Digital System Design

Notes on Important Sequential Circuits

Sequential Circuit

S-R Latch (NAND Gate)

S	R	Q	State
0	0	1	Invalid (Indeterminate)
0	1	1	Set (S)
1	0	0	Reset (S)
1	1	0	Existing values

R-S Latch (NOR gate)

R	S	Q	State
0	1	1	Set (S)
0	0	1	Existing
1	0	0	Reset (R)
1	1	1	Invalid (Indeterminate)

S R Flip-flop

Characteristic Table

Q	S	R	Q (t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	In
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	In

D Flip-flop

Characteristic Table

Q	D	Q (t+1)
0	0	0
0	1	1
1	0	0
1	1	1

Edge triggered D Flip-Flop

Edge triggered D Flip-Flop

Setup Time – The time in which D Input must be maintained as a constant value prior to the application of the pulse.

Hold Time – The time for which D Input must not change after the application of positive-going transition of the pulse.

JK Flip-flop

Characteristic Table

Q	J	K	Q (t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Master Slave J K Flip-flop

T Flip-flop

Characteristic Table

Q	Т	Q (t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Excitation Tables

T Flip-flop

Q	Q(t+1)	Т
0	0	0
0	1	1
1	0	1
1	1	0

D Flip-flop

Q	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

SR Flip-flop

Q	Q(t+1)	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

JK Flip-flop

Q	Q(t+1)	J	K
0	0	0	Х
0	1	1	Х
1	0	Х	1
1	1	Х	0

4-bit register with parallel load (SR-FF)

4-bit Register with Parallel load (D-FF)

4-bit Shift Register (Left to Right)

4-bit Shift Register (Right to Left)

4-bit Universal Register

Select	Operation
00	Retain
01	Left to Right Shift
10	Right to left Shift
11	Parallel Load

Asynchronous – Ripple Counter (4 bit)

Note: JK FF should be negative-edge triggered

Asynchronous – Ripple (4 bit)

Asynchronous – BCD Counter (4 bit)

Asynchronous – BCD Counter (4 bit)

Synchronous – Up/Down Counter (4 bit)

4-bit Up Counter

4-bit Down Counter

4-bit Ring Counter

4-bit Ring Counter

Number of states = Number of Flip-flops

4-bit Johnson Counter

Number of states = 2 * Number of Flip-flops

4-bit Johnson Counter

Number of states = 2 * Number of Flip-flops

Reference

Mano, M. Morris. Digital logic and computer design. Pearson Education India, 2017.