Last +tme: 1 mHs

Im f(x) = L iff. for all cont. Space A function f has Curves, r(t) with it r(t)=a.

.I MM from direction of curve L

*To show I that is DNE, find F(t) and F(t) with 100+ F2(t)= a and show Itm f(To(t)) & Itm, f(T(t))

Use lines $l_{ab}(t) = \vec{a} + t(a,b)$

AThese IMES DONT Sufice showing shows if

a IMH & exists.

Let $f(x,y) = \begin{cases} 1 & \text{if } y = x^2 \\ 0 & \text{otherwise} \end{cases}$

Limiting + a=0 along

the line lab (t), notice

f(las(t))=f(at, bt)=0 for all t>0 100 (at)2 = bt has at most 2 solutions

Im f(lan(t)) = Im 0=0

 $\overline{r}(t)=(t,t^2)$, we see: $f(\overline{r}(t))=f(t,t^2)=1$ for all t.

by Curves Contention

Q: How do w show a limit exists?

Trick: Use Polar Coordinates (doesn't always work)

9-29-21 Limits cont...

Ex: Does $\frac{\text{Im}}{x + 0} \frac{\text{Sm}(x^2 + y^2)}{x^2 + y^2} \text{ exist?}$ (yes, withou)

1. Convert to Polar Coordinates $\begin{cases} x = \Gamma \cos \theta \\ y = \Gamma \sin \theta \end{cases}$ Polar coordinates use

A (x,y) + (0,0) Mf. $(-70^{\frac{1}{4}})$ and $(-70^{\frac$

 $\frac{\text{Ex:}}{\sqrt{70}} \frac{\text{Voes}}{\sqrt{x^2+y^2}} \frac{\text{Im}}{\sqrt{x^2+y^2}} \frac{\sqrt{x^2+y^2}}{\sqrt{(1050)^2 - (15m0)^2}} = \frac{r^2(\cos^2 0 - 5m^2 0)}{r^2(\cos^2 0 + 5m^2 0)} = \frac{r^2(\cos^2 0 + 5m^2 0)}{r^2(\cos^2 0 + 5m^2 0)}$

(M) (US(20) = COS(20) *(depending on r, not 0)*

Approaching $0 = \frac{\pi}{2}$, expect $\lim_{x \to 0^+} f(x,y) = \cos(2\frac{\pi}{3}) = -1$ Approaching 0 = 0, expect $\lim_{x \to 0^+} f(x,y) = \cos(0) = 1$.: Limit does not exist by Curves criterian 9-29-21

LIMITS CONF ...

Continuity

• Function f is continuous O at dom(f) when $\lim_{X \to \overline{a}} f(\overline{x}) = f(\overline{a})$ • f is continuous O set D when f is continuous Oevery $\overline{A} \in D$

Ex: Every Polynomial is cont. everywhere.

Ex: Every Patronal function is cont. on its domain.

 $E_{X}! f(x_{i}) \frac{SM(x^2+y^2)}{X^2+y^2}$ is cont. everywhere except (0,0).

Cont. everywhere: $9(X,y) = \begin{cases} \frac{SM(x^2+y^2)}{x^2+y^2} & \text{if } (X,y) \neq (0,0) \\ 1 & \text{if } (X,y) = (0,0) \end{cases}$

NB: The "usual" rules for continuity from Calculus | Still apply

Hea: Derivative measures how function changes with small changes in MPUt. *In a given direction.

Defn: Directional derivative of function f of n variables \emptyset \vec{a} f d m the direction of unit vector $\vec{u} \in \mathbb{R}^2$ is:

 $D_{a}f(\vec{a}) = \lim_{h \to 0^{+}} \frac{f(\vec{a} + h\vec{a}) - f(\vec{a})}{h}$

Ex: Compute Dafa) for f(x,y) = x Jy @ 2 = (2,4)

M direction $\overline{V}=\langle 2,-1\rangle$. $\overline{U}=\overline{V}=\overline{V}=\langle 2,-1\rangle=\langle \frac{2}{15},-\frac{1}{15}\rangle$

3

6-