《算法设计与分析》

第十二章 线性规划

马丙鹏 2023年12月25日

第十二章 线性规划

- 12.1 数学模型
- 12.2 图解法
- 12.3 标准型
- 12.4 基本概念
- 12.5 单纯形法

- ■1.普通单纯形法
 - □线性方程组求解方法
 - ▶例,求非齐次线性方程组的通解:

$$\begin{cases} 2x_1 + 4x_2 - x_3 + 3x_4 = 9 \\ x_1 + 2x_2 + x_3 = 6 \end{cases}$$
 解,两个方程相加,相减后

$$(A \mid b) =$$
 $\begin{bmatrix} 2 & 4 & -1 & 3 & 9 \\ 1 & 2 & 1 & 0 & 6 \end{bmatrix}$
 初等行变换
 $\begin{bmatrix} 1 & 2 & 0 & 1 & 5 \\ 0 & 0 & 1 & -1 & 1 \end{bmatrix}$

>由此知系数矩阵的秩与增广矩阵秩相等为2,即原 方程组有无穷多解.

- ■1.普通单纯形法
 - □线性方程组求解方法
 - ▶同解方程组为:

$$\begin{cases} x_1 + 2x_2 & + x_4 = 5 \\ x_3 - x_4 = 1 \end{cases} \begin{cases} x_1 = -2x_2 - x_4 + 5 \\ x_3 = x_4 + 1 \end{cases}$$

- ■1.普通单纯形法
 - □单纯形计算方法(Simplex Method)
 - ▶ 先求出一个初始基可行解并判断它是否最优,若 不是最优,再换一个基可行解并判断,直到得出 最优解或无最优解。
 - ▶它是一种逐步逼近最优解的迭代方法。
 - ▶当系数矩阵A中可以观察得到一个可行基时(通常 是一个单位矩阵或m个线性无关的单位向量组成的 矩阵),可以通过解线性方程组求得基本可行解。

- ■1.普通单纯形法
 - □【例12-15】用单纯形法求例12-1线性规划的最优解 $\max Z = 300x_1 + 400x_2$

$$\begin{cases} 2x_1 + x_2 \le 40 \\ x_1 + 3/2x_2 \le 30 \\ x_1, x_2 \ge 0 \end{cases}$$

ン【解】化为标准型,加入松弛变量 x_3 、 x_4 则标准型 为 $\max Z = 300x_1 + 400x_2$

$$\begin{cases} 2x_1 + x_2 + x_3 = 40 \\ x_1 + 3/2x_2 + x_4 = 30 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

- ■1.普通单纯形法
 - □【例12-15】用单纯形法求例12-1线性规划的最优解 \rightarrow 系数矩阵A及可行基 B_1

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 \\ 1 & 3/2 & 0 & 1 \end{bmatrix} \qquad B_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- >r(B_1)=2, B_1 是一个初始基,
- $\triangleright x_3$ 、 x_4 为基变量, x_1 、 x_2 为非基变量,
- \triangleright 令 $x_1=0$ 、 $x_2=0$ 由约束方程知 $x_3=40$ 、 $x_4=30$ 得到初 始基本可行解

$$X^{(1)}=(0, 0, 40, 30)^T$$

- ■1.普通单纯形法
 - □【例12-15】用单纯形法求例12-1线性规划的最优解
 - ▶以上得到的一组基可行解是不是最优解,可以从 目标函数中的系数看出。
 - \rightarrow 目标函数 Z=300 x_1 +400 x_2 中 x_1 的系数大于零,如果 x_1 为一正数,则Z的值就会增大,同样若 x_2 不为零 为一正数,也能使Z的值增大;
 - ▶因此只要目标函数中非基变量的系数大于零,那 么目标函数就没有达到最大值,即没有找到最优 解,
 - > 判别线性规划问题是否达到最优解的数称为检验 数,记作 λ_i ,j=1, 2, ..., n

- ■1.普通单纯形法
 - □检验数
 - ▶目标函数用非基变量表达时的变量系数
 - \rightarrow 本例中 $\lambda_1=300$, $\lambda_2=400$, $\lambda_3=0$, $\lambda_4=0$ 。参看表12-6(a)
 - □最优解判断标准
 - ▶当所有检验数 $λ_i \le 0$ (j=1,...,n) 时,基本可行解为 最优解。
 - \Box 当目标函数中有基变量 x_i 时,利用约束条件将目标函 数中的xi消去即可求出检验数。

- ■1.普通单纯形法
 - 口本例中 λ_1 =300>0, λ_2 =400>0, 从而 $X^{(1)}$ 不是最优解, B_1 不是最优基。
 - □改进办法

 - ▶同时选一个能使所有变量非负的基变量*x_l*换成非基变量,称为出基变量

选择出基行时要保证 右列常数始终非负!

如此问题变成了 $\frac{4}{3}x_1 + x_3 - \frac{2}{3}x_4 = 20$

P国科学院大学Inversity of Chinese Academy of Sciences

- ■1.普通单纯形法
 - □当 x_1 =0时,
 - ▶为使 $x_3 \ge 0$,有 $x_2 \le 40$
 - ▶为使 $x_4 \ge 0$,有 $x_2 \le 20$
 - >即 x_2 的上限分别是常数 (b_1,b_2) 与 x_2 的系数 (a_{12},a_{22}) 的比值40与20
 - ▶显然只有 $x_2 \le 20$ 时 x_3 , $x_4 \ge 0$
 - \rightarrow 因为非基变量等于零,所以 $x_2=20$, $x_4=0$,即 x_4 为 出基变量

- ■1.普通单纯形法
 - □【例12-15】用单纯形法求例12-1线性规划的最优解 $\max Z = 300x_1 + 400x_2$

$$\begin{cases} \frac{4}{3}x_1 + x_3 - \frac{2}{3}x_4 = 20 \\ \frac{2}{3}x_1 + x_2 + \frac{2}{3}x_4 = 20 \\ x_i \ge 0, i = 1, 2, 3, 4 \end{cases}$$
 (1)

- ▶此时的基可行解为(0, 20, 20, 0),是否最优呢?
- 》目标函数中有非基变量 x_1 ,其系数大于等于0,让其成为基变量似乎可以使目标函数值增大!

- ■1.普通单纯形法
 - □【例12-15】用单纯形法求例12-1线性规划的最优解
 - \triangleright 但是,也有基变量 x_2 ,如果 x_1 进基时,不幸使 x_2 离 基了,那么x,的值重新归零,就无法保证目标函 数值增大了。
 - > 所以应当让消去目标函数中的基变量,用非基变 量表示目标函数!
 - **>(2)**式可化为 $x_2 = 20 \frac{2}{3}x_1 \frac{2}{3}x_4$
 - ▶代入目标函数得

$$z = 300x_1 + 400\left(20 - \frac{2}{3}x_1 - \frac{2}{3}x_4\right)$$

$$=8000+\frac{100}{3}x_1-\frac{800}{3}x_4$$
 中国科学院大学

- ■1.普通单纯形法
 - □【例12-15】用单纯形法求例12-1线性规划的最优解 >于是问题转化为

$$\max Z = 8000 + \frac{100}{3} x_1 - \frac{800}{3} x_4$$

$$\begin{cases} \frac{4}{3} x_1 + x_3 - \frac{2}{3} x_4 = 20 \\ \frac{2}{3} x_1 + x_2 + \frac{2}{3} x_4 = 20 \end{cases} (1)$$

$$\begin{cases} x_i \ge 0, i = 1, 2, 3, 4 \end{cases}$$

- ■1.普通单纯形法
 - □【例12-15】用单 纯形法求例12-1线 性规划的最优解
 - ➤这种操作在单 纯形表中如下:

	x_1	x_2	x_3	x_4	b
λ_i	300	400	0	0	0
x_3	4/3	0	1	-2/3	20
x_2	2/3	1	0	2/3	20
λ_i	100/3	0	0	<u>-800/</u> 3	-8000

1	2.5	单约	₩ ₩ ₽	
表12-6		7	基 少 重	

进基列

b_i /a_{i2}, a_{i2}>0, 出基检验数

将3	/2化为1	$X_{\mathcal{B}}$	x_1	x_2	x_3	x_4	b	θ_i
-		x_3	2	1	1	0	40	40 📗
	(a)	x_4	1	3/2	0	1	30 -	20
		λ_j	300	400	0	0	0	
		x_3	4/3	0	1	-2/3	20 -	1 5
	(b)	x_2	2/3	1	0	2/3	20	30
		λ_j	100/3	0	0	-800/3	-8000	
		x_1	1	0	3/4	-1/2	15	
	(c)	x_2	0	1	-1/2	1	10	
		λ_j	0	0	-25	-250	-8500	

10 -

最优解X=(15, 10, 0, 0)^T, 最优值Z=8500 40 $2x_1 + x_2 = 40$ $X^{(2)} = (0,20)$ $x_1 + 1.5x_2 = 30$ 20 $X^{(3)}=(15,10)$

$$\max Z = 300x_1 + 400x_2$$

$$2x_1 + x_2 \le 40$$

$$x_1 + 1.5x_2 \le 30$$

$$x_1 \ge 0, x_2 \ge 0$$

如果第一步迭 代让x₁进基,搜 索路径会如何?

 $\rightarrow \mathcal{X}_1$ 中国科学院大学 University of Chinese Academy of Sciences 21

30

- ■1.普通单纯形法
 - □单纯形表最优性条件(以max情况为例):
 - ① 中心部位有单位阵;
 - ② 右列非负;
 - ③ 底行基变量对应的位置为0;
 - ④ 底行非基变量对应的位置非正。
 - ▶单纯形法就是让单纯形表在保证满足前三个条件的情况下,逐步去满足第四个条件!

- ■1.普通单纯形法
 - □典则形式:
 - ▶(1)约束条件系数矩阵存在m个不相关的单位向量;
 - ▶(2)目标函数中不含有基变量。
 - ▶满足条件(1)时立即可以写出基本可行解,满足条件(2)时马上就可以得到检验数。
 - ▶如何通过观察得到第一个基本可行解并能判断是 否为最优解,关键看模型是不是典则形式(或典 式)。
 - ▶单纯形法的开始和后面的计算都是在做这两件工作。

- ■1.普通单纯形法
 - □典则形式:
 - ▶表12-6每一张表对应的模型都是典式,从一个可行基换到另一个可行基后,接下来的任务就是从 当前的典式变换到另一个典式。
 - 》单纯形法全过程的计算,可以用列表的方法计算 更为简洁,这种表格称为单纯形表(表12-6)。
 - 口计算步骤:
 - ▶1. 求初始基可行解,列出初始单纯形表,求出检验数。其中基变量的检验数必为零;

- ■1.普通单纯形法
 - 口计算步骤:
 - ▶2. 判断:
 - a) 若 $\lambda_{j} \le 0$ (j=1, 2, ..., n)得到最优解;
 - b) 某个 $\lambda_k > 0$ 且 $a_{ik} \leq 0$ (i=1, 2, ..., m)则线性规划具有无界解(见例12-18)。
 - c) 存在 $\lambda_k > 0$ 且 a_{ik} (i=1, ..., m)不全非正,则进行换基;
 - ▶3.换基:

a) 选进基变量

 $\partial_k = \max \{ \lambda_i | \lambda_i > 0 \}, x_k$ 为进基变量

非必须,有较强任意性

- ■1.普通单纯形法
 - 口计算步骤:
 - ▶3.换基:
 - b) 选出基变量, 求最小比值:

第 *L*个比值最小,选最小比值对应行的基变量为出基变量,

若有相同最小比值,则任选一个。

 a_{Lk} 为主元素;

- ■1.普通单纯形法
 - 口计算步骤:
 - ▶3.换基:
 - c) 求新的基可行解:用初等行变换方法将a_{Lk} 化为1,k列其它元素化为零(包括检验数行)得到新的可行基及基本可行解,再判断是否得到最优解。
 - □例12-16 用单纯形法求解

$$\max Z = x_1 + 2x_2 + x_3$$

$$\begin{cases} 2x_1 - 3x_2 + 2x_3 \le 15 \\ \frac{1}{3}x_1 + x_2 + 5x_3 \le 20 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- ■1.普通单纯形法
 - □例12-16 用单纯形法求解
 - >【解】将数学模型化为标准形式:

$$\max Z = x_1 + 2x_2 + x_3$$

$$\begin{cases} 2x_1 - 3x_2 + 2x_3 + x_4 = 15 \\ \frac{1}{3}x_1 + x_2 + 5x_3 + x_5 = 20 \\ x_j \ge 0, j = 1, 2, \dots, 5 \end{cases}$$

ightharpoonup不难看出 x_4 、 x_5 可作为初始基变量,单纯形法计算结果如表 12-7所示。

表12-7

	\sum_{j}	1	2	1	0	0	10	a
C_B	X_B	x_1	x_2	x_3	<i>x</i> ₄	x_5	b	θ
0	x_4	2	-3	2	1	0	15	M
0	x_5	1/3	1	5	0	1	20 -	20
7	\j	1	2	1	0	0	0	
0	x_4	3	0	17	1	3	75 -	25
2	x_2	1/3	1	5	0	1	20	60
7	\j	1/3	0	-9	0	-2	-40	
1	x_1	1	0	17/3	1/3	1	25	
2	x_2	0	1	28/9	-1/9	2/3	35/3	
7	j	0	0	-98/9	-1/9	-7/3	-145/3	

最优解 $X=(25,35/3,0,0,0)^T$,最优值Z=145/3

- ■1.普通单纯形法
 - □例12-17 用单纯形法求解

$$\min Z = 2x_1 - 2x_2 - x_4$$

$$\begin{cases} x_1 + x_2 + x_3 &= 5 \\ -x_1 + x_2 + x_4 &= 6 \end{cases}$$

$$6x_1 + 2x_2 + x_5 = 21$$

$$x_j \ge 0, j = 1, \dots, 5$$

》【解】这是一个极小化的线性规划问题,可以将 其化为极大化问题求解,也可以直接求解,这时 判断标准是: $\lambda_i \ge 0$ (j=1,...,n)时得到最优解。

- ■1.普通单纯形法
 - □例12-17 用单纯形法求解
 - 〉容易观察到,系数矩阵中有一个3阶单位矩阵, x_3 、 x_4 、 x_5 为基变量。
 - 》目标函数中含有基变量 x_4 ,由第二个约束得到 x_4 = $6+x_1-x_2$,并代入目标函数消去 x_4 得

$$Z=2x_1-2x_2-(6+x_1-x_2)=-6+x_1-x_2$$

▶消去x₄的工作也可在单纯形表中进行!

表12-8

X_B	x_1	x_2	x_3	x_4	x_5	b	θ
x_3	1	[1]	1	0	0	5 —	5
x_4	-1	1	0	1	0	6	6
x_5	6	2	0	0	1	21	21/2
λ_j	1	-1	0	0	0	6	
x_2	1	1	1	0	0	5	
x_4	-2	0	-1	1	0	1	
x_5	4	0	-2	0	1	11	
λ_j	2	0	1	0	0	11	

- ■1.普通单纯形法
 - □例12-17 用单纯形法求解
 - →表中 $λ_j ≥ 0, j=1,2,...,5$ 所以最优解为X=(0,5,0,1,11)
 - >最优值Z= $2x_1$ - $2x_2$ - x_4 = -2×5 -1=-11
 - $ightharpoonup 极小值问题,注意判断标准,选进基变量时,应 选<math>\lambda_j < 0$ 的变量 x_j 进基。

- ■1.普通单纯形法
 - □例12-18 求解线性规划

$$\max Z = -x_1 + x_2$$

$$\begin{cases} 3x_1 - 2x_2 \le 1 \\ -2x_1 + x_2 \ge -4 \\ x_1, x_2 \ge 0 \end{cases}$$

>【解】化为标准型

$$\max Z = -x_1 + x_2$$

$$\begin{cases} 3x_1 - 2x_2 + x_3 &= 1\\ 2x_1 - x_2 &+ x_4 = 4\\ x_j \ge 0, j = 1, \dots, 4 \end{cases}$$

▶初始单纯形表为

■1.普通单纯形法

□例12-18 求解线性规划

X_B	x_1	x_2	x_3	x_4	b
x_3	3	-2	1	0	1
x_4	2	-1	0	1	4
λ_j	-1	1	0	0	0

- $\lambda_2=1>0, x_2$ 进基,而 $a_{12}<0$, $a_{22}<0$,没有比值,从而 线性规划的最优解无界。
- ▶由模型可以看出,当固定 x_1 使 x_2 →+∞时,满足约束条件,可使目标函数值无限增大国科学院大学

University of Chinese Academy of Sciences 38

- ■1.普通单纯形法
 - □例12-19 求解线性规划

$$\max Z = 2x_1 + 4x_2$$

$$\begin{cases} -x_1 + 2x_2 \le 4 \\ x_1 + 2x_2 \le 10 \end{cases}$$

$$\begin{cases} x_1 - x_2 \le 2 \\ x_1, x_2 \ge 0 \end{cases}$$

>【解】:化为标准型后用单纯形法计算如下表所示

	X_B	x_1	x_2	x_3	x_4	<i>x</i> ₅	b	θ
	x_3	-1	[2]	1	0	0	4 _	→ 2
(1)	x_4	1	2	0	1	0	10	5
	x_5	1	-1	0	0	1	2	_
	λ_j	2	4 ↑	0	0	0	0	
	x_2	- 1/2	1	1/2	0	0	2	
(2)	x_4	[2]	0	-1	1	0	6 -	→ 3
	x_5	1/2	0	1/2	0	1	4	8
	λ_j	4 ↑	0	-2	0	0	-8	
	x_2	0	1	1/4	1/4	0	7/2	14
(3)	x_1	1	0	- 1/2	1/2	0	3	
	x_5	0	0	[3/4]	- 1/4	1	5/2 -	→ 10/3
	λ_j	0	0	0 ↑	-2	0	-20	
	x_2	0	1	0	1/3	- 1/3	8/3	
(4)	x_1	1	0	0	1/3	2/3	14/3	
	x_3	0	0	1	- 1/3	4/3	10/3	
	λ_j	0	0	0	-2	0	-20	

- ■1.普通单纯形法
 - □例12-19 求解线性规划
 - ▶表 (3)中λ_j全部非正,则最优解为:

$$X^{(1)} = (3, \frac{7}{2}, 0, 0, \frac{5}{2})^T, Z = 20$$

- >表(3)表明,非基变量 x_3 的检验数 $\lambda_3=0$, x_3 若增加,目标函数值不变,即当 x_3 进基时Z仍等于20。
- \triangleright 使 x_3 进基 x_5 出基继续迭代,得到表(4)的另一基本最优解

$$X^{(2)} = (\frac{14}{3}, \frac{8}{3}, \frac{10}{3}, 0, 0,)^T, Z = 20$$

- ■1.普通单纯形法
 - □例12-19 求解线性规划
 - $>X^{(1)}$, $X^{(2)}$ 是线性规划的两个最优解,它的凸组合

$$X = \alpha X^{(1)} + (1 - \alpha) X^{(2)} \qquad (0 \le \alpha \le 1)$$

>仍是最优解,从而原线性规划有多重最优解。

- ■1.普通单纯形法
 - □唯一最优解的判断:
 - →最优表中所有非基变量的检验数非零,则线性规划具有唯一最优解。
 - □多重最优解的判断:
 - →最优表中存在非基变量的检验数为零,则线则性规划具有多重最优解。
 - □无界解的判断:
 - ightarrow某个 $\lambda_k > 0$ 且 $a_{ik} \leq 0$ (i=1,2,...,m)则线性规划具有无界解
 - □退化基本可行解的判断:
 - 一存在某个基变量为零的基本可行解国科学院大学 University of Chinese Academy of Science 44

作业-课后练习30

■用单纯形法求解下列线性规划

(1)
$$\max Z = 3x_1 + 4x_2 + x_3$$
 (2)
$$\begin{cases} 2x_1 + 3x_2 + x_3 \le 4 \\ x_1 + 2x_2 + 2x_3 \le 3 \\ x_j \ge 0, j = 1, 2, \dots, 3 \end{cases}$$

$$\max Z = 3x_1 + 2x_2 - \frac{1}{8}x_3$$

$$\begin{cases} -x_1 + 2x_2 + 3x_3 \le 4 \\ 4x_1 - 2x_3 \le 12 \\ 3x_1 + 8x_2 + 4x_3 \le 10 \\ x_j \ge 0, j = 1, 2, 3 \end{cases}$$

End

