PSY9511: Seminar 1

Introduction to machine learning

Esten H. Leonardsen 07.11.24

Outline

Plan for the day

- · Round of introductions
- Course information
- · Introduction to machine learning
- Presentation of assignment 1

Introduction to machine learning

Classification Regression

Regression

Classification

y cat cat dog cat dog

Regression

У	ŷ
18	15.3
15	16.1
18	17.2
16	16.8
17	19.5

Classification

Regression

У	ŷ
18	15.3
15	16.1
18	17.2
16	16.8
17	19.5

Mean squared error (MSE):

$$\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$

Regression

У	ŷ	
18	15.3	
15	16.1	
18	17.2	
16	16.8	
17	19.5	

$$(18 - 15.3)^2 = 7.29$$

 $(15 - 16.1)^2 = 1.21$
 $(18 - 17.2)^2 = 0.64$
 $(16 - 16.4)^2 = 0.16$

 $(17 - 19.5)^2 = 6.25$

Mean squared error (MSE):

$$\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$

Classification

3.11

Regression

3.11	

Mean squared error (MSF):

$$\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$$

Classification

У
cat
cat
dog
cat
dog

Regression

Classification

ŷ
cat
dog
dog
cat
cat

Mean squared error (MSE):

$$\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Classification

У	ŷ
cat	cat
cat	dog
dog	dog
cat	cat
dog	cat

$$\frac{\text{Accuracy:}}{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(y = \hat{y})}$$

Regression

Mean squared error (MSE):

$$\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$

Classification

У	ŷ	
cat	cat	$cat=cat \implies 1$
cat	dog	$cat \neq dog \implies 0$ $dog = dog \implies 1$
dog	dog	$dog=dog \Longrightarrow 1$
cat	cat	$cat=cat \implies 1$
dog	cat	$dog \neq cat \implies 0$
		0.66

Accuracy:

$$\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}(y = \hat{y})$$

http://localhost:8888/tree

