Esercizi 3

- **1.** Dato uno spazio vettoriale $(V, +, \cdot)$ su un campo K e un insieme $S = \{v_1, \dots, v_t\}$ di vettori di V, cosa vuol dire che S è linearmente indipendente? Cosa vuol dire che S è linearmente dipendente?
- **2.** Si considerino i vettori $v_1 = (1, 2, 0)$, $v_2 = (0, 1, 1)$, $v_3 = (1, 0, -2)$ dello spazio vettoriale numerico $(\mathbb{R}^3, +, \cdot)$ e si ponga $S = \{v_1, v_2, v_3\}$.
 - (i) Osservare che il vettore v_3 è combinazione lineare di v_1 e v_2 .
 - (ii) Dire se S è linearmente indipendente oppure è linearmente dipendente. In quanti modi il vettore nullo si può scrivere come combinazione lineare dei vettori v_1, v_2, v_3 ?
 - (iii) È vero che il vettore w = (0,0,1) è combinazione lineare dei vettori di S? In quanti modi il vettore nullo si può scrivere come combinazione lineare dei vettori v_1, v_2, w ?
 - (iv) Qual è lo spazio L(S) generato da S? Il sistema S è un sistema di generatori di $(\mathbb{R}^3, +, \cdot)$?
- 3. Nello spazio vettoriale \mathcal{V} su \mathbb{R} dei vettori liberi dello spazio delle geometria elementare, siano u_1 e u_2 due vettori linearmente indipendenti entrambi di lunghezza 1.
 - (i) Posto $w = u_1 2u_2$, dire se il sistema $\{u_1, u_2, w\}$ è linearmente indipendente.
 - (ii) Esibire un vettore libero che abbia lunghezza 3.
 - (iii) I vettori u_1 e u_2 possono essere paralleli?
- **4.** Enunciare il Lemma di Steinitz e il teorema di equipotenza delle basi. Spiegare cosa è la dimensione di uno spazio vettoriale finitamente generato su un campo K.
- **5.** Determinare la dimensione e una base di ciascuno dei seguenti sottospazi vettoriali di \mathbb{R}^5 : L((1,2,0,-1,1),(1,1,0,-1,0),(1,0,0,-1,-1),(1,1,1,1)); L((0,1,0,0,0),(1,0,1,1,0),(1,1,1,1,0)).
- **6.** Determinare una base e la dimensione di quelli tra i seguenti sottoinsiemi che risultano essere sottospazi (si conviene che il vuoto sia una base dello spazio vettoriale nullo $\{\underline{0}\}$):

$$T = \{(1, 1, 1), (0, 0, 0), (2, 2, 2)\} \subseteq \mathbb{R}^3$$

$$U = L(\{(1, 1, 0, -1), (0, 2, -3, 1), (-2, 0, -3, 3), (0, 0, 0, 0)\}) \subseteq \mathbb{R}^4$$

$$Z = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1^2 + x_2^2 = 0\} \subseteq \mathbb{R}^2$$

- 7. Nello spazio vettoriale V su \mathbb{R} con base $\mathcal{B} = \{e_1, e_2, e_3, e_4\}$, si determini:
 - (i) un insieme di tre vettori che sia linearmente indipendente;
 - (ii) un insieme di tre vettori che sia linearmente dipendente.;
 - (iii) un sottospazio vettoriale di V che abbia dimensione 2;
 - (iv) una base di V che contenga i vettori $u = e_1 + 2e_3$ e $v = e_2 e_3$.

Vedere se l'insieme $S = \{2e_1 - e_3, e_2 + 2e_4, e_2, e_2 + e_1\} \subseteq V$ è una base di V.