2016年第17屆亞洲物理奧林匹亞競賽 及第47屆國際物理奧林匹亞競賽 國家代表隊初選考試試題參考解答(暫定)

壹、 填充題

$$\leq$$
 (4) 67.8°

$$(5) \ \frac{2\sqrt{6}\frac{v^2}{g}}{}$$

$$\pounds$$
 (8) $\beta = -2$

(9)
$$\sqrt{v_0^2 + \left(\frac{8\pi\eta L}{a\rho}\right)^2} - \left(\frac{8\pi\eta L}{a\rho}\right)$$

(11)
$$\pi \sqrt{\frac{h}{2g}}$$

七、(12)
$$\frac{nRT_0}{(P_0A + mg)}$$

(13)
$$T = T_0 \left[\frac{nRT_0}{(P_0A + mg)h} \right]^{2/3}$$

(16)
$$\frac{\eta(R_2^2 - R_1^2)}{R_2^2 \kappa_3(\kappa_1 + 2\kappa_2) + R_1^2 (2\kappa_1 \kappa_2 - \kappa_1 \kappa_3 - 2\kappa_2 \kappa_3)}$$

$$+\cdot (17) \frac{4\pi}{3}sr^3$$

$$(18) \qquad \frac{sR^2}{6\kappa}$$

$$+-\cdot$$
 (19) $\frac{2m}{m+M}L$

$$+=\cdot$$
 (21) $\mu_k mgh \cot \theta$

(22)
$$2g\left[\mu_k\sqrt{2hR-h^2}-h\right]$$
 $\underline{\mathbf{g}}\left[2g\left[\mu_k\sqrt{2hR}-h\right]\right]$ $\underline{\mathbf{g}}\left[2g\left[\mu_k\sqrt{2hR}\right]\right]$

$$+ \equiv \cdot (23)$$
 $v \ge \sqrt{\frac{10Gm}{d}}$

$$+$$
£\cdot\ (26) $\frac{mg}{k}$

$$\sqrt{2gl + \frac{mg^2}{k}}$$

$$(29) \quad \frac{\sqrt{3}Mg\mu}{2\pi}$$

$$(30) \quad \frac{2}{3} Mg\mu R$$

貳、計算題

第1題評分標準:

小題	內容	得分	備註
(1)	到穩定態時,可以利用流體的連續性方程	2	
5分	式,	2	
	知道每單位時間內,每單位面積上撞擊板面	2	
	與自板面反彈的分子個數必須相等,	2	
	寫出 $n = n'$,即 $n'/n = 1$ 。	1	
(2)	知道單位時間內,yz平面上每單位面積受到	1	
7分	的動量為 $nmv + n'mv'$, (即壓力 p)	1	
	寫出	2	
	p = nmv + n'mv' = m(nv + n'v')	2	
	知道能量均分定理,即速率v與溫度T相關	2	
	之關係式。(三維運動為: $\frac{1}{2}mv^2 = \frac{3}{2}kT$)	2	
	了解是一維運動,寫出		
	$\frac{1}{2}mv^2 = \frac{1}{2}kT$	1	
	和(或)	1	
	$\frac{1}{2}mv'^2 = \frac{1}{2}kT' \circ$		
	計算出壓力:		
	$p = \sqrt{mk}(n\sqrt{T} + n'\sqrt{T'})$	1	
	或	1	
	$p = n\sqrt{mk}(\sqrt{T} + \sqrt{T'})$		
(3)	理解單位時間內每單位面積能量流為粒子數	2	
3分	n 乘以平均動能,平均動能為 $\frac{1}{2}kT$		
	計算出單位時間內每單位面積流入之靜能量		
	$n \times \frac{1}{2}kT - n' \times \frac{1}{2}kT' = n \times \frac{1}{2}nk(T - T')$	1	
	或是僅考慮由 T 傳到 T "的能量 $n \times \frac{1}{2}kT$ 亦可。		
	(因未題意述說不明確)		

第2題評分標準:

小題	內容	得分	備註
(1)	知到相對於P點的力矩大小為	13.77	THI DI
4分	$mgR\cos\theta$,	1	
	等於相對於P點的轉動慣量I與角加速度α的		
	乘積,寫出	1	
	$I\alpha = -mgR\cos\theta ,$		
	寫出轉動慣量1等於		
	$\frac{7}{5}mR^2$	1	
	計算得角加速度為		沒有負號,
		1	不給分。
	$-\frac{5}{7}\frac{g}{R}\cos\theta$		
(2)	寫出力方程式:		
4分	$ma = mg\cos\theta - F_f$,	2	
	其中α為球質心加速度,		
	知道純滾動條件,即:	1	
	$a = R\alpha$	1	
	寫出方程式		只需考慮大
	$F_f = mg\cos\theta - mR\left(\frac{5}{7}\frac{g}{R}\cos\theta\right)$		小
	計算出摩擦力	1	
	$F_f = \frac{2}{7} mg \cos \theta$		
(3)	知道正向力 F_N 是沿著 OP 連線,	1	
5分	 寫出正向力的力方程式:		
	$mg\sin\theta - F_N = mR\omega^2 ,$	1	
	或	1	
	$F_N = mg\sin\theta - mR\omega^2$		
	其中ω是質心相對於P點的轉動角速率,		
	知道能量守恆知轉動動能是由重力位能而來,即		
	$mgR(1-\sin\theta) = \frac{1}{2} \left(\frac{7}{5} mR^2\right) \omega^2$		
	2 (3 /	2	
	得 10 a		
	$\omega^2 = \frac{10}{7} \frac{g}{R} (1 - \sin \theta)$		
	計算出正向力		
	$F_N = \frac{mg}{7} (17\sin\theta - 10)$	1	
(4) 2分	寫出球脫離桌子邊緣滑落時, F_N 等於零,即 $(17\sin\theta-10)=0$	1	
	計算出角度		
	$\sin^{-1}\frac{10}{17} = 36 \text{ g}$	1	
		<u> </u>	