0

Convención: La aplicación asocia a izquierda. En $\lambda v.e$, la primer ocurrencia de v es ligadora y su alcance es e. Por ejemplo,

El CL puro sólo contiene variables, aplicaciones y la notación lambda

 $\lambda x.(\lambda y.xyx)x$ es lo mismo que $\lambda x.(\lambda y.(xy)x)x$

Variables libres:

(llamada abstracción).

 $FV(v) = \{v\}$ $FV(ee') = FV(e) \cup FV(e')$ $FV(\lambda v.e) = FV(e) - \{v\}$

Conjunto de sustituciones: $\Delta = \langle var \rangle \rightarrow \langle exp \rangle$

$$\begin{array}{rcl} v/\delta &=& \delta v \\ (ee')/\delta &=& (e/\delta)(e'/\delta) \\ (\lambda v.e)/\delta &=& \lambda v_{new}.\ e/[\delta|v:v_{new}] \\ && \text{donde}\ v_{new} \not\in \bigcup_{w \in FV(e)-\{v\}} FV(\delta|w) \end{array}$$

Renombre: Cambio en $\lambda v.e$ de la variable ligada v (y todas sus ocurrencias) por una variable v' que no ocurra libre en e: $\lambda v'.$ $e/v \mapsto v'$ donde $v' \notin FV(e)$.

 α -conversión: Si e_1 se obtiene a partir de e_0 por 0 o más renombres de ocurrencias de subfrases. También se dice que e_0 α -convierte a e_1 .

Notación para expresiones α - convertibles: $e_0 \equiv e_1$

Redex: Es una expresión de la forma $(\lambda v.e)e'$

Contracción β : Reemplaza en e_0 una ocurrencia de un redex $(\lambda v.e)e'$ por su contracción $(e/v\mapsto e')$, y luego efectúa cero o más renombres de cualquier subexpresión.

 $e_0
ightarrow e_1$

Forma normal: expresión sin redices. Las formas normales representan configuraciones terminales. Por eso la semántica operacional del cálculo lambda consiste en efectuar contracciones β hasta obtener formas normales.

 $ightarrow^*$ denota la clausura transitiva y refexiva de ightarrow (o sea, aplicar ightarrow cero o más veces)

Formalmente:

 $e \rightarrow^* e'$ si y sólo si existen $e_0,...,e_n$ (con $n \ge 0$) tales que:

$$e = e_0 \rightarrow e_1 \rightarrow \dots \rightarrow e_n = e'$$

Notar que si n=0 entonces $e=e^\prime$

Teorema de Church-Rosser Si $e \to^* e_0$ y $e \to^* e_1$, entonces existe e' tall que $e_0 \to^* e'$ y $e_1 \to^* e'$.

Corolario 1. Salvo renombre, toda expresión tiene a lo sumo una forma normal.

Regla η : Un η -redex es una expresión de la forma $\lambda v.ev$, donde $v \notin FV$ e

$$\frac{1}{\lambda v.e \, v \to e} \operatorname{si} \, v \notin FV \, e \qquad (\eta)$$

La idea de ejecución (llamada evaluación) que se implementa habitualmente tiene las siguientes diferencias con la relación

- sólo se evalúan expresiones cerradas (es decir, sin variables libres)
- es determinística,
- no busca formas normales sino formas canónicas.

Evaluación (en orden) normal: lenguajes funcionales lazy (Haskell)

Evaluación eager o estricta: lenguajes estrictos (ML).

La noción de forma canónica depende de la definición de evaluación. Se define una noción de forma canónica para la evaluación normal, y otra para la evaluación eager. En el caso del cálculo lambda coinciden: **son las abstracciones**

Propiedad: Una aplicación cerrada no puede ser forma normal.

Corolario: Una expresión cerrada que es forma normal es también forma canónica.

Reglas para \Rightarrow_N

Regla para las formas canónicas

 $\lambda v.e \Rightarrow_N \lambda v.e$

Regla para la aplicación

$$\frac{e \Rightarrow_N \lambda v.e_0 \quad (e_0/v \mapsto e') \Rightarrow_N z}{ee' \Rightarrow_N z}$$

Reglas para \Rightarrow_E

Regla para las formas canónicas

 $\overline{\lambda v.e} \Rightarrow_E \overline{\lambda v.e}$

Regla para la aplicación

$$\frac{e \Rightarrow_E \lambda v.e_0}{ee' \Rightarrow_E z'} \frac{(e_0/v \mapsto z') \Rightarrow_E z}{ee' \Rightarrow_E z}$$