Analyse factorielle discriminante

Michaël Genin

Université de Lille 2

EA 2694 - Santé Publique : Epidémiologie et Qualité des soins michael.genin@univ-lille2.fr

Master 1 Biologie Santé - Parcours C

Plan

- Introduction
- 2 Principe général
- 3 Principe d'interprétation

Analyse factorielle discriminante (AFD)

2 familles de méthodes de classification

Classification non-supervisée (clustering)

- Partitionner les observations en groupes différents (classes, catégories) mais les plus homogènes possible au regard de variables décrivant les observations.
- Le nombre de classes n'est pas connu à l'avance
- Méthodes : Classification hiérarchique, K-plus-proches voisins, Classification bayésienne naïve. . .

Classification supervisée (discrimination)

- Obtenir un critère de séparation afin de prédire l'appartenance à une classe $(Y = f(X) + \epsilon)$.
- Le nombre de classes est connu à l'avance (Variable à expliquer)
- Méthodes: Régression logistique, Analyse discriminante, Arbres de décision, Réseaux de neurones, Réseaux bayésiens, Support Vector Machine...

Méthodes de discrimination

2 objectifs principaux:

- Etude du lien entre Y (Variable à expliquer qualitative) et les X_j (Variables explicatives quantitatives ou binaires) \Rightarrow Facteurs prédictifs
- Prédiction (système d'aide à la décision (scores cliniques, crédit scoring, ...)

2 catégories de méthodes de discrimination :

- Méthodes explicatives : règles de prédiction claires (AFD, Reg Log, Arbres de décision)
- Méthodes non explicatives : règles de prédiction floues (RN, RB, SVM...)

En pratique en médecine

- 2 classes ⇒ Régression logistique
- > 2 classes : **Analyse discriminante**, Arbres de décision

En résumé

L'Analyse Factorielle Discriminante est une méthode de discrimination, explicative qui a pour but :

- Etude du lien entre Y (Variable à expliquer qualitative) et les X_j (Variables explicatives quantitatives ou binaires) \Rightarrow Facteurs prédictifs
- Prédiction de l'appartenance à une classe

Modèle linéaire

On considère des combinaisons linéaires entre les X_j

Score =
$$\lambda_1 X_1 + \lambda_2 X_2 + \dots + \lambda_p X_p = \sum_{j=1}^p \lambda_j X_j$$

Ce (ou ces) score va permettre de prédire l'appartenance des individus à une classe (Y).

Exemple 1 : score en réanimation

PRISM: Pediatric RISk of Mortality

PELOD: PEdiatric Logistic Organ Dysfunction

Prédiction d'un évènement cardio-vasculaire dans les 10 ans. Construit à partir de la cohorte de Framingham (5 209 individus)

Age (classes quinquennales)

$$[55-59 \text{ ans}] \to + 4$$

Tx de cholesterol LDL

$$si \in [100 - 160] : 0$$

$$si < 100$$
 : -3 (Protecteur)

$$si \ge 160$$
 : $+2$ (Risque)

PA diastolique (PAD) et PA systolique (PAS) en mm de mercure

SI PAD
$$\leq$$
 89 ET PAS \in [130 - 139] : +1

Si $S \geq 14 \rightarrow 56\%$ de risque d'évenement CV dans les 10 ans.

Lien avec la notion de score linéaire :

Score Framingham =
$$\lambda_1 X_1 + \cdots + \underbrace{\mathsf{Age}[55\text{-}59]}_{0/1} \underbrace{\lambda}_{=4} + \cdots + \lambda_p X_p$$

Cas 3 : impossibilité de trouver un score discriminant les 2 groupes.

Condition nécessaire

Les groupes doivent être séparables (non-superposés)

Exemple: X_1, X_2 et K = 2

Les centres de gravité μ_1 et μ_2 sont séparés (*i.e.* les groupes sont séparés)

Les centres de gravité μ_1 et μ_2 ne sont pas séparés (*i.e.* les groupes ne sont pas séparés)

Point d'entrée de l'analyse : tester la séparabilité des groupes en utilisant les coordonnées des centres de gravités :

$$X_1$$
 et X_2

$$oldsymbol{\mu_1} = \left(egin{array}{c} \mu_{11} \ \mu_{12} \end{array}
ight) \quad oldsymbol{\mu_2} = \left(egin{array}{c} \mu_{21} \ \mu_{22} \end{array}
ight)$$

$$X_1,\ldots,X_p$$

$$\mu_1 = \begin{pmatrix} \mu_{11} \\ \vdots \\ \mu_{1p} \end{pmatrix} \quad \mu_2 = \begin{pmatrix} \mu_{21} \\ \vdots \\ \mu_{2p} \end{pmatrix}$$

MANOVA: Multivariate ANalysis Of VAriance

 $\left\{ \begin{array}{ll} \mathcal{H}_0: & \mu_1 = \mu_2 & \text{Groupes confondus} \\ \mathcal{H}_1: & \mu_1 \neq \mu_2 & \text{Groupes séparés} \end{array} \right.$

Si les groupes sont séparés (MANOVA) ⇒ Retour aux scores discriminants

Cas 1 : le score discrimine bien les deux groupes

Cas 2 : le score n'est pas assez discriminant pour réaliser des prédictions

Nécessité

Pour les scores ⇒ utilisation d'un critère de qualité de discrimination

Idée: ANOVA sur le score

En utilisant le théorème de Huygens

$$S_T^2$$
 = S_B^2 + S_W^2
Variance totale Variance inter-classes Variance intra-clas

Indicateur de qualité de séparation entre les groupes

$$R^2 = \frac{S_B^2}{S_T^2} \in [0, 1]$$

Remarque : si $R^2 \approx 1 \rightarrow \text{variance intra quasi-inexistante}$:

Objectif de l'AFD

Déterminer parmi toutes les combinaisons linéaires des X_i $(\sum_{i=1}^p \lambda_i X_i)$, les pondérations λ_i qui maximisent le \mathbb{R}^2 .

Problème : il existe une infinité de combinaisons de λ_i . Comment déterminer les λ_i optimaux?

Théorème

Si les groupes sont séparés (MANOVA) alors il existe une combinaison linéaire (score discriminant, composante discriminante) unique qui maximise le R^2 .

Lien avec l'ACP

Lien avec l'ACP

Détermination des λ_i

AFD : ACP particulière sur les centres de gravité :

Distance particulière : distance de Mahalanobis

- Maximise l'inertie inter-classe projetée sur l'axe
- Minimise l'inertie intra-classe projetée sur l'axe

Situation rare:

Théorème

Soit Y qui définit k groupes. Si les groupes sont séparés, alors

Il existe k-1 | composantes discriminantes | tels que | scores discriminants

 1^{er} score S_1 rend maximal le R^2 $2^{\text{ème}}$ score S_2 est orthogonal à S_1 et maximise le R^2

 $(k-1)^{\text{ème}}$ score S_{k-1} est orthogonal à S_{k-2} et maximise le R^2

Résumé

AFD: méthode explicative de discrimination

- Une variable à expliquer qualitative Y à k groupes (classes)
- p variables explicatives X_i quantitatives ou binaires
- Etudier les variables discriminantes des groupes
- Prédire l'appartenance à un groupe
- Méthode linéaire : scores linéaires qui vont prédire l'appartenance aux classes
- Les classes doivent être séparées (MANOVA)
- Les scores : issus d'une ACP particulière sur les centres de gravités (composantes)
- Toujours k-1 scores discriminants

Principe d'interprétation

3 étapes clés :

- Est-ce que, mathématiquement, la discrimination est bonne?
 - Est-ce que les groupes sont bien séparés par les scores?
- Est-ce que les scores ont une interprétation clinique?
 - Cohérence par rapport à l'expertise clinique...
- 3 Construction de règles de classement
 - Règle d'affectation d'un nouvel individu à une classe

Principe d'interprétation - Données exemple

Données "insectes" de Lubischew $(n = 72)^{1}$.

- Variable à expliquer : espèce d'insecte (species)
 - Concinna (con) (codée 1)
 - Heikertingeri (hei) (codée 2)
 - Heptapotamica (hep) (codée 3)
 - *Y* = {con,hei,hep}
- Variables explicatives
 - Largeur de l'appareil reproducteur (aedeagus) (μ m) (width)
 - Angle de l'appareil reproducteur (aedeagus) (degré) (angle)

Objectifs

- Déterminer quelle sont les variables discriminant les groupes d'insectes
- Etablir des règles de classement

^{1.} Lubischew, A.A. (1962) On the use of discriminant functions in taxonomy. Biometrics, 18, 455-477

A - Vérification de la condition nécessaire

MANOVA: Multivariate ANalysis Of VAriance

$$\left\{ \begin{array}{ll} \mathcal{H}_0: & \mu_1=\mu_2=\mu_3 \quad \text{Groupes confondus} \\ \mathcal{H}_1: & \exists \text{ au moins } (i,j)/\mu_i \neq \mu_j \quad \text{Groupes séparés} \end{array} \right.$$

Sous SPSS

Wilks' Lambda					
Test of Function (s)	Wilks' Lambda	Chi-square	df	Sig.	
1 through 2	,047	215,101	4	,000	
2	,250	97,622	1	,000	

B - Utilisation de plusieurs critères

• $R^2 \rightarrow$ autant que de scores discriminants

Proche de 1?

Exemple

Pourtant le score discrimine bien dans les 2 cas

 \rightarrow Pas forcément de seuil sur le R^2

Eigenvalues

Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation
1	4,293 ^a	58,9	58,9	,901
2	2,994 ^a	41,1	100,0	,866

 $0.901^2 = 0.811 = R^2$

 $0.866^2 = 0.749 = R^2$

B - Utilisation de plusieurs critères

Représentations graphiques

Rep. des individus sur l'espace des scores discriminants

B - Utilisation de plusieurs critères

Classements automatiques

B - Utilisation de plusieurs critères

Classements automatiques

B - Utilisation de plusieurs critères

Classements automatiques

B - Utilisation de plusieurs critères

Classements automatiques

B - Utilisation de plusieurs critères

Classements automatiques

Matrice de confusion

Classification Results^a

			Predicted Group Membership			
		Species_recod	1,00	2,00	3,00	Total
Original	Count	1,00	20	1	0	21
		2,00	0	31	0	31
		3,00	0	0	22	22
	%	1,00	95,2	4,8	,0	100,0
		2,00	,0	100,0	,0	100,0
l		3,00	.0	.0	100,0	100,0

a. 98,6% of original grouped cases correctly classified.

En pratique : \geq 80% d'observations bien classées

Valeurs élevées de $S_2 o \mathsf{Groupe} \ 1$

Idée : corrélation entre les X_j et chacun des scores

Règle

$$|\rho(X_j, S_k)| > 0.5$$

 $\mathsf{Rq}:\mathsf{si}\;X_j\;\mathsf{est}\;\mathsf{binaire}\;(0/1):\mathsf{ANOVA}\equiv
ho(X_j,\mathcal{S}_k)$

Idée : corrélation entre les X_j et chacun des scores

Correlations

	Discriminant Scores from Function 1 for Analysis	Discriminant Scores from Function 2 for Analysis 1
Width	,821	,571
	,000	,000
	74	74
Angle	-,759	,651
	,000	,000
	74	74

Idée : corrélation entre les X_i et chacun des scores

3 solutions:

- Utiliser les classes prédites par le logiciel (Méthode des médiatrices)
 - Problème : "boîte noire"
 - Pas de règle explicite
 - Méthode graphique

3 solutions:

- Utiliser les classes prédites par le logiciel (Méthode des médiatrices)
 - Problème : "boîte noire"
 - Pas de règle explicite
- Méthode graphique

3 solutions:

- Utiliser les classes prédites par le logiciel (Méthode des médiatrices)
 - Problème : "boîte noire"
 - Pas de règle explicite
 - Méthode graphique

3 solutions:

- Utiliser les classes prédites par le logiciel (Méthode des médiatrices)
 - Problème : "boîte noire"
 - Pas de règle explicite
- Méthode graphique

Règle:

SI $S_2 > \alpha$ ALORS Groupe 1 SINON SI $S_1 > \beta$ ALORS Groupe 3 SINON Groupe 2 FSI

Seuils optimaux?

3 solutions:

3 Courbe Roc pour déterminer α et β

Pour S_2 :

- Créer une variable binaire $(G_1 \text{ vs } G_2, G_3)$
- ② Courbe ROC sur S_2 avec nouvelle variable
 - ightarrow lpha optimal pour \mathcal{S}_2

Pour S_1 :

- Sous-échantillon : uniquement G₂ et G₃
- Courbe ROC sur S₁ avec species
 - ightarrow eta optimal pour S_1

Classement d'un nouvel individu : angle=14; width=144

Calcul de S_1 et S_2 pour l'individu :

Canonical Discriminant Function Coefficients

	Function		
	1	2	
Width	,147	,149	
Angle	-,625	,780	
(Constant)	-11,752	-30,258	

Unstandardized coefficients

$$S_1 = 0.147 \times \underbrace{\text{width}}_{=144} - 0.625 \times \underbrace{\text{angle}}_{=14} - 11.752 = 0.666$$

$$S_2 = 0.149 \times \underbrace{\text{width}}_{=144} + 0.780 \times \underbrace{\text{angle}}_{-14} - 30.258 = 2.118$$

Classement d'un nouvel individu : angle=14; width=144, $S_1=0.666$, $S_2=2.118$

Posons $\alpha = 1$ et $\beta = 0$

Règle:

```
SI S_2 > \alpha ALORS Groupe 1
SINON
SI S_1 > \beta ALORS Groupe 3
SINON Groupe 2
FSI
```

lci $S_2 > \alpha$ donc le nouvel individu est affecté au groupe 1