Prove by induction that every positive integer power of 5 can be writt	en as the sum of
squares of two distinct positive integers.	

Let Pn be the statement that for some positive integer n, $5^n = x^2 + y^2$, where x and y are positive For the base case, n=1, integers $5^1 = 2^2 + 1^2$. P1 is true

For n=2, $5^2 = 4^2 + 3^2 : P_2$ is true

Assume that, for some positive integer $n=k_1$ $5k = \chi^2 + \chi^2$

Then, for n = kt2, $5k+2 = 5^{2}(x^{2}+y^{2})$ $= (5x)^{2} + (5y)^{2} \cdot P_{k} \Rightarrow P_{kt2}$

· · As P1 is true, P2 is true, and P& >Ph+2, by mathematical induction,

 $5^n = x^2 + y^2$

for any jointive integer n, where n and y are integers.