

HACETTEPE UNIVERSITY

2021-2022 FALL

GMT 225 REFERENCE COORDINATE SYSTEMS ASSIGNMENT 2

M. MERT ÇETİNTÜRK 21967387

Explanation of My Function

First, I constructed a rotation function and took the position vector inputs Xp, Yp, and Zp individually. Then, in order to achieve a prettier display with NumPy, ".array," I turned the provided coordinate values into a 3x1 matrix and printed the initial position vector. Then I transformed this matrix to a 1x3 matrix to make the multiplication process faster and more smooth. Second, I obtained the rotation angle in degrees as well as the rotation axis input. The rotation matrices with respect to the rotation axes were then defined again with NumPy. I used "math.radians" to convert the provided degree values to radians. Finally, I wrote an if-elif-else statement in which I specified the appropriate operations with the relevant matrix for the supplied rotation axis and displayed the new position vector and coordinates as Xp', Yp', and Zp'.

Solution of The Problem Given in Item#3 of Part I of The Assignment

1. First Rotation

Since its rotation is in Y-axis through an angle λ =20°clockwise, the angle input should be negative and the axis should be 2

2. Second Rotation

Since its rotation is in Z-axis through an angle δ =25° counter-clockwise, the angle input should be positive and the axis should be 3.

3. Third Rotation

Since its rotation is in Y-axis through an angle β =7°counter-clockwise, the angle input should be positive and the axis should be 2.

It seems that the final coordinates of point P in the new coordinate system are:

Xp': [177.66367616]

Yp': [40.13501656]

Zp': [176.70540064]