

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning

Abschlusspräsentation, Seminar: Advanced Topics in Data Analysis and Deep Learning

Lukas E	Epple										
•	٠	•	•	·	٠	٠	٠	٠	·	•	
•	•			•	•	•		•	•	•	

Warum Reasoning?

Für bestimmte Aufgaben ist die Korrektheit der Rückgabe viel wichtiger als die Geschwindigkeit

"Think Fast" "Think Slow"
Schnelle Antworten Korrekte Antworten

Günstiger, geeignet für einfache oder kreative Aufgaben, wo die logische Korrektheit nicht so relevant ist. Langsmer, besser geeignet für Aufgaben im Kontext von Mathematik, Logik oder Debugging, bei denen logische Korrektheit essenziell ist.

Warum Reasoning?

Durch generierte Gedankenkette kann die Token-Vorhersage der Antwort präzisiert werden

Warum Reinforcement Learning?

Autonomes Training ermöglicht schnelleres Training und effektivere Skalierung

- + Autonomes Training möglich
- Deutlich schneller und besser Skalierbar für "große Aufgaben"
- + Keine riesige Menge **vordefinierter Daten** notwendig

 (Vollumfängliche Trainingsdaten erstellen ist ohnehin nicht trivial: curse of dimensionality)
- Intrinsisch motivierter Denkprozess (nicht nur "Nachahmen")

"Pure reinforcement learning"

Post-training des Mixture of Experts Model

"Pure reinforcement learning"

Post-training des Mixture of Experts Model

Reinforcement Learning für LLMs

Group Relative Policy Optimization (GRPO): Maximieren der Anzahl überdurchschnittlich guter Samples

Group Relative Policy Optimization (GRPO)

Maximierung der erzielten Advantages

2.2.1. Reinforcement Learning Algorithm

Group Relative Policy Optimization In order to save the training costs of RL, we adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024), which foregoes the critic model that is typically the same size as the policy model, and estimates the baseline from group scores instead. Specifically, for each question q, GRPO samples a group of outputs $\{o_1, o_2, \cdots, o_G\}$ from the old policy $\pi_{\theta_{old}}$ and then optimizes the policy model π_{θ} by maximizing the following objective:

$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}\left[q \sim P(Q), \left\{o_{i}\right\}_{i=1}^{G} \sim \pi_{\theta_{old}}(O|q)\right]$$

$$\frac{1}{G} \sum_{i=1}^{G} \left(\min\left(\frac{\pi_{\theta}(o_{i}|q)}{\pi_{\theta_{old}}(o_{i}|q)}A_{i}, \operatorname{clip}\left(\frac{\pi_{\theta}(o_{i}|q)}{\pi_{\theta_{old}}(o_{i}|q)}, 1 - \varepsilon, 1 + \varepsilon\right)A_{i}\right) - \beta \mathbb{D}_{KL}\left(\pi_{\theta}||\pi_{ref}\right)\right), \tag{1}$$

$$\mathbb{D}_{KL}\left(\pi_{\theta}||\pi_{ref}\right) = \frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - \log\frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - 1,\tag{2}$$

where ε and β are hyper-parameters, and A_i is the advantage, computed using a group of rewards $\{r_1, r_2, \dots, r_G\}$ corresponding to the outputs within each group:

$$A_{i} = \frac{r_{i} - \text{mean}(\{r_{1}, r_{2}, \cdots, r_{G}\})}{\text{std}(\{r_{1}, r_{2}, \cdots, r_{G}\})}.$$
(3)

Entwickelt in: https://arxiv.org/abs/2402.03300 (Apr. 2024)

Anschauliches Beispiel: https://huggingface.co/docs/trl/main/en/grpo_trainer

Wie wird der Reward berechnet?

DeepSeek-R1 verwendet eine Kombination aus regelbasierten Rewards und Rewardmodellen für unterschiedliche Aspekte

RL Stage	Belohnungsmodell	Fokus	Rewards
Stage 1 (R1 & R1-Zero)	Rule-based Reward	Korrektheit & Lesbarkeit	Korrektheit, Formatierung
Stage 2 (R1)	Reward Model	Menschliche Präferenzen	Helpfulness und Harmlessness

Distillation

Modellkomprimierung durch Verdichtung

- Weniger Flüssigkeit
- Fast gleich viel Alkohol
- Viele Parameter - Viel "Wissen"
 - Weniger Parameter
 - Fast gleich viel "Wissen"

Wie Model-Distillation funktioniert

Nachahmen eines "Vorbilds" durch einen "Schüler"

https://www.youtube.com/watch?v=vyJy-0zBSQ0 https://de.wikipedia.org/wiki/Kullback-Leibler-Divergenz

Research Erkenntnisse (DeepSeek-R1-Zero)

Open Validation von RL als effektive Methode für autonomes Training

Figure 2 | AIME accuracy of DeepSeek-R1-Zero during training. For each question, we sample 16 responses and calculate the overall average accuracy to ensure a stable evaluation.

Question: If a > 1, then the sum of the real solutions of $\sqrt{a - \sqrt{a + x}} = x$ is equal to

Response: <think>

To solve the equation $\sqrt{a - \sqrt{a + x}} = x$, let's start by squaring both \cdots

$$\left(\sqrt{a-\sqrt{a+x}}\right)^2 = x^2 \implies a-\sqrt{a+x} = x^2$$

Rearrange to isolate the inner square root term:

$$(a-x^2)^2 = a+x \implies a^2 - 2ax^2 + (x^2)^2 = a+x \implies x^4 - 2ax^2 - x + (a^2 - a) = 0$$

. .

Wait, wait. Wait. That's an aha moment I can flag here.

Let's reevaluate this step-by-step to identify if the correct sum can be \cdots

We started with the equation:

$$\sqrt{a-\sqrt{a+x}}=x$$

First, let's square both sides:

Model	AIME 2024		MATH-500	GPQA Diamond	LiveCode Bench	CodeForces
	pass@1	cons@64	pass@1	pass@1	pass@1	rating
OpenAI-o1-mini OpenAI-o1-0912	63.6 74.4	80.0 83.3	90.0 94.8	60.0 77.3	53.8 63.4	1820 1843
DeepSeek-R1-Zero	71.0	86.7	95.9	73.3	50.0	1444

Table 2 | Comparison of DeepSeek-R1-Zero and OpenAI o1 models on reasoning-related benchmarks.

DeepSeek-R1 Evaluation

DeepSeek-R1 als Artefakt mit beeindruckender Outputqualität

	Benchmark (Metric)	Claude-3.5- Sonnet-1022	GPT-40 0513	DeepSeek V3		OpenAI o1-1217	DeepSeek R1
	Architecture	-	-	MoE	_	-	МоЕ
	# Activated Params	-	-	37B	-	-	37B
	# Total Params	-	-	671B	-	-	671B
	MMLU (Pass@1)	88.3	87.2	88.5	85.2	91.8	90.8
	MMLU-Redux (EM)	88.9	88.0	89.1	86.7	-	92.9
	MMLU-Pro (EM)	78.0	72.6	75.9	80.3	-	84.0
	DROP (3-shot F1)	88.3	83.7	91.6	83.9	90.2	92.2
English	IF-Eval (Prompt Strict)	86.5	84.3	86.1	84.8	-	83.3
English	GPQA Diamond (Pass@1)	65.0	49.9	59.1	60.0	75.7	71.5
	SimpleQA (Correct)	28.4	38.2	24.9	7.0	47.0	30.1
	FRAMES (Acc.)	72.5	80.5	73.3	76.9	-	82.5
	AlpacaEval2.0 (LC-winrate)	52.0	51.1	70.0	57.8	-	87.6
	ArenaHard (GPT-4-1106)	85.2	80.4	85.5	92.0	-	92.3
	LiveCodeBench (Pass@1-COT)	38.9	32.9	36.2	53.8	63.4	65.9
Code	Codeforces (Percentile)	20.3	23.6	58.7	93.4	96.6	96.3
Code	Codeforces (Rating)	717	759	1134	1820	2061	2029
	SWE Verified (Resolved)	50.8	38.8	42.0	41.6	48.9	49.2
	Aider-Polyglot (Acc.)	45.3	16.0	49.6	32.9	61.7	53.3
Math	AIME 2024 (Pass@1)	16.0	9.3	39.2	63.6	79.2	79.8
	MATH-500 (Pass@1)	78.3	74.6	90.2	90.0	96.4	97.3
	CNMO 2024 (Pass@1)	13.1	10.8	43.2	67.6	-	78.8
	CLUEWSC (EM)	85.4	87.9	90.9	89.9	-	92.8
Chinese	C-Eval (EM)	76.7	76.0	86.5	68.9	-	91.8
	C-SimpleQA (Correct)	55.4	58.7	68.0	40.3	-	63.7

Table 4 | Comparison between DeepSeek-R1 and other representative models.

Distillation Results

DeepSeek-R1 als Artefakt mit beeindruckender Outputqualität

Model	AIME 2024		MATH-500	GPQA Diamond	LiveCode Bench	CodeForces	
	pass@1	cons@64	pass@1	pass@1	pass@1	rating	
GPT-40-0513	9.3	13.4	74.6	49.9	32.9	759	
Claude-3.5-Sonnet-1022	16.0	26.7	78.3	65.0	38.9	717	
OpenAI-o1-mini	63.6	80.0	90.0	60.0	53.8	1820	
QwQ-32B-Preview	50.0	60.0	90.6	54.5	41.9	1316	
DeepSeek-R1-Distill-Qwen-1.5B	28.9	52.7	83.9	33.8	16.9	954	
DeepSeek-R1-Distill-Qwen-7B	55.5	83.3	92.8	49.1	37.6	1189	
DeepSeek-R1-Distill-Qwen-14B	69.7	80.0	93.9	59.1	53.1	1481	
DeepSeek-R1-Distill-Qwen-32B	72.6	83.3	94.3	62.1	57.2	1691	
DeepSeek-R1-Distill-Llama-8B	50.4	80.0	89.1	49.0	39.6	1205	
DeepSeek-R1-Distill-Llama-70B	70.0	86.7	94.5	65.2	57.5	1633	

Table 5 | Comparison of DeepSeek-R1 distilled models and other comparable models on reasoning-related benchmarks.

Ausblick: Erneute RL stage nach der Distillation

Kritik und Ausblick

- "Pure RL": Für herausragende Ergebnisse waren viele weitere Schritte notwendig.
 Die offene Validierung fand jedoch trotzdem umfangreich statt.
- Limitierungen bei Benchmark-Vergleichen: Abhängigkeit von veröffentlichten Benchmark
 Werten für OpenAl-Modellen aufgrund eingeschränkter Zugänglichkeit in China.

- Ausbessern von Unzulänglichkeiten:
 - In manchen Bereichen schlechter als das Basismodell (complex role-playing, JSON output,...)
 - Language Mixing bei Sprachen außer Englisch und Chinesisch
 - Few-shot prompting verschlechtert die Outputqualität
- Anwendung von RL auf die Distilled Models

Demo

Lokales Verwenden des 8b distilled models mit Ollama

deepseek-r1

DeepSeek's first-generation of reasoning models with comparable performance to OpenAl-o1, including six dense models distilled from DeepSeek-R1 based on Llama and Qwen.

Vielen Dank für die Aufmerksamkeit!

