## 网络串口透传芯片 CH9121

手册 版本:2B http://wch.cn

# 1、概述

CH9121 是一款网络串口透传芯片。CH9121 内部集成 TCP/IP 协议栈,可实现网络数据包和串口数据的双向透明传输,具有 TCP CLIENT、TCP SERVER、UDP CLIENT、UDP SERVER 4 种工作模式,串口波特率最高可支持到 921600bps,可通过上位机软件或者串口命令轻松配置,方便快捷。

下图为 CH9121 一般应用框图。



### 2、特点

- 内部自带以太网介质传输层(MAC)和物理层(PHY)
- 实现串口数据和网络数据的双向透明传输
- 支持 10/100M, 全双工/半双工自适应以太网接口, 兼容 802.3 协议
- 支持 MDI/MDIX 线路自动转换
- 支持 DHCP 自动获取 IP 地址,支持 DNS 域名访问
- 通过上位机软件、串口命令设置芯片工作模式、端口、IP 等网络参数
- 工作模式支持 TCP CLIENT、TCP SERVER 和 UDP CLIENT、UDP SERVER 4 种模式
- 最多同时支持两路独立串口,独立透传
- 串口波特率支持 300bps ~ 921600bps
- 串口 TTL 电平, 兼容 3.3V 和 5V
- 串口支持全双工和半双工串口通讯,支持 RS485 收发自动切换
- 支持并提供虚拟串口软件
- 支持 KEEPALIVE 机制

### 3、封装



| 芯片型号   | 芯片封装    |                          |  |  |  |  |
|--------|---------|--------------------------|--|--|--|--|
|        | 名称      | <b>当称</b> 描述             |  |  |  |  |
| CH9121 | LQFP64M | LQFP 封装;64 脚; 本体 10×10mm |  |  |  |  |

### 4、引脚

| CH9121<br>引脚号                       | 引脚<br>名称 | 类型 | 引脚说明                          |  |  |  |
|-------------------------------------|----------|----|-------------------------------|--|--|--|
| 2、12、17、<br>21、29、40、<br>42、45、63   | VCC33    | 电源 | 3. 3V 正电源输入端,外接 0. 1uF 电源退耦电容 |  |  |  |
| 6、19、28、<br>43、54、64                | VCC18    | 电源 | 1.8V 正电源输入端,外接 0.1uF 电源退耦电容   |  |  |  |
| 3、9、13、18、<br>20、 37、 41、<br>44、 48 | GND      | 电源 | 公共接地端                         |  |  |  |
| 14、15、16、<br>22、23、24、              | NC       | _  | 保留引脚,悬空                       |  |  |  |

| 25 、 26 、 2 | 27、 |       |       |                                           |  |  |  |  |  |  |
|-------------|-----|-------|-------|-------------------------------------------|--|--|--|--|--|--|
| 34、35、3     | 38、 |       |       |                                           |  |  |  |  |  |  |
| 39、47、4     | 49、 |       |       |                                           |  |  |  |  |  |  |
| 50、61、6     | 62  |       |       |                                           |  |  |  |  |  |  |
| 1           | R   | RSETE | 输入    | 外接 18K 电阻到地端                              |  |  |  |  |  |  |
| 4           |     | RXP   | 以太网信号 | 以太网 RXP 信号                                |  |  |  |  |  |  |
| 5           |     | RXN   | 以太网信号 | 以太网 RXN 信号                                |  |  |  |  |  |  |
| 7           |     | TXP   | 以太网信号 | 以太网 TXP 信号                                |  |  |  |  |  |  |
| 8           |     | TXN   | 以太网信号 | 以太网 TXN 信号                                |  |  |  |  |  |  |
| 10          |     | ΧI    | 输入    | 晶体振荡的输入端,需要外接 30MHz 晶体                    |  |  |  |  |  |  |
| 11          |     | X0    | 输出    | 晶体振荡的反相输出端,需要外接 30MHz 晶体                  |  |  |  |  |  |  |
| 30          | TO  | CPCS1 | 输出    | TCP 客户端模式下,端口 1 连接状态指示,低电平<br>有效          |  |  |  |  |  |  |
| 31          |     | RUN   | 输出    | CH9121 运行状态指示脚,复用为 ISP 升级脚                |  |  |  |  |  |  |
| 32          | С   | FGEN  | 输入    | 网络配置使能脚,上电时检测,低电平禁止配置                     |  |  |  |  |  |  |
| 33          | TO  | CPCS2 | 输出    | TCP 客户端模式下,端口 2 连接状态指示,低电平<br>有效          |  |  |  |  |  |  |
| 36          | ı   | RSTI  | 输入    | 外部复位输入,低电平有效,内置上拉电阻                       |  |  |  |  |  |  |
| 46          | [   | DIR2  | 输出    | 用于控制串口 2 RS485 收发切换                       |  |  |  |  |  |  |
| 51          | [   | DIR1  | 输出    | 用于控制串口 1 RS485 收发切换                       |  |  |  |  |  |  |
| 52          | 1   | ACT#  | 输出    | 以太网连接通讯指示灯驱动引脚                            |  |  |  |  |  |  |
| 53          | L   | INK#  | 输出    | PHY 连接指示灯,低有效                             |  |  |  |  |  |  |
| 55          | i   | RXD2  | 输入    | 异步串口 2 的串行数据输入,内置上拉电阻<br>(默认关闭)           |  |  |  |  |  |  |
| 56          | -   | TXD2  | 输出    | 异步串口 2 的串行数据输出<br>(默认关闭)                  |  |  |  |  |  |  |
| 57          | i   | RXD1  | 输入    | 异步串口 1 的串行数据输入,内置上拉电阻<br>(默认开启)           |  |  |  |  |  |  |
| 58          | -   | TXD1  | 输出    | 异步串口 1 的串行数据输出<br>(默认开启)                  |  |  |  |  |  |  |
| 59          | R   | RESET | 输入    | 恢复出厂设置,芯片上电检测,低电平有效                       |  |  |  |  |  |  |
| 60          |     | CFG0  | 输入    | 串口配置模式设置脚,内置上拉,检测到低电平时,进入串口配置模式,高电平退出配置模式 |  |  |  |  |  |  |

### 5、功能说明

#### 5.1. 功能简介

CH9121 为网络串口透传芯片,可实现串口数据与网络数据的双向透明传输,支持 TCP CLEINT/SERVER, UDP CLIENT/SERVER 4 种工作模式,串口波特率支持范围为 300bps~921600bps,使用前需通过上位机软件 NetModuleConfig. exe 或者串口命令配置芯片的网络参数和串口参数,配置完成后,CH9121 将配置参数保存至内部存储空间,芯片复位后,CH9121 将按保存的配置值工作。

CH9121 基础参数部分包括: 名称、MAC 地址显示、自动获取 IP 地址设置, 手动 IP 地址设置 (包括 CH9121 IP 地址、子网掩码、默认网关), 串口协商配置。

其中名称主要为方便局域网内 CH9121 模块管理,长度不超过 20 字节,MAC 地址栏显示了当前选中模块的 MAC 地址,CH9121 有两种方式设置网络参数,1) DHCP,即自动向具有 DHCP SERVER

功能的网关设备获取网络参数; 2) 手动设置。串口协商配置功能是指能够通串口握手的方式进入串口配置模式, 默认关闭。

CH9121 端口参数部分包括: 网络模式、本地端口、目标 IP/域名、目的端口、串口波特率/数据位/停止位/校验位、网线断开处理、RX 打包包长度、RX 打包超时间隔、网络连接时操作。

网络模式(TCP SERVER/CLIENT, UDP SERVER/CLIENT)、目的 IP 地址、本地/目的端口为网络通信的基本参数,其中目的 IP 地址也可以通过域名的方式进行访问;串口波特率范围为300bps ~ 921600bps(串口发送信号的波特率误差小于 0.3%,串口接收信号的允许波特率误差不小于 2%),支持 5、6、7 或者 8 位数据位以及 1 位或者 2 位停止位,支持奇、偶、无校验、空白 0、标志 1 校验方式;网线断开处理是指当网线断开的时候,CH9121 内部主动关闭连接还是不采取任何动作;RX 打包包长度范围是 1~1024,是指当 CH9121 串口接收数据长度达到设定长度时,CH9121 会立马将串口数据打包,通过网络发出去;超时时间设置范围为 0~200,其中超时的单位大约为 5ms,比如超时为 1 时,当串口接收缓冲区数据长度未达到 RX 打包包长度时,且串口在超过 5ms 时间内没有接收到新的数据时会产生串口超时。产生串口超时后,CH9121 会把串口接收到的数据通过网络发出去。当超时时间设为 0 时,启用内部硬件超时(超过 4 数据时间没收到新的数据)机制,适用于实时性要求比较高,以及大批量数据收发场合;清空串口缓冲区设置指:网络连接建立前,串口收到的数据如何处理,TCP 连接的时候清空(丢弃)、或者保留。

#### 5.2. 默认配置

CH9121 出厂时,端口2默认关闭,端口1默认工作在TCP CLIENT模式,网络相关默认参数依次为:

- (1) 设备 IP : 192.168.1.200
- (2) 子网掩码: 255. 255. 255. 0
- (3) 默认网关: 192.168.1.1
- (4) 模块端口: 2000
- (5) 目的 IP: 192.168.1.100
- (6) 目的端口: 1000
- (7) 重连次数 : 无限次

串口相关默认参数依次为:

- (1) 波特率: 9600
- (2) 超时 : 0
- (3) 数据位:8; 停止位:1; 校验:无
- (4) 清空串口缓冲区: 从不清空

#### 6、参数

6.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

| 名称    | 参数说明           | 最小值                        | 最大值        | 单位 |   |
|-------|----------------|----------------------------|------------|----|---|
| TA    | 工作时的环境温度       | VCC33=3. 3V<br>VCC18=1. 8V | -40        | 85 | Û |
| TS    | 储存时的环境         | -55                        | 125        | °C |   |
| VCC33 | 电源电压(VCC33 接电》 | -0. 4                      | 4. 2       | ٧  |   |
| VCC18 | 电源电压(VCC18 接电》 | -0. 4                      | 2. 3       | ٧  |   |
| VIO   | 输入或者输出引脚       | -0. 4                      | VCC33+0. 4 | ٧  |   |
| V105  | 支持 5V 耐压的输入或者输 | -0. 4                      | 5. 4       | ٧  |   |

6.2. 电气参数(测试条件: TA=25℃, VCC33=3.3V、VCC18=1.8V)

| 名称    | 参数说明                 |       |             | 最小值        | 典型值  | 最大值        | 单<br>位 |
|-------|----------------------|-------|-------------|------------|------|------------|--------|
| VCCxx | 电源电压                 | VCC33 |             | 2. 7       | 3. 3 | 3. 6       | V      |
| VUUXX | 电冰电压                 | VCC18 |             | 1. 65      | 1. 8 | 1. 95      | V      |
| I CC  | 工作时的总电源电流 VCC33=3. 3 |       | VCC33=3. 3V |            | 160  | 190        | mA     |
| VIL   | 低电平输入电压              |       |             | -0.4       |      | 0. 7       | ٧      |
| VIH   | 高电平输入电压              |       |             | 2. 0       |      | VCC33+0. 4 | ٧      |
| VOL   | 低电平输出电压(4mA 吸入电流)    |       |             |            |      | 0. 4       | ٧      |
| VOH   | 高电平输出电压(4mA 输出电流)    |       |             | VCC33-0. 4 |      |            | ٧      |
| IUP   | 内置上拉电阻的输入端的输入电流      |       |             | 20         | 40   | 100        | uA     |
| IDN   | 内置下拉电阻的输入端的输入电流      |       |             | -20        | -40  | -100       | uA     |
| VR    | 电源上电复位的电压门限          |       |             | 1. 4       | 1. 5 | 2. 5       | ٧      |

### 7、应用

#### 7.1. 硬件电路设计



注:由于篇幅限制,图中省略了电源及 3.3V, 1.8V 引脚附近退耦电容部分电路,进行电路设计时务必添加到电路中去,详细电路参考文件:CH9121PCB(请至我司官网下载)。

U1 为主控芯片 CH9121, TXD1、RXD1 兼容 3. 3V 和 5V 电平, RS485 控制脚 DIR 若未使用可直接悬空。 P1 为 RJ45 端口,内置网络变压器,用于连接交换机、路由器等网络设备。含有两对以太网差分信号。

实际制作印刷电路板时(PCB), R5-R8, C6, C7 应尽量靠近 P1 的第 5 脚,图中省略了 3. 3V, 1. 8V 引脚的 0.1 uF 退耦电容, TXOP(RXIP)与 TXON(RXIN)为差分信号, 布线时应贴近平行走线, 尽量在两侧提供地线或者覆铜,减少来自外界的干扰。尽量缩短晶体 XI 和 X0 相关信号的长度,为了减少高频时钟对外界的干扰,可以在相关元器件周边环绕底线或者覆铜。