Algoritmos y Estructuras de Datos II - 1º cuatrimestre 2021 Práctico 3 - Parte 3: Backtracking.

- 1. Modifique el código del algoritmo que resuelve el problema de la moneda utilizando backtracking, de manera que devuelva qué monedas se utilizan, en vez de sólo la cantidad.
- 2. En un extraño país las denominaciones de la moneda son 15, 23 y 29, un turista quiere comprar un recuerdo pero también quiere conservar el mayor número de monedas posibles. Los recuerdos cuestan 68, 74, 75, 83, 88 y 89. Asumiendo que tiene suficientes monedas para comprar cualquiera de ellos, ¿cuál de ellos elegirá? ¿qué monedas utilizará para pagarlo? Justificar claramente y mencionar el método utilizado.

Para cada uno de los siguientes ejercicios:

• Identifique qué parámetros debe tomar la función recursiva que resuelve el problema.

• Describa con palabras qué calcula la misma, en función de sus argumentos.

• Defina la función recursiva en notación matemática y opcionalmente en código.

• Indique cuál es la llamada principal que obtiene el resultado pedido en el ejercicio.

3. Una panadería recibe n pedidos por importes m_1, \ldots, m_n , pero sólo queda en depósito una cantidad H de harina en buen estado. Sabiendo que los pedidos requieren una cantidad h_1, \ldots, h_n de harina (respectivamente), determinar el máximo importe que es posible obtener con la harina disponible.

4. Usted se encuentra en un globo aerostático sobrevolando el océano cuando descubre que empieza a perder altura porque la lona está levemente dañada. Tiene consigo n objetos cuyos pesos p_1, \ldots, p_n y valores v_1, \ldots, v_n conoce. Si se desprende de al menos P kilogramos logrará recuperar altura y llegar a tierra firme, y afortunadamente la suma de los pesos de los objetos supera holgadamente P. ¿Cuál es el menor valor total de los objetos que necesita arrojar para llegar sano y salvo a la costa?

- 5. Sus amigos quedaron encantados con el teléfono satelital, para las próximas vacaciones ofrecen pagarle un alquiler por él. Además del día de partida y de regreso $(p_i \ y \ r_i)$ cada amigo ofrece un monto m_i por día. Determinar el máximo valor alcanzable alquilando el teléfono.
- 6. Un artesano utiliza materia prima de dos tipos: A y B. Dispone de una cantidad MA y MB de cada una de ellas. Tiene a su vez pedidos de fabricar n productos p_1, \ldots, p_n (uno de cada uno). Cada uno de ellos tiene un valor de venta v_1, \ldots, v_n y requiere para su elaboración cantidades a_1, \ldots, a_n de materia prima de tipo A y b_1, \ldots, b_n de materia prima de tipo B. ¿Cuál es el mayor valor alcanzable con las cantidades de materia prima disponible?
- 7. En el problema de la mochila se buscaba el máximo valor alcanzable al seleccionar entre n objetos de valores v_1, \ldots, v_n y pesos w_1, \ldots, w_n , respectivamente, una combinación de ellos que quepa en una mochila de capacidad W. Si se tienen dos mochilas con capacidades W_1 y W_2 , ¿cuál es el valor máximo alcanzable al seleccionar objetos para cargar en ambas mochilas?
- 8. Una fábrica de automóviles tiene dos líneas de ensamblaje y cada línea tiene n estaciones de trabajo, $S_{1,1},\ldots,S_{1,n}$ para la primera y $S_{2,1},\ldots,S_{2,n}$ para la segunda. Dos estaciones $S_{1,i}$ y $S_{2,i}$ (para i = 1, ..., n), hacen el mismo trabajo, pero lo hacen con costos $a_{1,i}$ y $a_{2,i}$ respectivamente, que pueden ser diferentes. Para fabricar un auto debemos pasar por n estaciones de trabajo $S_{i_1,1}, S_{i_2,2}, \ldots, S_{i_n,n}$ no necesariamente todas de la misma línea de montaje $(i_k = 1, 2)$. Si el automóvil está en la estación $S_{i,j}$, transferirlo a la otra línea de montaje (es decir continuar en $S_{i',j+1}$ con $i' \neq i$) cuesta $t_{i,j}$. Encontrar el costo mínimo de fabricar un automóvil usando ambas

- 9. El juego $\begin{tabular}{l} V \begin{tabular}{l} V \begin{tabular}{l} P \begin{tabular}{l} Z \begin{tabular}{l} V \begin{tabular}{$
 - la casilla que está inmediatamente arriba,
 - la casilla que está arriba y a la izquierda (si la ficha no está en la columna extrema izquierda),
 - la casilla que está arriba y a la derecha (si la ficha no está en la columna extrema derecha).

Cada casilla tiene asociado un número entero c_{ij} (i, j = 1, ..., n) que indica el puntaje a asignar cuando la ficha esté en la casilla. El puntaje final se obtiene sumando el puntaje de todas las casillas recorridas por la ficha, incluyendo las de las filas superior e inferior.

Determinar el máximo y el mínimo puntaje que se puede obtener en el juego.

Los dos últimos ejercicios, también pueden resolverse planteando un grafo dirigido y recurriendo al algoritmo de Dijkstra. ¿De qué manera? ¿Serán soluciones más eficientes?