DAY 3

Relationship between zeroes & co-efficients of a polynomial:-

Consider a quadratic polynomial $p(x) = ax^2 + bx + c$, $a \ne 0$ having zeros as α and β then

nsider a quadratic polynomial
$$p(x) = ax^2 + bx + c$$
, $a \neq sum\ of\ zeroes\ (\alpha + \beta) = -\frac{b}{a} = -\frac{coefficient\ of\ x^2}{coefficient\ of\ x^2}$ and product of zeroes i.e. $\alpha\beta = \frac{c}{a} = \frac{coefficient\ of\ x^2}{coefficient\ of\ x^2}$

1. Find the zeroes of quadratic polynomial and also verify their relationship with zeroes and coefficients:

(i)
$$x^2 + 7x + 10$$
 (ii) $2x^2 - 5x + 3$ (iii) $2x^2 + 4x$ (iv) $x^2 - 3$ **Sol:** (i) Given $p(x) = x^2 + 7x + 10 = x^2 + 2x + 5x + 10$

Sol:- (1) Given
$$p(x) = x^2 + 7x + 10 = x^2 + 2x + 5x + 10$$

= $x(x+2) + 5(x+2) = (x+2)(x+5)$

For Zeros:
$$(x + 2)(x + 5) = 0$$

$$\Rightarrow x + 2 = 0$$
 and $x + 5 = 0 \Rightarrow x = -2$ or $x = -5$

Zeroes of
$$x^2 + 7x + 10$$
 are -2 and -5 e-become-educated

Verification:-

Now Sum of zeroes =
$$-2 + (-5) = -7 = -\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

Product of zeroes = $(-2)(-5) = 10 = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

(ii) Given
$$p(x) = 2x^2 - 5x + 3 = 2x^2 - 2x - 3x + 3$$

= $2x(x - 1) - 3(x - 1) = (x - 1)(2x - 3)$

For Zeros:
$$(x-1)(2x-3) = 0$$

$$\Rightarrow x - 1 = 0$$
 and $2x - 3 = 0$ $\Rightarrow x = 1$ or $x = \frac{3}{2}$

Zeroes of
$$2x^2 - 5x + 3$$
 are 1 and $\frac{3}{2}$

Verification:-

Now Sum of zeroes =
$$1 + \frac{3}{2} = \frac{2+3}{2} = \frac{5}{2} = -\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

Product of zeroes = $(1)(\frac{3}{2}) = \frac{3}{2} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

(iii) Given
$$p(x) = 2x^2 + 4x = 2x(x+2)$$

For Zeroes:
$$2x(x + 2) = 0$$

$$\Rightarrow$$
 2x = 0 and x + 2 = 0 \Rightarrow x = 0 or x = -2

Zeroes of
$$2x^2 + 4x$$
 are 0 and -2

Verification:-

Now Sum of zeroes =
$$0 + (-2) = -2 = -\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

Product of zeroes =
$$(0)(-2) = 0 = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(iv) Given $p(x) = x^2 - 3 = x^2 - (\sqrt{3})^2 = (x - \sqrt{3})(x + \sqrt{3})$
For Zeroes: $(x - \sqrt{3})(x + \sqrt{3}) = 0$
 $\Rightarrow x - \sqrt{3} = 0 \text{ and } x + \sqrt{3} = 0 \Rightarrow x = \sqrt{3} \text{ or } x = -\sqrt{3}$
Zeroes of $x^2 + 7x + 10$ are $\sqrt{3}$ and $-\sqrt{3}$

Verification:-

Now Sum of zeroes =
$$\sqrt{3} + (-\sqrt{3}) = 0 = -\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

Product of zeroes = $(\sqrt{3})(-\sqrt{3}) = -3 = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

EXERCISE

1. Exercise 2.2, Q1

