Predicting Stock Trends Using

Technical Indicators And Machine Learning

Greed.... is good. Greed is right. Greed works.

. . .

Greed, in all of its forms, greed for life, for money, for love, for knowledge, has marked the upward surge of mankind.

BACKGROUND

Many traders use technical signals to trade based upon their own customization.

Our project is to combine technical indicators with machine learning to create a unified trading framework.

PROBLEM STATEMENT

Our tool could help small investors by

Expand the efficient frontier beyond beyond domestic equities

Enhancing the risk return profile

List of Assets Classes Analyzed

Domestic Equity	Foreign Equity	Bonds	Small Cap	Currency	Commodity
Apple	Baba	LQD	Russell 2000	EURUSD	Gold
Amazon	MSCI Europe	HYG		GPBUSD	Oil
EMR	Nikkei			Bitcoin	
EXC	Samsung				
F	Siemens				
GOOG					
JPM					
KO					
MMM					
PFE					
SPG					
TSLA					

Samples of:

- US equities from different sectors
- Foreign equities and indices
- Bond ETFs
- Small cap index
- Physical & Digital currencies
- Commodities

Collecting Data

Data Sources

Yahoo Finance

Capital IQ

Coingecko

Libraries

Pycoingecko

TA-Lib

Capital Markets are still Markets

A market is where people congregate (physical or digital) and exchange goods for a price.

Buyers think the asset value > the price.

Sellers think the asset value < the price.

Capital Markets are still Markets

If there are more buyers in count and/or in confidence, then asset price \(\)

If there are more sellers in count and/or in confidence, then asset price \$\dprimeq\$

Technical analysis is a quick statistical snapshot of which group is dominating – sellers or buyers.

If the price is moving down, the sellers are confident and the buyers are wavering.

If the price is moving up, the buyers are dominating and the sellers are wavering.

Technical indicators are based upon **past** news and events.

It will not incorporate a new, material development.

Momentum:

In the short term, within a news vacuum, one group will dominate.

The stock price will continue to follow its trajectory.

- Moving Average Convergence Divergence (MACD)
- Average Directional Index (ADX)

Divergence:

technical signal indicates that either

- A subset of the sellers or buyers have changed their mind on the worth of the asset; OR
- New buyers or sellers have entered the market and expressed their opinion with actual transactions.
 - Relative Strength Index (RSI)

Volume:

Put your money where your mouth is.

More volume = conviction.

Volume indicators express more confidence in the asset price's direction.

Force Index (FI) and Elder's Force Index (EFI)

Others:

Overlap

Moving Averages - Simple and Exponential

Volatility

Bollinger Bands (BB)

Utilizing Machine Learning Models

Determine importance of specific technical indicators for each asset class using machine learning models to predict price movement.

Asset classes

(Yahoo Finance, Capital IQ, Coingecko Jan 4, 2010 - Dec 31, 2019)

Logistic regression model

Output

Dashboard

Results:

Random forest model using indicators vs. signals

"AAPL"

AAPL: Confusion Matrix (Indicators Only, No Signals)

	Predicted U	Predicted I
Actual 0	165	178
Actual 1	179	223

Accuracy Score : 0.5208053691275167

Duadistad O Duadistad 1

Classificatio	n Report			
	precision	recall	f1-score	support
-1.0	0.48	0.48	0.48	343
1.0	0.56	0.55	0.56	402
accuracy			0.52	745
macro avg	0.52	0.52	0.52	745
weighted avg	0.52	0.52	0.52	745

AAPL: Confusion Matrix (Signals Only, No Indicators)

	Predicted 0	Predicted 1
Actual 0	149	194
Actual 1	170	232

Accuracy Score : 0.5114093959731544

support
343
5 402
1 745
1 745
1 745

Results:

Logistic regression model using indicators vs. signals

"AAPL"

AAPL: Confusion Matrix (Indicators Only, No Signals)

	Predicted 0	Predicted 1
Actual 0	105	238
Actual 1	119	283

Accuracy Score : 0.5208053691275167

Classification Report

Classificatio	precision	recall	f1-score	support
-1.0	0.47	0.31	0.37	343
1.0	0.54	0.70	0.61	402
accuracy			0.52	745
macro avg	0.51	0.51	0.49	745
weighted avg	0.51	0.52	0.50	745

AAPL: Confusion Matrix (Signals Only, No Indicators)

	Predicted 0	Predicted 1
Actual 0	124	219
Actual 1	153	249

Accuracy Score : 0.5006711409395973

Classific	atio			C1	
		precision	recall	f1-score	support
_	1.0	0.45	0.36	0.40	343
	1.0	0.53	0.62	0.57	402
accur	acy			0.50	745
macro	avg	0.49	0.49	0.49	745
weighted	avg	0.49	0.50	0.49	745

Comparisons - Part I:

Random forest and Logistic regression models using signals

Asset classes

AAPL

BABA

Russell 2000

Comparisons - Part I:

Random forest and Logistic regression models using signals

Asset classes

HYG

BTC

Oil

Comparisons - Part II:

Average accuracy scores

1			Accuracy Average Score			
2		Random	Forest	Logistic Regression		
3		Indicators Only	Signals Only	Indicators Only	Signals Only	
4	Domestic Equity (12)	52.05%	51.24%	51.61%	51.47%	51.59%
5	Foreign Equity (5)	61.39%	60.18%	61.48%	60.72%	60.94%
6	Bonds (2)	54.77%	51.01%	53.69%	54.23%	53.42%
7	Small Cap (1)	52.48%	55.97%	52.89%	54.90%	54.06%
8	Currency (3)	55.29%	50.78%	66.49%	50.01%	55.64%
9	Commodity (2)	58.05%	59.40%	59.23%	58.39%	58.77%
10		55.67%	54.76%	57.56%	54.95%	
1000000						

Comparisons - Part II:

Average accuracy scores

1			Accuracy Average Score				
2		Random	Random Forest		Logistic Regression		
3		Indicators Only	Signals Only	Indicators Only	Signals Only		
4	Domestic Equity (12)	52.05%	51.24%	51.61%	51.47%	51.59%	
5	Foreign Equity (5)	61.39%	60.18%	61.48%	60.72%	60.94%	
6	Bonds (2)	54.77%	51.01%	53.69%	54.23%	53.42%	
7	Small Cap (1)	52.48%	55.97%	52.89%	54.90%	54.06%	
8	Currency (3)	55.29%	50.78%	66.49%	50.01%	55.64%	
9	Commodity (2)	58.05%	59.40%	59.23%	58.39%	58.77%	
10		55.67%	54.76%	57.56%	54.95%		
1121121							

Dashboard: AAPL

Trading Dashboard

[14]:

#	index	Backtest
0	Annual Return	0.02424849830819394
1	Cumulative Returns	0.2682357215881306
2	Annual Volatility	0.029258159701038802
3	Sharpe Ratio	0.8287772900266521
4	Sortino Ratio	1.2019654081993933

										*
#	Stock	Entry Date	Exit Date	Shares	Entry Share F	Exit Share Pr	Entry Portfolio	Exit Portfolio	Profit/Loss	
1	AAPL	2010-09-21	2011-05-18	500.0	10.134643	12.138214	5,067.321301	6,069.107056	-1,001.78575	•
2	AAPL	2011-07-26	2012-07-06	500.0	14.4075	21.638571	7,203.750134	10,819.28539	-3,615.53525	
3	AAPL	2012-08-07	2012-11-21	500.0	22.175358	20.060715	11,087.67890	10,030.35736	1,057.321548	
4	AAPL	2013-07-10	2013-07-16	500.0	15.026071	15.364286	7,513.035297	7,682.143211	-169.107914	
5	AAPL	2013-08-15	2014-03-10	500.0	17.782499	18.96143	8,891.249657	9,480.714798	-589.465141	
6	AAPL	2014-05-06	2015-08-03	500.0	21.22893	29.610001	10,614.46476	14,805.00030	-4,190.53554	
7	AAPL	2015-12-09	2016-01-13	500.0	28.905001	24.3475	14,452.50034	12,173.74992	2,278.75042	
8	AAPL	2016-04-25	2016-06-14	500.0	26.27	24.365	13,135.00022	12,182.49988	952.500343	
9	AAPL	2016-08-22	2018-03-26	500.0	27.127501	43.192501	13,563.75026	21,596.25053	-8,032.50026	
10	AAPL	2018-04-19	2018-11-30	500.0	43.200001	44.645	21,600.00038	22,322.50022	-722.499847	
11	AAPL	2019-03-28	2019-07-22	500.0	47.18	51.805	23,590.00015	25,902.50015	-2,312.5	~

Conclusion

Implementing common technical analysis indicators in machine learning models such as Random Forest or Logistic Regression can predict market trend with modest accuracy.

Future directions

- Improve current analysis:
 - a. Fine-tune parameters
 - b. Cluster indicators/signals
 - c. Include more data
 - d. Include other technical analysis indicators
- 2. Clustering stocks/asset classes based on feature importances
- Testing monetary performance of our analysis
- 4. Comparison between technical analysis vs. fundamental analysis; blended analysis + sentimental analysis?
- Apply different machine learning models

Questions?