Helping David Beat Goliath

Training Poisoning in Leduc Hold'em

Team: Natania Wolansky, Jisha Jacob, Guy Aridor

Advisor: Professor Iddo Drori

Department of Computer Science, Columbia University

Summary & Goals

This work explores how simple strategies in the game of Leduc Hold'em can be used to beat a sophisticated pokerAl, DeepStack. We first analyze, under unbiased training,how significantly DeepStack outperforms most traditional poker-playing strategy profiles employed by humans.

We then consider the ability of an opponent to bias the training phase such that DeepStack is optimized to play against a particular strategy profile. Finally, by allowing for this biasing, we show that DeepStack can be defeated by a subset of strategy profiles if the player can change their strategy post-training. While DeepStack achieves nearly super-human performance, we conclude that DeepStack is susceptible to training poisoning.

Leduc Hold'em Poker

Semi-Rational & Irrational Players

Rocks Player Game Tree

DeepStack Architecture

Training Poisoning

Results

	Player	Unbiased	Biased			
1	Mild Adaptive Rocks	-11.4 ± 12	63.6 ± 28			
2	Passive Rocks	-43.5 ± 20	-14.8 ± 38			
3	Strong Adaptive Rocks	-3.7 ± 9.4	53.9 ± 29			
4	Rocks	-1.5 ± 5.8	4.7 ± 18			
5	Random Bluffer	-53.6 ± 30	6 ± 34			
6	Smart Bluffer	-35.8 ± 24	23.6 ± 32			
Table 2. Average Chips Per Game on Biased vs. Unbiased Train-						
ing. The table reports means and 95% confidence intervals.						

	Player	Unbiased	Biased	
1	Mild Adaptive Rocks	192	457	
2	Passive Rocks	328	620	
3	Strong Adaptive Rocks	152	468	
4	Rocks	93.9	296	
5	Random Bluffer	492	544	
6	Smart Bluffer	393	517	
Table 3. Standard Deviation of Chips Won				

	Player	Unbiased	Biased
1	Mild Adaptive Rocks	0.371	0.291
2	Passive Rocks	0.455	0.434
3	Strong Adaptive Rocks	0.327	0.253
4	Rocks	0.418	0.331
5	Random Bluffer	0.586	0.466
6	Smart Bluffer	0.51	0.417
Table 4.	Average Win Rate (Fraction	n of Rounds	Winning > 0

