MATH 5301 Elementary Analysis - Final Exam

Jonas Wagner

2021, December 7th

Problem 1

For each $n \in \mathbb{N}$ define the set

$$Q_n := \left\{ \frac{1}{pq} : 0 n; \ \gcd(p, q) = 1 \right\}$$

Let f(n) be the sum of all elements of Q_n . Find $\inf_n f(n)$.

Definition 1. Let the set Q_n be defined for all $n \in \mathbb{N}$ as

$$Q_n := \left\{ \frac{1}{pq} : 0 n; \ \gcd(p, q) = 1 \right\}$$

Definition 2. Let f(n) be the sum of all elements within Q_n .

Definition 3. A lower bound of subset A in the partially ordered set (S, \leq) is defined by

$$a \in S : a < x \forall_{x \in A}$$

A lower bound of a is called an <u>infimum</u> of set $A \in (S, \leq)$, denoted as $a = \inf A$, is the greatest lower bound. i.e.

$$\forall_{y \in S: a < x \forall_{x \in A}} y \leq a$$

Definition 4. The Greatest Common Divisor of two nonzero integers $a, b \in \mathbb{Z} \neq 0$, gcd(a, b), is defined as the largest positive integer, $d \in \mathbb{Z}_+$, so that d is a divisor of both a and b. i.e:

$$\gcd(a,b) := d \in \mathbb{Z}_+ \ : \ (a \stackrel{.}{\cdot} d) \wedge (b \stackrel{.}{\cdot} d) \wedge (\forall \qquad d \geq x)$$

Additionally, a and b are considered coprime if gcd(a, b) = 1.

Assumption 1. For this problem it is assumed that gcd is only defined within \mathbb{Z}_+ , although I believe this can also be expanded to other less-strict ordered sets in the same way.

Assumption 2. It is assumed that the sum of all elements in the empty set is 0, i.e. $\sum_{i} \emptyset = 0$.

Theorem 1.

$$\inf_{n \in \mathbb{N}} f(n) = 0$$

Proof. Proof by induction.

For $n=1, \ \neg \exists_{p,q\in\mathbb{Z}\ :\ 0< p< q\leq 1}$ meaning that $Q_1=\emptyset$. This implies that $f(1)=\sum_i\emptyset=0$ and that $f(1)\geq 0$.

For n=2,

$$(p,q) \in \{(p,q) \ : \ 0 n; \ \gcd(p,q) = 1\} = \{(1,2)\}$$

The set Q_2 is then defined as

$$Q_2 = \left\{ \frac{1}{pq} : (p,q) \in \{(1,2)\} \right\} = \left\{ \frac{1}{(1)(2)} \right\} = \left\{ \frac{1}{2} \right\}$$

Therefore,

$$f(2) = \sum_{i} \left\{ \frac{1}{2} \right\} = \frac{1}{2}$$

It is clear that $f(2) = \frac{1}{2} \ge 0$.

For n=3,

$$(p,q) \in \{(p,q) : 0 n; \ \gcd(p,q) = 1\} = \{(1,3),(2,3)\}$$

The set Q_3 is then defined as

$$Q_3 = \left\{ \frac{1}{pq} : (p,q) \in \{(1,3),(2,3)\} \right\} = \left\{ \frac{1}{(1)(3)}, \frac{1}{(2)(3)} \right\} = \left\{ \frac{1}{3}, \frac{1}{6} \right\}$$

Therefore,

$$f(3) = \sum_{i} \left\{ \frac{1}{3}, \frac{1}{6} \right\} = \frac{1}{3} + \frac{1}{6} = \frac{2+1}{6} = \frac{3}{6} = \frac{1}{2}$$

It is clear that $f(3) = \frac{1}{2} \ge 0$. For n=4,

$$(p,q) \in \{(p,q) : 0 n; \ \gcd(p,q) = 1\} = \{(1,4), (2,3), (3,4)\}$$

The set Q_4 is then defined as

$$Q_4 = \left\{ \frac{1}{pq} : (p,q) \in \{(2,3),(3,4)\} \right\} = \left\{ \frac{1}{(1)(4)}, \frac{1}{(2)(3)}, \frac{1}{(3)(4)} \right\} = \left\{ \frac{1}{4}, \frac{1}{6}, \frac{1}{12} \right\}$$

Therefore,

$$f(4) = \sum_{i} \left\{ \frac{1}{6}, \frac{1}{12} \right\} = \frac{1}{4} + \frac{1}{6} + \frac{1}{12} = \frac{3+2+1}{12} = \frac{6}{12} = \frac{1}{2}$$

It is clear that $f(4) = \frac{1}{2} \ge 0$. For an arbitrary $n \in \mathbb{N}$,

$$(p,q) \in \{(p,q) : 0 n; \ \gcd(p,q) = 1\} = \{(1,n), (2,n-\star), (3,n-\star), \dots, (n-2,n-1), (n-1,n)\}$$

$$Q_n = \left\{ \frac{1}{pq} : (p,q) \in \{(1,n), (2,n-\star), \dots, (n-2,n-1), (n-1,n)\} \right\}$$

$$= \left\{ \frac{1}{(1)(n)}, \frac{1}{(2)(n-1)}, \dots, \frac{1}{(n-2)(n-1)}, \frac{1}{(n-1)(n)} \right\}$$

$$= \left\{ \frac{1}{n}, \frac{1}{2(n-\star)}, \dots, \frac{1}{(n-2)(n-1)}, \frac{1}{n(n-1)} \right\}$$

where \star is dependent for on divisibility properties between n and 2, 3, 4, etc. It is important to note that each increase of n will cause every term to decrease in magnitude individually but additional elements are added that result to adding up to $\frac{1}{2}$ again.

However, eventually this will reach a point where a lack of prime numbers in a region makes it so that the only coprime numbers satisfying the conditions are adjacent to one another, which leads to the following:

$$f(n) = \sum_{i} Q_{n} = \frac{1}{n} + \dots + \frac{1}{\left(\frac{n}{2}\right)\left(\frac{n}{2} + 1\right)} + \dots + \frac{1}{n(n-1)}$$

$$f(n+1) = \left(\sum_{i} Q_{n}\right) \left(\frac{n!}{(n+1)!}\right) + \frac{1}{(n+1)}$$

$$= \frac{1}{n} \frac{n!}{(n+1)!} + \dots + \frac{1}{\left(\frac{n}{2}\right)\left(\frac{n}{2} + 1\right)} \frac{n!}{(n+1)!} + \dots + \frac{1}{n(n-1)} \frac{n!}{(n+1)!} + \frac{1}{n+1}$$

$$= \frac{n!}{n(n+1)n!} + \dots + \frac{n!}{\frac{n}{2}\left(\frac{n}{2} - 1\right)(n+1)n!} + \dots + \frac{n!}{n(n-1)(n+1)n!} + \frac{1}{n+1}$$

$$= \sum_{i} Q_{n+1} = \frac{1}{n+1} + \dots + \frac{1}{\left(\frac{n+1}{2}\right)\left(\frac{n+1}{2} + 1\right)} + \dots + \frac{1}{n(n+1)}$$

essentially every (p,q) becomes (q,q+1) and the new $\frac{1}{(n+1)}$ is added.

Anyway, the point is that $\forall_{n \in \mathbb{N} : n > 1} f(n) \geq \frac{1}{2}$; however, because f(n) is included, $\frac{1}{2} \leq f(n) \forall_{n \in \mathbb{N}}$ since $Q_1 = \emptyset \implies f(1) = 0$.

Therefore,

$$\inf_{n} f(n) = 0$$

Let (X, d) be a metric space. Let $B_r(a)$ denote the open ball of radius r centered at a. i.e. Can it happen that $B_{r_1}(a) \subset B_{r_2}(a)$ but $r_1 > r_2$?

Definition 5. Within the metric space (X,d), the open ball of radius $r \in X$ centered at $a \in X$, denoted as $B_r(a)$, is defined as:

$$B_r(a) := \{ x \in X : d(a, x) < r \}$$

Assumption 3. First it will be assumed that (X,d) is a normed vector space. This restricts the metric and metric space into a normed space. This can also be denoted as $(X, \|\cdot\|)$ to distinguish between them. It is also assumed that X is complete.

Theorem 2. For $r_1 > r_2$ then it is not possible for $B_{r_1}(a) \subset B_{r_2}(b)$ within $(X, \|\cdot\|)$:

Proof. Proof by contradiction.

Let

$$B_{r_1}(a), B_{r_2}(b) \subset X$$

with $0 < r_2 < r_1$ and $a \in B_{r_2}(b)$.

To minimize the amount of the set existing outside of the set, we need to set a = b. Next, let c be a point within the punctured open ball $B_{r_2}(b)$. i.e.

$$c \in B_{r_2}(b) \setminus \{b\}$$

c can then be used to construct a point that is contained in $B_{r_2}(b)$ but not in $B_{r_1}(a)$:

$$p + \frac{r_1 + r_2}{2} \frac{ac}{\|ac\|} \in B_{r_1}(a) \backslash B_{r_2}(b)$$

Meaning that there is no possible way for an open ball of greater radius (within a normed metric space).

Assumption 4. The previous assumption, Assumption 3, is now relax the metric so that d is not restricted to be a norm (i.e. may not be linear).

Theorem 3. It is possible for $B_{r_1}(a) \subset B_{r_2}(b)$ within (X, d) when $r_1 > r_2$:

Proof. Proof by example:

Let metric space (X, d) be defined by

$$X := 0 \cup [5, \infty)$$

$$d(x,y) := |x - y|$$

For $r_1 = 4$, $r_2 = 3$,

Let $B_4(0)$ be defined as

$$B_4(0) := \{4x \in X : d(0,x) < 4\} = \{0\} \cup [2,4)$$

Let $B_3(2)$ be defined as

$$B_3(2) := \{x \in X : d(2,x) < 3\} = \{0\} \cup [2,5)$$

Clearly, $B_3(2) \subset B_4(0)$. Since $r_1 = 4 > r_2 = 3$, this exists as an example that satisfies the conditions.

Let M be the set of all bounded sequences

$$M = \{ \{a_j\}_{j=1}^{\infty} : |a_j| < \infty \}$$

Define $\rho(\lbrace a_n \rbrace, \lbrace b_n \rbrace) = \max_{n \in \mathbb{N}} |a_n - b_n|$

Definition 6. Function $d: X \times X \to \mathbb{R}$ is considered a metric if it satisfies all of the following:

a. Non-negativity:

$$d(a,b) \ge 0$$

b. Symmetry:

$$d(a,b) = d(b,a)$$

c. Triangle Inequality:

$$d(a,c) \le d(a,b) + d(b,c)$$

a) Show that (M, ρ) is a metric space.

Theorem 4. Let M be defined as the set of all bounded sequences:

$$M = \left\{ \{a_j\}_{j=1}^{\infty} : |a_j| < \infty \right\}$$

Let the metric ρ be defined on M such that

$$\rho(\{a_n\}, \{b_n\}) = \max_{n \in \mathbb{N}} |a_n - b_n|$$

The metric space (M, ρ) is in fact a metric space.

Proof. From Definition 6, ρ is a metric if $\forall_{\{a_n\},\{b_n\},\{c_n\}} \in M$ these three conditions are all satisfied: (i) non-negativity, (ii) Symmetry, and (iii) Triangle Inequality.

a. Non-negativity:

$$d(a,b) \ge 0$$
$$\rho(\{a_n\},\{b_n\}) = \max_{n \in \mathbb{N}} |a_n - b_n| \ge 0$$

b. Symmetry:

$$d(a,b) = d(b,a)$$

$$\rho(\{a_n\}, \{b_n\}) = \max_{n \in \mathbb{N}} |a_n - b_n| = \max_{n \in \mathbb{N}} |b_n - a_n| = \rho(\{a_n\}, \{b_n\})$$

c. Triangle Inequality:

$$\begin{aligned} d(a,c) & \leq d(a,b) + d(b,c) \\ \rho(\{a_n\},\{c_n\}) & \leq \rho(\{a_n\},\{b_n\}) + \rho(\{b_n\},\{c_n\}) \\ \max_{n \in \mathbb{N}} |a_n - c_n| & \leq \max n \in \mathbb{N} |a_n - b_n| + \max_{n \in \mathbb{N}} |b_n - c_n| \end{aligned}$$

b) Show that M does not contain a dense countable subset.

Definition 7. The Closure, \overline{A} , of $A \subset X$ is defined as

$$\overline{A} = A \cup \left\{ \lim_{n \to \infty} a_n : a_n \in A \forall_{n \in \mathbb{N}} \right\}$$

Definition 8. A set $A \subset X$ is considered dense in X if $\overline{A} = X$.

Theorem 5. For the power set, $\mathcal{P}(A)$, defined as the collections of all sets constructed from the elements of A, then the cardinality of $\mathcal{P}(A)$ will always be strictly greater then that of A. i.e.

$$|2^A| > |A|$$

• This is also applicable to infinite sets with whether it is countable or not. i.e

$$\left|2^{\mathbb{N}}\right| = \aleph_1 > |\mathbb{N}| = \aleph_0$$

• The theorem itself is that any mapping from A to $\mathcal{P}(A)$ is not surjective which is then proven false. It then follows that $f: A \xrightarrow{\prime} \mathcal{P}(A)$ is injective, which is equivalent to saying that $|A| < |\mathcal{P}(A)|$.

Theorem 6. M does not contain any dense countable subsets.

Proof. Proof by contradiction inspired by Cantor's Theorem (5). Let $A_N \subset M$ be defined as

$$A_N := \{ \{a_j\}_{j=1}^{\infty} : |a_j| < N \}$$

Similarly to Cantor's theorem, even when restricting a_j from a finely sized set, the only mapping that exists from a countable set into A_n are strictly injective.

Next, taking $A = \lim_{N \to \infty} A_N$, we will prove that in order for A to be dense, A would no longer be countable. From Definition 7 and Definition 8, it is known that in order for A to be dense within M, $\overline{A} = M$. Since M itself is an infinite set, even if for sequences of a finite set of numbers, A would become infinite and ultimately uncountable with $|A| \leq |M|$.

Does there exist a metric space, containing a sequence of nested bounded closed sets $F_1 \supset F_2 \supset \cdots \supset F_n \supset$ · · · such that

$$\bigcap_{n\in\mathbb{N}}F_n=\emptyset$$

Hint: If d(x,y) is a usual Euclidean metric on \mathbb{R} , one can shown that $\frac{d(x,y)}{1+d(x,y)}$ is also a metric. Such metric is often called a bounded metric...

Definition 9. The set A in metric space (X,d) is considered open if

$$\forall_{x \in A} \exists_{\epsilon > 0} : \forall_{y \in X} d(x, y) < \epsilon$$

Definition 10. The set A in metric space (X,d) is considered closed if the set A^c is open.

Definition 11. The set A in metric space (X, d) is called bounded if

$$\forall_{x \in A} \exists_{R > 0} : \forall_{y \in A} d(x, y) < R$$

Theorem 7. There does exist a metric space (X,d) containing the sequence of nested bounded closed sets $F_1 \supset F_2 \supset \cdots \supset F_n \supset \cdots$ such that

$$\bigcap_{n\in\mathbb{N}}F_n=\emptyset$$

Proof. Let the metric space (X, d) be defined with

$$X := \mathbb{R} \setminus \{0\}$$

and endowed with the Euclidean metric $d: \mathbb{R} \times \mathbb{R}$ defined by:

$$d(x,y) := \sqrt{(x-y)^2}$$

Let $F_1 \subset X$ be defined for:

$$F_1 := B_{r_1}(0) = \{ x \in X : d(0, x) \le r_1 \}$$

where r_1 is initialized arbitrarily large.

For $n=2,3,\ldots, F_n\supset\cdots\supset F_2\subset F_1\subset X$ is defined by:

$$F_n := B_{r_n}(0) = \{x \in X : d(0, x) \le r_n\}$$

where $r_{n+1} = \frac{r_n}{1+r_n}$. Finally, the solution is very obvious that the origin is the only limit point of the intersection.

$$\lim_{N \to \infty} \cap_{n < N} F_n = \{0\}$$

However, within this particular metric space, where $X = \mathbb{R} \setminus \{0\}$, this limit is not within the sets themselves. Therefore,

$$\bigcap_{n\in\mathbb{N}} F_n = 0$$

Show that there exists a unique continuous function, f(x) on the interval [0, 1], satisfying the equation

$$f(x) = \int_0^1 \sin(x^2 + y^2) f(y) dy$$

Theorem 8. There exists a unique continuous function $f:[0,1]\to\mathbb{R}$ that satisfies the following equation

$$f(x) = \int_0^1 \sin(x^2 + y^2) f(y) dy \tag{1}$$

Proof. I'll prove that the is only a single solution by essentially treating the integral statement as a set of systems of equations (but with an operator) and then demonstrate that the solution function is unique as a contradiction would occur otherwise.

Let T be a functional mapping of the f(y) to f(x), $T: \mathbb{C}([0,1]) \to \mathbb{C}([0,1])$, defined as:

$$T(f(y)) := \int_0^1 \sin(x^2 + y^2) f(y) dy$$

Now we take T(f(x)) = f(x) and make the claim f(x) is not unique. This would mean that T(g(x)) = g(x) is another solution. If there are multiple solutions, then the following would be true:

$$T(f(x)) - f(x) = T(g(x)) - g(x)$$

$$\int_0^1 \sin(x^2 + y^2) f(y) \, dy - f(x) = \int_0^1 \sin(x^2 + y^2) g(y) \, dy - g(x)$$

$$f(x) - g(x) = \int_0^1 \sin(x^2 + y^2) f(y) \, dy - \int_0^1 \sin(x^2 + y^2) g(y) \, dy$$

$$f(x) - g(x) = \int_0^1 \sin(x^2 + y^2) (f(y) - g(y)) \, dy$$

Since $|\sin x| \le 1 \implies \int_0^1 \sin(x) \, \mathrm{d}x < 1$,

$$<\int_0^1 (f(y) - g(y)) \,\mathrm{d}y \le$$

Since we can look at the integral over the region as less then the maximum value times the width:

$$\leq (1-0) \sup_{y \in [0,1]} (f(y) - g(y))$$
$$f(x) - g(x) < \sup_{y \in [0,1]} (f(y) - g(y))$$

Which is not possible, leading to the claim that two solutions exist to be false.

Let V be a complete metric space without isolated points. Show that V is uncountable $(|V| > |\mathbb{N}|)$.

Definition 12. A metric space (X, d) is considered Complete if every Cauchy sequence of points in X has a limit within X.

• A sequence x_1, x_2, \ldots in metric space (X, d) is considered Cauchy if

$$\forall_{r>0} \exists_N : \forall_{m,n>N} d(x_m, x_n) < r$$

• x is the <u>limit</u> of sequence (x_n) , $\lim_{n\to\infty} x_n$, if

$$\forall_{\epsilon>0}\exists_{N\in\mathbb{N}}: \forall_{n\geq N}|x_n-x|<\epsilon$$

Definition 13. A point within metric space (X,d) is considered an <u>isolated point</u> of set $A \subset X$ in which no other points are within the neighborhood of x. i.e.

$$\exists_{\epsilon>0} : \forall_{y\in X} : d(x,y) < \epsilon y \implies \notin A$$

• A complete set A that contains no isolated points is called dense-in-itself.

Definition 14. A one to one correspondence is also known as a bijective function that maps $\mathbb{N} \to X$.

• A function $f: \mathbb{N} \to A$ is said to be surjective if

$$\exists_{f:\mathbb{N} \xrightarrow{S} A} \iff \exists_{f:\mathbb{N} \to A} : \forall_{x \in \mathbb{N}} \exists f(x) \in A$$

• A function $f: \mathbb{N} \to A$ is said to be injective if

$$\exists_{f:\mathbb{N} \xrightarrow{I} A} \iff \exists_{f:\mathbb{N} \to A} : \forall_{f(x) \in A} \exists_{x \in \mathbb{N}}$$

• A function $f: A \to B$ is said to be bijective if f is both surjective and injective. i.e.

$$\exists_{f:A \xrightarrow{B} B} \iff \exists_{f:A \to B} : \left(\forall x \in A \exists_{f(x) \in B} \right) \land \left(\forall y \in B \exists_{f^{-1}(y) \in A} \right)$$

Definition 15. The <u>Cardinality</u> of set A, denoted as |A|, is the number of unique elements contained within A

- A set A is considered Countable if $|A| \leq |\mathbb{N}|$. This is also said to be true if a surjective function exists mapping \mathbb{N} to A.
- Set A and B within metric space (X,d) are said be of the same cardinality, |A| = |B|, if there exists a bijective mapping between A and B, $f: A \xrightarrow{B} B$.
- If A is an infinite set, then A is Countably Infinite, $|A| = \aleph_0 = |\mathbb{N}|$, if there exists a one to one correspondence from \mathbb{N} to A.
- For A A set A is considered uncountable if it is not countable. i.e. $|A| > |\mathbb{N}|$. This is also said to be true if an injective function exists mapping \mathbb{N} to A, but that no surjective mappings exist.

Theorem 9. A complete metric space, (V, d), that contains no isolated point is uncountable.

Proof. From Definition 12, we have that all cauchy sequences in the complete metric space (X, d) must have a limit in X.

From Definition 15, it is known that within all countable sets there exists a one-to-one correspondence between \mathbb{N} and the set A.

For A to be uncountable, an injective function mapping \mathbb{N} to A, there exists, $f: \mathbb{N} \xrightarrow{1} A$.

From Definition 14, this means that $\forall_{f(x)\in A}\exists_{x\in\mathbb{N}}$, however, since \mathbb{N} is not a complete set, it is not possible for a one-to-one correspondence to exist. Therefore, the set is not countable and therefore uncountable. \square