detection_of_IoT_botnet_attacks_N_BaIoT Data Set exploration

Yulia Zamyatina

April, 2021

Contents

Data set description	1
Data set exploration	2
MI stream	2
H and HH streams	7
HH stream	11
$HH_jit\ stream\ \ldots\ldots\ldots\ldots\ldots\ldots$	13
HpHp stream	14
Data set exploration at small time frames	15
Conclusion	17

Data set description

According to UCI Machine Learning Repository ¹, this data set is the collection of real traffic data, gathered from 9 commercial IoT (*Internet of Things*) devices authentically infected by Mirai and BASHLITE (Gafgyt).

The data set has 115 attributes (parameters), below is the description of their headers:

- 1. It has 5 time-frames: L5 (1 min), L3 (10 sec), L1 (1.5 sec), L0.1 (500 ms) and L0.01 (100 ms) 2 .
- 2. The statistics extracted from each traffic stream for each time-frame:
 - weight: the weight of the stream (can be viewed as the number of items observed in recent history)
 - \bullet mean
 - std (variance)
 - radius: the root squared sum of the two streams' variances
 - ullet magnitude: the root squared sum of the two streams' means

 - pcc: an approximated correlation coefficient between two streams
- 3. It has following stream aggregations:

 $^{^{1}} https://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT$

²https://arxiv.org/pdf/1805.03409.pdf, p.3

- MI: ("Source MAC-IP" in N-BaIoT paper) Stats summarizing the recent traffic from this packet's host (IP + MAC)
- H: ("Source IP" in N-BaIoT paper) Stats summarizing the recent traffic from this packet's host (IP)
- HH: ("Channel" in N-BaIoT paper) Stats summarizing the recent traffic going from this packet's host (IP) to the packet's destination host.
- *HH_jit*: ("Channel jitter" in N-BaIoT paper) Stats summarizing the jitter of the traffic going from this packet's host (IP) to the packet's destination host.
- HpHp: ("Socket" in N-BaIoT paper) Stats summarizing the recent traffic going from this packet's host+port (IP) to the packet's destination host+port. Example 192.168.4.2:1242 -> 192.168.4.12:80

Thus, the column ' $MI_dir_L5_weight$ ' in the data set shows the weight of the recent traffic from the packet's host for L5 time-frame.

The data set consists of *.csv files, each representing a benign traffic or an attack. When I gathered *.csv files together in one data set, I added 'botnet' column, where I keep information about the attacks from the different botnets. The dataset contains combo, junk, scan, tcp and udp Gafgyt attacks, and ack, scan, syn, udp and udpplain Mirai attacks. I used 'ga' prefix for Gafgyt attacks and 'ma' for Mirai attacks in the 'botnet' column.

List of attacks can be found in "N-BaIoT: Network-based Detection of IoT Botnet Attacks Using Deep Autoencoders" article.

Data set exploration

Below I explore the data only from *Danmini doorbell* device. Because the whole dataset is huge, I'll use a sample data set that contains about 1000 rows for each botnet just for illustrative purpose. Otherwise, plots will be too dense.

MI stream

The few first columns contain the data for MI stream, and I start my research from weight data for L5 - L0.01 time-frames (MI_dir_L5_weight - MI_dir_L0.01_weight columns):

³https://arxiv.org/pdf/1805.03409.pdf, p.5

The plot shows that using only the *weight* attribute, I can easily separate **benign traffic**, **ga_tcp** and **ga_udp** attacks from the other attacks. Boxplots for **benign traffic**, **ga_tcp** and **ga_udp** shows that their medians are close to 0, they do not have large IQR, they do not have outliers.

This is more clearly seen at the small time-frames, let's see the close up of the weight attribute for L1 and L0.01 time-frames:

The **ga_tcp** and **ga_udp** disguise themselves well as **benign traffic**. Thus, I have to find at least one other attribute, that can help me separate **benign traffic** from **ga_tcp** and **ga_udp** attacks.

Next, I would like to explore mean attribute for the same stream (MI_dir_L5_mean - MI_dir_L0.01_mean):

This plot shows that *mean* attribute can help me separate **benign traffic** from **ga_tcp** and **ga_udp**, as median for **benign traffic** is higher that for these attacks. Let's check this on the small time-frames (L1 and L0.01):

Some outliers for benign traffic have values close to those of **ga_tcp** and **ga_udp**, and these values may interfere with separation of benign traffic from attacks. Thus, using only the weight and mean attributes will not help to clearly separate **benign traffic** from the attacks. Therefore, I still need one more attribute that helps separate benign traffic from the **ga_tcp** and **ga_udp** attacks.

Next, let's explore variance attribute (MI_dir_L5_variance - MI_dir_L0.01_variance) - does it provide

any information for separating benign traffic from the attacks:

This plot shows that *variance* attribute doesn't give new information on how to separate **benign traffic** from attacks, so I can easily remove this attribute if I need to reduce the data set dimensions.

H and HH streams

Let's explore statistics for H and HH streams. Similarly to the previous stream, I will consider weight, mean and variance (or std) attributes:

Just like plots for MI stream, all plots for H and HH streams show that I can use weight and mean attributes to separate **benign traffic** from the attacks, and remove variance or std attributes if I need to reduce the data set dimensions.

HH stream

HH stream also has magnitude, radius, covariace and pcc attributes, let's explore them:

The plot shows that *magnitude* attribute can be used to separate **benign traffic** from the attacks.

The plot shows that *radius* attribute doesn't give any information on how to separate **benign traffic** from the attacks and can be removed if I need to reduce data set dimensions.

Covariance attribute can be used to separate attacks from **benign traffic**, and likely it's the one I've looked for.

The plot shows that pcc attribute can also be used for separation.

HH_jit stream

I will follow the same pattern in exploring attributes for this stream as for the previous ones:

These plots have no new information on how to separate benign traffic from attacks.

HpHp stream

Let's have a quick look at plots for this stream:

This stream also doesn't give me any new information on how to separate benign traffic from attacks.

Data set exploration at small time frames

I've noticed that all the plots have more pronounced data at the small time-frames. I would like to explore which combination of attributes, for example *weight* vs. *mean*, will give me information on how to separate **benign traffic** from attacks on these small time-frames.

Pair weight-mean for L0.01 time-frame shows how easily some attacks can be separated from **benign traffic**, compared with L1 time-frame.

mean-covariance pair better shows how ga_tcp and ga_udp can be separated from benign traffic.

Conclusion

As a result, all explorations show that I can use *weight*, *mean* and *covariance* attributes to make a decision on how to separate **benign traffic** from attacks, and remove other statistic attributes if I need to reduce the data set dimensions.