二项式系数

Binomial Coefficients

定义

二项式系数:

$$\binom{r}{k} = \begin{cases} \frac{r(r-1)\cdots(r-k+1)}{k(k-1)\cdots1} = \frac{r^{\underline{k}}}{k!}, & k \geqslant 0 \\ 0, & k < 0 \end{cases}$$

注意上式中, $k \in \mathbb{Z}$, 而 r 可以是任意实数(甚至复数)。

- 只有当 r,k 取非负整数时, $\binom{r}{k}$ 才有组合解释。但是,鉴于二项式系数还有许多其他用途,所以将范围推广至实数;
- 可以把 $\binom{r}{k}$ 视为 r 的 k 次多项式, 此观点常常有用;
- 下指标 k 是非整数的情形应用很少,故这里不考虑。

常用恒等式

最重要的十个二项式系数恒等式:

$egin{pmatrix} \binom{n}{k} = rac{n!}{k!(n-k)!}, & $ 整数 $n \geqslant k \geqslant 0$	阶乘展开式
$egin{pmatrix} \binom{n}{k} = \binom{n}{n-k}, & ext{ ext{$ ext{$\ext{$k$}}}}}}}}}}}} \ext{$\exit\}$}}}}}}}} \ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\exitt{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\exit\}$}}}}}}} \ext{$\ext{$\ext{$\ext{$\ext{$\exitt{$\ext{$\exit\$}}}}}}}} \ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\ext{$\exitt{$\ext{$\exit\$$}}}}}}}} $\ext{$\ext{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$\exitt{$$	对称恒等式
$egin{pmatrix} {r \choose k} = rac{r}{k} {r-1 \choose k-1}, & ext{ass} \ k eq 0 \end{pmatrix}$	吸收/提取恒等式
$egin{pmatrix} {r \choose k} = {r-1 \choose k} + {r-1 \choose k-1}, & k \in \mathbb{Z} \end{pmatrix}$	加法恒等式
$egin{pmatrix} \binom{r}{k} = (-1)^k \binom{k-r-1}{k}, & k \in \mathbb{Z} \end{pmatrix}$	上指标反转
$egin{pmatrix} {r \choose m} {m \choose k} = {r \choose k} {r-k \choose m-k}, & m,k \in \mathbb{Z} \end{pmatrix}$	三项式版恒等式
$\left \sum_{k} {r \choose k} x^k y^{r-k} = (x+y)^r, $ 整数 $r\geqslant 0$ 或者 $\left rac{x}{y} ight < 1$	二项式定理
$\left \sum_{k \leqslant n} inom{r+k}{k} = inom{r+n+1}{n}, n \in \mathbb{Z} ight.$	平行求和法
$egin{aligned} \sum_{0\leqslant k\leqslant n} {k\choose m} = {n+1\choose m+1}, & ext{ $rac{k}{m}$ $m,n\geqslant 0$} \end{aligned}$	上指标求和法
$igg[\sum_k inom{r}{k}inom{s}{n-k}=inom{r+s}{n}, n\in\mathbb{Z}$	范德蒙德卷积公式

形象化记忆:

- 1						×	T				ı i
	行/列	0	1	2	3	4	5	6	7	8	9
	0	1								- 加法恒等	式
	1	1	1							- 吸收/提耳 - 平行求和	
	2	1	2	1						- 上指标求	
	3	1	3	3	1						
×	4	1	4	6	4	1					
ĺ	5	1	V ₅	10	10	5	1				
ĺ	6	1	6	15	20	15	6	1			
ĺ	7	1	7	21	35	35	21	7	1		
ĺ	8	1	8	28	56	70	56	28	8	1	
	9	1	9	36	84	126	126	84	36	9	1

范德蒙德卷积系列

范德蒙德券积公式:

$$\sum_k inom{r}{k} inom{s}{n-k} = inom{r+s}{n}, \quad n \in \mathbb{Z}$$

范德蒙德卷积公式有如下推论:

$$\begin{split} &\sum_k \binom{l}{m+k} \binom{s}{n+k} = \binom{l+s}{l-m+n} &, 整数 \ l \geqslant 0, \ m,n \in \mathbb{Z} \\ &\sum_k \binom{l}{m+k} \binom{s+k}{n} (-1)^k = (-1)^{l+m} \binom{s-m}{n-l} &, & & & & \\ &\sum_{k \leqslant l} \binom{l-k}{m} \binom{s}{k-n} (-1)^k = (-1)^{l+m} \binom{s-m-1}{l-m-n} &, & & & & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & & & & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & & & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant k \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant l} \binom{l-k}{m} \binom{q+k}{n} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant l} \binom{l-k}{m} \binom{q+k}{m} = \binom{l+q+1}{m+n+1} &, & \\ &\sum_{q \leqslant l} \binom{l-k}{m} \binom{q+k}{m} = \binom{l+q+1}{m} \begin{pmatrix} l+k +q+1 \\ m+n+1 \end{pmatrix} &, & \\ &\sum_{q \leqslant l} \binom{l-k}{m} \binom{q+k}{m} = \binom{l+q+1}{m} \begin{pmatrix} l+k +q+1 \\ m+n+1 \end{pmatrix} &, & \\ &\sum_{q \leqslant l} \binom{l-k}{m} \binom{q+k}{m} = \binom{l+q+1}{m} \begin{pmatrix} l+k +q+1 \\ m+n+1 \end{pmatrix} &, & \\ &\sum_{q \leqslant l} \binom{l+k}{m} \binom{l+k}{m} \binom{l+k}{m} = \binom{l+k}{m} + \binom{l+k}$$

注意对称性+上指标反转可以把上/下指标中的变量给移动到下/上指标去。上述的推论都可以通过不断进行对称和反转得到。

私以为,范德蒙德卷积和它的最后一个推论最为方便记忆,一个是下指标和为定值,一个是上指标和为定值,其他情况都可以对称性+上指标反转进行移动来转化。

注意:对称性只能用在上指标为正整数时!

范德蒙德卷积公式中, 令 r = s = n 可得:

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$$

二项式定理系列

类比二项式定理,有多项式定理:

$$(x_1+x_2+\cdots+x_m)^n = \sum_{n_1+n_2+\cdots+n_m=n} \binom{n}{n_1,n_2,\cdots,n_m} x_1^{n_1} x_2^{n_2} \cdots x_m^{n_m}$$

其中,

$$\binom{n}{n_1, n_2, \cdots, n_m} = \frac{n!}{n_1! n_2! \cdots n_m!}$$

称为多项式系数。

在二项式定理中,为 x,y 赋值可得:

 $\Leftrightarrow x = y = 1$:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

x = 1, y = -1:

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

由上一条性质容易推出:

$$\binom{n}{1} + \binom{n}{3} + \dots = \binom{n}{0} + \binom{n}{2} + \dots = 2^{n-1}$$

x = 1, y = 2:

$$\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n$$

二项式反演

$$g(n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} f(k) \iff f(n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k} g(k)$$

或另一个形式:

$$g(n) = \sum_{k=0}^n \binom{n}{k} f(k) \iff f(n) = \sum_{k=0}^n (-1)^{n+k} \binom{n}{k} g(k)$$

证明: 由于 f 与 g 完全对称,只需要证明必要性。已知 $g(n) = \sum\limits_k \binom{n}{k} (-1)^k f(k)$,那么:

$$\begin{split} \sum_k \binom{n}{k} (-1)^k g(k) &= \sum_k \binom{n}{k} (-1)^k \sum_j \binom{k}{j} (-1)^j f(j) \\ &= \sum_j f(j) \sum_k \binom{n}{k} \binom{k}{j} (-1)^{j+k} \qquad \text{求和号换序} \\ &= \sum_j f(j) \sum_k (-1)^{j+k} \binom{n}{j} \binom{n-j}{k-j} \qquad \equiv \mathrm{GLI} \mathbb{K}$$
 恒等式
$$&= \sum_j f(j) \binom{n}{j} \sum_t (-1)^t \binom{n-j}{t} \qquad \Leftrightarrow t = k-j \\ &= \sum_j f(j) \binom{n}{j} (1-1)^{n-j} \qquad \qquad \Box \mathrm{GLI}$$

$$&= \sum_j f(j) \binom{n}{j} [n-j] \\ &= f(n) \end{split}$$

证毕。