

PATENT SPECIFICATION

1,004,272

1,004,272

Date of Application and filing Complete Specification: April 3, 1963.

No. 13161/63.

Application made in United States of America (No. 186335) on April 10, 1962.

Complete Specification Published: September 15, 1965.

© Crown Copyright 1965.

Index at Acceptance:—C3 P (2D1A, 2D1B, 2D2A, 2K7, 2K8, 2T2E). Int. Cl.:—C 08 d.

COMPLETE SPECIFICATION NO DRAWINGS

Vulcanizable Composition and Vulcanizing Process.

WE, MORTON SALT COMPANY, a corporation organised under the laws of the State of Delaware, United States of America, of 110 North Wacker Drive, 5 Chicago, Illinois, United States of America, do hereby declare the invention for which we pray that a patent may be granted to us and the method by which it is to be performed, to be particularly described in 10 and by the following statement:—

This invention relates to improved processes for vulcanizing and curing of elastomeric materials utilizing novel adducts of magnesia and organic vulcanizing agents and to improved vulcanizable elastomer compositions incorporating these adducts.

It is conventional in the processing of rubber goods, including natural and synthetic rubbers and elastomers, to use a 20 vulcanizing agent to carry out the curing step. Most common of the rubber vulcanizing agents is sulfur, which is ordinarily used in conjunction with a vulcanizing accelerator. The use of an accelerator substantially shortens the vulcanization process. While sulfur is a vulcanization agent that is essentially inorganic in character, the accelerators, which are vulcanization agents of themselves, are 30 organic compounds.

One of the difficulties has been that while a particular accelerator may enhance the rate of cure and substantially reduce the curing time, it may also produce complisations in the form of premature vulcanization commonly known as scorch. Careful selection of accelerators and accelerator systems in a particular vulcanization process was necessary to provide the required 40 safety. The highly active nature of some accelerators led to their discard by the industry because of inability to control premature vulcanization or scorch. This difficulty of scorch is, in part, a result of 45 the nature of the rubber compounding

[Price 4s. 6d.1

precess.

Vulcanizing agents, such as accelerators, are present in vulcanizing rubber stocks in relatively small amounts. In order to obtain uniformity in the final cured product it is necessary to mix the rubber stock thoroughly to disperse the accelerator throughout the mixture to eliminate localized defects caused by different rates of cure. It is well known that very small 55 amounts of material are difficult to disperse throughout a larger mass. Inherent in the dispersion procedures used by the rubber industry are processing techniques which involve the use of high shear blending equipment, usually supplemented with heat to improve flowability and plasticity during the mixing and handling steps. These high shear mixing processes, both with and without added heat, produce localized high 65 temperatures which in turn produce premature activation of the accelerator, and result in scorch of the rubber stock.

Accordingly it would be desirable to

Accordingly it would be desirable to provide a vulcanization agent for elastomer 70 stocks which would be in such a form as to represent a larger weight percentage of the total compounding ingredients and permit more rapid dispersal in the rubber or elastomer mix. The introduction of the 75 accelerator or vulcanizing agent in the form of a mechanical mixture with a diluent material would obviously not accomplish this result since the diluent merely adds to the sum total of solids throughout which the 80 organic vulcanization agent must be dispersed.

Since many of the known organic vulcanizing agents have many desirable attributes, aside from a tendency to scorch, it would be desirable to modify these known materials in such a manner as would control scorching during the mixture and blending operations involved in the preparation of vulcanizing stocks, but permit 90

BNSDOCID: <GB_____1004272A__1 >

of vulcanization enhancement use properties under vulcanizing conditions.
It has been found that conventional

organic vulcanizing agents may be sub-5 stantially modified to eliminate many of the problems which have heretofore associated with their use by forming an adduct of these organic vulcanizing agents with a lightly calcined magnesia, such as 10 disclosed in patent application Serial No. 13162/63 (Serial 1002207).

More particularly, the present invention provides a process of vulcanizing elastomeric material by incorporating into an 15 elastomeric vulcanizable stock an adduct of an organic vulcanizing agent and a lightly calcined magnesia having an iodine adsorption number of from 10 to 300, and heating the resulting composition at vulcan-20 izing temperatures to cure the elastomeric material.

The improved vulcanization process of this invention provides increased process safety without significant sacrifice of vul-25 canization speed and results in improved physical properties in the final product.

This invention also provides a vulcanizable elastomeric composition comprising an unvulcanized rubbery elastomer and an 30 adduct of an organic vulcanizing agent and a lightly calcined magnesia having an iodine

adsorption of from 10 to 300.

The organic vulcanizing agents are well known compositions and are preferably 35 those which contain up to 20 carbon atoms. Particularly preferred vulcanizing agents for use as adducts with magnesia in this invention are those selected from the group consisting of amines, substituted aryl 40 amines, guanidines, aldehyde amines, thiazoles, thiocarbamates, pyrimidines, thiuram sulfides, thioureas, imidazoles, polyhydroxy benzenes and mixtures thereof. Exemplary of said amine type vulcanizing

45 agents are aniline, p-phenylenediamine, p-aminodimethylaniline, p-nitrosodimethylaniline, o - m - and p - hydroxyamino-benzenes. "Aldehyde - amines" as a group includes condensation products of aldehydes 50 and amines, such as hexamethylenetramine, triethylenetetramine and 1,3,5-triethylhexa-hydro-s-triazine (sold as "Trimene Base" "Trimene" is a registered Trade Mark).

Guanidines may be exemplified by 55 guanidine, diphenyl-guanidine (DPG) and di - o - tolylguanidine (DOTG). Thioureas di - o - tolylguanidine (DOTG). Thioureas may be exemplified by trimethylthiourea (THIATE E), N-ethyl-N', N'-dimethylthio-urea (Thiate B), thiocarbanilide (N, N'-di-

50 phenylthiourea) and pyrimidines by thio-hydropyrimidine. Thiazoles may be exemplified by mercaptobenzothiazole (MBT), N-cyclohexyl-2-benzethiazyl sulfenamide ("Santocure"—a registered Trade Mark), 55 di(2-benzothiazylthiomethyl)-urea (El Sixty),

2 - mercaptothiazoline (MT), and mercaptobenzothiazole disulfide (MBTS). 2-Benzothiazyl-N,N-diethylthiocarbamyl sulfide may be considered as exemplary of a thiocarbamate and thiazole derivative.

uram - sulfides may be exemplified
dipentamethylenethiuram di - sulfides Thi- 70 bν tetramethylthiuram monosulfide. Imidazoles may be exemplified by 2-mercaptoimidazo-line (NA-22). Polyhydroxybenzenes may 75 be exemplified by catechol, resorcinol, phloroglucinol, and hydroquinone.

While the foregoing are exemplary of elastomer vulcanization agents, it should be understood that other materials 80 falling within the above description may also be used in preparing these adducts.

The adducts of magnesia and the vulcanizing agent are formed by contacting a magnesia having an iodine adsorption 85 number of from 10 to 300 or preferably from 15 to 220. The iodine adsorption of magnesia or magnesium oxide refers to the milligrams of iodine adsorbed per gram of dry magnesium oxide. The procedure for 90 determining the iodine adsorption as that term is used herein is defined in patent application Serial No. 13162/63 (Serial 1002207).

The adducts are formed as indicated by 95 containing the lightly calcined magnesia with an organic vulcanizing agent. The temperatures used in this reaction vary but broadly extend from 0 to 225°C., and preferably from 65 to 170°C. The contact-100 ing may be carried out by admixing the reactant in a solvent media, preferably an inert solvent, such as benzene, toluene, xylene, heptane, carbon tetrachloride or the like. Low polarity solvents are preferred. 105 The contacting may also be carried out in the absence of solvent media, such as in those instances where the organic vulcanizing agent is a liquid material and an excess of this reactant may be used as the 110 reaction media. Likewise the formation of these adducts may be carried out by fluid bed techniques whereby an organic vulcanizing agent is vapourized and passed through a bed of finely divided pulverulent 115 magnesia of the type previously defined under fluidizing conditions, all as is more completely described in my aforesaid copending applications.

The "wet batch" and fluid bed technique 120 described above are preferably carried out under essentially anhydrous conditions.

Certain magnesium oxide adducts may also be prepared by the use of two or more organic vulcanizing agents to produce a 125 product having a balance of vulcanizing properties which are not obtainable by the expedient of simple admixing of the two organic materials.

The magnesia adducts described in the 130

BNSDOCID: <GB__ _1004272A__I_>

foregoing are products which differ in vulcanizing properties substantially from a mixture of magnesium oxide and the organic material. The modifications result 5 in a product which is much more versatile in the vulcanization process and in many instances overcomes drawbacks which the industry considered sufficient to militate against the use of the organic product in 10 many vulcanization stocks,

It is intended that organic accelerators be included within the term "organic vulcanizing agent" as used herein. These organic accelerators may, depending upon the

15 elastomer being cured, be used as the sole curing agent for an elastomer. 2-Mercaptoimidazoline (NA-22) is exemplary of such a composition used in neoprene stock.

Accordingly it is contemplated that the 20 improvements of this invention may be carried out by the addition of the magnesia adducts of the organic vulcanizing agent to conventional elastomer stocks containing

sulfur, anti-oxidants, fillers and reinforcing
25 agents, plasticizers and the like. The
organic vulcanizing agent adduct with organic vulcanizing agent adduct with magnesia is usually incorporated at levels which with respect to the organic portion of

adduct, are comparable to those used in conventional compounding stocks. Accordingly the adduct may, in one specific aspect the herein described process, be incorporated into the rubber curing stocks in amounts whereby the organic component 35 constitutes from 0.05 to about 10 percent

and preferably from about 0.5 to 5.0 percent by weight of the elastomer.

Generally the magnesia adduct utilized in the process of the present invention may 40 contain from 1 to 35 percent organic vulcanizing agent, and preferably from about 2.5 to 15 percent organic vulcanizing agent.

The vulcanizing stocks include vulcanizable rubbery elastomers in general, such 45 as for example natural rubber, synthetic rubbers, such as polychloroprene, but-adienestyrene rubber (SBR), acrylonitrilebutadiene rubber, such as NBR, butyl

rubber, polyacrylate rubber, such as butylacrylate rubber "Hycar" 4021 or Lactoprene EV—("Hycar" is a registered Trade Mark) poly-sulfide rubbers, such as "Thiokol" (registered Trade Mark), silicone rubbers, chloro-sulfonated polyethylene rubber, such as "Hypalon" (registered Trade Mark); fluoro elastomers (KX-2141), polyester elastomers, so-called synthetic "natural" rubbers and realsimed relationed 55 rubber,

'natural" rubbers and reclaimed rubber. The type of vulcanization stocks which 50 may be cured by the use of organically modified magnesias may contain antioxidants, antiozonants, plasticizers, resins, fillers, such as carbon black, fatty acids, zinc oxide, inorganic vulcanizing or curing 55 agents, such as sulfur, metal salts, or the

The vulcanizing stocks may contain additional organic vulcanizing agents, such as an accelerator in a free or modified form, additional unmodified magnesia, and other organically modified magnesias.

For a more complete understanding of the improved process and compositions of this invention, reference is made to the following examples:

Example 1 Polychloroprene vulcanization polychloroprene vulcanizing stock polychloroprene having the following formula was prepared: Polychloroprene

(Neoprene W)* 100 00 parts 80 5.0 parts Zinc oxide Stearic acid 0.5 part Stabilizer ("Agerite Stalite S")** 2.0 parts Plasticizer (Circo light oil) 5.0 parts 85 Thermal Carbon black ("Thermax"

registered Trade Mark)** 75.0 parts Vulcanizing Agent (see A and B following)

vulcanizing agent and B, 90 respectively, was incorporated into the foregoing formulation and the corresponding rubber stocks identified as A and B respectively. Mooney Scorch tests (ASTM D-1646-61) were run on each of the stocks 95 to ascertain changes in process safety. The vulcanization agents used, A and B, were as follows:

Vulcanization Agent A physical mixture of 8.55 parts of 100 magnesia, iodine No. 100, and 0.75 parts Thiate B (N-ethyl, N', N'dimethyl thiourea);

The reaction product of 8.55 parts magnesia, iodine No. 100, and 0.75 105 parts Thiate B, supra

Stock Containing: Mooney Scorch Time (Minutes)

5 point rise 10 point rise Vulcanization Agent A Vulcanization Agent B

27 60

From the above it may be observed that looney Scorch time is considerably 115 Mooney increased by the use of adduct of magnesia and an organic vulcanizing agent as compared with the physical mixture. Accordingly, the higher Mooney Scorch values indicate that a longer period of processing 120 of elastomer stock is possible, without premature vulcanization, with vulcanization agent B. The stocks, when vulcanized, had comparable physical properties.

The following examples will illustrate the 125 improved physical properties obtained in the use of adducts of magnesia and organic vulcanizing agents, accelerators, etc., as compared to comparable mixtures of the components in the same proportions in the 130

BNSDOCID: <GB_ _1004272A__I_>

75

ı

9.3 parts

110

vulcanizing stock of Example 1. The Mooney Scorch times are indicated under the respective headings, i.e. "mixture" and "adduct". The vulcanizing stock had the 5 following composition: Neoprene W

Stearic Acid Neazone A (phenyl-alpha 100 parts 1 part

naphthylamine) 2 parts Carbon black (SRF) 29 parts 10 5 parts Zinc oxide Accelerator-magnesia:

(as indicated in Table II)
Examples 3, 5, 6, 7 and 8 include two organic accelerators in both the mixture and 15

the adduct:

TABLE II

20	Components of Magnesia- Accelerator Mixtures and Adducts			Mooney Scorch Time (6) Minutes to a 10 point rise		% Organic		
	E	Accelerate	- '	Magnesia	200	4.22	4.1.1	
	Example		Parts(7)	Parts(5) (7)	Mixture	Adduct	Adduct and Mix	
05	2 3	Catechol	0.53	4.0(4)	.9	14	11.94	
25	3	Catechol	0.40	4.0	16	23	11.43	
	_	DOTG(1)	0.12					
	4 5	Resorcinol	0.62	4.0	19	43	13.55	
	5	Resorcinol	0.39	4.0	36	47	12.51	
		DOTG(1)	0.18					
30	6	Resorcinol	0.39	4.0	25	39	13.07	
		TETA(2)	0.21					
	7	Resorcinol	0.39	4.0	25	55	12.68	
		Trimine						
		Base(3)	0.27					
3 5	8	Phloro-						
		glucinol	0.56	4.0	37	75	12.68	
		DOTG(1)	0.13	***				
	9	o-amino-						
	_	phenol	0.354	4.0	31	42	8.12	
40	(1)	DOTG: di-o-t						
-10	(2)	TETA: triethy	denetetran	nine				
	(3)				o-s-triazine			
	(4)							
	(5)	Iodine No. 170		res magnesia				
45	(6)	Small rotor Mo		rob tests 250°	E (ACTM	D-1646-613	•	
47	(7)	By weight	Joney Sco.	ich tests, 200	r. (warm-	D-10 4 0-01)	•	

Example 10

As a further example, an adduct of 0,63 part ethylene thiourea (2-mercaptoimidazoline) and 5 parts of magnesia (iodine adsorption number of 20) prepared by the procedure set forth in application Serial No. 13162/63 ((Serial 1002207), was incorporated into a chlorobutyl rubber vulcan-55 ation stock (C). A control formation (D) was prepared using a mixture of the components in the adduct, in the same proportions.

		C	D
60		Adduct	Mixture
	FORMULATION	(Parts) (4)	(Parts) (4)
	Chlorobutyl rubber		
	(Enjay MD-551)	100.0	100.0
	Antioxidant		
65	"2246"(1)	1.0	1.0
	Carbon black		
	(furnace black)	50.0	50.0
	Magnesia (2)		5.0
	Ethylene		
70	Thiourea		0.63
	Adduct(3)	5.63	

American Cyanamide 2,2'-methylene-bis (4-methyl-6-t butyl phenol) Iodine adsorption No. 200 0.63 part ethylene thiourea and 5.0 75

parts magnesium oxide - iodine No. 20

(4) By weight

The rubber stocks identified as "C" and "D" above were cured for 60 minutes at 80 320°F. They had the following physical properties: D

	С	D	
Tesile strength (psi)	2050	1740	
Elongation	293	247	85
Tensile product*	6.0	4.3	-
*Product of tensile s	trength and	elongation)
\times 10 ⁻⁵ .	_	_	
The improved tens	sile properties	s of Stock	
C as compared to	Stock D a	re readily	90
apparent.		_	

While the foregoing examples are specific to certain vulcanizing agents or adducts, it should be understood that many other accelerators-curing aids may be used for this 95

purpose.

BNSDQCID: <GB_____1004272A__I_>

In certain instances additional benefits are obtained in the way of improved compression set, tensile, volume swell and bin aging characteristics.
WHAT WE CLAIM IS:-

1. The process of vulcanizing elastomeric materials which comprises incorporating in an elastemeric stock an adduct of an organic vulcanizing agent containing up to 20 10 carbon atoms and a lightly calcined magnesia having an iodine adsorption number of from 10 to 300 and heating at vulcanizing temperatures to cure the elastomeric material.

2. The process according to claim 1 wherein the organic vulcanizing agent of said adduct is selected from amines. aldehyde - amines, guanidines, pyrimidines, thioureas, thiazoles, thiocarbamates, thiuram 20 sulfides, imidazoles, polyhydroxy benzenes

or mixtures thereof.

3. The process according to claim 1 wherein the elastomer is a chloroprene polymer and the organic vulcanizing agent of 25 the adduct is 2-mercaptoimidazoline.

4. The process according to claim 1 wherein the elastomer is a chloroprene polymer and the organic vulcanizing agents in the adduct are catechol and di-o-tolyl-30 guanidine.

5. The process according to any of claims 1-4 wherein said adduct contains from 1 to 35 percent organic vulcanizing

6. The process according to any of claims 1-5 wherein the lightly calcined magnesia has an iodine adsorption number of from 15 to 220.

7. A vulcanizable elastomeric com-40 position comprising an unvulcanized rubbery elastomer and an adduct of an organic vulcanizing agent containing up to 20 carean atoms and a lightly calcined magnesia having an icdine adsorption number of from 10 to 300.

8. The composition according to claim 7 wherein the adduct contains from 1 to 35

percent organic matter.

9. The composition according to claim 7 or 8 wherein the organic vulcanizing agent 50 is selected from amines, aldehyde - amines, guanidines, pyrimidines, thioureas, thiazoles, thiocarbamates, thiuram sulfides, imidozoles, polyhydroxybenzenes or mixtures thereof.

10. The composition according to any of 55 claims 7-9 wherein the organic vulcanizing agent in said adduct is present in amounts of from 0.05 to 5% by weight of

the elastomer.

11. The composition according to claim 60 7 wherein the elastomer is unvulcanized chloroprene polymer and said adduct is an adduct of 2 mercaptoimidazoline and said

lightly calcined magnesia.

12. The composition according to claim 65 7 wherein the elastomer is unvulcanized chloroprene polymer and said adduct is an adduct of catechol and di-o-tolylguanidine and said lightly calcined magnesia.

13. The process of vulcanizing elasto- 70 meric material substantially as herein material substantially as herein described with particular reference to the examples.

vulcanized elastomeric position substantially as herein described 75 with particular reference to the examples. STEVENS, LANGER, PARRY

& ROLLINSON Chartered Patent Agents, Agents for the Applicants.

Berwick-upon-Tweed: Printed for Her Majesty's Stationery Office by The Tweeddale Press Ltd.—1965 Published at The Patent Office, 25 Southampton Buildings, London, W.C.2 from which copies may be obtained.