Lecture Notes in Differential Geoemtry

Ashish Kujur

Last Updated: January 8, 2023

Introduction

This is a set of lecture notes which I took for reviewing stuff that I typed after taking class from *Dr. Saikat Chatterjee*. All the typos and errors are of mine.

Contents

§1 Lecture 1 — 3rd January — Baby Stuff	1
§1.1 References for the Course	1
§1.2 Geometry of curves in three dimensions	2
§1.3 Brief Review of Inverse Function Theorem & Reparameterizatio	n
of Curves	2
§1.4 Arc Length Parameterization	3

§1 Lecture 1 — 3rd January — Baby Stuff

§1.1 References for the Course

- De Carmo Curves and Surfaces
- Tu Introduction to Smooth Manifolds
- Lee Introduction to Smooth Manifolds

§1.2 Geometry of curves in three dimensions

Definition §1.2.1 (smooth). A real function of real variable is *smooth* if it has, at all points, derivatives of all orders.

Definition §1.2.2 (parameterized curve). Let $I \subset \mathbb{R}$ be an open interval. A *parameterized curve* in \mathbb{R}^n is a smooth map $\gamma: I \to \mathbb{R}^n$.

Example §1.2.3. Some of examples of curves are:

- 1. $\gamma: \mathbb{R} \to \mathbb{R}^2$, $t \stackrel{\gamma}{\mapsto} (\cos t, \sin t)$
- 2. $\gamma: \mathbb{R} \to \mathbb{R}^2$, $t \stackrel{\gamma}{\mapsto} (t, mt)$ for any real number m.

§1.3 Brief Review of Inverse Function Theorem & Reparameterization of Curves

Let us recall what the Inverse Function Theorem¹ says:

Theorem §1.3.1. Suppose f is 1-1 and continuous on an open interval I. If f is differentiable at a point $x_0 \in I$ and $f'(x_0) \neq 0$, then f^{-1} is differentiable at $f(x_0)$, and

$$(f^{-1})(f(x_0)) = \frac{1}{f'(x_0)}$$

It follows from this theorem §1.3.1 that:

Theorem §1.3.2 (Inverse Function Theorem in 1-D). Let U be an open subset of \mathbb{R} , $\varphi: U \to \mathbb{R}$ be a smooth map and u be some point in U such that $\varphi'(u) \neq 0$ for some $u \in U$. Then there is an open $nbhd\ V \subset U$ containing u such that $\varphi|_V: V \to \varphi(V)$ is a diffeomorphism.

Proof (sketch). Let u be some point in U such that $\varphi'(u) \neq 0$. Since φ is smooth, we have that φ' is continuous. Hence by the continuity of φ' , we have that there is an open interval $V \subset U$ such that $\varphi'(y) \neq 0$ for all $y \in V$. Applying the meean value theorem on $\varphi|_V$, we have that $\varphi|_V$ is 1-1 and the theorem follows from the previous theorem.

¹See Denlinger, Elements of Real Analysis: Theorem 6.2.4

Example §1.3.3 (Inverse function theorem does not imply that the function is a diffeomorphism!). Let $U = \mathbb{R} \setminus \{0\}$. Consider the map $\varphi : U \to \mathbb{R}$, $x \mapsto^{\varphi} x^2$. Observe that $\varphi'(u) \neq 0$ for all $u \in U$ but φ is not a diffeomorphism since φ is not injective.

Observation §1.3.4. *If* φ : $I \to \mathbb{R}$ *is* $a \mathscr{C}^1$ *function such that* $\varphi'(u) \neq 0$ *for any* $u \in I$ *then* φ : $I \to \varphi(I)$ *is a diffeomorphism and* $\varphi'(u) \neq 0$ *for any* $u \in I$. *Consequently, if* φ *is smooth then* $\varphi^{(k)}$ *is nonzero on* I *for any* $k \in \mathbb{Z}_{>0}$.

Proof. It follows immediately from mean value theorem that φ is injective and it follows from Theorem §1.3.1 that it is differentiable and cannot be zero anywhere.

Remark §1.3.5. Consider I to be an open interval and $\varphi: I \to \mathbb{R}$ be a smooth map such that $\varphi'(u) \neq 0$ for all $u \in I$. Hence, it follows that φ' is injective. Thus, $\varphi: I \to \varphi(I)$ is a diffeomorphism from Theorem §1.3.1.

Definition §1.3.6 (Reparametrization). Let $\gamma: I \to \mathbb{R}^n$ be a smooth curve and $\varphi: J \to I$ be a diffeomorphism where J is an open interval. Define $\beta = \gamma \circ \varphi: J \to \mathbb{R}^n$. Then β is a smooth curve (by the Chain Rule) and β is called the *reparametrization* of γ . Note that since $\gamma = \beta \circ \varphi^{-1}$, we call β and γ *reparameterizations of each other*.

The proof of the following proposition is so easy that it is skipped:

Proposition §1.3.7. *If* β *and* γ *are reparameterization of each other then im* $(\beta) = im(\gamma)$.

Definition §1.3.8 (regular curve). Let $\gamma: I \to \mathbb{R}^n$ be a smooth curve. Then $\gamma'(t_0)$ is called the *tangent* of γ at $t_0 \in I$. If $\gamma'(t) \neq 0$ for every $t \in I$, we say that γ is *regular*.

Now, suppose that $\gamma: I \to \mathbb{R}^n$ be a regular curve. We want to a find $\beta: J \to \mathbb{R}^n$, reparameterization of γ such that $\|\beta'(t)\| = 1$ for all $t \in I$. To achieve this, we define...

§1.4 Arc Length Parameterization

Definition §1.4.1. Let $\gamma: I \to \mathbb{R}^n$ be a regular curve, the *arc length* between t_1 and t_2 in I is

$$L_{\gamma}(t_1, t_2) = \int_{t_1}^{t_2} \| \gamma'(t) \| dt$$

Let us fix $t_0 \in I$. Define $L_{\gamma}: I \to \mathbb{R}$ by $L_{\gamma}(t) = \int_{t_0}^t \|\gamma'(x)\| dx$ for every $t \in I$.

Now observe that $L_{\gamma}(t) = \|\gamma'(t)\|$ for every $t \in I$. Since γ is regular, we have that L'_{γ} is nonzero in I (by Observation §1.3.4). Hence L_{γ} is smooth (why?).

Hence, $L_{\gamma}: I \to L_{\gamma}(I)$ is a diffeomorphism. Hence, $L_{\gamma}^{-1}: J \to I$ is smooth where $J := L_{\gamma}(I)$. Now, $\beta = \gamma \circ L_{\gamma}^{-1}: J \to \mathbb{R}^n$ is a reparametrization of γ . Let $S_{\gamma} = L_{\gamma}^{-1}$. Thus for all $s \in J$,

$$\beta'(s) = \gamma'(S_{\gamma}(s)) \cdot S_{\gamma}'(s)$$

Hence if $s \in S$ then $L_{\gamma}(t) = s$ for some $t \in I$ and hence,

$$S'_{\gamma}(s) = S'_{\gamma}(L_{\gamma}(t))$$

$$= \frac{1}{L'_{\gamma}(t)}$$
(by Theorem §1.3.1)
$$= \frac{1}{\|\gamma'(t)\|}$$

$$= \frac{1}{\gamma'(S_{\gamma}(s))}$$

Hence, we have that

$$\beta'(s) = \frac{\gamma'(S_{\gamma}(s))}{\|\gamma'(S_{\gamma}(s))\|}$$

and

$$\|\beta'(s)\| = 1$$

for all $s \in J$.

This proves the following theorem:

Theorem §1.4.2. Let γ be a regular curve then there is a parameterization S_{γ} : $J \rightarrow I$ scuch that

$$\|\beta'(s)\| = 1$$

for all $s \in J$ *where* $\beta = \gamma \circ S_{\gamma}$.

Definition §1.4.3. The parameterization in Theorem §1.4.2 is called *arc length* parameterization.

Now, with the aforemention definition and theorem, we can assume that all regular curves are *unit speed parametrization*.

Let $\gamma: I \to \mathbb{R}^3$ be a regular curve, $\gamma'(t) \neq 0$ for each $t \in I$. Since γ is a unit speed paramterization, we have that $\gamma'(t) \cdot \gamma'(t) = 0$ for each $t \in I$. By differentiating we have that $\gamma'(t) \cdot \gamma''(t) = 0$ for each $t \in I$.

Hence, $\gamma''(t)$ is perpendicular to $\gamma'(t)$ for each $t \in I$. This begs us to make the following definition:

Definition §1.4.4 (Normal Vector at a point t). Let γ be as in the previous paragraph. The unit vector $\hat{\eta}(t)$ be the unit vector in the direction of $\gamma''(t)$. We call $\hat{\eta}(t)$ is called the *normal vector* at t.

Proposition §1.4.5. *The norm function on* \mathbb{R}^n *is smooth.*

Proof. We first show that $f: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ given by $f(x) = \langle x, x \rangle$ is smooth. This is easy to see: the projection functions are smooth. Now, note that the result follows immediately from Theorem 1.3.1 of Differential Geometry of Manifolds by Lovett. Now the square root function $\sqrt{\cdot}: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ is smooth. Since composition of smooth functions is smooth, we have that f is smooth.

Now, let γ be as in previous paragraph. Then there exist a map $K_{\gamma}: I \to \mathbb{R}$ such that $\gamma''(t) = K_{\gamma}(t)\hat{\eta}(t)$ for each $t \in I$. We call this function K_{γ} as the curvature function of γ . Observe that $|K_{\gamma}(t)| = ||\gamma''(t)||$ is smooth by Proposition §1.4.5.

Observe that if K_{γ} is the zero function, then $\gamma''(t) = 0$ for all $t \in I$ and hence by the Mean value theorem, γ must be straight line.

Now, let $\gamma'(t) = \hat{t}(t)$. The plane defined by $(\hat{t}(t), \hat{\eta}(t))$ is called the *oscillating plane* of t.

Let $\hat{b}(t) = \hat{t}(t) \times \hat{\eta}(t)$. Then

$$\hat{b}'(t) = \hat{t}'(t) \times \hat{\eta}(t) + \hat{t}(t) \times \hat{\eta}'(t)$$

$$= \gamma''(t) \times \hat{\eta}(t) + \hat{t}(t) \times \hat{\eta}'(t)$$

$$= 0 + \hat{t}(t) \times \hat{\eta}'(t)$$

Thus, $\hat{b}'(t)$ is perpendicular to $\hat{t}(t)$. Hence, $\hat{b}'(t)$ is perpendicular to $\hat{b}(t)$ since $\hat{b}(t) \cdot \hat{b}(t) = 1$. Thus, $\hat{b}'(t) = \tau(t)\hat{\eta}(t)$ for some $\tau(t) \in \mathbb{R}$. Thus, we have a smooth map $\tau: I \to \mathbb{R}$.