Operációs rendszerek BSc

8. Gyak. 2022. 04. 03.

Készítette:

Hauer Attila Árpád Szak Mérnökinformatikus Neptunkód JJL4WE

Miskolc, 2022

1. Adott a következő ütemezési feladat, amit a FCFS, SJF és Round Robin (RR:10ms) ütemezési algoritmus alapján határozza meg következő teljesítmény értékeket, metrikákat (külön-külön táblázatba):

FCFS:

FCFS	P1	P2	P3	P4					
Érkezés	0	7	11	20					
CPU idő	14	8	36	10					
Indulás	0	14	22	58					
Befejezés	14	22	58	68					
Várakozás	0	7	11	38					
Algoritmus neve	FCFS								
CPU kihasználtság	100%								
Körülfordulási idők átlag	31								
Várakozási idők átlaga	14								
Válaszidők átlaga	161,5								

SJF:

SJF	P1	P2	P3	P4					
Érkezés	0	7	11	20					
CPU idő	14	8	36	10					
Indulás	0	14	32	22					
Befejezés	14	22	68	32					
Várakozás	0	7	21	2					
Algoritmus neve	SJF								
CPU kihasználtság	100%								

Algoritmus neve	211
CPU kihasználtság	100%
Körülfordulási idők átlag	24,5
Várakozási idők átlaga	7,5
Válaszidők átlaga	163,5

RR:

RR:10ms	P	1	P2	P	P4	
Érkezés	0	10	7	11	32	20
CPU idő	14	4	8	36	26	10
Indulás	0	18	10	22	42	32
Befejezés	10	22	22	32	68	42
Várakozás	0	8	3	11	10	12

Algoritmus neve	RR
CPU kihasználtság	144%
Körülfordulási idők átlag	17
Várakozási idők átlaga	7,33333333
Válaszidők átlaga	114,5

2. Adott négy processz a rendszerbe, melynek a ready sorban a beérkezési sorrendje: A, B, C és D. Minden processz USER módban fut és mindegyik processz futásra kész. Kezdetben mindegyik processz p_uspri = 60. Az A, B, C processz p_nice = 0, a D processz p_nice = 5. Mindegyik processz p_cpu = 0, az óraütés 1 indul, a befejezés legyen 301. óraütés-ig. a.) Határozza meg az ütemezést RR nélkül 301 óraütésig és RR-nal 201 óraütésig - különkülön táblázatba! b.) Minden óraütem esetén határozza meg a processzek sorrendjét óraütés előtt/után. c.) Igazolja a számítással a tanultak alapján. A táblázat javasolt formája RR/RR nélkül a következő:

RRnélkül 301óraütésig:

	A pro	cess	B pro	ocess	C pro	ocess	D pro	cess	Resch	edule	A,B,C p_nice	0
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	running before	running after	D p_nice	5
Starting point	60	0	60	0	60	0	60	0	Α	Α		
1	60	1	60	0	60	0	60	0	Α	Α	p_uspri:	p_user+p_cpu/2+2*p_nice
2	60	2	60	0	60	0	60	0	Α	Α		
3	60	3	60	0	60	0	60	0	Α	Α	p_cpu	p_cpu/2
99	60	99	60	0	60	0	60	0	Α	Α		
100	65	50	60	0	60	0	60	0	Α	В		
101	65	50	60	1	60	0	60	0	В	В		
199	65	50	60	99	60	0	60	0	В	В		
200	55	25	65	50	60	0	60	0	В	С		
201	55	25	65	50	60	1	60	0	С	С		
299	55	25	65	50	60	99	60	0	С	С		
300	43	12	55	25	65	50	60	0	С	D		
301	43	12	55	25	65	50	60	1	D	D		

RR-el 201 óraütésig:

	A process		A process		B pro	cess	ess C process		D process		Reschedule	
Clock tick	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	p_uspri	p_cpu	running before	running after		
Starting point	60	0	60	0	60	0	60	0	Α	Α		
1	60	1	60	0	60	0	60	0	А	Α		
9	60	9	60	0	60	0	60	0	Α	Α		
10	60	10	60	0	60	0	60	0	Α	В		
19	60	10	60	9	60	0	60	0	В	В		
20	60	10	60	10	60	0	60	0	В	С		
29	60	10	60	10	60	9	60	0	С	С		
30	60	10	60	10	60	10	60	0	С	D		
39	60	10	60	10	60	10	60	9	D	D		
40	60	10	60	10	60	10	60	10	D	Α		
50	60	20	60	10	60	10	60	10	Α	В		
60	60	20	60	20	60	10	60	10	В	С		
70	60	20	60	20	60	20	60	10	С	D		
80	60	20	60	20	60	20	60	20	D	Α		
90	60	30	60	20	60	20	60	20	Α	В		
100	67	26	67	26	64	17	64	27	В	С		
199	67	46	67	46	64	37	64	46	D	D		
200	70	39	70	39	68	31	70	40	D	Α		
201	70	40	70	39	68	31	70	40	А	Α		

KF = 2*FK / 2*FK + 1 = (2*3) / (2*3+1) = 0.85						
A $p_{cpu} = 46 * 0.85 = 39$	A $p_uspri = 60 + (39/4) = 70$					
B $p_cpu = 46 * 0.85 = 39$	B $p_uspri = 60 + (39/4) = 70$					
C p cpu = 37 * 0.85 = 31	C p uspri = $60 + (31/4) = 68$					
D p cpu = $46 * 0.85 = 40$	D p uspri = $60 + (40/4) + 10 = 70$					