

| Tutorial No.: 02 (Module 2: Introduction to Quantum Physics) |         |  |                     |         |
|--------------------------------------------------------------|---------|--|---------------------|---------|
| Subject                                                      | Physics |  | <b>Subject Code</b> | UBS1002 |

- 1. Calculate de-Broglie wavelength associated with a proton moving with a velocity equal to  $1/20^{th}$  of the velocity of light. Given mass of the proton =  $1.67 \times 10^{-27}$  kg
- 2. Determine the velocity and kinetic energy of a neutron having de-Broglie wavelength 1Å. Given mass of neutron =  $1.67 \times 10^{-27}$  kg and Planck's constant h =  $6.63 \times 10^{-34}$  J sec
- 3. Calculate the de-Broglie wavelength of an  $\alpha$  particle accelerated through a potential difference of 200 volt.
- 4. Calculate the kinetic energy of an electron if its de-Broglie wavelength equals the wavelength of sodium light. Given the wavelength of sodium light  $\lambda = 5893$ Å
- 5. Find energy of an electron moving in one dimension in an infinitely high potential box of width 1 Å.
- 6. An electron is bound in one dimensional potential box which has width  $2.5 \times 10^{-10}$  m. Assuming the height of the box to be infinite, calculate the lowest two permitted energy values of the electron.
- 7. Calculate the energy difference between the ground state and the first excited state for an electron in a 1D rigid box of length 10<sup>-10</sup> m.
- 8. An X-ray of energy 100 keV strikes a target, they are scattered at an angle  $30^{\circ}$ . Find the wavelength of the incident photon.
- 9. Calculate Compton shift if X-rays of wavelength  $1\text{\AA}$  are scattered from a carbon block. The scattered radiation is viewed at  $90^{\circ}$  to the incident beam.
- 10. An X-ray photon is found to have its wavelength doubled on being scattered through  $90^{\circ}$  . Find the wavelength and energy of the incident photon.