Tutorial 8

1. Find the following integrals:

(a)
$$\int \frac{2}{3} dx$$

(b)
$$\int \pi^2 dx$$

(c)
$$\int x^8 dx$$

(a)
$$\int \frac{2}{3} dx$$
 (b) $\int \pi^2 dx$ (c) $\int x^8 dx$ (d) $\int x^{-\frac{2}{3}} dx$ (e) $\int \frac{1}{x^4} dx$ (f) $\int \sqrt[3]{x} dx$ (g) $\int \sqrt[3]{x^2} dx$ (h) $\int 6x^3 dx$

(e)
$$\int \frac{1}{x^4} dx$$

(f)
$$\int \sqrt[3]{x} dx$$

(g)
$$\int \sqrt[3]{x^2} dx$$

(h)
$$\int 6x^3 dx$$

(i)
$$\int \frac{1}{3\pi} t \ dt$$

(j)
$$\int \frac{\pi^2}{3} t^2 dt$$

(k)
$$\int \frac{3}{r^2} dx$$

(I)
$$\int 5\sqrt{x} dx$$

- (i) $\int \frac{1}{3\pi} t \, dt$ (j) $\int \frac{\pi^2}{3} t^2 dt$ (k) $\int \frac{3}{x^2} \, dx$ (l) $\int 5\sqrt{x} \, dx$ (m) $\int \frac{1}{\sqrt{x}} \, dx$ (n) $\int \frac{1}{5\sqrt{t^2}} \, dt$
- 2. Find the following indefinite integrals:

(a)
$$\int (x^2 + x + 3) dx$$

(a)
$$\int (x^2 + x + 3) dx$$
 (b) $\int (7 - 5x - 3x^2) dx$ (c) $\int (4t^2 + 3t - 2) dt$

(c)
$$\int (4t^2 + 3t - 2)dt$$

$$(d) \int (x+3)^2 dx$$

(e)
$$\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) dx$$

(f)
$$\int \left(\frac{2}{x^2} - 3x^2 + 4\right) dx$$

$$(\mathsf{g})\int \left(\frac{5}{x^2} - \frac{3}{x^4}\right) dx$$

$$(\mathsf{h}) \int \left(8\sqrt{x} + \frac{1}{4\sqrt{x}}\right) dx$$

(d)
$$\int (x+3)^2 dx$$
 (e) $\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right) dx$ (f) $\int \left(\frac{2}{x^2} - 3x^2 + 4\right) dx$ (g) $\int \left(\frac{5}{x^2} - \frac{3}{x^4}\right) dx$ (i) $\int \left(2x^3 + \frac{1}{\sqrt{x}} - \frac{2}{x^2}\right) dx$

3. Evaluate the following definite integrals:

(a)
$$\int_0^2 (4t^2 - t) dt$$

(b)
$$\int_{1}^{2} \frac{2t^2+1}{t^2} dt$$

(c)
$$\int_{1}^{3} 2r(r-2)dr$$

(a)
$$\int_0^2 (4t^2 - t)dt$$
 (b) $\int_1^2 \frac{2t^2 + 1}{t^2} dt$ (c) $\int_1^3 2r(r - 2)dr$ (d) $\int_1^4 (x + 1)(2x + 1) dx$ (e) $\int_0^1 \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$

(e)
$$\int_0^1 \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$$

4. Find the following Indefinite Integrals:

(a)
$$\int (-6x + 1) dx$$

(a)
$$\int (-6x + 1) \ dx$$
 (b) $\int \left(x^3 + 6\sqrt{x} - \frac{1}{x^2}\right) dx$ (c) $\int \left(\frac{x^4 + 7x}{x^3}\right) dx$ (d) $\int (2 - 3x)^2 dx$

(c)
$$\int \left(\frac{x^4 + 7x}{x^3}\right) dx$$

(d)
$$\int (2-3x)^2 dx$$

5.

(a)
$$\int (1+x)^3 dx$$

(b)
$$\int (3x-2)^4 dx$$

(c)
$$\int 2x(x^2+2)^4 dx$$

(d)
$$\int x^2(x^3+4)^8 dx$$

Evaluate the followings: (a)
$$\int (1+x)^3 dx$$
 (b) $\int (3x-2)^4 dx$ (c) $\int 2x(x^2+2)^4 dx$ (d) $\int x^2(x^3+4)^8 dx$ (e) $\int (2x^2-1)(2x^3-3x+9)^{\frac{1}{3}} dx$ (f) $\int \frac{x}{\sqrt{3-5x^2}} dx$ (g) $\int x\sqrt{1-x^2} dx$

(f)
$$\int \frac{x}{\sqrt{3-5x^2}} dx$$

$$(g) \qquad \int x\sqrt{1-x^2}\,dx$$

Find the following indefinite integrals by substitution method. 6*.

$$(a)\int 4x(x^2+3)^4dx$$

$$(b) \int \frac{5x}{\sqrt{7-2x^2}} dx$$

7.

- Show that the points of intersection of the curves y=2x-1 and $y=x^2-4$ are (-1,-3)and (3,5). Hence, find the shaded area bounded by the curves in the figure below. (a)
- (b)

Answers

1. (a)
$$\frac{2}{3}x + C$$

(b)
$$\pi^2 x + C$$

(c)
$$\frac{1}{9}x^9 + C$$

(a)
$$\frac{2}{3}x + C$$
 (b) $\pi^2 x + C$ (c) $\frac{1}{9}x^9 + C$ (d) $3x^{\frac{1}{3}} + C$

(e)
$$-\frac{1}{3x^3} + C$$
 (f) $\frac{3}{4}x^{\frac{4}{3}} + C$ (g) $\frac{3}{5}x^{\frac{5}{3}} + C$

$$(f) \frac{3}{4} x^{\frac{4}{3}} + 0$$

(g)
$$\frac{3}{5}x^{\frac{5}{3}} + 6$$

(h)
$$\frac{3}{2}x^4 + C$$

(i)
$$\frac{1}{6\pi}t^2 + 0$$

(j)
$$\frac{\pi^2}{9}t^3 + 6$$

$$(k) - \frac{3}{x} + 0$$

(i)
$$\frac{1}{6\pi}t^2 + C$$
 (j) $\frac{\pi^2}{9}t^3 + C$ (k) $-\frac{3}{r} + C$ (l) $\frac{10}{3}x^{\frac{3}{2}} + C$

$$(m)2x^{\frac{1}{2}} + C$$

(m)
$$2x^{\frac{1}{2}} + C$$
 (n) $\frac{5}{3}t^{\frac{3}{5}} + C$

2. (a)
$$\frac{x^3}{3} + \frac{x^2}{2} + 3x + C$$
 (b) $7x - \frac{5}{2}x^2 - x^3 + C$ (c) $\frac{4}{3}t^3 + \frac{3}{2}t^2 - 2t + C$

(b)
$$7x - \frac{5}{2}x^2 - x^3 + C$$

(c)
$$\frac{4}{3}t^3 + \frac{3}{2}t^2 - 2t + 6$$

(d)
$$\frac{x^3}{3} + 3x^2 + 9x + C$$

$$(e)^{\frac{2}{3}}x^{\frac{3}{2}} - 2x^{\frac{1}{2}} + C$$

(d)
$$\frac{x^3}{3} + 3x^2 + 9x + C$$
 (e) $\frac{2}{3}x^{\frac{3}{2}} - 2x^{\frac{1}{2}} + C$ (f) $-\frac{2}{x} - x^3 + 4x + C$

$$(g) - \frac{5}{r} + \frac{1}{r^3} + C$$

$$(h)^{\frac{16}{3}}x^{\frac{3}{2}} + \frac{1}{2}x^{\frac{1}{2}} + C$$

$$(h)^{\frac{16}{3}}x^{\frac{3}{2}} + \frac{1}{2}x^{\frac{1}{2}} + C \qquad \qquad (i)^{\frac{1}{2}}x^4 + 2x^{\frac{1}{2}} + \frac{2}{x} + C$$

3. (a)
$$8\frac{2}{3}$$

5.

(b)
$$2\frac{1}{2}$$

(c)
$$1\frac{1}{3}$$

4. (a)
$$-3x^2 + x + 0$$

4. (a)
$$-3x^2 + x + C$$
 (b) $\frac{x^4}{4} + 4x^{\frac{3}{2}} + \frac{1}{x} + C$ (c) $\frac{x^2}{2} - \frac{7}{x} + C$ (d) $4x - 6x^2 + 3x^3 + C$

(c)
$$\frac{x^2}{2} - \frac{7}{x} + C$$

(d)
$$4x - 6x^2 + 3x^3 + 6$$

(a)
$$67\frac{1}{3}$$

(b)
$$2\frac{2}{3}$$

6. a)
$$\frac{(1+x)^4}{4} + C$$
 b) $\frac{(3x-2)^5}{15} + C$ c) $\frac{(x^2+2)^5}{5} + C$

$$\frac{15}{15} + C$$

d)
$$\frac{(x^3+4)^9}{27} + C$$

d)
$$\frac{(x^3+4)^9}{27} + C$$
 e) $\frac{(2x^3-3x+9)^{\frac{4}{3}}}{4} + C$
f) $\frac{-1}{5}\sqrt{3-5x^2} + C$ g) $-\frac{1}{3}(1-x^2)^{\frac{3}{2}} + C$

f)
$$\frac{-1}{5}\sqrt{3-5x^2}+C$$

g)
$$-\frac{1}{3}(1-x^2)^{\frac{3}{2}}+C$$

7* (a)
$$\frac{2}{5}(x^2+3)^5+C$$

7* (a)
$$\frac{2}{5}(x^2+3)^5 + C$$
 (b) $-\frac{5}{2}(7-2x^2)^{\frac{1}{2}} + C$

8. (ii)
$$10\frac{2}{3}$$
 units²