(x) + \overline{y}_2(x) = \overline{y}(x)$:

$$\bar{y}(x) = \left(\frac{1}{6}x + \frac{1}{36}\right)e^x - x + \frac{3}{2}.$$

3) Найдем общее решение ЛНДУ:

$$y = y_0 + \overline{y}$$

$$y = c_1 e^{-2x} + c_2 e^{-x} + \left(\frac{1}{6}x + \frac{1}{36}\right) e^x - x + \frac{3}{2}.$$
Omeem: $y = c_1 e^{-2x} + c_2 e^{-x} + \left(\frac{1}{6}x + \frac{1}{36}\right) e^x - x + \frac{3}{2}.$

Пример 8. Решить уравнение:

$$y'' - y' = \frac{e^x}{1 + e^x}.$$

Решение:

Pешение: 1) Решим соответствующее ЛОДУ: $y''-y'=0. \label{eq:y''}$

$$y'' - y' = 0$$

Его характеристическое уравнение:

$$k^{2} - k = 0,$$

 $k(k-1) = 0,$
 $k_{1} = 0, k_{2} = 1.$

Следовательно, общим решением ЛОДУ будет функция:

$$y_0 = c_1 + c_2 e^x,$$

где c_1 и c_2 – произвольные постоянные.

2) Правая часть данного ЛНДУ: $f(x) = \frac{e^x}{1 + o^x}$ не соответствует методу подбора частного решения этого уравнения. Поэтому применим метод вариации произвольных постоянных. Будем искать общее решение данного ЛНДУ в том же виде, в котором получили общее решение его ЛОДУ, но вместо $c_{_1}$ и $c_{_2}$ берем функции:

$$c_1 = c_1(x)$$
 и $c_2 = c_2(x)$.

Значит, общее решение ЛНДУ ищем в виде:

$$y(x) = c_1(x) + c_2(x)e^x$$
.

Для нахождения функций $c_1(x)$ и $c_2(x)$ составим систему двух уравнений:

$$\begin{cases} c_1'(x) \cdot 1 + c_2'(x) \cdot e^x = 0 \\ c_1'(x) \cdot (1)' + c_2'(x) \cdot (e^x)' = \frac{e^x}{1 + e^x} \end{cases} \Rightarrow \begin{cases} c_1' + c_2' \cdot e^x = 0 \\ c_2' \cdot e^x = \frac{e^x}{1 + e^x} \end{cases} \Rightarrow \begin{cases} c_2' = \frac{1}{1 + e^x} \\ c_1' = -\frac{e^x}{1 + e^x} \end{cases}$$

Проинтегрируем найденные c_1' и c_2' :

$$c_{1}(x) = -\int \frac{e^{x}}{1 + e^{x}} dx = -\int \frac{d(1 + e^{x})}{1 + e^{x}} = -\ln|1 + e^{x}| + \overline{c}_{1}$$

$$c_{2}(x) = \int \frac{dx}{1 + e^{x}} = \begin{bmatrix} 3_{\text{AMEHA}} : \\ 1 + e^{x} = t \\ e^{x} = t - 1 \\ x = \ln(t - 1) \end{bmatrix} = \int \frac{dt}{t(t - 1)} = \begin{bmatrix} \frac{1}{t(t - 1)} = \frac{A}{t} + \frac{B}{t - 1} = \frac{At - A + Bt}{t(t - 1)}; \\ At - A + Bt = 1 \Rightarrow \begin{cases} A + B = 0 \\ -A = 1 \end{cases} \Rightarrow \begin{cases} A = -1 \\ B = 1 \end{cases} = \int \left(\frac{1}{t - 1} - \frac{1}{t} \right) dt = \ln|t - 1| - \ln|t| = \ln\left| \frac{t - 1}{t} \right| = \ln\left| \frac{e^{x} - 1}{e^{x}} \right| = \ln|1 - e^{-x}| + \overline{c}_{2};$$

Итак, $c_1(x) = -\ln|1 + e^x| + \overline{c}_1$; $\overline{c}_2(x) = \ln|1 - e^{-x}| + \overline{c}_2$.

Следовательно, общее решение данного уравнения:

$$y = -\ln|1 + e^{x}| + \overline{c}_{1} + e^{x}(\ln|1 - e^{-x}| + \overline{c}_{2}).$$
Omeem: $y = -\ln|1 + e^{x}| + \overline{c}_{1} + e^{x}(\ln|1 - e^{-x}| + \overline{c}_{2})$

Пример 9. Решить задачу Коши:

$$y'' + y = \frac{1}{\sin x},$$
$$y\left(\frac{\pi}{2}\right) = 2; \ y'\left(\frac{\pi}{2}\right) = \frac{\pi}{2}.$$

Решение:

1) Решим соответствующее ЛОДУ:

$$y'' + y = 0$$

Его характеристическое уравнение:

$$k^{2} + 1 = 0$$

$$k^{2} = -1$$

$$k = \pm i \quad (\alpha = 0, \beta = 1)$$

Следовательно, общим решением ЛОДУ будет функция:

$$y_0 = c_1 \sin x + c_2 \cos x,$$

где c_1 и c_2 – произвольные постоянные.

2) Правая часть данного ЛНДУ:

 $f(x) = \frac{1}{\sin x}$ не соответствует методу подбора частного решения этого

уравнения. Поэтому применяем *метод вариации произвольных постоянных*: Общее решение ЛНДУ ищем в виде:

$$y = c_1(x)\sin x + c_2(x)\cos x.$$
 (***)

Для нахождения $c_1(x)$ и $c_2(x)$ составим систему двух уравнений:

$$\begin{cases} c'_1(x) \cdot \sin x + c'_2(x) \cdot \cos x = 0 \\ c'_1(x) \cdot (\sin x)' + c'_2(x) \cdot (\cos x)' = \frac{1}{\sin x} \end{cases} \Rightarrow \begin{cases} c'_1(x) \sin x + c'_2 \cdot \cos x = 0 \\ c'_1(x) \cos x - c'_2(x) \sin x = \frac{1}{\sin x}. \end{cases}$$

Решим систему по правилу Крамера:

$$\Delta = \begin{vmatrix} \sin x & \cos x \\ \cos x - \sin x \end{vmatrix} = -\sin^2 x - \cos^2 x = -1$$

$$\Delta C_1' = \begin{vmatrix} 0 & \cos x \\ \frac{1}{\sin x} - \sin x \end{vmatrix} = -\frac{\cos x}{\sin x}$$

$$\Delta C_2' = \begin{vmatrix} \sin x & 0 \\ \cos x & \frac{1}{\sin x} \end{vmatrix} = 1.$$

$$C_1' = \frac{\Delta C_1'}{\Delta} = \frac{\cos x}{\sin x}; \ c_2' = \frac{\Delta C_2'}{\Delta} = -1.$$

$$C_1(x) = \int \frac{\cos x}{\sin x} dx = \int \frac{d \sin x}{\sin x} = \ln|\sin x| + \bar{c}_1.$$

$$c_2(x) = \int -dx = -x + \bar{c}_2.$$

Итак, $c_1(x) = \ln|\sin x| + \overline{c}_1$; $c_2(x) = -x + \overline{c}_2$.

Следовательно, общее решение данного ЛНДУ можно записать, подставляя

 $c_1(x)$ и $c_2(x)$ в функцию (***):

$$y = \sin x (\ln |\sin x| + \overline{c}_1) + (\overline{c}_2 - x) \cos x,$$

где $\overline{c}_{_1}$ и $\overline{c}_{_2}$ –произвольные постоянные.

3) Решим задачу Коши, т.е. найдем частное решение ЛНДУ, удовлетворяющее заданным начальным условиям:

$$y\left(\frac{\pi}{2}\right) = 2; \ y'\left(\frac{\pi}{2}\right) = \frac{\pi}{2}.$$

Подставим начальные условия в общее решение y(x) и его производную y'(x):

$$y = \sin x (\ln|\sin x| + \overline{c}_1) + (\overline{c}_2 - x)\cos x$$

$$y' = \cos x (\ln|\sin x| + \overline{c}_1) + \sin x \left(\frac{\cos x}{\sin x} + 0\right) + (-1)\cos x + (\overline{c}_2 - x)(-\sin x)$$

$$2 = \sin \frac{\pi}{2} \left(\ln \left| \sin \frac{\pi}{2} \right| + \overline{c}_1 \right) + \left(\overline{c}_2 - \frac{\pi}{2} \right) \cos \left(\frac{\pi}{2} \right)$$

$$\begin{cases} 2 = \sin\frac{\pi}{2} \left(\ln\left|\sin\frac{\pi}{2}\right| + \overline{c}_1 \right) + \left(\overline{c}_2 - \frac{\pi}{2}\right) \cos\left(\frac{\pi}{2}\right) \\ \frac{\pi}{2} = \cos\left(\frac{\pi}{2}\right) \left(\ln\left|\sin\frac{\pi}{2}\right| + \overline{c}_1 \right) + \sin\frac{\pi}{2} \left(\frac{\cos\frac{\pi}{2}}{\sin\frac{\pi}{2}} + 0\right) - \cos\frac{\pi}{2} - \left(\overline{c}_2 - \frac{\pi}{2}\right) \sin\left(\frac{\pi}{2}\right) \end{cases}$$

$$\begin{cases} 2 = 1 \cdot (0 + \overline{c}_1) + \left(\overline{c}_2 - \frac{\pi}{2}\right) \cdot 0 \\ \frac{\pi}{2} = 0 \cdot (0 + \overline{c}_1) + 1 \cdot \left(\frac{0}{1} + 0\right) - 0 - \left(\overline{c}_2 - \frac{\pi}{2}\right) \cdot 1 \end{cases}$$

$$\left(\frac{n}{2} = 0 \cdot (0 + \overline{c}_1) + 1 \cdot \left(\frac{0}{1} + 0\right) - 0 - \left(\overline{c}_2 - \frac{n}{2}\right) \cdot 1\right)$$

$$\begin{cases} \overline{c}_1 = 2 \\ \frac{\pi}{2} = -\overline{c}_2 + \frac{\pi}{2} \end{cases} \Rightarrow \begin{cases} \overline{c}_1 = 2 \\ \overline{c}_2 = 0. \end{cases}$$

Найденные значения \overline{c}_1 и \overline{c}_2 при их подстановке в общее решение дают частное решение ЛНДУ:

$$y = \sin x (\ln|\sin x| + 2) - x\cos x.$$

Omeem: $y = \sin x (\ln|\sin x| + 2) - x \cos x$.

4. Примеры

дифференциальное уравнение методом вариации произвольных постоянных:

1.
$$y'' + 2y' + y = \frac{e^{-x}}{x}$$
.

2.
$$y'' - y' = e^{2x} \cos e^x$$
.

3.
$$y'' - 6y' + 9y = e^{3x} \ln x$$
.

4.
$$y'' - 2y' + y = \frac{e^x}{x^2 + 1}$$
.

5.
$$y'' + y = \frac{1}{\sin x}$$
.

6.
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} = \frac{e^x}{e^x + 1}; y(0) = 0; y'(0) = 0.$$

Решить дифференциальное уравнение методом неопределенных коэффициентов:

7.
$$y'' - 3y' + 2y = 4e^{-x}$$
.

8.
$$y'' + 2y' = \cos 2x$$
.

9.
$$y'' - y = xe^{2x}$$
.

10.
$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13y = e^x \cos x$$
.

11.
$$y'' - 2y' + 2y = e^x \sin 2x$$
.

12.
$$y'' + 6y' + 9y = e^{2x}$$
.

13.
$$y'' + y' = \sin 5x$$
.

14.
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = xe^{-x}$$
.

15.
$$y'' - 6y' + 25y = 2\sin x + 3\cos x$$
.

16.

$$y'' + y = \cos 3x$$
; $y\left(\frac{\pi}{2}\right) = 4$; $y'\left(\frac{\pi}{2}\right) = 1$.

17

$$y'' - 2y' = e^{2x} + x^2 - 1$$
; $y(0) = \frac{1}{8}$; $y'(0) = 1$.

18.
$$y'' - y' = 2x - 1 - 3e^x$$
.

19.
$$y'' + y = xe^x + 2e^{-x}$$
.

20.
$$y'' - 2y' = \sin x + e^{-x}$$
.

21.
$$y'' + 9y = 4\sin x + x$$
.

5. Ответы

1.
$$y = e^{-x}(c_1 + c_2 x) + xe^{-x} \ln|x|$$
.

2.
$$y = c_1 + c_2 e^x - \cos e^x$$
.

3.
$$y = e^x (c_1 + c_2 x + \frac{1}{2} x^2 \ln x - \frac{3}{4} x^2)$$
.

4.
$$y = e^x(c_1 + x \cdot arctgx + c_2x - \frac{1}{2}\ln(x^2 + 1)).$$

5.
$$y = (-x + c_1)\cos x + (\ln|\sin x| + c_2)\sin x$$
.

6.
$$y = e^x (1+x) - (e^x + 1) \ln \frac{e^x + 1}{2} - 1$$
.

7.
$$y = c_1 e^x + c_2 e^{2x} + \frac{2}{3} e^{-x}$$
.

8.
$$y = c_1 + c_2 e^{-2x} + \frac{1}{8} \sin 2x - \frac{1}{8} \cos 2x$$
.

9.
$$y = c_1 e^x + c_2 e^{-x} + \frac{1}{9} (3x - 4)e^{2x}$$
.

10.
$$y = e^{3x}(c_1\cos 2x + c_2\sin 2x) + \frac{1}{65}e^x(7\cos x - 4\sin x)$$
.

11.
$$y = e^x (c_2 \cos x + c_1 \sin x + \frac{1}{65} (8\cos 2x + \sin 2x)).$$

12.
$$y = (c_1 + c_2 x)e^{-3x} + \frac{1}{25}e^{2x}$$
.

13.
$$y = -c_1 e^{-x} + c_2 - \frac{1}{130} \cos 5x - \frac{1}{26} \sin 5x$$
.

14.
$$y = c_1 e^{-2x} + e^{-x} \left(\frac{1}{2} x^2 - x + c_2 \right)$$
.

15.
$$y = e^{3x}(c_1\cos 4x + c_2\sin 4x) + \frac{1}{102}(14\cos x + 5\sin x).$$

16.
$$y = 4\sin x - \frac{11}{8}\cos x - \frac{1}{8}\cos 3x$$
.

17.
$$y = \frac{1}{8}e^{2x} + \frac{1}{2}xe^{2x} - \frac{1}{6}x^3 - \frac{1}{4}x^2 + \frac{1}{4}x$$
.

18.
$$y = c_1 + c_2 e^x - x^2 - x - 3xe^x$$
.

19.
$$y = c_1 \cos x + c_2 \sin x + \left(\frac{1}{2}x - \frac{1}{2}\right)e^x + e^{-x}$$

20.
$$y = e^{x}(c_1 + c_2 x) + \frac{1}{4}e^{-x} + \frac{1}{2}\cos x$$
.

21.
$$y = c_1 \sin 3x + c_2 \cos 3x + \frac{1}{2} \sin x + \frac{x}{9}$$
.

§4. Линейные дифференциальные уравнения *n*-го порядка с постоянными коэффициентами

1. Основные понятия

Определение 1. Уравнение вида:

$$y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + \dots + p_{n-1} y' + p_n y = f(x),$$
 (1)

где $p_1, p_2, ...p_n$ — заданные действительные числа, y = y(x) — неизвестная функция, $y', y'', ...y^{(n)}$ — ее производные до n-го порядка включительно, f(x) —

непрерывная на промежутке (a;b) функция, называется линейным дифференциальным уравнением (ЛДУ) n-го порядка.

Если $f(x) \equiv 0$ для всех $x \in (a;b)$, то уравнение (1) называется линейным однородным дифференциальным уравнением (ЛОДУ) *п-го* порядка, соответствующим уравнению (1). Такое уравнение имеет вид:

$$y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + \dots + p_{n-1} y' + p_n y = 0.$$
 (2)

Для нахождения общего решения ЛОДУ достаточно найти n линейно независимых на промежутке (a;b) решений $y_1, y_2, ... y_n$.

Определение 2. Функции $y_1(x), y_2(x), ... y_n(x)$ на промежутке (a;b) называются линейно независимыми, если тождество:

$$c_1 y_1(x) + c_2 y_2(x) + ... + c_n y_n(x) \equiv 0$$

для всех $x \in (a;b)$ может выполняться только при $c_1 = c_2 = = c_n = 0$.

Такую систему линейно независимых решений ЛОДУ называют фундаментальной.

Если найдена фундаментальная система решений $y_1(x), y_2(x), ... y_n(x)$ ЛОДУ, то общее решение этого уравнения записывается в виде:

$$y = c_1 y_1(x) + c_2 y_2(x) + ... + c_n y_n(x),$$

где $c_1, c_2, ... c_n$ – произвольные постоянные.

Общее решение ЛНДУ (1) задается формулой:

$$y = c_1 y_1(x) + c_2 y_2(x) + ... + c_n y_n(x) + \varphi(x),$$

где $y_1, y_2, ... y_n$ – фундаментальная система решений соответствующего ЛОДУ (2), $c_1, c_2, ... c_n$ – произвольные постоянные, $\varphi(x)$ – некоторое частное решение ЛНДУ (1).

2. ЛОДУ *п*-го порядка с постоянными коэффициентами

Рассмотрим уравнение (2):

$$y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + ... + p_{n-1} y' + p_n y = 0.$$

Его характеристическое уравнение имеет вид:

$$k^{n} + p_{1}k^{n-1} + p_{2}k^{n-2} + \dots + p_{n-1}k + p_{n} = 0$$
(3)

Рассмотрим возможные случаи, возникающие при решении уравнения (3).

1) Все корни уравнения (3) действительные и различные, обозначим их $\lambda_1, \lambda_2, ... \lambda_n$. Тогда фундаментальную систему решений ЛОДУ составят функции:

$$y_1 = e^{\lambda_1 x}; y_2 = e^{\lambda_2 x}, ..., y_n = e^{\lambda_n x},$$

а общее решение этого уравнения имеет вид:

$$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} + ... + c_n e^{\lambda_n x},$$

где $c_1, c_2, ... c_n$ – произвольные постоянные.

2) Все корни характеристического уравнения (3) различны, но среди них имеется комплексный корень $\lambda_1 = a + bi$, тогда $\lambda_2 = a - bi$ тоже будет корнем этого уравнения. Этой паре корней соответствует пара линейно независимых решений:

$$y_1 = e^{\alpha x} \cos bx$$
, $y_2 = e^{\alpha x} \sin bx$.

Записав линейно независимые решения ЛОДУ (2), соответствующие всем корням уравнения (3), получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными даст общее решение уравнения (2).

- 3) Среди корней характеристического уравнения имеются кратные корни. Пусть λ действительный r кратный корень. Тогда ему соответствует r линейно независимых решений вида: $e^{\lambda x}$, $xe^{\lambda x}$, $x^2e^{\lambda x}$, ... $x^{r-1}e^{\lambda x}$, а в формуле общего решения будут слагаемые вида $e^{\lambda x}(c_1+c_2x+c_3x^2+...+c_rx^{r-1})$.
- 4) Если $\lambda_1 = a + bi$ комплексный корень характеристического уравнения (3) кратности r, то ему и сопряженному с ним корню $\lambda_2 = a bi$ той же кратности r соответствуют 2r линейно независимых решений вида:

$$y_1 = e^{\alpha x} \cos bx, y_2 = xe^{\alpha x} \cos bx, ... y_r = x^{r-1}e^{\alpha x} \cos bx,$$

 $y_{r+1} = e^{\alpha x} \sin bx, y_{r+2} = xe^{\alpha x} \sin bx, ... y_{2r} = x^{r-1}e^{\alpha x} \sin bx.$

Записав линейно независимые решения ЛОДУ (2), соответствующие всем простым и кратным корням уравнения (3), получим фундаментальную систему решений. Линейная комбинация этих решений с произвольными постоянными даст общее решение уравнения (2).

3. ЛНДУ *п*-го порядка с постоянными коэффициентами

Для получения частного решения $\varphi(x)$ ЛНДУ (1) используют два метода.

1) Метод вариации произвольных постоянных

Пусть дано уравнение (1):

$$y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + ... + p_{n-1} y' + p_n y = f(x)$$

и общее решение соответствующего ЛОДУ (2):

$$y = c_1 y_1(x) + c_2 y_2(x) + ... + c_n y_n(x),$$

Функцию $\varphi(x)$ ищем в виде:

$$\varphi(x) = c_1(x) \cdot y_1(x) + c_2(x) \cdot y_2(x) + ... + c_n(x) \cdot y_n(x),$$

Для нахождения $c_1(x), c_2(x), ... c_n(x)$ составим систему уравнений:

И решая ее, получим $c_1'(x), c_2'(x), ... c_n'(x)$, а затем, интегрируя, находим $c_1(x), c_2(x), ... c_n(x)$. Следовательно, частным решением ЛНДУ будет функция:

$$\varphi(x) = c_1(x)y_1(x) + c_2(x)y_2(x) + \dots + c_n(x)y_n(x).$$

Значит, общим решением ЛНДУ является:

$$y = c_1 y_1(x) + c_2 y_2(x) + ... + c_n y_n(x) + \varphi(x),$$

где $c_1, c_2, \dots c_n$ – произвольные постоянные.

- 2) Метод неопределенных коэффициентов
- а) Пусть $f(x) = P_m(x)e^{\alpha x}$, где α -действительное число, $P_m(x)$ -многочлен m-ой степени $(m \ge 0)$,

Тогда $\varphi(x) = x^s Q_m(x) e^{\alpha x}$, где $Q_m(x)$ — многочлен степени m с неопределенными коэффициентами, число s равно кратности числа α как корня характеристического уравнения (3).

б) Пусть $f(x) = e^{\alpha x} (P_{m_1}(x) \cos \beta x + R_{m_2}(x) \sin \beta x)$, где α и β – действительные числа, $P_{m_1}(x)$, $R_{m_2}(x)$ – многочлены степени m_1 и m_2 соответственно.

Тогда $\varphi(x) = x^s e^{\alpha x} (Q_m(x) \cos \beta x + M_m(x) \sin \beta x)$, где $Q_m(x)$ и $M_m(x)$ – многочлены степени $m = \max(m_1; m_2)$ с неопределенными коэффициентами, s равно кратности числа $\alpha + \beta i$ как корня характеристического уравнения (3).

3амечание 1. Коэффициенты многочленов $Q_m(x)$ и $M_m(x)$ находят методом неопределенных коэффициентов.

Замечание 2. Если в уравнении (1) функция f(x) равна сумме нескольких функций $f_1(x) + f_2(x) + ... + f_l(x)$, то его частное решение строится так: $\varphi(x) = \varphi_1(x) + \varphi_2(x) + ... + \varphi_l(x)$, где $\varphi_i(x)$ – частное решение ЛНДУ с правой частью, равной $f_i(x)$.

4. Примеры с решениями

Пример 1. Решить уравнение:

$$y^{(4)} - 13y'' + 36y = 0.$$

Решение. Это ЛОДУ четвертого порядка. Его характеристическое уравнение имеет вид:

$$k^4 - 13k^2 + 36 = 0.$$

Уравнение является биквадратным. Выполним замену: $k^2 = m$; $k^4 = m^2$.

$$m^{2}-13m+36=0$$

 $D=13^{2}-4\cdot 36=169-144=25>0.$
 $m_{1}=9; m_{2}=4.$

Следовательно, корнями характеристического уравнения являются числа: $k_1 = 3; k_2 = -3; k_3 = 2; k_4 = -2$ – действительные и различные.

Значит, функции $y_1(x) = e^{3x}$; $y_2(x) = e^{-3x}$; $y_3(x) = e^{2x}$; $y_4(x) = e^{-2x}$ составляют фундаментальную систему решений данного уравнения. Поэтому общее решение можно записать в виде:

$$y = c_1 e^{3x} + c_2 e^{-3x} + c_3 e^{2x} + c_4 e^{-2x}$$

где c_1, c_2, c_3, c_4 – произвольные постоянные.

Omsem:
$$y = c_1 e^{3x} + c_2 e^{-3x} + c_3 e^{2x} + c_4 e^{-2x}$$
.

Пример 2. Решить уравнение:

$$y''' - 2y'' + y' = 0.$$

Решение. Это ЛОДУ третьего порядка. Его характеристическое уравнение имеет вид:

$$k^3 - 2k^2 + k = 0.$$

Решим его:

$$k(k^{2}-2k+1) = 0$$
1) $k_{1} = 0$; 2) $k^{2}-2k+1 = 0$

$$D = 0$$

$$k_{2} = k_{3} = 1$$
.

Следовательно, корнями характеристического уравнения являются числа:

$$k_1 = 0, k_2 = 1$$
 кратности 2.

Значит, функции $y_1(x) = e^{0x} = 1; y_2(x) = e^x; y_3(x) = xe^x$ составляют фундаментальную систему решений данного уравнения. Поэтому общее решение можно записать в виде:

$$y = c_1 + c_2 e^x + c_3 x \cdot e^x,$$

где c_1, c_2, c_3 – произвольные постоянные.

Ombem: $y = c_1 + c_2 e^x + c_3 x e^x$.

Пример 3. Решить уравнение:

$$y''' - y'' + 4y' - 4y = 0.$$

Решение. Это ЛОДУ третьего порядка. Его характеристическое уравнение имеет вид:

$$k^3 - k^2 + 4k - 4 = 0.$$

Для решения этого уравнения выполним разложение его левой части на множители:

$$(k^{3}-k^{2})+(4k-4)=0$$

$$k^{2}(k-1)+4(k-1)=0$$

$$(k-1)(k^{2}+4)=0$$

$$1) k-1=0 2) k^{2}+4=0$$

$$k_{1}=1. k^{2}=-4$$

$$k_{2,3}=\pm 2i (\alpha=0;\beta=2).$$

Следовательно, корнями характеристического уравнения являются числа:

$$k_1 = 1, k_2 = 2i, k_3 = -2i.$$

Значит, функции $y_1(x) = e^x$; $y_2(x) = \cos 2x$; $y_3(x) = \sin 2x$ составляют фундаментальную систему решений данного уравнения. Поэтому общее решение можно записать в виде:

$$y = c_1 e^x + c_2 \cos 2x + c_3 \sin 2x,$$

где c_1, c_2, c_3 – произвольные постоянные.

Ombem:
$$y = c_1 e^x + c_2 \cos 2x + c_3 \sin 2x$$
.

Пример 4. Решить задачу Коши:

$$y''' + 2y'' + 10y' = 0$$

$$y(0) = 2; y'(0) = 1; y''(0) = 1.$$

Решение. Это ЛОДУ третьего порядка. Его характеристическое уравнение имеет вид:

$$k^{3} + 2k^{2} + 10k = 0$$

$$k(k^{2} + 2k + 10) = 0$$

$$1)k_{1} = 0; 2)k^{2} + 2k + 10 = 0$$

$$D = 4 - 40 = -36 < 0$$

$$k_{2,3} = \frac{-2 \pm 6i}{2} = -1 \pm 3i \ (\alpha = -1; \beta = 3)$$

Следовательно, корнями характеристического уравнения являются числа:

$$k_1 = 0, k_2 = -1 + 3i, k_3 = -1 - 3i.$$

Значит, функции $y_1(x) = e^{0x} = 1$; $y_2(x) = e^{-x} \cos 3x$; $y_3(x) = e^{-x} \sin 3x$ составляют фундаментальную систему решений данного уравнения. Поэтому общее решение можно записать в виде:

$$y = c_1 + c_2 e^{-x} \cos 3x + c_3 e^{-x} \sin 3x$$

где c_1, c_2, c_3 – произвольные постоянные.

Теперь найдем значения c_1, c_2 и c_3 такими, чтобы полученное при этих значениях из общего решения частное решение удовлетворяло заданным начальным условиям:

$$y(0) = 2$$
; $y'(0) = 1$; $y''(0) = 1$.

Получим предварительно у' и у" из общего решения:

$$y' = -c_2 e^{-x} \cos 3x - 3c_2 e^{-x} \sin 3x - c_3 e^{-x} \sin 3x + 3c_3 e^{-x} \cos 3x.$$

$$y'' = c_2 e^{-x} \cos 3x + 3c_2 e^{-x} \sin 3x + 3c_2 e^{-x} \sin 3x - 9c_2 e^{-x} \cos 3x + c_3 e^{-x} \sin 3x - 3c_3 \cos 3x - 3c_3 e^{-x} \cos 3x - 9c_3 e^{-x} \sin 3x =$$

$$= -8c_2 e^{-x} \cos 3x + 6c_2 e^{-x} \sin 3x - 8c_3 e^{-x} \sin 3x - 6c_3 e^{-x} \cos 3x.$$

Составим систему уравнений относительно c_1, c_2 и c_3 , подставляя в y, y' и y'' значения: x = 0, y = 2, y' = 1, y'' = 1:

$$\begin{cases} 2 = c_1 + c_2 \\ 1 = -c_2 + 3c_3 | \cdot 2 \Rightarrow \begin{cases} 2 = -2c_2 + 6c_3 \\ 1 = -8c_2 - 6c_3 \end{cases} \Rightarrow -10c_2 = 3; c_2 = -0,3.$$

$$\begin{cases} 2 = c_1 - 0,3 \\ 1 = 0,3 + 3c_3 \end{cases} \Rightarrow c_1 = 2,3; c_3 = \frac{7}{30}.$$

Следовательно, частное решение данного ЛОДУ, удовлетворяющее заданным начальным условиям, задается функцией:

$$y = 2,3-0,3e^{-x}\cos 3x + \frac{7}{30}e^{-x}\sin 3x.$$

Omeem:
$$y = 2.3 + e^{-x} \left(\frac{7}{30} \sin 3x - 0.3 \cos 3x \right)$$
.

Пример 5. Решить уравнение:

$$y''' + y'' + y' + y = x \cdot e^x$$
.

Решение. Это ЛНДУ третьего порядка.

1) Решим соответствующее ЛОДУ:

$$y''' + y'' + y' + y = 0.$$

Его характеристическое уравнение имеет вид:

$$k^{3} + k^{2} + k + 1 = 0$$

 $k^{2}(k+1) + (k+1) = 0$
 $(k+1)(k^{2} + 1) = 0$
 $a) k + 1 = 0$ $b) k^{2} + 1 = 0$
 $b) k^{2} + 1 = 0$
 $b) k^{2} + 1 = 0$
 $b) k^{2} + 1 = 0$
 $b) k^{2} + 1 = 0$
 $b) k^{2} + 1 = 0$
 $b) k^{2} + 1 = 0$

Следовательно, корнями характеристического уравнения являются числа:

$$k_1 = -1, k_2 = i, k_3 = -i.$$

Значит, функции $y_1(x) = e^{-x}$; $y_2(x) = \cos x$; $y_3(x) = \sin x$ составляют фундаментальную систему решений ЛОДУ. Поэтому общее решение ЛОДУ можно записать в виде:

$$y = c_1 e^{-x} + c_2 \cos x + c_3 \sin x$$
,

где c_1, c_2, c_3 – произвольные постоянные.

2) Найдем частное решение $\varphi(x)$ данного ЛНДУ. Правая часть $f(x) = xe^x$, т.е. $f(x) = P_1(x) \cdot e^x$, где m = 1, $\alpha = 1 \neq k_{1,2,3} \Rightarrow s = 0$. Поэтому частное решение ищем в виде:

$$\varphi(x) = (Ax + B) \cdot e^{x},$$

$$\varphi'(x) = Ae^{x} + (Ax + B) \cdot e^{x},$$

$$\varphi''(x) = Ae^{x} + Ae^{x} + (Ax + B) \cdot e^{x} = 2Ae^{x} + (Ax + B) \cdot e^{x},$$

$$\varphi'''(x) = 3Ae^{x} + (Ax + B) \cdot e^{x}$$

Подставим $\varphi(x), \varphi'(x), \varphi''(x), \varphi'''(x)$ в данное уравнение вместо y, y', y'' и y''':

$$3Ae^{x} + (Ax + B) \cdot e^{x} + 2Ae^{x} + (Ax + B) \cdot e^{x} + Ae^{x} + (Ax + B) \cdot e^{x} + (Ax + B) \cdot e^{x} =$$

$$= x \cdot e^{x} | e^{x} \neq 0.$$

$$6A + 4Ax + 4B = x$$
.

$$x : \begin{cases} 4A = 1 \\ x^0 : \begin{cases} 6A + 4B = 0 \end{cases} \begin{cases} A = \frac{1}{4} \\ \frac{3}{4} + 2B = 0 \end{cases} \begin{cases} A = \frac{1}{4} \\ B = -\frac{3}{8}. \end{cases}$$

Отсюда следует, что $\varphi(x) = \left(\frac{1}{4}x - \frac{3}{8}\right)e^x$.

3) Запишем общее решение данного ЛНДУ:

$$y = c_1 e^{-x} + c_2 \cos x + c_3 \sin x + \left(\frac{1}{4}x - \frac{3}{8}\right)e^x.$$

Omsem:
$$y = c_1 e^{-x} + c_2 \cos x + c_3 \sin x + \left(\frac{1}{4}x - \frac{3}{8}\right)e^x$$
.

5. Примеры

Решить уравнения и задачи Коши

1.
$$y''' - 5y'' + 17y' - 13y = 0$$
.

2.
$$y^{(4)} + 4y'' + 3y = 0$$
.

3.
$$y^{(4)} + 2y''' + y'' = 0$$
.

4.
$$y^{(4)} + 2y''' + y = 0$$
.

5.
$$y^{(4)} - 8y'' + 16y = 0$$
.

6.
$$y^{(5)} + 8y''' + 16y' = 0$$
.

7.

$$y''' - y' = 0; y(0) = 3; y'(0) = -1; y''(0) = 1.$$

10.
$$y^{(4)} + y'' = x^2 + x$$
.

11.
$$y^{(4)} - y = \cos x$$
.

12.

$$y''' - y' = -2x$$
; $y(0) = 0$; $y'(0) = 2$; $y''(0) = 2$.

13.

$$y^{(4)} - y = 8e^x$$
; $y(0) = 0$; $y'(0) = 2$; $y''(0) = 4$.

14.
$$y^{(5)} - y^{(4)} = xe^x$$
.

8.
$$y''' + y'' = 6x$$
.

9.
$$y''' - 3y'' + 3y' - y = e^x$$
.

6. Ответы

1.
$$y = c_1 e^x + e^{2x} (c_1 \cos 3x + c_2 \sin 3x)$$
.

2.
$$y = c_1 \cos x + c_2 \sin x + c_3 \cos \sqrt{3}x + c_4 \sin \sqrt{3}x$$
.

3.
$$y = c_1 + c_2 x + c_3 e^{-x} + c_4 x e^{-x}$$
.

4.
$$y = c_1 \cos x + c_2 \sin x + x(c_3 \cos x + c_4 \sin x)$$
.

5.
$$y = e^{2x}(c_1 + c_2x) + e^{-2x}(c_3 + c_4x)$$
.

6.
$$y = c_1 + c_2 \cos 2x + c_3 \sin 2x + x \cdot (c_4 \cos 2x + c_5 \sin 2x)$$
.

7.
$$y = 2 + e^{-x}$$
.

8.
$$y = c_1 + c_2 x + c_3 e^{-x} + x^3 - 3x^2$$
.

9.
$$y = c_1 e^x + c_2 x e^x + c_3 x^2 e^x + \frac{x^3}{6} e^x$$
.

10.
$$y = c_1 + c_2 x + c_3 \cos x + c_4 \sin x + \frac{x^4}{12} + \frac{x^3}{6} - x^2$$
.

11.
$$y = c_1 e^x + c_2 e^{-x} + c_3 \cos x + c_4 \sin x - \frac{x}{4} \sin x$$
.

12.
$$y = e^x - e^{-x} + x^2$$
.

13.
$$y = 2xe^x$$
.

14.
$$y = c_1 + c_2 x + c_3 x^2 + c_4 x^3 + \left(\frac{x^2}{2} - 4x + c_5\right) e^x$$
.

Глава 3. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ СИСТЕМЫ *n*-го ПОРЯДКА С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

§1. Линейные дифференциальные системы *n*-го порядка с постоянными коэффициентами. Метод исключения

1. Основные понятия

Определение 1. Линейной дифференциальной системой п-го порядка с постоянными коэффициентами называется система вида:

$$y'_n = a_{n1}y_1(x) + a_{n2}y_2(x) + ... + a_{nn}y_n(x) + f_n(x),$$

где $y_1(x), y_2(x), ... y_n(x)$ – неизвестные функции; $a_{11}, a_{12}, ... a_{nn}$ – заданные числа, называемые коэффициентами; $f_1(x), f_2(x), ... f_n(x)$ — непрерывные функции на промежутке (a;b).

Если для всех $x \in (a;b)$ $f_1(x) = f_2(x) = ... = f_n(x) \equiv 0$, то система (1) принимает вид:

и называется линейной однородной дифференциальной системой (ЛОДС). Если для всех $x \in (a;b)$ хотя бы одна из функций $f_1(x), f_2(x), ..., f_n(x)$ не равна нулю, то система (1) называется линейной неоднородной дифференциальной системой (ЛНДС).

Определение 2. Порядком системы называется число n неизвестных функций, относительно которых дана система.

Определение 3. Система функций $(y_1(x), y_2(x), ... y_n(x))$, определенных на (a;b) и удовлетворяющих на (a;b) всем уравнениям (1), называется решением системы (1).

Определение 4. Задача нахождения $(y_1(x), y_2(x), ..., y_n(x)),$ удовлетворяющих начальным условиям:

$$y_1(x_0) = y_{10}, y_2(x_0) = y_{20},...y_n(x_0) = y_{n0},$$

где $x_0, y_{10}, y_{20}, ... y_{n0}$ – заданные числа, называется задачей Коши.

2. Метод исключения

Путем исключения неизвестных функций $y_i(x)$ (i=1,2,...n-1) систему (1) из n линейных уравнений можно привести к дифференциальному уравнению n-го порядка. При этом, если система (1) была линейной неоднородной (или однородной), то и полученное уравнение относительно одной из функций, например $y_1(x)$, будет линейным неоднородным (или однородным). Метод исключения довольно трудоемкий, поэтому им можно пользоваться для n=2 или n=3.

3. Примеры с решениями

Пример 1. Решить систему уравнений:

$$\begin{cases} y_1' = 2y_1 + y_2 \\ y_2' = 4y_2 - y_1 \end{cases}$$

Решение. Это линейная однородная дифференциальная система второго порядка относительно функций $y_1 = y_1(x)$ и $y_2 = y_2(x)$. Решаем ее методом исключения неизвестных.

Из первого уравнения выразим $y_2 = y_1' - 2y_1$ и подставим y_2 во второе уравнение:

$$(y_1' - 2y_1)' = 4(y_1' - 2y_1) - y_1$$

$$y_1'' - 2y_1' = 4y_1' - 8y_1 - y_1$$

$$y_1'' - 6y_1' + 9y_1 = 0.$$

Получим линейное однородное дифференциальное уравнение второго порядка. Его характеристическое уравнение имеет вид:

$$k^{2}-6k+9=0$$

 $D=36-36=0$
 $k_{1}=k_{2}=3$.

Следовательно, фундаментальную систему решений для этого уравнения составляют функции:

$$y_1^{(1)}(x) = e^{3x}, y_1^{(2)}(x) = x \cdot e^{3x}.$$

Общее решение запишется в виде:

$$y_1(x) = c_1 e^{3x} + c_2 x e^{3x}$$
.

Для нахождения $y_2(x)$ используем выражение:

$$y_2 = y_1' - 2y_1.$$

Так как $y_1(x) = c_1 e^{3x} + c_2 x e^{3x}$, то

$$y_1'(x) = 3c_1e^{3x} + c_2e^{3x} + 3c_2xe^{3x}$$
.

Тогда $y_2(x) = 3c_1e^{3x} + c_2e^{3x} + 3c_2xe^{3x} - 2c_1e^{3x} - 2c_2xe^{3x}$,

$$y_2(x) = c_1 e^{3x} + c_2 e^{3x} + c_2 x e^{3x}.$$

Значит, общим решением данной системы уравнений будут функции $y_1(x)$ и $y_2(x)$:

$$y_1(x) = c_1 e^{3x} + c_2 x e^{3x},$$

 $y_2(x) = c_1 e^{3x} + c_2 e^{3x} + c_2 x e^{3x}.$

Omeem: $y_1(x) = c_1 e^{3x} + c_2 x e^{3x}$

$$y_2(x) = c_1 e^{3x} + c_2 e^{3x} + c_2 x e^{3x}.$$

Пример 2. Решить систему уравнений:

$$\begin{cases} y' = 2y - z \\ z' = 2z - y - 5e^x \sin x \end{cases}$$

Решение. Это линейная неоднородная дифференциальная система относительно 2-х неизвестных функций y = y(x) и z = z(x). Будем решать ее методом исключения.

Из первого уравнения выразим z = 2y - y' и подставим функцию z во второе уравнение:

$$(2y - y')' = 2(2y - y') - y - 5e^{x} \sin x.$$

$$2y' - y'' - 4y + 2y' + y = -5e^{x} \sin x.$$

$$-y'' + 4y' - 3y = -5e^{x} \sin x \quad | \cdot (-1)$$

$$y'' - 4y' + 3y = 5e^{x} \sin x$$
 (*)

Получили линейное неоднородное дифференциальное уравнение.

1) Решим сначала ЛОДУ:

$$y'' - 4y' + 3y = 0$$

Его характеристическое уравнение имеет вид:

$$k^{2}-4k+3=0$$

 $D=16-12=4>0$
 $k_{1}=1; k_{2}=3.$

Фундаментальную систему решений ЛОДУ составляют функции:

$$y_1(x) = e^x, y_2(x) = e^{3x}.$$

Тогда общее решение ЛОДУ запишется в виде:

$$y(x) = c_1 e^x + c_2 e^{3x}$$
.

2) Правая часть ЛНДУ (*): $f(x) = 5e^x \sin x$ позволяет подобрать его частное решение. Так как $f(x) = e^x (5 \sin x + 0 \cdot \cos x) \Rightarrow \alpha = 1, \beta = 1; s = 0$, то

$$\overline{y} = e^{x} (A \sin x + B \cos x)$$

$$\overline{y}' = e^{x} (A \sin x + B \cos x) + e^{x} (A \cos x - B \sin x)$$

$$\overline{y}'' = e^{x} (A \sin x + B \cos x) + e^{x} (A \cos x - B \sin x) + e^{x} (A \cos x - B \sin x) + e^{x} (A \cos x - B \sin x) + e^{x} (A \cos x - B \cos x) = 2e^{x} (A \cos x - B \sin x).$$

Подставим \bar{y} , \bar{y}' и \bar{y}'' вместо y, y' и y'' в ЛНДУ (*):

$$2e^{x}(A\cos x - B\sin x) - 4e^{x}(A\sin x + B\cos x) - 4e^{x}(A\cos x - B\sin x) + 4e^{x}(A\sin x + B\cos x) = 5e^{x}\sin x.$$

Разделим это уравнение на $e^x \neq 0$:

 $2A\cos x - 2B\sin x - 4A\sin x - 4B\cos x - 4A\cos x + 4B\sin x + 3A\sin x + 3B\cos x =$ = $5\sin x$.

$$\sin x: \begin{cases}
2B - A = 5 \\
-B - 2A = 0
\end{cases} \Rightarrow \begin{cases}
A = 2B - 5 \\
-B - 4B + 10 = 0
\end{cases} \Rightarrow \begin{cases}
A = -1 \\
B = 2.
\end{cases}$$

Следовательно, $\bar{y} = e^x (2\cos x - \sin x)$.

3) Запишем общее решение уравнения (*):

$$y(x) = c_1 e^x + c_2 e^{3x} + e^x (2\cos x - \sin x).$$

4) Найдем z(x), используя выражение: z = 2y - y'.

Так как
$$y(x) = c_1 e^x + c_2 e^{3x} + e^x (2\cos x - \sin x)$$
, то $y'(x) = c_1 e^x + 3c_2 e^{3x} + e^x (2\cos x - \sin x) + e^x (-2\sin x - \cos x)$.

Hаходим z:

$$z(x) = 2(c_1e^x + c_2e^{3x} + e^x(2\cos x - \sin x)) - c_1e^x - 3c_2e^{3x} - e^x(2\cos x - \sin x) - e^x(-2\sin x - \cos x).$$

$$z(x) = c_1 e^x - c_2 e^{3x} + 4e^x \cos x - 2e^x \sin x - 2e^x \cos x + e^x \sin x + 2e^x \sin x + e^x \cos x$$

$$z(x) = c_1 e^x - c_2 e^{3x} + e^x \sin x + 3e^x \cos x.$$

Итак, общим решением системы является система двух функций:

$$y(x) = c_1 e^x + c_2 e^{3x} + e^x (2\cos x - \sin x)$$

$$z(x) = c_1 e^x - c_2 e^{3x} + e^x (\sin x + 3\cos x).$$

$$Omeem: y(x) = c_1 e^x + c_2 e^{3x} + e^x (2\cos x - \sin x)$$

$$z(x) = c_1 e^x - c_2 e^{3x} + e^x (\sin x + 3\cos x).$$

Пример 3. Решить задачу Коши:

$$\begin{cases} y' = y - z + 8x \\ z' = 5y - z, \end{cases} y(0) = 1; \ z(0) = 0.$$

Решение. Это линейная неоднородная дифференциальная система относительно неизвестных функций y = y(x) и z = z(x). Будем решать ее методом исключения.

Из первого уравнения выразим z = y + 8x - y' и подставим функцию z во второе уравнение:

$$(y+8x-y')' = 5y - (y+8x-y')$$

$$y'+8-y'' - 5y + y + 8x - y' = 0.$$

$$-y'' - 4y = -8x - 8 | \cdot (-1)$$

$$y'' + 4y = 8x + 8$$
(**)

Получим линейное неоднородное дифференциальное уравнение.

1) Решиим сначала ЛОДУ:

$$y'' + 4y = 0$$

Его характеристическое уравнение имеет вид:

$$k^{2} + 4 = 0$$

 $k = \pm 2i \quad (\alpha = 0, \beta = 2).$

Фундаментальную систему решений ЛОДУ составляют функции:

$$y_1(x) = \cos 2x, y_2(x) = \sin 2x.$$

Общее решение ЛОДУ запишется в виде:

$$y(x) = c_1 \cos 2x + c_2 \sin 2x.$$

2) Правая часть ЛНДУ f(x) = 8x + 8, т.е. $f(x) = P_1(x)e^{0x} \Rightarrow n = 1$, $\alpha = 0, s = 0$.

Значит, $\overline{y} = Ax + B$.

$$\overline{y}' = A$$

$$\overline{y}'' = 0.$$

Подставим \bar{y} , \bar{y}' и \bar{y}'' в уравнение (**) вместо y, y' и y'':

$$0 + 4Ax + 4B = 8x + 8$$
.

$$x: \begin{cases} 4A = 8 \\ x^0: \end{cases} 4B = 8 \Rightarrow A = 2; B = 2.$$

Следовательно, $\overline{y} = 2x + 2$.

3) Запишем общее решение уравнения (**):

$$y(x) = c_1 \cos 2x + c_2 \sin 2x + 2x + 2$$
.

4) Найдем z(x), используя выражение: z = y + 8x - y'.

Так как $y(x) = c_1 \cos 2x + c_2 \sin 2x + 2x + 2$, то $y' = -2c_1 \sin 2x + 2c_2 \cos 2x + 2$.

Тогда:

$$z(x) = c_1 \cos 2x + c_2 \sin 2x + 2x + 2 + 8x + 2c_1 \sin 2x - 2c_2 \cos 2x - 2 = (c_1 - 2c_2) \cos 2x + (c_2 + 2c_1) \sin 2x + 10x.$$

Итак, общим решением системы будут функции:

$$y(x) = c_1 \cos 2x + c_2 \sin 2x + 2x + 2,$$

$$z(x) = (c_1 - 2c_2)\cos 2x + (c_2 + 2c_1)\sin 2x + 10x.$$

5) Найдем c_1 и c_2 такими, чтобы y(x) и z(x) удовлетворяли заданным начальным условиям:

$$y(0) = 1; z(0) = 0.$$

Подставим x = 0, y = 1, z = 0 в полученное общее решение системы:

$$\begin{cases} 1 = c_1 + 2 \\ 0 = c_1 - 2c_2 \end{cases} \Rightarrow \begin{cases} c_1 = -1 \\ c_2 = -\frac{1}{2} \end{cases}$$

При полученных значениях $c_1 = -1$ и $c_2 = -\frac{1}{2}$ запишем частное решение системы:

$$y(x) = -\cos 2x - \frac{1}{2}\sin 2x + 2x + 2,$$

$$z(x) = -\frac{5}{2}\sin 2x + 10x.$$

Ombem:
$$y(x) = -\cos 2x - \frac{1}{2}\sin 2x + 2x + 2$$
,
 $z(x) = -\frac{5}{2}\sin 2x + 10x$.

1.
$$\begin{cases} y' = 6y + z \\ z' = -16y - 2z \end{cases}$$
$$\begin{cases} y' = 4y + 5 \end{cases}$$

$$2. \begin{cases} y - 4y + 3 \\ z' = -y - 2z \end{cases}$$

$$3. \begin{cases} y' = -3y + 4z \\ z' = -y - 3z \end{cases}$$

$$4. \begin{cases} y' = -y - z \\ z' = 2y + 3z \end{cases}$$

$$3. \begin{cases} y' = -3y + 4z \\ z' = -y - 3z \end{cases}$$

$$4. \begin{cases} y' = -y - z \\ z' = 2y + 3z \end{cases}$$

$$5. \begin{cases} 2y' - 5z' = 4z - y \\ 3y' - 4z' = 2y - z \end{cases}$$

6.
$$\begin{cases} y' = 2y - z \\ z' = z - 2y + 18x \end{cases}$$

7.
$$\begin{cases} y' = 4y - 3z + \sin x \\ z' = 2y - z - 2\cos x \end{cases}$$

8.
$$\begin{cases} y' = 2y + z + 2e^x \\ z' = y + 2z - 3e^{4x} \end{cases}$$

9.
$$\begin{cases} x' = 3x - 3y + z \\ y' = 3x - 2y + 2z \\ z' = -x + 2y \end{cases}$$

10.
$$\begin{cases} x' = -x - y + t^2 \\ y' = -y - z + 2t \\ z' = -z + t \end{cases}$$

5. Ответы

1.
$$y(x) = (c_1 + c_2 x)e^{2x}$$

 $z(x) = (c_2 - 4c_1 - 4c_2 x)e^{2x}$

2.
$$y(x) = -c_1 e^{-x} - 5c_2 e^{3x}$$

 $z(x) = c_1 e^{-x} + c_2 e^{3x}$

3.
$$y(x) = e^{-3x} (2c_1 \sin 2x - 2c_2 \cos 2x)$$

 $z(x) = e^{-3x} (c_1 \cos 2x + c_2 \sin 2x)$

4.
$$y(x) = c_1 e^{(1-\sqrt{2})x} + c_2 e^{(1+\sqrt{2})x}$$

 $z(x) = c_1(\sqrt{2}-2)e^{(1-\sqrt{2})x} + c_2(-\sqrt{2}-2)e^{(1+\sqrt{2})x}$

5.
$$y(x) = c_1 e^{-x} + 3c_2 e^x$$

 $z(x) = c_1 e^{-x} + c_2 e^x$

6.
$$y(x) = c_1 + c_2 e^{3x} + 3x^2 + 2x$$

 $z(x) = 2c_1 - c_2 e^{3x} + 6x^2 - 2x - 2$

7.
$$y(x) = c_1 e^x + c_2 e^{2x} + \cos x - 2\sin x$$

 $z(x) = c_1 e^x + \frac{2}{3}c_2 e^{2x} + 2\cos x - 2\sin x$

8.
$$y(x) = c_1 e^x + c_2 e^{3x} + x e^x - e^{4x}$$

 $z(x) = -c_1 e^x + c_2 e^{3x} - (x+1)e^x - 2e^{4x}$

9.
$$x(t) = c_1 e^{-t} + e^t (c_2 \cos t + c_3 \sin t)$$

 $y(t) = c_1 e^{-t} + \frac{1}{2} e^t ((c_2 - c_3) \cos t + (c_2 + c_3) \sin t)$
 $z(t) = -c_1 e^{-t} + \frac{1}{2} e^t ((-c_2 - c_3) \cos t + (c_2 - c_3) \sin t)$

10.
$$x(t) = (c_1 + c_2 t + c_3 t^2)e^{-t} + t^2 - 3t + 3$$

 $y(t) = (-c_2 - 2c_3 t)e^{-t} + t$
 $z(t) = 2c_3 e^{-t} + t - 1$

§2. Линейные однородные системы дифференциальных уравнений с постоянными коэффициентами

1. Метод Эйлера для решения ЛОДС второго порядка с постоянными коэффициентами

Пусть дана ЛОДС второго порядка:

$$\begin{cases} y' = a_{11}y + a_{12}z \\ z' = a_{21}y + a_{22}z, \end{cases}$$
 (1)

где y = y(x), z = z(x) – неизвестные функции, которые надо найти; $x \in (a;b), a_{11}, a_{12}, a_{21}, a_{22}$ – заданные действительные числа.

Метод Эйлера для решения системы (1)

Решение (1) ищется в виде:

$$y(x) = \alpha_1 e^{\lambda x}, z(x) = \alpha_2 e^{\lambda x}.$$

Получим y' и z' и подставим функции y(x) и z(x) в уравнения системы (1):

$$y'(x) = \alpha_1 \lambda e^{\lambda x}; z'(x) = \alpha_2 \lambda e^{\lambda x};$$
$$\begin{cases} \alpha_1 \lambda e^{\lambda x} = a_{11} \alpha_1 e^{\lambda x} + a_{12} \alpha_2 e^{\lambda x} \\ \alpha_2 \lambda e^{\lambda x} = a_{21} \alpha_1 e^{\lambda x} + a_{22} \alpha_2 e^{\lambda x} \end{cases}$$

Разделим оба полученных уравнения на $e^{\lambda x} \neq 0$:

$$\begin{cases} \alpha_1 \lambda = a_{11} \alpha_1 + a_{12} \alpha_2 \\ \alpha_2 \lambda = a_{21} \alpha_1 + a_{22} \alpha_2 \end{cases}$$

Запишем систему в виде:

$$\begin{cases} (a_{11} - \lambda)\alpha_1 + a_{12}\alpha_2 = 0\\ a_{21}\alpha_1 + (a_{22} - \lambda)\alpha_2 = 0 \end{cases}$$
 (2)

Получим однородную систему с неизвестными α_1 и α_2 . Чтобы эта система имела ненулевое решение, ее определитель должен быть равен нулю:

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0.$$
 (3)

Уравнение (3) называется *характеристическим уравнением системы* (1), а его корни – характеристическими числами системы (1). Различают три случая:

1) Оба корня уравнения (3) действительные и различные: $\lambda_1 \neq \lambda_2$. Подставляя λ_1 в одно из уравнений системы (2), например, в первое:

$$(a_{11} - \lambda_1)\alpha_1^{(1)} + a_{12}\alpha_2^{(1)} = 0,$$

определим $\alpha_1^{(1)}$ и $\alpha_2^{(1)}$ с точностью до константы, откуда получим первое решение системы (1):

$$y_1(x) = \alpha_1^{(1)} e^{\lambda_1 x}; z_1(x) = \alpha_2^{(1)} e^{\lambda_1 x},$$

То же самое проводим со вторым корнем λ_2 и в результате получим второе решение, линейно независимое на промежутке (a;b) с первым:

$$y_2(x) = \alpha_1^{(2)} e^{\lambda_2 x}; z_2(x) = \alpha_2^{(2)} e^{\lambda_2 x}.$$

Следовательно, общим решением системы (1) будет семейство функций:

$$y(x) = c_1 \alpha_1^{(1)} e^{\lambda_1 x} + c_2 \alpha_1^{(2)} e^{\lambda_2 x}$$

$$z(x) = c_1 \alpha_2^{(1)} e^{\lambda_1 x} + c_2 \alpha_2^{(2)} e^{\lambda_2 x}.$$

2) Если $\lambda_1 = a \pm bi$ – два комплексно-сопряженных корня уравнения (3), тогда общее решение системы (1) в этом случае следует представить в виде:

$$y(x) = e^{\alpha x} (c_1 \cos bx + c_2 \sin 2x)$$
$$z(x) = e^{\alpha x} (a_1 \cos bx + a_2 \sin 2x),$$

где c_1 и c_2 – произвольные постоянные, а a_1 и a_2 необходимо выразить через c_1 и c_2 с помощью подстановки y(x) и z(x) в одно из уравнений системы (1) – например, в первое.

3) Если $\lambda_1 = \lambda_2 = \lambda$ – корни уравнения (3) действительные и равные, то в этом случае общее решение системы (1) следует представить в виде:

$$y(x) = e^{\lambda x} (c_1 + c_2 x)$$
$$z(x) = e^{\lambda x} (a_1 + a_2 x),$$

где c_1 и c_2 – произвольные постоянные, а a_1 и a_2 необходимо выразить через c_1 и c_2 с помощью подстановки y(x) и z(x) в одно из уравнений системы (1) например, в первое.

2. Системы однородных дифференциальных уравнений более высоких порядков с постоянными коэффициентами

Рассмотрим ЛОДС *п*-го порядка:

где $y_1 = y_1(x), y_2 = y_2(x)...y_n = y_n(x)$ — неизвестные функции от переменной $x \in (a;b), a_{11}, a_{12},...a_{nn}$ — заданные действительные числа, называемые коэффициентами системы (4).

Обозначим матрицы:

$$Y(x) = \begin{pmatrix} y_1(x) \\ y_2(x) \\ \vdots \\ y_n(x) \end{pmatrix}; Y'(x) = \begin{pmatrix} y'_1(x) \\ y'_2(x) \\ \vdots \\ y'_n(x) \end{pmatrix}, A = \begin{pmatrix} a_{11}a_{12}...a_{1n} \\ a_{21}a_{22}...a_{2n} \\ ----- \\ a_{n1}a_{n2}...a_{nn} \end{pmatrix}$$

Тогда система (4) может быть записана в матричной форме:

$$Y'(x) = A \cdot Y(x) \tag{5}$$

Матрица A называется матрицей системы (4). Общее решение системы (5) записывается через n линейно независимых решений системы: $Y_1(x), Y_2(x), ... Y_n(x)$ следующим образом:

$$Y(x) = c_1 Y_1(x) + c_2 Y_2(x) + ... + c_n Y_n(x),$$

где $c_1, c_2, \dots c_n$ – произвольные постоянные.

Алгоритм построения общего решения системы (5)

1) Найти все собственные значения матрицы A, т.е. числа λ , удовлетворяющие уравнению:

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \dots & a_{1n} \\ a_{21} & a_{2} - \lambda \dots & a_{2n} \\ ----- & a_{n1} & a_{n2} \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$

Это уравнение имеет ровно n корней с учетом их кратности.

- 2) Найти все линейно независимые собственные и присоединенные к ним векторы матрицы A (их всего должно быть n).
- 3) Найти функции $Y_1(x), Y_2(x), ... Y_n(x)$ линейно независимые решения системы (5). При этом используют следующие случаи.
- а) Случай простого собственного значения

Если λ_1 – простое собственное значение матрицы A и \overline{h}_1 – соответствующий ему собственный вектор A, тогда числу λ_1 в фундаментальной системе решений ЛОДС (5) соответствует функция-столбец:

$$Y_1(x) = e^{\lambda_1 x} \overline{h}_1$$

б) Случай кратного собственного значения

Если λ_l – кратное собственное значение матрицы A (кратности l) и \overline{h}_l , \overline{h}_l^1 , \overline{h}_l^2 .. \overline{h}_l^{l-1} – собственный \overline{h}_l и присоединенные к нему линейно независимые векторы \overline{h}_l^1 , \overline{h}_l^2 .. \overline{h}_l^{l-1} – ($l \ge 2$), тогда числу λ_l в фундаментальной системе решений системы (5) соответствуют функции-столбцы:

$$Y_{1}(x) = e^{\lambda_{1}x} \overline{h}_{1}$$

$$Y_{2}(x) = e^{\lambda_{1}x} \cdot \left(\frac{x}{1!} \overline{h}_{1} + \overline{h}_{1}^{1}\right)$$

$$Y_{3}(x) = e^{\lambda_{1}x} \cdot \left(\frac{x^{2}}{2!} \overline{h}_{1} + \frac{x}{1!} \overline{h}_{1}^{1} + \overline{h}_{1}^{2}\right)$$

$$------$$

$$Y_{l}(x) = e^{\lambda_{1}x} \cdot \left(\frac{x^{l-1}}{(l-1)!} \overline{h}_{1} + \frac{x^{l-2}}{(l-2)!} \overline{h}_{1}^{1} + \dots + \frac{x}{1!} \overline{h}_{1}^{l-2} + \overline{h}_{1}^{l-1}\right)$$
(6)

3амечание. Если $\lambda_1 = a + bi$, $b \neq 0$, то матрица A имеет собственное значение $\lambda_2 = a - bi$ той же кратности k_1 , что и число λ_1 . Построенные по формулам (6) функции будут в этом случае комплекснозначными. Выделив в каждой из них действительную и мнимую части, получим набор из $2k_1$ действительных линейно независимых решений ЛОДС (5), отвечающих паре собственных значений $\lambda_{1,2} = a \pm bi$ в фундаментальной системе решений.

3. Примеры с решениями

Пример 1. Решить систему:

$$\begin{cases} y' = -4y + z \\ z' = -2y - 6z \end{cases}$$

Решение. Это ЛОДС второго порядка. Решим по методу Эйлера:

$$y(x) = \alpha_1 \cdot e^{\lambda x}$$

$$z(x) = \alpha_2 \cdot e^{\lambda x} \Rightarrow y'(x) = \alpha_1 \cdot \lambda e^{\lambda x}$$

$$z'(x) = \alpha_2 \cdot \lambda e^{\lambda x}.$$

Подставим в заданную систему:

FO CUCTEMY:
$$\begin{cases} \alpha_1 \cdot \lambda e^{\lambda x} = -4\alpha_1 \cdot e^{\lambda x} + \alpha_2 \cdot e^{\lambda x} \\ \alpha_2 \cdot \lambda e^{\lambda x} = -2\alpha_1 \cdot e^{\lambda x} - 6\alpha_2 \cdot e^{\lambda x} \end{cases} : e^{\lambda x} \neq 0$$

$$\begin{cases} \alpha_1 \cdot \lambda = -4\alpha_1 + \alpha_2 \\ \alpha_2 \cdot \lambda = -2\alpha_1 - 6\alpha_2 \end{cases}$$

$$\begin{cases} (-4 - \lambda)\alpha_1 + \alpha_2 = 0 \\ -2\alpha_1 + (-6 - \lambda)\alpha_2 = 0 \end{cases}$$

Получим однородную систему линейных уравнений относительно α_1 и α_2 . Чтобы эта система имела ненулевое решение, определитель ее должен быть равен нулю:

$$\begin{vmatrix} -4-\lambda & 1 \\ -2 & -6-\lambda \end{vmatrix} = 0.$$

Это характеристическое уравнение данной системы. Найдем его корни.

$$(-4 - \lambda)(-6 - \lambda) + 2 = 0$$

$$24 + 6\lambda + 4\lambda + \lambda^{2} + 2 = 0$$

$$\lambda^{2} + 10\lambda + 26 = 0; D = 100 - 104 = -4 < 0$$

$$\lambda_{1,2} = \frac{-10 \pm 2i}{2} = -5 \pm i.$$

Значит, общее решение данной системы можно записать в виде:

$$y(x) = c_1 \cdot e^{-5x} \cos x + c_2 \cdot e^{-5x} \sin x$$
$$z(x) = a_1 \cdot e^{-5x} \cos x + a_2 \cdot e^{-5x} \sin x,$$

где c_1 и c_2 –произвольные постоянные, а a_1 и a_2 выразим через c_1 и c_2 при подстановке y(x) и z(x) в первое уравнение системы. Сначала найдем:

$$y'(x) = -5c_1 \cdot e^{-5x} \cos x - c_1 \cdot e^{-5x} \sin x - 5c_2 \cdot e^{-5x} \sin x + c_2 \cdot e^{-5x} \cos x.$$

Подставим y'(x), y(x) и z(x)в первое уравнение данной системы:

$$-5c_1 \cdot e^{-5x} \cos x - c_1 \cdot e^{-5x} \sin x - 5c_2 \cdot e^{-5x} \sin x + c_2 \cdot e^{-5x} \cos x = -4c_1 \cdot e^{-5x} \cos x - 4c_2 \cdot e^{-5x} \sin x + a_1 e^{-5x} \cos x + a_2 e^{-5x} \sin x.$$

Разделим это равенство на $e^{-5x} \neq 0$.

 $-5c_1\cos x - c_1\sin x - 5c_2\sin x + c_2\cos x = -4c_1\cos x - 4c_2\sin x + a_1\cos x + a_2\sin x$. Приравнивая коэффициенты при $\cos x$ и $\sin x$, получим выражения для a_1 и a_2 через c_1 и c_2 :

$$\cos x : -5c_1 + c_2 = -4c_1 + a_1 \\ \sin x : -c_1 - 5c_2 = -4c_2 + a_2$$
 \Longrightarrow
$$\begin{cases} a_1 = -c_1 + c_2 \\ a_2 = -c_1 - c_2. \end{cases}$$

Следовательно, общее решение данной системы запишется в виде:

$$y(x) = c_1 \cdot e^{-5x} \cos x + c_2 \cdot e^{-5x} \sin x$$

$$z(x) = (-c_1 + c_2) \cdot e^{-5x} \cos x + (-c_1 - c_2) \cdot e^{-5x} \sin x,$$

$$Omeem: y(x) = c_1 \cdot e^{-5x} \cos x + c_2 \cdot e^{-5x} \sin x$$

$$z(x) = (-c_1 + c_2) \cdot e^{-5x} \cos x + (-c_1 - c_2) \cdot e^{-5x} \sin x.$$

Пример 2. Решить систему:

$$\begin{cases} 3z' - y' - 8y = 0 \\ 5z' - 3y' - 8z = 0 \end{cases}$$

Peшение. Приведем данную систему к нормальному виду. Для этого сначала исключим y':

$$\begin{cases} 3z' - y' - 8y = 0 & | \cdot (-3) \\ 5z' - 3y' - 8z = 0 \\ + \begin{cases} -9z' + 3y' + 24y = 0 \\ 5z' - 3y' - 8z = 0 \end{cases} \\ -4z' + 24y - 8z = 0 & | \cdot (-4) \\ z' - 6y + 2z = 0 \Rightarrow z' = 6y - 2z \end{cases}$$
(*)

Теперь z' из уравнения (*) подставим в первое уравнение данной системы:

$$3(6y-2z)-y'-8y=0$$

$$18y-6z-y'-8y=0$$

$$-y'+10y-6z=0 \Rightarrow y'=10y-6z$$
 (**)

Полученные уравнения (*) и (**) составят систему в нормальном виде:

$$\begin{cases} y' = 10y - 6z \\ z' = 6y - 2z \end{cases}$$

Решим эту систему методом Эйлера:

$$y(x) = \alpha_1 \cdot e^{\lambda x} \Rightarrow y'(x) = \alpha_1 \cdot \lambda e^{\lambda x}$$

$$z(x) = \alpha_2 \cdot e^{\lambda x} \Rightarrow z'(x) = \alpha_2 \cdot \lambda e^{\lambda x}.$$

$$\begin{cases} \alpha_1 \cdot \lambda e^{\lambda x} = 10\alpha_1 \cdot e^{\lambda x} - 6\alpha_2 e^{\lambda x} \\ \alpha_2 \cdot \lambda e^{\lambda x} = 6\alpha_1 \cdot e^{\lambda x} - 2\alpha_2 e^{\lambda x} \end{cases} | e^{\lambda x} \neq 0$$

$$\begin{cases} \alpha_1 \cdot \lambda = 10\alpha_1 - 6\alpha_2 \\ \alpha_2 \cdot \lambda = 6\alpha_1 - 2\alpha_2 \end{cases}$$

$$\begin{cases} (10 - \lambda)\alpha_1 - 6\alpha_2 = 0 \\ 6\alpha_1 + (-2 - \lambda)\alpha_2 = 0 \end{cases}$$

Определитель этой системы должен быть равным нулю:

$$\begin{vmatrix} 10 - \lambda & -6 \\ 6 & -2 - \lambda \end{vmatrix} = 0.$$

Получим характеристическое уравнение данной системы. Найдем его корни:

$$(10 - \lambda)(-2 - \lambda) + 36 = 0$$

$$-20 + 2\lambda - 10\lambda + \lambda^{2} + 36 = 0$$

$$\lambda^{2} - 8\lambda + 16 = 0; D = 64 - 64 = 0.$$

$$\lambda_{1} = \lambda_{2} = 4.$$

Значит, общее решение данной системы можно записать в виде:

$$y(x) = e^{4x}(c_1 + c_2 x)$$

 $z(x) = e^{4x}(a_1 + a_2 x),$

где c_1 и c_2 – произвольные постоянные, а a_1 и a_2 выразим через c_1 и c_2 при подстановке y(x) и z(x) в первое уравнение системы. Для этого найдем

$$y'(x) = 4e^{4x}(c_1 + c_2x) + e^{4x}c_2$$
.

Подставим y'(x), y(x) и z(x)в первое уравнение данной системы:

$$4e^{4x}(c_1+c_2x)+e^{4x}c_2=10e^{4x}(c_1+c_2x)-6e^{4x}(a_1+a_2x).$$

Разделим это равенство на $e^{4x} \neq 0$.

$$4c_1 + 4c_2x + c_2 = 10c_1 + 10c_2x - 6a_1 - 6a_2x$$
.

Приравнивая коэффициенты при x и x^{0} , получим выражения a_{1} и a_{2} через c_{1} и c_{2} :

$$\begin{array}{l}
x : \begin{cases}
4c_2 = 10c_2 - 6a_2 \\
x^0 : \begin{cases}
4c_1 + c_2 = 10c_1 - 6a_1
\end{cases}
\Rightarrow
\begin{cases}
a_2 = c_2 \\
a_1 = c_1 - \frac{1}{6}c_2
\end{cases}$$

Следовательно, общее решение данной системы запишется в виде:

$$y(x) = e^{4x}(c_1 + c_2 x)$$
$$z(x) = e^{4x}(c_1 - \frac{1}{6}c_2 + c_2 x),$$

Omeem:
$$y(x) = e^{4x}(c_1 + c_2 x)$$

$$z(x) = e^{4x}(c_1 - \frac{1}{6}c_2 + c_2x).$$

Пример 3. Решить задачу Коши:

$$\begin{cases} y' = 4y + 3z \\ z' = y + 2z, \end{cases}$$
$$y(0) = 0, z(0) = -4.$$

Решение. Решим систему методом Эйлера:

$$y(x) = \alpha_1 \cdot e^{\lambda x}$$

$$z(x) = \alpha_2 \cdot e^{\lambda x} \Rightarrow y'(x) = \alpha_1 \cdot \lambda e^{\lambda x}$$

$$z'(x) = \alpha_2 \cdot \lambda e^{\lambda x}.$$

Подставим y', y, z', z в данную систему:

$$\begin{cases} \alpha_{1} \cdot \lambda e^{\lambda x} = 4\alpha_{1} \cdot e^{\lambda x} + 3\alpha_{2} \cdot e^{\lambda x} \\ \alpha_{2} \cdot \lambda e^{\lambda x} = \alpha_{1} \cdot e^{\lambda x} + 2\alpha_{2} \cdot e^{\lambda x} \end{vmatrix} : e^{\lambda x} \neq 0 \\ \begin{cases} \alpha_{1} \cdot \lambda = 4\alpha_{1} + 3\alpha_{2} \\ \alpha_{2} \cdot \lambda = \alpha_{1} + 2\alpha_{2} \end{cases} \Rightarrow \begin{cases} (4 - \lambda)\alpha_{1} + 3\alpha_{2} = 0 \\ \alpha_{1} + (2 - \lambda)\alpha_{2} = 0 \end{cases}$$

Определитель полученной системы должен быть равен нулю:

$$\begin{vmatrix} 4 - \lambda & 3 \\ 1 & 2 - \lambda \end{vmatrix} = 0.$$

Получим характеристическое уравнение данной системы. Найдем его корни.

$$(4 - \lambda)(2 - \lambda) - 3 = 0$$

$$8 - 2\lambda - 4\lambda + \lambda^{2} - 3 = 0$$

$$\lambda^{2} - 6\lambda + 5 = 0; D = 36 - 20 = 16 > 0$$

$$\lambda_{1} = \frac{6 + 4}{2} = 5; \lambda_{2} = \frac{6 - 4}{2} = 1.$$

Значит, общее решение данной системы можно записать в виде:

$$y(x) = c_1 e^{5x} + c_2 e^x$$

 $z(x) = a_1 e^{5x} + a_2 e^x$,

где c_1 и c_2 –произвольные постоянные, а a_1 и a_2 выразим через c_1 и c_2 при подстановке y(x) и z(x) в первое уравнение системы.

Для этого найдем $y'(x) = 5c_1e^{5x} + c_2e^x$.

Подставляем y'(x), y(x) и z(x)в первое уравнение данной системы:

$$5c_1e^{5x} + c_2e^x = 4c_1e^{5x} + 4c_2e^x + 3a_1e^{5x} + 3a_2e^x.$$

Приравнивая коэффициенты при e^{5x} и e^x , получим выражения a_1 и a_2 через c_1 и c_2 :

$$e^{5x}: \begin{cases} 5c_1 = 4c_1 + 3a_1 \\ c_2 = 4c_2 + 3a_2 \end{cases} \Rightarrow \begin{cases} a_1 = \frac{1}{3}c_1 \\ a_2 = -c_2 \end{cases}$$

Следовательно, общее решение данной системы запишется в виде:

$$y(x) = c_1 e^{5x} + c_2 e^x$$
$$z(x) = \frac{1}{3} c_1 e^{5x} - c_2 e^x.$$

Найдем решение задачи Коши при начальных условиях:

$$y(0) = 0; z(0) = -4.$$

Подставим в общее решение x = 0, y = 0, z = -4:

$$\begin{cases} 0 = c_1 e^0 + c_2 e^0 \\ -4 = \frac{1}{3} c_1 e^0 - c_2 e^0 \end{cases} \Rightarrow \begin{cases} c_1 + c_2 = 0 \\ \frac{1}{3} c_1 - c_2 = -4 \end{cases}$$

$$\frac{4}{3} c_1 = -4 \Rightarrow c_1 = -3$$

$$c_2 = -c_1 \Rightarrow c_2 = 3.$$

Значит, частным решением системы, удовлетворяющим начальным условиям, являются функции:

$$y(x) = -3e^{5x} + 3e^{x}$$
$$z(x) = -e^{5x} - 3e^{x}.$$

Omeem:
$$y(x) = -3e^{5x} + 3e^x$$

 $z(x) = -e^{5x} - 3e^x$.

Пример 4. Решить систему:

$$\begin{cases} x' = x + 3y - z \\ y' = -x + 4y \\ z' = y + z \end{cases}$$

Решение. Эта система третьего порядка относительно неизвестных функций x = x(t), y = y(t), z = z(t). Решим ее матричным способом.

Обозначим матрицы-столбцы:

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 и $X' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ и матрицу из коэффициентов системы:

$$A = \begin{pmatrix} 1 & 3 & -1 \\ -1 & 4 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Тогда данную систему можно записать в матричном виде:

$$X' = A \cdot X$$
.

1) Найдем собственные значения λ матрицы A из характеристического уравнения:

$$\begin{vmatrix} A - \lambda E | = 0 \Rightarrow \begin{vmatrix} 1 - \lambda & 3 & -1 \\ -1 & 4 - \lambda & 0 \\ 0 & 1 & 1 - \lambda \end{vmatrix} = 0.$$

$$(1 - \lambda)^2 (4 - \lambda) + 1 + 3(1 - \lambda) = 0$$

$$(1 - 2\lambda + \lambda^2)(4 - \lambda) + 4 - 3\lambda = 0$$

$$-\lambda^3 + 2\lambda^2 - \lambda + 4\lambda^2 - 8\lambda + 4 + 4 - 3\lambda = 0$$

$$-\lambda^3 + 6\lambda^2 - 12\lambda + 8 = 0$$

$$\lambda^3 - 6\lambda^2 + 12\lambda - 8 = 0$$

$$(\lambda - 2)^3 = 0$$

$$\lambda_1 = \lambda_2 = \lambda_3 = 2, \text{ т.e. } \lambda_1 = 2 \text{ кратности } 3.$$

2) Найдем собственные векторы A, соответствующие $\lambda=2:\overline{h}_1=\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}$

$$(A-2E) = \begin{pmatrix} 1-2 & 3 & -1 \\ -1 & 4-2 & 0 \\ 0 & 1 & 1-2 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 & -1 \\ -1 & 2 & 0 \\ 0 & 1 & -1 \end{pmatrix} \stackrel{(-1)}{\downarrow} \rightarrow \begin{pmatrix} -1 & 3 & -1 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \stackrel{(1)}{\downarrow} \rightarrow \begin{pmatrix} -1 & 3 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \stackrel{(1)}{\downarrow} \rightarrow \begin{pmatrix} -1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Получим ступенчатый вид Γ аусса матрицы A.

Решим систему $(A-2E)\overline{h}=0$:

$$\begin{cases} -x_1 + 2x_3 = 0 \\ -x_2 + x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 2x_3 \\ x_2 = x_3 \end{cases}$$

Пусть $x_3 = 1$, тогда $x_1 = 2$; $x_2 = 1$; $x_3 = 1$. Значит, собственный вектор $\overline{h}_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$.

3) Найдем присоединенные векторы \bar{h}_1^1 и \bar{h}_1^2 к вектору \bar{h}_1 .

$$\begin{pmatrix}
-1 & 3 & -1 & | & 2 \\
-1 & 2 & 0 & | & 1 \\
0 & 1 & -1 & | & 1
\end{pmatrix}$$

$$\xrightarrow{-1}$$

$$\xrightarrow{-$$

Получим ступенчатый вид Гаусса.

Пусть
$$\bar{h}_1^1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, тогда $\begin{cases} x_1 - 2x_3 = 1 \\ x_2 - x_3 = 1 \end{cases} \Rightarrow \begin{cases} x_1 = 1 + 2x_3 \\ x_2 = 1 - x_3 \end{cases}$

Пусть $x_3 = 0 \Rightarrow x_1 = 1; x_2 = 1; x_3 = 0.$

Итак,
$$\overline{h}_1^1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 – первый присоединенный вектор к \overline{h}_1 .

Найдем еще один присоединенный к $\overline{h}_{\!\!1}$ вектор $\overline{h}_{\!\!1}^{2}$:

$$\begin{pmatrix}
-1 & 3 & -1 & | & 1 \\
-1 & 2 & 0 & | & 1 \\
0 & 1 & -1 & | & 0
\end{pmatrix}$$

$$\downarrow \rightarrow \begin{pmatrix}
-1 & 3 & -1 & | & 1 \\
0 & -1 & 1 & | & 0 \\
0 & 1 & -1 & | & 0
\end{pmatrix}$$

$$\downarrow \rightarrow \begin{pmatrix}
-1 & 3 & -1 & | & 1 \\
0 & -1 & 1 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 3 & -1 & | & 1 \\
0 & -1 & 1 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 0 & 2 & | & 1 \\
0 & -1 & 1 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 0 & 2 & | & 1 \\
0 & -1 & 1 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\begin{pmatrix}
-1 & 0 & 2 & | & 1 \\
0 & -1 & 1 & | & 0 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

Получим ступенчатый вид Гаусса.

Пусть
$$\bar{h}_1^2 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, тогда $\begin{cases} x_1 - 2x_3 = -1 \\ x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = -1 + 2x_3 \\ x_2 = x_3 \end{cases}$

Пусть $x_3 = 1 \Rightarrow x_1 = 1; x_2 = 1; x_3 = 1.$

Итак,
$$\bar{h}_1^2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 – второй присоединенный вектор к \bar{h}_1 .

Векторы
$$\overline{h}_1=\begin{pmatrix}2\\1\\1\end{pmatrix}, \overline{h}_1^1=\begin{pmatrix}1\\1\\0\end{pmatrix}, \overline{h}_1^2=\begin{pmatrix}1\\1\\1\end{pmatrix}$$
 – линейно независимые.

4) Построим фундаментальную систему решений данной ЛОДС.

$$X_{1}(t) = e^{\lambda t} \cdot \overline{h}_{1} = e^{2t} \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix};$$

$$X_{2}(t) = e^{2t} \cdot (t \cdot \overline{h}_{1} + \overline{h}_{1}^{1}) = e^{2t} \begin{pmatrix} t \cdot \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix} = e^{2t} \begin{pmatrix} 2t + 1 \\ t + 1 \\ t \end{pmatrix};$$

$$X_{3}(t) = e^{2t} \cdot \left(\frac{t^{2}}{2!} \cdot \overline{h}_{1} + \frac{t}{1!} \overline{h}_{1}^{1} + \overline{h}_{1}^{2}\right) = e^{2t} \left(\frac{t^{2}}{2} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}\right) = e^{2t} \cdot \begin{pmatrix} t^{2} + t + 1 \\ \frac{1}{2} t^{2} + t + 1 \\ \frac{1}{2} t^{2} + 1 \end{pmatrix}.$$

Следовательно, общее решение ЛОДС:

$$X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = c_1 X_1(t) + c_2 X_2(t) + c_3 X_3(t) =$$

$$= c_1 e^{2t} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} + c_2 e^{2t} \begin{pmatrix} 2t+1 \\ t+1 \\ t \end{pmatrix} + c_3 e^{2t} \begin{pmatrix} t^2+t+1 \\ \frac{1}{2}t^2+t+1 \\ \frac{1}{2}t^2+1 \end{pmatrix} =$$

$$=e^{2t} \begin{pmatrix} 2c_1+c_2(2t+1)+c_3(t^2+t+1) \\ c_1+c_2(t+1)+c_3(\frac{1}{2}t^2+t+1) \\ c_1+c_2t+c_3(\frac{1}{2}t^2+1) \end{pmatrix},$$

где c_1, c_2, c_3 – произвольные постоянные.

Omsem:
$$x(t) = e^{2t} (2c_1 + c_2(2t+1) + c_3(t^2+t+1))$$

$$y(t) = e^{2t}(c_1 + c_2(t+1) + c_3(\frac{1}{2}t^2 + t + 1))$$

$$z(t) = e^{2t} (c_1 + c_2 t + c_3 (\frac{1}{2}t^2 + 1)).$$

Пример 5. Решить систему:

$$\begin{cases} x' = 3x - 2y + 2z \\ y' = 3y \\ z' = 2y + z \end{cases}$$

Решение. Эта система третьего порядка относительно неизвестных функций x = x(t), y = y(t), z = z(t). Решим ее матричным способом.

Обозначим матрицы-столбцы:

$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
, $X' = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$ и матрицу из коэффициентов системы:

$$A = \left(\begin{array}{ccc} 3 & -2 & 2 \\ 0 & 3 & 0 \\ 0 & 2 & 1 \end{array}\right).$$

Тогда данную систему можно записать в матричном виде:

$$X' = A \cdot X$$
.

1) Найдем собственные значения λ матрицы A из характеристического уравнения:

$$|A - \lambda E| = 0 \Rightarrow \begin{vmatrix} 3 - \lambda & -2 & 2 \\ 0 & 3 - \lambda & 0 \\ 0 & 2 & 1 - \lambda \end{vmatrix} = 0.$$

$$(3-\lambda)^2(1-\lambda) = 0 \Rightarrow (3-\lambda)^2 = 0 \Rightarrow \lambda_1 = \lambda_2 = 3, 1-\lambda = 0 \Rightarrow \lambda_3 = 1.$$

Получим $\lambda_1 = 3$ кратности 2 и $\lambda_2 = 1$.

2) Найдем собственные векторы A, соответствующие $\lambda_1 = 3 : \overline{h}_1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

$$(A-3E) = \begin{pmatrix} 3-3 & -2 & 2 \\ 0 & 3-3 & 0 \\ 0 & 2 & 1-3 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -2 & 2 \\ 0 & 0 & 0 \\ 0 & 2 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Получим ступенчатый вид матрицы A.

$$x_2 - x_3 = 0 \Longrightarrow x_2 = x_3$$

 x_1 , x_3 – свободные неизвестные, x_2 – базисная неизвестная.

Пусть $x_1 = 1$; $x_3 = 0$, тогда $x_2 = 0$.

Итак,
$$\overline{h}_{_{\!\!1}} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
.

Пусть $x_1 = 0$; $x_3 = 1$, тогда $x_2 = 1$.

Итак,
$$\overline{h}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Итак, $\overline{h}_2=\begin{pmatrix}0\\1\\1\end{pmatrix}$. Получим $\overline{h}_{\!_1}$ и $\overline{h}_{\!_2}$ —два линейно независимых собственных вектора, соответствующие значению $\lambda_1 = 3$.

3) Найдем собственный вектор матрицы A, соответствующий $\lambda_2=1$.

$$(A-1 \cdot E) = \begin{pmatrix} 3-1 & -2 & 2 \\ 0 & 3-1 & 0 \\ 0 & 2 & 1-1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -2 & 2 \\ 0 & 2 & 0 \\ 0 & 2 & 0 \end{pmatrix} (-1) \rightarrow \begin{pmatrix} 2 & -2 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \frac{1/2}{1/2} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} (1) \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Получим ступенчатый вид Гаусса.

Пусть
$$\overline{h}_3 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
. Тогда $\begin{cases} x_1 + x_3 = 0 \\ x_2 = 0 \end{cases}$

 x_3 – свободная неизвестная, x_1 и x_2 – базисные неизвестные.

Пусть $x_3 = -1$, тогда $x_1 = 1$, $x_2 = 0$, $x_3 = -1$.

Итак,
$$\bar{h}_3=\begin{pmatrix}1\\0\\-1\end{pmatrix}$$
— третий собственный вектор, соответствующий $\lambda_2=1.$

Полученные векторы
$$\overline{h}_1=\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \overline{h}_2=\begin{pmatrix} 0\\1\\1 \end{pmatrix}, \overline{h}_3=\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$
—линейно независимые.

92

4) Построим фундаментальную систему решений данной ЛОДС.

$$X_1(t) = e^{\lambda_1 t} \cdot \overline{h}_1 = e^{3t} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix};$$

$$X_{2}(t) = e^{\lambda_{1}t}\overline{h}_{2} = e^{3t} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix};$$

$$X_{3}(t) = e^{\lambda_{2}t}\overline{h}_{3} = e^{t} \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

$$X_3(t) = e^{\lambda_2 t} \overline{h}_3 = e^t \cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

Следовательно, общее решение ЛОДС:

$$X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = c_1 X_1(t) + c_2 X_2(t) + c_3 X_3(t) =$$

$$= c_1 e^{3t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + c_2 e^{3t} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + c_3 e^t \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} =$$

$$= \begin{pmatrix} c_1 e^{3t} + c_3 e^t \\ c_2 e^{3t} \\ c_2 e^{3t} - c_3 e^t \end{pmatrix},$$

где c_1, c_2, c_3 – произвольные постоянные.

Omeem:
$$x(t) = c_1 e^{3t} + c_3 e^t$$
,

$$y(t) = c_2 e^{3t},$$

$$z(t) = c_2 e^{3t} - c_3 e^t.$$

4. Примеры

1.
$$\begin{cases} x' = 3x + 2y \\ y' = x + y \end{cases}$$
2.
$$\begin{cases} x' = y - 3x \\ y' = 3y - 5x \end{cases}$$
3.
$$\begin{cases} x' = 2x + 2y \\ y' = 3x + 4y \end{cases}$$
4.
$$\begin{cases} x' = -2x + y \\ y' = -5x - 4y \end{cases}$$
5.
$$\begin{cases} x' = -x - 3y \\ y' = 4x + y \end{cases}$$
6.
$$\begin{cases} x' = 4y - x \\ y' = 7y - 4x \end{cases}$$
7.
$$\begin{cases} x' - 10x + 6y = 0 \\ y' - 6x + 2y = 0 \end{cases}$$
8.
$$\begin{cases} 3y' - x' = 10y \\ y' + 3x' = 10x \end{cases}$$
9.
$$\begin{cases} x' - 3y' = 8x \\ 3x' - 5y' = 8y \end{cases}$$

10.
$$\begin{cases} x' = 2x + y - z \\ y' = x + 2y + 2z \\ z' = -x + y - z \end{cases}$$
11.
$$\begin{cases} x' = y + z \\ y' = x + z \\ z' = x + y \end{cases}$$
12.
$$\begin{cases} x' = x - y + z \\ y' = x + y - z \\ z' = 2z - y \end{cases}$$
13.
$$\begin{cases} x' = x - y \\ y' = 3x + 4y - z \\ z' = x + z \end{cases}$$
14.
$$\begin{cases} x' = 2x - 4y - z \\ y' = 3x + 2y + 3z \\ z' = x - 4y + 2z \end{cases}$$
15.
$$\begin{cases} x' = z \\ y' = x - y + z \\ z' = 0 \end{cases}$$

Решить задачу Коши:

16.
$$\begin{cases} x' = 2x - y & x(0) = y(0) = 1 \\ y' = 3x - 2y & x = \frac{\pi}{2} = 2 \end{cases}$$
17.
$$\begin{cases} x' = x + y & x = \frac{\pi}{2} = 2 \\ y' = -2x - y & y = \frac{\pi}{2} = -1 \end{cases}$$
18.
$$\begin{cases} x' = 2x + y & x(0) = y(0) = 2 \\ y' = 3x + 4y & x' = 2x + y \end{cases}$$

19.
$$\begin{cases} x' = 2x - 5y & x(0) = 4 \\ y' = 5x - 8y & y(0) = 5 \end{cases}$$
20.
$$\begin{cases} x' = x - 3y + z & x(0) = 1 \\ y' = x - 2y & y(0) = 0 \\ z' = y - z & z(0) = -1 \end{cases}$$

5. Ответы

1.
$$x(t) = c_1 + 3c_2e^{4t}$$
,
 $y(t) = -c_1 + c_2e^{4t}$

2.
$$x(t) = c_1 e^{-2t} + c_2 e^{2t}$$
,

$$y(t) = c_1 e^{-2t} + 5c_2 e^{2t}$$

3.
$$x(t) = 2c_1e^{(3-\sqrt{7})t} + 2c_2e^{(3+\sqrt{7})t}$$

$$y(t) = (1 - \sqrt{7})c_1e^{(3 - \sqrt{7})t} + (1 + \sqrt{7})c_2e^{(3 + \sqrt{7})t}$$

4.
$$x(t) = e^{-3t} (c_1 \cos 2t + c_2 \sin 2t),$$

$$y(t) = e^{-3t} ((2c_2 - c_1)\cos 2t + (-2c_1 - c_2)\sin 2t)$$

5.
$$x(t) = 3c_1 \cos \sqrt{11}t - 3c_2 \sin \sqrt{11}t$$
),

$$y(t) = (\sqrt{11}c_2 - c_1)\cos\sqrt{11}t + (\sqrt{11}c_1 + c_2)\sin\sqrt{11}t$$

6.
$$x(t) = e^{3t} (4c_1 + 4c_2 t)$$
,

$$y(t) = e^{3t} (4c_1 + c_2 + 4c_2 t)$$

7.
$$x(t) = e^{4t} (6c_1 + c_2 + 6c_2 t)$$
,

$$y(t) = e^{4t} (6c_1 + 6c_2 t)$$

8.
$$x(t) = e^{3t} (c_1 \cos t - c_2 \sin t),$$

$$y(t) = e^{3t} (c_2 \cos t + c_1 \sin t)$$

9.
$$x(t) = e^{-4t} (6c_1 + 6c_2 t)$$
,

$$y(t) = e^{-4t} (6c_1 + c_2 + 6c_2 t)$$

10.
$$x(t) = -2c_1e^{-2t} - 2c_2e^{2t} + c_3e^{3t}$$
,

$$y(t) = 3c_1e^{-2t} + c_2e^{2t} + c_3e^{3t}$$

$$z(t) = -5c_1e^{-2t} + c_2e^{2t}$$

11.
$$x(t) = (-c_1 - c_2)e^{-t} + c_3 e^{2t}$$
,

$$y(t) = c_1 e^{-t} + c_3 e^{2t}$$

$$z(t) = c_2 e^{-t} + c_3 e^{2t}$$

12.
$$x(t) = e^{t} (c_1 + c_2 + c_2 t) + c_3 e^{2t}$$

$$y(t) = e^{t} (c_1 - c_2 + c_2 t)$$

$$z(t) = e^{t}(c_1 + c_2 t) + c_3 e^{2t}$$

13.
$$x(t) = e^{2t} ((c_1 + c_2) + (c_2 + c_3)t + c_3t^2)$$

$$y(t) = e^{2t} ((-c_1 - 2c_2 - c_3) + (-c_2 - 2c_3)t - c_3t^2)$$

$$z(t) = e^{2t}(c_1 + c_2t + c_3t^2)$$

14.
$$x(t) = e^{2t} (4c_1 + (5c_2 + 12c_3)\cos 5t + (12c_2 - 5c_3)\sin 5t)$$

$$y(t) = e^{2t} (c_1 + (-15c_2 + 3c_3)\cos 5t + (3c_2 + 15c_3)\sin 5t)$$

$$z(t) = e^{2t} \left(-4c_1 + 13c_3 \cos 5t + 13c_2 \sin 5t \right)$$

15.
$$x(t) = c_1 + c_2 t$$

$$y(t) = c_1 + c_2 t + c_3 e^{-t}$$

$$z(t) = c_2$$

16.
$$x(t) = e^t$$
,

$$y(t) = e^t$$

$$17. \ x(t) = -\cos t + 2\sin t,$$

$$y(t) = 3\cos t - \sin t$$

18.
$$x(t) = e^t + e^{5t}$$
,

$$y(t) = -e^t + 3e^{5t}$$

19.
$$x(t) = e^{-3t} (4 - 5t),$$

 $y(t) = e^{-3t} (5 - 5t)$
20. $x(t) = e^{-t} (\cos t + \sin t),$
 $y(t) = e^{-t} \sin t$

 $z(t) = -e^{-t} \cos t$

§3. Линейные неоднородные системы дифференциальных уравнений с постоянными коэффициентами

1. Основные понятия

Определение. Линейной неоднородной системой дифференциальных уравнений (ЛНДС) с постоянными коэффициентами называется система вида:

$$\begin{cases} y_1' = a_{11}y_1(x) + \dots + a_{1n}y_n(x) + f_1(x) \\ y_2' = a_{21}y_1(x) + \dots + a_{2n}y_n(x) + f_2(x) \\ -\dots - \dots - \dots - \dots - \dots \\ y_n' = a_{n1}y_1(x) + \dots + a_{nn}y_n(x) + f_n(x), \end{cases}$$

$$(1)$$

где $a_{11}, a_{12}, ... a_{nn}$ — заданные действительные числа, $f_1(x), f_2(x)... f_n(x)$ — заданные непрерывные на промежутке (a;b) функции, из которых хотя бы одна на (a;b) не равна тождественно нулю.

Теорема 1 (структура общего решения ЛНДС).

Общее решение ЛНДС (1) на промежутке (a;b) представляет собой сумму общего решения соответствующей ЛОДС и какого-нибудь частного решения ЛНДС (1), т.е.

$$\begin{cases} y_1(x) = y_{10}(x) + \overline{y}_1(x) \\ y_2(x) = y_{20}(x) + \overline{y}_2(x) \\ ------ \\ y_n(x) = y_{n0}(x) + \overline{y}_n(x) \end{cases}$$

2. Метод вариации произвольных постоянных

1) Рассмотрим этот метод для решения ЛНДС 2-го порядка:

$$\begin{cases} y' = a_{12}y(x) + a_{12}z(x) + f_1(x) \\ z' = a_{21}y(x) + a_{22}z(x) + f_2(x). \end{cases}$$
 (2)

Пусть общее решение соответствующей однородной системы получено в виде:

$$y_0(x) = c_1 y_1(x) + c_2 y_2(x)$$

 $z_0(x) = c_1 z_1(x) + c_2 z_2(x),$

где c_1 и c_2 –произвольные постоянные.

Будем искать частное решение ЛНДС (2) в виде:

$$\overline{y}(x) = c_1(x) \cdot y_1(x) + c_2(x) \cdot y_2(x)
\overline{z}(x) = c_1(x) \cdot z_1(x) + c_2(x) \cdot z_2(x),$$
(3)

где $c_1(x)$ и $c_2(x)$ – функции, которые находятся из решения системы:

$$\begin{cases} c_1'(x) \cdot y_1(x) + c_2'(x) \cdot y_2(x) = f_1(x) \\ c_1'(x) \cdot z_1(x) + c_2'(x) \cdot z_2(x) = f_2(x). \end{cases}$$

Решая систему, определим c_1' и c_2' .

Пусть $c_1'(x) = \varphi_1(x)$ и $c_2'(x) = \varphi_2(x)$. Интегрируя эти выражения, получим $c_1(x)$ и $c_2(x)$. Подставим найденные $c_1(x)$ и $c_2(x)$ в формулы (3), получим частное решение ЛНДС (2):

$$\begin{bmatrix} \overline{y}(x) = y_1(x) \int \varphi_1(x) dx + y_2(x) \int \varphi_2(x) dx \\ \overline{z}(x) = z_1(x) \int \varphi_1(x) dx + z_2(x) \int \varphi_2(x) dx, \end{bmatrix}$$

Тогда общее решение ЛНДС (2) запишется в виде:

$$\int_{0}^{\infty} y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + y_{1}(x)\int \varphi_{1}(x)dx + y_{2}(x)\int \varphi_{2}(x)dx$$

$$z(x) = c_{1}z_{1}(x) + c_{2}z_{2}(x) + z_{1}(x)\int \varphi_{1}(x)dx + z_{2}(x)\int \varphi_{2}(x)dx$$

2) Пусть система (1) записана в матричной форме, причем:

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}, \quad Y' = \begin{pmatrix} y'_1 \\ y'_2 \\ \vdots \\ y'_n \end{pmatrix}, \quad F(x) = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{pmatrix}, \quad A = \begin{pmatrix} a_{11}a_{12}...a_{1n} \\ a_{21}a_{22}...a_{2n} \\ ----- \\ a_{n1}a_{n2}...a_{nk} \end{pmatrix}$$

Тогда:

$$Y' = A \cdot Y + F(x). \tag{4}$$

Общее решение ЛНДС (4) можно записать в виде:

$$Y(x) = \Phi(x) \cdot c + \Lambda(x),$$

где c – матрица-столбец из произвольных постоянных $c_1, c_2, ..., c_n$, $\Lambda(x)$ – частное решение ЛНДС (4), $\Phi(x)$ – фундаментальная матрица, ее столбцы линейнонезависимые решения ЛОДС.

По методу вариаций произвольных постоянных частное решение ЛНДС (4) запишется в виде:

$$\Lambda(x) = \Phi(x) \int \Phi^{-1}(x) \cdot F(x) dx,$$

где $\Phi^{-1}(x)$ – обратная матрица для матрицы $\Phi(x)$.

Теорема 2. Пусть в формуле (4)

$$F(x) = P_m(x) \cdot e^{\alpha x},$$

где α – заданное действительное число, $P_m(x)$ – матрица, составленная из многочленов степени m с постоянными коэффициентами.

Тогда ЛНДС (4) имеет частное решение вида:

$$\Lambda(x) = Q_{m+s}(x) \cdot e^{\alpha x}, \tag{5}$$

где s равно кратности числа α как корня характеристического уравнения матрицы A; $Q_{m+s}(x)$ -матрица, составленная из многочленов степени m+s с неопределенными коэффициентами, которые определяются путем подстановки функции (5) в (4) вместо Y(x) и приравнивания коэффициентов при подобных членах в правой и левой частях полученного равенства.

Теорема 3. Пусть в формуле (4)

$$F(x) = (P_{m_1}(x)\cos\beta x + P_{m_2}(x)\sin\beta x)e^{\alpha x},$$

где α и β -заданные действительные числа, P_{m_1} и P_{m_2} -матрицы, составленные из многочленов степени m_1 и m_2 соответственно с постоянными коэффициентами. Тогда ЛНДС (4) имеет частное решение вида:

$$\Lambda(x) = (Q_{m+s}(x) \cdot \cos \beta x + R_{m+s}(x) \cdot \sin \beta x)e^{\alpha x}, \tag{6}$$

где $m = \max(m_1; m_2)$, s равно кратности числа $\alpha + \beta i$ как корня характеристического уравнения матрицы A, $Q_{m+s}(x)$, $R_{m+s}(x)$ — матрицы, составленные из многочленов степени m+s с неопределенными коэффициентами, которые определяются путем подстановки функции (6) в (4) вместо Y(x) и приравнивания коэффициентов при подобных членах в правой и левой частях полученного равенства.

3. Примеры с решениями

Пример 1. Решить систему:

$$\begin{cases} y' = y + 3z - 1 \\ z' = -y + 5z + 2x. \end{cases}$$

Решение. Решим эту систему методом вариации произвольных постоянных.

1) Найдем общее решение соответствующей ЛОДС:

$$\begin{cases} y' = y + 3z \\ z' = -y + 5z \end{cases}$$

Ее характеристическое уравнение имеет вид: $|A - \lambda E| = 0 \Rightarrow \begin{vmatrix} 1 - \lambda & 3 \\ -1 & 5 - \lambda \end{vmatrix} = 0$

$$(1-\lambda)(5-\lambda)+3=0$$

$$5-6\lambda+\lambda^2+3=0$$

$$\lambda^2-6\lambda+8=0; D=36-32=4>0.$$

$$\lambda_1=2; \lambda_2=4.$$

Тогда общее решение ЛОДС составляют функции:

$$z(x) = c_1 e^{2x} + c_2 e^{4x}$$
$$y(x) = a_1 e^{2x} + a_2 e^{4x},$$

где c_1 и c_2 –произвольные постоянные, a_1 и a_2 –постоянные, которые надо выразить через c_1 и c_2 с помощью подстановки z(x) и y(x) во второе уравнение ЛОДС:

$$(c_1e^{2x} + c_2e^{4x})' = -(a_1e^{2x} + a_2e^{4x}) + 5(c_1e^{2x} + c_2e^{4x}).$$
$$2c_1e^{2x} + 4c_2e^{4x} = -a_1e^{2x} - a_2e^{4x} + 5c_1e^{2x} + 5c_2e^{4x}.$$

Приравнивая коэффициенты при подобных членах этого равенства, получим выражения для a_1 и a_2 через c_1 и c_2 :

$$\begin{array}{ll}
e^{2x}: & 2c_1 = -a_1 + 5c_1 \\
e^{4x}: & 4c_2 = -a_2 + 5c_2
\end{array} \Rightarrow \begin{array}{ll}
a_1 = 3c_1 \\
a_2 = c_2.$$

Итак, общее решение ЛОДС имеет вид:

$$y(x) = 3c_1e^{2x} + c_2e^{4x}$$
$$z(x) = c_1e^{2x} + c_2e^{4x}.$$

2) Найдем частное решение ЛНДС по методу вариации произвольных постоянных:

$$\overline{y}(x) = 3c_1(x)e^{2x} + c_2(x)e^{4x}$$

$$\overline{z}(x) = c_1(x)e^{2x} + c_2(x)e^{4x}.$$
(*)

Для нахождения функций $c_1(x)$ и $c_2(x)$ составим систему уравнений:

$$\begin{cases} 3c_1'e^{2x} + c_2'e^{4x} = -1\\ c_1'e^{2x} + c_2'e^{4x} = 2x. \end{cases}$$

$$\begin{cases} 2c_1'e^{2x} = -1 - 2x \Rightarrow c_1' = -\frac{1}{2}(1 + 2x)e^{-2x}. \\ c_2'e^{4x} = -1 + \frac{3}{2}(1 + 2x)e^{-2x} \cdot e^{2x} \Rightarrow c_2' = \left(\frac{1}{2} + 3x\right)e^{-4x} \\ c_1(x) = -\frac{1}{2}\int (1 + 2x)e^{-2x}dx = -\frac{1}{2}\int e^{-2x}dx - \int xe^{-2x}dx = \\ \left[u = x & du = dx \\ dU = e^{-2x}dx & U = -\frac{1}{2}e^{-2x} \right] \\ = \frac{1}{4}e^{-2x} - \left(-\frac{1}{2}xe^{-2x} + \frac{1}{2}\int e^{-2x}dx\right) = \frac{1}{4}e^{-2x} + \frac{1}{2}xe^{-2x} + \frac{1}{4}e^{-2x} = \\ = \frac{1}{2}e^{-2x} + \frac{1}{2}xe^{-2x} = \frac{1}{2}e^{-2x}(1 + x) + \overline{c}_1, \end{cases}$$

где \bar{c}_1 – любая постоянная, пусть \bar{c}_1 = 0, тогда:

$$c_{1}(x) = \frac{1}{2}e^{-2x}(1+x).$$

$$c_{2}(x) = \int \left(\frac{1}{2} + 3x\right)e^{-4x}dx = \frac{1}{2}\int e^{-4x}dx + 3\cdot \int xe^{-4x}dx =$$

$$\begin{bmatrix} u = x & du = dx \\ dU = e^{-4x}dx & U = -\frac{1}{4}e^{-4x} \end{bmatrix}$$

$$= -\frac{1}{8}e^{-4x} + 3\left(-\frac{1}{4}xe^{-4x} + \frac{1}{4}\int e^{-4x}dx\right) = -\frac{1}{8}e^{-4x} - \frac{3}{4}xe^{-4x} - \frac{3}{16}e^{-4x} =$$

$$= -\frac{5}{16}e^{-4x} - \frac{3}{4}xe^{-4x} = -e^{-4x}\left(\frac{5}{16} + \frac{3}{4}x\right) + \overline{c}_{2},$$

где \bar{c}_2 – любая постоянная, пусть \bar{c}_2 = 0, тогда:

$$c_2(x) = -e^{-4x} \left(\frac{5}{16} + \frac{3}{4}x \right).$$

Подставим $c_1(x)$ и $c_2(x)$ в (*):

$$\overline{y}(x) = 3\left(\frac{1}{2}e^{-2x}(1+x)\right)e^{2x} + \left(-e^{-4x}\left(\frac{5}{16} + \frac{3}{4}x\right)\right)e^{4x}$$

$$\overline{z}(x) = \left(\frac{1}{2}e^{-2x}(1+x)\right)e^{2x} + \left(-e^{-4x}\left(\frac{5}{16} + \frac{3}{4}x\right)\right)e^{4x}.$$

Упростим $\bar{y}(x)$ и $\bar{z}(x)$:

$$\overline{y}(x) = \frac{3}{2} + \frac{3}{2}x - \frac{5}{16} - \frac{3}{4}x = \frac{24 - 5}{16} + \frac{6 - 3}{4}x = \frac{19}{16} + \frac{3}{4}x$$

$$\overline{z}(x) = \frac{1}{2} + \frac{1}{2}x - \frac{5}{16} - \frac{3}{4}x = \frac{8 - 5}{16} + \frac{2 - 3}{4}x = \frac{3}{16} - \frac{1}{4}x.$$

Итак, частное решение ЛНДС составляют функции:

$$\bar{y}(x) = \frac{19}{16} + \frac{3}{4}x$$
$$\bar{z}(x) = \frac{3}{16} - \frac{1}{4}x.$$

3) Запишем общее решение ЛНДС:

$$\begin{bmatrix} y(x) = y_0 + \overline{y} \\ z(x) = z_0 + \overline{z} \end{bmatrix} \Rightarrow \begin{bmatrix} y(x) = 3c_1e^{2x} + c_2e^{4x} + \frac{19}{16} + \frac{3}{4}x \\ z(x) = c_1e^{2x} + c_2e^{4x} + \frac{3}{16} - \frac{1}{4}x. \end{bmatrix}$$

$$Omsem: \ y(x) = 3c_1e^{2x} + c_2e^{4x} + \frac{19}{16} + \frac{3}{4}x$$

$$z(x) = c_1e^{2x} + c_2e^{4x} + \frac{3}{16} - \frac{1}{4}x.$$

Пример 2. Решить систему:

$$\begin{cases} y' = y + 3z - 1 \\ z' = -y + 5z + 2x. \end{cases}$$

в матричном виде.

Решение.

Обозначения:
$$Y = \begin{pmatrix} y \\ z \end{pmatrix}$$
; $Y' = \begin{pmatrix} y' \\ z' \end{pmatrix}$; $F(x) = \begin{pmatrix} -1 \\ 2x \end{pmatrix}$; $A = \begin{pmatrix} 1 & 3 \\ -1 & 5 \end{pmatrix}$.

Тогда данная система запишется в матричном виде:

$$Y' = A \cdot Y + F(x).$$

1) Сначала решим однородную систему:

$$Y' = A \cdot Y$$
.

Ее характеристическое уравнение:

$$|A - \lambda E| = 0 \Rightarrow \begin{vmatrix} 1 - \lambda & 3 \\ -1 & 5 - \lambda \end{vmatrix} = 0$$
$$\lambda^2 - 6\lambda + 8 = 0;$$
$$\lambda_1 = 2; \lambda_2 = 4.$$

Найдем собственные векторы для каждого собственного значения матрицы A.

$$\lambda_1 = 2: \quad (A - 2E) = \begin{pmatrix} 1 - 2 & 3 \\ -1 & 5 - 2 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 3 \\ -1 & 3 \end{pmatrix} \stackrel{(-1)}{\longleftrightarrow} \rightarrow \begin{pmatrix} -1 & 3 \\ 0 & 0 \end{pmatrix}.$$

Пусть $\lambda_1 = 2$ соответствует вектор $\overline{h} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

Тогда $-x_1 + 3x_2 = 0 \Longrightarrow x_1 = 3x_2$

Значит:
$$\overline{h} = \begin{pmatrix} 3x_2 \\ x_2 \end{pmatrix}$$
, т.е. $\overline{h}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

$$\lambda_2 = 4: (A - 4E) = \begin{pmatrix} 1 - 4 & 3 \\ -1 & 5 - 4 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} -3 & 3 \\ -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}.$$

Пусть $\lambda_2 = 4$ соответствует вектор $\overline{h} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

Тогда
$$-x_1 + x_2 = 0 \Longrightarrow x_1 = x_2$$

Значит:
$$\overline{h} = \begin{pmatrix} x_2 \\ x_2 \end{pmatrix}$$
, т.е. $\overline{h}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Итак, фундаментальная система решений ЛОДС:

$$\Phi_1(x) = e^{2x} \cdot \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3e^{2x} \\ e^{2x} \end{pmatrix}.$$

$$\Phi_2(x) = e^{4x} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} e^{4x} \\ e^{4x} \end{pmatrix}.$$

Тогда фундаментальная матрица $\Phi(x)$ для ЛОДС имеет вид:

$$\Phi(x) = \begin{pmatrix} 3e^{2x} & e^{4x} \\ e^{2x} & e^{4x} \end{pmatrix}.$$

Следовательно, общее решение ЛОДС запишется в виде:

$$y_0 = 3c_1e^{2x} + c_2e^{4x}$$

$$z_0 = c_1 e^{2x} + c_2 e^{4x},$$

где c_1 и c_2 – произвольные постоянные.

2) Методом вариации произвольных постоянных найдем частное решение ЛНДС:

$$\Lambda(x) = \Phi(x) \cdot \int \Phi^{-1}(x) \cdot F(x) dx$$
$$\Phi(x) = \begin{pmatrix} 3e^{2x} & e^{4x} \\ e^{2x} & e^{4x} \end{pmatrix}.$$

Тогда

$$\Phi^{-1}(x) = \frac{1}{2} \begin{pmatrix} e^{-2x} & -e^{-2x} \\ -e^{-4x} & 3e^{-4x} \end{pmatrix}.$$

Вычислим

$$\Phi^{-1}(x) \cdot F(x) = \frac{1}{2} \begin{pmatrix} e^{-2x} - e^{-2x} \\ -e^{-4x} + 3e^{-4x} \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 2x \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -e^{-2x} - 2xe^{-2x} \\ e^{-4x} + 6xe^{-4x} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -e^{-2x}(1+2x) \\ e^{-4x}(6x+1) \end{pmatrix}.$$

Значит:

$$\Lambda(x) = \begin{pmatrix} 3e^{2x} & e^{4x} \\ e^{2x} & e^{4x} \end{pmatrix} \cdot \frac{1}{2} \int \begin{pmatrix} -e^{-2x}(1+2x) \\ e^{-4x}(6x+1) \end{pmatrix} dx.$$

Вычислим интегралы:

a)
$$-\int e^{-2x} (1+2x) dx = \begin{bmatrix} u = 1+2x \\ dU = e^{-2x} dx \end{bmatrix} du = 2dx \\ U = -\frac{1}{2} e^{-2x} \end{bmatrix} =$$

$$= -\left(-\frac{1}{2} (1+2x)e^{-2x} + \int e^{-2x} dx\right) = \frac{1}{2} (1+2x)e^{-2x} + \frac{1}{2} e^{-2x} = (1+x)e^{-2x}.$$
6)
$$\int e^{-4x} (6x+1) dx = \begin{bmatrix} u = 6x+1 \\ dU = e^{-4x} dx \end{bmatrix} du = 6dx \\ U = -\frac{1}{4} e^{-4x} \end{bmatrix} =$$

$$= -\frac{1}{4} (6x+1)e^{-4x} + \frac{3}{2} \int e^{-4x} dx = -\frac{1}{4} (6x+1)e^{-4x} - \frac{3}{8} e^{-4x} =$$

$$= -e^{-4x} \left(\frac{5}{8} + \frac{3}{2}x\right).$$

В результате получим:

$$\Lambda(x) = \begin{pmatrix} 3e^{2x} & e^{4x} \\ e^{2x} & e^{4x} \end{pmatrix} \cdot \frac{1}{2} \begin{pmatrix} (1+x)e^{-2x} \\ -\left(\frac{5}{8} + \frac{3}{2}x\right)e^{-4x} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3+3x - \frac{5}{8} - \frac{3}{2}x \\ 1+x - \frac{5}{8} - \frac{3}{2}x \end{pmatrix} = \begin{pmatrix} \frac{19}{16} + \frac{3}{4}x \\ \frac{3}{16} - \frac{1}{4}x \end{pmatrix}.$$

Получили частное решение ЛНДС:

$$\bar{y}(x) = \frac{19}{16} + \frac{3}{4}x$$
$$\bar{z}(x) = \frac{3}{16} - \frac{1}{4}x.$$

Следовательно, можно записать общее решение ЛНДС:

$$y(x) = y_0 + \overline{y} = 3c_1e^{2x} + c_2e^{4x} + \frac{19}{16} + \frac{3}{4}x$$

$$z(x) = z_0 + \overline{z} = c_1e^{2x} + c_2e^{4x} + \frac{3}{16} - \frac{1}{4}x.$$

$$Omsem: \ y(x) = 3c_1e^{2x} + c_2e^{4x} + \frac{19}{16} + \frac{3}{4}x$$

$$z(x) = c_1e^{2x} + c_2e^{4x} + \frac{3}{16} - \frac{1}{4}x.$$

Пример 3. Решить систему:

$$\begin{cases} y' = y - 2z - 2xe^{x} \\ z' = 5y - z - (2x + 6)e^{x} \end{cases}$$

Решение.

1) Решим соответствующую ЛОДС:

$$\begin{cases} y' = y - 2z \\ z' = 5y - z \end{cases}$$

Ее характеристическое уравнение имеет вид: $|A - \lambda E| = 0 \Rightarrow \begin{vmatrix} 1 - \lambda & -2 \\ 5 & -1 - \lambda \end{vmatrix} = 0$

$$-1 + \lambda - \lambda + \lambda^2 + 10 = 0$$
$$\lambda^2 + 9 = 0;$$
$$\lambda_{1,2} = \pm 3i \quad (\alpha = 0; \beta = 3).$$

Пусть общим решением ЛОДС будут функции:

$$y_0(x) = 2c_1 \cos 3x + 2c_2 \sin 3x$$

 $z_0(x) = a_1 \cos 3x + a_2 \sin 3x$,

где c_1 и c_2 –произвольные постоянные, a_1 и a_2 –постоянные, которые надо выразить через c_1 и c_2 с помощью подстановки y_0 и z_0 в первое уравнение ЛОДС:

$$-6c_1\sin 3x + 6c_2\cos 3x = 2c_1\cos 3x + 2c_2\sin 3x - 2a_1\cos 3x - 2a_2\sin 3x.$$

Приравняем коэффициенты при $\cos 3x$ и $\sin 3x$:

$$\cos 3x : 6c_2 = 2c_1 - 2a_1 \sin 3x : -6c_1 = 2c_2 - 2a_2 \Rightarrow a_1 = c_1 - 3c_2 a_2 = c_2 + 3c_1.$$

Следовательно, общее решение ЛОДС составляют функции:

$$y_0(x) = 2c_1 \cos 3x + 2c_2 \sin 3x$$

$$z_0(x) = (c_1 - 3c_2)\cos 3x + (c_2 + 3c_1)\sin 3x.$$

2) Найдем частное решение ЛНДС методом неопределенных коэффициентов.

$$F(x) = \begin{pmatrix} -2xe^x \\ -(2x+6)e^x \end{pmatrix} = \begin{pmatrix} -2x \\ -2x-6 \end{pmatrix} e^x = P_1(x)e^x,$$

где $P_1(x)$ – матрица-столбец из многочленов первой степени (m=1).

$$\Lambda(x) = Q_{1+s}(x)e^x$$
, $s = 0$, так как $\alpha = 1 \neq \lambda_{1,2} \Longrightarrow \Lambda(x) = Q_1(x)e^x$.

Значит:
$$\overline{y}(x) = (a_1x + b_1)e^x$$
 \Rightarrow $\overline{y}' = (a_1x + b_1 + a_1)e^x$ \Rightarrow $\overline{z}(x) = (a_2x + b_2)e^x$ $\overline{z}' = (a_2x + b_2 + a_2)e^x$. Подставляя $\overline{y}, \overline{y}', \overline{z}, \overline{z}'$ в заданную систему (ЛНДС) и приравнивая в

Подставляя \bar{y} , \bar{y}' , \bar{z} , \bar{z}' в заданную систему (ЛНДС) и приравнивая в полученных равенствах коэффициенты при подобных слагаемых, получим систему относительно неизвестных a_1 , b_1 , a_2 , b_2 :

$$\begin{cases} (a_1x + b_1 + a_1)e^x = (a_1x + b_1)e^x - 2(a_2x + b_2)e^x - 2xe^x \\ (a_2x + b_2 + a_2)e^x = 5(a_1x + b_1)e^x - (a_2x + b_2)e^x - (2x + 6)e^x \end{cases}$$

Разделим оба уравнения на $e^x \neq 0$:

$$\begin{cases} a_1x + b_1 + a_1 = a_1x + b_1 - 2a_2x + 2b_2 - 2x \\ a_2x + b_2 + a_2 = 5a_1x + 5b_1 - a_2x + b_2 - 2x - 6 \\ 2a_2 = -2 \\ a_1 + 2b_2 = 0 \\ 2a_2 - 5a_1 = -2 \end{cases} \Rightarrow \begin{cases} a_2 = -1 \\ -5a_1 = 0 \\ 2b_2 = -a_1 \\ -5b_1 = -6 - 2b_2 - a_2 \end{cases}$$

$$\begin{cases} a_2 = -1 \\ a_1 = 0 \\ b_2 = 0 \end{cases} \Rightarrow \frac{\overline{y}(x) = 1 \cdot e^x}{\overline{z}(x) = -x \cdot e^x} \Rightarrow \frac{\overline{y}(x) = e^x}{\overline{z}(x) = -xe^x}.$$

$$b_1 = 1$$

3) Следовательно, общее решение данной ЛНДС составят функции:

$$y(x) = y_0 + \bar{y} = 2c_1 \cos 3x + 2c_2 \sin 3x + e^x$$

$$z(x) = z_0 + \bar{z} = (c_1 - 3c_2) \cos 3x + (c_2 + 3c_1) \sin 3x - xe^x.$$

$$Omeem: y(x) = y_0 + \bar{y} = 2c_1 \cos 3x + 2c_2 \sin 3x + e^x$$

$$z(x) = z_0 + \bar{z} = (c_1 - 3c_2) \cos 3x + (c_2 + 3c_1) \sin 3x - xe^x.$$

Пример 4. Решить систему:

$$\begin{cases} x' = -3x - 4y + 4z + \sin t + \cos t \\ y' = 3x + 4y - 5z - \sin t - \cos t \\ z' = x + y - 2z \end{cases}$$

Решение. В данной системе неизвестных функций три:

$$x = x(t), y = y(t), z = z(t).$$

1) Найдем общее решение соответствующей однородной системы:

$$\begin{cases} x' = -3x - 4y + 4z \\ y' = 3x + 4y - 5z \\ z' = x + y - 2z \end{cases}$$

Ее характеристическое уравнение имеет вид:

Рес характеристическое уравнение имеет вид:
$$\begin{vmatrix} -3 - \lambda & -4 & 4 \\ 3 & 4 - \lambda & -5 \\ 1 & 1 & -2 - \lambda \end{vmatrix} = 0$$

$$(-3 - \lambda)(4 - \lambda)(-2 - \lambda) + 20 + 12 - 4(4 - \lambda) + 5(-3 - \lambda) + 12(-2 - \lambda) = 0$$

$$-\lambda^3 - \lambda^2 + \lambda + 1 = 0$$

$$-\lambda^2(\lambda + 1) + (\lambda + 1) = 0$$

$$(\lambda + 1)(1 - \lambda^2) = 0$$

$$(\lambda + 1)(1 - \lambda)(1 + \lambda) = 0 \Rightarrow \lambda_1 = \lambda_2 = -1; \lambda_3 = 1.$$

$$\lambda_1 = -1 \text{ кратности } 2 \Rightarrow \overline{h}_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \overline{h}_1^1 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

$$\lambda_3 = 1 \Rightarrow \overline{h}_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

Пусть
$$Y(t) = \begin{pmatrix} Y_1(t) \\ Y_2(t) \\ Y_3(t) \end{pmatrix}$$
 — фундаментальная система решений ЛОДС.

$$Y_{1}(t) = e^{-t} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}; \quad Y_{2}(t) = e^{-t} (t \cdot \overline{h}_{1} + \overline{h}_{1}^{1}) = e^{-t} \begin{pmatrix} 2 \\ t \\ t + 1 \end{pmatrix}; \quad Y_{3}(t) = e^{t} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

Тогда общее решение ЛОДС можно записать следующим образом:

$$Y_0(t) = c_1 e^{-t} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 2 \\ t \\ t+1 \end{pmatrix} + c_3 e^{t} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2c_2 e^{-t} + c_3 e^{t} \\ (c_1 + c_2 t)e^{-t} - c_3 e^{t} \\ (c_1 + c_2 + c_2 t)e^{-t} \end{pmatrix},$$

где c_1, c_2, c_3 – произвольные постоянные.

Итак, общее решение ЛОДС составляют три функции:

$$x_0(t) = 2c_2e^{-t} + c_3e^{t}$$

$$y_0(t) = (c_1 + c_2t)e^{-t} - c_3e^{t}$$

$$z_0(t) = (c_1 + c_2 + c_2t)e^{-t}$$

2) Найдем частное решение ЛНДС методом неопределенных коэффициентов. $F(t) = F_1 \cos t + F_2 \sin t$

$$\alpha = 0, \beta = 1 \Rightarrow \alpha + \beta i = i \neq \lambda_{1,2,3} \Rightarrow s = 0.$$

Отсюда следует, что частное решение ЛНДС будем подбирать следующим образом:

$$\Lambda(t) = B_1 \cos t + B_2 \sin t,$$

где B_1 и B_2 – неизвестные матрицы-столбцы из различных чисел.

Найдем B_1 и B_2 , подставляя в ЛНДС.

Так как $\Lambda(t) = B_1 \cos t + B_2 \sin t$, то $\Lambda'(t) = -B_1 \sin t + B_2 \cos t$.

$$-B_{1} \sin t + B_{2} \cos t = A \cdot A(t) + F(t)$$

$$-B_{1} \sin t + B_{2} \cos t = A \cdot B_{1} \cos t + B_{2} \sin t + F_{1} \cos t + F_{2} \sin t$$

$$\sin t : \begin{cases} -B_{1} = AB_{2} + F_{2} \\ B_{2} = AB_{1} + F_{1} \end{cases} \Rightarrow \begin{cases} B_{2} = AB_{1} + F_{1} \\ -B_{1} = A(AB_{1} + F_{1}) + F_{2} \end{cases}$$

$$-B_{1} = A(AB_{1} + F_{1}) + F_{2} \Rightarrow$$

$$-B_{1} = A^{2}B_{1} + AF_{1} + F_{2} \Rightarrow$$

$$A^{2}B_{1} + B_{1} = -(AF_{1} + F_{2}) \Rightarrow$$

$$(A^{2} + E)B_{1} = -(AF_{1} + F_{2}) \Rightarrow$$

$$(A^{2} + E)B_{1} = -(AF_{1} + F_{2})$$

$$B_{1} = (A^{2} + E)^{-1} \cdot (-(AF_{1} + F_{2}))$$

$$A^{2} = \begin{pmatrix} -3 - 4 & 4 \\ 3 & 4 - 5 \\ 1 & 1 - 2 \end{pmatrix} \cdot \begin{pmatrix} -3 - 4 & 4 \\ 3 & 4 - 5 \\ 1 & 1 - 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 2 \\ -2 & -2 & 3 \end{pmatrix}$$

$$A^{2} + E = \begin{pmatrix} 1 & 0 & 0 \\ -2 & -1 & 2 \\ -2 & -2 & 3 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ -2 & 0 & 2 \\ -2 & -2 & 4 \end{pmatrix}$$

$$det(A^{2} + E) = \begin{vmatrix} 2 & 0 & 0 \\ -2 & 0 & 2 \\ -2 & -2 & 4 \end{vmatrix} = 8 \neq 0 \Rightarrow \exists (A^{2} + E)^{-1}.$$

$$(A^{2} + E)^{-1} = \frac{1}{8} \begin{pmatrix} 4 & 0 & 0 \\ 4 & 8 & -4 \\ 4 & 4 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 4 & 0 \end{pmatrix}.$$

$$-(AF_{1} + F_{2}) = -\begin{pmatrix} -3 - 4 & 5 \\ 3 & 4 & -5 \\ 1 & 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = -\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix}.$$

$$B_{1} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

$$B_{2} = \begin{pmatrix} -3 - 4 & 5 \\ 3 & 4 & -4 \\ 1 & 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Значит, частное решение ЛНДС найдено:

$$\Lambda(t) = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \cos t + \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \sin t = \begin{pmatrix} -\cos t \\ \cos t \\ 0 \end{pmatrix} \Rightarrow \overline{x}(t) = -\cos t; \overline{y}(t) = \cos t; \overline{z}(t) = 0.$$

3) Запишем общее решение ЛНДС:

$$x(t) = x_0 + \overline{x} = 2c_2e^{-t} + c_3e^t - \cos t$$

$$y(t) = y_0 + \overline{y} = (c_1 + c_2t)e^{-t} - c_3e^t + \cos t$$

$$z(t) = z_0 + \overline{z} = (c_1 + c_2 + c_2t)e^{-t}.$$
Ombem:
$$x(t) = 2c_2e^{-t} + c_3e^t - \cos t$$

$$y(t) = (c_1 + c_2t)e^{-t} - c_3e^t + \cos t$$

$$z(t) = (c_1 + c_2 + c_2t)e^{-t}.$$

Пример 5. Решить задачу Коши:

$$\begin{cases} y' = y + z + e^{2x} \\ z' = -2y + 4z + e^{2x}, \end{cases} y(0) = 1; z(0) = 2.$$

Решение.

1) Решим соответствующую ЛОДС:

$$\begin{cases} y' = y + z \\ z' = -2y + 4z \end{cases}$$

Ее характеристическое уравнение имеет вид:

$$|A - \lambda E| = 0 \Rightarrow \begin{vmatrix} 1 - \lambda & 1 \\ -2 & 4 - \lambda \end{vmatrix} = 0 \Rightarrow (1 - \lambda)(4 - \lambda) + 2 = 0$$
$$4 - 4\lambda - \lambda + \lambda^2 + 2 = 0 \Rightarrow \lambda^2 - 5\lambda + 6 = 0.$$
$$\lambda_1 = 2; \lambda_2 = 3.$$

Если
$$\lambda_l = 2$$
, то $\overline{h}_l = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Если
$$\lambda_2 = 3$$
, то $\overline{h}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Тогда
$$Y_1(x) = e^{2x} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}, Y_2(x) = e^{3x} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Общее решение ЛОДС запишется в виде:

$$Y_0(x) = c_1 e^{2x} \cdot {1 \choose 1} + c_2 e^{3x} \cdot {1 \choose 2}.$$

Следовательно, общее решение ЛОДС составляют функции:

$$y_0 = c_1 e^{2x} + c_2 e^{3x}$$
$$z_0 = c_1 e^{2x} + 2c_2 e^{3x},$$

где c_1 и c_2 – произвольные постоянные.

2) Найдем частное решение ЛНДС.

Так как
$$F(x) = \begin{pmatrix} e^{2x} \\ e^{2x} \end{pmatrix} = e^{2x} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = P_0 \cdot e^{2x}$$
, то

$$\Lambda(x) = (Q_0 + Q_1 \cdot x)e^{2x} \Rightarrow \Lambda'(x) = (2Q_0 + 2Q_1 \cdot x)e^{2x} + Q_1e^{2x}.$$

Подставим $\Lambda'(x)$ и $\Lambda(x)$ в ЛНДС (матричного вида):

$$\Lambda'(x) = A \cdot \Lambda(x) + F(x) \Rightarrow (2Q_0 + 2Q_1 \cdot x + Q_1)e^{2x} = A(Q_0 + Q_1x)e^{2x} + P_0e^{2x}.$$
$$2Q_0 + 2Q_1 \cdot x + Q_1 = A(Q_0 + Q_1x) + P_0$$

$$x : AQ_1 = 2Q_1 \tag{*}$$

$$x^0: 2Q_0 + Q_1 = AQ_0 + P_0 \tag{**}$$

$$(*) \Rightarrow (A-2E)Q_1 = 0$$
, где $0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $(A-2E) = \begin{pmatrix} -1 & 1 \\ -2 & 2 \end{pmatrix}$, $Q_1 = \begin{pmatrix} x \\ y \end{pmatrix}$.

$$\begin{pmatrix} -1 & 1 \\ -2 & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & 1 & | & 0 \\ -2 & 2 & | & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix} \Rightarrow x - y = 0 \Rightarrow x = y.$$

Пусть y = 1, тогда $x = 1 \Rightarrow Q_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

$$(**) \rightarrow (A-2E)Q_0 = Q_1 - P_0$$

Пусть
$$Q_0 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$
, тогда $Q_1 - P_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\begin{pmatrix} -1 & 1 & 0 \\ -2 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow x_1 = y_1 = 0 \Rightarrow Q_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Значит,
$$\Lambda(x) = (Q_0 + Q_1 \cdot x)e^{2x} \Rightarrow \Lambda(x) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} x e^{2x} = \begin{pmatrix} xe^{2x} \\ xe^{2x} \end{pmatrix}$$
.

Частное решение ЛНДС запишется в виде:

$$\overline{y}(x) = xe^{2x}$$

$$\bar{z}(x) = xe^{2x}$$
.

3) Следовательно, общее решение ЛНДС задается двумя функциями:

$$y(x) = y_0 + \bar{y} = c_1 e^{2x} + c_2 e^{3x} + x e^{2x}$$
$$z(x) = z_0 + \bar{z} = c_1 e^{2x} + 2c_2 e^{3x} + x e^{2x}$$

4) Найдем решение задачи Коши. Подставим условия y(0) = 1, z(0) = 2 в общее решение:

$$\begin{cases} 1 = c_1 + c_2 \\ 2 = c_1 + 2c_2 \end{cases} \Rightarrow \begin{cases} c_2 = 1 \\ c_1 = 0 \end{cases}$$

Найденные значения $c_1 = 0, c_2 = 1$ подставим в общее решение:

$$y(x)=e^{3x}+xe^{2x}$$
 решение задачи Коши. $z(x)=2e^{3x}+xe^{2x}$ Решение задачи Коши. $Omsem:\ y(x)=e^{3x}+xe^{2x}$

Ombem:
$$y(x) = e^{3x} + xe^{2x}$$

 $z(x) = 2e^{3x} + xe^{2x}$.

4. Примеры

Решить ЛНДС методом неопределенных коэффициентов:

1.
$$\begin{cases} x' = x + 2y \\ y' = x - 5 \sin t \end{cases}$$
2.
$$\begin{cases} x' = 2x - 4y \\ y' = x - 3y + 3e^{t} \end{cases}$$
3.
$$\begin{cases} x' = x - y + 8t \\ y' = 5x - y \end{cases}$$
4.
$$\begin{cases} x' = 2x - 3y \\ y' = x - 2y + 2 \sin t \end{cases}$$
5.
$$\begin{cases} x' = 3x - 5y - 2e^{t} \\ y' = -4x - 5y \end{cases}$$
7.
$$\begin{cases} x' = -2x - y + 36t \\ y' = -2x - 2y - e^{t} \end{cases}$$
8.
$$\begin{cases} x' = 3x + 2y - e^{-t} \\ y' = -2x - 2y - e^{-t} \end{cases}$$
9.
$$\begin{cases} x' = y + 2e^{t} \\ y' = x + e^{t} \end{cases}$$
10.
$$\begin{cases} x' = 6x - 3y + 30e^{t} \\ y' = 15x - 6y + 45t \end{cases}$$
11.
$$\begin{cases} x' = -4x - 4y + 2e^{2t} \\ y' = 6x + 6y + 2t \end{cases}$$
12.
$$\begin{cases} x' = y + 2e^{t} \\ y' = x + e^{t} + e^{-t} \end{cases}$$
13.
$$\begin{cases} x' = 2x - y + z + \cos t \\ y' = 5x - 4y + 3z + \sin t \\ z' = 4x - 4y + 3z + 2\sin t - 2\cos t \end{cases}$$
14.
$$\begin{cases} x' = 2x + y - 3z + 2e^{2t} \\ y' = 3x - 2y - 3z - 2e^{2t} \\ z' = x + y - 2z \end{cases}$$
15.
$$\begin{cases} x' = -x - y + t^{2} \\ y' = -y - z + 2t \end{cases}$$
16.
$$\begin{cases} x' = -x - y + t^{2} \\ y' = -y - z + 2t \end{cases}$$
17.
$$\begin{cases} x' = -x - y + t^{2} \\ y' = -y - z + 2t \end{cases}$$
18.
$$\begin{cases} x' = -x - y + t^{2} \\ y' = -x + t \end{cases}$$
19.
$$\begin{cases} x' = -x - y + t^{2} \\ y' = -x + t \end{cases}$$
19.
$$\begin{cases} x' = -x - y + t^{2} \\ y' = -x + t \end{cases}$$
19.
$$\begin{cases} x' = -x - y + t^{2} \\ y' = -x + t \end{cases}$$
10.
$$\begin{cases} x' = -x - y + t - \cos t \\ y' = -x + t - 2\cos t \end{cases}$$
11.
$$\begin{cases} x' = -x - y + t - \cos t \\ y' = -x + 2\cos t \end{cases}$$
12.
$$\begin{cases} x' = x + 2y - \cos t \\ y' = 3x - 2y - 3z - 2e^{2t} \end{cases}$$
13.
$$\begin{cases} x' = -x - y + t^{2} \\ y' = -y - z + 2t \end{cases}$$
14.
$$\begin{cases} x' = -x - y + t^{2} \\ y' = -y - z + 2t \end{cases}$$
15.
$$\begin{cases} x' = -x - y + t^{2} \\ y' = -x + t \end{cases}$$
16.
$$\begin{cases} x' = x + 2y - t + \cos t \\ y' = -x + 2x + \cos t \end{cases}$$
17.
$$\begin{cases} x' = x + 2y - t + \cos t \\ y' = -x + 2x + \cos t \end{cases}$$
18.
$$\begin{cases} x' = x + 2y - t + \cos t \\ y' = -x + 2x + \cos t \end{cases}$$
19.
$$\begin{cases} x' = x + 2y - t + \cos t \\ y' = -x + 2x + \cos t \end{cases}$$
19.
$$\begin{cases} x' = x + 2y - t + \cos t \\ y' = -x + 2x + \cos t \end{cases}$$
19.
$$\begin{cases} x' = x + 2y - t + \cos t \\ x' = x + 2x + \cos t \end{cases}$$
19.
$$\begin{cases} x' = x + 2y - t + \cos t \\ x' = x + 2x + \cos t \end{cases}$$
19.
$$\begin{cases} x' = x + 2y - t + \cos t \\ x' = x + 2x + \cos t \end{cases}$$
19.
$$\begin{cases} x' = x + 2x + \cos t \\ x' = x + 2x + \cos t \end{cases}$$
19.
$$\begin{cases} x' = x + 2x + \cos t \\ x' = x + 2x + \cos t \end{cases}$$
19.
$$\begin{cases} x' = x + 2x + \cos t \\ x' = x + 2x + \cos t \end{cases}$$
19.
$$\begin{cases} x' = x + 2x + \cos t \\ x' = x + 2x + \cos t \end{cases}$$
19.
$$\begin{cases} x' = x + 2x + \cos t \\ x' = x + 2x + \cos t \end{cases}$$
19.
$$\begin{cases} x' = x + 2x + \cos t \\ x' = x + 2x + \cos t \end{cases}$$
19.
$$\begin{cases} x'$$

Решить ЛНДС методом вариации:

16.
$$\begin{cases} x' = -x - y + \frac{e^t}{1 + e^t} \\ y' = 2x + 2y + \frac{e^t}{1 + e^t} \end{cases}$$

17.
$$\begin{cases} x' = 4x - 8y + tg4t \\ y' = 4x - 4y \end{cases}$$

18.
$$\begin{cases} x' = 2x + y - \ln t \\ y' = -4x - 2y + \ln t \end{cases}$$

Решить задачу Коши:

$$\begin{cases} x' = -x - 2y + 2e^{-t} \\ y' = 3x + 4y + e^{-t} \end{cases}; \ x(0) = y(0) = -1.$$

20.

$$\begin{cases} x' = 7x - 2y + 8te^{-t} \\ y' = 8x - y \end{cases}; x(0) = 0; y(0) = \frac{1}{2}.$$

5. Ответы

1.
$$x(t) = c_1 e^{-t} + 2c_2 e^{2t} - \cos t + 3\sin t$$
,
 $y(t) = -c_1 e^{-t} + c_2 e^{2t} + 2\cos t - \sin t$

2.
$$x(t) = (4c_1 - 4t)e^t + c_2 e^{-2t}$$
,
 $y(t) = (c_1 + 1 - t)e^t + c_2 e^{-2t}$

3.
$$x(t) = c_1 \cos 2t + c_2 \sin 2t + 2t + 2$$
,
 $y(t) = (c_1 - 2c_2)\cos 2t + (2c_1 + c_2)\sin 2t + 10t$

4.
$$x(t) = c_1 e^{-3t} + 2c_2 e^{2t} - (13+12t)e^t$$
,
 $y(t) = -2c_1 e^{-3t} + c_2 e^{2t} - (6+8t)e^t$

5.
$$x(t) = c_1 e^{-t} + 3c_2 e^t + 3\sin t$$
,
 $y(t) = c_1 e^{-t} + c_2 e^t - \cos t + 2\sin t$

6.
$$x(t) = (5c_1 \cos t - 5c_2 \sin t + 1)e^t$$
,
 $y(t) = ((2c_1 + c_2)\cos t + (c_1 - 2c_2)\sin t)e^t$

7.
$$x(t) = c_1 e^{-6t} + c_2 e^{-t} + 30t + 28,$$

 $y(t) = 4c_1 e^{-6t} - c_2 e^{-t} - 24t - 29$

8.
$$x(t) = (c_1 + t)e^{-t} + 2c_2e^{2t}$$
,
 $y(t) = (-2c_1 - 2t + 1)e^{-t} - c_2e^{2t}$

9.
$$x(t) = c_1 e^{-t} + (c_2 + 1 + t)e^t - t^2$$
,
 $y(t) = -c_1 e^{-t} + (c_2 + t)e^t - 2t - 2$

10.
$$x(t) = c_1 \cos 3t - c_2 \sin 3t + 21e^t - 15t$$
,
 $y(t) = (2c_1 + c_2)\cos 3t + (c_1 - 2c_2)\sin 3t + 45e^t - 30t + 5$

$$x(t) = 2t^{2} + 2t + c_{1} + 0,5 + (2c_{2} + 1 - 4t)e^{2t}$$
11.
$$y(t) = -2t^{2} - 3t - c_{1} - 1 + (6t - 3c_{2})e^{2t}$$

12.
$$x(t) = (c_2 + 0.5 + 0.5t)e^t + (c_1 + 0.5 - 0.5t)e^{-t}$$

 $y(t) = (c_2 + 1 + 0.5t)e^t + (-c_1 - 1 + 0.5t)e^{-t}$

13.
$$x(t) = (c_1 + c_2 + c_2 t)e^t - 0.25\cos t + \sin t$$

 $y(t) = (c_1 + 2c_2 + c_2 t)e^t + c_3 e^{-t} + 0.5\cos t - 0.25\sin t$
 $z(t) = 2c_2 e^t + c_3 e^{-t} + \cos t - 2\sin t$

14.
$$x(t) = c_1 e^{-2t} + c_2 e^{-t} + c_3 e^t + 3e^{2t}$$

 $y(t) = -c_1 e^{-2t} + 2c_3 e^t + e^{2t}$
 $z(t) = c_1 e^{-2t} + c_2 e^{-t} + c_3 e^t + e^{2t}$

15.
$$x(t) = e^{-t}(c_1 + c_2 + c_3 + (c_2 + c_3)t + \frac{1}{2}c_3t^2) + t^2 - 3t + 3$$

$$y(t) = e^{-t}(-c_2 - c_3 - c_3t) + t$$

$$z(t) = c_3e^{-t} + t - 1$$

16.
$$x(t) = c_1 + c_2 e^t + 3\ln(1 + e^t) + 2e^t \ln(1 + e^{-t})$$

 $y(t) = -c_1 - 2c_3 e^t - 3\ln(1 + e^t) - 4e^t \ln(1 + e^{-t})$

17.
$$x(t) = 2c_1 \cos 4t + 2c_2 \sin 4t + \frac{1}{4} (\sin 4t - \cos 4t) \cdot \ln \left| tg \left(2t + \frac{\pi}{4} \right) \right|$$

$$y(t) = (c_1 - c_2) \cos 4t + (c_1 + c_2) \sin 4t - \frac{1}{4} \cos 4t \cdot \ln \left| tg \left(2t + \frac{\pi}{4} \right) \right|$$

18.
$$x(t) = c_1 + c_2 + c_2 t + \frac{3}{4}t^2 + t - \frac{1}{2}t^2 \ln t - t \ln t$$

$$y(t) = -2c_1 - c_2 - 2c_2 t - \frac{3}{2}t^2 - t + t^2 \ln t + t \ln t$$

19.
$$x(t) = 2e^{2t} - e^t - 2e^{-t}$$

 $y(t) = e^t + e^{-t} - 3e^{2t}$

20.
$$x(t) = (t - 0.5)e^{3t} + 0.5e^{-t}$$

 $y(t) = (2t - 1.5)e^{3t} + (4t + 2)e^{-t}$

Учебное издание

РУДАКОВСКАЯ Елена Георгиевна РУШАЙЛО Маргарита Федоровна РИГЕР Татьяна Викторовна ХЛЫНОВА Татьяна Вячеславовна КАЗАНЧЯН Манушак Сережаевна СИТИН Артем Геннадьевич

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И СИСТЕМЫ (ПРИМЕРЫ И ЗАДАЧИ)

Редактор Р. Г. Чиркова

Подписано в печать 01.06.2013 г. Формат 60х84 1/16. Усл. печ. л. 6.63. Уч.-изд. л. 6,45. Тираж 1000 экз. Заказ

Российский химико-технологический университет им. Д. И. Менделеева Издательский центр Адрес университета и издательского центра: 125047, Москва, Миусская пл., 9