Evaluation

Evaluation

- How do we know:
 - o If our results are any good?
 - O Which system is better?
 - o If a change is for the better?
- Learning task T is any process by which a system improves performance measured by P from experience E.
- Example:
 - T: predict housing price
 - o **E:** houses with known prices and independent variables
 - o P:?
- Measure the performance for a system:
 - Wrt to the task for which the system was built
 - Using a TEST SET for that task
 - Against a known GROUND TRUTH
 - Using METRICS that measures performance

Test Set

- Using a **TEST SET** for that task
 - Test cases:
 - Houses with known features
 - Images of cars
 - o Against known **GROUND TRUTH** labels
 - House prices
 - Car brand/Driving direction/Right of way
- We can use a test set to evaluate how close to the truth we are
- Never train on your test data!
- Goal:
 - o Learn a model for unseen (future) cases
 - Having learned to predict the test cases you can no longer use them to evaluate the performance on unseen cases

- **Split your data** in Training and Test set

- Example:
 - o 80%-20% split
 - The test set size corresponds to confidence in the evaluation
- Cross validation:
 - Commonly used

Validation Set

N-fold cross validation (small data sets)

Final Accuracy = Average(Round 1, Round 2, ...)

Leave-one-out (for very small data sets)

Metrics

- Think of metrics as:
 - o An (imperfect) indication of improvement
- Many different metrics
 - Effectiveness:
 - Accuracy
 - o Efficiency:
 - Speed, memory usage
- Type of task:
 - o Regression
- Metric: RMSE
 - Root Mean Squared Error
- Weakness:
 - Outliers!

- Type of task:
 - Classification
 - Confusion matrix

	Guilty	Innocent
Predicted	True	False
Guilty	Positives	Positives
Predicted	False	True
Innocent	Negatives	Negatives

- Accuracy:

- o The fraction of correctly classified cases
- Accuracy = (TP + TN) / total
- System A = (10 + 65) / 100 = 0.75
- System B = (5 + 75) / 100 = 0.80

System A	Guilty	Innocent	System B	Guilty	Innocent
Predicted Guilty	10	20	Predicted Guilty	5	10
Predicted Innocent	5	65	Predicted Innocent	10	75

- Recall:

- The fraction of positives that is identified
- Recall = TP / (TP + FN)
- System A = 10 / (10 + 5) = 0.67
- System B = 5/(5+10) = 0.33

- Precision:

- o The fraction of the identified cases that is indeed positive
- Precision = TP / (TP + FP)
- System A = 10 / (10 + 20) = 0.33
- System B = 5 / (5 + 10) = 0.33

- Classic tradeoff between metrics:

o The 'same' system can only improve one metric by sacrificing another

- There is a classic tradeoff between metrics
 - o The 'same' system can improve on metric by sacrificing another
 - If you wish to convict more truly guilty persons you will also convict more innocent (higher recall → lower precision)
 - If you wish faster results you sacrifice accuracy
- True improvement is when you improve one metric without sacrificing another
- What metric to choose for our project?
 - o Use what is commonly used in literature
 - The metric is beyond debate, reproducible, your results comparable to other work
- What if we think of a better metric?
 - That is one of the most common pitfalls.

Confidence

- How confident are we that B is better than A?
 - System A has RMSE = 0.8999
 - O System B has RMSE = 0.8888
- Lower RMSE is better!

System A	System B	
0.8999	0.8888	
0.8500	0.8555	
0.9200	0.9100	
0.8800	0.8700	

- We can statistically test whether B is **significantly** better than A:
 - o Hypothesis 0: B is not better than A
 - Hypothesis 1: B is better than A
 - o Based on the estimated probability of rejecting H0 when it is true.