

MC

- Model checking is a search based procedure applicable to only finite state systems.
- Extension to infinite state systems (arising out of infinite data domains) handled by abstraction of memory store.
- Requires human ingenuity in choice of the abstract predicates.

4

Abstract counter-example

- The following can be a counter-example trace returned by model checking
 - <L0,p>, <L1, p>, <L2, not p>
- But this does not correspond to any execution of the concrete program.
- This is a spurious counter-example
- Need to input new predicates for abstraction.

IISc Summer Course 2007 by Abhik Roychoudhury

Abstraction refinement

- Generate the new predicates by analyzing the counter-example trace.
- A more informative view of the program's memory store is thus obtained.
- But how to establish a correspondence between the abstract counter-example and the concrete program ?

More examples of spuriousness

w = 0;

- if (v == 0) { w++};
- if $(u == 0) \{ w++ \};$
- if $(u == 0 \&\& v == 0 \&\& w < 2)\{error\}$
- Counter-example
 - A trace which executes the "error"

IISc Summer Course 2007 by Abhik Roychoudhury

So, what do we know?

- We abstracted (the data states of) M w.r.t. p1,...,pk to get M1
 - For every trace c1,c2,...,cn (statement sequences) in M, there is a trace c1,c2...,cn in M1 (not vice-versa)
- Model check M1 |= φ to
 - \bullet Case 1: Success. We have proved M |= ϕ
 - Case 2: We get a counter-example trace σ1
 - Need to check whether σ1 is "spurious"

IISc Summer Course 2007 by Abhik Roychoudhury

What is "spurious"?

- Each trace in M (concrete system) has a corresponding trace with same statement sequence in M1 (abstract system).
- A trace in M1 may not have a corresponding trace with same statement sequence in M.
- Does the counter-example trace σ1 in M1 have a corresponding trace σ with same statement sequence in M?
 - \blacksquare If not , then $\sigma 1$ is a spurious counter-example

What if spurious?

- So, we discussed how to check whether an obtained counter-example is spurious.
- If $\sigma 1$ is not spurious, then we have proved that M (concrete sys.) does not satisfy ϕ
- If $\sigma 1$ is spurious, we need to refine the abstraction of ${}^{\text{M}}$
 - Original abs: Predicates p_1,...,p_k
 - New abs: Preds p_1,...,p_k, p_(k+1),...,p_n

IISc Summer Course 2007 by Abhik Roychoudhury

But how do we ...

- ... compute the new preds p_(k+1),...,p_n ?
 - No satisfactory answer, active topic of research in the verification community.
 - \blacksquare All existing approaches are based on analysis of the spurious counter-example trace $\sigma 1$
 - Concretize the abstract states of $\sigma 1$ to get constraints on concrete data states.
 - But several ways to glean the new predicates from these constraints.
 - We will just look at some possible heuristics.

IISc Summer Course 2007 by Abhik Roychoudhury

New predicates

- Based on the spurious trace, we choose another predicate q = (x = 0)
 - No clear answer why, different research papers give different heuristic 'justifications'.
- Again abstract the concrete program w.r.t. the predicates
 - p = (x = 1)
 - q = (x = 0)

IISc Summer Course 2007 by Abhik Roychoudhury

Final result

- Model checking the new abstract transition system w.r.t.
 - AG(pc == $L2 \Rightarrow x == 1$)
- ... yields no counter-example trace.
- Constitutes a proof of
- M |= AG(pc == L2 ⇒ x == 1)
- Where M is the transition system corresponding to original program.

Counter-example trace of Ex.

- assume($x \neq 0$)
- assume(true)
- x := x + 1
- assume(x = 1)
- assume represents a conditional
 - Terminates exec if condition false

IISc Summer Course 2007 by Abhik Roychoudhury

Symbolic constants

- A variable must always be defined before it is used.
- **y** = 6
- assume (x ≠ 0)
- x := x + 1
- assume(x = 1)
- Allows us to maintain variable valuations in terms of symbolic constants. Initializations taken care of.

IISc Summer Course 2007 by Abhik Roychoudhury

Pgm, Valuations, Constraints

- $\mathbf{x} = \mathbf{\theta}$
- **■** (x, θ)
- assume $(x \neq 0)$ (x, θ)
- θ≠ 0
- x:=x+1
- $(x, \theta + 1)$
- assume(x = 1) $(x, \theta + 1)$
- $\theta \neq 0 \land \theta + 1 = 1$

Checking of infeasibility is the easy step. But how to find the new predicates ?

IISc Summer Course 2007 by Abhik Roychoudhury

A sufficient set of predicates

- From the valuations we get
 - $\mathbf{x} = \mathbf{0}$
 - $x = \theta + 1$
- From the constraints we get
 - $\theta \neq 0$ and its negation
- This produces
 - x = 0 (and its negation)
 - x = 1 (and its negation)

IISc Summer Course 2007 by Abhik Roychoudhury

Sufficient set of predicates

- All. Preds. Obtained from
 - All variable valuations (in terms of symbolic constants), current or otherwise.
 - All constraints (also in terms of symb. constants)
- Sufficient to explain infeasibility of counter-example.
- Any preds. among this sufficient set which are not included in the current abstraction can be added as refinement.
- But more succinct explanations can exist, leading to parsimonious refinements ...

IISc Summer Course 2007 by Abhik Roychoudhury

Possible explanations

- assume(b> 0)
- c := 2*b
- a := b
- a := a 1
- assume (a < b)
- assume (a = c)
- Expl 1: $b>0 \land c = 2b \land a < b \land a = c$
- Expl 2: Expl 1 \land a = b \land a = b 1

Constructing Explanations

- Start from the end (or beginning of the trace)
 - Strongest post condition (SP), [next slide]
 - Or Weakest Pre condition (WP) [discussed]
- Perform exact reasoning at each step until you hit unsatisfiability
- Greedily remove one constraint at a time from the unsatisfiable constraint store until it becomes satisfiable
 - Is that sufficient ?

IISc Summer Course 2007 by Abhik Roychoudhury

SP along a trace

- assume(b> 0)
 b > 0
 c := 2*b
 a := b
 a := a 1
 assume (a < b)
 assume (a < c)
 b > 0, c = 2b, a = b
 b > 0, c = 2b, a = b-1
 b > 0, c = 2b, a = b-1, a < b
 b > 0, c = 2b, a = b-1, a < b
- Conjunction shown with comma.

IISc Summer Course 2007 by Abhik Roychoudhury

Choosing predicates

- b>0, c = 2b, a = b-1, a<b, a = c
- Removing a = b-1 keeps constraint unsatisfiable
 Not a good choice?
- Is it sufficient to choose predicates in this way --predicates contributing in "unsatisfiable core".
- Exercise: Try to work out the backwards traversal and investigate choices of predicates.

IISc Summer Course 2007 by Abhik Roychoudhury

Choosing predicates

- a := b; a = b• a := a - 1; a = b - 1• $assume(a \ge b)$ $a = b-1, a \ge b$
- If we choose a = b-1, a ≥ b as new refinement it may not suffice.
- The effect of a := b can only be accurately captured by the pred (a = b)
- So, we need all predicates whose transformation leads to one of the predicates causing unsatisfiability.

IISc Summer Course 2007 by Abhik Roychoudhury

Exercise

- Try verifying absence of error in
 - a := b; a--; if (a >b) { error}
- Using the predicates
 - $\{a \ge b\}$
 - $\{a \ge b, a = b 1\}$
- Feel free to use forwards or backwards counter-example analysis ...

IISc Summer Course 2007 by Abhik Roychoudhury

Additional: Dealing with pointers

Use pointer analysis

- Can p ever alias to q
 - Static analysis, flow insensitive.
- If yes, then need to consider both the aliased and non-aliased cases
 - Corresponding to truth of p=q which is also maintained as a predicate.
 - Infeasible constraint store has disjunction
 - (p =q ∧ ... ∧ ...) ∨ (¬(p = q) ∧ ... ∧ ...)
- Exercise: What are the predicates which will rule out all counterexamples of the program shown in previous slide?

IISc Summer Course 2007 by Abhik Roychoudhury

Optional Reading

- Counter-example guided Abstraction refinement (additional reading)
 - by Edmund Clarke et. Al, CAV 2000.
 - http://www-2.cs.cmu.edu/~emc/papers.htm
 - One of the first papers to develop abstraction refinement. Try summarizing it if you are really interested in this topic.
- Regular reading appears in Lesson Plan (see Course Web-page).

IISc Summer Course 2007 by Abhik Roychoudhury

Class Exercise - (1)

- Consider the program
- x = 0; x = x + 1; x = x 1;
- if (x != 0){ error }
- Suppose we want to prove that the ``error" location is never reached, that is, any trace reaching ``error" is a counter-example. Show that the predicate abstraction x == 0 is insufficient to prove this property. You need to construct the abstract transition system for this purpose.

IISc Summer Course 2007 by Abhik Roychoudhury

Class Exercise— (2)

- Refine your abstraction { x == 0 }
- by traversing the counter-example obtained.
- Show and explain all steps. Your refined abstraction should be sufficient to prove the unreachability of the ``error" location – i.e. all spurious counter-examples should have been explained by the refined predicate abstraction.