Задание 1

Молекурялная динамика

Софиа Белен Лопес Висенс

Группа Б02-903

Московский физико-технический институт

Содержание

1	Время установления распределения Максвелла	3
2	Время динамической памяти	4
3	Уравнеие состояния	6
		6
	3.2 Зависимость сжимаемости системы от плотности	7
	3.3 Проверка формулы для поправки давления при обрезке потенциала	8
4	Метод блочных средних	9

1 Время установления распределения Максвелла

2 Время динамической памяти

 $t_m \approx 3$

$$<\Delta r^{2}(t)> = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{r}_{i}(t) - \mathbf{r}'_{i}(t))^{2}$$
 (1)

$$<\Delta v^{2}(t)> = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{v}_{i}(t) - \mathbf{v}'_{i}(t))^{2}$$
 (2)

Рис. 1: Усреднённые разбегания координат $<\Delta r^2(t)>$ и скоростей $<\Delta v^2(t)>$ на двух траекториях, рассчитанных из тождественных начальных условий с шагами $\Delta t_1=0.001$ и $\Delta t_2=0.0001$. Параметры записаны в таблицу 1.

Таблица 1: Параметры симуляции.

Количество частицы	64
Шаг по времени 1	0.001
Шаг по времени 2	0.0001
Температура	0.44
Плотность	0.5

3 Уравнеие состояния

3.1 Зависимость давления системы от плотности

Рис. 2: График зависимости давления P и $P_k/(P_k+P_P)$ от плотностей, где P_k - кинетический вклад в давление и P_P - вириальный вклад. Параметры записаны в таблице 2.

3.2 Зависимость сжимаемости системы от плотности

Рис. 3: График зависимости сжимаемости от плотности T=2. Параметры записаны в таблице 2.

3.3 Проверка формулы для поправки давления при обрезке потенциала

Рис. 4: График зависимости ошибки в давление от обрезки потенциала r_{cut} , где ΔP - это разность между давление полученное без обрезки и давление полученное с обрезкой потенциала. Параметры записаны в таблице 2.

Таблица 2: Параметры симуляции.

Количество частицы	512
Шаг по времени	0.001
Температура	2
Плотность	0.1

4 Метод блочных средних

Рис. 5: График зависимости стандартного отклонения полной энергии от количества операций. Параметры записаны в таблице 3.

Таблица 3: Параметры симуляции.

Количество шагов	1000000
Количество частицы	64
Шаг по времени	0.001
Плотность	0.1