Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение Высшего образования «Московский государственный технический университет имени Н.Э.Баумана (национальный исследовательский университет)» (МГТУ им Н.Э. Баумана)

Факультет «Робототехника и комплексная автоматизация» Кафедра «Системы автоматизированного проектирования» (РК6)

Отчет

По лабораторной работе №2 по дисциплине «Прикладная механика»

по теме «Расчет статически-неопределимой балки методом конечных элементов»

Выполнил: студент группы РК6-34Б, Блинов Д.Ю.

Проверил: декан факультета РК, Шашурин Г.В.

Москва

Вариант 2

Постановка задачи

Составить конечно-элементную программу для расчета статическинеопределимой балки и проверить корректность ее работы с использованием Siemens NX.

Исходные данные:

Материал балки: сталь (модуль Юнга E = 2e11 Па).

Сечение балки: прямоугольное (см. рисунок).

Геометрические параметры балки: l = 0.1 м, b = 10 мм, h = 20 мм.

Величина нагрузки: F = 10 H.

Описание алгоритма работы составленной конечно-элементной программы на языке Python

1) Задание исходных данных пользователем:

- b, h параметры сечения;
- 1- длина балки;
- F вектор силовых нагрузок;
- Е модуль Юнга;
- U вектор ограничений, задаваемых пользователем;
- n_el количество элементов;
- N_dof_el количество степеней свободы элемента.
- 2) Реализация 4 функций, которые выполняются последовательно:
 - 1. stiffness_element_matrix функция, формирующая матрицу жесткости каждого КЭ. На вход принимает параметры КЭ.
 - 2. index_matrix функция, формирующая матрицу индексов для балочных элементов. На вход принимает количество КЭ, количество степеней свободы каждого КЭ.
 - 3. ensemble функция, которая выполняет ансамблирование. На вход принимает матрицы жесткости КЭ, матрицу индексов, количество степеней свободы системы и количество степеней свободы отдельного элемента.
 - 4. boundary_conditions_modification функция, выполняющая наложение граничных условий. На вход принимает глобальную матрицу жесткости, полученную в результате ансамблирования, количество степеней свободы системы и вектор U.
- 3) В результате формируется и выводится на экран вектор и узловых перемещений.

Результаты расчета

(вектор узловых перемещений)

Таблица 1. Результаты работы программы.

Перемещение	0.000	0.005	0.014	0.007	0.000
по узлам (мм)					
Вращение по	0.000	0.00018	0.000	0.0009	0.000
узлам					
(радианы)					

Текст программы

```
import numpy as np
def index_matrix(n_el, N_dof_el):
    a = 0
    matrix = np.zeros((n_el, N_dof_el))
```

```
for i in range(n_el):
        for j in range(N_dof_el):
            matrix[i][j] = j + 1 + a
        a = a + 2
    return matrix
def stiffness_element_matrix(E, L, J):
    K_e = [[12*E*J/np.power(L, 3), 6*E*J/np.power(L, 2), -12*E*J/np.power(L, 3),
6*E*J/np.power(L, 2)],
           [6*E*J/np.power(L, 2), 4*E*J/L, -6*E*J/np.power(L, 2), 2*E*J/L],
           [-12*E*J/np.power(L, 3), -6*E*J/np.power(L, 2), 12*E*J/np.power(L, 3), -
6*E*J/np.power(L, 2)],
           [6*E*J/np.power(L, 2), 2*E*J/L, -6*E*J/np.power(L, 2), 4*E*J/L]]
    return K_e
def ensemble(K, M_i, N_dof_system, N_dof_el):
    K_g = np.zeros((N_dof_system, N_dof_system))
    b = N_dof_el
    offset = 0
    for i in range(n_el):
        for j in range(N_dof_el):
            K_g[j + offset][offset: 4 + offset] = K_g[j + offset][offset:4 + offset] +
K[i][j]
        offset = offset + 2
    return K g
def boundary conditions modification(K g, U, N dof system):
    for i in range(N_dof_system):
        if (U[i] == 0):
            K_g[..., i] = 0
            K_g[i,...] = 0
            K_g[i][i] = 1
    return K_g
n_el = int(input("Введите количество элементов: "))
N \text{ dof el} = 4
N_dof_system = int((n_el + 1) * N_dof_el / 2)
E = 2e11
b = 10
h = 20
U = [0, 0, 1, 1, 1, 0, 1, 1, 0, 0]
```

```
F = [ 0, 0, 30, -6000, -40, 0, 0, -1000, 0, 0]

J = float(b * np.power(h, 3) / 12)

K = []

for i in range(0, n_el):

    L = float(input("Введите длину элемента: "))

    K.append(stiffness_element_matrix(E, L, J))

M_i = index_matrix(n_el, N_dof_el)

K_g = ensemble(K, M_i, N_dof_system, N_dof_el)

K_mod = boundary_conditions_modification(K_g, U, N_dof_system)

u = np.linalg.inv(K_mod).dot(F)

print("Вектор узловых перемещений: ", u)
```

Описание выполнения расчета заданной системы в программе Siemens NX

- 1) САД-модуль. Создание геометрии рассчитываемого объекта.
 - 1. Создание нового файла модели.
 - 2. Построение геометрии (линии) с использованием параметра "через 2 точки".
 - 3. Сохранение файла.
- 2) САЕ-модуль. Создание конечно-элементной модели.
 - 1. Создание нового файла КЭ модели.
 - 2. Установление вязи с файлом геометрии: выбор параметра импортирования геометрии "Прямые".
 - 3. Выбор параметра "1D сетка" для создания КЭ сетки.
 - 4. Задание размера КЭ.
 - 5. Задание параметров КЭ (материал: AISI_Steel_1005, поперечное сечение: его тип и размеры).
 - 6. Сохранение файла.
- 3) Задание граничных условий (закрепления и силовые факторы).
 - 1. Создание файла "SIM".
 - 2. Выбор типа закрепления и узла, который нужно закрепить.
 - 3. Выбор силового внешнего фактора (сила и момент, задание их величины и направления) и узла, к которому внешний силовой фактор прикладывается.
 - 4. Выбор отображения КЭ модели.
 - 5. Сохранение файла.
- 4) Просмотр результатов.

Результаты расчета в Siemens NX

Рисунок 1. Перемещение по узлам.

Рисунок 2. Вращение по узлам.

Сравнение результатов

Таблица 2. Сравнение результатов работы программы и Siemens NX.

Перемещение	Python	0.000	0.005	0.014	0.007	0.000
по узлам	Siemens	0.000	0.005	0.015	0.007	0.000
(MM)	NX					
Вращение по	Python	0.000	0.00018	0	0.0009	0
узлам	Siemens	0.000	0.00017	0.0	0.0008	0.000
(радианы)	NX					

Вывод

Результаты работы программы практически полностью совпадают с результатами работы Siemens NX.

Следовательно, составленная программа для расчета статически-неопределимой балки работает корректно.