Model Predictive Control of a Sewer System

June 14, 2018

Group 1030

Jacob Naundrup Pedersen Thomas Holm Pilgaard

Department of Electronic Systems Aalborg University Denmark

Agenda

Group 1030

Diskussion/Konklusion

Introduktion

Kloakker og rensningsanlæg Problem formulering

System beskrivelse

Løsninger og begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Typisk opbygning af kloak ledning

Agenda

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

Degrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementeri

Kontro

Lineariserin

Resulta

Diskussion/Konklusion

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

haarsaneningar

Modellering

Simulering

Struktur

Preissmann

Implementeri

Kontrol

Linearisering

Resultat

Diskussion/Konklusion

Mekanisk rensning

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

begrænsninger

Modellering

01----

0.....

Preissman

Implementerin

Kontro

Lineariserin

MPC

Resultat

- Mekanisk rensning
- Sandfang

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

11100001101111

Simulerin

D :

Preissmann

Implementering

Kontro

Linearisering

Resulta

- ► Mekanisk rensning
- Sandfang
- Primær rensning

Agenda

Group 1030

troduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

11100001101111

Simulering

Struktur

Preissmann

Implementerin

Kontrol

Lineariserin

WIFG

nesultai

- Mekanisk rensning
- Sandfang
- Primær rensning
- Sekundær rensning

Agenda

Group 1030

troduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

.

....

Simulerino

Struktur

Preissmann

Implementerin

Kontrol

Linearisering

Resulta

- Mekanisk rensning
- Sandfang
- Primær rensning
- Sekundær rensning
- Kemisk rensning

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivels

Cystem besienven

Løsninger og

begrænsning

Modellerin

WOOGCHCIIII

simulerin

Ou untui

FIEISSIIIdIIII

Implementerin

Kontro

Linearisering

Resulta

Diekussien/Kenklusier

Virksomheds besøg ved Fredericia Spildevand og Energi A/S.

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

hearænsninger

Modellerin

011110110

Droinomone

FIEISSIIIdIIII

Implementer

Lineariseri

Resulta

- Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivels

Løsninger og

begrænstilliger

Modellerin

Struktur

Droinomonn

Preissmann

Implementeri

Linearian

Lineariserin

Resulta

- Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - Problemer for aerobe bakterier

Agenda

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivel

Løsninger og

WOOGCHCIIII

Simulerir

Struktur

Preissmann

Implementering

Kontrol

Linearisering

Resulta

- Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - Problemer for aerobe bakterier
 - Andre forstyrelser

Problem formulering

Agenda

Group 1030

Problem formulering

Diskussion/Konklusion

How can a simulation environment be constructed, which mimic the behavior of a real sewer system, where MPC is utilized as the control scheme to obtain stable sewage output such that optimal performance can be obtained from a WWTP.

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

.

Simulering

- .

Preissmani

Implementenii

Kontrol

MPC

Resultat

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

System beskrivelse

Løsninger og

Modellerina

1110000110111

Struktur

Preissmann

Implementerin

Kontro

Lineariserin

Resulta

Diskussion/Konklusion

- Data fra industri.
- Flow profiler af beboelse og mindre industri.

Løsninger og begrænsninger

Agenda

Group 1030

System beskrivelse

Løsninger og begrænsninger

Modellering

Resultat

Indsættelse af tank

Løsninger og begrænsninger

Agenda

Group 1030

ntroduktion

rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og begrænsninger

Modellerin

Struktur

Drainamann

Preissmann

Implementer

Kontro

Lineariserin

MPC

nesuita

- ▶ Indsættelse af tank
- Afgrænse simulering til enkelt kemisk component

Løsninger og begrænsninger

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og bearænsninger

Modellorin

Modellerin

Simularin

Struktur

Preissmann

Implementer

Kontrol

Lineariserin

Resulta

- Indsættelse af tank
- ► Afgrænse simulering til enkelt kemisk component
- ► Runde kloak rør

Agenda

Group 1030

Modellering

Diskussion/Konklusion

Kloak ledning

Saint-Venant

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

$$\frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right)$$

$$\frac{1}{2}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f -$$

Transport af concentrat i kloak ledning

Sammenkobling af kloakledninger

Tank.

Agenda

Group 1030

Modellering

Diskussion/Konklusion

Kloak ledning

Saint-Venant

Antagelser

► Kontinuitet: Impuls:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{Q}{\partial t} + \frac{1}{2A} \frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right)$$

$$\frac{\partial Q}{\partial t} + \frac{1}{gA} \frac{\partial}{\partial x} \left(\frac{Q}{A} \right)$$

$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$

- ▶ Transport af concentrat i kloak ledning
 - Afhænger af flow i kloak ledning
 - Antagelser
- Sammenkobling af kloakledninger

Tank.

Agenda

Group 1030

Modellerina

Diskussion/Konklusion

Kloak ledning

- Saint-Venant
- ► Kontinuitet:

$$\frac{1}{gA}\frac{\partial}{\partial t}$$

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

Impuls: Antagelser

- ▶ Transport af concentrat i kloak ledning
 - Afhænger af flow i kloak ledning
 - Antagelser
- Sammenkobling af kloakledninger
 - Summering af flow og koncentrat
 - Antagelser
- Tank.

Agenda

Group 1030

Modellerina

Diskussion/Konklusion

Kloak ledning

- Saint-Venant
- ► Kontinuitet:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$+\frac{1}{aA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right)$$

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial A}{\partial x}\left(\frac{Q^2}{A}\right) + \frac{\partial h}{\partial x} + S_f - S_b = 0$$

$$\frac{\partial}{\partial x} \left(\frac{Q^2}{A} \right) +$$

$$\left(\frac{\partial^{2}}{\partial x}\right) + \frac{\partial n}{\partial x} + S_{f} - S_{b}$$

- ▶ Transport af concentrat i kloak ledning
 - Afhænger af flow i kloak ledning
 - Antagelser
- Sammenkobling af kloakledninger
 - Summering af flow og koncentrat
 - Antagelser
- Tank.
 - Ændring i højde og koncentrat
 - Antagelser

Agenda

Group 1030

System beskrivelse

Modellering

Struktur

Resultat

Intialisering

Agenda

Group 1030

ntroduktion

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsning

Modellering

Simulering

Struktur

ou untui

eissmann

Implementering

Kontrol

Lineariserin

MPC

Resultat

Diskussion/Konklusion

Intialisering

Opsætning af komponenter

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsmig

Modellering

. . . .

Struktur

malamantarina

implementening

Kontrol

Lineariserin

MPC

Resulta

Diskussion/Konklusion

Intialisering

- Opsætning af komponenter
- System i steady state

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsning

Modellerin

Simulering

Struktur

reissmann

Implementerin

Lineariserin

Resulta

Diskussion/Konklusion

Intialisering

- Opsætning af komponenter
- System i steady state
- Simulering

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsning

Modellerin

Simulening

Struktur

reissmann

Implementering

IZ--1--1

Lineariserin

MPC

nesultat

Diskussion/Konklusion

Intialisering

- Opsætning af komponenter
- System i steady state

Simulering

► Iterativ beregning af komponenterne

Agenda

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

bogiconoming

Modellerin

ninulating Danislatin

Struktur

reissmann -

Implementerin

Kontrol

Lineariserin

. . . .

Diskussion/Konklusio

Intialisering

- Opsætning af komponenter
- System i steady state

Simulering

- Iterativ beregning af komponenterne
- ► Gennemgang af resultat

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

WOOGCHCIIII

mulering

Struktur

eissmann

Implementerin

Lineariearin

LITERITORI

Resultat

Diskussion/Konklusio

Preissmann

Agenda

Group 1030

System beskrivelse

Modellering

Preissmann

Resultat

► Kinematisk bølge aproksimering

$$ightharpoonup S_b = S_f$$

► Fyldningsgrad kurve for rør

Agenda

Group 1030

ntroduktio

Kloakker og

Problem formulerin

System beskrivelse

Løsninger og

Modellering

simuleri

Preissmann

land land a state

Implemente

Kontrol

Lineariseri

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Preissmann iteration

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivel

Løsninger og

Modellering

. . .

Struktur

Preissmann

Implementer

....

Lineariserin

Resultat

Diskussion/Konklusion

Preissmann stabilitet

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninger

Modellering

Simulerin

Preissmann

Implementeri

IIIpieilieilieili

Kontrol

Linearisering

Resulta

Diskussion/Konklusion

Ubetinget stabilitet

Courant's tal

Agenda

Group 1030

Introduktio

rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

.

Modellering

Simulering

Struktu

Preissmann

Implementer

. . . .

Lineariserin

Resultat

Diskussion/Konklusior

► Indikation af præcision

$$C_r = \frac{\sqrt{g \cdot \overline{\mathsf{H}}} \cdot \Delta t}{\Delta x}$$

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivels

Løsninger og

Modellering

WOOGCHCIII

Simulem

Preissmann

Implementer

Kontrol

MPC

Resultat

Diskussion/Konklusion

Agenda

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivel

Løsninger og

Modellering

Preissmann

Implemente

Kontrol

Lineariser

Resultat

Diskussion/Konklusion

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsninger

Modellering

Modellerii

. . .

Struktur

Preissmann

Preissmann

Implementering

Kontrol

Kontrol

Linearisering

Regultat

Diskussion/Konklusio

- ► Implementering
- ► Kontrol
- ► Resultater
- ▶ Diskussion/Konklusion

Group 1030

ntroduktion

rensningsanlæg

Problem formulerin

System beskrivelse

_øsninger og

Modellering

....

Simulerin

Outun

Preissmann

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Group 1030

Implementering

Diskussion/Konklusion

1. Pipe

- Længde [m]
- Sektioner
- ► S_b (Hældning) [‰]
- $\triangle x = \text{Længde/Sektioner [m]}$
- Diameter [m]
- Theta
- $ightharpoonup Q_f[m^3/s]$
- Side inflow
- Placering i data

2. Tank

- ▶ Størrelse [m³]
- ► Højde [m]
- ► Areal = Størrelse / Højde [m²]
- ► Maximum outflow [m³/s]
- Placering i data

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

System beskrivelse

Modellering

Simulering

Implementering

Resultat

► Steady state

► System opsætning

Fields	type type	e component	sections
1	'Pipe'	1	35
2	'Tank'	1	1
3	'Pipe'	17	207
4	'Tank'	1	1
5	'Pipe'	1	38
6	'Total'	21	282

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

Modellering

Simuleri

- .

Preissmann

Implementering

Kontrol

Linearinarina

MPC

Resulta

Diskussion/Konklusion

Iterere igennem rør og tank for hvert tidsskridt

Group 1030

ntroduktio

rensningsanlæg

Problem formuleri

System beskrivels

Løsninger og

begrænsninger

Modellering

Simulerin

Preissmann

Implementering

Kontrol

Lineariseri

MPC

Resultat

Diskussion/Konklusio

24

38

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntrodulation

Kloakker og rensningsanlæg

Problem formulerin

System beskrivel

Løsninger og

.

Modellering

Simularina

Struktur

Preissmann

1 1010011101111

Implement

Kontro

Linearisering

. . .

Diskussion/Konklusion

► Linear model til MPC

- ► Linearisering af kontinuitets ligningen
- ► Højde states
- ► Priessmann scheme

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{\partial A(h)}{\partial h} \frac{\partial h(x,t)}{\partial t} + \frac{\partial Q(h)}{\partial h} \frac{\partial h(x,t)}{\partial x} = 0$$

Group 1030

ntroduktio

- Kloakker og rensningsanlæg
- Problem formuler

System beskrivel

Løsninger og

hearsensninger

Modellerin

Simulei

- ·

Preissman

Implementer

Kontre

Linearisering

Resultat

Diskussion/Konklusion

► Opsat på matrix og vektor form

► Opstilles på state space form

$$\left[\underbrace{\frac{1}{2\Delta t} \frac{\partial A}{\partial h} - \frac{\theta}{\Delta x} \frac{\partial Q}{\partial h}}_{a} \underbrace{\frac{1}{2\Delta t} \frac{\partial A}{\partial h} + \frac{\theta}{\Delta x} \frac{\partial Q}{\partial h}}_{b} \right] \begin{bmatrix} h_{j+1}^{i+1} \\ h_{j+1}^{i+1} \end{bmatrix} =$$

$$- \left[\underbrace{\frac{-1}{2\Delta t} \frac{\partial A}{\partial h} - \frac{(1-\theta)}{\Delta x} \frac{\partial Q}{\partial h}}_{G} \underbrace{\frac{-1}{2\Delta t} \frac{\partial A}{\partial h} + \frac{(1-\theta)}{\Delta x} \frac{\partial Q}{\partial h}}_{d} \right] \begin{bmatrix} h_{j+1}^{i} \\ h_{j+1}^{i} \end{bmatrix}$$

Group 1030

atroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninger

Modellering

. . . .

Struktur

Preissmann

Implementer

Kontrol

Linearisering

Resultat

riocanai

Diskussion/Konklusion

$$\underbrace{\begin{bmatrix} 1 \\ -a_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{B} h_0^{i+1} + \underbrace{\begin{bmatrix} \frac{\partial n}{\partial Q} \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}}_{B_d} d_0^{i+1}$$

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivel

Løsninger og

begrænsninger

Modellering

01-----

Struktur

Preissmann

FIEISSIIIdIIII

impiementerii

Kontro

Linearisering

WPG

Resulta

Diskussion/Konklusion

► e - Forøgelse af højde i tank(inflow)

- ► f Reducering af højde i tank(Outflow)
- ▶ g Inflow i efterfølgende rør

$$= \underbrace{\begin{bmatrix} b_{1,2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & a_{2,1} & b_{2,2} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} h_{1,2}^{i+1} \\ h_{2,0}^{i+1} \\ h_{2,1}^{i+1} \end{bmatrix}}_{x(k+1)} + \underbrace{\begin{bmatrix} 0 & 0 \\ 0 & -f \\ 0 & g \\ 0 & 0 \end{bmatrix}}_{B} \begin{bmatrix} h_{0}^{i+1} \\ u_{tank} \end{bmatrix}$$

Group 1030

Introduktio

rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

hearsensninger

Modellering

Simulerin

Droinemann

Implementeri

Implementerir

Linearisering

MPC

Resulta

Diskussion/Konklusion

➤ Samligning af ulineær og linear model for små signal

- ► System setup
- Sinus input

Туре	Components	Sections
Pipe	1	35
Tank	1	1
Pipe	18	227
Total	20	263

Modellering

Linearisering

Group 1030

System beskrivelse

Modellering

MPC

Cost function

- Afgrænset til at minimiere flow variationer
- ▶ Constraints
 - ► Højde
 - Kontrol input
- ► Prediction model

Group 1030

troduktio

- Kloakker og rensningsanlæg
- Problem formulering

System beskrivel

Løsninger og

begrænsninger

Modellering

Simularia

Struktur

Preissma

Implementer

Kontrol

Lineariseri MPC

Resultat

Diskussion/Konklusio

- Begrænsning af Prediction horizon
- System setup
- ► Forstyrrelses input

Fields	type type	component	⊞ sections
1	'Pipe'	1	5
2	'Tank'	1	1
3	'Pipe'	1	5
4	'Total'	3	11

ntroduktio

Kloakker og rensningsanlæg

Problem formuleri

System heskrive

Løsninger og

begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementerin

Kontro

Linearisering MPC

Poculto

Resultai

Dept. of Electronic Systems Aalborg University Denmark

troduktion

Kloakker og rensningsanlæg

Cuetana la administrati

Løsninger og

begrænsninger

Modellering

Simulerin

Draiceman

Implemente

Implementerir

Linne

MPC

Resulta

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

....

Simulering

Preissmann

Fielssillallii

Kontrol

Linearisering

Resultat

Diskussion/Konklusio

 System setup, efterligning af Fredericia

▶ Flow profiler

Type	Component	Sections
Pipe	1	35
Tank	1	1
Pipe	17	207
Tank	1	1
Pipe	1	38
Total	21	282

Modellering

Resultat

Output flow

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduletio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Løsninger og

Modellering

Simulemi

Preissmani

Implementeri

...,

Kontrol

Lineariserin

Resultat

Diskussion/Konklus

Diskussion/Konklusion

Agenda

Group 1030

and the latest

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsning

Modellering

Cinculation

011110110

Preissmann

Implementaria

implementering

Kontrol

Linearisering

Resultat

Diskussion/Konklusion 38

- ► Courant's tal
- ▶ Model reduktion
- ► Simulering
- ► MPC